
indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Python	3.4.0	documentation
Welcome!	 This	 is	 the	 documentation	 for	 Python	 3.4.0,	 last	 updated
Mar	16,	2014.

Parts	of	the	documentation:

What's	new	in	Python
3.4?	 or	 all	 "What's	 new"	 documents

since	2.0

Tutorial
start	here

Library	Reference
keep	this	under	your	pillow

Language	Reference
describes	syntax	and	language	elements

Python	 Setup	 and
Usage
how	to	use	Python	on	different	platforms

Python	HOWTOs
in-depth	documents	on	specific	topics

Installing	 Python
Modules
installing	from	the	Python	Package	Index

&	other	sources

Distributing	 Python
Modules
publishing	 modules	 for	 installation	 by

others

Extending	 and
Embedding
tutorial	for	C/C++	programmers

Python/C	API
reference	for	C/C++	programmers

FAQs
frequently	 asked	 questions	 (with

answers!)

Indices	and	tables:

Global	Module	Index
quick	access	to	all	modules

General	Index
all	functions,	classes,	terms

Glossary
the	most	important	terms	explained

Search	page
search	this	documentation

Complete	 Table	 of
Contents
lists	all	sections	and	subsections

Meta	information:

Reporting	bugs

About	 the
documentation

History	 and	 License
of	Python

Copyright

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Python	Module	Index
_	|	a	|	b	|	c	|	d	|	e	|	f	|	g	|	h	|	i	|	j	|	k	|	l	|	m	|	n	|	o	|	p	|	q	|	r	|	s	|	t	|	u	|	v	|
w	|	x	|	z
	
_
__future__ Future	statement

definitions
__main__ The	environment	where

the	top-level	script	is
run.

_dummy_thread Drop-in	replacement	for
the	_thread	module.

_thread Low-level	threading
API.

	
a
abc Abstract	base	classes

according	to	PEP	3119.
aifc Read	and	write	audio

files	in	AIFF	or	AIFC
format.

argparse Command-line	option
and	argument	parsing
library.

array Space	efficient	arrays
of	uniformly	typed
numeric	values.

ast Abstract	Syntax	Tree
classes	and
manipulation.

asynchat Support	for
asynchronous
command/response
protocols.

asyncio Asynchronous	I/O,
event	loop,	coroutines
and	tasks.

asyncore A	base	class	for
developing
asynchronous	socket
handling	services.

atexit Register	and	execute
cleanup	functions.

audioop Manipulate	raw	audio
data.

	
b
base64 RFC	3548:	Base16,

Base32,	Base64	Data
Encodings;	Base85	and
Ascii85

bdb Debugger	framework.
binascii Tools	for	converting

between	binary	and
various	ASCII-encoded
binary	representations.

binhex Encode	and	decode
files	in	binhex4	format.

bisect Array	bisection
algorithms	for	binary
searching.

builtins The	module	that
provides	the	built-in
namespace.

bz2 Interfaces	for	bzip2
compression	and
decompression.

	
c
calendar Functions	for	working

with	calendars,
including	some
emulation	of	the	Unix
cal	program.

cgi Helpers	for	running
Python	scripts	via	the
Common	Gateway
Interface.

cgitb Configurable	traceback
handler	for	CGI	scripts.

chunk Module	to	read	IFF
chunks.

cmath Mathematical	functions
for	complex	numbers.

cmd Build	line-oriented
command	interpreters.

code Facilities	to	implement
read-eval-print	loops.

codecs Encode	and	decode
data	and	streams.

codeop Compile	(possibly
incomplete)	Python
code.

collections Container	datatypes
				collections.abc Abstract	base	classes

for	containers
colorsys Conversion	functions

between	RGB	and
other	color	systems.

compileall Tools	for	byte-compiling
all	Python	source	files
in	a	directory	tree.

concurrent

				concurrent.futures Execute	computations
concurrently	using
threads	or	processes.

configparser Configuration	file
parser.

contextlib Utilities	for	with-
statement	contexts.

copy Shallow	and	deep	copy
operations.

copyreg Register	pickle	support
functions.

cProfile

crypt	(Unix) The	crypt()	function
used	to	check	Unix
passwords.

csv Write	and	read	tabular
data	to	and	from
delimited	files.

ctypes A	foreign	function
library	for	Python.

curses	(Unix) An	interface	to	the
curses	library,	providing
portable	terminal
handling.

				curses.ascii Constants	and	set-
membership	functions
for	ASCII	characters.

				curses.panel A	panel	stack	extension
that	adds	depth	to
curses	windows.

				curses.textpad Emacs-like	input	editing
in	a	curses	window.

	
d
datetime Basic	date	and	time

types.
dbm Interfaces	to	various

Unix	"database"
formats.

				dbm.dumb Portable
implementation	of	the
simple	DBM	interface.

				dbm.gnu	(Unix) GNU's	reinterpretation
of	dbm.

				dbm.ndbm	(Unix) The	standard
"database"	interface,
based	on	ndbm.

decimal Implementation	of	the
General	Decimal
Arithmetic	Specification.

difflib Helpers	for	computing
differences	between
objects.

dis Disassembler	for
Python	bytecode.

distutils Support	for	building	and
installing	Python
modules	into	an
existing	Python
installation.

				distutils.archive_util Utility	functions	for
creating	archive	files
(tarballs,	zip	files,	...)

				distutils.bcppcompiler
				distutils.ccompiler Abstract	CCompiler

class
				distutils.cmd This	module	provides

the	abstract	base	class
Command.	This	class	is
subclassed	by	the
modules	in	the
distutils.command
subpackage.

				distutils.command This	subpackage
contains	one	module	for
each	standard	Distutils

command.
				distutils.command.bdist Build	a	binary	installer

for	a	package
				distutils.command.bdist_dumb Build	a	"dumb"	installer

-	a	simple	archive	of
files

				distutils.command.bdist_msi Build	a	binary
distribution	as	a
Windows	MSI	file

			
distutils.command.bdist_packager

Abstract	base	class	for
packagers

				distutils.command.bdist_rpm Build	a	binary
distribution	as	a	Redhat
RPM	and	SRPM

				distutils.command.bdist_wininst Build	a	Windows
installer

				distutils.command.build Build	all	files	of	a
package

				distutils.command.build_clib Build	any	C	libraries	in
a	package

				distutils.command.build_ext Build	any	extensions	in
a	package

				distutils.command.build_py Build	the	.py/.pyc	files
of	a	package

				distutils.command.build_scripts Build	the	scripts	of	a
package

				distutils.command.check Check	the	metadata	of
a	package

				distutils.command.clean Clean	a	package	build
area

				distutils.command.config Perform	package
configuration

				distutils.command.install Install	a	package
				distutils.command.install_data Install	data	files	from	a

package
			 Install	C/C++	header

distutils.command.install_headers files	from	a	package
				distutils.command.install_lib Install	library	files	from

a	package
			
distutils.command.install_scripts

Install	script	files	from	a
package

				distutils.command.register Register	a	module	with
the	Python	Package
Index

				distutils.command.sdist Build	a	source
distribution

				distutils.core The	core	Distutils
functionality

				distutils.cygwinccompiler
				distutils.debug Provides	the	debug	flag

for	distutils
				distutils.dep_util Utility	functions	for

simple	dependency
checking

				distutils.dir_util Utility	functions	for
operating	on	directories
and	directory	trees

				distutils.dist Provides	the
Distribution	class,	which
represents	the	module
distribution	being
built/installed/distributed

				distutils.errors Provides	standard
distutils	exceptions

				distutils.extension Provides	the	Extension
class,	used	to	describe
C/C++	extension
modules	in	setup
scripts

				distutils.fancy_getopt Additional	getopt
functionality

				distutils.file_util Utility	functions	for

operating	on	single	files
				distutils.filelist The	FileList	class,	used

for	poking	about	the	file
system	and	building
lists	of	files.

				distutils.log A	simple	logging
mechanism,	282-style

				distutils.msvccompiler Microsoft	Compiler
				distutils.spawn Provides	the	spawn()

function
				distutils.sysconfig Low-level	access	to

configuration
information	of	the
Python	interpreter.

				distutils.text_file provides	the	TextFile
class,	a	simple	interface
to	text	files

				distutils.unixccompiler UNIX	C	Compiler
				distutils.util Miscellaneous	other

utility	functions
				distutils.version implements	classes	that

represent	module
version	numbers.

doctest Test	pieces	of	code
within	docstrings.

dummy_threading Drop-in	replacement	for
the	threading	module.

	
e
email Package	supporting	the

parsing,	manipulating,
and	generating	email
messages,	including
MIME	documents.

				email.charset Character	Sets
				email.contentmanager Storing	and	Retrieving

Content	from	MIME
Parts

				email.encoders Encoders	for	email
message	payloads.

				email.errors The	exception	classes
used	by	the	email
package.

				email.generator Generate	flat	text	email
messages	from	a
message	structure.

				email.header Representing	non-
ASCII	headers

				email.headerregistry Automatic	Parsing	of
headers	based	on	the
field	name

				email.iterators Iterate	over	a	message
object	tree.

				email.message The	base	class
representing	email
messages.

				email.mime Build	MIME	messages.
				email.parser Parse	flat	text	email

messages	to	produce	a
message	object
structure.

				email.policy Controlling	the	parsing
and	generating	of
messages

				email.utils Miscellaneous	email
package	utilities.

encodings

				encodings.idna Internationalized
Domain	Names
implementation

				encodings.mbcs Windows	ANSI
codepage

				encodings.utf_8_sig UTF-8	codec	with	BOM
signature

ensurepip Bootstrapping	the
``pip``	installer	into	an
existing	Python
installation	or	virtual
environment.

enum Implementation	of	an
enumeration	class.

errno Standard	errno	system
symbols.

	
f
faulthandler Dump	the	Python

traceback.
fcntl	(Unix) The	fcntl()	and	ioctl()

system	calls.
filecmp Compare	files

efficiently.
fileinput Loop	over	standard

input	or	a	list	of	files.
fnmatch Unix	shell	style

filename	pattern
matching.

formatter Deprecated:	Generic
output	formatter	and
device	interface.

fpectl	(Unix) Provide	control	for
floating	point	exception
handling.

fractions Rational	numbers.
ftplib FTP	protocol	client

(requires	sockets).
functools Higher-order	functions

and	operations	on
callable	objects.

	
g
gc Interface	to	the	cycle-

detecting	garbage
collector.

getopt Portable	parser	for
command	line	options;
support	both	short	and
long	option	names.

getpass Portable	reading	of
passwords	and	retrieval
of	the	userid.

gettext Multilingual
internationalization
services.

glob Unix	shell	style
pathname	pattern
expansion.

grp	(Unix) The	group	database
(getgrnam()	and
friends).

gzip Interfaces	for	gzip
compression	and
decompression	using
file	objects.

	
h
hashlib Secure	hash	and

message	digest
algorithms.

heapq Heap	queue	algorithm
(a.k.a.	priority	queue).

hmac Keyed-Hashing	for
Message	Authentication
(HMAC)	implementation
for	Python.

html Helpers	for
manipulating	HTML.

				html.entities Definitions	of	HTML
general	entities.

				html.parser A	simple	parser	that
can	handle	HTML	and
XHTML.

http

				http.client HTTP	and	HTTPS
protocol	client	(requires
sockets).

				http.cookiejar Classes	for	automatic
handling	of	HTTP
cookies.

				http.cookies Support	for	HTTP	state
management	(cookies).

				http.server HTTP	server	and
request	handlers.

	
i
imaplib IMAP4	protocol	client

(requires	sockets).
imghdr Determine	the	type	of

image	contained	in	a
file	or	byte	stream.

imp Deprecated:	Access
the	implementation	of
the	import	statement.

importlib The	implementation	of
the	import	machinery.

				importlib.abc Abstract	base	classes
related	to	import

				importlib.machinery Importers	and	path
hooks

				importlib.util Utility	code	for
importers

inspect Extract	information	and
source	code	from	live
objects.

io Core	tools	for	working
with	streams.

ipaddress IPv4/IPv6	manipulation
library.

itertools Functions	creating
iterators	for	efficient
looping.

	
j
json Encode	and	decode	the

JSON	format.
	
k
keyword Test	whether	a	string	is

a	keyword	in	Python.
	
l
lib2to3 the	2to3	library
linecache This	module	provides

random	access	to
individual	lines	from	text
files.

locale Internationalization
services.

logging Flexible	event	logging
system	for	applications.

				logging.config Configuration	of	the
logging	module.

				logging.handlers Handlers	for	the	logging
module.

lzma A	Python	wrapper	for
the	liblzma
compression	library.

	
m
macpath Mac	OS	9	path

manipulation	functions.
mailbox Manipulate	mailboxes

in	various	formats
mailcap Mailcap	file	handling.
marshal Convert	Python	objects

to	streams	of	bytes	and
back	(with	different
constraints).

math Mathematical	functions
(sin()	etc.).

mimetypes Mapping	of	filename
extensions	to	MIME
types.

mmap Interface	to	memory-
mapped	files	for	Unix
and	Windows.

modulefinder Find	modules	used	by	a
script.

msilib	(Windows) Creation	of	Microsoft
Installer	files,	and	CAB
files.

msvcrt	(Windows) Miscellaneous	useful
routines	from	the	MS
VC++	runtime.

multiprocessing Process-based
parallelism.

				multiprocessing.connection API	for	dealing	with
sockets.

				multiprocessing.dummy Dumb	wrapper	around
threading.

				multiprocessing.managers Share	data	between
process	with	shared
objects.

				multiprocessing.pool Create	pools	of
processes.

				multiprocessing.sharedctypes Allocate	ctypes	objects
from	shared	memory.

	
n
netrc Loading	of	.netrc	files.
nis	(Unix) Interface	to	Sun's	NIS

(Yellow	Pages)	library.
nntplib NNTP	protocol	client

(requires	sockets).
numbers Numeric	abstract	base

classes	(Complex,
Real,	Integral,	etc.).

	
o
operator Functions

corresponding	to	the
standard	operators.

optparse Deprecated:
Command-line	option
parsing	library.

os Miscellaneous
operating	system
interfaces.

				os.path Operations	on
pathnames.

ossaudiodev	(Linux,	FreeBSD) Access	to	OSS-
compatible	audio
devices.

	
p
parser Access	parse	trees	for

Python	source	code.
pathlib Object-oriented

filesystem	paths

pdb The	Python	debugger
for	interactive
interpreters.

pickle Convert	Python	objects
to	streams	of	bytes	and
back.

pickletools Contains	extensive
comments	about	the
pickle	protocols	and
pickle-machine
opcodes,	as	well	as
some	useful	functions.

pipes	(Unix) A	Python	interface	to
Unix	shell	pipelines.

pkgutil Utilities	for	the	import
system.

platform Retrieves	as	much
platform	identifying	data
as	possible.

plistlib Generate	and	parse
Mac	OS	X	plist	files.

poplib POP3	protocol	client
(requires	sockets).

posix	(Unix) The	most	common
POSIX	system	calls
(normally	used	via
module	os).

pprint Data	pretty	printer.
profile Python	source	profiler.
pstats Statistics	object	for	use

with	the	profiler.
pty	(Linux) Pseudo-Terminal

Handling	for	Linux.
pwd	(Unix) The	password	database

(getpwnam()	and
friends).

py_compile Generate	byte-code
files	from	Python
source	files.

pyclbr Supports	information
extraction	for	a	Python
class	browser.

pydoc Documentation
generator	and	online
help	system.

	
q
queue A	synchronized	queue

class.
quopri Encode	and	decode

files	using	the	MIME
quoted-printable
encoding.

	
r
random Generate	pseudo-

random	numbers	with
various	common
distributions.

re Regular	expression
operations.

readline	(Unix) GNU	readline	support
for	Python.

reprlib Alternate	repr()
implementation	with
size	limits.

resource	(Unix) An	interface	to	provide
resource	usage
information	on	the
current	process.

rlcompleter Python	identifier
completion,	suitable	for

the	GNU	readline
library.

runpy Locate	and	run	Python
modules	without
importing	them	first.

	
s
sched General	purpose	event

scheduler.
select Wait	for	I/O	completion

on	multiple	streams.
selectors High-level	I/O

multiplexing.
shelve Python	object

persistence.
shlex Simple	lexical	analysis

for	Unix	shell-like
languages.

shutil High-level	file
operations,	including
copying.

signal Set	handlers	for
asynchronous	events.

site Module	responsible	for
site-specific
configuration.

smtpd A	SMTP	server
implementation	in
Python.

smtplib SMTP	protocol	client
(requires	sockets).

sndhdr Determine	type	of	a
sound	file.

socket Low-level	networking
interface.

socketserver A	framework	for

network	servers.
spwd	(Unix) The	shadow	password

database	(getspnam()
and	friends).

sqlite3 A	DB-API	2.0
implementation	using
SQLite	3.x.

ssl TLS/SSL	wrapper	for
socket	objects

stat Utilities	for	interpreting
the	results	of	os.stat(),
os.lstat()	and	os.fstat().

statistics mathematical	statistics
functions

string Common	string
operations.

stringprep String	preparation,	as
per	RFC	3453

struct Interpret	bytes	as
packed	binary	data.

subprocess Subprocess
management.

sunau Provide	an	interface	to
the	Sun	AU	sound
format.

symbol Constants	representing
internal	nodes	of	the
parse	tree.

symtable Interface	to	the
compiler's	internal
symbol	tables.

sys Access	system-specific
parameters	and
functions.

sysconfig Python's	configuration
information

syslog	(Unix) An	interface	to	the	Unix
syslog	library	routines.

	
t
tabnanny Tool	for	detecting	white

space	related	problems
in	Python	source	files	in
a	directory	tree.

tarfile Read	and	write	tar-
format	archive	files.

telnetlib Telnet	client	class.
tempfile Generate	temporary

files	and	directories.
termios	(Unix) POSIX	style	tty	control.
test Regression	tests

package	containing	the
testing	suite	for	Python.

				test.support Support	for	Python's
regression	test	suite.

textwrap Text	wrapping	and	filling
threading Thread-based

parallelism.
time Time	access	and

conversions.
timeit Measure	the	execution

time	of	small	code
snippets.

tkinter Interface	to	Tcl/Tk	for
graphical	user
interfaces

				tkinter.scrolledtext	(Tk) Text	widget	with	a
vertical	scroll	bar.

				tkinter.tix Tk	Extension	Widgets
for	Tkinter

				tkinter.ttk Tk	themed	widget	set

token Constants	representing
terminal	nodes	of	the
parse	tree.

tokenize Lexical	scanner	for
Python	source	code.

trace Trace	or	track	Python
statement	execution.

traceback Print	or	retrieve	a	stack
traceback.

tracemalloc Trace	memory
allocations.

tty	(Unix) Utility	functions	that
perform	common
terminal	control
operations.

turtle An	educational
framework	for	simple
graphics	applications

types Names	for	built-in
types.

	
u
unicodedata Access	the	Unicode

Database.
unittest Unit	testing	framework

for	Python.
				unittest.mock Mock	object	library.
urllib

				urllib.error Exception	classes
raised	by	urllib.request.

				urllib.parse Parse	URLs	into	or
assemble	them	from
components.

				urllib.request Extensible	library	for
opening	URLs.

				urllib.response Response	classes	used

by	urllib.
				urllib.robotparser Load	a	robots.txt	file

and	answer	questions
about	fetchability	of
other	URLs.

uu Encode	and	decode
files	in	uuencode
format.

uuid UUID	objects
(universally	unique
identifiers)	according	to
RFC	4122

	
v
venv Creation	of	virtual

environments.
	
w
warnings Issue	warning

messages	and	control
their	disposition.

wave Provide	an	interface	to
the	WAV	sound	format.

weakref Support	for	weak
references	and	weak
dictionaries.

webbrowser Easy-to-use	controller
for	Web	browsers.

winreg	(Windows) Routines	and	objects
for	manipulating	the
Windows	registry.

winsound	(Windows) Access	to	the	sound-
playing	machinery	for
Windows.

wsgiref WSGI	Utilities	and
Reference

Implementation.
				wsgiref.handlers WSGI	server/gateway

base	classes.
				wsgiref.headers WSGI	response	header

tools.
				wsgiref.simple_server A	simple	WSGI	HTTP

server.
				wsgiref.util WSGI	environment

utilities.
				wsgiref.validate WSGI	conformance

checker.
	
x
xdrlib Encoders	and	decoders

for	the	External	Data
Representation	(XDR).

xml Package	containing
XML	processing
modules

				xml.dom Document	Object
Model	API	for	Python.

				xml.dom.minidom Minimal	Document
Object	Model	(DOM)
implementation.

				xml.dom.pulldom Support	for	building
partial	DOM	trees	from
SAX	events.

				xml.etree.ElementTree Implementation	of	the
ElementTree	API.

				xml.parsers.expat An	interface	to	the
Expat	non-validating
XML	parser.

				xml.parsers.expat.errors
				xml.parsers.expat.model
				xml.sax Package	containing

SAX2	base	classes	and

convenience	functions.
				xml.sax.handler Base	classes	for	SAX

event	handlers.
				xml.sax.saxutils Convenience	functions

and	classes	for	use	with
SAX.

				xml.sax.xmlreader Interface	which	SAX-
compliant	XML	parsers
must	implement.

xmlrpc

				xmlrpc.client XML-RPC	client
access.

				xmlrpc.server Basic	XML-RPC	server
implementations.

	
z
zipfile Read	and	write	ZIP-

format	archive	files.
zipimport support	for	importing

Python	modules	from
ZIP	archives.

zlib Low-level	interface	to
compression	and
decompression	routines
compatible	with	gzip.

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	In	Python	3.4
Author: R.	David	Murray	<rdmurray@bitdance.com>	(Editor)

This	article	explains	the	new	features	in	Python	3.4,	compared	to	3.3.
Python	3.4	was	released	on	March	16,	2014.	For	 full	details,	see	the
changelog.

See	also: 	PEP	429	–	Python	3.4	Release	Schedule

mailto:rdmurray%40bitdance.com
http://docs.python.org/3.4/whatsnew/changelog.html
http://www.python.org/dev/peps/pep-0429

Summary	–	Release	Highlights

New	syntax	features:

No	new	syntax	features	were	added	in	Python	3.4.

Other	new	features:

pip	should	always	be	available	(PEP	453).
Newly	created	file	descriptors	are	non-inheritable	(PEP	446).
command	line	option	for	isolated	mode	(issue	16499).
improvements	 in	 the	 handling	 of	 codecs	 that	 are	 not	 text
encodings	(multiple	issues).
A	ModuleSpec	 Type	 for	 the	 Import	 System	 (PEP	 451).	 (Affects
importer	authors.)
The	marshal	format	has	been	made	more	compact	and	efficient
(issue	16475).

New	library	modules:

asyncio:	New	provisional	API	for	asynchronous	IO	(PEP	3156).
ensurepip:	Bootstrapping	the	pip	installer	(PEP	453).
enum:	Support	for	enumeration	types	(PEP	435).
pathlib:	Object-oriented	filesystem	paths	(PEP	428).
selectors:	High-level	 and	 efficient	 I/O	multiplexing,	 built	 upon
the	select	module	primitives	(part	of	PEP	3156).
statistics:	 A	 basic	 numerically	 stable	 statistics	 library	 (PEP
450).
tracemalloc:	Trace	Python	memory	allocations	(PEP	454).

Significantly	improved	library	modules:

Single-dispatch	generic	functions	in	functools	(PEP	443).
New	pickle	protocol	4	(PEP	3154).

http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0446
http://bugs.python.org/issue16499
http://www.python.org/dev/peps/pep-0451
http://bugs.python.org/issue16475
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0435
http://www.python.org/dev/peps/pep-0428
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0450
http://www.python.org/dev/peps/pep-0454
http://www.python.org/dev/peps/pep-0443
http://www.python.org/dev/peps/pep-3154

multiprocessing	now	has	an	option	to	avoid	using	os.fork	on
Unix	(issue	8713).
email	 has	 a	 new	 submodule,	 contentmanager,	 and	 a	 new
Message	subclass	(EmailMessage)	that	simplify	MIME	handling
(issue	18891).
The	 inspect	 and	 pydoc	 modules	 are	 now	 capable	 of	 correct
introspection	 of	 a	 much	 wider	 variety	 of	 callable	 objects,	 which
improves	the	output	of	the	Python	help()	system.
The	ipaddress	module	API	has	been	declared	stable

Security	improvements:

Secure	and	interchangeable	hash	algorithm	(PEP	456).
Make	newly	created	file	descriptors	non-inheritable	 (PEP	446)	 to
avoid	leaking	file	descriptors	to	child	processes.
New	command	line	option	for	isolated	mode,	(issue	16499).
multiprocessing	now	has	an	option	to	avoid	using	os.fork	on
Unix.	spawn	and	forkserver	are	more	secure	because	they	avoid
sharing	data	with	child	processes.
multiprocessing	 child	 processes	 on	 Windows	 no	 longer
inherit	all	 of	 the	parent’s	 inheritable	handles,	only	 the	necessary
ones.
A	 new	 hashlib.pbkdf2_hmac()	 function	 provides	 the
PKCS#5	password-based	key	derivation	function	2.
TLSv1.1	and	TLSv1.2	support	for	ssl.
Retrieving	 certificates	 from	 the	 Windows	 system	 cert	 store
support	for	ssl.
Server-side	SNI	(Server	Name	Indication)	support	for	ssl.
The	ssl.SSLContext	class	has	a	lot	of	improvements.
All	modules	in	the	standard	library	that	support	SSL	now	support
server	 certificate	 verification,	 including	 hostname	 matching
(ssl.match_hostname())	 and	 CRLs	 (Certificate	 Revocation
lists,	see	ssl.SSLContext.load_verify_locations()).

http://bugs.python.org/issue8713
http://bugs.python.org/issue18891
http://www.python.org/dev/peps/pep-0456
http://www.python.org/dev/peps/pep-0446
http://bugs.python.org/issue16499
http://en.wikipedia.org/wiki/PBKDF2

CPython	implementation	improvements:

Safe	object	finalization	(PEP	442).
Leveraging	PEP	442,	in	most	cases	module	globals	are	no	longer
set	to	None	during	finalization	(issue	18214).
Configurable	memory	allocators	(PEP	445).
Argument	Clinic	(PEP	436).

Please	 read	 on	 for	 a	 comprehensive	 list	 of	 user-facing	 changes,
including	 many	 other	 smaller	 improvements,	 CPython	 optimizations,
deprecations,	and	potential	porting	issues.

http://www.python.org/dev/peps/pep-0442
http://www.python.org/dev/peps/pep-0442
http://bugs.python.org/issue18214
http://www.python.org/dev/peps/pep-0445
http://www.python.org/dev/peps/pep-0436

New	Features

PEP	453:	Explicit	Bootstrapping	of	PIP	in	Python
Installations
Bootstrapping	pip	By	Default

The	 new	 ensurepip	 module	 (defined	 in	 PEP	 453)	 provides	 a
standard	cross-platform	mechanism	 to	bootstrap	 the	pip	 installer	 into
Python	 installations	 and	 virtual	 environments.	 The	 version	 of	 pip
included	with	Python	3.4.0	is	pip	1.5.4,	and	future	3.4.x	maintenance
releases	will	update	 the	bundled	version	 to	 the	 latest	version	of	pip
that	is	available	at	the	time	of	creating	the	release	candidate.

By	default,	 the	commands	pipX	and	pipX.Y	will	be	 installed	on	all
platforms	(where	X.Y	stands	for	the	version	of	the	Python	installation),
along	 with	 the	 pip	 Python	 package	 and	 its	 dependencies.	 On
Windows	and	in	virtual	environments	on	all	platforms,	the	unversioned
pip	 command	will	 also	be	 installed.	On	other	 platforms,	 the	 system
wide	 unversioned	 pip	 command	 typically	 refers	 to	 the	 separately
installed	Python	2	version.

The	pyvenv	 command	 line	utility	and	 the	venv	module	make	use	of
the	 ensurepip	 module	 to	 make	 pip	 readily	 available	 in	 virtual
environments.	When	using	the	command	line	utility,	pip	is	installed	by
default,	 while	 when	 using	 the	 venv	 module	API	 installation	 of	 pip
must	be	requested	explicitly.

For	CPython	source	 builds	 on	POSIX	 systems,	 the	 make	install
and	 make	altinstall	 commands	 bootstrap	 pip	 by	 default.	 This
behaviour	can	be	controlled	through	configure	options,	and	overridden

http://www.python.org/dev/peps/pep-0453

through	Makefile	options.

On	Windows	 and	Mac	 OS	 X,	 the	 CPython	 installers	 now	 default	 to
installing	pip	along	with	CPython	itself	(users	may	opt	out	of	installing
it	during	the	installation	process).	Window	users	will	need	to	opt	in	to
the	 automatic	 PATH	 modifications	 to	 have	 pip	 available	 from	 the
command	line	by	default,	otherwise	it	can	still	be	accessed	through	the
Python	launcher	for	Windows	as	py	-m	pip.

As	discussed	in	the	PEP,	platform	packagers	may	choose	not	to	install
these	commands	by	default,	 as	 long	as,	when	 invoked,	 they	provide
clear	 and	 simple	 directions	 on	 how	 to	 install	 them	 on	 that	 platform
(usually	using	the	system	package	manager).

Note: 	To	avoid	conflicts	between	parallel	Python	2	and	Python	3
installations,	only	the	versioned	pip3	and	pip3.4	commands	are
bootstrapped	by	default	when	ensurepip	is	invoked	directly	-	the	-
-default-pip	option	is	needed	to	also	request	the	unversioned
pip	command.	pyvenv	and	the	Windows	installer	ensure	that	the
unqualified	pip	command	is	made	available	in	those	environments,
and	pip	can	always	be	invoked	via	the	-m	switch	rather	than
directly	to	avoid	ambiguity	on	systems	with	multiple	Python
installations.

Documentation	Changes

As	part	of	this	change,	the	Installing	Python	Modules	and	Distributing
Python	Modules	sections	of	the	documentation	have	been	completely
redesigned	 as	 short	 getting	 started	 and	 FAQ	 documents.	 Most
packaging	 documentation	 has	 now	 been	 moved	 out	 to	 the	 Python
Packaging	 Authority	 maintained	 Python	 Packaging	 User	 Guide	 and
the	documentation	of	the	individual	projects.

http://www.python.org/dev/peps/pep-0453/#recommendations-for-downstream-distributors
http://packaging.python.org

However,	 as	 this	 migration	 is	 currently	 still	 incomplete,	 the	 legacy
versions	 of	 those	 guides	 remaining	 available	 as	 Installing	 Python
Modules	 (Legacy	 version)	 and	Distributing	 Python	 Modules	 (Legacy
version).

See	also:

PEP	453	–	Explicit	bootstrapping	of	pip	in	Python	installations
PEP	written	by	Donald	Stufft	and	Nick	Coghlan,	implemented	by
Donald	Stufft,	Nick	Coghlan,	Martin	von	Löwis	and	Ned	Deily.

PEP	446:	Newly	Created	File	Descriptors	Are
Non-Inheritable

PEP	 446	 makes	 newly	 created	 file	 descriptors	 non-inheritable.	 In
general,	this	is	the	behavior	an	application	will	want:	when	launching	a
new	process,	having	currently	open	files	also	open	in	the	new	process
can	 lead	 to	 all	 sorts	 of	 hard	 to	 find	 bugs,	 and	 potentially	 to	 security
issues.

However,	there	are	occasions	when	inheritance	is	desired.	To	support
these	cases,	the	following	new	functions	and	methods	are	available:

os.get_inheritable(),	os.set_inheritable()
os.get_handle_inheritable(),
os.set_handle_inheritable()

socket.socket.get_inheritable(),
socket.socket.set_inheritable()

See	also:

PEP	446	–	Make	newly	created	file	descriptors	non-inheritable

http://www.python.org/dev/peps/pep-0453
http://www.python.org/dev/peps/pep-0446
http://www.python.org/dev/peps/pep-0446

PEP	written	and	implemented	by	Victor	Stinner.

Improvements	to	Codec	Handling

Since	 it	 was	 first	 introduced,	 the	 codecs	 module	 has	 always	 been
intended	to	operate	as	a	type-neutral	dynamic	encoding	and	decoding
system.	 However,	 its	 close	 coupling	 with	 the	 Python	 text	 model,
especially	the	type	restricted	convenience	methods	on	the	builtin	str,
bytes	and	bytearray	types,	has	historically	obscured	that	fact.

As	a	key	step	 in	clarifying	 the	situation,	 the	codecs.encode()	 and
codecs.decode()	 convenience	 functions	 are	 now	 properly
documented	in	Python	2.7,	3.3	and	3.4.	These	functions	have	existed
in	the	codecs	module	(and	have	been	covered	by	the	regression	test
suite)	since	Python	2.4,	but	were	previously	only	discoverable	through
runtime	introspection.

Unlike	 the	 convenience	 methods	 on	 str,	 bytes	 and	 bytearray,
the	 codecs	 convenience	 functions	 support	 arbitrary	 codecs	 in	 both
Python	 2	 and	 Python	 3,	 rather	 than	 being	 limited	 to	 Unicode	 text
encodings	 (in	 Python	 3)	 or	 basestring	 <->	 basestring

conversions	(in	Python	2).

In	 Python	 3.4,	 the	 interpreter	 is	 able	 to	 identify	 the	 known	 non-text
encodings	 provided	 in	 the	 standard	 library	 and	 direct	 users	 towards
these	general	purpose	convenience	functions	when	appropriate:

>>>	b"abcdef".decode("hex")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

LookupError:	'hex'	is	not	a	text	encoding;	use	codecs.decode()	to	handle	arbitrary	codecs

>>>	"hello".encode("rot13")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

LookupError:	'rot13'	is	not	a	text	encoding;	use	codecs.encode()	to	handle	arbitrary	codecs

>>>	open("foo.txt",	encoding="hex")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

LookupError:	'hex'	is	not	a	text	encoding;	use	codecs.open()	to	handle	arbitrary	codecs

In	 a	 related	 change,	 whenever	 it	 is	 feasible	 without	 breaking
backwards	 compatibility,	 exceptions	 raised	 during	 encoding	 and
decoding	operations	are	wrapped	in	a	chained	exception	of	the	same
type	 that	mentions	 the	 name	of	 the	 codec	 responsible	 for	 producing
the	error:

>>>	import	codecs

>>>	codecs.decode(b"abcdefgh",	"hex")

Traceback	(most	recent	call	last):

		File	"/usr/lib/python3.4/encodings/hex_codec.py",	line	

				return	(binascii.a2b_hex(input),	len(input))

binascii.Error:	Non-hexadecimal	digit	found

The	above	exception	was	the	direct	cause	of	the	following	exception:

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

binascii.Error:	decoding	with	'hex'	codec	failed	(Error:	Non-hexadecimal	digit	found)

>>>	codecs.encode("hello",	"bz2")

Traceback	(most	recent	call	last):

		File	"/usr/lib/python3.4/encodings/bz2_codec.py",	line	

				return	(bz2.compress(input),	len(input))

		File	"/usr/lib/python3.4/bz2.py",	line	498,	in	compress

				return	comp.compress(data)	+	comp.flush()

TypeError:	'str'	does	not	support	the	buffer	interface

The	above	exception	was	the	direct	cause	of	the	following	exception:

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	encoding	with	'bz2'	codec	failed	(TypeError:	'str'	does	not	support	the	buffer	interface)

Finally,	 as	 the	 examples	 above	 show,	 these	 improvements	 have
permitted	 the	 restoration	 of	 the	 convenience	 aliases	 for	 the	 non-
Unicode	 codecs	 that	 were	 themselves	 restored	 in	 Python	 3.2.	 This
means	 that	 encoding	 binary	 data	 to	 and	 from	 its	 hexadecimal
representation	(for	example)	can	now	be	written	as:

>>>	from	codecs	import	encode,	decode

>>>	encode(b"hello",	"hex")

b'68656c6c6f'

>>>	decode(b"68656c6c6f",	"hex")

b'hello'

The	 binary	 and	 text	 transforms	 provided	 in	 the	 standard	 library	 are
detailed	in	Binary	Transforms	and	Text	Transforms.

(Contributed	by	Nick	Coghlan	in	issue	7475,	issue	17827,	issue	17828
and	issue	19619)

PEP	451:	A	ModuleSpec	Type	for	the	Import
System

PEP	451	provides	an	encapsulation	of	the	information	about	a	module
that	 the	 import	 machinery	 will	 use	 to	 load	 it	 (that	 is,	 a	 module
specification).	This	helps	simplify	both	 the	 import	 implementation	and

http://bugs.python.org/issue7475
http://bugs.python.org/issue17827
http://bugs.python.org/issue17828
http://bugs.python.org/issue19619
http://www.python.org/dev/peps/pep-0451

several	 import-related	APIs.	The	change	 is	also	a	stepping	stone	 for
several	future	import-related	improvements.

The	 public-facing	 changes	 from	 the	 PEP	 are	 entirely	 backward-
compatible.	Furthermore,	 they	should	be	 transparent	 to	everyone	but
importer	 authors.	 Key	 finder	 and	 loader	 methods	 have	 been
deprecated,	but	they	will	continue	working.	New	importers	should	use
the	new	methods	described	 in	 the	PEP.	Existing	 importers	should	be
updated	to	 implement	 the	new	methods.	See	the	Deprecated	section
for	a	list	of	methods	that	should	be	replaced	and	their	replacements.

Other	Language	Changes

Some	smaller	changes	made	to	the	core	Python	language	are:

Unicode	database	updated	to	UCD	version	6.3.
min()	and	max()	now	accept	a	default	keyword-only	argument
that	 can	 be	 used	 to	 specify	 the	 value	 they	 return	 if	 the	 iterable
they	 are	 evaluating	 has	 no	 elements.	 (Contributed	 by	 Julian
Berman	in	issue	18111.)
Module	objects	are	now	weakref‘able.
Module	 __file__	 attributes	 (and	 related	 values)	 should	 now
always	contain	absolute	paths	by	default,	with	the	sole	exception
of	 __main__.__file__	 when	 a	 script	 has	 been	 executed
directly	 using	 a	 relative	 path	 (Contributed	 by	 Brett	 Cannon	 in
issue	18416).
All	the	UTF-*	codecs	(except	UTF-7)	now	reject	surrogates	during
both	 encoding	 and	 decoding	 unless	 the	 surrogatepass	 error
handler	is	used,	with	the	exception	of	the	UTF-16	decoder	(which
accepts	 valid	 surrogate	 pairs)	 and	 the	 UTF-16	 encoder	 (which
produces	them	while	encoding	non-BMP	characters).	Contributed
by	Victor	Stinner,	Kang-Hao	(Kenny)	Lu	and	Serhiy	Storchaka	 in
issue	12892.

https://mail.python.org/pipermail/python-dev/2013-November/130111.html
http://bugs.python.org/issue18111
http://bugs.python.org/issue18416
http://bugs.python.org/issue12892

New	 German	 EBCDIC	 codec	 cp273.	 (Contributed	 by	 Michael
Bierenfeld	and	Andrew	Kuchling	in	issue	1097797.)
New	Ukrainian	codec	cp1125.	 (Contributed	by	Serhiy	Storchaka
in	issue	19668.)
bytes.join()	 and	 bytearray.join()	 now	 accept	 arbitrary	 buffer
objects	 as	 arguments.	 (Contributed	 by	 Antoine	 Pitrou	 in	 issue
15958.)
The	 int	 constructor	 now	 accepts	 any	 object	 that	 has	 an
__index__	method	for	its	base	argument.	(Contributed	by	Mark
Dickinson	in	issue	16772.)
Frame	 objects	 now	 have	 a	 clear()	 method	 that	 clears	 all
references	 to	 local	 variables	 from	 the	 frame.	 (Contributed	 by
Antoine	Pitrou	in	issue	17934.)
memoryview	is	now	registered	as	a	Sequence,	and	supports	the
reversed()	 builtin.	 (Contributed	 by	Nick	Coghlan	 and	Claudiu
Popa	in	issue	18690	and	issue	19078.)
Signatures	 reported	 by	 help()	 have	 been	 modified	 and
improved	 in	 several	 cases	 as	 a	 result	 of	 the	 introduction	 of
Argument	Clinic	and	other	changes	 to	 the	inspect	and	pydoc
modules.
__length_hint__()	 is	 now	 part	 of	 the	 formal	 language
specification	 (see	PEP	424).	 (Contributed	 by	Armin	Ronacher	 in
issue	16148.)

http://bugs.python.org/issue1097797
http://bugs.python.org/issue19668
http://bugs.python.org/issue15958
http://bugs.python.org/issue16772
http://bugs.python.org/issue17934
http://bugs.python.org/issue18690
http://bugs.python.org/issue19078
http://www.python.org/dev/peps/pep-0424
http://bugs.python.org/issue16148

New	Modules

asyncio

The	new	asyncio	module	(defined	in	PEP	3156)	provides	a	standard
pluggable	event	 loop	model	 for	Python,	providing	solid	asynchronous
IO	support	in	the	standard	library,	and	making	it	easier	for	other	event
loop	 implementations	 to	 interoperate	 with	 the	 standard	 library	 and
each	other.

For	Python	3.4,	this	module	is	considered	a	provisional	API.

See	also:

PEP	3156	–	Asynchronous	IO	Support	Rebooted:	the	“asyncio”
Module

PEP	written	and	implementation	led	by	Guido	van	Rossum.

ensurepip

The	new	ensurepip	module	is	the	primary	infrastructure	for	the	PEP
453	implementation.	In	the	normal	course	of	events	end	users	will	not
need	 to	 interact	 with	 this	 module,	 but	 it	 can	 be	 used	 to	 manually
bootstrap	 pip	 if	 the	 automated	 bootstrapping	 into	 an	 installation	 or
virtual	environment	was	declined.

ensurepip	includes	a	bundled	copy	of	pip,	up-to-date	as	of	the	first
release	candidate	of	 the	 release	of	CPython	with	which	 it	 ships	 (this
applies	 to	 both	 maintenance	 releases	 and	 feature	 releases).
ensurepip	 does	 not	 access	 the	 internet.	 If	 the	 installation	 has
Internet	access,	after	ensurepip	is	run	the	bundled	pip	can	be	used

http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0453

to	upgrade	pip	to	a	more	recent	release	than	the	bundled	one.	(Note
that	such	an	upgraded	version	of	pip	is	considered	to	be	a	separately
installed	package	and	will	not	be	removed	if	Python	is	uninstalled.)

The	 module	 is	 named	 ensurepip	 because	 if	 called	 when	 pip	 is
already	 installed,	 it	 does	 nothing.	 It	 also	 has	 an	 --upgrade	 option
that	 will	 cause	 it	 to	 install	 the	 bundled	 copy	 of	 pip	 if	 the	 existing
installed	version	of	pip	is	older	than	the	bundled	copy.

enum

The	 new	 enum	 module	 (defined	 in	 PEP	 435)	 provides	 a	 standard
implementation	of	enumeration	types,	allowing	other	modules	(such	as
socket)	 to	 provide	 more	 informative	 error	 messages	 and	 better
debugging	 support	 by	 replacing	 opaque	 integer	 constants	 with
backwards	compatible	enumeration	values.

See	also:

PEP	435	–	Adding	an	Enum	type	to	the	Python	standard	library
PEP	written	by	Barry	Warsaw,	Eli	Bendersky	and	Ethan	Furman,
implemented	by	Ethan	Furman.

pathlib

The	 new	 pathlib	 module	 offers	 classes	 representing	 filesystem
paths	with	semantics	appropriate	for	different	operating	systems.	Path
classes	 are	 divided	 between	 pure	 paths,	 which	 provide	 purely
computational	 operations	 without	 I/O,	 and	 concrete	 paths,	 which
inherit	from	pure	paths	but	also	provide	I/O	operations.

http://www.python.org/dev/peps/pep-0435
http://www.python.org/dev/peps/pep-0435

For	Python	3.4,	this	module	is	considered	a	provisional	API.

See	also:

PEP	428	–	The	pathlib	module	–	object-oriented	filesystem
paths

PEP	written	and	implemented	by	Antoine	Pitrou.

selectors

The	new	selectors	module	 (created	as	 part	 of	 implementing	PEP
3156)	 allows	 high-level	 and	 efficient	 I/O	 multiplexing,	 built	 upon	 the
select	module	primitives.

statistics

The	new	statistics	module	(defined	in	PEP	450)	offers	some	core
statistics	 functionality	 directly	 in	 the	 standard	 library.	 This	 module
supports	 calculation	 of	 the	 mean,	 median,	 mode,	 variance	 and
standard	deviation	of	a	data	series.

See	also:

PEP	450	–	Adding	A	Statistics	Module	To	The	Standard	Library
PEP	written	and	implemented	by	Steven	D’Aprano

tracemalloc

The	new	tracemalloc	module	(defined	in	PEP	454)	is	a	debug	tool
to	trace	memory	blocks	allocated	by	Python.	 It	provides	the	following
information:

http://www.python.org/dev/peps/pep-0428
http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-0450
http://www.python.org/dev/peps/pep-0450
http://www.python.org/dev/peps/pep-0454

Trace	where	an	object	was	allocated
Statistics	 on	 allocated	memory	 blocks	 per	 filename	and	 per	 line
number:	total	size,	number	and	average	size	of	allocated	memory
blocks
Compute	 the	 differences	 between	 two	 snapshots	 to	 detect
memory	leaks

See	also:

PEP	454	–	Add	a	new	tracemalloc	module	to	trace	Python
memory	allocations

PEP	written	and	implemented	by	Victor	Stinner

http://www.python.org/dev/peps/pep-0454

Improved	Modules

abc

New	function	abc.get_cache_token()	can	be	used	to	know	when
to	invalidate	caches	that	are	affected	by	changes	in	the	object	graph.
(Contributed	by	Łukasz	Langa	in	issue	16832.)

New	class	ABC	has	ABCMeta	as	its	meta	class.	Using	ABC	as	a	base
class	 has	 essentially	 the	 same	 effect	 as	 specifying
metaclass=abc.ABCMeta,	but	is	simpler	to	type	and	easier	to	read.
(Contributed	by	Bruno	Dupuis	in	issue	16049.)

aifc

The	getparams()	method	now	 returns	a	namedtuple	 rather	 than	a
plain	tuple.	(Contributed	by	Claudiu	Popa	in	issue	17818.)

aifc.open()	 now	 supports	 the	 context	 manager	 protocol:	 when
used	in	a	with	block,	the	close()	method	of	the	returned	object	will
be	called	automatically	at	the	end	of	the	block.	(Contributed	by	Serhiy
Storchacha	in	issue	16486.)

The	writeframesraw()	and	writeframes()	methods	now	accept
any	bytes-like	object.	(Contributed	by	Serhiy	Storchaka	in	issue	8311.)

argparse

The	 FileType	 class	 now	 accepts	 encoding	 and	 errors	 arguments,
which	are	passed	through	to	open().	(Contributed	by	Lucas	Maystre
in	issue	11175.)

http://bugs.python.org/issue16832
http://bugs.python.org/issue16049
http://bugs.python.org/issue17818
http://bugs.python.org/issue16486
http://bugs.python.org/issue8311
http://bugs.python.org/issue11175

audioop

audioop	 now	 supports	 24-bit	 samples.	 (Contributed	 by	 Serhiy
Storchaka	in	issue	12866.)

New	 byteswap()	 function	 converts	 big-endian	 samples	 to	 little-
endian	 and	 vice	 versa	 (Contributed	 by	 Serhiy	 Storchaka	 in	 issue
19641).

All	audioop	 functions	now	accept	 any	bytes-like	 object.	 Strings	 are
not	 accepted:	 they	 didn’t	 work	 before,	 now	 they	 raise	 an	 error	 right
away.	(Contributed	by	Serhiy	Storchaka	in	issue	16685.)

base64

The	 encoding	 and	 decoding	 functions	 in	 base64	 now	 accept	 any
bytes-like	 object	 in	 cases	 where	 it	 previously	 required	 a	 bytes	 or
bytearray	instance.	(Contributed	by	Nick	Coghlan	in	issue	17839.)

New	 functions	 a85encode(),	 a85decode(),	 b85encode(),	 and
b85decode()	 provide	 the	ability	 to	encode	and	decode	binary	data
from	 and	 to	 Ascii85	 and	 the	 git/mercurial	 Base85	 formats,
respectively.	 The	 a85	 functions	 have	 options	 that	 can	 be	 used	 to
make	 them	 compatible	 with	 the	 variants	 of	 the	 Ascii85	 encoding,
including	 the	 Adobe	 variant.	 (Contributed	 by	 Martin	 Morrison,	 the
Mercurial	 project,	 Serhiy	 Storchaka,	 and	 Antoine	 Pitrou	 in	 issue
17618.)

collections

The	ChainMap.new_child()	method	now	accepts	an	m	argument

http://bugs.python.org/issue12866
http://bugs.python.org/issue19641
http://bugs.python.org/issue16685
http://bugs.python.org/issue17839
http://bugs.python.org/issue17618

specifying	 the	child	map	 to	add	 to	 the	chain.	This	allows	an	existing
mapping	 and/or	 a	 custom	 mapping	 type	 to	 be	 used	 for	 the	 child.
(Contributed	by	Vinay	Sajip	in	issue	16613.)

colorsys

The	 number	 of	 digits	 in	 the	 coefficients	 for	 the	 RGB	 —	 YIQ
conversions	have	been	expanded	so	that	they	match	the	FCC	NTSC
versions.	 The	 change	 in	 results	 should	 be	 less	 than	 1%	 and	 may
better	match	 results	 found	elsewhere.	 (Contributed	by	Brian	Landers
and	Serhiy	Storchaka	in	issue	14323.)

contextlib

The	 new	 contextlib.suppress	 context	 manager	 helps	 to	 clarify
the	 intent	 of	 code	 that	 deliberately	 suppresses	 exceptions	 from	 a
single	statement.	 (Contributed	by	Raymond	Hettinger	 in	 issue	15806
and	Zero	Piraeus	in	issue	19266)

The	 new	 contextlib.redirect_stdout()	 context	 manager
makes	 it	 easier	 for	 utility	 scripts	 to	 handle	 inflexible	 APIs	 that	 write
their	output	to	sys.stdout	and	don’t	provide	any	options	to	redirect
it.	 Using	 the	 context	 manager,	 the	 sys.stdout	 output	 can	 be
redirected	to	any	other	stream	or,	 in	conjunction	with	io.StringIO,
to	a	string.	The	latter	can	be	especially	useful,	for	example,	to	capture
output	 from	a	function	that	was	written	to	 implement	a	command	line
interface.	 It	 is	 recommended	only	 for	 utility	 scripts	because	 it	 affects
the	global	state	of	sys.stdout.	 (Contributed	by	Raymond	Hettinger
in	issue	15805)

The	contextlib	documentation	has	also	been	updated	to	include	a

http://bugs.python.org/issue16613
http://bugs.python.org/issue14323
http://bugs.python.org/issue15806
http://bugs.python.org/issue19266
http://bugs.python.org/issue15805

discussion	 of	 the	 differences	 between	 single	 use,	 reusable	 and
reentrant	context	managers.

dbm

dbm.open()	objects	now	support	 the	context	management	protocol.
When	used	in	a	with	statement,	the	close	method	of	the	database
object	will	be	called	automatically	at	the	end	of	the	block.	(Contributed
by	Claudiu	Popa	and	Nick	Coghlan	in	issue	19282.)

dis

Functions	 show_code(),	 dis(),	 distb(),	 and	 disassemble()
now	 accept	 a	 keyword-only	 file	 argument	 that	 controls	 where	 they
write	their	output.

The	 dis	 module	 is	 now	 built	 around	 an	 Instruction	 class	 that
provides	 object	 oriented	 access	 to	 the	 details	 of	 each	 individual
bytecode	operation.

A	 new	 method,	 get_instructions(),	 provides	 an	 iterator	 that
emits	the	Instruction	stream	for	a	given	piece	of	Python	code.	Thus	it
is	 now	 possible	 to	 write	 a	 program	 that	 inspects	 and	manipulates	 a
bytecode	 object	 in	 ways	 different	 from	 those	 provided	 by	 the	 dis
module	itself.	For	example:

>>>	import	dis

>>>	for	instr	in	dis.get_instructions(lambda	x:	x	+	

...					print(instr.opname)

LOAD_FAST

LOAD_CONST

BINARY_ADD

http://bugs.python.org/issue19282

RETURN_VALUE

The	 various	 display	 tools	 in	 the	 dis	module	 have	 been	 rewritten	 to
use	these	new	components.

In	 addition,	 a	 new	 application-friendly	 class	 Bytecode	 provides	 an
object-oriented	API	for	inspecting	bytecode	in	both	in	human-readable
form	 and	 for	 iterating	 over	 instructions.	 The	 Bytecode	 constructor
takes	the	same	arguments	that	get_instruction()	does	(plus	an
optional	 current_offset),	 and	 the	 resulting	 object	 can	 be	 iterated	 to
produce	 Instruction	 objects.	 But	 it	 also	 has	 a	 dis	 method,
equivalent	to	calling	dis	on	the	constructor	argument,	but	returned	as
a	multi-line	string:

>>>	bytecode	=	dis.Bytecode(lambda	x:	x	+1,	current_offset

>>>	for	instr	in	bytecode:

...					print('{}	({})'.format(instr.opname,	instr.opcode

LOAD_FAST	(124)

LOAD_CONST	(100)

BINARY_ADD	(23)

RETURN_VALUE	(83)

>>>	bytecode.dis().splitlines()							

['		1											0	LOAD_FAST																0	(x)',

	'						-->					3	LOAD_CONST															1	(1)',

	'														6	BINARY_ADD',

	'														7	RETURN_VALUE']

Bytecode	 also	 has	 a	 class	 method,	 from_traceback(),	 that
provides	 the	 ability	 to	 manipulate	 a	 traceback	 (that	 is,
print(Bytecode.from_traceback(tb).dis())	 is	equivalent	to
distb(tb)).

(Contributed	 by	 Nick	 Coghlan,	 Ryan	 Kelly	 and	 Thomas	 Kluyver	 in

issue	11816	and	Claudiu	Popa	in	issue	17916)

New	 function	 stack_effect()	 computes	 the	 effect	 on	 the	 Python
stack	 of	 a	 given	 opcode	 and	 argument,	 information	 that	 is	 not
otherwise	available.	(Contributed	by	Larry	Hastings	in	issue	19722.)

doctest

A	new	option	flag,	FAIL_FAST,	halts	test	running	as	soon	as	the	first
failure	is	detected.	(Contributed	by	R.	David	Murray	and	Daniel	Urban
in	issue	16522.)

The	doctest	command	line	interface	now	uses	argparse,	and	has
two	new	options,	-o	and	-f.	-o	allows	doctest	options	to	be	specified
on	the	command	 line,	and	-f	 is	a	shorthand	for	-o	FAIL_FAST	 (to
parallel	 the	 similar	 option	 supported	 by	 the	 unittest	 CLI).
(Contributed	by	R.	David	Murray	in	issue	11390.)

doctest	will	now	find	doctests	in	extension	module	__doc__	strings.
(Contributed	by	Zachary	Ware	in	issue	3158.)

email

as_string()	now	accepts	a	policy	argument	to	override	the	default
policy	 of	 the	message	when	 generating	 a	 string	 representation	 of	 it.
This	means	that	as_string	can	now	be	used	in	more	circumstances,
instead	 of	 having	 to	 create	 and	 use	 a	 generator	 in	 order	 to	 pass
formatting	 parameters	 to	 its	 flatten	 method.	 (Contributed	 by	 R.
David	Murray	in	issue	18600.)

New	method	as_bytes()	 added	 to	 produce	a	 bytes	 representation

http://bugs.python.org/issue11816
http://bugs.python.org/issue17916
http://bugs.python.org/issue19722
http://bugs.python.org/issue16522
http://bugs.python.org/issue11390
http://bugs.python.org/issue3158
http://bugs.python.org/issue18600

of	 the	message	 in	 a	 fashion	 similar	 to	 how	 as_string	 produces	 a
string	representation.	It	does	not	accept	the	maxheaderlen	argument,
but	 does	 accept	 the	 unixfrom	 and	 policy	 arguments.	 The	 Message
__bytes__()	method	calls	it,	meaning	that	bytes(mymsg)	will	now
produce	 the	 intuitive	 result:	 a	 bytes	 object	 containing	 the	 fully
formatted	message.	(Contributed	by	R.	David	Murray	in	issue	18600.)

The	 Message.set_param()	 message	 now	 accepts	 a	 replace
keyword	 argument.	 When	 specified,	 the	 associated	 header	 will	 be
updated	 without	 changing	 its	 location	 in	 the	 list	 of	 headers.	 For
backward	compatibility,	the	default	is	False.	(Contributed	by	R.	David
Murray	in	issue	18891.)

A	 pair	 of	 new	 subclasses	 of	 Message	 have	 been	 added
(EmailMessage	 and	 MIMEPart),	 along	 with	 a	 new	 sub-module,
contentmanager	and	a	new	policy	attribute	content_manager.
All	 documentation	 is	 currently	 in	 the	 new	 module,	 which	 is	 being
added	as	part	of	email’s	new	provisional	API.	These	classes	provide	a
number	 of	 new	 methods	 that	 make	 extracting	 content	 from	 and
inserting	 content	 into	 email	messages	much	 easier.	 For	 details,	 see
the	 contentmanager	 documentation	 and	 the	 Examples	 using	 the
Provisional	 API.	 These	 API	 additions	 complete	 the	 bulk	 of	 the	 work
that	 was	 planned	 as	 part	 of	 the	 email6	 project.	 The	 currently
provisional	API	 is	 scheduled	 to	 become	 final	 in	Python	3.5	 (possibly
with	a	few	minor	additions	in	the	area	of	error	handling).	(Contributed
by	R.	David	Murray	in	issue	18891.)

filecmp

A	 new	 clear_cache()	 function	 provides	 the	 ability	 to	 clear	 the
filecmp	 comparison	 cache,	which	uses	 os.stat()	 information	 to

http://bugs.python.org/issue18600
http://bugs.python.org/issue18891
http://bugs.python.org/issue18891

determine	if	the	file	has	changed	since	the	last	compare.	This	can	be
used,	for	example,	if	the	file	might	have	been	changed	and	re-checked
in	 less	 time	 than	 the	 resolution	 of	 a	 particular	 filesystem’s	 file
modification	time	field.	(Contributed	by	Mark	Levitt	in	issue	18149.)

New	 module	 attribute	 DEFAULT_IGNORES	 provides	 the	 list	 of
directories	that	are	used	as	the	default	value	for	the	ignore	parameter
of	 the	 dircmp()	 function.	 (Contributed	 by	 Eli	 Bendersky	 in	 issue
15442.)

functools

The	 new	 partialmethod()	 descriptor	 brings	 partial	 argument
application	 to	 descriptors,	 just	 as	 partial()	 provides	 for	 normal
callables.	 The	 new	 descriptor	 also	 makes	 it	 easier	 to	 get	 arbitrary
callables	 (including	 partial()	 instances)	 to	 behave	 like	 normal
instance	methods	when	included	in	a	class	definition.	(Contributed	by
Alon	Horev	and	Nick	Coghlan	in	issue	4331)

The	 new	 singledispatch()	 decorator	 brings	 support	 for	 single-
dispatch	generic	functions	to	the	Python	standard	library.	Where	object
oriented	 programming	 focuses	 on	 grouping	multiple	 operations	 on	 a
common	 set	 of	 data	 into	 a	 class,	 a	 generic	 function	 focuses	 on
grouping	 multiple	 implementations	 of	 an	 operation	 that	 allows	 it	 to
work	with	different	kinds	of	data.

See	also:

PEP	443	–	Single-dispatch	generic	functions
PEP	written	and	implemented	by	Łukasz	Langa.

total_ordering()	 now	 supports	 a	 return	 value	 of

http://bugs.python.org/issue18149
http://bugs.python.org/issue15442
http://bugs.python.org/issue4331
http://www.python.org/dev/peps/pep-0443

NotImplemented	 from	 the	 underlying	 comparison	 function.
(Contributed	by	Katie	Miller	in	issue	10042.)

A	pure-python	version	of	the	partial()	function	is	now	in	the	stdlib;
in	 CPython	 it	 is	 overridden	 by	 the	 C	 accelerated	 version,	 but	 it	 is
available	 for	 other	 implementations	 to	 use.	 (Contributed	 by	 Brian
Thorne	in	issue	12428.)

gc

New	 function	 get_stats()	 returns	 a	 list	 of	 three	 per-generation
dictionaries	 containing	 the	 collections	 statistics	 since	 interpreter
startup.	(Contributed	by	Antoine	Pitrou	in	issue	16351.)

glob

A	 new	 function	 escape()	 provides	 a	 way	 to	 escape	 special
characters	 in	 a	 filename	 so	 that	 they	 do	 not	 become	 part	 of	 the
globbing	expansion	but	are	 instead	matched	 literally.	 (Contributed	 by
Serhiy	Storchaka	in	issue	8402.)

hashlib

A	 new	 hashlib.pbkdf2_hmac()	 function	 provides	 the	 PKCS#5
password-based	 key	 derivation	 function	 2.	 (Contributed	 by	 Christian
Heimes	in	issue	18582)

The	 name	 attribute	 of	 hashlib	 hash	 objects	 is	 now	 a	 formally
supported	 interface.	 It	 has	 always	 existed	 in	 CPython’s	 hashlib
(although	it	did	not	return	lower	case	names	for	all	supported	hashes),
but	 it	 was	 not	 a	 public	 interface	 and	 so	 some	 other	 Python

http://bugs.python.org/issue10042
http://bugs.python.org/issue12428
http://bugs.python.org/issue16351
http://bugs.python.org/issue8402
http://en.wikipedia.org/wiki/PBKDF2
http://bugs.python.org/issue18582

implementations	 have	 not	 previously	 supported	 it.	 (Contributed	 by
Jason	R.	Coombs	in	issue	18532.)

hmac

hmac	 now	 accepts	 bytearray	 as	 well	 as	 bytes	 for	 the	 key
argument	 to	 the	new()	 function,	and	 the	msg	parameter	 to	both	 the
new()	 function	 and	 the	 update()	 method	 now	 accepts	 any	 type
supported	by	the	hashlib	module.	(Contributed	by	Jonas	Borgström
in	issue	18240.)

The	digestmod	 argument	 to	 the	 hmac.new()	 function	 may	 now	 be
any	 hash	 digest	 name	 recognized	 by	 hashlib.	 In	 addition,	 the
current	 behavior	 in	which	 the	 value	 of	digestmod	 defaults	 to	 MD5	 is
deprecated:	in	a	future	version	of	Python	there	will	be	no	default	value.
(Contributed	by	Christian	Heimes	in	issue	17276.)

With	the	addition	of	block_size	and	name	attributes	(and	the	formal
documentation	of	the	digest_size	attribute),	the	hmac	module	now
conforms	fully	 to	 the	PEP	247	API.	 (Contributed	by	Christian	Heimes
in	issue	18775.)

html

New	 function	 unescape()	 function	 converts	 HTML5	 character
references	 to	 the	corresponding	Unicode	characters.	 (Contributed	 by
Ezio	Melotti	in	issue	2927)

HTMLParser	accepts	a	new	keyword	argument	convert_charrefs	that,
when	 True,	 automatically	 converts	 all	 character	 references.	 For
backward-compatibility,	 its	value	defaults	to	False,	but	 it	will	change

http://bugs.python.org/issue18532
http://bugs.python.org/issue18240
http://bugs.python.org/issue17276
http://www.python.org/dev/peps/pep-0247
http://bugs.python.org/issue18775
http://bugs.python.org/issue2927

to	 True	 in	 a	 future	 version	 of	 Python,	 so	 you	 are	 invited	 to	 set	 it
explicitly	and	update	your	code	 to	use	 this	new	 feature.	 (Contributed
by	Ezio	Melotti	in	issue	13633)

The	strict	argument	of	HTMLParser	 is	now	deprecated.	(Contributed
by	Ezio	Melotti	in	issue	15114)

http

send_error()	now	accepts	an	optional	additional	explain	parameter
which	can	be	used	to	provide	an	extended	error	description,	overriding
the	hardcoded	default	 if	 there	 is	one.	This	extended	error	description
will	 be	 formatted	 using	 the	 error_message_format	 attribute	 and
sent	 as	 the	body	of	 the	error	 response.	 (Contributed	by	Karl	Cow	 in
issue	12921.)

The	 http.server	command	 line	 interface	 now	 has	 a	 -b/--bind
option	 that	 causes	 the	 server	 to	 listen	 on	 a	 specific	 address.
(Contributed	by	Malte	Swart	in	issue	17764.)

importlib

The	 InspectLoader	 ABC	 defines	 a	 new	 method,
source_to_code()	that	accepts	source	data	and	a	path	and	returns
a	 code	 object.	 The	 default	 implementation	 is	 equivalent	 to
compile(data,	 path,	 'exec',	 dont_inherit=True).
(Contributed	by	Eric	Snow	and	Brett	Cannon	in	issue	15627.)

InspectLoader	 also	 now	 has	 a	 default	 implementation	 for	 the
get_code()	 method.	 However,	 it	 will	 normally	 be	 desirable	 to
override	 the	 default	 implementation	 for	 performance	 reasons.

http://bugs.python.org/issue13633
http://bugs.python.org/issue15114
http://bugs.python.org/issue12921
http://bugs.python.org/issue17764
http://bugs.python.org/issue15627

(Contributed	by	Brett	Cannon	in	issue	18072.)

The	reload()	function	has	been	moved	from	imp	to	importlib	as
part	of	the	imp	module	deprecation.	(Contributed	by	Berker	Peksag	in
issue	18193.)

importlib.util	 now	 has	 a	 MAGIC_NUMBER	 attribute	 providing
access	 to	 the	 bytecode	 version	 number.	 This	 replaces	 the
get_magic()	 function	 in	 the	deprecated	 imp	module.	 (Contributed
by	Brett	Cannon	in	issue	18192.)

New	 importlib.util	 functions	 cache_from_source()	 and
source_from_cache()	 replace	 the	 same-named	 functions	 in	 the
deprecated	 imp	 module.	 (Contributed	 by	 Brett	 Cannon	 in	 issue
18194.)

The	importlib	bootstrap	NamespaceLoader	now	conforms	to	 the
InspectLoader	 ABC,	 which	 means	 that	 runpy	 and	 python	 -m
can	 now	 be	 used	 with	 namespace	 packages.	 (Contributed	 by	 Brett
Cannon	in	issue	18058.)

importlib.util	 has	 a	 new	 function	 decode_source()	 that
decodes	source	from	bytes	using	universal	newline	processing.	This	is
useful	for	implementing	InspectLoader.get_source()	methods.

importlib.machinery.ExtensionFileLoader	 now	 has	 a
get_filename()	 method.	 This	 was	 inadvertently	 omitted	 in	 the
original	implementation.	(Contributed	by	Eric	Snow	in	issue	19152.)

inspect

The	inspect	module	 now	offers	 a	 basic	command	 line	 interface	 to

http://bugs.python.org/issue18072
http://bugs.python.org/issue18193
http://bugs.python.org/issue18192
http://bugs.python.org/issue18194
http://bugs.python.org/issue18058
http://bugs.python.org/issue19152

quickly	display	source	code	and	other	information	for	modules,	classes
and	 functions.	 (Contributed	 by	 Claudiu	 Popa	 and	 Nick	 Coghlan	 in
issue	18626)

unwrap()	makes	 it	easy	to	unravel	wrapper	 function	chains	created
by	 functools.wraps()	 (and	 any	 other	 API	 that	 sets	 the
__wrapped__	attribute	on	a	wrapper	function).	(Contributed	by	Daniel
Urban,	Aaron	Iles	and	Nick	Coghlan	in	issue	13266)

As	part	of	the	implementation	of	the	new	enum	module,	the	inspect
module	 now	 has	 substantially	 better	 support	 for	 custom	 __dir__
methods	and	dynamic	 class	attributes	provided	 through	metaclasses
(Contributed	by	Ethan	Furman	in	issue	18929	and	issue	19030)

getfullargspec()	 and	 getargspec()	 now	 use	 the
signature()	 API.	 This	 allows	 them	 to	 support	 a	 much	 broader
range	 of	 callables,	 including	 those	 with	 __signature__	 attributes,
those	 with	 metadata	 provided	 by	 argument	 clinic,
functools.partial()	 objects	 and	 more.	 Note	 that,	 unlike
signature(),	 these	 functions	 still	 ignore	 __wrapped__	 attributes,
and	report	the	already	bound	first	argument	for	bound	methods,	so	it	is
still	 necessary	 to	 update	 your	 code	 to	 use	 signature()	 directly	 if
those	 features	 are	 desired.	 (Contributed	 by	 Yury	 Selivanov	 in	 issue
17481)

signature()	now	supports	duck	types	of	CPython	functions,	which
adds	 support	 for	 functions	 compiled	 with	 Cython.	 (Contributed	 by
Stefan	Behnel	and	Yury	Selivanov	in	issue	17159)

ipaddress

ipaddress	 was	 added	 to	 the	 standard	 library	 in	 Python	 3.3	 as	 a

http://bugs.python.org/issue18626
http://bugs.python.org/issue13266
http://bugs.python.org/issue18929
http://bugs.python.org/issue19030
http://bugs.python.org/issue17481
http://bugs.python.org/issue17159

provisional	API.	With	 the	 release	of	Python	3.4,	 this	qualification	has
been	removed:	ipaddress	 is	now	considered	a	stable	API,	covered
by	 the	 normal	 standard	 library	 requirements	 to	 maintain	 backwards
compatibility.

A	 new	 is_global	 property	 is	 True	 if	 an	 address	 is	 globally
routeable.	(Contributed	by	Peter	Moody	in	issue	17400.)

logging

The	 TimedRotatingFileHandler	 has	 a	 new	 atTime	 parameter
that	 can	 be	 used	 to	 specify	 the	 time	 of	 day	 when	 rollover	 should
happen.	(Contributed	by	Ronald	Oussoren	in	issue	9556.)

SocketHandler	and	DatagramHandler	now	support	Unix	domain
sockets	 (by	 setting	 port	 to	 None).	 (Contributed	 by	 Vinay	 Sajip	 in
commit	ce46195b56a9.)

fileConfig()	now	accepts	a	configparser.RawConfigParser
subclass	 instance	 for	 the	 fname	 parameter.	 This	 facilitates	 using	 a
configuration	file	when	logging	configuration	is	just	a	part	of	the	overall
application	 configuration,	 or	 where	 the	 application	 modifies	 the
configuration	 before	 passing	 it	 to	 fileConfig().	 (Contributed	 by
Vinay	Sajip	in	issue	16110.)

Logging	 configuration	 data	 received	 from	 a	 socket	 via	 the
logging.config.listen()	 function	 can	now	be	 validated	before
being	processed	by	supplying	a	verification	 function	as	 the	argument
to	 the	 new	 verify	 keyword	 argument.	 (Contributed	 by	 Vinay	 Sajip	 in
issue	15452.)

marshal

http://bugs.python.org/issue17400
http://bugs.python.org/issue9556
http://bugs.python.org/issue16110
http://bugs.python.org/issue15452

The	 default	 marshal	 version	 has	 been	 bumped	 to	 3.	 The	 code
implementing	 the	 new	 version	 restores	 the	 Python2	 behavior	 of
recording	 only	 one	 copy	 of	 interned	 strings	 and	 preserving	 the
interning	on	deserialization,	and	extends	this	“one	copy”	ability	to	any
object	 type	 (including	 handling	 recursive	 references).	 This	 reduces
both	 the	 size	 of	 .pyc	 files	 and	 the	 amount	 of	 memory	 a	 module
occupies	 in	 memory	 when	 it	 is	 loaded	 from	 a	 .pyc	 (or	 .pyo)	 file.
(Contributed	by	Kristján	Valur	Jónsson	in	issue	16475,	with	additional
speedups	by	Antoine	Pitrou	in	issue	19219.)

mmap

mmap	 objects	 can	 now	 be	 weakrefed.	 (Contributed	 by	 Valerie
Lambert	in	issue	4885.)

multiprocessing

On	 Unix	 two	 new	 start	 methods,	 (spawn	 and	 forkserver,	 have
been	added	 for	starting	processes	using	multiprocessing.	These
make	 the	 mixing	 of	 processes	 with	 threads	 more	 robust,	 and	 the
spawn	 method	 matches	 the	 semantics	 that	 multiprocessing	 has
always	 used	 on	 Windows.	 New	 function
get_all_start_methods()	 reports	all	 start	methods	available	on
the	platform,	get_start_method()	reports	the	current	start	method,
and	 set_start_method()	 sets	 the	 start	 method.	 (Contributed	 by
Richard	Oudkerk	in	issue	8713).

multiprocessing	also	now	has	 the	concept	of	a	context,	which
determines	 how	 child	 processes	 are	 created.	 New	 function
get_context()	returns	a	context	that	uses	a	specified	start	method.

http://bugs.python.org/issue16475
http://bugs.python.org/issue19219
http://bugs.python.org/issue4885
http://bugs.python.org/issue8713

It	has	the	same	API	as	the	multiprocessing	module	itself,	so	you
can	use	 it	 to	create	Pools	and	other	objects	 that	will	 operate	within
that	context.	This	 allows	a	 framework	 and	an	application	 or	 different
parts	of	the	same	application	to	use	multiprocessing	without	interfering
with	each	other.	(Contributed	by	Richard	Oudkerk	in	issue	18999.)

Except	 when	 using	 the	 old	 fork	 start	 method,	 child	 processes	 no
longer	 inherit	 unneeded	 handles/file	 descriptors	 from	 their	 parents
(part	of	issue	8713).

multiprocessing	now	relies	on	runpy	 (which	 implements	 the	-m
switch)	 to	 initialise	 __main__	 appropriately	 in	 child	 processes	when
using	the	spawn	or	forkserver	start	methods.	This	resolves	some
edge	cases	where	combining	multiprocessing,	 the	 -m	 command	 line
switch,	 and	 explicit	 relative	 imports	 could	 cause	 obscure	 failures	 in
child	processes.	(Contributed	by	Nick	Coghlan	in	issue	19946)

operator

New	 function	 length_hint()	 provides	 an	 implementation	 of	 the
specification	 for	 how	 the	 __length_hint__()	 special	 method
should	 be	 used,	 as	 part	 of	 the	PEP	424	 formal	 specification	 of	 this
language	feature.	(Contributed	by	Armin	Ronacher	in	issue	16148.)

There	 is	 now	 a	 pure-python	 version	 of	 the	 operator	 module
available	 for	 reference	 and	 for	 use	 by	 alternate	 implementations	 of
Python.	(Contributed	by	Zachary	Ware	in	issue	16694.)

os

There	 are	 new	 functions	 to	 get	 and	 set	 the	 inheritable	 flag	 of	 a	 file

http://bugs.python.org/issue18999
http://bugs.python.org/issue8713
http://bugs.python.org/issue19946
http://www.python.org/dev/peps/pep-0424
http://bugs.python.org/issue16148
http://bugs.python.org/issue16694

descriptor	(os.get_inheritable(),	os.set_inheritable())	or
a	 Windows	 handle	 (os.get_handle_inheritable(),
os.set_handle_inheritable()).

New	function	cpu_count()	reports	the	number	of	CPUs	available	on
the	platform	on	which	Python	is	running	(or	None	if	the	count	can’t	be
determined).	The	multiprocessing.cpu_count()	function	is	now
implemented	 in	 terms	of	 this	 function).	 (Contributed	by	Trent	Nelson,
Yogesh	Chaudhari,	Victor	Stinner,	and	Charles-François	Natali	in	issue
17914.)

os.path.samestat()	 is	 now	 available	 on	 the	 Windows	 platform
(and	 the	 os.path.samefile()	 implementation	 is	 now	 shared
between	 Unix	 and	 Windows).	 (Contributed	 by	 Brian	 Curtin	 in	 issue
11939.)

os.path.ismount()	 now	 recognizes	 volumes	 mounted	 below	 a
drive	root	on	Windows.	(Contributed	by	Tim	Golden	in	issue	9035.)

os.open()	 supports	 two	new	 flags	 on	 platforms	 that	 provide	 them,
O_PATH	 (un-opened	 file	 descriptor),	 and	 O_TMPFILE	 (unnamed
temporary	file;	as	of	3.4.0	release	available	only	on	Linux	systems	with
a	kernel	version	of	3.11	or	newer	that	have	uapi	headers).	(Contributed
by	 Christian	 Heimes	 in	 issue	 18673	 and	 Benjamin	 Peterson,
respectively.)

pdb

pdb	 has	 been	 enhanced	 to	 handle	 generators,	 yield,	 and	 yield
from	 in	 a	 more	 useful	 fashion.	 This	 is	 especially	 helpful	 when
debugging	 asyncio	 based	 programs.	 (Contributed	 by	 Andrew
Svetlov	and	Xavier	de	Gaye	in	issue	16596.)

http://bugs.python.org/issue17914
http://bugs.python.org/issue11939
http://bugs.python.org/issue9035
http://bugs.python.org/issue18673
http://bugs.python.org/issue16596

The	print	command	has	been	removed	from	pdb,	 restoring	access
to	 the	 Python	 print()	 function	 from	 the	 pdb	 command	 line.
Python2’s	 pdb	 did	 not	 have	 a	 print	 command;	 instead,	 entering
print	 executed	 the	 print	 statement.	 In	 Python3	 print	 was
mistakenly	made	an	alias	for	the	pdb	p	command.	p,	however,	prints
the	 repr	 of	 its	 argument,	 not	 the	 str	 like	 the	 Python2	 print
command	did.	Worse,	the	Python3	pdb	print	command	shadowed
the	 Python3	 print	 function,	 making	 it	 inaccessible	 at	 the	 pdb
prompt.	(Contributed	by	Connor	Osborn	in	issue	18764.)

pickle

pickle	 now	 supports	 (but	 does	 not	 use	 by	 default)	 a	 new	 pickle
protocol,	protocol	4.	This	new	protocol	addresses	a	number	of	 issues
that	 were	 present	 in	 previous	 protocols,	 such	 as	 the	 serialization	 of
nested	classes,	very	large	strings	and	containers,	and	classes	whose
__new__()	method	 takes	 keyword-only	 arguments.	 It	 also	 provides
some	efficiency	improvements.

See	also:

PEP	3154	–	Pickle	protocol	4
PEP	 written	 by	 Antoine	 Pitrou	 and	 implemented	 by	 Alexandre
Vassalotti.

plistlib

plistlib	now	has	an	API	 that	 is	similar	 to	 the	standard	pattern	 for
stdlib	 serialization	 protocols,	 with	 new	 load(),	 dump(),	 loads(),
and	 dumps()	 functions.	 (The	 older	 API	 is	 now	 deprecated.)	 In

http://bugs.python.org/issue18764
http://www.python.org/dev/peps/pep-3154

addition	to	the	already	supported	XML	plist	format	(FMT_XML),	it	also
now	supports	 the	binary	plist	 format	 (FMT_BINARY).	 (Contributed	 by
Ronald	Oussoren	and	others	in	issue	14455).

poplib

Two	 new	 methods	 have	 been	 added	 to	 poplib:	 capa(),	 which
returns	 the	 list	 of	 capabilities	 advertised	 by	 the	 POP	 server,	 and
stls(),	which	switches	a	clear-text	POP3	session	into	an	encrypted
POP3	session	 if	 the	POP	server	supports	 it.	 (Contributed	by	Lorenzo
Catucci	in	issue	4473.)

pprint

The	 pprint	 module’s	 PrettyPrinter	 class	 and	 its	 pformat(),
and	 pprint()	 functions	 have	 a	 new	 option,	 compact,	 that	 controls
how	the	output	is	formatted.	Currently	setting	compact	to	True	means
that	sequences	will	be	printed	with	as	many	sequence	elements	as	will
fit	 within	 width	 on	 each	 (indented)	 line.	 (Contributed	 by	 Serhiy
Storchaka	in	issue	19132.)

Long	strings	are	now	wrapped	using	Python’s	normal	line	continuation
syntax.	(Contributed	by	Antoine	Pitrou	in	issue	17150).

pty

pty.spawn()	now	returns	the	status	value	from	os.waitpid()	on
the	child	process,	instead	of	None.	(Contributed	by	Gregory	P.	Smith.)

pydoc

http://bugs.python.org/issue14455
http://bugs.python.org/issue4473
http://bugs.python.org/issue19132
http://bugs.python.org/issue17150

The	 pydoc	 module	 is	 now	 based	 directly	 on	 the
inspect.signature()	 introspection	 API,	 allowing	 it	 to	 provide
signature	 information	 for	 a	 wider	 variety	 of	 callable	 objects.	 This
change	also	means	that	__wrapped__	attributes	are	now	taken	 into
account	 when	 displaying	 help	 information	 (Contributed	 by	 Larry
Hastings	in	issue	19674)

The	pydoc	module	no	longer	displays	the	self	parameter	for	already
bound	methods.	 Instead,	 it	 aims	 to	 always	 display	 the	 exact	 current
signature	 of	 the	 supplied	 callable	 (Contributed	 by	 Larry	 Hastings	 in
issue	20710)

In	addition	to	the	changes	that	have	been	made	to	pydoc	directly,	its
handling	 of	 custom	 __dir__	 methods	 and	 various	 descriptor
behaviours	 has	 also	 been	 improved	 substantially	 by	 the	 underlying
changes	in	the	inspect	module.

As	 the	 help()	 builtin	 is	 based	 on	 pydoc,	 the	 above	 changes	 also
affect	the	behaviour	of	help().

re

New	 fullmatch()	 function	 and	 regex.fullmatch()	 method
anchor	the	pattern	at	both	ends	of	the	string	to	match.	This	provides	a
way	to	be	explicit	about	the	goal	of	the	match,	which	avoids	a	class	of
subtle	bugs	where	$	 characters	get	 lost	during	code	changes	or	 the
addition	of	alternatives	to	an	existing	regular	expression.	(Contributed
by	Matthew	Barnett	in	issue	16203.)

The	repr	of	regex	objects	now	includes	the	pattern	and	the	flags;	 the
repr	of	match	objects	now	includes	the	start,	end,	and	the	part	of	 the
string	 that	matched.	(Contributed	by	Hugo	Lopes	Tavares	and	Serhiy

http://bugs.python.org/issue19674
http://bugs.python.org/issue20710
http://bugs.python.org/issue16203

Storchaka	in	issue	13592	and	issue	17087.)

resource

New	prlimit()	 function,	available	on	Linux	platforms	with	a	kernel
version	of	2.6.36	or	later	and	glibc	of	2.13	or	later,	provides	the	ability
to	 query	 or	 set	 the	 resource	 limits	 for	 processes	 other	 than	 the	 one
making	the	call.	(Contributed	by	Christian	Heimes	in	issue	16595.)

On	Linux	kernel	version	2.6.36	or	later,	there	are	there	are	also	some
new	 Linux	 specific	 constants:	 RLIMIT_MSGQUEUE,	 RLIMIT_NICE,
RLIMIT_RTPRIO,	 RLIMIT_RTTIME,	 and	 RLIMIT_SIGPENDING.
(Contributed	by	Christian	Heimes	in	issue	19324.)

On	FreeBSD	version	 9	 and	 later,	 there	 some	new	FreeBSD	specific
constants:	 RLIMIT_SBSIZE,	 RLIMIT_SWAP,	 and	 RLIMIT_NPTS.
(Contributed	by	Claudiu	Popa	in	issue	19343.)

select

epoll	objects	now	support	 the	context	management	protocol.	When
used	 in	 a	 with	 statement,	 the	 close()	 method	 will	 be	 called
automatically	at	the	end	of	the	block.	(Contributed	by	Serhiy	Storchaka
in	issue	16488.)

devpoll	 objects	 now	 have	 fileno()	 and	 close()	 methods,	 as
well	as	a	new	attribute	closed.	(Contributed	by	Victor	Stinner	in	issue
18794.)

shelve

http://bugs.python.org/issue13592
http://bugs.python.org/issue17087
http://bugs.python.org/issue16595
http://bugs.python.org/issue19324
http://bugs.python.org/issue19343
http://bugs.python.org/issue16488
http://bugs.python.org/issue18794

Shelf	 instances	may	now	be	used	 in	with	 statements,	and	will	 be
automatically	 closed	 at	 the	 end	 of	 the	 with	 block.	 (Contributed	 by
Filip	Gruszczyński	in	issue	13896.)

shutil

copyfile()	 now	 raises	 a	 specific	 Error	 subclass,
SameFileError,	when	the	source	and	destination	are	the	same	file,
which	allows	an	application	to	take	appropriate	action	on	this	specific
error.	 (Contributed	by	Atsuo	 Ishimoto	and	Hynek	Schlawack	 in	 issue
1492704.)

smtpd

The	 SMTPServer	 and	 SMTPChannel	 classes	 now	 accept	 a	 map
keyword	 argument	 which,	 if	 specified,	 is	 passed	 in	 to
asynchat.async_chat	 as	 its	 map	 argument.	 This	 allows	 an
application	 to	 avoid	 affecting	 the	 global	 socket	map.	 (Contributed	 by
Vinay	Sajip	in	issue	11959.)

smtplib

SMTPException	 is	 now	a	subclass	of	 OSError,	which	allows	both
socket	level	errors	and	SMTP	protocol	level	errors	to	be	caught	in	one
try/except	statement	by	code	 that	only	cares	whether	or	not	an	error
occurred.	(Contributed	by	Ned	Jackson	Lovely	in	issue	2118).

socket

The	socket	module	now	supports	the	CAN_BCM	protocol	on	platforms

http://bugs.python.org/issue13896
http://bugs.python.org/issue1492704
http://bugs.python.org/issue11959
http://bugs.python.org/issue2118

that	support	it.	(Contributed	by	Brian	Thorne	in	issue	15359.)

Socket	objects	have	new	methods	 to	get	or	set	 their	 inheritable	 flag,
get_inheritable()	and	set_inheritable().

The	 socket.AF_*	 and	 socket.SOCK_*	 constants	 are	 now
enumeration	 values	 using	 the	 new	 enum	 module.	 This	 allows
meaningful	names	 to	be	printed	during	debugging,	 instead	of	 integer
“magic	numbers”.

The	AF_LINK	constant	is	now	available	on	BSD	and	OSX.

inet_pton()	 and	 inet_ntop()	 are	 now	 supported	 on	Windows.
(Contributed	by	Atsuo	Ishimoto	in	issue	7171.)

sqlite3

A	 new	 boolean	 parameter	 to	 the	 connect()	 function,	 uri,	 can	 be
used	to	indicate	that	the	database	parameter	is	a	uri	(see	the	SQLite
URI	documentation).	(Contributed	by	poq	in	issue	13773.)

ssl

PROTOCOL_TLSv1_1	 and	 PROTOCOL_TLSv1_2	 (TLSv1.1	 and
TLSv1.2	support)	have	been	added;	support	for	these	protocols	is	only
available	if	Python	is	linked	with	OpenSSL	1.0.1	or	later.	(Contributed
by	Michele	Orrù	and	Antoine	Pitrou	in	issue	16692)

New	 function	 create_default_context()	 provides	 a	 standard
way	 to	obtain	an	 SSLContext	whose	 settings	 are	 intended	 to	 be	 a
reasonable	balance	between	compatibility	and	security.	These	settings
are	 more	 stringent	 than	 the	 defaults	 provided	 by	 the	 SSLContext

http://bugs.python.org/issue15359
http://bugs.python.org/issue7171
http://www.sqlite.org/uri.html
http://bugs.python.org/issue13773
http://bugs.python.org/issue16692

constructor,	 and	 may	 be	 adjusted	 in	 the	 future,	 without	 prior
deprecation,	 if	 best-practice	 security	 requirements	 change.	 The	 new
recommended	best	practice	for	using	stdlib	libraries	that	support	SSL
is	 to	use	create_default_context()	 to	 obtain	an	 SSLContext
object,	modify	it	if	needed,	and	then	pass	it	as	the	context	argument	of
the	appropriate	stdlib	API.	 (Contributed	by	Christian	Heimes	 in	 issue
19689.)

SSLContext	method	load_verify_locations()	 accepts	 a	 new
optional	argument	cadata,	which	can	be	used	to	provide	PEM	or	DER
encoded	 certificates	 directly	 via	 strings	 or	 bytes,	 respectively.
(Contributed	by	Christian	Heimes	in	issue	18138.)

New	 function	 get_default_verify_paths()	 returns	 a	 named
tuple	 of	 the	 paths	 and	 environment	 variables	 that	 the
set_default_verify_paths()	 method	 uses	 to	 set	 OpenSSL’s
default	cafile	and	capath.	This	can	be	an	aid	in	debugging	default
verification	issues.	(Contributed	by	Christian	Heimes	in	issue	18143.)

SSLContext	 has	 a	 new	 method,	 cert_store_stats(),	 that
reports	 the	 number	 of	 loaded	 X.509	 certs,	 X.509	 CA	 certs,	 and
certificate	 revocation	 lists	 (crls),	 as	 well	 as	 a	 get_ca_certs()
method	that	returns	a	list	of	the	loaded	CA	certificates.	(Contributed	by
Christian	Heimes	in	issue	18147.)

If	 OpenSSL	 0.9.8	 or	 later	 is	 available,	 SSLContext	 has	 an	 new
attribute	 verify_flags	 that	 can	 be	 used	 to	 control	 the	 certificate
verification	 process	 by	 setting	 it	 to	 some	 combination	 of	 the	 new
constants	 VERIFY_DEFAULT,	 VERIFY_CRL_CHECK_LEAF,
VERIFY_CRL_CHECK_CHAIN,	 or	 VERIFY_X509_STRICT.	OpenSSL
does	not	do	any	CRL	verification	by	default.	(Contributed	by	Christien
Heimes	in	issue	8813.)

http://bugs.python.org/issue19689
http://bugs.python.org/issue18138
http://bugs.python.org/issue18143
http://bugs.python.org/issue18147
http://bugs.python.org/issue8813

New	SSLContext	method	load_default_certs()	 loads	a	set	of
dfault	 “certificate	 authority”	 (CA)	 certificates	 from	 default	 locations,
which	vary	according	to	the	platform.	It	can	be	used	to	load	both	TLS
web	server	authentication	certificates	(purpose=SERVER_AUTH)	for	a
client	 to	use	 to	verify	a	server,	and	certificates	 for	a	server	 to	use	 in
verifying	 client	 certificates	 (purpose=CLIENT_AUTH).	 (Contributed
by	Christian	Heimes	in	issue	19292.)

Two	 new	 windows-only	 functions,	 enum_certificates()	 and
enum_crls()	 provide	 the	 ability	 to	 retrieve	 certificates,	 certificate
information,	 and	CRLs	 from	 the	Windows	cert	 store.	 (Contributed	 by
Christian	Heimes	in	issue	17134.)

Support	 for	 server-side	SNI	 (Server	Name	 Indication)	 using	 the	 new
ssl.SSLContext.set_servername_callback()	 method.
(Contributed	by	Daniel	Black	in	issue	8109.)

The	 dictionary	 returned	 by	 SSLSocket.getpeercert()	 contains
additional	 X509v3	 extension	 items:	 crlDistributionPoints,
calIssuers,	 and	 OCSP	 URIs.	 (Contributed	 by	 Christian	 Heimes	 in
issue	18379.)

stat

The	stat	module	is	now	backed	by	a	C	implementation	in	_stat.	A
C	implementation	is	required	as	most	of	the	values	aren’t	standardized
and	are	platform-dependent.	(Contributed	by	Christian	Heimes	in	issue
11016.)

The	 module	 supports	 new	 ST_MODE	 flags,	 S_IFDOOR,	 S_IFPORT,
and	S_IFWHT.	(Contributed	by	Christian	Hiemes	in	issue	11016.)

http://bugs.python.org/issue19292
http://bugs.python.org/issue17134
http://bugs.python.org/issue8109
http://bugs.python.org/issue18379
http://bugs.python.org/issue11016
http://bugs.python.org/issue11016

struct

New	 function	 iter_unpack	 and	 a	 new
struct.Struct.iter_unpack()	 method	 on	 compiled	 formats
provide	streamed	unpacking	of	a	buffer	containing	repeated	instances
of	 a	 given	 format	 of	 data.	 (Contributed	 by	 Antoine	 Pitrou	 in	 issue
17804.)

subprocess

check_output()	now	accepts	an	 input	argument	 that	can	be	used
to	 provide	 the	 contents	 of	 stdin	 for	 the	 command	 that	 is	 run.
(Contributed	by	Zack	Weinberg	in	issue	16624.)

getstatus()	 and	 getstatusoutput()	 now	 work	 on	 Windows.
This	change	was	actually	inadvertently	made	in	3.3.4.	(Contributed	by
Tim	Golden	in	issue	10197.)

sunau

The	getparams()	method	now	 returns	a	namedtuple	 rather	 than	a
plain	tuple.	(Contributed	by	Claudiu	Popa	in	issue	18901.)

sunau.open()	 now	 supports	 the	 context	 manager	 protocol:	 when
used	in	a	with	block,	the	close	method	of	the	returned	object	will	be
called	 automatically	 at	 the	 end	 of	 the	 block.	 (Contributed	 by	 Serhiy
Storchaka	in	issue	18878.)

AU_write.setsampwidth()	 now	 supports	 24	 bit	 samples,	 thus
adding	 support	 for	writing	24	 sample	using	 the	module.	 (Contributed
by	Serhiy	Storchaka	in	issue	19261.)

http://bugs.python.org/issue17804
http://bugs.python.org/issue16624
http://bugs.python.org/issue10197
http://bugs.python.org/issue18901
http://bugs.python.org/issue18878
http://bugs.python.org/issue19261

The	writeframesraw()	and	writeframes()	methods	now	accept
any	bytes-like	object.	(Contributed	by	Serhiy	Storchaka	in	issue	8311.)

sys

New	 function	 sys.getallocatedblocks()	 returns	 the	 current
number	 of	 blocks	 allocated	 by	 the	 interpreter.	 (In	 CPython	 with	 the
default	 --with-pymalloc	 setting,	 this	 is	 allocations	made	 through
the	 PyObject_Malloc()	 API.)	 This	 can	 be	 useful	 for	 tracking
memory	leaks,	especially	if	automated	via	a	test	suite.	(Contributed	by
Antoine	Pitrou	in	issue	13390.)

When	the	Python	interpreter	starts	in	interactive	mode,	it	checks	for	an
__interactivehook__	attribute	on	the	sys	module.	If	the	attribute
exists,	 its	 value	 is	 called	 with	 no	 arguments	 just	 before	 interactive
mode	is	started.	The	check	is	made	after	the	PYTHONSTARTUP	 file	 is
read,	so	it	can	be	set	there.	The	site	module	sets	it	to	a	function	that
enables	tab	completion	and	history	saving	(in	~/.python-history)
if	 the	 platform	 supports	 readline.	 If	 you	 do	 not	 want	 this	 (new)
behavior,	you	can	override	 it	 in	PYTHONSTARTUP,	sitecustomize,
or	usercustomize	by	deleting	this	attribute	from	sys	(or	setting	it	to
some	other	callable).	(Contributed	by	Éric	Araujo	and	Antoine	Pitrou	in
issue	5845.)

tarfile

The	tarfile	module	now	supports	a	simple	Command	Line	Interface
when	called	as	a	script	directly	or	via	-m.	This	can	be	used	to	create
and	 extract	 tarfile	 archives.	 (Contributed	 by	 Berker	 Peksag	 in	 issue
13477.)

http://bugs.python.org/issue8311
http://bugs.python.org/issue13390
http://bugs.python.org/issue5845
http://bugs.python.org/issue13477

textwrap

The	 TextWrapper	 class	 has	 two	 new	 attributes/constructor
arguments:	max_lines,	which	limits	the	number	of	lines	in	the	output,
and	placeholder,	which	is	a	string	that	will	appear	at	the	end	of	the
output	 if	 it	 has	 been	 truncated	 because	 of	 max_lines.	 Building	 on
these	capabilities,	a	new	convenience	function	shorten()	collapses
all	 of	 the	 whitespace	 in	 the	 input	 to	 single	 spaces	 and	 produces	 a
single	line	of	a	given	width	that	ends	with	the	placeholder	(by	default,
[...]).	(Contributed	by	Antoine	Pitrou	and	Serhiy	Storchaka	in	issue
18585	and	issue	18725.)

threading

The	 Thread	 object	 representing	 the	 main	 thread	 can	 be	 obtained
from	the	new	main_thread()	function.	In	normal	conditions	this	will
be	 the	 thread	 from	 which	 the	 Python	 interpreter	 was	 started.
(Contributed	by	Andrew	Svetlov	in	issue	18882.)

traceback

A	 new	 traceback.clear_frames()	 function	 takes	 a	 traceback
object	and	clears	the	local	variables	in	all	of	the	frames	it	references,
reducing	 the	 amount	 of	memory	 consumed.	 (Contributed	 by	 Andrew
Kuchling	in	issue	1565525).

types

A	 new	 DynamicClassAttribute()	 descriptor	 provides	 a	 way	 to
define	 an	 attribute	 that	 acts	 normally	 when	 looked	 up	 through	 an

http://bugs.python.org/issue18585
http://bugs.python.org/issue18725
http://bugs.python.org/issue18882
http://bugs.python.org/issue1565525

instance	object,	but	which	is	routed	to	the	class	__getattr__	when
looked	up	through	the	class.	This	allows	one	to	have	properties	active
on	 a	 class,	 and	 have	 virtual	 attributes	 on	 the	 class	 with	 the	 same
name	 (see	 Enum	 for	 an	 example).	 (Contributed	 by	Ethan	Furman	 in
issue	19030.)

urllib

urllib.request	now	supports	data:	URLs	via	the	DataHandler
class.	(Contributed	by	Mathias	Panzenböck	in	issue	16423.)

The	http	method	 that	will	 be	 used	by	 a	 Request	 class	 can	 now	be
specified	 by	 setting	 a	 method	 class	 attribute	 on	 the	 subclass.
(Contributed	by	Jason	R	Coombs	in	issue	18978.)

Request	 objects	 are	 now	 reusable:	 if	 the	 full_url	 or	 data
attributes	 are	 modified,	 all	 relevant	 internal	 properties	 are	 updated.
This	 means,	 for	 example,	 that	 it	 is	 now	 possible	 to	 use	 the	 same
Request	 object	 in	 more	 than	 one	 OpenerDirector.open()	 call
with	different	data	 arguments,	 or	 to	modify	 a	 Request‘s	 url	 rather
than	 recomputing	 it	 from	 scratch.	 There	 is	 also	 a	 new
remove_header()	method	that	can	be	used	to	remove	headers	from
a	Request.	(Contributed	by	Alexey	Kachayev	in	 issue	16464,	Daniel
Wozniak	in	issue	17485,	and	Damien	Brecht	and	Senthil	Kumaran	 in
issue	17272.)

HTTPError	 objects	 now	 have	 a	 headers	 attribute	 that	 provides
access	 to	 the	 HTTP	 response	 headers	 associated	 with	 the	 error.
(Contributed	by	Berker	Peksag	in	issue	15701.)

unittest

http://bugs.python.org/issue19030
http://bugs.python.org/issue16423
http://bugs.python.org/issue18978
http://bugs.python.org/issue16464
http://bugs.python.org/issue17485
http://bugs.python.org/issue17272
http://bugs.python.org/issue15701

The	TestCase	class	has	a	new	method,	subTest(),	that	produces
a	 context	 manager	 whose	 with	 block	 becomes	 a	 “sub-test”.	 This
context	 manager	 allows	 a	 test	 method	 to	 dynamically	 generate
subtests	by,	say,	calling	the	subTest	context	manager	inside	a	loop.
A	 single	 test	 method	 can	 thereby	 produce	 an	 indefinite	 number	 of
separately-identified	and	separately-counted	tests,	all	of	which	will	run
even	if	one	or	more	of	them	fail.	For	example:

class	NumbersTest(unittest.TestCase):

				def	test_even(self):

								for	i	in	range(6):

												with	self.subTest(i=i):

																self.assertEqual(i	%	2,	0)

will	result	in	six	subtests,	each	identified	in	the	unittest	verbose	output
with	a	label	consisting	of	the	variable	name	i	and	a	particular	value	for
that	variable	(i=0,	i=1,	etc).	See	Distinguishing	 test	 iterations	using
subtests	 for	 the	 full	 version	of	 this	example.	 (Contributed	 by	Antoine
Pitrou	in	issue	16997.)

unittest.main()	 now	 accepts	 an	 iterable	 of	 test	 names	 for
defaultTest,	where	previously	it	only	accepted	a	single	test	name	as	a
string.	(Contributed	by	Jyrki	Pulliainen	in	issue	15132.)

If	 SkipTest	 is	 raised	 during	 test	 discovery	 (that	 is,	 at	 the	 module
level	 in	 the	 test	 file),	 it	 is	now	reported	as	a	skip	 instead	of	an	error.
(Contributed	by	Zach	Ware	in	issue	16935.)

discover()	now	sorts	the	discovered	files	to	provide	consistent	test
ordering.	 (Contributed	 by	 Martin	 Melin	 and	 Jeff	 Ramnani	 in	 issue
16709.)

TestSuite	 now	 drops	 references	 to	 tests	 as	 soon	 as	 the	 test	 has

http://bugs.python.org/issue16997
http://bugs.python.org/issue15132
http://bugs.python.org/issue16935
http://bugs.python.org/issue16709

been	 run,	 if	 the	 test	 is	 successful.	 On	 Python	 interpreters	 that	 do
garbage	 collection,	 this	 allows	 the	 tests	 to	 be	 garbage	 collected	 if
nothing	else	is	holding	a	reference	to	the	test.	It	is	possible	to	override
this	 behavior	 by	 creating	 a	 TestSuite	 subclass	 that	 defines	 a
custom	_removeTestAtIndex	method.	(Contributed	by	Tom	Wardill,
Matt	McClure,	and	Andrew	Svetlov	in	issue	11798.)

A	 new	 test	 assertion	 context-manager,	 assertLogs(),	 will	 ensure
that	a	given	block	of	 code	emits	a	 log	message	using	 the	 logging
module.	By	default	the	message	can	come	from	any	logger	and	have
a	 priority	 of	 INFO	 or	 higher,	 but	 both	 the	 logger	 name	 and	 an
alternative	 minimum	 logging	 level	 may	 be	 specified.	 The	 object
returned	by	the	context	manager	can	be	queried	for	the	LogRecords
and/or	formatted	messages	that	were	logged.	(Contributed	by	Antoine
Pitrou	in	issue	18937.)

Test	discovery	now	works	with	namespace	packages	(Contributed	by
Claudiu	Popa	in	issue	17457.)

unittest.mock	 objects	 now	 inspect	 their	 specification	 signatures
when	matching	calls,	which	means	an	argument	can	now	be	matched
by	either	position	or	name,	instead	of	only	by	position.	(Contributed	by
Antoine	Pitrou	in	issue	17015.)

mock_open()	 objects	 now	 have	 readline	 and	 readlines

methods.	(Contributed	by	Toshio	Kuratomi	in	issue	17467.)

venv

venv	 now	 includes	 activation	 scripts	 for	 the	 csh	 and	 fish	 shells
(Contributed	by	Andrew	Svetlov	in	issue	15417.)

http://bugs.python.org/issue11798
http://bugs.python.org/issue18937
http://bugs.python.org/issue17457
http://bugs.python.org/issue17015
http://bugs.python.org/issue17467
http://bugs.python.org/issue15417

EnvBuilder	 and	 the	 create()	 convenience	 function	 take	 a	 new
keyword	 argument	with_pip,	 which	 defaults	 to	 False,	 that	 controls
whether	 or	 not	 EnvBuilder	 ensures	 that	 pip	 is	 installed	 in	 the
virtual	environment.	 (Contributed	by	Nick	Coghlan	 in	 issue	 19552	 as
part	of	the	PEP	453	implementation.)

wave

The	getparams()	method	now	 returns	a	namedtuple	 rather	 than	a
plain	tuple.	(Contributed	by	Claudiu	Popa	in	issue	17487.)

wave.open()	 now	 supports	 the	 context	 manager	 protocol.
(Contributed	by	Claudiu	Popa	in	issue	17616.)

wave	can	now	write	output	to	unseekable	files.	(Contributed	by	David
Jones,	Guilherme	Polo,	and	Serhiy	Storchaka	in	issue	5202.)

The	writeframesraw()	and	writeframes()	methods	now	accept
any	bytes-like	object.	(Contributed	by	Serhiy	Storchaka	in	issue	8311.)

weakref

New	 WeakMethod	 class	 simulates	 weak	 references	 to	 bound
methods.	(Contributed	by	Antoine	Pitrou	in	issue	14631.)

New	 finalize	 class	makes	 it	 possible	 to	 register	 a	 callback	 to	 be
invoked	 when	 an	 object	 is	 garbage	 collected,	 without	 needing	 to
carefully	 manage	 the	 lifecycle	 of	 the	 weak	 reference	 itself.
(Contributed	by	Richard	Oudkerk	in	issue	15528)

The	 callback,	 if	 any,	 associated	with	 a	 ref	 is	 now	 exposed	 via	 the
__callback__	 attribute.	 (Contributed	 by	 Mark	 Dickinson	 in	 issue

http://bugs.python.org/issue19552
http://www.python.org/dev/peps/pep-0453
http://bugs.python.org/issue17487
http://bugs.python.org/issue17616
http://bugs.python.org/issue5202
http://bugs.python.org/issue8311
http://bugs.python.org/issue14631
http://bugs.python.org/issue15528
http://bugs.python.org/issue17643

17643.)

xml.etree

A	new	parser,	XMLPullParser,	allows	a	non-blocking	applications	to
parse	XML	documents.	An	example	can	be	seen	at	Pull	API	 for	non-
blocking	parsing.	(Contributed	by	Antoine	Pitrou	in	issue	17741.)

The	 xml.etree.ElementTree	 tostring()	 and
tostringlist()	 functions,	 and	 the	 ElementTree	 write()

method,	 now	have	 a	short_empty_elements	keyword-only	 parameter
providing	control	over	whether	elements	with	no	content	are	written	in
abbreviated	 (<tag	 />)	 or	 expanded	 (<tag></tag>)	 form.
(Contributed	by	Ariel	Poliak	and	Serhiy	Storchaka	in	issue	14377.)

zipfile

The	writepy()	method	of	the	PyZipFile	class	has	a	new	filterfunc
option	that	can	be	used	to	control	which	directories	and	files	are	added
to	 the	 archive.	 For	 example,	 this	 could	 be	 used	 to	 exclude	 test	 files
from	the	archive.	(Contributed	by	Christian	Tismer	in	issue	19274.)

The	allowZip64	parameter	to	ZipFile	and	PyZipfile	is	now	True
by	default.	(Contributed	by	William	Mallard	in	issue	17201.)

http://bugs.python.org/issue17741
http://bugs.python.org/issue14377
http://bugs.python.org/issue19274
http://bugs.python.org/issue17201

CPython	Implementation	Changes

PEP	445:	Customization	of	CPython	Memory
Allocators

PEP	445	adds	new	C	level	interfaces	to	customize	memory	allocation
in	the	CPython	interpreter.

See	also:

PEP	445	–	Add	new	APIs	to	customize	Python	memory
allocators

PEP	written	and	implemented	by	Victor	Stinner.

PEP	442:	Safe	Object	Finalization

PEP	 442	 removes	 the	 current	 limitations	 and	 quirks	 of	 object
finalization	in	CPython.	With	it,	objects	with	__del__()	methods,	as
well	as	generators	with	finally	clauses,	can	be	finalized	when	they
are	part	of	a	reference	cycle.

As	 part	 of	 this	 change,	module	 globals	 are	 no	 longer	 forcibly	 set	 to
None	 during	 interpreter	 shutdown	 in	most	 cases,	 instead	 relying	 on
the	 normal	 operation	 of	 the	 cyclic	 garbage	 collector.	 This	 avoids	 a
whole	 class	 of	 interpreter-shutdown-time	 errors,	 usually	 involving
__del__	methods,	that	have	plagued	Python	since	the	cyclic	GC	was
first	introduced.

See	also:

PEP	442	–	Safe	object	finalization

http://www.python.org/dev/peps/pep-0445
http://www.python.org/dev/peps/pep-0445
http://www.python.org/dev/peps/pep-0442
http://www.python.org/dev/peps/pep-0442

PEP	written	and	implemented	by	Antoine	Pitrou.

PEP	456:	Secure	and	Interchangeable	Hash
Algorithm

PEP	456	follows	up	on	earlier	security	fix	work	done	on	Python’s	hash
algorithm	to	address	certain	DOS	attacks	to	which	public	facing	APIs
backed	by	dictionary	lookups	may	be	subject.	(See	issue	14621	for	the
start	 of	 the	 current	 round	 of	 improvements.)	 The	 PEP	 unifies
CPython’s	hash	code	to	make	it	easier	for	a	packager	to	substitute	a
different	hash	algorithm,	and	switches	Python’s	default	implementation
to	a	SipHash	implementation	on	platforms	that	have	a	64	bit	data	type.
Any	 performance	 differences	 in	 comparison	 with	 the	 older	 FNV
algorithm	are	trivial.

The	 PEP	 adds	 additional	 fields	 to	 the	 sys.hash_info()	 struct
sequence	 to	 describe	 the	 hash	 algorithm	 in	 use	 by	 the	 currently
executing	 binary.	 Otherwise,	 the	 PEP	 does	 not	 alter	 any	 existing
CPython	APIs.

PEP	436:	Argument	Clinic

“Argument	Clinic”	(PEP	436)	is	now	part	of	the	CPython	build	process
and	can	be	used	 to	 simplify	 the	process	of	 defining	and	maintaining
accurate	signatures	for	builtins	and	standard	library	extension	modules
implemented	in	C.

Some	standard	library	extension	modules	have	been	converted	to	use
Argument	Clinic	 in	Python	3.4,	and	pydoc	and	inspect	have	been
updated	accordingly.

It	 is	expected	 that	signature	metadata	 for	programmatic	 introspection

http://www.python.org/dev/peps/pep-0456
http://bugs.python.org/issue14621
http://www.python.org/dev/peps/pep-0436

will	 be	 added	 to	 additional	 callables	 implemented	 in	 C	 as	 part	 of
Python	3.4	maintenance	releases.

Note: 	The	Argument	Clinic	PEP	is	not	fully	up	to	date	with	the	state
of	the	implementation.	This	has	been	deemed	acceptable	by	the
release	manager	and	core	development	team	in	this	case,	as
Argument	Clinic	will	not	be	made	available	as	a	public	API	for	third
party	use	in	Python	3.4.

See	also:

PEP	436	–	The	Argument	Clinic	DSL
PEP	written	and	implemented	by	Larry	Hastings.

Other	Build	and	C	API	Changes

The	 new	 PyType_GetSlot()	 function	 has	 been	 added	 to	 the
stable	ABI,	allowing	retrieval	of	function	pointers	from	named	type
slots	when	using	the	limited	API.	(Contributed	by	Martin	von	Löwis
in	issue	17162)
The	 new	 Py_SetStandardStreamEncoding()	 pre-
initialization	 API	 allows	 applications	 embedding	 the	 CPython
interpreter	to	reliably	force	a	particular	encoding	and	error	handler
for	 the	standard	streams	 (Contributed	by	Bastien	Montagne	and
Nick	Coghlan	in	issue	16129)
Most	Python	C	APIs	 that	don’t	mutate	string	arguments	are	now
correctly	marked	as	accepting	const	char	*	rather	than	char
*	(Contributed	by	Serhiy	Storchaka	in	issue	1772673).
A	new	shell	version	of	python-config	can	be	used	even	when
a	 python	 interpreter	 is	 not	 available	 (for	 example,	 in	 cross
compilation	scenarios).
PyUnicode_FromFormat()	 now	 supports	 width	 and	 precision

http://www.python.org/dev/peps/pep-0436
http://bugs.python.org/issue17162
http://bugs.python.org/issue16129
http://bugs.python.org/issue1772673

specifications	for	%s,	%A,	%U,	%V,	%S,	and	%R.	(Contributed	by	Ysj
Ray	and	Victor	Stinner	in	issue	7330.)
New	 function	PyStructSequence_InitType2()	 supplements
the	 existing	 PyStructSequence_InitType()	 function.	 The
difference	is	that	it	returns	0	on	success	and	-1	on	failure.
The	 CPython	 source	 can	 now	 be	 compiled	 using	 the	 address
sanity	checking	features	of	recent	versions	of	GCC	and	clang:	the
false	 alarms	 in	 the	 small	 object	 allocator	 have	 been	 silenced.
(Contributed	by	Dhiru	Kholia	in	issue	18596.)
The	 Windows	 build	 now	 uses	 Address	 Space	 Layout
Randomization	 and	 Data	 Execution	 Prevention.	 (Contributed	 by
Christian	Heimes	in	issue	16632.)
New	function	PyObject_LengthHint()	is	the	C	API	equivalent
of	operator.length_hint().	(Contributed	by	Armin	Ronacher
in	issue	16148.)

Other	Improvements

The	python	 command	has	a	new	option,	-I,	which	 causes	 it	 to
run	 in	 “isolated	 mode”,	 which	 means	 that	 sys.path	 contains
neither	 the	 script’s	 directory	 nor	 the	 user’s	 site-packages
directory,	and	all	PYTHON*	environment	variables	are	 ignored	 (it
implies	both	-s	and	-E).	Other	restrictions	may	also	be	applied	in
the	future,	with	the	goal	being	to	isolate	the	execution	of	a	script
from	 the	 user’s	 environment.	 This	 is	 appropriate,	 for	 example,
when	 Python	 is	 used	 to	 run	 a	 system	 script.	 On	 most	 POSIX
systems	 it	 can	 and	 should	 be	 used	 in	 the	 #!	 line	 of	 system
scripts.	(Contributed	by	Christian	Heimes	in	issue	16499.)
Tab-completion	 is	 now	 enabled	 by	 default	 in	 the	 interactive
interpreter	 on	 systems	 that	 support	 readline.	 History	 is	 also
enabled	 by	 default,	 and	 is	 written	 to	 (and	 read	 from)	 the	 file
~/.python-history.	 (Contributed	 by	 Antoine	 Pitrou	 and	 Éric
Araujo	in	issue	5845.)

http://bugs.python.org/issue7330
http://bugs.python.org/issue18596
http://en.wikipedia.org/wiki/ASLR
http://en.wikipedia.org/wiki/Data_Execution_Prevention
http://bugs.python.org/issue16632
http://bugs.python.org/issue16148
http://bugs.python.org/issue16499
http://bugs.python.org/issue5845

Invoking	the	Python	interpreter	with	--version	now	outputs	the
version	 to	 standard	 output	 instead	 of	 standard	 error	 (issue
18338).	Similar	changes	were	made	to	argparse	(issue	18920)
and	 other	 modules	 that	 have	 script-like	 invocation	 capabilities
(issue	18922).
The	CPython	Windows	 installer	 now	adds	 .py	 to	 the	 PATHEXT
variable	when	extensions	are	 registered,	allowing	users	 to	 run	a
python	script	at	 the	windows	command	prompt	by	 just	 typing	 its
name	without	 the	.py	extension.	 (Contributed	by	Paul	Moore	 in
issue	18569.)
A	new	make	target	coverage-report	will	build	python,	run	the	test
suite,	and	generate	an	HTML	coverage	report	for	the	C	codebase
using	gcov	and	lcov.
The	-R	option	to	the	python	regression	test	suite	now	also	checks
for	 memory	 allocation	 leaks,	 using
sys.getallocatedblocks().	 (Contributed	 by	 Antoine	 Pitrou
in	issue	13390).
python	-m	now	works	with	namespace	packages.
The	stat	module	is	now	implemented	in	C,	which	means	it	gets
the	 values	 for	 its	 constants	 from	 the	 C	 header	 files,	 instead	 of
having	 the	 values	 hard-coded	 in	 the	 python	 module	 as	 was
previously	the	case.
Loading	multiple	python	modules	from	a	single	OS	module	(.so,
.dll)	now	works	correctly	(previously	it	silently	returned	the	first
python	 module	 in	 the	 file).	 (Contributed	 by	 Václav	 Šmilauer	 in
issue	16421.)
A	new	opcode,	LOAD_CLASSDEREF,	has	been	added	to	fix	a	bug
in	 the	 loading	 of	 free	 variables	 in	 class	 bodies	 that	 could	 be
triggered	 by	 certain	 uses	 of	 __prepare__.	 (Contributed	 by
Benjamin	Peterson	in	issue	17853.)
A	 number	 of	 MemoryError-related	 crashes	 were	 identified	 and
fixed	by	Victor	Stinner	using	his	PEP	445-based	pyfailmalloc
tool	(issue	18408,	issue	18520).

http://bugs.python.org/issue18338
http://bugs.python.org/issue18920
http://bugs.python.org/issue18922
http://bugs.python.org/issue18569
http://docs.python.org/devguide/coverage.html#measuring-coverage-of-c-code-with-gcov-and-lcov
http://ltp.sourceforge.net/coverage/lcov.php
http://bugs.python.org/issue13390
http://bugs.python.org/issue16421
http://bugs.python.org/issue17853
http://www.python.org/dev/peps/pep-0445
http://bugs.python.org/issue18408
http://bugs.python.org/issue18520

The	pyvenv	 command	 now	 accepts	 a	 --copies	 option	 to	 use
copies	rather	than	symlinks	even	on	systems	where	symlinks	are
the	default.	(Contributed	by	Vinay	Sajip	in	issue	18807.)
The	pyvenv	command	also	accepts	a	--without-pip	option	to
suppress	 the	 otherwise-automatic	 bootstrapping	 of	 pip	 into	 the
virtual	environment.	(Contributed	by	Nick	Coghlan	in	issue	19552
as	part	of	the	PEP	453	implementation.)
The	 encoding	 name	 is	 now	 optional	 in	 the	 value	 set	 for	 the
PYTHONIOENCODING	 environment	 variable.	 This	 makes	 it
possible	to	set	just	the	error	handler,	without	changing	the	default
encoding.	(Contributed	by	Serhiy	Storchaka	in	issue	18818.)
The	bz2,	lzma,	and	gzip	module	open	functions	now	support	x
(exclusive	 creation)	 mode.	 (Contributed	 by	 Tim	 Heaney	 and
Vajrasky	Kok	in	issue	19201,	issue	19222,	and	issue	19223.)

Significant	Optimizations

The	 UTF-32	 decoder	 is	 now	 3x	 to	 4x	 faster.	 (Contributed	 by
Serhiy	Storchaka	in	issue	14625.)
The	 cost	 of	 hash	 collisions	 for	 sets	 is	 now	 reduced.	 Each	 hash
table	 probe	 now	 checks	 a	 series	 of	 consecutive,	 adjacent
key/hash	pairs	before	continuing	to	make	random	probes	through
the	 hash	 table.	 This	 exploits	 cache	 locality	 to	 make	 collision
resolution	less	expensive.	The	collision	resolution	scheme	can	be
described	as	a	hybrid	of	linear	probing	and	open	addressing.	The
number	of	 additional	 linear	 probes	defaults	 to	 nine.	This	 can	 be
changed	at	compile-time	by	defining	LINEAR_PROBES	to	be	any
value.	Set	LINEAR_PROBES=0	to	turn-off	linear	probing	entirely.
(Contributed	by	Raymond	Hettinger	in	issue	18771.)
The	 interpreter	 starts	 about	 30%	 faster.	 A	 couple	 of	 measures
lead	 to	 the	 speedup.	 The	 interpreter	 loads	 fewer	 modules	 on
startup,	 e.g.	 the	 re,	 collections	 and	 locale	 modules	 and
their	 dependencies	 are	 no	 longer	 imported	 by	 default.	 The

http://bugs.python.org/issue18807
http://bugs.python.org/issue19552
http://www.python.org/dev/peps/pep-0453
http://bugs.python.org/issue18818
http://bugs.python.org/issue19201
http://bugs.python.org/issue19222
http://bugs.python.org/issue19223
http://bugs.python.org/issue14625
http://bugs.python.org/issue18771

marshal	module	has	been	improved	to	load	compiled	Python	code
faster.	(Contributed	by	Antoine	Pitrou,	Christian	Heimes	and	Victor
Stinner	 in	 issue	 19219,	 issue	 19218,	 issue	 19209,	 issue	 19205
and	issue	9548)
bz2.BZ2File	 is	now	as	fast	or	 faster	 than	the	Python2	version
for	 most	 cases.	 lzma.LZMAFile	 has	 also	 been	 optimized.
(Contributed	 by	 Serhiy	 Storchaka	 and	 Nadeem	 Vawda	 in	 issue
16034.)
random.getrandbits()	 is	 20%-40%	 faster	 for	 small	 integers
(the	most	common	use	case).	(Contributed	by	Serhiy	Storchaka	in
issue	16674).
By	taking	advantage	of	the	new	storage	format	for	strings,	pickling
of	strings	is	now	significantly	faster.	(Contributed	by	Victor	Stinner
and	Antoine	Pitrou	in	issue	15596.)
A	 performance	 issue	 in	 io.FileIO.readall()	 has	 been
solved.	This	particularly	affects	Windows,	and	significantly	speeds
up	 the	 case	 of	 piping	 significant	 amounts	 of	 data	 through
subprocess.	(Contributed	by	Richard	Oudkerk	in	issue	15758.)
html.escape()	 is	now	10x	 faster.	 (Contributed	by	Matt	Bryant
in	issue	18020.)
On	Windows,	 the	native	VirtualAlloc	 is	now	used	 instead	of
the	CRT	malloc	in	obmalloc.	Artificial	benchmarks	show	about
a	3%	memory	savings.
os.urandom()	 now	 uses	 a	 lazily-opened	 persistent	 file
descriptor	so	as	to	avoid	using	many	file	descriptors	when	run	in
parallel	 from	multiple	 threads.	 (Contributed	 by	 Antoine	 Pitrou	 in
issue	18756.)

http://bugs.python.org/issue19219
http://bugs.python.org/issue19218
http://bugs.python.org/issue19209
http://bugs.python.org/issue19205
http://bugs.python.org/issue9548
http://bugs.python.org/issue16034
http://bugs.python.org/issue16674
http://bugs.python.org/issue15596
http://bugs.python.org/issue15758
http://bugs.python.org/issue18020
http://bugs.python.org/issue18756

Deprecated

This	 section	 covers	 various	APIs	 and	 other	 features	 that	 have	 been
deprecated	in	Python	3.4,	and	will	be	removed	in	Python	3.5	or	later.
In	most	(but	not	all)	cases,	using	the	deprecated	APIs	will	produce	a
DeprecationWarning	when	 the	 interpreter	 is	 run	with	deprecation
warnings	enabled	(for	example,	by	using	-Wd).

Deprecations	in	the	Python	API

As	 mentioned	 in	 PEP	 451:	 A	 ModuleSpec	 Type	 for	 the	 Import
System,	 a	 number	 of	 importilb	 methods	 and	 functions	 are
deprecated:	 importlib.find_loader()	 is	 replaced	 by
importlib.util.find_spec();
importlib.machinery.PathFinder.find_module()	 is
replaced	 by
importlib.machinery.PathFinder.find_spec();
importlib.abc.MetaPathFinder.find_module()	 is
replaced	 by
importlib.abc.MetaPathFinder.find_spec();
importlib.abc.PathEntryFinder.find_loader()	 and
find_module()	 are	 replaced	 by
importlib.abc.PathEntryFinder.find_spec();	all	of	the
xxxLoader	 ABC	 load_module	 methods
(importlib.abc.Loader.load_module(),
importlib.abc.InspectLoader.load_module(),
importlib.abc.FileLoader.load_module(),
importlib.abc.SourceLoader.load_module())	 should	no
longer	 be	 implemented,	 instead	 loaders	 should	 implement	 an
exec_module	 method
(importlib.abc.Loader.exec_module(),

importlib.abc.InspectLoader.exec_module()

importlib.abc.SourceLoader.exec_module())	 and	 let
the	 import	 system	 take	 care	 of	 the	 rest;	 and
importlib.abc.Loader.module_repr(),
importlib.util.module_for_loader(),
importlib.util.set_loader(),	 and
importlib.util.set_package()	 are	 no	 longer	 needed
because	 their	 functions	 are	 now	 handled	 automatically	 by	 the
import	system.
The	 imp	 module	 is	 pending	 deprecation.	 To	 keep	 compatibility
with	Python	2/3	code	bases,	the	module’s	removal	is	currently	not
scheduled.
The	formatter	module	is	pending	deprecation	and	is	slated	for
removal	in	Python	3.6.
MD5	 as	 the	 default	 digestmod	 for	 the	 hmac.new()	 function	 is
deprecated.	 Python	 3.6	 will	 require	 an	 explicit	 digest	 name	 or
constructor	as	digestmod	argument.
The	 internal	 Netrc	 class	 in	 the	 ftplib	 module	 has	 been
documented	as	deprecated	in	its	docstring	for	quite	some	time.	It
now	 emits	 a	 DeprecationWarning	 and	 will	 be	 removed
completely	in	Python	3.5.
The	 undocumented	 endtime	 argument	 to
subprocess.Popen.wait()	 should	 not	 have	 been	 exposed
and	is	hopefully	not	 in	use;	 it	 is	deprecated	and	will	mostly	 likely
be	removed	in	Python	3.5.
The	strict	argument	of	HTMLParser	is	deprecated.
The	 plistlib	 readPlist(),	 writePlist(),
readPlistFromBytes(),	 and	 writePlistToBytes()

functions	 are	 deprecated	 in	 favor	 of	 the	 corresponding	 new
functions	load(),	dump(),	loads(),	and	dumps().	Data()	is
deprecated	in	favor	of	just	using	the	bytes	constructor.
The	sysconfig	 key	SO	 is	deprecated,	 it	has	been	 replaced	by
EXT_SUFFIX.

The	U	mode	accepted	by	various	open	 functions	 is	deprecated.
In	Python3	it	does	not	do	anything	useful,	and	should	be	replaced
by	appropriate	uses	of	 io.TextIOWrapper	 (if	 needed)	 and	 its
newline	argument.
The	 parser	 argument	 of
xml.etree.ElementTree.iterparse()	 has	 been
deprecated,	 as	 has	 the	 html	 argument	 of	 XMLParser().	 To
prepare	for	the	removal	of	the	latter,	all	arguments	to	XMLParser
should	be	passed	by	keyword.

Deprecated	Features

Running	 IDLE	 with	 the	 -n	 flag	 (no	 subprocess)	 is	 deprecated.
However,	 the	 feature	 will	 not	 be	 removed	 until	 issue	 18823	 is
resolved.
The	site	module	adding	a	 “site-python”	directory	 to	sys.path,	 if	 it
exists,	is	deprecated	(issue	19375).

http://bugs.python.org/issue18823
http://bugs.python.org/issue19375

Removed

Operating	Systems	No	Longer	Supported

Support	 for	 the	 following	 operating	 systems	has	 been	 removed	 from
the	source	and	build	tools:

OS/2	(issue	16135).
Windows	2000	(changeset	e52df05b496a).
Windows	 systems	 where	 COMSPEC	 points	 to	 command.com
(issue	14470).
VMS	(issue	16136).

API	and	Feature	Removals

The	 following	obsolete	and	previously	 deprecated	APIs	and	 features
have	been	removed:

The	 unmaintained	 Misc/TextMate	 and	 Misc/vim	 directories
have	been	removed	(see	the	devguide	for	suggestions	on	what	to
use	instead).
The	 SO	 makefile	 macro	 is	 removed	 (it	 was	 replaced	 by	 the
SHLIB_SUFFIX	and	EXT_SUFFIX	macros)	(issue	16754).
The	PyThreadState.tick_counter	 field	 has	been	 removed;
its	value	has	been	meaningless	since	Python	3.2,	when	the	“new
GIL”	was	introduced	(issue	19199).
PyLoader	 and	 PyPycLoader	 have	 been	 removed	 from
importlib.	(Contributed	by	Taras	Lyapun	in	issue	15641.)
The	 strict	 argument	 to	 HTTPConnection	 and
HTTPSConnection	has	been	 removed.	HTTP	0.9-style	 “Simple
Responses”	are	no	longer	supported.
The	 deprecated	 urllib.request.Request	 getter	 and	 setter

http://bugs.python.org/issue16135
http://bugs.python.org/issue14470
http://bugs.python.org/issue16136
http://docs.python.org/devguide
http://bugs.python.org/issue16754
http://bugs.python.org/issue19199
http://bugs.python.org/issue15641

methods	 add_data,	 has_data,	 get_data,	 get_type,
get_host,	 get_selector,	 set_proxy,
get_origin_req_host,	 and	 is_unverifiable	 have	 been
removed	(use	direct	attribute	access	instead).
Support	 for	 loading	 the	 deprecated	 TYPE_INT64	 has	 been
removed	from	marshal.	(Contributed	by	Dan	Riti	in	issue	15480.)
inspect.Signature:	 positional-only	 parameters	 are	 now
required	to	have	a	valid	name.
object.__format__()	 no	 longer	 accepts	 non-empty	 format
strings,	 it	 now	 raises	a	TypeError	 instead.	Using	 a	 non-empty
string	 has	 been	 deprecated	 since	 Python	 3.2.	 This	 change	 has
been	made	 to	 prevent	 a	 situation	where	previously	working	 (but
incorrect)	code	would	start	failing	if	an	object	gained	a	__format__
method,	 which	 means	 that	 your	 code	 may	 now	 raise	 a
TypeError	if	you	are	using	an	's'	format	code	with	objects	that
do	not	have	a	__format__	method	that	handles	it.	See	issue	7994
for	background.
difflib.SequenceMatcher.isbjunk()	 and
difflib.SequenceMatcher.isbpopular()	 were
deprecated	 in	 3.2,	 and	 have	 now	 been	 removed:	 use	 x	 in
sm.bjunk	 and	 x	 in	 sm.bpopular,	 where	 sm	 is	 a
SequenceMatcher	object	(issue	13248).

Code	Cleanups

The	unused	and	undocumented	internal	Scanner	class	has	been
removed	from	the	pydoc	module.
The	private	and	effectively	unused	_gestalt	module	has	been
removed,	 along	 with	 the	 private	 platform	 functions
_mac_ver_lookup,	_mac_ver_gstalt,	and	_bcd2str,	which
would	only	have	ever	been	called	on	badly	broken	OSX	systems
(see	issue	18393).

http://bugs.python.org/issue15480
http://bugs.python.org/issue7994
http://bugs.python.org/issue13248
http://bugs.python.org/issue18393

The	 hardcoded	 copies	 of	 certain	 stat	 constants	 that	 were
included	 in	 the	 tarfile	 module	 namespace	 have	 been
removed.

Porting	to	Python	3.4

This	section	lists	previously	described	changes	and	other	bugfixes	that
may	require	changes	to	your	code.

Changes	in	‘python’	Command	Behavior

In	 a	 posix	 shell,	 setting	 the	 PATH	 environment	 variable	 to	 an
empty	value	is	equivalent	to	not	setting	it	at	all.	However,	setting
PYTHONPATH	to	an	empty	value	was	not	equivalent	to	not	setting
it	at	all:	setting	PYTHONPATH	to	an	empty	value	was	equivalent	to
setting	 it	 to	 .,	 which	 leads	 to	 confusion	 when	 reasoning	 by
analogy	 to	how	PATH	works.	The	behavior	now	conforms	 to	 the
posix	convention	for	PATH.
The	 [X	 refs,	 Y	 blocks]	 output	 of	 a	 debug	 (--with-pydebug)
build	of	the	CPython	interpreter	is	now	off	by	default.	It	can	be	re-
enabled	 using	 the	 -X	 showrefcount	 option.	 (Contributed	 by
Ezio	Melotti	in	issue	17323.)
The	 python	 command	 and	 most	 stdlib	 scripts	 (as	 well	 as
argparse)	 now	 output	 --version	 information	 to	 stdout
instead	of	stderr	(for	issue	list	see	Other	Improvements	above).

Changes	in	the	Python	API

The	 ABCs	 defined	 in	 importlib.abc	 now	 either	 raise	 the
appropriate	exception	or	 return	a	default	value	 instead	of	 raising
NotImplementedError	blindly.	This	will	only	affect	code	calling
super()	 and	 falling	 through	 all	 the	 way	 to	 the	 ABCs.	 For
compatibility,	 catch	 both	 NotImplementedError	 or	 the
appropriate	exception	as	needed.
The	 module	 type	 now	 initializes	 the	 __package__	 and

http://bugs.python.org/issue17323

__loader__	attributes	to	None	by	default.	To	determine	if	these
attributes	 were	 set	 in	 a	 backwards-compatible	 fashion,	 use	 e.g.
getattr(module,	'__loader__',	None)	is	not	None.
(issue	17115.)
importlib.util.module_for_loader()	 now	 sets
__loader__	 and	 __package__	 unconditionally	 to	 properly
support	 reloading.	 If	 this	 is	not	desired	 then	you	will	need	 to	set
these	 attributes	 manually.	 You	 can	 use
importlib.util.module_to_load()	 for	 module
management.
Import	 now	 resets	 relevant	 attributes	 (e.g.	 __name__,
__loader__,	 __package__,	 __file__,	 __cached__)
unconditionally	when	 reloading.	Note	 that	 this	 restores	a	pre-3.3
behavior	 in	 that	 it	 means	 a	 module	 is	 re-found	 when	 re-loaded
(issue	19413).
Frozen	packages	no	longer	set	__path__	to	a	list	containing	the
package	 name,	 they	 now	 set	 it	 to	 an	 empty	 list.	 The	 previous
behavior	could	cause	the	import	system	to	do	the	wrong	thing	on
submodule	 imports	 if	 there	 was	 also	 a	 directory	 with	 the	 same
name	as	 the	 frozen	package.	The	 correct	way	 to	 determine	 if	 a
module	 is	 a	 package	 or	 not	 is	 to	 use	 hasattr(module,
'__path__')	(issue	18065).
Frozen	 modules	 no	 longer	 define	 a	 __file__	 attribute.	 It’s
semantically	 incorrect	 for	 frozen	modules	 to	 set	 the	 attribute	 as
they	are	not	 loaded	 from	any	explicit	 location.	 If	 you	must	 know
that	 a	module	 comes	 from	 frozen	 code	 then	 you	 can	 see	 if	 the
module’s	__spec__.location	is	set	to	'frozen',	check	if	the
loader	 is	 a	 subclass	 of
importlib.machinery.FrozenImporter,	 or	 if	 Python	 2
compatibility	is	necessary	you	can	use	imp.is_frozen().
py_compile.compile()	now	raises	FileExistsError	if	the
file	path	it	would	write	to	is	a	symlink	or	a	non-regular	file.	This	is
to	 act	 as	 a	 warning	 that	 import	 will	 overwrite	 those	 files	 with	 a

http://bugs.python.org/issue17115
http://bugs.python.org/issue19413
http://bugs.python.org/issue18065

regular	file	regardless	of	what	type	of	file	path	they	were	originally.
importlib.abc.SourceLoader.get_source()	 no	 longer
raises	 ImportError	 when	 the	 source	 code	 being	 loaded
triggers	 a	 SyntaxError	 or	 UnicodeDecodeError.	 As
ImportError	 is	 meant	 to	 be	 raised	 only	 when	 source	 code
cannot	 be	 found	 but	 it	 should,	 it	 was	 felt	 to	 be	 over-
reaching/overloading	 of	 that	 meaning	 when	 the	 source	 code	 is
found	but	 improperly	structured.	If	you	were	catching	ImportError
before	and	wish	to	continue	to	ignore	syntax	or	decoding	issues,
catch	all	three	exceptions	now.
functools.update_wrapper()	 and	 functools.wraps()
now	correctly	set	the	__wrapped__	attribute	to	the	function	being
wrapped,	even	if	that	function	also	had	its	__wrapped__	attribute
set.	 This	 means	 __wrapped__	 attributes	 now	 correctly	 link	 a
stack	 of	 decorated	 functions	 rather	 than	 every	 __wrapped__
attribute	 in	 the	 chain	 referring	 to	 the	 innermost	 function.
Introspection	 libraries	 that	 assumed	 the	 previous	 behaviour	was
intentional	 can	 use	 inspect.unwrap()	 to	 access	 the	 first
function	in	the	chain	that	has	no	__wrapped__	attribute.
inspect.getfullargspec()	has	been	reimplemented	on	top
of	 inspect.signature()	 and	 hence	 handles	 a	 much	 wider
variety	of	callable	objects	than	it	did	in	the	past.	It	is	expected	that
additional	 builtin	 and	 extension	 module	 callables	 will	 gain
signature	 metadata	 over	 the	 course	 of	 the	 Python	 3.4	 series.
Code	 that	assumes	 that	inspect.getfullargspec()	will	 fail
on	non-Python	callables	may	need	to	be	adjusted	accordingly.
importlib.machinery.PathFinder	 now	 passes	 on	 the
current	working	directory	 to	objects	 in	sys.path_hooks	 for	 the
empty	string.	This	results	in	sys.path_importer_cache	never
containing	 '',	 thus	 iterating	 through
sys.path_importer_cache	based	on	sys.path	will	not	 find
all	 keys.	 A	 module’s	 __file__	 when	 imported	 in	 the	 current
working	directory	will	 also	now	have	an	absolute	path,	 including

when	 using	 -m	 with	 the	 interpreter	 (except	 for
__main__.__file__	when	a	script	has	been	executed	directly
using	 a	 relative	 path)	 (Contributed	 by	 Brett	 Cannon	 in	 issue
18416).	is	specified	on	the	command-line)	(issue	18416).
The	 removal	 of	 the	 strict	 argument	 to	 HTTPConnection	 and
HTTPSConnection	 changes	 the	 meaning	 of	 the	 remaining
arguments	 if	 you	 are	 specifying	 them	positionally	 rather	 than	 by
keyword.	If	you’ve	been	paying	attention	to	deprecation	warnings
your	code	should	already	be	specifying	any	additional	arguments
via	keywords.
Strings	 between	 from	__future__	import	...	 statements
now	 always	 raise	 a	 SyntaxError.	 Previously	 if	 there	 was	 no
leading	 docstring,	 an	 interstitial	 string	 would	 sometimes	 be
ignored.	This	brings	CPython	 into	 compliance	with	 the	 language
spec;	Jython	and	PyPy	already	were.	(issue	17434).
ssl.SSLSocket.getpeercert()	 and
ssl.SSLSocket.do_handshake()	 now	 raise	 an	 OSError
with	ENOTCONN	when	the	SSLSocket	 is	not	connected,	 instead
of	 the	 previous	 behavior	 of	 raising	 an	 AttributError.	 In
addition,	 getpeercert()	 will	 raise	 a	 ValueError	 if	 the
handshake	has	not	yet	been	done.
base64.b32decode()	 now	 raises	 a	 binascii.Error	 when
the	 input	string	contains	non-b32-alphabet	characters,	 instead	of
a	TypeError.	This	particular	TypeError	was	missed	when	the
other	 TypeErrors	 were	 converted.	 (Contributed	 by	 Serhiy
Storchaka	 in	 issue	 18011.)	 Note:	 this	 change	 was	 also
inadvertently	applied	in	Python	3.3.3.
The	file	attribute	is	now	automatically	closed	when	the	creating
cgi.FieldStorage	 instance	 is	 garbage	collected.	 If	 you	were
pulling	 the	 file	 object	 out	 separately	 from	 the
cgi.FieldStorage	 instance	 and	 not	 keeping	 the	 instance
alive,	 then	 you	 should	 either	 store	 the	 entire
cgi.FieldStorage	 instance	 or	 read	 the	 contents	 of	 the	 file

http://bugs.python.org/issue18416
http://bugs.python.org/issue18416
http://bugs.python.org/issue17434
http://bugs.python.org/issue18011

before	the	cgi.FieldStorage	instance	is	garbage	collected.
Calling	 read	 or	 write	 on	 a	 closed	 SSL	 socket	 now	 raises	 an
informative	 ValueError	 rather	 than	 the	 previous	 more
mysterious	AttributeError	(issue	9177).
slice.indices()	no	longer	produces	an	OverflowError	for
huge	 values.	As	 a	 consequence	 of	 this	 fix,	 slice.indices()
now	raises	a	ValueError	if	given	a	negative	length;	previously	it
returned	nonsense	values	(issue	14794).
The	 complex	 constructor,	 unlike	 the	 cmath	 functions,	 was
incorrectly	accepting	float	 values	 if	 an	object’s	__complex__
special	 method	 returned	 one.	 This	 now	 raises	 a	 TypeError.
(issue	16290.)
The	int	 constructor	 in	 3.2	 and	3.3	 erroneously	 accepts	 float
values	 for	 the	 base	 parameter.	 It	 is	 unlikely	 anyone	 was	 doing
this,	but	if	so,	it	will	now	raise	a	TypeError	(issue	16772).
Defaults	 for	 keyword-only	 arguments	 are	 now	 evaluated	 after
defaults	 for	 regular	 keyword	 arguments,	 instead	 of	 before.
Hopefully	 no	 one	wrote	 any	 code	 that	 depends	 on	 the	 previous
buggy	behavior	(issue	16967).
Stale	 thread	 states	 are	 now	 cleared	 after	 fork().	 This	 may
cause	some	system	resources	to	be	released	that	previously	were
incorrectly	 kept	 perpetually	 alive	 (for	 example,	 database
connections	kept	in	thread-local	storage).	(issue	17094.)
Parameter	names	in	__annotations__	dicts	are	now	mangled
properly,	 similarly	 to	 __kwdefaults__.	 (Contributed	 by	 Yury
Selivanov	in	issue	20625).
hashlib.hash.name	now	always	returns	 the	 identifier	 in	 lower
case.	Previously	some	builtin	hashes	had	uppercase	names,	but
now	that	it	is	a	formal	public	interface	the	naming	has	been	made
consistent	(issue	18532).
Because	unittest.TestSuite	 now	drops	 references	 to	 tests
after	they	are	run,	test	harnesses	that	re-use	a	TestSuite	to	re-
run	a	set	of	tests	may	fail.	Test	suites	should	not	be	re-used	in	this

http://bugs.python.org/issue9177
http://bugs.python.org/issue14794
http://bugs.python.org/issue16290
http://bugs.python.org/issue16772
http://bugs.python.org/issue16967
http://bugs.python.org/issue17094
http://bugs.python.org/issue20625
http://bugs.python.org/issue18532

fashion	 since	 it	 means	 state	 is	 retained	 between	 test	 runs,
breaking	the	test	isolation	that	unittest	is	designed	to	provide.
However,	if	the	lack	of	isolation	is	considered	acceptable,	the	old
behavior	can	be	restored	by	creating	a	TestSuite	subclass	that
defines	a	_removeTestAtIndex	method	that	does	nothing	(see
TestSuite.__iter__())	(issue	11798).
unittest	now	uses	argparse	for	command	line	parsing.	There
are	certain	 invalid	command	forms	that	used	to	work	that	are	no
longer	 allowed;	 in	 theory	 this	 should	 not	 cause	 backward
compatibility	 issues	 since	 the	 disallowed	 command	 forms	 didn’t
make	any	sense	and	are	unlikely	to	be	in	use.
The	 re.split(),	 re.findall(),	 and	 re.sub()	 functions,
and	the	group()	and	groups()	methods	of	match	objects	now
always	 return	a	bytes	object	when	 the	string	 to	be	matched	 is	a
bytes-like	 object.	 Previously	 the	 return	 type	 matched	 the	 input
type,	 so	 if	 your	 code	was	 depending	 on	 the	 return	 value	 being,
say,	a	bytearray,	you	will	need	to	change	your	code.
audioop	 functions	 now	 raise	 an	 error	 immediately	 if	 passed
string	input,	instead	of	failing	randomly	later	on	(issue	16685).
The	 new	 convert_charrefs	 argument	 to	 HTMLParser	 currently
defaults	 to	 False	 for	 backward	 compatibility,	 but	will	 eventually
be	changed	 to	default	 to	True.	 It	 is	 recommended	 that	you	add
this	 keyword,	 with	 the	 appropriate	 value,	 to	 any	 HTMLParser
calls	in	your	code	(issue	13633).
Since	the	digestmod	argument	to	the	hmac.new()	function	will	in
the	 future	 have	 no	 default,	 all	 calls	 to	 hmac.new()	 should	 be
changed	to	explicitly	specify	a	digestmod	(issue	17276).
Calling	 sysconfig.get_config_var()	 with	 the	 SO	 key,	 or
looking	 SO	 up	 in	 the	 results	 of	 a	 call	 to
sysconfig.get_config_vars()	 is	 deprecated.	 This	 key
should	 be	 replaced	 by	 EXT_SUFFIX	 or	 SHLIB_SUFFIX,
depending	on	the	context	(issue	19555).
Any	calls	to	open	 functions	that	specify	U	should	be	modified.	U

http://bugs.python.org/issue11798
http://bugs.python.org/issue16685
http://bugs.python.org/issue13633
http://bugs.python.org/issue17276
http://bugs.python.org/issue19555

is	ineffective	in	Python3	and	will	eventually	raise	an	error	if	used.
Depending	 on	 the	 function,	 the	 equivalent	 of	 its	 old	 Python2
behavior	can	be	achieved	using	either	a	newline	 argument,	 or	 if
necessary	by	wrapping	the	stream	in	TextIOWrapper	to	use	its
newline	argument	(issue	15204).
If	you	use	pyvenv	 in	a	script	and	desire	that	pip	not	be	 installed,
you	must	add	--without-pip	to	your	command	invocation.
The	 default	 behavior	 of	 json.dump()	 and	 json.dumps()
when	an	 indent	 is	 specified	has	 changed:	 it	 no	 longer	 produces
trailing	 spaces	 after	 the	 item	 separating	 commas	at	 the	 ends	 of
lines.	This	will	matter	only	 if	you	have	tests	that	are	doing	white-
space-sensitive	comparisons	of	such	output	(issue	16333).
doctest	 now	 looks	 for	doctests	 in	extension	module	 __doc__
strings,	 so	 if	 your	 doctest	 test	 discovery	 includes	 extension
modules	that	have	things	that	look	like	doctests	in	them	you	may
see	 test	 failures	 you’ve	 never	 seen	 before	 when	 running	 your
tests	(issue	3158).
The	collections.abc	module	has	been	slightly	 refactored	as
part	 of	 the	 Python	 startup	 improvements.	 As	 a	 consequence	 of
this,	 it	 is	 no	 longer	 the	 case	 that	 importing	 collections
automatically	 imports	 collections.abc.	 If	 your	 program
depended	on	the	(undocumented)	implicit	import,	you	will	need	to
add	an	explicit	import	collections.abc	(issue	20784).

Changes	in	the	C	API

PyEval_EvalFrameEx(),	 PyObject_Repr(),	 and
PyObject_Str(),	 along	with	 some	other	 internal	C	APIs,	 now
include	a	debugging	assertion	 that	ensures	 they	are	not	used	 in
situations	 where	 they	 may	 silently	 discard	 a	 currently	 active
exception.	 In	 cases	 where	 discarding	 the	 active	 exception	 is
expected	and	desired	(for	example,	because	it	has	already	been
saved	 locally	 with	 PyErr_Fetch()	 or	 is	 being	 deliberately

http://bugs.python.org/issue15204
http://bugs.python.org/issue16333
http://bugs.python.org/issue3158
http://bugs.python.org/issue20784

replaced	with	a	different	exception),	an	explicit	PyErr_Clear()
call	will	be	needed	to	avoid	triggering	the	assertion	when	invoking
these	 operations	 (directly	 or	 indirectly)	 and	 running	 against	 a
version	of	Python	that	is	compiled	with	assertions	enabled.
PyErr_SetImportError()	 now	 sets	 TypeError	 when	 its
msg	argument	is	not	set.	Previously	only	NULL	was	returned	with
no	exception	set.
The	 result	 of	 the	 PyOS_ReadlineFunctionPointer	 callback
must	 now	 be	 a	 string	 allocated	 by	 PyMem_RawMalloc()	 or
PyMem_RawRealloc(),	or	NULL	if	an	error	occurred,	instead	of
a	 string	 allocated	 by	 PyMem_Malloc()	 or	 PyMem_Realloc()
(issue	16742)
PyThread_set_key_value()	 now	 always	 set	 the	 value.	 In
Python	3.3,	the	function	did	nothing	if	the	key	already	exists	(if	the
current	value	is	a	non-NULL	pointer).
The	 f_tstate	 (thread	 state)	 field	 of	 the	 PyFrameObject
structure	has	been	removed	to	fix	a	bug:	see	issue	14432	for	the
rationale.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://bugs.python.org/issue16742
http://bugs.python.org/issue14432
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	In	Python	3.3
This	article	explains	the	new	features	in	Python	3.3,	compared	to	3.2.
Python	3.3	was	released	on	September	29,	2012.	For	full	details,	see
the	changelog.

See	also: 	PEP	398	-	Python	3.3	Release	Schedule

http://docs.python.org/3.3/whatsnew/changelog.html
http://www.python.org/dev/peps/pep-0398

Summary	–	Release	highlights

New	syntax	features:

New	yield	from	expression	for	generator	delegation.
The	u'unicode'	syntax	is	accepted	again	for	str	objects.

New	library	modules:

faulthandler	(helps	debugging	low-level	crashes)
ipaddress	 (high-level	 objects	 representing	 IP	 addresses	 and
masks)
lzma	(compress	data	using	the	XZ	/	LZMA	algorithm)
unittest.mock	 (replace	 parts	 of	 your	 system	 under	 test	 with
mock	objects)
venv	 (Python	 virtual	 environments,	 as	 in	 the	 popular
virtualenv	package)

New	built-in	features:

Reworked	I/O	exception	hierarchy.

Implementation	improvements:

Rewritten	import	machinery	based	on	importlib.
More	compact	unicode	strings.
More	compact	attribute	dictionaries.

Significantly	Improved	Library	Modules:

C	Accelerator	for	the	decimal	module.
Better	unicode	handling	in	the	email	module	(provisional).

Security	improvements:

Hash	randomization	is	switched	on	by	default.

Please	read	on	for	a	comprehensive	list	of	user-facing	changes.

PEP	405:	Virtual	Environments

Virtual	environments	help	create	separate	Python	setups	while	sharing
a	 system-wide	 base	 install,	 for	 ease	 of	 maintenance.	 Virtual
environments	have	their	own	set	of	private	site	packages	(i.e.	locally-
installed	libraries),	and	are	optionally	segregated	from	the	system-wide
site	packages.	Their	concept	and	 implementation	are	 inspired	by	 the
popular	 virtualenv	 third-party	 package,	 but	 benefit	 from	 tighter
integration	with	the	interpreter	core.

This	PEP	adds	 the	 venv	module	 for	 programmatic	 access,	 and	 the
pyvenv	 script	 for	 command-line	 access	 and	 administration.	 The
Python	 interpreter	 checks	 for	 a	 pyvenv.cfg,	 file	 whose	 existence
signals	the	base	of	a	virtual	environment’s	directory	tree.

See	also:

PEP	405	-	Python	Virtual	Environments
PEP	written	 by	 Carl	Meyer;	 implementation	 by	 Carl	Meyer	 and
Vinay	Sajip

http://www.python.org/dev/peps/pep-0405

PEP	420:	Implicit	Namespace	Packages

Native	 support	 for	 package	 directories	 that	 don’t	 require
__init__.py	marker	 files	and	can	automatically	span	multiple	path
segments	 (inspired	 by	 various	 third	 party	 approaches	 to	 namespace
packages,	as	described	in	PEP	420)

See	also:

PEP	420	-	Implicit	Namespace	Packages
PEP	 written	 by	 Eric	 V.	 Smith;	 implementation	 by	 Eric	 V.	 Smith
and	Barry	Warsaw

http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0420

PEP	3118:	New	memoryview
implementation	and	buffer	protocol
documentation

The	implementation	of	PEP	3118	has	been	significantly	improved.

The	 new	 memoryview	 implementation	 comprehensively	 fixes	 all
ownership	 and	 lifetime	 issues	 of	 dynamically	 allocated	 fields	 in	 the
Py_buffer	struct	that	led	to	multiple	crash	reports.	Additionally,	several
functions	that	crashed	or	returned	incorrect	results	for	non-contiguous
or	multi-dimensional	input	have	been	fixed.

The	 memoryview	 object	 now	 has	 a	 PEP-3118	 compliant
getbufferproc()	 that	 checks	 the	 consumer’s	 request	 type.	 Many	 new
features	have	been	added,	most	of	them	work	in	full	generality	for	non-
contiguous	arrays	and	arrays	with	suboffsets.

The	 documentation	 has	 been	 updated,	 clearly	 spelling	 out
responsibilities	for	both	exporters	and	consumers.	Buffer	request	flags
are	 grouped	 into	 basic	 and	 compound	 flags.	 The	 memory	 layout	 of
non-contiguous	 and	 multi-dimensional	 NumPy-style	 arrays	 is
explained.

Features

All	 native	 single	 character	 format	 specifiers	 in	 struct	 module
syntax	(optionally	prefixed	with	‘@’)	are	now	supported.
With	 some	 restrictions,	 the	 cast()	 method	 allows	 changing	 of
format	and	shape	of	C-contiguous	arrays.
Multi-dimensional	list	representations	are	supported	for	any	array
type.

http://www.python.org/dev/peps/pep-3118

Multi-dimensional	comparisons	are	supported	for	any	array	type.
One-dimensional	memoryviews	of	hashable	(read-only)	types	with
formats	 B,	 b	 or	 c	 are	 now	 hashable.	 (Contributed	 by	 Antoine
Pitrou	in	issue	13411)
Arbitrary	slicing	of	any	1-D	arrays	type	is	supported.	For	example,
it	 is	 now	 possible	 to	 reverse	 a	memoryview	 in	 O(1)	 by	 using	 a
negative	step.

API	changes

The	maximum	number	of	dimensions	is	officially	limited	to	64.
The	representation	of	empty	shape,	strides	and	suboffsets	is	now
an	empty	tuple	instead	of	None.
Accessing	a	memoryview	element	with	format	‘B’	(unsigned	bytes)
now	 returns	 an	 integer	 (in	 accordance	 with	 the	 struct	 module
syntax).	For	returning	a	bytes	object	 the	view	must	be	cast	 to	 ‘c’
first.
memoryview	 comparisons	 now	 use	 the	 logical	 structure	 of	 the
operands	 and	 compare	 all	 array	 elements	 by	 value.	 All	 format
strings	 in	 struct	 module	 syntax	 are	 supported.	 Views	 with
unrecognised	 format	 strings	 are	 still	 permitted,	 but	 will	 always
compare	as	unequal,	regardless	of	view	contents.
For	further	changes	see	Build	and	C	API	Changes	and	Porting	C
code.

(Contributed	by	Stefan	Krah	in	issue	10181)

See	also: 	PEP	3118	-	Revising	the	Buffer	Protocol

http://bugs.python.org/issue13411
http://bugs.python.org/issue10181
http://www.python.org/dev/peps/pep-3118

PEP	393:	Flexible	String	Representation

The	 Unicode	 string	 type	 is	 changed	 to	 support	 multiple	 internal
representations,	depending	on	the	character	with	the	 largest	Unicode
ordinal	(1,	2,	or	4	bytes)	in	the	represented	string.	This	allows	a	space-
efficient	 representation	 in	 common	 cases,	 but	 gives	 access	 to	 full
UCS-4	 on	 all	 systems.	 For	 compatibility	 with	 existing	 APIs,	 several
representations	 may	 exist	 in	 parallel;	 over	 time,	 this	 compatibility
should	be	phased	out.

On	the	Python	side,	there	should	be	no	downside	to	this	change.

On	the	C	API	side,	PEP	393	is	fully	backward	compatible.	The	legacy
API	should	remain	available	at	least	five	years.	Applications	using	the
legacy	API	will	not	 fully	benefit	of	 the	memory	reduction,	or	-	worse	-
may	use	a	bit	more	memory,	 because	Python	may	have	 to	maintain
two	 versions	 of	 each	 string	 (in	 the	 legacy	 format	 and	 in	 the	 new
efficient	storage).

Functionality

Changes	introduced	by	PEP	393	are	the	following:

Python	now	always	supports	the	full	range	of	Unicode	codepoints,
including	 non-BMP	 ones	 (i.e.	 from	 U+0000	 to	 U+10FFFF).	 The
distinction	between	narrow	and	wide	builds	no	 longer	exists	and
Python	now	behaves	like	a	wide	build,	even	under	Windows.
With	 the	death	of	narrow	builds,	 the	problems	specific	 to	narrow
builds	have	also	been	fixed,	for	example:

len()	 now	 always	 returns	 1	 for	 non-BMP	 characters,	 so
len('\U0010FFFF')	==	1;
surrogate	 pairs	 are	 not	 recombined	 in	 string	 literals,	 so

http://www.python.org/dev/peps/pep-0393

'\uDBFF\uDFFF'	!=	'\U0010FFFF';
indexing	or	slicing	non-BMP	characters	returns	the	expected
value,	 so	 '\U0010FFFF'[0]	 now	 returns	 '\U0010FFFF'
and	not	'\uDBFF';
all	other	functions	in	the	standard	library	now	correctly	handle
non-BMP	codepoints.

The	 value	 of	 sys.maxunicode	 is	 now	 always	 1114111

(0x10FFFF	 in	 hexadecimal).	 The	 PyUnicode_GetMax()

function	 still	 returns	 either	 0xFFFF	 or	 0x10FFFF	 for	 backward
compatibility,	and	it	should	not	be	used	with	the	new	Unicode	API
(see	issue	13054).
The	 ./configure	 flag	 --with-wide-unicode	 has	 been
removed.

Performance	and	resource	usage

The	storage	of	Unicode	strings	now	depends	on	the	highest	codepoint
in	the	string:

pure	ASCII	and	Latin1	strings	(U+0000-U+00FF)	use	1	byte	per
codepoint;
BMP	strings	(U+0000-U+FFFF)	use	2	bytes	per	codepoint;
non-BMP	 strings	 (U+10000-U+10FFFF)	 use	 4	 bytes	 per
codepoint.

The	 net	 effect	 is	 that	 for	most	 applications,	memory	 usage	 of	 string
storage	should	decrease	significantly	-	especially	compared	to	former
wide	 unicode	 builds	 -	 as,	 in	many	 cases,	 strings	will	 be	 pure	 ASCII
even	in	international	contexts	(because	many	strings	store	non-human
language	 data,	 such	 as	 XML	 fragments,	 HTTP	 headers,	 JSON-
encoded	data,	etc.).	We	also	hope	 that	 it	will,	 for	 the	same	 reasons,
increase	CPU	cache	efficiency	on	non-trivial	applications.	The	memory
usage	of	Python	3.3	is	two	to	three	times	smaller	than	Python	3.2,	and

http://bugs.python.org/issue13054

a	 little	 bit	 better	 than	 Python	 2.7,	 on	 a	 Django	 benchmark	 (see	 the
PEP	for	details).

See	also:

PEP	393	-	Flexible	String	Representation
PEP	 written	 by	 Martin	 von	 Löwis;	 implementation	 by	 Torsten
Becker	and	Martin	von	Löwis.

http://www.python.org/dev/peps/pep-0393

PEP	397:	Python	Launcher	for	Windows

The	 Python	 3.3	 Windows	 installer	 now	 includes	 a	 py	 launcher
application	that	can	be	used	to	launch	Python	applications	in	a	version
independent	fashion.

This	 launcher	 is	 invoked	 implicitly	when	double-clicking	*.py	 files.	 If
only	a	single	Python	version	is	installed	on	the	system,	that	version	will
be	 used	 to	 run	 the	 file.	 If	 multiple	 versions	 are	 installed,	 the	 most
recent	 version	 is	 used	 by	 default,	 but	 this	 can	 be	 overridden	 by
including	a	Unix-style	“shebang	line”	in	the	Python	script.

The	launcher	can	also	be	used	explicitly	from	the	command	line	as	the
py	 application.	Running	 py	 follows	 the	same	version	selection	 rules
as	 implicitly	 launching	 scripts,	 but	 a	 more	 specific	 version	 can	 be
selected	 by	 passing	 appropriate	 arguments	 (such	 as	 -3	 to	 request
Python	3	when	Python	2	is	also	installed,	or	-2.6	to	specifclly	request
an	earlier	Python	version	when	a	more	recent	version	is	installed).

In	 addition	 to	 the	 launcher,	 the	 Windows	 installer	 now	 includes	 an
option	 to	 add	 the	 newly	 installed	 Python	 to	 the	 system	 PATH
(contributed	by	Brian	Curtin	in	issue	3561).

See	also:

PEP	397	-	Python	Launcher	for	Windows
PEP	 written	 by	 Mark	 Hammond	 and	 Martin	 v.	 Löwis;
implementation	by	Vinay	Sajip.

Launcher	documentation:	Python	Launcher	for	Windows

Installer	PATH	modification:	Finding	the	Python	executable

http://bugs.python.org/issue3561
http://www.python.org/dev/peps/pep-0397

PEP	3151:	Reworking	the	OS	and	IO
exception	hierarchy

The	hierarchy	of	exceptions	raised	by	operating	system	errors	is	now
both	simplified	and	finer-grained.

You	 don’t	 have	 to	 worry	 anymore	 about	 choosing	 the	 appropriate
exception	 type	 between	 OSError,	 IOError,	 EnvironmentError,
WindowsError,	mmap.error,	socket.error	or	select.error.
All	 these	 exception	 types	 are	 now	 only	 one:	 OSError.	 The	 other
names	are	kept	as	aliases	for	compatibility	reasons.

Also,	 it	 is	 now	 easier	 to	 catch	 a	 specific	 error	 condition.	 Instead	 of
inspecting	the	errno	attribute	(or	args[0])	for	a	particular	constant
from	 the	 errno	 module,	 you	 can	 catch	 the	 adequate	 OSError
subclass.	The	available	subclasses	are	the	following:

BlockingIOError

ChildProcessError

ConnectionError

FileExistsError

FileNotFoundError

InterruptedError

IsADirectoryError

NotADirectoryError

PermissionError

ProcessLookupError

TimeoutError

And	the	ConnectionError	itself	has	finer-grained	subclasses:

BrokenPipeError

ConnectionAbortedError

ConnectionRefusedError

ConnectionResetError

Thanks	to	the	new	exceptions,	common	usages	of	the	errno	can	now
be	avoided.	For	example,	the	following	code	written	for	Python	3.2:

from	errno	import	ENOENT,	EACCES,	EPERM

try:

				with	open("document.txt")	as	f:

								content	=	f.read()

except	IOError	as	err:

				if	err.errno	==	ENOENT:

								print("document.txt	file	is	missing")

				elif	err.errno	in	(EACCES,	EPERM):

								print("You	are	not	allowed	to	read	document.txt"

				else:

								raise

can	 now	 be	 written	 without	 the	 errno	 import	 and	 without	 manual
inspection	of	exception	attributes:

try:

				with	open("document.txt")	as	f:

								content	=	f.read()

except	FileNotFoundError:

				print("document.txt	file	is	missing")

except	PermissionError:

				print("You	are	not	allowed	to	read	document.txt"

See	also:

PEP	3151	-	Reworking	the	OS	and	IO	Exception	Hierarchy
PEP	written	and	implemented	by	Antoine	Pitrou

http://www.python.org/dev/peps/pep-3151

PEP	380:	Syntax	for	Delegating	to	a
Subgenerator

PEP	380	adds	the	yield	from	expression,	allowing	a	generator	 to
delegate	 part	 of	 its	 operations	 to	 another	 generator.	 This	 allows	 a
section	 of	 code	 containing	 yield	 to	 be	 factored	 out	 and	 placed	 in
another	generator.	Additionally,	 the	subgenerator	 is	allowed	 to	 return
with	 a	 value,	 and	 the	 value	 is	 made	 available	 to	 the	 delegating
generator.

While	designed	primarily	 for	use	 in	delegating	 to	a	subgenerator,	 the
yield	 from	 expression	 actually	 allows	 delegation	 to	 arbitrary
subiterators.

For	 simple	 iterators,	 yield	 from	 iterable	 is	 essentially	 just	 a
shortened	form	of	for	item	in	iterable:	yield	item:

>>>	def	g(x):

...					yield	from	range(x,	0,	-1)

...					yield	from	range(x)

...

>>>	list(g(5))

[5,	4,	3,	2,	1,	0,	1,	2,	3,	4]

However,	unlike	an	ordinary	loop,	yield	from	allows	subgenerators
to	receive	sent	and	thrown	values	directly	from	the	calling	scope,	and
return	a	final	value	to	the	outer	generator:

>>>	def	accumulate():

...					tally	=	0

...					while	1:

...									next	=	yield

...									if	next	is	None:

...													return	tally

...									tally	+=	next

...

>>>	def	gather_tallies(tallies):

...					while	1:

...									tally	=	yield	from	accumulate()

...									tallies.append(tally)

...

>>>	tallies	=	[]

>>>	acc	=	gather_tallies(tallies)

>>>	next(acc)	#	Ensure	the	accumulator	is	ready	to	accept	values

>>>	for	i	in	range(4):

...					acc.send(i)

...

>>>	acc.send(None)	#	Finish	the	first	tally

>>>	for	i	in	range(5):

...					acc.send(i)

...

>>>	acc.send(None)	#	Finish	the	second	tally

>>>	tallies

[6,	10]

The	main	principle	driving	this	change	is	to	allow	even	generators	that
are	designed	to	be	used	with	the	send	and	throw	methods	to	be	split
into	multiple	subgenerators	as	easily	as	a	single	large	function	can	be
split	into	multiple	subfunctions.

See	also:

PEP	380	-	Syntax	for	Delegating	to	a	Subgenerator
PEP	 written	 by	 Greg	 Ewing;	 implementation	 by	 Greg	 Ewing,
integrated	 into	 3.3	 by	 Renaud	 Blanch,	 Ryan	 Kelly	 and	 Nick
Coghlan;	 documentation	 by	 Zbigniew	 Jędrzejewski-Szmek	 and
Nick	Coghlan

http://www.python.org/dev/peps/pep-0380

PEP	409:	Suppressing	exception	context

PEP	409	introduces	new	syntax	that	allows	the	display	of	the	chained
exception	context	to	be	disabled.	This	allows	cleaner	error	messages
in	applications	that	convert	between	exception	types:

>>>	class	D:

...					def	__init__(self,	extra):

...									self._extra_attributes	=	extra

...					def	__getattr__(self,	attr):

...									try:

...													return	self._extra_attributes[attr]

...									except	KeyError:

...													raise	AttributeError(attr)	from	None

...

>>>	D({}).x

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	8,	in	__getattr__

AttributeError:	x

Without	 the	 from	 None	 suffix	 to	 suppress	 the	 cause,	 the	 original
exception	would	be	displayed	by	default:

>>>	class	C:

...					def	__init__(self,	extra):

...									self._extra_attributes	=	extra

...					def	__getattr__(self,	attr):

...									try:

...													return	self._extra_attributes[attr]

...									except	KeyError:

...													raise	AttributeError(attr)

...

>>>	C({}).x

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	6,	in	__getattr__

KeyError:	'x'

During	handling	of	the	above	exception,	another	exception	occurred:

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"<stdin>",	line	8,	in	__getattr__

AttributeError:	x

No	 debugging	 capability	 is	 lost,	 as	 the	 original	 exception	 context
remains	available	if	needed	(for	example,	if	an	intervening	library	has
incorrectly	suppressed	valuable	underlying	details):

>>>	try:

...					D({}).x

...	except	AttributeError	as	exc:

...					print(repr(exc.__context__))

...

KeyError('x',)

See	also:

PEP	409	-	Suppressing	exception	context
PEP	 written	 by	 Ethan	 Furman;	 implemented	 by	 Ethan	 Furman
and	Nick	Coghlan.

http://www.python.org/dev/peps/pep-0409

PEP	414:	Explicit	Unicode	literals

To	 ease	 the	 transition	 from	 Python	 2	 for	 Unicode	 aware	 Python
applications	that	make	heavy	use	of	Unicode	literals,	Python	3.3	once
again	 supports	 the	 “u”	 prefix	 for	 string	 literals.	 This	 prefix	 has	 no
semantic	significance	 in	Python	3,	 it	 is	provided	solely	 to	 reduce	 the
number	 of	 purely	 mechanical	 changes	 in	 migrating	 to	 Python	 3,
making	 it	 easier	 for	 developers	 to	 focus	 on	 the	 more	 significant
semantic	 changes	 (such	 as	 the	 stricter	 default	 separation	 of	 binary
and	text	data).

See	also:

PEP	414	-	Explicit	Unicode	literals
PEP	written	by	Armin	Ronacher.

http://www.python.org/dev/peps/pep-0414

PEP	3155:	Qualified	name	for	classes	and
functions

Functions	 and	 class	 objects	 have	 a	 new	 __qualname__	 attribute
representing	 the	 “path”	 from	 the	 module	 top-level	 to	 their	 definition.
For	global	functions	and	classes,	this	is	the	same	as	__name__.	For
other	functions	and	classes,	it	provides	better	information	about	where
they	were	actually	defined,	and	how	they	might	be	accessible	from	the
global	scope.

Example	with	(non-bound)	methods:

>>>	class	C:

...					def	meth(self):

...									pass

>>>	C.meth.__name__

'meth'

>>>	C.meth.__qualname__

'C.meth'

Example	with	nested	classes:

>>>	class	C:

...					class	D:

...									def	meth(self):

...													pass

...

>>>	C.D.__name__

'D'

>>>	C.D.__qualname__

'C.D'

>>>	C.D.meth.__name__

'meth'

>>>	C.D.meth.__qualname__

'C.D.meth'

Example	with	nested	functions:

>>>	def	outer():

...					def	inner():

...									pass

...					return	inner

...

>>>	outer().__name__

'inner'

>>>	outer().__qualname__

'outer.<locals>.inner'

The	string	 representation	of	 those	objects	 is	also	changed	 to	 include
the	new,	more	precise	information:

>>>	str(C.D)

"<class	'__main__.C.D'>"

>>>	str(C.D.meth)

'<function	C.D.meth	at	0x7f46b9fe31e0>'

See	also:

PEP	3155	-	Qualified	name	for	classes	and	functions
PEP	written	and	implemented	by	Antoine	Pitrou.

http://www.python.org/dev/peps/pep-3155

PEP	412:	Key-Sharing	Dictionary

Dictionaries	used	for	the	storage	of	objects’	attributes	are	now	able	to
share	 part	 of	 their	 internal	 storage	 between	 each	 other	 (namely,	 the
part	which	stores	the	keys	and	their	respective	hashes).	This	reduces
the	memory	consumption	of	programs	creating	many	instances	of	non-
builtin	types.

See	also:

PEP	412	-	Key-Sharing	Dictionary
PEP	written	and	implemented	by	Mark	Shannon.

http://www.python.org/dev/peps/pep-0412

PEP	362:	Function	Signature	Object

A	 new	 function	 inspect.signature()	 makes	 introspection	 of
python	callables	easy	and	straightforward.	A	broad	range	of	callables
is	 supported:	 python	 functions,	 decorated	 or	 not,	 classes,	 and
functools.partial()	 objects.	 New	 classes
inspect.Signature,	 inspect.Parameter	 and
inspect.BoundArguments	 hold	 information	 about	 the	 call
signatures,	 such	 as,	 annotations,	 default	 values,	 parameters	 kinds,
and	bound	arguments,	which	considerably	simplifies	writing	decorators
and	 any	 code	 that	 validates	 or	 amends	 calling	 signatures	 or
arguments.

See	also:

PEP	362:	-	Function	Signature	Object
PEP	 written	 by	 Brett	 Cannon,	 Yury	 Selivanov,	 Larry	 Hastings,
Jiwon	Seo;	implemented	by	Yury	Selivanov.

http://www.python.org/dev/peps/pep-0362

PEP	421:	Adding	sys.implementation

A	 new	 attribute	 on	 the	 sys	 module	 exposes	 details	 specific	 to	 the
implementation	 of	 the	 currently	 running	 interpreter.	 The	 initial	 set	 of
attributes	 on	 sys.implementation	 are	 name,	 version,
hexversion,	and	cache_tag.

The	 intention	 of	 sys.implementation	 is	 to	 consolidate	 into	 one
namespace	 the	 implementation-specific	 data	 used	 by	 the	 standard
library.	This	allows	different	Python	implementations	to	share	a	single
standard	 library	 code	 base	 much	 more	 easily.	 In	 its	 initial	 state,
sys.implementation	 holds	 only	 a	 small	 portion	 of	 the
implementation-specific	data.	Over	 time	that	ratio	will	shift	 in	order	 to
make	the	standard	library	more	portable.

One	example	of	 improved	standard	 library	portability	 is	 cache_tag.
As	 of	 Python	 3.3,	 sys.implementation.cache_tag	 is	 used	 by
importlib	 to	 support	 PEP	 3147	 compliance.	 Any	 Python
implementation	 that	 uses	 importlib	 for	 its	 built-in	 import	 system
may	use	cache_tag	to	control	the	caching	behavior	for	modules.

SimpleNamespace

The	implementation	of	sys.implementation	also	introduces	a	new
type	to	Python:	types.SimpleNamespace.	In	contrast	to	a	mapping-
based	namespace,	like	dict,	SimpleNamespace	is	attribute-based,
like	object.	However,	unlike	object,	SimpleNamespace	instances
are	writable.	 This	means	 that	 you	 can	 add,	 remove,	 and	modify	 the
namespace	through	normal	attribute	access.

http://www.python.org/dev/peps/pep-3147

See	also:

PEP	421	-	Adding	sys.implementation
PEP	written	and	implemented	by	Eric	Snow.

http://www.python.org/dev/peps/pep-0421

Using	importlib	as	the	Implementation	of
Import

issue	2377	-	Replace	__import__	w/	importlib.__import__	issue	13959
-	 Re-implement	 parts	 of	 imp	 in	 pure	 Python	 issue	 14605	 -	 Make
import	 machinery	 explicit	 issue	 14646	 -	 Require	 loaders	 set
__loader__	and	__package__

The	 __import__()	 function	 is	 now	 powered	 by
importlib.__import__().	 This	 work	 leads	 to	 the	 completion	 of
“phase	2”	of	PEP	302.	There	are	multiple	benefits	to	this	change.	First,
it	 has	 allowed	 for	 more	 of	 the	 machinery	 powering	 import	 to	 be
exposed	instead	of	being	implicit	and	hidden	within	the	C	code.	It	also
provides	a	single	implementation	for	all	Python	VMs	supporting	Python
3.3	 to	 use,	 helping	 to	 end	 any	 VM-specific	 deviations	 in	 import
semantics.	And	finally	it	eases	the	maintenance	of	import,	allowing	for
future	growth	to	occur.

For	the	common	user,	there	should	be	no	visible	change	in	semantics.
For	 those	 whose	 code	 currently	 manipulates	 import	 or	 calls	 import
programmatically,	 the	 code	 changes	 that	might	 possibly	 be	 required
are	covered	in	the	Porting	Python	code	section	of	this	document.

New	APIs

One	of	the	large	benefits	of	this	work	is	the	exposure	of	what	goes	into
making	the	 import	statement	work.	That	means	the	various	 importers
that	 were	 once	 implicit	 are	 now	 fully	 exposed	 as	 part	 of	 the
importlib	package.

The	 abstract	 base	 classes	 defined	 in	 importlib.abc	 have	 been

http://bugs.python.org/issue2377
http://bugs.python.org/issue13959
http://bugs.python.org/issue14605
http://bugs.python.org/issue14646
http://www.python.org/dev/peps/pep-0302

expanded	 to	 properly	 delineate	 between	meta	 path	 finders	 and	path
entry	finders	by	introducing	importlib.abc.MetaPathFinder	and
importlib.abc.PathEntryFinder,	 respectively.	 The	old	ABC	of
importlib.abc.Finder	 is	 now	 only	 provided	 for	 backwards-
compatibility	and	does	not	enforce	any	method	requirements.

In	 terms	of	 finders,	importlib.machinery.FileFinder	 exposes
the	 mechanism	 used	 to	 search	 for	 source	 and	 bytecode	 files	 of	 a
module.	 Previously	 this	 class	 was	 an	 implicit	 member	 of
sys.path_hooks.

For	 loaders,	 the	 new	 abstract	 base	 class
importlib.abc.FileLoader	helps	write	a	loader	that	uses	the	file
system	as	the	storage	mechanism	for	a	module’s	code.	The	loader	for
source	 files	 (importlib.machinery.SourceFileLoader),
sourceless	 bytecode	 files
(importlib.machinery.SourcelessFileLoader),	 and
extension	 modules
(importlib.machinery.ExtensionFileLoader)	 are	 now
available	for	direct	use.

ImportError	 now	 has	 name	 and	 path	 attributes	 which	 are	 set
when	there	is	relevant	data	to	provide.	The	message	for	failed	imports
will	also	provide	the	full	name	of	the	module	now	instead	of	just	the	tail
end	of	the	module’s	name.

The	importlib.invalidate_caches()	 function	will	 now	call	 the
method	 with	 the	 same	 name	 on	 all	 finders	 cached	 in
sys.path_importer_cache	 to	 help	 clean	 up	 any	 stored	 state	 as
necessary.

Visible	Changes

For	potential	 required	changes	 to	code,	see	 the	Porting	Python	code
section.

Beyond	 the	 expanse	 of	 what	 importlib	 now	 exposes,	 there	 are
other	visible	changes	to	 import.	The	biggest	 is	 that	sys.meta_path
and	sys.path_hooks	now	store	all	of	the	meta	path	finders	and	path
entry	 hooks	used	by	 import.	Previously	 the	 finders	were	 implicit	 and
hidden	within	the	C	code	of	 import	 instead	of	being	directly	exposed.
This	means	that	one	can	now	easily	remove	or	change	the	order	of	the
various	finders	to	fit	one’s	needs.

Another	 change	 is	 that	 all	 modules	 have	 a	 __loader__	 attribute,
storing	 the	 loader	 used	 to	 create	 the	 module.	 PEP	 302	 has	 been
updated	to	make	this	attribute	mandatory	for	loaders	to	implement,	so
in	the	future	once	3rd-party	loaders	have	been	updated	people	will	be
able	 to	rely	on	the	existence	of	 the	attribute.	Until	such	time,	 though,
import	is	setting	the	module	post-load.

Loaders	 are	 also	 now	 expected	 to	 set	 the	 __package__	 attribute
from	PEP	366.	Once	again,	 import	 itself	 is	already	setting	 this	on	all
loaders	from	importlib	and	import	itself	is	setting	the	attribute	post-
load.

None	 is	 now	 inserted	 into	 sys.path_importer_cache	 when	 no
finder	 can	 be	 found	 on	 sys.path_hooks.	 Since
imp.NullImporter	is	not	directly	exposed	on	sys.path_hooks	it
could	 no	 longer	 be	 relied	 upon	 to	 always	 be	 available	 to	 use	 as	 a
value	representing	no	finder	found.

All	other	changes	 relate	 to	semantic	changes	which	should	be	 taken
into	consideration	when	updating	code	for	Python	3.3,	and	thus	should
be	read	about	in	the	Porting	Python	code	section	of	this	document.

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0366

(Implementation	by	Brett	Cannon)

Other	Language	Changes

Some	smaller	changes	made	to	the	core	Python	language	are:

Added	support	for	Unicode	name	aliases	and	named	sequences.
Both	 unicodedata.lookup()	 and	 '\N{...}'	 now	 resolve
name	 aliases,	 and	 unicodedata.lookup()	 resolves	 named
sequences	too.

(Contributed	by	Ezio	Melotti	in	issue	12753)

Unicode	database	updated	to	UCD	version	6.1.0

Equality	 comparisons	 on	 range()	 objects	 now	 return	 a	 result
reflecting	 the	equality	of	 the	underlying	sequences	generated	by
those	range	objects.	(issue	13201)

The	 count(),	 find(),	 rfind(),	 index()	 and	 rindex()
methods	 of	 bytes	 and	 bytearray	 objects	 now	 accept	 an
integer	between	0	and	255	as	their	first	argument.

(Contributed	by	Petri	Lehtinen	in	issue	12170)

The	rjust(),	ljust(),	and	center()	methods	of	bytes	and
bytearray	 now	accept	 a	 bytearray	 for	 the	 fill	 argument.
(Contributed	by	Petri	Lehtinen	in	issue	12380.)

New	 methods	 have	 been	 added	 to	 list	 and	 bytearray:
copy()	 and	 clear()	 (issue	 10516).	 Consequently,
MutableSequence	now	also	defines	a	clear()	method	(issue
11388).

Raw	 bytes	 literals	 can	 now	 be	 written	 rb"..."	 as	 well	 as

http://bugs.python.org/issue12753
http://bugs.python.org/issue13201
http://bugs.python.org/issue12170
http://bugs.python.org/issue12380
http://bugs.python.org/issue10516
http://bugs.python.org/issue11388

br"...".

(Contributed	by	Antoine	Pitrou	in	issue	13748.)

dict.setdefault()	 now	 does	 only	 one	 lookup	 for	 the	 given
key,	making	it	atomic	when	used	with	built-in	types.

(Contributed	by	Filip	Gruszczyński	in	issue	13521.)

The	 error	 messages	 produced	 when	 a	 function	 call	 does	 not
match	the	function	signature	have	been	significantly	improved.

(Contributed	by	Benjamin	Peterson.)

http://bugs.python.org/issue13748
http://bugs.python.org/issue13521

A	Finer-Grained	Import	Lock

Previous	 versions	 of	CPython	 have	always	 relied	 on	 a	 global	 import
lock.	 This	 led	 to	 unexpected	 annoyances,	 such	 as	 deadlocks	 when
importing	a	module	would	trigger	code	execution	in	a	different	thread
as	 a	 side-effect.	 Clumsy	 workarounds	 were	 sometimes	 employed,
such	as	the	PyImport_ImportModuleNoBlock()	C	API	function.

In	 Python	 3.3,	 importing	 a	 module	 takes	 a	 per-module	 lock.	 This
correctly	serializes	importation	of	a	given	module	from	multiple	threads
(preventing	 the	 exposure	 of	 incompletely	 initialized	 modules),	 while
eliminating	the	aforementioned	annoyances.

(Contributed	by	Antoine	Pitrou	in	issue	9260.)

http://bugs.python.org/issue9260

Builtin	functions	and	types

open()	 gets	 a	 new	 opener	 parameter:	 the	 underlying	 file
descriptor	for	the	file	object	is	then	obtained	by	calling	opener	with
(file,	 flags).	 It	 can	 be	 used	 to	 use	 custom	 flags	 like
os.O_CLOEXEC	 for	 example.	 The	 'x'	 mode	 was	 added:	 open
for	exclusive	creation,	failing	if	the	file	already	exists.
print():	 added	 the	 flush	 keyword	 argument.	 If	 the	 flush
keyword	argument	is	true,	the	stream	is	forcibly	flushed.
hash():	 hash	 randomization	 is	 enabled	 by	 default,	 see
object.__hash__()	and	PYTHONHASHSEED.
The	 str	 type	 gets	 a	 new	 casefold()	 method:	 return	 a
casefolded	copy	of	the	string,	casefolded	strings	may	be	used	for
caseless	 matching.	 For	 example,	 'ß'.casefold()	 returns
'ss'.
The	sequence	documentation	has	been	substantially	 rewritten	 to
better	explain	 the	binary/text	sequence	distinction	and	to	provide
specific	documentation	sections	for	the	individual	builtin	sequence
types	(issue	4966)

http://bugs.python.org/issue4966

New	Modules

faulthandler

This	new	debug	module	faulthandler	 contains	 functions	 to	dump
Python	 tracebacks	 explicitly,	 on	 a	 fault	 (a	 crash	 like	 a	 segmentation
fault),	 after	 a	 timeout,	 or	 on	 a	 user	 signal.	 Call
faulthandler.enable()	to	install	fault	handlers	for	the	SIGSEGV,
SIGFPE,	 SIGABRT,	 SIGBUS,	 and	 SIGILL	 signals.	 You	 can	 also
enable	 them	 at	 startup	 by	 setting	 the	 PYTHONFAULTHANDLER
environment	 variable	 or	 by	 using	 -X	 faulthandler	 command	 line
option.

Example	of	a	segmentation	fault	on	Linux:

$	python	-q	-X	faulthandler

>>>	import	ctypes

>>>	ctypes.string_at(0)

Fatal	Python	error:	Segmentation	fault

Current	thread	0x00007fb899f39700:

		File	"/home/python/cpython/Lib/ctypes/__init__.py",	line	486	in	string_at

		File	"<stdin>",	line	1	in	<module>

Segmentation	fault

ipaddress

The	 new	 ipaddress	 module	 provides	 tools	 for	 creating	 and
manipulating	objects	representing	IPv4	and	IPv6	addresses,	networks
and	interfaces	(i.e.	an	IP	address	associated	with	a	specific	IP	subnet).

(Contributed	by	Google	and	Peter	Moody	in	PEP	3144)

http://www.python.org/dev/peps/pep-3144

lzma

The	 newly-added	 lzma	 module	 provides	 data	 compression	 and
decompression	 using	 the	 LZMA	 algorithm,	 including	 support	 for	 the
.xz	and	.lzma	file	formats.

(Contributed	 by	 Nadeem	 Vawda	 and	 Per	 Øyvind	 Karlsen	 in	 issue
6715)

http://bugs.python.org/issue6715

Improved	Modules

abc

Improved	 support	 for	 abstract	 base	 classes	 containing	 descriptors
composed	 with	 abstract	 methods.	 The	 recommended	 approach	 to
declaring	 abstract	 descriptors	 is	 now	 to	 provide
__isabstractmethod__	 as	 a	 dynamically	 updated	 property.	 The
built-in	descriptors	have	been	updated	accordingly.

abc.abstractproperty	 has	 been	 deprecated,	 use
property	with	abc.abstractmethod()	instead.
abc.abstractclassmethod	 has	 been	 deprecated,	 use
classmethod	with	abc.abstractmethod()	instead.
abc.abstractstaticmethod	 has	 been	 deprecated,	 use
staticmethod	with	abc.abstractmethod()	instead.

(Contributed	by	Darren	Dale	in	issue	11610)

abc.ABCMeta.register()	 now	 returns	 the	 registered	 subclass,
which	means	it	can	now	be	used	as	a	class	decorator	(issue	10868).

array

The	array	module	supports	the	long	long	type	using	q	and	Q	type
codes.

(Contributed	 by	 Oren	 Tirosh	 and	 Hirokazu	 Yamamoto	 in	 issue
1172711)

base64

http://bugs.python.org/issue11610
http://bugs.python.org/issue10868
http://bugs.python.org/issue1172711

ASCII-only	 Unicode	 strings	 are	 now	 accepted	 by	 the	 decoding
functions	 of	 the	 base64	 modern	 interface.	 For	 example,
base64.b64decode('YWJj')	 returns	 b'abc'.	 (Contributed	 by
Catalin	Iacob	in	issue	13641.)

binascii

In	 addition	 to	 the	 binary	 objects	 they	 normally	 accept,	 the	 a2b_
functions	now	all	also	accept	ASCII-only	strings	as	input.	(Contributed
by	Antoine	Pitrou	in	issue	13637.)

bz2

The	 bz2	 module	 has	 been	 rewritten	 from	 scratch.	 In	 the	 process,
several	new	features	have	been	added:

New	 bz2.open()	 function:	 open	 a	 bzip2-compressed	 file	 in
binary	or	text	mode.

bz2.BZ2File	 can	now	 read	 from	and	write	 to	 arbitrary	 file-like
objects,	by	means	of	its	constructor’s	fileobj	argument.

(Contributed	by	Nadeem	Vawda	in	issue	5863)

bz2.BZ2File	 and	 bz2.decompress()	 can	 now	 decompress
multi-stream	inputs	(such	as	those	produced	by	the	pbzip2	 tool).
bz2.BZ2File	 can	now	also	be	used	 to	 create	 this	 type	of	 file,
using	the	'a'	(append)	mode.

(Contributed	by	Nir	Aides	in	issue	1625)

bz2.BZ2File	now	implements	all	of	the	io.BufferedIOBase

http://bugs.python.org/issue13641
http://bugs.python.org/issue13637
http://bugs.python.org/issue5863
http://bugs.python.org/issue1625

API,	except	for	the	detach()	and	truncate()	methods.

codecs

The	mbcs	codec	has	been	rewritten	to	handle	correctly	replace	and
ignore	error	handlers	on	all	Windows	versions.	The	mbcs	codec	now
supports	 all	 error	 handlers,	 instead	 of	 only	 replace	 to	 encode	 and
ignore	to	decode.

A	new	Windows-only	codec	has	been	added:	cp65001	(issue	13216).
It	is	the	Windows	code	page	65001	(Windows	UTF-8,	CP_UTF8).	For
example,	it	is	used	by	sys.stdout	if	the	console	output	code	page	is
set	to	cp65001	(e.g.,	using	chcp	65001	command).

Multibyte	 CJK	 decoders	 now	 resynchronize	 faster.	 They	 only	 ignore
the	 first	 byte	 of	 an	 invalid	 byte	 sequence.	 For	 example,
b'\xff\n'.decode('gb2312',	 'replace')	 now	 returns	 a	 \n
after	the	replacement	character.

(issue	12016)

Incremental	CJK	codec	encoders	are	no	 longer	 reset	at	each	call	 to
their	encode()	methods.	For	example:

$./python	-q

>>>	import	codecs

>>>	encoder	=	codecs.getincrementalencoder('hz')('strict')

>>>	b''.join(encoder.encode(x)	for	x	in	'\u52ff\u65bd\u65bc\u4eba\u3002	Bye.')

b'~{NpJ)l6HK!#~}	Bye.'

This	 example	 gives	 b'~{Np~}~{J)~}~{l6~}~{HK~}~{!#~}

Bye.'	with	older	Python	versions.

http://bugs.python.org/issue13216
http://bugs.python.org/issue12016

(issue	12100)

The	unicode_internal	codec	has	been	deprecated.

collections

Addition	 of	 a	 new	 ChainMap	 class	 to	 allow	 treating	 a	 number	 of
mappings	 as	 a	 single	 unit.	 (Written	 by	 Raymond	Hettinger	 for	 issue
11089,	made	public	in	issue	11297)

The	 abstract	 base	 classes	 have	 been	 moved	 in	 a	 new
collections.abc	 module,	 to	 better	 differentiate	 between	 the
abstract	 and	 the	 concrete	 collections	 classes.	 Aliases	 for	 ABCs	 are
still	present	in	the	collections	module	to	preserve	existing	imports.
(issue	11085)

The	 Counter	 class	 now	 supports	 the	 unary	 +	 and	 -	 operators,	 as
well	 as	 the	 in-place	 operators	 +=,	 -=,	 |=,	 and	 &=.	 (Contributed	 by
Raymond	Hettinger	in	issue	13121.)

contextlib

ExitStack	 now	 provides	 a	 solid	 foundation	 for	 programmatic
manipulation	 of	 context	 managers	 and	 similar	 cleanup	 functionality.
Unlike	 the	 previous	 contextlib.nested	 API	 (which	 was
deprecated	and	removed),	 the	new	API	 is	designed	to	work	correctly
regardless	 of	 whether	 context	 managers	 acquire	 their	 resources	 in
their	 __init__	 method	 (for	 example,	 file	 objects)	 or	 in	 their
__enter__	 method	 (for	 example,	 synchronisation	 objects	 from	 the
threading	module).

(issue	13585)

http://bugs.python.org/issue12100
http://bugs.python.org/issue11089
http://bugs.python.org/issue11297
http://bugs.python.org/issue11085
http://bugs.python.org/issue13121
http://bugs.python.org/issue13585

crypt

Addition	 of	 salt	 and	modular	 crypt	 format	 (hashing	method)	 and	 the
mksalt()	function	to	the	crypt	module.

(issue	10924)

curses

If	 the	curses	module	 is	 linked	 to	 the	ncursesw	 library,	use
Unicode	 functions	 when	 Unicode	 strings	 or	 characters	 are
passed	 (e.g.	 waddwstr()),	 and	 bytes	 functions	 otherwise
(e.g.	waddstr()).
Use	the	locale	encoding	instead	of	utf-8	to	encode	Unicode
strings.
curses.window	 has	 a	 new	 curses.window.encoding
attribute.
The	curses.window	class	has	a	new	get_wch()	method
to	get	a	wide	character
The	 curses	 module	 has	 a	 new	 unget_wch()	 function	 to
push	a	wide	character	so	the	next	get_wch()	will	return	it

(Contributed	by	Iñigo	Serna	in	issue	6755)

datetime

Equality	 comparisons	 between	 naive	 and	 aware	 datetime
instances	 now	 return	 False	 instead	 of	 raising	 TypeError
(issue	15006).
New	datetime.datetime.timestamp()	method:	Return
POSIX	timestamp	corresponding	to	the	datetime	instance.
The	 datetime.datetime.strftime()	 method	 supports

http://bugs.python.org/issue10924
http://bugs.python.org/issue6755
http://bugs.python.org/issue15006

formatting	years	older	than	1000.
The	 datetime.datetime.astimezone()	 method	 can
now	 be	 called	 without	 arguments	 to	 convert	 datetime
instance	to	the	system	timezone.

decimal

issue	7652	-	integrate	fast	native	decimal	arithmetic.
C-module	and	libmpdec	written	by	Stefan	Krah.

The	new	C	version	of	 the	decimal	module	 integrates	 the	high	speed
libmpdec	 library	 for	 arbitrary	 precision	 correctly-rounded	 decimal
floating	point	arithmetic.	libmpdec	conforms	to	IBM’s	General	Decimal
Arithmetic	Specification.

Performance	gains	range	 from	10x	 for	database	applications	 to	100x
for	 numerically	 intensive	 applications.	 These	 numbers	 are	 expected
gains	for	standard	precisions	used	in	decimal	floating	point	arithmetic.
Since	 the	 precision	 is	 user	 configurable,	 the	 exact	 figures	may	 vary.
For	 example,	 in	 integer	 bignum	 arithmetic	 the	 differences	 can	 be
significantly	higher.

The	 following	 table	 is	 meant	 as	 an	 illustration.	 Benchmarks	 are
available	at	http://www.bytereef.org/mpdecimal/quickstart.html.

	 decimal.py _decimal speedup

pi 42.02s 0.345s 120x

telco 172.19s 5.68s 30x

psycopg 3.57s 0.29s 12x

Features

http://bugs.python.org/issue7652
http://www.bytereef.org/mpdecimal/quickstart.html

The	 FloatOperation	 signal	 optionally	 enables	 stricter
semantics	for	mixing	floats	and	Decimals.
If	Python	is	compiled	without	threads,	the	C	version	automatically
disables	 the	 expensive	 thread	 local	 context	 machinery.	 In	 this
case,	the	variable	HAVE_THREADS	is	set	to	False.

API	changes

The	C	module	has	the	following	context	 limits,	depending	on	the
machine	architecture:

	 32-bit 64-bit

MAX_PREC 425000000 999999999999999999

MAX_EMAX 425000000 999999999999999999

MIN_EMIN -425000000 -999999999999999999

In	 the	 context	 templates	 (DefaultContext,	 BasicContext
and	ExtendedContext)	 the	magnitude	of	Emax	and	Emin	has
changed	to	999999.

The	 Decimal	 constructor	 in	 decimal.py	 does	 not	 observe	 the
context	 limits	 and	 converts	 values	 with	 arbitrary	 exponents	 or
precision	 exactly.	 Since	 the	 C	 version	 has	 internal	 limits,	 the
following	 scheme	 is	 used:	 If	 possible,	 values	 are	 converted
exactly,	otherwise	InvalidOperation	is	raised	and	the	result	is
NaN.	 In	 the	 latter	 case	 it	 is	 always	 possible	 to	 use
create_decimal()	 in	 order	 to	 obtain	 a	 rounded	 or	 inexact
value.

The	power	 function	 in	decimal.py	 is	always	correctly-rounded.	 In
the	 C	 version,	 it	 is	 defined	 in	 terms	 of	 the	 correctly-rounded

exp()	 and	 ln()	 functions,	 but	 the	 final	 result	 is	 only	 “almost
always	correctly	rounded”.

In	the	C	version,	the	context	dictionary	containing	the	signals	is	a
MutableMapping.	 For	 speed	 reasons,	 flags	 and	 traps
always	refer	to	the	same	MutableMapping	that	the	context	was
initialized	with.	If	a	new	signal	dictionary	is	assigned,	flags	and
traps	 are	 updated	 with	 the	 new	 values,	 but	 they	 do	 not
reference	the	RHS	dictionary.

Pickling	a	Context	produces	a	different	output	in	order	to	have	a
common	interchange	format	for	the	Python	and	C	versions.

The	 order	 of	 arguments	 in	 the	 Context	 constructor	 has	 been
changed	to	match	the	order	displayed	by	repr().

The	 watchexp	 parameter	 in	 the	 quantize()	 method	 is
deprecated.

email
Policy	Framework

The	email	 package	now	has	a	 policy	 framework.	A	 Policy	 is	 an
object	with	several	methods	and	properties	that	control	how	the	email
package	behaves.	The	primary	policy	for	Python	3.3	is	the	Compat32
policy,	which	provides	backward	compatibility	with	 the	email	package
in	Python	3.2.	A	policy	can	be	specified	when	an	email	message	is
parsed	by	a	parser,	or	when	a	Message	object	is	created,	or	when
an	email	is	serialized	using	a	generator.	Unless	overridden,	a	policy
passed	to	a	parser	 is	 inherited	by	all	 the	Message	object	and	sub-
objects	created	by	the	parser.	By	default	a	generator	will	use	the

policy	 of	 the	 Message	 object	 it	 is	 serializing.	 The	 default	 policy	 is
compat32.

The	minimum	set	of	controls	implemented	by	all	policy	objects	are:

max_line_length
The	maximum	length,	excluding	the	linesep
character(s),	individual	lines	may	have	when
a	Message	is	serialized.	Defaults	to	78.

linesep
The	character	used	to	separate	individual
lines	when	a	Message	is	serialized.	Defaults
to	\n.

cte_type

7bit	or	8bit.	8bit	applies	only	to	a
Bytes	generator,	and	means	that	non-
ASCII	may	be	used	where	allowed	by	the
protocol	(or	where	it	exists	in	the	original
input).

raise_on_defect
Causes	a	parser	to	raise	error	when
defects	are	encountered	instead	of	adding
them	to	the	Message	object’s	defects	list.

A	 new	 policy	 instance,	 with	 new	 settings,	 is	 created	 using	 the
clone()	 method	 of	 policy	 objects.	 clone	 takes	 any	 of	 the	 above
controls	 as	 keyword	 arguments.	 Any	 control	 not	 specified	 in	 the	 call
retains	its	default	value.	Thus	you	can	create	a	policy	that	uses	\r\n
linesep	characters	like	this:

mypolicy	=	compat32.clone(linesep='\r\n')

Policies	 can	 be	 used	 to	 make	 the	 generation	 of	 messages	 in	 the
format	 needed	 by	 your	 application	 simpler.	 Instead	 of	 having	 to
remember	 to	 specify	 linesep='\r\n'	 in	 all	 the	 places	 you	 call	 a
generator,	you	can	specify	it	once,	when	you	set	the	policy	used	by
the	parser	or	the	Message,	whichever	your	program	uses	to	create

Message	 objects.	 On	 the	 other	 hand,	 if	 you	 need	 to	 generate
messages	in	multiple	forms,	you	can	still	specify	the	parameters	in	the
appropriate	 generator	 call.	 Or	 you	 can	 have	 custom	 policy
instances	for	your	different	cases,	and	pass	those	in	when	you	create
the	generator.

Provisional	Policy	with	New	Header	API

While	 the	 policy	 framework	 is	 worthwhile	 all	 by	 itself,	 the	 main
motivation	for	introducing	it	is	to	allow	the	creation	of	new	policies	that
implement	new	features	for	the	email	package	in	a	way	that	maintains
backward	 compatibility	 for	 those	 who	 do	 not	 use	 the	 new	 policies.
Because	the	new	policies	introduce	a	new	API,	we	are	releasing	them
in	Python	3.3	as	a	provisional	policy.	Backwards	incompatible	changes
(up	 to	 and	 including	 removal	 of	 the	 code)	 may	 occur	 if	 deemed
necessary	by	the	core	developers.

The	 new	 policies	 are	 instances	 of	 EmailPolicy,	 and	 add	 the
following	additional	controls:

refold_source

Controls	whether	or	not	headers	parsed	by	a
parser	are	refolded	by	the	generator.	It
can	be	none,	long,	or	all.	The	default	is
long,	which	means	that	source	headers	with
a	line	longer	than	max_line_length	get
refolded.	none	means	no	line	get	refolded,
and	all	means	that	all	lines	get	refolded.

header_factory A	callable	that	take	a	name	and	value	and
produces	a	custom	header	object.

The	header_factory	is	the	key	to	the	new	features	provided	by	the
new	 policies.	 When	 one	 of	 the	 new	 policies	 is	 used,	 any	 header
retrieved	 from	 a	 Message	 object	 is	 an	 object	 produced	 by	 the

header_factory,	and	any	 time	you	set	a	header	on	a	Message	 it
becomes	an	object	produced	by	header_factory.	All	 such	header
objects	have	a	name	attribute	equal	to	the	header	name.	Address	and
Date	 headers	 have	 additional	 attributes	 that	 give	 you	 access	 to	 the
parsed	data	of	the	header.	This	means	you	can	now	do	things	like	this:

>>>	m	=	Message(policy=SMTP)

>>>	m['To']	=	'Éric	<foo@example.com>'

>>>	m['to']

'Éric	<foo@example.com>'

>>>	m['to'].addresses

(Address(display_name='Éric',	username='foo',	domain='example.com'),)

>>>	m['to'].addresses[0].username

'foo'

>>>	m['to'].addresses[0].display_name

'Éric'

>>>	m['Date']	=	email.utils.localtime()

>>>	m['Date'].datetime

datetime.datetime(2012,	5,	25,	21,	39,	24,	465484,	tzinfo=datetime.timezone(datetime.timedelta(-1,	72000),	'EDT'))

>>>	m['Date']

'Fri,	25	May	2012	21:44:27	-0400'

>>>	print(m)

To:	=?utf-8?q?=C3=89ric?=	<foo@example.com>

Date:	Fri,	25	May	2012	21:44:27	-0400

You	will	note	that	 the	unicode	display	name	is	automatically	encoded
as	utf-8	when	the	message	is	serialized,	but	that	when	the	header	is
accessed	 directly,	 you	 get	 the	 unicode	 version.	 This	 eliminates	 any
need	 to	 deal	 with	 the	 email.header	 decode_header()	 or
make_header()	functions.

You	can	also	create	addresses	from	parts:

>>>	m['cc']	=	[Group('pals',	[Address('Bob',	'bob',	

...																											Address('Sally',	'sally'

...												Address('Bonzo',	addr_spec='bonz@laugh.com'

>>>	print(m)

To:	=?utf-8?q?=C3=89ric?=	<foo@example.com>

Date:	Fri,	25	May	2012	21:44:27	-0400

cc:	pals:	Bob	<bob@example.com>,	Sally	<sally@example.com>;,	Bonzo	<bonz@laugh.com>

Decoding	to	unicode	is	done	automatically:

>>>	m2	=	message_from_string(str(m))

>>>	m2['to']

'Éric	<foo@example.com>'

When	 you	 parse	 a	 message,	 you	 can	 use	 the	 addresses	 and
groups	 attributes	 of	 the	 header	 objects	 to	 access	 the	 groups	 and
individual	addresses:

>>>	m2['cc'].addresses

(Address(display_name='Bob',	username='bob',	domain='example.com'),	Address(display_name='Sally',	username='sally',	domain='example.com'),	Address(display_name='Bonzo',	username='bonz',	domain='laugh.com'))

>>>	m2['cc'].groups

(Group(display_name='pals',	addresses=(Address(display_name='Bob',	username='bob',	domain='example.com'),	Address(display_name='Sally',	username='sally',	domain='example.com')),	Group(display_name=None,	addresses=(Address(display_name='Bonzo',	username='bonz',	domain='laugh.com'),))

In	summary,	 if	you	use	one	of	 the	new	policies,	header	manipulation
works	the	way	it	ought	to:	your	application	works	with	unicode	strings,
and	 the	 email	 package	 transparently	 encodes	 and	 decodes	 the
unicode	to	and	from	the	RFC	standard	Content	Transfer	Encodings.

Other	API	Changes

New	 BytesHeaderParser,	 added	 to	 the	 parser	 module	 to
complement	HeaderParser	and	complete	the	Bytes	API.

New	utility	functions:

format_datetime():	given	a	datetime,	produce	a	string
formatted	for	use	in	an	email	header.
parsedate_to_datetime():	 given	 a	 date	 string	 from	 an
email	header,	convert	it	into	an	aware	datetime,	or	a	naive
datetime	if	the	offset	is	-0000.
localtime():	With	 no	 argument,	 returns	 the	 current	 local
time	 as	 an	 aware	 datetime	 using	 the	 local	 timezone.
Given	 an	 aware	 datetime,	 converts	 it	 into	 an	 aware
datetime	using	the	local	timezone.

ftplib

ftplib.FTP	 now	 accepts	 a	 source_address	 keyword
argument	 to	 specify	 the	 (host,	 port)	 to	 use	 as	 the	 source
address	 in	 the	 bind	 call	 when	 creating	 the	 outgoing	 socket.
(Contributed	by	Giampaolo	Rodolà	in	issue	8594.)
The	FTP_TLS	class	now	provides	a	new	ccc()	function	to	revert
control	 channel	 back	 to	 plaintext.	 This	 can	 be	 useful	 to	 take
advantage	 of	 firewalls	 that	 know	 how	 to	 handle	 NAT	 with	 non-
secure	 FTP	 without	 opening	 fixed	 ports.	 (Contributed	 by
Giampaolo	Rodolà	in	issue	12139)
Added	ftplib.FTP.mlsd()	method	which	provides	a	parsable
directory	 listing	 format	 and	 deprecates	 ftplib.FTP.nlst()
and	ftplib.FTP.dir().	 (Contributed	by	Giampaolo	Rodolà	 in
issue	11072)

functools

The	 functools.lru_cache()	 decorator	 now	 accepts	 a	 typed
keyword	 argument	 (that	 defaults	 to	 False	 to	 ensure	 that	 it	 caches
values	of	different	 types	 that	compare	equal	 in	separate	cache	slots.
(Contributed	by	Raymond	Hettinger	in	issue	13227.)

http://bugs.python.org/issue8594
http://bugs.python.org/issue12139
http://bugs.python.org/issue11072
http://bugs.python.org/issue13227

gc

It	 is	 now	 possible	 to	 register	 callbacks	 invoked	 by	 the	 garbage
collector	before	and	after	collection	using	the	new	callbacks	list.

hmac

A	new	compare_digest()	function	has	been	added	to	prevent	side
channel	 attacks	 on	 digests	 through	 timing	 analysis.	 (Contributed	 by
Nick	Coghlan	and	Christian	Heimes	in	issue	15061)

http

http.server.BaseHTTPRequestHandler	 now	 buffers	 the
headers	and	writes	them	all	at	once	when	end_headers()	is	called.
A	 new	method	 flush_headers()	 can	 be	 used	 to	 directly	manage
when	 the	 accumlated	 headers	 are	 sent.	 (Contributed	 by	 Andrew
Schaaf	in	issue	3709.)

http.server	 now	 produces	 valid	 HTML	 4.01	 strict	 output.
(Contributed	by	Ezio	Melotti	in	issue	13295.)

http.client.HTTPResponse	 now	 has	 a	 readinto()	 method,
which	means	it	can	be	used	as	a	io.RawIOBase	class.	(Contributed
by	John	Kuhn	in	issue	13464.)

html

html.parser.HTMLParser	 is	 now	 able	 to	 parse	 broken	 markup
without	raising	errors,	 therefore	 the	strict	argument	of	 the	constructor

http://bugs.python.org/issue15061
http://bugs.python.org/issue3709
http://bugs.python.org/issue13295
http://bugs.python.org/issue13464

and	the	HTMLParseError	exception	are	now	deprecated.	The	ability
to	parse	broken	markup	is	the	result	of	a	number	of	bug	fixes	that	are
also	 available	 on	 the	 latest	 bug	 fix	 releases	 of	 Python	 2.7/3.2.
(Contributed	 by	 Ezio	Melotti	 in	 issue	 15114,	 and	 issue	 14538,	 issue
13993,	issue	13960,	issue	13358,	issue	1745761,	issue	755670,	issue
13357,	issue	12629,	issue	1200313,	issue	670664,	issue	13273,	issue
12888,	issue	7311)

A	 new	 html5	 dictionary	 that	 maps	 HTML5	 named	 character
references	 to	 the	 equivalent	 Unicode	 character(s)	 (e.g.
html5['gt;']	==	'>')	 has	been	added	 to	 the	 html.entities
module.	 The	 dictionary	 is	 now	 also	 used	 by	 HTMLParser.
(Contributed	by	Ezio	Melotti	in	issue	11113	and	issue	15156)

imaplib

The	IMAP4_SSL	 constructor	now	accepts	an	SSLContext	parameter
to	control	parameters	of	the	secure	channel.

(Contributed	by	Sijin	Joseph	in	issue	8808)

inspect

A	new	getclosurevars()	 function	 has	 been	 added.	 This	 function
reports	 the	current	binding	of	all	names	 referenced	 from	 the	 function
body	and	where	those	names	were	resolved,	making	it	easier	to	verify
correct	internal	state	when	testing	code	that	relies	on	stateful	closures.

(Contributed	by	Meador	Inge	and	Nick	Coghlan	in	issue	13062)

A	 new	 getgeneratorlocals()	 function	 has	 been	 added.	 This
function	reports	the	current	binding	of	local	variables	in	the	generator’s

http://bugs.python.org/issue15114
http://bugs.python.org/issue14538
http://bugs.python.org/issue13993
http://bugs.python.org/issue13960
http://bugs.python.org/issue13358
http://bugs.python.org/issue1745761
http://bugs.python.org/issue755670
http://bugs.python.org/issue13357
http://bugs.python.org/issue12629
http://bugs.python.org/issue1200313
http://bugs.python.org/issue670664
http://bugs.python.org/issue13273
http://bugs.python.org/issue12888
http://bugs.python.org/issue7311
http://bugs.python.org/issue11113
http://bugs.python.org/issue15156
http://bugs.python.org/issue8808
http://bugs.python.org/issue13062

stack	 frame,	 making	 it	 easier	 to	 verify	 correct	 internal	 state	 when
testing	generators.

(Contributed	by	Meador	Inge	in	issue	15153)

io

The	 open()	 function	 has	 a	 new	 'x'	 mode	 that	 can	 be	 used	 to
exclusively	create	a	new	file,	and	raise	a	FileExistsError	if	the	file
already	exists.	It	is	based	on	the	C11	‘x’	mode	to	fopen().

(Contributed	by	David	Townshend	in	issue	12760)

The	 constructor	 of	 the	 TextIOWrapper	 class	 has	 a	 new
write_through	 optional	 argument.	 If	 write_through	 is	 True,	 calls	 to
write()	are	guaranteed	not	 to	be	buffered:	any	data	written	on	 the
TextIOWrapper	 object	 is	 immediately	 handled	 to	 its	 underlying
binary	buffer.

itertools

accumulate()	now	takes	an	optional	func	argument	for	providing	a
user-supplied	binary	function.

logging

The	 basicConfig()	 function	 now	 supports	 an	 optional	 handlers
argument	taking	an	iterable	of	handlers	to	be	added	to	the	root	logger.

A	 class	 level	 attribute	 append_nul	 has	 been	 added	 to
SysLogHandler	to	allow	control	of	the	appending	of	the	NUL	(\000)

http://bugs.python.org/issue15153
http://bugs.python.org/issue12760

byte	to	syslog	records,	since	for	some	deamons	it	is	required	while	for
others	it	is	passed	through	to	the	log.

math

The	 math	 module	 has	 a	 new	 function,	 log2(),	 which	 returns	 the
base-2	logarithm	of	x.

(Written	by	Mark	Dickinson	in	issue	11888).

mmap

The	 read()	 method	 is	 now	 more	 compatible	 with	 other	 file-like
objects:	if	the	argument	is	omitted	or	specified	as	None,	it	returns	the
bytes	 from	 the	 current	 file	 position	 to	 the	 end	 of	 the	 mapping.
(Contributed	by	Petri	Lehtinen	in	issue	12021.)

multiprocessing

The	new	multiprocessing.connection.wait()	 function	allows
to	poll	multiple	objects	(such	as	connections,	sockets	and	pipes)	with	a
timeout.	(Contributed	by	Richard	Oudkerk	in	issue	12328.)

multiprocessing.Connection	 objects	 can	 now	 be	 transferred
over	multiprocessing	connections.	(Contributed	by	Richard	Oudkerk	in
issue	4892.)

multiprocessing.Process	 now	 accepts	 a	 daemon	 keyword
argument	to	override	the	default	behavior	of	inheriting	the	daemon	flag
from	the	parent	process	(issue	6064).

New	 attribute	 attribute	 multiprocessing.Process.sentinel

http://bugs.python.org/issue11888
http://bugs.python.org/issue12021
http://bugs.python.org/issue12328
http://bugs.python.org/issue4892
http://bugs.python.org/issue6064

allows	 a	 program	 to	 wait	 on	 multiple	 Process	 objects	 at	 one	 time
using	 the	 appropriate	 OS	 primitives	 (for	 example,	 select	 on	 posix
systems).

New	 methods	 multiprocessing.pool.Pool.starmap()	 and
starmap_async()	provide	itertools.starmap()	equivalents	 to
the	 existing	 multiprocessing.pool.Pool.map()	 and
map_async()	 functions.	 (Contributed	 by	Hynek	Schlawack	 in	 issue
12708.)

nntplib

The	nntplib.NNTP	class	now	supports	the	context	manager	protocol
to	unconditionally	 consume	 socket.error	 exceptions	and	 to	 close
the	NNTP	connection	when	done:

>>>	from	nntplib	import	NNTP

>>>	with	NNTP('news.gmane.org')	as	n:

...					n.group('gmane.comp.python.committers')

...

('211	1755	1	1755	gmane.comp.python.committers',	1755,	1,	1755,	'gmane.comp.python.committers')

>>>

(Contributed	by	Giampaolo	Rodolà	in	issue	9795)

os

The	 os	 module	 has	 a	 new	 pipe2()	 function	 that	 makes	 it
possible	to	create	a	pipe	with	O_CLOEXEC	or	O_NONBLOCK	 flags
set	atomically.	This	is	especially	useful	to	avoid	race	conditions	in
multi-threaded	programs.

http://bugs.python.org/issue12708
http://bugs.python.org/issue9795

The	os	module	has	a	new	sendfile()	function	which	provides
an	 efficent	 “zero-copy”	 way	 for	 copying	 data	 from	 one	 file	 (or
socket)	descriptor	to	another.	The	phrase	“zero-copy”	refers	to	the
fact	that	all	of	the	copying	of	data	between	the	two	descriptors	is
done	entirely	by	the	kernel,	with	no	copying	of	data	into	userspace
buffers.	sendfile()	can	be	used	to	efficiently	copy	data	from	a
file	on	disk	to	a	network	socket,	e.g.	for	downloading	a	file.

(Patch	 submitted	 by	 Ross	 Lagerwall	 and	 Giampaolo	 Rodolà	 in
issue	10882.)

To	 avoid	 race	 conditions	 like	 symlink	 attacks	 and	 issues	 with
temporary	files	and	directories,	it	is	more	reliable	(and	also	faster)
to	 manipulate	 file	 descriptors	 instead	 of	 file	 names.	 Python	 3.3
enhances	existing	functions	and	introduces	new	functions	to	work
on	file	descriptors	(issue	4761,	issue	10755	and	issue	14626).

The	 os	 module	 has	 a	 new	 fwalk()	 function	 similar	 to
walk()	except	 that	 it	also	yields	file	descriptors	referring	to
the	 directories	 visited.	 This	 is	 especially	 useful	 to	 avoid
symlink	races.
The	following	functions	get	new	optional	dir_fd	(paths	relative
to	directory	descriptors)	and/or	follow_symlinks	(not	 following
symlinks):	 access(),	 chflags(),	 chmod(),	 chown(),
link(),	 lstat(),	 mkdir(),	 mkfifo(),	 mknod(),
open(),	 readlink(),	 remove(),	 rename(),
replace(),	 rmdir(),	 stat(),	 symlink(),	 unlink(),
utime().	 Platform	 support	 for	 using	 these	 parameters	 can
be	 checked	 via	 the	 sets	 os.supports_dir_fd	 and
os.supports_follows_symlinks.
The	following	functions	now	support	a	file	descriptor	for	their
path	argument:	chdir(),	chmod(),	chown(),	 execve(),
listdir(),	 pathconf(),	 exists(),	 stat(),

http://bugs.python.org/issue10882
http://bugs.python.org/issue4761
http://bugs.python.org/issue10755
http://bugs.python.org/issue14626

statvfs(),	 utime().	 Platform	 support	 for	 this	 can	 be
checked	via	the	os.supports_fd	set.

access()	 accepts	 an	 effective_ids	 keyword	 argument	 to
turn	on	using	the	effective	uid/gid	rather	than	the	real	uid/gid	in	the
access	 check.	 Platform	 support	 for	 this	 can	 be	 checked	 via	 the
supports_effective_ids	set.

The	 os	 module	 has	 two	 new	 functions:	 getpriority()	 and
setpriority().	 They	 can	 be	 used	 to	 get	 or	 set	 process
niceness/priority	in	a	fashion	similar	to	os.nice()	but	extended
to	all	processes	instead	of	just	the	current	one.

(Patch	submitted	by	Giampaolo	Rodolà	in	issue	10784.)

The	new	os.replace()	function	allows	cross-platform	renaming
of	a	 file	with	overwriting	 the	destination.	With	os.rename(),	an
existing	destination	file	is	overwritten	under	POSIX,	but	raises	an
error	 under	 Windows.	 (Contributed	 by	 Antoine	 Pitrou	 in	 issue
8828.)

The	 stat	 family	 of	 functions	 (stat(),	fstat(),	 and	 lstat())
now	 support	 reading	 a	 file’s	 timestamps	 with	 nanosecond
precision.	Symmetrically,	utime()	can	now	write	file	timestamps
with	 nanosecond	 precision.	 (Contributed	 by	 Larry	 Hastings	 in
issue	14127.)

The	new	os.get_terminal_size()	 function	queries	 the	 size
of	 the	 terminal	 attached	 to	 a	 file	 descriptor.	 See	 also
shutil.get_terminal_size().	 (Contributed	 by	 Zbigniew
Jędrzejewski-Szmek	in	issue	13609.)

New	functions	to	support	Linux	extended	attributes	(issue	12720):
getxattr(),	listxattr(),	removexattr(),	setxattr().

http://bugs.python.org/issue10784
http://bugs.python.org/issue8828
http://bugs.python.org/issue14127
http://bugs.python.org/issue13609
http://bugs.python.org/issue12720

New	 interface	 to	 the	 scheduler.	 These	 functions	 control	 how	 a
process	 is	 allocated	 CPU	 time	 by	 the	 operating	 system.	 New
functions:	 sched_get_priority_max(),
sched_get_priority_min(),	 sched_getaffinity(),
sched_getparam(),	 sched_getscheduler(),
sched_rr_get_interval(),	 sched_setaffinity(),
sched_setparam(),	 sched_setscheduler(),
sched_yield(),
New	functions	to	control	the	file	system:

posix_fadvise():	Announces	an	intention	to	access	data
in	 a	 specific	 pattern	 thus	 allowing	 the	 kernel	 to	 make
optimizations.
posix_fallocate():	 Ensures	 that	 enough	 disk	 space	 is
allocated	for	a	file.
sync():	Force	write	of	everything	to	disk.

Additional	new	posix	functions:
lockf():	Apply,	test	or	remove	a	POSIX	lock	on	an	open	file
descriptor.
pread():	 Read	 from	 a	 file	 descriptor	 at	 an	 offset,	 the	 file
offset	remains	unchanged.
pwrite():	Write	 to	 a	 file	 descriptor	 from	an	offset,	 leaving
the	file	offset	unchanged.
readv():	 Read	 from	 a	 file	 descriptor	 into	 a	 number	 of
writable	buffers.
truncate():	Truncate	the	file	corresponding	to	path,	so	that
it	is	at	most	length	bytes	in	size.
waitid():	 Wait	 for	 the	 completion	 of	 one	 or	 more	 child
processes.
writev():	Write	 the	contents	of	buffers	 to	a	 file	descriptor,
where	buffers	is	an	arbitrary	sequence	of	buffers.
getgrouplist()	(issue	9344):	Return	list	of	group	ids	that
specified	user	belongs	to.

times()	and	uname():	Return	 type	changed	 from	a	 tuple	 to	a

http://bugs.python.org/issue9344

tuple-like	object	with	named	attributes.
Some	 platforms	 now	 support	 additional	 constants	 for	 the
lseek()	 function,	 such	 as	 os.SEEK_HOLE	 and
os.SEEK_DATA.
New	 constants	 RTLD_LAZY,	 RTLD_NOW,	 RTLD_GLOBAL,
RTLD_LOCAL,	 RTLD_NODELETE,	 RTLD_NOLOAD,	 and
RTLD_DEEPBIND	 are	 available	 on	 platforms	 that	 support	 them.
These	 are	 for	 use	 with	 the	 sys.setdlopenflags()	 function,
and	 supersede	 the	 similar	 constants	 defined	 in	 ctypes	 and
DLFCN.	(Contributed	by	Victor	Stinner	in	issue	13226.)
os.symlink()	 now	 accepts	 (and	 ignores)	 the
target_is_directory	 keyword	 argument	 on	 non-Windows
platforms,	to	ease	cross-platform	support.

pdb

Tab-completion	 is	 now	 available	 not	 only	 for	 command	 names,	 but
also	their	arguments.	For	example,	for	the	break	command,	function
and	file	names	are	completed.

(Contributed	by	Georg	Brandl	in	issue	14210)

pickle

pickle.Pickler	 objects	 now	have	an	optional	 dispatch_table
attribute	allowing	to	set	per-pickler	reduction	functions.

(Contributed	by	Richard	Oudkerk	in	issue	14166.)

pydoc

The	Tk	GUI	and	the	serve()	 function	have	been	removed	from	the

http://bugs.python.org/issue13226
http://bugs.python.org/issue14210
http://bugs.python.org/issue14166

pydoc	module:	 pydoc	-g	 and	 serve()	 have	 been	 deprecated	 in
Python	3.2.

re

str	regular	expressions	now	support	\u	and	\U	escapes.

(Contributed	by	Serhiy	Storchaka	in	issue	3665.)

sched

run()	 now	 accepts	 a	 blocking	 parameter	 which	 when	 set	 to
False	 makes	 the	 method	 execute	 the	 scheduled	 events	 due	 to
expire	soonest	(if	any)	and	then	return	immediately.	This	is	useful
in	 case	 you	 want	 to	 use	 the	 scheduler	 in	 non-blocking
applications.	(Contributed	by	Giampaolo	Rodolà	in	issue	13449)
scheduler	 class	 can	 now	 be	 safely	 used	 in	 multi-threaded
environments.	 (Contributed	 by	 Josiah	 Carlson	 and	 Giampaolo
Rodolà	in	issue	8684)
timefunc	 and	 delayfunct	 parameters	 of	 scheduler	 class
constructor	are	now	optional	and	defaults	 to	time.time()	 and
time.sleep()	respectively.	(Contributed	by	Chris	Clark	in	issue
13245)
enter()	and	enterabs()	argument	parameter	is	now	optional.
(Contributed	by	Chris	Clark	in	issue	13245)
enter()	 and	 enterabs()	 now	 accept	 a	 kwargs	 parameter.
(Contributed	by	Chris	Clark	in	issue	13245)

select

Solaris	and	derivative	platforms	have	a	new	class	select.devpoll
for	 high	 performance	 asynchronous	 sockets	 via	 /dev/poll.

http://bugs.python.org/issue3665
http://bugs.python.org/issue13449
http://bugs.python.org/issue8684
http://bugs.python.org/issue13245
http://bugs.python.org/issue13245
http://bugs.python.org/issue13245

(Contributed	by	Jesús	Cea	Avión	in	issue	6397.)

shlex

The	previously	undocumented	helper	function	quote	from	the	pipes
modules	 has	 been	 moved	 to	 the	 shlex	 module	 and	 documented.
quote()	 properly	 escapes	 all	 characters	 in	 a	 string	 that	 might	 be
otherwise	given	special	meaning	by	the	shell.

shutil

New	functions:
disk_usage():	 provides	 total,	 used	 and	 free	 disk	 space
statistics.	(Contributed	by	Giampaolo	Rodolà	in	issue	12442)
chown():	 allows	 one	 to	 change	 user	 and/or	 group	 of	 the
given	path	also	specifying	the	user/group	names	and	not	only
their	 numeric	 ids.	 (Contributed	 by	 Sandro	 Tosi	 in	 issue
12191)
shutil.get_terminal_size():	 returns	 the	 size	 of	 the
terminal	 window	 to	 which	 the	 interpreter	 is	 attached.
(Contributed	 by	 Zbigniew	 Jędrzejewski-Szmek	 in	 issue
13609.)

copy2()	 and	 copystat()	 now	 preserve	 file	 timestamps	 with
nanosecond	 precision	 on	 platforms	 that	 support	 it.	 They	 also
preserve	file	“extended	attributes”	on	Linux.	(Contributed	by	Larry
Hastings	in	issue	14127	and	issue	15238.)
Several	 functions	 now	 take	 an	 optional	 symlinks	 argument:
when	that	parameter	is	true,	symlinks	aren’t	dereferenced	and	the
operation	 instead	 acts	 on	 the	 symlink	 itself	 (or	 creates	 one,	 if
relevant).	(Contributed	by	Hynek	Schlawack	in	issue	12715.)
When	 copying	 files	 to	 a	 different	 file	 system,	 move()	 now
handles	symlinks	the	way	the	posix	mv	command	does,	recreating

http://bugs.python.org/issue6397
http://bugs.python.org/issue12442
http://bugs.python.org/issue12191
http://bugs.python.org/issue13609
http://bugs.python.org/issue14127
http://bugs.python.org/issue15238
http://bugs.python.org/issue12715

the	 symlink	 rather	 than	 copying	 the	 target	 file	 contents.
(Contributed	 by	 Jonathan	 Niehof	 in	 issue	 9993.)	 move()	 now
also	returns	the	dst	argument	as	its	result.
rmtree()	is	now	resistant	to	symlink	attacks	on	platforms	which
support	 the	 new	 dir_fd	 parameter	 in	 os.open()	 and
os.unlink().	 (Contributed	 by	 Martin	 von	 Löwis	 and	 Hynek
Schlawack	in	issue	4489.)

signal

The	signal	module	has	new	functions:
pthread_sigmask():	fetch	and/or	change	the	signal	mask
of	 the	calling	thread	(Contributed	by	Jean-Paul	Calderone	in
issue	8407);
pthread_kill():	send	a	signal	to	a	thread;
sigpending():	examine	pending	functions;
sigwait():	wait	a	signal;
sigwaitinfo():	 wait	 for	 a	 signal,	 returning	 detailed
information	about	it;
sigtimedwait():	like	sigwaitinfo()	but	with	a	timeout.

The	 signal	 handler	 writes	 the	 signal	 number	 as	 a	 single	 byte
instead	 of	 a	 nul	 byte	 into	 the	 wakeup	 file	 descriptor.	 So	 it	 is
possible	 to	 wait	 more	 than	 one	 signal	 and	 know	 which	 signals
were	raised.
signal.signal()	 and	 signal.siginterrupt()	 raise	 an
OSError,	 instead	 of	 a	 RuntimeError:	 OSError	 has	 an	 errno
attribute.

smtpd

The	 smtpd	module	 now	 supports	RFC	5321	 (extended	 SMTP)	 and
RFC	1870	 (size	 extension).	 Per	 the	 standard,	 these	 extensions	 are

http://bugs.python.org/issue9993
http://bugs.python.org/issue4489
http://bugs.python.org/issue8407
http://tools.ietf.org/html/rfc5321.html
http://tools.ietf.org/html/rfc1870.html

enabled	 if	 and	 only	 if	 the	 client	 initiates	 the	 session	 with	 an	 EHLO
command.

(Initial	 ELHO	 support	 by	 Alberto	 Trevino.	 Size	 extension	 by	 Juhana
Jauhiainen.	 Substantial	 additional	 work	 on	 the	 patch	 contributed	 by
Michele	Orrù	and	Dan	Boswell.	issue	8739)

smtplib

The	 SMTP,	 SMTP_SSL,	 and	 LMTP	 classes	 now	 accept	 a
source_address	keyword	argument	to	specify	the	(host,	port)
to	 use	 as	 the	 source	 address	 in	 the	 bind	 call	 when	 creating	 the
outgoing	socket.	(Contributed	by	Paulo	Scardine	in	issue	11281.)

SMTP	now	supports	 the	context	manager	protocol,	allowing	an	SMTP
instance	to	be	used	in	a	with	statement.	(Contributed	by	Giampaolo
Rodolà	in	issue	11289.)

The	SMTP_SSL	constructor	and	the	starttls()	method	now	accept
an	 SSLContext	 parameter	 to	 control	 parameters	 of	 the	 secure
channel.	(Contributed	by	Kasun	Herath	in	issue	8809)

socket

The	 socket	 class	 now	 exposes	 additional	methods	 to	 process
ancillary	data	when	supported	by	the	underlying	platform:

sendmsg()

recvmsg()

recvmsg_into()

(Contributed	by	David	Watson	in	issue	6560,	based	on	an	earlier

http://bugs.python.org/issue8739
http://bugs.python.org/issue11281
http://bugs.python.org/issue11289
http://bugs.python.org/issue8809
http://bugs.python.org/issue6560

patch	by	Heiko	Wundram)

The	 socket	 class	 now	 supports	 the	 PF_CAN	 protocol	 family
(http://en.wikipedia.org/wiki/Socketcan),	 on	 Linux
(http://lwn.net/Articles/253425).

(Contributed	by	Matthias	Fuchs,	 updated	by	Tiago	Gonçalves	 in
issue	10141)

The	 socket	 class	 now	 supports	 the	 PF_RDS	 protocol	 family
(http://en.wikipedia.org/wiki/Reliable_Datagram_Sockets	 and
http://oss.oracle.com/projects/rds/).

The	socket	class	now	supports	the	PF_SYSTEM	protocol	 family
on	OS	X.	(Contributed	by	Michael	Goderbauer	in	issue	13777.)

New	function	sethostname()	allows	the	hostname	to	be	set	on
unix	 systems	 if	 the	 calling	 process	 has	 sufficient	 privileges.
(Contributed	by	Ross	Lagerwall	in	issue	10866.)

socketserver

BaseServer	now	has	an	overridable	method	service_actions()
that	 is	called	by	 the	serve_forever()	method	 in	 the	service	 loop.
ForkingMixIn	 now	 uses	 this	 to	 clean	 up	 zombie	 child	 proceses.
(Contributed	by	Justin	Warkentin	in	issue	11109.)

sqlite3

New	sqlite3.Connection	method	set_trace_callback()	can
be	used	 to	capture	a	 trace	of	all	 sql	commands	processed	by	sqlite.
(Contributed	by	Torsten	Landschoff	in	issue	11688.)

http://en.wikipedia.org/wiki/Socketcan
http://lwn.net/Articles/253425
http://bugs.python.org/issue10141
http://en.wikipedia.org/wiki/Reliable_Datagram_Sockets
http://oss.oracle.com/projects/rds/
http://bugs.python.org/issue13777
http://bugs.python.org/issue10866
http://bugs.python.org/issue11109
http://bugs.python.org/issue11688

ssl

The	ssl	module	has	two	new	random	generation	functions:

RAND_bytes():	 generate	 cryptographically	 strong	 pseudo-
random	bytes.
RAND_pseudo_bytes():	generate	pseudo-random	bytes.

(Contributed	by	Victor	Stinner	in	issue	12049)

The	ssl	module	now	exposes	a	finer-grained	exception	hierarchy
in	 order	 to	make	 it	 easier	 to	 inspect	 the	 various	 kinds	of	 errors.
(Contributed	by	Antoine	Pitrou	in	issue	11183)

load_cert_chain()	now	accepts	a	password	argument	 to	be
used	 if	 the	 private	 key	 is	 encrypted.	 (Contributed	 by	 Adam
Simpkins	in	issue	12803)

Diffie-Hellman	 key	 exchange,	 both	 regular	 and	 Elliptic	 Curve-
based,	 is	 now	 supported	 through	 the	 load_dh_params()	 and
set_ecdh_curve()	methods.	(Contributed	by	Antoine	Pitrou	in
issue	13626	and	issue	13627)

SSL	 sockets	 have	 a	 new	 get_channel_binding()	 method
allowing	the	implementation	of	certain	authentication	mechanisms
such	as	SCRAM-SHA-1-PLUS.	(Contributed	by	Jacek	Konieczny
in	issue	12551)

You	 can	 query	 the	SSL	 compression	 algorithm	used	by	 an	SSL
socket,	 thanks	 to	 its	 new	 compression()	 method.	 The	 new
attribute	 OP_NO_COMPRESSION	 can	 be	 used	 to	 disable
compression.	(Contributed	by	Antoine	Pitrou	in	issue	13634)

http://bugs.python.org/issue12049
http://bugs.python.org/issue11183
http://bugs.python.org/issue12803
http://bugs.python.org/issue13626
http://bugs.python.org/issue13627
http://bugs.python.org/issue12551
http://bugs.python.org/issue13634

Support	 has	 been	 added	 for	 the	 Next	 Procotol	 Negotiation
extension	 using	 the
ssl.SSLContext.set_npn_protocols()	 method.
(Contributed	by	Colin	Marc	in	issue	14204)

SSL	 errors	 can	 now	 be	 introspected	 more	 easily	 thanks	 to
library	and	reason	attributes.	 (Contributed	by	Antoine	Pitrou
in	issue	14837)

The	get_server_certificate()	function	now	supports	IPv6.
(Contributed	by	Charles-François	Natali	in	issue	11811.)

New	attribute	OP_CIPHER_SERVER_PREFERENCE	 allows	 setting
SSLv3	 server	 sockets	 to	 use	 the	 server’s	 cipher	 ordering
preference	rather	than	the	client’s	(issue	13635).

stat

The	 undocumented	 tarfile.filemode	 function	 has	 been	 moved	 to
stat.filemode().	It	can	be	used	to	convert	a	file’s	mode	to	a	string
of	the	form	‘-rwxrwxrwx’.

(Contributed	by	Giampaolo	Rodolà	in	issue	14807)

struct

The	 struct	 module	 now	 supports	 ssize_t	 and	 size_t	 via	 the
new	 codes	 n	 and	 N,	 respectively.	 (Contributed	 by	 Antoine	 Pitrou	 in
issue	3163.)

subprocess

http://bugs.python.org/issue14204
http://bugs.python.org/issue14837
http://bugs.python.org/issue11811
http://bugs.python.org/issue13635
http://bugs.python.org/issue14807
http://bugs.python.org/issue3163

Command	 strings	 can	 now	 be	 bytes	 objects	 on	 posix	 platforms.
(Contributed	by	Victor	Stinner	in	issue	8513.)

A	 new	 constant	 DEVNULL	 allows	 suppressing	 output	 in	 a	 platform-
independent	fashion.	(Contributed	by	Ross	Lagerwall	in	issue	5870.)

sys

The	sys	module	has	a	new	thread_info	struct	 sequence	 holding
informations	about	the	thread	implementation	(issue	11223).

tarfile

tarfile	 now	 supports	 lzma	 encoding	 via	 the	 lzma	 module.
(Contributed	by	Lars	Gustäbel	in	issue	5689.)

tempfile

tempfile.SpooledTemporaryFile‘s	 truncate()	 method	 now
accepts	a	size	parameter.	(Contributed	by	Ryan	Kelly	in	issue	9957.)

textwrap

The	 textwrap	 module	 has	 a	 new	 indent()	 that	 makes	 it
straightforward	to	add	a	common	prefix	to	selected	lines	in	a	block	of
text	(issue	13857).

threading

threading.Condition,	 threading.Semaphore,

http://bugs.python.org/issue8513
http://bugs.python.org/issue5870
http://bugs.python.org/issue11223
http://bugs.python.org/issue5689
http://bugs.python.org/issue9957
http://bugs.python.org/issue13857

threading.BoundedSemaphore,	 threading.Event,	 and
threading.Timer,	 all	 of	 which	 used	 to	 be	 factory	 functions
returning	a	class	 instance,	are	now	classes	and	may	be	subclassed.
(Contributed	by	Éric	Araujo	in	issue	10968).

The	 threading.Thread	 constructor	 now	 accepts	 a	 daemon

keyword	 argument	 to	 override	 the	 default	 behavior	 of	 inheriting	 the
deamon	flag	value	from	the	parent	thread	(issue	6064).

The	formerly	private	 function	_thread.get_ident	 is	now	available
as	 the	 public	 function	 threading.get_ident().	 This	 eliminates
several	 cases	of	direct	access	 to	 the	_thread	module	 in	 the	 stdlib.
Third	party	code	that	used	_thread.get_ident	should	likewise	be
changed	to	use	the	new	public	interface.

time

The	PEP	418	added	new	functions	to	the	time	module:

get_clock_info():	Get	information	on	a	clock.
monotonic():	 Monotonic	 clock	 (cannot	 go	 backward),	 not
affected	by	system	clock	updates.
perf_counter():	 Performance	 counter	 with	 the	 highest
available	resolution	to	measure	a	short	duration.
process_time():	Sum	of	the	system	and	user	CPU	time	of	the
current	process.

Other	new	functions:

clock_getres(),	 clock_gettime()	 and
clock_settime()	 functions	 with	 CLOCK_xxx	 constants.
(Contributed	by	Victor	Stinner	in	issue	10278)

http://bugs.python.org/issue10968
http://bugs.python.org/issue6064
http://www.python.org/dev/peps/pep-0418
http://bugs.python.org/issue10278

To	 improve	 cross	 platform	 consistency,	 sleep()	 now	 raises	 a
ValueError	 when	 passed	 a	 negative	 sleep	 value.	 Previously	 this
was	an	error	on	posix,	but	produced	an	infinite	sleep	on	Windows.

types

Add	a	new	types.MappingProxyType	class:	Read-only	proxy	of	a
mapping.	(issue	14386)

The	new	 functions	 types.new_class	 and	 types.prepare_class	 provide
support	for	PEP	3115	compliant	dynamic	type	creation.	(issue	14588)

unittest

assertRaises(),	assertRaisesRegex(),	assertWarns(),	and
assertWarnsRegex()	now	accept	a	keyword	argument	msg	when
used	as	context	managers.	 (Contributed	by	Ezio	Melotti	and	Winston
Ewert	in	issue	10775)

unittest.TestCase.run()	now	returns	the	TestResult	object.

urllib

The	 Request	 class,	 now	 accepts	 a	 method	 argument	 used	 by
get_method()	to	determine	what	HTTP	method	should	be	used.	For
example,	this	will	send	a	'HEAD'	request:

>>>	urlopen(Request('http://www.python.org',	method=

(issue	1673007)

http://bugs.python.org/issue14386
http://bugs.python.org/issue14588
http://bugs.python.org/issue10775
http://bugs.python.org/issue1673007

webbrowser

The	webbrowser	module	supports	more	“browsers”:	Google	Chrome
(named	 chrome,	 chromium,	 chrome-browser	 or	 chromium-
browser	 depending	 on	 the	 version	 and	 operating	 system),	 and	 the
generic	 launchers	xdg-open,	 from	 the	 FreeDesktop.org	 project,	 and
gvfs-open,	 which	 is	 the	 default	 URI	 handler	 for	 GNOME	 3.	 (The
former	contributed	by	Arnaud	Calmettes	 in	 issue	13620,	 the	 latter	by
Matthias	Klose	in	issue	14493)

xml.etree.ElementTree

The	 xml.etree.ElementTree	 module	 now	 imports	 its	 C
accelerator	 by	 default;	 there	 is	 no	 longer	 a	 need	 to	 explicitly	 import
xml.etree.cElementTree	 (this	 module	 stays	 for	 backwards
compatibility,	but	 is	now	deprecated).	 In	addition,	 the	iter	 family	 of
methods	 of	 Element	 has	 been	 optimized	 (rewritten	 in	 C).	 The
module’s	 documentation	 has	 also	 been	 greatly	 improved	with	 added
examples	and	a	more	detailed	reference.

zlib

New	 attribute	 zlib.Decompress.eof	 makes	 it	 possible	 to
distinguish	 between	 a	 properly-formed	 compressed	 stream	 and	 an
incomplete	or	truncated	one.	(Contributed	by	Nadeem	Vawda	in	issue
12646.)

New	 attribute	 zlib.ZLIB_RUNTIME_VERSION	 reports	 the	 version
string	 of	 the	 underlying	 zlib	 library	 that	 is	 loaded	 at	 runtime.
(Contributed	by	Torsten	Landschoff	in	issue	12306.)

http://bugs.python.org/issue13620
http://bugs.python.org/issue14493
http://bugs.python.org/issue12646
http://bugs.python.org/issue12306

Optimizations

Major	performance	enhancements	have	been	added:

Thanks	 to	PEP	 393,	 some	 operations	 on	 Unicode	 strings	 have
been	optimized:

the	memory	 footprint	 is	 divided	by	2	 to	 4	 depending	on	 the
text
encode	 an	 ASCII	 string	 to	 UTF-8	 doesn’t	 need	 to	 encode
characters	anymore,	the	UTF-8	representation	is	shared	with
the	ASCII	representation
the	UTF-8	encoder	has	been	optimized
repeating	 a	 single	 ASCII	 letter	 and	 getting	 a	 substring	 of	 a
ASCII	strings	is	4	times	faster

UTF-8	is	now	2x	to	4x	faster.	UTF-16	encoding	is	now	up	to	10x
faster.

(contributed	by	Serhiy	Storchaka,	 issue	14624,	 issue	 14738	 and
issue	15026.)

http://www.python.org/dev/peps/pep-0393
http://bugs.python.org/issue14624
http://bugs.python.org/issue14738
http://bugs.python.org/issue15026

Build	and	C	API	Changes

Changes	to	Python’s	build	process	and	to	the	C	API	include:

New	PEP	3118	related	function:
PyMemoryView_FromMemory()

PEP	393	added	new	Unicode	types,	macros	and	functions:
High-level	API:

PyUnicode_CopyCharacters()

PyUnicode_FindChar()

PyUnicode_GetLength(),
PyUnicode_GET_LENGTH

PyUnicode_New()

PyUnicode_Substring()

PyUnicode_ReadChar(),
PyUnicode_WriteChar()

Low-level	API:
Py_UCS1,	Py_UCS2,	Py_UCS4	types
PyASCIIObject	 and	 PyCompactUnicodeObject

structures
PyUnicode_READY

PyUnicode_FromKindAndData()

PyUnicode_AsUCS4(),	PyUnicode_AsUCS4Copy()
PyUnicode_DATA,	 PyUnicode_1BYTE_DATA,
PyUnicode_2BYTE_DATA,	PyUnicode_4BYTE_DATA
PyUnicode_KIND	 with	 PyUnicode_Kind	 enum:
PyUnicode_WCHAR_KIND,	 PyUnicode_1BYTE_KIND,
PyUnicode_2BYTE_KIND,	PyUnicode_4BYTE_KIND
PyUnicode_READ,	 PyUnicode_READ_CHAR,
PyUnicode_WRITE

PyUnicode_MAX_CHAR_VALUE

http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-0393

PyArg_ParseTuple	 now	 accepts	 a	 bytearray	 for	 the	 c
format	(issue	12380).

http://bugs.python.org/issue12380

Deprecated

Unsupported	Operating	Systems

OS/2	 and	 VMS	 are	 no	 longer	 supported	 due	 to	 the	 lack	 of	 a
maintainer.

Windows	 2000	 and	 Windows	 platforms	 which	 set	 COMSPEC	 to
command.com	are	no	longer	supported	due	to	maintenance	burden.

OSF	 support,	 which	 was	 deprecated	 in	 3.2,	 has	 been	 completely
removed.

Deprecated	Python	modules,	functions	and
methods

Passing	 a	 non-empty	 string	 to	 object.__format__()	 is
deprecated,	and	will	produce	a	TypeError	 in	Python	3.4	(issue
9856).
The	 unicode_internal	 codec	 has	 been	 deprecated	 because
of	 the	PEP	393,	 use	 UTF-8,	 UTF-16	 (utf-16-le	 or	 utf-16-
be),	or	UTF-32	(utf-32-le	or	utf-32-be)
ftplib.FTP.nlst()	 and	 ftplib.FTP.dir():	 use
ftplib.FTP.mlsd()

platform.popen():	 use	 the	 subprocess	 module.	 Check
especially	 the	 Replacing	 Older	 Functions	 with	 the	 subprocess
Module	section	(issue	11377).
issue	13374:	The	Windows	bytes	API	has	been	deprecated	in	the
os	module.	Use	Unicode	filenames,	instead	of	bytes	filenames,	to
not	depend	on	the	ANSI	code	page	anymore	and	to	support	any
filename.
issue	 13988:	 The	 xml.etree.cElementTree	 module	 is

http://bugs.python.org/issue9856
http://www.python.org/dev/peps/pep-0393
http://bugs.python.org/issue11377
http://bugs.python.org/issue13374
http://bugs.python.org/issue13988

deprecated.	 The	 accelerator	 is	 used	 automatically	 whenever
available.
The	behaviour	of	time.clock()	 depends	on	 the	platform:	use
the	 new	 time.perf_counter()	 or	 time.process_time()
function	instead,	depending	on	your	requirements,	to	have	a	well
defined	behaviour.
The	os.stat_float_times()	function	is	deprecated.
abc	module:

abc.abstractproperty	 has	 been	 deprecated,	 use
property	with	abc.abstractmethod()	instead.
abc.abstractclassmethod	 has	 been	 deprecated,	 use
classmethod	with	abc.abstractmethod()	instead.
abc.abstractstaticmethod	 has	 been	 deprecated,	 use
staticmethod	with	abc.abstractmethod()	instead.

importlib	package:
importlib.abc.SourceLoader.path_mtime()	 is	 now
deprecated	 in	 favour	 of
importlib.abc.SourceLoader.path_stats()	 as
bytecode	files	now	store	both	 the	modification	time	and	size
of	the	source	file	the	bytecode	file	was	compiled	from.

Deprecated	functions	and	types	of	the	C	API

The	 Py_UNICODE	 has	 been	 deprecated	 by	 PEP	 393	 and	 will	 be
removed	in	Python	4.	All	functions	using	this	type	are	deprecated:

Unicode	 functions	 and	 methods	 using	 Py_UNICODE	 and
Py_UNICODE*	types:

PyUnicode_FromUnicode:	 use
PyUnicode_FromWideChar()	 or
PyUnicode_FromKindAndData()

http://www.python.org/dev/peps/pep-0393

PyUnicode_AS_UNICODE,	 PyUnicode_AsUnicode(),
PyUnicode_AsUnicodeAndSize():	 use
PyUnicode_AsWideCharString()

PyUnicode_AS_DATA:	 use	 PyUnicode_DATA	 with
PyUnicode_READ	and	PyUnicode_WRITE
PyUnicode_GET_SIZE,	 PyUnicode_GetSize():	 use
PyUnicode_GET_LENGTH	or	PyUnicode_GetLength()
PyUnicode_GET_DATA_SIZE:	 use
PyUnicode_GET_LENGTH(str)	 *	 PyUnicode_KIND(str)

(only	work	on	ready	strings)
PyUnicode_AsUnicodeCopy():	 use
PyUnicode_AsUCS4Copy()	 or
PyUnicode_AsWideCharString()

PyUnicode_GetMax()

Functions	and	macros	manipulating	Py_UNICODE*	strings:

Py_UNICODE_strlen:	 use	 PyUnicode_GetLength()	 or
PyUnicode_GET_LENGTH

Py_UNICODE_strcat:	 use	 PyUnicode_CopyCharacters()
or	PyUnicode_FromFormat()
Py_UNICODE_strcpy,	 Py_UNICODE_strncpy,
Py_UNICODE_COPY:	 use	 PyUnicode_CopyCharacters()	 or
PyUnicode_Substring()

Py_UNICODE_strcmp:	use	PyUnicode_Compare()
Py_UNICODE_strncmp:	use	PyUnicode_Tailmatch()
Py_UNICODE_strchr,	 Py_UNICODE_strrchr:	 use
PyUnicode_FindChar()

Py_UNICODE_FILL:	use	PyUnicode_Fill()
Py_UNICODE_MATCH

Encoders:

PyUnicode_Encode():	 use
PyUnicode_AsEncodedObject()

PyUnicode_EncodeUTF7()

PyUnicode_EncodeUTF8():	 use	 PyUnicode_AsUTF8()	 or
PyUnicode_AsUTF8String()

PyUnicode_EncodeUTF32()

PyUnicode_EncodeUTF16()

PyUnicode_EncodeUnicodeEscape:()	 use
PyUnicode_AsUnicodeEscapeString()

PyUnicode_EncodeRawUnicodeEscape:()	 use
PyUnicode_AsRawUnicodeEscapeString()

PyUnicode_EncodeLatin1():	 use
PyUnicode_AsLatin1String()

PyUnicode_EncodeASCII():	 use
PyUnicode_AsASCIIString()

PyUnicode_EncodeCharmap()

PyUnicode_TranslateCharmap()

PyUnicode_EncodeMBCS():	 use
PyUnicode_AsMBCSString()	 or
PyUnicode_EncodeCodePage()	(with	CP_ACP	code_page)
PyUnicode_EncodeDecimal(),
PyUnicode_TransformDecimalToASCII()

Deprecated	features

The	array	module’s	'u'	format	code	is	now	deprecated	and	will	be
removed	in	Python	4	together	with	the	rest	of	the	(Py_UNICODE)	API.

Porting	to	Python	3.3

This	section	lists	previously	described	changes	and	other	bugfixes	that
may	require	changes	to	your	code.

Porting	Python	code

Hash	 randomization	 is	 enabled	 by	 default.	 Set	 the
PYTHONHASHSEED	 environment	 variable	 to	 0	 to	 disable	 hash
randomization.	See	also	the	object.__hash__()	method.
issue	 12326:	 On	 Linux,	 sys.platform	 doesn’t	 contain	 the	 major
version	 anymore.	 It	 is	 now	 always	 ‘linux’,	 instead	 of	 ‘linux2’	 or
‘linux3’	 depending	 on	 the	 Linux	 version	 used	 to	 build	 Python.
Replace	 sys.platform	 ==	 ‘linux2’	 with
sys.platform.startswith(‘linux’),	or	directly	sys.platform	==	 ‘linux’	 if
you	don’t	need	to	support	older	Python	versions.
issue	 13847,	 issue	 14180:	 time	 and	 datetime:
OverflowError	 is	 now	 raised	 instead	 of	 ValueError	 if	 a
timestamp	is	out	of	range.	OSError	 is	now	raised	 if	C	functions
gmtime()	or	localtime()	failed.
The	default	finders	used	by	import	now	utilize	a	cache	of	what	is
contained	within	a	specific	directory.	If	you	create	a	Python	source
file	 or	 sourceless	 bytecode	 file,	 make	 sure	 to	 call
importlib.invalidate_caches()	to	clear	out	the	cache	for
the	finders	to	notice	the	new	file.
ImportError	 now	 uses	 the	 full	 name	 of	 the	module	 that	 was
attemped	 to	 be	 imported.	 Doctests	 that	 check	 ImportErrors’
message	 will	 need	 to	 be	 updated	 to	 use	 the	 full	 name	 of	 the
module	instead	of	just	the	tail	of	the	name.
The	index	argument	to	__import__()	now	defaults	to	0	instead
of	 -1	and	no	 longer	support	negative	values.	 It	was	an	oversight
when	PEP	328	was	implemented	that	the	default	value	remained

http://bugs.python.org/issue12326
http://bugs.python.org/issue13847
http://bugs.python.org/issue14180
http://www.python.org/dev/peps/pep-0328

-1.	If	you	need	to	continue	to	perform	a	relative	import	followed	by
an	 absolute	 import,	 then	 perform	 the	 relative	 import	 using	 an
index	 of	 1,	 followed	by	 another	 import	 using	 an	 index	 of	 0.	 It	 is
preferred,	though,	that	you	use	importlib.import_module()
rather	than	call	__import__()	directly.
__import__()	no	longer	allows	one	to	use	an	index	value	other
than	 0	 for	 top-level	 modules.	 E.g.	 __import__('sys',

level=1)	is	now	an	error.
Because	 sys.meta_path	 and	 sys.path_hooks	 now	 have
finders	 on	 them	 by	 default,	 you	 will	 most	 likely	 want	 to	 use
list.insert()	 instead	 of	 list.append()	 to	 add	 to	 those
lists.
Because	 None	 is	 now	 inserted	 into
sys.path_importer_cache,	 if	 you	are	 clearing	out	 entries	 in
the	dictionary	of	paths	that	do	not	have	a	finder,	you	will	need	to
remove	 keys	 paired	 with	 values	 of	 None	 and
imp.NullImporter	 to	be	backwards-compatible.	This	will	 lead
to	extra	overhead	on	older	versions	of	Python	that	re-insert	None
into	sys.path_importer_cache	where	it	repesents	the	use	of
implicit	finders,	but	semantically	it	should	not	change	anything.
importlib.abc.Finder	 no	 longer	 specifies	 a	 find_module()
abstract	method	that	must	be	implemented.	If	you	were	relying	on
subclasses	to	implement	that	method,	make	sure	to	check	for	the
method’s	 existence	 first.	 You	 will	 probably	 want	 to	 check	 for
find_loader()	 first,	 though,	 in	 the	case	of	working	with	path	 entry
finders.
pkgutil	has	been	converted	to	use	importlib	internally.	This
eliminates	many	edge	cases	where	the	old	behaviour	of	the	PEP
302	 import	 emulation	 failed	 to	 match	 the	 behaviour	 of	 the	 real
import	 system.	 The	 import	 emulation	 itself	 is	 still	 present,	 but	 is
now	 deprecated.	 The	 pkgutil.iter_importers()	 and
pkgutil.walk_packages()	 functions	 special	 case	 the
standard	 import	 hooks	 so	 they	 are	 still	 supported	 even	 though

they	do	not	provide	the	non-standard	iter_modules()	method.
A	 longstanding	RFC-compliance	bug	 (issue	1079)	 in	 the	parsing
done	 by	 email.header.decode_header()	 has	 been	 fixed.
Code	 that	 uses	 the	 standard	 idiom	 to	 convert	 encoded	 headers
into	 unicode	 (str(make_header(decode_header(h)))	 will
see	 no	 change,	 but	 code	 that	 looks	 at	 the	 individual	 tuples
returned	 by	 decode_header	 will	 see	 that	 whitespace	 that
precedes	or	follows	ASCII	sections	is	now	included	in	the	ASCII
section.	 Code	 that	 builds	 headers	 using	 make_header	 should
also	 continue	 to	 work	 without	 change,	 since	 make_header
continues	 to	 add	 whitespace	 between	 ASCII	 and	 non-ASCII
sections	if	it	is	not	already	present	in	the	input	strings.
email.utils.formataddr()	 now	 does	 the	 correct	 content
transfer	 encoding	when	 passed	 non-ASCII	 display	 names.	Any
code	 that	 depended	 on	 the	 previous	 buggy	 behavior	 that
preserved	 the	non-ASCII	unicode	 in	 the	 formatted	output	string
will	need	to	be	changed	(issue	1690608).
poplib.POP3.quit()	 may	 now	 raise	 protocol	 errors	 like	 all
other	poplib	methods.	Code	that	assumes	quit	does	not	raise
poplib.error_proto	errors	may	need	to	be	changed	if	errors
on	 quit	 are	 encountered	 by	 a	 particular	 application	 (issue
11291).
The	strict	 argument	 to	 email.parser.Parser,	 deprecated
since	Python	2.4,	has	finally	been	removed.
The	 deprecated	 method
unittest.TestCase.assertSameElements	 has	 been
removed.
The	 deprecated	 variable	 time.accept2dyear	 has	 been
removed.
The	 deprecated	 Context._clamp	 attribute	 has	 been	 removed
from	 the	 decimal	 module.	 It	 was	 previously	 replaced	 by	 the
public	attribute	clamp.	(See	issue	8540.)
The	undocumented	internal	helper	class	SSLFakeFile	has	been

http://bugs.python.org/issue1079
http://bugs.python.org/issue1690608
http://bugs.python.org/issue11291
http://bugs.python.org/issue8540

removed	 from	 smtplib,	 since	 its	 functionality	 has	 long	 been
provided	directly	by	socket.socket.makefile().
Passing	 a	 negative	 value	 to	 time.sleep()	 on	 Windows	 now
raises	an	error	instead	of	sleeping	forever.	It	has	always	raised	an
error	on	posix.
The	ast.__version__	constant	has	been	removed.	If	you	need
to	 make	 decisions	 affected	 by	 the	 AST	 version,	 use
sys.version_info	to	make	the	decision.
Code	 that	 used	 to	 work	 around	 the	 fact	 that	 the	 threading
module	used	factory	functions	by	subclassing	the	private	classes
will	need	to	change	to	subclass	the	now-public	classes.
The	undocumented	debugging	machinery	in	the	threading	module
has	 been	 removed,	 simplifying	 the	 code.	 This	 should	 have	 no
effect	 on	 production	 code,	 but	 is	 mentioned	 here	 in	 case	 any
application	 debug	 frameworks	 were	 interacting	 with	 it	 (issue
13550).

Porting	C	code

In	 the	 course	 of	 changes	 to	 the	 buffer	 API	 the	 undocumented
smalltable	 member	 of	 the	 Py_buffer	 structure	 has	 been
removed	 and	 the	 layout	 of	 the	 PyMemoryViewObject	 has
changed.

All	extensions	relying	on	the	relevant	parts	 in	memoryobject.h
or	object.h	must	be	rebuilt.

Due	 to	PEP	393,	 the	 Py_UNICODE	 type	 and	 all	 functions	 using
this	 type	 are	 deprecated	 (but	 will	 stay	 available	 for	 at	 least	 five
years).	If	you	were	using	low-level	Unicode	APIs	to	construct	and
access	 unicode	 objects	 and	 you	want	 to	 benefit	 of	 the	memory
footprint	reduction	provided	by	PEP	393,	you	have	to	convert	your

http://bugs.python.org/issue13550

code	to	the	new	Unicode	API.

However,	if	you	only	have	been	using	high-level	functions	such	as
PyUnicode_Concat(),	 PyUnicode_Join()	 or
PyUnicode_FromFormat(),	 your	 code	 will	 automatically	 take
advantage	of	the	new	unicode	representations.

PyImport_GetMagicNumber()	now	returns	-1	upon	failure.

As	a	negative	value	for	the	 level	argument	 to	__import__()	 is
no	 longer	 valid,	 the	 same	 now	 holds	 for
PyImport_ImportModuleLevel().	 This	 also	 means	 that	 the
value	of	level	used	by	PyImport_ImportModuleEx()	is	now	0
instead	of	-1.

Building	C	extensions

The	 range	 of	 possible	 file	 names	 for	 C	 extensions	 has	 been
narrowed.	 Very	 rarely	 used	 spellings	 have	 been	 suppressed:
under	 POSIX,	 files	 named	 xxxmodule.so,
xxxmodule.abi3.so	and	xxxmodule.cpython-*.so	are	no
longer	 recognized	 as	 implementing	 the	 xxx	module.	 If	 you	 had
been	 generating	 such	 files,	 you	 have	 to	 switch	 to	 the	 other
spellings	(i.e.,	remove	the	module	string	from	the	file	names).

(implemented	in	issue	14040.)

Command	Line	Switch	Changes

The	 -Q	 command-line	 flag	 and	 related	 artifacts	 have	 been
removed.	 Code	 checking	 sys.flags.division_warning	 will	 need
updating.

http://bugs.python.org/issue14040

(issue	10998,	contributed	by	Éric	Araujo.)

When	python	is	started	with	-S,	import	site	will	no	longer	add
site-specific	 paths	 to	 the	 module	 search	 paths.	 In	 previous
versions,	it	did.

(issue	 11591,	 contributed	 by	 Carl	 Meyer	 with	 editions	 by	 Éric
Araujo.)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://bugs.python.org/issue10998
http://bugs.python.org/issue11591
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	In	Python	3.2
Author: Raymond	Hettinger

This	 article	 explains	 the	new	 features	 in	Python	3.2	 as	 compared	 to
3.1.	It	 focuses	on	a	few	highlights	and	gives	a	few	examples.	For	 full
details,	see	the	Misc/NEWS	file.

See	also: 	PEP	392	-	Python	3.2	Release	Schedule

http://hg.python.org/cpython/file/3.2/Misc/NEWS
http://www.python.org/dev/peps/pep-0392

PEP	384:	Defining	a	Stable	ABI

In	the	past,	extension	modules	built	for	one	Python	version	were	often
not	usable	with	other	Python	versions.	Particularly	on	Windows,	every
feature	 release	 of	 Python	 required	 rebuilding	 all	 extension	 modules
that	 one	wanted	 to	 use.	 This	 requirement	was	 the	 result	 of	 the	 free
access	 to	 Python	 interpreter	 internals	 that	 extension	 modules	 could
use.

With	 Python	 3.2,	 an	 alternative	 approach	 becomes	 available:
extension	 modules	 which	 restrict	 themselves	 to	 a	 limited	 API	 (by
defining	Py_LIMITED_API)	cannot	use	many	of	 the	 internals,	but	are
constrained	to	a	set	of	API	functions	that	are	promised	to	be	stable	for
several	releases.	As	a	consequence,	extension	modules	built	for	3.2	in
that	mode	will	also	work	with	3.3,	3.4,	and	so	on.	Extension	modules
that	make	use	of	details	of	memory	structures	can	still	be	built,	but	will
need	to	be	recompiled	for	every	feature	release.

See	also:

PEP	384	-	Defining	a	Stable	ABI
PEP	written	by	Martin	von	Löwis.

http://www.python.org/dev/peps/pep-0384

PEP	389:	Argparse	Command	Line
Parsing	Module

A	new	module	for	command	line	parsing,	argparse,	was	 introduced
to	 overcome	 the	 limitations	 of	 optparse	 which	 did	 not	 provide
support	 for	 positional	 arguments	 (not	 just	 options),	 subcommands,
required	 options	 and	 other	 common	 patterns	 of	 specifying	 and
validating	options.

This	module	has	already	had	widespread	success	in	the	community	as
a	 third-party	module.	Being	more	 fully	 featured	 than	 its	 predecessor,
the	argparse	module	is	now	the	preferred	module	for	command-line
processing.	The	older	module	 is	still	being	kept	available	because	of
the	substantial	amount	of	legacy	code	that	depends	on	it.

Here’s	 an	 annotated	 example	 parser	 showing	 features	 like	 limiting
results	 to	 a	 set	 of	 choices,	 specifying	 a	metavar	 in	 the	 help	 screen,
validating	 that	 one	 or	 more	 positional	 arguments	 is	 present,	 and
making	a	required	option:

import	argparse

parser	=	argparse.ArgumentParser(

												description	=	'Manage	servers',									

												epilog	=	'Tested	on	Solaris	and	Linux')	

parser.add_argument('action',																							

												choices	=	['deploy',	'start',	'stop'],		

												help	=	'action	on	each	target')									

parser.add_argument('targets',

												metavar	=	'HOSTNAME',																			

												nargs	=	'+',																												

												help	=	'url	for	target	machines')							

parser.add_argument('-u',	'--user',																	

												required	=	True,																								

												help	=	'login	as	user')

Example	of	calling	the	parser	on	a	command	string:

>>>	cmd		=	'deploy	sneezy.example.com	sleepy.example.com	-u	skycaptain'

>>>	result	=	parser.parse_args(cmd.split())

>>>	result.action

'deploy'

>>>	result.targets

['sneezy.example.com',	'sleepy.example.com']

>>>	result.user

'skycaptain'

Example	of	the	parser’s	automatically	generated	help:

>>>	parser.parse_args('-h'.split())

usage:	manage_cloud.py	[-h]	-u	USER

																							{deploy,start,stop}	HOSTNAME	[HOSTNAME	...]

Manage	servers

positional	arguments:

		{deploy,start,stop}			action	on	each	target

		HOSTNAME														url	for	target	machines

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-u	USER,	--user	USER		login	as	user

Tested	on	Solaris	and	Linux

An	 especially	 nice	 argparse	 feature	 is	 the	 ability	 to	 define
subparsers,	each	with	their	own	argument	patterns	and	help	displays:

import	argparse

parser	=	argparse.ArgumentParser(prog='HELM')

subparsers	=	parser.add_subparsers()

parser_l	=	subparsers.add_parser('launch',	help='Launch	Control')			#	first	subgroup

parser_l.add_argument('-m',	'--missiles',	action='store_true')

parser_l.add_argument('-t',	'--torpedos',	action='store_true')

parser_m	=	subparsers.add_parser('move',	help='Move	Vessel',								#	second	subgroup

																																	aliases=('steer',	'turn'))									#	equivalent	names

parser_m.add_argument('-c',	'--course',	type=int,	required=True)

parser_m.add_argument('-s',	'--speed',	type=int,	default=0)

$./helm.py	--help																									#	top	level	help	(launch	and	move)

$./helm.py	launch	--help																		#	help	for	launch	options

$./helm.py	launch	--missiles														#	set	missiles=True	and	torpedos=False

$./helm.py	steer	--course	180	--speed	5			#	set	movement	parameters

See	also:

PEP	389	-	New	Command	Line	Parsing	Module
PEP	written	by	Steven	Bethard.

Upgrading	 optparse	 code	 for	 details	 on	 the	 differences	 from
optparse.

http://www.python.org/dev/peps/pep-0389

PEP	391:	Dictionary	Based	Configuration
for	Logging

The	logging	module	provided	 two	 kinds	of	 configuration,	 one	 style
with	 function	 calls	 for	 each	 option	 or	 another	 style	 driven	 by	 an
external	file	saved	in	a	ConfigParser	format.	Those	options	did	not
provide	the	flexibility	to	create	configurations	from	JSON	or	YAML	files,
nor	 did	 they	 support	 incremental	 configuration,	 which	 is	 needed	 for
specifying	logger	options	from	a	command	line.

To	 support	 a	 more	 flexible	 style,	 the	 module	 now	 offers
logging.config.dictConfig()	 for	 specifying	 logging
configuration	with	plain	Python	dictionaries.	The	configuration	options
include	 formatters,	 handlers,	 filters,	 and	 loggers.	 Here’s	 a	 working
example	of	a	configuration	dictionary:

{"version":	1,

	"formatters":	{"brief":	{"format":	"%(levelname)-8s:	%(name)-15s:	%(message)s"

																"full":	{"format":	"%(asctime)s	%(name)-15s	%(levelname)-8s	%(message)s"

																},

	"handlers":	{"console":	{

																			"class":	"logging.StreamHandler",

																			"formatter":	"brief",

																			"level":	"INFO",

																			"stream":	"ext://sys.stdout"},

														"console_priority":	{

																			"class":	"logging.StreamHandler",

																			"formatter":	"full",

																			"level":	"ERROR",

																			"stream":	"ext://sys.stderr"}

														},

	"root":	{"level":	"DEBUG",	"handlers":	["console",	

If	that	dictionary	is	stored	in	a	file	called	conf.json,	it	can	be	loaded
and	called	with	code	like	this:

>>>	import	json,	logging.config

>>>	with	open('conf.json')	as	f:

								conf	=	json.load(f)

>>>	logging.config.dictConfig(conf)

>>>	logging.info("Transaction	completed	normally")

INFO				:	root											:	Transaction	completed	normally

>>>	logging.critical("Abnormal	termination")

2011-02-17	11:14:36,694	root												CRITICAL	Abnormal	termination

See	also:

PEP	391	-	Dictionary	Based	Configuration	for	Logging
PEP	written	by	Vinay	Sajip.

http://www.python.org/dev/peps/pep-0391

PEP	3148:	The	concurrent.futures
module

Code	 for	 creating	 and	managing	 concurrency	 is	 being	 collected	 in	 a
new	 top-level	 namespace,	 concurrent.	 Its	 first	 member	 is	 a	 futures
package	 which	 provides	 a	 uniform	 high-level	 interface	 for	managing
threads	and	processes.

The	 design	 for	 concurrent.futures	 was	 inspired	 by	 the
java.util.concurrent	package.	In	that	model,	a	running	call	and	its	result
are	represented	by	a	Future	object	 that	abstracts	 features	common
to	 threads,	 processes,	 and	 remote	 procedure	 calls.	 That	 object
supports	 status	 checks	 (running	 or	 done),	 timeouts,	 cancellations,
adding	callbacks,	and	access	to	results	or	exceptions.

The	primary	offering	of	 the	new	module	 is	a	pair	of	executor	classes
for	launching	and	managing	calls.	The	goal	of	the	executors	is	to	make
it	easier	 to	use	existing	 tools	 for	making	parallel	calls.	They	save	the
effort	needed	to	setup	a	pool	of	 resources,	 launch	the	calls,	create	a
results	 queue,	 add	 time-out	 handling,	 and	 limit	 the	 total	 number	 of
threads,	processes,	or	remote	procedure	calls.

Ideally,	 each	 application	 should	 share	 a	 single	 executor	 across
multiple	components	so	that	process	and	thread	limits	can	be	centrally
managed.	 This	 solves	 the	 design	 challenge	 that	 arises	 when	 each
component	has	its	own	competing	strategy	for	resource	management.

Both	 classes	 share	 a	 common	 interface	 with	 three	 methods:
submit()	 for	 scheduling	a	callable	and	 returning	a	 Future	 object;
map()	 for	 scheduling	 many	 asynchronous	 calls	 at	 a	 time,	 and
shutdown()	 for	 freeing	 resources.	 The	 class	 is	 a	context	manager

and	 can	 be	 used	 in	 a	 with	 statement	 to	 assure	 that	 resources	 are
automatically	 released	 when	 currently	 pending	 futures	 are	 done
executing.

A	 simple	 of	 example	 of	 ThreadPoolExecutor	 is	 a	 launch	 of	 four
parallel	threads	for	copying	files:

import	concurrent.futures,	shutil

with	concurrent.futures.ThreadPoolExecutor(max_workers

				e.submit(shutil.copy,	'src1.txt',	'dest1.txt')

				e.submit(shutil.copy,	'src2.txt',	'dest2.txt')

				e.submit(shutil.copy,	'src3.txt',	'dest3.txt')

				e.submit(shutil.copy,	'src3.txt',	'dest4.txt')

See	also:

PEP	3148	-	Futures	–	Execute	Computations	Asynchronously
PEP	written	by	Brian	Quinlan.

Code	for	Threaded	Parallel	URL	reads,	an	example	using	threads	to
fetch	multiple	web	pages	in	parallel.

Code	 for	 computing	 prime	 numbers	 in	 parallel,	 an	 example
demonstrating	ProcessPoolExecutor.

http://www.python.org/dev/peps/pep-3148

PEP	3147:	PYC	Repository	Directories

Python’s	scheme	for	caching	bytecode	in	.pyc	files	did	not	work	well	in
environments	 with	 multiple	 Python	 interpreters.	 If	 one	 interpreter
encountered	 a	 cached	 file	 created	 by	 another	 interpreter,	 it	 would
recompile	 the	 source	 and	 overwrite	 the	 cached	 file,	 thus	 losing	 the
benefits	of	caching.

The	 issue	 of	 “pyc	 fights”	 has	 become	 more	 pronounced	 as	 it	 has
become	 commonplace	 for	 Linux	 distributions	 to	 ship	 with	 multiple
versions	 of	 Python.	 These	 conflicts	 also	 arise	 with	 CPython
alternatives	such	as	Unladen	Swallow.

To	solve	this	problem,	Python’s	 import	machinery	has	been	extended
to	use	distinct	filenames	for	each	interpreter.	Instead	of	Python	3.2	and
Python	 3.3	 and	 Unladen	 Swallow	 each	 competing	 for	 a	 file	 called
“mymodule.pyc”,	 they	 will	 now	 look	 for	 “mymodule.cpython-32.pyc”,
“mymodule.cpython-33.pyc”,	 and	 “mymodule.unladen10.pyc”.	 And	 to
prevent	all	of	these	new	files	from	cluttering	source	directories,	the	pyc
files	are	now	collected	 in	a	“__pycache__”	directory	stored	under	 the
package	directory.

Aside	from	the	filenames	and	target	directories,	the	new	scheme	has	a
few	aspects	that	are	visible	to	the	programmer:

Imported	 modules	 now	 have	 a	 __cached__	 attribute	 which
stores	the	name	of	the	actual	file	that	was	imported:

>>>	import	collections

>>>	collections.__cached__

'c:/py32/lib/__pycache__/collections.cpython-32.pyc'

The	 tag	 that	 is	unique	 to	each	 interpreter	 is	accessible	 from	 the
imp	module:

>>>	import	imp

>>>	imp.get_tag()

'cpython-32'

Scripts	 that	 try	 to	deduce	source	 filename	 from	 the	 imported	 file
now	need	to	be	smarter.	It	is	no	longer	sufficient	to	simply	strip	the
“c”	 from	a	 ”.pyc”	 filename.	 Instead,	use	 the	new	 functions	 in	 the
imp	module:

>>>	imp.source_from_cache('c:/py32/lib/__pycache__/collections.cpython-32.pyc'

'c:/py32/lib/collections.py'

>>>	imp.cache_from_source('c:/py32/lib/collections.py'

'c:/py32/lib/__pycache__/collections.cpython-32.pyc'

The	 py_compile	 and	 compileall	 modules	 have	 been
updated	to	reflect	the	new	naming	convention	and	target	directory.
The	command-line	 invocation	of	compileall	 has	new	options:	 -i
for	 specifying	 a	 list	 of	 files	 and	 directories	 to	 compile	 and	 -b
which	causes	bytecode	files	to	be	written	to	their	 legacy	 location
rather	than	__pycache__.

The	 importlib.abc	 module	 has	 been	 updated	 with	 new
abstract	 base	 classes	 for	 loading	 bytecode	 files.	 The	 obsolete
ABCs,	 PyLoader	 and	 PyPycLoader,	 have	 been	 deprecated
(instructions	 on	 how	 to	 stay	Python	3.1	 compatible	 are	 included
with	the	documentation).

See	also:

PEP	3147	-	PYC	Repository	Directories

http://www.python.org/dev/peps/pep-3147

PEP	written	by	Barry	Warsaw.

PEP	3149:	ABI	Version	Tagged	.so	Files

The	PYC	 repository	 directory	 allows	multiple	 bytecode	 cache	 files	 to
be	co-located.	This	PEP	 implements	a	similar	mechanism	 for	shared
object	files	by	giving	them	a	common	directory	and	distinct	names	for
each	version.

The	 common	 directory	 is	 “pyshared”	 and	 the	 file	 names	 are	 made
distinct	 by	 identifying	 the	 Python	 implementation	 (such	 as	 CPython,
PyPy,	 Jython,	 etc.),	 the	 major	 and	 minor	 version	 numbers,	 and
optional	 build	 flags	 (such	 as	 “d”	 for	 debug,	 “m”	 for	 pymalloc,	 “u”	 for
wide-unicode).	For	an	arbitrary	package	“foo”,	you	may	see	these	files
when	the	distribution	package	is	installed:

/usr/share/pyshared/foo.cpython-32m.so

/usr/share/pyshared/foo.cpython-33md.so

In	 Python	 itself,	 the	 tags	 are	 accessible	 from	 functions	 in	 the
sysconfig	module:

>>>	import	sysconfig

>>>	sysconfig.get_config_var('SOABI')							#	find	the	version	tag

'cpython-32mu'

>>>	sysconfig.get_config_var('EXT_SUFFIX')		#	find	the	full	filename	extension

'.cpython-32mu.so'

See	also:

PEP	3149	-	ABI	Version	Tagged	.so	Files
PEP	written	by	Barry	Warsaw.

http://www.python.org/dev/peps/pep-3149

PEP	3333:	Python	Web	Server	Gateway
Interface	v1.0.1

This	 informational	 PEP	 clarifies	 how	 bytes/text	 issues	 are	 to	 be
handled	by	the	WSGI	protocol.	The	challenge	is	that	string	handling	in
Python	3	is	most	conveniently	handled	with	the	str	type	even	though
the	HTTP	protocol	is	itself	bytes	oriented.

The	 PEP	 differentiates	 so-called	 native	 strings	 that	 are	 used	 for
request/response	headers	and	metadata	versus	byte	strings	which	are
used	for	the	bodies	of	requests	and	responses.

The	native	strings	 are	always	of	 type	str	 but	 are	 restricted	 to	 code
points	 between	 U+0000	 through	 U+00FF	 which	 are	 translatable	 to
bytes	using	Latin-1	encoding.	These	strings	are	used	for	the	keys	and
values	 in	 the	 environment	 dictionary	 and	 for	 response	 headers	 and
statuses	in	the	start_response()	function.	They	must	 follow	RFC
2616	with	respect	to	encoding.	That	is,	they	must	either	be	ISO-8859-
1	characters	or	use	RFC	2047	MIME	encoding.

For	developers	porting	WSGI	applications	from	Python	2,	here	are	the
salient	points:

If	the	app	already	used	strings	for	headers	in	Python	2,	no	change
is	needed.
If	 instead,	 the	 app	 encoded	 output	 headers	 or	 decoded	 input
headers,	then	the	headers	will	need	to	be	re-encoded	to	Latin-1.
For	 example,	 an	 output	 header	 encoded	 in	 utf-8	 was	 using
h.encode('utf-8')	now	needs	to	convert	from	bytes	to	native
strings	using	h.encode('utf-8').decode('latin-1').
Values	 yielded	 by	 an	 application	 or	 sent	 using	 the	 write()
method	must	be	byte	strings.	The	start_response()	 function

http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2047.html

and	environ	must	use	native	strings.	The	two	cannot	be	mixed.

For	server	implementers	writing	CGI-to-WSGI	pathways	or	other	CGI-
style	 protocols,	 the	 users	 must	 to	 be	 able	 access	 the	 environment
using	native	strings	even	 though	 the	underlying	platform	may	have	a
different	convention.	To	bridge	 this	gap,	 the	wsgiref	module	 has	 a
new	 function,	 wsgiref.handlers.read_environ()	 for
transcoding	CGI	 variables	 from	 os.environ	 into	 native	 strings	 and
returning	a	new	dictionary.

See	also:

PEP	3333	-	Python	Web	Server	Gateway	Interface	v1.0.1
PEP	written	by	Phillip	Eby.

http://www.python.org/dev/peps/pep-3333

Other	Language	Changes

Some	smaller	changes	made	to	the	core	Python	language	are:

String	formatting	for	format()	and	str.format()	gained	new
capabilities	 for	 the	 format	character	#.	Previously,	 for	 integers	 in
binary,	octal,	or	hexadecimal,	 it	caused	 the	output	 to	be	prefixed
with	 ‘0b’,	 ‘0o’,	or	 ‘0x’	 respectively.	Now	 it	 can	also	handle	 floats,
complex,	 and	 Decimal,	 causing	 the	 output	 to	 always	 have	 a
decimal	point	even	when	no	digits	follow	it.

>>>	format(20,	'#o')

'0o24'

>>>	format(12.34,	'#5.0f')

'		12.'

(Suggested	by	Mark	Dickinson	and	implemented	by	Eric	Smith	in
issue	7094.)

There	 is	 also	 a	 new	 str.format_map()	method	 that	 extends
the	 capabilities	 of	 the	 existing	 str.format()	 method	 by
accepting	 arbitrary	mapping	 objects.	 This	 new	method	makes	 it
possible	 to	 use	 string	 formatting	 with	 any	 of	 Python’s	 many
dictionary-like	 objects	 such	 as	 defaultdict,	 Shelf,
ConfigParser,	 or	 dbm.	 It	 is	 also	 useful	 with	 custom	 dict
subclasses	 that	 normalize	 keys	 before	 look-up	 or	 that	 supply	 a
__missing__()	method	for	unknown	keys:

>>>	import	shelve

>>>	d	=	shelve.open('tmp.shl')

>>>	'The	{project_name}	status	is	{status}	as	of	{date}'

'The	testing	project	status	is	green	as	of	February	15,	2011'

http://bugs.python.org/issue7094

>>>	class	LowerCasedDict(dict):

								def	__getitem__(self,	key):

												return	dict.__getitem__(self,	key.lower())

>>>	lcd	=	LowerCasedDict(part='widgets',	quantity

>>>	'There	are	{QUANTITY}	{Part}	in	stock'.format_map

'There	are	10	widgets	in	stock'

>>>	class	PlaceholderDict(dict):

								def	__missing__(self,	key):

												return	'<{}>'.format(key)

>>>	'Hello	{name},	welcome	to	{location}'.format_map

'Hello	<name>,	welcome	to	<location>'

(Suggested	by	Raymond	Hettinger	and	implemented	by	Eric
Smith	in	issue	6081.)

The	 interpreter	 can	 now	 be	 started	 with	 a	 quiet	 option,	 -q,	 to
prevent	 the	 copyright	 and	 version	 information	 from	 being
displayed	in	the	interactive	mode.	The	option	can	be	introspected
using	the	sys.flags	attribute:

$	python	-q

>>>	sys.flags

sys.flags(debug=0,	division_warning=0,	inspect=0,	interactive=0,

optimize=0,	dont_write_bytecode=0,	no_user_site=0,	no_site=0,

ignore_environment=0,	verbose=0,	bytes_warning=0,	quiet=1)

(Contributed	by	Marcin	Wojdyr	in	issue	1772833).

The	 hasattr()	 function	 works	 by	 calling	 getattr()	 and
detecting	whether	an	exception	is	raised.	This	technique	allows	it
to	 detect	 methods	 created	 dynamically	 by	 __getattr__()	 or
__getattribute__()	 which	 would	 otherwise	 be	 absent	 from

http://bugs.python.org/issue6081
http://bugs.python.org/issue1772833

the	class	dictionary.	Formerly,	hasattr	would	catch	any	exception,
possibly	masking	genuine	errors.	Now,	hasattr	has	been	tightened
to	 only	 catch	 AttributeError	 and	 let	 other	 exceptions	 pass
through:

>>>	class	A:

								@property

								def	f(self):

												return	1	//	0

>>>	a	=	A()

>>>	hasattr(a,	'f')

Traceback	(most	recent	call	last):

		...

ZeroDivisionError:	integer	division	or	modulo	by	zero

(Discovered	by	Yury	Selivanov	and	 fixed	by	Benjamin	Peterson;
issue	9666.)

The	str()	of	a	float	or	complex	number	 is	now	the	same	as	its
repr().	 Previously,	 the	 str()	 form	 was	 shorter	 but	 that	 just
caused	confusion	and	is	no	 longer	needed	now	that	 the	shortest
possible	repr()	is	displayed	by	default:

>>>	import	math

>>>	repr(math.pi)

'3.141592653589793'

>>>	str(math.pi)

'3.141592653589793'

(Proposed	and	implemented	by	Mark	Dickinson;	issue	9337.)

memoryview	objects	now	have	a	release()	method	and	 they
also	now	support	the	context	manager	protocol.	This	allows	timely

http://bugs.python.org/issue9666
http://bugs.python.org/issue9337

release	 of	 any	 resources	 that	were	 acquired	when	 requesting	 a
buffer	from	the	original	object.

>>>	with	memoryview(b'abcdefgh')	as	v:

								print(v.tolist())

[97,	98,	99,	100,	101,	102,	103,	104]

(Added	by	Antoine	Pitrou;	issue	9757.)

Previously	 it	 was	 illegal	 to	 delete	 a	 name	 from	 the	 local
namespace	if	it	occurs	as	a	free	variable	in	a	nested	block:

def	outer(x):

				def	inner():

							return	x

				inner()

				del	x

This	 is	 now	 allowed.	 Remember	 that	 the	 target	 of	 an	 except
clause	 is	 cleared,	 so	 this	 code	which	 used	 to	work	with	 Python
2.6,	 raised	 a	 SyntaxError	 with	 Python	 3.1	 and	 now	 works
again:

def	f():

				def	print_error():

							print(e)

				try:

							something

				except	Exception	as	e:

							print_error()

							#	implicit	"del	e"	here

(See	issue	4617.)

The	 internal	 structsequence	 tool	 now	 creates	 subclasses	 of

http://bugs.python.org/issue9757
http://bugs.python.org/issue4617

tuple.	 This	 means	 that	 C	 structures	 like	 those	 returned	 by
os.stat(),	 time.gmtime(),	 and	 sys.version_info	 now
work	 like	 a	 named	 tuple	 and	 now	 work	 with	 functions	 and
methods	 that	 expect	 a	 tuple	 as	 an	 argument.	 This	 is	 a	 big	 step
forward	in	making	the	C	structures	as	flexible	as	their	pure	Python
counterparts:

>>>	isinstance(sys.version_info,	tuple)

True

>>>	'Version	%d.%d.%d	%s(%d)'	%	sys.version_info

'Version	3.2.0	final(0)'

(Suggested	 by	 Arfrever	 Frehtes	 Taifersar	 Arahesis	 and
implemented	by	Benjamin	Peterson	in	issue	8413.)

Warnings	are	now	easier	 to	control	using	the	PYTHONWARNINGS
environment	 variable	 as	 an	 alternative	 to	 using	 -W	 at	 the
command	line:

$	export	PYTHONWARNINGS='ignore::RuntimeWarning::,once::UnicodeWarning::'

(Suggested	by	Barry	Warsaw	and	 implemented	by	Philip	Jenvey
in	issue	7301.)

A	new	warning	category,	ResourceWarning,	has	been	added.	It
is	 emitted	 when	 potential	 issues	 with	 resource	 consumption	 or
cleanup	are	detected.	 It	 is	 silenced	by	default	 in	 normal	 release
builds	 but	 can	 be	 enabled	 through	 the	 means	 provided	 by	 the
warnings	module,	or	on	the	command	line.

A	 ResourceWarning	 is	 issued	 at	 interpreter	 shutdown	 if	 the
gc.garbage	list	isn’t	empty,	and	if	gc.DEBUG_UNCOLLECTABLE

http://bugs.python.org/issue8413
http://bugs.python.org/issue7301

is	set,	all	uncollectable	objects	are	printed.	This	is	meant	to	make
the	programmer	aware	that	their	code	contains	object	finalization
issues.

A	 ResourceWarning	 is	 also	 issued	 when	 a	 file	 object	 is
destroyed	 without	 having	 been	 explicitly	 closed.	 While	 the
deallocator	 for	 such	 object	 ensures	 it	 closes	 the	 underlying
operating	system	resource	(usually,	a	file	descriptor),	the	delay	in
deallocating	 the	 object	 could	 produce	 various	 issues,	 especially
under	Windows.	Here	is	an	example	of	enabling	the	warning	from
the	command	line:

$	python	-q	-Wdefault

>>>	f	=	open("foo",	"wb")

>>>	del	f

__main__:1:	ResourceWarning:	unclosed	file	<_io.BufferedWriter	name='foo'>

(Added	by	Antoine	Pitrou	and	Georg	Brandl	 in	 issue	 10093	 and
issue	477863.)

range	objects	now	support	index	and	count	methods.	This	is	part
of	 an	 effort	 to	 make	 more	 objects	 fully	 implement	 the
collections.Sequence	abstract	 base	 class.	 As	 a	 result,	 the
language	 will	 have	 a	 more	 uniform	 API.	 In	 addition,	 range
objects	now	support	slicing	and	negative	indices,	even	with	values
larger	than	sys.maxsize.	This	makes	range	more	interoperable
with	lists:

>>>	range(0,	100,	2).count(10)

1

>>>	range(0,	100,	2).index(10)

5

>>>	range(0,	100,	2)[5]

http://bugs.python.org/issue10093
http://bugs.python.org/issue477863

10

>>>	range(0,	100,	2)[0:5]

range(0,	10,	2)

(Contributed	 by	 Daniel	 Stutzbach	 in	 issue	 9213,	 by	 Alexander
Belopolsky	in	issue	2690,	and	by	Nick	Coghlan	in	issue	10889.)

The	callable()	builtin	 function	 from	Py2.x	was	 resurrected.	 It
provides	a	concise,	readable	alternative	to	using	an	abstract	base
class	 in	 an	 expression	 like	 isinstance(x,

collections.Callable):

>>>	callable(max)

True

>>>	callable(20)

False

(See	issue	10518.)

Python’s	 import	 mechanism	 can	 now	 load	 modules	 installed	 in
directories	 with	 non-ASCII	 characters	 in	 the	 path	 name.	 This
solved	 an	 aggravating	 problem	 with	 home	 directories	 for	 users
with	non-ASCII	characters	in	their	usernames.

(Required	extensive	work	by	Victor	Stinner	in	issue	9425.)

http://bugs.python.org/issue9213
http://bugs.python.org/issue2690
http://bugs.python.org/issue10889
http://bugs.python.org/issue10518
http://bugs.python.org/issue9425

New,	Improved,	and	Deprecated	Modules

Python’s	 standard	 library	 has	 undergone	 significant	 maintenance
efforts	and	quality	improvements.

The	biggest	news	for	Python	3.2	is	that	the	email	package,	mailbox
module,	and	nntplib	modules	now	work	correctly	with	the	bytes/text
model	 in	 Python	 3.	 For	 the	 first	 time,	 there	 is	 correct	 handling	 of
messages	with	mixed	encodings.

Throughout	the	standard	library,	there	has	been	more	careful	attention
to	 encodings	 and	 text	 versus	 bytes	 issues.	 In	 particular,	 interactions
with	the	operating	system	are	now	better	able	to	exchange	non-ASCII
data	using	the	Windows	MBCS	encoding,	 locale-aware	encodings,	or
UTF-8.

Another	significant	win	is	the	addition	of	substantially	better	support	for
SSL	connections	and	security	certificates.

In	 addition,	 more	 classes	 now	 implement	 a	 context	 manager	 to
support	 convenient	 and	 reliable	 resource	 clean-up	 using	 a	 with
statement.

email

The	usability	of	the	email	package	in	Python	3	has	been	mostly	fixed
by	 the	 extensive	 efforts	 of	 R.	 David	 Murray.	 The	 problem	 was	 that
emails	are	typically	read	and	stored	in	the	form	of	bytes	rather	than
str	 text,	 and	 they	 may	 contain	 multiple	 encodings	 within	 a	 single
email.	 So,	 the	 email	 package	 had	 to	 be	 extended	 to	 parse	 and
generate	email	messages	in	bytes	format.

New	 functions	 message_from_bytes()	 and
message_from_binary_file(),	 and	 new	 classes
BytesFeedParser	 and	 BytesParser	 allow	 binary	 message
data	to	be	parsed	into	model	objects.

Given	bytes	 input	 to	 the	model,	get_payload()	will	by	default
decode	a	message	body	that	has	a	Content-Transfer-Encoding	of
8bit	using	 the	charset	specified	 in	 the	MIME	headers	and	 return
the	resulting	string.

Given	bytes	input	to	the	model,	Generator	will	convert	message
bodies	 that	 have	 a	Content-Transfer-Encoding	 of	8bit	 to	 instead
have	a	7bit	Content-Transfer-Encoding.

Headers	with	unencoded	non-ASCII	bytes	are	deemed	to	be	RFC
2047-encoded	using	the	unknown-8bit	character	set.

A	 new	 class	 BytesGenerator	 produces	 bytes	 as	 output,
preserving	any	unchanged	non-ASCII	data	that	was	present	in	the
input	 used	 to	 build	 the	model,	 including	message	 bodies	with	 a
Content-Transfer-Encoding	of	8bit.

The	smtplib	SMTP	class	now	accepts	a	byte	string	for	the	msg
argument	 to	 the	 sendmail()	 method,	 and	 a	 new	 method,
send_message()	accepts	a	Message	object	and	can	optionally
obtain	 the	 from_addr	 and	 to_addrs	 addresses	 directly	 from	 the
object.

(Proposed	and	implemented	by	R.	David	Murray,	issue	4661	and	issue
10321.)

elementtree

http://tools.ietf.org/html/rfc2047.html
http://bugs.python.org/issue4661
http://bugs.python.org/issue10321

The	 xml.etree.ElementTree	 package	 and	 its
xml.etree.cElementTree	 counterpart	 have	 been	 updated	 to
version	1.3.

Several	new	and	useful	functions	and	methods	have	been	added:

xml.etree.ElementTree.fromstringlist()	 which	 builds
an	XML	document	from	a	sequence	of	fragments
xml.etree.ElementTree.register_namespace()	 for
registering	a	global	namespace	prefix
xml.etree.ElementTree.tostringlist()	 for	 string
representation	including	all	sublists
xml.etree.ElementTree.Element.extend()	for	appending
a	sequence	of	zero	or	more	elements
xml.etree.ElementTree.Element.iterfind()	 searches
an	element	and	subelements
xml.etree.ElementTree.Element.itertext()	 creates	 a
text	iterator	over	an	element	and	its	subelements
xml.etree.ElementTree.TreeBuilder.end()	 closes	 the
current	element
xml.etree.ElementTree.TreeBuilder.doctype()

handles	a	doctype	declaration

Two	methods	have	been	deprecated:

xml.etree.ElementTree.getchildren()	 use
list(elem)	instead.
xml.etree.ElementTree.getiterator()	 use
Element.iter	instead.

For	 details	 of	 the	 update,	 see	 Introducing	 ElementTree	 on	 Fredrik
Lundh’s	website.

(Contributed	by	Florent	Xicluna	and	Fredrik	Lundh,	issue	6472.)

http://effbot.org/zone/elementtree-13-intro.htm
http://bugs.python.org/issue6472

functools

The	 functools	 module	 includes	 a	 new	 decorator	 for	 caching
function	 calls.	 functools.lru_cache()	 can	 save	 repeated
queries	 to	 an	 external	 resource	 whenever	 the	 results	 are
expected	to	be	the	same.

For	 example,	 adding	 a	 caching	 decorator	 to	 a	 database	 query
function	can	save	database	accesses	for	popular	searches:

>>>	import	functools

>>>	@functools.lru_cache(maxsize=300)

>>>	def	get_phone_number(name):

								c	=	conn.cursor()

								c.execute('SELECT	phonenumber	FROM	phonelist	WHERE	name=?',	(name,))

								return	c.fetchone()[0]

>>>	for	name	in	user_requests:

								get_phone_number(name)								#	cached	lookup

To	 help	 with	 choosing	 an	 effective	 cache	 size,	 the	 wrapped
function	is	instrumented	for	tracking	cache	statistics:

>>>	get_phone_number.cache_info()

CacheInfo(hits=4805,	misses=980,	maxsize=300,	currsize=300)

If	 the	phonelist	 table	gets	updated,	 the	outdated	contents	of	 the
cache	can	be	cleared	with:

>>>	get_phone_number.cache_clear()

(Contributed	 by	 Raymond	 Hettinger	 and	 incorporating	 design
ideas	from	Jim	Baker,	Miki	Tebeka,	and	Nick	Coghlan;	see	recipe
498245,	recipe	577479,	issue	10586,	and	issue	10593.)

The	functools.wraps()	decorator	now	adds	a	__wrapped__
attribute	 pointing	 to	 the	 original	 callable	 function.	 This	 allows
wrapped	 functions	 to	 be	 introspected.	 It	 also	 copies
__annotations__	 if	 defined.	 And	 now	 it	 also	 gracefully	 skips
over	 missing	 attributes	 such	 as	 __doc__	 which	 might	 not	 be
defined	for	the	wrapped	callable.

In	 the	above	example,	 the	cache	can	be	removed	by	 recovering
the	original	function:

>>>	get_phone_number	=	get_phone_number.__wrapped__

(By	Nick	Coghlan	and	Terrence	Cole;	issue	9567,	issue	3445,	and
issue	8814.)

To	 help	 write	 classes	 with	 rich	 comparison	 methods,	 a	 new
decorator	 functools.total_ordering()	 will	 use	 a	 existing
equality	and	inequality	methods	to	fill	in	the	remaining	methods.

For	 example,	 supplying	 __eq__	 and	 __lt__	 will	 enable
total_ordering()	to	fill-in	__le__,	__gt__	and	__ge__:

@total_ordering

class	Student:

				def	__eq__(self,	other):

								return	((self.lastname.lower(),	self.firstname

																(other.lastname.lower(),	other.firstname

				def	__lt__(self,	other):

								return	((self.lastname.lower(),	self.firstname

http://code.activestate.com/recipes/498245
http://code.activestate.com/recipes/577479
http://bugs.python.org/issue10586
http://bugs.python.org/issue10593
http://bugs.python.org/issue9567
http://bugs.python.org/issue3445
http://bugs.python.org/issue8814

																(other.lastname.lower(),	other.firstname

With	 the	 total_ordering	 decorator,	 the	 remaining	 comparison
methods	are	filled	in	automatically.

(Contributed	by	Raymond	Hettinger.)

To	 aid	 in	 porting	 programs	 from	 Python	 2,	 the
functools.cmp_to_key()	 function	 converts	 an	 old-style
comparison	function	to	modern	key	function:

>>>	#	locale-aware	sort	order

>>>	sorted(iterable,	key=cmp_to_key(locale.strcoll

For	sorting	examples	and	a	brief	sorting	 tutorial,	see	 the	Sorting
HowTo	tutorial.

(Contributed	by	Raymond	Hettinger.)

itertools

The	 itertools	 module	 has	 a	 new	 accumulate()	 function
modeled	 on	 APL’s	 scan	 operator	 and	 Numpy’s	 accumulate
function:

>>>	from	itertools	import	accumulate

>>>	list(accumulate([8,	2,	50]))

[8,	10,	60]

>>>	prob_dist	=	[0.1,	0.4,	0.2,	0.3]

>>>	list(accumulate(prob_dist))						#	cumulative	probability	distribution

[0.1,	0.5,	0.7,	1.0]

http://wiki.python.org/moin/HowTo/Sorting/

For	an	example	using	accumulate(),	see	the	examples	for	the
random	module.

(Contributed	 by	 Raymond	 Hettinger	 and	 incorporating	 design
suggestions	from	Mark	Dickinson.)

collections

The	 collections.Counter	 class	 now	 has	 two	 forms	 of	 in-
place	 subtraction,	 the	 existing	 -=	 operator	 for	 saturating
subtraction	 and	 the	 new	 subtract()	 method	 for	 regular
subtraction.	The	 former	 is	 suitable	 for	multisets	which	 only	 have
positive	counts,	and	the	latter	is	more	suitable	for	use	cases	that
allow	negative	counts:

>>>	tally	=	Counter(dogs=5,	cat=3)

>>>	tally	-=	Counter(dogs=2,	cats=8)				#	saturating	subtraction

>>>	tally

Counter({'dogs':	3})

>>>	tally	=	Counter(dogs=5,	cats=3)

>>>	tally.subtract(dogs=2,	cats=8)						#	regular	subtraction

>>>	tally

Counter({'dogs':	3,	'cats':	-5})

(Contributed	by	Raymond	Hettinger.)

The	 collections.OrderedDict	 class	 has	 a	 new	 method
move_to_end()	 which	 takes	 an	 existing	 key	 and	 moves	 it	 to
either	the	first	or	last	position	in	the	ordered	sequence.

The	 default	 is	 to	 move	 an	 item	 to	 the	 last	 position.	 This	 is

http://en.wikipedia.org/wiki/Saturation_arithmetic
http://en.wikipedia.org/wiki/Multiset

equivalent	of	renewing	an	entry	with	od[k]	=	od.pop(k).

A	 fast	move-to-end	 operation	 is	 useful	 for	 resequencing	 entries.
For	example,	an	ordered	dictionary	can	be	used	to	track	order	of
access	 by	 aging	 entries	 from	 the	 oldest	 to	 the	 most	 recently
accessed.

>>>	d	=	OrderedDict.fromkeys(['a',	'b',	'X',	'd',

>>>	list(d)

['a',	'b',	'X',	'd',	'e']

>>>	d.move_to_end('X')

>>>	list(d)

['a',	'b',	'd',	'e',	'X']

(Contributed	by	Raymond	Hettinger.)

The	 collections.deque	 class	 grew	 two	 new	 methods
count()	and	reverse()	that	make	them	more	substitutable	for
list	objects:

>>>	d	=	deque('simsalabim')

>>>	d.count('s')

2

>>>	d.reverse()

>>>	d

deque(['m',	'i',	'b',	'a',	'l',	'a',	's',	'm',	'i',	's'])

(Contributed	by	Raymond	Hettinger.)

threading

The	threading	module	has	a	new	Barrier	 synchronization	 class
for	 making	 multiple	 threads	 wait	 until	 all	 of	 them	 have	 reached	 a

common	barrier	point.	Barriers	are	useful	 for	making	sure	 that	a	 task
with	multiple	 preconditions	 does	 not	 run	 until	 all	 of	 the	 predecessor
tasks	are	complete.

Barriers	 can	 work	 with	 an	 arbitrary	 number	 of	 threads.	 This	 is	 a
generalization	of	a	Rendezvous	which	is	defined	for	only	two	threads.

Implemented	 as	 a	 two-phase	 cyclic	 barrier,	 Barrier	 objects	 are
suitable	 for	 use	 in	 loops.	 The	 separate	 filling	 and	 draining	 phases
assure	that	all	threads	get	released	(drained)	before	any	one	of	them
can	 loop	 back	 and	 re-enter	 the	 barrier.	 The	 barrier	 fully	 resets	 after
each	cycle.

Example	of	using	barriers:

from	threading	import	Barrier,	Thread

def	get_votes(site):

				ballots	=	conduct_election(site)

				all_polls_closed.wait()								#	do	not	count	until	all	polls	are	closed

				totals	=	summarize(ballots)

				publish(site,	totals)

all_polls_closed	=	Barrier(len(sites))

for	site	in	sites:

				Thread(target=get_votes,	args=(site,)).start()

In	 this	 example,	 the	 barrier	 enforces	 a	 rule	 that	 votes	 cannot	 be
counted	 at	 any	 polling	 site	 until	 all	 polls	 are	 closed.	 Notice	 how	 a
solution	 with	 a	 barrier	 is	 similar	 to	 one	 with
threading.Thread.join(),	 but	 the	 threads	 stay	 alive	 and
continue	 to	 do	 work	 (summarizing	 ballots)	 after	 the	 barrier	 point	 is
crossed.

http://en.wikipedia.org/wiki/Synchronous_rendezvous

If	any	of	the	predecessor	tasks	can	hang	or	be	delayed,	a	barrier	can
be	 created	 with	 an	 optional	 timeout	 parameter.	 Then	 if	 the	 timeout
period	elapses	before	all	the	predecessor	tasks	reach	the	barrier	point,
all	 waiting	 threads	 are	 released	 and	 a	 BrokenBarrierError
exception	is	raised:

def	get_votes(site):

				ballots	=	conduct_election(site)

				try:

								all_polls_closed.wait(timeout	=	midnight	-	time

				except	BrokenBarrierError:

								lockbox	=	seal_ballots(ballots)

								queue.put(lockbox)

				else:

								totals	=	summarize(ballots)

								publish(site,	totals)

In	 this	 example,	 the	 barrier	 enforces	 a	 more	 robust	 rule.	 If	 some
election	sites	do	not	 finish	before	midnight,	 the	barrier	 times-out	and
the	ballots	are	sealed	and	deposited	in	a	queue	for	later	handling.

See	 Barrier	 Synchronization	 Patterns	 for	 more	 examples	 of	 how
barriers	can	be	used	in	parallel	computing.	Also,	there	is	a	simple	but
thorough	 explanation	 of	 barriers	 in	 The	 Little	 Book	 of	 Semaphores,
section	3.6.

(Contributed	by	Kristján	Valur	Jónsson	with	an	API	 review	by	Jeffrey
Yasskin	in	issue	8777.)

datetime	and	time

The	 datetime	 module	 has	 a	 new	 type	 timezone	 that
implements	the	tzinfo	interface	by	returning	a	fixed	UTC	offset

http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_3.pdf
http://greenteapress.com/semaphores/downey08semaphores.pdf
http://bugs.python.org/issue8777

and	 timezone	 name.	 This	 makes	 it	 easier	 to	 create	 timezone-
aware	datetime	objects:

>>>	from	datetime	import	datetime,	timezone

>>>	datetime.now(timezone.utc)

datetime.datetime(2010,	12,	8,	21,	4,	2,	923754,	tzinfo=datetime.timezone.utc)

>>>	datetime.strptime("01/01/2000	12:00	+0000",	"%m/%d/%Y	%H:%M	%z"

datetime.datetime(2000,	1,	1,	12,	0,	tzinfo=datetime.timezone.utc)

Also,	timedelta	 objects	 can	 now	be	multiplied	 by	 float	 and
divided	by	float	and	int	objects.	And	timedelta	objects	can
now	divide	one	another.

The	 datetime.date.strftime()	 method	 is	 no	 longer
restricted	 to	 years	 after	 1900.	The	new	supported	 year	 range	 is
from	1000	to	9999	inclusive.

Whenever	 a	 two-digit	 year	 is	 used	 in	 a	 time	 tuple,	 the
interpretation	has	been	governed	by	time.accept2dyear.	The
default	is	True	which	means	that	for	a	two-digit	year,	the	century	is
guessed	according	to	the	POSIX	rules	governing	the	%y	strptime
format.

Starting	with	Py3.2,	use	of	the	century	guessing	heuristic	will	emit
a	 DeprecationWarning.	 Instead,	 it	 is	 recommended	 that
time.accept2dyear	be	set	to	False	so	that	 large	date	ranges
can	be	used	without	guesswork:

>>>	import	time,	warnings

>>>	warnings.resetwarnings()						#	remove	the	default	warning	filters

>>>	time.accept2dyear	=	True						#	guess	whether	11	means	11	or	2011

>>>	time.asctime((11,	1,	1,	12,	34,	56,	4,	1,	0))

Warning	(from	warnings	module):

		...

DeprecationWarning:	Century	info	guessed	for	a	2-digit	year.

'Fri	Jan		1	12:34:56	2011'

>>>	time.accept2dyear	=	False					#	use	the	full	range	of	allowable	dates

>>>	time.asctime((11,	1,	1,	12,	34,	56,	4,	1,	0))

'Fri	Jan		1	12:34:56	11'

Several	 functions	 now	 have	 significantly	 expanded	 date	 ranges.
When	 time.accept2dyear	 is	 false,	 the	 time.asctime()
function	 will	 accept	 any	 year	 that	 fits	 in	 a	 C	 int,	 while	 the
time.mktime()	 and	 time.strftime()	 functions	 will	 accept
the	 full	 range	 supported	 by	 the	 corresponding	 operating	 system
functions.

(Contributed	 by	 Alexander	 Belopolsky	 and	 Victor	 Stinner	 in	 issue
1289118,	 issue	 5094,	 issue	 6641,	 issue	 2706,	 issue	 1777412,	 issue
8013,	and	issue	10827.)

math

The	math	module	has	been	updated	with	six	new	 functions	 inspired
by	the	C99	standard.

The	isfinite()	 function	provides	a	reliable	and	fast	way	to	detect
special	values.	It	 returns	True	 for	 regular	numbers	and	False	 for	Nan
or	Infinity:

>>>	[isfinite(x)	for	x	in	(123,	4.56,	float('Nan'),	

[True,	True,	False,	False]

http://bugs.python.org/issue1289118
http://bugs.python.org/issue5094
http://bugs.python.org/issue6641
http://bugs.python.org/issue2706
http://bugs.python.org/issue1777412
http://bugs.python.org/issue8013
http://bugs.python.org/issue10827

The	expm1()	function	computes	e**x-1	for	small	values	of	x	without
incurring	the	loss	of	precision	that	usually	accompanies	the	subtraction
of	nearly	equal	quantities:

>>>	expm1(0.013671875)			#	more	accurate	way	to	compute	e**x-1	for	a	small	x

0.013765762467652909

The	erf()	function	computes	a	probability	integral	or	Gaussian	error
function.	The	complementary	error	function,	erfc(),	is	1	-	erf(x):

>>>	erf(1.0/sqrt(2.0))			#	portion	of	normal	distribution	within	1	standard	deviation

0.682689492137086

>>>	erfc(1.0/sqrt(2.0))		#	portion	of	normal	distribution	outside	1	standard	deviation

0.31731050786291404

>>>	erf(1.0/sqrt(2.0))	+	erfc(1.0/sqrt(2.0))

1.0

The	 gamma()	 function	 is	 a	 continuous	 extension	 of	 the	 factorial
function.	See	 http://en.wikipedia.org/wiki/Gamma_function	 for	 details.
Because	 the	 function	 is	 related	 to	 factorials,	 it	 grows	 large	 even	 for
small	values	of	x,	so	there	is	also	a	lgamma()	function	for	computing
the	natural	logarithm	of	the	gamma	function:

>>>	gamma(7.0)											#	six	factorial

720.0

>>>	lgamma(801.0)								#	log(800	factorial)

4551.950730698041

(Contributed	by	Mark	Dickinson.)

abc

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Gamma_function

The	 abc	 module	 now	 supports	 abstractclassmethod()	 and
abstractstaticmethod().

These	 tools	 make	 it	 possible	 to	 define	 an	 abstract	 base	 class	 that
requires	 a	 particular	 classmethod()	 or	 staticmethod()	 to	 be
implemented:

class	Temperature(metaclass=abc.ABCMeta):

				@abc.abstractclassmethod

				def	from_fahrenheit(cls,	t):

								...

				@abc.abstractclassmethod

				def	from_celsius(cls,	t):

								...

(Patch	submitted	by	Daniel	Urban;	issue	5867.)

io

The	io.BytesIO	has	a	new	method,	getbuffer(),	which	provides
functionality	similar	 to	memoryview().	 It	creates	an	editable	view	of
the	 data	 without	 making	 a	 copy.	 The	 buffer’s	 random	 access	 and
support	for	slice	notation	are	well-suited	to	in-place	editing:

>>>	REC_LEN,	LOC_START,	LOC_LEN	=	34,	7,	11

>>>	def	change_location(buffer,	record_number,	location

								start	=	record_number	*	REC_LEN	+	LOC_START

								buffer[start:	start+LOC_LEN]	=	location

>>>	import	io

>>>	byte_stream	=	io.BytesIO(

				b'G3805		storeroom		Main	chassis				'

http://bugs.python.org/issue5867

				b'X7899		shipping			Reserve	cog					'

				b'L6988		receiving		Primary	sprocket'

)

>>>	buffer	=	byte_stream.getbuffer()

>>>	change_location(buffer,	1,	b'warehouse		')

>>>	change_location(buffer,	0,	b'showroom			')

>>>	print(byte_stream.getvalue())

b'G3805		showroom			Main	chassis				'

b'X7899		warehouse		Reserve	cog					'

b'L6988		receiving		Primary	sprocket'

(Contributed	by	Antoine	Pitrou	in	issue	5506.)

reprlib

When	writing	a	__repr__()	method	for	a	custom	container,	it	is	easy
to	 forget	 to	 handle	 the	 case	 where	 a	 member	 refers	 back	 to	 the
container	itself.	Python’s	builtin	objects	such	as	list	and	set	handle
self-reference	 by	 displaying	 ”...”	 in	 the	 recursive	 part	 of	 the
representation	string.

To	help	write	such	__repr__()	methods,	the	reprlib	module	has	a
new	decorator,	recursive_repr(),	 for	 detecting	 recursive	 calls	 to
__repr__()	and	substituting	a	placeholder	string	instead:

>>>	class	MyList(list):

								@recursive_repr()

								def	__repr__(self):

												return	'<'	+	'|'.join(map(repr,	self))	+	'>'

>>>	m	=	MyList('abc')

>>>	m.append(m)

>>>	m.append('x')

>>>	print(m)

http://bugs.python.org/issue5506

<'a'|'b'|'c'|...|'x'>

(Contributed	by	Raymond	Hettinger	in	issue	9826	and	issue	9840.)

logging

In	 addition	 to	 dictionary-based	 configuration	 described	 above,	 the
logging	package	has	many	other	improvements.

The	 logging	documentation	has	been	augmented	by	a	basic	 tutorial,
an	 advanced	 tutorial,	 and	 a	 cookbook	 of	 logging	 recipes.	 These
documents	are	the	fastest	way	to	learn	about	logging.

The	 logging.basicConfig()	 set-up	 function	 gained	 a	 style
argument	 to	 support	 three	 different	 types	 of	 string	 formatting.	 It
defaults	to	“%”	for	traditional	%-formatting,	can	be	set	to	“{”	for	the	new
str.format()	style,	or	can	be	set	to	“$”	for	the	shell-style	formatting
provided	 by	 string.Template.	 The	 following	 three	 configurations
are	equivalent:

>>>	from	logging	import	basicConfig

>>>	basicConfig(style='%',	format="%(name)s	->	%(levelname)s:	%(message)s"

>>>	basicConfig(style='{',	format="{name}	->	{levelname}	{message}"

>>>	basicConfig(style='$',	format="$name	->	$levelname:	$message"

If	 no	 configuration	 is	 set-up	 before	 a	 logging	 event	 occurs,	 there	 is
now	 a	 default	 configuration	 using	 a	 StreamHandler	 directed	 to
sys.stderr	 for	 events	 of	 WARNING	 level	 or	 higher.	 Formerly,	 an
event	 occurring	 before	 a	 configuration	was	 set-up	would	 either	 raise
an	 exception	 or	 silently	 drop	 the	 event	 depending	 on	 the	 value	 of
logging.raiseExceptions.	The	 new	default	 handler	 is	 stored	 in

http://bugs.python.org/issue9826
http://bugs.python.org/issue9840

logging.lastResort.

The	use	of	 filters	has	been	simplified.	 Instead	of	 creating	a	 Filter
object,	 the	predicate	can	be	any	Python	callable	 that	 returns	True	or
False.

There	were	 a	 number	 of	 other	 improvements	 that	 add	 flexibility	 and
simplify	configuration.	See	the	module	documentation	for	a	 full	 listing
of	changes	in	Python	3.2.

csv

The	csv	module	now	supports	a	new	dialect,	unix_dialect,	which
applies	quoting	for	all	 fields	and	a	traditional	Unix	style	with	'\n'	as
the	line	terminator.	The	registered	dialect	name	is	unix.

The	 csv.DictWriter	 has	 a	 new	 method,	 writeheader()	 for
writing-out	an	initial	row	to	document	the	field	names:

>>>	import	csv,	sys

>>>	w	=	csv.DictWriter(sys.stdout,	['name',	'dept'],

>>>	w.writeheader()

"name","dept"

>>>	w.writerows([

								{'name':	'tom',	'dept':	'accounting'},

								{'name':	'susan',	'dept':	'Salesl'}])

"tom","accounting"

"susan","sales"

(New	 dialect	 suggested	 by	 Jay	 Talbot	 in	 issue	 5975,	 and	 the	 new
method	suggested	by	Ed	Abraham	in	issue	1537721.)

contextlib

http://bugs.python.org/issue5975
http://bugs.python.org/issue1537721

There	 is	 a	 new	 and	 slightly	mind-blowing	 tool	 ContextDecorator
that	is	helpful	for	creating	a	context	manager	that	does	double	duty	as
a	function	decorator.

As	 a	 convenience,	 this	 new	 functionality	 is	 used	 by
contextmanager()	so	that	no	extra	effort	is	needed	to	support	both
roles.

The	basic	idea	is	that	both	context	managers	and	function	decorators
can	 be	 used	 for	 pre-action	 and	 post-action	 wrappers.	 Context
managers	wrap	a	group	of	 statements	using	a	 with	 statement,	and
function	decorators	wrap	a	group	of	statements	enclosed	in	a	function.
So,	 occasionally	 there	 is	 a	 need	 to	 write	 a	 pre-action	 or	 post-action
wrapper	that	can	be	used	in	either	role.

For	 example,	 it	 is	 sometimes	 useful	 to	 wrap	 functions	 or	 groups	 of
statements	with	a	 logger	 that	can	 track	 the	 time	of	entry	and	 time	of
exit.	 Rather	 than	 writing	 both	 a	 function	 decorator	 and	 a	 context
manager	 for	 the	 task,	 the	 contextmanager()	 provides	 both
capabilities	in	a	single	definition:

from	contextlib	import	contextmanager

import	logging

logging.basicConfig(level=logging.INFO)

@contextmanager

def	track_entry_and_exit(name):

				logging.info('Entering:	{}'.format(name))

				yield

				logging.info('Exiting:	{}'.format(name))

Formerly,	this	would	have	only	been	usable	as	a	context	manager:

with	track_entry_and_exit('widget	loader'):

				print('Some	time	consuming	activity	goes	here')

				load_widget()

Now,	it	can	be	used	as	a	decorator	as	well:

@track_entry_and_exit('widget	loader')

def	activity():

				print('Some	time	consuming	activity	goes	here')

				load_widget()

Trying	 to	 fulfill	 two	 roles	 at	 once	 places	 some	 limitations	 on	 the
technique.	Context	managers	normally	have	the	flexibility	to	return	an
argument	 usable	 by	 a	 with	 statement,	 but	 there	 is	 no	 parallel	 for
function	decorators.

In	 the	 above	 example,	 there	 is	 not	 a	 clean	 way	 for	 the
track_entry_and_exit	context	manager	to	return	a	logging	instance	for
use	in	the	body	of	enclosed	statements.

(Contributed	by	Michael	Foord	in	issue	9110.)

decimal	and	fractions

Mark	Dickinson	 crafted	an	elegant	 and	efficient	 scheme	 for	 assuring
that	 different	 numeric	 datatypes	 will	 have	 the	 same	 hash	 value
whenever	their	actual	values	are	equal	(issue	8188):

assert	hash(Fraction(3,	2))	==	hash(1.5)	==	\

							hash(Decimal("1.5"))	==	hash(complex(1.5,	0))

Some	 of	 the	 hashing	 details	 are	 exposed	 through	 a	 new	 attribute,
sys.hash_info,	which	describes	the	bit	width	of	the	hash	value,	the

http://bugs.python.org/issue9110
http://bugs.python.org/issue8188

prime	modulus,	the	hash	values	for	infinity	and	nan,	and	the	multiplier
used	for	the	imaginary	part	of	a	number:

>>>	sys.hash_info

sys.hash_info(width=64,	modulus=2305843009213693951,	inf=314159,	nan=0,	imag=1000003)

An	early	decision	to	limit	the	inter-operability	of	various	numeric	types
has	 been	 relaxed.	 It	 is	 still	 unsupported	 (and	 ill-advised)	 to	 have
implicit	mixing	in	arithmetic	expressions	such	as	Decimal('1.1')	+
float('1.1')	because	the	latter	loses	information	in	the	process	of
constructing	 the	 binary	 float.	 However,	 since	 existing	 floating	 point
value	 can	 be	 converted	 losslessly	 to	 either	 a	 decimal	 or	 rational
representation,	 it	makes	sense	to	add	them	to	the	constructor	and	to
support	mixed-type	comparisons.

The	decimal.Decimal	constructor	now	accepts	float	objects
directly	so	 there	 in	no	 longer	a	need	 to	use	 the	from_float()
method	(issue	8257).
Mixed	type	comparisons	are	now	fully	supported	so	that	Decimal
objects	 can	 be	 directly	 compared	 with	 float	 and
fractions.Fraction	(issue	2531	and	issue	8188).

Similar	 changes	 were	 made	 to	 fractions.Fraction	 so	 that	 the
from_float()	 and	 from_decimal()	 methods	 are	 no	 longer
needed	(issue	8294):

>>>	Decimal(1.1)

Decimal('1.100000000000000088817841970012523233890533447265625')

>>>	Fraction(1.1)

Fraction(2476979795053773,	2251799813685248)

Another	 useful	 change	 for	 the	 decimal	 module	 is	 that	 the

http://bugs.python.org/issue8257
http://bugs.python.org/issue2531
http://bugs.python.org/issue8188
http://bugs.python.org/issue8294

Context.clamp	 attribute	 is	 now	 public.	 This	 is	 useful	 in	 creating
contexts	that	correspond	to	the	decimal	interchange	formats	specified
in	IEEE	754	(see	issue	8540).

(Contributed	by	Mark	Dickinson	and	Raymond	Hettinger.)

ftp

The	ftplib.FTP	class	now	supports	the	context	manager	protocol	to
unconditionally	consume	socket.error	exceptions	and	to	close	the
FTP	connection	when	done:

>>>	from	ftplib	import	FTP

>>>	with	FTP("ftp1.at.proftpd.org")	as	ftp:

								ftp.login()

								ftp.dir()

'230	Anonymous	login	ok,	restrictions	apply.'

dr-xr-xr-x			9	ftp						ftp											154	May		6	10:43	.

dr-xr-xr-x			9	ftp						ftp											154	May		6	10:43	..

dr-xr-xr-x			5	ftp						ftp										4096	May		6	10:43	CentOS

dr-xr-xr-x			3	ftp						ftp												18	Jul	10		2008	Fedora

Other	 file-like	 objects	 such	 as	 mmap.mmap	 and
fileinput.input()	also	grew	auto-closing	context	managers:

with	fileinput.input(files=('log1.txt',	'log2.txt'))

				for	line	in	f:

								process(line)

(Contributed	by	Tarek	Ziadé	and	Giampaolo	Rodolà	in	issue	4972,	and
by	Georg	Brandl	in	issue	8046	and	issue	1286.)

http://bugs.python.org/issue8540
http://bugs.python.org/issue4972
http://bugs.python.org/issue8046
http://bugs.python.org/issue1286

The	 FTP_TLS	 class	 now	 accepts	 a	 context	 parameter,	 which	 is	 a
ssl.SSLContext	object	allowing	bundling	SSL	configuration	options,
certificates	 and	 private	 keys	 into	 a	 single	 (potentially	 long-lived)
structure.

(Contributed	by	Giampaolo	Rodolà;	issue	8806.)

popen

The	os.popen()	and	subprocess.Popen()	functions	now	support
with	statements	for	auto-closing	of	the	file	descriptors.

(Contributed	 by	 Antoine	 Pitrou	 and	 Brian	 Curtin	 in	 issue	 7461	 and
issue	10554.)

select

The	 select	 module	 now	 exposes	 a	 new,	 constant	 attribute,
PIPE_BUF,	 which	 gives	 the	 minimum	 number	 of	 bytes	 which	 are
guaranteed	 not	 to	 block	 when	 select.select()	 says	 a	 pipe	 is
ready	for	writing.

>>>	import	select

>>>	select.PIPE_BUF

512

(Available	on	Unix	systems.	Patch	by	Sébastien	Sablé	in	issue	9862)

gzip	and	zipfile

gzip.GzipFile	 now	 implements	 the	 io.BufferedIOBase

abstract	base	class	 (except	 for	truncate()).	 It	also	has	a	peek()

http://bugs.python.org/issue8806
http://bugs.python.org/issue7461
http://bugs.python.org/issue10554
http://bugs.python.org/issue9862

method	and	supports	unseekable	as	well	as	zero-padded	file	objects.

The	gzip	module	also	gains	 the	compress()	and	decompress()
functions	for	easier	in-memory	compression	and	decompression.	Keep
in	mind	that	text	needs	to	be	encoded	as	bytes	before	compressing
and	decompressing:

>>>	s	=	'Three	shall	be	the	number	thou	shalt	count,	'

>>>	s	+=	'and	the	number	of	the	counting	shall	be	three'

>>>	b	=	s.encode()																								#	convert	to	utf-8

>>>	len(b)

89

>>>	c	=	gzip.compress(b)

>>>	len(c)

77

>>>	gzip.decompress(c).decode()[:42]						#	decompress	and	convert	to	text

'Three	shall	be	the	number	thou	shalt	count,'

(Contributed	by	Anand	B.	Pillai	 in	 issue	3488;	and	by	Antoine	Pitrou,
Nir	Aides	and	Brian	Curtin	 in	 issue	9962,	 issue	1675951,	 issue	7471
and	issue	2846.)

Also,	 the	 zipfile.ZipExtFile	 class	 was	 reworked	 internally	 to
represent	 files	 stored	 inside	 an	 archive.	 The	 new	 implementation	 is
significantly	 faster	 and	 can	 be	 wrapped	 in	 a	 io.BufferedReader
object	 for	more	 speedups.	 It	 also	 solves	 an	 issue	where	 interleaved
calls	to	read	and	readline	gave	the	wrong	results.

(Patch	submitted	by	Nir	Aides	in	issue	7610.)

tarfile

The	 TarFile	 class	 can	 now	 be	 used	 as	 a	 context	 manager.	 In

http://bugs.python.org/issue3488
http://bugs.python.org/issue9962
http://bugs.python.org/issue1675951
http://bugs.python.org/issue7471
http://bugs.python.org/issue2846
http://bugs.python.org/issue7610

addition,	its	add()	method	has	a	new	option,	filter,	that	controls	which
files	are	added	to	the	archive	and	allows	the	file	metadata	to	be	edited.

The	 new	 filter	 option	 replaces	 the	 older,	 less	 flexible	 exclude
parameter	 which	 is	 now	 deprecated.	 If	 specified,	 the	 optional	 filter
parameter	needs	 to	be	a	keyword	argument.	 The	 user-supplied	 filter
function	accepts	a	TarInfo	object	and	returns	an	updated	TarInfo
object,	 or	 if	 it	 wants	 the	 file	 to	 be	 excluded,	 the	 function	 can	 return
None:

>>>	import	tarfile,	glob

>>>	def	myfilter(tarinfo):

							if	tarinfo.isfile():													#	only	save	real	files

												tarinfo.uname	=	'monty'					#	redact	the	user	name

												return	tarinfo

>>>	with	tarfile.open(name='myarchive.tar.gz',	mode=

								for	filename	in	glob.glob('*.txt'):

												tf.add(filename,	filter=myfilter)

								tf.list()

-rw-r--r--	monty/501								902	2011-01-26	17:59:11	annotations.txt

-rw-r--r--	monty/501								123	2011-01-26	17:59:11	general_questions.txt

-rw-r--r--	monty/501							3514	2011-01-26	17:59:11	prion.txt

-rw-r--r--	monty/501								124	2011-01-26	17:59:11	py_todo.txt

-rw-r--r--	monty/501							1399	2011-01-26	17:59:11	semaphore_notes.txt

(Proposed	by	Tarek	Ziadé	and	implemented	by	Lars	Gustäbel	in	issue
6856.)

hashlib

The	 hashlib	 module	 has	 two	 new	 constant	 attributes	 listing	 the

http://bugs.python.org/issue6856

hashing	 algorithms	 guaranteed	 to	 be	 present	 in	 all	 implementations
and	those	available	on	the	current	implementation:

>>>	import	hashlib

>>>	hashlib.algorithms_guaranteed

{'sha1',	'sha224',	'sha384',	'sha256',	'sha512',	'md5'}

>>>	hashlib.algorithms_available

{'md2',	'SHA256',	'SHA512',	'dsaWithSHA',	'mdc2',	'SHA224',	'MD4',	'sha256',

'sha512',	'ripemd160',	'SHA1',	'MDC2',	'SHA',	'SHA384',	'MD2',

'ecdsa-with-SHA1','md4',	'md5',	'sha1',	'DSA-SHA',	'sha224',

'dsaEncryption',	'DSA',	'RIPEMD160',	'sha',	'MD5',	'sha384'}

(Suggested	by	Carl	Chenet	in	issue	7418.)

ast

The	 ast	 module	 has	 a	 wonderful	 a	 general-purpose	 tool	 for	 safely
evaluating	 expression	 strings	 using	 the	 Python	 literal	 syntax.	 The
ast.literal_eval()	function	serves	as	a	secure	alternative	to	the
builtin	 eval()	 function	 which	 is	 easily	 abused.	 Python	 3.2	 adds
bytes	and	set	 literals	 to	 the	 list	of	 supported	 types:	 strings,	bytes,
numbers,	tuples,	lists,	dicts,	sets,	booleans,	and	None.

>>>	from	ast	import	literal_eval

>>>	request	=	"{'req':	3,	'func':	'pow',	'args':	(2,	0.5)}"

>>>	literal_eval(request)

{'args':	(2,	0.5),	'req':	3,	'func':	'pow'}

>>>	request	=	"os.system('do	something	harmful')"

>>>	literal_eval(request)

Traceback	(most	recent	call	last):

http://bugs.python.org/issue7418

		...

ValueError:	malformed	node	or	string:	<_ast.Call	object	at	0x101739a10>

(Implemented	by	Benjamin	Peterson	and	Georg	Brandl.)

os

Different	operating	systems	use	various	encodings	 for	 filenames	and
environment	 variables.	 The	 os	 module	 provides	 two	 new	 functions,
fsencode()	 and	 fsdecode(),	 for	 encoding	 and	 decoding
filenames:

>>>	filename	=	'Sehenswürdigkeiten'

>>>	os.fsencode(filename)

b'Sehensw\xc3\xbcrdigkeiten'

Some	operating	systems	allow	direct	access	to	encoded	bytes	 in	 the
environment.	If	so,	the	os.supports_bytes_environ	constant	will
be	true.

For	direct	access	to	encoded	environment	variables	(if	available),	use
the	 new	 os.getenvb()	 function	 or	 use	 os.environb	 which	 is	 a
bytes	version	of	os.environ.

(Contributed	by	Victor	Stinner.)

shutil

The	shutil.copytree()	function	has	two	new	options:

ignore_dangling_symlinks:	 when	 symlinks=False	 so	 that	 the
function	 copies	 a	 file	 pointed	 to	 by	 a	 symlink,	 not	 the	 symlink

itself.	 This	 option	 will	 silence	 the	 error	 raised	 if	 the	 file	 doesn’t
exist.
copy_function:	 is	 a	 callable	 that	 will	 be	 used	 to	 copy	 files.
shutil.copy2()	is	used	by	default.

(Contributed	by	Tarek	Ziadé.)

In	addition,	the	shutil	module	now	supports	archiving	operations	for
zipfiles,	 uncompressed	 tarfiles,	 gzipped	 tarfiles,	 and	 bzipped	 tarfiles.
And	there	are	functions	for	registering	additional	archiving	file	formats
(such	as	xz	compressed	tarfiles	or	custom	formats).

The	 principal	 functions	 are	 make_archive()	 and
unpack_archive().	 By	 default,	 both	 operate	 on	 the	 current
directory	 (which	 can	 be	 set	 by	 os.chdir())	 and	 on	 any	 sub-
directories.	 The	 archive	 filename	 needs	 to	 be	 specified	 with	 a	 full
pathname.	The	archiving	step	is	non-destructive	(the	original	files	are
left	unchanged).

>>>	import	shutil,	pprint

>>>	os.chdir('mydata')																															

>>>	f	=	shutil.make_archive('/var/backup/mydata',

																												'zip')																			#	archive	the	current	directory

>>>	f																																																

'/var/backup/mydata.zip'

>>>	os.chdir('tmp')																																		

>>>	shutil.unpack_archive('/var/backup/mydata.zip')		

>>>	pprint.pprint(shutil.get_archive_formats())						

[('bztar',	"bzip2'ed	tar-file"),

	('gztar',	"gzip'ed	tar-file"),

	('tar',	'uncompressed	tar	file'),

	('zip',	'ZIP	file')]

>>>	shutil.register_archive_format(

								name	=	'xz',

								function	=	xz.compress,																						#	callable	archiving	function

								extra_args	=	[('level',	8)],																	#	arguments	to	the	function

								description	=	'xz	compression'

)

(Contributed	by	Tarek	Ziadé.)

sqlite3

The	 sqlite3	 module	 was	 updated	 to	 pysqlite	 version	 2.6.0.	 It	 has
two	new	capabilities.

The	 sqlite3.Connection.in_transit	 attribute	 is	 true	 if
there	is	an	active	transaction	for	uncommitted	changes.
The	sqlite3.Connection.enable_load_extension()	and
sqlite3.Connection.load_extension()	 methods	 allows
you	 to	 load	 SQLite	 extensions	 from	 ”.so”	 files.	 One	 well-known
extension	is	the	fulltext-search	extension	distributed	with	SQLite.

(Contributed	by	R.	David	Murray	and	Shashwat	Anand;	issue	8845.)

html

A	 new	 html	 module	 was	 introduced	 with	 only	 a	 single	 function,
escape(),	 which	 is	 used	 for	 escaping	 reserved	 characters	 from
HTML	markup:

>>>	import	html

>>>	html.escape('x	>	2	&&	x	<	7')

'x	>	2	&&	x	<	7'

http://bugs.python.org/issue8845

socket

The	socket	module	has	two	new	improvements.

Socket	 objects	 now	 have	 a	 detach()	 method	 which	 puts	 the
socket	into	closed	state	without	actually	closing	the	underlying	file
descriptor.	 The	 latter	 can	 then	 be	 reused	 for	 other	 purposes.
(Added	by	Antoine	Pitrou;	issue	8524.)
socket.create_connection()	 now	 supports	 the	 context
manager	 protocol	 to	 unconditionally	 consume	 socket.error
exceptions	 and	 to	 close	 the	 socket	 when	 done.	 (Contributed	 by
Giampaolo	Rodolà;	issue	9794.)

ssl

The	 ssl	 module	 added	 a	 number	 of	 features	 to	 satisfy	 common
requirements	 for	 secure	 (encrypted,	 authenticated)	 internet
connections:

A	new	class,	 SSLContext,	 serves	as	 a	 container	 for	 persistent
SSL	data,	such	as	protocol	settings,	certificates,	private	keys,	and
various	other	options.	It	 includes	a	wrap_socket()	for	creating
an	SSL	socket	from	an	SSL	context.
A	 new	 function,	 ssl.match_hostname(),	 supports	 server
identity	verification	for	higher-level	protocols	by	 implementing	the
rules	of	HTTPS	(from	RFC	2818)	which	are	also	suitable	for	other
protocols.
The	 ssl.wrap_socket()	 constructor	 function	 now	 takes	 a
ciphers	argument.	The	ciphers	string	 lists	 the	allowed	encryption
algorithms	 using	 the	 format	 described	 in	 the	 OpenSSL
documentation.
When	 linked	 against	 recent	 versions	 of	 OpenSSL,	 the	 ssl
module	now	supports	the	Server	Name	Indication	extension	to	the

http://bugs.python.org/issue8524
http://bugs.python.org/issue9794
http://tools.ietf.org/html/rfc2818.html
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

TLS	 protocol,	 allowing	 multiple	 “virtual	 hosts”	 using	 different
certificates	on	a	single	IP	port.	This	extension	is	only	supported	in
client	 mode,	 and	 is	 activated	 by	 passing	 the	 server_hostname
argument	to	ssl.SSLContext.wrap_socket().
Various	 options	 have	 been	 added	 to	 the	 ssl	 module,	 such	 as
OP_NO_SSLv2	which	disables	 the	 insecure	and	obsolete	SSLv2
protocol.
The	 extension	 now	 loads	 all	 the	 OpenSSL	 ciphers	 and	 digest
algorithms.	 If	 some	SSL	 certificates	 cannot	 be	 verified,	 they	 are
reported	as	an	“unknown	algorithm”	error.
The	version	of	OpenSSL	being	used	is	now	accessible	using	the
module	 attributes	 ssl.OPENSSL_VERSION	 (a	 string),
ssl.OPENSSL_VERSION_INFO	 (a	 5-tuple),	 and
ssl.OPENSSL_VERSION_NUMBER	(an	integer).

(Contributed	by	Antoine	Pitrou	in	issue	8850,	issue	1589,	 issue	8322,
issue	5639,	issue	4870,	issue	8484,	and	issue	8321.)

nntp

The	 nntplib	 module	 has	 a	 revamped	 implementation	 with	 better
bytes	 and	 text	 semantics	 as	 well	 as	 more	 practical	 APIs.	 These
improvements	 break	 compatibility	 with	 the	 nntplib	 version	 in	 Python
3.1,	which	was	partly	dysfunctional	in	itself.

Support	 for	 secure	 connections	 through	 both	 implicit	 (using
nntplib.NNTP_SSL)	 and	 explicit	 (using
nntplib.NNTP.starttls())	TLS	has	also	been	added.

(Contributed	by	Antoine	Pitrou	in	issue	9360	and	Andrew	Vant	in	issue
1926.)

http://bugs.python.org/issue8850
http://bugs.python.org/issue1589
http://bugs.python.org/issue8322
http://bugs.python.org/issue5639
http://bugs.python.org/issue4870
http://bugs.python.org/issue8484
http://bugs.python.org/issue8321
http://bugs.python.org/issue9360
http://bugs.python.org/issue1926

certificates

http.client.HTTPSConnection,
urllib.request.HTTPSHandler	 and
urllib.request.urlopen()	now	take	optional	arguments	to	allow
for	 server	 certificate	 checking	against	 a	 set	of	Certificate	Authorities,
as	recommended	in	public	uses	of	HTTPS.

(Added	by	Antoine	Pitrou,	issue	9003.)

imaplib

Support	 for	 explicit	 TLS	 on	 standard	 IMAP4	 connections	 has	 been
added	through	the	new	imaplib.IMAP4.starttls	method.

(Contributed	by	Lorenzo	M.	Catucci	and	Antoine	Pitrou,	issue	4471.)

http.client

There	 were	 a	 number	 of	 small	 API	 improvements	 in	 the
http.client	module.	The	old-style	HTTP	0.9	simple	responses	are
no	 longer	 supported	 and	 the	 strict	 parameter	 is	 deprecated	 in	 all
classes.

The	HTTPConnection	and	HTTPSConnection	classes	now	have	a
source_address	parameter	for	a	(host,	port)	tuple	indicating	where	the
HTTP	connection	is	made	from.

Support	 for	certificate	checking	and	HTTPS	virtual	hosts	were	added
to	HTTPSConnection.

The	 request()	 method	 on	 connection	 objects	 allowed	 an	 optional

http://bugs.python.org/issue9003
http://bugs.python.org/issue4471

body	argument	so	that	a	file	object	could	be	used	to	supply	the	content
of	the	request.	Conveniently,	the	body	argument	now	also	accepts	an
iterable	 object	 so	 long	 as	 it	 includes	 an	 explicit	 Content-Length
header.	This	extended	interface	is	much	more	flexible	than	before.

To	establish	an	HTTPS	connection	through	a	proxy	server,	 there	 is	a
new	 set_tunnel()	 method	 that	 sets	 the	 host	 and	 port	 for	 HTTP
Connect	tunneling.

To	match	the	behavior	of	http.server,	 the	HTTP	client	 library	now
also	 encodes	 headers	 with	 ISO-8859-1	 (Latin-1)	 encoding.	 It	 was
already	 doing	 that	 for	 incoming	 headers,	 so	 now	 the	 behavior	 is
consistent	for	both	incoming	and	outgoing	traffic.	(See	work	by	Armin
Ronacher	in	issue	10980.)

unittest

The	 unittest	 module	 has	 a	 number	 of	 improvements	 supporting	 test
discovery	 for	 packages,	 easier	 experimentation	 at	 the	 interactive
prompt,	new	testcase	methods,	improved	diagnostic	messages	for	test
failures,	and	better	method	names.

The	command-line	call	python	-m	unittest	can	now	accept
file	 paths	 instead	 of	 module	 names	 for	 running	 specific	 tests
(issue	 10620).	 The	 new	 test	 discovery	 can	 find	 tests	 within
packages,	locating	any	test	importable	from	the	top-level	directory.
The	 top-level	 directory	 can	 be	 specified	 with	 the	 -t	 option,	 a
pattern	 for	 matching	 files	 with	 -p,	 and	 a	 directory	 to	 start
discovery	with	-s:

$	python	-m	unittest	discover	-s	my_proj_dir	-p	_test.py

http://bugs.python.org/issue10980
http://bugs.python.org/issue10620

(Contributed	by	Michael	Foord.)

Experimentation	at	 the	 interactive	prompt	 is	now	easier	because
the	 unittest.case.TestCase	 class	 can	 now	 be	 instantiated
without	arguments:

>>>	TestCase().assertEqual(pow(2,	3),	8)

(Contributed	by	Michael	Foord.)

The	unittest	module	has	two	new	methods,	assertWarns()
and	assertWarnsRegex()	to	verify	that	a	given	warning	type	is
triggered	by	the	code	under	test:

with	self.assertWarns(DeprecationWarning):

				legacy_function('XYZ')

(Contributed	by	Antoine	Pitrou,	issue	9754.)

Another	 new	 method,	 assertCountEqual()	 is	 used	 to
compare	 two	 iterables	 to	 determine	 if	 their	 element	 counts	 are
equal	 (whether	 the	 same	 elements	 are	 present	 with	 the	 same
number	of	occurrences	regardless	of	order):

def	test_anagram(self):

				self.assertCountEqual('algorithm',	'logarithm'

(Contributed	by	Raymond	Hettinger.)

A	principal	 feature	 of	 the	unittest	module	 is	 an	effort	 to	 produce
meaningful	 diagnostics	 when	 a	 test	 fails.	 When	 possible,	 the
failure	is	recorded	along	with	a	diff	of	the	output.	This	is	especially
helpful	 for	 analyzing	 log	 files	 of	 failed	 test	 runs.	However,	 since

http://bugs.python.org/issue9754

diffs	 can	 sometime	 be	 voluminous,	 there	 is	 a	 new	 maxDiff
attribute	that	sets	maximum	length	of	diffs	displayed.

In	addition,	 the	method	names	 in	 the	module	have	undergone	a
number	of	clean-ups.

For	 example,	 assertRegex()	 is	 the	 new	 name	 for
assertRegexpMatches()	 which	 was	 misnamed	 because	 the
test	uses	re.search(),	not	re.match().	Other	methods	using
regular	expressions	are	now	named	using	short	 form	“Regex”	 in
preference	 to	 “Regexp”	–	 this	matches	 the	names	used	 in	other
unittest	 implementations,	matches	Python’s	old	name	 for	 the	re
module,	and	it	has	unambiguous	camel-casing.

(Contributed	 by	 Raymond	 Hettinger	 and	 implemented	 by	 Ezio
Melotti.)

To	 improve	consistency,	 some	 long-standing	method	aliases	are
being	deprecated	in	favor	of	the	preferred	names:

Old	Name Preferred	Name

assert_() assertTrue()

assertEquals() assertEqual()

assertNotEquals() assertNotEqual()

assertAlmostEquals() assertAlmostEqual()

assertNotAlmostEquals() assertNotAlmostEqual()

Likewise,	 the	 TestCase.fail*	methods	 deprecated	 in	Python
3.1	 are	 expected	 to	 be	 removed	 in	 Python	 3.3.	 Also	 see	 the
Deprecated	aliases	section	in	the	unittest	documentation.

(Contributed	by	Ezio	Melotti;	issue	9424.)

The	 assertDictContainsSubset()	method	was	 deprecated
because	it	was	misimplemented	with	the	arguments	in	the	wrong
order.	This	created	hard-to-debug	optical	illusions	where	tests	like
TestCase().assertDictContainsSubset({'a':1,

'b':2},	{'a':1})	would	fail.

(Contributed	by	Raymond	Hettinger.)

random

The	 integer	methods	 in	 the	 random	 module	 now	 do	 a	 better	 job	 of
producing	uniform	distributions.	Previously,	 they	computed	selections
with	int(n*random())	which	had	a	slight	bias	whenever	n	was	not
a	power	of	two.	Now,	multiple	selections	are	made	from	a	range	up	to
the	next	power	of	two	and	a	selection	is	kept	only	when	it	 falls	within
the	 range	 0	 <=	 x	 <	 n.	 The	 functions	 and	 methods	 affected	 are
randrange(),	 randint(),	 choice(),	 shuffle()	 and
sample().

(Contributed	by	Raymond	Hettinger;	issue	9025.)

poplib

POP3_SSL	 class	 now	 accepts	 a	 context	 parameter,	 which	 is	 a
ssl.SSLContext	object	allowing	bundling	SSL	configuration	options,
certificates	 and	 private	 keys	 into	 a	 single	 (potentially	 long-lived)
structure.

(Contributed	by	Giampaolo	Rodolà;	issue	8807.)

http://bugs.python.org/issue9424
http://bugs.python.org/issue9025
http://bugs.python.org/issue8807

asyncore

asyncore.dispatcher	 now	 provides	 a	 handle_accepted()
method	returning	a	(sock,	addr)	pair	which	is	called	when	a	connection
has	 actually	 been	 established	 with	 a	 new	 remote	 endpoint.	 This	 is
supposed	 to	 be	 used	 as	 a	 replacement	 for	 old	 handle_accept()
and	avoids	the	user	to	call	accept()	directly.

(Contributed	by	Giampaolo	Rodolà;	issue	6706.)

tempfile

The	 tempfile	 module	 has	 a	 new	 context	 manager,
TemporaryDirectory	which	provides	easy	deterministic	cleanup	of
temporary	directories:

with	tempfile.TemporaryDirectory()	as	tmpdirname:

				print('created	temporary	dir:',	tmpdirname)

(Contributed	by	Neil	Schemenauer	and	Nick	Coghlan;	issue	5178.)

inspect

The	 inspect	 module	 has	 a	 new	 function
getgeneratorstate()	 to	easily	 identify	 the	current	state	of	a
generator-iterator:

>>>	from	inspect	import	getgeneratorstate

>>>	def	gen():

								yield	'demo'

>>>	g	=	gen()

>>>	getgeneratorstate(g)

http://bugs.python.org/issue6706
http://bugs.python.org/issue5178

'GEN_CREATED'

>>>	next(g)

'demo'

>>>	getgeneratorstate(g)

'GEN_SUSPENDED'

>>>	next(g,	None)

>>>	getgeneratorstate(g)

'GEN_CLOSED'

(Contributed	 by	 Rodolpho	 Eckhardt	 and	 Nick	 Coghlan,	 issue
10220.)

To	support	 lookups	without	the	possibility	of	activating	a	dynamic
attribute,	 the	 inspect	 module	 has	 a	 new	 function,
getattr_static().	Unlike	hasattr(),	this	is	a	true	read-only
search,	guaranteed	not	to	change	state	while	it	is	searching:

>>>	class	A:

								@property

								def	f(self):

												print('Running')

												return	10

>>>	a	=	A()

>>>	getattr(a,	'f')

Running

10

>>>	inspect.getattr_static(a,	'f')

<property	object	at	0x1022bd788>

(Contributed	by	Michael	Foord.)

pydoc

The	 pydoc	 module	 now	 provides	 a	 much-improved	 Web	 server

http://bugs.python.org/issue10220

interface,	as	well	as	a	new	command-line	option	-b	 to	automatically
open	a	browser	window	to	display	that	server:

$	pydoc3.2	-b

(Contributed	by	Ron	Adam;	issue	2001.)

dis

The	 dis	 module	 gained	 two	 new	 functions	 for	 inspecting	 code,
code_info()	and	show_code().	Both	provide	detailed	code	object
information	 for	 the	 supplied	 function,	 method,	 source	 code	 string	 or
code	object.	The	former	returns	a	string	and	the	latter	prints	it:

>>>	import	dis,	random

>>>	dis.show_code(random.choice)

Name:														choice

Filename:										/Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/random.py

Argument	count:				2

Kw-only	arguments:	0

Number	of	locals:		3

Stack	size:								11

Flags:													OPTIMIZED,	NEWLOCALS,	NOFREE

Constants:

			0:	'Choose	a	random	element	from	a	non-empty	sequence.'

			1:	'Cannot	choose	from	an	empty	sequence'

Names:

			0:	_randbelow

			1:	len

			2:	ValueError

			3:	IndexError

Variable	names:

			0:	self

			1:	seq

			2:	i

http://bugs.python.org/issue2001

In	addition,	the	dis()	function	now	accepts	string	arguments	so	that
the	 common	 idiom	 dis(compile(s,	 '',	 'eval'))	 can	 be
shortened	to	dis(s):

>>>	dis('3*x+1	if	x%2==1	else	x//2')

		1											0	LOAD_NAME																0	(x)

														3	LOAD_CONST															0	(2)

														6	BINARY_MODULO

														7	LOAD_CONST															1	(1)

													10	COMPARE_OP															2	(==)

													13	POP_JUMP_IF_FALSE							28

													16	LOAD_CONST															2	(3)

													19	LOAD_NAME																0	(x)

													22	BINARY_MULTIPLY

													23	LOAD_CONST															1	(1)

													26	BINARY_ADD

													27	RETURN_VALUE

								>>			28	LOAD_NAME																0	(x)

													31	LOAD_CONST															0	(2)

													34	BINARY_FLOOR_DIVIDE

													35	RETURN_VALUE

Taken	 together,	 these	 improvements	 make	 it	 easier	 to	 explore	 how
CPython	 is	 implemented	 and	 to	 see	 for	 yourself	 what	 the	 language
syntax	does	under-the-hood.

(Contributed	by	Nick	Coghlan	in	issue	9147.)

dbm

All	 database	modules	 now	 support	 the	 get()	 and	 setdefault()
methods.

http://bugs.python.org/issue9147

(Suggested	by	Ray	Allen	in	issue	9523.)

ctypes

A	 new	 type,	 ctypes.c_ssize_t	 represents	 the	 C	 ssize_t
datatype.

site

The	site	module	has	three	new	functions	useful	for	reporting	on	the
details	of	a	given	Python	installation.

getsitepackages()	lists	all	global	site-packages	directories.
getuserbase()	reports	on	the	user’s	base	directory	where	data
can	be	stored.
getusersitepackages()	 reveals	 the	 user-specific	 site-
packages	directory	path.

>>>	import	site

>>>	site.getsitepackages()

['/Library/Frameworks/Python.framework/Versions/3.2/lib/python3.2/site-packages',

	'/Library/Frameworks/Python.framework/Versions/3.2/lib/site-python',

	'/Library/Python/3.2/site-packages']

>>>	site.getuserbase()

'/Users/raymondhettinger/Library/Python/3.2'

>>>	site.getusersitepackages()

'/Users/raymondhettinger/Library/Python/3.2/lib/python/site-packages'

Conveniently,	some	of	site’s	functionality	is	accessible	directly	from	the
command-line:

$	python	-m	site	--user-base

/Users/raymondhettinger/.local

http://bugs.python.org/issue9523

$	python	-m	site	--user-site

/Users/raymondhettinger/.local/lib/python3.2/site-packages

(Contributed	by	Tarek	Ziadé	in	issue	6693.)

sysconfig

The	 new	 sysconfig	 module	 makes	 it	 straightforward	 to	 discover
installation	 paths	 and	 configuration	 variables	 that	 vary	 across
platforms	and	installations.

The	 module	 offers	 access	 simple	 access	 functions	 for	 platform	 and
version	information:

get_platform()	 returning	 values	 like	 linux-i586	 or	 macosx-
10.6-ppc.
get_python_version()	 returns	 a	 Python	 version	 string	 such
as	“3.2”.

It	 also	 provides	 access	 to	 the	 paths	 and	 variables	 corresponding	 to
one	 of	 seven	 named	 schemes	 used	 by	 distutils.	 Those	 include
posix_prefix,	posix_home,	posix_user,	nt,	nt_user,	os2,	os2_home:

get_paths()	makes	a	dictionary	containing	installation	paths	for
the	current	installation	scheme.
get_config_vars()	 returns	 a	 dictionary	 of	 platform	 specific
variables.

There	is	also	a	convenient	command-line	interface:

C:\Python32>python	-m	sysconfig

Platform:	"win32"

Python	version:	"3.2"

http://bugs.python.org/issue6693

Current	installation	scheme:	"nt"

Paths:

								data	=	"C:\Python32"

								include	=	"C:\Python32\Include"

								platinclude	=	"C:\Python32\Include"

								platlib	=	"C:\Python32\Lib\site-packages"

								platstdlib	=	"C:\Python32\Lib"

								purelib	=	"C:\Python32\Lib\site-packages"

								scripts	=	"C:\Python32\Scripts"

								stdlib	=	"C:\Python32\Lib"

Variables:

								BINDIR	=	"C:\Python32"

								BINLIBDEST	=	"C:\Python32\Lib"

								EXE	=	".exe"

								INCLUDEPY	=	"C:\Python32\Include"

								LIBDEST	=	"C:\Python32\Lib"

								SO	=	".pyd"

								VERSION	=	"32"

								abiflags	=	""

								base	=	"C:\Python32"

								exec_prefix	=	"C:\Python32"

								platbase	=	"C:\Python32"

								prefix	=	"C:\Python32"

								projectbase	=	"C:\Python32"

								py_version	=	"3.2"

								py_version_nodot	=	"32"

								py_version_short	=	"3.2"

								srcdir	=	"C:\Python32"

								userbase	=	"C:\Documents	and	Settings\Raymond\Application	Data\Python"

(Moved	out	of	Distutils	by	Tarek	Ziadé.)

pdb

The	 pdb	 debugger	 module	 gained	 a	 number	 of	 usability
improvements:

pdb.py	now	has	a	-c	option	that	executes	commands	as	given
in	a	.pdbrc	script	file.
A	.pdbrc	script	file	can	contain	continue	and	next	commands
that	continue	debugging.
The	Pdb	class	constructor	now	accepts	a	nosigint	argument.
New	 commands:	 l(list),	 ll(long	 list)	 and	 source	 for
listing	source	code.
New	commands:	display	and	undisplay	for	showing	or	hiding
the	value	of	an	expression	if	it	has	changed.
New	 command:	 interact	 for	 starting	 an	 interactive	 interpreter
containing	the	global	and	local	names	found	in	the	current	scope.
Breakpoints	can	be	cleared	by	breakpoint	number.

(Contributed	by	Georg	Brandl,	Antonio	Cuni	and	Ilya	Sandler.)

configparser

The	 configparser	 module	 was	 modified	 to	 improve	 usability	 and
predictability	of	the	default	parser	and	its	supported	INI	syntax.	The	old
ConfigParser	class	was	removed	in	favor	of	SafeConfigParser
which	has	in	turn	been	renamed	to	ConfigParser.	Support	for	inline
comments	is	now	turned	off	by	default	and	section	or	option	duplicates
are	not	allowed	in	a	single	configuration	source.

Config	parsers	gained	a	new	API	based	on	the	mapping	protocol:

>>>	parser	=	ConfigParser()

>>>	parser.read_string("""

[DEFAULT]

location	=	upper	left

visible	=	yes

editable	=	no

color	=	blue

[main]

title	=	Main	Menu

color	=	green

[options]

title	=	Options

""")

>>>	parser['main']['color']

'green'

>>>	parser['main']['editable']

'no'

>>>	section	=	parser['options']

>>>	section['title']

'Options'

>>>	section['title']	=	'Options	(editable:	%(editable)s)'

>>>	section['title']

'Options	(editable:	no)'

The	new	API	 is	 implemented	on	 top	of	 the	 classical	API,	 so	 custom
parser	subclasses	should	be	able	to	use	it	without	modifications.

The	 INI	 file	 structure	 accepted	 by	 config	 parsers	 can	 now	 be
customized.	Users	can	specify	alternative	option/value	delimiters	and
comment	prefixes,	change	the	name	of	the	DEFAULT	section	or	switch
the	interpolation	syntax.

There	 is	 support	 for	 pluggable	 interpolation	 including	 an	 additional
interpolation	handler	ExtendedInterpolation:

>>>	parser	=	ConfigParser(interpolation=ExtendedInterpolation

>>>	parser.read_dict({'buildout':	{'directory':	'/home/ambv/zope9'

																						'custom':	{'prefix':	'/usr/local'}})

>>>	parser.read_string("""

				[buildout]

				parts	=

						zope9

						instance

				find-links	=

						${buildout:directory}/downloads/dist

				[zope9]

				recipe	=	plone.recipe.zope9install

				location	=	/opt/zope

				[instance]

				recipe	=	plone.recipe.zope9instance

				zope9-location	=	${zope9:location}

				zope-conf	=	${custom:prefix}/etc/zope.conf

				""")

>>>	parser['buildout']['find-links']

'\n/home/ambv/zope9/downloads/dist'

>>>	parser['instance']['zope-conf']

'/usr/local/etc/zope.conf'

>>>	instance	=	parser['instance']

>>>	instance['zope-conf']

'/usr/local/etc/zope.conf'

>>>	instance['zope9-location']

'/opt/zope'

A	 number	 of	 smaller	 features	 were	 also	 introduced,	 like	 support	 for
specifying	encoding	 in	 read	operations,	specifying	 fallback	values	 for
get-functions,	or	reading	directly	from	dictionaries	and	strings.

(All	changes	contributed	by	Łukasz	Langa.)

urllib.parse

A	 number	 of	 usability	 improvements	 were	 made	 for	 the
urllib.parse	module.

The	urlparse()	function	now	supports	IPv6	addresses	as	described
in	RFC	2732:

>>>	import	urllib.parse

>>>	urllib.parse.urlparse('http://[dead:beef:cafe:5417:affe:8FA3:deaf:feed]/foo/'

ParseResult(scheme='http',

												netloc='[dead:beef:cafe:5417:affe:8FA3:deaf:feed]',

												path='/foo/',

												params='',

												query='',

												fragment='')

The	urldefrag()	function	now	returns	a	named	tuple:

>>>	r	=	urllib.parse.urldefrag('http://python.org/about/#target'

>>>	r

DefragResult(url='http://python.org/about/',	fragment='target')

>>>	r[0]

'http://python.org/about/'

>>>	r.fragment

'target'

And,	the	urlencode()	function	is	now	much	more	flexible,	accepting
either	 a	 string	 or	 bytes	 type	 for	 the	query	 argument.	 If	 it	 is	 a	 string,
then	 the	 safe,	 encoding,	 and	 error	 parameters	 are	 sent	 to
quote_plus()	for	encoding:

>>>	urllib.parse.urlencode([

									('type',	'telenovela'),

									('name',	'¿Dónde	Está	Elisa?')],

									encoding='latin-1')

http://en.wikipedia.org/wiki/IPv6
http://tools.ietf.org/html/rfc2732.html

'type=telenovela&name=%BFD%F3nde+Est%E1+Elisa%3F'

As	detailed	 in	Parsing	ASCII	Encoded	Bytes,	all	 the	urllib.parse
functions	now	accept	ASCII-encoded	byte	strings	as	input,	so	long	as
they	are	not	mixed	with	regular	strings.	If	ASCII-encoded	byte	strings
are	 given	 as	 parameters,	 the	 return	 types	 will	 also	 be	 an	 ASCII-
encoded	byte	strings:

>>>	urllib.parse.urlparse(b'http://www.python.org:80/about/'

ParseResultBytes(scheme=b'http',	netloc=b'www.python.org:80',

																	path=b'/about/',	params=b'',	query=b'',	fragment=b'')

(Work	 by	 Nick	 Coghlan,	 Dan	 Mahn,	 and	 Senthil	 Kumaran	 in	 issue
2987,	issue	5468,	and	issue	9873.)

mailbox

Thanks	to	a	concerted	effort	by	R.	David	Murray,	the	mailbox	module
has	 been	 fixed	 for	 Python	 3.2.	 The	 challenge	was	 that	mailbox	 had
been	originally	designed	with	a	text	interface,	but	email	messages	are
best	 represented	 with	 bytes	 because	 various	 parts	 of	 a	 message
may	have	different	encodings.

The	 solution	 harnessed	 the	 email	 package’s	 binary	 support	 for
parsing	arbitrary	email	messages.	 In	addition,	 the	solution	 required	a
number	of	API	changes.

As	expected,	the	add()	method	for	mailbox.Mailbox	objects	now
accepts	binary	input.

StringIO	and	text	file	input	are	deprecated.	Also,	string	input	will	fail
early	 if	non-ASCII	 characters	are	used.	Previously	 it	would	 fail	when

http://bugs.python.org/issue2987
http://bugs.python.org/issue5468
http://bugs.python.org/issue9873

the	email	was	processed	in	a	later	step.

There	is	also	support	for	binary	output.	The	get_file()	method	now
returns	a	 file	 in	 the	binary	mode	 (where	 it	used	 to	 incorrectly	set	 the
file	 to	 text-mode).	 There	 is	 also	 a	 new	 get_bytes()	 method	 that
returns	 a	 bytes	 representation	 of	 a	 message	 corresponding	 to	 a
given	key.

It	 is	 still	 possible	 to	 get	 non-binary	 output	 using	 the	 old	 API’s
get_string()	method,	but	that	approach	is	not	very	useful.	Instead,
it	is	best	to	extract	messages	from	a	Message	object	or	to	load	them
from	binary	input.

(Contributed	 by	 R.	 David	 Murray,	 with	 efforts	 from	 Steffen	 Daode
Nurpmeso	and	an	initial	patch	by	Victor	Stinner	in	issue	9124.)

turtledemo

The	demonstration	code	for	the	turtle	module	was	moved	from	the
Demo	directory	to	main	library.	It	includes	over	a	dozen	sample	scripts
with	 lively	 displays.	 Being	 on	 sys.path,	 it	 can	 now	 be	 run	 directly
from	the	command-line:

$	python	-m	turtledemo

(Moved	 from	 the	 Demo	 directory	 by	 Alexander	 Belopolsky	 in	 issue
10199.)

http://bugs.python.org/issue9124
http://bugs.python.org/issue10199

Multi-threading

The	mechanism	 for	 serializing	 execution	 of	 concurrently	 running
Python	threads	(generally	known	as	the	GIL	or	Global	Interpreter
Lock)	 has	 been	 rewritten.	 Among	 the	 objectives	 were	 more
predictable	switching	intervals	and	reduced	overhead	due	to	lock
contention	and	the	number	of	ensuing	system	calls.	The	notion	of
a	 “check	 interval”	 to	allow	 thread	switches	has	been	abandoned
and	replaced	by	an	absolute	duration	expressed	in	seconds.	This
parameter	 is	 tunable	 through	 sys.setswitchinterval().	 It
currently	defaults	to	5	milliseconds.

Additional	 details	 about	 the	 implementation	 can	 be	 read	 from	 a
python-dev	mailing-list	message	 (however,	 “priority	 requests”	 as
exposed	in	this	message	have	not	been	kept	for	inclusion).

(Contributed	by	Antoine	Pitrou.)

Regular	 and	 recursive	 locks	 now	 accept	 an	 optional	 timeout
argument	 to	 their	 acquire()	 method.	 (Contributed	 by	 Antoine
Pitrou;	issue	7316.)

Similarly,	 threading.Semaphore.acquire()	 also	 gained	 a
timeout	 argument.	 (Contributed	 by	 Torsten	 Landschoff;	 issue
850728.)

Regular	and	recursive	lock	acquisitions	can	now	be	interrupted	by
signals	 on	 platforms	 using	 Pthreads.	 This	 means	 that	 Python
programs	that	deadlock	while	acquiring	locks	can	be	successfully
killed	by	 repeatedly	sending	SIGINT	 to	 the	process	 (by	pressing
Ctrl+C	 in	 most	 shells).	 (Contributed	 by	 Reid	 Kleckner;	 issue
8844.)

http://mail.python.org/pipermail/python-dev/2009-October/093321.html
http://bugs.python.org/issue7316
http://bugs.python.org/issue850728
http://bugs.python.org/issue8844

Optimizations

A	number	of	small	performance	enhancements	have	been	added:

Python’s	peephole	optimizer	now	recognizes	patterns	such	x	in
{1,	2,	3}	as	being	a	test	for	membership	in	a	set	of	constants.
The	optimizer	 recasts	 the	set	 as	a	 frozenset	 and	 stores	 the
pre-built	constant.

Now	that	 the	speed	penalty	 is	gone,	 it	 is	practical	 to	start	writing
membership	 tests	 using	 set-notation.	 This	 style	 is	 both
semantically	clear	and	operationally	fast:

extension	=	name.rpartition('.')[2]

if	extension	in	{'xml',	'html',	'xhtml',	'css'}:

				handle(name)

(Patch	 and	 additional	 tests	 contributed	 by	 Dave	Malcolm;	 issue
6690).

Serializing	 and	 unserializing	 data	 using	 the	 pickle	 module	 is
now	several	times	faster.

(Contributed	 by	 Alexandre	 Vassalotti,	 Antoine	 Pitrou	 and	 the
Unladen	Swallow	team	in	issue	9410	and	issue	3873.)

The	 Timsort	 algorithm	 used	 in	 list.sort()	 and	 sorted()
now	 runs	 faster	 and	 uses	 less	memory	 when	 called	 with	 a	 key
function.	Previously,	 every	element	 of	 a	 list	was	wrapped	with	a
temporary	object	that	remembered	the	key	value	associated	with
each	element.	Now,	 two	arrays	of	keys	and	values	are	sorted	 in
parallel.	This	saves	the	memory	consumed	by	the	sort	wrappers,

http://bugs.python.org/issue6690
http://bugs.python.org/issue9410
http://bugs.python.org/issue3873
http://en.wikipedia.org/wiki/Timsort

and	it	saves	time	lost	to	delegating	comparisons.

(Patch	by	Daniel	Stutzbach	in	issue	9915.)

JSON	 decoding	 performance	 is	 improved	 and	 memory
consumption	is	reduced	whenever	the	same	string	is	repeated	for
multiple	 keys.	 Also,	 JSON	 encoding	 now	 uses	 the	 C	 speedups
when	the	sort_keys	argument	is	true.

(Contributed	 by	 Antoine	 Pitrou	 in	 issue	 7451	 and	 by	 Raymond
Hettinger	and	Antoine	Pitrou	in	issue	10314.)

Recursive	 locks	 (created	 with	 the	 threading.RLock()	 API)
now	benefit	 from	a	C	 implementation	which	makes	 them	as	 fast
as	 regular	 locks,	 and	 between	 10x	 and	 15x	 faster	 than	 their
previous	pure	Python	implementation.

(Contributed	by	Antoine	Pitrou;	issue	3001.)

The	 fast-search	 algorithm	 in	 stringlib	 is	 now	 used	 by	 the
split(),	 rsplit(),	 splitlines()	 and	 replace()

methods	on	bytes,	bytearray	and	str	objects.	Likewise,	 the
algorithm	is	also	used	by	rfind(),	rindex(),	rsplit()	 and
rpartition().

(Patch	by	Florent	Xicluna	in	issue	7622	and	issue	7462.)

Integer	 to	 string	 conversions	 now	 work	 two	 “digits”	 at	 a	 time,
reducing	the	number	of	division	and	modulo	operations.

(issue	 6713	 by	 Gawain	 Bolton,	 Mark	 Dickinson,	 and	 Victor
Stinner.)

There	 were	 several	 other	 minor	 optimizations.	 Set	 differencing	 now

http://bugs.python.org/issue9915
http://bugs.python.org/issue7451
http://bugs.python.org/issue10314
http://bugs.python.org/issue3001
http://bugs.python.org/issue7622
http://bugs.python.org/issue7462
http://bugs.python.org/issue6713

runs	faster	when	one	operand	is	much	larger	than	the	other	(patch	by
Andress	Bennetts	in	issue	8685).	The	array.repeat()	method	has
a	 faster	 implementation	 (issue	 1569291	 by	 Alexander	 Belopolsky).
The	BaseHTTPRequestHandler	 has	more	efficient	buffering	 (issue
3709	 by	 Andrew	 Schaaf).	 The	 operator.attrgetter()	 function
has	 been	 sped-up	 (issue	 10160	 by	 Christos	 Georgiou).	 And
ConfigParser	loads	multi-line	arguments	a	bit	faster	(issue	7113	by
Łukasz	Langa).

http://bugs.python.org/issue8685
http://bugs.python.org/issue1569291
http://bugs.python.org/issue3709
http://bugs.python.org/issue10160
http://bugs.python.org/issue7113

Unicode

Python	 has	 been	 updated	 to	 Unicode	 6.0.0.	 The	 update	 to	 the
standard	 adds	 over	 2,000	 new	 characters	 including	 emoji	 symbols
which	are	important	for	mobile	phones.

In	addition,	the	updated	standard	has	altered	the	character	properties
for	two	Kannada	characters	(U+0CF1,	U+0CF2)	and	one	New	Tai	Lue
numeric	 character	 (U+19DA),	 making	 the	 former	 eligible	 for	 use	 in
identifiers	 while	 disqualifying	 the	 latter.	 For	 more	 information,	 see
Unicode	Character	Database	Changes.

http://unicode.org/versions/Unicode6.0.0/
http://en.wikipedia.org/wiki/Emoji
http://www.unicode.org/versions/Unicode6.0.0/#Database_Changes

Codecs

Support	was	added	for	cp720	Arabic	DOS	encoding	(issue	1616979).

MBCS	encoding	no	longer	ignores	the	error	handler	argument.	In	the
default	 strict	 mode,	 it	 raises	 an	 UnicodeDecodeError	 when	 it
encounters	 an	 undecodable	 byte	 sequence	 and	 an
UnicodeEncodeError	for	an	unencodable	character.

The	MBCS	codec	supports	'strict'	and	'ignore'	error	handlers
for	decoding,	and	'strict'	and	'replace'	for	encoding.

To	emulate	Python3.1	MBCS	encoding,	select	the	'ignore'	handler
for	decoding	and	the	'replace'	handler	for	encoding.

On	Mac	OS	X,	Python	decodes	command	line	arguments	with	'utf-
8'	rather	than	the	locale	encoding.

By	default,	tarfile	uses	'utf-8'	encoding	on	Windows	(instead	of
'mbcs')	 and	 the	 'surrogateescape'	 error	 handler	 on	 all
operating	systems.

http://bugs.python.org/issue1616979

Documentation

The	documentation	continues	to	be	improved.

A	 table	 of	 quick	 links	 has	 been	 added	 to	 the	 top	 of	 lengthy
sections	 such	 as	Built-in	 Functions.	 In	 the	 case	 of	 itertools,
the	 links	 are	 accompanied	 by	 tables	 of	 cheatsheet-style
summaries	to	provide	an	overview	and	memory	jog	without	having
to	read	all	of	the	docs.

In	 some	 cases,	 the	 pure	 Python	 source	 code	 can	 be	 a	 helpful
adjunct	to	the	documentation,	so	now	many	modules	now	feature
quick	links	to	the	latest	version	of	the	source	code.	For	example,
the	functools	module	documentation	has	a	quick	link	at	the	top
labeled:

Source	code	Lib/functools.py.

(Contributed	by	Raymond	Hettinger;	see	rationale.)

The	docs	now	contain	more	examples	and	 recipes.	 In	particular,
re	 module	 has	 an	 extensive	 section,	 Regular	 Expression
Examples.	 Likewise,	 the	 itertools	 module	 continues	 to	 be
updated	with	new	Itertools	Recipes.

The	 datetime	 module	 now	 has	 an	 auxiliary	 implementation	 in
pure	Python.	No	functionality	was	changed.	This	just	provides	an
easier-to-read	alternate	implementation.

(Contributed	by	Alexander	Belopolsky	in	issue	9528.)

The	 unmaintained	 Demo	 directory	 has	 been	 removed.	 Some
demos	were	integrated	into	the	documentation,	some	were	moved

http://hg.python.org/cpython/file/3.4/Lib/functools.py
http://rhettinger.wordpress.com/2011/01/28/open-your-source-more/
http://bugs.python.org/issue9528

to	 the	 Tools/demo	 directory,	 and	 others	 were	 removed
altogether.

(Contributed	by	Georg	Brandl	in	issue	7962.)

http://bugs.python.org/issue7962

IDLE

The	 format	 menu	 now	 has	 an	 option	 to	 clean	 source	 files	 by
stripping	trailing	whitespace.

(Contributed	by	Raymond	Hettinger;	issue	5150.)

IDLE	 on	 Mac	 OS	 X	 now	 works	 with	 both	 Carbon	 AquaTk	 and
Cocoa	AquaTk.

(Contributed	by	Kevin	Walzer,	Ned	Deily,	and	Ronald	Oussoren;
issue	6075.)

http://bugs.python.org/issue5150
http://bugs.python.org/issue6075

Code	Repository

In	 addition	 to	 the	 existing	 Subversion	 code	 repository	 at
http://svn.python.org	 there	 is	 now	 a	 Mercurial	 repository	 at
http://hg.python.org/.

After	 the	 3.2	 release,	 there	 are	 plans	 to	 switch	 to	 Mercurial	 as	 the
primary	 repository.	 This	 distributed	 version	 control	 system	 should
make	 it	 easier	 for	 members	 of	 the	 community	 to	 create	 and	 share
external	changesets.	See	PEP	385	for	details.

To	learn	to	use	the	new	version	control	system,	see	the	tutorial	by	Joel
Spolsky	or	the	Guide	to	Mercurial	Workflows.

http://svn.python.org
http://mercurial.selenic.com/
http://hg.python.org/
http://www.python.org/dev/peps/pep-0385
http://hginit.com
http://mercurial.selenic.com/guide/

Build	and	C	API	Changes

Changes	to	Python’s	build	process	and	to	the	C	API	include:

The	idle,	pydoc	and	2to3	scripts	are	now	installed	with	a	version-
specific	suffix	on	make	altinstall	(issue	10679).

The	C	 functions	 that	 access	 the	Unicode	Database	 now	 accept
and	return	characters	from	the	full	Unicode	range,	even	on	narrow
unicode	 builds	 (Py_UNICODE_TOLOWER,
Py_UNICODE_ISDECIMAL,	 and	 others).	 A	 visible	 difference	 in
Python	 is	 that	 unicodedata.numeric()	 now	 returns	 the
correct	 value	 for	 large	 code	 points,	 and	 repr()	 may	 consider
more	characters	as	printable.

(Reported	 by	 Bupjoe	 Lee	 and	 fixed	 by	 Amaury	 Forgeot	 D’Arc;
issue	5127.)

Computed	 gotos	 are	 now	 enabled	 by	 default	 on	 supported
compilers	 (which	are	detected	by	 the	configure	script).	They	can
still	 be	 disabled	 selectively	 by	 specifying	 --without-

computed-gotos.

(Contributed	by	Antoine	Pitrou;	issue	9203.)

The	 option	 --with-wctype-functions	 was	 removed.	 The
built-in	unicode	database	is	now	used	for	all	functions.

(Contributed	by	Amaury	Forgeot	D’Arc;	issue	9210.)

Hash	values	are	now	values	of	a	new	type,	Py_hash_t,	which	is
defined	to	be	the	same	size	as	a	pointer.	Previously	they	were	of
type	long,	which	on	some	64-bit	operating	systems	is	still	only	32

http://bugs.python.org/issue10679
http://bugs.python.org/issue5127
http://bugs.python.org/issue9203
http://bugs.python.org/issue9210

bits	long.	As	a	result	of	this	fix,	set	and	dict	can	now	hold	more
than	2**32	entries	on	builds	with	64-bit	pointers	(previously,	they
could	 grow	 to	 that	 size	 but	 their	 performance	 degraded
catastrophically).

(Suggested	by	Raymond	Hettinger	and	implemented	by	Benjamin
Peterson;	issue	9778.)

A	 new	 macro	 Py_VA_COPY	 copies	 the	 state	 of	 the	 variable
argument	list.	It	 is	equivalent	to	C99	va_copy	but	available	on	all
Python	platforms	(issue	2443).

A	 new	 C	 API	 function	 PySys_SetArgvEx()	 allows	 an
embedded	 interpreter	 to	 set	 sys.argv	 without	 also	 modifying
sys.path	(issue	5753).

PyEval_CallObject	 is	now	only	available	 in	macro	 form.	The
function	 declaration,	which	was	 kept	 for	 backwards	 compatibility
reasons,	 is	 now	 removed	 –	 the	 macro	 was	 introduced	 in	 1997
(issue	8276).

There	 is	a	new	 function	PyLong_AsLongLongAndOverflow()
which	 is	 analogous	 to	 PyLong_AsLongAndOverflow().	 They
both	 serve	 to	 convert	 Python	 int	 into	 a	 native	 fixed-width	 type
while	providing	detection	of	cases	where	the	conversion	won’t	 fit
(issue	7767).

The	 PyUnicode_CompareWithASCIIString()	 function	 now
returns	not	equal	if	the	Python	string	is	NUL	terminated.

There	is	a	new	function	PyErr_NewExceptionWithDoc()	 that
is	 like	 PyErr_NewException()	 but	 allows	 a	 docstring	 to	 be
specified.	This	lets	C	exceptions	have	the	same	self-documenting

http://bugs.python.org/issue9778
http://bugs.python.org/issue2443
http://bugs.python.org/issue5753
http://bugs.python.org/issue8276
http://bugs.python.org/issue7767

capabilities	as	their	pure	Python	counterparts	(issue	7033).

When	compiled	with	the	--with-valgrind	option,	the	pymalloc
allocator	 will	 be	 automatically	 disabled	 when	 running	 under
Valgrind.	 This	 gives	 improved	 memory	 leak	 detection	 when
running	 under	 Valgrind,	 while	 taking	 advantage	 of	 pymalloc	 at
other	times	(issue	2422).

Removed	 the	 O?	 format	 from	 the	 PyArg_Parse	 functions.	 The
format	 is	 no	 longer	 used	 and	 it	 had	 never	 been	 documented
(issue	8837).

There	were	a	 number	 of	 other	 small	 changes	 to	 the	C-API.	See	 the
Misc/NEWS	file	for	a	complete	list.

Also,	 there	 were	 a	 number	 of	 updates	 to	 the	 Mac	 OS	 X	 build,	 see
Mac/BuildScript/README.txt	for	details.	For	users	running	a	32/64-bit
build,	 there	 is	a	known	problem	with	 the	default	Tcl/Tk	on	Mac	OS	X
10.6.	 Accordingly,	 we	 recommend	 installing	 an	 updated	 alternative
such	 as	 ActiveState	 Tcl/Tk	 8.5.9.	 See
http://www.python.org/download/mac/tcltk/	for	additional	details.

http://bugs.python.org/issue7033
http://bugs.python.org/issue2422
http://bugs.python.org/issue8837
http://hg.python.org/cpython/file/3.4/Misc/NEWS
http://hg.python.org/cpython/file/3.4/Mac/BuildScript/README.txt
http://www.activestate.com/activetcl/downloads
http://www.python.org/download/mac/tcltk/

Porting	to	Python	3.2

This	section	lists	previously	described	changes	and	other	bugfixes	that
may	require	changes	to	your	code:

The	 configparser	 module	 has	 a	 number	 of	 clean-ups.	 The
major	 change	 is	 to	 replace	 the	 old	 ConfigParser	 class	 with
long-standing	 preferred	 alternative	 SafeConfigParser.	 In
addition	there	are	a	number	of	smaller	incompatibilities:

The	 interpolation	 syntax	 is	 now	 validated	 on	 get()	 and
set()	 operations.	 In	 the	 default	 interpolation	 scheme,	 only
two	tokens	with	percent	signs	are	valid:	%(name)s	and	%%,
the	latter	being	an	escaped	percent	sign.
The	 set()	 and	 add_section()	 methods	 now	 verify	 that
values	are	actual	strings.	Formerly,	unsupported	types	could
be	introduced	unintentionally.
Duplicate	sections	or	options	from	a	single	source	now	raise
either	 DuplicateSectionError	 or
DuplicateOptionError.	 Formerly,	 duplicates	 would
silently	overwrite	a	previous	entry.
Inline	 comments	 are	 now	 disabled	 by	 default	 so	 now	 the	 ;
character	can	be	safely	used	in	values.
Comments	now	can	be	indented.	Consequently,	for	;	or	#	 to
appear	 at	 the	 start	 of	 a	 line	 in	multiline	 values,	 it	 has	 to	 be
interpolated.	This	keeps	comment	prefix	characters	in	values
from	being	mistaken	as	comments.
""	 is	 now	 a	 valid	 value	 and	 is	 no	 longer	 automatically
converted	 to	 an	 empty	 string.	 For	 empty	 strings,	 use
"option	="	in	a	line.

The	nntplib	module	was	reworked	extensively,	meaning	that	its
APIs	are	often	incompatible	with	the	3.1	APIs.

bytearray	objects	can	no	longer	be	used	as	filenames;	instead,
they	should	be	converted	to	bytes.

The	 array.tostring()	 and	 array.fromstring()	 have
been	 renamed	 to	 array.tobytes()	 and
array.frombytes()	 for	 clarity.	 The	 old	 names	 have	 been
deprecated.	(See	issue	8990.)

PyArg_Parse*()	functions:

“t#”	format	has	been	removed:	use	“s#”	or	“s*”	instead
“w”	and	“w#”	formats	has	been	removed:	use	“w*”	instead

The	PyCObject	 type,	deprecated	 in	3.1,	has	been	removed.	To
wrap	opaque	C	pointers	 in	Python	objects,	 the	 PyCapsule	 API
should	be	used	instead;	the	new	type	has	a	well-defined	interface
for	 passing	 typing	 safety	 information	 and	 a	 less	 complicated
signature	for	calling	a	destructor.

The	 sys.setfilesystemencoding()	 function	 was	 removed
because	it	had	a	flawed	design.

The	random.seed()	function	and	method	now	salt	string	seeds
with	an	sha512	hash	function.	To	access	the	previous	version	of
seed	in	order	to	reproduce	Python	3.1	sequences,	set	the	version
argument	to	1,	random.seed(s,	version=1).

The	previously	deprecated	 string.maketrans()	 function	has
been	 removed	 in	 favor	 of	 the	 static	 methods
bytes.maketrans()	 and	 bytearray.maketrans().	 This
change	solves	the	confusion	around	which	types	were	supported
by	 the	 string	 module.	 Now,	 str,	 bytes,	 and	 bytearray
each	 have	 their	 own	 maketrans	 and	 translate	 methods	 with
intermediate	translation	tables	of	the	appropriate	type.

http://bugs.python.org/issue8990

(Contributed	by	Georg	Brandl;	issue	5675.)

The	previously	deprecated	contextlib.nested()	function	has
been	 removed	 in	 favor	 of	 a	 plain	 with	 statement	 which	 can
accept	multiple	 context	managers.	 The	 latter	 technique	 is	 faster
(because	 it	 is	built-in),	and	 it	does	a	better	 job	 finalizing	multiple
context	managers	when	one	of	them	raises	an	exception:

with	open('mylog.txt')	as	infile,	open('a.out',	'w'

				for	line	in	infile:

								if	'<critical>'	in	line:

												outfile.write(line)

(Contributed	 by	 Georg	 Brandl	 and	Mattias	 Brändström;	 appspot
issue	53094.)

struct.pack()	 now	 only	 allows	 bytes	 for	 the	 s	 string	 pack
code.	 Formerly,	 it	 would	 accept	 text	 arguments	 and	 implicitly
encode	 them	 to	 bytes	 using	 UTF-8.	 This	 was	 problematic
because	 it	 made	 assumptions	 about	 the	 correct	 encoding	 and
because	a	variable-length	encoding	can	fail	when	writing	to	fixed
length	segment	of	a	structure.

Code	 such	 as	 struct.pack('<6sHHBBB',	 'GIF87a',	 x,
y)	 should	 be	 rewritten	 with	 to	 use	 bytes	 instead	 of	 text,
struct.pack('<6sHHBBB',	b'GIF87a',	x,	y).

(Discovered	by	David	Beazley	and	 fixed	by	Victor	Stinner;	 issue
10783.)

The	 xml.etree.ElementTree	 class	 now	 raises	 an
xml.etree.ElementTree.ParseError	 when	 a	 parse	 fails.

http://bugs.python.org/issue5675
http://codereview.appspot.com/53094
http://bugs.python.org/issue10783

Previously	it	raised	a	xml.parsers.expat.ExpatError.

The	new,	longer	str()	value	on	floats	may	break	doctests	which
rely	on	the	old	output	format.

In	 subprocess.Popen,	 the	 default	 value	 for	 close_fds	 is	 now
True	under	Unix;	under	Windows,	it	is	True	if	the	three	standard
streams	are	set	to	None,	False	otherwise.	Previously,	close_fds
was	 always	 False	 by	 default,	 which	 produced	 difficult	 to	 solve
bugs	or	race	conditions	when	open	file	descriptors	would	leak	into
the	child	process.

Support	 for	 legacy	 HTTP	 0.9	 has	 been	 removed	 from
urllib.request	 and	 http.client.	 Such	 support	 is	 still
present	on	the	server	side	(in	http.server).

(Contributed	by	Antoine	Pitrou,	issue	10711.)

SSL	sockets	in	timeout	mode	now	raise	socket.timeout	when
a	timeout	occurs,	rather	than	a	generic	SSLError.

(Contributed	by	Antoine	Pitrou,	issue	10272.)

The	 misleading	 functions	 PyEval_AcquireLock()	 and
PyEval_ReleaseLock()	 have	 been	 officially	 deprecated.	 The
thread-state	aware	APIs	 (such	as	PyEval_SaveThread()	 and
PyEval_RestoreThread())	should	be	used	instead.

Due	 to	 security	 risks,	 asyncore.handle_accept()	 has	 been
deprecated,	 and	 a	 new	 function,
asyncore.handle_accepted(),	was	added	to	replace	it.

(Contributed	by	Giampaolo	Rodola	in	issue	6706.)

http://bugs.python.org/issue10711
http://bugs.python.org/issue10272
http://bugs.python.org/issue6706

Due	 to	 the	 new	GIL	 implementation,	 PyEval_InitThreads()
cannot	be	called	before	Py_Initialize()	anymore.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	In	Python	3.1
Author: Raymond	Hettinger

This	article	explains	the	new	features	in	Python	3.1,	compared	to	3.0.

PEP	372:	Ordered	Dictionaries

Regular	 Python	 dictionaries	 iterate	 over	 key/value	 pairs	 in	 arbitrary
order.	 Over	 the	 years,	 a	 number	 of	 authors	 have	 written	 alternative
implementations	that	remember	the	order	that	the	keys	were	originally
inserted.	 Based	 on	 the	 experiences	 from	 those	 implementations,	 a
new	collections.OrderedDict	class	has	been	introduced.

The	OrderedDict	API	 is	substantially	the	same	as	regular	dictionaries
but	will	iterate	over	keys	and	values	in	a	guaranteed	order	depending
on	when	a	key	was	first	inserted.	If	a	new	entry	overwrites	an	existing
entry,	the	original	insertion	position	is	left	unchanged.	Deleting	an	entry
and	reinserting	it	will	move	it	to	the	end.

The	 standard	 library	 now	 supports	 use	 of	 ordered	 dictionaries	 in
several	modules.	The	configparser	module	uses	them	by	default.
This	lets	configuration	files	be	read,	modified,	and	then	written	back	in
their	 original	 order.	 The	 _asdict()	 method	 for
collections.namedtuple()	 now	 returns	 an	 ordered	 dictionary
with	 the	 values	appearing	 in	 the	 same	order	 as	 the	underlying	 tuple
indicies.	 The	 json	 module	 is	 being	 built-out	 with	 an
object_pairs_hook	 to	 allow	OrderedDicts	 to	 be	 built	 by	 the	 decoder.
Support	was	also	added	for	third-party	tools	like	PyYAML.

See	also:

PEP	372	-	Ordered	Dictionaries
PEP	 written	 by	 Armin	 Ronacher	 and	 Raymond	 Hettinger.
Implementation	written	by	Raymond	Hettinger.

http://pyyaml.org/
http://www.python.org/dev/peps/pep-0372

PEP	378:	Format	Specifier	for	Thousands
Separator

The	built-in	format()	 function	and	the	str.format()	method	use
a	mini-language	that	now	includes	a	simple,	non-locale	aware	way	to
format	a	number	with	a	 thousands	separator.	That	provides	a	way	 to
humanize	a	program’s	output,	 improving	 its	 professional	 appearance
and	readability:

>>>	format(1234567,	',d')

'1,234,567'

>>>	format(1234567.89,	',.2f')

'1,234,567.89'

>>>	format(12345.6	+	8901234.12j,	',f')

'12,345.600000+8,901,234.120000j'

>>>	format(Decimal('1234567.89'),	',f')

'1,234,567.89'

The	 supported	 types	 are	 int,	 float,	 complex	 and
decimal.Decimal.

Discussions	are	underway	about	how	to	specify	alternative	separators
like	 dots,	 spaces,	 apostrophes,	 or	 underscores.	 Locale-aware
applications	should	use	 the	existing	n	 format	 specifier	which	 already
has	some	support	for	thousands	separators.

See	also:

PEP	378	-	Format	Specifier	for	Thousands	Separator
PEP	 written	 by	 Raymond	 Hettinger	 and	 implemented	 by	 Eric
Smith	and	Mark	Dickinson.

http://www.python.org/dev/peps/pep-0378

Other	Language	Changes

Some	smaller	changes	made	to	the	core	Python	language	are:

Directories	and	zip	archives	containing	a	__main__.py	 file	can
now	be	executed	directly	by	passing	their	name	to	the	interpreter.
The	directory/zipfile	 is	 automatically	 inserted	as	 the	 first	 entry	 in
sys.path.	 (Suggestion	 and	 initial	 patch	 by	 Andy	 Chu;	 revised
patch	by	Phillip	J.	Eby	and	Nick	Coghlan;	issue	1739468.)

The	int()	 type	gained	a	bit_length	method	that	returns	 the
number	of	bits	necessary	to	represent	its	argument	in	binary:

>>>	n	=	37

>>>	bin(37)

'0b100101'

>>>	n.bit_length()

6

>>>	n	=	2**123-1

>>>	n.bit_length()

123

>>>	(n+1).bit_length()

124

(Contributed	 by	 Fredrik	 Johansson,	 Victor	 Stinner,	 Raymond
Hettinger,	and	Mark	Dickinson;	issue	3439.)

The	 fields	 in	 format()	 strings	 can	 now	 be	 automatically
numbered:

>>>	'Sir	{}	of	{}'.format('Gallahad',	'Camelot')

'Sir	Gallahad	of	Camelot'

http://bugs.python.org/issue1739468
http://bugs.python.org/issue3439

Formerly,	the	string	would	have	required	numbered	fields	such	as:
'Sir	{0}	of	{1}'.

(Contributed	by	Eric	Smith;	issue	5237.)

The	 string.maketrans()	 function	 is	 deprecated	 and	 is
replaced	 by	 new	 static	 methods,	 bytes.maketrans()	 and
bytearray.maketrans().	 This	 change	 solves	 the	 confusion
around	which	types	were	supported	by	the	string	module.	Now,
str,	 bytes,	 and	 bytearray	 each	 have	 their	 own	maketrans
and	translate	methods	with	intermediate	translation	tables	of	the
appropriate	type.

(Contributed	by	Georg	Brandl;	issue	5675.)

The	 syntax	 of	 the	 with	 statement	 now	 allows	 multiple	 context
managers	in	a	single	statement:

>>>	with	open('mylog.txt')	as	infile,	open('a.out'

...					for	line	in	infile:

...									if	'<critical>'	in	line:

...													outfile.write(line)

With	the	new	syntax,	the	contextlib.nested()	function	is	no
longer	needed	and	is	now	deprecated.

(Contributed	 by	 Georg	 Brandl	 and	Mattias	 Brändström;	 appspot
issue	53094.)

round(x,	n)	now	returns	an	integer	if	x	is	an	integer.	Previously
it	returned	a	float:

>>>	round(1123,	-2)

http://bugs.python.org/issue5237
http://bugs.python.org/issue5675
http://codereview.appspot.com/53094

1100

(Contributed	by	Mark	Dickinson;	issue	4707.)

Python	 now	 uses	David	Gay’s	 algorithm	 for	 finding	 the	 shortest
floating	 point	 representation	 that	 doesn’t	 change	 its	 value.	 This
should	 help	 mitigate	 some	 of	 the	 confusion	 surrounding	 binary
floating	point	numbers.

The	significance	is	easily	seen	with	a	number	like	1.1	which	does
not	have	an	exact	equivalent	 in	binary	floating	point.	Since	there
is	 no	 exact	 equivalent,	 an	 expression	 like	 float('1.1')
evaluates	 to	 the	 nearest	 representable	 value	 which	 is
0x1.199999999999ap+0	 in	 hex	 or
1.100000000000000088817841970012523233890533447265625

in	decimal.	That	nearest	value	was	and	still	is	used	in	subsequent
floating	point	calculations.

What	is	new	is	how	the	number	gets	displayed.	Formerly,	Python
used	a	simple	approach.	The	value	of	repr(1.1)	was	computed
as	 format(1.1,	 '.17g')	 which	 evaluated	 to
'1.1000000000000001'.	The	advantage	of	using	17	digits	was
that	 it	 relied	 on	 IEEE-754	 guarantees	 to	 assure	 that
eval(repr(1.1))	would	round-trip	exactly	to	its	original	value.
The	 disadvantage	 is	 that	 many	 people	 found	 the	 output	 to	 be
confusing	 (mistaking	 intrinsic	 limitations	 of	 binary	 floating	 point
representation	as	being	a	problem	with	Python	itself).

The	new	algorithm	for	repr(1.1)	is	smarter	and	returns	'1.1'.
Effectively,	 it	searches	all	equivalent	string	representations	(ones
that	get	stored	with	 the	same	underlying	 float	value)	and	returns
the	shortest	representation.

http://bugs.python.org/issue4707

The	 new	 algorithm	 tends	 to	 emit	 cleaner	 representations	 when
possible,	 but	 it	 does	 not	 change	 the	 underlying	 values.	So,	 it	 is
still	 the	 case	 that	 1.1	 +	 2.2	 !=	 3.3	 even	 though	 the
representations	may	suggest	otherwise.

The	new	algorithm	depends	on	certain	features	in	the	underlying
floating	 point	 implementation.	 If	 the	 required	 features	 are	 not
found,	 the	 old	 algorithm	will	 continue	 to	 be	 used.	 Also,	 the	 text
pickle	protocols	assure	cross-platform	portability	by	using	the	old
algorithm.

(Contributed	by	Eric	Smith	and	Mark	Dickinson;	issue	1580)

http://bugs.python.org/issue1580

New,	Improved,	and	Deprecated	Modules

Added	 a	 collections.Counter	 class	 to	 support	 convenient
counting	of	unique	items	in	a	sequence	or	iterable:

>>>	Counter(['red',	'blue',	'red',	'green',	'blue'

Counter({'blue':	3,	'red':	2,	'green':	1})

(Contributed	by	Raymond	Hettinger;	issue	1696199.)

Added	a	new	module,	tkinter.ttk	for	access	to	the	Tk	themed
widget	 set.	 The	 basic	 idea	 of	 ttk	 is	 to	 separate,	 to	 the	 extent
possible,	 the	 code	 implementing	 a	 widget’s	 behavior	 from	 the
code	implementing	its	appearance.

(Contributed	by	Guilherme	Polo;	issue	2983.)

The	 gzip.GzipFile	 and	 bz2.BZ2File	 classes	 now	 support
the	context	manager	protocol:

>>>	#	Automatically	close	file	after	writing

>>>	with	gzip.GzipFile(filename,	"wb")	as	f:

...					f.write(b"xxx")

(Contributed	by	Antoine	Pitrou.)

The	 decimal	 module	 now	 supports	 methods	 for	 creating	 a
decimal	object	from	a	binary	float.	The	conversion	is	exact	but
can	sometimes	be	surprising:

>>>	Decimal.from_float(1.1)

Decimal('1.100000000000000088817841970012523233890533447265625')

http://bugs.python.org/issue1696199
http://bugs.python.org/issue2983

The	 long	 decimal	 result	 shows	 the	 actual	 binary	 fraction	 being
stored	 for	1.1.	The	 fraction	has	many	digits	 because	1.1	 cannot
be	exactly	represented	in	binary.

(Contributed	by	Raymond	Hettinger	and	Mark	Dickinson.)

The	 itertools	 module	 grew	 two	 new	 functions.	 The
itertools.combinations_with_replacement()	 function
is	one	of	four	for	generating	combinatorics	including	permutations
and	Cartesian	products.	The	itertools.compress()	 function
mimics	 its	 namesake	 from	 APL.	 Also,	 the	 existing
itertools.count()	 function	 now	 has	 an	 optional	 step
argument	 and	 can	 accept	 any	 type	 of	 counting	 sequence
including	fractions.Fraction	and	decimal.Decimal:

>>>	[p+q	for	p,q	in	combinations_with_replacement

['LL',	'LO',	'LV',	'LE',	'OO',	'OV',	'OE',	'VV',	'VE',	'EE']

>>>	list(compress(data=range(10),	selectors=[0,0,

[2,	3,	5,	7]

>>>	c	=	count(start=Fraction(1,2),	step=Fraction(

>>>	[next(c),	next(c),	next(c),	next(c)]

[Fraction(1,	2),	Fraction(2,	3),	Fraction(5,	6),	Fraction(1,	1)]

(Contributed	by	Raymond	Hettinger.)

collections.namedtuple()	 now	 supports	 a	 keyword
argument	rename	which	 lets	 invalid	 fieldnames	 be	 automatically
converted	 to	 positional	 names	 in	 the	 form	 _0,	 _1,	 etc.	 This	 is
useful	 when	 the	 field	 names	 are	 being	 created	 by	 an	 external
source	such	as	a	CSV	header,	SQL	field	list,	or	user	input:

>>>	query	=	input()

SELECT	region,	dept,	count(*)	FROM	main	GROUPBY	region,	dept

>>>	cursor.execute(query)

>>>	query_fields	=	[desc[0]	for	desc	in	cursor.description

>>>	UserQuery	=	namedtuple('UserQuery',	query_fields

>>>	pprint.pprint([UserQuery(*row)	for	row	in	cursor

[UserQuery(region='South',	dept='Shipping',	_2=185),

	UserQuery(region='North',	dept='Accounting',	_2=37),

	UserQuery(region='West',	dept='Sales',	_2=419)]

(Contributed	by	Raymond	Hettinger;	issue	1818.)

The	 re.sub(),	 re.subn()	 and	 re.split()	 functions	 now
accept	a	flags	parameter.

(Contributed	by	Gregory	Smith.)

The	 logging	 module	 now	 implements	 a	 simple
logging.NullHandler	class	for	applications	that	are	not	using
logging	 but	 are	 calling	 library	 code	 that	 does.	 Setting-up	 a	 null
handler	 will	 suppress	 spurious	 warnings	 such	 as	 “No	 handlers
could	be	found	for	logger	foo”:

>>>	h	=	logging.NullHandler()

>>>	logging.getLogger("foo").addHandler(h)

(Contributed	by	Vinay	Sajip;	issue	4384).

The	runpy	module	which	supports	 the	-m	command	 line	switch
now	 supports	 the	 execution	 of	 packages	 by	 looking	 for	 and
executing	 a	 __main__	 submodule	 when	 a	 package	 name	 is
supplied.

http://bugs.python.org/issue1818
http://bugs.python.org/issue4384

(Contributed	by	Andi	Vajda;	issue	4195.)

The	pdb	module	can	now	access	and	display	source	code	loaded
via	zipimport	(or	any	other	conformant	PEP	302	loader).

(Contributed	by	Alexander	Belopolsky;	issue	4201.)

functools.partial	objects	can	now	be	pickled.

(Suggested	by	Antoine	Pitrou	and	Jesse	Noller.	Implemented	by
Jack	Diederich;	issue	5228.)

Add	pydoc	help	topics	for	symbols	so	that	help('@')	works	as
expected	in	the	interactive	environment.

(Contributed	by	David	Laban;	issue	4739.)

The	unittest	module	now	supports	skipping	individual	tests	or
classes	 of	 tests.	 And	 it	 supports	 marking	 a	 test	 as	 a	 expected
failure,	a	test	that	is	known	to	be	broken,	but	shouldn’t	be	counted
as	a	failure	on	a	TestResult:

class	TestGizmo(unittest.TestCase):

				@unittest.skipUnless(sys.platform.startswith(

				def	test_gizmo_on_windows(self):

								...

				@unittest.expectedFailure

				def	test_gimzo_without_required_library(self):

								...

Also,	tests	for	exceptions	have	been	builtout	to	work	with	context
managers	using	the	with	statement:

http://bugs.python.org/issue4195
http://www.python.org/dev/peps/pep-0302
http://bugs.python.org/issue4201
http://bugs.python.org/issue5228
http://bugs.python.org/issue4739

def	test_division_by_zero(self):

				with	self.assertRaises(ZeroDivisionError):

								x	/	0

In	addition,	several	new	assertion	methods	were	added	including
assertSetEqual(),	 assertDictEqual(),
assertDictContainsSubset(),	 assertListEqual(),
assertTupleEqual(),	 assertSequenceEqual(),
assertRaisesRegexp(),	 assertIsNone(),	 and
assertIsNotNone().

(Contributed	by	Benjamin	Peterson	and	Antoine	Pitrou.)

The	io	module	has	three	new	constants	for	the	seek()	method
SEEK_SET,	SEEK_CUR,	and	SEEK_END.

The	sys.version_info	tuple	is	now	a	named	tuple:

>>>	sys.version_info

sys.version_info(major=3,	minor=1,	micro=0,	releaselevel='alpha',	serial=2)

(Contributed	by	Ross	Light;	issue	4285.)

The	nntplib	and	imaplib	modules	now	support	IPv6.

(Contributed	by	Derek	Morr;	issue	1655	and	issue	1664.)

The	pickle	module	has	been	adapted	for	better	 interoperability
with	 Python	 2.x	 when	 used	 with	 protocol	 2	 or	 lower.	 The
reorganization	 of	 the	 standard	 library	 changed	 the	 formal
reference	for	many	objects.	For	example,	__builtin__.set	 in
Python	 2	 is	 called	 builtins.set	 in	 Python	 3.	 This	 change
confounded	 efforts	 to	 share	 data	 between	 different	 versions	 of

http://bugs.python.org/issue4285
http://bugs.python.org/issue1655
http://bugs.python.org/issue1664

Python.	But	now	when	protocol	2	or	lower	is	selected,	the	pickler
will	automatically	use	the	old	Python	2	names	for	both	loading	and
dumping.	 This	 remapping	 is	 turned-on	 by	 default	 but	 can	 be
disabled	with	the	fix_imports	option:

>>>	s	=	{1,	2,	3}

>>>	pickle.dumps(s,	protocol=0)

b'c__builtin__\nset\np0\n((lp1\nL1L\naL2L\naL3L\natp2\nRp3\n.'

>>>	pickle.dumps(s,	protocol=0,	fix_imports=False

b'cbuiltins\nset\np0\n((lp1\nL1L\naL2L\naL3L\natp2\nRp3\n.'

An	unfortunate	but	unavoidable	side-effect	of	 this	change	 is	 that
protocol	2	pickles	produced	by	Python	3.1	won’t	be	readable	with
Python	3.0.	The	latest	pickle	protocol,	protocol	3,	should	be	used
when	migrating	 data	 between	Python	 3.x	 implementations,	 as	 it
doesn’t	attempt	to	remain	compatible	with	Python	2.x.

(Contributed	 by	 Alexandre	 Vassalotti	 and	 Antoine	 Pitrou,	 issue
6137.)

A	new	module,	 importlib	was	added.	 It	 provides	 a	 complete,
portable,	 pure	 Python	 reference	 implementation	 of	 the	 import
statement	 and	 its	 counterpart,	 the	 __import__()	 function.	 It
represents	a	substantial	step	forward	in	documenting	and	defining
the	actions	that	take	place	during	imports.

(Contributed	by	Brett	Cannon.)

http://bugs.python.org/issue6137

Optimizations

Major	performance	enhancements	have	been	added:

The	new	I/O	library	(as	defined	in	PEP	3116)	was	mostly	written	in
Python	 and	 quickly	 proved	 to	 be	 a	 problematic	 bottleneck	 in
Python	 3.0.	 In	 Python	 3.1,	 the	 I/O	 library	 has	 been	 entirely
rewritten	in	C	and	is	2	to	20	times	faster	depending	on	the	task	at
hand.	 The	 pure	 Python	 version	 is	 still	 available	 for
experimentation	purposes	through	the	_pyio	module.

(Contributed	by	Amaury	Forgeot	d’Arc	and	Antoine	Pitrou.)

Added	 a	 heuristic	 so	 that	 tuples	 and	 dicts	 containing	 only
untrackable	objects	are	not	tracked	by	the	garbage	collector.	This
can	 reduce	 the	 size	 of	 collections	 and	 therefore	 the	 garbage
collection	overhead	on	long-running	programs,	depending	on	their
particular	use	of	datatypes.

(Contributed	by	Antoine	Pitrou,	issue	4688.)

Enabling	 a	 configure	 option	 named	 --with-computed-gotos
on	 compilers	 that	 support	 it	 (notably:	 gcc,	 SunPro,	 icc),	 the
bytecode	 evaluation	 loop	 is	 compiled	 with	 a	 new	 dispatch
mechanism	which	 gives	 speedups	 of	 up	 to	 20%,	 depending	 on
the	system,	the	compiler,	and	the	benchmark.

(Contributed	 by	 Antoine	 Pitrou	 along	 with	 a	 number	 of	 other
participants,	issue	4753).

The	decoding	of	UTF-8,	UTF-16	and	LATIN-1	 is	now	two	 to	 four
times	faster.

http://www.python.org/dev/peps/pep-3116
http://bugs.python.org/issue4688
http://bugs.python.org/issue4753

(Contributed	by	Antoine	Pitrou	and	Amaury	Forgeot	d’Arc,	 issue
4868.)

The	json	module	now	has	a	C	extension	to	substantially	improve
its	 performance.	 In	 addition,	 the	 API	 was	 modified	 so	 that	 json
works	 only	 with	 str,	 not	 with	 bytes.	 That	 change	 makes	 the
module	closely	match	the	JSON	specification	which	 is	defined	 in
terms	of	Unicode.

(Contributed	 by	Bob	 Ippolito	 and	 converted	 to	Py3.1	 by	Antoine
Pitrou	and	Benjamin	Peterson;	issue	4136.)

Unpickling	now	interns	the	attribute	names	of	pickled	objects.	This
saves	memory	and	allows	pickles	to	be	smaller.

(Contributed	by	Jake	McGuire	and	Antoine	Pitrou;	issue	5084.)

http://bugs.python.org/issue4868
http://json.org/
http://bugs.python.org/issue4136
http://bugs.python.org/issue5084

IDLE

IDLE’s	 format	 menu	 now	 provides	 an	 option	 to	 strip	 trailing
whitespace	from	a	source	file.

(Contributed	by	Roger	D.	Serwy;	issue	5150.)

http://bugs.python.org/issue5150

Build	and	C	API	Changes

Changes	to	Python’s	build	process	and	to	the	C	API	include:

Integers	are	now	stored	internally	either	in	base	2**15	or	in	base
2**30,	 the	base	being	determined	at	 build	 time.	Previously,	 they
were	 always	 stored	 in	 base	 2**15.	 Using	 base	 2**30	 gives
significant	 performance	 improvements	 on	 64-bit	 machines,	 but
benchmark	 results	 on	 32-bit	 machines	 have	 been	 mixed.
Therefore,	 the	 default	 is	 to	 use	 base	 2**30	 on	 64-bit	 machines
and	 base	 2**15	 on	 32-bit	 machines;	 on	 Unix,	 there’s	 a	 new
configure	 option	 --enable-big-digits	 that	 can	 be	 used	 to
override	this	default.

Apart	from	the	performance	improvements	this	change	should	be
invisible	 to	 end	 users,	 with	 one	 exception:	 for	 testing	 and
debugging	purposes	there’s	a	new	sys.int_info	that	provides
information	about	the	internal	format,	giving	the	number	of	bits	per
digit	and	the	size	in	bytes	of	the	C	type	used	to	store	each	digit:

>>>	import	sys

>>>	sys.int_info

sys.int_info(bits_per_digit=30,	sizeof_digit=4)

(Contributed	by	Mark	Dickinson;	issue	4258.)

The	PyLong_AsUnsignedLongLong()	 function	now	handles	a
negative	 pylong	 by	 raising	 OverflowError	 instead	 of
TypeError.

(Contributed	 by	 Mark	 Dickinson	 and	 Lisandro	 Dalcrin;	 issue
5175.)

http://bugs.python.org/issue4258
http://bugs.python.org/issue5175

Deprecated	 PyNumber_Int().	 Use	 PyNumber_Long()

instead.

(Contributed	by	Mark	Dickinson;	issue	4910.)

Added	a	new	 PyOS_string_to_double()	 function	 to	 replace
the	 deprecated	 functions	 PyOS_ascii_strtod()	 and
PyOS_ascii_atof().

(Contributed	by	Mark	Dickinson;	issue	5914.)

Added	 PyCapsule	 as	 a	 replacement	 for	 the	 PyCObject	 API.
The	 principal	 difference	 is	 that	 the	 new	 type	 has	 a	well	 defined
interface	 for	 passing	 typing	 safety	 information	 and	 a	 less
complicated	signature	for	calling	a	destructor.	The	old	type	had	a
problematic	API	and	is	now	deprecated.

(Contributed	by	Larry	Hastings;	issue	5630.)

http://bugs.python.org/issue4910
http://bugs.python.org/issue5914
http://bugs.python.org/issue5630

Porting	to	Python	3.1

This	section	lists	previously	described	changes	and	other	bugfixes	that
may	require	changes	to	your	code:

The	 new	 floating	 point	 string	 representations	 can	 break	 existing
doctests.	For	example:

def	e():

				'''Compute	the	base	of	natural	logarithms.

				>>>	e()

				2.7182818284590451

				'''

				return	sum(1/math.factorial(x)	for	x	in	reversed

doctest.testmod()

**

Failed	example:

				e()

Expected:

				2.7182818284590451

Got:

				2.718281828459045

**

The	automatic	name	remapping	in	the	pickle	module	for	protocol
2	or	lower	can	make	Python	3.1	pickles	unreadable	in	Python	3.0.
One	 solution	 is	 to	 use	 protocol	 3.	 Another	 solution	 is	 to	 set	 the
fix_imports	 option	 to	False.	 See	 the	 discussion	 above	 for	more
details.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	In	Python	3.0
Author: Guido	van	Rossum

This	article	explains	the	new	features	in	Python	3.0,	compared	to	2.6.
Python	3.0,	also	known	as	 “Python	3000”	or	 “Py3K”,	 is	 the	 first	ever
intentionally	backwards	 incompatible	Python	release.	There	are	more
changes	than	 in	a	typical	release,	and	more	that	are	 important	 for	all
Python	 users.	 Nevertheless,	 after	 digesting	 the	 changes,	 you’ll	 find
that	Python	really	hasn’t	changed	all	that	much	–	by	and	large,	we’re
mostly	fixing	well-known	annoyances	and	warts,	and	removing	a	lot	of
old	cruft.

This	article	doesn’t	 attempt	 to	provide	a	 complete	 specification	of	 all
new	features,	but	 instead	tries	to	give	a	convenient	overview.	For	full
details,	you	should	 refer	 to	 the	documentation	 for	Python	3.0,	and/or
the	many	PEPs	referenced	 in	 the	 text.	 If	you	want	 to	understand	 the
complete	implementation	and	design	rationale	for	a	particular	feature,
PEPs	usually	have	more	details	 than	 the	 regular	documentation;	but
note	 that	 PEPs	 usually	 are	 not	 kept	 up-to-date	 once	 a	 feature	 has
been	fully	implemented.

Due	to	time	constraints	this	document	is	not	as	complete	as	it	should
have	been.	As	always	 for	 a	new	 release,	 the	 Misc/NEWS	 file	 in	 the
source	 distribution	 contains	 a	 wealth	 of	 detailed	 information	 about
every	small	thing	that	was	changed.

Common	Stumbling	Blocks

This	section	lists	those	few	changes	that	are	most	likely	to	trip	you	up
if	you’re	used	to	Python	2.5.

Print	Is	A	Function

The	 print	 statement	 has	 been	 replaced	 with	 a	 print()	 function,
with	keyword	arguments	 to	 replace	most	of	 the	special	syntax	of	 the
old	print	statement	(PEP	3105).	Examples:

Old:	print	"The	answer	is",	2*2

New:	print("The	answer	is",	2*2)

Old:	print	x,											#	Trailing	comma	suppresses	newline

New:	print(x,	end="	")		#	Appends	a	space	instead	of	a	newline

Old:	print														#	Prints	a	newline

New:	print()												#	You	must	call	the	function!

Old:	print	>>sys.stderr,	"fatal	error"

New:	print("fatal	error",	file=sys.stderr)

Old:	print	(x,	y)							#	prints	repr((x,	y))

New:	print((x,	y))						#	Not	the	same	as	print(x,	y)!

You	can	also	customize	the	separator	between	items,	e.g.:

print("There	are	<",	2**32,	">	possibilities!",	sep=

which	produces:

http://www.python.org/dev/peps/pep-3105

There	are	<4294967296>	possibilities!

Note:

The	print()	 function	doesn’t	support	 the	“softspace”	feature	of
the	 old	 print	 statement.	 For	 example,	 in	 Python	 2.x,	 print
"A\n",	 "B"	 would	 write	 "A\nB\n";	 but	 in	 Python	 3.0,
print("A\n",	"B")	writes	"A\n	B\n".
Initially,	you’ll	be	finding	yourself	 typing	the	old	print	x	a	 lot	 in
interactive	mode.	Time	 to	 retrain	your	 fingers	 to	 type	print(x)
instead!
When	 using	 the	 2to3	 source-to-source	 conversion	 tool,	 all
print	 statements	 are	 automatically	 converted	 to	 print()
function	calls,	so	this	is	mostly	a	non-issue	for	larger	projects.

Views	And	Iterators	Instead	Of	Lists

Some	well-known	APIs	no	longer	return	lists:

dict	 methods	 dict.keys(),	 dict.items()	 and
dict.values()	return	“views”	instead	of	lists.	For	example,	this
no	 longer	 works:	 k	 =	 d.keys();	 k.sort().	 Use	 k	 =

sorted(d)	 instead	 (this	works	 in	Python	2.5	 too	and	 is	 just	as
efficient).

Also,	 the	 dict.iterkeys(),	 dict.iteritems()	 and
dict.itervalues()	methods	are	no	longer	supported.

map()	 and	 filter()	 return	 iterators.	 If	 you	 really	 need	 a	 list
and	 the	 input	sequences	are	all	of	equal	 length,	a	quick	 fix	 is	 to
wrap	map()	in	list(),	e.g.	list(map(...)),	but	a	better	 fix
is	often	to	use	a	list	comprehension	(especially	when	the	original

code	uses	lambda),	or	rewriting	the	code	so	it	doesn’t	need	a	list
at	all.	Particularly	 tricky	 is	 map()	 invoked	 for	 the	side	effects	of
the	 function;	 the	 correct	 transformation	 is	 to	 use	 a	 regular	 for
loop	(since	creating	a	list	would	just	be	wasteful).

If	the	input	sequences	are	not	of	equal	length,	map()	will	stop	at
the	 termination	 of	 the	 shortest	 of	 the	 sequences.	 For	 full
compatibility	with	map	from	Python	2.x,	also	wrap	the	sequences
in	 itertools.zip_longest(),	 e.g.	 map(func,

*sequences)	 becomes	 list(map(func,

itertools.zip_longest(*sequences))).

range()	now	behaves	like	xrange()	used	to	behave,	except	it
works	with	values	of	arbitrary	size.	The	latter	no	longer	exists.

zip()	now	returns	an	iterator.

Ordering	Comparisons

Python	3.0	has	simplified	the	rules	for	ordering	comparisons:

The	 ordering	 comparison	 operators	 (<,	 <=,	 >=,	 >)	 raise	 a
TypeError	exception	when	the	operands	don’t	have	a	meaningful
natural	ordering.	Thus,	expressions	 like	1	<	'',	0	>	None	 or
len	<=	len	are	no	longer	valid,	and	e.g.	None	<	None	raises
TypeError	instead	of	returning	False.	A	corollary	is	that	sorting
a	 heterogeneous	 list	 no	 longer	makes	 sense	 –	 all	 the	 elements
must	be	comparable	to	each	other.	Note	that	this	does	not	apply
to	 the	 ==	 and	 !=	 operators:	 objects	 of	 different	 incomparable
types	always	compare	unequal	to	each	other.
builtin.sorted()	 and	 list.sort()	 no	 longer	 accept	 the
cmp	 argument	 providing	 a	 comparison	 function.	 Use	 the	 key

argument	 instead.	N.B.	 the	key	and	 reverse	 arguments	 are	 now
“keyword-only”.
The	 cmp()	 function	 should	 be	 treated	 as	 gone,	 and	 the
__cmp__()	 special	 method	 is	 no	 longer	 supported.	 Use
__lt__()	 for	 sorting,	 __eq__()	with	 __hash__(),	 and	 other
rich	 comparisons	 as	 needed.	 (If	 you	 really	 need	 the	 cmp()
functionality,	you	could	use	the	expression	(a	>	b)	-	(a	<	b)
as	the	equivalent	for	cmp(a,	b).)

Integers

PEP	0237:	 Essentially,	 long	 renamed	 to	 int.	 That	 is,	 there	 is
only	one	built-in	integral	type,	named	int;	but	 it	behaves	mostly
like	the	old	long	type.
PEP	0238:	An	expression	 like	1/2	 returns	a	 float.	Use	1//2	 to
get	 the	 truncating	 behavior.	 (The	 latter	 syntax	 has	 existed	 for
years,	at	least	since	Python	2.2.)
The	sys.maxint	constant	was	removed,	since	there	is	no	longer
a	 limit	 to	 the	value	of	 integers.	However,	sys.maxsize	 can	 be
used	as	an	integer	larger	than	any	practical	list	or	string	index.	It
conforms	 to	 the	 implementation’s	 “natural”	 integer	 size	 and	 is
typically	 the	 same	as	 sys.maxint	 in	 previous	 releases	 on	 the
same	platform	(assuming	the	same	build	options).
The	 repr()	 of	 a	 long	 integer	 doesn’t	 include	 the	 trailing	 L
anymore,	 so	 code	 that	 unconditionally	 strips	 that	 character	 will
chop	off	the	last	digit	instead.	(Use	str()	instead.)
Octal	literals	are	no	longer	of	the	form	0720;	use	0o720	instead.

Text	Vs.	Data	Instead	Of	Unicode	Vs.	8-bit

Everything	you	thought	you	knew	about	binary	data	and	Unicode	has
changed.

http://www.python.org/dev/peps/pep-0237
http://www.python.org/dev/peps/pep-0238

Python	3.0	uses	the	concepts	of	text	and	(binary)	data	instead	of
Unicode	 strings	 and	 8-bit	 strings.	 All	 text	 is	 Unicode;	 however
encoded	Unicode	is	represented	as	binary	data.	The	type	used	to
hold	text	is	str,	the	type	used	to	hold	data	is	bytes.	The	biggest
difference	with	the	2.x	situation	is	that	any	attempt	to	mix	text	and
data	in	Python	3.0	raises	TypeError,	whereas	if	you	were	to	mix
Unicode	and	8-bit	strings	 in	Python	2.x,	 it	would	work	 if	 the	8-bit
string	happened	to	contain	only	7-bit	(ASCII)	bytes,	but	you	would
get	UnicodeDecodeError	if	it	contained	non-ASCII	values.	This
value-specific	behavior	has	caused	numerous	sad	faces	over	the
years.
As	 a	 consequence	of	 this	 change	 in	 philosophy,	 pretty	much	all
code	that	uses	Unicode,	encodings	or	binary	data	most	likely	has
to	change.	The	change	is	for	the	better,	as	in	the	2.x	world	there
were	 numerous	 bugs	 having	 to	 do	 with	 mixing	 encoded	 and
unencoded	 text.	 To	 be	 prepared	 in	 Python	 2.x,	 start	 using
unicode	 for	all	unencoded	text,	and	str	 for	binary	or	encoded
data	only.	Then	the	2to3	tool	will	do	most	of	the	work	for	you.
You	can	no	longer	use	u"..."	literals	for	Unicode	text.	However,
you	must	use	b"..."	literals	for	binary	data.
As	the	str	and	bytes	types	cannot	be	mixed,	you	must	always
explicitly	convert	between	them.	Use	str.encode()	 to	go	from
str	to	bytes,	and	bytes.decode()	to	go	from	bytes	to	str.
You	 can	 also	 use	 bytes(s,	 encoding=...)	 and	 str(b,
encoding=...),	respectively.
Like	 str,	 the	 bytes	 type	 is	 immutable.	 There	 is	 a	 separate
mutable	type	to	hold	buffered	binary	data,	bytearray.	Nearly	all
APIs	 that	 accept	 bytes	 also	 accept	 bytearray.	 The	 mutable
API	is	based	on	collections.MutableSequence.
All	backslashes	 in	 raw	string	 literals	are	 interpreted	 literally.	This
means	 that	 '\U'	 and	 '\u'	 escapes	 in	 raw	 strings	 are	 not
treated	 specially.	 For	 example,	 r'\u20ac'	 is	 a	 string	 of	 6
characters	 in	Python	3.0,	whereas	 in	2.6,	ur'\u20ac'	was	 the

single	 “euro”	 character.	 (Of	 course,	 this	 change	only	 affects	 raw
string	literals;	the	euro	character	is	'\u20ac'	in	Python	3.0.)
The	 built-in	 basestring	 abstract	 type	was	 removed.	Use	 str
instead.	 The	 str	 and	 bytes	 types	 don’t	 have	 functionality
enough	 in	 common	 to	 warrant	 a	 shared	 base	 class.	 The	 2to3
tool	(see	below)	replaces	every	occurrence	of	basestring	with
str.
Files	 opened	 as	 text	 files	 (still	 the	 default	 mode	 for	 open())
always	use	an	encoding	to	map	between	strings	(in	memory)	and
bytes	 (on	 disk).	 Binary	 files	 (opened	 with	 a	 b	 in	 the	 mode
argument)	always	use	bytes	in	memory.	This	means	that	if	a	file	is
opened	 using	 an	 incorrect	 mode	 or	 encoding,	 I/O	 will	 likely	 fail
loudly,	 instead	of	silently	producing	 incorrect	data.	 It	also	means
that	even	Unix	users	will	have	to	specify	the	correct	mode	(text	or
binary)	when	opening	a	file.	There	is	a	platform-dependent	default
encoding,	 which	 on	 Unixy	 platforms	 can	 be	 set	 with	 the	 LANG
environment	 variable	 (and	 sometimes	 also	 with	 some	 other
platform-specific	 locale-related	 environment	 variables).	 In	 many
cases,	but	not	all,	the	system	default	is	UTF-8;	you	should	never
count	on	this	default.	Any	application	reading	or	writing	more	than
pure	 ASCII	 text	 should	 probably	 have	 a	 way	 to	 override	 the
encoding.	 There	 is	 no	 longer	 any	 need	 for	 using	 the	 encoding-
aware	streams	in	the	codecs	module.
The	 initial	 values	 of	 sys.stdin,	 sys.stdout	 and
sys.stderr	 are	 now	 unicode-only	 text	 files	 (i.e.,	 they	 are
instances	of	io.TextIOBase).	To	read	and	write	bytes	data	with
these	streams,	you	need	 to	use	 their	io.TextIOBase.buffer
attribute.
Filenames	 are	 passed	 to	 and	 returned	 from	 APIs	 as	 (Unicode)
strings.	 This	 can	present	 platform-specific	 problems	because	on
some	platforms	filenames	are	arbitrary	byte	strings.	(On	the	other
hand,	on	Windows	filenames	are	natively	stored	as	Unicode.)	As
a	 work-around,	most	 APIs	 (e.g.	 open()	 and	many	 functions	 in

the	os	module)	that	take	filenames	accept	bytes	objects	as	well
as	strings,	and	a	few	APIs	have	a	way	to	ask	for	a	bytes	return
value.	Thus,	os.listdir()	 returns	a	 list	of	bytes	 instances	 if
the	argument	 is	a	bytes	 instance,	and	os.getcwdb()	 returns
the	 current	 working	 directory	 as	 a	 bytes	 instance.	 Note	 that
when	 os.listdir()	 returns	 a	 list	 of	 strings,	 filenames	 that
cannot	 be	 decoded	 properly	 are	 omitted	 rather	 than	 raising
UnicodeError.
Some	 system	 APIs	 like	 os.environ	 and	 sys.argv	 can	 also
present	problems	when	the	bytes	made	available	by	the	system	is
not	 interpretable	 using	 the	 default	 encoding.	 Setting	 the	 LANG
variable	and	rerunning	the	program	is	probably	the	best	approach.
PEP	3138:	The	repr()	of	a	string	no	longer	escapes	non-ASCII
characters.	It	still	escapes	control	characters	and	code	points	with
non-printable	status	in	the	Unicode	standard,	however.
PEP	3120:	The	default	source	encoding	is	now	UTF-8.
PEP	 3131:	 Non-ASCII	 letters	 are	 now	 allowed	 in	 identifiers.
(However,	 the	 standard	 library	 remains	 ASCII-only	 with	 the
exception	of	contributor	names	in	comments.)
The	 StringIO	 and	 cStringIO	 modules	 are	 gone.	 Instead,
import	 the	 io	 module	 and	 use	 io.StringIO	 or	 io.BytesIO
for	text	and	data	respectively.
See	 also	 the	Unicode	 HOWTO,	 which	 was	 updated	 for	 Python
3.0.

http://www.python.org/dev/peps/pep-3138
http://www.python.org/dev/peps/pep-3120
http://www.python.org/dev/peps/pep-3131

Overview	Of	Syntax	Changes

This	section	gives	a	brief	overview	of	every	syntactic	change	in	Python
3.0.

New	Syntax

PEP	3107:	Function	argument	and	return	value	annotations.	This
provides	 a	 standardized	 way	 of	 annotating	 a	 function’s
parameters	and	return	value.	There	are	no	semantics	attached	to
such	annotations	except	that	they	can	be	introspected	at	runtime
using	 the	 __annotations__	 attribute.	 The	 intent	 is	 to
encourage	 experimentation	 through	 metaclasses,	 decorators	 or
frameworks.

PEP	 3102:	 Keyword-only	 arguments.	 Named	 parameters
occurring	 after	 *args	 in	 the	 parameter	 list	 must	 be	 specified
using	keyword	syntax	in	the	call.	You	can	also	use	a	bare	*	in	the
parameter	 list	 to	 indicate	 that	 you	don’t	 accept	 a	 variable-length
argument	list,	but	you	do	have	keyword-only	arguments.

Keyword	arguments	are	allowed	after	the	list	of	base	classes	in	a
class	definition.	This	is	used	by	the	new	convention	for	specifying
a	 metaclass	 (see	 next	 section),	 but	 can	 be	 used	 for	 other
purposes	as	well,	as	long	as	the	metaclass	supports	it.

PEP	3104:	 nonlocal	 statement.	 Using	 nonlocal	 x	 you	 can
now	 assign	 directly	 to	 a	 variable	 in	 an	 outer	 (but	 non-global)
scope.	nonlocal	is	a	new	reserved	word.

PEP	 3132:	 Extended	 Iterable	 Unpacking.	 You	 can	 now	 write

http://www.python.org/dev/peps/pep-3107
http://www.python.org/dev/peps/pep-3102
http://www.python.org/dev/peps/pep-3104
http://www.python.org/dev/peps/pep-3132

things	 like	 a,	 b,	 *rest	 =	 some_sequence.	 And	 even
*rest,	 a	 =	 stuff.	 The	 rest	 object	 is	 always	 a	 (possibly
empty)	list;	the	right-hand	side	may	be	any	iterable.	Example:

(a,	*rest,	b)	=	range(5)

This	sets	a	to	0,	b	to	4,	and	rest	to	[1,	2,	3].

Dictionary	 comprehensions:	 {k:	 v	 for	 k,	 v	 in	 stuff}
means	 the	 same	 thing	 as	 dict(stuff)	 but	 is	 more	 flexible.
(This	is	PEP	0274	vindicated.	:-)

Set	literals,	e.g.	{1,	2}.	Note	that	{}	is	an	empty	dictionary;	use
set()	for	an	empty	set.	Set	comprehensions	are	also	supported;
e.g.,	 {x	 for	 x	 in	 stuff}	 means	 the	 same	 thing	 as
set(stuff)	but	is	more	flexible.

New	 octal	 literals,	 e.g.	 0o720	 (already	 in	 2.6).	 The	 old	 octal
literals	(0720)	are	gone.

New	binary	 literals,	e.g.	0b1010	 (already	 in	2.6),	and	 there	 is	a
new	corresponding	built-in	function,	bin().

Bytes	literals	are	introduced	with	a	leading	b	or	B,	and	there	is	a
new	corresponding	built-in	function,	bytes().

Changed	Syntax

PEP	3109	and	PEP	3134:	new	raise	statement	syntax:	raise
[expr	[from	expr]].	See	below.

as	and	with	are	now	reserved	words.	(Since	2.6,	actually.)

http://www.python.org/dev/peps/pep-0274
http://www.python.org/dev/peps/pep-3109
http://www.python.org/dev/peps/pep-3134

True,	 False,	 and	 None	 are	 reserved	 words.	 (2.6	 partially
enforced	the	restrictions	on	None	already.)

Change	from	except	exc,	var	 to	except	exc	as	var.	See	PEP
3110.

PEP	3115:	New	Metaclass	Syntax.	Instead	of:

class	C:

				__metaclass__	=	M

				...

you	must	now	use:

class	C(metaclass=M):

				...

The	 module-global	 __metaclass__	 variable	 is	 no	 longer
supported.	 (It	 was	 a	 crutch	 to	make	 it	 easier	 to	 default	 to	 new-
style	classes	without	deriving	every	class	from	object.)

List	 comprehensions	 no	 longer	 support	 the	 syntactic	 form	 [...
for	var	in	item1,	item2,	...].	Use	[...	for	var	in
(item1,	 item2,	 ...)]	 instead.	 Also	 note	 that	 list
comprehensions	 have	 different	 semantics:	 they	 are	 closer	 to
syntactic	 sugar	 for	 a	 generator	 expression	 inside	 a	 list()
constructor,	 and	 in	 particular	 the	 loop	 control	 variables	 are	 no
longer	leaked	into	the	surrounding	scope.

The	 ellipsis	 (...)	 can	 be	 used	 as	 an	 atomic	 expression
anywhere.	(Previously	it	was	only	allowed	in	slices.)	Also,	it	must
now	be	spelled	as	(Previously	it	could	also	be	spelled	as	.
.	.,	by	a	mere	accident	of	the	grammar.)

http://www.python.org/dev/peps/pep-3110
http://www.python.org/dev/peps/pep-3115

Removed	Syntax

PEP	 3113:	 Tuple	 parameter	 unpacking	 removed.	 You	 can	 no
longer	write	def	foo(a,	(b,	c)):	Use	 def	foo(a,
b_c):	b,	c	=	b_c	instead.
Removed	backticks	(use	repr()	instead).
Removed	<>	(use	!=	instead).
Removed	keyword:	exec()	is	no	longer	a	keyword;	it	remains	as
a	function.	(Fortunately	 the	function	syntax	was	also	accepted	 in
2.x.)	Also	note	that	exec()	no	 longer	 takes	a	stream	argument;
instead	of	exec(f)	you	can	use	exec(f.read()).
Integer	literals	no	longer	support	a	trailing	l	or	L.
String	literals	no	longer	support	a	leading	u	or	U.
The	from	module	import	*	syntax	is	only	allowed	at	the	module
level,	no	longer	inside	functions.
The	 only	 acceptable	 syntax	 for	 relative	 imports	 is	 from	 .

[module]	import	name.	All	import	forms	not	starting	with	.
are	interpreted	as	absolute	imports.	(PEP	0328)
Classic	classes	are	gone.

http://www.python.org/dev/peps/pep-3113
http://www.python.org/dev/peps/pep-0328

Changes	Already	Present	In	Python	2.6

Since	many	users	presumably	make	the	jump	straight	from	Python	2.5
to	 Python	 3.0,	 this	 section	 reminds	 the	 reader	 of	 new	 features	 that
were	originally	 designed	 for	Python	3.0	but	 that	were	back-ported	 to
Python	2.6.	The	corresponding	sections	in	What’s	New	in	Python	2.6
should	be	consulted	for	longer	descriptions.

PEP	 343:	 The	 ‘with’	 statement.	 The	 with	 statement	 is	 now	 a
standard	 feature	 and	 no	 longer	 needs	 to	 be	 imported	 from	 the
__future__.	Also	check	out	Writing	Context	Managers	and	The
contextlib	module.
PEP	 366:	 Explicit	 Relative	 Imports	 From	 a	 Main	 Module.	 This
enhances	 the	 usefulness	 of	 the	 -m	 option	 when	 the	 referenced
module	lives	in	a	package.
PEP	370:	Per-user	site-packages	Directory.
PEP	371:	The	multiprocessing	Package.
PEP	3101:	Advanced	String	Formatting.	Note:	the	2.6	description
mentions	 the	 format()	 method	 for	 both	 8-bit	 and	 Unicode
strings.	 In	 3.0,	 only	 the	 str	 type	 (text	 strings	 with	 Unicode
support)	supports	this	method;	the	bytes	type	does	not.	The	plan
is	to	eventually	make	this	the	only	API	for	string	formatting,	and	to
start	deprecating	the	%	operator	in	Python	3.1.
PEP	3105:	print	As	a	Function.	This	is	now	a	standard	feature	and
no	longer	needs	to	be	imported	from	__future__.	More	details
were	given	above.
PEP	3110:	Exception-Handling	Changes.	The	except	exc	as	var
syntax	 is	 now	 standard	 and	 except	 exc,	 var	 is	 no	 longer
supported.	(Of	course,	the	as	var	part	is	still	optional.)
PEP	3112:	Byte	Literals.	The	b"..."	 string	 literal	 notation	 (and
its	 variants	 like	 b'...',	 b"""...""",	 and	 br"...")	 now
produces	a	literal	of	type	bytes.

PEP	3116:	New	I/O	Library.	The	io	module	 is	now	the	standard
way	of	doing	file	I/O.	The	built-in	open()	function	is	now	an	alias
for	io.open()	and	has	additional	keyword	arguments	encoding,
errors,	 newline	 and	 closefd.	 Also	 note	 that	 an	 invalid	 mode
argument	now	raises	ValueError,	not	IOError.	The	binary	file
object	underlying	a	text	file	object	can	be	accessed	as	f.buffer
(but	beware	that	the	text	object	maintains	a	buffer	of	itself	in	order
to	speed	up	the	encoding	and	decoding	operations).
PEP	3118:	Revised	Buffer	Protocol.	The	old	builtin	buffer()	 is
now	 really	 gone;	 the	 new	 builtin	 memoryview()	 provides
(mostly)	similar	functionality.
PEP	 3119:	 Abstract	 Base	 Classes.	 The	 abc	 module	 and	 the
ABCs	 defined	 in	 the	 collections	 module	 plays	 a	 somewhat
more	 prominent	 role	 in	 the	 language	now,	 and	built-in	 collection
types	 like	 dict	 and	 list	 conform	 to	 the
collections.MutableMapping	 and
collections.MutableSequence	ABCs,	respectively.
PEP	 3127:	 Integer	 Literal	 Support	 and	 Syntax.	 As	 mentioned
above,	 the	 new	 octal	 literal	 notation	 is	 the	 only	 one	 supported,
and	binary	literals	have	been	added.
PEP	3129:	Class	Decorators.
PEP	3141:	A	Type	Hierarchy	for	Numbers.	The	numbers	module
is	 another	 new	use	 of	ABCs,	 defining	Python’s	 “numeric	 tower”.
Also	 note	 the	 new	 fractions	 module	 which	 implements
numbers.Rational.

Library	Changes

Due	to	time	constraints,	this	document	does	not	exhaustively	cover	the
very	 extensive	 changes	 to	 the	 standard	 library.	 PEP	 3108	 is	 the
reference	for	the	major	changes	to	the	library.	Here’s	a	capsule	review:

Many	 old	 modules	 were	 removed.	 Some,	 like	 gopherlib	 (no
longer	 used)	 and	 md5	 (replaced	 by	 hashlib),	 were	 already
deprecated	by	PEP	0004.	Others	were	removed	as	a	result	of	the
removal	of	support	 for	various	platforms	such	as	 Irix,	BeOS	and
Mac	OS	9	(see	PEP	0011).	Some	modules	were	also	selected	for
removal	 in	 Python	 3.0	 due	 to	 lack	 of	 use	 or	 because	 a	 better
replacement	exists.	See	PEP	3108	for	an	exhaustive	list.

The	bsddb3	package	was	removed	because	 its	presence	 in	 the
core	 standard	 library	 has	 proved	 over	 time	 to	 be	 a	 particular
burden	 for	 the	 core	 developers	 due	 to	 testing	 instability	 and
Berkeley	 DB’s	 release	 schedule.	 However,	 the	 package	 is	 alive
and	 well,	 externally	 maintained	 at
http://www.jcea.es/programacion/pybsddb.htm.

Some	modules	were	renamed	because	their	old	name	disobeyed
PEP	0008,	or	for	various	other	reasons.	Here’s	the	list:

Old	Name New	Name

_winreg winreg

ConfigParser configparser

copy_reg copyreg

Queue queue

SocketServer socketserver

http://www.python.org/dev/peps/pep-3108
http://www.python.org/dev/peps/pep-0004
http://www.python.org/dev/peps/pep-0011
http://www.python.org/dev/peps/pep-3108
http://www.jcea.es/programacion/pybsddb.htm
http://www.python.org/dev/peps/pep-0008

markupbase _markupbase

repr reprlib

test.test_support test.support

A	 common	 pattern	 in	 Python	 2.x	 is	 to	 have	 one	 version	 of	 a
module	implemented	in	pure	Python,	with	an	optional	accelerated
version	implemented	as	a	C	extension;	for	example,	pickle	and
cPickle.	 This	 places	 the	 burden	 of	 importing	 the	 accelerated
version	and	falling	back	on	the	pure	Python	version	on	each	user
of	 these	 modules.	 In	 Python	 3.0,	 the	 accelerated	 versions	 are
considered	 implementation	 details	 of	 the	 pure	 Python	 versions.
Users	should	always	import	the	standard	version,	which	attempts
to	 import	 the	 accelerated	 version	 and	 falls	 back	 to	 the	 pure
Python	 version.	 The	 pickle	 /	 cPickle	 pair	 received	 this
treatment.	 The	 profile	 module	 is	 on	 the	 list	 for	 3.1.	 The
StringIO	 module	 has	 been	 turned	 into	 a	 class	 in	 the	 io
module.

Some	 related	 modules	 have	 been	 grouped	 into	 packages,	 and
usually	the	submodule	names	have	been	simplified.	The	resulting
new	packages	are:

dbm	(anydbm,	dbhash,	dbm,	dumbdbm,	gdbm,	whichdb).
html	(HTMLParser,	htmlentitydefs).
http	 (httplib,	 BaseHTTPServer,	 CGIHTTPServer,
SimpleHTTPServer,	Cookie,	cookielib).
tkinter	 (all	 Tkinter-related	 modules	 except	 turtle).
The	 target	 audience	 of	 turtle	 doesn’t	 really	 care	 about
tkinter.	Also	note	that	as	of	Python	2.6,	the	functionality	of
turtle	has	been	greatly	enhanced.
urllib	(urllib,	urllib2,	urlparse,	robotparse).
xmlrpc	 (xmlrpclib,	 DocXMLRPCServer,

SimpleXMLRPCServer).

Some	other	changes	to	standard	library	modules,	not	covered	by	PEP
3108:

Killed	sets.	Use	the	built-in	set()	class.
Cleanup	 of	 the	 sys	 module:	 removed	 sys.exitfunc(),
sys.exc_clear(),	 sys.exc_type,	 sys.exc_value,
sys.exc_traceback.	(Note	that	sys.last_type	etc.	remain.)
Cleanup	 of	 the	 array.array	 type:	 the	 read()	 and	 write()
methods	 are	 gone;	 use	 fromfile()	 and	 tofile()	 instead.
Also,	 the	 'c'	 typecode	 for	 array	 is	 gone	 –	 use	 either	 'b'	 for
bytes	or	'u'	for	Unicode	characters.
Cleanup	 of	 the	 operator	 module:	 removed
sequenceIncludes()	and	isCallable().
Cleanup	 of	 the	 thread	 module:	 acquire_lock()	 and
release_lock()	 are	 gone;	 use	 acquire()	 and	 release()
instead.
Cleanup	of	the	random	module:	removed	the	jumpahead()	API.
The	new	module	is	gone.
The	 functions	 os.tmpnam(),	 os.tempnam()	 and
os.tmpfile()	 have	 been	 removed	 in	 favor	 of	 the	 tempfile
module.
The	 tokenize	 module	 has	 been	 changed	 to	 work	 with	 bytes.
The	main	entry	point	is	now	tokenize.tokenize(),	instead	of
generate_tokens.
string.letters	 and	 its	 friends	 (string.lowercase	 and
string.uppercase)	are	gone.	Use	string.ascii_letters
etc.	 instead.	 (The	 reason	 for	 the	 removal	 is	 that
string.letters	 and	 friends	 had	 locale-specific	 behavior,
which	 is	 a	 bad	 idea	 for	 such	 attractively-named	 global
“constants”.)
Renamed	 module	 __builtin__	 to	 builtins	 (removing	 the

http://www.python.org/dev/peps/pep-3108

underscores,	adding	an	 ‘s’).	The	__builtins__	 variable	 found
in	most	global	namespaces	is	unchanged.	To	modify	a	builtin,	you
should	use	builtins,	not	__builtins__!

PEP	3101:	A	New	Approach	To	String
Formatting

A	new	system	for	built-in	string	formatting	operations	replaces	the
%	 string	 formatting	 operator.	 (However,	 the	 %	 operator	 is	 still
supported;	it	will	be	deprecated	 in	Python	3.1	and	removed	from
the	 language	 at	 some	 later	 time.)	 Read	PEP	 3101	 for	 the	 full
scoop.

http://www.python.org/dev/peps/pep-3101
http://www.python.org/dev/peps/pep-3101

Changes	To	Exceptions

The	 APIs	 for	 raising	 and	 catching	 exception	 have	 been	 cleaned	 up
and	new	powerful	features	added:

PEP	0352:	All	 exceptions	must	 be	derived	 (directly	 or	 indirectly)
from	BaseException.	This	is	the	root	of	the	exception	hierarchy.
This	 is	 not	 new	 as	 a	 recommendation,	 but	 the	 requirement	 to
inherit	 from	 BaseException	 is	 new.	 (Python	 2.6	 still	 allowed
classic	classes	to	be	raised,	and	placed	no	restriction	on	what	you
can	catch.)	As	a	consequence,	string	exceptions	are	 finally	 truly
and	utterly	dead.

Almost	 all	 exceptions	 should	 actually	 derive	 from	 Exception;
BaseException	 should	 only	 be	 used	 as	 a	 base	 class	 for
exceptions	 that	should	only	be	handled	at	 the	 top	 level,	such	as
SystemExit	 or	 KeyboardInterrupt.	 The	 recommended
idiom	for	handling	all	exceptions	except	 for	 this	 latter	category	 is
to	use	except	Exception.

StandardError	was	removed.

Exceptions	 no	 longer	 behave	 as	 sequences.	 Use	 the	 args
attribute	instead.

PEP	 3109:	 Raising	 exceptions.	 You	 must	 now	 use	 raise
Exception(args)	 instead	 of	 raise	 Exception,	 args.
Additionally,	 you	 can	 no	 longer	 explicitly	 specify	 a	 traceback;
instead,	 if	 you	 have	 to	 do	 this,	 you	 can	 assign	 directly	 to	 the
__traceback__	attribute	(see	below).

PEP	 3110:	 Catching	 exceptions.	 You	 must	 now	 use	 except

http://www.python.org/dev/peps/pep-0352
http://www.python.org/dev/peps/pep-3109
http://www.python.org/dev/peps/pep-3110

SomeException	 as	 variable	 instead	 of	 except

SomeException,	 variable.	 Moreover,	 the	 variable	 is
explicitly	deleted	when	the	except	block	is	left.

PEP	 3134:	 Exception	 chaining.	 There	 are	 two	 cases:	 implicit
chaining	and	explicit	chaining.	Implicit	chaining	happens	when	an
exception	is	raised	in	an	except	or	finally	handler	block.	This
usually	happens	due	to	a	bug	in	the	handler	block;	we	call	this	a
secondary	exception.	In	this	case,	the	original	exception	(that	was
being	 handled)	 is	 saved	 as	 the	 __context__	 attribute	 of	 the
secondary	exception.	Explicit	chaining	is	invoked	with	this	syntax:

raise	SecondaryException()	from	primary_exception

(where	 primary_exception	 is	 any	 expression	 that	 produces	 an
exception	 object,	 probably	 an	 exception	 that	 was	 previously
caught).	 In	 this	 case,	 the	 primary	 exception	 is	 stored	 on	 the
__cause__	attribute	of	 the	secondary	exception.	The	 traceback
printed	when	an	unhandled	exception	occurs	walks	 the	 chain	of
__cause__	and	__context__	attributes	and	prints	a	separate
traceback	 for	 each	 component	 of	 the	 chain,	 with	 the	 primary
exception	at	the	top.	(Java	users	may	recognize	this	behavior.)

PEP	 3134:	 Exception	 objects	 now	 store	 their	 traceback	 as	 the
__traceback__	attribute.	This	means	 that	 an	exception	object
now	 contains	 all	 the	 information	 pertaining	 to	 an	 exception,	 and
there	 are	 fewer	 reasons	 to	 use	 sys.exc_info()	 (though	 the
latter	is	not	removed).

A	 few	exception	messages	are	 improved	when	Windows	 fails	 to
load	 an	 extension	 module.	 For	 example,	 error	 code	 193	 is

http://www.python.org/dev/peps/pep-3134
http://www.python.org/dev/peps/pep-3134

now	%1	is	not	a	valid	Win32	application.	Strings	now
deal	with	non-English	locales.

Miscellaneous	Other	Changes

Operators	And	Special	Methods

!=	 now	 returns	 the	 opposite	 of	 ==,	 unless	 ==	 returns
NotImplemented.
The	 concept	 of	 “unbound	methods”	 has	been	 removed	 from	 the
language.	When	 referencing	 a	method	 as	 a	 class	 attribute,	 you
now	get	a	plain	function	object.
__getslice__(),	 __setslice__()	 and	 __delslice__()
were	 killed.	 The	 syntax	 a[i:j]	 now	 translates	 to
a.__getitem__(slice(i,	 j))	 (or	 __setitem__()	 or
__delitem__(),	 when	 used	 as	 an	 assignment	 or	 deletion
target,	respectively).
PEP	3114:	 the	 standard	 next()	 method	 has	 been	 renamed	 to
__next__().
The	__oct__()	and	__hex__()	special	methods	are	removed
–	 oct()	 and	 hex()	 use	 __index__()	 now	 to	 convert	 the
argument	to	an	integer.
Removed	support	for	__members__	and	__methods__.
The	 function	 attributes	 named	 func_X	 have	 been	 renamed	 to
use	 the	 __X__	 form,	 freeing	 up	 these	 names	 in	 the	 function
attribute	 namespace	 for	 user-defined	 attributes.	 To	 wit,
func_closure,	 func_code,	 func_defaults,	 func_dict,
func_doc,	 func_globals,	 func_name	 were	 renamed	 to
__closure__,	 __code__,	 __defaults__,	 __dict__,
__doc__,	__globals__,	__name__,	respectively.
__nonzero__()	is	now	__bool__().

Builtins

http://www.python.org/dev/peps/pep-3114

PEP	3135:	New	super().	You	can	now	invoke	super()	without
arguments	 and	 (assuming	 this	 is	 in	 a	 regular	 instance	 method
defined	 inside	 a	 class	 statement)	 the	 right	 class	 and	 instance
will	 automatically	 be	 chosen.	 With	 arguments,	 the	 behavior	 of
super()	is	unchanged.
PEP	3111:	raw_input()	was	renamed	to	input().	That	is,	the
new	input()	function	reads	a	line	from	sys.stdin	and	returns
it	with	the	trailing	newline	stripped.	It	raises	EOFError	if	the	input
is	 terminated	 prematurely.	 To	 get	 the	 old	 behavior	 of	 input(),
use	eval(input()).
A	 new	 built-in	 function	 next()	 was	 added	 to	 call	 the
__next__()	method	on	an	object.
The	 round()	 function	 rounding	 strategy	 and	 return	 type	 have
changed.	Exact	 halfway	 cases	 are	 now	 rounded	 to	 the	 nearest
even	 result	 instead	 of	 away	 from	 zero.	 (For	 example,
round(2.5)	 now	 returns	 2	 rather	 than	 3.)	 round(x[,	 n])
now	 delegates	 to	 x.__round__([n])	 instead	 of	 always
returning	a	float.	It	generally	returns	an	integer	when	called	with	a
single	argument	and	a	value	of	 the	same	type	as	x	when	called
with	two	arguments.
Moved	intern()	to	sys.intern().
Removed:	 apply().	 Instead	 of	 apply(f,	 args)	 use
f(*args).
Removed	 callable().	 Instead	 of	 callable(f)	 you	 can	 use
isinstance(f,	 collections.Callable).	 The
operator.isCallable()	function	is	also	gone.
Removed	 coerce().	 This	 function	 no	 longer	 serves	 a	 purpose
now	that	classic	classes	are	gone.
Removed	 execfile().	 Instead	 of	 execfile(fn)	 use
exec(open(fn).read()).
Removed	 the	 file	 type.	 Use	 open().	 There	 are	 now	 several
different	kinds	of	streams	that	open	can	return	in	the	io	module.

http://www.python.org/dev/peps/pep-3135
http://www.python.org/dev/peps/pep-3111

Removed	 reduce().	Use	 functools.reduce()	 if	 you	 really
need	 it;	 however,	 99	 percent	 of	 the	 time	an	 explicit	 for	 loop	 is
more	readable.
Removed	reload().	Use	imp.reload().
Removed.	dict.has_key()	–	use	the	in	operator	instead.

Build	and	C	API	Changes

Due	 to	 time	constraints,	 here	 is	 a	very	 incomplete	 list	 of	 changes	 to
the	C	API.

Support	 for	 several	 platforms	 was	 dropped,	 including	 but	 not
limited	to	Mac	OS	9,	BeOS,	RISCOS,	Irix,	and	Tru64.
PEP	3118:	New	Buffer	API.
PEP	3121:	Extension	Module	Initialization	&	Finalization.
PEP	3123:	Making	PyObject_HEAD	conform	to	standard	C.
No	more	C	API	support	for	restricted	execution.
PyNumber_Coerce(),	 PyNumber_CoerceEx(),
PyMember_Get(),	and	PyMember_Set()	C	APIs	are	removed.
New	 C	 API	 PyImport_ImportModuleNoBlock(),	 works	 like
PyImport_ImportModule()	but	won’t	block	on	the	import	lock
(returning	an	error	instead).
Renamed	 the	 boolean	 conversion	 C-level	 slot	 and	 method:
nb_nonzero	is	now	nb_bool.
Removed	METH_OLDARGS	and	WITH_CYCLE_GC	from	the	C	API.

http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-3121
http://www.python.org/dev/peps/pep-3123

Performance

The	 net	 result	 of	 the	 3.0	 generalizations	 is	 that	 Python	 3.0	 runs	 the
pystone	benchmark	around	10%	slower	 than	Python	2.5.	Most	 likely
the	biggest	cause	 is	 the	removal	of	special-casing	 for	small	 integers.
There’s	room	for	improvement,	but	it	will	happen	after	3.0	is	released!

Porting	To	Python	3.0

For	porting	existing	Python	2.5	or	2.6	source	code	to	Python	3.0,	the
best	strategy	is	the	following:

0.	 (Prerequisite:)	Start	with	excellent	test	coverage.
1.	 Port	to	Python	2.6.	This	should	be	no	more	work	than	the	average

port	 from	Python	2.x	 to	Python	2.(x+1).	Make	sure	all	your	 tests
pass.

2.	 (Still	using	2.6:)	Turn	on	the	-3	command	line	switch.	This	enables
warnings	about	 features	 that	will	be	removed	(or	change)	 in	3.0.
Run	 your	 test	 suite	 again,	 and	 fix	 code	 that	 you	 get	 warnings
about	until	there	are	no	warnings	left,	and	all	your	tests	still	pass.

3.	 Run	the	2to3	source-to-source	translator	over	your	source	code
tree.	 (See	2to3	 -	 Automated	 Python	 2	 to	 3	 code	 translation	 for
more	on	this	tool.)	Run	the	result	of	the	translation	under	Python
3.0.	Manually	fix	up	any	remaining	issues,	fixing	problems	until	all
tests	pass	again.

It	is	not	recommended	to	try	to	write	source	code	that	runs	unchanged
under	 both	 Python	 2.6	 and	 3.0;	 you’d	 have	 to	 use	 a	 very	 contorted
coding	style,	e.g.	avoiding	print	statements,	metaclasses,	and	much
more.	 If	 you	 are	 maintaining	 a	 library	 that	 needs	 to	 support	 both
Python	 2.6	 and	 Python	 3.0,	 the	 best	 approach	 is	 to	 modify	 step	 3
above	by	editing	 the	2.6	version	of	 the	source	code	and	 running	 the
2to3	translator	again,	rather	than	editing	the	3.0	version	of	the	source
code.

For	porting	C	extensions	to	Python	3.0,	please	see	Porting	Extension
Modules	to	Python	3.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.7
Author: A.M.	Kuchling	(amk	at	amk.ca)

This	article	explains	the	new	features	in	Python	2.7.	The	final	release
of	 2.7	 is	 currently	 scheduled	 for	 July	 2010;	 the	 detailed	 schedule	 is
described	in	PEP	373.

Numeric	handling	has	been	improved	in	many	ways,	for	both	floating-
point	 numbers	 and	 for	 the	 Decimal	 class.	 There	 are	 some	 useful
additions	 to	 the	 standard	 library,	 such	 as	 a	 greatly	 enhanced
unittest	module,	the	argparse	module	for	parsing	command-line
options,	 convenient	 ordered-dictionary	 and	 Counter	 classes	 in	 the
collections	module,	and	many	other	improvements.

Python	2.7	is	planned	to	be	the	last	of	the	2.x	releases,	so	we	worked
on	making	it	a	good	release	for	the	long	term.	To	help	with	porting	to
Python	3,	several	new	features	from	the	Python	3.x	series	have	been
included	in	2.7.

This	article	doesn’t	attempt	to	provide	a	complete	specification	of	 the
new	 features,	 but	 instead	 provides	 a	 convenient	 overview.	 For	 full
details,	 you	 should	 refer	 to	 the	 documentation	 for	 Python	 2.7	 at
http://docs.python.org.	 If	you	want	 to	understand	 the	 rationale	 for	 the
design	 and	 implementation,	 refer	 to	 the	 PEP	 for	 a	 particular	 new
feature	or	 the	 issue	on	http://bugs.python.org	 in	which	a	change	was
discussed.	Whenever	 possible,	 “What’s	 New	 in	 Python”	 links	 to	 the
bug/patch	item	for	each	change.

http://www.python.org/dev/peps/pep-0373
http://docs.python.org
http://bugs.python.org

The	Future	for	Python	2.x

Python	2.7	 is	 intended	 to	be	 the	 last	major	 release	 in	 the	2.x	series.
The	Python	maintainers	are	planning	to	focus	their	future	efforts	on	the
Python	3.x	series.

This	 means	 that	 2.7	 will	 remain	 in	 place	 for	 a	 long	 time,	 running
production	 systems	 that	 have	 not	 been	 ported	 to	 Python	 3.x.	 Two
consequences	of	the	long-term	significance	of	2.7	are:

It’s	 very	 likely	 the	 2.7	 release	 will	 have	 a	 longer	 period	 of
maintenance	 compared	 to	 earlier	 2.x	 versions.	 Python	 2.7	 will
continue	 to	 be	 maintained	 while	 the	 transition	 to	 3.x	 continues,
and	the	developers	are	planning	to	support	Python	2.7	with	bug-
fix	releases	beyond	the	typical	two	years.

A	policy	decision	was	made	to	silence	warnings	only	of	interest	to
developers.	 DeprecationWarning	 and	 its	 descendants	 are
now	 ignored	 unless	 otherwise	 requested,	 preventing	 users	 from
seeing	 warnings	 triggered	 by	 an	 application.	 This	 change	 was
also	made	in	the	branch	that	will	become	Python	3.2.	(Discussed
on	stdlib-sig	and	carried	out	in	issue	7319.)

In	 previous	 releases,	 DeprecationWarning	 messages	 were
enabled	 by	 default,	 providing	 Python	 developers	 with	 a	 clear
indication	of	where	their	code	may	break	in	a	future	major	version
of	Python.

However,	 there	 are	 increasingly	 many	 users	 of	 Python-based
applications	who	are	 not	 directly	 involved	 in	 the	 development	 of
those	 applications.	 DeprecationWarning	 messages	 are
irrelevant	to	such	users,	making	them	worry	about	an	application

http://bugs.python.org/issue7319

that’s	 actually	 working	 correctly	 and	 burdening	 application
developers	with	responding	to	these	concerns.

You	can	 re-enable	display	of	DeprecationWarning	messages
by	running	Python	with	the	-Wdefault	(short	form:	-Wd)	switch,	or
by	 setting	 the	 PYTHONWARNINGS	 environment	 variable	 to
"default"	 (or	 "d")	 before	 running	 Python.	 Python	 code	 can
also	 re-enable	 them	 by	 calling
warnings.simplefilter('default').

Python	3.1	Features

Much	 as	 Python	 2.6	 incorporated	 features	 from	 Python	 3.0,	 version
2.7	 incorporates	 some	 of	 the	 new	 features	 in	 Python	 3.1.	 The	 2.x
series	continues	to	provide	tools	for	migrating	to	the	3.x	series.

A	partial	list	of	3.1	features	that	were	backported	to	2.7:

The	syntax	for	set	literals	({1,2,3}	is	a	mutable	set).
Dictionary	 and	 set	 comprehensions	 ({	 i:	 i*2	 for	 i	 in

range(3)}).
Multiple	context	managers	in	a	single	with	statement.
A	new	version	of	the	io	library,	rewritten	in	C	for	performance.
The	 ordered-dictionary	 type	 described	 in	 PEP	 372:	 Adding	 an
Ordered	Dictionary	to	collections.
The	 new	 ","	 format	 specifier	 described	 in	 PEP	 378:	 Format
Specifier	for	Thousands	Separator.
The	memoryview	object.
A	small	subset	of	the	importlib	module,	described	below.
The	repr()	of	a	float	x	is	shorter	in	many	cases:	it’s	now	based
on	the	shortest	decimal	string	that’s	guaranteed	to	round	back	to
x.	 As	 in	 previous	 versions	 of	 Python,	 it’s	 guaranteed	 that
float(repr(x))	recovers	x.
Float-to-string	 and	 string-to-float	 conversions	 are	 correctly
rounded.	The	round()	function	is	also	now	correctly	rounded.
The	 PyCapsule	 type,	 used	 to	 provide	 a	 C	 API	 for	 extension
modules.
The	PyLong_AsLongAndOverflow()	C	API	function.

Other	new	Python3-mode	warnings	include:

operator.isCallable()	 and

operator.sequenceIncludes(),	which	are	not	 supported	 in
3.x,	now	trigger	warnings.
The	-3	 switch	now	automatically	enables	 the	 -Qwarn	 switch	 that
causes	 warnings	 about	 using	 classic	 division	 with	 integers	 and
long	integers.

PEP	372:	Adding	an	Ordered	Dictionary	to
collections

Regular	 Python	 dictionaries	 iterate	 over	 key/value	 pairs	 in	 arbitrary
order.	 Over	 the	 years,	 a	 number	 of	 authors	 have	 written	 alternative
implementations	that	remember	the	order	that	the	keys	were	originally
inserted.	Based	on	 the	 experiences	 from	 those	 implementations,	 2.7
introduces	a	new	OrderedDict	class	in	the	collections	module.

The	 OrderedDict	 API	 provides	 the	 same	 interface	 as	 regular
dictionaries	 but	 iterates	 over	 keys	 and	 values	 in	 a	 guaranteed	 order
depending	on	when	a	key	was	first	inserted:

>>>	from	collections	import	OrderedDict

>>>	d	=	OrderedDict([('first',	1),

...																		('second',	2),

...																		('third',	3)])

>>>	d.items()

[('first',	1),	('second',	2),	('third',	3)]

If	 a	 new	 entry	 overwrites	 an	 existing	 entry,	 the	 original	 insertion
position	is	left	unchanged:

>>>	d['second']	=	4

>>>	d.items()

[('first',	1),	('second',	4),	('third',	3)]

Deleting	an	entry	and	reinserting	it	will	move	it	to	the	end:

>>>	del	d['second']

>>>	d['second']	=	5

>>>	d.items()

[('first',	1),	('third',	3),	('second',	5)]

The	popitem()	method	has	an	optional	 last	argument	 that	defaults
to	True.	 If	 last	 is	 True,	 the	most	 recently	 added	 key	 is	 returned	 and
removed;	if	it’s	False,	the	oldest	key	is	selected:

>>>	od	=	OrderedDict([(x,0)	for	x	in	range(20)])

>>>	od.popitem()

(19,	0)

>>>	od.popitem()

(18,	0)

>>>	od.popitem(last=False)

(0,	0)

>>>	od.popitem(last=False)

(1,	0)

Comparing	two	ordered	dictionaries	checks	both	the	keys	and	values,
and	requires	that	the	insertion	order	was	the	same:

>>>	od1	=	OrderedDict([('first',	1),

...																				('second',	2),

...																				('third',	3)])

>>>	od2	=	OrderedDict([('third',	3),

...																				('first',	1),

...																				('second',	2)])

>>>	od1	==	od2

False

>>>	#	Move	'third'	key	to	the	end

>>>	del	od2['third'];	od2['third']	=	3

>>>	od1	==	od2

True

Comparing	 an	 OrderedDict	 with	 a	 regular	 dictionary	 ignores	 the
insertion	order	and	just	compares	the	keys	and	values.

How	does	the	OrderedDict	work?	It	maintains	a	doubly-linked	list	of
keys,	appending	new	keys	to	the	list	as	they’re	inserted.	A	secondary

dictionary	 maps	 keys	 to	 their	 corresponding	 list	 node,	 so	 deletion
doesn’t	 have	 to	 traverse	 the	 entire	 linked	 list	 and	 therefore	 remains
O(1).

The	 standard	 library	 now	 supports	 use	 of	 ordered	 dictionaries	 in
several	modules.

The	ConfigParser	module	uses	them	by	default,	meaning	that
configuration	 files	 can	 now	 be	 read,	 modified,	 and	 then	 written
back	in	their	original	order.
The	 _asdict()	 method	 for	 collections.namedtuple()
now	returns	an	ordered	dictionary	with	the	values	appearing	in	the
same	order	as	the	underlying	tuple	indices.
The	 json	 module’s	 JSONDecoder	 class	 constructor	 was
extended	 with	 an	 object_pairs_hook	 parameter	 to	 allow
OrderedDict	instances	to	be	built	by	the	decoder.	Support	was
also	added	for	third-party	tools	like	PyYAML.

See	also:

PEP	372	-	Adding	an	ordered	dictionary	to	collections
PEP	 written	 by	 Armin	 Ronacher	 and	 Raymond	 Hettinger;
implemented	by	Raymond	Hettinger.

http://pyyaml.org/
http://www.python.org/dev/peps/pep-0372

PEP	378:	Format	Specifier	for	Thousands
Separator

To	 make	 program	 output	 more	 readable,	 it	 can	 be	 useful	 to	 add
separators	 to	 large	 numbers,	 rendering	 them	 as
18,446,744,073,709,551,616	instead	of	18446744073709551616.

The	fully	general	solution	for	doing	this	is	the	locale	module,	which
can	use	different	separators	 (”,”	 in	North	America,	 ”.”	 in	Europe)	and
different	 grouping	 sizes,	 but	 locale	 is	 complicated	 to	 use	 and
unsuitable	 for	multi-threaded	applications	where	different	 threads	are
producing	output	for	different	locales.

Therefore,	a	simple	comma-grouping	mechanism	has	been	added	 to
the	 mini-language	 used	 by	 the	 str.format()	 method.	 When
formatting	 a	 floating-point	 number,	 simply	 include	a	 comma	between
the	width	and	the	precision:

>>>	'{:20,.2f}'.format(18446744073709551616.0)

'18,446,744,073,709,551,616.00'

When	formatting	an	integer,	include	the	comma	after	the	width:

>>>	'{:20,d}'.format(18446744073709551616)

'18,446,744,073,709,551,616'

This	mechanism	is	not	adaptable	at	all;	commas	are	always	used	as
the	separator	and	 the	grouping	 is	always	 into	 three-digit	groups.	The
comma-formatting	mechanism	isn’t	as	general	as	the	locale	module,
but	it’s	easier	to	use.

See	also:

PEP	378	-	Format	Specifier	for	Thousands	Separator
PEP	written	by	Raymond	Hettinger;	implemented	by	Eric	Smith.

http://www.python.org/dev/peps/pep-0378

PEP	389:	The	argparse	Module	for
Parsing	Command	Lines

The	 argparse	 module	 for	 parsing	 command-line	 arguments	 was
added	as	a	more	powerful	replacement	for	the	optparse	module.

This	means	Python	now	supports	 three	different	modules	 for	parsing
command-line	arguments:	getopt,	optparse,	and	argparse.	The
getopt	module	closely	resembles	the	C	library’s	getopt()	function,
so	 it	 remains	 useful	 if	 you’re	 writing	 a	 Python	 prototype	 that	 will
eventually	be	rewritten	in	C.	optparse	becomes	redundant,	but	there
are	no	plans	to	remove	it	because	there	are	many	scripts	still	using	it,
and	 there’s	 no	 automated	 way	 to	 update	 these	 scripts.	 (Making	 the
argparse	API	consistent	with	optparse‘s	 interface	was	discussed
but	rejected	as	too	messy	and	difficult.)

In	short,	 if	 you’re	writing	a	new	script	and	don’t	need	 to	worry	about
compatibility	with	earlier	versions	of	Python,	use	argparse	instead	of
optparse.

Here’s	an	example:

import	argparse

parser	=	argparse.ArgumentParser(description='Command-line	example.'

#	Add	optional	switches

parser.add_argument('-v',	action='store_true',	dest=

																				help='produce	verbose	output')

parser.add_argument('-o',	action='store',	dest='output'

																				metavar='FILE',

																				help='direct	output	to	FILE	instead	of	stdout'

parser.add_argument('-C',	action='store',	type=int,	

																				metavar='NUM',	default=0,

																				help='display	NUM	lines	of	added	context'

#	Allow	any	number	of	additional	arguments.

parser.add_argument(nargs='*',	action='store',	dest=

																				help='input	filenames	(default	is	stdin)'

args	=	parser.parse_args()

print	args.__dict__

Unless	you	override	it,	-h	and	--help	switches	are	automatically	added,
and	produce	neatly	formatted	output:

->	./python.exe	argparse-example.py	--help

usage:	argparse-example.py	[-h]	[-v]	[-o	FILE]	[-C	NUM

Command-line	example.

positional	arguments:

		inputs						input	filenames	(default	is	stdin)

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

		-v										produce	verbose	output

		-o	FILE					direct	output	to	FILE	instead	of	stdout

		-C	NUM						display	NUM	lines	of	added	context

As	 with	 optparse,	 the	 command-line	 switches	 and	 arguments	 are
returned	as	an	object	with	attributes	named	by	the	dest	parameters:

->	./python.exe	argparse-example.py	-v

{'output':	None,

	'is_verbose':	True,

	'context':	0,

	'inputs':	[]}

->	./python.exe	argparse-example.py	-v	-o	/tmp/output

{'output':	'/tmp/output',

	'is_verbose':	True,

	'context':	4,

	'inputs':	['file1',	'file2']}

argparse	 has	 much	 fancier	 validation	 than	 optparse;	 you	 can
specify	 an	 exact	 number	 of	 arguments	 as	 an	 integer,	 0	 or	 more
arguments	by	passing	'*',	1	or	more	by	passing	'+',	or	an	optional
argument	 with	 '?'.	 A	 top-level	 parser	 can	 contain	 sub-parsers	 to
define	 subcommands	 that	 have	different	 sets	 of	 switches,	 as	 in	 svn
commit,	svn	checkout,	etc.	You	can	specify	an	argument’s	type	as
FileType,	 which	 will	 automatically	 open	 files	 for	 you	 and
understands	that	'-'	means	standard	input	or	output.

See	also: 	argparse	module	documentation

Upgrading	optparse	code	to	use	argparse
Part	 of	 the	 Python	 documentation,	 describing	 how	 to	 convert
code	that	uses	optparse.

PEP	389	-	argparse	-	New	Command	Line	Parsing	Module
PEP	written	and	implemented	by	Steven	Bethard.

http://docs.python.org/dev/library/argparse.html
http://docs.python.org/dev/library/argparse.html#upgrading-optparse-code
http://www.python.org/dev/peps/pep-0389

PEP	391:	Dictionary-Based	Configuration
For	Logging

The	logging	module	is	very	flexible;	applications	can	define	a	tree	of
logging	subsystems,	and	each	logger	in	this	tree	can	filter	out	certain
messages,	 format	 them	differently,	and	direct	messages	 to	a	varying
number	of	handlers.

All	 this	 flexibility	 can	 require	 a	 lot	 of	 configuration.	 You	 can	 write
Python	 statements	 to	 create	 objects	 and	 set	 their	 properties,	 but	 a
complex	 set-up	 requires	 verbose	 but	 boring	 code.	 logging	 also
supports	 a	 fileConfig()	 function	 that	 parses	 a	 file,	 but	 the	 file
format	doesn’t	support	configuring	filters,	and	it’s	messier	to	generate
programmatically.

Python	2.7	adds	a	dictConfig()	 function	 that	uses	a	dictionary	 to
configure	logging.	There	are	many	ways	to	produce	a	dictionary	from
different	 sources:	 construct	 one	 with	 code;	 parse	 a	 file	 containing
JSON;	or	use	a	YAML	parsing	library	if	one	is	installed.

The	 following	example	configures	 two	 loggers,	 the	 root	 logger	and	a
logger	named	“network”.	Messages	sent	to	the	root	logger	will	be	sent
to	 the	 system	 log	 using	 the	 syslog	 protocol,	 and	 messages	 to	 the
“network”	 logger	 will	 be	 written	 to	 a	 network.log	 file	 that	 will	 be
rotated	once	the	log	reaches	1Mb.

import	logging

import	logging.config

configdict	=	{

	'version':	1,				#	Configuration	schema	in	use;	must	be	1	for	now

	'formatters':	{

					'standard':	{

									'format':	('%(asctime)s	%(name)-15s	'

																				'%(levelname)-8s	%(message)s')}},

	'handlers':	{'netlog':	{'backupCount':	10,

																					'class':	'logging.handlers.RotatingFileHandler'

																					'filename':	'/logs/network.log'

																					'formatter':	'standard',

																					'level':	'INFO',

																					'maxBytes':	1024*1024},

														'syslog':	{'class':	'logging.handlers.SysLogHandler'

																									'formatter':	'standard',

																									'level':	'ERROR'}},

	#	Specify	all	the	subordinate	loggers

	'loggers':	{

													'network':	{

																									'handlers':	['netlog']

													}

	},

	#	Specify	properties	of	the	root	logger

	'root':	{

										'handlers':	['syslog']

	},

}

#	Set	up	configuration

logging.config.dictConfig(configdict)

#	As	an	example,	log	two	error	messages

logger	=	logging.getLogger('/')

logger.error('Database	not	found')

netlogger	=	logging.getLogger('network')

netlogger.error('Connection	failed')

Three	 smaller	 enhancements	 to	 the	 logging	 module,	 all
implemented	by	Vinay	Sajip,	are:

The	SysLogHandler	 class	 now	supports	 syslogging	over	TCP.
The	 constructor	 has	 a	 socktype	 parameter	 giving	 the	 type	 of
socket	 to	 use,	 either	 socket.SOCK_DGRAM	 for	 UDP	 or
socket.SOCK_STREAM	 for	 TCP.	 The	 default	 protocol	 remains
UDP.
Logger	instances	gained	a	getChild()	method	that	retrieves	a
descendant	 logger	using	a	 relative	path.	For	example,	once	you
retrieve	a	 logger	by	doing	log	=	getLogger('app'),	 calling
log.getChild('network.listen')	 is	 equivalent	 to
getLogger('app.network.listen').
The	LoggerAdapter	class	gained	a	isEnabledFor()	method
that	takes	a	level	and	returns	whether	the	underlying	logger	would
process	a	message	of	that	level	of	importance.

See	also:

PEP	391	-	Dictionary-Based	Configuration	For	Logging
PEP	written	and	implemented	by	Vinay	Sajip.

http://www.python.org/dev/peps/pep-0391

PEP	3106:	Dictionary	Views

The	 dictionary	 methods	 keys(),	 values(),	 and	 items()	 are
different	in	Python	3.x.	They	return	an	object	called	a	view	instead	of	a
fully	materialized	list.

It’s	not	possible	 to	change	 the	 return	values	of	keys(),	values(),
and	 items()	 in	 Python	 2.7	 because	 too	 much	 code	 would	 break.
Instead	 the	 3.x	 versions	 were	 added	 under	 the	 new	 names
viewkeys(),	viewvalues(),	and	viewitems().

>>>	d	=	dict((i*10,	chr(65+i))	for	i	in	range(26))

>>>	d

{0:	'A',	130:	'N',	10:	'B',	140:	'O',	20:	...,	250:	'Z'}

>>>	d.viewkeys()

dict_keys([0,	130,	10,	140,	20,	150,	30,	...,	250])

Views	can	be	 iterated	over,	 but	 the	key	and	 item	views	also	behave
like	 sets.	 The	 &	 operator	 performs	 intersection,	 and	 |	 performs	 a
union:

>>>	d1	=	dict((i*10,	chr(65+i))	for	i	in	range(26))

>>>	d2	=	dict((i**.5,	i)	for	i	in	range(1000))

>>>	d1.viewkeys()	&	d2.viewkeys()

set([0.0,	10.0,	20.0,	30.0])

>>>	d1.viewkeys()	|	range(0,	30)

set([0,	1,	130,	3,	4,	5,	6,	...,	120,	250])

The	view	keeps	track	of	the	dictionary	and	its	contents	change	as	the
dictionary	is	modified:

>>>	vk	=	d.viewkeys()

>>>	vk

dict_keys([0,	130,	10,	...,	250])

>>>	d[260]	=	'&'

>>>	vk

dict_keys([0,	130,	260,	10,	...,	250])

However,	note	that	you	can’t	add	or	remove	keys	while	you’re	iterating
over	the	view:

>>>	for	k	in	vk:

...					d[k*2]	=	k

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

RuntimeError:	dictionary	changed	size	during	iteration

You	 can	 use	 the	 view	 methods	 in	 Python	 2.x	 code,	 and	 the	 2to3
converter	will	change	them	to	the	standard	keys(),	values(),	and
items()	methods.

See	also:

PEP	3106	-	Revamping	dict.keys(),	.values()	and	.items()
PEP	 written	 by	 Guido	 van	 Rossum.	 Backported	 to	 2.7	 by
Alexandre	Vassalotti;	issue	1967.

http://www.python.org/dev/peps/pep-3106
http://bugs.python.org/issue1967

PEP	3137:	The	memoryview	Object

The	memoryview	object	provides	a	view	of	another	object’s	memory
content	that	matches	the	bytes	type’s	interface.

>>>	import	string

>>>	m	=	memoryview(string.letters)

>>>	m

<memory	at	0x37f850>

>>>	len(m)											#	Returns	length	of	underlying	object

52

>>>	m[0],	m[25],	m[26]			#	Indexing	returns	one	byte

('a',	'z',	'A')

>>>	m2	=	m[0:26]									#	Slicing	returns	another	memoryview

>>>	m2

<memory	at	0x37f080>

The	content	of	the	view	can	be	converted	to	a	string	of	bytes	or	a	list
of	integers:

>>>	m2.tobytes()

'abcdefghijklmnopqrstuvwxyz'

>>>	m2.tolist()

[97,	98,	99,	100,	101,	102,	103,	...	121,	122]

>>>

memoryview	 objects	 allow	 modifying	 the	 underlying	 object	 if	 it’s	 a
mutable	object.

>>>	m2[0]	=	75

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	cannot	modify	read-only	memory

>>>	b	=	bytearray(string.letters)		#	Creating	a	mutable	object

>>>	b

bytearray(b'abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ')

>>>	mb	=	memoryview(b)

>>>	mb[0]	=	'*'									#	Assign	to	view,	changing	the	bytearray.

>>>	b[0:5]														#	The	bytearray	has	been	changed.

bytearray(b'*bcde')

>>>

See	also:

PEP	3137	-	Immutable	Bytes	and	Mutable	Buffer
PEP	 written	 by	 Guido	 van	 Rossum.	 Implemented	 by	 Travis
Oliphant,	Antoine	Pitrou	and	others.	Backported	to	2.7	by	Antoine
Pitrou;	issue	2396.

http://www.python.org/dev/peps/pep-3137
http://bugs.python.org/issue2396

Other	Language	Changes

Some	smaller	changes	made	to	the	core	Python	language	are:

The	syntax	 for	set	 literals	has	been	backported	from	Python	3.x.
Curly	brackets	are	used	to	surround	the	contents	of	the	resulting
mutable	set;	set	literals	are	distinguished	from	dictionaries	by	not
containing	colons	and	values.	{}	continues	to	represent	an	empty
dictionary;	use	set()	for	an	empty	set.

>>>	{1,2,3,4,5}

set([1,	2,	3,	4,	5])

>>>	set()	#	empty	set

set([])

>>>	{}				#	empty	dict

{}

Backported	by	Alexandre	Vassalotti;	issue	2335.

Dictionary	 and	 set	 comprehensions	 are	 another	 feature
backported	 from	 3.x,	 generalizing	 list/generator	 comprehensions
to	use	the	literal	syntax	for	sets	and	dictionaries.

>>>	{x:	x*x	for	x	in	range(6)}

{0:	0,	1:	1,	2:	4,	3:	9,	4:	16,	5:	25}

>>>	{('a'*x)	for	x	in	range(6)}

set(['',	'a',	'aa',	'aaa',	'aaaa',	'aaaaa'])

Backported	by	Alexandre	Vassalotti;	issue	2333.

The	with	 statement	 can	now	use	multiple	 context	managers	 in
one	statement.	Context	managers	are	processed	from	left	to	right
and	each	one	is	treated	as	beginning	a	new	with	statement.	This

http://bugs.python.org/issue2335
http://bugs.python.org/issue2333

means	that:

with	A()	as	a,	B()	as	b:

				...	suite	of	statements	...

is	equivalent	to:

with	A()	as	a:

				with	B()	as	b:

								...	suite	of	statements	...

The	 contextlib.nested()	 function	 provides	 a	 very	 similar
function,	so	it’s	no	longer	necessary	and	has	been	deprecated.

(Proposed	 in	 http://codereview.appspot.com/53094;	 implemented
by	Georg	Brandl.)

Conversions	between	floating-point	numbers	and	strings	are	now
correctly	rounded	on	most	platforms.	These	conversions	occur	in
many	different	places:	str()	on	floats	and	complex	numbers;	the
float	and	complex	constructors;	numeric	formatting;	serializing
and	 deserializing	 floats	 and	 complex	 numbers	 using	 the
marshal,	 pickle	 and	 json	 modules;	 parsing	 of	 float	 and
imaginary	 literals	 in	 Python	 code;	 and	 Decimal-to-float
conversion.

Related	 to	 this,	 the	 repr()	 of	 a	 floating-point	 number	 x	 now
returns	 a	 result	 based	 on	 the	 shortest	 decimal	 string	 that’s
guaranteed	to	round	back	to	x	under	correct	rounding	(with	round-
half-to-even	rounding	mode).	Previously	it	gave	a	string	based	on
rounding	x	to	17	decimal	digits.

The	 rounding	 library	 responsible	 for	 this	 improvement	 works	 on

http://codereview.appspot.com/53094

Windows	 and	 on	 Unix	 platforms	 using	 the	 gcc,	 icc,	 or	 suncc
compilers.	 There	 may	 be	 a	 small	 number	 of	 platforms	 where
correct	operation	of	this	code	cannot	be	guaranteed,	so	the	code
is	not	used	on	such	systems.	You	can	find	out	which	code	is	being
used	 by	 checking	 sys.float_repr_style,	 which	 will	 be
short	if	the	new	code	is	in	use	and	legacy	if	it	isn’t.

Implemented	 by	 Eric	 Smith	 and	 Mark	 Dickinson,	 using	 David
Gay’s	dtoa.c	library;	issue	7117.

Conversions	 from	 long	 integers	 and	 regular	 integers	 to	 floating
point	 now	 round	 differently,	 returning	 the	 floating-point	 number
closest	to	the	number.	This	doesn’t	matter	for	small	 integers	that
can	 be	 converted	 exactly,	 but	 for	 large	 numbers	 that	 will
unavoidably	 lose	 precision,	 Python	 2.7	 now	 approximates	 more
closely.	For	example,	Python	2.6	computed	the	following:

>>>	n	=	295147905179352891391

>>>	float(n)

2.9514790517935283e+20

>>>	n	-	long(float(n))

65535L

Python	2.7’s	floating-point	result	 is	 larger,	but	much	closer	to	the
true	value:

>>>	n	=	295147905179352891391

>>>	float(n)

2.9514790517935289e+20

>>>	n	-	long(float(n))

-1L

(Implemented	by	Mark	Dickinson;	issue	3166.)

http://bugs.python.org/issue7117
http://bugs.python.org/issue3166

Integer	division	 is	also	more	accurate	 in	 its	rounding	behaviours.
(Also	implemented	by	Mark	Dickinson;	issue	1811.)

Implicit	 coercion	 for	 complex	 numbers	 has	 been	 removed;	 the
interpreter	 will	 no	 longer	 ever	 attempt	 to	 call	 a	 __coerce__()
method	on	complex	objects.	(Removed	by	Meador	Inge	and	Mark
Dickinson;	issue	5211.)

The	str.format()	method	now	supports	automatic	numbering
of	 the	 replacement	 fields.	 This	 makes	 using	 str.format()
more	closely	resemble	using	%s	formatting:

>>>	'{}:{}:{}'.format(2009,	04,	'Sunday')

'2009:4:Sunday'

>>>	'{}:{}:{day}'.format(2009,	4,	day='Sunday')

'2009:4:Sunday'

The	auto-numbering	takes	the	fields	from	left	to	right,	so	the	first
{...}	 specifier	 will	 use	 the	 first	 argument	 to	 str.format(),
the	next	specifier	will	use	the	next	argument,	and	so	on.	You	can’t
mix	auto-numbering	and	explicit	numbering	–	either	number	all	of
your	 specifier	 fields	 or	 none	 of	 them	 –	 but	 you	 can	 mix	 auto-
numbering	 and	 named	 fields,	 as	 in	 the	 second	 example	 above.
(Contributed	by	Eric	Smith;	issue	5237.)

Complex	numbers	now	correctly	 support	usage	with	format(),
and	 default	 to	 being	 right-aligned.	 Specifying	 a	 precision	 or
comma-separation	applies	to	both	the	real	and	imaginary	parts	of
the	number,	but	a	specified	field	width	and	alignment	is	applied	to
the	 whole	 of	 the	 resulting	 1.5+3j	 output.	 (Contributed	 by	 Eric
Smith;	issue	1588	and	issue	7988.)

The	 ‘F’	 format	 code	 now	 always	 formats	 its	 output	 using

http://bugs.python.org/issue1811
http://bugs.python.org/issue5211
http://bugs.python.org/issue5237
http://bugs.python.org/issue1588
http://bugs.python.org/issue7988

uppercase	 characters,	 so	 it	 will	 now	 produce	 ‘INF’	 and	 ‘NAN’.
(Contributed	by	Eric	Smith;	issue	3382.)

A	 low-level	 change:	 the	 object.__format__()	 method	 now
triggers	a	PendingDeprecationWarning	if	it’s	passed	a	format
string,	because	the	__format__()	method	for	object	converts
the	object	 to	a	string	representation	and	 formats	 that.	Previously
the	 method	 silently	 applied	 the	 format	 string	 to	 the	 string
representation,	 but	 that	 could	 hide	 mistakes	 in	 Python	 code.	 If
you’re	 supplying	 formatting	 information	 such	 as	 an	 alignment	 or
precision,	 presumably	 you’re	 expecting	 the	 formatting	 to	 be
applied	 in	 some	object-specific	way.	 (Fixed	 by	Eric	Smith;	 issue
7994.)

The	 int()	 and	 long()	 types	 gained	 a	 bit_length	 method
that	 returns	 the	 number	 of	 bits	 necessary	 to	 represent	 its
argument	in	binary:

>>>	n	=	37

>>>	bin(n)

'0b100101'

>>>	n.bit_length()

6

>>>	n	=	2**123-1

>>>	n.bit_length()

123

>>>	(n+1).bit_length()

124

(Contributed	 by	 Fredrik	 Johansson	 and	 Victor	 Stinner;	 issue
3439.)

The	import	 statement	will	no	 longer	 try	an	absolute	 import	 if	a
relative	import	(e.g.	from	.os	import	sep)	 fails.	This	 fixes	a

http://bugs.python.org/issue3382
http://bugs.python.org/issue7994
http://bugs.python.org/issue3439

bug,	 but	 could	 possibly	 break	 certain	 import	 statements	 that
were	 only	 working	 by	 accident.	 (Fixed	 by	 Meador	 Inge;	 issue
7902.)

It’s	 now	possible	 for	 a	 subclass	 of	 the	 built-in	 unicode	 type	 to
override	 the	 __unicode__()	 method.	 (Implemented	 by	 Victor
Stinner;	issue	1583863.)

The	 bytearray	 type’s	 translate()	 method	 now	 accepts
None	as	its	first	argument.	(Fixed	by	Georg	Brandl;	issue	4759.)

When	 using	 @classmethod	 and	 @staticmethod	 to	 wrap
methods	 as	 class	 or	 static	 methods,	 the	 wrapper	 object	 now
exposes	 the	 wrapped	 function	 as	 their	 __func__	 attribute.
(Contributed	 by	 Amaury	 Forgeot	 d’Arc,	 after	 a	 suggestion	 by
George	Sakkis;	issue	5982.)

When	 a	 restricted	 set	 of	 attributes	 were	 set	 using	 __slots__,
deleting	an	unset	attribute	would	not	raise	AttributeError	as
you	would	expect.	Fixed	by	Benjamin	Peterson;	issue	7604.)

Two	 new	 encodings	 are	 now	 supported:	 “cp720”,	 used	 primarily
for	 Arabic	 text;	 and	 “cp858”,	 a	 variant	 of	 CP	 850	 that	 adds	 the
euro	 symbol.	 (CP720	 contributed	 by	 Alexander	 Belchenko	 and
Amaury	 Forgeot	 d’Arc	 in	 issue	 1616979;	 CP858	 contributed	 by
Tim	Hatch	in	issue	8016.)

The	 file	 object	 will	 now	 set	 the	 filename	 attribute	 on	 the
IOError	 exception	 when	 trying	 to	 open	 a	 directory	 on	 POSIX
platforms	 (noted	 by	 Jan	 Kaliszewski;	 issue	 4764),	 and	 now
explicitly	 checks	 for	 and	 forbids	 writing	 to	 read-only	 file	 objects
instead	of	trusting	the	C	library	to	catch	and	report	the	error	(fixed
by	Stefan	Krah;	issue	5677).

http://bugs.python.org/issue7902
http://bugs.python.org/issue1583863
http://bugs.python.org/issue4759
http://bugs.python.org/issue5982
http://bugs.python.org/issue7604
http://bugs.python.org/issue1616979
http://bugs.python.org/issue8016
http://bugs.python.org/issue4764
http://bugs.python.org/issue5677

The	 Python	 tokenizer	 now	 translates	 line	 endings	 itself,	 so	 the
compile()	 built-in	 function	 now	 accepts	 code	 using	 any	 line-
ending	convention.	Additionally,	it	no	longer	requires	that	the	code
end	in	a	newline.

Extra	parentheses	in	function	definitions	are	illegal	in	Python	3.x,
meaning	that	you	get	a	syntax	error	 from	def	f((x)):	pass.
In	 Python3-warning	 mode,	 Python	 2.7	 will	 now	 warn	 about	 this
odd	usage.	(Noted	by	James	Lingard;	issue	7362.)

It’s	 now	 possible	 to	 create	 weak	 references	 to	 old-style	 class
objects.	 New-style	 classes	 were	 always	 weak-referenceable.
(Fixed	by	Antoine	Pitrou;	issue	8268.)

When	 a	 module	 object	 is	 garbage-collected,	 the	 module’s
dictionary	is	now	only	cleared	if	no	one	else	is	holding	a	reference
to	the	dictionary	(issue	7140).

Interpreter	Changes

A	 new	 environment	 variable,	 PYTHONWARNINGS,	 allows	 controlling
warnings.	 It	 should	 be	 set	 to	 a	 string	 containing	 warning	 settings,
equivalent	 to	 those	used	with	 the	 -W	 switch,	 separated	 by	 commas.
(Contributed	by	Brian	Curtin;	issue	7301.)

For	example,	 the	 following	setting	will	print	warnings	every	 time	 they
occur,	but	turn	warnings	from	the	Cookie	module	 into	an	error.	 (The
exact	 syntax	 for	 setting	 an	 environment	 variable	 varies	 across
operating	systems	and	shells.)

export	PYTHONWARNINGS=all,error:::Cookie:0

http://bugs.python.org/issue7362
http://bugs.python.org/issue8268
http://bugs.python.org/issue7140
http://bugs.python.org/issue7301

Optimizations

Several	performance	enhancements	have	been	added:

A	 new	 opcode	 was	 added	 to	 perform	 the	 initial	 setup	 for	 with
statements,	 looking	 up	 the	 __enter__()	 and	 __exit__()
methods.	(Contributed	by	Benjamin	Peterson.)

The	 garbage	 collector	 now	 performs	 better	 for	 one	 common
usage	 pattern:	 when	 many	 objects	 are	 being	 allocated	 without
deallocating	 any	 of	 them.	 This	 would	 previously	 take	 quadratic
time	 for	 garbage	 collection,	 but	 now	 the	 number	 of	 full	 garbage
collections	 is	 reduced	 as	 the	 number	 of	 objects	 on	 the	 heap
grows.	The	new	logic	only	performs	a	full	garbage	collection	pass
when	 the	 middle	 generation	 has	 been	 collected	 10	 times	 and
when	 the	number	of	survivor	objects	 from	 the	middle	generation
exceeds	10%	of	 the	number	of	 objects	 in	 the	oldest	 generation.
(Suggested	 by	 Martin	 von	 Löwis	 and	 implemented	 by	 Antoine
Pitrou;	issue	4074.)

The	 garbage	 collector	 tries	 to	 avoid	 tracking	 simple	 containers
which	can’t	be	part	of	a	cycle.	 In	Python	2.7,	 this	 is	now	true	for
tuples	 and	 dicts	 containing	 atomic	 types	 (such	 as	 ints,	 strings,
etc.).	Transitively,	a	dict	containing	tuples	of	atomic	types	won’t	be
tracked	 either.	 This	 helps	 reduce	 the	 cost	 of	 each	 garbage
collection	by	decreasing	 the	number	of	objects	 to	be	considered
and	 traversed	 by	 the	 collector.	 (Contributed	 by	 Antoine	 Pitrou;
issue	4688.)

Long	integers	are	now	stored	internally	either	in	base	2**15	or	in
base	2**30,	 the	base	being	determined	at	build	 time.	Previously,
they	were	 always	 stored	 in	 base	2**15.	Using	 base	 2**30	 gives

http://bugs.python.org/issue4074
http://bugs.python.org/issue4688

significant	 performance	 improvements	 on	 64-bit	 machines,	 but
benchmark	 results	 on	 32-bit	 machines	 have	 been	 mixed.
Therefore,	 the	 default	 is	 to	 use	 base	 2**30	 on	 64-bit	 machines
and	 base	 2**15	 on	 32-bit	 machines;	 on	 Unix,	 there’s	 a	 new
configure	 option	 --enable-big-digits	 that	 can	 be	 used	 to	 override
this	default.

Apart	from	the	performance	improvements	this	change	should	be
invisible	 to	 end	 users,	 with	 one	 exception:	 for	 testing	 and
debugging	 purposes	 there’s	 a	 new	 structseq	 sys.long_info
that	 provides	 information	 about	 the	 internal	 format,	 giving	 the
number	of	bits	per	digit	and	the	size	in	bytes	of	the	C	type	used	to
store	each	digit:

>>>	import	sys

>>>	sys.long_info

sys.long_info(bits_per_digit=30,	sizeof_digit=4)

(Contributed	by	Mark	Dickinson;	issue	4258.)

Another	set	of	changes	made	long	objects	a	few	bytes	smaller:	2
bytes	 smaller	 on	 32-bit	 systems	 and	 6	 bytes	 on	 64-bit.
(Contributed	by	Mark	Dickinson;	issue	5260.)

The	division	algorithm	for	 long	integers	has	been	made	faster	by
tightening	 the	 inner	 loop,	 doing	 shifts	 instead	 of	 multiplications,
and	 fixing	 an	 unnecessary	 extra	 iteration.	 Various	 benchmarks
show	 speedups	 of	 between	 50%	 and	 150%	 for	 long	 integer
divisions	and	modulo	operations.	(Contributed	by	Mark	Dickinson;
issue	5512.)	Bitwise	operations	are	also	significantly	faster	(initial
patch	by	Gregory	Smith;	issue	1087418).

The	implementation	of	%	checks	for	the	left-side	operand	being	a

http://bugs.python.org/issue4258
http://bugs.python.org/issue5260
http://bugs.python.org/issue5512
http://bugs.python.org/issue1087418

Python	 string	 and	 special-cases	 it;	 this	 results	 in	 a	 1-3%
performance	 increase	 for	 applications	 that	 frequently	 use	 %	with
strings,	 such	 as	 templating	 libraries.	 (Implemented	 by	 Collin
Winter;	issue	5176.)

List	comprehensions	with	an	if	condition	are	compiled	into	faster
bytecode.	(Patch	by	Antoine	Pitrou,	back-ported	to	2.7	by	Jeffrey
Yasskin;	issue	4715.)

Converting	 an	 integer	 or	 long	 integer	 to	 a	 decimal	 string	 was
made	 faster	 by	 special-casing	 base	 10	 instead	 of	 using	 a
generalized	 conversion	 function	 that	 supports	 arbitrary	 bases.
(Patch	by	Gawain	Bolton;	issue	6713.)

The	 split(),	 replace(),	 rindex(),	 rpartition(),	 and
rsplit()	methods	of	string-like	types	(strings,	Unicode	strings,
and	bytearray	objects)	now	use	a	fast	reverse-search	algorithm
instead	of	a	character-by-character	scan.	This	is	sometimes	faster
by	a	factor	of	10.	(Added	by	Florent	Xicluna;	issue	7462	and	issue
7622.)

The	pickle	and	cPickle	modules	now	automatically	intern	the
strings	used	 for	 attribute	names,	 reducing	memory	usage	of	 the
objects	 resulting	 from	unpickling.	 (Contributed	by	 Jake	McGuire;
issue	5084.)

The	 cPickle	 module	 now	 special-cases	 dictionaries,	 nearly
halving	 the	 time	 required	 to	 pickle	 them.	 (Contributed	 by	 Collin
Winter;	issue	5670.)

http://bugs.python.org/issue5176
http://bugs.python.org/issue4715
http://bugs.python.org/issue6713
http://bugs.python.org/issue7462
http://bugs.python.org/issue7622
http://bugs.python.org/issue5084
http://bugs.python.org/issue5670

New	and	Improved	Modules

As	 in	 every	 release,	 Python’s	 standard	 library	 received	 a	 number	 of
enhancements	and	bug	fixes.	Here’s	a	partial	 list	of	 the	most	notable
changes,	 sorted	 alphabetically	 by	 module	 name.	 Consult	 the
Misc/NEWS	file	in	the	source	tree	for	a	more	complete	list	of	changes,
or	look	through	the	Subversion	logs	for	all	the	details.

The	bdb	module’s	base	debugging	class	Bdb	gained	a	feature	for
skipping	 modules.	 The	 constructor	 now	 takes	 an	 iterable
containing	glob-style	patterns	such	as	django.*;	 the	 debugger
will	not	step	into	stack	frames	from	a	module	that	matches	one	of
these	patterns.	(Contributed	by	Maru	Newby	after	a	suggestion	by
Senthil	Kumaran;	issue	5142.)

The	binascii	module	now	supports	the	buffer	API,	so	it	can	be
used	with	memoryview	instances	and	other	similar	buffer	objects.
(Backported	from	3.x	by	Florent	Xicluna;	issue	7703.)

Updated	 module:	 the	 bsddb	 module	 has	 been	 updated	 from
4.7.2devel9	 to	 version	 4.8.4	 of	 the	 pybsddb	 package.	 The	 new
version	features	better	Python	3.x	compatibility,	various	bug	fixes,
and	adds	several	new	BerkeleyDB	 flags	and	methods.	 (Updated
by	Jesús	Cea	Avión;	issue	8156.	The	pybsddb	changelog	can	be
read	at	http://hg.jcea.es/pybsddb/file/tip/ChangeLog.)

The	 bz2	 module’s	 BZ2File	 now	 supports	 the	 context
management	 protocol,	 so	 you	 can	 write	 with

bz2.BZ2File(...)	as	f:.	(Contributed	by	Hagen	Fürstenau;
issue	3860.)

New	 class:	 the	 Counter	 class	 in	 the	 collections	 module	 is

http://bugs.python.org/issue5142
http://bugs.python.org/issue7703
http://www.jcea.es/programacion/pybsddb.htm
http://bugs.python.org/issue8156
http://hg.jcea.es/pybsddb/file/tip/ChangeLog
http://bugs.python.org/issue3860

useful	 for	 tallying	 data.	 Counter	 instances	 behave	 mostly	 like
dictionaries	but	 return	 zero	 for	missing	 keys	 instead	of	 raising	a
KeyError:

>>>	from	collections	import	Counter

>>>	c	=	Counter()

>>>	for	letter	in	'here	is	a	sample	of	english	text'

...			c[letter]	+=	1

...

>>>	c

Counter({'	':	6,	'e':	5,	's':	3,	'a':	2,	'i':	2,	'h':	2,

'l':	2,	't':	2,	'g':	1,	'f':	1,	'm':	1,	'o':	1,	'n':	1,

'p':	1,	'r':	1,	'x':	1})

>>>	c['e']

5

>>>	c['z']

0

There	are	 three	additional	Counter	methods.	most_common()
returns	 the	 N	 most	 common	 elements	 and	 their	 counts.
elements()	 returns	 an	 iterator	 over	 the	 contained	 elements,
repeating	each	element	as	many	times	as	its	count.	subtract()
takes	an	 iterable	 and	 subtracts	 one	 for	 each	element	 instead	of
adding;	 if	 the	argument	 is	a	dictionary	or	another	 Counter,	 the
counts	are	subtracted.

>>>	c.most_common(5)

[('	',	6),	('e',	5),	('s',	3),	('a',	2),	('i',	2)]

>>>	c.elements()	->

			'a',	'a',	'	',	'	',	'	',	'	',	'	',	'	',

			'e',	'e',	'e',	'e',	'e',	'g',	'f',	'i',	'i',

			'h',	'h',	'm',	'l',	'l',	'o',	'n',	'p',	's',

			's',	's',	'r',	't',	't',	'x'

>>>	c['e']

5

>>>	c.subtract('very	heavy	on	the	letter	e')

>>>	c['e']				#	Count	is	now	lower

-1

Contributed	by	Raymond	Hettinger;	issue	1696199.

New	class:	OrderedDict	is	described	in	the	earlier	section	PEP
372:	Adding	an	Ordered	Dictionary	to	collections.

New	method:	The	deque	data	type	now	has	a	count()	method
that	 returns	 the	 number	 of	 contained	 elements	 equal	 to	 the
supplied	argument	x,	and	a	reverse()	method	that	reverses	the
elements	 of	 the	 deque	 in-place.	 deque	 also	 exposes	 its
maximum	 length	 as	 the	 read-only	 maxlen	 attribute.	 (Both
features	added	by	Raymond	Hettinger.)

The	namedtuple	class	now	has	an	optional	rename	parameter.
If	 rename	 is	 true,	 field	 names	 that	 are	 invalid	 because	 they’ve
been	repeated	or	aren’t	legal	Python	identifiers	will	be	renamed	to
legal	names	that	are	derived	from	the	field’s	position	within	the	list
of	fields:

>>>	from	collections	import	namedtuple

>>>	T	=	namedtuple('T',	['field1',	'$illegal',	'for'

>>>	T._fields

('field1',	'_1',	'_2',	'field2')

(Added	by	Raymond	Hettinger;	issue	1818.)

Finally,	 the	 Mapping	 abstract	 base	 class	 now	 returns
NotImplemented	if	a	mapping	is	compared	to	another	type	that

http://bugs.python.org/issue1696199
http://bugs.python.org/issue1818

isn’t	a	Mapping.	(Fixed	by	Daniel	Stutzbach;	issue	8729.)

Constructors	 for	 the	 parsing	 classes	 in	 the	 ConfigParser
module	now	take	a	allow_no_value	parameter,	defaulting	to	false;
if	true,	options	without	values	will	be	allowed.	For	example:

>>>	import	ConfigParser,	StringIO

>>>	sample_config	=	"""

...	[mysqld]

...	user	=	mysql

...	pid-file	=	/var/run/mysqld/mysqld.pid

...	skip-bdb

...	"""

>>>	config	=	ConfigParser.RawConfigParser(allow_no_value

>>>	config.readfp(StringIO.StringIO(sample_config

>>>	config.get('mysqld',	'user')

'mysql'

>>>	print	config.get('mysqld',	'skip-bdb')

None

>>>	print	config.get('mysqld',	'unknown')

Traceback	(most	recent	call	last):

		...

NoOptionError:	No	option	'unknown'	in	section:	'mysqld'

(Contributed	by	Mats	Kindahl;	issue	7005.)

Deprecated	 function:	 contextlib.nested(),	 which	 allows
handling	 more	 than	 one	 context	 manager	 with	 a	 single	 with
statement,	 has	 been	 deprecated,	 because	 the	 with	 statement
now	supports	multiple	context	managers.

The	cookielib	module	now	ignores	cookies	that	have	an	invalid
version	field,	one	that	doesn’t	contain	an	integer	value.	(Fixed	by
John	J.	Lee;	issue	3924.)

http://bugs.python.org/issue8729
http://bugs.python.org/issue7005
http://bugs.python.org/issue3924

The	copy	module’s	deepcopy()	function	will	now	correctly	copy
bound	 instance	methods.	 (Implemented	by	Robert	Collins;	 issue
1515.)

The	 ctypes	 module	 now	 always	 converts	 None	 to	 a	 C	 NULL
pointer	for	arguments	declared	as	pointers.	(Changed	by	Thomas
Heller;	issue	4606.)	The	underlying	libffi	library	has	been	updated
to	 version	 3.0.9,	 containing	 various	 fixes	 for	 different	 platforms.
(Updated	by	Matthias	Klose;	issue	8142.)

New	method:	 the	datetime	module’s	timedelta	class	gained
a	 total_seconds()	 method	 that	 returns	 the	 number	 of
seconds	 in	 the	 duration.	 (Contributed	 by	 Brian	 Quinlan;	 issue
5788.)

New	method:	the	Decimal	class	gained	a	from_float()	class
method	 that	 performs	 an	 exact	 conversion	 of	 a	 floating-point
number	 to	 a	 Decimal.	 This	 exact	 conversion	 strives	 for	 the
closest	 decimal	 approximation	 to	 the	 floating-point
representation’s	 value;	 the	 resulting	 decimal	 value	 will	 therefore
still	 include	 the	 inaccuracy,	 if	 any.	 For	 example,
Decimal.from_float(0.1)	 returns
Decimal('0.1000000000000000055511151231257827021181583404541015625')

(Implemented	by	Raymond	Hettinger;	issue	4796.)

Comparing	 instances	 of	 Decimal	 with	 floating-point	 numbers
now	produces	sensible	results	based	on	the	numeric	values	of	the
operands.	 Previously	 such	 comparisons	 would	 fall	 back	 to
Python’s	 default	 rules	 for	 comparing	 objects,	 which	 produced
arbitrary	 results	 based	 on	 their	 type.	 Note	 that	 you	 still	 cannot
combine	Decimal	and	floating-point	 in	other	operations	such	as
addition,	 since	 you	 should	 be	 explicitly	 choosing	 how	 to	 convert

http://bugs.python.org/issue1515
http://bugs.python.org/issue4606
http://sourceware.org/libffi/
http://bugs.python.org/issue8142
http://bugs.python.org/issue5788
http://bugs.python.org/issue4796

between	 float	 and	 Decimal.	 (Fixed	 by	 Mark	 Dickinson;	 issue
2531.)

The	constructor	for	Decimal	now	accepts	floating-point	numbers
(added	 by	 Raymond	 Hettinger;	 issue	 8257)	 and	 non-European
Unicode	 characters	 such	 as	 Arabic-Indic	 digits	 (contributed	 by
Mark	Dickinson;	issue	6595).

Most	of	 the	methods	of	 the	Context	class	now	accept	 integers
as	 well	 as	 Decimal	 instances;	 the	 only	 exceptions	 are	 the
canonical()	and	is_canonical()	methods.	(Patch	by	Juan
José	Conti;	issue	7633.)

When	 using	 Decimal	 instances	 with	 a	 string’s	 format()
method,	the	default	alignment	was	previously	left-alignment.	This
has	been	changed	 to	 right-alignment,	which	 is	more	sensible	 for
numeric	types.	(Changed	by	Mark	Dickinson;	issue	6857.)

Comparisons	 involving	 a	 signaling	 NaN	 value	 (or	 sNAN)	 now
signal	InvalidOperation	instead	of	silently	returning	a	true	or
false	 value	 depending	 on	 the	 comparison	 operator.	 Quiet	 NaN
values	 (or	 NaN)	 are	 now	 hashable.	 (Fixed	 by	 Mark	 Dickinson;
issue	7279.)

The	 difflib	 module	 now	 produces	 output	 that	 is	 more
compatible	 with	 modern	 diff/patch	 tools	 through	 one	 small
change,	using	a	tab	character	instead	of	spaces	as	a	separator	in
the	header	giving	the	filename.	(Fixed	by	Anatoly	Techtonik;	issue
7585.)

The	 Distutils	 sdist	 command	 now	 always	 regenerates	 the
MANIFEST	 file,	 since	 even	 if	 the	 MANIFEST.in	 or	 setup.py
files	 haven’t	 been	 modified,	 the	 user	 might	 have	 created	 some

http://bugs.python.org/issue2531
http://bugs.python.org/issue8257
http://bugs.python.org/issue6595
http://bugs.python.org/issue7633
http://bugs.python.org/issue6857
http://bugs.python.org/issue7279
http://bugs.python.org/issue7585

new	 files	 that	 should	 be	 included.	 (Fixed	 by	 Tarek	 Ziadé;	 issue
8688.)

The	 doctest	 module’s	 IGNORE_EXCEPTION_DETAIL	 flag	 will
now	 ignore	 the	 name	 of	 the	 module	 containing	 the	 exception
being	tested.	(Patch	by	Lennart	Regebro;	issue	7490.)

The	email	module’s	Message	class	will	now	accept	a	Unicode-
valued	 payload,	 automatically	 converting	 the	 payload	 to	 the
encoding	 specified	 by	 output_charset.	 (Added	 by	 R.	 David
Murray;	issue	1368247.)

The	 Fraction	 class	 now	 accepts	 a	 single	 float	 or	 Decimal
instance,	or	two	rational	numbers,	as	arguments	to	its	constructor.
(Implemented	by	Mark	Dickinson;	 rationals	added	 in	 issue	5812,
and	float/decimal	in	issue	8294.)

Ordering	 comparisons	 (<,	 <=,	 >,	 >=)	 between	 fractions	 and
complex	 numbers	 now	 raise	 a	 TypeError.	 This	 fixes	 an
oversight,	making	the	Fraction	match	the	other	numeric	types.

New	class:	FTP_TLS	in	the	ftplib	module	provides	secure	FTP
connections	using	TLS	encapsulation	of	authentication	as	well	as
subsequent	control	and	data	transfers.	(Contributed	by	Giampaolo
Rodola;	issue	2054.)

The	storbinary()	method	 for	 binary	uploads	 can	now	 restart
uploads	 thanks	 to	 an	 added	 rest	 parameter	 (patch	 by	 Pablo
Mouzo;	issue	6845.)

New	 class	 decorator:	 total_ordering()	 in	 the	 functools
module	takes	a	class	that	defines	an	__eq__()	method	and	one
of	 __lt__(),	 __le__(),	 __gt__(),	 or	 __ge__(),	 and

http://bugs.python.org/issue8688
http://bugs.python.org/issue7490
http://bugs.python.org/issue1368247
http://bugs.python.org/issue5812
http://bugs.python.org/issue8294
http://bugs.python.org/issue2054
http://bugs.python.org/issue6845

generates	 the	 missing	 comparison	 methods.	 Since	 the
__cmp__()	 method	 is	 being	 deprecated	 in	 Python	 3.x,	 this
decorator	makes	 it	 easier	 to	 define	 ordered	 classes.	 (Added	 by
Raymond	Hettinger;	issue	5479.)

New	 function:	cmp_to_key()	will	 take	 an	 old-style	 comparison
function	 that	 expects	 two	 arguments	 and	 return	 a	 new	 callable
that	 can	 be	 used	 as	 the	 key	 parameter	 to	 functions	 such	 as
sorted(),	min()	and	max(),	etc.	The	primary	intended	use	is
to	help	with	making	code	compatible	with	Python	3.x.	 (Added	by
Raymond	Hettinger.)

New	 function:	 the	gc	module’s	is_tracked()	 returns	 true	 if	 a
given	 instance	 is	 tracked	 by	 the	 garbage	 collector,	 false
otherwise.	(Contributed	by	Antoine	Pitrou;	issue	4688.)

The	 gzip	 module’s	 GzipFile	 now	 supports	 the	 context
management	 protocol,	 so	 you	 can	 write	 with

gzip.GzipFile(...)	 as	 f:	 (contributed	 by	 Hagen
Fürstenau;	 issue	 3860),	 and	 it	 now	 implements	 the
io.BufferedIOBase	 ABC,	 so	 you	 can	 wrap	 it	 with
io.BufferedReader	 for	 faster	 processing	 (contributed	 by	 Nir
Aides;	 issue	 7471).	 It’s	 also	 now	 possible	 to	 override	 the
modification	 time	 recorded	 in	 a	 gzipped	 file	 by	 providing	 an
optional	 timestamp	 to	 the	 constructor.	 (Contributed	 by	 Jacques
Frechet;	issue	4272.)

Files	 in	 gzip	 format	 can	 be	 padded	 with	 trailing	 zero	 bytes;	 the
gzip	 module	 will	 now	 consume	 these	 trailing	 bytes.	 (Fixed	 by
Tadek	Pietraszek	and	Brian	Curtin;	issue	2846.)

New	 attribute:	 the	 hashlib	 module	 now	 has	 an	 algorithms

http://bugs.python.org/issue5479
http://bugs.python.org/issue4688
http://bugs.python.org/issue3860
http://bugs.python.org/issue7471
http://bugs.python.org/issue4272
http://bugs.python.org/issue2846

attribute	 containing	 a	 tuple	 naming	 the	 supported	 algorithms.	 In
Python	 2.7,	 hashlib.algorithms	 contains	 ('md5',

'sha1',	'sha224',	 'sha256',	 'sha384',	 'sha512').
(Contributed	by	Carl	Chenet;	issue	7418.)

The	default	HTTPResponse	class	used	by	the	httplib	module
now	supports	buffering,	resulting	in	much	faster	reading	of	HTTP
responses.	(Contributed	by	Kristján	Valur	Jónsson;	issue	4879.)

The	 HTTPConnection	 and	 HTTPSConnection	 classes	 now
support	a	source_address	 parameter,	 a	 (host,	port)	 2-tuple
giving	 the	 source	 address	 that	 will	 be	 used	 for	 the	 connection.
(Contributed	by	Eldon	Ziegler;	issue	3972.)

The	 ihooks	 module	 now	 supports	 relative	 imports.	 Note	 that
ihooks	 is	an	older	module	 for	customizing	 imports,	superseded
by	 the	 imputil	 module	 added	 in	 Python	 2.0.	 (Relative	 import
support	added	by	Neil	Schemenauer.)

The	imaplib	module	now	supports	IPv6	addresses.	(Contributed
by	Derek	Morr;	issue	1655.)

New	 function:	 the	 inspect	module’s	 getcallargs()	 takes	 a
callable	and	its	positional	and	keyword	arguments,	and	figures	out
which	 of	 the	 callable’s	 parameters	 will	 receive	 each	 argument,
returning	 a	 dictionary	mapping	 argument	 names	 to	 their	 values.
For	example:

>>>	from	inspect	import	getcallargs

>>>	def	f(a,	b=1,	*pos,	**named):

...					pass

>>>	getcallargs(f,	1,	2,	3)

{'a':	1,	'b':	2,	'pos':	(3,),	'named':	{}}

http://bugs.python.org/issue7418
http://bugs.python.org/issue4879
http://bugs.python.org/issue3972
http://bugs.python.org/issue1655

>>>	getcallargs(f,	a=2,	x=4)

{'a':	2,	'b':	1,	'pos':	(),	'named':	{'x':	4}}

>>>	getcallargs(f)

Traceback	(most	recent	call	last):

...

TypeError:	f()	takes	at	least	1	argument	(0	given)

Contributed	by	George	Sakkis;	issue	3135.

Updated	 module:	 The	 io	 library	 has	 been	 upgraded	 to	 the
version	 shipped	 with	 Python	 3.1.	 For	 3.1,	 the	 I/O	 library	 was
entirely	rewritten	in	C	and	is	2	to	20	times	faster	depending	on	the
task	being	performed.	The	original	Python	version	was	 renamed
to	the	_pyio	module.

One	minor	resulting	change:	the	io.TextIOBase	class	now	has
an	errors	attribute	giving	the	error	setting	used	for	encoding	and
decoding	errors	(one	of	'strict',	'replace',	'ignore').

The	io.FileIO	class	now	raises	an	OSError	when	passed	an
invalid	 file	descriptor.	 (Implemented	by	Benjamin	Peterson;	 issue
4991.)	The	truncate()	method	now	preserves	the	file	position;
previously	it	would	change	the	file	position	to	the	end	of	the	new
file.	(Fixed	by	Pascal	Chambon;	issue	6939.)

New	 function:	 itertools.compress(data,	 selectors)

takes	 two	 iterators.	 Elements	 of	 data	 are	 returned	 if	 the
corresponding	value	in	selectors	is	true:

itertools.compress('ABCDEF',	[1,0,1,0,1,1])	=>

		A,	C,	E,	F

New	 function:

http://bugs.python.org/issue3135
http://bugs.python.org/issue4991
http://bugs.python.org/issue6939

itertools.combinations_with_replacement(iter,	 r)

returns	all	the	possible	r-length	combinations	of	elements	from	the
iterable	 iter.	 Unlike	 combinations(),	 individual	 elements	 can
be	repeated	in	the	generated	combinations:

itertools.combinations_with_replacement('abc',	2)

		('a',	'a'),	('a',	'b'),	('a',	'c'),

		('b',	'b'),	('b',	'c'),	('c',	'c')

Note	 that	 elements	 are	 treated	 as	 unique	 depending	 on	 their
position	in	the	input,	not	their	actual	values.

The	 itertools.count()	 function	 now	 has	 a	 step	 argument
that	 allows	 incrementing	 by	 values	 other	 than	 1.	 count()	 also
now	 allows	 keyword	 arguments,	 and	 using	 non-integer	 values
such	as	floats	or	Decimal	instances.	(Implemented	by	Raymond
Hettinger;	issue	5032.)

itertools.combinations()	 and	 itertools.product()
previously	 raised	 ValueError	 for	 values	 of	 r	 larger	 than	 the
input	iterable.	This	was	deemed	a	specification	error,	so	they	now
return	 an	 empty	 iterator.	 (Fixed	 by	 Raymond	 Hettinger;	 issue
4816.)

Updated	 module:	 The	 json	 module	 was	 upgraded	 to	 version
2.0.9	 of	 the	 simplejson	 package,	 which	 includes	 a	 C	 extension
that	 makes	 encoding	 and	 decoding	 faster.	 (Contributed	 by	 Bob
Ippolito;	issue	4136.)

To	 support	 the	 new	 collections.OrderedDict	 type,
json.load()	now	has	an	optional	object_pairs_hook	parameter
that	will	be	called	with	any	object	 literal	 that	decodes	 to	a	 list	of

http://bugs.python.org/issue5032
http://bugs.python.org/issue4816
http://bugs.python.org/issue4136

pairs.	(Contributed	by	Raymond	Hettinger;	issue	5381.)

The	 mailbox	 module’s	 Maildir	 class	 now	 records	 the
timestamp	 on	 the	 directories	 it	 reads,	 and	 only	 re-reads	 them	 if
the	modification	 time	 has	 subsequently	 changed.	 This	 improves
performance	 by	 avoiding	 unneeded	 directory	 scans.	 (Fixed	 by
A.M.	Kuchling	and	Antoine	Pitrou;	issue	1607951,	issue	6896.)

New	functions:	the	math	module	gained	erf()	and	erfc()	 for
the	error	function	and	the	complementary	error	function,	expm1()
which	 computes	 e**x	 -	 1	 with	 more	 precision	 than	 using
exp()	and	subtracting	1,	gamma()	for	the	Gamma	function,	and
lgamma()	 for	 the	 natural	 log	 of	 the	 Gamma	 function.
(Contributed	 by	 Mark	 Dickinson	 and	 nirinA	 raseliarison;	 issue
3366.)

The	 multiprocessing	 module’s	 Manager*	 classes	 can	 now
be	passed	a	callable	that	will	be	called	whenever	a	subprocess	is
started,	along	with	a	set	of	arguments	 that	will	be	passed	 to	 the
callable.	(Contributed	by	lekma;	issue	5585.)

The	Pool	class,	which	controls	a	pool	of	worker	processes,	now
has	 an	 optional	maxtasksperchild	 parameter.	 Worker	 processes
will	perform	the	specified	number	of	tasks	and	then	exit,	causing
the	Pool	 to	start	a	new	worker.	This	 is	useful	 if	 tasks	may	 leak
memory	or	other	resources,	or	if	some	tasks	will	cause	the	worker
to	 become	 very	 large.	 (Contributed	 by	 Charles	 Cazabon;	 issue
6963.)

The	nntplib	module	now	supports	IPv6	addresses.	(Contributed
by	Derek	Morr;	issue	1664.)

New	functions:	the	os	module	wraps	the	following	POSIX	system

http://bugs.python.org/issue5381
http://bugs.python.org/issue1607951
http://bugs.python.org/issue6896
http://bugs.python.org/issue3366
http://bugs.python.org/issue5585
http://bugs.python.org/issue6963
http://bugs.python.org/issue1664

calls:	 getresgid()	 and	 getresuid(),	 which	 return	 the	 real,
effective,	 and	 saved	 GIDs	 and	 UIDs;	 setresgid()	 and
setresuid(),	 which	 set	 real,	 effective,	 and	 saved	 GIDs	 and
UIDs	 to	 new	 values;	 initgroups(),	 which	 initialize	 the	 group
access	list	for	the	current	process.	(GID/UID	functions	contributed
by	Travis	H.;	 issue	6508.	Support	 for	 initgroups	 added	 by	 Jean-
Paul	Calderone;	issue	7333.)

The	os.fork()	 function	now	re-initializes	 the	 import	 lock	 in	 the
child	 process;	 this	 fixes	 problems	 on	 Solaris	 when	 fork()	 is
called	from	a	thread.	(Fixed	by	Zsolt	Cserna;	issue	7242.)

In	 the	 os.path	 module,	 the	 normpath()	 and	 abspath()
functions	now	preserve	Unicode;	 if	 their	 input	 path	 is	 a	Unicode
string,	 the	 return	 value	 is	 also	 a	 Unicode	 string.	 (normpath()
fixed	 by	 Matt	 Giuca	 in	 issue	 5827;	 abspath()	 fixed	 by	 Ezio
Melotti	in	issue	3426.)

The	 pydoc	 module	 now	 has	 help	 for	 the	 various	 symbols	 that
Python	uses.	You	can	now	do	help('<<')	or	help('@'),	 for
example.	(Contributed	by	David	Laban;	issue	4739.)

The	re	module’s	split(),	sub(),	and	subn()	now	accept	an
optional	flags	argument,	for	consistency	with	the	other	functions	in
the	module.	(Added	by	Gregory	P.	Smith.)

New	function:	run_path()	in	the	runpy	module	will	execute	the
code	 at	 a	 provided	 path	 argument.	 path	 can	 be	 the	 path	 of	 a
Python	 source	 file	 (example.py),	 a	 compiled	 bytecode	 file
(example.pyc),	 a	 directory	 (./package/),	 or	 a	 zip	 archive
(example.zip).	 If	 a	 directory	 or	 zip	 path	 is	 provided,	 it	 will	 be
added	 to	 the	 front	of	sys.path	and	 the	module	__main__	will

http://bugs.python.org/issue6508
http://bugs.python.org/issue7333
http://bugs.python.org/issue7242
http://bugs.python.org/issue5827
http://bugs.python.org/issue3426
http://bugs.python.org/issue4739

be	 imported.	 It’s	 expected	 that	 the	 directory	 or	 zip	 contains	 a
__main__.py;	if	 it	doesn’t,	some	other	__main__.py	might	be
imported	from	a	location	later	in	sys.path.	This	makes	more	of
the	machinery	of	runpy	available	to	scripts	that	want	to	mimic	the
way	 Python’s	 command	 line	 processes	 an	 explicit	 path	 name.
(Added	by	Nick	Coghlan;	issue	6816.)

New	function:	in	the	shutil	module,	make_archive()	takes	a
filename,	 archive	 type	 (zip	 or	 tar-format),	 and	 a	 directory	 path,
and	creates	an	archive	containing	the	directory’s	contents.	(Added
by	Tarek	Ziadé.)

shutil‘s	copyfile()	and	copytree()	functions	now	raise	a
SpecialFileError	 exception	 when	 asked	 to	 copy	 a	 named
pipe.	Previously	 the	code	would	 treat	named	pipes	 like	a	regular
file	by	opening	them	for	reading,	and	this	would	block	indefinitely.
(Fixed	by	Antoine	Pitrou;	issue	3002.)

The	 signal	 module	 no	 longer	 re-installs	 the	 signal	 handler
unless	this	is	truly	necessary,	which	fixes	a	bug	that	could	make	it
impossible	to	catch	the	EINTR	signal	robustly.	(Fixed	by	Charles-
François	Natali;	issue	8354.)

New	 functions:	 in	 the	 site	 module,	 three	 new	 functions	 return
various	 site-	 and	 user-specific	 paths.	 getsitepackages()
returns	 a	 list	 containing	 all	 global	 site-packages	 directories,
getusersitepackages()	 returns	 the	 path	 of	 the	 user’s	 site-
packages	directory,	and	getuserbase()	returns	the	value	of	the
USER_BASE	 environment	 variable,	 giving	 the	path	 to	a	directory
that	can	be	used	to	store	data.	(Contributed	by	Tarek	Ziadé;	issue
6693.)

http://bugs.python.org/issue6816
http://bugs.python.org/issue3002
http://bugs.python.org/issue8354
http://bugs.python.org/issue6693

The	 site	 module	 now	 reports	 exceptions	 occurring	 when	 the
sitecustomize	 module	 is	 imported,	 and	 will	 no	 longer	 catch
and	 swallow	 the	 KeyboardInterrupt	 exception.	 (Fixed	 by
Victor	Stinner;	issue	3137.)

The	create_connection()	 function	gained	a	source_address
parameter,	a	(host,	port)	 2-tuple	 giving	 the	 source	 address
that	will	be	used	for	the	connection.	(Contributed	by	Eldon	Ziegler;
issue	3972.)

The	 recv_into()	 and	 recvfrom_into()	 methods	 will	 now
write	 into	 objects	 that	 support	 the	 buffer	 API,	 most	 usefully	 the
bytearray	and	memoryview	objects.	(Implemented	by	Antoine
Pitrou;	issue	8104.)

The	 SocketServer	 module’s	 TCPServer	 class	 now	 supports
socket	 timeouts	 and	 disabling	 the	 Nagle	 algorithm.	 The
disable_nagle_algorithm	class	attribute	defaults	to	False;	if
overridden	 to	 be	 True,	 new	 request	 connections	 will	 have	 the
TCP_NODELAY	option	set	to	prevent	buffering	many	small	sends
into	a	single	TCP	packet.	The	timeout	class	attribute	can	hold	a
timeout	in	seconds	that	will	be	applied	to	the	request	socket;	if	no
request	is	received	within	that	time,	handle_timeout()	will	be
called	 and	 handle_request()	 will	 return.	 (Contributed	 by
Kristján	Valur	Jónsson;	issue	6192	and	issue	6267.)

Updated	 module:	 the	 sqlite3	 module	 has	 been	 updated	 to
version	 2.6.0	 of	 the	 pysqlite	 package.	 Version	 2.6.0	 includes	 a
number	 of	 bugfixes,	 and	 adds	 the	 ability	 to	 load	 SQLite
extensions	 from	 shared	 libraries.	 Call	 the
enable_load_extension(True)	 method	 to	 enable
extensions,	 and	 then	 call	 load_extension()	 to	 load	 a

http://bugs.python.org/issue3137
http://bugs.python.org/issue3972
http://bugs.python.org/issue8104
http://bugs.python.org/issue6192
http://bugs.python.org/issue6267
http://code.google.com/p/pysqlite/

particular	shared	library.	(Updated	by	Gerhard	Häring.)

The	 ssl	 module’s	 ssl.SSLSocket	 objects	 now	 support	 the
buffer	API,	which	 fixed	a	 test	 suite	 failure	 (fix	 by	Antoine	Pitrou;
issue	 7133)	 and	 automatically	 set	 OpenSSL’s
SSL_MODE_AUTO_RETRY,	which	will	prevent	an	error	code	being
returned	 from	 recv()	 operations	 that	 trigger	 an	 SSL
renegotiation	(fix	by	Antoine	Pitrou;	issue	8222).

The	 ssl.wrap_socket()	 constructor	 function	 now	 takes	 a
ciphers	argument	that’s	a	string	listing	the	encryption	algorithms	to
be	allowed;	the	format	of	the	string	is	described	in	 the	OpenSSL
documentation.	(Added	by	Antoine	Pitrou;	issue	8322.)

Another	 change	 makes	 the	 extension	 load	 all	 of	 OpenSSL’s
ciphers	and	digest	algorithms	so	 that	 they’re	all	available.	Some
SSL	 certificates	 couldn’t	 be	 verified,	 reporting	 an	 “unknown
algorithm”	error.	(Reported	by	Beda	Kosata,	and	fixed	by	Antoine
Pitrou;	issue	8484.)

The	 version	 of	 OpenSSL	 being	 used	 is	 now	 available	 as	 the
module	 attributes	 ssl.OPENSSL_VERSION	 (a	 string),
ssl.OPENSSL_VERSION_INFO	 (a	 5-tuple),	 and
ssl.OPENSSL_VERSION_NUMBER	 (an	 integer).	 (Added	 by
Antoine	Pitrou;	issue	8321.)

The	struct	module	will	no	longer	silently	ignore	overflow	errors
when	a	value	is	too	large	for	a	particular	integer	format	code	(one
of	 bBhHiIlLqQ);	 it	 now	 always	 raises	 a	 struct.error
exception.	 (Changed	 by	 Mark	 Dickinson;	 issue	 1523.)	 The
pack()	 function	 will	 also	 attempt	 to	 use	 __index__()	 to
convert	 and	 pack	 non-integers	 before	 trying	 the	 __int__()

http://bugs.python.org/issue7133
http://bugs.python.org/issue8222
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT
http://bugs.python.org/issue8322
http://bugs.python.org/issue8484
http://bugs.python.org/issue8321
http://bugs.python.org/issue1523

method	or	reporting	an	error.	(Changed	by	Mark	Dickinson;	issue
8300.)

New	 function:	 the	 subprocess	 module’s	 check_output()
runs	a	command	with	a	specified	set	of	arguments	and	returns	the
command’s	 output	 as	 a	 string	 when	 the	 command	 runs	 without
error,	or	raises	a	CalledProcessError	exception	otherwise.

>>>	subprocess.check_output(['df',	'-h',	'.'])

'Filesystem					Size			Used		Avail	Capacity		Mounted	on\n

/dev/disk0s2				52G				49G			3.0G				94%				/\n'

>>>	subprocess.check_output(['df',	'-h',	'/bogus'

		...

subprocess.CalledProcessError:	Command	'['df',	'-h',	'/bogus']'	returned	non-zero	exit	status	1

(Contributed	by	Gregory	P.	Smith.)

The	subprocess	module	will	now	retry	 its	 internal	system	calls
on	receiving	an	EINTR	signal.	(Reported	by	several	people;	final
patch	by	Gregory	P.	Smith	in	issue	1068268.)

New	 function:	 is_declared_global()	 in	 the	 symtable

module	returns	true	for	variables	that	are	explicitly	declared	to	be
global,	 false	 for	 ones	 that	 are	 implicitly	 global.	 (Contributed	 by
Jeremy	Hylton.)

The	syslog	module	will	now	use	the	value	of	sys.argv[0]	as
the	 identifier	 instead	of	 the	previous	default	value	of	'python'.
(Changed	by	Sean	Reifschneider;	issue	8451.)

The	 sys.version_info	 value	 is	 now	 a	 named	 tuple,	 with
attributes	 named	 major,	 minor,	 micro,	 releaselevel,	 and

http://bugs.python.org/issue8300
http://bugs.python.org/issue1068268
http://bugs.python.org/issue8451

serial.	(Contributed	by	Ross	Light;	issue	4285.)

sys.getwindowsversion()	 also	 returns	 a	 named	 tuple,	 with
attributes	 named	 major,	 minor,	 build,	 platform,
service_pack,	 service_pack_major,
service_pack_minor,	 suite_mask,	 and	 product_type.
(Contributed	by	Brian	Curtin;	issue	7766.)

The	tarfile	module’s	default	error	handling	has	changed,	to	no
longer	suppress	fatal	errors.	The	default	error	level	was	previously
0,	which	meant	 that	errors	would	only	result	 in	a	message	being
written	 to	 the	 debug	 log,	 but	 because	 the	 debug	 log	 is	 not
activated	by	default,	 these	errors	go	unnoticed.	The	default	error
level	 is	 now	 1,	 which	 raises	 an	 exception	 if	 there’s	 an	 error.
(Changed	by	Lars	Gustäbel;	issue	7357.)

tarfile	 now	 supports	 filtering	 the	 TarInfo	 objects	 being
added	 to	 a	 tar	 file.	 When	 you	 call	 add(),	 you	 may	 supply	 an
optional	filter	argument	that’s	a	callable.	The	filter	callable	will	be
passed	the	TarInfo	 for	every	 file	being	added,	and	can	modify
and	return	it.	If	the	callable	returns	None,	the	file	will	be	excluded
from	the	resulting	archive.	This	is	more	powerful	than	the	existing
exclude	argument,	which	has	therefore	been	deprecated.	(Added
by	 Lars	 Gustäbel;	 issue	 6856.)	 The	 TarFile	 class	 also	 now
supports	the	context	manager	protocol.	(Added	by	Lars	Gustäbel;
issue	7232.)

The	 wait()	 method	 of	 the	 threading.Event	 class	 now
returns	 the	 internal	 flag	 on	 exit.	 This	 means	 the	 method	 will
usually	return	true	because	wait()	is	supposed	to	block	until	the
internal	flag	becomes	true.	The	return	value	will	only	be	false	if	a
timeout	was	provided	and	the	operation	timed	out.	(Contributed	by

http://bugs.python.org/issue4285
http://bugs.python.org/issue7766
http://bugs.python.org/issue7357
http://bugs.python.org/issue6856
http://bugs.python.org/issue7232

Tim	Lesher;	issue	1674032.)

The	Unicode	database	provided	by	the	unicodedata	module	is
now	 used	 internally	 to	 determine	which	 characters	 are	 numeric,
whitespace,	or	represent	line	breaks.	The	database	also	includes
information	 from	 the	 Unihan.txt	 data	 file	 (patch	 by	 Anders
Chrigström	 and	Amaury	 Forgeot	 d’Arc;	 issue	 1571184)	 and	 has
been	updated	to	version	5.2.0	(updated	by	Florent	Xicluna;	issue
8024).

The	 urlparse	 module’s	 urlsplit()	 now	 handles	 unknown
URL	schemes	in	a	fashion	compliant	with	RFC	3986:	if	the	URL	is
of	 the	form	"<something>://...",	 the	 text	before	 the	://	 is
treated	 as	 the	 scheme,	 even	 if	 it’s	 a	made-up	 scheme	 that	 the
module	 doesn’t	 know	 about.	 This	 change	 may	 break	 code	 that
worked	 around	 the	 old	 behaviour.	 For	 example,	Python	 2.6.4	 or
2.5	will	return	the	following:

>>>	import	urlparse

>>>	urlparse.urlsplit('invented://host/filename?query'

('invented',	'',	'//host/filename?query',	'',	'')

Python	2.7	(and	Python	2.6.5)	will	return:

>>>	import	urlparse

>>>	urlparse.urlsplit('invented://host/filename?query'

('invented',	'host',	'/filename?query',	'',	'')

(Python	 2.7	 actually	 produces	 slightly	 different	 output,	 since	 it
returns	a	named	tuple	instead	of	a	standard	tuple.)

The	 urlparse	 module	 also	 supports	 IPv6	 literal	 addresses	 as

http://bugs.python.org/issue1674032
http://bugs.python.org/issue1571184
http://bugs.python.org/issue8024
http://tools.ietf.org/html/rfc3986.html

defined	 by	 RFC	 2732	 (contributed	 by	 Senthil	 Kumaran;	 issue
2987).

>>>	urlparse.urlparse('http://[1080::8:800:200C:417A]/foo'

ParseResult(scheme='http',	netloc='[1080::8:800:200C:417A]',

												path='/foo',	params='',	query='',	fragment='')

New	class:	 the	WeakSet	 class	 in	 the	weakref	module	 is	a	set
that	only	holds	weak	references	to	its	elements;	elements	will	be
removed	 once	 there	 are	 no	 references	 pointing	 to	 them.
(Originally	implemented	in	Python	3.x	by	Raymond	Hettinger,	and
backported	to	2.7	by	Michael	Foord.)

The	 ElementTree	 library,	 xml.etree,	 no	 longer	 escapes
ampersands	 and	 angle	 brackets	 when	 outputting	 an	 XML
processing	 instruction	 (which	 looks	 like	 <?xml-stylesheet
href="#style1"?>)	 or	 comment	 (which	 looks	 like	 <!--

comment	-->).	(Patch	by	Neil	Muller;	issue	2746.)

The	XML-RPC	client	and	server,	provided	by	the	xmlrpclib	and
SimpleXMLRPCServer	modules,	have	improved	performance	by
supporting	 HTTP/1.1	 keep-alive	 and	 by	 optionally	 using	 gzip
encoding	 to	 compress	 the	 XML	 being	 exchanged.	 The	 gzip
compression	is	controlled	by	the	encode_threshold	attribute	of
SimpleXMLRPCRequestHandler,	 which	 contains	 a	 size	 in
bytes;	responses	larger	than	this	will	be	compressed.	(Contributed
by	Kristján	Valur	Jónsson;	issue	6267.)

The	 zipfile	 module’s	 ZipFile	 now	 supports	 the	 context
management	 protocol,	 so	 you	 can	 write	 with

zipfile.ZipFile(...)	as	f:.	(Contributed	by	Brian	Curtin;
issue	5511.)

http://tools.ietf.org/html/rfc2732.html
http://bugs.python.org/issue2987
http://bugs.python.org/issue2746
http://bugs.python.org/issue6267
http://bugs.python.org/issue5511

zipfile	 now	 also	 supports	 archiving	 empty	 directories	 and
extracts	 them	correctly.	 (Fixed	by	Kuba	Wieczorek;	 issue	 4710.)
Reading	files	out	of	an	archive	is	faster,	and	interleaving	read()
and	readline()	now	works	correctly.	(Contributed	by	Nir	Aides;
issue	7610.)

The	 is_zipfile()	 function	 now	 accepts	 a	 file	 object,	 in
addition	 to	 the	 path	 names	 accepted	 in	 earlier	 versions.
(Contributed	by	Gabriel	Genellina;	issue	4756.)

The	 writestr()	 method	 now	 has	 an	 optional	 compress_type
parameter	that	 lets	you	override	the	default	compression	method
specified	 in	 the	 ZipFile	 constructor.	 (Contributed	 by	 Ronald
Oussoren;	issue	6003.)

New	module:	importlib

Python	3.1	includes	the	importlib	package,	a	re-implementation	of
the	 logic	 underlying	 Python’s	 import	 statement.	 importlib	 is
useful	 for	 implementors	of	Python	interpreters	and	to	users	who	wish
to	 write	 new	 importers	 that	 can	 participate	 in	 the	 import	 process.
Python	 2.7	 doesn’t	 contain	 the	 complete	 importlib	 package,	 but
instead	 has	 a	 tiny	 subset	 that	 contains	 a	 single	 function,
import_module().

import_module(name,	package=None)	 imports	a	module.	name
is	a	string	containing	the	module	or	package’s	name.	It’s	possible	to	do
relative	 imports	 by	 providing	 a	 string	 that	 begins	with	 a	 .	 character,
such	 as	 ..utils.errors.	 For	 relative	 imports,	 the	 package
argument	must	be	provided	and	 is	 the	name	of	 the	package	 that	will
be	 used	 as	 the	 anchor	 for	 the	 relative	 import.	 import_module()

http://bugs.python.org/issue4710
http://bugs.python.org/issue7610
http://bugs.python.org/issue4756
http://bugs.python.org/issue6003

both	 inserts	the	imported	module	 into	sys.modules	and	returns	 the
module	object.

Here	are	some	examples:

>>>	from	importlib	import	import_module

>>>	anydbm	=	import_module('anydbm')		#	Standard	absolute	import

>>>	anydbm

<module	'anydbm'	from	'/p/python/Lib/anydbm.py'>

>>>	#	Relative	import

>>>	file_util	=	import_module('..file_util',	'distutils.command'

>>>	file_util

<module	'distutils.file_util'	from	'/python/Lib/distutils/file_util.pyc'>

importlib	 was	 implemented	 by	 Brett	 Cannon	 and	 introduced	 in
Python	3.1.

New	module:	sysconfig

The	sysconfig	module	has	been	pulled	out	of	the	Distutils	package,
becoming	 a	 new	 top-level	 module	 in	 its	 own	 right.	 sysconfig
provides	functions	for	getting	information	about	Python’s	build	process:
compiler	switches,	 installation	paths,	 the	platform	name,	and	whether
Python	is	running	from	its	source	directory.

Some	of	the	functions	in	the	module	are:

get_config_var()	 returns	 variables	 from	 Python’s	 Makefile
and	the	pyconfig.h	file.
get_config_vars()	 returns	 a	 dictionary	 containing	 all	 of	 the
configuration	variables.
getpath()	 returns	 the	 configured	 path	 for	 a	 particular	 type	 of
module:	 the	 standard	 library,	 site-specific	 modules,	 platform-

specific	modules,	etc.
is_python_build()	returns	true	if	you’re	running	a	binary	from
a	Python	source	tree,	and	false	otherwise.

Consult	 the	 sysconfig	 documentation	 for	 more	 details	 and	 for	 a
complete	list	of	functions.

The	Distutils	package	and	sysconfig	are	now	maintained	by	Tarek
Ziadé,	who	has	also	started	a	Distutils2	package	(source	repository	at
http://hg.python.org/distutils2/)	 for	 developing	 a	 next-generation
version	of	Distutils.

ttk:	Themed	Widgets	for	Tk

Tcl/Tk	8.5	includes	a	set	of	themed	widgets	that	re-implement	basic	Tk
widgets	but	have	a	more	customizable	appearance	and	can	therefore
more	 closely	 resemble	 the	native	platform’s	widgets.	This	widget	set
was	originally	called	Tile,	but	was	renamed	to	Ttk	(for	“themed	Tk”)	on
being	added	to	Tcl/Tck	release	8.5.

To	 learn	more,	 read	 the	 ttk	 module	 documentation.	 You	 may	 also
wish	to	read	the	Tcl/Tk	manual	page	describing	the	Ttk	theme	engine,
available	 at	 http://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm.	 Some
screenshots	 of	 the	 Python/Ttk	 code	 in	 use	 are	 at
http://code.google.com/p/python-ttk/wiki/Screenshots.

The	ttk	module	was	written	by	Guilherme	Polo	and	added	 in	 issue
2983.	An	alternate	version	called	Tile.py,	written	by	Martin	Franklin
and	maintained	by	Kevin	Walzer,	was	proposed	for	 inclusion	 in	 issue
2618,	 but	 the	 authors	 argued	 that	Guilherme	Polo’s	 work	was	more
comprehensive.

http://hg.python.org/distutils2/
http://www.tcl.tk/man/tcl8.5/TkCmd/ttk_intro.htm
http://code.google.com/p/python-ttk/wiki/Screenshots
http://bugs.python.org/issue2983
http://bugs.python.org/issue2618

Updated	module:	unittest

The	 unittest	 module	 was	 greatly	 enhanced;	 many	 new	 features
were	 added.	 Most	 of	 these	 features	 were	 implemented	 by	 Michael
Foord,	unless	otherwise	noted.	The	enhanced	version	of	the	module	is
downloadable	 separately	 for	 use	 with	 Python	 versions	 2.4	 to	 2.6,
packaged	 as	 the	 unittest2	 package,	 from
http://pypi.python.org/pypi/unittest2.

When	 used	 from	 the	 command	 line,	 the	 module	 can	 automatically
discover	 tests.	 It’s	 not	 as	 fancy	 as	 py.test	 or	 nose,	 but	 provides	 a
simple	way	 to	 run	 tests	kept	within	a	set	of	package	directories.	For
example,	 the	 following	command	will	 search	 the	test/	subdirectory
for	any	importable	test	files	named	test*.py:

python	-m	unittest	discover	-s	test

Consult	 the	 unittest	 module	 documentation	 for	 more	 details.
(Developed	in	issue	6001.)

The	main()	function	supports	some	other	new	options:

-b	 or	 --buffer	 will	 buffer	 the	 standard	 output	 and	 standard	 error
streams	during	each	test.	 If	 the	 test	passes,	any	resulting	output
will	be	discarded;	on	failure,	the	buffered	output	will	be	displayed.

-c	or	--catch	will	cause	the	control-C	interrupt	to	be	handled	more
gracefully.	Instead	of	interrupting	the	test	process	immediately,	the
currently	 running	 test	 will	 be	 completed	 and	 then	 the	 partial
results	up	to	the	interruption	will	be	reported.	If	you’re	impatient,	a
second	press	of	control-C	will	cause	an	immediate	interruption.

http://pypi.python.org/pypi/unittest2
http://pytest.org
http://code.google.com/p/python-nose/
http://bugs.python.org/issue6001

This	control-C	handler	 tries	 to	avoid	causing	problems	when	 the
code	 being	 tested	 or	 the	 tests	 being	 run	 have	 defined	 a	 signal
handler	of	their	own,	by	noticing	that	a	signal	handler	was	already
set	 and	 calling	 it.	 If	 this	 doesn’t	 work	 for	 you,	 there’s	 a
removeHandler()	decorator	that	can	be	used	to	mark	tests	that
should	have	the	control-C	handling	disabled.

-f	or	--failfast	makes	test	execution	stop	immediately	when	a	test
fails	instead	of	continuing	to	execute	further	tests.	(Suggested	by
Cliff	Dyer	and	implemented	by	Michael	Foord;	issue	8074.)

The	progress	messages	now	show	‘x’	for	expected	failures	and	‘u’	for
unexpected	 successes	 when	 run	 in	 verbose	 mode.	 (Contributed	 by
Benjamin	Peterson.)

Test	 cases	 can	 raise	 the	 SkipTest	 exception	 to	 skip	 a	 test	 (issue
1034053).

The	 error	 messages	 for	 assertEqual(),	 assertTrue(),	 and
assertFalse()	failures	now	provide	more	information.	If	you	set	the
longMessage	attribute	of	your	TestCase	classes	 to	True,	both	 the
standard	error	message	and	any	additional	message	you	provide	will
be	printed	for	failures.	(Added	by	Michael	Foord;	issue	5663.)

The	assertRaises()	method	now	 returns	a	 context	 handler	when
called	without	providing	a	callable	object	to	run.	For	example,	you	can
write	this:

with	self.assertRaises(KeyError):

				{}['foo']

(Implemented	by	Antoine	Pitrou;	issue	4444.)

http://bugs.python.org/issue8074
http://bugs.python.org/issue1034053
http://bugs.python.org/issue5663
http://bugs.python.org/issue4444

Module-	 and	 class-level	 setup	 and	 teardown	 fixtures	 are	 now
supported.	 Modules	 can	 contain	 setUpModule()	 and
tearDownModule()	 functions.	 Classes	 can	 have	 setUpClass()
and	 tearDownClass()	 methods	 that	 must	 be	 defined	 as	 class
methods	 (using	@classmethod	 or	 equivalent).	 These	 functions	 and
methods	are	invoked	when	the	test	runner	switches	to	a	test	case	in	a
different	module	or	class.

The	 methods	 addCleanup()	 and	 doCleanups()	 were	 added.
addCleanup()	 lets	 you	 add	 cleanup	 functions	 that	 will	 be	 called
unconditionally	 (after	 setUp()	 if	 setUp()	 fails,	 otherwise	 after
tearDown()).	 This	 allows	 for	much	 simpler	 resource	allocation	and
deallocation	during	tests	(issue	5679).

A	number	of	new	methods	were	added	that	provide	more	specialized
tests.	Many	 of	 these	methods	were	written	 by	Google	 engineers	 for
use	 in	 their	 test	 suites;	 Gregory	 P.	 Smith,	 Michael	 Foord,	 and	 GvR
worked	on	merging	them	into	Python’s	version	of	unittest.

assertIsNone()	 and	 assertIsNotNone()	 take	 one
expression	and	verify	that	the	result	is	or	is	not	None.
assertIs()	 and	 assertIsNot()	 take	 two	 values	 and	 check
whether	 the	 two	 values	 evaluate	 to	 the	 same	 object	 or	 not.
(Added	by	Michael	Foord;	issue	2578.)
assertIsInstance()	 and	 assertNotIsInstance()	 check
whether	the	resulting	object	is	an	instance	of	a	particular	class,	or
of	one	of	a	tuple	of	classes.	(Added	by	Georg	Brandl;	issue	7031.)
assertGreater(),	 assertGreaterEqual(),
assertLess(),	 and	 assertLessEqual()	 compare	 two
quantities.
assertMultiLineEqual()	compares	two	strings,	and	if	they’re
not	 equal,	 displays	 a	 helpful	 comparison	 that	 highlights	 the

http://bugs.python.org/issue5679
http://bugs.python.org/issue2578
http://bugs.python.org/issue7031

differences	 in	 the	 two	 strings.	 This	 comparison	 is	 now	 used	 by
default	 when	 Unicode	 strings	 are	 compared	 with
assertEqual().
assertRegexpMatches()	 and
assertNotRegexpMatches()	 checks	 whether	 the	 first
argument	 is	 a	 string	 matching	 or	 not	 matching	 the	 regular
expression	provided	as	the	second	argument	(issue	8038).
assertRaisesRegexp()	checks	whether	a	particular	exception
is	 raised,	 and	 then	 also	 checks	 that	 the	 string	 representation	 of
the	exception	matches	the	provided	regular	expression.
assertIn()	and	assertNotIn()	tests	whether	first	is	or	is	not
in	second.
assertItemsEqual()	 tests	 whether	 two	 provided	 sequences
contain	the	same	elements.
assertSetEqual()	compares	whether	two	sets	are	equal,	and
only	reports	the	differences	between	the	sets	in	case	of	error.
Similarly,	 assertListEqual()	 and	 assertTupleEqual()
compare	 the	specified	 types	and	explain	any	differences	without
necessarily	printing	their	full	values;	these	methods	are	now	used
by	 default	 when	 comparing	 lists	 and	 tuples	 using
assertEqual().	 More	 generally,	 assertSequenceEqual()
compares	two	sequences	and	can	optionally	check	whether	both
sequences	are	of	a	particular	type.
assertDictEqual()	compares	two	dictionaries	and	reports	the
differences;	 it’s	 now	 used	 by	 default	 when	 you	 compare	 two
dictionaries	 using	 assertEqual().
assertDictContainsSubset()	 checks	 whether	 all	 of	 the
key/value	pairs	in	first	are	found	in	second.
assertAlmostEqual()	and	assertNotAlmostEqual()	 test
whether	 first	 and	 second	 are	 approximately	 equal.	 This	 method
can	either	round	their	difference	to	an	optionally-specified	number
of	places	(the	default	 is	7)	and	compare	it	 to	zero,	or	require	the
difference	to	be	smaller	than	a	supplied	delta	value.

http://bugs.python.org/issue8038

loadTestsFromName()	 properly	 honors	 the	 suiteClass

attribute	of	the	TestLoader.	(Fixed	by	Mark	Roddy;	issue	6866.)
A	 new	 hook	 lets	 you	 extend	 the	 assertEqual()	 method	 to
handle	new	data	types.	The	addTypeEqualityFunc()	method
takes	a	type	object	and	a	function.	The	function	will	be	used	when
both	of	the	objects	being	compared	are	of	the	specified	type.	This
function	should	compare	the	two	objects	and	raise	an	exception	if
they	 don’t	 match;	 it’s	 a	 good	 idea	 for	 the	 function	 to	 provide
additional	information	about	why	the	two	objects	aren’t	matching,
much	as	the	new	sequence	comparison	methods	do.

unittest.main()	now	takes	an	optional	exit	argument.	 If	False,
main()	doesn’t	call	sys.exit(),	allowing	main()	to	be	used	from
the	 interactive	 interpreter.	 (Contributed	by	J.	Pablo	Fernández;	 issue
3379.)

TestResult	 has	 new	 startTestRun()	 and	 stopTestRun()
methods	 that	 are	 called	 immediately	 before	 and	 after	 a	 test	 run.
(Contributed	by	Robert	Collins;	issue	5728.)

With	all	 these	changes,	the	unittest.py	was	becoming	awkwardly
large,	so	the	module	was	turned	into	a	package	and	the	code	split	into
several	 files	 (by	 Benjamin	 Peterson).	 This	 doesn’t	 affect	 how	 the
module	is	imported	or	used.

See	also:

http://www.voidspace.org.uk/python/articles/unittest2.shtml
Describes	the	new	features,	how	to	use	them,	and	the	rationale
for	various	design	decisions.	(By	Michael	Foord.)

Updated	module:	ElementTree	1.3

http://bugs.python.org/issue6866
http://bugs.python.org/issue3379
http://bugs.python.org/issue5728
http://www.voidspace.org.uk/python/articles/unittest2.shtml

The	 version	 of	 the	 ElementTree	 library	 included	 with	 Python	 was
updated	to	version	1.3.	Some	of	the	new	features	are:

The	 various	 parsing	 functions	 now	 take	 a	 parser	 keyword
argument	giving	an	XMLParser	 instance	 that	will	 be	used.	This
makes	it	possible	to	override	the	file’s	internal	encoding:

p	=	ET.XMLParser(encoding='utf-8')

t	=	ET.XML("""<root/>""",	parser=p)

Errors	 in	 parsing	 XML	 now	 raise	 a	 ParseError	 exception,
whose	 instances	 have	 a	 position	 attribute	 containing	 a	 (line,
column)	tuple	giving	the	location	of	the	problem.

ElementTree’s	 code	 for	 converting	 trees	 to	 a	 string	 has	 been
significantly	 reworked,	 making	 it	 roughly	 twice	 as	 fast	 in	 many
cases.	 The	 ElementTree.write()	 and	 Element.write()
methods	 now	 have	 a	method	 parameter	 that	 can	 be	 “xml”	 (the
default),	“html”,	or	“text”.	HTML	mode	will	output	empty	elements
as	<empty></empty>	instead	of	<empty/>,	and	text	mode	will
skip	over	elements	and	only	output	the	text	chunks.	If	you	set	the
tag	 attribute	 of	 an	 element	 to	 None	 but	 leave	 its	 children	 in
place,	the	element	will	be	omitted	when	the	tree	is	written	out,	so
you	don’t	need	to	do	more	extensive	rearrangement	to	remove	a
single	element.

Namespace	 handling	 has	 also	 been	 improved.	 All	 xmlns:
<whatever>	 declarations	 are	 now	 output	 on	 the	 root	 element,
not	 scattered	 throughout	 the	 resulting	 XML.	 You	 can	 set	 the
default	 namespace	 for	 a	 tree	 by	 setting	 the
default_namespace	 attribute	 and	 can	 register	 new	 prefixes
with	register_namespace().	 In	XML	mode,	 you	 can	use	 the

true/false	 xml_declaration	 parameter	 to	 suppress	 the	 XML
declaration.

New	 Element	 method:	 extend()	 appends	 the	 items	 from	 a
sequence	to	the	element’s	children.	Elements	themselves	behave
like	sequences,	so	it’s	easy	to	move	children	from	one	element	to
another:

from	xml.etree	import	ElementTree	as	ET

t	=	ET.XML("""<list>

		<item>1</item>	<item>2</item>		<item>3</item>

</list>""")

new	=	ET.XML('<root/>')

new.extend(t)

#	Outputs	<root><item>1</item>...</root>

print	ET.tostring(new)

New	 Element	 method:	 iter()	 yields	 the	 children	 of	 the
element	as	a	generator.	It’s	also	possible	to	write	for	child	in
elem:	 to	 loop	 over	 an	 element’s	 children.	 The	 existing	method
getiterator()	 is	 now	 deprecated,	 as	 is	 getchildren()
which	constructs	and	returns	a	list	of	children.

New	 Element	 method:	 itertext()	 yields	 all	 chunks	 of	 text
that	are	descendants	of	the	element.	For	example:

t	=	ET.XML("""<list>

		<item>1</item>	<item>2</item>		<item>3</item>

</list>""")

#	Outputs	['\n		',	'1',	'	',	'2',	'		',	'3',	'\n']

print	list(t.itertext())

Deprecated:	 using	 an	 element	 as	 a	 Boolean	 (i.e.,	 if	 elem:)
would	return	true	if	the	element	had	any	children,	or	false	if	there
were	no	children.	This	behaviour	is	confusing	–	None	is	false,	but
so	 is	 a	 childless	 element?	 –	 so	 it	 will	 now	 trigger	 a
FutureWarning.	 In	 your	 code,	 you	 should	 be	 explicit:	 write
len(elem)	!=	0	 if	you’re	interested	in	the	number	of	children,
or	elem	is	not	None.

Fredrik	 Lundh	 develops	 ElementTree	 and	 produced	 the	 1.3	 version;
you	 can	 read	 his	 article	 describing	 1.3	 at
http://effbot.org/zone/elementtree-13-intro.htm.	 Florent	 Xicluna
updated	the	version	included	with	Python,	after	discussions	on	python-
dev	and	in	issue	6472.)

http://effbot.org/zone/elementtree-13-intro.htm
http://bugs.python.org/issue6472

Build	and	C	API	Changes

Changes	to	Python’s	build	process	and	to	the	C	API	include:

The	latest	release	of	the	GNU	Debugger,	GDB	7,	can	be	scripted
using	Python.	When	you	begin	debugging	an	executable	program
P,	 GDB	 will	 look	 for	 a	 file	 named	 P-gdb.py	 and	 automatically
read	it.	Dave	Malcolm	contributed	a	python-gdb.py	that	adds	a
number	 of	 commands	 useful	 when	 debugging	 Python	 itself.	 For
example,	py-up	and	py-down	go	up	or	down	one	Python	stack
frame,	which	usually	corresponds	to	several	C	stack	frames.	py-
print	prints	the	value	of	a	Python	variable,	and	py-bt	prints	the
Python	stack	trace.	(Added	as	a	result	of	issue	8032.)

If	 you	 use	 the	 .gdbinit	 file	 provided	 with	 Python,	 the	 “pyo”
macro	 in	 the	 2.7	 version	 now	 works	 correctly	 when	 the	 thread
being	debugged	doesn’t	hold	the	GIL;	 the	macro	now	acquires	 it
before	printing.	(Contributed	by	Victor	Stinner;	issue	3632.)

Py_AddPendingCall()	 is	 now	 thread-safe,	 letting	 any	worker
thread	 submit	 notifications	 to	 the	 main	 Python	 thread.	 This	 is
particularly	 useful	 for	 asynchronous	 IO	 operations.	 (Contributed
by	Kristján	Valur	Jónsson;	issue	4293.)

New	 function:	 PyCode_NewEmpty()	 creates	 an	 empty	 code
object;	only	the	filename,	function	name,	and	first	line	number	are
required.	This	is	useful	for	extension	modules	that	are	attempting
to	 construct	 a	 more	 useful	 traceback	 stack.	 Previously	 such
extensions	needed	to	call	PyCode_New(),	which	had	many	more
arguments.	(Added	by	Jeffrey	Yasskin.)

New	function:	PyErr_NewExceptionWithDoc()	creates	a	new

http://sourceware.org/gdb/current/onlinedocs/gdb/Python.html
http://bugs.python.org/issue8032
http://bugs.python.org/issue3632
http://bugs.python.org/issue4293

exception	 class,	 just	 as	 the	 existing	 PyErr_NewException()
does,	 but	 takes	 an	 extra	 char	 *	 argument	 containing	 the
docstring	 for	 the	new	exception	class.	 (Added	 by	 ‘lekma’	 on	 the
Python	bug	tracker;	issue	7033.)

New	 function:	 PyFrame_GetLineNumber()	 takes	 a	 frame
object	 and	 returns	 the	 line	 number	 that	 the	 frame	 is	 currently
executing.	 Previously	 code	 would	 need	 to	 get	 the	 index	 of	 the
bytecode	instruction	currently	executing,	and	then	look	up	the	line
number	 corresponding	 to	 that	 address.	 (Added	 by	 Jeffrey
Yasskin.)

New	 functions:	 PyLong_AsLongAndOverflow()	 and
PyLong_AsLongLongAndOverflow()	 approximates	 a	 Python
long	 integer	 as	 a	C	 long	 or	 long	long.	 If	 the	 number	 is	 too
large	to	fit	into	the	output	type,	an	overflow	flag	is	set	and	returned
to	 the	 caller.	 (Contributed	by	Case	Van	Horsen;	 issue	7528	 and
issue	7767.)

New	 function:	 stemming	 from	 the	 rewrite	 of	 string-to-float
conversion,	 a	 new	 PyOS_string_to_double()	 function	 was
added.	 The	 old	 PyOS_ascii_strtod()	 and
PyOS_ascii_atof()	functions	are	now	deprecated.

New	 function:	 PySys_SetArgvEx()	 sets	 the	 value	 of
sys.argv	 and	 can	 optionally	 update	 sys.path	 to	 include	 the
directory	 containing	 the	 script	 named	 by	 sys.argv[0]

depending	on	the	value	of	an	updatepath	parameter.

This	 function	was	added	 to	close	a	security	hole	 for	applications
that	embed	Python.	The	old	function,	PySys_SetArgv(),	would
always	 update	 sys.path,	 and	 sometimes	 it	 would	 add	 the

http://bugs.python.org/issue7033
http://bugs.python.org/issue7528
http://bugs.python.org/issue7767

current	 directory.	 This	 meant	 that,	 if	 you	 ran	 an	 application
embedding	 Python	 in	 a	 directory	 controlled	 by	 someone	 else,
attackers	could	put	a	Trojan-horse	module	in	the	directory	(say,	a
file	 named	 os.py)	 that	 your	 application	 would	 then	 import	 and
run.

If	 you	maintain	 a	C/C++	 application	 that	 embeds	Python,	 check
whether	you’re	calling	PySys_SetArgv()	and	carefully	consider
whether	 the	 application	 should	 be	 using	 PySys_SetArgvEx()
with	updatepath	set	to	false.

Security	 issue	 reported	 as	 CVE-2008-5983;	 discussed	 in	 issue
5753,	and	fixed	by	Antoine	Pitrou.

New	 macros:	 the	 Python	 header	 files	 now	 define	 the	 following
macros:	 Py_ISALNUM,	 Py_ISALPHA,	 Py_ISDIGIT,
Py_ISLOWER,	Py_ISSPACE,	Py_ISUPPER,	Py_ISXDIGIT,	and
Py_TOLOWER,	Py_TOUPPER.	All	of	these	functions	are	analogous
to	the	C	standard	macros	for	classifying	characters,	but	ignore	the
current	locale	setting,	because	in	several	places	Python	needs	to
analyze	 characters	 in	 a	 locale-independent	way.	 (Added	 by	Eric
Smith;	issue	5793.)

Removed	 function:	 PyEval_CallObject	 is	 now	 only	 available
as	a	macro.	A	function	version	was	being	kept	around	to	preserve
ABI	 linking	compatibility,	but	 that	was	 in	1997;	 it	can	certainly	be
deleted	by	now.	(Removed	by	Antoine	Pitrou;	issue	8276.)

New	 format	 codes:	 the	 PyFormat_FromString(),
PyFormat_FromStringV(),	 and	 PyErr_Format()	 functions
now	accept	%lld	and	%llu	format	codes	for	displaying	C’s	long
long	types.	(Contributed	by	Mark	Dickinson;	issue	7228.)

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983
http://bugs.python.org/issue5753
http://bugs.python.org/issue5793
http://bugs.python.org/issue8276
http://bugs.python.org/issue7228

The	complicated	interaction	between	threads	and	process	forking
has	 been	 changed.	 Previously,	 the	 child	 process	 created	 by
os.fork()	 might	 fail	 because	 the	 child	 is	 created	 with	 only	 a
single	 thread	 running,	 the	 thread	 performing	 the	 os.fork().	 If
other	 threads	were	holding	a	 lock,	such	as	Python’s	 import	 lock,
when	 the	 fork	was	performed,	 the	 lock	would	still	 be	marked	as
“held”	in	the	new	process.	But	in	the	child	process	nothing	would
ever	 release	 the	 lock,	since	 the	other	 threads	weren’t	 replicated,
and	the	child	process	would	no	longer	be	able	to	perform	imports.

Python	 2.7	 acquires	 the	 import	 lock	 before	 performing	 an
os.fork(),	 and	will	 also	 clean	up	any	 locks	 created	using	 the
threading	 module.	 C	 extension	 modules	 that	 have	 internal
locks,	 or	 that	 call	 fork()	 themselves,	will	 not	 benefit	 from	 this
clean-up.

(Fixed	by	Thomas	Wouters;	issue	1590864.)

The	 Py_Finalize()	 function	 now	 calls	 the	 internal
threading._shutdown()	 function;	 this	 prevents	 some
exceptions	 from	 being	 raised	 when	 an	 interpreter	 shuts	 down.
(Patch	by	Adam	Olsen;	issue	1722344.)

When	using	the	PyMemberDef	structure	to	define	attributes	of	a
type,	 Python	 will	 no	 longer	 let	 you	 try	 to	 delete	 or	 set	 a
T_STRING_INPLACE	attribute.

Global	symbols	defined	by	the	ctypes	module	are	now	prefixed
with	Py,	or	with	_ctypes.	(Implemented	by	Thomas	Heller;	issue
3102.)

New	 configure	 option:	 the	 --with-system-expat	 switch	 allows
building	 the	 pyexpat	 module	 to	 use	 the	 system	 Expat	 library.

http://bugs.python.org/issue1590864
http://bugs.python.org/issue1722344
http://bugs.python.org/issue3102

(Contributed	by	Arfrever	Frehtes	Taifersar	Arahesis;	issue	7609.)

New	 configure	 option:	 the	 --with-valgrind	 option	will	 now	disable
the	pymalloc	allocator,	which	 is	difficult	 for	 the	Valgrind	memory-
error	detector	to	analyze	correctly.	Valgrind	will	therefore	be	better
at	detecting	memory	 leaks	and	overruns.	 (Contributed	by	James
Henstridge;	issue	2422.)

New	configure	option:	 you	can	now	supply	an	empty	string	 to	 --
with-dbmliborder=	 in	 order	 to	 disable	 all	 of	 the	 various	 DBM
modules.	 (Added	 by	 Arfrever	 Frehtes	 Taifersar	 Arahesis;	 issue
6491.)

The	configure	script	now	checks	for	floating-point	rounding	bugs
on	 certain	 32-bit	 Intel	 chips	 and	 defines	 a
X87_DOUBLE_ROUNDING	 preprocessor	 definition.	 No	 code
currently	uses	this	definition,	but	it’s	available	if	anyone	wishes	to
use	it.	(Added	by	Mark	Dickinson;	issue	2937.)

configure	 also	 now	 sets	 a	 LDCXXSHARED	Makefile	 variable	 for
supporting	C++	linking.	(Contributed	by	Arfrever	Frehtes	Taifersar
Arahesis;	issue	1222585.)

The	build	process	now	creates	the	necessary	files	for	pkg-config
support.	(Contributed	by	Clinton	Roy;	issue	3585.)

The	build	process	now	supports	Subversion	1.7.	 (Contributed	by
Arfrever	Frehtes	Taifersar	Arahesis;	issue	6094.)

Capsules

Python	3.1	adds	a	new	C	datatype,	PyCapsule,	for	providing	a	C	API
to	 an	 extension	 module.	 A	 capsule	 is	 essentially	 the	 holder	 of	 a	 C

http://bugs.python.org/issue7609
http://bugs.python.org/issue2422
http://bugs.python.org/issue6491
http://bugs.python.org/issue2937
http://bugs.python.org/issue1222585
http://bugs.python.org/issue3585
http://bugs.python.org/issue6094

void	 *	 pointer,	 and	 is	 made	 available	 as	 a	 module	 attribute;	 for
example,	 the	 socket	 module’s	 API	 is	 exposed	 as	 socket.CAPI,
and	 unicodedata	 exposes	 ucnhash_CAPI.	Other	 extensions	 can
import	the	module,	access	its	dictionary	to	get	the	capsule	object,	and
then	 get	 the	 void	*	 pointer,	 which	will	 usually	 point	 to	 an	 array	 of
pointers	to	the	module’s	various	API	functions.

There	is	an	existing	data	type	already	used	for	this,	PyCObject,	but	it
doesn’t	 provide	 type	 safety.	 Evil	 code	 written	 in	 pure	 Python	 could
cause	 a	 segmentation	 fault	 by	 taking	 a	 PyCObject	 from	module	 A
and	 somehow	 substituting	 it	 for	 the	 PyCObject	 in	 module	 B.
Capsules	 know	 their	 own	 name,	 and	 getting	 the	 pointer	 requires
providing	the	name:

void	*vtable;

if	(!PyCapsule_IsValid(capsule,	"mymodule.CAPI")	{

								PyErr_SetString(PyExc_ValueError,	"argument	type	invalid");

								return	NULL;

}

vtable	=	PyCapsule_GetPointer(capsule,	"mymodule.CAPI");

You	are	assured	that	vtable	points	to	whatever	you’re	expecting.	If	a
different	 capsule	 was	 passed	 in,	 PyCapsule_IsValid()	 would
detect	the	mismatched	name	and	return	false.	Refer	to	Providing	a	C
API	 for	 an	 Extension	 Module	 for	 more	 information	 on	 using	 these
objects.

Python	2.7	now	uses	capsules	internally	to	provide	various	extension-
module	 APIs,	 but	 the	 PyCObject_AsVoidPtr()	 was	 modified	 to
handle	 capsules,	 preserving	 compile-time	 compatibility	 with	 the

CObject	 interface.	Use	 of	 PyCObject_AsVoidPtr()	will	 signal	 a
PendingDeprecationWarning,	which	is	silent	by	default.

Implemented	 in	Python	3.1	and	backported	 to	2.7	by	Larry	Hastings;
discussed	in	issue	5630.

Port-Specific	Changes:	Windows

The	 msvcrt	 module	 now	 contains	 some	 constants	 from	 the
crtassem.h	 header	 file:	 CRT_ASSEMBLY_VERSION,
VC_ASSEMBLY_PUBLICKEYTOKEN,	 and
LIBRARIES_ASSEMBLY_NAME_PREFIX.	 (Contributed	 by	 David
Cournapeau;	issue	4365.)
The	_winreg	module	for	accessing	the	registry	now	implements
the	CreateKeyEx()	and	DeleteKeyEx()	 functions,	 extended
versions	of	previously-supported	functions	that	take	several	extra
arguments.	 The	 DisableReflectionKey(),
EnableReflectionKey(),	 and	 QueryReflectionKey()

were	also	tested	and	documented.	(Implemented	by	Brian	Curtin:
issue	7347.)
The	new	_beginthreadex()	API	 is	used	 to	start	 threads,	and
the	 native	 thread-local	 storage	 functions	 are	 now	 used.
(Contributed	by	Kristján	Valur	Jónsson;	issue	3582.)
The	 os.kill()	 function	 now	 works	 on	 Windows.	 The	 signal
value	 can	 be	 the	 constants	 CTRL_C_EVENT,
CTRL_BREAK_EVENT,	or	any	integer.	The	first	 two	constants	will
send	 Control-C	 and	 Control-Break	 keystroke	 events	 to
subprocesses;	 any	 other	 value	 will	 use	 the
TerminateProcess()	API.	 (Contributed	by	Miki	Tebeka;	 issue
1220212.)
The	 os.listdir()	 function	 now	 correctly	 fails	 for	 an	 empty
path.	(Fixed	by	Hirokazu	Yamamoto;	issue	5913.)

http://bugs.python.org/issue5630
http://bugs.python.org/issue4365
http://bugs.python.org/issue7347
http://bugs.python.org/issue3582
http://bugs.python.org/issue1220212
http://bugs.python.org/issue5913

The	mimelib	module	will	now	read	the	MIME	database	from	the
Windows	 registry	 when	 initializing.	 (Patch	 by	 Gabriel	 Genellina;
issue	4969.)

Port-Specific	Changes:	Mac	OS	X

The	 path	 /Library/Python/2.7/site-packages	 is	 now
appended	 to	 sys.path,	 in	 order	 to	 share	 added	 packages
between	 the	 system	 installation	and	a	user-installed	 copy	of	 the
same	version.	(Changed	by	Ronald	Oussoren;	issue	4865.)

Port-Specific	Changes:	FreeBSD

FreeBSD	 7.1’s	 SO_SETFIB	 constant,	 used	 with
getsockopt()/setsockopt()	 to	 select	 an	 alternate	 routing
table,	 is	 now	 available	 in	 the	 socket	 module.	 (Added	 by	 Kyle
VanderBeek;	issue	8235.)

http://bugs.python.org/issue4969
http://bugs.python.org/issue4865
http://bugs.python.org/issue8235

Other	Changes	and	Fixes

Two	benchmark	scripts,	iobench	and	ccbench,	were	added	to
the	Tools	directory.	iobench	measures	the	speed	of	the	built-in
file	 I/O	 objects	 returned	 by	 open()	 while	 performing	 various
operations,	and	ccbench	 is	a	concurrency	benchmark	 that	 tries
to	measure	 computing	 throughput,	 thread	switching	 latency,	 and
IO	processing	bandwidth	when	performing	several	 tasks	using	a
varying	number	of	threads.
The	 Tools/i18n/msgfmt.py	 script	 now	 understands	 plural
forms	in	.po	files.	(Fixed	by	Martin	von	Löwis;	issue	5464.)
When	 importing	 a	 module	 from	 a	 .pyc	 or	 .pyo	 file	 with	 an
existing	 .py	 counterpart,	 the	 co_filename	 attributes	 of	 the
resulting	code	objects	are	overwritten	when	 the	original	 filename
is	obsolete.	This	can	happen	if	the	file	has	been	renamed,	moved,
or	 is	 accessed	 through	different	 paths.	 (Patch	by	Žiga	Seilnacht
and	Jean-Paul	Calderone;	issue	1180193.)
The	 regrtest.py	 script	 now	 takes	 a	 --randseed=	 switch	 that
takes	an	 integer	 that	will	be	used	as	 the	 random	seed	 for	 the	 -r
option	 that	 executes	 tests	 in	 random	 order.	 The	 -r	 option	 also
reports	the	seed	that	was	used	(Added	by	Collin	Winter.)
Another	 regrtest.py	 switch	 is	 -j,	 which	 takes	 an	 integer
specifying	how	many	tests	run	in	parallel.	This	allows	reducing	the
total	 runtime	 on	 multi-core	 machines.	 This	 option	 is	 compatible
with	several	other	options,	including	the	-R	switch	which	is	known
to	produce	long	runtimes.	(Added	by	Antoine	Pitrou,	issue	6152.)
This	 can	 also	 be	 used	 with	 a	 new	 -F	 switch	 that	 runs	 selected
tests	 in	 a	 loop	 until	 they	 fail.	 (Added	 by	 Antoine	 Pitrou;	 issue
7312.)
When	 executed	 as	 a	 script,	 the	 py_compile.py	 module	 now
accepts	'-'	 as	an	argument,	which	will	 read	 standard	 input	 for
the	 list	 of	 filenames	 to	 be	 compiled.	 (Contributed	 by	 Piotr

http://bugs.python.org/issue5464
http://bugs.python.org/issue1180193
http://bugs.python.org/issue6152
http://bugs.python.org/issue7312

Ożarowski;	issue	8233.)

http://bugs.python.org/issue8233

Porting	to	Python	2.7

This	section	lists	previously	described	changes	and	other	bugfixes	that
may	require	changes	to	your	code:

The	 range()	 function	 processes	 its	 arguments	 more
consistently;	it	will	now	call	__int__()	on	non-float,	non-integer
arguments	that	are	supplied	to	it.	(Fixed	by	Alexander	Belopolsky;
issue	1533.)
The	string	format()	method	changed	the	default	precision	used
for	 floating-point	and	complex	numbers	 from	6	decimal	places	to
12,	 which	matches	 the	 precision	 used	 by	 str().	 (Changed	 by
Eric	Smith;	issue	5920.)
Because	 of	 an	 optimization	 for	 the	 with	 statement,	 the	 special
methods	 __enter__()	 and	 __exit__()	 must	 belong	 to	 the
object’s	 type,	 and	 cannot	 be	 directly	 attached	 to	 the	 object’s
instance.	 This	 affects	 new-style	 classes	 (derived	 from	 object)
and	C	extension	types.	(issue	6101.)
Due	 to	 a	 bug	 in	 Python	 2.6,	 the	 exc_value	 parameter	 to
__exit__()	methods	was	often	the	string	representation	of	the
exception,	not	an	instance.	This	was	fixed	in	2.7,	so	exc_value	will
be	 an	 instance	 as	 expected.	 (Fixed	 by	 Florent	 Xicluna;	 issue
7853.)
When	 a	 restricted	 set	 of	 attributes	 were	 set	 using	 __slots__,
deleting	an	unset	attribute	would	not	raise	AttributeError	as
you	would	expect.	Fixed	by	Benjamin	Peterson;	issue	7604.)

In	the	standard	library:

Operations	 with	 datetime	 instances	 that	 resulted	 in	 a	 year
falling	 outside	 the	 supported	 range	 didn’t	 always	 raise
OverflowError.	 Such	 errors	 are	 now	 checked	more	 carefully

http://bugs.python.org/issue1533
http://bugs.python.org/issue5920
http://bugs.python.org/issue6101
http://bugs.python.org/issue7853
http://bugs.python.org/issue7604

and	 will	 now	 raise	 the	 exception.	 (Reported	 by	 Mark	 Leander,
patch	by	Anand	B.	Pillai	and	Alexander	Belopolsky;	issue	7150.)

When	 using	 Decimal	 instances	 with	 a	 string’s	 format()
method,	the	default	alignment	was	previously	left-alignment.	This
has	 been	 changed	 to	 right-alignment,	 which	 might	 change	 the
output	 of	 your	 programs.	 (Changed	 by	 Mark	 Dickinson;	 issue
6857.)

Comparisons	 involving	 a	 signaling	 NaN	 value	 (or	 sNAN)	 now
signal	InvalidOperation	instead	of	silently	returning	a	true	or
false	 value	 depending	 on	 the	 comparison	 operator.	 Quiet	 NaN
values	 (or	 NaN)	 are	 now	 hashable.	 (Fixed	 by	 Mark	 Dickinson;
issue	7279.)

The	 ElementTree	 library,	 xml.etree,	 no	 longer	 escapes
ampersands	 and	 angle	 brackets	 when	 outputting	 an	 XML
processing	 instruction	 (which	 looks	 like	 <?xml-stylesheet
href=”#style1”?>)	or	comment	(which	looks	like	<!–	comment	–>).
(Patch	by	Neil	Muller;	issue	2746.)

The	 readline()	 method	 of	 StringIO	 objects	 now	 does
nothing	 when	 a	 negative	 length	 is	 requested,	 as	 other	 file-like
objects	do.	(issue	7348).

The	syslog	module	will	now	use	the	value	of	sys.argv[0]	as
the	 identifier	 instead	of	 the	previous	default	value	of	'python'.
(Changed	by	Sean	Reifschneider;	issue	8451.)

The	tarfile	module’s	default	error	handling	has	changed,	to	no
longer	suppress	fatal	errors.	The	default	error	level	was	previously
0,	which	meant	 that	errors	would	only	result	 in	a	message	being
written	 to	 the	 debug	 log,	 but	 because	 the	 debug	 log	 is	 not

http://bugs.python.org/issue7150
http://bugs.python.org/issue6857
http://bugs.python.org/issue7279
http://bugs.python.org/issue2746
http://bugs.python.org/issue7348
http://bugs.python.org/issue8451

activated	by	default,	 these	errors	go	unnoticed.	The	default	error
level	 is	 now	 1,	 which	 raises	 an	 exception	 if	 there’s	 an	 error.
(Changed	by	Lars	Gustäbel;	issue	7357.)

The	 urlparse	 module’s	 urlsplit()	 now	 handles	 unknown
URL	schemes	in	a	fashion	compliant	with	RFC	3986:	if	the	URL	is
of	 the	form	"<something>://...",	 the	 text	before	 the	://	 is
treated	 as	 the	 scheme,	 even	 if	 it’s	 a	made-up	 scheme	 that	 the
module	 doesn’t	 know	 about.	 This	 change	 may	 break	 code	 that
worked	 around	 the	 old	 behaviour.	 For	 example,	Python	 2.6.4	 or
2.5	will	return	the	following:

>>>	import	urlparse

>>>	urlparse.urlsplit('invented://host/filename?query'

('invented',	'',	'//host/filename?query',	'',	'')

Python	2.7	(and	Python	2.6.5)	will	return:

>>>	import	urlparse

>>>	urlparse.urlsplit('invented://host/filename?query'

('invented',	'host',	'/filename?query',	'',	'')

(Python	 2.7	 actually	 produces	 slightly	 different	 output,	 since	 it
returns	a	named	tuple	instead	of	a	standard	tuple.)

For	C	extensions:

C	 extensions	 that	 use	 integer	 format	 codes	 with	 the
PyArg_Parse*	 family	of	 functions	will	now	raise	a	TypeError
exception	 instead	 of	 triggering	 a	 DeprecationWarning	 (issue
5080).
Use	 the	 new	 PyOS_string_to_double()	 function	 instead	 of
the	 old	 PyOS_ascii_strtod()	 and	 PyOS_ascii_atof()

http://bugs.python.org/issue7357
http://tools.ietf.org/html/rfc3986.html
http://bugs.python.org/issue5080

functions,	which	are	now	deprecated.

For	applications	that	embed	Python:

The	 PySys_SetArgvEx()	 function	 was	 added,	 letting
applications	 close	 a	 security	 hole	 when	 the	 existing
PySys_SetArgv()	 function	 was	 used.	 Check	 whether	 you’re
calling	 PySys_SetArgv()	 and	 carefully	 consider	 whether	 the
application	 should	 be	 using	 PySys_SetArgvEx()	 with
updatepath	set	to	false.

Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions,	 corrections	 and	 assistance	 with	 various	 drafts	 of	 this
article:	 Nick	 Coghlan,	 Philip	 Jenvey,	 Ryan	 Lovett,	 R.	 David	 Murray,
Hugh	Secker-Walker.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.6
Author: A.M.	Kuchling	(amk	at	amk.ca)

This	 article	 explains	 the	 new	 features	 in	 Python	 2.6,	 released	 on
October	1	2008.	The	release	schedule	is	described	in	PEP	361.

The	 major	 theme	 of	 Python	 2.6	 is	 preparing	 the	 migration	 path	 to
Python	 3.0,	 a	 major	 redesign	 of	 the	 language.	 Whenever	 possible,
Python	 2.6	 incorporates	 new	 features	 and	 syntax	 from	 3.0	 while
remaining	 compatible	 with	 existing	 code	 by	 not	 removing	 older
features	or	syntax.	When	it’s	not	possible	to	do	that,	Python	2.6	tries	to
do	what	it	can,	adding	compatibility	functions	in	a	future_builtins
module	 and	 a	 -3	 switch	 to	 warn	 about	 usages	 that	 will	 become
unsupported	in	3.0.

Some	 significant	 new	 packages	 have	 been	 added	 to	 the	 standard
library,	such	as	the	multiprocessing	and	json	modules,	but	there
aren’t	 many	 new	 features	 that	 aren’t	 related	 to	 Python	 3.0	 in	 some
way.

Python	 2.6	 also	 sees	 a	 number	 of	 improvements	 and	 bugfixes
throughout	 the	source.	A	search	 through	 the	change	 logs	 finds	 there
were	259	patches	applied	and	612	bugs	fixed	between	Python	2.5	and
2.6.	Both	figures	are	likely	to	be	underestimates.

This	article	doesn’t	attempt	to	provide	a	complete	specification	of	 the
new	 features,	 but	 instead	 provides	 a	 convenient	 overview.	 For	 full
details,	 you	 should	 refer	 to	 the	documentation	 for	Python	2.6.	 If	 you
want	 to	 understand	 the	 rationale	 for	 the	 design	 and	 implementation,
refer	 to	 the	 PEP	 for	 a	 particular	 new	 feature.	 Whenever	 possible,
“What’s	New	in	Python”	links	to	the	bug/patch	item	for	each	change.

http://www.python.org/dev/peps/pep-0361

Python	3.0

The	 development	 cycle	 for	 Python	 versions	 2.6	 and	 3.0	 was
synchronized,	with	the	alpha	and	beta	releases	for	both	versions	being
made	on	the	same	days.	The	development	of	3.0	has	influenced	many
features	in	2.6.

Python	 3.0	 is	 a	 far-ranging	 redesign	 of	 Python	 that	 breaks
compatibility	with	the	2.x	series.	This	means	that	existing	Python	code
will	need	some	conversion	in	order	to	run	on	Python	3.0.	However,	not
all	the	changes	in	3.0	necessarily	break	compatibility.	In	cases	where
new	 features	 won’t	 cause	 existing	 code	 to	 break,	 they’ve	 been
backported	 to	 2.6	 and	 are	 described	 in	 this	 document	 in	 the
appropriate	place.	Some	of	the	3.0-derived	features	are:

A	__complex__()	method	 for	 converting	 objects	 to	 a	 complex
number.
Alternate	 syntax	 for	 catching	 exceptions:	 except	 TypeError
as	exc.
The	 addition	 of	 functools.reduce()	 as	 a	 synonym	 for	 the
built-in	reduce()	function.

Python	 3.0	 adds	 several	 new	 built-in	 functions	 and	 changes	 the
semantics	of	some	existing	builtins.	Functions	that	are	new	in	3.0	such
as	bin()	have	simply	been	added	to	Python	2.6,	but	existing	builtins
haven’t	been	changed;	 instead,	 the	future_builtins	module	has
versions	with	 the	 new	3.0	 semantics.	Code	written	 to	 be	 compatible
with	3.0	 can	do	 from	future_builtins	import	hex,	map	 as
necessary.

A	new	command-line	switch,	-3,	enables	warnings	about	features	that
will	be	removed	in	Python	3.0.	You	can	run	code	with	this	switch	to	see

how	much	work	will	be	necessary	to	port	code	to	3.0.	The	value	of	this
switch	 is	 available	 to	 Python	 code	 as	 the	 boolean	 variable
sys.py3kwarning,	 and	 to	 C	 extension	 code	 as
Py_Py3kWarningFlag.

See	also: 	The	3xxx	series	of	PEPs,	which	contains	proposals	for
Python	3.0.	PEP	3000	describes	the	development	process	for
Python	3.0.	Start	with	PEP	3100	that	describes	the	general	goals	for
Python	3.0,	and	then	explore	the	higher-numbered	PEPS	that
propose	specific	features.

http://www.python.org/dev/peps/pep-3000
http://www.python.org/dev/peps/pep-3100

Changes	to	the	Development	Process

While	 2.6	 was	 being	 developed,	 the	 Python	 development	 process
underwent	 two	 significant	 changes:	we	 switched	 from	SourceForge’s
issue	 tracker	 to	 a	 customized	 Roundup	 installation,	 and	 the
documentation	was	converted	from	LaTeX	to	reStructuredText.

New	Issue	Tracker:	Roundup

For	a	long	time,	the	Python	developers	had	been	growing	increasingly
annoyed	by	SourceForge’s	bug	tracker.	SourceForge’s	hosted	solution
doesn’t	permit	much	customization;	 for	example,	 it	wasn’t	possible	 to
customize	the	life	cycle	of	issues.

The	 infrastructure	 committee	 of	 the	 Python	 Software	 Foundation
therefore	posted	a	call	 for	 issue	trackers,	asking	volunteers	to	set	up
different	 products	 and	 import	 some	 of	 the	 bugs	 and	 patches	 from
SourceForge.	Four	different	trackers	were	examined:	Jira,	Launchpad,
Roundup,	 and	 Trac.	 The	 committee	 eventually	 settled	 on	 Jira	 and
Roundup	 as	 the	 two	 candidates.	 Jira	 is	 a	 commercial	 product	 that
offers	no-cost	hosted	 instances	 to	 free-software	projects;	Roundup	 is
an	open-source	project	that	requires	volunteers	to	administer	it	and	a
server	to	host	it.

After	posting	a	call	for	volunteers,	a	new	Roundup	installation	was	set
up	 at	 http://bugs.python.org.	 One	 installation	 of	 Roundup	 can	 host
multiple	 trackers,	 and	 this	 server	 now	 also	 hosts	 issue	 trackers	 for
Jython	and	for	the	Python	web	site.	It	will	surely	find	other	uses	in	the
future.	Where	possible,	this	edition	of	“What’s	New	in	Python”	links	to
the	bug/patch	item	for	each	change.

http://www.atlassian.com/software/jira/
http://www.launchpad.net
http://roundup.sourceforge.net/
http://trac.edgewall.org/
http://bugs.python.org

Hosting	 of	 the	 Python	 bug	 tracker	 is	 kindly	 provided	 by	 Upfront
Systems	of	Stellenbosch,	South	Africa.	Martin	von	Löwis	put	a	 lot	of
effort	 into	importing	existing	bugs	and	patches	from	SourceForge;	his
scripts	 for	 this	 import	 operation	 are	 at
http://svn.python.org/view/tracker/importer/	and	may	be	useful	to	other
projects	wishing	to	move	from	SourceForge	to	Roundup.

See	also:

http://bugs.python.org
The	Python	bug	tracker.

http://bugs.jython.org:
The	Jython	bug	tracker.

http://roundup.sourceforge.net/
Roundup	downloads	and	documentation.

http://svn.python.org/view/tracker/importer/
Martin	von	Löwis’s	conversion	scripts.

New	Documentation	Format:	reStructuredText
Using	Sphinx

The	Python	documentation	was	written	using	LaTeX	since	the	project
started	 around	 1989.	 In	 the	 1980s	 and	 early	 1990s,	 most
documentation	 was	 printed	 out	 for	 later	 study,	 not	 viewed	 online.
LaTeX	was	widely	 used	because	 it	 provided	attractive	printed	output
while	 remaining	 straightforward	 to	 write	 once	 the	 basic	 rules	 of	 the
markup	were	learned.

Today	LaTeX	is	still	used	for	writing	publications	destined	for	printing,
but	 the	 landscape	 for	 programming	 tools	 has	 shifted.	We	 no	 longer
print	out	reams	of	documentation;	instead,	we	browse	through	it	online

http://www.upfrontsystems.co.za/
http://svn.python.org/view/tracker/importer/
http://bugs.python.org
http://bugs.jython.org
http://roundup.sourceforge.net/
http://svn.python.org/view/tracker/importer/

and	 HTML	 has	 become	 the	 most	 important	 format	 to	 support.
Unfortunately,	 converting	 LaTeX	 to	 HTML	 is	 fairly	 complicated	 and
Fred	L.	Drake	Jr.,	the	long-time	Python	documentation	editor,	spent	a
lot	 of	 time	maintaining	 the	 conversion	 process.	 Occasionally	 people
would	 suggest	 converting	 the	 documentation	 into	 SGML	 and	 later
XML,	 but	 performing	 a	 good	 conversion	 is	 a	major	 task	 and	 no	 one
ever	committed	the	time	required	to	finish	the	job.

During	the	2.6	development	cycle,	Georg	Brandl	put	a	lot	of	effort	into
building	 a	 new	 toolchain	 for	 processing	 the	 documentation.	 The
resulting	 package	 is	 called	 Sphinx,	 and	 is	 available	 from
http://sphinx.pocoo.org/.

Sphinx	concentrates	on	HTML	output,	producing	attractively	styled	and
modern	HTML;	printed	output	 is	still	supported	through	conversion	to
LaTeX.	 The	 input	 format	 is	 reStructuredText,	 a	 markup	 syntax
supporting	custom	extensions	and	directives	that	is	commonly	used	in
the	Python	community.

Sphinx	 is	 a	 standalone	 package	 that	 can	 be	 used	 for	 writing,	 and
almost	 two	dozen	other	projects	(listed	on	the	Sphinx	web	site)	have
adopted	Sphinx	as	their	documentation	tool.

See	also:

Documenting	Python
Describes	how	to	write	for	Python’s	documentation.

Sphinx
Documentation	and	code	for	the	Sphinx	toolchain.

Docutils
The	underlying	reStructuredText	parser	and	toolset.

http://sphinx.pocoo.org/
http://sphinx.pocoo.org/examples.html
http://docs.python.org/devguide/documenting.html
http://sphinx.pocoo.org/
http://docutils.sf.net

PEP	343:	The	‘with’	statement

The	previous	version,	Python	2.5,	added	 the	 ‘with‘	statement	as	an
optional	 feature,	 to	 be	 enabled	 by	 a	 from	 __future__	 import
with_statement	directive.	 In	2.6	 the	statement	no	 longer	needs	to
be	specially	enabled;	this	means	that	with	is	now	always	a	keyword.
The	rest	of	this	section	is	a	copy	of	the	corresponding	section	from	the
“What’s	New	in	Python	2.5”	document;	if	you’re	familiar	with	the	‘with‘
statement	from	Python	2.5,	you	can	skip	this	section.

The	 ‘with‘	 statement	 clarifies	 code	 that	 previously	 would	 use
try...finally	blocks	to	ensure	that	clean-up	code	is	executed.	In
this	section,	I’ll	discuss	the	statement	as	it	will	commonly	be	used.	In
the	next	section,	I’ll	examine	the	implementation	details	and	show	how
to	write	objects	for	use	with	this	statement.

The	‘with‘	statement	is	a	control-flow	structure	whose	basic	structure
is:

with	expression	[as	variable]:

				with-block

The	 expression	 is	 evaluated,	 and	 it	 should	 result	 in	 an	 object	 that
supports	 the	 context	 management	 protocol	 (that	 is,	 has
__enter__()	and	__exit__()	methods).

The	 object’s	 __enter__()	 is	 called	 before	 with-block	 is	 executed
and	 therefore	can	 run	set-up	code.	 It	also	may	 return	a	value	 that	 is
bound	to	the	name	variable,	if	given.	(Note	carefully	that	variable	is	not
assigned	the	result	of	expression.)

After	execution	of	the	with-block	is	finished,	the	object’s	__exit__()

method	 is	 called,	 even	 if	 the	 block	 raised	 an	 exception,	 and	 can
therefore	run	clean-up	code.

Some	standard	Python	objects	now	support	the	context	management
protocol	and	can	be	used	with	 the	 ‘with‘	statement.	File	objects	are
one	example:

with	open('/etc/passwd',	'r')	as	f:

				for	line	in	f:

								print	line

								...	more	processing	code	...

After	 this	 statement	 has	 executed,	 the	 file	 object	 in	 f	will	 have	 been
automatically	 closed,	 even	 if	 the	 for	 loop	 raised	 an	 exception	 part-
way	through	the	block.

Note: 	In	this	case,	f	is	the	same	object	created	by	open(),
because	file.__enter__()	returns	self.

The	threading	module’s	 locks	and	condition	variables	also	support
the	‘with‘	statement:

lock	=	threading.Lock()

with	lock:

				#	Critical	section	of	code

				...

The	lock	is	acquired	before	the	block	is	executed	and	always	released
once	the	block	is	complete.

The	 localcontext()	 function	 in	 the	 decimal	 module	 makes	 it
easy	 to	 save	 and	 restore	 the	 current	 decimal	 context,	 which
encapsulates	 the	 desired	 precision	 and	 rounding	 characteristics	 for

computations:

from	decimal	import	Decimal,	Context,	localcontext

#	Displays	with	default	precision	of	28	digits

v	=	Decimal('578')

print	v.sqrt()

with	localcontext(Context(prec=16)):

				#	All	code	in	this	block	uses	a	precision	of	16	digits.

				#	The	original	context	is	restored	on	exiting	the	block.

				print	v.sqrt()

Writing	Context	Managers

Under	 the	 hood,	 the	 ‘with‘	 statement	 is	 fairly	 complicated.	 Most
people	will	only	use	‘with‘	in	company	with	existing	objects	and	don’t
need	to	know	these	details,	so	you	can	skip	the	rest	of	this	section	if
you	like.	Authors	of	new	objects	will	need	to	understand	the	details	of
the	underlying	implementation	and	should	keep	reading.

A	high-level	explanation	of	the	context	management	protocol	is:

The	expression	is	evaluated	and	should	result	in	an	object	called
a	 “context	 manager”.	 The	 context	 manager	 must	 have
__enter__()	and	__exit__()	methods.
The	 context	 manager’s	 __enter__()	 method	 is	 called.	 The
value	 returned	 is	 assigned	 to	 VAR.	 If	 no	 as	 VAR	 clause	 is
present,	the	value	is	simply	discarded.
The	code	in	BLOCK	is	executed.
If	 BLOCK	 raises	 an	 exception,	 the	 context	 manager’s
__exit__()	 method	 is	 called	 with	 three	 arguments,	 the
exception	details	(type,	value,	traceback,	the	same	values

returned	 by	 sys.exc_info(),	 which	 can	 also	 be	 None	 if	 no
exception	occurred).	The	method’s	 return	value	controls	whether
an	exception	is	re-raised:	any	false	value	re-raises	the	exception,
and	 True	will	 result	 in	 suppressing	 it.	 You’ll	 only	 rarely	want	 to
suppress	the	exception,	because	if	you	do	the	author	of	the	code
containing	 the	 ‘with‘	 statement	will	 never	 realize	anything	went
wrong.
If	BLOCK	didn’t	 raise	an	exception,	 the	__exit__()	method	 is
still	called,	but	type,	value,	and	traceback	are	all	None.

Let’s	 think	 through	an	example.	 I	won’t	present	detailed	code	but	will
only	 sketch	 the	 methods	 necessary	 for	 a	 database	 that	 supports
transactions.

(For	people	unfamiliar	with	database	terminology:	a	set	of	changes	to
the	 database	 are	 grouped	 into	 a	 transaction.	 Transactions	 can	 be
either	 committed,	 meaning	 that	 all	 the	 changes	 are	 written	 into	 the
database,	or	rolled	back,	meaning	that	 the	changes	are	all	discarded
and	the	database	is	unchanged.	See	any	database	textbook	for	more
information.)

Let’s	 assume	 there’s	 an	 object	 representing	 a	 database	 connection.
Our	goal	will	be	to	let	the	user	write	code	like	this:

db_connection	=	DatabaseConnection()

with	db_connection	as	cursor:

				cursor.execute('insert	into	...')

				cursor.execute('delete	from	...')

				#	...	more	operations	...

The	 transaction	 should	 be	 committed	 if	 the	 code	 in	 the	 block	 runs
flawlessly	 or	 rolled	 back	 if	 there’s	 an	 exception.	 Here’s	 the	 basic
interface	for	DatabaseConnection	that	I’ll	assume:

class	DatabaseConnection:

				#	Database	interface

				def	cursor(self):

								"Returns	a	cursor	object	and	starts	a	new	transaction"

				def	commit(self):

								"Commits	current	transaction"

				def	rollback(self):

								"Rolls	back	current	transaction"

The	__enter__()	method	 is	pretty	easy,	having	only	to	start	a	new
transaction.	For	this	application	the	resulting	cursor	object	would	be	a
useful	 result,	so	 the	method	will	 return	 it.	The	user	 can	 then	add	as
cursor	 to	 their	 ‘with‘	 statement	 to	 bind	 the	 cursor	 to	 a	 variable
name.

class	DatabaseConnection:

				...

				def	__enter__(self):

								#	Code	to	start	a	new	transaction

								cursor	=	self.cursor()

								return	cursor

The	__exit__()	method	is	the	most	complicated	because	it’s	where
most	 of	 the	 work	 has	 to	 be	 done.	 The	 method	 has	 to	 check	 if	 an
exception	 occurred.	 If	 there	 was	 no	 exception,	 the	 transaction	 is
committed.	The	transaction	is	rolled	back	if	there	was	an	exception.

In	 the	 code	below,	 execution	will	 just	 fall	 off	 the	end	of	 the	 function,
returning	 the	default	 value	of	 None.	None	 is	 false,	 so	 the	 exception
will	 be	 re-raised	 automatically.	 If	 you	 wished,	 you	 could	 be	 more
explicit	and	add	a	return	statement	at	the	marked	location.

class	DatabaseConnection:

				...

				def	__exit__(self,	type,	value,	tb):

								if	tb	is	None:

												#	No	exception,	so	commit

												self.commit()

								else:

												#	Exception	occurred,	so	rollback.

												self.rollback()

												#	return	False

The	contextlib	module

The	 contextlib	module	 provides	 some	 functions	 and	 a	 decorator
that	are	useful	when	writing	objects	for	use	with	the	‘with‘	statement.

The	 decorator	 is	 called	 contextmanager(),	 and	 lets	 you	 write	 a
single	 generator	 function	 instead	 of	 defining	 a	 new	 class.	 The
generator	should	yield	exactly	one	value.	The	code	up	 to	 the	yield
will	be	executed	as	the	__enter__()	method,	and	the	value	yielded
will	be	the	method’s	return	value	that	will	get	bound	to	the	variable	in
the	‘with‘	statement’s	as	clause,	if	any.	The	code	after	the	yield	will
be	executed	in	the	__exit__()	method.	Any	exception	raised	in	the
block	will	be	raised	by	the	yield	statement.

Using	this	decorator,	our	database	example	from	the	previous	section
could	be	written	as:

from	contextlib	import	contextmanager

@contextmanager

def	db_transaction(connection):

				cursor	=	connection.cursor()

				try:

								yield	cursor

				except:

								connection.rollback()

								raise

				else:

								connection.commit()

db	=	DatabaseConnection()

with	db_transaction(db)	as	cursor:

				...

The	contextlib	module	also	has	a	nested(mgr1,	mgr2,	...)
function	 that	 combines	 a	 number	 of	 context	 managers	 so	 you	 don’t
need	 to	 write	 nested	 ‘with‘	 statements.	 In	 this	 example,	 the	 single
‘with‘	 statement	 both	 starts	 a	 database	 transaction	 and	 acquires	 a
thread	lock:

lock	=	threading.Lock()

with	nested	(db_transaction(db),	lock)	as	(cursor,	locked

				...

Finally,	the	closing()	function	returns	its	argument	so	that	it	can	be
bound	 to	 a	 variable,	 and	 calls	 the	 argument’s	 .close()	method	 at
the	end	of	the	block.

import	urllib,	sys

from	contextlib	import	closing

with	closing(urllib.urlopen('http://www.yahoo.com'))

				for	line	in	f:

								sys.stdout.write(line)

See	also:

PEP	343	-	The	“with”	statement
PEP	 written	 by	 Guido	 van	 Rossum	 and	 Nick	 Coghlan;
implemented	 by	 Mike	 Bland,	 Guido	 van	 Rossum,	 and	 Neal
Norwitz.	 The	 PEP	 shows	 the	 code	 generated	 for	 a	 ‘with‘
statement,	 which	 can	 be	 helpful	 in	 learning	 how	 the	 statement
works.

The	documentation	for	the	contextlib	module.

http://www.python.org/dev/peps/pep-0343

PEP	366:	Explicit	Relative	Imports	From	a
Main	Module

Python’s	-m	switch	allows	running	a	module	as	a	script.	When	you	ran
a	 module	 that	 was	 located	 inside	 a	 package,	 relative	 imports	 didn’t
work	correctly.

The	 fix	 for	 Python	 2.6	 adds	 a	 __package__	 attribute	 to	 modules.
When	 this	 attribute	 is	 present,	 relative	 imports	will	 be	 relative	 to	 the
value	of	this	attribute	instead	of	the	__name__	attribute.

PEP	 302-style	 importers	 can	 then	 set	 __package__	 as	 necessary.
The	runpy	module	 that	 implements	 the	-m	switch	now	does	 this,	so
relative	imports	will	now	work	correctly	in	scripts	running	from	inside	a
package.

PEP	370:	Per-user	site-packages
Directory

When	 you	 run	 Python,	 the	 module	 search	 path	 sys.path	 usually
includes	 a	 directory	 whose	 path	 ends	 in	 "site-packages".	 This
directory	 is	 intended	to	hold	 locally-installed	packages	available	to	all
users	using	a	machine	or	a	particular	site	installation.

Python	 2.6	 introduces	 a	 convention	 for	 user-specific	 site	 directories.
The	directory	varies	depending	on	the	platform:

Unix	and	Mac	OS	X:	~/.local/
Windows:	%APPDATA%/Python

Within	this	directory,	there	will	be	version-specific	subdirectories,	such
as	 lib/python2.6/site-packages	 on	 Unix/Mac	 OS	 and
Python26/site-packages	on	Windows.

If	 you	 don’t	 like	 the	 default	 directory,	 it	 can	 be	 overridden	 by	 an
environment	variable.	PYTHONUSERBASE	sets	the	root	directory	used
for	 all	 Python	 versions	 supporting	 this	 feature.	 On	 Windows,	 the
directory	 for	 application-specific	 data	 can	 be	 changed	 by	 setting	 the
APPDATA	environment	variable.	You	can	also	modify	the	site.py	file
for	your	Python	installation.

The	 feature	 can	 be	 disabled	 entirely	 by	 running	 Python	 with	 the	 -s
option	or	setting	the	PYTHONNOUSERSITE	environment	variable.

See	also:

PEP	370	-	Per-user	site-packages	Directory
PEP	written	and	implemented	by	Christian	Heimes.

http://www.python.org/dev/peps/pep-0370

PEP	371:	The	multiprocessing
Package

The	 new	 multiprocessing	 package	 lets	 Python	 programs	 create
new	processes	 that	will	perform	a	computation	and	 return	a	 result	 to
the	 parent.	 The	 parent	 and	 child	 processes	 can	 communicate	 using
queues	 and	 pipes,	 synchronize	 their	 operations	 using	 locks	 and
semaphores,	and	can	share	simple	arrays	of	data.

The	multiprocessing	module	started	out	as	an	exact	emulation	of
the	threading	module	using	processes	instead	of	threads.	That	goal
was	discarded	along	the	path	to	Python	2.6,	but	the	general	approach
of	 the	module	 is	still	 similar.	The	 fundamental	class	 is	 the	Process,
which	 is	passed	a	callable	object	and	a	collection	of	arguments.	The
start()	 method	 sets	 the	 callable	 running	 in	 a	 subprocess,	 after
which	 you	 can	 call	 the	 is_alive()	 method	 to	 check	 whether	 the
subprocess	 is	 still	 running	 and	 the	 join()	 method	 to	 wait	 for	 the
process	to	exit.

Here’s	 a	 simple	 example	 where	 the	 subprocess	 will	 calculate	 a
factorial.	The	function	doing	the	calculation	is	written	strangely	so	that
it	takes	significantly	longer	when	the	input	argument	is	a	multiple	of	4.

import	time

from	multiprocessing	import	Process,	Queue

def	factorial(queue,	N):

				"Compute	a	factorial."

				#	If	N	is	a	multiple	of	4,	this	function	will	take	much	longer.

				if	(N	%	4)	==	0:

								time.sleep(.05	*	N/4)

				#	Calculate	the	result

				fact	=	1L

				for	i	in	range(1,	N+1):

								fact	=	fact	*	i

				#	Put	the	result	on	the	queue

				queue.put(fact)

if	__name__	==	'__main__':

				queue	=	Queue()

				N	=	5

				p	=	Process(target=factorial,	args=(queue,	N))

				p.start()

				p.join()

				result	=	queue.get()

				print	'Factorial',	N,	'=',	result

A	 Queue	 is	 used	 to	 communicate	 the	 result	 of	 the	 factorial.	 The
Queue	object	is	stored	in	a	global	variable.	The	child	process	will	use
the	 value	of	 the	 variable	when	 the	 child	was	 created;	 because	 it’s	 a
Queue,	 parent	 and	 child	 can	 use	 the	 object	 to	 communicate.	 (If	 the
parent	 were	 to	 change	 the	 value	 of	 the	 global	 variable,	 the	 child’s
value	would	be	unaffected,	and	vice	versa.)

Two	 other	 classes,	 Pool	 and	 Manager,	 provide	 higher-level
interfaces.	Pool	will	create	a	fixed	number	of	worker	processes,	and
requests	can	then	be	distributed	to	the	workers	by	calling	apply()	or
apply_async()	 to	 add	 a	 single	 request,	 and	 map()	 or
map_async()	to	add	a	number	of	requests.	The	following	code	uses
a	Pool	to	spread	requests	across	5	worker	processes	and	retrieve	a

list	of	results:

from	multiprocessing	import	Pool

def	factorial(N,	dictionary):

				"Compute	a	factorial."

				...

p	=	Pool(5)

result	=	p.map(factorial,	range(1,	1000,	10))

for	v	in	result:

				print	v

This	produces	the	following	output:

1

39916800

51090942171709440000

8222838654177922817725562880000000

33452526613163807108170062053440751665152000000000

...

The	other	high-level	interface,	the	Manager	class,	creates	a	separate
server	process	that	can	hold	master	copies	of	Python	data	structures.
Other	 processes	 can	 then	 access	 and	 modify	 these	 data	 structures
using	 proxy	 objects.	 The	 following	 example	 creates	 a	 shared
dictionary	by	calling	 the	dict()	method;	 the	worker	processes	 then
insert	 values	 into	 the	 dictionary.	 (Locking	 is	 not	 done	 for	 you
automatically,	 which	 doesn’t	 matter	 in	 this	 example.	 Manager‘s
methods	 also	 include	 Lock(),	 RLock(),	 and	 Semaphore()	 to
create	shared	locks.)

import	time

from	multiprocessing	import	Pool,	Manager

def	factorial(N,	dictionary):

				"Compute	a	factorial."

				#	Calculate	the	result

				fact	=	1L

				for	i	in	range(1,	N+1):

								fact	=	fact	*	i

				#	Store	result	in	dictionary

				dictionary[N]	=	fact

if	__name__	==	'__main__':

				p	=	Pool(5)

				mgr	=	Manager()

				d	=	mgr.dict()									#	Create	shared	dictionary

				#	Run	tasks	using	the	pool

				for	N	in	range(1,	1000,	10):

								p.apply_async(factorial,	(N,	d))

				#	Mark	pool	as	closed	--	no	more	tasks	can	be	added.

				p.close()

				#	Wait	for	tasks	to	exit

				p.join()

				#	Output	results

				for	k,	v	in	sorted(d.items()):

								print	k,	v

This	will	produce	the	output:

1	1

11	39916800

21	51090942171709440000

31	8222838654177922817725562880000000

41	33452526613163807108170062053440751665152000000000

51	15511187532873822802242430164693032110632597200169861120000.

See	also: 	The	documentation	for	the	multiprocessing	module.

PEP	371	-	Addition	of	the	multiprocessing	package
PEP	written	by	Jesse	Noller	and	Richard	Oudkerk;	implemented
by	Richard	Oudkerk	and	Jesse	Noller.

http://www.python.org/dev/peps/pep-0371

PEP	3101:	Advanced	String	Formatting

In	 Python	 3.0,	 the	%	 operator	 is	 supplemented	 by	 a	more	 powerful
string	formatting	method,	format().	Support	for	the	str.format()
method	has	been	backported	to	Python	2.6.

In	 2.6,	 both	 8-bit	 and	 Unicode	 strings	 have	 a	 .format()	 method	 that
treats	 the	 string	 as	 a	 template	 and	 takes	 the	 arguments	 to	 be
formatted.	The	formatting	template	uses	curly	brackets	({,	})	as	special
characters:

>>>	#	Substitute	positional	argument	0	into	the	string.

>>>	"User	ID:	{0}".format("root")

'User	ID:	root'

>>>	#	Use	the	named	keyword	arguments

>>>	"User	ID:	{uid}			Last	seen:	{last_login}".format

...				uid="root",

...				last_login	=	"5	Mar	2008	07:20")

'User	ID:	root			Last	seen:	5	Mar	2008	07:20'

Curly	brackets	can	be	escaped	by	doubling	them:

>>>	"Empty	dict:	{{}}".format()

"Empty	dict:	{}"

Field	names	can	be	integers	indicating	positional	arguments,	such	as
{0},	{1},	etc.	or	names	of	keyword	arguments.	You	can	also	supply
compound	field	names	that	read	attributes	or	access	dictionary	keys:

>>>	import	sys

>>>	print	'Platform:	{0.platform}\nPython	version:	{0.version}'

Platform:	darwin

Python	version:	2.6a1+	(trunk:61261M,	Mar		5	2008,	20:29:41)

[GCC	4.0.1	(Apple	Computer,	Inc.	build	5367)]'

>>>	import	mimetypes

>>>	'Content-type:	{0[.mp4]}'.format(mimetypes.types_map

'Content-type:	video/mp4'

Note	 that	when	using	dictionary-style	notation	 such	as	 [.mp4],	 you
don’t	need	to	put	any	quotation	marks	around	the	string;	it	will	look	up
the	value	using	.mp4	as	the	key.	Strings	beginning	with	a	number	will
be	 converted	 to	 an	 integer.	 You	 can’t	 write	 more	 complicated
expressions	inside	a	format	string.

So	 far	we’ve	 shown	 how	 to	 specify	which	 field	 to	 substitute	 into	 the
resulting	 string.	 The	 precise	 formatting	 used	 is	 also	 controllable	 by
adding	a	colon	followed	by	a	format	specifier.	For	example:

>>>	#	Field	0:	left	justify,	pad	to	15	characters

>>>	#	Field	1:	right	justify,	pad	to	6	characters

>>>	fmt	=	'{0:15}	${1:>6}'

>>>	fmt.format('Registration',	35)

'Registration				$				35'

>>>	fmt.format('Tutorial',	50)

'Tutorial								$				50'

>>>	fmt.format('Banquet',	125)

'Banquet									$			125'

Format	specifiers	can	reference	other	fields	through	nesting:

>>>	fmt	=	'{0:{1}}'

>>>	width	=	15

>>>	fmt.format('Invoice	#1234',	width)

'Invoice	#1234		'

>>>	width	=	35

>>>	fmt.format('Invoice	#1234',	width)

'Invoice	#1234																						'

The	alignment	of	a	field	within	the	desired	width	can	be	specified:

Character Effect

<	(default) Left-align

> Right-align

^ Center

= (For	numeric	types	only)	Pad	after	the
sign.

Format	specifiers	can	also	include	a	presentation	type,	which	controls
how	 the	value	 is	 formatted.	For	 example,	 floating-point	 numbers	 can
be	formatted	as	a	general	number	or	in	exponential	notation:

>>>	'{0:g}'.format(3.75)

'3.75'

>>>	'{0:e}'.format(3.75)

'3.750000e+00'

A	 variety	 of	 presentation	 types	 are	 available.	 Consult	 the	 2.6
documentation	for	a	complete	list;	here’s	a	sample:

b Binary.	Outputs	the	number	in	base	2.

c
Character.	Converts	the	integer	to	the	corresponding	Unicode
character	before	printing.

d Decimal	Integer.	Outputs	the	number	in	base	10.

o Octal	format.	Outputs	the	number	in	base	8.

x
Hex	format.	Outputs	the	number	in	base	16,	using	lower-case
letters	for	the	digits	above	9.

e
Exponent	notation.	Prints	the	number	in	scientific	notation	using
the	letter	‘e’	to	indicate	the	exponent.

g

General	format.	This	prints	the	number	as	a	fixed-point	number,
unless	the	number	is	too	large,	in	which	case	it	switches	to	‘e’
exponent	notation.

n

Number.	This	is	the	same	as	‘g’	(for	floats)	or	‘d’	(for	integers),
except	that	it	uses	the	current	locale	setting	to	insert	the
appropriate	number	separator	characters.

%
Percentage.	Multiplies	the	number	by	100	and	displays	in	fixed
(‘f’)	format,	followed	by	a	percent	sign.

Classes	 and	 types	 can	 define	 a	 __format__()	 method	 to	 control
how	 they’re	 formatted.	 It	 receives	 a	 single	 argument,	 the	 format
specifier:

def	__format__(self,	format_spec):

				if	isinstance(format_spec,	unicode):

								return	unicode(str(self))

				else:

								return	str(self)

There’s	also	a	format()	builtin	that	will	format	a	single	value.	It	calls
the	type’s	__format__()	method	with	the	provided	specifier:

>>>	format(75.6564,	'.2f')

'75.66'

See	also:

Format	String	Syntax
The	reference	documentation	for	format	fields.

PEP	3101	-	Advanced	String	Formatting
PEP	written	by	Talin.	Implemented	by	Eric	Smith.

http://www.python.org/dev/peps/pep-3101

PEP	3105:	print	As	a	Function

The	print	statement	becomes	the	print()	 function	 in	Python	3.0.
Making	print()	a	function	makes	it	possible	to	replace	the	function
by	 doing	 def	 print(...)	 or	 importing	 a	 new	 function	 from
somewhere	else.

Python	 2.6	 has	 a	 __future__	 import	 that	 removes	 print	 as
language	 syntax,	 letting	 you	 use	 the	 functional	 form	 instead.	 For
example:

>>>	from	__future__	import	print_function

>>>	print('#	of	entries',	len(dictionary),	file=sys.

The	signature	of	the	new	function	is:

def	print(*args,	sep='	',	end='\n',	file=None)

The	parameters	are:

args:	positional	arguments	whose	values	will	be	printed	out.
sep:	the	separator,	which	will	be	printed	between	arguments.
end:	 the	 ending	 text,	 which	 will	 be	 printed	 after	 all	 of	 the
arguments	have	been	output.
file:	the	file	object	to	which	the	output	will	be	sent.

See	also:

PEP	3105	-	Make	print	a	function
PEP	written	by	Georg	Brandl.

http://www.python.org/dev/peps/pep-3105

PEP	3110:	Exception-Handling	Changes

One	error	 that	Python	programmers	occasionally	make	 is	writing	 the
following	code:

try:

				...

except	TypeError,	ValueError:		#	Wrong!

				...

The	 author	 is	 probably	 trying	 to	 catch	 both	 TypeError	 and
ValueError	 exceptions,	 but	 this	 code	 actually	 does	 something
different:	 it	 will	 catch	 TypeError	 and	 bind	 the	 resulting	 exception
object	 to	 the	 local	 name	 "ValueError".	 The	 ValueError

exception	will	not	be	caught	at	all.	The	correct	code	specifies	a	tuple	of
exceptions:

try:

				...

except	(TypeError,	ValueError):

				...

This	error	happens	because	the	use	of	the	comma	here	is	ambiguous:
does	it	indicate	two	different	nodes	in	the	parse	tree,	or	a	single	node
that’s	a	tuple?

Python	3.0	makes	this	unambiguous	by	replacing	the	comma	with	the
word	“as”.	To	catch	an	exception	and	store	the	exception	object	in	the
variable	exc,	you	must	write:

try:

				...

except	TypeError	as	exc:

				...

Python	3.0	will	 only	 support	 the	use	of	 “as”,	 and	 therefore	 interprets
the	 first	 example	 as	 catching	 two	 different	 exceptions.	 Python	 2.6
supports	both	 the	 comma	and	 “as”,	 so	existing	 code	will	 continue	 to
work.	We	therefore	suggest	using	“as”	when	writing	new	Python	code
that	will	only	be	executed	with	2.6.

See	also:

PEP	3110	-	Catching	Exceptions	in	Python	3000
PEP	written	and	implemented	by	Collin	Winter.

http://www.python.org/dev/peps/pep-3110

PEP	3112:	Byte	Literals

Python	3.0	adopts	Unicode	as	the	language’s	fundamental	string	type
and	denotes	8-bit	 literals	differently,	either	as	b'string'	or	using	a
bytes	 constructor.	 For	 future	 compatibility,	 Python	 2.6	 adds	 bytes
as	a	synonym	for	the	str	type,	and	it	also	supports	the	b''	notation.

The	 2.6	 str	 differs	 from	 3.0’s	 bytes	 type	 in	 various	 ways;	 most
notably,	 the	 constructor	 is	 completely	 different.	 In	 3.0,	 bytes([65,
66,	67])	is	3	elements	long,	containing	the	bytes	representing	ABC;
in	 2.6,	 bytes([65,	 66,	 67])	 returns	 the	 12-byte	 string
representing	the	str()	of	the	list.

The	primary	use	of	bytes	 in	2.6	will	 be	 to	write	 tests	of	object	 type
such	as	isinstance(x,	bytes).	This	will	help	the	2to3	converter,
which	 can’t	 tell	 whether	 2.x	 code	 intends	 strings	 to	 contain	 either
characters	 or	 8-bit	 bytes;	 you	 can	 now	 use	 either	 bytes	 or	 str	 to
represent	 your	 intention	 exactly,	 and	 the	 resulting	 code	 will	 also	 be
correct	in	Python	3.0.

There’s	 also	 a	 __future__	 import	 that	 causes	 all	 string	 literals	 to
become	Unicode	strings.	This	means	that	\u	escape	sequences	can
be	used	to	include	Unicode	characters:

from	__future__	import	unicode_literals

s	=	('\u751f\u3080\u304e\u3000\u751f\u3054'

					'\u3081\u3000\u751f\u305f\u307e\u3054')

print	len(s)															#	12	Unicode	characters

At	 the	C	 level,	 Python	 3.0	will	 rename	 the	 existing	 8-bit	 string	 type,

called	PyStringObject	 in	Python	2.x,	to	PyBytesObject.	Python
2.6	uses	#define	 to	support	using	 the	names	PyBytesObject(),
PyBytes_Check(),	PyBytes_FromStringAndSize(),	and	all	the
other	functions	and	macros	used	with	strings.

Instances	of	the	bytes	type	are	immutable	just	as	strings	are.	A	new
bytearray	type	stores	a	mutable	sequence	of	bytes:

>>>	bytearray([65,	66,	67])

bytearray(b'ABC')

>>>	b	=	bytearray(u'\u21ef\u3244',	'utf-8')

>>>	b

bytearray(b'\xe2\x87\xaf\xe3\x89\x84')

>>>	b[0]	=	'\xe3'

>>>	b

bytearray(b'\xe3\x87\xaf\xe3\x89\x84')

>>>	unicode(str(b),	'utf-8')

u'\u31ef	\u3244'

Byte	 arrays	 support	 most	 of	 the	 methods	 of	 string	 types,	 such	 as
startswith()/endswith(),	 find()/rfind(),	 and	 some	 of	 the
methods	of	lists,	such	as	append(),	pop(),	and	reverse().

>>>	b	=	bytearray('ABC')

>>>	b.append('d')

>>>	b.append(ord('e'))

>>>	b

bytearray(b'ABCde')

There’s	 also	 a	 corresponding	 C	 API,	 with
PyByteArray_FromObject(),
PyByteArray_FromStringAndSize(),	 and	 various	 other
functions.

See	also:

PEP	3112	-	Bytes	literals	in	Python	3000
PEP	written	by	 Jason	Orendorff;	 backported	 to	2.6	by	Christian
Heimes.

http://www.python.org/dev/peps/pep-3112

PEP	3116:	New	I/O	Library

Python’s	built-in	file	objects	support	a	number	of	methods,	but	file-like
objects	don’t	necessarily	support	all	of	them.	Objects	that	imitate	files
usually	 support	 read()	 and	 write(),	 but	 they	 may	 not	 support
readline(),	for	example.	Python	3.0	introduces	a	layered	I/O	library
in	 the	io	module	 that	separates	buffering	and	 text-handling	 features
from	the	fundamental	read	and	write	operations.

There	 are	 three	 levels	 of	 abstract	 base	 classes	 provided	 by	 the	 io
module:

RawIOBase	defines	 raw	 I/O	operations:	read(),	readinto(),
write(),	seek(),	tell(),	truncate(),	and	close().	Most
of	the	methods	of	this	class	will	often	map	to	a	single	system	call.
There	 are	 also	 readable(),	 writable(),	 and	 seekable()
methods	for	determining	what	operations	a	given	object	will	allow.

Python	3.0	has	concrete	implementations	of	this	class	for	files	and
sockets,	 but	 Python	 2.6	 hasn’t	 restructured	 its	 file	 and	 socket
objects	in	this	way.

BufferedIOBase	 is	an	abstract	base	class	 that	buffers	data	 in
memory	 to	 reduce	 the	number	of	 system	calls	used,	making	 I/O
processing	 more	 efficient.	 It	 supports	 all	 of	 the	 methods	 of
RawIOBase,	and	adds	a	raw	attribute	holding	the	underlying	raw
object.

There	 are	 five	 concrete	 classes	 implementing	 this	 ABC.
BufferedWriter	 and	 BufferedReader	 are	 for	 objects	 that
support	write-only	or	read-only	usage	that	have	a	seek()	method

for	 random	access.	BufferedRandom	objects	support	 read	and
write	 access	 upon	 the	 same	 underlying	 stream,	 and
BufferedRWPair	 is	 for	 objects	 such	 as	 TTYs	 that	 have	 both
read	 and	 write	 operations	 acting	 upon	 unconnected	 streams	 of
data.	The	BytesIO	class	supports	reading,	writing,	and	seeking
over	an	in-memory	buffer.

TextIOBase:	 Provides	 functions	 for	 reading	 and	writing	 strings
(remember,	strings	will	be	Unicode	in	Python	3.0),	and	supporting
universal	 newlines.	 TextIOBase	 defines	 the	 readline()

method	and	supports	iteration	upon	objects.

There	are	two	concrete	implementations.	TextIOWrapper	wraps
a	buffered	I/O	object,	supporting	all	of	the	methods	for	text	I/O	and
adding	 a	 buffer	 attribute	 for	 access	 to	 the	 underlying	 object.
StringIO	 simply	 buffers	 everything	 in	 memory	 without	 ever
writing	anything	to	disk.

(In	Python	2.6,	io.StringIO	is	implemented	in	pure	Python,	so
it’s	 pretty	 slow.	 You	 should	 therefore	 stick	 with	 the	 existing
StringIO	module	or	cStringIO	for	now.	At	some	point	Python
3.0’s	io	module	will	 be	 rewritten	 into	C	 for	 speed,	and	perhaps
the	C	implementation	will	be	backported	to	the	2.x	releases.)

In	 Python	 2.6,	 the	 underlying	 implementations	 haven’t	 been
restructured	to	build	on	top	of	the	io	module’s	classes.	The	module	is
being	 provided	 to	 make	 it	 easier	 to	 write	 code	 that’s	 forward-
compatible	with	3.0,	and	 to	save	developers	 the	effort	of	writing	 their
own	implementations	of	buffering	and	text	I/O.

See	also:

PEP	3116	-	New	I/O
PEP	written	by	Daniel	Stutzbach,	Mike	Verdone,	and	Guido	van
Rossum.	 Code	 by	 Guido	 van	 Rossum,	 Georg	 Brandl,	 Walter
Doerwald,	 Jeremy	Hylton,	Martin	 von	Löwis,	 Tony	 Lownds,	 and
others.

http://www.python.org/dev/peps/pep-3116

PEP	3118:	Revised	Buffer	Protocol

The	buffer	protocol	 is	a	C-level	API	 that	 lets	Python	 types	exchange
pointers	into	their	internal	representations.	A	memory-mapped	file	can
be	viewed	as	a	buffer	of	characters,	for	example,	and	this	lets	another
module	 such	 as	 re	 treat	 memory-mapped	 files	 as	 a	 string	 of
characters	to	be	searched.

The	 primary	 users	 of	 the	 buffer	 protocol	 are	 numeric-processing
packages	such	as	NumPy,	which	expose	the	internal	representation	of
arrays	 so	 that	 callers	 can	write	 data	 directly	 into	 an	array	 instead	of
going	 through	a	slower	API.	This	PEP	updates	 the	buffer	protocol	 in
light	of	experience	from	NumPy	development,	adding	a	number	of	new
features	such	as	indicating	the	shape	of	an	array	or	locking	a	memory
region.

The	 most	 important	 new	 C	 API	 function	 is
PyObject_GetBuffer(PyObject	 *obj,	 Py_buffer	 *view,

int	flags),	which	takes	an	object	and	a	set	of	flags,	and	fills	in	the
Py_buffer	 structure	 with	 information	 about	 the	 object’s	 memory
representation.	Objects	can	use	this	operation	to	lock	memory	in	place
while	an	external	caller	could	be	modifying	the	contents,	so	 there’s	a
corresponding	 PyBuffer_Release(Py_buffer	 *view)	 to
indicate	that	the	external	caller	is	done.

The	 flags	 argument	 to	 PyObject_GetBuffer()	 specifies
constraints	upon	the	memory	returned.	Some	examples	are:

PyBUF_WRITABLE	 indicates	 that	 the	 memory	 must	 be
writable.
PyBUF_LOCK	 requests	 a	 read-only	 or	 exclusive	 lock	 on	 the
memory.

PyBUF_C_CONTIGUOUS	 and	 PyBUF_F_CONTIGUOUS

requests	a	C-contiguous	(last	dimension	varies	the	fastest)	or
Fortran-contiguous	 (first	 dimension	 varies	 the	 fastest)	 array
layout.

Two	 new	 argument	 codes	 for	 PyArg_ParseTuple(),	 s*	 and	 z*,
return	locked	buffer	objects	for	a	parameter.

See	also:

PEP	3118	-	Revising	the	buffer	protocol
PEP	written	by	Travis	Oliphant	and	Carl	Banks;	implemented	by
Travis	Oliphant.

http://www.python.org/dev/peps/pep-3118

PEP	3119:	Abstract	Base	Classes

Some	 object-oriented	 languages	 such	 as	 Java	 support	 interfaces,
declaring	that	a	class	has	a	given	set	of	methods	or	supports	a	given
access	protocol.	Abstract	Base	Classes	 (or	ABCs)	are	an	equivalent
feature	 for	 Python.	 The	 ABC	 support	 consists	 of	 an	 abc	 module
containing	 a	 metaclass	 called	 ABCMeta,	 special	 handling	 of	 this
metaclass	by	the	isinstance()	and	issubclass()	builtins,	and	a
collection	 of	 basic	 ABCs	 that	 the	 Python	 developers	 think	 will	 be
widely	useful.	Future	versions	of	Python	will	probably	add	more	ABCs.

Let’s	 say	 you	 have	 a	 particular	 class	 and	 wish	 to	 know	 whether	 it
supports	 dictionary-style	 access.	 The	 phrase	 “dictionary-style”	 is
vague,	however.	It	probably	means	that	accessing	items	with	obj[1]
works.	Does	it	imply	that	setting	items	with	obj[2]	=	value	works?
Or	 that	 the	 object	 will	 have	 keys(),	 values(),	 and	 items()
methods?	What	 about	 the	 iterative	 variants	 such	 as	 iterkeys()?
copy()	and	update()?	Iterating	over	the	object	with	iter()?

The	Python	2.6	collections	module	includes	a	number	of	different
ABCs	 that	 represent	 these	 distinctions.	 Iterable	 indicates	 that	 a
class	defines	__iter__(),	and	Container	means	the	class	defines
a	 __contains__()	 method	 and	 therefore	 supports	 x	 in	 y

expressions.	 The	 basic	 dictionary	 interface	 of	 getting	 items,	 setting
items,	 and	 keys(),	 values(),	 and	 items(),	 is	 defined	 by	 the
MutableMapping	ABC.

You	 can	 derive	 your	 own	 classes	 from	 a	 particular	 ABC	 to	 indicate
they	support	that	ABC’s	interface:

import	collections

class	Storage(collections.MutableMapping):

				...

Alternatively,	 you	 could	 write	 the	 class	 without	 deriving	 from	 the
desired	 ABC	 and	 instead	 register	 the	 class	 by	 calling	 the	 ABC’s
register()	method:

import	collections

class	Storage:

				...

collections.MutableMapping.register(Storage)

For	classes	that	you	write,	deriving	from	the	ABC	is	probably	clearer.
The	register()	method	 is	 useful	when	you’ve	written	a	new	ABC
that	can	describe	an	existing	 type	or	class,	or	 if	 you	want	 to	declare
that	 some	 third-party	 class	 implements	 an	ABC.	For	 example,	 if	 you
defined	a	PrintableType	ABC,	it’s	legal	to	do:

#	Register	Python's	types

PrintableType.register(int)

PrintableType.register(float)

PrintableType.register(str)

Classes	should	obey	the	semantics	specified	by	an	ABC,	but	Python
can’t	 check	 this;	 it’s	 up	 to	 the	 class	 author	 to	 understand	 the	ABC’s
requirements	and	to	implement	the	code	accordingly.

To	 check	 whether	 an	 object	 supports	 a	 particular	 interface,	 you	 can
now	write:

def	func(d):

				if	not	isinstance(d,	collections.MutableMapping):

								raise	ValueError("Mapping	object	expected,	not	%r"

Don’t	 feel	 that	 you	must	 now	 begin	 writing	 lots	 of	 checks	 as	 in	 the
above	 example.	Python	 has	 a	 strong	 tradition	 of	 duck-typing,	 where
explicit	type-checking	is	never	done	and	code	simply	calls	methods	on
an	 object,	 trusting	 that	 those	 methods	 will	 be	 there	 and	 raising	 an
exception	if	they	aren’t.	Be	judicious	in	checking	for	ABCs	and	only	do
it	where	it’s	absolutely	necessary.

You	 can	 write	 your	 own	 ABCs	 by	 using	 abc.ABCMeta	 as	 the
metaclass	in	a	class	definition:

from	abc	import	ABCMeta,	abstractmethod

class	Drawable():

				__metaclass__	=	ABCMeta

				@abstractmethod

				def	draw(self,	x,	y,	scale=1.0):

								pass

				def	draw_doubled(self,	x,	y):

								self.draw(x,	y,	scale=2.0)

class	Square(Drawable):

				def	draw(self,	x,	y,	scale):

								...

In	the	Drawable	ABC	above,	the	draw_doubled()	method	renders
the	object	at	 twice	 its	size	and	can	be	 implemented	 in	 terms	of	other
methods	 described	 in	 Drawable.	 Classes	 implementing	 this	 ABC
therefore	 don’t	 need	 to	 provide	 their	 own	 implementation	 of

draw_doubled(),	 though	 they	 can	 do	 so.	 An	 implementation	 of
draw()	is	necessary,	though;	the	ABC	can’t	provide	a	useful	generic
implementation.

You	can	apply	the	@abstractmethod	decorator	to	methods	such	as
draw()	 that	 must	 be	 implemented;	 Python	 will	 then	 raise	 an
exception	 for	 classes	 that	 don’t	 define	 the	 method.	 Note	 that	 the
exception	is	only	raised	when	you	actually	try	to	create	an	instance	of
a	subclass	lacking	the	method:

>>>	class	Circle(Drawable):

...					pass

...

>>>	c	=	Circle()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	Can't	instantiate	abstract	class	Circle	with	abstract	methods	draw

>>>

Abstract	 data	 attributes	 can	 be	 declared	 using	 the
@abstractproperty	decorator:

from	abc	import	abstractproperty

...

@abstractproperty

def	readonly(self):

			return	self._x

Subclasses	must	then	define	a	readonly()	property.

See	also:

PEP	3119	-	Introducing	Abstract	Base	Classes

http://www.python.org/dev/peps/pep-3119

PEP	 written	 by	 Guido	 van	 Rossum	 and	 Talin.	 Implemented	 by
Guido	 van	Rossum.	Backported	 to	2.6	by	Benjamin	Aranguren,
with	Alex	Martelli.

PEP	3127:	Integer	Literal	Support	and
Syntax

Python	 3.0	 changes	 the	 syntax	 for	 octal	 (base-8)	 integer	 literals,
prefixing	 them	with	 “0o”	 or	 “0O”	 instead	of	 a	 leading	 zero,	 and	adds
support	for	binary	(base-2)	 integer	literals,	signalled	by	a	“0b”	or	“0B”
prefix.

Python	 2.6	 doesn’t	 drop	 support	 for	 a	 leading	 0	 signalling	 an	 octal
number,	but	it	does	add	support	for	“0o”	and	“0b”:

>>>	0o21,	2*8	+	1

(17,	17)

>>>	0b101111

47

The	oct()	 builtin	 still	 returns	numbers	prefixed	with	a	 leading	zero,
and	 a	 new	 bin()	 builtin	 returns	 the	 binary	 representation	 for	 a
number:

>>>	oct(42)

'052'

>>>	future_builtins.oct(42)

'0o52'

>>>	bin(173)

'0b10101101'

The	 int()	 and	 long()	 builtins	 will	 now	 accept	 the	 “0o”	 and	 “0b”
prefixes	 when	 base-8	 or	 base-2	 are	 requested,	 or	 when	 the	 base
argument	is	zero	(signalling	that	the	base	used	should	be	determined
from	the	string):

>>>	int	('0o52',	0)

42

>>>	int('1101',	2)

13

>>>	int('0b1101',	2)

13

>>>	int('0b1101',	0)

13

See	also:

PEP	3127	-	Integer	Literal	Support	and	Syntax
PEP	written	by	Patrick	Maupin;	backported	to	2.6	by	Eric	Smith.

http://www.python.org/dev/peps/pep-3127

PEP	3129:	Class	Decorators

Decorators	 have	 been	 extended	 from	 functions	 to	 classes.	 It’s	 now
legal	to	write:

@foo

@bar

class	A:

		pass

This	is	equivalent	to:

class	A:

		pass

A	=	foo(bar(A))

See	also:

PEP	3129	-	Class	Decorators
PEP	written	by	Collin	Winter.

http://www.python.org/dev/peps/pep-3129

PEP	3141:	A	Type	Hierarchy	for	Numbers

Python	 3.0	 adds	 several	 abstract	 base	 classes	 for	 numeric	 types
inspired	by	Scheme’s	numeric	tower.	These	classes	were	backported
to	2.6	as	the	numbers	module.

The	most	general	ABC	is	Number.	It	defines	no	operations	at	all,	and
only	 exists	 to	 allow	 checking	 if	 an	 object	 is	 a	 number	 by	 doing
isinstance(obj,	Number).

Complex	 is	 a	 subclass	 of	 Number.	Complex	 numbers	 can	 undergo
the	 basic	 operations	 of	 addition,	 subtraction,	 multiplication,	 division,
and	exponentiation,	and	you	can	retrieve	the	real	and	imaginary	parts
and	obtain	a	number’s	conjugate.	Python’s	built-in	complex	type	is	an
implementation	of	Complex.

Real	 further	 derives	 from	 Complex,	 and	 adds	 operations	 that	 only
work	 on	 real	 numbers:	 floor(),	 trunc(),	 rounding,	 taking	 the
remainder	mod	N,	floor	division,	and	comparisons.

Rational	 numbers	 derive	 from	 Real,	 have	 numerator	 and
denominator	properties,	and	can	be	converted	to	floats.	Python	2.6
adds	a	simple	 rational-number	class,	Fraction,	 in	 the	 fractions
module.	(It’s	called	Fraction	instead	of	Rational	to	avoid	a	name
clash	with	numbers.Rational.)

Integral	 numbers	 derive	 from	 Rational,	 and	 can	 be	 shifted	 left
and	right	with	<<	and	>>,	combined	using	bitwise	operations	such	as
&	and	|,	and	can	be	used	as	array	indexes	and	slice	boundaries.

In	 Python	 3.0,	 the	 PEP	 slightly	 redefines	 the	 existing	 builtins

round(),	 math.floor(),	 math.ceil(),	 and	 adds	 a	 new	 one,
math.trunc(),	 that’s	 been	 backported	 to	 Python	 2.6.
math.trunc()	rounds	toward	zero,	returning	the	closest	Integral
that’s	between	the	function’s	argument	and	zero.

See	also:

PEP	3141	-	A	Type	Hierarchy	for	Numbers
PEP	written	by	Jeffrey	Yasskin.

Scheme’s	numerical	tower,	from	the	Guile	manual.

Scheme’s	number	datatypes	from	the	R5RS	Scheme	specification.

The	fractions	Module

To	 fill	 out	 the	 hierarchy	 of	 numeric	 types,	 the	 fractions	 module
provides	a	rational-number	class.	Rational	numbers	store	their	values
as	a	numerator	and	denominator	 forming	a	 fraction,	and	can	exactly
represent	numbers	such	as	2/3	 that	 floating-point	numbers	can	only
approximate.

The	Fraction	 constructor	 takes	 two	 Integral	 values	 that	will	 be
the	numerator	and	denominator	of	the	resulting	fraction.

>>>	from	fractions	import	Fraction

>>>	a	=	Fraction(2,	3)

>>>	b	=	Fraction(2,	5)

>>>	float(a),	float(b)

(0.66666666666666663,	0.40000000000000002)

>>>	a+b

Fraction(16,	15)

>>>	a/b

http://www.python.org/dev/peps/pep-3141
http://www.gnu.org/software/guile/manual/html_node/Numerical-Tower.html#Numerical-Tower
http://schemers.org/Documents/Standards/R5RS/HTML/r5rs-Z-H-9.html#%_sec_6.2

Fraction(5,	3)

For	 converting	 floating-point	 numbers	 to	 rationals,	 the	 float	 type	now
has	 an	 as_integer_ratio()	 method	 that	 returns	 the	 numerator
and	 denominator	 for	 a	 fraction	 that	 evaluates	 to	 the	 same	 floating-
point	value:

>>>	(2.5)	.as_integer_ratio()

(5,	2)

>>>	(3.1415)	.as_integer_ratio()

(7074029114692207L,	2251799813685248L)

>>>	(1./3)	.as_integer_ratio()

(6004799503160661L,	18014398509481984L)

Note	 that	 values	 that	 can	 only	 be	 approximated	 by	 floating-point
numbers,	 such	 as	 1./3,	 are	 not	 simplified	 to	 the	 number	 being
approximated;	 the	 fraction	 attempts	 to	match	 the	 floating-point	 value
exactly.

The	fractions	module	 is	based	upon	an	implementation	by	Sjoerd
Mullender	 that	was	 in	Python’s	Demo/classes/	directory	 for	a	 long
time.	 This	 implementation	 was	 significantly	 updated	 by	 Jeffrey
Yasskin.

Other	Language	Changes

Some	smaller	changes	made	to	the	core	Python	language	are:

Directories	and	zip	archives	containing	a	__main__.py	 file	can
now	be	executed	directly	by	passing	their	name	to	the	interpreter.
The	directory	 or	 zip	 archive	 is	 automatically	 inserted	as	 the	 first
entry	 in	 sys.path.	 (Suggestion	 and	 initial	 patch	 by	 Andy	 Chu,
subsequently	 revised	 by	 Phillip	 J.	 Eby	 and	Nick	 Coghlan;	 issue
1739468.)

The	 hasattr()	 function	 was	 catching	 and	 ignoring	 all	 errors,
under	 the	 assumption	 that	 they	 meant	 a	 __getattr__()
method	was	failing	somehow	and	the	return	value	of	hasattr()
would	 therefore	 be	 False.	 This	 logic	 shouldn’t	 be	 applied	 to
KeyboardInterrupt	 and	 SystemExit,	 however;	 Python	 2.6
will	 no	 longer	 discard	 such	 exceptions	 when	 hasattr()

encounters	them.	(Fixed	by	Benjamin	Peterson;	issue	2196.)

When	calling	a	 function	using	 the	**	 syntax	 to	provide	keyword
arguments,	you	are	no	longer	required	to	use	a	Python	dictionary;
any	mapping	will	now	work:

>>>	def	f(**kw):

...				print	sorted(kw)

...

>>>	ud=UserDict.UserDict()

>>>	ud['a']	=	1

>>>	ud['b']	=	'string'

>>>	f(**ud)

['a',	'b']

http://bugs.python.org/issue1739468
http://bugs.python.org/issue2196

(Contributed	by	Alexander	Belopolsky;	issue	1686487.)

It’s	 also	 become	 legal	 to	 provide	 keyword	 arguments	 after	 a
*args	argument	to	a	function	call.

>>>	def	f(*args,	**kw):

...					print	args,	kw

...

>>>	f(1,2,3,	*(4,5,6),	keyword=13)

(1,	2,	3,	4,	5,	6)	{'keyword':	13}

Previously	 this	would	 have	been	a	 syntax	 error.	 (Contributed	 by
Amaury	Forgeot	d’Arc;	issue	3473.)

A	new	builtin,	next(iterator,	[default])	 returns	 the	next
item	from	the	specified	iterator.	If	the	default	argument	is	supplied,
it	will	 be	 returned	 if	 iterator	 has	 been	 exhausted;	 otherwise,	 the
StopIteration	 exception	will	 be	 raised.	 (Backported	 in	 issue
2719.)

Tuples	now	have	index()	and	count()	methods	matching	the
list	type’s	index()	and	count()	methods:

>>>	t	=	(0,1,2,3,4,0,1,2)

>>>	t.index(3)

3

>>>	t.count(0)

2

(Contributed	by	Raymond	Hettinger)

The	built-in	types	now	have	improved	support	for	extended	slicing
syntax,	 accepting	 various	 combinations	 of	 (start,	 stop,

step).	 Previously,	 the	 support	 was	 partial	 and	 certain	 corner

http://bugs.python.org/issue1686487
http://bugs.python.org/issue3473
http://bugs.python.org/issue2719

cases	wouldn’t	work.	(Implemented	by	Thomas	Wouters.)

Properties	 now	 have	 three	 attributes,	 getter,	 setter	 and
deleter,	 that	 are	 decorators	 providing	 useful	 shortcuts	 for
adding	a	getter,	setter	or	deleter	 function	 to	an	existing	property.
You	would	use	them	like	this:

class	C(object):

				@property

				def	x(self):

								return	self._x

				@x.setter

				def	x(self,	value):

								self._x	=	value

				@x.deleter

				def	x(self):

								del	self._x

class	D(C):

				@C.x.getter

				def	x(self):

								return	self._x	*	2

				@x.setter

				def	x(self,	value):

								self._x	=	value	/	2

Several	 methods	 of	 the	 built-in	 set	 types	 now	 accept	 multiple
iterables:	 intersection(),	 intersection_update(),
union(),	 update(),	 difference()	 and
difference_update().

>>>	s=set('1234567890')

>>>	s.intersection('abc123',	'cdf246')		#	Intersection	between	all	inputs

set(['2'])

>>>	s.difference('246',	'789')

set(['1',	'0',	'3',	'5'])

(Contributed	by	Raymond	Hettinger.)

Many	 floating-point	 features	were	added.	The	float()	 function
will	 now	 turn	 the	 string	 nan	 into	 an	 IEEE	 754	 Not	 A	 Number
value,	and	+inf	and	-inf	 into	positive	or	negative	 infinity.	This
works	on	any	platform	with	IEEE	754	semantics.	(Contributed	by
Christian	Heimes;	issue	1635.)

Other	 functions	 in	 the	 math	 module,	 isinf()	 and	 isnan(),
return	 true	 if	 their	 floating-point	 argument	 is	 infinite	 or	 Not	 A
Number.	(issue	1640)

Conversion	 functions	 were	 added	 to	 convert	 floating-point
numbers	 into	hexadecimal	 strings	 (issue	 3008).	 These	 functions
convert	 floats	 to	 and	 from	 a	 string	 representation	 without
introducing	rounding	errors	from	the	conversion	between	decimal
and	 binary.	 Floats	 have	 a	 hex()	 method	 that	 returns	 a	 string
representation,	 and	 the	 float.fromhex()	 method	 converts	 a
string	back	into	a	number:

>>>	a	=	3.75

>>>	a.hex()

'0x1.e000000000000p+1'

>>>	float.fromhex('0x1.e000000000000p+1')

3.75

>>>	b=1./3

>>>	b.hex()

'0x1.5555555555555p-2'

http://bugs.python.org/issue1635
http://bugs.python.org/issue1640
http://bugs.python.org/issue3008

A	 numerical	 nicety:	 when	 creating	 a	 complex	 number	 from	 two
floats	 on	 systems	 that	 support	 signed	 zeros	 (-0	 and	 +0),	 the
complex()	 constructor	 will	 now	 preserve	 the	 sign	 of	 the	 zero.
(Fixed	by	Mark	T.	Dickinson;	issue	1507.)

Classes	 that	 inherit	a	__hash__()	method	 from	a	parent	 class
can	 set	 __hash__	 =	 None	 to	 indicate	 that	 the	 class	 isn’t
hashable.	 This	 will	 make	 hash(obj)	 raise	 a	 TypeError	 and
the	 class	 will	 not	 be	 indicated	 as	 implementing	 the	 Hashable
ABC.

You	 should	 do	 this	 when	 you’ve	 defined	 a	 __cmp__()	 or
__eq__()	 method	 that	 compares	 objects	 by	 their	 value	 rather
than	by	identity.	All	objects	have	a	default	hash	method	that	uses
id(obj)	as	 the	hash	value.	There’s	no	 tidy	way	 to	 remove	 the
__hash__()	method	inherited	from	a	parent	class,	so	assigning
None	was	implemented	as	an	override.	At	the	C	level,	extensions
can	 set	 tp_hash	 to	 PyObject_HashNotImplemented().
(Fixed	by	Nick	Coghlan	and	Amaury	Forgeot	d’Arc;	issue	2235.)

The	 GeneratorExit	 exception	 now	 subclasses
BaseException	 instead	 of	 Exception.	 This	 means	 that	 an
exception	 handler	 that	 does	 except	 Exception:	 will	 not
inadvertently	 catch	 GeneratorExit.	 (Contributed	 by	 Chad
Austin;	issue	1537.)

Generator	 objects	 now	 have	 a	 gi_code	 attribute	 that	 refers	 to
the	 original	 code	 object	 backing	 the	 generator.	 (Contributed	 by
Collin	Winter;	issue	1473257.)

The	 compile()	 built-in	 function	 now	 accepts	 keyword
arguments	 as	 well	 as	 positional	 parameters.	 (Contributed	 by

http://bugs.python.org/issue1507
http://bugs.python.org/issue2235
http://bugs.python.org/issue1537
http://bugs.python.org/issue1473257

Thomas	Wouters;	issue	1444529.)

The	 complex()	 constructor	 now	 accepts	 strings	 containing
parenthesized	 complex	 numbers,	 meaning	 that
complex(repr(cplx))	 will	 now	 round-trip	 values.	 For
example,	 complex('(3+4j)')	 now	 returns	 the	 value	 (3+4j).
(issue	1491866)

The	 string	 translate()	 method	 now	 accepts	 None	 as	 the
translation	 table	 parameter,	 which	 is	 treated	 as	 the	 identity
transformation.	This	makes	 it	 easier	 to	 carry	 out	 operations	 that
only	 delete	 characters.	 (Contributed	 by	 Bengt	 Richter	 and
implemented	by	Raymond	Hettinger;	issue	1193128.)

The	built-in	dir()	function	now	checks	for	a	__dir__()	method
on	the	objects	it	receives.	This	method	must	return	a	list	of	strings
containing	the	names	of	valid	attributes	for	the	object,	and	lets	the
object	control	 the	value	 that	dir()	produces.	Objects	 that	have
__getattr__()	 or	 __getattribute__()	 methods	 can	 use
this	 to	 advertise	 pseudo-attributes	 they	 will	 honor.	 (issue
1591665)

Instance	method	 objects	 have	 new	 attributes	 for	 the	 object	 and
function	comprising	the	method;	the	new	synonym	for	im_self	is
__self__,	 and	 im_func	 is	 also	 available	 as	 __func__.	 The
old	names	are	still	supported	in	Python	2.6,	but	are	gone	in	3.0.

An	obscure	change:	when	you	use	the	locals()	function	inside
a	class	statement,	the	resulting	dictionary	no	longer	returns	free
variables.	(Free	variables,	in	this	case,	are	variables	referenced	in
the	class	statement	that	aren’t	attributes	of	the	class.)

http://bugs.python.org/issue1444529
http://bugs.python.org/issue1491866
http://bugs.python.org/issue1193128
http://bugs.python.org/issue1591665

Optimizations

The	 warnings	 module	 has	 been	 rewritten	 in	 C.	 This	 makes	 it
possible	to	invoke	warnings	from	the	parser,	and	may	also	make
the	 interpreter’s	startup	 faster.	 (Contributed	by	Neal	Norwitz	and
Brett	Cannon;	issue	1631171.)

Type	objects	now	have	a	cache	of	methods	 that	can	 reduce	 the
work	 required	 to	 find	 the	 correct	 method	 implementation	 for	 a
particular	 class;	 once	 cached,	 the	 interpreter	 doesn’t	 need	 to
traverse	base	classes	 to	 figure	out	 the	 right	method	 to	call.	The
cache	is	cleared	if	a	base	class	or	the	class	itself	 is	modified,	so
the	 cache	 should	 remain	 correct	 even	 in	 the	 face	 of	 Python’s
dynamic	 nature.	 (Original	 optimization	 implemented	 by	 Armin
Rigo,	updated	for	Python	2.6	by	Kevin	Jacobs;	issue	1700288.)

By	default,	 this	change	 is	only	applied	to	 types	that	are	 included
with	the	Python	core.	Extension	modules	may	not	necessarily	be
compatible	 with	 this	 cache,	 so	 they	 must	 explicitly	 add
Py_TPFLAGS_HAVE_VERSION_TAG	 to	 the	 module’s	 tp_flags
field	 to	 enable	 the	 method	 cache.	 (To	 be	 compatible	 with	 the
method	 cache,	 the	 extension	 module’s	 code	 must	 not	 directly
access	and	modify	 the	 tp_dict	member	 of	 any	 of	 the	 types	 it
implements.	Most	modules	don’t	do	this,	but	it’s	impossible	for	the
Python	 interpreter	 to	 determine	 that.	 See	 issue	 1878	 for	 some
discussion.)

Function	calls	that	use	keyword	arguments	are	significantly	faster
by	doing	a	quick	pointer	comparison,	usually	saving	the	time	of	a
full	 string	 comparison.	 (Contributed	 by	Raymond	Hettinger,	 after
an	initial	implementation	by	Antoine	Pitrou;	issue	1819.)

http://bugs.python.org/issue1631171
http://bugs.python.org/issue1700288
http://bugs.python.org/issue1878
http://bugs.python.org/issue1819

All	of	the	functions	in	the	struct	module	have	been	rewritten	in
C,	 thanks	to	work	at	 the	Need	For	Speed	sprint.	(Contributed	by
Raymond	Hettinger.)

Some	 of	 the	 standard	 built-in	 types	 now	 set	 a	 bit	 in	 their	 type
objects.	This	speeds	up	checking	whether	an	object	is	a	subclass
of	one	of	these	types.	(Contributed	by	Neal	Norwitz.)

Unicode	strings	now	use	faster	code	for	detecting	whitespace	and
line	breaks;	 this	speeds	up	 the	split()	method	by	about	25%
and	 splitlines()	 by	 35%.	 (Contributed	 by	 Antoine	 Pitrou.)
Memory	 usage	 is	 reduced	 by	 using	 pymalloc	 for	 the	 Unicode
string’s	data.

The	with	statement	now	stores	the	__exit__()	method	on	the
stack,	 producing	 a	 small	 speedup.	 (Implemented	 by	 Jeffrey
Yasskin.)

To	 reduce	 memory	 usage,	 the	 garbage	 collector	 will	 now	 clear
internal	 free	 lists	when	garbage-collecting	 the	highest	generation
of	 objects.	 This	 may	 return	 memory	 to	 the	 operating	 system
sooner.

Interpreter	Changes

Two	 command-line	 options	 have	 been	 reserved	 for	 use	 by	 other
Python	implementations.	The	-J	switch	has	been	reserved	for	use	by
Jython	for	Jython-specific	options,	such	as	switches	that	are	passed	to
the	 underlying	 JVM.	 -X	 has	 been	 reserved	 for	 options	 specific	 to	 a
particular	 implementation	 of	 Python	 such	 as	 CPython,	 Jython,	 or
IronPython.	If	either	option	is	used	with	Python	2.6,	the	interpreter	will
report	that	the	option	isn’t	currently	used.

Python	 can	 now	 be	 prevented	 from	 writing	 .pyc	 or	 .pyo	 files	 by
supplying	 the	 -B	 switch	 to	 the	 Python	 interpreter,	 or	 by	 setting	 the
PYTHONDONTWRITEBYTECODE	 environment	 variable	 before	 running
the	 interpreter.	 This	 setting	 is	 available	 to	 Python	 programs	 as	 the
sys.dont_write_bytecode	variable,	and	Python	code	can	change
the	 value	 to	modify	 the	 interpreter’s	 behaviour.	 (Contributed	 by	Neal
Norwitz	and	Georg	Brandl.)

The	encoding	used	for	standard	input,	output,	and	standard	error	can
be	specified	by	setting	the	PYTHONIOENCODING	environment	variable
before	running	the	interpreter.	The	value	should	be	a	string	in	the	form
<encoding>	or	<encoding>:<errorhandler>.	The	encoding	part
specifies	the	encoding’s	name,	e.g.	utf-8	or	latin-1;	 the	optional
errorhandler	 part	 specifies	 what	 to	 do	 with	 characters	 that	 can’t	 be
handled	 by	 the	 encoding,	 and	 should	 be	 one	 of	 “error”,	 “ignore”,	 or
“replace”.	(Contributed	by	Martin	von	Löwis.)

New	and	Improved	Modules

As	 in	 every	 release,	 Python’s	 standard	 library	 received	 a	 number	 of
enhancements	and	bug	fixes.	Here’s	a	partial	 list	of	 the	most	notable
changes,	 sorted	 alphabetically	 by	 module	 name.	 Consult	 the
Misc/NEWS	file	in	the	source	tree	for	a	more	complete	list	of	changes,
or	look	through	the	Subversion	logs	for	all	the	details.

The	 asyncore	 and	 asynchat	 modules	 are	 being	 actively
maintained	 again,	 and	 a	 number	 of	 patches	 and	 bugfixes	 were
applied.	 (Maintained	 by	 Josiah	 Carlson;	 see	 issue	 1736190	 for
one	patch.)

The	bsddb	module	also	has	a	new	maintainer,	Jesús	Cea	Avión,
and	the	package	is	now	available	as	a	standalone	package.	The
web	 page	 for	 the	 package	 is
www.jcea.es/programacion/pybsddb.htm.	 The	 plan	 is	 to	 remove
the	package	from	the	standard	 library	 in	Python	3.0,	because	 its
pace	of	releases	is	much	more	frequent	than	Python’s.

The	 bsddb.dbshelve	 module	 now	 uses	 the	 highest	 pickling
protocol	 available,	 instead	 of	 restricting	 itself	 to	 protocol	 1.
(Contributed	by	W.	Barnes.)

The	cgi	module	will	now	read	variables	from	the	query	string	of
an	 HTTP	 POST	 request.	 This	 makes	 it	 possible	 to	 use	 form
actions	 with	 URLs	 that	 include	 query	 strings	 such	 as	 “/cgi-
bin/add.py?category=1”.	 (Contributed	 by	 Alexandre	 Fiori	 and
Nubis;	issue	1817.)

The	 parse_qs()	 and	 parse_qsl()	 functions	 have	 been
relocated	 from	 the	 cgi	 module	 to	 the	 urlparse	 module.	 The

http://bugs.python.org/issue1736190
http://www.jcea.es/programacion/pybsddb.htm
http://bugs.python.org/issue1817

versions	 still	 available	 in	 the	 cgi	 module	 will	 trigger
PendingDeprecationWarning	 messages	 in	 2.6	 (issue
600362).

The	cmath	module	underwent	extensive	revision,	contributed	by
Mark	 Dickinson	 and	Christian	 Heimes.	 Five	 new	 functions	 were
added:

polar()	converts	a	complex	number	to	polar	form,	returning
the	modulus	and	argument	of	the	complex	number.
rect()	does	the	opposite,	turning	a	modulus,	argument	pair
back	into	the	corresponding	complex	number.
phase()	 returns	 the	 argument	 (also	 called	 the	 angle)	 of	 a
complex	number.
isnan()	 returns	True	 if	either	 the	 real	or	 imaginary	part	of
its	argument	is	a	NaN.
isinf()	 returns	True	 if	either	 the	 real	or	 imaginary	part	of
its	argument	is	infinite.

The	 revisions	 also	 improved	 the	 numerical	 soundness	 of	 the
cmath	module.	For	all	 functions,	 the	real	and	 imaginary	parts	of
the	 results	 are	 accurate	 to	 within	 a	 few	 units	 of	 least	 precision
(ulps)	 whenever	 possible.	 See	 issue	 1381	 for	 the	 details.	 The
branch	cuts	for	asinh(),	atanh():	and	atan()	have	also	been
corrected.

The	 tests	 for	 the	 module	 have	 been	 greatly	 expanded;	 nearly
2000	new	test	cases	exercise	the	algebraic	functions.

On	 IEEE	 754	 platforms,	 the	 cmath	 module	 now	 handles	 IEEE
754	 special	 values	 and	 floating-point	 exceptions	 in	 a	 manner
consistent	with	Annex	‘G’	of	the	C99	standard.

http://bugs.python.org/issue600362
http://bugs.python.org/issue1381

A	 new	 data	 type	 in	 the	 collections	 module:
namedtuple(typename,	 fieldnames)	 is	 a	 factory	 function
that	 creates	 subclasses	 of	 the	 standard	 tuple	 whose	 fields	 are
accessible	by	name	as	well	as	index.	For	example:

>>>	var_type	=	collections.namedtuple('variable',

...													'id	name	type	size')

>>>	#	Names	are	separated	by	spaces	or	commas.

>>>	#	'id,	name,	type,	size'	would	also	work.

>>>	var_type._fields

('id',	'name',	'type',	'size')

>>>	var	=	var_type(1,	'frequency',	'int',	4)

>>>	print	var[0],	var.id				#	Equivalent

1	1

>>>	print	var[2],	var.type		#	Equivalent

int	int

>>>	var._asdict()

{'size':	4,	'type':	'int',	'id':	1,	'name':	'frequency'}

>>>	v2	=	var._replace(name='amplitude')

>>>	v2

variable(id=1,	name='amplitude',	type='int',	size=4)

Several	 places	 in	 the	 standard	 library	 that	 returned	 tuples	 have
been	modified	to	return	namedtuple	instances.	For	example,	the
Decimal.as_tuple()	method	now	returns	a	named	tuple	with
sign,	digits,	and	exponent	fields.

(Contributed	by	Raymond	Hettinger.)

Another	change	to	 the	collections	module	 is	 that	 the	deque
type	now	supports	an	optional	maxlen	parameter;	 if	supplied,	the
deque’s	 size	 will	 be	 restricted	 to	 no	 more	 than	 maxlen	 items.
Adding	 more	 items	 to	 a	 full	 deque	 causes	 old	 items	 to	 be

discarded.

>>>	from	collections	import	deque

>>>	dq=deque(maxlen=3)

>>>	dq

deque([],	maxlen=3)

>>>	dq.append(1);	dq.append(2);	dq.append(3)

>>>	dq

deque([1,	2,	3],	maxlen=3)

>>>	dq.append(4)

>>>	dq

deque([2,	3,	4],	maxlen=3)

(Contributed	by	Raymond	Hettinger.)

The	 Cookie	 module’s	 Morsel	 objects	 now	 support	 an
httponly	attribute.	In	some	browsers.	cookies	with	this	attribute
set	 cannot	 be	 accessed	 or	 manipulated	 by	 JavaScript	 code.
(Contributed	by	Arvin	Schnell;	issue	1638033.)

A	 new	 window	 method	 in	 the	 curses	 module,	 chgat(),
changes	the	display	attributes	for	a	certain	number	of	characters
on	a	single	line.	(Contributed	by	Fabian	Kreutz.)

#	Boldface	text	starting	at	y=0,x=21

#	and	affecting	the	rest	of	the	line.

stdscr.chgat(0,	21,	curses.A_BOLD)

The	 Textbox	 class	 in	 the	 curses.textpad	 module	 now
supports	editing	in	insert	mode	as	well	as	overwrite	mode.	Insert
mode	 is	 enabled	 by	 supplying	 a	 true	 value	 for	 the	 insert_mode
parameter	when	creating	the	Textbox	instance.

The	 datetime	module’s	 strftime()	methods	 now	 support	 a

http://bugs.python.org/issue1638033

%f	 format	 code	 that	 expands	 to	 the	number	 of	microseconds	 in
the	object,	zero-padded	on	the	 left	 to	six	places.	(Contributed	by
Skip	Montanaro;	issue	1158.)

The	decimal	module	was	updated	to	version	1.66	of	the	General
Decimal	 Specification.	 New	 features	 include	 some	 methods	 for
some	 basic	 mathematical	 functions	 such	 as	 exp()	 and
log10():

>>>	Decimal(1).exp()

Decimal("2.718281828459045235360287471")

>>>	Decimal("2.7182818").ln()

Decimal("0.9999999895305022877376682436")

>>>	Decimal(1000).log10()

Decimal("3")

The	 as_tuple()	 method	 of	 Decimal	 objects	 now	 returns	 a
named	tuple	with	sign,	digits,	and	exponent	fields.

(Implemented	 by	 Facundo	 Batista	 and	 Mark	 Dickinson.	 Named
tuple	support	added	by	Raymond	Hettinger.)

The	 difflib	 module’s	 SequenceMatcher	 class	 now	 returns
named	 tuples	 representing	 matches,	 with	 a,	 b,	 and	 size
attributes.	(Contributed	by	Raymond	Hettinger.)

An	optional	timeout	parameter,	specifying	a	 timeout	measured
in	seconds,	was	added	to	the	ftplib.FTP	class	constructor	as
well	 as	 the	 connect()	 method.	 (Added	 by	 Facundo	 Batista.)
Also,	 the	 FTP	 class’s	 storbinary()	 and	 storlines()	 now
take	an	optional	callback	parameter	 that	will	be	called	with	each
block	of	 data	 after	 the	data	 has	been	 sent.	 (Contributed	by	Phil
Schwartz;	issue	1221598.)

http://bugs.python.org/issue1158
http://www2.hursley.ibm.com/decimal/decarith.html
http://bugs.python.org/issue1221598

The	 reduce()	 built-in	 function	 is	 also	 available	 in	 the
functools	module.	In	Python	3.0,	the	builtin	has	been	dropped
and	reduce()	is	only	available	from	functools;	currently	there
are	 no	 plans	 to	 drop	 the	 builtin	 in	 the	 2.x	 series.	 (Patched	 by
Christian	Heimes;	issue	1739906.)

When	possible,	the	getpass	module	will	now	use	/dev/tty	 to
print	 a	 prompt	message	 and	 read	 the	 password,	 falling	 back	 to
standard	error	and	standard	input.	If	the	password	may	be	echoed
to	 the	 terminal,	 a	 warning	 is	 printed	 before	 the	 prompt	 is
displayed.	(Contributed	by	Gregory	P.	Smith.)

The	glob.glob()	 function	can	now	return	Unicode	filenames	if
a	 Unicode	 path	 was	 used	 and	 Unicode	 filenames	 are	 matched
within	the	directory.	(issue	1001604)

A	new	 function	 in	 the	 heapq	module,	merge(iter1,	iter2,
...),	 takes	 any	 number	 of	 iterables	 returning	 data	 in	 sorted
order,	and	returns	a	new	generator	that	returns	the	contents	of	all
the	iterators,	also	in	sorted	order.	For	example:

>>>	list(heapq.merge([1,	3,	5,	9],	[2,	8,	16]))

[1,	2,	3,	5,	8,	9,	16]

Another	 new	 function,	 heappushpop(heap,	 item),	 pushes
item	onto	heap,	then	pops	off	and	returns	the	smallest	item.	This
is	 more	 efficient	 than	 making	 a	 call	 to	 heappush()	 and	 then
heappop().

heapq	 is	 now	 implemented	 to	 only	 use	 less-than	 comparison,
instead	 of	 the	 less-than-or-equal	 comparison	 it	 previously	 used.
This	makes	heapq‘s	 usage	 of	 a	 type	match	 the	 list.sort()

http://bugs.python.org/issue1739906
http://bugs.python.org/issue1001604

method.	(Contributed	by	Raymond	Hettinger.)

An	optional	timeout	parameter,	specifying	a	 timeout	measured
in	seconds,	was	added	 to	 the	httplib.HTTPConnection	and
HTTPSConnection	 class	 constructors.	 (Added	 by	 Facundo
Batista.)

Most	 of	 the	 inspect	 module’s	 functions,	 such	 as
getmoduleinfo()	and	getargs(),	now	return	named	 tuples.
In	 addition	 to	 behaving	 like	 tuples,	 the	 elements	 of	 the	 return
value	 can	 also	 be	 accessed	 as	 attributes.	 (Contributed	 by
Raymond	Hettinger.)

Some	 new	 functions	 in	 the	 module	 include	 isgenerator(),
isgeneratorfunction(),	and	isabstract().

The	itertools	module	gained	several	new	functions.

izip_longest(iter1,	 iter2,	 ...[,	 fillvalue])

makes	tuples	from	each	of	the	elements;	 if	some	of	the	iterables
are	shorter	than	others,	the	missing	values	are	set	to	fillvalue.	For
example:

>>>	tuple(itertools.izip_longest([1,2,3],	[1,2,3,

((1,	1),	(2,	2),	(3,	3),	(None,	4),	(None,	5))

product(iter1,	 iter2,	 ...,	 [repeat=N])	 returns	 the
Cartesian	 product	 of	 the	 supplied	 iterables,	 a	 set	 of	 tuples
containing	 every	 possible	 combination	 of	 the	 elements	 returned
from	each	iterable.

>>>	list(itertools.product([1,2,3],	[4,5,6]))

[(1,	4),	(1,	5),	(1,	6),

	(2,	4),	(2,	5),	(2,	6),

	(3,	4),	(3,	5),	(3,	6)]

The	 optional	 repeat	 keyword	 argument	 is	 used	 for	 taking	 the
product	 of	 an	 iterable	 or	 a	 set	 of	 iterables	 with	 themselves,
repeated	N	 times.	With	 a	 single	 iterable	 argument,	N-tuples	 are
returned:

>>>	list(itertools.product([1,2],	repeat=3))

[(1,	1,	1),	(1,	1,	2),	(1,	2,	1),	(1,	2,	2),

	(2,	1,	1),	(2,	1,	2),	(2,	2,	1),	(2,	2,	2)]

With	two	iterables,	2N-tuples	are	returned.

>>>	list(itertools.product([1,2],	[3,4],	repeat=2

[(1,	3,	1,	3),	(1,	3,	1,	4),	(1,	3,	2,	3),	(1,	3,	2,	4),

	(1,	4,	1,	3),	(1,	4,	1,	4),	(1,	4,	2,	3),	(1,	4,	2,	4),

	(2,	3,	1,	3),	(2,	3,	1,	4),	(2,	3,	2,	3),	(2,	3,	2,	4),

	(2,	4,	1,	3),	(2,	4,	1,	4),	(2,	4,	2,	3),	(2,	4,	2,	4)]

combinations(iterable,	 r)	 returns	 sub-sequences	 of
length	r	from	the	elements	of	iterable.

>>>	list(itertools.combinations('123',	2))

[('1',	'2'),	('1',	'3'),	('2',	'3')]

>>>	list(itertools.combinations('123',	3))

[('1',	'2',	'3')]

>>>	list(itertools.combinations('1234',	3))

[('1',	'2',	'3'),	('1',	'2',	'4'),

	('1',	'3',	'4'),	('2',	'3',	'4')]

permutations(iter[,	 r])	 returns	 all	 the	 permutations	 of
length	r	of	the	iterable’s	elements.	If	r	is	not	specified,	it	will	default
to	the	number	of	elements	produced	by	the	iterable.

>>>	list(itertools.permutations([1,2,3,4],	2))

[(1,	2),	(1,	3),	(1,	4),

	(2,	1),	(2,	3),	(2,	4),

	(3,	1),	(3,	2),	(3,	4),

	(4,	1),	(4,	2),	(4,	3)]

itertools.chain(*iterables)	 is	 an	 existing	 function	 in
itertools	 that	 gained	 a	 new	 constructor	 in	 Python	 2.6.
itertools.chain.from_iterable(iterable)	 takes	 a
single	 iterable	 that	 should	 return	 other	 iterables.	 chain()	 will
then	 return	 all	 the	 elements	 of	 the	 first	 iterable,	 then	 all	 the
elements	of	the	second,	and	so	on.

>>>	list(itertools.chain.from_iterable([[1,2,3],	

[1,	2,	3,	4,	5,	6]

(All	contributed	by	Raymond	Hettinger.)

The	logging	module’s	FileHandler	class	and	 its	subclasses
WatchedFileHandler,	 RotatingFileHandler,	 and
TimedRotatingFileHandler	 now	 have	 an	 optional	 delay
parameter	to	their	constructors.	If	delay	is	true,	opening	of	the	log
file	is	deferred	until	the	first	emit()	call	is	made.	(Contributed	by
Vinay	Sajip.)

TimedRotatingFileHandler	 also	 has	 a	 utc	 constructor
parameter.	 If	 the	 argument	 is	 true,	 UTC	 time	 will	 be	 used	 in
determining	 when	midnight	 occurs	 and	 in	 generating	 filenames;
otherwise	local	time	will	be	used.

Several	new	functions	were	added	to	the	math	module:

isinf()	and	isnan()	determine	whether	a	given	float	is	a

(positive	 or	 negative)	 infinity	 or	 a	 NaN	 (Not	 a	 Number),
respectively.
copysign()	 copies	 the	 sign	 bit	 of	 an	 IEEE	 754	 number,
returning	the	absolute	value	of	x	combined	with	the	sign	bit	of
y.	 For	 example,	 math.copysign(1,	 -0.0)	 returns	 -1.0.
(Contributed	by	Christian	Heimes.)
factorial()	 computes	 the	 factorial	 of	 a	 number.
(Contributed	by	Raymond	Hettinger;	issue	2138.)
fsum()	adds	up	the	stream	of	numbers	from	an	iterable,	and
is	 careful	 to	 avoid	 loss	 of	 precision	 through	 using	 partial
sums.	 (Contributed	 by	 Jean	 Brouwers,	 Raymond	 Hettinger,
and	Mark	Dickinson;	issue	2819.)
acosh(),	 asinh()	 and	 atanh()	 compute	 the	 inverse
hyperbolic	functions.
log1p()	returns	the	natural	logarithm	of	1+x	(base	e).
trunc()	rounds	a	number	toward	zero,	returning	the	closest
Integral	 that’s	between	the	function’s	argument	and	zero.
Added	as	part	of	 the	backport	of	PEP	3141’s	 type	hierarchy
for	numbers.

The	 math	 module	 has	 been	 improved	 to	 give	 more	 consistent
behaviour	across	platforms,	especially	with	respect	to	handling	of
floating-point	exceptions	and	IEEE	754	special	values.

Whenever	possible,	 the	module	 follows	 the	 recommendations	of
the	 C99	 standard	 about	 754’s	 special	 values.	 For	 example,
sqrt(-1.)	 should	 now	 give	 a	 ValueError	 across	 almost	 all
platforms,	while	sqrt(float('NaN'))	should	return	a	NaN	on
all	 IEEE	 754	 platforms.	 Where	 Annex	 ‘F’	 of	 the	 C99	 standard
recommends	 signaling	 ‘divide-by-zero’	 or	 ‘invalid’,	 Python	 will
raise	 ValueError.	 Where	 Annex	 ‘F’	 of	 the	 C99	 standard
recommends	 signaling	 ‘overflow’,	 Python	 will	 raise
OverflowError.	(See	issue	711019	and	issue	1640.)

http://bugs.python.org/issue2138
http://bugs.python.org/issue2819
http://bugs.python.org/issue711019
http://bugs.python.org/issue1640

(Contributed	by	Christian	Heimes	and	Mark	Dickinson.)

mmap	objects	now	have	a	rfind()	method	 that	searches	 for	a
substring	 beginning	 at	 the	 end	 of	 the	 string	 and	 searching
backwards.	The	find()	method	 also	 gained	 an	end	 parameter
giving	an	 index	at	which	to	stop	searching.	(Contributed	by	John
Lenton.)

The	operator	module	gained	a	methodcaller()	function	that
takes	 a	 name	 and	 an	 optional	 set	 of	 arguments,	 returning	 a
callable	 that	 will	 call	 the	 named	 function	 on	 any	 arguments
passed	to	it.	For	example:

>>>	#	Equivalent	to	lambda	s:	s.replace('old',	'new')

>>>	replacer	=	operator.methodcaller('replace',	'old'

>>>	replacer('old	wine	in	old	bottles')

'new	wine	in	new	bottles'

(Contributed	 by	 Georg	 Brandl,	 after	 a	 suggestion	 by	 Gregory
Petrosyan.)

The	 attrgetter()	 function	 now	 accepts	 dotted	 names	 and
performs	the	corresponding	attribute	lookups:

>>>	inst_name	=	operator.attrgetter(

...								'__class__.__name__')

>>>	inst_name('')

'str'

>>>	inst_name(help)

'_Helper'

(Contributed	 by	 Georg	 Brandl,	 after	 a	 suggestion	 by	 Barry
Warsaw.)

The	 os	 module	 now	 wraps	 several	 new	 system	 calls.
fchmod(fd,	mode)	and	fchown(fd,	uid,	gid)	change	the
mode	 and	 ownership	 of	 an	 opened	 file,	 and	 lchmod(path,
mode)	 changes	 the	 mode	 of	 a	 symlink.	 (Contributed	 by	 Georg
Brandl	and	Christian	Heimes.)

chflags()	 and	 lchflags()	 are	 wrappers	 for	 the
corresponding	 system	 calls	 (where	 they’re	 available),	 changing
the	flags	set	on	a	file.	Constants	for	the	flag	values	are	defined	in
the	stat	module;	some	possible	values	include	UF_IMMUTABLE
to	signal	the	file	may	not	be	changed	and	UF_APPEND	to	indicate
that	 data	 can	 only	 be	 appended	 to	 the	 file.	 (Contributed	 by	 M.
Levinson.)

os.closerange(low,	 high)	 efficiently	 closes	 all	 file
descriptors	from	low	to	high,	ignoring	any	errors	and	not	including
high	itself.	This	function	is	now	used	by	the	subprocess	module
to	make	starting	processes	faster.	(Contributed	by	Georg	Brandl;
issue	1663329.)

The	 os.environ	 object’s	 clear()	method	will	 now	unset	 the
environment	 variables	 using	 os.unsetenv()	 in	 addition	 to
clearing	the	object’s	keys.	(Contributed	by	Martin	Horcicka;	 issue
1181.)

The	os.walk()	function	now	has	a	followlinks	parameter.	If
set	 to	True,	 it	will	 follow	symlinks	pointing	 to	directories	and	visit
the	 directory’s	 contents.	 For	 backward	 compatibility,	 the
parameter’s	default	value	 is	 false.	Note	 that	 the	 function	can	 fall
into	an	infinite	recursion	if	there’s	a	symlink	that	points	to	a	parent
directory.	(issue	1273829)

http://bugs.python.org/issue1663329
http://bugs.python.org/issue1181
http://bugs.python.org/issue1273829

In	 the	 os.path	 module,	 the	 splitext()	 function	 has	 been
changed	to	not	split	on	 leading	period	characters.	This	produces
better	 results	 when	 operating	 on	 Unix’s	 dot-files.	 For	 example,
os.path.splitext('.ipython')	 now	 returns
('.ipython',	 '')	 instead	 of	 ('',	 '.ipython').	 (issue
1115886)

A	 new	 function,	 os.path.relpath(path,	 start='.'),
returns	 a	 relative	 path	 from	 the	 start	 path,	 if	 it’s	 supplied,	 or
from	 the	 current	 working	 directory	 to	 the	 destination	 path.
(Contributed	by	Richard	Barran;	issue	1339796.)

On	 Windows,	 os.path.expandvars()	 will	 now	 expand
environment	variables	given	in	the	form	“%var%”,	and	“~user”	will
be	expanded	into	the	user’s	home	directory	path.	(Contributed	by
Josiah	Carlson;	issue	957650.)

The	Python	debugger	provided	by	the	pdb	module	gained	a	new
command:	“run”	restarts	the	Python	program	being	debugged	and
can	 optionally	 take	 new	 command-line	 arguments	 for	 the
program.	(Contributed	by	Rocky	Bernstein;	issue	1393667.)

The	pdb.post_mortem()	 function,	used	 to	begin	debugging	a
traceback,	 will	 now	 use	 the	 traceback	 returned	 by
sys.exc_info()	 if	 no	 traceback	 is	 supplied.	 (Contributed	 by
Facundo	Batista;	issue	1106316.)

The	 pickletools	 module	 now	 has	 an	 optimize()	 function
that	takes	a	string	containing	a	pickle	and	removes	some	unused
opcodes,	 returning	 a	 shorter	 pickle	 that	 contains	 the	 same	 data
structure.	(Contributed	by	Raymond	Hettinger.)

A	get_data()	function	was	added	to	the	pkgutil	module	that

http://bugs.python.org/issue1115886
http://bugs.python.org/issue1339796
http://bugs.python.org/issue957650
http://bugs.python.org/issue1393667
http://bugs.python.org/issue1106316

returns	 the	 contents	 of	 resource	 files	 included	 with	 an	 installed
Python	package.	For	example:

>>>	import	pkgutil

>>>	print	pkgutil.get_data('test',	'exception_hierarchy.txt'

BaseException

	+--	SystemExit

	+--	KeyboardInterrupt

	+--	GeneratorExit

	+--	Exception

						+--	StopIteration

						+--	StandardError

	...

(Contributed	by	Paul	Moore;	issue	2439.)

The	 pyexpat	module’s	 Parser	 objects	 now	allow	 setting	 their
buffer_size	attribute	 to	change	 the	size	of	 the	buffer	used	 to
hold	character	data.	(Contributed	by	Achim	Gaedke;	issue	1137.)

The	 Queue	 module	 now	 provides	 queue	 variants	 that	 retrieve
entries	 in	 different	 orders.	 The	 PriorityQueue	 class	 stores
queued	 items	 in	a	heap	and	 retrieves	 them	 in	priority	order,	and
LifoQueue	 retrieves	 the	 most	 recently	 added	 entries	 first,
meaning	 that	 it	 behaves	 like	 a	 stack.	 (Contributed	 by	 Raymond
Hettinger.)

The	random	module’s	Random	objects	can	now	be	pickled	on	a
32-bit	system	and	unpickled	on	a	64-bit	 system,	and	vice	versa.
Unfortunately,	this	change	also	means	that	Python	2.6’s	Random
objects	can’t	be	unpickled	correctly	on	earlier	versions	of	Python.
(Contributed	by	Shawn	Ligocki;	issue	1727780.)

http://bugs.python.org/issue2439
http://bugs.python.org/issue1137
http://bugs.python.org/issue1727780

The	 new	 triangular(low,	 high,	 mode)	 function	 returns
random	numbers	 following	a	 triangular	distribution.	The	 returned
values	 are	 between	 low	 and	 high,	 not	 including	 high	 itself,	 and
with	 mode	 as	 the	 most	 frequently	 occurring	 value	 in	 the
distribution.	(Contributed	by	Wladmir	van	der	Laan	and	Raymond
Hettinger;	issue	1681432.)

Long	 regular	expression	searches	carried	out	by	 the	re	module
will	 check	 for	 signals	 being	 delivered,	 so	 time-consuming
searches	can	now	be	interrupted.	(Contributed	by	Josh	Hoyt	and
Ralf	Schmitt;	issue	846388.)

The	 regular	 expression	 module	 is	 implemented	 by	 compiling
bytecodes	 for	 a	 tiny	 regex-specific	 virtual	 machine.	 Untrusted
code	 could	 create	 malicious	 strings	 of	 bytecode	 directly	 and
cause	 crashes,	 so	 Python	 2.6	 includes	 a	 verifier	 for	 the	 regex
bytecode.	 (Contributed	 by	 Guido	 van	 Rossum	 from	 work	 for
Google	App	Engine;	issue	3487.)

The	rlcompleter	module’s	Completer.complete()	method
will	 now	 ignore	 exceptions	 triggered	 while	 evaluating	 a	 name.
(Fixed	by	Lorenz	Quack;	issue	2250.)

The	 sched	 module’s	 scheduler	 instances	 now	 have	 a	 read-
only	queue	attribute	 that	 returns	 the	contents	of	 the	scheduler’s
queue,	 represented	 as	 a	 list	 of	 named	 tuples	 with	 the	 fields
(time,	 priority,	 action,	 argument).	 (Contributed	 by
Raymond	Hettinger;	issue	1861.)

The	 select	 module	 now	 has	 wrapper	 functions	 for	 the	 Linux
epoll()	and	BSD	kqueue()	system	calls.	modify()	method
was	added	to	the	existing	poll	objects;	pollobj.modify(fd,

http://bugs.python.org/issue1681432
http://bugs.python.org/issue846388
http://bugs.python.org/issue3487
http://bugs.python.org/issue2250
http://bugs.python.org/issue1861

eventmask)	 takes	 a	 file	 descriptor	 or	 file	 object	 and	 an	 event
mask,	 modifying	 the	 recorded	 event	 mask	 for	 that	 file.
(Contributed	by	Christian	Heimes;	issue	1657.)

The	shutil.copytree()	 function	 now	has	 an	 optional	 ignore
argument	 that	 takes	 a	 callable	 object.	 This	 callable	 will	 receive
each	 directory	 path	 and	 a	 list	 of	 the	 directory’s	 contents,	 and
returns	a	list	of	names	that	will	be	ignored,	not	copied.

The	 shutil	 module	 also	 provides	 an	 ignore_patterns()
function	 for	use	with	 this	new	parameter.	ignore_patterns()
takes	 an	 arbitrary	 number	 of	 glob-style	 patterns	 and	 returns	 a
callable	that	will	ignore	any	files	and	directories	that	match	any	of
these	patterns.	The	following	example	copies	a	directory	tree,	but
skips	both	.svn	directories	and	Emacs	backup	files,	which	have
names	ending	with	‘~’:

shutil.copytree('Doc/library',	'/tmp/library',

																ignore=shutil.ignore_patterns('*~'

(Contributed	by	Tarek	Ziadé;	issue	2663.)

Integrating	 signal	 handling	 with	 GUI	 handling	 event	 loops	 like
those	 used	 by	 Tkinter	 or	GTk+	 has	 long	 been	 a	 problem;	most
software	ends	up	polling,	waking	up	every	fraction	of	a	second	to
check	if	any	GUI	events	have	occurred.	The	signal	module	can
now	 make	 this	 more	 efficient.	 Calling
signal.set_wakeup_fd(fd)	sets	a	file	descriptor	to	be	used;
when	a	signal	 is	received,	a	byte	 is	written	to	that	 file	descriptor.
There’s	also	a	C-level	function,	PySignal_SetWakeupFd(),	for
setting	the	descriptor.

http://bugs.python.org/issue1657
http://bugs.python.org/issue2663

Event	 loops	 will	 use	 this	 by	 opening	 a	 pipe	 to	 create	 two
descriptors,	 one	 for	 reading	 and	 one	 for	 writing.	 The	 writable
descriptor	 will	 be	 passed	 to	 set_wakeup_fd(),	 and	 the
readable	 descriptor	 will	 be	 added	 to	 the	 list	 of	 descriptors
monitored	 by	 the	 event	 loop	 via	 select()	 or	 poll().	 On
receiving	a	signal,	a	byte	will	be	written	and	the	main	event	 loop
will	be	woken	up,	avoiding	the	need	to	poll.

(Contributed	by	Adam	Olsen;	issue	1583.)

The	 siginterrupt()	 function	 is	 now	 available	 from	 Python
code,	and	allows	changing	whether	signals	can	 interrupt	system
calls	or	not.	(Contributed	by	Ralf	Schmitt.)

The	setitimer()	and	getitimer()	functions	have	also	been
added	 (where	 they’re	 available).	 setitimer()	 allows	 setting
interval	 timers	 that	 will	 cause	 a	 signal	 to	 be	 delivered	 to	 the
process	 after	 a	 specified	 time,	 measured	 in	 wall-clock	 time,
consumed	 process	 time,	 or	 combined	 process+system	 time.
(Contributed	by	Guilherme	Polo;	issue	2240.)

The	 smtplib	 module	 now	 supports	 SMTP	 over	 SSL	 thanks	 to
the	 addition	 of	 the	 SMTP_SSL	 class.	 This	 class	 supports	 an
interface	 identical	 to	 the	 existing	 SMTP	 class.	 (Contributed	 by
Monty	 Taylor.)	 Both	 class	 constructors	 also	 have	 an	 optional
timeout	 parameter	 that	 specifies	 a	 timeout	 for	 the	 initial
connection	 attempt,	 measured	 in	 seconds.	 (Contributed	 by
Facundo	Batista.)

An	 implementation	 of	 the	 LMTP	 protocol	 (RFC	 2033)	 was	 also
added	 to	 the	 module.	 LMTP	 is	 used	 in	 place	 of	 SMTP	 when
transferring	 e-mail	 between	 agents	 that	 don’t	 manage	 a	 mail

http://bugs.python.org/issue1583
http://bugs.python.org/issue2240
http://tools.ietf.org/html/rfc2033.html

queue.	(LMTP	implemented	by	Leif	Hedstrom;	issue	957003.)

SMTP.starttls()	 now	 complies	 with	 RFC	 3207	 and	 forgets
any	 knowledge	 obtained	 from	 the	 server	 not	 obtained	 from	 the
TLS	 negotiation	 itself.	 (Patch	 contributed	 by	 Bill	 Fenner;	 issue
829951.)

The	 socket	 module	 now	 supports	 TIPC	 (http://tipc.sf.net),	 a
high-performance	 non-IP-based	 protocol	 designed	 for	 use	 in
clustered	 environments.	 TIPC	 addresses	 are	 4-	 or	 5-tuples.
(Contributed	by	Alberto	Bertogli;	issue	1646.)

A	new	function,	create_connection(),	 takes	an	address	and
connects	 to	 it	 using	 an	 optional	 timeout	 value,	 returning	 the
connected	socket	object.	This	function	also	looks	up	the	address’s
type	 and	 connects	 to	 it	 using	 IPv4	 or	 IPv6	 as	 appropriate.
Changing	your	 code	 to	use	create_connection()	 instead	 of
socket(socket.AF_INET,	...)	may	be	all	that’s	required	to
make	your	code	work	with	IPv6.

The	 base	 classes	 in	 the	 SocketServer	 module	 now	 support
calling	 a	 handle_timeout()	method	 after	 a	 span	 of	 inactivity
specified	 by	 the	 server’s	 timeout	 attribute.	 (Contributed	 by
Michael	Pomraning.)	The	serve_forever()	method	now	takes
an	 optional	 poll	 interval	 measured	 in	 seconds,	 controlling	 how
often	 the	 server	will	 check	 for	 a	 shutdown	 request.	 (Contributed
by	 Pedro	 Werneck	 and	 Jeffrey	 Yasskin;	 issue	 742598,	 issue
1193577.)

The	sqlite3	module,	maintained	by	Gerhard	Häring,	has	been
updated	from	version	2.3.2	in	Python	2.5	to	version	2.4.1.

The	 struct	 module	 now	 supports	 the	 C99	 _Bool	 type,	 using

http://bugs.python.org/issue957003
http://tools.ietf.org/html/rfc3207.html
http://bugs.python.org/issue829951
http://tipc.sf.net
http://bugs.python.org/issue1646
http://bugs.python.org/issue742598
http://bugs.python.org/issue1193577

the	format	character	'?'.	(Contributed	by	David	Remahl.)

The	 Popen	 objects	 provided	 by	 the	 subprocess	 module	 now
have	 terminate(),	 kill(),	 and	 send_signal()	 methods.
On	 Windows,	 send_signal()	 only	 supports	 the	 SIGTERM
signal,	 and	 all	 these	 methods	 are	 aliases	 for	 the	 Win32	 API
function	 TerminateProcess().	 (Contributed	 by	 Christian
Heimes.)

A	 new	 variable	 in	 the	 sys	 module,	 float_info,	 is	 an	 object
containing	 information	 derived	 from	 the	 float.h	 file	 about	 the
platform’s	 floating-point	 support.	 Attributes	 of	 this	 object	 include
mant_dig	(number	of	digits	in	the	mantissa),	epsilon	(smallest
difference	between	1.0	and	the	next	largest	value	representable),
and	 several	 others.	 (Contributed	 by	 Christian	 Heimes;	 issue
1534.)

Another	 new	 variable,	 dont_write_bytecode,	 controls
whether	 Python	 writes	 any	 .pyc	 or	 .pyo	 files	 on	 importing	 a
module.	 If	 this	variable	 is	 true,	 the	compiled	 files	are	not	written.
The	variable	 is	 initially	set	on	start-up	by	supplying	the	-B	switch
to	 the	 Python	 interpreter,	 or	 by	 setting	 the
PYTHONDONTWRITEBYTECODE	 environment	 variable	 before
running	the	interpreter.	Python	code	can	subsequently	change	the
value	of	this	variable	to	control	whether	bytecode	files	are	written
or	not.	(Contributed	by	Neal	Norwitz	and	Georg	Brandl.)

Information	 about	 the	 command-line	 arguments	 supplied	 to	 the
Python	 interpreter	 is	 available	 by	 reading	 attributes	 of	 a	 named
tuple	 available	 as	 sys.flags.	 For	 example,	 the	 verbose
attribute	is	true	if	Python	was	executed	in	verbose	mode,	debug
is	true	in	debugging	mode,	etc.	These	attributes	are	all	read-only.

http://bugs.python.org/issue1534

(Contributed	by	Christian	Heimes.)

A	new	function,	getsizeof(),	takes	a	Python	object	and	returns
the	 amount	 of	 memory	 used	 by	 the	 object,	 measured	 in	 bytes.
Built-in	 objects	 return	 correct	 results;	 third-party	 extensions	may
not,	 but	 can	 define	 a	 __sizeof__()	 method	 to	 return	 the
object’s	size.	(Contributed	by	Robert	Schuppenies;	issue	2898.)

It’s	 now	 possible	 to	 determine	 the	 current	 profiler	 and	 tracer
functions	 by	 calling	 sys.getprofile()	 and
sys.gettrace().	(Contributed	by	Georg	Brandl;	issue	1648.)

The	tarfile	module	now	supports	POSIX.1-2001	(pax)	 tarfiles
in	addition	to	the	POSIX.1-1988	(ustar)	and	GNU	tar	formats	that
were	 already	 supported.	 The	 default	 format	 is	 GNU	 tar;	 specify
the	format	parameter	to	open	a	file	using	a	different	format:

tar	=	tarfile.open("output.tar",	"w",

																			format=tarfile.PAX_FORMAT)

The	 new	 encoding	 and	 errors	 parameters	 specify	 an
encoding	 and	 an	 error	 handling	 scheme	 for	 character
conversions.	 'strict',	 'ignore',	 and	 'replace'	 are	 the
three	 standard	 ways	 Python	 can	 handle	 errors,;	 'utf-8'	 is	 a
special	 value	 that	 replaces	 bad	 characters	 with	 their	 UTF-8
representation.	 (Character	 conversions	 occur	 because	 the	 PAX
format	 supports	 Unicode	 filenames,	 defaulting	 to	 UTF-8
encoding.)

The	 TarFile.add()	 method	 now	 accepts	 an	 exclude

argument	 that’s	 a	 function	 that	 can	 be	 used	 to	 exclude	 certain
filenames	from	an	archive.	The	function	must	take	a	filename	and
return	 true	 if	 the	 file	 should	 be	 excluded	 or	 false	 if	 it	 should	 be

http://bugs.python.org/issue2898
http://bugs.python.org/issue1648

archived.	The	function	is	applied	to	both	the	name	initially	passed
to	 add()	 and	 to	 the	 names	 of	 files	 in	 recursively-added
directories.

(All	changes	contributed	by	Lars	Gustäbel).

An	 optional	 timeout	 parameter	 was	 added	 to	 the
telnetlib.Telnet	 class	 constructor,	 specifying	 a	 timeout
measured	in	seconds.	(Added	by	Facundo	Batista.)

The	 tempfile.NamedTemporaryFile	 class	 usually	 deletes
the	temporary	file	it	created	when	the	file	is	closed.	This	behaviour
can	 now	 be	 changed	 by	 passing	 delete=False	 to	 the
constructor.	(Contributed	by	Damien	Miller;	issue	1537850.)

A	 new	 class,	 SpooledTemporaryFile,	 behaves	 like	 a
temporary	file	but	stores	its	data	in	memory	until	a	maximum	size
is	exceeded.	On	reaching	that	limit,	the	contents	will	be	written	to
an	on-disk	temporary	file.	(Contributed	by	Dustin	J.	Mitchell.)

The	 NamedTemporaryFile	 and	 SpooledTemporaryFile

classes	both	work	as	context	managers,	 so	you	can	write	 with
tempfile.NamedTemporaryFile()	 as	 tmp:	
(Contributed	by	Alexander	Belopolsky;	issue	2021.)

The	 test.test_support	module	 gained	 a	 number	 of	 context
managers	useful	 for	writing	 tests.	EnvironmentVarGuard()	 is
a	 context	 manager	 that	 temporarily	 changes	 environment
variables	and	automatically	restores	them	to	their	old	values.

Another	 context	manager,	 TransientResource,	 can	 surround
calls	 to	 resources	 that	may	or	may	not	be	available;	 it	will	 catch
and	ignore	a	specified	list	of	exceptions.	For	example,	a	network

http://bugs.python.org/issue1537850
http://bugs.python.org/issue2021

test	may	 ignore	 certain	 failures	 when	 connecting	 to	 an	 external
web	site:

with	test_support.TransientResource(IOError,

																																errno=errno.ETIMEDOUT

				f	=	urllib.urlopen('https://sf.net')

				...

Finally,	 check_warnings()	 resets	 the	 warning	 module’s
warning	 filters	 and	 returns	 an	 object	 that	 will	 record	 all	 warning
messages	triggered	(issue	3781):

with	test_support.check_warnings()	as	wrec:

				warnings.simplefilter("always")

				#	...	code	that	triggers	a	warning	...

				assert	str(wrec.message)	==	"function	is	outdated"

				assert	len(wrec.warnings)	==	1,	"Multiple	warnings	raised"

(Contributed	by	Brett	Cannon.)

The	textwrap	module	can	now	preserve	existing	whitespace	at
the	beginnings	and	ends	of	the	newly-created	lines	by	specifying
drop_whitespace=False	as	an	argument:

>>>	S	=	"""This		sentence		has	a	bunch			of

...			extra			whitespace."""

>>>	print	textwrap.fill(S,	width=15)

This		sentence

has	a	bunch

of				extra

whitespace.

>>>	print	textwrap.fill(S,	drop_whitespace=False,

This		sentence

		has	a	bunch

http://bugs.python.org/issue3781

			of				extra

			whitespace.

>>>

(Contributed	by	Dwayne	Bailey;	issue	1581073.)

The	threading	module	API	 is	being	changed	to	use	properties
such	 as	 daemon	 instead	 of	 setDaemon()	 and	 isDaemon()
methods,	 and	 some	 methods	 have	 been	 renamed	 to	 use
underscores	 instead	 of	 camel-case;	 for	 example,	 the
activeCount()	method	is	renamed	to	active_count().	Both
the	 2.6	 and	 3.0	 versions	 of	 the	 module	 support	 the	 same
properties	 and	 renamed	 methods,	 but	 don’t	 remove	 the	 old
methods.	No	date	has	been	set	for	the	deprecation	of	the	old	APIs
in	Python	3.x;	the	old	APIs	won’t	be	removed	in	any	2.x	version.
(Carried	out	by	several	people,	most	notably	Benjamin	Peterson.)

The	 threading	 module’s	 Thread	 objects	 gained	 an	 ident
property	 that	 returns	 the	 thread’s	 identifier,	 a	 nonzero	 integer.
(Contributed	by	Gregory	P.	Smith;	issue	2871.)

The	timeit	module	now	accepts	callables	as	well	as	strings	for
the	 statement	 being	 timed	 and	 for	 the	 setup	 code.	 Two
convenience	functions	were	added	for	creating	Timer	instances:
repeat(stmt,	 setup,	 time,	 repeat,	 number)	 and
timeit(stmt,	setup,	time,	number)	 create	 an	 instance
and	call	the	corresponding	method.	(Contributed	by	Erik	Demaine;
issue	1533909.)

The	 Tkinter	 module	 now	 accepts	 lists	 and	 tuples	 for	 options,
separating	 the	 elements	 by	 spaces	 before	 passing	 the	 resulting
value	to	Tcl/Tk.	(Contributed	by	Guilherme	Polo;	issue	2906.)

http://bugs.python.org/issue1581073
http://bugs.python.org/issue2871
http://bugs.python.org/issue1533909
http://bugs.python.org/issue2906

The	turtle	module	for	turtle	graphics	was	greatly	enhanced	by
Gregor	Lingl.	New	features	in	the	module	include:

Better	animation	of	turtle	movement	and	rotation.
Control	 over	 turtle	 movement	 using	 the	 new	 delay(),
tracer(),	and	speed()	methods.
The	ability	 to	 set	new	shapes	 for	 the	 turtle,	 and	 to	define	a
new	coordinate	system.
Turtles	 now	 have	 an	 undo()	 method	 that	 can	 roll	 back
actions.
Simple	 support	 for	 reacting	 to	 input	 events	 such	 as	mouse
and	 keyboard	 activity,	 making	 it	 possible	 to	 write	 simple
games.
A	 turtle.cfg	 file	 can	 be	 used	 to	 customize	 the	 starting
appearance	of	the	turtle’s	screen.
The	module’s	docstrings	can	be	replaced	by	new	docstrings
that	have	been	translated	into	another	language.

(issue	1513695)

An	 optional	 timeout	 parameter	 was	 added	 to	 the
urllib.urlopen()	 function	 and	 the	 urllib.ftpwrapper
class	constructor,	as	well	as	the	urllib2.urlopen()	 function.
The	 parameter	 specifies	 a	 timeout	 measured	 in	 seconds.	 For
example:

>>>	u	=	urllib2.urlopen("http://slow.example.com"

																								timeout=3)

Traceback	(most	recent	call	last):

		...

urllib2.URLError:	<urlopen	error	timed	out>

>>>

http://bugs.python.org/issue1513695

(Added	by	Facundo	Batista.)

The	 Unicode	 database	 provided	 by	 the	 unicodedata	 module
has	been	updated	to	version	5.1.0.	(Updated	by	Martin	von	Löwis;
issue	3811.)

The	 warnings	 module’s	 formatwarning()	 and
showwarning()	 gained	 an	 optional	 line	 argument	 that	 can	 be
used	 to	 supply	 the	 line	of	 source	 code.	 (Added	 as	 part	 of	 issue
1631171,	which	re-implemented	part	of	the	warnings	module	in
C	code.)

A	 new	 function,	 catch_warnings(),	 is	 a	 context	 manager
intended	for	testing	purposes	that	lets	you	temporarily	modify	the
warning	filters	and	then	restore	their	original	values	(issue	3781).

The	XML-RPC	SimpleXMLRPCServer	and	DocXMLRPCServer
classes	 can	 now	 be	 prevented	 from	 immediately	 opening	 and
binding	 to	 their	 socket	 by	 passing	 True	 as	 the
bind_and_activate	 constructor	parameter.	This	 can	be	used
to	modify	the	instance’s	allow_reuse_address	attribute	before
calling	 the	 server_bind()	 and	 server_activate()

methods	 to	open	 the	socket	and	begin	 listening	 for	connections.
(Contributed	by	Peter	Parente;	issue	1599845.)

SimpleXMLRPCServer	 also	 has	 a
_send_traceback_header	attribute;	 if	 true,	 the	exception	and
formatted	traceback	are	returned	as	HTTP	headers	“X-Exception”
and	 “X-Traceback”.	 This	 feature	 is	 for	 debugging	 purposes	 only
and	 should	 not	 be	 used	 on	 production	 servers	 because	 the
tracebacks	might	reveal	passwords	or	other	sensitive	information.
(Contributed	by	Alan	McIntyre	as	part	of	his	project	 for	Google’s

http://bugs.python.org/issue3811
http://bugs.python.org/issue1631171
http://bugs.python.org/issue3781
http://bugs.python.org/issue1599845

Summer	of	Code	2007.)

The	 xmlrpclib	 module	 no	 longer	 automatically	 converts
datetime.date	 and	 datetime.time	 to	 the
xmlrpclib.DateTime	type;	the	conversion	semantics	were	not
necessarily	 correct	 for	 all	 applications.	 Code	 using	 xmlrpclib
should	convert	date	and	time	 instances.	 (issue	 1330538)	 The
code	 can	 also	 handle	 dates	 before	 1900	 (contributed	 by	 Ralf
Schmitt;	 issue	 2014)	 and	 64-bit	 integers	 represented	 by	 using
<i8>	 in	 XML-RPC	 responses	 (contributed	 by	 Riku	 Lindblad;
issue	2985).

The	 zipfile	 module’s	 ZipFile	 class	 now	 has	 extract()
and	extractall()	methods	 that	will	unpack	a	single	 file	or	all
the	 files	 in	 the	 archive	 to	 the	 current	 directory,	 or	 to	 a	 specified
directory:

z	=	zipfile.ZipFile('python-251.zip')

#	Unpack	a	single	file,	writing	it	relative

#	to	the	/tmp	directory.

z.extract('Python/sysmodule.c',	'/tmp')

#	Unpack	all	the	files	in	the	archive.

z.extractall()

(Contributed	by	Alan	McIntyre;	issue	467924.)

The	 open(),	 read()	 and	 extract()	 methods	 can	 now	 take
either	 a	 filename	 or	 a	 ZipInfo	 object.	 This	 is	 useful	 when	 an
archive	accidentally	 contains	a	duplicated	 filename.	 (Contributed
by	Graham	Horler;	issue	1775025.)

http://bugs.python.org/issue1330538
http://bugs.python.org/issue2014
http://bugs.python.org/issue2985
http://bugs.python.org/issue467924
http://bugs.python.org/issue1775025

Finally,	 zipfile	 now	 supports	 using	 Unicode	 filenames	 for
archived	files.	(Contributed	by	Alexey	Borzenkov;	issue	1734346.)

The	ast	module

The	ast	module	provides	an	Abstract	Syntax	Tree	 representation	of
Python	 code,	 and	 Armin	 Ronacher	 contributed	 a	 set	 of	 helper
functions	that	perform	a	variety	of	common	tasks.	These	will	be	useful
for	HTML	templating	packages,	code	analyzers,	and	similar	tools	that
process	Python	code.

The	parse()	 function	takes	an	expression	and	returns	an	AST.	The
dump()	 function	 outputs	 a	 representation	 of	 a	 tree,	 suitable	 for
debugging:

import	ast

t	=	ast.parse("""

d	=	{}

for	i	in	'abcdefghijklm':

				d[i	+	i]	=	ord(i)	-	ord('a')	+	1

print	d

""")

print	ast.dump(t)

This	outputs	a	deeply	nested	tree:

Module(body=[

		Assign(targets=[

				Name(id='d',	ctx=Store())

],	value=Dict(keys=[],	values=[]))

		For(target=Name(id='i',	ctx=Store()),

						iter=Str(s='abcdefghijklm'),	body=[

				Assign(targets=[

http://bugs.python.org/issue1734346

						Subscript(value=

								Name(id='d',	ctx=Load()),

										slice=

										Index(value=

												BinOp(left=Name(id='i',	ctx=Load()),	op=

													right=Name(id='i',	ctx=Load()))),	ctx=Store

],	value=

					BinOp(left=

						BinOp(left=

							Call(func=

								Name(id='ord',	ctx=Load()),	args=[

										Name(id='i',	ctx=Load())

],	keywords=[],	starargs=None,	kwargs=None),

							op=Sub(),	right=Call(func=

								Name(id='ord',	ctx=Load()),	args=[

										Str(s='a')

],	keywords=[],	starargs=None,	kwargs=None)),

							op=Add(),	right=Num(n=1)))

],	orelse=[])

			Print(dest=None,	values=[

					Name(id='d',	ctx=Load())

],	nl=True)

])

The	literal_eval()	method	takes	a	string	or	an	AST	representing
a	literal	expression,	parses	and	evaluates	it,	and	returns	the	resulting
value.	 A	 literal	 expression	 is	 a	 Python	 expression	 containing	 only
strings,	numbers,	dictionaries,	etc.	but	no	statements	or	function	calls.
If	you	need	to	evaluate	an	expression	but	cannot	accept	 the	security
risk	of	using	an	eval()	call,	literal_eval()	will	handle	it	safely:

>>>	literal	=	'("a",	"b",	{2:4,	3:8,	1:2})'

>>>	print	ast.literal_eval(literal)

('a',	'b',	{1:	2,	2:	4,	3:	8})

>>>	print	ast.literal_eval('"a"	+	"b"')

Traceback	(most	recent	call	last):

		...

ValueError:	malformed	string

The	 module	 also	 includes	 NodeVisitor	 and	 NodeTransformer
classes	 for	 traversing	 and	 modifying	 an	 AST,	 and	 functions	 for
common	transformations	such	as	changing	line	numbers.

The	future_builtins	module

Python	3.0	makes	many	changes	to	the	repertoire	of	built-in	functions,
and	most	of	the	changes	can’t	be	introduced	in	the	Python	2.x	series
because	 they	 would	 break	 compatibility.	 The	 future_builtins
module	 provides	 versions	 of	 these	 built-in	 functions	 that	 can	 be
imported	when	writing	3.0-compatible	code.

The	functions	in	this	module	currently	include:

ascii(obj):	equivalent	to	repr().	In	Python	3.0,	repr()	will
return	a	Unicode	string,	while	ascii()	will	 return	a	pure	ASCII
bytestring.
filter(predicate,	iterable),	map(func,	iterable1,
...):	 the	 3.0	 versions	 return	 iterators,	 unlike	 the	 2.x	 builtins
which	return	lists.
hex(value),	 oct(value):	 instead	 of	 calling	 the	 __hex__()
or	 __oct__()	 methods,	 these	 versions	 will	 call	 the
__index__()	method	and	convert	 the	 result	 to	hexadecimal	or
octal.	oct()	will	use	the	new	0o	notation	for	its	result.

The	json	module:	JavaScript	Object	Notation

The	new	json	module	supports	the	encoding	and	decoding	of	Python

types	 in	 JSON	 (Javascript	 Object	 Notation).	 JSON	 is	 a	 lightweight
interchange	 format	 often	 used	 in	 web	 applications.	 For	 more
information	about	JSON,	see	http://www.json.org.

json	 comes	 with	 support	 for	 decoding	 and	 encoding	 most	 built-in
Python	 types.	 The	 following	 example	 encodes	 and	 decodes	 a
dictionary:

>>>	import	json

>>>	data	=	{"spam":	"foo",	"parrot":	42}

>>>	in_json	=	json.dumps(data)	#	Encode	the	data

>>>	in_json

'{"parrot":	42,	"spam":	"foo"}'

>>>	json.loads(in_json)	#	Decode	into	a	Python	object

{"spam":	"foo",	"parrot":	42}

It’s	also	possible	to	write	your	own	decoders	and	encoders	to	support
more	types.	Pretty-printing	of	the	JSON	strings	is	also	supported.

json	(originally	called	simplejson)	was	written	by	Bob	Ippolito.

The	plistlib	module:	A	Property-List	Parser

The	.plist	 format	 is	 commonly	 used	 on	Mac	OS	X	 to	 store	 basic
data	 types	 (numbers,	 strings,	 lists,	 and	 dictionaries)	 by	 serializing
them	 into	 an	 XML-based	 format.	 It	 resembles	 the	 XML-RPC
serialization	of	data	types.

Despite	 being	 primarily	 used	 on	Mac	OS	 X,	 the	 format	 has	 nothing
Mac-specific	 about	 it	 and	 the	 Python	 implementation	 works	 on	 any
platform	 that	 Python	 supports,	 so	 the	 plistlib	 module	 has	 been
promoted	to	the	standard	library.

http://www.json.org

Using	the	module	is	simple:

import	sys

import	plistlib

import	datetime

#	Create	data	structure

data_struct	=	dict(lastAccessed=datetime.datetime.now

																			version=1,

																			categories=('Personal','Shared','Private'

#	Create	string	containing	XML.

plist_str	=	plistlib.writePlistToString(data_struct)

new_struct	=	plistlib.readPlistFromString(plist_str)

print	data_struct

print	new_struct

#	Write	data	structure	to	a	file	and	read	it	back.

plistlib.writePlist(data_struct,	'/tmp/customizations.plist'

new_struct	=	plistlib.readPlist('/tmp/customizations.plist'

#	read/writePlist	accepts	file-like	objects	as	well	as	paths.

plistlib.writePlist(data_struct,	sys.stdout)

ctypes	Enhancements

Thomas	 Heller	 continued	 to	 maintain	 and	 enhance	 the	 ctypes
module.

ctypes	 now	 supports	 a	 c_bool	 datatype	 that	 represents	 the	 C99
bool	type.	(Contributed	by	David	Remahl;	issue	1649190.)

The	ctypes	string,	buffer	and	array	types	have	improved	support	for
extended	 slicing	 syntax,	 where	 various	 combinations	 of	 (start,

http://bugs.python.org/issue1649190

stop,	step)	are	supplied.	(Implemented	by	Thomas	Wouters.)

All	 ctypes	 data	 types	 now	 support	 from_buffer()	 and
from_buffer_copy()	methods	that	create	a	ctypes	instance	based
on	 a	 provided	 buffer	 object.	 from_buffer_copy()	 copies	 the
contents	 of	 the	 object,	 while	 from_buffer()	 will	 share	 the	 same
memory	area.

A	new	calling	convention	 tells	ctypes	 to	clear	 the	errno	 or	Win32
LastError	variables	at	 the	outset	of	each	wrapped	call.	 (Implemented
by	Thomas	Heller;	issue	1798.)

You	 can	 now	 retrieve	 the	 Unix	 errno	 variable	 after	 a	 function	 call.
When	creating	a	wrapped	function,	you	can	supply	use_errno=True
as	 a	 keyword	 parameter	 to	 the	 DLL()	 function	 and	 then	 call	 the
module-level	methods	set_errno()	and	get_errno()	 to	 set	 and
retrieve	the	error	value.

The	 Win32	 LastError	 variable	 is	 similarly	 supported	 by	 the	 DLL(),
OleDLL(),	 and	 WinDLL()	 functions.	 You	 supply
use_last_error=True	 as	 a	 keyword	 parameter	 and	 then	 call	 the
module-level	 methods	 set_last_error()	 and
get_last_error().

The	byref()	function,	used	to	retrieve	a	pointer	to	a	ctypes	instance,
now	has	an	optional	offset	parameter	 that	 is	a	byte	count	 that	will	be
added	to	the	returned	pointer.

Improved	SSL	Support

Bill	Janssen	made	extensive	improvements	to	Python	2.6’s	support	for
the	Secure	Sockets	Layer	by	adding	a	new	module,	ssl,	 that’s	built

http://bugs.python.org/issue1798

atop	 the	 OpenSSL	 library.	 This	 new	 module	 provides	 more	 control
over	 the	 protocol	 negotiated,	 the	 X.509	 certificates	 used,	 and	 has
better	 support	 for	 writing	 SSL	 servers	 (as	 opposed	 to	 clients)	 in
Python.	The	existing	SSL	support	 in	the	socket	module	hasn’t	been
removed	and	continues	 to	work,	 though	 it	will	be	 removed	 in	Python
3.0.

To	use	the	new	module,	you	must	first	create	a	TCP	connection	in	the
usual	way	and	then	pass	it	to	the	ssl.wrap_socket()	function.	It’s
possible	 to	 specify	 whether	 a	 certificate	 is	 required,	 and	 to	 obtain
certificate	info	by	calling	the	getpeercert()	method.

See	also: 	The	documentation	for	the	ssl	module.

http://www.openssl.org/

Deprecations	and	Removals

String	 exceptions	 have	 been	 removed.	 Attempting	 to	 use	 them
raises	a	TypeError.

Changes	 to	 the	 Exception	 interface	 as	 dictated	 by	 PEP	 352
continue	 to	 be	 made.	 For	 2.6,	 the	 message	 attribute	 is	 being
deprecated	in	favor	of	the	args	attribute.

(3.0-warning	 mode)	 Python	 3.0	 will	 feature	 a	 reorganized
standard	 library	 that	 will	 drop	 many	 outdated	 modules	 and
rename	others.	Python	2.6	running	in	3.0-warning	mode	will	warn
about	these	modules	when	they	are	imported.

The	list	of	deprecated	modules	is:	audiodev,	bgenlocations,
buildtools,	 bundlebuilder,	 Canvas,	 compiler,
dircache,	 dl,	 fpformat,	 gensuitemodule,	 ihooks,
imageop,	 imgfile,	 linuxaudiodev,	 mhlib,	 mimetools,
multifile,	 new,	 pure,	 statvfs,	 sunaudiodev,
test.testall,	and	toaiff.

The	gopherlib	module	has	been	removed.

The	 MimeWriter	 module	 and	 mimify	 module	 have	 been
deprecated;	use	the	email	package	instead.

The	md5	module	has	been	deprecated;	use	the	hashlib	module
instead.

The	posixfile	module	has	been	deprecated;	fcntl.lockf()
provides	better	locking.

http://www.python.org/dev/peps/pep-0352

The	popen2	module	has	been	deprecated;	use	the	subprocess
module.

The	rgbimg	module	has	been	removed.

The	 sets	 module	 has	 been	 deprecated;	 it’s	 better	 to	 use	 the
built-in	set	and	frozenset	types.

The	sha	module	has	been	deprecated;	use	the	hashlib	module
instead.

Build	and	C	API	Changes

Changes	to	Python’s	build	process	and	to	the	C	API	include:

Python	 now	 must	 be	 compiled	 with	 C89	 compilers	 (after	 19
years!).	This	means	 that	 the	Python	source	 tree	has	dropped	 its
own	 implementations	 of	 memmove()	 and	 strerror(),	 which
are	in	the	C89	standard	library.

Python	2.6	can	be	built	with	Microsoft	Visual	Studio	2008	(version
9.0),	 and	 this	 is	 the	 new	 default	 compiler.	 See	 the	 PCbuild
directory	for	the	build	files.	(Implemented	by	Christian	Heimes.)

On	Mac	OS	X,	Python	2.6	can	be	compiled	as	a	4-way	universal
build.	The	configure	script	can	take	a	--with-universal-archs=[32-
bit|64-bit|all]	 switch,	 controlling	whether	 the	 binaries	 are	 built	 for
32-bit	architectures	(x86,	PowerPC),	64-bit	(x86-64	and	PPC-64),
or	both.	(Contributed	by	Ronald	Oussoren.)

The	 BerkeleyDB	 module	 now	 has	 a	 C	 API	 object,	 available	 as
bsddb.db.api.	This	object	can	be	used	by	other	C	extensions
that	 wish	 to	 use	 the	 bsddb	 module	 for	 their	 own	 purposes.
(Contributed	by	Duncan	Grisby.)

The	 new	 buffer	 interface,	 previously	 described	 in	 the	PEP	3118
section,	 adds	 PyObject_GetBuffer()	 and
PyBuffer_Release(),	as	well	as	a	few	other	functions.

Python’s	use	of	the	C	stdio	library	is	now	thread-safe,	or	at	 least
as	 thread-safe	 as	 the	 underlying	 library	 is.	 A	 long-standing
potential	 bug	 occurred	 if	 one	 thread	 closed	 a	 file	 object	 while
another	thread	was	reading	from	or	writing	to	the	object.	In	2.6	file

objects	 have	 a	 reference	 count,	 manipulated	 by	 the
PyFile_IncUseCount()	 and	 PyFile_DecUseCount()

functions.	File	objects	can’t	be	closed	unless	the	reference	count
is	zero.	PyFile_IncUseCount()	should	be	called	while	the	GIL
is	still	held,	before	carrying	out	an	I/O	operation	using	the	FILE	*
pointer,	 and	 PyFile_DecUseCount()	 should	 be	 called
immediately	after	 the	GIL	 is	re-acquired.	(Contributed	by	Antoine
Pitrou	and	Gregory	P.	Smith.)

Importing	 modules	 simultaneously	 in	 two	 different	 threads	 no
longer	deadlocks;	 it	will	now	raise	an	ImportError.	A	new	API
function,	 PyImport_ImportModuleNoBlock(),	 will	 look	 for	 a
module	in	sys.modules	first,	then	try	to	import	it	after	acquiring
an	 import	 lock.	 If	 the	 import	 lock	 is	 held	 by	 another	 thread,	 an
ImportError	is	raised.	(Contributed	by	Christian	Heimes.)

Several	 functions	return	 information	about	the	platform’s	floating-
point	 support.	 PyFloat_GetMax()	 returns	 the	 maximum
representable	 floating	 point	 value,	 and	 PyFloat_GetMin()
returns	 the	 minimum	 positive	 value.	 PyFloat_GetInfo()

returns	an	object	containing	more	information	from	the	float.h
file,	 such	 as	 "mant_dig"	 (number	 of	 digits	 in	 the	 mantissa),
"epsilon"	(smallest	difference	between	1.0	and	the	next	largest
value	 representable),	 and	 several	 others.	 (Contributed	 by
Christian	Heimes;	issue	1534.)

C	 functions	and	methods	 that	use	 PyComplex_AsCComplex()
will	now	accept	arguments	that	have	a	__complex__()	method.
In	particular,	 the	 functions	 in	 the	cmath	module	will	 now	accept
objects	 with	 this	 method.	 This	 is	 a	 backport	 of	 a	 Python	 3.0
change.	(Contributed	by	Mark	Dickinson;	issue	1675423.)

http://bugs.python.org/issue1534
http://bugs.python.org/issue1675423

Python’s	 C	 API	 now	 includes	 two	 functions	 for	 case-insensitive
string	 comparisons,	 PyOS_stricmp(char*,	 char*)	 and
PyOS_strnicmp(char*,	 char*,	 Py_ssize_t).
(Contributed	by	Christian	Heimes;	issue	1635.)

Many	 C	 extensions	 define	 their	 own	 little	 macro	 for	 adding
integers	 and	 strings	 to	 the	 module’s	 dictionary	 in	 the	 init*
function.	 Python	 2.6	 finally	 defines	 standard	 macros	 for	 adding
values	 to	 a	 module,	 PyModule_AddStringMacro	 and
PyModule_AddIntMacro().	(Contributed	by	Christian	Heimes.)

Some	 macros	 were	 renamed	 in	 both	 3.0	 and	 2.6	 to	 make	 it
clearer	that	 they	are	macros,	not	 functions.	Py_Size()	became
Py_SIZE(),	 Py_Type()	 became	 Py_TYPE(),	 and
Py_Refcnt()	became	Py_REFCNT().	The	mixed-case	macros
are	still	available	 in	Python	2.6	for	backward	compatibility.	(issue
1629)

Distutils	now	places	C	extensions	it	builds	 in	a	different	directory
when	 running	 on	 a	 debug	 version	 of	 Python.	 (Contributed	 by
Collin	Winter;	issue	1530959.)

Several	basic	data	 types,	such	as	 integers	and	strings,	maintain
internal	 free	 lists	 of	 objects	 that	 can	 be	 re-used.	 The	 data
structures	for	these	free	lists	now	follow	a	naming	convention:	the
variable	 is	 always	 named	 free_list,	 the	 counter	 is	 always
named	 numfree,	 and	 a	macro	 Py<typename>_MAXFREELIST
is	always	defined.

A	 new	Makefile	 target,	 “make	 patchcheck”,	 prepares	 the	Python
source	 tree	 for	making	a	 patch:	 it	 fixes	 trailing	whitespace	 in	 all
modified	.py	 files,	checks	whether	 the	documentation	has	been

http://bugs.python.org/issue1635
http://bugs.python.org/issue1629
http://bugs.python.org/issue1530959

changed,	and	 reports	whether	 the	Misc/ACKS	and	Misc/NEWS
files	have	been	updated.	(Contributed	by	Brett	Cannon.)

Another	new	target,	“make	profile-opt”,	compiles	a	Python	binary
using	GCC’s	profile-guided	optimization.	 It	 compiles	Python	with
profiling	 enabled,	 runs	 the	 test	 suite	 to	 obtain	 a	 set	 of	 profiling
results,	 and	 then	 compiles	 using	 these	 results	 for	 optimization.
(Contributed	by	Gregory	P.	Smith.)

Port-Specific	Changes:	Windows

The	support	for	Windows	95,	98,	ME	and	NT4	has	been	dropped.
Python	2.6	requires	at	least	Windows	2000	SP4.

The	 new	 default	 compiler	 on	 Windows	 is	 Visual	 Studio	 2008
(version	9.0).	The	build	directories	for	Visual	Studio	2003	(version
7.1)	 and	 2005	 (version	 8.0)	 were	moved	 into	 the	 PC/	 directory.
The	new	PCbuild	directory	supports	cross	compilation	 for	X64,
debug	builds	and	Profile	Guided	Optimization	(PGO).	PGO	builds
are	 roughly	 10%	 faster	 than	 normal	 builds.	 (Contributed	 by
Christian	Heimes	with	help	from	Amaury	Forgeot	d’Arc	and	Martin
von	Löwis.)

The	msvcrt	module	now	supports	both	the	normal	and	wide	char
variants	of	 the	console	I/O	API.	The	getwch()	 function	reads	a
keypress	and	returns	a	Unicode	value,	as	does	 the	getwche()
function.	The	putwch()	 function	takes	a	Unicode	character	and
writes	it	to	the	console.	(Contributed	by	Christian	Heimes.)

os.path.expandvars()	 will	 now	 expand	 environment
variables	in	the	form	“%var%”,	and	“~user”	will	be	expanded	into
the	 user’s	 home	 directory	 path.	 (Contributed	 by	 Josiah	Carlson;

issue	957650.)

The	 socket	 module’s	 socket	 objects	 now	 have	 an	 ioctl()
method	 that	 provides	 a	 limited	 interface	 to	 the	 WSAIoctl()
system	interface.

The	 _winreg	 module	 now	 has	 a	 function,
ExpandEnvironmentStrings(),	 that	 expands	 environment
variable	 references	 such	 as	 %NAME%	 in	 an	 input	 string.	 The
handle	objects	provided	by	 this	module	now	support	 the	context
protocol,	 so	 they	can	be	used	 in	with	 statements.	 (Contributed
by	Christian	Heimes.)

_winreg	also	has	better	support	 for	x64	systems,	exposing	 the
DisableReflectionKey(),	 EnableReflectionKey(),	 and
QueryReflectionKey()	 functions,	 which	 enable	 and	 disable
registry	reflection	for	32-bit	processes	running	on	64-bit	systems.
(issue	1753245)

The	 msilib	 module’s	 Record	 object	 gained	 GetInteger()
and	GetString()	methods	that	return	field	values	as	an	integer
or	a	string.	(Contributed	by	Floris	Bruynooghe;	issue	2125.)

Port-Specific	Changes:	Mac	OS	X

When	 compiling	 a	 framework	 build	 of	 Python,	 you	 can	 now
specify	 the	 framework	 name	 to	 be	 used	by	 providing	 the	 --with-
framework-name=	option	to	the	configure	script.
The	macfs	module	has	been	removed.	This	 in	 turn	required	the
macostools.touched()	 function	 to	 be	 removed	 because	 it
depended	on	the	macfs	module.	(issue	1490190)
Many	 other	 Mac	 OS	 modules	 have	 been	 deprecated	 and	 will

http://bugs.python.org/issue957650
http://bugs.python.org/issue1753245
http://bugs.python.org/issue2125
http://bugs.python.org/issue1490190

removed	 in	Python	3.0:	 _builtinSuites,	 aepack,	 aetools,
aetypes,	 applesingle,	 appletrawmain,	 appletrunner,
argvemulator,	 Audio_mac,	 autoGIL,	 Carbon,	 cfmfile,
CodeWarrior,	 ColorPicker,	 EasyDialogs,	 Explorer,
Finder,	 FrameWork,	 findertools,	 ic,	 icglue,	 icopen,
macerrors,	 MacOS,	 macfs,	 macostools,	 macresource,
MiniAEFrame,	 Nav,	 Netscape,	 OSATerminology,	 pimp,
PixMapWrapper,	 StdSuites,	 SystemEvents,	 Terminal,
and	terminalcommand.

Port-Specific	Changes:	IRIX

A	 number	 of	 old	 IRIX-specific	modules	were	 deprecated	 and	will	 be
removed	 in	Python	 3.0:	 al	 and	 AL,	 cd,	 cddb,	 cdplayer,	 CL	 and
cl,	DEVICE,	ERRNO,	FILE,	FL	and	fl,	flp,	fm,	GET,	GLWS,	GL	and
gl,	IN,	IOCTL,	jpeg,	panelparser,	readcd,	SV	and	sv,	torgb,
videoreader,	and	WAIT.

Porting	to	Python	2.6

This	section	lists	previously	described	changes	and	other	bugfixes	that
may	require	changes	to	your	code:

Classes	 that	 aren’t	 supposed	 to	 be	 hashable	 should	 set
__hash__	=	None	in	their	definitions	to	indicate	the	fact.

String	 exceptions	 have	 been	 removed.	 Attempting	 to	 use	 them
raises	a	TypeError.

The	__init__()	method	 of	 collections.deque	 now	 clears
any	existing	contents	of	 the	deque	before	adding	elements	 from
the	 iterable.	 This	 change	 makes	 the	 behavior	 match
list.__init__().

object.__init__()	 previously	 accepted	 arbitrary	 arguments
and	keyword	arguments,	 ignoring	them.	 In	Python	2.6,	 this	 is	no
longer	 allowed	 and	 will	 result	 in	 a	 TypeError.	 This	 will	 affect
__init__()	 methods	 that	 end	 up	 calling	 the	 corresponding
method	on	object	(perhaps	through	using	super()).	See	issue
1683368	for	discussion.

The	 Decimal	 constructor	 now	 accepts	 leading	 and	 trailing
whitespace	 when	 passed	 a	 string.	 Previously	 it	 would	 raise	 an
InvalidOperation	 exception.	 On	 the	 other	 hand,	 the
create_decimal()	method	of	Context	objects	now	explicitly
disallows	 extra	 whitespace,	 raising	 a	 ConversionSyntax

exception.

Due	to	an	implementation	accident,	if	you	passed	a	file	path	to	the
built-in	 __import__()	 function,	 it	 would	 actually	 import	 the

http://bugs.python.org/issue1683368

specified	file.	This	was	never	intended	to	work,	however,	and	the
implementation	now	explicitly	checks	 for	 this	case	and	raises	an
ImportError.

C	 API:	 the	 PyImport_Import()	 and
PyImport_ImportModule()	 functions	now	default	 to	absolute
imports,	 not	 relative	 imports.	 This	 will	 affect	 C	 extensions	 that
import	other	modules.

C	 API:	 extension	 data	 types	 that	 shouldn’t	 be	 hashable	 should
define	 their	 tp_hash	 slot	 to
PyObject_HashNotImplemented().

The	socket	module	exception	socket.error	now	inherits	from
IOError.	 Previously	 it	 wasn’t	 a	 subclass	 of	 StandardError
but	 now	 it	 is,	 through	 IOError.	 (Implemented	 by	 Gregory	 P.
Smith;	issue	1706815.)

The	 xmlrpclib	 module	 no	 longer	 automatically	 converts
datetime.date	 and	 datetime.time	 to	 the
xmlrpclib.DateTime	type;	the	conversion	semantics	were	not
necessarily	 correct	 for	 all	 applications.	 Code	 using	 xmlrpclib
should	convert	date	and	time	instances.	(issue	1330538)

(3.0-warning	 mode)	 The	 Exception	 class	 now	 warns	 when
accessed	 using	 slicing	 or	 index	 access;	 having	 Exception
behave	like	a	tuple	is	being	phased	out.

(3.0-warning	 mode)	 inequality	 comparisons	 between	 two
dictionaries	 or	 two	 objects	 that	 don’t	 implement	 comparison
methods	are	reported	as	warnings.	dict1	==	dict2	still	works,
but	dict1	<	dict2	is	being	phased	out.

http://bugs.python.org/issue1706815
http://bugs.python.org/issue1330538

Comparisons	between	cells,	which	are	an	implementation	detail	of
Python’s	 scoping	 rules,	 also	 cause	 warnings	 because	 such
comparisons	are	forbidden	entirely	in	3.0.

Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions,	 corrections	 and	 assistance	 with	 various	 drafts	 of	 this
article:	 Georg	 Brandl,	 Steve	 Brown,	 Nick	 Coghlan,	 Ralph	 Corderoy,
Jim	 Jewett,	 Kent	 Johnson,	 Chris	 Lambacher,	 Martin	 Michlmayr,
Antoine	Pitrou,	Brian	Warner.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.5
Author: A.M.	Kuchling

This	article	explains	the	new	features	in	Python	2.5.	The	final	release
of	Python	2.5	 is	 scheduled	 for	August	 2006;	PEP	356	 describes	 the
planned	release	schedule.

The	 changes	 in	 Python	 2.5	 are	 an	 interesting	 mix	 of	 language	 and
library	 improvements.	 The	 library	 enhancements	 will	 be	 more
important	to	Python’s	user	community,	I	think,	because	several	widely-
useful	 packages	were	added.	New	modules	 include	ElementTree	 for
XML	 processing	 (xml.etree),	 the	 SQLite	 database	 module
(sqlite),	and	the	ctypes	module	for	calling	C	functions.

The	 language	 changes	 are	 of	 middling	 significance.	 Some	 pleasant
new	features	were	added,	but	most	of	them	aren’t	features	that	you’ll
use	 every	 day.	 Conditional	 expressions	 were	 finally	 added	 to	 the
language	 using	 a	 novel	 syntax;	 see	 section	 PEP	 308:	 Conditional
Expressions.	 The	 new	 ‘with‘	 statement	 will	 make	 writing	 cleanup
code	easier	(section	PEP	343:	The	‘with’	statement).	Values	can	now
be	 passed	 into	 generators	 (section	 PEP	 342:	 New	 Generator
Features).	 Imports	 are	 now	 visible	 as	 either	 absolute	 or	 relative
(section	PEP	328:	Absolute	and	Relative	Imports).	Some	corner	cases
of	 exception	 handling	 are	 handled	 better	 (section	PEP	 341:	 Unified
try/except/finally).	All	 these	 improvements	are	worthwhile,	 but	 they’re
improvements	 to	 one	 specific	 language	 feature	 or	 another;	 none	 of
them	are	broad	modifications	to	Python’s	semantics.

As	well	as	the	language	and	library	additions,	other	improvements	and
bugfixes	were	made	throughout	the	source	tree.	A	search	through	the

http://www.python.org/dev/peps/pep-0356

SVN	change	logs	finds	there	were	353	patches	applied	and	458	bugs
fixed	 between	 Python	 2.4	 and	 2.5.	 (Both	 figures	 are	 likely	 to	 be
underestimates.)

This	 article	 doesn’t	 try	 to	 be	 a	 complete	 specification	 of	 the	 new
features;	 instead	 changes	 are	 briefly	 introduced	 using	 helpful
examples.	 For	 full	 details,	 you	 should	 always	 refer	 to	 the
documentation	for	Python	2.5	at	http://docs.python.org.	If	you	want	to
understand	the	complete	implementation	and	design	rationale,	refer	to
the	PEP	for	a	particular	new	feature.

Comments,	 suggestions,	 and	 error	 reports	 for	 this	 document	 are
welcome;	 please	 e-mail	 them	 to	 the	 author	 or	 open	 a	 bug	 in	 the
Python	bug	tracker.

http://docs.python.org

PEP	308:	Conditional	Expressions

For	 a	 long	 time,	 people	 have	 been	 requesting	 a	 way	 to	 write
conditional	expressions,	which	are	expressions	that	return	value	A	or
value	 B	 depending	 on	 whether	 a	 Boolean	 value	 is	 true	 or	 false.	 A
conditional	 expression	 lets	 you	 write	 a	 single	 assignment	 statement
that	has	the	same	effect	as	the	following:

if	condition:

				x	=	true_value

else:

				x	=	false_value

There	 have	 been	 endless	 tedious	 discussions	 of	 syntax	 on	 both
python-dev	 and	 comp.lang.python.	 A	 vote	 was	 even	 held	 that	 found
the	majority	 of	 voters	 wanted	 conditional	 expressions	 in	 some	 form,
but	 there	 was	 no	 syntax	 that	 was	 preferred	 by	 a	 clear	 majority.
Candidates	 included	C’s	 cond	?	true_v	:	 false_v,	 if	 cond
then	true_v	else	false_v,	and	16	other	variations.

Guido	van	Rossum	eventually	chose	a	surprising	syntax:

x	=	true_value	if	condition	else	false_value

Evaluation	is	still	lazy	as	in	existing	Boolean	expressions,	so	the	order
of	 evaluation	 jumps	 around	 a	 bit.	 The	 condition	 expression	 in	 the
middle	 is	 evaluated	 first,	 and	 the	 true_value	 expression	 is	 evaluated
only	 if	 the	condition	was	true.	Similarly,	 the	 false_value	expression	 is
only	evaluated	when	the	condition	is	false.

This	syntax	may	seem	strange	and	backwards;	why	does	the	condition
go	in	the	middle	of	the	expression,	and	not	in	the	front	as	in	C’s	c	?	x

:	y?	The	 decision	was	 checked	 by	 applying	 the	 new	 syntax	 to	 the
modules	 in	 the	 standard	 library	 and	 seeing	 how	 the	 resulting	 code
read.	 In	 many	 cases	 where	 a	 conditional	 expression	 is	 used,	 one
value	seems	to	be	the	‘common	case’	and	one	value	is	an	‘exceptional
case’,	used	only	on	rarer	occasions	when	the	condition	isn’t	met.	The
conditional	syntax	makes	this	pattern	a	bit	more	obvious:

contents	=	((doc	+	'\n')	if	doc	else	'')

I	 read	 the	 above	 statement	 as	 meaning	 “here	 contents	 is	 usually
assigned	 a	 value	 of	 doc+'\n';	 sometimes	 doc	 is	 empty,	 in	 which
special	case	an	empty	string	is	returned.”	I	doubt	I	will	use	conditional
expressions	 very	 often	 where	 there	 isn’t	 a	 clear	 common	 and
uncommon	case.

There	was	 some	discussion	 of	whether	 the	 language	 should	 require
surrounding	 conditional	 expressions	 with	 parentheses.	 The	 decision
was	 made	 to	 not	 require	 parentheses	 in	 the	 Python	 language’s
grammar,	but	as	a	matter	of	style	I	think	you	should	always	use	them.
Consider	these	two	statements:

#	First	version	--	no	parens

level	=	1	if	logging	else	0

#	Second	version	--	with	parens

level	=	(1	if	logging	else	0)

In	 the	 first	 version,	 I	 think	a	 reader’s	 eye	might	 group	 the	 statement
into	‘level	=	1’,	‘if	logging’,	‘else	0’,	and	think	that	the	condition	decides
whether	 the	 assignment	 to	 level	 is	 performed.	 The	 second	 version
reads	 better,	 in	 my	 opinion,	 because	 it	 makes	 it	 clear	 that	 the
assignment	 is	 always	 performed	 and	 the	 choice	 is	 being	 made
between	two	values.

Another	reason	for	 including	the	brackets:	a	few	odd	combinations	of
list	comprehensions	and	lambdas	could	 look	 like	 incorrect	conditional
expressions.	See	PEP	308	for	some	examples.	If	you	put	parentheses
around	your	conditional	expressions,	you	won’t	run	into	this	case.

See	also:

PEP	308	-	Conditional	Expressions
PEP	written	 by	Guido	 van	Rossum	and	Raymond	D.	Hettinger;
implemented	by	Thomas	Wouters.

http://www.python.org/dev/peps/pep-0308
http://www.python.org/dev/peps/pep-0308

PEP	309:	Partial	Function	Application

The	 functools	 module	 is	 intended	 to	 contain	 tools	 for	 functional-
style	programming.

One	 useful	 tool	 in	 this	 module	 is	 the	 partial()	 function.	 For
programs	 written	 in	 a	 functional	 style,	 you’ll	 sometimes	 want	 to
construct	 variants	 of	 existing	 functions	 that	 have	 some	 of	 the
parameters	 filled	 in.	 Consider	 a	 Python	 function	 f(a,	b,	 c);	 you
could	create	a	new	function	g(b,	c)	that	was	equivalent	to	f(1,	b,
c).	This	is	called	“partial	function	application”.

partial()	takes	the	arguments	(function,	arg1,	arg2,	...
kwarg1=value1,	 kwarg2=value2).	 The	 resulting	 object	 is
callable,	 so	 you	 can	 just	 call	 it	 to	 invoke	 function	 with	 the	 filled-in
arguments.

Here’s	a	small	but	realistic	example:

import	functools

def	log	(message,	subsystem):

				"Write	the	contents	of	'message'	to	the	specified	subsystem."

				print	'%s:	%s'	%	(subsystem,	message)

				...

server_log	=	functools.partial(log,	subsystem='server'

server_log('Unable	to	open	socket')

Here’s	 another	 example,	 from	 a	 program	 that	 uses	 PyGTK.	 Here	 a
context-	sensitive	pop-up	menu	is	being	constructed	dynamically.	The
callback	provided	for	the	menu	option	is	a	partially	applied	version	of

the	 open_item()	 method,	 where	 the	 first	 argument	 has	 been
provided.

...

class	Application:

				def	open_item(self,	path):

							...

				def	init	(self):

								open_func	=	functools.partial(self.open_item

								popup_menu.append(("Open",	open_func,	1))

Another	 function	 in	 the	 functools	 module	 is	 the
update_wrapper(wrapper,	 wrapped)	 function	 that	 helps	 you
write	 well-	 behaved	 decorators.	 update_wrapper()	 copies	 the
name,	module,	 and	 docstring	 attribute	 to	 a	 wrapper	 function	 so	 that
tracebacks	 inside	the	wrapped	function	are	easier	 to	understand.	For
example,	you	might	write:

def	my_decorator(f):

				def	wrapper(*args,	**kwds):

								print	'Calling	decorated	function'

								return	f(*args,	**kwds)

				functools.update_wrapper(wrapper,	f)

				return	wrapper

wraps()	is	a	decorator	that	can	be	used	inside	your	own	decorators
to	copy	the	wrapped	function’s	information.	An	alternate	version	of	the
previous	example	would	be:

def	my_decorator(f):

				@functools.wraps(f)

				def	wrapper(*args,	**kwds):

								print	'Calling	decorated	function'

								return	f(*args,	**kwds)

				return	wrapper

See	also:

PEP	309	-	Partial	Function	Application
PEP	proposed	and	written	by	Peter	Harris;	implemented	by	Hye-
Shik	 Chang	 and	 Nick	 Coghlan,	 with	 adaptations	 by	 Raymond
Hettinger.

http://www.python.org/dev/peps/pep-0309

PEP	314:	Metadata	for	Python	Software
Packages	v1.1

Some	 simple	 dependency	 support	 was	 added	 to	 Distutils.	 The
setup()	function	now	has	requires,	provides,	and	obsoletes
keyword	parameters.	When	 you	build	 a	 source	distribution	 using	 the
sdist	command,	the	dependency	information	will	be	recorded	in	the
PKG-INFO	file.

Another	new	keyword	parameter	is	download_url,	which	should	be
set	 to	 a	 URL	 for	 the	 package’s	 source	 code.	 This	 means	 it’s	 now
possible	 to	 look	 up	 an	 entry	 in	 the	 package	 index,	 determine	 the
dependencies	for	a	package,	and	download	the	required	packages.

VERSION	=	'1.0'

setup(name='PyPackage',

						version=VERSION,

						requires=['numarray',	'zlib	(>=1.1.4)'],

						obsoletes=['OldPackage']

						download_url=('http://www.example.com/pypackage/dist/pkg-%s.tar.gz'

																				%	VERSION),

)

Another	 new	 enhancement	 to	 the	 Python	 package	 index	 at
http://cheeseshop.python.org	is	storing	source	and	binary	archives	for
a	package.	The	new	upload	Distutils	command	will	upload	a	package
to	the	repository.

Before	 a	 package	 can	 be	 uploaded,	 you	 must	 be	 able	 to	 build	 a
distribution	using	 the	sdist	Distutils	 command.	Once	 that	works,	 you
can	 run	 python	 setup.py	 upload	 to	 add	 your	 package	 to	 the

http://cheeseshop.python.org

PyPI	archive.	Optionally	you	can	GPG-sign	the	package	by	supplying
the	--sign	and	--identity	options.

Package	 uploading	 was	 implemented	 by	 Martin	 von	 Löwis	 and
Richard	Jones.

See	also:

PEP	314	-	Metadata	for	Python	Software	Packages	v1.1
PEP	proposed	and	written	by	A.M.	Kuchling,	Richard	Jones,	and
Fred	Drake;	implemented	by	Richard	Jones	and	Fred	Drake.

http://www.python.org/dev/peps/pep-0314

PEP	328:	Absolute	and	Relative	Imports

The	 simpler	 part	 of	 PEP	 328	 was	 implemented	 in	 Python	 2.4:
parentheses	could	now	be	used	to	enclose	the	names	imported	from	a
module	 using	 the	 from	 ...	 import	 ...	 statement,	 making	 it
easier	to	import	many	different	names.

The	 more	 complicated	 part	 has	 been	 implemented	 in	 Python	 2.5:
importing	 a	 module	 can	 be	 specified	 to	 use	 absolute	 or	 package-
relative	imports.	The	plan	is	to	move	toward	making	absolute	imports
the	default	in	future	versions	of	Python.

Let’s	say	you	have	a	package	directory	like	this:

pkg/

pkg/__init__.py

pkg/main.py

pkg/string.py

This	 defines	 a	 package	 named	 pkg	 containing	 the	 pkg.main	 and
pkg.string	submodules.

Consider	 the	 code	 in	 the	 main.py	 module.	 What	 happens	 if	 it
executes	the	statement	import	string?	In	Python	2.4	and	earlier,	it
will	 first	 look	 in	 the	 package’s	 directory	 to	 perform	 a	 relative	 import,
finds	 pkg/string.py,	 imports	 the	 contents	 of	 that	 file	 as	 the
pkg.string	module,	and	that	module	is	bound	to	the	name	string
in	the	pkg.main	module’s	namespace.

That’s	 fine	 if	 pkg.string	 was	 what	 you	 wanted.	 But	 what	 if	 you
wanted	Python’s	standard	string	module?	There’s	no	clean	way	to
ignore	pkg.string	and	look	for	the	standard	module;	generally	you

had	to	look	at	the	contents	of	sys.modules,	which	is	slightly	unclean.
Holger	 Krekel’s	 py.std	 package	 provides	 a	 tidier	 way	 to	 perform
imports	 from	 the	 standard	 library,	 import	 py;

py.std.string.join(),	 but	 that	 package	 isn’t	 available	 on	 all
Python	installations.

Reading	 code	 which	 relies	 on	 relative	 imports	 is	 also	 less	 clear,
because	a	reader	may	be	confused	about	which	module,	string	or
pkg.string,	is	intended	to	be	used.	Python	users	soon	learned	not
to	 duplicate	 the	 names	 of	 standard	 library	modules	 in	 the	 names	 of
their	packages’	submodules,	but	you	can’t	protect	against	having	your
submodule’s	 name	 being	 used	 for	 a	 new	module	 added	 in	 a	 future
version	of	Python.

In	Python	2.5,	you	can	switch	import‘s	behaviour	to	absolute	imports
using	a	from	__future__	import	absolute_import	directive.
This	 absolute-	 import	 behaviour	 will	 become	 the	 default	 in	 a	 future
version	(probably	Python	2.7).	Once	absolute	imports	are	 the	default,
import	string	 will	 always	 find	 the	 standard	 library’s	 version.	 It’s
suggested	that	users	should	begin	using	absolute	imports	as	much	as
possible,	 so	 it’s	 preferable	 to	 begin	 writing	 from	 pkg	 import

string	in	your	code.

Relative	 imports	 are	 still	 possible	 by	 adding	 a	 leading	 period	 to	 the
module	name	when	using	the	from	...	import	form:

#	Import	names	from	pkg.string

from	.string	import	name1,	name2

#	Import	pkg.string

from	.	import	string

This	imports	the	string	module	relative	to	the	current	package,	so	in

pkg.main	 this	 will	 import	 name1	 and	 name2	 from	 pkg.string.
Additional	leading	periods	perform	the	relative	import	starting	from	the
parent	 of	 the	 current	 package.	 For	 example,	 code	 in	 the	 A.B.C
module	can	do:

from	.	import	D																	#	Imports	A.B.D

from	..	import	E																#	Imports	A.E

from	..F	import	G															#	Imports	A.F.G

Leading	periods	cannot	be	used	with	 the	import	modname	 form	of
the	import	statement,	only	the	from	...	import	form.

See	also:

PEP	328	-	Imports:	Multi-Line	and	Absolute/Relative
PEP	written	by	Aahz;	implemented	by	Thomas	Wouters.

http://codespeak.net/py/current/doc/index.html
The	 py	 library	 by	 Holger	 Krekel,	 which	 contains	 the	 py.std
package.

http://www.python.org/dev/peps/pep-0328
http://codespeak.net/py/current/doc/index.html

PEP	338:	Executing	Modules	as	Scripts

The	-m	 switch	 added	 in	Python	2.4	 to	 execute	 a	module	 as	 a	 script
gained	a	 few	more	abilities.	 Instead	of	being	 implemented	 in	C	code
inside	the	Python	 interpreter,	 the	switch	now	uses	an	 implementation
in	a	new	module,	runpy.

The	 runpy	 module	 implements	 a	 more	 sophisticated	 import
mechanism	so	that	it’s	now	possible	to	run	modules	in	a	package	such
as	 pychecker.checker.	 The	 module	 also	 supports	 alternative
import	mechanisms	such	as	the	zipimport	module.	This	means	you
can	add	a	.zip	archive’s	path	to	sys.path	and	then	use	the	-m	switch
to	execute	code	from	the	archive.

See	also:

PEP	338	-	Executing	modules	as	scripts
PEP	written	and	implemented	by	Nick	Coghlan.

http://www.python.org/dev/peps/pep-0338

PEP	341:	Unified	try/except/finally

Until	Python	2.5,	 the	try	statement	came	 in	 two	 flavours.	You	could
use	a	finally	block	to	ensure	that	code	is	always	executed,	or	one
or	 more	 except	 blocks	 to	 catch	 specific	 exceptions.	 You	 couldn’t
combine	 both	 except	 blocks	 and	 a	 finally	 block,	 because
generating	 the	 right	 bytecode	 for	 the	 combined	 version	 was
complicated	 and	 it	wasn’t	 clear	what	 the	 semantics	 of	 the	 combined
statement	should	be.

Guido	 van	Rossum	spent	 some	 time	working	with	 Java,	which	 does
support	 the	equivalent	of	combining	except	blocks	and	a	finally
block,	 and	 this	 clarified	 what	 the	 statement	 should	mean.	 In	 Python
2.5,	you	can	now	write:

try:

				block-1	...

except	Exception1:

				handler-1	...

except	Exception2:

				handler-2	...

else:

				else-block

finally:

				final-block

The	code	 in	block-1	 is	executed.	 If	 the	code	raises	an	exception,	 the
various	 except	 blocks	 are	 tested:	 if	 the	 exception	 is	 of	 class
Exception1,	 handler-1	 is	 executed;	 otherwise	 if	 it’s	 of	 class
Exception2,	handler-2	 is	executed,	and	so	 forth.	 If	no	exception	 is
raised,	the	else-block	is	executed.

No	matter	what	happened	previously,	the	final-block	is	executed	once
the	code	block	is	complete	and	any	raised	exceptions	handled.	Even	if
there’s	an	error	 in	an	exception	handler	or	 the	else-block	and	a	new
exception	is	raised,	the	code	in	the	final-block	is	still	run.

See	also:

PEP	341	-	Unifying	try-except	and	try-finally
PEP	written	by	Georg	Brandl;	implementation	by	Thomas	Lee.

http://www.python.org/dev/peps/pep-0341

PEP	342:	New	Generator	Features

Python	 2.5	 adds	 a	 simple	 way	 to	 pass	 values	 into	 a	 generator.	 As
introduced	 in	 Python	 2.3,	 generators	 only	 produce	 output;	 once	 a
generator’s	code	was	invoked	to	create	an	iterator,	there	was	no	way
to	 pass	 any	 new	 information	 into	 the	 function	 when	 its	 execution	 is
resumed.	Sometimes	the	ability	to	pass	in	some	information	would	be
useful.	Hackish	solutions	 to	 this	 include	making	 the	generator’s	code
look	at	a	global	variable	and	then	changing	the	global	variable’s	value,
or	passing	in	some	mutable	object	that	callers	then	modify.

To	refresh	your	memory	of	basic	generators,	here’s	a	simple	example:

def	counter	(maximum):

				i	=	0

				while	i	<	maximum:

								yield	i

								i	+=	1

When	you	call	counter(10),	the	result	is	an	iterator	that	returns	the
values	 from	 0	 up	 to	 9.	 On	 encountering	 the	 yield	 statement,	 the
iterator	 returns	 the	 provided	 value	 and	 suspends	 the	 function’s
execution,	 preserving	 the	 local	 variables.	 Execution	 resumes	 on	 the
following	 call	 to	 the	 iterator’s	 next()	 method,	 picking	 up	 after	 the
yield	statement.

In	Python	2.3,	 yield	was	a	 statement;	 it	 didn’t	 return	any	 value.	 In
2.5,	 yield	 is	 now	 an	 expression,	 returning	 a	 value	 that	 can	 be
assigned	to	a	variable	or	otherwise	operated	on:

val	=	(yield	i)

I	 recommend	 that	 you	 always	 put	 parentheses	 around	 a	 yield
expression	when	you’re	doing	something	with	the	returned	value,	as	in
the	above	example.	The	parentheses	aren’t	always	necessary,	but	it’s
easier	 to	 always	 add	 them	 instead	 of	 having	 to	 remember	 when
they’re	needed.

(PEP	342	explains	the	exact	rules,	which	are	that	a	yield-expression
must	always	be	parenthesized	except	when	 it	occurs	at	 the	 top-level
expression	on	the	right-hand	side	of	an	assignment.	This	means	you
can	write	val	=	yield	i	but	have	to	use	parentheses	when	there’s
an	operation,	as	in	val	=	(yield	i)	+	12.)

Values	are	sent	into	a	generator	by	calling	its	send(value)	method.
The	 generator’s	 code	 is	 then	 resumed	 and	 the	 yield	 expression
returns	the	specified	value.	If	the	regular	next()	method	is	called,	the
yield	returns	None.

Here’s	the	previous	example,	modified	to	allow	changing	the	value	of
the	internal	counter.

def	counter	(maximum):

				i	=	0

				while	i	<	maximum:

								val	=	(yield	i)

								#	If	value	provided,	change	counter

								if	val	is	not	None:

												i	=	val

								else:

												i	+=	1

And	here’s	an	example	of	changing	the	counter:

>>>	it	=	counter(10)

>>>	print	it.next()

http://www.python.org/dev/peps/pep-0342

0

>>>	print	it.next()

1

>>>	print	it.send(8)

8

>>>	print	it.next()

9

>>>	print	it.next()

Traceback	(most	recent	call	last):

		File	"t.py",	line	15,	in	?

				print	it.next()

StopIteration

yield	will	usually	 return	None,	so	you	should	always	check	 for	 this
case.	Don’t	 just	 use	 its	 value	 in	 expressions	 unless	 you’re	 sure	 that
the	 send()	 method	 will	 be	 the	 only	 method	 used	 to	 resume	 your
generator	function.

In	 addition	 to	 send(),	 there	 are	 two	 other	 new	 methods	 on
generators:

throw(type,	 value=None,	 traceback=None)	 is	 used	 to
raise	an	exception	inside	the	generator;	the	exception	is	raised	by
the	yield	expression	where	the	generator’s	execution	is	paused.

close()	 raises	 a	 new	 GeneratorExit	 exception	 inside	 the
generator	 to	 terminate	 the	 iteration.	On	 receiving	 this	 exception,
the	 generator’s	 code	 must	 either	 raise	 GeneratorExit	 or
StopIteration.	Catching	the	GeneratorExit	exception	and
returning	a	value	is	illegal	and	will	trigger	a	RuntimeError;	if	the
function	 raises	 some	 other	 exception,	 that	 exception	 is
propagated	to	the	caller.	close()	will	also	be	called	by	Python’s
garbage	collector	when	the	generator	is	garbage-collected.

If	you	need	to	run	cleanup	code	when	a	GeneratorExit	occurs,
I	suggest	using	a	try:	...	finally:	suite	instead	of	catching
GeneratorExit.

The	cumulative	effect	of	these	changes	is	to	turn	generators	from	one-
way	producers	of	information	into	both	producers	and	consumers.

Generators	 also	 become	 coroutines,	 a	 more	 generalized	 form	 of
subroutines.	 Subroutines	 are	 entered	 at	 one	 point	 and	 exited	 at
another	point	 (the	 top	of	 the	 function,	and	a	return	 statement),	but
coroutines	 can	 be	 entered,	 exited,	 and	 resumed	 at	 many	 different
points	 (the	 yield	 statements).	We’ll	 have	 to	 figure	 out	 patterns	 for
using	coroutines	effectively	in	Python.

The	 addition	 of	 the	 close()	 method	 has	 one	 side	 effect	 that	 isn’t
obvious.	close()	is	called	when	a	generator	is	garbage-collected,	so
this	means	the	generator’s	code	gets	one	last	chance	to	run	before	the
generator	is	destroyed.	This	last	chance	means	that	try...finally
statements	 in	 generators	 can	 now	 be	 guaranteed	 to	 work;	 the
finally	 clause	will	 now	always	get	a	chance	 to	 run.	The	 syntactic
restriction	 that	 you	 couldn’t	 mix	 yield	 statements	 with	 a
try...finally	suite	has	therefore	been	removed.	This	seems	like
a	 minor	 bit	 of	 language	 trivia,	 but	 using	 generators	 and
try...finally	 is	 actually	 necessary	 in	 order	 to	 implement	 the
with	statement	described	by	PEP	343.	I’ll	look	at	this	new	statement
in	the	following	section.

Another	 even	 more	 esoteric	 effect	 of	 this	 change:	 previously,	 the
gi_frame	attribute	of	a	generator	was	always	a	frame	object.	It’s	now
possible	 for	 gi_frame	 to	 be	 None	 once	 the	 generator	 has	 been
exhausted.

See	also:

PEP	342	-	Coroutines	via	Enhanced	Generators
PEP	 written	 by	 Guido	 van	 Rossum	 and	 Phillip	 J.	 Eby;
implemented	by	Phillip	J.	Eby.	Includes	examples	of	some	fancier
uses	of	generators	as	coroutines.

Earlier	versions	of	these	features	were	proposed	in	PEP	288	by
Raymond	Hettinger	and	PEP	325	by	Samuele	Pedroni.

http://en.wikipedia.org/wiki/Coroutine
The	Wikipedia	entry	for	coroutines.

http://www.sidhe.org/~dan/blog/archives/000178.html
An	explanation	of	coroutines	from	a	Perl	point	of	view,	written	by
Dan	Sugalski.

http://www.python.org/dev/peps/pep-0342
http://www.python.org/dev/peps/pep-0288
http://www.python.org/dev/peps/pep-0325
http://en.wikipedia.org/wiki/Coroutine
http://www.sidhe.org/~dan/blog/archives/000178.html

PEP	343:	The	‘with’	statement

The	 ‘with‘	 statement	 clarifies	 code	 that	 previously	 would	 use
try...finally	blocks	to	ensure	that	clean-up	code	is	executed.	In
this	section,	I’ll	discuss	the	statement	as	it	will	commonly	be	used.	In
the	next	section,	I’ll	examine	the	implementation	details	and	show	how
to	write	objects	for	use	with	this	statement.

The	 ‘with‘	 statement	 is	 a	 new	 control-flow	 structure	 whose	 basic
structure	is:

with	expression	[as	variable]:

				with-block

The	 expression	 is	 evaluated,	 and	 it	 should	 result	 in	 an	 object	 that
supports	 the	 context	 management	 protocol	 (that	 is,	 has
__enter__()	and	__exit__()	methods.

The	 object’s	 __enter__()	 is	 called	 before	 with-block	 is	 executed
and	 therefore	can	 run	set-up	code.	 It	also	may	 return	a	value	 that	 is
bound	to	the	name	variable,	if	given.	(Note	carefully	that	variable	is	not
assigned	the	result	of	expression.)

After	execution	of	the	with-block	is	finished,	the	object’s	__exit__()
method	 is	 called,	 even	 if	 the	 block	 raised	 an	 exception,	 and	 can
therefore	run	clean-up	code.

To	enable	the	statement	in	Python	2.5,	you	need	to	add	the	following
directive	to	your	module:

from	__future__	import	with_statement

The	statement	will	always	be	enabled	in	Python	2.6.

Some	standard	Python	objects	now	support	the	context	management
protocol	and	can	be	used	with	 the	 ‘with‘	statement.	File	objects	are
one	example:

with	open('/etc/passwd',	'r')	as	f:

				for	line	in	f:

								print	line

								...	more	processing	code	...

After	 this	 statement	 has	 executed,	 the	 file	 object	 in	 f	will	 have	 been
automatically	 closed,	 even	 if	 the	 for	 loop	 raised	 an	 exception	 part-
way	through	the	block.

Note: 	In	this	case,	f	is	the	same	object	created	by	open(),
because	file.__enter__()	returns	self.

The	threading	module’s	 locks	and	condition	variables	also	support
the	‘with‘	statement:

lock	=	threading.Lock()

with	lock:

				#	Critical	section	of	code

				...

The	lock	is	acquired	before	the	block	is	executed	and	always	released
once	the	block	is	complete.

The	new	localcontext()	function	in	the	decimal	module	makes	it
easy	 to	 save	 and	 restore	 the	 current	 decimal	 context,	 which
encapsulates	 the	 desired	 precision	 and	 rounding	 characteristics	 for
computations:

from	decimal	import	Decimal,	Context,	localcontext

#	Displays	with	default	precision	of	28	digits

v	=	Decimal('578')

print	v.sqrt()

with	localcontext(Context(prec=16)):

				#	All	code	in	this	block	uses	a	precision	of	16	digits.

				#	The	original	context	is	restored	on	exiting	the	block.

				print	v.sqrt()

Writing	Context	Managers

Under	 the	 hood,	 the	 ‘with‘	 statement	 is	 fairly	 complicated.	 Most
people	will	only	use	‘with‘	in	company	with	existing	objects	and	don’t
need	to	know	these	details,	so	you	can	skip	the	rest	of	this	section	if
you	like.	Authors	of	new	objects	will	need	to	understand	the	details	of
the	underlying	implementation	and	should	keep	reading.

A	high-level	explanation	of	the	context	management	protocol	is:

The	expression	is	evaluated	and	should	result	in	an	object	called
a	 “context	 manager”.	 The	 context	 manager	 must	 have
__enter__()	and	__exit__()	methods.
The	 context	 manager’s	 __enter__()	 method	 is	 called.	 The
value	 returned	 is	 assigned	 to	 VAR.	 If	 no	 'as	 VAR'	 clause	 is
present,	the	value	is	simply	discarded.
The	code	in	BLOCK	is	executed.
If	BLOCK	 raises	 an	 exception,	 the	 __exit__(type,	 value,
traceback)	is	called	with	the	exception	details,	the	same	values
returned	 by	 sys.exc_info().	 The	 method’s	 return	 value
controls	 whether	 the	 exception	 is	 re-raised:	 any	 false	 value	 re-
raises	the	exception,	and	True	will	result	in	suppressing	it.	You’ll

only	rarely	want	to	suppress	the	exception,	because	if	you	do	the
author	 of	 the	 code	 containing	 the	 ‘with‘	 statement	 will	 never
realize	anything	went	wrong.
If	BLOCK	didn’t	 raise	an	exception,	 the	__exit__()	method	 is
still	called,	but	type,	value,	and	traceback	are	all	None.

Let’s	 think	 through	an	example.	 I	won’t	present	detailed	code	but	will
only	 sketch	 the	 methods	 necessary	 for	 a	 database	 that	 supports
transactions.

(For	people	unfamiliar	with	database	terminology:	a	set	of	changes	to
the	 database	 are	 grouped	 into	 a	 transaction.	 Transactions	 can	 be
either	 committed,	 meaning	 that	 all	 the	 changes	 are	 written	 into	 the
database,	or	rolled	back,	meaning	that	 the	changes	are	all	discarded
and	the	database	is	unchanged.	See	any	database	textbook	for	more
information.)

Let’s	 assume	 there’s	 an	 object	 representing	 a	 database	 connection.
Our	goal	will	be	to	let	the	user	write	code	like	this:

db_connection	=	DatabaseConnection()

with	db_connection	as	cursor:

				cursor.execute('insert	into	...')

				cursor.execute('delete	from	...')

				#	...	more	operations	...

The	 transaction	 should	 be	 committed	 if	 the	 code	 in	 the	 block	 runs
flawlessly	 or	 rolled	 back	 if	 there’s	 an	 exception.	 Here’s	 the	 basic
interface	for	DatabaseConnection	that	I’ll	assume:

class	DatabaseConnection:

				#	Database	interface

				def	cursor	(self):

								"Returns	a	cursor	object	and	starts	a	new	transaction"

				def	commit	(self):

								"Commits	current	transaction"

				def	rollback	(self):

								"Rolls	back	current	transaction"

The	__enter__()	method	 is	pretty	easy,	having	only	to	start	a	new
transaction.	For	this	application	the	resulting	cursor	object	would	be	a
useful	 result,	so	 the	method	will	 return	 it.	The	user	 can	 then	add	as
cursor	 to	 their	 ‘with‘	 statement	 to	 bind	 the	 cursor	 to	 a	 variable
name.

class	DatabaseConnection:

				...

				def	__enter__	(self):

								#	Code	to	start	a	new	transaction

								cursor	=	self.cursor()

								return	cursor

The	__exit__()	method	is	the	most	complicated	because	it’s	where
most	 of	 the	 work	 has	 to	 be	 done.	 The	 method	 has	 to	 check	 if	 an
exception	 occurred.	 If	 there	 was	 no	 exception,	 the	 transaction	 is
committed.	The	transaction	is	rolled	back	if	there	was	an	exception.

In	 the	 code	below,	 execution	will	 just	 fall	 off	 the	end	of	 the	 function,
returning	 the	default	 value	of	 None.	None	 is	 false,	 so	 the	 exception
will	 be	 re-raised	 automatically.	 If	 you	 wished,	 you	 could	 be	 more
explicit	and	add	a	return	statement	at	the	marked	location.

class	DatabaseConnection:

				...

				def	__exit__	(self,	type,	value,	tb):

								if	tb	is	None:

												#	No	exception,	so	commit

												self.commit()

								else:

												#	Exception	occurred,	so	rollback.

												self.rollback()

												#	return	False

The	contextlib	module

The	 new	 contextlib	 module	 provides	 some	 functions	 and	 a
decorator	 that	 are	 useful	 for	 writing	 objects	 for	 use	 with	 the	 ‘with‘
statement.

The	 decorator	 is	 called	 contextmanager(),	 and	 lets	 you	 write	 a
single	 generator	 function	 instead	 of	 defining	 a	 new	 class.	 The
generator	should	yield	exactly	one	value.	The	code	up	 to	 the	yield
will	be	executed	as	the	__enter__()	method,	and	the	value	yielded
will	be	the	method’s	return	value	that	will	get	bound	to	the	variable	in
the	‘with‘	statement’s	as	clause,	if	any.	The	code	after	the	yield	will
be	executed	in	the	__exit__()	method.	Any	exception	raised	in	the
block	will	be	raised	by	the	yield	statement.

Our	 database	 example	 from	 the	 previous	 section	 could	 be	 written
using	this	decorator	as:

from	contextlib	import	contextmanager

@contextmanager

def	db_transaction	(connection):

				cursor	=	connection.cursor()

				try:

								yield	cursor

				except:

								connection.rollback()

								raise

				else:

								connection.commit()

db	=	DatabaseConnection()

with	db_transaction(db)	as	cursor:

				...

The	contextlib	module	also	has	a	nested(mgr1,	mgr2,	...)
function	 that	 combines	 a	 number	 of	 context	 managers	 so	 you	 don’t
need	 to	 write	 nested	 ‘with‘	 statements.	 In	 this	 example,	 the	 single
‘with‘	 statement	 both	 starts	 a	 database	 transaction	 and	 acquires	 a
thread	lock:

lock	=	threading.Lock()

with	nested	(db_transaction(db),	lock)	as	(cursor,	locked

				...

Finally,	 the	closing(object)	 function	 returns	object	 so	 that	 it	 can
be	 bound	 to	 a	 variable,	 and	 calls	 object.close	 at	 the	 end	 of	 the
block.

import	urllib,	sys

from	contextlib	import	closing

with	closing(urllib.urlopen('http://www.yahoo.com'))

				for	line	in	f:

								sys.stdout.write(line)

See	also:

PEP	343	-	The	“with”	statement
PEP	 written	 by	 Guido	 van	 Rossum	 and	 Nick	 Coghlan;
implemented	 by	 Mike	 Bland,	 Guido	 van	 Rossum,	 and	 Neal

http://www.python.org/dev/peps/pep-0343

Norwitz.	 The	 PEP	 shows	 the	 code	 generated	 for	 a	 ‘with‘
statement,	 which	 can	 be	 helpful	 in	 learning	 how	 the	 statement
works.

The	documentation	for	the	contextlib	module.

PEP	352:	Exceptions	as	New-Style
Classes

Exception	 classes	 can	 now	 be	 new-style	 classes,	 not	 just	 classic
classes,	and	the	built-in	Exception	class	and	all	the	standard	built-in
exceptions	 (NameError,	 ValueError,	 etc.)	 are	 now	 new-style
classes.

The	inheritance	hierarchy	for	exceptions	has	been	rearranged	a	bit.	In
2.5,	the	inheritance	relationships	are:

BaseException							#	New	in	Python	2.5

|-	KeyboardInterrupt

|-	SystemExit

|-	Exception

			|-	(all	other	current	built-in	exceptions)

This	rearrangement	was	done	because	people	often	want	to	catch	all
exceptions	 that	 indicate	 program	 errors.	 KeyboardInterrupt	 and
SystemExit	 aren’t	 errors,	 though,	 and	usually	 represent	 an	explicit
action	such	as	the	user	hitting	Control-C	or	code	calling	sys.exit().
A	bare	except:	will	catch	all	exceptions,	so	you	commonly	need	 to
list	 KeyboardInterrupt	 and	 SystemExit	 in	 order	 to	 re-raise
them.	The	usual	pattern	is:

try:

				...

except	(KeyboardInterrupt,	SystemExit):

				raise

except:

				#	Log	error...

				#	Continue	running	program...

In	Python	2.5,	you	can	now	write	except	Exception	to	achieve	the
same	result,	catching	all	the	exceptions	that	usually	indicate	errors	but
leaving	 KeyboardInterrupt	 and	 SystemExit	 alone.	 As	 in
previous	versions,	a	bare	except:	still	catches	all	exceptions.

The	goal	for	Python	3.0	is	to	require	any	class	raised	as	an	exception
to	 derive	 from	 BaseException	 or	 some	 descendant	 of
BaseException,	 and	 future	 releases	 in	 the	 Python	 2.x	 series	may
begin	to	enforce	this	constraint.	Therefore,	I	suggest	you	begin	making
all	 your	 exception	 classes	 derive	 from	 Exception	 now.	 It’s	 been
suggested	that	the	bare	except:	form	should	be	removed	in	Python
3.0,	but	Guido	van	Rossum	hasn’t	decided	whether	to	do	this	or	not.

Raising	of	strings	as	exceptions,	as	in	the	statement	raise	"Error
occurred",	 is	 deprecated	 in	 Python	 2.5	 and	will	 trigger	 a	warning.
The	aim	is	to	be	able	to	remove	the	string-exception	feature	 in	a	few
releases.

See	also:

PEP	352	-	Required	Superclass	for	Exceptions
PEP	 written	 by	 Brett	 Cannon	 and	 Guido	 van	 Rossum;
implemented	by	Brett	Cannon.

http://www.python.org/dev/peps/pep-0352

PEP	353:	Using	ssize_t	as	the	index	type

A	wide-ranging	change	to	Python’s	C	API,	using	a	new	Py_ssize_t
type	 definition	 instead	 of	 int,	 will	 permit	 the	 interpreter	 to	 handle
more	 data	 on	 64-bit	 platforms.	 This	 change	 doesn’t	 affect	 Python’s
capacity	on	32-bit	platforms.

Various	 pieces	 of	 the	Python	 interpreter	 used	C’s	 int	 type	 to	 store
sizes	or	counts;	for	example,	the	number	of	items	in	a	list	or	tuple	were
stored	in	an	int.	The	C	compilers	for	most	64-bit	platforms	still	define
int	 as	 a	 32-bit	 type,	 so	 that	meant	 that	 lists	 could	 only	 hold	 up	 to
2**31	-	1	=	2147483647	 items.	(There	are	actually	a	 few	different
programming	 models	 that	 64-bit	 C	 compilers	 can	 use	 –	 see
http://www.unix.org/version2/whatsnew/lp64_wp.html	 for	 a	 discussion
–	but	the	most	commonly	available	model	leaves	int	as	32	bits.)

A	limit	of	2147483647	items	doesn’t	really	matter	on	a	32-bit	platform
because	you’ll	run	out	of	memory	before	hitting	the	length	limit.	Each
list	item	requires	space	for	a	pointer,	which	is	4	bytes,	plus	space	for	a
PyObject	 representing	 the	 item.	 2147483647*4	 is	 already	 more
bytes	than	a	32-bit	address	space	can	contain.

It’s	 possible	 to	 address	 that	 much	 memory	 on	 a	 64-bit	 platform,
however.	The	pointers	for	a	list	that	size	would	only	require	16	GiB	of
space,	 so	 it’s	 not	 unreasonable	 that	 Python	 programmers	 might
construct	 lists	 that	 large.	Therefore,	 the	Python	 interpreter	had	 to	be
changed	 to	 use	 some	 type	other	 than	 int,	 and	 this	will	 be	 a	 64-bit
type	 on	 64-bit	 platforms.	 The	 change	 will	 cause	 incompatibilities	 on
64-bit	machines,	 so	 it	was	deemed	worth	making	 the	 transition	now,
while	 the	 number	 of	 64-bit	 users	 is	 still	 relatively	 small.	 (In	 5	 or	 10
years,	we	may	all	be	on	64-bit	machines,	and	the	transition	would	be

http://www.unix.org/version2/whatsnew/lp64_wp.html

more	painful	then.)

This	 change	 most	 strongly	 affects	 authors	 of	 C	 extension	 modules.
Python	strings	and	container	 types	such	as	 lists	and	 tuples	now	use
Py_ssize_t	to	store	their	size.	Functions	such	as	PyList_Size()
now	 return	Py_ssize_t.	Code	 in	 extension	modules	may	 therefore
need	to	have	some	variables	changed	to	Py_ssize_t.

The	PyArg_ParseTuple()	and	Py_BuildValue()	functions	have
a	 new	 conversion	 code,	 n,	 for	 Py_ssize_t.
PyArg_ParseTuple()‘s	s#	and	t#	still	output	int	 by	default,	 but
you	 can	 define	 the	 macro	 PY_SSIZE_T_CLEAN	 before	 including
Python.h	to	make	them	return	Py_ssize_t.

PEP	 353	 has	 a	 section	 on	 conversion	 guidelines	 that	 extension
authors	should	read	to	learn	about	supporting	64-bit	platforms.

See	also:

PEP	353	-	Using	ssize_t	as	the	index	type
PEP	written	and	implemented	by	Martin	von	Löwis.

http://www.python.org/dev/peps/pep-0353
http://www.python.org/dev/peps/pep-0353

PEP	357:	The	‘__index__’	method

The	NumPy	developers	 had	a	problem	 that	 could	 only	 be	 solved	by
adding	 a	 new	 special	 method,	 __index__().	 When	 using	 slice
notation,	 as	 in	 [start:stop:step],	 the	 values	 of	 the	 start,	 stop,
and	step	 indexes	must	all	be	either	 integers	or	 long	 integers.	NumPy
defines	 a	 variety	 of	 specialized	 integer	 types	 corresponding	 to
unsigned	and	signed	integers	of	8,	16,	32,	and	64	bits,	but	there	was
no	way	to	signal	that	these	types	could	be	used	as	slice	indexes.

Slicing	 can’t	 just	 use	 the	 existing	 __int__()	method	 because	 that
method	is	also	used	to	implement	coercion	to	integers.	If	slicing	used
__int__(),	 floating-point	 numbers	 would	 also	 become	 legal	 slice
indexes	and	that’s	clearly	an	undesirable	behaviour.

Instead,	 a	 new	 special	 method	 called	 __index__()	 was	 added.	 It
takes	 no	 arguments	 and	 returns	 an	 integer	 giving	 the	 slice	 index	 to
use.	For	example:

class	C:

				def	__index__	(self):

								return	self.value

The	return	value	must	be	either	a	Python	integer	or	long	integer.	The
interpreter	 will	 check	 that	 the	 type	 returned	 is	 correct,	 and	 raises	 a
TypeError	if	this	requirement	isn’t	met.

A	 corresponding	 nb_index	 slot	 was	 added	 to	 the	 C-level
PyNumberMethods	 structure	 to	 let	 C	 extensions	 implement	 this
protocol.	PyNumber_Index(obj)	can	be	used	 in	extension	code	to
call	the	__index__()	function	and	retrieve	its	result.

See	also:

PEP	357	-	Allowing	Any	Object	to	be	Used	for	Slicing
PEP	written	and	implemented	by	Travis	Oliphant.

http://www.python.org/dev/peps/pep-0357

Other	Language	Changes

Here	are	all	of	the	changes	that	Python	2.5	makes	to	the	core	Python
language.

The	dict	 type	has	a	new	hook	 for	 letting	subclasses	provide	a
default	value	when	a	key	isn’t	contained	in	the	dictionary.	When	a
key	isn’t	found,	the	dictionary’s	__missing__(key)	method	will
be	called.	This	hook	is	used	to	implement	the	new	defaultdict
class	 in	 the	 collections	 module.	 The	 following	 example
defines	a	dictionary	that	returns	zero	for	any	missing	key:

class	zerodict	(dict):

				def	__missing__	(self,	key):

								return	0

d	=	zerodict({1:1,	2:2})

print	d[1],	d[2]			#	Prints	1,	2

print	d[3],	d[4]			#	Prints	0,	0

Both	8-bit	and	Unicode	strings	have	new	partition(sep)	and
rpartition(sep)	methods	that	simplify	a	common	use	case.

The	find(S)	method	is	often	used	to	get	an	index	which	is	then
used	to	slice	the	string	and	obtain	the	pieces	that	are	before	and
after	 the	 separator.	 partition(sep)	 condenses	 this	 pattern
into	 a	 single	 method	 call	 that	 returns	 a	 3-tuple	 containing	 the
substring	 before	 the	 separator,	 the	 separator	 itself,	 and	 the
substring	after	the	separator.	If	 the	separator	 isn’t	 found,	the	first
element	of	the	tuple	is	the	entire	string	and	the	other	two	elements
are	 empty.	 rpartition(sep)	 also	 returns	 a	 3-tuple	 but	 starts
searching	from	the	end	of	the	string;	the	r	stands	for	‘reverse’.

Some	examples:

>>>	('http://www.python.org').partition('://')

('http',	'://',	'www.python.org')

>>>	('file:/usr/share/doc/index.html').partition(

('file:/usr/share/doc/index.html',	'',	'')

>>>	(u'Subject:	a	quick	question').partition(':')

(u'Subject',	u':',	u'	a	quick	question')

>>>	'www.python.org'.rpartition('.')

('www.python',	'.',	'org')

>>>	'www.python.org'.rpartition(':')

('',	'',	'www.python.org')

(Implemented	 by	 Fredrik	 Lundh	 following	 a	 suggestion	 by
Raymond	Hettinger.)

The	 startswith()	 and	 endswith()	methods	 of	 string	 types
now	accept	tuples	of	strings	to	check	for.

def	is_image_file	(filename):

				return	filename.endswith(('.gif',	'.jpg',	'.tiff'

(Implemented	 by	 Georg	 Brandl	 following	 a	 suggestion	 by	 Tom
Lynn.)

The	min()	and	max()	built-in	 functions	gained	a	key	 keyword
parameter	 analogous	 to	 the	 key	 argument	 for	 sort().	 This
parameter	supplies	a	function	that	takes	a	single	argument	and	is
called	 for	 every	 value	 in	 the	 list;	 min()/max()	 will	 return	 the
element	with	 the	smallest/largest	 return	value	 from	 this	 function.
For	example,	to	find	the	longest	string	in	a	list,	you	can	do:

L	=	['medium',	'longest',	'short']

#	Prints	'longest'

print	max(L,	key=len)

#	Prints	'short',	because	lexicographically	'short'	has	the	largest	value

print	max(L)

(Contributed	by	Steven	Bethard	and	Raymond	Hettinger.)

Two	new	built-in	functions,	any()	and	all(),	evaluate	whether
an	iterator	contains	any	true	or	false	values.	any()	returns	True
if	any	value	returned	by	the	iterator	is	true;	otherwise	it	will	return
False.	all()	returns	True	only	 if	all	of	the	values	returned	by
the	 iterator	evaluate	as	 true.	 (Suggested	by	Guido	van	Rossum,
and	implemented	by	Raymond	Hettinger.)

The	result	of	a	class’s	__hash__()	method	can	now	be	either	a
long	integer	or	a	regular	integer.	If	a	long	integer	is	returned,	the
hash	of	that	value	is	taken.	In	earlier	versions	the	hash	value	was
required	 to	be	a	regular	 integer,	but	 in	2.5	 the	id()	built-in	was
changed	to	always	return	non-negative	numbers,	and	users	often
seem	to	use	id(self)	in	__hash__()	methods	(though	this	is
discouraged).

ASCII	is	now	the	default	encoding	for	modules.	It’s	now	a	syntax
error	 if	a	module	contains	string	 literals	with	8-bit	 characters	but
doesn’t	have	an	encoding	declaration.	In	Python	2.4	this	triggered
a	warning,	not	a	syntax	error.	See	PEP	263	 for	how	to	declare	a
module’s	 encoding;	 for	 example,	 you	 might	 add	 a	 line	 like	 this
near	the	top	of	the	source	file:

#	-*-	coding:	latin1	-*-

A	new	warning,	UnicodeWarning,	is	triggered	when	you	attempt

http://www.python.org/dev/peps/pep-0263

to	 compare	 a	 Unicode	 string	 and	 an	 8-bit	 string	 that	 can’t	 be
converted	to	Unicode	using	the	default	ASCII	encoding.	The	result
of	the	comparison	is	false:

>>>	chr(128)	==	unichr(128)			#	Can't	convert	chr(128)	to	Unicode

__main__:1:	UnicodeWarning:	Unicode	equal	comparison	failed

		to	convert	both	arguments	to	Unicode	-	interpreting	them

		as	being	unequal

False

>>>	chr(127)	==	unichr(127)			#	chr(127)	can	be	converted

True

Previously	 this	would	 raise	a	UnicodeDecodeError	exception,
but	in	2.5	this	could	result	in	puzzling	problems	when	accessing	a
dictionary.	 If	 you	 looked	 up	 unichr(128)	 and	 chr(128)	was
being	 used	 as	 a	 key,	 you’d	 get	 a	 UnicodeDecodeError
exception.	Other	 changes	 in	 2.5	 resulted	 in	 this	 exception	being
raised	instead	of	suppressed	by	the	code	in	dictobject.c	that
implements	dictionaries.

Raising	an	exception	for	such	a	comparison	is	strictly	correct,	but
the	 change	 might	 have	 broken	 code,	 so	 instead
UnicodeWarning	was	introduced.

(Implemented	by	Marc-André	Lemburg.)

One	error	that	Python	programmers	sometimes	make	is	forgetting
to	 include	 an	 __init__.py	 module	 in	 a	 package	 directory.
Debugging	 this	 mistake	 can	 be	 confusing,	 and	 usually	 requires
running	Python	with	the	-v	switch	to	log	all	the	paths	searched.	In
Python	2.5,	a	new	ImportWarning	warning	is	triggered	when	an
import	 would	 have	 picked	 up	 a	 directory	 as	 a	 package	 but	 no
__init__.py	 was	 found.	 This	 warning	 is	 silently	 ignored	 by

default;	 provide	 the	 -Wd	 option	 when	 running	 the	 Python
executable	 to	 display	 the	 warning	 message.	 (Implemented	 by
Thomas	Wouters.)

The	list	of	base	classes	in	a	class	definition	can	now	be	empty.	As
an	example,	this	is	now	legal:

class	C():

				pass

(Implemented	by	Brett	Cannon.)

Interactive	Interpreter	Changes

In	 the	 interactive	 interpreter,	quit	and	exit	have	 long	been	strings
so	 that	new	users	get	a	somewhat	helpful	message	when	they	 try	 to
quit:

>>>	quit

'Use	Ctrl-D	(i.e.	EOF)	to	exit.'

In	Python	2.5,	quit	and	exit	are	now	objects	that	still	produce	string
representations	of	themselves,	but	are	also	callable.	Newbies	who	try
quit()	 or	 exit()	 will	 now	 exit	 the	 interpreter	 as	 they	 expect.
(Implemented	by	Georg	Brandl.)

The	Python	executable	now	accepts	 the	standard	 long	options	--help
and	--version;	on	Windows,	it	also	accepts	the	/?	option	for	displaying
a	help	message.	(Implemented	by	Georg	Brandl.)

Optimizations

Several	 of	 the	 optimizations	 were	 developed	 at	 the	 NeedForSpeed
sprint,	an	event	held	in	Reykjavik,	Iceland,	from	May	21–28	2006.	The
sprint	 focused	 on	 speed	 enhancements	 to	 the	 CPython
implementation	and	was	funded	by	EWT	LLC	with	 local	support	 from
CCP	Games.	 Those	 optimizations	 added	 at	 this	 sprint	 are	 specially
marked	in	the	following	list.

When	 they	were	 introduced	 in	 Python	 2.4,	 the	 built-in	 set	 and
frozenset	types	were	built	on	top	of	Python’s	dictionary	type.	In
2.5	 the	 internal	 data	 structure	 has	 been	 customized	 for
implementing	 sets,	 and	 as	 a	 result	 sets	 will	 use	 a	 third	 less
memory	 and	 are	 somewhat	 faster.	 (Implemented	 by	 Raymond
Hettinger.)
The	 speed	 of	 some	 Unicode	 operations,	 such	 as	 finding
substrings,	 string	 splitting,	 and	 character	 map	 encoding	 and
decoding,	 has	 been	 improved.	 (Substring	 search	 and	 splitting
improvements	were	added	by	Fredrik	Lundh	and	Andrew	Dalke	at
the	 NeedForSpeed	 sprint.	 Character	 maps	 were	 improved	 by
Walter	Dörwald	and	Martin	von	Löwis.)
The	 long(str,	 base)	 function	 is	 now	 faster	 on	 long	 digit
strings	 because	 fewer	 intermediate	 results	 are	 calculated.	 The
peak	is	for	strings	of	around	800–1000	digits	where	the	function	is
6	 times	 faster.	 (Contributed	 by	 Alan	McIntyre	 and	 committed	 at
the	NeedForSpeed	sprint.)
It’s	 now	 illegal	 to	 mix	 iterating	 over	 a	 file	 with	 for	 line	 in
file	 and	 calling	 the	 file	 object’s
read()/readline()/readlines()	methods.	Iteration	uses	an
internal	 buffer	 and	 the	 read*()	 methods	 don’t	 use	 that	 buffer.
Instead	 they	 would	 return	 the	 data	 following	 the	 buffer,	 causing
the	 data	 to	 appear	 out	 of	 order.	 Mixing	 iteration	 and	 these
methods	 will	 now	 trigger	 a	 ValueError	 from	 the	 read*()
method.	(Implemented	by	Thomas	Wouters.)
The	 struct	module	 now	 compiles	 structure	 format	 strings	 into

an	internal	representation	and	caches	this	representation,	yielding
a	 20%	 speedup.	 (Contributed	 by	 Bob	 Ippolito	 at	 the
NeedForSpeed	sprint.)
The	re	module	got	a	1	or	2%	speedup	by	switching	to	Python’s
allocator	 functions	 instead	 of	 the	 system’s	 malloc()	 and
free().	 (Contributed	 by	 Jack	 Diederich	 at	 the	 NeedForSpeed
sprint.)
The	 code	 generator’s	 peephole	 optimizer	 now	 performs	 simple
constant	 folding	 in	 expressions.	 If	 you	write	 something	 like	 a	=
2+3,	 the	code	generator	will	do	the	arithmetic	and	produce	code
corresponding	 to	 a	 =	 5.	 (Proposed	 and	 implemented	 by
Raymond	Hettinger.)
Function	calls	are	now	faster	because	code	objects	now	keep	the
most	recently	finished	frame	(a	“zombie	frame”)	in	an	internal	field
of	 the	 code	 object,	 reusing	 it	 the	 next	 time	 the	 code	 object	 is
invoked.	 (Original	 patch	 by	 Michael	 Hudson,	 modified	 by	 Armin
Rigo	and	Richard	Jones;	committed	at	the	NeedForSpeed	sprint.)
Frame	objects	are	also	slightly	smaller,	which	may	improve	cache
locality	 and	 reduce	 memory	 usage	 a	 bit.	 (Contributed	 by	 Neal
Norwitz.)
Python’s	built-in	exceptions	are	now	new-style	classes,	a	change
that	 speeds	 up	 instantiation	 considerably.	 Exception	 handling	 in
Python	2.5	is	therefore	about	30%	faster	than	in	2.4.	(Contributed
by	Richard	 Jones,	Georg	Brandl	 and	Sean	Reifschneider	 at	 the
NeedForSpeed	sprint.)
Importing	 now	 caches	 the	 paths	 tried,	 recording	 whether	 they
exist	 or	 not	 so	 that	 the	 interpreter	 makes	 fewer	 open()	 and
stat()	 calls	 on	 startup.	 (Contributed	 by	Martin	 von	 Löwis	 and
Georg	Brandl.)

New,	Improved,	and	Removed	Modules

The	 standard	 library	 received	many	 enhancements	 and	 bug	 fixes	 in
Python	 2.5.	Here’s	 a	 partial	 list	 of	 the	most	 notable	 changes,	 sorted
alphabetically	 by	 module	 name.	 Consult	 the	 Misc/NEWS	 file	 in	 the
source	 tree	 for	a	more	complete	 list	of	 changes,	or	 look	 through	 the
SVN	logs	for	all	the	details.

The	audioop	module	now	supports	the	a-LAW	encoding,	and	the
code	 for	 u-LAW	 encoding	 has	 been	 improved.	 (Contributed	 by
Lars	Immisch.)

The	codecs	module	gained	support	for	incremental	codecs.	The
codec.lookup()	 function	 now	 returns	 a	 CodecInfo	 instance
instead	of	a	tuple.	CodecInfo	instances	behave	like	a	4-tuple	to
preserve	 backward	 compatibility	 but	 also	 have	 the	 attributes
encode,	 decode,	 incrementalencoder,
incrementaldecoder,	 streamwriter,	 and	 streamreader.
Incremental	 codecs	 can	 receive	 input	 and	 produce	 output	 in
multiple	chunks;	the	output	is	the	same	as	if	the	entire	input	was
fed	 to	 the	 non-incremental	 codec.	 See	 the	 codecs	 module
documentation	for	details.	(Designed	and	implemented	by	Walter
Dörwald.)

The	 collections	module	 gained	 a	 new	 type,	 defaultdict,
that	 subclasses	 the	 standard	 dict	 type.	 The	 new	 type	 mostly
behaves	 like	 a	 dictionary	 but	 constructs	 a	 default	 value	when	 a
key	 isn’t	present,	automatically	adding	 it	 to	 the	dictionary	 for	 the
requested	key	value.

The	 first	 argument	 to	 defaultdict‘s	 constructor	 is	 a	 factory

function	 that	 gets	 called	 whenever	 a	 key	 is	 requested	 but	 not
found.	 This	 factory	 function	 receives	 no	 arguments,	 so	 you	 can
use	 built-in	 type	 constructors	 such	 as	 list()	 or	 int().	 For
example,	you	can	make	an	 index	of	words	based	on	 their	 initial
letter	like	this:

words	=	"""Nel	mezzo	del	cammin	di	nostra	vita

mi	ritrovai	per	una	selva	oscura

che	la	diritta	via	era	smarrita""".lower().split()

index	=	defaultdict(list)

for	w	in	words:

				init_letter	=	w[0]

				index[init_letter].append(w)

Printing	index	results	in	the	following	output:

defaultdict(<type	'list'>,	{'c':	['cammin',	'che'

								'd':	['del',	'di',	'diritta'],	'm':	['mezzo'

								'l':	['la'],	'o':	['oscura'],	'n':	['nel'

								'p':	['per'],	's':	['selva',	'smarrita'],

								'r':	['ritrovai'],	'u':	['una'],	'v':	['vita'

(Contributed	by	Guido	van	Rossum.)

The	 deque	 double-ended	 queue	 type	 supplied	 by	 the
collections	module	now	has	a	remove(value)	method	that
removes	 the	 first	 occurrence	 of	 value	 in	 the	 queue,	 raising
ValueError	 if	 the	 value	 isn’t	 found.	 (Contributed	 by	Raymond
Hettinger.)

New	module:	The	contextlib	module	contains	helper	functions

for	use	with	the	new	‘with‘	statement.	See	section	The	contextlib
module	for	more	about	this	module.

New	module:	The	cProfile	module	is	a	C	implementation	of	the
existing	 profile	 module	 that	 has	 much	 lower	 overhead.	 The
module’s	 interface	 is	 the	 same	 as	 profile:	 you	 run
cProfile.run('main()')	 to	 profile	 a	 function,	 can	 save
profile	data	to	a	file,	etc.	It’s	not	yet	known	if	the	Hotshot	profiler,
which	 is	 also	 written	 in	 C	 but	 doesn’t	 match	 the	 profile
module’s	 interface,	 will	 continue	 to	 be	 maintained	 in	 future
versions	of	Python.	(Contributed	by	Armin	Rigo.)

Also,	the	pstats	module	for	analyzing	the	data	measured	by	the
profiler	 now	 supports	 directing	 the	 output	 to	 any	 file	 object	 by
supplying	 a	 stream	 argument	 to	 the	 Stats	 constructor.
(Contributed	by	Skip	Montanaro.)

The	 csv	 module,	 which	 parses	 files	 in	 comma-separated	 value
format,	 received	 several	 enhancements	 and	 a	 number	 of
bugfixes.	You	can	now	set	the	maximum	size	in	bytes	of	a	field	by
calling	 the	 csv.field_size_limit(new_limit)	 function;
omitting	 the	new_limit	argument	will	 return	 the	currently-set	 limit.
The	reader	class	now	has	a	line_num	attribute	that	counts	the
number	of	physical	 lines	read	from	the	source;	records	can	span
multiple	 physical	 lines,	 so	 line_num	 is	 not	 the	 same	 as	 the
number	of	records	read.

The	 CSV	 parser	 is	 now	 stricter	 about	 multi-line	 quoted	 fields.
Previously,	 if	 a	 line	 ended	 within	 a	 quoted	 field	 without	 a
terminating	 newline	 character,	 a	 newline	 would	 be	 inserted	 into
the	 returned	 field.	This	behavior	 caused	problems	when	 reading
files	that	contained	carriage	return	characters	within	fields,	so	the

code	was	 changed	 to	 return	 the	 field	without	 inserting	newlines.
As	 a	 consequence,	 if	 newlines	 embedded	 within	 fields	 are
important,	 the	 input	 should	 be	 split	 into	 lines	 in	 a	 manner	 that
preserves	the	newline	characters.

(Contributed	by	Skip	Montanaro	and	Andrew	McNamara.)

The	 datetime	 class	 in	 the	 datetime	 module	 now	 has	 a
strptime(string,	format)	method	for	parsing	date	strings,
contributed	by	 Josh	Spoerri.	 It	 uses	 the	same	 format	 characters
as	time.strptime()	and	time.strftime():

from	datetime	import	datetime

ts	=	datetime.strptime('10:13:15	2006-03-07',

																							'%H:%M:%S	%Y-%m-%d')

The	SequenceMatcher.get_matching_blocks()	method	 in
the	difflib	module	now	guarantees	 to	 return	a	minimal	 list	of
blocks	 describing	 matching	 subsequences.	 Previously,	 the
algorithm	would	occasionally	break	a	block	of	matching	elements
into	two	list	entries.	(Enhancement	by	Tim	Peters.)

The	 doctest	 module	 gained	 a	 SKIP	 option	 that	 keeps	 an
example	 from	 being	 executed	 at	 all.	 This	 is	 intended	 for	 code
snippets	 that	 are	 usage	 examples	 intended	 for	 the	 reader	 and
aren’t	actually	test	cases.

An	encoding	parameter	was	added	 to	 the	testfile()	 function
and	the	DocFileSuite	class	to	specify	the	file’s	encoding.	This
makes	 it	 easier	 to	 use	 non-ASCII	 characters	 in	 tests	 contained
within	a	docstring.	(Contributed	by	Bjorn	Tillenius.)

The	 email	 package	 has	 been	 updated	 to	 version	 4.0.
(Contributed	by	Barry	Warsaw.)

The	 fileinput	 module	 was	 made	 more	 flexible.	 Unicode
filenames	are	now	supported,	and	a	mode	parameter	that	defaults
to	"r"	was	added	to	the	input()	function	to	allow	opening	files
in	 binary	 or	 universal	 newlines	 mode.	 Another	 new	 parameter,
openhook,	lets	you	use	a	function	other	than	open()	to	open	the
input	 files.	 Once	 you’re	 iterating	 over	 the	 set	 of	 files,	 the
FileInput	object’s	new	fileno()	returns	the	file	descriptor	for
the	currently	opened	file.	(Contributed	by	Georg	Brandl.)

In	 the	gc	module,	 the	 new	 get_count()	 function	 returns	 a	 3-
tuple	 containing	 the	 current	 collection	 counts	 for	 the	 three	 GC
generations.	 This	 is	 accounting	 information	 for	 the	 garbage
collector;	 when	 these	 counts	 reach	 a	 specified	 threshold,	 a
garbage	 collection	 sweep	 will	 be	 made.	 The	 existing
gc.collect()	 function	 now	 takes	 an	 optional	 generation
argument	 of	 0,	 1,	 or	 2	 to	 specify	 which	 generation	 to	 collect.
(Contributed	by	Barry	Warsaw.)

The	 nsmallest()	 and	 nlargest()	 functions	 in	 the	 heapq
module	now	support	a	key	keyword	parameter	similar	to	the	one
provided	 by	 the	 min()/max()	 functions	 and	 the	 sort()
methods.	For	example:

>>>	import	heapq

>>>	L	=	["short",	'medium',	'longest',	'longer	still'

>>>	heapq.nsmallest(2,	L)		#	Return	two	lowest	elements,	lexicographically

['longer	still',	'longest']

>>>	heapq.nsmallest(2,	L,	key=len)			#	Return	two	shortest	elements

['short',	'medium']

(Contributed	by	Raymond	Hettinger.)

The	itertools.islice()	 function	now	accepts	None	 for	 the
start	and	step	arguments.	This	makes	it	more	compatible	with	the
attributes	of	slice	objects,	so	that	you	can	now	write	the	following:

s	=	slice(5)					#	Create	slice	object

itertools.islice(iterable,	s.start,	s.stop,	s.step

(Contributed	by	Raymond	Hettinger.)

The	 format()	 function	 in	 the	 locale	 module	 has	 been
modified	and	two	new	functions	were	added,	format_string()
and	currency().

The	 format()	 function’s	 val	 parameter	 could	 previously	 be	 a
string	 as	 long	 as	 no	 more	 than	 one	 %char	 specifier	 appeared;
now	 the	parameter	must	be	exactly	one	%char	specifier	with	no
surrounding	text.	An	optional	monetary	parameter	was	also	added
which,	if	True,	will	use	the	locale’s	rules	for	formatting	currency	in
placing	a	separator	between	groups	of	three	digits.

To	 format	 strings	 with	 multiple	 %char	 specifiers,	 use	 the	 new
format_string()	 function	 that	works	 like	format()	but	also
supports	mixing	%char	specifiers	with	arbitrary	text.

A	 new	 currency()	 function	 was	 also	 added	 that	 formats	 a
number	according	to	the	current	locale’s	settings.

(Contributed	by	Georg	Brandl.)

The	 mailbox	 module	 underwent	 a	 massive	 rewrite	 to	 add	 the
capability	to	modify	mailboxes	in	addition	to	reading	them.	A	new

set	of	classes	that	 include	mbox,	MH,	and	Maildir	are	used	 to
read	 mailboxes,	 and	 have	 an	 add(message)	 method	 to	 add
messages,	 remove(key)	 to	 remove	 messages,	 and
lock()/unlock()	 to	 lock/unlock	 the	 mailbox.	 The	 following
example	 converts	 a	 maildir-format	 mailbox	 into	 an	 mbox-format
one:

import	mailbox

#	'factory=None'	uses	email.Message.Message	as	the	class	representing

#	individual	messages.

src	=	mailbox.Maildir('maildir',	factory=None)

dest	=	mailbox.mbox('/tmp/mbox')

for	msg	in	src:

				dest.add(msg)

(Contributed	 by	 Gregory	 K.	 Johnson.	 Funding	 was	 provided	 by
Google’s	2005	Summer	of	Code.)

New	 module:	 the	 msilib	 module	 allows	 creating	 Microsoft
Installer	.msi	 files	and	CAB	files.	Some	support	 for	 reading	 the
.msi	 database	 is	 also	 included.	 (Contributed	 by	 Martin	 von
Löwis.)

The	nis	module	now	supports	accessing	domains	other	than	the
system	 default	 domain	 by	 supplying	 a	 domain	 argument	 to	 the
nis.match()	and	nis.maps()	 functions.	(Contributed	by	Ben
Bell.)

The	 operator	 module’s	 itemgetter()	 and	 attrgetter()
functions	 now	 support	 multiple	 fields.	 A	 call	 such	 as
operator.attrgetter('a',	'b')	will	 return	a	 function	 that

retrieves	the	a	and	b	attributes.	Combining	this	new	feature	with
the	 sort()	 method’s	 key	 parameter	 lets	 you	 easily	 sort	 lists
using	multiple	fields.	(Contributed	by	Raymond	Hettinger.)

The	optparse	module	was	updated	to	version	1.5.1	of	the	Optik
library.	The	OptionParser	class	gained	an	epilog	attribute,	a
string	 that	 will	 be	 printed	 after	 the	 help	 message,	 and	 a
destroy()	 method	 to	 break	 reference	 cycles	 created	 by	 the
object.	(Contributed	by	Greg	Ward.)

The	 os	 module	 underwent	 several	 changes.	 The
stat_float_times	variable	now	defaults	to	true,	meaning	that
os.stat()	 will	 now	 return	 time	 values	 as	 floats.	 (This	 doesn’t
necessarily	 mean	 that	 os.stat()	 will	 return	 times	 that	 are
precise	 to	 fractions	 of	 a	 second;	 not	 all	 systems	 support	 such
precision.)

Constants	 named	 os.SEEK_SET,	 os.SEEK_CUR,	 and
os.SEEK_END	have	been	added;	these	are	the	parameters	to	the
os.lseek()	 function.	 Two	 new	 constants	 for	 locking	 are
os.O_SHLOCK	and	os.O_EXLOCK.

Two	new	functions,	wait3()	and	wait4(),	were	added.	They’re
similar	the	waitpid()	function	which	waits	for	a	child	process	to
exit	and	returns	a	 tuple	of	 the	process	 ID	and	 its	exit	status,	but
wait3()	 and	 wait4()	 return	 additional	 information.	 wait3()
doesn’t	 take	 a	 process	 ID	 as	 input,	 so	 it	 waits	 for	 any	 child
process	 to	 exit	 and	 returns	 a	 3-tuple	 of	 process-id,	 exit-status,
resource-usage	 as	 returned	 from	 the	 resource.getrusage()
function.	 wait4(pid)	 does	 take	 a	 process	 ID.	 (Contributed	 by
Chad	J.	Schroeder.)

On	 FreeBSD,	 the	 os.stat()	 function	 now	 returns	 times	 with
nanosecond	resolution,	and	the	returned	object	now	has	st_gen
and	st_birthtime.	The	st_flags	attribute	is	also	available,	if
the	 platform	 supports	 it.	 (Contributed	 by	 Antti	 Louko	 and	 Diego
Pettenò.)

The	Python	debugger	provided	by	the	pdb	module	can	now	store
lists	of	commands	 to	execute	when	a	breakpoint	 is	 reached	and
execution	 stops.	 Once	 breakpoint	 #1	 has	 been	 created,	 enter
commands	1	 and	 enter	 a	 series	 of	 commands	 to	 be	 executed,
finishing	 the	 list	 with	 end.	 The	 command	 list	 can	 include
commands	 that	 resume	execution,	such	as	continue	or	next.
(Contributed	by	Grégoire	Dooms.)

The	 pickle	 and	 cPickle	 modules	 no	 longer	 accept	 a	 return
value	 of	 None	 from	 the	 __reduce__()	 method;	 the	 method
must	 return	 a	 tuple	 of	 arguments	 instead.	 The	 ability	 to	 return
None	 was	 deprecated	 in	 Python	 2.4,	 so	 this	 completes	 the
removal	of	the	feature.

The	 pkgutil	 module,	 containing	 various	 utility	 functions	 for
finding	 packages,	 was	 enhanced	 to	 support	 PEP	 302’s	 import
hooks	 and	 now	 also	 works	 for	 packages	 stored	 in	 ZIP-format
archives.	(Contributed	by	Phillip	J.	Eby.)

The	 pybench	 benchmark	 suite	 by	 Marc-André	 Lemburg	 is	 now
included	 in	 the	Tools/pybench	directory.	The	pybench	suite	 is
an	 improvement	 on	 the	 commonly	 used	 pystone.py	 program
because	pybench	provides	a	more	detailed	measurement	of	 the
interpreter’s	speed.	It	times	particular	operations	such	as	function
calls,	 tuple	 slicing,	 method	 lookups,	 and	 numeric	 operations,
instead	of	performing	many	different	operations	and	reducing	the

result	to	a	single	number	as	pystone.py	does.

The	pyexpat	module	now	uses	version	2.0	of	the	Expat	parser.
(Contributed	by	Trent	Mick.)

The	Queue	class	provided	by	the	Queue	module	gained	two	new
methods.	join()	 blocks	until	 all	 items	 in	 the	queue	have	been
retrieved	 and	 all	 processing	 work	 on	 the	 items	 have	 been
completed.	 Worker	 threads	 call	 the	 other	 new	 method,
task_done(),	 to	 signal	 that	 processing	 for	 an	 item	 has	 been
completed.	(Contributed	by	Raymond	Hettinger.)

The	 old	 regex	 and	 regsub	 modules,	 which	 have	 been
deprecated	 ever	 since	 Python	 2.0,	 have	 finally	 been	 deleted.
Other	deleted	modules:	statcache,	tzparse,	whrandom.

Also	 deleted:	 the	 lib-old	 directory,	 which	 includes	 ancient
modules	 such	 as	 dircmp	 and	 ni,	 was	 removed.	 lib-old
wasn’t	 on	 the	 default	 sys.path,	 so	 unless	 your	 programs
explicitly	added	the	directory	to	sys.path,	this	removal	shouldn’t
affect	your	code.

The	rlcompleter	module	 is	no	 longer	dependent	on	 importing
the	 readline	 module	 and	 therefore	 now	 works	 on	 non-Unix
platforms.	(Patch	from	Robert	Kiendl.)

The	 SimpleXMLRPCServer	 and	 DocXMLRPCServer	 classes
now	 have	 a	 rpc_paths	 attribute	 that	 constrains	 XML-RPC
operations	 to	 a	 limited	 set	 of	 URL	 paths;	 the	 default	 is	 to	 allow
only	 '/'	 and	 '/RPC2'.	 Setting	 rpc_paths	 to	 None	 or	 an
empty	tuple	disables	this	path	checking.

The	 socket	 module	 now	 supports	 AF_NETLINK	 sockets	 on
Linux,	thanks	to	a	patch	from	Philippe	Biondi.	Netlink	sockets	are
a	Linux-specific	mechanism	for	communications	between	a	user-
space	process	and	kernel	code;	an	introductory	article	about	them
is	 at	 http://www.linuxjournal.com/article/7356.	 In	 Python	 code,
netlink	addresses	are	represented	as	a	tuple	of	2	integers,	(pid,
group_mask).

Two	new	methods	on	socket	objects,	recv_into(buffer)	and
recvfrom_into(buffer),	store	the	received	data	in	an	object
that	supports	the	buffer	protocol	instead	of	returning	the	data	as	a
string.	This	means	you	can	put	the	data	directly	into	an	array	or	a
memory-mapped	file.

Socket	 objects	 also	 gained	 getfamily(),	 gettype(),	 and
getproto()	accessor	methods	 to	 retrieve	 the	 family,	 type,	and
protocol	values	for	the	socket.

New	module:	 the	spwd	module	provides	 functions	 for	accessing
the	shadow	password	database	on	systems	that	support	shadow
passwords.

The	struct	is	now	faster	because	it	compiles	format	strings	into
Struct	 objects	 with	 pack()	 and	 unpack()	 methods.	 This	 is
similar	 to	 how	 the	 re	 module	 lets	 you	 create	 compiled	 regular
expression	 objects.	 You	 can	 still	 use	 the	 module-level	 pack()
and	 unpack()	 functions;	 they’ll	 create	 Struct	 objects	 and
cache	them.	Or	you	can	use	Struct	instances	directly:

s	=	struct.Struct('ih3s')

data	=	s.pack(1972,	187,	'abc')

http://www.linuxjournal.com/article/7356

year,	number,	name	=	s.unpack(data)

You	 can	 also	 pack	 and	 unpack	 data	 to	 and	 from	 buffer	 objects
directly	 using	 the	 pack_into(buffer,	 offset,	 v1,	 v2,
...)	 and	 unpack_from(buffer,	 offset)	 methods.	 This
lets	 you	 store	 data	 directly	 into	 an	 array	 or	 a	memory-	mapped
file.

(Struct	 objects	 were	 implemented	 by	 Bob	 Ippolito	 at	 the
NeedForSpeed	 sprint.	 Support	 for	 buffer	 objects	 was	 added	 by
Martin	Blais,	also	at	the	NeedForSpeed	sprint.)

The	Python	developers	switched	from	CVS	to	Subversion	during
the	 2.5	 development	 process.	 Information	 about	 the	 exact	 build
version	 is	available	as	 the	sys.subversion	variable,	a	3-tuple
of	 (interpreter-name,	 branch-name,	 revision-

range).	For	example,	at	 the	time	of	writing	my	copy	of	2.5	was
reporting	('CPython',	'trunk',	'45313:45315').

This	 information	 is	 also	 available	 to	 C	 extensions	 via	 the
Py_GetBuildInfo()	 function	 that	 returns	 a	 string	 of	 build
information	like	this:	"trunk:45355:45356M,	Apr	13	2006,
07:42:19".	(Contributed	by	Barry	Warsaw.)

Another	 new	 function,	 sys._current_frames(),	 returns	 the
current	 stack	 frames	 for	 all	 running	 threads	 as	 a	 dictionary
mapping	 thread	 identifiers	 to	 the	 topmost	 stack	 frame	 currently
active	in	that	thread	at	the	time	the	function	is	called.	(Contributed
by	Tim	Peters.)

The	 TarFile	 class	 in	 the	 tarfile	 module	 now	 has	 an
extractall()	 method	 that	 extracts	 all	 members	 from	 the

archive	into	the	current	working	directory.	It’s	also	possible	to	set
a	different	directory	as	the	extraction	target,	and	to	unpack	only	a
subset	of	the	archive’s	members.

The	 compression	 used	 for	 a	 tarfile	 opened	 in	 stream	mode	 can
now	 be	 autodetected	 using	 the	 mode	 'r|*'.	 (Contributed	 by
Lars	Gustäbel.)

The	 threading	 module	 now	 lets	 you	 set	 the	 stack	 size	 used
when	 new	 threads	 are	 created.	 The	 stack_size([*size*])
function	returns	the	currently	configured	stack	size,	and	supplying
the	 optional	 size	 parameter	 sets	 a	 new	 value.	 Not	 all	 platforms
support	changing	the	stack	size,	but	Windows,	POSIX	threading,
and	OS/2	all	do.	(Contributed	by	Andrew	MacIntyre.)

The	 unicodedata	 module	 has	 been	 updated	 to	 use	 version
4.1.0	of	the	Unicode	character	database.	Version	3.2.0	is	required
by	 some	 specifications,	 so	 it’s	 still	 available	 as
unicodedata.ucd_3_2_0.

New	 module:	 the	 uuid	 module	 generates	 universally	 unique
identifiers	 (UUIDs)	 according	 to	 RFC	 4122.	 The	 RFC	 defines
several	different	UUID	versions	that	are	generated	from	a	starting
string,	 from	 system	 properties,	 or	 purely	 randomly.	 This	module
contains	a	UUID	class	and	functions	named	uuid1(),	uuid3(),
uuid4(),	and	uuid5()	 to	generate	different	versions	of	UUID.
(Version	 2	 UUIDs	 are	 not	 specified	 in	 RFC	 4122	 and	 are	 not
supported	by	this	module.)

>>>	import	uuid

>>>	#	make	a	UUID	based	on	the	host	ID	and	current	time

>>>	uuid.uuid1()

UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

http://tools.ietf.org/html/rfc4122.html
http://tools.ietf.org/html/rfc4122.html

>>>	#	make	a	UUID	using	an	MD5	hash	of	a	namespace	UUID	and	a	name

>>>	uuid.uuid3(uuid.NAMESPACE_DNS,	'python.org')

UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

>>>	#	make	a	random	UUID

>>>	uuid.uuid4()

UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>>	#	make	a	UUID	using	a	SHA-1	hash	of	a	namespace	UUID	and	a	name

>>>	uuid.uuid5(uuid.NAMESPACE_DNS,	'python.org')

UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

(Contributed	by	Ka-Ping	Yee.)

The	 weakref	 module’s	 WeakKeyDictionary	 and
WeakValueDictionary	types	gained	new	methods	for	iterating
over	 the	 weak	 references	 contained	 in	 the	 dictionary.
iterkeyrefs()	 and	 keyrefs()	 methods	 were	 added	 to
WeakKeyDictionary,	 and	 itervaluerefs()	 and
valuerefs()	 were	 added	 to	 WeakValueDictionary.
(Contributed	by	Fred	L.	Drake,	Jr.)

The	webbrowser	module	 received	a	number	of	enhancements.
It’s	now	usable	as	a	script	with	python	-m	webbrowser,	taking
a	URL	as	the	argument;	there	are	a	number	of	switches	to	control
the	 behaviour	 (-n	 for	 a	 new	 browser	 window,	 -t	 for	 a	 new	 tab).
New	 module-level	 functions,	 open_new()	 and
open_new_tab(),	 were	 added	 to	 support	 this.	 The	 module’s
open()	 function	 supports	 an	 additional	 feature,	 an	 autoraise
parameter	 that	 signals	 whether	 to	 raise	 the	 open	 window	when
possible.	 A	 number	 of	 additional	 browsers	 were	 added	 to	 the
supported	 list	 such	 as	 Firefox,	 Opera,	 Konqueror,	 and	 elinks.

(Contributed	by	Oleg	Broytmann	and	Georg	Brandl.)

The	 xmlrpclib	 module	 now	 supports	 returning	 datetime
objects	 for	 the	 XML-RPC	 date	 type.	 Supply
use_datetime=True	 to	 the	 loads()	 function	 or	 the
Unmarshaller	class	to	enable	this	feature.	(Contributed	by	Skip
Montanaro.)

The	 zipfile	 module	 now	 supports	 the	 ZIP64	 version	 of	 the
format,	meaning	that	a	.zip	archive	can	now	be	larger	than	4	GiB
and	can	contain	individual	files	larger	than	4	GiB.	(Contributed	by
Ronald	Oussoren.)

The	 zlib	 module’s	 Compress	 and	 Decompress	 objects	 now
support	 a	 copy()	 method	 that	 makes	 a	 copy	 of	 the	 object’s
internal	 state	 and	 returns	 a	 new	 Compress	 or	 Decompress
object.	(Contributed	by	Chris	AtLee.)

The	ctypes	package

The	ctypes	package,	written	by	Thomas	Heller,	has	been	added	 to
the	standard	library.	ctypes	lets	you	call	arbitrary	functions	in	shared
libraries	 or	 DLLs.	 Long-time	 users	 may	 remember	 the	 dl	 module,
which	 provides	 functions	 for	 loading	 shared	 libraries	 and	 calling
functions	in	them.	The	ctypes	package	is	much	fancier.

To	 load	a	 shared	 library	 or	DLL,	 you	must	 create	an	 instance	of	 the
CDLL	class	and	provide	the	name	or	path	of	the	shared	library	or	DLL.
Once	 that’s	done,	you	can	call	arbitrary	 functions	by	accessing	 them
as	attributes	of	the	CDLL	object.

import	ctypes

libc	=	ctypes.CDLL('libc.so.6')

result	=	libc.printf("Line	of	output\n")

Type	 constructors	 for	 the	 various	 C	 types	 are	 provided:	 c_int(),
c_float(),	 c_double(),	 c_char_p()	 (equivalent	 to	 char	 *),
and	so	forth.	Unlike	Python’s	types,	the	C	versions	are	all	mutable;	you
can	 assign	 to	 their	 value	 attribute	 to	 change	 the	 wrapped	 value.
Python	 integers	 and	 strings	 will	 be	 automatically	 converted	 to	 the
corresponding	C	 types,	 but	 for	 other	 types	 you	must	 call	 the	 correct
type	constructor.	(And	I	mean	must;	getting	it	wrong	will	often	result	in
the	interpreter	crashing	with	a	segmentation	fault.)

You	 shouldn’t	 use	 c_char_p()	 with	 a	 Python	 string	 when	 the	 C
function	will	 be	modifying	 the	memory	 area,	 because	Python	 strings
are	supposed	 to	be	 immutable;	breaking	 this	 rule	will	cause	puzzling
bugs.	 When	 you	 need	 a	 modifiable	 memory	 area,	 use
create_string_buffer():

s	=	"this	is	a	string"

buf	=	ctypes.create_string_buffer(s)

libc.strfry(buf)

C	 functions	 are	 assumed	 to	 return	 integers,	 but	 you	 can	 set	 the
restype	attribute	of	the	function	object	to	change	this:

>>>	libc.atof('2.71828')

-1783957616

>>>	libc.atof.restype	=	ctypes.c_double

>>>	libc.atof('2.71828')

2.71828

ctypes	 also	 provides	 a	 wrapper	 for	 Python’s	 C	 API	 as	 the

ctypes.pythonapi	object.	This	object	does	not	 release	 the	 global
interpreter	 lock	 before	 calling	 a	 function,	 because	 the	 lock	 must	 be
held	when	calling	into	the	interpreter’s	code.	There’s	a	py_object()
type	 constructor	 that	 will	 create	 a	 PyObject	 *	 pointer.	 A	 simple
usage:

import	ctypes

d	=	{}

ctypes.pythonapi.PyObject_SetItem(ctypes.py_object(d

										ctypes.py_object("abc"),		ctypes.py_object

#	d	is	now	{'abc',	1}.

Don’t	 forget	 to	 use	 py_object();	 if	 it’s	 omitted	 you	 end	 up	 with	 a
segmentation	fault.

ctypes	 has	 been	 around	 for	 a	 while,	 but	 people	 still	 write	 and
distribution	hand-coded	extension	modules	because	you	can’t	rely	on
ctypes	being	present.	Perhaps	developers	will	begin	to	write	Python
wrappers	 atop	 a	 library	 accessed	 through	 ctypes	 instead	 of
extension	modules,	now	that	ctypes	is	included	with	core	Python.

See	also:

http://starship.python.net/crew/theller/ctypes/
The	ctypes	web	page,	with	a	tutorial,	reference,	and	FAQ.

The	documentation	for	the	ctypes	module.

The	ElementTree	package

A	 subset	 of	 Fredrik	 Lundh’s	ElementTree	 library	 for	 processing	XML

http://starship.python.net/crew/theller/ctypes/

has	been	added	to	the	standard	library	as	xml.etree.	The	available
modules	are	ElementTree,	ElementPath,	and	ElementInclude
from	ElementTree	 1.2.6.	 The	 cElementTree	 accelerator	 module	 is
also	included.

The	 rest	 of	 this	 section	 will	 provide	 a	 brief	 overview	 of	 using
ElementTree.	 Full	 documentation	 for	 ElementTree	 is	 available	 at
http://effbot.org/zone/element-index.htm.

ElementTree	 represents	 an	 XML	 document	 as	 a	 tree	 of	 element
nodes.	The	 text	 content	 of	 the	document	 is	 stored	as	 the	 text	and
tail	 attributes	 of	 (This	 is	 one	 of	 the	 major	 differences	 between
ElementTree	and	 the	Document	Object	Model;	 in	 the	DOM	there	are
many	different	types	of	node,	including	TextNode.)

The	 most	 commonly	 used	 parsing	 function	 is	 parse(),	 that	 takes
either	a	string	(assumed	to	contain	a	filename)	or	a	file-like	object	and
returns	an	ElementTree	instance:

from	xml.etree	import	ElementTree	as	ET

tree	=	ET.parse('ex-1.xml')

feed	=	urllib.urlopen(

										'http://planet.python.org/rss10.xml')

tree	=	ET.parse(feed)

Once	 you	 have	 an	 ElementTree	 instance,	 you	 can	 call	 its
getroot()	method	to	get	the	root	Element	node.

There’s	also	an	XML()	 function	 that	 takes	a	string	 literal	and	returns
an	Element	 node	 (not	 an	 ElementTree).	 This	 function	 provides	 a
tidy	way	to	incorporate	XML	fragments,	approaching	the	convenience

http://effbot.org/zone/element-index.htm

of	an	XML	literal:

svg	=	ET.XML("""<svg	width="10px"	version="1.0">

													</svg>""")

svg.set('height',	'320px')

svg.append(elem1)

Each	 XML	 element	 supports	 some	 dictionary-like	 and	 some	 list-like
access	 methods.	 Dictionary-like	 operations	 are	 used	 to	 access
attribute	 values,	 and	 list-like	 operations	 are	 used	 to	 access	 child
nodes.

Operation Result

elem[n] Returns	n’th	child	element.

elem[m:n]
Returns	list	of	m’th	through	n’th	child
elements.

len(elem) Returns	number	of	child	elements.

list(elem) Returns	list	of	child	elements.

elem.append(elem2) Adds	elem2	as	a	child.

elem.insert(index,

elem2)
Inserts	elem2	at	the	specified	location.

del	elem[n] Deletes	n’th	child	element.

elem.keys() Returns	list	of	attribute	names.

elem.get(name) Returns	value	of	attribute	name.

elem.set(name,

value)
Sets	new	value	for	attribute	name.

elem.attrib
Retrieves	the	dictionary	containing
attributes.

del

elem.attrib[name]
Deletes	attribute	name.

Comments	 and	 processing	 instructions	 are	 also	 represented	 as
Element	 nodes.	 To	 check	 if	 a	 node	 is	 a	 comment	 or	 processing
instructions:

if	elem.tag	is	ET.Comment:

				...

elif	elem.tag	is	ET.ProcessingInstruction:

				...

To	generate	XML	output,	you	should	call	the	ElementTree.write()
method.	Like	parse(),	it	can	take	either	a	string	or	a	file-like	object:

#	Encoding	is	US-ASCII

tree.write('output.xml')

#	Encoding	is	UTF-8

f	=	open('output.xml',	'w')

tree.write(f,	encoding='utf-8')

(Caution:	 the	 default	 encoding	 used	 for	 output	 is	ASCII.	 For	 general
XML	work,	where	 an	 element’s	 name	may	 contain	 arbitrary	Unicode
characters,	ASCII	isn’t	a	very	useful	encoding	because	it	will	raise	an
exception	 if	 an	 element’s	 name	 contains	 any	 characters	with	 values
greater	 than	 127.	 Therefore,	 it’s	 best	 to	 specify	 a	 different	 encoding
such	as	UTF-8	that	can	handle	any	Unicode	character.)

This	section	is	only	a	partial	description	of	the	ElementTree	interfaces.
Please	read	the	package’s	official	documentation	for	more	details.

See	also:

http://effbot.org/zone/element-index.htm
Official	documentation	for	ElementTree.

http://effbot.org/zone/element-index.htm

The	hashlib	package

A	new	hashlib	module,	written	by	Gregory	P.	Smith,	has	been	added
to	 replace	 the	 md5	 and	 sha	 modules.	 hashlib	 adds	 support	 for
additional	 secure	 hashes	 (SHA-224,	 SHA-256,	 SHA-384,	 and	 SHA-
512).	 When	 available,	 the	 module	 uses	 OpenSSL	 for	 fast	 platform
optimized	implementations	of	algorithms.

The	old	md5	and	sha	modules	still	exist	as	wrappers	around	hashlib
to	 preserve	 backwards	 compatibility.	 The	 new	 module’s	 interface	 is
very	 close	 to	 that	 of	 the	 old	 modules,	 but	 not	 identical.	 The	 most
significant	difference	is	that	the	constructor	functions	for	creating	new
hashing	objects	are	named	differently.

#	Old	versions

h	=	md5.md5()

h	=	md5.new()

#	New	version

h	=	hashlib.md5()

#	Old	versions

h	=	sha.sha()

h	=	sha.new()

#	New	version

h	=	hashlib.sha1()

#	Hash	that	weren't	previously	available

h	=	hashlib.sha224()

h	=	hashlib.sha256()

h	=	hashlib.sha384()

h	=	hashlib.sha512()

#	Alternative	form

h	=	hashlib.new('md5')										#	Provide	algorithm	as	a	string

Once	a	hash	object	has	been	created,	 its	methods	are	 the	same	as
before:	update(string)	hashes	the	specified	string	into	the	current
digest	state,	digest()	and	hexdigest()	return	the	digest	value	as
a	 binary	 string	 or	 a	 string	 of	 hex	 digits,	 and	 copy()	 returns	 a	 new
hashing	object	with	the	same	digest	state.

See	also: 	The	documentation	for	the	hashlib	module.

The	sqlite3	package

The	 pysqlite	 module	 (http://www.pysqlite.org),	 a	 wrapper	 for	 the
SQLite	embedded	database,	has	been	added	 to	 the	standard	 library
under	the	package	name	sqlite3.

SQLite	 is	a	C	 library	 that	provides	a	 lightweight	disk-based	database
that	doesn’t	 require	a	 separate	 server	process	and	allows	accessing
the	database	using	a	nonstandard	variant	of	the	SQL	query	language.
Some	applications	can	use	SQLite	 for	 internal	data	storage.	 It’s	also
possible	 to	 prototype	 an	 application	 using	 SQLite	 and	 then	 port	 the
code	to	a	larger	database	such	as	PostgreSQL	or	Oracle.

pysqlite	was	written	by	Gerhard	Häring	and	provides	a	SQL	interface
compliant	with	the	DB-API	2.0	specification	described	by	PEP	249.

If	 you’re	 compiling	 the	 Python	 source	 yourself,	 note	 that	 the	 source
tree	doesn’t	include	the	SQLite	code,	only	the	wrapper	module.	You’ll
need	 to	 have	 the	 SQLite	 libraries	 and	 headers	 installed	 before
compiling	Python,	and	the	build	process	will	compile	the	module	when
the	necessary	headers	are	available.

http://www.pysqlite.org
http://www.python.org/dev/peps/pep-0249

To	use	 the	module,	 you	must	 first	 create	a	 Connection	object	 that
represents	 the	 database.	 Here	 the	 data	 will	 be	 stored	 in	 the
/tmp/example	file:

conn	=	sqlite3.connect('/tmp/example')

You	can	also	supply	the	special	name	:memory:	to	create	a	database
in	RAM.

Once	you	have	a	Connection,	you	can	create	a	Cursor	object	and
call	its	execute()	method	to	perform	SQL	commands:

c	=	conn.cursor()

#	Create	table

c.execute('''create	table	stocks

(date	text,	trans	text,	symbol	text,

	qty	real,	price	real)''')

#	Insert	a	row	of	data

c.execute("""insert	into	stocks

										values	('2006-01-05','BUY','RHAT',100,35.14)"""

Usually	 your	 SQL	 operations	 will	 need	 to	 use	 values	 from	 Python
variables.	 You	 shouldn’t	 assemble	 your	 query	 using	 Python’s	 string
operations	 because	 doing	 so	 is	 insecure;	 it	 makes	 your	 program
vulnerable	to	an	SQL	injection	attack.

Instead,	 use	 the	 DB-API’s	 parameter	 substitution.	 Put	 ?	 as	 a
placeholder	 wherever	 you	 want	 to	 use	 a	 value,	 and	 then	 provide	 a
tuple	 of	 values	 as	 the	 second	 argument	 to	 the	 cursor’s	 execute()
method.	 (Other	 database	 modules	 may	 use	 a	 different	 placeholder,
such	as	%s	or	:1.)	For	example:

#	Never	do	this	--	insecure!

symbol	=	'IBM'

c.execute("...	where	symbol	=	'%s'"	%	symbol)

#	Do	this	instead

t	=	(symbol,)

c.execute('select	*	from	stocks	where	symbol=?',	t)

#	Larger	example

for	t	in	(('2006-03-28',	'BUY',	'IBM',	1000,	45.00),

										('2006-04-05',	'BUY',	'MSOFT',	1000,	72.00

										('2006-04-06',	'SELL',	'IBM',	500,	53.00),

):

				c.execute('insert	into	stocks	values	(?,?,?,?,?)'

To	retrieve	data	after	executing	a	SELECT	statement,	you	can	either
treat	 the	cursor	as	an	 iterator,	call	 the	cursor’s	fetchone()	method
to	retrieve	a	single	matching	row,	or	call	fetchall()	 to	get	a	 list	of
the	matching	rows.

This	example	uses	the	iterator	form:

>>>	c	=	conn.cursor()

>>>	c.execute('select	*	from	stocks	order	by	price')

>>>	for	row	in	c:

...				print	row

...

(u'2006-01-05',	u'BUY',	u'RHAT',	100,	35.140000000000001)

(u'2006-03-28',	u'BUY',	u'IBM',	1000,	45.0)

(u'2006-04-06',	u'SELL',	u'IBM',	500,	53.0)

(u'2006-04-05',	u'BUY',	u'MSOFT',	1000,	72.0)

>>>

For	more	information	about	the	SQL	dialect	supported	by	SQLite,	see

http://www.sqlite.org.

See	also:

http://www.pysqlite.org
The	pysqlite	web	page.

http://www.sqlite.org
The	SQLite	web	page;	 the	 documentation	 describes	 the	 syntax
and	the	available	data	types	for	the	supported	SQL	dialect.

The	documentation	for	the	sqlite3	module.

PEP	249	-	Database	API	Specification	2.0
PEP	written	by	Marc-André	Lemburg.

The	wsgiref	package

The	Web	Server	Gateway	 Interface	 (WSGI)	 v1.0	 defines	 a	 standard
interface	 between	 web	 servers	 and	 Python	 web	 applications	 and	 is
described	 in	 PEP	 333.	 The	 wsgiref	 package	 is	 a	 reference
implementation	of	the	WSGI	specification.

The	 package	 includes	 a	 basic	 HTTP	 server	 that	 will	 run	 a	 WSGI
application;	 this	 server	 is	 useful	 for	 debugging	 but	 isn’t	 intended	 for
production	use.	Setting	up	a	server	takes	only	a	few	lines	of	code:

from	wsgiref	import	simple_server

wsgi_app	=	...

host	=	''

port	=	8000

httpd	=	simple_server.make_server(host,	port,	wsgi_app

httpd.serve_forever()

http://www.sqlite.org
http://www.pysqlite.org
http://www.sqlite.org
http://www.python.org/dev/peps/pep-0249
http://www.python.org/dev/peps/pep-0333

See	also:

http://www.wsgi.org
A	central	web	site	for	WSGI-related	resources.

PEP	333	-	Python	Web	Server	Gateway	Interface	v1.0
PEP	written	by	Phillip	J.	Eby.

http://www.wsgi.org
http://www.python.org/dev/peps/pep-0333

Build	and	C	API	Changes

Changes	to	Python’s	build	process	and	to	the	C	API	include:

The	Python	source	tree	was	converted	from	CVS	to	Subversion,
in	 a	 complex	 migration	 procedure	 that	 was	 supervised	 and
flawlessly	 carried	 out	 by	 Martin	 von	 Löwis.	 The	 procedure	 was
developed	as	PEP	347.

Coverity,	 a	 company	 that	 markets	 a	 source	 code	 analysis	 tool
called	 Prevent,	 provided	 the	 results	 of	 their	 examination	 of	 the
Python	source	code.	The	analysis	found	about	60	bugs	that	were
quickly	fixed.	Many	of	 the	bugs	were	refcounting	problems,	often
occurring	 in	error-handling	code.	See	http://scan.coverity.com	 for
the	statistics.

The	 largest	 change	 to	 the	 C	 API	 came	 from	 PEP	 353,	 which
modifies	 the	 interpreter	 to	 use	 a	 Py_ssize_t	 type	 definition
instead	of	int.	See	the	earlier	section	PEP	353:	Using	ssize_t	as
the	index	type	for	a	discussion	of	this	change.

The	design	of	 the	bytecode	compiler	 has	 changed	a	great	 deal,
no	 longer	 generating	 bytecode	 by	 traversing	 the	 parse	 tree.
Instead	the	parse	tree	is	converted	to	an	abstract	syntax	tree	(or
AST),	and	it	is	the	abstract	syntax	tree	that’s	traversed	to	produce
the	bytecode.

It’s	possible	 for	Python	code	 to	obtain	AST	objects	by	using	 the
compile()	 built-in	 and	 specifying	 _ast.PyCF_ONLY_AST	 as
the	value	of	the	flags	parameter:

from	_ast	import	PyCF_ONLY_AST

http://www.python.org/dev/peps/pep-0347
http://scan.coverity.com
http://www.python.org/dev/peps/pep-0353

ast	=	compile("""a=0

for	i	in	range(10):

				a	+=	i

""",	"<string>",	'exec',	PyCF_ONLY_AST)

assignment	=	ast.body[0]

for_loop	=	ast.body[1]

No	official	documentation	has	been	written	for	the	AST	code	yet,
but	PEP	 339	 discusses	 the	 design.	 To	 start	 learning	 about	 the
code,	 read	 the	 definition	 of	 the	 various	 AST	 nodes	 in
Parser/Python.asdl.	 A	 Python	 script	 reads	 this	 file	 and
generates	a	set	of	C	structure	definitions	 in	Include/Python-
ast.h.	 The	 PyParser_ASTFromString()	 and
PyParser_ASTFromFile(),	 defined	 in
Include/pythonrun.h,	take	Python	source	as	input	and	return
the	root	of	an	AST	representing	the	contents.	This	AST	can	then
be	 turned	 into	 a	 code	 object	 by	 PyAST_Compile().	 For	 more
information,	 read	 the	 source	 code,	 and	 then	 ask	 questions	 on
python-dev.

The	 AST	 code	 was	 developed	 under	 Jeremy	 Hylton’s
management,	 and	 implemented	 by	 (in	 alphabetical	 order)	 Brett
Cannon,	 Nick	 Coghlan,	 Grant	 Edwards,	 John	 Ehresman,	 Kurt
Kaiser,	 Neal	 Norwitz,	 Tim	 Peters,	 Armin	 Rigo,	 and	 Neil
Schemenauer,	plus	the	participants	in	a	number	of	AST	sprints	at
conferences	such	as	PyCon.

Evan	Jones’s	patch	to	obmalloc,	first	described	in	a	talk	at	PyCon
DC	 2005,	 was	 applied.	 Python	 2.4	 allocated	 small	 objects	 in
256K-sized	 arenas,	 but	 never	 freed	 arenas.	 With	 this	 patch,
Python	will	free	arenas	when	they’re	empty.	The	net	effect	is	that
on	 some	 platforms,	 when	 you	 allocate	 many	 objects,	 Python’s

http://www.python.org/dev/peps/pep-0339

memory	usage	may	actually	drop	when	you	delete	them	and	the
memory	may	be	returned	to	 the	operating	system.	(Implemented
by	Evan	Jones,	and	reworked	by	Tim	Peters.)

Note	 that	 this	 change	means	 extension	modules	must	 be	more
careful	when	allocating	memory.	Python’s	API	has	many	different
functions	for	allocating	memory	that	are	grouped	into	families.	For
example,	 PyMem_Malloc(),	 PyMem_Realloc(),	 and
PyMem_Free()	are	one	family	that	allocates	raw	memory,	while
PyObject_Malloc(),	 PyObject_Realloc(),	 and
PyObject_Free()	 are	 another	 family	 that’s	 supposed	 to	 be
used	for	creating	Python	objects.

Previously	 these	 different	 families	 all	 reduced	 to	 the	 platform’s
malloc()	 and	 free()	 functions.	 This	meant	 it	 didn’t	matter	 if
you	 got	 things	 wrong	 and	 allocated	memory	 with	 the	 PyMem()
function	 but	 freed	 it	 with	 the	 PyObject()	 function.	 With	 2.5’s
changes	 to	obmalloc,	 these	 families	now	do	different	 things	and
mismatches	will	probably	result	in	a	segfault.	You	should	carefully
test	your	C	extension	modules	with	Python	2.5.

The	 built-in	 set	 types	 now	 have	 an	 official	 C	 API.	 Call
PySet_New()	 and	 PyFrozenSet_New()	 to	 create	 a	 new	 set,
PySet_Add()	 and	 PySet_Discard()	 to	 add	 and	 remove
elements,	 and	 PySet_Contains()	 and	 PySet_Size()	 to
examine	the	set’s	state.	(Contributed	by	Raymond	Hettinger.)

C	code	can	now	obtain	information	about	the	exact	revision	of	the
Python	 interpreter	 by	 calling	 the	 Py_GetBuildInfo()	 function
that	 returns	 a	 string	 of	 build	 information	 like	 this:
"trunk:45355:45356M,	 Apr	 13	 2006,	 07:42:19".
(Contributed	by	Barry	Warsaw.)

Two	 new	 macros	 can	 be	 used	 to	 indicate	 C	 functions	 that	 are
local	 to	the	current	file	so	that	a	faster	calling	convention	can	be
used.	 Py_LOCAL(type)	 declares	 the	 function	 as	 returning	 a
value	 of	 the	 specified	 type	 and	 uses	 a	 fast-calling	 qualifier.
Py_LOCAL_INLINE(type)	 does	 the	 same	 thing	 and	 also
requests	the	function	be	inlined.	If	PY_LOCAL_AGGRESSIVE()	is
defined	before	python.h	 is	 included,	 a	 set	 of	more	aggressive
optimizations	are	enabled	for	the	module;	you	should	benchmark
the	 results	 to	 find	 out	 if	 these	 optimizations	 actually	 make	 the
code	faster.	(Contributed	by	Fredrik	Lundh	at	 the	NeedForSpeed
sprint.)

PyErr_NewException(name,	base,	dict)	can	now	accept
a	 tuple	 of	 base	 classes	 as	 its	 base	 argument.	 (Contributed	 by
Georg	Brandl.)

The	 PyErr_Warn()	 function	 for	 issuing	 warnings	 is	 now
deprecated	in	favour	of	PyErr_WarnEx(category,	message,
stacklevel)	which	lets	you	specify	the	number	of	stack	frames
separating	 this	 function	 and	 the	 caller.	 A	 stacklevel	 of	 1	 is	 the
function	calling	PyErr_WarnEx(),	 2	 is	 the	 function	above	 that,
and	so	forth.	(Added	by	Neal	Norwitz.)

The	CPython	interpreter	is	still	written	in	C,	but	the	code	can	now
be	compiled	with	a	C++	compiler	without	errors.	(Implemented	by
Anthony	Baxter,	Martin	von	Löwis,	Skip	Montanaro.)

The	 PyRange_New()	 function	 was	 removed.	 It	 was	 never
documented,	never	used	 in	 the	core	code,	and	had	dangerously
lax	error	checking.	In	the	unlikely	case	that	your	extensions	were
using	it,	you	can	replace	it	by	something	like	the	following:

range	=	PyObject_CallFunction((PyObject*)	&PyRange_Type

																														start,	stop,	step);

Port-Specific	Changes

MacOS	 X	 (10.3	 and	 higher):	 dynamic	 loading	 of	 modules	 now
uses	the	dlopen()	function	instead	of	MacOS-specific	functions.
MacOS	 X:	 an	 --enable-universalsdk	 switch	 was	 added	 to	 the
configure	 script	 that	 compiles	 the	 interpreter	 as	 a	 universal
binary	 able	 to	 run	 on	 both	 PowerPC	 and	 Intel	 processors.
(Contributed	by	Ronald	Oussoren;	issue	2573.)
Windows:	.dll	 is	 no	 longer	 supported	 as	 a	 filename	extension
for	extension	modules.	.pyd	 is	now	the	only	 filename	extension
that	will	be	searched	for.

http://bugs.python.org/issue2573

Porting	to	Python	2.5

This	 section	 lists	 previously	 described	 changes	 that	 may	 require
changes	to	your	code:

ASCII	is	now	the	default	encoding	for	modules.	It’s	now	a	syntax
error	 if	a	module	contains	string	 literals	with	8-bit	 characters	but
doesn’t	have	an	encoding	declaration.	In	Python	2.4	this	triggered
a	warning,	not	a	syntax	error.
Previously,	 the	gi_frame	attribute	of	a	generator	was	always	a
frame	 object.	 Because	 of	 the	 PEP	 342	 changes	 described	 in
section	PEP	342:	New	Generator	Features,	 it’s	now	possible	 for
gi_frame	to	be	None.
A	new	warning,	UnicodeWarning,	is	triggered	when	you	attempt
to	 compare	 a	 Unicode	 string	 and	 an	 8-bit	 string	 that	 can’t	 be
converted	 to	 Unicode	 using	 the	 default	 ASCII	 encoding.
Previously	 such	 comparisons	 would	 raise	 a
UnicodeDecodeError	exception.
Library:	 the	 csv	 module	 is	 now	 stricter	 about	 multi-line	 quoted
fields.	 If	 your	 files	 contain	 newlines	 embedded	within	 fields,	 the
input	 should	be	 split	 into	 lines	 in	a	manner	which	preserves	 the
newline	characters.
Library:	 the	 locale	 module’s	 format()	 function’s	 would
previously	accept	any	string	as	long	as	no	more	than	one	%char
specifier	appeared.	 In	Python	2.5,	 the	argument	must	be	exactly
one	%char	specifier	with	no	surrounding	text.
Library:	The	pickle	and	cPickle	modules	no	 longer	accept	a
return	 value	 of	 None	 from	 the	 __reduce__()	 method;	 the
method	must	 return	 a	 tuple	 of	 arguments	 instead.	 The	modules
also	no	longer	accept	the	deprecated	bin	keyword	parameter.
Library:	 The	 SimpleXMLRPCServer	 and	 DocXMLRPCServer
classes	 now	 have	 a	 rpc_paths	 attribute	 that	 constrains	 XML-

http://www.python.org/dev/peps/pep-0342

RPC	 operations	 to	 a	 limited	 set	 of	 URL	 paths;	 the	 default	 is	 to
allow	only	'/'	and	'/RPC2'.	Setting	rpc_paths	to	None	or	an
empty	tuple	disables	this	path	checking.
C	API:	Many	 functions	now	use	Py_ssize_t	 instead	of	int	 to
allow	processing	more	data	on	64-bit	machines.	Extension	code
may	 need	 to	 make	 the	 same	 change	 to	 avoid	 warnings	 and	 to
support	64-bit	machines.	See	the	earlier	section	PEP	353:	Using
ssize_t	as	the	index	type	for	a	discussion	of	this	change.
C	API:	The	obmalloc	changes	mean	 that	you	must	be	careful	 to
not	mix	usage	of	the	PyMem_*()	and	PyObject_*()	families	of
functions.	Memory	allocated	with	one	family’s	*_Malloc()	must
be	freed	with	the	corresponding	family’s	*_Free()	function.

Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions,	 corrections	 and	 assistance	 with	 various	 drafts	 of	 this
article:	 Georg	 Brandl,	 Nick	 Coghlan,	 Phillip	 J.	 Eby,	 Lars	 Gustäbel,
Raymond	 Hettinger,	 Ralf	 W.	 Grosse-	 Kunstleve,	 Kent	 Johnson,	 Iain
Lowe,	 Martin	 von	 Löwis,	 Fredrik	 Lundh,	 Andrew	 McNamara,	 Skip
Montanaro,	 Gustavo	 Niemeyer,	 Paul	 Prescod,	 James	 Pryor,	 Mike
Rovner,	Scott	Weikart,	Barry	Warsaw,	Thomas	Wouters.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.4
Author: A.M.	Kuchling

This	 article	 explains	 the	 new	 features	 in	 Python	 2.4.1,	 released	 on
March	30,	2005.

Python	 2.4	 is	 a	medium-sized	 release.	 It	 doesn’t	 introduce	 as	many
changes	as	the	radical	Python	2.2,	but	introduces	more	features	than
the	 conservative	 2.3	 release.	 The	 most	 significant	 new	 language
features	 are	 function	 decorators	 and	 generator	 expressions;	 most
other	changes	are	to	the	standard	library.

According	 to	 the	CVS	 change	 logs,	 there	were	 481	 patches	 applied
and	502	bugs	fixed	between	Python	2.3	and	2.4.	Both	figures	are	likely
to	be	underestimates.

This	 article	 doesn’t	 attempt	 to	 provide	 a	 complete	 specification	 of
every	 single	new	 feature,	 but	 instead	provides	a	brief	 introduction	 to
each	feature.	For	full	details,	you	should	refer	to	the	documentation	for
Python	 2.4,	 such	 as	 the	 Python	 Library	 Reference	 and	 the	 Python
Reference	 Manual.	 Often	 you	 will	 be	 referred	 to	 the	 PEP	 for	 a
particular	 new	 feature	 for	 explanations	 of	 the	 implementation	 and
design	rationale.

PEP	218:	Built-In	Set	Objects

Python	 2.3	 introduced	 the	 sets	 module.	 C	 implementations	 of	 set
data	types	have	now	been	added	to	the	Python	core	as	two	new	built-
in	 types,	 set(iterable)	 and	 frozenset(iterable).	 They
provide	high	speed	operations	for	membership	testing,	for	eliminating
duplicates	 from	 sequences,	 and	 for	 mathematical	 operations	 like
unions,	intersections,	differences,	and	symmetric	differences.

>>>	a	=	set('abracadabra')														#	form	a	set	from	a	string

>>>	'z'	in	a																												#	fast	membership	testing

False

>>>	a																																			#	unique	letters	in	a

set(['a',	'r',	'b',	'c',	'd'])

>>>	''.join(a)																										#	convert	back	into	a	string

'arbcd'

>>>	b	=	set('alacazam')																	#	form	a	second	set

>>>	a	-	b																															#	letters	in	a	but	not	in	b

set(['r',	'd',	'b'])

>>>	a	|	b																															#	letters	in	either	a	or	b

set(['a',	'c',	'r',	'd',	'b',	'm',	'z',	'l'])

>>>	a	&	b																															#	letters	in	both	a	and	b

set(['a',	'c'])

>>>	a	^	b																															#	letters	in	a	or	b	but	not	both

set(['r',	'd',	'b',	'm',	'z',	'l'])

>>>	a.add('z')																										#	add	a	new	element

>>>	a.update('wxy')																					#	add	multiple	new	elements

>>>	a

set(['a',	'c',	'b',	'd',	'r',	'w',	'y',	'x',	'z'])

>>>	a.remove('x')																							#	take	one	element	out

>>>	a

set(['a',	'c',	'b',	'd',	'r',	'w',	'y',	'z'])

The	frozenset()	type	is	an	immutable	version	of	set().	Since	it	is
immutable	and	hashable,	 it	may	be	used	as	a	dictionary	key	or	as	a
member	of	another	set.

The	sets	module	remains	in	the	standard	library,	and	may	be	useful	if
you	wish	to	subclass	 the	Set	or	ImmutableSet	classes.	There	 are
currently	no	plans	to	deprecate	the	module.

See	also:

PEP	218	-	Adding	a	Built-In	Set	Object	Type
Originally	proposed	by	Greg	Wilson	and	ultimately	 implemented
by	Raymond	Hettinger.

http://www.python.org/dev/peps/pep-0218

PEP	237:	Unifying	Long	Integers	and
Integers

The	lengthy	transition	process	for	this	PEP,	begun	in	Python	2.2,	takes
another	step	 forward	 in	Python	2.4.	 In	2.3,	 certain	 integer	operations
that	 would	 behave	 differently	 after	 int/long	 unification	 triggered
FutureWarning	 warnings	 and	 returned	 values	 limited	 to	 32	 or	 64
bits	(depending	on	your	platform).	In	2.4,	these	expressions	no	longer
produce	a	warning	and	instead	produce	a	different	result	that’s	usually
a	long	integer.

The	 problematic	 expressions	 are	 primarily	 left	 shifts	 and	 lengthy
hexadecimal	and	octal	constants.	For	example,	2	<<	32	results	in	a
warning	in	2.3,	evaluating	to	0	on	32-bit	platforms.	In	Python	2.4,	this
expression	now	returns	the	correct	answer,	8589934592.

See	also:

PEP	237	-	Unifying	Long	Integers	and	Integers
Original	PEP	written	by	Moshe	Zadka	and	GvR.	The	changes	for
2.4	were	implemented	by	Kalle	Svensson.

http://www.python.org/dev/peps/pep-0237

PEP	289:	Generator	Expressions

The	 iterator	 feature	 introduced	 in	 Python	 2.2	 and	 the	 itertools
module	make	it	easier	to	write	programs	that	 loop	through	large	data
sets	 without	 having	 the	 entire	 data	 set	 in	 memory	 at	 one	 time.	 List
comprehensions	 don’t	 fit	 into	 this	 picture	 very	 well	 because	 they
produce	 a	 Python	 list	 object	 containing	 all	 of	 the	 items.	 This
unavoidably	 pulls	 all	 of	 the	 objects	 into	 memory,	 which	 can	 be	 a
problem	 if	 your	 data	 set	 is	 very	 large.	 When	 trying	 to	 write	 a
functionally-styled	program,	it	would	be	natural	to	write	something	like:

links	=	[link	for	link	in	get_all_links()	if	not	link

for	link	in	links:

				...

instead	of

for	link	in	get_all_links():

				if	link.followed:

								continue

				...

The	 first	 form	 is	 more	 concise	 and	 perhaps	 more	 readable,	 but	 if
you’re	dealing	with	a	large	number	of	 link	objects	you’d	have	to	write
the	second	form	to	avoid	having	all	link	objects	in	memory	at	the	same
time.

Generator	expressions	work	similarly	to	list	comprehensions	but	don’t
materialize	 the	 entire	 list;	 instead	 they	 create	 a	 generator	 that	 will
return	elements	one	by	one.	The	above	example	could	be	written	as:

links	=	(link	for	link	in	get_all_links()	if	not	link

for	link	in	links:

				...

Generator	expressions	always	have	to	be	written	 inside	parentheses,
as	 in	 the	 above	 example.	 The	 parentheses	 signalling	 a	 function	 call
also	count,	so	if	you	want	to	create	an	iterator	that	will	be	immediately
passed	to	a	function	you	could	write:

print	sum(obj.count	for	obj	in	list_all_objects())

Generator	expressions	differ	from	list	comprehensions	in	various	small
ways.	Most	notably,	the	loop	variable	(obj	in	the	above	example)	is	not
accessible	outside	of	 the	generator	expression.	List	 comprehensions
leave	the	variable	assigned	to	its	last	value;	future	versions	of	Python
will	 change	 this,	 making	 list	 comprehensions	 match	 generator
expressions	in	this	respect.

See	also:

PEP	289	-	Generator	Expressions
Proposed	by	Raymond	Hettinger	and	implemented	by	Jiwon	Seo
with	early	efforts	steered	by	Hye-Shik	Chang.

http://www.python.org/dev/peps/pep-0289

PEP	292:	Simpler	String	Substitutions

Some	 new	 classes	 in	 the	 standard	 library	 provide	 an	 alternative
mechanism	 for	 substituting	 variables	 into	 strings;	 this	 style	 of
substitution	may	be	better	for	applications	where	untrained	users	need
to	edit	templates.

The	usual	way	of	substituting	variables	by	name	is	the	%	operator:

>>>	'%(page)i:	%(title)s'	%	{'page':2,	'title':	'The	Best	of	Times'

'2:	The	Best	of	Times'

When	writing	 the	 template	string,	 it	can	be	easy	 to	 forget	 the	i	or	s
after	the	closing	parenthesis.	This	isn’t	a	big	problem	if	the	template	is
in	a	Python	module,	because	you	run	the	code,	get	an	“Unsupported
format	 character”	 ValueError,	 and	 fix	 the	 problem.	 However,
consider	 an	 application	 such	 as	 Mailman	 where	 template	 strings	 or
translations	are	being	edited	by	users	who	aren’t	aware	of	the	Python
language.	The	format	string’s	syntax	is	complicated	to	explain	to	such
users,	 and	 if	 they	 make	 a	 mistake,	 it’s	 difficult	 to	 provide	 helpful
feedback	to	them.

PEP	292	adds	a	Template	class	to	the	string	module	that	uses	$
to	indicate	a	substitution:

>>>	import	string

>>>	t	=	string.Template('$page:	$title')

>>>	t.substitute({'page':2,	'title':	'The	Best	of	Times'

'2:	The	Best	of	Times'

If	a	key	is	missing	from	the	dictionary,	the	substitute()	method	will

raise	a	KeyError.	There’s	also	a	safe_substitute()	method	that
ignores	missing	keys:

>>>	t	=	string.Template('$page:	$title')

>>>	t.safe_substitute({'page':3})

'3:	$title'

See	also:

PEP	292	-	Simpler	String	Substitutions
Written	and	implemented	by	Barry	Warsaw.

http://www.python.org/dev/peps/pep-0292

PEP	318:	Decorators	for	Functions	and
Methods

Python	2.2	extended	Python’s	object	model	by	adding	static	methods
and	class	methods,	but	it	didn’t	extend	Python’s	syntax	to	provide	any
new	way	of	defining	static	or	class	methods.	Instead,	you	had	to	write
a	def	statement	in	the	usual	way,	and	pass	the	resulting	method	to	a
staticmethod()	or	classmethod()	 function	 that	would	wrap	 up
the	 function	as	a	method	of	 the	new	 type.	Your	code	would	 look	 like
this:

class	C:

			def	meth	(cls):

							...

			meth	=	classmethod(meth)			#	Rebind	name	to	wrapped-up	class	method

If	 the	method	was	 very	 long,	 it	 would	 be	 easy	 to	miss	 or	 forget	 the
classmethod()	invocation	after	the	function	body.

The	intention	was	always	to	add	some	syntax	to	make	such	definitions
more	readable,	but	at	the	time	of	2.2’s	release	a	good	syntax	was	not
obvious.	Today	a	good	syntax	still	 isn’t	obvious	but	users	are	asking
for	 easier	 access	 to	 the	 feature;	 a	 new	 syntactic	 feature	 has	 been
added	to	meet	this	need.

The	new	feature	is	called	“function	decorators”.	The	name	comes	from
the	 idea	 that	 classmethod(),	 staticmethod(),	 and	 friends	 are
storing	additional	 information	on	a	 function	object;	 they’re	decorating
functions	with	more	details.

The	 notation	 borrows	 from	 Java	 and	 uses	 the	 '@'	 character	 as	 an
indicator.	Using	the	new	syntax,	the	example	above	would	be	written:

class	C:

			@classmethod

			def	meth	(cls):

							...

The	 @classmethod	 is	 shorthand	 for	 the
meth=classmethod(meth)	assignment.	More	generally,	if	you	have
the	following:

@A

@B

@C

def	f	():

				...

It’s	equivalent	to	the	following	pre-decorator	code:

def	f():	...

f	=	A(B(C(f)))

Decorators	 must	 come	 on	 the	 line	 before	 a	 function	 definition,	 one
decorator	per	line,	and	can’t	be	on	the	same	line	as	the	def	statement,
meaning	 that	 @A	def	f():	...	 is	 illegal.	 You	 can	 only	 decorate
function	 definitions,	 either	 at	 the	module	 level	 or	 inside	 a	 class;	 you
can’t	decorate	class	definitions.

A	decorator	is	just	a	function	that	takes	the	function	to	be	decorated	as
an	argument	and	returns	either	the	same	function	or	some	new	object.
The	 return	 value	 of	 the	 decorator	 need	 not	 be	 callable	 (though	 it
typically	is),	unless	further	decorators	will	be	applied	to	the	result.	It’s

easy	to	write	your	own	decorators.	The	following	simple	example	just
sets	an	attribute	on	the	function	object:

>>>	def	deco(func):

...				func.attr	=	'decorated'

...				return	func

...

>>>	@deco

...	def	f():	pass

...

>>>	f

<function	f	at	0x402ef0d4>

>>>	f.attr

'decorated'

>>>

As	 a	 slightly	 more	 realistic	 example,	 the	 following	 decorator	 checks
that	the	supplied	argument	is	an	integer:

def	require_int	(func):

				def	wrapper	(arg):

								assert	isinstance(arg,	int)

								return	func(arg)

				return	wrapper

@require_int

def	p1	(arg):

				print	arg

@require_int

def	p2(arg):

				print	arg*2

An	example	in	PEP	318	contains	a	fancier	version	of	this	idea	that	lets
you	both	specify	the	required	type	and	check	the	returned	type.

http://www.python.org/dev/peps/pep-0318

Decorator	 functions	 can	 take	 arguments.	 If	 arguments	 are	 supplied,
your	decorator	function	is	called	with	only	those	arguments	and	must
return	 a	 new	 decorator	 function;	 this	 function	 must	 take	 a	 single
function	and	return	a	function,	as	previously	described.	In	other	words,
@A	@B	@C(args)	becomes:

def	f():	...

_deco	=	C(args)

f	=	A(B(_deco(f)))

Getting	this	right	can	be	slightly	brain-bending,	but	it’s	not	too	difficult.

A	 small	 related	change	makes	 the	 func_name	 attribute	 of	 functions
writable.	This	attribute	is	used	to	display	function	names	in	tracebacks,
so	 decorators	 should	 change	 the	 name	 of	 any	 new	 function	 that’s
constructed	and	returned.

See	also:

PEP	318	-	Decorators	for	Functions,	Methods	and	Classes
Written	 by	 Kevin	 D.	 Smith,	 Jim	 Jewett,	 and	 Skip	 Montanaro.
Several	people	wrote	patches	implementing	function	decorators,
but	 the	 one	 that	 was	 actually	 checked	 in	 was	 patch	 #979728,
written	by	Mark	Russell.

http://www.python.org/moin/PythonDecoratorLibrary
This	Wiki	page	contains	several	examples	of	decorators.

http://www.python.org/dev/peps/pep-0318
http://www.python.org/moin/PythonDecoratorLibrary

PEP	322:	Reverse	Iteration

A	 new	 built-in	 function,	 reversed(seq),	 takes	 a	 sequence	 and
returns	 an	 iterator	 that	 loops	 over	 the	 elements	 of	 the	 sequence	 in
reverse	order.

>>>	for	i	in	reversed(xrange(1,4)):

...				print	i

...

3

2

1

Compared	 to	 extended	 slicing,	 such	 as	 range(1,4)[::-1],
reversed()	is	easier	to	read,	runs	faster,	and	uses	substantially	less
memory.

Note	 that	 reversed()	 only	 accepts	 sequences,	 not	 arbitrary
iterators.	If	you	want	to	reverse	an	iterator,	first	convert	it	to	a	list	with
list().

>>>	input	=	open('/etc/passwd',	'r')

>>>	for	line	in	reversed(list(input)):

...			print	line

...

root:*:0:0:System	Administrator:/var/root:/bin/tcsh

		...

See	also:

PEP	322	-	Reverse	Iteration
Written	and	implemented	by	Raymond	Hettinger.

http://www.python.org/dev/peps/pep-0322

PEP	324:	New	subprocess	Module

The	 standard	 library	 provides	 a	 number	 of	 ways	 to	 execute	 a
subprocess,	 offering	 different	 features	 and	 different	 levels	 of
complexity.	os.system(command)	is	easy	to	use,	but	slow	(it	runs	a
shell	process	which	executes	the	command)	and	dangerous	(you	have
to	be	careful	about	escaping	the	shell’s	metacharacters).	The	popen2
module	offers	classes	that	can	capture	standard	output	and	standard
error	 from	 the	 subprocess,	 but	 the	 naming	 is	 confusing.	 The
subprocess	module	cleans	this	up,	providing	a	unified	interface	that
offers	all	the	features	you	might	need.

Instead	 of	 popen2‘s	 collection	 of	 classes,	 subprocess	 contains	 a
single	 class	 called	 Popen	 whose	 constructor	 supports	 a	 number	 of
different	keyword	arguments.

class	Popen(args,	bufsize=0,	executable=None,

												stdin=None,	stdout=None,	stderr=None,

												preexec_fn=None,	close_fds=False,	shell=

												cwd=None,	env=None,	universal_newlines=False

												startupinfo=None,	creationflags=0):

args	 is	commonly	a	sequence	of	strings	that	will	be	the	arguments	to
the	 program	 executed	 as	 the	 subprocess.	 (If	 the	 shell	 argument	 is
true,	args	can	be	a	string	which	will	then	be	passed	on	to	the	shell	for
interpretation,	just	as	os.system()	does.)

stdin,	stdout,	and	stderr	 specify	what	 the	 subprocess’s	 input,	 output,
and	 error	 streams	 will	 be.	 You	 can	 provide	 a	 file	 object	 or	 a	 file
descriptor,	or	you	can	use	the	constant	subprocess.PIPE	to	create
a	pipe	between	the	subprocess	and	the	parent.

The	constructor	has	a	number	of	handy	options:

close_fds	 requests	 that	 all	 file	 descriptors	 be	 closed	 before
running	the	subprocess.
cwd	 specifies	 the	working	directory	 in	which	 the	 subprocess	will
be	executed	(defaulting	to	whatever	the	parent’s	working	directory
is).
env	is	a	dictionary	specifying	environment	variables.
preexec_fn	is	a	function	that	gets	called	before	the	child	is	started.
universal_newlines	 opens	 the	 child’s	 input	 and	 output	 using
Python’s	universal	newlines	feature.

Once	 you’ve	 created	 the	 Popen	 instance,	 you	 can	 call	 its	 wait()
method	to	pause	until	the	subprocess	has	exited,	poll()	to	check	if
it’s	 exited	 without	 pausing,	 or	 communicate(data)	 to	 send	 the
string	data	to	the	subprocess’s	standard	input.	communicate(data)
then	 reads	 any	 data	 that	 the	 subprocess	 has	 sent	 to	 its	 standard
output	 or	 standard	 error,	 returning	 a	 tuple	 (stdout_data,

stderr_data).

call()	 is	a	shortcut	 that	passes	 its	arguments	along	 to	 the	Popen
constructor,	waits	for	the	command	to	complete,	and	returns	the	status
code	 of	 the	 subprocess.	 It	 can	 serve	 as	 a	 safer	 analog	 to
os.system():

sts	=	subprocess.call(['dpkg',	'-i',	'/tmp/new-package.deb'

if	sts	==	0:

				#	Success

				...

else:

				#	dpkg	returned	an	error

				...

The	command	is	invoked	without	use	of	the	shell.	If	you	really	do	want
to	use	 the	 shell,	 you	 can	add	 shell=True	 as	a	 keyword	argument
and	provide	a	string	instead	of	a	sequence:

sts	=	subprocess.call('dpkg	-i	/tmp/new-package.deb'

The	PEP	takes	various	examples	of	shell	and	Python	code	and	shows
how	 they’d	 be	 translated	 into	 Python	 code	 that	 uses	 subprocess.
Reading	this	section	of	the	PEP	is	highly	recommended.

See	also:

PEP	324	-	subprocess	-	New	process	module
Written	and	implemented	by	Peter	Åstrand,	with	assistance	from
Fredrik	Lundh	and	others.

http://www.python.org/dev/peps/pep-0324

PEP	327:	Decimal	Data	Type

Python	 has	 always	 supported	 floating-point	 (FP)	 numbers,	 based	 on
the	underlying	C	double	 type,	as	a	data	 type.	However,	while	most
programming	 languages	 provide	 a	 floating-point	 type,	 many	 people
(even	 programmers)	 are	 unaware	 that	 floating-point	 numbers	 don’t
represent	certain	decimal	fractions	accurately.	The	new	Decimal	type
can	 represent	 these	 fractions	 accurately,	 up	 to	 a	 user-specified
precision	limit.

Why	is	Decimal	needed?

The	 limitations	 arise	 from	 the	 representation	 used	 for	 floating-point
numbers.	FP	numbers	are	made	up	of	three	components:

The	sign,	which	is	positive	or	negative.
The	mantissa,	which	is	a	single-digit	binary	number	followed	by	a
fractional	part.	For	example,	1.01	in	base-2	notation	is	1	+	0/2
+	1/4,	or	1.25	in	decimal	notation.
The	 exponent,	 which	 tells	 where	 the	 decimal	 point	 is	 located	 in
the	number	represented.

For	example,	 the	number	1.25	has	positive	sign,	a	mantissa	value	of
1.01	(in	binary),	and	an	exponent	of	0	(the	decimal	point	doesn’t	need
to	be	shifted).	The	number	5	has	the	same	sign	and	mantissa,	but	the
exponent	is	2	because	the	mantissa	is	multiplied	by	4	(2	to	the	power
of	the	exponent	2);	1.25	*	4	equals	5.

Modern	 systems	 usually	 provide	 floating-point	 support	 that	 conforms
to	 a	 standard	 called	 IEEE	 754.	 C’s	 double	 type	 is	 usually
implemented	 as	 a	 64-bit	 IEEE	 754	 number,	 which	 uses	 52	 bits	 of
space	 for	 the	 mantissa.	 This	 means	 that	 numbers	 can	 only	 be

specified	to	52	bits	of	precision.	If	you’re	trying	to	represent	numbers
whose	expansion	 repeats	endlessly,	 the	expansion	 is	cut	off	after	52
bits.	Unfortunately,	most	software	needs	to	produce	output	in	base	10,
and	 common	 fractions	 in	 base	 10	 are	 often	 repeating	 decimals	 in
binary.	For	example,	1.1	decimal	 is	binary	1.0001100110011	...;
.1	=	1/16	+	1/32	+	1/256	plus	an	 infinite	number	of	additional	 terms.
IEEE	 754	 has	 to	 chop	 off	 that	 infinitely	 repeated	 decimal	 after	 52
digits,	so	the	representation	is	slightly	inaccurate.

Sometimes	you	can	see	this	inaccuracy	when	the	number	is	printed:

>>>	1.1

1.1000000000000001

The	 inaccuracy	 isn’t	 always	 visible	 when	 you	 print	 the	 number
because	 the	 FP-to-	 decimal-string	 conversion	 is	 provided	 by	 the	 C
library,	and	most	C	libraries	try	to	produce	sensible	output.	Even	if	it’s
not	 displayed,	 however,	 the	 inaccuracy	 is	 still	 there	 and	 subsequent
operations	can	magnify	the	error.

For	 many	 applications	 this	 doesn’t	 matter.	 If	 I’m	 plotting	 points	 and
displaying	 them	 on	 my	 monitor,	 the	 difference	 between	 1.1	 and
1.1000000000000001	 is	 too	 small	 to	 be	 visible.	 Reports	 often	 limit
output	 to	 a	 certain	 number	 of	 decimal	 places,	 and	 if	 you	 round	 the
number	to	two	or	three	or	even	eight	decimal	places,	the	error	is	never
apparent.	However,	 for	applications	where	 it	does	matter,	 it’s	a	 lot	of
work	to	implement	your	own	custom	arithmetic	routines.

Hence,	the	Decimal	type	was	created.

The	Decimal	type

A	new	module,	 decimal,	was	added	 to	Python’s	 standard	 library.	 It
contains	 two	 classes,	 Decimal	 and	 Context.	 Decimal	 instances
represent	 numbers,	 and	 Context	 instances	 are	 used	 to	 wrap	 up
various	settings	such	as	the	precision	and	default	rounding	mode.

Decimal	 instances	 are	 immutable,	 like	 regular	 Python	 integers	 and
FP	 numbers;	 once	 it’s	 been	 created,	 you	 can’t	 change	 the	 value	 an
instance	represents.	Decimal	instances	can	be	created	from	integers
or	strings:

>>>	import	decimal

>>>	decimal.Decimal(1972)

Decimal("1972")

>>>	decimal.Decimal("1.1")

Decimal("1.1")

You	 can	 also	 provide	 tuples	 containing	 the	 sign,	 the	 mantissa
represented	as	a	tuple	of	decimal	digits,	and	the	exponent:

>>>	decimal.Decimal((1,	(1,	4,	7,	5),	-2))

Decimal("-14.75")

Cautionary	note:	the	sign	bit	is	a	Boolean	value,	so	0	is	positive	and	1
is	negative.

Converting	 from	 floating-point	 numbers	 poses	 a	 bit	 of	 a	 problem:
should	 the	FP	number	representing	1.1	 turn	 into	 the	decimal	number
for	exactly	1.1,	or	 for	1.1	plus	whatever	 inaccuracies	are	 introduced?
The	decision	was	to	dodge	the	issue	and	leave	such	a	conversion	out
of	the	API.	Instead,	you	should	convert	the	floating-point	number	into	a
string	using	the	desired	precision	and	pass	the	string	to	the	Decimal
constructor:

>>>	f	=	1.1

>>>	decimal.Decimal(str(f))

Decimal("1.1")

>>>	decimal.Decimal('%.12f'	%	f)

Decimal("1.100000000000")

Once	 you	 have	 Decimal	 instances,	 you	 can	 perform	 the	 usual
mathematical	 operations	 on	 them.	 One	 limitation:	 exponentiation
requires	an	integer	exponent:

>>>	a	=	decimal.Decimal('35.72')

>>>	b	=	decimal.Decimal('1.73')

>>>	a+b

Decimal("37.45")

>>>	a-b

Decimal("33.99")

>>>	a*b

Decimal("61.7956")

>>>	a/b

Decimal("20.64739884393063583815028902")

>>>	a	**	2

Decimal("1275.9184")

>>>	a**b

Traceback	(most	recent	call	last):

		...

decimal.InvalidOperation:	x	**	(non-integer)

You	 can	 combine	 Decimal	 instances	 with	 integers,	 but	 not	 with
floating-	point	numbers:

>>>	a	+	4

Decimal("39.72")

>>>	a	+	4.5

Traceback	(most	recent	call	last):

		...

TypeError:	You	can	interact	Decimal	only	with	int,	long	or	Decimal	data	types.

>>>

Decimal	numbers	can	be	used	with	the	math	and	cmath	modules,
but	 note	 that	 they’ll	 be	 immediately	 converted	 to	 floating-point
numbers	before	the	operation	is	performed,	resulting	in	a	possible	loss
of	precision	and	accuracy.	You’ll	also	get	back	a	regular	floating-point
number	and	not	a	Decimal.

>>>	import	math,	cmath

>>>	d	=	decimal.Decimal('123456789012.345')

>>>	math.sqrt(d)

351364.18288201344

>>>	cmath.sqrt(-d)

351364.18288201344j

Decimal	instances	have	a	sqrt()	method	that	returns	a	Decimal,
but	if	you	need	other	things	such	as	trigonometric	functions	you’ll	have
to	implement	them.

>>>	d.sqrt()

Decimal("351364.1828820134592177245001")

The	Context	type

Instances	 of	 the	 Context	 class	 encapsulate	 several	 settings	 for
decimal	operations:

prec	is	the	precision,	the	number	of	decimal	places.
rounding	 specifies	 the	 rounding	mode.	 The	 decimal	 module
has	 constants	 for	 the	 various	 possibilities:	 ROUND_DOWN,
ROUND_CEILING,	ROUND_HALF_EVEN,	and	various	others.

traps	 is	 a	 dictionary	 specifying	what	 happens	on	 encountering
certain	error	conditions:	either	an	exception	is	raised	or	a	value	is
returned.	Some	examples	of	error	conditions	are	division	by	zero,
loss	of	precision,	and	overflow.

There’s	 a	 thread-local	 default	 context	 available	 by	 calling
getcontext();	you	can	change	the	properties	of	this	context	to	alter
the	 default	 precision,	 rounding,	 or	 trap	 handling.	 The	 following
example	 shows	 the	 effect	 of	 changing	 the	 precision	 of	 the	 default
context:

>>>	decimal.getcontext().prec

28

>>>	decimal.Decimal(1)	/	decimal.Decimal(7)

Decimal("0.1428571428571428571428571429")

>>>	decimal.getcontext().prec	=	9

>>>	decimal.Decimal(1)	/	decimal.Decimal(7)

Decimal("0.142857143")

The	 default	 action	 for	 error	 conditions	 is	 selectable;	 the	module	 can
either	 return	 a	 special	 value	 such	 as	 infinity	 or	 not-a-number,	 or
exceptions	can	be	raised:

>>>	decimal.Decimal(1)	/	decimal.Decimal(0)

Traceback	(most	recent	call	last):

		...

decimal.DivisionByZero:	x	/	0

>>>	decimal.getcontext().traps[decimal.DivisionByZero

>>>	decimal.Decimal(1)	/	decimal.Decimal(0)

Decimal("Infinity")

>>>

The	 Context	 instance	 also	 has	 various	 methods	 for	 formatting
numbers	such	as	to_eng_string()	and	to_sci_string().

For	 more	 information,	 see	 the	 documentation	 for	 the	 decimal
module,	which	includes	a	quick-start	tutorial	and	a	reference.

See	also:

PEP	327	-	Decimal	Data	Type
Written	 by	 Facundo	 Batista	 and	 implemented	 by	 Facundo
Batista,	Eric	Price,	Raymond	Hettinger,	Aahz,	and	Tim	Peters.

http://www.lahey.com/float.htm
The	article	uses	Fortran	code	to	 illustrate	many	of	 the	problems
that	floating-	point	inaccuracy	can	cause.

http://www2.hursley.ibm.com/decimal/
A	 description	 of	 a	 decimal-based	 representation.	 This
representation	 is	 being	 proposed	 as	 a	 standard,	 and	 underlies
the	new	Python	decimal	 type.	Much	of	 this	material	was	written
by	Mike	Cowlishaw,	designer	of	the	Rexx	language.

http://www.python.org/dev/peps/pep-0327
http://www.lahey.com/float.htm
http://www2.hursley.ibm.com/decimal/

PEP	328:	Multi-line	Imports

One	 language	 change	 is	 a	 small	 syntactic	 tweak	aimed	at	making	 it
easier	 to	 import	 many	 names	 from	 a	 module.	 In	 a	 from	 module
import	names	statement,	names	is	a	sequence	of	names	separated
by	commas.	If	the	sequence	is	very	long,	you	can	either	write	multiple
imports	from	the	same	module,	or	you	can	use	backslashes	to	escape
the	line	endings	like	this:

from	SimpleXMLRPCServer	import	SimpleXMLRPCServer,\

												SimpleXMLRPCRequestHandler,\

												CGIXMLRPCRequestHandler,\

												resolve_dotted_attribute

The	syntactic	 change	 in	Python	2.4	 simply	allows	putting	 the	names
within	 parentheses.	 Python	 ignores	 newlines	 within	 a	 parenthesized
expression,	so	the	backslashes	are	no	longer	needed:

from	SimpleXMLRPCServer	import	(SimpleXMLRPCServer,

																																SimpleXMLRPCRequestHandler

																																CGIXMLRPCRequestHandler

																																resolve_dotted_attribute

The	 PEP	 also	 proposes	 that	 all	 import	 statements	 be	 absolute
imports,	with	a	 leading	.	character	 to	 indicate	a	 relative	 import.	This
part	 of	 the	 PEP	 was	 not	 implemented	 for	 Python	 2.4,	 but	 was
completed	for	Python	2.5.

See	also:

PEP	328	-	Imports:	Multi-Line	and	Absolute/Relative
Written	 by	 Aahz.	 Multi-line	 imports	 were	 implemented	 by	 Dima

http://www.python.org/dev/peps/pep-0328

Dorfman.

PEP	331:	Locale-Independent	Float/String
Conversions

The	locale	modules	lets	Python	software	select	various	conversions
and	 display	 conventions	 that	 are	 localized	 to	 a	 particular	 country	 or
language.	However,	the	module	was	careful	to	not	change	the	numeric
locale	because	various	functions	 in	Python’s	 implementation	required
that	 the	numeric	 locale	 remain	set	 to	 the	 'C'	 locale.	Often	 this	was
because	the	code	was	using	the	C	library’s	atof()	function.

Not	setting	the	numeric	locale	caused	trouble	for	extensions	that	used
third-	 party	 C	 libraries,	 however,	 because	 they	 wouldn’t	 have	 the
correct	 locale	 set.	 The	 motivating	 example	 was	 GTK+,	 whose	 user
interface	widgets	weren’t	displaying	numbers	in	the	current	locale.

The	solution	described	in	the	PEP	is	to	add	three	new	functions	to	the
Python	 API	 that	 perform	ASCII-only	 conversions,	 ignoring	 the	 locale
setting:

PyOS_ascii_strtod(str,	 ptr)	 and
PyOS_ascii_atof(str,	 ptr)	 both	 convert	 a	 string	 to	 a	 C
double.
PyOS_ascii_formatd(buffer,	 buf_len,	 format,	 d)

converts	a	double	to	an	ASCII	string.

The	 code	 for	 these	 functions	 came	 from	 the	 GLib	 library
(http://library.gnome.org/devel/glib/stable/),	 whose	 developers	 kindly
relicensed	 the	 relevant	 functions	 and	 donated	 them	 to	 the	 Python
Software	 Foundation.	 The	 locale	 module	 can	 now	 change	 the
numeric	 locale,	 letting	extensions	such	as	GTK+	produce	 the	correct
results.

http://library.gnome.org/devel/glib/stable/

See	also:

PEP	331	-	Locale-Independent	Float/String	Conversions
Written	 by	 Christian	 R.	 Reis,	 and	 implemented	 by	 Gustavo
Carneiro.

http://www.python.org/dev/peps/pep-0331

Other	Language	Changes

Here	are	all	of	the	changes	that	Python	2.4	makes	to	the	core	Python
language.

Decorators	for	functions	and	methods	were	added	(PEP	318).

Built-in	set()	and	frozenset()	types	were	added	(PEP	218).
Other	 new	 built-ins	 include	 the	 reversed(seq)	 function	 (PEP
322).

Generator	expressions	were	added	(PEP	289).

Certain	numeric	expressions	no	longer	return	values	restricted	to
32	or	64	bits	(PEP	237).

You	can	now	put	parentheses	around	the	list	of	names	in	a	from
module	import	names	statement	(PEP	328).

The	 dict.update()	method	 now	accepts	 the	 same	argument
forms	as	 the	 dict	 constructor.	 This	 includes	 any	mapping,	 any
iterable	of	key/value	pairs,	and	keyword	arguments.	 (Contributed
by	Raymond	Hettinger.)

The	 string	 methods	 ljust(),	 rjust(),	 and	 center()	 now
take	an	optional	argument	for	specifying	a	fill	character	other	than
a	space.	(Contributed	by	Raymond	Hettinger.)

Strings	 also	 gained	 an	 rsplit()	 method	 that	 works	 like	 the
split()	 method	 but	 splits	 from	 the	 end	 of	 the	 string.
(Contributed	by	Sean	Reifschneider.)

>>>	'www.python.org'.split('.',	1)

http://www.python.org/dev/peps/pep-0318
http://www.python.org/dev/peps/pep-0218
http://www.python.org/dev/peps/pep-0322
http://www.python.org/dev/peps/pep-0289
http://www.python.org/dev/peps/pep-0237
http://www.python.org/dev/peps/pep-0328

['www',	'python.org']

'www.python.org'.rsplit('.',	1)

['www.python',	'org']

Three	keyword	parameters,	cmp,	key,	and	reverse,	were	added	to
the	 sort()	 method	 of	 lists.	 These	 parameters	 make	 some
common	usages	of	sort()	simpler.	All	of	 these	parameters	are
optional.

For	 the	 cmp	 parameter,	 the	 value	 should	 be	 a	 comparison
function	 that	 takes	 two	 parameters	 and	 returns	 -1,	 0,	 or	 +1
depending	 on	 how	 the	 parameters	 compare.	 This	 function	 will
then	 be	 used	 to	 sort	 the	 list.	 Previously	 this	 was	 the	 only
parameter	that	could	be	provided	to	sort().

key	 should	 be	 a	 single-parameter	 function	 that	 takes	 a	 list
element	and	returns	a	comparison	key	for	the	element.	The	list	is
then	 sorted	 using	 the	 comparison	 keys.	 The	 following	 example
sorts	a	list	case-insensitively:

>>>	L	=	['A',	'b',	'c',	'D']

>>>	L.sort()																	#	Case-sensitive	sort

>>>	L

['A',	'D',	'b',	'c']

>>>	#	Using	'key'	parameter	to	sort	list

>>>	L.sort(key=lambda	x:	x.lower())

>>>	L

['A',	'b',	'c',	'D']

>>>	#	Old-fashioned	way

>>>	L.sort(cmp=lambda	x,y:	cmp(x.lower(),	y.lower

>>>	L

['A',	'b',	'c',	'D']

The	last	example,	which	uses	the	cmp	parameter,	 is	the	old	way

to	 perform	 a	 case-insensitive	 sort.	 It	 works	 but	 is	 slower	 than
using	a	key	parameter.	Using	key	calls	lower()	method	once	for
each	element	in	the	list	while	using	cmp	will	call	it	twice	for	each
comparison,	so	using	key	 saves	on	 invocations	of	 the	lower()
method.

For	 simple	 key	 functions	 and	 comparison	 functions,	 it	 is	 often
possible	 to	 avoid	 a	 lambda	 expression	 by	 using	 an	 unbound
method	 instead.	For	example,	 the	above	case-insensitive	 sort	 is
best	written	as:

>>>	L.sort(key=str.lower)

>>>	L

['A',	'b',	'c',	'D']

Finally,	the	reverse	parameter	takes	a	Boolean	value.	If	the	value
is	 true,	 the	 list	 will	 be	 sorted	 into	 reverse	 order.	 Instead	 of
L.sort();	 L.reverse(),	 you	 can	 now	 write
L.sort(reverse=True).

The	 results	 of	 sorting	 are	 now	 guaranteed	 to	 be	 stable.	 This
means	 that	 two	 entries	 with	 equal	 keys	 will	 be	 returned	 in	 the
same	order	as	they	were	input.	For	example,	you	can	sort	a	list	of
people	by	name,	and	 then	sort	 the	 list	by	age,	 resulting	 in	a	 list
sorted	 by	 age	 where	 people	 with	 the	 same	 age	 are	 in	 name-
sorted	order.

(All	changes	to	sort()	contributed	by	Raymond	Hettinger.)

There	 is	a	new	built-in	 function	sorted(iterable)	 that	works
like	 the	 in-place	 list.sort()	 method	 but	 can	 be	 used	 in
expressions.	The	differences	are:

the	input	may	be	any	iterable;

a	newly	formed	copy	is	sorted,	leaving	the	original	intact;	and

the	expression	returns	the	new	sorted	copy

>>>	L	=	[9,7,8,3,2,4,1,6,5]

>>>	[10+i	for	i	in	sorted(L)]							#	usable	in	a	list	comprehension

[11,	12,	13,	14,	15,	16,	17,	18,	19]

>>>	L																															#	original	is	left	unchanged

[9,7,8,3,2,4,1,6,5]

>>>	sorted('Monty	Python')										#	any	iterable	may	be	an	input

['	',	'M',	'P',	'h',	'n',	'n',	'o',	'o',	't',	't',	'y',	'y']

>>>	#	List	the	contents	of	a	dict	sorted	by	key	values

>>>	colormap	=	dict(red=1,	blue=2,	green=3,	black

>>>	for	k,	v	in	sorted(colormap.iteritems()):

...					print	k,	v

...

black	4

blue	2

green	3

red	1

yellow	5

(Contributed	by	Raymond	Hettinger.)

Integer	operations	will	 no	 longer	 trigger	an	 OverflowWarning.
The	OverflowWarning	warning	will	disappear	in	Python	2.5.

The	 interpreter	 gained	 a	 new	 switch,	 -m,	 that	 takes	 a	 name,
searches	 for	 the	corresponding	module	on	sys.path,	and	 runs
the	module	as	a	script.	For	example,	you	can	now	run	the	Python
profiler	 with	 python	 -m	 profile.	 (Contributed	 by	 Nick
Coghlan.)

The	 eval(expr,	 globals,	 locals)	 and
execfile(filename,	globals,	locals)	functions	and	the
exec	 statement	 now	 accept	 any	 mapping	 type	 for	 the	 locals
parameter.	Previously	 this	had	 to	be	a	 regular	Python	dictionary.
(Contributed	by	Raymond	Hettinger.)

The	zip()	built-in	function	and	itertools.izip()	now	return
an	empty	list	if	called	with	no	arguments.	Previously	they	raised	a
TypeError	 exception.	 This	 makes	 them	more	 suitable	 for	 use
with	variable	length	argument	lists:

>>>	def	transpose(array):

...				return	zip(*array)

...

>>>	transpose([(1,2,3),	(4,5,6)])

[(1,	4),	(2,	5),	(3,	6)]

>>>	transpose([])

[]

(Contributed	by	Raymond	Hettinger.)

Encountering	a	failure	while	importing	a	module	no	longer	leaves
a	 partially-	 initialized	 module	 object	 in	 sys.modules.	 The
incomplete	module	object	left	behind	would	fool	further	imports	of
the	 same	 module	 into	 succeeding,	 leading	 to	 confusing	 errors.
(Fixed	by	Tim	Peters.)

None	is	now	a	constant;	code	that	binds	a	new	value	to	the	name
None	is	now	a	syntax	error.	(Contributed	by	Raymond	Hettinger.)

Optimizations

The	inner	loops	for	 list	and	tuple	slicing	were	optimized	and	now

run	 about	 one-third	 faster.	 The	 inner	 loops	 for	 dictionaries	were
also	 optimized,	 resulting	 in	 performance	 boosts	 for	 keys(),
values(),	 items(),	 iterkeys(),	 itervalues(),	 and
iteritems().	(Contributed	by	Raymond	Hettinger.)
The	machinery	 for	growing	and	shrinking	 lists	was	optimized	 for
speed	and	for	space	efficiency.	Appending	and	popping	from	lists
now	runs	faster	due	to	more	efficient	code	paths	and	less	frequent
use	 of	 the	 underlying	 system	 realloc().	 List	 comprehensions
also	benefit.	list.extend()	was	also	optimized	and	no	longer
converts	 its	 argument	 into	 a	 temporary	 list	 before	 extending	 the
base	list.	(Contributed	by	Raymond	Hettinger.)
list(),	 tuple(),	 map(),	 filter(),	 and	 zip()	 now	 run
several	 times	 faster	with	non-sequence	arguments	 that	supply	a
__len__()	method.	(Contributed	by	Raymond	Hettinger.)
The	methods	 list.__getitem__(),	 dict.__getitem__(),
and	 dict.__contains__()	 are	 now	 implemented	 as
method_descriptor	 objects	 rather	 than
wrapper_descriptor	 objects.	 This	 form	 of	 access	 doubles
their	 performance	 and	 makes	 them	 more	 suitable	 for	 use	 as
arguments	 to	 functionals:	 map(mydict.__getitem__,

keylist).	(Contributed	by	Raymond	Hettinger.)
Added	 a	 new	 opcode,	 LIST_APPEND,	 that	 simplifies	 the
generated	bytecode	for	list	comprehensions	and	speeds	them	up
by	about	a	third.	(Contributed	by	Raymond	Hettinger.)
The	peephole	bytecode	optimizer	has	been	improved	to	produce
shorter,	 faster	 bytecode;	 remarkably,	 the	 resulting	 bytecode	 is
more	readable.	(Enhanced	by	Raymond	Hettinger.)
String	concatenations	in	statements	of	the	form	s	=	s	+	"abc"
and	s	+=	"abc"	 are	now	performed	more	efficiently	 in	 certain
circumstances.	This	optimization	won’t	be	present	in	other	Python
implementations	such	as	Jython,	so	you	shouldn’t	rely	on	it;	using
the	 join()	 method	 of	 strings	 is	 still	 recommended	 when	 you
want	 to	 efficiently	 glue	 a	 large	 number	 of	 strings	 together.

(Contributed	by	Armin	Rigo.)

The	 net	 result	 of	 the	 2.4	 optimizations	 is	 that	 Python	 2.4	 runs	 the
pystone	benchmark	around	5%	faster	than	Python	2.3	and	35%	faster
than	Python	2.2.	(pystone	is	not	a	particularly	good	benchmark,	but	it’s
the	most	commonly	used	measurement	of	Python’s	performance.	Your
own	 applications	may	 show	 greater	 or	 smaller	 benefits	 from	 Python
2.4.)

New,	Improved,	and	Deprecated	Modules

As	 usual,	 Python’s	 standard	 library	 received	 a	 number	 of
enhancements	and	bug	fixes.	Here’s	a	partial	 list	of	 the	most	notable
changes,	 sorted	 alphabetically	 by	 module	 name.	 Consult	 the
Misc/NEWS	file	in	the	source	tree	for	a	more	complete	list	of	changes,
or	look	through	the	CVS	logs	for	all	the	details.

The	 asyncore	 module’s	 loop()	 function	 now	 has	 a	 count
parameter	 that	 lets	 you	 perform	 a	 limited	 number	 of	 passes
through	the	polling	loop.	The	default	is	still	to	loop	forever.

The	base64	module	now	has	more	complete	RFC	3548	support
for	 Base64,	 Base32,	 and	 Base16	 encoding	 and	 decoding,
including	optional	case	folding	and	optional	alternative	alphabets.
(Contributed	by	Barry	Warsaw.)

The	bisect	module	now	has	an	underlying	C	implementation	for
improved	performance.	(Contributed	by	Dmitry	Vasiliev.)

The	CJKCodecs	collections	of	East	Asian	codecs,	maintained	by
Hye-Shik	Chang,	was	integrated	into	2.4.	The	new	encodings	are:

Chinese	(PRC):	gb2312,	gbk,	gb18030,	big5hkscs,	hz

Chinese	(ROC):	big5,	cp950

Japanese:	cp932,	euc-jis-2004,	euc-jp,	euc-jisx0213,	iso-2022-jp,
iso-2022-jp-1,	 iso-2022-jp-2,	 iso-2022-jp-3,	 iso-2022-jp-ext,
iso-2022-jp-2004,	shift-jis,	shift-jisx0213,	shift-jis-2004

Korean:	cp949,	euc-kr,	johab,	iso-2022-kr

Some	other	new	encodings	were	added:	HP	Roman8,	ISO_8859-
11,	ISO_8859-16,	PCTP-154,	and	TIS-620.

The	 UTF-8	 and	 UTF-16	 codecs	 now	 cope	 better	 with	 receiving
partial	 input.	 Previously	 the	 StreamReader	 class	 would	 try	 to
read	more	 data,	 making	 it	 impossible	 to	 resume	 decoding	 from
the	stream.	The	read()	method	will	now	return	as	much	data	as
it	can	and	future	calls	will	resume	decoding	where	previous	ones
left	off.	(Implemented	by	Walter	Dörwald.)

There	 is	 a	 new	 collections	 module	 for	 various	 specialized
collection	datatypes.	Currently	it	contains	just	one	type,	deque,	a
double-	 ended	 queue	 that	 supports	 efficiently	 adding	 and
removing	elements	from	either	end:

>>>	from	collections	import	deque

>>>	d	=	deque('ghi')								#	make	a	new	deque	with	three	items

>>>	d.append('j')											#	add	a	new	entry	to	the	right	side

>>>	d.appendleft('f')							#	add	a	new	entry	to	the	left	side

>>>	d																							#	show	the	representation	of	the	deque

deque(['f',	'g',	'h',	'i',	'j'])

>>>	d.pop()																	#	return	and	remove	the	rightmost	item

'j'

>>>	d.popleft()													#	return	and	remove	the	leftmost	item

'f'

>>>	list(d)																	#	list	the	contents	of	the	deque

['g',	'h',	'i']

>>>	'h'	in	d																#	search	the	deque

True

Several	modules,	such	as	the	Queue	and	threading	modules,
now	 take	 advantage	 of	 collections.deque	 for	 improved
performance.	(Contributed	by	Raymond	Hettinger.)

The	 ConfigParser	 classes	 have	 been	 enhanced	 slightly.	 The
read()	 method	 now	 returns	 a	 list	 of	 the	 files	 that	 were
successfully	parsed,	and	the	set()	method	raises	TypeError	if
passed	a	value	argument	that	isn’t	a	string.	(Contributed	by	John
Belmonte	and	David	Goodger.)

The	 curses	 module	 now	 supports	 the	 ncurses	 extension
use_default_colors().	 On	 platforms	 where	 the	 terminal
supports	transparency,	this	makes	it	possible	to	use	a	transparent
background.	(Contributed	by	Jörg	Lehmann.)

The	 difflib	 module	 now	 includes	 an	 HtmlDiff	 class	 that
creates	an	HTML	table	showing	a	side	by	side	comparison	of	two
versions	of	a	text.	(Contributed	by	Dan	Gass.)

The	email	package	was	updated	to	version	3.0,	which	dropped
various	 deprecated	 APIs	 and	 removes	 support	 for	 Python
versions	earlier	 than	2.3.	The	3.0	version	of	 the	package	uses	a
new	 incremental	 parser	 for	 MIME	 messages,	 available	 in	 the
email.FeedParser	 module.	 The	 new	 parser	 doesn’t	 require
reading	 the	 entire	 message	 into	 memory,	 and	 doesn’t	 raise
exceptions	 if	 a	 message	 is	 malformed;	 instead	 it	 records	 any
problems	in	the	defect	attribute	of	the	message.	(Developed	by
Anthony	Baxter,	Barry	Warsaw,	Thomas	Wouters,	and	others.)

The	 heapq	 module	 has	 been	 converted	 to	 C.	 The	 resulting
tenfold	 improvement	 in	 speed	 makes	 the	 module	 suitable	 for
handling	 high	 volumes	 of	 data.	 In	 addition,	 the	module	 has	 two
new	 functions	 nlargest()	 and	 nsmallest()	 that	 use	 heaps
to	 find	 the	N	 largest	 or	 smallest	 values	 in	 a	 dataset	without	 the
expense	of	a	full	sort.	(Contributed	by	Raymond	Hettinger.)

The	 httplib	 module	 now	 contains	 constants	 for	 HTTP	 status
codes	 defined	 in	 various	 HTTP-related	 RFC	 documents.
Constants	 have	 names	 such	 as	 OK,	 CREATED,	 CONTINUE,	 and
MOVED_PERMANENTLY;	 use	 pydoc	 to	 get	 a	 full	 list.	 (Contributed
by	Andrew	Eland.)

The	imaplib	module	now	supports	 IMAP’s	THREAD	command
(contributed	 by	 Yves	 Dionne)	 and	 new	 deleteacl()	 and
myrights()	methods	(contributed	by	Arnaud	Mazin).

The	 itertools	 module	 gained	 a	 groupby(iterable[,

func])	 function.	 iterable	 is	 something	 that	 can	 be	 iterated
over	 to	 return	 a	 stream	 of	 elements,	 and	 the	 optional	 func
parameter	 is	a	 function	 that	 takes	an	element	and	 returns	a	key
value;	if	omitted,	the	key	is	simply	the	element	itself.	groupby()
then	 groups	 the	 elements	 into	 subsequences	 which	 have
matching	 values	 of	 the	 key,	 and	 returns	 a	 series	 of	 2-tuples
containing	the	key	value	and	an	iterator	over	the	subsequence.

Here’s	an	example	 to	make	this	clearer.	The	key	 function	simply
returns	 whether	 a	 number	 is	 even	 or	 odd,	 so	 the	 result	 of
groupby()	 is	 to	 return	 consecutive	 runs	 of	 odd	 or	 even
numbers.

>>>	import	itertools

>>>	L	=	[2,	4,	6,	7,	8,	9,	11,	12,	14]

>>>	for	key_val,	it	in	itertools.groupby(L,	lambda

...				print	key_val,	list(it)

...

0	[2,	4,	6]

1	[7]

0	[8]

1	[9,	11]

0	[12,	14]

>>>

groupby()	 is	 typically	 used	 with	 sorted	 input.	 The	 logic	 for
groupby()	 is	 similar	 to	 the	 Unix	 uniq	 filter	 which	 makes	 it
handy	for	eliminating,	counting,	or	identifying	duplicate	elements:

>>>	word	=	'abracadabra'

>>>	letters	=	sorted(word)			#	Turn	string	into	a	sorted	list	of	letters

>>>	letters

['a',	'a',	'a',	'a',	'a',	'b',	'b',	'c',	'd',	'r',	'r']

>>>	for	k,	g	in	itertools.groupby(letters):

...				print	k,	list(g)

...

a	['a',	'a',	'a',	'a',	'a']

b	['b',	'b']

c	['c']

d	['d']

r	['r',	'r']

>>>	#	List	unique	letters

>>>	[k	for	k,	g	in	groupby(letters)]

['a',	'b',	'c',	'd',	'r']

>>>	#	Count	letter	occurrences

>>>	[(k,	len(list(g)))	for	k,	g	in	groupby(letters

[('a',	5),	('b',	2),	('c',	1),	('d',	1),	('r',	2)]

(Contributed	by	Hye-Shik	Chang.)

itertools	also	gained	a	function	named	tee(iterator,	N)
that	returns	N	 independent	 iterators	 that	 replicate	 iterator.	 If	N	 is
omitted,	the	default	is	2.

>>>	L	=	[1,2,3]

>>>	i1,	i2	=	itertools.tee(L)

>>>	i1,i2

(<itertools.tee	object	at	0x402c2080>,	<itertools.tee	object	at	0x402c2090>)

>>>	list(i1)															#	Run	the	first	iterator	to	exhaustion

[1,	2,	3]

>>>	list(i2)															#	Run	the	second	iterator	to	exhaustion

[1,	2,	3]

Note	that	tee()	has	to	keep	copies	of	the	values	returned	by	the
iterator;	 in	 the	worst	case,	 it	may	need	 to	keep	all	of	 them.	This
should	 therefore	be	used	carefully	 if	 the	 leading	 iterator	 can	 run
far	ahead	of	 the	 trailing	 iterator	 in	a	 long	stream	of	 inputs.	 If	 the
separation	 is	 large,	 then	you	might	as	well	use	list()	 instead.
When	the	iterators	track	closely	with	one	another,	tee()	is	ideal.
Possible	 applications	 include	 bookmarking,	 windowing,	 or
lookahead	iterators.	(Contributed	by	Raymond	Hettinger.)

A	number	of	 functions	were	added	 to	 the	locale	module,	 such
as	 bind_textdomain_codeset()	 to	 specify	 a	 particular
encoding	 and	 a	 family	 of	 l*gettext()	 functions	 that	 return
messages	 in	 the	 chosen	 encoding.	 (Contributed	 by	 Gustavo
Niemeyer.)

Some	keyword	arguments	were	added	to	the	logging	package’s
basicConfig()	 function	 to	 simplify	 log	 configuration.	 The
default	behavior	is	to	log	messages	to	standard	error,	but	various
keyword	 arguments	 can	 be	 specified	 to	 log	 to	 a	 particular	 file,
change	the	logging	format,	or	set	the	logging	level.	For	example:

import	logging

logging.basicConfig(filename='/var/log/application.log'

				level=0,		#	Log	all	messages

				format='%(levelname):%(process):%(thread):%(message)'

Other	additions	to	the	logging	package	include	a	log(level,
msg)	 convenience	 method,	 as	 well	 as	 a
TimedRotatingFileHandler	class	that	rotates	its	log	files	at	a
timed	 interval.	 The	 module	 already	 had
RotatingFileHandler,	 which	 rotated	 logs	 once	 the	 file
exceeded	 a	 certain	 size.	 Both	 classes	 derive	 from	 a	 new
BaseRotatingHandler	 class	 that	 can	 be	 used	 to	 implement
other	rotating	handlers.

(Changes	implemented	by	Vinay	Sajip.)

The	marshal	module	now	shares	 interned	strings	on	unpacking
a	data	structure.	This	may	shrink	the	size	of	certain	pickle	strings,
but	 the	primary	effect	 is	 to	make	.pyc	 files	significantly	smaller.
(Contributed	by	Martin	von	Löwis.)

The	nntplib	module’s	NNTP	class	gained	description()	and
descriptions()	 methods	 to	 retrieve	 newsgroup	 descriptions
for	a	single	group	or	for	a	range	of	groups.	(Contributed	by	Jürgen
A.	Erhard.)

Two	 new	 functions	 were	 added	 to	 the	 operator	 module,
attrgetter(attr)	and	itemgetter(index).	Both	functions
return	 callables	 that	 take	 a	 single	 argument	 and	 return	 the
corresponding	 attribute	 or	 item;	 these	 callables	 make	 excellent
data	 extractors	 when	 used	 with	 map()	 or	 sorted().	 For
example:

>>>	L	=	[('c',	2),	('d',	1),	('a',	4),	('b',	3)]

>>>	map(operator.itemgetter(0),	L)

['c',	'd',	'a',	'b']

>>>	map(operator.itemgetter(1),	L)

[2,	1,	4,	3]

>>>	sorted(L,	key=operator.itemgetter(1))	#	Sort	list	by	second	tuple	item

[('d',	1),	('c',	2),	('b',	3),	('a',	4)]

(Contributed	by	Raymond	Hettinger.)

The	 optparse	 module	 was	 updated	 in	 various	 ways.	 The
module	 now	 passes	 its	 messages	 through
gettext.gettext(),	 making	 it	 possible	 to	 internationalize
Optik’s	help	and	error	messages.	Help	messages	for	options	can
now	 include	 the	 string	 '%default',	 which	 will	 be	 replaced	 by
the	option’s	default	value.	(Contributed	by	Greg	Ward.)

The	 long-term	plan	 is	 to	deprecate	 the	rfc822	module	 in	some
future	Python	release	in	favor	of	the	email	package.	To	this	end,
the	 email.Utils.formatdate()	 function	 has	 been	 changed
to	make	it	usable	as	a	replacement	for	rfc822.formatdate().
You	may	 want	 to	 write	 new	 e-mail	 processing	 code	 with	 this	 in
mind.	(Change	implemented	by	Anthony	Baxter.)

A	 new	 urandom(n)	 function	 was	 added	 to	 the	 os	 module,
returning	a	string	containing	n	bytes	of	random	data.	This	function
provides	access	to	platform-specific	sources	of	randomness	such
as	 /dev/urandom	 on	 Linux	 or	 the	 Windows	 CryptoAPI.
(Contributed	by	Trevor	Perrin.)

Another	new	function:	os.path.lexists(path)	returns	 true	 if
the	file	specified	by	path	exists,	whether	or	not	it’s	a	symbolic	link.
This	differs	from	the	existing	os.path.exists(path)	function,
which	returns	false	if	path	is	a	symlink	that	points	to	a	destination
that	doesn’t	exist.	(Contributed	by	Beni	Cherniavsky.)

A	new	getsid()	function	was	added	to	the	posix	module	 that

underlies	the	os	module.	(Contributed	by	J.	Raynor.)

The	poplib	module	now	supports	POP	over	SSL.	 (Contributed
by	Hector	Urtubia.)

The	 profile	 module	 can	 now	 profile	 C	 extension	 functions.
(Contributed	by	Nick	Bastin.)

The	 random	 module	 has	 a	 new	 method	 called
getrandbits(N)	 that	 returns	 a	 long	 integer	N	 bits	 in	 length.
The	existing	randrange()	method	now	uses	getrandbits()
where	appropriate,	making	generation	of	arbitrarily	 large	 random
numbers	more	efficient.	(Contributed	by	Raymond	Hettinger.)

The	regular	expression	language	accepted	by	the	re	module	was
extended	 with	 simple	 conditional	 expressions,	 written	 as	 (?
(group)A|B).	 group	 is	 either	 a	 numeric	 group	 ID	 or	 a	 group
name	defined	with	(?P<group>...)	earlier	in	the	expression.	If
the	specified	group	matched,	the	regular	expression	pattern	A	will
be	tested	against	the	string;	if	the	group	didn’t	match,	the	pattern
B	will	be	used	instead.	(Contributed	by	Gustavo	Niemeyer.)

The	re	module	 is	also	no	 longer	 recursive,	 thanks	 to	a	massive
amount	 of	 work	 by	 Gustavo	 Niemeyer.	 In	 a	 recursive	 regular
expression	engine,	certain	patterns	result	 in	a	 large	amount	of	C
stack	space	being	consumed,	and	it	was	possible	to	overflow	the
stack.	 For	 example,	 if	 you	 matched	 a	 30000-byte	 string	 of	 a
characters	against	the	expression	(a|b)+,	one	stack	frame	was
consumed	 per	 character.	 Python	 2.3	 tried	 to	 check	 for	 stack
overflow	 and	 raise	 a	 RuntimeError	 exception,	 but	 certain
patterns	 could	 sidestep	 the	 checking	 and	 if	 you	 were	 unlucky
Python	could	segfault.	Python	2.4’s	regular	expression	engine	can

match	this	pattern	without	problems.

The	signal	module	now	performs	 tighter	error-checking	on	 the
parameters	to	the	signal.signal()	function.	For	example,	you
can’t	set	a	handler	on	 the	SIGKILL	signal;	previous	versions	of
Python	 would	 quietly	 accept	 this,	 but	 2.4	 will	 raise	 a
RuntimeError	exception.

Two	 new	 functions	 were	 added	 to	 the	 socket	 module.
socketpair()	 returns	 a	 pair	 of	 connected	 sockets	 and
getservbyport(port)	 looks	up	 the	service	name	 for	a	given
port	number.	(Contributed	by	Dave	Cole	and	Barry	Warsaw.)

The	 sys.exitfunc()	 function	 has	 been	 deprecated.	 Code
should	 be	 using	 the	 existing	 atexit	 module,	 which	 correctly
handles	 calling	 multiple	 exit	 functions.	 Eventually
sys.exitfunc()	 will	 become	 a	 purely	 internal	 interface,
accessed	only	by	atexit.

The	 tarfile	 module	 now	 generates	 GNU-format	 tar	 files	 by
default.	(Contributed	by	Lars	Gustäbel.)

The	 threading	 module	 now	 has	 an	 elegantly	 simple	 way	 to
support	 thread-local	 data.	 The	 module	 contains	 a	 local	 class
whose	attribute	values	are	local	to	different	threads.

import	threading

data	=	threading.local()

data.number	=	42

data.url	=	('www.python.org',	80)

Other	 threads	 can	 assign	 and	 retrieve	 their	 own	 values	 for	 the

number	and	url	attributes.	You	can	subclass	local	to	initialize
attributes	or	to	add	methods.	(Contributed	by	Jim	Fulton.)

The	timeit	module	now	automatically	disables	periodic	garbage
collection	during	the	timing	loop.	This	change	makes	consecutive
timings	more	comparable.	(Contributed	by	Raymond	Hettinger.)

The	 weakref	 module	 now	 supports	 a	 wider	 variety	 of	 objects
including	 Python	 functions,	 class	 instances,	 sets,	 frozensets,
deques,	 arrays,	 files,	 sockets,	 and	 regular	 expression	 pattern
objects.	(Contributed	by	Raymond	Hettinger.)

The	xmlrpclib	module	now	supports	a	multi-call	extension	 for
transmitting	multiple	XML-RPC	calls	 in	a	single	HTTP	operation.
(Contributed	by	Brian	Quinlan.)

The	 mpz,	 rotor,	 and	 xreadlines	 modules	 have	 been
removed.

cookielib

The	 cookielib	 library	 supports	 client-side	 handling	 for	 HTTP
cookies,	mirroring	 the	 Cookie	 module’s	 server-side	 cookie	 support.
Cookies	 are	 stored	 in	 cookie	 jars;	 the	 library	 transparently	 stores
cookies	 offered	 by	 the	web	 server	 in	 the	 cookie	 jar,	 and	 fetches	 the
cookie	from	the	jar	when	connecting	to	the	server.	As	in	web	browsers,
policy	objects	control	whether	cookies	are	accepted	or	not.

In	 order	 to	 store	 cookies	 across	 sessions,	 two	 implementations	 of
cookie	 jars	 are	 provided:	 one	 that	 stores	 cookies	 in	 the	 Netscape
format	 so	 applications	 can	 use	 the	Mozilla	 or	 Lynx	 cookie	 files,	 and
one	that	stores	cookies	in	the	same	format	as	the	Perl	libwww	library.

urllib2	 has	 been	 changed	 to	 interact	 with	 cookielib:
HTTPCookieProcessor	 manages	 a	 cookie	 jar	 that	 is	 used	 when
accessing	URLs.

This	module	was	contributed	by	John	J.	Lee.

doctest

The	 doctest	 module	 underwent	 considerable	 refactoring	 thanks	 to
Edward	 Loper	 and	 Tim	 Peters.	 Testing	 can	 still	 be	 as	 simple	 as
running	doctest.testmod(),	but	the	refactorings	allow	customizing
the	module’s	operation	in	various	ways

The	 new	 DocTestFinder	 class	 extracts	 the	 tests	 from	 a	 given
object’s	docstrings:

def	f	(x,	y):

				""">>>	f(2,2)

4

>>>	f(3,2)

6

				"""

				return	x*y

finder	=	doctest.DocTestFinder()

#	Get	list	of	DocTest	instances

tests	=	finder.find(f)

The	 new	 DocTestRunner	 class	 then	 runs	 individual	 tests	 and	 can
produce	a	summary	of	the	results:

runner	=	doctest.DocTestRunner()

for	t	in	tests:

				tried,	failed	=	runner.run(t)

runner.summarize(verbose=1)

The	above	example	produces	the	following	output:

1	items	passed	all	tests:

			2	tests	in	f

2	tests	in	1	items.

2	passed	and	0	failed.

Test	passed.

DocTestRunner	uses	an	 instance	of	 the	OutputChecker	 class	 to
compare	the	expected	output	with	the	actual	output.	This	class	takes	a
number	of	different	flags	that	customize	its	behaviour;	ambitious	users
can	also	write	a	completely	new	subclass	of	OutputChecker.

The	default	output	checker	provides	a	number	of	handy	features.	For
example,	with	 the	doctest.ELLIPSIS	option	 flag,	an	ellipsis	 (...)
in	 the	 expected	 output	 matches	 any	 substring,	 making	 it	 easier	 to
accommodate	outputs	that	vary	in	minor	ways:

def	o	(n):

				""">>>	o(1)

<__main__.C	instance	at	0x...>

>>>

"""

Another	special	string,	<BLANKLINE>,	matches	a	blank	line:

def	p	(n):

				""">>>	p(1)

<BLANKLINE>

>>>

"""

Another	new	capability	is	producing	a	diff-style	display	of	the	output	by
specifying	 the	 doctest.REPORT_UDIFF	 (unified	 diffs),
doctest.REPORT_CDIFF	 (context	 diffs),	 or
doctest.REPORT_NDIFF	(delta-style)	option	flags.	For	example:

def	g	(n):

				""">>>	g(4)

here

is

a

lengthy

>>>"""

				L	=	'here	is	a	rather	lengthy	list	of	words'.split

				for	word	in	L[:n]:

								print	word

Running	 the	 above	 function’s	 tests	 with	 doctest.REPORT_UDIFF
specified,	you	get	the	following	output:

**

File	"t.py",	line	15,	in	g

Failed	example:

				g(4)

Differences	(unified	diff	with	-expected	+actual):

				@@	-2,3	+2,3	@@

					is

					a

				-lengthy

				+rather

**

Build	and	C	API	Changes

Some	of	the	changes	to	Python’s	build	process	and	to	the	C	API	are:

Three	 new	 convenience	macros	were	 added	 for	 common	 return
values	 from	 extension	 functions:	 Py_RETURN_NONE,
Py_RETURN_TRUE,	 and	 Py_RETURN_FALSE.	 (Contributed	 by
Brett	Cannon.)
Another	new	macro,	 Py_CLEAR(obj),	 decreases	 the	 reference
count	of	obj	and	sets	obj	 to	 the	null	pointer.	 (Contributed	by	Jim
Fulton.)
A	 new	 function,	 PyTuple_Pack(N,	 obj1,	 obj2,	 ...,

objN),	 constructs	 tuples	 from	a	variable	 length	argument	 list	 of
Python	objects.	(Contributed	by	Raymond	Hettinger.)
A	 new	 function,	 PyDict_Contains(d,	 k),	 implements	 fast
dictionary	 lookups	without	masking	 exceptions	 raised	 during	 the
look-up	process.	(Contributed	by	Raymond	Hettinger.)
The	 Py_IS_NAN(X)	 macro	 returns	 1	 if	 its	 float	 or	 double
argument	X	is	a	NaN.	(Contributed	by	Tim	Peters.)
C	 code	 can	 avoid	 unnecessary	 locking	 by	 using	 the	 new
PyEval_ThreadsInitialized()	 function	 to	 tell	 if	 any	 thread
operations	have	been	performed.	If	this	function	returns	 false,	no
lock	operations	are	needed.	(Contributed	by	Nick	Coghlan.)
A	new	 function,	PyArg_VaParseTupleAndKeywords(),	 is	 the
same	 as	 PyArg_ParseTupleAndKeywords()	 but	 takes	 a
va_list	 instead	 of	 a	 number	 of	 arguments.	 (Contributed	 by
Greg	Chapman.)
A	new	method	flag,	METH_COEXISTS,	allows	a	function	defined	in
slots	 to	 co-exist	 with	 a	 PyCFunction	 having	 the	 same	 name.
This	 can	 halve	 the	 access	 time	 for	 a	 method	 such	 as
set.__contains__().	(Contributed	by	Raymond	Hettinger.)
Python	can	now	be	built	with	additional	profiling	for	the	interpreter

itself,	 intended	as	 an	 aid	 to	 people	 developing	 the	Python	 core.
Providing	 ----enable-profiling	 to	 the	 configure	 script	 will	 let	 you
profile	 the	 interpreter	 with	 gprof,	 and	 providing	 the	 ----with-tsc
switch	enables	profiling	using	the	Pentium’s	Time-Stamp-	Counter
register.	 Note	 that	 the	 ----with-tsc	 switch	 is	 slightly	 misnamed,
because	 the	 profiling	 feature	 also	 works	 on	 the	 PowerPC
platform,	 though	 that	 processor	 architecture	 doesn’t	 call	 that
register	“the	TSC	register”.	(Contributed	by	Jeremy	Hylton.)
The	 tracebackobject	 type	 has	 been	 renamed	 to
PyTracebackObject.

Port-Specific	Changes

The	 Windows	 port	 now	 builds	 under	 MSVC++	 7.1	 as	 well	 as
version	6.	(Contributed	by	Martin	von	Löwis.)

Porting	to	Python	2.4

This	 section	 lists	 previously	 described	 changes	 that	 may	 require
changes	to	your	code:

Left	shifts	and	hexadecimal/octal	constants	 that	are	 too	 large	no
longer	trigger	a	FutureWarning	and	return	a	value	limited	to	32
or	64	bits;	instead	they	return	a	long	integer.
Integer	operations	will	 no	 longer	 trigger	an	 OverflowWarning.
The	OverflowWarning	warning	will	disappear	in	Python	2.5.
The	zip()	built-in	function	and	itertools.izip()	now	return
an	empty	 list	 instead	of	 raising	a	TypeError	exception	 if	called
with	no	arguments.
You	can	no	 longer	compare	 the	date	and	datetime	 instances
provided	 by	 the	 datetime	 module.	 Two	 instances	 of	 different
classes	will	now	always	be	unequal,	and	relative	comparisons	(<,
>)	will	raise	a	TypeError.
dircache.listdir()	 now	 passes	 exceptions	 to	 the	 caller
instead	of	returning	empty	lists.
LexicalHandler.startDTD()	used	 to	 receive	 the	public	and
system	 IDs	 in	 the	 wrong	 order.	 This	 has	 been	 corrected;
applications	relying	on	the	wrong	order	need	to	be	fixed.
fcntl.ioctl()	 now	 warns	 if	 the	mutate	 argument	 is	 omitted
and	relevant.
The	 tarfile	 module	 now	 generates	 GNU-format	 tar	 files	 by
default.
Encountering	a	failure	while	importing	a	module	no	longer	leaves
a	partially-	initialized	module	object	in	sys.modules.
None	is	now	a	constant;	code	that	binds	a	new	value	to	the	name
None	is	now	a	syntax	error.
The	signals.signal()	function	now	raises	a	RuntimeError
exception	for	certain	 illegal	values;	previously	these	errors	would

pass	silently.	For	example,	you	can	no	longer	set	a	handler	on	the
SIGKILL	signal.

Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions,	 corrections	 and	 assistance	 with	 various	 drafts	 of	 this
article:	 Koray	 Can,	 Hye-Shik	 Chang,	 Michael	 Dyck,	 Raymond
Hettinger,	 Brian	 Hurt,	 Hamish	 Lawson,	 Fredrik	 Lundh,	 Sean
Reifschneider,	Sadruddin	Rejeb.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.3
Author: A.M.	Kuchling

This	article	explains	 the	new	 features	 in	Python	2.3.	Python	2.3	was
released	on	July	29,	2003.

The	main	 themes	 for	 Python	 2.3	 are	 polishing	 some	 of	 the	 features
added	 in	 2.2,	 adding	 various	 small	 but	 useful	 enhancements	 to	 the
core	 language,	 and	 expanding	 the	 standard	 library.	 The	 new	 object
model	 introduced	 in	 the	 previous	 version	 has	 benefited	 from	 18
months	of	 bugfixes	and	 from	optimization	efforts	 that	 have	 improved
the	 performance	 of	 new-style	 classes.	 A	 few	 new	 built-in	 functions
have	 been	 added	 such	 as	 sum()	 and	 enumerate().	 The	 in
operator	 can	 now	 be	 used	 for	 substring	 searches	 (e.g.	 "ab"	 in
"abc"	returns	True).

Some	 of	 the	 many	 new	 library	 features	 include	 Boolean,	 set,	 heap,
and	date/time	data	types,	the	ability	to	import	modules	from	ZIP-format
archives,	 metadata	 support	 for	 the	 long-awaited	 Python	 catalog,	 an
updated	 version	 of	 IDLE,	 and	 modules	 for	 logging	 messages,
wrapping	 text,	 parsing	 CSV	 files,	 processing	 command-line	 options,
using	BerkeleyDB	databases...	the	list	of	new	and	enhanced	modules
is	lengthy.

This	article	doesn’t	attempt	to	provide	a	complete	specification	of	 the
new	 features,	 but	 instead	 provides	 a	 convenient	 overview.	 For	 full
details,	you	should	refer	to	the	documentation	for	Python	2.3,	such	as
the	 Python	 Library	 Reference	 and	 the	 Python	 Reference	 Manual.	 If
you	 want	 to	 understand	 the	 complete	 implementation	 and	 design
rationale,	refer	to	the	PEP	for	a	particular	new	feature.

PEP	218:	A	Standard	Set	Datatype

The	new	sets	module	contains	an	implementation	of	a	set	datatype.
The	Set	class	is	for	mutable	sets,	sets	that	can	have	members	added
and	 removed.	 The	 ImmutableSet	 class	 is	 for	 sets	 that	 can’t	 be
modified,	and	instances	of	ImmutableSet	can	therefore	be	used	as
dictionary	keys.	Sets	are	built	on	 top	of	dictionaries,	so	 the	elements
within	a	set	must	be	hashable.

Here’s	a	simple	example:

>>>	import	sets

>>>	S	=	sets.Set([1,2,3])

>>>	S

Set([1,	2,	3])

>>>	1	in	S

True

>>>	0	in	S

False

>>>	S.add(5)

>>>	S.remove(3)

>>>	S

Set([1,	2,	5])

>>>

The	union	and	intersection	of	sets	can	be	computed	with	the	union()
and	 intersection()	 methods;	 an	 alternative	 notation	 uses	 the
bitwise	operators	&	and	|.	Mutable	sets	also	have	in-place	versions	of
these	methods,	union_update()	and	intersection_update().

>>>	S1	=	sets.Set([1,2,3])

>>>	S2	=	sets.Set([4,5,6])

>>>	S1.union(S2)

Set([1,	2,	3,	4,	5,	6])

>>>	S1	|	S2																		#	Alternative	notation

Set([1,	2,	3,	4,	5,	6])

>>>	S1.intersection(S2)

Set([])

>>>	S1	&	S2																		#	Alternative	notation

Set([])

>>>	S1.union_update(S2)

>>>	S1

Set([1,	2,	3,	4,	5,	6])

>>>

It’s	also	possible	to	take	the	symmetric	difference	of	two	sets.	This	 is
the	 set	 of	 all	 elements	 in	 the	 union	 that	 aren’t	 in	 the	 intersection.
Another	way	of	putting	 it	 is	 that	 the	symmetric	difference	contains	all
elements	 that	 are	 in	 exactly	 one	 set.	 Again,	 there’s	 an	 alternative
notation	 (^),	 and	 an	 in-	 place	 version	 with	 the	 ungainly	 name
symmetric_difference_update().

>>>	S1	=	sets.Set([1,2,3,4])

>>>	S2	=	sets.Set([3,4,5,6])

>>>	S1.symmetric_difference(S2)

Set([1,	2,	5,	6])

>>>	S1	^	S2

Set([1,	2,	5,	6])

>>>

There	 are	 also	 issubset()	 and	 issuperset()	 methods	 for
checking	whether	one	set	is	a	subset	or	superset	of	another:

>>>	S1	=	sets.Set([1,2,3])

>>>	S2	=	sets.Set([2,3])

>>>	S2.issubset(S1)

True

>>>	S1.issubset(S2)

False

>>>	S1.issuperset(S2)

True

>>>

See	also:

PEP	218	-	Adding	a	Built-In	Set	Object	Type
PEP	written	by	Greg	V.	Wilson.	Implemented	by	Greg	V.	Wilson,
Alex	Martelli,	and	GvR.

http://www.python.org/dev/peps/pep-0218

PEP	255:	Simple	Generators

In	 Python	 2.2,	 generators	 were	 added	 as	 an	 optional	 feature,	 to	 be
enabled	by	a	from	__future__	import	generators	directive.	In
2.3	generators	no	 longer	need	 to	be	specially	enabled,	and	are	now
always	present;	this	means	that	yield	is	now	always	a	keyword.	The
rest	of	this	section	is	a	copy	of	the	description	of	generators	from	the
“What’s	New	in	Python	2.2”	document;	if	you	read	it	back	when	Python
2.2	came	out,	you	can	skip	the	rest	of	this	section.

You’re	doubtless	familiar	with	how	function	calls	work	in	Python	or	C.
When	you	call	a	function,	it	gets	a	private	namespace	where	its	local
variables	 are	 created.	 When	 the	 function	 reaches	 a	 return

statement,	the	local	variables	are	destroyed	and	the	resulting	value	is
returned	to	the	caller.	A	later	call	to	the	same	function	will	get	a	fresh
new	 set	 of	 local	 variables.	 But,	 what	 if	 the	 local	 variables	 weren’t
thrown	away	on	exiting	a	function?	What	if	you	could	later	resume	the
function	where	it	left	off?	This	is	what	generators	provide;	they	can	be
thought	of	as	resumable	functions.

Here’s	the	simplest	example	of	a	generator	function:

def	generate_ints(N):

				for	i	in	range(N):

								yield	i

A	new	keyword,	yield,	was	 introduced	 for	generators.	Any	 function
containing	a	yield	statement	is	a	generator	function;	this	is	detected
by	Python’s	 bytecode	 compiler	which	 compiles	 the	 function	 specially
as	a	result.

When	 you	 call	 a	 generator	 function,	 it	 doesn’t	 return	 a	 single	 value;

instead	it	returns	a	generator	object	that	supports	the	iterator	protocol.
On	executing	the	yield	statement,	the	generator	outputs	the	value	of
i,	similar	to	a	return	statement.	The	big	difference	between	yield
and	a	return	statement	is	that	on	reaching	a	yield	the	generator’s
state	of	execution	is	suspended	and	local	variables	are	preserved.	On
the	 next	 call	 to	 the	 generator’s	 .next()	 method,	 the	 function	 will
resume	 executing	 immediately	 after	 the	 yield	 statement.	 (For
complicated	 reasons,	 the	 yield	 statement	 isn’t	 allowed	 inside	 the
try	 block	 of	 a	 try...finally	 statement;	 read	PEP	 255	 for	 a	 full
explanation	of	the	interaction	between	yield	and	exceptions.)

Here’s	a	sample	usage	of	the	generate_ints()	generator:

>>>	gen	=	generate_ints(3)

>>>	gen

<generator	object	at	0x8117f90>

>>>	gen.next()

0

>>>	gen.next()

1

>>>	gen.next()

2

>>>	gen.next()

Traceback	(most	recent	call	last):

		File	"stdin",	line	1,	in	?

		File	"stdin",	line	2,	in	generate_ints

StopIteration

You	could	equally	write	for	i	in	generate_ints(5),	or	a,b,c
=	generate_ints(3).

Inside	a	generator	 function,	 the	return	statement	can	only	be	used
without	 a	 value,	 and	 signals	 the	 end	 of	 the	 procession	 of	 values;

http://www.python.org/dev/peps/pep-0255

afterwards	 the	 generator	 cannot	 return	 any	 further	 values.	 return
with	a	value,	such	as	return	5,	is	a	syntax	error	inside	a	generator
function.	The	end	of	 the	generator’s	 results	can	also	be	 indicated	by
raising	 StopIteration	 manually,	 or	 by	 just	 letting	 the	 flow	 of
execution	fall	off	the	bottom	of	the	function.

You	 could	 achieve	 the	 effect	 of	 generators	manually	 by	 writing	 your
own	 class	 and	 storing	 all	 the	 local	 variables	 of	 the	 generator	 as
instance	variables.	For	 example,	 returning	a	 list	 of	 integers	 could	be
done	 by	 setting	 self.count	 to	 0,	 and	 having	 the	 next()	method
increment	 self.count	 and	 return	 it.	 However,	 for	 a	 moderately
complicated	generator,	writing	a	corresponding	class	would	be	much
messier.	 Lib/test/test_generators.py	 contains	 a	 number	 of
more	 interesting	examples.	The	simplest	one	 implements	an	 in-order
traversal	of	a	tree	using	generators	recursively.

#	A	recursive	generator	that	generates	Tree	leaves	in	in-order.

def	inorder(t):

				if	t:

								for	x	in	inorder(t.left):

												yield	x

								yield	t.label

								for	x	in	inorder(t.right):

												yield	x

Two	 other	 examples	 in	 Lib/test/test_generators.py	 produce
solutions	 for	 the	 N-Queens	 problem	 (placing	 N	 queens	 on	 an
NxN	 chess	 board	 so	 that	 no	 queen	 threatens	 another)	 and	 the
Knight’s	Tour	(a	route	that	takes	a	knight	to	every	square	of	an	NxN
chessboard	without	visiting	any	square	twice).

The	 idea	 of	 generators	 comes	 from	 other	 programming	 languages,

especially	 Icon	 (http://www.cs.arizona.edu/icon/),	 where	 the	 idea	 of
generators	 is	 central.	 In	 Icon,	 every	 expression	 and	 function	 call
behaves	like	a	generator.	One	example	from	“An	Overview	of	the	Icon
Programming	 Language”	 at
http://www.cs.arizona.edu/icon/docs/ipd266.htm	gives	an	 idea	of	what
this	looks	like:

sentence	:=	"Store	it	in	the	neighboring	harbor"

if	(i	:=	find("or",	sentence))	>	5	then	write(i)

In	Icon	the	find()	function	returns	the	indexes	at	which	the	substring
“or”	is	found:	3,	23,	33.	In	the	if	statement,	i	is	first	assigned	a	value
of	3,	but	3	 is	 less	 than	5,	so	 the	comparison	 fails,	and	 Icon	 retries	 it
with	 the	second	value	of	23.	23	 is	greater	 than	5,	so	 the	comparison
now	succeeds,	and	the	code	prints	the	value	23	to	the	screen.

Python	doesn’t	 go	nearly	as	 far	as	 Icon	 in	adopting	generators	as	a
central	 concept.	 Generators	 are	 considered	 part	 of	 the	 core	 Python
language,	 but	 learning	 or	 using	 them	 isn’t	 compulsory;	 if	 they	 don’t
solve	any	problems	that	you	have,	feel	free	to	ignore	them.	One	novel
feature	 of	 Python’s	 interface	 as	 compared	 to	 Icon’s	 is	 that	 a
generator’s	state	is	represented	as	a	concrete	object	(the	iterator)	that
can	be	passed	around	to	other	functions	or	stored	in	a	data	structure.

See	also:

PEP	255	-	Simple	Generators
Written	by	Neil	Schemenauer,	Tim	Peters,	Magnus	Lie	Hetland.
Implemented	mostly	by	Neil	Schemenauer	and	Tim	Peters,	with
other	fixes	from	the	Python	Labs	crew.

http://www.cs.arizona.edu/icon/
http://www.cs.arizona.edu/icon/docs/ipd266.htm
http://www.python.org/dev/peps/pep-0255

PEP	263:	Source	Code	Encodings

Python	 source	 files	 can	 now	 be	 declared	 as	 being	 in	 different
character	 set	 encodings.	 Encodings	 are	 declared	 by	 including	 a
specially	 formatted	comment	 in	 the	 first	or	 second	 line	of	 the	source
file.	For	example,	a	UTF-8	file	can	be	declared	with:

#!/usr/bin/env	python

#	-*-	coding:	UTF-8	-*-

Without	such	an	encoding	declaration,	the	default	encoding	used	is	7-
bit	 ASCII.	 Executing	 or	 importing	modules	 that	 contain	 string	 literals
with	8-bit	characters	and	have	no	encoding	declaration	will	result	in	a
DeprecationWarning	being	signalled	by	Python	2.3;	in	2.4	this	will
be	a	syntax	error.

The	encoding	declaration	only	affects	Unicode	string	literals,	which	will
be	 converted	 to	 Unicode	 using	 the	 specified	 encoding.	 Note	 that
Python	identifiers	are	still	 restricted	to	ASCII	characters,	so	you	can’t
have	 variable	 names	 that	 use	 characters	 outside	 of	 the	 usual
alphanumerics.

See	also:

PEP	263	-	Defining	Python	Source	Code	Encodings
Written	 by	 Marc-André	 Lemburg	 and	 Martin	 von	 Löwis;
implemented	by	Suzuki	Hisao	and	Martin	von	Löwis.

http://www.python.org/dev/peps/pep-0263

PEP	273:	Importing	Modules	from	ZIP
Archives

The	 new	 zipimport	 module	 adds	 support	 for	 importing	 modules
from	 a	 ZIP-	 format	 archive.	 You	 don’t	 need	 to	 import	 the	 module
explicitly;	it	will	be	automatically	imported	if	a	ZIP	archive’s	filename	is
added	to	sys.path.	For	example:

amk@nyman:~/src/python$	unzip	-l	/tmp/example.zip

Archive:		/tmp/example.zip

		Length					Date			Time				Name

	--------				----			----				----

					8467		11-26-02	22:30			jwzthreading.py

	--------																			-------

					8467																			1	file

amk@nyman:~/src/python$./python

Python	2.3	(#1,	Aug	1	2003,	19:54:32)

>>>	import	sys

>>>	sys.path.insert(0,	'/tmp/example.zip')		#	Add	.zip	file	to	front	of	path

>>>	import	jwzthreading

>>>	jwzthreading.__file__

'/tmp/example.zip/jwzthreading.py'

>>>

An	entry	in	sys.path	can	now	be	the	filename	of	a	ZIP	archive.	The
ZIP	archive	can	contain	any	kind	of	 files,	but	only	 files	named	*.py,
*.pyc,	or	*.pyo	can	be	 imported.	 If	an	archive	only	contains	*.py
files,	 Python	 will	 not	 attempt	 to	 modify	 the	 archive	 by	 adding	 the
corresponding	 *.pyc	 file,	 meaning	 that	 if	 a	 ZIP	 archive	 doesn’t
contain	*.pyc	files,	importing	may	be	rather	slow.

A	path	within	 the	archive	can	also	be	specified	 to	only	 import	 from	a

subdirectory;	for	example,	the	path	/tmp/example.zip/lib/	would
only	import	from	the	lib/	subdirectory	within	the	archive.

See	also:

PEP	273	-	Import	Modules	from	Zip	Archives
Written	 by	 James	 C.	 Ahlstrom,	 who	 also	 provided	 an
implementation.	Python	2.3	follows	the	specification	in	PEP	273,
but	 uses	 an	 implementation	 written	 by	 Just	 van	 Rossum	 that
uses	 the	 import	hooks	described	 in	PEP	302.	 See	 section	PEP
302:	New	Import	Hooks	for	a	description	of	the	new	import	hooks.

http://www.python.org/dev/peps/pep-0273
http://www.python.org/dev/peps/pep-0273
http://www.python.org/dev/peps/pep-0302

PEP	277:	Unicode	file	name	support	for
Windows	NT

On	 Windows	 NT,	 2000,	 and	 XP,	 the	 system	 stores	 file	 names	 as
Unicode	 strings.	 Traditionally,	 Python	 has	 represented	 file	 names	 as
byte	strings,	which	is	inadequate	because	it	renders	some	file	names
inaccessible.

Python	 now	 allows	 using	 arbitrary	 Unicode	 strings	 (within	 the
limitations	of	 the	 file	 system)	 for	all	 functions	 that	expect	 file	names,
most	 notably	 the	 open()	 built-in	 function.	 If	 a	 Unicode	 string	 is
passed	 to	 os.listdir(),	 Python	 now	 returns	 a	 list	 of	 Unicode
strings.	A	new	function,	os.getcwdu(),	returns	the	current	directory
as	a	Unicode	string.

Byte	 strings	 still	 work	 as	 file	 names,	 and	 on	 Windows	 Python	 will
transparently	convert	them	to	Unicode	using	the	mbcs	encoding.

Other	 systems	 also	 allow	Unicode	 strings	 as	 file	 names	 but	 convert
them	 to	 byte	 strings	 before	 passing	 them	 to	 the	 system,	 which	 can
cause	a	UnicodeError	 to	be	 raised.	Applications	can	 test	whether
arbitrary	 Unicode	 strings	 are	 supported	 as	 file	 names	 by	 checking
os.path.supports_unicode_filenames,	a	Boolean	value.

Under	MacOS,	os.listdir()	may	now	return	Unicode	filenames.

See	also:

PEP	277	-	Unicode	file	name	support	for	Windows	NT
Written	by	Neil	Hodgson;	 implemented	by	Neil	Hodgson,	Martin
von	Löwis,	and	Mark	Hammond.

http://www.python.org/dev/peps/pep-0277

PEP	278:	Universal	Newline	Support

The	three	major	operating	systems	used	today	are	Microsoft	Windows,
Apple’s	 Macintosh	 OS,	 and	 the	 various	 Unix	 derivatives.	 A	 minor
irritation	of	 cross-	 platform	work	 is	 that	 these	 three	platforms	all	 use
different	characters	to	mark	the	ends	of	lines	in	text	files.	Unix	uses	the
linefeed	(ASCII	character	10),	MacOS	uses	the	carriage	return	(ASCII
character	 13),	 and	 Windows	 uses	 a	 two-character	 sequence	 of	 a
carriage	return	plus	a	newline.

Python’s	 file	 objects	 can	 now	 support	 end	 of	 line	 conventions	 other
than	 the	 one	 followed	 by	 the	 platform	 on	 which	 Python	 is	 running.
Opening	a	file	with	the	mode	'U'	or	'rU'	will	open	a	file	for	reading
in	universal	newlines	mode.	All	 three	 line	 ending	 conventions	will	 be
translated	to	a	'\n'	in	the	strings	returned	by	the	various	file	methods
such	as	read()	and	readline().

Universal	 newline	 support	 is	 also	used	when	 importing	modules	and
when	executing	a	file	with	the	execfile()	function.	This	means	that
Python	modules	 can	be	 shared	between	all	 three	operating	 systems
without	needing	to	convert	the	line-endings.

This	feature	can	be	disabled	when	compiling	Python	by	specifying	the
--without-universal-newlines	 switch	when	 running	Python’s	configure
script.

See	also:

PEP	278	-	Universal	Newline	Support
Written	and	implemented	by	Jack	Jansen.

http://www.python.org/dev/peps/pep-0278

PEP	279:	enumerate()

A	new	built-in	 function,	 enumerate(),	 will	make	 certain	 loops	 a	 bit
clearer.	 enumerate(thing),	 where	 thing	 is	 either	 an	 iterator	 or	 a
sequence,	 returns	 a	 iterator	 that	 will	 return	 (0,	 thing[0]),	 (1,
thing[1]),	(2,	thing[2]),	and	so	forth.

A	common	idiom	to	change	every	element	of	a	list	looks	like	this:

for	i	in	range(len(L)):

				item	=	L[i]

				#	...	compute	some	result	based	on	item	...

				L[i]	=	result

This	can	be	rewritten	using	enumerate()	as:

for	i,	item	in	enumerate(L):

				#	...	compute	some	result	based	on	item	...

				L[i]	=	result

See	also:

PEP	279	-	The	enumerate()	built-in	function
Written	and	implemented	by	Raymond	D.	Hettinger.

http://www.python.org/dev/peps/pep-0279

PEP	282:	The	logging	Package

A	 standard	 package	 for	 writing	 logs,	 logging,	 has	 been	 added	 to
Python	 2.3.	 It	 provides	 a	 powerful	 and	 flexible	 mechanism	 for
generating	logging	output	which	can	then	be	filtered	and	processed	in
various	ways.	A	configuration	file	written	 in	a	standard	format	can	be
used	 to	 control	 the	 logging	 behavior	 of	 a	 program.	 Python	 includes
handlers	 that	 will	 write	 log	 records	 to	 standard	 error	 or	 to	 a	 file	 or
socket,	 send	 them	 to	 the	 system	 log,	 or	 even	 e-mail	 them	 to	 a
particular	 address;	 of	 course,	 it’s	 also	 possible	 to	 write	 your	 own
handler	classes.

The	Logger	class	is	the	primary	class.	Most	application	code	will	deal
with	 one	 or	 more	 Logger	 objects,	 each	 one	 used	 by	 a	 particular
subsystem	of	 the	application.	Each	Logger	 is	 identified	by	a	 name,
and	names	are	organized	into	a	hierarchy	using	.	as	 the	component
separator.	 For	 example,	 you	 might	 have	 Logger	 instances	 named
server,	 server.auth	 and	 server.network.	 The	 latter	 two
instances	are	below	server	 in	 the	hierarchy.	This	means	that	 if	you
turn	 up	 the	 verbosity	 for	 server	 or	 direct	 server	 messages	 to	 a
different	 handler,	 the	 changes	 will	 also	 apply	 to	 records	 logged	 to
server.auth	 and	 server.network.	 There’s	 also	 a	 root	 Logger
that’s	the	parent	of	all	other	loggers.

For	simple	uses,	 the	logging	 package	contains	 some	convenience
functions	that	always	use	the	root	log:

import	logging

logging.debug('Debugging	information')

logging.info('Informational	message')

logging.warning('Warning:config	file	%s	not	found',	

logging.error('Error	occurred')

logging.critical('Critical	error	--	shutting	down')

This	produces	the	following	output:

WARNING:root:Warning:config	file	server.conf	not	found

ERROR:root:Error	occurred

CRITICAL:root:Critical	error	--	shutting	down

In	 the	 default	 configuration,	 informational	 and	 debugging	 messages
are	 suppressed	 and	 the	 output	 is	 sent	 to	 standard	 error.	 You	 can
enable	 the	 display	 of	 informational	 and	 debugging	 messages	 by
calling	the	setLevel()	method	on	the	root	logger.

Notice	the	warning()	call’s	use	of	string	formatting	operators;	all	of
the	functions	for	logging	messages	take	the	arguments	(msg,	arg1,
arg2,	 ...)	 and	 log	 the	 string	 resulting	 from	 msg	 %	 (arg1,

arg2,	...).

There’s	also	an	exception()	 function	 that	 records	 the	most	 recent
traceback.	Any	of	 the	other	 functions	will	also	record	 the	 traceback	 if
you	specify	a	true	value	for	the	keyword	argument	exc_info.

def	f():

				try:				1/0

				except:	logging.exception('Problem	recorded')

f()

This	produces	the	following	output:

ERROR:root:Problem	recorded

Traceback	(most	recent	call	last):

		File	"t.py",	line	6,	in	f

				1/0

ZeroDivisionError:	integer	division	or	modulo	by	zero

Slightly	more	advanced	programs	will	use	a	logger	other	than	the	root
logger.	 The	 getLogger(name)	 function	 is	 used	 to	 get	 a	 particular
log,	 creating	 it	 if	 it	 doesn’t	 exist	 yet.	 getLogger(None)	 returns	 the
root	logger.

log	=	logging.getLogger('server')

	...

log.info('Listening	on	port	%i',	port)

	...

log.critical('Disk	full')

	...

Log	 records	are	usually	 propagated	up	 the	hierarchy,	 so	a	message
logged	 to	 server.auth	 is	 also	 seen	 by	 server	 and	 root,	 but	 a
Logger	can	prevent	this	by	setting	its	propagate	attribute	to	False.

There	are	more	classes	provided	by	 the	logging	package	 that	can
be	customized.	When	a	Logger	 instance	is	 told	to	 log	a	message,	 it
creates	a	LogRecord	instance	that	is	sent	to	any	number	of	different
Handler	instances.	Loggers	and	handlers	can	also	have	an	attached
list	of	filters,	and	each	filter	can	cause	the	LogRecord	to	be	ignored
or	can	modify	the	record	before	passing	it	along.	When	they’re	finally
output,	LogRecord	instances	are	converted	to	text	by	a	Formatter
class.	 All	 of	 these	 classes	 can	 be	 replaced	 by	 your	 own	 specially-
written	classes.

With	 all	 of	 these	 features	 the	 logging	 package	 should	 provide
enough	 flexibility	 for	 even	 the	most	 complicated	 applications.	 This	 is

only	 an	 incomplete	 overview	 of	 its	 features,	 so	 please	 see	 the
package’s	reference	documentation	for	all	of	the	details.	Reading	PEP
282	will	also	be	helpful.

See	also:

PEP	282	-	A	Logging	System
Written	 by	 Vinay	 Sajip	 and	 Trent	 Mick;	 implemented	 by	 Vinay
Sajip.

http://www.python.org/dev/peps/pep-0282
http://www.python.org/dev/peps/pep-0282

PEP	285:	A	Boolean	Type

A	Boolean	 type	was	 added	 to	 Python	 2.3.	 Two	 new	 constants	 were
added	 to	 the	 __builtin__	module,	 True	 and	 False.	 (True	 and
False	constants	were	added	to	 the	built-ins	 in	Python	2.2.1,	but	 the
2.2.1	versions	are	simply	set	to	integer	values	of	1	and	0	and	aren’t	a
different	type.)

The	type	object	for	this	new	type	is	named	bool;	the	constructor	for	it
takes	any	Python	value	and	converts	it	to	True	or	False.

>>>	bool(1)

True

>>>	bool(0)

False

>>>	bool([])

False

>>>	bool((1,))

True

Most	of	the	standard	library	modules	and	built-in	functions	have	been
changed	to	return	Booleans.

>>>	obj	=	[]

>>>	hasattr(obj,	'append')

True

>>>	isinstance(obj,	list)

True

>>>	isinstance(obj,	tuple)

False

Python’s	Booleans	were	added	with	the	primary	goal	of	making	code
clearer.	 For	 example,	 if	 you’re	 reading	 a	 function	 and	 encounter	 the

statement	return	1,	you	might	wonder	whether	 the	1	 represents	a
Boolean	 truth	 value,	 an	 index,	 or	 a	 coefficient	 that	 multiplies	 some
other	 quantity.	 If	 the	 statement	 is	 return	 True,	 however,	 the
meaning	of	the	return	value	is	quite	clear.

Python’s	Booleans	were	not	added	for	the	sake	of	strict	type-checking.
A	 very	 strict	 language	 such	 as	 Pascal	 would	 also	 prevent	 you
performing	 arithmetic	 with	 Booleans,	 and	 would	 require	 that	 the
expression	 in	 an	 if	 statement	 always	 evaluate	 to	 a	Boolean	 result.
Python	is	not	this	strict	and	never	will	be,	as	PEP	285	explicitly	says.
This	means	you	can	still	use	any	expression	in	an	if	statement,	even
ones	 that	 evaluate	 to	 a	 list	 or	 tuple	 or	 some	 random	 object.	 The
Boolean	type	is	a	subclass	of	the	int	class	so	that	arithmetic	using	a
Boolean	still	works.

>>>	True	+	1

2

>>>	False	+	1

1

>>>	False	*	75

0

>>>	True	*	75

75

To	sum	up	True	and	False	in	a	sentence:	they’re	alternative	ways	to
spell	the	integer	values	1	and	0,	with	the	single	difference	that	str()
and	repr()	return	the	strings	'True'	and	'False'	instead	of	'1'
and	'0'.

See	also:

PEP	285	-	Adding	a	bool	type
Written	and	implemented	by	GvR.

http://www.python.org/dev/peps/pep-0285
http://www.python.org/dev/peps/pep-0285

PEP	293:	Codec	Error	Handling	Callbacks

When	 encoding	 a	 Unicode	 string	 into	 a	 byte	 string,	 unencodable
characters	may	be	encountered.	So	far,	Python	has	allowed	specifying
the	 error	 processing	 as	 either	 “strict”	 (raising	 UnicodeError),
“ignore”	(skipping	the	character),	or	“replace”	(using	a	question	mark	in
the	 output	 string),	 with	 “strict”	 being	 the	 default	 behavior.	 It	 may	 be
desirable	 to	 specify	 alternative	 processing	 of	 such	 errors,	 such	 as
inserting	an	XML	character	reference	or	HTML	entity	reference	into	the
converted	string.

Python	 now	 has	 a	 flexible	 framework	 to	 add	 different	 processing
strategies.	 New	 error	 handlers	 can	 be	 added	 with
codecs.register_error(),	and	codecs	then	can	access	the	error
handler	 with	 codecs.lookup_error().	 An	 equivalent	 C	 API	 has
been	 added	 for	 codecs	 written	 in	 C.	 The	 error	 handler	 gets	 the
necessary	 state	 information	 such	 as	 the	 string	 being	 converted,	 the
position	 in	 the	 string	 where	 the	 error	 was	 detected,	 and	 the	 target
encoding.	The	handler	can	 then	either	 raise	an	exception	or	 return	a
replacement	string.

Two	 additional	 error	 handlers	 have	 been	 implemented	 using	 this
framework:	 “backslashreplace”	 uses	 Python	 backslash	 quoting	 to
represent	unencodable	characters	and	“xmlcharrefreplace”	emits	XML
character	references.

See	also:

PEP	293	-	Codec	Error	Handling	Callbacks
Written	and	implemented	by	Walter	Dörwald.

http://www.python.org/dev/peps/pep-0293

PEP	301:	Package	Index	and	Metadata	for
Distutils

Support	 for	 the	 long-requested	 Python	 catalog	 makes	 its	 first
appearance	in	2.3.

The	 heart	 of	 the	 catalog	 is	 the	 new	 Distutils	 register	 command.
Running	 python	 setup.py	 register	 will	 collect	 the	 metadata
describing	 a	 package,	 such	 as	 its	 name,	 version,	 maintainer,
description,	&c.,	and	send	it	to	a	central	catalog	server.	The	resulting
catalog	is	available	from	http://www.python.org/pypi.

To	 make	 the	 catalog	 a	 bit	 more	 useful,	 a	 new	 optional	 classifiers
keyword	argument	has	been	added	to	the	Distutils	setup()	function.
A	 list	 of	 Trove-style	 strings	 can	 be	 supplied	 to	 help	 classify	 the
software.

Here’s	 an	 example	 setup.py	 with	 classifiers,	 written	 to	 be
compatible	with	older	versions	of	the	Distutils:

from	distutils	import	core

kw	=	{'name':	"Quixote",

						'version':	"0.5.1",

						'description':	"A	highly	Pythonic	Web	application	framework"

						#	...

						}

if	(hasattr(core,	'setup_keywords')	and

				'classifiers'	in	core.setup_keywords):

				kw['classifiers']	=	\

								['Topic	::	Internet	::	WWW/HTTP	::	Dynamic	Content'

									'Environment	::	No	Input/Output	(Daemon)',

									'Intended	Audience	::	Developers'],

http://www.python.org/pypi
http://catb.org/~esr/trove/

core.setup(**kw)

The	 full	 list	 of	 classifiers	 can	 be	 obtained	 by	 running	 python
setup.py	register	--list-classifiers.

See	also:

PEP	301	-	Package	Index	and	Metadata	for	Distutils
Written	and	implemented	by	Richard	Jones.

http://www.python.org/dev/peps/pep-0301

PEP	302:	New	Import	Hooks

While	 it’s	been	possible	 to	write	custom	 import	hooks	ever	since	 the
ihooks	module	was	introduced	in	Python	1.3,	no	one	has	ever	been
really	happy	with	 it	 because	writing	new	 import	hooks	 is	difficult	and
messy.	 There	 have	 been	 various	 proposed	 alternatives	 such	 as	 the
imputil	and	iu	modules,	but	none	of	 them	has	ever	gained	much
acceptance,	and	none	of	them	were	easily	usable	from	C	code.

PEP	302	borrows	ideas	from	its	predecessors,	especially	from	Gordon
McMillan’s	iu	module.	Three	new	items	are	added	to	the	sys	module:

sys.path_hooks	 is	a	 list	 of	 callable	objects;	most	often	 they’ll
be	 classes.	 Each	 callable	 takes	 a	 string	 containing	 a	 path	 and
either	returns	an	importer	object	that	will	handle	imports	from	this
path	or	 raises	an	ImportError	exception	 if	 it	 can’t	handle	 this
path.
sys.path_importer_cache	 caches	 importer	objects	 for	each
path,	so	sys.path_hooks	will	 only	 need	 to	 be	 traversed	 once
for	each	path.
sys.meta_path	is	a	list	of	importer	objects	that	will	be	traversed
before	sys.path	 is	checked.	This	 list	 is	 initially	empty,	but	user
code	can	add	objects	to	it.	Additional	built-in	and	frozen	modules
can	be	imported	by	an	object	added	to	this	list.

Importer	 objects	 must	 have	 a	 single	 method,
find_module(fullname,	path=None).	fullname	will	be	a	module
or	 package	 name,	 e.g.	 string	 or	 distutils.core.
find_module()	 must	 return	 a	 loader	 object	 that	 has	 a	 single
method,	 load_module(fullname),	 that	 creates	 and	 returns	 the
corresponding	module	object.

http://www.python.org/dev/peps/pep-0302

Pseudo-code	for	Python’s	new	import	logic,	therefore,	looks	something
like	this	(simplified	a	bit;	see	PEP	302	for	the	full	details):

for	mp	in	sys.meta_path:

				loader	=	mp(fullname)

				if	loader	is	not	None:

								<module>	=	loader.load_module(fullname)

for	path	in	sys.path:

				for	hook	in	sys.path_hooks:

								try:

												importer	=	hook(path)

								except	ImportError:

												#	ImportError,	so	try	the	other	path	hooks

												pass

								else:

												loader	=	importer.find_module(fullname)

												<module>	=	loader.load_module(fullname)

#	Not	found!

raise	ImportError

See	also:

PEP	302	-	New	Import	Hooks
Written	 by	 Just	 van	 Rossum	 and	 Paul	Moore.	 Implemented	 by
Just	van	Rossum.

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

PEP	305:	Comma-separated	Files

Comma-separated	files	are	a	format	frequently	used	for	exporting	data
from	 databases	 and	 spreadsheets.	 Python	 2.3	 adds	 a	 parser	 for
comma-separated	files.

Comma-separated	format	is	deceptively	simple	at	first	glance:

Costs,150,200,3.95

Read	a	line	and	call	line.split(','):	what	could	be	simpler?	But
toss	 in	 string	 data	 that	 can	 contain	 commas,	 and	 things	 get	 more
complicated:

"Costs",150,200,3.95,"Includes	taxes,	shipping,	and	sundry	items"

A	big	ugly	 regular	expression	can	parse	 this,	but	using	 the	new	csv
package	is	much	simpler:

import	csv

input	=	open('datafile',	'rb')

reader	=	csv.reader(input)

for	line	in	reader:

				print	line

The	reader()	function	takes	a	number	of	different	options.	The	field
separator	 isn’t	 limited	 to	 the	 comma	 and	 can	 be	 changed	 to	 any
character,	and	so	can	the	quoting	and	line-ending	characters.

Different	 dialects	 of	 comma-separated	 files	 can	 be	 defined	 and
registered;	 currently	 there	 are	 two	 dialects,	 both	 used	 by	 Microsoft

Excel.	A	separate	csv.writer	class	will	generate	comma-separated
files	 from	a	succession	of	 tuples	or	 lists,	 quoting	strings	 that	 contain
the	delimiter.

See	also:

PEP	305	-	CSV	File	API
Written	 and	 implemented	 by	 Kevin	 Altis,	 Dave	 Cole,	 Andrew
McNamara,	Skip	Montanaro,	Cliff	Wells.

http://www.python.org/dev/peps/pep-0305

PEP	307:	Pickle	Enhancements

The	pickle	and	cPickle	modules	 received	 some	attention	during
the	2.3	development	cycle.	In	2.2,	new-style	classes	could	be	pickled
without	 difficulty,	 but	 they	 weren’t	 pickled	 very	 compactly;	 PEP	 307
quotes	a	 trivial	example	where	a	new-style	class	 results	 in	a	pickled
string	three	times	longer	than	that	for	a	classic	class.

The	 solution	 was	 to	 invent	 a	 new	 pickle	 protocol.	 The
pickle.dumps()	 function	 has	 supported	 a	 text-or-binary	 flag	 for	 a
long	time.	In	2.3,	this	flag	is	redefined	from	a	Boolean	to	an	integer:	0
is	the	old	text-mode	pickle	format,	1	is	the	old	binary	format,	and	now
2	 is	 a	 new	 2.3-specific	 format.	 A	 new	 constant,
pickle.HIGHEST_PROTOCOL,	 can	 be	 used	 to	 select	 the	 fanciest
protocol	available.

Unpickling	 is	 no	 longer	 considered	 a	 safe	 operation.	 2.2’s	 pickle
provided	 hooks	 for	 trying	 to	 prevent	 unsafe	 classes	 from	 being
unpickled	(specifically,	a	__safe_for_unpickling__	attribute),	but
none	of	 this	code	was	ever	audited	and	 therefore	 it’s	all	been	ripped
out	 in	 2.3.	 You	 should	 not	 unpickle	 untrusted	 data	 in	 any	 version	 of
Python.

To	reduce	the	pickling	overhead	for	new-style	classes,	a	new	interface
for	 customizing	 pickling	 was	 added	 using	 three	 special	 methods:
__getstate__(),	 __setstate__(),	 and	 __getnewargs__().
Consult	PEP	307	for	the	full	semantics	of	these	methods.

As	 a	 way	 to	 compress	 pickles	 yet	 further,	 it’s	 now	 possible	 to	 use
integer	 codes	 instead	of	 long	 strings	 to	 identify	 pickled	 classes.	 The
Python	Software	Foundation	will	maintain	a	list	of	standardized	codes;
there’s	also	a	range	of	codes	for	private	use.	Currently	no	codes	have

http://www.python.org/dev/peps/pep-0307
http://www.python.org/dev/peps/pep-0307

been	specified.

See	also:

PEP	307	-	Extensions	to	the	pickle	protocol
Written	and	implemented	by	Guido	van	Rossum	and	Tim	Peters.

http://www.python.org/dev/peps/pep-0307

Extended	Slices

Ever	 since	 Python	 1.4,	 the	 slicing	 syntax	 has	 supported	 an	 optional
third	 “step”	 or	 “stride”	 argument.	 For	 example,	 these	 are	 all	 legal
Python	 syntax:	 L[1:10:2],	 L[:-1:1],	 L[::-1].	 This	 was	 added
to	Python	at	the	request	of	the	developers	of	Numerical	Python,	which
uses	 the	 third	 argument	 extensively.	 However,	 Python’s	 built-in	 list,
tuple,	 and	 string	 sequence	 types	 have	 never	 supported	 this	 feature,
raising	 a	 TypeError	 if	 you	 tried	 it.	 Michael	 Hudson	 contributed	 a
patch	to	fix	this	shortcoming.

For	 example,	 you	 can	 now	 easily	 extract	 the	 elements	 of	 a	 list	 that
have	even	indexes:

>>>	L	=	range(10)

>>>	L[::2]

[0,	2,	4,	6,	8]

Negative	values	also	work	to	make	a	copy	of	the	same	list	in	reverse
order:

>>>	L[::-1]

[9,	8,	7,	6,	5,	4,	3,	2,	1,	0]

This	also	works	for	tuples,	arrays,	and	strings:

>>>	s='abcd'

>>>	s[::2]

'ac'

>>>	s[::-1]

'dcba'

If	 you	 have	 a	mutable	 sequence	 such	 as	 a	 list	 or	 an	 array	 you	 can

assign	to	or	delete	an	extended	slice,	but	there	are	some	differences
between	assignment	to	extended	and	regular	slices.	Assignment	 to	a
regular	slice	can	be	used	to	change	the	length	of	the	sequence:

>>>	a	=	range(3)

>>>	a

[0,	1,	2]

>>>	a[1:3]	=	[4,	5,	6]

>>>	a

[0,	4,	5,	6]

Extended	 slices	 aren’t	 this	 flexible.	 When	 assigning	 to	 an	 extended
slice,	the	list	on	the	right	hand	side	of	the	statement	must	contain	the
same	number	of	items	as	the	slice	it	is	replacing:

>>>	a	=	range(4)

>>>	a

[0,	1,	2,	3]

>>>	a[::2]

[0,	2]

>>>	a[::2]	=	[0,	-1]

>>>	a

[0,	1,	-1,	3]

>>>	a[::2]	=	[0,1,2]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	attempt	to	assign	sequence	of	size	3	to	extended	slice	of	size	2

Deletion	is	more	straightforward:

>>>	a	=	range(4)

>>>	a

[0,	1,	2,	3]

>>>	a[::2]

[0,	2]

>>>	del	a[::2]

>>>	a

[1,	3]

One	can	also	now	pass	slice	objects	to	the	__getitem__()	methods
of	the	built-in	sequences:

>>>	range(10).__getitem__(slice(0,	5,	2))

[0,	2,	4]

Or	use	slice	objects	directly	in	subscripts:

>>>	range(10)[slice(0,	5,	2)]

[0,	2,	4]

To	 simplify	 implementing	 sequences	 that	 support	 extended	 slicing,
slice	objects	now	have	a	method	indices(length)	which,	given	the
length	of	 a	 sequence,	 returns	a	 (start,	stop,	step)	 tuple	 that
can	be	passed	directly	to	range().	indices()	handles	omitted	and
out-of-bounds	 indices	 in	a	manner	consistent	with	regular	slices	(and
this	 innocuous	 phrase	 hides	 a	 welter	 of	 confusing	 details!).	 The
method	is	intended	to	be	used	like	this:

class	FakeSeq:

				...

				def	calc_item(self,	i):

								...

				def	__getitem__(self,	item):

								if	isinstance(item,	slice):

												indices	=	item.indices(len(self))

												return	FakeSeq([self.calc_item(i)	for	i	

								else:

												return	self.calc_item(i)

From	this	example	you	can	also	see	that	 the	built-in	slice	object	 is
now	the	type	object	for	the	slice	type,	and	is	no	longer	a	function.	This
is	 consistent	 with	 Python	 2.2,	 where	 int,	 str,	 etc.,	 underwent	 the
same	change.

Other	Language	Changes

Here	are	all	of	the	changes	that	Python	2.3	makes	to	the	core	Python
language.

The	yield	statement	 is	now	always	a	keyword,	as	described	 in
section	PEP	255:	Simple	Generators	of	this	document.

A	new	built-in	function	enumerate()	was	added,	as	described	in
section	PEP	279:	enumerate()	of	this	document.

Two	new	constants,	True	and	False	were	added	along	with	the
built-in	bool	 type,	 as	 described	 in	 section	PEP	285:	A	Boolean
Type	of	this	document.

The	int()	type	constructor	will	now	return	a	long	integer	instead
of	 raising	 an	 OverflowError	 when	 a	 string	 or	 floating-point
number	 is	 too	 large	 to	 fit	 into	 an	 integer.	 This	 can	 lead	 to	 the
paradoxical	 result	 that	 isinstance(int(expression),

int)	 is	 false,	 but	 that	 seems	 unlikely	 to	 cause	 problems	 in
practice.

Built-in	 types	 now	 support	 the	 extended	 slicing	 syntax,	 as
described	in	section	Extended	Slices	of	this	document.

A	 new	 built-in	 function,	 sum(iterable,	 start=0),	 adds	 up
the	 numeric	 items	 in	 the	 iterable	 object	 and	 returns	 their	 sum.
sum()	 only	 accepts	 numbers,	 meaning	 that	 you	 can’t	 use	 it	 to
concatenate	a	bunch	of	strings.	(Contributed	by	Alex	Martelli.)

list.insert(pos,	value)	used	to	insert	value	at	the	front	of
the	 list	 when	 pos	 was	 negative.	 The	 behaviour	 has	 now	 been

changed	 to	 be	 consistent	with	 slice	 indexing,	 so	when	pos	 is	 -1
the	value	will	be	inserted	before	the	last	element,	and	so	forth.

list.index(value),	 which	 searches	 for	 value	 within	 the	 list
and	returns	its	index,	now	takes	optional	start	and	stop	arguments
to	limit	the	search	to	only	part	of	the	list.

Dictionaries	 have	 a	 new	 method,	 pop(key[,	 *default*]),
that	 returns	 the	 value	 corresponding	 to	 key	 and	 removes	 that
key/value	 pair	 from	 the	 dictionary.	 If	 the	 requested	 key	 isn’t
present	 in	 the	 dictionary,	 default	 is	 returned	 if	 it’s	 specified	 and
KeyError	raised	if	it	isn’t.

>>>	d	=	{1:2}

>>>	d

{1:	2}

>>>	d.pop(4)

Traceback	(most	recent	call	last):

		File	"stdin",	line	1,	in	?

KeyError:	4

>>>	d.pop(1)

2

>>>	d.pop(1)

Traceback	(most	recent	call	last):

		File	"stdin",	line	1,	in	?

KeyError:	'pop():	dictionary	is	empty'

>>>	d

{}

>>>

There’s	also	a	new	class	method,	dict.fromkeys(iterable,
value),	 that	 creates	 a	 dictionary	 with	 keys	 taken	 from	 the
supplied	iterator	 iterable	and	all	values	set	to	value,	defaulting	 to
None.

(Patches	contributed	by	Raymond	Hettinger.)

Also,	the	dict()	constructor	now	accepts	keyword	arguments	to
simplify	creating	small	dictionaries:

>>>	dict(red=1,	blue=2,	green=3,	black=4)

{'blue':	2,	'black':	4,	'green':	3,	'red':	1}

(Contributed	by	Just	van	Rossum.)

The	assert	statement	no	longer	checks	the	__debug__	flag,	so
you	can	no	longer	disable	assertions	by	assigning	to	__debug__.
Running	 Python	 with	 the	 -O	 switch	 will	 still	 generate	 code	 that
doesn’t	execute	any	assertions.

Most	type	objects	are	now	callable,	so	you	can	use	them	to	create
new	 objects	 such	 as	 functions,	 classes,	 and	 modules.	 (This
means	that	the	new	module	can	be	deprecated	in	a	future	Python
version,	 because	 you	 can	now	use	 the	 type	objects	 available	 in
the	types	module.)	For	example,	you	can	create	a	new	module
object	with	the	following	code:

>>>	import	types

>>>	m	=	types.ModuleType('abc','docstring')

>>>	m

<module	'abc'	(built-in)>

>>>	m.__doc__

'docstring'

A	new	warning,	 PendingDeprecationWarning	was	 added	 to
indicate	 features	which	 are	 in	 the	 process	 of	 being	 deprecated.
The	 warning	 will	 not	 be	 printed	 by	 default.	 To	 check	 for	 use	 of
features	 that	 will	 be	 deprecated	 in	 the	 future,	 supply	 -
Walways::PendingDeprecationWarning::	 on	 the	 command	 line	or

use	warnings.filterwarnings().

The	process	of	deprecating	string-based	exceptions,	as	in	raise
"Error	occurred",	has	begun.	Raising	a	string	will	now	trigger
PendingDeprecationWarning.

Using	 None	 as	 a	 variable	 name	 will	 now	 result	 in	 a
SyntaxWarning	 warning.	 In	 a	 future	 version	 of	 Python,	 None
may	finally	become	a	keyword.

The	xreadlines()	method	of	file	objects,	introduced	in	Python
2.1,	 is	 no	 longer	 necessary	 because	 files	 now	 behave	 as	 their
own	iterator.	xreadlines()	was	originally	introduced	as	a	faster
way	 to	 loop	 over	 all	 the	 lines	 in	 a	 file,	 but	 now	 you	 can	 simply
write	 for	line	in	file_obj.	 File	 objects	 also	 have	 a	 new
read-only	encoding	attribute	that	gives	the	encoding	used	by	the
file;	 Unicode	 strings	 written	 to	 the	 file	 will	 be	 automatically
converted	to	bytes	using	the	given	encoding.

The	 method	 resolution	 order	 used	 by	 new-style	 classes	 has
changed,	 though	 you’ll	 only	 notice	 the	 difference	 if	 you	 have	 a
really	 complicated	 inheritance	 hierarchy.	 Classic	 classes	 are
unaffected	by	this	change.	Python	2.2	originally	used	a	topological
sort	of	a	class’s	ancestors,	but	2.3	now	uses	the	C3	algorithm	as
described	in	the	paper	“A	Monotonic	Superclass	Linearization	for
Dylan”.	 To	 understand	 the	 motivation	 for	 this	 change,	 read
Michele	Simionato’s	article	“Python	2.3	Method	Resolution	Order”,
or	 read	 the	 thread	 on	 python-dev	 starting	 with	 the	 message	 at
http://mail.python.org/pipermail/python-dev/2002-
October/029035.html.	 Samuele	 Pedroni	 first	 pointed	 out	 the
problem	and	also	implemented	the	fix	by	coding	the	C3	algorithm.

http://www.webcom.com/haahr/dylan/linearization-oopsla96.html
http://www.python.org/2.3/mro.html
http://mail.python.org/pipermail/python-dev/2002-October/029035.html

Python	 runs	 multithreaded	 programs	 by	 switching	 between
threads	after	executing	N	bytecodes.	The	default	value	for	N	has
been	 increased	 from	 10	 to	 100	 bytecodes,	 speeding	 up	 single-
threaded	applications	by	reducing	the	switching	overhead.	Some
multithreaded	 applications	may	 suffer	 slower	 response	 time,	 but
that’s	easily	fixed	by	setting	the	limit	back	to	a	lower	number	using
sys.setcheckinterval(N).	 The	 limit	 can	 be	 retrieved	 with
the	new	sys.getcheckinterval()	function.

One	minor	but	far-reaching	change	is	that	the	names	of	extension
types	defined	by	 the	modules	 included	with	Python	now	contain
the	module	and	a	'.'	in	front	of	the	type	name.	For	example,	in
Python	2.2,	 if	 you	 created	a	 socket	 and	printed	 its	 __class__,
you’d	get	this	output:

>>>	s	=	socket.socket()

>>>	s.__class__

<type	'socket'>

In	2.3,	you	get	this:

>>>	s.__class__

<type	'_socket.socket'>

One	 of	 the	 noted	 incompatibilities	 between	 old-	 and	 new-style
classes	has	been	removed:	you	can	now	assign	to	the	__name__
and	__bases__	attributes	of	new-style	classes.	There	are	some
restrictions	 on	 what	 can	 be	 assigned	 to	 __bases__	 along	 the
lines	of	 those	 relating	 to	 assigning	 to	 an	 instance’s	 __class__
attribute.

String	Changes

The	 in	 operator	 now	 works	 differently	 for	 strings.	 Previously,
when	evaluating	X	in	Y	where	X	and	Y	are	strings,	X	could	only
be	a	single	character.	That’s	now	changed;	X	 can	be	a	string	of
any	length,	and	X	in	Y	will	return	True	if	X	is	a	substring	of	Y.	If
X	is	the	empty	string,	the	result	is	always	True.

>>>	'ab'	in	'abcd'

True

>>>	'ad'	in	'abcd'

False

>>>	''	in	'abcd'

True

Note	 that	 this	 doesn’t	 tell	 you	where	 the	 substring	 starts;	 if	 you
need	that	information,	use	the	find()	string	method.

The	 strip(),	 lstrip(),	 and	 rstrip()	 string	 methods	 now
have	an	optional	argument	 for	specifying	 the	characters	 to	strip.
The	default	is	still	to	remove	all	whitespace	characters:

>>>	'			abc	'.strip()

'abc'

>>>	'><><abc<><><>'.strip('<>')

'abc'

>>>	'><><abc<><><>\n'.strip('<>')

'abc<><><>\n'

>>>	u'\u4000\u4001abc\u4000'.strip(u'\u4000')

u'\u4001abc'

>>>

(Suggested	 by	 Simon	 Brunning	 and	 implemented	 by	 Walter
Dörwald.)

The	 startswith()	 and	 endswith()	 string	 methods	 now

accept	negative	numbers	for	the	start	and	end	parameters.

Another	 new	 string	method	 is	 zfill(),	 originally	 a	 function	 in
the	string	module.	zfill()	pads	a	numeric	string	with	zeros
on	the	left	until	it’s	the	specified	width.	Note	that	the	%	operator	is
still	more	flexible	and	powerful	than	zfill().

>>>	'45'.zfill(4)

'0045'

>>>	'12345'.zfill(4)

'12345'

>>>	'goofy'.zfill(6)

'0goofy'

(Contributed	by	Walter	Dörwald.)

A	 new	 type	 object,	 basestring,	 has	 been	 added.	 Both	 8-bit
strings	 and	 Unicode	 strings	 inherit	 from	 this	 type,	 so
isinstance(obj,	 basestring)	 will	 return	 True	 for	 either
kind	of	string.	It’s	a	completely	abstract	 type,	so	you	can’t	create
basestring	instances.

Interned	strings	are	no	longer	immortal	and	will	now	be	garbage-
collected	in	the	usual	way	when	the	only	reference	to	them	is	from
the	 internal	 dictionary	of	 interned	strings.	 (Implemented	by	Oren
Tirosh.)

Optimizations

The	creation	of	 new-style	 class	 instances	has	been	made	much
faster;	they’re	now	faster	than	classic	classes!
The	sort()	method	of	list	objects	has	been	extensively	rewritten
by	Tim	Peters,	and	the	implementation	is	significantly	faster.

Multiplication	of	 large	 long	 integers	 is	now	much	faster	 thanks	to
an	 implementation	 of	 Karatsuba	multiplication,	 an	 algorithm	 that
scales	 better	 than	 the	 O(n*n)	 required	 for	 the	 grade-school
multiplication	 algorithm.	 (Original	 patch	 by	 Christopher	 A.	 Craig,
and	significantly	reworked	by	Tim	Peters.)
The	SET_LINENO	opcode	is	now	gone.	This	may	provide	a	small
speed	increase,	depending	on	your	compiler’s	idiosyncrasies.	See
section	 Other	 Changes	 and	 Fixes	 for	 a	 longer	 explanation.
(Removed	by	Michael	Hudson.)
xrange()	 objects	 now	 have	 their	 own	 iterator,	 making	 for	i
in	 xrange(n)	 slightly	 faster	 than	 for	 i	 in	 range(n).
(Patch	by	Raymond	Hettinger.)
A	 number	 of	 small	 rearrangements	 have	 been	 made	 in	 various
hotspots	 to	 improve	 performance,	 such	 as	 inlining	 a	 function	 or
removing	 some	 code.	 (Implemented	 mostly	 by	 GvR,	 but	 lots	 of
people	have	contributed	single	changes.)

The	 net	 result	 of	 the	 2.3	 optimizations	 is	 that	 Python	 2.3	 runs	 the
pystone	benchmark	around	25%	faster	than	Python	2.2.

New,	Improved,	and	Deprecated	Modules

As	 usual,	 Python’s	 standard	 library	 received	 a	 number	 of
enhancements	and	bug	fixes.	Here’s	a	partial	 list	of	 the	most	notable
changes,	 sorted	 alphabetically	 by	 module	 name.	 Consult	 the
Misc/NEWS	file	in	the	source	tree	for	a	more	complete	list	of	changes,
or	look	through	the	CVS	logs	for	all	the	details.

The	 array	 module	 now	 supports	 arrays	 of	 Unicode	 characters
using	 the	 'u'	 format	 character.	 Arrays	 also	 now	 support	 using
the	+=	assignment	operator	to	add	another	array’s	contents,	and
the	 *=	 assignment	 operator	 to	 repeat	 an	 array.	 (Contributed	 by
Jason	Orendorff.)

The	 bsddb	 module	 has	 been	 replaced	 by	 version	 4.1.6	 of	 the
PyBSDDB	 package,	 providing	 a	more	 complete	 interface	 to	 the
transactional	features	of	the	BerkeleyDB	library.

The	old	version	of	 the	module	has	been	 renamed	 to	bsddb185
and	 is	 no	 longer	 built	 automatically;	 you’ll	 have	 to	 edit
Modules/Setup	to	enable	it.	Note	that	the	new	bsddb	package
is	intended	to	be	compatible	with	the	old	module,	so	be	sure	to	file
bugs	 if	 you	 discover	 any	 incompatibilities.	 When	 upgrading	 to
Python	2.3,	 if	 the	new	interpreter	 is	compiled	with	a	new	version
of	 the	 underlying	 BerkeleyDB	 library,	 you	 will	 almost	 certainly
have	 to	convert	your	database	 files	 to	 the	new	version.	You	can
do	 this	 fairly	 easily	 with	 the	 new	 scripts	 db2pickle.py	 and
pickle2db.py	 which	 you	 will	 find	 in	 the	 distribution’s
Tools/scripts	 directory.	 If	 you’ve	 already	 been	 using	 the
PyBSDDB	package	and	importing	it	as	bsddb3,	you	will	have	to
change	your	import	statements	to	import	it	as	bsddb.

http://pybsddb.sourceforge.net

The	new	bz2	module	is	an	interface	to	the	bz2	data	compression
library.	 bz2-compressed	 data	 is	 usually	 smaller	 than
corresponding	 zlib-compressed	 data.	 (Contributed	 by	Gustavo
Niemeyer.)

A	 set	 of	 standard	 date/time	 types	 has	 been	 added	 in	 the	 new
datetime	module.	See	the	following	section	for	more	details.

The	Distutils	Extension	class	now	supports	an	extra	constructor
argument	named	depends	for	listing	additional	source	files	that	an
extension	depends	on.	This	 lets	Distutils	 recompile	 the	module	 if
any	 of	 the	 dependency	 files	 are	 modified.	 For	 example,	 if
sampmodule.c	 includes	 the	 header	 file	 sample.h,	 you	 would
create	the	Extension	object	like	this:

ext	=	Extension("samp",

																sources=["sampmodule.c"],

																depends=["sample.h"])

Modifying	 sample.h	 would	 then	 cause	 the	 module	 to	 be
recompiled.	(Contributed	by	Jeremy	Hylton.)

Other	 minor	 changes	 to	 Distutils:	 it	 now	 checks	 for	 the	 CC,
CFLAGS,	CPP,	LDFLAGS,	and	CPPFLAGS	environment	variables,
using	 them	 to	 override	 the	 settings	 in	 Python’s	 configuration
(contributed	by	Robert	Weber).

Previously	the	doctest	module	would	only	search	the	docstrings
of	 public	 methods	 and	 functions	 for	 test	 cases,	 but	 it	 now	 also
examines	 private	 ones	 as	well.	 The	 DocTestSuite()	 function
creates	a	unittest.TestSuite	object	from	a	set	of	doctest
tests.

The	new	gc.get_referents(object)	function	returns	a	list	of
all	the	objects	referenced	by	object.

The	 getopt	 module	 gained	 a	 new	 function,	 gnu_getopt(),
that	 supports	 the	 same	 arguments	 as	 the	 existing	 getopt()
function	 but	 uses	 GNU-style	 scanning	 mode.	 The	 existing
getopt()	 stops	 processing	 options	 as	 soon	 as	 a	 non-option
argument	 is	 encountered,	 but	 in	 GNU-style	 mode	 processing
continues,	 meaning	 that	 options	 and	 arguments	 can	 be	 mixed.
For	example:

>>>	getopt.getopt(['-f',	'filename',	'output',	'-v'

([('-f',	'filename')],	['output',	'-v'])

>>>	getopt.gnu_getopt(['-f',	'filename',	'output'

([('-f',	'filename'),	('-v',	'')],	['output'])

(Contributed	by	Peter	Åstrand.)

The	 grp,	 pwd,	 and	 resource	 modules	 now	 return	 enhanced
tuples:

>>>	import	grp

>>>	g	=	grp.getgrnam('amk')

>>>	g.gr_name,	g.gr_gid

('amk',	500)

The	gzip	module	can	now	handle	files	exceeding	2	GiB.

The	 new	 heapq	 module	 contains	 an	 implementation	 of	 a	 heap
queue	algorithm.	A	heap	is	an	array-like	data	structure	that	keeps
items	 in	 a	 partially	 sorted	 order	 such	 that,	 for	 every	 index	 k,
heap[k]	<=	heap[2*k+1]	and	heap[k]	<=	heap[2*k+2].
This	makes	 it	quick	 to	 remove	 the	smallest	 item,	and	 inserting	a

new	 item	 while	 maintaining	 the	 heap	 property	 is	 O(lg	 n).	 (See
http://www.nist.gov/dads/HTML/priorityque.html	 for	 more
information	about	the	priority	queue	data	structure.)

The	 heapq	 module	 provides	 heappush()	 and	 heappop()
functions	 for	 adding	 and	 removing	 items	 while	 maintaining	 the
heap	 property	 on	 top	 of	 some	 other	 mutable	 Python	 sequence
type.	Here’s	an	example	that	uses	a	Python	list:

>>>	import	heapq

>>>	heap	=	[]

>>>	for	item	in	[3,	7,	5,	11,	1]:

...				heapq.heappush(heap,	item)

...

>>>	heap

[1,	3,	5,	11,	7]

>>>	heapq.heappop(heap)

1

>>>	heapq.heappop(heap)

3

>>>	heap

[5,	7,	11]

(Contributed	by	Kevin	O’Connor.)

The	IDLE	integrated	development	environment	has	been	updated
using	 the	 code	 from	 the	 IDLEfork	 project	 (http://idlefork.sf.net).
The	most	notable	feature	is	that	the	code	being	developed	is	now
executed	 in	 a	 subprocess,	 meaning	 that	 there’s	 no	 longer	 any
need	 for	 manual	 reload()	 operations.	 IDLE’s	 core	 code	 has
been	 incorporated	 into	 the	 standard	 library	 as	 the	 idlelib
package.

The	imaplib	module	now	supports	IMAP	over	SSL.	(Contributed

http://www.nist.gov/dads/HTML/priorityque.html
http://idlefork.sf.net

by	Piers	Lauder	and	Tino	Lange.)

The	 itertools	 contains	 a	 number	 of	 useful	 functions	 for	 use
with	 iterators,	 inspired	 by	 various	 functions	 provided	 by	 the	 ML
and	 Haskell	 languages.	 For	 example,
itertools.ifilter(predicate,	 iterator)	 returns	 all
elements	 in	 the	 iterator	 for	 which	 the	 function	 predicate()
returns	True,	 and	 itertools.repeat(obj,	N)	 returns	 obj
N	times.	There	are	a	number	of	other	functions	in	the	module;	see
the	 package’s	 reference	 documentation	 for	 details.	 (Contributed
by	Raymond	Hettinger.)

Two	 new	 functions	 in	 the	 math	 module,	 degrees(rads)	 and
radians(degs),	 convert	 between	 radians	 and	 degrees.	 Other
functions	 in	 the	 math	 module	 such	 as	 math.sin()	 and
math.cos()	 have	 always	 required	 input	 values	 measured	 in
radians.	 Also,	 an	 optional	 base	 argument	 was	 added	 to
math.log()	 to	make	 it	easier	 to	compute	 logarithms	 for	bases
other	than	e	and	10.	(Contributed	by	Raymond	Hettinger.)

Several	 new	 POSIX	 functions	 (getpgid(),	 killpg(),
lchown(),	loadavg(),	major(),	makedev(),	minor(),	and
mknod())	 were	 added	 to	 the	 posix	 module	 that	 underlies	 the
os	 module.	 (Contributed	 by	 Gustavo	 Niemeyer,	 Geert	 Jansen,
and	Denis	S.	Otkidach.)

In	 the	 os	 module,	 the	 *stat()	 family	 of	 functions	 can	 now
report	fractions	of	a	second	in	a	timestamp.	Such	time	stamps	are
represented	 as	 floats,	 similar	 to	 the	 value	 returned	 by
time.time().

During	 testing,	 it	 was	 found	 that	 some	 applications	 will	 break	 if

time	 stamps	 are	 floats.	 For	 compatibility,	 when	 using	 the	 tuple
interface	of	the	stat_result	time	stamps	will	be	represented	as
integers.	When	 using	 named	 fields	 (a	 feature	 first	 introduced	 in
Python	2.2),	time	stamps	are	still	represented	as	integers,	unless
os.stat_float_times()	 is	 invoked	 to	 enable	 float	 return
values:

>>>	os.stat("/tmp").st_mtime

1034791200

>>>	os.stat_float_times(True)

>>>	os.stat("/tmp").st_mtime

1034791200.6335014

In	Python	2.4,	the	default	will	change	to	always	returning	floats.

Application	developers	should	enable	 this	 feature	only	 if	all	 their
libraries	 work	 properly	 when	 confronted	 with	 floating	 point	 time
stamps,	or	if	they	use	the	tuple	API.	If	used,	the	feature	should	be
activated	on	an	application	level	instead	of	trying	to	enable	it	on	a
per-use	basis.

The	optparse	module	contains	a	new	parser	 for	command-line
arguments	 that	 can	 convert	 option	 values	 to	 a	 particular	Python
type	and	will	 automatically	 generate	 a	 usage	message.	See	 the
following	section	for	more	details.

The	 old	 and	 never-documented	 linuxaudiodev	 module	 has
been	deprecated,	and	a	new	version	named	ossaudiodev	has
been	added.	The	module	was	renamed	because	the	OSS	sound
drivers	 can	 be	 used	 on	 platforms	 other	 than	 Linux,	 and	 the
interface	has	also	been	 tidied	and	brought	up	 to	date	 in	various
ways.	(Contributed	by	Greg	Ward	and	Nicholas	FitzRoy-Dale.)

The	new	platform	module	contains	a	number	of	 functions	that
try	to	determine	various	properties	of	 the	platform	you’re	running
on.	There	are	functions	for	getting	the	architecture,	CPU	type,	the
Windows	 OS	 version,	 and	 even	 the	 Linux	 distribution	 version.
(Contributed	by	Marc-André	Lemburg.)

The	 parser	 objects	 provided	 by	 the	 pyexpat	 module	 can	 now
optionally	 buffer	 character	 data,	 resulting	 in	 fewer	 calls	 to	 your
character	data	handler	and	 therefore	 faster	performance.	Setting
the	 parser	 object’s	 buffer_text	 attribute	 to	 True	 will	 enable
buffering.

The	 sample(population,	 k)	 function	 was	 added	 to	 the
random	 module.	 population	 is	 a	 sequence	 or	 xrange	 object
containing	the	elements	of	a	population,	and	sample()	chooses
k	 elements	 from	 the	 population	 without	 replacing	 chosen
elements.	 k	 can	 be	 any	 value	 up	 to	 len(population).	 For
example:

>>>	days	=	['Mo',	'Tu',	'We',	'Th',	'Fr',	'St',	'Sn'

>>>	random.sample(days,	3)						#	Choose	3	elements

['St',	'Sn',	'Th']

>>>	random.sample(days,	7)						#	Choose	7	elements

['Tu',	'Th',	'Mo',	'We',	'St',	'Fr',	'Sn']

>>>	random.sample(days,	7)						#	Choose	7	again

['We',	'Mo',	'Sn',	'Fr',	'Tu',	'St',	'Th']

>>>	random.sample(days,	8)						#	Can't	choose	eight

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"random.py",	line	414,	in	sample

						raise	ValueError,	"sample	larger	than	population"

ValueError:	sample	larger	than	population

>>>	random.sample(xrange(1,10000,2),	10)			#	Choose	ten	odd	nos.	under	10000

[3407,	3805,	1505,	7023,	2401,	2267,	9733,	3151,	8083,	9195]

The	 random	 module	 now	 uses	 a	 new	 algorithm,	 the	Mersenne
Twister,	implemented	in	C.	It’s	faster	and	more	extensively	studied
than	the	previous	algorithm.

(All	changes	contributed	by	Raymond	Hettinger.)

The	readline	module	also	gained	a	number	of	new	 functions:
get_history_item(),	 get_current_history_length(),
and	redisplay().

The	 rexec	 and	 Bastion	 modules	 have	 been	 declared	 dead,
and	attempts	to	import	them	will	fail	with	a	RuntimeError.	New-
style	 classes	 provide	 new	 ways	 to	 break	 out	 of	 the	 restricted
execution	 environment	 provided	 by	 rexec,	 and	 no	 one	 has
interest	 in	 fixing	 them	or	 time	 to	 do	 so.	 If	 you	 have	 applications
using	rexec,	rewrite	them	to	use	something	else.

(Sticking	 with	 Python	 2.2	 or	 2.1	 will	 not	make	 your	 applications
any	safer	because	there	are	known	bugs	in	the	rexec	module	in
those	 versions.	 To	 repeat:	 if	 you’re	 using	 rexec,	 stop	 using	 it
immediately.)

The	rotor	module	has	been	deprecated	because	the	algorithm	it
uses	 for	 encryption	 is	 not	 believed	 to	 be	 secure.	 If	 you	 need
encryption,	use	one	of	the	several	AES	Python	modules	that	are
available	separately.

The	shutil	module	gained	a	move(src,	dest)	 function	that
recursively	moves	a	file	or	directory	to	a	new	location.

Support	for	more	advanced	POSIX	signal	handling	was	added	to
the	 signal	 but	 then	 removed	 again	 as	 it	 proved	 impossible	 to

make	it	work	reliably	across	platforms.

The	 socket	 module	 now	 supports	 timeouts.	 You	 can	 call	 the
settimeout(t)	method	on	a	socket	object	to	set	a	timeout	of	t
seconds.	 Subsequent	 socket	 operations	 that	 take	 longer	 than	 t
seconds	 to	 complete	 will	 abort	 and	 raise	 a	 socket.timeout
exception.

The	original	timeout	implementation	was	by	Tim	O’Malley.	Michael
Gilfix	 integrated	 it	 into	 the	 Python	 socket	 module	 and
shepherded	 it	 through	 a	 lengthy	 review.	 After	 the	 code	 was
checked	in,	Guido	van	Rossum	rewrote	parts	of	it.	(This	is	a	good
example	of	a	collaborative	development	process	in	action.)

On	Windows,	the	socket	module	now	ships	with	Secure	Sockets
Layer	(SSL)	support.

The	 value	 of	 the	 C	 PYTHON_API_VERSION	 macro	 is	 now
exposed	at	the	Python	level	as	sys.api_version.	The	current
exception	can	be	cleared	by	calling	the	new	sys.exc_clear()
function.

The	new	tarfile	module	allows	reading	from	and	writing	to	tar-
format	archive	files.	(Contributed	by	Lars	Gustäbel.)

The	 new	 textwrap	 module	 contains	 functions	 for	 wrapping
strings	containing	paragraphs	of	text.	The	wrap(text,	width)
function	 takes	a	string	and	 returns	a	 list	 containing	 the	 text	 split
into	 lines	 of	 no	more	 than	 the	 chosen	width.	 The	 fill(text,
width)	function	returns	a	single	string,	reformatted	to	fit	into	lines
no	 longer	 than	the	chosen	width.	 (As	you	can	guess,	fill()	 is
built	on	top	of	wrap().	For	example:

>>>	import	textwrap

>>>	paragraph	=	"Not	a	whit,	we	defy	augury:	...	more	text	..."

>>>	textwrap.wrap(paragraph,	60)

["Not	a	whit,	we	defy	augury:	there's	a	special	providence	in",

	"the	fall	of	a	sparrow.	If	it	be	now,	'tis	not	to	come;	if	it",

	...]

>>>	print	textwrap.fill(paragraph,	35)

Not	a	whit,	we	defy	augury:	there's

a	special	providence	in	the	fall	of

a	sparrow.	If	it	be	now,	'tis	not

to	come;	if	it	be	not	to	come,	it

will	be	now;	if	it	be	not	now,	yet

it	will	come:	the	readiness	is	all.

>>>

The	 module	 also	 contains	 a	 TextWrapper	 class	 that	 actually
implements	 the	 text	 wrapping	 strategy.	 Both	 the	 TextWrapper
class	and	the	wrap()	and	fill()	functions	support	a	number	of
additional	 keyword	 arguments	 for	 fine-tuning	 the	 formatting;
consult	 the	 module’s	 documentation	 for	 details.	 (Contributed	 by
Greg	Ward.)

The	 thread	 and	 threading	 modules	 now	 have	 companion
modules,	dummy_thread	and	dummy_threading,	 that	provide
a	do-nothing	implementation	of	the	thread	module’s	interface	for
platforms	 where	 threads	 are	 not	 supported.	 The	 intention	 is	 to
simplify	thread-aware	modules	(ones	that	don’t	rely	on	threads	to
run)	by	putting	the	following	code	at	the	top:

try:

				import	threading	as	_threading

except	ImportError:

				import	dummy_threading	as	_threading

In	 this	 example,	 _threading	 is	 used	 as	 the	 module	 name	 to
make	 it	 clear	 that	 the	module	 being	 used	 is	 not	 necessarily	 the
actual	 threading	 module.	 Code	 can	 call	 functions	 and	 use
classes	 in	 _threading	 whether	 or	 not	 threads	 are	 supported,
avoiding	 an	 if	 statement	 and	making	 the	 code	 slightly	 clearer.
This	 module	 will	 not	 magically	 make	 multithreaded	 code	 run
without	threads;	code	that	waits	for	another	thread	to	return	or	to
do	something	will	simply	hang	forever.

The	 time	 module’s	 strptime()	 function	 has	 long	 been	 an
annoyance	because	it	uses	the	platform	C	library’s	strptime()
implementation,	 and	 different	 platforms	 sometimes	 have	 odd
bugs.	Brett	Cannon	 contributed	 a	 portable	 implementation	 that’s
written	 in	 pure	 Python	 and	 should	 behave	 identically	 on	 all
platforms.

The	 new	 timeit	 module	 helps	 measure	 how	 long	 snippets	 of
Python	 code	 take	 to	 execute.	 The	 timeit.py	 file	 can	 be	 run
directly	from	the	command	line,	or	the	module’s	Timer	class	can
be	imported	and	used	directly.	Here’s	a	short	example	that	figures
out	 whether	 it’s	 faster	 to	 convert	 an	 8-bit	 string	 to	 Unicode	 by
appending	 an	 empty	 Unicode	 string	 to	 it	 or	 by	 using	 the
unicode()	function:

import	timeit

timer1	=	timeit.Timer('unicode("abc")')

timer2	=	timeit.Timer('"abc"	+	u""')

#	Run	three	trials

print	timer1.repeat(repeat=3,	number=100000)

print	timer2.repeat(repeat=3,	number=100000)

#	On	my	laptop	this	outputs:

#	[0.36831796169281006,	0.37441694736480713,	0.35304892063140869]

#	[0.17574405670166016,	0.18193507194519043,	0.17565798759460449]

The	Tix	module	has	received	various	bug	fixes	and	updates	for
the	current	version	of	the	Tix	package.

The	Tkinter	module	now	works	with	a	 thread-enabled	 version
of	 Tcl.	 Tcl’s	 threading	 model	 requires	 that	 widgets	 only	 be
accessed	from	the	thread	in	which	they’re	created;	accesses	from
another	thread	can	cause	Tcl	 to	panic.	For	certain	Tcl	 interfaces,
Tkinter	 will	 now	 automatically	 avoid	 this	 when	 a	 widget	 is
accessed	 from	 a	 different	 thread	 by	 marshalling	 a	 command,
passing	it	to	the	correct	thread,	and	waiting	for	the	results.	Other
interfaces	 can’t	 be	 handled	 automatically	 but	 Tkinter	will	 now
raise	an	exception	on	such	an	access	so	that	you	can	at	least	find
out	 about	 the	 problem.	 See
http://mail.python.org/pipermail/python-dev/2002-
December/031107.html	 for	 a	 more	 detailed	 explanation	 of	 this
change.	(Implemented	by	Martin	von	Löwis.)

Calling	 Tcl	 methods	 through	 _tkinter	 no	 longer	 returns	 only
strings.	 Instead,	 if	 Tcl	 returns	 other	 objects	 those	 objects	 are
converted	 to	 their	 Python	 equivalent,	 if	 one	 exists,	 or	 wrapped
with	a	_tkinter.Tcl_Obj	object	if	no	Python	equivalent	exists.
This	 behavior	 can	 be	 controlled	 through	 the	 wantobjects()
method	of	tkapp	objects.

When	 using	 _tkinter	 through	 the	 Tkinter	module	 (as	most
Tkinter	applications	will),	this	feature	is	always	activated.	It	should
not	 cause	 compatibility	 problems,	 since	 Tkinter	 would	 always
convert	string	results	to	Python	types	where	possible.

http://mail.python.org/pipermail/python-dev/2002-December/031107.html

If	any	incompatibilities	are	found,	the	old	behavior	can	be	restored
by	setting	the	wantobjects	variable	in	the	Tkinter	module	to
false	before	creating	the	first	tkapp	object.

import	Tkinter

Tkinter.wantobjects	=	0

Any	 breakage	 caused	 by	 this	 change	 should	 be	 reported	 as	 a
bug.

The	 UserDict	 module	 has	 a	 new	 DictMixin	 class	 which
defines	 all	 dictionary	 methods	 for	 classes	 that	 already	 have	 a
minimum	mapping	interface.	This	greatly	simplifies	writing	classes
that	need	to	be	substitutable	for	dictionaries,	such	as	the	classes
in	the	shelve	module.

Adding	 the	 mix-in	 as	 a	 superclass	 provides	 the	 full	 dictionary
interface	 whenever	 the	 class	 defines	 __getitem__(),
__setitem__(),	__delitem__(),	and	keys().	For	example:

>>>	import	UserDict

>>>	class	SeqDict(UserDict.DictMixin):

...					"""Dictionary	lookalike	implemented	with	lists."""

...					def	__init__(self):

...									self.keylist	=	[]

...									self.valuelist	=	[]

...					def	__getitem__(self,	key):

...									try:

...													i	=	self.keylist.index(key)

...									except	ValueError:

...													raise	KeyError

...									return	self.valuelist[i]

...					def	__setitem__(self,	key,	value):

...									try:

...													i	=	self.keylist.index(key)

...													self.valuelist[i]	=	value

...									except	ValueError:

...													self.keylist.append(key)

...													self.valuelist.append(value)

...					def	__delitem__(self,	key):

...									try:

...													i	=	self.keylist.index(key)

...									except	ValueError:

...													raise	KeyError

...									self.keylist.pop(i)

...									self.valuelist.pop(i)

...					def	keys(self):

...									return	list(self.keylist)

...

>>>	s	=	SeqDict()

>>>	dir(s)						#	See	that	other	dictionary	methods	are	implemented

['__cmp__',	'__contains__',	'__delitem__',	'__doc__',	'__getitem__',

	'__init__',	'__iter__',	'__len__',	'__module__',	'__repr__',

	'__setitem__',	'clear',	'get',	'has_key',	'items',	'iteritems',

	'iterkeys',	'itervalues',	'keylist',	'keys',	'pop',	'popitem',

	'setdefault',	'update',	'valuelist',	'values']

(Contributed	by	Raymond	Hettinger.)

The	 DOM	 implementation	 in	 xml.dom.minidom	 can	 now
generate	 XML	 output	 in	 a	 particular	 encoding	 by	 providing	 an
optional	 encoding	 argument	 to	 the	 toxml()	 and
toprettyxml()	methods	of	DOM	nodes.

The	 xmlrpclib	 module	 now	 supports	 an	 XML-RPC	 extension
for	handling	nil	data	values	such	as	Python’s	None.	Nil	values	are
always	 supported	 on	 unmarshalling	 an	 XML-RPC	 response.	 To
generate	requests	containing	None,	you	must	supply	a	true	value

for	 the	 allow_none	 parameter	 when	 creating	 a	 Marshaller
instance.

The	 new	 DocXMLRPCServer	 module	 allows	 writing	 self-
documenting	 XML-RPC	 servers.	 Run	 it	 in	 demo	 mode	 (as	 a
program)	to	see	it	in	action.	Pointing	the	Web	browser	to	the	RPC
server	produces	pydoc-style	documentation;	pointing	xmlrpclib	to
the	 server	 allows	 invoking	 the	 actual	 methods.	 (Contributed	 by
Brian	Quinlan.)

Support	 for	 internationalized	 domain	 names	 (RFCs	 3454,	 3490,
3491,	 and	 3492)	 has	 been	 added.	 The	 “idna”	 encoding	 can	 be
used	to	convert	between	a	Unicode	domain	name	and	the	ASCII-
compatible	encoding	(ACE)	of	that	name.

>{}>{}>	u"www.Alliancefrançaise.nu".encode("idna"

'www.xn--alliancefranaise-npb.nu'

The	 socket	 module	 has	 also	 been	 extended	 to	 transparently
convert	 Unicode	 hostnames	 to	 the	 ACE	 version	 before	 passing
them	to	the	C	library.	Modules	that	deal	with	hostnames	such	as
httplib	 and	 ftplib)	 also	 support	 Unicode	 host	 names;
httplib	also	sends	HTTP	Host	headers	using	the	ACE	version
of	 the	domain	name.	urllib	 supports	Unicode	URLs	with	non-
ASCII	host	names	as	long	as	the	path	part	of	the	URL	is	ASCII
only.

To	 implement	 this	 change,	 the	 stringprep	 module,	 the
mkstringprep	 tool	 and	 the	 punycode	 encoding	 have	 been
added.

Date/Time	Type

Date	and	 time	 types	 suitable	 for	 expressing	 timestamps	were	added
as	the	datetime	module.	The	types	don’t	support	different	calendars
or	many	 fancy	 features,	 and	 just	 stick	 to	 the	 basics	 of	 representing
time.

The	 three	 primary	 types	 are:	 date,	 representing	 a	 day,	month,	 and
year;	time,	consisting	of	hour,	minute,	and	second;	and	datetime,
which	contains	all	the	attributes	of	both	date	and	time.	There’s	also
a	 timedelta	 class	 representing	 differences	 between	 two	 points	 in
time,	and	time	zone	logic	is	implemented	by	classes	inheriting	from	the
abstract	tzinfo	class.

You	 can	 create	 instances	 of	 date	 and	 time	 by	 either	 supplying
keyword	 arguments	 to	 the	 appropriate	 constructor,	 e.g.
datetime.date(year=1972,	month=10,	day=15),	or	by	using
one	of	a	number	of	class	methods.	For	example,	the	date.today()
class	method	returns	the	current	local	date.

Once	 created,	 instances	 of	 the	 date/time	 classes	 are	 all	 immutable.
There	are	a	number	of	methods	 for	producing	 formatted	strings	 from
objects:

>>>	import	datetime

>>>	now	=	datetime.datetime.now()

>>>	now.isoformat()

'2002-12-30T21:27:03.994956'

>>>	now.ctime()		#	Only	available	on	date,	datetime

'Mon	Dec	30	21:27:03	2002'

>>>	now.strftime('%Y	%d	%b')

'2002	30	Dec'

The	 replace()	 method	 allows	 modifying	 one	 or	 more	 fields	 of	 a

date	or	datetime	instance,	returning	a	new	instance:

>>>	d	=	datetime.datetime.now()

>>>	d

datetime.datetime(2002,	12,	30,	22,	15,	38,	827738)

>>>	d.replace(year=2001,	hour	=	12)

datetime.datetime(2001,	12,	30,	12,	15,	38,	827738)

>>>

Instances	 can	 be	 compared,	 hashed,	 and	 converted	 to	 strings	 (the
result	 is	 the	 same	 as	 that	 of	 isoformat()).	 date	 and	 datetime
instances	 can	 be	 subtracted	 from	 each	 other,	 and	 added	 to
timedelta	 instances.	The	 largest	missing	 feature	 is	 that	 there’s	no
standard	library	support	for	parsing	strings	and	getting	back	a	date	or
datetime.

For	more	 information,	refer	 to	the	module’s	reference	documentation.
(Contributed	by	Tim	Peters.)

The	optparse	Module

The	 getopt	 module	 provides	 simple	 parsing	 of	 command-line
arguments.	 The	 new	 optparse	 module	 (originally	 named	 Optik)
provides	more	 elaborate	 command-line	 parsing	 that	 follows	 the	Unix
conventions,	 automatically	 creates	 the	 output	 for	 --help,	 and	 can
perform	different	actions	for	different	options.

You	start	by	creating	an	instance	of	OptionParser	and	telling	it	what
your	program’s	options	are.

import	sys

from	optparse	import	OptionParser

op	=	OptionParser()

op.add_option('-i',	'--input',

														action='store',	type='string',	dest='input'

														help='set	input	filename')

op.add_option('-l',	'--length',

														action='store',	type='int',	dest='length'

														help='set	maximum	length	of	output')

Parsing	a	command	 line	 is	 then	done	by	calling	 the	parse_args()
method.

options,	args	=	op.parse_args(sys.argv[1:])

print	options

print	args

This	returns	an	object	containing	all	of	the	option	values,	and	a	list	of
strings	containing	the	remaining	arguments.

Invoking	 the	 script	 with	 the	 various	 arguments	 now	 works	 as	 you’d
expect	 it	 to.	Note	that	the	length	argument	 is	automatically	converted
to	an	integer.

$./python	opt.py	-i	data	arg1

<Values	at	0x400cad4c:	{'input':	'data',	'length':	None}>

['arg1']

$./python	opt.py	--input=data	--length=4

<Values	at	0x400cad2c:	{'input':	'data',	'length':	4}>

[]

$

The	help	message	is	automatically	generated	for	you:

$./python	opt.py	--help

usage:	opt.py	[options]

options:

		-h,	--help												show	this	help	message	and	exit

		-iINPUT,	--input=INPUT

																								set	input	filename

		-lLENGTH,	--length=LENGTH

																								set	maximum	length	of	output

$

See	the	module’s	documentation	for	more	details.

Optik	was	written	by	Greg	Ward,	with	suggestions	from	the	readers	of
the	Getopt	SIG.

Pymalloc:	A	Specialized	Object	Allocator

Pymalloc,	 a	 specialized	 object	 allocator	 written	 by	 Vladimir
Marangozov,	was	a	feature	added	to	Python	2.1.	Pymalloc	is	intended
to	 be	 faster	 than	 the	 system	 malloc()	 and	 to	 have	 less	 memory
overhead	 for	 allocation	 patterns	 typical	 of	 Python	 programs.	 The
allocator	 uses	C’s	 malloc()	 function	 to	 get	 large	 pools	 of	memory
and	then	fulfills	smaller	memory	requests	from	these	pools.

In	 2.1	 and	 2.2,	 pymalloc	 was	 an	 experimental	 feature	 and	 wasn’t
enabled	 by	 default;	 you	 had	 to	 explicitly	 enable	 it	 when	 compiling
Python	by	providing	the	--with-pymalloc	option	to	the	configure	script.
In	2.3,	pymalloc	has	had	further	enhancements	and	is	now	enabled	by
default;	you’ll	have	to	supply	--without-pymalloc	to	disable	it.

This	 change	 is	 transparent	 to	 code	 written	 in	 Python;	 however,
pymalloc	may	expose	bugs	 in	C	extensions.	Authors	 of	C	 extension
modules	should	test	their	code	with	pymalloc	enabled,	because	some
incorrect	code	may	cause	core	dumps	at	runtime.

There’s	 one	 particularly	 common	 error	 that	 causes	 problems.	 There
are	 a	 number	 of	memory	 allocation	 functions	 in	Python’s	C	API	 that
have	 previously	 just	 been	 aliases	 for	 the	C	 library’s	 malloc()	 and
free(),	meaning	that	if	you	accidentally	called	mismatched	functions
the	error	wouldn’t	be	noticeable.	When	the	object	allocator	is	enabled,
these	 functions	 aren’t	 aliases	 of	 malloc()	 and	 free()	 any	more,
and	 calling	 the	 wrong	 function	 to	 free	 memory	 may	 get	 you	 a	 core
dump.	 For	 example,	 if	 memory	 was	 allocated	 using
PyObject_Malloc(),	 it	has	to	be	freed	using	PyObject_Free(),
not	free().	A	few	modules	included	with	Python	fell	afoul	of	this	and
had	to	be	fixed;	doubtless	there	are	more	third-party	modules	that	will

have	the	same	problem.

As	part	of	this	change,	the	confusing	multiple	interfaces	for	allocating
memory	have	been	consolidated	down	into	two	API	families.	Memory
allocated	with	one	family	must	not	be	manipulated	with	functions	from
the	other	 family.	There	 is	one	 family	 for	allocating	chunks	of	memory
and	 another	 family	 of	 functions	 specifically	 for	 allocating	 Python
objects.

To	allocate	and	free	an	undistinguished	chunk	of	memory	use	the
“raw	 memory”	 family:	 PyMem_Malloc(),	 PyMem_Realloc(),
and	PyMem_Free().
The	“object	memory”	family	is	the	interface	to	the	pymalloc	facility
described	above	and	is	biased	towards	a	large	number	of	“small”
allocations:	PyObject_Malloc(),	PyObject_Realloc(),	and
PyObject_Free().
To	 allocate	 and	 free	 Python	 objects,	 use	 the	 “object”	 family
PyObject_New(),	 PyObject_NewVar(),	 and
PyObject_Del().

Thanks	 to	 lots	 of	work	 by	Tim	Peters,	 pymalloc	 in	 2.3	 also	 provides
debugging	features	 to	catch	memory	overwrites	and	doubled	frees	 in
both	 extension	 modules	 and	 in	 the	 interpreter	 itself.	 To	 enable	 this
support,	 compile	 a	 debugging	 version	 of	 the	 Python	 interpreter	 by
running	configure	with	--with-pydebug.

To	 aid	 extension	 writers,	 a	 header	 file	 Misc/pymemcompat.h	 is
distributed	with	the	source	to	Python	2.3	that	allows	Python	extensions
to	use	the	2.3	interfaces	to	memory	allocation	while	compiling	against
any	 version	 of	 Python	 since	 1.5.2.	 You	 would	 copy	 the	 file	 from
Python’s	 source	 distribution	 and	 bundle	 it	 with	 the	 source	 of	 your
extension.

See	also:

http://svn.python.org/view/python/trunk/Objects/obmalloc.c
For	 the	 full	 details	 of	 the	 pymalloc	 implementation,	 see	 the
comments	 at	 the	 top	 of	 the	 file	 Objects/obmalloc.c	 in	 the
Python	source	code.	The	above	 link	points	 to	 the	 file	within	 the
python.org	SVN	browser.

http://svn.python.org/view/python/trunk/Objects/obmalloc.c

Build	and	C	API	Changes

Changes	to	Python’s	build	process	and	to	the	C	API	include:

The	 cycle	 detection	 implementation	 used	 by	 the	 garbage
collection	 has	 proven	 to	 be	 stable,	 so	 it’s	 now	 been	 made
mandatory.	You	can	no	longer	compile	Python	without	it,	and	the	-
-with-cycle-gc	switch	to	configure	has	been	removed.
Python	 can	 now	 optionally	 be	 built	 as	 a	 shared	 library
(libpython2.3.so)	by	supplying	--enable-shared	when	running
Python’s	configure	script.	(Contributed	by	Ondrej	Palkovsky.)
The	 DL_EXPORT	 and	 DL_IMPORT	macros	 are	 now	 deprecated.
Initialization	 functions	 for	Python	extension	modules	 should	 now
be	 declared	 using	 the	 new	macro	 PyMODINIT_FUNC,	 while	 the
Python	 core	 will	 generally	 use	 the	 PyAPI_FUNC	 and
PyAPI_DATA	macros.
The	 interpreter	 can	 be	 compiled	 without	 any	 docstrings	 for	 the
built-in	 functions	 and	modules	 by	 supplying	 --without-doc-strings
to	the	configure	script.	This	makes	the	Python	executable	about
10%	 smaller,	 but	 will	 also	 mean	 that	 you	 can’t	 get	 help	 for
Python’s	built-ins.	(Contributed	by	Gustavo	Niemeyer.)
The	PyArg_NoArgs()	macro	 is	now	deprecated,	and	code	that
uses	it	should	be	changed.	For	Python	2.2	and	later,	the	method
definition	table	can	specify	the	METH_NOARGS	flag,	signalling	that
there	are	no	arguments,	and	the	argument	checking	can	then	be
removed.	 If	 compatibility	 with	 pre-2.2	 versions	 of	 Python	 is
important,	the	code	could	use	PyArg_ParseTuple(args,	"")
instead,	but	this	will	be	slower	than	using	METH_NOARGS.
PyArg_ParseTuple()	 accepts	 new	 format	 characters	 for
various	sizes	of	unsigned	integers:	B	for	unsigned	char,	H	 for
unsigned	 short	 int,	 I	 for	 unsigned	 int,	 and	 K	 for
unsigned	long	long.

A	new	 function,	 PyObject_DelItemString(mapping,	char
*key)	 was	 added	 as	 shorthand	 for
PyObject_DelItem(mapping,	PyString_New(key)).
File	 objects	 now	 manage	 their	 internal	 string	 buffer	 differently,
increasing	 it	 exponentially	 when	 needed.	 This	 results	 in	 the
benchmark	 tests	 in	 Lib/test/test_bufio.py	 speeding	 up
considerably	 (from	57	seconds	 to	1.7	seconds,	according	 to	one
measurement).
It’s	 now	 possible	 to	 define	 class	 and	 static	 methods	 for	 a	 C
extension	 type	 by	 setting	 either	 the	 METH_CLASS	 or
METH_STATIC	flags	in	a	method’s	PyMethodDef	structure.
Python	 now	 includes	 a	 copy	 of	 the	 Expat	 XML	 parser’s	 source
code,	 removing	 any	 dependence	 on	 a	 system	 version	 or	 local
installation	of	Expat.
If	 you	 dynamically	 allocate	 type	 objects	 in	 your	 extension,	 you
should	 be	 aware	 of	 a	 change	 in	 the	 rules	 relating	 to	 the
__module__	 and	 __name__	 attributes.	 In	 summary,	 you	 will
want	 to	 ensure	 the	 type’s	 dictionary	 contains	 a	 '__module__'
key;	making	the	module	name	the	part	of	 the	type	name	leading
up	 to	 the	 final	 period	will	 no	 longer	 have	 the	desired	effect.	 For
more	detail,	read	the	API	reference	documentation	or	the	source.

Port-Specific	Changes

Support	for	a	port	to	IBM’s	OS/2	using	the	EMX	runtime	environment
was	 merged	 into	 the	 main	 Python	 source	 tree.	 EMX	 is	 a	 POSIX
emulation	layer	over	the	OS/2	system	APIs.	The	Python	port	for	EMX
tries	 to	 support	 all	 the	 POSIX-like	 capability	 exposed	 by	 the	 EMX
runtime,	 and	mostly	 succeeds;	 fork()	 and	 fcntl()	 are	 restricted
by	the	limitations	of	the	underlying	emulation	layer.	The	standard	OS/2
port,	 which	 uses	 IBM’s	Visual	 Age	 compiler,	 also	 gained	 support	 for
case-sensitive	import	semantics	as	part	of	the	integration	of	the	EMX

port	into	CVS.	(Contributed	by	Andrew	MacIntyre.)

On	MacOS,	most	 toolbox	modules	have	been	weaklinked	 to	 improve
backward	compatibility.	This	means	that	modules	will	no	longer	fail	to
load	 if	a	single	 routine	 is	missing	on	 the	current	OS	version.	 Instead
calling	the	missing	routine	will	raise	an	exception.	(Contributed	by	Jack
Jansen.)

The	RPM	spec	files,	found	in	the	Misc/RPM/	directory	in	the	Python
source	 distribution,	 were	 updated	 for	 2.3.	 (Contributed	 by	 Sean
Reifschneider.)

Other	 new	 platforms	 now	 supported	 by	 Python	 include	 AtheOS
(http://www.atheos.cx/),	GNU/Hurd,	and	OpenVMS.

http://www.atheos.cx/

Other	Changes	and	Fixes

As	 usual,	 there	 were	 a	 bunch	 of	 other	 improvements	 and	 bugfixes
scattered	 throughout	 the	 source	 tree.	 A	 search	 through	 the	 CVS
change	logs	finds	there	were	523	patches	applied	and	514	bugs	fixed
between	 Python	 2.2	 and	 2.3.	 Both	 figures	 are	 likely	 to	 be
underestimates.

Some	of	the	more	notable	changes	are:

If	 the	 PYTHONINSPECT	 environment	 variable	 is	 set,	 the	 Python
interpreter	will	enter	the	interactive	prompt	after	running	a	Python
program,	 as	 if	 Python	 had	 been	 invoked	with	 the	 -i	 option.	 The
environment	 variable	 can	 be	 set	 before	 running	 the	 Python
interpreter,	or	 it	 can	be	set	by	 the	Python	program	as	part	of	 its
execution.

The	 regrtest.py	 script	 now	 provides	 a	 way	 to	 allow	 “all
resources	except	 foo.”	A	 resource	name	passed	 to	 the	 -u	option
can	now	be	prefixed	with	a	hyphen	 ('-')	 to	mean	 “remove	 this
resource.”	 For	 example,	 the	 option	 ‘-uall,-bsddb‘	 could	 be
used	to	enable	the	use	of	all	resources	except	bsddb.

The	 tools	 used	 to	 build	 the	 documentation	 now	 work	 under
Cygwin	as	well	as	Unix.

The	SET_LINENO	opcode	has	been	removed.	Back	 in	 the	mists
of	 time,	 this	 opcode	 was	 needed	 to	 produce	 line	 numbers	 in
tracebacks	 and	 support	 trace	 functions	 (for,	 e.g.,	 pdb).	 Since
Python	1.5,	the	line	numbers	in	tracebacks	have	been	computed
using	 a	 different	 mechanism	 that	 works	 with	 “python	 -O”.	 For
Python	 2.3	 Michael	 Hudson	 implemented	 a	 similar	 scheme	 to

determine	when	to	call	 the	 trace	 function,	 removing	 the	need	 for
SET_LINENO	entirely.

It	would	be	difficult	to	detect	any	resulting	difference	from	Python
code,	apart	from	a	slight	speed	up	when	Python	is	run	without	-O.

C	 extensions	 that	 access	 the	 f_lineno	 field	 of	 frame	 objects
should	 instead	 call	 PyCode_Addr2Line(f->f_code,	 f-

>f_lasti).	This	will	have	 the	added	effect	of	making	 the	code
work	as	desired	under	“python	-O”	in	earlier	versions	of	Python.

A	nifty	new	 feature	 is	 that	 trace	 functions	can	now	assign	 to	 the
f_lineno	attribute	of	frame	objects,	changing	the	line	that	will	be
executed	 next.	 A	 jump	 command	 has	 been	 added	 to	 the	 pdb
debugger	taking	advantage	of	 this	new	feature.	(Implemented	by
Richie	Hindle.)

Porting	to	Python	2.3

This	 section	 lists	 previously	 described	 changes	 that	 may	 require
changes	to	your	code:

yield	is	now	always	a	keyword;	if	it’s	used	as	a	variable	name	in
your	code,	a	different	name	must	be	chosen.

For	strings	X	and	Y,	X	in	Y	 now	works	 if	X	 is	more	 than	 one
character	long.

The	int()	type	constructor	will	now	return	a	long	integer	instead
of	 raising	 an	 OverflowError	 when	 a	 string	 or	 floating-point
number	is	too	large	to	fit	into	an	integer.

If	you	have	Unicode	strings	that	contain	8-bit	characters,	you	must
declare	the	file’s	encoding	(UTF-8,	Latin-1,	or	whatever)	by	adding
a	 comment	 to	 the	 top	 of	 the	 file.	 See	 section	PEP	 263:	 Source
Code	Encodings	for	more	information.

Calling	 Tcl	 methods	 through	 _tkinter	 no	 longer	 returns	 only
strings.	 Instead,	 if	 Tcl	 returns	 other	 objects	 those	 objects	 are
converted	 to	 their	 Python	 equivalent,	 if	 one	 exists,	 or	 wrapped
with	a	_tkinter.Tcl_Obj	object	if	no	Python	equivalent	exists.

Large	octal	and	hex	 literals	such	as	0xffffffff	 now	 trigger	a
FutureWarning.	Currently	they’re	stored	as	32-bit	numbers	and
result	 in	 a	 negative	 value,	 but	 in	 Python	 2.4	 they’ll	 become
positive	long	integers.

There	 are	 a	 few	 ways	 to	 fix	 this	 warning.	 If	 you	 really	 need	 a
positive	number,	 just	add	an	L	 to	 the	end	of	 the	 literal.	 If	 you’re

trying	to	get	a	32-bit	integer	with	low	bits	set	and	have	previously
used	an	expression	such	as	~(1	<<	31),	 it’s	probably	clearest
to	 start	 with	 all	 bits	 set	 and	 clear	 the	 desired	 upper	 bits.	 For
example,	 to	 clear	 just	 the	 top	 bit	 (bit	 31),	 you	 could	 write
0xffffffffL	&~(1L<<31).

You	can	no	longer	disable	assertions	by	assigning	to	__debug__.

The	Distutils	setup()	function	has	gained	various	new	keyword
arguments	 such	 as	 depends.	 Old	 versions	 of	 the	 Distutils	 will
abort	if	passed	unknown	keywords.	A	solution	is	to	check	for	the
presence	 of	 the	 new	 get_distutil_options()	 function	 in
your	setup.py	and	only	uses	 the	new	keywords	with	a	version
of	the	Distutils	that	supports	them:

from	distutils	import	core

kw	=	{'sources':	'foo.c',	...}

if	hasattr(core,	'get_distutil_options'):

				kw['depends']	=	['foo.h']

ext	=	Extension(**kw)

Using	 None	 as	 a	 variable	 name	 will	 now	 result	 in	 a
SyntaxWarning	warning.

Names	of	extension	 types	defined	by	 the	modules	 included	with
Python	 now	 contain	 the	module	 and	 a	 '.'	 in	 front	 of	 the	 type
name.

Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions,	 corrections	 and	 assistance	 with	 various	 drafts	 of	 this
article:	Jeff	Bauer,	Simon	Brunning,	Brett	Cannon,	Michael	Chermside,
Andrew	Dalke,	Scott	David	Daniels,	Fred	L.	Drake,	Jr.,	David	Fraser,
Kelly	 Gerber,	 Raymond	 Hettinger,	 Michael	 Hudson,	 Chris	 Lambert,
Detlef	 Lannert,	 Martin	 von	 Löwis,	 Andrew	 MacIntyre,	 Lalo	 Martins,
Chad	 Netzer,	 Gustavo	 Niemeyer,	 Neal	 Norwitz,	 Hans	 Nowak,	 Chris
Reedy,	 Francesco	Ricciardi,	 Vinay	Sajip,	 Neil	 Schemenauer,	 Roman
Suzi,	Jason	Tishler,	Just	van	Rossum.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.2
Author: A.M.	Kuchling

Introduction

This	 article	 explains	 the	 new	 features	 in	 Python	 2.2.2,	 released	 on
October	 14,	 2002.	 Python	 2.2.2	 is	 a	 bugfix	 release	 of	 Python	 2.2,
originally	released	on	December	21,	2001.

Python	 2.2	 can	 be	 thought	 of	 as	 the	 “cleanup	 release”.	 There	 are
some	 features	 such	 as	 generators	 and	 iterators	 that	 are	 completely
new,	but	most	of	the	changes,	significant	and	far-reaching	though	they
may	be,	are	aimed	at	cleaning	up	irregularities	and	dark	corners	of	the
language	design.

This	article	doesn’t	attempt	to	provide	a	complete	specification	of	 the
new	 features,	 but	 instead	 provides	 a	 convenient	 overview.	 For	 full
details,	you	should	refer	to	the	documentation	for	Python	2.2,	such	as
the	Python	 Library	 Reference	 and	 the	 Python	 Reference	 Manual.	 If
you	 want	 to	 understand	 the	 complete	 implementation	 and	 design
rationale	for	a	change,	refer	to	the	PEP	for	a	particular	new	feature.

http://www.python.org/doc/2.2/lib/lib.html
http://www.python.org/doc/2.2/ref/ref.html

PEPs	252	and	253:	Type	and	Class
Changes

The	 largest	 and	 most	 far-reaching	 changes	 in	 Python	 2.2	 are	 to
Python’s	 model	 of	 objects	 and	 classes.	 The	 changes	 should	 be
backward	compatible,	so	 it’s	 likely	 that	your	code	will	continue	 to	run
unchanged,	but	 the	changes	provide	some	amazing	new	capabilities.
Before	beginning	this,	the	longest	and	most	complicated	section	of	this
article,	 I’ll	 provide	 an	 overview	 of	 the	 changes	 and	 offer	 some
comments.

A	 long	 time	ago	 I	wrote	a	Web	page	 listing	 flaws	 in	Python’s	design.
One	of	 the	most	significant	 flaws	was	 that	 it’s	 impossible	 to	subclass
Python	 types	 implemented	 in	 C.	 In	 particular,	 it’s	 not	 possible	 to
subclass	built-in	types,	so	you	can’t	just	subclass,	say,	lists	in	order	to
add	a	single	useful	method	to	them.	The	UserList	module	provides
a	 class	 that	 supports	 all	 of	 the	 methods	 of	 lists	 and	 that	 can	 be
subclassed	 further,	 but	 there’s	 lots	 of	C	 code	 that	 expects	 a	 regular
Python	list	and	won’t	accept	a	UserList	instance.

Python	 2.2	 fixes	 this,	 and	 in	 the	 process	 adds	 some	 exciting	 new
capabilities.	A	brief	summary:

You	 can	 subclass	 built-in	 types	 such	 as	 lists	 and	 even	 integers,
and	your	subclasses	should	work	in	every	place	that	requires	the
original	type.
It’s	now	possible	to	define	static	and	class	methods,	in	addition	to
the	instance	methods	available	in	previous	versions	of	Python.
It’s	 also	 possible	 to	 automatically	 call	 methods	 on	 accessing	 or
setting	 an	 instance	 attribute	 by	 using	 a	 new	 mechanism	 called
properties.	 Many	 uses	 of	 __getattr__()	 can	 be	 rewritten	 to
use	 properties	 instead,	 making	 the	 resulting	 code	 simpler	 and

faster.	As	a	small	side	benefit,	attributes	can	now	have	docstrings,
too.
The	 list	 of	 legal	 attributes	 for	 an	 instance	 can	 be	 limited	 to	 a
particular	set	using	slots,	making	it	possible	to	safeguard	against
typos	 and	 perhaps	 make	 more	 optimizations	 possible	 in	 future
versions	of	Python.

Some	users	have	voiced	concern	about	all	these	changes.	Sure,	they
say,	 the	 new	 features	 are	 neat	 and	 lend	 themselves	 to	 all	 sorts	 of
tricks	 that	 weren’t	 possible	 in	 previous	 versions	 of	 Python,	 but	 they
also	make	 the	 language	more	 complicated.	 Some	 people	 have	 said
that	 they’ve	 always	 recommended	 Python	 for	 its	 simplicity,	 and	 feel
that	its	simplicity	is	being	lost.

Personally,	I	think	there’s	no	need	to	worry.	Many	of	the	new	features
are	quite	esoteric,	and	you	can	write	a	lot	of	Python	code	without	ever
needed	to	be	aware	of	them.	Writing	a	simple	class	is	no	more	difficult
than	it	ever	was,	so	you	don’t	need	to	bother	learning	or	teaching	them
unless	 they’re	 actually	 needed.	 Some	 very	 complicated	 tasks	 that
were	 previously	 only	 possible	 from	 C	 will	 now	 be	 possible	 in	 pure
Python,	and	to	my	mind	that’s	all	for	the	better.

I’m	not	going	 to	attempt	 to	cover	every	single	corner	case	and	small
change	that	were	required	to	make	the	new	features	work.	Instead	this
section	will	 paint	 only	 the	 broad	 strokes.	See	 section	Related	 Links,
“Related	Links”,	 for	 further	sources	of	 information	about	Python	2.2’s
new	object	model.

Old	and	New	Classes

First,	you	should	know	that	Python	2.2	really	has	two	kinds	of	classes:
classic	or	old-style	classes,	and	new-style	classes.	The	old-style	class
model	 is	 exactly	 the	 same	 as	 the	 class	model	 in	 earlier	 versions	 of

Python.	All	 the	 new	 features	 described	 in	 this	 section	 apply	 only	 to
new-style	 classes.	 This	 divergence	 isn’t	 intended	 to	 last	 forever;
eventually	old-style	classes	will	be	dropped,	possibly	in	Python	3.0.

So	how	do	you	define	a	new-style	class?	You	do	it	by	subclassing	an
existing	 new-style	 class.	 Most	 of	 Python’s	 built-in	 types,	 such	 as
integers,	lists,	dictionaries,	and	even	files,	are	new-style	classes	now.
A	new-style	class	named	object,	the	base	class	for	all	built-in	types,
has	 also	 been	 added	 so	 if	 no	 built-in	 type	 is	 suitable,	 you	 can	 just
subclass	object:

class	C(object):

				def	__init__	(self):

								...

				...

This	means	that	class	statements	that	don’t	have	any	base	classes
are	 always	 classic	 classes	 in	 Python	 2.2.	 (Actually	 you	 can	 also
change	 this	 by	 setting	 a	 module-level	 variable	 named
__metaclass__	—	see	PEP	253	 for	 the	details	—	but	 it’s	easier	 to
just	subclass	object.)

The	type	objects	for	the	built-in	types	are	available	as	built-ins,	named
using	a	clever	 trick.	Python	has	always	had	built-in	 functions	 named
int(),	float(),	and	str().	In	2.2,	they	aren’t	functions	any	more,
but	type	objects	that	behave	as	factories	when	called.

>>>	int

<type	'int'>

>>>	int('123')

123

To	make	the	set	of	types	complete,	new	type	objects	such	as	dict()

http://www.python.org/dev/peps/pep-0253

and	 file()	 have	 been	 added.	 Here’s	 a	 more	 interesting	 example,
adding	a	lock()	method	to	file	objects:

class	LockableFile(file):

				def	lock	(self,	operation,	length=0,	start=0,	whence

								import	fcntl

								return	fcntl.lockf(self.fileno(),	operation,

																											length,	start,	whence)

The	 now-obsolete	 posixfile	 module	 contained	 a	 class	 that
emulated	 all	 of	 a	 file	 object’s	 methods	 and	 also	 added	 a	 lock()
method,	 but	 this	 class	 couldn’t	 be	 passed	 to	 internal	 functions	 that
expected	 a	 built-in	 file,	 something	 which	 is	 possible	 with	 our	 new
LockableFile.

Descriptors

In	 previous	 versions	 of	 Python,	 there	 was	 no	 consistent	 way	 to
discover	 what	 attributes	 and	methods	 were	 supported	 by	 an	 object.
There	 were	 some	 informal	 conventions,	 such	 as	 defining
__members__	and	__methods__	attributes	that	were	lists	of	names,
but	often	the	author	of	an	extension	type	or	a	class	wouldn’t	bother	to
define	 them.	You	 could	 fall	 back	 on	 inspecting	 the	 __dict__	 of	 an
object,	 but	 when	 class	 inheritance	 or	 an	 arbitrary	 __getattr__()
hook	were	in	use	this	could	still	be	inaccurate.

The	 one	 big	 idea	 underlying	 the	 new	 class	model	 is	 that	 an	API	 for
describing	 the	 attributes	 of	 an	 object	 using	 descriptors	 has	 been
formalized.	 Descriptors	 specify	 the	 value	 of	 an	 attribute,	 stating
whether	 it’s	 a	 method	 or	 a	 field.	 With	 the	 descriptor	 API,	 static
methods	and	class	methods	become	possible,	as	well	as	more	exotic

constructs.

Attribute	 descriptors	 are	 objects	 that	 live	 inside	 class	 objects,	 and
have	a	few	attributes	of	their	own:

__name__	is	the	attribute’s	name.
__doc__	is	the	attribute’s	docstring.
__get__(object)	is	a	method	that	retrieves	the	attribute	value
from	object.
__set__(object,	 value)	 sets	 the	 attribute	 on	 object	 to
value.
__delete__(object,	 value)	 deletes	 the	 value	 attribute	 of
object.

For	 example,	when	 you	write	 obj.x,	 the	 steps	 that	Python	 actually
performs	are:

descriptor	=	obj.__class__.x

descriptor.__get__(obj)

For	methods,	 descriptor.__get__()	 returns	 a	 temporary	 object
that’s	callable,	and	wraps	up	the	instance	and	the	method	to	be	called
on	 it.	 This	 is	 also	 why	 static	 methods	 and	 class	 methods	 are	 now
possible;	 they	have	descriptors	 that	wrap	up	 just	 the	method,	 or	 the
method	 and	 the	 class.	 As	 a	 brief	 explanation	 of	 these	 new	 kinds	 of
methods,	 static	 methods	 aren’t	 passed	 the	 instance,	 and	 therefore
resemble	regular	functions.	Class	methods	are	passed	the	class	of	the
object,	but	not	 the	object	 itself.	Static	and	class	methods	are	defined
like	this:

class	C(object):

				def	f(arg1,	arg2):

								...

				f	=	staticmethod(f)

				def	g(cls,	arg1,	arg2):

								...

				g	=	classmethod(g)

The	staticmethod()	function	takes	the	function	f(),	and	returns	it
wrapped	up	in	a	descriptor	so	it	can	be	stored	in	the	class	object.	You
might	 expect	 there	 to	 be	 special	 syntax	 for	 creating	 such	 methods
(def	static	f,	 defstatic	f(),	 or	 something	 like	 that)	 but	 no
such	syntax	has	been	defined	yet;	that’s	been	left	for	future	versions	of
Python.

More	 new	 features,	 such	 as	 slots	 and	 properties,	 are	 also
implemented	as	new	kinds	of	descriptors,	and	it’s	not	difficult	to	write	a
descriptor	class	that	does	something	novel.	For	example,	 it	would	be
possible	to	write	a	descriptor	class	that	made	it	possible	to	write	Eiffel-
style	preconditions	and	postconditions	for	a	method.	A	class	that	used
this	feature	might	be	defined	like	this:

from	eiffel	import	eiffelmethod

class	C(object):

				def	f(self,	arg1,	arg2):

								#	The	actual	function

								...

				def	pre_f(self):

								#	Check	preconditions

								...

				def	post_f(self):

								#	Check	postconditions

								...

				f	=	eiffelmethod(f,	pre_f,	post_f)

Note	that	a	person	using	the	new	eiffelmethod()	doesn’t	have	to

understand	 anything	 about	 descriptors.	 This	 is	 why	 I	 think	 the	 new
features	 don’t	 increase	 the	 basic	 complexity	 of	 the	 language.	 There
will	 be	 a	 few	 wizards	 who	 need	 to	 know	 about	 it	 in	 order	 to	 write
eiffelmethod()	or	the	ZODB	or	whatever,	but	most	users	will	 just
write	 code	 on	 top	 of	 the	 resulting	 libraries	 and	 ignore	 the
implementation	details.

Multiple	Inheritance:	The	Diamond	Rule

Multiple	 inheritance	 has	 also	 been	 made	 more	 useful	 through
changing	the	rules	under	which	names	are	resolved.	Consider	this	set
of	classes	(diagram	taken	from	PEP	253	by	Guido	van	Rossum):

						class	A:

								^	^		def	save(self):	...

							/			\

						/					\

					/							\

				/									\

class	B					class	C:

				^									^		def	save(self):	...

					\							/

						\					/

							\			/

								\	/

						class	D

The	 lookup	 rule	 for	 classic	 classes	 is	 simple	 but	 not	 very	 smart;	 the
base	 classes	 are	 searched	 depth-first,	 going	 from	 left	 to	 right.	 A
reference	 to	 D.save()	 will	 search	 the	 classes	 D,	 B,	 and	 then	 A,
where	save()	would	be	found	and	returned.	C.save()	would	never
be	found	at	all.	This	is	bad,	because	if	C‘s	save()	method	 is	saving
some	 internal	state	specific	 to	C,	not	calling	 it	will	 result	 in	 that	state

http://www.python.org/dev/peps/pep-0253

never	getting	saved.

New-style	 classes	 follow	 a	 different	 algorithm	 that’s	 a	 bit	 more
complicated	to	explain,	but	does	the	right	thing	in	this	situation.	(Note
that	Python	2.3	changes	this	algorithm	to	one	that	produces	the	same
results	 in	 most	 cases,	 but	 produces	 more	 useful	 results	 for	 really
complicated	inheritance	graphs.)

1.	 List	 all	 the	 base	 classes,	 following	 the	 classic	 lookup	 rule	 and
include	a	class	multiple	times	if	it’s	visited	repeatedly.	In	the	above
example,	the	list	of	visited	classes	is	[D,	B,	A,	C,	A].

2.	 Scan	 the	 list	 for	duplicated	classes.	 If	any	are	 found,	 remove	all
but	one	occurrence,	 leaving	the	 last	one	 in	 the	 list.	 In	 the	above
example,	the	list	becomes	[D,	B,	C,	A]	after	dropping	duplicates.

Following	 this	 rule,	 referring	 to	 D.save()	 will	 return	 C.save(),
which	is	the	behaviour	we’re	after.	This	lookup	rule	is	the	same	as	the
one	 followed	 by	 Common	 Lisp.	 A	 new	 built-in	 function,	 super(),
provides	 a	 way	 to	 get	 at	 a	 class’s	 superclasses	 without	 having	 to
reimplement	Python’s	algorithm.	The	most	commonly	used	form	will	be
super(class,	obj),	which	returns	a	bound	superclass	object	(not
the	 actual	 class	 object).	 This	 form	will	 be	 used	 in	methods	 to	 call	 a
method	 in	 the	 superclass;	 for	 example,	 D‘s	 save()	 method	 would
look	like	this:

class	D	(B,C):

				def	save	(self):

								#	Call	superclass	.save()

								super(D,	self).save()

								#	Save	D's	private	information	here

								...

super()	can	also	return	unbound	superclass	objects	when	called	as

super(class)	 or	 super(class1,	 class2),	 but	 this	 probably
won’t	often	be	useful.

Attribute	Access

A	 fair	 number	 of	 sophisticated	 Python	 classes	 define	 hooks	 for
attribute	access	using	__getattr__();	most	commonly	this	is	done
for	 convenience,	 to	 make	 code	 more	 readable	 by	 automatically
mapping	an	attribute	access	such	as	obj.parent	into	a	method	call
such	 as	 obj.get_parent.	 Python	 2.2	 adds	 some	 new	 ways	 of
controlling	attribute	access.

First,	 __getattr__(attr_name)	 is	 still	 supported	 by	 new-style
classes,	and	nothing	about	it	has	changed.	As	before,	it	will	be	called
when	an	attempt	is	made	to	access	obj.foo	and	no	attribute	named
foo	is	found	in	the	instance’s	dictionary.

New-style	 classes	 also	 support	 a	 new	 method,
__getattribute__(attr_name).	The	difference	between	the	two
methods	 is	 that	 __getattribute__()	 is	 always	 called	 whenever
any	attribute	is	accessed,	while	the	old	__getattr__()	is	only	called
if	foo	isn’t	found	in	the	instance’s	dictionary.

However,	 Python	 2.2’s	 support	 for	 properties	 will	 often	 be	 a	 simpler
way	to	trap	attribute	references.	Writing	a	__getattr__()	method	is
complicated	because	to	avoid	recursion	you	can’t	use	regular	attribute
accesses	 inside	 them,	 and	 instead	 have	 to	 mess	 around	 with	 the
contents	of	__dict__.	__getattr__()	methods	also	end	up	being
called	 by	 Python	 when	 it	 checks	 for	 other	 methods	 such	 as
__repr__()	or	__coerce__(),	and	so	have	to	be	written	with	this
in	mind.	Finally,	calling	a	function	on	every	attribute	access	results	in	a

sizable	performance	loss.

property	is	a	new	built-in	type	that	packages	up	three	functions	that
get,	 set,	 or	 delete	 an	 attribute,	 and	 a	 docstring.	 For	 example,	 if	 you
want	to	define	a	size	attribute	that’s	computed,	but	also	settable,	you
could	write:

class	C(object):

				def	get_size	(self):

								result	=	...	computation	...

								return	result

				def	set_size	(self,	size):

								...	compute	something	based	on	the	size

								and	set	internal	state	appropriately	...

				#	Define	a	property.		The	'delete	this	attribute'

				#	method	is	defined	as	None,	so	the	attribute

				#	can't	be	deleted.

				size	=	property(get_size,	set_size,

																				None,

																				"Storage	size	of	this	instance")

That	 is	 certainly	 clearer	 and	 easier	 to	 write	 than	 a	 pair	 of
__getattr__()/__setattr__()	methods	that	check	for	the	size
attribute	and	handle	it	specially	while	retrieving	all	other	attributes	from
the	 instance’s	__dict__.	Accesses	 to	size	 are	also	 the	only	ones
which	have	to	perform	the	work	of	calling	a	function,	so	references	to
other	attributes	run	at	their	usual	speed.

Finally,	 it’s	 possible	 to	 constrain	 the	 list	 of	 attributes	 that	 can	 be
referenced	 on	 an	 object	 using	 the	 new	 __slots__	 class	 attribute.
Python	objects	are	usually	 very	dynamic;	 at	 any	 time	 it’s	 possible	 to
define	a	new	attribute	on	an	instance	by	just	doing	obj.new_attr=1.

A	new-style	class	can	define	a	class	attribute	named	__slots__	 to
limit	 the	 legal	attributes	 to	a	particular	set	of	names.	An	example	will
make	this	clear:

>>>	class	C(object):

...					__slots__	=	('template',	'name')

...

>>>	obj	=	C()

>>>	print	obj.template

None

>>>	obj.template	=	'Test'

>>>	print	obj.template

Test

>>>	obj.newattr	=	None

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

AttributeError:	'C'	object	has	no	attribute	'newattr'

Note	how	you	get	an	AttributeError	on	 the	attempt	 to	assign	 to
an	attribute	not	listed	in	__slots__.

Related	Links

This	section	has	just	been	a	quick	overview	of	the	new	features,	giving
enough	of	an	explanation	to	start	you	programming,	but	many	details
have	been	simplified	or	 ignored.	Where	should	you	go	 to	get	a	more
complete	picture?

http://www.python.org/2.2/descrintro.html	 is	 a	 lengthy	 tutorial
introduction	to	the	descriptor	features,	written	by	Guido	van	Rossum.	If
my	 description	 has	whetted	 your	 appetite,	 go	 read	 this	 tutorial	 next,
because	 it	 goes	 into	much	more	detail	 about	 the	new	 features	while
still	remaining	quite	easy	to	read.

http://www.python.org/2.2/descrintro.html

Next,	there	are	two	relevant	PEPs,	PEP	252	and	PEP	253.	PEP	252	is
titled	 “Making	 Types	 Look	 More	 Like	 Classes”,	 and	 covers	 the
descriptor	 API.	 PEP	 253	 is	 titled	 “Subtyping	 Built-in	 Types”,	 and
describes	the	changes	to	type	objects	that	make	it	possible	to	subtype
built-in	objects.	PEP	253	is	the	more	complicated	PEP	of	the	two,	and
at	 a	 few	 points	 the	 necessary	 explanations	 of	 types	 and	meta-types
may	 cause	 your	 head	 to	 explode.	 Both	 PEPs	 were	 written	 and
implemented	by	Guido	van	Rossum,	with	substantial	assistance	from
the	rest	of	the	Zope	Corp.	team.

Finally,	 there’s	 the	 ultimate	 authority:	 the	 source	 code.	 Most	 of	 the
machinery	 for	 the	 type	handling	 is	 in	Objects/typeobject.c,	but
you	 should	 only	 resort	 to	 it	 after	 all	 other	 avenues	 have	 been
exhausted,	including	posting	a	question	to	python-list	or	python-dev.

http://www.python.org/dev/peps/pep-0252
http://www.python.org/dev/peps/pep-0253
http://www.python.org/dev/peps/pep-0252
http://www.python.org/dev/peps/pep-0253
http://www.python.org/dev/peps/pep-0253

PEP	234:	Iterators

Another	significant	addition	to	2.2	is	an	iteration	interface	at	both	the	C
and	Python	levels.	Objects	can	define	how	they	can	be	looped	over	by
callers.

In	Python	versions	up	 to	2.1,	 the	usual	way	 to	make	for	item	in
obj	 work	 is	 to	 define	 a	 __getitem__()	 method	 that	 looks
something	like	this:

def	__getitem__(self,	index):

				return	<next	item>

__getitem__()	 is	 more	 properly	 used	 to	 define	 an	 indexing
operation	on	an	object	 so	 that	 you	can	write	 obj[5]	 to	 retrieve	 the
sixth	 element.	 It’s	 a	 bit	 misleading	 when	 you’re	 using	 this	 only	 to
support	 for	 loops.	 Consider	 some	 file-like	 object	 that	 wants	 to	 be
looped	 over;	 the	 index	 parameter	 is	 essentially	meaningless,	 as	 the
class	probably	assumes	that	a	series	of	__getitem__()	calls	will	be
made	with	 index	 incrementing	by	one	each	 time.	 In	other	words,	 the
presence	 of	 the	 __getitem__()	 method	 doesn’t	 mean	 that	 using
file[5]	 to	 randomly	 access	 the	 sixth	 element	 will	 work,	 though	 it
really	should.

In	 Python	 2.2,	 iteration	 can	 be	 implemented	 separately,	 and
__getitem__()	 methods	 can	 be	 limited	 to	 classes	 that	 really	 do
support	 random	access.	The	basic	 idea	of	 iterators	 is	 simple.	A	 new
built-in	function,	iter(obj)	or	iter(C,	sentinel),	is	used	to	get
an	 iterator.	 iter(obj)	 returns	 an	 iterator	 for	 the	 object	 obj,	 while
iter(C,	sentinel)	returns	an	iterator	that	will	 invoke	the	callable
object	C	until	it	returns	sentinel	to	signal	that	the	iterator	is	done.

Python	 classes	 can	 define	 an	 __iter__()	 method,	 which	 should
create	and	return	a	new	iterator	for	the	object;	 if	 the	object	 is	 its	own
iterator,	 this	method	 can	 just	 return	 self.	 In	 particular,	 iterators	will
usually	be	their	own	 iterators.	Extension	types	 implemented	 in	C	can
implement	 a	 tp_iter	 function	 in	 order	 to	 return	 an	 iterator,	 and
extension	 types	 that	 want	 to	 behave	 as	 iterators	 can	 define	 a
tp_iternext	function.

So,	after	all	this,	what	do	iterators	actually	do?	They	have	one	required
method,	 next(),	 which	 takes	 no	 arguments	 and	 returns	 the	 next
value.	When	there	are	no	more	values	to	be	returned,	calling	next()
should	raise	the	StopIteration	exception.

>>>	L	=	[1,2,3]

>>>	i	=	iter(L)

>>>	print	i

<iterator	object	at	0x8116870>

>>>	i.next()

1

>>>	i.next()

2

>>>	i.next()

3

>>>	i.next()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

StopIteration

>>>

In	 2.2,	 Python’s	 for	 statement	 no	 longer	 expects	 a	 sequence;	 it
expects	 something	 for	 which	 iter()	 will	 return	 an	 iterator.	 For
backward	 compatibility	 and	 convenience,	 an	 iterator	 is	 automatically
constructed	 for	 sequences	 that	 don’t	 implement	 __iter__()	 or	 a

tp_iter	slot,	so	for	i	in	[1,2,3]	will	 still	work.	Wherever	 the
Python	 interpreter	 loops	 over	 a	 sequence,	 it’s	 been	 changed	 to	 use
the	iterator	protocol.	This	means	you	can	do	things	like	this:

>>>	L	=	[1,2,3]

>>>	i	=	iter(L)

>>>	a,b,c	=	i

>>>	a,b,c

(1,	2,	3)

Iterator	 support	 has	 been	 added	 to	 some	 of	 Python’s	 basic	 types.
Calling	iter()	on	a	dictionary	will	return	an	iterator	which	loops	over
its	keys:

>>>	m	=	{'Jan':	1,	'Feb':	2,	'Mar':	3,	'Apr':	4,	'May'

...						'Jul':	7,	'Aug':	8,	'Sep':	9,	'Oct':	10,	'Nov'

>>>	for	key	in	m:	print	key,	m[key]

...

Mar	3

Feb	2

Aug	8

Sep	9

May	5

Jun	6

Jul	7

Jan	1

Apr	4

Nov	11

Dec	12

Oct	10

That’s	 just	 the	 default	 behaviour.	 If	 you	 want	 to	 iterate	 over	 keys,
values,	 or	 key/value	 pairs,	 you	 can	 explicitly	 call	 the	 iterkeys(),
itervalues(),	 or	 iteritems()	 methods	 to	 get	 an	 appropriate

iterator.	 In	 a	 minor	 related	 change,	 the	 in	 operator	 now	 works	 on
dictionaries,	 so	 key	 in	 dict	 is	 now	 equivalent	 to
dict.has_key(key).

Files	 also	 provide	 an	 iterator,	 which	 calls	 the	 readline()	 method
until	there	are	no	more	lines	in	the	file.	This	means	you	can	now	read
each	line	of	a	file	using	code	like	this:

for	line	in	file:

				#	do	something	for	each	line

				...

Note	that	you	can	only	go	forward	in	an	iterator;	there’s	no	way	to	get
the	 previous	 element,	 reset	 the	 iterator,	 or	 make	 a	 copy	 of	 it.	 An
iterator	 object	 could	 provide	 such	 additional	 capabilities,	 but	 the
iterator	protocol	only	requires	a	next()	method.

See	also:

PEP	234	-	Iterators
Written	 by	 Ka-Ping	 Yee	 and	 GvR;	 implemented	 by	 the	 Python
Labs	crew,	mostly	by	GvR	and	Tim	Peters.

http://www.python.org/dev/peps/pep-0234

PEP	255:	Simple	Generators

Generators	 are	 another	 new	 feature,	 one	 that	 interacts	 with	 the
introduction	of	iterators.

You’re	doubtless	familiar	with	how	function	calls	work	in	Python	or	C.
When	you	call	a	function,	it	gets	a	private	namespace	where	its	local
variables	 are	 created.	 When	 the	 function	 reaches	 a	 return

statement,	the	local	variables	are	destroyed	and	the	resulting	value	is
returned	to	the	caller.	A	later	call	to	the	same	function	will	get	a	fresh
new	 set	 of	 local	 variables.	 But,	 what	 if	 the	 local	 variables	 weren’t
thrown	away	on	exiting	a	function?	What	if	you	could	later	resume	the
function	where	it	left	off?	This	is	what	generators	provide;	they	can	be
thought	of	as	resumable	functions.

Here’s	the	simplest	example	of	a	generator	function:

def	generate_ints(N):

				for	i	in	range(N):

								yield	i

A	new	keyword,	yield,	was	 introduced	 for	generators.	Any	 function
containing	a	yield	statement	is	a	generator	function;	this	is	detected
by	Python’s	 bytecode	 compiler	which	 compiles	 the	 function	 specially
as	a	result.	Because	a	new	keyword	was	introduced,	generators	must
be	explicitly	enabled	 in	a	module	by	 including	a	from	__future__
import	generators	statement	near	the	top	of	the	module’s	source
code.	In	Python	2.3	this	statement	will	become	unnecessary.

When	 you	 call	 a	 generator	 function,	 it	 doesn’t	 return	 a	 single	 value;
instead	it	returns	a	generator	object	that	supports	the	iterator	protocol.
On	executing	the	yield	statement,	the	generator	outputs	the	value	of

i,	similar	to	a	return	statement.	The	big	difference	between	yield
and	a	return	statement	is	that	on	reaching	a	yield	the	generator’s
state	of	execution	is	suspended	and	local	variables	are	preserved.	On
the	 next	 call	 to	 the	 generator’s	 next()	 method,	 the	 function	 will
resume	 executing	 immediately	 after	 the	 yield	 statement.	 (For
complicated	 reasons,	 the	 yield	 statement	 isn’t	 allowed	 inside	 the
try	 block	 of	 a	 try...finally	 statement;	 read	PEP	 255	 for	 a	 full
explanation	of	the	interaction	between	yield	and	exceptions.)

Here’s	a	sample	usage	of	the	generate_ints()	generator:

>>>	gen	=	generate_ints(3)

>>>	gen

<generator	object	at	0x8117f90>

>>>	gen.next()

0

>>>	gen.next()

1

>>>	gen.next()

2

>>>	gen.next()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"<stdin>",	line	2,	in	generate_ints

StopIteration

You	could	equally	write	for	i	in	generate_ints(5),	or	a,b,c
=	generate_ints(3).

Inside	a	generator	 function,	 the	return	statement	can	only	be	used
without	 a	 value,	 and	 signals	 the	 end	 of	 the	 procession	 of	 values;
afterwards	 the	 generator	 cannot	 return	 any	 further	 values.	 return
with	a	value,	such	as	return	5,	is	a	syntax	error	inside	a	generator

http://www.python.org/dev/peps/pep-0255

function.	The	end	of	 the	generator’s	 results	can	also	be	 indicated	by
raising	 StopIteration	 manually,	 or	 by	 just	 letting	 the	 flow	 of
execution	fall	off	the	bottom	of	the	function.

You	 could	 achieve	 the	 effect	 of	 generators	manually	 by	 writing	 your
own	 class	 and	 storing	 all	 the	 local	 variables	 of	 the	 generator	 as
instance	variables.	For	 example,	 returning	a	 list	 of	 integers	 could	be
done	 by	 setting	 self.count	 to	 0,	 and	 having	 the	 next()	method
increment	 self.count	 and	 return	 it.	 However,	 for	 a	 moderately
complicated	generator,	writing	a	corresponding	class	would	be	much
messier.	 Lib/test/test_generators.py	 contains	 a	 number	 of
more	 interesting	examples.	The	simplest	one	 implements	an	 in-order
traversal	of	a	tree	using	generators	recursively.

#	A	recursive	generator	that	generates	Tree	leaves	in	in-order.

def	inorder(t):

				if	t:

								for	x	in	inorder(t.left):

												yield	x

								yield	t.label

								for	x	in	inorder(t.right):

												yield	x

Two	 other	 examples	 in	 Lib/test/test_generators.py	 produce
solutions	 for	 the	 N-Queens	 problem	 (placing	 N	 queens	 on	 an
NxN	 chess	 board	 so	 that	 no	 queen	 threatens	 another)	 and	 the
Knight’s	Tour	(a	route	that	takes	a	knight	to	every	square	of	an	NxN
chessboard	without	visiting	any	square	twice).

The	 idea	 of	 generators	 comes	 from	 other	 programming	 languages,
especially	 Icon	 (http://www.cs.arizona.edu/icon/),	 where	 the	 idea	 of
generators	 is	 central.	 In	 Icon,	 every	 expression	 and	 function	 call
behaves	like	a	generator.	One	example	from	“An	Overview	of	the	Icon

http://www.cs.arizona.edu/icon/

Programming	 Language”	 at
http://www.cs.arizona.edu/icon/docs/ipd266.htm	gives	an	 idea	of	what
this	looks	like:

sentence	:=	"Store	it	in	the	neighboring	harbor"

if	(i	:=	find("or",	sentence))	>	5	then	write(i)

In	Icon	the	find()	function	returns	the	indexes	at	which	the	substring
“or”	is	found:	3,	23,	33.	In	the	if	statement,	i	is	first	assigned	a	value
of	3,	but	3	 is	 less	 than	5,	so	 the	comparison	 fails,	and	 Icon	 retries	 it
with	 the	second	value	of	23.	23	 is	greater	 than	5,	so	 the	comparison
now	succeeds,	and	the	code	prints	the	value	23	to	the	screen.

Python	doesn’t	 go	nearly	as	 far	as	 Icon	 in	adopting	generators	as	a
central	 concept.	 Generators	 are	 considered	 a	 new	 part	 of	 the	 core
Python	 language,	but	 learning	or	using	them	isn’t	compulsory;	 if	 they
don’t	solve	any	problems	that	you	have,	feel	free	to	ignore	them.	One
novel	 feature	 of	 Python’s	 interface	 as	 compared	 to	 Icon’s	 is	 that	 a
generator’s	state	is	represented	as	a	concrete	object	(the	iterator)	that
can	be	passed	around	to	other	functions	or	stored	in	a	data	structure.

See	also:

PEP	255	-	Simple	Generators
Written	by	Neil	Schemenauer,	Tim	Peters,	Magnus	Lie	Hetland.
Implemented	mostly	by	Neil	Schemenauer	and	Tim	Peters,	with
other	fixes	from	the	Python	Labs	crew.

http://www.cs.arizona.edu/icon/docs/ipd266.htm
http://www.python.org/dev/peps/pep-0255

PEP	237:	Unifying	Long	Integers	and
Integers

In	recent	versions,	the	distinction	between	regular	integers,	which	are
32-bit	 values	on	most	machines,	 and	 long	 integers,	which	 can	be	of
arbitrary	 size,	 was	 becoming	 an	 annoyance.	 For	 example,	 on
platforms	 that	 support	 files	 larger	 than	 2**32	 bytes,	 the	 tell()
method	 of	 file	 objects	 has	 to	 return	 a	 long	 integer.	 However,	 there
were	 various	 bits	 of	 Python	 that	 expected	 plain	 integers	 and	 would
raise	an	error	 if	a	 long	 integer	was	provided	 instead.	For	example,	 in
Python	1.5,	only	regular	 integers	could	be	used	as	a	slice	index,	and
'abc'[1L:]	would	raise	a	TypeError	exception	with	the	message
‘slice	index	must	be	int’.

Python	2.2	will	shift	values	from	short	to	long	integers	as	required.	The
‘L’	suffix	 is	no	longer	needed	to	indicate	a	long	integer	 literal,	as	now
the	compiler	will	choose	the	appropriate	type.	(Using	the	‘L’	suffix	will
be	discouraged	in	future	2.x	versions	of	Python,	triggering	a	warning	in
Python	 2.4,	 and	 probably	 dropped	 in	 Python	 3.0.)	 Many	 operations
that	used	to	raise	an	OverflowError	will	now	return	a	 long	 integer
as	their	result.	For	example:

>>>	1234567890123

1234567890123L

>>>	2	**	64

18446744073709551616L

In	 most	 cases,	 integers	 and	 long	 integers	 will	 now	 be	 treated
identically.	 You	 can	 still	 distinguish	 them	 with	 the	 type()	 built-in
function,	but	that’s	rarely	needed.

See	also:

PEP	237	-	Unifying	Long	Integers	and	Integers
Written	by	Moshe	Zadka	and	Guido	 van	Rossum.	 Implemented
mostly	by	Guido	van	Rossum.

http://www.python.org/dev/peps/pep-0237

PEP	238:	Changing	the	Division	Operator

The	most	 controversial	 change	 in	Python	2.2	 heralds	 the	 start	 of	 an
effort	 to	 fix	 an	 old	 design	 flaw	 that’s	 been	 in	 Python	 from	 the
beginning.	 Currently	 Python’s	 division	 operator,	 /,	 behaves	 like	 C’s
division	 operator	 when	 presented	 with	 two	 integer	 arguments:	 it
returns	an	integer	result	that’s	truncated	down	when	there	would	be	a
fractional	part.	For	example,	3/2	is	1,	not	1.5,	and	(-1)/2	is	-1,	not
-0.5.	 This	 means	 that	 the	 results	 of	 division	 can	 vary	 unexpectedly
depending	 on	 the	 type	 of	 the	 two	 operands	 and	 because	 Python	 is
dynamically	typed,	it	can	be	difficult	to	determine	the	possible	types	of
the	operands.

(The	 controversy	 is	 over	 whether	 this	 is	 really	 a	 design	 flaw,	 and
whether	it’s	worth	breaking	existing	code	to	fix	this.	It’s	caused	endless
discussions	on	python-dev,	and	in	July	2001	erupted	into	an	storm	of
acidly	sarcastic	postings	on	comp.lang.python.	I	won’t	argue	for	either
side	here	and	will	stick	to	describing	what’s	implemented	in	2.2.	Read
PEP	238	for	a	summary	of	arguments	and	counter-arguments.)

Because	 this	 change	 might	 break	 code,	 it’s	 being	 introduced	 very
gradually.	 Python	 2.2	 begins	 the	 transition,	 but	 the	 switch	 won’t	 be
complete	until	Python	3.0.

First,	I’ll	borrow	some	terminology	from	PEP	238.	“True	division”	is	the
division	that	most	non-programmers	are	familiar	with:	3/2	is	1.5,	1/4	is
0.25,	 and	 so	 forth.	 “Floor	 division”	 is	 what	 Python’s	 /	 operator
currently	does	when	given	 integer	operands;	 the	 result	 is	 the	 floor	of
the	 value	 returned	 by	 true	 division.	 “Classic	 division”	 is	 the	 current
mixed	behaviour	of	 /;	 it	 returns	 the	 result	 of	 floor	 division	when	 the
operands	are	integers,	and	returns	the	result	of	true	division	when	one

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0238

of	the	operands	is	a	floating-point	number.

Here	are	the	changes	2.2	introduces:

A	new	operator,	//,	is	the	floor	division	operator.	(Yes,	we	know	it
looks	 like	 C++’s	 comment	 symbol.)	 //	 always	 performs	 floor
division	no	matter	what	the	types	of	its	operands	are,	so	1	//	2
is	0	and	1.0	//	2.0	is	also	0.0.

//	 is	always	available	in	Python	2.2;	you	don’t	need	to	enable	it
using	a	__future__	statement.

By	 including	 a	 from	 __future__	 import	 division	 in	 a
module,	the	/	operator	will	be	changed	to	return	the	result	of	true
division,	 so	 1/2	 is	 0.5.	Without	 the	 __future__	 statement,	 /
still	 means	 classic	 division.	 The	 default	 meaning	 of	 /	 will	 not
change	until	Python	3.0.

Classes	 can	 define	 methods	 called	 __truediv__()	 and
__floordiv__()	 to	overload	the	two	division	operators.	At	 the
C	 level,	 there	are	also	slots	 in	 the	PyNumberMethods	structure
so	extension	types	can	define	the	two	operators.

Python	 2.2	 supports	 some	 command-line	 arguments	 for	 testing
whether	 code	 will	 works	 with	 the	 changed	 division	 semantics.
Running	python	with	 -Q	warn	will	 cause	a	warning	 to	 be	 issued
whenever	division	 is	applied	to	 two	 integers.	You	can	use	this	 to
find	 code	 that’s	 affected	 by	 the	 change	 and	 fix	 it.	 By	 default,
Python	2.2	will	simply	perform	classic	division	without	a	warning;
the	warning	will	be	turned	on	by	default	in	Python	2.3.

See	also:

PEP	238	-	Changing	the	Division	Operator
Written	by	Moshe	Zadka	and	Guido	van	Rossum.	 Implemented
by	Guido	van	Rossum..

http://www.python.org/dev/peps/pep-0238

Unicode	Changes

Python’s	 Unicode	 support	 has	 been	 enhanced	 a	 bit	 in	 2.2.	 Unicode
strings	 are	 usually	 stored	 as	 UCS-2,	 as	 16-bit	 unsigned	 integers.
Python	 2.2	 can	 also	 be	 compiled	 to	 use	 UCS-4,	 32-bit	 unsigned
integers,	as	 its	 internal	encoding	by	supplying	--enable-unicode=ucs4
to	the	configure	script.	(It’s	also	possible	to	specify	--disable-unicode	to
completely	disable	Unicode	support.)

When	built	to	use	UCS-4	(a	“wide	Python”),	the	interpreter	can	natively
handle	Unicode	characters	from	U+000000	to	U+110000,	so	the	range
of	 legal	 values	 for	 the	 unichr()	 function	 is	 expanded	 accordingly.
Using	 an	 interpreter	 compiled	 to	 use	 UCS-2	 (a	 “narrow	 Python”),
values	 greater	 than	 65535	 will	 still	 cause	 unichr()	 to	 raise	 a
ValueError	exception.	This	is	all	described	in	PEP	261,	“Support	for
‘wide’	Unicode	characters”;	consult	it	for	further	details.

Another	change	is	simpler	to	explain.	Since	their	introduction,	Unicode
strings	have	supported	an	encode()	method	to	convert	the	string	to	a
selected	 encoding	 such	 as	 UTF-8	 or	 Latin-1.	 A	 symmetric
decode([*encoding*])	 method	 has	 been	 added	 to	 8-bit	 strings
(though	 not	 to	Unicode	 strings)	 in	 2.2.	 decode()	 assumes	 that	 the
string	 is	 in	the	specified	encoding	and	decodes	 it,	 returning	whatever
is	returned	by	the	codec.

Using	this	new	feature,	codecs	have	been	added	for	tasks	not	directly
related	 to	 Unicode.	 For	 example,	 codecs	 have	 been	 added	 for	 uu-
encoding,	MIME’s	base64	encoding,	and	compression	with	 the	zlib
module:

>>>	s	=	"""Here	is	a	lengthy	piece	of	redundant,	overly	verbose,

...	and	repetitive	text.

http://www.python.org/dev/peps/pep-0261

...	"""

>>>	data	=	s.encode('zlib')

>>>	data

'x\x9c\r\xc9\xc1\r\x80	\x10\x04\xc0?Ul...'

>>>	data.decode('zlib')

'Here	is	a	lengthy	piece	of	redundant,	overly	verbose,\nand	repetitive	text.\n'

>>>	print	s.encode('uu')

begin	666	<data>

M2&5R92!I<R!A(&QE;F=T:'D@<&EE8V4@;V8@<F5D=6YD86YT+"!O=F5R;'D@

>=F5R8F]S92P*86YD(')E<&5T:71I=F4@=&5X="X*

end

>>>	"sheesh".encode('rot-13')

'furrfu'

To	 convert	 a	 class	 instance	 to	Unicode,	 a	 __unicode__()	method
can	be	defined	by	a	class,	analogous	to	__str__().

encode(),	decode(),	and	__unicode__()	were	 implemented	by
Marc-André	Lemburg.	The	changes	to	support	using	UCS-4	internally
were	implemented	by	Fredrik	Lundh	and	Martin	von	Löwis.

See	also:

PEP	261	-	Support	for	‘wide’	Unicode	characters
Written	by	Paul	Prescod.

http://www.python.org/dev/peps/pep-0261

PEP	227:	Nested	Scopes

In	 Python	 2.1,	 statically	 nested	 scopes	 were	 added	 as	 an	 optional
feature,	 to	 be	 enabled	 by	 a	 from	 __future__	 import

nested_scopes	directive.	In	2.2	nested	scopes	no	longer	need	to	be
specially	enabled,	and	are	now	always	present.	The	rest	of	this	section
is	a	copy	of	the	description	of	nested	scopes	from	my	“What’s	New	in
Python	2.1”	document;	if	you	read	it	when	2.1	came	out,	you	can	skip
the	rest	of	this	section.

The	 largest	 change	 introduced	 in	Python	2.1,	and	made	complete	 in
2.2,	is	to	Python’s	scoping	rules.	In	Python	2.0,	at	any	given	time	there
are	at	most	three	namespaces	used	to	look	up	variable	names:	local,
module-level,	and	the	built-in	namespace.	This	often	surprised	people
because	 it	 didn’t	 match	 their	 intuitive	 expectations.	 For	 example,	 a
nested	recursive	function	definition	doesn’t	work:

def	f():

				...

				def	g(value):

								...

								return	g(value-1)	+	1

				...

The	function	g()	will	always	raise	a	NameError	exception,	because
the	binding	of	the	name	g	 isn’t	 in	either	its	local	namespace	or	in	the
module-level	 namespace.	 This	 isn’t	 much	 of	 a	 problem	 in	 practice
(how	often	do	you	 recursively	define	 interior	 functions	 like	 this?),	but
this	also	made	using	the	lambda	statement	clumsier,	and	this	was	a
problem	 in	 practice.	 In	 code	which	 uses	 lambda	 you	 can	 often	 find
local	variables	being	copied	by	passing	them	as	the	default	values	of
arguments.

def	find(self,	name):

				"Return	list	of	any	entries	equal	to	'name'"

				L	=	filter(lambda	x,	name=name:	x	==	name,

															self.list_attribute)

				return	L

The	 readability	 of	 Python	 code	 written	 in	 a	 strongly	 functional	 style
suffers	greatly	as	a	result.

The	most	 significant	 change	 to	Python	2.2	 is	 that	 static	 scoping	has
been	added	 to	 the	 language	 to	 fix	 this	problem.	As	a	 first	effect,	 the
name=name	 default	 argument	 is	 now	 unnecessary	 in	 the	 above
example.	Put	 simply,	when	 a	 given	 variable	 name	 is	 not	 assigned	 a
value	 within	 a	 function	 (by	 an	 assignment,	 or	 the	 def,	 class,	 or
import	 statements),	 references	 to	 the	 variable	will	 be	 looked	 up	 in
the	 local	 namespace	 of	 the	 enclosing	 scope.	 A	 more	 detailed
explanation	of	 the	 rules,	and	a	dissection	of	 the	 implementation,	can
be	found	in	the	PEP.

This	change	may	cause	some	compatibility	problems	for	code	where
the	 same	 variable	 name	 is	 used	 both	 at	 the	module	 level	 and	 as	 a
local	variable	within	a	function	that	contains	further	function	definitions.
This	seems	rather	unlikely	though,	since	such	code	would	have	been
pretty	confusing	to	read	in	the	first	place.

One	side	effect	of	 the	change	 is	 that	 the	from	module	import	*
and	exec	statements	have	been	made	illegal	inside	a	function	scope
under	 certain	 conditions.	 The	 Python	 reference	 manual	 has	 said	 all
along	that	from	module	import	*	is	only	legal	at	the	top	level	of	a
module,	 but	 the	CPython	 interpreter	 has	 never	 enforced	 this	 before.
As	 part	 of	 the	 implementation	 of	 nested	 scopes,	 the	 compiler	 which
turns	Python	source	 into	bytecodes	has	 to	generate	different	code	 to
access	 variables	 in	 a	 containing	 scope.	 from	module	import	 *

and	 exec	 make	 it	 impossible	 for	 the	 compiler	 to	 figure	 this	 out,
because	they	add	names	to	the	local	namespace	that	are	unknowable
at	compile	time.	Therefore,	if	a	function	contains	function	definitions	or
lambda	expressions	with	free	variables,	the	compiler	will	 flag	this	by
raising	a	SyntaxError	exception.

To	make	the	preceding	explanation	a	bit	clearer,	here’s	an	example:

x	=	1

def	f():

				#	The	next	line	is	a	syntax	error

				exec	'x=2'

				def	g():

								return	x

Line	4	 containing	 the	 exec	 statement	 is	 a	 syntax	 error,	 since	 exec
would	 define	 a	 new	 local	 variable	 named	 x	 whose	 value	 should	 be
accessed	by	g().

This	 shouldn’t	 be	much	 of	 a	 limitation,	 since	 exec	 is	 rarely	 used	 in
most	 Python	 code	 (and	 when	 it	 is	 used,	 it’s	 often	 a	 sign	 of	 a	 poor
design	anyway).

See	also:

PEP	227	-	Statically	Nested	Scopes
Written	and	implemented	by	Jeremy	Hylton.

http://www.python.org/dev/peps/pep-0227

New	and	Improved	Modules

The	xmlrpclib	module	was	contributed	 to	 the	standard	 library
by	Fredrik	Lundh,	providing	support	 for	writing	XML-RPC	clients.
XML-RPC	is	a	simple	remote	procedure	call	protocol	built	on	top
of	HTTP	and	XML.	For	example,	the	following	snippet	retrieves	a
list	of	RSS	channels	from	the	O’Reilly	Network,	and	then	lists	 the
recent	headlines	for	one	channel:

import	xmlrpclib

s	=	xmlrpclib.Server(

						'http://www.oreillynet.com/meerkat/xml-rpc/server.php'

channels	=	s.meerkat.getChannels()

#	channels	is	a	list	of	dictionaries,	like	this:

#	[{'id':	4,	'title':	'Freshmeat	Daily	News'}

#		{'id':	190,	'title':	'32Bits	Online'},

#		{'id':	4549,	'title':	'3DGamers'},	...]

#	Get	the	items	for	one	channel

items	=	s.meerkat.getItems({'channel':	4})

#	'items'	is	another	list	of	dictionaries,	like	this:

#	[{'link':	'http://freshmeat.net/releases/52719/',

#			'description':	'A	utility	which	converts	HTML	to	XSL	FO.',

#			'title':	'html2fo	0.3	(Default)'},	...]

The	 SimpleXMLRPCServer	 module	 makes	 it	 easy	 to	 create
straightforward	XML-RPC	servers.	See	http://www.xmlrpc.com/	for
more	information	about	XML-RPC.

The	 new	 hmac	 module	 implements	 the	 HMAC	 algorithm
described	by	RFC	2104.	(Contributed	by	Gerhard	Häring.)

http://www.xmlrpc.com/
http://tools.ietf.org/html/rfc2104.html

Several	functions	that	originally	returned	lengthy	tuples	now	return
pseudo-	 sequences	 that	 still	 behave	 like	 tuples	 but	 also	 have
mnemonic	attributes	such	as	memberst_mtime	or	tm_year.	The
enhanced	functions	include	stat(),	fstat(),	statvfs(),	and
fstatvfs()	in	the	os	module,	and	localtime(),	gmtime(),
and	strptime()	in	the	time	module.

For	example,	to	obtain	a	file’s	size	using	the	old	tuples,	you’d	end
up	writing	something	 like	file_size	=	os.stat(filename)
[stat.ST_SIZE],	 but	 now	 this	 can	 be	written	more	 clearly	 as
file_size	=	os.stat(filename).st_size.

The	 original	 patch	 for	 this	 feature	 was	 contributed	 by	 Nick
Mathewson.

The	 Python	 profiler	 has	 been	 extensively	 reworked	 and	 various
errors	 in	 its	output	have	been	corrected.	 (Contributed	by	Fred	L.
Drake,	Jr.	and	Tim	Peters.)

The	socket	module	can	be	compiled	to	support	IPv6;	specify	the
--enable-ipv6	option	 to	Python’s	configure	script.	 (Contributed	by
Jun-ichiro	“itojun”	Hagino.)

Two	new	format	characters	were	added	to	the	struct	module	for
64-bit	integers	on	platforms	that	support	the	C	long	long	 type.
q	is	for	a	signed	64-bit	integer,	and	Q	is	for	an	unsigned	one.	The
value	 is	 returned	 in	 Python’s	 long	 integer	 type.	 (Contributed	 by
Tim	Peters.)

In	the	interpreter’s	interactive	mode,	there’s	a	new	built-in	function
help()	that	uses	the	pydoc	module	introduced	in	Python	2.1	to
provide	 interactive	 help.	 help(object)	 displays	 any	 available

help	 text	about	object.	help()	with	no	argument	puts	you	 in	an
online	 help	 utility,	 where	 you	 can	 enter	 the	 names	 of	 functions,
classes,	or	modules	to	read	their	help	text.	(Contributed	by	Guido
van	Rossum,	using	Ka-Ping	Yee’s	pydoc	module.)

Various	 bugfixes	 and	 performance	 improvements	 have	 been
made	to	the	SRE	engine	underlying	the	re	module.	For	example,
the	re.sub()	and	re.split()	functions	have	been	rewritten	in
C.	Another	contributed	patch	speeds	up	certain	Unicode	character
ranges	by	a	 factor	of	 two,	and	a	new	finditer()	method	 that
returns	an	iterator	over	all	the	non-overlapping	matches	in	a	given
string.	(SRE	 is	maintained	by	Fredrik	Lundh.	The	BIGCHARSET
patch	was	contributed	by	Martin	von	Löwis.)

The	 smtplib	module	 now	 supports	RFC	2487,	 “Secure	SMTP
over	 TLS”,	 so	 it’s	 now	 possible	 to	 encrypt	 the	 SMTP	 traffic
between	 a	 Python	 program	 and	 the	 mail	 transport	 agent	 being
handed	 a	 message.	 smtplib	 also	 supports	 SMTP
authentication.	(Contributed	by	Gerhard	Häring.)

The	imaplib	module,	maintained	by	Piers	Lauder,	has	support
for	 several	new	extensions:	 the	NAMESPACE	extension	defined
in	 RFC	 2342,	 SORT,	 GETACL	 and	 SETACL.	 (Contributed	 by
Anthony	Baxter	and	Michel	Pelletier.)

The	 rfc822	 module’s	 parsing	 of	 email	 addresses	 is	 now
compliant	with	RFC	2822,	an	update	to	RFC	822.	 (The	module’s
name	is	not	going	 to	be	changed	 to	rfc2822.)	A	new	package,
email,	 has	 also	 been	 added	 for	 parsing	 and	 generating	 e-mail
messages.	(Contributed	by	Barry	Warsaw,	and	arising	out	of	his
work	on	Mailman.)

http://tools.ietf.org/html/rfc2487.html
http://tools.ietf.org/html/rfc2342.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html

The	 difflib	 module	 now	 contains	 a	 new	 Differ	 class	 for
producing	 human-readable	 lists	 of	 changes	 (a	 “delta”)	 between
two	 sequences	 of	 lines	 of	 text.	 There	 are	 also	 two	 generator
functions,	ndiff()	and	restore(),	which	respectively	return	a
delta	from	two	sequences,	or	one	of	the	original	sequences	from	a
delta.	 (Grunt	 work	 contributed	 by	 David	 Goodger,	 from	 ndiff.py
code	by	Tim	Peters	who	then	did	the	generatorization.)

New	 constants	 ascii_letters,	 ascii_lowercase,	 and
ascii_uppercase	 were	 added	 to	 the	 string	 module.	 There
were	 several	 modules	 in	 the	 standard	 library	 that	 used
string.letters	 to	 mean	 the	 ranges	 A-Za-z,	 but	 that
assumption	 is	 incorrect	 when	 locales	 are	 in	 use,	 because
string.letters	 varies	 depending	 on	 the	 set	 of	 legal
characters	defined	by	the	current	locale.	The	buggy	modules	have
all	been	 fixed	 to	use	ascii_letters	 instead.	 (Reported	by	an
unknown	person;	fixed	by	Fred	L.	Drake,	Jr.)

The	mimetypes	module	 now	makes	 it	 easier	 to	 use	 alternative
MIME-type	 databases	 by	 the	 addition	 of	 a	 MimeTypes	 class,
which	takes	a	list	of	filenames	to	be	parsed.	(Contributed	by	Fred
L.	Drake,	Jr.)

A	Timer	class	was	added	to	the	threading	module	that	allows
scheduling	an	activity	to	happen	at	some	future	time.	(Contributed
by	Itamar	Shtull-Trauring.)

Interpreter	Changes	and	Fixes

Some	 of	 the	 changes	 only	 affect	 people	 who	 deal	 with	 the	 Python
interpreter	 at	 the	 C	 level	 because	 they’re	 writing	 Python	 extension
modules,	embedding	the	interpreter,	or	just	hacking	on	the	interpreter
itself.	 If	 you	 only	write	 Python	 code,	 none	 of	 the	 changes	 described
here	will	affect	you	very	much.

Profiling	 and	 tracing	 functions	 can	 now	 be	 implemented	 in	 C,
which	 can	 operate	 at	 much	 higher	 speeds	 than	 Python-based
functions	and	should	reduce	the	overhead	of	profiling	and	tracing.
This	will	be	of	interest	to	authors	of	development	environments	for
Python.	 Two	 new	 C	 functions	 were	 added	 to	 Python’s	 API,
PyEval_SetProfile()	 and	 PyEval_SetTrace().	 The
existing	 sys.setprofile()	 and	 sys.settrace()	 functions
still	exist,	and	have	simply	been	changed	to	use	the	new	C-level
interface.	(Contributed	by	Fred	L.	Drake,	Jr.)

Another	 low-level	 API,	 primarily	 of	 interest	 to	 implementors	 of
Python	 debuggers	 and	 development	 tools,	 was	 added.
PyInterpreterState_Head()	 and
PyInterpreterState_Next()	let	a	caller	walk	through	all	the
existing	 interpreter	 objects;
PyInterpreterState_ThreadHead()	 and
PyThreadState_Next()	 allow	 looping	 over	 all	 the	 thread
states	for	a	given	interpreter.	(Contributed	by	David	Beazley.)

The	C-level	 interface	to	the	garbage	collector	has	been	changed
to	make	 it	 easier	 to	 write	 extension	 types	 that	 support	 garbage
collection	 and	 to	 debug	 misuses	 of	 the	 functions.	 Various
functions	have	slightly	different	semantics,	so	a	bunch	of	functions

had	 to	 be	 renamed.	 Extensions	 that	 use	 the	 old	 API	 will	 still
compile	but	will	not	participate	 in	garbage	collection,	so	updating
them	for	2.2	should	be	considered	fairly	high	priority.

To	 upgrade	 an	 extension	 module	 to	 the	 new	 API,	 perform	 the
following	steps:

Rename	Py_TPFLAGS_GC()	to	PyTPFLAGS_HAVE_GC().

Use	 PyObject_GC_New()	 or	 PyObject_GC_NewVar()	 to
allocate

objects,	and	PyObject_GC_Del()	to	deallocate	them.

Rename	 PyObject_GC_Init()	 to	 PyObject_GC_Track()
and

PyObject_GC_Fini()	to	PyObject_GC_UnTrack().

Remove	PyGC_HEAD_SIZE()	from	object	size	calculations.

Remove	 calls	 to	 PyObject_AS_GC()	 and
PyObject_FROM_GC().

A	 new	 et	 format	 sequence	 was	 added	 to
PyArg_ParseTuple();	 et	 takes	 both	 a	 parameter	 and	 an
encoding	 name,	 and	 converts	 the	 parameter	 to	 the	 given
encoding	 if	 the	 parameter	 turns	 out	 to	 be	 a	 Unicode	 string,	 or
leaves	 it	alone	 if	 it’s	an	8-bit	 string,	assuming	 it	 to	already	be	 in
the	desired	encoding.	This	 differs	 from	 the	 es	 format	 character,
which	 assumes	 that	 8-bit	 strings	 are	 in	 Python’s	 default	 ASCII
encoding	 and	 converts	 them	 to	 the	 specified	 new	 encoding.
(Contributed	by	M.-A.	Lemburg,	and	used	 for	 the	MBCS	support
on	Windows	described	in	the	following	section.)

A	different	argument	parsing	 function,	PyArg_UnpackTuple(),
has	been	added	that’s	simpler	and	presumably	 faster.	 Instead	of
specifying	 a	 format	 string,	 the	 caller	 simply	 gives	 the	 minimum
and	 maximum	 number	 of	 arguments	 expected,	 and	 a	 set	 of
pointers	 to	 PyObject*	 variables	 that	 will	 be	 filled	 in	 with
argument	values.

Two	 new	 flags	 METH_NOARGS	 and	 METH_O	 are	 available	 in
method	 definition	 tables	 to	 simplify	 implementation	 of	 methods
with	 no	 arguments	 or	 a	 single	 untyped	 argument.	 Calling	 such
methods	 is	 more	 efficient	 than	 calling	 a	 corresponding	 method
that	uses	METH_VARARGS.	Also,	the	old	METH_OLDARGS	style	of
writing	C	methods	is	now	officially	deprecated.

Two	 new	 wrapper	 functions,	 PyOS_snprintf()	 and
PyOS_vsnprintf()	 were	 added	 to	 provide	 cross-platform
implementations	 for	 the	 relatively	 new	 snprintf()	 and
vsnprintf()	C	lib	APIs.	In	contrast	to	the	standard	sprintf()
and	 vsprintf()	 functions,	 the	 Python	 versions	 check	 the
bounds	 of	 the	 buffer	 used	 to	 protect	 against	 buffer	 overruns.
(Contributed	by	M.-A.	Lemburg.)

The	 _PyTuple_Resize()	 function	 has	 lost	 an	 unused
parameter,	 so	now	 it	 takes	2	parameters	 instead	of	 3.	The	 third
argument	 was	 never	 used,	 and	 can	 simply	 be	 discarded	 when
porting	code	from	earlier	versions	to	Python	2.2.

Other	Changes	and	Fixes

As	 usual	 there	 were	 a	 bunch	 of	 other	 improvements	 and	 bugfixes
scattered	 throughout	 the	 source	 tree.	 A	 search	 through	 the	 CVS
change	logs	finds	there	were	527	patches	applied	and	683	bugs	fixed
between	Python	2.1	and	2.2;	2.2.1	applied	139	patches	and	fixed	143
bugs;	2.2.2	applied	106	patches	and	fixed	82	bugs.	These	figures	are
likely	to	be	underestimates.

Some	of	the	more	notable	changes	are:

The	 code	 for	 the	 MacOS	 port	 for	 Python,	 maintained	 by	 Jack
Jansen,	 is	 now	 kept	 in	 the	 main	 Python	 CVS	 tree,	 and	 many
changes	have	been	made	to	support	MacOS	X.

The	 most	 significant	 change	 is	 the	 ability	 to	 build	 Python	 as	 a
framework,	 enabled	 by	 supplying	 the	 --enable-framework	 option
to	the	configure	script	when	compiling	Python.	According	to	Jack
Jansen,	“This	installs	a	self-	contained	Python	installation	plus	the
OS	 X	 framework	 “glue”	 into
/Library/Frameworks/Python.framework	 (or	 another
location	of	choice).	For	now	there	is	little	immediate	added	benefit
to	this	(actually,	there	is	the	disadvantage	that	you	have	to	change
your	 PATH	 to	 be	 able	 to	 find	 Python),	 but	 it	 is	 the	 basis	 for
creating	 a	 full-blown	 Python	 application,	 porting	 the	 MacPython
IDE,	possibly	using	Python	as	a	standard	OSA	scripting	language
and	much	more.”

Most	 of	 the	 MacPython	 toolbox	 modules,	 which	 interface	 to
MacOS	APIs	such	as	windowing,	QuickTime,	scripting,	etc.	have
been	 ported	 to	 OS	 X,	 but	 they’ve	 been	 left	 commented	 out	 in
setup.py.	People	who	want	 to	experiment	with	 these	modules

can	uncomment	them	manually.

Keyword	 arguments	 passed	 to	 built-in	 functions	 that	 don’t	 take
them	now	cause	a	TypeError	 exception	 to	 be	 raised,	with	 the
message	“function	takes	no	keyword	arguments”.

Weak	 references,	added	 in	Python	2.1	as	an	extension	module,
are	 now	 part	 of	 the	 core	 because	 they’re	 used	 in	 the
implementation	 of	 new-style	 classes.	 The	 ReferenceError
exception	 has	 therefore	 moved	 from	 the	 weakref	 module	 to
become	a	built-in	exception.

A	 new	 script,	 Tools/scripts/cleanfuture.py	 by	 Tim
Peters,	automatically	removes	obsolete	__future__	statements
from	Python	source	code.

An	 additional	 flags	 argument	 has	 been	 added	 to	 the	 built-in
function	 compile(),	 so	 the	 behaviour	 of	 __future__

statements	 can	 now	 be	 correctly	 observed	 in	 simulated	 shells,
such	 as	 those	 presented	 by	 IDLE	 and	 other	 development
environments.	 This	 is	 described	 in	 PEP	 264.	 (Contributed	 by
Michael	Hudson.)

The	 new	 license	 introduced	 with	 Python	 1.6	 wasn’t	 GPL-
compatible.	This	is	fixed	by	some	minor	textual	changes	to	the	2.2
license,	 so	 it’s	 now	 legal	 to	 embed	 Python	 inside	 a	 GPLed
program	again.	Note	that	Python	itself	is	not	GPLed,	but	instead	is
under	 a	 license	 that’s	 essentially	 equivalent	 to	 the	BSD	 license,
same	as	it	always	was.	The	license	changes	were	also	applied	to
the	Python	2.0.1	and	2.1.1	releases.

When	presented	with	a	Unicode	filename	on	Windows,	Python	will
now	 convert	 it	 to	 an	 MBCS	 encoded	 string,	 as	 used	 by	 the

http://www.python.org/dev/peps/pep-0264

Microsoft	 file	APIs.	 As	MBCS	 is	 explicitly	 used	 by	 the	 file	 APIs,
Python’s	choice	of	ASCII	as	the	default	encoding	turns	out	 to	be
an	 annoyance.	 On	 Unix,	 the	 locale’s	 character	 set	 is	 used	 if
locale.nl_langinfo(CODESET)	 is	 available.	 (Windows
support	was	contributed	by	Mark	Hammond	with	assistance	from
Marc-André	 Lemburg.	 Unix	 support	 was	 added	 by	 Martin	 von
Löwis.)

Large	 file	 support	 is	 now	 enabled	 on	Windows.	 (Contributed	 by
Tim	Peters.)

The	 Tools/scripts/ftpmirror.py	 script	 now	 parses	 a
.netrc	file,	if	you	have	one.	(Contributed	by	Mike	Romberg.)

Some	 features	of	 the	object	 returned	by	 the	xrange()	 function
are	now	deprecated,	and	trigger	warnings	when	they’re	accessed;
they’ll	 disappear	 in	Python	2.3.	 xrange	 objects	 tried	 to	pretend
they	 were	 full	 sequence	 types	 by	 supporting	 slicing,	 sequence
multiplication,	and	the	in	operator,	but	these	features	were	rarely
used	 and	 therefore	 buggy.	 The	 tolist()	 method	 and	 the
start,	stop,	and	step	attributes	are	also	being	deprecated.	At
the	C	level,	the	fourth	argument	to	the	PyRange_New()	function,
repeat,	has	also	been	deprecated.

There	were	a	bunch	of	patches	to	the	dictionary	 implementation,
mostly	to	fix	potential	core	dumps	if	a	dictionary	contains	objects
that	sneakily	changed	their	hash	value,	or	mutated	the	dictionary
they	were	contained	 in.	For	a	while	python-dev	 fell	 into	a	gentle
rhythm	of	Michael	Hudson	finding	a	case	that	dumped	core,	Tim
Peters	 fixing	 the	 bug,	 Michael	 finding	 another	 case,	 and	 round
and	round	it	went.

On	Windows,	Python	can	now	be	compiled	with	Borland	C	thanks
to	a	number	of	 patches	contributed	by	Stephen	Hansen,	 though
the	result	isn’t	fully	functional	yet.	(But	this	is	progress...)

Another	 Windows	 enhancement:	 Wise	 Solutions	 generously
offered	PythonLabs	use	of	their	InstallerMaster	8.1	system.	Earlier
PythonLabs	 Windows	 installers	 used	 Wise	 5.0a,	 which	 was
beginning	to	show	its	age.	(Packaged	up	by	Tim	Peters.)

Files	ending	in	.pyw	can	now	be	imported	on	Windows.	.pyw	 is
a	Windows-only	 thing,	used	 to	 indicate	 that	a	script	needs	 to	be
run	 using	 PYTHONW.EXE	 instead	 of	 PYTHON.EXE	 in	 order	 to
prevent	 a	 DOS	 console	 from	 popping	 up	 to	 display	 the	 output.
This	patch	makes	it	possible	to	import	such	scripts,	in	case	they’re
also	usable	as	modules.	(Implemented	by	David	Bolen.)

On	 platforms	 where	 Python	 uses	 the	 C	 dlopen()	 function	 to
load	extension	modules,	it’s	now	possible	to	set	the	flags	used	by
dlopen()	 using	 the	 sys.getdlopenflags()	 and
sys.setdlopenflags()	 functions.	 (Contributed	 by	 Bram
Stolk.)

The	pow()	built-in	function	no	longer	supports	3	arguments	when
floating-point	 numbers	 are	 supplied.	 pow(x,	 y,	 z)	 returns
(x**y)	%	z,	but	this	is	never	useful	for	floating	point	numbers,
and	 the	 final	 result	 varies	 unpredictably	 depending	 on	 the
platform.	A	call	such	as	pow(2.0,	8.0,	7.0)	will	now	raise	a
TypeError	exception.

Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions,	 corrections	 and	 assistance	 with	 various	 drafts	 of	 this
article:	Fred	Bremmer,	Keith	Briggs,	Andrew	Dalke,	Fred	L.	Drake,	Jr.,
Carel	 Fellinger,	 David	 Goodger,	 Mark	 Hammond,	 Stephen	 Hansen,
Michael	 Hudson,	 Jack	 Jansen,	 Marc-André	 Lemburg,	 Martin	 von
Löwis,	Fredrik	Lundh,	Michael	McLay,	Nick	Mathewson,	Paul	Moore,
Gustavo	 Niemeyer,	 Don	 O’Donnell,	 Joonas	 Paalasma,	 Tim	 Peters,
Jens	Quade,	Tom	Reinhardt,	Neil	Schemenauer,	Guido	van	Rossum,
Greg	Ward,	Edward	Welbourne.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.1
Author: A.M.	Kuchling

Introduction

This	article	explains	the	new	features	in	Python	2.1.	While	there	aren’t
as	many	 changes	 in	 2.1	 as	 there	were	 in	 Python	 2.0,	 there	 are	 still
some	pleasant	surprises	in	store.	2.1	is	the	first	release	to	be	steered
through	the	use	of	Python	Enhancement	Proposals,	or	PEPs,	so	most
of	 the	 sizable	 changes	 have	 accompanying	PEPs	 that	 provide	more
complete	documentation	and	a	design	 rationale	 for	 the	 change.	This
article	doesn’t	attempt	 to	document	 the	new	 features	completely,	but
simply	 provides	 an	 overview	 of	 the	 new	 features	 for	 Python
programmers.	 Refer	 to	 the	 Python	 2.1	 documentation,	 or	 to	 the
specific	PEP,	 for	more	details	about	any	new	 feature	 that	particularly
interests	you.

One	 recent	 goal	 of	 the	 Python	 development	 team	 has	 been	 to
accelerate	the	pace	of	new	releases,	with	a	new	release	coming	every
6	to	9	months.	2.1	is	the	first	release	to	come	out	at	this	faster	pace,
with	 the	 first	 alpha	 appearing	 in	 January,	 3	 months	 after	 the	 final
version	of	2.0	was	released.

The	final	release	of	Python	2.1	was	made	on	April	17,	2001.

PEP	227:	Nested	Scopes

The	 largest	 change	 in	 Python	 2.1	 is	 to	 Python’s	 scoping	 rules.	 In
Python	 2.0,	 at	 any	 given	 time	 there	 are	 at	 most	 three	 namespaces
used	 to	 look	 up	 variable	 names:	 local,	module-level,	 and	 the	 built-in
namespace.	This	often	surprised	people	because	it	didn’t	match	their
intuitive	 expectations.	 For	 example,	 a	 nested	 recursive	 function
definition	doesn’t	work:

def	f():

				...

				def	g(value):

								...

								return	g(value-1)	+	1

				...

The	function	g()	will	always	raise	a	NameError	exception,	because
the	binding	of	the	name	g	 isn’t	 in	either	its	local	namespace	or	in	the
module-level	 namespace.	 This	 isn’t	 much	 of	 a	 problem	 in	 practice
(how	often	do	you	 recursively	define	 interior	 functions	 like	 this?),	but
this	also	made	using	the	lambda	statement	clumsier,	and	this	was	a
problem	 in	 practice.	 In	 code	which	 uses	 lambda	 you	 can	 often	 find
local	variables	being	copied	by	passing	them	as	the	default	values	of
arguments.

def	find(self,	name):

				"Return	list	of	any	entries	equal	to	'name'"

				L	=	filter(lambda	x,	name=name:	x	==	name,

															self.list_attribute)

				return	L

The	 readability	 of	 Python	 code	 written	 in	 a	 strongly	 functional	 style

suffers	greatly	as	a	result.

The	most	 significant	 change	 to	Python	2.1	 is	 that	 static	 scoping	has
been	added	 to	 the	 language	 to	 fix	 this	problem.	As	a	 first	effect,	 the
name=name	 default	 argument	 is	 now	 unnecessary	 in	 the	 above
example.	Put	 simply,	when	 a	 given	 variable	 name	 is	 not	 assigned	 a
value	 within	 a	 function	 (by	 an	 assignment,	 or	 the	 def,	 class,	 or
import	 statements),	 references	 to	 the	 variable	will	 be	 looked	 up	 in
the	 local	 namespace	 of	 the	 enclosing	 scope.	 A	 more	 detailed
explanation	of	 the	 rules,	and	a	dissection	of	 the	 implementation,	can
be	found	in	the	PEP.

This	change	may	cause	some	compatibility	problems	for	code	where
the	 same	 variable	 name	 is	 used	 both	 at	 the	module	 level	 and	 as	 a
local	variable	within	a	function	that	contains	further	function	definitions.
This	seems	rather	unlikely	though,	since	such	code	would	have	been
pretty	confusing	to	read	in	the	first	place.

One	side	effect	of	 the	change	 is	 that	 the	from	module	import	*
and	exec	statements	have	been	made	illegal	inside	a	function	scope
under	 certain	 conditions.	 The	 Python	 reference	 manual	 has	 said	 all
along	that	from	module	import	*	is	only	legal	at	the	top	level	of	a
module,	 but	 the	CPython	 interpreter	 has	 never	 enforced	 this	 before.
As	 part	 of	 the	 implementation	 of	 nested	 scopes,	 the	 compiler	 which
turns	Python	source	 into	bytecodes	has	 to	generate	different	code	 to
access	 variables	 in	 a	 containing	 scope.	 from	module	import	 *
and	 exec	 make	 it	 impossible	 for	 the	 compiler	 to	 figure	 this	 out,
because	they	add	names	to	the	local	namespace	that	are	unknowable
at	compile	time.	Therefore,	if	a	function	contains	function	definitions	or
lambda	expressions	with	free	variables,	the	compiler	will	 flag	this	by
raising	a	SyntaxError	exception.

To	make	the	preceding	explanation	a	bit	clearer,	here’s	an	example:

x	=	1

def	f():

				#	The	next	line	is	a	syntax	error

				exec	'x=2'

				def	g():

								return	x

Line	4	 containing	 the	 exec	 statement	 is	 a	 syntax	 error,	 since	 exec
would	 define	 a	 new	 local	 variable	 named	 x	 whose	 value	 should	 be
accessed	by	g().

This	 shouldn’t	 be	much	 of	 a	 limitation,	 since	 exec	 is	 rarely	 used	 in
most	 Python	 code	 (and	 when	 it	 is	 used,	 it’s	 often	 a	 sign	 of	 a	 poor
design	anyway).

Compatibility	 concerns	 have	 led	 to	 nested	 scopes	 being	 introduced
gradually;	 in	 Python	 2.1,	 they	 aren’t	 enabled	 by	 default,	 but	 can	 be
turned	on	within	a	module	by	using	a	future	statement	as	described	in
PEP	 236.	 (See	 the	 following	 section	 for	 further	 discussion	 of	 PEP
236.)	In	Python	2.2,	nested	scopes	will	become	the	default	and	there
will	 be	 no	 way	 to	 turn	 them	 off,	 but	 users	 will	 have	 had	 all	 of	 2.1’s
lifetime	to	fix	any	breakage	resulting	from	their	introduction.

See	also:

PEP	227	-	Statically	Nested	Scopes
Written	and	implemented	by	Jeremy	Hylton.

http://www.python.org/dev/peps/pep-0227

PEP	236:	__future__	Directives

The	 reaction	 to	 nested	 scopes	 was	 widespread	 concern	 about	 the
dangers	 of	 breaking	 code	 with	 the	 2.1	 release,	 and	 it	 was	 strong
enough	 to	make	 the	Pythoneers	 take	a	more	conservative	approach.
This	 approach	 consists	 of	 introducing	 a	 convention	 for	 enabling
optional	 functionality	 in	 release	 N	 that	 will	 become	 compulsory	 in
release	N+1.

The	 syntax	 uses	 a	 from...import	 statement	 using	 the	 reserved
module	 name	 __future__.	Nested	 scopes	 can	 be	 enabled	 by	 the
following	statement:

from	__future__	import	nested_scopes

While	it	looks	like	a	normal	import	statement,	it’s	not;	there	are	strict
rules	on	where	such	a	future	statement	can	be	put.	They	can	only	be
at	the	top	of	a	module,	and	must	precede	any	Python	code	or	regular
import	statements.	This	is	because	such	statements	can	affect	how
the	Python	bytecode	compiler	 parses	 code	and	generates	bytecode,
so	they	must	precede	any	statement	that	will	result	in	bytecodes	being
produced.

See	also:

PEP	236	-	Back	to	the	__future__
Written	 by	 Tim	 Peters,	 and	 primarily	 implemented	 by	 Jeremy
Hylton.

http://www.python.org/dev/peps/pep-0236

PEP	207:	Rich	Comparisons

In	earlier	versions,	Python’s	support	for	implementing	comparisons	on
user-	defined	classes	and	extension	types	was	quite	simple.	Classes
could	implement	a	__cmp__()	method	that	was	given	two	instances
of	a	class,	and	could	only	return	0	if	they	were	equal	or	+1	or	-1	if	they
weren’t;	 the	 method	 couldn’t	 raise	 an	 exception	 or	 return	 anything
other	than	a	Boolean	value.	Users	of	Numeric	Python	often	found	this
model	 too	 weak	 and	 restrictive,	 because	 in	 the	 number-crunching
programs	that	numeric	Python	 is	used	for,	 it	would	be	more	useful	 to
be	 able	 to	 perform	 elementwise	 comparisons	 of	 two	 matrices,
returning	 a	 matrix	 containing	 the	 results	 of	 a	 given	 comparison	 for
each	 element.	 If	 the	 two	 matrices	 are	 of	 different	 sizes,	 then	 the
compare	has	to	be	able	to	raise	an	exception	to	signal	the	error.

In	Python	2.1,	 rich	 comparisons	were	added	 in	 order	 to	 support	 this
need.	Python	classes	can	now	individually	overload	each	of	the	<,	<=,
>,	>=,	==,	and	!=	operations.	The	new	magic	method	names	are:

Operation Method	name

< __lt__()

<= __le__()

> __gt__()

>= __ge__()

== __eq__()

!= __ne__()

(The	 magic	 methods	 are	 named	 after	 the	 corresponding	 Fortran
operators	.LT..	.LE.,	&c.	Numeric	programmers	are	almost	certainly

quite	familiar	with	these	names	and	will	find	them	easy	to	remember.)

Each	of	these	magic	methods	is	of	the	form	method(self,	other),
where	 self	will	 be	 the	 object	 on	 the	 left-hand	 side	 of	 the	 operator,
while	 other	will	 be	 the	 object	 on	 the	 right-hand	 side.	 For	 example,
the	expression	A	<	B	will	cause	A.__lt__(B)	to	be	called.

Each	of	these	magic	methods	can	return	anything	at	all:	a	Boolean,	a
matrix,	a	 list,	or	any	other	Python	object.	Alternatively	 they	can	 raise
an	 exception	 if	 the	 comparison	 is	 impossible,	 inconsistent,	 or
otherwise	meaningless.

The	 built-in	 cmp(A,B)	 function	 can	 use	 the	 rich	 comparison
machinery,	 and	 now	 accepts	 an	 optional	 argument	 specifying	 which
comparison	operation	to	use;	this	is	given	as	one	of	the	strings	"<",	"
<=",	">",	">=",	 "==",	 or	 "!=".	 If	 called	without	 the	 optional	 third
argument,	cmp()	will	only	return	-1,	0,	or	+1	as	in	previous	versions	of
Python;	 otherwise	 it	 will	 call	 the	 appropriate	method	 and	 can	 return
any	Python	object.

There	are	also	corresponding	changes	of	 interest	 to	C	programmers;
there’s	 a	 new	 slot	 tp_richcmp	 in	 type	 objects	 and	 an	 API	 for
performing	a	given	rich	comparison.	I	won’t	cover	the	C	API	here,	but
will	refer	you	to	PEP	207,	or	to	2.1’s	C	API	documentation,	for	the	full
list	of	related	functions.

See	also:

PEP	207	-	Rich	Comparisions
Written	by	Guido	van	Rossum,	heavily	based	on	earlier	work	by
David	Ascher,	and	implemented	by	Guido	van	Rossum.

http://www.python.org/dev/peps/pep-0207

PEP	230:	Warning	Framework

Over	 its	 10	 years	 of	 existence,	 Python	 has	 accumulated	 a	 certain
number	of	obsolete	modules	and	features	along	the	way.	It’s	difficult	to
know	 when	 a	 feature	 is	 safe	 to	 remove,	 since	 there’s	 no	 way	 of
knowing	how	much	code	uses	 it	—	perhaps	no	programs	depend	on
the	feature,	or	perhaps	many	do.	To	enable	removing	old	features	in	a
more	 structured	 way,	 a	 warning	 framework	 was	 added.	 When	 the
Python	 developers	 want	 to	 get	 rid	 of	 a	 feature,	 it	 will	 first	 trigger	 a
warning	 in	 the	 next	 version	 of	 Python.	 The	 following	Python	 version
can	then	drop	the	feature,	and	users	will	have	had	a	full	release	cycle
to	remove	uses	of	the	old	feature.

Python	2.1	adds	the	warning	framework	to	be	used	in	this	scheme.	It
adds	 a	 warnings	 module	 that	 provide	 functions	 to	 issue	 warnings,
and	 to	 filter	out	warnings	 that	 you	don’t	want	 to	be	displayed.	Third-
party	modules	can	also	use	this	 framework	 to	deprecate	old	 features
that	they	no	longer	wish	to	support.

For	 example,	 in	 Python	 2.1	 the	 regex	 module	 is	 deprecated,	 so
importing	it	causes	a	warning	to	be	printed:

>>>	import	regex

__main__:1:	DeprecationWarning:	the	regex	module

									is	deprecated;	please	use	the	re	module

>>>

Warnings	can	be	issued	by	calling	the	warnings.warn()	function:

warnings.warn("feature	X	no	longer	supported")

The	 first	 parameter	 is	 the	 warning	 message;	 an	 additional	 optional

parameters	can	be	used	to	specify	a	particular	warning	category.

Filters	can	be	added	to	disable	certain	warnings;	a	regular	expression
pattern	can	be	applied	to	the	message	or	to	the	module	name	in	order
to	 suppress	 a	warning.	 For	 example,	 you	may	 have	 a	 program	 that
uses	the	regex	module	and	not	want	to	spare	the	time	to	convert	it	to
use	 the	 re	 module	 right	 now.	 The	 warning	 can	 be	 suppressed	 by
calling

import	warnings

warnings.filterwarnings(action	=	'ignore',

																								message='.*regex	module	is	deprecated'

																								category=DeprecationWarning,

																								module	=	'__main__')

This	 adds	 a	 filter	 that	 will	 apply	 only	 to	 warnings	 of	 the	 class
DeprecationWarning	 triggered	 in	 the	 __main__	 module,	 and
applies	 a	 regular	 expression	 to	 only	 match	 the	 message	 about	 the
regex	module	being	deprecated,	and	will	cause	such	warnings	to	be
ignored.	Warnings	 can	 also	 be	 printed	 only	 once,	 printed	 every	 time
the	 offending	 code	 is	 executed,	 or	 turned	 into	 exceptions	 that	 will
cause	 the	 program	 to	 stop	 (unless	 the	 exceptions	 are	 caught	 in	 the
usual	way,	of	course).

Functions	 were	 also	 added	 to	 Python’s	 C	 API	 for	 issuing	 warnings;
refer	to	PEP	230	or	to	Python’s	API	documentation	for	the	details.

See	also:

PEP	5	-	Guidelines	for	Language	Evolution
Written	 by	 Paul	 Prescod,	 to	 specify	 procedures	 to	 be	 followed
when	removing	old	features	from	Python.	The	policy	described	in
this	 PEP	 hasn’t	 been	 officially	 adopted,	 but	 the	 eventual	 policy

http://www.python.org/dev/peps/pep-0005

probably	won’t	be	too	different	from	Prescod’s	proposal.

PEP	230	-	Warning	Framework
Written	and	implemented	by	Guido	van	Rossum.

http://www.python.org/dev/peps/pep-0230

PEP	229:	New	Build	System

When	 compiling	 Python,	 the	 user	 had	 to	 go	 in	 and	 edit	 the
Modules/Setup	 file	 in	 order	 to	 enable	 various	 additional	 modules;
the	default	set	 is	 relatively	small	and	 limited	 to	modules	 that	compile
on	most	Unix	platforms.	This	means	that	on	Unix	platforms	with	many
more	 features,	 most	 notably	 Linux,	 Python	 installations	 often	 don’t
contain	all	useful	modules	they	could.

Python	 2.0	 added	 the	Distutils,	 a	 set	 of	modules	 for	 distributing	 and
installing	extensions.	 In	Python	2.1,	 the	Distutils	are	used	 to	compile
much	 of	 the	 standard	 library	 of	 extension	 modules,	 autodetecting
which	ones	are	supported	on	the	current	machine.	It’s	hoped	that	this
will	make	Python	installations	easier	and	more	featureful.

Instead	of	having	 to	edit	 the	Modules/Setup	 file	 in	order	 to	enable
modules,	a	setup.py	script	in	the	top	directory	of	the	Python	source
distribution	 is	 run	 at	 build	 time,	 and	 attempts	 to	 discover	 which
modules	can	be	enabled	by	examining	 the	modules	and	header	 files
on	 the	 system.	 If	 a	 module	 is	 configured	 in	 Modules/Setup,	 the
setup.py	script	won’t	attempt	 to	compile	 that	module	and	will	defer
to	the	Modules/Setup	file’s	contents.	This	provides	a	way	to	specific
any	 strange	 command-line	 flags	 or	 libraries	 that	 are	 required	 for	 a
specific	platform.

In	 another	 far-reaching	 change	 to	 the	 build	 mechanism,	 Neil
Schemenauer	 restructured	 things	 so	 Python	 now	 uses	 a	 single
makefile	 that	 isn’t	 recursive,	 instead	of	makefiles	 in	 the	 top	directory
and	 in	each	of	 the	Python/,	Parser/,	Objects/,	 and	 Modules/
subdirectories.	 This	 makes	 building	 Python	 faster	 and	 also	 makes
hacking	the	Makefiles	clearer	and	simpler.

See	also:

PEP	229	-	Using	Distutils	to	Build	Python
Written	and	implemented	by	A.M.	Kuchling.

http://www.python.org/dev/peps/pep-0229

PEP	205:	Weak	References

Weak	references,	available	through	the	weakref	module,	are	a	minor
but	useful	new	data	type	in	the	Python	programmer’s	toolbox.

Storing	a	reference	to	an	object	(say,	in	a	dictionary	or	a	list)	has	the
side	effect	of	keeping	that	object	alive	forever.	There	are	a	few	specific
cases	 where	 this	 behaviour	 is	 undesirable,	 object	 caches	 being	 the
most	 common	 one,	 and	 another	 being	 circular	 references	 in	 data
structures	such	as	trees.

For	example,	consider	a	memoizing	function	that	caches	the	results	of
another	function	f(x)	by	storing	the	function’s	argument	and	its	result
in	a	dictionary:

_cache	=	{}

def	memoize(x):

				if	_cache.has_key(x):

								return	_cache[x]

				retval	=	f(x)

				#	Cache	the	returned	object

				_cache[x]	=	retval

				return	retval

This	version	works	for	simple	things	such	as	integers,	but	it	has	a	side
effect;	 the	_cache	 dictionary	holds	a	 reference	 to	 the	 return	values,
so	 they’ll	 never	 be	 deallocated	 until	 the	 Python	 process	 exits	 and
cleans	up	This	isn’t	very	noticeable	for	integers,	but	if	f()	returns	an
object,	or	a	data	structure	that	takes	up	a	lot	of	memory,	this	can	be	a
problem.

Weak	references	provide	a	way	to	implement	a	cache	that	won’t	keep
objects	alive	beyond	their	time.	If	an	object	is	only	accessible	through
weak	 references,	 the	 object	 will	 be	 deallocated	 and	 the	 weak
references	 will	 now	 indicate	 that	 the	 object	 it	 referred	 to	 no	 longer
exists.	A	weak	 reference	 to	an	object	obj	 is	 created	by	calling	wr	=
weakref.ref(obj).	 The	 object	 being	 referred	 to	 is	 returned	 by
calling	the	weak	reference	as	if	 it	were	a	function:	wr().	It	will	return
the	referenced	object,	or	None	if	the	object	no	longer	exists.

This	makes	 it	 possible	 to	write	 a	 memoize()	 function	whose	 cache
doesn’t	keep	objects	alive,	by	storing	weak	references	in	the	cache.

_cache	=	{}

def	memoize(x):

				if	_cache.has_key(x):

								obj	=	_cache[x]()

								#	If	weak	reference	object	still	exists,

								#	return	it

								if	obj	is	not	None:	return	obj

				retval	=	f(x)

				#	Cache	a	weak	reference

				_cache[x]	=	weakref.ref(retval)

				return	retval

The	 weakref	 module	 also	 allows	 creating	 proxy	 objects	 which
behave	 like	 weak	 references	—	 an	 object	 referenced	 only	 by	 proxy
objects	 is	 deallocated	 –	 but	 instead	 of	 requiring	 an	 explicit	 call	 to
retrieve	 the	object,	 the	proxy	 transparently	 forwards	all	 operations	 to
the	object	as	long	as	the	object	still	exists.	If	the	object	is	deallocated,
attempting	 to	use	a	proxy	will	 cause	a	 weakref.ReferenceError
exception	to	be	raised.

proxy	=	weakref.proxy(obj)

proxy.attr			#	Equivalent	to	obj.attr

proxy.meth()	#	Equivalent	to	obj.meth()

del	obj

proxy.attr			#	raises	weakref.ReferenceError

See	also:

PEP	205	-	Weak	References
Written	and	implemented	by	Fred	L.	Drake,	Jr.

http://www.python.org/dev/peps/pep-0205

PEP	232:	Function	Attributes

In	Python	2.1,	functions	can	now	have	arbitrary	information	attached	to
them.	 People	 were	 often	 using	 docstrings	 to	 hold	 information	 about
functions	and	methods,	because	the	__doc__	attribute	was	 the	only
way	 of	 attaching	 any	 information	 to	 a	 function.	 For	 example,	 in	 the
Zope	Web	application	server,	 functions	are	marked	as	safe	for	public
access	by	having	a	docstring,	 and	 in	 John	Aycock’s	SPARK	parsing
framework,	 docstrings	hold	 parts	 of	 the	BNF	grammar	 to	 be	parsed.
This	overloading	is	unfortunate,	since	docstrings	are	really	intended	to
hold	 a	 function’s	 documentation;	 for	 example,	 it	 means	 you	 can’t
properly	document	functions	intended	for	private	use	in	Zope.

Arbitrary	attributes	can	now	be	set	and	retrieved	on	functions	using	the
regular	Python	syntax:

def	f():	pass

f.publish	=	1

f.secure	=	1

f.grammar	=	"A	::=	B	(C	D)*"

The	dictionary	containing	attributes	can	be	accessed	as	the	function’s
__dict__.	 Unlike	 the	 __dict__	 attribute	 of	 class	 instances,	 in
functions	 you	 can	 actually	 assign	 a	 new	 dictionary	 to	 __dict__,
though	the	new	value	is	restricted	to	a	regular	Python	dictionary;	you
can’t	be	tricky	and	set	it	to	a	UserDict	instance,	or	any	other	random
object	that	behaves	like	a	mapping.

See	also:

PEP	232	-	Function	Attributes

http://www.python.org/dev/peps/pep-0232

Written	and	implemented	by	Barry	Warsaw.

PEP	235:	Importing	Modules	on	Case-
Insensitive	Platforms

Some	 operating	 systems	 have	 filesystems	 that	 are	 case-insensitive,
MacOS	and	Windows	being	the	primary	examples;	on	these	systems,
it’s	 impossible	 to	 distinguish	 the	 filenames	 FILE.PY	 and	 file.py,
even	though	they	do	store	 the	file’s	name	in	 its	original	case	(they’re
case-preserving,	too).

In	 Python	 2.1,	 the	 import	 statement	 will	 work	 to	 simulate	 case-
sensitivity	 on	 case-insensitive	 platforms.	 Python	 will	 now	 search	 for
the	 first	 case-sensitive	match	by	default,	 raising	an	ImportError	 if
no	 such	 file	 is	 found,	 so	 import	 file	 will	 not	 import	 a	 module
named	 FILE.PY.	 Case-	 insensitive	 matching	 can	 be	 requested	 by
setting	 the	 PYTHONCASEOK	 environment	 variable	 before	 starting	 the
Python	interpreter.

PEP	217:	Interactive	Display	Hook

When	 using	 the	 Python	 interpreter	 interactively,	 the	 output	 of
commands	is	displayed	using	the	built-in	repr()	function.	In	Python
2.1,	the	variable	sys.displayhook()	can	be	set	to	a	callable	object
which	will	be	called	instead	of	repr().	For	example,	you	can	set	it	to
a	special	pretty-	printing	function:

>>>	#	Create	a	recursive	data	structure

...	L	=	[1,2,3]

>>>	L.append(L)

>>>	L	#	Show	Python's	default	output

[1,	2,	3,	[...]]

>>>	#	Use	pprint.pprint()	as	the	display	function

...	import	sys,	pprint

>>>	sys.displayhook	=	pprint.pprint

>>>	L

[1,	2,	3,		<Recursion	on	list	with	id=135143996>]

>>>

See	also:

PEP	217	-	Display	Hook	for	Interactive	Use
Written	and	implemented	by	Moshe	Zadka.

http://www.python.org/dev/peps/pep-0217

PEP	208:	New	Coercion	Model

How	 numeric	 coercion	 is	 done	 at	 the	 C	 level	 was	 significantly
modified.	This	will	 only	affect	 the	authors	of	C	extensions	 to	Python,
allowing	 them	more	 flexibility	 in	 writing	 extension	 types	 that	 support
numeric	operations.

Extension	 types	 can	 now	 set	 the	 type	 flag
Py_TPFLAGS_CHECKTYPES	 in	 their	 PyTypeObject	 structure	 to
indicate	that	 they	support	 the	new	coercion	model.	 In	such	extension
types,	the	numeric	slot	functions	can	no	longer	assume	that	they’ll	be
passed	two	arguments	of	the	same	type;	instead	they	may	be	passed
two	 arguments	 of	 differing	 types,	 and	 can	 then	 perform	 their	 own
internal	coercion.	If	the	slot	function	is	passed	a	type	it	can’t	handle,	it
can	 indicate	 the	 failure	 by	 returning	 a	 reference	 to	 the
Py_NotImplemented	 singleton	value.	The	numeric	 functions	of	 the
other	 type	 will	 then	 be	 tried,	 and	 perhaps	 they	 can	 handle	 the
operation;	if	the	other	type	also	returns	Py_NotImplemented,	then	a
TypeError	 will	 be	 raised.	 Numeric	 methods	 written	 in	 Python	 can
also	return	Py_NotImplemented,	causing	the	interpreter	to	act	as	if
the	 method	 did	 not	 exist	 (perhaps	 raising	 a	 TypeError,	 perhaps
trying	another	object’s	numeric	methods).

See	also:

PEP	208	-	Reworking	the	Coercion	Model
Written	 and	 implemented	 by	 Neil	 Schemenauer,	 heavily	 based
upon	 earlier	 work	 by	 Marc-André	 Lemburg.	 Read	 this	 to
understand	the	fine	points	of	how	numeric	operations	will	now	be
processed	at	the	C	level.

http://www.python.org/dev/peps/pep-0208

PEP	241:	Metadata	in	Python	Packages

A	 common	 complaint	 from	 Python	 users	 is	 that	 there’s	 no	 single
catalog	of	all	the	Python	modules	in	existence.	T.	Middleton’s	Vaults	of
Parnassus	at	http://www.vex.net/parnassus/	are	the	largest	catalog	of
Python	modules,	but	registering	software	at	the	Vaults	is	optional,	and
many	people	don’t	bother.

As	 a	 first	 small	 step	 toward	 fixing	 the	 problem,	 Python	 software
packaged	using	the	Distutils	sdist	command	will	 include	a	file	named
PKG-INFO	 containing	 information	 about	 the	 package	 such	 as	 its
name,	 version,	 and	 author	 (metadata,	 in	 cataloguing	 terminology).
PEP	241	contains	the	full	list	of	fields	that	can	be	present	in	the	PKG-
INFO	 file.	 As	 people	 began	 to	 package	 their	 software	 using	 Python
2.1,	 more	 and	 more	 packages	 will	 include	 metadata,	 making	 it
possible	to	build	automated	cataloguing	systems	and	experiment	with
them.	With	the	result	experience,	perhaps	it’ll	be	possible	to	design	a
really	good	catalog	and	 then	build	support	 for	 it	 into	Python	2.2.	For
example,	 the	Distutils	sdist	 and	bdist_*	 commands	 could	 support	 a
upload	 option	 that	 would	 automatically	 upload	 your	 package	 to	 a
catalog	server.

You	can	start	creating	packages	containing	PKG-INFO	even	 if	you’re
not	using	Python	2.1,	since	a	new	release	of	the	Distutils	will	be	made
for	 users	 of	 earlier	 Python	 versions.	 Version	 1.0.2	 of	 the	 Distutils
includes	 the	 changes	 described	 in	 PEP	 241,	 as	 well	 as	 various
bugfixes	and	enhancements.	It	will	be	available	from	the	Distutils	SIG
at	http://www.python.org/sigs/distutils-sig/.

See	also:

PEP	241	-	Metadata	for	Python	Software	Packages

http://www.vex.net/parnassus/
http://www.python.org/sigs/distutils-sig/
http://www.python.org/dev/peps/pep-0241

Written	and	implemented	by	A.M.	Kuchling.

PEP	243	-	Module	Repository	Upload	Mechanism
Written	 by	 Sean	 Reifschneider,	 this	 draft	 PEP	 describes	 a
proposed	mechanism	for	uploading	Python	packages	to	a	central
server.

http://www.python.org/dev/peps/pep-0243

New	and	Improved	Modules

Ka-Ping	 Yee	 contributed	 two	 new	 modules:	 inspect.py,	 a
module	 for	 getting	 information	 about	 live	 Python	 code,	 and
pydoc.py,	 a	 module	 for	 interactively	 converting	 docstrings	 to
HTML	 or	 text.	 As	 a	 bonus,	 Tools/scripts/pydoc,	 which	 is
now	 automatically	 installed,	 uses	 pydoc.py	 to	 display
documentation	given	a	Python	module,	package,	or	class	name.
For	example,	pydoc	xml.dom	displays	the	following:

Python	Library	Documentation:	package	xml.dom	in	

NAME

				xml.dom	-	W3C	Document	Object	Model	implementation

FILE

				/usr/local/lib/python2.1/xml/dom/__init__.pyc

DESCRIPTION

				The	Python	mapping	of	the	Document	Object	Model

				Python	Library	Reference	in	the	section	on	the

				This	package	contains	the	following	modules:

						...

pydoc	also	includes	a	Tk-based	interactive	help	browser.	pydoc
quickly	becomes	addictive;	try	it	out!

Two	different	modules	for	unit	testing	were	added	to	the	standard
library.	The	doctest	module,	contributed	by	Tim	Peters,	provides
a	 testing	 framework	 based	 on	 running	 embedded	 examples	 in
docstrings	and	comparing	the	results	against	the	expected	output.

PyUnit,	 contributed	by	Steve	Purcell,	 is	a	unit	 testing	 framework
inspired	by	JUnit,	which	was	in	turn	an	adaptation	of	Kent	Beck’s
Smalltalk	testing	framework.	See	http://pyunit.sourceforge.net/	 for
more	information	about	PyUnit.

The	 difflib	 module	 contains	 a	 class,	 SequenceMatcher,
which	 compares	 two	 sequences	 and	 computes	 the	 changes
required	 to	 transform	one	sequence	 into	 the	other.	For	example,
this	module	 can	 be	 used	 to	 write	 a	 tool	 similar	 to	 the	 Unix	diff
program,	 and	 in	 fact	 the	 sample	 program
Tools/scripts/ndiff.py	 demonstrates	how	 to	write	 such	a
script.

curses.panel,	a	wrapper	 for	 the	panel	 library,	part	of	ncurses
and	of	SYSV	curses,	was	contributed	by	Thomas	Gellekum.	The
panel	 library	 provides	 windows	 with	 the	 additional	 feature	 of
depth.	 Windows	 can	 be	 moved	 higher	 or	 lower	 in	 the	 depth
ordering,	 and	 the	 panel	 library	 figures	 out	where	 panels	 overlap
and	which	sections	are	visible.

The	 PyXML	 package	 has	 gone	 through	 a	 few	 releases	 since
Python	 2.0,	 and	 Python	 2.1	 includes	 an	 updated	 version	 of	 the
xml	package.	Some	of	 the	 noteworthy	 changes	 include	 support
for	 Expat	 1.2	 and	 later	 versions,	 the	 ability	 for	 Expat	 parsers	 to
handle	 files	 in	 any	 encoding	 supported	 by	 Python,	 and	 various
bugfixes	for	SAX,	DOM,	and	the	minidom	module.

Ping	 also	 contributed	 another	 hook	 for	 handling	 uncaught
exceptions.	sys.excepthook()	can	be	set	to	a	callable	object.
When	an	exception	isn’t	caught	by	any	try...except	blocks,	the
exception	will	be	passed	to	sys.excepthook(),	which	can	then
do	 whatever	 it	 likes.	 At	 the	 Ninth	 Python	 Conference,	 Ping

http://pyunit.sourceforge.net/

demonstrated	 an	 application	 for	 this	 hook:	 printing	 an	 extended
traceback	 that	 not	 only	 lists	 the	 stack	 frames,	 but	 also	 lists	 the
function	arguments	and	the	local	variables	for	each	frame.

Various	functions	 in	 the	time	module,	such	as	asctime()	and
localtime(),	 require	 a	 floating	 point	 argument	 containing	 the
time	in	seconds	since	the	epoch.	The	most	common	use	of	these
functions	 is	 to	 work	 with	 the	 current	 time,	 so	 the	 floating	 point
argument	 has	been	made	optional;	when	a	 value	 isn’t	 provided,
the	current	time	will	be	used.	For	example,	log	file	entries	usually
need	 a	 string	 containing	 the	 current	 time;	 in	 Python	 2.1,
time.asctime()	 can	 be	 used,	 instead	 of	 the	 lengthier
time.asctime(time.localtime(time.time()))	 that	 was
previously	required.

This	 change	 was	 proposed	 and	 implemented	 by	 Thomas
Wouters.

The	 ftplib	 module	 now	 defaults	 to	 retrieving	 files	 in	 passive
mode,	because	passive	mode	is	more	likely	to	work	from	behind	a
firewall.	This	request	came	from	the	Debian	bug	tracking	system,
since	 other	 Debian	 packages	 use	 ftplib	 to	 retrieve	 files	 and
then	 don’t	work	 from	behind	 a	 firewall.	 It’s	 deemed	 unlikely	 that
this	will	cause	problems	for	anyone,	because	Netscape	defaults	to
passive	mode	 and	 few	 people	 complain,	 but	 if	 passive	mode	 is
unsuitable	 for	 your	 application	 or	 network	 setup,	 call
set_pasv(0)	on	FTP	objects	to	disable	passive	mode.

Support	 for	 raw	 socket	 access	 has	 been	 added	 to	 the	 socket
module,	contributed	by	Grant	Edwards.

The	pstats	module	now	contains	a	simple	 interactive	statistics

browser	 for	 displaying	 timing	 profiles	 for	 Python	 programs,
invoked	when	the	module	is	run	as	a	script.	Contributed	by	Eric	S.
Raymond.

A	 new	 implementation-dependent	 function,
sys._getframe([depth]),	has	been	added	 to	 return	a	given
frame	 object	 from	 the	 current	 call	 stack.	 sys._getframe()
returns	the	frame	at	the	top	of	the	call	stack;	if	the	optional	integer
argument	depth	 is	supplied,	the	function	returns	the	frame	that	is
depth	 calls	 below	 the	 top	 of	 the	 stack.	 For	 example,
sys._getframe(1)	returns	the	caller’s	frame	object.

This	function	is	only	present	in	CPython,	not	in	Jython	or	the	.NET
implementation.	Use	it	for	debugging,	and	resist	the	temptation	to
put	it	into	production	code.

Other	Changes	and	Fixes

There	were	relatively	few	smaller	changes	made	in	Python	2.1	due	to
the	shorter	release	cycle.	A	search	through	the	CVS	change	logs	turns
up	117	patches	applied,	and	136	bugs	fixed;	both	figures	are	likely	to
be	underestimates.	Some	of	the	more	notable	changes	are:

A	 specialized	 object	 allocator	 is	 now	 optionally	 available,	 that
should	 be	 faster	 than	 the	 system	 malloc()	 and	 have	 less
memory	overhead.	The	allocator	uses	C’s	malloc()	 function	to
get	 large	 pools	 of	 memory,	 and	 then	 fulfills	 smaller	 memory
requests	 from	 these	pools.	 It	 can	be	enabled	by	providing	 the	 --
with-pymalloc	 option	 to	 the	 configure	 script;	 see
Objects/obmalloc.c	for	the	implementation	details.

Authors	 of	 C	 extension	modules	 should	 test	 their	 code	with	 the
object	 allocator	 enabled,	 because	 some	 incorrect	 code	 may
break,	 causing	 core	 dumps	 at	 runtime.	 There	 are	 a	 bunch	 of
memory	 allocation	 functions	 in	 Python’s	 C	 API	 that	 have
previously	 been	 just	 aliases	 for	 the	 C	 library’s	 malloc()	 and
free(),	 meaning	 that	 if	 you	 accidentally	 called	 mismatched
functions,	 the	 error	 wouldn’t	 be	 noticeable.	 When	 the	 object
allocator	 is	enabled,	 these	 functions	aren’t	aliases	of	malloc()
and	 free()	 any	 more,	 and	 calling	 the	 wrong	 function	 to	 free
memory	will	 get	 you	a	 core	dump.	For	 example,	 if	memory	was
allocated	 using	 PyMem_New(),	 it	 has	 to	 be	 freed	 using
PyMem_Del(),	not	free().	A	few	modules	included	with	Python
fell	 afoul	 of	 this	 and	 had	 to	 be	 fixed;	 doubtless	 there	 are	 more
third-party	modules	that	will	have	the	same	problem.

The	object	allocator	was	contributed	by	Vladimir	Marangozov.

The	 speed	 of	 line-oriented	 file	 I/O	 has	 been	 improved	 because
people	 often	 complain	 about	 its	 lack	 of	 speed,	 and	 because	 it’s
often	 been	 used	 as	 a	 naïve	 benchmark.	 The	 readline()
method	 of	 file	 objects	 has	 therefore	 been	 rewritten	 to	 be	 much
faster.	The	exact	amount	of	the	speedup	will	vary	from	platform	to
platform	depending	on	how	slow	the	C	library’s	getc()	was,	but
is	 around	 66%,	 and	 potentially	 much	 faster	 on	 some	 particular
operating	systems.	Tim	Peters	did	much	of	the	benchmarking	and
coding	 for	 this	 change,	 motivated	 by	 a	 discussion	 in
comp.lang.python.

A	 new	 module	 and	 method	 for	 file	 objects	 was	 also	 added,
contributed	 by	 Jeff	 Epler.	 The	 new	method,	 xreadlines(),	 is
similar	to	the	existing	xrange()	built-in.	xreadlines()	returns
an	opaque	sequence	object	that	only	supports	being	iterated	over,
reading	a	line	on	every	iteration	but	not	reading	the	entire	file	into
memory	as	the	existing	readlines()	method	does.	You’d	use	it
like	this:

for	line	in	sys.stdin.xreadlines():

				#	...	do	something	for	each	line	...

				...

For	a	fuller	discussion	of	the	line	I/O	changes,	see	the	python-dev
summary	 for	 January	 1-15,	 2001	 at
http://www.python.org/dev/summary/2001-01-1/.

A	new	method,	popitem(),	was	added	to	dictionaries	to	enable
destructively	iterating	through	the	contents	of	a	dictionary;	this	can
be	 faster	 for	 large	 dictionaries	 because	 there’s	 no	 need	 to
construct	a	 list	 containing	all	 the	 keys	or	 values.	 D.popitem()
removes	a	random	(key,	value)	pair	from	the	dictionary	D	and

http://www.python.org/dev/summary/2001-01-1/

returns	 it	 as	 a	 2-tuple.	 This	 was	 implemented	 mostly	 by	 Tim
Peters	and	Guido	van	Rossum,	after	a	suggestion	and	preliminary
patch	by	Moshe	Zadka.

Modules	can	now	control	which	names	are	 imported	when	from
module	import	*	 is	 used,	 by	 defining	 an	 __all__	 attribute
containing	 a	 list	 of	 names	 that	 will	 be	 imported.	 One	 common
complaint	is	that	if	the	module	imports	other	modules	such	as	sys
or	 string,	 from	 module	 import	 *	 will	 add	 them	 to	 the
importing	module’s	namespace.	To	 fix	 this,	 simply	 list	 the	 public
names	in	__all__:

#	List	public	names

__all__	=	['Database',	'open']

A	 stricter	 version	 of	 this	 patch	 was	 first	 suggested	 and
implemented	 by	 Ben	 Wolfson,	 but	 after	 some	 python-dev
discussion,	a	weaker	final	version	was	checked	in.

Applying	 repr()	 to	 strings	 previously	 used	 octal	 escapes	 for
non-printable	 characters;	 for	 example,	 a	 newline	 was	 '\012'.
This	was	a	vestigial	trace	of	Python’s	C	ancestry,	but	today	octal
is	 of	 very	 little	 practical	 use.	 Ka-Ping	 Yee	 suggested	 using	 hex
escapes	instead	of	octal	ones,	and	using	the	\n,	\t,	\r	escapes
for	 the	 appropriate	 characters,	 and	 implemented	 this	 new
formatting.

Syntax	errors	detected	at	compile-time	can	now	raise	exceptions
containing	 the	 filename	and	 line	number	of	 the	error,	a	pleasant
side	effect	of	the	compiler	reorganization	done	by	Jeremy	Hylton.

C	extensions	which	 import	other	modules	have	been	changed	to
use	 PyImport_ImportModule(),	 which	 means	 that	 they	 will

use	 any	 import	 hooks	 that	 have	 been	 installed.	 This	 is	 also
encouraged	 for	 third-party	 extensions	 that	 need	 to	 import	 some
other	module	from	C	code.

The	 size	 of	 the	 Unicode	 character	 database	 was	 shrunk	 by
another	340K	thanks	to	Fredrik	Lundh.

Some	 new	 ports	 were	 contributed:	 MacOS	 X	 (by	 Steven
Majewski),	 Cygwin	 (by	 Jason	 Tishler);	 RISCOS	 (by	 Dietmar
Schwertberger);	Unixware	7	(by	Billy	G.	Allie).

And	 there’s	 the	 usual	 list	 of	 minor	 bugfixes,	 minor	 memory	 leaks,
docstring	 edits,	 and	 other	 tweaks,	 too	 lengthy	 to	 be	worth	 itemizing;
see	the	CVS	logs	for	the	full	details	if	you	want	them.

Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions	 on	 various	 drafts	 of	 this	 article:	 Graeme	 Cross,	 David
Goodger,	Jay	Graves,	Michael	Hudson,	Marc-André	Lemburg,	Fredrik
Lundh,	Neil	Schemenauer,	Thomas	Wouters.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

What’s	New	in	Python	2.0
Author: A.M.	Kuchling	and	Moshe	Zadka

Introduction

A	 new	 release	 of	 Python,	 version	 2.0,	 was	 released	 on	October	 16,
2000.	 This	 article	 covers	 the	 exciting	 new	 features	 in	 2.0,	 highlights
some	 other	 useful	 changes,	 and	 points	 out	 a	 few	 incompatible
changes	that	may	require	rewriting	code.

Python’s	development	never	completely	stops	between	releases,	and
a	 steady	 flow	 of	 bug	 fixes	 and	 improvements	 are	 always	 being
submitted.	 A	 host	 of	 minor	 fixes,	 a	 few	 optimizations,	 additional
docstrings,	 and	 better	 error	messages	went	 into	 2.0;	 to	 list	 them	 all
would	 be	 impossible,	 but	 they’re	 certainly	 significant.	 Consult	 the
publicly-available	 CVS	 logs	 if	 you	 want	 to	 see	 the	 full	 list.	 This
progress	is	due	to	the	five	developers	working	for	PythonLabs	are	now
getting	 paid	 to	 spend	 their	 days	 fixing	 bugs,	 and	 also	 due	 to	 the
improved	communication	resulting	from	moving	to	SourceForge.

What	About	Python	1.6?

Python	1.6	 can	 be	 thought	 of	 as	 the	Contractual	Obligations	Python
release.	 After	 the	 core	 development	 team	 left	 CNRI	 in	 May	 2000,
CNRI	requested	that	a	1.6	release	be	created,	containing	all	the	work
on	 Python	 that	 had	 been	 performed	 at	 CNRI.	 Python	 1.6	 therefore
represents	 the	 state	of	 the	CVS	 tree	as	of	May	2000,	with	 the	most
significant	new	feature	being	Unicode	support.	Development	continued
after	May,	of	course,	so	the	1.6	tree	received	a	few	fixes	to	ensure	that
it’s	 forward-compatible	 with	 Python	 2.0.	 1.6	 is	 therefore	 part	 of
Python’s	evolution,	and	not	a	side	branch.

So,	should	you	 take	much	 interest	 in	Python	1.6?	Probably	not.	The
1.6final	 and	 2.0beta1	 releases	 were	 made	 on	 the	 same	 day
(September	 5,	 2000),	 the	 plan	 being	 to	 finalize	 Python	 2.0	 within	 a
month	 or	 so.	 If	 you	 have	 applications	 to	maintain,	 there	 seems	 little
point	in	breaking	things	by	moving	to	1.6,	fixing	them,	and	then	having
another	 round	 of	 breakage	 within	 a	month	 by	moving	 to	 2.0;	 you’re
better	 off	 just	 going	 straight	 to	 2.0.	 Most	 of	 the	 really	 interesting
features	described	 in	 this	document	are	only	 in	2.0,	because	a	 lot	of
work	was	done	between	May	and	September.

New	Development	Process

The	most	 important	change	 in	Python	2.0	may	not	be	 to	 the	code	at
all,	 but	 to	 how	 Python	 is	 developed:	 in	 May	 2000	 the	 Python
developers	began	using	the	tools	made	available	by	SourceForge	for
storing	source	code,	tracking	bug	reports,	and	managing	the	queue	of
patch	submissions.	To	 report	bugs	or	submit	patches	 for	Python	2.0,
use	the	bug	tracking	and	patch	manager	tools	available	from	Python’s
project	page,	located	at	http://sourceforge.net/projects/python/.

The	most	important	of	the	services	now	hosted	at	SourceForge	is	the
Python	 CVS	 tree,	 the	 version-controlled	 repository	 containing	 the
source	code	for	Python.	Previously,	there	were	roughly	7	or	so	people
who	 had	 write	 access	 to	 the	 CVS	 tree,	 and	 all	 patches	 had	 to	 be
inspected	 and	 checked	 in	 by	 one	 of	 the	 people	 on	 this	 short	 list.
Obviously,	 this	 wasn’t	 very	 scalable.	 By	 moving	 the	 CVS	 tree	 to
SourceForge,	it	became	possible	to	grant	write	access	to	more	people;
as	of	September	2000	there	were	27	people	able	to	check	in	changes,
a	 fourfold	 increase.	 This	 makes	 possible	 large-scale	 changes	 that
wouldn’t	 be	 attempted	 if	 they’d	 have	 to	 be	 filtered	 through	 the	 small
group	 of	 core	 developers.	 For	 example,	 one	 day	 Peter	 Schneider-
Kamp	took	it	into	his	head	to	drop	K&R	C	compatibility	and	convert	the
C	source	for	Python	to	ANSI	C.	After	getting	approval	on	the	python-
dev	mailing	list,	he	launched	into	a	flurry	of	checkins	that	lasted	about
a	week,	other	developers	 joined	 in	 to	help,	and	 the	 job	was	done.	 If
there	were	only	5	people	with	write	access,	probably	 that	 task	would
have	been	viewed	as	“nice,	but	not	worth	the	time	and	effort	needed”
and	it	would	never	have	gotten	done.

The	shift	to	using	SourceForge’s	services	has	resulted	in	a	remarkable
increase	 in	 the	 speed	 of	 development.	 Patches	 now	 get	 submitted,

http://sourceforge.net/projects/python/

commented	 on,	 revised	 by	 people	 other	 than	 the	 original	 submitter,
and	bounced	back	and	forth	between	people	until	the	patch	is	deemed
worth	checking	in.	Bugs	are	tracked	in	one	central	location	and	can	be
assigned	to	a	specific	person	for	fixing,	and	we	can	count	the	number
of	 open	bugs	 to	measure	progress.	This	 didn’t	 come	without	 a	 cost:
developers	 now	have	more	e-mail	 to	 deal	with,	more	mailing	 lists	 to
follow,	and	special	tools	had	to	be	written	for	the	new	environment.	For
example,	SourceForge	sends	default	patch	and	bug	notification	e-mail
messages	 that	 are	 completely	 unhelpful,	 so	 Ka-Ping	 Yee	 wrote	 an
HTML	screen-scraper	that	sends	more	useful	messages.

The	ease	of	adding	code	caused	a	few	initial	growing	pains,	such	as
code	 was	 checked	 in	 before	 it	 was	 ready	 or	 without	 getting	 clear
agreement	 from	 the	developer	group.	The	approval	process	 that	has
emerged	 is	 somewhat	 similar	 to	 that	 used	 by	 the	 Apache	 group.
Developers	 can	 vote	+1,	 +0,	 -0,	 or	 -1	 on	a	patch;	 +1	and	 -1	denote
acceptance	or	rejection,	while	+0	and	-0	mean	the	developer	is	mostly
indifferent	 to	 the	 change,	 though	 with	 a	 slight	 positive	 or	 negative
slant.	The	most	significant	change	from	the	Apache	model	 is	that	the
voting	 is	 essentially	 advisory,	 letting	 Guido	 van	 Rossum,	 who	 has
Benevolent	Dictator	For	Life	status,	know	what	the	general	opinion	is.
He	can	still	ignore	the	result	of	a	vote,	and	approve	or	reject	a	change
even	if	the	community	disagrees	with	him.

Producing	an	actual	patch	is	the	last	step	in	adding	a	new	feature,	and
is	usually	easy	compared	to	the	earlier	task	of	coming	up	with	a	good
design.	 Discussions	 of	 new	 features	 can	 often	 explode	 into	 lengthy
mailing	list	threads,	making	the	discussion	hard	to	follow,	and	no	one
can	 read	 every	 posting	 to	 python-dev.	 Therefore,	 a	 relatively	 formal
process	 has	 been	 set	 up	 to	 write	 Python	 Enhancement	 Proposals
(PEPs),	 modelled	 on	 the	 Internet	 RFC	 process.	 PEPs	 are	 draft
documents	that	describe	a	proposed	new	feature,	and	are	continually

revised	until	the	community	reaches	a	consensus,	either	accepting	or
rejecting	 the	proposal.	Quoting	 from	 the	 introduction	 to	PEP	1,	 “PEP
Purpose	and	Guidelines”:

PEP	stands	for	Python	Enhancement	Proposal.	A	PEP	is	a	design
document	 providing	 information	 to	 the	 Python	 community,	 or
describing	a	 new	 feature	 for	Python.	The	PEP	should	provide	a
concise	 technical	 specification	 of	 the	 feature	 and	 a	 rationale	 for
the	feature.

We	intend	PEPs	to	be	the	primary	mechanisms	for	proposing	new
features,	 for	 collecting	 community	 input	 on	 an	 issue,	 and	 for
documenting	 the	 design	 decisions	 that	 have	 gone	 into	 Python.
The	PEP	author	 is	 responsible	 for	building	consensus	within	 the
community	and	documenting	dissenting	opinions.

Read	 the	 rest	 of	 PEP	1	 for	 the	 details	 of	 the	PEP	editorial	 process,
style,	 and	 format.	 PEPs	 are	 kept	 in	 the	 Python	 CVS	 tree	 on
SourceForge,	 though	 they’re	 not	 part	 of	 the	 Python	 2.0	 distribution,
and	are	also	available	in	HTML	form	from	http://www.python.org/peps/.
As	 of	 September	 2000,	 there	 are	 25	 PEPS,	 ranging	 from	PEP	 201,
“Lockstep	Iteration”,	to	PEP	225,	“Elementwise/Objectwise	Operators”.

http://www.python.org/peps/

Unicode

The	largest	new	feature	in	Python	2.0	is	a	new	fundamental	data	type:
Unicode	strings.	Unicode	uses	16-bit	numbers	to	represent	characters
instead	 of	 the	 8-bit	 number	 used	 by	 ASCII,	 meaning	 that	 65,536
distinct	characters	can	be	supported.

The	 final	 interface	 for	 Unicode	 support	 was	 arrived	 at	 through
countless	often-	stormy	discussions	on	the	python-dev	mailing	list,	and
mostly	 implemented	 by	 Marc-André	 Lemburg,	 based	 on	 a	 Unicode
string	type	implementation	by	Fredrik	Lundh.	A	detailed	explanation	of
the	interface	was	written	up	as	PEP	100,	“Python	Unicode	Integration”.
This	 article	 will	 simply	 cover	 the	 most	 significant	 points	 about	 the
Unicode	interfaces.

In	 Python	 source	 code,	 Unicode	 strings	 are	 written	 as	 u"string".
Arbitrary	 Unicode	 characters	 can	 be	 written	 using	 a	 new	 escape
sequence,	 \uHHHH,	 where	 HHHH	 is	 a	 4-digit	 hexadecimal	 number
from	0000	to	FFFF.	The	existing	\xHHHH	escape	sequence	can	also
be	used,	and	octal	escapes	can	be	used	for	characters	up	to	U+01FF,
which	is	represented	by	\777.

Unicode	strings,	 just	 like	 regular	strings,	are	an	 immutable	sequence
type.	 They	 can	 be	 indexed	 and	 sliced,	 but	 not	 modified	 in	 place.
Unicode	 strings	 have	 an	 encode([encoding])	 method	 that
returns	an	8-bit	string	 in	the	desired	encoding.	Encodings	are	named
by	 strings,	 such	 as	 'ascii',	 'utf-8',	 'iso-8859-1',	 or
whatever.	A	codec	API	is	defined	for	implementing	and	registering	new
encodings	that	are	then	available	throughout	a	Python	program.	If	an
encoding	 isn’t	 specified,	 the	 default	 encoding	 is	 usually	 7-bit	 ASCII,
though	 it	 can	 be	 changed	 for	 your	 Python	 installation	 by	 calling	 the

http://www.python.org/dev/peps/pep-0100

sys.setdefaultencoding(encoding)	 function	 in	 a	 customised
version	of	site.py.

Combining	8-bit	and	Unicode	strings	always	coerces	to	Unicode,	using
the	default	ASCII	encoding;	the	result	of	'a'	+	u'bc'	is	u'abc'.

New	built-in	functions	have	been	added,	and	existing	built-ins	modified
to	support	Unicode:

unichr(ch)	 returns	 a	 Unicode	 string	 1	 character	 long,
containing	the	character	ch.
ord(u),	 where	 u	 is	 a	 1-character	 regular	 or	 Unicode	 string,
returns	the	number	of	the	character	as	an	integer.
unicode(string	[,	encoding]		[,	errors])	creates	a
Unicode	string	from	an	8-bit	string.	encoding	is	a	string	naming
the	 encoding	 to	 use.	 The	 errors	 parameter	 specifies	 the
treatment	of	 characters	 that	are	 invalid	 for	 the	current	encoding;
passing	'strict'	as	the	value	causes	an	exception	to	be	raised
on	 any	 encoding	 error,	 while	 'ignore'	 causes	 errors	 to	 be
silently	 ignored	 and	 'replace'	 uses	 U+FFFD,	 the	 official
replacement	character,	in	case	of	any	problems.
The	 exec	 statement,	 and	 various	 built-ins	 such	 as	 eval(),
getattr(),	and	setattr()	will	also	accept	Unicode	strings	as
well	as	regular	strings.	(It’s	possible	that	the	process	of	fixing	this
missed	some	built-ins;	 if	 you	 find	a	built-in	 function	 that	 accepts
strings	but	doesn’t	accept	Unicode	strings	at	all,	please	 report	 it
as	a	bug.)

A	 new	 module,	 unicodedata,	 provides	 an	 interface	 to	 Unicode
character	properties.	For	example,	unicodedata.category(u'A')
returns	the	2-character	string	 ‘Lu’,	 the	 ‘L’	denoting	 it’s	a	 letter,	and	 ‘u’
meaning	 that	 it’s	 uppercase.
unicodedata.bidirectional(u'\u0660')	 returns	 ‘AN’,

meaning	that	U+0660	is	an	Arabic	number.

The	codecs	module	contains	functions	to	look	up	existing	encodings
and	register	new	ones.	Unless	you	want	to	implement	a	new	encoding,
you’ll	 most	 often	 use	 the	 codecs.lookup(encoding)	 function,
which	 returns	 a	 4-element	 tuple:	 (encode_func,	 decode_func,
stream_reader,	stream_writer).

encode_func	is	a	function	that	takes	a	Unicode	string,	and	returns
a	2-tuple	(string,	length).	string	is	an	8-bit	string	containing
a	 portion	 (perhaps	 all)	 of	 the	 Unicode	 string	 converted	 into	 the
given	 encoding,	 and	 length	 tells	 you	 how	much	 of	 the	 Unicode
string	was	converted.
decode_func	is	the	opposite	of	encode_func,	taking	an	8-bit	string
and	returning	a	2-tuple	(ustring,	length),	consisting	of	 the
resulting	Unicode	string	ustring	and	the	integer	length	telling	how
much	of	the	8-bit	string	was	consumed.
stream_reader	 is	 a	 class	 that	 supports	 decoding	 input	 from	 a
stream.	 stream_reader(file_obj)	 returns	 an	 object	 that	 supports
the	read(),	readline(),	and	readlines()	methods.	These
methods	 will	 all	 translate	 from	 the	 given	 encoding	 and	 return
Unicode	strings.
stream_writer,	 similarly,	 is	a	 class	 that	 supports	encoding	output
to	a	stream.	stream_writer(file_obj)	returns	an	object	that	supports
the	 write()	 and	 writelines()	 methods.	 These	 methods
expect	Unicode	strings,	translating	them	to	the	given	encoding	on
output.

For	 example,	 the	 following	 code	 writes	 a	 Unicode	 string	 into	 a	 file,
encoding	it	as	UTF-8:

import	codecs

unistr	=	u'\u0660\u2000ab	...'

(UTF8_encode,	UTF8_decode,

	UTF8_streamreader,	UTF8_streamwriter)	=	codecs.lookup

output	=	UTF8_streamwriter(open('/tmp/output',	'wb'

output.write(unistr)

output.close()

The	following	code	would	then	read	UTF-8	input	from	the	file:

input	=	UTF8_streamreader(open('/tmp/output',	'rb'

print	repr(input.read())

input.close()

Unicode-aware	 regular	 expressions	 are	 available	 through	 the	 re
module,	 which	 has	 a	 new	 underlying	 implementation	 called	 SRE
written	by	Fredrik	Lundh	of	Secret	Labs	AB.

A	 -U	 command	 line	 option	 was	 added	 which	 causes	 the	 Python
compiler	to	interpret	all	string	literals	as	Unicode	string	literals.	This	is
intended	 to	be	used	 in	 testing	and	 future-proofing	your	Python	code,
since	some	future	version	of	Python	may	drop	support	for	8-bit	strings
and	provide	only	Unicode	strings.

List	Comprehensions

Lists	 are	 a	 workhorse	 data	 type	 in	 Python,	 and	 many	 programs
manipulate	a	list	at	some	point.	Two	common	operations	on	lists	are	to
loop	over	 them,	and	either	pick	out	 the	elements	 that	meet	a	certain
criterion,	or	apply	some	function	to	each	element.	For	example,	given
a	list	of	strings,	you	might	want	to	pull	out	all	 the	strings	containing	a
given	substring,	or	strip	off	trailing	whitespace	from	each	line.

The	 existing	 map()	 and	 filter()	 functions	 can	 be	 used	 for	 this
purpose,	but	they	require	a	function	as	one	of	their	arguments.	This	is
fine	 if	 there’s	an	existing	built-in	 function	 that	can	be	passed	directly,
but	if	there	isn’t,	you	have	to	create	a	little	function	to	do	the	required
work,	 and	 Python’s	 scoping	 rules	 make	 the	 result	 ugly	 if	 the	 little
function	 needs	 additional	 information.	 Take	 the	 first	 example	 in	 the
previous	paragraph,	finding	all	the	strings	in	the	list	containing	a	given
substring.	You	could	write	the	following	to	do	it:

#	Given	the	list	L,	make	a	list	of	all	strings

#	containing	the	substring	S.

sublist	=	filter(lambda	s,	substring=S:

																					string.find(s,	substring)	!=	-1

																		L)

Because	of	Python’s	scoping	rules,	a	default	argument	is	used	so	that
the	 anonymous	 function	 created	 by	 the	 lambda	 statement	 knows
what	substring	 is	being	searched	 for.	List	comprehensions	make	 this
cleaner:

sublist	=	[s	for	s	in	L	if	string.find(s,	S)	!=	-1	

List	comprehensions	have	the	form:

[expression	for	expr	in	sequence1

													for	expr2	in	sequence2	...

													for	exprN	in	sequenceN

													if	condition]

The	for...in	clauses	contain	the	sequences	to	be	iterated	over.	The
sequences	do	not	have	to	be	the	same	length,	because	they	are	not
iterated	 over	 in	 parallel,	 but	 from	 left	 to	 right;	 this	 is	 explained	more
clearly	in	the	following	paragraphs.	The	elements	of	the	generated	list
will	 be	 the	 successive	 values	 of	 expression.	 The	 final	 if	 clause	 is
optional;	 if	 present,	 expression	 is	 only	 evaluated	 and	 added	 to	 the
result	if	condition	is	true.

To	make	the	semantics	very	clear,	a	 list	comprehension	 is	equivalent
to	the	following	Python	code:

for	expr1	in	sequence1:

				for	expr2	in	sequence2:

				...

								for	exprN	in	sequenceN:

													if	(condition):

																		#	Append	the	value	of

																		#	the	expression	to	the

																		#	resulting	list.

This	 means	 that	 when	 there	 are	 multiple	 for...in	 clauses,	 the
resulting	 list	 will	 be	 equal	 to	 the	 product	 of	 the	 lengths	 of	 all	 the
sequences.	 If	 you	 have	 two	 lists	 of	 length	 3,	 the	 output	 list	 is	 9
elements	long:

seq1	=	'abc'

seq2	=	(1,2,3)

>>>	[(x,y)	for	x	in	seq1	for	y	in	seq2]

[('a',	1),	('a',	2),	('a',	3),	('b',	1),	('b',	2),	(

('c',	2),	('c',	3)]

To	avoid	introducing	an	ambiguity	into	Python’s	grammar,	if	expression
is	creating	a	 tuple,	 it	must	be	surrounded	with	parentheses.	The	 first
list	 comprehension	 below	 is	 a	 syntax	 error,	 while	 the	 second	 one	 is
correct:

#	Syntax	error

[x,y	for	x	in	seq1	for	y	in	seq2]

#	Correct

[(x,y)	for	x	in	seq1	for	y	in	seq2]

The	 idea	of	 list	 comprehensions	originally	 comes	 from	 the	 functional
programming	 language	 Haskell	 (http://www.haskell.org).	 Greg	 Ewing
argued	most	effectively	for	adding	them	to	Python	and	wrote	the	initial
list	comprehension	patch,	which	was	 then	discussed	 for	a	seemingly
endless	 time	 on	 the	 python-dev	 mailing	 list	 and	 kept	 up-to-date	 by
Skip	Montanaro.

http://www.haskell.org

Augmented	Assignment

Augmented	 assignment	 operators,	 another	 long-requested	 feature,
have	 been	 added	 to	 Python	 2.0.	 Augmented	 assignment	 operators
include	+=,	-=,	*=,	and	so	forth.	For	example,	the	statement	a	+=	2
increments	the	value	of	the	variable	a	by	2,	equivalent	 to	 the	slightly
lengthier	a	=	a	+	2.

The	full	list	of	supported	assignment	operators	is	+=,	-=,	*=,	/=,	%=,
**=,	 &=,	 |=,	 ^=,	 >>=,	 and	 <<=.	 Python	 classes	 can	 override	 the
augmented	 assignment	 operators	 by	 defining	 methods	 named
__iadd__(),	__isub__(),	etc.	For	example,	the	following	Number
class	stores	a	number	and	supports	using	+=	to	create	a	new	instance
with	an	incremented	value.

class	Number:

				def	__init__(self,	value):

								self.value	=	value

				def	__iadd__(self,	increment):

								return	Number(self.value	+	increment)

n	=	Number(5)

n	+=	3

print	n.value

The	 __iadd__()	 special	 method	 is	 called	 with	 the	 value	 of	 the
increment,	 and	 should	 return	 a	 new	 instance	 with	 an	 appropriately
modified	 value;	 this	 return	 value	 is	 bound	 as	 the	 new	 value	 of	 the
variable	on	the	left-hand	side.

Augmented	 assignment	 operators	 were	 first	 introduced	 in	 the	 C
programming	language,	and	most	C-derived	languages,	such	as	awk,

C++,	 Java,	 Perl,	 and	 PHP	 also	 support	 them.	 The	 augmented
assignment	patch	was	implemented	by	Thomas	Wouters.

String	Methods

Until	now	string-manipulation	functionality	was	in	the	string	module,
which	was	usually	a	front-end	for	the	strop	module	written	in	C.	The
addition	of	Unicode	posed	a	difficulty	for	the	strop	module,	because
the	functions	would	all	need	to	be	rewritten	in	order	to	accept	either	8-
bit	 or	 Unicode	 strings.	 For	 functions	 such	 as	 string.replace(),
which	 takes	 3	 string	 arguments,	 that	 means	 eight	 possible
permutations,	and	correspondingly	complicated	code.

Instead,	Python	2.0	pushes	 the	problem	onto	 the	string	 type,	making
string	manipulation	functionality	available	through	methods	on	both	8-
bit	strings	and	Unicode	strings.

>>>	'andrew'.capitalize()

'Andrew'

>>>	'hostname'.replace('os',	'linux')

'hlinuxtname'

>>>	'moshe'.find('sh')

2

One	 thing	 that	 hasn’t	 changed,	 a	 noteworthy	 April	 Fools’	 joke
notwithstanding,	is	that	Python	strings	are	immutable.	Thus,	the	string
methods	 return	 new	 strings,	 and	 do	 not	 modify	 the	 string	 on	 which
they	operate.

The	old	string	module	is	still	around	for	backwards	compatibility,	but
it	mostly	acts	as	a	front-end	to	the	new	string	methods.

Two	methods	which	have	no	parallel	in	pre-2.0	versions,	although	they
did	 exist	 in	 JPython	 for	 quite	 some	 time,	 are	 startswith()	 and
endswith().	s.startswith(t)	is	equivalent	to	s[:len(t)]	==

t,	while	s.endswith(t)	is	equivalent	to	s[-len(t):]	==	t.

One	 other	method	 which	 deserves	 special	 mention	 is	 join().	 The
join()	 method	 of	 a	 string	 receives	 one	 parameter,	 a	 sequence	 of
strings,	and	is	equivalent	to	the	string.join()	function	from	the	old
string	 module,	 with	 the	 arguments	 reversed.	 In	 other	 words,
s.join(seq)	is	equivalent	to	the	old	string.join(seq,	s).

Garbage	Collection	of	Cycles

The	C	implementation	of	Python	uses	reference	counting	to	implement
garbage	 collection.	 Every	 Python	 object	 maintains	 a	 count	 of	 the
number	 of	 references	 pointing	 to	 itself,	 and	 adjusts	 the	 count	 as
references	 are	 created	 or	 destroyed.	 Once	 the	 reference	 count
reaches	 zero,	 the	 object	 is	 no	 longer	 accessible,	 since	 you	 need	 to
have	a	reference	to	an	object	to	access	it,	and	if	the	count	is	zero,	no
references	exist	any	longer.

Reference	 counting	 has	 some	 pleasant	 properties:	 it’s	 easy	 to
understand	 and	 implement,	 and	 the	 resulting	 implementation	 is
portable,	fairly	fast,	and	reacts	well	with	other	libraries	that	implement
their	 own	 memory	 handling	 schemes.	 The	 major	 problem	 with
reference	counting	is	that	it	sometimes	doesn’t	realise	that	objects	are
no	longer	accessible,	resulting	in	a	memory	leak.	This	happens	when
there	are	cycles	of	references.

Consider	 the	 simplest	 possible	 cycle,	 a	 class	 instance	 which	 has	 a
reference	to	itself:

instance	=	SomeClass()

instance.myself	=	instance

After	 the	above	two	lines	of	code	have	been	executed,	 the	reference
count	 of	 instance	 is	 2;	 one	 reference	 is	 from	 the	 variable	 named
'instance',	 and	 the	 other	 is	 from	 the	 myself	 attribute	 of	 the
instance.

If	 the	 next	 line	 of	 code	 is	 del	 instance,	 what	 happens?	 The
reference	count	of	instance	is	decreased	by	1,	so	it	has	a	reference
count	of	 1;	 the	 reference	 in	 the	 myself	 attribute	 still	 exists.	 Yet	 the

instance	is	no	longer	accessible	through	Python	code,	and	it	could	be
deleted.	 Several	 objects	 can	 participate	 in	 a	 cycle	 if	 they	 have
references	to	each	other,	causing	all	of	the	objects	to	be	leaked.

Python	 2.0	 fixes	 this	 problem	 by	 periodically	 executing	 a	 cycle
detection	algorithm	which	looks	for	inaccessible	cycles	and	deletes	the
objects	 involved.	 A	 new	 gc	 module	 provides	 functions	 to	 perform	 a
garbage	 collection,	 obtain	 debugging	 statistics,	 and	 tuning	 the
collector’s	parameters.

Running	the	cycle	detection	algorithm	takes	some	time,	and	therefore
will	 result	 in	 some	 additional	 overhead.	 It	 is	 hoped	 that	 after	 we’ve
gotten	experience	with	the	cycle	collection	from	using	2.0,	Python	2.1
will	be	able	 to	minimize	 the	overhead	with	careful	 tuning.	 It’s	not	yet
obvious	how	much	performance	is	lost,	because	benchmarking	this	is
tricky	 and	 depends	 crucially	 on	 how	 often	 the	 program	 creates	 and
destroys	 objects.	 The	 detection	 of	 cycles	 can	 be	 disabled	 when
Python	 is	 compiled,	 if	 you	 can’t	 afford	 even	 a	 tiny	 speed	 penalty	 or
suspect	that	the	cycle	collection	is	buggy,	by	specifying	the	--without-
cycle-gc	switch	when	running	the	configure	script.

Several	people	tackled	this	problem	and	contributed	to	a	solution.	An
early	 implementation	 of	 the	 cycle	 detection	 approach	was	written	 by
Toby	Kelsey.	The	current	algorithm	was	suggested	by	Eric	Tiedemann
during	a	visit	to	CNRI,	and	Guido	van	Rossum	and	Neil	Schemenauer
wrote	 two	 different	 implementations,	 which	 were	 later	 integrated	 by
Neil.	 Lots	 of	 other	 people	 offered	 suggestions	 along	 the	 way;	 the
March	2000	archives	of	the	python-dev	mailing	list	contain	most	of	the
relevant	 discussion,	 especially	 in	 the	 threads	 titled	 “Reference	 cycle
collection	for	Python”	and	“Finalization	again”.

Other	Core	Changes

Various	minor	changes	have	been	made	to	Python’s	syntax	and	built-
in	 functions.	 None	 of	 the	 changes	 are	 very	 far-reaching,	 but	 they’re
handy	conveniences.

Minor	Language	Changes

A	new	syntax	makes	it	more	convenient	to	call	a	given	function	with	a
tuple	 of	 arguments	 and/or	 a	 dictionary	 of	 keyword	 arguments.	 In
Python	 1.5	 and	 earlier,	 you’d	 use	 the	 apply()	 built-in	 function:
apply(f,	 args,	 kw)	 calls	 the	 function	 f()	 with	 the	 argument
tuple	args	and	the	keyword	arguments	in	the	dictionary	kw.	apply()
is	the	same	in	2.0,	but	thanks	to	a	patch	from	Greg	Ewing,	f(*args,
**kw)	as	a	shorter	and	clearer	way	to	achieve	the	same	effect.	This
syntax	is	symmetrical	with	the	syntax	for	defining	functions:

def	f(*args,	**kw):

				#	args	is	a	tuple	of	positional	args,

				#	kw	is	a	dictionary	of	keyword	args

				...

The	print	 statement	 can	 now	have	 its	 output	 directed	 to	 a	 file-like
object	by	following	the	print	with	>>	file,	similar	to	the	redirection
operator	 in	 Unix	 shells.	 Previously	 you’d	 either	 have	 to	 use	 the
write()	method	of	 the	 file-like	object,	which	 lacks	 the	convenience
and	 simplicity	 of	 print,	 or	 you	 could	 assign	 a	 new	 value	 to
sys.stdout	 and	 then	 restore	 the	 old	 value.	 For	 sending	 output	 to
standard	error,	it’s	much	easier	to	write	this:

print	>>	sys.stderr,	"Warning:	action	field	not	supplied"

Modules	 can	 now	 be	 renamed	 on	 importing	 them,	 using	 the	 syntax
import	module	as	name	 or	 from	module	import	 name	 as
othername.	The	patch	was	submitted	by	Thomas	Wouters.

A	 new	 format	 style	 is	 available	 when	 using	 the	 %	 operator;	 ‘%r’	 will
insert	 the	 repr()	 of	 its	 argument.	 This	 was	 also	 added	 from
symmetry	considerations,	this	time	for	symmetry	with	the	existing	‘%s’
format	 style,	which	 inserts	 the	 str()	 of	 its	 argument.	 For	 example,
'%r	%s'	%	 ('abc',	 'abc')	 returns	 a	 string	 containing	 'abc'
abc.

Previously	 there	 was	 no	 way	 to	 implement	 a	 class	 that	 overrode
Python’s	built-in	in	operator	and	implemented	a	custom	version.	obj
in	seq	 returns	 true	 if	 obj	 is	 present	 in	 the	 sequence	 seq;	 Python
computes	this	by	simply	trying	every	index	of	the	sequence	until	either
obj	 is	 found	 or	 an	 IndexError	 is	 encountered.	 Moshe	 Zadka
contributed	 a	 patch	which	 adds	 a	 __contains__()	 magic	method
for	providing	a	custom	implementation	for	in.	Additionally,	new	built-in
objects	written	in	C	can	define	what	in	means	for	them	via	a	new	slot
in	the	sequence	protocol.

Earlier	 versions	 of	 Python	 used	 a	 recursive	 algorithm	 for	 deleting
objects.	Deeply	nested	data	structures	could	cause	 the	 interpreter	 to
fill	 up	 the	 C	 stack	 and	 crash;	 Christian	 Tismer	 rewrote	 the	 deletion
logic	 to	 fix	 this	 problem.	 On	 a	 related	 note,	 comparing	 recursive
objects	 recursed	 infinitely	 and	 crashed;	 Jeremy	 Hylton	 rewrote	 the
code	 to	 no	 longer	 crash,	 producing	 a	 useful	 result	 instead.	 For
example,	after	this	code:

a	=	[]

b	=	[]

a.append(a)

b.append(b)

The	 comparison	 a==b	 returns	 true,	 because	 the	 two	 recursive	 data
structures	are	isomorphic.	See	the	thread	“trashcan	and	PR#7”	in	the
April	 2000	 archives	 of	 the	 python-dev	mailing	 list	 for	 the	 discussion
leading	up	to	this	implementation,	and	some	useful	relevant	links.	Note
that	comparisons	can	now	also	raise	exceptions.	In	earlier	versions	of
Python,	 a	 comparison	 operation	 such	 as	 cmp(a,b)	 would	 always
produce	 an	 answer,	 even	 if	 a	 user-defined	 __cmp__()	 method
encountered	 an	 error,	 since	 the	 resulting	 exception	would	 simply	 be
silently	swallowed.

Work	 has	 been	 done	 on	 porting	 Python	 to	 64-bit	 Windows	 on	 the
Itanium	processor,	mostly	by	Trent	Mick	of	ActiveState.	 (Confusingly,
sys.platform	is	still	'win32'	on	Win64	because	it	seems	that	for
ease	 of	 porting,	 MS	 Visual	 C++	 treats	 code	 as	 32	 bit	 on	 Itanium.)
PythonWin	 also	 supports	Windows	 CE;	 see	 the	 Python	 CE	 page	 at
http://pythonce.sourceforge.net/	for	more	information.

Another	 new	 platform	 is	 Darwin/MacOS	 X;	 initial	 support	 for	 it	 is	 in
Python	 2.0.	 Dynamic	 loading	 works,	 if	 you	 specify	 “configure	 –with-
dyld	 –with-suffix=.x”.	 Consult	 the	 README	 in	 the	 Python	 source
distribution	for	more	instructions.

An	 attempt	 has	 been	 made	 to	 alleviate	 one	 of	 Python’s	 warts,	 the
often-confusing	 NameError	 exception	 when	 code	 refers	 to	 a	 local
variable	before	the	variable	has	been	assigned	a	value.	For	example,
the	following	code	raises	an	exception	on	the	print	statement	in	both
1.5.2	 and	 2.0;	 in	 1.5.2	 a	 NameError	 exception	 is	 raised,	 while	 2.0
raises	 a	 new	 UnboundLocalError	 exception.
UnboundLocalError	 is	a	subclass	of	NameError,	 so	any	existing

http://pythonce.sourceforge.net/

code	that	expects	NameError	to	be	raised	should	still	work.

def	f():

				print	"i=",i

				i	=	i	+	1

f()

Two	 new	 exceptions,	 TabError	 and	 IndentationError,	 have
been	introduced.	They’re	both	subclasses	of	SyntaxError,	and	are
raised	when	Python	code	is	found	to	be	improperly	indented.

Changes	to	Built-in	Functions

A	new	built-in,	 zip(seq1,	seq2,	...),	 has	 been	 added.	 zip()
returns	a	list	of	tuples	where	each	tuple	contains	the	i-th	element	from
each	of	the	argument	sequences.	The	difference	between	zip()	and
map(None,	seq1,	seq2)	 is	 that	map()	pads	 the	sequences	with
None	 if	 the	 sequences	 aren’t	 all	 of	 the	 same	 length,	 while	 zip()
truncates	 the	 returned	 list	 to	 the	 length	 of	 the	 shortest	 argument
sequence.

The	 int()	 and	 long()	 functions	 now	 accept	 an	 optional	 “base”
parameter	 when	 the	 first	 argument	 is	 a	 string.	 int('123',	 10)
returns	 123,	 while	 int('123',	16)	 returns	 291.	 int(123,	 16)
raises	a	TypeError	exception	with	 the	message	“can’t	convert	non-
string	with	explicit	base”.

A	 new	 variable	 holding	 more	 detailed	 version	 information	 has	 been
added	to	 the	sys	module.	sys.version_info	 is	a	 tuple	(major,
minor,	micro,	level,	serial)	For	example,	 in	a	hypothetical
2.0.1beta1,	 sys.version_info	 would	 be	 (2,	 0,	 1,	 'beta',
1).	 level	 is	 a	 string	 such	 as	 "alpha",	 "beta",	 or	 "final"	 for	 a

final	release.

Dictionaries	 have	 an	 odd	 new	 method,	 setdefault(key,

default),	 which	 behaves	 similarly	 to	 the	 existing	 get()	 method.
However,	if	the	key	is	missing,	setdefault()	both	returns	the	value
of	default	as	get()	would	do,	and	also	inserts	it	into	the	dictionary	as
the	value	for	key.	Thus,	the	following	lines	of	code:

if	dict.has_key(key):	return	dict[key]

else:

				dict[key]	=	[]

				return	dict[key]

can	be	reduced	to	a	single	return	dict.setdefault(key,	[])
statement.

The	 interpreter	 sets	 a	 maximum	 recursion	 depth	 in	 order	 to	 catch
runaway	recursion	before	filling	the	C	stack	and	causing	a	core	dump
or	GPF..	Previously	this	limit	was	fixed	when	you	compiled	Python,	but
in	2.0	 the	maximum	recursion	depth	can	be	read	and	modified	using
sys.getrecursionlimit()	 and	 sys.setrecursionlimit().
The	 default	 value	 is	 1000,	 and	 a	 rough	maximum	 value	 for	 a	 given
platform	 can	 be	 found	 by	 running	 a	 new	 script,
Misc/find_recursionlimit.py.

Porting	to	2.0

New	Python	releases	try	hard	to	be	compatible	with	previous	releases,
and	 the	 record	 has	 been	 pretty	 good.	 However,	 some	 changes	 are
considered	 useful	 enough,	 usually	 because	 they	 fix	 initial	 design
decisions	 that	 turned	 out	 to	 be	 actively	 mistaken,	 that	 breaking
backward	compatibility	can’t	always	be	avoided.	This	section	lists	the
changes	in	Python	2.0	that	may	cause	old	Python	code	to	break.

The	change	which	will	probably	break	the	most	code	 is	 tightening	up
the	arguments	accepted	by	some	methods.	Some	methods	would	take
multiple	arguments	and	 treat	 them	as	a	 tuple,	particularly	various	 list
methods	 such	 as	 append()	 and	 insert().	 In	 earlier	 versions	 of
Python,	if	L	is	a	list,	L.append(1,2)	appends	the	tuple	(1,2)	to
the	 list.	 In	 Python	 2.0	 this	 causes	 a	 TypeError	 exception	 to	 be
raised,	 with	 the	 message:	 ‘append	 requires	 exactly	 1	 argument;	 2
given’.	 The	 fix	 is	 to	 simply	 add	 an	 extra	 set	 of	 parentheses	 to	 pass
both	values	as	a	tuple:	L.append((1,2)).

The	 earlier	 versions	 of	 these	methods	were	more	 forgiving	 because
they	 used	 an	 old	 function	 in	 Python’s	 C	 interface	 to	 parse	 their
arguments;	2.0	modernizes	them	to	use	PyArg_ParseTuple(),	 the
current	argument	parsing	 function,	which	provides	more	helpful	error
messages	and	treats	multi-argument	calls	as	errors.	If	you	absolutely
must	 use	 2.0	 but	 can’t	 fix	 your	 code,	 you	 can	 edit
Objects/listobject.c	 and	 define	 the	 preprocessor	 symbol
NO_STRICT_LIST_APPEND	 to	 preserve	 the	 old	 behaviour;	 this	 isn’t
recommended.

Some	of	the	functions	in	the	socket	module	are	still	 forgiving	in	this
way.	For	example,	socket.connect(('hostname',	25))()	is

the	 correct	 form,	 passing	 a	 tuple	 representing	 an	 IP	 address,	 but
socket.connect('hostname',	 25)()	 also	 works.
socket.connect_ex()	 and	 socket.bind()	 are	 similarly	 easy-
going.	 2.0alpha1	 tightened	 these	 functions	 up,	 but	 because	 the
documentation	 actually	 used	 the	 erroneous	 multiple	 argument	 form,
many	people	wrote	code	which	would	break	with	the	stricter	checking.
GvR	backed	out	the	changes	in	the	face	of	public	reaction,	so	for	the
socket	 module,	 the	 documentation	 was	 fixed	 and	 the	 multiple
argument	form	is	simply	marked	as	deprecated;	it	will	be	tightened	up
again	in	a	future	Python	version.

The	 \x	 escape	 in	 string	 literals	 now	 takes	 exactly	 2	 hex	 digits.
Previously	it	would	consume	all	the	hex	digits	following	the	‘x’	and	take
the	lowest	8	bits	of	the	result,	so	\x123456	was	equivalent	to	\x56.

The	 AttributeError	 and	 NameError	 exceptions	 have	 a	 more
friendly	 error	 message,	 whose	 text	 will	 be	 something	 like	 'Spam'
instance	 has	 no	 attribute	 'eggs'	 or	 name	 'eggs'	 is
not	 defined.	 Previously	 the	 error	 message	 was	 just	 the	 missing
attribute	name	eggs,	and	code	written	 to	 take	advantage	of	 this	 fact
will	break	in	2.0.

Some	work	has	been	done	 to	make	 integers	and	 long	 integers	a	bit
more	 interchangeable.	 In	 1.5.2,	 large-file	 support	 was	 added	 for
Solaris,	to	allow	reading	files	larger	than	2	GiB;	this	made	the	tell()
method	of	file	objects	return	a	long	integer	instead	of	a	regular	integer.
Some	code	would	subtract	two	file	offsets	and	attempt	to	use	the	result
to	multiply	a	sequence	or	slice	a	string,	but	this	raised	a	TypeError.
In	2.0,	long	integers	can	be	used	to	multiply	or	slice	a	sequence,	and
it’ll	 behave	 as	 you’d	 intuitively	 expect	 it	 to;	 3L	*	 'abc'	 produces
‘abcabcabc’,	and	(0,1,2,3)[2L:4L]	produces	(2,3).	Long	integers
can	also	 be	 used	 in	 various	 contexts	where	 previously	 only	 integers

were	accepted,	such	as	 in	the	seek()	method	of	 file	objects,	and	in
the	 formats	 supported	 by	 the	 %	 operator	 (%d,	 %i,	 %x,	 etc.).	 For
example,	 "%d"	 %	 2L**64	 will	 produce	 the	 string
18446744073709551616.

The	 subtlest	 long	 integer	 change	 of	 all	 is	 that	 the	 str()	 of	 a	 long
integer	 no	 longer	 has	 a	 trailing	 ‘L’	 character,	 though	 repr()	 still
includes	 it.	 The	 ‘L’	 annoyed	 many	 people	 who	 wanted	 to	 print	 long
integers	that	looked	just	like	regular	integers,	since	they	had	to	go	out
of	 their	way	 to	chop	off	 the	character.	This	 is	no	 longer	a	problem	 in
2.0,	but	code	which	does	str(longval)[:-1]	and	assumes	the	‘L’
is	there,	will	now	lose	the	final	digit.

Taking	the	repr()	of	a	float	now	uses	a	different	formatting	precision
than	str().	repr()	uses	%.17g	 format	string	 for	C’s	sprintf(),
while	str()	uses	%.12g	as	before.	The	effect	 is	 that	repr()	may
occasionally	 show	 more	 decimal	 places	 than	 str(),	 for	 certain
numbers.	For	example,	the	number	8.1	can’t	be	represented	exactly	in
binary,	so	repr(8.1)	is	'8.0999999999999996',	while	str(8.1)	 is
'8.1'.

The	 -X	 command-line	 option,	 which	 turned	 all	 standard	 exceptions
into	 strings	 instead	 of	 classes,	 has	 been	 removed;	 the	 standard
exceptions	 will	 now	 always	 be	 classes.	 The	 exceptions	 module
containing	 the	 standard	 exceptions	was	 translated	 from	Python	 to	 a
built-in	C	module,	written	by	Barry	Warsaw	and	Fredrik	Lundh.

Extending/Embedding	Changes

Some	of	the	changes	are	under	the	covers,	and	will	only	be	apparent
to	 people	 writing	 C	 extension	 modules	 or	 embedding	 a	 Python
interpreter	in	a	larger	application.	If	you	aren’t	dealing	with	Python’s	C
API,	you	can	safely	skip	this	section.

The	 version	 number	 of	 the	 Python	 C	 API	 was	 incremented,	 so	 C
extensions	compiled	for	1.5.2	must	be	recompiled	in	order	to	work	with
2.0.	On	Windows,	it’s	not	possible	for	Python	2.0	to	import	a	third	party
extension	built	 for	Python	1.5.x	due	 to	how	Windows	DLLs	work,	 so
Python	will	raise	an	exception	and	the	import	will	fail.

Users	 of	 Jim	Fulton’s	ExtensionClass	module	will	 be	pleased	 to	 find
out	 that	 hooks	 have	 been	 added	 so	 that	 ExtensionClasses	 are	 now
supported	by	isinstance()	and	issubclass().	This	means	you
no	 longer	 have	 to	 remember	 to	write	 code	 such	as	 if	type(obj)
==	 myExtensionClass,	 but	 can	 use	 the	 more	 natural	 if

isinstance(obj,	myExtensionClass).

The	 Python/importdl.c	 file,	 which	 was	 a	 mass	 of	 #ifdefs	 to
support	dynamic	loading	on	many	different	platforms,	was	cleaned	up
and	reorganised	by	Greg	Stein.	importdl.c	is	now	quite	small,	and
platform-specific	 code	 has	 been	 moved	 into	 a	 bunch	 of
Python/dynload_*.c	 files.	 Another	 cleanup:	 there	 were	 also	 a
number	 of	 my*.h	 files	 in	 the	 Include/	 directory	 that	 held	 various
portability	 hacks;	 they’ve	 been	 merged	 into	 a	 single	 file,
Include/pyport.h.

Vladimir	 Marangozov’s	 long-awaited	 malloc	 restructuring	 was
completed,	 to	 make	 it	 easy	 to	 have	 the	 Python	 interpreter	 use	 a

custom	 allocator	 instead	 of	 C’s	 standard	 malloc().	 For
documentation,	 read	 the	 comments	 in	 Include/pymem.h	 and
Include/objimpl.h.	For	 the	 lengthy	discussions	during	which	 the
interface	was	 hammered	 out,	 see	 the	Web	 archives	 of	 the	 ‘patches’
and	‘python-dev’	lists	at	python.org.

Recent	 versions	 of	 the	 GUSI	 development	 environment	 for	 MacOS
support	POSIX	threads.	Therefore,	Python’s	POSIX	threading	support
now	works	on	the	Macintosh.	Threading	support	using	the	user-space
GNU	pth	library	was	also	contributed.

Threading	support	on	Windows	was	enhanced,	too.	Windows	supports
thread	locks	that	use	kernel	objects	only	 in	case	of	contention;	 in	the
common	case	when	there’s	no	contention,	they	use	simpler	functions
which	are	an	order	of	magnitude	faster.	A	threaded	version	of	Python
1.5.2	on	NT	 is	 twice	as	slow	as	an	unthreaded	version;	with	 the	2.0
changes,	 the	 difference	 is	 only	 10%.	 These	 improvements	 were
contributed	by	Yakov	Markovitch.

Python	2.0’s	source	now	uses	only	ANSI	C	prototypes,	so	compiling
Python	now	requires	an	ANSI	C	compiler,	and	can	no	longer	be	done
using	a	compiler	that	only	supports	K&R	C.

Previously	 the	 Python	 virtual	 machine	 used	 16-bit	 numbers	 in	 its
bytecode,	limiting	the	size	of	source	files.	In	particular,	this	affected	the
maximum	 size	 of	 literal	 lists	 and	 dictionaries	 in	 Python	 source;
occasionally	 people	who	 are	 generating	Python	 code	would	 run	 into
this	limit.	A	patch	by	Charles	G.	Waldman	raises	the	limit	from	2^16	to
2^{32}.

Three	new	convenience	 functions	 intended	 for	adding	constants	 to	a
module’s	 dictionary	 at	 module	 initialization	 time	 were	 added:
PyModule_AddObject(),	 PyModule_AddIntConstant(),	 and

PyModule_AddStringConstant().	 Each	 of	 these	 functions	 takes
a	module	object,	a	null-terminated	C	string	containing	the	name	to	be
added,	and	a	third	argument	for	the	value	to	be	assigned	to	the	name.
This	third	argument	is,	respectively,	a	Python	object,	a	C	long,	or	a	C
string.

A	 wrapper	 API	 was	 added	 for	 Unix-style	 signal	 handlers.
PyOS_getsig()	gets	a	signal	handler	and	PyOS_setsig()	will	set
a	new	handler.

Distutils:	Making	Modules	Easy	to	Install

Before	Python	2.0,	installing	modules	was	a	tedious	affair	–	there	was
no	way	 to	 figure	out	automatically	where	Python	 is	 installed,	or	what
compiler	options	to	use	for	extension	modules.	Software	authors	had
to	go	through	an	arduous	ritual	of	editing	Makefiles	and	configuration
files,	which	only	really	work	on	Unix	and	 leave	Windows	and	MacOS
unsupported.	 Python	 users	 faced	 wildly	 differing	 installation
instructions	which	varied	between	different	extension	packages,	which
made	administering	a	Python	installation	something	of	a	chore.

The	 SIG	 for	 distribution	 utilities,	 shepherded	 by	 Greg	 Ward,	 has
created	 the	 Distutils,	 a	 system	 to	 make	 package	 installation	 much
easier.	 They	 form	 the	 distutils	 package,	 a	 new	 part	 of	 Python’s
standard	 library.	 In	 the	 best	 case,	 installing	 a	 Python	 module	 from
source	will	 require	the	same	steps:	 first	you	simply	mean	unpack	the
tarball	 or	 zip	 archive,	 and	 the	 run	 “python	setup.py	 install”.
The	 platform	 will	 be	 automatically	 detected,	 the	 compiler	 will	 be
recognized,	C	extension	modules	will	be	compiled,	and	the	distribution
installed	 into	 the	 proper	 directory.	Optional	 command-line	 arguments
provide	 more	 control	 over	 the	 installation	 process,	 the	 distutils
package	offers	many	places	to	override	defaults	–	separating	the	build
from	 the	 install,	 building	 or	 installing	 in	 non-default	 directories,	 and
more.

In	order	to	use	the	Distutils,	you	need	to	write	a	setup.py	script.	For
the	simple	case,	when	the	software	contains	only	.py	files,	a	minimal
setup.py	can	be	just	a	few	lines	long:

from	distutils.core	import	setup

setup	(name	=	"foo",	version	=	"1.0",

							py_modules	=	["module1",	"module2"])

The	 setup.py	 file	 isn’t	 much	 more	 complicated	 if	 the	 software
consists	of	a	few	packages:

from	distutils.core	import	setup

setup	(name	=	"foo",	version	=	"1.0",

							packages	=	["package",	"package.subpackage"])

A	C	extension	can	be	the	most	complicated	case;	here’s	an	example
taken	from	the	PyXML	package:

from	distutils.core	import	setup,	Extension

expat_extension	=	Extension('xml.parsers.pyexpat',

					define_macros	=	[('XML_NS',	None)],

					include_dirs	=	['extensions/expat/xmltok',

																						'extensions/expat/xmlparse'],

					sources	=	['extensions/pyexpat.c',

																	'extensions/expat/xmltok/xmltok.c',

																	'extensions/expat/xmltok/xmlrole.c'

)

setup	(name	=	"PyXML",	version	=	"0.5.4",

							ext_modules	=[expat_extension])

The	 Distutils	 can	 also	 take	 care	 of	 creating	 source	 and	 binary
distributions.	 The	 “sdist”	 command,	 run	 by	 “python	 setup.py

sdist‘,	 builds	 a	 source	 distribution	 such	 as	 foo-1.0.tar.gz.
Adding	 new	 commands	 isn’t	 difficult,	 “bdist_rpm”	 and	 “bdist_wininst”
commands	 have	 already	 been	 contributed	 to	 create	 an	 RPM
distribution	 and	 a	 Windows	 installer	 for	 the	 software,	 respectively.
Commands	 to	 create	 other	 distribution	 formats	 such	 as	 Debian
packages	and	Solaris	.pkg	files	are	in	various	stages	of	development.

All	this	is	documented	in	a	new	manual,	Distributing	Python	Modules,
that	joins	the	basic	set	of	Python	documentation.

XML	Modules

Python	1.5.2	included	a	simple	XML	parser	in	the	form	of	the	xmllib
module,	 contributed	 by	 Sjoerd	Mullender.	 Since	 1.5.2’s	 release,	 two
different	 interfaces	for	processing	XML	have	become	common:	SAX2
(version	 2	 of	 the	 Simple	 API	 for	 XML)	 provides	 an	 event-driven
interface	with	some	similarities	 to	xmllib,	and	 the	DOM	(Document
Object	Model)	 provides	 a	 tree-based	 interface,	 transforming	 an	XML
document	 into	 a	 tree	 of	 nodes	 that	 can	 be	 traversed	 and	 modified.
Python	 2.0	 includes	 a	 SAX2	 interface	 and	 a	 stripped-	 down	 DOM
interface	 as	 part	 of	 the	 xml	 package.	 Here	 we	 will	 give	 a	 brief
overview	of	these	new	interfaces;	consult	the	Python	documentation	or
the	 source	 code	 for	 complete	 details.	 The	 Python	 XML	 SIG	 is	 also
working	on	improved	documentation.

SAX2	Support

SAX	defines	an	event-driven	 interface	 for	parsing	XML.	To	use	SAX,
you	 must	 write	 a	 SAX	 handler	 class.	 Handler	 classes	 inherit	 from
various	classes	provided	by	SAX,	and	override	various	methods	 that
will	 then	 be	 called	 by	 the	 XML	 parser.	 For	 example,	 the
startElement()	and	endElement()	methods	are	called	for	every
starting	and	end	 tag	encountered	by	 the	parser,	 the	characters()
method	is	called	for	every	chunk	of	character	data,	and	so	forth.

The	 advantage	 of	 the	 event-driven	 approach	 is	 that	 the	 whole
document	 doesn’t	 have	 to	 be	 resident	 in	 memory	 at	 any	 one	 time,
which	matters	if	you	are	processing	really	huge	documents.	However,
writing	the	SAX	handler	class	can	get	very	complicated	if	you’re	trying
to	modify	the	document	structure	in	some	elaborate	way.

For	example,	this	little	example	program	defines	a	handler	that	prints	a
message	 for	 every	 starting	 and	 ending	 tag,	 and	 then	 parses	 the	 file
hamlet.xml	using	it:

from	xml	import	sax

class	SimpleHandler(sax.ContentHandler):

				def	startElement(self,	name,	attrs):

								print	'Start	of	element:',	name,	attrs.keys()

				def	endElement(self,	name):

								print	'End	of	element:',	name

#	Create	a	parser	object

parser	=	sax.make_parser()

#	Tell	it	what	handler	to	use

handler	=	SimpleHandler()

parser.setContentHandler(handler)

#	Parse	a	file!

parser.parse('hamlet.xml')

For	more	 information,	consult	 the	Python	documentation,	or	 the	XML
HOWTO	at	http://pyxml.sourceforge.net/topics/howto/xml-howto.html.

DOM	Support

The	 Document	 Object	 Model	 is	 a	 tree-based	 representation	 for	 an
XML	document.	A	top-level	Document	instance	is	the	root	of	the	tree,
and	has	a	single	child	which	 is	 the	top-level	Element	 instance.	This
Element	 has	 children	 nodes	 representing	 character	 data	 and	 any
sub-elements,	 which	may	 have	 further	 children	 of	 their	 own,	 and	 so

http://pyxml.sourceforge.net/topics/howto/xml-howto.html

forth.	Using	the	DOM	you	can	traverse	the	resulting	tree	any	way	you
like,	access	element	and	attribute	values,	insert	and	delete	nodes,	and
convert	the	tree	back	into	XML.

The	DOM	 is	 useful	 for	modifying	XML	documents,	 because	 you	 can
create	 a	 DOM	 tree,	 modify	 it	 by	 adding	 new	 nodes	 or	 rearranging
subtrees,	and	then	produce	a	new	XML	document	as	output.	You	can
also	construct	a	DOM	tree	manually	and	convert	it	to	XML,	which	can
be	 a	more	 flexible	way	 of	 producing	XML	 output	 than	 simply	writing
<tag1>...</tag1>	to	a	file.

The	 DOM	 implementation	 included	 with	 Python	 lives	 in	 the
xml.dom.minidom	module.	 It’s	 a	 lightweight	 implementation	 of	 the
Level	1	DOM	with	 support	 for	XML	namespaces.	The	parse()	 and
parseString()	convenience	functions	are	provided	for	generating	a
DOM	tree:

from	xml.dom	import	minidom

doc	=	minidom.parse('hamlet.xml')

doc	 is	 a	 Document	 instance.	 Document,	 like	 all	 the	 other	 DOM
classes	such	as	Element	and	Text,	is	a	subclass	of	the	Node	base
class.	All	the	nodes	in	a	DOM	tree	therefore	support	certain	common
methods,	such	as	toxml()	which	returns	a	string	containing	the	XML
representation	 of	 the	 node	 and	 its	 children.	 Each	 class	 also	 has
special	 methods	 of	 its	 own;	 for	 example,	 Element	 and	 Document
instances	 have	 a	method	 to	 find	 all	 child	 elements	 with	 a	 given	 tag
name.	Continuing	from	the	previous	2-line	example:

perslist	=	doc.getElementsByTagName('PERSONA')

print	perslist[0].toxml()

print	perslist[1].toxml()

For	the	Hamlet	XML	file,	the	above	few	lines	output:

<PERSONA>CLAUDIUS,	king	of	Denmark.	</PERSONA>

<PERSONA>HAMLET,	son	to	the	late,	and	nephew	to	the	

The	 root	 element	 of	 the	 document	 is	 available	 as
doc.documentElement,	and	 its	children	can	be	easily	modified	by
deleting,	adding,	or	removing	nodes:

root	=	doc.documentElement

#	Remove	the	first	child

root.removeChild(root.childNodes[0])

#	Move	the	new	first	child	to	the	end

root.appendChild(root.childNodes[0])

#	Insert	the	new	first	child	(originally,

#	the	third	child)	before	the	20th	child.

root.insertBefore(root.childNodes[0],	root.childNodes

Again,	 I	 will	 refer	 you	 to	 the	 Python	 documentation	 for	 a	 complete
listing	of	the	different	Node	classes	and	their	various	methods.

Relationship	to	PyXML

The	 XML	 Special	 Interest	 Group	 has	 been	 working	 on	 XML-related
Python	 code	 for	 a	 while.	 Its	 code	 distribution,	 called	 PyXML,	 is
available	from	the	SIG’s	Web	pages	at	http://www.python.org/sigs/xml-
sig/.	 The	 PyXML	 distribution	 also	 used	 the	 package	 name	 xml.	 If
you’ve	written	programs	that	used	PyXML,	you’re	probably	wondering
about	its	compatibility	with	the	2.0	xml	package.

http://www.python.org/sigs/xml-sig/

The	 answer	 is	 that	 Python	 2.0’s	 xml	 package	 isn’t	 compatible	 with
PyXML,	 but	 can	 be	 made	 compatible	 by	 installing	 a	 recent	 version
PyXML.	Many	 applications	 can	 get	 by	 with	 the	 XML	 support	 that	 is
included	 with	 Python	 2.0,	 but	 more	 complicated	 applications	 will
require	 that	 the	 full	PyXML	package	will	be	 installed.	When	 installed,
PyXML	versions	0.6.0	or	greater	will	replace	the	xml	package	shipped
with	 Python,	 and	 will	 be	 a	 strict	 superset	 of	 the	 standard	 package,
adding	a	bunch	of	additional	features.	Some	of	the	additional	features
in	PyXML	include:

4DOM,	a	full	DOM	implementation	from	FourThought,	Inc.
The	xmlproc	validating	parser,	written	by	Lars	Marius	Garshol.
The	sgmlop	parser	accelerator	module,	written	by	Fredrik	Lundh.

Module	changes

Lots	of	 improvements	and	bugfixes	were	made	to	Python’s	extensive
standard	 library;	 some	 of	 the	 affected	 modules	 include	 readline,
ConfigParser,	 cgi,	 calendar,	 posix,	 readline,	 xmllib,
aifc,	chunk,	wave,	random,	shelve,	and	nntplib.	Consult	 the
CVS	logs	for	the	exact	patch-by-patch	details.

Brian	Gallew	 contributed	OpenSSL	 support	 for	 the	 socket	module.
OpenSSL	 is	 an	 implementation	 of	 the	 Secure	 Socket	 Layer,	 which
encrypts	 the	data	being	sent	over	a	socket.	When	compiling	Python,
you	can	edit	Modules/Setup	to	include	SSL	support,	which	adds	an
additional	 function	 to	 the	 socket	 module:	 socket.ssl(socket,
keyfile,	certfile),	which	 takes	a	socket	object	and	 returns	an
SSL	socket.	The	httplib	and	urllib	modules	were	also	changed
to	support	https://	URLs,	though	no	one	has	implemented	FTP	or
SMTP	over	SSL.

The	 httplib	 module	 has	 been	 rewritten	 by	 Greg	 Stein	 to	 support
HTTP/1.1.	Backward	compatibility	with	the	1.5	version	of	httplib	is
provided,	 though	 using	 HTTP/1.1	 features	 such	 as	 pipelining	 will
require	rewriting	code	to	use	a	different	set	of	interfaces.

The	 Tkinter	 module	 now	 supports	 Tcl/Tk	 version	 8.1,	 8.2,	 or	 8.3,
and	support	for	the	older	7.x	versions	has	been	dropped.	The	Tkinter
module	now	supports	displaying	Unicode	strings	 in	Tk	widgets.	Also,
Fredrik	Lundh	contributed	an	optimization	which	makes	operations	like
create_line	and	create_polygon	much	 faster,	 especially	when
using	lots	of	coordinates.

The	curses	module	has	been	greatly	extended,	starting	 from	Oliver

Andrich’s	enhanced	version,	to	provide	many	additional	functions	from
ncurses	 and	 SYSV	 curses,	 such	 as	 colour,	 alternative	 character	 set
support,	 pads,	 and	 mouse	 support.	 This	 means	 the	 module	 is	 no
longer	compatible	with	operating	systems	that	only	have	BSD	curses,
but	there	don’t	seem	to	be	any	currently	maintained	OSes	that	fall	into
this	category.

As	mentioned	 in	 the	 earlier	 discussion	 of	 2.0’s	Unicode	 support,	 the
underlying	 implementation	of	 the	regular	expressions	provided	by	the
re	module	has	been	changed.	SRE,	a	new	regular	expression	engine
written	 by	 Fredrik	 Lundh	 and	 partially	 funded	 by	 Hewlett	 Packard,
supports	matching	against	both	8-bit	strings	and	Unicode	strings.

New	modules

A	number	of	new	modules	were	added.	We’ll	simply	list	them	with	brief
descriptions;	 consult	 the	 2.0	 documentation	 for	 the	 details	 of	 a
particular	module.

atexit:	For	registering	functions	to	be	called	before	the	Python
interpreter	exits.	Code	that	currently	sets	sys.exitfunc	directly
should	be	changed	to	use	the	atexit	module	instead,	importing
atexit	 and	 calling	 atexit.register()	 with	 the	 function	 to
be	called	on	exit.	(Contributed	by	Skip	Montanaro.)
codecs,	encodings,	unicodedata:	Added	as	part	of	the	new
Unicode	support.
filecmp:	 Supersedes	 the	 old	 cmp,	 cmpcache	 and	 dircmp
modules,	 which	 have	 now	 become	 deprecated.	 (Contributed	 by
Gordon	MacMillan	and	Moshe	Zadka.)
gettext:	 This	 module	 provides	 internationalization	 (I18N)	 and
localization	 (L10N)	support	 for	Python	programs	by	providing	an
interface	to	the	GNU	gettext	message	catalog	 library.	(Integrated
by	 Barry	 Warsaw,	 from	 separate	 contributions	 by	 Martin	 von
Löwis,	Peter	Funk,	and	James	Henstridge.)
linuxaudiodev:	Support	for	the	/dev/audio	device	on	Linux,
a	 twin	 to	 the	 existing	 sunaudiodev	 module.	 (Contributed	 by
Peter	Bosch,	with	fixes	by	Jeremy	Hylton.)
mmap:	An	interface	to	memory-mapped	files	on	both	Windows	and
Unix.	 A	 file’s	 contents	 can	 be	 mapped	 directly	 into	 memory,	 at
which	point	it	behaves	like	a	mutable	string,	so	its	contents	can	be
read	 and	modified.	 They	 can	 even	 be	 passed	 to	 functions	 that
expect	ordinary	strings,	such	as	 the	re	module.	 (Contributed	by
Sam	Rushing,	with	some	extensions	by	A.M.	Kuchling.)
pyexpat:	An	interface	to	the	Expat	XML	parser.	(Contributed	by
Paul	Prescod.)

robotparser:	 Parse	 a	 robots.txt	 file,	 which	 is	 used	 for
writing	Web	spiders	that	politely	avoid	certain	areas	of	a	Web	site.
The	parser	accepts	 the	contents	of	a	robots.txt	 file,	builds	a
set	 of	 rules	 from	 it,	 and	 can	 then	 answer	 questions	 about	 the
fetchability	of	a	given	URL.	(Contributed	by	Skip	Montanaro.)
tabnanny:	 A	 module/script	 to	 check	 Python	 source	 code	 for
ambiguous	indentation.	(Contributed	by	Tim	Peters.)
UserString:	 A	 base	 class	 useful	 for	 deriving	 objects	 that
behave	like	strings.
webbrowser:	 A	 module	 that	 provides	 a	 platform	 independent
way	 to	 launch	 a	 web	 browser	 on	 a	 specific	 URL.	 For	 each
platform,	various	browsers	are	 tried	 in	a	specific	order.	The	user
can	 alter	 which	 browser	 is	 launched	 by	 setting	 the	BROWSER
environment	 variable.	 (Originally	 inspired	 by	 Eric	 S.	 Raymond’s
patch	 to	 urllib	 which	 added	 similar	 functionality,	 but	 the	 final
module	 comes	 from	 code	 originally	 implemented	 by	 Fred	Drake
as	 Tools/idle/BrowserControl.py,	 and	 adapted	 for	 the
standard	library	by	Fred.)
_winreg:	An	 interface	 to	 the	Windows	 registry.	 _winreg	 is	an
adaptation	 of	 functions	 that	 have	 been	 part	 of	 PythonWin	 since
1995,	 but	 has	 now	 been	 added	 to	 the	 core	 distribution,	 and
enhanced	 to	support	Unicode.	_winreg	was	written	by	Bill	 Tutt
and	Mark	Hammond.
zipfile:	A	module	 for	reading	and	writing	ZIP-format	archives.
These	are	archives	produced	by	PKZIP	on	DOS/Windows	or	zip
on	 Unix,	 not	 to	 be	 confused	 with	 gzip-format	 files	 (which	 are
supported	 by	 the	 gzip	 module)	 (Contributed	 by	 James	 C.
Ahlstrom.)
imputil:	 A	 module	 that	 provides	 a	 simpler	 way	 for	 writing
customised	 import	hooks,	 in	 comparison	 to	 the	existing	 ihooks
module.	 (Implemented	 by	 Greg	 Stein,	 with	 much	 discussion	 on
python-dev	along	the	way.)

IDLE	Improvements

IDLE	 is	 the	 official	 Python	 cross-platform	 IDE,	 written	 using	 Tkinter.
Python	2.0	 includes	 IDLE	0.6,	which	adds	a	number	of	new	 features
and	improvements.	A	partial	list:

UI	 improvements	 and	 optimizations,	 especially	 in	 the	 area	 of
syntax	highlighting	and	auto-indentation.
The	class	browser	now	shows	more	information,	such	as	the	top
level	functions	in	a	module.
Tab	width	is	now	a	user	settable	option.	When	opening	an	existing
Python	 file,	 IDLE	 automatically	 detects	 the	 indentation
conventions,	and	adapts.
There	 is	 now	 support	 for	 calling	 browsers	 on	 various	 platforms,
used	to	open	the	Python	documentation	in	a	browser.
IDLE	 now	 has	 a	 command	 line,	 which	 is	 largely	 similar	 to	 the
vanilla	Python	interpreter.
Call	tips	were	added	in	many	places.
IDLE	can	now	be	installed	as	a	package.
In	the	editor	window,	there	is	now	a	line/column	bar	at	the	bottom.
Three	new	keystroke	commands:	Check	module	 (Alt-F5),	 Import
module	(F5)	and	Run	script	(Ctrl-F5).

Deleted	and	Deprecated	Modules

A	 few	 modules	 have	 been	 dropped	 because	 they’re	 obsolete,	 or
because	there	are	now	better	ways	to	do	the	same	thing.	The	stdwin
module	 is	 gone;	 it	 was	 for	 a	 platform-independent	 windowing	 toolkit
that’s	no	longer	developed.

A	number	of	modules	have	been	moved	to	the	lib-old	subdirectory:
cmp,	 cmpcache,	 dircmp,	 dump,	 find,	 grep,	 packmail,	 poly,
util,	whatsound,	zmod.	If	you	have	code	which	relies	on	a	module
that’s	been	moved	to	lib-old,	you	can	simply	add	 that	directory	 to
sys.path	 to	 get	 them	 back,	 but	 you’re	 encouraged	 to	 update	 any
code	that	uses	these	modules.

Acknowledgements

The	 authors	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions	 on	 various	 drafts	 of	 this	 article:	 David	 Bolen,	 Mark
Hammond,	 Gregg	 Hauser,	 Jeremy	 Hylton,	 Fredrik	 Lundh,	 Detlef
Lannert,	Aahz	Maruch,	Skip	Montanaro,	Vladimir	Marangozov,	Tobias
Polzin,	Guido	van	Rossum,	Neil	Schemenauer,	and	Russ	Schmidt.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://www.python.org/

Changelog

Python	3.4.0?

Release	date:	2014-03-16

Library

Issue	#20939:	 Fix	 test_geturl	 failure	 in	 test_urllibnet	 due	 to	 new
redirect	of	http://www.python.org/	to	https://www.python.org.

Documentation

Merge	in	all	documentation	changes	since	branching	3.4.0rc1.

http://bugs.python.org/20939
http://www.python.org/
https://www.python.org

Python	3.4.0	release	candidate	3?

Release	date:	2014-03-09

Core	and	Builtins

Issue	 #20786:	 Fix	 signatures	 for	 dict.__delitem__	 and
property.__delete__	builtins.

Library

Issue	 #20839:	 Don’t	 trigger	 a	 DeprecationWarning	 in	 the	 still
supported	pkgutil.get_loader()	API	when	__loader__	isn’t	set	on	a
module	(nor	when	pkgutil.find_loader()	is	called	directly).

Build

Issue	 #14512:	 Launch	 pydoc	 -b	 instead	 of	 pydocgui.pyw	 on
Windows.
Issue	#20748:	Uninstalling	pip	does	not	 leave	behind	 the	pyc	of
the	uninstaller	anymore.
Issue	#20568:	The	Windows	installer	now	installs	the	unversioned
pip	 command	 in	 addition	 to	 the	 versioned	 pip3	 and	 pip3.4
commands.
Issue	#20757:	The	ensurepip	helper	 for	 the	Windows	uninstaller
now	 skips	 uninstalling	 pip	 (rather	 than	 failing)	 if	 the	 user	 has
updated	 pip	 to	 a	 different	 version	 from	 the	 one	 bundled	 with
ensurepip.
Issue	#20465:	Update	OS	X	and	Windows	 installer	builds	 to	use
SQLite	3.8.3.1.

http://bugs.python.org/20786
http://bugs.python.org/20839
http://bugs.python.org/14512
http://bugs.python.org/20748
http://bugs.python.org/20568
http://bugs.python.org/20757
http://bugs.python.org/20465

Python	3.4.0	release	candidate	2?

Release	date:	2014-02-23

Core	and	Builtins

Issue	 #20625:	 Parameter	 names	 in	 __annotations__	 were	 not
mangled	 properly.	 Discovered	 by	 Jonas	Wielicki,	 patch	 by	 Yury
Selivanov.
Issue	 #20261:	 In	 pickle,	 lookup	 __getnewargs__	 and
__getnewargs_ex__	on	the	type	of	the	object.
Issue	#20619:	Give	the	AST	nodes	of	keyword-only	arguments	a
column	and	line	number.
Issue	#20526:	Revert	changes	of	 issue	#19466	which	 introduces
a	 regression:	 don’t	 clear	 anymore	 the	 state	 of	 Python	 threads
early	during	the	Python	shutdown.

Library

Issue	 #20710:	 The	 pydoc	 summary	 line	 no	 longer	 displays	 the
“self”	parameter	for	bound	methods.
Issue	#20566:	Change	 asyncio.as_completed()	 to	 use	 a	Queue,
to	avoid	O(N**2)	behavior.
Issue	 #20704:	 Implement	 new	 debug	 API	 in	 asyncio.	 Add	 new
methods	 BaseEventLoop.set_debug()	 and
BaseEventLoop.get_debug().	 Add	 support	 for	 setting
‘asyncio.tasks._DEBUG’	 variable	 with
‘PYTHONASYNCIODEBUG’	environment	variable.
asyncio:	 Refactoring	 and	 fixes:	 BaseEventLoop.sock_connect()
raises	 an	 error	 if	 the	 address	 is	 not	 resolved;	 use	 __slots__	 in
Handle	 and	 TimerHandle;	 as_completed()	 and	 wait()	 raise
TypeError	 if	 the	 passed	 list	 of	 Futures	 is	 a	 single	 Future;

http://bugs.python.org/20625
http://bugs.python.org/20261
http://bugs.python.org/20619
http://bugs.python.org/20526
http://bugs.python.org/19466
http://bugs.python.org/20710
http://bugs.python.org/20566
http://bugs.python.org/20704

call_soon()	 and	 other	 ‘call_*()’	 functions	 raise	 TypeError	 if	 the
passed	 callback	 is	 a	 coroutine	 function;
_ProactorBasePipeTransport	 uses	 _FlowControlMixin;
WriteTransport.set_write_buffer_size()	 calls
_maybe_pause_protocol()	 to	 consider	 pausing	 receiving	 if	 the
watermark	 limits	 have	 changed;	 fix	 _check_resolved_address()
for	 IPv6	 address;	 and	 other	 minor	 improvements,	 along	 with
multiple	documentation	updates.
Issue	 #20684:	 Fix	 inspect.getfullargspec()	 to	 not	 to	 follow
__wrapped__	 chains.	 Make	 its	 behaviour	 consistent	 with	 bound
methods	 first	 argument.	 Patch	 by	 Nick	 Coghlan	 and	 Yury
Selivanov.
Issue	#20681:	Add	new	error	handling	API	in	asyncio.	New	APIs:
loop.set_exception_handler(),	 loop.default_exception_handler(),
and	loop.call_exception_handler().
Issue	 #20673:	 Implement	 support	 for	 UNIX	 Domain	 Sockets	 in
asyncio.	 New	 APIs:	 loop.create_unix_connection(),
loop.create_unix_server(),	 streams.open_unix_connection(),	 and
streams.start_unix_server().
Issue	#20616:	Add	a	format()	method	to	tracemalloc.Traceback.
Issue	 #19744:	 the	 ensurepip	 installation	 step	 now	 just	 prints	 a
warning	 to	 stderr	 rather	 than	 failing	 outright	 if	 SSL/TLS	 is
unavailable.	This	allows	local	installation	of	POSIX	builds	without
SSL/TLS	support.
Issue	 #20594:	 Avoid	 name	 clash	 with	 the	 libc	 function
posix_close.

Build

Issue	 #20641:	 Run	 MSI	 custom	 actions	 (pip	 installation,	 pyc
compilation)	 with	 the	 NoImpersonate	 flag,	 to	 support	 elevated
execution	(UAC).
Issue	 #20221:	 Removed	 conflicting	 (or	 circular)	 hypot	 definition
when	 compiled	 with	 VS	 2010	 or	 above.	 Initial	 patch	 by	 Tabrez

http://bugs.python.org/20684
http://bugs.python.org/20681
http://bugs.python.org/20673
http://bugs.python.org/20616
http://bugs.python.org/19744
http://bugs.python.org/20594
http://bugs.python.org/20641
http://bugs.python.org/20221

Mohammed.
Issue	 #20609:	 Restored	 the	 ability	 to	 build	 64-bit	 Windows
binaries	on	32-bit	Windows,	which	was	broken	by	 the	change	 in
issue	#19788.

http://bugs.python.org/20609
http://bugs.python.org/19788

Python	3.4.0	release	candidate	1?

Release	date:	2014-02-10

Core	and	Builtins

Issue	 #19255:	 The	 builtins	 module	 is	 restored	 to	 initial	 value
before	cleaning	other	modules.	The	sys	and	builtins	modules	are
cleaned	last.
Issue	 #20437:	 Fixed	 22	 potential	 bugs	 when	 deleting	 objects
references.
Issue	#20500:	Displaying	an	exception	at	interpreter	shutdown	no
longer	risks	triggering	an	assertion	failure	in	PyObject_Str.
Issue	#20538:	UTF-7	 incremental	decoder	produced	 inconsistent
string	when	input	was	truncated	in	BASE64	section.
Issue	 #20404:	 io.TextIOWrapper	 (and	 hence	 the	 open()	 builtin)
now	 uses	 the	 internal	 codec	 marking	 system	 added	 for	 issue
#19619	 to	 throw	 LookupError	 for	 known	 non-text	 encodings	 at
stream	construction	time.	The	existing	output	type	checks	remain
in	place	to	deal	with	unmarked	third	party	codecs.
Issue	#17162:	Add	PyType_GetSlot.
Issue	 #20162:	 Fix	 an	 alignment	 issue	 in	 the	 siphash24()	 hash
function	which	caused	a	crash	on	PowerPC	64-bit	(ppc64).

Library

Issue	#20530:	The	signatures	for	slot	builtins	have	been	updated
to	reflect	the	fact	that	they	only	accept	positional-only	arguments.
Issue	 #20517:	 Functions	 in	 the	 os	 module	 that	 accept	 two
filenames	now	register	both	filenames	in	the	exception	on	failure.
Issue	 #20563:	 The	 ipaddress	 module	 API	 is	 now	 considered
stable.

http://bugs.python.org/19255
http://bugs.python.org/20437
http://bugs.python.org/20500
http://bugs.python.org/20538
http://bugs.python.org/20404
http://bugs.python.org/19619
http://bugs.python.org/17162
http://bugs.python.org/20162
http://bugs.python.org/20530
http://bugs.python.org/20517
http://bugs.python.org/20563

Issue	#14983:	email.generator	now	always	adds	a	 line	end	after
each	MIME	boundary	marker,	instead	of	doing	so	only	when	there
is	an	epilogue.	This	fixes	an	RFC	compliance	bug	and	solves	an
issue	with	signed	MIME	parts.
Issue	 #20540:	 Fix	 a	 performance	 regression	 (vs.	 Python	 3.2)
when	 layering	a	multiprocessing	Connection	over	a	TCP	socket.
For	small	payloads,	Nagle’s	algorithm	would	introduce	idle	delays
before	the	entire	transmission	of	a	message.
Issue	 #16983:	 the	 new	 email	 header	 parsing	 code	 will	 now
decode	 encoded	 words	 that	 are	 (incorrectly)	 surrounded	 by
quotes,	and	register	a	defect.
Issue	 #19772:	 email.generator	 no	 longer	 mutates	 the	 message
object	when	doing	a	down-transform	from	8bit	to	7bit	CTEs.
Issue	#20536:	the	statistics	module	now	correctly	handle	Decimal
instances	with	positive	exponents
Issue	 #18805:	 the	 netmask/hostmask	 parsing	 in	 ipaddress	 now
more	 reliably	 filters	 out	 illegal	 values	 and	 correctly	 allows	 any
valid	prefix	length.
Issue	#20481:	For	 at	 least	Python	3.4,	 the	 statistics	module	will
require	 that	 all	 inputs	 for	 a	 single	 operation	 be	 of	 a	 single
consistent	 type,	 or	 else	 a	 mixed	 of	 ints	 and	 a	 single	 other
consistent	 type.	 This	 avoids	 some	 interoperability	 issues	 that
arose	 with	 the	 previous	 approach	 of	 coercing	 to	 a	 suitable
common	type.
Issue	#20478:	the	statistics	module	now	treats	collections.Counter
inputs	like	any	other	iterable.
Issue	 #17369:	 get_filename	 was	 raising	 an	 exception	 if	 the
filename	 parameter’s	 RFC2231	 encoding	 was	 broken	 in	 certain
ways.	This	was	a	regression	relative	to	python2.
Issue	 #20013:	 Some	 imap	 servers	 disconnect	 if	 the	 current
mailbox	is	deleted,	and	imaplib	did	not	handle	that	case	gracefully.
Now	it	handles	the	‘bye’	correctly.
Issue	#20531:	Revert	3.4	version	of	fix	for	#19063,	and	apply	the
3.3	version.	That	is,	do	not	 raise	an	error	 if	unicode	is	passed	to

http://bugs.python.org/14983
http://bugs.python.org/20540
http://bugs.python.org/16983
http://bugs.python.org/19772
http://bugs.python.org/20536
http://bugs.python.org/18805
http://bugs.python.org/20481
http://bugs.python.org/20478
http://bugs.python.org/17369
http://bugs.python.org/20013
http://bugs.python.org/20531

email.message.Message.set_payload.
Issue	 #20476:	 If	 a	 non-compat32	 policy	 is	 used	with	 any	 of	 the
email	 parsers,	 EmailMessage	 is	 now	 used	 as	 the	 factory	 class.
The	factory	class	should	really	come	from	the	policy;	that	will	get
fixed	in	3.5.
Issue	#19920:	TarFile.list()	 no	 longer	 fails	when	outputs	a	 listing
containing	non-encodable	characters.	Based	on	patch	by	Vajrasky
Kok.
Issue	#20515:	Fix	NULL	pointer	dereference	 introduced	by	 issue
#20368.
Issue	#19186:	Restore	namespacing	of	expat	symbols	 inside	the
pyexpat	module.
Issue	#20053:	ensurepip	(and	hence	venv)	are	no	longer	affected
by	the	settings	in	the	default	pip	configuration	file.
Issue	 #20426:	 When	 passing	 the	 re.DEBUG	 flag,	 re.compile()
displays	the	debug	output	every	time	it	is	called,	regardless	of	the
compilation	cache.
Issue	#20368:	The	null	character	now	correctly	passed	from	Tcl	to
Python.	Improved	error	handling	in	variables-related	commands.
Issue	 #20435:	 Fix	 _pyio.StringIO.getvalue()	 to	 take	 into	 account
newline	translation	settings.
tracemalloc:	Fix	slicing	traces	and	fix	slicing	a	traceback.
Issue	#20354:	Fix	an	alignment	 issue	 in	 the	 tracemalloc	module
on	64-bit	platforms.	Bug	seen	on	64-bit	Linux	when	using	“make
profile-opt”.
Issue	 #17159:	 inspect.signature	 now	 accepts	 duck	 types	 of
functions,	which	adds	support	for	Cython	functions.	Initial	patch	by
Stefan	Behnel.
Issue	#18801:	Fix	inspect.classify_class_attrs	to	correctly	classify
object.__new__	and	object.__init__.
Fixed	cmath.isinf’s	name	in	its	argument	parsing	code.
Issue	#20311,	#20452:	poll	and	epoll	now	round	the	timeout	away
from	 zero,	 instead	 of	 rounding	 towards	 zero,	 in	 select	 and
selectors	 modules:	 select.epoll.poll(),	 selectors.PollSelector.poll()

http://bugs.python.org/20476
http://bugs.python.org/19920
http://bugs.python.org/20515
http://bugs.python.org/20368
http://bugs.python.org/19186
http://bugs.python.org/20053
http://bugs.python.org/20426
http://bugs.python.org/20368
http://bugs.python.org/20435
http://bugs.python.org/20354
http://bugs.python.org/17159
http://bugs.python.org/18801
http://bugs.python.org/20311

and	selectors.EpollSelector.poll().	For	example,	a	 timeout	of	one
microsecond	 (1e-6)	 is	 now	 rounded	 to	 one	 millisecondi	 (1e-3),
instead	 of	 being	 rounded	 to	 zero.	 However,	 the	 granularity
property	and	asyncio’s	resolution	feature	were	removed	again.
asyncio:	Some	refactoring;	various	fixes;	add	write	flow	control	to
unix	 pipes;	 Future.set_exception()	 instantiates	 the	 exception
argument	if	it	is	a	class;	improved	proactor	pipe	transport;	support
wait_for(f,	 None);	 don’t	 log	 broken/disconnected	 pipes;	 use
ValueError	instead	of	assert	for	forbidden	subprocess_{shell,exec}
arguments;	 added	 a	 convenience	 API	 for	 subprocess
management;	 added	 StreamReader.at_eof();	 properly	 handle
duplicate	 coroutines/futures	 in	 gather(),	 wait(),	 as_completed();
use	a	bytearray	for	buffering	in	StreamReader;	and	more.
Issue	 #20288:	 fix	 handling	 of	 invalid	 numeric	 charrefs	 in
HTMLParser.
Issue	#20424:	Python	implementation	of	io.StringIO	now	supports
lone	surrogates.
Issue	 #20308:	 inspect.signature	 now	 works	 on	 classes	 without
user-defined	__init__	or	__new__	methods.
Issue	 #20372:	 inspect.getfile	 (and	 a	 bunch	 of	 other	 inspect
functions	that	use	it)	doesn’t	crash	with	unexpected	AttributeError
on	classes	defined	in	C	without	__module__.
Issue	 #20356:	 inspect.signature	 formatting	 uses	 ‘/’	 to	 separate
positional-only	parameters	from	others.
Issue	 #20223:	 inspect.signature	 now	 supports	 methods	 defined
with	functools.partialmethods.
Issue	#19456:	ntpath.join()	now	joins	relative	paths	correctly	when
a	drive	is	present.
Issue	 #19077:	 tempfile.TemporaryDirectory	 cleanup	 no	 longer
fails	when	 called	 during	 shutdown.	Emitting	 resource	warning	 in
__del__	no	longer	fails.	Original	patch	by	Antoine	Pitrou.
Issue	#20394:	Silence	Coverity	warning	in	audioop	module.
Issue	#20367:	 Fix	 behavior	 of	 concurrent.futures.as_completed()
for	duplicate	arguments.	Patch	by	Glenn	Langford.

http://bugs.python.org/20288
http://bugs.python.org/20424
http://bugs.python.org/20308
http://bugs.python.org/20372
http://bugs.python.org/20356
http://bugs.python.org/20223
http://bugs.python.org/19456
http://bugs.python.org/19077
http://bugs.python.org/20394
http://bugs.python.org/20367

Issue	 #8260:	 The	 read(),	 readline()	 and	 readlines()	 methods	 of
codecs.StreamReader	returned	incomplete	data	when	were	called
after	readline()	or	read(size).	Based	on	patch	by	Amaury	Forgeot
d’Arc.
Issue	 #20105:	 the	 codec	 exception	 chaining	 now	 correctly	 sets
the	 traceback	 of	 the	 original	 exception	 as	 its	 __traceback__
attribute.
Issue	 #17481:	 inspect.getfullargspec()	 now	 uses
inspect.signature()	API.
Issue	#15304:	concurrent.futures.wait()	 can	block	 forever	even	 if
Futures	have	completed.	Patch	by	Glenn	Langford.
Issue	#14455:	plistlib:	fix	serializing	integers	integers	in	the	range
of	an	unsigned	long	long	but	outside	of	 the	range	of	signed	long
long	for	binary	plist	files.

IDLE

Issue	#20406:	Use	Python	application	 icons	 for	 Idle	window	 title
bars.	Patch	mostly	by	Serhiy	Storchaka.
Update	 the	 python.gif	 icon	 for	 the	 Idle	 classbrowser	 and
pathbowser	 from	 the	 old	 green	 snake	 to	 the	 new	 new	 blue	 and
yellow	snakes.
Issue	 #17721:	 Remove	 non-functional	 configuration	 dialog	 help
button	 until	 we	 make	 it	 actually	 gives	 some	 help	 when	 clicked.
Patch	by	Guilherme	Simões.

Tests

Issue	 #20532:	 Tests	 which	 use	 _testcapi	 now	 are	 marked	 as
CPython	only.
Issue	 #19920:	 Added	 tests	 for	 TarFile.list().	 Based	 on	 patch	 by
Vajrasky	Kok.
Issue	 #19990:	 Added	 tests	 for	 the	 imghdr	 module.	 Based	 on

http://bugs.python.org/8260
http://bugs.python.org/20105
http://bugs.python.org/17481
http://bugs.python.org/15304
http://bugs.python.org/14455
http://bugs.python.org/20406
http://bugs.python.org/17721
http://bugs.python.org/20532
http://bugs.python.org/19920
http://bugs.python.org/19990

patch	by	Claudiu	Popa.
Issue	 #20474:	 Fix	 test_socket	 “unexpected	 success”	 failures	 on
OS	X	10.7+.

Tools/Demos

Issue	 #20530:	 Argument	 Clinic’s	 signature	 format	 has	 been
revised	again.	The	new	syntax	is	highly	human	readable	while	still
preventing	false	positives.	The	syntax	also	extends	Python	syntax
to	 denote	 “self”	 and	 positional-only	 parameters,	 allowing
inspect.Signature	 objects	 to	 be	 totally	 accurate	 for	 all	 supported
builtins	in	Python	3.4.
Issue	#20456:	Argument	Clinic	now	observes	the	C	preprocessor
conditional	compilation	statements	of	the	C	files	it	parses.	When	a
Clinic	 block	 is	 inside	 a	 conditional	 code,	 it	 adjusts	 its	 output	 to
match,	 including	 automatically	 generating	 an	 empty	 methoddef
macro.
Issue	#20456:	Cloned	 functions	 in	Argument	Clinic	 now	use	 the
correct	name,	not	the	name	of	the	function	they	were	cloned	from,
for	text	strings	inside	generated	code.
Issue	 #20456:	 Fixed	 Argument	 Clinic’s	 test	 suite	 and	 “–
converters”	feature.
Issue	 #20456:	 Argument	 Clinic	 now	 allows	 specifying	 different
names	 for	 a	 parameter	 in	 Python	 and	 C,	 using	 “as”	 on	 the
parameter	line.
Issue	 #20326:	 Argument	 Clinic	 now	 uses	 a	 simple,	 unique
signature	 to	 annotate	 text	 signatures	 in	 docstrings,	 resulting	 in
fewer	false	positives.	“self”	parameters	are	also	explicitly	marked,
allowing	 inspect.Signature()	 to	 authoritatively	 detect	 (and	 skip)
said	parameters.
Issue	 #20326:	 Argument	 Clinic	 now	 generates	 separate
checksums	for	the	input	and	output	sections	of	the	block,	allowing
external	 tools	 to	verify	 that	 the	 input	has	not	 changed	 (and	 thus
the	output	is	not	out-of-date).

http://bugs.python.org/20474
http://bugs.python.org/20530
http://bugs.python.org/20456
http://bugs.python.org/20456
http://bugs.python.org/20456
http://bugs.python.org/20456
http://bugs.python.org/20326
http://bugs.python.org/20326

Build

Issue	#20465:	Update	SQLite	shipped	with	OS	X	installer	to	3.8.3.

C-API

Issue	#20517:	Added	new	functions	allowing	OSError	exceptions
to	 reference	 two	 filenames	 instead	 of	 one:
PyErr_SetFromErrnoWithFilenameObjects()	 and
PyErr_SetExcFromWindowsErrWithFilenameObjects().

Documentation

Issue	 #20488:	 Change	 wording	 to	 say	 importlib	 is	 the
implementation	of	import	instead	of	just	an	implementation.
Issue	 #6386:	 Clarify	 in	 the	 tutorial	 that	 specifying	 a	 symlink	 to
execute	means	 the	 directory	 containing	 the	 executed	 script	 and
not	the	symlink	is	added	to	sys.path.

http://bugs.python.org/20465
http://bugs.python.org/20517
http://bugs.python.org/20488
http://bugs.python.org/6386

Python	3.4.0	Beta	3?

Release	date:	2014-01-26

Core	and	Builtins

Issue	 #20189:	 Four	 additional	 builtin	 types	 (PyTypeObject,
PyMethodDescr_Type,	 _PyMethodWrapper_Type,	 and
PyWrapperDescr_Type)	 have	 been	 modified	 to	 provide
introspection	information	for	builtins.
Issue	 #17825:	 Cursor	 “^”	 is	 correctly	 positioned	 for	 SyntaxError
and	IndentationError.
Issue	 #2382:	 SyntaxError	 cursor	 “^”	 is	 now	 written	 at	 correct
position	 in	 most	 cases	 when	 multibyte	 characters	 are	 in	 line
(before	 “^”).	 This	 still	 not	 works	 correctly	 with	 wide	 East	 Asian
characters.
Issue	 #18960:	 The	 first	 line	 of	 Python	 script	 could	 be	 executed
twice	when	the	source	encoding	was	specified	on	the	second	line.
Now	 the	 source	 encoding	 declaration	 on	 the	 second	 line	 isn’t
effective	 if	 the	 first	 line	 contains	 anything	 except	 a	 comment.
‘python	 -x’	 works	 now	 again	with	 files	with	 the	 source	 encoding
declarations,	 and	 can	 be	 used	 to	 make	 Python	 batch	 files	 on
Windows.

Library

asyncio:	Various	improvements	and	small	changes	not	all	covered
by	issues	listed	below.	E.g.	wait_for()	now	cancels	the	inner	task	if
the	 timeout	 occcurs;	 tweaked	 the	 set	 of	 exported	 symbols;
renamed	Empty/Full	 to	QueueEmpty/QueueFull;	 “with	 (yield	 from
lock)”	now	uses	a	separate	context	manager;	readexactly()	raises
if	not	enough	data	was	read;	PTY	support	tweaks.

http://bugs.python.org/20189
http://bugs.python.org/17825
http://bugs.python.org/2382
http://bugs.python.org/18960

Issue	 #20311:	 asyncio:	 Add	 a	 granularity	 attribute	 to
BaseEventLoop:	 maximum	 between	 the	 resolution	 of	 the
BaseEventLoop.time()	method	and	 the	 resolution	of	 the	selector.
The	 granuarility	 is	 used	 in	 the	 scheduler	 to	 round	 time	 and
deadline.
Issue	 #20311:	 selectors:	 Add	 a	 resolution	 attribute	 to
BaseSelector.
Issue	 #20189:	 unittest.mock	 now	 no	 longer	 assumes	 that	 any
object	 for	 which	 it	 could	 get	 an	 inspect.Signature	 is	 a	 callable
written	in	Python.	Fix	courtesy	of	Michael	Foord.
Issue	 #20317:	 ExitStack.__exit__	 could	 create	 a	 self-referential
loop	if	an	exception	raised	by	a	cleanup	operation	already	had	its
context	 set	 correctly	 (for	 example,	 by	 the	 @contextmanager
decorator).	 The	 infinite	 loop	 this	 caused	 is	 now	 avoided	 by
checking	if	the	expected	context	is	already	set	before	trying	to	fix
it.
Issue	#20374:	Fix	build	with	GNU	readline	>=	6.3.
Issue	 #20262:	Warnings	 are	 raised	 now	 when	 duplicate	 names
are	added	in	the	ZIP	file	or	too	long	ZIP	file	comment	is	truncated.
Issue	 #20165:	 The	 unittest	 module	 no	 longer	 considers	 tests
marked	with	@expectedFailure	successful	if	they	pass.
Issue	#18574:	Added	missing	newline	in	100-Continue	reply	from
http.server.BaseHTTPRequestHandler.	Patch	by	Nikolaus	Rath.
Issue	#20270:	urllib.urlparse	now	supports	empty	ports.
Issue	#20243:	TarFile	no	longer	raise	ReadError	when	opened	in
write	mode.
Issue	 #20238:	 TarFile	 opened	 with	 external	 fileobj	 and	 “w:gz”
mode	didn’t	write	complete	output	on	close.
Issue	 #20245:	 The	 open	 functions	 in	 the	 tarfile	 module	 now
correctly	handle	empty	mode.
Issue	 #20242:	 Fixed	 basicConfig()	 format	 strings	 for	 the
alternative	 formatting	 styles.	 Thanks	 to	 kespindler	 for	 the	 bug
report	and	patch.
Issue	#20246:	Fix	buffer	overflow	in	socket.recvfrom_into.

http://bugs.python.org/20311
http://bugs.python.org/20311
http://bugs.python.org/20189
http://bugs.python.org/20317
http://bugs.python.org/20374
http://bugs.python.org/20262
http://bugs.python.org/20165
http://bugs.python.org/18574
http://bugs.python.org/20270
http://bugs.python.org/20243
http://bugs.python.org/20238
http://bugs.python.org/20245
http://bugs.python.org/20242
http://bugs.python.org/20246

Issues	 #20206	 and	 #5803:	 Fix	 edge	 case	 in
email.quoprimime.encode	 where	 it	 truncated	 lines	 ending	 in	 a
character	 needing	 encoding	 but	 no	 newline	 by	 using	 a	 more
efficient	algorithm	that	doesn’t	have	the	bug.
Issue	#19082:	Working	xmlrpc.server	and	xmlrpc.client	examples.
Both	in	modules	and	in	documentation.	Initial	patch	contributed	by
Vajrasky	Kok.
Issue	 #20138:	 The	 wsgiref.application_uri()	 and
wsgiref.request_uri()	 functions	 now	 conform	 to	 PEP	 3333	 when
handle	non-ASCII	URLs.
Issue	#19097:	Raise	the	correct	Exception	when	cgi.FieldStorage
is	given	an	invalid	fileobj.
Issue	#20152:	Ported	Python/import.c	over	to	Argument	Clinic.
Issue	 #13107:	 argparse	 and	 optparse	 no	 longer	 raises	 an
exception	 when	 output	 a	 help	 on	 environment	 with	 too	 small
COLUMNS.	Based	on	patch	by	Elazar	Gershuni.
Issue	 #20207:	 Always	 disable	 SSLv2	 except	 when
PROTOCOL_SSLv2	is	explicitly	asked	for.
Issue	 #18960:	 The	 tokenize	 module	 now	 ignore	 the	 source
encoding	 declaration	 on	 the	 second	 line	 if	 the	 first	 line	 contains
anything	except	a	comment.
Issue	 #20078:	Reading	malformed	 zipfiles	 no	 longer	 hangs	with
100%	CPU	consumption.
Issue	 #20113:	 os.readv()	 and	 os.writev()	 now	 raise	 an	 OSError
exception	on	error	instead	of	returning	-1.
Issue	#19719:	Make	 importlib.abc.MetaPathFinder.find_module(),
PathEntryFinder.find_loader(),	 and	 Loader.load_module()	 use
PEP	451	APIs	to	help	with	backwards-compatibility.
Issue	 #20144:	 inspect.Signature	 now	 supports	 parsing	 simple
symbolic	 constants	 as	 parameter	 default	 values	 in
__text_signature__.
Issue	#20072:	Fixed	multiple	errors	 in	 tkinter	with	wantobjects	 is
False.
Issue	 #20229:	 Avoid	 plistlib	 deprecation	 warning	 in

http://bugs.python.org/19082
http://bugs.python.org/20138
http://bugs.python.org/19097
http://bugs.python.org/20152
http://bugs.python.org/13107
http://bugs.python.org/20207
http://bugs.python.org/18960
http://bugs.python.org/20078
http://bugs.python.org/20113
http://bugs.python.org/19719
http://bugs.python.org/20144
http://bugs.python.org/20072
http://bugs.python.org/20229

platform.mac_ver().
Issue	 #14455:	 Fix	 some	 problems	 with	 the	 new	 binary	 plist
support	in	plistlib.

IDLE

Issue	#17390:	Add	Python	version	to	Idle	editor	window	title	bar.
Original	patches	by	Edmond	Burnett	and	Kent	Johnson.
Issue	#18960:	IDLE	now	ignores	the	source	encoding	declaration
on	 the	 second	 line	 if	 the	 first	 line	 contains	 anything	 except	 a
comment.

Tests

Issue	 #20358:	 Tests	 for	 curses.window.overlay	 and
curses.window.overwrite	 no	 longer	 specify	 min{row,col}	 >
max{row,col}.
Issue	#19804:	The	test_find_mac	test	in	test_uuid	is	now	skipped
if	the	ifconfig	executable	is	not	available.
Issue	 #19886:	 Use	 better	 estimated	 memory	 requirements	 for
bigmem	tests.

Tools/Demos

Issue	#20390:	Argument	Clinic’s	“file”	output	preset	now	defaults
to	“{dirname}/clinic/{basename}.h”.
Issue	#20390:	Argument	Clinic’s	“class”	directive	syntax	has	been
extended	 with	 two	 new	 required	 arguments:	 “typedef”	 and
“type_object”.
Issue	#20390:	Argument	Clinic:	 If	 __new__	or	__init__	 functions
didn’t	 use	 kwargs	 (or	 args),	 the	 PyArg_NoKeywords	 (or
PyArg_NoPositional)	calls	generated	are	only	 run	when	 the	 type
object	is	an	exact	match.

http://bugs.python.org/14455
http://bugs.python.org/17390
http://bugs.python.org/18960
http://bugs.python.org/20358
http://bugs.python.org/19804
http://bugs.python.org/19886
http://bugs.python.org/20390
http://bugs.python.org/20390
http://bugs.python.org/20390

Issue	 #20390:	 Argument	 Clinic	 now	 fails	 if	 you	 have	 required
parameters	after	optional	parameters.
Issue	 #20390:	 Argument	 Clinic	 converters	 now	 have	 a	 new
template	 they	can	 inject	code	 into:	 “modifiers”.	Code	put	 there	 is
run	 in	 the	parsing	function	after	argument	parsing	but	before	 the
call	to	the	impl.
Issue	 #20376:	 Argument	 Clinic	 now	 escapes	 backslashes	 in
docstrings.
Issue	 #20381:	 Argument	 Clinic	 now	 sanity	 checks	 the	 default
argument	when	c_default	is	also	specified,	providing	a	nice	failure
message	for	disallowed	values.
Issue	#20189:	Argument	Clinic	now	ensures	that	parser	functions
for	__new__	are	always	of	 type	newfunc,	 the	type	of	 the	tp_new
slot.	Similarly,	parser	functions	for	__init__	are	now	always	of	type
initproc,	the	type	of	tp_init.
Issue	#20189:	Argument	Clinic	now	suppresses	the	docstring	 for
__new__	and	__init__	functions	if	no	docstring	is	provided	in	the
input.
Issue	 #20189:	 Argument	 Clinic	 now	 suppresses	 the	 “self”
parameter	in	the	impl	for	@staticmethod	functions.
Issue	 #20294:	 Argument	 Clinic	 now	 supports	 argument	 parsing
for	__new__	and	__init__	functions.
Issue	 #20299:	 Argument	 Clinic	 custom	 converters	 may	 now
change	the	default	value	of	c_default	and	py_default	with	a	class
member.
Issue	 #20287:	 Argument	 Clinic’s	 output	 is	 now	 configurable,
allowing	delaying	its	output	or	even	redirecting	it	to	a	separate	file.
Issue	 #20226:	 Argument	 Clinic	 now	 permits	 simple	 expressions
(e.g.	“sys.maxsize	-	1”)	as	default	values	for	parameters.
Issue	#19936:	Added	executable	bits	or	shebang	lines	to	Python
scripts	which	requires	them.	Disable	executable	bits	and	shebang
lines	 in	 test	 and	 benchmark	 files	 in	 order	 to	 prevent	 using	 a
random	system	python,	and	in	source	files	of	modules	which	don’t
provide	 command	 line	 interface.	 Fixed	 shebang	 lines	 in	 the

http://bugs.python.org/20390
http://bugs.python.org/20390
http://bugs.python.org/20376
http://bugs.python.org/20381
http://bugs.python.org/20189
http://bugs.python.org/20189
http://bugs.python.org/20189
http://bugs.python.org/20294
http://bugs.python.org/20299
http://bugs.python.org/20287
http://bugs.python.org/20226
http://bugs.python.org/19936

unittestgui	and	checkpip	scripts.
Issue	 #20268:	 Argument	 Clinic	 now	 supports	 cloning	 the
parameters	and	return	converter	of	existing	functions.
Issue	#20228:	Argument	Clinic	now	has	special	support	for	class
special	methods.
Issue	#20214:	Fixed	a	number	of	small	issues	and	documentation
errors	in	Argument	Clinic	(see	issue	for	details).
Issue	 #20196:	 Fixed	 a	 bug	 where	 Argument	 Clinic	 did	 not
generate	 correct	 parsing	 code	 for	 functions	 with	 positional-only
parameters	where	all	arguments	are	optional.
Issue	#18960:	2to3	and	the	findnocoding.py	script	now	ignore	the
source	 encoding	 declaration	 on	 the	 second	 line	 if	 the	 first	 line
contains	anything	except	a	comment.
Issue	#19723:	The	marker	comments	Argument	Clinic	uses	have
been	changed	to	improve	readability.
Issue	 #20157:	 When	 Argument	 Clinic	 renames	 a	 parameter
because	its	name	collides	with	a	C	keyword,	it	no	longer	exposes
that	rename	to	PyArg_Parse.
Issue	 #20141:	 Improved	 Argument	 Clinic’s	 support	 for	 the
PyArg_Parse	“O!”	format	unit.
Issue	 #20144:	 Argument	 Clinic	 now	 supports	 simple	 symbolic
constants	as	parameter	default	values.
Issue	 #20143:	 The	 line	 numbers	 reported	 in	 Argument	 Clinic
errors	are	now	more	accurate.
Issue	#20142:	Py_buffer	variables	generated	by	Argument	Clinic
are	now	initialized	with	a	default	value.

Build

Issue	#12837:	Silence	a	tautological	comparison	warning	on	OS	X
under	Clang	in	socketmodule.c.

http://bugs.python.org/20268
http://bugs.python.org/20228
http://bugs.python.org/20214
http://bugs.python.org/20196
http://bugs.python.org/18960
http://bugs.python.org/19723
http://bugs.python.org/20157
http://bugs.python.org/20141
http://bugs.python.org/20144
http://bugs.python.org/20143
http://bugs.python.org/20142
http://bugs.python.org/12837

Python	3.4.0	Beta	2?

Release	date:	2014-01-05

Core	and	Builtins

Issue	 #17432:	 Drop	 UCS2	 from	 names	 of	 Unicode	 functions	 in
python3.def.
Issue	 #19526:	 Exclude	 all	 new	 API	 from	 the	 stable	 ABI.
Exceptions	can	be	made	if	a	need	is	demonstrated.
Issue	 #19969:	 PyBytes_FromFormatV()	 now	 raises	 an
OverflowError	if	“%c”	argument	is	not	in	range	[0;	255].
Issue	 #19995:	 %c,	 %o,	 %x,	 and	 %X	 now	 issue	 a
DeprecationWarning	 on	 non-integer	 input;	 reworded	 docs	 to
clarify	 that	 an	 integer	 type	 should	 define	 both	 __int__	 and
__index__.
Issue	 #19787:	 PyThread_set_key_value()	 now	 always	 set	 the
value.	 In	 Python	 3.3,	 the	 function	 did	 nothing	 if	 the	 key	 already
exists	(if	the	current	value	is	a	non-NULL	pointer).
Issue	 #14432:	 Remove	 the	 thread	 state	 field	 from	 the	 frame
structure.	Fix	a	crash	when	a	generator	 is	created	 in	a	C	 thread
that	 is	destroyed	while	the	generator	 is	still	used.	The	 issue	was
that	a	generator	contains	a	frame,	and	the	frame	kept	a	reference
to	 the	Python	state	of	 the	destroyed	C	 thread.	The	crash	occurs
when	a	trace	function	is	setup.
Issue	 #19576:	 PyGILState_Ensure()	 now	 initializes	 threads.	 At
startup,	 Python	 has	 no	 concrete	 GIL.	 If	 PyGILState_Ensure()	 is
called	 from	 a	 new	 thread	 for	 the	 first	 time	 and
PyEval_InitThreads()	 was	 not	 called	 yet,	 a	 GIL	 needs	 to	 be
created.
Issue	#17576:	Deprecation	warning	 emitted	 now	when	 __int__()
or	__index__()	return	not	int	instance.
Issue	 #19932:	 Fix	 typo	 in	 import.h,	 missing	 whitespaces	 in

http://bugs.python.org/17432
http://bugs.python.org/19526
http://bugs.python.org/19969
http://bugs.python.org/19995
http://bugs.python.org/19787
http://bugs.python.org/14432
http://bugs.python.org/19576
http://bugs.python.org/17576
http://bugs.python.org/19932

function	prototypes.
Issue	 #19736:	 Add	 module-level	 statvfs	 constants	 defined	 for
GNU/glibc	based	systems.
Issue	 #20097:	 Fix	 bad	 use	 of	 “self”	 in	 importlib’s
WindowsRegistryFinder.
Issue	 #19729:	 In	 str.format(),	 fix	 recursive	 expansion	 in	 format
spec.
Issue	#19638:	Fix	possible	crash	/	undefined	behaviour	from	huge
(more	than	2	billion	characters)	input	strings	in	_Py_dg_strtod.

Library

Issue	#20154:	Deadlock	in	asyncio.StreamReader.readexactly().
Issue	#16113:	Remove	sha3	module	again.
Issue	 #20111:	 pathlib.Path.with_suffix()	 now	 sanity	 checks	 the
given	suffix.
Fix	 breakage	 in	 TestSuite.countTestCases()	 introduced	 by	 issue
#11798.
Issue	 #20108:	 Avoid	 parameter	 name	 clash	 in
inspect.getcallargs().
Issue	#19918:	Fix	PurePath.relative_to()	under	Windows.
Issue	#19422:	Explicitly	disallow	non-SOCK_STREAM	sockets	in
the	ssl	module,	rather	than	silently	let	them	emit	clear	text	data.
Issue	#20046:	Locale	alias	table	no	longer	contains	entities	which
can	be	calculated.	Generalized	support	of	the	euro	modifier.
Issue	#20027:	Fixed	locale	aliases	for	devanagari	locales.
Issue	 #20067:	 Tkinter	 variables	 now	 work	 when	 wantobjects	 is
false.
Issue	 #19020:	 Tkinter	 now	 uses	 splitlist()	 instead	 of	 split()	 in
configure	methods.
Issue	 #19744:	 ensurepip	 now	 provides	 a	 better	 error	 message
when	 Python	 is	 built	 without	 SSL/TLS	 support	 (pip	 currently
requires	 that	 support	 to	 run,	 even	 if	 only	 operating	 with	 local
wheel	files)

http://bugs.python.org/19736
http://bugs.python.org/20097
http://bugs.python.org/19729
http://bugs.python.org/19638
http://bugs.python.org/20154
http://bugs.python.org/16113
http://bugs.python.org/20111
http://bugs.python.org/11798
http://bugs.python.org/20108
http://bugs.python.org/19918
http://bugs.python.org/19422
http://bugs.python.org/20046
http://bugs.python.org/20027
http://bugs.python.org/20067
http://bugs.python.org/19020
http://bugs.python.org/19744

Issue	 #19734:	 ensurepip	 now	 ignores	 all	 pip	 environment
variables	 to	 avoid	 odd	 behaviour	 based	 on	 user	 configuration
settings
Fix	TypeError	on	“setup.py	upload	–show-response”.
Issue	#20045:	Fix	“setup.py	register	–list-classifiers”.
Issue	#18879:	When	a	method	 is	 looked	up	on	a	 temporary	 file,
avoid	closing	the	file	before	the	method	is	possibly	called.
Issue	 #20037:	 Avoid	 crashes	 when	 opening	 a	 text	 file	 late	 at
interpreter	shutdown.
Issue	#19967:	Thanks	to	the	PEP	442,	asyncio.Future	now	uses	a
destructor	 to	 log	 uncaught	 exceptions,	 instead	 of	 the	 dedicated
_TracebackLogger	class.
Added	a	Task.current_task()	class	method	to	asyncio.
Issue	 #19850:	 Set	 SA_RESTART	 in	 asyncio	 when	 registering	 a
signal	handler	to	limit	EINTR	occurrences.
Implemented	write	flow	control	 in	asyncio	for	proactor	event	 loop
(Windows).
Change	 write	 buffer	 in	 asyncio	 use	 to	 avoid	 O(N**2)	 behavior.
Make	write()/sendto()	accept	bytearray/memoryview.
Issue	#20034:	Updated	alias	mapping	to	most	recent	 locale.alias
file	from	X.org	distribution	using	makelocalealias.py.
Issue	 #5815:	 Fixed	 support	 for	 locales	 with	 modifiers.	 Fixed
support	for	locale	encodings	with	hyphens.
Issue	 #20026:	 Fix	 the	 sqlite	 module	 to	 handle	 correctly	 invalid
isolation	level	(wrong	type).
Issue	 #18829:	 csv.Dialect()	 now	 checks	 type	 for	 delimiter,
escapechar	and	quotechar	fields.	Original	patch	by	Vajrasky	Kok.
Issue	#19855:	uuid.getnode()	on	Unix	now	looks	on	the	PATH	for
the	 executables	 used	 to	 find	 the	 mac	 address,	 with	 /sbin	 and
/usr/sbin	as	fallbacks.
Issue	 #20007:	 HTTPResponse.read(0)	 no	 more	 prematurely
closes	connection.	Original	patch	by	Simon	Sapin.
Issue	 #19946:	 multiprocessing	 now	 uses	 runpy	 to	 initialize
__main__	 in	 child	 processes	 when	 necessary,	 allowing	 it	 to

http://bugs.python.org/19734
http://bugs.python.org/20045
http://bugs.python.org/18879
http://bugs.python.org/20037
http://bugs.python.org/19967
http://bugs.python.org/19850
http://bugs.python.org/20034
http://bugs.python.org/5815
http://bugs.python.org/20026
http://bugs.python.org/18829
http://bugs.python.org/19855
http://bugs.python.org/20007
http://bugs.python.org/19946

correctly	handle	scripts	without	suffixes	and	submodules	that	use
explicit	relative	imports	or	otherwise	rely	on	parent	modules	being
correctly	imported	prior	to	execution.
Issue	#19921:	When	Path.mkdir()	is	called	with	parents=True,	any
missing	 parent	 is	 created	 with	 the	 default	 permissions,	 ignoring
the	mode	argument	(mimicking	the	POSIX	“mkdir	-p”	command).
Issue	 #19887:	 Improve	 the	 Path.resolve()	 algorithm	 to	 support
certain	symlink	chains.
Issue	#19912:	Fixed	numerous	bugs	in	ntpath.splitunc().
Issue	 #19911:	 ntpath.splitdrive()	 now	 correctly	 processes	 the	 ‘İ’
character	 (U+0130,	 LATIN	 CAPITAL	 LETTER	 I	 WITH	 DOT
ABOVE).
Issue	 #19532:	 python	 -m	 compileall	 with	 no	 filename/directory
arguments	 now	 respects	 the	 -f	 and	 -q	 flags	 instead	 of	 ignoring
them.
Issue	#19623:	Fixed	writing	to	unseekable	files	in	the	aifc	module.
Issue	 #19946:	 multiprocessing.spawn	 now	 raises	 ImportError
when	 the	 module	 to	 be	 used	 as	 the	 main	 module	 cannot	 be
imported.
Issue	 #17919:	 select.poll.register()	 again	 works	 with
poll.POLLNVAL	on	AIX.	Fixed	 integer	overflow	 in	 the	eventmask
parameter.
Issue	#19063:	if	a	Charset’s	body_encoding	was	set	to	None,	the
email	package	would	generate	a	message	claiming	 the	Content-
Transfer-Encoding	was	7bit,	and	produce	garbage	output	 for	 the
content.	 This	 now	 works.	 A	 couple	 of	 other	 set_payload
mishandlings	 of	 non-ASCII	 are	 also	 fixed.	 In	 addition,	 calling
set_payload	with	 a	 string	 argument	without	 specifying	 a	 charset
now	raises	an	error	(this	is	a	new	error	in	3.4).
Issue	 #15475:	 Add	 __sizeof__	 implementations	 for	 itertools
objects.
Issue	 #19944:	 Fix	 importlib.find_spec()	 so	 it	 imports	 parents	 as
needed	and	move	the	function	to	importlib.util.
Issue	#19880:	Fix	a	reference	leak	in	unittest.TestCase.	Explicitly

http://bugs.python.org/19921
http://bugs.python.org/19887
http://bugs.python.org/19912
http://bugs.python.org/19911
http://bugs.python.org/19532
http://bugs.python.org/19623
http://bugs.python.org/19946
http://bugs.python.org/17919
http://bugs.python.org/19063
http://bugs.python.org/15475
http://bugs.python.org/19944
http://bugs.python.org/19880

break	 reference	 cycles	 between	 frames	 and	 the	 _Outcome
instance.
Issue	#17429:	platform.linux_distribution()	now	decodes	files	from
the	 UTF-8	 encoding	 with	 the	 surrogateescape	 error	 handler,
instead	 of	 decoding	 from	 the	 locale	 encoding	 in	 strict	 mode.	 It
fixes	 the	 function	on	Fedora	19	which	 is	probably	 the	 first	major
distribution	 release	 with	 a	 non-ASCII	 name.	 Patch	 written	 by
Toshio	Kuratomi.
Issue	 #19343:	 Expose	 FreeBSD-specific	 APIs	 in	 resource
module.	Original	patch	by	Koobs.
Issue	 #19929:	 Call	 os.read	 with	 32768	 within
subprocess.Popen.communicate	rather	than	4096	for	efficiency.	A
microbenchmark	 shows	 Linux	 and	 OS	 X	 both	 using	 ~50%	 less
cpu	time	this	way.
Issue	 #19506:	 Use	 a	 memoryview	 to	 avoid	 a	 data	 copy	 when
piping	 data	 to	 stdin	 within	 subprocess.Popen.communicate.	 5-
10%	less	cpu	usage.
Issue	#19876:	 selectors	 unregister()	 no	 longer	 raises	ValueError
or	OSError	if	the	FD	is	closed	(as	long	as	it	was	registered).
Issue	#19908:	pathlib	now	joins	relative	Windows	paths	correctly
when	a	drive	is	present.	Original	patch	by	Antoine	Pitrou.
Issue	#19296:	Silence	compiler	warning	in	dbm_open
Issue	 #6784:	 Strings	 from	 Python	 2	 can	 now	 be	 unpickled	 as
bytes	objects	by	setting	the	encoding	argument	of	Unpickler	to	be
‘bytes’.	Initial	patch	by	Merlijn	van	Deen.
Issue	 #19839:	 Fix	 regression	 in	 bz2	 module’s	 handling	 of	 non-
bzip2	data	at	EOF,	and	analogous	bug	in	lzma	module.
Issue	 #19881:	 Fix	 pickling	 bug	 where	 cpickle	 would	 emit	 bad
pickle	data	for	large	bytes	string	(i.e.,	with	size	greater	than	2**32-
1).
Issue	 #19138:	 doctest’s	 IGNORE_EXCEPTION_DETAIL	 now
allows	a	match	when	no	exception	detail	exists	(no	colon	following
the	exception’s	name,	or	a	colon	does	 follow	but	no	 text	 follows
the	colon).

http://bugs.python.org/17429
http://bugs.python.org/19343
http://bugs.python.org/19929
http://bugs.python.org/19506
http://bugs.python.org/19876
http://bugs.python.org/19908
http://bugs.python.org/19296
http://bugs.python.org/6784
http://bugs.python.org/19839
http://bugs.python.org/19881
http://bugs.python.org/19138

Issue	#19927:	Add	__eq__	to	path-based	loaders	in	importlib.
Issue	#19827:	On	UNIX,	 setblocking()	and	settimeout()	methods
of	 socket.socket	 can	 now	 avoid	 a	 second	 syscall	 if	 the	 ioctl()
function	can	be	used,	or	 if	 the	non-blocking	 flag	of	 the	socket	 is
unchanged.
Issue	 #19785:	 smtplib	 now	 supports
SSLContext.check_hostname	 and	 server	 name	 indication	 for
TLS/SSL	connections.
Issue	#19784:	poplib	now	supports	SSLContext.check_hostname
and	server	name	indication	for	TLS/SSL	connections.
Issue	#19783:	nntplib	now	supports	SSLContext.check_hostname
and	server	name	indication	for	TLS/SSL	connections.
Issue	 #19782:	 imaplib	 now	 supports
SSLContext.check_hostname	 and	 server	 name	 indication	 for
TLS/SSL	connections.
Issue	20123:	Fix	pydoc.synopsis()	for	“binary”	modules.
Issue	#19834:	Support	unpickling	of	exceptions	pickled	by	Python
2.
Issue	 #19781:	 ftplib	 now	 supports	 SSLContext.check_hostname
and	server	name	indication	for	TLS/SSL	connections.
Issue	 #19509:	 Add	 SSLContext.check_hostname	 to	 match	 the
peer’s	certificate	with	server_hostname	on	handshake.
Issue	 #15798:	 Fixed	 subprocess.Popen()	 to	 no	 longer	 fail	 if	 file
descriptor	0,	1	or	2	is	closed.
Issue	#17897:	Optimized	unpickle	prefetching.
Issue	 #3693:	 Make	 the	 error	 message	 more	 helpful	 when	 the
array.array()	 constructor	 is	 given	 a	 str.	 Move	 the	 array	 module
typecode	documentation	to	the	docstring	of	the	constructor.
Issue	#19088:	Fixed	 incorrect	 caching	 of	 the	 copyreg	module	 in
object.__reduce__()	and	object.__reduce_ex__().
Issue	 #19698:	 Removed	 exec_module()	 methods	 from
importlib.machinery.BuiltinImporter	and	ExtensionFileLoader.
Issue	#18864:	Added	a	setter	for	ModuleSpec.has_location.
Fixed	_pickle.Unpickler	 to	not	 fail	when	 loading	empty	strings	as

http://bugs.python.org/19927
http://bugs.python.org/19827
http://bugs.python.org/19785
http://bugs.python.org/19784
http://bugs.python.org/19783
http://bugs.python.org/19782
http://bugs.python.org/19834
http://bugs.python.org/19781
http://bugs.python.org/19509
http://bugs.python.org/15798
http://bugs.python.org/17897
http://bugs.python.org/3693
http://bugs.python.org/19088
http://bugs.python.org/19698
http://bugs.python.org/18864

persistent	IDs.
Issue	#11480:	Fixed	copy.copy	 to	work	with	classes	with	custom
metaclasses.	Patch	by	Daniel	Urban.
Issue	 #6477:	 Added	 support	 for	 pickling	 the	 types	 of	 built-in
singletons	(i.e.,	Ellipsis,	NotImplemented,	None).
Issue	#19713:	Add	remaining	PEP	451-related	deprecations	and
move	away	from	using	find_module/find_loaer/load_module.
Issue	#19708:	Update	pkgutil	to	use	the	new	importer	APIs.
Issue	#19703:	Update	pydoc	to	use	the	new	importer	APIs.
Issue	#19851:	Fixed	a	regression	in	reloading	sub-modules.
ssl.create_default_context()	 sets	 OP_NO_COMPRESSION	 to
prevent	CRIME.
Issue	#19802:	Add	socket.SO_PRIORITY.
Issue	 #11508:	 Fixed	 uuid.getnode()	 and	 uuid.uuid1()	 on
environment	with	virtual	interface.	Original	patch	by	Kent	Frazier.
Issue	#11489:	JSON	decoder	now	accepts	lone	surrogates.
Issue	#19545:	Avoid	chained	exceptions	while	passing	stray	%	to
time.strptime().	Initial	patch	by	Claudiu	Popa.

IDLE

Issue	 #20058:	 sys.stdin.readline()	 in	 IDLE	 now	 always	 returns
only	one	line.
Issue	#19481:	print()	of	string	subclass	instance	in	IDLE	no	longer
hangs.
Issue	 #18270:	 Prevent	 possible	 IDLE	 AttributeError	 on	 OS	 X
when	no	initial	shell	window	is	present.

Tests

Issue	 #20055:	 Fix	 test_shutil	 under	 Windows	 with	 symlink
privileges	held.	Patch	by	Vajrasky	Kok.
Issue	 #20070:	Don’t	 run	 test_urllib2net	when	 network	 resources

http://bugs.python.org/11480
http://bugs.python.org/6477
http://bugs.python.org/19713
http://bugs.python.org/19708
http://bugs.python.org/19703
http://bugs.python.org/19851
http://bugs.python.org/19802
http://bugs.python.org/11508
http://bugs.python.org/11489
http://bugs.python.org/19545
http://bugs.python.org/20058
http://bugs.python.org/19481
http://bugs.python.org/18270
http://bugs.python.org/20055
http://bugs.python.org/20070

are	not	enabled.
Issue	 #19938:	 Re-enabled	 test_bug_1333982	 in	 test_dis,	 which
had	 been	 disabled	 since	 3.0	 due	 to	 the	 changes	 in	 listcomp
handling.
Issue	#19320:	test_tcl	no	longer	fails	when	wantobjects	is	false.
Issue	#19919:	Fix	flaky	SSL	test.	connect_ex()	sometimes	returns
EWOULDBLOCK	on	Windows	or	VMs	hosted	on	Windows.
Issue	#19912:	Added	tests	for	ntpath.splitunc().
Issue	#19828:	Fixed	test_site	when	the	whole	suite	is	run	with	-S.
Issue	#19928:	Implemented	a	test	for	repr()	of	cell	objects.
Issue	#19535:	Fixed	test_docxmlrpc,	test_functools,	test_inspect,
and	test_statistics	when	python	is	run	with	-OO.
Issue	 #19926:	 Removed	 unneeded	 test_main	 from
test_abstract_numbers.	Patch	by	Vajrasky	Kok.
Issue	#19572:	More	skipped	tests	explicitly	marked	as	skipped.
Issue	 #19595,	 #19987:	 Re-enabled	 a	 long-disabled	 test	 in
test_winsound.
Issue	 #19588:	 Fixed	 tests	 in	 test_random	 that	 were	 silently
skipped	most	of	the	time.	Patch	by	Julian	Gindi.

Build

Issue	#19728:	Enable	pip	installation	by	default	on	Windows.
Issue	#16136:	Remove	VMS	support
Issue	 #18215:	 Add	 script	 Tools/ssl/test_multiple_versions.py	 to
compile	 and	 run	 Python’s	 unit	 tests	 with	 multiple	 versions	 of
OpenSSL.
Issue	 #19922:	 define	 _INCLUDE__STDC_A1_SOURCE	 in	 HP-
UX	to	include	mbstate_t	for	mbrtowc().
Issue	#19788:	kill_python(_d).exe	 is	now	run	as	a	PreBuildEvent
on	 the	 pythoncore	 sub-project.	 This	 should	 prevent	 build	 errors
due	a	previous	build’s	python(_d).exe	still	running.

http://bugs.python.org/19938
http://bugs.python.org/19320
http://bugs.python.org/19919
http://bugs.python.org/19912
http://bugs.python.org/19828
http://bugs.python.org/19928
http://bugs.python.org/19535
http://bugs.python.org/19926
http://bugs.python.org/19572
http://bugs.python.org/19595
http://bugs.python.org/19588
http://bugs.python.org/19728
http://bugs.python.org/16136
http://bugs.python.org/18215
http://bugs.python.org/19922
http://bugs.python.org/19788

Documentation

Issue	 #20265:	 Updated	 some	 parts	 of	 the	 Using	 Windows
document.
Issue	#20266:	Updated	some	parts	of	the	Windows	FAQ.
Issue	#20255:	Updated	the	about	and	bugs	pages.
Issue	#20253:	Fixed	a	typo	in	the	ipaddress	docs	that	advertised
an	illegal	attribute	name.	Found	by	INADA	Naoki.
Issue	#18840:	 Introduce	 the	 json	module	 in	 the	 tutorial,	 and	de-
emphasize	the	pickle	module.
Issue	 #19845:	 Updated	 the	 Compiling	 Python	 on	 Windows
section.
Issue	#19795:	Improved	markup	of	True/False	constants.

Tools/Demos

Issue	#19659:	Added	documentation	for	Argument	Clinic.
Issue	 #19976:	 Argument	 Clinic	 METH_NOARGS	 functions	 now
always	take	two	parameters.

http://bugs.python.org/20265
http://bugs.python.org/20266
http://bugs.python.org/20255
http://bugs.python.org/20253
http://bugs.python.org/18840
http://bugs.python.org/19845
http://bugs.python.org/19795
http://bugs.python.org/19659
http://bugs.python.org/19976

Python	3.4.0	Beta	1?

Release	date:	2013-11-24

Core	and	Builtins

Use	 the	 repr	 of	 a	 module	 name	 in	 more	 places	 in	 import,
especially	exceptions.
Issue	 #19619:	 str.encode,	 bytes.decode	 and	 bytearray.decode
now	use	an	internal	API	to	throw	LookupError	for	known	non-text
encodings,	 rather	 than	 attempting	 the	 encoding	 or	 decoding
operation	and	then	throwing	a	TypeError	for	an	unexpected	output
type.	(The	latter	mechanism	remains	in	place	for	third	party	non-
text	encodings)
Issue	 #19183:	 Implement	PEP	456	 ‘secure	 and	 interchangeable
hash	 algorithm’.	 Python	 now	 uses	 SipHash24	 on	 all	 major
platforms.
Issue	#12892:	The	utf-16*	 and	utf-32*	 encoders	 no	 longer	 allow
surrogate	code	points	(U+D800-U+DFFF)	to	be	encoded.	The	utf-
32*	decoders	no	 longer	decode	byte	sequences	 that	correspond
to	 surrogate	 code	 points.	 The	 surrogatepass	 error	 handler	 now
works	with	 the	utf-16*	and	utf-32*	codecs.	Based	on	patches	by
Victor	Stinner	and	Kang-Hao	(Kenny)	Lu.
Issue	#17806:	Added	 keyword-argument	 support	 for	 “tabsize”	 to
str/bytes.expandtabs().
Issue	#17828:	Output	 type	errors	 in	 str.encode(),	 bytes.decode()
and	 bytearray.decode()	 now	 direct	 users	 to	 codecs.encode()	 or
codecs.decode()	as	appropriate.
Issue	 #17828:	 The	 interpreter	 now	attempts	 to	 chain	 errors	 that
occur	 in	 codec	 processing	 with	 a	 replacement	 exception	 of	 the
same	type	that	includes	the	codec	name	in	the	error	message.	It
ensures	 it	 only	 does	 this	 when	 the	 creation	 of	 the	 replacement
exception	won’t	lose	any	information.

http://bugs.python.org/19619
http://bugs.python.org/19183
http://bugs.python.org/12892
http://bugs.python.org/17806
http://bugs.python.org/17828
http://bugs.python.org/17828

Issue	#19466:	Clear	the	frames	of	daemon	threads	earlier	during
the	Python	shutdown	to	call	objects	destructors.	So	“unclosed	file”
resource	warnings	are	now	corretly	emitted	for	daemon	threads.
Issue	#19514:	Deduplicate	 some	_Py_IDENTIFIER	declarations.
Patch	by	Andrei	Dorian	Duma.
Issue	 #17936:	 Fix	 O(n**2)	 behaviour	 when	 adding	 or	 removing
many	subclasses	of	a	given	type.
Issue	 #19428:	 zipimport	 now	 handles	 errors	 when	 reading
truncated	or	invalid	ZIP	archive.
Issue	 #18408:	 Add	 a	 new	 PyFrame_FastToLocalsWithError()
function	 to	 handle	 exceptions	 when	 merging	 fast	 locals	 into
f_locals	of	a	frame.	PyEval_GetLocals()	now	raises	an	exception
and	return	NULL	on	failure.
Issue	#19369:	Optimized	the	usage	of	__length_hint__().
Issue	 #18603:	 Ensure	 that	 PyOS_mystricmp	 and
PyOS_mystrnicmp	are	in	the	Python	executable	and	not	removed
by	the	linker’s	optimizer.
Issue	#19306:	Add	extra	hints	 to	 the	faulthandler	module’s	stack
dumps	that	these	are	“upside	down”.

Library

Issue	 #3158:	 doctest	 can	 now	 find	 doctests	 in	 functions	 and
methods	written	in	C.
Issue	 #13477:	 Added	 command	 line	 interface	 to	 the	 tarfile
module.	Original	patch	by	Berker	Peksag.
Issue	 #19674:	 inspect.signature()	 now	 produces	 a	 correct
signature	for	some	builtins.
Issue	#19722:	Added	opcode.stack_effect(),	which	computes	 the
stack	effect	of	bytecode	instructions.
Issue	 #19735:	 Implement	 private	 function
ssl._create_stdlib_context()	 to	 create	 SSLContext	 objects	 in
Python’s	stdlib	module.	It	provides	a	single	configuration	point	and
makes	use	of	SSLContext.load_default_certs().

http://bugs.python.org/19466
http://bugs.python.org/19514
http://bugs.python.org/17936
http://bugs.python.org/19428
http://bugs.python.org/18408
http://bugs.python.org/19369
http://bugs.python.org/18603
http://bugs.python.org/19306
http://bugs.python.org/3158
http://bugs.python.org/13477
http://bugs.python.org/19674
http://bugs.python.org/19722
http://bugs.python.org/19735

Issue	 #16203:	 Add	 re.fullmatch()	 function	 and	 regex.fullmatch()
method,	 which	 anchor	 the	 pattern	 at	 both	 ends	 of	 the	 string	 to
match.	Original	patch	by	Matthew	Barnett.
Issue	 #13592:	 Improved	 the	 repr	 for	 regular	 expression	 pattern
objects.	Based	on	patch	by	Hugo	Lopes	Tavares.
Issue	#19641:	Added	 the	audioop.byteswap()	 function	 to	convert
big-endian	samples	to	little-endian	and	vice	versa.
Issue	#15204:	Deprecated	the	‘U’	mode	in	file-like	objects.
Issue	#17810:	Implement	PEP	3154,	pickle	protocol	4.
Issue	#19668:	Added	support	for	the	cp1125	encoding.
Issue	#19689:	Add	ssl.create_default_context()	factory	function.	It
creates	a	new	SSLContext	object	with	secure	default	settings.
Issue	#19727:	os.utime(...,	None)	is	now	potentially	more	precise
under	Windows.
Issue	 #17201:	 ZIP64	 extensions	 now	 are	 enabled	 by	 default.
Patch	by	William	Mallard.
Issue	 #19292:	 Add	 SSLContext.load_default_certs()	 to	 load
default	 root	CA	certificates	 from	default	 stores	or	 system	stores.
By	default	the	method	loads	CA	certs	for	authentication	of	server
certs.
Issue	 #19673:	 Add	 pathlib	 to	 the	 stdlib	 as	 a	 provisional	module
(PEP	428).
Issue	 #16596:	 pdb	 in	 a	 generator	 now	properly	 skips	 over	 yield
and	 yield	 from	 rather	 than	 stepping	 out	 of	 the	 generator	 into	 its
caller.	(This	is	essential	for	stepping	through	asyncio	coroutines.)
Issue	 #17916:	 Added	 dis.Bytecode.from_traceback()	 and
dis.Bytecode.current_offset	 to	 easily	 display	 “current	 instruction”
markers	in	the	new	disassembly	API	(Patch	by	Claudiu	Popa).
Issue	 #19552:	 venv	 now	 supports	 bootstrapping	 pip	 into	 virtual
environments
Issue	#17134:	Finalize	interface	to	Windows’	certificate	store.	Cert
and	CRL	enumeration	are	now	two	functions.	enum_certificates()
also	returns	purpose	flags	as	set	of	OIDs.
Issue	 #19555:	 Restore	 sysconfig.get_config_var(‘SO’),	 (and	 the

http://bugs.python.org/16203
http://bugs.python.org/13592
http://bugs.python.org/19641
http://bugs.python.org/15204
http://bugs.python.org/17810
http://bugs.python.org/19668
http://bugs.python.org/19689
http://bugs.python.org/19727
http://bugs.python.org/17201
http://bugs.python.org/19292
http://bugs.python.org/19673
http://bugs.python.org/16596
http://bugs.python.org/17916
http://bugs.python.org/19552
http://bugs.python.org/17134
http://bugs.python.org/19555

distutils	equivalent)	with	a	DeprecationWarning	pointing	people	at
$EXT_SUFFIX.
Issue	 #8813:	 Add	 SSLContext.verify_flags	 to	 change	 the
verification	 flags	 of	 the	 context	 in	 order	 to	 enable	 certification
revocation	list	(CRL)	checks	or	strict	X509	rules.
Issue	#18294:	Fix	the	zlib	module	to	make	it	64-bit	safe.
Issue	#19682:	Fix	compatibility	issue	with	old	version	of	OpenSSL
that	was	introduced	by	Issue	#18379.
Issue	 #14455:	 plistlib	 now	 supports	 binary	 plists	 and	 has	 an
updated	API.
Issue	#19633:	Fixed	writing	not	compressed	16-	and	32-bit	wave
files	on	big-endian	platforms.
Issue	 #18379:	 SSLSocket.getpeercert()	 returns	 CA	 issuer	 AIA
fields,	OCSP	and	CRL	distribution	points.
Issue	 #18138:	 Implement	 cadata	 argument	 of
SSLContext.load_verify_location()	to	load	CA	certificates	and	CRL
from	memory.	It	supports	PEM	and	DER	encoded	strings.
Issue	 #18775:	 Add	 name	 and	 block_size	 attribute	 to	 HMAC
object.	 They	 now	provide	 the	 same	API	 elements	 as	 non-keyed
cryptographic	hash	functions.
Issue	 #17276:	 MD5	 as	 default	 digestmod	 for	 HMAC	 is
deprecated.	The	HMAC	module	supports	digestmod	names,	e.g.
hmac.HMAC(‘sha1’).
Issue	 #19449:	 in	 csv’s	 writerow,	 handle	 non-string	 keys	 when
generating	 the	 error	 message	 that	 certain	 keys	 are	 not	 in	 the
‘fieldnames’	list.
Issue	 #13633:	 Added	 a	 new	 convert_charrefs	 keyword	 arg	 to
HTMLParser	that,	when	True,	automatically	converts	all	character
references.
Issue	#2927:	Added	the	unescape()	function	to	the	html	module.
Issue	#8402:	Added	the	escape()	function	to	the	glob	module.
Issue	#17618:	Add	Base85	and	Ascii85	encoding/decoding	to	the
base64	module.
Issue	#19634:	time.strftime(“%y”)	now	raises	a	ValueError	on	AIX

http://bugs.python.org/8813
http://bugs.python.org/18294
http://bugs.python.org/19682
http://bugs.python.org/18379
http://bugs.python.org/14455
http://bugs.python.org/19633
http://bugs.python.org/18379
http://bugs.python.org/18138
http://bugs.python.org/18775
http://bugs.python.org/17276
http://bugs.python.org/19449
http://bugs.python.org/13633
http://bugs.python.org/2927
http://bugs.python.org/8402
http://bugs.python.org/17618
http://bugs.python.org/19634

when	given	a	year	before	1900.
Fix	 test.support.bind_port()	 to	 not	 cause	 an	 error	 when	 Python
was	compiled	on	a	system	with	SO_REUSEPORT	defined	in	the
headers	 but	 run	 on	 a	 system	 with	 an	 OS	 kernel	 that	 does	 not
support	that	reasonably	new	socket	option.
Fix	compilation	error	under	gcc	of	the	ctypes	module	bundled	libffi
for	arm.
Issue	 #19448:	Add	 private	API	 to	SSL	module	 to	 lookup	ASN.1
objects	by	OID,	NID,	short	name	and	long	name.
Issue	 #19282:	 dbm.open	 now	 supports	 the	 context	 manager
protocol.	(Inital	patch	by	Claudiu	Popa)
Issue	 #8311:	Added	 support	 for	writing	 any	 bytes-like	 objects	 in
the	aifc,	sunau,	and	wave	modules.
Issue	 #5202:	 Added	 support	 for	 unseekable	 files	 in	 the	 wave
module.
Issue	 #19544	 and	 Issue	 #1180:	 Restore	 global	 option	 to	 ignore
~/.pydistutils.cfg	 in	 Distutils,	 accidentally	 removed	 in	 backout	 of
distutils2	changes.
Issue	 #19523:	 Closed	 FileHandler	 leak	 which	 occurred	 when
delay	was	set.
Issue	#19544	and	#6516:	Restore	support	 for	–user	and	–group
parameters	 to	sdist	command	accidentally	 rolled	back	as	part	of
the	distutils2	rollback.
Issue	#13674:	Prevented	time.strftime	from	crashing	on	Windows
when	given	a	year	before	1900	and	a	format	of	%y.
Issue	 #19406:	 implementation	 of	 the	 ensurepip	 module	 (part	 of
PEP	453).	Patch	by	Donald	Stufft	and	Nick	Coghlan.
Issue	 #19544	 and	 Issue	 #6286:	 Restore	 use	 of	 urllib	 over	 http
allowing	use	of	http_proxy	for	Distutils	upload	command,	a	feature
accidentally	lost	in	the	rollback	of	distutils2.
Issue	#19544	and	Issue	#7457:	Restore	the	read_pkg_file	method
to	 distutils.dist.DistributionMetadata	 accidentally	 removed	 in	 the
undo	of	distutils2.
Issue	 #16685:	 Added	 support	 for	 any	 bytes-like	 objects	 in	 the

http://bugs.python.org/19448
http://bugs.python.org/19282
http://bugs.python.org/8311
http://bugs.python.org/5202
http://bugs.python.org/19544
http://bugs.python.org/1180
http://bugs.python.org/19523
http://bugs.python.org/19544
http://bugs.python.org/13674
http://bugs.python.org/19406
http://bugs.python.org/19544
http://bugs.python.org/6286
http://bugs.python.org/19544
http://bugs.python.org/7457
http://bugs.python.org/16685

audioop	module.	Removed	support	for	strings.
Issue	 #7171:	 Add	Windows	 implementation	 of	 inet_ntop	 and
inet_pton	to	socket	module.	Patch	by	Atsuo	Ishimoto.
Issue	 #19261:	 Added	 support	 for	 writing	 24-bit	 samples	 in	 the
sunau	module.
Issue	 #1097797:	 Added	 CP273	 encoding,	 used	 on	 IBM
mainframes	 in	 Germany	 and	 Austria.	 Mapping	 provided	 by
Michael	Bierenfeld.
Issue	#1575020:	Fixed	support	of	24-bit	wave	files	on	big-endian
platforms.
Issue	#19378:	Fixed	a	number	of	cases	in	the	dis	module	where
the	new	“file”	parameter	was	not	being	honoured	correctly
Issue	#19378:	Removed	the	“dis.Bytecode.show_info”	method
Issue	#19378:	Renamed	the	“dis.Bytecode.display_code”	method
to	 “dis.Bytecode.dis”	and	converted	 it	 to	 returning	a	string	 rather
than	printing	output.
Issue	 #19378:	 the	 “line_offset”	 parameter	 in	 the	 new
“dis.get_instructions”	 API	 has	 been	 renamed	 to	 “first_line”	 (and
the	 default	 value	 and	 usage	 changed	 accordingly).	 This	 should
reduce	confusion	with	the	more	common	use	of	“offset”	in	the	dis
docs	to	refer	to	bytecode	offsets.
Issue	 #18678:	 Corrected	 spwd	 struct	 member	 names	 in	 spwd
module:	 sp_nam->sp_namp,	 and	 sp_pwd->sp_pwdp.	 The	 old
names	 are	 kept	 as	 extra	 structseq	 members,	 for	 backward
compatibility.
Issue	 #6157:	 Fixed	 tkinter.Text.debug().	 tkinter.Text.bbox()	 now
raises	 TypeError	 instead	 of	 TclError	 on	 wrong	 number	 of
arguments.	Original	patch	by	Guilherme	Polo.
Issue	 #10197:	 Rework	 subprocess.get[status]output	 to	 use
subprocess	functionality	and	thus	to	work	on	Windows.	Patch	by
Nick	Coghlan
Issue	#6160:	The	bbox()	method	of	tkinter.Spinbox	now	returns	a
tuple	of	integers	instead	of	a	string.	Based	on	patch	by	Guilherme
Polo.

http://bugs.python.org/7171
http://bugs.python.org/19261
http://bugs.python.org/1097797
http://bugs.python.org/1575020
http://bugs.python.org/19378
http://bugs.python.org/19378
http://bugs.python.org/19378
http://bugs.python.org/19378
http://bugs.python.org/18678
http://bugs.python.org/6157
http://bugs.python.org/10197
http://bugs.python.org/6160

Issue	#19403:	contextlib.redirect_stdout	is	now	reentrant
Issue	#19286:	Directories	in	package_data	are	no	longer	added
to	the	filelist,	preventing	failure	outlined	in	the	ticket.
Issue	#19480:	HTMLParser	now	accepts	all	valid	start-tag	names
as	defined	by	the	HTML5	standard.
Issue	 #15114:	 The	 html.parser	 module	 now	 raises	 a
DeprecationWarning	when	 the	strict	argument	of	HTMLParser	or
the	HTMLParser.error	method	are	used.
Issue	 #19410:	 Undo	 the	 special-casing	 removal	 of	 ‘’	 for
importlib.machinery.FileFinder.
Issue	 #19424:	 Fix	 the	 warnings	 module	 to	 accept	 filename
containing	surrogate	characters.
Issue	 #19435:	 Fix	 directory	 traversal	 attack	 on
CGIHttpRequestHandler.
Issue	#19227:	Remove	pthread_atfork()	handler.	The	handler	was
added	to	solve	#18747	but	has	caused	issues.
Issue	 #19420:	 Fix	 reference	 leak	 in	module	 initalization	 code	 of
_hashopenssl.c
Issue	 #19329:	 Optimized	 compiling	 charsets	 in	 regular
expressions.
Issue	 #19227:	 Try	 to	 fix	 deadlocks	 caused	 by	 re-seeding	 then
OpenSSL	pseudo-random	number	generator	on	fork().
Issue	 #16037:	 HTTPMessage.readheaders()	 raises	 an
HTTPException	when	more	than	100	headers	are	read.	Adapted
from	patch	by	Jyrki	Pulliainen.
Issue	 #16040:	 CVE-2013-1752:	 nntplib:	 Limit	 maximum	 line
lengths	 to	 2048	 to	 prevent	 readline()	 calls	 from	 consuming	 too
much	memory.	Patch	by	Jyrki	Pulliainen.
Issue	 #16041:	 CVE-2013-1752:	 poplib:	 Limit	 maximum	 line
lengths	 to	 2048	 to	 prevent	 readline()	 calls	 from	 consuming	 too
much	memory.	Patch	by	Jyrki	Pulliainen.
Issue	#17997:	Change	behavior	of	ssl.match_hostname()	 to
follow	 RFC	 6125,	 for	 security	 reasons.	 It	 now	 doesn’t	 match
multiple	wildcards	nor	wildcards	inside	IDN	fragments.

http://bugs.python.org/19403
http://bugs.python.org/19286
http://bugs.python.org/19480
http://bugs.python.org/15114
http://bugs.python.org/19410
http://bugs.python.org/19424
http://bugs.python.org/19435
http://bugs.python.org/19227
http://bugs.python.org/19420
http://bugs.python.org/19329
http://bugs.python.org/19227
http://bugs.python.org/16037
http://bugs.python.org/16040
http://bugs.python.org/16041
http://bugs.python.org/17997

Issue	#16039:	CVE-2013-1752:	Change	use	of	readline	in	imaplib
module	to	limit	line	length.	Patch	by	Emil	Lind.
Issue	 #19330:	 the	 unnecessary	 wrapper	 functions	 have	 been
removed	 from	 the	 implementations	 of	 the	 new
contextlib.redirect_stdout	 and	 contextlib.suppress	 context
managers,	 which	 also	 ensures	 they	 provide	 reasonable	 help()
output	on	instances
Issue	#19393:	Fix	symtable.symtable	function	to	not	be	confused
when	there	are	functions	or	classes	named	“top”.
Issue	#18685:	Restore	re	performance	to	pre-PEP	393	levels.
Issue	 #19339:	 telnetlib	 module	 is	 now	 using	 time.monotonic()
when	available	to	compute	timeout.
Issue	#19399:	fix	sporadic	test_subprocess	failure.
Issue	 #13234:	 Fix	 os.listdir	 to	 work	 with	 extended	 paths	 on
Windows.	Patch	by	Santoso	Wijaya.
Issue	#19375:	The	site	module	adding	a	“site-python”	directory	to
sys.path,	if	it	exists,	is	now	deprecated.
Issue	#19379:	Lazily	import	linecache	in	the	warnings	module,	to
make	startup	with	warnings	faster	until	a	warning	gets	printed.
Issue	#19288:	 Fixed	 the	 “in”	 operator	 of	 dbm.gnu	 databases	 for
string	 argument.	 Original	 patch	 by	 Arfrever	 Frehtes	 Taifersar
Arahesis.
Issue	#19287:	Fixed	the	“in”	operator	of	dbm.ndbm	databases	for
string	 argument.	 Original	 patch	 by	 Arfrever	 Frehtes	 Taifersar
Arahesis.
Issue	#19327:	Fixed	 the	working	of	 regular	expressions	with	 too
big	charset.
Issue	#17400:	New	 ‘is_global’	 attribute	 for	 ipaddress	 to	 tell	 if	 an
address	is	allocated	by	IANA	for	global	or	private	networks.
Issue	#19350:	Increasing	the	test	coverage	of	macurl2path.	Patch
by	Colin	Williams.
Issue	#19365:	Optimized	the	parsing	of	long	replacement	string	in
re.sub*()	functions.
Issue	 #19352:	 Fix	 unittest	 discovery	 when	 a	 module	 can	 be

http://bugs.python.org/16039
http://bugs.python.org/19330
http://bugs.python.org/19393
http://bugs.python.org/18685
http://bugs.python.org/19339
http://bugs.python.org/19399
http://bugs.python.org/13234
http://bugs.python.org/19375
http://bugs.python.org/19379
http://bugs.python.org/19288
http://bugs.python.org/19287
http://bugs.python.org/19327
http://bugs.python.org/17400
http://bugs.python.org/19350
http://bugs.python.org/19365
http://bugs.python.org/19352

reached	 through	 several	 paths	 (e.g.	 under	 Debian/Ubuntu	 with
virtualenv).
Issue	 #15207:	 Fix	 mimetypes	 to	 read	 from	 correct	 part	 of
Windows	registry	Original	patch	by	Dave	Chambers
Issue	#16595:	Add	prlimit()	to	resource	module.
Issue	 #19324:	 Expose	 Linux-specific	 constants	 in	 resource
module.
Issue	#17400:	 ipaddress	should	make	 it	easy	 to	 identify	 rfc6598
addresses.
Load	SSL’s	error	strings	in	hashlib.
Issue	#18527:	Upgrade	internal	copy	of	zlib	to	1.2.8.
Issue	#19274:	Add	a	filterfunc	parameter	to	PyZipFile.writepy.
Issue	#8964:	fix	platform._sys_version	to	handle	IronPython	2.6+.
Patch	by	Martin	Matusiak.
Issue	 #19413:	 Restore	 pre-3.3	 reload()	 semantics	 of	 re-finding
modules.
Issue	 #18958:	 Improve	 error	 message	 for	 json.load(s)	 while
passing	a	string	that	starts	with	a	UTF-8	BOM.
Issue	 #19307:	 Improve	 error	 message	 for	 json.load(s)	 while
passing	objects	of	the	wrong	type.
Issue	#16038:	CVE-2013-1752:	 ftplib:	Limit	amount	of	data	 read
by	 limiting	 the	 call	 to	 readline().	 Original	 patch	 by	 Michał
Jastrzębski	and	Giampaolo	Rodola.
Issue	 #17087:	 Improved	 the	 repr	 for	 regular	 expression	 match
objects.

Tests

Issue	#19664:	test_userdict’s	repr	test	no	 longer	depends	on	the
order	of	dict	elements.
Issue	 #19440:	 Clean	 up	 test_capi	 by	 removing	 an	 unnecessary
__future__	import,	converting	from	test_main	to	unittest.main,	and
running	 the	 _testcapi	 module	 tests	 as	 subTests	 of	 a	 unittest
TestCase	method.

http://bugs.python.org/15207
http://bugs.python.org/16595
http://bugs.python.org/19324
http://bugs.python.org/17400
http://bugs.python.org/18527
http://bugs.python.org/19274
http://bugs.python.org/8964
http://bugs.python.org/19413
http://bugs.python.org/18958
http://bugs.python.org/19307
http://bugs.python.org/16038
http://bugs.python.org/17087
http://bugs.python.org/19664
http://bugs.python.org/19440

Issue	#19378:	 the	main	 dis	module	 tests	 are	 now	 run	with	 both
stdout	redirection	and	passing	an	explicit	file	parameter
Issue	 #19378:	 removed	 the	 not-actually-helpful
assertInstructionMatches	 and	 assertBytecodeExactlyMatches
helpers	from	bytecode_helper
Issue	#18702:	All	skipped	tests	now	reported	as	skipped.
Issue	#19439:	 interpreter	embedding	 tests	are	now	executed	on
Windows	(Patch	by	Zachary	Ware)
Issue	#19085:	Added	basic	tests	for	all	tkinter	widget	options.
Issue	19384:	Fix	test_py_compile	for	root	user,	patch	by	Claudiu
Popa.

Documentation

Issue	#18326:	Clarify	 that	 list.sort’s	arguments	are	keyword-only.
Also,	 attempt	 to	 reduce	 confusion	 in	 the	 glossary	 by	 not	 saying
there	are	different	“types”	of	arguments	and	parameters.

Build

Issue	 #19358:	 “make	 clinic”	 now	 runs	 the	 Argument	 Clinic
preprocessor	over	all	CPython	source	files.

Update	 SQLite	 to	 3.8.1,	 xz	 to	 5.0.5,	 and	 Tcl/Tk	 to	 8.6.1	 on
Windows.

Issue	#16632:	Enable	DEP	and	ASLR	on	Windows.

Issue	#17791:	Drop	PREFIX	and	EXEC_PREFIX	definitions	from
PC/pyconfig.h

Add	workaround	for	VS	2010	nmake	clean	issue.	VS	2010	doesn’t
set	up	PATH	for	nmake.exe	correctly.

http://bugs.python.org/19378
http://bugs.python.org/19378
http://bugs.python.org/18702
http://bugs.python.org/19439
http://bugs.python.org/19085
http://bugs.python.org/18326
http://bugs.python.org/19358
http://bugs.python.org/16632
http://bugs.python.org/17791

Issue	#19550:	Implement	Windows	installer	changes	of	PEP	453
(ensurepip).

Issue	#19520:	Fix	compiler	warning	in	the	_sha3	module	on	32bit
Windows.

Issue	 #19356:	 Avoid	 using	 a	 C	 variabled	 named	 “_self”,	 it’s	 a
reserved	word	in	some	C	compilers.

Issue	#15792:	Correct	build	options	on	Win64.	Patch	by	Jeremy
Kloth.

Issue	#19373:	Apply	 upstream	change	 to	Tk	 8.5.15	 fixing	OS	X
10.9	screen	refresh	problem	for	OS	X	installer	build.

Issue	 #19649:	 On	 OS	 X,	 the	 same	 set	 of	 file	 names	 are	 now
installed	in	bin	directories	for	all	configurations:	non-framework	vs
framework,	 and	 single	 arch	 vs	 universal	 builds.	 pythonx.y-32	 is
now	 always	 installed	 for	 64-bit/32-bit	 universal	 builds.	 The
obsolete	 and	 undocumented	 pythonw*	 symlinks	 are	 no	 longer
installed	anywhere.

Issue	#19553:	PEP	453	-	“make	install”	and	“make	altinstall”	now
install	or	upgrade	pip	by	default,	using	 the	bundled	pip	provided
by	 the	 new	 ensurepip	 module.	 A	 new	 configure	 option,	 –with-
ensurepip[=upgrade|install|no],	is	available	to	override	the	default
ensurepip	 “–upgrade”	 option.	 The	 option	 can	 also	 be	 set	 with
“make	[alt]install	ENSUREPIP=[upgrade|installno]”.

Issue	#19551:	PEP	453	 -	 the	OS	X	 installer	 now	 installs	 pip	 by
default.

Update	third-party	libraries	for	OS	X	installers:
xz	5.0.3	->	5.0.5	SQLite	3.7.13	->	3.8.1

http://bugs.python.org/19550
http://bugs.python.org/19520
http://bugs.python.org/19356
http://bugs.python.org/15792
http://bugs.python.org/19373
http://bugs.python.org/19649
http://bugs.python.org/19553
http://bugs.python.org/19551

Issue	 #15663:	 Revert	 OS	 X	 installer	 built-in	 Tcl/Tk	 support	 for
3.4.0b1.	 Some	 third-party	 projects,	 such	 as	 Matplotlib	 and
PIL/Pillow,	 depended	 on	 being	 able	 to	 build	 with	 Tcl	 and	 Tk
frameworks	in	/Library/Frameworks.

Tools/Demos

Issue	 #19730:	 Argument	 Clinic	 now	 supports	 all	 the	 existing
PyArg	 “format	 units”	 as	 legacy	 converters,	 as	 well	 as	 two	 new
features:	“self	converters”	and	the	“version”	directive.
Issue	 #19552:	 pyvenv	 now	 bootstraps	 pip	 into	 virtual
environments	 by	 default	 (pass	 –without-pip	 to	 request	 the	 old
behaviour)
Issue	 #19390:	 Argument	 Clinic	 no	 longer	 accepts	 malformed
Python	and	C	ids.

http://bugs.python.org/15663
http://bugs.python.org/19730
http://bugs.python.org/19552
http://bugs.python.org/19390

Python	3.4.0	Alpha	4?

Release	date:	2013-10-20

Core	and	Builtins

Issue	 #19301:	 Give	 classes	 and	 functions	 that	 are	 explicitly
marked	global	a	global	qualname.
Issue	#19279:	UTF-7	decoder	no	longer	produces	illegal	strings.
Issue	 #16612:	 Add	 “Argument	 Clinic”,	 a	 compile-time
preprocessor	for	C	files	to	generate	argument	parsing	code.	(See
PEP	436.)
Issue	 #18810:	 Shift	 stat	 calls	 in	 importlib.machinery.FileFinder
such	 that	 the	 code	 is	 optimistic	 that	 if	 something	 exists	 in	 a
directory	named	exactly	like	the	possible	package	being	searched
for	that	it’s	in	actuality	a	directory.
Issue	#18416:	importlib.machinery.PathFinder	now	treats	‘’	as	the
cwd	and	importlib.machinery.FileFinder	no	longer	special-cases	‘’
to	‘.’.	This	leads	to	modules	imported	from	cwd	to	now	possess	an
absolute	 file	 path	 for	 __file__	 (this	 does	 not	 affect	 modules
specified	by	path	on	 the	CLI	but	 it	 does	affect	 -m/runpy).	 It	 also
allows	 FileFinder	 to	 be	 more	 consistent	 by	 not	 having	 an	 edge
case.
Issue	#4555:	All	exported	C	symbols	are	now	prefixed	with	either
“Py”	or	“_Py”.
Issue	 #19219:	 Speed	 up	 marshal.loads(),	 and	 make	 pyc	 files
slightly	(5%	to	10%)	smaller.
Issue	#19221:	Upgrade	Unicode	database	to	version	6.3.0.
Issue	 #16742:	 The	 result	 of	 the	 C	 callback
PyOS_ReadlineFunctionPointer	must	now	be	a	string	allocated	by
PyMem_RawMalloc()	 or	 PyMem_RawRealloc()	 (or	 NULL	 if	 an
error	occurred),	 instead	of	a	string	allocated	by	PyMem_Malloc()
or	PyMem_Realloc().

http://bugs.python.org/19301
http://bugs.python.org/19279
http://bugs.python.org/16612
http://bugs.python.org/18810
http://bugs.python.org/18416
http://bugs.python.org/4555
http://bugs.python.org/19219
http://bugs.python.org/19221
http://bugs.python.org/16742

Issue	#19199:	Remove	PyThreadState.tick_counter	field
Fix	macro	expansion	of	_PyErr_OCCURRED(),	and	make	sure	to
use	it	in	at	least	one	place	so	as	to	avoid	regressions.
Issue	 #19087:	 Improve	 bytearray	 allocation	 in	 order	 to	 allow
cheap	popping	of	data	at	the	front	(slice	deletion).
Issue	#19014:	memoryview.cast()	 is	 now	allowed	on	 zero-length
views.
Issue	 #18690:	memoryview	 is	 now	 automatically	 registered	with
collections.abc.Sequence
Issue	#19078:	memoryview	 now	 correctly	 supports	 the	 reversed
builtin	(Patch	by	Claudiu	Popa)

Library

Issue	#17457:	unittest	test	discovery	now	works	with	namespace
packages.	Patch	by	Claudiu	Popa.
Issue	 #18235:	 Fix	 the	 sysconfig	 variables	 LDSHARED	 and
BLDSHARED	under	AIX.	Patch	by	David	Edelsohn.
Issue	 #18606:	 Add	 the	 new	 “statistics”	 module	 (PEP	 450).
Contributed	by	Steven	D’Aprano.
Issue	#12866:	The	audioop	module	now	supports	24-bit	samples.
Issue	 #19254:	 Provide	 an	 optimized	 Python	 implementation	 of
pbkdf2_hmac.
Issues	 #19201,	 #19222,	 #19223:	 Add	 “x”	 mode	 (exclusive
creation)	 in	opening	file	 to	bz2,	gzip	and	 lzma	modules.	Patches
by	Tim	Heaney	and	Vajrasky	Kok.
Fix	a	reference	count	leak	in	_sre.
Issue	 #19262:	 Initial	 check	 in	 of	 the	 ‘asyncio’	 package	 (a.k.a.
Tulip,	 a.k.a.	PEP	3156).	There	are	no	docs	 yet,	 and	 the	PEP	 is
slightly	 out	 of	 date	 with	 the	 code.	 This	 module	 will	 have
provisional	status	in	Python	3.4.
Issue	 #19276:	 Fixed	 the	 wave	 module	 on	 64-bit	 big-endian
platforms.
Issue	 #19266:	 Rename	 the	 new-in-3.4	 contextlib.ignore

http://bugs.python.org/19199
http://bugs.python.org/19087
http://bugs.python.org/19014
http://bugs.python.org/18690
http://bugs.python.org/19078
http://bugs.python.org/17457
http://bugs.python.org/18235
http://bugs.python.org/18606
http://bugs.python.org/12866
http://bugs.python.org/19254
http://bugs.python.org/19262
http://bugs.python.org/19276
http://bugs.python.org/19266

context	manager	to	contextlib.suppress	in	order	to	be	more
consistent	with	existing	descriptions	of	that	operation	elsewhere	in
the	 language	and	standard	 library	documentation	(Patch	by	Zero
Piraeus).
Issue	 #18891:	 Completed	 the	 new	 email	 package	 (provisional)
API	additions	by	adding	new	classes	EmailMessage,	MIMEPart,
and	ContentManager.
Issue	#18281:	Unused	stat	constants	removed	from	tarfile.
Issue	#18468:	The	re.split,	re.findall,	and	re.sub	functions	and	the
group()	and	groups()	methods	of	match	object	now	always	return
a	string	or	a	bytes	object.
Issue	 #18725:	 The	 textwrap	 module	 now	 supports	 truncating
multiline	text.
Issue	 #18776:	 atexit	 callbacks	 now	 display	 their	 full	 traceback
when	they	raise	an	exception.
Issue	 #17827:	 Add	 the	 missing	 documentation	 for
codecs.encode	and	codecs.decode.
Issue	 #19218:	 Rename	 collections.abc	 to	 _collections_abc	 in
order	to	speed	up	interpreter	start.
Issue	 #18582:	 Add	 ‘pbkdf2_hmac’	 to	 the	 hashlib	 module.	 It
implements	 PKCS#5	 password-based	 key	 derivation	 functions
with	HMAC	as	pseudorandom	function.
Issue	 #19131:	 The	 aifc	 module	 now	 correctly	 reads	 and	 writes
sampwidth	of	compressed	streams.
Issue	#19209:	Remove	 import	of	copyreg	 from	the	os	module	 to
speed	 up	 interpreter	 startup.	 stat_result	 and	 statvfs_result	 are
now	hard-coded	to	reside	in	the	os	module.
Issue	#19205:	Don’t	 import	 the	 ‘re’	module	 in	site	and	sysconfig
module	to	to	speed	up	interpreter	start.
Issue	#9548:	Add	a	minimal	“_bootlocale”	module	that	is	imported
by	the	_io	module	instead	of	the	full	locale	module.
Issue	#18764:	remove	the	‘print’	alias	for	the	PDB	‘p’	command	so
that	it	no	longer	shadows	the	print	function.
Issue	 #19158:	 a	 rare	 race	 in	 BoundedSemaphore	 could	 allow

http://bugs.python.org/18891
http://bugs.python.org/18281
http://bugs.python.org/18468
http://bugs.python.org/18725
http://bugs.python.org/18776
http://bugs.python.org/17827
http://bugs.python.org/19218
http://bugs.python.org/18582
http://bugs.python.org/19131
http://bugs.python.org/19209
http://bugs.python.org/19205
http://bugs.python.org/9548
http://bugs.python.org/18764
http://bugs.python.org/19158

.release()	too	often.
Issue	#15805:	Add	contextlib.redirect_stdout().
Issue	#18716:	Deprecate	the	formatter	module.
Issue	 #10712:	 2to3	 has	 a	 new	 “asserts”	 fixer	 that	 replaces
deprecated	 names	 of	 unittest	 methods	 (e.g.	 failUnlessEqual	 ->
assertEqual).
Issue	#18037:	2to3	now	escapes	‘u’	and	‘U’	in	native	strings.
Issue	 #17839:	 base64.decodebytes	 and	 base64.encodebytes
now	accept	any	object	that	exports	a	1	dimensional	array	of	bytes
(this	means	the	same	is	now	also	true	for	base64_codec)
Issue	#19132:	The	pprint	module	now	supports	compact	mode.
Issue	#19137:	The	pprint	module	now	correctly	formats	instances
of	set	and	frozenset	subclasses.
Issue	 #10042:	 functools.total_ordering	 now	 correctly	 handles
NotImplemented	 being	 returned	 by	 the	 underlying	 comparison
function	(Patch	by	Katie	Miller)
Issue	 #19092:	 contextlib.ExitStack	 now	 correctly	 reraises
exceptions	from	the	__exit__	callbacks	of	inner	context	managers
(Patch	by	Hrvoje	Nikšić)
Issue	 #12641:	 Avoid	 passing	 “-mno-cygwin”	 to	 the	 mingw32
compiler,	except	when	necessary.	Patch	by	Oscar	Benjamin.
Issue	 #5845:	 In	 site.py,	 only	 load	 readline	 history	 from
~/.python_history	if	no	history	has	been	read	already.	This	avoids
double	writes	to	the	history	file	at	shutdown.
Properly	initialize	all	fields	of	a	SSL	object	after	allocation.
Issue	 #19095:	 SSLSocket.getpeercert()	 now	 raises	 ValueError
when	the	SSL	handshake	hasn’t	been	done.
Issue	 #4366:	 Fix	 building	 extensions	 on	 all	 platforms	 when	 –
enable-shared	is	used.
Issue	 #19030:	 Fixed	 inspect.getmembers	 and
inspect.classify_class_attrs	 to	 attempt	 activating
descriptors	 before	 falling	 back	 to	 a	 __dict__	 search	 for	 faulty
descriptors.	 inspect.classify_class_attrs	 no	 longer
returns	Attributes	whose	home	class	is	None.

http://bugs.python.org/15805
http://bugs.python.org/18716
http://bugs.python.org/10712
http://bugs.python.org/18037
http://bugs.python.org/17839
http://bugs.python.org/19132
http://bugs.python.org/19137
http://bugs.python.org/10042
http://bugs.python.org/19092
http://bugs.python.org/12641
http://bugs.python.org/5845
http://bugs.python.org/19095
http://bugs.python.org/4366
http://bugs.python.org/19030

C	API

Issue	#1772673:	The	type	of	char*	arguments	now	changed	to
const	char*.
Issue	 #16129:	 Added	 a	 Py_SetStandardStreamEncoding
pre-initialization	API	to	allow	embedding	applications	like	Blender
to	 force	a	particular	encoding	and	error	handler	 for	 the	standard
IO	streams	(initial	patch	by	Bastien	Montagne)

Tests

Issue	#19275:	Fix	test_site	on	AMD64	Snow	Leopard
Issue	 #14407:	 Fix	 unittest	 test	 discovery	 in
test_concurrent_futures.
Issue	#18919:	Unified	and	extended	tests	for	audio	modules:	aifc,
sunau	and	wave.
Issue	#18714:	Added	tests	for	pdb.find_function().

Documentation

Issue	#18758:	Fixed	and	improved	cross-references.
Issue	#18972:	Modernize	 email	 examples	 and	use	 the	 argparse
module	in	them.

Build

Issue	 #19130:	 Correct	 PCbuild/readme.txt,	 Python	 3.3	 and	 3.4
require	VS	2010.

Issue	#15663:	Update	OS	X	10.6+	installer	to	use	Tcl/Tk	8.5.15.

Issue	 #14499:	 Fix	 several	 problems	 with	 OS	 X	 universal	 build

http://bugs.python.org/1772673
http://bugs.python.org/16129
http://bugs.python.org/19275
http://bugs.python.org/14407
http://bugs.python.org/18919
http://bugs.python.org/18714
http://bugs.python.org/18758
http://bugs.python.org/18972
http://bugs.python.org/19130
http://bugs.python.org/15663
http://bugs.python.org/14499

support:
1.	 ppc	arch	detection	for	extension	module	builds	broke	with

Xcode	5
2.	 ppc	arch	detection	in	configure	did	not	work	on	OS	X	10.4
3.	 -sysroot	and	-arch	flags	were	unnecessarily	duplicated
4.	 there	 was	 no	 obvious	 way	 to	 configure	 an	 intel-32	 only

build.

Issue	 #19019:	 Change	 the	 OS	 X	 installer	 build	 script	 to	 use
CFLAGS	instead	of	OPT	for	special	build	options.	By	setting	OPT,
some	compiler-specific	options	 like	 -fwrapv	were	overridden	and
thus	 not	 used,	 which	 could	 result	 in	 broken	 interpreters	 when
building	with	clang.

http://bugs.python.org/19019

Python	3.4.0	Alpha	3?

Release	date:	2013-09-29

Core	and	Builtins

Issue	 #18818:	 The	 “encodingname”	 part	 of
PYTHONIOENCODING	is	now	optional.
Issue	 #19098:	 Prevent	 overflow	 in	 the	 compiler	 when	 the
recursion	limit	is	set	absurdly	high.

Library

Issue	 #18929:	 inspect.classify_class_attrs()	 now
correctly	finds	class	attributes	returned	by	dir()	that	are	located
in	the	metaclass.
Issue	 #18950:	 Fix	 miscellaneous	 bugs	 in	 the	 sunau	 module.
Au_read.readframes()	now	updates	current	file	position	and	reads
correct	 number	 of	 frames	 from	 multichannel	 stream.
Au_write.writeframesraw()	 now	 correctly	 updates	 current	 file
position.	 Au_read.getnframes()	 now	 returns	 an	 integer	 (as	 in
Python	 2).	 Au_read	 and	 Au_write	 now	 correctly	 works	 with	 file
object	if	start	file	position	is	not	a	zero.
Issue	 #18594:	 The	 fast	 path	 for	 collections.Counter()	was	 never
taken	due	to	an	over-restrictive	type	check.
Issue	#19053:	ZipExtFile.read1()	with	non-zero	argument	no	more
returns	empty	bytes	until	end	of	data.
logging:	added	support	for	Unix	domain	sockets	to	SocketHandler
and	DatagramHandler.
Issue	#18996:	TestCase.assertEqual()	now	more	cleverly	shorten
differing	strings	in	error	report.
Issue	 #19034:	 repr()	 for	 tkinter.Tcl_Obj	 now	 exposes	 string

http://bugs.python.org/18818
http://bugs.python.org/19098
http://bugs.python.org/18929
http://bugs.python.org/18950
http://bugs.python.org/18594
http://bugs.python.org/19053
http://bugs.python.org/18996
http://bugs.python.org/19034

reperesentation.
Issue	 #18978:	 urllib.request.Request	 now	 allows	 the
method	to	be	indicated	on	the	class	and	no	longer	sets	it	to	None
in	__init__.
Issue	 #18626:	 the	 inspect	module	 now	offers	 a	 basic	 command
line	introspection	interface	(Initial	patch	by	Claudiu	Popa)
Issue	 #3015:	 Fixed	 tkinter	 with	 wantobject=False.	 Any	 Tcl
command	call	returned	empty	string.
Issue	 #19037:	 The	 mailbox	 module	 now	 makes	 all	 changes	 to
maildir	 files	 before	 moving	 them	 into	 place,	 to	 avoid	 race
conditions	with	other	programs	that	may	be	accessing	the	maildir
directory.
Issue	#14984:	On	POSIX	systems,	when	netrc	is	called	without	a
filename	 argument	 (and	 therefore	 is	 reading	 the	 user’s
$HOME/.netrc	 file),	 it	 now	 enforces	 the	 same	 security	 rules	 as
typical	 ftp	clients:	 the	 .netrc	 file	must	be	owned	by	 the	user	 that
owns	the	process	and	must	not	be	readable	by	any	other	user.
Issue	 #18873:	 The	 tokenize	module	 now	detects	Python	 source
code	encoding	only	in	comment	lines.
Issue	 #17764:	 Enable	 http.server	 to	 bind	 to	 a	 user	 specified
network	interface.	Patch	contributed	by	Malte	Swart.
Issue	 #18937:	 Add	 an	 assertLogs()	 context	 manager	 to
unittest.TestCase	to	ensure	that	a	block	of	code	emits	a	message
using	the	logging	module.
Issue	#17324:	Fix	http.server’s	 request	handling	case	on	 trailing
‘/’.	Patch	contributed	by	Vajrasky	Kok.
Issue	#19018:	The	heapq.merge()	function	no	longer	suppresses
IndexError	in	the	underlying	iterables.
Issue	#18784:	The	uuid	module	no	more	attempts	to	load	libc	via
ctypes.CDLL,	 if	 all	 necessary	 functions	 are	 already	 found	 in
libuuid.	Patch	by	Evgeny	Sologubov.
The	 PYTHONFAULTHANDLER	 environment	 variable	 now	 only
enables	 the	 faulthandler	 module	 if	 the	 variable	 is	 non-empty.
Same	 behaviour	 than	 other	 variables	 like

http://bugs.python.org/18978
http://bugs.python.org/18626
http://bugs.python.org/3015
http://bugs.python.org/19037
http://bugs.python.org/14984
http://bugs.python.org/18873
http://bugs.python.org/17764
http://bugs.python.org/18937
http://bugs.python.org/17324
http://bugs.python.org/19018
http://bugs.python.org/18784

PYTHONDONTWRITEBYTECODE.
Issue	#1565525:	New	 function	traceback.clear_frames	will
clear	 the	 local	 variables	 of	 all	 the	 stack	 frames	 referenced	by	 a
traceback	object.

Tests

Issue	 #18952:	 Fix	 regression	 in	 support	 data	 downloads
introduced	 when	 test.support	 was	 converted	 to	 a	 package.
Regression	noticed	by	Zachary	Ware.

IDLE

Issue	 #18873:	 IDLE	 now	 detects	 Python	 source	 code	 encoding
only	in	comment	lines.
Issue	#18988:	The	“Tab”	key	now	works	when	a	word	 is	already
autocompleted.

Documentation

Issue	#17003:	Unified	the	size	argument	names	in	the	io	module
with	common	practice.

Build

Issue	 #18596:	 Support	 the	 use	 of	 address	 sanity	 checking	 in
recent	 versions	 of	 clang	 and	 GCC	 by	 appropriately	 marking
known	false	alarms	in	the	small	object	allocator.	Patch	contributed
by	Dhiru	Kholia.

Tools/Demos

http://bugs.python.org/1565525
http://bugs.python.org/18952
http://bugs.python.org/18873
http://bugs.python.org/18988
http://bugs.python.org/17003
http://bugs.python.org/18596

Issue	 #18873:	 2to3	 and	 the	 findnocoding.py	 script	 now	 detect
Python	source	code	encoding	only	in	comment	lines.

http://bugs.python.org/18873

Python	3.4.0	Alpha	2?

Release	date:	2013-09-09

Core	and	Builtins

Issue	 #18942:	 sys._debugmallocstats()	 output	 was	 damaged	 on
Windows.
Issue	#18780:	%-formatting	now	prints	value	instead	of	str	for	int
subclasses	when	using	%d,	%i,	and	%u	codes.
Issue	#18571:	Implementation	of	the	PEP	446:	file	descriptors	and
file	 handles	 are	 now	 created	 non-inheritable;	 add	 functions
os.get/set_inheritable(),	 os.get/set_handle_inheritable()	 and
socket.socket.get/set_inheritable().
Issue	 #11619:	 The	 parser	 and	 the	 import	 machinery	 do	 not
encode	Unicode	filenames	anymore	on	Windows.
Issue	#18808:	Non-daemon	threads	are	now	automatically	joined
when	 a	 sub-interpreter	 is	 shutdown	 (it	would	 previously	 dump	a
fatal	error).
Remove	supporting	for	compiling	on	systems	without	getcwd().
Issue	 #18774:	 Remove	 last	 bits	 of	 GNU	 PTH	 thread	 code	 and
thread_pth.h.
Issue	 #18771:	 Add	 optimization	 to	 set	 object	 lookups	 to	 reduce
the	cost	of	hash	collisions.	The	core	 idea	 is	 to	 inspect	a	second
key/hash	pair	for	each	cache	line	retrieved.
Issue	 #16105:	 When	 a	 signal	 handler	 fails	 to	 write	 to	 the	 file
descriptor	registered	with	signal.set_wakeup_fd(),	report	an
exception	instead	of	ignoring	the	error.
Issue	#18722:	Remove	uses	of	the	“register”	keyword	in	C	code.
Issue	 #18667:	 Add	 missing	 “HAVE_FCHOWNAT”	 symbol	 to
posix._have_functions.
Issue	#16499:	Add	command	line	option	for	isolated	mode.

http://bugs.python.org/18942
http://bugs.python.org/18780
http://bugs.python.org/18571
http://bugs.python.org/11619
http://bugs.python.org/18808
http://bugs.python.org/18774
http://bugs.python.org/18771
http://bugs.python.org/16105
http://bugs.python.org/18722
http://bugs.python.org/18667
http://bugs.python.org/16499

Issue	#15301:	Parsing	 fd,	 uid,	 and	gid	parameters	 for	builtins	 in
Modules/posixmodule.c	is	now	far	more	robust.
Issue	 #18368:	 PyOS_StdioReadline()	 no	 longer	 leaks	 memory
when	realloc()	fail.
Issue	 #17934:	 Add	 a	 clear()	 method	 to	 frame	 objects,	 to	 help
clean	up	expensive	details	 (local	 variables)	and	break	 reference
cycles.
Issue	#18780:	%-formatting	codes	%d,	%i,	and	%u	now	treat	int-
subclasses	as	int	(displays	value	of	int-subclass	instead	of	str(int-
subclass)).

Library

Issue	 #18808:	 Thread.join()	 now	waits	 for	 the	 underlying	 thread
state	 to	 be	 destroyed	 before	 returning.	 This	 prevents
unpredictable	 aborts	 in	 Py_EndInterpreter()	 when	 some	 non-
daemon	threads	are	still	running.
Issue	#18458:	Prevent	crashes	with	newer	versions	of	 libedit.	 Its
readline	 emulation	 has	 changed	 from	 0-based	 indexing	 to	 1-
based	like	gnu	readline.
Issue	#18852:	Handle	case	of	readline.__doc__	being	None
in	the	new	readline	activation	code	in	site.py.
Issue	#18672:	Fixed	format	specifiers	for	Py_ssize_t	in	debugging
output	in	the	_sre	module.
Issue	#18830:	inspect.getclasstree()	no	more	produces	duplicated
entries	even	when	input	list	contains	duplicates.
Issue	 #18878:	 sunau.open	 now	 supports	 the	 context	 manager
protocol.	 Based	 on	 patches	 by	 Claudiu	 Popa	 and	 R.	 David
Murray.
Issue	 #18909:	 Fix	 _tkinter.tkapp.interpaddr()	 on	Windows	 64-bit,
don’t	cast	64-bit	pointer	to	long	(32	bits).
Issue	 #18876:	 The	 FileIO.mode	 attribute	 now	 better	 reflects	 the
actual	mode	under	which	the	file	was	opened.	Patch	by	Erik	Bray.
Issue	#16853:	Add	new	selectors	module.

http://bugs.python.org/15301
http://bugs.python.org/18368
http://bugs.python.org/17934
http://bugs.python.org/18780
http://bugs.python.org/18808
http://bugs.python.org/18458
http://bugs.python.org/18852
http://bugs.python.org/18672
http://bugs.python.org/18830
http://bugs.python.org/18878
http://bugs.python.org/18909
http://bugs.python.org/18876
http://bugs.python.org/16853

Issue	#18882:	Add	threading.main_thread()	function.
Issue	 #18901:	 The	 sunau	 getparams	 method	 now	 returns	 a
namedtuple	rather	than	a	plain	tuple.	Patch	by	Claudiu	Popa.
Issue	#17487:	The	 result	of	 the	wave	getparams	method	now	 is
pickleable	again.	Patch	by	Claudiu	Popa.
Issue	#18756:	os.urandom()	now	uses	a	 lazily-opened	persistent
file	descriptor,	so	as	to	avoid	using	many	file	descriptors	when	run
in	parallel	from	multiple	threads.
Issue	#18418:	After	fork(),	reinit	all	threads	states,	not	only	active
ones.	Patch	by	A.	Jesse	Jiryu	Davis.
Issue	#17974:	Switch	unittest	from	using	getopt	to	using	argparse.
Issue	#11798:	TestSuite	now	drops	references	to	own	tests	after
execution.
Issue	 #16611:	 http.cookie	 now	 correctly	 parses	 the	 ‘secure’	 and
‘httponly’	cookie	flags.
Issue	#11973:	Fix	a	problem	in	kevent.	The	flags	and	fflags	fields
are	now	properly	handled	as	unsigned.
Issue	 #18807:	 pyvenv	 now	 takes	 a	 –copies	 argument	 allowing
copies	instead	of	symlinks	even	where	symlinks	are	available	and
the	default.
Issue	#18538:	python	-m	dis	now	uses	argparse	for	argument
processing.	Patch	by	Michele	Orrù.
Issue	#18394:	Close	cgi.FieldStorage’s	optional	file.
Issue	#17702:	On	error,	 os.environb	now	 removes	 suppress	 the
except	context	when	raising	a	new	KeyError	with	the	original	key.
Issue	#16809:	Fixed	some	tkinter	incompabilities	with	Tcl/Tk	8.6.
Issue	#16809:	Tkinter’s	splitlist()	and	split()	methods	now	accept
Tcl_Obj	argument.
Issue	 #18324:	 set_payload	 now	 correctly	 handles	 binary	 input.
This	also	 supersedes	 the	previous	 fixes	 for	#14360,	#1717,	and
#16564.
Issue	 #18794:	 Add	 a	 fileno()	 method	 and	 a	 closed	 attribute	 to
select.devpoll	objects.
Issue	 #17119:	 Fixed	 integer	 overflows	 when	 processing	 large

http://bugs.python.org/18882
http://bugs.python.org/18901
http://bugs.python.org/17487
http://bugs.python.org/18756
http://bugs.python.org/18418
http://bugs.python.org/17974
http://bugs.python.org/11798
http://bugs.python.org/16611
http://bugs.python.org/11973
http://bugs.python.org/18807
http://bugs.python.org/18538
http://bugs.python.org/18394
http://bugs.python.org/17702
http://bugs.python.org/16809
http://bugs.python.org/16809
http://bugs.python.org/18324
http://bugs.python.org/18794
http://bugs.python.org/17119

strings	and	tuples	in	the	tkinter	module.
Issue	 #18747:	 Re-seed	 OpenSSL’s	 pseudo-random	 number
generator	after	 fork.	A	pthread_atfork()	parent	handler	 is	used	 to
seed	the	PRNG	with	pid,	time	and	some	stack	data.
Issue	#8865:	Concurrent	invocation	of	select.poll.poll()	now	raises
a	RuntimeError	exception.	Patch	by	Christian	Schubert.
Issue	 #18777:	 The	 ssl	 module	 now	 uses	 the	 new
CRYPTO_THREADID	 API	 of	 OpenSSL	 1.0.0+	 instead	 of	 the
deprecated	CRYPTO	id	callback	function.
Issue	 #18768:	 Correct	 doc	 string	 of	 RAND_edg().	 Patch	 by
Vajrasky	Kok.
Issue	#18178:	Fix	ctypes	on	BSD.	dlmalloc.c	was	compiled	twice
which	broke	malloc	weak	symbols.
Issue	#18709:	Fix	CVE-2013-4238.	The	SSL	module	now	handles
NULL	bytes	inside	subjectAltName	correctly.	Formerly	the	module
has	used	OpenSSL’s	GENERAL_NAME_print()	function	to	get	the
string	 represention	 of	 ASN.1	 strings	 for	 rfc822Name	 (email),
dNSName	(DNS)	and	uniformResourceIdentifier	(URI).
Issue	 #18701:	 Remove	 support	 of	 old	 CPython	 versions	 (<3.0)
from	C	code.
Issue	#18756:	 Improve	error	 reporting	 in	os.urandom()	when	 the
failure	 is	 due	 to	 something	 else	 than	 /dev/urandom	 not	 existing
(for	example,	exhausting	the	file	descriptor	limit).
Issue	 #18673:	 Add	 O_TMPFILE	 to	 os	 module.	 O_TMPFILE
requires	 Linux	 kernel	 3.11	 or	 newer.	 It’s	 only	 defined	 on	 system
with	3.11	uapi	headers,	too.
Issue	#18532:	Change	the	builtin	hash	algorithms’	names	to	lower
case	names	as	promised	by	hashlib’s	documentation.
Issue	#18405:	Improve	the	entropy	of	crypt.mksalt().
Issue	#12015:	The	tempfile	module	now	uses	a	suffix	of	8	random
characters	 instead	 of	 6,	 to	 reduce	 the	 risk	 of	 filename	 collision.
The	entropy	was	reduced	when	uppercase	 letters	were	removed
from	the	charset	used	to	generate	random	characters.
Issue	 #18585:	 Add	 textwrap.shorten()	 to	 collapse	 and

http://bugs.python.org/18747
http://bugs.python.org/8865
http://bugs.python.org/18777
http://bugs.python.org/18768
http://bugs.python.org/18178
http://bugs.python.org/18709
http://bugs.python.org/18701
http://bugs.python.org/18756
http://bugs.python.org/18673
http://bugs.python.org/18532
http://bugs.python.org/18405
http://bugs.python.org/12015
http://bugs.python.org/18585

truncate	a	piece	of	text	to	a	given	length.
Issue	 #18598:	 Tweak	 exception	 message	 for
importlib.import_module()	to	include	the	module	name	when	a	key
argument	is	missing.
Issue	 #19151:	 Fix	 docstring	 and	 use	 of
_get_supported_file_loaders()	to	reflect	2-tuples.
Issue	#19152:	Add	ExtensionFileLoader.get_filename().
Issue	#18676:	Change	‘positive’	to	‘non-negative’	in	queue.py	put
and	get	docstrings	and	ValueError	messages.	Patch	by	Zhongyue
Luo
Fix	refcounting	issue	with	extension	types	in	tkinter.
Issue	 #8112:	 xlmrpc.server’s	 DocXMLRPCServer	 server	 no
longer	 raises	 an	 error	 if	 methods	 have	 annotations;	 it	 now
correctly	displays	the	annotations.
Issue	 #18600:	 Added	 policy	 argument	 to
email.message.Message.as_string,	 and	as_bytes	and	__bytes__
methods	to	Message.
Issue	#18671:	Output	more	 information	when	 logging	exceptions
occur.
Issue	 #18621:	 Prevent	 the	 site	 module’s	 patched	 builtins	 from
keeping	too	many	references	alive	for	too	long.
Issue	 #4885:	 Add	 weakref	 support	 to	 mmap	 objects.	 Patch	 by
Valerie	Lambert.
Issue	#8860:	Fixed	rounding	in	timedelta	constructor.
Issue	 #18849:	 Fixed	 a	 Windows-specific	 tempfile	 bug	 where
collision	 with	 an	 existing	 directory	 caused	mkstemp	 and	 related
APIs	to	fail	instead	of	retrying.	Report	and	fix	by	Vlad	Shcherbina.
Issue	#18920:	argparse’s	default	destination	for	the	version	action
(-v,	 –version)	 has	 also	 been	 changed	 to	 stdout,	 to	 match	 the
Python	executable.

Tests

Issue	 #18623:	 Factor	 out	 the	 _SuppressCoreFiles	 context

http://bugs.python.org/18598
http://bugs.python.org/19151
http://bugs.python.org/19152
http://bugs.python.org/18676
http://bugs.python.org/8112
http://bugs.python.org/18600
http://bugs.python.org/18671
http://bugs.python.org/18621
http://bugs.python.org/4885
http://bugs.python.org/8860
http://bugs.python.org/18849
http://bugs.python.org/18920
http://bugs.python.org/18623

manager	into	test.support.	Patch	by	Valerie	Lambert.
Issue	#12037:	Fix	test_email	for	desktop	Windows.
Issue	#15507:	test_subprocess’s	test_send_signal	could	fail	if	the
test	 runner	 were	 run	 in	 an	 environment	 where	 the	 process
inherited	 an	 ignore	 setting	 for	 SIGINT.	 Restore	 the	 SIGINT
handler	 to	 the	 desired	KeyboardInterrupt	 raising	 one	 during	 that
test.
Issue	#16799:	Switched	from	getopt	to	argparse	style	in	regrtest’s
argument	 parsing.	 Added	 more	 tests	 for	 regrtest’s	 argument
parsing.
Issue	 #18792:	 Use	 “127.0.0.1”	 or	 ”::1”	 instead	 of	 “localhost”	 as
much	as	possible,	 since	 “localhost”	 goes	 through	a	DNS	 lookup
under	recent	Windows	versions.

IDLE

Issue	#18489:	Add	tests	for	SearchEngine.	Original	patch	by	Phil
Webster.

Documentation

Issue	#18743:	Fix	references	to	non-existant	“StringIO”	module.
Issue	#18783:	Removed	existing	mentions	of	Python	long	type	in
docstrings,	error	messages	and	comments.

Build

Issue	#1584:	Provide	configure	options	to	override	default	search
paths	for	Tcl	and	Tk	when	building	_tkinter.
Issue	#15663:	Tcl/Tk	8.5.14	is	now	included	with	the	OS	X	10.6+
64-/32-bit	installer.	It	is	no	longer	necessary	to	install	a	third-party
version	of	Tcl/Tk	 8.5	 to	work	 around	 the	problems	 in	 the	Apple-
supplied	Tcl/Tk	8.5	shipped	in	OS	X	10.6	and	later	releases.

http://bugs.python.org/12037
http://bugs.python.org/15507
http://bugs.python.org/16799
http://bugs.python.org/18792
http://bugs.python.org/18489
http://bugs.python.org/18743
http://bugs.python.org/18783
http://bugs.python.org/1584
http://bugs.python.org/15663

Tools/Demos

Issue	 #18922:	 Now	 The	 Lib/smtpd.py	 and	 Tools/i18n/msgfmt.py
scripts	write	their	version	strings	to	stdout,	and	not	to	sderr.

http://bugs.python.org/18922

Python	3.4.0	Alpha	1?

Release	date:	2013-08-03

Core	and	Builtins

Issue	#16741:	Fix	an	error	reporting	in	int().
Issue	#17899:	Fix	rare	file	descriptor	leak	in	os.listdir().
Issue	 #10241:	 Clear	 extension	module	 dict	 copies	 at	 interpreter
shutdown.	Patch	by	Neil	Schemenauer,	minimally	modified.
Issue	#9035:	 ismount	now	recognises	volumes	mounted	below	a
drive	root	on	Windows.	Original	patch	by	Atsuo	Ishimoto.
Issue	 #18214:	 Improve	 finalization	 of	 Python	 modules	 to	 avoid
setting	their	globals	to	None,	in	most	cases.
Issue	#18112:	PEP	442	implementation	(safe	object	finalization).
Issue	#18552:	Check	 return	 value	 of	 PyArena_AddPyObject()	 in
obj2ast_object().
Issue	#18560:	Fix	potential	NULL	pointer	dereference	in	sum().
Issue	#18520:	Add	a	new	PyStructSequence_InitType2()	function,
same	 than	 PyStructSequence_InitType()	 except	 that	 it	 has	 a
return	value	(0	on	success,	-1	on	error).
Issue	 #15905:	 Fix	 theoretical	 buffer	 overflow	 in	 handling	 of
sys.argv[0],	 prefix	 and	 exec_prefix	 if	 the	 operation	 system	 does
not	obey	MAXPATHLEN.
Issue	 #18408:	 Fix	 many	 various	 bugs	 in	 code	 handling	 errors,
especially	on	memory	allocation	failure	(MemoryError).
Issue	 #18344:	 Fix	 potential	 ref-leaks	 in
_bufferedreader_read_all().
Issue	 #18342:	 Use	 the	 repr	 of	 a	module	 name	when	 an	 import
fails	when	using	from	...	import
Issue	#17872:	Fix	a	segfault	in	marshal.load()	when	input	stream
returns	more	bytes	than	requested.

http://bugs.python.org/16741
http://bugs.python.org/17899
http://bugs.python.org/10241
http://bugs.python.org/9035
http://bugs.python.org/18214
http://bugs.python.org/18112
http://bugs.python.org/18552
http://bugs.python.org/18560
http://bugs.python.org/18520
http://bugs.python.org/15905
http://bugs.python.org/18408
http://bugs.python.org/18344
http://bugs.python.org/18342
http://bugs.python.org/17872

Issue	#18338:	python	--version	now	prints	version	string	 to
stdout,	 and	 not	 to	 stderr.	 Patch	 by	 Berker	 Peksag	 and	 Michael
Dickens.
Issue	#18426:	Fix	NULL	pointer	dereference	in	C	extension	import
when	PyModule_GetDef()	returns	an	error.
Issue	#17206:	On	Windows,	increase	the	stack	size	from	2	MB	to
4.2	MB	to	fix	a	stack	overflow	in	the	marshal	module	(fix	a	crash
in	test_marshal).	Patch	written	by	Jeremy	Kloth.
Issue	#3329:	Implement	the	PEP	445:	Add	new	APIs	to	customize
Python	memory	allocators.
Issue	#18328:	Reorder	ops	in	PyThreadState_Delete*()	functions.
Now	the	tstate	is	first	removed	from	TLS	and	then	deallocated.
Issue	#13483:	Use	VirtualAlloc	in	obmalloc	on	Windows.
Issue	 #18184:	 PyUnicode_FromFormat()	 and
PyUnicode_FromFormatV()	 now	 raise	 OverflowError	 when	 an
argument	of	%c	format	is	out	of	range.
Issue	 #18111:	 The	 min()	 and	 max()	 functions	 now	 support	 a
default	argument	to	be	returned	instead	of	raising	a	ValueError	on
an	empty	sequence.	(Contributed	by	Julian	Berman.)
Issue	 #18137:	 Detect	 integer	 overflow	 on	 precision	 in
float.__format__()	and	complex.__format__().
Issue	#18183:	Fix	various	unicode	operations	on	strings	with	large
unicode	codepoints.
Issue	#18180:	Fix	ref	leak	in	_PyImport_GetDynLoadWindows().
Issue	#18038:	SyntaxError	raised	during	compilation	sources	with
illegal	encoding	now	always	contains	an	encoding	name.
Issue	#17931:	Resolve	confusion	on	Windows	between	pids	and
process	handles.
Tweak	 the	 exception	 message	 when	 the	 magic	 number	 or	 size
value	in	a	bytecode	file	is	truncated.
Issue	#17932:	Fix	an	integer	overflow	issue	on	Windows	64-bit	in
iterators:	change	the	C	type	of	seqiterobject.it_index	from	long	to
Py_ssize_t.
Issue	#18065:	Don’t	set	__path__	to	the	package	name	for	frozen

http://bugs.python.org/18338
http://bugs.python.org/18426
http://bugs.python.org/17206
http://bugs.python.org/3329
http://bugs.python.org/18328
http://bugs.python.org/13483
http://bugs.python.org/18184
http://bugs.python.org/18111
http://bugs.python.org/18137
http://bugs.python.org/18183
http://bugs.python.org/18180
http://bugs.python.org/18038
http://bugs.python.org/17931
http://bugs.python.org/17932
http://bugs.python.org/18065

packages.
Issue	#18088:	When	reloading	a	module,	unconditionally	reset	all
relevant	 attributes	 on	 the	 module	 (e.g.	 __name__,	 __loader__,
__package__,	__file__,	__cached__).
Issue	#17937:	Try	harder	to	collect	cyclic	garbage	at	shutdown.
Issue	 #12370:	 Prevent	 class	 bodies	 from	 interfering	 with	 the
__class__	closure.
Issue	 #17644:	 Fix	 a	 crash	 in	 str.format	 when	 curly	 braces	 are
used	in	square	brackets.
Issue	#17237:	Fix	crash	in	the	ASCII	decoder	on	m68k.
Issue	 #17927:	 Frame	 objects	 kept	 arguments	 alive	 if	 they	 had
been	copied	into	a	cell,	even	if	the	cell	was	cleared.
Issue	#1545463:	At	shutdown,	defer	finalization	of	codec	modules
so	that	stderr	remains	usable.
Issue	#7330:	Implement	width	and	precision	(ex:	“%5.3s”)	for	the
format	string	of	PyUnicode_FromFormat()	function,	original	patch
written	by	Ysj	Ray.
Issue	#1545463:	Global	variables	caught	 in	 reference	cycles	are
now	garbage-collected	at	shutdown.
Issue	#17094:	Clear	stale	thread	states	after	fork().	Note	that	this
is	 a	 potentially	 disruptive	 change	 since	 it	 may	 release	 some
system	resources	which	would	otherwise	remain	perpetually	alive
(e.g.	database	connections	kept	in	thread-local	storage).
Issue	 #17408:	 Avoid	 using	 an	 obsolete	 instance	 of	 the	 copyreg
module	when	the	interpreter	is	shutdown	and	then	started	again.
Issue	#5845:	Enable	 tab-completion	 in	 the	 interactive	 interpreter
by	default,	thanks	to	a	new	sys.__interactivehook__.
Issue	 #17115,17116:	 Module	 initialization	 now	 includes	 setting
__package__	and	__loader__	attributes	to	None.
Issue	#17853:	Ensure	locals	of	a	class	that	shadow	free	variables
always	win	over	the	closures.
Issue	#17863:	 In	 the	 interactive	console,	don’t	 loop	forever	 if	 the
encoding	can’t	be	fetched	from	stdin.
Issue	#17867:	Raise	an	ImportError	 if	__import__	 is	not	 found	in

http://bugs.python.org/18088
http://bugs.python.org/17937
http://bugs.python.org/12370
http://bugs.python.org/17644
http://bugs.python.org/17237
http://bugs.python.org/17927
http://bugs.python.org/1545463
http://bugs.python.org/7330
http://bugs.python.org/1545463
http://bugs.python.org/17094
http://bugs.python.org/17408
http://bugs.python.org/5845
http://bugs.python.org/17115
http://bugs.python.org/17853
http://bugs.python.org/17863
http://bugs.python.org/17867

__builtins__.
Issue	#18698:	Ensure	importlib.reload()	returns	the	module	out	of
sys.modules.
Issue	 #17857:	 Prevent	 build	 failures	 with	 pre-3.5.0	 versions	 of
sqlite3,	such	as	was	shipped	with	Centos	5	and	Mac	OS	X	10.4.
Issue	#17413:	sys.settrace	callbacks	were	being	passed	a	string
instead	of	an	exception	instance	for	the	‘value’	element	of	the	arg
tuple	 if	 the	exception	originated	 from	C	code;	 now	an	exception
instance	is	always	provided.
Issue	 #17782:	 Fix	 undefined	 behaviour	 on	 platforms	 where
struct	timespec‘s	“tv_nsec”	member	is	not	a	C	long.
Issue	#17722:	When	looking	up	__round__,	resolve	descriptors.
Issue	 #16061:	 Speed	 up	 str.replace()	 for	 replacing	 1-character
strings.
Issue	#17715:	Fix	segmentation	fault	from	raising	an	exception	in
a	__trunc__	method.
Issue	#17643:	Add	__callback__	attribute	to	weakref.ref.
Issue	 #16447:	 Fixed	 potential	 segmentation	 fault	 when	 setting
__name__	on	a	class.
Issue	#17669:	Fix	crash	involving	finalization	of	generators	using
yield	from.
Issue	#14439:	Python	now	prints	the	traceback	on	runpy	failure	at
startup.
Issue	 #17469:	 Fix	 _Py_GetAllocatedBlocks()	 and
sys.getallocatedblocks()	when	running	on	valgrind.
Issue	 #17619:	 Make	 input()	 check	 for	 Ctrl-C	 correctly	 on
Windows.
Issue	 #17357:	 Add	 missing	 verbosity	 messages	 for	 -v/-vv	 that
were	lost	during	the	importlib	transition.
Issue	 #17610:	 Don’t	 rely	 on	 non-standard	 behavior	 of	 the	 C
qsort()	function.
Issue	#17323:	The	“[X	refs,	Y	blocks]”	printed	by	debug	builds	has
been	 disabled	 by	 default.	 It	 can	 be	 re-enabled	 with	 the	 -X
showrefcount	option.

http://bugs.python.org/18698
http://bugs.python.org/17857
http://bugs.python.org/17413
http://bugs.python.org/17782
http://bugs.python.org/17722
http://bugs.python.org/16061
http://bugs.python.org/17715
http://bugs.python.org/17643
http://bugs.python.org/16447
http://bugs.python.org/17669
http://bugs.python.org/14439
http://bugs.python.org/17469
http://bugs.python.org/17619
http://bugs.python.org/17357
http://bugs.python.org/17610
http://bugs.python.org/17323

Issue	#17328:	Fix	possible	refleak	in	dict.setdefault.
Issue	#17275:	Corrected	class	name	in	init	error	messages	of	the
C	version	of	BufferedWriter	and	BufferedRandom.
Issue	 #7963:	 Fixed	misleading	 error	message	 that	 issued	when
object	is	called	without	arguments.
Issue	 #8745:	 Small	 speed	 up	 zipimport	 on	 Windows.	 Patch	 by
Catalin	Iacob.
Issue	#5308:	Raise	ValueError	when	marshalling	too	large	object
(a	 sequence	 with	 size	 >=	 2**31),	 instead	 of	 producing	 illegal
marshal	data.
Issue	 #12983:	 Bytes	 literals	 with	 invalid	 x	 escape	 now	 raise	 a
SyntaxError	and	a	full	traceback	including	line	number.
Issue	 #16967:	 In	 function	 definition,	 evaluate	 positional	 defaults
before	keyword-only	defaults.
Issue	 #17173:	 Remove	 uses	 of	 locale-dependent	 C	 functions
(isalpha()	etc.)	in	the	interpreter.
Issue	 #17137:	 When	 an	 Unicode	 string	 is	 resized,	 the	 internal
wide	character	string	(wstr)	format	is	now	cleared.
Issue	#17043:	The	unicode-internal	decoder	no	 longer	 read	past
the	end	of	input	buffer.
Issue	#17098:	All	modules	now	have	__loader__	set	even	if	they
pre-exist	the	bootstrapping	of	importlib.
Issue	 #16979:	 Fix	 error	 handling	 bugs	 in	 the	 unicode-escape-
decode	decoder.
Issue	#16772:	The	base	argument	to	the	int	constructor	no	longer
accepts	 floats,	 or	 other	 non-integer	 objects	 with	 an	 __int__
method.	Objects	with	an	__index__	method	are	now	accepted.
Issue	 #10156:	 In	 the	 interpreter’s	 initialization	 phase,	 unicode
globals	are	now	initialized	dynamically	as	needed.
Issue	 #16980:	 Fix	 processing	 of	 escaped	 non-ascii	 bytes	 in	 the
unicode-escape-decode	decoder.
Issue	#16975:	Fix	error	handling	bug	in	the	escape-decode	bytes
decoder.
Issue	 #14850:	 Now	 a	 charmap	 decoder	 treats	 U+FFFE	 as

http://bugs.python.org/17328
http://bugs.python.org/17275
http://bugs.python.org/7963
http://bugs.python.org/8745
http://bugs.python.org/5308
http://bugs.python.org/12983
http://bugs.python.org/16967
http://bugs.python.org/17173
http://bugs.python.org/17137
http://bugs.python.org/17043
http://bugs.python.org/17098
http://bugs.python.org/16979
http://bugs.python.org/16772
http://bugs.python.org/10156
http://bugs.python.org/16980
http://bugs.python.org/16975
http://bugs.python.org/14850

“undefined	mapping”	in	any	mapping,	not	only	in	a	string.
Issue	 #16730:	 importlib.machinery.FileFinder	 now	 no	 longers
raises	an	exception	when	trying	to	populate	its	cache	and	it	finds
out	the	directory	is	unreadable	or	has	turned	into	a	file.	Reported
and	diagnosed	by	David	Pritchard.
Issue	#16906:	Fix	a	 logic	error	 that	prevented	most	static	strings
from	being	cleared.
Issue	#11461:	Fix	the	incremental	UTF-16	decoder.	Original	patch
by	Amaury	Forgeot	d’Arc.
Issue	 #16856:	 Fix	 a	 segmentation	 fault	 from	 calling	 repr()	 on	 a
dict	with	a	key	whose	repr	raise	an	exception.
Issue	#16367:	Fix	FileIO.readall()	on	Windows	for	files	larger	than
2	GB.
Issue	 #16761:	 Calling	 int()	 with	 base	 argument	 only	 now	 raises
TypeError.
Issue	#16759:	Support	 the	full	DWORD	(unsigned	long)	range	in
Reg2Py	 when	 retrieving	 a	 REG_DWORD	 value.	 This	 corrects
functions	like	winreg.QueryValueEx	that	may	have	been	returning
truncated	values.
Issue	#14420:	Support	 the	full	DWORD	(unsigned	long)	range	in
Py2Reg	 when	 passed	 a	 REG_DWORD	 value.	 Fixes
OverflowError	in	winreg.SetValueEx.
Issue	 #11939:	 Set	 the	 st_dev	 attribute	 of	 stat_result	 to	 allow
Windows	 to	 take	 advantage	 of	 the
os.path.samefile/sameopenfile/samestat	implementations	used	by
other	platforms.
Issue	#16772:	The	int()	constructor’s	second	argument	(base)	no
longer	accepts	non	integer	values.	Consistent	with	the	behavior	in
Python	2.
Issue	#14470:	Remove	w9xpopen	support	per	PEP	11.
Issue	#9856:	Replace	deprecation	warning	with	raising	TypeError
in	object.__format__.	Patch	by	Florent	Xicluna.
Issue	 #16597:	 In	 buffered	 and	 text	 IO,	 call	 close()	 on	 the
underlying	stream	if	invoking	flush()	fails.

http://bugs.python.org/16730
http://bugs.python.org/16906
http://bugs.python.org/11461
http://bugs.python.org/16856
http://bugs.python.org/16367
http://bugs.python.org/16761
http://bugs.python.org/16759
http://bugs.python.org/14420
http://bugs.python.org/11939
http://bugs.python.org/16772
http://bugs.python.org/14470
http://bugs.python.org/9856
http://bugs.python.org/16597

Issue	#16722:	In	the	bytes()	constructor,	 try	 to	call	__bytes__	on
the	argument	before	__index__.
Issue	#16421:	loading	multiple	modules	from	one	shared	object	is
now	 handled	 correctly	 (previously,	 the	 first	 module	 loaded	 from
that	file	was	silently	returned).	Patch	by	Václav	Šmilauer.
Issue	 #16602:	 When	 a	 weakref’s	 target	 was	 part	 of	 a	 long
deallocation	chain,	 the	object	could	remain	reachable	 through	 its
weakref	even	though	its	refcount	had	dropped	to	zero.
Issue	 #16495:	 Remove	 extraneous	 NULL	 encoding	 check	 from
bytes_decode().
Issue	 #16619:	 Create	 NameConstant	 AST	 class	 to	 represent
None,	 True,	 and	 False	 literals.	 As	 a	 result,	 these	 constants	 are
never	loaded	at	runtime	from	builtins.
Issue	 #16455:	 On	 FreeBSD	 and	 Solaris,	 if	 the	 locale	 is	 C,	 the
ASCII/surrogateescape	codec	 is	now	used,	 instead	of	 the	 locale
encoding,	 to	 decode	 the	 command	 line	arguments.	This	 change
fixes	 inconsistencies	 with	 os.fsencode()	 and	 os.fsdecode()
because	 these	 operating	 systems	 announces	 an	 ASCII	 locale
encoding,	whereas	the	ISO-8859-1	encoding	is	used	in	practice.
Issue	 #16562:	 Optimize	 dict	 equality	 testing.	 Patch	 by	 Serhiy
Storchaka.
Issue	 #16588:	 Silence	 unused-but-set	 warnings	 in
Python/thread_pthread
Issue	#16592:	 stringlib_bytes_join	 doesn’t	 raise	MemoryError	 on
allocation	failure.
Issue	#16546:	Fix:	ast.YieldFrom	argument	is	now	mandatory.
Issue	 #16514:	 Fix	 regression	 causing	 a	 traceback	 when
sys.path[0]	is	None	(actually,	any	non-string	or	non-bytes	type).
Issue	 #16306:	 Fix	 multiple	 error	 messages	 when	 unknown
command	line	parameters	where	passed	to	the	interpreter.	Patch
by	Hieu	Nguyen.
Issue	 #16215:	 Fix	 potential	 double	memory	 free	 in	 str.replace().
Patch	by	Serhiy	Storchaka.
Issue	#16290:	A	float	return	value	from	the	__complex__	special

http://bugs.python.org/16722
http://bugs.python.org/16421
http://bugs.python.org/16602
http://bugs.python.org/16495
http://bugs.python.org/16619
http://bugs.python.org/16455
http://bugs.python.org/16562
http://bugs.python.org/16588
http://bugs.python.org/16592
http://bugs.python.org/16546
http://bugs.python.org/16514
http://bugs.python.org/16306
http://bugs.python.org/16215
http://bugs.python.org/16290

method	is	no	longer	accepted	in	the	complex()	constructor.
Issue	 #16416:	 On	 Mac	 OS	 X,	 operating	 system	 data	 are	 now
always	encoded/decoded	to/from	UTF-8/surrogateescape,	instead
of	 the	 locale	 encoding	 (which	 may	 be	 ASCII	 if	 no	 locale
environment	 variable	 is	 set),	 to	 avoid	 inconsistencies	 with
os.fsencode()	 and	 os.fsdecode()	 functions	 which	 are	 already
using	UTF-8/surrogateescape.
Issue	#16453:	Fix	equality	testing	of	dead	weakref	objects.
Issue	#9535:	Fix	pending	signals	that	have	been	received	but	not
yet	 handled	 by	 Python	 to	 not	 persist	 after	 os.fork()	 in	 the	 child
process.
Issue	#14794:	Fix	 slice.indices	 to	 return	 correct	 results	 for	 huge
values,	rather	than	raising	OverflowError.
Issue	 #15001:	 fix	 segfault	 on	 “del	 sys.modules[‘__main__’]”.
Patch	by	Victor	Stinner.
Issue	#8271:	the	utf-8	decoder	now	outputs	the	correct	number	of
U+FFFD	characters	when	used	with	the	‘replace’	error	handler	on
invalid	utf-8	sequences.	Patch	by	Serhiy	Storchaka,	tests	by	Ezio
Melotti.
Issue	#5765:	Apply	a	hard	recursion	 limit	 in	 the	compiler	 instead
of	 blowing	 the	 stack	 and	 segfaulting.	 Initial	 patch	 by	 Andrea
Griffini.
Issue	#16402:	When	slicing	a	range,	fix	shadowing	of	exceptions
from	__index__.
Issue	 #16336:	 fix	 input	 checking	 in	 the	 surrogatepass	 error
handler.	Patch	by	Serhiy	Storchaka.
Issue	#8401:	assigning	an	int	to	a	bytearray	slice	(e.g.	b[3:4]	=	5)
now	raises	an	error.
Issue	 #7317:	 Display	 full	 tracebacks	 when	 an	 error	 occurs
asynchronously.	 Patch	 by	 Alon	 Horev	 with	 update	 by	 Alexey
Kachayev.
Issue	 #16309:	 Make	 PYTHONPATH=””	 behavior	 the	 same	 as	 if
PYTHONPATH	not	set	at	all.
Issue	#10189:	Improve	the	error	reporting	of	SyntaxErrors	related

http://bugs.python.org/16416
http://bugs.python.org/16453
http://bugs.python.org/9535
http://bugs.python.org/14794
http://bugs.python.org/15001
http://bugs.python.org/8271
http://bugs.python.org/5765
http://bugs.python.org/16402
http://bugs.python.org/16336
http://bugs.python.org/8401
http://bugs.python.org/7317
http://bugs.python.org/16309
http://bugs.python.org/10189

to	global	and	nonlocal	statements.
Fix	 segfaults	 on	 setting	 __qualname__	 on	 builtin	 types	 and
attempting	to	delete	it	on	any	type.
Issue	 #14625:	 Rewrite	 the	 UTF-32	 decoder.	 It	 is	 now	 3x	 to	 4x
faster.	Patch	written	by	Serhiy	Storchaka.
Issue	 #16345:	 Fix	 an	 infinite	 loop	 when	 fromkeys	 on	 a	 dict
subclass	received	a	nonempty	dict	from	the	constructor.
Issue	#16271:	Fix	strange	bugs	that	resulted	from	__qualname__
appearing	in	a	class’s	__dict__	and	on	type.
Issue	#12805:	Make	bytes.join	and	bytearray.join	faster	when	the
separator	is	empty.	Patch	by	Serhiy	Storchaka.
Issue	 #6074:	 Ensure	 cached	 bytecode	 files	 can	 always	 be
updated	by	the	user	that	created	them,	even	when	the	source	file
is	read-only.
Issue	 #15958:	 bytes.join	 and	 bytearray.join	 now	 accept	 arbitrary
buffer	objects.
Issue	 #14783:	 Improve	 int()	 docstring	 and	 switch	 docstrings	 for
str(),	range(),	and	slice()	to	use	multi-line	signatures.
Issue	 #16160:	 Subclass	 support	 now	 works	 for
types.SimpleNamespace.
Upgrade	Unicode	data	(UCD)	to	version	6.2.
Issue	#15379:	Fix	passing	of	non-BMP	characters	as	integers	for
the	charmap	decoder	(already	working	as	unicode	strings).	Patch
by	Serhiy	Storchaka.
Issue	 #15144:	 Fix	 possible	 integer	 overflow	 when	 handling
pointers	 as	 integer	 values,	 by	 using	 Py_uintptr_t	 instead	 of
size_t.	Patch	by	Serhiy	Storchaka.
Issue	 #15965:	 Explicitly	 cast	 AT_FDCWD	 as	 (int).	 Required	 on
Solaris	10	(which	defines	AT_FDCWD	as	0xffd19553),	harmless
on	other	platforms.
Issue	 #15839:	 Convert	 SystemErrors	 in	 super()	 to
RuntimeErrors.
Issue	 #15448:	 Buffered	 IO	 now	 frees	 the	 buffer	 when	 closed,
instead	of	when	deallocating.

http://bugs.python.org/14625
http://bugs.python.org/16345
http://bugs.python.org/16271
http://bugs.python.org/12805
http://bugs.python.org/6074
http://bugs.python.org/15958
http://bugs.python.org/14783
http://bugs.python.org/16160
http://bugs.python.org/15379
http://bugs.python.org/15144
http://bugs.python.org/15965
http://bugs.python.org/15839
http://bugs.python.org/15448

Issue	 #15846:	 Fix	 SystemError	 which	 happened	 when	 using
ast.parse()	 in	 an	 exception	 handler	 on	 code	 with	 syntax
errors.
Issue	 #15897:	 zipimport.c	 doesn’t	 check	 return	 value	 of	 fseek().
Patch	by	Felipe	Cruz.
Issue	#15801:	Make	sure	mappings	passed	to	 ‘%’	 formatting	are
actually	subscriptable.
Issue	 #15111:	 __import__	 should	 propagate	 ImportError	 when
raised	as	a	side-effect	of	a	module	triggered	from	using	fromlist.
Issue	 #15022:	 Add	 pickle	 and	 comparison	 support	 to
types.SimpleNamespace.

Library

Issue	#4331:	Added	functools.partialmethod	(Initial	patch	by	Alon
Horev)
Issue	 #13461:	 Fix	 a	 crash	 in	 the	 TextIOWrapper.tell	 method	 on
64-bit	platforms.	Patch	by	Yogesh	Chaudhari.
Issue	 #18681:	 Fix	 a	 NameError	 in	 importlib.reload()	 (noticed	 by
Weizhao	Li).
Issue	#14323:	Expanded	 the	number	of	 digits	 in	 the	 coefficients
for	the	RGB	–	YIQ	conversions	so	that	they	match	the	FCC	NTSC
versions.
Issue	#17998:	Fix	an	internal	error	in	regular	expression	engine.
Issue	 #17557:	 Fix	 os.getgroups()	 to	 work	 with	 the	 modified
behavior	of	getgroups(2)	on	OS	X	10.8.	Original	patch	by	Mateusz
Lenik.
Issue	 #18608:	 Avoid	 keeping	 a	 strong	 reference	 to	 the	 locale
module	inside	the	_io	module.
Issue	 #18619:	 Fix	 atexit	 leaking	 callbacks	 registered	 from	 sub-
interpreters,	and	make	it	GC-aware.
Issue	 #15699:	 The	 readline	 module	 now	 uses	 PEP	 3121-style
module	initialization,	so	as	to	reclaim	allocated	resources	(Python
callbacks)	at	shutdown.	Original	patch	by	Robin	Schreiber.

http://bugs.python.org/15846
http://bugs.python.org/15897
http://bugs.python.org/15801
http://bugs.python.org/15111
http://bugs.python.org/15022
http://bugs.python.org/4331
http://bugs.python.org/13461
http://bugs.python.org/18681
http://bugs.python.org/14323
http://bugs.python.org/17998
http://bugs.python.org/17557
http://bugs.python.org/18608
http://bugs.python.org/18619
http://bugs.python.org/15699

Issue	 #17616:	 wave.open	 now	 supports	 the	 context	 manager
protocol.
Issue	 #18599:	 Fix	 name	attribute	 of	 _sha1.sha1()	 object.	 It	 now
returns	‘SHA1’	instead	of	‘SHA’.
Issue	 #13266:	 Added	 inspect.unwrap	 to	 easily	 unravel
__wrapped__	 chains	 (initial	 patch	 by	 Daniel	 Urban	 and	 Aaron
Iles)
Issue	 #18561:	 Skip	 name	 in	 ctypes’	 _build_callargs()	 if	 name	 is
NULL.
Issue	 #18559:	 Fix	 NULL	 pointer	 dereference	 error	 in	 _pickle
module
Issue	#18556:	Check	the	return	type	of	PyUnicode_AsWideChar()
in	ctype’s	U_set().
Issue	#17818:	aifc.getparams	now	returns	a	namedtuple.
Issue	#18549:	Eliminate	dead	code	in	socket_ntohl()
Issue	 #18530:	 Remove	 additional	 stat	 call	 from
posixpath.ismount.	Patch	by	Alex	Gaynor.
Issue	 #18514:	 Fix	 unreachable	 Py_DECREF()	 call	 in
PyCData_FromBaseObj()
Issue	#9177:	Calling	 read()	or	write()	now	 raises	ValueError,	 not
AttributeError,	on	a	closed	SSL	socket.	Patch	by	Senko	Rasic.
Issue	#18513:	Fix	behaviour	of	cmath.rect	w.r.t.	signed	zeros	on
OS	X	10.8	+	gcc.
Issue	#18479:	Changed	venv	Activate.ps1	 to	make	deactivate	a
function,	and	removed	Deactivate.ps1.
Issue	 #18480:	 Add	 missing	 call	 to	 PyType_Ready	 to	 the
_elementtree	extension.
Issue	#17778:	Fix	 test	discovery	 for	 test_multiprocessing.	 (Patch
by	Zachary	Ware.)
Issue	#18393:	The	private	module	_gestalt	and	private	 functions
platform._mac_ver_gestalt,	 platform._mac_ver_lookup	 and
platform._bcd2str	 have	 been	 removed.	 This	 does	 not	 affect	 the
public	interface	of	the	platform	module.
Issue	 #17482:	 functools.update_wrapper	 (and	 functools.wraps)

http://bugs.python.org/17616
http://bugs.python.org/18599
http://bugs.python.org/13266
http://bugs.python.org/18561
http://bugs.python.org/18559
http://bugs.python.org/18556
http://bugs.python.org/17818
http://bugs.python.org/18549
http://bugs.python.org/18530
http://bugs.python.org/18514
http://bugs.python.org/9177
http://bugs.python.org/18513
http://bugs.python.org/18479
http://bugs.python.org/18480
http://bugs.python.org/17778
http://bugs.python.org/18393
http://bugs.python.org/17482

now	set	the	__wrapped__	attribute	correctly	even	if	the	underlying
function	has	a	__wrapped__	attribute	set.
Issue	 #18431:	 The	 new	 email	 header	 parser	 now	 decodes
RFC2047	encoded	words	in	structured	headers.
Issue	#18432:	The	sched	module’s	queue	method	was	incorrectly
returning	an	iterator	instead	of	a	list.
Issue	 #18044:	 The	 new	 email	 header	 parser	 was	 mis-parsing
encoded	words	where	an	encoded	character	immediately	followed
the	 ‘?’	 that	 follows	 the	 CTE	 character,	 resulting	 in	 a	 decoding
failure.	They	are	now	decoded	correctly.
Issue	#18101:	Tcl.split()	now	process	strings	nested	in	a	tuple	as
it	do	with	byte	strings.
Issue	#18116:	getpass	was	always	getting	an	error	when	 testing
/dev/tty,	and	thus	was	always	falling	back	to	stdin,	and	would	then
raise	an	exception	if	stdin	could	not	be	used	(such	as	/dev/null).	It
also	leaked	an	open	file.	All	of	these	issues	are	now	fixed.
Issue	 #17198:	 Fix	 a	 NameError	 in	 the	 dbm	 module.	 Patch	 by
Valentina	Mukhamedzhanova.
Issue	 #18013:	 Fix	 cgi.FieldStorage	 to	 parse	 the	 W3C	 sample
form.
Issue	 #18020:	 improve	 html.escape	 speed	 by	 an	 order	 of
magnitude.	Patch	by	Matt	Bryant.
Issue	 #18347:	 ElementTree’s	 html	 serializer	 now	 preserves	 the
case	of	closing	tags.
Issue	 #17261:	 Ensure	 multiprocessing’s	 proxies	 use	 proper
address.
Issue	 #18343:	 faulthandler.register()	 now	 keeps	 the	 previous
signal	 handler	 when	 the	 function	 is	 called	 twice,	 so
faulthandler.unregister()	 restores	 correctly	 the	 original	 signal
handler.
Issue	#17097:	Make	multiprocessing	ignore	EINTR.
Issue	#18339:	Negative	ints	keys	in	unpickler.memo	dict	no	longer
cause	a	segfault	inside	the	_pickle	C	extension.
Issue	#18240:	The	HMAC	module	is	no	longer	restricted	to	bytes

http://bugs.python.org/18431
http://bugs.python.org/18432
http://bugs.python.org/18044
http://bugs.python.org/18101
http://bugs.python.org/18116
http://bugs.python.org/17198
http://bugs.python.org/18013
http://bugs.python.org/18020
http://bugs.python.org/18347
http://bugs.python.org/17261
http://bugs.python.org/18343
http://bugs.python.org/17097
http://bugs.python.org/18339
http://bugs.python.org/18240

and	 accepts	 any	 bytes-like	 object,	 e.g.	 memoryview.	 Original
patch	by	Jonas	Borgström.
Issue	 #18224:	 Removed	 pydoc	 script	 from	 created	 venv,	 as	 it
causes	problems	on	Windows	and	adds	no	value	over	and	above
python	-m	pydoc	...
Issue	 #18155:	 The	 csv	 module	 now	 correctly	 handles	 csv	 files
that	 use	 a	 delimter	 character	 that	 has	 a	 special	 meaning	 in
regexes,	instead	of	throwing	an	exception.
Issue	 #14360:	 encode_quopri	 can	 now	 be	 successfully	 used	 as
an	encoder	when	constructing	a	MIMEApplication	object.
Issue	#11390:	Add	-o	and	-f	command	line	options	to	the	doctest
CLI	to	specify	doctest	options	(and	convert	it	to	using	argparse).
Issue	#18135:	ssl.SSLSocket.write()	now	raises	an	OverflowError
if	 the	 input	 string	 in	 longer	 than	 2	 gigabytes,	 and
ssl.SSLContext.load_cert_chain()	 raises	 a	 ValueError	 if	 the
password	 is	 longer	 than	 2	 gigabytes.	 The	 ssl	 module	 does	 not
support	partial	write.
Issue	#11016:	Add	C	implementation	of	the	stat	module	as	_stat.
Issue	#18248:	Fix	libffi	build	on	AIX.
Issue	#18259:	Declare	sethostname	in	socketmodule.c	for	AIX
Issue	 #18147:	 Add	 diagnostic	 functions	 to	 ssl.SSLContext().
get_ca_list()	 lists	all	 loaded	CA	certificates	and	cert_store_stats()
returns	amount	of	loaded	X.509	certs,	X.509	CA	certs	and	CRLs.
Issue	 #18167:	 cgi.FieldStorage	 no	 longer	 fails	 to	 handle
multipart/form-data	 when	 rn	 appears	 at	 end	 of	 65535	 bytes
without	other	newlines.
Issue	#18076:	Introduce	importlib.util.decode_source().
Issue	 #18357:	 add	 tests	 for	 dictview	 set	 difference.	 Patch	 by
Fraser	Tweedale.
importlib.abc.SourceLoader.get_source()	 no	 longer	 changes
SyntaxError	or	UnicodeDecodeError	into	ImportError.
Issue	#18058,	18057:	Make	the	namespace	package	loader	meet
the	 importlib.abc.InspectLoader	 ABC,	 allowing	 for	 namespace
packages	to	work	with	runpy.

http://bugs.python.org/18224
http://bugs.python.org/18155
http://bugs.python.org/14360
http://bugs.python.org/11390
http://bugs.python.org/18135
http://bugs.python.org/11016
http://bugs.python.org/18248
http://bugs.python.org/18259
http://bugs.python.org/18147
http://bugs.python.org/18167
http://bugs.python.org/18076
http://bugs.python.org/18357
http://bugs.python.org/18058

Issue	#17177:	The	imp	module	is	pending	deprecation.
subprocess:	 Prevent	 a	 possible	 double	 close	 of	 parent	 pipe	 fds
when	 the	 subprocess	exec	 runs	 into	an	error.	Prevent	 a	 regular
multi-close	of	the	/dev/null	fd	when	any	of	stdin,	stdout	and	stderr
was	set	to	DEVNULL.
Issue	 #18194:	 Introduce	 importlib.util.cache_from_source()	 and
source_from_cache()	while	documenting	the	equivalent	 functions
in	imp	as	deprecated.
Issue	 #17907:	 Document	 imp.new_module()	 as	 deprecated	 in
favour	of	types.ModuleType.
Issue	 #18192:	 Introduce	 importlib.util.MAGIC_NUMBER	 and
document	as	deprecated	imp.get_magic().
Issue	 #18149:	 Add	 filecmp.clear_cache()	 to	 manually	 clear	 the
filecmp	cache.	Patch	by	Mark	Levitt
Issue	#18193:	Add	importlib.reload().
Issue	#18157:	Stop	using	imp.load_module()	in	pydoc.
Issue	 #16102:	 Make	 uuid._netbios_getnode()	 work	 again	 on
Python	3.
Issue	 #17134:	 Add	 ssl.enum_cert_store()	 as	 interface	 to
Windows’	cert	store.
Issue	 #18143:	 Implement	 ssl.get_default_verify_paths()	 in	 order
to	debug	the	default	locations	for	cafile	and	capath.
Issue	#17314:	Move	multiprocessing.forking	over	to	importlib.
Issue	 #11959:	 SMTPServer	 and	 SMTPChannel	 now	 take	 an
optional	map,	use	of	which	avoids	affecting	global	state.
Issue	 #18109:	 os.uname()	 now	 decodes	 fields	 from	 the	 locale
encoding,	and	socket.gethostname()	now	decodes	the	hostname
from	the	locale	encoding,	instead	of	using	the	UTF-8	encoding	in
strict	mode.
Issue	 #18089:	 Implement
importlib.abc.InspectLoader.load_module.
Issue	 #18088:	 Introduce	 importlib.abc.Loader.init_module_attrs
for	setting	module	attributes.	Leads	to	the	pending	deprecation	of
importlib.util.module_for_loader.

http://bugs.python.org/17177
http://bugs.python.org/18194
http://bugs.python.org/17907
http://bugs.python.org/18192
http://bugs.python.org/18149
http://bugs.python.org/18193
http://bugs.python.org/18157
http://bugs.python.org/16102
http://bugs.python.org/17134
http://bugs.python.org/18143
http://bugs.python.org/17314
http://bugs.python.org/11959
http://bugs.python.org/18109
http://bugs.python.org/18089
http://bugs.python.org/18088

Issue	#17403:	urllib.parse.robotparser	normalizes	 the	urls	before
adding	to	ruleline.	This	helps	in	handling	certain	types	invalid	urls
in	a	conservative	manner.	Patch	contributed	by	Mher	Movsisyan.
Issue	 #18070:	 Have	 importlib.util.module_for_loader()	 set
attributes	unconditionally	in	order	to	properly	support	reloading.
Added	 importlib.util.module_to_load	 to	 return	 a	 context	manager
to	provide	the	proper	module	object	to	load.
Issue	 #18025:	 Fixed	 a	 segfault	 in	 io.BufferedIOBase.readinto()
when	raw	stream’s	read()	returns	more	bytes	than	requested.
Issue	 #18011:	 As	 was	 originally	 intended,	 base64.b32decode()
now	 raises	 a	 binascii.Error	 if	 there	 are	 non-b32-alphabet
characters	present	in	the	input	string,	instead	of	a	TypeError.
Issue	 #18072:	 Implement	 importlib.abc.InspectLoader.get_code()
and	importlib.abc.ExecutionLoader.get_code().
Issue	 #8240:	 Set	 the
SSL_MODE_ACCEPT_MOVING_WRITE_BUFFER	 flag	 on	 SSL
sockets.
Issue	 #17269:	 Workaround	 for	 socket.getaddrinfo	 crash	 on
MacOS	X	with	port	None	or	“0”	and	flags	AI_NUMERICSERV.
Issue	#16986:	ElementTree	now	correctly	works	with	string	 input
when	the	internal	XML	encoding	is	not	UTF-8	or	US-ASCII.
Issue	#17996:	socket	module	now	exposes	AF_LINK	constant	on
BSD	and	OSX.
Issue	 #17900:	 Allowed	 pickling	 of	 recursive	 OrderedDicts.
Decreased	pickled	size	and	pickling	time.
Issue	#17914:	Add	os.cpu_count().	Patch	by	Yogesh	Chaudhari,
based	on	an	initial	patch	by	Trent	Nelson.
Issue	#17812:	Fixed	quadratic	complexity	of	base64.b32encode().
Optimize	 base64.b32encode()	 and	 base64.b32decode()	 (speed
up	to	3x).
Issue	 #17980:	 Fix	 possible	 abuse	 of	 ssl.match_hostname()	 for
denial	 of	 service	 using	 certificates	 with	 many	 wildcards	 (CVE-
2013-2099).
Issue	 #15758:	 Fix	 FileIO.readall()	 so	 it	 no	 longer	 has	 O(n**2)

http://bugs.python.org/17403
http://bugs.python.org/18070
http://bugs.python.org/18025
http://bugs.python.org/18011
http://bugs.python.org/18072
http://bugs.python.org/8240
http://bugs.python.org/17269
http://bugs.python.org/16986
http://bugs.python.org/17996
http://bugs.python.org/17900
http://bugs.python.org/17914
http://bugs.python.org/17812
http://bugs.python.org/17980
http://bugs.python.org/15758

complexity.
Issue	 #14596:	 The	 struct.Struct()	 objects	 now	 use	 a	 more
compact	implementation.
Issue	 #17981:	 logging’s	 SysLogHandler	 now	 closes	 the	 socket
when	it	catches	socket	OSErrors.
Issue	#17964:	Fix	os.sysconf():	the	return	type	of	the	C	sysconf()
function	is	long,	not	int.
Fix	typos	in	the	multiprocessing	module.
Issue	 #17754:	 Make	 ctypes.util.find_library()	 independent	 of	 the
locale.
Issue	#17968:	Fix	memory	leak	in	os.listxattr().
Issue	 #17606:	 Fixed	 support	 of	 encoded	 byte	 strings	 in	 the
XMLGenerator	characters()	and	 ignorableWhitespace()	methods.
Original	patch	by	Sebastian	Ortiz	Vasquez.
Issue	 #17732:	 Ignore	 distutils.cfg	 options	 pertaining	 to	 install
paths	if	a	virtual	environment	is	active.
Issue	 #17915:	 Fix	 interoperability	 of	 xml.sax	 with	 file	 objects
returned	by	codecs.open().
Issue	#16601:	Restarting	iteration	over	tarfile	really	restarts	rather
than	continuing	from	where	it	left	off.	Patch	by	Michael	Birtwell.
Issue	#17289:	The	readline	module	now	plays	nicer	with	external
modules	 or	 applications	 changing	 the
rl_completer_word_break_characters	global	variable.	 Initial	patch
by	Bradley	Froehle.
Issue	 #12181:	 select	 module:	 Fix	 struct	 kevent	 definition	 on
OpenBSD	64-bit	platforms.	Patch	by	Federico	Schwindt.
Issue	 #11816:	 multiple	 improvements	 to	 the	 dis	 module:
get_instructions	 generator,	 ability	 to	 redirect	 output	 to	 a	 file,
Bytecode	 and	 Instruction	 abstractions.	 Patch	 by	 Nick	 Coghlan,
Ryan	Kelly	and	Thomas	Kluyver.
Issue	#13831:	Embed	stringification	of	 remote	 traceback	 in	 local
traceback	raised	when	pool	task	raises	an	exception.
Issue	 #15528:	 Add	 weakref.finalize	 to	 support	 finalization	 using
weakref	callbacks.

http://bugs.python.org/14596
http://bugs.python.org/17981
http://bugs.python.org/17964
http://bugs.python.org/17754
http://bugs.python.org/17968
http://bugs.python.org/17606
http://bugs.python.org/17732
http://bugs.python.org/17915
http://bugs.python.org/16601
http://bugs.python.org/17289
http://bugs.python.org/12181
http://bugs.python.org/11816
http://bugs.python.org/13831
http://bugs.python.org/15528

Issue	 #14173:	 Avoid	 crashing	 when	 reading	 a	 signal	 handler
during	interpreter	shutdown.
Issue	 #15902:	 Fix	 imp.load_module()	 accepting	 None	 as	 a	 file
when	loading	an	extension	module.
Issue	 #13721:	 SSLSocket.getpeercert()	 and
SSLSocket.do_handshake()	 now	 raise	 an	 OSError	 with
ENOTCONN,	instead	of	an	AttributeError,	when	the	SSLSocket	is
not	connected.
Issue	#14679:	add	an	__all__	(that	contains	only	HTMLParser)	to
html.parser.
Issue	 #17802:	 Fix	 an	 UnboundLocalError	 in	 html.parser.	 Initial
tests	by	Thomas	Barlow.
Issue	 #17358:	 Modules	 loaded	 by	 imp.load_source()	 and
load_compiled()	 (and	 by	 extention	 load_module())	 now	 have	 a
better	chance	of	working	when	reloaded.
Issue	 #17804:	 New	 function	 struct.iter_unpack	 allows	 for
streaming	struct	unpacking.
Issue	#17830:	When	keyword.py	is	used	to	update	a	keyword	file,
it	now	preserves	the	line	endings	of	the	original	file.
Issue	 #17272:	 Making	 the	 urllib.request’s	 Request.full_url	 a
descriptor.	 Fixes	 bugs	 with	 assignment	 to	 full_url.	 Patch	 by
Demian	Brecht.
Issue	#17353:	Plistlib	emitted	empty	data	tags	with	deeply	nested
datastructures
Issue	 #11714:	 Use	 ‘with’	 statements	 to	 assure	 a	 Semaphore
releases	a	condition	variable.	Original	patch	by	Thomas	Rachel.
Issue	 #16624:	 subprocess.check_output	 now	 accepts	 an
input	argument,	allowing	the	subprocess’s	stdin	to	be	provided
as	a	(byte)	string.	Patch	by	Zack	Weinberg.
Issue	 #17795:	 Reverted	 backwards-incompatible	 change	 in
SysLogHandler	with	Unix	domain	sockets.
Issue	#16694:	Add	a	pure	Python	implementation	of	the	operator
module.	Patch	by	Zachary	Ware.
Issue	 #11182:	 remove	 the	 unused	 and	 undocumented

http://bugs.python.org/14173
http://bugs.python.org/15902
http://bugs.python.org/13721
http://bugs.python.org/14679
http://bugs.python.org/17802
http://bugs.python.org/17358
http://bugs.python.org/17804
http://bugs.python.org/17830
http://bugs.python.org/17272
http://bugs.python.org/17353
http://bugs.python.org/11714
http://bugs.python.org/16624
http://bugs.python.org/17795
http://bugs.python.org/16694
http://bugs.python.org/11182

pydoc.Scanner	class.	Patch	by	Martin	Morrison.
Issue	#17741:	Add	ElementTree.XMLPullParser,	 an	event-driven
parser	for	non-blocking	applications.
Issue	#17555:	Fix	ForkAwareThreadLock	so	that	size	of	after	fork
registry	does	not	grow	exponentially	with	generation	of	process.
Issue	 #17707:	 fix	 regression	 in	 multiprocessing.Queue’s	 get()
method	where	it	did	not	block	for	short	timeouts.
Issue	#17720:	Fix	 the	Python	 implementation	of	 pickle.Unpickler
to	 correctly	 process	 the	 APPENDS	 opcode	 when	 it	 is	 used	 on
non-list	objects.
Issue	 #17012:	 shutil.which()	 no	 longer	 falls	 back	 to	 the	 PATH
environment	 variable	 if	 an	 empty	 path	 argument	 is	 specified.
Patch	by	Serhiy	Storchaka.
Issue	#17710:	Fix	pickle	raising	a	SystemError	on	bogus	input.
Issue	 #17341:	 Include	 the	 invalid	 name	 in	 the	 error	 messages
from	re	about	invalid	group	names.
Issue	 #17702:	 os.environ	 now	 raises	 KeyError	 with	 the	 original
environment	 variable	 name	 (str	 on	 UNIX),	 instead	 of	 using	 the
encoded	name	(bytes	on	UNIX).
Issue	 #16163:	 Make	 the	 importlib	 based	 version	 of
pkgutil.iter_importers	work	for	submodules.	Initial	patch	by	Berker
Peksag.
Issue	#16804:	Fix	a	bug	 in	 the	 ‘site’	module	 that	caused	running
‘python	-S	-m	site’	to	incorrectly	throw	an	exception.
Issue	#15480:	Remove	the	deprecated	and	unused	TYPE_INT64
code	from	marshal.	Initial	patch	by	Daniel	Riti.
Issue	#2118:	SMTPException	is	now	a	subclass	of	OSError.
Issue	#17016:	Get	rid	of	possible	pointer	wraparounds	and	integer
overflows	in	the	re	module.	Patch	by	Nickolai	Zeldovich.
Issue	 #16658:	 add	 missing	 return	 to	 HTTPConnection.send()
Patch	by	Jeff	Knupp.
Issue	#9556:	 the	 logging	package	now	allows	specifying	a	 time-
of-day	for	a	TimedRotatingFileHandler	to	rotate.
Issue	 #14971:	 unittest	 test	 discovery	 no	 longer	 gets	 confused

http://bugs.python.org/17741
http://bugs.python.org/17555
http://bugs.python.org/17707
http://bugs.python.org/17720
http://bugs.python.org/17012
http://bugs.python.org/17710
http://bugs.python.org/17341
http://bugs.python.org/17702
http://bugs.python.org/16163
http://bugs.python.org/16804
http://bugs.python.org/15480
http://bugs.python.org/2118
http://bugs.python.org/17016
http://bugs.python.org/16658
http://bugs.python.org/9556
http://bugs.python.org/14971

when	 a	 function	 has	 a	 different	 __name__	 than	 its	 name	 in	 the
TestCase	class	dictionary.
Issue	 #17487:	 The	 wave	 getparams	 method	 now	 returns	 a
namedtuple	rather	than	a	plain	tuple.
Issue	#17675:	socket	repr()	provides	local	and	remote	addresses
(if	any).	Patch	by	Giampaolo	Rodola’
Issue	 #17093:	 Make	 the	 ABCs	 in	 importlib.abc	 provide	 default
values	or	raise	reasonable	exceptions	for	 their	methods	to	make
them	more	amenable	to	super()	calls.
Issue	 #17566:	 Make	 importlib.abc.Loader.module_repr()	 optional
instead	of	an	abstractmethod;	now	it	raises	NotImplementedError
so	as	to	be	ignored	by	default.
Issue	 #17678:	 Remove	 the	 use	 of	 deprecated	 method	 in
http/cookiejar.py	by	 changing	 the	 call	 to	get_origin_req_host()	 to
origin_req_host.
Issue	#17666:	Fix	reading	gzip	files	with	an	extra	field.
Issue	#16475:	Support	 object	 instancing,	 recursion	 and	 interned
strings	in	marshal
Issue	#17502:	Process	DEFAULT	values	in	mock	side_effect	that
returns	iterator.
Issue	 #16795:	 On	 the	 ast.arguments	 object,	 unify	 vararg	 with
varargannotation	 and	 kwarg	 and	 kwargannotation.	 Change	 the
column	offset	of	ast.Attribute	to	be	at	the	attribute	name.
Issue	#17434:	Properly	raise	a	SyntaxError	when	a	string	occurs
between	future	imports.
Issue	 #17117:	 Import	 and	 @importlib.util.set_loader	 now	 set
__loader__	when	 it	 has	a	 value	of	None	or	 the	attribute	doesn’t
exist.
Issue	#17032:	The	“global”	 in	 the	“NameError:	global	name	‘x’	 is
not	 defined”	 error	 message	 has	 been	 removed.	 Patch	 by	 Ram
Rachum.
Issue	#18080:	When	building	a	C	extension	module	on	OS	X,	 if
the	 compiler	 is	 overriden	with	 the	CC	environment	 variable,	 use
the	 new	 compiler	 as	 the	 default	 for	 linking	 if	 LDSHARED	 is	 not

http://bugs.python.org/17487
http://bugs.python.org/17675
http://bugs.python.org/17093
http://bugs.python.org/17566
http://bugs.python.org/17678
http://bugs.python.org/17666
http://bugs.python.org/16475
http://bugs.python.org/17502
http://bugs.python.org/16795
http://bugs.python.org/17434
http://bugs.python.org/17117
http://bugs.python.org/17032
http://bugs.python.org/18080

also	overriden.	This	restores	Distutils	behavior	introduced	in	3.2.3
and	inadvertently	dropped	in	3.3.0.
Issue	#18113:	Fixed	a	refcount	leak	in	the	curses.panel	module’s
set_userptr()	method.	Reported	by	Atsuo	Ishimoto.
Implement	PEP	443	“Single-dispatch	generic	functions”.
Implement	 PEP	 435	 “Adding	 an	 Enum	 type	 to	 the	 Python
standard	library”.
Issue	#15596:	Faster	pickling	of	unicode	strings.
Issue	 #17572:	 Avoid	 chained	 exceptions	 when	 passing	 bad
directives	to	time.strptime().	Initial	patch	by	Claudiu	Popa.
Issue	#17435:	 threading.Timer’s	__init__	method	no	 longer	uses
mutable	default	values	for	the	args	and	kwargs	parameters.
Issue	#17526:	fix	an	IndexError	raised	while	passing	code	without
filename	to	inspect.findsource().	Initial	patch	by	Tyler	Doyle.
Issue	 #17540:	 Added	 style	 parameter	 to	 logging	 formatter
configuration	by	dict.
Issue	 #16692:	 The	 ssl	 module	 now	 supports	 TLS	 1.1	 and	 TLS
1.2.	Initial	patch	by	Michele	Orrù.
Issue	#17025:	multiprocessing:	Reduce	Queue	and	SimpleQueue
contention.
Issue	#17536:	Add	to	webbrowser’s	browser	list:	www-browser,	x-
www-browser,	iceweasel,	iceape.
Issue	 #17150:	 pprint	 now	 uses	 line	 continuations	 to	 wrap	 long
string	literals.
Issue	#17488:	Change	 the	subprocess.Popen	bufsize	parameter
default	 value	 from	 unbuffered	 (0)	 to	 buffering	 (-1)	 to	 match	 the
behavior	 existing	 code	 expects	 and	 match	 the	 behavior	 of	 the
subprocess	module	in	Python	2	to	avoid	introducing	hard	to	track
down	bugs.
Issue	 #17521:	 Corrected	 non-enabling	 of	 logger	 following	 two
calls	to	fileConfig().
Issue	#17508:	Corrected	logging	MemoryHandler	configuration	in
dictConfig()	where	the	target	handler	wasn’t	configured	first.
Issue	 #17209:	 curses.window.get_wch()	 now	 correctly	 handles

http://bugs.python.org/18113
http://bugs.python.org/15596
http://bugs.python.org/17572
http://bugs.python.org/17435
http://bugs.python.org/17526
http://bugs.python.org/17540
http://bugs.python.org/16692
http://bugs.python.org/17025
http://bugs.python.org/17536
http://bugs.python.org/17150
http://bugs.python.org/17488
http://bugs.python.org/17521
http://bugs.python.org/17508
http://bugs.python.org/17209

KeyboardInterrupt	(CTRL+c).
Issue	#5713:	smtplib	now	handles	421	(closing	connection)	error
codes	when	sending	mail	by	closing	the	socket	and	reporting	the
421	error	code	via	the	exception	appropriate	to	the	command	that
received	the	error	response.
Issue	#16997:	unittest.TestCase	now	provides	a	subTest()	context
manager	 to	 procedurally	 generate,	 in	 an	 easy	 way,	 small	 test
instances.
Issue	#17485:	Also	delete	 the	Request	Content-Length	header	 if
the	data	attribute	is	deleted.	(Follow	on	to	issue	16464).
Issue	#15927:	CVS	now	correctly	 parses	escaped	newlines	and
carriage	when	parsing	with	quoting	turned	off.
Issue	#17467:	add	readline	and	readlines	support	 to	mock_open
in	unittest.mock.
Issue	 #13248:	 removed	 deprecated	 and	 undocumented
difflib.isbjunk,	isbpopular.
Issue	#17192:	Update	 the	 ctypes	module’s	 libffi	 to	 v3.0.13.	 This
specifically	 addresses	 a	 stack	 misalignment	 issue	 on	 x86	 and
issues	on	some	more	recent	platforms.
Issue	#8862:	Fixed	curses	cleanup	when	getkey	is	interrputed	by
a	signal.
Issue	 #17443:	 imaplib.IMAP4_stream	 was	 using	 the	 default
unbuffered	IO	in	subprocess,	but	the	imap	code	assumes	buffered
IO.	 In	 Python2	 this	 worked	 by	 accident.	 IMAP4_stream	 now
explicitly	uses	buffered	IO.
Issue	 #17476:	 Fixed	 regression	 relative	 to	 Python2	 in
undocumented	 pydoc	 ‘allmethods’;	 it	 was	 missing	 unbound
methods	on	the	class.
Issue	#17474:	Remove	the	deprecated	methods	of	Request	class.
Issue	 #16709:	 unittest	 discover	 order	 is	 no-longer	 filesystem
specific.	Patch	by	Jeff	Ramnani.
Use	 the	 HTTPS	PyPI	 url	 for	 upload,	 overriding	 any	 plain	 HTTP
URL	in	pypirc.
Issue	 #5024:	 sndhdr.whichhdr	 now	 returns	 the	 frame	 count	 for

http://bugs.python.org/5713
http://bugs.python.org/16997
http://bugs.python.org/17485
http://bugs.python.org/15927
http://bugs.python.org/17467
http://bugs.python.org/13248
http://bugs.python.org/17192
http://bugs.python.org/8862
http://bugs.python.org/17443
http://bugs.python.org/17476
http://bugs.python.org/17474
http://bugs.python.org/16709
http://bugs.python.org/5024

WAV	files	rather	than	-1.
Issue	 #17460:	 Remove	 the	 strict	 argument	 of	 HTTPConnection
and	 removing	 the	 DeprecationWarning	 being	 issued	 from	 3.2
onwards.
Issue	#16880:	Do	not	assume	_imp.load_dynamic()	 is	defined	 in
the	imp	module.
Issue	#16389:	Fixed	a	performance	regression	relative	to	Python
3.1	in	the	caching	of	compiled	regular	expressions.
Added	 missing	 FeedParser	 and	 BytesFeedParser	 to
email.parser.__all__.
Issue	 #17431:	 Fix	 missing	 import	 of	 BytesFeedParser	 in
email.parser.
Issue	#12921:	http.server’s	send_error	takes	an	explain	argument
to	send	more	information	in	response.	Patch	contributed	by	Karl.
Issue	 #17414:	 Add	 timeit,	 repeat,	 and	 default_timer	 to
timeit.__all__.
Issue	 #1285086:	 Get	 rid	 of	 the	 refcounting	 hack	 and	 speed	 up
urllib.parse.unquote()	and	urllib.parse.unquote_to_bytes().
Issue	#17099:	Have	importlib.find_loader()	raise	ValueError	when
__loader__	 is	not	set,	harmonizing	with	what	happens	when	 the
attribute	is	set	to	None.
Expose	the	O_PATH	constant	in	the	os	module	if	it	is	available.
Issue	 #17368:	 Fix	 an	 off-by-one	 error	 in	 the	 Python	 JSON
decoder	that	caused	a	failure	while	decoding	empty	object	literals
when	object_pairs_hook	was	specified.
Issue	#17385:	Fix	quadratic	behavior	 in	threading.Condition.	The
FIFO	queue	now	uses	a	deque	instead	of	a	list.
Issue	 #15806:	 Add	 contextlib.ignore().	 This	 creates	 a	 context
manager	 to	 ignore	 specified	 exceptions,	 replacing	 the	 “except
SomeException:	pass”	idiom.
Issue	#14645:	The	email	 generator	 classes	now	produce	output
using	 the	 specified	 linesep	 throughout.	 Previously	 if	 the	 prolog,
epilog,	 or	 body	were	 stored	with	a	different	 linesep,	 that	 linesep
was	 used.	 This	 fix	 corrects	 an	 RFC	 non-compliance	 issue	 with

http://bugs.python.org/17460
http://bugs.python.org/16880
http://bugs.python.org/16389
http://bugs.python.org/17431
http://bugs.python.org/12921
http://bugs.python.org/17414
http://bugs.python.org/1285086
http://bugs.python.org/17099
http://bugs.python.org/17368
http://bugs.python.org/17385
http://bugs.python.org/15806
http://bugs.python.org/14645

smtplib.send_message.
Issue	 #17278:	 Fix	 a	 crash	 in	 heapq.heappush()	 and
heapq.heappop()	when	the	list	is	being	resized	concurrently.
Issue	 #16962:	 Use	 getdents64	 instead	 of	 the	 obsolete	 getdents
syscall	in	the	subprocess	module	on	Linux.
Issue	 #16935:	 unittest	 now	 counts	 the	 module	 as	 skipped	 if	 it
raises	 SkipTest,	 instead	 of	 counting	 it	 as	 an	 error.	 Patch	 by
Zachary	Ware.
Issue	 #17018:	Make	 Process.join()	 retry	 if	 os.waitpid()	 fails	 with
EINTR.
Issue	 #17223:	 array	module:	 Fix	 a	 crasher	 when	 converting	 an
array	 containing	 invalid	 characters	 (outside	 range	 [U+0000;
U+10ffff])	to	Unicode:	repr(array),	str(array)	and	array.tounicode().
Patch	written	by	Manuel	Jacob.
Issue	#17197:	profile/cProfile	modules	refactored	so	that	code	of
run()	 and	 runctx()	 utility	 functions	 is	 not	 duplicated	 in	 both
modules.
Issue	 #14720:	 sqlite3:	 Convert	 datetime	microseconds	 correctly.
Patch	by	Lowe	Thiderman.
Issue	 #15132:	 Allow	 a	 list	 for	 the	 defaultTest	 argument	 of
unittest.TestProgram.	Patch	by	Jyrki	Pulliainen.
Issue	#17225:	JSON	decoder	now	counts	columns	in	the	first	line
starting	with	1,	as	in	other	lines.
Issue	 #6623:	 Added	 explicit	 DeprecationWarning	 for	 ftplib.netrc,
which	has	been	deprecated	and	undocumented	for	a	long	time.
Issue	 #13700:	 Fix	 byte/string	 handling	 in	 imaplib	 authentication
when	an	authobject	is	specified.
Issue	 #13153:	 Tkinter	 functions	 now	 raise	 TclError	 instead	 of
ValueError	when	a	string	argument	contains	non-BMP	character.
Issue	 #9669:	 Protect	 re	 against	 infinite	 loops	 on	 zero-width
matching	in	non-greedy	repeat.	Patch	by	Matthew	Barnett.
Issue	 #13169:	 The	 maximal	 repetition	 number	 in	 a	 regular
expression	 has	 been	 increased	 from	 65534	 to	 2147483647	 (on
32-bit	platform)	or	4294967294	(on	64-bit).

http://bugs.python.org/17278
http://bugs.python.org/16962
http://bugs.python.org/16935
http://bugs.python.org/17018
http://bugs.python.org/17223
http://bugs.python.org/17197
http://bugs.python.org/14720
http://bugs.python.org/15132
http://bugs.python.org/17225
http://bugs.python.org/6623
http://bugs.python.org/13700
http://bugs.python.org/13153
http://bugs.python.org/9669
http://bugs.python.org/13169

Issue	 #17143:	 Fix	 a	 missing	 import	 in	 the	 trace	 module.	 Initial
patch	by	Berker	Peksag.
Issue	 #15220:	 email.feedparser’s	 line	 splitting	 algorithm	 is	 now
simpler	and	faster.
Issue	#16743:	Fix	mmap	overflow	check	on	32	bit	Windows.
Issue	#16996:	webbrowser	module	now	uses	shutil.which()	to	find
a	web-browser	on	the	executable	search	path.
Issue	#16800:	 tempfile.gettempdir()	no	 longer	 left	 temporary	 files
when	the	disk	is	full.	Original	patch	by	Amir	Szekely.
Issue	#17192:	Import	libffi-3.0.12.
Issue	 #16564:	 Fixed	 regression	 relative	 to	 Python2	 in	 the
operation	 of	 email.encoders.encode_7or8bit	 when	 used	 with
binary	data.
Issue	#17052:	unittest	discovery	should	use	self.testLoader.
Issue	#4591:	Uid	and	gid	values	larger	than	2**31	are	supported
now.
Issue	 #17141:	 random.vonmisesvariate()	 no	 longer	 hangs	 for
large	kappas.
Issue	 #17149:	 Fix	 random.vonmisesvariate	 to	 always	 return
results	in	[0,	2*math.pi].
Issue	 #1470548:	 XMLGenerator	 now	 works	 with	 binary	 output
streams.
Issue	 #6975:	 os.path.realpath()	 now	 correctly	 resolves	 multiple
nested	symlinks	on	POSIX	platforms.
Issue	 #13773:	 sqlite3.connect()	 gets	 a	 new	 uri	 parameter	 to
pass	the	filename	as	a	URI,	allowing	to	pass	custom	options.
Issue	 #16564:	 Fixed	 regression	 relative	 to	 Python2	 in	 the
operation	of	email.encoders.encode_noop	when	used	with	binary
data.
Issue	 #10355:	 The	 mode,	 name,	 encoding	 and	 newlines
properties	now	work	on	SpooledTemporaryFile	objects	even	when
they	have	not	yet	 rolled	over.	Obsolete	method	xreadline	 (which
has	never	worked	in	Python	3)	has	been	removed.
Issue	 #16686:	 Fixed	 a	 lot	 of	 bugs	 in	 audioop	 module.	 Fixed

http://bugs.python.org/17143
http://bugs.python.org/15220
http://bugs.python.org/16743
http://bugs.python.org/16996
http://bugs.python.org/16800
http://bugs.python.org/17192
http://bugs.python.org/16564
http://bugs.python.org/17052
http://bugs.python.org/4591
http://bugs.python.org/17141
http://bugs.python.org/17149
http://bugs.python.org/1470548
http://bugs.python.org/6975
http://bugs.python.org/13773
http://bugs.python.org/16564
http://bugs.python.org/10355
http://bugs.python.org/16686

crashes	 in	 avgpp(),	 maxpp()	 and	 ratecv().	 Fixed	 an	 integer
overflow	 in	 add(),	 bias(),	 and	 ratecv().	 reverse(),	 lin2lin()	 and
ratecv()	 no	 more	 lose	 precision	 for	 32-bit	 samples.	 max()	 and
rms()	 no	 more	 returns	 a	 negative	 result	 and	 various	 other
functions	now	work	correctly	with	32-bit	sample	-0x80000000.
Issue	#17073:	Fix	some	integer	overflows	in	sqlite3	module.
Issue	 #16723:	 httplib.HTTPResponse	 no	 longer	 marked	 closed
when	the	connection	is	automatically	closed.
Issue	 #15359:	 Add	 CAN_BCM	 protocol	 support	 to	 the	 socket
module.	Patch	by	Brian	Thorne.
Issue	#16948:	Fix	quoted	printable	body	encoding	 for	 non-latin1
character	sets	in	the	email	package.
Issue	 #16811:	 Fix	 folding	 of	 headers	 with	 no	 value	 in	 the
provisional	email	policies.
Issue	#17132:	Update	symbol	for	“yield	from”	grammar	changes.
Issue	#17076:	Make	copying	of	xattrs	more	tolerant	of	missing	FS
support.	Patch	by	Thomas	Wouters.
Issue	#17089:	Expat	parser	now	correctly	works	with	string	 input
when	the	internal	XML	encoding	is	not	UTF-8	or	US-ASCII.	It	also
now	accepts	bytes	and	strings	larger	than	2	GiB.
Issue	 #6083:	 Fix	 multiple	 segmentation	 faults	 occured	 when
PyArg_ParseTuple	parses	nested	mutating	sequence.
Issue	#5289:	Fix	ctypes.util.find_library	on	Solaris.
Issue	#17106:	Fix	a	segmentation	fault	in	io.TextIOWrapper	when
an	 underlying	 stream	 or	 a	 decoder	 produces	 data	 of	 an
unexpected	 type	 (i.e.	when	 io.TextIOWrapper	 initialized	with	 text
stream	or	use	bytes-to-bytes	codec).
Issue	#17015:	When	it	has	a	spec,	a	Mock	object	now	inspects	its
signature	 when	 matching	 calls,	 so	 that	 arguments	 can	 be
matched	positionally	or	by	name.
Issue	 #15633:	 httplib.HTTPResponse	 is	 now	mark	 closed	 when
the	server	sends	less	than	the	advertised	Content-Length.
Issue	#12268:	The	 io	module	 file	object	write	methods	no	 longer
abort	 early	 when	 one	 of	 its	 write	 system	 calls	 is	 interrupted

http://bugs.python.org/17073
http://bugs.python.org/16723
http://bugs.python.org/15359
http://bugs.python.org/16948
http://bugs.python.org/16811
http://bugs.python.org/17132
http://bugs.python.org/17076
http://bugs.python.org/17089
http://bugs.python.org/6083
http://bugs.python.org/5289
http://bugs.python.org/17106
http://bugs.python.org/17015
http://bugs.python.org/15633
http://bugs.python.org/12268

(EINTR).
Issue	#6972:	The	zipfile	module	no	longer	overwrites	files	outside
of	its	destination	path	when	extracting	malicious	zip	files.
Issue	#4844:	ZipFile	now	raises	BadZipFile	when	opens	a	ZIP	file
with	 an	 incomplete	 “End	 of	 Central	 Directory”	 record.	 Original
patch	by	Guilherme	Polo	and	Alan	McIntyre.
Issue	 #17071:	 Signature.bind()	 now	 works	 when	 one	 of	 the
keyword	arguments	is	named	self.
Issue	#12004:	Fix	 an	 internal	 error	 in	PyZipFile	when	writing	an
invalid	Python	file.	Patch	by	Ben	Morgan.
Have	py_compile	use	importlib	as	much	as	possible	to	avoid	code
duplication.	Code	now	raises	FileExistsError	 if	 the	 file	path	 to	be
used	for	the	byte-compiled	file	is	a	symlink	or	non-regular	file	as	a
warning	 that	 import	will	 not	 keep	 the	 file	 path	 type	 if	 it	writes	 to
that	path.
Issue	 #16972:	 Have	 site.addpackage()	 consider	 already	 known
paths	even	when	none	are	explicitly	passed	in.	Bug	report	and	fix
by	Kirill.
Issue	#1602133:	on	Mac	OS	X	a	shared	library	build	(--enable-
shared)	now	fills	the	os.environ	variable	correctly.
Issue	#15505:	unittest.installHandler	no	longer	assumes
SIGINT	handler	is	set	to	a	callable	object.
Issue	 #13454:	 Fix	 a	 crash	 when	 deleting	 an	 iterator	 created	 by
itertools.tee()	if	all	other	iterators	were	very	advanced	before.
Issue	 #12411:	 Fix	 to	 cgi.parse_multipart	 to	 correctly	 use	 bytes
boundaries	and	bytes	data.	Patch	by	Jonas	Wagner.
Issue	#16957:	shutil.which()	no	longer	searches	a	bare	file	name
in	the	current	directory	on	Unix	and	no	longer	searches	a	relative
file	 path	 with	 a	 directory	 part	 in	 PATH	 directories.	 Patch	 by
Thomas	Kluyver.
Issue	 #1159051:	GzipFile	 now	 raises	 EOFError	 when	 reading	 a
corrupted	file	with	truncated	header	or	footer.
Issue	#16993:	shutil.which()	now	preserves	 the	case	of	 the	path
and	extension	on	Windows.

http://bugs.python.org/6972
http://bugs.python.org/4844
http://bugs.python.org/17071
http://bugs.python.org/12004
http://bugs.python.org/16972
http://bugs.python.org/1602133
http://bugs.python.org/15505
http://bugs.python.org/13454
http://bugs.python.org/12411
http://bugs.python.org/16957
http://bugs.python.org/1159051
http://bugs.python.org/16993

Issue	#16992:	On	Windows	in	signal.set_wakeup_fd,	validate	the
file	descriptor	argument.
Issue	 #16422:	 For	 compatibility	 with	 the	 Python	 version,	 the	 C
version	 of	 decimal	 now	 uses	 strings	 instead	 of	 integers	 for
rounding	mode	constants.
Issue	 #15861:	 tkinter	 now	 correctly	 works	 with	 lists	 and	 tuples
containing	 strings	with	 whitespaces,	 backslashes	 or	 unbalanced
braces.
Issue	 #9720:	 zipfile	 now	 writes	 correct	 local	 headers	 for	 files
larger	than	4	GiB.
Issue	#16955:	Fix	 the	 poll()	method	 for	multiprocessing’s	 socket
connections	on	Windows.
SSLContext.load_dh_params()	now	properly	closes	the	input	file.
Issue	#15031:	Refactor	some	.pyc	management	code	to	cut	down
on	 code	 duplication.	 Thanks	 to	 Ronan	 Lamy	 for	 the	 report	 and
taking	an	initial	stab	at	the	problem.
Issue	 #16398:	 Optimize	 deque.rotate()	 so	 that	 it	 only	 moves
pointers	 and	 doesn’t	 touch	 the	 underlying	 data	 with	 increfs	 and
decrefs.
Issue	 #16900:	 Issue	 a	 ResourceWarning	 when	 an	 ssl	 socket	 is
left	unclosed.
Issue	#13899:	A,	Z,	and	B	now	correctly	match	 the	A,	Z,	and	B
literals	when	 used	 inside	 character	 classes	 (e.g.	 ‘[A]’).	 Patch	 by
Matthew	Barnett.
Issue	#15545:	Fix	regression	in	sqlite3’s	iterdump	method	where	it
was	 failing	 if	 the	 connection	 used	 a	 row	 factory	 (such	 as
sqlite3.Row)	 that	 produced	 unsortable	 objects.	 (Regression	was
introduced	by	fix	for	9750).
fcntl:	 add	 F_DUPFD_CLOEXEC	 constant,	 available	 on	 Linux
2.6.24+.
Issue	#15972:	Fix	error	messages	when	os	functions	expecting	a
file	name	or	file	descriptor	receive	the	incorrect	type.
Issue	#8109:	The	ssl	module	now	has	support	for	server-side	SNI,
thanks	 to	 a	 SSLContext.set_servername_callback()

http://bugs.python.org/16992
http://bugs.python.org/16422
http://bugs.python.org/15861
http://bugs.python.org/9720
http://bugs.python.org/16955
http://bugs.python.org/15031
http://bugs.python.org/16398
http://bugs.python.org/16900
http://bugs.python.org/13899
http://bugs.python.org/15545
http://bugs.python.org/15972
http://bugs.python.org/8109

method.	Patch	by	Daniel	Black.
Issue	 #16860:	 In	 tempfile,	 use	 O_CLOEXEC	 when	 available	 to
set	the	close-on-exec	flag	atomically.
Issue	 #16674:	 random.getrandbits()	 is	 now	 20-40%	 faster	 for
small	integers.
Issue	 #16009:	 JSON	 error	 messages	 now	 provide	 more
information.
Issue	 #16828:	 Fix	 error	 incorrectly	 raised	 by	 bz2.compress(b’‘)
and	 bz2.BZ2Compressor.compress(b’‘).	 Initial	 patch	 by	 Martin
Packman.
Issue	#16833:	In	http.client.HTTPConnection,	do	not	concatenate
the	request	headers	and	body	when	the	payload	exceeds	16	KB,
since	 it	 can	 consume	 more	 memory	 for	 no	 benefit.	 Patch	 by
Benno	Leslie.
Issue	 #16541:	 tk_setPalette()	 now	 works	 with	 keyword
arguments.
Issue	 #16820:	 In	 configparser,	 parser.popitem()	 no	 longer
raises	ValueError.	This	makes	parser.clean()	work	correctly.
Issue	#16820:	In	configparser,	parser['section']	=	{}	now
preserves	 section	 order	 within	 the	 parser.	 This	 makes
parser.update()	preserve	section	order	as	well.
Issue	#16820:	In	configparser,	parser['DEFAULT']	=	{}	now
correctly	 clears	 previous	 values	 stored	 in	 the	 default	 section.
Same	goes	for	parser.update({'DEFAULT':	{}}).
Issue	 #9586:	 Redefine	 SEM_FAILED	 on	 MacOSX	 to	 keep
compiler	happy.
Issue	 #16787:	 Increase	 asyncore	 and	 asynchat	 default	 output
buffers	size,	to	decrease	CPU	usage	and	increase	throughput.
Issue	#10527:	make	multiprocessing	use	poll()	instead	of	select()
if	available.
Issue	 #16688:	 Now	 regexes	 contained	 backreferences	 correctly
work	with	non-ASCII	strings.	Patch	by	Matthew	Barnett.
Issue	#16486:	Make	aifc	files	act	as	context	managers.
Issue	 #16485:	 Now	 file	 descriptors	 are	 closed	 if	 file	 header

http://bugs.python.org/16860
http://bugs.python.org/16674
http://bugs.python.org/16009
http://bugs.python.org/16828
http://bugs.python.org/16833
http://bugs.python.org/16541
http://bugs.python.org/16820
http://bugs.python.org/16820
http://bugs.python.org/16820
http://bugs.python.org/9586
http://bugs.python.org/16787
http://bugs.python.org/10527
http://bugs.python.org/16688
http://bugs.python.org/16486
http://bugs.python.org/16485

patching	failed	on	closing	an	aifc	file.
Issue	#16640:	Run	less	code	under	a	lock	in	sched	module.
Issue	#16165:	sched.scheduler.run()	no	longer	blocks	a	scheduler
for	other	threads.
Issue	 #16641:	 Default	 values	 of	 sched.scheduler.enter()	 are	 no
longer	modifiable.
Issue	#16618:	Make	 glob.glob	match	 consistently	 across	 strings
and	bytes	regarding	leading	dots.	Patch	by	Serhiy	Storchaka.
Issue	#16788:	Add	samestat	to	Lib/ntpath.py
Issue	 #16713:	 Parsing	 of	 ‘tel’	 urls	 using	 urlparse	 separates
params	from	path.
Issue	 #16443:	 Add	 docstrings	 to	 regular	 expression	 match
objects.	Patch	by	Anton	Kasyanov.
Issue	 #15701:	 Fix	 HTTPError	 info	 method	 call	 to	 return	 the
headers	information.
Issue	 #16752:	 Add	 a	 missing	 import	 to	 modulefinder.	 Patch	 by
Berker	Peksag.
Issue	 #16646:	 ftplib.FTP.makeport()	 might	 lose	 socket	 error
details.	(patch	by	Serhiy	Storchaka)
Issue	 #16626:	 Fix	 infinite	 recursion	 in	 glob.glob()	 on	 Windows
when	 the	 pattern	 contains	 a	wildcard	 in	 the	 drive	 or	 UNC	 path.
Patch	by	Serhiy	Storchaka.
Issue	#15783:	Except	 for	 the	number	methods,	 the	C	version	of
decimal	 now	 supports	 all	 None	 default	 values	 present	 in
decimal.py.	These	values	were	largely	undocumented.
Issue	 #11175:	 argparse.FileType	 now	 accepts	 encoding	 and
errors	arguments.	Patch	by	Lucas	Maystre.
Issue	 #16488:	 epoll()	 objects	 now	 support	 the	 with	 statement.
Patch	by	Serhiy	Storchaka.
Issue	 #16298:	 In	 HTTPResponse.read(),	 close	 the	 socket	 when
there	 is	 no	Content-Length	and	 the	 incoming	 stream	 is	 finished.
Patch	by	Eran	Rundstein.
Issue	 #16049:	 Add	 abc.ABC	 class	 to	 enable	 the	 use	 of
inheritance	 to	 create	 ABCs,	 rather	 than	 the	 more	 cumbersome

http://bugs.python.org/16640
http://bugs.python.org/16165
http://bugs.python.org/16641
http://bugs.python.org/16618
http://bugs.python.org/16788
http://bugs.python.org/16713
http://bugs.python.org/16443
http://bugs.python.org/15701
http://bugs.python.org/16752
http://bugs.python.org/16646
http://bugs.python.org/16626
http://bugs.python.org/15783
http://bugs.python.org/11175
http://bugs.python.org/16488
http://bugs.python.org/16298
http://bugs.python.org/16049

metaclass=ABCMeta.	Patch	by	Bruno	Dupuis.
Expose	 the	 TCP_FASTOPEN	 and	 MSG_FASTOPEN	 flags	 in
socket	when	they’re	available.
Issue	#15701:	Add	a	 .headers	attribute	 to	urllib.error.HTTPError.
Patch	contributed	by	Berker	Peksag.
Issue	#15872:	Fix	3.3	regression	introduced	by	the	new	fd-based
shutil.rmtree	 that	 caused	 it	 to	 not	 ignore	 certain	 errors	 when
ignore_errors	 was	 set.	 Patch	 by	 Alessandro	 Moura	 and	 Serhiy
Storchaka.
Issue	 #16248:	 Disable	 code	 execution	 from	 the	 user’s	 home
directory	by	tkinter	when	the	-E	flag	is	passed	to	Python.	Patch	by
Zachary	Ware.
Issue	 #13390:	 New	 function	 sys.getallocatedblocks()
returns	the	number	of	memory	blocks	currently	allocated.
Issue	#16628:	Fix	a	memory	leak	in	ctypes.resize().
Issue	 #13614:	 Fix	 setup.py	 register	 failure	 with	 invalid	 rst	 in
description.	Patch	by	Julien	Courteau	and	Pierre	Paul	Lefebvre.
Issue	#13512:	Create	~/.pypirc	 securely	 (CVE-2011-4944).	 Initial
patch	by	Philip	Jenvey,	tested	by	Mageia	and	Debian.
Issue	#7719:	Make	distutils	ignore	.nfs*	files	instead	of	choking
later	on.	Initial	patch	by	SilentGhost	and	Jeff	Ramnani.
Issue	#13120:	Allow	to	call	pdb.set_trace()	from	thread.	Patch	by
Ilya	Sandler.
Issue	 #16585:	 Make	 CJK	 encoders	 support	 error	 handlers	 that
return	bytes	per	PEP	383.
Issue	#10182:	The	 re	module	doesn’t	 truncate	 indices	 to	32	bits
anymore.	Patch	by	Serhiy	Storchaka.
Issue	 #16333:	 use	 (”,”,	 ”:	 ”)	 as	 default	 separator	 in	 json	 when
indent	 is	 specified,	 to	avoid	 trailing	whitespace.	Patch	 by	Serhiy
Storchaka.
Issue	#16573:	In	2to3,	treat	enumerate()	like	a	consuming	call,	so
superfluous	 list()	 calls	 aren’t	 added	 to	 filter(),	 map(),	 and	 zip()
which	are	directly	passed	enumerate().
Issue	#12848:	The	pure	Python	pickle	implementation	now	treats

http://bugs.python.org/15701
http://bugs.python.org/15872
http://bugs.python.org/16248
http://bugs.python.org/13390
http://bugs.python.org/16628
http://bugs.python.org/13614
http://bugs.python.org/13512
http://bugs.python.org/7719
http://bugs.python.org/13120
http://bugs.python.org/16585
http://bugs.python.org/10182
http://bugs.python.org/16333
http://bugs.python.org/16573
http://bugs.python.org/12848

object	 lengths	 as	 unsigned	 32-bit	 integers,	 like	 the	 C
implementation	does.	Patch	by	Serhiy	Storchaka.
Issue	 #16423:	 urllib.request	 now	 has	 support	 for	 data:	 URLs.
Patch	by	Mathias	Panzenböck.
Issue	 #4473:	 Add	 a	 POP3.stls()	 to	 switch	 a	 clear-text	 POP3
session	 into	an	encrypted	POP3	session,	 on	 supported	 servers.
Patch	by	Lorenzo	Catucci.
Issue	#4473:	Add	a	POP3.capa()	method	to	query	the	capabilities
advertised	by	the	POP3	server.	Patch	by	Lorenzo	Catucci.
Issue	 #4473:	 Ensure	 the	 socket	 is	 shutdown	 cleanly	 in
POP3.close().	Patch	by	Lorenzo	Catucci.
Issue	#16522:	added	FAIL_FAST	flag	to	doctest.
Issue	 #15627:	 Add	 the
importlib.abc.InspectLoader.source_to_code()	method.
Issue	 #16408:	 Fix	 file	 descriptors	 not	 being	 closed	 in	 error
conditions	in	the	zipfile	module.	Patch	by	Serhiy	Storchaka.
Issue	 #14631:	 Add	 a	 new	 weakref.WeakMethod	 to	 simulate
weak	references	to	bound	methods.
Issue	#16469:	Fix	exceptions	from	float	->	Fraction	and	Decimal	-
>	 Fraction	 conversions	 for	 special	 values	 to	 be	 consistent	 with
those	 for	 float	 ->	 int	 and	 Decimal	 ->	 int.	 Patch	 by	 Alexey
Kachayev.
Issue	 #16481:	multiprocessing	 no	 longer	 leaks	 process	 handles
on	Windows.
Issue	 #12428:	 Add	 a	 pure	 Python	 implementation	 of
functools.partial().	Patch	by	Brian	Thorne.
Issue	 #16140:	 The	 subprocess	module	 no	 longer	 double	 closes
its	 child	 subprocess.PIPE	 parent	 file	 descriptors	 on	 child	 error
prior	to	exec().
Remove	a	bare	print	 to	 stdout	 from	 the	subprocess	module	 that
could	have	happened	if	the	child	process	wrote	garbage	to	its	pre-
exec	error	pipe.
The	 subprocess	 module	 now	 raises	 its	 own	 SubprocessError
instead	of	a	RuntimeError	in	various	error	situations	which	should

http://bugs.python.org/16423
http://bugs.python.org/4473
http://bugs.python.org/4473
http://bugs.python.org/4473
http://bugs.python.org/16522
http://bugs.python.org/15627
http://bugs.python.org/16408
http://bugs.python.org/14631
http://bugs.python.org/16469
http://bugs.python.org/16481
http://bugs.python.org/12428
http://bugs.python.org/16140

not	normally	happen.
Issue	 #16327:	 The	 subprocess	 module	 no	 longer	 leaks	 file
descriptors	 used	 for	 stdin/stdout/stderr	 pipes	 to	 the	 child	 when
fork()	fails.
Issue	 #14396:	 Handle	 the	 odd	 rare	 case	 of	 waitpid	 returning	 0
when	not	expected	in	subprocess.Popen.wait().
Issue	#16411:	Fix	a	bug	where	zlib.decompressobj().flush()	might
try	 to	 access	 previously-freed	 memory.	 Patch	 by	 Serhiy
Storchaka.
Issue	#16357:	fix	calling	accept()	on	a	SSLSocket	created	through
SSLContext.wrap_socket().	Original	patch	by	Jeff	McNeil.
Issue	 #16409:	 The	 reporthook	 callback	 made	 by	 the	 legacy
urllib.request.urlretrieve	 API	 now	 properly	 supplies	 a	 constant
non-zero	block_size	as	it	did	in	Python	3.2	and	2.7.	This	matches
the	behavior	of	urllib.request.URLopener.retrieve.
Issue	 #16431:	 Use	 the	 type	 information	 when	 constructing	 a
Decimal	subtype	from	a	Decimal	argument.
Issue	#15641:	Clean	up	deprecated	classes	from	importlib	Patch
by	Taras	Lyapun.
Issue	 #16350:	 zlib.decompressobj().decompress()	 now
accumulates	 data	 from	 successive	 calls	 after	 EOF	 in
unused_data,	instead	of	only	saving	the	argument	to	the	last	call.
decompressobj().flush()	 now	 correctly	 sets	 unused_data	 and
unconsumed_tail.	 A	 bug	 in	 the	 handling	 of	 MemoryError	 when
setting	 the	unconsumed_tail	attribute	has	also	been	 fixed.	Patch
by	Serhiy	Storchaka.
Issue	 #12759:	 sre_parse	 now	 raises	 a	 proper	 error	 when	 the
name	of	the	group	is	missing.	Initial	patch	by	Serhiy	Storchaka.
Issue	#16152:	fix	tokenize	to	ignore	whitespace	at	the	end	of	the
code	when	no	newline	is	found.	Patch	by	Ned	Batchelder.
Issue	#16284:	Prevent	keeping	unnecessary	references	to	worker
functions	in	concurrent.futures	ThreadPoolExecutor.
Issue	 #16230:	 Fix	 a	 crash	 in	 select.select()	 when	 one	 the	 lists
changes	size	while	iterated	on.	Patch	by	Serhiy	Storchaka.

http://bugs.python.org/16327
http://bugs.python.org/14396
http://bugs.python.org/16411
http://bugs.python.org/16357
http://bugs.python.org/16409
http://bugs.python.org/16431
http://bugs.python.org/15641
http://bugs.python.org/16350
http://bugs.python.org/12759
http://bugs.python.org/16152
http://bugs.python.org/16284
http://bugs.python.org/16230

Issue	#16228:	Fix	a	crash	in	the	json	module	where	a	list	changes
size	while	it	is	being	encoded.	Patch	by	Serhiy	Storchaka.
Issue	#16351:	New	function	gc.get_stats()	returns	per-generation
collection	statistics.
Issue	 #14897:	 Enhance	 error	 messages	 of	 struct.pack	 and
struct.pack_into.	Patch	by	Matti	Mäki.
Issue	#16316:	mimetypes	now	recognizes	the	.xz	and	.txz	(.tar.xz)
extensions.	Patch	by	Serhiy	Storchaka.
Issue	 #12890:	 cgitb	 no	 longer	 prints	 spurious	 <p>	 tags	 in	 text
mode	when	the	logdir	option	is	specified.
Issue	#16307:	Fix	multiprocessing.Pool.map_async	not	calling	its
callbacks.	Patch	by	Janne	Karila.
Issue	 #16305:	 Fix	 a	 segmentation	 fault	 occurring	 when
interrupting	math.factorial.
Issue	 #16116:	 Fix	 include	 and	 library	 paths	 to	 be	 correct	 when
building	C	extensions	in	venvs.
Issue	#16245:	Fix	the	value	of	a	few	entities	in	html.entities.html5.
Issue	#16301:	Fix	the	localhost	verification	in	urllib/request.py	for
file://	urls.
Issue	 #16250:	 Fix	 the	 invocations	 of	 URLError	 which	 had
misplaced	filename	attribute	for	exception.
Issue	 #10836:	 Fix	 exception	 raised	 when	 file	 not	 found	 in
urlretrieve	Initial	patch	by	Ezio	Melotti.
Issue	 #14398:	 Fix	 size	 truncation	 and	 overflow	 bugs	 in	 the	 bz2
module.
Issue	#12692:	Fix	 resource	 leak	 in	urllib.request	when	 talking	 to
an	HTTP	server	 that	 does	 not	 include	a	 Connection:	close
header	in	its	responses.
Issue	 #12034:	 Fix	 bogus	 caching	 of	 result	 in
check_GetFinalPathNameByHandle.	Patch	by	Atsuo	Ishimoto.
Improve	 performance	 of	 lzma.LZMAFile	 (see	 also	 issue
#16034).
Issue	 #16220:	 wsgiref	 now	 always	 calls	 close()	 on	 an	 iterable
response.	Patch	by	Brent	Tubbs.

http://bugs.python.org/16228
http://bugs.python.org/16351
http://bugs.python.org/14897
http://bugs.python.org/16316
http://bugs.python.org/12890
http://bugs.python.org/16307
http://bugs.python.org/16305
http://bugs.python.org/16116
http://bugs.python.org/16245
http://bugs.python.org/16301
http://bugs.python.org/16250
http://bugs.python.org/10836
http://bugs.python.org/14398
http://bugs.python.org/12692
http://bugs.python.org/12034
http://bugs.python.org/16034
http://bugs.python.org/16220

Issue	#16270:	 urllib	may	hang	when	used	 for	 retrieving	 files	 via
FTP	by	using	a	context	manager.	Patch	by	Giampaolo	Rodola’.
Issue	#16461:	Wave	library	should	be	able	to	deal	with	4GB	wav
files,	and	sample	rate	of	44100	Hz.
Issue	#16176:	Properly	identify	Windows	8	via	platform.platform()
Issue	 #16088:	 BaseHTTPRequestHandler’s	 send_error	 method
includes	a	Content-Length	header	 in	 it’s	response	now.	Patch	by
Antoine	Pitrou.
Issue	 #16114:	 The	 subprocess	 module	 no	 longer	 provides	 a
misleading	error	message	stating	 that	args[0]	did	not	exist	when
either	the	cwd	or	executable	keyword	arguments	specified	a	path
that	did	not	exist.
Issue	 #16169:	 Fix	 ctypes.WinError()’s	 confusion	 between	 errno
and	winerror.
Issue	 #1492704:	 shutil.copyfile()	 raises	 a	 distinct	 SameFileError
now	 if	 source	and	destination	are	 the	same	 file.	Patch	by	Atsuo
Ishimoto.
Issue	 #13896:	 Make	 shelf	 instances	 work	 with	 ‘with’	 as	 context
managers.	Original	patch	by	Filip	Gruszczyński.
Issue	 #15417:	 Add	 support	 for	 csh	 and	 fish	 in	 venv	 activation
scripts.
Issue	 #14377:	 ElementTree.write	 and	 some	 of	 the	module-level
functions	 have	 a	 new	 parameter	 -	 short_empty_elements.	 It
controls	how	elements	with	no	contents	are	emitted.
Issue	#16089:	Allow	ElementTree.TreeBuilder	 to	work	again	with
a	non-Element	element_factory	(fixes	a	regression	in	SimpleTAL).
Issue	 #9650:	 List	 commonly	 used	 format	 codes	 in	 time.strftime
and	time.strptime	docsttings.	Original	patch	by	Mike	Hoy.
Issue	 #16034:	 Fix	 performance	 regressions	 in	 the	 new
bz2.BZ2File	implementation.	Initial	patch	by	Serhiy	Storchaka.
pty.spawn()	 now	 returns	 the	child	process	status	 returned	by
os.waitpid().
Issue	 #15756:	 subprocess.poll()	 now	 properly	 handles
errno.ECHILD	 to	 return	 a	 returncode	 of	 0	when	 the	 child	 has

http://bugs.python.org/16270
http://bugs.python.org/16461
http://bugs.python.org/16176
http://bugs.python.org/16088
http://bugs.python.org/16114
http://bugs.python.org/16169
http://bugs.python.org/1492704
http://bugs.python.org/13896
http://bugs.python.org/15417
http://bugs.python.org/14377
http://bugs.python.org/16089
http://bugs.python.org/9650
http://bugs.python.org/16034
http://bugs.python.org/15756

already	exited	or	cannot	be	waited	on.
Issue	 #15323:	 Improve	 failure	 message	 of
Mock.assert_called_once_with().
Issue	#16064:	unittest	-m	 claims	executable	 is	 “python”,	not
“python3”.
Issue	 #12376:	 Pass	 on	 parameters	 in
TextTestResult.__init__()	super	call.
Issue	 #15222:	 Insert	 blank	 line	 after	 each	 message	 in	 mbox
mailboxes.
Issue	#16013:	Fix	csv.Reader	parsing	 issue	with	ending	quote
characters.	Patch	by	Serhiy	Storchaka.
Issue	 #15421:	 Fix	 an	 OverflowError	 in
Calendar.itermonthdates()	 after	 datetime.MAXYEAR.
Patch	by	Cédric	Krier.
Issue	 #16112:	 platform.architecture	 does	 not	 correctly	 escape
argument	to	/usr/bin/file.	Patch	by	David	Benjamin.
Issue	 #15970:	 xml.etree.ElementTree	 now	 serializes
correctly	the	empty	HTML	elements	‘meta’	and	‘param’.
Issue	 #15842:	 The	 SocketIO.

{readable,writable,seekable}	 methods	 now	 raise
ValueError	when	the	file-like	object	is	closed.	Patch	by	Alessandro
Moura.
Issue	 #15876:	 Fix	 a	 refleak	 in	 the	 curses	 module:
window.encoding.
Issue	#15881:	Fix	atexit	hook	in	multiprocessing.	Original
patch	by	Chris	McDonough.
Issue	#15841:	The	readable(),	writable()	and	seekable()	methods
of	io.BytesIO	and	io.StringIO	objects	now	raise	ValueError
when	the	object	has	been	closed.	Patch	by	Alessandro	Moura.
Issue	 #15447:	 Use	 subprocess.DEVNULL	 in	 webbrowser,
instead	of	opening	os.devnull	explicitly	and	leaving	it	open.
Issue	 #15509:	 webbrowser.UnixBrowser	 no	 longer	 passes
empty	arguments	to	Popen	when	%action	substitutions	produce

http://bugs.python.org/15323
http://bugs.python.org/16064
http://bugs.python.org/12376
http://bugs.python.org/15222
http://bugs.python.org/16013
http://bugs.python.org/15421
http://bugs.python.org/16112
http://bugs.python.org/15970
http://bugs.python.org/15842
http://bugs.python.org/15876
http://bugs.python.org/15881
http://bugs.python.org/15841
http://bugs.python.org/15447
http://bugs.python.org/15509

empty	strings.
Issue	 #12776,	 issue	 #11839:	 Call	 argparse	 type	 function
(specified	by	add_argument)	only	once.	Before,	the	type	function
was	called	twice	in	the	case	where	the	default	was	specified	and
the	argument	was	given	as	well.	This	was	especially	problematic
for	 the	FileType	 type,	as	a	default	 file	would	always	be	opened,
even	if	a	file	argument	was	specified	on	the	command	line.
Issue	 #15906:	 Fix	 a	 regression	 in	 argparse	 caused	 by	 the
preceding	change,	when	action='append',	type='str'	and
default=[].
Issue	 #16113:	 Added	 sha3	 module	 based	 on	 the	 Keccak
reference	 implementation	 3.2.	 The	 hashlib	 module	 has	 four
additional	 hash	 algorithms:	 sha3_224,	 sha3_256,	 sha3_384
and	 sha3_512.	 As	 part	 of	 the	 patch	 some	 common	 code	 was
moved	from	_hashopenssl.c	to	hashlib.h.
ctypes.call_commethod	was	removed,	since	its	only	usage	was	in
the	defunct	samples	directory.
Issue	 #16692:	 Added	 TLSv1.1	 and	 TLSv1.2	 support	 for	 the	 ssl
modules.
Issue	 #16832:	 add	 abc.get_cache_token()	 to	 expose	 cache
validity	checking	support	in	ABCMeta.

IDLE

Issue	 #18429:	 Format	 /	 Format	 Paragraph,	 now	 works	 when
comment	blocks	are	selected.	As	with	text	blocks,	this	works	best
when	the	selection	only	includes	complete	lines.
Issue	 #18226:	 Add	 docstrings	 and	 unittests	 for
FormatParagraph.py.	 Original	 patches	 by	 Todd	 Rovito	 and	 Phil
Webster.
Issue	#18279:	Format	-	Strip	trailing	whitespace	no	longer	marks
a	file	as	changed	when	it	has	not	been	changed.	This	fix	followed
the	 addition	 of	 a	 test	 file	 originally	 written	 by	 Phil	 Webster	 (the

http://bugs.python.org/12776
http://bugs.python.org/11839
http://bugs.python.org/15906
http://bugs.python.org/16113
http://bugs.python.org/16692
http://bugs.python.org/16832
http://bugs.python.org/18429
http://bugs.python.org/18226
http://bugs.python.org/18279

issue’s	main	goal).
Issue	 #7136:	 In	 the	 Idle	 File	 menu,	 “New	Window”	 is	 renamed
“New	File”.	Patch	by	Tal	Einat,	Roget	Serwy,	and	Todd	Rovito.
Remove	dead	imports	of	imp.
Issue	#18196:	Avoid	displaying	spurious	SystemExit	tracebacks.
Issue	 #5492:	 Avoid	 traceback	 when	 exiting	 IDLE	 caused	 by	 a
race	condition.
Issue	 #17511:	 Keep	 IDLE	 find	 dialog	 open	 after	 clicking	 “Find
Next”.	Original	patch	by	Sarah	K.
Issue	#18055:	Move	IDLE	off	of	imp	and	on	to	importlib.
Issue	#15392:	Create	a	unittest	 framework	 for	 IDLE.	 Initial	patch
by	 Rajagopalasarma	 Jayakrishnan.	 See
Lib/idlelib/idle_test/README.txt	for	how	to	run	Idle	tests.
Issue	#14146:	Highlight	source	line	while	debugging	on	Windows.
Issue	#17838:	Allow	sys.stdin	to	be	reassigned.
Issue	#13495:	Avoid	loading	the	color	delegator	twice	in	IDLE.
Issue	 #17798:	 Allow	 IDLE	 to	 edit	 new	 files	 when	 specified	 on
command	line.
Issue	#14735:	Update	IDLE	docs	to	omit	“Control-z	on	Windows”.
Issue	#17532:	Always	 include	Options	menu	 for	 IDLE	on	OS	X.
Patch	by	Guilherme	Simões.
Issue	 #17585:	 Fixed	 IDLE	 regression.	 Now	 closes	 when	 using
exit()	or	quit().
Issue	#17657:	Show	full	Tk	version	in	IDLE’s	about	dialog.	Patch
by	Todd	Rovito.
Issue	#17613:	Prevent	traceback	when	removing	syntax	colorizer
in	IDLE.
Issue	 #1207589:	 Backwards-compatibility	 patch	 for	 right-click
menu	in	IDLE.
Issue	#16887:	 IDLE	now	accepts	Cancel	 in	 tabify/untabify	dialog
box.
Issue	#17625:	In	IDLE,	close	the	replace	dialog	after	it	is	used.
Issue	 #14254:	 IDLE	now	handles	 readline	 correctly	 across	 shell
restarts.

http://bugs.python.org/7136
http://bugs.python.org/18196
http://bugs.python.org/5492
http://bugs.python.org/17511
http://bugs.python.org/18055
http://bugs.python.org/15392
http://bugs.python.org/14146
http://bugs.python.org/17838
http://bugs.python.org/13495
http://bugs.python.org/17798
http://bugs.python.org/14735
http://bugs.python.org/17532
http://bugs.python.org/17585
http://bugs.python.org/17657
http://bugs.python.org/17613
http://bugs.python.org/1207589
http://bugs.python.org/16887
http://bugs.python.org/17625
http://bugs.python.org/14254

Issue	 #17614:	 IDLE	 no	 longer	 raises	 exception	 when	 quickly
closing	a	file.
Issue	 #6698:	 IDLE	 now	 opens	 just	 an	 editor	 window	 when
configured	to	do	so.
Issue	#8900:	Using	keyboard	shortcuts	 in	 IDLE	to	open	a	 file	no
longer	raises	an	exception.
Issue	 #6649:	 Fixed	 missing	 exit	 status	 in	 IDLE.	 Patch	 by
Guilherme	Polo.
Issue	#17114:	IDLE	now	uses	non-strict	config	parser.
Issue	 #9290:	 In	 IDLE	 the	 sys.std*	 streams	 now	 implement
io.TextIOBase	 interface	 and	 support	 all	mandatory	methods	 and
properties.
Issue	#5066:	Update	IDLE	docs.	Patch	by	Todd	Rovito.
Issue	#16829:	IDLE	printing	no	longer	fails	if	there	are	spaces	or
other	special	characters	in	the	file	path.
Issue	#16491:	IDLE	now	prints	chained	exception	tracebacks.
Issue	 #16819:	 IDLE	method	 completion	 now	 correctly	 works	 for
bytes	literals.
Issue	 #16504:	 IDLE	 now	 catches	 SyntaxErrors	 raised	 by
tokenizer.	Patch	by	Roger	Serwy.
Issue	#16511:	Use	default	 IDLE	width	and	height	 if	config	param
is	not	valid.	Patch	Serhiy	Storchaka.
Issue	 #1207589:	 Add	 Cut/Copy/Paste	 items	 to	 IDLE	 right	 click
Context	Menu	Patch	by	Todd	Rovito.
Issue	 #16123:	 IDLE	 -	 deprecate	 running	 without	 a	 subprocess.
Patch	by	Roger	Serwy.

Tests

Issue	#1666318:	Add	a	test	that	shutil.copytree()	retains	directory
permissions.	Patch	by	Catherine	Devlin.
Issue	 #18273:	 move	 the	 tests	 in	 Lib/test/json_tests	 to
Lib/test/test_json	and	make	 them	discoverable	by	unittest.	Patch
by	Zachary	Ware.

http://bugs.python.org/17614
http://bugs.python.org/6698
http://bugs.python.org/8900
http://bugs.python.org/6649
http://bugs.python.org/17114
http://bugs.python.org/9290
http://bugs.python.org/5066
http://bugs.python.org/16829
http://bugs.python.org/16491
http://bugs.python.org/16819
http://bugs.python.org/16504
http://bugs.python.org/16511
http://bugs.python.org/1207589
http://bugs.python.org/16123
http://bugs.python.org/1666318
http://bugs.python.org/18273

Fix	 a	 fcntl	 test	 case	 on	 KFreeBSD,	 Debian	 #708653	 (Petr
Salinger).
Issue	#18396:	Fix	spurious	test	failure	in	test_signal	on	Windows
when	faulthandler	is	enabled	(Patch	by	Jeremy	Kloth)
Issue	 #17046:	 Fix	 broken	 test_executable_without_cwd	 in
test_subprocess.
Issue	 #15415:	 Add	 new	 temp_dir()	 and	 change_cwd()	 context
managers	 to	 test.support,	 and	 refactor	 temp_cwd()	 to	use	 them.
Patch	by	Chris	Jerdonek.
Issue	#15494:	test.support	is	now	a	package	rather	than	a	module
(Initial	patch	by	Indra	Talip)
Issue	#17944:	test_zipfile	now	discoverable	and	uses	subclassing
to	generate	tests	for	different	compression	types.	Fixed	a	bug	with
skipping	some	tests	due	to	use	of	exhausted	iterators.
Issue	#18266:	test_largefile	now	works	with	unittest	test	discovery
and	supports	running	only	selected	tests.	Patch	by	Zachary	Ware.
Issue	#17767:	 test_locale	now	works	with	unittest	 test	discovery.
Original	patch	by	Zachary	Ware.
Issue	#18375:	Assume	–randomize	when	–randseed	 is	 used	 for
running	the	testsuite.
Issue	 #11185:	 Fix	 test_wait4	 under	 AIX.	 Patch	 by	 Sébastien
Sablé.
Issue	 #18207:	 Fix	 test_ssl	 for	 some	 versions	 of	 OpenSSL	 that
ignore	seconds	in	ASN1_TIME	fields.
Issue	 #18094:	 test_uuid	 no	 longer	 reports	 skipped	 tests	 as
passed.
Issue	 #17992:	 Add	 timeouts	 to	 asyncore	 and	 asynchat	 tests	 so
that	they	won’t	accidentally	hang.
Issue	 #17833:	 Fix	 test_gdb	 failures	 seen	 on	 machines	 where
debug	symbols	for	glibc	are	available	(seen	on	PPC64	Linux).
Issue	 #7855:	 Add	 tests	 for	 ctypes/winreg	 for	 issues	 found	 in
IronPython.	Initial	patch	by	Dino	Viehland.
Issue	#11078:	 test___all__	now	checks	 for	duplicates	 in	__all__.
Initial	patch	by	R.	David	Murray.

http://bugs.python.org/18396
http://bugs.python.org/17046
http://bugs.python.org/15415
http://bugs.python.org/15494
http://bugs.python.org/17944
http://bugs.python.org/18266
http://bugs.python.org/17767
http://bugs.python.org/18375
http://bugs.python.org/11185
http://bugs.python.org/18207
http://bugs.python.org/18094
http://bugs.python.org/17992
http://bugs.python.org/17833
http://bugs.python.org/7855
http://bugs.python.org/11078

Issue	#17712:	Fix	test_gdb	failures	on	Ubuntu	13.04.
Issue	#17835:	Fix	test_io	when	the	default	OS	pipe	buffer	size	is
larger	than	one	million	bytes.
Issue	#17065:	Use	process-unique	 key	 for	winreg	 tests	 to	avoid
failures	 if	 test	 is	 run	multiple	 times	 in	 parallel	 (eg:	 on	 a	 buildbot
host).
Issue	 #12820:	 add	 tests	 for	 the	 xml.dom.minicompat	 module.
Patch	by	John	Chandler	and	Phil	Connell.
Issue	 #17691:	 test_univnewlines	 now	 works	 with	 unittest	 test
discovery.	Patch	by	Zachary	Ware.
Issue	 #17790:	 test_set	 now	 works	 with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	#17789:	test_random	now	works	with	unittest	test	discovery.
Patch	by	Zachary	Ware.
Issue	 #17779:	 test_osx_env	 now	 works	 with	 unittest	 test
discovery.	Patch	by	Zachary	Ware.
Issue	#17766:	test_iterlen	now	works	with	unittest	 test	discovery.
Patch	by	Zachary	Ware.
Issue	 #17690:	 test_time	 now	 works	 with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	#17692:	 test_sqlite	 now	works	with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	 #11995:	 test_pydoc	 doesn’t	 import	 all	 sys.path	 modules
anymore.
Issue	 #17448:	 test_sax	 now	 skips	 if	 there	 are	 no	 xml	 parsers
available	instead	of	raising	an	ImportError.
Issue	 #11420:	 make	 test	 suite	 pass	 with	 -
B/DONTWRITEBYTECODE	set.	Initial	patch	by	Thomas	Wouters.
Issue	 #10652:	 make	 tcl/tk	 tests	 run	 after	 __all__	 test,	 patch	 by
Zachary	Ware.
Issue	 #11963:	 remove	 human	 verification	 from	 test_parser	 and
test_subprocess.
Issue	 #11732:	 add	 a	 new	 suppress_crash_popup()	 context
manager	 to	 test.support	 that	disables	crash	popups	on	Windows

http://bugs.python.org/17712
http://bugs.python.org/17835
http://bugs.python.org/17065
http://bugs.python.org/12820
http://bugs.python.org/17691
http://bugs.python.org/17790
http://bugs.python.org/17789
http://bugs.python.org/17779
http://bugs.python.org/17766
http://bugs.python.org/17690
http://bugs.python.org/17692
http://bugs.python.org/11995
http://bugs.python.org/17448
http://bugs.python.org/11420
http://bugs.python.org/10652
http://bugs.python.org/11963
http://bugs.python.org/11732

and	use	it	in	test_faulthandler	and	test_capi.
Issue	#13898:	test_ssl	no	longer	prints	a	spurious	stack	trace	on
Ubuntu.
Issue	 #17283:	 Share	 code	 between	 __main__.py	 and
regrtest.py	in	Lib/test.
Issue	#17249:	convert	a	test	in	test_capi	to	use	unittest	and	reap
threads.
Issue	#17107:	Test	client-side	SNI	support	in	urllib.request	thanks
to	the	new	server-side	SNI	support	in	the	ssl	module.	Initial	patch
by	Daniel	Black.
Issue	 #17041:	 Fix	 testing	when	Python	 is	 configured	with	 the	 –
without-doc-strings.
Issue	#16923:	Fix	ResourceWarnings	in	test_ssl.
Issue	#15539:	Added	regression	tests	for	Tools/scripts/pindent.py.
Issue	 #17479:	 test_io	 now	 works	 with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	 #17066:	 test_robotparser	 now	 works	 with	 unittest	 test
discovery.	Patch	by	Zachary	Ware.
Issue	#17334:	 test_index	now	works	with	unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	#17333:	test_imaplib	now	works	with	unittest	test	discovery.
Patch	by	Zachary	Ware.
Issue	 #17082:	 test_dbm*	 now	 work	 with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	#17079:	test_ctypes	now	works	with	unittest	test	discovery.
Patch	by	Zachary	Ware.
Issue	 #17304:	 test_hash	 now	works	with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	#17303:	 test_future*	now	work	with	unittest	 test	discovery.
Patch	by	Zachary	Ware.
Issue	 #17163:	 test_file	 now	 works	 with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	 #16925:	 test_configparser	 now	 works	 with	 unittest	 test
discovery.	Patch	by	Zachary	Ware.

http://bugs.python.org/13898
http://bugs.python.org/17283
http://bugs.python.org/17249
http://bugs.python.org/17107
http://bugs.python.org/17041
http://bugs.python.org/16923
http://bugs.python.org/15539
http://bugs.python.org/17479
http://bugs.python.org/17066
http://bugs.python.org/17334
http://bugs.python.org/17333
http://bugs.python.org/17082
http://bugs.python.org/17079
http://bugs.python.org/17304
http://bugs.python.org/17303
http://bugs.python.org/17163
http://bugs.python.org/16925

Issue	#16918:	test_codecs	now	works	with	unittest	test	discovery.
Patch	by	Zachary	Ware.
Issue	 #16919:	 test_crypt	 now	works	with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	#16910:	 test_bytes,	 test_unicode,	 and	 test_userstring	now
work	with	unittest	test	discovery.	Patch	by	Zachary	Ware.
Issue	 #16905:	 test_warnings	 now	 works	 with	 unittest	 test
discovery.	Initial	patch	by	Berker	Peksag.
Issue	 #16898:	 test_bufio	 now	works	with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	#16888:	 test_array	 now	works	with	 unittest	 test	 discovery.
Patch	by	Zachary	Ware.
Issue	 #16896:	 test_asyncore	 now	 works	 with	 unittest	 test
discovery.	Patch	by	Zachary	Ware.
Issue	#16897:	 test_bisect	now	works	with	unittest	 test	discovery.
Initial	patch	by	Zachary	Ware.
Issue	#16852:	 test_genericpath,	 test_posixpath,	 test_ntpath,	and
test_macpath	 now	 work	 with	 unittest	 test	 discovery.	 Patch	 by
Zachary	Ware.
Issue	#16748:	test_heapq	now	works	with	unittest	test	discovery.
Issue	#10646:	Tests	rearranged	for	os.samefile/samestat	to	check
for	not	just	symlinks	but	also	hard	links.
Issue	 #15302:	 Switch	 regrtest	 from	 using	 getopt	 to	 using
argparse.
Issue	 #15324:	 Fix	 regrtest	 parsing	 of	 –fromfile,	 –match,	 and	 –
randomize	options.
Issue	 #16702:	 test_urllib2_localnet	 tests	 now	 correctly	 ignores
proxies	for	localhost	tests.
Issue	 #16664:	 Add	 regression	 tests	 for	 glob’s	 behaviour
concerning	entries	starting	with	a	”.”.	Patch	by	Sebastian	Kreft.
Issue	 #13390:	 The	 -R	 option	 to	 regrtest	 now	 also	 checks	 for
memory	allocation	leaks,	using	sys.getallocatedblocks().
Issue	#16559:	Add	more	tests	for	the	json	module,	including	some
from	the	official	test	suite	at	json.org.	Patch	by	Serhiy	Storchaka.

http://bugs.python.org/16918
http://bugs.python.org/16919
http://bugs.python.org/16910
http://bugs.python.org/16905
http://bugs.python.org/16898
http://bugs.python.org/16888
http://bugs.python.org/16896
http://bugs.python.org/16897
http://bugs.python.org/16852
http://bugs.python.org/16748
http://bugs.python.org/10646
http://bugs.python.org/15302
http://bugs.python.org/15324
http://bugs.python.org/16702
http://bugs.python.org/16664
http://bugs.python.org/13390
http://bugs.python.org/16559

Issue	 #16661:	 Fix	 the	 os.getgrouplist()	 test	 by	 not
assuming	that	it	gives	the	same	output	as	id	-G.
Issue	 #16115:	 Add	 some	 tests	 for	 the	 executable	 argument	 to
subprocess.Popen().	Initial	patch	by	Kushal	Das.
Issue	 #16126:	 PyErr_Format	 format	 mismatch	 in
_testcapimodule.c.	Patch	by	Serhiy	Storchaka.
Issue	 #15304:	 Fix	 warning	 message	 when	 os.chdir()	 fails
inside	test.support.temp_cwd().	Patch	by	Chris	Jerdonek.
Issue	 #15802:	 Fix	 test	 logic	 in
TestMaildir.test_create_tmp().	 Patch	 by	 Serhiy
Storchaka.
Issue	 #15557:	 Added	 a	 test	 suite	 for	 the	 webbrowser	 module,
thanks	to	Anton	Barkovsky.
Issue	 #16698:	 Skip	 posix	 test_getgroups	 when	 built	 with	 OS	 X
deployment	target	prior	to	10.6.

Build

Issue	#16067:	Add	description	 into	MSI	 file	 to	 replace	 installer’s
temporary	name.
Issue	 #18257:	 Fix	 readlink	 usage	 in	 python-config.	 Install	 the
python	version	again	on	Darwin.
Issue	 #18481:	 Add	 C	 coverage	 reporting	 with	 gcov	 and	 lcov.	 A
new	 make	 target	 “coverage-report”	 creates	 an	 instrumented
Python	build,	runs	unit	tests	and	creates	a	HTML.	The	report	can
be	updated	with	“make	coverage-lcov”.
Issue	#17845:	Clarified	 the	message	printed	when	some	module
are	not	built.
Issue	#18256:	Compilation	 fix	 for	 recent	AIX	 releases.	Patch	 by
David	Edelsohn.
Issue	#17547:	In	configure,	explicitly	pass	-Wformat	for	the	benefit
for	GCC	4.8.
Issue	#15172:	Document	NASM	2.10+	as	requirement	for	building

http://bugs.python.org/16661
http://bugs.python.org/16115
http://bugs.python.org/16126
http://bugs.python.org/15304
http://bugs.python.org/15802
http://bugs.python.org/15557
http://bugs.python.org/16698
http://bugs.python.org/16067
http://bugs.python.org/18257
http://bugs.python.org/18481
http://bugs.python.org/17845
http://bugs.python.org/18256
http://bugs.python.org/17547
http://bugs.python.org/15172

OpenSSL	1.0.1	on	Windows.
Issue	#17591:	Use	lowercase	filenames	when	including	Windows
header	files.	Patch	by	Roumen	Petrov.
Issue	#17550:	Fix	the	–enable-profiling	configure	switch.
Issue	#17425:	Build	with	openssl	1.0.1d	on	Windows.
Issue	#16754:	Fix	the	incorrect	shared	library	extension	on	linux.
Introduce	 two	 makefile	 macros	 SHLIB_SUFFIX	 and
EXT_SUFFIX.	SO	now	has	the	value	of	SHLIB_SUFFIX	again	(as
in	2.x	and	3.1).	The	SO	macro	is	removed	in	3.4.
Issue	 #5033:	 Fix	 building	 of	 the	 sqlite3	 extension	module	 when
the	 SQLite	 library	 version	 has	 “beta”	 in	 it.	 Patch	 by	 Andreas
Pelme.
Issue	#17228:	Fix	building	without	pymalloc.
Issue	 #3718:	 Use	 AC_ARG_VAR	 to	 set	 MACHDEP	 in
configure.ac.
Issue	#16235:	Implement	python-config	as	a	shell	script.
Issue	#16769:	Remove	outdated	Visual	Studio	projects.
Issue	#17031:	Fix	running	regen	in	cross	builds.
Issue	#3754:	fix	typo	in	pthread	AC_CACHE_VAL.
Issue	 #15484:	 Fix	 _PYTHON_PROJECT_BASE	 for	 srcdir	 !=
builddir	 builds;	 use	 _PYTHON_PROJECT_BASE	 in
distutils/sysconfig.py.
Drop	support	for	Windows	2000	(changeset	e52df05b496a).
Issue	 #17029:	 Let	 h2py	 search	 the	 multiarch	 system	 include
directory.
Issue	 #16953:	 Fix	 socket	 module	 compilation	 on	 platforms	 with
HAVE_BROKEN_POLL.	Patch	by	Jeffrey	Armstrong.
Issue	 #16320:	 Remove	 redundant	 Makefile	 dependencies	 for
strings	and	bytes.
Cross	 compiling	 needs	 host	 and	 build	 settings.	 configure	 no
longer	creates	a	broken	PYTHON_FOR_BUILD	variable	when	–
build	is	missing.
Fix	 cross	 compiling	 issue	 in	 setup.py,	 ensure	 that	 lib_dirs	 and
inc_dirs	are	defined	in	cross	compiling	mode,	too.

http://bugs.python.org/17591
http://bugs.python.org/17550
http://bugs.python.org/17425
http://bugs.python.org/16754
http://bugs.python.org/5033
http://bugs.python.org/17228
http://bugs.python.org/3718
http://bugs.python.org/16235
http://bugs.python.org/16769
http://bugs.python.org/17031
http://bugs.python.org/3754
http://bugs.python.org/15484
http://bugs.python.org/17029
http://bugs.python.org/16953
http://bugs.python.org/16320

Issue	#16836:	Enable	IPv6	support	even	if	IPv6	is	disabled	on	the
build	host.
Issue	#16593:	Have	BSD	 ‘make	 -s’	 do	 the	 right	 thing,	 thanks	 to
Daniel	Shahaf
Issue	 #16262:	 fix	 out-of-src-tree	 builds,	 if	 mercurial	 is	 not
installed.
Issue	 #15298:	 ensure	 _sysconfigdata	 is	 generated	 in	 build
directory,	not	source	directory.
Issue	#15833:	Fix	a	regression	 in	3.3	 that	resulted	 in	exceptions
being	 raised	 if	 importlib	 failed	 to	 write	 byte-compiled	 files.	 This
affected	 attempts	 to	 build	 Python	 out-of-tree	 from	 a	 read-only
source	directory.
Issue	 #15923:	 Fix	 a	 mistake	 in	 asdl_c.py	 that	 resulted	 in	 a
TypeError	after	2801bf875a24	(see	#15801).
Issue	#16135:	Remove	OS/2	support.
Issue	#15819:	Make	sure	we	can	build	Python	out-of-tree	from	a
read-only	source	directory.	(Somewhat	related	to	issue	#9860.)
Issue	#15587:	Enable	Tk	high-resolution	 text	 rendering	on	Macs
with	Retina	 displays.	Applies	 to	 Tkinter	 apps,	 such	 as	 IDLE,	 on
OS	X	framework	builds	linked	with	Cocoa	Tk	8.5.
Issue	#17161:	make	install	now	also	installs	a	python3	man	page.

C-API

Issue	 #18351:	 Fix	 various	 issues	 in	 a	 function	 in	 importlib
provided	 to	 help	 PyImport_ExecCodeModuleWithPathnames()
(and	 thus	 by	 extension	 PyImport_ExecCodeModule()	 and
PyImport_ExecCodeModuleEx()).
Issue	 #9369:	 The	 types	 of	 char*	 arguments	 of
PyObject_CallFunction()	 and	 PyObject_CallMethod()	 now
changed	to	const	char*.	Based	on	patches	by	Jörg	Müller	and
Lars	Buitinck.
Issue	#17206:	Py_CLEAR(),	 Py_DECREF(),	 Py_XINCREF()	 and

http://bugs.python.org/16836
http://bugs.python.org/16593
http://bugs.python.org/16262
http://bugs.python.org/15298
http://bugs.python.org/15833
http://bugs.python.org/15923
http://bugs.python.org/16135
http://bugs.python.org/15819
http://bugs.python.org/9860
http://bugs.python.org/15587
http://bugs.python.org/17161
http://bugs.python.org/18351
http://bugs.python.org/9369
http://bugs.python.org/17206

Py_XDECREF()	 now	 expand	 their	 arguments	 once	 instead	 of
multiple	times.	Patch	written	by	Illia	Polosukhin.
Issue	#17522:	Add	the	PyGILState_Check()	API.
Issue	#17327:	Add	PyDict_SetDefault.
Issue	#16881:	Fix	Py_ARRAY_LENGTH	macro	for	GCC	<	3.1.
Issue	#16505:	Remove	unused	Py_TPFLAGS_INT_SUBCLASS.
Issue	#16086:	PyTypeObject.tp_flags	and	PyType_Spec.flags	are
now	 unsigned	 (unsigned	 long	 and	 unsigned	 int)	 to	 avoid	 an
undefined	 behaviour	 with	 Py_TPFLAGS_TYPE_SUBCLASS	 ((1
<<	 31).	 PyType_GetFlags()	 result	 type	 is	 now	 unsigned	 too
(unsigned	long,	instead	of	long).
Issue	 #16166:	 Add	 PY_LITTLE_ENDIAN	 and	 PY_BIG_ENDIAN
macros	and	unified	endianness	detection	and	handling.

Documentation

Issue	#17701:	Improving	strftime	documentation.
Issue	 #18440:	 Clarify	 that	 hash()	 can	 truncate	 the	 value
returned	from	an	object’s	custom	__hash__()	method.
Issue	#17844:	Add	 links	 to	 encoders	 and	decoders	 for	 bytes-to-
bytes	codecs.
Issue	#14097:	improve	the	“introduction”	page	of	the	tutorial.
Issue	 #17977:	 The	 documentation	 for	 the	 cadefault	 argument’s
default	value	in	urllib.request.urlopen()	is	fixed	to	match	the	code.
Issue	 #6696:	 add	 documentation	 for	 the	 Profile	 objects,	 and
improve	profile/cProfile	docs.	Patch	by	Tom	Pinckney.
Issue	#15940:	Specify	effect	of	locale	on	time	functions.
Issue	17538:	Document	XML	vulnerabilties
Issue	 #16642:	 sched.scheduler	 timefunc	 initial	 default	 is
time.monotonic.	Patch	by	Ramchandra	Apte
Issue	 #17047:	 remove	 doubled	 words	 in	 docs	 and	 docstrings
reported	by	Serhiy	Storchaka	and	Matthew	Barnett.
Issue	#15465:	Document	the	versioning	macros	in	the	C	API	docs
rather	than	the	standard	library	docs.	Patch	by	Kushal	Das.

http://bugs.python.org/17522
http://bugs.python.org/17327
http://bugs.python.org/16881
http://bugs.python.org/16505
http://bugs.python.org/16086
http://bugs.python.org/16166
http://bugs.python.org/17701
http://bugs.python.org/18440
http://bugs.python.org/17844
http://bugs.python.org/14097
http://bugs.python.org/17977
http://bugs.python.org/6696
http://bugs.python.org/15940
http://bugs.python.org/16642
http://bugs.python.org/17047
http://bugs.python.org/15465

Issue	#16406:	Combine	the	pages	for	uploading	and	registering	to
PyPI.
Issue	#16403:	Document	how	distutils	uses	the	maintainer	field	in
PKG-INFO.	Patch	by	Jyrki	Pulliainen.
Issue	 #16695:	 Document	 how	 glob	 handles	 filenames	 starting
with	a	dot.	Initial	patch	by	Jyrki	Pulliainen.
Issue	 #8890:	 Stop	 advertising	 an	 insecure	 practice	 by	 replacing
uses	 of	 the	 /tmp	 directory	 with	 better	 alternatives	 in	 the
documentation.	Patch	by	Geoff	Wilson.
Issue	#17203:	add	long	option	names	to	unittest	discovery	docs.
Issue	 #13094:	 add	 “Why	 do	 lambdas	 defined	 in	 a	 loop	 with
different	values	all	return	the	same	result?”	programming	FAQ.
Issue	 #14901:	 Update	 portions	 of	 the	 Windows	 FAQ.	 Patch	 by
Ashish	Nitin	Patil.
Issue	#16267:	Better	 document	 the	 3.3+	approach	 to	 combining
@abstractmethod	 with	 @staticmethod,	 @classmethod	 and
@property
Issue	#15209:	Clarify	exception	chaining	description	in	exceptions
module	documentation
Issue	#15990:	Improve	argument/parameter	documentation.
Issue	#16209:	Move	the	documentation	for	the	str	built-in	function
to	a	new	str	class	entry	in	the	“Text	Sequence	Type”	section.
Issue	#13538:	Improve	str()	and	object.__str__()	documentation.
Issue	 #16489:	 Make	 it	 clearer	 that	 importlib.find_loader()	 needs
parent	packages	to	be	explicitly	imported.
Issue	#16400:	Update	the	description	of	which	versions	of	a	given
package	PyPI	displays.
Issue	#15677:	Document	that	zlib	and	gzip	accept	a	compression
level	of	0	to	mean	‘no	compression’.	Patch	by	Brian	Brazil.
Issue	 #16197:	 Update	 winreg	 docstrings	 and	 documentation	 to
match	code.	Patch	by	Zachary	Ware.
Issue	 #8040:	 added	 a	 version	 switcher	 to	 the	 documentation.
Patch	by	Yury	Selivanov.
Issue	 #16241:	 Document	 -X	 faulthandler	 command	 line	 option.

http://bugs.python.org/16406
http://bugs.python.org/16403
http://bugs.python.org/16695
http://bugs.python.org/8890
http://bugs.python.org/17203
http://bugs.python.org/13094
http://bugs.python.org/14901
http://bugs.python.org/16267
http://bugs.python.org/15209
http://bugs.python.org/15990
http://bugs.python.org/16209
http://bugs.python.org/13538
http://bugs.python.org/16489
http://bugs.python.org/16400
http://bugs.python.org/15677
http://bugs.python.org/16197
http://bugs.python.org/8040
http://bugs.python.org/16241

Patch	by	Marek	Šuppa.
Additional	 comments	 and	 some	 style	 changes	 in	 the
concurrent.futures	URL	retrieval	example
Issue	 #16115:	 Improve	 subprocess.Popen()	 documentation
around	args,	shell,	and	executable	arguments.
Issue	#13498:	Clarify	docs	of	os.makedirs()’s	exist_ok	argument.
Done	with	great	native-speaker	help	from	R.	David	Murray.
Issue	 #15533:	 Clarify	 docs	 and	 add	 tests	 for
subprocess.Popen()‘s	cwd	argument.
Issue	#15979:	Improve	timeit	documentation.
Issue	 #16036:	 Improve	 documentation	 of	 built-in	 int()‘s
signature	and	arguments.
Issue	 #15935:	 Clarification	 of	 argparse	 docs,	 re:
add_argument()	type	and	default	arguments.	Patch	contributed	by
Chris	Jerdonek.
Issue	#11964:	Document	a	change	in	v3.2	to	the	behavior	of	the
indent	parameter	of	json	encoding	operations.
Issue	#15116:	Remove	references	 to	appscript	as	 it	 is	no	 longer
being	supported.

Tools/Demos

Issue	#18817:	Fix	a	resource	warning	 in	Lib/aifc.py	demo.	Patch
by	Vajrasky	Kok.
Issue	 #18439:	 Make	 patchcheck	 work	 on	 Windows	 for	 ACKS,
NEWS.
Issue	#18448:	Fix	a	typo	in	Tools/demo/eiffel.py.
Issue	#18457:	Fixed	saving	of	formulas	and	complex	numbers	in
Tools/demo/ss1.py.
Issue	#18449:	Make	Tools/demo/ss1.py	work	again	on	Python	3.
Patch	by	Févry	Thibault.
Issue	#12990:	The	 “Python	Launcher”	 on	OSX	could	not	 launch
python	scripts	that	have	paths	that	include	wide	characters.

http://bugs.python.org/16115
http://bugs.python.org/13498
http://bugs.python.org/15533
http://bugs.python.org/15979
http://bugs.python.org/16036
http://bugs.python.org/15935
http://bugs.python.org/11964
http://bugs.python.org/15116
http://bugs.python.org/18817
http://bugs.python.org/18439
http://bugs.python.org/18448
http://bugs.python.org/18457
http://bugs.python.org/18449
http://bugs.python.org/12990

Issue	#15239:	Make	mkstringprep.py	work	again	on	Python	3.
Issue	 #17028:	 Allowed	 Python	 arguments	 to	 be	 supplied	 to	 the
Windows	launcher.
Issue	 #17156:	 pygettext.py	 now	 detects	 the	 encoding	 of	 source
files	and	correctly	writes	and	escapes	non-ascii	characters.
Issue	 #15539:	 Fix	 a	 number	 of	 bugs	 in	 Tools/scripts/pindent.py.
Now	 pindent.py	 works	 with	 a	 “with”	 statement.	 pindent.py	 no
longer	produces	improper	indentation.	pindent.py	now	works	with
continued	 lines	 broken	 after	 “class”	 or	 “def”	 keywords	 and	 with
continuations	at	the	start	of	line.
Issue	#11797:	Add	a	2to3	fixer	that	maps	reload()	to	imp.reload().
Issue	#10966:	Remove	the	concept	of	unexpected	skipped	tests.
Issue	#9893:	Removed	the	Misc/Vim	directory.
Removed	the	Misc/TextMate	directory.
Issue	#16245:	Add	the	Tools/scripts/parse_html5_entities.py	script
to	 parse	 the	 list	 of	 HTML5	 entities	 and	 update	 the
html.entities.html5	dictionary.
Issue	 #15378:	 Fix	 Tools/unicode/comparecodecs.py.	 Patch	 by
Serhiy	Storchaka.
Issue	 #16549:	Make	 json.tool	 work	 again	 on	 Python	 3	 and	 add
tests.	Initial	patch	by	Berker	Peksag	and	Serhiy	Storchaka.
Issue	 #13301:	 use	 ast.literal_eval()	 instead	 of	 eval()	 in
Tools/i18n/msgfmt.py	Patch	by	Serhiy	Storchaka.

Windows

Issue	 #18569:	 The	 installer	 now	 adds	 .py	 to	 the	 PATHEXT
variable	when	extensions	are	registered.	Patch	by	Paul	Moore.

http://bugs.python.org/15239
http://bugs.python.org/17028
http://bugs.python.org/17156
http://bugs.python.org/15539
http://bugs.python.org/11797
http://bugs.python.org/10966
http://bugs.python.org/9893
http://bugs.python.org/16245
http://bugs.python.org/15378
http://bugs.python.org/16549
http://bugs.python.org/13301
http://bugs.python.org/18569

Python	3.3.0?

Release	date:	29-Sep-2012

Core	and	Builtins

Issue	#16046:	Fix	loading	sourceless	legacy	.pyo	files.
Issue	 #16060:	 Fix	 refcounting	 bug	 when	 __trunc__()	 returns
an	object	whose	__int__()	gives	a	non-integer.	Patch	by	Serhiy
Storchaka.

Extension	Modules

Issue	 #16012:	 Fix	 a	 regression	 in	 pyexpat.	 The	 parser’s
UseForeignDTD()	method	doesn’t	require	an	argument	again.

http://bugs.python.org/16046
http://bugs.python.org/16060
http://bugs.python.org/16012

Python	3.3.0	Release	Candidate	3?

Release	date:	23-Sep-2012

Core	and	Builtins

Issue	 #15900:	 Fix	 reference	 leak	 in
PyUnicode_TranslateCharmap().
Issue	 #15926:	 Fix	 crash	 after	 multiple	 reinitializations	 of	 the
interpreter.
Issue	 #15895:	 Fix	 FILE	 pointer	 leak	 in	 one	 error	 branch	 of
PyRun_SimpleFileExFlags()	 when	 filename	 points	 to	 a
pyc/pyo	file,	closeit	is	false	an	and	set_main_loader()	fails.
Fixes	 for	 a	 few	 crash	 and	 memory	 leak	 regressions	 found	 by
Coverity.

Library

Issue	#15882:	Change	_decimal	 to	accept	any	coefficient	tuple
when	 constructing	 infinities.	 This	 is	 done	 for	 backwards
compatibility	with	decimal.py:	Infinity	coefficients	are	undefined	in
_decimal	(in	accordance	with	the	specification).
Issue	 #15925:	 Fix	 a	 regression	 in	 email.util	 where	 the
parsedate()	 and	 parsedate_tz()	 functions	 did	 not	 return
None	anymore	when	the	argument	could	not	be	parsed.

Extension	Modules

Issue	#15973:	Fix	a	segmentation	fault	when	comparing	datetime
timezone	objects.
Issue	 #15977:	 Fix	 memory	 leak	 in	 Modules/_ssl.c	 when	 the

http://bugs.python.org/15900
http://bugs.python.org/15926
http://bugs.python.org/15895
http://bugs.python.org/15882
http://bugs.python.org/15925
http://bugs.python.org/15973
http://bugs.python.org/15977

function	 _set_npn_protocols()	 is	 called	multiple	 times,	 thanks	 to
Daniel	Sommermann.
Issue	 #15969:	 faulthandler	 module:	 rename
dump_tracebacks_later()	 to	 dump_traceback_later()	 and
cancel_dump_tracebacks_later()	 to
cancel_dump_traceback_later().
_decimal	module:	use	only	C	89	style	comments.

http://bugs.python.org/15969

Python	3.3.0	Release	Candidate	2?

Release	date:	09-Sep-2012

Core	and	Builtins

Issue	#13992:	The	trashcan	mechanism	is	now	thread-safe.	This
eliminates	 sporadic	 crashes	 in	 multi-thread	 programs	 when
several	 long	 deallocator	 chains	 ran	 concurrently	 and	 involved
subclasses	of	built-in	container	types.
Issue	 #15784:	 Modify	 OSError.__str__()	 to	 better	 distinguish
between	errno	error	numbers	and	Windows	error	numbers.
Issue	 #15781:	 Fix	 two	 small	 race	 conditions	 in	 import’s	 module
locking.

Library

Issue	#17158:	Add	 ‘symbols’	 to	help()	welcome	message;	clarify
‘modules	spam’	messages.
Issue	#15847:	Fix	a	regression	in	argparse,	which	did	not	accept
tuples	as	argument	lists	anymore.
Issue	 #15828:	 Restore	 support	 for	 C	 extensions	 in
imp.load_module().
Issue	 #15340:	 Fix	 importing	 the	 random	 module	 when
/dev/urandom	 cannot	 be	 opened.	 This	 was	 a	 regression
caused	by	the	hash	randomization	patch.
Issue	 #10650:	 Deprecate	 the	 watchexp	 parameter	 of	 the
Decimal.quantize()	method.
Issue	 #15785:	 Modify	 window.get_wch()	 API	 of	 the	 curses
module:	 return	 a	 character	 for	 most	 keys,	 and	 an	 integer	 for
special	keys,	 instead	of	always	returning	an	 integer.	So	 it	 is	now
possible	to	distinguish	special	keys	like	keypad	keys.

http://bugs.python.org/13992
http://bugs.python.org/15784
http://bugs.python.org/15781
http://bugs.python.org/17158
http://bugs.python.org/15847
http://bugs.python.org/15828
http://bugs.python.org/15340
http://bugs.python.org/10650
http://bugs.python.org/15785

Issue	 #14223:	 Fix	 window.addch()	 of	 the	 curses	 module	 for
special	 characters	 like	 curses.ACS_HLINE:	 the	 Python	 function
addch(int)	 and	 addch(bytes)	 is	 now	 calling	 the	 C	 function
waddch()/mvwaddch()	 (as	 it	was	done	 in	Python	3.2),	 instead	of
wadd_wch()/mvwadd_wch().	 The	 Python	 function	 addch(str)	 is
still	 calling	 the	 C	 function	 wadd_wch()/mvwadd_wch()	 if	 the
Python	curses	is	linked	to	libncursesw.

Build

Issue	 #15822:	Really	 ensure	 2to3	 grammar	 pickles	 are	 properly
installed	(replaces	fixes	for	Issue	#15645).

Documentation

Issue	 #15814:	 The	 memoryview	 enhancements	 in	 3.3.0
accidentally	 permitted	 the	 hashing	 of	 multi-dimensional
memorviews	and	memoryviews	with	multi-byte	 item	formats.	The
intended	 restrictions	 have	 now	 been	 documented	 -	 they	 will	 be
correctly	enforced	in	3.3.1.

http://bugs.python.org/14223
http://bugs.python.org/15822
http://bugs.python.org/15645
http://bugs.python.org/15814

Python	3.3.0	Release	Candidate	1?

Release	date:	25-Aug-2012

Core	and	Builtins

Issue	 #15573:	memoryview	 comparisons	 are	 now	 performed	 by
value	with	full	support	for	any	valid	struct	module	format	definition.
Issue	#15316:	When	 an	 item	 in	 the	 fromlist	 for	 __import__()
doesn’t	exist,	don’t	raise	an	error,	but	if	an	exception	is	raised	as
part	of	an	import	do	let	that	propagate.
Issue	#15778:	Ensure	that	str(ImportError(msg))	returns	a
str	even	when	msg	isn’t	a	str.
Issue	#2051:	Source	file	permission	bits	are	once	again	correctly
copied	 to	 the	 cached	 bytecode	 file.	 (The	 migration	 to	 importlib
reintroduced	this	problem	because	these	was	no	regression	test.
A	test	has	been	added	as	part	of	this	patch)
Issue	 #15761:	 Fix	 crash	 when	 PYTHONEXECUTABLE	 is	 set	 on
Mac	OS	X.
Issue	 #15726:	 Fix	 incorrect	 bounds	 checking	 in
PyState_FindModule.	Patch	by	Robin	Schreiber.
Issue	#15604:	Update	uses	of	PyObject_IsTrue()	to	check	for
and	handle	errors	correctly.	Patch	by	Serhiy	Storchaka.
Issue	#14846:	importlib.FileFinder	now	handles	 the	case
where	 the	 directory	 being	 searched	 is	 removed	 after	 a	 previous
import	attempt.

Library

Issue	 #13370:	 Ensure	 that	 ctypes	 works	 on	 Mac	 OS	 X	 when
Python	is	compiled	using	the	clang	compiler.
Issue	 #13072:	 The	 array	 module’s	 ‘u’	 format	 code	 is	 now

http://bugs.python.org/15573
http://bugs.python.org/15316
http://bugs.python.org/15778
http://bugs.python.org/2051
http://bugs.python.org/15761
http://bugs.python.org/15726
http://bugs.python.org/15604
http://bugs.python.org/14846
http://bugs.python.org/13370
http://bugs.python.org/13072

deprecated	and	will	be	removed	in	Python	4.0.
Issue	 #15544:	 Fix	 Decimal.__float__	 to	 work	 with	 payload-
carrying	NaNs.
Issue	 #15776:	 Allow	 pyvenv	 to	 work	 in	 existing	 directory	 with	 –
clean.
Issue	 #15249:	 email’s	 BytesGenerator	 now	 correctly	 mangles
From	 lines	 (when	 requested)	 even	 if	 the	 body	 contains
undecodable	bytes.
Issue	#15777:	Fix	a	refleak	in	_posixsubprocess.
Issue	 ##665194:	 Update	 email.utils.localtime	 to	 use
datetime.astimezone	 and	 correctly	 handle	 historic	 changes	 in
UTC	offsets.
Issue	 #15199:	 Fix	 JavaScript’s	 default	 MIME	 type	 to
application/javascript.	Patch	by	Bohuslav	Kabrda.
Issue	 #12643:	 code.InteractiveConsole	 now	 respects
sys.excepthook	 when	 displaying	 exceptions.	 Patch	 by	Aaron
Iles.
Issue	 #13579:	 string.Formatter	 now	 understands	 the	 ‘a’
conversion	specifier.
Issue	 #15595:	 Fix
subprocess.Popen(universal_newlines=True)	 for
certain	locales	(utf-16	and	utf-32	family).	Patch	by	Chris	Jerdonek.
Issue	#15477:	 In	 cmath	 and	math	modules,	 add	workaround	 for
platforms	whose	 system-supplied	 log1p	 function	 doesn’t	 respect
signs	of	zeros.
Issue	 #15715:	 importlib.__import__()	 will	 silence	 an
ImportError	when	the	use	of	fromlist	leads	to	a	failed	import.
Issue	#14669:	Fix	pickling	of	connections	and	sockets	on	Mac	OS
X	 by	 sending/receiving	 an	 acknowledgment	 after	 file	 descriptor
transfer.	TestPicklingConnection	has	been	reenabled	for	Mac	OS
X.
Issue	#11062:	Fix	adding	a	message	from	file	to	Babyl	mailbox.
Issue	 #15646:	 Prevent	 equivalent	 of	 a	 fork	 bomb	 when	 using
multiprocessing	on	Windows	without	the	if	__name__	==

http://bugs.python.org/15544
http://bugs.python.org/15776
http://bugs.python.org/15249
http://bugs.python.org/15777
http://bugs.python.org/15199
http://bugs.python.org/12643
http://bugs.python.org/13579
http://bugs.python.org/15595
http://bugs.python.org/15477
http://bugs.python.org/15715
http://bugs.python.org/14669
http://bugs.python.org/11062
http://bugs.python.org/15646

'__main__'	idiom.

IDLE

Issue	#15678:	Fix	IDLE	menus	when	started	from	OS	X	command
line	(3.3.0b2	regression).

Documentation

Touched	up	the	Python	2	to	3	porting	guide.
Issue	#14674:	Add	a	discussion	of	 the	 json	module’s	 standard
compliance.	Patch	by	Chris	Rebert.
Create	a	 ‘Concurrent	Execution’	section	 in	the	docs,	and	split	up
the	 ‘Optional	Operating	System	Services’	 section	 to	 use	a	more
user-centric	classification	scheme	 (splitting	 them	across	 the	new
CE	 section,	 IPC	 and	 text	 processing).	 Operating	 system
limitations	 can	be	 reflected	with	 the	Sphinx	 :platform:	 tag,	 it
doesn’t	make	sense	as	part	of	the	Table	of	Contents.
Issue	 #4966:	 Bring	 the	 sequence	 docs	 up	 to	 date	 for	 the	 Py3k
transition	and	the	many	language	enhancements	since	they	were
original	written.
The	“path	importer”	misnomer	has	been	replaced	with	Eric	Snow’s
more-awkward-but-at-least-not-wrong	 suggestion	 of	 “path	 based
finder”	in	the	import	system	reference	docs.
Issue	 #15640:	 Document	 importlib.abc.Finder	 as
deprecated.
Issue	#15630:	Add	an	example	for	“continue”	stmt	 in	the	tutorial.
Patch	by	Daniel	Ellis.

Tests

Issue	 #15747:	 ZFS	 always	 returns	 EOPNOTSUPP	 when

http://bugs.python.org/15678
http://bugs.python.org/14674
http://bugs.python.org/4966
http://bugs.python.org/15640
http://bugs.python.org/15630
http://bugs.python.org/15747

attempting	 to	set	 the	UF_IMMUTABLE	 flag	 (via	either	 chflags	or
lchflags);	 refactor	 affected	 tests	 in	 test_posix.py	 to	 account	 for
this.
Issue	#15285:	Refactor	the	approach	for	testing	connect	timeouts
using	two	external	hosts	that	have	been	configured	specifically	for
this	type	of	test.
Issue	#15743:	Remove	the	deprecated	method	usage	in	urllib
tests.	Patch	by	Jeff	Knupp.
Issue	#15615:	Add	some	tests	for	the	json	module’s	handling	of
invalid	input	data.	Patch	by	Kushal	Das.

Build

Output	lib	files	for	PGO	build	into	PGO	directory.
Pick	up	32-bit	launcher	from	PGO	directory	on	64-bit	PGO	build.
Drop	PC\python_nt.h	as	 it’s	not	used.	Add	 input	dependency
on	custom	build	step.
Issue	 #15511:	 Drop	 explicit	 dependency	 on	 pythonxy.lib	 from
_decimal	amd64	configuration.
Add	missing	PGI/PGO	configurations	for	pywlauncher.
Issue	 #15645:	 Ensure	 2to3	 grammar	 pickles	 are	 properly
installed.

http://bugs.python.org/15285
http://bugs.python.org/15743
http://bugs.python.org/15615
http://bugs.python.org/15511
http://bugs.python.org/15645

Python	3.3.0	Beta	2?

Release	date:	12-Aug-2012

Core	and	Builtins

Issue	 #15568:	 Fix	 the	 return	 value	 of	 yield	 from	 when
StopIteration	is	raised	by	a	custom	iterator.
Issue	#13119:	sys.stdout	and	sys.stderr	are	now	using	“rn”
newline	on	Windows,	as	Python	2.
Issue	#15534:	Fix	the	fast-search	function	for	non-ASCII	Unicode
strings.
Issue	#15508:	Fix	 the	docstring	 for	__import__()	 to	have	 the
proper	 default	 value	 of	 0	 for	 ‘level’	 and	 to	 not	mention	 negative
levels	since	they	are	not	supported.
Issue	 #15425:	 Eliminated	 traceback	 noise	 from	 more	 situations
involving	importlib.
Issue	 #14578:	 Support	 modules	 registered	 in	 the	 Windows
registry	again.
Issue	 #15466:	 Stop	 using	 TYPE_INT64	 in	 marshal,	 to	 make
importlib.h	 (and	 other	 byte	 code	 files)	 equal	 between	 32-bit	 and
64-bit	systems.
Issue	 #1692335:	 Move	 initial	 exception	 args	 assignment	 to
BaseException.__new__()	 to	 help	 pickling	 of	 naive
subclasses.
Issue	 #12834:	 Fix	 PyBuffer_ToContiguous()	 for	 non-
contiguous	arrays.
Issue	 #15456:	 Fix	 code	 __sizeof__()	 after	 #12399	 change.
Patch	by	Serhiy	Storchaka.
Issue	#15404:	Refleak	in	PyMethodObject	repr.
Issue	 #15394:	 An	 issue	 in	 PyModule_Create()	 that	 caused
references	 to	 be	 leaked	 on	 some	 error	 paths	 has	 been	 fixed.

http://bugs.python.org/15568
http://bugs.python.org/13119
http://bugs.python.org/15534
http://bugs.python.org/15508
http://bugs.python.org/15425
http://bugs.python.org/14578
http://bugs.python.org/15466
http://bugs.python.org/1692335
http://bugs.python.org/12834
http://bugs.python.org/15456
http://bugs.python.org/15404
http://bugs.python.org/15394

Patch	by	Julia	Lawall.
Issue	 #15368:	 An	 issue	 that	 caused	 bytecode	 generation	 to	 be
non-deterministic	has	been	fixed.
Issue	 #15202:	 Consistently	 use	 the	 name	 “follow_symlinks”	 for
new	parameters	in	os	and	shutil	functions.
Issue	 #15314:	 __main__.__loader__	 is	 now	 set	 correctly
during	interpreter	startup.
Issue	#15111:	When	a	module	imported	using	‘from	import’	has	an
ImportError	 inside	 itself,	 don’t	 mask	 that	 fact	 behind	 a	 generic
ImportError	for	the	module	itself.
Issue	#15293:	Add	GC	support	to	the	AST	base	node	type.
Issue	 #15291:	 Fix	 a	memory	 leak	 where	 AST	 nodes	 where	 not
properly	deallocated.
Issue	#15110:	Fix	the	tracebacks	generated	by	“import	xxx”	to	not
show	the	importlib	stack	frames.
Issue	 #16369:	 Global	 PyTypeObjects	 not	 initialized	 with
PyType_Ready(...).
Issue	 #15020:	 The	 program	 name	 used	 to	 search	 for	 Python’s
path	is	now	“python3”	under	Unix,	not	“python”.
Issue	 #15897:	 zipimport.c	 doesn’t	 check	 return	 value	 of	 fseek().
Patch	by	Felipe	Cruz.
Issue	 #15033:	 Fix	 the	 exit	 status	 bug	 when	 modules	 invoked
using	 -m	switch,	 return	 the	proper	 failure	 return	value	 (1).	Patch
contributed	by	Jeff	Knupp.
Issue	#15229:	An	OSError	subclass	whose	__init__	doesn’t	call
back	 OSError.__init__	 could	 produce	 incomplete	 instances,
leading	to	crashes	when	calling	str()	on	them.
Issue	 #15307:	 Virtual	 environments	 now	 use	 symlinks	 with
framework	builds	on	Mac	OS	X,	like	other	POSIX	builds.

Library

Issue	#14590:	 configparser	now	correctly	 strips	 inline	 comments
when	delimiter	occurs	earlier	without	preceding	space.

http://bugs.python.org/15368
http://bugs.python.org/15202
http://bugs.python.org/15314
http://bugs.python.org/15111
http://bugs.python.org/15293
http://bugs.python.org/15291
http://bugs.python.org/15110
http://bugs.python.org/16369
http://bugs.python.org/15020
http://bugs.python.org/15897
http://bugs.python.org/15033
http://bugs.python.org/15229
http://bugs.python.org/15307
http://bugs.python.org/14590

Issue	 #15424:	 Add	 a	 __sizeof__()	 implementation	 for	 array
objects.	Patch	by	Ludwig	Hähne.
Issue	 #15576:	 Allow	 extension	 modules	 to	 act	 as	 a	 package’s
__init__	module.
Issue	#15502:	Have	importlib.invalidate_caches()	work
on	sys.meta_path	instead	of	sys.path_importer_cache.
Issue	#15163:	Pydoc	shouldn’t	list	__loader__	as	module	data.
Issue	 #15471:	 Do	 not	 use	 mutable	 objects	 as	 defaults	 for
importlib.__import__().
Issue	#15559:	To	avoid	a	problematic	failure	mode	when	passed
to	 the	 bytes	 constructor,	 objects	 in	 the	 ipaddress	 module	 no
longer	 implement	 __index__()	 (they	 still	 implement
__int__()	as	appropriate).
Issue	#15546:	Fix	handling	of	pathological	input	data	in	the	peek()
and	 read1()	 methods	 of	 the	 BZ2File,	 GzipFile	 and	 LZMAFile
classes.
Issue	 #12655:	 Instead	 of	 requiring	 a	 custom	 type,
os.sched_getaffinity()	 and	 os.sched_setaffinity()
now	use	regular	sets	of	integers	to	represent	the	CPUs	a	process
is	restricted	to.
Issue	#15538:	Fix	compilation	of	the	socket.getnameinfo()	/
socket.getaddrinfo()	 emulation	 code.	 Patch	 by	 Philipp
Hagemeister.
Issue	 #15519:	 Properly	 expose	 WindowsRegistryFinder	 in
importlib	 (and	use	 the	correct	 term	 for	 it).	Original	 patch	by	Eric
Snow.
Issue	#15502:	Bring	the	 importlib	ABCs	 into	 line	with	 the	current
state	of	the	import	protocols	given	PEP	420.	Original	patch	by	Eric
Snow.
Issue	#15499:	Launching	a	webbrowser	in	Unix	used	to	sleep	for
a	few	seconds.	Original	patch	by	Anton	Barkovsky.
Issue	 #15463:	 The	 faulthandler	module	 truncates	 strings	 to	 500
characters,	instead	of	100,	to	be	able	to	display	long	file	paths.

http://bugs.python.org/15424
http://bugs.python.org/15576
http://bugs.python.org/15502
http://bugs.python.org/15163
http://bugs.python.org/15471
http://bugs.python.org/15559
http://bugs.python.org/15546
http://bugs.python.org/12655
http://bugs.python.org/15538
http://bugs.python.org/15519
http://bugs.python.org/15502
http://bugs.python.org/15499
http://bugs.python.org/15463

Issue	#6056:	Make	multiprocessing	use	setblocking(True)	on
the	sockets	it	uses.	Original	patch	by	J	Derek	Wilson.
Issue	 #15364:	 Fix	 sysconfig.get_config_var(‘srcdir’)	 to	 be	 an
absolute	path.
Issue	#15413:	os.times()	had	disappeared	under	Windows.
Issue	 #15402:	 An	 issue	 in	 the	 struct	 module	 that	 caused
sys.getsizeof()	 to	 return	 incorrect	 results	 for	 struct.Struct
instances	has	been	fixed.	Initial	patch	by	Serhiy	Storchaka.
Issue	 #15232:	When	mangle_from	 is	 True,	 email.Generator
now	correctly	mangles	lines	that	start	with	‘From	‘	that	occur	in	a
MIME	preamble	or	epilogue.
Issue	 #15094:	 Incorrectly	 placed	 #endif	 in	 _tkinter.c.	 Patch	 by
Serhiy	Storchaka.
Issue	 #13922:	 argparse	 no	 longer	 incorrectly	 strips	 ‘–’s	 that
appear	after	the	first	one.
Issue	 #12353:	 argparse	 now	 correctly	 handles	 null	 argument
values.
Issue	 #10017,	 issue	 #14998:	 Fix	 TypeError	 using	 pprint	 on
dictionaries	with	user-defined	types	as	keys	or	other	unorderable
keys.
Issue	 #15397:	 inspect.getmodulename()	 is	 now	 based
directly	 on	 importlib	 via	 a	 new
importlib.machinery.all_suffixes()	API.
Issue	 #14635:	 telnetlib	 will	 use	 poll()	 rather	 than	 select()
when	 possible	 to	 avoid	 failing	 due	 to	 the	 select()	 file	 descriptor
limit.
Issue	#15180:	Clarify	posixpath.join()	error	message	when	mixing
str	&	bytes.
Issue	 #15343:	 pkgutil	 now	 includes	 an	 iter_importer_modules
implementation	 for	 importlib.machinery.FileFinder	 (similar	 to	 the
way	it	already	handled	zipimport.zipimporter).
Issue	#15314:	runpy	now	sets	__main__.__loader__	correctly.
Issue	#15357:	The	import	emulation	in	pkgutil	is	now	deprecated.

http://bugs.python.org/6056
http://bugs.python.org/15364
http://bugs.python.org/15413
http://bugs.python.org/15402
http://bugs.python.org/15232
http://bugs.python.org/15094
http://bugs.python.org/13922
http://bugs.python.org/12353
http://bugs.python.org/10017
http://bugs.python.org/14998
http://bugs.python.org/15397
http://bugs.python.org/14635
http://bugs.python.org/15180
http://bugs.python.org/15343
http://bugs.python.org/15314
http://bugs.python.org/15357

pkgutil	uses	importlib	internally	rather	than	the	emulation.
Issue	 #15233:	 Python	 now	 guarantees	 that	 callables	 registered
with	the	atexit	module	will	be	called	in	a	deterministic	order.
Issue	 #15238:	 shutil.copystat()	 now	 copies	 Linux
“extended	attributes”.
Issue	#15230:	runpy.run_path	now	correctly	sets	__package__	as
described	in	the	documentation.
Issue	#15315:	Support	VS	2010	in	distutils	cygwincompiler.
Issue	#15294:	Fix	a	regression	in	pkgutil.extend_path()’s	handling
of	nested	namespace	packages.
Issue	 #15056:	 imp.cache_from_source()	 and
imp.source_from_cache()	 raise	NotImplementedError	when
sys.implementation.cache_tag	is	set	to	None.
Issue	 #15256:	 Grammatical	 mistake	 in	 exception	 raised	 by
imp.find_module().
Issue	 #5931:	 wsgiref	 environ	 variable	 SERVER_SOFTWARE
will	specify	an	 implementation	specific	 term	like	CPython,	Jython
instead	of	generic	“Python”.
Issue	 #13248:	 Remove	 obsolete	 argument	 “max_buffer_size”	 of
BufferedWriter	and	BufferedRWPair,	from	the	io	module.
Issue	 #13248:	 Remove	 obsolete	 argument	 “version”	 of
argparse.ArgumentParser.
Issue	 #14814:	 Implement	 more	 consistent	 ordering	 and	 sorting
behaviour	for	ipaddress	objects.
Issue	 #14814:	 ipaddress	 network	 objects	 correctly	 return
NotImplemented	 when	 compared	 to	 arbitrary	 objects	 instead	 of
raising	TypeError.
Issue	#14990:	Correctly	 fail	with	SyntaxError	on	 invalid	encoding
declaration.
Issue	#14814:	ipaddress	 now	provides	more	 informative	 error
messages	 when	 constructing	 instances	 directly	 (changes
permitted	during	beta	due	to	provisional	API	status).
Issue	#15247:	io.FileIO	now	raises	an	error	when	given	a	file

http://bugs.python.org/15233
http://bugs.python.org/15238
http://bugs.python.org/15230
http://bugs.python.org/15315
http://bugs.python.org/15294
http://bugs.python.org/15056
http://bugs.python.org/15256
http://bugs.python.org/5931
http://bugs.python.org/13248
http://bugs.python.org/13248
http://bugs.python.org/14814
http://bugs.python.org/14814
http://bugs.python.org/14990
http://bugs.python.org/14814
http://bugs.python.org/15247

descriptor	pointing	to	a	directory.
Issue	#15261:	Stop	os.stat(fd)	crashing	on	Windows	when	fd	not
open.
Issue	 #15166:	 Implement	 imp.get_tag()	 using
sys.implementation.cache_tag.
Issue	 #15210:	 Catch	 KeyError	 when	 importlib.__init__()
can’t	find	_frozen_importlib	in	sys.modules,	not	ImportError.
Issue	 #15030:	 importlib.abc.PyPycLoader	 now	 supports
the	new	source	size	header	field	in	.pyc	files.
Issue	 #5346:	 Preserve	 permissions	 of	 mbox,	 MMDF	 and	 Babyl
mailbox	files	on	flush().
Issue	#10571:	Fix	the	“–sign”	option	of	distutils’	upload	command.
Patch	by	Jakub	Wilk.
Issue	#9559:	If	messages	were	only	added,	a	new	file	is	no	longer
created	and	renamed	over	the	old	file	when	flush()	is	called	on	an
mbox,	MMDF	or	Babyl	mailbox.
Issue	 #10924:	 Fixed	 crypt.mksalt()	 to	 use	 a	 RNG	 that	 is
suitable	for	cryptographic	purpose.
Issue	 #15184:	 Ensure	 consistent	 results	 of	 OS	 X	 configuration
tailoring	 for	 universal	 builds	 by	 factoring	 out	 common	 OS	 X-
specific	 customizations	 from	 sysconfig,	 distutils.sysconfig,
distutils.util,	 and	 distutils.unixccompiler	 into	 a	 new	 module
_osx_support.

C	API

Issue	 #15610:	 PyImport_ImportModuleEx()	 now	 uses	 a
‘level’	of	0	instead	of	-1.
Issue	 #15169,	 issue	 #14599:	 Strip	 out	 the	 C	 implementation	 of
imp.source_from_cache()	 used	 by
PyImport_ExecCodeModuleWithPathnames()	 and	 used	 the
Python	 code	 instead.	 Leads	 to
PyImport_ExecCodeModuleObject()	 to	not	 try	 to	 infer	 the	source

http://bugs.python.org/15261
http://bugs.python.org/15166
http://bugs.python.org/15210
http://bugs.python.org/15030
http://bugs.python.org/5346
http://bugs.python.org/10571
http://bugs.python.org/9559
http://bugs.python.org/10924
http://bugs.python.org/15184
http://bugs.python.org/15610
http://bugs.python.org/15169
http://bugs.python.org/14599

path	 from	 the	 bytecode	 path	 as
PyImport_ExecCodeModuleWithPathnames()	does.

Extension	Modules

Issue	 #6493:	 An	 issue	 in	 ctypes	 on	 Windows	 that	 caused
structure	 bitfields	 of	 type	 ctypes.c_uint32	 and	 width	 32	 to
incorrectly	be	set	has	been	fixed.
Issue	#15194:	Update	libffi	to	the	3.0.11	release.

IDLE

Issue	 #13052:	 Fix	 IDLE	 crashing	 when	 replace	 string	 in
Search/Replace	dialog	ended	with	\.	Patch	by	Roger	Serwy.

Tools/Demos

Issue	#15458:	python-config	gets	a	new	option	–configdir	to	print
the	$LIBPL	value.
Move	importlib.test.benchmark	to	Tools/importbench.
Issue	 #12605:	 The	 gdb	 hooks	 for	 debugging	 CPython	 (within
Tools/gdb)	have	been	enhanced	 to	 show	 information	on	more	C
frames	 relevant	 to	 CPython	 within	 the	 “py-bt”	 and	 “py-bt-full”
commands:

C	frames	that	are	waiting	on	the	GIL
C	frames	that	are	garbage-collecting
C	frames	that	are	due	to	the	invocation	of	a	PyCFunction

Documentation

Issue	#15041:	Update	“see	also”	list	in	tkinter	documentation.
Issue	 #15444:	 Use	 proper	 spelling	 for	 non-ASCII	 contributor

http://bugs.python.org/6493
http://bugs.python.org/15194
http://bugs.python.org/13052
http://bugs.python.org/15458
http://bugs.python.org/12605
http://bugs.python.org/15041
http://bugs.python.org/15444

names.	Patch	by	Serhiy	Storchaka.
Issue	#15295:	Reorganize	and	rewrite	 the	documentation	on	 the
import	system.
Issue	 #15230:	 Clearly	 document	 some	 of	 the	 limitations	 of	 the
runpy	 module	 and	 nudge	 readers	 towards	 importlib	 when
appropriate.
Issue	#15053:	Copy	Python	3.3	 import	 lock	 change	notice	 to	 all
relevant	functions	in	imp	instead	of	 just	at	the	top	of	the	relevant
section.
Issue	#15288:	Link	 to	 the	 term	 “loader”	 in	notes	 in	pkgutil	about
how	 things	won’t	work	 as	 expected	 in	Python	 3.3	 and	mark	 the
requisite	 functions	 as	 “changed”	 since	 they	 will	 no	 longer	 work
with	modules	directly	imported	by	import	itself.
Issue	#13557:	Clarify	effect	of	giving	two	different	namespaces	to
exec()	or	execfile().
Issue	 #15250:	 Document	 that	 filecmp.dircmp()	 compares
files	shallowly.	Patch	contributed	by	Chris	Jerdonek.
Issue	 #15442:	 Expose	 the	 default	 list	 of	 directories	 ignored	 by
filecmp.dircmp()	 as	a	module	attribute,	and	expand	 the	 list
to	more	modern	values.

Tests

Issue	 #15467:	 Move	 helpers	 for	 __sizeof__()	 tests	 into
test_support.	Patch	by	Serhiy	Storchaka.
Issue	 #15320:	 Make	 iterating	 the	 list	 of	 tests	 thread-safe	 when
running	tests	in	multiprocess	mode.	Patch	by	Chris	Jerdonek.
Issue	 #15168:	 Move	 importlib.test	 to
test.test_importlib.
Issue	#15091:	Reactivate	a	test	on	UNIX	which	was	failing	thanks
to	a	forgotten	importlib.invalidate_caches()	call.
Issue	#15230:	Adopted	a	more	systematic	approach	in	the	runpy
tests.

http://bugs.python.org/15295
http://bugs.python.org/15230
http://bugs.python.org/15053
http://bugs.python.org/15288
http://bugs.python.org/13557
http://bugs.python.org/15250
http://bugs.python.org/15442
http://bugs.python.org/15467
http://bugs.python.org/15320
http://bugs.python.org/15168
http://bugs.python.org/15091
http://bugs.python.org/15230

Issue	#15300:	Ensure	 the	 temporary	 test	working	directories	are
in	 the	 same	 parent	 folder	 when	 running	 tests	 in	 multiprocess
mode	from	a	Python	build.	Patch	by	Chris	Jerdonek.
Issue	 #15284:	 Skip	 {send,recv}msg	 tests	 in	 test_socket	 when
IPv6	is	not	enabled.	Patch	by	Brian	Brazil.
Issue	 #15277:	 Fix	 a	 resource	 leak	 in	 support.py	 when	 IPv6	 is
disabled.	Patch	by	Brian	Brazil.

Build

Issue	 #11715:	 Fix	 multiarch	 detection	 without	 having	 Debian
development	tools	(dpkg-dev)	installed.
Issue	#15037:	Build	OS	X	installers	with	local	copy	of	ncurses	5.9
libraries	to	avoid	curses.unget_wch	bug	present	in	older	versions
of	ncurses	such	as	those	shipped	with	OS	X.
Issue	 #15560:	 Fix	 building	 _sqlite3	 extension	 on	 OS	 X	 with	 an
SDK.	Also,	for	OS	X	installers,	ensure	consistent	sqlite3	behavior
and	feature	availability	by	building	a	local	copy	of	libsqlite3	rather
than	 depending	 on	 the	 wide	 range	 of	 versions	 supplied	 with
various	OS	X	releases.
Issue	#8847:	Disable	COMDAT	folding	in	Windows	PGO	builds.
Issue	 #14018:	 Fix	OS	X	Tcl/Tk	 framework	 checking	when	 using
OS	X	SDKs.
Issue	#16256:	OS	X	installer	now	sets	correct	permissions	for	doc
directory.
Issue	 #15431:	 Add	 _freeze_importlib	 project	 to	 regenerate
importlib.h	on	Windows.	Patch	by	Kristján	Valur	Jónsson.
Issue	 #14197:	 For	 OS	 X	 framework	 builds,	 ensure	 links	 to	 the
shared	library	are	created	with	the	proper	ABI	suffix.
Issue	#14330:	For	 cross	builds,	 don’t	 use	host	python,	use	host
search	paths	for	host	compiler.
Issue	 #15235:	 Allow	Berkley	DB	 versions	 up	 to	 5.3	 to	 build	 the
dbm	module.
Issue	#15268:	Search	curses.h	in	/usr/include/ncursesw.

http://bugs.python.org/15300
http://bugs.python.org/15284
http://bugs.python.org/15277
http://bugs.python.org/11715
http://bugs.python.org/15037
http://bugs.python.org/15560
http://bugs.python.org/8847
http://bugs.python.org/14018
http://bugs.python.org/16256
http://bugs.python.org/15431
http://bugs.python.org/14197
http://bugs.python.org/14330
http://bugs.python.org/15235
http://bugs.python.org/15268

Python	3.3.0	Beta	1?

Release	date:	27-Jun-2012

Core	and	Builtins

Fix	a	(most	likely)	very	rare	memory	leak	when	calling	main()	and
not	being	able	to	decode	a	command-line	argument.
Issue	#14815:	Use	Py_ssize_t	instead	of	long	for	the	object	hash,
to	preserve	all	64	bits	of	hash	on	Win64.
Issue	 #12268:	 File	 readline,	 readlines	 and	 read()	 or	 readall()
methods	no	longer	lose	data	when	an	underlying	read	system	call
is	 interrupted.	 IOError	 is	 no	 longer	 raised	 due	 to	 a	 read	 system
call	returning	EINTR	from	within	these	methods.
Issue	#11626:	Add	_SizeT	functions	to	stable	ABI.
Issue	#15142:	Fix	 reference	 leak	when	deallocating	 instances	of
types	created	using	PyType_FromSpec().
Issue	#10053:	Don’t	close	FDs	when	FileIO.__init__	fails.	Loosely
based	on	the	work	by	Hirokazu	Yamamoto.
Issue	#15096:	Removed	support	 for	ur’’	as	 the	raw	notation	 isn’t
compatible	with	Python	2.x’s	raw	unicode	strings.
Issue	 #13783:	 Generator	 objects	 now	 use	 the	 identifier	 APIs
internally
Issue	#14874:	Restore	charmap	decoding	speed	to	pre-PEP	393
levels.	Patch	by	Serhiy	Storchaka.
Issue	 #15026:	 utf-16	 encoding	 is	 now	 significantly	 faster	 (up	 to
10x).	Patch	by	Serhiy	Storchaka.
Issue	 #11022:	 open()	 and	 io.TextIOWrapper	 are	 now	 calling
locale.getpreferredencoding(False)	 instead	 of
locale.getpreferredencoding()	 in	 text	mode	 if	 the	encoding	 is	not
specified.	 Don’t	 change	 temporary	 the	 locale	 encoding	 using
locale.setlocale(),	 use	 the	current	 locale	encoding	 instead	of	 the
user	preferred	encoding.

http://bugs.python.org/14815
http://bugs.python.org/12268
http://bugs.python.org/11626
http://bugs.python.org/15142
http://bugs.python.org/10053
http://bugs.python.org/15096
http://bugs.python.org/13783
http://bugs.python.org/14874
http://bugs.python.org/15026
http://bugs.python.org/11022

Issue	 #14673:	 Add	 Eric	 Snow’s	 sys.implementation
implementation.
Issue	#15038:	Optimize	python	Locks	on	Windows.

Library

Issue	#12288:	Consider	‘0’	and	‘0.0’	as	valid	initialvalue	for	tkinter
SimpleDialog.
Issue	#15512:	Add	a	__sizeof__	implementation	for	parser.	Patch
by	Serhiy	Storchaka.
Issue	 #15469:	 Add	 a	 __sizeof__	 implementation	 for	 deque
objects.	Patch	by	Serhiy	Storchaka.
Issue	 #15489:	 Add	 a	 __sizeof__	 implementation	 for	 BytesIO
objects.	Patch	by	Serhiy	Storchaka.
Issue	#15487:	Add	a	__sizeof__	 implementation	 for	buffered	 I/O
objects.	Patch	by	Serhiy	Storchaka.
Issue	#15514:	Correct	 __sizeof__	 support	 for	 cpu_set.	Patch	by
Serhiy	Storchaka.
Issue	#15177:	Added	dir_fd	parameter	to	os.fwalk().
Issue	 #15061:	 Re-implemented	 hmac.compare_digest()	 in	 C	 to
prevent	 further	 timing	 analysis	 and	 to	 support	 all	 buffer	 protocol
aware	objects	as	well	as	ASCII	only	str	instances	safely.
Issue	 #15164:	 Change	 return	 value	 of	 platform.uname()	 from	 a
plain	tuple	to	a	collections.namedtuple.
Support	Mageia	Linux	in	the	platform	module.
Issue	#11678:	Support	Arch	linux	in	the	platform	module.
Issue	#15118:	Change	return	value	of	os.uname()	and	os.times()
from	 plain	 tuples	 to	 immutable	 iterable	 objects	 with	 named
attributes	(structseq	objects).
Speed	 up	 _decimal	 by	 another	 10-15%	 by	 caching	 the	 thread
local	context	 that	was	 last	accessed.	 In	the	pi	benchmark	(64-bit
platform,	prec=9),	_decimal	is	now	only	1.5x	slower	than	float.
Remove	the	packaging	module,	which	is	not	ready	for	prime	time.
Issue	#15154:	Add	“dir_fd”	parameter	to	os.rmdir,	remove	“rmdir”

http://bugs.python.org/14673
http://bugs.python.org/15038
http://bugs.python.org/12288
http://bugs.python.org/15512
http://bugs.python.org/15469
http://bugs.python.org/15489
http://bugs.python.org/15487
http://bugs.python.org/15514
http://bugs.python.org/15177
http://bugs.python.org/15061
http://bugs.python.org/15164
http://bugs.python.org/11678
http://bugs.python.org/15118
http://bugs.python.org/15154

parameter	from	os.remove	/	os.unlink.
Issue	#4489:	Add	a	shutil.rmtree	that	 isn’t	susceptible	 to	symlink
attacks.	 It	 is	 used	 automatically	 on	 platforms	 supporting	 the
necessary	os.openat()	 and	os.unlinkat()	 functions.	Main	 code	by
Martin	von	Löwis.
Issue	 #15156:	 HTMLParser	 now	 uses	 the	 new
“html.entities.html5”	dictionary.
Issue	#11113:	add	a	new	“html5”	dictionary	containing	the	named
character	 references	 defined	 by	 the	 HTML5	 standard	 and	 the
equivalent	Unicode	character(s)	to	the	html.entities	module.
Issue	 #15114:	 the	 strict	 mode	 of	 HTMLParser	 and	 the
HTMLParseError	exception	are	deprecated	now	that	the	parser	is
able	to	parse	invalid	markup.
Issue	 #3665:	 u	 and	 U	 escapes	 are	 now	 supported	 in	 unicode
regular	expressions.	Patch	by	Serhiy	Storchaka.
Issue	#15153:	Added	 inspect.getgeneratorlocals	 to	simplify	white
box	testing	of	generator	state	updates
Issue	 #13062:	 Added	 inspect.getclosurevars	 to	 simplify	 testing
stateful	closures
Issue	#11024:	Fixes	and	additional	tests	for	Time2Internaldate.
Issue	#14626:	 Large	 refactoring	of	 functions	 /	 parameters	 in	 the
os	 module.	 Many	 functions	 now	 support	 “dir_fd”	 and
“follow_symlinks”	 parameters;	 some	 also	 support	 accepting	 an
open	file	descriptor	 in	place	of	a	path	string.	Added	os.support_*
collections	 as	 LBYL	 helpers.	 Removed	 many	 functions	 only
previously	seen	in	3.3	alpha	releases	(often	starting	with	“f”	or	“l”,
or	 ending	 with	 “at”).	 Originally	 suggested	 by	 Serhiy	 Storchaka;
implemented	by	Larry	Hastings.
Issue	#15008:	Implement	PEP	362	“Signature	Objects”.	Patch	by
Yury	Selivanov.
Issue:	#15138:	base64.urlsafe_{en,de}code()	are	now	3-4x	faster.
Issue	 #444582:	 Add	 shutil.which,	 for	 finding	 programs	 on	 the
system	path.	Original	patch	by	Erik	Demaine,	with	later	iterations
by	Jan	Killian	and	Brian	Curtin.

http://bugs.python.org/4489
http://bugs.python.org/15156
http://bugs.python.org/11113
http://bugs.python.org/15114
http://bugs.python.org/3665
http://bugs.python.org/15153
http://bugs.python.org/13062
http://bugs.python.org/11024
http://bugs.python.org/14626
http://bugs.python.org/15008
http://bugs.python.org/444582

Issue	 #14837:	 SSL	 errors	 now	 have	 library	 and	 reason
attributes	 describing	 precisely	 what	 happened	 and	 in	 which
OpenSSL	 submodule.	 The	 str()	 of	 a	 SSLError	 is	 also	 enhanced
accordingly.
Issue	 #9527:	 datetime.astimezone()	 method	 will	 now	 supply	 a
class	 timezone	 instance	 corresponding	 to	 the	 system	 local
timezone	when	called	with	no	arguments.
Issue	#14653:	email.utils.mktime_tz()	no	 longer	 relies	on	system
mktime()	when	timezone	offest	is	supplied.
Issue	 #14684:	 zlib.compressobj()	 and	 zlib.decompressobj()	 now
support	 the	 use	of	 predefined	 compression	dictionaries.	Original
patch	by	Sam	Rushing.
Fix	GzipFile’s	handling	of	filenames	given	as	bytes	objects.
Issue	 #14772:	 Return	 destination	 values	 from	 some	 shutil
functions.
Issue	 #15064:	 Implement	 context	 manager	 protocol	 for
multiprocessing	types
Issue	#15101:	Make	pool	finalizer	avoid	joining	current	thread.
Issue	#14657:	The	frozen	instance	of	importlib	used	for	bootstrap
is	now	also	the	module	imported	as	importlib._bootstrap.
Issue	#14055:	Add	__sizeof__	support	to	_elementtree.
Issue	 #15054:	 A	 bug	 in	 tokenize.tokenize	 that	 caused	 string
literals	with	‘b’	prefixes	to	be	incorrectly	tokenized	has	been	fixed.
Patch	by	Serhiy	Storchaka.
Issue	 #15006:	 Allow	 equality	 comparison	 between	 naive	 and
aware	time	or	datetime	objects.
Issue	#15036:	Mailbox	no	longer	throws	an	error	if	a	flush	is	done
between	operations	when	removing	or	changing	multiple	items	in
mbox,	MMDF,	or	Babyl	mailboxes.
Issue	#14059:	Implement	multiprocessing.Barrier.
Issue	#15061:	The	inappropriately	named	hmac.secure_compare
has	 been	 renamed	 to	 hmac.compare_digest,	 restricted	 to
operating	on	bytes	inputs	only	and	had	its	documentation	updated
to	more	accurately	reflect	both	its	intent	and	its	limitations

http://bugs.python.org/14837
http://bugs.python.org/9527
http://bugs.python.org/14653
http://bugs.python.org/14684
http://bugs.python.org/14772
http://bugs.python.org/15064
http://bugs.python.org/15101
http://bugs.python.org/14657
http://bugs.python.org/14055
http://bugs.python.org/15054
http://bugs.python.org/15006
http://bugs.python.org/15036
http://bugs.python.org/14059
http://bugs.python.org/15061

Issue	 #13841:	 Make	 child	 processes	 exit	 using	 sys.exit()	 on
Windows.
Issue	#14936:	curses_panel	was	converted	to	PEP	3121	and	PEP
384	API.	Patch	by	Robin	Schreiber.
Issue	#1667546:	On	platforms	supporting	tm_zone	and	tm_gmtoff
fields	 in	 struct	 tm,	 time.struct_time	 objects	 returned	 by
time.gmtime(),	 time.localtime()	 and	 time.strptime()	 functions	 now
have	 tm_zone	 and	 tm_gmtoff	 attributes.	 Original	 patch	 by	 Paul
Boddie.
Rename	 adjusted	 attribute	 to	 adjustable	 in	 time.get_clock_info()
result.
Issue	 #3518:	 Remove	 references	 to	 non-existent
BaseManager.from_address()	method.
Issue	 #13857:	 Added	 textwrap.indent()	 function	 (initial	 patch	 by
Ezra	Berch)
Issue	#2736:	Added	datetime.timestamp()	method.
Issue	#13854:	Make	multiprocessing	properly	handle	non-integer
non-string	argument	to	SystemExit.
Issue	 #12157:	 Make	 pool.map()	 empty	 iterables	 correctly.	 Initial
patch	by	mouad.
Issue	#11823:	disassembly	now	shows	argument	counts	on	calls
with	keyword	args.
Issue	#14711:	os.stat_float_times()	has	been	deprecated.
LZMAFile	now	accepts	 the	modes	 “rb”/”wb”/”ab”	as	synonyms	of
“r”/”w”/”a”.
The	bz2	and	lzma	modules	now	each	contain	an	open()	function,
allowing	 compressed	 files	 to	 readily	 be	 opened	 in	 text	mode	 as
well	as	binary	mode.
BZ2File.__init__()	 and	 LZMAFile.__init__()	 now	 accept	 a	 file
object	 as	 their	 first	 argument,	 rather	 than	 requiring	 a	 separate
“fileobj”	argument.
gzip.open()	now	accepts	file	objects	as	well	as	filenames.
Issue	 #14992:	 os.makedirs(path,	 exist_ok=True)	 would	 raise	 an
OSError	when	the	path	existed	and	had	the	S_ISGID	mode	bit	set

http://bugs.python.org/13841
http://bugs.python.org/14936
http://bugs.python.org/1667546
http://bugs.python.org/3518
http://bugs.python.org/13857
http://bugs.python.org/2736
http://bugs.python.org/13854
http://bugs.python.org/12157
http://bugs.python.org/11823
http://bugs.python.org/14711
http://bugs.python.org/14992

when	it	was	not	explicitly	asked	for.	This	is	no	longer	an	exception
as	mkdir	cannot	control	if	the	OS	sets	that	bit	for	it	or	not.
Issue	 #14989:	 Make	 the	 CGI	 enable	 option	 to	 http.server
available	via	command	line.
Issue	#14987:	Add	a	missing	import	statement	to	inspect.
Issue	 #1079:	 email.header.decode_header	 now	 correctly	 parses
all	 the	 examples	 in	 RFC2047.	 There	 is	 a	 necessary	 visible
behavior	change:	the	leading	and/or	trailing	whitespace	on	ASCII
parts	is	now	preserved.
Issue	 #14969:	 Better	 handling	 of	 exception	 chaining	 in
contextlib.ExitStack
Issue	 #14963:	 Convert	 contextlib.ExitStack.__exit__	 to	 use	 an
iterative	algorithm	(Patch	by	Alon	Horev)
Issue	 #14785:	 Add	 sys._debugmallocstats()	 to	 help	 debug	 low-
level	memory	allocation	issues
Issue	 #14443:	 Ensure	 that	 .py	 files	 are	 byte-compiled	 with	 the
correct	 Python	 executable	 within	 bdist_rpm	 even	 on	 older
versions	of	RPM

C-API

Issue	#15146:	Add	PyType_FromSpecWithBases.	Patch	by	Robin
Schreiber.
Issue	 #15042:	 Add	 PyState_AddModule	 and
PyState_RemoveModule.	Add	version	guard	for	Py_LIMITED_API
additions.	Patch	by	Robin	Schreiber.
Issue	 #13783:	 Inadvertent	 additions	 to	 the	 public	 C	 API	 in	 the
PEP	380	implementation	have	either	been	removed	or	marked	as
private	interfaces.

Extension	Modules

Issue	 #15000:	 Support	 the	 “unique”	 x32	 architecture	 in

http://bugs.python.org/14989
http://bugs.python.org/14987
http://bugs.python.org/1079
http://bugs.python.org/14969
http://bugs.python.org/14963
http://bugs.python.org/14785
http://bugs.python.org/14443
http://bugs.python.org/15146
http://bugs.python.org/15042
http://bugs.python.org/13783
http://bugs.python.org/15000

_posixsubprocess.c.

IDLE

Issue	 #9803:	 Don’t	 close	 IDLE	 on	 saving	 if	 breakpoint	 is	 open.
Patch	by	Roger	Serwy.
Issue	 #14962:	 Update	 text	 coloring	 in	 IDLE	 shell	 window	 after
changing	options.	Patch	by	Roger	Serwy.

Documentation

Issue	 #15176:	 Clarified	 behavior,	 documentation,	 and
implementation	of	os.listdir().
Issue	#14982:	Document	 that	pkgutil’s	 iteration	 functions	 require
the	 non-standard	 iter_modules()	 method	 to	 be	 defined	 by	 an
importer	(something	the	importlib	importers	do	not	define).
Issue	 #15081:	 Document	 PyState_FindModule.	 Patch	 by	 Robin
Schreiber.
Issue	#14814:	Added	first	draft	of	ipaddress	module	API	reference

Tests

Issue	 #15187:	 Bugfix:	 remove	 temporary	 directories	 test_shutil
was	leaving	behind.
Issue	 #14769:	 test_capi	 now	 has	 SkipitemTest,	 which	 cleverly
checks	 for	 “parity”	 between	 PyArg_ParseTuple()	 and	 the
Python/getargs.c	static	 function	skipitem()	 for	all	possible	“format
units”.
test_nntplib	now	tolerates	being	run	from	behind	NNTP	gateways
that	add	“X-Antivirus”	headers	to	articles
Issue	 #15043:	 test_gdb	 is	 now	 skipped	 entirely	 if	 gdb	 security
settings	block	loading	of	the	gdb	hooks
Issue	#14963:	Add	test	cases	for	exception	handling	behaviour	in

http://bugs.python.org/9803
http://bugs.python.org/14962
http://bugs.python.org/15176
http://bugs.python.org/14982
http://bugs.python.org/15081
http://bugs.python.org/14814
http://bugs.python.org/15187
http://bugs.python.org/14769
http://bugs.python.org/15043
http://bugs.python.org/14963

contextlib.ExitStack	(Initial	patch	by	Alon	Horev)

Build

Issue	#13590:	Improve	support	for	OS	X	Xcode	4:
Try	 to	 avoid	 building	 Python	 or	 extension	 modules	 with
problematic	llvm-gcc	compiler.
Since	 Xcode	 4	 removes	 ppc	 support,	 extension	 module
builds	 now	 check	 for	 ppc	 compiler	 support	 and
automatically	 remove	 ppc	 and	 ppc64	 archs	 when	 not
available.
Since	Xcode	4	no	longer	install	SDKs	in	default	locations,
extension	 module	 builds	 now	 revert	 to	 using	 installed
headers	and	libs	if	the	SDK	used	to	build	the	interpreter	is
not	available.
Update	 ./configure	 to	 use	 better	 defaults	 for	 universal
builds;	 in	 particular,	 –enable-universalsdk=yes	 uses	 the
Xcode	 default	 SDK	 and	 –with-universal-archs	 now
defaults	to	“intel”	if	ppc	not	available.

Issue	#14225:	Fix	Unicode	support	for	curses	(#12567)	on	OS	X

Issue	 #14928:	 Fix	 importlib	 bootstrap	 issues	 by	 using	 a	 custom
executable	 (Modules/_freeze_importlib)	 to	 build
Python/importlib.h.

http://bugs.python.org/13590
http://bugs.python.org/14225
http://bugs.python.org/14928

Python	3.3.0	Alpha	4?

Release	date:	31-May-2012

Core	and	Builtins

Issue	#14835:	Make	plistlib	output	empty	arrays	&	dicts	like	OS	X.
Patch	by	Sidney	San	Martín.
Issue	 #14744:	 Use	 the	 new	 _PyUnicodeWriter	 internal	 API	 to
speed	up	str%args	and	str.format(args).
Issue	#14930:	Make	memoryview	objects	weakrefable.
Issue	 #14775:	 Fix	 a	 potential	 quadratic	 dict	 build-up	 due	 to	 the
garbage	collector	repeatedly	trying	to	untrack	dicts.
Issue	 #14857:	 fix	 regression	 in	 references	 to	 PEP	 3135	 implicit
__class__	closure	variable	(Reopens	issue	#12370)
Issue	 #14712	 (PEP	 405):	 Virtual	 environments.	 Implemented	 by
Vinay	Sajip.
Issue	#14660	(PEP	420):	Namespace	packages.	Implemented	by
Eric	Smith.
Issue	 #14494:	 Fix	 __future__.py	 and	 its	 documentation	 to	 note
that	 absolute	 imports	 are	 the	 default	 behavior	 in	 3.0	 instead	 of
2.7.	Patch	by	Sven	Marnach.
Issue	 #9260:	 A	 finer-grained	 import	 lock.	 Most	 of	 the	 import
sequence	 now	 uses	 per-module	 locks	 rather	 than	 the	 global
import	 lock,	 eliminating	 well-known	 issues	 with	 threads	 and
imports.
Issue	#14624:	UTF-16	decoding	is	now	3x	to	4x	faster	on	various
inputs.	Patch	by	Serhiy	Storchaka.
asdl_seq	and	asdl_int_seq	are	now	Py_ssize_t	sized.
Issue	#14133	(PEP	415):	 Implement	suppression	of	__context__
display	 with	 an	 attribute	 on	 BaseException.	 This	 replaces	 the
original	mechanism	of	PEP	409.
Issue	 #14417:	 Mutating	 a	 dict	 during	 lookup	 now	 restarts	 the

http://bugs.python.org/14835
http://bugs.python.org/14744
http://bugs.python.org/14930
http://bugs.python.org/14775
http://bugs.python.org/14857
http://bugs.python.org/12370
http://bugs.python.org/14712
http://bugs.python.org/14660
http://bugs.python.org/14494
http://bugs.python.org/9260
http://bugs.python.org/14624
http://bugs.python.org/14133
http://bugs.python.org/14417

lookup	instead	of	raising	a	RuntimeError	(undoes	issue	#14205).
Issue	 #14738:	 Speed-up	 UTF-8	 decoding	 on	 non-ASCII	 data.
Patch	by	Serhiy	Storchaka.
Issue	#14700:	 Fix	 two	 broken	 and	 undefined-behaviour-inducing
overflow	checks	in	old-style	string	formatting.

Library

Issue	#14690:	Use	monotonic	clock	instead	of	system	clock	in	the
sched,	subprocess	and	trace	modules.
Issue	#14443:	Tell	rpmbuild	to	use	the	correct	version	of	Python	in
bdist_rpm.	Initial	patch	by	Ross	Lagerwall.
Issue	#12515:	email	now	registers	a	defect	if	it	gets	to	EOF	while
parsing	a	MIME	part	without	seeing	the	closing	MIME	boundary.
Issue	 #1672568:	 email	 now	 always	 decodes	 base64	 payloads,
adding	 padding	 and	 ignoring	 non-base64-alphabet	 characters	 if
needed,	and	registering	defects	for	any	such	problems.
Issue	 #14925:	 email	 now	 registers	 a	 defect	 when	 the	 parser
decides	 that	 there	 is	 a	 missing	 header/body	 separator	 line.
MalformedHeaderDefect,	 which	 the	 existing	 code	 would	 never
actually	generate,	is	deprecated.
Issue	 #10365:	 File	 open	 dialog	 now	 works	 instead	 of	 crashing
even	when	the	parent	window	 is	closed	before	 the	dialog.	Patch
by	Roger	Serwy.
Issue	 #8739:	 Updated	 smtpd	 to	 support	 RFC	 5321,	 and	 added
support	for	the	RFC	1870	SIZE	extension.
Issue	 #665194:	 Added	 a	 localtime	 function	 to	 email.utils	 to
provide	an	aware	local	datetime	for	use	in	setting	Date	headers.
Issue	 #12586:	 Added	 new	 provisional	 policies	 that	 implement
convenient	 unicode	 support	 for	 email	 headers.	See	What’s	New
for	details.
Issue	#14731:	Refactored	email	Policy	 framework	 to	support	 full
backward	compatibility	with	Python	3.2	by	default	yet	allow	for	the
introduction	 of	 new	 features	 through	 new	 policies.	 Note	 that

http://bugs.python.org/14205
http://bugs.python.org/14738
http://bugs.python.org/14700
http://bugs.python.org/14690
http://bugs.python.org/14443
http://bugs.python.org/12515
http://bugs.python.org/1672568
http://bugs.python.org/14925
http://bugs.python.org/10365
http://bugs.python.org/8739
http://bugs.python.org/665194
http://bugs.python.org/12586
http://bugs.python.org/14731

Policy.must_be_7bit	is	renamed	to	cte_type.
Issue	#14876:	Use	user-selected	font	for	highlight	configuration.
Issue	 #14920:	 Fix	 the	 help(urllib.parse)	 failure	 on	 locale	 C	 on
terminals.	Have	ascii	characters	in	help.
Issue	 #14548:	 Make	multiprocessing	 finalizers	 check	 pid	 before
running	to	cope	with	possibility	of	gc	running	just	after	fork.
Issue	 #14036:	 Add	 an	 additional	 check	 to	 validate	 that	 port	 in
urlparse	does	not	go	in	illegal	range	and	returns	None.
Issue	#14862:	Add	missing	names	to	os.__all__
Issue	#14875:	Use	float(‘inf’)	instead	of	float(‘1e66666’)	in	the	json
module.
Issue	#13585:	Added	contextlib.ExitStack
PEP	3144,	Issue	#14814:	Added	the	ipaddress	module
Issue	#14426:	Correct	the	Date	format	in	Expires	attribute	of	Set-
Cookie	Header	in	Cookie.py.
Issue	 #14588:	 The	 types	 module	 now	 provide	 new_class()	 and
prepare_class()	functions	to	support	PEP	3115	compliant	dynamic
class	creation.	Patch	by	Daniel	Urban	and	Nick	Coghlan.
Issue	 #13152:	 Allow	 to	 specify	 a	 custom	 tabsize	 for	 expanding
tabs	in	textwrap.	Patch	by	John	Feuerstein.
Issue	#14721:	Send	 the	correct	 ‘Content-length:	0’	header	when
the	 body	 is	 an	 empty	 string	 ‘’.	 Initial	 Patch	 contributed	 by	 Arve
Knudsen.
Issue	#14072:	Fix	parsing	of	 ‘tel’	URIs	 in	urlparse	by	making	the
check	for	ports	stricter.
Issue	#9374:	Generic	 parsing	 of	 query	 and	 fragment	 portions	 of
url	for	any	scheme.	Supported	both	by	RFC3986	and	RFC2396.
Issue	#14798:	Fix	 the	 functions	 in	pyclbr	 to	 raise	an	 ImportError
when	 the	 first	part	of	a	dotted	name	 is	not	a	package.	Patch	by
Xavier	de	Gaye.
Issue	 #12098:	 multiprocessing	 on	 Windows	 now	 starts	 child
processes	using	the	same	sys.flags	as	the	current	process.	Initial
patch	by	Sergey	Mezentsev.
Issue	#13031:	Small	speed-up	 for	 tarfile	when	unzipping	 tarfiles.

http://bugs.python.org/14876
http://bugs.python.org/14920
http://bugs.python.org/14548
http://bugs.python.org/14036
http://bugs.python.org/14862
http://bugs.python.org/14875
http://bugs.python.org/13585
http://bugs.python.org/14814
http://bugs.python.org/14426
http://bugs.python.org/14588
http://bugs.python.org/13152
http://bugs.python.org/14721
http://bugs.python.org/14072
http://bugs.python.org/9374
http://bugs.python.org/14798
http://bugs.python.org/12098
http://bugs.python.org/13031

Patch	by	Justin	Peel.
Issue	 #14780:	 urllib.request.urlopen()	 now	 has	 a	 cadefault
argument	 to	 use	 the	 default	 certificate	 store.	 Initial	 patch	 by
James	Oakley.
Issue	#14829:	Fix	bisect	and	 range()	 indexing	with	 large	 indices
(>=	2	**	32)	under	64-bit	Windows.
Issue	 #14732:	 The	 _csv	 module	 now	 uses	 PEP	 3121	 module
initialization.	Patch	by	Robin	Schreiber.
Issue	#14809:	Add	HTTP	status	codes	 introduced	by	RFC	6585
to	http.server	and	http.client.	Patch	by	EungJun	Yi.
Issue	 #14777:	 tkinter	 may	 return	 undecoded	 UTF-8	 bytes	 as	 a
string	when	accessing	 the	Tk	clipboard.	Modify	clipboad_get()	 to
first	 request	 type	 UTF8_STRING	 when	 no	 specific	 type	 is
requested	 in	 an	X11	windowing	 environment,	 falling	 back	 to	 the
current	 default	 type	 STRING	 if	 that	 fails.	 Original	 patch	 by
Thomas	Kluyver.
Issue	#14773:	Fix	os.fwalk()	failing	on	dangling	symlinks.
Issue	#12541:	Be	lenient	with	quotes	around	Realm	field	of	HTTP
Basic	Authentation	in	urllib2.
Issue	 #14807:	 move	 undocumented	 tarfile.filemode()	 to
stat.filemode()	 and	 add	 doc	 entry.	 Add	 tarfile.filemode	 alias	with
deprecation	warning.
Issue	#13815:	TarFile.extractfile()	 now	 returns	 io.BufferedReader
objects.
Issue	 #14532:	 Add	 a	 secure_compare()	 helper	 to	 the	 hmac
module,	to	mitigate	timing	attacks.	Patch	by	Jon	Oberheide.
Add	importlib.util.resolve_name().
Issue	 #14366:	 Support	 lzma	 compression	 in	 zip	 files.	 Patch	 by
Serhiy	Storchaka.
Issue	 #13959:	 Introduce	 importlib.find_loader()	 and	 document
imp.find_module/load_module	as	deprecated.
Issue	 #14082:	 shutil.copy2()	 now	 copies	 extended	 attributes,	 if
possible.	Patch	by	Hynek	Schlawack.
Issue	 #13959:	 Make

http://bugs.python.org/14780
http://bugs.python.org/14829
http://bugs.python.org/14732
http://bugs.python.org/14809
http://bugs.python.org/14777
http://bugs.python.org/14773
http://bugs.python.org/12541
http://bugs.python.org/14807
http://bugs.python.org/13815
http://bugs.python.org/14532
http://bugs.python.org/14366
http://bugs.python.org/13959
http://bugs.python.org/14082
http://bugs.python.org/13959

importlib.abc.FileLoader.load_module()/get_filename()	 and
importlib.machinery.ExtensionFileLoader.load_module()	have	their
single	argument	be	optional.	Allows	for	the	replacement	(and	thus
deprecation)	 of
imp.load_source()/load_package()/load_compiled().
Issue	 #13959:	 imp.get_suffixes()	 has	 been	 deprecated	 in	 favour
of	 the	 new	 attributes	 on	 importlib.machinery:
SOURCE_SUFFIXES,	 DEBUG_BYTECODE_SUFFIXES,
OPTIMIZED_BYTECODE_SUFFIXES,	 BYTECODE_SUFFIXES,
and	EXTENSION_SUFFIXES.	This	led	to	an	indirect	deprecation
of	inspect.getmoduleinfo().
Issue	 #14662:	Prevent	 shutil	 failures	 on	OS	X	when	 destination
does	not	support	chflag	operations.	Patch	by	Hynek	Schlawack.
Issue	#14157:	Fix	time.strptime	failing	without	a	year	on	February
29th.	Patch	by	Hynek	Schlawack.
Issue	 #14753:	 Make	 multiprocessing’s	 handling	 of	 negative
timeouts	the	same	as	it	was	in	Python	3.2.
Issue	 #14583:	 Fix	 importlib	 bug	 when	 a	 package’s	 __init__.py
would	first	import	one	of	its	modules	then	raise	an	error.
Issue	 #14741:	 Fix	 missing	 support	 for	 Ellipsis	 (‘...’)	 in	 parser
module.
Issue	 #14697:	 Fix	 missing	 support	 for	 set	 displays	 and	 set
comprehensions	in	parser	module.
Issue	 #14701:	 Fix	 missing	 support	 for	 ‘raise	 ...	 from’	 in	 parser
module.
Add	 support	 for	 timeouts	 to	 the	 acquire()	 methods	 of
multiprocessing’s	lock/semaphore/condition	proxies.
Issue	#13989:	Add	support	for	text	mode	to	gzip.open().
Issue	 #14127:	 The	 os.stat()	 result	 object	 now	 provides	 three
additional	 fields:	 st_ctime_ns,	 st_mtime_ns,	 and	 st_atime_ns,
providing	 those	 times	as	an	 integer	with	nanosecond	 resolution.
The	 functions	 os.utime(),	 os.lutimes(),	 and	 os.futimes()	 now
accept	a	new	parameter,	ns,	which	accepts	mtime	and	atime	as
integers	with	nanosecond	resolution.

http://bugs.python.org/13959
http://bugs.python.org/14662
http://bugs.python.org/14157
http://bugs.python.org/14753
http://bugs.python.org/14583
http://bugs.python.org/14741
http://bugs.python.org/14697
http://bugs.python.org/14701
http://bugs.python.org/13989
http://bugs.python.org/14127

Issue	 #14127	 and	 #10148:	 shutil.copystat	 now	 preserves	 exact
mtime	and	atime	on	filesystems	providing	nanosecond	resolution.

IDLE

Issue	 #14958:	 Change	 IDLE	 systax	 highlighting	 to	 recognize	 all
string	and	byte	literals	supported	in	Python	3.3.
Issue	#10997:	Prevent	a	duplicate	entry	 in	 IDLE’s	“Recent	Files”
menu.
Issue	 #14929:	 Stop	 IDLE	 3.x	 from	 closing	 on	 Unicode	 decode
errors	when	grepping.	Patch	by	Roger	Serwy.
Issue	 #12510:	 Attempting	 to	 get	 invalid	 tooltip	 no	 longer	 closes
IDLE.	Other	 tooltipss	 have	 been	 corrected	 or	 improved	 and	 the
number	of	tests	has	been	tripled.	Original	patch	by	Roger	Serwy.

Tools/Demos

Issue	 #14695:	 Bring	 Tools/parser/unparse.py	 support	 up	 to	 date
with	the	Python	3.3	Grammar.

Build

Issue	#14472:	Update	.gitignore.	Patch	by	Matej	Cepl.
Upgrade	Windows	library	versions:	bzip	1.0.6,	OpenSSL	1.0.1c.
Issue	 #14693:	 Under	 non-Windows	 platforms,	 hashlib’s	 fallback
modules	are	always	compiled,	even	if	OpenSSL	is	present	at	build
time.
Issue	 #13210:	 Windows	 build	 now	 uses	 VS2010,	 ported	 from
VS2008.

C-API

http://bugs.python.org/14127
http://bugs.python.org/14958
http://bugs.python.org/10997
http://bugs.python.org/14929
http://bugs.python.org/12510
http://bugs.python.org/14695
http://bugs.python.org/14472
http://bugs.python.org/14693
http://bugs.python.org/13210

Issue	#14705:	The	PyArg_Parse()	family	of	functions	now	support
the	‘p’	format	unit,	which	accepts	a	“boolean	predicate”	argument.
It	converts	any	Python	value	into	an	integer–0	if	it	is	“false”,	and	1
otherwise.

Documentation

Issue	#14863:	Update	the	documentation	of	os.fdopen()	to	reflect
the	fact	that	it’s	only	a	thin	wrapper	around	open()	anymore.
Issue	#14588:	The	language	reference	now	accurately	documents
the	Python	3	class	definition	process.	Patch	by	Nick	Coghlan.
Issue	 #14943:	 Correct	 a	 default	 argument	 value	 for
winreg.OpenKey	 and	 correctly	 list	 the	 argument	 names	 in	 the
function’s	explanation.

http://bugs.python.org/14705
http://bugs.python.org/14863
http://bugs.python.org/14588
http://bugs.python.org/14943

Python	3.3.0	Alpha	3?

Release	date:	01-May-2012

Core	and	Builtins

Issue	#14699:	Fix	calling	the	classmethod	descriptor	directly.
Issue	 #14433:	 Prevent	 msvcrt	 crash	 in	 interactive	 prompt	 when
stdin	is	closed.
Issue	 #14521:	 Make	 result	 of	 float(‘nan’)	 and	 float(‘-nan’)	 more
consistent	across	platforms.
Issue	#14646:	__import__()	sets	__loader__	if	the	loader	did	not.
Issue	#14605:	No	longer	have	implicit	entries	in	sys.meta_path.	If
sys.meta_path	is	found	to	be	empty,	raise	ImportWarning.
Issue	#14605:	No	 longer	have	 implicit	entries	 in	sys.path_hooks.
If	sys.path_hooks	 is	 found	to	be	empty,	a	warning	will	be	raised.
None	 is	 now	 inserted	 into	 sys.path_importer_cache	 if	 no	 finder
was	 discovered.	 This	 also	 means	 imp.NullImporter	 is	 no	 longer
implicitly	used.
Issue	#13903:	Implement	PEP	412.	Individual	dictionary	instances
can	 now	 share	 their	 keys	 with	 other	 dictionaries.	 Classes	 take
advantage	 of	 this	 to	 share	 their	 instance	 dictionary	 keys	 for
improved	memory	and	performance.
Issue	 #11603	 (again):	 Setting	 __repr__	 to	 __str__	 now	 raises	 a
RuntimeError	when	repr()	or	str()	is	called	on	such	an	object.
Issue	 #14658:	 Fix	 binding	 a	 special	 method	 to	 a	 builtin
implementation	of	a	special	method	with	a	different	name.
Issue	 #14630:	 Fix	 a	 memory	 access	 bug	 for	 instances	 of	 a
subclass	of	int	with	value	0.
Issue	#14339:	Speed	improvements	to	bin,	oct	and	hex	functions.
Patch	by	Serhiy	Storchaka.
Issue	 #14385:	 It	 is	 now	 possible	 to	 use	 a	 custom	 type	 for	 the
__builtins__	 namespace,	 instead	 of	 a	 dict.	 It	 can	 be	 used	 for

http://bugs.python.org/14699
http://bugs.python.org/14433
http://bugs.python.org/14521
http://bugs.python.org/14646
http://bugs.python.org/14605
http://bugs.python.org/14605
http://bugs.python.org/13903
http://bugs.python.org/11603
http://bugs.python.org/14658
http://bugs.python.org/14630
http://bugs.python.org/14339
http://bugs.python.org/14385

sandboxing	 for	 example.	 Raise	 also	 a	 NameError	 instead	 of
ImportError	if	__build_class__	name	if	not	found	in	__builtins__.
Issue	 #12599:	 Be	more	 strict	 in	 accepting	None	 compared	 to	 a
false-like	 object	 for	 importlib.util.module_for_loader	 and
importlib.machinery.PathFinder.
Issue	#14612:	Fix	jumping	around	with	blocks	by	setting	f_lineno.
Issue	 #14592:	 Attempting	 a	 relative	 import	 w/o	 __package__	 or
__name__	set	in	globals	raises	a	KeyError.
Issue	#14607:	Fix	keyword-only	arguments	which	started	with	__.
Issue	#10854:	The	ImportError	raised	when	an	extension	module
on	 Windows	 fails	 to	 import	 now	 uses	 the	 new	 path	 and	 name
attributes	from	Issue	#1559549.
Issue	 #13889:	 Check	 and	 (if	 necessary)	 set	 FPU	 control	 word
before	 calling	 any	 of	 the	 dtoa.c	 string	 <->	 float	 conversion
functions,	 on	 MSVC	 builds	 of	 Python.	 This	 fixes	 issues	 when
embedding	Python	in	a	Delphi	app.
__import__()	 now	 matches	 PEP	 328	 and	 documentation	 by
defaulting	 ‘index’	 to	 0	 instead	 of	 -1	 and	 removing	 support	 for
negative	values.
Issue	#2377:	Make	importlib	the	implementation	of	__import__().
Issue	#1559549:	ImportError	now	has	‘name’	and	‘path’	attributes
that	are	set	using	keyword	arguments	to	its	constructor.	They	are
currently	not	set	by	import	as	they	are	meant	for	use	by	importlib.
Issue	 #14474:	 Save	 and	 restore	 exception	 state	 in
thread.start_new_thread()	 while	 writing	 error	 message	 if	 the
thread	leaves	a	unhandled	exception.
Issue	#13019:	Fix	potential	reference	leaks	in	bytearray.extend().
Patch	by	Suman	Saha.

Library

Issue	 #14768:	 os.path.expanduser(‘~/a’)	 doesn’t	 works	 correctly
when	HOME	is	‘/’.
Issue	 #14371:	 Support	 bzip2	 in	 zipfile	module.	 Patch	 by	 Serhiy

http://bugs.python.org/12599
http://bugs.python.org/14612
http://bugs.python.org/14592
http://bugs.python.org/14607
http://bugs.python.org/10854
http://bugs.python.org/1559549
http://bugs.python.org/13889
http://bugs.python.org/2377
http://bugs.python.org/1559549
http://bugs.python.org/14474
http://bugs.python.org/13019
http://bugs.python.org/14768
http://bugs.python.org/14371

Storchaka.
Issue	#13183:	Fix	 pdb	 skipping	 frames	after	 hitting	a	breakpoint
and	running	step.	Patch	by	Xavier	de	Gaye.
Issue	 #14696:	 Fix	 parser	 module	 to	 understand	 ‘nonlocal’
declarations.
Issue	 #10941:	 Fix	 imaplib.Internaldate2tuple	 to	 produce	 correct
result	near	the	DST	transition.	Patch	by	Joe	Peterson.
Issue	 #9154:	 Fix	 parser	 module	 to	 understand	 function
annotations.
Issue	#6085:	 In	http.server.py	SimpleHTTPServer.address_string
returns	 the	 client	 ip	 address	 instead	 client	 hostname.	 Patch	 by
Charles-François	Natali.
Issue	#14309:	Deprecate	 time.clock(),	use	 time.perf_counter()	or
time.process_time()	instead.
Issue	#14428:	Implement	the	PEP	418.	Add	time.get_clock_info(),
time.perf_counter()	 and	 time.process_time()	 functions,	 and
rename	time.steady()	to	time.monotonic().
Issue	 #14646:	 importlib.util.module_for_loader()	 now	 sets
__loader__	and	__package__	(when	possible).
Issue	#14664:	 It	 is	now	possible	 to	use	@unittest.skip{If,Unless}
on	a	test	class	that	doesn’t	inherit	from	TestCase	(i.e.	a	mixin).
Issue	#4892:	multiprocessing	Connections	can	now	be	transferred
over	 multiprocessing	 Connections.	 Patch	 by	 Richard	 Oudkerk
(sbt).
Issue	#14160:	TarFile.extractfile()	 failed	 to	 resolve	symbolic	 links
when	the	links	were	not	located	in	an	archive	subdirectory.
Issue	#14638:	pydoc	now	treats	non-string	__name__	values	as	if
they	were	missing,	instead	of	raising	an	error.
Issue	#13684:	Fix	httplib	 tunnel	 issue	of	 infinite	 loops	 for	certain
sites	which	send	EOF	without	trailing	rn.
Issue	 #14605:	 Add	 importlib.abc.FileLoader,	 importlib.machinery.
(FileFinder,	 SourceFileLoader,	 SourcelessFileLoader,
ExtensionFileLoader).
Issue	 #13959:	 imp.cache_from_source()/source_from_cache()

http://bugs.python.org/13183
http://bugs.python.org/14696
http://bugs.python.org/10941
http://bugs.python.org/9154
http://bugs.python.org/6085
http://bugs.python.org/14309
http://bugs.python.org/14428
http://bugs.python.org/14646
http://bugs.python.org/14664
http://bugs.python.org/4892
http://bugs.python.org/14160
http://bugs.python.org/14638
http://bugs.python.org/13684
http://bugs.python.org/14605
http://bugs.python.org/13959

now	 follow	 os.path.join()/split()	 semantics	 for	 path	 manipulation
instead	of	its	prior,	custom	semantics	of	caring	the	right-most	path
separator	forward	in	path	joining.
Issue	#2193:	Allow	”:”	character	in	Cookie	NAME	values.
Issue	#14629:	tokenizer.detect_encoding	will	specify	the	filename
in	the	SyntaxError	exception	if	found	at	readline.__self__.name.
Issue	 #14629:	Raise	SyntaxError	 in	 tokenizer.detect_encoding	 if
the	first	two	lines	have	non-UTF-8	characters	without	an	encoding
declaration.
Issue	#14308:	Fix	an	exception	when	a	“dummy”	thread	is	in	the
threading	module’s	active	list	after	a	fork().
Issue	 #11750:	 The	 Windows	 API	 functions	 scattered	 in	 the
_subprocess	 and	 _multiprocessing.win32	modules	 now	 live	 in	 a
single	module	“_winapi”.	Patch	by	sbt.
Issue	#14087:	multiprocessing:	add	Condition.wait_for().	Patch	by
sbt.
Issue	 #14538:	 HTMLParser	 can	 now	 parse	 correctly	 start	 tags
that	contain	a	bare	‘/’.
Issue	 #14452:	 SysLogHandler	 no	 longer	 inserts	 a	 UTF-8	 BOM
into	the	message.
Issue	 #14386:	 Expose	 the	 dict_proxy	 internal	 type	 as
types.MappingProxyType.
Issue	 #13959:	 Make	 imp.reload()	 always	 use	 a	 module’s
__loader__	to	perform	the	reload.
Issue	 #13959:	 Add	 imp.py	 and	 rename	 the	 built-in	 module	 to
_imp,	 allowing	 for	 re-implementing	 parts	 of	 the	 module	 in	 pure
Python.
Issue	 #13496:	 Fix	 potential	 overflow	 in	 bisect.bisect	 algorithm
when	applied	to	a	collection	of	size	>	sys.maxsize	/	2.
Have	 importlib	 take	 advantage	 of	 ImportError’s	 new	 ‘name’	 and
‘path’	attributes.
Issue	 #14399:	 zipfile	 now	 recognizes	 that	 the	 archive	 has	 been
modified	 even	 if	 only	 the	 comment	 is	 changed.	 In	 addition,	 the
TypeError	 that	 results	 from	 trying	 to	set	a	non-binary	value	as	a

http://bugs.python.org/2193
http://bugs.python.org/14629
http://bugs.python.org/14629
http://bugs.python.org/14308
http://bugs.python.org/11750
http://bugs.python.org/14087
http://bugs.python.org/14538
http://bugs.python.org/14452
http://bugs.python.org/14386
http://bugs.python.org/13959
http://bugs.python.org/13959
http://bugs.python.org/13496
http://bugs.python.org/14399

comment	is	now	raised	at	the	time	the	comment	is	set	rather	than
at	the	time	the	zipfile	is	written.
trace.CoverageResults.is_ignored_filename()	 now	 ignores	 any
name	 that	 starts	 with	 “<”	 and	 ends	 with	 “>”	 instead	 of	 special-
casing	“<string>”	and	“<doctest	”.
Issue	 #12537:	 The	 mailbox	 module	 no	 longer	 depends	 on
knowledge	of	internal	implementation	details	of	the	email	package
Message	object.
Issue	 #7978:	 socketserver	 now	 restarts	 the	 select()	 call	 when
EINTR	 is	 returned.	This	avoids	crashing	 the	server	 loop	when	a
signal	is	received.	Patch	by	Jerzy	Kozera.
Issue	 #14522:	 Avoid	 duplicating	 socket	 handles	 in
multiprocessing.connection.	Patch	by	sbt.
Don’t	 Py_DECREF	 NULL	 variable	 in
io.IncrementalNewlineDecoder.
Issue	 #3033:	 Add	 displayof	 parameter	 to	 tkinter	 font.	 Patch	 by
Guilherme	Polo.
Issue	#14482:	Raise	a	ValueError,	not	a	NameError,	when	trying
to	 create	 a	multiprocessing	 Client	 or	 Listener	 with	 an	 AF_UNIX
type	address	under	Windows.	Patch	by	Popa	Claudiu.
Issue	#802310:	Generate	always	unique	tkinter	font	names	if	not
directly	passed.
Issue	#14151:	Raise	a	ValueError,	not	a	NameError,	when	trying
to	 create	 a	 multiprocessing	 Client	 or	 Listener	 with	 an	 AF_PIPE
type	 address	 under	 non-Windows	 platforms.	 Patch	 by	 Popa
Claudiu.
Issue	#14493:	Use	gvfs-open	or	xdg-open	in	webbrowser.

Build

“make	touch”	will	now	touch	generated	files	that	are	checked	into
Mercurial,	after	a	“hg	update”	which	failed	to	bring	the	timestamps
into	the	right	order.

http://bugs.python.org/12537
http://bugs.python.org/7978
http://bugs.python.org/14522
http://bugs.python.org/3033
http://bugs.python.org/14482
http://bugs.python.org/802310
http://bugs.python.org/14151
http://bugs.python.org/14493

Tests

Issue	 #14026:	 In	 test_cmd_line_script,	 check	 that	 sys.argv	 is
populated	correctly	 for	 the	various	 invocation	approaches	 (Patch
by	Jason	Yeo)
Issue	#14032:	Fix	incorrect	variable	name	in	test_cmd_line_script
debugging	message	(Patch	by	Jason	Yeo)
Issue	 #14589:	 Update	 certificate	 chain	 for	 sha256.tbs-
internet.com,	fixing	a	test	failure	in	test_ssl.
Issue	 #14355:	 Regrtest	 now	 supports	 the	 standard	 unittest	 test
loading,	 and	 will	 use	 it	 if	 a	 test	 file	 contains	 no	 test_main
method.

IDLE

Issue	#8515:	Set	 __file__	when	 run	 file	 in	 IDLE.	 Initial	 patch	 by
Bruce	Frederiksen.
Issue	 #14496:	 Fix	 wrong	 name	 in	 idlelib/tabbedpages.py.	 Patch
by	Popa	Claudiu.

Tools	/	Demos

Issue	 #3561:	 The	 Windows	 installer	 now	 has	 an	 option,	 off	 by
default,	 for	placing	 the	Python	 installation	 into	 the	system	“Path”
environment	variable.
Issue	 #13165:	 stringbench	 is	 now	 available	 in	 the
Tools/stringbench	folder.	It	used	to	live	in	its	own	SVN	project.

C-API

Issue	 #14098:	 New	 functions	 PyErr_GetExcInfo	 and
PyErr_SetExcInfo.	Patch	by	Stefan	Behnel.

http://bugs.python.org/14026
http://bugs.python.org/14032
http://bugs.python.org/14589
http://bugs.python.org/14355
http://bugs.python.org/8515
http://bugs.python.org/14496
http://bugs.python.org/3561
http://bugs.python.org/13165
http://bugs.python.org/14098

Python	3.3.0	Alpha	2?

Release	date:	01-Apr-2012

Core	and	Builtins

Issue	 #1683368:	 object.__new__	 and	 object.__init__	 raise	 a
TypeError	if	they	are	passed	arguments	and	their	complementary
method	is	not	overridden.
Issue	 #14378:	 Fix	 compiling	 ast.ImportFrom	 nodes	 with	 a
“__future__”	string	as	the	module	name	that	was	not	interned.
Issue	#14331:	Use	significantly	 less	stack	space	when	 importing
modules	 by	 allocating	 path	 buffers	 on	 the	 heap	 instead	 of	 the
stack.
Issue	#14334:	Prevent	in	a	segfault	in	type.__getattribute__	when
it	was	not	passed	strings.
Issue	#1469629:	Allow	cycles	through	an	object’s	__dict__	slot	to
be	collected.	(For	example	if	x.__dict__	is	x).
Issue	 #14205:	 dict	 lookup	 raises	 a	 RuntimeError	 if	 the	 dict	 is
modified	during	a	lookup.
Issue	#14220:	When	a	generator	is	delegating	to	another	iterator
with	the	yield	from	syntax,	 it	needs	to	have	its	gi_running	flag
set	to	True.
Issue	 #14435:	 Remove	 dedicated	 block	 allocator	 from
floatobject.c	 and	 rely	 on	 the	PyObject_Malloc()	 api	 like	 all	 other
objects.
Issue	#14471:	Fix	a	possible	buffer	overrun	in	the	winreg	module.
Issue	#14288:	Allow	the	serialization	of	builtin	iterators

Library

Issue	 #14300:	 Under	 Windows,	 sockets	 created	 using

http://bugs.python.org/1683368
http://bugs.python.org/14378
http://bugs.python.org/14331
http://bugs.python.org/14334
http://bugs.python.org/1469629
http://bugs.python.org/14205
http://bugs.python.org/14220
http://bugs.python.org/14435
http://bugs.python.org/14471
http://bugs.python.org/14288
http://bugs.python.org/14300

socket.dup()	now	allow	overlapped	I/O.	Patch	by	sbt.
Issue	#13872:	 socket.detach()	 now	marks	 the	 socket	 closed	 (as
mirrored	in	the	socket	repr()).	Patch	by	Matt	Joiner.
Issue	 #14406:	 Fix	 a	 race	 condition	 when	 using
concurrent.futures.wait(

return_when=ALL_COMPLETED).	Patch	by	Matt	Joiner.
Issue	#5136:	deprecate	old,	unused	functions	from	tkinter.
Issue	 #14416:	 syslog	 now	 defines	 the	 LOG_ODELAY	 and
LOG_AUTHPRIV	constants	if	they	are	defined	in	<syslog.h>.
Issue	#14295:	Add	unittest.mock
Issue	 #7652:	 Add	 –with-system-libmpdec	 option	 to	 configure	 for
linking	the	_decimal	module	against	an	installed	libmpdec.
Issue	#14380:	MIMEText	now	defaults	to	utf-8	when	passed	non-
ASCII	unicode	with	no	charset	specified.
Issue	 #10340:	 asyncore	 -	 properly	 handle	 EINVAL	 in	 dispatcher
constructor	 on	 OSX;	 avoid	 to	 call	 handle_connect	 in	 case	 of	 a
disconnected	socket	which	was	not	meant	to	connect.
Issue	 #14204:	 The	 ssl	 module	 now	 has	 support	 for	 the	 Next
Protocol	 Negotiation	 extension,	 if	 available	 in	 the	 underlying
OpenSSL	library.	Patch	by	Colin	Marc.
Issue	 #3035:	 Unused	 functions	 from	 tkinter	 are	 marked	 as
pending	deprecated.
Issue	 #12757:	 Fix	 the	 skipping	 of	 doctests	 when	 python	 is	 run
with	 -OO	 so	 that	 it	 works	 in	 unittest’s	 verbose	mode	 as	well	 as
non-verbose	mode.
Issue	#7652:	 Integrate	 the	decimal	 floating	point	 libmpdec	 library
to	speed	up	the	decimal	module.	Performance	gains	of	the	new	C
implementation	 are	 between	 10x	 and	 100x,	 depending	 on	 the
application.
Issue	#14269:	SMTPD	now	conforms	to	 the	RFC	and	requires	a
HELO	command	before	MAIL,	RCPT,	or	DATA.
Issue	#13694:	asynchronous	connect	in	asyncore.dispatcher	does
not	set	addr	attribute.
Issue	#14344:	fixed	the	repr	of	email.policy	objects.

http://bugs.python.org/13872
http://bugs.python.org/14406
http://bugs.python.org/5136
http://bugs.python.org/14416
http://bugs.python.org/14295
http://bugs.python.org/7652
http://bugs.python.org/14380
http://bugs.python.org/10340
http://bugs.python.org/14204
http://bugs.python.org/3035
http://bugs.python.org/12757
http://bugs.python.org/7652
http://bugs.python.org/14269
http://bugs.python.org/13694
http://bugs.python.org/14344

Issue	 #11686:	 Added	 missing	 entries	 to	 email	 package	 __all__
lists	(mostly	the	new	Bytes	classes).
Issue	 #14335:	 multiprocessing’s	 custom	 Pickler	 subclass	 now
inherits	from	the	C-accelerated	implementation.	Patch	by	sbt.
Issue	 #10484:	 Fix	 the	 CGIHTTPServer’s	 PATH_INFO	 handling
problem.
Issue	#11199:	Fix	the	with	urllib	which	hangs	on	particular	ftp	urls.
Improve	the	memory	utilization	and	speed	of	functools.lru_cache.
Issue	 #14222:	 Use	 the	 new	 time.steady()	 function	 instead	 of
time.time()	for	timeout	in	queue	and	threading	modules	to	not	be
affected	of	system	time	update.
Issue	#13248:	Remove	lib2to3.pytree.Base.get_prefix/set_prefix.
Issue	 #14234:	 CVE-2012-0876:	 Randomize	 hashes	 of	 xml
attributes	in	the	hash	table	internal	to	the	pyexpat	module’s	copy
of	 the	 expat	 library	 to	 avoid	 a	 denial	 of	 service	 due	 to	 hash
collisions.	Patch	by	David	Malcolm	with	some	modifications	by	the
expat	project.
Issue	#12818:	format	address	no	longer	needlessly	escapes	()s	in
names	when	the	name	ends	up	being	quoted.
Issue	 #14062:	 BytesGenerator	 now	 correctly	 folds	 Header
objects,	including	using	linesep	when	folding.
Issue	 #13839:	 When	 invoked	 on	 the	 command-line,	 the	 pstats
module	 now	 accepts	 several	 filenames	 of	 profile	 stat	 files	 and
merges	them	all.	Patch	by	Matt	Joiner.
Issue	#14291:	Email	now	defaults	 to	utf-8	 for	non-ASCII	unicode
headers	instead	of	raising	an	error.	This	fixes	a	regression	relative
to	2.7.
Issue	#989712:	Support	using	Tk	without	a	mainloop.
Issue	#3835:	Refuse	to	use	unthreaded	Tcl	in	threaded	Python.
Issue	#2843:	Add	new	Tk	API	to	Tkinter.
Issue	 #14184:	 Increase	 the	 default	 stack	 size	 for	 secondary
threads	 on	 Mac	 OS	 X	 to	 avoid	 interpreter	 crashes	 when	 using
threads	on	10.7.
Issue	 #14180:	 datetime.date.fromtimestamp(),

http://bugs.python.org/11686
http://bugs.python.org/14335
http://bugs.python.org/10484
http://bugs.python.org/11199
http://bugs.python.org/14222
http://bugs.python.org/13248
http://bugs.python.org/14234
http://bugs.python.org/12818
http://bugs.python.org/14062
http://bugs.python.org/13839
http://bugs.python.org/14291
http://bugs.python.org/989712
http://bugs.python.org/3835
http://bugs.python.org/2843
http://bugs.python.org/14184
http://bugs.python.org/14180

datetime.datetime.fromtimestamp()	 and
datetime.datetime.utcfromtimestamp()	 now	 raise	 an	 OSError
instead	of	ValueError	if	localtime()	or	gmtime()	failed.
Issue	 #14180:	 time.ctime(),	 gmtime(),	 time.localtime(),
datetime.date.fromtimestamp(),
datetime.datetime.fromtimestamp()	 and
datetime.datetime.utcfromtimestamp()	 now	 raises	 an
OverflowError,	 instead	of	a	ValueError,	 if	 the	timestamp	does	not
fit	in	time_t.
Issue	 #14180:	 datetime.datetime.fromtimestamp()	 and
datetime.datetime.utcfromtimestamp()	 now	 round	 microseconds
towards	zero	instead	of	rounding	to	nearest	with	ties	going	away
from	zero.
Issue	 #10543:	 Fix	 unittest	 test	 discovery	 with	 Jython	 bytecode
files.
Issue	 #1178863:	 Separate	 initialisation	 from	 setting	 when
initializing	Tkinter.Variables;	harmonize	exceptions	 to	ValueError;
only	 delete	 variables	 that	 have	 not	 been	 deleted;	 assert	 that
variable	names	are	strings.
Issue	#14104:	 Implement	 time.monotonic()	 on	Mac	OS	X,	 patch
written	by	Nicholas	Riley.
Issue	#13394:	the	aifc	module	now	uses	warnings.warn()	to	signal
warnings.
Issue	 #14252:	 Fix	 subprocess.Popen.terminate()	 to	 not	 raise	 an
error	under	Windows	when	the	child	process	has	already	exited.
Issue	#14223:	curses.addch()	 is	no	more	 limited	 to	 the	 range	0-
255	when	the	Python	curses	is	not	linked	to	libncursesw.	It	was	a
regression	introduced	in	Python	3.3a1.
Issue	#14168:	Check	 for	 presence	of	Element._attrs	 in	minidom
before	accessing	it.
Issue	 #12328:	 Fix	 multiprocessing’s	 use	 of	 overlapped	 I/O	 on
Windows.	 Also,	 add	 a	 multiprocessing.connection.wait(rlist,
timeout=None)	function	for	polling	multiple	objects	at	once.	Patch
by	sbt.

http://bugs.python.org/14180
http://bugs.python.org/14180
http://bugs.python.org/10543
http://bugs.python.org/1178863
http://bugs.python.org/14104
http://bugs.python.org/13394
http://bugs.python.org/14252
http://bugs.python.org/14223
http://bugs.python.org/14168
http://bugs.python.org/12328

Issue	 #14007:	 Accept	 incomplete	 TreeBuilder	 objects	 (missing
start,	end,	data	or	close	method)	for	the	Python	implementation	as
well.	 Drop	 the	 no-op	 TreeBuilder().xml()	 method	 from	 the	 C
implementation.
Issue	#14210:	pdb	now	has	tab-completion	not	only	for	command
names,	but	also	for	their	arguments,	wherever	possible.
Issue	 #14310:	 Sockets	 can	 now	 be	 with	 other	 processes	 on
Windows	 using	 the	 api	 socket.socket.share()	 and
socket.fromshare().
Issue	#10576:	The	gc	module	now	has	a	‘callbacks’	member	that
will	get	called	when	garbage	collection	takes	place.

Build

Issue	 #14557:	 Fix	 extensions	 build	 on	 HP-UX.	 Patch	 by	 Adi
Roiban.
Issue	#14387:	Do	not	include	accu.h	from	Python.h.
Issue	 #14359:	 Only	 use	O_CLOEXEC	 in	 _posixmodule.c	 if	 it	 is
defined.	Based	on	patch	from	Hervé	Coatanhay.
Issue	#14321:	Do	not	 run	pgen	during	 the	build	 if	 files	are	up	 to
date.

Documentation

Issue	#14034:	added	the	argparse	tutorial.
Issue	#14324:	Fix	configure	tests	for	cross	builds.
Issue	 #14327:	Call	 AC_CANONICAL_HOST	 in	 configure.ac	 and
check	 in	 config.{guess,sub}.	 Don’t	 use	 uname	 calls	 for	 cross
builds.

Extension	Modules

Issue	 #9041:	 An	 issue	 in	 ctypes.c_longdouble,	 ctypes.c_double,

http://bugs.python.org/14007
http://bugs.python.org/14210
http://bugs.python.org/14310
http://bugs.python.org/10576
http://bugs.python.org/14557
http://bugs.python.org/14387
http://bugs.python.org/14359
http://bugs.python.org/14321
http://bugs.python.org/14034
http://bugs.python.org/14324
http://bugs.python.org/14327
http://bugs.python.org/9041

and	 ctypes.c_float	 that	 caused	 an	 incorrect	 exception	 to	 be
returned	in	the	case	of	overflow	has	been	fixed.
Issue	#14212:	The	re	module	didn’t	retain	a	reference	to	buffers	it
was	scanning,	resulting	in	segfaults.
Issue	#14259:	The	finditer()	method	of	re	objects	did	not	take	any
keyword	arguments,	contrary	to	the	documentation.
Issue	 #10142:	 Support	 for	 SEEK_HOLE/SEEK_DATA	 (for
example,	under	ZFS).

Tests

Issue	#14442:	Add	missing	errno	import	in	test_smtplib.
Issue	 #8315:	 (partial	 fix)	 python	 -m	 unittest	 test.test_email	 now
works.

http://bugs.python.org/14212
http://bugs.python.org/14259
http://bugs.python.org/10142
http://bugs.python.org/14442
http://bugs.python.org/8315

Python	3.3.0	Alpha	1?

Release	date:	05-Mar-2012

Core	and	Builtins

Issue	 #14172:	 Fix	 reference	 leak	when	marshalling	 a	 buffer-like
object	(other	than	a	bytes	object).

Issue	#13521:	dict.setdefault()	now	does	only	one	 lookup	 for	 the
given	 key,	making	 it	 “atomic”	 for	many	 purposes.	 Patch	 by	 Filip
Gruszczyński.

PEP	409,	Issue	#6210:	“raise	X	from	None”	is	now	supported	as	a
means	 of	 suppressing	 the	 display	 of	 the	 chained	 exception
context.	 The	 chained	 context	 still	 remains	 available	 as	 the
__context__	attribute.

Issue	 #10181:	 New	 memoryview	 implementation	 fixes	 multiple
ownership	and	 lifetime	 issues	of	dynamically	allocated	Py_buffer
members	(#9990)	as	well	as	crashes	(#8305,	#7433).	Many	new
features	 have	 been	 added	 (See	 whatsnew/3.3),	 and	 the
documentation	 has	 been	 updated	 extensively.	 The	 ndarray	 test
object	 from	_testbuffer.c	 implements	all	aspects	of	PEP-3118,	so
further	development	 towards	 the	complete	 implementation	of	 the
PEP	can	proceed	in	a	test-driven	manner.

Thanks	 to	 Nick	 Coghlan,	 Antoine	 Pitrou	 and	 Pauli	 Virtanen	 for
review	and	many	ideas.

Issue	 #12834:	 Fix	 incorrect	 results	 of	 memoryview.tobytes()	 for
non-contiguous	arrays.

http://bugs.python.org/14172
http://bugs.python.org/13521
http://bugs.python.org/6210
http://bugs.python.org/10181
http://bugs.python.org/12834

Issue	 #5231:	 Introduce	 memoryview.cast()	 method	 that	 allows
changing	 format	 and	 shape	 without	 making	 a	 copy	 of	 the
underlying	memory.

Issue	#14084:	Fix	a	file	descriptor	leak	when	importing	a	module
with	a	bad	encoding.

Upgrade	Unicode	data	to	Unicode	6.1.

Issue	 #14040:	 Remove	 rarely	 used	 file	 name	 suffixes	 for	 C
extensions	(under	POSIX	mainly).

Issue	#14051:	Allow	arbitrary	attributes	 to	be	set	of	classmethod
and	staticmethod.

Issue	 #13703:	 oCERT-2011-003:	 Randomize	 hashes	 of	 str	 and
bytes	 to	 protect	 against	 denial	 of	 service	 attacks	 due	 to	 hash
collisions	within	 the	dict	and	set	 types.	Patch	by	David	Malcolm,
based	on	work	by	Victor	Stinner.

Issue	 #13020:	 Fix	 a	 reference	 leak	 when	 allocating	 a
structsequence	object	fails.	Patch	by	Suman	Saha.

Issue	#13908:	Ready	types	returned	from	PyType_FromSpec.

Issue	 #11235:	 Fix	OverflowError	when	 trying	 to	 import	 a	 source
file	whose	modification	time	doesn’t	fit	in	a	32-bit	timestamp.

Issue	 #12705:	 A	 SyntaxError	 exception	 is	 now	 raised	 when
attempting	 to	compile	multiple	statements	as	a	single	 interactive
statement.

Fix	 the	builtin	module	 initialization	 code	 to	 store	 the	 init	 function
for	future	reinitialization.

http://bugs.python.org/5231
http://bugs.python.org/14084
http://bugs.python.org/14040
http://bugs.python.org/14051
http://bugs.python.org/13703
http://bugs.python.org/13020
http://bugs.python.org/13908
http://bugs.python.org/11235
http://bugs.python.org/12705

Issue	 #8052:	 The	 posix	 subprocess	 module	 would	 take	 a	 long
time	closing	all	possible	file	descriptors	in	the	child	process	rather
than	 just	open	file	descriptors.	 It	now	closes	only	 the	open	 fds	 if
possible	for	the	default	close_fds=True	behavior.

Issue	#13629:	Renumber	the	tokens	in	token.h	so	that	they	match
the	indexes	into	_PyParser_TokenNames.

Issue	#13752:	Add	a	casefold()	method	to	str.

Issue	 #13761:	 Add	 a	 “flush”	 keyword	 argument	 to	 the	 print()
function,	used	to	ensure	flushing	the	output	stream.

Issue	#13645:	pyc	files	now	contain	the	size	of	the	corresponding
source	 code,	 to	 avoid	 timestamp	 collisions	 (especially	 on
filesystems	 with	 a	 low	 timestamp	 resolution)	 when	 checking	 for
freshness	of	the	bytecode.

PEP	 380,	 Issue	 #11682:	 Add	 “yield	 from	 <x>”	 to	 support	 easy
delegation	 to	 subgenerators	 (initial	 patch	 by	 Greg	 Ewing,
integration	 into	 3.3	 by	 Renaud	 Blanch,	 Ryan	 Kelly,	 Zbigniew
Jędrzejewski-Szmek	and	Nick	Coghlan)

Issue	#13748:	Raw	bytes	 literals	can	now	be	written	with	the	rb
prefix	as	well	as	br.

Issue	#12736:	Use	 full	 unicode	 case	mappings	 for	 upper,	 lower,
and	title	case.

Issue	 #12760:	 Add	 a	 create	 mode	 to	 open().	 Patch	 by	 David
Townshend.

Issue	 #13738:	 Simplify	 implementation	 of	 bytes.lower()	 and
bytes.upper().

http://bugs.python.org/8052
http://bugs.python.org/13629
http://bugs.python.org/13752
http://bugs.python.org/13761
http://bugs.python.org/13645
http://bugs.python.org/11682
http://bugs.python.org/13748
http://bugs.python.org/12736
http://bugs.python.org/12760
http://bugs.python.org/13738

Issue	 #13577:	 Built-in	 methods	 and	 functions	 now	 have	 a
__qualname__.	Patch	by	sbt.

Issue	#6695:	Full	garbage	collection	runs	now	clear	the	freelist	of
set	objects.	Initial	patch	by	Matthias	Troffaes.

Fix	OSError.__init__	and	OSError.__new__	so	that	each	of	 them
can	be	overriden	and	take	additional	arguments	(followup	to	issue
#12555).

Fix	 the	 fix	 for	 issue	#12149:	 it	was	 incorrect,	although	 it	had	 the
side	 effect	 of	 appearing	 to	 resolve	 the	 issue.	 Thanks	 to	 Mark
Shannon	for	noticing.

Issue	 #13505:	 Pickle	 bytes	 objects	 in	 a	 way	 that	 is	 compatible
with	Python	2	when	using	protocols	<=	2.

Issue	 #11147:	 Fix	 an	 unused	 argument	 in
_Py_ANNOTATE_MEMORY_ORDER.	 (Fix	 given	 by	 Campbell
Barton).

Issue	#13503:	Use	a	more	efficient	reduction	format	for	bytearrays
with	 pickle	 protocol	 >=	 3.	 The	 old	 reduction	 format	 is	 kept	 with
older	protocols	in	order	to	allow	unpickling	under	Python	2.	Patch
by	Irmen	de	Jong.

Issue	 #7111:	 Python	 can	 now	 be	 run	 without	 a	 stdin,	 stdout	 or
stderr	 stream.	 It	 was	 already	 the	 case	with	 Python	 2.	 However,
the	 corresponding	 sys	 module	 entries	 are	 now	 set	 to	 None
(instead	of	an	unusable	file	object).

Issue	 #11849:	 Ensure	 that	 free()d	 memory	 arenas	 are	 really
released	 on	 POSIX	 systems	 supporting	 anonymous	 memory
mappings.	Patch	by	Charles-François	Natali.

http://bugs.python.org/13577
http://bugs.python.org/6695
http://bugs.python.org/12555
http://bugs.python.org/12149
http://bugs.python.org/13505
http://bugs.python.org/11147
http://bugs.python.org/13503
http://bugs.python.org/7111
http://bugs.python.org/11849

PEP	 3155	 /	 issue	 #13448:	 Qualified	 name	 for	 classes	 and
functions.

Issue	 #13436:	 Fix	 a	 bogus	 error	message	when	 an	 AST	 object
was	passed	an	invalid	integer	value.

Issue	 #13411:	memoryview	 objects	 are	 now	 hashable	when	 the
underlying	object	is	hashable.

Issue	 #13338:	 Handle	 all	 enumerations	 in
_Py_ANNOTATE_MEMORY_ORDER	 to	 allow	 compiling
extension	 modules	 with	 -Wswitch-enum	 on	 gcc.	 Initial	 patch	 by
Floris	Bruynooghe.

Issue	#10227:	Add	 an	 allocation	 cache	 for	 a	 single	 slice	 object.
Patch	by	Stefan	Behnel.

Issue	 #13393:	 BufferedReader.read1()	 now	 asks	 the	 full
requested	 size	 to	 the	 raw	 stream	 instead	 of	 limiting	 itself	 to	 the
buffer	size.

Issue	 #13392:	 Writing	 a	 pyc	 file	 should	 now	 be	 atomic	 under
Windows	as	well.

Issue	#13333:	The	UTF-7	decoder	now	accepts	 lone	surrogates
(the	encoder	already	accepts	them).

Issue	 #13389:	 Full	 garbage	 collection	 passes	 now	 clear	 the
freelists	 for	 list	 and	 dict	 objects.	 They	 already	 cleared	 other
freelists	in	the	interpreter.

Issue	 #13327:	 Remove	 the	 need	 for	 an	 explicit	 None	 as	 the
second	argument	to	os.utime,	os.lutimes,	os.futimes,	os.futimens,
os.futimesat,	 in	 order	 to	 update	 to	 the	 current	 time.	 Also	 added

http://bugs.python.org/13448
http://bugs.python.org/13436
http://bugs.python.org/13411
http://bugs.python.org/13338
http://bugs.python.org/10227
http://bugs.python.org/13393
http://bugs.python.org/13392
http://bugs.python.org/13333
http://bugs.python.org/13389
http://bugs.python.org/13327

keyword	 argument	 handling	 to	 os.utimensat	 in	 order	 to	 remove
the	need	for	explicit	None.

Issue	#13350:	Simplify	some	C	code	by	replacing	most	usages	of
PyUnicode_Format	by	PyUnicode_FromFormat.

Issue	#13342:	 input()	used	 to	 ignore	sys.stdin’s	and	sys.stdout’s
unicode	 error	 handler	 in	 interactive	 mode	 (when	 calling	 into
PyOS_Readline()).

Issue	#9896:	Add	start,	stop,	and	step	attributes	to	range	objects.

Issue	#13343:	Fix	a	SystemError	when	a	lambda	expression	uses
a	global	variable	in	the	default	value	of	a	keyword-only	argument:
lambda	*,	arg=GLOBAL_NAME:	None

Issue	#12797:	Added	custom	opener	parameter	 to	builtin	open()
and	FileIO.open().

Issue	 #10519:	 Avoid	 unnecessary	 recursive	 function	 calls	 in
setobject.c.

Issue	#10363:	Deallocate	global	locks	in	Py_Finalize().

Issue	 #13018:	 Fix	 reference	 leaks	 in	 error	 paths	 in	 dictobject.c.
Patch	by	Suman	Saha.

Issue	 #13201:	 Define	 ‘==’	 and	 ‘!=’	 to	 compare	 range	 objects
based	 on	 the	 sequence	 of	 values	 they	 define	 (instead	 of
comparing	based	on	object	identity).

Issue	#1294232:	 In	a	 few	cases	 involving	metaclass	 inheritance,
the	 interpreter	 would	 sometimes	 invoke	 the	 wrong	 metaclass
when	 building	 a	 new	 class	 object.	 These	 cases	 now	 behave
correctly.	Patch	by	Daniel	Urban.

http://bugs.python.org/13350
http://bugs.python.org/13342
http://bugs.python.org/9896
http://bugs.python.org/13343
http://bugs.python.org/12797
http://bugs.python.org/10519
http://bugs.python.org/10363
http://bugs.python.org/13018
http://bugs.python.org/13201
http://bugs.python.org/1294232

Issue	#12753:	Add	support	for	Unicode	name	aliases	and	named
sequences.	 Both	 unicodedata.lookup()	 and	 ‘N{...}’	 now
resolve	 aliases,	 and	 unicodedata.lookup()	 resolves	 named
sequences	too.

Issue	 #12170:	 The	 count(),	 find(),	 rfind(),	 index()	 and	 rindex()
methods	 of	 bytes	 and	 bytearray	 objects	 now	 accept	 an	 integer
between	 0	 and	 255	 as	 their	 first	 argument.	 Patch	 by	 Petri
Lehtinen.

Issue	 #12604:	 VTRACE	 macro	 expanded	 to	 no-op	 in	 _sre.c	 to
avoid	 compiler	 warnings.	 Patch	 by	 Josh	 Triplett	 and	 Petri
Lehtinen.

Issue	 #12281:	 Rewrite	 the	 MBCS	 codec	 to	 handle	 correctly
replace	and	 ignore	error	 handlers	on	all	Windows	 versions.	The
MBCS	codec	is	now	supporting	all	error	handlers,	instead	of	only
replace	to	encode	and	ignore	to	decode.

Issue	 #13188:	 When	 called	 without	 an	 explicit	 traceback
argument,	 generator.throw()	 now	 gets	 the	 traceback	 from	 the
passed	 exception’s	 __traceback__	 attribute.	 Patch	 by	 Petri
Lehtinen.

Issue	#13146:	Writing	a	pyc	file	is	now	atomic	under	POSIX.

Issue	#7833:	Extension	modules	built	using	distutils	on	Windows
will	no	longer	include	a	“manifest”	to	prevent	them	failing	at	import
time	in	some	embedded	situations.

PEP	 3151	 /	 issue	 #12555:	 reworking	 the	 OS	 and	 IO	 exception
hierarchy.

http://bugs.python.org/12753
http://bugs.python.org/12170
http://bugs.python.org/12604
http://bugs.python.org/12281
http://bugs.python.org/13188
http://bugs.python.org/13146
http://bugs.python.org/7833
http://bugs.python.org/12555

Add	internal	API	for	static	strings	(_Py_identifier	et	al.).

Issue	#13063:	 the	Windows	error	ERROR_NO_DATA	(numbered
232	and	described	as	“The	pipe	is	being	closed”)	is	now	mapped
to	POSIX	errno	EPIPE	(previously	EINVAL).

Issue	 #12911:	 Fix	 memory	 consumption	 when	 calculating	 the
repr()	of	huge	tuples	or	lists.

PEP	393:	flexible	string	representation.	Thanks	to	Torsten	Becker
for	 the	 initial	 implementation,	 and	 Victor	 Stinner	 for	 various	 bug
fixes.

Issue	 #14081:	 The	 ‘sep’	 and	 ‘maxsplit’	 parameter	 to	 str.split,
bytes.split,	 and	 bytearray.split	 may	 now	 be	 passed	 as	 keyword
arguments.

Issue	#13012:	The	‘keepends’	parameter	to	str.splitlines	may	now
be	 passed	 as	 a	 keyword	 argument:
“my_string.splitlines(keepends=True)”.	 The	 same	 change	 also
applies	to	bytes.splitlines	and	bytearray.splitlines.

Issue	 #7732:	 Don’t	 open	 a	 directory	 as	 a	 file	 anymore	 while
importing	 a	module.	 Ignore	 the	 direcotry	 if	 its	 name	matchs	 the
module	name	(e.g.	“__init__.py”)	and	raise	a	ImportError	instead.

Issue	#13021:	Missing	decref	on	an	error	path.	Thanks	to	Suman
Saha	for	finding	the	bug	and	providing	a	patch.

Issue	 #12973:	 Fix	 overflow	 checks	 that	 relied	 on	 undefined
behaviour	 in	 list_repeat	 (listobject.c)	 and	 islice_next
(itertoolsmodule.c).	 These	 bugs	 caused	 test	 failures	 with	 recent
versions	of	Clang.

http://bugs.python.org/13063
http://bugs.python.org/12911
http://bugs.python.org/14081
http://bugs.python.org/13012
http://bugs.python.org/7732
http://bugs.python.org/13021
http://bugs.python.org/12973

Issue	 #12904:	 os.utime,	 os.futimes,	 os.lutimes,	 and	 os.futimesat
now	write	atime	and	mtime	with	nanosecond	precision	on	modern
POSIX	platforms.

Issue	 #12802:	 the	 Windows	 error	 ERROR_DIRECTORY
(numbered	 267)	 is	 now	 mapped	 to	 POSIX	 errno	 ENOTDIR
(previously	EINVAL).

Issue	 #9200:	 The	 str.is*	 methods	 now	 work	 with	 strings	 that
contain	non-BMP	characters	even	in	narrow	Unicode	builds.

Issue	 #12791:	 Break	 reference	 cycles	 early	 when	 a	 generator
exits	with	an	exception.

Issue	#12773:	Make	__doc__	mutable	on	user-defined	classes.

Issue	 #12766:	Raise	 a	 ValueError	 when	 creating	 a	 class	with	 a
class	variable	that	conflicts	with	a	name	in	__slots__.

Issue	#12266:	Fix	str.capitalize()	to	correctly	uppercase/lowercase
titlecased	and	cased	non-letter	characters.

Issue	#12732:	In	narrow	unicode	builds,	allow	Unicode	identifiers
which	fall	outside	the	BMP.

Issue	#12575:	Validate	user-generated	AST	before	it	is	compiled.

Make	 type(None),	 type(Ellipsis),	 and	 type(NotImplemented)
callable.	They	return	the	respective	singleton	instances.

Forbid	summing	bytes	with	sum().

Verify	the	types	of	AST	strings	and	identifiers	provided	by	the	user
before	compiling	them.

http://bugs.python.org/12904
http://bugs.python.org/12802
http://bugs.python.org/9200
http://bugs.python.org/12791
http://bugs.python.org/12773
http://bugs.python.org/12766
http://bugs.python.org/12266
http://bugs.python.org/12732
http://bugs.python.org/12575

Issue	 #12647:	 The	 None	 object	 now	 has	 a	 __bool__()	 method
that	 returns	 False.	 Formerly,	 bool(None)	 returned	 False	 only
because	of	special	case	logic	in	PyObject_IsTrue().

Issue	 #12579:	 str.format_map()	 now	 raises	 a	 ValueError	 if	 used
on	 a	 format	 string	 that	 contains	 positional	 fields.	 Initial	 patch	 by
Julian	Berman.

Issue	#10271:	Allow	warnings.showwarning()	be	any	callable.

Issue	#11627:	Fix	segfault	when	__new__	on	a	exception	returns
a	non-exception	class.

Issue	#12149:	Update	the	method	cache	after	a	type’s	dictionary
gets	cleared	by	the	garbage	collector.	This	fixes	a	segfault	when
an	instance	and	its	type	get	caught	in	a	reference	cycle,	and	the
instance’s	deallocator	calls	one	of	 the	methods	on	 the	 type	(e.g.
when	subclassing	IOBase).	Diagnosis	and	patch	by	Davide	Rizzo.

Issue	#9611,	#9015:	FileIO.read()	clamps	the	length	to	INT_MAX
on	Windows.

Issue	#9642:	Uniformize	 the	 tests	on	 the	availability	of	 the	mbcs
codec,	add	a	new	HAVE_MBCS	define.

Issue	#9642:	Fix	 filesystem	encoding	 initialization:	use	 the	ANSI
code	page	on	Windows	if	the	mbcs	codec	is	not	available,	and	fail
with	 a	 fatal	 error	 if	 we	 cannot	 get	 the	 locale	 encoding	 (if
nl_langinfo(CODESET)	is	not	available)	instead	of	using	UTF-8.

When	a	generator	yields,	do	not	retain	the	caller’s	exception	state
on	the	generator.

Issue	 #12475:	 Prevent	 generators	 from	 leaking	 their	 exception

http://bugs.python.org/12647
http://bugs.python.org/12579
http://bugs.python.org/10271
http://bugs.python.org/11627
http://bugs.python.org/12149
http://bugs.python.org/9611
http://bugs.python.org/9642
http://bugs.python.org/9642
http://bugs.python.org/12475

state	into	the	caller’s	frame	as	they	return	for	the	last	time.

Issue	#12291:	You	can	now	load	multiple	marshalled	objects	from
a	stream,	with	other	data	interleaved	between	marshalled	objects.

Issue	 #12356:	 When	 required	 positional	 or	 keyword-only
arguments	 are	 not	 given,	 produce	 a	 informative	 error	 message
which	includes	the	name(s)	of	the	missing	arguments.

Issue	 #12370:	 Fix	 super	 with	 no	 arguments	 when	 __class__	 is
overriden	in	the	class	body.

Issue	 #12084:	 os.stat	 on	 Windows	 now	 works	 properly	 with
relative	symbolic	links	when	called	from	any	directory.

Loosen	type	restrictions	on	the	__dir__	method.	__dir__	can	now
return	any	sequence,	which	will	be	converted	to	a	list	and	sorted
by	dir().

Issue	 #12265:	 Make	 error	 messages	 produced	 by	 passing	 an
invalid	set	of	arguments	to	a	function	more	informative.

Issue	#12225:	Still	allow	Python	to	build	 if	Python	is	not	 in	 its	hg
repo	or	mercurial	is	not	installed.

Issue	#1195:	my_fgets()	 now	always	 clears	 errors	 before	 calling
fgets().	 Fix	 the	 following	 case:	 sys.stdin.read()	 stopped	 with
CTRL+d	(end	of	file),	raw_input()	interrupted	by	CTRL+c.

Issue	 #12216:	 Allow	 unexpected	 EOF	 errors	 to	 happen	 on	 any
line	of	the	file.

Issue	#12199:	The	TryExcept	and	TryFinally	and	AST	nodes	have
been	unified	into	a	Try	node.

http://bugs.python.org/12291
http://bugs.python.org/12356
http://bugs.python.org/12370
http://bugs.python.org/12084
http://bugs.python.org/12265
http://bugs.python.org/12225
http://bugs.python.org/1195
http://bugs.python.org/12216
http://bugs.python.org/12199

Issue	 #9670:	 Increase	 the	 default	 stack	 size	 for	 secondary
threads	on	Mac	OS	X	and	FreeBSD	to	 reduce	 the	chances	of	a
crash	 instead	 of	 a	 “maximum	 recursion	 depth”	 RuntimeError
exception.	(patch	by	Ronald	Oussoren)

Issue	 #12106:	 The	 use	 of	 the	multiple-with	 shorthand	 syntax	 is
now	reflected	in	the	AST.

Issue	 #12190:	 Try	 to	 use	 the	 same	 filename	 object	 when
compiling	unmarshalling	a	code	objects	in	the	same	file.

Issue	 #12166:	 Move	 implementations	 of	 dir()	 specialized	 for
various	types	into	the	__dir__()	methods	of	those	types.

Issue	#5715:	In	socketserver,	close	the	server	socket	in	the	child
process.

Correct	 lookup	 of	 __dir__	 on	 objects.	 Among	 other	 things,	 this
causes	 errors	 besides	 AttributeError	 found	 on	 lookup	 to	 be
propagated.

Issue	#12060:	Use	sig_atomic_t	 type	and	volatile	keyword	 in	 the
signal	module.	Patch	written	by	Charles-François	Natali.

Issue	 #1746656:	 Added	 the	 if_nameindex,	 if_indextoname,
if_nametoindex	methods	to	the	socket	module.

Issue	#12044:	Fixed	subprocess.Popen	when	used	as	a	context
manager	to	wait	for	the	process	to	end	when	exiting	the	context	to
avoid	unintentionally	leaving	zombie	processes	around.

Issue	 #1195:	 Fix	 input()	 if	 it	 is	 interrupted	 by	CTRL+d	 and	 then
CTRL+c,	clear	the	end-of-file	indicator	after	CTRL+d.

Issue	 #1856:	 Avoid	 crashes	 and	 lockups	when	 daemon	 threads

http://bugs.python.org/9670
http://bugs.python.org/12106
http://bugs.python.org/12190
http://bugs.python.org/12166
http://bugs.python.org/5715
http://bugs.python.org/12060
http://bugs.python.org/1746656
http://bugs.python.org/12044
http://bugs.python.org/1195
http://bugs.python.org/1856

run	while	 the	 interpreter	 is	shutting	down;	 instead,	 these	 threads
are	now	killed	when	they	try	to	take	the	GIL.

Issue	#9756:	When	calling	a	method	descriptor	or	a	slot	wrapper
descriptor,	the	check	of	the	object	type	doesn’t	read	the	__class__
attribute	 anymore.	 Fix	 a	 crash	 if	 a	 class	 override	 its	 __class__
attribute	 (e.g.	 a	proxy	of	 the	 str	 type).	Patch	written	by	Andreas
Stührk.

Issue	 #10517:	 After	 fork(),	 reinitialize	 the	 TLS	 used	 by	 the
PyGILState_*	 APIs,	 to	 avoid	 a	 crash	 with	 the	 pthread
implementation	in	RHEL	5.	Patch	by	Charles-François	Natali.

Issue	 #10914:	 Initialize	 correctly	 the	 filesystem	 codec	 when
creating	a	new	subinterpreter	to	fix	a	bootstrap	issue	with	codecs
implemented	in	Python,	as	the	ISO-8859-15	codec.

Issue	#11918:	OS/2	and	VMS	are	no	more	supported	because	of
the	lack	of	maintainer.

Issue	 #6780:	 fix	 starts/endswith	 error	 message	 to	 mention	 that
tuples	are	accepted	too.

Issue	#5057:	 fix	 a	 bug	 in	 the	peepholer	 that	 led	 to	 non-portable
pyc	 files	 between	 narrow	 and	 wide	 builds	 while	 optimizing
BINARY_SUBSCR	on	non-BMP	chars	(e.g.	“U00012345”[0]).

Issue	 #11845:	 Fix	 typo	 in	 rangeobject.c	 that	 caused	 a	 crash	 in
compute_slice_indices.	Patch	by	Daniel	Urban.

Issue	 #5673:	 Added	 a	 timeout	 keyword	 argument	 to
subprocess.Popen.wait,	 subprocess.Popen.communicated,
subprocess.call,	 subprocess.check_call,	 and
subprocess.check_output.	 If	 the	 blocking	 operation	 takes	 more

http://bugs.python.org/9756
http://bugs.python.org/10517
http://bugs.python.org/10914
http://bugs.python.org/11918
http://bugs.python.org/6780
http://bugs.python.org/5057
http://bugs.python.org/11845
http://bugs.python.org/5673

than	 timeout	 seconds,	 the	 subprocess.TimeoutExpired
exception	is	raised.

Issue	 #11650:	 PyOS_StdioReadline()	 retries	 fgets()	 if	 it	 was
interrupted	 (EINTR),	 for	 example	 if	 the	 program	 is	 stopped	with
CTRL+z	on	Mac	OS	X.	Patch	written	by	Charles-Francois	Natali.

Issue	#9319:	 Include	 the	 filename	 in	 “Non-UTF8	code	 ...”	syntax
error.

Issue	 #10785:	 Store	 the	 filename	 as	 Unicode	 in	 the	 Python
parser.

Issue	 #11619:	 _PyImport_LoadDynamicModule()	 doesn’t	 encode
the	path	to	bytes	on	Windows.

Issue	#10998:	Remove	mentions	of	-Q,	sys.flags.division_warning
and	Py_DivisionWarningFlag	left	over	from	Python	2.

Issue	#11244:	Remove	an	unnecessary	peepholer	check	that	was
preventing	negative	zeros	from	being	constant-folded	properly.

Issue	#11395:	io.FileIO().write()	clamps	the	data	length	to	32,767
bytes	on	Windows	 if	 the	 file	 is	a	TTY	 to	workaround	a	Windows
bug.	 The	 Windows	 console	 returns	 an	 error	 (12:	 not	 enough
space	error)	on	writing	into	stdout	if	stdout	mode	is	binary	and	the
length	 is	greater	 than	66,000	bytes	 (or	 less,	depending	on	heap
usage).

Issue	 #11320:	 fix	 bogus	 memory	 management	 in
Modules/getpath.c,	 leading	 to	 a	 possible	 crash	 when	 calling
Py_SetPath().

Issue	 #11432:	 A	 bug	 was	 introduced	 in	 subprocess.Popen	 on

http://bugs.python.org/11650
http://bugs.python.org/9319
http://bugs.python.org/10785
http://bugs.python.org/11619
http://bugs.python.org/10998
http://bugs.python.org/11244
http://bugs.python.org/11395
http://bugs.python.org/11320
http://bugs.python.org/11432

posix	systems	with	3.2.0	where	the	stdout	or	stderr	file	descriptor
being	 the	 same	 as	 the	 stdin	 file	 descriptor	 would	 raise	 an
exception.	webbrowser.open	would	fail.	fixed.

Issue	#9856:	Change	object.__format__	with	a	non-empty	format
string	 to	 be	 a	 DeprecationWarning.	 In	 3.2	 it	 was	 a
PendingDeprecationWarning.	In	3.4	it	will	be	a	TypeError.

Issue	#11244:	The	peephole	optimizer	is	now	able	to	constant-fold
arbitrarily	 complex	 expressions.	 This	 also	 fixes	 a	 3.2	 regression
where	operations	 involving	negative	numbers	were	not	constant-
folded.

Issue	#11450:	Don’t	truncate	hg	version	info	in	Py_GetBuildInfo()
when	 there	 are	 many	 tags	 (e.g.	 when	 using	 mq).	 Patch	 by
Nadeem	Vawda.

Issue	 #11335:	 Fixed	 a	 memory	 leak	 in	 list.sort	 when	 the	 key
function	throws	an	exception.

Issue	#8923:	When	a	string	 is	encoded	 to	UTF-8	 in	strict	mode,
the	 result	 is	 cached	 into	 the	 object.	 Examples:	 str.encode(),
str.encode(‘utf-8’),	 PyUnicode_AsUTF8String()	 and
PyUnicode_AsEncodedString(unicode,	“utf-8”,	NULL).

Issue	#10829:	Refactor	PyUnicode_FromFormat(),	use	the	same
function	 to	 parse	 the	 format	 string	 in	 the	 3	 steps,	 fix	 crashs	 on
invalid	format	strings.

Issue	 #13007:	 whichdb	 should	 recognize	 gdbm	 1.9	 magic
numbers.

Issue	 #11286:	 Raise	 a	 ValueError	 from	 calling
PyMemoryView_FromBuffer	 with	 a	 buffer	 struct	 having	 a	 NULL

http://bugs.python.org/9856
http://bugs.python.org/11244
http://bugs.python.org/11450
http://bugs.python.org/11335
http://bugs.python.org/8923
http://bugs.python.org/10829
http://bugs.python.org/13007
http://bugs.python.org/11286

data	pointer.

Issue	#11272:	On	Windows,	input()	strips	‘r’	(and	not	only	‘n’),	and
sys.stdin	uses	universal	newline	(replace	‘rn’	by	‘n’).

Issue	#11828:	startswith	and	endswith	now	accept	None	as	slice
index.	Patch	by	Torsten	Becker.

Issue	 #11168:	 Remove	 filename	 debug	 variable	 from
PyEval_EvalFrameEx().	It	encoded	the	Unicode	filename	to	UTF-
8,	but	 the	encoding	 fails	on	undecodable	 filename	(on	surrogate
characters)	which	 raises	an	unexpected	UnicodeEncodeError	on
recursion	limit.

Issue	 #11187:	 Remove	 bootstrap	 code	 (use	 ASCII)	 of
PyUnicode_AsEncodedString(),	 it	 was	 replaced	 by	 a	 better
fallback	 (use	 the	 locale	 encoding)	 in
PyUnicode_EncodeFSDefault().

Check	for	NULL	result	in	PyType_FromSpec.

Issue	 #10516:	 New	 copy()	 and	 clear()	 methods	 for	 lists	 and
bytearrays.

Issue	 #11386:	 bytearray.pop()	 now	 throws	 IndexError	 when	 the
bytearray	is	empty,	instead	of	OverflowError.

Issue	 #12380:	 The	 rjust,	 ljust	 and	 center	methods	 of	 bytes	 and
bytearray	now	accept	a	bytearray	argument.

Library

Issue	#14195:	An	 issue	 that	caused	weakref.WeakSet	 instances
to	incorrectly	return	True	for	a	WeakSet	instance	‘a’	in	both	‘a	<	a’

http://bugs.python.org/11272
http://bugs.python.org/11828
http://bugs.python.org/11168
http://bugs.python.org/11187
http://bugs.python.org/10516
http://bugs.python.org/11386
http://bugs.python.org/12380
http://bugs.python.org/14195

and	‘a	>	a’	has	been	fixed.
Issue	 #14166:	 Pickler	 objects	 now	 have	 an	 optional
dispatch_table	 attribute	 which	 allows	 to	 set	 custom	 per-
pickler	reduction	functions.	Patch	by	sbt.
Issue	#14177:	marshal.loads()	now	raises	TypeError	when	given
an	unicode	string.	Patch	by	Guilherme	Gonçalves.
Issue	#13550:	Remove	 the	debug	machinery	 from	 the	 threading
module:	 remove	 verbose	 arguments	 from	 all	 threading	 classes
and	functions.
Issue	 #14159:	 Fix	 the	 len()	 of	 weak	 containers	 (WeakSet,
WeakKeyDictionary,	 WeakValueDictionary)	 to	 return	 a	 better
approximation	when	some	objects	are	dead	or	 dying.	Moreover,
the	implementation	is	now	O(1)	rather	than	O(n).
Issue	 #11841:	 Fix	 comparison	 bug	 with	 ‘rc’	 versions	 in
packaging.version.	Patch	by	Filip	Gruszczyński.
Issue	#6884:	Fix	long-standing	bugs	with	MANIFEST.in	parsing	in
distutils	on	Windows.	Also	fixed	in	packaging.
Issue	#8033:	sqlite3:	Fix	64-bit	 integer	handling	 in	user	functions
on	32-bit	architectures.	Initial	patch	by	Philippe	Devalkeneer.
HTMLParser	is	now	able	to	handle	slashes	in	the	start	tag.
Issue	 #13641:	 Decoding	 functions	 in	 the	 base64	 module	 now
accept	ASCII-only	unicode	strings.	Patch	by	Catalin	Iacob.
Issue	#14043:	Speed	up	importlib’s	_FileFinder	by	at	least	8x,	and
add	a	new	importlib.invalidate_caches()	function.
Issue	 #14001:	 CVE-2012-0845:	 xmlrpc:	 Fix	 an	 endless	 loop	 in
SimpleXMLRPCServer	upon	malformed	POST	request.
Issue	#13961:	Move	importlib	over	to	using	os.replace()	for	atomic
renaming.
Do	away	with	ambiguous	level	values	(as	suggested	by	PEP	328)
in	importlib.__import__()	by	raising	ValueError	when	level	<	0.
Issue	 #2489:	 pty.spawn	 could	 consume	 100%	 cpu	 when	 it
encountered	an	EOF.
Issue	 #13014:	 Fix	 a	 possible	 reference	 leak	 in
SSLSocket.getpeercert().

http://bugs.python.org/14166
http://bugs.python.org/14177
http://bugs.python.org/13550
http://bugs.python.org/14159
http://bugs.python.org/11841
http://bugs.python.org/6884
http://bugs.python.org/8033
http://bugs.python.org/13641
http://bugs.python.org/14043
http://bugs.python.org/14001
http://bugs.python.org/13961
http://bugs.python.org/2489
http://bugs.python.org/13014

Issue	 #13777:	 Add	 PF_SYSTEM	 sockets	 on	 OS	 X.	 Patch	 by
Michael	Goderbauer.
Issue	 #13015:	 Fix	 a	 possible	 reference	 leak	 in
defaultdict.__repr__.	Patch	by	Suman	Saha.
Issue	 #1326113:	 distutils’	 and	 packaging’s	 build_ext	 commands
option	 now	 correctly	 parses	 multiple	 values	 (separated	 by
whitespace	or	commas)	given	to	their	–libraries	option.
Issue	 #10287:	 nntplib	 now	 queries	 the	 server’s	 CAPABILITIES
first	 before	 sending	 MODE	 READER,	 and	 only	 sends	 it	 if	 not
already	in	READER	mode.	Patch	by	Hynek	Schlawack.
Issue	 #13993:	 HTMLParser	 is	 now	 able	 to	 handle	 broken	 end
tags	when	strict=False.
Issue	#13930:	lib2to3	now	supports	writing	converted	output	files
to	another	directory	 tree	as	well	as	copying	unchanged	files	and
altering	the	file	suffix.
Issue	#9750:	Fix	sqlite3.Connection.iterdump	on	tables	and	fields
with	a	name	that	is	a	keyword	or	contains	quotes.	Patch	by	Marko
Kohtala.
Issue	 #10287:	 nntplib	 now	 queries	 the	 server’s	 CAPABILITIES
again	after	authenticating	(since	the	result	may	change,	according
to	RFC	4643).	Patch	by	Hynek	Schlawack.
Issue	#13590:	On	OS	X	10.7	and	10.6	with	Xcode	4.2,	 building
Distutils-based	 packages	 with	 C	 extension	 modules	 may	 fail
because	 Apple	 has	 removed	 gcc-4.2,	 the	 version	 used	 to	 build
python.org	 64-bit/32-bit	 Pythons.	 If	 the	 user	 does	 not	 explicitly
override	 the	 default	 C	 compiler	 by	 setting	 the	 CC	 environment
variable,	Distutils	will	now	attempt	 to	compile	extension	modules
with	 clang	 if	 gcc-4.2	 is	 required	 but	 not	 found.	 Also	 as	 a
convenience,	if	the	user	does	explicitly	set	CC,	substitute	its	value
as	 the	default	 compiler	 in	 the	Distutils	LDSHARED	configuration
variable	 for	OS	X.	 (Note,	 the	python.org	32-bit-only	Pythons	use
gcc-4.0	 and	 the	 10.4u	 SDK,	 neither	 of	 which	 are	 available	 in
Xcode	 4.	 This	 change	 does	 not	 attempt	 to	 override	 settings	 to
support	their	use	with	Xcode	4.)

http://bugs.python.org/13777
http://bugs.python.org/13015
http://bugs.python.org/1326113
http://bugs.python.org/10287
http://bugs.python.org/13993
http://bugs.python.org/13930
http://bugs.python.org/9750
http://bugs.python.org/10287
http://bugs.python.org/13590

Issue	 #13960:	 HTMLParser	 is	 now	 able	 to	 handle	 broken
comments	when	strict=False.
When	 ‘’	 is	a	path	(e.g.	 in	sys.path),	make	sure	__file__	uses	the
current	working	directory	instead	of	‘’	in	importlib.
Issue	 #13609:	 Add	 two	 functions	 to	 query	 the	 terminal	 size:
os.get_terminal_size	(low	level)	and	shutil.get_terminal_size	(high
level).	Patch	by	Zbigniew	Jędrzejewski-Szmek.
Issue	 #13845:	 On	 Windows,	 time.time()	 now	 uses
GetSystemTimeAsFileTime()	 instead	 of	 ftime()	 to	 have	 a
resolution	 of	 100	 ns	 instead	 of	 1	 ms	 (the	 clock	 accuracy	 is
between	0.5	ms	and	15	ms).
Issue	#13846:	Add	time.monotonic(),	monotonic	clock.
Issue	 #8184:	 multiprocessing:	 On	 Windows,	 don’t	 set
SO_REUSEADDR	 on	 Connection	 sockets,	 and	 set
FILE_FLAG_FIRST_PIPE_INSTANCE	on	named	pipes,	 to	make
sure	 two	 listeners	 can’t	 bind	 to	 the	 same	 socket/pipe	 (or	 any
existing	socket/pipe).
Issue	#10811:	Fix	recursive	usage	of	cursors.	Instead	of	crashing,
raise	a	ProgrammingError	now.
Issue	#13734:	Add	os.fwalk(),	a	directory	walking	function	yielding
file	descriptors.
Issue	 #2945:	 Make	 the	 distutils	 upload	 command	 aware	 of
bdist_rpm	products.
Issue	#13712:	pysetup	create	should	not	convert	package_data	to
extra_files.
Issue	#11805:	package_data	in	setup.cfg	should	allow	more	than
one	value.
Issue	 #13676:	 Handle	 strings	 with	 embedded	 zeros	 correctly	 in
sqlite3.
Issue	 #8828:	 Add	 new	 function	 os.replace(),	 for	 cross-platform
renaming	with	overwriting.
Issue	 #13848:	 open()	 and	 the	 FileIO	 constructor	 now	 check	 for
NUL	characters	in	the	file	name.	Patch	by	Hynek	Schlawack.
Issue	 #13806:	 The	 size	 check	 in	 audioop	 decompression

http://bugs.python.org/13960
http://bugs.python.org/13609
http://bugs.python.org/13845
http://bugs.python.org/13846
http://bugs.python.org/8184
http://bugs.python.org/10811
http://bugs.python.org/13734
http://bugs.python.org/2945
http://bugs.python.org/13712
http://bugs.python.org/11805
http://bugs.python.org/13676
http://bugs.python.org/8828
http://bugs.python.org/13848
http://bugs.python.org/13806

functions	was	 too	 strict	 and	 could	 reject	 valid	 compressed	data.
Patch	by	Oleg	Plakhotnyuk.
Issue	 #13812:	When	 a	 multiprocessing	 Process	 child	 raises	 an
exception,	flush	stderr	after	printing	the	exception	traceback.
Issue	 #13885:	 CVE-2011-3389:	 the	 _ssl	 module	 would	 always
disable	the	CBC	IV	attack	countermeasure.
Issue	 #13847:	 time.localtime()	 and	 time.gmtime()	 now	 raise	 an
OSError	 instead	 of	 ValueError	 on	 failure.	 time.ctime()	 and
time.asctime()	 now	 raises	 an	 OSError	 if	 localtime()	 failed.
time.clock()	now	raises	a	RuntimeError	if	the	processor	time	used
is	not	available	or	its	value	cannot	be	represented
Issue	#13772:	In	os.symlink()	under	Windows,	do	not	try	to	guess
the	 link	 target’s	 type	 (file	or	directory).	The	detection	was	buggy
and	made	the	call	non-atomic	(therefore	prone	to	race	conditions).
Issue	#6631:	Disallow	relative	file	paths	in	urllib	urlopen	methods.
Issue	 #13722:	 Avoid	 silencing	 ImportErrors	 when	 initializing	 the
codecs	registry.
Issue	 #13781:	 Fix	GzipFile	 bug	 that	 caused	 an	 exception	 to	 be
raised	 when	 opening	 for	 writing	 using	 a	 fileobj	 returned	 by
os.fdopen().
Issue	 #13803:	 Under	 Solaris,	 distutils	 doesn’t	 include	 bitness	 in
the	directory	name.
Issue	#10278:	Add	time.wallclock()	function,	monotonic	clock.
Issue	 #13809:	 Fix	 regression	 where	 bz2	 module	 wouldn’t	 work
when	 threads	 are	 disabled.	 Original	 patch	 by	 Amaury	 Forgeot
d’Arc.
Issue	#13589:	Fix	some	serialization	primitives	in	the	aifc	module.
Patch	by	Oleg	Plakhotnyuk.
Issue	#13642:	Unquote	before	b64encoding	user:password	during
Basic	Authentication.	Patch	contributed	by	Joonas	Kuorilehto.
Issue	 #12364:	 Fix	 a	 hang	 in
concurrent.futures.ProcessPoolExecutor.	 The	 hang	 would	 occur
when	retrieving	the	result	of	a	scheduled	future	after	the	executor
had	been	shut	down.

http://bugs.python.org/13812
http://bugs.python.org/13885
http://bugs.python.org/13847
http://bugs.python.org/13772
http://bugs.python.org/6631
http://bugs.python.org/13722
http://bugs.python.org/13781
http://bugs.python.org/13803
http://bugs.python.org/10278
http://bugs.python.org/13809
http://bugs.python.org/13589
http://bugs.python.org/13642
http://bugs.python.org/12364

Issue	#13502:	threading:	Fix	a	race	condition	 in	Event.wait()	 that
made	 it	 return	 False	 when	 the	 event	 was	 set	 and	 cleared	 right
after.
Issue	 #9993:	When	 the	 source	 and	 destination	 are	 on	 different
filesystems,	 and	 the	 source	 is	 a	 symlink,	 shutil.move()	 now
recreates	a	symlink	on	the	destination	 instead	of	copying	the	file
contents.	Patch	by	Jonathan	Niehof	and	Hynek	Schlawack.
Issue	#12926:	Fix	a	bug	in	tarfile’s	link	extraction.
Issue	#13696:	Fix	the	302	Relative	URL	Redirection	problem.
Issue	#13636:	Weak	ciphers	are	now	disabled	by	default	in	the	ssl
module	(except	when	SSLv2	is	explicitly	asked	for).
Issue	 #12715:	 Add	 an	 optional	 symlinks	 argument	 to	 shutil
functions	(copyfile,	copymode,	copystat,	copy,	copy2).	When	that
parameter	is	true,	symlinks	aren’t	dereferenced	and	the	operation
instead	 acts	 on	 the	 symlink	 itself	 (or	 creates	 one,	 if	 relevant).
Patch	by	Hynek	Schlawack.
Add	a	flags	parameter	to	select.epoll.
Issue	#13626:	Add	support	for	SSL	Diffie-Hellman	key	exchange,
through	 the	 SSLContext.load_dh_params()	 method	 and	 the
ssl.OP_SINGLE_DH_USE	option.
Issue	#11006:	Don’t	 issue	 low	 level	warning	 in	subprocess	when
pipe2()	fails.
Issue	#13620:	Support	for	Chrome	browser	in	webbrowser.	Patch
contributed	by	Arnaud	Calmettes.
Issue	 #11829:	 Fix	 code	 execution	 holes	 in	 inspect.getattr_static
for	metaclasses	with	metaclasses.	Patch	by	Andreas	Stührk.
Issue	 #12708:	 Add	 starmap()	 and	 starmap_async()	 methods
(similar	 to	 itertools.starmap())	 to	 multiprocessing.Pool.	 Patch	 by
Hynek	Schlawack.
Issue	#1785:	Fix	inspect	and	pydoc	with	misbehaving	descriptors.
Issue	#13637:	“a2b”	 functions	 in	 the	binascii	module	now	accept
ASCII-only	unicode	strings.
Issue	 #13634:	 Add	 support	 for	 querying	 and	 disabling	 SSL
compression.

http://bugs.python.org/13502
http://bugs.python.org/9993
http://bugs.python.org/12926
http://bugs.python.org/13696
http://bugs.python.org/13636
http://bugs.python.org/12715
http://bugs.python.org/13626
http://bugs.python.org/11006
http://bugs.python.org/13620
http://bugs.python.org/11829
http://bugs.python.org/12708
http://bugs.python.org/1785
http://bugs.python.org/13637
http://bugs.python.org/13634

Issue	 #13627:	 Add	 support	 for	 SSL	 Elliptic	 Curve-based	 Diffie-
Hellman	 key	 exchange,	 through	 the
SSLContext.set_ecdh_curve()	 method	 and	 the
ssl.OP_SINGLE_ECDH_USE	option.
Issue	 #13635:	 Add	 ssl.OP_CIPHER_SERVER_PREFERENCE,
so	 that	 SSL	 servers	 choose	 the	 cipher	 based	 on	 their	 own
preferences,	rather	than	on	the	client’s.
Issue	 #11813:	 Fix	 inspect.getattr_static	 for	 modules.	 Patch	 by
Andreas	Stührk.
Issue	#7502:	Fix	equality	comparison	for	DocTestCase	instances.
Patch	by	Cédric	Krier.
Issue	 #11870:	 threading:	 Properly	 reinitialize	 threads	 internal
locks	 and	 condition	 variables	 to	 avoid	 deadlocks	 in	 child
processes.
Issue	#8035:	urllib:	Fix	a	bug	where	the	client	could	remain	stuck
after	a	redirection	or	an	error.
Issue	#13560:	os.strerror()	now	uses	the	current	 locale	encoding
instead	of	UTF-8.
Issue	#8373:	The	filesystem	path	of	AF_UNIX	sockets	now	uses
the	 filesystem	 encoding	 and	 the	 surrogateescape	 error	 handler,
rather	than	UTF-8.	Patch	by	David	Watson.
Issue	 #10350:	 Read	 and	 save	 errno	 before	 calling	 a	 function
which	might	overwrite	it.	Original	patch	by	Hallvard	B	Furuseth.
Issue	#11610:	 Introduce	a	more	general	way	 to	declare	abstract
properties.
Issue	 #13591:	 A	 bug	 in	 importlib	 has	 been	 fixed	 that	 caused
import_module	to	load	a	module	twice.
Issue	#13449	sched.scheduler.run()	method	has	a	new	“blocking”
parameter	 which	 when	 set	 to	 False	 makes	 run()	 execute	 the
scheduled	events	due	to	expire	soonest	(if	any)	and	then	return.
Patch	by	Giampaolo	Rodolà.
Issue	 #8684	 sched.scheduler	 class	 can	 be	 safely	 used	 in	multi-
threaded	environments.	Patch	by	Josiah	Carlson	and	Giampaolo
Rodolà.

http://bugs.python.org/13627
http://bugs.python.org/13635
http://bugs.python.org/11813
http://bugs.python.org/7502
http://bugs.python.org/11870
http://bugs.python.org/8035
http://bugs.python.org/13560
http://bugs.python.org/8373
http://bugs.python.org/10350
http://bugs.python.org/11610
http://bugs.python.org/13591
http://bugs.python.org/13449
http://bugs.python.org/8684

Alias	resource.error	to	OSError	ala	PEP	3151.
Issue	 #5689:	 Add	 support	 for	 lzma	 compression	 to	 the	 tarfile
module.
Issue	 #13248:	 Turn	 3.2’s	 PendingDeprecationWarning	 into	 3.3’s
DeprecationWarning.	 It	 covers	 ‘cgi.escape’,
‘importlib.abc.PyLoader’,	 ‘importlib.abc.PyPycLoader’,
‘nntplib.NNTP.xgtitle’,	 ‘nntplib.NNTP.xpath’,	 and	 private	 attributes
of	‘smtpd.SMTPChannel’.
Issue	 #5905,	 #13560:	 time.strftime()	 is	 now	 using	 the	 current
locale	encoding,	instead	of	UTF-8,	if	the	wcsftime()	function	is	not
available.
Issue	 #13464:	 Add	 a	 readinto()	 method	 to
http.client.HTTPResponse.	Patch	by	Jon	Kuhn.
tarfile.py:	 Correctly	 detect	 bzip2	 compressed	 streams	 with
blocksizes	other	than	900k.
Issue	#13439:	Fix	many	errors	in	turtle	docstrings.
Issue	 #6715:	 Add	 a	 module	 ‘lzma’	 for	 compression	 using	 the
LZMA	 algorithm.	 Thanks	 to	 Per	 Øyvind	 Karlsen	 for	 the	 initial
implementation.
Issue	 #13487:	 Make	 inspect.getmodule	 robust	 against	 changes
done	to	sys.modules	while	it	is	iterating	over	it.
Issue	#12618:	Fix	a	bug	that	prevented	py_compile	from	creating
byte	compiled	files	in	the	current	directory.	Initial	patch	by	Sjoerd
de	Vries.
Issue	#13444:	When	stdout	has	been	closed	explicitly,	we	should
not	attempt	to	flush	it	at	shutdown	and	print	an	error.
Issue	 #12567:	 The	 curses	 module	 uses	 Unicode	 functions	 for
Unicode	 arguments	 when	 it	 is	 linked	 to	 the	 ncurses	 library.	 It
encodes	 also	 Unicode	 strings	 to	 the	 locale	 encoding	 instead	 of
UTF-8.
Issue	#12856:	Ensure	child	processes	do	not	 inherit	 the	parent’s
random	 seed	 for	 filename	 generation	 in	 the	 tempfile	 module.
Patch	by	Brian	Harring.
Issue	 #9957:	 SpooledTemporaryFile.truncate()	 now	 accepts	 an

http://bugs.python.org/5689
http://bugs.python.org/13248
http://bugs.python.org/5905
http://bugs.python.org/13464
http://bugs.python.org/13439
http://bugs.python.org/6715
http://bugs.python.org/13487
http://bugs.python.org/12618
http://bugs.python.org/13444
http://bugs.python.org/12567
http://bugs.python.org/12856
http://bugs.python.org/9957

optional	size	parameter,	as	other	 file-like	objects.	Patch	by	Ryan
Kelly.
Issue	 #13458:	 Fix	 a	 memory	 leak	 in	 the	 ssl	 module	 when
decoding	 a	 certificate	 with	 a	 subjectAltName.	 Patch	 by	 Robert
Xiao.
Issue	#13415:	os.unsetenv()	doesn’t	ignore	errors	anymore.
Issue	 #13245:	 sched.scheduler	 class	 constructor’s	 timefunc	 and
delayfunct	 parameters	 are	 now	 optional.	 scheduler.enter	 and
scheduler.enterabs	 methods	 gained	 a	 new	 kwargs	 parameter.
Patch	contributed	by	Chris	Clark.
Issue	#12328:	Under	Windows,	refactor	handling	of	Ctrl-C	events
and	 make	 _multiprocessing.win32.WaitForMultipleObjects
interruptible	when	the	wait_flag	parameter	is	false.	Patch	by	sbt.
Issue	 #13322:	 Fix	 BufferedWriter.write()	 to	 ensure	 that
BlockingIOError	 is	 raised	 when	 the	 wrapped	 raw	 file	 is	 non-
blocking	and	 the	write	would	block.	Previous	code	assumed	that
the	 raw	 write()	 would	 raise	 BlockingIOError,	 but
RawIOBase.write()	 is	 defined	 to	 returned	 None	 when	 the	 call
would	block.	Patch	by	sbt.
Issue	#13358:	HTMLParser	now	calls	handle_data	only	once	 for
each	CDATA.
Issue	 #4147:	 minidom’s	 toprettyxml	 no	 longer	 adds	 whitespace
around	a	text	node	when	it	 is	 the	only	child	of	an	element.	 Initial
patch	by	Dan	Kenigsberg.
Issue	 #13374:	 The	Windows	 bytes	API	 has	 been	 deprecated	 in
the	os	module.	Use	Unicode	filenames	instead	of	bytes	filenames
to	 not	 depend	 on	 the	 ANSI	 code	 page	 anymore	 and	 to	 support
any	filename.
Issue	 #13297:	 Use	 bytes	 type	 to	 send	 and	 receive	 binary	 data
through	XMLRPC.
Issue	#6397:	Support	 “/dev/poll”	polling	objects	 in	select	module,
under	Solaris	&	derivatives.
Issues	 #1745761,	 #755670,	 #13357,	 #12629,	 #1200313:
HTMLParser	now	correctly	handles	non-valid	attributes,	including

http://bugs.python.org/13458
http://bugs.python.org/13415
http://bugs.python.org/13245
http://bugs.python.org/12328
http://bugs.python.org/13322
http://bugs.python.org/13358
http://bugs.python.org/4147
http://bugs.python.org/13374
http://bugs.python.org/13297
http://bugs.python.org/6397

adjacent	and	unquoted	attributes.
Issue	 #13193:	 Fix	 distutils.filelist.FileList	 and
packaging.manifest.Manifest	under	Windows.
Issue	 #13384:	 Remove	 unnecessary	 __future__	 import	 in
Lib/random.py
Issue	#13149:	Speed	up	append-only	StringIO	objects.
Issue	 #13373:	 multiprocessing.Queue.get()	 could	 sometimes
block	 indefinitely	 when	 called	 with	 a	 timeout.	 Patch	 by	 Arnaud
Ysmal.
Issue	#13254:	Fix	Maildir	initialization	so	that	maildir	contents	are
read	correctly.
Issue	#3067:	locale.setlocale()	now	raises	TypeError	if	the	second
argument	 is	 an	 invalid	 iterable.	 Its	 documentation	 and	 docstring
were	also	updated.	Initial	patch	by	Jyrki	Pulliainen.
Issue	 #13140:	 Fix	 the	 daemon_threads	 attribute	 of
ThreadingMixIn.
Issue	#13339:	Fix	compile	error	 in	posixmodule.c	due	to	missing
semicolon.	Thanks	to	Robert	Xiao.
Byte	 compilation	 in	 packaging	 is	 now	 isolated	 from	 the	 calling
Python	-B	or	-O	options,	 instead	of	being	disallowed	under	-B	or
buggy	under	-O.
Issue	 #10570:	 curses.putp()	 and	 curses.tparm()	 are	 now
expecting	a	byte	string,	instead	of	a	Unicode	string.
Issue	#13295:	http.server	now	produces	valid	HTML	4.01	strict.
Issue	#2892:	preserve	iterparse	events	in	case	of	SyntaxError.
Issue	 #13287:	 urllib.request	 and	 urllib.error	 now	 contains	 an
__all__	 attribute	 to	 expose	 only	 relevant	 classes	 and	 functions.
Patch	by	Florent	Xicluna.
Issue	#670664:	Fix	HTMLParser	to	correctly	handle	the	content	of
<script>...</script>	and	<style>...</style>.
Issue	 #10817:	 Fix	 urlretrieve	 function	 to	 raise
ContentTooShortError	 even	 when	 reporthook	 is	 None.	 Patch	 by
Jyrki	Pulliainen.
Fix	 the	 xmlrpc.client	 user	 agent	 to	 return	 something	 similar	 to

http://bugs.python.org/13193
http://bugs.python.org/13384
http://bugs.python.org/13149
http://bugs.python.org/13373
http://bugs.python.org/13254
http://bugs.python.org/3067
http://bugs.python.org/13140
http://bugs.python.org/13339
http://bugs.python.org/10570
http://bugs.python.org/13295
http://bugs.python.org/2892
http://bugs.python.org/13287
http://bugs.python.org/670664
http://bugs.python.org/10817

urllib.request	user	agent:	“Python-xmlrpc/3.3”.
Issue	#13293:	Better	error	message	when	trying	to	marshal	bytes
using	xmlrpc.client.
Issue	#13291:	NameError	in	xmlrpc	package.
Issue	#13258:	Use	callable()	built-in	in	the	standard	library.
Issue	 #13273:	 fix	 a	 bug	 that	 prevented	HTMLParser	 to	 properly
detect	some	tags	when	strict=False.
Issue	#11183:	Add	finer-grained	exceptions	to	the	ssl	module,	so
that	 you	 don’t	 have	 to	 inspect	 the	 exception’s	 attributes	 in	 the
common	case.
Issue	 #13216:	 Add	 cp65001	 codec,	 the	 Windows	 UTF-8
(CP_UTF8).
Issue	#13226:	Add	RTLD_xxx	constants	to	the	os	module.	These
constants	can	be	used	with	sys.setdlopenflags().
Issue	 #10278:	 Add	 clock_getres(),	 clock_gettime()	 and
CLOCK_xxx	 constants	 to	 the	 time	 module.
time.clock_gettime(time.CLOCK_MONOTONIC)	 provides	 a
monotonic	clock
Issue	#10332:	multiprocessing:	fix	a	race	condition	when	a	Pool	is
closed	before	all	tasks	have	completed.
Issue	#13255:	wrong	docstrings	in	array	module.
Issue	 #8540:	 Remove	 deprecated	 Context._clamp	 attribute	 in
Decimal	module.
Issue	 #13235:	 Added	 DeprecationWarning	 to	 logging.warn()
method	and	function.
Issue	#9168:	now	smtpd	is	able	to	bind	privileged	port.
Issue	#12529:	 fix	cgi.parse_header	 issue	on	strings	with	double-
quotes	and	semicolons	 together.	Patch	by	Ben	Darnell	and	Petri
Lehtinen.
Issue	 #13227:	 functools.lru_cache()	 now	 has	 a	 option	 to
distinguish	calls	with	different	argument	types.
Issue	#6090:	zipfile	raises	a	ValueError	when	a	document	with	a
timestamp	 earlier	 than	 1980	 is	 provided.	 Patch	 contributed	 by
Petri	Lehtinen.

http://bugs.python.org/13293
http://bugs.python.org/13291
http://bugs.python.org/13258
http://bugs.python.org/13273
http://bugs.python.org/11183
http://bugs.python.org/13216
http://bugs.python.org/13226
http://bugs.python.org/10278
http://bugs.python.org/10332
http://bugs.python.org/13255
http://bugs.python.org/8540
http://bugs.python.org/13235
http://bugs.python.org/9168
http://bugs.python.org/12529
http://bugs.python.org/13227
http://bugs.python.org/6090

Issue	 #13150:	 sysconfig	 no	 longer	 parses	 the	 Makefile	 and
config.h	 files	when	 imported,	 instead	 doing	 it	 at	 build	 time.	 This
makes	importing	sysconfig	faster	and	reduces	Python	startup	time
by	20%.
Issue	#12448:	smtplib	now	 flushes	stdout	while	 running	python
-m	smtplib	in	order	to	display	the	prompt	correctly.
Issue	#12454:	The	mailbox	module	is	now	using	ASCII,	instead	of
the	locale	encoding,	to	read	and	write	.mh_sequences	files.
Issue	 #13194:	 zlib.compressobj().copy()	 and
zlib.decompressobj().copy()	are	now	available	on	Windows.
Issue	 #1673007:	 urllib.request	 now	 supports	 HEAD	 request	 via
new	 method	 argument.	 Patch	 contributions	 by	 David	 Stanek,
Patrick	Westerhoff	and	Ezio	Melotti.
Issue	#12386:	packaging	does	not	 fail	anymore	when	writing	 the
RESOURCES	file.
Issue	 #13158:	 Fix	 decoding	 and	 encoding	 of	 GNU	 tar	 specific
base-256	number	fields	in	tarfile.
Issue	#13025:	mimetypes	 is	 now	 reading	MIME	 types	 using	 the
UTF-8	encoding,	instead	of	the	locale	encoding.
Issue	 #10653:	On	Windows,	 use	 strftime()	 instead	 of	wcsftime()
because	wcsftime()	doesn’t	format	time	zone	correctly.
Issue	#13150:	The	tokenize	module	doesn’t	compile	large	regular
expressions	at	startup	anymore.
Issue	#11171:	 Fix	 distutils.sysconfig.get_makefile_filename	when
Python	was	configured	with	different	prefix	and	exec-prefix.
Issue	#11254:	Teach	distutils	and	packaging	to	compile	 .pyc	and
.pyo	files	in	PEP	3147-compliant	__pycache__	directories.
Issue	 #7367:	 Fix	 pkgutil.walk_paths	 to	 skip	 directories	 whose
contents	cannot	be	read.
Issue	 #3163:	 The	 struct	 module	 gets	 new	 format	 characters	 ‘n’
and	 ‘N’	 supporting	 C	 integer	 types	 ssize_t	 and	 size_t,
respectively.
Issue	#13099:	Fix	sqlite3.Cursor.lastrowid	under	a	Turkish	locale.
Reported	and	diagnosed	by	Thomas	Kluyver.

http://bugs.python.org/13150
http://bugs.python.org/12448
http://bugs.python.org/12454
http://bugs.python.org/13194
http://bugs.python.org/1673007
http://bugs.python.org/12386
http://bugs.python.org/13158
http://bugs.python.org/13025
http://bugs.python.org/10653
http://bugs.python.org/13150
http://bugs.python.org/11171
http://bugs.python.org/11254
http://bugs.python.org/7367
http://bugs.python.org/3163
http://bugs.python.org/13099

Issue	 #13087:	 BufferedReader.seek()	 now	 always	 raises
UnsupportedOperation	 if	 the	 underlying	 raw	 stream	 is
unseekable,	even	if	the	seek	could	be	satisfied	using	the	internal
buffer.	Patch	by	John	O’Connor.
Issue	#7689:	Allow	pickling	of	dynamically	created	classes	when
their	 metaclass	 is	 registered	 with	 copyreg.	 Patch	 by	 Nicolas	M.
Thiéry	and	Craig	Citro.
Issue	 #13034:	 When	 decoding	 some	 SSL	 certificates,	 the
subjectAltName	extension	could	be	unreported.
Issue	#12306:	Expose	the	runtime	version	of	the	zlib	C	library	as
a	constant,	ZLIB_RUNTIME_VERSION,	in	the	zlib	module.	Patch
by	Torsten	Landschoff.
Issue	#12959:	Add	collections.ChainMap	to	collections.__all__.
Issue	 #8933:	 distutils’	 PKG-INFO	 files	 and	 packaging’s
METADATA	 files	 will	 now	 correctly	 report	 Metadata-Version:	 1.1
instead	of	1.0	if	a	Classifier	or	Download-URL	field	is	present.
Issue	#12567:	Add	curses.unget_wch()	function.	Push	a	character
so	the	next	get_wch()	will	return	it.
Issue	 #9561:	 distutils	 and	 packaging	 now	 writes	 egg-info	 files
using	UTF-8,	instead	of	the	locale	encoding.
Issue	 #8286:	 The	 distutils	 command	 sdist	 will	 print	 a	 warning
message	instead	of	crashing	when	an	invalid	path	is	given	in	the
manifest	template.
Issue	 #12841:	 tarfile	 unnecessarily	 checked	 the	 existence	 of
numerical	user	and	group	ids	on	extraction.	If	one	of	them	did	not
exist	the	respective	id	of	the	current	user	(i.e.	root)	was	used	for
the	file	and	ownership	information	was	lost.
Issue	#12888:	Fix	a	bug	in	HTMLParser.unescape	that	prevented
it	to	escape	more	than	128	entities.	Patch	by	Peter	Otten.
Issue	 #12878:	Expose	 a	 __dict__	 attribute	 on	 io.IOBase	 and	 its
subclasses.
Issue	 #12494:	 On	 error,	 call(),	 check_call(),	 check_output()	 and
getstatusoutput()	functions	of	the	subprocess	module	now	kill	the
process,	read	its	status	(to	avoid	zombis)	and	close	pipes.

http://bugs.python.org/13087
http://bugs.python.org/7689
http://bugs.python.org/13034
http://bugs.python.org/12306
http://bugs.python.org/12959
http://bugs.python.org/8933
http://bugs.python.org/12567
http://bugs.python.org/9561
http://bugs.python.org/8286
http://bugs.python.org/12841
http://bugs.python.org/12888
http://bugs.python.org/12878
http://bugs.python.org/12494

Issue	 #12720:	 Expose	 low-level	 Linux	 extended	 file	 attribute
functions	in	os.
Issue	#10946:	The	distutils	commands	bdist_dumb,	bdist_wininst
and	bdist_msi	now	respect	a	–skip-build	option	given	to	bdist.	The
packaging	commands	were	fixed	too.
Issue	#12847:	Fix	a	crash	with	negative	PUT	and	LONG_BINPUT
arguments	in	the	C	pickle	implementation.
Issue	#11564:	Avoid	crashes	when	trying	to	pickle	huge	objects	or
containers	 (more	 than	 2**31	 items).	 Instead,	 in	 most	 cases,	 an
OverflowError	is	raised.
Issue	#12287:	Fix	a	stack	corruption	in	ossaudiodev	module	when
the	FD	is	greater	than	FD_SETSIZE.
Issue	#12839:	Fix	crash	 in	zlib	module	due	to	version	mismatch.
Fix	by	Richard	M.	Tew.
Issue	#9923:	The	mailcap	module	now	correctly	uses	the	platform
path	 separator	 for	 the	 MAILCAP	 environment	 variable	 on	 non-
POSIX	platforms.
Issue	 #12835:	 Follow	 up	 to	 #6560	 that	 unconditionally	 prevents
use	of	the	unencrypted	sendmsg/recvmsg	APIs	on	SSL	wrapped
sockets.	Patch	by	David	Watson.
Issue	 #12803:	 SSLContext.load_cert_chain()	 now	 accepts	 a
password	 argument	 to	 be	 used	 if	 the	 private	 key	 is	 encrypted.
Patch	by	Adam	Simpkins.
Issue	 #11657:	 Fix	 sending	 file	 descriptors	 over	 255	 over	 a
multiprocessing	Pipe.
Issue	 #12811:	 tabnanny.check()	 now	 promptly	 closes	 checked
files.	Patch	by	Anthony	Briggs.
Issue	#6560:	The	sendmsg/recvmsg	API	 is	now	exposed	by	 the
socket	 module	 when	 provided	 by	 the	 underlying	 platform,
supporting	 processing	 of	 ancillary	 data	 in	 pure	 Python	 code.
Patch	by	David	Watson	and	Heiko	Wundram.
Issue	 #12326:	 On	 Linux,	 sys.platform	 doesn’t	 contain	 the	major
version	 anymore.	 It	 is	 now	 always	 ‘linux’,	 instead	 of	 ‘linux2’	 or
‘linux3’	depending	on	the	Linux	version	used	to	build	Python.

http://bugs.python.org/12720
http://bugs.python.org/10946
http://bugs.python.org/12847
http://bugs.python.org/11564
http://bugs.python.org/12287
http://bugs.python.org/12839
http://bugs.python.org/9923
http://bugs.python.org/12835
http://bugs.python.org/12803
http://bugs.python.org/11657
http://bugs.python.org/12811
http://bugs.python.org/6560
http://bugs.python.org/12326

Issue	 #12213:	 Fix	 a	 buffering	 bug	 with	 interleaved	 reads	 and
writes	that	could	appear	on	BufferedRandom	streams.
Issue	 #12778:	 Reduce	 memory	 consumption	 when	 JSON-
encoding	a	large	container	of	many	small	objects.
Issue	 #12650:	 Fix	 a	 race	 condition	 where	 a	 subprocess.Popen
could	leak	resources	(FD/zombie)	when	killed	at	the	wrong	time.
Issue	 #12744:	 Fix	 inefficient	 representation	 of	 integers	 between
2**31	and	2**63	on	systems	with	a	64-bit	C	“long”.
Issue	#12646:	Add	an	‘eof’	attribute	to	zlib.Decompress,	to	make
it	easier	to	detect	truncated	input	streams.
Issue	 #11513:	 Fix	 exception	 handling
tarfile.TarFile.gzopen()	when	the	file	cannot	be	opened.
Issue	#12687:	Fix	 a	 possible	 buffering	 bug	when	unpickling	 text
mode	(protocol	0,	mostly)	pickles.
Issue	#10087:	Fix	the	html	output	format	of	the	calendar	module.
Issue	 #13121:	 add	 support	 for	 inplace	 math	 operators	 to
collections.Counter.
Add	 support	 for	 unary	 plus	 and	 unary	 minus	 to
collections.Counter.
Issue	#12683:	 urlparse	 updated	 to	 include	 svn	 as	 schemes	 that
uses	relative	paths.	(svn	from	1.5	onwards	support	relative	path).
Issue	#12655:	Expose	 functions	 from	sched.h	 in	 the	os	module:
sched_yield(),	 sched_setscheduler(),	 sched_getscheduler(),
sched_setparam(),	 sched_get_min_priority(),
sched_get_max_priority(),	 sched_rr_get_interval(),
sched_getaffinity(),	sched_setaffinity().
Add	ThreadError	to	threading.__all__.
Issues	#11104,	#8688:	Fix	the	behavior	of	distutils’	sdist	command
with	manually-maintained	MANIFEST	files.
Issue	 #11281:	 smtplib.STMP	 gets	 source_address	 parameter,
which	 adds	 the	 ability	 to	 bind	 to	 specific	 source	 address	 on	 a
machine	with	multiple	interfaces.	Patch	by	Paulo	Scardine.
Issue	 #12464:	 tempfile.TemporaryDirectory.cleanup()	 should	 not
follow	symlinks:	fix	it.	Patch	by	Petri	Lehtinen.

http://bugs.python.org/12213
http://bugs.python.org/12778
http://bugs.python.org/12650
http://bugs.python.org/12744
http://bugs.python.org/12646
http://bugs.python.org/11513
http://bugs.python.org/12687
http://bugs.python.org/10087
http://bugs.python.org/13121
http://bugs.python.org/12683
http://bugs.python.org/12655
http://bugs.python.org/11281
http://bugs.python.org/12464

Issue	 #8887:	 “pydoc	 somebuiltin.somemethod”	 (or
help(‘somebuiltin.somemethod’)	 in	 Python	 code)	 now	 finds	 the
doc	of	the	method.
Issue	#10968:	Remove	indirection	in	threading.	The	public	names
(Event,	 Condition,	 etc.)	 used	 to	 be	 factory	 functions	 returning
instances	of	hidden	classes	(_Event,	_Condition,	etc.),	because	(if
Guido	recalls	correctly)	this	code	pre-dates	the	ability	to	subclass
extension	types.	 It	 is	now	possible	 to	 inherit	 from	 these	classes,
without	 having	 to	 import	 the	 private	 underscored	 names	 like
multiprocessing	did.
Issue	#9723:	Add	shlex.quote	functions,	to	escape	filenames	and
command	lines.
Issue	 #12603:	 Fix	 pydoc.synopsis()	 on	 files	 with	 non-negative
st_mtime.
Issue	#12514:	Use	try/finally	to	assure	the	timeit	module	restores
garbage	collections	when	it	is	done.
Issue	 #12607:	 In	 subprocess,	 fix	 issue	 where	 if	 stdin,	 stdout	 or
stderr	is	given	as	a	low	fd,	it	gets	overwritten.
Issue	#12576:	Fix	urlopen	behavior	on	sites	which	do	not	send	(or
obfuscates)	Connection:	close	header.
Issue	#12560:	Build	 libpython.so	 on	OpenBSD.	Patch	 by	Stefan
Sperling.
Issue	#1813:	Fix	codec	lookup	under	Turkish	locales.
Issue	 #12591:	 Improve	 support	 of	 “universal	 newlines”	 in	 the
subprocess	module:	the	piped	streams	can	now	be	properly	read
from	or	written	to.
Issue	#12591:	Allow	io.TextIOWrapper	to	work	with	raw	IO	objects
(without	a	read1()	method),	and	add	a	write_through	parameter	to
mandate	unbuffered	writes.
Issue	#10883:	Fix	socket	leaks	in	urllib.request	when	using	FTP.
Issue	 #12592:	 Make	 Python	 build	 on	 OpenBSD	 5	 (and	 future
major	releases).
Issue	#12372:	POSIX	semaphores	are	broken	on	AIX:	don’t	use
them.

http://bugs.python.org/8887
http://bugs.python.org/10968
http://bugs.python.org/9723
http://bugs.python.org/12603
http://bugs.python.org/12514
http://bugs.python.org/12607
http://bugs.python.org/12576
http://bugs.python.org/12560
http://bugs.python.org/1813
http://bugs.python.org/12591
http://bugs.python.org/12591
http://bugs.python.org/10883
http://bugs.python.org/12592
http://bugs.python.org/12372

Issue	 #12551:	 Provide	 a	 get_channel_binding()	 method	 on	 SSL
sockets	 so	 as	 to	 get	 channel	 binding	 data	 for	 the	 current	 SSL
session	 (only	 the	 “tls-unique”	 channel	 binding	 is	 implemented).
This	 allows	 the	 implementation	 of	 certain	 authentication
mechanisms	 such	 as	 SCRAM-SHA-1-PLUS.	 Patch	 by	 Jacek
Konieczny.
Issue	 #665194:	 email.utils	 now	 has	 format_datetime	 and
parsedate_to_datetime	 functions,	 allowing	 for	 round	 tripping	 of
RFC2822	format	dates.
Issue	#12571:	Add	a	plat-linux3	directory	mirroring	the	plat-linux2
directory,	so	 that	 “import	DLFCN”	and	other	similar	 imports	work
on	Linux	3.0.
Issue	 #7484:	 smtplib	 no	 longer	 puts	 <>	 around	 addresses	 in
VRFY	 and	 EXPN	 commands;	 they	 aren’t	 required	 and	 in	 fact
postfix	doesn’t	support	that	form.
Issue	 #12273:	 Remove	 ast.__version__.	 AST	 changes	 can	 be
accounted	for	by	checking	sys.version_info	or	sys._mercurial.
Silence	spurious	“broken	pipe”	tracebacks	when	shutting	down	a
ProcessPoolExecutor.
Fix	 potential	 resource	 leaks	 in
concurrent.futures.ProcessPoolExecutor	by	joining	all	queues	and
processes	when	shutdown()	is	called.
Issue	#11603:	Fix	a	crash	when	__str__	is	rebound	as	__repr__.
Patch	by	Andreas	Stührk.
Issue	 #11321:	 Fix	 a	 crash	 with	 multiple	 imports	 of	 the	 _pickle
module	when	embedding	Python.	Patch	by	Andreas	Stührk.
Issue	 #6755:	 Add	 get_wch()	 method	 to	 curses.window	 class.
Patch	by	Iñigo	Serna.
Add	cgi.closelog()	function	to	close	the	log	file.
Issue	#12502:	asyncore:	fix	polling	loop	with	AF_UNIX	sockets.
Issue	#4376:	ctypes	now	supports	nested	structures	 in	a	endian
different	than	the	parent	structure.	Patch	by	Vlad	Riscutia.
Raise	 ValueError	 when	 attempting	 to	 set	 the	 _CHUNK_SIZE
attribute	of	a	TextIOWrapper	to	a	huge	value,	not	TypeError.

http://bugs.python.org/12551
http://bugs.python.org/665194
http://bugs.python.org/12571
http://bugs.python.org/7484
http://bugs.python.org/12273
http://bugs.python.org/11603
http://bugs.python.org/11321
http://bugs.python.org/6755
http://bugs.python.org/12502
http://bugs.python.org/4376

Issue	 #12504:	 Close	 file	 handles	 in	 a	 timely	 manner	 in
packaging.database.	This	 fixes	a	bug	with	 the	remove	(uninstall)
feature	on	Windows.
Issues	 #12169	 and	 #10510:	 Factor	 out	 code	 used	 by	 various
packaging	commands	 to	make	HTTP	POST	requests,	and	make
sure	it	uses	CRLF.
Issue	#12016:	Multibyte	CJK	decoders	now	resynchronize	faster.
They	 only	 ignore	 the	 first	 byte	 of	 an	 invalid	 byte	 sequence.	 For
example,	 b’xffn’.decode(‘gb2312’,	 ‘replace’)	 gives	 ‘ufffdn’	 instead
of	‘ufffd’.
Issue	 #12459:	 time.sleep()	 now	 raises	 a	 ValueError	 if	 the	 sleep
length	 is	 negative,	 instead	 of	 an	 infinite	 sleep	 on	 Windows	 or
raising	 an	 IOError	 on	 Linux	 for	 example,	 to	 have	 the	 same
behaviour	on	all	platforms.
Issue	#12451:	 pydoc:	 html_getfile()	 now	uses	 tokenize.open()	 to
support	 Python	 scripts	 using	 a	 encoding	 different	 than	 UTF-8
(read	the	coding	cookie	of	the	script).
Issue	 #12493:	 subprocess:	 Popen.communicate()	 now	 also
handles	EINTR	errors	if	the	process	has	only	one	pipe.
Issue	 #12467:	 warnings:	 fix	 a	 race	 condition	 if	 a	 warning	 is
emitted	at	shutdown,	if	globals()[‘__file__’]	is	None.
Issue	#12451:	pydoc:	 importfile()	now	opens	the	Python	script	 in
binary	mode,	 instead	of	 text	mode	using	 the	 locale	encoding,	 to
avoid	encoding	issues.
Issue	#12451:	 runpy:	 run_path()	 now	opens	 the	Python	 script	 in
binary	mode,	 instead	of	 text	mode	using	 the	 locale	encoding,	 to
support	 other	 encodings	 than	 UTF-8	 (scripts	 using	 the	 coding
cookie).
Issue	#12451:	xml.dom.pulldom:	parse()	now	opens	files	in	binary
mode	 instead	 of	 the	 text	 mode	 (using	 the	 locale	 encoding)	 to
avoid	encoding	issues.
Issue	 #12147:	 Adjust	 the	 new-in-3.2	 smtplib.send_message
method	 for	 better	 conformance	 to	 the	 RFCs:	 correctly	 handle
Sender	and	Resent-	headers.

http://bugs.python.org/12504
http://bugs.python.org/12016
http://bugs.python.org/12459
http://bugs.python.org/12451
http://bugs.python.org/12493
http://bugs.python.org/12467
http://bugs.python.org/12451
http://bugs.python.org/12451
http://bugs.python.org/12451
http://bugs.python.org/12147

Issue	 #12352:	 Fix	 a	 deadlock	 in	 multiprocessing.Heap	 when	 a
block	is	freed	by	the	garbage	collector	while	the	Heap	lock	is	held.
Issue	 #12462:	 time.sleep()	 now	 immediately	 calls	 the	 (Python)
signal	handler	 if	 it	 is	 interrupted	by	a	signal,	 instead	of	having	to
wait	until	the	next	instruction.
Issue	 #12442:	 new	 shutil.disk_usage	 function,	 providing	 total,
used	and	free	disk	space	statistics.
Issue	 #12451:	 The	 XInclude	 default	 loader	 of	 xml.etree	 now
decodes	 files	 from	 UTF-8	 instead	 of	 the	 locale	 encoding	 if	 the
encoding	 is	 not	 specified.	 It	 now	 also	 opens	 XML	 files	 for	 the
parser	in	binary	mode	instead	of	the	text	mode	to	avoid	encoding
issues.
Issue	#12451:	doctest.debug_script()	doesn’t	create	a	 temporary
file	anymore	to	avoid	encoding	issues.
Issue	#12451:	pydoc.synopsis()	now	reads	the	encoding	cookie	if
available,	to	read	the	Python	script	from	the	right	encoding.
Issue	#12451:	distutils	now	opens	the	setup	script	in	binary	mode
to	read	the	encoding	cookie,	instead	of	opening	it	in	UTF-8.
Issue	#9516:	On	Mac	OS	X,	change	Distutils	to	no	longer	globally
attempt	 to	 check	 or	 set	 the	MACOSX_DEPLOYMENT_TARGET
environment	variable	for	the	interpreter	process.	This	could	cause
failures	 in	 non-Distutils	 subprocesses	 and	 was	 unreliable	 since
tests	or	 user	 programs	could	modify	 the	 interpreter	 environment
after	 Distutils	 set	 it.	 Instead,	 have	 Distutils	 set	 the	 deployment
target	only	 in	the	environment	of	each	build	subprocess.	It	is	still
possible	 to	 globally	 override	 the	 default	 by	 setting
MACOSX_DEPLOYMENT_TARGET	 before	 launching	 the
interpreter;	its	value	must	be	greater	or	equal	to	the	default	value,
the	value	with	which	the	interpreter	was	built.	Also,	implement	the
same	handling	in	packaging.
Issue	 #12422:	 In	 the	 copy	 module,	 don’t	 store	 objects	 that	 are
their	own	copy	in	the	memo	dict.
Issue	 #12303:	 Add	 sigwaitinfo()	 and	 sigtimedwait()	 to	 the	 signal
module.

http://bugs.python.org/12352
http://bugs.python.org/12462
http://bugs.python.org/12442
http://bugs.python.org/12451
http://bugs.python.org/12451
http://bugs.python.org/12451
http://bugs.python.org/12451
http://bugs.python.org/9516
http://bugs.python.org/12422
http://bugs.python.org/12303

Issue	 #12404:	 Remove	 C89	 incompatible	 code	 from	 mmap
module.	Patch	by	Akira	Kitada.
Issue	 #1874:	 email	 now	 detects	 and	 reports	 as	 a	 defect	 the
presence	of	any	CTE	other	than	7bit,	8bit,	or	binary	on	a	multipart.
Issue	#12383:	Fix	subprocess	module	with	env={}:	don’t	copy	the
environment	variables,	start	with	an	empty	environment.
Issue	 #11637:	 Fix	 support	 for	 importing	 packaging	 setup	 hooks
from	the	project	directory.
Issue	#6771:	Moved	the	curses.wrapper	function	from	the	single-
function	 wrapper	 module	 into	 __init__,	 eliminating	 the	 module.
Since	 __init__	 was	 already	 importing	 the	 function	 to
curses.wrapper,	there	is	no	API	change.
Issue	#11584:	email.header.decode_header	no	 longer	 fails	 if	 the
header	passed	to	it	is	a	Header	object,	and	Header/make_header
no	longer	fail	if	given	binary	unknown-8bit	input.
Issue	 #11700:	 mailbox	 proxy	 object	 close	methods	 can	 now	 be
called	multiple	times	without	error.
Issue	 #11767:	 Correct	 file	 descriptor	 leak	 in	 mailbox’s
__getitem__	method.
Issue	 #12133:	 AbstractHTTPHandler.do_open()	 of	 urllib.request
closes	the	HTTP	connection	if	its	getresponse()	method	fails	with
a	socket	error.	Patch	written	by	Ezio	Melotti.
Issue	#12240:	Allow	multiple	setup	hooks	in	packaging’s	setup.cfg
files.	Original	patch	by	Erik	Bray.
Issue	 #9284:	 Allow	 inspect.findsource()	 to	 find	 the	 source	 of
doctest	functions.
Issue	#11595:	Fix	assorted	bugs	 in	packaging.util.cfg_to_args,	a
compatibility	helper	 for	 the	distutils-packaging	 transition.	Original
patch	by	Erik	Bray.
Issue	#12287:	 In	ossaudiodev,	check	that	 the	device	 isn’t	closed
in	several	methods.
Issue	#12009:	Fixed	regression	in	netrc	file	comment	handling.
Issue	 #12246:	 Warn	 and	 fail	 when	 trying	 to	 install	 a	 third-party
project	 from	 an	 uninstalled	 Python	 (built	 in	 a	 source	 checkout).

http://bugs.python.org/12404
http://bugs.python.org/1874
http://bugs.python.org/12383
http://bugs.python.org/11637
http://bugs.python.org/6771
http://bugs.python.org/11584
http://bugs.python.org/11700
http://bugs.python.org/11767
http://bugs.python.org/12133
http://bugs.python.org/12240
http://bugs.python.org/9284
http://bugs.python.org/11595
http://bugs.python.org/12287
http://bugs.python.org/12009
http://bugs.python.org/12246

Original	patch	by	Tshepang	Lekhonkhobe.
Issue	#10694:	zipfile	now	ignores	garbage	at	the	end	of	a	zipfile.
Issue	#12283:	Fixed	regression	in	smtplib	quoting	of	leading	dots
in	DATA.
Issue	#10424:	Argparse	 now	 includes	 the	 names	of	 the	missing
required	arguments	in	the	missing	arguments	error	message.
Issue	#12168:	SysLogHandler	now	allows	NUL	termination	to	be
controlled	using	a	new	‘append_nul’	attribute	on	the	handler.
Issue	 #11583:	 Speed	 up	 os.path.isdir	 on	 Windows	 by	 using
GetFileAttributes	instead	of	os.stat.
Issue	 #12021:	 Make	 mmap’s	 read()	 method	 argument	 optional.
Patch	by	Petri	Lehtinen.
Issue	 #9205:	 concurrent.futures.ProcessPoolExecutor	 now
detects	 killed	 children	 and	 raises	 BrokenProcessPool	 in	 such	 a
situation.	Previously	it	would	reliably	freeze/deadlock.
Issue	#12040:	Expose	a	new	attribute	sentinel	on	instances	of
multiprocessing.Process.	Also,	fix	Process.join()	to	not	use
polling	anymore,	when	given	a	timeout.
Issue	 #11893:	 Remove	 obsolete	 internal	 wrapper	 class
SSLFakeFile	in	the	smtplib	module.	Patch	by	Catalin	Iacob.
Issue	 #12080:	 Fix	 a	 Decimal.power()	 case	 that	 took	 an
unreasonably	long	time	to	compute.
Issue	 #12221:	 Remove	 __version__	 attributes	 from	 pyexpat,
pickle,	 tarfile,	 pydoc,	 tkinter,	 and	 xml.parsers.expat.	 This	 were
useless	version	constants	left	over	from	the	Mercurial	transition
Named	tuples	now	work	correctly	with	vars().
Issue	 #12085:	 Fix	 an	 attribute	 error	 in	 subprocess.Popen
destructor	 if	 the	 constructor	 has	 failed,	 e.g.	 because	 of	 an
undeclared	keyword	argument.	Patch	written	by	Oleg	Oshmyan.
Issue	 #12028:	 Make	 threading._get_ident()	 public,	 rename	 it	 to
threading.get_ident()	and	document	 it.	This	 function	was	already
used	using	_thread.get_ident().
Issue	 #12171:	 IncrementalEncoder.reset()	 of	 CJK	 codecs
(multibytecodec)	calls	encreset()	instead	of	decreset().

http://bugs.python.org/10694
http://bugs.python.org/12283
http://bugs.python.org/10424
http://bugs.python.org/12168
http://bugs.python.org/11583
http://bugs.python.org/12021
http://bugs.python.org/9205
http://bugs.python.org/12040
http://bugs.python.org/11893
http://bugs.python.org/12080
http://bugs.python.org/12221
http://bugs.python.org/12085
http://bugs.python.org/12028
http://bugs.python.org/12171

Issue	#12218:	Removed	wsgiref.egg-info.
Issue	#12196:	Add	pipe2()	to	the	os	module.
Issue	 #985064:	Make	 plistlib	more	 resilient	 to	 faulty	 input	 plists.
Patch	by	Mher	Movsisyan.
Issue	 #1625:	 BZ2File	 and	 bz2.decompress()	 now	 support	 multi-
stream	files.	Initial	patch	by	Nir	Aides.
Issue	 #12175:	 BufferedReader.read(-1)	 now	 calls	 raw.readall()	 if
available.
Issue	#12175:	FileIO.readall()	now	only	reads	the	file	position	and
size	once.
Issue	 #12175:	 RawIOBase.readall()	 now	 returns	 None	 if	 read()
returns	None.
Issue	#12175:	FileIO.readall()	now	raises	a	ValueError	 instead	of
an	IOError	if	the	file	is	closed.
Issue	#11109:	New	 service_action	method	 for	BaseServer,	 used
by	 ForkingMixin	 class	 for	 cleanup.	 Initial	 Patch	 by	 Justin
Warkentin.
Issue	 #12045:	 Avoid	 duplicate	 execution	 of	 command	 in
ctypes.util._get_soname().	Patch	by	Sijin	Joseph.
Issue	#10818:	Remove	the	Tk	GUI	and	the	serve()	function	of	the
pydoc	module,	pydoc	-g	has	been	deprecated	in	Python	3.2	and	it
has	a	new	enhanced	web	server.
Issue	#1441530:	In	imaplib,	read	the	data	in	one	chunk	to	speed
up	large	reads	and	simplify	code.
Issue	#12070:	Fix	the	Makefile	parser	of	the	sysconfig	module	to
handle	 correctly	 references	 to	 “bogus	 variable”	 (e.g.
“prefix=$/opt/python”).
Issue	#12100:	Don’t	reset	incremental	encoders	of	CJK	codecs	at
each	call	 to	 their	encode()	method	anymore,	but	continue	 to	call
the	reset()	method	if	the	final	argument	is	True.
Issue	 #12049:	 Add	 RAND_bytes()	 and	 RAND_pseudo_bytes()
functions	to	the	ssl	module.
Issue	 #6501:	 os.device_encoding()	 returns	 None	 on	Windows	 if
the	application	has	no	console.

http://bugs.python.org/12218
http://bugs.python.org/12196
http://bugs.python.org/985064
http://bugs.python.org/1625
http://bugs.python.org/12175
http://bugs.python.org/12175
http://bugs.python.org/12175
http://bugs.python.org/12175
http://bugs.python.org/11109
http://bugs.python.org/12045
http://bugs.python.org/10818
http://bugs.python.org/1441530
http://bugs.python.org/12070
http://bugs.python.org/12100
http://bugs.python.org/12049
http://bugs.python.org/6501

Issue	#12105:	Add	O_CLOEXEC	to	the	os	module.
Issue	 #12079:	 Decimal(‘Infinity’).fma(Decimal(‘0’),
(3.91224318126786e+19+0j))	now	raises	TypeError	(reflecting	the
invalid	 type	 of	 the	 3rd	 argument)	 rather	 than
Decimal.InvalidOperation.
Issue	 #12124:	 zipimport	 doesn’t	 keep	 a	 reference	 to
zlib.decompress()	anymore	to	be	able	to	unload	the	module.
Add	 the	 packaging	 module,	 an	 improved	 fork	 of	 distutils	 (also
known	as	distutils2).
Issue	 #12065:	 connect_ex()	 on	 an	 SSL	 socket	 now	 returns	 the
original	errno	when	the	socket’s	timeout	expires	(it	used	to	return
None).
Issue	#8809:	The	SMTP_SSL	constructor	and	SMTP.starttls()	now
support	 passing	 a	 context	 argument	 pointing	 to	 an
ssl.SSLContext	instance.	Patch	by	Kasun	Herath.
Issue	 #9516:	 Issue	 #9516:	 avoid	 errors	 in	 sysconfig	 when
MACOSX_DEPLOYMENT_TARGET	is	set	in	shell.
Issue	 #8650:	 Make	 zlib	 module	 64-bit	 clean.	 compress(),
decompress()	 and	 their	 incremental	 counterparts	 now	 raise
OverflowError	if	given	an	input	larger	than	4GB,	instead	of	silently
truncating	the	input	and	returning	an	incorrect	result.
Issue	#12050:	zlib.decompressobj().decompress()	now	clears	the
unconsumed_tail	 attribute	 when	 called	 without	 a	 max_length
argument.
Issue	#12062:	Fix	a	flushing	bug	when	doing	a	certain	type	of	I/O
sequence	on	a	file	opened	in	read+write	mode	(namely:	reading,
seeking	 a	 bit	 forward,	 writing,	 then	 seeking	 before	 the	 previous
write	but	still	within	buffered	data,	and	writing	again).
Issue	 #9971:	 Write	 an	 optimized	 implementation	 of
BufferedReader.readinto().	Patch	by	John	O’Connor.
Issue	 #11799:	 urllib.request	 Authentication	 Handlers	 will	 raise	 a
ValueError	 when	 presented	 with	 an	 unsupported	 Authentication
Scheme.	Patch	contributed	by	Yuval	Greenfield.
Issue	#10419,	#6011:	build_scripts	command	of	distutils	handles

http://bugs.python.org/12105
http://bugs.python.org/12079
http://bugs.python.org/12124
http://bugs.python.org/12065
http://bugs.python.org/8809
http://bugs.python.org/9516
http://bugs.python.org/9516
http://bugs.python.org/8650
http://bugs.python.org/12050
http://bugs.python.org/12062
http://bugs.python.org/9971
http://bugs.python.org/11799
http://bugs.python.org/10419

correctly	 non-ASCII	 path	 (path	 to	 the	Python	 executable).	Open
and	write	the	script	in	binary	mode,	but	ensure	that	the	shebang	is
decodable	from	UTF-8	and	from	the	encoding	of	the	script.
Issue	#8498:	 In	 socket.accept(),	 allow	 to	 specify	 0	 as	a	backlog
value	in	order	to	accept	exactly	one	connection.	Patch	by	Daniel
Evers.
Issue	 #12011:	 signal.signal()	 and	 signal.siginterrupt()	 raise	 an
OSError,	 instead	 of	 a	 RuntimeError:	 OSError	 has	 an	 errno
attribute.
Issue	 #3709:	 add	 a	 flush_headers	 method	 to
BaseHTTPRequestHandler,	 which	 manages	 the	 sending	 of
headers	to	output	stream	and	flushing	the	internal	headers	buffer.
Patch	contribution	by	Andrew	Schaaf
Issue	#11743:	Rewrite	multiprocessing	connection	classes	in	pure
Python.
Issue	#11164:	Stop	trying	to	use	_xmlplus	in	the	xml	module.
Issue	#11888:	Add	log2	function	to	math	module.	Patch	written	by
Mark	Dickinson.
Issue	#12012:	ssl.PROTOCOL_SSLv2	becomes	optional.
Issue	 #8407:	 The	 signal	 handler	 writes	 the	 signal	 number	 as	 a
single	byte	instead	of	a	nul	byte	into	the	wakeup	file	descriptor.	So
it	is	possible	to	wait	more	than	one	signal	and	know	which	signals
were	raised.
Issue	 #8407:	 Add	 pthread_kill(),	 sigpending()	 and	 sigwait()
functions	to	the	signal	module.
Issue	 #11927:	 SMTP_SSL	 now	 uses	 port	 465	 by	 default	 as
documented.	Patch	by	Kasun	Herath.
Issue	#12002:	ftplib’s	abort()	method	raises	TypeError.
Issue	#11916:	Add	a	number	of	MacOSX	specific	definitions	to	the
errno	module.	Patch	by	Pierre	Carrier.
Issue	#11999:	fixed	sporadic	sync	failure	mailbox.Maildir	due	to	its
trying	to	detect	mtime	changes	by	comparing	to	the	system	clock
instead	of	to	the	previous	value	of	the	mtime.
Issue	 #11072:	 added	 MLSD	 command	 (RFC-3659)	 support	 to

http://bugs.python.org/8498
http://bugs.python.org/12011
http://bugs.python.org/3709
http://bugs.python.org/11743
http://bugs.python.org/11164
http://bugs.python.org/11888
http://bugs.python.org/12012
http://bugs.python.org/8407
http://bugs.python.org/8407
http://bugs.python.org/11927
http://bugs.python.org/12002
http://bugs.python.org/11916
http://bugs.python.org/11999
http://bugs.python.org/11072

ftplib.
Issue	#8808:	The	IMAP4_SSL	constructor	now	allows	passing	an
SSLContext	 parameter	 to	 control	 parameters	 of	 the	 secure
channel.	Patch	by	Sijin	Joseph.
ntpath.samefile	failed	to	notice	that	“a.txt”	and	“A.TXT”	refer	to	the
same	file	on	Windows	XP.	As	noticed	in	issue	#10684.
Issue	 #12000:	 When	 a	 SSL	 certificate	 has	 a	 subjectAltName
without	 any	 dNSName	 entry,	 ssl.match_hostname()	 should	 use
the	subject’s	commonName.	Patch	by	Nicolas	Bareil.
Issue	 #10775:	 assertRaises,	 assertRaisesRegex,	 assertWarns,
and	 assertWarnsRegex	 now	 accept	 a	 keyword	 argument	 ‘msg’
when	used	as	context	managers.	Initial	patch	by	Winston	Ewert.
Issue	 #10684:	 shutil.move	 used	 to	 delete	 a	 folder	 on	 case
insensitive	 filesystems	 when	 the	 source	 and	 destination	 name
where	the	same	except	for	the	case.
Issue	 #11647:	 objects	 created	 using	 contextlib.contextmanager
now	support	more	 than	one	call	 to	 the	 function	when	used	as	a
decorator.	Initial	patch	by	Ysj	Ray.
Issue	 #11930:	Removed	 deprecated	 time.accept2dyear	 variable.
Removed	year	>=	1000	restriction	from	datetime.strftime.
logging:	 don’t	 define	 QueueListener	 if	 Python	 has	 no	 thread
support.
functools.cmp_to_key()	now	works	with	collections.Hashable().
Issue	 #11277:	 mmap.mmap()	 calls	 fcntl(fd,	 F_FULLFSYNC)	 on
Mac	 OS	 X	 to	 get	 around	 a	 mmap	 bug	 with	 sparse	 files.	 Patch
written	by	Steffen	Daode	Nurpmeso.
Issue	 #8407:	 Add	 signal.pthread_sigmask()	 function	 to	 fetch
and/or	change	the	signal	mask	of	the	calling	thread.
Issue	#11858:	configparser.ExtendedInterpolation	expected	lower-
case	section	names.
Issue	 #11324:	 ConfigParser(interpolation=None)	 now	 works
correctly.
Issue	#11811:	ssl.get_server_certificate()	is	now	IPv6-compatible.
Patch	by	Charles-François	Natali.

http://bugs.python.org/8808
http://bugs.python.org/10684
http://bugs.python.org/12000
http://bugs.python.org/10775
http://bugs.python.org/10684
http://bugs.python.org/11647
http://bugs.python.org/11930
http://bugs.python.org/11277
http://bugs.python.org/8407
http://bugs.python.org/11858
http://bugs.python.org/11324
http://bugs.python.org/11811

Issue	#11763:	don’t	use	difflib	in	TestCase.assertMultiLineEqual	if
the	strings	are	too	long.
Issue	 #11236:	 getpass.getpass	 responds	 to	 ctrl-c	 or	 ctrl-z	 on
terminal.
Issue	#11856:	Speed	up	parsing	of	JSON	numbers.
Issue	 #11005:	 threading.RLock()._release_save()	 raises	 a
RuntimeError	if	the	lock	was	not	acquired.
Issue	#11258:	Speed	up	ctypes.util.find_library()	under	Linux	by	a
factor	of	5	to	10.	Initial	patch	by	Jonas	H.
Issue	#11382:	Trivial	system	calls,	such	as	dup()	or	pipe(),	needn’t
release	the	GIL.	Patch	by	Charles-François	Natali.
Issue	 #11223:	 Add	 threading._info()	 function	 providing
informations	about	the	thread	implementation.
Issue	 #11731:	 simplify/enhance	 email	 parser/generator	 API	 by
introducing	policy	objects.
Issue	#11768:	The	signal	handler	of	 the	signal	module	only	calls
Py_AddPendingCall()	 for	 the	 first	 signal	 to	 fix	 a	 deadlock	 on
reentrant	or	parallel	calls.	PyErr_SetInterrupt()	writes	also	into	the
wake	up	file.
Issue	#11492:	 fix	several	 issues	with	header	 folding	 in	 the	email
package.
Issue	#11852:	Add	missing	imports	and	update	tests.
Issue	 #11875:	 collections.OrderedDict’s	 __reduce__	 was
temporarily	mutating	the	object	instead	of	just	working	on	a	copy.
Issue	 #11467:	 Fix	 urlparse	 behavior	 when	 handling	 urls	 which
contains	 scheme	 specific	 part	 only	 digits.	 Patch	 by	 Santoso
Wijaya.
collections.Counter().copy()	now	works	correctly	for	subclasses.
Issue	#11474:	Fix	the	bug	with	url2pathname()	handling	of	‘/C|/’	on
Windows.	Patch	by	Santoso	Wijaya.
Issue	 #11684:	 complete	 email.parser	 bytes	 API	 by	 adding
BytesHeaderParser.
The	bz2	module	now	handles	4GiB+	input	buffers	correctly.
Issue	#9233:	Fix	json.loads(‘{}’)	to	return	a	dict	(instead	of	a	list),

http://bugs.python.org/11763
http://bugs.python.org/11236
http://bugs.python.org/11856
http://bugs.python.org/11005
http://bugs.python.org/11258
http://bugs.python.org/11382
http://bugs.python.org/11223
http://bugs.python.org/11731
http://bugs.python.org/11768
http://bugs.python.org/11492
http://bugs.python.org/11852
http://bugs.python.org/11875
http://bugs.python.org/11467
http://bugs.python.org/11474
http://bugs.python.org/11684
http://bugs.python.org/9233

when	_json	is	not	available.
Issue	 #11830:	 Remove	 unnecessary	 introspection	 code	 in	 the
decimal	module.
Issue	#11703:	urllib2.geturl()	does	not	return	correct	url	when	the
original	url	contains	#fragment.
Issue	#10019:	Fixed	regression	in	json	module	where	an	indent	of
0	stopped	adding	newlines	and	acted	instead	like	‘None’.
Issue	 #11186:	 pydoc	 ignores	 a	 module	 if	 its	 name	 contains	 a
surrogate	character	in	the	index	of	modules.
Issue	 #11815:	 Use	 a	 light-weight	 SimpleQueue	 for	 the	 result
queue	in	concurrent.futures.ProcessPoolExecutor.
Issue	#5162:	Treat	services	like	frozen	executables	to	allow	child
spawning	from	multiprocessing.forking	on	Windows.
logging.basicConfig	now	supports	an	optional	‘handlers’	argument
taking	 an	 iterable	 of	 handlers	 to	 be	 added	 to	 the	 root	 logger.
Additional	parameter	checks	were	also	added	to	basicConfig.
Issue	#11814:	Fix	likely	typo	in	multiprocessing.Pool._terminate().
Issue	 #11747:	 Fix	 range	 formatting	 in	 difflib.context_diff()	 and
difflib.unified_diff().
Issue	 #8428:	 Fix	 a	 race	 condition	 in	 multiprocessing.Pool	 when
terminating	worker	processes:	new	processes	would	be	spawned
while	 the	 pool	 is	 being	 shut	 down.	 Patch	 by	 Charles-François
Natali.
Issue	#2650:	re.escape()	no	longer	escapes	the	‘_’.
Issue	 #11757:	 select.select()	 now	 raises	 ValueError	 when	 a
negative	timeout	is	passed	(previously,	a	select.error	with	EINVAL
would	be	raised).	Patch	by	Charles-François	Natali.
Issue	#7311:	fix	html.parser	to	accept	non-ASCII	attribute	values.
Issue	 #11605:	 email.parser.BytesFeedParser	 was	 incorrectly
converting	 multipart	 subparts	 with	 an	 8-bit	 CTE	 into	 unicode
instead	of	preserving	the	bytes.
Issue	#1690608:	email.util.formataddr	is	now	RFC	2047	aware:	it
now	has	a	charset	parameter	that	defaults	to	utf-8	and	is	used	as
the	charset	 for	RFC	2047	encoding	when	 the	realname	contains

http://bugs.python.org/11830
http://bugs.python.org/11703
http://bugs.python.org/10019
http://bugs.python.org/11186
http://bugs.python.org/11815
http://bugs.python.org/5162
http://bugs.python.org/11814
http://bugs.python.org/11747
http://bugs.python.org/8428
http://bugs.python.org/2650
http://bugs.python.org/11757
http://bugs.python.org/7311
http://bugs.python.org/11605
http://bugs.python.org/1690608

non-ASCII	characters.
Issue	 #10963:	 Ensure	 that	 subprocess.communicate()	 never
raises	EPIPE.
Issue	 #10791:	 Implement	 missing	 method	 GzipFile.read1(),
allowing	 GzipFile	 to	 be	 wrapped	 in	 a	 TextIOWrapper.	 Patch	 by
Nadeem	Vawda.
Issue	#11707:	Added	a	fast	C	version	of	 functools.cmp_to_key().
Patch	by	Filip	Gruszczyński.
Issue	#11688:	Add	sqlite3.Connection.set_trace_callback().	Patch
by	Torsten	Landschoff.
Issue	#11746:	Fix	SSLContext.load_cert_chain()	to	accept	elliptic
curve	private	keys.
Issue	 #5863:	 Rewrite	 BZ2File	 in	 pure	 Python,	 and	 allow	 it	 to
accept	 file-like	 objects	 using	 a	 new	 fileobj	 constructor
argument.	Patch	by	Nadeem	Vawda.
unittest.TestCase.assertSameElements	has	been	removed.
sys.getfilesystemencoding()	 raises	 a	 RuntimeError	 if
initfsencoding()	 was	 not	 called	 yet:	 detect	 bootstrap	 (startup)
issues	earlier.
Issue	#11393:	Add	the	new	faulthandler	module.
Issue	 #11618:	 Fix	 the	 timeout	 logic	 in	 threading.Lock.acquire()
under	Windows.
Removed	 the	 ‘strict’	 argument	 to	 email.parser.Parser,	which	 has
been	deprecated	since	Python	2.4.
Issue	#11256:	Fix	 inspect.getcallargs	on	 functions	 that	 take	only
keyword	arguments.
Issue	#11696:	Fix	ID	generation	in	msilib.
itertools.accumulate	now	supports	an	optional	func	argument	for	a
user-supplied	binary	function.
Issue	 #11692:	 Remove	 unnecessary	 demo	 functions	 in
subprocess	module.
Issue	 #9696:	 Fix	 exception	 incorrectly	 raised	 by
xdrlib.Packer.pack_int	 when	 trying	 to	 pack	 a	 negative	 (in-range)
integer.

http://bugs.python.org/10963
http://bugs.python.org/10791
http://bugs.python.org/11707
http://bugs.python.org/11688
http://bugs.python.org/11746
http://bugs.python.org/5863
http://bugs.python.org/11393
http://bugs.python.org/11618
http://bugs.python.org/11256
http://bugs.python.org/11696
http://bugs.python.org/11692
http://bugs.python.org/9696

Issue	 #11675:	 multiprocessing.[Raw]Array	 objects	 created	 from
an	 integer	 size	 are	 now	 zeroed	 on	 creation.	 This	 matches	 the
behaviour	specified	by	the	documentation.
Issue	#7639:	Fix	short	file	name	generation	in	bdist_msi
Issue	#11635:	Don’t	use	polling	in	worker	threads	and	processes
launched	by	concurrent.futures.
Issue	#5845:	Automatically	 read	 readline	configuration	 to	enable
completion	in	interactive	mode.
Issue	 #6811:	 Allow	 importlib	 to	 change	 a	 code	 object’s
co_filename	attribute	to	match	the	path	to	where	the	source	code
currently	is,	not	where	the	code	object	originally	came	from.
Issue	 #8754:	 Have	 importlib	 use	 the	 repr	 of	 a	 module	 name	 in
error	messages.
Issue	#11591:	Prevent	“import	site”	from	modifying	sys.path	when
python	was	started	with	-S.
collections.namedtuple()	 now	 adds	 a	 _source	 attribute	 to	 the
generated	class.	This	make	the	source	more	accessible	than	the
outdated	“verbose”	option	which	prints	to	stdout	but	doesn’t	make
the	source	string	available.
Issue	#11371:	Mark	getopt	error	messages	as	 localizable.	Patch
by	Filip	Gruszczyński.
Issue	#11333:	Add	__slots__	to	collections	ABCs.
Issue	#11628:	cmp_to_key	generated	class	should	use	__slots__.
Issue	 #11666:	 let	 help()	 display	 named	 tuple	 attributes	 and
methods	that	start	with	a	leading	underscore.
Issue	 #11662:	 Make	 urllib	 and	 urllib2	 ignore	 redirections	 if	 the
scheme	is	not	HTTP,	HTTPS	or	FTP	(CVE-2011-1521).
Issue	 #5537:	 Fix	 time2isoz()	 and	 time2netscape()	 functions	 of
httplib.cookiejar	 for	 expiration	 year	 greater	 than	 2038	 on	 32-bit
systems.
Issue	#4391:	Use	proper	gettext	plural	forms	in	optparse.
Issue	 #11127:	Raise	 a	 TypeError	when	 trying	 to	 pickle	 a	 socket
object.
Issue	#11563:	Connection:	close	header	is	sent	by	requests

http://bugs.python.org/11675
http://bugs.python.org/7639
http://bugs.python.org/11635
http://bugs.python.org/5845
http://bugs.python.org/6811
http://bugs.python.org/8754
http://bugs.python.org/11591
http://bugs.python.org/11371
http://bugs.python.org/11333
http://bugs.python.org/11628
http://bugs.python.org/11666
http://bugs.python.org/11662
http://bugs.python.org/5537
http://bugs.python.org/4391
http://bugs.python.org/11127
http://bugs.python.org/11563

using	 URLOpener	 class	 which	 helps	 in	 closing	 of	 sockets	 after
connection	 is	 over.	 Patch	 contributions	 by	 Jeff	 McNeil	 and
Nadeem	Vawda.
Issue	#11459:	A	bufsize	value	of	0	in	subprocess.Popen()	really
creates	 unbuffered	 pipes,	 such	 that	 select()	 works	 properly	 on
them.
Issue	 #5421:	 Fix	 misleading	 error	 message	 when	 one	 of
socket.sendto()’s	arguments	has	the	wrong	type.	Patch	by	Nikita
Vetoshkin.
Issue	#10812:	Add	some	extra	posix	functions	to	the	os	module.
Issue	#10979:	unittest	stdout	buffering	now	works	with	class	and
module	setup	and	teardown.
Issue	#11243:	fix	the	parameter	querying	methods	of	Message	to
work	if	the	headers	contain	un-encoded	non-ASCII	data.
Issue	#11401:	 fix	handling	of	headers	with	no	value;	 this	 fixes	a
regression	relative	to	Python2	and	the	result	is	now	the	same	as	it
was	in	Python2.
Issue	#9298:	base64	bodies	weren’t	being	 folded	 to	 line	 lengths
less	 than	78,	which	was	a	regression	relative	 to	Python2.	Unlike
Python2,	the	last	line	of	the	folded	body	now	ends	with	a	carriage
return.
Issue	 #11560:	 shutil.unpack_archive	 now	 correctly	 handles	 the
format	parameter.	Patch	by	Evan	Dandrea.
Issue	#5870:	Add	subprocess.DEVNULL	constant.
Issue	 #11133:	 fix	 two	 cases	 where	 inspect.getattr_static	 can
trigger	code	execution.	Patch	by	Andreas	Stührk.
Issue	 #11569:	 use	 absolute	 path	 to	 the	 sysctl	 command	 in
multiprocessing	 to	 ensure	 that	 it	 will	 be	 found	 regardless	 of	 the
shell	 PATH.	 This	 ensures	 that	 multiprocessing.cpu_count	 works
on	default	installs	of	MacOSX.
Issue	#11501:	 disutils.archive_utils.make_zipfile	 no	 longer	 fails	 if
zlib	is	not	installed.	Instead,	the	zipfile.ZIP_STORED	compression
is	used	to	create	the	ZipFile.	Patch	by	Natalia	B.	Bidart.
Issue	#11289:	smtp.SMTP	class	 is	now	a	context	manager	so	 it

http://bugs.python.org/11459
http://bugs.python.org/5421
http://bugs.python.org/10812
http://bugs.python.org/10979
http://bugs.python.org/11243
http://bugs.python.org/11401
http://bugs.python.org/9298
http://bugs.python.org/11560
http://bugs.python.org/5870
http://bugs.python.org/11133
http://bugs.python.org/11569
http://bugs.python.org/11501
http://bugs.python.org/11289

can	 be	 used	 in	 a	 with	 statement.	 Contributed	 by	 Giampaolo
Rodola.
Issue	#11554:	Fixed	support	for	Japanese	codecs;	previously	the
body	 output	 encoding	 was	 not	 done	 if	 euc-jp	 or	 shift-jis	 was
specified	as	the	charset.
Issue	#11407:	 TestCase.run	 returns	 the	 result	 object	 used	 or
created.	Contributed	by	Janathan	Hartley.
Issue	#11500:	Fixed	a	bug	in	the	OS	X	proxy	bypass	code	for	fully
qualified	IP	addresses	in	the	proxy	exception	list.
Issue	 #11491:	 dbm.error	 is	 no	 longer	 raised	 when	 dbm.open	 is
called	with	 the	 “n”	 as	 the	 flag	 argument	 and	 the	 file	 exists.	 The
behavior	matches	the	documentation	and	general	logic.
Issue	 #1162477:	 Postel	 Principle	 adjustment	 to	 email	 date
parsing:	 handle	 the	 fact	 that	 some	 non-compliant	 MUAs	 use	 ‘.’
instead	of	‘:’	in	time	specs.
Issue	#11131:	Fix	sign	of	zero	in	decimal.Decimal	plus	and	minus
operations	when	the	rounding	mode	is	ROUND_FLOOR.
Issue	 #9935:	 Speed	 up	 pickling	 of	 instances	 of	 user-defined
classes.
Issue	 #5622:	 Fix	 curses.wrapper	 to	 raise	 correct	 exception	 if
curses	initialization	fails.
Issue	#11408:	In	threading.Lock.acquire(),	only	call	gettimeofday()
when	really	necessary.	Patch	by	Charles-François	Natali.
Issue	 #11391:	 Writing	 to	 a	 mmap	 object	 created	 with
mmap.PROT_READ|mmap.PROT_EXEC	would	segfault	 instead	of
raising	a	TypeError.	Patch	by	Charles-François	Natali.
Issue	 #9795:	 add	 context	 manager	 protocol	 support	 for
nntplib.NNTP	class.
Issue	 #11306:	mailbox	 in	 certain	 cases	 adapts	 to	 an	 inability	 to
open	 certain	 files	 in	 read-write	mode.	Previously	 it	 detected	 this
by	checking	for	EACCES,	now	it	also	checks	for	EROFS.
Issue	 #11265:	 asyncore	 now	 correctly	 handles	 EPIPE,	 EBADF
and	EAGAIN	errors	on	accept(),	send()	and	recv().
Issue	#11377:	Deprecate	platform.popen()	and	reimplement	it	with

http://bugs.python.org/11554
http://bugs.python.org/11407
http://bugs.python.org/11500
http://bugs.python.org/11491
http://bugs.python.org/1162477
http://bugs.python.org/11131
http://bugs.python.org/9935
http://bugs.python.org/5622
http://bugs.python.org/11408
http://bugs.python.org/11391
http://bugs.python.org/9795
http://bugs.python.org/11306
http://bugs.python.org/11265
http://bugs.python.org/11377

os.popen().
Issue	 #8513:	 On	 UNIX,	 subprocess	 supports	 bytes	 command
string.
Issue	 #10866:	 Add	 socket.sethostname().	 Initial	 patch	 by	 Ross
Lagerwall.
Issue	 #11140:	 Lock.release()	 now	 raises	 a	 RuntimeError	 when
attempting	 to	 release	 an	 unacquired	 lock,	 as	 claimed	 in	 the
threading	documentation.	The	_thread.error	exception	 is	now	an
alias	 of	 RuntimeError.	 Patch	 by	 Filip	 Gruszczyński.	 Patch	 for
_dummy_thread	by	Aymeric	Augustin.
Issue	#8594:	 ftplib	now	provides	a	source_address	parameter	 to
specify	which	(address,	port)	to	bind	to	before	connecting.
Issue	 #11326:	 Add	 the	missing	 connect_ex()	 implementation	 for
SSL	sockets,	and	make	it	work	for	non-blocking	connects.
Issue	#11297:	Add	collections.ChainMap().
Issue	 #10755:	 Add	 the	 posix.flistdir()	 function.	 Patch	 by	 Ross
Lagerwall.
Issue	#4761:	Add	the	*at()	family	of	functions	(openat(),	etc.)	to
the	posix	module.	Patch	by	Ross	Lagerwall.
Issue	#7322:	Trying	to	read	from	a	socket’s	file-like	object	after	a
timeout	 occurred	 now	 raises	 an	 error	 instead	 of	 silently	 losing
data.
Issue	#11291:	poplib.POP	no	longer	suppresses	errors	on	quit().
Issue	#11177:	asyncore’s	create_socket()	arguments	can	now	be
omitted.
Issue	 #6064:	 Add	 a	 daemon	 keyword	 argument	 to	 the
threading.Thread	 and	 multiprocessing.Process	 constructors	 in
order	to	override	the	default	behaviour	of	inheriting	the	daemonic
property	from	the	current	thread/process.
Issue	#10956:	Buffered	I/O	classes	retry	reading	or	writing	after	a
signal	has	arrived	and	the	handler	returned	successfully.
Issue	#10784:	New	os.getpriority()	and	os.setpriority()	functions.
Issue	 #11114:	 Fix	 catastrophic	 performance	 of	 tell()	 on	 text	 files
(up	 to	1000x	 faster	 in	some	cases).	 It	 is	still	one	 to	 two	order	of

http://bugs.python.org/8513
http://bugs.python.org/10866
http://bugs.python.org/11140
http://bugs.python.org/8594
http://bugs.python.org/11326
http://bugs.python.org/11297
http://bugs.python.org/10755
http://bugs.python.org/4761
http://bugs.python.org/7322
http://bugs.python.org/11291
http://bugs.python.org/11177
http://bugs.python.org/6064
http://bugs.python.org/10956
http://bugs.python.org/10784
http://bugs.python.org/11114

magnitudes	slower	than	binary	tell().
Issue	#10882:	Add	os.sendfile	function.
Issue	#10868:	Allow	usage	of	the	register	method	of	an	ABC	as	a
class	decorator.
Issue	#11224:	Fixed	a	regression	in	tarfile	that	affected	the	file-like
objects	 returned	 by	 TarFile.extractfile()	 regarding	 performance,
memory	consumption	and	failures	with	the	stream	interface.
Issue	 #10924:	 Adding	 salt	 and	 Modular	 Crypt	 Format	 to	 crypt
library.	 Moved	 old	 C	 wrapper	 to	 _crypt,	 and	 added	 a	 Python
wrapper	 with	 enhanced	 salt	 generation	 and	 simpler	 API	 for
password	generation.
Issue	#11074:	Make	‘tokenize’	so	it	can	be	reloaded.
Issue	 #11085:	 Moved	 collections	 abstract	 base	 classes	 into	 a
separate	module	called	collections.abc,	following	the	pattern	used
by	 importlib.abc.	 For	 backwards	 compatibility,	 the	 names	 are
imported	into	the	collections	module.
Issue	#4681:	Allow	mmap()	to	work	on	file	sizes	and	offsets	larger
than	4GB,	even	on	32-bit	builds.	 Initial	patch	by	Ross	Lagerwall,
adapted	for	32-bit	Windows.
Issue	#11169:	 compileall	module	uses	 repr()	 to	 format	 filenames
and	paths	to	escape	surrogate	characters	and	show	spaces.
Issue	 #11089:	 Fix	 performance	 issue	 limiting	 the	 use	 of
ConfigParser()	with	large	config	files.
Issue	#10276:	Fix	 the	results	of	zlib.crc32()	and	zlib.adler32()	on
buffers	larger	than	4GB.	Patch	by	Nadeem	Vawda.
Issue	#11388:	Added	a	clear()	method	to	MutableSequence
Issue	 #11174:	 Add	 argparse.MetavarTypeHelpFormatter,	 which
uses	 type	 names	 for	 the	 names	 of	 optional	 and	 positional
arguments	in	help	messages.
Issue	#9348:	Raise	an	early	error	 if	argparse	nargs	and	metavar
don’t	match.
Issue	 #9026:	 Fix	 order	 of	 argparse	 sub-commands	 in	 help
messages.
Issue	 #9347:	 Fix	 formatting	 for	 tuples	 in	 argparse	 type=	 error

http://bugs.python.org/10882
http://bugs.python.org/10868
http://bugs.python.org/11224
http://bugs.python.org/10924
http://bugs.python.org/11074
http://bugs.python.org/11085
http://bugs.python.org/4681
http://bugs.python.org/11169
http://bugs.python.org/11089
http://bugs.python.org/10276
http://bugs.python.org/11388
http://bugs.python.org/11174
http://bugs.python.org/9348
http://bugs.python.org/9026
http://bugs.python.org/9347

messages.
Issue	#12191:	Added	shutil.chown()	to	change	user	and/or	group
owner	of	a	given	path	also	specifying	their	names.
Issue	 #13988:	 The	 _elementtree	 accelerator	 is	 used	 whenever
available.	 Now	 xml.etree.cElementTree	 becomes	 a	 deprecated
alias	to	ElementTree.

Build

Issue	#6807:	Run	msisupport.mak	earlier.
Issue	#10580:	Minor	grammar	change	in	Windows	installer.
Issue	 #13326:	 Clean	 __pycache__	 directories	 correctly	 on
OpenBSD.
PEP	393:	the	configure	option	–with-wide-unicode	is	removed.
Issue	#12852:	Set	_XOPEN_SOURCE	to	700,	 instead	of	600,	 to
get	POSIX	2008	functions	on	OpenBSD	(e.g.	fdopendir).
Issue	#11863:	Remove	support	for	legacy	systems	deprecated	in
Python	3.2	(following	PEP	11).	These	systems	are	systems	using
Mach	C	Threads,	SunOS	lightweight	processes,	GNU	pth	threads
and	IRIX	threads.
Issue	#8746:	Correct	 faulty	configure	checks	so	 that	os.chflags()
and	 os.lchflags()	 are	 once	 again	 built	 on	 systems	 that	 support
these	functions	(BSD	and	OS	X).	Also	add	new	stat	 file	 flags	 for
OS	X	(UF_HIDDEN	and	UF_COMPRESSED).
Issue	#10645:	Installing	Python	no	longer	creates	a	Python-X.Y.Z-
pyX.Y.egg-info	file	in	the	lib-dynload	directory.
Do	not	accidentally	 include	the	directory	containing	sqlite.h	 twice
when	building	sqlite3.
Issue	 #11217:	 For	 64-bit/32-bit	 Mac	 OS	 X	 universal	 framework
builds,	ensure	“make	install”	creates	symlinks	in	–prefix	bin	for	the
“-32”	files	in	the	framework	bin	directory	like	the	installer	does.
Issue	#11347:	Use	–no-as-needed	when	linking	libpython3.so.
Issue	#11411:	Fix	‘make	DESTDIR=’	with	a	relative	destination.
Issue	#11268:	Prevent	Mac	OS	X	Installer	failure	if	Documentation

http://bugs.python.org/12191
http://bugs.python.org/13988
http://bugs.python.org/6807
http://bugs.python.org/10580
http://bugs.python.org/13326
http://bugs.python.org/12852
http://bugs.python.org/11863
http://bugs.python.org/8746
http://bugs.python.org/10645
http://bugs.python.org/11217
http://bugs.python.org/11347
http://bugs.python.org/11411
http://bugs.python.org/11268

package	had	previously	been	installed.
Issue	 #11495:	 OSF	 support	 is	 eliminated.	 It	 was	 deprecated	 in
Python	3.2.

IDLE

Issue	 #14409:	 IDLE	 now	 properly	 executes	 commands	 in	 the
Shell	 window	 when	 it	 cannot	 read	 the	 normal	 config	 files	 on
startup	and	has	to	use	the	built-in	default	key	bindings.	There	was
previously	a	bug	in	one	of	the	defaults.
IDLE	can	be	launched	as	python	-m	idlelib
Issue	 #3573:	 IDLE	 hangs	 when	 passing	 invalid	 command	 line
args	(directory(ies)	instead	of	file(s))	(Patch	by	Guilherme	Polo)
Issue	 #14200:	 IDLE	 shell	 crash	 on	 printing	 non-BMP	 unicode
character.
Issue	#5219:	Prevent	event	handler	cascade	in	IDLE.
Issue	 #964437:	 Make	 IDLE	 help	 window	 non-modal.	 Patch	 by
Guilherme	Polo	and	Roger	Serwy.
Issue	 #13933:	 IDLE	 auto-complete	 did	 not	 work	 with	 some
imported	module,	like	hashlib.	(Patch	by	Roger	Serwy)
Issue	 #13506:	 Add	 ‘’	 to	 path	 for	 IDLE	 Shell	 when	 started	 and
restarted	with	Restart	Shell.	Original	patches	by	Marco	Scataglini
and	Roger	Serwy.
Issue	#4625:	 If	 IDLE	cannot	write	 to	 its	 recent	 file	 or	 breakpoint
files,	 display	 a	message	 popup	 and	 continue	 rather	 than	 crash.
Original	patch	by	Roger	Serwy.
Issue	#8641:	Update	IDLE	3	syntax	coloring	to	recognize	b”..”	and
not	u”..”.	Patch	by	Tal	Einat.
Issue	#13296:	Fix	IDLE	to	clear	compile	__future__	flags	on	shell
restart.	(Patch	by	Roger	Serwy)
Issue	#9871:	Prevent	 IDLE	3	 crash	when	given	byte	 stings	with
invalid	 hex	 escape	 sequences,	 like	 b’x0’.	 (Original	 patch	 by
Claudiu	Popa.)
Issue	 #12636:	 IDLE	 reads	 the	 coding	 cookie	 when	 executing	 a

http://bugs.python.org/11495
http://bugs.python.org/14409
http://bugs.python.org/3573
http://bugs.python.org/14200
http://bugs.python.org/5219
http://bugs.python.org/964437
http://bugs.python.org/13933
http://bugs.python.org/13506
http://bugs.python.org/4625
http://bugs.python.org/8641
http://bugs.python.org/13296
http://bugs.python.org/9871
http://bugs.python.org/12636

Python	script.
Issue	#12540:	Prevent	zombie	 IDLE	processes	on	Windows	due
to	changes	in	os.kill().
Issue	#12590:	 IDLE	editor	window	now	always	 displays	 the	 first
line	 when	 opening	 a	 long	 file.	 With	 Tk	 8.5,	 the	 first	 line	 was
hidden.
Issue	#11088:	don’t	crash	when	using	F5	 to	run	a	script	 in	 IDLE
on	MacOSX	with	Tk	8.5.
Issue	 #1028:	 Tk	 returns	 invalid	 Unicode	 null	 in	 %A:
UnicodeDecodeError.	With	Tk	<	8.5	_tkinter.c:PythonCmd()	raised
UnicodeDecodeError,	 caused	 IDLE	 to	 exit.	 Converted	 to	 valid
Unicode	null	in	PythonCmd().
Issue	 #11718:	 IDLE’s	 open	 module	 dialog	 couldn’t	 find	 the
__init__.py	file	in	a	package.

Tools/Demos

Issue	 #14053:	 patchcheck.py	 (“make	 patchcheck”)	 now	 works
with	MQ	patches.	Patch	by	Francisco	Martín	Brugué.
Issue	#13930:	2to3	is	now	able	to	write	 its	converted	output	files
to	another	directory	 tree	as	well	as	copying	unchanged	files	and
altering	the	file	suffix.	See	its	new	-o,	-W	and	–add-suffix	options.
This	 makes	 it	 more	 useful	 in	 many	 automated	 code	 translation
workflows.
Issue	#13628:	python-gdb.py	is	now	able	to	retrieve	more	frames
in	the	Python	traceback	if	Python	is	optimized.
Issue	#11996:	libpython	(gdb),	replace	“py-bt”	command	by	“py-bt-
full”	and	add	a	smarter	“py-bt”	command	printing	a	classic	Python
traceback.
Issue	 #11179:	 Make	 ccbench	 work	 under	 Python	 3.1	 and	 2.7
again.
Issue	 #10639:	 reindent.py	 no	 longer	 converts	 newlines	 and	 will
raise	an	error	 if	attempting	 to	convert	a	 file	with	mixed	newlines.
“–newline”	option	added	to	specify	new	line	character.

http://bugs.python.org/12540
http://bugs.python.org/12590
http://bugs.python.org/11088
http://bugs.python.org/1028
http://bugs.python.org/11718
http://bugs.python.org/14053
http://bugs.python.org/13930
http://bugs.python.org/13628
http://bugs.python.org/11996
http://bugs.python.org/11179
http://bugs.python.org/10639

Extension	Modules

Issue	 #16847:	 Fixed	 improper	 use	 of
_PyUnicode_CheckConsistency()	 in	non-pydebug	builds.	Several
extension	 modules	 now	 compile	 cleanly	 when	 assert()s	 are
enabled	in	standard	builds	(-DDEBUG	flag).
Issue	 #13840:	 The	 error	 message	 produced	 by
ctypes.create_string_buffer	when	given	a	Unicode	string	has	been
fixed.
Issue	#9975:	 socket:	 Fix	 incorrect	 use	 of	 flowinfo	 and	 scope_id.
Patch	by	Vilmos	Nebehaj.
Issue	#7777:	socket:	Add	Reliable	Datagram	Sockets	 (PF_RDS)
support.
Issue	 #13159:	 FileIO	 and	 BZ2Compressor/BZ2Decompressor
now	 use	 a	 linear-time	 buffer	 growth	 strategy	 instead	 of	 a
quadratic-time	one.
Issue	#10141:	socket:	Add	SocketCAN	(PF_CAN)	support.	 Initial
patch	by	Matthias	Fuchs,	updated	by	Tiago	Gonçalves.
Issue	 #13070:	 Fix	 a	 crash	 when	 a	 TextIOWrapper	 caught	 in	 a
reference	 cycle	 would	 be	 finalized	 after	 the	 reference	 to	 its
underlying	BufferedRWPair’s	writer	got	cleared	by	the	GC.
Issue	 #12881:	 ctypes:	 Fix	 segfault	 with	 large	 structure	 field
names.
Issue	 #13058:	 ossaudiodev:	 fix	 a	 file	 descriptor	 leak	 on	 error.
Patch	by	Thomas	Jarosch.
Issue	 #13013:	 ctypes:	 Fix	 a	 reference	 leak	 in
PyCArrayType_from_ctype.	Thanks	to	Suman	Saha	for	finding	the
bug	and	providing	a	patch.
Issue	 #13022:	 Fix:	 _multiprocessing.recvfd()	 doesn’t	 check	 that
file	descriptor	was	actually	received.
Issue	 #1172711:	 Add	 ‘long	 long’	 support	 to	 the	 array	 module.
Initial	patch	by	Oren	Tirosh	and	Hirokazu	Yamamoto.
Issue	 #12483:	 ctypes:	 Fix	 a	 crash	 when	 the	 destruction	 of	 a

http://bugs.python.org/16847
http://bugs.python.org/13840
http://bugs.python.org/9975
http://bugs.python.org/7777
http://bugs.python.org/13159
http://bugs.python.org/10141
http://bugs.python.org/13070
http://bugs.python.org/12881
http://bugs.python.org/13058
http://bugs.python.org/13013
http://bugs.python.org/13022
http://bugs.python.org/1172711
http://bugs.python.org/12483

callback	object	triggers	the	garbage	collector.
Issue	 #12950:	 Fix	 passing	 file	 descriptors	 in	 multiprocessing,
under	OpenIndiana/Illumos.
Issue	#12764:	Fix	a	crash	in	ctypes	when	the	name	of	a	Structure
field	is	not	a	string.
Issue	 #11241:	 subclasses	 of	 ctypes.Array	 can	 now	 be
subclassed.
Issue	#9651:	Fix	a	crash	when	ctypes.create_string_buffer(0)	was
passed	to	some	functions	like	file.write().
Issue	#10309:	Define	_GNU_SOURCE	so	that	mremap()	gets	the
proper	signature.	Without	this,	architectures	where	sizeof	void*	!=
sizeof	int	are	broken.	Patch	given	by	Hallvard	B	Furuseth.
Issue	#12051:	Fix	segfault	in	json.dumps()	while	encoding	highly-
nested	objects	using	the	C	accelerations.
Issue	#12017:	Fix	 segfault	 in	 json.loads()	while	decoding	highly-
nested	objects	using	the	C	accelerations.
Issue	 #1838:	 Prevent	 segfault	 in	 ctypes,	 when	 _as_parameter_
on	a	class	is	set	to	an	instance	of	the	class.

Tests

Issue	#13125:	Silence	spurious	 test_lib2to3	output	when	 in	non-
verbose	mode.	Patch	by	Mikhail	Novikov.
Issue	#13447:	Add	a	test	 file	 to	host	regression	tests	for	bugs	 in
the	scripts	found	in	the	Tools	directory.
Issue	#10881:	Fix	test_site	failure	with	OS	X	framework	builds.
Issue	 #13901:	 Prevent	 test_distutils	 failures	 on	 OS	 X	 with	 –
enable-shared.
Issue	 #13862:	 Fix	 spurious	 failure	 in	 test_zlib	 due	 to
runtime/compile	time	minor	versions	not	matching.
Issue	 #12804:	 Fix	 test_socket	 and	 test_urllib2net	 failures	 when
running	tests	on	a	system	without	internet	access.
Issue	#13726:	Fix	the	ambiguous	-S	flag	in	regrtest.	It	is	-o/–slow
for	slow	tests.

http://bugs.python.org/12950
http://bugs.python.org/12764
http://bugs.python.org/11241
http://bugs.python.org/9651
http://bugs.python.org/10309
http://bugs.python.org/12051
http://bugs.python.org/12017
http://bugs.python.org/1838
http://bugs.python.org/13125
http://bugs.python.org/13447
http://bugs.python.org/10881
http://bugs.python.org/13901
http://bugs.python.org/13862
http://bugs.python.org/12804
http://bugs.python.org/13726

Issue	 #11659:	 Fix	 ResourceWarning	 in	 test_subprocess
introduced	by	#11459.	Patch	by	Ben	Hayden.
Issue	#11577:	fix	ResourceWarning	triggered	by	improved	binhex
test	coverage
Issue	 #11509:	 Significantly	 increase	 test	 coverage	 of	 fileinput.
Patch	by	Denver	Coneybeare	at	PyCon	2011	Sprints.
Issue	#11689:	Fix	a	variable	scoping	error	in	an	sqlite3	test
Issue	 #13786:	 Remove	 unimplemented	 ‘trace’	 long	 option	 from
regrtest.py.
Issue	#13725:	Fix	 regrtest	 to	 recognize	 the	 documented	 -d	 flag.
Patch	by	Erno	Tukia.
Issue	#13304:	Skip	test	case	if	user	site-packages	disabled	(-s	or
PYTHONNOUSERSITE).	(Patch	by	Carl	Meyer)
Issue	 #5661:	 Add	 a	 test	 for	 ECONNRESET/EPIPE	 handling	 to
test_asyncore.	Patch	by	Xavier	de	Gaye.
Issue	#13218:	Fix	test_ssl	failures	on	Debian/Ubuntu.
Re-enable	lib2to3’s	test_parser.py	tests,	though	with	an	expected
failure	(see	issue	13125).
Issue	 #12656:	 Add	 tests	 for	 IPv6	 and	 Unix	 sockets	 to
test_asyncore.
Issue	#6484:	Add	unit	tests	for	mailcap	module	(patch	by	Gregory
Nofi)
Issue	#11651:	Improve	the	Makefile	test	targets	to	run	more	of	the
test	suite	more	quickly.	The	–multiprocess	option	is	now	enabled
by	default,	 reducing	 the	amount	of	 time	needed	 to	 run	 the	 tests.
“make	 test”	 and	 “make	 quicktest”	 now	 include	 some	 resource-
intensive	tests,	but	no	longer	run	the	test	suite	twice	to	check	for
bugs	 in	 .pyc	 generation.	 Tools/scripts/run_test.py	 provides	 an
easy	 platform-independent	 way	 to	 run	 test	 suite	 with	 sensible
defaults.
Issue	#12331:	The	 test	 suite	 for	 the	packaging	module	can	now
run	from	an	installed	Python.
Issue	 #12331:	 The	 test	 suite	 for	 lib2to3	 can	 now	 run	 from	 an
installed	Python.

http://bugs.python.org/11659
http://bugs.python.org/11577
http://bugs.python.org/11509
http://bugs.python.org/11689
http://bugs.python.org/13786
http://bugs.python.org/13725
http://bugs.python.org/13304
http://bugs.python.org/5661
http://bugs.python.org/13218
http://bugs.python.org/12656
http://bugs.python.org/6484
http://bugs.python.org/11651
http://bugs.python.org/12331
http://bugs.python.org/12331

Issue	 #12626:	 In	 regrtest,	 allow	 to	 filter	 tests	 using	 a	 glob	 filter
with	 the	-m	 (or	--match)	option.	This	works	with	all	 test	 cases
using	the	unittest	module.	This	is	useful	with	long	test	suites	such
as	test_io	or	test_subprocess.
Issue	#12624:	It	 is	now	possible	to	fail	after	the	first	failure	when
running	 in	verbose	mode	(-v	or	-W),	by	using	the	--failfast
(or	-G)	option	to	regrtest.	This	is	useful	with	long	test	suites	such
as	test_io	or	test_subprocess.
Issue	 #12587:	 Correct	 faulty	 test	 file	 and	 reference	 in
test_tokenize.	(Patch	by	Robert	Xiao)
Issue	 #12573:	 Add	 resource	 checks	 for	 dangling	 Thread	 and
Process	objects.
Issue	#12549:	Correct	test_platform	to	not	fail	when	OS	X	returns
‘x86_64’	as	the	processor	type	on	some	Mac	systems.
Skip	 network	 tests	 when	 getaddrinfo()	 returns	 EAI_AGAIN,
meaning	a	temporary	failure	in	name	resolution.
Issue	 #11812:	 Solve	 transient	 socket	 failure	 to	 connect	 to
‘localhost’	in	test_telnetlib.py.
Solved	a	 potential	 deadlock	 in	 test_telnetlib.py.	Related	 to	 issue
#11812.
Avoid	 failing	 in	 test_robotparser	 when	 mueblesmoraleda.com	 is
flaky	and	an	overzealous	DNS	service	(e.g.	OpenDNS)	redirects
to	a	placeholder	Web	site.
Avoid	 failing	 in	 test_urllibnet.test_bad_address	 when	 some
overzealous	DNS	service	(e.g.	OpenDNS)	resolves	a	non-existent
domain	name.	The	test	is	now	skipped	instead.
Issue	 #12440:	 When	 testing	 whether	 some	 bits	 in
SSLContext.options	 can	 be	 reset,	 check	 the	 version	 of	 the
OpenSSL	headers	Python	was	compiled	against,	 rather	 than	 the
runtime	version	of	the	OpenSSL	library.
Issue	 #11512:	 Add	 a	 test	 suite	 for	 the	 cgitb	 module.	 Patch	 by
Robbie	Clemons.
Issue	 #12497:	 Install	 test/data	 to	 prevent	 failures	 of	 the	 various
codecmaps	tests.

http://bugs.python.org/12626
http://bugs.python.org/12624
http://bugs.python.org/12587
http://bugs.python.org/12573
http://bugs.python.org/12549
http://bugs.python.org/11812
http://bugs.python.org/11812
http://bugs.python.org/12440
http://bugs.python.org/11512
http://bugs.python.org/12497

Issue	 #12496:	 Install	 test/capath	 directory	 to	 prevent
test_connect_capath	testcase	failure	in	test_ssl.
Issue	 #12469:	 Run	 wakeup	 and	 pending	 signal	 tests	 in	 a
subprocess	to	run	the	test	in	a	fresh	process	with	only	one	thread
and	to	not	change	signal	handling	of	the	parent	process.
Issue	 #8716:	 Avoid	 crashes	 caused	 by	 Aqua	 Tk	 on	 OSX	when
attempting	 to	 run	 test_tk	 or	 test_ttk_guionly	 under	 a	 username
that	 is	 not	 currently	 logged	 in	 to	 the	 console	 windowserver	 (as
may	be	the	case	under	buildbot	or	ssh).
Issue	 #12407:	 Explicitly	 skip	 test_capi.EmbeddingTest	 under
Windows.
Issue	#12400:	regrtest	-W	doesn’t	rerun	the	tests	twice	anymore,
but	captures	the	output	and	displays	it	on	failure	instead.	regrtest	-
v	doesn’t	print	the	error	twice	anymore	if	there	is	only	one	error.
Issue	 #12141:	 Install	 copies	 of	 template	 C	 module	 file	 so	 that
test_build_ext	 of	 test_distutils	 and	 test_command_build_ext	 of
test_packaging	are	no	longer	silently	skipped	when	run	outside	of
a	build	directory.
Issue	 #8746:	 Add	 additional	 tests	 for	 os.chflags()	 and
os.lchflags().	Patch	by	Garrett	Cooper.
Issue	 #10736:	 Fix	 test_ttk	 test_widgets	 failures	 with	 Cocoa	 Tk
8.5.9	2.8	+	on	Mac	OS	X.	(Patch	by	Ronald	Oussoren)
Issue	 #12057:	 Add	 tests	 for	 ISO	 2022	 codecs	 (iso2022_jp,
iso2022_jp_2,	iso2022_kr).
Issue	#12096:	Fix	a	race	condition	in	test_threading.test_waitfor().
Patch	written	by	Charles-François	Natali.
Issue	#11614:	import	__hello__	prints	“Hello	World!”.	Patch	written
by	Andreas	Stührk.
Issue	#5723:	Improve	 json	tests	to	be	executed	with	and	without
accelerations.
Issue	#12041:	Make	test_wait3	more	robust.
Issue	 #11873:	Change	 regex	 in	 test_compileall	 to	 fix	 occasional
failures	 when	 when	 the	 randomly	 generated	 temporary	 path
happened	to	match	the	regex.

http://bugs.python.org/12496
http://bugs.python.org/12469
http://bugs.python.org/8716
http://bugs.python.org/12407
http://bugs.python.org/12400
http://bugs.python.org/12141
http://bugs.python.org/8746
http://bugs.python.org/10736
http://bugs.python.org/12057
http://bugs.python.org/12096
http://bugs.python.org/11614
http://bugs.python.org/5723
http://bugs.python.org/12041
http://bugs.python.org/11873

Issue	 #11958:	 Fix	 FTP	 tests	 for	 IPv6,	 bind	 to	 ”::1”	 instead	 of
“localhost”.	Patch	written	by	Charles-Francois	Natali.
Issue	 #8407,	 #11859:	 Fix	 tests	 of	 test_io	 using	 threads	 and	 an
alarm:	use	pthread_sigmask()	to	ensure	that	the	SIGALRM	signal
is	received	by	the	main	thread.
Issue	#11811:	Factor	out	detection	of	IPv6	support	on	the	current
host	and	make	 it	available	as	test.support.IPV6_ENABLED.
Patch	by	Charles-François	Natali.
Issue	#10914:	Add	a	minimal	embedding	test	to	test_capi.
Issue	 #11223:	 Skip	 test_lock_acquire_interruption()	 and
test_rlock_acquire_interruption()	 of	 test_threadsignals	 if	 a	 thread
lock	is	implemented	using	a	POSIX	mutex	and	a	POSIX	condition
variable.	 A	POSIX	 condition	 variable	 cannot	 be	 interrupted	 by	 a
signal	(e.g.	on	Linux,	the	futex	system	call	is	restarted).
Issue	 #11790:	 Fix	 sporadic	 failures	 in
test_multiprocessing.WithProcessesTestCondition.
Fix	 possible	 “file	 already	 exists”	 error	 when	 running	 the	 tests	 in
parallel.
Issue	#11719:	Fix	message	about	unexpected	test_msilib	skip	on
non-Windows	platforms.	Patch	by	Nadeem	Vawda.
Issue	 #11727:	 Add	 a	 –timeout	 option	 to	 regrtest:	 if	 a	 test	 takes
more	than	TIMEOUT	seconds,	dumps	the	traceback	of	all	threads
and	exits.
Issue	#11653:	fix	-W	with	-j	in	regrtest.
The	email	 test	suite	now	lives	 in	the	Lib/test/test_email	package.
The	test	harness	code	has	also	been	modernized	to	allow	use	of
new	unittest	features.
regrtest	now	discovers	test	packages	as	well	as	test	modules.
Issue	 #11577:	 improve	 test	 coverage	 of	 binhex.py.	 Patch	 by
Arkady	Koplyarov.
New	 test_crashers	 added	 to	 exercise	 the	 scripts	 in	 the
Lib/test/crashers	directory	and	confirm	they	fail	as	expected
Issue	#11578:	added	test	for	the	timeit	module.	Patch	by	Michael
Henry.

http://bugs.python.org/11958
http://bugs.python.org/8407
http://bugs.python.org/11811
http://bugs.python.org/10914
http://bugs.python.org/11223
http://bugs.python.org/11790
http://bugs.python.org/11719
http://bugs.python.org/11727
http://bugs.python.org/11653
http://bugs.python.org/11577
http://bugs.python.org/11578

Issue	 #11503:	 improve	 test	 coverage	 of	 posixpath.py.	 Patch	 by
Evan	Dandrea.
Issue	 #11505:	 improves	 test	 coverage	 of	 string.py,	 increases
granularity	of	string.Formatter	tests.	Initial	patch	by	Alicia	Arlen.
Issue	#11548:	 Improve	test	coverage	of	 the	shutil	module.	Patch
by	Evan	Dandrea.
Issue	#11554:	Reactivated	test_email_codecs.
Issue	#11505:	improves	test	coverage	of	string.py.	Patch	by	Alicia
Arlen
Issue	 #11490:	 test_subprocess.test_leaking_fds_on_error	 no
longer	 gives	 a	 false	 positive	 if	 the	 last	 directory	 in	 the	 path	 is
inaccessible.
Issue	 #11223:	 Fix	 test_threadsignals	 to	 fail,	 not	 hang,	when	 the
non-semaphore	implementation	of	locks	is	used	under	POSIX.
Issue	#10911:	Add	tests	on	CGI	with	non-ASCII	characters.	Patch
written	by	Pierre	Quentel.
Issue	 #9931:	 Fix	 hangs	 in	 GUI	 tests	 under	 Windows	 in	 certain
conditions.	Patch	by	Hirokazu	Yamamoto.
Issue	#10512:	Properly	close	sockets	under	test.test_cgi.
Issue	#10992:	Make	tests	pass	under	coverage.
Issue	 #10826:	 Prevent	 sporadic	 failure	 in	 test_subprocess	 on
Solaris	due	to	open	door	files.
Issue	#10990:	Prevent	tests	from	clobbering	a	set	trace	function.

C-API

Issue	#13452:	PyUnicode_EncodeDecimal()	doesn’t	support	error
handlers	different	than	“strict”	anymore.	The	caller	was	unable	to
compute	 the	 size	 of	 the	 output	 buffer:	 it	 depends	 on	 the	 error
handler.
Issue	 #13560:	 Add	 PyUnicode_DecodeLocale(),
PyUnicode_DecodeLocaleAndSize()	 and
PyUnicode_EncodeLocale()	 functions	 to	 the	 C	 API	 to
decode/encode	from/to	the	current	locale	encoding.

http://bugs.python.org/11503
http://bugs.python.org/11505
http://bugs.python.org/11548
http://bugs.python.org/11554
http://bugs.python.org/11505
http://bugs.python.org/11490
http://bugs.python.org/11223
http://bugs.python.org/10911
http://bugs.python.org/9931
http://bugs.python.org/10512
http://bugs.python.org/10992
http://bugs.python.org/10826
http://bugs.python.org/10990
http://bugs.python.org/13452
http://bugs.python.org/13560

Issue	 #10831:	 PyUnicode_FromFormat()	 supports	 %li,	 %lli	 and
%zi	formats.
Issue	 #11246:	 Fix	 PyUnicode_FromFormat(“%V”)	 to	 decode	 the
byte	string	from	UTF-8	(with	replace	error	handler)	instead	of	ISO-
8859-1	(in	strict	mode).	Patch	written	by	Ray	Allen.
Issue	 #10830:	 Fix	 PyUnicode_FromFormatV(“%c”)	 for	 non-BMP
characters	on	narrow	build.
Add	 PyObject_GenericGetDict	 and	 PyObject_GeneriSetDict.
They	 are	 generic	 implementations	 for	 the	 getter	 and	 setter	 of	 a
__dict__	descriptor	of	C	types.
Issue	 #13727:	 Add	 3	 macros	 to	 access	 PyDateTime_Delta
members:	 PyDateTime_DELTA_GET_DAYS,
PyDateTime_DELTA_GET_SECONDS,
PyDateTime_DELTA_GET_MICROSECONDS.
Issue	 #10542:	 Add	 4	 macros	 to	 work	 with	 surrogates:
Py_UNICODE_IS_SURROGATE,
Py_UNICODE_IS_HIGH_SURROGATE,
Py_UNICODE_IS_LOW_SURROGATE,
Py_UNICODE_JOIN_SURROGATES.
Issue	#12724:	Add	Py_RETURN_NOTIMPLEMENTED	macro	for
returning	NotImplemented.
PY_PATCHLEVEL_REVISION	 has	 been	 removed,	 since	 it’s
meaningless	with	Mercurial.
Issue	#12173:	The	first	argument	of	PyImport_ImportModuleLevel
is	now	const	char	*	instead	of	char	*.
Issue	#12380:	PyArg_ParseTuple	now	accepts	a	bytearray	for	the
‘c’	format.

Documentation

Issue	 #13989:	 Document	 that	 GzipFile	 does	 not	 support	 text
mode,	and	give	a	more	helpful	error	message	when	opened	with
an	invalid	mode	string.
Issue	 #13921:	 Undocument	 and	 clean	 up

http://bugs.python.org/10831
http://bugs.python.org/11246
http://bugs.python.org/10830
http://bugs.python.org/13727
http://bugs.python.org/10542
http://bugs.python.org/12724
http://bugs.python.org/12173
http://bugs.python.org/12380
http://bugs.python.org/13989
http://bugs.python.org/13921

sqlite3.OptimizedUnicode,	 which	 is	 obsolete	 in	 Python	 3.x.	 It’s
now	aliased	to	str	for	backwards	compatibility.
Issue	 #12102:	 Document	 that	 buffered	 files	 must	 be	 flushed
before	 being	 used	 with	 mmap.	 Patch	 by	 Steffen	 Daode
Nurpmeso.
Issue	 #8982:	 Improve	 the	 documentation	 for	 the	 argparse
Namespace	object.
Issue	 #9343:	 Document	 that	 argparse	 parent	 parsers	 must	 be
configured	before	their	children.
Issue	#13498:	Clarify	docs	of	os.makedirs()’s	exist_ok	argument.
Done	with	great	native-speaker	help	from	R.	David	Murray.
Issues	 #13491	 and	 #13995:	 Fix	 many	 errors	 in	 sqlite3
documentation.	Initial	patch	for	#13491	by	Johannes	Vogel.
Issue	#13402:	Document	absoluteness	of	sys.executable.
Issue	#13883:	PYTHONCASEOK	also	works	on	OS	X.
Issue	 #9021:	 Add	 an	 introduction	 to	 the	 copy	 module
documentation.
Issue	 #6005:	 Examples	 in	 the	 socket	 library	 documentation	 use
sendall,	where	relevant,	instead	send	method.
Issue	#12798:	Updated	the	mimetypes	documentation.
Issue	 #12949:	 Document	 the	 kwonlyargcount	 argument	 for	 the
PyCode_New	C	API	function.
Issue	#13513:	Fix	io.IOBase	documentation	to	correctly	link	to	the
io.IOBase.readline	method	instead	of	the	readline	module.
Issue	 #13237:	 Reorganise	 subprocess	 documentation	 to
emphasise	 convenience	 functions	 and	 the	 most	 commonly
needed	arguments	to	Popen.
Issue	#13141:	Demonstrate	recommended	style	 for	socketserver
examples.
Issue	#11818:	Fix	tempfile	examples	for	Python	3.

(For	information	about	older	versions,	consult	the	HISTORY	file.)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	What’s	New	in	Python	»

http://bugs.python.org/12102
http://bugs.python.org/8982
http://bugs.python.org/9343
http://bugs.python.org/13498
http://bugs.python.org/13402
http://bugs.python.org/13883
http://bugs.python.org/9021
http://bugs.python.org/6005
http://bugs.python.org/12798
http://bugs.python.org/12949
http://bugs.python.org/13513
http://bugs.python.org/13237
http://bugs.python.org/13141
http://bugs.python.org/11818
http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

1.	Whetting	Your	Appetite
If	 you	 do	much	 work	 on	 computers,	 eventually	 you	 find	 that	 there’s
some	 task	 you’d	 like	 to	 automate.	 For	 example,	 you	 may	 wish	 to
perform	 a	 search-and-replace	 over	 a	 large	 number	 of	 text	 files,	 or
rename	 and	 rearrange	 a	 bunch	 of	 photo	 files	 in	 a	 complicated	way.
Perhaps	you’d	like	to	write	a	small	custom	database,	or	a	specialized
GUI	application,	or	a	simple	game.

If	you’re	a	professional	software	developer,	you	may	have	to	work	with
several	 C/C++/Java	 libraries	 but	 find	 the	 usual	 write/compile/test/re-
compile	cycle	is	too	slow.	Perhaps	you’re	writing	a	test	suite	for	such	a
library	 and	 find	 writing	 the	 testing	 code	 a	 tedious	 task.	 Or	 maybe
you’ve	written	a	program	 that	 could	use	an	extension	 language,	and
you	 don’t	 want	 to	 design	 and	 implement	 a	 whole	 new	 language	 for
your	application.

Python	is	just	the	language	for	you.

You	could	write	a	Unix	shell	script	or	Windows	batch	files	for	some	of
these	 tasks,	 but	 shell	 scripts	 are	 best	 at	 moving	 around	 files	 and
changing	text	data,	not	well-suited	for	GUI	applications	or	games.	You
could	write	a	C/C++/Java	program,	but	it	can	take	a	lot	of	development
time	 to	 get	 even	 a	 first-draft	 program.	 Python	 is	 simpler	 to	 use,
available	 on	Windows,	Mac	OS	X,	 and	Unix	 operating	 systems,	 and
will	help	you	get	the	job	done	more	quickly.

Python	is	simple	to	use,	but	it	is	a	real	programming	language,	offering
much	more	structure	and	support	for	large	programs	than	shell	scripts
or	 batch	 files	 can	offer.	On	 the	other	hand,	Python	also	offers	much
more	error	checking	than	C,	and,	being	a	very-high-level	 language,	 it
has	 high-level	 data	 types	 built	 in,	 such	 as	 flexible	 arrays	 and

dictionaries.	 Because	 of	 its	 more	 general	 data	 types	 Python	 is
applicable	 to	 a	much	 larger	 problem	domain	 than	Awk	or	 even	Perl,
yet	many	things	are	at	least	as	easy	in	Python	as	in	those	languages.

Python	 allows	 you	 to	 split	 your	 program	 into	 modules	 that	 can	 be
reused	 in	other	Python	programs.	 It	 comes	with	a	 large	collection	of
standard	modules	that	you	can	use	as	the	basis	of	your	programs	—
or	as	examples	to	start	learning	to	program	in	Python.	Some	of	these
modules	 provide	 things	 like	 file	 I/O,	 system	 calls,	 sockets,	 and	 even
interfaces	to	graphical	user	interface	toolkits	like	Tk.

Python	 is	an	 interpreted	 language,	which	can	save	you	considerable
time	during	program	development	because	no	compilation	and	linking
is	necessary.	The	interpreter	can	be	used	interactively,	which	makes	it
easy	to	experiment	with	features	of	the	language,	to	write	throw-away
programs,	or	to	test	functions	during	bottom-up	program	development.
It	is	also	a	handy	desk	calculator.

Python	 enables	 programs	 to	 be	 written	 compactly	 and	 readably.
Programs	written	in	Python	are	typically	much	shorter	than	equivalent
C,	C++,	or	Java	programs,	for	several	reasons:

the	high-level	data	types	allow	you	to	express	complex	operations
in	a	single	statement;
statement	 grouping	 is	 done	 by	 indentation	 instead	 of	 beginning
and	ending	brackets;
no	variable	or	argument	declarations	are	necessary.

Python	is	extensible:	if	you	know	how	to	program	in	C	it	is	easy	to	add
a	new	built-in	 function	or	module	 to	 the	 interpreter,	 either	 to	perform
critical	 operations	 at	maximum	speed,	 or	 to	 link	Python	 programs	 to
libraries	that	may	only	be	available	in	binary	form	(such	as	a	vendor-
specific	graphics	library).	Once	you	are	really	hooked,	you	can	link	the

Python	 interpreter	 into	 an	 application	 written	 in	 C	 and	 use	 it	 as	 an
extension	or	command	language	for	that	application.

By	 the	 way,	 the	 language	 is	 named	 after	 the	 BBC	 show	 “Monty
Python’s	 Flying	 Circus”	 and	 has	 nothing	 to	 do	 with	 reptiles.	 Making
references	to	Monty	Python	skits	in	documentation	is	not	only	allowed,
it	is	encouraged!

Now	that	you	are	all	excited	about	Python,	you’ll	want	to	examine	it	in
some	more	detail.	Since	the	best	way	to	learn	a	language	is	to	use	it,
the	tutorial	invites	you	to	play	with	the	Python	interpreter	as	you	read.

In	 the	 next	 chapter,	 the	 mechanics	 of	 using	 the	 interpreter	 are
explained.	This	is	rather	mundane	information,	but	essential	for	trying
out	the	examples	shown	later.

The	 rest	 of	 the	 tutorial	 introduces	 various	 features	 of	 the	 Python
language	 and	 system	 through	 examples,	 beginning	 with	 simple
expressions,	 statements	 and	 data	 types,	 through	 functions	 and
modules,	and	finally	touching	upon	advanced	concepts	like	exceptions
and	user-defined	classes.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

2.	Using	the	Python	Interpreter

2.1.	Invoking	the	Interpreter

The	 Python	 interpreter	 is	 usually	 installed	 as
/usr/local/bin/python3.4	 on	 those	 machines	 where	 it	 is
available;	putting	/usr/local/bin	 in	your	Unix	shell’s	search	path
makes	it	possible	to	start	it	by	typing	the	command:

python3.4

to	the	shell.	[1]	Since	the	choice	of	the	directory	where	the	interpreter
lives	 is	 an	 installation	 option,	 other	 places	 are	 possible;	 check	 with
your	 local	 Python	 guru	 or	 system	 administrator.	 (E.g.,
/usr/local/python	is	a	popular	alternative	location.)

On	 Windows	 machines,	 the	 Python	 installation	 is	 usually	 placed	 in
C:\Python34,	 though	you	can	change	this	when	you’re	running	the
installer.	To	add	this	directory	to	your	path,	you	can	type	the	following
command	into	the	command	prompt	in	a	DOS	box:

set	path=%path%;C:\python34

Typing	an	end-of-file	character	(Control-D	on	Unix,	Control-Z	on
Windows)	at	 the	primary	prompt	causes	 the	 interpreter	 to	exit	with	a
zero	 exit	 status.	 If	 that	 doesn’t	 work,	 you	 can	 exit	 the	 interpreter	 by
typing	the	following	command:	quit().

The	interpreter’s	line-editing	features	usually	aren’t	very	sophisticated.
On	Unix,	whoever	 installed	the	 interpreter	may	have	enabled	support
for	 the	 GNU	 readline	 library,	 which	 adds	 more	 elaborate	 interactive
editing	 and	 history	 features.	 Perhaps	 the	 quickest	 check	 to	 see
whether	command	 line	editing	 is	supported	 is	 typing	Control-P	 to	 the
first	 Python	 prompt	 you	 get.	 If	 it	 beeps,	 you	 have	 command	 line

editing;	see	Appendix	Interactive	Input	Editing	and	History	Substitution
for	an	introduction	to	the	keys.	If	nothing	appears	to	happen,	or	if	^P	is
echoed,	command	line	editing	isn’t	available;	you’ll	only	be	able	to	use
backspace	to	remove	characters	from	the	current	line.

The	 interpreter	 operates	 somewhat	 like	 the	 Unix	 shell:	 when	 called
with	 standard	 input	 connected	 to	a	 tty	 device,	 it	 reads	and	executes
commands	interactively;	when	called	with	a	file	name	argument	or	with
a	file	as	standard	input,	it	reads	and	executes	a	script	from	that	file.

A	 second	 way	 of	 starting	 the	 interpreter	 is	 python	 -c	 command
[arg]	...,	which	executes	the	statement(s)	in	command,	analogous
to	the	shell’s	-c	option.	Since	Python	statements	often	contain	spaces
or	other	characters	that	are	special	to	the	shell,	it	is	usually	advised	to
quote	command	in	its	entirety	with	single	quotes.

Some	 Python	 modules	 are	 also	 useful	 as	 scripts.	 These	 can	 be
invoked	using	python	-m	module	[arg]	...,	which	executes	the
source	 file	 for	module	 as	 if	 you	 had	 spelled	 out	 its	 full	 name	on	 the
command	line.

When	a	script	file	is	used,	it	is	sometimes	useful	to	be	able	to	run	the
script	 and	 enter	 interactive	 mode	 afterwards.	 This	 can	 be	 done	 by
passing	-i	before	the	script.

2.1.1.	Argument	Passing

When	 known	 to	 the	 interpreter,	 the	 script	 name	 and	 additional
arguments	 thereafter	are	 turned	 into	a	 list	of	strings	and	assigned	 to
the	 argv	 variable	 in	 the	 sys	 module.	 You	 can	 access	 this	 list	 by
executing	import	sys.	The	length	of	the	list	is	at	least	one;	when	no
script	and	no	arguments	are	given,	sys.argv[0]	is	an	empty	string.

When	 the	 script	 name	 is	 given	 as	 '-'	 (meaning	 standard	 input),
sys.argv[0]	 is	 set	 to	 '-'.	 When	 -c	 command	 is	 used,
sys.argv[0]	 is	 set	 to	 '-c'.	 When	 -m	 module	 is	 used,
sys.argv[0]	is	set	 to	 the	full	name	of	 the	 located	module.	Options
found	 after	 -c	 command	 or	 -m	 module	 are	 not	 consumed	 by	 the
Python	 interpreter’s	 option	 processing	 but	 left	 in	 sys.argv	 for	 the
command	or	module	to	handle.

2.1.2.	Interactive	Mode

When	commands	are	 read	 from	a	 tty,	 the	 interpreter	 is	 said	 to	be	 in
interactive	mode.	 In	 this	mode	 it	prompts	 for	 the	next	command	with
the	 primary	 prompt,	 usually	 three	 greater-than	 signs	 (>>>);	 for
continuation	 lines	 it	 prompts	 with	 the	 secondary	 prompt,	 by	 default
three	dots	(...).	The	interpreter	prints	a	welcome	message	stating	its
version	number	and	a	copyright	notice	before	printing	the	first	prompt:

$	python3.4

Python	3.4	(default,	Sep	24	2012,	09:25:04)

[GCC	4.6.3]	on	linux2

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>

Continuation	lines	are	needed	when	entering	a	multi-line	construct.	As
an	example,	take	a	look	at	this	if	statement:

>>>	the_world_is_flat	=	1

>>>	if	the_world_is_flat:

...					print("Be	careful	not	to	fall	off!")

...

Be	careful	not	to	fall	off!

2.2.	The	Interpreter	and	Its	Environment

2.2.1.	Error	Handling

When	an	error	occurs,	 the	 interpreter	prints	an	error	message	and	a
stack	trace.	In	interactive	mode,	it	then	returns	to	the	primary	prompt;
when	 input	 came	 from	a	 file,	 it	 exits	with	 a	 nonzero	 exit	 status	 after
printing	the	stack	trace.	(Exceptions	handled	by	an	except	clause	in
a	 try	 statement	 are	 not	 errors	 in	 this	 context.)	 Some	 errors	 are
unconditionally	fatal	and	cause	an	exit	with	a	nonzero	exit;	this	applies
to	internal	inconsistencies	and	some	cases	of	running	out	of	memory.
All	 error	messages	 are	 written	 to	 the	 standard	 error	 stream;	 normal
output	from	executed	commands	is	written	to	standard	output.

Typing	 the	 interrupt	 character	 (usually	 Control-C	 or	 DEL)	 to	 the
primary	 or	 secondary	 prompt	 cancels	 the	 input	 and	 returns	 to	 the
primary	prompt.	[2]	Typing	an	interrupt	while	a	command	is	executing
raises	the	KeyboardInterrupt	exception,	which	may	be	handled	by
a	try	statement.

2.2.2.	Executable	Python	Scripts

On	 BSD’ish	 Unix	 systems,	 Python	 scripts	 can	 be	 made	 directly
executable,	like	shell	scripts,	by	putting	the	line

#!	/usr/bin/env	python3.4

(assuming	that	the	interpreter	is	on	the	user’s	PATH)	at	the	beginning
of	the	script	and	giving	the	file	an	executable	mode.	The	#!	must	be
the	 first	 two	 characters	 of	 the	 file.	 On	 some	 platforms,	 this	 first	 line
must	 end	 with	 a	 Unix-style	 line	 ending	 ('\n'),	 not	 a	 Windows

('\r\n')	line	ending.	Note	that	the	hash,	or	pound,	character,	'#',	is
used	to	start	a	comment	in	Python.

The	script	can	be	given	an	executable	mode,	or	permission,	using	the
chmod	command:

$	chmod	+x	myscript.py

On	Windows	systems,	there	is	no	notion	of	an	“executable	mode”.	The
Python	 installer	automatically	associates	.py	 files	with	python.exe
so	 that	 a	 double-click	 on	 a	 Python	 file	 will	 run	 it	 as	 a	 script.	 The
extension	 can	 also	 be	 .pyw,	 in	 that	 case,	 the	 console	 window	 that
normally	appears	is	suppressed.

2.2.3.	Source	Code	Encoding

By	 default,	 Python	 source	 files	 are	 treated	 as	 encoded	 in	UTF-8.	 In
that	encoding,	characters	of	most	languages	in	the	world	can	be	used
simultaneously	in	string	literals,	 identifiers	and	comments	—	although
the	 standard	 library	 only	 uses	 ASCII	 characters	 for	 identifiers,	 a
convention	 that	any	portable	code	should	 follow.	To	display	all	 these
characters	properly,	your	editor	must	recognize	that	the	file	 is	UTF-8,
and	it	must	use	a	font	that	supports	all	the	characters	in	the	file.

It	 is	 also	 possible	 to	 specify	 a	 different	 encoding	 for	 source	 files.	 In
order	to	do	this,	put	one	more	special	comment	line	right	after	the	#!
line	to	define	the	source	file	encoding:

#	-*-	coding:	encoding	-*-

With	 that	 declaration,	 everything	 in	 the	 source	 file	will	 be	 treated	 as
having	 the	encoding	encoding	 instead	 of	UTF-8.	 The	 list	 of	 possible

encodings	 can	 be	 found	 in	 the	 Python	 Library	 Reference,	 in	 the
section	on	codecs.

For	example,	if	your	editor	of	choice	does	not	support	UTF-8	encoded
files	 and	 insists	 on	 using	 some	 other	 encoding,	 say	Windows-1252,
you	can	write:

#	-*-	coding:	cp-1252	-*-

and	still	 use	all	 characters	 in	 the	Windows-1252	character	 set	 in	 the
source	 files.	 The	 special	 encoding	 comment	 must	 be	 in	 the	 first	 or
second	line	within	the	file.

2.2.4.	The	Interactive	Startup	File

When	you	use	Python	interactively,	it	is	frequently	handy	to	have	some
standard	 commands	 executed	 every	 time	 the	 interpreter	 is	 started.
You	 can	 do	 this	 by	 setting	 an	 environment	 variable	 named
PYTHONSTARTUP	 to	 the	 name	 of	 a	 file	 containing	 your	 start-up
commands.	This	is	similar	to	the	.profile	feature	of	the	Unix	shells.

This	 file	 is	 only	 read	 in	 interactive	 sessions,	 not	when	Python	 reads
commands	 from	 a	 script,	 and	 not	 when	 /dev/tty	 is	 given	 as	 the
explicit	 source	 of	 commands	 (which	 otherwise	 behaves	 like	 an
interactive	 session).	 It	 is	 executed	 in	 the	 same	 namespace	 where
interactive	commands	are	executed,	so	 that	objects	 that	 it	defines	or
imports	 can	 be	 used	 without	 qualification	 in	 the	 interactive	 session.
You	can	also	change	the	prompts	sys.ps1	and	sys.ps2	in	this	file.

If	you	want	to	read	an	additional	start-up	file	from	the	current	directory,
you	 can	 program	 this	 in	 the	 global	 start-up	 file	 using	 code	 like	 if
os.path.isfile('.pythonrc.py'):

exec(open('.pythonrc.py').read()).	 If	 you	 want	 to	 use	 the
startup	file	in	a	script,	you	must	do	this	explicitly	in	the	script:

import	os

filename	=	os.environ.get('PYTHONSTARTUP')

if	filename	and	os.path.isfile(filename):

				exec(open(filename).read())

2.2.5.	The	Customization	Modules

Python	provides	 two	hooks	 to	 let	you	customize	 it:	sitecustomize
and	usercustomize.	To	see	how	it	works,	you	need	first	to	find	the
location	of	your	user	site-packages	directory.	Start	Python	and	run	this
code:

>>>	import	site

>>>	site.getusersitepackages()

'/home/user/.local/lib/python3.2/site-packages'

Now	 you	 can	 create	 a	 file	 named	 usercustomize.py	 in	 that
directory	and	put	anything	you	want	in	it.	It	will	affect	every	invocation
of	 Python,	 unless	 it	 is	 started	 with	 the	 -s	 option	 to	 disable	 the
automatic	import.

sitecustomize	works	 in	 the	 same	way,	but	 is	 typically	 created	by
an	administrator	of	the	computer	in	the	global	site-packages	directory,
and	 is	 imported	 before	 usercustomize.	 See	 the	 documentation	 of
the	site	module	for	more	details.

Footnotes

[1]
On	Unix,	the	Python	3.x	interpreter	is	by	default	not	installed
with	the	executable	named	python,	so	that	it	does	not	conflict

with	a	simultaneously	installed	Python	2.x	executable.

[2] A	problem	with	the	GNU	Readline	package	may	prevent	this.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

3.	An	Informal	Introduction	to
Python
In	 the	 following	 examples,	 input	 and	 output	 are	 distinguished	 by	 the
presence	or	absence	of	prompts	(>>>	and	...):	to	repeat	the	example,
you	must	type	everything	after	the	prompt,	when	the	prompt	appears;
lines	 that	do	not	begin	with	a	prompt	are	output	 from	 the	 interpreter.
Note	that	a	secondary	prompt	on	a	line	by	itself	in	an	example	means
you	must	type	a	blank	line;	this	is	used	to	end	a	multi-line	command.

Many	 of	 the	 examples	 in	 this	 manual,	 even	 those	 entered	 at	 the
interactive	prompt,	include	comments.	Comments	in	Python	start	with
the	hash	character,	 #,	 and	 extend	 to	 the	 end	of	 the	 physical	 line.	A
comment	may	appear	at	the	start	of	a	line	or	following	whitespace	or
code,	 but	 not	 within	 a	 string	 literal.	 A	 hash	 character	 within	 a	 string
literal	is	just	a	hash	character.	Since	comments	are	to	clarify	code	and
are	 not	 interpreted	 by	 Python,	 they	 may	 be	 omitted	 when	 typing	 in
examples.

Some	examples:

#	this	is	the	first	comment

spam	=	1		#	and	this	is	the	second	comment

										#	...	and	now	a	third!

text	=	"#	This	is	not	a	comment	because	it's	inside	quotes."

3.1.	Using	Python	as	a	Calculator

Let’s	try	some	simple	Python	commands.	Start	the	interpreter	and	wait
for	the	primary	prompt,	>>>.	(It	shouldn’t	take	long.)

3.1.1.	Numbers

The	interpreter	acts	as	a	simple	calculator:	you	can	type	an	expression
at	it	and	it	will	write	the	value.	Expression	syntax	is	straightforward:	the
operators	 +,	 -,	 *	 and	 /	work	 just	 like	 in	most	 other	 languages	 (for
example,	Pascal	 or	C);	 parentheses	 (())	 can	 be	 used	 for	 grouping.
For	example:

>>>	2	+	2

4

>>>	50	-	5*6

20

>>>	(50	-	5*6)	/	4

5.0

>>>	8	/	5		#	division	always	returns	a	floating	point	number

1.6

The	 integer	numbers	(e.g.	2,	4,	20)	have	type	int,	 the	ones	with	a
fractional	 part	 (e.g.	 5.0,	 1.6)	 have	 type	 float.	We	 will	 see	more
about	numeric	types	later	in	the	tutorial.

Division	 (/)	 always	 returns	 a	 float.	 To	 do	 floor	 division	 and	 get	 an
integer	 result	 (discarding	 any	 fractional	 result)	 you	 can	 use	 the	 //
operator;	to	calculate	the	remainder	you	can	use	%:

>>>	17	/	3		#	classic	division	returns	a	float

5.666666666666667

>>>

>>>	17	//	3		#	floor	division	discards	the	fractional	part

5

>>>	17	%	3		#	the	%	operator	returns	the	remainder	of	the	division

2

>>>	5	*	3	+	2		#	result	*	divisor	+	remainder

17

With	Python,	it	is	possible	to	use	the	**	operator	to	calculate	powers
[1]:

>>>	5	**	2		#	5	squared

25

>>>	2	**	7		#	2	to	the	power	of	7

128

The	equal	sign	(=)	is	used	to	assign	a	value	to	a	variable.	Afterwards,
no	result	is	displayed	before	the	next	interactive	prompt:

>>>	width	=	20

>>>	height	=	5	*	9

>>>	width	*	height

900

If	a	variable	is	not	“defined”	(assigned	a	value),	trying	to	use	it	will	give
you	an	error:

>>>	n		#	try	to	access	an	undefined	variable

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

NameError:	name	'n'	is	not	defined

There	 is	 full	 support	 for	 floating	 point;	 operators	 with	 mixed	 type

operands	convert	the	integer	operand	to	floating	point:

>>>	3	*	3.75	/	1.5

7.5

>>>	7.0	/	2

3.5

In	 interactive	 mode,	 the	 last	 printed	 expression	 is	 assigned	 to	 the
variable	 _.	 This	 means	 that	 when	 you	 are	 using	 Python	 as	 a	 desk
calculator,	it	is	somewhat	easier	to	continue	calculations,	for	example:

>>>	tax	=	12.5	/	100

>>>	price	=	100.50

>>>	price	*	tax

12.5625

>>>	price	+	_

113.0625

>>>	round(_,	2)

113.06

This	 variable	 should	 be	 treated	 as	 read-only	 by	 the	 user.	 Don’t
explicitly	assign	a	value	to	it	—	you	would	create	an	independent	local
variable	 with	 the	 same	 name	 masking	 the	 built-in	 variable	 with	 its
magic	behavior.

In	 addition	 to	 int	 and	 float,	 Python	 supports	 other	 types	 of
numbers,	such	as	Decimal	and	Fraction.	Python	also	has	built-in
support	 for	complex	numbers,	and	uses	 the	j	or	J	 suffix	 to	 indicate
the	imaginary	part	(e.g.	3+5j).

3.1.2.	Strings

Besides	numbers,	Python	can	also	manipulate	strings,	which	can	be

expressed	 in	 several	 ways.	 They	 can	 be	 enclosed	 in	 single	 quotes
('...')	or	double	quotes	("...")	with	the	same	result	[2].	\	can	be
used	to	escape	quotes:

>>>	'spam	eggs'		#	single	quotes

'spam	eggs'

>>>	'doesn\'t'		#	use	\'	to	escape	the	single	quote...

"doesn't"

>>>	"doesn't"		#	...or	use	double	quotes	instead

"doesn't"

>>>	'"Yes,"	he	said.'

'"Yes,"	he	said.'

>>>	"\"Yes,\"	he	said."

'"Yes,"	he	said.'

>>>	'"Isn\'t,"	she	said.'

'"Isn\'t,"	she	said.'

In	 the	 interactive	 interpreter,	 the	 output	 string	 is	 enclosed	 in	 quotes
and	special	characters	are	escaped	with	backslashes.	While	this	might
sometimes	 look	 different	 from	 the	 input	 (the	 enclosing	 quotes	 could
change),	 the	 two	 strings	 are	 equivalent.	 The	 string	 is	 enclosed	 in
double	 quotes	 if	 the	 string	 contains	 a	 single	 quote	 and	 no	 double
quotes,	 otherwise	 it	 is	 enclosed	 in	 single	 quotes.	 The	 print()
function	produces	a	more	 readable	output,	 by	omitting	 the	enclosing
quotes	and	by	printing	escaped	and	special	characters:

>>>	'"Isn\'t,"	she	said.'

'"Isn\'t,"	she	said.'

>>>	print('"Isn\'t,"	she	said.')

"Isn't,"	she	said.

>>>	s	=	'First	line.\nSecond	line.'		#	\n	means	newline

>>>	s		#	without	print(),	\n	is	included	in	the	output

'First	line.\nSecond	line.'

>>>	print(s)		#	with	print(),	\n	produces	a	new	line

First	line.

Second	line.

If	you	don’t	want	characters	prefaced	by	\	to	be	interpreted	as	special
characters,	 you	 can	 use	 raw	 strings	 by	 adding	 an	 r	 before	 the	 first
quote:

>>>	print('C:\some\name')		#	here	\n	means	newline!

C:\some

ame

>>>	print(r'C:\some\name')		#	note	the	r	before	the	quote

C:\some\name

String	literals	can	span	multiple	 lines.	One	way	is	using	triple-quotes:
"""..."""	or	'''...'''.	End	of	lines	are	automatically	included	in
the	string,	but	it’s	possible	to	prevent	this	by	adding	a	\	at	the	end	of
the	line.	The	following	example:

print("""\

Usage:	thingy	[OPTIONS]

					-h																								Display	this	usage	message

					-H	hostname															Hostname	to	connect	to

""")

produces	 the	 following	 output	 (note	 that	 the	 initial	 newline	 is	 not
included):

Usage:	thingy	[OPTIONS]

					-h																								Display	this	usage	message

					-H	hostname															Hostname	to	connect	to

Strings	can	be	concatenated	(glued	together)	with	the	+	operator,	and

repeated	with	*:

>>>	#	3	times	'un',	followed	by	'ium'

>>>	3	*	'un'	+	'ium'

'unununium'

Two	 or	 more	 string	 literals	 (i.e.	 the	 ones	 enclosed	 between	 quotes)
next	to	each	other	are	automatically	concatenated.

>>>	'Py'	'thon'

'Python'

This	 only	 works	 with	 two	 literals	 though,	 not	 with	 variables	 or
expressions:

>>>	prefix	=	'Py'

>>>	prefix	'thon'		#	can't	concatenate	a	variable	and	a	string	literal

		...

SyntaxError:	invalid	syntax

>>>	('un'	*	3)	'ium'

		...

SyntaxError:	invalid	syntax

If	you	want	to	concatenate	variables	or	a	variable	and	a	literal,	use	+:

>>>	prefix	+	'thon'

'Python'

This	feature	is	particularly	useful	when	you	want	to	break	long	strings:

>>>	text	=	('Put	several	strings	within	parentheses	'

												'to	have	them	joined	together.')

>>>	text

'Put	several	strings	within	parentheses	to	have	them	joined	together.'

Strings	 can	 be	 indexed	 (subscripted),	 with	 the	 first	 character	 having
index	0.	There	 is	no	separate	character	 type;	a	character	 is	simply	a
string	of	size	one:

>>>	word	=	'Python'

>>>	word[0]		#	character	in	position	0

'P'

>>>	word[5]		#	character	in	position	5

'n'

Indices	may	also	be	negative	numbers,	to	start	counting	from	the	right:

>>>	word[-1]		#	last	character

'n'

>>>	word[-2]		#	second-last	character

'o'

>>>	word[-6]

'P'

Note	that	since	-0	is	the	same	as	0,	negative	indices	start	from	-1.

In	 addition	 to	 indexing,	 slicing	 is	 also	 supported.	 While	 indexing	 is
used	 to	 obtain	 individual	 characters,	 slicing	 allows	 you	 to	 obtain
substring:

>>>	word[0:2]		#	characters	from	position	0	(included)	to	2	(excluded)

'Py'

>>>	word[2:5]		#	characters	from	position	2	(included)	to	5	(excluded)

'tho'

Note	how	the	start	 is	always	 included,	and	the	end	always	excluded.
This	makes	sure	that	s[:i]	+	s[i:]	is	always	equal	to	s:

>>>	word[:2]	+	word[2:]

'Python'

>>>	word[:4]	+	word[4:]

'Python'

Slice	 indices	 have	 useful	 defaults;	 an	 omitted	 first	 index	 defaults	 to
zero,	an	omitted	second	index	defaults	to	the	size	of	 the	string	being
sliced.

>>>	word[:2]		#	character	from	the	beginning	to	position	2	(excluded)

'Py'

>>>	word[4:]		#	characters	from	position	4	(included)	to	the	end

'on'

>>>	word[-2:]	#	characters	from	the	second-last	(included)	to	the	end

'on'

One	way	 to	 remember	 how	 slices	work	 is	 to	 think	 of	 the	 indices	 as
pointing	between	 characters,	with	 the	 left	 edge	 of	 the	 first	 character
numbered	0.	Then	the	right	edge	of	the	last	character	of	a	string	of	n
characters	has	index	n,	for	example:

	+---+---+---+---+---+---+

	|	P	|	y	|	t	|	h	|	o	|	n	|

	+---+---+---+---+---+---+

	0			1			2			3			4			5			6

-6		-5		-4		-3		-2		-1

The	 first	 row	of	numbers	gives	 the	position	of	 the	 indices	0...6	 in	 the
string;	 the	second	row	gives	the	corresponding	negative	 indices.	The
slice	from	 i	to	 j	consists	of	all	characters	between	the	edges	labeled	 i
and	j,	respectively.

For	non-negative	 indices,	the	length	of	a	slice	 is	the	difference	of	 the
indices,	 if	 both	 are	 within	 bounds.	 For	 example,	 the	 length	 of

word[1:3]	is	2.

Attempting	to	use	a	index	that	is	too	large	will	result	in	an	error:

>>>	word[42]		#	the	word	only	has	7	characters

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

IndexError:	string	index	out	of	range

However,	out	of	range	slice	indexes	are	handled	gracefully	when	used
for	slicing:

>>>	word[4:42]

'on'

>>>	word[42:]

''

Python	strings	cannot	be	changed	—	they	are	 immutable.	Therefore,
assigning	to	an	indexed	position	in	the	string	results	in	an	error:

>>>	word[0]	=	'J'

		...

TypeError:	'str'	object	does	not	support	item	assignment

>>>	word[2:]	=	'py'

		...

TypeError:	'str'	object	does	not	support	item	assignment

If	you	need	a	different	string,	you	should	create	a	new	one:

>>>	'J'	+	word[1:]

'Jython'

>>>	word[:2]	+	'py'

'Pypy'

The	built-in	function	len()	returns	the	length	of	a	string:

>>>	s	=	'supercalifragilisticexpialidocious'

>>>	len(s)

34

See	also:

Text	Sequence	Type	—	str
Strings	 are	 examples	 of	 sequence	 types,	 and	 support	 the
common	operations	supported	by	such	types.

String	Methods
Strings	 support	 a	 large	 number	 of	 methods	 for	 basic
transformations	and	searching.

String	Formatting
Information	 about	 string	 formatting	 with	 str.format()	 is
described	here.

printf-style	String	Formatting
The	old	formatting	operations	invoked	when	strings	and	Unicode
strings	 are	 the	 left	 operand	 of	 the	 %	 operator	 are	 described	 in
more	detail	here.

3.1.3.	Lists

Python	 knows	 a	 number	 of	 compound	 data	 types,	 used	 to	 group
together	 other	 values.	 The	 most	 versatile	 is	 the	 list,	 which	 can	 be
written	 as	 a	 list	 of	 comma-separated	 values	 (items)	 between	 square
brackets.	Lists	might	 contain	 items	of	 different	 types,	 but	 usually	 the
items	all	have	the	same	type.

>>>	squares	=	[1,	4,	9,	16,	25]

>>>	squares

[1,	4,	9,	16,	25]

Like	strings	(and	all	other	built-in	sequence	type),	lists	can	be	indexed
and	sliced:

>>>	squares[0]		#	indexing	returns	the	item

1

>>>	squares[-1]

25

>>>	squares[-3:]		#	slicing	returns	a	new	list

[9,	16,	25]

All	 slice	 operations	 return	 a	 new	 list	 containing	 the	 requested
elements.	This	means	that	the	following	slice	returns	a	new	(shallow)
copy	of	the	list:

>>>	squares[:]

[1,	4,	9,	16,	25]

Lists	also	supports	operations	like	concatenation:

>>>	squares	+	[36,	49,	64,	81,	100]

[1,	4,	9,	16,	25,	36,	49,	64,	81,	100]

Unlike	strings,	which	are	 immutable,	 lists	are	a	mutable	 type,	 i.e.	 it	 is
possible	to	change	their	content:

>>>	cubes	=	[1,	8,	27,	65,	125]		#	something's	wrong	here

>>>	4	**	3		#	the	cube	of	4	is	64,	not	65!

64

>>>	cubes[3]	=	64		#	replace	the	wrong	value

>>>	cubes

[1,	8,	27,	64,	125]

You	 can	 also	 add	 new	 items	 at	 the	 end	 of	 the	 list,	 by	 using	 the
append()	method	(we	will	see	more	about	methods	later):

>>>	cubes.append(216)		#	add	the	cube	of	6

>>>	cubes.append(7	**	3)		#	and	the	cube	of	7

>>>	cubes

[1,	8,	27,	64,	125,	216,	343]

Assignment	 to	 slices	 is	 also	possible,	 and	 this	 can	even	change	 the
size	of	the	list	or	clear	it	entirely:

>>>	letters	=	['a',	'b',	'c',	'd',	'e',	'f',	'g']

>>>	letters

['a',	'b',	'c',	'd',	'e',	'f',	'g']

>>>	#	replace	some	values

>>>	letters[2:5]	=	['C',	'D',	'E']

>>>	letters

['a',	'b',	'C',	'D',	'E',	'f',	'g']

>>>	#	now	remove	them

>>>	letters[2:5]	=	[]

>>>	letters

['a',	'b',	'f',	'g']

>>>	#	clear	the	list	by	replacing	all	the	elements	with	an	empty	list

>>>	letters[:]	=	[]

>>>	letters

[]

The	built-in	function	len()	also	applies	to	lists:

>>>	letters	=	['a',	'b',	'c',	'd']

>>>	len(letters)

4

It	 is	 possible	 to	 nest	 lists	 (create	 lists	 containing	 other	 lists),	 for
example:

>>>	a	=	['a',	'b',	'c']

>>>	n	=	[1,	2,	3]

>>>	x	=	[a,	n]

>>>	x

[['a',	'b',	'c'],	[1,	2,	3]]

>>>	x[0]

['a',	'b',	'c']

>>>	x[0][1]

'b'

3.2.	First	Steps	Towards	Programming

Of	course,	we	can	use	Python	for	more	complicated	tasks	than	adding
two	 and	 two	 together.	 For	 instance,	 we	 can	 write	 an	 initial	 sub-
sequence	of	the	Fibonacci	series	as	follows:

>>>	#	Fibonacci	series:

...	#	the	sum	of	two	elements	defines	the	next

...	a,	b	=	0,	1

>>>	while	b	<	10:

...					print(b)

...					a,	b	=	b,	a+b

...

1

1

2

3

5

8

This	example	introduces	several	new	features.

The	first	line	contains	a	multiple	assignment:	the	variables	a	and
b	simultaneously	get	the	new	values	0	and	1.	On	the	last	line	this
is	 used	 again,	 demonstrating	 that	 the	 expressions	 on	 the	 right-
hand	 side	 are	 all	 evaluated	 first	 before	 any	 of	 the	 assignments
take	 place.	 The	 right-hand	 side	 expressions	 are	 evaluated	 from
the	left	to	the	right.

The	 while	 loop	 executes	 as	 long	 as	 the	 condition	 (here:	 b	 <
10)	remains	true.	In	Python,	like	in	C,	any	non-zero	integer	value
is	 true;	 zero	 is	 false.	 The	 condition	may	 also	 be	 a	 string	 or	 list
value,	 in	 fact	 any	 sequence;	 anything	 with	 a	 non-zero	 length	 is

true,	empty	sequences	are	false.	The	test	used	in	the	example	is
a	 simple	 comparison.	 The	 standard	 comparison	 operators	 are
written	 the	 same	 as	 in	 C:	 <	 (less	 than),	 >	 (greater	 than),	 ==
(equal	to),	<=	(less	than	or	equal	to),	>=	(greater	than	or	equal	to)
and	!=	(not	equal	to).

The	body	of	 the	 loop	 is	 indented:	 indentation	 is	Python’s	way	of
grouping	statements.	At	the	interactive	prompt,	you	have	to	type	a
tab	or	space(s)	for	each	indented	line.	In	practice	you	will	prepare
more	 complicated	 input	 for	 Python	 with	 a	 text	 editor;	 all	 decent
text	 editors	 have	 an	 auto-indent	 facility.	 When	 a	 compound
statement	 is	entered	 interactively,	 it	must	be	 followed	by	a	blank
line	 to	 indicate	 completion	 (since	 the	parser	 cannot	guess	when
you	have	 typed	 the	 last	 line).	Note	 that	 each	 line	within	 a	 basic
block	must	be	indented	by	the	same	amount.

The	 print()	 function	 writes	 the	 value	 of	 the	 argument(s)	 it	 is
given.	It	differs	from	just	writing	the	expression	you	want	to	write
(as	we	did	earlier	in	the	calculator	examples)	in	the	way	it	handles
multiple	arguments,	 floating	point	 quantities,	 and	strings.	Strings
are	 printed	 without	 quotes,	 and	 a	 space	 is	 inserted	 between
items,	so	you	can	format	things	nicely,	like	this:

>>>	i	=	256*256

>>>	print('The	value	of	i	is',	i)

The	value	of	i	is	65536

The	keyword	argument	end	can	be	used	to	avoid	the	newline	after
the	output,	or	end	the	output	with	a	different	string:

>>>	a,	b	=	0,	1

>>>	while	b	<	1000:

...					print(b,	end=',')

...					a,	b	=	b,	a+b

...

1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,987,

Footnotes

[1]
Since	**	has	higher	precedence	than	-,	-3**2	will	be
interpreted	as	-(3**2)	and	thus	result	in	-9.	To	avoid	this
and	get	9,	you	can	use	(-3)**2.

[2]

Unlike	other	languages,	special	characters	such	as	\n	have
the	same	meaning	with	both	single	('...')	and	double
("...")	quotes.	The	only	difference	between	the	two	is	that
within	single	quotes	you	don’t	need	to	escape	"	(but	you	have
to	escape	\')	and	vice	versa.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

4.	More	Control	Flow	Tools
Besides	the	while	statement	just	introduced,	Python	knows	the	usual
control	flow	statements	known	from	other	languages,	with	some	twists.

4.1.	if	Statements

Perhaps	the	most	well-known	statement	type	is	the	if	statement.	For
example:

>>>	x	=	int(input("Please	enter	an	integer:	"))

Please	enter	an	integer:	42

>>>	if	x	<	0:

...					x	=	0

...					print('Negative	changed	to	zero')

...	elif	x	==	0:

...					print('Zero')

...	elif	x	==	1:

...					print('Single')

...	else:

...					print('More')

...

More

There	can	be	zero	or	more	elif	parts,	and	the	else	part	is	optional.
The	 keyword	 ‘elif‘	 is	 short	 for	 ‘else	 if’,	 and	 is	 useful	 to	 avoid
excessive	 indentation.	 An	 if	 ...	 elif	 ...	 elif	 ...	 sequence	 is	 a
substitute	 for	 the	 switch	 or	 case	 statements	 found	 in	 other
languages.

4.2.	for	Statements

The	for	statement	in	Python	differs	a	bit	from	what	you	may	be	used
to	 in	 C	 or	 Pascal.	 Rather	 than	 always	 iterating	 over	 an	 arithmetic
progression	of	numbers	(like	in	Pascal),	or	giving	the	user	the	ability	to
define	 both	 the	 iteration	 step	 and	 halting	 condition	 (as	 C),	 Python’s
for	 statement	 iterates	 over	 the	 items	 of	 any	 sequence	 (a	 list	 or	 a
string),	in	the	order	that	they	appear	in	the	sequence.	For	example	(no
pun	intended):

>>>	#	Measure	some	strings:

...	words	=	['cat',	'window',	'defenestrate']

>>>	for	w	in	words:

...					print(w,	len(w))

...

cat	3

window	6

defenestrate	12

If	you	need	to	modify	the	sequence	you	are	iterating	over	while	inside
the	loop	(for	example	to	duplicate	selected	items),	it	 is	recommended
that	you	first	make	a	copy.	Iterating	over	a	sequence	does	not	implicitly
make	a	copy.	The	slice	notation	makes	this	especially	convenient:

>>>	for	w	in	words[:]:		#	Loop	over	a	slice	copy	of	the	entire	list.

...					if	len(w)	>	6:

...									words.insert(0,	w)

...

>>>	words

['defenestrate',	'cat',	'window',	'defenestrate']

4.3.	The	range()	Function

If	 you	 do	 need	 to	 iterate	 over	 a	 sequence	 of	 numbers,	 the	 built-in
function	 range()	 comes	 in	 handy.	 It	 generates	 arithmetic
progressions:

>>>	for	i	in	range(5):

...					print(i)

...

0

1

2

3

4

The	 given	 end	 point	 is	 never	 part	 of	 the	 generated	 sequence;
range(10)	 generates	 10	 values,	 the	 legal	 indices	 for	 items	 of	 a
sequence	of	 length	10.	 It	 is	possible	 to	 let	 the	 range	start	at	another
number,	or	to	specify	a	different	increment	(even	negative;	sometimes
this	is	called	the	‘step’):

range(5,	10)

			5	through	9

range(0,	10,	3)

			0,	3,	6,	9

range(-10,	-100,	-30)

		-10,	-40,	-70

To	iterate	over	the	indices	of	a	sequence,	you	can	combine	range()
and	len()	as	follows:

>>>	a	=	['Mary',	'had',	'a',	'little',	'lamb']

>>>	for	i	in	range(len(a)):

...					print(i,	a[i])

...

0	Mary

1	had

2	a

3	little

4	lamb

In	 most	 such	 cases,	 however,	 it	 is	 convenient	 to	 use	 the
enumerate()	function,	see	Looping	Techniques.

A	strange	thing	happens	if	you	just	print	a	range:

>>>	print(range(10))

range(0,	10)

In	many	ways	the	object	returned	by	range()	behaves	as	if	it	is	a	list,
but	in	fact	it	isn’t.	It	is	an	object	which	returns	the	successive	items	of
the	 desired	 sequence	 when	 you	 iterate	 over	 it,	 but	 it	 doesn’t	 really
make	the	list,	thus	saving	space.

We	 say	 such	 an	 object	 is	 iterable,	 that	 is,	 suitable	 as	 a	 target	 for
functions	 and	 constructs	 that	 expect	 something	 from	which	 they	 can
obtain	successive	 items	until	 the	supply	 is	exhausted.	We	have	seen
that	 the	 for	 statement	 is	 such	 an	 iterator.	 The	 function	 list()	 is
another;	it	creates	lists	from	iterables:

>>>	list(range(5))

[0,	1,	2,	3,	4]

Later	we	will	see	more	functions	that	return	iterables	and	take	iterables
as	argument.

4.4.	break	and	continue	Statements,
and	else	Clauses	on	Loops

The	break	statement,	 like	 in	C,	breaks	out	of	the	smallest	enclosing
for	or	while	loop.

Loop	statements	may	have	an	else	clause;	 it	 is	executed	when	 the
loop	terminates	through	exhaustion	of	the	list	(with	for)	or	when	the
condition	 becomes	 false	 (with	 while),	 but	 not	 when	 the	 loop	 is
terminated	by	a	break	statement.	This	is	exemplified	by	the	following
loop,	which	searches	for	prime	numbers:

>>>	for	n	in	range(2,	10):

...					for	x	in	range(2,	n):

...									if	n	%	x	==	0:

...													print(n,	'equals',	x,	'*',	n//x)

...													break

...					else:

...									#	loop	fell	through	without	finding	a	factor

...									print(n,	'is	a	prime	number')

...

2	is	a	prime	number

3	is	a	prime	number

4	equals	2	*	2

5	is	a	prime	number

6	equals	2	*	3

7	is	a	prime	number

8	equals	2	*	4

9	equals	3	*	3

(Yes,	this	 is	the	correct	code.	Look	closely:	 the	else	clause	belongs
to	the	for	loop,	not	the	if	statement.)

When	used	with	a	 loop,	 the	 else	 clause	has	more	 in	 common	with
the	 else	 clause	 of	 a	 try	 statement	 than	 it	 does	 that	 of	 if
statements:	a	try	statement’s	else	clause	runs	when	no	exception
occurs,	 and	a	 loop’s	 else	 clause	 runs	when	no	 break	 occurs.	 For
more	on	the	try	statement	and	exceptions,	see	Handling	Exceptions.

The	continue	 statement,	also	borrowed	 from	C,	continues	with	 the
next	iteration	of	the	loop:

>>>	for	num	in	range(2,	10):

...					if	num	%	2	==	0:

...									print("Found	an	even	number",	num)

...									continue

...					print("Found	a	number",	num)

Found	an	even	number	2

Found	a	number	3

Found	an	even	number	4

Found	a	number	5

Found	an	even	number	6

Found	a	number	7

Found	an	even	number	8

Found	a	number	9

4.5.	pass	Statements

The	pass	statement	does	nothing.	It	can	be	used	when	a	statement	is
required	syntactically	but	the	program	requires	no	action.	For	example:

>>>	while	True:

...					pass		#	Busy-wait	for	keyboard	interrupt	(Ctrl+C)

...

This	is	commonly	used	for	creating	minimal	classes:

>>>	class	MyEmptyClass:

...					pass

...

Another	place	pass	can	be	used	is	as	a	place-holder	for	a	function	or
conditional	body	when	you	are	working	on	new	code,	allowing	you	to
keep	thinking	at	a	more	abstract	level.	The	pass	is	silently	ignored:

>>>	def	initlog(*args):

...					pass			#	Remember	to	implement	this!

...

4.6.	Defining	Functions

We	 can	 create	 a	 function	 that	 writes	 the	 Fibonacci	 series	 to	 an
arbitrary	boundary:

>>>	def	fib(n):				#	write	Fibonacci	series	up	to	n

...					"""Print	a	Fibonacci	series	up	to	n."""

...					a,	b	=	0,	1

...					while	a	<	n:

...									print(a,	end='	')

...									a,	b	=	b,	a+b

...					print()

...

>>>	#	Now	call	the	function	we	just	defined:

...	fib(2000)

0	1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987	1597

The	keyword	def	introduces	a	function	definition.	It	must	be	followed
by	the	function	name	and	the	parenthesized	list	of	formal	parameters.
The	statements	that	form	the	body	of	the	function	start	at	the	next	line,
and	must	be	indented.

The	 first	 statement	 of	 the	 function	 body	 can	 optionally	 be	 a	 string
literal;	 this	 string	 literal	 is	 the	 function’s	 documentation	 string,	 or
docstring.	 (More	 about	 docstrings	 can	 be	 found	 in	 the	 section
Documentation	 Strings.)	 There	 are	 tools	 which	 use	 docstrings	 to
automatically	 produce	 online	 or	 printed	 documentation,	 or	 to	 let	 the
user	 interactively	 browse	 through	 code;	 it’s	 good	 practice	 to	 include
docstrings	in	code	that	you	write,	so	make	a	habit	of	it.

The	execution	of	a	function	introduces	a	new	symbol	table	used	for	the
local	variables	of	the	function.	More	precisely,	all	variable	assignments

in	a	function	store	the	value	in	the	local	symbol	table;	whereas	variable
references	first	look	in	the	local	symbol	table,	then	in	the	local	symbol
tables	 of	 enclosing	 functions,	 then	 in	 the	 global	 symbol	 table,	 and
finally	 in	the	table	of	built-in	names.	Thus,	global	variables	cannot	be
directly	assigned	a	value	within	a	function	(unless	named	in	a	global
statement),	although	they	may	be	referenced.

The	actual	parameters	(arguments)	to	a	function	call	are	introduced	in
the	 local	 symbol	 table	 of	 the	 called	 function	 when	 it	 is	 called;	 thus,
arguments	are	passed	using	call	by	value	(where	the	value	 is	always
an	object	reference,	not	 the	value	of	 the	object).	 [1]	When	a	 function
calls	another	function,	a	new	local	symbol	table	is	created	for	that	call.

A	 function	 definition	 introduces	 the	 function	 name	 in	 the	 current
symbol	 table.	 The	 value	 of	 the	 function	 name	 has	 a	 type	 that	 is
recognized	 by	 the	 interpreter	 as	 a	 user-defined	 function.	 This	 value
can	be	assigned	 to	another	name	which	can	 then	also	be	used	as	a
function.	This	serves	as	a	general	renaming	mechanism:

>>>	fib

<function	fib	at	10042ed0>

>>>	f	=	fib

>>>	f(100)

0	1	1	2	3	5	8	13	21	34	55	89

Coming	 from	 other	 languages,	 you	 might	 object	 that	 fib	 is	 not	 a
function	but	a	procedure	since	 it	doesn’t	 return	a	value.	 In	 fact,	even
functions	 without	 a	 return	 statement	 do	 return	 a	 value,	 albeit	 a
rather	 boring	 one.	 This	 value	 is	 called	 None	 (it’s	 a	 built-in	 name).
Writing	 the	value	None	 is	normally	suppressed	by	 the	 interpreter	 if	 it
would	 be	 the	 only	 value	written.	You	 can	 see	 it	 if	 you	 really	want	 to
using	print():

>>>	fib(0)

>>>	print(fib(0))

None

It	is	simple	to	write	a	function	that	returns	a	list	of	the	numbers	of	the
Fibonacci	series,	instead	of	printing	it:

>>>	def	fib2(n):	#	return	Fibonacci	series	up	to	n

...					"""Return	a	list	containing	the	Fibonacci	series	up	to	n."""

...					result	=	[]

...					a,	b	=	0,	1

...					while	a	<	n:

...									result.append(a)				#	see	below

...									a,	b	=	b,	a+b

...					return	result

...

>>>	f100	=	fib2(100)				#	call	it

>>>	f100																#	write	the	result

[0,	1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89]

This	example,	as	usual,	demonstrates	some	new	Python	features:

The	 return	 statement	 returns	 with	 a	 value	 from	 a	 function.
return	without	an	expression	argument	returns	None.	Falling	off
the	end	of	a	function	also	returns	None.
The	 statement	 result.append(a)	 calls	 a	method	 of	 the	 list
object	result.	A	method	is	a	function	that	‘belongs’	to	an	object
and	is	named	obj.methodname,	where	obj	is	some	object	(this
may	 be	 an	 expression),	 and	 methodname	 is	 the	 name	 of	 a
method	that	is	defined	by	the	object’s	type.	Different	types	define
different	methods.	Methods	of	different	types	may	have	the	same
name	without	causing	ambiguity.	(It	is	possible	to	define	your	own
object	 types	 and	 methods,	 using	 classes,	 see	 Classes)	 The
method	 append()	 shown	 in	 the	 example	 is	 defined	 for	 list

objects;	 it	 adds	 a	 new	 element	 at	 the	 end	 of	 the	 list.	 In	 this
example	it	is	equivalent	to	result	=	result	+	[a],	but	more
efficient.

4.7.	More	on	Defining	Functions

It	 is	 also	 possible	 to	 define	 functions	 with	 a	 variable	 number	 of
arguments.	There	are	three	forms,	which	can	be	combined.

4.7.1.	Default	Argument	Values

The	 most	 useful	 form	 is	 to	 specify	 a	 default	 value	 for	 one	 or	 more
arguments.	 This	 creates	 a	 function	 that	 can	 be	 called	 with	 fewer
arguments	than	it	is	defined	to	allow.	For	example:

def	ask_ok(prompt,	retries=4,	complaint='Yes	or	no,	please!'

				while	True:

								ok	=	input(prompt)

								if	ok	in	('y',	'ye',	'yes'):

												return	True

								if	ok	in	('n',	'no',	'nop',	'nope'):

												return	False

								retries	=	retries	-	1

								if	retries	<	0:

												raise	IOError('uncooperative	user')

								print(complaint)

This	function	can	be	called	in	several	ways:

giving	only	the	mandatory	argument:	ask_ok('Do	you	really
want	to	quit?')

giving	 one	 of	 the	 optional	 arguments:	 ask_ok('OK	 to

overwrite	the	file?',	2)

or	even	giving	all	arguments:	ask_ok('OK	to	overwrite	the
file?',	2,	'Come	on,	only	yes	or	no!')

This	example	also	 introduces	 the	in	 keyword.	This	 tests	whether	or
not	a	sequence	contains	a	certain	value.

The	default	 values	are	evaluated	at	 the	point	of	 function	definition	 in
the	defining	scope,	so	that

i	=	5

def	f(arg=i):

				print(arg)

i	=	6

f()

will	print	5.

Important	warning:	 The	 default	 value	 is	 evaluated	 only	 once.	 This
makes	a	difference	when	the	default	is	a	mutable	object	such	as	a	list,
dictionary,	 or	 instances	 of	 most	 classes.	 For	 example,	 the	 following
function	accumulates	the	arguments	passed	to	it	on	subsequent	calls:

def	f(a,	L=[]):

				L.append(a)

				return	L

print(f(1))

print(f(2))

print(f(3))

This	will	print

[1]

[1,	2]

[1,	2,	3]

If	you	don’t	want	 the	default	 to	be	shared	between	subsequent	calls,
you	can	write	the	function	like	this	instead:

def	f(a,	L=None):

				if	L	is	None:

								L	=	[]

				L.append(a)

				return	L

4.7.2.	Keyword	Arguments

Functions	 can	 also	 be	 called	 using	 keyword	 arguments	 of	 the	 form
kwarg=value.	For	instance,	the	following	function:

def	parrot(voltage,	state='a	stiff',	action='voom',	

				print("--	This	parrot	wouldn't",	action,	end='	'

				print("if	you	put",	voltage,	"volts	through	it."

				print("--	Lovely	plumage,	the",	type)

				print("--	It's",	state,	"!")

accepts	 one	 required	 argument	 (voltage)	 and	 three	 optional
arguments	(state,	action,	and	type).	This	 function	can	be	called
in	any	of	the	following	ways:

parrot(1000)																																										

parrot(voltage=1000)																																		

parrot(voltage=1000000,	action='VOOOOOM')													

parrot(action='VOOOOOM',	voltage=1000000)													

parrot('a	million',	'bereft	of	life',	'jump')									

parrot('a	thousand',	state='pushing	up	the	daisies')

but	all	the	following	calls	would	be	invalid:

parrot()																					#	required	argument	missing

parrot(voltage=5.0,	'dead')		#	non-keyword	argument	after	a	keyword	argument

parrot(110,	voltage=220)					#	duplicate	value	for	the	same	argument

parrot(actor='John	Cleese')		#	unknown	keyword	argument

In	 a	 function	 call,	 keyword	 arguments	 must	 follow	 positional
arguments.	All	the	keyword	arguments	passed	must	match	one	of	the
arguments	 accepted	 by	 the	 function	 (e.g.	 actor	 is	 not	 a	 valid
argument	 for	 the	 parrot	 function),	 and	 their	 order	 is	 not	 important.
This	 also	 includes	 non-optional	 arguments	 (e.g.
parrot(voltage=1000)	 is	 valid	 too).	No	argument	may	 receive	a
value	 more	 than	 once.	 Here’s	 an	 example	 that	 fails	 due	 to	 this
restriction:

>>>	def	function(a):

...					pass

...

>>>	function(0,	a=0)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	function()	got	multiple	values	for	keyword	argument	'a'

When	 a	 final	 formal	 parameter	 of	 the	 form	 **name	 is	 present,	 it
receives	 a	 dictionary	 (see	 Mapping	 Types	 —	 dict)	 containing	 all
keyword	 arguments	 except	 for	 those	 corresponding	 to	 a	 formal
parameter.	This	may	be	combined	with	a	formal	parameter	of	the	form
*name	 (described	 in	 the	 next	 subsection)	 which	 receives	 a	 tuple
containing	the	positional	arguments	beyond	the	formal	parameter	 list.
(*name	 must	 occur	 before	 **name.)	 For	 example,	 if	 we	 define	 a
function	like	this:

def	cheeseshop(kind,	*arguments,	**keywords):

				print("--	Do	you	have	any",	kind,	"?")

				print("--	I'm	sorry,	we're	all	out	of",	kind)

				for	arg	in	arguments:

								print(arg)

				print("-"	*	40)

				keys	=	sorted(keywords.keys())

				for	kw	in	keys:

								print(kw,	":",	keywords[kw])

It	could	be	called	like	this:

cheeseshop("Limburger",	"It's	very	runny,	sir.",

											"It's	really	very,	VERY	runny,	sir.",

											shopkeeper="Michael	Palin",

											client="John	Cleese",

											sketch="Cheese	Shop	Sketch")

and	of	course	it	would	print:

--	Do	you	have	any	Limburger	?

--	I'm	sorry,	we're	all	out	of	Limburger

It's	very	runny,	sir.

It's	really	very,	VERY	runny,	sir.

--

client	:	John	Cleese

shopkeeper	:	Michael	Palin

sketch	:	Cheese	Shop	Sketch

Note	that	the	list	of	keyword	argument	names	is	created	by	sorting	the
result	of	the	keywords	dictionary’s	keys()	method	before	printing	 its
contents;	 if	 this	 is	 not	 done,	 the	 order	 in	 which	 the	 arguments	 are
printed	is	undefined.

4.7.3.	Arbitrary	Argument	Lists

Finally,	the	least	frequently	used	option	is	to	specify	that	a	function	can
be	called	with	an	arbitrary	number	of	arguments.	These	arguments	will
be	 wrapped	 up	 in	 a	 tuple	 (see	 Tuples	 and	 Sequences).	 Before	 the
variable	 number	 of	 arguments,	 zero	 or	more	 normal	 arguments	may
occur.

def	write_multiple_items(file,	separator,	*args):

				file.write(separator.join(args))

Normally,	these	variadic	arguments	will	be	last	 in	the	list	of	formal
parameters,	because	they	scoop	up	all	remaining	input	arguments	that
are	passed	 to	 the	 function.	Any	 formal	parameters	which	occur	after
the	 *args	 parameter	 are	 ‘keyword-only’	 arguments,	 meaning	 that
they	can	only	be	used	as	keywords	rather	than	positional	arguments.

>>>	def	concat(*args,	sep="/"):

...				return	sep.join(args)

...

>>>	concat("earth",	"mars",	"venus")

'earth/mars/venus'

>>>	concat("earth",	"mars",	"venus",	sep=".")

'earth.mars.venus'

4.7.4.	Unpacking	Argument	Lists

The	reverse	situation	occurs	when	the	arguments	are	already	in	a	list
or	tuple	but	need	to	be	unpacked	for	a	function	call	requiring	separate
positional	 arguments.	 For	 instance,	 the	 built-in	 range()	 function
expects	separate	start	 and	stop	 arguments.	 If	 they	 are	 not	 available
separately,	 write	 the	 function	 call	 with	 the	 *-operator	 to	 unpack	 the
arguments	out	of	a	list	or	tuple:

>>>	list(range(3,	6))												#	normal	call	with	separate	arguments

[3,	4,	5]

>>>	args	=	[3,	6]

>>>	list(range(*args))												#	call	with	arguments	unpacked	from	a	list

[3,	4,	5]

In	the	same	fashion,	dictionaries	can	deliver	keyword	arguments	with
the	**-operator:

>>>	def	parrot(voltage,	state='a	stiff',	action='voom'

...					print("--	This	parrot	wouldn't",	action,	end

...					print("if	you	put",	voltage,	"volts	through	it."

...					print("E's",	state,	"!")

...

>>>	d	=	{"voltage":	"four	million",	"state":	"bleedin'	demised"

>>>	parrot(**d)

--	This	parrot	wouldn't	VOOM	if	you	put	four	million	volts	through	it.	E's	bleedin'	demised	!

4.7.5.	Lambda	Expressions

Small	anonymous	functions	can	be	created	with	the	lambda	keyword.
This	 function	 returns	 the	sum	of	 its	 two	arguments:	lambda	a,	b:
a+b.	 Lambda	 functions	 can	 be	 used	 wherever	 function	 objects	 are
required.	 They	 are	 syntactically	 restricted	 to	 a	 single	 expression.
Semantically,	 they	 are	 just	 syntactic	 sugar	 for	 a	 normal	 function
definition.	 Like	 nested	 function	 definitions,	 lambda	 functions	 can
reference	variables	from	the	containing	scope:

>>>	def	make_incrementor(n):

...					return	lambda	x:	x	+	n

...

>>>	f	=	make_incrementor(42)

>>>	f(0)

42

>>>	f(1)

43

The	 above	 example	 uses	 a	 lambda	 expression	 to	 return	 a	 function.
Another	use	is	to	pass	a	small	function	as	an	argument:

>>>	pairs	=	[(1,	'one'),	(2,	'two'),	(3,	'three'),	(

>>>	pairs.sort(key=lambda	pair:	pair[1])

>>>	pairs

[(4,	'four'),	(1,	'one'),	(3,	'three'),	(2,	'two')]

4.7.6.	Documentation	Strings

Here	 are	 some	 conventions	 about	 the	 content	 and	 formatting	 of
documentation	strings.

The	 first	 line	 should	 always	 be	 a	 short,	 concise	 summary	 of	 the
object’s	purpose.	For	brevity,	 it	should	not	explicitly	state	 the	object’s
name	or	type,	since	these	are	available	by	other	means	(except	if	the
name	 happens	 to	 be	 a	 verb	 describing	 a	 function’s	 operation).	 This
line	should	begin	with	a	capital	letter	and	end	with	a	period.

If	 there	 are	more	 lines	 in	 the	 documentation	 string,	 the	 second	 line
should	be	blank,	visually	separating	the	summary	from	the	rest	of	the
description.	 The	 following	 lines	 should	 be	 one	 or	 more	 paragraphs
describing	the	object’s	calling	conventions,	its	side	effects,	etc.

The	 Python	 parser	 does	 not	 strip	 indentation	 from	 multi-line	 string
literals	 in	 Python,	 so	 tools	 that	 process	 documentation	 have	 to	 strip
indentation	if	desired.	This	is	done	using	the	following	convention.	The
first	 non-blank	 line	 after	 the	 first	 line	 of	 the	 string	 determines	 the
amount	 of	 indentation	 for	 the	 entire	 documentation	 string.	 (We	 can’t
use	 the	 first	 line	since	 it	 is	generally	adjacent	 to	 the	string’s	opening

quotes	 so	 its	 indentation	 is	 not	 apparent	 in	 the	 string	 literal.)
Whitespace	 “equivalent”	 to	 this	 indentation	 is	 then	 stripped	 from	 the
start	of	all	 lines	of	 the	string.	Lines	 that	are	 indented	 less	should	not
occur,	but	if	they	occur	all	their	leading	whitespace	should	be	stripped.
Equivalence	of	whitespace	should	be	tested	after	expansion	of	tabs	(to
8	spaces,	normally).

Here	is	an	example	of	a	multi-line	docstring:

>>>	def	my_function():

...					"""Do	nothing,	but	document	it.

...

...					No,	really,	it	doesn't	do	anything.

...					"""

...					pass

...

>>>	print(my_function.__doc__)

Do	nothing,	but	document	it.

				No,	really,	it	doesn't	do	anything.

4.7.7.	Function	Annotations

Function	 annotations	 are	 completely	 optional,	 arbitrary	 metadata
information	about	user-defined	functions.	Neither	Python	itself	nor	the
standard	library	use	function	annotations	in	any	way;	this	section	just
shows	 the	 syntax.	 Third-party	 projects	 are	 free	 to	 use	 function
annotations	for	documentation,	type	checking,	and	other	uses.

Annotations	 are	 stored	 in	 the	 __annotations__	 attribute	 of	 the
function	 as	 a	 dictionary	 and	 have	 no	 effect	 on	 any	 other	 part	 of	 the
function.	 Parameter	 annotations	 are	 defined	 by	 a	 colon	 after	 the
parameter	name,	followed	by	an	expression	evaluating	to	the	value	of

the	annotation.	Return	annotations	are	defined	by	a	literal	->,	followed
by	an	expression,	between	the	parameter	 list	and	the	colon	denoting
the	end	of	the	def	statement.	The	following	example	has	a	positional
argument,	 a	 keyword	argument,	 and	 the	 return	 value	annotated	with
nonsense:

>>>	def	f(ham:	42,	eggs:	int	=	'spam')	->	"Nothing	to	see	here"

...					print("Annotations:",	f.__annotations__)

...					print("Arguments:",	ham,	eggs)

...

>>>	f('wonderful')

Annotations:	{'eggs':	<class	'int'>,	'return':	'Nothing	to	see	here',	'ham':	42}

Arguments:	wonderful	spam

4.8.	Intermezzo:	Coding	Style

Now	 that	 you	 are	 about	 to	 write	 longer,	 more	 complex	 pieces	 of
Python,	 it	 is	 a	 good	 time	 to	 talk	 about	coding	 style.	Most	 languages
can	 be	written	 (or	more	 concise,	 formatted)	 in	 different	 styles;	 some
are	more	readable	than	others.	Making	it	easy	for	others	to	read	your
code	 is	 always	 a	 good	 idea,	 and	 adopting	 a	 nice	 coding	 style	 helps
tremendously	for	that.

For	Python,	PEP	8	has	emerged	as	the	style	guide	that	most	projects
adhere	to;	it	promotes	a	very	readable	and	eye-pleasing	coding	style.
Every	 Python	 developer	 should	 read	 it	 at	 some	 point;	 here	 are	 the
most	important	points	extracted	for	you:

Use	4-space	indentation,	and	no	tabs.

4	 spaces	 are	 a	 good	 compromise	 between	 small	 indentation
(allows	 greater	 nesting	 depth)	 and	 large	 indentation	 (easier	 to
read).	Tabs	introduce	confusion,	and	are	best	left	out.

Wrap	lines	so	that	they	don’t	exceed	79	characters.

This	helps	users	with	small	displays	and	makes	it	possible	to	have
several	code	files	side-by-side	on	larger	displays.

Use	 blank	 lines	 to	 separate	 functions	 and	 classes,	 and	 larger
blocks	of	code	inside	functions.

When	possible,	put	comments	on	a	line	of	their	own.

Use	docstrings.

Use	spaces	around	operators	and	after	commas,	but	not	directly

http://www.python.org/dev/peps/pep-0008

inside	bracketing	constructs:	a	=	f(1,	2)	+	g(3,	4).

Name	your	classes	and	 functions	consistently;	 the	convention	 is
to	 use	 CamelCase	 for	 classes	 and
lower_case_with_underscores	 for	 functions	 and	 methods.
Always	use	self	as	the	name	for	the	first	method	argument	(see
A	First	Look	at	Classes	for	more	on	classes	and	methods).

Don’t	 use	 fancy	 encodings	 if	 your	 code	 is	meant	 to	 be	 used	 in
international	environments.	Python’s	default,	UTF-8,	or	even	plain
ASCII	work	best	in	any	case.

Likewise,	don’t	use	non-ASCII	characters	 in	 identifiers	 if	 there	 is
only	the	slightest	chance	people	speaking	a	different	language	will
read	or	maintain	the	code.

Footnotes

[1]
Actually,	call	by	object	reference	would	be	a	better	description,
since	if	a	mutable	object	is	passed,	the	caller	will	see	any
changes	the	callee	makes	to	it	(items	inserted	into	a	list).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

5.	Data	Structures
This	 chapter	 describes	 some	 things	 you’ve	 learned	 about	 already	 in
more	detail,	and	adds	some	new	things	as	well.

5.1.	More	on	Lists

The	 list	 data	 type	 has	 some	 more	 methods.	 Here	 are	 all	 of	 the
methods	of	list	objects:

list.append(x)
Add	an	 item	 to	 the	end	of	 the	 list.	Equivalent	 to	a[len(a):]	=
[x].

list.extend(L)
Extend	 the	 list	 by	 appending	 all	 the	 items	 in	 the	 given	 list.
Equivalent	to	a[len(a):]	=	L.

list.insert(i,	x)
Insert	an	item	at	a	given	position.	The	first	argument	is	the	index	of
the	element	before	which	to	insert,	so	a.insert(0,	x)	inserts	at
the	front	of	 the	list,	and	a.insert(len(a),	x)	 is	equivalent	 to
a.append(x).

list.remove(x)
Remove	the	first	item	from	the	list	whose	value	is	x.	It	is	an	error	if
there	is	no	such	item.

list.pop([i])
Remove	the	item	at	the	given	position	in	the	list,	and	return	it.	If	no
index	 is	specified,	a.pop()	 removes	and	 returns	 the	 last	 item	 in
the	list.	(The	square	brackets	around	the	i	in	the	method	signature
denote	 that	 the	 parameter	 is	 optional,	 not	 that	 you	 should	 type
square	 brackets	 at	 that	 position.	 You	 will	 see	 this	 notation
frequently	in	the	Python	Library	Reference.)

list.clear()
Remove	all	items	from	the	list.	Equivalent	to	del	a[:].

list.index(x)
Return	the	index	in	the	list	of	the	first	item	whose	value	is	x.	It	is	an
error	if	there	is	no	such	item.

list.count(x)
Return	the	number	of	times	x	appears	in	the	list.

list.sort()
Sort	the	items	of	the	list	in	place.

list.reverse()
Reverse	the	elements	of	the	list	in	place.

list.copy()
Return	a	shallow	copy	of	the	list.	Equivalent	to	a[:].

An	example	that	uses	most	of	the	list	methods:

>>>	a	=	[66.25,	333,	333,	1,	1234.5]

>>>	print(a.count(333),	a.count(66.25),	a.count('x'))

2	1	0

>>>	a.insert(2,	-1)

>>>	a.append(333)

>>>	a

[66.25,	333,	-1,	333,	1,	1234.5,	333]

>>>	a.index(333)

1

>>>	a.remove(333)

>>>	a

[66.25,	-1,	333,	1,	1234.5,	333]

>>>	a.reverse()

>>>	a

[333,	1234.5,	1,	333,	-1,	66.25]

>>>	a.sort()

>>>	a

[-1,	1,	66.25,	333,	333,	1234.5]

You	might	have	noticed	that	methods	like	insert,	remove	or	sort
that	modify	the	list	have	no	return	value	printed	–	they	return	None.	[1]
This	is	a	design	principle	for	all	mutable	data	structures	in	Python.

5.1.1.	Using	Lists	as	Stacks

The	list	methods	make	it	very	easy	to	use	a	list	as	a	stack,	where	the
last	element	added	is	the	first	element	retrieved	(“last-in,	first-out”).	To
add	an	item	to	the	top	of	the	stack,	use	append().	To	retrieve	an	item
from	 the	 top	 of	 the	 stack,	 use	 pop()	 without	 an	 explicit	 index.	 For
example:

>>>	stack	=	[3,	4,	5]

>>>	stack.append(6)

>>>	stack.append(7)

>>>	stack

[3,	4,	5,	6,	7]

>>>	stack.pop()

7

>>>	stack

[3,	4,	5,	6]

>>>	stack.pop()

6

>>>	stack.pop()

5

>>>	stack

[3,	4]

5.1.2.	Using	Lists	as	Queues

It	 is	 also	 possible	 to	 use	 a	 list	 as	 a	 queue,	 where	 the	 first	 element
added	 is	 the	 first	 element	 retrieved	 (“first-in,	 first-out”);	 however,	 lists
are	 not	 efficient	 for	 this	 purpose.	While	 appends	 and	 pops	 from	 the
end	of	list	are	fast,	doing	inserts	or	pops	from	the	beginning	of	a	list	is
slow	(because	all	of	the	other	elements	have	to	be	shifted	by	one).

To	 implement	 a	 queue,	 use	 collections.deque	 which	 was
designed	 to	 have	 fast	 appends	 and	 pops	 from	 both	 ends.	 For
example:

>>>	from	collections	import	deque

>>>	queue	=	deque(["Eric",	"John",	"Michael"])

>>>	queue.append("Terry")											#	Terry	arrives

>>>	queue.append("Graham")										#	Graham	arrives

>>>	queue.popleft()																	#	The	first	to	arrive	now	leaves

'Eric'

>>>	queue.popleft()																	#	The	second	to	arrive	now	leaves

'John'

>>>	queue																											#	Remaining	queue	in	order	of	arrival

deque(['Michael',	'Terry',	'Graham'])

5.1.3.	List	Comprehensions

List	 comprehensions	provide	a	 concise	way	 to	 create	 lists.	Common
applications	are	to	make	new	lists	where	each	element	is	the	result	of
some	 operations	 applied	 to	 each	 member	 of	 another	 sequence	 or
iterable,	or	 to	create	a	subsequence	of	 those	elements	 that	satisfy	a
certain	condition.

For	example,	assume	we	want	to	create	a	list	of	squares,	like:

>>>	squares	=	[]

>>>	for	x	in	range(10):

...					squares.append(x**2)

...

>>>	squares

[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

We	can	obtain	the	same	result	with:

squares	=	[x**2	for	x	in	range(10)]

This	 is	 also	 equivalent	 to	 squares	 =	 list(map(lambda	 x:

x**2,	range(10))),	but	it’s	more	concise	and	readable.

A	 list	 comprehension	 consists	 of	 brackets	 containing	 an	 expression
followed	by	a	for	clause,	then	zero	or	more	for	or	if	clauses.	The
result	will	be	a	new	list	resulting	from	evaluating	the	expression	in	the
context	of	 the	for	and	if	clauses	which	 follow	 it.	For	example,	 this
listcomp	combines	the	elements	of	two	lists	if	they	are	not	equal:

>>>	[(x,	y)	for	x	in	[1,2,3]	for	y	in	[3,1,4]	if	x	!=

[(1,	3),	(1,	4),	(2,	3),	(2,	1),	(2,	4),	(3,	1),	(3,	4)]

and	it’s	equivalent	to:

>>>	combs	=	[]

>>>	for	x	in	[1,2,3]:

...					for	y	in	[3,1,4]:

...									if	x	!=	y:

...													combs.append((x,	y))

...

>>>	combs

[(1,	3),	(1,	4),	(2,	3),	(2,	1),	(2,	4),	(3,	1),	(3,	4)]

Note	how	the	order	of	the	for	and	if	statements	is	the	same	in	both
these	snippets.

If	the	expression	is	a	tuple	(e.g.	the	(x,	y)	in	the	previous	example),
it	must	be	parenthesized.

>>>	vec	=	[-4,	-2,	0,	2,	4]

>>>	#	create	a	new	list	with	the	values	doubled

>>>	[x*2	for	x	in	vec]

[-8,	-4,	0,	4,	8]

>>>	#	filter	the	list	to	exclude	negative	numbers

>>>	[x	for	x	in	vec	if	x	>=	0]

[0,	2,	4]

>>>	#	apply	a	function	to	all	the	elements

>>>	[abs(x)	for	x	in	vec]

[4,	2,	0,	2,	4]

>>>	#	call	a	method	on	each	element

>>>	freshfruit	=	['		banana',	'		loganberry	',	'passion	fruit		'

>>>	[weapon.strip()	for	weapon	in	freshfruit]

['banana',	'loganberry',	'passion	fruit']

>>>	#	create	a	list	of	2-tuples	like	(number,	square)

>>>	[(x,	x**2)	for	x	in	range(6)]

[(0,	0),	(1,	1),	(2,	4),	(3,	9),	(4,	16),	(5,	25)]

>>>	#	the	tuple	must	be	parenthesized,	otherwise	an	error	is	raised

>>>	[x,	x**2	for	x	in	range(6)]

		File	"<stdin>",	line	1,	in	?

				[x,	x**2	for	x	in	range(6)]

															^

SyntaxError:	invalid	syntax

>>>	#	flatten	a	list	using	a	listcomp	with	two	'for'

>>>	vec	=	[[1,2,3],	[4,5,6],	[7,8,9]]

>>>	[num	for	elem	in	vec	for	num	in	elem]

[1,	2,	3,	4,	5,	6,	7,	8,	9]

List	 comprehensions	 can	 contain	 complex	 expressions	 and	 nested

functions:

>>>	from	math	import	pi

>>>	[str(round(pi,	i))	for	i	in	range(1,	6)]

['3.1',	'3.14',	'3.142',	'3.1416',	'3.14159']

5.1.4.	Nested	List	Comprehensions

The	 initial	 expression	 in	 a	 list	 comprehension	 can	 be	 any	 arbitrary
expression,	including	another	list	comprehension.

Consider	the	following	example	of	a	3x4	matrix	implemented	as	a	list
of	3	lists	of	length	4:

>>>	matrix	=	[

...					[1,	2,	3,	4],

...					[5,	6,	7,	8],

...					[9,	10,	11,	12],

...]

The	following	list	comprehension	will	transpose	rows	and	columns:

>>>	[[row[i]	for	row	in	matrix]	for	i	in	range(4)]

[[1,	5,	9],	[2,	6,	10],	[3,	7,	11],	[4,	8,	12]]

As	we	saw	in	the	previous	section,	the	nested	listcomp	is	evaluated	in
the	context	of	the	for	that	follows	it,	so	this	example	is	equivalent	to:

>>>	transposed	=	[]

>>>	for	i	in	range(4):

...					transposed.append([row[i]	for	row	in	matrix])

...

>>>	transposed

[[1,	5,	9],	[2,	6,	10],	[3,	7,	11],	[4,	8,	12]]

which,	in	turn,	is	the	same	as:

>>>	transposed	=	[]

>>>	for	i	in	range(4):

...					#	the	following	3	lines	implement	the	nested	listcomp

...					transposed_row	=	[]

...					for	row	in	matrix:

...									transposed_row.append(row[i])

...					transposed.append(transposed_row)

...

>>>	transposed

[[1,	5,	9],	[2,	6,	10],	[3,	7,	11],	[4,	8,	12]]

In	 the	 real	world,	you	should	prefer	built-in	 functions	 to	complex	 flow
statements.	 The	 zip()	 function	 would	 do	 a	 great	 job	 for	 this	 use
case:

>>>	list(zip(*matrix))

[(1,	5,	9),	(2,	6,	10),	(3,	7,	11),	(4,	8,	12)]

See	Unpacking	Argument	Lists	for	details	on	the	asterisk	in	this	line.

5.2.	The	del	statement

There	is	a	way	to	remove	an	item	from	a	list	given	its	index	instead	of
its	 value:	 the	 del	 statement.	 This	 differs	 from	 the	 pop()	 method
which	returns	a	value.	The	del	statement	can	also	be	used	to	remove
slices	 from	 a	 list	 or	 clear	 the	 entire	 list	 (which	 we	 did	 earlier	 by
assignment	of	an	empty	list	to	the	slice).	For	example:

>>>	a	=	[-1,	1,	66.25,	333,	333,	1234.5]

>>>	del	a[0]

>>>	a

[1,	66.25,	333,	333,	1234.5]

>>>	del	a[2:4]

>>>	a

[1,	66.25,	1234.5]

>>>	del	a[:]

>>>	a

[]

del	can	also	be	used	to	delete	entire	variables:

>>>	del	a

Referencing	 the	 name	 a	 hereafter	 is	 an	 error	 (at	 least	 until	 another
value	is	assigned	to	it).	We’ll	find	other	uses	for	del	later.

5.3.	Tuples	and	Sequences

We	saw	that	lists	and	strings	have	many	common	properties,	such	as
indexing	and	slicing	operations.	They	are	 two	examples	of	sequence
data	types	(see	Sequence	Types	—	list,	tuple,	range).	Since	Python	is
an	 evolving	 language,	 other	 sequence	 data	 types	 may	 be	 added.
There	is	also	another	standard	sequence	data	type:	the	tuple.

A	 tuple	 consists	 of	 a	 number	 of	 values	 separated	 by	 commas,	 for
instance:

>>>	t	=	12345,	54321,	'hello!'

>>>	t[0]

12345

>>>	t

(12345,	54321,	'hello!')

>>>	#	Tuples	may	be	nested:

...	u	=	t,	(1,	2,	3,	4,	5)

>>>	u

((12345,	54321,	'hello!'),	(1,	2,	3,	4,	5))

>>>	#	Tuples	are	immutable:

...	t[0]	=	88888

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	'tuple'	object	does	not	support	item	assignment

>>>	#	but	they	can	contain	mutable	objects:

...	v	=	([1,	2,	3],	[3,	2,	1])

>>>	v

([1,	2,	3],	[3,	2,	1])

As	you	see,	on	output	tuples	are	always	enclosed	in	parentheses,	so
that	nested	tuples	are	interpreted	correctly;	they	may	be	input	with	or
without	 surrounding	 parentheses,	 although	 often	 parentheses	 are

necessary	anyway	(if	the	tuple	is	part	of	a	larger	expression).	It	is	not
possible	 to	 assign	 to	 the	 individual	 items	 of	 a	 tuple,	 however	 it	 is
possible	to	create	tuples	which	contain	mutable	objects,	such	as	lists.

Though	 tuples	 may	 seem	 similar	 to	 lists,	 they	 are	 often	 used	 in
different	 situations	 and	 for	 different	 purposes.	 Tuples	 are	 immutable,
and	usually	contain	an	heterogeneous	sequence	of	elements	that	are
accessed	via	unpacking	(see	later	in	this	section)	or	indexing	(or	even
by	attribute	in	the	case	of	namedtuples).	Lists	are	mutable,	and	their
elements	 are	 usually	 homogeneous	 and	 are	 accessed	 by	 iterating
over	the	list.

A	special	problem	is	the	construction	of	tuples	containing	0	or	1	items:
the	 syntax	 has	 some	 extra	 quirks	 to	 accommodate	 these.	 Empty
tuples	are	constructed	by	an	empty	pair	of	parentheses;	a	 tuple	with
one	 item	 is	 constructed	by	 following	a	 value	with	 a	 comma	 (it	 is	 not
sufficient	to	enclose	a	single	value	in	parentheses).	Ugly,	but	effective.
For	example:

>>>	empty	=	()

>>>	singleton	=	'hello',				#	<--	note	trailing	comma

>>>	len(empty)

0

>>>	len(singleton)

1

>>>	singleton

('hello',)

The	statement	t	=	12345,	54321,	'hello!'	 is	 an	 example	 of
tuple	packing:	 the	values	12345,	54321	and	'hello!'	are	packed
together	in	a	tuple.	The	reverse	operation	is	also	possible:

>>>	x,	y,	z	=	t

This	 is	called,	appropriately	enough,	sequence	unpacking	 and	works
for	 any	 sequence	 on	 the	 right-hand	 side.	 Sequence	 unpacking
requires	that	there	are	as	many	variables	on	the	left	side	of	the	equals
sign	 as	 there	 are	 elements	 in	 the	 sequence.	 Note	 that	 multiple
assignment	is	really	just	a	combination	of	tuple	packing	and	sequence
unpacking.

5.4.	Sets

Python	 also	 includes	 a	 data	 type	 for	 sets.	 A	 set	 is	 an	 unordered
collection	with	no	duplicate	elements.	Basic	uses	include	membership
testing	 and	 eliminating	 duplicate	 entries.	 Set	 objects	 also	 support
mathematical	 operations	 like	 union,	 intersection,	 difference,	 and
symmetric	difference.

Curly	braces	or	the	set()	function	can	be	used	to	create	sets.	Note:
to	 create	 an	 empty	 set	 you	 have	 to	 use	 set(),	 not	 {};	 the	 latter
creates	 an	 empty	 dictionary,	 a	 data	 structure	 that	 we	 discuss	 in	 the
next	section.

Here	is	a	brief	demonstration:

>>>	basket	=	{'apple',	'orange',	'apple',	'pear',	'orange'

>>>	print(basket)																						#	show	that	duplicates	have	been	removed

{'orange',	'banana',	'pear',	'apple'}

>>>	'orange'	in	basket																	#	fast	membership	testing

True

>>>	'crabgrass'	in	basket

False

>>>	#	Demonstrate	set	operations	on	unique	letters	from	two	words

...

>>>	a	=	set('abracadabra')

>>>	b	=	set('alacazam')

>>>	a																																		#	unique	letters	in	a

{'a',	'r',	'b',	'c',	'd'}

>>>	a	-	b																														#	letters	in	a	but	not	in	b

{'r',	'd',	'b'}

>>>	a	|	b																														#	letters	in	either	a	or	b

{'a',	'c',	'r',	'd',	'b',	'm',	'z',	'l'}

>>>	a	&	b																														#	letters	in	both	a	and	b

{'a',	'c'}

>>>	a	^	b																														#	letters	in	a	or	b	but	not	both

{'r',	'd',	'b',	'm',	'z',	'l'}

Similarly	 to	 list	 comprehensions,	 set	 comprehensions	 are	 also
supported:

>>>	a	=	{x	for	x	in	'abracadabra'	if	x	not	in	'abc'}

>>>	a

{'r',	'd'}

5.5.	Dictionaries

Another	 useful	 data	 type	 built	 into	 Python	 is	 the	 dictionary	 (see
Mapping	 Types	 —	 dict).	 Dictionaries	 are	 sometimes	 found	 in	 other
languages	 as	 “associative	 memories”	 or	 “associative	 arrays”.	 Unlike
sequences,	which	are	indexed	by	a	range	of	numbers,	dictionaries	are
indexed	 by	 keys,	 which	 can	 be	 any	 immutable	 type;	 strings	 and
numbers	 can	 always	 be	 keys.	 Tuples	 can	 be	 used	 as	 keys	 if	 they
contain	 only	 strings,	 numbers,	 or	 tuples;	 if	 a	 tuple	 contains	 any
mutable	object	either	directly	or	indirectly,	it	cannot	be	used	as	a	key.
You	can’t	use	lists	as	keys,	since	lists	can	be	modified	in	place	using
index	assignments,	slice	assignments,	or	methods	like	append()	and
extend().

It	 is	 best	 to	 think	 of	 a	 dictionary	 as	 an	 unordered	 set	 of	 key:	 value
pairs,	 with	 the	 requirement	 that	 the	 keys	 are	 unique	 (within	 one
dictionary).	A	pair	of	braces	creates	an	empty	dictionary:	{}.	Placing	a
comma-separated	 list	of	key:value	pairs	within	 the	braces	adds	 initial
key:value	pairs	 to	 the	dictionary;	 this	 is	also	 the	way	dictionaries	are
written	on	output.

The	main	operations	on	a	dictionary	are	storing	a	value	with	some	key
and	extracting	 the	value	given	 the	key.	 It	 is	also	possible	 to	delete	a
key:value	pair	with	del.	If	you	store	using	a	key	that	is	already	in	use,
the	 old	 value	 associated	 with	 that	 key	 is	 forgotten.	 It	 is	 an	 error	 to
extract	a	value	using	a	non-existent	key.

Performing	list(d.keys())	on	a	dictionary	returns	a	 list	of	all	 the
keys	used	in	the	dictionary,	in	arbitrary	order	(if	you	want	it	sorted,	just
use	sorted(d.keys())	instead).	[2]	To	check	whether	a	single	key
is	in	the	dictionary,	use	the	in	keyword.

Here	is	a	small	example	using	a	dictionary:

>>>	tel	=	{'jack':	4098,	'sape':	4139}

>>>	tel['guido']	=	4127

>>>	tel

{'sape':	4139,	'guido':	4127,	'jack':	4098}

>>>	tel['jack']

4098

>>>	del	tel['sape']

>>>	tel['irv']	=	4127

>>>	tel

{'guido':	4127,	'irv':	4127,	'jack':	4098}

>>>	list(tel.keys())

['irv',	'guido',	'jack']

>>>	sorted(tel.keys())

['guido',	'irv',	'jack']

>>>	'guido'	in	tel

True

>>>	'jack'	not	in	tel

False

The	dict()	constructor	builds	dictionaries	directly	from	sequences	of
key-value	pairs:

>>>	dict([('sape',	4139),	('guido',	4127),	('jack',	

{'sape':	4139,	'jack':	4098,	'guido':	4127}

In	 addition,	 dict	 comprehensions	 can	 be	 used	 to	 create	 dictionaries
from	arbitrary	key	and	value	expressions:

>>>	{x:	x**2	for	x	in	(2,	4,	6)}

{2:	4,	4:	16,	6:	36}

When	 the	 keys	 are	 simple	 strings,	 it	 is	 sometimes	 easier	 to	 specify
pairs	using	keyword	arguments:

>>>	dict(sape=4139,	guido=4127,	jack=4098)

{'sape':	4139,	'jack':	4098,	'guido':	4127}

5.6.	Looping	Techniques

When	 looping	 through	 dictionaries,	 the	 key	 and	 corresponding	 value
can	be	retrieved	at	the	same	time	using	the	items()	method.

>>>	knights	=	{'gallahad':	'the	pure',	'robin':	'the	brave'

>>>	for	k,	v	in	knights.items():

...					print(k,	v)

...

gallahad	the	pure

robin	the	brave

When	 looping	 through	 a	 sequence,	 the	 position	 index	 and
corresponding	 value	 can	 be	 retrieved	 at	 the	 same	 time	 using	 the
enumerate()	function.

>>>	for	i,	v	in	enumerate(['tic',	'tac',	'toe']):

...					print(i,	v)

...

0	tic

1	tac

2	toe

To	loop	over	two	or	more	sequences	at	the	same	time,	the	entries	can
be	paired	with	the	zip()	function.

>>>	questions	=	['name',	'quest',	'favorite	color']

>>>	answers	=	['lancelot',	'the	holy	grail',	'blue']

>>>	for	q,	a	in	zip(questions,	answers):

...					print('What	is	your	{0}?		It	is	{1}.'.format

...

What	is	your	name?		It	is	lancelot.

What	is	your	quest?		It	is	the	holy	grail.

What	is	your	favorite	color?		It	is	blue.

To	 loop	 over	 a	 sequence	 in	 reverse,	 first	 specify	 the	 sequence	 in	 a
forward	direction	and	then	call	the	reversed()	function.

>>>	for	i	in	reversed(range(1,	10,	2)):

...					print(i)

...

9

7

5

3

1

To	loop	over	a	sequence	in	sorted	order,	use	the	sorted()	 function
which	returns	a	new	sorted	list	while	leaving	the	source	unaltered.

>>>	basket	=	['apple',	'orange',	'apple',	'pear',	'orange'

>>>	for	f	in	sorted(set(basket)):

...					print(f)

...

apple

banana

orange

pear

To	change	a	sequence	you	are	iterating	over	while	inside	the	loop	(for
example	 to	 duplicate	 certain	 items),	 it	 is	 recommended	 that	 you	 first
make	 a	 copy.	 Looping	 over	 a	 sequence	 does	 not	 implicitly	 make	 a
copy.	The	slice	notation	makes	this	especially	convenient:

>>>	words	=	['cat',	'window',	'defenestrate']

>>>	for	w	in	words[:]:		#	Loop	over	a	slice	copy	of	the	entire	list.

...					if	len(w)	>	6:

...									words.insert(0,	w)

...

>>>	words

['defenestrate',	'cat',	'window',	'defenestrate']

5.7.	More	on	Conditions

The	 conditions	 used	 in	 while	 and	 if	 statements	 can	 contain	 any
operators,	not	just	comparisons.

The	 comparison	 operators	 in	 and	 not	 in	 check	 whether	 a	 value
occurs	(does	not	occur)	in	a	sequence.	The	operators	is	and	is	not
compare	 whether	 two	 objects	 are	 really	 the	 same	 object;	 this	 only
matters	 for	mutable	 objects	 like	 lists.	 All	 comparison	 operators	 have
the	same	priority,	which	is	lower	than	that	of	all	numerical	operators.

Comparisons	 can	 be	 chained.	 For	 example,	 a	 <	 b	 ==	 c	 tests
whether	a	is	less	than	b	and	moreover	b	equals	c.

Comparisons	may	be	combined	using	the	Boolean	operators	and	and
or,	 and	 the	 outcome	 of	 a	 comparison	 (or	 of	 any	 other	 Boolean
expression)	 may	 be	 negated	 with	 not.	 These	 have	 lower	 priorities
than	 comparison	 operators;	 between	 them,	 not	 has	 the	 highest
priority	and	or	the	lowest,	so	that	A	and	not	B	or	C	is	equivalent
to	(A	and	(not	B))	or	C.	As	always,	parentheses	can	be	used	to
express	the	desired	composition.

The	 Boolean	 operators	 and	 and	 or	 are	 so-called	 short-circuit
operators:	 their	 arguments	 are	 evaluated	 from	 left	 to	 right,	 and
evaluation	stops	as	soon	as	the	outcome	is	determined.	For	example,
if	A	and	C	are	true	but	B	is	false,	A	and	B	and	C	does	not	evaluate
the	 expression	 C.	 When	 used	 as	 a	 general	 value	 and	 not	 as	 a
Boolean,	 the	 return	 value	 of	 a	 short-circuit	 operator	 is	 the	 last
evaluated	argument.

It	 is	 possible	 to	 assign	 the	 result	 of	 a	 comparison	 or	 other	 Boolean

expression	to	a	variable.	For	example,

>>>	string1,	string2,	string3	=	'',	'Trondheim',	'Hammer	Dance'

>>>	non_null	=	string1	or	string2	or	string3

>>>	non_null

'Trondheim'

Note	 that	 in	 Python,	 unlike	 C,	 assignment	 cannot	 occur	 inside
expressions.	C	programmers	may	grumble	about	 this,	but	 it	avoids	a
common	class	of	problems	encountered	in	C	programs:	typing	=	in	an
expression	when	==	was	intended.

5.8.	Comparing	Sequences	and	Other
Types

Sequence	 objects	may	 be	 compared	 to	 other	 objects	with	 the	 same
sequence	type.	The	comparison	uses	lexicographical	ordering:	first	the
first	 two	 items	 are	 compared,	 and	 if	 they	 differ	 this	 determines	 the
outcome	of	 the	comparison;	 if	 they	are	equal,	 the	next	 two	 items	are
compared,	and	so	on,	until	either	sequence	is	exhausted.	If	two	items
to	 be	 compared	 are	 themselves	 sequences	 of	 the	 same	 type,	 the
lexicographical	comparison	is	carried	out	recursively.	If	all	items	of	two
sequences	 compare	 equal,	 the	 sequences	 are	 considered	 equal.	 If
one	 sequence	 is	 an	 initial	 sub-sequence	 of	 the	 other,	 the	 shorter
sequence	 is	 the	 smaller	 (lesser)	 one.	 Lexicographical	 ordering	 for
strings	 uses	 the	 Unicode	 codepoint	 number	 to	 order	 individual
characters.	 Some	 examples	 of	 comparisons	 between	 sequences	 of
the	same	type:

(1,	2,	3)														<	(1,	2,	4)

[1,	2,	3]														<	[1,	2,	4]

'ABC'	<	'C'	<	'Pascal'	<	'Python'

(1,	2,	3,	4)											<	(1,	2,	4)

(1,	2)																	<	(1,	2,	-1)

(1,	2,	3)													==	(1.0,	2.0,	3.0)

(1,	2,	('aa',	'ab'))			<	(1,	2,	('abc',	'a'),	4)

Note	 that	 comparing	 objects	 of	 different	 types	 with	 <	 or	 >	 is	 legal
provided	 that	 the	objects	have	appropriate	comparison	methods.	For
example,	 mixed	 numeric	 types	 are	 compared	 according	 to	 their
numeric	value,	so	0	equals	0.0,	etc.	Otherwise,	rather	 than	providing
an	 arbitrary	 ordering,	 the	 interpreter	 will	 raise	 a	 TypeError

exception.

Footnotes

[1]
Other	languages	may	return	the	mutated	object,	which	allows
method	chaining,	such	as	d->insert("a")-
>remove("b")->sort();.

[2]

Calling	d.keys()	will	return	a	dictionary	view	object.	It
supports	operations	like	membership	test	and	iteration,	but	its
contents	are	not	independent	of	the	original	dictionary	–	it	is
only	a	view.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

6.	Modules
If	you	quit	from	the	Python	interpreter	and	enter	it	again,	the	definitions
you	 have	 made	 (functions	 and	 variables)	 are	 lost.	 Therefore,	 if	 you
want	 to	write	a	somewhat	 longer	program,	you	are	better	off	using	a
text	 editor	 to	 prepare	 the	 input	 for	 the	 interpreter	 and	 running	 it	with
that	 file	as	 input	 instead.	This	 is	known	as	creating	a	script.	As	 your
program	 gets	 longer,	 you	 may	 want	 to	 split	 it	 into	 several	 files	 for
easier	maintenance.	You	may	also	want	 to	use	a	handy	function	that
you’ve	written	 in	 several	 programs	without	 copying	 its	 definition	 into
each	program.

To	support	 this,	Python	has	a	way	 to	put	definitions	 in	a	 file	and	use
them	in	a	script	or	in	an	interactive	instance	of	the	interpreter.	Such	a
file	is	called	a	module;	definitions	from	a	module	can	be	imported	 into
other	modules	or	into	the	main	module	(the	collection	of	variables	that
you	 have	 access	 to	 in	 a	 script	 executed	 at	 the	 top	 level	 and	 in
calculator	mode).

A	module	 is	 a	 file	 containing	Python	definitions	and	statements.	The
file	name	is	the	module	name	with	the	suffix	.py	appended.	Within	a
module,	 the	module’s	name	 (as	a	string)	 is	available	as	 the	value	of
the	 global	 variable	 __name__.	 For	 instance,	 use	 your	 favorite	 text
editor	to	create	a	file	called	fibo.py	in	the	current	directory	with	the
following	contents:

#	Fibonacci	numbers	module

def	fib(n):				#	write	Fibonacci	series	up	to	n

				a,	b	=	0,	1

				while	b	<	n:

								print(b,	end='	')

								a,	b	=	b,	a+b

				print()

def	fib2(n):	#	return	Fibonacci	series	up	to	n

				result	=	[]

				a,	b	=	0,	1

				while	b	<	n:

								result.append(b)

								a,	b	=	b,	a+b

				return	result

Now	 enter	 the	 Python	 interpreter	 and	 import	 this	 module	 with	 the
following	command:

>>>	import	fibo

This	 does	 not	 enter	 the	 names	 of	 the	 functions	 defined	 in	 fibo
directly	 in	 the	 current	 symbol	 table;	 it	 only	 enters	 the	module	 name
fibo	there.	Using	the	module	name	you	can	access	the	functions:

>>>	fibo.fib(1000)

1	1	2	3	5	8	13	21	34	55	89	144	233	377	610	987

>>>	fibo.fib2(100)

[1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89]

>>>	fibo.__name__

'fibo'

If	you	intend	to	use	a	function	often	you	can	assign	it	to	a	local	name:

>>>	fib	=	fibo.fib

>>>	fib(500)

1	1	2	3	5	8	13	21	34	55	89	144	233	377

6.1.	More	on	Modules

A	 module	 can	 contain	 executable	 statements	 as	 well	 as	 function
definitions.	 These	 statements	 are	 intended	 to	 initialize	 the	 module.
They	are	executed	only	the	first	time	the	module	name	is	encountered
in	an	import	statement.	[1]	(They	are	also	run	if	the	file	is	executed	as
a	script.)

Each	module	has	 its	own	private	symbol	 table,	which	 is	used	as	 the
global	symbol	 table	by	all	 functions	defined	 in	 the	module.	Thus,	 the
author	 of	 a	 module	 can	 use	 global	 variables	 in	 the	 module	 without
worrying	 about	 accidental	 clashes	with	 a	 user’s	 global	 variables.	On
the	 other	 hand,	 if	 you	 know	 what	 you	 are	 doing	 you	 can	 touch	 a
module’s	 global	 variables	with	 the	 same	notation	used	 to	 refer	 to	 its
functions,	modname.itemname.

Modules	can	import	other	modules.	It	is	customary	but	not	required	to
place	all	import	statements	at	 the	beginning	of	a	module	(or	script,
for	 that	 matter).	 The	 imported	 module	 names	 are	 placed	 in	 the
importing	module’s	global	symbol	table.

There	is	a	variant	of	the	import	statement	that	imports	names	from	a
module	directly	into	the	importing	module’s	symbol	table.	For	example:

>>>	from	fibo	import	fib,	fib2

>>>	fib(500)

1	1	2	3	5	8	13	21	34	55	89	144	233	377

This	does	not	introduce	the	module	name	from	which	the	imports	are
taken	 in	 the	 local	 symbol	 table	 (so	 in	 the	 example,	 fibo	 is	 not
defined).

There	is	even	a	variant	to	import	all	names	that	a	module	defines:

>>>	from	fibo	import	*

>>>	fib(500)

1	1	2	3	5	8	13	21	34	55	89	144	233	377

This	imports	all	names	except	those	beginning	with	an	underscore	(_).
In	 most	 cases	 Python	 programmers	 do	 not	 use	 this	 facility	 since	 it
introduces	 an	 unknown	 set	 of	 names	 into	 the	 interpreter,	 possibly
hiding	some	things	you	have	already	defined.

Note	 that	 in	 general	 the	 practice	 of	 importing	 *	 from	 a	 module	 or
package	is	frowned	upon,	since	it	often	causes	poorly	readable	code.
However,	it	is	okay	to	use	it	to	save	typing	in	interactive	sessions.

Note: 	For	efficiency	reasons,	each	module	is	only	imported	once
per	interpreter	session.	Therefore,	if	you	change	your	modules,	you
must	restart	the	interpreter	–	or,	if	it’s	just	one	module	you	want	to
test	interactively,	use	imp.reload(),	e.g.	import	imp;
imp.reload(modulename).

6.1.1.	Executing	modules	as	scripts

When	you	run	a	Python	module	with

python	fibo.py	<arguments>

the	code	in	the	module	will	be	executed,	just	as	if	you	imported	it,	but
with	 the	__name__	set	 to	"__main__".	That	means	 that	 by	adding
this	code	at	the	end	of	your	module:

if	__name__	==	"__main__":

				import	sys

				fib(int(sys.argv[1]))

you	 can	 make	 the	 file	 usable	 as	 a	 script	 as	 well	 as	 an	 importable
module,	because	the	code	that	parses	the	command	line	only	runs	 if
the	module	is	executed	as	the	“main”	file:

$	python	fibo.py	50

1	1	2	3	5	8	13	21	34

If	the	module	is	imported,	the	code	is	not	run:

>>>	import	fibo

>>>

This	 is	 often	 used	 either	 to	 provide	 a	 convenient	 user	 interface	 to	 a
module,	 or	 for	 testing	 purposes	 (running	 the	 module	 as	 a	 script
executes	a	test	suite).

6.1.2.	The	Module	Search	Path

When	a	module	named	spam	is	imported,	the	interpreter	first	searches
for	a	built-in	module	with	that	name.	If	not	found,	it	then	searches	for	a
file	 named	 spam.py	 in	 a	 list	 of	 directories	 given	 by	 the	 variable
sys.path.	sys.path	is	initialized	from	these	locations:

The	directory	 containing	 the	 input	 script	 (or	 the	 current	directory
when	no	file	is	specified).
PYTHONPATH	(a	list	of	directory	names,	with	the	same	syntax	as
the	shell	variable	PATH).
The	installation-dependent	default.

Note: 	On	file	systems	which	support	symlinks,	the	directory
containing	the	input	script	is	calculated	after	the	symlink	is	followed.

In	other	words	the	directory	containing	the	symlink	is	not	added	to
the	module	search	path.

After	 initialization,	 Python	 programs	 can	 modify	 sys.path.	 The
directory	containing	the	script	being	run	 is	placed	at	 the	beginning	of
the	search	path,	ahead	of	 the	standard	 library	path.	This	means	 that
scripts	in	that	directory	will	be	loaded	instead	of	modules	of	the	same
name	in	the	library	directory.	This	is	an	error	unless	the	replacement	is
intended.	See	section	Standard	Modules	for	more	information.

6.1.3.	“Compiled”	Python	files

To	speed	up	loading	modules,	Python	caches	the	compiled	version	of
each	 module	 in	 the	 __pycache__	 directory	 under	 the	 name
module.version.pyc,	where	the	version	encodes	the	format	of	the
compiled	 file;	 it	 generally	 contains	 the	 Python	 version	 number.	 For
example,	 in	 CPython	 release	 3.3	 the	 compiled	 version	 of	 spam.py
would	 be	 cached	 as	 __pycache__/spam.cpython-33.pyc.	 This
naming	 convention	 allows	 compiled	 modules	 from	 different	 releases
and	different	versions	of	Python	to	coexist.

Python	 checks	 the	 modification	 date	 of	 the	 source	 against	 the
compiled	version	to	see	if	it’s	out	of	date	and	needs	to	be	recompiled.
This	 is	 a	 completely	 automatic	 process.	Also,	 the	 compiled	modules
are	platform-independent,	 so	 the	same	 library	 can	be	shared	among
systems	with	different	architectures.

Python	does	not	check	the	cache	in	two	circumstances.	First,	it	always
recompiles	and	does	not	store	the	result	for	the	module	that’s	loaded
directly	from	the	command	line.	Second,	it	does	not	check	the	cache	if
there	 is	 no	 source	module.	To	 support	 a	 non-source	 (compiled	only)
distribution,	the	compiled	module	must	be	in	the	source	directory,	and

there	must	not	be	a	source	module.

Some	tips	for	experts:

You	can	use	the	-O	or	-OO	switches	on	the	Python	command	to
reduce	 the	 size	 of	 a	 compiled	module.	 The	 -O	 switch	 removes
assert	 statements,	 the	 -OO	 switch	 removes	 both	 assert
statements	and	__doc__	strings.	Since	some	programs	may	rely
on	having	these	available,	you	should	only	use	this	option	 if	you
know	what	you’re	doing.	“Optimized”	modules	have	a	.pyo	rather
than	 a	 .pyc	 suffix	 and	 are	 usually	 smaller.	 Future	 releases	may
change	the	effects	of	optimization.
A	program	doesn’t	run	any	faster	when	it	 is	read	from	a	.pyc	or
.pyo	file	than	when	it	is	read	from	a	.py	file;	the	only	thing	that’s
faster	about	.pyc	or	.pyo	files	is	the	speed	with	which	they	are
loaded.
The	module	compileall	can	create	.pyc	files	(or	.pyo	files	when
-O	is	used)	for	all	modules	in	a	directory.
There	is	more	detail	on	this	process,	including	a	flow	chart	of	the
decisions,	in	PEP	3147.

6.2.	Standard	Modules

Python	 comes	 with	 a	 library	 of	 standard	 modules,	 described	 in	 a
separate	 document,	 the	 Python	 Library	 Reference	 (“Library
Reference”	 hereafter).	 Some	 modules	 are	 built	 into	 the	 interpreter;
these	provide	access	to	operations	that	are	not	part	of	the	core	of	the
language	 but	 are	 nevertheless	 built	 in,	 either	 for	 efficiency	 or	 to
provide	 access	 to	 operating	 system	 primitives	 such	 as	 system	 calls.
The	set	of	such	modules	is	a	configuration	option	which	also	depends
on	the	underlying	platform.	For	example,	 the	winreg	module	 is	only
provided	on	Windows	systems.	One	particular	module	deserves	some
attention:	 sys,	 which	 is	 built	 into	 every	 Python	 interpreter.	 The
variables	sys.ps1	and	sys.ps2	define	the	strings	used	as	primary
and	secondary	prompts:

>>>	import	sys

>>>	sys.ps1

'>>>	'

>>>	sys.ps2

'...	'

>>>	sys.ps1	=	'C>	'

C>	print('Yuck!')

Yuck!

C>

These	two	variables	are	only	defined	if	the	interpreter	is	in	interactive
mode.

The	 variable	 sys.path	 is	 a	 list	 of	 strings	 that	 determines	 the
interpreter’s	search	path	for	modules.	 It	 is	 initialized	to	a	default	path
taken	 from	 the	environment	 variable	PYTHONPATH,	 or	 from	a	built-in
default	if	PYTHONPATH	is	not	set.	You	can	modify	it	using	standard	list

operations:

>>>	import	sys

>>>	sys.path.append('/ufs/guido/lib/python')

6.3.	The	dir()	Function

The	built-in	function	dir()	is	used	to	find	out	which	names	a	module
defines.	It	returns	a	sorted	list	of	strings:

>>>	import	fibo,	sys

>>>	dir(fibo)

['__name__',	'fib',	'fib2']

>>>	dir(sys)		

['__displayhook__',	'__doc__',	'__excepthook__',	'__loader__',	'__name__',

	'__package__',	'__stderr__',	'__stdin__',	'__stdout__',

	'_clear_type_cache',	'_current_frames',	'_debugmallocstats',	'_getframe',

	'_home',	'_mercurial',	'_xoptions',	'abiflags',	'api_version',	'argv',

	'base_exec_prefix',	'base_prefix',	'builtin_module_names',	'byteorder',

	'call_tracing',	'callstats',	'copyright',	'displayhook',

	'dont_write_bytecode',	'exc_info',	'excepthook',	'exec_prefix',

	'executable',	'exit',	'flags',	'float_info',	'float_repr_style',

	'getcheckinterval',	'getdefaultencoding',	'getdlopenflags',

	'getfilesystemencoding',	'getobjects',	'getprofile',	'getrecursionlimit',

	'getrefcount',	'getsizeof',	'getswitchinterval',	'gettotalrefcount',

	'gettrace',	'hash_info',	'hexversion',	'implementation',	'int_info',

	'intern',	'maxsize',	'maxunicode',	'meta_path',	'modules',	'path',

	'path_hooks',	'path_importer_cache',	'platform',	'prefix',	'ps1',

	'setcheckinterval',	'setdlopenflags',	'setprofile',	'setrecursionlimit',

	'setswitchinterval',	'settrace',	'stderr',	'stdin',	'stdout',

	'thread_info',	'version',	'version_info',	'warnoptions']

Without	arguments,	dir()	lists	the	names	you	have	defined	currently:

>>>	a	=	[1,	2,	3,	4,	5]

>>>	import	fibo

>>>	fib	=	fibo.fib

>>>	dir()

['__builtins__',	'__name__',	'a',	'fib',	'fibo',	'sys']

Note	that	it	lists	all	types	of	names:	variables,	modules,	functions,	etc.

dir()	 does	 not	 list	 the	 names	 of	 built-in	 functions	 and	 variables.	 If
you	 want	 a	 list	 of	 those,	 they	 are	 defined	 in	 the	 standard	 module
builtins:

>>>	import	builtins

>>>	dir(builtins)		

['ArithmeticError',	'AssertionError',	'AttributeError',	'BaseException',

	'BlockingIOError',	'BrokenPipeError',	'BufferError',	'BytesWarning',

	'ChildProcessError',	'ConnectionAbortedError',	'ConnectionError',

	'ConnectionRefusedError',	'ConnectionResetError',	'DeprecationWarning',

	'EOFError',	'Ellipsis',	'EnvironmentError',	'Exception',	'False',

	'FileExistsError',	'FileNotFoundError',	'FloatingPointError',

	'FutureWarning',	'GeneratorExit',	'IOError',	'ImportError',

	'ImportWarning',	'IndentationError',	'IndexError',	'InterruptedError',

	'IsADirectoryError',	'KeyError',	'KeyboardInterrupt',	'LookupError',

	'MemoryError',	'NameError',	'None',	'NotADirectoryError',	'NotImplemented',

	'NotImplementedError',	'OSError',	'OverflowError',

	'PendingDeprecationWarning',	'PermissionError',	'ProcessLookupError',

	'ReferenceError',	'ResourceWarning',	'RuntimeError',	'RuntimeWarning',

	'StopIteration',	'SyntaxError',	'SyntaxWarning',	'SystemError',

	'SystemExit',	'TabError',	'TimeoutError',	'True',	'TypeError',

	'UnboundLocalError',	'UnicodeDecodeError',	'UnicodeEncodeError',

	'UnicodeError',	'UnicodeTranslateError',	'UnicodeWarning',	'UserWarning',

	'ValueError',	'Warning',	'ZeroDivisionError',	'_',	'__build_class__',

	'__debug__',	'__doc__',	'__import__',	'__name__',	'__package__',	'abs',

	'all',	'any',	'ascii',	'bin',	'bool',	'bytearray',	'bytes',	'callable',

	'chr',	'classmethod',	'compile',	'complex',	'copyright',	'credits',

	'delattr',	'dict',	'dir',	'divmod',	'enumerate',	'eval',	'exec',	'exit',

	'filter',	'float',	'format',	'frozenset',	'getattr',	'globals',	'hasattr',

	'hash',	'help',	'hex',	'id',	'input',	'int',	'isinstance',	'issubclass',

	'iter',	'len',	'license',	'list',	'locals',	'map',	'max',	'memoryview',

	'min',	'next',	'object',	'oct',	'open',	'ord',	'pow',	'print',	'property',

	'quit',	'range',	'repr',	'reversed',	'round',	'set',	'setattr',	'slice',

	'sorted',	'staticmethod',	'str',	'sum',	'super',	'tuple',	'type',	'vars',

	'zip']

6.4.	Packages

Packages	 are	 a	 way	 of	 structuring	 Python’s	 module	 namespace	 by
using	 “dotted	 module	 names”.	 For	 example,	 the	 module	 name	 A.B
designates	a	submodule	named	B	in	a	package	named	A.	Just	like	the
use	of	modules	saves	the	authors	of	different	modules	from	having	to
worry	 about	 each	 other’s	 global	 variable	 names,	 the	 use	 of	 dotted
module	 names	 saves	 the	 authors	 of	 multi-module	 packages	 like
NumPy	or	the	Python	Imaging	Library	from	having	to	worry	about	each
other’s	module	names.

Suppose	you	want	to	design	a	collection	of	modules	(a	“package”)	for
the	uniform	handling	of	sound	 files	and	sound	data.	There	are	many
different	sound	file	formats	(usually	recognized	by	their	extension,	for
example:	 .wav,	 .aiff,	 .au),	 so	 you	 may	 need	 to	 create	 and
maintain	a	growing	collection	of	modules	 for	 the	conversion	between
the	various	file	formats.	There	are	also	many	different	operations	you
might	want	 to	perform	on	sound	data	 (such	as	mixing,	 adding	echo,
applying	an	equalizer	function,	creating	an	artificial	stereo	effect),	so	in
addition	 you	 will	 be	 writing	 a	 never-ending	 stream	 of	 modules	 to
perform	these	operations.	Here’s	a	possible	structure	for	your	package
(expressed	in	terms	of	a	hierarchical	filesystem):

sound/																										Top-level	package

						__init__.py															Initialize	the	sound	package

						formats/																		Subpackage	for	file	format	conversions

														__init__.py

														wavread.py

														wavwrite.py

														aiffread.py

														aiffwrite.py

														auread.py

														auwrite.py

														...

						effects/																		Subpackage	for	sound	effects

														__init__.py

														echo.py

														surround.py

														reverse.py

														...

						filters/																		Subpackage	for	filters

														__init__.py

														equalizer.py

														vocoder.py

														karaoke.py

														...

When	importing	the	package,	Python	searches	through	the	directories
on	sys.path	looking	for	the	package	subdirectory.

The	 __init__.py	 files	 are	 required	 to	 make	 Python	 treat	 the
directories	as	containing	packages;	this	is	done	to	prevent	directories
with	 a	 common	 name,	 such	 as	 string,	 from	 unintentionally	 hiding
valid	 modules	 that	 occur	 later	 on	 the	 module	 search	 path.	 In	 the
simplest	case,	__init__.py	can	just	be	an	empty	file,	but	it	can	also
execute	 initialization	 code	 for	 the	 package	 or	 set	 the	 __all__
variable,	described	later.

Users	of	the	package	can	import	individual	modules	from	the	package,
for	example:

import	sound.effects.echo

This	 loads	 the	 submodule	 sound.effects.echo.	 It	 must	 be
referenced	with	its	full	name.

sound.effects.echo.echofilter(input,	output,	delay=0.7

An	alternative	way	of	importing	the	submodule	is:

from	sound.effects	import	echo

This	also	 loads	 the	submodule	echo,	and	makes	 it	available	without
its	package	prefix,	so	it	can	be	used	as	follows:

echo.echofilter(input,	output,	delay=0.7,	atten=4)

Yet	 another	 variation	 is	 to	 import	 the	 desired	 function	 or	 variable
directly:

from	sound.effects.echo	import	echofilter

Again,	 this	 loads	 the	 submodule	 echo,	 but	 this	 makes	 its	 function
echofilter()	directly	available:

echofilter(input,	output,	delay=0.7,	atten=4)

Note	 that	when	using	from	package	import	item,	 the	 item	can
be	either	a	submodule	(or	subpackage)	of	the	package,	or	some	other
name	 defined	 in	 the	 package,	 like	 a	 function,	 class	 or	 variable.	 The
import	 statement	 first	 tests	 whether	 the	 item	 is	 defined	 in	 the
package;	if	not,	 it	assumes	it	 is	a	module	and	attempts	to	load	it.	 If	 it
fails	to	find	it,	an	ImportError	exception	is	raised.

Contrarily,	 when	 using	 syntax	 like	 import

item.subitem.subsubitem,	each	item	except	for	the	last	must	be
a	package;	the	last	item	can	be	a	module	or	a	package	but	can’t	be	a
class	or	function	or	variable	defined	in	the	previous	item.

6.4.1.	Importing	*	From	a	Package

Now	 what	 happens	 when	 the	 user	 writes	 from	 sound.effects
import	*?	 Ideally,	 one	would	 hope	 that	 this	 somehow	goes	 out	 to
the	 filesystem,	 finds	 which	 submodules	 are	 present	 in	 the	 package,
and	 imports	 them	all.	This	could	 take	a	 long	 time	and	 importing	sub-
modules	might	 have	 unwanted	 side-effects	 that	 should	 only	 happen
when	the	sub-module	is	explicitly	imported.

The	only	solution	is	for	the	package	author	to	provide	an	explicit	index
of	the	package.	The	import	statement	uses	the	following	convention:
if	a	package’s	__init__.py	code	defines	a	 list	named	__all__,	 it
is	taken	to	be	the	list	of	module	names	that	should	be	imported	when
from	package	import	*	 is	 encountered.	 It	 is	 up	 to	 the	package
author	to	keep	this	list	up-to-date	when	a	new	version	of	the	package
is	released.	Package	authors	may	also	decide	not	to	support	it,	if	they
don’t	see	a	use	 for	 importing	*	 from	 their	package.	For	example,	 the
file	 sound/effects/__init__.py	 could	 contain	 the	 following
code:

__all__	=	["echo",	"surround",	"reverse"]

This	 would	 mean	 that	 from	 sound.effects	 import	 *	 would
import	the	three	named	submodules	of	the	sound	package.

If	 __all__	 is	 not	 defined,	 the	 statement	 from	 sound.effects
import	 *	 does	 not	 import	 all	 submodules	 from	 the	 package
sound.effects	into	the	current	namespace;	it	only	ensures	that	the
package	 sound.effects	 has	 been	 imported	 (possibly	 running	 any
initialization	code	in	__init__.py)	and	then	imports	whatever	names
are	 defined	 in	 the	 package.	 This	 includes	 any	 names	 defined	 (and

submodules	explicitly	 loaded)	by	__init__.py.	 It	also	 includes	any
submodules	 of	 the	 package	 that	 were	 explicitly	 loaded	 by	 previous
import	statements.	Consider	this	code:

import	sound.effects.echo

import	sound.effects.surround

from	sound.effects	import	*

In	this	example,	the	echo	and	surround	modules	are	imported	in	the
current	namespace	because	they	are	defined	in	the	sound.effects
package	when	the	from...import	statement	is	executed.	(This	also
works	when	__all__	is	defined.)

Although	 certain	 modules	 are	 designed	 to	 export	 only	 names	 that
follow	certain	patterns	when	you	use	import	*,	 it	 is	still	considered
bad	practise	in	production	code.

Remember,	 there	 is	 nothing	 wrong	 with	 using	 from	 Package

import	 specific_submodule!	 In	 fact,	 this	 is	 the	 recommended
notation	unless	 the	 importing	module	needs	 to	 use	 submodules	with
the	same	name	from	different	packages.

6.4.2.	Intra-package	References

When	packages	are	structured	 into	subpackages	(as	with	the	sound
package	 in	 the	 example),	 you	 can	 use	 absolute	 imports	 to	 refer	 to
submodules	 of	 siblings	 packages.	 For	 example,	 if	 the	 module
sound.filters.vocoder	 needs	 to	 use	 the	 echo	 module	 in	 the
sound.effects	 package,	 it	 can	 use	 from	 sound.effects

import	echo.

You	can	also	write	relative	 imports,	with	 the	from	module	import

name	 form	 of	 import	 statement.	 These	 imports	 use	 leading	 dots	 to
indicate	 the	 current	 and	 parent	 packages	 involved	 in	 the	 relative
import.	From	the	surround	module	for	example,	you	might	use:

from	.	import	echo

from	..	import	formats

from	..filters	import	equalizer

Note	 that	 relative	 imports	 are	 based	 on	 the	 name	 of	 the	 current
module.	Since	the	name	of	the	main	module	is	always	"__main__",
modules	intended	for	use	as	the	main	module	of	a	Python	application
must	always	use	absolute	imports.

6.4.3.	Packages	in	Multiple	Directories

Packages	 support	 one	 more	 special	 attribute,	 __path__.	 This	 is
initialized	to	be	a	list	containing	the	name	of	the	directory	holding	the
package’s	__init__.py	before	the	code	in	that	file	is	executed.	This
variable	can	be	modified;	doing	so	affects	future	searches	for	modules
and	subpackages	contained	in	the	package.

While	this	feature	is	not	often	needed,	it	can	be	used	to	extend	the	set
of	modules	found	in	a	package.

Footnotes

[1]
In	fact	function	definitions	are	also	‘statements’	that	are
‘executed’;	the	execution	of	a	module-level	function	definition
enters	the	function	name	in	the	module’s	global	symbol	table.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

7.	Input	and	Output
There	are	several	ways	to	present	 the	output	of	a	program;	data	can
be	printed	in	a	human-readable	form,	or	written	to	a	file	for	future	use.
This	chapter	will	discuss	some	of	the	possibilities.

7.1.	Fancier	Output	Formatting

So	 far	 we’ve	 encountered	 two	 ways	 of	 writing	 values:	 expression
statements	 and	 the	 print()	 function.	 (A	 third	 way	 is	 using	 the
write()	 method	 of	 file	 objects;	 the	 standard	 output	 file	 can	 be
referenced	 as	 sys.stdout.	 See	 the	 Library	 Reference	 for	 more
information	on	this.)

Often	you’ll	want	more	control	over	the	formatting	of	your	output	than
simply	printing	space-separated	values.	There	are	two	ways	to	format
your	output;	the	first	way	is	to	do	all	the	string	handling	yourself;	using
string	slicing	and	concatenation	operations	you	can	create	any	layout
you	 can	 imagine.	 The	 string	 type	 has	 some	 methods	 that	 perform
useful	 operations	 for	 padding	 strings	 to	 a	 given	 column	width;	 these
will	 be	 discussed	 shortly.	 The	 second	 way	 is	 to	 use	 the
str.format()	method.

The	 string	 module	 contains	 a	 Template	 class	 which	 offers	 yet
another	way	to	substitute	values	into	strings.

One	 question	 remains,	 of	 course:	 how	 do	 you	 convert	 values	 to
strings?	 Luckily,	 Python	 has	 ways	 to	 convert	 any	 value	 to	 a	 string:
pass	it	to	the	repr()	or	str()	functions.

The	str()	function	is	meant	to	return	representations	of	values	which
are	 fairly	 human-readable,	 while	 repr()	 is	 meant	 to	 generate
representations	which	 can	 be	 read	 by	 the	 interpreter	 (or	will	 force	 a
SyntaxError	 if	 there	 is	 no	 equivalent	 syntax).	 For	 objects	 which
don’t	have	a	particular	representation	for	human	consumption,	str()
will	return	the	same	value	as	repr().	Many	values,	such	as	numbers
or	structures	 like	 lists	and	dictionaries,	have	the	same	representation

using	 either	 function.	 Strings,	 in	 particular,	 have	 two	 distinct
representations.

Some	examples:

>>>	s	=	'Hello,	world.'

>>>	str(s)

'Hello,	world.'

>>>	repr(s)

"'Hello,	world.'"

>>>	str(1/7)

'0.14285714285714285'

>>>	x	=	10	*	3.25

>>>	y	=	200	*	200

>>>	s	=	'The	value	of	x	is	'	+	repr(x)	+	',	and	y	is	'

>>>	print(s)

The	value	of	x	is	32.5,	and	y	is	40000...

>>>	#	The	repr()	of	a	string	adds	string	quotes	and	backslashes:

...	hello	=	'hello,	world\n'

>>>	hellos	=	repr(hello)

>>>	print(hellos)

'hello,	world\n'

>>>	#	The	argument	to	repr()	may	be	any	Python	object:

...	repr((x,	y,	('spam',	'eggs')))

"(32.5,	40000,	('spam',	'eggs'))"

Here	are	two	ways	to	write	a	table	of	squares	and	cubes:

>>>	for	x	in	range(1,	11):

...					print(repr(x).rjust(2),	repr(x*x).rjust(3),	

...					#	Note	use	of	'end'	on	previous	line

...					print(repr(x*x*x).rjust(4))

...

	1			1				1

	2			4				8

	3			9			27

	4		16			64

	5		25		125

	6		36		216

	7		49		343

	8		64		512

	9		81		729

10	100	1000

>>>	for	x	in	range(1,	11):

...					print('{0:2d}	{1:3d}	{2:4d}'.format(x,	x*x,	

...

	1			1				1

	2			4				8

	3			9			27

	4		16			64

	5		25		125

	6		36		216

	7		49		343

	8		64		512

	9		81		729

10	100	1000

(Note	that	 in	the	first	example,	one	space	between	each	column	was
added	by	the	way	print()	works:	it	always	adds	spaces	between	its
arguments.)

This	 example	 demonstrates	 the	 str.rjust()	 method	 of	 string
objects,	 which	 right-justifies	 a	 string	 in	 a	 field	 of	 a	 given	 width	 by
padding	 it	 with	 spaces	 on	 the	 left.	 There	 are	 similar	 methods
str.ljust()	 and	 str.center().	 These	 methods	 do	 not	 write
anything,	 they	 just	 return	a	new	string.	 If	 the	 input	 string	 is	 too	 long,
they	don’t	 truncate	 it,	but	 return	 it	unchanged;	 this	will	mess	up	your
column	 lay-out	 but	 that’s	 usually	 better	 than	 the	 alternative,	 which
would	 be	 lying	 about	 a	 value.	 (If	 you	 really	want	 truncation	 you	 can

always	add	a	slice	operation,	as	in	x.ljust(n)[:n].)

There	is	another	method,	str.zfill(),	which	pads	a	numeric	string
on	the	left	with	zeros.	It	understands	about	plus	and	minus	signs:

>>>	'12'.zfill(5)

'00012'

>>>	'-3.14'.zfill(7)

'-003.14'

>>>	'3.14159265359'.zfill(5)

'3.14159265359'

Basic	usage	of	the	str.format()	method	looks	like	this:

>>>	print('We	are	the	{}	who	say	"{}!"'.format('knights'

We	are	the	knights	who	say	"Ni!"

The	 brackets	 and	 characters	 within	 them	 (called	 format	 fields)	 are
replaced	with	the	objects	passed	into	the	str.format()	method.	A
number	 in	 the	 brackets	 can	 be	 used	 to	 refer	 to	 the	 position	 of	 the
object	passed	into	the	str.format()	method.

>>>	print('{0}	and	{1}'.format('spam',	'eggs'))

spam	and	eggs

>>>	print('{1}	and	{0}'.format('spam',	'eggs'))

eggs	and	spam

If	 keyword	arguments	are	used	 in	 the	str.format()	method,	 their
values	are	referred	to	by	using	the	name	of	the	argument.

>>>	print('This	{food}	is	{adjective}.'.format(

...							food='spam',	adjective='absolutely	horrible'

This	spam	is	absolutely	horrible.

Positional	and	keyword	arguments	can	be	arbitrarily	combined:

>>>	print('The	story	of	{0},	{1},	and	{other}.'.format

																																																							other='Georg'))

The	story	of	Bill,	Manfred,	and	Georg.

'!a'	 (apply	 ascii()),	 '!s'	 (apply	 str())	 and	 '!r'	 (apply
repr())	can	be	used	to	convert	the	value	before	it	is	formatted:

>>>	import	math

>>>	print('The	value	of	PI	is	approximately	{}.'.format

The	value	of	PI	is	approximately	3.14159265359.

>>>	print('The	value	of	PI	is	approximately	{!r}.'.format

The	value	of	PI	is	approximately	3.141592653589793.

An	optional	':'	 and	 format	specifier	 can	 follow	 the	 field	name.	This
allows	greater	control	over	how	 the	value	 is	 formatted.	The	 following
example	rounds	Pi	to	three	places	after	the	decimal.

>>>	import	math

>>>	print('The	value	of	PI	is	approximately	{0:.3f}.'

The	value	of	PI	is	approximately	3.142.

Passing	an	integer	after	the	':'	will	cause	that	field	to	be	a	minimum
number	of	characters	wide.	This	is	useful	for	making	tables	pretty.

>>>	table	=	{'Sjoerd':	4127,	'Jack':	4098,	'Dcab':	7678

>>>	for	name,	phone	in	table.items():

...					print('{0:10}	==>	{1:10d}'.format(name,	phone

...

Jack							==>							4098

Dcab							==>							7678

Sjoerd					==>							4127

If	you	have	a	really	long	format	string	that	you	don’t	want	to	split	up,	it
would	be	nice	if	you	could	reference	the	variables	to	be	formatted	by
name	instead	of	by	position.	This	can	be	done	by	simply	passing	the
dict	and	using	square	brackets	'[]'	to	access	the	keys

>>>	table	=	{'Sjoerd':	4127,	'Jack':	4098,	'Dcab':	8637678

>>>	print('Jack:	{0[Jack]:d};	Sjoerd:	{0[Sjoerd]:d};	'

...							'Dcab:	{0[Dcab]:d}'.format(table))

Jack:	4098;	Sjoerd:	4127;	Dcab:	8637678

This	could	also	be	done	by	passing	 the	 table	as	keyword	arguments
with	the	‘**’	notation.

>>>	table	=	{'Sjoerd':	4127,	'Jack':	4098,	'Dcab':	8637678

>>>	print('Jack:	{Jack:d};	Sjoerd:	{Sjoerd:d};	Dcab:	{Dcab:d}'

Jack:	4098;	Sjoerd:	4127;	Dcab:	8637678

This	 is	 particularly	 useful	 in	 combination	 with	 the	 built-in	 function
vars(),	which	returns	a	dictionary	containing	all	local	variables.

For	a	complete	overview	of	string	formatting	with	str.format(),	see
Format	String	Syntax.

7.1.1.	Old	string	formatting

The	%	operator	can	also	be	used	for	string	formatting.	It	interprets	the
left	argument	much	like	a	sprintf()-style	format	string	to	be	applied
to	 the	 right	 argument,	 and	 returns	 the	 string	 resulting	 from	 this
formatting	operation.	For	example:

>>>	import	math

>>>	print('The	value	of	PI	is	approximately	%5.3f.'	

The	value	of	PI	is	approximately	3.142.

More	 information	 can	 be	 found	 in	 the	 printf-style	 String	 Formatting
section.

7.2.	Reading	and	Writing	Files

open()	 returns	 a	 file	 object,	 and	 is	 most	 commonly	 used	 with	 two
arguments:	open(filename,	mode).

>>>	f	=	open('workfile',	'w')

The	 first	 argument	 is	 a	 string	 containing	 the	 filename.	 The	 second
argument	is	another	string	containing	a	few	characters	describing	the
way	in	which	the	file	will	be	used.	mode	can	be	'r'	when	the	file	will
only	be	read,	'w'	for	only	writing	(an	existing	file	with	the	same	name
will	be	erased),	and	'a'	opens	the	file	for	appending;	any	data	written
to	 the	 file	 is	automatically	added	 to	 the	end.	'r+'	 opens	 the	 file	 for
both	reading	and	writing.	The	mode	argument	is	optional;	'r'	will	be
assumed	if	it’s	omitted.

Normally,	 files	 are	 opened	 in	 text	 mode,	 that	 means,	 you	 read	 and
write	 strings	 from	 and	 to	 the	 file,	 which	 are	 encoded	 in	 a	 specific
encoding	(the	default	being	UTF-8).	'b'	appended	to	the	mode	opens
the	file	in	binary	mode:	now	the	data	is	read	and	written	in	the	form	of
bytes	objects.	This	mode	should	be	used	for	all	files	that	don’t	contain
text.

In	 text	mode,	 the	default	when	reading	 is	 to	convert	platform-specific
line	endings	(\n	on	Unix,	\r\n	on	Windows)	to	just	\n.	When	writing
in	 text	 mode,	 the	 default	 is	 to	 convert	 occurrences	 of	 \n	 back	 to
platform-specific	 line	endings.	This	behind-the-scenes	modification	 to
file	 data	 is	 fine	 for	 text	 files,	 but	 will	 corrupt	 binary	 data	 like	 that	 in
JPEG	or	EXE	files.	Be	very	careful	 to	use	binary	mode	when	reading
and	writing	such	files.

7.2.1.	Methods	of	File	Objects

The	rest	of	 the	examples	 in	 this	section	will	assume	that	a	file	object
called	f	has	already	been	created.

To	 read	 a	 file’s	 contents,	 call	 f.read(size),	 which	 reads	 some
quantity	 of	 data	 and	 returns	 it	 as	 a	 string	 or	 bytes	 object.	size	 is	an
optional	 numeric	 argument.	 When	 size	 is	 omitted	 or	 negative,	 the
entire	contents	of	the	file	will	be	read	and	returned;	it’s	your	problem	if
the	 file	 is	 twice	 as	 large	 as	 your	 machine’s	 memory.	 Otherwise,	 at
most	size	bytes	are	read	and	returned.	If	the	end	of	the	file	has	been
reached,	f.read()	will	return	an	empty	string	('').

>>>	f.read()

'This	is	the	entire	file.\n'

>>>	f.read()

''

f.readline()	 reads	a	single	 line	from	the	file;	a	newline	character
(\n)	is	left	at	the	end	of	the	string,	and	is	only	omitted	on	the	last	line
of	 the	 file	 if	 the	 file	 doesn’t	 end	 in	 a	 newline.	 This	makes	 the	 return
value	 unambiguous;	 if	 f.readline()	 returns	 an	 empty	 string,	 the
end	of	the	file	has	been	reached,	while	a	blank	line	is	represented	by
'\n',	a	string	containing	only	a	single	newline.

>>>	f.readline()

'This	is	the	first	line	of	the	file.\n'

>>>	f.readline()

'Second	line	of	the	file\n'

>>>	f.readline()

''

For	reading	lines	from	a	file,	you	can	loop	over	the	file	object.	This	is

memory	efficient,	fast,	and	leads	to	simple	code:

>>>	for	line	in	f:

...					print(line,	end='')

...

This	is	the	first	line	of	the	file.

Second	line	of	the	file

If	 you	 want	 to	 read	 all	 the	 lines	 of	 a	 file	 in	 a	 list	 you	 can	 also	 use
list(f)	or	f.readlines().

f.write(string)	writes	 the	contents	of	string	 to	 the	file,	 returning
the	number	of	characters	written.

>>>	f.write('This	is	a	test\n')

15

To	write	something	other	 than	a	string,	 it	needs	 to	be	converted	 to	a
string	first:

>>>	value	=	('the	answer',	42)

>>>	s	=	str(value)

>>>	f.write(s)

18

f.tell()	returns	an	integer	giving	the	file	object’s	current	position	in
the	file	represented	as	number	of	bytes	from	the	beginning	of	the	file
when	in	binary	mode	and	an	opaque	number	when	in	text	mode.

To	 change	 the	 file	 object’s	 position,	 use	 f.seek(offset,

from_what).	 The	 position	 is	 computed	 from	 adding	 offset	 to	 a
reference	 point;	 the	 reference	 point	 is	 selected	 by	 the	 from_what
argument.	A	from_what	value	of	0	measures	from	the	beginning	of	the
file,	1	uses	the	current	 file	position,	and	2	uses	the	end	of	 the	file	as

the	reference	point.	from_what	can	be	omitted	and	defaults	to	0,	using
the	beginning	of	the	file	as	the	reference	point.

>>>	f	=	open('workfile',	'rb+')

>>>	f.write(b'0123456789abcdef')

16

>>>	f.seek(5)					#	Go	to	the	6th	byte	in	the	file

5

>>>	f.read(1)

b'5'

>>>	f.seek(-3,	2)	#	Go	to	the	3rd	byte	before	the	end

13

>>>	f.read(1)

b'd'

In	text	files	(those	opened	without	a	b	in	the	mode	string),	only	seeks
relative	 to	 the	 beginning	 of	 the	 file	 are	 allowed	 (the	 exception	 being
seeking	 to	 the	 very	 file	 end	 with	 seek(0,	 2))	 and	 the	 only	 valid
offset	 values	 are	 those	 returned	 from	 the	 f.tell(),	 or	 zero.	 Any
other	offset	value	produces	undefined	behaviour.

When	you’re	done	with	a	file,	call	f.close()	to	close	it	and	free	up
any	 system	 resources	 taken	 up	 by	 the	 open	 file.	 After	 calling
f.close(),	attempts	to	use	the	file	object	will	automatically	fail.

>>>	f.close()

>>>	f.read()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	I/O	operation	on	closed	file

It	 is	 good	 practice	 to	 use	 the	 with	 keyword	 when	 dealing	 with	 file
objects.	This	has	the	advantage	that	the	file	is	properly	closed	after	its
suite	finishes,	even	if	an	exception	is	raised	on	the	way.	It	is	also	much

shorter	than	writing	equivalent	try-finally	blocks:

>>>	with	open('workfile',	'r')	as	f:

...					read_data	=	f.read()

>>>	f.closed

True

File	 objects	 have	 some	additional	methods,	 such	as	 isatty()	 and
truncate()	 which	 are	 less	 frequently	 used;	 consult	 the	 Library
Reference	for	a	complete	guide	to	file	objects.

7.2.2.	Saving	structured	data	with	json

Strings	can	easily	be	written	to	and	read	from	a	file.	Numbers	 take	a
bit	more	effort,	since	 the	read()	method	only	 returns	strings,	which
will	have	to	be	passed	to	a	function	 like	int(),	which	takes	a	string
like	'123'	and	returns	its	numeric	value	123.	When	you	want	to	save
more	complex	data	types	like	nested	lists	and	dictionaries,	parsing	and
serializing	by	hand	becomes	complicated.

Rather	 than	 having	 users	 constantly	 writing	 and	 debugging	 code	 to
save	 complicated	 data	 types	 to	 files,	 Python	 allows	 you	 to	 use	 the
popular	 data	 interchange	 format	 called	 JSON	 (JavaScript	 Object
Notation).	 The	 standard	 module	 called	 json	 can	 take	 Python	 data
hierarchies,	and	convert	them	to	string	representations;	this	process	is
called	 serializing.	 Reconstructing	 the	 data	 from	 the	 string
representation	 is	 called	 deserializing.	 Between	 serializing	 and
deserializing,	the	string	representing	the	object	may	have	been	stored
in	 a	 file	 or	 data,	 or	 sent	 over	 a	 network	 connection	 to	 some	 distant
machine.

Note: 	The	JSON	format	is	commonly	used	by	modern	applications

http://json.org

to	allow	for	data	exchange.	Many	programmers	are	already	familiar
with	it,	which	makes	it	a	good	choice	for	interoperability.

If	you	have	an	object	x,	you	can	view	 its	JSON	string	representation
with	a	simple	line	of	code:

>>>	json.dumps([1,	'simple',	'list'])

'[1,	"simple",	"list"]'

Another	 variant	 of	 the	 dumps()	 function,	 called	 dump(),	 simply
serializes	the	object	to	a	text	file.	So	if	f	is	a	text	file	object	opened	for
writing,	we	can	do	this:

json.dump(x,	f)

To	decode	 the	object	again,	 if	 f	 is	 a	 text	 file	 object	which	has	been
opened	for	reading:

x	=	json.load(f)

This	 simple	 serialization	 technique	 can	 handle	 lists	 and	 dictionaries,
but	serializing	arbitrary	class	instances	in	JSON	requires	a	bit	of	extra
effort.	The	reference	for	the	json	module	contains	an	explanation	of
this.

See	also: 	pickle	-	the	pickle	module

Contrary	to	JSON,	pickle	 is	a	protocol	which	allows	the	serialization
of	arbitrarily	complex	Python	objects.	As	such,	it	is	specific	to	Python
and	 cannot	 be	 used	 to	 communicate	 with	 applications	 written	 in
other	 languages.	 It	 is	 also	 insecure	 by	 default:	 deserializing	 pickle
data	coming	from	an	untrusted	source	can	execute	arbitrary	code,	if
the	data	was	crafted	by	a	skilled	attacker.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

8.	Errors	and	Exceptions
Until	 now	error	messages	 haven’t	 been	more	 than	mentioned,	 but	 if
you	have	tried	out	the	examples	you	have	probably	seen	some.	There
are	 (at	 least)	 two	 distinguishable	 kinds	 of	 errors:	 syntax	 errors	 and
exceptions.

8.1.	Syntax	Errors

Syntax	 errors,	 also	 known	 as	 parsing	 errors,	 are	 perhaps	 the	 most
common	kind	of	complaint	you	get	while	you	are	still	learning	Python:

>>>	while	True	print('Hello	world')

		File	"<stdin>",	line	1,	in	?

				while	True	print('Hello	world')

																			^

SyntaxError:	invalid	syntax

The	 parser	 repeats	 the	 offending	 line	 and	 displays	 a	 little	 ‘arrow’
pointing	at	the	earliest	point	 in	the	line	where	the	error	was	detected.
The	error	is	caused	by	(or	at	least	detected	at)	the	token	preceding	the
arrow:	in	the	example,	the	error	is	detected	at	the	function	print(),
since	a	 colon	 (':')	 is	missing	before	 it.	 File	 name	and	 line	number
are	printed	so	you	know	where	to	look	in	case	the	input	came	from	a
script.

8.2.	Exceptions

Even	if	a	statement	or	expression	is	syntactically	correct,	it	may	cause
an	error	when	an	attempt	is	made	to	execute	it.	Errors	detected	during
execution	are	called	exceptions	and	are	not	unconditionally	fatal:	you
will	 soon	 learn	 how	 to	 handle	 them	 in	 Python	 programs.	 Most
exceptions	are	not	handled	by	programs,	however,	and	result	 in	error
messages	as	shown	here:

>>>	10	*	(1/0)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ZeroDivisionError:	division	by	zero

>>>	4	+	spam*3

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

NameError:	name	'spam'	is	not	defined

>>>	'2'	+	2

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	Can't	convert	'int'	object	to	str	implicitly

The	 last	 line	 of	 the	 error	 message	 indicates	 what	 happened.
Exceptions	come	 in	different	 types,	and	 the	 type	 is	printed	as	part	of
the	 message:	 the	 types	 in	 the	 example	 are	 ZeroDivisionError,
NameError	and	TypeError.	The	string	printed	as	the	exception	type
is	 the	name	of	 the	built-in	exception	that	occurred.	This	 is	 true	for	all
built-in	 exceptions,	 but	 need	 not	 be	 true	 for	 user-defined	 exceptions
(although	 it	 is	 a	 useful	 convention).	 Standard	 exception	 names	 are
built-in	identifiers	(not	reserved	keywords).

The	rest	of	the	line	provides	detail	based	on	the	type	of	exception	and

what	caused	it.

The	preceding	part	of	the	error	message	shows	the	context	where	the
exception	 happened,	 in	 the	 form	 of	 a	 stack	 traceback.	 In	 general	 it
contains	 a	 stack	 traceback	 listing	 source	 lines;	 however,	 it	 will	 not
display	lines	read	from	standard	input.

Built-in	Exceptions	lists	the	built-in	exceptions	and	their	meanings.

8.3.	Handling	Exceptions

It	 is	possible	to	write	programs	that	handle	selected	exceptions.	Look
at	 the	 following	 example,	 which	 asks	 the	 user	 for	 input	 until	 a	 valid
integer	has	been	entered,	but	allows	the	user	to	interrupt	the	program
(using	Control-C	or	whatever	 the	operating	system	supports);	note
that	 a	 user-generated	 interruption	 is	 signalled	 by	 raising	 the
KeyboardInterrupt	exception.

>>>	while	True:

...					try:

...									x	=	int(input("Please	enter	a	number:	"))

...									break

...					except	ValueError:

...									print("Oops!		That	was	no	valid	number.		Try	again..."

...

The	try	statement	works	as	follows.

First,	 the	 try	 clause	 (the	 statement(s)	 between	 the	 try	 and
except	keywords)	is	executed.
If	no	exception	occurs,	the	except	clause	is	skipped	and	execution
of	the	try	statement	is	finished.
If	an	exception	occurs	during	execution	of	the	try	clause,	the	rest
of	 the	 clause	 is	 skipped.	Then	 if	 its	 type	matches	 the	exception
named	after	the	except	keyword,	the	except	clause	is	executed,
and	then	execution	continues	after	the	try	statement.
If	an	exception	occurs	which	does	not	match	the	exception	named
in	the	except	clause,	it	is	passed	on	to	outer	try	statements;	if	no
handler	is	found,	it	is	an	unhandled	exception	and	execution	stops
with	a	message	as	shown	above.

A	try	 statement	may	have	more	 than	one	except	clause,	 to	specify
handlers	 for	 different	 exceptions.	 At	 most	 one	 handler	 will	 be
executed.	 Handlers	 only	 handle	 exceptions	 that	 occur	 in	 the
corresponding	 try	 clause,	 not	 in	 other	 handlers	 of	 the	 same	 try
statement.	 An	 except	 clause	 may	 name	 multiple	 exceptions	 as	 a
parenthesized	tuple,	for	example:

...	except	(RuntimeError,	TypeError,	NameError):

...					pass

The	last	except	clause	may	omit	the	exception	name(s),	to	serve	as	a
wildcard.	Use	this	with	extreme	caution,	since	it	is	easy	to	mask	a	real
programming	 error	 in	 this	way!	 It	 can	 also	 be	 used	 to	 print	 an	 error
message	and	 then	re-raise	 the	exception	(allowing	a	caller	 to	handle
the	exception	as	well):

import	sys

try:

				f	=	open('myfile.txt')

				s	=	f.readline()

				i	=	int(s.strip())

except	IOError	as	err:

				print("I/O	error:	{0}".format(err))

except	ValueError:

				print("Could	not	convert	data	to	an	integer.")

except:

				print("Unexpected	error:",	sys.exc_info()[0])

				raise

The	 try	 ...	 except	 statement	 has	 an	 optional	 else	 clause,	 which,
when	present,	must	follow	all	except	clauses.	It	is	useful	for	code	that
must	 be	 executed	 if	 the	 try	 clause	 does	 not	 raise	 an	 exception.	 For
example:

for	arg	in	sys.argv[1:]:

				try:

								f	=	open(arg,	'r')

				except	IOError:

								print('cannot	open',	arg)

				else:

								print(arg,	'has',	len(f.readlines()),	'lines'

								f.close()

The	use	of	 the	else	 clause	 is	better	 than	adding	additional	 code	 to
the	try	 clause	because	 it	avoids	accidentally	catching	an	exception
that	wasn’t	raised	by	the	code	being	protected	by	the	try	...	except
statement.

When	 an	 exception	 occurs,	 it	 may	 have	 an	 associated	 value,	 also
known	 as	 the	 exception’s	 argument.	 The	 presence	 and	 type	 of	 the
argument	depend	on	the	exception	type.

The	except	 clause	may	 specify	 a	 variable	 after	 the	 exception	 name.
The	 variable	 is	 bound	 to	 an	 exception	 instance	 with	 the	 arguments
stored	 in	instance.args.	For	 convenience,	 the	exception	 instance
defines	__str__()	so	the	arguments	can	be	printed	directly	without
having	 to	 reference	 .args.	 One	 may	 also	 instantiate	 an	 exception
first	before	raising	it	and	add	any	attributes	to	it	as	desired.

>>>	try:

...				raise	Exception('spam',	'eggs')

...	except	Exception	as	inst:

...				print(type(inst))				#	the	exception	instance

...				print(inst.args)					#	arguments	stored	in	.args

...				print(inst)										#	__str__	allows	args	to	be	printed	directly,

...																									#	but	may	be	overridden	in	exception	subclasses

...				x,	y	=	inst.args					#	unpack	args

...				print('x	=',	x)

...				print('y	=',	y)

...

<class	'Exception'>

('spam',	'eggs')

('spam',	'eggs')

x	=	spam

y	=	eggs

If	 an	 exception	 has	 arguments,	 they	 are	 printed	 as	 the	 last	 part
(‘detail’)	of	the	message	for	unhandled	exceptions.

Exception	 handlers	 don’t	 just	 handle	 exceptions	 if	 they	 occur
immediately	 in	 the	 try	 clause,	 but	 also	 if	 they	 occur	 inside	 functions
that	are	called	(even	indirectly)	in	the	try	clause.	For	example:

>>>	def	this_fails():

...					x	=	1/0

...

>>>	try:

...					this_fails()

...	except	ZeroDivisionError	as	err:

...					print('Handling	run-time	error:',	err)

...

Handling	run-time	error:	int	division	or	modulo	by	zero

8.4.	Raising	Exceptions

The	 raise	 statement	 allows	 the	 programmer	 to	 force	 a	 specified
exception	to	occur.	For	example:

>>>	raise	NameError('HiThere')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

NameError:	HiThere

The	sole	argument	to	raise	indicates	the	exception	to	be	raised.	This
must	 be	 either	 an	 exception	 instance	 or	 an	 exception	 class	 (a	 class
that	derives	from	Exception).

If	 you	need	 to	 determine	whether	 an	exception	was	 raised	but	 don’t
intend	to	handle	it,	a	simpler	form	of	the	raise	statement	allows	you
to	re-raise	the	exception:

>>>	try:

...					raise	NameError('HiThere')

...	except	NameError:

...					print('An	exception	flew	by!')

...					raise

...

An	exception	flew	by!

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	?

NameError:	HiThere

8.5.	User-defined	Exceptions

Programs	 may	 name	 their	 own	 exceptions	 by	 creating	 a	 new
exception	 class	 (see	 Classes	 for	 more	 about	 Python	 classes).
Exceptions	 should	 typically	 be	 derived	 from	 the	 Exception	 class,
either	directly	or	indirectly.	For	example:

>>>	class	MyError(Exception):

...					def	__init__(self,	value):

...									self.value	=	value

...					def	__str__(self):

...									return	repr(self.value)

...

>>>	try:

...					raise	MyError(2*2)

...	except	MyError	as	e:

...					print('My	exception	occurred,	value:',	e.value

...

My	exception	occurred,	value:	4

>>>	raise	MyError('oops!')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

__main__.MyError:	'oops!'

In	 this	 example,	 the	 default	 __init__()	 of	 Exception	 has	 been
overridden.	The	new	behavior	simply	creates	the	value	attribute.	This
replaces	the	default	behavior	of	creating	the	args	attribute.

Exception	classes	can	be	defined	which	do	anything	any	other	class
can	 do,	 but	 are	 usually	 kept	 simple,	 often	 only	 offering	 a	 number	 of
attributes	 that	 allow	 information	 about	 the	 error	 to	 be	 extracted	 by
handlers	 for	 the	 exception.	 When	 creating	 a	 module	 that	 can	 raise
several	distinct	errors,	a	common	practice	is	to	create	a	base	class	for

exceptions	defined	by	that	module,	and	subclass	that	to	create	specific
exception	classes	for	different	error	conditions:

class	Error(Exception):

				"""Base	class	for	exceptions	in	this	module."""

				pass

class	InputError(Error):

				"""Exception	raised	for	errors	in	the	input.

				Attributes:

								expression	--	input	expression	in	which	the	error	occurred

								message	--	explanation	of	the	error

				"""

				def	__init__(self,	expression,	message):

								self.expression	=	expression

								self.message	=	message

class	TransitionError(Error):

				"""Raised	when	an	operation	attempts	a	state	transition	that's	not

				allowed.

				Attributes:

								previous	--	state	at	beginning	of	transition

								next	--	attempted	new	state

								message	--	explanation	of	why	the	specific	transition	is	not	allowed

				"""

				def	__init__(self,	previous,	next,	message):

								self.previous	=	previous

								self.next	=	next

								self.message	=	message

Most	exceptions	are	defined	with	names	that	end	in	“Error,”	similar	to
the	naming	of	the	standard	exceptions.

Many	 standard	modules	 define	 their	 own	 exceptions	 to	 report	 errors
that	may	occur	in	functions	they	define.	More	information	on	classes	is
presented	in	chapter	Classes.

8.6.	Defining	Clean-up	Actions

The	try	statement	has	another	optional	clause	which	 is	 intended	 to
define	 clean-up	 actions	 that	 must	 be	 executed	 under	 all
circumstances.	For	example:

>>>	try:

...					raise	KeyboardInterrupt

...	finally:

...					print('Goodbye,	world!')

...

Goodbye,	world!

KeyboardInterrupt

A	finally	clause	is	always	executed	before	leaving	the	try	statement,
whether	 an	 exception	 has	 occurred	 or	 not.	 When	 an	 exception	 has
occurred	in	the	try	clause	and	has	not	been	handled	by	an	except
clause	(or	it	has	occurred	in	a	except	or	else	clause),	it	is	re-raised
after	the	finally	clause	has	been	executed.	The	finally	clause	is
also	 executed	 “on	 the	 way	 out”	 when	 any	 other	 clause	 of	 the	 try
statement	 is	 left	 via	 a	 break,	 continue	 or	 return	 statement.	 A
more	complicated	example:

>>>	def	divide(x,	y):

...					try:

...									result	=	x	/	y

...					except	ZeroDivisionError:

...									print("division	by	zero!")

...					else:

...									print("result	is",	result)

...					finally:

...									print("executing	finally	clause")

...

>>>	divide(2,	1)

result	is	2.0

executing	finally	clause

>>>	divide(2,	0)

division	by	zero!

executing	finally	clause

>>>	divide("2",	"1")

executing	finally	clause

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"<stdin>",	line	3,	in	divide

TypeError:	unsupported	operand	type(s)	for	/:	'str'	and	'str'

As	you	can	see,	 the	finally	 clause	 is	executed	 in	any	event.	The
TypeError	 raised	 by	 dividing	 two	 strings	 is	 not	 handled	 by	 the
except	clause	and	therefore	re-raised	after	the	finally	clause	has
been	executed.

In	real	world	applications,	the	finally	clause	is	useful	 for	releasing
external	 resources	(such	as	 files	or	network	connections),	 regardless
of	whether	the	use	of	the	resource	was	successful.

8.7.	Predefined	Clean-up	Actions

Some	objects	define	standard	clean-up	actions	to	be	undertaken	when
the	 object	 is	 no	 longer	 needed,	 regardless	 of	 whether	 or	 not	 the
operation	using	 the	object	 succeeded	or	 failed.	Look	at	 the	 following
example,	which	tries	to	open	a	file	and	print	its	contents	to	the	screen.

for	line	in	open("myfile.txt"):

				print(line,	end="")

The	 problem	 with	 this	 code	 is	 that	 it	 leaves	 the	 file	 open	 for	 an
indeterminate	amount	of	 time	after	 this	part	of	 the	code	has	 finished
executing.	This	is	not	an	issue	in	simple	scripts,	but	can	be	a	problem
for	larger	applications.	The	with	statement	allows	objects	like	files	to
be	used	 in	a	way	 that	ensures	 they	are	always	cleaned	up	promptly
and	correctly.

with	open("myfile.txt")	as	f:

				for	line	in	f:

								print(line,	end="")

After	 the	statement	 is	executed,	 the	 file	 f	 is	 always	closed,	even	 if	 a
problem	was	encountered	while	processing	 the	 lines.	Objects	which,
like	files,	provide	predefined	clean-up	actions	will	 indicate	this	in	their
documentation.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

9.	Classes
Compared	 with	 other	 programming	 languages,	 Python’s	 class
mechanism	 adds	 classes	 with	 a	 minimum	 of	 new	 syntax	 and
semantics.	It	 is	a	mixture	of	 the	class	mechanisms	found	in	C++	and
Modula-3.	Python	classes	provide	all	 the	standard	 features	of	Object
Oriented	 Programming:	 the	 class	 inheritance	 mechanism	 allows
multiple	base	classes,	a	derived	class	can	override	any	methods	of	its
base	 class	or	 classes,	 and	a	method	 can	 call	 the	method	of	 a	 base
class	with	the	same	name.	Objects	can	contain	arbitrary	amounts	and
kinds	of	data.	As	 is	 true	for	modules,	classes	partake	of	 the	dynamic
nature	 of	 Python:	 they	 are	 created	 at	 runtime,	 and	 can	 be	modified
further	after	creation.

In	 C++	 terminology,	 normally	 class	 members	 (including	 the	 data
members)	 are	 public	 (except	 see	 below	 Private	 Variables),	 and	 all
member	functions	are	virtual.	As	in	Modula-3,	there	are	no	shorthands
for	 referencing	 the	 object’s	 members	 from	 its	 methods:	 the	 method
function	 is	 declared	 with	 an	 explicit	 first	 argument	 representing	 the
object,	which	is	provided	implicitly	by	the	call.	As	in	Smalltalk,	classes
themselves	 are	 objects.	 This	 provides	 semantics	 for	 importing	 and
renaming.	 Unlike	 C++	 and	 Modula-3,	 built-in	 types	 can	 be	 used	 as
base	classes	for	extension	by	the	user.	Also,	like	in	C++,	most	built-in
operators	with	special	 syntax	 (arithmetic	operators,	 subscripting	etc.)
can	be	redefined	for	class	instances.

(Lacking	universally	accepted	terminology	to	 talk	about	classes,	 I	will
make	occasional	use	of	Smalltalk	and	C++	terms.	I	would	use	Modula-
3	 terms,	 since	 its	 object-oriented	 semantics	 are	 closer	 to	 those	 of
Python	than	C++,	but	I	expect	that	few	readers	have	heard	of	it.)

9.1.	A	Word	About	Names	and	Objects

Objects	have	individuality,	and	multiple	names	(in	multiple	scopes)	can
be	 bound	 to	 the	 same	 object.	 This	 is	 known	 as	 aliasing	 in	 other
languages.	This	is	usually	not	appreciated	on	a	first	glance	at	Python,
and	 can	 be	 safely	 ignored	when	dealing	with	 immutable	 basic	 types
(numbers,	strings,	tuples).	However,	aliasing	has	a	possibly	surprising
effect	on	the	semantics	of	Python	code	involving	mutable	objects	such
as	lists,	dictionaries,	and	most	other	types.	This	is	usually	used	to	the
benefit	 of	 the	 program,	 since	 aliases	 behave	 like	 pointers	 in	 some
respects.	For	example,	passing	an	object	is	cheap	since	only	a	pointer
is	passed	by	the	 implementation;	and	 if	a	 function	modifies	an	object
passed	 as	 an	 argument,	 the	 caller	 will	 see	 the	 change	 —	 this
eliminates	the	need	for	two	different	argument	passing	mechanisms	as
in	Pascal.

9.2.	Python	Scopes	and	Namespaces

Before	 introducing	 classes,	 I	 first	 have	 to	 tell	 you	 something	 about
Python’s	 scope	 rules.	 Class	 definitions	 play	 some	 neat	 tricks	 with
namespaces,	 and	 you	 need	 to	 know	 how	 scopes	 and	 namespaces
work	 to	 fully	 understand	 what’s	 going	 on.	 Incidentally,	 knowledge
about	this	subject	is	useful	for	any	advanced	Python	programmer.

Let’s	begin	with	some	definitions.

A	namespace	is	a	mapping	from	names	to	objects.	Most	namespaces
are	currently	 implemented	as	Python	dictionaries,	but	 that’s	normally
not	noticeable	in	any	way	(except	for	performance),	and	it	may	change
in	 the	future.	Examples	of	namespaces	are:	 the	set	of	built-in	names
(containing	 functions	 such	as	 abs(),	 and	 built-in	 exception	 names);
the	 global	 names	 in	 a	 module;	 and	 the	 local	 names	 in	 a	 function
invocation.	 In	 a	 sense	 the	 set	 of	 attributes	 of	 an	 object	 also	 form	 a
namespace.	 The	 important	 thing	 to	 know	 about	 namespaces	 is	 that
there	 is	 absolutely	 no	 relation	 between	 names	 in	 different
namespaces;	 for	 instance,	 two	 different	 modules	may	 both	 define	 a
function	 maximize	without	 confusion	—	users	 of	 the	modules	must
prefix	it	with	the	module	name.

By	the	way,	I	use	the	word	attribute	for	any	name	following	a	dot	—	for
example,	in	the	expression	z.real,	real	is	an	attribute	of	the	object
z.	 Strictly	 speaking,	 references	 to	 names	 in	 modules	 are	 attribute
references:	 in	 the	 expression	 modname.funcname,	 modname	 is	 a
module	object	 and	 funcname	 is	 an	attribute	of	 it.	 In	 this	 case	 there
happens	 to	 be	 a	 straightforward	 mapping	 between	 the	 module’s
attributes	and	the	global	names	defined	in	the	module:	they	share	the
same	namespace!	[1]

Attributes	may	be	read-only	or	writable.	In	the	latter	case,	assignment
to	attributes	 is	possible.	Module	attributes	are	writable:	you	can	write
modname.the_answer	 =	 42.	 Writable	 attributes	 may	 also	 be
deleted	 with	 the	 del	 statement.	 For	 example,	 del

modname.the_answer	 will	 remove	 the	 attribute	 the_answer	 from
the	object	named	by	modname.

Namespaces	 are	 created	 at	 different	 moments	 and	 have	 different
lifetimes.	 The	 namespace	 containing	 the	 built-in	 names	 is	 created
when	the	Python	interpreter	starts	up,	and	is	never	deleted.	The	global
namespace	for	a	module	is	created	when	the	module	definition	is	read
in;	 normally,	module	namespaces	also	 last	 until	 the	 interpreter	 quits.
The	statements	executed	by	the	top-level	invocation	of	the	interpreter,
either	 read	 from	a	script	 file	or	 interactively,	are	considered	part	of	a
module	called	__main__,	so	they	have	their	own	global	namespace.
(The	 built-in	 names	 actually	 also	 live	 in	 a	 module;	 this	 is	 called
builtins.)

The	 local	 namespace	 for	 a	 function	 is	 created	 when	 the	 function	 is
called,	 and	deleted	when	 the	 function	 returns	or	 raises	an	exception
that	is	not	handled	within	the	function.	(Actually,	forgetting	would	be	a
better	 way	 to	 describe	what	 actually	 happens.)	Of	 course,	 recursive
invocations	each	have	their	own	local	namespace.

A	scope	is	a	textual	region	of	a	Python	program	where	a	namespace	is
directly	 accessible.	 “Directly	 accessible”	 here	 means	 that	 an
unqualified	 reference	 to	 a	 name	 attempts	 to	 find	 the	 name	 in	 the
namespace.

Although	scopes	are	determined	statically,	they	are	used	dynamically.
At	any	 time	during	execution,	 there	are	at	 least	 three	nested	scopes
whose	namespaces	are	directly	accessible:

the	 innermost	 scope,	 which	 is	 searched	 first,	 contains	 the	 local
names
the	 scopes	 of	 any	 enclosing	 functions,	 which	 are	 searched
starting	with	the	nearest	enclosing	scope,	contains	non-local,	but
also	non-global	names
the	next-to-last	scope	contains	the	current	module’s	global	names
the	outermost	scope	(searched	last)	is	the	namespace	containing
built-in	names

If	a	name	is	declared	global,	 then	all	 references	and	assignments	go
directly	to	the	middle	scope	containing	the	module’s	global	names.	To
rebind	variables	found	outside	of	the	innermost	scope,	the	nonlocal
statement	 can	 be	 used;	 if	 not	 declared	 nonlocal,	 those	 variable	 are
read-only	 (an	attempt	 to	write	 to	such	a	variable	will	 simply	create	a
new	 local	 variable	 in	 the	 innermost	 scope,	 leaving	 the	 identically
named	outer	variable	unchanged).

Usually,	 the	 local	scope	 references	 the	 local	names	of	 the	 (textually)
current	 function.	 Outside	 functions,	 the	 local	 scope	 references	 the
same	 namespace	 as	 the	 global	 scope:	 the	 module’s	 namespace.
Class	definitions	place	yet	another	namespace	in	the	local	scope.

It	 is	 important	 to	 realize	 that	 scopes	 are	 determined	 textually:	 the
global	 scope	 of	 a	 function	 defined	 in	 a	 module	 is	 that	 module’s
namespace,	 no	 matter	 from	 where	 or	 by	 what	 alias	 the	 function	 is
called.	 On	 the	 other	 hand,	 the	 actual	 search	 for	 names	 is	 done
dynamically,	at	run	time	—	however,	the	language	definition	is	evolving
towards	 static	 name	 resolution,	 at	 “compile”	 time,	 so	 don’t	 rely	 on
dynamic	 name	 resolution!	 (In	 fact,	 local	 variables	 are	 already
determined	statically.)

A	special	quirk	of	Python	is	that	–	if	no	global	statement	is	in	effect	–
assignments	 to	 names	 always	 go	 into	 the	 innermost	 scope.

Assignments	do	not	copy	data	—	they	just	bind	names	to	objects.	The
same	is	true	for	deletions:	the	statement	del	x	removes	the	binding
of	 x	 from	 the	 namespace	 referenced	 by	 the	 local	 scope.	 In	 fact,	 all
operations	that	introduce	new	names	use	the	local	scope:	in	particular,
import	 statements	 and	 function	 definitions	 bind	 the	 module	 or
function	name	in	the	local	scope.

The	 global	 statement	 can	 be	 used	 to	 indicate	 that	 particular
variables	 live	 in	 the	 global	 scope	 and	 should	 be	 rebound	 there;	 the
nonlocal	 statement	 indicates	 that	 particular	 variables	 live	 in	 an
enclosing	scope	and	should	be	rebound	there.

9.2.1.	Scopes	and	Namespaces	Example

This	 is	 an	 example	 demonstrating	 how	 to	 reference	 the	 different
scopes	 and	 namespaces,	 and	 how	 global	 and	 nonlocal	 affect
variable	binding:

def	scope_test():

				def	do_local():

								spam	=	"local	spam"

				def	do_nonlocal():

								nonlocal	spam

								spam	=	"nonlocal	spam"

				def	do_global():

								global	spam

								spam	=	"global	spam"

				spam	=	"test	spam"

				do_local()

				print("After	local	assignment:",	spam)

				do_nonlocal()

				print("After	nonlocal	assignment:",	spam)

				do_global()

				print("After	global	assignment:",	spam)

scope_test()

print("In	global	scope:",	spam)

The	output	of	the	example	code	is:

After	local	assignment:	test	spam

After	nonlocal	assignment:	nonlocal	spam

After	global	assignment:	nonlocal	spam

In	global	scope:	global	spam

Note	 how	 the	 local	 assignment	 (which	 is	 default)	 didn’t	 change
scope_test‘s	 binding	 of	 spam.	 The	 nonlocal	 assignment	 changed
scope_test‘s	binding	of	spam,	 and	 the	 global	 assignment	 changed
the	module-level	binding.

You	can	also	see	that	there	was	no	previous	binding	for	spam	before
the	global	assignment.

9.3.	A	First	Look	at	Classes

Classes	 introduce	 a	 little	 bit	 of	 new	 syntax,	 three	 new	 object	 types,
and	some	new	semantics.

9.3.1.	Class	Definition	Syntax

The	simplest	form	of	class	definition	looks	like	this:

class	ClassName:

				<statement-1>

				.

				.

				.

				<statement-N>

Class	 definitions,	 like	 function	 definitions	 (def	 statements)	 must	 be
executed	before	they	have	any	effect.	(You	could	conceivably	place	a
class	definition	in	a	branch	of	an	if	statement,	or	inside	a	function.)

In	 practice,	 the	 statements	 inside	 a	 class	 definition	 will	 usually	 be
function	definitions,	but	other	statements	are	allowed,	and	sometimes
useful	—	we’ll	come	back	to	this	later.	The	function	definitions	inside	a
class	normally	have	a	peculiar	 form	of	argument	 list,	 dictated	by	 the
calling	conventions	for	methods	—	again,	this	is	explained	later.

When	a	class	definition	is	entered,	a	new	namespace	is	created,	and
used	as	the	local	scope	—	thus,	all	assignments	to	local	variables	go
into	 this	 new	 namespace.	 In	 particular,	 function	 definitions	 bind	 the
name	of	the	new	function	here.

When	a	class	definition	is	left	normally	(via	the	end),	a	class	object	 is

created.	 This	 is	 basically	 a	 wrapper	 around	 the	 contents	 of	 the
namespace	 created	 by	 the	 class	 definition;	 we’ll	 learn	 more	 about
class	objects	 in	 the	next	section.	The	original	 local	scope	(the	one	 in
effect	 just	 before	 the	 class	 definition	was	 entered)	 is	 reinstated,	 and
the	 class	 object	 is	 bound	 here	 to	 the	 class	 name	 given	 in	 the	 class
definition	header	(ClassName	in	the	example).

9.3.2.	Class	Objects

Class	objects	support	two	kinds	of	operations:	attribute	references	and
instantiation.

Attribute	 references	 use	 the	 standard	 syntax	 used	 for	 all	 attribute
references	 in	 Python:	 obj.name.	 Valid	 attribute	 names	 are	 all	 the
names	that	were	in	the	class’s	namespace	when	the	class	object	was
created.	So,	if	the	class	definition	looked	like	this:

class	MyClass:

				"""A	simple	example	class"""

				i	=	12345

				def	f(self):

								return	'hello	world'

then	 MyClass.i	 and	 MyClass.f	 are	 valid	 attribute	 references,
returning	 an	 integer	 and	 a	 function	 object,	 respectively.	 Class
attributes	 can	 also	 be	 assigned	 to,	 so	 you	 can	 change	 the	 value	 of
MyClass.i	 by	 assignment.	 __doc__	 is	 also	 a	 valid	 attribute,
returning	the	docstring	belonging	to	the	class:	"A	simple	example
class".

Class	 instantiation	uses	function	notation.	Just	pretend	 that	 the	class
object	 is	a	parameterless	 function	 that	 returns	a	new	 instance	of	 the

class.	For	example	(assuming	the	above	class):

x	=	MyClass()

creates	a	new	instance	of	the	class	and	assigns	this	object	to	the	local
variable	x.

The	instantiation	operation	(“calling”	a	class	object)	creates	an	empty
object.	Many	classes	like	to	create	objects	with	instances	customized
to	 a	 specific	 initial	 state.	 Therefore	 a	 class	 may	 define	 a	 special
method	named	__init__(),	like	this:

def	__init__(self):

				self.data	=	[]

When	 a	 class	 defines	 an	 __init__()	 method,	 class	 instantiation
automatically	 invokes	 __init__()	 for	 the	 newly-created	 class
instance.	 So	 in	 this	 example,	 a	 new,	 initialized	 instance	 can	 be
obtained	by:

x	=	MyClass()

Of	course,	the	__init__()	method	may	have	arguments	for	greater
flexibility.	 In	 that	 case,	 arguments	 given	 to	 the	 class	 instantiation
operator	are	passed	on	to	__init__().	For	example,

>>>	class	Complex:

...					def	__init__(self,	realpart,	imagpart):

...									self.r	=	realpart

...									self.i	=	imagpart

...

>>>	x	=	Complex(3.0,	-4.5)

>>>	x.r,	x.i

(3.0,	-4.5)

9.3.3.	Instance	Objects

Now	 what	 can	 we	 do	 with	 instance	 objects?	 The	 only	 operations
understood	by	instance	objects	are	attribute	references.	There	are	two
kinds	of	valid	attribute	names,	data	attributes	and	methods.

data	attributes	correspond	to	“instance	variables”	 in	Smalltalk,	and	to
“data	 members”	 in	 C++.	 Data	 attributes	 need	 not	 be	 declared;	 like
local	variables,	they	spring	into	existence	when	they	are	first	assigned
to.	For	example,	 if	x	 is	 the	 instance	of	MyClass	created	above,	 the
following	piece	of	code	will	print	the	value	16,	without	leaving	a	trace:

x.counter	=	1

while	x.counter	<	10:

				x.counter	=	x.counter	*	2

print(x.counter)

del	x.counter

The	other	kind	of	instance	attribute	reference	is	a	method.	A	method	is
a	 function	that	“belongs	to”	an	object.	 (In	Python,	 the	term	method	 is
not	unique	to	class	instances:	other	object	types	can	have	methods	as
well.	 For	 example,	 list	 objects	 have	 methods	 called	 append,	 insert,
remove,	 sort,	 and	 so	 on.	 However,	 in	 the	 following	 discussion,	 we’ll
use	 the	 term	method	exclusively	 to	mean	methods	of	 class	 instance
objects,	unless	explicitly	stated	otherwise.)

Valid	 method	 names	 of	 an	 instance	 object	 depend	 on	 its	 class.	 By
definition,	 all	 attributes	 of	 a	 class	 that	 are	 function	 objects	 define
corresponding	methods	of	 its	 instances.	So	 in	our	example,	x.f	 is	a
valid	method	 reference,	 since	 MyClass.f	 is	 a	 function,	 but	 x.i	 is
not,	 since	 MyClass.i	 is	 not.	 But	 x.f	 is	 not	 the	 same	 thing	 as

MyClass.f	—	it	is	a	method	object,	not	a	function	object.

9.3.4.	Method	Objects

Usually,	a	method	is	called	right	after	it	is	bound:

x.f()

In	the	MyClass	example,	this	will	return	the	string	'hello	world'.
However,	 it	 is	 not	 necessary	 to	 call	 a	 method	 right	 away:	 x.f	 is	 a
method	object,	and	can	be	stored	away	and	called	at	a	later	time.	For
example:

xf	=	x.f

while	True:

				print(xf())

will	continue	to	print	hello	world	until	the	end	of	time.

What	 exactly	 happens	 when	 a	 method	 is	 called?	 You	 may	 have
noticed	 that	 x.f()	 was	 called	 without	 an	 argument	 above,	 even
though	 the	 function	 definition	 for	 f()	 specified	 an	 argument.	 What
happened	to	the	argument?	Surely	Python	raises	an	exception	when	a
function	that	requires	an	argument	is	called	without	any	—	even	if	the
argument	isn’t	actually	used...

Actually,	 you	may	have	guessed	 the	answer:	 the	special	 thing	about
methods	 is	 that	 the	 object	 is	 passed	 as	 the	 first	 argument	 of	 the
function.	 In	 our	 example,	 the	 call	 x.f()	 is	 exactly	 equivalent	 to
MyClass.f(x).	 In	 general,	 calling	 a	 method	 with	 a	 list	 of	 n
arguments	 is	equivalent	 to	calling	 the	corresponding	 function	with	an
argument	 list	 that	 is	 created	 by	 inserting	 the	method’s	 object	 before

the	first	argument.

If	 you	 still	 don’t	 understand	 how	 methods	 work,	 a	 look	 at	 the
implementation	 can	 perhaps	 clarify	 matters.	 When	 an	 instance
attribute	is	referenced	that	isn’t	a	data	attribute,	its	class	is	searched.	If
the	 name	 denotes	 a	 valid	 class	 attribute	 that	 is	 a	 function	 object,	 a
method	object	 is	created	by	packing	(pointers	 to)	 the	 instance	object
and	the	function	object	just	found	together	in	an	abstract	object:	this	is
the	method	object.	When	the	method	object	is	called	with	an	argument
list,	 a	 new	argument	 list	 is	 constructed	 from	 the	 instance	object	 and
the	 argument	 list,	 and	 the	 function	 object	 is	 called	 with	 this	 new
argument	list.

9.4.	Random	Remarks

Data	 attributes	 override	 method	 attributes	 with	 the	 same	 name;	 to
avoid	accidental	name	conflicts,	which	may	cause	hard-to-find	bugs	in
large	 programs,	 it	 is	 wise	 to	 use	 some	 kind	 of	 convention	 that
minimizes	 the	 chance	 of	 conflicts.	 Possible	 conventions	 include
capitalizing	method	names,	prefixing	data	attribute	names	with	a	small
unique	string	(perhaps	just	an	underscore),	or	using	verbs	for	methods
and	nouns	for	data	attributes.

Data	attributes	may	be	referenced	by	methods	as	well	as	by	ordinary
users	(“clients”)	of	an	object.	In	other	words,	classes	are	not	usable	to
implement	pure	abstract	data	types.	In	fact,	nothing	in	Python	makes	it
possible	to	enforce	data	hiding	—	it	is	all	based	upon	convention.	(On
the	 other	 hand,	 the	 Python	 implementation,	 written	 in	 C,	 can
completely	hide	implementation	details	and	control	access	to	an	object
if	necessary;	this	can	be	used	by	extensions	to	Python	written	in	C.)

Clients	 should	 use	 data	 attributes	with	 care	—	clients	may	mess	 up
invariants	 maintained	 by	 the	 methods	 by	 stamping	 on	 their	 data
attributes.	Note	that	clients	may	add	data	attributes	of	their	own	to	an
instance	object	without	affecting	the	validity	of	the	methods,	as	long	as
name	conflicts	are	avoided	—	again,	a	naming	convention	can	save	a
lot	of	headaches	here.

There	 is	 no	 shorthand	 for	 referencing	 data	 attributes	 (or	 other
methods!)	 from	within	methods.	 I	 find	 that	 this	actually	 increases	 the
readability	of	methods:	there	is	no	chance	of	confusing	local	variables
and	instance	variables	when	glancing	through	a	method.

Often,	 the	 first	argument	of	a	method	 is	called	self.	This	 is	nothing
more	 than	 a	 convention:	 the	 name	 self	 has	 absolutely	 no	 special

meaning	 to	 Python.	 Note,	 however,	 that	 by	 not	 following	 the
convention	 your	 code	 may	 be	 less	 readable	 to	 other	 Python
programmers,	and	it	is	also	conceivable	that	a	class	browser	program
might	be	written	that	relies	upon	such	a	convention.

Any	 function	 object	 that	 is	 a	 class	 attribute	 defines	 a	 method	 for
instances	of	that	class.	It	is	not	necessary	that	the	function	definition	is
textually	enclosed	in	the	class	definition:	assigning	a	function	object	to
a	local	variable	in	the	class	is	also	ok.	For	example:

#	Function	defined	outside	the	class

def	f1(self,	x,	y):

				return	min(x,	x+y)

class	C:

				f	=	f1

				def	g(self):

								return	'hello	world'

				h	=	g

Now	 f,	 g	 and	 h	 are	 all	 attributes	 of	 class	 C	 that	 refer	 to	 function
objects,	and	consequently	they	are	all	methods	of	instances	of	C	—	h
being	 exactly	 equivalent	 to	 g.	 Note	 that	 this	 practice	 usually	 only
serves	to	confuse	the	reader	of	a	program.

Methods	 may	 call	 other	 methods	 by	 using	 method	 attributes	 of	 the
self	argument:

class	Bag:

				def	__init__(self):

								self.data	=	[]

				def	add(self,	x):

								self.data.append(x)

				def	addtwice(self,	x):

								self.add(x)

								self.add(x)

Methods	may	 reference	 global	 names	 in	 the	 same	 way	 as	 ordinary
functions.	The	global	 scope	associated	with	 a	method	 is	 the	module
containing	 its	 definition.	 (A	 class	 is	 never	 used	 as	 a	 global	 scope.)
While	one	rarely	encounters	a	good	reason	for	using	global	data	in	a
method,	 there	are	many	 legitimate	uses	of	 the	global	 scope:	 for	one
thing,	 functions	 and	modules	 imported	 into	 the	 global	 scope	 can	 be
used	 by	 methods,	 as	 well	 as	 functions	 and	 classes	 defined	 in	 it.
Usually,	the	class	containing	the	method	is	itself	defined	in	this	global
scope,	 and	 in	 the	 next	 section	 we’ll	 find	 some	 good	 reasons	why	 a
method	would	want	to	reference	its	own	class.

Each	 value	 is	 an	 object,	 and	 therefore	 has	 a	 class	 (also	 called	 its
type).	It	is	stored	as	object.__class__.

9.5.	Inheritance

Of	course,	a	language	feature	would	not	be	worthy	of	the	name	“class”
without	 supporting	 inheritance.	 The	 syntax	 for	 a	 derived	 class
definition	looks	like	this:

class	DerivedClassName(BaseClassName):

				<statement-1>

				.

				.

				.

				<statement-N>

The	 name	 BaseClassName	 must	 be	 defined	 in	 a	 scope	 containing
the	 derived	 class	 definition.	 In	 place	 of	 a	 base	 class	 name,	 other
arbitrary	 expressions	 are	 also	 allowed.	 This	 can	 be	 useful,	 for
example,	when	the	base	class	is	defined	in	another	module:

class	DerivedClassName(modname.BaseClassName):

Execution	 of	 a	 derived	 class	 definition	 proceeds	 the	 same	 as	 for	 a
base	 class.	When	 the	 class	 object	 is	 constructed,	 the	 base	 class	 is
remembered.	 This	 is	 used	 for	 resolving	 attribute	 references:	 if	 a
requested	attribute	 is	 not	 found	 in	 the	 class,	 the	 search	proceeds	 to
look	in	the	base	class.	This	rule	is	applied	recursively	if	the	base	class
itself	is	derived	from	some	other	class.

There’s	 nothing	 special	 about	 instantiation	 of	 derived	 classes:
DerivedClassName()	creates	a	new	instance	of	the	class.	Method
references	are	resolved	as	follows:	the	corresponding	class	attribute	is
searched,	 descending	 down	 the	 chain	 of	 base	 classes	 if	 necessary,
and	the	method	reference	is	valid	if	this	yields	a	function	object.

Derived	classes	may	override	methods	of	their	base	classes.	Because
methods	have	no	special	privileges	when	calling	other	methods	of	the
same	 object,	 a	 method	 of	 a	 base	 class	 that	 calls	 another	 method
defined	 in	 the	 same	 base	 class	 may	 end	 up	 calling	 a	 method	 of	 a
derived	class	that	overrides	it.	(For	C++	programmers:	all	methods	in
Python	are	effectively	virtual.)

An	 overriding	method	 in	 a	 derived	 class	may	 in	 fact	 want	 to	 extend
rather	than	simply	replace	the	base	class	method	of	the	same	name.
There	is	a	simple	way	to	call	 the	base	class	method	directly:	 just	call
BaseClassName.methodname(self,	 arguments).	 This	 is
occasionally	useful	 to	clients	as	well.	(Note	 that	 this	only	works	 if	 the
base	class	is	accessible	as	BaseClassName	in	the	global	scope.)

Python	has	two	built-in	functions	that	work	with	inheritance:

Use	 isinstance()	 to	 check	 an	 instance’s	 type:
isinstance(obj,	int)	will	be	True	only	if	obj.__class__
is	int	or	some	class	derived	from	int.
Use	 issubclass()	 to	 check	 class	 inheritance:
issubclass(bool,	int)	is	True	since	bool	is	a	subclass	of
int.	 However,	 issubclass(float,	 int)	 is	 False	 since
float	is	not	a	subclass	of	int.

9.5.1.	Multiple	Inheritance

Python	 supports	 a	 form	 of	 multiple	 inheritance	 as	 well.	 A	 class
definition	with	multiple	base	classes	looks	like	this:

class	DerivedClassName(Base1,	Base2,	Base3):

				<statement-1>

				.

				.

				.

				<statement-N>

For	most	purposes,	in	the	simplest	cases,	you	can	think	of	the	search
for	attributes	 inherited	 from	a	parent	 class	as	depth-first,	 left-to-right,
not	searching	twice	in	the	same	class	where	there	is	an	overlap	in	the
hierarchy.	Thus,	if	an	attribute	is	not	found	in	DerivedClassName,	it
is	 searched	 for	 in	 Base1,	 then	 (recursively)	 in	 the	 base	 classes	 of
Base1,	 and	 if	 it	was	not	 found	 there,	 it	was	searched	 for	 in	 Base2,
and	so	on.

In	 fact,	 it	 is	 slightly	 more	 complex	 than	 that;	 the	 method	 resolution
order	changes	dynamically	 to	support	 cooperative	calls	 to	super().
This	approach	is	known	in	some	other	multiple-inheritance	languages
as	call-next-method	and	is	more	powerful	than	the	super	call	found	in
single-inheritance	languages.

Dynamic	 ordering	 is	 necessary	 because	 all	 cases	 of	 multiple
inheritance	exhibit	one	or	more	diamond	relationships	(where	at	 least
one	 of	 the	 parent	 classes	 can	 be	 accessed	 through	 multiple	 paths
from	 the	 bottommost	 class).	 For	 example,	 all	 classes	 inherit	 from
object,	so	any	case	of	multiple	 inheritance	provides	more	than	one
path	to	reach	object.	To	keep	the	base	classes	from	being	accessed
more	than	once,	the	dynamic	algorithm	linearizes	the	search	order	in	a
way	 that	 preserves	 the	 left-to-right	 ordering	 specified	 in	 each	 class,
that	calls	each	parent	only	once,	and	that	is	monotonic	(meaning	that
a	class	can	be	subclassed	without	affecting	 the	precedence	order	of
its	 parents).	 Taken	 together,	 these	 properties	 make	 it	 possible	 to
design	 reliable	 and	 extensible	 classes	 with	 multiple	 inheritance.	 For
more	detail,	see	http://www.python.org/download/releases/2.3/mro/.

http://www.python.org/download/releases/2.3/mro/

9.6.	Private	Variables

“Private”	 instance	 variables	 that	 cannot	 be	 accessed	 except	 from
inside	an	object	don’t	exist	in	Python.	However,	there	is	a	convention
that	 is	 followed	 by	 most	 Python	 code:	 a	 name	 prefixed	 with	 an
underscore	(e.g.	_spam)	should	be	treated	as	a	non-public	part	of	the
API	(whether	it	is	a	function,	a	method	or	a	data	member).	It	should	be
considered	 an	 implementation	 detail	 and	 subject	 to	 change	 without
notice.

Since	there	 is	a	valid	use-case	for	class-private	members	(namely	 to
avoid	 name	 clashes	 of	 names	 with	 names	 defined	 by	 subclasses),
there	is	limited	support	for	such	a	mechanism,	called	name	mangling.
Any	identifier	of	the	form	__spam	(at	least	two	leading	underscores,	at
most	 one	 trailing	 underscore)	 is	 textually	 replaced	 with
_classname__spam,	where	 classname	 is	 the	 current	 class	 name
with	 leading	 underscore(s)	 stripped.	 This	 mangling	 is	 done	 without
regard	 to	 the	 syntactic	 position	 of	 the	 identifier,	 as	 long	 as	 it	 occurs
within	the	definition	of	a	class.

Name	 mangling	 is	 helpful	 for	 letting	 subclasses	 override	 methods
without	breaking	intraclass	method	calls.	For	example:

class	Mapping:

				def	__init__(self,	iterable):

								self.items_list	=	[]

								self.__update(iterable)

				def	update(self,	iterable):

								for	item	in	iterable:

												self.items_list.append(item)

				__update	=	update			#	private	copy	of	original	update()	method

class	MappingSubclass(Mapping):

				def	update(self,	keys,	values):

								#	provides	new	signature	for	update()

								#	but	does	not	break	__init__()

								for	item	in	zip(keys,	values):

												self.items_list.append(item)

Note	that	the	mangling	rules	are	designed	mostly	to	avoid	accidents;	it
still	 is	 possible	 to	 access	 or	 modify	 a	 variable	 that	 is	 considered
private.	This	can	even	be	useful	 in	special	circumstances,	such	as	 in
the	debugger.

Notice	that	code	passed	to	exec()	or	eval()	does	not	consider	the
classname	of	the	invoking	class	to	be	the	current	class;	this	is	similar
to	 the	effect	of	 the	global	statement,	 the	effect	of	which	 is	 likewise
restricted	to	code	that	is	byte-compiled	together.	The	same	restriction
applies	 to	 getattr(),	 setattr()	 and	 delattr(),	 as	 well	 as
when	referencing	__dict__	directly.

9.7.	Odds	and	Ends

Sometimes	 it	 is	 useful	 to	 have	 a	 data	 type	 similar	 to	 the	 Pascal
“record”	or	C	 “struct”,	bundling	 together	a	 few	named	data	 items.	An
empty	class	definition	will	do	nicely:

class	Employee:

				pass

john	=	Employee()	#	Create	an	empty	employee	record

#	Fill	the	fields	of	the	record

john.name	=	'John	Doe'

john.dept	=	'computer	lab'

john.salary	=	1000

A	piece	of	Python	code	that	expects	a	particular	abstract	data	type	can
often	be	passed	a	class	 that	emulates	 the	methods	of	 that	data	 type
instead.	For	 instance,	 if	 you	have	a	 function	 that	 formats	 some	data
from	a	 file	object,	you	can	define	a	class	with	methods	read()	and
readline()	that	get	the	data	from	a	string	buffer	instead,	and	pass	it
as	an	argument.

Instance	 method	 objects	 have	 attributes,	 too:	 m.__self__	 is	 the
instance	object	with	the	method	m(),	and	m.__func__	is	the	function
object	corresponding	to	the	method.

9.8.	Exceptions	Are	Classes	Too

User-defined	exceptions	 are	 identified	 by	 classes	 as	well.	Using	 this
mechanism	 it	 is	 possible	 to	 create	 extensible	 hierarchies	 of
exceptions.

There	are	two	new	valid	(semantic)	forms	for	the	raise	statement:

raise	Class

raise	Instance

In	 the	 first	 form,	 Class	must	 be	 an	 instance	 of	 type	 or	 of	 a	 class
derived	from	it.	The	first	form	is	a	shorthand	for:

raise	Class()

A	class	in	an	except	clause	is	compatible	with	an	exception	if	it	is	the
same	class	or	a	base	class	 thereof	(but	not	 the	other	way	around	—
an	except	clause	listing	a	derived	class	is	not	compatible	with	a	base
class).	For	example,	the	following	code	will	print	B,	C,	D	in	that	order:

class	B(Exception):

				pass

class	C(B):

				pass

class	D(C):

				pass

for	cls	in	[B,	C,	D]:

				try:

								raise	cls()

				except	D:

								print("D")

				except	C:

								print("C")

				except	B:

								print("B")

Note	that	if	the	except	clauses	were	reversed	(with	except	B	first),	it
would	 have	 printed	 B,	 B,	 B	 —	 the	 first	 matching	 except	 clause	 is
triggered.

When	 an	 error	 message	 is	 printed	 for	 an	 unhandled	 exception,	 the
exception’s	 class	 name	 is	 printed,	 then	 a	 colon	 and	 a	 space,	 and
finally	 the	 instance	 converted	 to	 a	 string	 using	 the	 built-in	 function
str().

9.9.	Iterators

By	now	you	have	probably	noticed	that	most	container	objects	can	be
looped	over	using	a	for	statement:

for	element	in	[1,	2,	3]:

				print(element)

for	element	in	(1,	2,	3):

				print(element)

for	key	in	{'one':1,	'two':2}:

				print(key)

for	char	in	"123":

				print(char)

for	line	in	open("myfile.txt"):

				print(line)

This	 style	 of	 access	 is	 clear,	 concise,	 and	 convenient.	 The	 use	 of
iterators	 pervades	 and	 unifies	 Python.	 Behind	 the	 scenes,	 the	 for
statement	calls	iter()	on	the	container	object.	The	function	returns
an	 iterator	 object	 that	 defines	 the	 method	 __next__()	 which
accesses	elements	in	the	container	one	at	a	time.	When	there	are	no
more	 elements,	 __next__()	 raises	 a	 StopIteration	 exception
which	tells	 the	for	 loop	to	 terminate.	You	can	call	 the	__next__()
method	using	the	next()	built-in	function;	this	example	shows	how	it
all	works:

>>>	s	=	'abc'

>>>	it	=	iter(s)

>>>	it

<iterator	object	at	0x00A1DB50>

>>>	next(it)

'a'

>>>	next(it)

'b'

>>>	next(it)

'c'

>>>	next(it)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

				next(it)

StopIteration

Having	seen	 the	mechanics	behind	 the	 iterator	protocol,	 it	 is	easy	 to
add	iterator	behavior	to	your	classes.	Define	an	__iter__()	method
which	 returns	 an	 object	 with	 a	 __next__()	 method.	 If	 the	 class
defines	__next__(),	then	__iter__()	can	just	return	self:

class	Reverse:

				"""Iterator	for	looping	over	a	sequence	backwards."""

				def	__init__(self,	data):

								self.data	=	data

								self.index	=	len(data)

				def	__iter__(self):

								return	self

				def	__next__(self):

								if	self.index	==	0:

												raise	StopIteration

								self.index	=	self.index	-	1

								return	self.data[self.index]

>>>	rev	=	Reverse('spam')

>>>	iter(rev)

<__main__.Reverse	object	at	0x00A1DB50>

>>>	for	char	in	rev:

...					print(char)

...

m

a

p

s

9.10.	Generators

Generators	are	a	simple	and	powerful	tool	for	creating	iterators.	They
are	 written	 like	 regular	 functions	 but	 use	 the	 yield	 statement
whenever	they	want	to	return	data.	Each	time	next()	is	called	on	it,
the	 generator	 resumes	 where	 it	 left-off	 (it	 remembers	 all	 the	 data
values	 and	which	 statement	 was	 last	 executed).	 An	 example	 shows
that	generators	can	be	trivially	easy	to	create:

def	reverse(data):

				for	index	in	range(len(data)-1,	-1,	-1):

								yield	data[index]

>>>	for	char	in	reverse('golf'):

...					print(char)

...

f

l

o

g

Anything	that	can	be	done	with	generators	can	also	be	done	with	class
based	 iterators	 as	 described	 in	 the	 previous	 section.	 What	 makes
generators	 so	 compact	 is	 that	 the	 __iter__()	 and	 __next__()
methods	are	created	automatically.

Another	key	feature	is	that	the	local	variables	and	execution	state	are
automatically	 saved	 between	 calls.	 This	made	 the	 function	 easier	 to
write	and	much	more	clear	than	an	approach	using	instance	variables
like	self.index	and	self.data.

In	 addition	 to	 automatic	 method	 creation	 and	 saving	 program	 state,
when	 generators	 terminate,	 they	 automatically	 raise

StopIteration.	 In	 combination,	 these	 features	 make	 it	 easy	 to
create	iterators	with	no	more	effort	than	writing	a	regular	function.

9.11.	Generator	Expressions

Some	 simple	 generators	 can	 be	 coded	 succinctly	 as	 expressions
using	 a	 syntax	 similar	 to	 list	 comprehensions	 but	 with	 parentheses
instead	 of	 brackets.	 These	 expressions	 are	 designed	 for	 situations
where	 the	 generator	 is	 used	 right	 away	 by	 an	 enclosing	 function.
Generator	 expressions	 are	more	 compact	 but	 less	 versatile	 than	 full
generator	 definitions	 and	 tend	 to	 be	 more	 memory	 friendly	 than
equivalent	list	comprehensions.

Examples:

>>>	sum(i*i	for	i	in	range(10))																	#	sum	of	squares

285

>>>	xvec	=	[10,	20,	30]

>>>	yvec	=	[7,	5,	3]

>>>	sum(x*y	for	x,y	in	zip(xvec,	yvec))									#	dot	product

260

>>>	from	math	import	pi,	sin

>>>	sine_table	=	{x:	sin(x*pi/180)	for	x	in	range(0,

>>>	unique_words	=	set(word		for	line	in	page		for	word

>>>	valedictorian	=	max((student.gpa,	student.name)	

>>>	data	=	'golf'

>>>	list(data[i]	for	i	in	range(len(data)-1,	-1,	-1))

['f',	'l',	'o',	'g']

Footnotes

[1]

Except	for	one	thing.	Module	objects	have	a	secret	read-only
attribute	called	__dict__	which	returns	the	dictionary	used	to
implement	the	module’s	namespace;	the	name	__dict__	is
an	attribute	but	not	a	global	name.	Obviously,	using	this
violates	the	abstraction	of	namespace	implementation,	and
should	be	restricted	to	things	like	post-mortem	debuggers.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

10.	Brief	Tour	of	the	Standard
Library

10.1.	Operating	System	Interface

The	os	module	 provides	 dozens	 of	 functions	 for	 interacting	with	 the
operating	system:

>>>	import	os

>>>	os.getcwd()						#	Return	the	current	working	directory

'C:\\Python34'

>>>	os.chdir('/server/accesslogs')			#	Change	current	working	directory

>>>	os.system('mkdir	today')			#	Run	the	command	mkdir	in	the	system	shell

0

Be	sure	to	use	the	import	os	style	instead	of	from	os	import	*.
This	 will	 keep	 os.open()	 from	 shadowing	 the	 built-in	 open()
function	which	operates	much	differently.

The	 built-in	 dir()	 and	 help()	 functions	 are	 useful	 as	 interactive
aids	for	working	with	large	modules	like	os:

>>>	import	os

>>>	dir(os)

<returns	a	list	of	all	module	functions>

>>>	help(os)

<returns	an	extensive	manual	page	created	from	the	module's	docstrings>

For	 daily	 file	 and	 directory	 management	 tasks,	 the	 shutil	 module
provides	a	higher	level	interface	that	is	easier	to	use:

>>>	import	shutil

>>>	shutil.copyfile('data.db',	'archive.db')

>>>	shutil.move('/build/executables',	'installdir')

10.2.	File	Wildcards

The	 glob	 module	 provides	 a	 function	 for	 making	 file	 lists	 from
directory	wildcard	searches:

>>>	import	glob

>>>	glob.glob('*.py')

['primes.py',	'random.py',	'quote.py']

10.3.	Command	Line	Arguments

Common	 utility	 scripts	 often	 need	 to	 process	 command	 line
arguments.	 These	 arguments	 are	 stored	 in	 the	 sys	 module’s	 argv
attribute	 as	 a	 list.	 For	 instance	 the	 following	 output	 results	 from
running	python	demo.py	one	two	three	at	the	command	line:

>>>	import	sys

>>>	print(sys.argv)

['demo.py',	'one',	'two',	'three']

The	getopt	module	processes	sys.argv	using	the	conventions	of	the
Unix	 getopt()	 function.	 More	 powerful	 and	 flexible	 command	 line
processing	is	provided	by	the	argparse	module.

10.4.	Error	Output	Redirection	and
Program	Termination

The	sys	module	also	has	attributes	for	stdin,	stdout,	and	stderr.	The
latter	is	useful	for	emitting	warnings	and	error	messages	to	make	them
visible	even	when	stdout	has	been	redirected:

>>>	sys.stderr.write('Warning,	log	file	not	found	starting	a	new	one

Warning,	log	file	not	found	starting	a	new	one

The	most	direct	way	to	terminate	a	script	is	to	use	sys.exit().

10.5.	String	Pattern	Matching

The	re	module	provides	regular	expression	tools	for	advanced	string
processing.	 For	 complex	 matching	 and	 manipulation,	 regular
expressions	offer	succinct,	optimized	solutions:

>>>	import	re

>>>	re.findall(r'\bf[a-z]*',	'which	foot	or	hand	fell	fastest'

['foot',	'fell',	'fastest']

>>>	re.sub(r'(\b[a-z]+)	\1',	r'\1',	'cat	in	the	the	hat'

'cat	in	the	hat'

When	 only	 simple	 capabilities	 are	 needed,	 string	 methods	 are
preferred	because	they	are	easier	to	read	and	debug:

>>>	'tea	for	too'.replace('too',	'two')

'tea	for	two'

10.6.	Mathematics

The	math	module	gives	access	 to	 the	underlying	C	 library	 functions
for	floating	point	math:

>>>	import	math

>>>	math.cos(math.pi	/	4)

0.70710678118654757

>>>	math.log(1024,	2)

10.0

The	random	module	provides	tools	for	making	random	selections:

>>>	import	random

>>>	random.choice(['apple',	'pear',	'banana'])

'apple'

>>>	random.sample(range(100),	10)			#	sampling	without	replacement

[30,	83,	16,	4,	8,	81,	41,	50,	18,	33]

>>>	random.random()				#	random	float

0.17970987693706186

>>>	random.randrange(6)				#	random	integer	chosen	from	range(6)

4

The	 SciPy	 project	 <http://scipy.org>	 has	 many	 other	 modules	 for
numerical	computations.

http://scipy.org

10.7.	Internet	Access

There	 are	 a	 number	 of	 modules	 for	 accessing	 the	 internet	 and
processing	 internet	 protocols.	 Two	 of	 the	 simplest	 are
urllib.request	 for	 retrieving	 data	 from	 URLs	 and	 smtplib	 for
sending	mail:

>>>	from	urllib.request	import	urlopen

>>>	for	line	in	urlopen('http://tycho.usno.navy.mil/cgi-bin/timer.pl'

...					line	=	line.decode('utf-8')		#	Decoding	the	binary	data	to	text.

...					if	'EST'	in	line	or	'EDT'	in	line:		#	look	for	Eastern	Time

...									print(line)

Nov.	25,	09:43:32	PM	EST

>>>	import	smtplib

>>>	server	=	smtplib.SMTP('localhost')

>>>	server.sendmail('soothsayer@example.org',	'jcaesar@example.org'

...	"""To:	jcaesar@example.org

...	From:	soothsayer@example.org

...

...	Beware	the	Ides	of	March.

...	""")

>>>	server.quit()

(Note	 that	 the	 second	 example	 needs	 a	 mailserver	 running	 on
localhost.)

10.8.	Dates	and	Times

The	 datetime	module	 supplies	 classes	 for	manipulating	 dates	 and
times	 in	 both	 simple	 and	 complex	 ways.	 While	 date	 and	 time
arithmetic	is	supported,	the	focus	of	the	implementation	is	on	efficient
member	extraction	for	output	formatting	and	manipulation.	The	module
also	supports	objects	that	are	timezone	aware.

>>>	#	dates	are	easily	constructed	and	formatted

>>>	from	datetime	import	date

>>>	now	=	date.today()

>>>	now

datetime.date(2003,	12,	2)

>>>	now.strftime("%m-%d-%y.	%d	%b	%Y	is	a	%A	on	the	%d	day	of	%B."

'12-02-03.	02	Dec	2003	is	a	Tuesday	on	the	02	day	of	December.'

>>>	#	dates	support	calendar	arithmetic

>>>	birthday	=	date(1964,	7,	31)

>>>	age	=	now	-	birthday

>>>	age.days

14368

10.9.	Data	Compression

Common	 data	 archiving	 and	 compression	 formats	 are	 directly
supported	by	modules	including:	zlib,	gzip,	bz2,	lzma,	zipfile
and	tarfile.

>>>	import	zlib

>>>	s	=	b'witch	which	has	which	witches	wrist	watch'

>>>	len(s)

41

>>>	t	=	zlib.compress(s)

>>>	len(t)

37

>>>	zlib.decompress(t)

b'witch	which	has	which	witches	wrist	watch'

>>>	zlib.crc32(s)

226805979

10.10.	Performance	Measurement

Some	 Python	 users	 develop	 a	 deep	 interest	 in	 knowing	 the	 relative
performance	 of	 different	 approaches	 to	 the	 same	 problem.	 Python
provides	 a	 measurement	 tool	 that	 answers	 those	 questions
immediately.

For	 example,	 it	 may	 be	 tempting	 to	 use	 the	 tuple	 packing	 and
unpacking	 feature	 instead	 of	 the	 traditional	 approach	 to	 swapping
arguments.	 The	 timeit	 module	 quickly	 demonstrates	 a	 modest
performance	advantage:

>>>	from	timeit	import	Timer

>>>	Timer('t=a;	a=b;	b=t',	'a=1;	b=2').timeit()

0.57535828626024577

>>>	Timer('a,b	=	b,a',	'a=1;	b=2').timeit()

0.54962537085770791

In	 contrast	 to	 timeit‘s	 fine	 level	 of	 granularity,	 the	 profile	 and
pstats	modules	provide	 tools	 for	 identifying	 time	critical	sections	 in
larger	blocks	of	code.

10.11.	Quality	Control

One	approach	for	developing	high	quality	software	is	to	write	tests	for
each	 function	 as	 it	 is	 developed	 and	 to	 run	 those	 tests	 frequently
during	the	development	process.

The	 doctest	 module	 provides	 a	 tool	 for	 scanning	 a	 module	 and
validating	tests	embedded	in	a	program’s	docstrings.	Test	construction
is	as	simple	as	cutting-and-pasting	a	typical	call	along	with	its	results
into	 the	docstring.	This	 improves	 the	documentation	by	providing	 the
user	with	an	example	and	 it	allows	 the	doctest	module	 to	make	sure
the	code	remains	true	to	the	documentation:

def	average(values):

				"""Computes	the	arithmetic	mean	of	a	list	of	numbers.

				>>>	print(average([20,	30,	70]))

				40.0

				"""

				return	sum(values)	/	len(values)

import	doctest

doctest.testmod()			#	automatically	validate	the	embedded	tests

The	unittest	module	 is	not	as	effortless	as	 the	doctest	module,
but	it	allows	a	more	comprehensive	set	of	tests	to	be	maintained	in	a
separate	file:

import	unittest

class	TestStatisticalFunctions(unittest.TestCase):

				def	test_average(self):

								self.assertEqual(average([20,	30,	70]),	40.0

								self.assertEqual(round(average([1,	5,	7]),	1

								with	self.assertRaises(ZeroDivisionError):

												average([])

								with	self.assertRaises(TypeError):

												average(20,	30,	70)

unittest.main()	#	Calling	from	the	command	line	invokes	all	tests

10.12.	Batteries	Included

Python	has	a	“batteries	included”	philosophy.	This	is	best	seen	through
the	 sophisticated	 and	 robust	 capabilities	 of	 its	 larger	 packages.	 For
example:

The	 xmlrpc.client	 and	 xmlrpc.server	 modules	 make
implementing	 remote	 procedure	 calls	 into	 an	 almost	 trivial	 task.
Despite	 the	modules	names,	no	direct	knowledge	or	handling	of
XML	is	needed.
The	 email	 package	 is	 a	 library	 for	managing	 email	messages,
including	MIME	and	other	RFC	2822-based	message	documents.
Unlike	 smtplib	 and	 poplib	 which	 actually	 send	 and	 receive
messages,	the	email	package	has	a	complete	toolset	for	building
or	decoding	complex	message	structures	(including	attachments)
and	for	implementing	internet	encoding	and	header	protocols.
The	xml.dom	and	xml.sax	packages	provide	robust	support	for
parsing	 this	 popular	 data	 interchange	 format.	 Likewise,	 the	 csv
module	 supports	direct	 reads	and	writes	 in	a	 common	database
format.	 Together,	 these	 modules	 and	 packages	 greatly	 simplify
data	interchange	between	Python	applications	and	other	tools.
Internationalization	 is	 supported	 by	 a	 number	 of	 modules
including	gettext,	locale,	and	the	codecs	package.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

11.	Brief	Tour	of	the	Standard
Library	–	Part	II
This	 second	 tour	 covers	 more	 advanced	 modules	 that	 support
professional	programming	needs.	These	modules	rarely	occur	in	small
scripts.

11.1.	Output	Formatting

The	reprlib	module	provides	a	 version	of	 repr()	 customized	 for
abbreviated	displays	of	large	or	deeply	nested	containers:

>>>	import	reprlib

>>>	reprlib.repr(set('supercalifragilisticexpialidocious'

"set(['a',	'c',	'd',	'e',	'f',	'g',	...])"

The	 pprint	 module	 offers	 more	 sophisticated	 control	 over	 printing
both	built-in	and	user	defined	objects	in	a	way	that	is	readable	by	the
interpreter.	When	the	result	is	longer	than	one	line,	the	“pretty	printer”
adds	line	breaks	and	indentation	to	more	clearly	reveal	data	structure:

>>>	import	pprint

>>>	t	=	[[[['black',	'cyan'],	'white',	['green',	'red'

...					'yellow'],	'blue']]]

...

>>>	pprint.pprint(t,	width=30)

[[[['black',	'cyan'],

			'white',

			['green',	'red']],

		[['magenta',	'yellow'],

			'blue']]]

The	 textwrap	 module	 formats	 paragraphs	 of	 text	 to	 fit	 a	 given
screen	width:

>>>	import	textwrap

>>>	doc	=	"""The	wrap()	method	is	just	like	fill()	except	that	it	returns

...	a	list	of	strings	instead	of	one	big	string	with	newlines	to	separate

...	the	wrapped	lines."""

...

>>>	print(textwrap.fill(doc,	width=40))

The	wrap()	method	is	just	like	fill()

except	that	it	returns	a	list	of	strings

instead	of	one	big	string	with	newlines

to	separate	the	wrapped	lines.

The	 locale	 module	 accesses	 a	 database	 of	 culture	 specific	 data
formats.	The	grouping	attribute	of	 locale’s	 format	 function	provides	a
direct	way	of	formatting	numbers	with	group	separators:

>>>	import	locale

>>>	locale.setlocale(locale.LC_ALL,	'English_United	States.1252'

'English_United	States.1252'

>>>	conv	=	locale.localeconv()										#	get	a	mapping	of	conventions

>>>	x	=	1234567.8

>>>	locale.format("%d",	x,	grouping=True)

'1,234,567'

>>>	locale.format_string("%s%.*f",	(conv['currency_symbol'

...																						conv['frac_digits'],	x),	grouping

'$1,234,567.80'

11.2.	Templating

The	 string	 module	 includes	 a	 versatile	 Template	 class	 with	 a
simplified	syntax	suitable	for	editing	by	end-users.	This	allows	users	to
customize	their	applications	without	having	to	alter	the	application.

The	 format	 uses	 placeholder	 names	 formed	 by	 $	 with	 valid	 Python
identifiers	 (alphanumeric	 characters	 and	 underscores).	 Surrounding
the	 placeholder	 with	 braces	 allows	 it	 to	 be	 followed	 by	 more
alphanumeric	letters	with	no	intervening	spaces.	Writing	$$	creates	a
single	escaped	$:

>>>	from	string	import	Template

>>>	t	=	Template('${village}folk	send	$$10	to	$cause.'

>>>	t.substitute(village='Nottingham',	cause='the	ditch	fund'

'Nottinghamfolk	send	$10	to	the	ditch	fund.'

The	substitute()	method	raises	a	KeyError	when	a	placeholder
is	not	supplied	in	a	dictionary	or	a	keyword	argument.	For	mail-merge
style	 applications,	 user	 supplied	 data	 may	 be	 incomplete	 and	 the
safe_substitute()	 method	 may	 be	 more	 appropriate	 —	 it	 will
leave	placeholders	unchanged	if	data	is	missing:

>>>	t	=	Template('Return	the	$item	to	$owner.')

>>>	d	=	dict(item='unladen	swallow')

>>>	t.substitute(d)

Traceback	(most	recent	call	last):

		...

KeyError:	'owner'

>>>	t.safe_substitute(d)

'Return	the	unladen	swallow	to	$owner.'

Template	subclasses	can	specify	a	custom	delimiter.	For	 example,	 a
batch	 renaming	 utility	 for	 a	 photo	 browser	may	 elect	 to	 use	 percent
signs	 for	 placeholders	 such	 as	 the	 current	 date,	 image	 sequence
number,	or	file	format:

>>>	import	time,	os.path

>>>	photofiles	=	['img_1074.jpg',	'img_1076.jpg',	'img_1077.jpg'

>>>	class	BatchRename(Template):

...					delimiter	=	'%'

>>>	fmt	=	input('Enter	rename	style	(%d-date	%n-seqnum	%f-format):		'

Enter	rename	style	(%d-date	%n-seqnum	%f-format):		Ashley_%n%f

>>>	t	=	BatchRename(fmt)

>>>	date	=	time.strftime('%d%b%y')

>>>	for	i,	filename	in	enumerate(photofiles):

...					base,	ext	=	os.path.splitext(filename)

...					newname	=	t.substitute(d=date,	n=i,	f=ext)

...					print('{0}	-->	{1}'.format(filename,	newname

img_1074.jpg	-->	Ashley_0.jpg

img_1076.jpg	-->	Ashley_1.jpg

img_1077.jpg	-->	Ashley_2.jpg

Another	application	for	templating	is	separating	program	logic	from	the
details	of	multiple	output	formats.	This	makes	it	possible	to	substitute
custom	 templates	 for	 XML	 files,	 plain	 text	 reports,	 and	 HTML	 web
reports.

11.3.	Working	with	Binary	Data	Record
Layouts

The	struct	module	 provides	 pack()	 and	 unpack()	 functions	 for
working	 with	 variable	 length	 binary	 record	 formats.	 The	 following
example	 shows	how	 to	 loop	 through	header	 information	 in	a	ZIP	 file
without	 using	 the	 zipfile	 module.	 Pack	 codes	 "H"	 and	 "I"
represent	two	and	four	byte	unsigned	numbers	respectively.	The	"<"
indicates	that	they	are	standard	size	and	in	little-endian	byte	order:

import	struct

with	open('myfile.zip',	'rb')	as	f:

				data	=	f.read()

start	=	0

for	i	in	range(3):																						#	show	the	first	3	file	headers

				start	+=	14

				fields	=	struct.unpack('<IIIHH',	data[start:start

				crc32,	comp_size,	uncomp_size,	filenamesize,	extra_size

				start	+=	16

				filename	=	data[start:start+filenamesize]

				start	+=	filenamesize

				extra	=	data[start:start+extra_size]

				print(filename,	hex(crc32),	comp_size,	uncomp_size

				start	+=	extra_size	+	comp_size					#	skip	to	the	next	header

11.4.	Multi-threading

Threading	 is	 a	 technique	 for	 decoupling	 tasks	 which	 are	 not
sequentially	 dependent.	 Threads	 can	 be	 used	 to	 improve	 the
responsiveness	of	applications	that	accept	user	input	while	other	tasks
run	in	the	background.	A	related	use	case	is	running	I/O	in	parallel	with
computations	in	another	thread.

The	following	code	shows	how	the	high	level	threading	module	can
run	tasks	in	background	while	the	main	program	continues	to	run:

import	threading,	zipfile

class	AsyncZip(threading.Thread):

				def	__init__(self,	infile,	outfile):

								threading.Thread.__init__(self)

								self.infile	=	infile

								self.outfile	=	outfile

				def	run(self):

								f	=	zipfile.ZipFile(self.outfile,	'w',	zipfile

								f.write(self.infile)

								f.close()

								print('Finished	background	zip	of:',	self.infile

background	=	AsyncZip('mydata.txt',	'myarchive.zip')

background.start()

print('The	main	program	continues	to	run	in	foreground.'

background.join()				#	Wait	for	the	background	task	to	finish

print('Main	program	waited	until	background	was	done.'

The	principal	 challenge	of	multi-threaded	applications	 is	 coordinating
threads	that	share	data	or	other	resources.	To	that	end,	the	threading

module	 provides	 a	 number	 of	 synchronization	 primitives	 including
locks,	events,	condition	variables,	and	semaphores.

While	 those	 tools	 are	 powerful,	 minor	 design	 errors	 can	 result	 in
problems	that	are	difficult	to	reproduce.	So,	the	preferred	approach	to
task	coordination	is	to	concentrate	all	access	to	a	resource	in	a	single
thread	 and	 then	 use	 the	 queue	 module	 to	 feed	 that	 thread	 with
requests	 from	 other	 threads.	 Applications	 using	 Queue	 objects	 for
inter-thread	 communication	 and	 coordination	 are	 easier	 to	 design,
more	readable,	and	more	reliable.

11.5.	Logging

The	 logging	 module	 offers	 a	 full	 featured	 and	 flexible	 logging
system.	 At	 its	 simplest,	 log	 messages	 are	 sent	 to	 a	 file	 or	 to
sys.stderr:

import	logging

logging.debug('Debugging	information')

logging.info('Informational	message')

logging.warning('Warning:config	file	%s	not	found',	

logging.error('Error	occurred')

logging.critical('Critical	error	--	shutting	down')

This	produces	the	following	output:

WARNING:root:Warning:config	file	server.conf	not	found

ERROR:root:Error	occurred

CRITICAL:root:Critical	error	--	shutting	down

By	 default,	 informational	 and	 debugging	 messages	 are	 suppressed
and	the	output	 is	sent	 to	standard	error.	Other	output	options	 include
routing	messages	 through	email,	datagrams,	sockets,	or	 to	an	HTTP
Server.	 New	 filters	 can	 select	 different	 routing	 based	 on	 message
priority:	DEBUG,	INFO,	WARNING,	ERROR,	and	CRITICAL.

The	logging	system	can	be	configured	directly	from	Python	or	can	be
loaded	 from	a	 user	 editable	 configuration	 file	 for	 customized	 logging
without	altering	the	application.

11.6.	Weak	References

Python	does	automatic	memory	management	 (reference	counting	 for
most	objects	and	garbage	collection	to	eliminate	cycles).	The	memory
is	freed	shortly	after	the	last	reference	to	it	has	been	eliminated.

This	approach	works	fine	for	most	applications	but	occasionally	there
is	 a	 need	 to	 track	 objects	 only	 as	 long	 as	 they	 are	 being	 used	 by
something	else.	Unfortunately,	 just	 tracking	 them	creates	a	reference
that	makes	them	permanent.	The	weakref	module	provides	tools	for
tracking	 objects	without	 creating	 a	 reference.	When	 the	 object	 is	 no
longer	needed,	it	is	automatically	removed	from	a	weakref	table	and	a
callback	 is	 triggered	 for	weakref	 objects.	 Typical	applications	 include
caching	objects	that	are	expensive	to	create:

>>>	import	weakref,	gc

>>>	class	A:

...					def	__init__(self,	value):

...									self.value	=	value

...					def	__repr__(self):

...									return	str(self.value)

...

>>>	a	=	A(10)																			#	create	a	reference

>>>	d	=	weakref.WeakValueDictionary()

>>>	d['primary']	=	a												#	does	not	create	a	reference

>>>	d['primary']																#	fetch	the	object	if	it	is	still	alive

10

>>>	del	a																							#	remove	the	one	reference

>>>	gc.collect()																#	run	garbage	collection	right	away

0

>>>	d['primary']																#	entry	was	automatically	removed

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

				d['primary']																#	entry	was	automatically	removed

		File	"C:/python34/lib/weakref.py",	line	46,	in	__getitem__

				o	=	self.data[key]()

KeyError:	'primary'

11.7.	Tools	for	Working	with	Lists

Many	 data	 structure	 needs	 can	 be	 met	 with	 the	 built-in	 list	 type.
However,	 sometimes	 there	 is	 a	 need	 for	 alternative	 implementations
with	different	performance	trade-offs.

The	array	module	provides	an	array()	object	that	is	like	a	list	that
stores	 only	 homogeneous	 data	 and	 stores	 it	 more	 compactly.	 The
following	 example	 shows	 an	 array	 of	 numbers	 stored	 as	 two	 byte
unsigned	 binary	 numbers	 (typecode	 "H")	 rather	 than	 the	 usual	 16
bytes	per	entry	for	regular	lists	of	Python	int	objects:

>>>	from	array	import	array

>>>	a	=	array('H',	[4000,	10,	700,	22222])

>>>	sum(a)

26932

>>>	a[1:3]

array('H',	[10,	700])

The	collections	module	provides	a	deque()	object	 that	 is	 like	a
list	with	faster	appends	and	pops	from	the	left	side	but	slower	lookups
in	the	middle.	These	objects	are	well	suited	for	 implementing	queues
and	breadth	first	tree	searches:

>>>	from	collections	import	deque

>>>	d	=	deque(["task1",	"task2",	"task3"])

>>>	d.append("task4")

>>>	print("Handling",	d.popleft())

Handling	task1

unsearched	=	deque([starting_node])

def	breadth_first_search(unsearched):

				node	=	unsearched.popleft()

				for	m	in	gen_moves(node):

								if	is_goal(m):

												return	m

								unsearched.append(m)

In	 addition	 to	 alternative	 list	 implementations,	 the	 library	 also	 offers
other	tools	such	as	the	bisect	module	with	functions	for	manipulating
sorted	lists:

>>>	import	bisect

>>>	scores	=	[(100,	'perl'),	(200,	'tcl'),	(400,	'lua'

>>>	bisect.insort(scores,	(300,	'ruby'))

>>>	scores

[(100,	'perl'),	(200,	'tcl'),	(300,	'ruby'),	(400,	'lua'),	(500,	'python')]

The	heapq	module	provides	functions	for	 implementing	heaps	based
on	 regular	 lists.	 The	 lowest	 valued	 entry	 is	 always	 kept	 at	 position
zero.	 This	 is	 useful	 for	 applications	 which	 repeatedly	 access	 the
smallest	element	but	do	not	want	to	run	a	full	list	sort:

>>>	from	heapq	import	heapify,	heappop,	heappush

>>>	data	=	[1,	3,	5,	7,	9,	2,	4,	6,	8,	0]

>>>	heapify(data)																						#	rearrange	the	list	into	heap	order

>>>	heappush(data,	-5)																	#	add	a	new	entry

>>>	[heappop(data)	for	i	in	range(3)]		#	fetch	the	three	smallest	entries

[-5,	0,	1]

11.8.	Decimal	Floating	Point	Arithmetic

The	decimal	module	offers	a	Decimal	datatype	for	decimal	floating
point	 arithmetic.	 Compared	 to	 the	 built-in	 float	 implementation	 of
binary	floating	point,	the	class	is	especially	helpful	for

financial	applications	and	other	uses	which	require	exact	decimal
representation,
control	over	precision,
control	over	rounding	to	meet	legal	or	regulatory	requirements,
tracking	of	significant	decimal	places,	or
applications	 where	 the	 user	 expects	 the	 results	 to	 match
calculations	done	by	hand.

For	example,	calculating	a	5%	 tax	on	a	70	cent	phone	charge	gives
different	results	in	decimal	floating	point	and	binary	floating	point.	The
difference	becomes	significant	if	the	results	are	rounded	to	the	nearest
cent:

>>>	from	decimal	import	*

>>>	round(Decimal('0.70')	*	Decimal('1.05'),	2)

Decimal('0.74')

>>>	round(.70	*	1.05,	2)

0.73

The	Decimal	result	keeps	a	trailing	zero,	automatically	 inferring	four
place	 significance	 from	 multiplicands	 with	 two	 place	 significance.
Decimal	reproduces	mathematics	as	done	by	hand	and	avoids	issues
that	 can	 arise	 when	 binary	 floating	 point	 cannot	 exactly	 represent
decimal	quantities.

Exact	 representation	enables	 the	 Decimal	 class	 to	 perform	modulo
calculations	 and	 equality	 tests	 that	 are	 unsuitable	 for	 binary	 floating

point:

>>>	Decimal('1.00')	%	Decimal('.10')

Decimal('0.00')

>>>	1.00	%	0.10

0.09999999999999995

>>>	sum([Decimal('0.1')]*10)	==	Decimal('1.0')

True

>>>	sum([0.1]*10)	==	1.0

False

The	decimal	module	provides	arithmetic	with	as	much	precision	as
needed:

>>>	getcontext().prec	=	36

>>>	Decimal(1)	/	Decimal(7)

Decimal('0.142857142857142857142857142857142857')

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

12.	What	Now?
Reading	 this	 tutorial	 has	 probably	 reinforced	 your	 interest	 in	 using
Python	—	you	should	be	eager	 to	apply	Python	 to	solving	your	 real-
world	problems.	Where	should	you	go	to	learn	more?

This	 tutorial	 is	 part	 of	 Python’s	 documentation	 set.	 Some	 other
documents	in	the	set	are:

The	Python	Standard	Library:

You	 should	 browse	 through	 this	 manual,	 which	 gives	 complete
(though	 terse)	 reference	material	about	 types,	 functions,	and	 the
modules	in	the	standard	library.	The	standard	Python	distribution
includes	a	lot	of	additional	code.	There	are	modules	to	read	Unix
mailboxes,	 retrieve	 documents	 via	 HTTP,	 generate	 random
numbers,	 parse	 command-line	 options,	 write	 CGI	 programs,
compress	 data,	 and	 many	 other	 tasks.	 Skimming	 through	 the
Library	Reference	will	give	you	an	idea	of	what’s	available.

Installing	 Python	 Modules	 explains	 how	 to	 install	 additional
modules	written	by	other	Python	users.

The	 Python	 Language	 Reference:	 A	 detailed	 explanation	 of
Python’s	syntax	and	semantics.	It’s	heavy	reading,	but	is	useful	as
a	complete	guide	to	the	language	itself.

More	Python	resources:

http://www.python.org:	 The	 major	 Python	 Web	 site.	 It	 contains
code,	 documentation,	 and	 pointers	 to	 Python-related	 pages
around	 the	 Web.	 This	 Web	 site	 is	 mirrored	 in	 various	 places
around	the	world,	such	as	Europe,	Japan,	and	Australia;	a	mirror

http://www.python.org

may	be	faster	than	the	main	site,	depending	on	your	geographical
location.
http://docs.python.org:	Fast	access	to	Python’s	documentation.
http://pypi.python.org:	The	Python	Package	Index,	previously	also
nicknamed	the	Cheese	Shop,	is	an	index	of	user-created	Python
modules	 that	 are	 available	 for	 download.	 Once	 you	 begin
releasing	code,	you	can	register	it	here	so	that	others	can	find	it.
http://aspn.activestate.com/ASPN/Python/Cookbook/:	 The	Python
Cookbook	 is	 a	 sizable	 collection	 of	 code	 examples,	 larger
modules,	and	useful	scripts.	Particularly	notable	contributions	are
collected	 in	 a	 book	 also	 titled	 Python	 Cookbook	 (O’Reilly	 &
Associates,	ISBN	0-596-00797-3.)
http://scipy.org:	The	Scientific	Python	project	includes	modules	for
fast	 array	 computations	 and	 manipulations	 plus	 a	 host	 of
packages	 for	 such	 things	 as	 linear	 algebra,	 Fourier	 transforms,
non-linear	 solvers,	 random	 number	 distributions,	 statistical
analysis	and	the	like.

For	Python-related	questions	and	problem	reports,	you	can	post	to	the
newsgroup	 comp.lang.python,	 or	 send	 them	 to	 the	 mailing	 list	 at
python-list@python.org.	 The	 newsgroup	 and	 mailing	 list	 are
gatewayed,	 so	 messages	 posted	 to	 one	 will	 automatically	 be
forwarded	 to	 the	 other.	 There	 are	 around	 120	 postings	 a	 day	 (with
peaks	 up	 to	 several	 hundred),	 asking	 (and	 answering)	 questions,
suggesting	 new	 features,	 and	 announcing	 new	 modules.	 Before
posting,	be	sure	to	check	the	list	of	Frequently	Asked	Questions	(also
called	 the	 FAQ).	 Mailing	 list	 archives	 are	 available	 at
http://mail.python.org/pipermail/.	 The	 FAQ	 answers	 many	 of	 the
questions	that	come	up	again	and	again,	and	may	already	contain	the
solution	for	your	problem.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://docs.python.org
http://pypi.python.org
http://aspn.activestate.com/ASPN/Python/Cookbook/
http://scipy.org
mailto:python-list%40python.org
http://mail.python.org/pipermail/
http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

13.	Interactive	Input	Editing	and
History	Substitution
Some	versions	of	the	Python	interpreter	support	editing	of	the	current
input	line	and	history	substitution,	similar	to	facilities	found	in	the	Korn
shell	 and	 the	GNU	 Bash	 shell.	 This	 is	 implemented	 using	 the	 GNU
Readline	 library,	which	supports	various	styles	of	editing.	This	 library
has	its	own	documentation	which	we	won’t	duplicate	here.

http://tiswww.case.edu/php/chet/readline/rltop.html

13.1.	Tab	Completion	and	History	Editing

Completion	of	variable	and	module	names	is	automatically	enabled	at
interpreter	 startup	 so	 that	 the	 Tab	 key	 invokes	 the	 completion
function;	 it	 looks	 at	 Python	 statement	 names,	 the	 current	 local
variables,	 and	 the	 available	 module	 names.	 For	 dotted	 expressions
such	as	string.a,	it	will	evaluate	the	expression	up	to	the	final	'.'
and	 then	 suggest	 completions	 from	 the	 attributes	 of	 the	 resulting
object.	Note	that	this	may	execute	application-defined	code	if	an	object
with	a	__getattr__()	method	is	part	of	the	expression.	The	default
configuration	 also	 saves	 your	 history	 into	 a	 file	 named
.python_history	 in	 your	 user	 directory.	 The	 history	 will	 be
available	again	during	the	next	interactive	interpreter	session.

13.2.	Alternatives	to	the	Interactive
Interpreter

This	facility	is	an	enormous	step	forward	compared	to	earlier	versions
of	the	interpreter;	however,	some	wishes	are	left:	It	would	be	nice	if	the
proper	 indentation	 were	 suggested	 on	 continuation	 lines	 (the	 parser
knows	if	an	indent	token	is	required	next).	The	completion	mechanism
might	use	the	interpreter’s	symbol	table.	A	command	to	check	(or	even
suggest)	matching	parentheses,	quotes,	etc.,	would	also	be	useful.

One	alternative	enhanced	interactive	interpreter	that	has	been	around
for	quite	some	 time	 is	 IPython,	which	 features	 tab	completion,	object
exploration	 and	 advanced	 history	 management.	 It	 can	 also	 be
thoroughly	customized	and	embedded	into	other	applications.	Another
similar	enhanced	interactive	environment	is	bpython.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://ipython.scipy.org/
http://www.bpython-interpreter.org/
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

14.	Floating	Point	Arithmetic:
Issues	and	Limitations
Floating-point	numbers	are	represented	in	computer	hardware	as	base
2	(binary)	fractions.	For	example,	the	decimal	fraction

0.125

has	 value	 1/10	 +	 2/100	 +	 5/1000,	 and	 in	 the	 same	 way	 the	 binary
fraction

0.001

has	value	0/2	+	0/4	+	1/8.	These	 two	 fractions	have	 identical	values,
the	 only	 real	 difference	 being	 that	 the	 first	 is	 written	 in	 base	 10
fractional	notation,	and	the	second	in	base	2.

Unfortunately,	 most	 decimal	 fractions	 cannot	 be	 represented	 exactly
as	 binary	 fractions.	 A	 consequence	 is	 that,	 in	 general,	 the	 decimal
floating-point	numbers	you	enter	are	only	approximated	by	the	binary
floating-point	numbers	actually	stored	in	the	machine.

The	problem	is	easier	 to	understand	at	 first	 in	base	10.	Consider	 the
fraction	1/3.	You	can	approximate	that	as	a	base	10	fraction:

0.3

or,	better,

0.33

or,	better,

0.333

and	so	on.	No	matter	how	many	digits	you’re	willing	to	write	down,	the
result	 will	 never	 be	 exactly	 1/3,	 but	 will	 be	 an	 increasingly	 better
approximation	of	1/3.

In	 the	same	way,	no	matter	how	many	base	2	digits	you’re	willing	 to
use,	the	decimal	value	0.1	cannot	be	represented	exactly	as	a	base	2
fraction.	In	base	2,	1/10	is	the	infinitely	repeating	fraction

0.0001100110011001100110011001100110011001100110011...

Stop	at	 any	 finite	 number	of	 bits,	 and	 you	get	 an	approximation.	On
most	machines	today,	 floats	are	approximated	using	a	binary	fraction
with	 the	 numerator	 using	 the	 first	 53	 bits	 starting	 with	 the	 most
significant	bit	and	with	the	denominator	as	a	power	of	two.	In	the	case
of	 1/10,	 the	 binary	 fraction	 is	 3602879701896397	 /	 2	 **	 55
which	is	close	to	but	not	exactly	equal	to	the	true	value	of	1/10.

Many	users	are	not	 aware	of	 the	approximation	because	of	 the	way
values	 are	 displayed.	Python	 only	 prints	 a	 decimal	 approximation	 to
the	 true	 decimal	 value	 of	 the	 binary	 approximation	 stored	 by	 the
machine.	On	most	machines,	 if	Python	were	to	print	 the	true	decimal
value	 of	 the	 binary	 approximation	 stored	 for	 0.1,	 it	 would	 have	 to
display

>>>	0.1

0.1000000000000000055511151231257827021181583404541015625

That	is	more	digits	than	most	people	find	useful,	so	Python	keeps	the

number	of	digits	manageable	by	displaying	a	rounded	value	instead

>>>	1	/	10

0.1

Just	 remember,	 even	 though	 the	 printed	 result	 looks	 like	 the	 exact
value	 of	 1/10,	 the	 actual	 stored	 value	 is	 the	 nearest	 representable
binary	fraction.

Interestingly,	there	are	many	different	decimal	numbers	that	share	the
same	nearest	approximate	binary	fraction.	For	example,	 the	numbers
0.1	 and	 0.10000000000000001	 and
0.1000000000000000055511151231257827021181583404541015625

are	all	approximated	by	3602879701896397	/	2	**	55.	Since	all
of	 these	 decimal	 values	 share	 the	 same	 approximation,	 any	 one	 of
them	 could	 be	 displayed	 while	 still	 preserving	 the	 invariant
eval(repr(x))	==	x.

Historically,	 the	 Python	 prompt	 and	 built-in	 repr()	 function	 would
choose	 the	 one	 with	 17	 significant	 digits,	 0.10000000000000001.
Starting	 with	 Python	 3.1,	 Python	 (on	 most	 systems)	 is	 now	 able	 to
choose	the	shortest	of	these	and	simply	display	0.1.

Note	that	this	is	in	the	very	nature	of	binary	floating-point:	this	is	not	a
bug	 in	Python,	and	 it	 is	not	a	bug	 in	your	code	either.	You’ll	 see	 the
same	 kind	 of	 thing	 in	 all	 languages	 that	 support	 your	 hardware’s
floating-point	arithmetic	(although	some	languages	may	not	display	the
difference	by	default,	or	in	all	output	modes).

For	more	 pleasant	 output,	 you	may	 wish	 to	 use	 string	 formatting	 to
produce	a	limited	number	of	significant	digits:

>>>	format(math.pi,	'.12g')		#	give	12	significant	digits

'3.14159265359'

>>>	format(math.pi,	'.2f')			#	give	2	digits	after	the	point

'3.14'

>>>	repr(math.pi)

'3.141592653589793'

It’s	 important	to	realize	that	this	 is,	 in	a	real	sense,	an	illusion:	you’re
simply	rounding	the	display	of	the	true	machine	value.

One	illusion	may	beget	another.	For	example,	since	0.1	is	not	exactly
1/10,	summing	three	values	of	0.1	may	not	yield	exactly	0.3,	either:

>>>	.1	+	.1	+	.1	==	.3

False

Also,	 since	 the	 0.1	 cannot	 get	 any	 closer	 to	 the	 exact	 value	 of	 1/10
and	 0.3	 cannot	 get	 any	 closer	 to	 the	 exact	 value	 of	 3/10,	 then	 pre-
rounding	with	round()	function	cannot	help:

>>>	round(.1,	1)	+	round(.1,	1)	+	round(.1,	1)	==	round

False

Though	 the	 numbers	 cannot	 be	made	 closer	 to	 their	 intended	 exact
values,	the	round()	function	can	be	useful	for	post-rounding	so	that
results	with	inexact	values	become	comparable	to	one	another:

>>>	round(.1	+	.1	+	.1,	10)	==	round(.3,	10)

True

Binary	 floating-point	 arithmetic	 holds	 many	 surprises	 like	 this.	 The
problem	 with	 “0.1”	 is	 explained	 in	 precise	 detail	 below,	 in	 the

“Representation	Error”	section.	See	The	Perils	of	Floating	Point	 for	a
more	complete	account	of	other	common	surprises.

As	that	says	near	the	end,	“there	are	no	easy	answers.”	Still,	don’t	be
unduly	wary	of	floating-point!	The	errors	in	Python	float	operations	are
inherited	from	the	floating-point	hardware,	and	on	most	machines	are
on	the	order	of	no	more	than	1	part	in	2**53	per	operation.	That’s	more
than	adequate	for	most	tasks,	but	you	do	need	to	keep	in	mind	that	it’s
not	decimal	arithmetic	and	that	every	float	operation	can	suffer	a	new
rounding	error.

While	pathological	cases	do	exist,	for	most	casual	use	of	floating-point
arithmetic	 you’ll	 see	 the	 result	 you	 expect	 in	 the	 end	 if	 you	 simply
round	the	display	of	your	 final	results	 to	 the	number	of	decimal	digits
you	 expect.	 str()	 usually	 suffices,	 and	 for	 finer	 control	 see	 the
str.format()	method’s	format	specifiers	in	Format	String	Syntax.

For	 use	 cases	which	 require	 exact	 decimal	 representation,	 try	 using
the	decimal	module	which	implements	decimal	arithmetic	suitable	for
accounting	applications	and	high-precision	applications.

Another	 form	 of	 exact	 arithmetic	 is	 supported	 by	 the	 fractions
module	 which	 implements	 arithmetic	 based	 on	 rational	 numbers	 (so
the	numbers	like	1/3	can	be	represented	exactly).

If	you	are	a	heavy	user	of	floating	point	operations	you	should	take	a
look	at	 the	Numerical	Python	package	and	many	other	packages	 for
mathematical	and	statistical	operations	supplied	by	the	SciPy	project.
See	<http://scipy.org>.

Python	provides	tools	that	may	help	on	those	rare	occasions	when	you
really	 do	 want	 to	 know	 the	 exact	 value	 of	 a	 float.	 The
float.as_integer_ratio()	 method	 expresses	 the	 value	 of	 a

http://www.lahey.com/float.htm
http://scipy.org

float	as	a	fraction:

>>>	x	=	3.14159

>>>	x.as_integer_ratio()

(3537115888337719,	1125899906842624)

Since	 the	 ratio	 is	 exact,	 it	 can	 be	 used	 to	 losslessly	 recreate	 the
original	value:

>>>	x	==	3537115888337719	/	1125899906842624

True

The	 float.hex()	 method	 expresses	 a	 float	 in	 hexadecimal	 (base
16),	again	giving	the	exact	value	stored	by	your	computer:

>>>	x.hex()

'0x1.921f9f01b866ep+1'

This	 precise	 hexadecimal	 representation	 can	 be	 used	 to	 reconstruct
the	float	value	exactly:

>>>	x	==	float.fromhex('0x1.921f9f01b866ep+1')

True

Since	the	representation	is	exact,	it	is	useful	for	reliably	porting	values
across	 different	 versions	 of	 Python	 (platform	 independence)	 and
exchanging	 data	with	 other	 languages	 that	 support	 the	 same	 format
(such	as	Java	and	C99).

Another	helpful	tool	is	the	math.fsum()	function	which	helps	mitigate
loss-of-precision	during	summation.	It	tracks	“lost	digits”	as	values	are
added	 onto	 a	 running	 total.	 That	 can	 make	 a	 difference	 in	 overall
accuracy	so	that	the	errors	do	not	accumulate	to	the	point	where	they
affect	the	final	total:

>>>	sum([0.1]	*	10)	==	1.0

False

>>>	math.fsum([0.1]	*	10)	==	1.0

True

14.1.	Representation	Error

This	section	explains	the	“0.1”	example	in	detail,	and	shows	how	you
can	 perform	 an	 exact	 analysis	 of	 cases	 like	 this	 yourself.	 Basic
familiarity	with	binary	floating-point	representation	is	assumed.

Representation	 error	 refers	 to	 the	 fact	 that	 some	 (most,	 actually)
decimal	 fractions	 cannot	 be	 represented	 exactly	 as	 binary	 (base	 2)
fractions.	This	is	the	chief	reason	why	Python	(or	Perl,	C,	C++,	Java,
Fortran,	 and	 many	 others)	 often	 won’t	 display	 the	 exact	 decimal
number	you	expect.

Why	 is	 that?	 1/10	 is	 not	 exactly	 representable	 as	 a	 binary	 fraction.
Almost	 all	 machines	 today	 (November	 2000)	 use	 IEEE-754	 floating
point	arithmetic,	and	almost	all	platforms	map	Python	 floats	 to	 IEEE-
754	“double	precision”.	754	doubles	contain	53	bits	of	precision,	so	on
input	the	computer	strives	to	convert	0.1	to	the	closest	fraction	it	can	of
the	 form	 J/2**N	 where	 J	 is	 an	 integer	 containing	 exactly	 53	 bits.
Rewriting

1	/	10	~=	J	/	(2**N)

as

J	~=	2**N	/	10

and	recalling	that	J	has	exactly	53	bits	(is	>=	2**52	but	<	2**53),
the	best	value	for	N	is	56:

>>>	2**52	<=		2**56	//	10		<	2**53

True

That	 is,	56	 is	 the	only	value	 for	N	 that	 leaves	J	with	exactly	 53	bits.
The	best	possible	value	for	J	is	then	that	quotient	rounded:

>>>	q,	r	=	divmod(2**56,	10)

>>>	r

6

Since	the	remainder	is	more	than	half	of	10,	the	best	approximation	is
obtained	by	rounding	up:

>>>	q+1

7205759403792794

Therefore	 the	 best	 possible	 approximation	 to	 1/10	 in	 754	 double
precision	is:

7205759403792794	/	2	**	56

Dividing	 both	 the	 numerator	 and	 denominator	 by	 two	 reduces	 the
fraction	to:

3602879701896397	/	2	**	55

Note	 that	 since	we	 rounded	up,	 this	 is	actually	a	 little	bit	 larger	 than
1/10;	 if	we	had	not	rounded	up,	 the	quotient	would	have	been	a	 little
bit	smaller	than	1/10.	But	in	no	case	can	it	be	exactly	1/10!

So	the	computer	never	“sees”	1/10:	what	 it	sees	 is	 the	exact	 fraction
given	above,	the	best	754	double	approximation	it	can	get:

>>>	0.1	*	2	**	55

3602879701896397.0

If	we	multiply	that	 fraction	by	10**55,	we	can	see	the	value	out	 to	55

decimal	digits:

>>>	3602879701896397	*	10	**	55	//	2	**	55

1000000000000000055511151231257827021181583404541015625

meaning	that	the	exact	number	stored	in	the	computer	is	equal	to	the
decimal	 value
0.1000000000000000055511151231257827021181583404541015625.
Instead	of	displaying	the	full	decimal	value,	many	languages	(including
older	versions	of	Python),	round	the	result	to	17	significant	digits:

>>>	format(0.1,	'.17f')

'0.10000000000000001'

The	 fractions	 and	 decimal	 modules	 make	 these	 calculations
easy:

>>>	from	decimal	import	Decimal

>>>	from	fractions	import	Fraction

>>>	Fraction.from_float(0.1)

Fraction(3602879701896397,	36028797018963968)

>>>	(0.1).as_integer_ratio()

(3602879701896397,	36028797018963968)

>>>	Decimal.from_float(0.1)

Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>>	format(Decimal.from_float(0.1),	'.17')

'0.10000000000000001'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Tutorial	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

http://www.python.org/

1.	Command	line	and	environment
The	CPython	interpreter	scans	the	command	line	and	the	environment
for	various	settings.

CPython	implementation	detail:	Other	implementations’	command
line	 schemes	may	 differ.	 See	Alternate	 Implementations	 for	 further
resources.

1.1.	Command	line

When	invoking	Python,	you	may	specify	any	of	these	options:

python	[-bBdEhiIOqsSuvVWx?]	[-c	command	|	-m	module-name	|	script	|	-]	[args]

The	most	 common	 use	 case	 is,	 of	 course,	 a	 simple	 invocation	 of	 a
script:

python	myscript.py

1.1.1.	Interface	options

The	interpreter	interface	resembles	that	of	the	UNIX	shell,	but	provides
some	additional	methods	of	invocation:

When	 called	 with	 standard	 input	 connected	 to	 a	 tty	 device,	 it
prompts	for	commands	and	executes	them	until	an	EOF	(an	end-
of-file	character,	you	can	produce	that	with	Ctrl-D	on	UNIX	or	Ctrl-
Z,	Enter	on	Windows)	is	read.
When	called	with	a	file	name	argument	or	with	a	file	as	standard
input,	it	reads	and	executes	a	script	from	that	file.
When	 called	 with	 a	 directory	 name	 argument,	 it	 reads	 and
executes	an	appropriately	named	script	from	that	directory.
When	 called	 with	 -c	 command,	 it	 executes	 the	 Python
statement(s)	 given	 as	 command.	 Here	 command	 may	 contain
multiple	statements	separated	by	newlines.	Leading	whitespace	is
significant	in	Python	statements!
When	called	with	-m	module-name,	the	given	module	is	located
on	the	Python	module	path	and	executed	as	a	script.

In	 non-interactive	 mode,	 the	 entire	 input	 is	 parsed	 before	 it	 is

executed.

An	 interface	 option	 terminates	 the	 list	 of	 options	 consumed	 by	 the
interpreter,	all	consecutive	arguments	will	end	up	in	sys.argv	–	note
that	 the	 first	 element,	 subscript	 zero	 (sys.argv[0]),	 is	 a	 string
reflecting	the	program’s	source.

-c	<command>

Execute	 the	 Python	 code	 in	 command.	command	 can	 be	 one	 or
more	 statements	 separated	 by	 newlines,	 with	 significant	 leading
whitespace	as	in	normal	module	code.

If	this	option	is	given,	the	first	element	of	sys.argv	will	be	"-c"
and	 the	 current	 directory	will	 be	 added	 to	 the	 start	 of	 sys.path
(allowing	 modules	 in	 that	 directory	 to	 be	 imported	 as	 top	 level
modules).

-m	<module-name>

Search	sys.path	for	the	named	module	and	execute	its	contents
as	the	__main__	module.

Since	 the	 argument	 is	 a	module	 name,	 you	 must	 not	 give	 a	 file
extension	 (.py).	 The	 module-name	 should	 be	 a	 valid	 Python
module	name,	but	the	implementation	may	not	always	enforce	this
(e.g.	it	may	allow	you	to	use	a	name	that	includes	a	hyphen).

Package	 names	 (including	 namespace	 packages)	 are	 also
permitted.	When	a	package	name	is	supplied	 instead	of	a	normal
module,	the	interpreter	will	execute	<pkg>.__main__	as	the	main
module.	 This	 behaviour	 is	 deliberately	 similar	 to	 the	 handling	 of
directories	 and	 zipfiles	 that	 are	 passed	 to	 the	 interpreter	 as	 the
script	argument.

Note: 	 This	 option	 cannot	 be	 used	 with	 built-in	 modules	 and
extension	modules	written	 in	C,	 since	 they	 do	 not	 have	Python
module	 files.	 However,	 it	 can	 still	 be	 used	 for	 precompiled
modules,	even	if	the	original	source	file	is	not	available.

If	this	option	is	given,	the	first	element	of	sys.argv	will	be	the	full
path	to	the	module	file	(while	 the	module	file	 is	being	 located,	 the
first	element	will	be	set	to	"-m").	As	with	the	-c	option,	the	current
directory	will	be	added	to	the	start	of	sys.path.

Many	 standard	 library	 modules	 contain	 code	 that	 is	 invoked	 on
their	execution	as	a	script.	An	example	is	the	timeit	module:

python	-mtimeit	-s	'setup	here'	'benchmarked	code	here'

python	-mtimeit	-h	#	for	details

See	also:
runpy.run_module()

Equivalent	functionality	directly	available	to	Python	code

PEP	338	–	Executing	modules	as	scripts

Changed	 in	 version	 3.1:	 Supply	 the	 package	 name	 to	 run	 a
__main__	submodule.

Changed	in	version	3.4:	namespace	packages	are	also	supported

-

Read	 commands	 from	 standard	 input	 (sys.stdin).	 If	 standard
input	is	a	terminal,	-i	is	implied.

If	 this	option	 is	given,	 the	 first	element	of	sys.argv	will	 be	 "-"
and	the	current	directory	will	be	added	to	the	start	of	sys.path.

http://www.python.org/dev/peps/pep-0338

<script>

Execute	 the	 Python	 code	 contained	 in	 script,	 which	 must	 be	 a
filesystem	 path	 (absolute	 or	 relative)	 referring	 to	 either	 a	 Python
file,	 a	 directory	 containing	 a	 __main__.py	 file,	 or	 a	 zipfile
containing	a	__main__.py	file.

If	 this	 option	 is	 given,	 the	 first	 element	 of	 sys.argv	 will	 be	 the
script	name	as	given	on	the	command	line.

If	 the	 script	 name	 refers	 directly	 to	 a	 Python	 file,	 the	 directory
containing	that	file	is	added	to	the	start	of	sys.path,	and	the	file
is	executed	as	the	__main__	module.

If	the	script	name	refers	to	a	directory	or	zipfile,	the	script	name	is
added	to	the	start	of	sys.path	and	the	__main__.py	file	in	that
location	is	executed	as	the	__main__	module.

If	no	interface	option	is	given,	-i	is	implied,	sys.argv[0]	is	an	empty
string	 ("")	 and	 the	 current	 directory	 will	 be	 added	 to	 the	 start	 of
sys.path.	 Also,	 tab-completion	 and	 history	 editing	 is	 automatically
enabled,	if	available	on	your	platform	(see	Readline	configuration).

Changed	 in	 version	 3.4:	 Automatic	 enabling	 of	 tab-completion	 and
history	editing.

See	also: 	Invoking	the	Interpreter

1.1.2.	Generic	options

-?

-h

--help

Print	a	short	description	of	all	command	line	options.

-V

--version

Print	 the	 Python	 version	 number	 and	 exit.	 Example	 output	 could
be:

Python	3.0

1.1.3.	Miscellaneous	options

-b

Issue	 a	 warning	 when	 comparing	 str	 and	 bytes.	 Issue	 an	 error
when	the	option	is	given	twice	(-bb).

-B

If	given,	Python	won’t	try	to	write	.pyc	or	.pyo	files	on	the	import
of	source	modules.	See	also	PYTHONDONTWRITEBYTECODE.

-d

Turn	on	parser	debugging	output	 (for	wizards	only,	 depending	on
compilation	options).	See	also	PYTHONDEBUG.

-E

Ignore	all	PYTHON*	environment	variables,	e.g.	PYTHONPATH	and
PYTHONHOME,	that	might	be	set.

-i

When	a	script	is	passed	as	first	argument	or	the	-c	option	is	used,
enter	 interactive	mode	after	executing	 the	script	or	 the	command,
even	 when	 sys.stdin	 does	 not	 appear	 to	 be	 a	 terminal.	 The
PYTHONSTARTUP	file	is	not	read.

This	can	be	useful	to	inspect	global	variables	or	a	stack	trace	when
a	script	raises	an	exception.	See	also	PYTHONINSPECT.

-I

Run	 Python	 in	 isolated	 mode.	 This	 also	 implies	 -E	 and	 -s.	 In
isolated	mode	sys.path	contains	neither	the	script’s	directory	nor
the	 user’s	 site-packages	 directory.	 All	 PYTHON*	 environment
variables	are	 ignored,	 too.	Further	restrictions	may	be	 imposed	to
prevent	the	user	from	injecting	malicious	code.

New	in	version	3.4.

-O

Turn	on	basic	optimizations.	This	changes	 the	 filename	extension
for	 compiled	 (bytecode)	 files	 from	 .pyc	 to	 .pyo.	 See	 also
PYTHONOPTIMIZE.

-OO

Discard	docstrings	in	addition	to	the	-O	optimizations.

-q

Don’t	 display	 the	 copyright	 and	 version	 messages	 even	 in
interactive	mode.

New	in	version	3.2.

-R

Kept	 for	 compatibility.	 On	 Python	 3.3	 and	 greater,	 hash
randomization	is	turned	on	by	default.

On	 previous	 versions	 of	 Python,	 this	 option	 turns	 on	 hash
randomization,	 so	 that	 the	 __hash__()	 values	 of	 str,	 bytes	 and
datetime	are	“salted”	with	an	unpredictable	random	value.	Although

they	remain	constant	within	an	individual	Python	process,	they	are
not	predictable	between	repeated	invocations	of	Python.

Hash	 randomization	 is	 intended	 to	 provide	 protection	 against	 a
denial-of-service	caused	by	carefully-chosen	inputs	that	exploit	the
worst	case	performance	of	a	dict	construction,	O(n^2)	complexity.
See	http://www.ocert.org/advisories/ocert-2011-003.html	for	details.

PYTHONHASHSEED	 allows	 you	 to	 set	 a	 fixed	 value	 for	 the	 hash
seed	secret.

New	in	version	3.2.3.

-s

Don’t	add	the	user	site-packages	directory	to	sys.path.

See	also: 	PEP	370	–	Per	user	site-packages	directory

-S

Disable	 the	 import	 of	 the	 module	 site	 and	 the	 site-dependent
manipulations	 of	 sys.path	 that	 it	 entails.	 Also	 disable	 these
manipulations	 if	 site	 is	 explicitly	 imported	 later	 (call
site.main()	if	you	want	them	to	be	triggered).

-u

Force	 the	binary	 layer	 of	 the	 stdout	 and	 stderr	 streams	 (which	 is
available	as	their	buffer	attribute)	to	be	unbuffered.	The	text	I/O
layer	 will	 still	 be	 line-buffered	 if	 writing	 to	 the	 console,	 or	 block-
buffered	if	redirected	to	a	non-interactive	file.

See	also	PYTHONUNBUFFERED.

-v

http://www.ocert.org/advisories/ocert-2011-003.html
http://www.python.org/dev/peps/pep-0370

Print	 a	 message	 each	 time	 a	 module	 is	 initialized,	 showing	 the
place	 (filename	or	 built-in	module)	 from	which	 it	 is	 loaded.	When
given	twice	(-vv),	print	a	message	for	each	file	that	 is	checked	for
when	searching	for	a	module.	Also	provides	information	on	module
cleanup	at	exit.	See	also	PYTHONVERBOSE.

-W	arg

Warning	 control.	 Python’s	 warning	 machinery	 by	 default	 prints
warning	 messages	 to	 sys.stderr.	 A	 typical	 warning	 message
has	the	following	form:

file:line:	category:	message

By	default,	each	warning	is	printed	once	for	each	source	line	where
it	occurs.	This	option	controls	how	often	warnings	are	printed.

Multiple	-W	options	may	be	given;	when	a	warning	matches	more
than	 one	 option,	 the	 action	 for	 the	 last	 matching	 option	 is
performed.	 Invalid	 -W	 options	 are	 ignored	 (though,	 a	 warning
message	 is	printed	about	 invalid	options	when	the	first	warning	 is
issued).

Warnings	 can	 also	 be	 controlled	 from	 within	 a	 Python	 program
using	the	warnings	module.

The	simplest	form	of	argument	is	one	of	the	following	action	strings
(or	a	unique	abbreviation):

ignore

Ignore	all	warnings.

default

Explicitly	 request	 the	 default	 behavior	 (printing	 each	 warning
once	per	source	line).

all

Print	 a	 warning	 each	 time	 it	 occurs	 (this	may	 generate	many
messages	 if	 a	 warning	 is	 triggered	 repeatedly	 for	 the	 same
source	line,	such	as	inside	a	loop).

module

Print	each	warning	only	the	first	time	it	occurs	in	each	module.

once

Print	each	warning	only	the	first	time	it	occurs	in	the	program.

error

Raise	an	exception	instead	of	printing	a	warning	message.

The	full	form	of	argument	is:

action:message:category:module:line

Here,	action	 is	 as	explained	above	but	 only	 applies	 to	messages
that	 match	 the	 remaining	 fields.	 Empty	 fields	 match	 all	 values;
trailing	 empty	 fields	may	 be	 omitted.	 The	message	 field	matches
the	 start	 of	 the	 warning	 message	 printed;	 this	 match	 is	 case-
insensitive.	The	category	 field	matches	the	warning	category.	This
must	be	a	class	name;	the	match	tests	whether	the	actual	warning
category	 of	 the	 message	 is	 a	 subclass	 of	 the	 specified	 warning
category.	 The	 full	 class	 name	 must	 be	 given.	 The	module	 field
matches	 the	 (fully-qualified)	 module	 name;	 this	 match	 is	 case-
sensitive.	 The	 line	 field	 matches	 the	 line	 number,	 where	 zero
matches	all	 line	numbers	and	is	thus	equivalent	to	an	omitted	line
number.

See	also: 	warnings	–	the	warnings	module
PEP	230	–	Warning	framework
PYTHONWARNINGS

http://www.python.org/dev/peps/pep-0230

-x

Skip	the	first	 line	of	the	source,	allowing	use	of	non-Unix	forms	of
#!cmd.	This	is	intended	for	a	DOS	specific	hack	only.

Note: 	The	line	numbers	in	error	messages	will	be	off	by	one.

-X

Reserved	 for	 various	 implementation-specific	 options.	 CPython
currently	defines	the	following	possible	values:

-X	faulthandler	to	enable	faulthandler;
-X	showrefcount	to	enable	the	output	of	the	total	reference
count	and	memory	blocks	(only	works	on	debug	builds);
-X	tracemalloc	to	start	tracing	Python	memory	allocations
using	 the	 tracemalloc	 module.	 By	 default,	 only	 the	 most
recent	 frame	 is	 stored	 in	 a	 traceback	 of	 a	 trace.	 Use	 -X
tracemalloc=NFRAME	 to	start	 tracing	with	a	 traceback	 limit
of	 NFRAME	 frames.	 See	 the	 tracemalloc.start()	 for
more	information.

It	also	allows	to	pass	arbitrary	values	and	retrieve	them	through	the
sys._xoptions	dictionary.

Changed	in	version	3.2:	It	is	now	allowed	to	pass	-X	with	CPython.

New	in	version	3.3:	The	-X	faulthandler	option.

New	 in	 version	 3.4:	 The	 -X	 showrefcount	 and	 -X

tracemalloc	options.

1.1.4.	Options	you	shouldn’t	use

-J

Reserved	for	use	by	Jython.

http://jython.org

1.2.	Environment	variables

These	 environment	 variables	 influence	 Python’s	 behavior,	 they	 are
processed	before	the	command-line	switches	other	than	-E	or	-I.	 It	 is
customary	 that	 command-line	 switches	 override	 environmental
variables	where	there	is	a	conflict.

PYTHONHOME

Change	 the	 location	 of	 the	 standard	 Python	 libraries.	 By	 default,
the	 libraries	are	searched	 in	prefix/lib/pythonversion	 and
exec_prefix/lib/pythonversion,	 where	 prefix	 and
exec_prefix	 are	 installation-dependent	 directories,	 both
defaulting	to	/usr/local.

When	PYTHONHOME	 is	set	 to	a	single	directory,	 its	value	replaces
both	 prefix	 and	 exec_prefix.	 To	 specify	 different	 values	 for
these,	set	PYTHONHOME	to	prefix:exec_prefix.

PYTHONPATH

Augment	the	default	search	path	for	module	files.	The	format	is	the
same	 as	 the	 shell’s	 PATH:	 one	 or	 more	 directory	 pathnames
separated	by	os.pathsep	(e.g.	colons	on	Unix	or	semicolons	on
Windows).	Non-existent	directories	are	silently	ignored.

In	 addition	 to	 normal	 directories,	 individual	 PYTHONPATH	 entries
may	 refer	 to	 zipfiles	 containing	 pure	 Python	 modules	 (in	 either
source	or	compiled	 form).	Extension	modules	cannot	be	 imported
from	zipfiles.

The	 default	 search	 path	 is	 installation	 dependent,	 but	 generally
begins	 with	 prefix/lib/pythonversion	 (see	 PYTHONHOME

above).	It	is	always	appended	to	PYTHONPATH.

An	additional	directory	will	be	inserted	in	the	search	path	in	front	of
PYTHONPATH	 as	 described	 above	 under	 Interface	 options.	 The
search	path	can	be	manipulated	from	within	a	Python	program	as
the	variable	sys.path.

PYTHONSTARTUP

If	this	is	the	name	of	a	readable	file,	the	Python	commands	in	that
file	are	executed	before	 the	first	prompt	 is	displayed	 in	 interactive
mode.	 The	 file	 is	 executed	 in	 the	 same	 namespace	 where
interactive	 commands	 are	 executed	 so	 that	 objects	 defined	 or
imported	 in	 it	 can	 be	 used	 without	 qualification	 in	 the	 interactive
session.	 You	 can	 also	 change	 the	 prompts	 sys.ps1	 and
sys.ps2	and	the	hook	sys.__interactivehook__	in	this	file.

PYTHONY2K

Set	this	to	a	non-empty	string	to	cause	the	time	module	to	require
dates	specified	as	strings	to	include	4-digit	years,	otherwise	2-digit
years	are	converted	based	on	rules	described	in	the	time	module
documentation.

PYTHONOPTIMIZE

If	this	is	set	to	a	non-empty	string	it	is	equivalent	to	specifying	the	-
O	 option.	 If	 set	 to	 an	 integer,	 it	 is	 equivalent	 to	 specifying	 -O
multiple	times.

PYTHONDEBUG

If	this	is	set	to	a	non-empty	string	it	is	equivalent	to	specifying	the	-
d	option.	If	set	to	an	integer,	it	is	equivalent	to	specifying	-d	multiple
times.

PYTHONINSPECT

If	this	is	set	to	a	non-empty	string	it	is	equivalent	to	specifying	the	-i
option.

This	 variable	 can	 also	 be	 modified	 by	 Python	 code	 using
os.environ	to	force	inspect	mode	on	program	termination.

PYTHONUNBUFFERED

If	this	is	set	to	a	non-empty	string	it	is	equivalent	to	specifying	the	-
u	option.

PYTHONVERBOSE

If	this	is	set	to	a	non-empty	string	it	is	equivalent	to	specifying	the	-
v	option.	If	set	to	an	integer,	it	is	equivalent	to	specifying	-v	multiple
times.

PYTHONCASEOK

If	this	is	set,	Python	ignores	case	in	import	statements.	This	only
works	on	Windows	and	OS	X.

PYTHONDONTWRITEBYTECODE

If	this	is	set	to	a	non-empty	string,	Python	won’t	try	to	write	.pyc	or
.pyo	 files	on	 the	 import	of	source	modules.	This	 is	equivalent	 to
specifying	the	-B	option.

PYTHONHASHSEED

If	this	variable	is	not	set	or	set	to	random,	a	random	value	is	used
to	seed	the	hashes	of	str,	bytes	and	datetime	objects.

If	PYTHONHASHSEED	is	set	to	an	integer	value,	it	is	used	as	a	fixed
seed	 for	 generating	 the	 hash()	 of	 the	 types	 covered	 by	 the	 hash
randomization.

Its	purpose	is	to	allow	repeatable	hashing,	such	as	for	selftests	for

the	 interpreter	 itself,	 or	 to	 allow	 a	 cluster	 of	 python	 processes	 to
share	hash	values.

The	 integer	 must	 be	 a	 decimal	 number	 in	 the	 range
[0,4294967295].	 Specifying	 the	 value	 0	 will	 disable	 hash
randomization.

New	in	version	3.2.3.

PYTHONIOENCODING

If	this	is	set	before	running	the	interpreter,	it	overrides	the	encoding
used	 for	 stdin/stdout/stderr,	 in	 the	 syntax
encodingname:errorhandler.	 Both	 the	 encodingname	 and
the	 :errorhandler	 parts	 are	 optional	 and	 have	 the	 same
meaning	as	in	str.encode().

For	 stderr,	 the	 :errorhandler	 part	 is	 ignored;	 the	 handler	 will
always	be	'backslashreplace'.

Changed	in	version	3.4:	The	encodingname	part	is	now	optional.

PYTHONNOUSERSITE

If	 this	 is	 set,	 Python	 won’t	 add	 the	 user	 site-packages

directory	to	sys.path.

See	also: 	PEP	370	–	Per	user	site-packages	directory

PYTHONUSERBASE

Defines	 the	user	base	directory,	which	 is	 used	 to	 compute
the	path	of	the	user	site-packages	directory	and	Distutils
installation	paths	for	python	setup.py	install	--user.

http://www.python.org/dev/peps/pep-0370

See	also: 	PEP	370	–	Per	user	site-packages	directory

PYTHONEXECUTABLE

If	this	environment	variable	is	set,	sys.argv[0]	will	be	set	to	its
value	 instead	of	 the	value	got	 through	 the	C	 runtime.	Only	works
on	Mac	OS	X.

PYTHONWARNINGS

This	 is	 equivalent	 to	 the	 -W	 option.	 If	 set	 to	 a	 comma	 separated
string,	it	is	equivalent	to	specifying	-W	multiple	times.

PYTHONFAULTHANDLER

If	 this	 environment	 variable	 is	 set	 to	 a	 non-empty	 string,
faulthandler.enable()	 is	 called	 at	 startup:	 install	 a	 handler
for	SIGSEGV,	SIGFPE,	SIGABRT,	SIGBUS	and	SIGILL	signals	to
dump	 the	 Python	 traceback.	 This	 is	 equivalent	 to	 -X
faulthandler	option.

New	in	version	3.3.

PYTHONTRACEMALLOC

If	 this	 environment	 variable	 is	 set	 to	 a	 non-empty	 string,	 start
tracing	 Python	 memory	 allocations	 using	 the	 tracemalloc
module.	 The	 value	 of	 the	 variable	 is	 the	 maximum	 number	 of
frames	 stored	 in	 a	 traceback	 of	 a	 trace.	 For	 example,
PYTHONTRACEMALLOC=1	 stores	only	 the	most	 recent	 frame.	See
the	tracemalloc.start()	for	more	information.

New	in	version	3.4.

PYTHONASYNCIODEBUG

If	this	environment	variable	is	set	to	a	non-empty	string,	enable	the

http://www.python.org/dev/peps/pep-0370

debug	mode	of	the	asyncio	module.

New	in	version	3.4.

1.2.1.	Debug-mode	variables

Setting	these	variables	only	has	an	effect	 in	a	debug	build	of	Python,
that	 is,	 if	 Python	 was	 configured	 with	 the	 --with-pydebug	 build
option.

PYTHONTHREADDEBUG

If	set,	Python	will	print	threading	debug	info.

PYTHONDUMPREFS

If	set,	Python	will	dump	objects	and	reference	counts	still	alive	after
shutting	down	the	interpreter.

PYTHONMALLOCSTATS

If	 set,	 Python	 will	 print	 memory	 allocation	 statistics	 every	 time	 a
new	object	arena	is	created,	and	on	shutdown.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

http://www.python.org/

2.	Using	Python	on	Unix	platforms

2.1.	Getting	and	installing	the	latest
version	of	Python

2.1.1.	On	Linux

Python	comes	preinstalled	on	most	Linux	distributions,	and	is	available
as	 a	 package	 on	 all	 others.	 However	 there	 are	 certain	 features	 you
might	want	to	use	that	are	not	available	on	your	distro’s	package.	You
can	easily	compile	the	latest	version	of	Python	from	source.

In	 the	 event	 that	 Python	 doesn’t	 come	 preinstalled	 and	 isn’t	 in	 the
repositories	 as	 well,	 you	 can	 easily	 make	 packages	 for	 your	 own
distro.	Have	a	look	at	the	following	links:

See	also:

http://www.debian.org/doc/manuals/maint-guide/first.en.html
for	Debian	users

http://en.opensuse.org/Portal:Packaging
for	OpenSuse	users

http://docs.fedoraproject.org/en-
US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-
creating-rpms.html

for	Fedora	users

http://www.slackbook.org/html/package-management-making-
packages.html

for	Slackware	users

2.1.2.	On	FreeBSD	and	OpenBSD

FreeBSD	users,	to	add	the	package	use:

http://www.debian.org/doc/manuals/maint-guide/first.en.html
http://en.opensuse.org/Portal:Packaging
http://docs.fedoraproject.org/en-US/Fedora_Draft_Documentation/0.1/html/RPM_Guide/ch-creating-rpms.html
http://www.slackbook.org/html/package-management-making-packages.html

pkg_add	-r	python

OpenBSD	users	use:

pkg_add	ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/<insert	your	architecture	here>/python-<version>.tgz

For	example	i386	users	get	the	2.5.1	version	of	Python	using:

pkg_add	ftp://ftp.openbsd.org/pub/OpenBSD/4.2/packages/i386/python-2.5.1p2.tgz

2.1.3.	On	OpenSolaris

To	 install	 the	 newest	 Python	 versions	 on	 OpenSolaris,	 install
blastwave	and	type	pkg_get	-i	python	at	the	prompt.

http://www.blastwave.org/howto.html

2.2.	Building	Python

If	 you	want	 to	 compile	CPython	 yourself,	 first	 thing	 you	 should	do	 is
get	the	source.	You	can	download	either	the	latest	release’s	source	or
just	 grab	 a	 fresh	 clone.	 (If	 you	 want	 to	 contribute	 patches,	 you	 will
need	a	clone.)

The	build	process	consists	in	the	usual

./configure

make

make	install

invocations.	 Configuration	 options	 and	 caveats	 for	 specific	 Unix
platforms	are	extensively	documented	in	the	README	file	 in	the	root
of	the	Python	source	tree.

Warning: 	make	install	can	overwrite	or	masquerade	the
python3	binary.	make	altinstall	is	therefore	recommended
instead	of	make	install	since	it	only	installs
exec_prefix/bin/pythonversion.

http://python.org/download/source/
http://docs.python.org/devguide/setup#getting-the-source-code
http://hg.python.org/cpython/file/3.4/README

2.3.	Python-related	paths	and	files

These	 are	 subject	 to	 difference	 depending	 on	 local	 installation
conventions;	 prefix	 (${prefix})	 and	 exec_prefix

(${exec_prefix})	 are	 installation-dependent	 and	 should	 be
interpreted	as	for	GNU	software;	they	may	be	the	same.

For	example,	on	most	Linux	systems,	the	default	for	both	is	/usr.

File/directory Meaning

exec_prefix/bin/python3

Recommended
location	of	the
interpreter.

prefix/lib/pythonversion,
exec_prefix/lib/pythonversion

Recommended
locations	of	the
directories
containing	the
standard	modules.

prefix/include/pythonversion,
exec_prefix/include/pythonversion

Recommended
locations	of	the
directories
containing	the
include	files	needed
for	developing
Python	extensions
and	embedding	the
interpreter.

2.4.	Miscellaneous

To	 easily	 use	 Python	 scripts	 on	 Unix,	 you	 need	 to	 make	 them
executable,	e.g.	with

$	chmod	+x	script

and	put	an	appropriate	Shebang	 line	at	 the	 top	of	 the	script.	A	good
choice	is	usually

#!/usr/bin/env	python3

which	 searches	 for	 the	 Python	 interpreter	 in	 the	 whole	 PATH.
However,	some	Unices	may	not	have	the	env	command,	so	you	may
need	to	hardcode	/usr/bin/python3	as	the	interpreter	path.

To	 use	 shell	 commands	 in	 your	 Python	 scripts,	 look	 at	 the
subprocess	module.

2.5.	Editors

Vim	and	Emacs	are	excellent	editors	which	support	Python	very	well.
For	more	information	on	how	to	code	in	Python	in	these	editors,	 look
at:

http://www.vim.org/scripts/script.php?script_id=790
http://sourceforge.net/projects/python-mode

Geany	 is	 an	 excellent	 IDE	 with	 support	 for	 a	 lot	 of	 languages.	 For
more	information,	read:	http://www.geany.org/

Komodo	edit	is	another	extremely	good	IDE.	It	also	has	support	for	a
lot	 of	 languages.	 For	 more	 information,	 read:
http://www.activestate.com/store/productdetail.aspx?
prdGuid=20f4ed15-6684-4118-a78b-d37ff4058c5f

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.vim.org/scripts/script.php?script_id=790
http://sourceforge.net/projects/python-mode
http://www.geany.org/
http://www.activestate.com/store/productdetail.aspx?prdGuid=20f4ed15-6684-4118-a78b-d37ff4058c5f
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

http://www.python.org/

3.	Using	Python	on	Windows
This	 document	 aims	 to	 give	 an	 overview	 of	 Windows-specific
behaviour	 you	 should	 know	 about	 when	 using	 Python	 on	 Microsoft
Windows.

3.1.	Installing	Python

Unlike	 most	 Unix	 systems	 and	 services,	 Windows	 does	 not	 require
Python	 natively	 and	 thus	 does	 not	 pre-install	 a	 version	 of	 Python.
However,	 the	 CPython	 team	 has	 compiled	 Windows	 installers	 (MSI
packages)	with	every	release	for	many	years.

With	ongoing	development	of	Python,	some	platforms	that	used	to	be
supported	earlier	are	no	longer	supported	(due	to	the	lack	of	users	or
developers).	Check	PEP	11	for	details	on	all	unsupported	platforms.

Windows	CE	is	still	supported.
The	Cygwin	installer	offers	to	install	the	Python	interpreter	as	well;
it	 is	 located	 under	 “Interpreters.”	 (cf.	 Cygwin	 package	 source,
Maintainer	releases)

See	Python	for	Windows	for	detailed	information	about	platforms	with
pre-compiled	installers.

See	also:

Python	on	XP
“7	Minutes	to	“Hello	World!””	by	Richard	Dooling,	2006

Installing	on	Windows
in	“Dive	into	Python:	Python	from	novice	to	pro”	by	Mark	Pilgrim,
2004,	ISBN	1-59059-356-1

For	Windows	users
in	“Installing	Python”	in	“A	Byte	of	Python”	by	Swaroop	C	H,	2003

http://www.python.org/download/releases/
http://www.python.org/dev/peps/pep-0011
http://pythonce.sourceforge.net/
http://cygwin.com/
http://cygwin.com/packages/python
ftp://ftp.uni-erlangen.de/pub/pc/gnuwin32/cygwin/mirrors/cygnus/release/python
http://www.tishler.net/jason/software/python/
http://www.python.org/download/windows/
http://www.richarddooling.com/index.php/2006/03/14/python-on-xp-7-minutes-to-hello-world/
http://diveintopython.net/installing_python/windows.html
http://diveintopython.net/index.html
http://swaroopch.com/text/Byte_of_Python:Installing_Python#For_Windows_users
http://www.byteofpython.info

3.2.	Alternative	bundles

Besides	 the	 standard	 CPython	 distribution,	 there	 are	 modified
packages	 including	 additional	 functionality.	 The	 following	 is	 a	 list	 of
popular	versions	and	their	key	features:

ActivePython
Installer	with	multi-platform	compatibility,	documentation,	PyWin32

Enthought	Python	Distribution
Popular	 modules	 (such	 as	 PyWin32)	 with	 their	 respective
documentation,	 tool	 suite	 for	 building	 extensible	 Python
applications

Notice	 that	 these	 packages	 are	 likely	 to	 install	 older	 versions	 of
Python.

http://www.activestate.com/activepython/
http://www.enthought.com/products/epd.php

3.3.	Configuring	Python

In	 order	 to	 run	 Python	 flawlessly,	 you	might	 have	 to	 change	 certain
environment	settings	in	Windows.

3.3.1.	Excursus:	Setting	environment	variables

Windows	 has	 a	 built-in	 dialog	 for	 changing	 environment	 variables
(following	guide	applies	 to	XP	classical	view):	Right-click	 the	 icon	 for
your	 machine	 (usually	 located	 on	 your	 Desktop	 and	 called	 “My
Computer”)	 and	 choose	Properties	 there.	 Then,	 open	 the	Advanced
tab	and	click	the	Environment	Variables	button.

In	short,	your	path	is:

My	Computer	‣	Properties	‣	Advanced	‣	Environment	Variables

In	 this	dialog,	you	can	add	or	modify	User	and	System	variables.	To
change	 System	 variables,	 you	 need	 non-restricted	 access	 to	 your
machine	(i.e.	Administrator	rights).

Another	way	of	adding	variables	to	your	environment	is	using	the	set
command:

set	PYTHONPATH=%PYTHONPATH%;C:\My_python_lib

To	 make	 this	 setting	 permanent,	 you	 could	 add	 the	 corresponding
command	 line	 to	 your	 autoexec.bat.	 msconfig	 is	 a	 graphical
interface	to	this	file.

Viewing	 environment	 variables	 can	 also	 be	 done	 more	 straight-
forward:	 The	 command	 prompt	 will	 expand	 strings	 wrapped	 into

percent	signs	automatically:

echo	%PATH%

Consult	set	/?	for	details	on	this	behaviour.

See	also:

http://support.microsoft.com/kb/100843
Environment	variables	in	Windows	NT

http://support.microsoft.com/kb/310519
How	To	Manage	Environment	Variables	in	Windows	XP

http://www.chem.gla.ac.uk/~louis/software/faq/q1.html
Setting	Environment	variables,	Louis	J.	Farrugia

3.3.2.	Finding	the	Python	executable

Changed	in	version	3.3.

Besides	 using	 the	 automatically	 created	 start	 menu	 entry	 for	 the
Python	 interpreter,	 you	 might	 want	 to	 start	 Python	 in	 the	 command
prompt.	As	of	Python	3.3,	the	installer	has	an	option	to	set	that	up	for
you.

At	 the	 “Customize	 Python	 3.3”	 screen,	 an	 option	 called	 “Add
python.exe	to	search	path”	can	be	enabled	to	have	the	installer	place
your	 installation	 into	 the	%PATH%.	This	allows	you	 to	 type	python	 to
run	 the	 interpreter.	 Thus,	 you	 can	 also	 execute	 your	 scripts	 with
command	line	options,	see	Command	line	documentation.

If	you	don’t	enable	this	option	at	install	time,	you	can	always	re-run	the
installer	to	choose	it.

http://support.microsoft.com/kb/100843
http://support.microsoft.com/kb/310519
http://www.chem.gla.ac.uk/~louis/software/faq/q1.html

The	alternative	is	manually	modifying	the	%PATH%	using	the	directions
in	 Excursus:	 Setting	 environment	 variables.	 You	 need	 to	 set	 your
%PATH%	environment	variable	 to	 include	 the	directory	of	your	Python
distribution,	delimited	by	a	semicolon	 from	other	entries.	An	example
variable	 could	 look	 like	 this	 (assuming	 the	 first	 two	 entries	 are
Windows’	default):

C:\WINDOWS\system32;C:\WINDOWS;C:\Python33

3.3.3.	Finding	modules

Python	 usually	 stores	 its	 library	 (and	 thereby	 your	 site-packages
folder)	 in	 the	 installation	directory.	So,	 if	 you	 had	 installed	Python	 to
C:\Python\,	 the	 default	 library	 would	 reside	 in	 C:\Python\Lib\
and	third-party	modules	should	be	stored	in	C:\Python\Lib\site-
packages\.

This	is	how	sys.path	is	populated	on	Windows:

An	 empty	 entry	 is	 added	 at	 the	 start,	 which	 corresponds	 to	 the
current	directory.
If	 the	environment	variable	PYTHONPATH	exists,	as	described	 in
Environment	 variables,	 its	 entries	 are	 added	 next.	 Note	 that	 on
Windows,	paths	in	this	variable	must	be	separated	by	semicolons,
to	distinguish	 them	 from	 the	 colon	used	 in	drive	 identifiers	 (C:\
etc.).
Additional	 “application	 paths”	 can	 be	 added	 in	 the	 registry	 as
subkeys	 of
\SOFTWARE\Python\PythonCore\version\PythonPath

under	 both	 the	 HKEY_CURRENT_USER	 and
HKEY_LOCAL_MACHINE	 hives.	 Subkeys	 which	 have	 semicolon-
delimited	path	strings	as	 their	default	value	will	cause	each	path

to	be	added	to	sys.path.	(Note	that	all	known	installers	only	use
HKLM,	so	HKCU	is	typically	empty.)
If	the	environment	variable	PYTHONHOME	 is	set,	 it	 is	assumed	as
“Python	 Home”.	 Otherwise,	 the	 path	 of	 the	 main	 Python
executable	 is	 used	 to	 locate	 a	 “landmark	 file”	 (Lib\os.py)	 to
deduce	 the	 “Python	 Home”.	 If	 a	 Python	 home	 is	 found,	 the
relevant	 sub-directories	 added	 to	 sys.path	 (Lib,	 plat-win,
etc)	are	based	on	that	folder.	Otherwise,	the	core	Python	path	 is
constructed	from	the	PythonPath	stored	in	the	registry.
If	 the	 Python	 Home	 cannot	 be	 located,	 no	 PYTHONPATH	 is
specified	in	the	environment,	and	no	registry	entries	can	be	found,
a	default	path	with	relative	entries	is	used	(e.g.	.\Lib;.\plat-
win,	etc).

The	end	result	of	all	this	is:

When	running	python.exe,	or	any	other	.exe	in	the	main	Python
directory	(either	an	 installed	version,	or	directly	 from	the	PCbuild
directory),	 the	 core	 path	 is	 deduced,	 and	 the	 core	 paths	 in	 the
registry	are	 ignored.	Other	 “application	paths”	 in	 the	 registry	are
always	read.
When	 Python	 is	 hosted	 in	 another	 .exe	 (different	 directory,
embedded	via	COM,	etc),	the	“Python	Home”	will	not	be	deduced,
so	 the	 core	 path	 from	 the	 registry	 is	 used.	 Other	 “application
paths”	in	the	registry	are	always	read.
If	Python	can’t	 find	 its	home	and	 there	 is	no	 registry	 (eg,	 frozen
.exe,	 some	 very	 strange	 installation	 setup)	 you	 get	 a	 path	 with
some	default,	but	relative,	paths.

3.3.4.	Executing	scripts

As	of	Python	3.3,	Python	includes	a	launcher	which	facilitates	running
Python	 scripts.	 See	 Python	 Launcher	 for	 Windows	 for	 more

information.

3.3.5.	Executing	scripts	without	the	Python
launcher

Without	 the	 Python	 launcher	 installed,	 Python	 scripts	 (files	 with	 the
extension	 .py)	 will	 be	 executed	 by	 python.exe	 by	 default.	 This
executable	 opens	 a	 terminal,	 which	 stays	 open	 even	 if	 the	 program
uses	a	GUI.	If	you	do	not	want	this	to	happen,	use	the	extension	.pyw
which	will	cause	the	script	to	be	executed	by	pythonw.exe	by	default
(both	 executables	 are	 located	 in	 the	 top-level	 of	 your	 Python
installation	directory).	This	suppresses	the	terminal	window	on	startup.

You	can	also	make	all	.py	scripts	execute	with	pythonw.exe,	setting
this	 through	 the	 usual	 facilities,	 for	 example	 (might	 require
administrative	rights):

1.	 Launch	a	command	prompt.

2.	 Associate	the	correct	file	group	with	.py	scripts:

assoc	.py=Python.File

3.	 Redirect	all	Python	files	to	the	new	executable:

ftype	Python.File=C:\Path\to\pythonw.exe	"%1"	%*

3.4.	Python	Launcher	for	Windows

New	in	version	3.3.

The	Python	launcher	for	Windows	is	a	utility	which	aids	in	the	location
and	 execution	 of	 different	 Python	 versions.	 It	 allows	 scripts	 (or	 the
command-line)	 to	 indicate	a	preference	for	a	specific	Python	version,
and	will	locate	and	execute	that	version.

3.4.1.	Getting	started
3.4.1.1.	From	the	command-line

You	should	ensure	the	launcher	is	on	your	PATH	-	depending	on	how	it
was	installed	it	may	already	be	there,	but	check	just	in	case	it	is	not.

From	a	command-prompt,	execute	the	following	command:

py

You	should	find	that	the	latest	version	of	Python	2.x	you	have	installed
is	started	-	 it	can	be	exited	as	normal,	and	any	additional	command-
line	arguments	specified	will	be	sent	directly	to	Python.

If	you	have	multiple	versions	of	Python	2.x	installed	(e.g.,	2.6	and	2.7)
you	will	have	noticed	 that	Python	2.7	was	started	 -	 to	 launch	Python
2.6,	try	the	command:

py	-2.6

If	you	have	a	Python	3.x	installed,	try	the	command:

py	-3

You	should	find	the	latest	version	of	Python	3.x	starts.

3.4.1.2.	From	a	script

Let’s	create	a	 test	Python	script	 -	create	a	 file	called	hello.py	with
the	following	contents

#!	python

import	sys

sys.stdout.write("hello	from	Python	%s\n"	%	(sys.version,))

From	the	directory	in	which	hello.py	lives,	execute	the	command:

py	hello.py

You	 should	 notice	 the	 version	 number	 of	 your	 latest	 Python	 2.x
installation	is	printed.	Now	try	changing	the	first	line	to	be:

#!	python3

Re-executing	 the	 command	 should	 now	 print	 the	 latest	 Python	 3.x
information.	 As	 with	 the	 above	 command-line	 examples,	 you	 can
specify	 a	more	 explicit	 version	 qualifier.	 Assuming	 you	 have	 Python
2.6	 installed,	 try	 changing	 the	 first	 line	 to	 #!	python2.6	 and	 you
should	find	the	2.6	version	information	printed.

3.4.1.3.	From	file	associations

The	launcher	should	have	been	associated	with	Python	files	(i.e.	.py,
.pyw,	.pyc,	.pyo	files)	when	it	was	installed.	This	means	that	when
you	 double-click	 on	 one	 of	 these	 files	 from	 Windows	 explorer	 the
launcher	will	 be	 used,	 and	 therefore	 you	 can	use	 the	 same	 facilities

described	above	to	have	the	script	specify	the	version	which	should	be
used.

The	key	benefit	of	 this	 is	 that	a	single	 launcher	can	support	multiple
Python	 versions	 at	 the	 same	 time	 depending	 on	 the	 contents	 of	 the
first	line.

3.4.2.	Shebang	Lines

If	the	first	line	of	a	script	file	starts	with	#!,	it	is	known	as	a	“shebang”
line.	Linux	and	other	Unix	 like	operating	systems	have	native	support
for	 such	 lines	 and	 are	 commonly	 used	 on	 such	 systems	 to	 indicate
how	 a	 script	 should	 be	 executed.	 This	 launcher	 allows	 the	 same
facilities	to	be	using	with	Python	scripts	on	Windows	and	the	examples
above	demonstrate	their	use.

To	allow	shebang	lines	in	Python	scripts	to	be	portable	between	Unix
and	Windows,	this	 launcher	supports	a	number	of	 ‘virtual’	commands
to	 specify	which	 interpreter	 to	 use.	The	 supported	 virtual	 commands
are:

/usr/bin/env	python

/usr/bin/python

/usr/local/bin/python

python

For	example,	if	the	first	line	of	your	script	starts	with

#!	/usr/bin/python

The	default	Python	will	be	located	and	used.	As	many	Python	scripts
written	 to	 work	 on	 Unix	 will	 already	 have	 this	 line,	 you	 should	 find
these	scripts	can	be	used	by	the	launcher	without	modification.	If	you

are	writing	a	new	script	on	Windows	which	you	hope	will	be	useful	on
Unix,	you	should	use	one	of	the	shebang	lines	starting	with	/usr.

3.4.3.	Arguments	in	shebang	lines

The	shebang	lines	can	also	specify	additional	options	to	be	passed	to
the	Python	interpreter.	For	example,	if	you	have	a	shebang	line:

#!	/usr/bin/python	-v

Then	Python	will	be	started	with	the	-v	option

3.4.4.	Customization
3.4.4.1.	Customization	via	INI	files

Two	 .ini	 files	 will	 be	 searched	 by	 the	 launcher	 -	 py.ini	 in	 the
current	 user’s	 “application	 data”	 directory	 (i.e.	 the	 directory
returned	 by	 calling	 the	Windows	 function	SHGetFolderPath	with
CSIDL_LOCAL_APPDATA)	and	py.ini	in	the	same	directory	as
the	 launcher.	The	 same	 .ini	 files	 are	 used	 for	 both	 the	 ‘console’
version	of	the	launcher	(i.e.	py.exe)	and	for	the	‘windows’	version
(i.e.	pyw.exe)

Customization	 specified	 in	 the	 “application	 directory”	 will	 have
precedence	over	 the	one	next	 to	 the	executable,	so	a	user,	who
may	not	have	write	access	to	the	.ini	file	next	to	the	launcher,	can
override	commands	in	that	global	.ini	file)

3.4.4.2.	Customizing	default	Python	versions

In	some	cases,	a	version	qualifier	 can	be	 included	 in	a	command	 to

dictate	 which	 version	 of	 Python	 will	 be	 used	 by	 the	 command.	 A
version	qualifier	starts	with	a	major	version	number	and	can	optionally
be	followed	by	a	period	(‘.’)	and	a	minor	version	specifier.	If	the	minor
qualifier	 is	specified,	 it	may	optionally	be	followed	by	“-32”	to	indicate
the	32-bit	implementation	of	that	version	be	used.

For	 example,	 a	 shebang	 line	 of	 #!python	 has	 no	 version	 qualifier,
while	#!python3	has	a	version	qualifier	which	specifies	only	a	major
version.

If	 no	 version	 qualifiers	 are	 found	 in	 a	 command,	 the	 environment
variable	PY_PYTHON	can	be	set	to	specify	the	default	version	qualifier
-	 the	 default	 value	 is	 “2”.	 Note	 this	 value	 could	 specify	 just	 a	major
version	 (e.g.	 “2”)	 or	 a	 major.minor	 qualifier	 (e.g.	 “2.6”),	 or	 even
major.minor-32.

If	 no	 minor	 version	 qualifiers	 are	 found,	 the	 environment	 variable
PY_PYTHON{major}	 (where	 {major}	 is	 the	 current	 major	 version
qualifier	as	determined	above)	can	be	set	to	specify	the	full	version.	If
no	 such	 option	 is	 found,	 the	 launcher	 will	 enumerate	 the	 installed
Python	versions	and	use	the	latest	minor	release	found	for	the	major
version,	 which	 is	 likely,	 although	 not	 guaranteed,	 to	 be	 the	 most
recently	installed	version	in	that	family.

On	64-bit	Windows	with	both	32-bit	and	64-bit	implementations	of	the
same	 (major.minor)	 Python	 version	 installed,	 the	 64-bit	 version	 will
always	 be	 preferred.	 This	 will	 be	 true	 for	 both	 32-bit	 and	 64-bit
implementations	 of	 the	 launcher	 -	 a	 32-bit	 launcher	 will	 prefer	 to
execute	a	64-bit	Python	installation	of	the	specified	version	if	available.
This	is	so	the	behavior	of	the	launcher	can	be	predicted	knowing	only
what	versions	are	installed	on	the	PC	and	without	regard	to	the	order
in	which	they	were	installed	(i.e.,	without	knowing	whether	a	32	or	64-
bit	 version	of	Python	and	corresponding	 launcher	was	 installed	 last).

As	 noted	 above,	 an	 optional	 “-32”	 suffix	 can	 be	 used	 on	 a	 version
specifier	to	change	this	behaviour.

Examples:

If	 no	 relevant	 options	 are	 set,	 the	 commands	 python	 and
python2	will	use	 the	 latest	Python	2.x	version	 installed	and	 the
command	python3	will	use	the	latest	Python	3.x	installed.
The	commands	python3.1	and	python2.7	will	not	consult	any
options	at	all	as	the	versions	are	fully	specified.
If	PY_PYTHON=3,	the	commands	python	and	python3	will	both
use	the	latest	installed	Python	3	version.
If	PY_PYTHON=3.1-32,	the	command	python	will	use	the	32-bit
implementation	 of	 3.1	whereas	 the	 command	 python3	will	 use
the	 latest	 installed	Python	 (PY_PYTHON	was	 not	 considered	 at
all	as	a	major	version	was	specified.)
If	 PY_PYTHON=3	 and	 PY_PYTHON3=3.1,	 the	 commands
python	and	python3	will	both	use	specifically	3.1

In	 addition	 to	 environment	 variables,	 the	 same	 settings	 can	 be
configured	in	the	.INI	file	used	by	the	launcher.	The	section	in	the	INI
file	is	called	[defaults]	and	the	key	name	will	be	the	same	as	the
environment	 variables	 without	 the	 leading	 PY_	 prefix	 (and	 note	 that
the	key	names	in	the	INI	file	are	case	insensitive.)	The	contents	of	an
environment	variable	will	override	things	specified	in	the	INI	file.

For	example:

Setting	PY_PYTHON=3.1	is	equivalent	to	the	INI	file	containing:

[defaults]

python=3.1

Setting	 PY_PYTHON=3	 and	 PY_PYTHON3=3.1	 is	 equivalent	 to

the	INI	file	containing:

[defaults]

python=3

python3=3.1

3.4.5.	Diagnostics

If	an	environment	variable	PYLAUNCH_DEBUG	is	set	(to	any	value),	the
launcher	will	print	diagnostic	information	to	stderr	(i.e.	to	the	console).
While	 this	 information	 manages	 to	 be	 simultaneously	 verbose	 and
terse,	it	should	allow	you	to	see	what	versions	of	Python	were	located,
why	 a	 particular	 version	 was	 chosen	 and	 the	 exact	 command-line
used	to	execute	the	target	Python.

3.5.	Additional	modules

Even	 though	 Python	 aims	 to	 be	 portable	 among	 all	 platforms,	 there
are	features	that	are	unique	to	Windows.	A	couple	of	modules,	both	in
the	 standard	 library	 and	 external,	 and	 snippets	 exist	 to	 use	 these
features.

The	 Windows-specific	 standard	 modules	 are	 documented	 in	 MS
Windows	Specific	Services.

3.5.1.	PyWin32

The	PyWin32	module	by	Mark	Hammond	is	a	collection	of	modules	for
advanced	Windows-specific	support.	This	includes	utilities	for:

Component	Object	Model	(COM)
Win32	API	calls
Registry
Event	log
Microsoft	Foundation	Classes	(MFC)	user	interfaces

PythonWin	is	a	sample	MFC	application	shipped	with	PyWin32.	It	is	an
embeddable	IDE	with	a	built-in	debugger.

See	also:

Win32	How	Do	I...?
by	Tim	Golden

Python	and	COM
by	David	and	Paul	Boddie

3.5.2.	cx_Freeze

http://python.net/crew/mhammond/win32/
http://www.microsoft.com/com/
http://msdn.microsoft.com/en-us/library/fe1cf721%28VS.80%29.aspx
http://web.archive.org/web/20060524042422/http://www.python.org/windows/pythonwin/
http://timgolden.me.uk/python/win32_how_do_i.html
http://www.boddie.org.uk/python/COM.html

cx_Freeze	is	a	distutils	extension	(see	Extending	Distutils)	which
wraps	 Python	 scripts	 into	 executable	 Windows	 programs	 (*.exe
files).	When	 you	 have	 done	 this,	 you	 can	 distribute	 your	 application
without	requiring	your	users	to	install	Python.

3.5.3.	WConio

Since	 Python’s	 advanced	 terminal	 handling	 layer,	 curses,	 is
restricted	to	Unix-like	systems,	there	is	a	library	exclusive	to	Windows
as	well:	Windows	Console	I/O	for	Python.

WConio	is	a	wrapper	for	Turbo-C’s	CONIO.H,	used	to	create	text	user
interfaces.

http://cx-freeze.sourceforge.net/
http://newcenturycomputers.net/projects/wconio.html

3.6.	Compiling	Python	on	Windows

If	 you	want	 to	 compile	CPython	 yourself,	 first	 thing	 you	 should	do	 is
get	the	source.	You	can	download	either	the	latest	release’s	source	or
just	grab	a	fresh	checkout.

The	source	tree	contains	a	build	solution	and	project	files	for	Microsoft
Visual	 C++,	 which	 is	 the	 compiler	 used	 to	 build	 the	 official	 Python
releases.	View	the	readme.txt	in	their	respective	directories:

Directory MSVC	version Visual	Studio	version

PC/VS9.0/ 9.0 2008

PCbuild/ 10.0 2010

Note	 that	 any	 build	 directories	 within	 the	 PC	 directory	 are	 not
necessarily	 fully	supported.	The	PCbuild	directory	contains	 the	files
for	the	compiler	used	to	build	the	official	release.

Check	 PCbuild/readme.txt	 for	 general	 information	 on	 the	 build
process.

For	 extension	 modules,	 consult	 Building	 C	 and	 C++	 Extensions	 on
Windows.

See	also:

Python	+	Windows	+	distutils	+	SWIG	+	gcc	MinGW
or	 “Creating	 Python	 extensions	 in	 C/C++	 with	 SWIG	 and
compiling	 them	 with	 MinGW	 gcc	 under	Windows”	 or	 “Installing
Python	extension	with	distutils	and	without	Microsoft	Visual	C++”
by	Sébastien	Sauvage,	2003

MingW	–	Python	extensions

http://python.org/download/source/
http://docs.python.org/devguide/setup#checking-out-the-code
http://sebsauvage.net/python/mingw.html
http://oldwiki.mingw.org/index.php/Python%20extensions

by	Trent	Apted	et	al,	2007

3.7.	Other	resources

See	also:

Python	Programming	On	Win32
“Help	 for	Windows	Programmers”	by	Mark	Hammond	and	Andy
Robinson,	O’Reilly	Media,	2000,	ISBN	1-56592-621-8

A	Python	for	Windows	Tutorial
by	Amanda	Birmingham,	2004

PEP	397	-	Python	launcher	for	Windows
The	 proposal	 for	 the	 launcher	 to	 be	 included	 in	 the	 Python
distribution.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.oreilly.com/catalog/pythonwin32/
http://www.imladris.com/Scripts/PythonForWindows.html
http://www.python.org/dev/peps/pep-0397
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

http://www.python.org/

4.	Using	Python	on	a	Macintosh
Author: Bob	Savage	<bobsavage@mac.com>

Python	on	a	Macintosh	running	Mac	OS	X	is	in	principle	very	similar	to
Python	 on	 any	 other	 Unix	 platform,	 but	 there	 are	 a	 number	 of
additional	features	such	as	the	IDE	and	the	Package	Manager	that	are
worth	pointing	out.

mailto:bobsavage%40mac.com

4.1.	Getting	and	Installing	MacPython

Mac	OS	X	10.8	comes	with	Python	2.7	pre-installed	by	Apple.	 If	you
wish,	you	are	invited	to	install	the	most	recent	version	of	Python	3	from
the	 Python	 website	 (http://www.python.org).	 A	 current	 “universal
binary”	build	of	Python,	which	runs	natively	on	the	Mac’s	new	Intel	and
legacy	PPC	CPU’s,	is	available	there.

What	you	get	after	installing	is	a	number	of	things:

A	MacPython	3.4	folder	in	your	Applications	folder.	In	here
you	 find	 IDLE,	 the	 development	 environment	 that	 is	 a	 standard
part	 of	 official	 Python	 distributions;	 PythonLauncher,	 which
handles	 double-clicking	 Python	 scripts	 from	 the	 Finder;	 and	 the
“Build	Applet”	tool,	which	allows	you	to	package	Python	scripts	as
standalone	applications	on	your	system.
A	 framework	 /Library/Frameworks/Python.framework,
which	 includes	 the	Python	executable	and	 libraries.	The	 installer
adds	this	location	to	your	shell	path.	To	uninstall	MacPython,	you
can	 simply	 remove	 these	 three	 things.	 A	 symlink	 to	 the	 Python
executable	is	placed	in	/usr/local/bin/.

The	 Apple-provided	 build	 of	 Python	 is	 installed	 in
/System/Library/Frameworks/Python.framework	 and
/usr/bin/python,	 respectively.	You	should	never	modify	or	delete
these,	 as	 they	are	Apple-controlled	and	are	used	by	Apple-	 or	 third-
party	software.	Remember	that	if	you	choose	to	install	a	newer	Python
version	 from	 python.org,	 you	 will	 have	 two	 different	 but	 functional
Python	installations	on	your	computer,	so	it	will	be	important	that	your
paths	and	usages	are	consistent	with	what	you	want	to	do.

IDLE	 includes	 a	 help	 menu	 that	 allows	 you	 to	 access	 Python

http://www.python.org

documentation.	 If	you	are	completely	new	to	Python	you	should	start
reading	the	tutorial	introduction	in	that	document.

If	you	are	familiar	with	Python	on	other	Unix	platforms	you	should	read
the	section	on	running	Python	scripts	from	the	Unix	shell.

4.1.1.	How	to	run	a	Python	script

Your	best	way	to	get	started	with	Python	on	Mac	OS	X	is	through	the
IDLE	 integrated	development	environment,	 see	section	The	IDE	 and
use	the	Help	menu	when	the	IDE	is	running.

If	you	want	to	run	Python	scripts	from	the	Terminal	window	command
line	or	 from	 the	Finder	 you	 first	 need	an	editor	 to	 create	 your	 script.
Mac	 OS	 X	 comes	 with	 a	 number	 of	 standard	 Unix	 command	 line
editors,	vim	 and	 emacs	 among	 them.	 If	 you	 want	 a	 more	 Mac-like
editor,	 BBEdit	 or	 TextWrangler	 from	 Bare	 Bones	 Software	 (see
http://www.barebones.com/products/bbedit/index.shtml)	 are	 good
choices,	 as	 is	TextMate	 (see	 http://macromates.com/).	 Other	 editors
include	 Gvim	 (http://macvim.org)	 and	 Aquamacs
(http://aquamacs.org/).

To	run	your	script	from	the	Terminal	window	you	must	make	sure	that
/usr/local/bin	is	in	your	shell	search	path.

To	run	your	script	from	the	Finder	you	have	two	options:

Drag	it	to	PythonLauncher
Select	PythonLauncher	 as	 the	 default	 application	 to	 open	 your
script	 (or	 any	 .py	 script)	 through	 the	 finder	 Info	 window	 and
double-click	 it.	 PythonLauncher	 has	 various	 preferences	 to
control	how	your	script	is	launched.	Option-dragging	allows	you	to
change	these	for	one	 invocation,	or	use	 its	Preferences	menu	to

http://www.barebones.com/products/bbedit/index.shtml
http://macromates.com/
http://macvim.org
http://aquamacs.org/

change	things	globally.

4.1.2.	Running	scripts	with	a	GUI

With	older	versions	of	Python,	 there	 is	one	Mac	OS	X	quirk	 that	you
need	to	be	aware	of:	programs	that	talk	to	the	Aqua	window	manager
(in	other	words,	anything	that	has	a	GUI)	need	to	be	run	 in	a	special
way.	Use	pythonw	instead	of	python	to	start	such	scripts.

With	Python	3.4,	you	can	use	either	python	or	pythonw.

4.1.3.	Configuration

Python	on	OS	X	honors	all	standard	Unix	environment	variables	such
as	PYTHONPATH,	but	setting	these	variables	for	programs	started	from
the	 Finder	 is	 non-standard	 as	 the	 Finder	 does	 not	 read	 your
.profile	 or	 .cshrc	 at	 startup.	 You	 need	 to	 create	 a	 file	 ~
/.MacOSX/environment.plist.	See	Apple’s	Technical	Document
QA1067	for	details.

For	more	 information	on	 installation	Python	packages	 in	MacPython,
see	section	Installing	Additional	Python	Packages.

4.2.	The	IDE

MacPython	ships	with	the	standard	IDLE	development	environment.	A
good	 introduction	 to	 using	 IDLE	 can	 be	 found	 at
http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html.

http://hkn.eecs.berkeley.edu/~dyoo/python/idle_intro/index.html

4.3.	Installing	Additional	Python	Packages

There	are	several	methods	to	install	additional	Python	packages:

Packages	can	be	installed	via	the	standard	Python	distutils	mode
(python	setup.py	install).
Many	 packages	 can	 also	 be	 installed	 via	 the	 setuptools
extension	or	pip	wrapper,	see	http://www.pip-installer.org/.

http://www.pip-installer.org/

4.4.	GUI	Programming	on	the	Mac

There	 are	 several	 options	 for	 building	 GUI	 applications	 on	 the	 Mac
with	Python.

PyObjC	is	a	Python	binding	to	Apple’s	Objective-C/Cocoa	framework,
which	is	the	foundation	of	most	modern	Mac	development.	Information
on	PyObjC	is	available	from	http://pyobjc.sourceforge.net.

The	 standard	 Python	 GUI	 toolkit	 is	 tkinter,	 based	 on	 the	 cross-
platform	Tk	 toolkit	 (http://www.tcl.tk).	An	Aqua-native	 version	of	Tk	 is
bundled	 with	 OS	 X	 by	 Apple,	 and	 the	 latest	 version	 can	 be
downloaded	and	installed	from	http://www.activestate.com;	it	can	also
be	built	from	source.

wxPython	 is	 another	 popular	 cross-platform	 GUI	 toolkit	 that	 runs
natively	 on	 Mac	 OS	 X.	 Packages	 and	 documentation	 are	 available
from	http://www.wxpython.org.

PyQt	is	another	popular	cross-platform	GUI	toolkit	that	runs	natively	on
Mac	 OS	 X.	 More	 information	 can	 be	 found	 at
http://www.riverbankcomputing.co.uk/software/pyqt/intro.

http://pyobjc.sourceforge.net
http://www.tcl.tk
http://www.activestate.com
http://www.wxpython.org
http://www.riverbankcomputing.co.uk/software/pyqt/intro

4.5.	Distributing	Python	Applications	on
the	Mac

The	 “Build	Applet”	 tool	 that	 is	 placed	 in	 the	MacPython	 3.4	 folder	 is
fine	for	packaging	small	Python	scripts	on	your	own	machine	to	run	as
a	standard	Mac	application.	This	tool,	however,	is	not	robust	enough	to
distribute	Python	applications	to	other	users.

The	standard	tool	for	deploying	standalone	Python	applications	on	the
Mac	is	py2app.	More	 information	on	 installing	and	using	py2app	can
be	found	at	http://undefined.org/python/#py2app.

http://undefined.org/python/#py2app

4.6.	Other	Resources

The	MacPython	mailing	list	is	an	excellent	support	resource	for	Python
users	and	developers	on	the	Mac:

http://www.python.org/community/sigs/current/pythonmac-sig/

Another	useful	resource	is	the	MacPython	wiki:

http://wiki.python.org/moin/MacPython

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/community/sigs/current/pythonmac-sig/
http://wiki.python.org/moin/MacPython
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

http://www.python.org/

5.	Additional	Tools	and	Scripts

5.1.	pyvenv	-	Creating	virtual
environments

Creation	 of	 virtual	 environments	 is	 done	 by	 executing	 the	 pyvenv
script:

pyvenv	/path/to/new/virtual/environment

Running	 this	 command	 creates	 the	 target	 directory	 (creating	 any
parent	directories	that	don’t	exist	already)	and	places	a	pyvenv.cfg
file	 in	 it	 with	 a	 home	 key	 pointing	 to	 the	 Python	 installation	 the
command	 was	 run	 from.	 It	 also	 creates	 a	 bin	 (or	 Scripts	 on
Windows)	 subdirectory	 containing	 a	 copy	 of	 the	 python	 binary	 (or
binaries,	 in	 the	case	of	Windows).	 It	 also	 creates	an	 (initially	 empty)
lib/pythonX.Y/site-packages	subdirectory	(on	Windows,	this	is
Lib\site-packages).

See	also: 	Python	Packaging	User	Guide:	Creating	and	using	virtual
environments

On	Windows,	you	may	have	to	invoke	the	pyvenv	script	as	follows,	if
you	don’t	have	the	relevant	PATH	and	PATHEXT	settings:

c:\Temp>c:\Python33\python	c:\Python33\Tools\Scripts\pyvenv.py	myenv

or	equivalently:

c:\Temp>c:\Python33\python	-m	venv	myenv

The	command,	if	run	with	-h,	will	show	the	available	options:

http://packaging.python.org/en/latest/tutorial.html#creating-and-using-virtual-environments

usage:	pyvenv	[-h]	[--system-site-packages]	[--symlinks]	[--clear]

														[--upgrade]	[--without-pip]	ENV_DIR	[ENV_DIR	...]

Creates	virtual	Python	environments	in	one	or	more	target	directories.

positional	arguments:

		ENV_DIR													A	directory	to	create	the	environment	in.

optional	arguments:

		-h,	--help													show	this	help	message	and	exit

		--system-site-packages	Give	access	to	the	global	site-packages	dir	to	the

																									virtual	environment.

		--symlinks													Try	to	use	symlinks	rather	than	copies,	when	symlinks

																									are	not	the	default	for	the	platform.

		--copies															Try	to	use	copies	rather	than	symlinks,	even	when

																									symlinks	are	the	default	for	the	platform.

		--clear																Delete	the	environment	directory	if	it	already	exists.

																									If	not	specified	and	the	directory	exists,	an	error	is

																									raised.

		--upgrade														Upgrade	the	environment	directory	to	use	this	version

																									of	Python,	assuming	Python	has	been	upgraded	in-place.

		--without-pip										Skips	installing	or	upgrading	pip	in	the	virtual

																									environment	(pip	is	bootstrapped	by	default)

Changed	 in	 version	 3.4:	 Installs	 pip	 by	 default,	 added	 the	 --
without-pip	and	--copies	options

If	the	target	directory	already	exists	an	error	will	be	raised,	unless	the
--clear	or	--upgrade	option	was	provided.

The	created	pyvenv.cfg	 file	 also	 includes	 the	 include-system-
site-packages	key,	set	to	true	if	venv	is	run	with	the	--system-
site-packages	option,	false	otherwise.

Unless	 the	 --without-pip	 option	 is	 given,	 ensurepip	 will	 be

invoked	to	bootstrap	pip	into	the	virtual	environment.

Multiple	 paths	 can	 be	 given	 to	 pyvenv,	 in	 which	 case	 an	 identical
virtualenv	 will	 be	 created,	 according	 to	 the	 given	 options,	 at	 each
provided	path.

Once	a	venv	has	been	created,	 it	can	be	“activated”	using	a	script	 in
the	 venv’s	 binary	 directory.	 The	 invocation	 of	 the	 script	 is	 platform-
specific:

Platform Shell Command	to	activate	virtual
environment

Posix bash/zsh $	source	<venv>/bin/activate

	 fish $.	<venv>/bin/activate.fish

	 csh/tcsh $	source	<venv>/bin/activate.csh

Windows cmd.exe C:>	<venv>/Scripts/activate.bat

	 PowerShell PS	C:>	<venv>/Scripts/Activate.ps1

You	don’t	specifically	need	 to	activate	an	environment;	activation	 just
prepends	 the	 venv’s	 binary	 directory	 to	 your	 path,	 so	 that	 “python”
invokes	the	venv’s	Python	interpreter	and	you	can	run	installed	scripts
without	having	to	use	their	full	path.	However,	all	scripts	installed	in	a
venv	should	be	runnable	without	activating	it,	and	run	with	the	venv’s
Python	automatically.

You	 can	 deactivate	 a	 venv	 by	 typing	 “deactivate”	 in	 your	 shell.	 The
exact	mechanism	is	platform-specific:	for	example,	the	Bash	activation
script	defines	a	“deactivate”	 function,	whereas	on	Windows	there	are
separate	 scripts	 called	 deactivate.bat	 and	 Deactivate.ps1
which	are	installed	when	the	venv	is	created.

New	in	version	3.4:	fish	and	csh	activation	scripts.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Setup	and	Usage

»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

1.	Introduction
This	reference	manual	describes	the	Python	programming	language.	It
is	not	intended	as	a	tutorial.

While	I	am	trying	to	be	as	precise	as	possible,	I	chose	to	use	English
rather	 than	 formal	 specifications	 for	 everything	 except	 syntax	 and
lexical	analysis.	This	should	make	the	document	more	understandable
to	 the	 average	 reader,	 but	 will	 leave	 room	 for	 ambiguities.
Consequently,	if	you	were	coming	from	Mars	and	tried	to	re-implement
Python	from	this	document	alone,	you	might	have	to	guess	things	and
in	 fact	 you	 would	 probably	 end	 up	 implementing	 quite	 a	 different
language.	 On	 the	 other	 hand,	 if	 you	 are	 using	 Python	 and	 wonder
what	the	precise	rules	about	a	particular	area	of	the	language	are,	you
should	definitely	be	able	to	find	them	here.	If	you	would	 like	to	see	a
more	 formal	 definition	 of	 the	 language,	 maybe	 you	 could	 volunteer
your	time	—	or	invent	a	cloning	machine	:-).

It	is	dangerous	to	add	too	many	implementation	details	to	a	language
reference	 document	 —	 the	 implementation	 may	 change,	 and	 other
implementations	 of	 the	 same	 language	may	work	 differently.	 On	 the
other	hand,	CPython	is	the	one	Python	implementation	in	widespread
use	(although	alternate	implementations	continue	to	gain	support),	and
its	particular	quirks	are	sometimes	worth	being	mentioned,	especially
where	 the	 implementation	 imposes	 additional	 limitations.	 Therefore,
you’ll	find	short	“implementation	notes”	sprinkled	throughout	the	text.

Every	 Python	 implementation	 comes	 with	 a	 number	 of	 built-in	 and
standard	 modules.	 These	 are	 documented	 in	 The	 Python	 Standard
Library.	A	few	built-in	modules	are	mentioned	when	they	 interact	 in	a
significant	way	with	the	language	definition.

1.1.	Alternate	Implementations

Though	 there	 is	one	Python	 implementation	which	 is	by	 far	 the	most
popular,	 there	 are	 some	 alternate	 implementations	 which	 are	 of
particular	interest	to	different	audiences.

Known	implementations	include:

CPython
This	is	the	original	and	most-maintained	implementation	of	Python,
written	in	C.	New	language	features	generally	appear	here	first.

Jython
Python	implemented	in	Java.	This	implementation	can	be	used	as
a	scripting	language	for	Java	applications,	or	can	be	used	to	create
applications	using	 the	Java	class	 libraries.	 It	 is	also	often	used	 to
create	tests	for	Java	libraries.	More	information	can	be	found	at	the
Jython	website.

Python	for	.NET
This	implementation	actually	uses	the	CPython	implementation,	but
is	a	managed	.NET	application	and	makes	.NET	libraries	available.
It	 was	 created	 by	 Brian	 Lloyd.	 For	 more	 information,	 see	 the
Python	for	.NET	home	page.

IronPython
An	 alternate	 Python	 for	 .NET.	 Unlike	 Python.NET,	 this	 is	 a
complete	Python	 implementation	 that	 generates	 IL,	 and	 compiles
Python	 code	 directly	 to	 .NET	 assemblies.	 It	 was	 created	 by	 Jim
Hugunin,	 the	original	creator	of	Jython.	For	more	 information,	see
the	IronPython	website.

PyPy
An	 implementation	 of	 Python	 written	 completely	 in	 Python.	 It
supports	 several	 advanced	 features	 not	 found	 in	 other
implementations	like	stackless	support	and	a	Just	in	Time	compiler.

http://www.jython.org/
http://pythonnet.sourceforge.net
http://www.ironpython.net/

One	 of	 the	 goals	 of	 the	 project	 is	 to	 encourage	 experimentation
with	the	language	itself	by	making	it	easier	to	modify	the	interpreter
(since	it	is	written	in	Python).	Additional	information	is	available	on
the	PyPy	project’s	home	page.

Each	of	these	implementations	varies	in	some	way	from	the	language
as	 documented	 in	 this	 manual,	 or	 introduces	 specific	 information
beyond	what’s	covered	in	the	standard	Python	documentation.	Please
refer	 to	 the	 implementation-specific	documentation	to	determine	what
else	you	need	to	know	about	the	specific	implementation	you’re	using.

http://pypy.org/

1.2.	Notation

The	 descriptions	 of	 lexical	 analysis	 and	 syntax	 use	 a	modified	 BNF
grammar	notation.	This	uses	the	following	style	of	definition:

name						::=		lc_letter	(lc_letter	|	"_")*

lc_letter	::=		"a"..."z"

The	 first	 line	 says	 that	 a	 name	 is	 an	 lc_letter	 followed	 by	 a
sequence	 of	 zero	 or	 more	 lc_letters	 and	 underscores.	 An
lc_letter	 in	turn	is	any	of	the	single	characters	'a'	 through	'z'.
(This	 rule	 is	actually	adhered	 to	 for	 the	names	defined	 in	 lexical	and
grammar	rules	in	this	document.)

Each	rule	begins	with	a	name	(which	is	the	name	defined	by	the	rule)
and	::=.	A	vertical	bar	 (|)	 is	 used	 to	 separate	alternatives;	 it	 is	 the
least	binding	operator	in	this	notation.	A	star	(*)	means	zero	or	more
repetitions	 of	 the	 preceding	 item;	 likewise,	 a	 plus	 (+)	means	 one	 or
more	 repetitions,	 and	 a	 phrase	 enclosed	 in	 square	 brackets	 ([])
means	zero	or	one	occurrences	(in	other	words,	the	enclosed	phrase
is	 optional).	 The	 *	 and	 +	 operators	 bind	 as	 tightly	 as	 possible;
parentheses	 are	 used	 for	 grouping.	 Literal	 strings	 are	 enclosed	 in
quotes.	White	space	is	only	meaningful	to	separate	tokens.	Rules	are
normally	contained	on	a	single	 line;	rules	with	many	alternatives	may
be	formatted	alternatively	with	each	line	after	the	first	beginning	with	a
vertical	bar.

In	 lexical	 definitions	 (as	 the	 example	 above),	 two	more	 conventions
are	 used:	 Two	 literal	 characters	 separated	 by	 three	 dots	 mean	 a
choice	of	any	single	character	 in	 the	given	(inclusive)	range	of	ASCII
characters.	 A	 phrase	 between	 angular	 brackets	 (<...>)	 gives	 an

informal	description	of	the	symbol	defined;	e.g.,	this	could	be	used	to
describe	the	notion	of	‘control	character’	if	needed.

Even	 though	 the	 notation	 used	 is	 almost	 the	 same,	 there	 is	 a	 big
difference	between	the	meaning	of	 lexical	and	syntactic	definitions:	a
lexical	 definition	 operates	 on	 the	 individual	 characters	 of	 the	 input
source,	 while	 a	 syntax	 definition	 operates	 on	 the	 stream	 of	 tokens
generated	by	the	lexical	analysis.	All	uses	of	BNF	in	the	next	chapter
(“Lexical	Analysis”)	are	lexical	definitions;	uses	in	subsequent	chapters
are	syntactic	definitions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

2.	Lexical	analysis
A	Python	program	is	read	by	a	parser.	Input	to	the	parser	is	a	stream
of	 tokens,	 generated	 by	 the	 lexical	 analyzer.	 This	 chapter	 describes
how	the	lexical	analyzer	breaks	a	file	into	tokens.

Python	reads	program	text	as	Unicode	code	points;	the	encoding	of	a
source	 file	 can	 be	 given	 by	 an	 encoding	 declaration	 and	 defaults	 to
UTF-8,	see	PEP	3120	for	details.	If	the	source	file	cannot	be	decoded,
a	SyntaxError	is	raised.

http://www.python.org/dev/peps/pep-3120

2.1.	Line	structure

A	Python	program	is	divided	into	a	number	of	logical	lines.

2.1.1.	Logical	lines

The	 end	 of	 a	 logical	 line	 is	 represented	 by	 the	 token	 NEWLINE.
Statements	 cannot	 cross	 logical	 line	 boundaries	 except	 where
NEWLINE	 is	 allowed	 by	 the	 syntax	 (e.g.,	 between	 statements	 in
compound	statements).	A	logical	line	is	constructed	from	one	or	more
physical	lines	by	following	the	explicit	or	implicit	line	joining	rules.

2.1.2.	Physical	lines

A	physical	 line	 is	a	sequence	of	characters	 terminated	by	an	end-of-
line	 sequence.	 In	 source	 files,	 any	 of	 the	 standard	 platform	 line
termination	 sequences	 can	 be	 used	 -	 the	Unix	 form	 using	ASCII	 LF
(linefeed),	the	Windows	form	using	the	ASCII	sequence	CR	LF	(return
followed	by	 linefeed),	or	 the	old	Macintosh	 form	using	 the	ASCII	CR
(return)	character.	All	of	 these	 forms	can	be	used	equally,	 regardless
of	platform.

When	 embedding	 Python,	 source	 code	 strings	 should	 be	 passed	 to
Python	APIs	using	the	standard	C	conventions	for	newline	characters
(the	\n	character,	representing	ASCII	LF,	is	the	line	terminator).

2.1.3.	Comments

A	comment	starts	with	a	hash	character	(#)	that	is	not	part	of	a	string
literal,	 and	ends	at	 the	end	of	 the	physical	 line.	A	comment	signifies

the	 end	 of	 the	 logical	 line	 unless	 the	 implicit	 line	 joining	 rules	 are
invoked.	Comments	are	ignored	by	the	syntax;	they	are	not	tokens.

2.1.4.	Encoding	declarations

If	a	comment	 in	 the	 first	or	second	 line	of	 the	Python	script	matches
the	regular	expression	coding[=:]\s*([-\w.]+),	this	comment	is
processed	 as	 an	 encoding	 declaration;	 the	 first	 group	 of	 this
expression	 names	 the	 encoding	 of	 the	 source	 code	 file.	 The
recommended	forms	of	this	expression	are

#	-*-	coding:	<encoding-name>	-*-

which	is	recognized	also	by	GNU	Emacs,	and

#	vim:fileencoding=<encoding-name>

which	is	recognized	by	Bram	Moolenaar’s	VIM.

If	no	encoding	declaration	is	found,	the	default	encoding	is	UTF-8.	In
addition,	 if	 the	 first	 bytes	 of	 the	 file	 are	 the	 UTF-8	 byte-order	 mark
(b'\xef\xbb\xbf'),	 the	 declared	 file	 encoding	 is	 UTF-8	 (this	 is
supported,	among	others,	by	Microsoft’s	notepad).

If	an	encoding	is	declared,	the	encoding	name	must	be	recognized	by
Python.	The	encoding	 is	used	 for	all	 lexical	analysis,	 including	string
literals,	 comments	 and	 identifiers.	 The	 encoding	 declaration	 must
appear	on	a	line	of	its	own.

2.1.5.	Explicit	line	joining

Two	 or	 more	 physical	 lines	 may	 be	 joined	 into	 logical	 lines	 using

backslash	characters	 (\),	 as	 follows:	when	a	physical	 line	ends	 in	 a
backslash	that	is	not	part	of	a	string	literal	or	comment,	it	is	joined	with
the	 following	 forming	a	single	 logical	 line,	deleting	 the	backslash	and
the	following	end-of-line	character.	For	example:

if	1900	<	year	<	2100	and	1	<=	month	<=	12	\

			and	1	<=	day	<=	31	and	0	<=	hour	<	24	\

			and	0	<=	minute	<	60	and	0	<=	second	<	60:			#	Looks	like	a	valid	date

								return	1

A	 line	 ending	 in	 a	 backslash	 cannot	 carry	 a	 comment.	 A	 backslash
does	not	continue	a	comment.	A	backslash	does	not	continue	a	token
except	for	string	literals	(i.e.,	tokens	other	than	string	literals	cannot	be
split	 across	 physical	 lines	 using	 a	 backslash).	 A	 backslash	 is	 illegal
elsewhere	on	a	line	outside	a	string	literal.

2.1.6.	Implicit	line	joining

Expressions	 in	 parentheses,	 square	brackets	or	 curly	 braces	 can	be
split	over	more	than	one	physical	 line	without	using	backslashes.	For
example:

month_names	=	['Januari',	'Februari',	'Maart',						

															'April',			'Mei',						'Juni',							

															'Juli',				'Augustus',	'September',		

															'Oktober',	'November',	'December']			

Implicitly	continued	 lines	can	carry	comments.	The	 indentation	of	 the
continuation	 lines	 is	 not	 important.	 Blank	 continuation	 lines	 are
allowed.	 There	 is	 no	 NEWLINE	 token	 between	 implicit	 continuation
lines.	 Implicitly	 continued	 lines	 can	 also	 occur	 within	 triple-quoted
strings	(see	below);	in	that	case	they	cannot	carry	comments.

2.1.7.	Blank	lines

A	logical	line	that	contains	only	spaces,	tabs,	formfeeds	and	possibly	a
comment,	 is	 ignored	 (i.e.,	 no	NEWLINE	 token	 is	 generated).	 During
interactive	 input	 of	 statements,	 handling	 of	 a	 blank	 line	 may	 differ
depending	 on	 the	 implementation	 of	 the	 read-eval-print	 loop.	 In	 the
standard	 interactive	 interpreter,	an	entirely	blank	 logical	 line	 (i.e.	one
containing	not	even	whitespace	or	a	comment)	terminates	a	multi-line
statement.

2.1.8.	Indentation

Leading	 whitespace	 (spaces	 and	 tabs)	 at	 the	 beginning	 of	 a	 logical
line	is	used	to	compute	the	indentation	level	of	the	line,	which	in	turn	is
used	to	determine	the	grouping	of	statements.

Tabs	are	replaced	(from	left	to	right)	by	one	to	eight	spaces	such	that
the	total	number	of	characters	up	to	and	including	the	replacement	is	a
multiple	of	eight	(this	is	intended	to	be	the	same	rule	as	used	by	Unix).
The	 total	 number	 of	 spaces	 preceding	 the	 first	 non-blank	 character
then	determines	the	line’s	indentation.	Indentation	cannot	be	split	over
multiple	 physical	 lines	 using	 backslashes;	 the	 whitespace	 up	 to	 the
first	backslash	determines	the	indentation.

Indentation	 is	 rejected	as	 inconsistent	 if	a	source	 file	mixes	 tabs	and
spaces	in	a	way	that	makes	the	meaning	dependent	on	the	worth	of	a
tab	in	spaces;	a	TabError	is	raised	in	that	case.

Cross-platform	 compatibility	 note:	 because	 of	 the	 nature	 of	 text
editors	on	non-UNIX	platforms,	it	is	unwise	to	use	a	mixture	of	spaces
and	 tabs	 for	 the	 indentation	 in	a	 single	 source	 file.	 It	 should	also	be
noted	 that	 different	 platforms	 may	 explicitly	 limit	 the	 maximum

indentation	level.

A	formfeed	character	may	be	present	at	the	start	of	the	line;	it	will	be
ignored	 for	 the	 indentation	 calculations	 above.	 Formfeed	 characters
occurring	 elsewhere	 in	 the	 leading	 whitespace	 have	 an	 undefined
effect	(for	instance,	they	may	reset	the	space	count	to	zero).

The	 indentation	 levels	 of	 consecutive	 lines	 are	 used	 to	 generate
INDENT	and	DEDENT	tokens,	using	a	stack,	as	follows.

Before	 the	first	 line	of	 the	file	 is	read,	a	single	zero	 is	pushed	on	the
stack;	this	will	never	be	popped	off	again.	The	numbers	pushed	on	the
stack	 will	 always	 be	 strictly	 increasing	 from	 bottom	 to	 top.	 At	 the
beginning	of	each	logical	line,	the	line’s	indentation	level	is	compared
to	the	top	of	the	stack.	If	it	is	equal,	nothing	happens.	If	it	is	larger,	it	is
pushed	 on	 the	 stack,	 and	 one	 INDENT	 token	 is	 generated.	 If	 it	 is
smaller,	 it	must	 be	 one	 of	 the	 numbers	 occurring	 on	 the	 stack;	 all
numbers	 on	 the	 stack	 that	 are	 larger	 are	 popped	 off,	 and	 for	 each
number	popped	off	a	DEDENT	 token	 is	generated.	At	 the	end	of	 the
file,	a	DEDENT	token	is	generated	for	each	number	remaining	on	the
stack	that	is	larger	than	zero.

Here	is	an	example	of	a	correctly	(though	confusingly)	indented	piece
of	Python	code:

def	perm(l):

								#	Compute	the	list	of	all	permutations	of	l

				if	len(l)	<=	1:

																		return	[l]

				r	=	[]

				for	i	in	range(len(l)):

													s	=	l[:i]	+	l[i+1:]

													p	=	perm(s)

													for	x	in	p:

														r.append(l[i:i+1]	+	x)

				return	r

The	following	example	shows	various	indentation	errors:

	def	perm(l):																							#	error:	first	line	indented

for	i	in	range(len(l)):													#	error:	not	indented

				s	=	l[:i]	+	l[i+1:]

								p	=	perm(l[:i]	+	l[i+1:])			#	error:	unexpected	indent

								for	x	in	p:

																r.append(l[i:i+1]	+	x)

												return	r																#	error:	inconsistent	dedent

(Actually,	the	first	three	errors	are	detected	by	the	parser;	only	the	last
error	is	found	by	the	lexical	analyzer	—	the	indentation	of	return	r
does	not	match	a	level	popped	off	the	stack.)

2.1.9.	Whitespace	between	tokens

Except	 at	 the	 beginning	 of	 a	 logical	 line	 or	 in	 string	 literals,	 the
whitespace	 characters	 space,	 tab	 and	 formfeed	 can	 be	 used
interchangeably	 to	 separate	 tokens.	Whitespace	 is	 needed	 between
two	 tokens	only	 if	 their	 concatenation	 could	otherwise	be	 interpreted
as	a	different	token	(e.g.,	ab	is	one	token,	but	a	b	is	two	tokens).

2.2.	Other	tokens

Besides	NEWLINE,	INDENT	and	DEDENT,	the	following	categories	of
tokens	 exist:	 identifiers,	keywords,	 literals,	operators,	 and	 delimiters.
Whitespace	characters	(other	than	line	terminators,	discussed	earlier)
are	not	tokens,	but	serve	to	delimit	tokens.	Where	ambiguity	exists,	a
token	comprises	 the	 longest	possible	string	 that	 forms	a	 legal	 token,
when	read	from	left	to	right.

2.3.	Identifiers	and	keywords

Identifiers	 (also	 referred	 to	as	names)	are	described	by	 the	 following
lexical	definitions.

The	syntax	of	 identifiers	 in	Python	 is	based	on	the	Unicode	standard
annex	UAX-31,	with	 elaboration	 and	 changes	 as	 defined	 below;	 see
also	PEP	3131	for	further	details.

Within	 the	 ASCII	 range	 (U+0001..U+007F),	 the	 valid	 characters	 for
identifiers	 are	 the	 same	 as	 in	 Python	 2.x:	 the	 uppercase	 and
lowercase	 letters	A	 through	Z,	 the	underscore	 _	and,	except	 for	 the
first	character,	the	digits	0	through	9.

Python	 3.0	 introduces	 additional	 characters	 from	 outside	 the	 ASCII
range	 (see	PEP	3131).	 For	 these	 characters,	 the	 classification	 uses
the	 version	 of	 the	 Unicode	 Character	 Database	 as	 included	 in	 the
unicodedata	module.

Identifiers	are	unlimited	in	length.	Case	is	significant.

identifier			::=		xid_start	xid_continue*

id_start					::=		<all	characters	in	general	categories	Lu,	Ll,	Lt,	Lm,	Lo,	Nl,	the	underscore,	and	characters	with	the	Other_ID_Start	property>

id_continue		::=		<all	characters	in	id_start,	plus	characters	in	the	categories	Mn,	Mc,	Nd,	Pc	and	others	with	the	Other_ID_Continue	property>

xid_start				::=		<all	characters	in	id_start	whose	NFKC	normalization	is	in	"id_start	xid_continue*">

xid_continue	::=		<all	characters	in	id_continue	whose	NFKC	normalization	is	in	"id_continue*">

The	Unicode	category	codes	mentioned	above	stand	for:

Lu	-	uppercase	letters
Ll	-	lowercase	letters
Lt	-	titlecase	letters
Lm	-	modifier	letters

http://www.python.org/dev/peps/pep-3131
http://www.python.org/dev/peps/pep-3131

Lo	-	other	letters
Nl	-	letter	numbers
Mn	-	nonspacing	marks
Mc	-	spacing	combining	marks
Nd	-	decimal	numbers
Pc	-	connector	punctuations
Other_ID_Start	-	explicit	list	of	characters	in	PropList.txt	to	support
backwards	compatibility
Other_ID_Continue	-	likewise

All	identifiers	are	converted	into	the	normal	form	NFKC	while	parsing;
comparison	of	identifiers	is	based	on	NFKC.

A	 non-normative	 HTML	 file	 listing	 all	 valid	 identifier	 characters	 for
Unicode	 4.1	 can	 be	 found	 at	 http://www.dcl.hpi.uni-
potsdam.de/home/loewis/table-3131.html.

2.3.1.	Keywords

The	 following	 identifiers	are	used	as	 reserved	words,	or	keywords	 of
the	 language,	and	cannot	be	used	as	ordinary	 identifiers.	They	must
be	spelled	exactly	as	written	here:

False						class						finally				is									return

None							continue			for								lambda					try

True							def								from							nonlocal			while

and								del								global					not								with

as									elif							if									or									yield

assert					else							import					pass

break						except					in									raise

2.3.2.	Reserved	classes	of	identifiers

http://unicode.org/Public/UNIDATA/PropList.txt
http://www.dcl.hpi.uni-potsdam.de/home/loewis/table-3131.html

Certain	 classes	 of	 identifiers	 (besides	 keywords)	 have	 special
meanings.	These	classes	are	identified	by	the	patterns	of	leading	and
trailing	underscore	characters:

_*

Not	imported	by	from	module	import	*.	The	special	 identifier
_	is	used	in	the	interactive	interpreter	to	store	the	result	of	the	last
evaluation;	 it	 is	 stored	 in	 the	 builtins	 module.	 When	 not	 in
interactive	 mode,	 _	 has	 no	 special	 meaning	 and	 is	 not	 defined.
See	section	The	import	statement.

Note: 	 The	 name	 _	 is	 often	 used	 in	 conjunction	 with
internationalization;	 refer	 to	 the	documentation	 for	 the	gettext
module	for	more	information	on	this	convention.

__*__

System-defined	 names.	 These	 names	 are	 defined	 by	 the
interpreter	 and	 its	 implementation	 (including	 the	 standard	 library).
Current	system	names	are	discussed	in	the	Special	method	names
section	and	elsewhere.	More	will	likely	be	defined	in	future	versions
of	Python.	Any	use	of	__*__	names,	in	any	context,	that	does	not
follow	 explicitly	 documented	 use,	 is	 subject	 to	 breakage	 without
warning.

__*

Class-private	names.	Names	in	this	category,	when	used	within	the
context	of	a	class	definition,	are	re-written	to	use	a	mangled	form	to
help	avoid	name	clashes	between	“private”	attributes	of	base	and
derived	classes.	See	section	Identifiers	(Names).

2.4.	Literals

Literals	are	notations	for	constant	values	of	some	built-in	types.

2.4.1.	String	and	Bytes	literals

String	literals	are	described	by	the	following	lexical	definitions:

stringliteral			::=		[stringprefix](shortstring	|	longstring

stringprefix				::=		"r"	|	"u"	|	"R"	|	"U"

shortstring					::=		"'"	shortstringitem*	"'"	|	'"'	

longstring						::=		"'''"	longstringitem*	"'''"	|	'"""'	

shortstringitem	::=		shortstringchar	|	stringescapeseq

longstringitem		::=		longstringchar	|	stringescapeseq

shortstringchar	::=		<any	source	character	except	"\"	or	newline	or	the	quote>

longstringchar		::=		<any	source	character	except	"\">

stringescapeseq	::=		"\"	<any	source	character>

bytesliteral			::=		bytesprefix(shortbytes	|	longbytes

bytesprefix				::=		"b"	|	"B"	|	"br"	|	"Br"	|	"bR"	|	"BR"	|	"rb"	|	"rB"	|	"Rb"	|	"RB"

shortbytes					::=		"'"	shortbytesitem*	"'"	|	'"'	shortbytesitem

longbytes						::=		"'''"	longbytesitem*	"'''"	|	'"""'	

shortbytesitem	::=		shortbyteschar	|	bytesescapeseq

longbytesitem		::=		longbyteschar	|	bytesescapeseq

shortbyteschar	::=		<any	ASCII	character	except	"\"	or	newline	or	the	quote>

longbyteschar		::=		<any	ASCII	character	except	"\">

bytesescapeseq	::=		"\"	<any	ASCII	character>

One	 syntactic	 restriction	 not	 indicated	 by	 these	 productions	 is	 that
whitespace	 is	 not	 allowed	 between	 the	 stringprefix	 or
bytesprefix	and	the	rest	of	 the	literal.	The	source	character	set	 is
defined	 by	 the	 encoding	 declaration;	 it	 is	 UTF-8	 if	 no	 encoding

declaration	 is	 given	 in	 the	 source	 file;	 see	 section	 Encoding
declarations.

In	 plain	 English:	 Both	 types	 of	 literals	 can	 be	 enclosed	 in	 matching
single	quotes	(')	or	double	quotes	(").	They	can	also	be	enclosed	in
matching	groups	of	three	single	or	double	quotes	(these	are	generally
referred	 to	 as	 triple-quoted	 strings).	 The	 backslash	 (\)	 character	 is
used	 to	 escape	 characters	 that	 otherwise	 have	 a	 special	 meaning,
such	as	newline,	backslash	itself,	or	the	quote	character.

Bytes	 literals	are	always	prefixed	with	'b'	or	'B';	 they	 produce	 an
instance	of	 the	bytes	 type	 instead	of	 the	str	 type.	They	may	 only
contain	ASCII	characters;	bytes	with	a	numeric	value	of	128	or	greater
must	be	expressed	with	escapes.

As	of	Python	3.3	it	is	possible	again	to	prefix	unicode	strings	with	a	u
prefix	to	simplify	maintenance	of	dual	2.x	and	3.x	codebases.

Both	string	and	bytes	 literals	may	optionally	be	prefixed	with	a	 letter
'r'	or	'R';	such	strings	are	called	raw	strings	and	treat	backslashes
as	 literal	 characters.	 As	 a	 result,	 in	 string	 literals,	 '\U'	 and	 '\u'
escapes	 in	 raw	 strings	 are	 not	 treated	 specially.	 Given	 that	 Python
2.x’s	 raw	 unicode	 literals	 behave	 differently	 than	 Python	 3.x’s	 the
'ur'	syntax	is	not	supported.

New	in	version	3.3:	The	'rb'	prefix	of	raw	bytes	literals	has	been
added	as	a	synonym	of	'br'.

New	 in	 version	 3.3:	 Support	 for	 the	 unicode	 legacy	 literal
(u'value')	was	reintroduced	to	simplify	the	maintenance	of	dual
Python	 2.x	 and	 3.x	 codebases.	 See	 PEP	 414	 for	 more
information.

http://www.python.org/dev/peps/pep-0414

In	 triple-quoted	 strings,	 unescaped	 newlines	 and	 quotes	 are	 allowed
(and	 are	 retained),	 except	 that	 three	 unescaped	 quotes	 in	 a	 row
terminate	 the	 string.	 (A	 “quote”	 is	 the	 character	 used	 to	 open	 the
string,	i.e.	either	'	or	".)

Unless	an	'r'	or	'R'	prefix	is	present,	escape	sequences	in	strings
are	interpreted	according	to	rules	similar	to	those	used	by	Standard	C.
The	recognized	escape	sequences	are:

Escape
Sequence Meaning Notes

\newline Backslash	and	newline	ignored 	

\\ Backslash	(\) 	

\' Single	quote	(') 	

\" Double	quote	(") 	

\a ASCII	Bell	(BEL) 	

\b ASCII	Backspace	(BS) 	

\f ASCII	Formfeed	(FF) 	

\n ASCII	Linefeed	(LF) 	

\r ASCII	Carriage	Return	(CR) 	

\t ASCII	Horizontal	Tab	(TAB) 	

\v ASCII	Vertical	Tab	(VT) 	

\ooo Character	with	octal	value	ooo (1,3)

\xhh Character	with	hex	value	hh (2,3)

Escape	sequences	only	recognized	in	string	literals	are:

Escape
Sequence Meaning Notes

\N{name}
Character	named	name	in	the
Unicode	database (4)

\uxxxx Character	with	16-bit	hex	value	xxxx (5)

\Uxxxxxxxx
Character	with	32-bit	hex	value
xxxxxxxx (6)

Notes:

1.	 As	in	Standard	C,	up	to	three	octal	digits	are	accepted.

2.	 Unlike	in	Standard	C,	exactly	two	hex	digits	are	required.

3.	 In	a	bytes	literal,	hexadecimal	and	octal	escapes	denote	the	byte
with	 the	 given	 value.	 In	 a	 string	 literal,	 these	 escapes	 denote	 a
Unicode	character	with	the	given	value.

4.	 Changed	 in	 version	 3.3:	Support	 for	 name	 aliases	 [1]	 has	 been
added.

5.	 Individual	code	units	which	form	parts	of	a	surrogate	pair	can	be
encoded	using	this	escape	sequence.	Exactly	 four	hex	digits	are
required.

6.	 Any	 Unicode	 character	 can	 be	 encoded	 this	 way.	 Exactly	 eight
hex	digits	are	required.

Unlike	Standard	C,	all	unrecognized	escape	sequences	are	left	in	the
string	unchanged,	i.e.,	the	backslash	is	left	in	the	string.	(This	behavior
is	 useful	 when	 debugging:	 if	 an	 escape	 sequence	 is	 mistyped,	 the
resulting	 output	 is	 more	 easily	 recognized	 as	 broken.)	 It	 is	 also
important	to	note	that	the	escape	sequences	only	recognized	in	string
literals	fall	into	the	category	of	unrecognized	escapes	for	bytes	literals.

Even	in	a	raw	string,	string	quotes	can	be	escaped	with	a	backslash,

but	the	backslash	remains	in	the	string;	for	example,	r"\""	is	a	valid
string	 literal	 consisting	 of	 two	 characters:	 a	 backslash	 and	 a	 double
quote;	r"\"	is	not	a	valid	string	literal	(even	a	raw	string	cannot	end	in
an	odd	number	of	backslashes).	Specifically,	a	raw	string	cannot	end
in	a	single	backslash	(since	the	backslash	would	escape	the	following
quote	 character).	 Note	 also	 that	 a	 single	 backslash	 followed	 by	 a
newline	is	interpreted	as	those	two	characters	as	part	of	the	string,	not
as	a	line	continuation.

2.4.2.	String	literal	concatenation

Multiple	 adjacent	 string	 or	 bytes	 literals	 (delimited	 by	 whitespace),
possibly	 using	 different	 quoting	 conventions,	 are	 allowed,	 and	 their
meaning	 is	 the	 same	 as	 their	 concatenation.	 Thus,	 "hello"

'world'	 is	equivalent	 to	"helloworld".	This	 feature	can	be	used
to	 reduce	 the	 number	 of	 backslashes	 needed,	 to	 split	 long	 strings
conveniently	across	 long	 lines,	or	even	 to	add	comments	 to	parts	of
strings,	for	example:

re.compile("[A-Za-z_]"							#	letter	or	underscore

											"[A-Za-z0-9_]*"			#	letter,	digit	or	underscore

)

Note	 that	 this	 feature	 is	 defined	 at	 the	 syntactical	 level,	 but
implemented	 at	 compile	 time.	 The	 ‘+’	 operator	 must	 be	 used	 to
concatenate	 string	 expressions	 at	 run	 time.	 Also	 note	 that	 literal
concatenation	 can	 use	 different	 quoting	 styles	 for	 each	 component
(even	mixing	raw	strings	and	triple	quoted	strings).

2.4.3.	Numeric	literals

There	 are	 three	 types	 of	 numeric	 literals:	 integers,	 floating	 point
numbers,	 and	 imaginary	 numbers.	 There	 are	 no	 complex	 literals
(complex	 numbers	 can	 be	 formed	 by	 adding	 a	 real	 number	 and	 an
imaginary	number).

Note	 that	 numeric	 literals	 do	 not	 include	 a	 sign;	 a	 phrase	 like	 -1	 is
actually	 an	 expression	 composed	 of	 the	 unary	 operator	 ‘-‘	 and	 the
literal	1.

2.4.4.	Integer	literals

Integer	literals	are	described	by	the	following	lexical	definitions:

integer								::=		decimalinteger	|	octinteger	|	hexinteger

decimalinteger	::=		nonzerodigit	digit*	|	"0"+

nonzerodigit			::=		"1"..."9"

digit										::=		"0"..."9"

octinteger					::=		"0"	("o"	|	"O")	octdigit+

hexinteger					::=		"0"	("x"	|	"X")	hexdigit+

bininteger					::=		"0"	("b"	|	"B")	bindigit+

octdigit							::=		"0"..."7"

hexdigit							::=		digit	|	"a"..."f"	|	"A"..."F"

bindigit							::=		"0"	|	"1"

There	is	no	limit	for	the	length	of	integer	literals	apart	from	what	can	be
stored	in	available	memory.

Note	that	leading	zeros	in	a	non-zero	decimal	number	are	not	allowed.
This	is	for	disambiguation	with	C-style	octal	literals,	which	Python	used
before	version	3.0.

Some	examples	of	integer	literals:

7					2147483647																								0o177				0b100110111

3					79228162514264337593543950336					0o377				0x100000000

						79228162514264337593543950336														0xdeadbeef

2.4.5.	Floating	point	literals

Floating	point	literals	are	described	by	the	following	lexical	definitions:

floatnumber			::=		pointfloat	|	exponentfloat

pointfloat				::=		[intpart]	fraction	|	intpart	"."

exponentfloat	::=		(intpart	|	pointfloat)	exponent

intpart							::=		digit+

fraction						::=		"."	digit+

exponent						::=		("e"	|	"E")	["+"	|	"-"]	digit+

Note	that	the	integer	and	exponent	parts	are	always	interpreted	using
radix	 10.	 For	 example,	 077e010	 is	 legal,	 and	 denotes	 the	 same
number	 as	 77e10.	 The	 allowed	 range	 of	 floating	 point	 literals	 is
implementation-dependent.	Some	examples	of	floating	point	literals:

3.14				10.				.001				1e100				3.14e-10				0e0

Note	 that	 numeric	 literals	 do	 not	 include	 a	 sign;	 a	 phrase	 like	 -1	 is
actually	 an	 expression	 composed	 of	 the	 unary	 operator	 -	 and	 the
literal	1.

2.4.6.	Imaginary	literals

Imaginary	literals	are	described	by	the	following	lexical	definitions:

imagnumber	::=		(floatnumber	|	intpart)	("j"	|	"J")

An	 imaginary	 literal	 yields	a	complex	number	with	a	 real	part	of	0.0.
Complex	numbers	are	represented	as	a	pair	of	floating	point	numbers
and	 have	 the	 same	 restrictions	 on	 their	 range.	 To	 create	 a	 complex
number	with	a	nonzero	real	part,	add	a	floating	point	number	to	it,	e.g.,
(3+4j).	Some	examples	of	imaginary	literals:

3.14j			10.j				10j					.001j			1e100j		3.14e-10j

2.5.	Operators

The	following	tokens	are	operators:

+							-							*							**						/							//						%

<<						>>						&							|							^							~

<							>							<=						>=						==						!=

2.6.	Delimiters

The	following	tokens	serve	as	delimiters	in	the	grammar:

()							[]							{							}

,							:							.							;							@							=							->

+=						-=						*=						/=						//=					%=

&=						|=						^=						>>=					<<=					**=

The	 period	 can	 also	 occur	 in	 floating-point	 and	 imaginary	 literals.	 A
sequence	of	three	periods	has	a	special	meaning	as	an	ellipsis	literal.
The	 second	 half	 of	 the	 list,	 the	 augmented	 assignment	 operators,
serve	lexically	as	delimiters,	but	also	perform	an	operation.

The	following	printing	ASCII	characters	have	special	meaning	as	part
of	other	tokens	or	are	otherwise	significant	to	the	lexical	analyzer:

'							"							#							\

The	following	printing	ASCII	characters	are	not	used	in	Python.	Their
occurrence	 outside	 string	 literals	 and	 comments	 is	 an	 unconditional
error:

$?							`

Footnotes

[1] http://www.unicode.org/Public/6.1.0/ucd/NameAliases.txt

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.unicode.org/Public/6.1.0/ucd/NameAliases.txt
http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

3.	Data	model

3.1.	Objects,	values	and	types

Objects	are	Python’s	abstraction	for	data.	All	data	in	a	Python	program
is	represented	by	objects	or	by	relations	between	objects.	(In	a	sense,
and	 in	 conformance	 to	 Von	 Neumann’s	model	 of	 a	 “stored	 program
computer,”	code	is	also	represented	by	objects.)

Every	object	has	an	 identity,	 a	 type	and	a	value.	An	object’s	 identity
never	 changes	 once	 it	 has	 been	 created;	 you	may	 think	 of	 it	 as	 the
object’s	address	in	memory.	The	‘is‘	operator	compares	the	identity	of
two	 objects;	 the	 id()	 function	 returns	 an	 integer	 representing	 its
identity.

CPython	 implementation	 detail:	 For	 CPython,	 id(x)	 is	 the
memory	address	where	x	is	stored.

An	 object’s	 type	 determines	 the	 operations	 that	 the	 object	 supports
(e.g.,	“does	it	have	a	length?”)	and	also	defines	the	possible	values	for
objects	 of	 that	 type.	 The	 type()	 function	 returns	 an	 object’s	 type
(which	 is	 an	 object	 itself).	 Like	 its	 identity,	 an	 object’s	 type	 is	 also
unchangeable.	[1]

The	 value	 of	 some	 objects	 can	 change.	 Objects	 whose	 value	 can
change	are	said	to	be	mutable;	objects	whose	value	is	unchangeable
once	 they	 are	 created	 are	 called	 immutable.	 (The	 value	 of	 an
immutable	 container	 object	 that	 contains	 a	 reference	 to	 a	 mutable
object	 can	 change	 when	 the	 latter’s	 value	 is	 changed;	 however	 the
container	 is	 still	 considered	 immutable,	 because	 the	 collection	 of
objects	 it	contains	cannot	be	changed.	So,	 immutability	 is	not	strictly
the	 same	 as	 having	 an	 unchangeable	 value,	 it	 is	 more	 subtle.)	 An
object’s	 mutability	 is	 determined	 by	 its	 type;	 for	 instance,	 numbers,

strings	 and	 tuples	 are	 immutable,	 while	 dictionaries	 and	 lists	 are
mutable.

Objects	 are	 never	 explicitly	 destroyed;	 however,	 when	 they	 become
unreachable	 they	 may	 be	 garbage-collected.	 An	 implementation	 is
allowed	 to	postpone	garbage	collection	or	omit	 it	altogether	—	 it	 is	a
matter	 of	 implementation	 quality	 how	 garbage	 collection	 is
implemented,	 as	 long	 as	 no	 objects	 are	 collected	 that	 are	 still
reachable.

CPython	 implementation	 detail:	 CPython	 currently	 uses	 a
reference-counting	 scheme	 with	 (optional)	 delayed	 detection	 of
cyclically	 linked	 garbage,	 which	 collects	 most	 objects	 as	 soon	 as
they	become	unreachable,	but	 is	not	guaranteed	to	collect	garbage
containing	 circular	 references.	 See	 the	 documentation	 of	 the	 gc
module	for	information	on	controlling	the	collection	of	cyclic	garbage.
Other	implementations	act	differently	and	CPython	may	change.	Do
not	depend	on	 immediate	 finalization	of	objects	when	 they	become
unreachable	(ex:	always	close	files).

Note	 that	 the	 use	 of	 the	 implementation’s	 tracing	 or	 debugging
facilities	 may	 keep	 objects	 alive	 that	 would	 normally	 be	 collectable.
Also	note	that	catching	an	exception	with	a	‘try...except‘	statement
may	keep	objects	alive.

Some	objects	contain	references	to	“external”	resources	such	as	open
files	or	windows.	It	is	understood	that	these	resources	are	freed	when
the	 object	 is	 garbage-collected,	 but	 since	 garbage	 collection	 is	 not
guaranteed	 to	 happen,	 such	 objects	 also	 provide	 an	 explicit	 way	 to
release	the	external	resource,	usually	a	close()	method.	Programs
are	 strongly	 recommended	 to	 explicitly	 close	 such	 objects.	 The
‘try...finally‘	 statement	 and	 the	 ‘with‘	 statement	 provide

convenient	ways	to	do	this.

Some	 objects	 contain	 references	 to	 other	 objects;	 these	 are	 called
containers.	 Examples	 of	 containers	 are	 tuples,	 lists	 and	 dictionaries.
The	 references	are	part	 of	a	 container’s	 value.	 In	most	 cases,	when
we	 talk	 about	 the	 value	 of	 a	 container,	we	 imply	 the	 values,	 not	 the
identities	 of	 the	 contained	 objects;	 however,	when	we	 talk	 about	 the
mutability	 of	 a	 container,	 only	 the	 identities	 of	 the	 immediately
contained	 objects	 are	 implied.	 So,	 if	 an	 immutable	 container	 (like	 a
tuple)	 contains	 a	 reference	 to	 a	mutable	 object,	 its	 value	 changes	 if
that	mutable	object	is	changed.

Types	 affect	 almost	 all	 aspects	 of	 object	 behavior.	 Even	 the
importance	of	object	identity	is	affected	in	some	sense:	for	immutable
types,	 operations	 that	 compute	 new	 values	 may	 actually	 return	 a
reference	 to	any	existing	object	with	 the	same	 type	and	value,	while
for	mutable	objects	this	is	not	allowed.	E.g.,	after	a	=	1;	b	=	1,	a
and	 b	may	 or	may	 not	 refer	 to	 the	 same	object	with	 the	 value	 one,
depending	on	the	implementation,	but	after	c	=	[];	d	=	[],	c	and
d	are	guaranteed	to	refer	to	two	different,	unique,	newly	created	empty
lists.	(Note	that	c	=	d	=	[]	assigns	the	same	object	to	both	c	and
d.)

3.2.	The	standard	type	hierarchy

Below	 is	 a	 list	 of	 the	 types	 that	 are	 built	 into	 Python.	 Extension
modules	 (written	 in	 C,	 Java,	 or	 other	 languages,	 depending	 on	 the
implementation)	can	define	additional	types.	Future	versions	of	Python
may	add	types	to	the	type	hierarchy	(e.g.,	rational	numbers,	efficiently
stored	arrays	of	 integers,	 etc.),	 although	 such	additions	will	 often	be
provided	via	the	standard	library	instead.

Some	 of	 the	 type	 descriptions	 below	 contain	 a	 paragraph	 listing
‘special	 attributes.’	 These	 are	 attributes	 that	 provide	 access	 to	 the
implementation	and	are	not	 intended	 for	general	use.	Their	definition
may	change	in	the	future.

None
This	 type	 has	 a	 single	 value.	 There	 is	 a	 single	 object	 with	 this
value.	This	object	is	accessed	through	the	built-in	name	None.	It	is
used	to	signify	the	absence	of	a	value	in	many	situations,	e.g.,	it	is
returned	from	functions	that	don’t	explicitly	return	anything.	Its	truth
value	is	false.

NotImplemented
This	 type	 has	 a	 single	 value.	 There	 is	 a	 single	 object	 with	 this
value.	 This	 object	 is	 accessed	 through	 the	 built-in	 name
NotImplemented.	 Numeric	 methods	 and	 rich	 comparison
methods	 may	 return	 this	 value	 if	 they	 do	 not	 implement	 the
operation	 for	 the	operands	provided.	 (The	 interpreter	will	 then	 try
the	 reflected	operation,	or	 some	other	 fallback,	depending	on	 the
operator.)	Its	truth	value	is	true.

Ellipsis
This	 type	 has	 a	 single	 value.	 There	 is	 a	 single	 object	 with	 this

value.	This	object	is	accessed	through	the	literal	...	or	the	built-in
name	Ellipsis.	Its	truth	value	is	true.

numbers.Number

These	 are	 created	 by	 numeric	 literals	 and	 returned	 as	 results	 by
arithmetic	 operators	 and	 arithmetic	 built-in	 functions.	 Numeric
objects	 are	 immutable;	 once	 created	 their	 value	 never	 changes.
Python	 numbers	 are	 of	 course	 strongly	 related	 to	 mathematical
numbers,	but	subject	to	the	limitations	of	numerical	representation
in	computers.

Python	distinguishes	between	integers,	floating	point	numbers,	and
complex	numbers:

numbers.Integral

These	 represent	 elements	 from	 the	 mathematical	 set	 of
integers	(positive	and	negative).

There	are	two	types	of	integers:

Integers	(int)

These	represent	numbers	in	an	unlimited	range,	subject	to
available	(virtual)	memory	only.	For	the	purpose	of	shift	and
mask	operations,	a	binary	representation	is	assumed,	and
negative	 numbers	 are	 represented	 in	 a	 variant	 of	 2’s
complement	which	gives	the	 illusion	of	an	 infinite	string	of
sign	bits	extending	to	the	left.

Booleans	(bool)
These	 represent	 the	 truth	 values	False	 and	True.	 The	 two
objects	 representing	 the	 values	 False	 and	 True	 are	 the
only	Boolean	objects.	The	Boolean	type	is	a	subtype	of	the
integer	 type,	 and	Boolean	 values	behave	 like	 the	 values	0

and	 1,	 respectively,	 in	 almost	 all	 contexts,	 the	 exception
being	that	when	converted	to	a	string,	the	strings	"False"
or	"True"	are	returned,	respectively.

The	 rules	 for	 integer	 representation	 are	 intended	 to	 give	 the
most	 meaningful	 interpretation	 of	 shift	 and	 mask	 operations
involving	negative	integers.

numbers.Real	(float)
These	 represent	machine-level	 double	 precision	 floating	 point
numbers.	 You	 are	 at	 the	 mercy	 of	 the	 underlying	 machine
architecture	 (and	 C	 or	 Java	 implementation)	 for	 the	 accepted
range	and	handling	of	overflow.	Python	does	not	support	single-
precision	 floating	point	numbers;	 the	savings	 in	processor	and
memory	 usage	 that	 are	 usually	 the	 reason	 for	 using	 these	 is
dwarfed	by	the	overhead	of	using	objects	in	Python,	so	there	is
no	reason	to	complicate	the	language	with	two	kinds	of	floating
point	numbers.

numbers.Complex	(complex)
These	 represent	 complex	 numbers	 as	 a	 pair	 of	machine-level
double	 precision	 floating	 point	 numbers.	 The	 same	 caveats
apply	 as	 for	 floating	 point	 numbers.	 The	 real	 and	 imaginary
parts	of	a	complex	number	z	can	be	retrieved	through	the	read-
only	attributes	z.real	and	z.imag.

Sequences
These	 represent	 finite	 ordered	 sets	 indexed	 by	 non-negative
numbers.	The	built-in	function	len()	returns	the	number	of	 items
of	a	sequence.	When	the	length	of	a	sequence	is	n,	the	index	set
contains	the	numbers	0,	1,	...,	n-1.	Item	i	of	sequence	a	is	selected
by	a[i].

Sequences	 also	 support	 slicing:	 a[i:j]	 selects	 all	 items	 with
index	k	such	that	i	<=	k	<	j.	When	used	as	an	expression,	a	slice	is
a	 sequence	 of	 the	 same	 type.	 This	 implies	 that	 the	 index	 set	 is
renumbered	so	that	it	starts	at	0.

Some	sequences	also	support	“extended	slicing”	with	a	third	“step”
parameter:	a[i:j:k]	selects	all	 items	of	a	with	 index	x	where	x
=	i	+	n*k,	n	>=	0	and	i	<=	x	<	j.

Sequences	are	distinguished	according	to	their	mutability:

Immutable	sequences
An	object	of	an	immutable	sequence	type	cannot	change	once
it	is	created.	(If	the	object	contains	references	to	other	objects,
these	 other	 objects	 may	 be	 mutable	 and	 may	 be	 changed;
however,	 the	 collection	 of	 objects	 directly	 referenced	 by	 an
immutable	object	cannot	change.)

The	following	types	are	immutable	sequences:

Strings
A	 string	 is	 a	 sequence	 of	 values	 that	 represent	 Unicode
codepoints.	 All	 the	 codepoints	 in	 range	 U+0000	 -

U+10FFFF	 can	 be	 represented	 in	 a	 string.	 Python	 doesn’t
have	 a	 chr	 type,	 and	 every	 character	 in	 the	 string	 is
represented	 as	 a	 string	 object	 with	 length	 1.	 The	 built-in
function	ord()	converts	a	character	to	its	codepoint	(as	an
integer);	chr()	converts	an	integer	in	range	0	-	10FFFF
to	 the	 corresponding	 character.	 str.encode()	 can	 be
used	to	convert	a	str	to	bytes	using	the	given	encoding,
and	 bytes.decode()	 can	 be	 used	 to	 achieve	 the
opposite.

Tuples
The	items	of	a	tuple	are	arbitrary	Python	objects.	Tuples	of
two	or	more	 items	are	 formed	by	comma-separated	 lists	of
expressions.	 A	 tuple	 of	 one	 item	 (a	 ‘singleton’)	 can	 be
formed	by	affixing	a	comma	to	an	expression	(an	expression
by	itself	does	not	create	a	tuple,	since	parentheses	must	be
usable	for	grouping	of	expressions).	An	empty	tuple	can	be
formed	by	an	empty	pair	of	parentheses.

Bytes
A	 bytes	 object	 is	 an	 immutable	 array.	 The	 items	 are	 8-bit
bytes,	 represented	 by	 integers	 in	 the	 range	 0	 <=	 x	 <	 256.
Bytes	 literals	 (like	 b'abc')	 and	 the	 built-in	 function
bytes()	 can	 be	 used	 to	 construct	 bytes	 objects.	 Also,
bytes	objects	can	be	decoded	to	strings	via	the	decode()
method.

Mutable	sequences
Mutable	sequences	can	be	changed	after	they	are	created.	The
subscription	and	slicing	notations	can	be	used	as	the	target	of
assignment	and	del	(delete)	statements.

There	are	currently	two	intrinsic	mutable	sequence	types:

Lists
The	 items	 of	 a	 list	 are	 arbitrary	 Python	 objects.	 Lists	 are
formed	by	placing	a	comma-separated	list	of	expressions	in
square	 brackets.	 (Note	 that	 there	 are	 no	 special	 cases
needed	to	form	lists	of	length	0	or	1.)

Byte	Arrays
A	bytearray	object	 is	a	mutable	array.	They	are	created	by
the	 built-in	 bytearray()	 constructor.	 Aside	 from	 being

mutable	 (and	 hence	 unhashable),	 byte	 arrays	 otherwise
provide	 the	 same	 interface	 and	 functionality	 as	 immutable
bytes	objects.

The	extension	module	 array	 provides	 an	 additional	 example
of	 a	 mutable	 sequence	 type,	 as	 does	 the	 collections
module.

Set	types
These	 represent	 unordered,	 finite	 sets	 of	 unique,	 immutable
objects.	 As	 such,	 they	 cannot	 be	 indexed	 by	 any	 subscript.
However,	they	can	be	iterated	over,	and	the	built-in	function	len()
returns	 the	 number	 of	 items	 in	 a	 set.	Common	uses	 for	 sets	 are
fast	 membership	 testing,	 removing	 duplicates	 from	 a	 sequence,
and	 computing	 mathematical	 operations	 such	 as	 intersection,
union,	difference,	and	symmetric	difference.

For	 set	 elements,	 the	 same	 immutability	 rules	 apply	 as	 for
dictionary	keys.	Note	that	numeric	types	obey	the	normal	rules	for
numeric	 comparison:	 if	 two	 numbers	 compare	 equal	 (e.g.,	 1	 and
1.0),	only	one	of	them	can	be	contained	in	a	set.

There	are	currently	two	intrinsic	set	types:

Sets
These	represent	a	mutable	set.	They	are	created	by	the	built-in
set()	constructor	and	can	be	modified	afterwards	by	several
methods,	such	as	add().

Frozen	sets
These	 represent	 an	 immutable	 set.	 They	 are	 created	 by	 the
built-in	frozenset()	constructor.	As	a	frozenset	is	immutable
and	hashable,	 it	 can	be	used	again	as	an	element	of	 another

set,	or	as	a	dictionary	key.

Mappings
These	 represent	 finite	 sets	 of	 objects	 indexed	 by	 arbitrary	 index
sets.	 The	 subscript	 notation	 a[k]	 selects	 the	 item	 indexed	 by	 k
from	 the	mapping	 a;	 this	 can	be	used	 in	expressions	and	as	 the
target	 of	 assignments	 or	 del	 statements.	 The	 built-in	 function
len()	returns	the	number	of	items	in	a	mapping.

There	is	currently	a	single	intrinsic	mapping	type:

Dictionaries
These	 represent	 finite	 sets	 of	 objects	 indexed	 by	 nearly
arbitrary	 values.	 The	 only	 types	 of	 values	 not	 acceptable	 as
keys	are	values	containing	lists	or	dictionaries	or	other	mutable
types	that	are	compared	by	value	rather	than	by	object	identity,
the	reason	being	that	the	efficient	implementation	of	dictionaries
requires	a	key’s	hash	value	to	remain	constant.	Numeric	types
used	for	keys	obey	the	normal	rules	for	numeric	comparison:	if
two	numbers	compare	equal	(e.g.,	1	and	1.0)	then	they	can	be
used	interchangeably	to	index	the	same	dictionary	entry.

Dictionaries	 are	 mutable;	 they	 can	 be	 created	 by	 the	 {...}
notation	(see	section	Dictionary	displays).

The	 extension	 modules	 dbm.ndbm	 and	 dbm.gnu	 provide
additional	 examples	 of	 mapping	 types,	 as	 does	 the
collections	module.

Callable	types
These	 are	 the	 types	 to	 which	 the	 function	 call	 operation	 (see
section	Calls)	can	be	applied:

User-defined	functions
A	user-defined	function	object	is	created	by	a	function	definition
(see	 section	Function	 definitions).	 It	 should	 be	 called	 with	 an
argument	 list	 containing	 the	 same	 number	 of	 items	 as	 the
function’s	formal	parameter	list.

Special	attributes:

Attribute Meaning 	

__doc__

The	function’s
documentation	string,	or
None	if	unavailable

Writable

__name__ The	function’s	name Writable

__qualname__

The	 function’s	 qualified
name

New	in	version	3.3.
Writable

__module__

The	name	of	the	module
the	function	was	defined
in,	or	None	if	unavailable.

Writable

__defaults__

A	tuple	containing	default
argument	values	for	those
arguments	that	have
defaults,	or	None	if	no
arguments	have	a	default
value

Writable

__code__

The	code	object
representing	the	compiled
function	body.

Writable

A	reference	to	the
dictionary	that	holds	the
function’s	global	variables Read-

__globals__ —	the	global	namespace
of	the	module	in	which	the
function	was	defined.

only

__dict__

The	namespace
supporting	arbitrary
function	attributes.

Writable

__closure__

None	or	a	tuple	of	cells
that	contain	bindings	for
the	function’s	free
variables.

Read-
only

__annotations__

A	dict	containing
annotations	of	parameters.
The	keys	of	the	dict	are
the	parameter	names,	and
'return'	for	the	return
annotation,	if	provided.

Writable

__kwdefaults__

A	dict	containing	defaults
for	keyword-only
parameters.

Writable

Most	of	 the	attributes	 labelled	 “Writable”	check	 the	 type	of	 the
assigned	value.

Function	 objects	 also	 support	 getting	 and	 setting	 arbitrary
attributes,	which	can	be	used,	for	example,	to	attach	metadata
to	 functions.	Regular	 attribute	 dot-notation	 is	 used	 to	 get	 and
set	 such	 attributes.	Note	 that	 the	 current	 implementation	 only
supports	function	attributes	on	user-defined	functions.	Function
attributes	on	built-in	functions	may	be	supported	in	the	future.

Additional	 information	 about	 a	 function’s	 definition	 can	 be
retrieved	 from	 its	 code	 object;	 see	 the	 description	 of	 internal
types	below.

Instance	methods
An	 instance	method	object	combines	a	class,	a	class	 instance
and	any	callable	object	(normally	a	user-defined	function).

Special	 read-only	 attributes:	 __self__	 is	 the	 class	 instance
object,	 __func__	 is	 the	 function	 object;	 __doc__	 is	 the
method’s	 documentation	 (same	 as	 __func__.__doc__);
__name__	 is	 the	 method	 name	 (same	 as
__func__.__name__);	 __module__	 is	 the	 name	 of	 the
module	the	method	was	defined	in,	or	None	if	unavailable.

Methods	 also	 support	 accessing	 (but	 not	 setting)	 the	 arbitrary
function	attributes	on	the	underlying	function	object.

User-defined	method	objects	may	be	created	when	getting	an
attribute	of	a	class	(perhaps	via	an	instance	of	that	class),	if	that
attribute	 is	 a	 user-defined	 function	 object	 or	 a	 class	 method
object.

When	an	instance	method	object	is	created	by	retrieving	a	user-
defined	function	object	from	a	class	via	one	of	its	instances,	its
__self__	 attribute	 is	 the	 instance,	 and	 the	method	 object	 is
said	to	be	bound.	The	new	method’s	__func__	attribute	is	the
original	function	object.

When	 a	 user-defined	 method	 object	 is	 created	 by	 retrieving
another	method	object	 from	a	class	or	 instance,	 the	behaviour
is	the	same	as	for	a	function	object,	except	that	the	__func__
attribute	of	 the	new	 instance	 is	 not	 the	original	method	object
but	its	__func__	attribute.

When	an	instance	method	object	is	created	by	retrieving	a	class
method	object	from	a	class	or	instance,	its	__self__	attribute

is	 the	 class	 itself,	 and	 its	 __func__	 attribute	 is	 the	 function
object	underlying	the	class	method.

When	 an	 instance	 method	 object	 is	 called,	 the	 underlying
function	 (__func__)	 is	 called,	 inserting	 the	 class	 instance
(__self__)	in	front	of	the	argument	list.	For	instance,	when	C
is	a	class	which	contains	a	definition	for	a	function	f(),	and	x
is	 an	 instance	 of	 C,	 calling	 x.f(1)	 is	 equivalent	 to	 calling
C.f(x,	1).

When	 an	 instance	 method	 object	 is	 derived	 from	 a	 class
method	 object,	 the	 “class	 instance”	 stored	 in	 __self__	 will
actually	 be	 the	 class	 itself,	 so	 that	 calling	 either	 x.f(1)	 or
C.f(1)	 is	 equivalent	 to	 calling	 f(C,1)	 where	 f	 is	 the
underlying	function.

Note	 that	 the	 transformation	 from	 function	 object	 to	 instance
method	object	happens	each	time	the	attribute	is	retrieved	from
the	instance.	In	some	cases,	a	fruitful	optimization	 is	 to	assign
the	attribute	to	a	local	variable	and	call	that	local	variable.	Also
notice	 that	 this	 transformation	 only	 happens	 for	 user-defined
functions;	 other	 callable	 objects	 (and	 all	 non-callable	 objects)
are	retrieved	without	transformation.	It	is	also	important	to	note
that	 user-defined	 functions	 which	 are	 attributes	 of	 a	 class
instance	 are	 not	 converted	 to	 bound	 methods;	 this	 only
happens	when	the	function	is	an	attribute	of	the	class.

Generator	functions
A	 function	 or	 method	 which	 uses	 the	 yield	 statement	 (see
section	 The	 yield	 statement)	 is	 called	 a	 generator	 function.
Such	a	function,	when	called,	always	returns	an	 iterator	object
which	can	be	used	to	execute	the	body	of	 the	function:	calling

the	 iterator’s	 iterator.__next__()	 method	 will	 cause	 the
function	 to	 execute	 until	 it	 provides	 a	 value	 using	 the	 yield
statement.	When	the	function	executes	a	return	statement	or
falls	off	the	end,	a	StopIteration	exception	is	raised	and	the
iterator	 will	 have	 reached	 the	 end	 of	 the	 set	 of	 values	 to	 be
returned.

Built-in	functions
A	 built-in	 function	 object	 is	 a	 wrapper	 around	 a	 C	 function.
Examples	 of	 built-in	 functions	 are	 len()	 and	 math.sin()
(math	 is	a	standard	built-in	module).	The	number	and	 type	of
the	arguments	are	determined	by	the	C	function.	Special	read-
only	attributes:	__doc__	is	the	function’s	documentation	string,
or	 None	 if	 unavailable;	 __name__	 is	 the	 function’s	 name;
__self__	is	set	to	None	(but	see	the	next	item);	__module__
is	the	name	of	the	module	the	function	was	defined	in	or	None
if	unavailable.

Built-in	methods
This	is	really	a	different	disguise	of	a	built-in	function,	this	time
containing	 an	 object	 passed	 to	 the	 C	 function	 as	 an	 implicit
extra	 argument.	 An	 example	 of	 a	 built-in	 method	 is
alist.append(),	assuming	alist	 is	a	list	object.	In	this	case,
the	 special	 read-only	 attribute	 __self__	 is	 set	 to	 the	 object
denoted	by	alist.

Classes
Classes	are	callable.	These	objects	normally	act	as	factories	for
new	 instances	 of	 themselves,	 but	 variations	 are	 possible	 for
class	 types	 that	 override	 __new__().	 The	 arguments	 of	 the
call	 are	 passed	 to	 __new__()	 and,	 in	 the	 typical	 case,	 to
__init__()	to	initialize	the	new	instance.

Class	Instances
Instances	of	arbitrary	classes	can	be	made	callable	by	defining
a	__call__()	method	in	their	class.

Modules
Modules	 are	 a	 basic	 organizational	 unit	 of	 Python	 code,	 and	 are
created	 by	 the	 import	 system	 as	 invoked	 either	 by	 the	 import
statement	 (see	 import),	 or	 by	 calling	 functions	 such	 as
importlib.import_module()	 and	 built-in	 __import__().	 A
module	 object	 has	 a	 namespace	 implemented	 by	 a	 dictionary
object	 (this	 is	 the	 dictionary	 referenced	 by	 the	 __globals__
attribute	 of	 functions	 defined	 in	 the	module).	 Attribute	 references
are	translated	to	 lookups	in	this	dictionary,	e.g.,	m.x	 is	equivalent
to	m.__dict__["x"].	A	module	object	does	not	contain	the	code
object	used	to	 initialize	the	module	(since	it	 isn’t	needed	once	the
initialization	is	done).

Attribute	assignment	updates	 the	module’s	namespace	dictionary,
e.g.,	m.x	=	1	is	equivalent	to	m.__dict__["x"]	=	1.

Special	read-only	attribute:	__dict__	is	the	module’s	namespace
as	a	dictionary	object.

CPython	 implementation	detail:	Because	of	 the	way	CPython
clears	module	dictionaries,	 the	module	dictionary	will	be	cleared
when	the	module	falls	out	of	scope	even	if	the	dictionary	still	has
live	 references.	 To	 avoid	 this,	 copy	 the	 dictionary	 or	 keep	 the
module	around	while	using	its	dictionary	directly.

Predefined	(writable)	attributes:	__name__	 is	 the	module’s	name;
__doc__	 is	 the	 module’s	 documentation	 string,	 or	 None	 if
unavailable;	__file__	 is	the	pathname	of	the	file	from	which	the

module	 was	 loaded,	 if	 it	 was	 loaded	 from	 a	 file.	 The	 __file__
attribute	may	be	missing	 for	 certain	 types	of	modules,	 such	as	C
modules	that	are	statically	linked	into	the	interpreter;	for	extension
modules	 loaded	 dynamically	 from	 a	 shared	 library,	 it	 is	 the
pathname	of	the	shared	library	file.

Custom	classes
Custom	class	 types	are	 typically	created	by	class	definitions	 (see
section	Class	definitions).	A	class	has	a	namespace	 implemented
by	a	dictionary	object.	Class	attribute	references	are	 translated	 to
lookups	 in	 this	 dictionary,	 e.g.,	 C.x	 is	 translated	 to
C.__dict__["x"]	(although	there	are	a	number	of	hooks	which
allow	 for	 other	 means	 of	 locating	 attributes).	 When	 the	 attribute
name	is	not	found	there,	the	attribute	search	continues	in	the	base
classes.	 This	 search	 of	 the	 base	 classes	 uses	 the	 C3	 method
resolution	order	which	behaves	 correctly	 even	 in	 the	presence	of
‘diamond’	 inheritance	 structures	 where	 there	 are	 multiple
inheritance	 paths	 leading	 back	 to	 a	 common	 ancestor.	 Additional
details	 on	 the	 C3	 MRO	 used	 by	 Python	 can	 be	 found	 in	 the
documentation	 accompanying	 the	 2.3	 release	 at
http://www.python.org/download/releases/2.3/mro/.

When	a	 class	 attribute	 reference	 (for	 class	 C,	 say)	would	 yield	 a
class	 method	 object,	 it	 is	 transformed	 into	 an	 instance	 method
object	 whose	 __self__	 attributes	 is	 C.	 When	 it	 would	 yield	 a
static	method	object,	 it	 is	 transformed	 into	 the	object	wrapped	by
the	static	method	object.	See	section	Implementing	Descriptors	for
another	way	 in	which	 attributes	 retrieved	 from	 a	 class	may	 differ
from	those	actually	contained	in	its	__dict__.

Class	attribute	assignments	update	the	class’s	dictionary,	never	the
dictionary	of	a	base	class.

http://www.python.org/download/releases/2.3/mro/

A	class	object	can	be	called	(see	above)	to	yield	a	class	 instance
(see	below).

Special	attributes:	__name__	 is	 the	class	name;	__module__	 is
the	module	name	in	which	the	class	was	defined;	__dict__	is	the
dictionary	 containing	 the	 class’s	 namespace;	 __bases__	 is	 a
tuple	(possibly	empty	or	a	singleton)	containing	 the	base	classes,
in	the	order	of	 their	occurrence	in	the	base	class	list;	__doc__	 is
the	class’s	documentation	string,	or	None	if	undefined.

Class	instances
A	class	instance	is	created	by	calling	a	class	object	(see	above).	A
class	 instance	 has	 a	 namespace	 implemented	 as	 a	 dictionary
which	is	the	first	place	in	which	attribute	references	are	searched.
When	an	attribute	is	not	found	there,	and	the	instance’s	class	has
an	 attribute	 by	 that	 name,	 the	 search	 continues	 with	 the	 class
attributes.	If	a	class	attribute	is	found	that	is	a	user-defined	function
object,	 it	 is	 transformed	 into	 an	 instance	 method	 object	 whose
__self__	 attribute	 is	 the	 instance.	 Static	 method	 and	 class
method	objects	are	also	 transformed;	see	above	under	“Classes”.
See	 section	 Implementing	 Descriptors	 for	 another	 way	 in	 which
attributes	of	a	class	retrieved	via	 its	 instances	may	differ	 from	the
objects	 actually	 stored	 in	 the	 class’s	 __dict__.	 If	 no	 class
attribute	 is	 found,	 and	 the	 object’s	 class	 has	 a	 __getattr__()
method,	that	is	called	to	satisfy	the	lookup.

Attribute	 assignments	 and	 deletions	 update	 the	 instance’s
dictionary,	 never	 a	 class’s	 dictionary.	 If	 the	 class	 has	 a
__setattr__()	 or	 __delattr__()	 method,	 this	 is	 called
instead	of	updating	the	instance	dictionary	directly.

Class	 instances	 can	 pretend	 to	 be	 numbers,	 sequences,	 or

mappings	 if	 they	 have	methods	 with	 certain	 special	 names.	 See
section	Special	method	names.

Special	 attributes:	 __dict__	 is	 the	 attribute	 dictionary;
__class__	is	the	instance’s	class.

I/O	objects	(also	known	as	file	objects)
A	file	object	represents	an	open	file.	Various	shortcuts	are	available
to	 create	 file	 objects:	 the	 open()	 built-in	 function,	 and	 also
os.popen(),	 os.fdopen(),	 and	 the	 makefile()	 method	 of
socket	 objects	 (and	 perhaps	 by	 other	 functions	 or	 methods
provided	by	extension	modules).

The	 objects	 sys.stdin,	 sys.stdout	 and	 sys.stderr	 are
initialized	to	file	objects	corresponding	to	the	interpreter’s	standard
input,	output	and	error	streams;	they	are	all	open	in	text	mode	and
therefore	 follow	 the	 interface	 defined	 by	 the	 io.TextIOBase
abstract	class.

Internal	types
A	 few	 types	used	 internally	 by	 the	 interpreter	 are	 exposed	 to	 the
user.	 Their	 definitions	 may	 change	 with	 future	 versions	 of	 the
interpreter,	but	they	are	mentioned	here	for	completeness.

Code	objects
Code	objects	represent	byte-compiled	executable	Python	code,
or	 bytecode.	 The	 difference	 between	 a	 code	 object	 and	 a
function	 object	 is	 that	 the	 function	 object	 contains	 an	 explicit
reference	 to	 the	 function’s	globals	 (the	module	 in	which	 it	was
defined),	 while	 a	 code	 object	 contains	 no	 context;	 also	 the
default	argument	values	are	stored	in	the	function	object,	not	in
the	 code	 object	 (because	 they	 represent	 values	 calculated	 at
run-time).	Unlike	 function	objects,	 code	objects	 are	 immutable

and	 contain	 no	 references	 (directly	 or	 indirectly)	 to	 mutable
objects.

Special	read-only	attributes:	co_name	gives	the	function	name;
co_argcount	is	the	number	of	positional	arguments	(including
arguments	with	default	values);	co_nlocals	 is	the	number	of
local	 variables	 used	 by	 the	 function	 (including	 arguments);
co_varnames	 is	 a	 tuple	 containing	 the	 names	 of	 the	 local
variables	(starting	with	the	argument	names);	co_cellvars	is
a	 tuple	 containing	 the	 names	 of	 local	 variables	 that	 are
referenced	 by	 nested	 functions;	 co_freevars	 is	 a	 tuple
containing	 the	 names	 of	 free	 variables;	 co_code	 is	 a	 string
representing	 the	 sequence	 of	 bytecode	 instructions;
co_consts	 is	 a	 tuple	 containing	 the	 literals	 used	 by	 the
bytecode;	co_names	 is	a	 tuple	containing	 the	names	used	by
the	 bytecode;	 co_filename	 is	 the	 filename	 from	 which	 the
code	was	compiled;	co_firstlineno	 is	the	first	 line	number
of	 the	 function;	 co_lnotab	 is	 a	 string	 encoding	 the	mapping
from	 bytecode	 offsets	 to	 line	 numbers	 (for	 details	 see	 the
source	code	of	the	interpreter);	co_stacksize	is	the	required
stack	 size	 (including	 local	 variables);	 co_flags	 is	 an	 integer
encoding	a	number	of	flags	for	the	interpreter.

The	 following	 flag	bits	are	defined	 for	 co_flags:	 bit	 0x04	 is
set	 if	 the	 function	uses	 the	 *arguments	 syntax	 to	accept	 an
arbitrary	number	of	positional	arguments;	bit	0x08	 is	set	 if	 the
function	 uses	 the	 **keywords	 syntax	 to	 accept	 arbitrary
keyword	 arguments;	 bit	 0x20	 is	 set	 if	 the	 function	 is	 a
generator.

Future	 feature	 declarations	 (from	 __future__	 import

division)	 also	 use	 bits	 in	 co_flags	 to	 indicate	 whether	 a
code	object	was	compiled	with	a	particular	feature	enabled:	bit
0x2000	 is	set	 if	 the	function	was	compiled	with	future	division
enabled;	bits	0x10	and	0x1000	were	used	 in	earlier	versions
of	Python.

Other	bits	in	co_flags	are	reserved	for	internal	use.

If	 a	 code	 object	 represents	 a	 function,	 the	 first	 item	 in
co_consts	 is	 the	 documentation	 string	 of	 the	 function,	 or
None	if	undefined.

Frame	objects
Frame	objects	represent	execution	frames.	They	may	occur	 in
traceback	objects	(see	below).

Special	 read-only	 attributes:	 f_back	 is	 to	 the	 previous	 stack
frame	 (towards	 the	caller),	 or	None	 if	 this	 is	 the	bottom	stack
frame;	f_code	is	the	code	object	being	executed	in	this	frame;
f_locals	 is	 the	 dictionary	 used	 to	 look	 up	 local	 variables;
f_globals	is	used	for	global	variables;	f_builtins	is	used
for	 built-in	 (intrinsic)	 names;	 f_lasti	 gives	 the	 precise
instruction	(this	is	an	index	into	the	bytecode	string	of	the	code
object).

Special	writable	attributes:	f_trace,	if	not	None,	 is	a	function
called	at	the	start	of	each	source	code	line	(this	is	used	by	the
debugger);	f_lineno	 is	 the	current	 line	number	of	 the	 frame
—	writing	to	this	from	within	a	trace	function	jumps	to	the	given
line	 (only	 for	 the	 bottom-most	 frame).	 A	 debugger	 can
implement	 a	 Jump	 command	 (aka	 Set	 Next	 Statement)	 by
writing	to	f_lineno.

Frame	objects	support	one	method:

frame.clear()
This	method	clears	all	 references	to	 local	variables	held	by
the	 frame.	 Also,	 if	 the	 frame	 belonged	 to	 a	 generator,	 the
generator	 is	 finalized.	 This	 helps	 break	 reference	 cycles
involving	 frame	 objects	 (for	 example	 when	 catching	 an
exception	and	storing	its	traceback	for	later	use).

RuntimeError	is	raised	if	the	frame	is	currently	executing.

New	in	version	3.4.

Traceback	objects
Traceback	 objects	 represent	 a	 stack	 trace	 of	 an	 exception.	 A
traceback	 object	 is	 created	 when	 an	 exception	 occurs.	When
the	 search	 for	 an	 exception	 handler	 unwinds	 the	 execution
stack,	at	each	unwound	 level	a	 traceback	object	 is	 inserted	 in
front	 of	 the	 current	 traceback.	 When	 an	 exception	 handler	 is
entered,	the	stack	trace	is	made	available	to	the	program.	(See
section	The	try	statement.)	 It	 is	accessible	as	 the	 third	 item	of
the	 tuple	 returned	 by	 sys.exc_info().	 When	 the	 program
contains	 no	 suitable	 handler,	 the	 stack	 trace	 is	 written	 (nicely
formatted)	 to	 the	 standard	 error	 stream;	 if	 the	 interpreter	 is
interactive,	 it	 is	 also	 made	 available	 to	 the	 user	 as
sys.last_traceback.

Special	 read-only	 attributes:	 tb_next	 is	 the	 next	 level	 in	 the
stack	 trace	(towards	 the	 frame	where	 the	exception	occurred),
or	 None	 if	 there	 is	 no	 next	 level;	 tb_frame	 points	 to	 the
execution	frame	of	the	current	level;	tb_lineno	gives	the	line
number	where	the	exception	occurred;	tb_lasti	indicates	the

precise	 instruction.	The	 line	number	and	 last	 instruction	 in	 the
traceback	may	differ	from	the	line	number	of	its	frame	object	if
the	 exception	 occurred	 in	 a	 try	 statement	 with	 no	 matching
except	clause	or	with	a	finally	clause.

Slice	objects
Slice	objects	are	used	to	represent	slices	for	__getitem__()
methods.	 They	 are	 also	 created	 by	 the	 built-in	 slice()
function.

Special	read-only	attributes:	start	is	the	lower	bound;	stop	is
the	 upper	 bound;	 step	 is	 the	 step	 value;	 each	 is	 None	 if
omitted.	These	attributes	can	have	any	type.

Slice	objects	support	one	method:

slice.indices(self,	length)
This	 method	 takes	 a	 single	 integer	 argument	 length	 and
computes	 information	 about	 the	 slice	 that	 the	 slice	 object
would	describe	 if	 applied	 to	a	 sequence	of	 length	 items.	 It
returns	a	 tuple	of	 three	 integers;	 respectively	 these	are	 the
start	 and	 stop	 indices	 and	 the	 step	 or	 stride	 length	 of	 the
slice.	 Missing	 or	 out-of-bounds	 indices	 are	 handled	 in	 a
manner	consistent	with	regular	slices.

Static	method	objects
Static	 method	 objects	 provide	 a	 way	 of	 defeating	 the
transformation	of	 function	objects	 to	method	objects	described
above.	 A	 static	method	 object	 is	 a	 wrapper	 around	 any	 other
object,	 usually	 a	 user-defined	 method	 object.	 When	 a	 static
method	object	is	retrieved	from	a	class	or	a	class	instance,	the
object	 actually	 returned	 is	 the	 wrapped	 object,	 which	 is	 not
subject	to	any	further	transformation.	Static	method	objects	are

not	themselves	callable,	although	the	objects	they	wrap	usually
are.	 Static	 method	 objects	 are	 created	 by	 the	 built-in
staticmethod()	constructor.

Class	method	objects
A	class	method	object,	like	a	static	method	object,	is	a	wrapper
around	another	object	that	alters	the	way	in	which	that	object	is
retrieved	 from	 classes	 and	 class	 instances.	 The	 behaviour	 of
class	method	 objects	 upon	 such	 retrieval	 is	 described	 above,
under	 “User-defined	 methods”.	 Class	 method	 objects	 are
created	by	the	built-in	classmethod()	constructor.

3.3.	Special	method	names

A	class	can	 implement	certain	operations	that	are	 invoked	by	special
syntax	 (such	 as	 arithmetic	 operations	 or	 subscripting	 and	 slicing)	 by
defining	 methods	 with	 special	 names.	 This	 is	 Python’s	 approach	 to
operator	 overloading,	 allowing	 classes	 to	 define	 their	 own	 behavior
with	respect	 to	 language	operators.	For	 instance,	 if	a	class	defines	a
method	named	__getitem__(),	and	x	 is	an	 instance	of	 this	class,
then	x[i]	is	roughly	equivalent	to	type(x).__getitem__(x,	i).
Except	where	mentioned,	 attempts	 to	 execute	 an	 operation	 raise	 an
exception	 when	 no	 appropriate	 method	 is	 defined	 (typically
AttributeError	or	TypeError).

When	 implementing	 a	 class	 that	 emulates	 any	 built-in	 type,	 it	 is
important	that	the	emulation	only	be	implemented	to	the	degree	that	it
makes	 sense	 for	 the	 object	 being	 modelled.	 For	 example,	 some
sequences	 may	 work	 well	 with	 retrieval	 of	 individual	 elements,	 but
extracting	 a	 slice	may	 not	make	 sense.	 (One	 example	 of	 this	 is	 the
NodeList	interface	in	the	W3C’s	Document	Object	Model.)

3.3.1.	Basic	customization

object.__new__(cls[,	...])
Called	to	create	a	new	instance	of	class	cls.	__new__()	is	a	static
method	 (special-cased	 so	 you	 need	 not	 declare	 it	 as	 such)	 that
takes	 the	 class	 of	 which	 an	 instance	 was	 requested	 as	 its	 first
argument.	 The	 remaining	 arguments	 are	 those	 passed	 to	 the
object	 constructor	 expression	 (the	 call	 to	 the	 class).	 The	 return
value	of	__new__()	should	be	the	new	object	instance	(usually	an
instance	of	cls).

Typical	 implementations	 create	 a	 new	 instance	 of	 the	 class	 by
invoking	 the	 superclass’s	 __new__()	 method	 using
super(currentclass,	 cls).__new__(cls[,	 ...])	 with
appropriate	 arguments	 and	 then	 modifying	 the	 newly-created
instance	as	necessary	before	returning	it.

If	__new__()	 returns	an	 instance	of	cls,	 then	 the	new	 instance’s
__init__()	 method	 will	 be	 invoked	 like	 __init__(self[,
...]),	 where	 self	 is	 the	 new	 instance	 and	 the	 remaining
arguments	are	the	same	as	were	passed	to	__new__().

If	 __new__()	 does	 not	 return	 an	 instance	 of	 cls,	 then	 the	 new
instance’s	__init__()	method	will	not	be	invoked.

__new__()	 is	 intended	mainly	 to	allow	subclasses	of	 immutable
types	(like	int,	str,	or	tuple)	to	customize	instance	creation.	It	is	also
commonly	overridden	in	custom	metaclasses	in	order	to	customize
class	creation.

object.__init__(self[,	...])
Called	 when	 the	 instance	 is	 created.	 The	 arguments	 are	 those
passed	to	the	class	constructor	expression.	If	a	base	class	has	an
__init__()	method,	the	derived	class’s	__init__()	method,	if
any,	must	explicitly	call	it	to	ensure	proper	initialization	of	the	base
class	 part	 of	 the	 instance;	 for	 example:
BaseClass.__init__(self,	 [args...]).	 As	 a	 special
constraint	on	constructors,	no	value	may	be	returned;	doing	so	will
cause	a	TypeError	to	be	raised	at	runtime.

object.__del__(self)
Called	 when	 the	 instance	 is	 about	 to	 be	 destroyed.	 This	 is	 also
called	a	destructor.	If	a	base	class	has	a	__del__()	method,	the

derived	class’s	__del__()	method,	if	any,	must	explicitly	call	it	to
ensure	proper	deletion	of	the	base	class	part	of	the	instance.	Note
that	 it	 is	possible	(though	not	recommended!)	 for	 the	__del__()
method	to	postpone	destruction	of	the	instance	by	creating	a	new
reference	to	it.	It	may	then	be	called	at	a	later	time	when	this	new
reference	is	deleted.	It	is	not	guaranteed	that	__del__()	methods
are	called	for	objects	that	still	exist	when	the	interpreter	exits.

Note: 	del	x	doesn’t	directly	call	x.__del__()	—	the	former
decrements	 the	 reference	 count	 for	 x	 by	 one,	 and	 the	 latter	 is
only	 called	 when	 x‘s	 reference	 count	 reaches	 zero.	 Some
common	 situations	 that	may	 prevent	 the	 reference	 count	 of	 an
object	 from	 going	 to	 zero	 include:	 circular	 references	 between
objects	 (e.g.,	 a	 doubly-linked	 list	 or	 a	 tree	 data	 structure	 with
parent	and	child	pointers);	a	reference	to	the	object	on	the	stack
frame	 of	 a	 function	 that	 caught	 an	 exception	 (the	 traceback
stored	in	sys.exc_info()[2]	keeps	the	stack	frame	alive);	or
a	 reference	 to	 the	 object	 on	 the	 stack	 frame	 that	 raised	 an
unhandled	exception	in	interactive	mode	(the	traceback	stored	in
sys.last_traceback	 keeps	 the	 stack	 frame	 alive).	 The	 first
situation	can	only	be	remedied	by	explicitly	breaking	 the	cycles;
the	 latter	 two	 situations	 can	 be	 resolved	 by	 storing	 None	 in
sys.last_traceback.	Circular	 references	which	are	garbage
are	detected	and	cleaned	up	when	the	cyclic	garbage	collector	is
enabled	(it’s	on	by	default).	Refer	to	the	documentation	for	the	gc
module	for	more	information	about	this	topic.

Warning: 	 Due	 to	 the	 precarious	 circumstances	 under	 which
__del__()	methods	are	 invoked,	exceptions	 that	occur	during
their	 execution	 are	 ignored,	 and	 a	 warning	 is	 printed	 to
sys.stderr	 instead.	 Also,	 when	 __del__()	 is	 invoked	 in

response	to	a	module	being	deleted	(e.g.,	when	execution	of	the
program	 is	 done),	 other	 globals	 referenced	 by	 the	 __del__()
method	 may	 already	 have	 been	 deleted	 or	 in	 the	 process	 of
being	 torn	down	 (e.g.	 the	 import	machinery	shutting	down).	For
this	 reason,	 __del__()	 methods	 should	 do	 the	 absolute
minimum	 needed	 to	 maintain	 external	 invariants.	 Starting	 with
version	1.5,	Python	guarantees	that	globals	whose	name	begins
with	 a	 single	 underscore	 are	 deleted	 from	 their	 module	 before
other	globals	are	deleted;	 if	no	other	 references	 to	such	globals
exist,	 this	may	 help	 in	 assuring	 that	 imported	modules	 are	 still
available	at	the	time	when	the	__del__()	method	is	called.

object.__repr__(self)
Called	 by	 the	 repr()	 built-in	 function	 to	 compute	 the	 “official”
string	representation	of	an	object.	If	at	all	possible,	this	should	look
like	 a	 valid	 Python	 expression	 that	 could	 be	 used	 to	 recreate	 an
object	with	 the	same	value	 (given	an	appropriate	environment).	 If
this	 is	 not	 possible,	 a	 string	 of	 the	 form	 <...some	 useful

description...>	should	be	returned.	The	return	value	must	be
a	 string	 object.	 If	 a	 class	 defines	 __repr__()	 but	 not
__str__(),	 then	 __repr__()	 is	 also	 used	when	 an	 “informal”
string	representation	of	instances	of	that	class	is	required.

This	 is	 typically	 used	 for	 debugging,	 so	 it	 is	 important	 that	 the
representation	is	information-rich	and	unambiguous.

object.__str__(self)
Called	by	str(object)	and	the	built-in	functions	format()	and
print()	 to	 compute	 the	 “informal”	 or	 nicely	 printable	 string
representation	 of	 an	 object.	 The	 return	 value	 must	 be	 a	 string
object.

This	method	differs	from	object.__repr__()	in	that	there	is	no
expectation	 that	 __str__()	 return	 a	 valid	 Python	 expression:	 a
more	convenient	or	concise	representation	can	be	used.

The	 default	 implementation	 defined	 by	 the	 built-in	 type	 object
calls	object.__repr__().

object.__bytes__(self)
Called	by	bytes()	 to	compute	a	byte-string	representation	of	an
object.	This	should	return	a	bytes	object.

object.__format__(self,	format_spec)
Called	 by	 the	 format()	 built-in	 function	 (and	 by	 extension,	 the
str.format()	 method	 of	 class	 str)	 to	 produce	 a	 “formatted”
string	representation	of	an	object.	The	format_spec	argument	is
a	 string	 that	 contains	 a	 description	 of	 the	 formatting	 options
desired.	The	interpretation	of	the	format_spec	argument	is	up	to
the	type	implementing	__format__(),	however	most	classes	will
either	 delegate	 formatting	 to	 one	 of	 the	 built-in	 types,	 or	 use	 a
similar	formatting	option	syntax.

See	Format	 Specification	 Mini-Language	 for	 a	 description	 of	 the
standard	formatting	syntax.

The	return	value	must	be	a	string	object.

Changed	in	version	3.4:	The	__format__	method	of	object	 itself
raises	a	TypeError	if	passed	any	non-empty	string.

object.__lt__(self,	other)
object.__le__(self,	other)
object.__eq__(self,	other)

object.__ne__(self,	other)
object.__gt__(self,	other)
object.__ge__(self,	other)

These	 are	 the	 so-called	 “rich	 comparison”	 methods.	 The
correspondence	between	operator	symbols	and	method	names	 is
as	 follows:	 x<y	 calls	 x.__lt__(y),	 x<=y	 calls	 x.__le__(y),
x==y	 calls	x.__eq__(y),	 x!=y	 calls	 x.__ne__(y),	 x>y	 calls
x.__gt__(y),	and	x>=y	calls	x.__ge__(y).

A	 rich	 comparison	 method	 may	 return	 the	 singleton
NotImplemented	 if	 it	 does	 not	 implement	 the	 operation	 for	 a
given	 pair	 of	 arguments.	 By	 convention,	 False	 and	 True	 are
returned	 for	 a	 successful	 comparison.	 However,	 these	 methods
can	 return	 any	 value,	 so	 if	 the	 comparison	 operator	 is	 used	 in	 a
Boolean	context	(e.g.,	in	the	condition	of	an	if	statement),	Python
will	 call	bool()	 on	 the	 value	 to	determine	 if	 the	 result	 is	 true	or
false.

There	 are	 no	 implied	 relationships	 among	 the	 comparison
operators.	 The	 truth	 of	 x==y	 does	 not	 imply	 that	 x!=y	 is	 false.
Accordingly,	 when	 defining	 __eq__(),	 one	 should	 also	 define
__ne__()	so	that	the	operators	will	behave	as	expected.	See	the
paragraph	on	__hash__()	 for	some	 important	notes	on	creating
hashable	objects	which	support	custom	comparison	operations	and
are	usable	as	dictionary	keys.

There	are	no	swapped-argument	versions	of	these	methods	(to	be
used	when	the	left	argument	does	not	support	the	operation	but	the
right	argument	does);	rather,	__lt__()	and	__gt__()	are	each
other’s	 reflection,	 __le__()	 and	 __ge__()	 are	 each	 other’s
reflection,	and	__eq__()	and	__ne__()	are	their	own	reflection.

Arguments	to	rich	comparison	methods	are	never	coerced.

To	 automatically	 generate	 ordering	 operations	 from	 a	 single	 root
operation,	see	functools.total_ordering().

object.__hash__(self)
Called	by	built-in	function	hash()	and	for	operations	on	members
of	 hashed	 collections	 including	 set,	 frozenset,	 and	 dict.
__hash__()	should	return	an	integer.	The	only	required	property
is	that	objects	which	compare	equal	have	the	same	hash	value;	 it
is	 advised	 to	 somehow	mix	 together	 (e.g.	 using	exclusive	or)	 the
hash	values	for	the	components	of	the	object	that	also	play	a	part
in	comparison	of	objects.

Note: 	 hash()	 truncates	 the	 value	 returned	 from	 an	 object’s
custom	__hash__()	method	to	the	size	of	a	Py_ssize_t.	This
is	typically	8	bytes	on	64-bit	builds	and	4	bytes	on	32-bit	builds.	If
an	object’s	__hash__()	must	interoperate	on	builds	of	different
bit	sizes,	be	sure	to	check	the	width	on	all	supported	builds.	An
easy	 way	 to	 do	 this	 is	 with	 python	 -c	 "import	 sys;

print(sys.hash_info.width)"

If	 a	 class	 does	 not	 define	 an	 __eq__()	 method	 it	 should	 not
define	a	__hash__()	operation	either;	if	it	defines	__eq__()	but
not	 __hash__(),	 its	 instances	 will	 not	 be	 usable	 as	 items	 in
hashable	 collections.	 If	 a	 class	 defines	 mutable	 objects	 and
implements	 an	 __eq__()	 method,	 it	 should	 not	 implement
__hash__(),	 since	 the	 implementation	 of	 hashable	 collections
requires	that	a	key’s	hash	value	is	 immutable	(if	 the	object’s	hash
value	changes,	it	will	be	in	the	wrong	hash	bucket).

User-defined	classes	have	__eq__()	and	__hash__()	methods

by	 default;	 with	 them,	 all	 objects	 compare	 unequal	 (except	 with
themselves)	 and	 x.__hash__()	 returns	 an	 appropriate	 value
such	 that	 x	==	y	 implies	 both	 that	 x	is	y	 and	 hash(x)	==
hash(y).

A	 class	 that	 overrides	 __eq__()	 and	 does	 not	 define
__hash__()	 will	 have	 its	 __hash__()	 implicitly	 set	 to	 None.
When	 the	__hash__()	method	of	 a	 class	 is	 None,	 instances	 of
the	 class	 will	 raise	 an	 appropriate	 TypeError	 when	 a	 program
attempts	 to	 retrieve	 their	 hash	 value,	 and	 will	 also	 be	 correctly
identified	 as	 unhashable	 when	 checking	 isinstance(obj,
collections.Hashable).

If	 a	 class	 that	 overrides	 __eq__()	 needs	 to	 retain	 the
implementation	 of	 __hash__()	 from	 a	 parent	 class,	 the
interpreter	 must	 be	 told	 this	 explicitly	 by	 setting	 __hash__	 =
<ParentClass>.__hash__.

If	 a	 class	 that	 does	 not	 override	 __eq__()	 wishes	 to	 suppress
hash	 support,	 it	 should	 include	 __hash__	=	None	 in	 the	 class
definition.	 A	 class	 which	 defines	 its	 own	 __hash__()	 that
explicitly	 raises	 a	 TypeError	 would	 be	 incorrectly	 identified	 as
hashable	by	an	isinstance(obj,	collections.Hashable)
call.

Note: 	 By	 default,	 the	 __hash__()	 values	 of	 str,	 bytes	 and
datetime	objects	are	“salted”	with	an	unpredictable	random	value.
Although	 they	 remain	 constant	 within	 an	 individual	 Python
process,	 they	are	not	 predictable	between	 repeated	 invocations
of	Python.
This	is	 intended	to	provide	protection	against	a	denial-of-service

caused	 by	 carefully-chosen	 inputs	 that	 exploit	 the	 worst	 case
performance	 of	 a	 dict	 insertion,	 O(n^2)	 complexity.	 See
http://www.ocert.org/advisories/ocert-2011-003.html	for	details.

Changing	hash	values	affects	the	iteration	order	of	dicts,	sets	and
other	mappings.	Python	has	never	made	guarantees	about	 this
ordering	(and	it	typically	varies	between	32-bit	and	64-bit	builds).

See	also	PYTHONHASHSEED.

Changed	in	version	3.3:	Hash	randomization	is	enabled	by	default.

object.__bool__(self)
Called	 to	 implement	 truth	 value	 testing	 and	 the	 built-in	 operation
bool();	should	return	False	or	True.	When	 this	method	 is	not
defined,	 __len__()	 is	 called,	 if	 it	 is	 defined,	 and	 the	 object	 is
considered	 true	 if	 its	 result	 is	 nonzero.	 If	 a	 class	 defines	 neither
__len__()	 nor	 __bool__(),	 all	 its	 instances	 are	 considered
true.

3.3.2.	Customizing	attribute	access

The	 following	methods	 can	 be	 defined	 to	 customize	 the	meaning	 of
attribute	 access	 (use	 of,	 assignment	 to,	 or	 deletion	 of	 x.name)	 for
class	instances.

object.__getattr__(self,	name)
Called	when	an	attribute	 lookup	has	not	 found	 the	attribute	 in	 the
usual	places	(i.e.	it	is	not	an	instance	attribute	nor	is	it	found	in	the
class	 tree	 for	 self).	 name	 is	 the	 attribute	 name.	 This	 method
should	 return	 the	 (computed)	 attribute	 value	 or	 raise	 an
AttributeError	exception.

http://www.ocert.org/advisories/ocert-2011-003.html

Note	 that	 if	 the	attribute	 is	 found	 through	 the	normal	mechanism,
__getattr__()	 is	 not	 called.	 (This	 is	 an	 intentional	 asymmetry
between	 __getattr__()	 and	 __setattr__().)	 This	 is	 done
both	 for	 efficiency	 reasons	 and	 because	 otherwise
__getattr__()	would	have	no	way	to	access	other	attributes	of
the	instance.	Note	that	at	least	for	instance	variables,	you	can	fake
total	 control	 by	 not	 inserting	 any	 values	 in	 the	 instance	 attribute
dictionary	 (but	 instead	 inserting	 them	 in	 another	 object).	 See	 the
__getattribute__()	 method	 below	 for	 a	 way	 to	 actually	 get
total	control	over	attribute	access.

object.__getattribute__(self,	name)
Called	 unconditionally	 to	 implement	 attribute	 accesses	 for
instances	of	 the	class.	 If	 the	class	also	defines	__getattr__(),
the	 latter	will	 not	 be	 called	 unless	 __getattribute__()	 either
calls	 it	 explicitly	 or	 raises	 an	 AttributeError.	 This	 method
should	 return	 the	 (computed)	 attribute	 value	 or	 raise	 an
AttributeError	exception.	In	order	to	avoid	infinite	recursion	in
this	method,	 its	 implementation	should	always	call	 the	base	class
method	with	the	same	name	to	access	any	attributes	it	needs,	for
example,	object.__getattribute__(self,	name).

Note: 	 This	 method	 may	 still	 be	 bypassed	 when	 looking	 up
special	methods	as	 the	result	of	 implicit	 invocation	via	 language
syntax	or	built-in	functions.	See	Special	method	lookup.

object.__setattr__(self,	name,	value)
Called	 when	 an	 attribute	 assignment	 is	 attempted.	 This	 is	 called
instead	 of	 the	 normal	 mechanism	 (i.e.	 store	 the	 value	 in	 the
instance	dictionary).	name	is	the	attribute	name,	value	is	the	value
to	be	assigned	to	it.

If	 __setattr__()	 wants	 to	 assign	 to	 an	 instance	 attribute,	 it
should	 call	 the	 base	 class	 method	 with	 the	 same	 name,	 for
example,	object.__setattr__(self,	name,	value).

object.__delattr__(self,	name)
Like	 __setattr__()	 but	 for	 attribute	 deletion	 instead	 of
assignment.	This	should	only	be	implemented	if	del	obj.name	is
meaningful	for	the	object.

object.__dir__(self)
Called	when	dir()	 is	 called	on	 the	object.	A	sequence	must	be
returned.	dir()	converts	the	returned	sequence	to	a	list	and	sorts
it.

3.3.2.1.	Implementing	Descriptors

The	 following	 methods	 only	 apply	 when	 an	 instance	 of	 the	 class
containing	 the	 method	 (a	 so-called	 descriptor	 class)	 appears	 in	 an
owner	 class	 (the	 descriptor	 must	 be	 in	 either	 the	 owner’s	 class
dictionary	 or	 in	 the	 class	 dictionary	 for	 one	 of	 its	 parents).	 In	 the
examples	below,	 “the	attribute”	 refers	 to	 the	attribute	whose	name	 is
the	key	of	the	property	in	the	owner	class’	__dict__.

object.__get__(self,	instance,	owner)
Called	 to	 get	 the	 attribute	 of	 the	 owner	 class	 (class	 attribute
access)	or	of	an	instance	of	that	class	(instance	attribute	access).
owner	is	always	the	owner	class,	while	instance	is	the	instance	that
the	attribute	was	accessed	through,	or	None	when	the	attribute	is
accessed	 through	 the	 owner.	 This	 method	 should	 return	 the
(computed)	 attribute	 value	 or	 raise	 an	 AttributeError

exception.

object.__set__(self,	instance,	value)
Called	 to	 set	 the	 attribute	 on	 an	 instance	 instance	 of	 the	 owner
class	to	a	new	value,	value.

object.__delete__(self,	instance)
Called	to	delete	the	attribute	on	an	instance	 instance	of	the	owner
class.

3.3.2.2.	Invoking	Descriptors

In	general,	a	descriptor	 is	an	object	attribute	with	 “binding	behavior”,
one	whose	 attribute	 access	 has	 been	 overridden	 by	methods	 in	 the
descriptor	protocol:	__get__(),	__set__(),	and	__delete__().	If
any	 of	 those	 methods	 are	 defined	 for	 an	 object,	 it	 is	 said	 to	 be	 a
descriptor.

The	default	 behavior	 for	 attribute	 access	 is	 to	 get,	 set,	 or	 delete	 the
attribute	 from	an	object’s	 dictionary.	 For	 instance,	 a.x	 has	 a	 lookup
chain	 starting	 with	 a.__dict__['x'],	 then
type(a).__dict__['x'],	and	continuing	through	the	base	classes
of	type(a)	excluding	metaclasses.

However,	 if	 the	 looked-up	 value	 is	 an	 object	 defining	 one	 of	 the
descriptor	 methods,	 then	 Python	 may	 override	 the	 default	 behavior
and	 invoke	 the	 descriptor	method	 instead.	Where	 this	 occurs	 in	 the
precedence	chain	depends	on	which	descriptor	methods	were	defined
and	how	they	were	called.

The	starting	point	for	descriptor	invocation	is	a	binding,	a.x.	How	the
arguments	are	assembled	depends	on	a:

Direct	Call
The	 simplest	 and	 least	 common	 call	 is	 when	 user	 code	 directly

invokes	a	descriptor	method:	x.__get__(a).

Instance	Binding
If	 binding	 to	 an	object	 instance,	 a.x	 is	 transformed	 into	 the	 call:
type(a).__dict__['x'].__get__(a,	type(a)).

Class	Binding
If	 binding	 to	 a	 class,	 A.x	 is	 transformed	 into	 the	 call:
A.__dict__['x'].__get__(None,	A).

Super	Binding
If	 a	 is	 an	 instance	 of	 super,	 then	 the	 binding	 super(B,
obj).m()	 searches	 obj.__class__.__mro__	 for	 the	 base
class	A	 immediately	preceding	B	 and	 then	 invokes	 the	descriptor
with	 the	 call:	 A.__dict__['m'].__get__(obj,

obj.__class__).

For	 instance	 bindings,	 the	 precedence	 of	 descriptor	 invocation
depends	 on	 the	 which	 descriptor	 methods	 are	 defined.	 A	 descriptor
can	 define	 any	 combination	 of	 __get__(),	 __set__()	 and
__delete__().	If	it	does	not	define	__get__(),	then	accessing	the
attribute	will	return	the	descriptor	object	itself	unless	there	is	a	value	in
the	object’s	 instance	dictionary.	 If	 the	descriptor	 defines	 __set__()
and/or	__delete__(),	it	is	a	data	descriptor;	if	it	defines	neither,	it	is
a	 non-data	 descriptor.	 Normally,	 data	 descriptors	 define	 both
__get__()	 and	 __set__(),	 while	 non-data	 descriptors	 have	 just
the	 __get__()	 method.	 Data	 descriptors	 with	 __set__()	 and
__get__()	 defined	 always	 override	 a	 redefinition	 in	 an	 instance
dictionary.	 In	 contrast,	 non-data	 descriptors	 can	 be	 overridden	 by
instances.

Python	methods	(including	staticmethod()	and	classmethod())
are	 implemented	as	non-data	descriptors.	Accordingly,	 instances	can
redefine	 and	 override	 methods.	 This	 allows	 individual	 instances	 to

acquire	behaviors	that	differ	from	other	instances	of	the	same	class.

The	 property()	 function	 is	 implemented	 as	 a	 data	 descriptor.
Accordingly,	instances	cannot	override	the	behavior	of	a	property.

3.3.2.3.	__slots__

By	default,	instances	of	classes	have	a	dictionary	for	attribute	storage.
This	wastes	space	for	objects	having	very	few	instance	variables.	The
space	consumption	can	become	acute	when	creating	 large	numbers
of	instances.

The	 default	 can	 be	 overridden	 by	 defining	 __slots__	 in	 a	 class
definition.	 The	 __slots__	 declaration	 takes	 a	 sequence	 of	 instance
variables	and	 reserves	 just	enough	space	 in	each	 instance	 to	hold	a
value	 for	 each	 variable.	 Space	 is	 saved	 because	 __dict__	 is	 not
created	for	each	instance.

object.__slots__

This	class	variable	can	be	assigned	a	string,	iterable,	or	sequence
of	 strings	with	 variable	 names	 used	 by	 instances.	 If	 defined	 in	 a
class,	 __slots__	 reserves	 space	 for	 the	 declared	 variables	 and
prevents	 the	 automatic	 creation	 of	__dict__	 and	__weakref__	 for
each	instance.

3.3.2.3.1.	Notes	on	using	__slots__

When	 inheriting	 from	 a	 class	 without	 __slots__,	 the	 __dict__
attribute	 of	 that	 class	 will	 always	 be	 accessible,	 so	 a	 __slots__
definition	in	the	subclass	is	meaningless.
Without	 a	 __dict__	 variable,	 instances	 cannot	 be	 assigned	 new
variables	not	listed	in	the	__slots__	definition.	Attempts	 to	assign
to	 an	 unlisted	 variable	 name	 raises	 AttributeError.	 If

dynamic	 assignment	 of	 new	 variables	 is	 desired,	 then	 add
'__dict__'	 to	 the	 sequence	 of	 strings	 in	 the	 __slots__
declaration.
Without	 a	 __weakref__	 variable	 for	 each	 instance,	 classes
defining	 __slots__	 do	 not	 support	 weak	 references	 to	 its
instances.	 If	 weak	 reference	 support	 is	 needed,	 then	 add
'__weakref__'	 to	 the	 sequence	 of	 strings	 in	 the	 __slots__
declaration.
__slots__	 are	 implemented	 at	 the	 class	 level	 by	 creating
descriptors	 (Implementing	 Descriptors)	 for	 each	 variable	 name.
As	a	result,	class	attributes	cannot	be	used	to	set	default	values
for	 instance	variables	defined	by	__slots__;	 otherwise,	 the	 class
attribute	would	overwrite	the	descriptor	assignment.
The	action	of	a	__slots__	declaration	is	limited	to	the	class	where
it	 is	defined.	As	a	 result,	subclasses	will	have	a	__dict__	 unless
they	also	define	__slots__	(which	must	only	contain	names	of	any
additional	slots).
If	a	class	defines	a	slot	also	defined	in	a	base	class,	the	instance
variable	defined	by	the	base	class	slot	is	inaccessible	(except	by
retrieving	its	descriptor	directly	from	the	base	class).	This	renders
the	meaning	of	the	program	undefined.	In	the	future,	a	check	may
be	added	to	prevent	this.
Nonempty	 __slots__	 does	 not	 work	 for	 classes	 derived	 from
“variable-length”	built-in	types	such	as	int,	bytes	and	tuple.
Any	non-string	 iterable	may	be	assigned	 to	__slots__.	Mappings
may	also	be	used;	however,	in	the	future,	special	meaning	may	be
assigned	to	the	values	corresponding	to	each	key.
__class__	assignment	works	only	 if	both	classes	have	 the	same
__slots__.

3.3.3.	Customizing	class	creation

By	default,	classes	are	constructed	using	type().	The	class	body	is

executed	in	a	new	namespace	and	the	class	name	is	bound	locally	to
the	result	of	type(name,	bases,	namespace).

The	 class	 creation	 process	 can	 be	 customised	 by	 passing	 the
metaclass	 keyword	 argument	 in	 the	 class	 definition	 line,	 or	 by
inheriting	from	an	existing	class	that	included	such	an	argument.	In	the
following	example,	both	MyClass	and	MySubclass	are	instances	of
Meta:

class	Meta(type):

				pass

class	MyClass(metaclass=Meta):

				pass

class	MySubclass(MyClass):

				pass

Any	other	keyword	arguments	that	are	specified	in	the	class	definition
are	passed	through	to	all	metaclass	operations	described	below.

When	a	class	definition	is	executed,	the	following	steps	occur:

the	appropriate	metaclass	is	determined
the	class	namespace	is	prepared
the	class	body	is	executed
the	class	object	is	created

3.3.3.1.	Determining	the	appropriate	metaclass

The	 appropriate	 metaclass	 for	 a	 class	 definition	 is	 determined	 as
follows:

if	no	bases	and	no	explicit	metaclass	are	given,	 then	type()	 is

used
if	 an	 explicit	 metaclass	 is	 given	 and	 it	 is	 not	 an	 instance	 of
type(),	then	it	is	used	directly	as	the	metaclass
if	 an	 instance	 of	 type()	 is	 given	 as	 the	 explicit	 metaclass,	 or
bases	are	defined,	then	the	most	derived	metaclass	is	used

The	most	 derived	metaclass	 is	 selected	 from	 the	 explicitly	 specified
metaclass	 (if	 any)	 and	 the	 metaclasses	 (i.e.	 type(cls))	 of	 all
specified	base	classes.	The	most	derived	metaclass	is	one	which	is	a
subtype	of	all	of	these	candidate	metaclasses.	If	none	of	the	candidate
metaclasses	meets	that	criterion,	then	the	class	definition	will	fail	with
TypeError.

3.3.3.2.	Preparing	the	class	namespace

Once	 the	 appropriate	 metaclass	 has	 been	 identified,	 then	 the	 class
namespace	 is	 prepared.	 If	 the	 metaclass	 has	 a	 __prepare__
attribute,	 it	 is	 called	 as	 namespace	 =

metaclass.__prepare__(name,	 bases,	 **kwds)	 (where	 the
additional	keyword	arguments,	if	any,	come	from	the	class	definition).

If	 the	 metaclass	 has	 no	 __prepare__	 attribute,	 then	 the	 class
namespace	is	initialised	as	an	empty	dict()	instance.

See	also:

PEP	3115	-	Metaclasses	in	Python	3000
Introduced	the	__prepare__	namespace	hook

3.3.3.3.	Executing	the	class	body

The	 class	 body	 is	 executed	 (approximately)	 as	 exec(body,

http://www.python.org/dev/peps/pep-3115

globals(),	namespace).	The	key	difference	from	a	normal	call	to
exec()	 is	 that	 lexical	 scoping	 allows	 the	 class	 body	 (including	 any
methods)	to	reference	names	from	the	current	and	outer	scopes	when
the	class	definition	occurs	inside	a	function.

However,	 even	 when	 the	 class	 definition	 occurs	 inside	 the	 function,
methods	defined	inside	the	class	still	cannot	see	names	defined	at	the
class	 scope.	 Class	 variables	 must	 be	 accessed	 through	 the	 first
parameter	of	instance	or	class	methods,	and	cannot	be	accessed	at	all
from	static	methods.

3.3.3.4.	Creating	the	class	object

Once	the	class	namespace	has	been	populated	by	executing	the	class
body,	 the	 class	 object	 is	 created	 by	 calling	 metaclass(name,
bases,	 namespace,	 **kwds)	 (the	 additional	 keywords	 passed
here	are	the	same	as	those	passed	to	__prepare__).

This	 class	 object	 is	 the	 one	 that	 will	 be	 referenced	 by	 the	 zero-
argument	 form	 of	 super().	 __class__	 is	 an	 implicit	 closure
reference	created	by	the	compiler	if	any	methods	in	a	class	body	refer
to	either	__class__	or	super.	This	allows	the	zero	argument	form	of
super()	to	correctly	identify	the	class	being	defined	based	on	lexical
scoping,	while	the	class	or	instance	that	was	used	to	make	the	current
call	is	identified	based	on	the	first	argument	passed	to	the	method.

After	 the	class	object	 is	created,	 it	 is	passed	 to	 the	class	decorators
included	in	the	class	definition	(if	any)	and	the	resulting	object	is	bound
in	the	local	namespace	as	the	defined	class.

See	also:

PEP	3135	-	New	super

http://www.python.org/dev/peps/pep-3135

Describes	the	implicit	__class__	closure	reference

3.3.3.5.	Metaclass	example

The	 potential	 uses	 for	metaclasses	 are	 boundless.	 Some	 ideas	 that
have	 been	 explored	 include	 logging,	 interface	 checking,	 automatic
delegation,	 automatic	 property	 creation,	 proxies,	 frameworks,	 and
automatic	resource	locking/synchronization.

Here	 is	 an	 example	 of	 a	 metaclass	 that	 uses	 an
collections.OrderedDict	 to	 remember	 the	 order	 that	 class
members	were	defined:

class	OrderedClass(type):

					@classmethod

					def	__prepare__(metacls,	name,	bases,	**kwds):

								return	collections.OrderedDict()

					def	__new__(cls,	name,	bases,	namespace,	**kwds

								result	=	type.__new__(cls,	name,	bases,	dict

								result.members	=	tuple(namespace)

								return	result

class	A(metaclass=OrderedClass):

				def	one(self):	pass

				def	two(self):	pass

				def	three(self):	pass

				def	four(self):	pass

>>>	A.members

('__module__',	'one',	'two',	'three',	'four')

When	the	class	definition	for	A	gets	executed,	the	process	begins	with

calling	 the	 metaclass’s	 __prepare__()	 method	 which	 returns	 an
empty	 collections.OrderedDict.	 That	 mapping	 records	 the
methods	and	attributes	of	A	as	they	are	defined	within	the	body	of	the
class	 statement.	 Once	 those	 definitions	 are	 executed,	 the	 ordered
dictionary	 is	 fully	populated	and	the	metaclass’s	__new__()	method
gets	 invoked.	 That	 method	 builds	 the	 new	 type	 and	 it	 saves	 the
ordered	dictionary	keys	in	an	attribute	called	members.

3.3.4.	Customizing	instance	and	subclass	checks

The	following	methods	are	used	to	override	the	default	behavior	of	the
isinstance()	and	issubclass()	built-in	functions.

In	particular,	the	metaclass	abc.ABCMeta	implements	these	methods
in	 order	 to	 allow	 the	 addition	 of	 Abstract	 Base	 Classes	 (ABCs)	 as
“virtual	 base	 classes”	 to	 any	 class	 or	 type	 (including	 built-in	 types),
including	other	ABCs.

class.__instancecheck__(self,	instance)
Return	 true	 if	 instance	 should	be	 considered	a	 (direct	 or	 indirect)
instance	 of	 class.	 If	 defined,	 called	 to	 implement
isinstance(instance,	class).

class.__subclasscheck__(self,	subclass)
Return	 true	 if	subclass	 should	be	considered	a	 (direct	or	 indirect)
subclass	 of	 class.	 If	 defined,	 called	 to	 implement
issubclass(subclass,	class).

Note	 that	 these	methods	are	 looked	up	on	 the	 type	 (metaclass)	of	a
class.	They	 cannot	 be	defined	as	 class	methods	 in	 the	actual	 class.
This	is	consistent	with	the	lookup	of	special	methods	that	are	called	on
instances,	only	in	this	case	the	instance	is	itself	a	class.

See	also:

PEP	3119	-	Introducing	Abstract	Base	Classes
Includes	 the	 specification	 for	 customizing	 isinstance()	 and
issubclass()	behavior	through	__instancecheck__()	and
__subclasscheck__(),	with	motivation	for	this	functionality	in
the	 context	 of	 adding	 Abstract	 Base	 Classes	 (see	 the	 abc
module)	to	the	language.

3.3.5.	Emulating	callable	objects

object.__call__(self[,	args...])
Called	when	the	instance	is	“called”	as	a	function;	if	this	method	is
defined,	 x(arg1,	 arg2,	 ...)	 is	 a	 shorthand	 for
x.__call__(arg1,	arg2,	...).

3.3.6.	Emulating	container	types

The	following	methods	can	be	defined	to	implement	container	objects.
Containers	 usually	 are	 sequences	 (such	 as	 lists	 or	 tuples)	 or
mappings	 (like	 dictionaries),	 but	 can	 represent	 other	 containers	 as
well.	The	first	set	of	methods	is	used	either	to	emulate	a	sequence	or
to	 emulate	 a	 mapping;	 the	 difference	 is	 that	 for	 a	 sequence,	 the
allowable	keys	should	be	the	integers	k	for	which	0	<=	k	<	N	where
N	is	the	length	of	the	sequence,	or	slice	objects,	which	define	a	range
of	 items.	 It	 is	also	recommended	that	mappings	provide	the	methods
keys(),	values(),	items(),	get(),	 clear(),	 setdefault(),
pop(),	 popitem(),	 copy(),	 and	 update()	 behaving	 similar	 to
those	 for	 Python’s	 standard	 dictionary	 objects.	 The	 collections
module	 provides	 a	 MutableMapping	 abstract	 base	 class	 to	 help

http://www.python.org/dev/peps/pep-3119

create	 those	 methods	 from	 a	 base	 set	 of	 __getitem__(),
__setitem__(),	 __delitem__(),	 and	 keys().	 Mutable
sequences	should	provide	methods	append(),	count(),	index(),
extend(),	 insert(),	 pop(),	 remove(),	 reverse()	 and
sort(),	 like	 Python	 standard	 list	 objects.	 Finally,	 sequence	 types
should	implement	addition	(meaning	concatenation)	and	multiplication
(meaning	 repetition)	 by	 defining	 the	 methods	 __add__(),
__radd__(),	 __iadd__(),	 __mul__(),	 __rmul__()	 and
__imul__()	described	below;	they	should	not	define	other	numerical
operators.	 It	 is	 recommended	 that	 both	 mappings	 and	 sequences
implement	the	__contains__()	method	to	allow	efficient	use	of	the
in	operator;	for	mappings,	in	should	search	the	mapping’s	keys;	for
sequences,	 it	 should	 search	 through	 the	 values.	 It	 is	 further
recommended	 that	 both	 mappings	 and	 sequences	 implement	 the
__iter__()	method	to	allow	efficient	iteration	through	the	container;
for	 mappings,	 __iter__()	 should	 be	 the	 same	 as	 keys();	 for
sequences,	it	should	iterate	through	the	values.

object.__len__(self)
Called	to	implement	the	built-in	function	len().	Should	return	 the
length	of	 the	object,	an	 integer	>=	0.	Also,	an	object	 that	doesn’t
define	 a	 __bool__()	 method	 and	 whose	 __len__()	 method
returns	zero	is	considered	to	be	false	in	a	Boolean	context.

object.__length_hint__(self)
Called	 to	 implement	 operator.length_hint().	 Should	 return
an	 estimated	 length	 for	 the	 object	 (which	may	be	 greater	 or	 less
than	the	actual	 length).	The	 length	must	be	an	 integer	>=	0.	This
method	 is	 purely	 an	 optimization	 and	 is	 never	 required	 for
correctness.

New	in	version	3.4.

Note: 	Slicing	is	done	exclusively	with	the	following	three	methods.
A	call	like

a[1:2]	=	b

is	translated	to

a[slice(1,	2,	None)]	=	b

and	so	forth.	Missing	slice	items	are	always	filled	in	with	None.

object.__getitem__(self,	key)
Called	 to	 implement	 evaluation	 of	 self[key].	 For	 sequence
types,	the	accepted	keys	should	be	integers	and	slice	objects.	Note
that	 the	 special	 interpretation	 of	 negative	 indexes	 (if	 the	 class
wishes	to	emulate	a	sequence	type)	is	up	to	the	__getitem__()
method.	 If	 key	 is	 of	 an	 inappropriate	 type,	 TypeError	 may	 be
raised;	 if	 of	 a	 value	 outside	 the	 set	 of	 indexes	 for	 the	 sequence
(after	any	special	 interpretation	of	negative	values),	IndexError
should	be	 raised.	For	mapping	 types,	 if	key	 is	missing	 (not	 in	 the
container),	KeyError	should	be	raised.

Note: 	for	loops	expect	that	an	IndexError	will	be	raised	for
illegal	 indexes	 to	 allow	 proper	 detection	 of	 the	 end	 of	 the
sequence.

object.__setitem__(self,	key,	value)
Called	to	implement	assignment	to	self[key].	Same	note	as	for
__getitem__().	This	should	only	be	 implemented	for	mappings

if	the	objects	support	changes	to	the	values	for	keys,	or	if	new	keys
can	be	added,	or	for	sequences	if	elements	can	be	replaced.	The
same	exceptions	should	be	 raised	 for	 improper	key	 values	as	 for
the	__getitem__()	method.

object.__delitem__(self,	key)
Called	 to	 implement	 deletion	 of	 self[key].	 Same	 note	 as	 for
__getitem__().	This	should	only	be	 implemented	for	mappings
if	the	objects	support	removal	of	keys,	or	for	sequences	if	elements
can	be	removed	from	the	sequence.	The	same	exceptions	should
be	 raised	 for	 improper	 key	 values	 as	 for	 the	 __getitem__()
method.

object.__iter__(self)
This	method	 is	called	when	an	 iterator	 is	 required	 for	a	container.
This	 method	 should	 return	 a	 new	 iterator	 object	 that	 can	 iterate
over	all	the	objects	in	the	container.	For	mappings,	it	should	iterate
over	the	keys	of	the	container,	and	should	also	be	made	available
as	the	method	keys().

Iterator	 objects	 also	 need	 to	 implement	 this	 method;	 they	 are
required	 to	 return	 themselves.	 For	 more	 information	 on	 iterator
objects,	see	Iterator	Types.

object.__reversed__(self)
Called	 (if	 present)	 by	 the	 reversed()	 built-in	 to	 implement
reverse	iteration.	It	should	return	a	new	iterator	object	that	iterates
over	all	the	objects	in	the	container	in	reverse	order.

If	the	__reversed__()	method	is	not	provided,	the	reversed()
built-in	will	 fall	 back	 to	 using	 the	 sequence	protocol	 (__len__()
and	__getitem__()).	Objects	that	support	the	sequence	protocol

should	 only	 provide	 __reversed__()	 if	 they	 can	 provide	 an
implementation	 that	 is	 more	 efficient	 than	 the	 one	 provided	 by
reversed().

The	 membership	 test	 operators	 (in	 and	 not	 in)	 are	 normally
implemented	as	an	 iteration	 through	a	sequence.	However,	container
objects	can	supply	 the	 following	special	method	with	a	more	efficient
implementation,	which	also	does	not	require	the	object	be	a	sequence.

object.__contains__(self,	item)
Called	to	implement	membership	test	operators.	Should	return	true
if	item	 is	 in	self,	 false	otherwise.	For	mapping	objects,	 this	should
consider	the	keys	of	the	mapping	rather	than	the	values	or	the	key-
item	pairs.

For	objects	 that	don’t	 define	__contains__(),	 the	membership
test	 first	 tries	 iteration	 via	 __iter__(),	 then	 the	 old	 sequence
iteration	 protocol	 via	 __getitem__(),	 see	 this	 section	 in	 the
language	reference.

3.3.7.	Emulating	numeric	types

The	 following	 methods	 can	 be	 defined	 to	 emulate	 numeric	 objects.
Methods	 corresponding	 to	 operations	 that	 are	 not	 supported	 by	 the
particular	 kind	 of	 number	 implemented	 (e.g.,	 bitwise	 operations	 for
non-integral	numbers)	should	be	left	undefined.

object.__add__(self,	other)
object.__sub__(self,	other)
object.__mul__(self,	other)
object.__truediv__(self,	other)
object.__floordiv__(self,	other)

object.__mod__(self,	other)
object.__divmod__(self,	other)
object.__pow__(self,	other[,	modulo])
object.__lshift__(self,	other)
object.__rshift__(self,	other)
object.__and__(self,	other)
object.__xor__(self,	other)
object.__or__(self,	other)

These	 methods	 are	 called	 to	 implement	 the	 binary	 arithmetic
operations	(+,	-,	*,	/,	//,	%,	divmod(),	pow(),	**,	<<,	>>,	&,
^,	|).	For	instance,	to	evaluate	the	expression	x	+	y,	where	x	 is
an	 instance	 of	 a	 class	 that	 has	 an	 __add__()	 method,
x.__add__(y)	is	called.	The	__divmod__()	method	should	be
the	 equivalent	 to	 using	 __floordiv__()	 and	 __mod__();	 it
should	not	be	related	to	__truediv__().	Note	 that	__pow__()
should	 be	 defined	 to	 accept	 an	 optional	 third	 argument	 if	 the
ternary	version	of	the	built-in	pow()	function	is	to	be	supported.

If	 one	 of	 those	methods	 does	 not	 support	 the	 operation	with	 the
supplied	arguments,	it	should	return	NotImplemented.

object.__radd__(self,	other)
object.__rsub__(self,	other)
object.__rmul__(self,	other)
object.__rtruediv__(self,	other)
object.__rfloordiv__(self,	other)
object.__rmod__(self,	other)
object.__rdivmod__(self,	other)
object.__rpow__(self,	other)
object.__rlshift__(self,	other)
object.__rrshift__(self,	other)

object.__rand__(self,	other)
object.__rxor__(self,	other)
object.__ror__(self,	other)

These	 methods	 are	 called	 to	 implement	 the	 binary	 arithmetic
operations	(+,	-,	*,	/,	//,	%,	divmod(),	pow(),	**,	<<,	>>,	&,
^,	|)	with	reflected	(swapped)	operands.	These	functions	are	only
called	 if	 the	 left	 operand	 does	 not	 support	 the	 corresponding
operation	and	the	operands	are	of	different	types.	[2]	For	instance,
to	 evaluate	 the	 expression	 x	-	y,	 where	 y	 is	 an	 instance	 of	 a
class	 that	 has	 an	 __rsub__()	 method,	 y.__rsub__(x)	 is
called	if	x.__sub__(y)	returns	NotImplemented.

Note	 that	 ternary	 pow()	 will	 not	 try	 calling	 __rpow__()	 (the
coercion	rules	would	become	too	complicated).

Note: 	 If	 the	 right	 operand’s	 type	 is	 a	 subclass	 of	 the	 left
operand’s	 type	and	 that	subclass	provides	 the	 reflected	method
for	 the	 operation,	 this	 method	 will	 be	 called	 before	 the	 left
operand’s	non-reflected	method.	This	behavior	allows	subclasses
to	override	their	ancestors’	operations.

object.__iadd__(self,	other)
object.__isub__(self,	other)
object.__imul__(self,	other)
object.__itruediv__(self,	other)
object.__ifloordiv__(self,	other)
object.__imod__(self,	other)
object.__ipow__(self,	other[,	modulo])
object.__ilshift__(self,	other)
object.__irshift__(self,	other)
object.__iand__(self,	other)

object.__ixor__(self,	other)
object.__ior__(self,	other)

These	methods	are	called	to	 implement	the	augmented	arithmetic
assignments	(+=,	-=,	*=,	/=,	//=,	%=,	**=,	<<=,	>>=,	&=,	^=,
|=).	 These	methods	 should	 attempt	 to	 do	 the	 operation	 in-place
(modifying	self)	and	return	the	result	(which	could	be,	but	does	not
have	to	be,	self).	If	a	specific	method	is	not	defined,	the	augmented
assignment	 falls	back	to	 the	normal	methods.	For	 instance,	 if	x	 is
an	 instance	of	a	class	with	an	__iadd__()	method,	x	+=	y	 is
equivalent	to	x	=	x.__iadd__(y)	.	Otherwise,	x.__add__(y)
and	y.__radd__(x)	are	considered,	as	with	 the	evaluation	of	x
+	 y.	 In	 certain	 situations,	 augmented	 assignment	 can	 result	 in
unexpected	 errors	 (see	Why	 does	 a_tuple[i]	 +=	 [‘item’]	 raise	 an
exception	 when	 the	 addition	 works?),	 but	 this	 behavior	 is	 in	 fact
part	of	the	data	model.

object.__neg__(self)
object.__pos__(self)
object.__abs__(self)
object.__invert__(self)

Called	to	implement	the	unary	arithmetic	operations	(-,	+,	abs()
and	~).

object.__complex__(self)
object.__int__(self)
object.__float__(self)
object.__round__(self[,	n])

Called	 to	 implement	 the	 built-in	 functions	 complex(),	 int(),
float()	and	round().	Should	return	a	value	of	 the	appropriate
type.

object.__index__(self)
Called	 to	 implement	operator.index(),	 and	whenever	Python
needs	to	losslessly	convert	the	numeric	object	to	an	integer	object
(such	 as	 in	 slicing,	 or	 in	 the	 built-in	 bin(),	 hex()	 and	 oct()
functions).	 Presence	 of	 this	 method	 indicates	 that	 the	 numeric
object	is	an	integer	type.	Must	return	an	integer.

Note: 	When	__index__()	is	defined,	__int__()	should	also
be	 defined,	 and	 both	 shuld	 return	 the	 same	 value,	 in	 order	 to
have	a	coherent	integer	type	class.

3.3.8.	With	Statement	Context	Managers

A	context	manager	 is	an	object	that	defines	the	runtime	context	to	be
established	when	executing	a	with	statement.	The	context	manager
handles	 the	entry	 into,	and	 the	exit	 from,	 the	desired	runtime	context
for	the	execution	of	the	block	of	code.	Context	managers	are	normally
invoked	 using	 the	 with	 statement	 (described	 in	 section	 The	 with
statement),	but	can	also	be	used	by	directly	invoking	their	methods.

Typical	uses	of	context	managers	include	saving	and	restoring	various
kinds	of	global	state,	locking	and	unlocking	resources,	closing	opened
files,	etc.

For	 more	 information	 on	 context	 managers,	 see	 Context	 Manager
Types.

object.__enter__(self)
Enter	 the	 runtime	 context	 related	 to	 this	 object.	 The	 with
statement	 will	 bind	 this	 method’s	 return	 value	 to	 the	 target(s)
specified	in	the	as	clause	of	the	statement,	if	any.

object.__exit__(self,	exc_type,	exc_value,	traceback)
Exit	 the	 runtime	 context	 related	 to	 this	 object.	 The	 parameters
describe	the	exception	that	caused	the	context	to	be	exited.	If	 the
context	was	exited	without	an	exception,	all	three	arguments	will	be
None.

If	an	exception	is	supplied,	and	the	method	wishes	to	suppress	the
exception	(i.e.,	prevent	it	from	being	propagated),	it	should	return	a
true	 value.	 Otherwise,	 the	 exception	 will	 be	 processed	 normally
upon	exit	from	this	method.

Note	that	__exit__()	methods	should	not	reraise	 the	passed-in
exception;	this	is	the	caller’s	responsibility.

See	also:

PEP	0343	-	The	“with”	statement
The	 specification,	 background,	 and	 examples	 for	 the	 Python
with	statement.

3.3.9.	Special	method	lookup

For	 custom	 classes,	 implicit	 invocations	 of	 special	methods	 are	 only
guaranteed	to	work	correctly	 if	defined	on	an	object’s	type,	not	 in	the
object’s	 instance	 dictionary.	 That	 behaviour	 is	 the	 reason	 why	 the
following	code	raises	an	exception:

>>>	class	C:

...					pass

...

>>>	c	=	C()

>>>	c.__len__	=	lambda:	5

>>>	len(c)

http://www.python.org/dev/peps/pep-0343

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	object	of	type	'C'	has	no	len()

The	 rationale	 behind	 this	 behaviour	 lies	 with	 a	 number	 of	 special
methods	 such	 as	 __hash__()	 and	 __repr__()	 that	 are
implemented	by	all	objects,	including	type	objects.	If	the	implicit	lookup
of	 these	methods	 used	 the	 conventional	 lookup	process,	 they	would
fail	when	invoked	on	the	type	object	itself:

>>>	1	.__hash__()	==	hash(1)

True

>>>	int.__hash__()	==	hash(int)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	descriptor	'__hash__'	of	'int'	object	needs	an	argument

Incorrectly	attempting	to	invoke	an	unbound	method	of	a	class	in	this
way	is	sometimes	referred	to	as	‘metaclass	confusion’,	and	is	avoided
by	bypassing	the	instance	when	looking	up	special	methods:

>>>	type(1).__hash__(1)	==	hash(1)

True

>>>	type(int).__hash__(int)	==	hash(int)

True

In	 addition	 to	 bypassing	 any	 instance	 attributes	 in	 the	 interest	 of
correctness,	 implicit	 special	 method	 lookup	 generally	 also	 bypasses
the	__getattribute__()	method	even	of	the	object’s	metaclass:

>>>	class	Meta(type):

...				def	__getattribute__(*args):

...							print("Metaclass	getattribute	invoked")

...							return	type.__getattribute__(*args)

...

>>>	class	C(object,	metaclass=Meta):

...					def	__len__(self):

...									return	10

...					def	__getattribute__(*args):

...									print("Class	getattribute	invoked")

...									return	object.__getattribute__(*args)

...

>>>	c	=	C()

>>>	c.__len__()																	#	Explicit	lookup	via	instance

Class	getattribute	invoked

10

>>>	type(c).__len__(c)										#	Explicit	lookup	via	type

Metaclass	getattribute	invoked

10

>>>	len(c)																						#	Implicit	lookup

10

Bypassing	 the	 __getattribute__()	 machinery	 in	 this	 fashion
provides	 significant	 scope	 for	 speed	 optimisations	 within	 the
interpreter,	 at	 the	 cost	 of	 some	 flexibility	 in	 the	 handling	 of	 special
methods	(the	special	method	must	be	set	on	the	class	object	 itself	 in
order	to	be	consistently	invoked	by	the	interpreter).

Footnotes

[1]

It	is	possible	in	some	cases	to	change	an	object’s	type,	under
certain	controlled	conditions.	It	generally	isn’t	a	good	idea
though,	since	it	can	lead	to	some	very	strange	behaviour	if	it	is
handled	incorrectly.

[2]
For	operands	of	the	same	type,	it	is	assumed	that	if	the	non-
reflected	method	(such	as	__add__())	fails	the	operation	is
not	supported,	which	is	why	the	reflected	method	is	not	called.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

4.	Execution	model

4.1.	Naming	and	binding

Names	 refer	 to	 objects.	 Names	 are	 introduced	 by	 name	 binding
operations.	Each	occurrence	of	a	name	 in	 the	program	 text	 refers	 to
the	binding	 of	 that	 name	established	 in	 the	 innermost	 function	 block
containing	the	use.

A	block	 is	a	piece	of	Python	program	text	 that	 is	executed	as	a	unit.
The	 following	 are	 blocks:	 a	 module,	 a	 function	 body,	 and	 a	 class
definition.	Each	command	typed	interactively	is	a	block.	A	script	file	(a
file	 given	 as	 standard	 input	 to	 the	 interpreter	 or	 specified	 on	 the
interpreter	command	 line	 the	first	argument)	 is	a	code	block.	A	 script
command	(a	command	specified	on	the	interpreter	command	line	with
the	 ‘-c‘	 option)	 is	 a	 code	 block.	 The	 string	 argument	 passed	 to	 the
built-in	functions	eval()	and	exec()	is	a	code	block.

A	 code	 block	 is	 executed	 in	 an	 execution	 frame.	 A	 frame	 contains
some	administrative	information	(used	for	debugging)	and	determines
where	and	how	execution	continues	after	 the	code	block’s	execution
has	completed.

A	 scope	 defines	 the	 visibility	 of	 a	 name	 within	 a	 block.	 If	 a	 local
variable	 is	 defined	 in	 a	 block,	 its	 scope	 includes	 that	 block.	 If	 the
definition	occurs	 in	a	function	block,	the	scope	extends	to	any	blocks
contained	within	the	defining	one,	unless	a	contained	block	introduces
a	 different	 binding	 for	 the	 name.	 The	 scope	 of	 names	 defined	 in	 a
class	block	is	limited	to	the	class	block;	it	does	not	extend	to	the	code
blocks	 of	 methods	 –	 this	 includes	 comprehensions	 and	 generator
expressions	since	they	are	implemented	using	a	function	scope.	This
means	that	the	following	will	fail:

class	A:

				a	=	42

				b	=	list(a	+	i	for	i	in	range(10))

When	a	name	is	used	in	a	code	block,	it	is	resolved	using	the	nearest
enclosing	scope.	The	set	of	all	such	scopes	visible	to	a	code	block	is
called	the	block’s	environment.

If	a	name	is	bound	in	a	block,	it	is	a	local	variable	of	that	block,	unless
declared	as	nonlocal.	If	a	name	is	bound	at	the	module	level,	it	is	a
global	variable.	(The	variables	of	the	module	code	block	are	local	and
global.)	If	a	variable	is	used	in	a	code	block	but	not	defined	there,	it	is
a	free	variable.

When	a	name	is	not	found	at	all,	a	NameError	exception	is	raised.	If
the	 name	 refers	 to	 a	 local	 variable	 that	 has	 not	 been	 bound,	 a
UnboundLocalError	exception	 is	 raised.	UnboundLocalError	 is
a	subclass	of	NameError.

The	following	constructs	bind	names:	 formal	parameters	 to	 functions,
import	 statements,	 class	 and	 function	 definitions	 (these	 bind	 the
class	 or	 function	 name	 in	 the	 defining	 block),	 and	 targets	 that	 are
identifiers	if	occurring	in	an	assignment,	for	loop	header,	or	after	as
in	a	with	statement	or	except	clause.	The	import	statement	of	the
form	from	...	import	*	binds	all	names	defined	 in	 the	 imported
module,	 except	 those	 beginning	 with	 an	 underscore.	 This	 form	may
only	be	used	at	the	module	level.

A	target	occurring	in	a	del	statement	is	also	considered	bound	for	this
purpose	(though	the	actual	semantics	are	to	unbind	the	name).

Each	assignment	or	import	statement	occurs	within	a	block	defined	by
a	class	or	function	definition	or	at	the	module	level	(the	top-level	code
block).

If	a	name	binding	operation	occurs	anywhere	within	a	code	block,	all
uses	 of	 the	 name	 within	 the	 block	 are	 treated	 as	 references	 to	 the
current	block.	This	 can	 lead	 to	errors	when	a	name	 is	used	within	a
block	before	it	is	bound.	This	rule	is	subtle.	Python	lacks	declarations
and	allows	name	binding	operations	to	occur	anywhere	within	a	code
block.	 The	 local	 variables	 of	 a	 code	 block	 can	 be	 determined	 by
scanning	the	entire	text	of	the	block	for	name	binding	operations.

If	 the	global	 statement	occurs	within	a	block,	all	uses	of	 the	name
specified	in	the	statement	refer	to	the	binding	of	that	name	in	the	top-
level	namespace.	Names	are	resolved	in	the	top-level	namespace	by
searching	 the	 global	 namespace,	 i.e.	 the	 namespace	 of	 the	module
containing	 the	 code	 block,	 and	 the	 builtins	 namespace,	 the
namespace	 of	 the	 module	 builtins.	 The	 global	 namespace	 is
searched	first.	If	 the	name	is	not	found	there,	the	builtins	namespace
is	searched.	The	global	statement	must	precede	all	uses	of	the	name.

The	builtins	namespace	associated	with	the	execution	of	a	code	block
is	actually	found	by	looking	up	the	name	__builtins__	in	its	global
namespace;	this	should	be	a	dictionary	or	a	module	(in	the	latter	case
the	module’s	 dictionary	 is	 used).	By	 default,	when	 in	 the	 __main__
module,	 __builtins__	 is	 the	 built-in	 module	 builtins;	 when	 in
any	other	module,	__builtins__	is	an	alias	for	the	dictionary	of	the
builtins	 module	 itself.	 __builtins__	 can	 be	 set	 to	 a	 user-
created	dictionary	to	create	a	weak	form	of	restricted	execution.

CPython	 implementation	 detail:	 Users	 should	 not	 touch
__builtins__;	it	is	strictly	an	implementation	detail.	Users	wanting
to	 override	 values	 in	 the	 builtins	 namespace	 should	 import	 the
builtins	module	and	modify	its	attributes	appropriately.

The	namespace	for	a	module	 is	automatically	created	the	first	 time	a

module	 is	 imported.	 The	 main	 module	 for	 a	 script	 is	 always	 called
__main__.

The	 global	 statement	 has	 the	 same	 scope	 as	 a	 name	 binding
operation	in	the	same	block.	If	the	nearest	enclosing	scope	for	a	free
variable	contains	a	global	statement,	 the	free	variable	 is	 treated	as	a
global.

A	class	definition	is	an	executable	statement	that	may	use	and	define
names.	These	references	follow	the	normal	rules	for	name	resolution.
The	namespace	of	the	class	definition	becomes	the	attribute	dictionary
of	 the	 class.	 Names	 defined	 at	 the	 class	 scope	 are	 not	 visible	 in
methods.

4.1.1.	Interaction	with	dynamic	features

There	 are	 several	 cases	 where	 Python	 statements	 are	 illegal	 when
used	in	conjunction	with	nested	scopes	that	contain	free	variables.

If	a	variable	 is	referenced	in	an	enclosing	scope,	 it	 is	 illegal	 to	delete
the	name.	An	error	will	be	reported	at	compile	time.

If	 the	wild	card	 form	of	 import	—	import	*	—	 is	used	 in	a	 function
and	the	function	contains	or	is	a	nested	block	with	free	variables,	the
compiler	will	raise	a	SyntaxError.

The	 eval()	 and	 exec()	 functions	 do	 not	 have	 access	 to	 the	 full
environment	for	resolving	names.	Names	may	be	resolved	in	the	local
and	global	namespaces	of	 the	caller.	Free	variables	are	not	resolved
in	the	nearest	enclosing	namespace,	but	in	the	global	namespace.	[1]
The	 exec()	 and	 eval()	 functions	 have	 optional	 arguments	 to
override	 the	 global	 and	 local	 namespace.	 If	 only	 one	 namespace	 is

specified,	it	is	used	for	both.

4.2.	Exceptions

Exceptions	are	a	means	of	breaking	out	of	the	normal	flow	of	control	of
a	code	block	in	order	to	handle	errors	or	other	exceptional	conditions.
An	exception	is	raised	at	the	point	where	the	error	is	detected;	it	may
be	handled	by	 the	surrounding	code	block	or	by	any	code	block	 that
directly	or	indirectly	invoked	the	code	block	where	the	error	occurred.

The	Python	interpreter	raises	an	exception	when	it	detects	a	run-time
error	(such	as	division	by	zero).	A	Python	program	can	also	explicitly
raise	an	exception	with	the	raise	statement.	Exception	handlers	are
specified	with	the	try	...	except	statement.	The	finally	clause	of
such	a	statement	can	be	used	to	specify	cleanup	code	which	does	not
handle	the	exception,	but	 is	executed	whether	an	exception	occurred
or	not	in	the	preceding	code.

Python	 uses	 the	 “termination”	model	 of	 error	 handling:	 an	 exception
handler	 can	 find	 out	 what	 happened	 and	 continue	 execution	 at	 an
outer	 level,	 but	 it	 cannot	 repair	 the	 cause	 of	 the	 error	 and	 retry	 the
failing	 operation	 (except	 by	 re-entering	 the	 offending	 piece	 of	 code
from	the	top).

When	 an	 exception	 is	 not	 handled	 at	 all,	 the	 interpreter	 terminates
execution	 of	 the	 program,	 or	 returns	 to	 its	 interactive	 main	 loop.	 In
either	case,	 it	prints	a	stack	backtrace,	except	when	 the	exception	 is
SystemExit.

Exceptions	 are	 identified	 by	 class	 instances.	 The	 except	 clause	 is
selected	depending	on	the	class	of	the	instance:	it	must	reference	the
class	 of	 the	 instance	 or	 a	 base	 class	 thereof.	 The	 instance	 can	 be
received	by	the	handler	and	can	carry	additional	information	about	the
exceptional	condition.

Note: 	Exception	messages	are	not	part	of	the	Python	API.	Their
contents	may	change	from	one	version	of	Python	to	the	next	without
warning	and	should	not	be	relied	on	by	code	which	will	run	under
multiple	versions	of	the	interpreter.

See	 also	 the	 description	 of	 the	 try	 statement	 in	 section	 The	 try
statement	and	raise	statement	in	section	The	raise	statement.

Footnotes

[1]
This	limitation	occurs	because	the	code	that	is	executed	by
these	operations	is	not	available	at	the	time	the	module	is
compiled.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

5.	The	import	system
Python	 code	 in	 one	 module	 gains	 access	 to	 the	 code	 in	 another
module	by	 the	process	of	 importing	 it.	The	import	 statement	 is	 the
most	common	way	of	 invoking	 the	 import	machinery,	but	 it	 is	not	 the
only	 way.	 Functions	 such	 as	 importlib.import_module()	 and
built-in	 __import__()	 can	 also	 be	 used	 to	 invoke	 the	 import
machinery.

The	import	 statement	combines	 two	operations;	 it	 searches	 for	 the
named	module,	then	it	binds	the	results	of	that	search	to	a	name	in	the
local	scope.	The	search	operation	of	the	import	statement	is	defined
as	 a	 call	 to	 the	 __import__()	 function,	 with	 the	 appropriate
arguments.	The	return	value	of	__import__()	is	used	to	perform	the
name	 binding	 operation	 of	 the	 import	 statement.	 See	 the	 import
statement	for	the	exact	details	of	that	name	binding	operation.

A	direct	call	to	__import__()	performs	only	the	module	search	and,
if	found,	the	module	creation	operation.	While	certain	side-effects	may
occur,	such	as	the	importing	of	parent	packages,	and	the	updating	of
various	caches	(including	sys.modules),	only	the	import	statement
performs	a	name	binding	operation.

When	 calling	 __import__()	 as	 part	 of	 an	 import	 statement,	 the
import	system	first	checks	the	module	global	namespace	for	a	function
by	 that	 name.	 If	 it	 is	 not	 found,	 then	 the	 standard	 builtin
__import__()	 is	 called.	Other	mechanisms	 for	 invoking	 the	 import
system	 (such	 as	 importlib.import_module())	 do	 not	 perform
this	check	and	will	always	use	the	standard	import	system.

When	a	module	is	first	imported,	Python	searches	for	the	module	and

if	 found,	 it	 creates	 a	 module	 object	 [1],	 initializing	 it.	 If	 the	 named
module	 cannot	 be	 found,	 an	 ImportError	 is	 raised.	 Python
implements	various	strategies	 to	search	 for	 the	named	module	when
the	import	machinery	is	invoked.	These	strategies	can	be	modified	and
extended	by	using	various	hooks	described	in	the	sections	below.

Changed	in	version	3.3:	The	import	system	has	been	updated	to	fully
implement	 the	 second	 phase	 of	 PEP	 302.	 There	 is	 no	 longer	 any
implicit	 import	machinery	 -	 the	 full	 import	 system	 is	exposed	 through
sys.meta_path.	In	addition,	native	namespace	package	support	has
been	implemented	(see	PEP	420).

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0420

5.1.	importlib

The	 importlib	module	 provides	 a	 rich	API	 for	 interacting	with	 the
import	 system.	 For	 example	 importlib.import_module()

provides	 a	 recommended,	 simpler	 API	 than	 built-in	 __import__()
for	 invoking	 the	 import	 machinery.	 Refer	 to	 the	 importlib	 library
documentation	for	additional	detail.

5.2.	Packages

Python	has	only	one	type	of	module	object,	and	all	modules	are	of	this
type,	regardless	of	whether	 the	module	 is	 implemented	 in	Python,	C,
or	 something	 else.	 To	 help	 organize	modules	 and	 provide	 a	 naming
hierarchy,	Python	has	a	concept	of	packages.

You	 can	 think	 of	 packages	 as	 the	 directories	 on	 a	 file	 system	 and
modules	 as	 files	 within	 directories,	 but	 don’t	 take	 this	 analogy	 too
literally	since	packages	and	modules	need	not	originate	 from	 the	 file
system.	 For	 the	 purposes	 of	 this	 documentation,	 we’ll	 use	 this
convenient	analogy	of	directories	and	files.	Like	file	system	directories,
packages	are	organized	hierarchically,	and	packages	may	themselves
contain	subpackages,	as	well	as	regular	modules.

It’s	important	to	keep	in	mind	that	all	packages	are	modules,	but	not	all
modules	 are	 packages.	 Or	 put	 another	 way,	 packages	 are	 just	 a
special	 kind	 of	 module.	 Specifically,	 any	 module	 that	 contains	 a
__path__	attribute	is	considered	a	package.

All	 modules	 have	 a	 name.	 Subpackage	 names	 are	 separated	 from
their	parent	package	name	by	dots,	akin	to	Python’s	standard	attribute
access	 syntax.	 Thus	 you	 might	 have	 a	 module	 called	 sys	 and	 a
package	 called	 email,	 which	 in	 turn	 has	 a	 subpackage	 called
email.mime	 and	 a	 module	 within	 that	 subpackage	 called
email.mime.text.

5.2.1.	Regular	packages

Python	 defines	 two	 types	 of	 packages,	 regular	 packages	 and
namespace	packages.	Regular	packages	are	 traditional	packages	as

they	existed	 in	Python	3.2	and	earlier.	A	 regular	package	 is	 typically
implemented	as	a	directory	containing	an	__init__.py	file.	When	a
regular	 package	 is	 imported,	 this	 __init__.py	 file	 is	 implicitly
executed,	 and	 the	 objects	 it	 defines	 are	 bound	 to	 names	 in	 the
package’s	namespace.	The	__init__.py	 file	can	contain	 the	same
Python	code	 that	any	other	module	can	contain,	and	Python	will	add
some	additional	attributes	to	the	module	when	it	is	imported.

For	 example,	 the	 following	 file	 system	 layout	 defines	 a	 top	 level
parent	package	with	three	subpackages:

parent/

				__init__.py

				one/

								__init__.py

				two/

								__init__.py

				three/

								__init__.py

Importing	parent.one	will	implicitly	execute	parent/__init__.py
and	 parent/one/__init__.py.	 Subsequent	 imports	 of
parent.two	 or	 parent.three	 will	 execute
parent/two/__init__.py	 and	 parent/three/__init__.py

respectively.

5.2.2.	Namespace	packages

A	namespace	package	is	a	composite	of	various	portions,	where	each
portion	contributes	a	subpackage	to	the	parent	package.	Portions	may
reside	 in	different	 locations	on	 the	 file	 system.	Portions	may	 also	 be
found	 in	 zip	 files,	 on	 the	 network,	 or	 anywhere	 else	 that	 Python

searches	 during	 import.	 Namespace	 packages	 may	 or	 may	 not
correspond	directly	 to	objects	on	 the	 file	system;	 they	may	be	virtual
modules	that	have	no	concrete	representation.

Namespace	packages	do	not	use	an	ordinary	list	for	their	__path__
attribute.	 They	 instead	 use	 a	 custom	 iterable	 type	 which	 will
automatically	perform	a	new	search	for	package	portions	on	the	next
import	attempt	within	that	package	if	the	path	of	their	parent	package
(or	sys.path	for	a	top	level	package)	changes.

With	 namespace	 packages,	 there	 is	 no	 parent/__init__.py	 file.
In	fact,	there	may	be	multiple	parent	directories	found	during	import
search,	 where	 each	 one	 is	 provided	 by	 a	 different	 portion.	 Thus
parent/one	may	not	be	physically	 located	next	to	parent/two.	 In
this	 case,	Python	will	 create	 a	 namespace	package	 for	 the	 top-level
parent	package	whenever	it	or	one	of	its	subpackages	is	imported.

See	also	PEP	420	for	the	namespace	package	specification.

http://www.python.org/dev/peps/pep-0420

5.3.	Searching

To	 begin	 the	 search,	 Python	 needs	 the	 fully	 qualified	 name	 of	 the
module	 (or	 package,	 but	 for	 the	 purposes	 of	 this	 discussion,	 the
difference	 is	 immaterial)	 being	 imported.	 This	 name	may	 come	 from
various	arguments	 to	 the	import	statement,	or	 from	the	parameters
to	the	importlib.import_module()	or	__import__()	functions.

This	name	will	be	used	in	various	phases	of	the	import	search,	and	it
may	be	 the	dotted	path	 to	 a	 submodule,	 e.g.	 foo.bar.baz.	 In	 this
case,	 Python	 first	 tries	 to	 import	 foo,	 then	 foo.bar,	 and	 finally
foo.bar.baz.	 If	 any	 of	 the	 intermediate	 imports	 fail,	 an
ImportError	is	raised.

5.3.1.	The	module	cache

The	 first	 place	checked	during	 import	 search	 is	 sys.modules.	 This
mapping	serves	as	a	cache	of	all	modules	that	have	been	previously
imported,	 including	 the	 intermediate	paths.	So	 if	 foo.bar.baz	was
previously	 imported,	 sys.modules	 will	 contain	 entries	 for	 foo,
foo.bar,	 and	 foo.bar.baz.	 Each	 key	 will	 have	 as	 its	 value	 the
corresponding	module	object.

During	import,	the	module	name	is	looked	up	in	sys.modules	and	if
present,	the	associated	value	is	the	module	satisfying	the	import,	and
the	 process	 completes.	 However,	 if	 the	 value	 is	 None,	 then	 an
ImportError	 is	 raised.	 If	 the	module	 name	 is	missing,	Python	will
continue	searching	for	the	module.

sys.modules	 is	 writable.	 Deleting	 a	 key	 may	 not	 destroy	 the

associated	module	(as	other	modules	may	hold	references	to	it),	but	it
will	 invalidate	the	cache	entry	for	the	named	module,	causing	Python
to	search	anew	 for	 the	named	module	upon	 its	next	 import.	The	key
can	also	be	assigned	to	None,	forcing	the	next	import	of	the	module	to
result	in	an	ImportError.

Beware	 though,	 as	 if	 you	 keep	 a	 reference	 to	 the	 module	 object,
invalidate	 its	 cache	 entry	 in	 sys.modules,	 and	 then	 re-import	 the
named	 module,	 the	 two	 module	 objects	 will	 not	 be	 the	 same.	 By
contrast,	 imp.reload()	 will	 reuse	 the	 same	 module	 object,	 and
simply	reinitialise	the	module	contents	by	rerunning	the	module’s	code.

5.3.2.	Finders	and	loaders

If	 the	 named	 module	 is	 not	 found	 in	 sys.modules,	 then	 Python’s
import	protocol	 is	 invoked	 to	 find	and	 load	 the	module.	This	 protocol
consists	of	two	conceptual	objects,	finders	and	 loaders.	A	 finder’s	 job
is	to	determine	whether	it	can	find	the	named	module	using	whatever
strategy	 it	 knows	 about.	 Objects	 that	 implement	 both	 of	 these
interfaces	are	referred	to	as	 importers	-	 they	return	themselves	when
they	find	that	they	can	load	the	requested	module.

Python	 includes	 a	 number	 of	 default	 finders	 and	 importers.	 The	 first
one	knows	how	to	locate	built-in	modules,	and	the	second	knows	how
to	 locate	 frozen	 modules.	 A	 third	 default	 finder	 searches	 an	 import
path	for	modules.	The	import	path	is	a	list	of	locations	that	may	name
file	system	paths	or	zip	files.	It	can	also	be	extended	to	search	for	any
locatable	resource,	such	as	those	identified	by	URLs.

The	 import	machinery	 is	extensible,	 so	new	 finders	can	be	added	 to
extend	the	range	and	scope	of	module	searching.

Finders	 do	 not	 actually	 load	 modules.	 If	 they	 can	 find	 the	 named
module,	they	return	a	module	spec,	an	encapsulation	of	the	module’s
import-related	 information,	 which	 the	 import	 machinery	 then	 uses
when	loading	the	module.

The	following	sections	describe	the	protocol	for	finders	and	loaders	in
more	 detail,	 including	 how	 you	 can	 create	 and	 register	 new	 ones	 to
extend	the	import	machinery.

Changed	 in	 version	 3.4:	 In	 previous	 versions	 of	 Python,	 finders
returned	 loaders	 directly,	 whereas	 now	 they	 return	 module	 specs
which	contain	 loaders.	 Loaders	 are	 still	 used	during	 import	 but	 have
fewer	responsibilities.

5.3.3.	Import	hooks

The	 import	 machinery	 is	 designed	 to	 be	 extensible;	 the	 primary
mechanism	 for	 this	 are	 the	 import	 hooks.	 There	 are	 two	 types	 of
import	hooks:	meta	hooks	and	import	path	hooks.

Meta	 hooks	 are	 called	 at	 the	 start	 of	 import	 processing,	 before	 any
other	 import	 processing	 has	 occurred,	 other	 than	 sys.modules
cache	 look	 up.	 This	 allows	 meta	 hooks	 to	 override	 sys.path
processing,	frozen	modules,	or	even	built-in	modules.	Meta	hooks	are
registered	 by	 adding	 new	 finder	 objects	 to	 sys.meta_path,	 as
described	below.

Import	 path	 hooks	 are	 called	 as	 part	 of	 sys.path	 (or
package.__path__)	processing,	at	the	point	where	their	associated
path	item	is	encountered.	Import	path	hooks	are	registered	by	adding
new	callables	to	sys.path_hooks	as	described	below.

5.3.4.	The	meta	path

When	the	named	module	is	not	found	in	sys.modules,	Python	next
searches	sys.meta_path,	which	contains	a	 list	of	meta	path	 finder
objects.	These	finders	are	queried	in	order	to	see	if	they	know	how	to
handle	 the	 named	 module.	 Meta	 path	 finders	 must	 implement	 a
method	called	find_spec()	which	 takes	 three	arguments:	a	name,
an	import	path,	and	(optionally)	a	target	module.	The	meta	path	finder
can	use	any	strategy	it	wants	to	determine	whether	 it	can	handle	the
named	module	or	not.

If	 the	 meta	 path	 finder	 knows	 how	 to	 handle	 the	 named	 module,	 it
returns	a	spec	object.	If	it	cannot	handle	the	named	module,	it	returns
None.	 If	 sys.meta_path	 processing	 reaches	 the	 end	 of	 its	 list
without	returning	a	spec,	 then	an	ImportError	 is	 raised.	Any	other
exceptions	 raised	 are	 simply	 propagated	 up,	 aborting	 the	 import
process.

The	find_spec()	method	of	meta	path	finders	is	called	with	two	or
three	 arguments.	 The	 first	 is	 the	 fully	 qualified	 name	 of	 the	module
being	imported,	for	example	foo.bar.baz.	The	second	argument	 is
the	path	entries	to	use	for	 the	module	search.	For	top-level	modules,
the	 second	 argument	 is	 None,	 but	 for	 submodules	 or	 subpackages,
the	second	argument	is	the	value	of	the	parent	package’s	__path__
attribute.	 If	 the	appropriate	__path__	 attribute	 cannot	 be	accessed,
an	ImportError	is	raised.	The	third	argument	is	an	existing	module
object	that	will	be	the	target	of	loading	later.	The	import	system	passes
in	a	target	module	only	during	reload.

The	 meta	 path	 may	 be	 traversed	 multiple	 times	 for	 a	 single	 import
request.	 For	 example,	 assuming	 none	 of	 the	 modules	 involved	 has

already	been	cached,	importing	foo.bar.baz	will	first	perform	a	top
level	 import,	 calling	 mpf.find_spec("foo",	 None,	 None)	 on
each	meta	path	finder	(mpf).	After	foo	has	been	imported,	foo.bar
will	 be	 imported	 by	 traversing	 the	 meta	 path	 a	 second	 time,	 calling
mpf.find_spec("foo.bar",	 foo.__path__,	 None).	 Once
foo.bar	 has	 been	 imported,	 the	 final	 traversal	 will	 call
mpf.find_spec("foo.bar.baz",	 foo.bar.__path__,

None).

Some	 meta	 path	 finders	 only	 support	 top	 level	 imports.	 These
importers	will	always	 return	None	when	anything	other	 than	None	 is
passed	as	the	second	argument.

Python’s	 default	 sys.meta_path	 has	 three	meta	 path	 finders,	 one
that	 knows	 how	 to	 import	 built-in	 modules,	 one	 that	 knows	 how	 to
import	 frozen	modules,	 and	 one	 that	 knows	 how	 to	 import	 modules
from	an	import	path	(i.e.	the	path	based	finder).

Changed	 in	 version	 3.4:	 The	 find_spec()	 method	 of	 meta	 path
finders	replaced	find_module(),	which	is	now	deprecated.	While	it
will	 continue	 to	work	without	 change,	 the	 import	machinery	will	 try	 it
only	if	the	finder	does	not	implement	find_spec().

5.4.	Loading

If	and	when	a	module	spec	 is	 found,	 the	 import	machinery	will	use	 it
(and	 the	 loader	 it	 contains)	 when	 loading	 the	 module.	 Here	 is	 an
approximation	of	what	happens	during	the	loading	portion	of	import:

module	=	None

if	spec.loader	is	not	None	and	hasattr(spec.loader,	

				module	=	spec.loader.create_module(spec)

if	module	is	None:

				module	=	ModuleType(spec.name)

#	The	import-related	module	attributes	get	set	here:

_init_module_attrs(spec,	module)

if	spec.loader	is	None:

				if	spec.submodule_search_locations	is	not	None:

								#	namespace	package

								sys.modules[spec.name]	=	module

				else:

								#	unsupported

								raise	ImportError

elif	not	hasattr(spec.loader,	'exec_module'):

				module	=	spec.loader.load_module(spec.name)

				#	Set	__loader__	and	__package__	if	missing.

else:

				sys.modules[spec.name]	=	module

				try:

								spec.loader.exec_module(module)

				except	BaseException:

								try:

												del	sys.modules[spec.name]

								except	KeyError:

												pass

								raise

return	sys.modules[spec.name]

Note	the	following	details:

If	 there	 is	an	existing	module	object	with	 the	given	name	 in
sys.modules,	import	will	have	already	returned	it.
The	 module	 will	 exist	 in	 sys.modules	 before	 the	 loader
executes	 the	 module	 code.	 This	 is	 crucial	 because	 the
module	code	may	(directly	or	indirectly)	import	itself;	adding	it
to	sys.modules	beforehand	prevents	unbounded	recursion
in	the	worst	case	and	multiple	loading	in	the	best.
If	 loading	 fails,	 the	 failing	 module	 –	 and	 only	 the	 failing
module	 –	 gets	 removed	 from	 sys.modules.	 Any	 module
already	 in	 the	 sys.modules	 cache,	 and	 any	 module	 that
was	successfully	loaded	as	a	side-effect,	must	remain	in	the
cache.	 This	 contrasts	 with	 reloading	 where	 even	 the	 failing
module	is	left	in	sys.modules.
After	 the	module	 is	created	but	before	execution,	 the	 import
machinery	 sets	 the	 import-related	 module	 attributes
(“_init_module_attrs”	in	the	pseudo-code	example	above),	as
summarized	in	a	later	section.
Module	execution	is	the	key	moment	of	 loading	in	which	the
module’s	 namespace	 gets	 populated.	 Execution	 is	 entirely
delegated	 to	 the	 loader,	 which	 gets	 to	 decide	 what	 gets
populated	and	how.
The	 module	 created	 during	 loading	 and	 passed	 to
exec_module()	 may	 not	 be	 the	 one	 returned	 at	 the	 end	 of
import	[2].

Changed	 in	 version	 3.4:	 The	 import	 system	 has	 taken	 over	 the
boilerplate	 responsibilities	 of	 loaders.	 These	 were	 previously
performed	 by	 the	 importlib.abc.Loader.load_module()

method.

5.4.1.	Loaders

Module	 loaders	 provide	 the	 critical	 function	 of	 loading:	 module
execution.	 The	 import	 machinery	 calls	 the
importlib.abc.Loader.exec_module()	 method	 with	 a	 single
argument,	 the	 module	 object	 to	 execute.	 Any	 value	 returned	 from
exec_module()	is	ignored.

Loaders	must	satisfy	the	following	requirements:

If	 the	module	 is	 a	 Python	module	 (as	 opposed	 to	 a	 built-in
module	or	a	dynamically	loaded	extension),	the	loader	should
execute	 the	 module’s	 code	 in	 the	 module’s	 global	 name
space	(module.__dict__).
If	 the	 loader	 cannot	 execute	 the	module,	 it	 should	 raise	 an
ImportError,	 although	 any	 other	 exception	 raised	 during
exec_module()	will	be	propagated.

In	many	cases,	the	finder	and	loader	can	be	the	same	object;	in	such
cases	 the	 find_spec()	 method	 would	 just	 return	 a	 spec	 with	 the
loader	set	to	self.

Module	 loaders	 may	 opt	 in	 to	 creating	 the	 module	 object	 during
loading	by	 implementing	a	create_module()	method.	 It	 takes	one
argument,	the	module	spec,	and	returns	the	new	module	object	to	use
during	 loading.	 create_module()	 does	 not	 need	 to	 set	 any
attributes	 on	 the	 module	 object.	 If	 the	 loader	 does	 not	 define
create_module(),	the	import	machinery	will	create	the	new	module
itself.

New	in	version	3.4:	The	create_module()	method	of	loaders.

Changed	 in	version	3.4:	The	load_module()	method	was	replaced

by	 exec_module()	 and	 the	 import	 machinery	 assumed	 all	 the
boilerplate	responsibilities	of	loading.

For	 compatibility	with	 existing	 loaders,	 the	 import	machinery	will	 use
the	 load_module()	 method	 of	 loaders	 if	 it	 exists	 and	 the	 loader
does	 not	 also	 implement	 exec_module().	 However,
load_module()	has	been	deprecated	and	loaders	should	implement
exec_module()	instead.

The	 load_module()	 method	 must	 implement	 all	 the	 boilerplate
loading	 functionality	 described	 above	 in	 addition	 to	 executing	 the
module.	 All	 the	 same	 constraints	 apply,	 with	 some	 additional
clarification:

If	 there	 is	an	existing	module	object	with	 the	given	name	 in
sys.modules,	 the	 loader	 must	 use	 that	 existing	 module.
(Otherwise,	importlib.reload()	will	 not	work	 correctly.)
If	 the	 named	 module	 does	 not	 exist	 in	 sys.modules,	 the
loader	 must	 create	 a	 new	 module	 object	 and	 add	 it	 to
sys.modules.
The	module	must	 exist	 in	 sys.modules	 before	 the	 loader
executes	 the	module	 code,	 to	prevent	 unbounded	 recursion
or	multiple	loading.
If	 loading	 fails,	 the	 loader	must	 remove	 any	modules	 it	 has
inserted	 into	 sys.modules,	 but	 it	 must	 remove	 only	 the
failing	 module,	 and	 only	 if	 the	 loader	 itself	 has	 loaded	 it
explicitly.

5.4.2.	Module	spec

The	import	machinery	uses	a	variety	of	information	about	each	module
during	 import,	 especially	 before	 loading.	 Most	 of	 the	 information	 is

common	 to	 all	 modules.	 The	 purpose	 of	 a	 module’s	 spec	 is	 to
encapsulate	this	import-related	information	on	a	per-module	basis.

Using	 a	 spec	 during	 import	 allows	 state	 to	 be	 transferred	 between
import	 system	 components,	 e.g.	 between	 the	 finder	 that	 creates	 the
module	spec	and	the	loader	that	executes	it.	Most	importantly,	it	allows
the	import	machinery	to	perform	the	boilerplate	operations	of	 loading,
whereas	without	a	module	spec	the	loader	had	that	responsibility.

See	ModuleSpec	 for	more	specifics	on	what	 information	a	module’s
spec	may	hold.

New	in	version	3.4.

5.4.3.	Import-related	module	attributes

The	 import	machinery	 fills	 in	 these	attributes	on	each	module	object
during	 loading,	 based	 on	 the	 module’s	 spec,	 before	 the	 loader
executes	the	module.

__name__

The	__name__	attribute	must	be	set	to	the	fully-qualified	name	of
the	module.	This	name	 is	used	 to	uniquely	 identify	 the	module	 in
the	import	system.

__loader__

The	 __loader__	 attribute	must	 be	 set	 to	 the	 loader	 object	 that
the	import	machinery	used	when	loading	the	module.	This	is	mostly
for	 introspection,	 but	 can	 be	 used	 for	 additional	 loader-specific
functionality,	for	example	getting	data	associated	with	a	loader.

__package__

The	module’s	__package__	attribute	must	be	set.	 Its	value	must

be	a	string,	but	it	can	be	the	same	value	as	its	__name__.	When
the	module	is	a	package,	its	__package__	value	should	be	set	to
its	__name__.	When	the	module	is	not	a	package,	__package__
should	 be	 set	 to	 the	 empty	 string	 for	 top-level	 modules,	 or	 for
submodules,	 to	 the	 parent	 package’s	 name.	 See	 PEP	 366	 for
further	details.

This	 attribute	 is	 used	 instead	 of	 __name__	 to	 calculate	 explicit
relative	imports	for	main	modules,	as	defined	in	PEP	366.

__spec__

The	__spec__	attribute	must	be	set	to	the	module	spec	that	was
used	 when	 importing	 the	 module.	 This	 is	 used	 primarily	 for
introspection	and	during	reloading.

New	in	version	3.4.

__path__

If	 the	 module	 is	 a	 package	 (either	 regular	 or	 namespace),	 the
module	object’s	__path__	attribute	must	be	set.	The	value	must
be	 iterable,	 but	 may	 be	 empty	 if	 __path__	 has	 no	 further
significance.	 If	 __path__	 is	 not	 empty,	 it	 must	 produce	 strings
when	 iterated	 over.	More	 details	 on	 the	 semantics	 of	 __path__
are	given	below.

Non-package	modules	should	not	have	a	__path__	attribute.

__file__

__cached__

__file__	is	optional.	If	set,	this	attribute’s	value	must	be	a	string.
The	 import	system	may	opt	 to	 leave	__file__	unset	 if	 it	has	no
semantic	meaning	(e.g.	a	module	loaded	from	a	database).

http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-0366

If	 __file__	 is	 set,	 it	 may	 also	 be	 appropriate	 to	 set	 the
__cached__	attribute	which	is	the	path	to	any	compiled	version	of
the	code	(e.g.	byte-compiled	file).	The	file	does	not	need	to	exist	to
set	 this	attribute;	 the	path	can	simply	point	 to	where	the	compiled
file	would	exist	(see	PEP	3147).

It	 is	also	appropriate	 to	set	__cached__	when	__file__	 is	not
set.	However,	that	scenario	is	quite	atypical.	Ultimately,	 the	 loader
is	 what	 makes	 use	 of	 __file__	 and/or	 __cached__.	 So	 if	 a
loader	can	load	from	a	cached	module	but	otherwise	does	not	load
from	a	file,	that	atypical	scenario	may	be	appropriate.

5.4.4.	module.__path__

By	definition,	if	a	module	has	an	__path__	attribute,	it	is	a	package,
regardless	of	its	value.

A	 package’s	 __path__	 attribute	 is	 used	 during	 imports	 of	 its
subpackages.	Within	the	import	machinery,	it	functions	much	the	same
as	sys.path,	 i.e.	providing	a	 list	of	 locations	 to	search	 for	modules
during	import.	However,	__path__	is	typically	much	more	constrained
than	sys.path.

__path__	must	 be	 an	 iterable	 of	 strings,	 but	 it	may	 be	 empty.	 The
same	rules	used	for	sys.path	also	apply	to	a	package’s	__path__,
and	 sys.path_hooks	 (described	 below)	 are	 consulted	 when
traversing	a	package’s	__path__.

A	 package’s	 __init__.py	 file	 may	 set	 or	 alter	 the	 package’s
__path__	 attribute,	 and	 this	 was	 typically	 the	 way	 namespace
packages	were	 implemented	 prior	 to	PEP	420.	With	 the	 adoption	 of
PEP	 420,	 namespace	 packages	 no	 longer	 need	 to	 supply

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0420

__init__.py	files	containing	only	__path__	manipulation	code;	the
import	 machinery	 automatically	 sets	 __path__	 correctly	 for	 the
namespace	package.

5.4.5.	Module	reprs

By	default,	all	modules	have	a	usable	repr,	however	depending	on	the
attributes	set	above,	and	in	the	module’s	spec,	you	can	more	explicitly
control	the	repr	of	module	objects.

If	the	module	has	a	spec	(__spec__),	the	import	machinery	will	try	to
generate	 a	 repr	 from	 it.	 If	 that	 fails	 or	 there	 is	 no	 spec,	 the	 import
system	will	craft	a	default	repr	using	whatever	information	is	available
on	 the	 module.	 It	 will	 try	 to	 use	 the	 module.__name__,
module.__file__,	 and	 module.__loader__	 as	 input	 into	 the
repr,	with	defaults	for	whatever	information	is	missing.

Here	are	the	exact	rules	used:

If	 the	module	 has	 a	 __spec__	 attribute,	 the	 information	 in
the	spec	 is	used	 to	generate	 the	repr.	The	“name”,	 “loader”,
“origin”,	and	“has_location”	attributes	are	consulted.
If	the	module	has	a	__file__	attribute,	this	is	used	as	part
of	the	module’s	repr.
If	 the	 module	 has	 no	 __file__	 but	 does	 have	 a
__loader__	that	is	not	None,	then	the	loader’s	repr	is	used
as	part	of	the	module’s	repr.
Otherwise,	just	use	the	module’s	__name__	in	the	repr.

Changed	 in	version	3.4:	Use	of	loader.module_repr()	has	been
deprecated	and	the	module	spec	is	now	used	by	the	import	machinery
to	generate	a	module	repr.

For	 backward	 compatibility	 with	 Python	 3.3,	 the	module	 repr	 will	 be
generated	by	calling	the	loader’s	module_repr()	method,	if	defined,
before	 trying	either	approach	described	above.	However,	 the	method
is	deprecated.

5.5.	The	Path	Based	Finder

As	mentioned	previously,	Python	comes	with	several	default	meta	path
finders.	 One	 of	 these,	 called	 the	 path	 based	 finder	 (PathFinder),
searches	 an	 import	 path,	which	 contains	 a	 list	 of	path	 entries.	 Each
path	entry	names	a	location	to	search	for	modules.

The	 path	 based	 finder	 itself	 doesn’t	 know	 how	 to	 import	 anything.
Instead,	 it	 traverses	 the	 individual	 path	 entries,	 associating	 each	 of
them	with	a	path	entry	finder	that	knows	how	to	handle	that	particular
kind	of	path.

The	default	 set	 of	 path	entry	 finders	 implement	all	 the	 semantics	 for
finding	modules	on	the	file	system,	handling	special	file	types	such	as
Python	source	code	 (.py	 files),	 Python	 byte	 code	 (.pyc	 and	 .pyo
files)	 and	 shared	 libraries	 (e.g.	 .so	 files).	 When	 supported	 by	 the
zipimport	 module	 in	 the	 standard	 library,	 the	 default	 path	 entry
finders	 also	 handle	 loading	 all	 of	 these	 file	 types	 (other	 than	 shared
libraries)	from	zipfiles.

Path	 entries	 need	 not	 be	 limited	 to	 file	 system	 locations.	 They	 can
refer	 to	 URLs,	 database	 queries,	 or	 any	 other	 location	 that	 can	 be
specified	as	a	string.

The	path	based	finder	provides	additional	hooks	and	protocols	so	that
you	 can	extend	and	 customize	 the	 types	of	 searchable	path	entries.
For	example,	if	you	wanted	to	support	path	entries	as	network	URLs,
you	 could	 write	 a	 hook	 that	 implements	 HTTP	 semantics	 to	 find
modules	on	the	web.	This	hook	(a	callable)	would	return	a	path	entry
finder	supporting	 the	protocol	described	below,	which	was	 then	used
to	get	a	loader	for	the	module	from	the	web.

A	word	 of	 warning:	 this	 section	 and	 the	 previous	 both	 use	 the	 term
finder,	 distinguishing	 between	 them	 by	 using	 the	 terms	 meta	 path
finder	 and	 path	 entry	 finder.	 These	 two	 types	 of	 finders	 are	 very
similar,	 support	 similar	 protocols,	 and	 function	 in	 similar	ways	during
the	 import	 process,	 but	 it’s	 important	 to	 keep	 in	 mind	 that	 they	 are
subtly	 different.	 In	 particular,	 meta	 path	 finders	 operate	 at	 the
beginning	 of	 the	 import	 process,	 as	 keyed	 off	 the	 sys.meta_path
traversal.

By	contrast,	path	entry	finders	are	in	a	sense	an	implementation	detail
of	the	path	based	finder,	and	in	fact,	if	the	path	based	finder	were	to	be
removed	 from	 sys.meta_path,	 none	 of	 the	 path	 entry	 finder
semantics	would	be	invoked.

5.5.1.	Path	entry	finders

The	path	 based	 finder	 is	 responsible	 for	 finding	 and	 loading	 Python
modules	and	packages	whose	 location	 is	specified	with	a	string	path
entry.	Most	 path	 entries	 name	 locations	 in	 the	 file	 system,	 but	 they
need	not	be	limited	to	this.

As	 a	 meta	 path	 finder,	 the	 path	 based	 finder	 implements	 the
find_spec()	 protocol	 previously	 described,	 however	 it	 exposes
additional	 hooks	 that	 can	 be	 used	 to	 customize	 how	 modules	 are
found	and	loaded	from	the	import	path.

Three	 variables	 are	 used	 by	 the	 path	 based	 finder,	 sys.path,
sys.path_hooks	 and	 sys.path_importer_cache.	 The
__path__	 attributes	 on	 package	 objects	 are	 also	 used.	 These
provide	additional	ways	that	the	import	machinery	can	be	customized.

sys.path	 contains	 a	 list	 of	 strings	 providing	 search	 locations	 for

modules	 and	 packages.	 It	 is	 initialized	 from	 the	 PYTHONPATH
environment	 variable	 and	 various	 other	 installation-	 and
implementation-specific	 defaults.	 Entries	 in	 sys.path	 can	 name
directories	on	the	file	system,	zip	files,	and	potentially	other	“locations”
(see	the	site	module)	that	should	be	searched	for	modules,	such	as
URLs,	or	database	queries.	Only	strings	and	bytes	should	be	present
on	sys.path;	all	other	data	types	are	ignored.	The	encoding	of	bytes
entries	is	determined	by	the	individual	path	entry	finders.

The	path	based	finder	 is	a	meta	path	finder,	so	 the	 import	machinery
begins	 the	 import	 path	 search	 by	 calling	 the	 path	 based	 finder’s
find_spec()	 method	 as	 described	 previously.	 When	 the	 path
argument	to	find_spec()	 is	given,	 it	will	be	a	 list	of	string	paths	to
traverse	 -	 typically	 a	 package’s	 __path__	 attribute	 for	 an	 import
within	that	package.	If	the	path	argument	is	None,	this	indicates	a	top
level	import	and	sys.path	is	used.

The	path	based	finder	iterates	over	every	entry	in	the	search	path,	and
for	 each	 of	 these,	 looks	 for	 an	 appropriate	 path	 entry	 finder
(PathEntryFinder)	 for	 the	 path	 entry.	 Because	 this	 can	 be	 an
expensive	operation	 (e.g.	 there	may	be	stat()	 call	 overheads	 for	 this
search),	the	path	based	finder	maintains	a	cache	mapping	path	entries
to	 path	 entry	 finders.	 This	 cache	 is	 maintained	 in
sys.path_importer_cache	(despite	the	name,	this	cache	actually
stores	 finder	objects	 rather	 than	being	 limited	 to	 importer	objects).	 In
this	 way,	 the	 expensive	 search	 for	 a	 particular	 path	 entry	 location’s
path	entry	finder	need	only	be	done	once.	User	code	is	free	to	remove
cache	 entries	 from	 sys.path_importer_cache	 forcing	 the	 path
based	finder	to	perform	the	path	entry	search	again	[3].

If	 the	 path	 entry	 is	 not	 present	 in	 the	 cache,	 the	 path	 based	 finder
iterates	 over	 every	 callable	 in	 sys.path_hooks.	 Each	 of	 the	 path

entry	hooks	in	this	list	is	called	with	a	single	argument,	the	path	entry
to	be	searched.	This	callable	may	either	return	a	path	entry	finder	that
can	 handle	 the	 path	 entry,	 or	 it	 may	 raise	 ImportError.	 An
ImportError	is	used	by	the	path	based	finder	to	signal	that	the	hook
cannot	 find	 a	path	 entry	 finder.	 for	 that	path	 entry.	 The	 exception	 is
ignored	and	 import	path	 iteration	 continues.	The	 hook	 should	 expect
either	a	string	or	bytes	object;	 the	encoding	of	bytes	objects	 is	up	 to
the	hook	(e.g.	it	may	be	a	file	system	encoding,	UTF-8,	or	something
else),	 and	 if	 the	 hook	 cannot	 decode	 the	 argument,	 it	 should	 raise
ImportError.

If	 sys.path_hooks	 iteration	 ends	 with	 no	 path	 entry	 finder	 being
returned,	 then	 the	 path	 based	 finder’s	 find_spec()	 method	 will
store	None	in	sys.path_importer_cache	(to	indicate	that	there	is
no	finder	for	this	path	entry)	and	return	None,	indicating	that	this	meta
path	finder	could	not	find	the	module.

If	a	path	entry	finder	is	returned	by	one	of	the	path	entry	hook	callables
on	sys.path_hooks,	 then	 the	 following	protocol	 is	used	 to	ask	 the
finder	for	a	module	spec,	which	is	then	used	when	loading	the	module.

5.5.2.	Path	entry	finder	protocol

In	 order	 to	 support	 imports	 of	modules	 and	 initialized	 packages	 and
also	to	contribute	portions	to	namespace	packages,	path	entry	finders
must	implement	the	find_spec()	method.

find_spec()	 takes	 two	 argument,	 the	 fully	 qualified	 name	 of	 the
module	 being	 imported,	 and	 the	 (optional)	 target	 module.
find_spec()	 returns	 a	 fully	 populated	 spec	 for	 the	 module.	 This
spec	will	always	have	“loader”	set	(with	one	exception).

To	 indicate	 to	 the	 import	 machinery	 that	 the	 spec	 represents	 a
namespace	portion.	 the	path	entry	finder	sets	“loader”	on	the	spec	to
None	 and	 “submodule_search_locations”	 to	 a	 list	 containing	 the
portion.

Changed	 in	 version	 3.4:	 find_spec()	 replaced	 find_loader()
and	find_module(),	both	of	which	are	now	deprecated,	but	will	be
used	if	find_spec()	is	not	defined.

Older	path	entry	finders	may	implement	one	of	these	two	deprecated
methods	 instead	 of	 find_spec().	 The	methods	 are	 still	 respected
for	the	sake	of	backward	compatibility.	Howevever,	if	find_spec()	is
implemented	on	the	path	entry	finder,	the	legacy	methods	are	ignored.

find_loader()	takes	one	argument,	the	fully	qualified	name	of	the
module	being	imported.	find_loader()	returns	a	2-tuple	where	the
first	 item	 is	 the	 loader	and	 the	 second	 item	 is	 a	namespace	portion.
When	the	first	item	(i.e.	the	loader)	is	None,	this	means	that	while	the
path	 entry	 finder	 does	 not	 have	 a	 loader	 for	 the	 named	 module,	 it
knows	that	 the	path	entry	contributes	 to	a	namespace	portion	 for	 the
named	module.	This	will	almost	always	be	 the	case	where	Python	 is
asked	to	import	a	namespace	package	that	has	no	physical	presence
on	 the	 file	 system.	 When	 a	 path	 entry	 finder	 returns	 None	 for	 the
loader,	 the	 second	 item	 of	 the	 2-tuple	 return	 value	 must	 be	 a
sequence,	although	it	can	be	empty.

If	 find_loader()	 returns	 a	 non-None	 loader	 value,	 the	 portion	 is
ignored	 and	 the	 loader	 is	 returned	 from	 the	 path	 based	 finder,
terminating	the	search	through	the	path	entries.

For	backwards	compatibility	with	other	 implementations	of	 the	 import
protocol,	 many	 path	 entry	 finders	 also	 support	 the	 same,	 traditional

find_module()	 method	 that	 meta	 path	 finders	 support.	 However
path	 entry	 finder	 find_module()	methods	 are	 never	 called	with	 a
path	 argument	 (they	 are	 expected	 to	 record	 the	 appropriate	 path
information	from	the	initial	call	to	the	path	hook).

The	find_module()	method	on	path	entry	finders	is	deprecated,	as
it	 does	 not	 allow	 the	 path	 entry	 finder	 to	 contribute	 portions	 to
namespace	 packages.	 If	 both	 find_loader()	 and
find_module()	 exist	on	a	path	entry	 finder,	 the	 import	 system	will
always	call	find_loader()	in	preference	to	find_module().

5.6.	Replacing	the	standard	import	system

The	most	reliable	mechanism	for	replacing	the	entire	import	system	is
to	 delete	 the	 default	 contents	 of	 sys.meta_path,	 replacing	 them
entirely	with	a	custom	meta	path	hook.

If	 it	 is	 acceptable	 to	 only	 alter	 the	 behaviour	 of	 import	 statements
without	 affecting	 other	 APIs	 that	 access	 the	 import	 system,	 then
replacing	 the	builtin	 __import__()	 function	may	be	 sufficient.	 This
technique	may	also	be	employed	at	the	module	level	to	only	alter	the
behaviour	of	import	statements	within	that	module.

To	selectively	prevent	 import	of	 some	modules	 from	a	hook	early	on
the	 meta	 path	 (rather	 than	 disabling	 the	 standard	 import	 system
entirely),	 it	 is	 sufficient	 to	 raise	 ImportError	 directly	 from
find_spec()	instead	of	returning	None.	The	latter	indicates	that	the
meta	 path	 search	 should	 continue,	 while	 raising	 an	 exception
terminates	it	immediately.

5.7.	Open	issues

XXX	It	would	be	really	nice	to	have	a	diagram.

XXX	*	(import_machinery.rst)	how	about	a	section	devoted	just	to	the
attributes	 of	 modules	 and	 packages,	 perhaps	 expanding	 upon	 or
supplanting	the	related	entries	in	the	data	model	reference	page?

XXX	runpy,	pkgutil,	et	al	in	the	library	manual	should	all	get	“See	Also”
links	at	the	top	pointing	to	the	new	import	system	section.

5.8.	References

The	 import	machinery	has	evolved	considerably	since	Python’s	early
days.	The	original	specification	for	packages	 is	still	available	 to	read,
although	 some	 details	 have	 changed	 since	 the	 writing	 of	 that
document.

The	 original	 specification	 for	 sys.meta_path	 was	 PEP	 302,	 with
subsequent	extension	in	PEP	420.

PEP	420	 introduced	namespace	 packages	 for	 Python	 3.3.	PEP	 420
also	 introduced	 the	 find_loader()	 protocol	 as	 an	 alternative	 to
find_module().

PEP	 366	 describes	 the	 addition	 of	 the	 __package__	 attribute	 for
explicit	relative	imports	in	main	modules.

PEP	328	 introduced	absolute	and	explicit	 relative	 imports	and	initially
proposed	__name__	for	semantics	PEP	366	would	eventually	specify
for	__package__.

PEP	338	defines	executing	modules	as	scripts.

PEP	451	 adds	 the	 encapsulation	 of	 per-module	 import	 state	 in	 spec
objects.	 It	 also	 off-loads	 most	 of	 the	 boilerplate	 responsibilities	 of
loaders	 back	 onto	 the	 import	 machinery.	 These	 changes	 allow	 the
deprecation	of	several	APIs	in	the	import	system	and	also	addition	of
new	methods	to	finders	and	loaders.

Footnotes

[1] See	types.ModuleType.

http://www.python.org/doc/essays/packages.html
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-0328
http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-0338
http://www.python.org/dev/peps/pep-0451

[2]

The	importlib	implementation	avoids	using	the	return	value
directly.	Instead,	it	gets	the	module	object	by	looking	the
module	name	up	in	sys.modules.	The	indirect	effect	of	this	is
that	an	imported	module	may	replace	itself	in	sys.modules.
This	is	implementation-specific	behavior	that	is	not	guaranteed
to	work	in	other	Python	implementations.

[3]

In	legacy	code,	it	is	possible	to	find	instances	of
imp.NullImporter	in	the	sys.path_importer_cache.	It
is	recommended	that	code	be	changed	to	use	None	instead.
See	Porting	Python	code	for	more	details.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

6.	Expressions
This	chapter	explains	 the	meaning	of	 the	elements	of	expressions	 in
Python.

Syntax	 Notes:	 In	 this	 and	 the	 following	 chapters,	 extended	 BNF
notation	 will	 be	 used	 to	 describe	 syntax,	 not	 lexical	 analysis.	When
(one	alternative	of)	a	syntax	rule	has	the	form

name	::=		othername

and	no	semantics	are	given,	 the	semantics	of	 this	 form	of	name	are
the	same	as	for	othername.

6.1.	Arithmetic	conversions

When	a	description	of	 an	arithmetic	operator	 below	uses	 the	phrase
“the	numeric	arguments	are	converted	to	a	common	type,”	this	means
that	the	operator	implementation	for	built-in	types	works	that	way:

If	either	argument	is	a	complex	number,	the	other	is	converted	to
complex;
otherwise,	if	either	argument	is	a	floating	point	number,	the	other
is	converted	to	floating	point;
otherwise,	both	must	be	integers	and	no	conversion	is	necessary.

Some	 additional	 rules	 apply	 for	 certain	 operators	 (e.g.,	 a	 string	 left
argument	 to	 the	 ‘%’	 operator).	 Extensions	 must	 define	 their	 own
conversion	behavior.

6.2.	Atoms

Atoms	 are	 the	 most	 basic	 elements	 of	 expressions.	 The	 simplest
atoms	 are	 identifiers	 or	 literals.	 Forms	 enclosed	 in	 parentheses,
brackets	 or	 braces	 are	 also	 categorized	 syntactically	 as	 atoms.	 The
syntax	for	atoms	is:

atom						::=		identifier	|	literal	|	enclosure

enclosure	::=		parenth_form	|	list_display	|	dict_display

															|	generator_expression	|	yield_atom

6.2.1.	Identifiers	(Names)

An	 identifier	occurring	as	an	atom	 is	a	name.	See	section	 Identifiers
and	keywords	for	lexical	definition	and	section	Naming	and	binding	for
documentation	of	naming	and	binding.

When	 the	name	 is	bound	 to	an	object,	evaluation	of	 the	atom	yields
that	object.	When	a	name	is	not	bound,	an	attempt	to	evaluate	it	raises
a	NameError	exception.

Private	name	mangling:	When	an	identifier	that	textually	occurs	in	a
class	 definition	 begins	 with	 two	 or	 more	 underscore	 characters	 and
does	 not	 end	 in	 two	 or	more	 underscores,	 it	 is	 considered	 a	private
name	 of	 that	 class.	Private	 names	 are	 transformed	 to	 a	 longer	 form
before	 code	 is	 generated	 for	 them.	 The	 transformation	 inserts	 the
class	 name,	 with	 leading	 underscores	 removed	 and	 a	 single
underscore	 inserted,	 in	 front	of	 the	name.	For	example,	 the	 identifier
__spam	 occurring	 in	 a	 class	 named	 Ham	 will	 be	 transformed	 to
_Ham__spam.	 This	 transformation	 is	 independent	 of	 the	 syntactical
context	 in	 which	 the	 identifier	 is	 used.	 If	 the	 transformed	 name	 is

extremely	 long	 (longer	 than	 255	 characters),	 implementation	 defined
truncation	 may	 happen.	 If	 the	 class	 name	 consists	 only	 of
underscores,	no	transformation	is	done.

6.2.2.	Literals

Python	supports	string	and	bytes	literals	and	various	numeric	literals:

literal	::=		stringliteral	|	bytesliteral

													|	integer	|	floatnumber	|	imagnumber

Evaluation	of	a	literal	yields	an	object	of	the	given	type	(string,	bytes,
integer,	 floating	point	number,	complex	number)	with	the	given	value.
The	 value	 may	 be	 approximated	 in	 the	 case	 of	 floating	 point	 and
imaginary	(complex)	literals.	See	section	Literals	for	details.

All	literals	correspond	to	immutable	data	types,	and	hence	the	object’s
identity	 is	 less	important	than	its	value.	Multiple	evaluations	of	 literals
with	 the	same	value	(either	 the	same	occurrence	 in	 the	program	text
or	 a	 different	 occurrence)	may	 obtain	 the	 same	 object	 or	 a	 different
object	with	the	same	value.

6.2.3.	Parenthesized	forms

A	 parenthesized	 form	 is	 an	 optional	 expression	 list	 enclosed	 in
parentheses:

parenth_form	::=		"("	[expression_list]	")"

A	 parenthesized	 expression	 list	 yields	 whatever	 that	 expression	 list
yields:	 if	 the	 list	 contains	 at	 least	 one	 comma,	 it	 yields	 a	 tuple;
otherwise,	it	yields	the	single	expression	that	makes	up	the	expression

list.

An	 empty	 pair	 of	 parentheses	 yields	 an	 empty	 tuple	 object.	 Since
tuples	are	immutable,	the	rules	for	literals	apply	(i.e.,	two	occurrences
of	the	empty	tuple	may	or	may	not	yield	the	same	object).

Note	that	tuples	are	not	formed	by	the	parentheses,	but	rather	by	use
of	 the	 comma	 operator.	 The	 exception	 is	 the	 empty	 tuple,	 for	 which
parentheses	 are	 required	 —	 allowing	 unparenthesized	 “nothing”	 in
expressions	would	cause	ambiguities	and	allow	common	typos	to	pass
uncaught.

6.2.4.	Displays	for	lists,	sets	and	dictionaries

For	 constructing	 a	 list,	 a	 set	 or	 a	 dictionary	Python	 provides	 special
syntax	called	“displays”,	each	of	them	in	two	flavors:

either	the	container	contents	are	listed	explicitly,	or
they	are	 computed	via	a	 set	 of	 looping	and	 filtering	 instructions,
called	a	comprehension.

Common	syntax	elements	for	comprehensions	are:

comprehension	::=		expression	comp_for

comp_for						::=		"for"	target_list	"in"	or_test	[comp_iter

comp_iter					::=		comp_for	|	comp_if

comp_if							::=		"if"	expression_nocond	[comp_iter

The	 comprehension	 consists	 of	 a	 single	 expression	 followed	 by	 at
least	 one	 for	 clause	 and	 zero	 or	more	 for	 or	 if	 clauses.	 In	 this
case,	 the	 elements	 of	 the	 new	 container	 are	 those	 that	 would	 be
produced	 by	 considering	 each	 of	 the	 for	 or	 if	 clauses	 a	 block,
nesting	from	left	to	right,	and	evaluating	the	expression	to	produce	an

element	each	time	the	innermost	block	is	reached.

Note	 that	 the	 comprehension	 is	 executed	 in	 a	 separate	 scope,	 so
names	assigned	to	in	the	target	list	don’t	“leak”	in	the	enclosing	scope.

6.2.5.	List	displays

A	 list	 display	 is	 a	 possibly	 empty	 series	 of	 expressions	 enclosed	 in
square	brackets:

list_display	::=		"["	[expression_list	|	comprehension

A	 list	display	yields	a	new	 list	object,	 the	contents	being	specified	by
either	 a	 list	 of	 expressions	 or	 a	 comprehension.	 When	 a	 comma-
separated	 list	 of	 expressions	 is	 supplied,	 its	 elements	 are	 evaluated
from	 left	 to	 right	and	placed	 into	 the	 list	object	 in	 that	order.	When	 a
comprehension	 is	 supplied,	 the	 list	 is	 constructed	 from	 the	 elements
resulting	from	the	comprehension.

6.2.6.	Set	displays

A	 set	 display	 is	 denoted	 by	 curly	 braces	 and	 distinguishable	 from
dictionary	displays	by	the	lack	of	colons	separating	keys	and	values:

set_display	::=		"{"	(expression_list	|	comprehension

A	 set	 display	 yields	 a	 new	 mutable	 set	 object,	 the	 contents	 being
specified	 by	 either	 a	 sequence	 of	 expressions	 or	 a	 comprehension.
When	a	comma-separated	list	of	expressions	is	supplied,	its	elements
are	evaluated	 from	 left	 to	 right	and	added	 to	 the	set	object.	When	 a
comprehension	 is	 supplied,	 the	set	 is	 constructed	 from	 the	elements

resulting	from	the	comprehension.

An	empty	set	cannot	be	constructed	with	{};	this	literal	constructs	an
empty	dictionary.

6.2.7.	Dictionary	displays

A	 dictionary	 display	 is	 a	 possibly	 empty	 series	 of	 key/datum	 pairs
enclosed	in	curly	braces:

dict_display							::=		"{"	[key_datum_list	|	dict_comprehension

key_datum_list					::=		key_datum	(","	key_datum)*	[","]

key_datum										::=		expression	":"	expression

dict_comprehension	::=		expression	":"	expression	comp_for

A	dictionary	display	yields	a	new	dictionary	object.

If	a	comma-separated	sequence	of	key/datum	pairs	is	given,	they	are
evaluated	from	left	to	right	to	define	the	entries	of	the	dictionary:	each
key	 object	 is	 used	 as	 a	 key	 into	 the	 dictionary	 to	 store	 the
corresponding	datum.	This	means	that	you	can	specify	the	same	key
multiple	times	in	the	key/datum	list,	and	the	final	dictionary’s	value	for
that	key	will	be	the	last	one	given.

A	 dict	 comprehension,	 in	 contrast	 to	 list	 and	 set	 comprehensions,
needs	 two	expressions	separated	with	a	colon	 followed	by	 the	usual
“for”	 and	 “if”	 clauses.	When	 the	 comprehension	 is	 run,	 the	 resulting
key	and	value	elements	are	inserted	in	the	new	dictionary	in	the	order
they	are	produced.

Restrictions	on	the	types	of	the	key	values	are	listed	earlier	in	section
The	standard	 type	hierarchy.	 (To	summarize,	 the	key	 type	should	be
hashable,	 which	 excludes	 all	 mutable	 objects.)	 Clashes	 between

duplicate	keys	are	not	detected;	the	last	datum	(textually	rightmost	 in
the	display)	stored	for	a	given	key	value	prevails.

6.2.8.	Generator	expressions

A	 generator	 expression	 is	 a	 compact	 generator	 notation	 in
parentheses:

generator_expression	::=		"("	expression	comp_for	")"

A	generator	expression	yields	a	new	generator	object.	Its	syntax	is	the
same	as	for	comprehensions,	except	that	it	is	enclosed	in	parentheses
instead	of	brackets	or	curly	braces.

Variables	used	in	the	generator	expression	are	evaluated	 lazily	when
the	__next__()	method	 is	 called	 for	generator	object	 (in	 the	same
fashion	 as	 normal	 generators).	 However,	 the	 leftmost	 for	 clause	 is
immediately	 evaluated,	 so	 that	 an	 error	 produced	 by	 it	 can	 be	 seen
before	any	other	possible	error	in	the	code	that	handles	the	generator
expression.	 Subsequent	 for	 clauses	 cannot	 be	 evaluated
immediately	 since	 they	 may	 depend	 on	 the	 previous	 for	 loop.	 For
example:	(x*y	for	x	in	range(10)	for	y	in	bar(x)).

The	parentheses	can	be	omitted	on	calls	with	only	one	argument.	See
section	Calls	for	the	detail.

6.2.9.	Yield	expressions

yield_atom							::=		"("	yield_expression	")"

yield_expression	::=		"yield"	[expression_list	|	"from"	

The	yield	expression	 is	only	used	when	defining	a	generator	 function
and	thus	can	only	be	used	in	the	body	of	a	function	definition.	Using	a
yield	 expression	 in	 a	 function’s	 body	 causes	 that	 function	 to	 be	 a
generator.

When	a	generator	function	is	called,	 it	returns	an	iterator	known	as	a
generator.	That	 generator	 then	 controls	 the	 execution	 of	 a	 generator
function.	The	execution	starts	when	one	of	the	generator’s	methods	is
called.	 At	 that	 time,	 the	 execution	 proceeds	 to	 the	 first	 yield
expression,	 where	 it	 is	 suspended	 again,	 returning	 the	 value	 of
expression_list	 to	 generator’s	 caller.	 By	 suspended,	 we	 mean
that	 all	 local	 state	 is	 retained,	 including	 the	 current	 bindings	 of	 local
variables,	 the	 instruction	 pointer,	 and	 the	 internal	 evaluation	 stack.
When	 the	 execution	 is	 resumed	 by	 calling	 one	 of	 the	 generator’s
methods,	 the	 function	 can	proceed	exactly	as	 if	 the	 yield	expression
was	just	another	external	call.	The	value	of	 the	yield	expression	after
resuming	 depends	 on	 the	 method	 which	 resumed	 the	 execution.	 If
__next__()	is	used	(typically	via	either	a	for	or	the	next()	builtin)
then	the	result	is	None.	Otherwise,	if	send()	is	used,	then	the	result
will	be	the	value	passed	in	to	that	method.

All	of	 this	makes	generator	 functions	quite	similar	 to	coroutines;	 they
yield	 multiple	 times,	 they	 have	 more	 than	 one	 entry	 point	 and	 their
execution	can	be	suspended.	The	only	difference	 is	 that	a	generator
function	 cannot	 control	 where	 should	 the	 execution	 continue	 after	 it
yields;	the	control	is	always	transferred	to	the	generator’s	caller.

yield	expressions	are	allowed	in	the	try	clause	of	a	try	...	finally
construct.	 If	 the	 generator	 is	 not	 resumed	 before	 it	 is	 finalized	 (by
reaching	 a	 zero	 reference	 count	 or	 by	 being	 garbage	 collected),	 the
generator-iterator’s	 close()	 method	 will	 be	 called,	 allowing	 any
pending	finally	clauses	to	execute.

When	yield	from	<expr>	is	used,	it	treats	the	supplied	expression
as	 a	 subiterator.	 All	 values	 produced	 by	 that	 subiterator	 are	 passed
directly	 to	 the	 caller	 of	 the	 current	 generator’s	methods.	 Any	 values
passed	in	with	send()	and	any	exceptions	passed	in	with	throw()
are	passed	to	the	underlying	iterator	if	it	has	the	appropriate	methods.
If	 this	 is	 not	 the	 case,	 then	 send()	will	 raise	 AttributeError	 or
TypeError,	 while	 throw()	 will	 just	 raise	 the	 passed	 in	 exception
immediately.

When	 the	 underlying	 iterator	 is	 complete,	 the	 value	 attribute	of	 the
raised	 StopIteration	 instance	 becomes	 the	 value	 of	 the	 yield
expression.	 It	 can	 be	 either	 set	 explicitly	 when	 raising
StopIteration,	 or	 automatically	 when	 the	 sub-iterator	 is	 a
generator	(by	returning	a	value	from	the	sub-generator).

Changed	 in	 version	 3.3:	 Added	 yield	 from	 <expr>	 to
delegate	control	flow	to	a	subiterator

The	parentheses	may	be	omitted	when	the	yield	expression	is	the	sole
expression	on	the	right	hand	side	of	an	assignment	statement.

See	also:

PEP	0255	-	Simple	Generators
The	proposal	for	adding	generators	and	the	yield	statement	to
Python.

PEP	0342	-	Coroutines	via	Enhanced	Generators
The	 proposal	 to	 enhance	 the	 API	 and	 syntax	 of	 generators,
making	them	usable	as	simple	coroutines.

PEP	0380	-	Syntax	for	Delegating	to	a	Subgenerator
The	 proposal	 to	 introduce	 the	 yield_from	 syntax,	 making
delegation	to	sub-generators	easy.

http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0342
http://www.python.org/dev/peps/pep-0380

6.2.9.1.	Generator-iterator	methods

This	 subsection	 describes	 the	methods	 of	 a	 generator	 iterator.	 They
can	be	used	to	control	the	execution	of	a	generator	function.

Note	 that	 calling	 any	 of	 the	 generator	 methods	 below	 when	 the
generator	is	already	executing	raises	a	ValueError	exception.

class	generator

generator.__next__()
Starts	the	execution	of	a	generator	function	or	resumes	it	at	the	last
executed	yield	expression.	When	a	generator	 function	 is	resumed
with	a	__next__()	method,	 the	 current	 yield	 expression	always
evaluates	to	None.	The	execution	then	continues	to	the	next	yield
expression,	where	the	generator	is	suspended	again,	and	the	value
of	 the	 expression_list	 is	 returned	 to	 next()‘s	 caller.	 If	 the
generator	exits	without	yielding	another	value,	a	StopIteration
exception	is	raised.

This	method	is	normally	called	implicitly,	e.g.	by	a	for	loop,	or	by
the	built-in	next()	function.

generator.send(value)
Resumes	 the	 execution	 and	 “sends”	 a	 value	 into	 the	 generator
function.	 The	 value	 argument	 becomes	 the	 result	 of	 the	 current
yield	 expression.	 The	 send()	 method	 returns	 the	 next	 value
yielded	 by	 the	 generator,	 or	 raises	 StopIteration	 if	 the
generator	 exits	 without	 yielding	 another	 value.	 When	 send()	 is
called	 to	 start	 the	 generator,	 it	 must	 be	 called	 with	 None	 as	 the
argument,	because	there	is	no	yield	expression	that	could	receive

the	value.

generator.throw(type[,	value[,	traceback]])
Raises	 an	 exception	 of	 type	 type	 at	 the	 point	 where	 generator
was	paused,	and	 returns	 the	next	 value	 yielded	by	 the	generator
function.	 If	 the	 generator	 exits	 without	 yielding	 another	 value,	 a
StopIteration	 exception	 is	 raised.	 If	 the	 generator	 function
does	 not	 catch	 the	 passed-in	 exception,	 or	 raises	 a	 different
exception,	then	that	exception	propagates	to	the	caller.

generator.close()
Raises	 a	 GeneratorExit	 at	 the	 point	 where	 the	 generator
function	 was	 paused.	 If	 the	 generator	 function	 then	 raises
StopIteration	 (by	 exiting	 normally,	 or	 due	 to	 already	 being
closed)	or	GeneratorExit	(by	not	catching	the	exception),	close
returns	 to	 its	 caller.	 If	 the	 generator	 yields	 a	 value,	 a
RuntimeError	 is	 raised.	 If	 the	 generator	 raises	 any	 other
exception,	 it	 is	propagated	 to	 the	caller.	close()	does	nothing	 if
the	 generator	 has	 already	 exited	 due	 to	 an	 exception	 or	 normal
exit.

.

6.2.9.2.	Examples

Here	 is	 a	 simple	 example	 that	 demonstrates	 the	 behavior	 of
generators	and	generator	functions:

>>>	def	echo(value=None):

...					print("Execution	starts	when	'next()'	is	called	for	the	first	time."

...					try:

...									while	True:

...													try:

...																	value	=	(yield	value)

...													except	Exception	as	e:

...																	value	=	e

...					finally:

...									print("Don't	forget	to	clean	up	when	'close()'	is	called."

...

>>>	generator	=	echo(1)

>>>	print(next(generator))

Execution	starts	when	'next()'	is	called	for	the	first	time.

1

>>>	print(next(generator))

None

>>>	print(generator.send(2))

2

>>>	generator.throw(TypeError,	"spam")

TypeError('spam',)

>>>	generator.close()

Don't	forget	to	clean	up	when	'close()'	is	called.

For	 examples	 using	 yield	 from,	 see	 PEP	 380:	 Syntax	 for
Delegating	to	a	Subgenerator	in	“What’s	New	in	Python.”

6.3.	Primaries

Primaries	represent	the	most	tightly	bound	operations	of	the	language.
Their	syntax	is:

primary	::=		atom	|	attributeref	|	subscription	|	slicing

6.3.1.	Attribute	references

An	attribute	reference	is	a	primary	followed	by	a	period	and	a	name:

attributeref	::=		primary	"."	identifier

The	 primary	 must	 evaluate	 to	 an	 object	 of	 a	 type	 that	 supports
attribute	references,	which	most	objects	do.	This	object	is	then	asked
to	 produce	 the	 attribute	 whose	 name	 is	 the	 identifier	 (which	 can	 be
customized	 by	 overriding	 the	 __getattr__()	 method).	 If	 this
attribute	 is	 not	 available,	 the	 exception	 AttributeError	 is	 raised.
Otherwise,	the	type	and	value	of	the	object	produced	is	determined	by
the	 object.	 Multiple	 evaluations	 of	 the	 same	 attribute	 reference	may
yield	different	objects.

6.3.2.	Subscriptions

A	subscription	 selects	an	 item	of	 a	 sequence	 (string,	 tuple	or	 list)	 or
mapping	(dictionary)	object:

subscription	::=		primary	"["	expression_list	"]"

The	primary	must	evaluate	to	an	object	that	supports	subscription,	e.g.

a	 list	 or	 dictionary.	User-defined	 objects	 can	 support	 subscription	 by
defining	a	__getitem__()	method.

For	 built-in	 objects,	 there	 are	 two	 types	 of	 objects	 that	 support
subscription:

If	 the	 primary	 is	 a	mapping,	 the	 expression	 list	must	 evaluate	 to	 an
object	 whose	 value	 is	 one	 of	 the	 keys	 of	 the	 mapping,	 and	 the
subscription	selects	the	value	in	the	mapping	that	corresponds	to	that
key.	(The	expression	list	is	a	tuple	except	if	it	has	exactly	one	item.)

If	the	primary	is	a	sequence,	the	expression	(list)	must	evaluate	to	an
integer	or	a	slice	(as	discussed	in	the	following	section).

The	 formal	syntax	makes	no	special	provision	 for	negative	 indices	 in
sequences;	 however,	 built-in	 sequences	 all	 provide	 a
__getitem__()	 method	 that	 interprets	 negative	 indices	 by	 adding
the	length	of	the	sequence	to	the	index	(so	that	x[-1]	selects	the	last
item	of	x).	The	resulting	value	must	be	a	nonnegative	integer	less	than
the	number	of	items	in	the	sequence,	and	the	subscription	selects	the
item	whose	index	is	that	value	(counting	from	zero).	Since	the	support
for	 negative	 indices	 and	 slicing	 occurs	 in	 the	 object’s
__getitem__()	method,	subclasses	overriding	this	method	will	need
to	explicitly	add	that	support.

A	string’s	items	are	characters.	A	character	is	not	a	separate	data	type
but	a	string	of	exactly	one	character.

6.3.3.	Slicings

A	slicing	selects	a	range	of	items	in	a	sequence	object	(e.g.,	a	string,
tuple	 or	 list).	 Slicings	 may	 be	 used	 as	 expressions	 or	 as	 targets	 in

assignment	or	del	statements.	The	syntax	for	a	slicing:

slicing						::=		primary	"["	slice_list	"]"

slice_list			::=		slice_item	(","	slice_item)*	[","]

slice_item			::=		expression	|	proper_slice

proper_slice	::=		[lower_bound]	":"	[upper_bound]	[":"	[

lower_bound		::=		expression

upper_bound		::=		expression

stride							::=		expression

There	 is	ambiguity	 in	 the	 formal	syntax	here:	anything	 that	 looks	 like
an	expression	list	also	looks	like	a	slice	list,	so	any	subscription	can	be
interpreted	 as	 a	 slicing.	Rather	 than	 further	 complicating	 the	 syntax,
this	is	disambiguated	by	defining	that	in	this	case	the	interpretation	as
a	subscription	takes	priority	over	the	interpretation	as	a	slicing	(this	is
the	case	if	the	slice	list	contains	no	proper	slice).

The	semantics	for	a	slicing	are	as	follows.	The	primary	must	evaluate
to	 a	 mapping	 object,	 and	 it	 is	 indexed	 (using	 the	 same
__getitem__()	method	 as	 normal	 subscription)	 with	 a	 key	 that	 is
constructed	 from	 the	 slice	 list,	 as	 follows.	 If	 the	 slice	 list	 contains	 at
least	one	comma,	 the	key	 is	a	 tuple	containing	 the	conversion	of	 the
slice	items;	otherwise,	the	conversion	of	the	lone	slice	item	is	the	key.
The	conversion	of	a	slice	item	that	is	an	expression	is	that	expression.
The	 conversion	 of	 a	 proper	 slice	 is	 a	 slice	 object	 (see	 section	 The
standard	type	hierarchy)	whose	start,	stop	and	step	attributes	are
the	values	of	the	expressions	given	as	lower	bound,	upper	bound	and
stride,	respectively,	substituting	None	for	missing	expressions.

6.3.4.	Calls

A	 call	 calls	 a	 callable	 object	 (e.g.,	 a	 function)	 with	 a	 possibly	 empty

series	of	arguments:

call																	::=		primary	"("	[argument_list

argument_list								::=		positional_arguments	[","	

																												[","	"*"	expression]	[","	

																												[","	"**"	expression]

																										|	keyword_arguments	[","	"*"	

																												[","	keyword_arguments]	[","	"**"	

																										|	"*"	expression	[","	keyword_arguments

																										|	"**"	expression

positional_arguments	::=		expression	(","	expression

keyword_arguments				::=		keyword_item	(","	keyword_item

keyword_item									::=		identifier	"="	expression

A	 trailing	 comma	 may	 be	 present	 after	 the	 positional	 and	 keyword
arguments	but	does	not	affect	the	semantics.

The	primary	must	evaluate	to	a	callable	object	(user-defined	functions,
built-in	functions,	methods	of	built-in	objects,	class	objects,	methods	of
class	 instances,	 and	 all	 objects	 having	 a	 __call__()	 method	 are
callable).	 All	 argument	 expressions	 are	 evaluated	 before	 the	 call	 is
attempted.	Please	refer	to	section	Function	definitions	for	the	syntax	of
formal	parameter	lists.

If	keyword	arguments	are	present,	they	are	first	converted	to	positional
arguments,	 as	 follows.	 First,	 a	 list	 of	 unfilled	 slots	 is	 created	 for	 the
formal	 parameters.	 If	 there	 are	 N	 positional	 arguments,	 they	 are
placed	 in	 the	 first	 N	 slots.	 Next,	 for	 each	 keyword	 argument,	 the
identifier	is	used	to	determine	the	corresponding	slot	(if	the	identifier	is
the	same	as	the	first	formal	parameter	name,	the	first	slot	is	used,	and
so	on).	 If	 the	slot	 is	already	 filled,	a	TypeError	exception	 is	 raised.
Otherwise,	 the	 value	 of	 the	 argument	 is	 placed	 in	 the	 slot,	 filling	 it
(even	 if	 the	expression	 is	None,	 it	 fills	 the	slot).	When	all	arguments

have	been	processed,	the	slots	that	are	still	unfilled	are	filled	with	the
corresponding	 default	 value	 from	 the	 function	 definition.	 (Default
values	 are	 calculated,	 once,	 when	 the	 function	 is	 defined;	 thus,	 a
mutable	object	such	as	a	list	or	dictionary	used	as	default	value	will	be
shared	 by	 all	 calls	 that	 don’t	 specify	 an	 argument	 value	 for	 the
corresponding	 slot;	 this	 should	 usually	 be	 avoided.)	 If	 there	 are	 any
unfilled	 slots	 for	 which	 no	 default	 value	 is	 specified,	 a	 TypeError
exception	 is	 raised.	 Otherwise,	 the	 list	 of	 filled	 slots	 is	 used	 as	 the
argument	list	for	the	call.

CPython	 implementation	 detail:	 An	 implementation	 may	 provide
built-in	 functions	whose	 positional	 parameters	 do	 not	 have	 names,
even	 if	 they	 are	 ‘named’	 for	 the	 purpose	 of	 documentation,	 and
which	therefore	cannot	be	supplied	by	keyword.	 In	CPython,	 this	 is
the	 case	 for	 functions	 implemented	 in	 C	 that	 use
PyArg_ParseTuple()	to	parse	their	arguments.

If	there	are	more	positional	arguments	than	there	are	formal	parameter
slots,	 a	 TypeError	 exception	 is	 raised,	 unless	 a	 formal	 parameter
using	 the	 syntax	 *identifier	 is	 present;	 in	 this	 case,	 that	 formal
parameter	receives	a	tuple	containing	the	excess	positional	arguments
(or	an	empty	tuple	if	there	were	no	excess	positional	arguments).

If	any	keyword	argument	does	not	correspond	 to	a	 formal	parameter
name,	a	TypeError	 exception	 is	 raised,	 unless	a	 formal	 parameter
using	the	syntax	**identifier	 is	present;	 in	 this	case,	 that	 formal
parameter	 receives	 a	 dictionary	 containing	 the	 excess	 keyword
arguments	 (using	 the	keywords	as	keys	and	 the	argument	values	as
corresponding	 values),	 or	 a	 (new)	 empty	 dictionary	 if	 there	 were	 no
excess	keyword	arguments.

If	the	syntax	*expression	appears	in	the	function	call,	expression

must	evaluate	to	an	iterable.	Elements	from	this	iterable	are	treated	as
if	 they	 were	 additional	 positional	 arguments;	 if	 there	 are	 positional
arguments	x1,	...,	xN,	and	expression	evaluates	to	a	sequence	y1,
...,	yM,	 this	 is	equivalent	 to	a	call	with	M+N	positional	arguments	x1,
...,	xN,	y1,	...,	yM.

A	consequence	of	this	is	that	although	the	*expression	syntax	may
appear	 after	 some	 keyword	 arguments,	 it	 is	 processed	 before	 the
keyword	arguments	(and	the	**expression	argument,	 if	any	–	see
below).	So:

>>>	def	f(a,	b):

...		print(a,	b)

...

>>>	f(b=1,	*(2,))

2	1

>>>	f(a=1,	*(2,))

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	f()	got	multiple	values	for	keyword	argument	'a'

>>>	f(1,	*(2,))

1	2

It	 is	 unusual	 for	 both	 keyword	 arguments	 and	 the	 *expression
syntax	to	be	used	in	the	same	call,	so	in	practice	this	confusion	does
not	arise.

If	 the	 syntax	 **expression	 appears	 in	 the	 function	 call,
expression	must	evaluate	to	a	mapping,	 the	contents	of	which	are
treated	 as	 additional	 keyword	 arguments.	 In	 the	 case	 of	 a	 keyword
appearing	in	both	expression	and	as	an	explicit	keyword	argument,
a	TypeError	exception	is	raised.

Formal	 parameters	 using	 the	 syntax	 *identifier	 or
**identifier	 cannot	 be	 used	 as	 positional	 argument	 slots	 or	 as
keyword	argument	names.

A	call	always	 returns	some	value,	possibly	None,	unless	 it	 raises	an
exception.	 How	 this	 value	 is	 computed	 depends	 on	 the	 type	 of	 the
callable	object.

If	it	is—

a	user-defined	function:
The	 code	 block	 for	 the	 function	 is	 executed,	 passing	 it	 the
argument	 list.	 The	 first	 thing	 the	 code	 block	 will	 do	 is	 bind	 the
formal	 parameters	 to	 the	 arguments;	 this	 is	 described	 in	 section
Function	 definitions.	 When	 the	 code	 block	 executes	 a	 return
statement,	this	specifies	the	return	value	of	the	function	call.

a	built-in	function	or	method:
The	 result	 is	 up	 to	 the	 interpreter;	 see	Built-in	 Functions	 for	 the
descriptions	of	built-in	functions	and	methods.

a	class	object:
A	new	instance	of	that	class	is	returned.

a	class	instance	method:
The	 corresponding	 user-defined	 function	 is	 called,	 with	 an
argument	 list	 that	 is	one	 longer	 than	 the	argument	 list	of	 the	call:
the	instance	becomes	the	first	argument.

a	class	instance:
The	class	must	define	a	__call__()	method;	 the	effect	 is	 then
the	same	as	if	that	method	was	called.

6.4.	The	power	operator

The	power	operator	binds	more	tightly	than	unary	operators	on	its	left;
it	binds	less	tightly	than	unary	operators	on	its	right.	The	syntax	is:

power	::=		primary	["**"	u_expr]

Thus,	in	an	unparenthesized	sequence	of	power	and	unary	operators,
the	operators	are	evaluated	 from	right	 to	 left	 (this	does	not	constrain
the	evaluation	order	for	the	operands):	-1**2	results	in	-1.

The	 power	 operator	 has	 the	 same	 semantics	 as	 the	 built-in	 pow()
function,	 when	 called	 with	 two	 arguments:	 it	 yields	 its	 left	 argument
raised	to	the	power	of	its	right	argument.	The	numeric	arguments	are
first	converted	to	a	common	type,	and	the	result	is	of	that	type.

For	int	operands,	the	result	has	the	same	type	as	the	operands	unless
the	 second	 argument	 is	 negative;	 in	 that	 case,	 all	 arguments	 are
converted	to	float	and	a	float	result	is	delivered.	For	example,	10**2
returns	100,	but	10**-2	returns	0.01.

Raising	0.0	 to	a	negative	power	results	 in	a	ZeroDivisionError.
Raising	a	negative	number	to	a	fractional	power	results	in	a	complex
number.	(In	earlier	versions	it	raised	a	ValueError.)

6.5.	Unary	arithmetic	and	bitwise
operations

All	unary	arithmetic	and	bitwise	operations	have	the	same	priority:

u_expr	::=		power	|	"-"	u_expr	|	"+"	u_expr	|	"~"	u_expr

The	 unary	 -	 (minus)	 operator	 yields	 the	 negation	 of	 its	 numeric
argument.

The	unary	+	(plus)	operator	yields	its	numeric	argument	unchanged.

The	unary	~	(invert)	operator	yields	the	bitwise	inversion	of	its	integer
argument.	 The	 bitwise	 inversion	 of	 x	 is	 defined	 as	 -(x+1).	 It	 only
applies	to	integral	numbers.

In	 all	 three	 cases,	 if	 the	 argument	 does	not	 have	 the	proper	 type,	 a
TypeError	exception	is	raised.

6.6.	Binary	arithmetic	operations

The	binary	arithmetic	operations	have	the	conventional	priority	levels.
Note	that	some	of	these	operations	also	apply	to	certain	non-numeric
types.	Apart	from	the	power	operator,	there	are	only	two	levels,	one	for
multiplicative	operators	and	one	for	additive	operators:

m_expr	::=		u_expr	|	m_expr	"*"	u_expr	|	m_expr	"//"	

												|	m_expr	"%"	u_expr

a_expr	::=		m_expr	|	a_expr	"+"	m_expr	|	a_expr	"-"	

The	*	(multiplication)	operator	yields	the	product	of	its	arguments.	The
arguments	must	either	both	be	numbers,	or	one	argument	must	be	an
integer	 and	 the	 other	 must	 be	 a	 sequence.	 In	 the	 former	 case,	 the
numbers	 are	 converted	 to	 a	 common	 type	 and	 then	 multiplied
together.	 In	 the	 latter	 case,	 sequence	 repetition	 is	 performed;	 a
negative	repetition	factor	yields	an	empty	sequence.

The	/	(division)	and	//	(floor	division)	operators	yield	the	quotient	of
their	 arguments.	 The	 numeric	 arguments	 are	 first	 converted	 to	 a
common	type.	Division	of	integers	yields	a	float,	while	floor	division	of
integers	results	in	an	integer;	the	result	is	that	of	mathematical	division
with	the	‘floor’	function	applied	to	the	result.	Division	by	zero	raises	the
ZeroDivisionError	exception.

The	%	(modulo)	operator	yields	the	remainder	from	the	division	of	the
first	 argument	 by	 the	 second.	 The	 numeric	 arguments	 are	 first
converted	 to	 a	 common	 type.	 A	 zero	 right	 argument	 raises	 the
ZeroDivisionError	 exception.	 The	 arguments	 may	 be	 floating
point	 numbers,	 e.g.,	 3.14%0.7	 equals	 0.34	 (since	 3.14	 equals
4*0.7	+	0.34.)	The	modulo	operator	always	yields	a	result	with	the

same	sign	as	 its	second	operand	(or	zero);	 the	absolute	value	of	 the
result	is	strictly	smaller	than	the	absolute	value	of	the	second	operand
[1].

The	 floor	 division	 and	 modulo	 operators	 are	 connected	 by	 the
following	 identity:	 x	 ==	 (x//y)*y	 +	 (x%y).	 Floor	 division	 and
modulo	 are	 also	 connected	 with	 the	 built-in	 function	 divmod():
divmod(x,	y)	==	(x//y,	x%y).	[2].

In	 addition	 to	 performing	 the	 modulo	 operation	 on	 numbers,	 the	 %
operator	is	also	overloaded	by	string	objects	to	perform	old-style	string
formatting	 (also	 known	 as	 interpolation).	 The	 syntax	 for	 string
formatting	is	described	in	the	Python	Library	Reference,	section	printf-
style	String	Formatting.

The	 floor	 division	 operator,	 the	modulo	 operator,	 and	 the	 divmod()
function	 are	 not	 defined	 for	 complex	 numbers.	 Instead,	 convert	 to	 a
floating	point	number	using	the	abs()	function	if	appropriate.

The	 +	 (addition)	 operator	 yields	 the	 sum	 of	 its	 arguments.	 The
arguments	 must	 either	 both	 be	 numbers	 or	 both	 sequences	 of	 the
same	 type.	 In	 the	 former	 case,	 the	 numbers	 are	 converted	 to	 a
common	 type	 and	 then	 added	 together.	 In	 the	 latter	 case,	 the
sequences	are	concatenated.

The	 -	 (subtraction)	 operator	 yields	 the	 difference	 of	 its	 arguments.
The	numeric	arguments	are	first	converted	to	a	common	type.

6.7.	Shifting	operations

The	 shifting	 operations	 have	 lower	 priority	 than	 the	 arithmetic
operations:

shift_expr	::=		a_expr	|	shift_expr	("<<"	|	">>")	

These	 operators	 accept	 integers	 as	 arguments.	 They	 shift	 the	 first
argument	to	the	left	or	right	by	the	number	of	bits	given	by	the	second
argument.

A	right	shift	by	n	bits	 is	defined	as	 floor	division	by	pow(2,n).	A	 left
shift	by	n	bits	is	defined	as	multiplication	with	pow(2,n).

Note: 	In	the	current	implementation,	the	right-hand	operand	is
required	to	be	at	most	sys.maxsize.	If	the	right-hand	operand	is
larger	than	sys.maxsize	an	OverflowError	exception	is	raised.

6.8.	Binary	bitwise	operations

Each	of	the	three	bitwise	operations	has	a	different	priority	level:

and_expr	::=		shift_expr	|	and_expr	"&"	shift_expr

xor_expr	::=		and_expr	|	xor_expr	"^"	and_expr

or_expr		::=		xor_expr	|	or_expr	"|"	xor_expr

The	&	operator	yields	the	bitwise	AND	of	its	arguments,	which	must	be
integers.

The	 ^	 operator	 yields	 the	 bitwise	 XOR	 (exclusive	 OR)	 of	 its
arguments,	which	must	be	integers.

The	 |	 operator	 yields	 the	 bitwise	 (inclusive)	 OR	 of	 its	 arguments,
which	must	be	integers.

6.9.	Comparisons

Unlike	C,	all	comparison	operations	in	Python	have	the	same	priority,
which	is	lower	than	that	of	any	arithmetic,	shifting	or	bitwise	operation.
Also	 unlike	C,	 expressions	 like	 a	<	b	<	c	 have	 the	 interpretation
that	is	conventional	in	mathematics:

comparison				::=		or_expr	(comp_operator	or_expr)*

comp_operator	::=		"<"	|	">"	|	"=="	|	">="	|	"<="	|	"!="

																			|	"is"	["not"]	|	["not"]	"in"

Comparisons	yield	boolean	values:	True	or	False.

Comparisons	 can	 be	 chained	 arbitrarily,	 e.g.,	 x	 <	 y	 <=	 z	 is
equivalent	 to	x	<	y	and	y	<=	z,	except	 that	y	 is	evaluated	only
once	(but	in	both	cases	z	is	not	evaluated	at	all	when	x	<	y	is	found
to	be	false).

Formally,	if	a,	b,	c,	...,	y,	z	are	expressions	and	op1,	op2,	 ...,	opN	are
comparison	 operators,	 then	 a	 op1	 b	 op2	 c	 ...	 y	 opN	 z	 is
equivalent	to	a	op1	b	and	b	op2	c	and	...	y	opN	z,	except
that	each	expression	is	evaluated	at	most	once.

Note	 that	 a	 op1	 b	 op2	 c	 doesn’t	 imply	 any	 kind	 of	 comparison
between	a	and	c,	so	that,	e.g.,	x	<	y	>	z	 is	perfectly	 legal	 (though
perhaps	not	pretty).

The	operators	<,	>,	==,	>=,	<=,	and	!=	 compare	 the	values	of	 two
objects.	 The	 objects	 need	 not	 have	 the	 same	 type.	 If	 both	 are
numbers,	 they	 are	 converted	 to	 a	 common	 type.	 Otherwise,	 the	 ==
and	 !=	 operators	 always	 consider	 objects	 of	 different	 types	 to	 be

unequal,	 while	 the	 <,	 >,	 >=	 and	 <=	 operators	 raise	 a	 TypeError
when	comparing	objects	of	different	types	that	do	not	implement	these
operators	 for	 the	 given	 pair	 of	 types.	 You	 can	 control	 comparison
behavior	 of	 objects	 of	 non-built-in	 types	 by	 defining	 rich	 comparison
methods	like	__gt__(),	described	in	section	Basic	customization.

Comparison	of	objects	of	the	same	type	depends	on	the	type:

Numbers	are	compared	arithmetically.

The	values	float('NaN')	and	Decimal('NaN')	are	special.
The	 are	 identical	 to	 themselves,	 x	is	 x	 but	 are	 not	 equal	 to
themselves,	x	!=	x.	Additionally,	comparing	any	value	to	a	not-
a-number	 value	 will	 return	 False.	 For	 example,	 both	 3	 <

float('NaN')	and	float('NaN')	<	3	will	return	False.

Bytes	 objects	 are	 compared	 lexicographically	 using	 the	 numeric
values	of	their	elements.

Strings	 are	 compared	 lexicographically	 using	 the	 numeric
equivalents	 (the	 result	 of	 the	 built-in	 function	 ord())	 of	 their
characters.	[3]	String	and	bytes	object	can’t	be	compared!

Tuples	and	lists	are	compared	lexicographically	using	comparison
of	 corresponding	 elements.	 This	 means	 that	 to	 compare	 equal,
each	element	must	compare	equal	and	 the	 two	sequences	must
be	of	the	same	type	and	have	the	same	length.

If	 not	 equal,	 the	 sequences	 are	 ordered	 the	 same	 as	 their	 first
differing	elements.	For	example,	[1,2,x]	<=	[1,2,y]	has	the
same	value	as	 x	<=	y.	 If	 the	 corresponding	 element	 does	 not
exist,	the	shorter	sequence	is	ordered	first	(for	example,	[1,2]	<
[1,2,3]).

Mappings	(dictionaries)	compare	equal	if	and	only	if	they	have	the
same	(key,	value)	pairs.	Order	comparisons	('<',	'<=',
'>=',	'>')	raise	TypeError.

Sets	and	frozensets	define	comparison	operators	to	mean	subset
and	superset	 tests.	Those	 relations	do	not	define	 total	orderings
(the	two	sets	{1,2}	and	{2,3}	are	not	equal,	nor	subsets	of	one
another,	nor	supersets	of	one	another).	Accordingly,	sets	are	not
appropriate	 arguments	 for	 functions	 which	 depend	 on	 total
ordering.	For	example,	min(),	max(),	 and	 sorted()	 produce
undefined	results	given	a	list	of	sets	as	inputs.

Most	other	objects	of	built-in	types	compare	unequal	unless	they
are	the	same	object;	the	choice	whether	one	object	is	considered
smaller	 or	 larger	 than	 another	 one	 is	 made	 arbitrarily	 but
consistently	within	one	execution	of	a	program.

Comparison	of	objects	of	the	differing	types	depends	on	whether	either
of	the	types	provide	explicit	support	for	the	comparison.	Most	numeric
types	 can	 be	 compared	 with	 one	 another.	 When	 cross-type
comparison	 is	 not	 supported,	 the	 comparison	 method	 returns
NotImplemented.

The	 operators	 in	 and	 not	 in	 test	 for	 membership.	 x	 in	 s

evaluates	to	true	if	x	is	a	member	of	s,	and	false	otherwise.	x	not	in
s	returns	the	negation	of	x	in	s.	All	built-in	sequences	and	set	types
support	 this	 as	 well	 as	 dictionary,	 for	 which	 in	 tests	 whether	 a	 the
dictionary	has	a	given	key.	For	container	types	such	as	list,	tuple,	set,
frozenset,	 dict,	 or	 collections.deque,	 the	 expression	 x	 in	 y	 is
equivalent	to	any(x	is	e	or	x	==	e	for	e	in	y).

For	 the	 string	 and	 bytes	 types,	 x	in	y	 is	 true	 if	 and	 only	 if	 x	 is	 a

substring	 of	 y.	 An	 equivalent	 test	 is	 y.find(x)	 !=	 -1.	 Empty
strings	are	always	considered	to	be	a	substring	of	any	other	string,	so
""	in	"abc"	will	return	True.

For	user-defined	classes	which	define	the	__contains__()	method,
x	in	y	is	true	if	and	only	if	y.__contains__(x)	is	true.

For	user-defined	classes	which	do	not	define	__contains__()	but
do	define	__iter__(),	x	in	y	is	true	if	some	value	z	with	x	==	z
is	produced	while	iterating	over	y.	If	an	exception	is	raised	during	the
iteration,	it	is	as	if	in	raised	that	exception.

Lastly,	 the	 old-style	 iteration	 protocol	 is	 tried:	 if	 a	 class	 defines
__getitem__(),	x	in	y	is	true	if	and	only	if	there	is	a	non-negative
integer	index	i	such	that	x	==	y[i],	and	all	lower	integer	indices	do
not	raise	IndexError	exception.	(If	any	other	exception	is	raised,	it	is
as	if	in	raised	that	exception).

The	operator	not	in	is	defined	to	have	the	inverse	true	value	of	in.

The	operators	is	and	is	not	test	for	object	identity:	x	is	y	is	true
if	 and	only	 if	x	and	y	 are	 the	 same	object.	 x	is	not	y	 yields	 the
inverse	truth	value.	[4]

6.10.	Boolean	operations

or_test		::=		and_test	|	or_test	"or"	and_test

and_test	::=		not_test	|	and_test	"and"	not_test

not_test	::=		comparison	|	"not"	not_test

In	 the	context	of	Boolean	operations,	and	also	when	expressions	are
used	by	 control	 flow	 statements,	 the	 following	 values	are	 interpreted
as	false:	False,	None,	numeric	zero	of	all	 types,	and	empty	strings
and	 containers	 (including	 strings,	 tuples,	 lists,	 dictionaries,	 sets	 and
frozensets).	 All	 other	 values	 are	 interpreted	 as	 true.	 User-defined
objects	 can	 customize	 their	 truth	 value	 by	 providing	 a	 __bool__()
method.

The	 operator	 not	 yields	 True	 if	 its	 argument	 is	 false,	 False
otherwise.

The	 expression	 x	and	y	 first	 evaluates	x;	 if	x	 is	 false,	 its	 value	 is
returned;	otherwise,	y	is	evaluated	and	the	resulting	value	is	returned.

The	 expression	 x	 or	 y	 first	 evaluates	 x;	 if	 x	 is	 true,	 its	 value	 is
returned;	otherwise,	y	is	evaluated	and	the	resulting	value	is	returned.

(Note	that	neither	and	nor	or	restrict	the	value	and	type	they	return	to
False	and	True,	but	rather	return	the	last	evaluated	argument.	This
is	sometimes	useful,	e.g.,	if	s	is	a	string	that	should	be	replaced	by	a
default	 value	 if	 it	 is	 empty,	 the	 expression	 s	or	 'foo'	 yields	 the
desired	value.	Because	not	has	to	invent	a	value	anyway,	it	does	not
bother	to	return	a	value	of	the	same	type	as	its	argument,	so	e.g.,	not
'foo'	yields	False,	not	''.)

6.11.	Conditional	expressions

conditional_expression	::=		or_test	["if"	or_test	"else"	

expression													::=		conditional_expression	|	

expression_nocond						::=		or_test	|	lambda_expr_nocond

Conditional	expressions	(sometimes	called	a	“ternary	operator”)	have
the	lowest	priority	of	all	Python	operations.

The	expression	x	if	C	else	y	first	evaluates	the	condition,	C	(not
x);	if	C	is	true,	x	is	evaluated	and	its	value	is	returned;	otherwise,	y	is
evaluated	and	its	value	is	returned.

See	PEP	308	for	more	details	about	conditional	expressions.

http://www.python.org/dev/peps/pep-0308

6.12.	Lambdas

lambda_expr								::=		"lambda"	[parameter_list]:	expression

lambda_expr_nocond	::=		"lambda"	[parameter_list]:	expression_nocond

Lambda	expressions	(sometimes	called	lambda	forms)	have	the	same
syntactic	 position	 as	 expressions.	 They	 are	 a	 shorthand	 to	 create
anonymous	 functions;	 the	 expression	 lambda	 arguments:

expression	 yields	a	 function	object.	 The	 unnamed	 object	 behaves
like	a	function	object	defined	with

def	<lambda>(arguments):

				return	expression

See	section	Function	definitions	for	the	syntax	of	parameter	lists.	Note
that	 functions	 created	 with	 lambda	 expressions	 cannot	 contain
statements	or	annotations.

6.13.	Expression	lists

expression_list	::=		expression	(","	expression)*	[","]

An	expression	 list	containing	at	 least	one	comma	yields	a	 tuple.	The
length	 of	 the	 tuple	 is	 the	 number	 of	 expressions	 in	 the	 list.	 The
expressions	are	evaluated	from	left	to	right.

The	 trailing	comma	 is	 required	only	 to	create	a	single	 tuple	 (a.k.a.	a
singleton);	it	is	optional	in	all	other	cases.	A	single	expression	without
a	trailing	comma	doesn’t	create	a	tuple,	but	rather	yields	the	value	of
that	 expression.	 (To	 create	 an	 empty	 tuple,	 use	 an	 empty	 pair	 of
parentheses:	().)

6.14.	Evaluation	order

Python	 evaluates	 expressions	 from	 left	 to	 right.	 Notice	 that	 while
evaluating	an	assignment,	the	right-hand	side	is	evaluated	before	the
left-hand	side.

In	 the	 following	 lines,	 expressions	will	 be	evaluated	 in	 the	arithmetic
order	of	their	suffixes:

expr1,	expr2,	expr3,	expr4

(expr1,	expr2,	expr3,	expr4)

{expr1:	expr2,	expr3:	expr4}

expr1	+	expr2	*	(expr3	-	expr4)

expr1(expr2,	expr3,	*expr4,	**expr5)

expr3,	expr4	=	expr1,	expr2

6.15.	Operator	precedence

The	 following	 table	summarizes	 the	operator	precedences	 in	Python,
from	 lowest	 precedence	 (least	 binding)	 to	 highest	 precedence	 (most
binding).	 Operators	 in	 the	 same	 box	 have	 the	 same	 precedence.
Unless	the	syntax	is	explicitly	given,	operators	are	binary.	Operators	in
the	 same	 box	 group	 left	 to	 right	 (except	 for	 comparisons,	 including
tests,	which	all	have	the	same	precedence	and	chain	from	left	to	right
—	see	section	Comparisons	—	and	exponentiation,	which	groups	from
right	to	left).

Operator Description

lambda Lambda	expression

if	–	else Conditional	expression

or Boolean	OR

and Boolean	AND

not	x Boolean	NOT

in,	not	in,	is,	is	not,	<,	<=,	>,
>=,	!=,	==

Comparisons,	including
membership	tests	and
identity	tests

| Bitwise	OR

^ Bitwise	XOR

& Bitwise	AND

<<,	>> Shifts

+,	- Addition	and	subtraction

*,	/,	//,	% Multiplication,	division,
remainder	[5]

+x,	-x,	~x Positive,	negative,	bitwise

NOT

** Exponentiation	[6]

x[index],	x[index:index],
x(arguments...),	x.attribute

Subscription,	slicing,	call,
attribute	reference

(expressions...),
[expressions...],	{key:
value...},	{expressions...}

Binding	or	tuple	display,	list
display,	dictionary	display,
set	display

Footnotes

[1]

While	abs(x%y)	<	abs(y)	is	true	mathematically,	for	floats	it
may	not	be	true	numerically	due	to	roundoff.	For	example,	and
assuming	a	platform	on	which	a	Python	float	is	an	IEEE	754
double-precision	number,	in	order	that	-1e-100	%	1e100
have	the	same	sign	as	1e100,	the	computed	result	is	-1e-
100	+	1e100,	which	is	numerically	exactly	equal	to	1e100.
The	function	math.fmod()	returns	a	result	whose	sign
matches	the	sign	of	the	first	argument	instead,	and	so	returns
-1e-100	in	this	case.	Which	approach	is	more	appropriate
depends	on	the	application.

[2]

If	x	is	very	close	to	an	exact	integer	multiple	of	y,	it’s	possible
for	x//y	to	be	one	larger	than	(x-x%y)//y	due	to	rounding.
In	such	cases,	Python	returns	the	latter	result,	in	order	to
preserve	that	divmod(x,y)[0]	*	y	+	x	%	y	be	very	close
to	x.

[3]

While	comparisons	between	strings	make	sense	at	the	byte
level,	they	may	be	counter-intuitive	to	users.	For	example,	the
strings	"\u00C7"	and	"\u0327\u0043"	compare	differently,
even	though	they	both	represent	the	same	unicode	character
(LATIN	CAPITAL	LETTER	C	WITH	CEDILLA).	To	compare
strings	in	a	human	recognizable	way,	compare	using
unicodedata.normalize().

[4]

Due	to	automatic	garbage-collection,	free	lists,	and	the
dynamic	nature	of	descriptors,	you	may	notice	seemingly
unusual	behaviour	in	certain	uses	of	the	is	operator,	like	those
involving	comparisons	between	instance	methods,	or
constants.	Check	their	documentation	for	more	info.

[5] The	%	operator	is	also	used	for	string	formatting;	the	same
precedence	applies.

[6] The	power	operator	**	binds	less	tightly	than	an	arithmetic	or
bitwise	unary	operator	on	its	right,	that	is,	2**-1	is	0.5.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

7.	Simple	statements
Simple	statements	are	comprised	within	a	single	 logical	 line.	Several
simple	 statements	 may	 occur	 on	 a	 single	 line	 separated	 by
semicolons.	The	syntax	for	simple	statements	is:

simple_stmt	::=		expression_stmt

																	|	assert_stmt

																	|	assignment_stmt

																	|	augmented_assignment_stmt

																	|	pass_stmt

																	|	del_stmt

																	|	return_stmt

																	|	yield_stmt

																	|	raise_stmt

																	|	break_stmt

																	|	continue_stmt

																	|	import_stmt

																	|	global_stmt

																	|	nonlocal_stmt

7.1.	Expression	statements

Expression	statements	are	used	(mostly	interactively)	to	compute	and
write	a	value,	or	(usually)	to	call	a	procedure	(a	function	that	returns	no
meaningful	result;	in	Python,	procedures	return	the	value	None).	Other
uses	 of	 expression	 statements	 are	 allowed	 and	 occasionally	 useful.
The	syntax	for	an	expression	statement	is:

expression_stmt	::=		expression_list

An	expression	statement	evaluates	the	expression	list	(which	may	be
a	single	expression).

In	interactive	mode,	if	the	value	is	not	None,	it	is	converted	to	a	string
using	the	built-in	repr()	function	and	the	resulting	string	is	written	to
standard	output	on	a	line	by	itself	(except	if	the	result	is	None,	so	that
procedure	calls	do	not	cause	any	output.)

7.2.	Assignment	statements

Assignment	 statements	are	used	 to	 (re)bind	names	 to	 values	and	 to
modify	attributes	or	items	of	mutable	objects:

assignment_stmt	::=		(target_list	"=")+	(expression_list

target_list					::=		target	(","	target)*	[","]

target										::=		identifier

																					|	"("	target_list	")"

																					|	"["	target_list	"]"

																					|	attributeref

																					|	subscription

																					|	slicing

																					|	"*"	target

(See	 section	 Primaries	 for	 the	 syntax	 definitions	 for	 the	 last	 three
symbols.)

An	assignment	statement	evaluates	the	expression	list	(remember	that
this	can	be	a	single	expression	or	a	comma-separated	 list,	 the	 latter
yielding	a	tuple)	and	assigns	the	single	resulting	object	to	each	of	the
target	lists,	from	left	to	right.

Assignment	is	defined	recursively	depending	on	the	form	of	the	target
(list).	When	a	target	is	part	of	a	mutable	object	(an	attribute	reference,
subscription	or	slicing),	the	mutable	object	must	ultimately	perform	the
assignment	and	decide	about	its	validity,	and	may	raise	an	exception	if
the	assignment	is	unacceptable.	The	rules	observed	by	various	types
and	 the	 exceptions	 raised	 are	 given	with	 the	 definition	 of	 the	 object
types	(see	section	The	standard	type	hierarchy).

Assignment	 of	 an	 object	 to	 a	 target	 list,	 optionally	 enclosed	 in
parentheses	or	square	brackets,	is	recursively	defined	as	follows.

If	 the	 target	 list	 is	a	single	 target:	The	object	 is	assigned	 to	 that
target.
If	 the	 target	 list	 is	a	comma-separated	 list	of	 targets:	The	object
must	be	an	 iterable	with	 the	same	number	of	 items	as	 there	are
targets	 in	 the	 target	 list,	and	 the	 items	are	assigned,	 from	 left	 to
right,	to	the	corresponding	targets.

If	the	target	list	contains	one	target	prefixed	with	an	asterisk,
called	a	“starred”	target:	The	object	must	be	a	sequence	with
at	 least	as	many	items	as	there	are	targets	in	the	target	 list,
minus	 one.	 The	 first	 items	 of	 the	 sequence	 are	 assigned,
from	left	to	right,	to	the	targets	before	the	starred	target.	The
final	 items	of	 the	sequence	are	assigned	to	 the	targets	after
the	 starred	 target.	 A	 list	 of	 the	 remaining	 items	 in	 the
sequence	 is	 then	assigned	 to	 the	starred	 target	 (the	 list	can
be	empty).
Else:	The	object	must	be	a	sequence	with	the	same	number
of	 items	as	 there	are	 targets	 in	 the	 target	 list,	and	 the	 items
are	assigned,	from	left	to	right,	to	the	corresponding	targets.

Assignment	 of	 an	 object	 to	 a	 single	 target	 is	 recursively	 defined	 as
follows.

If	the	target	is	an	identifier	(name):

If	 the	 name	 does	 not	 occur	 in	 a	 global	 or	 nonlocal
statement	in	the	current	code	block:	the	name	is	bound	to	the
object	in	the	current	local	namespace.
Otherwise:	 the	 name	 is	 bound	 to	 the	 object	 in	 the	 global
namespace	 or	 the	 outer	 namespace	 determined	 by
nonlocal,	respectively.

The	name	is	rebound	if	it	was	already	bound.	This	may	cause	the
reference	 count	 for	 the	 object	 previously	 bound	 to	 the	 name	 to
reach	zero,	causing	the	object	to	be	deallocated	and	its	destructor

(if	it	has	one)	to	be	called.

If	 the	 target	 is	a	 target	 list	enclosed	 in	parentheses	or	 in	square
brackets:	The	object	must	be	an	iterable	with	the	same	number	of
items	 as	 there	 are	 targets	 in	 the	 target	 list,	 and	 its	 items	 are
assigned,	from	left	to	right,	to	the	corresponding	targets.

If	 the	 target	 is	 an	attribute	 reference:	The	primary	expression	 in
the	 reference	 is	 evaluated.	 It	 should	 yield	 an	 object	 with
assignable	attributes;	if	this	is	not	the	case,	TypeError	is	raised.
That	 object	 is	 then	 asked	 to	 assign	 the	 assigned	 object	 to	 the
given	 attribute;	 if	 it	 cannot	 perform	 the	 assignment,	 it	 raises	 an
exception	(usually	but	not	necessarily	AttributeError).

Note:	 If	 the	object	 is	a	class	 instance	and	the	attribute	reference
occurs	 on	 both	 sides	 of	 the	 assignment	 operator,	 the	 RHS
expression,	a.x	can	access	either	an	 instance	attribute	or	(if	no
instance	attribute	exists)	a	class	attribute.	The	LHS	target	a.x	 is
always	set	as	an	instance	attribute,	creating	it	if	necessary.	Thus,
the	two	occurrences	of	a.x	do	not	necessarily	refer	to	the	same
attribute:	if	the	RHS	expression	refers	to	a	class	attribute,	the	LHS
creates	a	new	instance	attribute	as	the	target	of	the	assignment:

class	Cls:

				x	=	3													#	class	variable

inst	=	Cls()

inst.x	=	inst.x	+	1			#	writes	inst.x	as	4	leaving	Cls.x	as	3

This	 description	 does	 not	 necessarily	 apply	 to	 descriptor
attributes,	such	as	properties	created	with	property().

If	 the	 target	 is	 a	 subscription:	 The	 primary	 expression	 in	 the
reference	is	evaluated.	It	should	yield	either	a	mutable	sequence

object	(such	as	a	list)	or	a	mapping	object	(such	as	a	dictionary).
Next,	the	subscript	expression	is	evaluated.

If	 the	primary	 is	a	mutable	sequence	object	 (such	as	a	 list),	 the
subscript	must	 yield	 an	 integer.	 If	 it	 is	 negative,	 the	 sequence’s
length	 is	added	 to	 it.	The	 resulting	value	must	be	a	nonnegative
integer	 less	 than	 the	 sequence’s	 length,	 and	 the	 sequence	 is
asked	to	assign	the	assigned	object	 to	 its	 item	with	that	 index.	If
the	index	is	out	of	range,	IndexError	is	raised	(assignment	to	a
subscripted	sequence	cannot	add	new	items	to	a	list).

If	 the	 primary	 is	 a	 mapping	 object	 (such	 as	 a	 dictionary),	 the
subscript	 must	 have	 a	 type	 compatible	 with	 the	 mapping’s	 key
type,	and	 the	mapping	 is	 then	asked	 to	create	a	key/datum	pair
which	maps	the	subscript	 to	the	assigned	object.	This	can	either
replace	 an	 existing	 key/value	 pair	 with	 the	 same	 key	 value,	 or
insert	 a	 new	 key/value	 pair	 (if	 no	 key	 with	 the	 same	 value
existed).

For	user-defined	objects,	 the	__setitem__()	method	 is	 called
with	appropriate	arguments.

If	the	target	is	a	slicing:	The	primary	expression	in	the	reference	is
evaluated.	 It	 should	yield	a	mutable	sequence	object	 (such	as	a
list).	 The	 assigned	 object	 should	 be	 a	 sequence	 object	 of	 the
same	 type.	 Next,	 the	 lower	 and	 upper	 bound	 expressions	 are
evaluated,	 insofar	 they	 are	 present;	 defaults	 are	 zero	 and	 the
sequence’s	 length.	 The	 bounds	 should	 evaluate	 to	 integers.	 If
either	bound	is	negative,	the	sequence’s	length	is	added	to	it.	The
resulting	 bounds	 are	 clipped	 to	 lie	 between	 zero	 and	 the
sequence’s	length,	inclusive.	Finally,	the	sequence	object	is	asked
to	replace	the	slice	with	the	items	of	the	assigned	sequence.	The
length	of	the	slice	may	be	different	from	the	length	of	the	assigned

sequence,	thus	changing	the	length	of	the	target	sequence,	if	the
object	allows	it.

CPython	implementation	detail:	In	the	current	implementation,	the
syntax	 for	 targets	 is	 taken	 to	be	 the	same	as	 for	expressions,	and
invalid	syntax	is	rejected	during	the	code	generation	phase,	causing
less	detailed	error	messages.

WARNING:	Although	the	definition	of	assignment	implies	that	overlaps
between	 the	 left-hand	 side	 and	 the	 right-hand	 side	 are	 ‘safe’	 (for
example	 a,	 b	 =	 b,	 a	 swaps	 two	 variables),	 overlaps	within	 the
collection	 of	 assigned-to	 variables	 are	 not	 safe!	 For	 instance,	 the
following	program	prints	[0,	2]:

x	=	[0,	1]

i	=	0

i,	x[i]	=	1,	2

print(x)

See	also:

PEP	3132	-	Extended	Iterable	Unpacking
The	specification	for	the	*target	feature.

7.2.1.	Augmented	assignment	statements

Augmented	assignment	is	the	combination,	in	a	single	statement,	of	a
binary	operation	and	an	assignment	statement:

augmented_assignment_stmt	::=		augtarget	augop	(expression_list

augtarget																	::=		identifier	|	attributeref

augop																					::=		"+="	|	"-="	|	"*="	|	"/="	|	"//="	|	"%="	|	"**="

http://www.python.org/dev/peps/pep-3132

																															|	">>="	|	"<<="	|	"&="	|	"^="	|	"|="

(See	 section	 Primaries	 for	 the	 syntax	 definitions	 for	 the	 last	 three
symbols.)

An	augmented	assignment	evaluates	the	target	(which,	unlike	normal
assignment	statements,	cannot	be	an	unpacking)	and	the	expression
list,	performs	the	binary	operation	specific	to	the	type	of	assignment	on
the	 two	 operands,	 and	 assigns	 the	 result	 to	 the	 original	 target.	 The
target	is	only	evaluated	once.

An	augmented	assignment	expression	 like	x	+=	1	 can	be	 rewritten
as	x	=	x	+	1	to	achieve	a	similar,	but	not	exactly	equal	effect.	In	the
augmented	version,	x	is	only	evaluated	once.	Also,	when	possible,	the
actual	 operation	 is	 performed	 in-place,	 meaning	 that	 rather	 than
creating	a	new	object	and	assigning	that	to	the	target,	the	old	object	is
modified	instead.

With	 the	 exception	 of	 assigning	 to	 tuples	 and	 multiple	 targets	 in	 a
single	 statement,	 the	 assignment	 done	 by	 augmented	 assignment
statements	is	handled	the	same	way	as	normal	assignments.	Similarly,
with	 the	 exception	 of	 the	 possible	 in-place	 behavior,	 the	 binary
operation	 performed	 by	 augmented	 assignment	 is	 the	 same	 as	 the
normal	binary	operations.

For	 targets	 which	 are	 attribute	 references,	 the	 same	 caveat	 about
class	and	instance	attributes	applies	as	for	regular	assignments.

7.3.	The	assert	statement

Assert	 statements	 are	 a	 convenient	 way	 to	 insert	 debugging
assertions	into	a	program:

assert_stmt	::=		"assert"	expression	[","	expression

The	simple	form,	assert	expression,	is	equivalent	to

if	__debug__:

			if	not	expression:	raise	AssertionError

The	 extended	 form,	 assert	 expression1,	 expression2,	 is
equivalent	to

if	__debug__:

			if	not	expression1:	raise	AssertionError(expression2

These	equivalences	assume	that	__debug__	and	AssertionError
refer	 to	 the	 built-in	 variables	 with	 those	 names.	 In	 the	 current
implementation,	 the	 built-in	 variable	 __debug__	 is	 True	 under
normal	 circumstances,	 False	 when	 optimization	 is	 requested
(command	line	option	-O).	The	current	code	generator	emits	no	code
for	 an	 assert	 statement	 when	 optimization	 is	 requested	 at	 compile
time.	Note	 that	 it	 is	 unnecessary	 to	 include	 the	 source	 code	 for	 the
expression	that	failed	in	the	error	message;	it	will	be	displayed	as	part
of	the	stack	trace.

Assignments	 to	 __debug__	 are	 illegal.	 The	 value	 for	 the	 built-in
variable	is	determined	when	the	interpreter	starts.

7.4.	The	pass	statement

pass_stmt	::=		"pass"

pass	is	a	null	operation	—	when	it	is	executed,	nothing	happens.	It	is
useful	as	a	placeholder	when	a	statement	is	required	syntactically,	but
no	code	needs	to	be	executed,	for	example:

def	f(arg):	pass				#	a	function	that	does	nothing	(yet)

class	C:	pass							#	a	class	with	no	methods	(yet)

7.5.	The	del	statement

del_stmt	::=		"del"	target_list

Deletion	 is	 recursively	 defined	 very	 similar	 to	 the	way	 assignment	 is
defined.	Rather	than	spelling	it	out	in	full	details,	here	are	some	hints.

Deletion	 of	 a	 target	 list	 recursively	 deletes	 each	 target,	 from	 left	 to
right.

Deletion	of	a	name	removes	the	binding	of	that	name	from	the	local	or
global	 namespace,	 depending	 on	 whether	 the	 name	 occurs	 in	 a
global	statement	in	the	same	code	block.	If	the	name	is	unbound,	a
NameError	exception	will	be	raised.

Deletion	of	attribute	references,	subscriptions	and	slicings	is	passed	to
the	 primary	 object	 involved;	 deletion	 of	 a	 slicing	 is	 in	 general
equivalent	to	assignment	of	an	empty	slice	of	the	right	type	(but	even
this	is	determined	by	the	sliced	object).

Changed	in	version	3.2:	Previously	it	was	illegal	to	delete	a	name	from
the	local	namespace	if	it	occurs	as	a	free	variable	in	a	nested	block.

7.6.	The	return	statement

return_stmt	::=		"return"	[expression_list]

return	may	 only	 occur	 syntactically	 nested	 in	 a	 function	 definition,
not	within	a	nested	class	definition.

If	 an	 expression	 list	 is	 present,	 it	 is	 evaluated,	 else	 None	 is
substituted.

return	 leaves	 the	 current	 function	 call	 with	 the	 expression	 list	 (or
None)	as	return	value.

When	return	passes	control	out	of	a	try	statement	with	a	finally
clause,	 that	 finally	 clause	 is	 executed	 before	 really	 leaving	 the
function.

In	 a	 generator	 function,	 the	 return	 statement	 indicates	 that	 the
generator	 is	done	and	will	cause	StopIteration	 to	be	raised.	The
returned	 value	 (if	 any)	 is	 used	 as	 an	 argument	 to	 construct
StopIteration	 and	 becomes	 the	 StopIteration.value

attribute.

7.7.	The	yield	statement

yield_stmt	::=		yield_expression

A	 yield	 statement	 is	 semantically	 equivalent	 to	 a	yield	 expression.
The	yield	statement	can	be	used	 to	omit	 the	parentheses	 that	would
otherwise	 be	 required	 in	 the	 equivalent	 yield	 expression	 statement.
For	example,	the	yield	statements

yield	<expr>

yield	from	<expr>

are	equivalent	to	the	yield	expression	statements

(yield	<expr>)

(yield	from	<expr>)

Yield	 expressions	 and	 statements	 are	 only	 used	 when	 defining	 a
generator	 function,	 and	 are	 only	 used	 in	 the	 body	 of	 the	 generator
function.	Using	yield	 in	a	 function	definition	 is	sufficient	 to	cause	 that
definition	to	create	a	generator	function	instead	of	a	normal	function.

For	 full	 details	 of	 yield	 semantics,	 refer	 to	 the	 Yield	 expressions
section.

7.8.	The	raise	statement

raise_stmt	::=		"raise"	[expression	["from"	expression

If	no	expressions	are	present,	raise	re-raises	the	last	exception	that
was	active	in	the	current	scope.	If	no	exception	is	active	in	the	current
scope,	a	RuntimeError	exception	is	raised	indicating	that	this	is	an
error.

Otherwise,	 raise	 evaluates	 the	 first	 expression	 as	 the	 exception
object.	 It	 must	 be	 either	 a	 subclass	 or	 an	 instance	 of
BaseException.	 If	 it	 is	 a	 class,	 the	 exception	 instance	 will	 be
obtained	when	needed	by	instantiating	the	class	with	no	arguments.

The	type	of	the	exception	is	the	exception	instance’s	class,	the	value	is
the	instance	itself.

A	 traceback	 object	 is	 normally	 created	 automatically	 when	 an
exception	 is	 raised	 and	 attached	 to	 it	 as	 the	 __traceback__
attribute,	which	is	writable.	You	can	create	an	exception	and	set	your
own	traceback	 in	one	step	using	the	with_traceback()	exception
method	(which	returns	the	same	exception	instance,	with	its	traceback
set	to	its	argument),	like	so:

raise	Exception("foo	occurred").with_traceback(tracebackobj

The	from	clause	 is	used	for	exception	chaining:	 if	given,	 the	second
expression	 must	 be	 another	 exception	 class	 or	 instance,	 which	 will
then	be	attached	to	the	raised	exception	as	the	__cause__	attribute
(which	 is	 writable).	 If	 the	 raised	 exception	 is	 not	 handled,	 both

exceptions	will	be	printed:

>>>	try:

...					print(1	/	0)

...	except	Exception	as	exc:

...					raise	RuntimeError("Something	bad	happened")

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

ZeroDivisionError:	int	division	or	modulo	by	zero

The	above	exception	was	the	direct	cause	of	the	following	exception:

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	4,	in	<module>

RuntimeError:	Something	bad	happened

A	similar	mechanism	works	implicitly	if	an	exception	is	raised	inside	an
exception	handler:	the	previous	exception	is	then	attached	as	the	new
exception’s	__context__	attribute:

>>>	try:

...					print(1	/	0)

...	except:

...					raise	RuntimeError("Something	bad	happened")

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	2,	in	<module>

ZeroDivisionError:	int	division	or	modulo	by	zero

During	handling	of	the	above	exception,	another	exception	occurred:

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	4,	in	<module>

RuntimeError:	Something	bad	happened

Additional	 information	 on	 exceptions	 can	 be	 found	 in	 section
Exceptions,	 and	 information	 about	 handling	 exceptions	 is	 in	 section
The	try	statement.

7.9.	The	break	statement

break_stmt	::=		"break"

break	may	only	occur	syntactically	nested	 in	a	for	or	while	 loop,
but	not	nested	in	a	function	or	class	definition	within	that	loop.

It	 terminates	 the	 nearest	 enclosing	 loop,	 skipping	 the	 optional	 else
clause	if	the	loop	has	one.

If	a	for	loop	is	terminated	by	break,	the	loop	control	target	keeps	its
current	value.

When	break	passes	control	out	of	a	try	statement	with	a	finally
clause,	 that	 finally	 clause	 is	 executed	 before	 really	 leaving	 the
loop.

7.10.	The	continue	statement

continue_stmt	::=		"continue"

continue	 may	 only	 occur	 syntactically	 nested	 in	 a	 for	 or	 while
loop,	 but	 not	 nested	 in	 a	 function	 or	 class	 definition	 or	 finally
clause	within	that	loop.	It	continues	with	the	next	cycle	of	the	nearest
enclosing	loop.

When	 continue	 passes	 control	 out	 of	 a	 try	 statement	 with	 a
finally	 clause,	 that	 finally	 clause	 is	 executed	 before	 really
starting	the	next	loop	cycle.

7.11.	The	import	statement

import_stmt					::=		"import"	module	["as"	name]	(","	

																					|	"from"	relative_module	"import"	

																					(","	identifier	["as"	name])*

																					|	"from"	relative_module	"import"	"("	

																					(","	identifier	["as"	name])*	[","]	")"

																					|	"from"	module	"import"	"*"

module										::=		(identifier	".")*	identifier

relative_module	::=		"."*	module	|	"."+

name												::=		identifier

The	basic	import	statement	(no	from	clause)	is	executed	in	two	steps:

1.	 find	a	module,	loading	and	initializing	it	if	necessary
2.	 define	 a	 name	 or	 names	 in	 the	 local	 namespace	 for	 the	 scope

where	the	import	statement	occurs.

When	the	statement	contains	multiple	clauses	(separated	by	commas)
the	 two	 steps	 are	 carried	 out	 separately	 for	 each	 clause,	 just	 as
though	 the	 clauses	 had	 been	 separated	 out	 into	 individiual	 import
statements.

The	details	of	the	first	step,	finding	and	loading	modules	is	described
in	 greater	 detail	 in	 the	 section	 on	 the	 import	 system,	 which	 also
describes	 the	 various	 types	 of	 packages	 and	 modules	 that	 can	 be
imported,	as	well	as	all	 the	hooks	 that	can	be	used	 to	customize	 the
import	system.	Note	 that	 failures	 in	 this	step	may	 indicate	either	 that
the	 module	 could	 not	 be	 located,	 or	 that	 an	 error	 occurred	 while
initializing	the	module,	which	includes	execution	of	the	module’s	code.

If	 the	 requested	 module	 is	 retrieved	 successfully,	 it	 will	 be	 made
available	in	the	local	namespace	in	one	of	three	ways:

If	the	module	name	is	followed	by	as,	then	the	name	following	as
is	bound	directly	to	the	imported	module.
If	no	other	name	is	specified,	and	the	module	being	imported	is	a
top	 level	 module,	 the	 module’s	 name	 is	 bound	 in	 the	 local
namespace	as	a	reference	to	the	imported	module
If	 the	module	being	 imported	 is	not	a	 top	 level	module,	 then	 the
name	of	the	top	level	package	that	contains	the	module	is	bound
in	 the	 local	namespace	as	a	 reference	 to	 the	 top	 level	package.
The	 imported	 module	 must	 be	 accessed	 using	 its	 full	 qualified
name	rather	than	directly

The	from	form	uses	a	slightly	more	complex	process:

1.	 find	 the	 module	 specified	 in	 the	 from	 clause	 loading	 and
initializing	it	if	necessary;

2.	 for	each	of	the	identifiers	specified	in	the	import	clauses:
1.	 check	if	the	imported	module	has	an	attribute	by	that	name
2.	 if	not,	attempt	to	import	a	submodule	with	that	name	and	then

check	the	imported	module	again	for	that	attribute
3.	 if	the	attribute	is	not	found,	ImportError	is	raised.
4.	 otherwise,	 a	 reference	 to	 that	 value	 is	 bound	 in	 the	 local

namespace,	using	the	name	in	the	as	clause	if	it	is	present,
otherwise	using	the	attribute	name

Examples:

import	foo																	#	foo	imported	and	bound	locally

import	foo.bar.baz									#	foo.bar.baz	imported,	foo	bound	locally

import	foo.bar.baz	as	fbb		#	foo.bar.baz	imported	and	bound	as	fbb

from	foo.bar	import	baz				#	foo.bar.baz	imported	and	bound	as	baz

from	foo	import	attr							#	foo	imported	and	foo.attr	bound	as	attr

If	 the	 list	 of	 identifiers	 is	 replaced	 by	 a	 star	 ('*'),	 all	 public	 names

defined	in	the	module	are	bound	in	the	local	namespace	for	the	scope
where	the	import	statement	occurs.

The	public	 names	 defined	 by	 a	module	 are	 determined	 by	 checking
the	module’s	namespace	for	a	variable	named	__all__;	if	defined,	it
must	be	a	sequence	of	strings	which	are	names	defined	or	 imported
by	 that	 module.	 The	 names	 given	 in	 __all__	 are	 all	 considered
public	and	are	required	to	exist.	If	__all__	 is	not	defined,	the	set	of
public	 names	 includes	 all	 names	 found	 in	 the	 module’s	 namespace
which	 do	 not	 begin	 with	 an	 underscore	 character	 ('_').	 __all__
should	contain	the	entire	public	API.	It	is	intended	to	avoid	accidentally
exporting	 items	 that	are	not	part	of	 the	API	 (such	as	 library	modules
which	were	imported	and	used	within	the	module).

The	from	 form	with	 *	may	only	 occur	 in	 a	module	 scope.	The	wild
card	 form	 of	 import	—	 import	*	—	 is	 only	 allowed	 at	 the	module
level.	 Attempting	 to	 use	 it	 in	 class	 or	 function	 definitions	will	 raise	 a
SyntaxError.

When	specifying	what	module	to	import	you	do	not	have	to	specify	the
absolute	name	of	the	module.	When	a	module	or	package	is	contained
within	another	package	 it	 is	possible	 to	make	a	 relative	 import	within
the	same	top	package	without	having	 to	mention	 the	package	name.
By	using	leading	dots	 in	the	specified	module	or	package	after	from
you	can	specify	how	high	to	traverse	up	the	current	package	hierarchy
without	 specifying	 exact	 names.	One	 leading	 dot	means	 the	 current
package	where	the	module	making	the	import	exists.	Two	dots	means
up	 one	 package	 level.	 Three	 dots	 is	 up	 two	 levels,	 etc.	 So	 if	 you
execute	from	.	import	mod	 from	a	module	 in	 the	 pkg	 package
then	 you	 will	 end	 up	 importing	 pkg.mod.	 If	 you	 execute	 from
..subpkg2	import	mod	from	within	pkg.subpkg1	you	will	 import
pkg.subpkg2.mod.	The	specification	for	relative	imports	is	contained

within	PEP	328.

importlib.import_module()	 is	 provided	 to	 support	 applications
that	determine	which	modules	need	to	be	loaded	dynamically.

7.11.1.	Future	statements

A	 future	 statement	 is	 a	 directive	 to	 the	 compiler	 that	 a	 particular
module	 should	 be	 compiled	 using	 syntax	 or	 semantics	 that	 will	 be
available	in	a	specified	future	release	of	Python.	The	future	statement
is	 intended	 to	 ease	 migration	 to	 future	 versions	 of	 Python	 that
introduce	 incompatible	changes	 to	 the	 language.	 It	allows	use	of	 the
new	 features	on	a	per-module	basis	before	 the	 release	 in	which	 the
feature	becomes	standard.

future_statement	::=		"from"	"__future__"	"import"	feature	["as"	name]

																						(","	feature	["as"	name])*

																						|	"from"	"__future__"	"import"	"("	feature	["as"	name]

																						(","	feature	["as"	name])*	[","]	")"

feature										::=		identifier

name													::=		identifier

A	future	statement	must	appear	near	the	top	of	the	module.	The	only
lines	that	can	appear	before	a	future	statement	are:

the	module	docstring	(if	any),
comments,
blank	lines,	and
other	future	statements.

The	 features	 recognized	 by	 Python	 3.0	 are	 absolute_import,
division,	generators,	unicode_literals,	print_function,
nested_scopes	 and	 with_statement.	 They	 are	 all	 redundant

http://www.python.org/dev/peps/pep-0328

because	 they	 are	 always	 enabled,	 and	 only	 kept	 for	 backwards
compatibility.

A	future	statement	is	recognized	and	treated	specially	at	compile	time:
Changes	to	the	semantics	of	core	constructs	are	often	implemented	by
generating	different	code.	It	may	even	be	the	case	that	a	new	feature
introduces	new	incompatible	syntax	(such	as	a	new	reserved	word),	in
which	 case	 the	 compiler	 may	 need	 to	 parse	 the	 module	 differently.
Such	decisions	cannot	be	pushed	off	until	runtime.

For	any	given	release,	the	compiler	knows	which	feature	names	have
been	 defined,	 and	 raises	 a	 compile-time	 error	 if	 a	 future	 statement
contains	a	feature	not	known	to	it.

The	 direct	 runtime	 semantics	 are	 the	 same	 as	 for	 any	 import
statement:	 there	 is	a	standard	module	__future__,	described	 later,
and	it	will	be	imported	in	the	usual	way	at	the	time	the	future	statement
is	executed.

The	 interesting	 runtime	 semantics	 depend	 on	 the	 specific	 feature
enabled	by	the	future	statement.

Note	that	there	is	nothing	special	about	the	statement:

import	__future__	[as	name]

That	is	not	a	future	statement;	it’s	an	ordinary	import	statement	with	no
special	semantics	or	syntax	restrictions.

Code	 compiled	 by	 calls	 to	 the	 built-in	 functions	 exec()	 and
compile()	 that	 occur	 in	 a	module	 M	 containing	 a	 future	 statement
will,	by	default,	use	 the	new	syntax	or	semantics	associated	with	 the
future	 statement.	 This	 can	 be	 controlled	 by	 optional	 arguments	 to

compile()	—	see	the	documentation	of	that	function	for	details.

A	 future	statement	 typed	at	an	 interactive	 interpreter	prompt	will	 take
effect	for	the	rest	of	the	interpreter	session.	If	an	interpreter	is	started
with	 the	-i	option,	 is	passed	a	script	name	 to	execute,	and	 the	script
includes	a	future	statement,	it	will	be	in	effect	in	the	interactive	session
started	after	the	script	is	executed.

See	also:

PEP	236	-	Back	to	the	__future__
The	original	proposal	for	the	__future__	mechanism.

http://www.python.org/dev/peps/pep-0236

7.12.	The	global	statement

global_stmt	::=		"global"	identifier	(","	identifier

The	 global	 statement	 is	 a	 declaration	 which	 holds	 for	 the	 entire
current	 code	 block.	 It	 means	 that	 the	 listed	 identifiers	 are	 to	 be
interpreted	 as	 globals.	 It	 would	 be	 impossible	 to	 assign	 to	 a	 global
variable	without	global,	although	free	variables	may	refer	to	globals
without	being	declared	global.

Names	 listed	 in	a	global	 statement	must	 not	 be	used	 in	 the	 same
code	block	textually	preceding	that	global	statement.

Names	 listed	 in	 a	 global	 statement	must	 not	 be	 defined	as	 formal
parameters	or	in	a	for	loop	control	target,	class	definition,	function
definition,	or	import	statement.

CPython	implementation	detail:	The	current	 implementation	does
not	enforce	the	latter	two	restrictions,	but	programs	should	not	abuse
this	freedom,	as	future	implementations	may	enforce	them	or	silently
change	the	meaning	of	the	program.

Programmer’s	 note:	 the	 global	 is	 a	 directive	 to	 the	 parser.	 It
applies	 only	 to	 code	 parsed	 at	 the	 same	 time	 as	 the	 global
statement.	 In	particular,	a	global	statement	contained	 in	a	string	or
code	 object	 supplied	 to	 the	 built-in	 exec()	 function	 does	 not	 affect
the	code	block	containing	the	function	call,	and	code	contained	in	such
a	 string	 is	 unaffected	 by	 global	 statements	 in	 the	 code	 containing
the	 function	 call.	The	 same	applies	 to	 the	 eval()	 and	 compile()
functions.

7.13.	The	nonlocal	statement

nonlocal_stmt	::=		"nonlocal"	identifier	(","	identifier

The	 nonlocal	 statement	 causes	 the	 listed	 identifiers	 to	 refer	 to
previously	 bound	 variables	 in	 the	 nearest	 enclosing	 scope.	 This	 is
important	 because	 the	 default	 behavior	 for	 binding	 is	 to	 search	 the
local	 namespace	 first.	 The	 statement	 allows	 encapsulated	 code	 to
rebind	variables	outside	of	the	local	scope	besides	the	global	(module)
scope.

Names	 listed	 in	 a	 nonlocal	 statement,	 unlike	 to	 those	 listed	 in	 a
global	statement,	must	refer	to	pre-existing	bindings	in	an	enclosing
scope	(the	scope	in	which	a	new	binding	should	be	created	cannot	be
determined	unambiguously).

Names	 listed	 in	 a	 nonlocal	 statement	 must	 not	 collide	 with	 pre-
existing	bindings	in	the	local	scope.

See	also:

PEP	3104	-	Access	to	Names	in	Outer	Scopes
The	specification	for	the	nonlocal	statement.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-3104
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

8.	Compound	statements
Compound	 statements	 contain	 (groups	 of)	 other	 statements;	 they
affect	or	control	the	execution	of	those	other	statements	in	some	way.
In	 general,	 compound	 statements	 span	 multiple	 lines,	 although	 in
simple	incarnations	a	whole	compound	statement	may	be	contained	in
one	line.

The	if,	while	and	for	statements	implement	traditional	control	flow
constructs.	try	specifies	exception	handlers	and/or	cleanup	code	for
a	group	of	statements,	while	the	with	statement	allows	the	execution
of	initialization	and	finalization	code	around	a	block	of	code.	Function
and	class	definitions	are	also	syntactically	compound	statements.

Compound	 statements	 consist	 of	 one	 or	 more	 ‘clauses.’	 A	 clause
consists	of	a	header	and	a	 ‘suite.’	The	clause	headers	of	a	particular
compound	 statement	 are	 all	 at	 the	 same	 indentation	 level.	 Each
clause	 header	 begins	 with	 a	 uniquely	 identifying	 keyword	 and	 ends
with	a	colon.	A	suite	is	a	group	of	statements	controlled	by	a	clause.	A
suite	can	be	one	or	more	semicolon-separated	simple	statements	on
the	same	line	as	the	header,	following	the	header’s	colon,	or	it	can	be
one	or	more	indented	statements	on	subsequent	lines.	Only	the	latter
form	of	suite	can	contain	nested	compound	statements;	 the	following
is	 illegal,	 mostly	 because	 it	 wouldn’t	 be	 clear	 to	 which	 if	 clause	 a
following	else	clause	would	belong:

if	test1:	if	test2:	print(x)

Also	 note	 that	 the	 semicolon	 binds	 tighter	 than	 the	 colon	 in	 this
context,	 so	 that	 in	 the	 following	 example,	 either	 all	 or	 none	 of	 the
print()	calls	are	executed:

if	x	<	y	<	z:	print(x);	print(y);	print(z)

Summarizing:

compound_stmt	::=		if_stmt

																			|	while_stmt

																			|	for_stmt

																			|	try_stmt

																			|	with_stmt

																			|	funcdef

																			|	classdef

suite									::=		stmt_list	NEWLINE	|	NEWLINE	INDENT	

statement					::=		stmt_list	NEWLINE	|	compound_stmt

stmt_list					::=		simple_stmt	(";"	simple_stmt)*	[";"]

Note	that	statements	always	end	in	a	NEWLINE	possibly	followed	by	a
DEDENT.	 Also	 note	 that	 optional	 continuation	 clauses	 always	 begin
with	 a	 keyword	 that	 cannot	 start	 a	 statement,	 thus	 there	 are	 no
ambiguities	 (the	 ‘dangling	 else‘	 problem	 is	 solved	 in	 Python	 by
requiring	nested	if	statements	to	be	indented).

The	 formatting	of	 the	grammar	 rules	 in	 the	 following	sections	places
each	clause	on	a	separate	line	for	clarity.

8.1.	The	if	statement

The	if	statement	is	used	for	conditional	execution:

if_stmt	::=		"if"	expression	":"	suite

													("elif"	expression	":"	suite)*

													["else"	":"	suite]

It	selects	exactly	one	of	the	suites	by	evaluating	the	expressions	one
by	one	until	one	 is	 found	 to	be	 true	 (see	section	Boolean	operations
for	the	definition	of	true	and	false);	then	that	suite	is	executed	(and	no
other	 part	 of	 the	 if	 statement	 is	 executed	 or	 evaluated).	 If	 all
expressions	 are	 false,	 the	 suite	 of	 the	 else	 clause,	 if	 present,	 is
executed.

8.2.	The	while	statement

The	 while	 statement	 is	 used	 for	 repeated	 execution	 as	 long	 as	 an
expression	is	true:

while_stmt	::=		"while"	expression	":"	suite

																["else"	":"	suite]

This	repeatedly	tests	the	expression	and,	if	it	is	true,	executes	the	first
suite;	if	the	expression	is	false	(which	may	be	the	first	time	it	is	tested)
the	 suite	 of	 the	 else	 clause,	 if	 present,	 is	 executed	 and	 the	 loop
terminates.

A	 break	 statement	 executed	 in	 the	 first	 suite	 terminates	 the	 loop
without	 executing	 the	 else	 clause’s	 suite.	 A	 continue	 statement
executed	in	the	first	suite	skips	the	rest	of	the	suite	and	goes	back	to
testing	the	expression.

8.3.	The	for	statement

The	for	statement	is	used	to	iterate	over	the	elements	of	a	sequence
(such	as	a	string,	tuple	or	list)	or	other	iterable	object:

for_stmt	::=		"for"	target_list	"in"	expression_list

														["else"	":"	suite]

The	expression	list	is	evaluated	once;	it	should	yield	an	iterable	object.
An	 iterator	 is	 created	 for	 the	 result	 of	 the	 expression_list.	 The
suite	 is	 then	executed	once	 for	each	 item	provided	by	 the	 iterator,	 in
the	 order	 of	 ascending	 indices.	Each	 item	 in	 turn	 is	 assigned	 to	 the
target	 list	 using	 the	 standard	 rules	 for	 assignments	 (see	Assignment
statements),	 and	 then	 the	 suite	 is	 executed.	 When	 the	 items	 are
exhausted	 (which	 is	 immediately	when	 the	 sequence	 is	 empty	or	 an
iterator	 raises	 a	 StopIteration	 exception),	 the	 suite	 in	 the	 else
clause,	if	present,	is	executed,	and	the	loop	terminates.

A	 break	 statement	 executed	 in	 the	 first	 suite	 terminates	 the	 loop
without	 executing	 the	 else	 clause’s	 suite.	 A	 continue	 statement
executed	in	the	first	suite	skips	the	rest	of	the	suite	and	continues	with
the	next	item,	or	with	the	else	clause	if	there	was	no	next	item.

The	suite	may	assign	to	the	variable(s)	in	the	target	list;	this	does	not
affect	the	next	item	assigned	to	it.

Names	in	the	target	list	are	not	deleted	when	the	loop	is	finished,	but	if
the	sequence	is	empty,	 it	will	not	have	been	assigned	to	at	all	by	the
loop.	Hint:	the	built-in	function	range()	returns	an	iterator	of	integers
suitable	 to	 emulate	 the	 effect	 of	 Pascal’s	 for	i	:=	a	to	b	 do;
e.g.,	list(range(3))	returns	the	list	[0,	1,	2].

Note: 	There	is	a	subtlety	when	the	sequence	is	being	modified	by
the	loop	(this	can	only	occur	for	mutable	sequences,	i.e.	lists).	An
internal	counter	is	used	to	keep	track	of	which	item	is	used	next,	and
this	is	incremented	on	each	iteration.	When	this	counter	has	reached
the	length	of	the	sequence	the	loop	terminates.	This	means	that	if
the	suite	deletes	the	current	(or	a	previous)	item	from	the	sequence,
the	next	item	will	be	skipped	(since	it	gets	the	index	of	the	current
item	which	has	already	been	treated).	Likewise,	if	the	suite	inserts	an
item	in	the	sequence	before	the	current	item,	the	current	item	will	be
treated	again	the	next	time	through	the	loop.	This	can	lead	to	nasty
bugs	that	can	be	avoided	by	making	a	temporary	copy	using	a	slice
of	the	whole	sequence,	e.g.,

for	x	in	a[:]:

				if	x	<	0:	a.remove(x)

8.4.	The	try	statement

The	try	statement	specifies	exception	handlers	and/or	cleanup	code
for	a	group	of	statements:

try_stmt		::=		try1_stmt	|	try2_stmt

try1_stmt	::=		"try"	":"	suite

															("except"	[expression	["as"	target]]	":"	

															["else"	":"	suite]

															["finally"	":"	suite]

try2_stmt	::=		"try"	":"	suite

															"finally"	":"	suite

The	except	clause(s)	specify	one	or	more	exception	handlers.	When
no	 exception	 occurs	 in	 the	 try	 clause,	 no	 exception	 handler	 is
executed.	When	an	exception	occurs	in	the	try	suite,	a	search	for	an
exception	handler	 is	started.	This	search	 inspects	 the	except	clauses
in	 turn	until	one	 is	 found	 that	matches	 the	exception.	An	 expression-
less	except	clause,	if	present,	must	be	last;	it	matches	any	exception.
For	an	except	clause	with	an	expression,	that	expression	is	evaluated,
and	 the	 clause	 matches	 the	 exception	 if	 the	 resulting	 object	 is
“compatible”	 with	 the	 exception.	 An	 object	 is	 compatible	 with	 an
exception	if	it	is	the	class	or	a	base	class	of	the	exception	object	or	a
tuple	containing	an	item	compatible	with	the	exception.

If	no	except	clause	matches	the	exception,	the	search	for	an	exception
handler	continues	in	the	surrounding	code	and	on	the	invocation	stack.
[1]

If	 the	evaluation	of	an	expression	 in	 the	header	of	 an	except	 clause
raises	an	exception,	the	original	search	for	a	handler	is	canceled	and	a
search	starts	for	the	new	exception	in	the	surrounding	code	and	on	the

call	 stack	 (it	 is	 treated	 as	 if	 the	 entire	 try	 statement	 raised	 the
exception).

When	a	matching	except	clause	is	found,	the	exception	is	assigned	to
the	 target	 specified	 after	 the	 as	 keyword	 in	 that	 except	 clause,	 if
present,	and	the	except	clause’s	suite	is	executed.	All	except	clauses
must	have	an	executable	block.	When	the	end	of	this	block	is	reached,
execution	 continues	 normally	 after	 the	 entire	 try	 statement.	 (This
means	 that	 if	 two	nested	handlers	exist	 for	 the	same	exception,	and
the	exception	occurs	 in	 the	 try	clause	of	 the	 inner	handler,	 the	outer
handler	will	not	handle	the	exception.)

When	an	exception	has	been	assigned	using	as	target,	it	is	cleared
at	the	end	of	the	except	clause.	This	is	as	if

except	E	as	N:

				foo

was	translated	to

except	E	as	N:

				try:

								foo

				finally:

								del	N

This	means	the	exception	must	be	assigned	to	a	different	name	to	be
able	 to	 refer	 to	 it	 after	 the	 except	 clause.	 Exceptions	 are	 cleared
because	with	 the	 traceback	attached	 to	 them,	 they	 form	a	 reference
cycle	with	 the	stack	 frame,	keeping	all	 locals	 in	 that	 frame	alive	until
the	next	garbage	collection	occurs.

Before	 an	 except	 clause’s	 suite	 is	 executed,	 details	 about	 the
exception	 are	 stored	 in	 the	 sys	 module	 and	 can	 be	 access	 via

sys.exc_info().	sys.exc_info()	returns	a	3-tuple	consisting	of
the	 exception	 class,	 the	 exception	 instance	 and	 a	 traceback	 object
(see	section	The	standard	 type	hierarchy)	 identifying	 the	point	 in	 the
program	where	the	exception	occurred.	sys.exc_info()	values	are
restored	to	their	previous	values	(before	the	call)	when	returning	from
a	function	that	handled	an	exception.

The	optional	else	clause	is	executed	if	and	when	control	flows	off	the
end	 of	 the	 try	 clause.	 [2]	 Exceptions	 in	 the	 else	 clause	 are	 not
handled	by	the	preceding	except	clauses.

If	finally	is	present,	it	specifies	a	‘cleanup’	handler.	The	try	clause
is	executed,	including	any	except	and	else	clauses.	If	an	exception
occurs	 in	 any	 of	 the	 clauses	 and	 is	 not	 handled,	 the	 exception	 is
temporarily	 saved.	 The	 finally	 clause	 is	 executed.	 If	 there	 is	 a
saved	exception	it	is	re-raised	at	the	end	of	the	finally	clause.	If	the
finally	clause	raises	another	exception,	the	saved	exception	is	set
as	the	context	of	the	new	exception.	If	the	finally	clause	executes	a
return	or	break	statement,	the	saved	exception	is	discarded:

def	f():

				try:

								1/0

				finally:

								return	42

>>>	f()

42

The	 exception	 information	 is	 not	 available	 to	 the	 program	 during
execution	of	the	finally	clause.

When	a	return,	break	or	continue	 statement	 is	executed	 in	 the

try	suite	of	a	try...finally	statement,	the	finally	clause	is	also
executed	 ‘on	 the	 way	 out.’	 A	 continue	 statement	 is	 illegal	 in	 the
finally	 clause.	 (The	 reason	 is	 a	 problem	 with	 the	 current
implementation	—	this	restriction	may	be	lifted	in	the	future).

Additional	 information	 on	 exceptions	 can	 be	 found	 in	 section
Exceptions,	 and	 information	 on	 using	 the	 raise	 statement	 to
generate	exceptions	may	be	found	in	section	The	raise	statement.

8.5.	The	with	statement

The	 with	 statement	 is	 used	 to	 wrap	 the	 execution	 of	 a	 block	 with
methods	defined	by	a	 context	manager	 (see	 section	With	Statement
Context	 Managers).	 This	 allows	 common	 try...except...finally
usage	patterns	to	be	encapsulated	for	convenient	reuse.

with_stmt	::=		"with"	with_item	(","	with_item)*	":"	

with_item	::=		expression	["as"	target]

The	 execution	 of	 the	 with	 statement	 with	 one	 “item”	 proceeds	 as
follows:

1.	 The	context	expression	(the	expression	given	in	the	with_item)
is	evaluated	to	obtain	a	context	manager.

2.	 The	context	manager’s	__exit__()	is	loaded	for	later	use.

3.	 The	context	manager’s	__enter__()	method	is	invoked.

4.	 If	a	 target	was	 included	 in	 the	with	 statement,	 the	 return	value
from	__enter__()	is	assigned	to	it.

Note: 	 The	 with	 statement	 guarantees	 that	 if	 the
__enter__()	 method	 returns	 without	 an	 error,	 then
__exit__()	 will	 always	 be	 called.	 Thus,	 if	 an	 error	 occurs
during	 the	 assignment	 to	 the	 target	 list,	 it	 will	 be	 treated	 the
same	as	an	error	occurring	within	the	suite	would	be.	See	step	6
below.

5.	 The	suite	is	executed.

6.	 The	 context	 manager’s	 __exit__()	 method	 is	 invoked.	 If	 an
exception	 caused	 the	 suite	 to	 be	 exited,	 its	 type,	 value,	 and
traceback	are	passed	as	arguments	to	__exit__().	Otherwise,
three	None	arguments	are	supplied.

If	 the	suite	was	exited	due	 to	an	exception,	and	 the	return	value
from	 the	 __exit__()	 method	 was	 false,	 the	 exception	 is
reraised.	If	the	return	value	was	true,	the	exception	is	suppressed,
and	 execution	 continues	 with	 the	 statement	 following	 the	 with
statement.

If	the	suite	was	exited	for	any	reason	other	than	an	exception,	the
return	 value	 from	 __exit__()	 is	 ignored,	 and	 execution
proceeds	at	the	normal	location	for	the	kind	of	exit	that	was	taken.

With	more	 than	one	 item,	 the	 context	managers	are	processed	as	 if
multiple	with	statements	were	nested:

with	A()	as	a,	B()	as	b:

				suite

is	equivalent	to

with	A()	as	a:

				with	B()	as	b:

								suite

Changed	in	version	3.1:	Support	for	multiple	context	expressions.

See	also:

PEP	0343	-	The	“with”	statement
The	 specification,	 background,	 and	 examples	 for	 the	 Python

http://www.python.org/dev/peps/pep-0343

with	statement.

8.6.	Function	definitions

A	function	definition	defines	a	user-defined	function	object	(see	section
The	standard	type	hierarchy):

funcdef								::=		[decorators]	"def"	funcname	"("	[

decorators					::=		decorator+

decorator						::=		"@"	dotted_name	["("	[parameter_list

dotted_name				::=		identifier	("."	identifier)*

parameter_list	::=		(defparameter	",")*

																				("*"	[parameter]	(","	defparameter

																				|	"**"	parameter

																				|	defparameter	[","])

parameter						::=		identifier	[":"	expression]

defparameter			::=		parameter	["="	expression]

funcname							::=		identifier

A	 function	 definition	 is	 an	 executable	 statement.	 Its	 execution	 binds
the	function	name	in	the	current	local	namespace	to	a	function	object
(a	wrapper	around	the	executable	code	for	the	function).	This	function
object	 contains	 a	 reference	 to	 the	 current	 global	 namespace	 as	 the
global	namespace	to	be	used	when	the	function	is	called.

The	 function	 definition	 does	 not	 execute	 the	 function	 body;	 this	 gets
executed	only	when	the	function	is	called.	[3]

A	 function	 definition	 may	 be	 wrapped	 by	 one	 or	 more	 decorator
expressions.	Decorator	 expressions	are	evaluated	when	 the	 function
is	defined,	in	the	scope	that	contains	the	function	definition.	The	result
must	 be	 a	 callable,	 which	 is	 invoked	with	 the	 function	 object	 as	 the
only	 argument.	 The	 returned	 value	 is	 bound	 to	 the	 function	 name
instead	of	the	function	object.	Multiple	decorators	are	applied	in	nested
fashion.	For	example,	the	following	code

@f1(arg)

@f2

def	func():	pass

is	equivalent	to

def	func():	pass

func	=	f1(arg)(f2(func))

When	one	or	more	parameters	have	the	form	parameter	=	expression,
the	 function	 is	 said	 to	 have	 “default	 parameter	 values.”	 For	 a
parameter	with	 a	 default	 value,	 the	 corresponding	argument	may	 be
omitted	 from	 a	 call,	 in	 which	 case	 the	 parameter’s	 default	 value	 is
substituted.	 If	 a	 parameter	 has	 a	 default	 value,	 all	 following
parameters	up	until	the	“*”	must	also	have	a	default	value	—	this	is	a
syntactic	restriction	that	is	not	expressed	by	the	grammar.

Default	parameter	values	are	evaluated	from	left	to	right	when	the
function	definition	 is	 executed.	 This	means	 that	 the	 expression	 is
evaluated	once,	when	the	function	is	defined,	and	that	the	same	“pre-
computed”	value	 is	used	for	each	call.	This	 is	especially	 important	 to
understand	when	a	default	parameter	 is	a	mutable	object,	such	as	a
list	 or	 a	 dictionary:	 if	 the	 function	 modifies	 the	 object	 (e.g.	 by
appending	an	item	to	a	list),	the	default	value	is	in	effect	modified.	This
is	generally	not	what	was	intended.	A	way	around	this	is	to	use	None
as	the	default,	and	explicitly	test	for	it	in	the	body	of	the	function,	e.g.:

def	whats_on_the_telly(penguin=None):

				if	penguin	is	None:

								penguin	=	[]

				penguin.append("property	of	the	zoo")

				return	penguin

Function	call	semantics	are	described	in	more	detail	in	section	Calls.	A
function	call	always	assigns	values	to	all	parameters	mentioned	in	the
parameter	 list,	 either	 from	 position	 arguments,	 from	 keyword
arguments,	 or	 from	 default	 values.	 If	 the	 form	 “*identifier”	 is
present,	 it	 is	 initialized	 to	 a	 tuple	 receiving	 any	 excess	 positional
parameters,	 defaulting	 to	 the	 empty	 tuple.	 If	 the	 form
“**identifier”	 is	 present,	 it	 is	 initialized	 to	 a	 new	 dictionary
receiving	any	excess	keyword	arguments,	defaulting	 to	a	new	empty
dictionary.	Parameters	after	“*”	or	“*identifier”	are	keyword-only
parameters	and	may	only	be	passed	used	keyword	arguments.

Parameters	 may	 have	 annotations	 of	 the	 form	 “:	 expression”
following	the	parameter	name.	Any	parameter	may	have	an	annotation
even	those	of	the	form	*identifier	or	**identifier.	Functions
may	have	“return”	annotation	of	the	form	“->	expression”	after	the
parameter	list.	These	annotations	can	be	any	valid	Python	expression
and	 are	 evaluated	 when	 the	 function	 definition	 is	 executed.
Annotations	may	be	evaluated	in	a	different	order	than	they	appear	in
the	 source	 code.	 The	 presence	 of	 annotations	 does	 not	 change	 the
semantics	of	a	function.	The	annotation	values	are	available	as	values
of	 a	 dictionary	 keyed	 by	 the	 parameters’	 names	 in	 the
__annotations__	attribute	of	the	function	object.

It	is	also	possible	to	create	anonymous	functions	(functions	not	bound
to	 a	 name),	 for	 immediate	 use	 in	 expressions.	 This	 uses	 lambda
expressions,	 described	 in	 section	 Lambdas.	 Note	 that	 the	 lambda
expression	is	merely	a	shorthand	for	a	simplified	function	definition;	a
function	 defined	 in	 a	 “def”	 statement	 can	 be	 passed	 around	 or
assigned	 to	 another	 name	 just	 like	 a	 function	 defined	 by	 a	 lambda
expression.	The	“def”	 form	 is	 actually	more	 powerful	 since	 it	 allows
the	execution	of	multiple	statements	and	annotations.

Programmer’s	 note:	 Functions	 are	 first-class	 objects.	 A	 “def”
statement	executed	inside	a	function	definition	defines	a	local	function
that	 can	 be	 returned	 or	 passed	 around.	 Free	 variables	 used	 in	 the
nested	 function	 can	 access	 the	 local	 variables	 of	 the	 function
containing	the	def.	See	section	Naming	and	binding	for	details.

See	also:

PEP	3107	-	Function	Annotations
The	original	specification	for	function	annotations.

http://www.python.org/dev/peps/pep-3107

8.7.	Class	definitions

A	class	definition	defines	a	class	object	(see	section	The	standard	type
hierarchy):

classdef				::=		[decorators]	"class"	classname	[inheritance

inheritance	::=		"("	[parameter_list]	")"

classname			::=		identifier

A	 class	 definition	 is	 an	 executable	 statement.	 The	 inheritance	 list
usually	gives	a	list	of	base	classes	(see	Customizing	class	creation	for
more	 advanced	 uses),	 so	 each	 item	 in	 the	 list	 should	 evaluate	 to	 a
class	object	which	allows	subclassing.	Classes	without	an	inheritance
list	inherit,	by	default,	from	the	base	class	object;	hence,

class	Foo:

				pass

is	equivalent	to

class	Foo(object):

				pass

The	 class’s	 suite	 is	 then	 executed	 in	 a	 new	 execution	 frame	 (see
Naming	and	binding),	using	a	newly	created	local	namespace	and	the
original	global	namespace.	(Usually,	the	suite	contains	mostly	function
definitions.)	 When	 the	 class’s	 suite	 finishes	 execution,	 its	 execution
frame	is	discarded	but	its	local	namespace	is	saved.	[4]	A	class	object
is	then	created	using	the	inheritance	list	for	the	base	classes	and	the
saved	local	namespace	for	the	attribute	dictionary.	The	class	name	is
bound	to	this	class	object	in	the	original	local	namespace.

Class	creation	can	be	customized	heavily	using	metaclasses.

Classes	can	also	be	decorated:	just	like	when	decorating	functions,

@f1(arg)

@f2

class	Foo:	pass

is	equivalent	to

class	Foo:	pass

Foo	=	f1(arg)(f2(Foo))

The	evaluation	rules	for	the	decorator	expressions	are	the	same	as	for
function	decorators.	The	 result	must	be	a	class	object,	which	 is	 then
bound	to	the	class	name.

Programmer’s	note:	Variables	defined	in	the	class	definition	are	class
attributes;	they	are	shared	by	instances.	Instance	attributes	can	be	set
in	 a	 method	 with	 self.name	 =	 value.	 Both	 class	 and	 instance
attributes	 are	 accessible	 through	 the	 notation	 “self.name”,	 and	 an
instance	 attribute	 hides	 a	 class	 attribute	 with	 the	 same	 name	 when
accessed	 in	 this	 way.	 Class	 attributes	 can	 be	 used	 as	 defaults	 for
instance	 attributes,	 but	 using	 mutable	 values	 there	 can	 lead	 to
unexpected	 results.	 Descriptors	 can	 be	 used	 to	 create	 instance
variables	with	different	implementation	details.

See	also: 	PEP	3115	-	Metaclasses	in	Python	3	PEP	3129	-	Class
Decorators

Footnotes

The	exception	is	propagated	to	the	invocation	stack	unless

http://www.python.org/dev/peps/pep-3115
http://www.python.org/dev/peps/pep-3129

[1] there	is	a	finally	clause	which	happens	to	raise	another
exception.	That	new	exception	causes	the	old	one	to	be	lost.

[2]
Currently,	control	“flows	off	the	end”	except	in	the	case	of	an
exception	or	the	execution	of	a	return,	continue,	or	break
statement.

[3]
A	string	literal	appearing	as	the	first	statement	in	the	function
body	is	transformed	into	the	function’s	__doc__	attribute	and
therefore	the	function’s	docstring.

[4]
A	string	literal	appearing	as	the	first	statement	in	the	class	body
is	transformed	into	the	namespace’s	__doc__	item	and
therefore	the	class’s	docstring.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

9.	Top-level	components
The	 Python	 interpreter	 can	 get	 its	 input	 from	 a	 number	 of	 sources:
from	a	script	passed	to	 it	as	standard	 input	or	as	program	argument,
typed	in	interactively,	from	a	module	source	file,	etc.	This	chapter	gives
the	syntax	used	in	these	cases.

9.1.	Complete	Python	programs

While	a	 language	specification	need	not	prescribe	how	 the	 language
interpreter	 is	 invoked,	 it	 is	 useful	 to	 have	 a	 notion	 of	 a	 complete
Python	 program.	 A	 complete	 Python	 program	 is	 executed	 in	 a
minimally	initialized	environment:	all	built-in	and	standard	modules	are
available,	 but	 none	 have	 been	 initialized,	 except	 for	 sys	 (various
system	services),	builtins	(built-in	functions,	exceptions	and	None)
and	 __main__.	 The	 latter	 is	 used	 to	 provide	 the	 local	 and	 global
namespace	for	execution	of	the	complete	program.

The	 syntax	 for	 a	 complete	 Python	 program	 is	 that	 for	 file	 input,
described	in	the	next	section.

The	interpreter	may	also	be	invoked	in	interactive	mode;	in	this	case,	it
does	 not	 read	 and	 execute	 a	 complete	 program	 but	 reads	 and
executes	 one	 statement	 (possibly	 compound)	 at	 a	 time.	 The	 initial
environment	is	identical	to	that	of	a	complete	program;	each	statement
is	executed	in	the	namespace	of	__main__.

Under	Unix,	a	complete	program	can	be	passed	 to	 the	 interpreter	 in
three	forms:	with	the	-c	string	command	line	option,	as	a	file	passed	as
the	 first	 command	 line	 argument,	 or	 as	 standard	 input.	 If	 the	 file	 or
standard	input	 is	a	tty	device,	the	interpreter	enters	 interactive	mode;
otherwise,	it	executes	the	file	as	a	complete	program.

9.2.	File	input

All	input	read	from	non-interactive	files	has	the	same	form:

file_input	::=		(NEWLINE	|	statement)*

This	syntax	is	used	in	the	following	situations:

when	parsing	a	 complete	Python	program	 (from	a	 file	 or	 from	a
string);
when	parsing	a	module;
when	parsing	a	string	passed	to	the	exec()	function;

9.3.	Interactive	input

Input	in	interactive	mode	is	parsed	using	the	following	grammar:

interactive_input	::=		[stmt_list]	NEWLINE	|	compound_stmt

Note	 that	 a	 (top-level)	 compound	 statement	 must	 be	 followed	 by	 a
blank	line	in	interactive	mode;	this	is	needed	to	help	the	parser	detect
the	end	of	the	input.

9.4.	Expression	input

There	 are	 two	 forms	 of	 expression	 input.	 Both	 ignore	 leading
whitespace.	The	string	argument	 to	eval()	must	have	 the	 following
form:

eval_input	::=		expression_list	NEWLINE*

Note:	 to	 read	 ‘raw’	 input	 line	without	 interpretation,	 you	 can	 use	 the
readline()	method	of	file	objects,	including	sys.stdin.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

http://www.python.org/

10.	Full	Grammar	specification
This	 is	 the	full	Python	grammar,	as	 it	 is	read	by	the	parser	generator
and	used	to	parse	Python	source	files:

#	Grammar	for	Python

#	Note:		Changing	the	grammar	specified	in	this	file	will	most	likely

#								require	corresponding	changes	in	the	parser	module

#								(../Modules/parsermodule.c).		If	you	can't	make	the	changes	to

#								that	module	yourself,	please	co-ordinate	the	required	changes

#								with	someone	who	can;	ask	around	on	python-dev	for	help.		Fred

#								Drake	<fdrake@acm.org>	will	probably	be	listening	there.

#	NOTE	WELL:	You	should	also	follow	all	the	steps	listed	in	PEP	306,

#	"How	to	Change	Python's	Grammar"

#	Start	symbols	for	the	grammar:

#							single_input	is	a	single	interactive	statement;

#							file_input	is	a	module	or	sequence	of	commands	read	from	an	input	file;

#							eval_input	is	the	input	for	the	eval()	functions.

#	NB:	compound_stmt	in	single_input	is	followed	by	extra	NEWLINE!

single_input:	NEWLINE	|	simple_stmt	|	compound_stmt	

file_input:	(NEWLINE	|	stmt)*	ENDMARKER

eval_input:	testlist	NEWLINE*	ENDMARKER

decorator:	'@'	dotted_name	['('	[arglist]	')']	NEWLINE

decorators:	decorator+

decorated:	decorators	(classdef	|	funcdef)

funcdef:	'def'	NAME	parameters	['->'	test]	':'	suite

parameters:	'('	[typedargslist]	')'

typedargslist:	(tfpdef	['='	test]	(','	tfpdef	['='	test

							['*'	[tfpdef]	(','	tfpdef	['='	test])*	[','	'**'

					|		'*'	[tfpdef]	(','	tfpdef	['='	test])*	[','	'**'

tfpdef:	NAME	[':'	test]

varargslist:	(vfpdef	['='	test]	(','	vfpdef	['='	test

							['*'	[vfpdef]	(','	vfpdef	['='	test])*	[','	'**'

					|		'*'	[vfpdef]	(','	vfpdef	['='	test])*	[','	'**'

vfpdef:	NAME

stmt:	simple_stmt	|	compound_stmt

simple_stmt:	small_stmt	(';'	small_stmt)*	[';']	NEWLINE

small_stmt:	(expr_stmt	|	del_stmt	|	pass_stmt	|	flow_stmt

													import_stmt	|	global_stmt	|	nonlocal_stmt

expr_stmt:	testlist_star_expr	(augassign	(yield_expr

																					('='	(yield_expr|testlist_star_expr

testlist_star_expr:	(test|star_expr)	(','	(test|star_expr

augassign:	('+='	|	'-='	|	'*='	|	'/='	|	'%='	|	'&='	

												'<<='	|	'>>='	|	'**='	|	'//=')

#	For	normal	assignments,	additional	restrictions	enforced	by	the	interpreter

del_stmt:	'del'	exprlist

pass_stmt:	'pass'

flow_stmt:	break_stmt	|	continue_stmt	|	return_stmt	

break_stmt:	'break'

continue_stmt:	'continue'

return_stmt:	'return'	[testlist]

yield_stmt:	yield_expr

raise_stmt:	'raise'	[test	['from'	test]]

import_stmt:	import_name	|	import_from

import_name:	'import'	dotted_as_names

#	note	below:	the	('.'	|	'...')	is	necessary	because	'...'	is	tokenized	as	ELLIPSIS

import_from:	('from'	(('.'	|	'...')*	dotted_name	|	(

														'import'	('*'	|	'('	import_as_names	')'

import_as_name:	NAME	['as'	NAME]

dotted_as_name:	dotted_name	['as'	NAME]

import_as_names:	import_as_name	(','	import_as_name)

dotted_as_names:	dotted_as_name	(','	dotted_as_name)

dotted_name:	NAME	('.'	NAME)*

global_stmt:	'global'	NAME	(','	NAME)*

nonlocal_stmt:	'nonlocal'	NAME	(','	NAME)*

assert_stmt:	'assert'	test	[','	test]

compound_stmt:	if_stmt	|	while_stmt	|	for_stmt	|	try_stmt

if_stmt:	'if'	test	':'	suite	('elif'	test	':'	suite)

while_stmt:	'while'	test	':'	suite	['else'	':'	suite

for_stmt:	'for'	exprlist	'in'	testlist	':'	suite	['else'

try_stmt:	('try'	':'	suite

											((except_clause	':'	suite)+

												['else'	':'	suite]

												['finally'	':'	suite]	|

											'finally'	':'	suite))

with_stmt:	'with'	with_item	(','	with_item)*		':'	suite

with_item:	test	['as'	expr]

#	NB	compile.c	makes	sure	that	the	default	except	clause	is	last

except_clause:	'except'	[test	['as'	NAME]]

suite:	simple_stmt	|	NEWLINE	INDENT	stmt+	DEDENT

test:	or_test	['if'	or_test	'else'	test]	|	lambdef

test_nocond:	or_test	|	lambdef_nocond

lambdef:	'lambda'	[varargslist]	':'	test

lambdef_nocond:	'lambda'	[varargslist]	':'	test_nocond

or_test:	and_test	('or'	and_test)*

and_test:	not_test	('and'	not_test)*

not_test:	'not'	not_test	|	comparison

comparison:	expr	(comp_op	expr)*

#	<>	isn't	actually	a	valid	comparison	operator	in	Python.	It's	here	for	the

#	sake	of	a	__future__	import	described	in	PEP	401

comp_op:	'<'|'>'|'=='|'>='|'<='|'<>'|'!='|'in'|'not'

star_expr:	'*'	expr

expr:	xor_expr	('|'	xor_expr)*

xor_expr:	and_expr	('^'	and_expr)*

and_expr:	shift_expr	('&'	shift_expr)*

shift_expr:	arith_expr	(('<<'|'>>')	arith_expr)*

arith_expr:	term	(('+'|'-')	term)*

term:	factor	(('*'|'/'|'%'|'//')	factor)*

factor:	('+'|'-'|'~')	factor	|	power

power:	atom	trailer*	['**'	factor]

atom:	('('	[yield_expr|testlist_comp]	')'	|

							'['	[testlist_comp]	']'	|

							'{'	[dictorsetmaker]	'}'	|

							NAME	|	NUMBER	|	STRING+	|	'...'	|	'None'	|	'True'

testlist_comp:	(test|star_expr)	(comp_for	|	(','	(test

trailer:	'('	[arglist]	')'	|	'['	subscriptlist	']'	|

subscriptlist:	subscript	(','	subscript)*	[',']

subscript:	test	|	[test]	':'	[test]	[sliceop]

sliceop:	':'	[test]

exprlist:	(expr|star_expr)	(','	(expr|star_expr))*	[

testlist:	test	(','	test)*	[',']

dictorsetmaker:	((test	':'	test	(comp_for	|	(','	test

																		(test	(comp_for	|	(','	test)*	[','

classdef:	'class'	NAME	['('	[arglist]	')']	':'	suite

arglist:	(argument	',')*	(argument	[',']

																									|'*'	test	(','	argument)*	[

																									|'**'	test)

#	The	reason	that	keywords	are	test	nodes	instead	of	NAME	is	that	using	NAME

#	results	in	an	ambiguity.	ast.c	makes	sure	it's	a	NAME.

argument:	test	[comp_for]	|	test	'='	test		#	Really	[keyword	'=']	test

comp_iter:	comp_for	|	comp_if

comp_for:	'for'	exprlist	'in'	or_test	[comp_iter]

comp_if:	'if'	test_nocond	[comp_iter]

#	not	used	in	grammar,	but	may	appear	in	"node"	passed	from	Parser	to	Compiler

encoding_decl:	NAME

yield_expr:	'yield'	[yield_arg]

yield_arg:	'from'	test	|	testlist

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Language

Reference	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

1.	Introduction
The	“Python	library”	contains	several	different	kinds	of	components.

It	 contains	 data	 types	 that	would	 normally	 be	 considered	 part	 of	 the
“core”	of	a	language,	such	as	numbers	and	lists.	For	these	types,	the
Python	 language	 core	 defines	 the	 form	 of	 literals	 and	 places	 some
constraints	on	their	semantics,	but	does	not	fully	define	the	semantics.
(On	the	other	hand,	the	language	core	does	define	syntactic	properties
like	the	spelling	and	priorities	of	operators.)

The	 library	 also	 contains	built-in	 functions	and	exceptions	—	objects
that	can	be	used	by	all	Python	code	without	 the	need	of	an	import
statement.	Some	of	these	are	defined	by	the	core	language,	but	many
are	not	essential	for	the	core	semantics	and	are	only	described	here.

The	bulk	of	 the	 library,	 however,	 consists	of	 a	 collection	of	modules.
There	 are	 many	 ways	 to	 dissect	 this	 collection.	 Some	 modules	 are
written	in	C	and	built	in	to	the	Python	interpreter;	others	are	written	in
Python	and	imported	in	source	form.	Some	modules	provide	interfaces
that	 are	 highly	 specific	 to	 Python,	 like	 printing	 a	 stack	 trace;	 some
provide	 interfaces	 that	 are	 specific	 to	 particular	 operating	 systems,
such	as	access	to	specific	hardware;	others	provide	interfaces	that	are
specific	 to	a	particular	application	domain,	 like	 the	World	Wide	Web.
Some	modules	are	available	in	all	versions	and	ports	of	Python;	others
are	 only	 available	 when	 the	 underlying	 system	 supports	 or	 requires
them;	 yet	 others	 are	 available	 only	 when	 a	 particular	 configuration
option	 was	 chosen	 at	 the	 time	 when	 Python	 was	 compiled	 and
installed.

This	manual	 is	 organized	 “from	 the	 inside	 out:”	 it	 first	 describes	 the

built-in	 data	 types,	 then	 the	 built-in	 functions	 and	 exceptions,	 and
finally	 the	 modules,	 grouped	 in	 chapters	 of	 related	 modules.	 The
ordering	of	the	chapters	as	well	as	the	ordering	of	the	modules	within
each	chapter	is	roughly	from	most	relevant	to	least	important.

This	means	 that	 if	 you	 start	 reading	 this	manual	 from	 the	 start,	 and
skip	to	the	next	chapter	when	you	get	bored,	you	will	get	a	reasonable
overview	 of	 the	 available	 modules	 and	 application	 areas	 that	 are
supported	by	 the	Python	 library.	Of	course,	you	don’t	have	 to	 read	 it
like	a	novel	—	you	can	also	browse	 the	 table	of	contents	 (in	 front	of
the	manual),	or	look	for	a	specific	function,	module	or	term	in	the	index
(in	the	back).	And	finally,	if	you	enjoy	learning	about	random	subjects,
you	choose	a	random	page	number	(see	module	random)	and	read	a
section	or	two.	Regardless	of	the	order	in	which	you	read	the	sections
of	 this	manual,	 it	helps	to	start	with	chapter	Built-in	Functions,	as	 the
remainder	of	the	manual	assumes	familiarity	with	this	material.

Let	the	show	begin!

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

2.	Built-in	Functions
The	Python	interpreter	has	a	number	of	functions	and	types	built	into	it
that	are	always	available.	They	are	listed	here	in	alphabetical	order.

Built-in
Functions

abs() dict() help() min()

all() dir() hex() next()

any() divmod() id() object()

ascii() enumerate() input() oct()

bin() eval() int() open()

bool() exec() isinstance() ord()

bytearray() filter() issubclass() pow()

bytes() float() iter() print()

callable() format() len() property()

chr() frozenset() list() range()

classmethod() getattr() locals() repr()

compile() globals() map() reversed()

complex() hasattr() max() round()

delattr() hash() memoryview() set()

abs(x)
Return	 the	absolute	value	of	a	number.	The	argument	may	be	an
integer	 or	 a	 floating	 point	 number.	 If	 the	 argument	 is	 a	 complex
number,	its	magnitude	is	returned.

all(iterable)
Return	True	if	all	elements	of	the	iterable	are	true	(or	if	the	iterable
is	empty).	Equivalent	to:

def	all(iterable):

				for	element	in	iterable:

								if	not	element:

												return	False

				return	True

any(iterable)
Return	True	if	any	element	of	the	iterable	is	true.	If	the	iterable	is
empty,	return	False.	Equivalent	to:

def	any(iterable):

				for	element	in	iterable:

								if	element:

												return	True

				return	False

ascii(object)
As	repr(),	return	a	string	containing	a	printable	representation	of
an	 object,	 but	 escape	 the	 non-ASCII	 characters	 in	 the	 string
returned	by	repr()	using	\x,	\u	or	\U	escapes.	This	generates
a	string	similar	to	that	returned	by	repr()	in	Python	2.

bin(x)
Convert	an	integer	number	to	a	binary	string.	The	result	 is	a	valid
Python	expression.	If	x	is	not	a	Python	int	object,	it	has	to	define
an	__index__()	method	that	returns	an	integer.

bool([x])

Convert	 a	 value	 to	 a	 Boolean,	 using	 the	 standard	 truth	 testing
procedure.	If	x	 is	false	or	omitted,	this	returns	False;	otherwise	it
returns	 True.	 bool	 is	 also	 a	 class,	 which	 is	 a	 subclass	 of	 int
(see	Numeric	Types	—	int,	float,	complex).	Class	bool	cannot	be
subclassed	 further.	 Its	 only	 instances	 are	 False	 and	 True	 (see
Boolean	Values).

bytearray([source[,	encoding[,	errors]]])
Return	a	 new	array	 of	 bytes.	 The	 bytearray	 type	 is	 a	mutable
sequence	of	integers	in	the	range	0	<=	x	<	256.	It	has	most	of	the
usual	 methods	 of	 mutable	 sequences,	 described	 in	 Mutable
Sequence	Types,	 as	 well	 as	most	methods	 that	 the	 bytes	 type
has,	see	Bytes	and	Bytearray	Operations.

The	optional	source	parameter	can	be	used	to	initialize	the	array	in
a	few	different	ways:

If	it	is	a	string,	you	must	also	give	the	encoding	(and	optionally,
errors)	parameters;	bytearray()	then	converts	the	string	to
bytes	using	str.encode().
If	 it	 is	 an	 integer,	 the	 array	 will	 have	 that	 size	 and	 will	 be
initialized	with	null	bytes.
If	it	is	an	object	conforming	to	the	buffer	interface,	a	read-only
buffer	of	the	object	will	be	used	to	initialize	the	bytes	array.
If	it	is	an	iterable,	it	must	be	an	iterable	of	integers	in	the	range
0	<=	x	<	256,	which	are	used	as	the	initial	contents	of	the
array.

Without	an	argument,	an	array	of	size	0	is	created.

See	also	Binary	Sequence	Types	—	bytes,	bytearray,	memoryview
and	Bytearray	Objects.

bytes([source[,	encoding[,	errors]]])
Return	 a	 new	 “bytes”	 object,	which	 is	 an	 immutable	 sequence	of
integers	 in	 the	 range	 0	<=	x	<	 256.	 bytes	 is	 an	 immutable
version	 of	 bytearray	 –	 it	 has	 the	 same	 non-mutating	methods
and	the	same	indexing	and	slicing	behavior.

Accordingly,	 constructor	 arguments	 are	 interpreted	 as	 for
bytearray().

Bytes	 objects	 can	 also	 be	 created	 with	 literals,	 see	 String	 and
Bytes	literals.

See	also	Binary	Sequence	Types	—	bytes,	bytearray,	memoryview,
Bytes,	and	Bytes	and	Bytearray	Operations.

callable(object)
Return	True	if	the	object	argument	appears	callable,	False	if	not.
If	this	returns	true,	it	is	still	possible	that	a	call	fails,	but	if	it	is	false,
calling	 object	 will	 never	 succeed.	 Note	 that	 classes	 are	 callable
(calling	 a	 class	 returns	 a	 new	 instance);	 instances	 are	 callable	 if
their	class	has	a	__call__()	method.

New	in	version	3.2:	This	 function	was	 first	 removed	 in	Python	3.0
and	then	brought	back	in	Python	3.2.

chr(i)
Return	 the	 string	 representing	 a	 character	 whose	 Unicode
codepoint	is	the	integer	i.	For	example,	chr(97)	returns	the	string
'a'.	 This	 is	 the	 inverse	 of	 ord().	 The	 valid	 range	 for	 the
argument	 is	 from	 0	 through	 1,114,111	 (0x10FFFF	 in	 base	 16).
ValueError	will	be	raised	if	i	is	outside	that	range.

classmethod(function)
Return	a	class	method	for	function.

A	 class	method	 receives	 the	 class	 as	 implicit	 first	 argument,	 just
like	an	 instance	method	receives	 the	 instance.	To	declare	a	class
method,	use	this	idiom:

class	C:

				@classmethod

				def	f(cls,	arg1,	arg2,	...):	...

The	 @classmethod	 form	 is	 a	 function	 decorator	 –	 see	 the
description	of	function	definitions	in	Function	definitions	for	details.

It	 can	 be	 called	 either	 on	 the	 class	 (such	 as	 C.f())	 or	 on	 an
instance	(such	as	C().f()).	The	instance	is	ignored	except	for	its
class.	 If	 a	 class	method	 is	 called	 for	a	derived	class,	 the	derived
class	object	is	passed	as	the	implied	first	argument.

Class	methods	 are	 different	 than	 C++	 or	 Java	 static	 methods.	 If
you	want	those,	see	staticmethod()	in	this	section.

For	more	information	on	class	methods,	consult	the	documentation
on	the	standard	type	hierarchy	in	The	standard	type	hierarchy.

compile(source,	filename,	mode,	flags=0,	dont_inherit=False,
optimize=-1)

Compile	the	source	into	a	code	or	AST	object.	Code	objects	can	be
executed	 by	 exec()	 or	 eval().	source	 can	 either	 be	 a	 normal
string,	 a	 byte	 string,	 or	 an	AST	 object.	 Refer	 to	 the	 ast	module
documentation	for	information	on	how	to	work	with	AST	objects.

The	 filename	 argument	 should	 give	 the	 file	 from	which	 the	 code

was	read;	pass	some	recognizable	value	if	it	wasn’t	read	from	a	file
('<string>'	is	commonly	used).

The	mode	argument	specifies	what	kind	of	code	must	be	compiled;
it	can	be	'exec'	if	source	consists	of	a	sequence	of	statements,
'eval'	 if	 it	 consists	 of	 a	 single	 expression,	 or	 'single'	 if	 it
consists	 of	 a	 single	 interactive	 statement	 (in	 the	 latter	 case,
expression	statements	that	evaluate	to	something	other	than	None
will	be	printed).

The	optional	arguments	flags	and	dont_inherit	control	which	future
statements	 (see	 PEP	 236)	 affect	 the	 compilation	 of	 source.	 If
neither	 is	 present	 (or	 both	 are	 zero)	 the	 code	 is	 compiled	 with
those	future	statements	that	are	in	effect	in	the	code	that	is	calling
compile.	If	the	flags	argument	is	given	and	dont_inherit	is	not	(or	is
zero)	 then	 the	 future	 statements	 specified	 by	 the	 flags	 argument
are	 used	 in	 addition	 to	 those	 that	 would	 be	 used	 anyway.	 If
dont_inherit	is	a	non-zero	integer	then	the	flags	argument	is	it	–	the
future	statements	in	effect	around	the	call	to	compile	are	ignored.

Future	statements	are	specified	by	bits	which	can	be	bitwise	ORed
together	 to	 specify	 multiple	 statements.	 The	 bitfield	 required	 to
specify	 a	 given	 feature	 can	 be	 found	 as	 the	 compiler_flag
attribute	on	the	_Feature	instance	in	the	__future__	module.

The	 argument	 optimize	 specifies	 the	 optimization	 level	 of	 the
compiler;	 the	default	 value	of	-1	 selects	 the	optimization	 level	of
the	 interpreter	 as	 given	 by	 -O	 options.	 Explicit	 levels	 are	 0	 (no
optimization;	 __debug__	 is	 true),	 1	 (asserts	 are	 removed,
__debug__	is	false)	or	2	(docstrings	are	removed	too).

This	 function	 raises	 SyntaxError	 if	 the	 compiled	 source	 is

http://www.python.org/dev/peps/pep-0236

invalid,	and	TypeError	if	the	source	contains	null	bytes.

Note: 	When	compiling	a	string	with	multi-line	code	in	'single'
or	 'eval'	 mode,	 input	 must	 be	 terminated	 by	 at	 least	 one
newline	character.	This	is	to	facilitate	detection	of	incomplete	and
complete	statements	in	the	code	module.

Changed	 in	 version	 3.2:	 Allowed	 use	 of	 Windows	 and	 Mac
newlines.	Also	 input	 in	 'exec'	mode	does	not	 have	 to	 end	 in	 a
newline	anymore.	Added	the	optimize	parameter.

complex([real[,	imag]])
Create	a	complex	number	with	the	value	real	+	imag*j	or	convert	a
string	or	 number	 to	a	 complex	number.	 If	 the	 first	 parameter	 is	 a
string,	 it	will	be	interpreted	as	a	complex	number	and	the	function
must	be	called	without	a	second	parameter.	The	second	parameter
can	 never	 be	 a	 string.	 Each	 argument	may	 be	 any	 numeric	 type
(including	complex).	 If	 imag	 is	omitted,	 it	defaults	 to	zero	and	 the
function	serves	as	a	numeric	conversion	 function	 like	int()	 and
float().	If	both	arguments	are	omitted,	returns	0j.

Note: 	When	converting	from	a	string,	the	string	must	not	contain
whitespace	 around	 the	 central	 +	 or	 -	 operator.	 For	 example,
complex('1+2j')	 is	 fine,	 but	 complex('1	 +	 2j')	 raises
ValueError.

The	 complex	 type	 is	 described	 in	 Numeric	 Types	 —	 int,	 float,
complex.

delattr(object,	name)
This	is	a	relative	of	setattr().	The	arguments	are	an	object	and
a	 string.	 The	 string	 must	 be	 the	 name	 of	 one	 of	 the	 object’s

attributes.	 The	 function	 deletes	 the	 named	 attribute,	 provided	 the
object	 allows	 it.	 For	 example,	 delattr(x,	 'foobar')	 is
equivalent	to	del	x.foobar.

dict(**kwarg)
dict(mapping,	**kwarg)
dict(iterable,	**kwarg)

Create	a	new	dictionary.	The	dict	 object	 is	 the	dictionary	 class.
See	dict	and	Mapping	Types	—	dict	for	documentation	about	this
class.

For	 other	 containers	 see	 the	 built-in	 list,	 set,	 and	 tuple
classes,	as	well	as	the	collections	module.

dir([object])
Without	 arguments,	 return	 the	 list	 of	 names	 in	 the	 current	 local
scope.	With	an	argument,	attempt	to	return	a	list	of	valid	attributes
for	that	object.

If	the	object	has	a	method	named	__dir__(),	this	method	will	be
called	and	must	return	the	list	of	attributes.	This	allows	objects	that
implement	a	custom	__getattr__()	or	__getattribute__()
function	to	customize	the	way	dir()	reports	their	attributes.

If	 the	 object	 does	 not	 provide	 __dir__(),	 the	 function	 tries	 its
best	to	gather	information	from	the	object’s	__dict__	attribute,	 if
defined,	 and	 from	 its	 type	 object.	 The	 resulting	 list	 is	 not
necessarily	complete,	and	may	be	inaccurate	when	the	object	has
a	custom	__getattr__().

The	 default	 dir()	 mechanism	 behaves	 differently	 with	 different
types	of	objects,	as	it	attempts	to	produce	the	most	relevant,	rather

than	complete,	information:

If	the	object	is	a	module	object,	the	list	contains	the	names	of
the	module’s	attributes.
If	 the	 object	 is	 a	 type	 or	 class	 object,	 the	 list	 contains	 the
names	of	 its	attributes,	and	 recursively	of	 the	attributes	of	 its
bases.
Otherwise,	 the	 list	contains	the	object’s	attributes’	names,	the
names	of	its	class’s	attributes,	and	recursively	of	the	attributes
of	its	class’s	base	classes.

The	resulting	list	is	sorted	alphabetically.	For	example:

>>>	import	struct

>>>	dir()			#	show	the	names	in	the	module	namespace

['__builtins__',	'__name__',	'struct']

>>>	dir(struct)			#	show	the	names	in	the	struct	module	

['Struct',	'__all__',	'__builtins__',	'__cached__',	'__doc__',	'__file__',

	'__initializing__',	'__loader__',	'__name__',	'__package__',

	'_clearcache',	'calcsize',	'error',	'pack',	'pack_into',

	'unpack',	'unpack_from']

>>>	class	Shape:

...					def	__dir__(self):

...									return	['area',	'perimeter',	'location'

>>>	s	=	Shape()

>>>	dir(s)

['area',	'location',	'perimeter']

Note: 	 Because	 dir()	 is	 supplied	 primarily	 as	 a	 convenience
for	use	at	an	 interactive	prompt,	 it	 tries	 to	 supply	an	 interesting
set	 of	 names	 more	 than	 it	 tries	 to	 supply	 a	 rigorously	 or
consistently	defined	set	of	names,	and	its	detailed	behavior	may
change	 across	 releases.	 For	 example,	metaclass	 attributes	 are
not	in	the	result	list	when	the	argument	is	a	class.

divmod(a,	b)
Take	two	(non	complex)	numbers	as	arguments	and	return	a	pair	of
numbers	 consisting	 of	 their	 quotient	 and	 remainder	 when	 using
integer	 division.	 With	 mixed	 operand	 types,	 the	 rules	 for	 binary
arithmetic	operators	apply.	For	 integers,	 the	 result	 is	 the	same	as
(a	//	b,	a	%	b).	For	floating	point	numbers	the	result	 is	(q,
a	%	b),	where	q	 is	usually	math.floor(a	/	b)	but	may	be	1
less	than	that.	In	any	case	q	*	b	+	a	%	b	is	very	close	to	a,	if	a
%	b	 is	non-zero	 it	has	 the	same	sign	as	b,	and	0	<=	abs(a	%
b)	<	abs(b).

enumerate(iterable,	start=0)
Return	 an	 enumerate	 object.	 iterable	 must	 be	 a	 sequence,	 an
iterator,	 or	 some	 other	 object	 which	 supports	 iteration.	 The
__next__()	 method	 of	 the	 iterator	 returned	 by	 enumerate()
returns	a	 tuple	containing	a	count	 (from	start	which	defaults	 to	0)
and	the	values	obtained	from	iterating	over	iterable.

>>>	seasons	=	['Spring',	'Summer',	'Fall',	'Winter'

>>>	list(enumerate(seasons))

[(0,	'Spring'),	(1,	'Summer'),	(2,	'Fall'),	(3,	'Winter')]

>>>	list(enumerate(seasons,	start=1))

[(1,	'Spring'),	(2,	'Summer'),	(3,	'Fall'),	(4,	'Winter')]

Equivalent	to:

def	enumerate(sequence,	start=0):

				n	=	start

				for	elem	in	sequence:

								yield	n,	elem

								n	+=	1

eval(expression,	globals=None,	locals=None)
The	 arguments	 are	 a	 string	 and	 optional	 globals	 and	 locals.	 If
provided,	globals	must	 be	 a	 dictionary.	 If	 provided,	 locals	 can	 be
any	mapping	object.

The	 expression	 argument	 is	 parsed	 and	 evaluated	 as	 a	 Python
expression	(technically	speaking,	a	condition	list)	using	the	globals
and	 locals	 dictionaries	 as	 global	 and	 local	 namespace.	 If	 the
globals	 dictionary	 is	 present	 and	 lacks	 ‘__builtins__’,	 the	 current
globals	 are	 copied	 into	globals	 before	expression	 is	 parsed.	 This
means	 that	 expression	 normally	 has	 full	 access	 to	 the	 standard
builtins	module	and	restricted	environments	are	propagated.	If
the	locals	dictionary	is	omitted	it	defaults	to	the	globals	dictionary.	If
both	 dictionaries	 are	 omitted,	 the	 expression	 is	 executed	 in	 the
environment	where	eval()	is	called.	The	return	value	is	the	result
of	 the	 evaluated	 expression.	 Syntax	 errors	 are	 reported	 as
exceptions.	Example:

>>>	x	=	1

>>>	eval('x+1')

2

This	 function	 can	 also	 be	 used	 to	 execute	 arbitrary	 code	 objects
(such	as	those	created	by	compile()).	In	 this	case	pass	a	code
object	instead	of	a	string.	If	the	code	object	has	been	compiled	with
'exec'	 as	 the	mode	 argument,	 eval()‘s	 return	 value	 will	 be
None.

Hints:	 dynamic	 execution	 of	 statements	 is	 supported	 by	 the
exec()	 function.	 The	 globals()	 and	 locals()	 functions
returns	 the	current	global	and	 local	dictionary,	 respectively,	which
may	be	useful	to	pass	around	for	use	by	eval()	or	exec().

See	ast.literal_eval()	for	a	function	that	can	safely	evaluate
strings	with	expressions	containing	only	literals.

exec(object[,	globals[,	locals]])
This	 function	 supports	 dynamic	 execution	 of	 Python	 code.	object
must	be	either	a	string	or	a	code	object.	If	it	is	a	string,	the	string	is
parsed	 as	 a	 suite	 of	 Python	 statements	 which	 is	 then	 executed
(unless	a	syntax	error	occurs).	[1]	If	it	is	a	code	object,	it	is	simply
executed.	In	all	cases,	the	code	that’s	executed	is	expected	to	be
valid	 as	 file	 input	 (see	 the	 section	 “File	 input”	 in	 the	 Reference
Manual).	Be	aware	 that	 the	return	and	yield	 statements	may
not	be	used	outside	of	 function	definitions	even	within	the	context
of	code	passed	to	the	exec()	function.	The	return	value	is	None.

In	all	cases,	if	the	optional	parts	are	omitted,	the	code	is	executed
in	 the	 current	 scope.	 If	 only	 globals	 is	 provided,	 it	 must	 be	 a
dictionary,	 which	 will	 be	 used	 for	 both	 the	 global	 and	 the	 local
variables.	 If	 globals	 and	 locals	 are	 given,	 they	 are	 used	 for	 the
global	and	 local	 variables,	 respectively.	 If	provided,	 locals	 can	 be
any	mapping	object.	Remember	 that	at	module	 level,	globals	and
locals	are	the	same	dictionary.	If	exec	gets	two	separate	objects	as
globals	 and	 locals,	 the	 code	 will	 be	 executed	 as	 if	 it	 were
embedded	in	a	class	definition.

If	 the	 globals	 dictionary	 does	 not	 contain	 a	 value	 for	 the	 key
__builtins__,	a	reference	to	the	dictionary	of	the	built-in	module
builtins	 is	 inserted	 under	 that	 key.	 That	 way	 you	 can	 control
what	builtins	are	available	 to	 the	executed	code	by	 inserting	your
own	 __builtins__	 dictionary	 into	 globals	 before	 passing	 it	 to
exec().

Note: 	The	built-in	 functions	globals()	and	locals()	 return

the	current	global	and	local	dictionary,	respectively,	which	may	be
useful	to	pass	around	for	use	as	the	second	and	third	argument
to	exec().

Note: 	 The	 default	 locals	 act	 as	 described	 for	 function
locals()	 below:	 modifications	 to	 the	 default	 locals	 dictionary
should	not	be	attempted.	Pass	an	explicit	 locals	dictionary	if	you
need	to	see	effects	of	 the	code	on	 locals	after	 function	exec()
returns.

filter(function,	iterable)
Construct	 an	 iterator	 from	 those	 elements	 of	 iterable	 for	 which
function	 returns	 true.	 iterable	 may	 be	 either	 a	 sequence,	 a
container	 which	 supports	 iteration,	 or	 an	 iterator.	 If	 function	 is
None,	 the	 identity	 function	 is	 assumed,	 that	 is,	 all	 elements	 of
iterable	that	are	false	are	removed.

Note	 that	 filter(function,	iterable)	 is	 equivalent	 to	 the
generator	 expression	 (item	 for	 item	 in	 iterable	 if

function(item))	if	function	is	not	None	and	(item	for	item
in	iterable	if	item)	if	function	is	None.

See	 itertools.filterfalse()	 for	 the	 complementary
function	that	returns	elements	of	iterable	for	which	function	returns
false.

float([x])
Convert	a	string	or	a	number	to	floating	point.

If	 the	 argument	 is	 a	 string,	 it	 should	 contain	 a	 decimal	 number,
optionally	 preceded	 by	 a	 sign,	 and	 optionally	 embedded	 in
whitespace.	The	optional	sign	may	be	'+'	or	'-';	a	'+'	sign	has

no	 effect	 on	 the	 value	 produced.	 The	 argument	 may	 also	 be	 a
string	representing	a	NaN	(not-a-number),	or	a	positive	or	negative
infinity.	 More	 precisely,	 the	 input	 must	 conform	 to	 the	 following
grammar	 after	 leading	 and	 trailing	 whitespace	 characters	 are
removed:

sign											::=		"+"	|	"-"

infinity							::=		"Infinity"	|	"inf"

nan												::=		"nan"

numeric_value		::=		floatnumber	|	infinity	|	nan

numeric_string	::=		[sign]	numeric_value

Here	 floatnumber	 is	 the	 form	 of	 a	 Python	 floating-point	 literal,
described	 in	Floating	point	 literals.	Case	 is	 not	 significant,	 so,	 for
example,	 “inf”,	 “Inf”,	 “INFINITY”	 and	 “iNfINity”	 are	 all	 acceptable
spellings	for	positive	infinity.

Otherwise,	if	the	argument	is	an	integer	or	a	floating	point	number,
a	 floating	 point	 number	 with	 the	 same	 value	 (within	 Python’s
floating	point	precision)	 is	returned.	 If	 the	argument	 is	outside	 the
range	of	a	Python	float,	an	OverflowError	will	be	raised.

For	 a	 general	 Python	 object	 x,	 float(x)	 delegates	 to
x.__float__().

If	no	argument	is	given,	0.0	is	returned.

Examples:

>>>	float('+1.23')

1.23

>>>	float('			-12345\n')

-12345.0

>>>	float('1e-003')

0.001

>>>	float('+1E6')

1000000.0

>>>	float('-Infinity')

-inf

The	float	type	is	described	in	Numeric	Types	—	int,	float,	complex.

format(value[,	format_spec])
Convert	 a	value	 to	 a	 “formatted”	 representation,	 as	 controlled	 by
format_spec.	The	interpretation	of	format_spec	will	depend	on	the
type	of	the	value	argument,	however	there	is	a	standard	formatting
syntax	 that	 is	 used	 by	 most	 built-in	 types:	 Format	 Specification
Mini-Language.

The	default	format_spec	is	an	empty	string	which	usually	gives	the
same	effect	as	calling	str(value).

A	 call	 to	 format(value,	 format_spec)	 is	 translated	 to
type(value).__format__(format_spec)	 which	 bypasses
the	 instance	 dictionary	 when	 searching	 for	 the	 value’s
__format__()	method.	A	TypeError	exception	 is	 raised	 if	 the
method	 search	 reaches	 object	 and	 the	 format_spec	 is	 non-
empty,	 or	 if	 either	 the	 format_spec	 or	 the	 return	 value	 are	 not
strings.

Changed	 in	 version	 3.4:
object().__format__(format_spec)	 raises	 TypeError	 if
format_spec	is	not	an	empty	string.

frozenset([iterable])
Return	 a	 new	 frozenset	 object,	 optionally	 with	 elements	 taken
from	iterable.	frozenset	is	a	built-in	class.	See	frozenset	and

Set	Types	—	set,	frozenset	for	documentation	about	this	class.

For	other	containers	see	the	built-in	set,	list,	tuple,	and	dict
classes,	as	well	as	the	collections	module.

getattr(object,	name[,	default])
Return	the	value	of	the	named	attribute	of	object.	name	must	be	a
string.	If	the	string	is	the	name	of	one	of	the	object’s	attributes,	the
result	 is	 the	 value	 of	 that	 attribute.	 For	 example,	 getattr(x,
'foobar')	 is	 equivalent	 to	 x.foobar.	 If	 the	 named	 attribute
does	 not	 exist,	 default	 is	 returned	 if	 provided,	 otherwise
AttributeError	is	raised.

globals()
Return	 a	 dictionary	 representing	 the	 current	 global	 symbol	 table.
This	 is	 always	 the	 dictionary	 of	 the	 current	 module	 (inside	 a
function	or	method,	 this	 is	 the	module	where	 it	 is	defined,	not	 the
module	from	which	it	is	called).

hasattr(object,	name)
The	arguments	are	an	object	and	a	string.	The	result	is	True	if	the
string	 is	 the	name	of	 one	of	 the	object’s	 attributes,	 False	 if	 not.
(This	 is	 implemented	 by	 calling	 getattr(object,	name)	 and
seeing	whether	it	raises	an	AttributeError	or	not.)

hash(object)

Return	the	hash	value	of	the	object	(if	it	has	one).	Hash	values
are	integers.	They	are	used	to	quickly	compare	dictionary	keys
during	a	dictionary	lookup.	Numeric	values	that	compare	equal
have	the	same	hash	value	(even	if	they	are	of	different	types,
as	is	the	case	for	1	and	1.0).

Note: 	For	object’s	with	custom	__hash__()	methods,	note	that
hash()	truncates	the	return	value	based	on	the	bit	width	of	the
host	machine.	See	__hash__()	for	details.

help([object])
Invoke	 the	 built-in	 help	 system.	 (This	 function	 is	 intended	 for
interactive	 use.)	 If	 no	 argument	 is	 given,	 the	 interactive	 help
system	starts	on	the	interpreter	console.	If	the	argument	is	a	string,
then	 the	 string	 is	 looked	 up	 as	 the	 name	 of	 a	 module,	 function,
class,	method,	keyword,	or	documentation	 topic,	and	a	help	page
is	 printed	 on	 the	 console.	 If	 the	 argument	 is	 any	 other	 kind	 of
object,	a	help	page	on	the	object	is	generated.

This	 function	 is	 added	 to	 the	 built-in	 namespace	 by	 the	 site
module.

Changed	 in	version	3.4:	Changes	 to	pydoc	and	inspect	mean
that	 the	 reported	 signatures	 for	 callables	 are	 now	 more
comprehensive	and	consistent.

hex(x)
Convert	 an	 integer	 number	 to	 a	 lowercase	 hexadecimal	 string
prefixed	with	“0x”,	for	example:

>>>	hex(255)

'0xff'

>>>	hex(-42)

'-0x2a'

If	 x	 is	 not	 a	 Python	 int	 object,	 it	 has	 to	 define	 an	 __index__()
method	that	returns	an	integer.

See	also	int()	 for	converting	a	hexadecimal	string	to	an	 integer
using	a	base	of	16.

Note: 	To	obtain	a	hexadecimal	string	representation	for	a	float,
use	the	float.hex()	method.

id(object)
Return	 the	 “identity”	 of	 an	 object.	 This	 is	 an	 integer	 which	 is
guaranteed	 to	 be	 unique	 and	 constant	 for	 this	 object	 during	 its
lifetime.	Two	objects	with	non-overlapping	 lifetimes	may	have	 the
same	id()	value.

CPython	 implementation	 detail:	 This	 is	 the	 address	 of	 the
object	in	memory.

input([prompt])
If	 the	prompt	 argument	 is	present,	 it	 is	written	 to	 standard	output
without	a	trailing	newline.	The	function	then	reads	a	line	from	input,
converts	it	to	a	string	(stripping	a	trailing	newline),	and	returns	that.
When	EOF	is	read,	EOFError	is	raised.	Example:

>>>	s	=	input('-->	')		

-->	Monty	Python's	Flying	Circus

>>>	s		

"Monty	Python's	Flying	Circus"

If	the	readline	module	was	loaded,	then	input()	will	use	 it	 to
provide	elaborate	line	editing	and	history	features.

int(x=0)
int(x,	base=10)

Convert	 a	 number	 or	 string	 x	 to	 an	 integer,	 or	 return	 0	 if	 no

arguments	are	given.	 If	x	 is	a	number,	 return	x.__int__().	For
floating	point	numbers,	this	truncates	towards	zero.

If	x	 is	 not	 a	 number	 or	 if	base	 is	 given,	 then	x	must	 be	 a	 string,
bytes,	 or	 bytearray	 instance	 representing	 an	 integer	 literal	 in
radix	base.	Optionally,	 the	 literal	can	be	preceded	by	+	or	-	 (with
no	 space	 in	 between)	 and	 surrounded	 by	 whitespace.	 A	 base-n
literal	consists	of	the	digits	0	to	n-1,	with	a	to	z	(or	A	to	Z)	having
values	10	to	35.	The	default	base	is	10.	The	allowed	values	are	0
and	 2-36.	 Base-2,	 -8,	 and	 -16	 literals	 can	 be	 optionally	 prefixed
with	0b/0B,	0o/0O,	or	0x/0X,	as	with	integer	literals	in	code.	Base
0	means	 to	 interpret	 exactly	 as	 a	 code	 literal,	 so	 that	 the	 actual
base	is	2,	8,	10,	or	16,	and	so	that	int('010',	0)	 is	not	legal,
while	int('010')	is,	as	well	as	int('010',	8).

The	 integer	 type	 is	 described	 in	 Numeric	 Types	 —	 int,	 float,
complex.

Changed	in	version	3.4:	If	base	 is	not	an	instance	of	int	and	the
base	 object	 has	 a	 base.__index__	 method,	 that	 method	 is
called	 to	 obtain	 an	 integer	 for	 the	 base.	 Previous	 versions	 used
base.__int__	instead	of	base.__index__.

isinstance(object,	classinfo)
Return	 true	 if	 the	object	 argument	 is	 an	 instance	of	 the	classinfo
argument,	 or	 of	 a	 (direct,	 indirect	 or	 virtual)	 subclass	 thereof.	 If
object	is	not	an	object	of	the	given	type,	the	function	always	returns
false.	 If	classinfo	 is	not	a	class	 (type	object),	 it	may	be	a	 tuple	of
type	 objects,	 or	may	 recursively	 contain	 other	 such	 tuples	 (other
sequence	types	are	not	accepted).	If	classinfo	is	not	a	type	or	tuple
of	types	and	such	tuples,	a	TypeError	exception	is	raised.

issubclass(class,	classinfo)
Return	 true	 if	 class	 is	 a	 subclass	 (direct,	 indirect	 or	 virtual)	 of
classinfo.	A	class	 is	considered	a	subclass	of	 itself.	classinfo	may
be	a	 tuple	of	class	objects,	 in	which	case	every	entry	 in	classinfo
will	 be	 checked.	 In	 any	 other	 case,	 a	 TypeError	 exception	 is
raised.

iter(object[,	sentinel])
Return	 an	 iterator	 object.	 The	 first	 argument	 is	 interpreted	 very
differently	 depending	 on	 the	 presence	 of	 the	 second	 argument.
Without	 a	 second	 argument,	 object	 must	 be	 a	 collection	 object
which	supports	the	iteration	protocol	(the	__iter__()	method),	or
it	 must	 support	 the	 sequence	 protocol	 (the	 __getitem__()
method	with	integer	arguments	starting	at	0).	If	it	does	not	support
either	 of	 those	 protocols,	 TypeError	 is	 raised.	 If	 the	 second
argument,	sentinel,	is	given,	then	object	must	be	a	callable	object.
The	iterator	created	in	this	case	will	call	object	with	no	arguments
for	 each	 call	 to	 its	 __next__()	method;	 if	 the	 value	 returned	 is
equal	 to	 sentinel,	 StopIteration	 will	 be	 raised,	 otherwise	 the
value	will	be	returned.

See	also	Iterator	Types.

One	 useful	 application	 of	 the	 second	 form	 of	 iter()	 is	 to	 read
lines	of	a	file	until	a	certain	line	is	reached.	The	following	example
reads	a	file	until	the	readline()	method	returns	an	empty	string:

with	open('mydata.txt')	as	fp:

				for	line	in	iter(fp.readline,	''):

								process_line(line)

len(s)

Return	the	length	(the	number	of	items)	of	an	object.	The	argument
may	be	a	sequence	(string,	tuple	or	list)	or	a	mapping	(dictionary).

list([iterable])
Rather	than	being	a	function,	list	is	actually	a	mutable	sequence
type,	 as	 documented	 in	Lists	 and	Sequence	 Types	—	 list,	 tuple,
range.

locals()
Update	 and	 return	 a	 dictionary	 representing	 the	 current	 local
symbol	table.	Free	variables	are	returned	by	locals()	when	it	is
called	in	function	blocks,	but	not	in	class	blocks.

Note: 	 The	 contents	 of	 this	 dictionary	 should	 not	 be	 modified;
changes	 may	 not	 affect	 the	 values	 of	 local	 and	 free	 variables
used	by	the	interpreter.

map(function,	iterable,	...)
Return	 an	 iterator	 that	 applies	 function	 to	 every	 item	 of	 iterable,
yielding	 the	 results.	 If	 additional	 iterable	 arguments	 are	 passed,
function	must	take	that	many	arguments	and	is	applied	to	the	items
from	 all	 iterables	 in	 parallel.	 With	 multiple	 iterables,	 the	 iterator
stops	when	the	shortest	iterable	is	exhausted.	For	cases	where	the
function	 inputs	 are	 already	 arranged	 into	 argument	 tuples,	 see
itertools.starmap().

max(iterable,	*[,	default,	key])
max(arg1,	arg2,	*args[,	key])

Return	the	largest	item	in	an	iterable	or	the	largest	of	two	or	more
arguments.

If	one	positional	argument	is	provided,	it	should	be	an	iterable.	The
largest	 item	 in	 the	 iterable	 is	 returned.	 If	 two	 or	 more	 positional
arguments	are	provided,	the	smallest	of	the	positional	arguments	is
returned.

There	are	two	optional	keyword-only	arguments.	The	key	argument
specifies	 a	 one-argument	 ordering	 function	 like	 that	 used	 for
list.sort().	The	default	argument	specifies	an	object	to	return
if	the	provided	iterable	is	empty.	If	the	iterable	is	empty	and	default
is	not	provided,	a	ValueError	is	raised.

If	 multiple	 items	 are	 maximal,	 the	 function	 returns	 the	 first	 one
encountered.	This	 is	consistent	with	other	sort-stability	preserving
tools	 such	 as	 sorted(iterable,	 key=keyfunc,

reverse=True)[0]	 and	 heapq.nlargest(1,	 iterable,

key=keyfunc).

New	in	version	3.4:	The	default	keyword-only	argument.

memoryview(obj)
Return	a	 “memory	 view”	object	 created	 from	 the	given	argument.
See	Memory	Views	for	more	information.

min(iterable,	*[,	default,	key])
min(arg1,	arg2,	*args[,	key])

Return	 the	 smallest	 item	 in	 an	 iterable	 or	 the	 smallest	 of	 two	 or
more	arguments.

If	one	positional	argument	is	provided,	it	should	be	an	iterable.	The
smallest	 item	 in	 the	 iterable	 is	 returned.	 If	 two	or	more	positional
arguments	are	provided,	the	smallest	of	the	positional	arguments	is
returned.

There	are	two	optional	keyword-only	arguments.	The	key	argument
specifies	 a	 one-argument	 ordering	 function	 like	 that	 used	 for
list.sort().	The	default	argument	specifies	an	object	to	return
if	the	provided	iterable	is	empty.	If	the	iterable	is	empty	and	default
is	not	provided,	a	ValueError	is	raised.

If	 multiple	 items	 are	 minimal,	 the	 function	 returns	 the	 first	 one
encountered.	This	 is	consistent	with	other	sort-stability	preserving
tools	 such	 as	 sorted(iterable,	 key=keyfunc)[0]	 and
heapq.nsmallest(1,	iterable,	key=keyfunc).

New	in	version	3.4:	The	default	keyword-only	argument.

next(iterator[,	default])
Retrieve	the	next	item	from	the	iterator	by	calling	its	__next__()
method.	If	default	is	given,	it	is	returned	if	the	iterator	is	exhausted,
otherwise	StopIteration	is	raised.

object()
Return	a	new	featureless	object.	object	is	a	base	for	all	classes.
It	 has	 the	 methods	 that	 are	 common	 to	 all	 instances	 of	 Python
classes.	This	function	does	not	accept	any	arguments.

Note: 	object	does	not	have	a	__dict__,	so	you	can’t	assign
arbitrary	attributes	to	an	instance	of	the	object	class.

oct(x)
Convert	an	 integer	number	to	an	octal	string.	The	result	 is	a	valid
Python	expression.	If	x	is	not	a	Python	int	object,	it	has	to	define
an	__index__()	method	that	returns	an	integer.

open(file,	mode='r',	buffering=-1,	encoding=None,	errors=None,

newline=None,	closefd=True,	opener=None)
Open	file	and	return	a	corresponding	file	object.	If	the	file	cannot	be
opened,	an	OSError	is	raised.

file	is	either	a	string	or	bytes	object	giving	the	pathname	(absolute
or	relative	to	the	current	working	directory)	of	the	file	to	be	opened
or	 an	 integer	 file	 descriptor	 of	 the	 file	 to	 be	 wrapped.	 (If	 a	 file
descriptor	 is	 given,	 it	 is	 closed	 when	 the	 returned	 I/O	 object	 is
closed,	unless	closefd	is	set	to	False.)

mode	is	an	optional	string	that	specifies	the	mode	in	which	the	file
is	opened.	It	defaults	to	'r'	which	means	open	for	reading	in	text
mode.	Other	common	values	are	'w'	for	writing	(truncating	the	file
if	 it	 already	 exists),	 'x'	 for	 exclusive	 creation	 and	 'a'	 for
appending	 (which	 on	 some	 Unix	 systems,	 means	 that	 all	 writes
append	 to	 the	 end	 of	 the	 file	 regardless	 of	 the	 current	 seek
position).	 In	 text	mode,	 if	encoding	 is	 not	 specified	 the	 encoding
used	 is	 platform	 dependent:
locale.getpreferredencoding(False)	 is	 called	 to	 get	 the
current	 locale	 encoding.	 (For	 reading	 and	 writing	 raw	 bytes	 use
binary	 mode	 and	 leave	 encoding	 unspecified.)	 The	 available
modes	are:

Character Meaning

'r' open	for	reading	(default)

'w' open	for	writing,	truncating	the	file	first

'x'
open	for	exclusive	creation,	failing	if	the	file	already
exists

'a'
open	for	writing,	appending	to	the	end	of	the	file	if	it
exists

'b' binary	mode

't' text	mode	(default)

'+' open	a	disk	file	for	updating	(reading	and	writing)

'U' universal	newlines	mode	(deprecated)

The	default	mode	is	'r'	(open	for	reading	text,	synonym	of	'rt').
For	 binary	 read-write	 access,	 the	 mode	 'w+b'	 opens	 and
truncates	 the	 file	 to	 0	 bytes.	 'r+b'	 opens	 the	 file	 without
truncation.

As	 mentioned	 in	 the	 Overview,	 Python	 distinguishes	 between
binary	and	text	I/O.	Files	opened	in	binary	mode	(including	'b'	in
the	mode	argument)	return	contents	as	bytes	objects	without	any
decoding.	In	text	mode	(the	default,	or	when	't'	is	included	in	the
mode	argument),	the	contents	of	the	file	are	returned	as	str,	 the
bytes	 having	 been	 first	 decoded	 using	 a	 platform-dependent
encoding	or	using	the	specified	encoding	if	given.

Note: 	 Python	 doesn’t	 depend	 on	 the	 underlying	 operating
system’s	notion	of	text	files;	all	the	processing	is	done	by	Python
itself,	and	is	therefore	platform-independent.

buffering	 is	 an	 optional	 integer	 used	 to	 set	 the	 buffering	 policy.
Pass	0	 to	 switch	buffering	off	 (only	allowed	 in	binary	mode),	1	 to
select	line	buffering	(only	usable	in	text	mode),	and	an	integer	>	1
to	 indicate	the	size	in	bytes	of	a	fixed-size	chunk	buffer.	When	no
buffering	 argument	 is	 given,	 the	 default	 buffering	 policy	works	 as
follows:

Binary	 files	 are	 buffered	 in	 fixed-size	 chunks;	 the	 size	 of	 the
buffer	 is	 chosen	 using	 a	 heuristic	 trying	 to	 determine	 the
underlying	 device’s	 “block	 size”	 and	 falling	 back	 on
io.DEFAULT_BUFFER_SIZE.	 On	 many	 systems,	 the	 buffer

will	typically	be	4096	or	8192	bytes	long.
“Interactive”	text	files	(files	for	which	isatty()	returns	True)
use	 line	 buffering.	 Other	 text	 files	 use	 the	 policy	 described
above	for	binary	files.

encoding	 is	 the	name	of	 the	encoding	used	 to	decode	or	encode
the	 file.	 This	 should	 only	 be	 used	 in	 text	 mode.	 The	 default
encoding	 is	 platform	 dependent	 (whatever
locale.getpreferredencoding()	 returns),	but	any	encoding
supported	by	Python	can	be	used.	See	the	codecs	module	for	the
list	of	supported	encodings.

errors	 is	 an	 optional	 string	 that	 specifies	 how	 encoding	 and
decoding	 errors	 are	 to	 be	 handled–this	 cannot	 be	 used	 in	 binary
mode.	 A	 variety	 of	 standard	 error	 handlers	 are	 available,	 though
any	 error	 handling	 name	 that	 has	 been	 registered	 with
codecs.register_error()	 is	also	valid.	The	standard	names
are:

'strict'	 to	 raise	 a	 ValueError	 exception	 if	 there	 is	 an
encoding	error.	The	default	value	of	None	has	the	same	effect.
'ignore'	 ignores	errors.	Note	 that	 ignoring	encoding	errors
can	lead	to	data	loss.
'replace'	 causes	a	 replacement	marker	 (such	as	 '?')	 to
be	inserted	where	there	is	malformed	data.
'surrogateescape'	 will	 represent	 any	 incorrect	 bytes	 as
code	 points	 in	 the	 Unicode	 Private	 Use	 Area	 ranging	 from
U+DC80	 to	U+DCFF.	 These	 private	 code	 points	will	 then	 be
turned	 back	 into	 the	 same	 bytes	 when	 the
surrogateescape	 error	handler	 is	used	when	writing	data.
This	is	useful	for	processing	files	in	an	unknown	encoding.
'xmlcharrefreplace'	 is	only	supported	when	writing	to	a
file.	 Characters	 not	 supported	 by	 the	 encoding	 are	 replaced

with	the	appropriate	XML	character	reference	&#nnn;.
'backslashreplace'	 (also	 only	 supported	 when	 writing)
replaces	 unsupported	 characters	 with	 Python’s	 backslashed
escape	sequences.

newline	 controls	 how	 universal	 newlines	 mode	 works	 (it	 only
applies	 to	 text	 mode).	 It	 can	 be	 None,	 '',	 '\n',	 '\r',	 and
'\r\n'.	It	works	as	follows:

When	 reading	 input	 from	 the	 stream,	 if	 newline	 is	 None,
universal	newlines	mode	is	enabled.	Lines	in	the	input	can	end
in	 '\n',	 '\r',	 or	 '\r\n',	 and	 these	 are	 translated	 into
'\n'	before	being	returned	to	the	caller.	 If	 it	 is	'',	universal
newlines	mode	is	enabled,	but	line	endings	are	returned	to	the
caller	untranslated.	If	it	has	any	of	the	other	legal	values,	input
lines	 are	 only	 terminated	 by	 the	 given	 string,	 and	 the	 line
ending	is	returned	to	the	caller	untranslated.
When	 writing	 output	 to	 the	 stream,	 if	 newline	 is	 None,	 any
'\n'	 characters	written	 are	 translated	 to	 the	 system	 default
line	 separator,	 os.linesep.	 If	 newline	 is	 ''	 or	 '\n',	 no
translation	 takes	 place.	 If	 newline	 is	 any	 of	 the	 other	 legal
values,	 any	 '\n'	 characters	 written	 are	 translated	 to	 the
given	string.

If	closefd	is	False	and	a	file	descriptor	rather	than	a	filename	was
given,	the	underlying	file	descriptor	will	be	kept	open	when	the	file
is	closed.	If	a	filename	is	given	closefd	has	no	effect	and	must	be
True	(the	default).

A	custom	opener	can	be	used	by	passing	a	callable	as	opener.	The
underlying	 file	 descriptor	 for	 the	 file	 object	 is	 then	 obtained	 by
calling	 opener	 with	 (file,	 flags).	 opener	 must	 return	 an	 open	 file
descriptor	 (passing	 os.open	 as	 opener	 results	 in	 functionality
similar	to	passing	None).

The	newly	created	file	is	non-inheritable.

The	 following	 example	 uses	 the	 dir_fd	 parameter	 of	 the
os.open()	function	to	open	a	file	relative	to	a	given	directory:

>>>	import	os

>>>	dir_fd	=	os.open('somedir',	os.O_RDONLY)

>>>	def	opener(path,	flags):

...					return	os.open(path,	flags,	dir_fd=dir_fd)

...

>>>	with	open('spamspam.txt',	'w',	opener=opener)	

...					print('This	will	be	written	to	somedir/spamspam.txt'

...

>>>	os.close(dir_fd)		#	don't	leak	a	file	descriptor

The	type	of	file	object	returned	by	the	open()	function	depends	on
the	mode.	When	 open()	 is	 used	 to	 open	 a	 file	 in	 a	 text	 mode
('w',	 'r',	 'wt',	 'rt',	 etc.),	 it	 returns	 a	 subclass	 of
io.TextIOBase	 (specifically	io.TextIOWrapper).	When	 used
to	open	a	file	in	a	binary	mode	with	buffering,	the	returned	class	is
a	 subclass	 of	 io.BufferedIOBase.	 The	 exact	 class	 varies:	 in
read	 binary	 mode,	 it	 returns	 a	 io.BufferedReader;	 in	 write
binary	 and	 append	 binary	 modes,	 it	 returns	 a
io.BufferedWriter,	 and	 in	 read/write	 mode,	 it	 returns	 a
io.BufferedRandom.	 When	 buffering	 is	 disabled,	 the	 raw
stream,	a	subclass	of	io.RawIOBase,	io.FileIO,	is	returned.

See	 also	 the	 file	 handling	 modules,	 such	 as,	 fileinput,	 io
(where	 open()	 is	 declared),	 os,	 os.path,	 tempfile,	 and
shutil.

Changed	 in	 version	 3.3:	The	opener	 parameter	 was	 added.	 The

'x'	mode	was	added.	 IOError	 used	 to	be	 raised,	 it	 is	 now	an
alias	 of	 OSError.	 FileExistsError	 is	 now	 raised	 if	 the	 file
opened	in	exclusive	creation	mode	('x')	already	exists.

Changed	in	version	3.4:	The	file	is	now	non-inheritable.

Deprecated	since	version	3.4,	will	be	removed	in	version	4.0:	The
'U'	mode.

ord(c)
Given	 a	 string	 representing	 one	 Unicode	 character,	 return	 an
integer	representing	the	Unicode	code	point	of	 that	character.	For
example,	ord('a')	returns	the	integer	97	and	ord('\u2020')
returns	8224.	This	is	the	inverse	of	chr().

pow(x,	y[,	z])
Return	x	 to	 the	 power	y;	 if	z	 is	 present,	 return	x	 to	 the	 power	y,
modulo	z	(computed	more	efficiently	than	pow(x,	y)	%	z).	The
two-argument	 form	 pow(x,	y)	 is	 equivalent	 to	 using	 the	 power
operator:	x**y.

The	 arguments	 must	 have	 numeric	 types.	 With	 mixed	 operand
types,	the	coercion	rules	for	binary	arithmetic	operators	apply.	For
int	operands,	the	result	has	the	same	type	as	the	operands	(after
coercion)	unless	the	second	argument	is	negative;	in	that	case,	all
arguments	are	converted	to	float	and	a	float	result	is	delivered.	For
example,	 10**2	 returns	 100,	 but	 10**-2	 returns	 0.01.	 If	 the
second	argument	is	negative,	the	third	argument	must	be	omitted.
If	z	is	present,	x	and	y	must	be	of	integer	types,	and	y	must	be	non-
negative.

print(*objects,	sep='	',	end='\n',	file=sys.stdout,	flush=False)

Print	objects	 to	 the	stream	 file,	separated	by	sep	and	 followed	by
end.	 sep,	 end	 and	 file,	 if	 present,	 must	 be	 given	 as	 keyword
arguments.

All	 non-keyword	 arguments	 are	 converted	 to	 strings	 like	 str()
does	and	written	to	the	stream,	separated	by	sep	and	followed	by
end.	 Both	sep	 and	end	must	 be	 strings;	 they	 can	 also	 be	 None,
which	 means	 to	 use	 the	 default	 values.	 If	 no	 objects	 are	 given,
print()	will	just	write	end.

The	 file	 argument	 must	 be	 an	 object	 with	 a	 write(string)
method;	 if	 it	 is	 not	 present	 or	 None,	 sys.stdout	 will	 be	 used.
Whether	output	 is	buffered	 is	usually	determined	by	 file,	but	 if	 the
flush	keyword	argument	is	true,	the	stream	is	forcibly	flushed.

Changed	in	version	3.3:	Added	the	flush	keyword	argument.

property(fget=None,	fset=None,	fdel=None,	doc=None)
Return	a	property	attribute.

fget	 is	 a	 function	 for	 getting	 an	 attribute	 value,	 likewise	 fset	 is	 a
function	 for	 setting,	 and	 fdel	 a	 function	 for	 del’ing,	 an	 attribute.
Typical	use	is	to	define	a	managed	attribute	x:

class	C:

				def	__init__(self):

								self._x	=	None

				def	getx(self):

								return	self._x

				def	setx(self,	value):

								self._x	=	value

				def	delx(self):

								del	self._x

				x	=	property(getx,	setx,	delx,	"I'm	the	'x'	property."

If	 then	c	 is	 an	 instance	 of	C,	 c.x	 will	 invoke	 the	 getter,	 c.x	 =
value	will	invoke	the	setter	and	del	c.x	the	deleter.

If	 given,	 doc	 will	 be	 the	 docstring	 of	 the	 property	 attribute.
Otherwise,	the	property	will	copy	fget‘s	docstring	(if	 it	exists).	This
makes	 it	 possible	 to	 create	 read-only	 properties	 easily	 using
property()	as	a	decorator:

class	Parrot:

				def	__init__(self):

								self._voltage	=	100000

				@property

				def	voltage(self):

								"""Get	the	current	voltage."""

								return	self._voltage

turns	 the	 voltage()	 method	 into	 a	 “getter”	 for	 a	 read-only
attribute	with	the	same	name.

A	 property	 object	 has	 getter,	 setter,	 and	 deleter	methods
usable	 as	 decorators	 that	 create	 a	 copy	 of	 the	 property	 with	 the
corresponding	accessor	function	set	to	the	decorated	function.	This
is	best	explained	with	an	example:

class	C:

				def	__init__(self):

								self._x	=	None

				@property

				def	x(self):

								"""I'm	the	'x'	property."""

								return	self._x

				@x.setter

				def	x(self,	value):

								self._x	=	value

				@x.deleter

				def	x(self):

								del	self._x

This	code	is	exactly	equivalent	to	the	first	example.	Be	sure	to	give
the	additional	functions	the	same	name	as	the	original	property	(x
in	this	case.)

The	 returned	 property	 also	 has	 the	 attributes	 fget,	 fset,	 and
fdel	corresponding	to	the	constructor	arguments.

range(stop)
range(start,	stop[,	step])

Rather	 than	 being	 a	 function,	 range	 is	 actually	 an	 immutable
sequence	type,	as	documented	in	Ranges	and	Sequence	Types	—
list,	tuple,	range.

repr(object)
Return	a	string	containing	a	printable	 representation	of	an	object.
For	many	 types,	 this	 function	makes	an	attempt	 to	 return	a	string
that	 would	 yield	 an	 object	 with	 the	 same	 value	 when	 passed	 to
eval(),	otherwise	the	representation	is	a	string	enclosed	in	angle
brackets	that	contains	the	name	of	the	type	of	the	object	together
with	additional	information	often	including	the	name	and	address	of
the	 object.	 A	 class	 can	 control	 what	 this	 function	 returns	 for	 its
instances	by	defining	a	__repr__()	method.

reversed(seq)
Return	 a	 reverse	 iterator.	 seq	 must	 be	 an	 object	 which	 has	 a
__reversed__()	method	or	supports	the	sequence	protocol	(the
__len__()	 method	 and	 the	 __getitem__()	 method	 with
integer	arguments	starting	at	0).

round(number[,	ndigits])
Return	 the	 floating	 point	 value	 number	 rounded	 to	 ndigits	 digits
after	 the	 decimal	 point.	 If	 ndigits	 is	 omitted,	 it	 defaults	 to	 zero.
Delegates	to	number.__round__(ndigits).

For	 the	built-in	 types	supporting	round(),	values	are	 rounded	 to
the	 closest	 multiple	 of	 10	 to	 the	 power	 minus	 ndigits;	 if	 two
multiples	 are	 equally	 close,	 rounding	 is	 done	 toward	 the	 even
choice	 (so,	 for	 example,	 both	 round(0.5)	 and	 round(-0.5)
are	 0,	 and	 round(1.5)	 is	 2).	 The	 return	 value	 is	 an	 integer	 if
called	with	one	argument,	otherwise	of	the	same	type	as	number.

Note: 	The	behavior	of	round()	for	floats	can	be	surprising:	for
example,	 round(2.675,	 2)	 gives	 2.67	 instead	 of	 the
expected	 2.68.	 This	 is	 not	 a	 bug:	 it’s	 a	 result	 of	 the	 fact	 that
most	 decimal	 fractions	 can’t	 be	 represented	 exactly	 as	 a	 float.
See	 Floating	 Point	 Arithmetic:	 Issues	 and	 Limitations	 for	 more
information.

set([iterable])
Return	 a	 new	 set	 object,	 optionally	 with	 elements	 taken	 from
iterable.	 set	 is	 a	 built-in	 class.	 See	 set	 and	Set	 Types	—	 set,
frozenset	for	documentation	about	this	class.

For	 other	 containers	 see	 the	 built-in	 frozenset,	 list,	 tuple,

and	dict	classes,	as	well	as	the	collections	module.

setattr(object,	name,	value)
This	 is	 the	 counterpart	 of	 getattr().	 The	 arguments	 are	 an
object,	 a	 string	 and	 an	 arbitrary	 value.	 The	 string	 may	 name	 an
existing	attribute	or	a	new	attribute.	The	function	assigns	the	value
to	 the	 attribute,	 provided	 the	 object	 allows	 it.	 For	 example,
setattr(x,	 'foobar',	 123)	 is	 equivalent	 to	 x.foobar	 =
123.

slice(stop)
slice(start,	stop[,	step])

Return	 a	slice	 object	 representing	 the	 set	 of	 indices	 specified	 by
range(start,	 stop,	 step).	 The	 start	 and	 step	 arguments
default	 to	 None.	 Slice	 objects	 have	 read-only	 data	 attributes
start,	stop	and	step	which	merely	return	the	argument	values
(or	their	default).	They	have	no	other	explicit	functionality;	however
they	 are	 used	 by	 Numerical	 Python	 and	 other	 third	 party
extensions.	 Slice	 objects	 are	 also	 generated	 when	 extended
indexing	syntax	 is	used.	For	example:	a[start:stop:step]	or
a[start:stop,	 i].	 See	 itertools.islice()	 for	 an
alternate	version	that	returns	an	iterator.

sorted(iterable[,	key][,	reverse])
Return	a	new	sorted	list	from	the	items	in	iterable.

Has	 two	optional	 arguments	which	must	be	specified	as	 keyword
arguments.

key	specifies	a	 function	of	one	argument	 that	 is	used	 to	extract	a
comparison	 key	 from	 each	 list	 element:	 key=str.lower.	 The
default	value	is	None	(compare	the	elements	directly).

reverse	 is	a	boolean	value.	 If	 set	 to	 True,	 then	 the	 list	elements
are	sorted	as	if	each	comparison	were	reversed.

Use	 functools.cmp_to_key()	 to	 convert	 an	 old-style	 cmp
function	to	a	key	function.

For	 sorting	 examples	 and	 a	 brief	 sorting	 tutorial,	 see	 Sorting
HowTo.

staticmethod(function)
Return	a	static	method	for	function.

A	 static	 method	 does	 not	 receive	 an	 implicit	 first	 argument.	 To
declare	a	static	method,	use	this	idiom:

class	C:

				@staticmethod

				def	f(arg1,	arg2,	...):	...

The	 @staticmethod	 form	 is	 a	 function	 decorator	 –	 see	 the
description	of	function	definitions	in	Function	definitions	for	details.

It	 can	 be	 called	 either	 on	 the	 class	 (such	 as	 C.f())	 or	 on	 an
instance	(such	as	C().f()).	The	instance	is	ignored	except	for	its
class.

Static	methods	in	Python	are	similar	to	those	found	in	Java	or	C++.
Also	see	classmethod()	 for	a	variant	 that	 is	useful	 for	creating
alternate	class	constructors.

For	more	information	on	static	methods,	consult	the	documentation
on	the	standard	type	hierarchy	in	The	standard	type	hierarchy.

str(object='')

http://wiki.python.org/moin/HowTo/Sorting/

str(object=b'',	encoding='utf-8',	errors='strict')
Return	a	str	version	of	object.	See	str()	for	details.

str	 is	 the	 built-in	 string	 class.	 For	 general	 information	 about
strings,	see	Text	Sequence	Type	—	str.

sum(iterable[,	start])
Sums	start	and	the	items	of	an	iterable	from	left	to	right	and	returns
the	 total.	 start	 defaults	 to	 0.	 The	 iterable‘s	 items	 are	 normally
numbers,	and	the	start	value	is	not	allowed	to	be	a	string.

For	 some	 use	 cases,	 there	 are	 good	 alternatives	 to	 sum().	 The
preferred,	 fast	 way	 to	 concatenate	 a	 sequence	 of	 strings	 is	 by
calling	 ''.join(sequence).	 To	 add	 floating	 point	 values	 with
extended	precision,	see	math.fsum().	To	concatenate	a	series	of
iterables,	consider	using	itertools.chain().

super([type[,	object-or-type]])
Return	 a	 proxy	 object	 that	 delegates	method	 calls	 to	 a	 parent	 or
sibling	class	of	type.	This	is	useful	for	accessing	inherited	methods
that	have	been	overridden	in	a	class.	The	search	order	is	same	as
that	used	by	getattr()	except	that	the	type	itself	is	skipped.

The	 __mro__	 attribute	 of	 the	 type	 lists	 the	 method	 resolution
search	 order	 used	 by	 both	 getattr()	 and	 super().	 The
attribute	 is	 dynamic	 and	 can	 change	 whenever	 the	 inheritance
hierarchy	is	updated.

If	 the	 second	 argument	 is	 omitted,	 the	 super	 object	 returned	 is
unbound.	If	the	second	argument	is	an	object,	isinstance(obj,
type)	 must	 be	 true.	 If	 the	 second	 argument	 is	 a	 type,
issubclass(type2,	 type)	 must	 be	 true	 (this	 is	 useful	 for

classmethods).

There	are	two	typical	use	cases	for	super.	In	a	class	hierarchy	with
single	 inheritance,	 super	 can	 be	 used	 to	 refer	 to	 parent	 classes
without	 naming	 them	 explicitly,	 thus	 making	 the	 code	 more
maintainable.	This	 use	 closely	 parallels	 the	 use	of	super	 in	 other
programming	languages.

The	second	use	case	is	to	support	cooperative	multiple	inheritance
in	 a	 dynamic	 execution	 environment.	 This	 use	 case	 is	 unique	 to
Python	 and	 is	 not	 found	 in	 statically	 compiled	 languages	 or
languages	 that	 only	 support	 single	 inheritance.	 This	 makes	 it
possible	 to	 implement	 “diamond	 diagrams”	 where	 multiple	 base
classes	 implement	 the	 same	 method.	 Good	 design	 dictates	 that
this	 method	 have	 the	 same	 calling	 signature	 in	 every	 case
(because	the	order	of	calls	is	determined	at	runtime,	because	that
order	adapts	 to	changes	 in	 the	class	hierarchy,	and	because	 that
order	 can	 include	 sibling	 classes	 that	 are	 unknown	 prior	 to
runtime).

For	both	use	cases,	a	typical	superclass	call	looks	like	this:

class	C(B):

				def	method(self,	arg):

								super().method(arg)				#	This	does	the	same	thing	as:

																															#	super(C,	self).method(arg)

Note	that	super()	is	implemented	as	part	of	the	binding	process
for	 explicit	 dotted	 attribute	 lookups	 such	 as
super().__getitem__(name).	 It	 does	 so	 by	 implementing	 its
own	 __getattribute__()	 method	 for	 searching	 classes	 in	 a
predictable	 order	 that	 supports	 cooperative	 multiple	 inheritance.

Accordingly,	 super()	 is	 undefined	 for	 implicit	 lookups	 using
statements	or	operators	such	as	super()[name].

Also	note	that,	aside	from	the	zero	argument	form,	super()	is	not
limited	to	use	inside	methods.	The	two	argument	form	specifies	the
arguments	exactly	and	makes	the	appropriate	references.	The	zero
argument	form	only	works	inside	a	class	definition,	as	the	compiler
fills	 in	 the	 necessary	 details	 to	 correctly	 retrieve	 the	 class	 being
defined,	 as	 well	 as	 accessing	 the	 current	 instance	 for	 ordinary
methods.

For	 practical	 suggestions	 on	 how	 to	 design	 cooperative	 classes
using	super(),	see	guide	to	using	super().

tuple([iterable])
Rather	 than	 being	 a	 function,	 tuple	 is	 actually	 an	 immutable
sequence	type,	as	documented	in	Tuples	and	Sequence	Types	—
list,	tuple,	range.

type(object)
type(name,	bases,	dict)

With	one	argument,	return	the	type	of	an	object.	The	return	value	is
a	 type	 object	 and	 generally	 the	 same	 object	 as	 returned	 by
object.__class__.

The	 isinstance()	 built-in	 function	 is	 recommended	 for	 testing
the	type	of	an	object,	because	it	takes	subclasses	into	account.

With	three	arguments,	return	a	new	type	object.	This	is	essentially
a	 dynamic	 form	of	 the	 class	 statement.	 The	name	 string	 is	 the
class	name	and	becomes	the	__name__	attribute;	the	bases	tuple
itemizes	the	base	classes	and	becomes	the	__bases__	attribute;

http://rhettinger.wordpress.com/2011/05/26/super-considered-super/

and	the	dict	dictionary	 is	 the	namespace	containing	definitions	 for
class	body	and	becomes	the	__dict__	attribute.	For	example,	the
following	two	statements	create	identical	type	objects:

>>>	class	X:

...					a	=	1

...

>>>	X	=	type('X',	(object,),	dict(a=1))

See	also	Type	Objects.

vars([object])
Return	 the	 __dict__	 attribute	 for	 a	 module,	 class,	 instance,	 or
any	other	object	with	a	__dict__	attribute.

Objects	 such	 as	 modules	 and	 instances	 have	 an	 updateable
__dict__	 attribute;	 however,	 other	 objects	 may	 have	 write
restrictions	on	their	__dict__	attributes	(for	example,	classes	use
a	dictproxy	to	prevent	direct	dictionary	updates).

Without	 an	 argument,	 vars()	 acts	 like	 locals().	 Note,	 the
locals	dictionary	is	only	useful	for	reads	since	updates	to	the	locals
dictionary	are	ignored.

zip(*iterables)
Make	 an	 iterator	 that	 aggregates	 elements	 from	 each	 of	 the
iterables.

Returns	an	iterator	of	 tuples,	where	the	 i-th	 tuple	contains	 the	 i-th
element	 from	 each	 of	 the	 argument	 sequences	 or	 iterables.	 The
iterator	stops	when	the	shortest	input	iterable	is	exhausted.	With	a
single	 iterable	argument,	 it	 returns	an	 iterator	of	1-tuples.	With	no
arguments,	it	returns	an	empty	iterator.	Equivalent	to:

def	zip(*iterables):

				#	zip('ABCD',	'xy')	-->	Ax	By

				sentinel	=	object()

				iterators	=	[iter(it)	for	it	in	iterables]

				while	iterators:

								result	=	[]

								for	it	in	iterators:

												elem	=	next(it,	sentinel)

												if	elem	is	sentinel:

																return

												result.append(elem)

								yield	tuple(result)

The	 left-to-right	 evaluation	 order	 of	 the	 iterables	 is	 guaranteed.
This	makes	 possible	 an	 idiom	 for	 clustering	 a	 data	 series	 into	 n-
length	groups	using	zip(*[iter(s)]*n).

zip()	should	only	be	used	with	unequal	 length	 inputs	when	you
don’t	 care	 about	 trailing,	 unmatched	 values	 from	 the	 longer
iterables.	 If	 those	 values	 are	 important,	 use
itertools.zip_longest()	instead.

zip()	 in	conjunction	with	 the	*	operator	can	be	used	 to	unzip	a
list:

>>>	x	=	[1,	2,	3]

>>>	y	=	[4,	5,	6]

>>>	zipped	=	zip(x,	y)

>>>	list(zipped)

[(1,	4),	(2,	5),	(3,	6)]

>>>	x2,	y2	=	zip(*zip(x,	y))

>>>	x	==	list(x2)	and	y	==	list(y2)

True

__import__(name,	globals=None,	locals=None,	fromlist=(),

level=0)

Note: 	 This	 is	 an	 advanced	 function	 that	 is	 not	 needed	 in
everyday	 Python	 programming,	 unlike
importlib.import_module().

This	 function	 is	 invoked	 by	 the	 import	 statement.	 It	 can	 be
replaced	 (by	 importing	 the	 builtins	 module	 and	 assigning	 to
builtins.__import__)	 in	 order	 to	 change	 semantics	 of	 the
import	 statement,	 but	doing	so	 is	strongly	 discouraged	as	 it	 is
usually	 simpler	 to	 use	 import	 hooks	 (see	PEP	302)	 to	 attain	 the
same	goals	and	does	not	cause	issues	with	code	which	assumes
the	 default	 import	 implementation	 is	 in	 use.	 Direct	 use	 of
__import__()	 is	 also	 discouraged	 in	 favor	 of
importlib.import_module().

The	function	imports	the	module	name,	potentially	using	the	given
globals	 and	 locals	 to	 determine	 how	 to	 interpret	 the	 name	 in	 a
package	 context.	 The	 fromlist	 gives	 the	 names	 of	 objects	 or
submodules	 that	 should	 be	 imported	 from	 the	 module	 given	 by
name.	 The	 standard	 implementation	 does	 not	 use	 its	 locals
argument	at	all,	and	uses	its	globals	only	to	determine	the	package
context	of	the	import	statement.

level	 specifies	whether	 to	use	absolute	or	 relative	 imports.	0	 (the
default)	means	only	perform	absolute	 imports.	Positive	values	 for
level	indicate	the	number	of	parent	directories	to	search	relative	to
the	directory	of	 the	module	calling	__import__()	 (see	PEP	328
for	the	details).

When	 the	 name	 variable	 is	 of	 the	 form	 package.module,
normally,	 the	 top-level	 package	 (the	 name	 up	 till	 the	 first	 dot)	 is

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0328

returned,	not	 the	module	named	by	name.	However,	when	a	non-
empty	 fromlist	 argument	 is	 given,	 the	module	 named	 by	name	 is
returned.

For	 example,	 the	 statement	 import	 spam	 results	 in	 bytecode
resembling	the	following	code:

spam	=	__import__('spam',	globals(),	locals(),	[],

The	statement	import	spam.ham	results	in	this	call:

spam	=	__import__('spam.ham',	globals(),	locals(),

Note	 how	 __import__()	 returns	 the	 toplevel	 module	 here
because	this	is	the	object	that	is	bound	to	a	name	by	the	import
statement.

On	 the	 other	 hand,	 the	 statement	 from	 spam.ham	 import

eggs,	sausage	as	saus	results	in

_temp	=	__import__('spam.ham',	globals(),	locals(),

eggs	=	_temp.eggs

saus	=	_temp.sausage

Here,	 the	 spam.ham	 module	 is	 returned	 from	 __import__().
From	this	object,	the	names	to	import	are	retrieved	and	assigned	to
their	respective	names.

If	you	simply	want	to	import	a	module	(potentially	within	a	package)
by	name,	use	importlib.import_module().

Changed	 in	 version	 3.3:	Negative	 values	 for	 level	 are	 no	 longer

supported	(which	also	changes	the	default	value	to	0).

Footnotes

[1]

Note	that	the	parser	only	accepts	the	Unix-style	end	of	line
convention.	If	you	are	reading	the	code	from	a	file,	make	sure
to	use	newline	conversion	mode	to	convert	Windows	or	Mac-
style	newlines.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

3.	Built-in	Constants
A	small	number	of	constants	live	in	the	built-in	namespace.	They	are:

False

The	 false	 value	 of	 the	 bool	 type.	 Assignments	 to	 False	 are
illegal	and	raise	a	SyntaxError.

True

The	true	value	of	the	bool	 type.	Assignments	to	True	are	 illegal
and	raise	a	SyntaxError.

None

The	sole	value	of	the	type	NoneType.	None	 is	 frequently	used	to
represent	 the	absence	of	a	value,	as	when	default	arguments	are
not	passed	to	a	function.	Assignments	to	None	are	illegal	and	raise
a	SyntaxError.

NotImplemented

Special	 value	 which	 can	 be	 returned	 by	 the	 “rich	 comparison”
special	methods	(__eq__(),	__lt__(),	and	friends),	 to	 indicate
that	 the	 comparison	 is	 not	 implemented	with	 respect	 to	 the	other
type.

Ellipsis

The	same	as	Special	 value	used	mostly	 in	 conjunction	with
extended	slicing	syntax	for	user-defined	container	data	types.

__debug__

This	constant	 is	 true	 if	Python	was	not	 started	with	an	 -O	option.
See	also	the	assert	statement.

Note: 	The	names	None,	False,	True	and	__debug__	cannot	be
reassigned	(assignments	to	them,	even	as	an	attribute	name,	raise
SyntaxError),	so	they	can	be	considered	“true”	constants.

3.1.	Constants	added	by	the	site	module

The	 site	 module	 (which	 is	 imported	 automatically	 during	 startup,
except	if	the	-S	command-line	option	is	given)	adds	several	constants
to	 the	 built-in	 namespace.	 They	 are	 useful	 for	 the	 interactive
interpreter	shell	and	should	not	be	used	in	programs.

quit(code=None)
exit(code=None)

Objects	that	when	printed,	print	a	message	like	“Use	quit()	or	Ctrl-D
(i.e.	 EOF)	 to	 exit”,	 and	when	 called,	 raise	 SystemExit	 with	 the
specified	exit	code.

copyright

license

credits

Objects	 that	when	printed,	print	a	message	 like	“Type	 license()	 to
see	 the	 full	 license	 text”,	 and	 when	 called,	 display	 the
corresponding	text	in	a	pager-like	fashion	(one	screen	at	a	time).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

4.	Built-in	Types
The	 following	sections	describe	 the	standard	 types	 that	are	built	 into
the	interpreter.

The	 principal	 built-in	 types	 are	 numerics,	 sequences,	 mappings,
classes,	instances	and	exceptions.

Some	collection	classes	are	mutable.	The	methods	that	add,	subtract,
or	rearrange	their	members	in	place,	and	don’t	return	a	specific	 item,
never	return	the	collection	instance	itself	but	None.

Some	operations	are	supported	by	several	object	 types;	 in	particular,
practically	 all	 objects	 can	 be	 compared,	 tested	 for	 truth	 value,	 and
converted	to	a	string	(with	the	repr()	function	or	the	slightly	different
str()	function).	The	latter	function	is	implicitly	used	when	an	object	is
written	by	the	print()	function.

4.1.	Truth	Value	Testing

Any	object	can	be	 tested	 for	 truth	value,	 for	use	 in	an	if	 or	 while
condition	 or	 as	 operand	 of	 the	 Boolean	 operations	 below.	 The
following	values	are	considered	false:

None

False

zero	of	any	numeric	type,	for	example,	0,	0.0,	0j.

any	empty	sequence,	for	example,	'',	(),	[].

any	empty	mapping,	for	example,	{}.

instances	 of	 user-defined	 classes,	 if	 the	 class	 defines	 a
__bool__()	or	__len__()	method,	when	 that	method	returns
the	integer	zero	or	bool	value	False.	[1]

All	other	values	are	considered	 true	—	so	objects	of	many	 types	are
always	true.

Operations	 and	 built-in	 functions	 that	 have	 a	 Boolean	 result	 always
return	0	or	False	for	false	and	1	or	True	 for	true,	unless	otherwise
stated.	 (Important	 exception:	 the	 Boolean	 operations	 or	 and	 and
always	return	one	of	their	operands.)

4.2.	Boolean	Operations	—	and,	or,	not

These	are	the	Boolean	operations,	ordered	by	ascending	priority:

Operation Result Notes

x	or	y if	x	is	false,	then	y,	else	x (1)

x	and	y if	x	is	false,	then	x,	else	y (2)

not	x if	x	is	false,	then	True,	else	False (3)

Notes:

1.	 This	 is	 a	 short-circuit	 operator,	 so	 it	 only	 evaluates	 the	 second
argument	if	the	first	one	is	False.

2.	 This	 is	 a	 short-circuit	 operator,	 so	 it	 only	 evaluates	 the	 second
argument	if	the	first	one	is	True.

3.	 not	has	a	 lower	priority	 than	non-Boolean	operators,	so	not	a
==	b	 is	 interpreted	as	not	(a	==	b),	and	a	==	not	b	 is	a
syntax	error.

4.3.	Comparisons

There	 are	 eight	 comparison	 operations	 in	Python.	 They	 all	 have	 the
same	 priority	 (which	 is	 higher	 than	 that	 of	 the	 Boolean	 operations).
Comparisons	can	be	chained	arbitrarily;	for	example,	x	<	y	<=	z	is
equivalent	 to	x	<	y	and	y	<=	z,	 except	 that	y	 is	 evaluated	 only
once	(but	in	both	cases	z	is	not	evaluated	at	all	when	x	<	y	is	found
to	be	false).

This	table	summarizes	the	comparison	operations:

Operation Meaning

< strictly	less	than

<= less	than	or	equal

> strictly	greater	than

>= greater	than	or	equal

== equal

!= not	equal

is object	identity

is	not negated	object	identity

Objects	 of	 different	 types,	 except	 different	 numeric	 types,	 never
compare	 equal.	 Furthermore,	 some	 types	 (for	 example,	 function
objects)	 support	 only	 a	 degenerate	 notion	 of	 comparison	where	 any
two	objects	of	that	type	are	unequal.	The	<,	<=,	>	and	>=	operators
will	raise	a	TypeError	exception	when	comparing	a	complex	number
with	 another	 built-in	 numeric	 type,	 when	 the	 objects	 are	 of	 different
types	 that	 cannot	 be	 compared,	 or	 in	 other	 cases	where	 there	 is	 no
defined	ordering.

Non-identical	 instances	 of	 a	 class	 normally	 compare	 as	 non-equal
unless	the	class	defines	the	__eq__()	method.

Instances	of	a	class	cannot	be	ordered	with	respect	to	other	instances
of	 the	same	class,	or	other	 types	of	 object,	 unless	 the	class	defines
enough	 of	 the	 methods	 __lt__(),	 __le__(),	 __gt__(),	 and
__ge__()	 (in	 general,	 __lt__()	 and	 __eq__()	 are	 sufficient,	 if
you	want	the	conventional	meanings	of	the	comparison	operators).

The	behavior	of	the	is	and	is	not	operators	cannot	be	customized;
also	 they	 can	 be	 applied	 to	 any	 two	 objects	 and	 never	 raise	 an
exception.

Two	more	operations	with	the	same	syntactic	priority,	in	and	not	in,
are	supported	only	by	sequence	types	(below).

4.4.	Numeric	Types	—	int,	float,
complex

There	 are	 three	 distinct	 numeric	 types:	 integers,	 floating	 point
numbers,	and	complex	numbers.	 In	addition,	Booleans	are	a	subtype
of	integers.	Integers	have	unlimited	precision.	Floating	point	numbers
are	 usually	 implemented	 using	 double	 in	 C;	 information	 about	 the
precision	and	internal	representation	of	floating	point	numbers	for	the
machine	 on	 which	 your	 program	 is	 running	 is	 available	 in
sys.float_info.	Complex	numbers	have	a	real	and	imaginary	part,
which	are	each	a	floating	point	number.	To	extract	these	parts	from	a
complex	number	z,	 use	 z.real	 and	 z.imag.	 (The	 standard	 library
includes	additional	numeric	types,	fractions	that	hold	rationals,	and
decimal	 that	 hold	 floating-point	 numbers	 with	 user-definable
precision.)

Numbers	 are	 created	 by	 numeric	 literals	 or	 as	 the	 result	 of	 built-in
functions	 and	 operators.	 Unadorned	 integer	 literals	 (including	 hex,
octal	and	binary	numbers)	yield	integers.	Numeric	literals	containing	a
decimal	 point	 or	 an	 exponent	 sign	 yield	 floating	 point	 numbers.
Appending	'j'	or	'J'	to	a	numeric	literal	yields	an	imaginary	number
(a	 complex	 number	 with	 a	 zero	 real	 part)	 which	 you	 can	 add	 to	 an
integer	or	float	to	get	a	complex	number	with	real	and	imaginary	parts.

Python	 fully	 supports	 mixed	 arithmetic:	 when	 a	 binary	 arithmetic
operator	has	operands	of	different	numeric	types,	the	operand	with	the
“narrower”	 type	 is	 widened	 to	 that	 of	 the	 other,	 where	 integer	 is
narrower	 than	 floating	 point,	 which	 is	 narrower	 than	 complex.
Comparisons	between	numbers	of	mixed	 type	use	 the	same	rule.	 [2]
The	constructors	int(),	float(),	and	complex()	can	be	used	to

produce	numbers	of	a	specific	type.

All	 numeric	 types	 (except	 complex)	 support	 the	 following	operations,
sorted	 by	 ascending	 priority	 (operations	 in	 the	 same	 box	 have	 the
same	 priority;	 all	 numeric	 operations	 have	 a	 higher	 priority	 than
comparison	operations):

Operation Result Notes Full
documentation

x	+	y sum	of	x	and	y 	 	

x	-	y difference	of	x	and	y 	 	

x	*	y product	of	x	and	y 	 	

x	/	y quotient	of	x	and	y 	 	

x	//	y
floored	quotient	of	x
and	y (1) 	

x	%	y remainder	of	x	/	y (2) 	

-x x	negated 	 	

+x x	unchanged 	 	

abs(x)
absolute	value	or
magnitude	of	x 	 abs()

int(x)
x	converted	to
integer (3)(6) int()

float(x)
x	converted	to
floating	point (4)(6) float()

complex(re,

im)

a	complex	number
with	real	part	re,
imaginary	part	im.
im	defaults	to	zero.

(6) complex()

c.conjugate()
conjugate	of	the
complex	number	c 	 	

divmod(x,	y)
the	pair	(x	//	y,
x	%	y)

(2) divmod()

pow(x,	y) x	to	the	power	y (5) pow()

x	**	y x	to	the	power	y (5) 	

Notes:

1.	 Also	referred	to	as	integer	division.	The	resultant	value	is	a	whole
integer,	though	the	result’s	type	is	not	necessarily	int.	The	result	is
always	 rounded	 towards	minus	 infinity:	 1//2	 is	 0,	 (-1)//2	 is
-1,	1//(-2)	is	-1,	and	(-1)//(-2)	is	0.

2.	 Not	for	complex	numbers.	Instead	convert	to	floats	using	abs()	if
appropriate.

3.	 Conversion	from	floating	point	to	integer	may	round	or	truncate	as
in	C;	see	functions	math.floor()	and	math.ceil()	 for	well-
defined	conversions.

4.	 float	also	accepts	the	strings	“nan”	and	“inf”	with	an	optional	prefix
“+”	or	“-”	for	Not	a	Number	(NaN)	and	positive	or	negative	infinity.

5.	 Python	defines	pow(0,	0)	and	0	**	0	to	be	1,	as	is	common
for	programming	languages.

6.	 The	 numeric	 literals	 accepted	 include	 the	 digits	 0	 to	 9	 or	 any
Unicode	equivalent	(code	points	with	the	Nd	property).

See
http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt
for	a	complete	list	of	code	points	with	the	Nd	property.

All	numbers.Real	types	(int	and	float)	also	include	the	following

http://www.unicode.org/Public/6.0.0/ucd/extracted/DerivedNumericType.txt

operations:

Operation Result Notes

math.trunc(x) x	truncated	to	Integral 	

round(x[,	n])
x	rounded	to	n	digits,	rounding	half	to
even.	If	n	is	omitted,	it	defaults	to	0. 	

math.floor(x) the	greatest	integral	float	<=	x 	

math.ceil(x) the	least	integral	float	>=	x 	

For	additional	numeric	operations	see	the	math	and	cmath	modules.

4.4.1.	Bitwise	Operations	on	Integer	Types

Bitwise	 operations	 only	make	 sense	 for	 integers.	 Negative	 numbers
are	treated	as	their	2’s	complement	value	(this	assumes	a	sufficiently
large	number	of	bits	that	no	overflow	occurs	during	the	operation).

The	 priorities	 of	 the	 binary	 bitwise	 operations	 are	 all	 lower	 than	 the
numeric	 operations	 and	 higher	 than	 the	 comparisons;	 the	 unary
operation	 ~	 has	 the	 same	 priority	 as	 the	 other	 unary	 numeric
operations	(+	and	-).

This	 table	 lists	 the	 bitwise	 operations	 sorted	 in	 ascending	 priority
(operations	in	the	same	box	have	the	same	priority):

Operation Result Notes

x	|	y bitwise	or	of	x	and	y 	

x	^	y bitwise	exclusive	or	of	x	and	y 	

x	&	y bitwise	and	of	x	and	y 	

x	<<	n x	shifted	left	by	n	bits (1)(2)

x	>>	n x	shifted	right	by	n	bits (1)(3)

~x the	bits	of	x	inverted 	

Notes:

1.	 Negative	shift	counts	are	illegal	and	cause	a	ValueError	to	be
raised.

2.	 A	left	shift	by	n	bits	is	equivalent	to	multiplication	by	pow(2,	n)
without	overflow	check.

3.	 A	 right	 shift	 by	 n	 bits	 is	 equivalent	 to	 division	 by	 pow(2,	 n)
without	overflow	check.

4.4.2.	Additional	Methods	on	Integer	Types

The	 int	 type	 implements	 the	 numbers.Integral	 abstract	 base
class.	In	addition,	it	provides	one	more	method:

int.bit_length()
Return	 the	 number	 of	 bits	 necessary	 to	 represent	 an	 integer	 in
binary,	excluding	the	sign	and	leading	zeros:

>>>	n	=	-37

>>>	bin(n)

'-0b100101'

>>>	n.bit_length()

6

More	 precisely,	 if	 x	 is	 nonzero,	 then	 x.bit_length()	 is	 the
unique	 positive	 integer	 k	 such	 that	 2**(k-1)	 <=	 abs(x)	 <
2**k.	 Equivalently,	 when	 abs(x)	 is	 small	 enough	 to	 have	 a
correctly	 rounded	 logarithm,	 then	k	=	1	+	int(log(abs(x),
2)).	If	x	is	zero,	then	x.bit_length()	returns	0.

Equivalent	to:

def	bit_length(self):

				s	=	bin(self)							#	binary	representation:		bin(-37)	-->	'-0b100101'

				s	=	s.lstrip('-0b')	#	remove	leading	zeros	and	minus	sign

				return	len(s)							#	len('100101')	-->	6

New	in	version	3.1.

int.to_bytes(length,	byteorder,	*,	signed=False)
Return	an	array	of	bytes	representing	an	integer.

>>>	(1024).to_bytes(2,	byteorder='big')

b'\x04\x00'

>>>	(1024).to_bytes(10,	byteorder='big')

b'\x00\x00\x00\x00\x00\x00\x00\x00\x04\x00'

>>>	(-1024).to_bytes(10,	byteorder='big',	signed=True

b'\xff\xff\xff\xff\xff\xff\xff\xff\xfc\x00'

>>>	x	=	1000

>>>	x.to_bytes((x.bit_length()	//	8)	+	1,	byteorder

b'\xe8\x03'

The	 integer	 is	 represented	 using	 length	 bytes.	 An
OverflowError	 is	 raised	 if	 the	 integer	 is	not	 representable	with
the	given	number	of	bytes.

The	 byteorder	 argument	 determines	 the	 byte	 order	 used	 to
represent	 the	 integer.	 If	byteorder	 is	 "big",	 the	most	 significant
byte	is	at	the	beginning	of	the	byte	array.	If	byteorder	is	"little",
the	most	significant	byte	is	at	the	end	of	the	byte	array.	To	request
the	native	byte	order	of	the	host	system,	use	sys.byteorder	as
the	byte	order	value.

The	 signed	 argument	 determines	 whether	 two’s	 complement	 is
used	 to	 represent	 the	 integer.	 If	signed	 is	False	 and	 a	 negative
integer	 is	given,	an	OverflowError	 is	 raised.	The	default	value
for	signed	is	False.

New	in	version	3.2.

classmethod	int.from_bytes(bytes,	byteorder,	*,	signed=False)
Return	the	integer	represented	by	the	given	array	of	bytes.

>>>	int.from_bytes(b'\x00\x10',	byteorder='big')

16

>>>	int.from_bytes(b'\x00\x10',	byteorder='little'

4096

>>>	int.from_bytes(b'\xfc\x00',	byteorder='big',	signed

-1024

>>>	int.from_bytes(b'\xfc\x00',	byteorder='big',	signed

64512

>>>	int.from_bytes([255,	0,	0],	byteorder='big')

16711680

The	 argument	 bytes	 must	 either	 be	 a	 bytes-like	 object	 or	 an
iterable	producing	bytes.

The	 byteorder	 argument	 determines	 the	 byte	 order	 used	 to
represent	 the	 integer.	 If	byteorder	 is	 "big",	 the	most	 significant
byte	is	at	the	beginning	of	the	byte	array.	If	byteorder	is	"little",
the	most	significant	byte	is	at	the	end	of	the	byte	array.	To	request
the	native	byte	order	of	the	host	system,	use	sys.byteorder	as
the	byte	order	value.

The	signed	argument	indicates	whether	two’s	complement	is	used
to	represent	the	integer.

New	in	version	3.2.

4.4.3.	Additional	Methods	on	Float

The	 float	 type	 implements	 the	 numbers.Real	 abstract	 base	 class.
float	also	has	the	following	additional	methods.

float.as_integer_ratio()
Return	a	pair	of	integers	whose	ratio	is	exactly	equal	to	the	original
float	and	with	a	positive	denominator.	Raises	OverflowError	on
infinities	and	a	ValueError	on	NaNs.

float.is_integer()
Return	True	 if	 the	 float	 instance	 is	 finite	with	 integral	 value,	 and
False	otherwise:

>>>	(-2.0).is_integer()

True

>>>	(3.2).is_integer()

False

Two	 methods	 support	 conversion	 to	 and	 from	 hexadecimal	 strings.
Since	 Python’s	 floats	 are	 stored	 internally	 as	 binary	 numbers,
converting	a	float	 to	or	 from	a	decimal	string	usually	 involves	a	small
rounding	 error.	 In	 contrast,	 hexadecimal	 strings	 allow	 exact
representation	and	specification	of	floating-point	numbers.	This	can	be
useful	when	debugging,	and	in	numerical	work.

float.hex()
Return	 a	 representation	 of	 a	 floating-point	 number	 as	 a
hexadecimal	 string.	 For	 finite	 floating-point	 numbers,	 this
representation	will	always	include	a	leading	0x	and	a	trailing	p	and

exponent.

classmethod	float.fromhex(s)
Class	 method	 to	 return	 the	 float	 represented	 by	 a	 hexadecimal
string	s.	The	string	s	may	have	leading	and	trailing	whitespace.

Note	 that	 float.hex()	 is	 an	 instance	 method,	 while
float.fromhex()	is	a	class	method.

A	hexadecimal	string	takes	the	form:

[sign]	['0x']	integer	['.'	fraction]	['p'	exponent]

where	 the	 optional	 sign	 may	 by	 either	 +	 or	 -,	 integer	 and
fraction	 are	 strings	 of	 hexadecimal	 digits,	 and	 exponent	 is	 a
decimal	 integer	with	an	optional	 leading	sign.	Case	 is	not	significant,
and	there	must	be	at	least	one	hexadecimal	digit	 in	either	the	integer
or	the	fraction.	This	syntax	is	similar	to	the	syntax	specified	in	section
6.4.4.2	of	 the	C99	standard,	and	also	 to	 the	syntax	used	 in	Java	1.5
onwards.	 In	 particular,	 the	 output	 of	 float.hex()	 is	 usable	 as	 a
hexadecimal	 floating-point	 literal	 in	C	or	Java	code,	and	hexadecimal
strings	 produced	 by	 C’s	 %a	 format	 character	 or	 Java’s
Double.toHexString	are	accepted	by	float.fromhex().

Note	that	the	exponent	 is	written	in	decimal	rather	than	hexadecimal,
and	that	it	gives	the	power	of	2	by	which	to	multiply	the	coefficient.	For
example,	 the	hexadecimal	string	0x3.a7p10	 represents	 the	floating-
point	 number	 (3	 +	 10./16	 +	 7./16**2)	 *	 2.0**10,	 or
3740.0:

>>>	float.fromhex('0x3.a7p10')

3740.0

Applying	 the	 reverse	 conversion	 to	 3740.0	 gives	 a	 different
hexadecimal	string	representing	the	same	number:

>>>	float.hex(3740.0)

'0x1.d380000000000p+11'

4.4.4.	Hashing	of	numeric	types

For	 numbers	 x	 and	 y,	 possibly	 of	 different	 types,	 it’s	 a	 requirement
that	 hash(x)	 ==	 hash(y)	 whenever	 x	 ==	 y	 (see	 the
__hash__()	 method	 documentation	 for	 more	 details).	 For	 ease	 of
implementation	 and	 efficiency	 across	 a	 variety	 of	 numeric	 types
(including	 int,	 float,	 decimal.Decimal	 and
fractions.Fraction)	Python’s	hash	for	numeric	types	is	based	on
a	single	mathematical	 function	that’s	defined	for	any	rational	number,
and	 hence	 applies	 to	 all	 instances	 of	 int	 and
fractions.Fraction,	 and	 all	 finite	 instances	 of	 float	 and
decimal.Decimal.	 Essentially,	 this	 function	 is	 given	 by	 reduction
modulo	 P	 for	 a	 fixed	 prime	 P.	 The	 value	 of	 P	 is	 made	 available	 to
Python	as	the	modulus	attribute	of	sys.hash_info.

CPython	implementation	detail:	Currently,	 the	prime	used	 is	P	=
2**31	-	1	on	machines	with	32-bit	C	longs	and	P	=	2**61	-	1
on	machines	with	64-bit	C	longs.

Here	are	the	rules	in	detail:

If	 x	=	m	/	 n	 is	 a	 nonnegative	 rational	 number	 and	 n	 is	 not
divisible	by	P,	define	hash(x)	 as	 m	*	invmod(n,	P)	%	P,
where	invmod(n,	P)	gives	the	inverse	of	n	modulo	P.
If	x	=	m	/	n	is	a	nonnegative	rational	number	and	n	is	divisible

by	P	(but	m	is	not)	then	n	has	no	inverse	modulo	P	and	the	rule
above	 doesn’t	 apply;	 in	 this	 case	 define	 hash(x)	 to	 be	 the
constant	value	sys.hash_info.inf.
If	x	=	m	/	n	is	a	negative	rational	number	define	hash(x)	as	-
hash(-x).	If	the	resulting	hash	is	-1,	replace	it	with	-2.
The	 particular	 values	 sys.hash_info.inf,	 -

sys.hash_info.inf	 and	 sys.hash_info.nan	 are	 used	 as
hash	 values	 for	 positive	 infinity,	 negative	 infinity,	 or	 nans
(respectively).	(All	hashable	nans	have	the	same	hash	value.)
For	 a	 complex	 number	 z,	 the	 hash	 values	 of	 the	 real	 and
imaginary	 parts	 are	 combined	 by	 computing	 hash(z.real)	+
sys.hash_info.imag	 *	 hash(z.imag),	 reduced	 modulo
2**sys.hash_info.width	 so	 that	 it	 lies	 in	 range(-2**
(sys.hash_info.width	 -	 1),	 2**

(sys.hash_info.width	-	1)).	Again,	 if	 the	result	 is	-1,	 it’s
replaced	with	-2.

To	 clarify	 the	 above	 rules,	 here’s	 some	 example	 Python	 code,
equivalent	 to	 the	 built-in	 hash,	 for	 computing	 the	 hash	 of	 a	 rational
number,	float,	or	complex:

import	sys,	math

def	hash_fraction(m,	n):

				"""Compute	the	hash	of	a	rational	number	m	/	n.

				Assumes	m	and	n	are	integers,	with	n	positive.

				Equivalent	to	hash(fractions.Fraction(m,	n)).

				"""

				P	=	sys.hash_info.modulus

				#	Remove	common	factors	of	P.		(Unnecessary	if	m	and	n	already	coprime.)

				while	m	%	P	==	n	%	P	==	0:

								m,	n	=	m	//	P,	n	//	P

				if	n	%	P	==	0:

								hash_	=	sys.hash_info.inf

				else:

								#	Fermat's	Little	Theorem:	pow(n,	P-1,	P)	is	1,	so

								#	pow(n,	P-2,	P)	gives	the	inverse	of	n	modulo	P.

								hash_	=	(abs(m)	%	P)	*	pow(n,	P	-	2,	P)	%	P

				if	m	<	0:

								hash_	=	-hash_

				if	hash_	==	-1:

								hash_	=	-2

				return	hash_

def	hash_float(x):

				"""Compute	the	hash	of	a	float	x."""

				if	math.isnan(x):

								return	sys.hash_info.nan

				elif	math.isinf(x):

								return	sys.hash_info.inf	if	x	>	0	else	-sys.

				else:

								return	hash_fraction(*x.as_integer_ratio())

def	hash_complex(z):

				"""Compute	the	hash	of	a	complex	number	z."""

				hash_	=	hash_float(z.real)	+	sys.hash_info.imag	

				#	do	a	signed	reduction	modulo	2**sys.hash_info.width

				M	=	2**(sys.hash_info.width	-	1)

				hash_	=	(hash_	&	(M	-	1))	-	(hash	&	M)

				if	hash_	==	-1:

								hash_	==	-2

				return	hash_

4.5.	Iterator	Types

Python	 supports	 a	 concept	 of	 iteration	 over	 containers.	 This	 is
implemented	using	two	distinct	methods;	these	are	used	to	allow	user-
defined	 classes	 to	 support	 iteration.	 Sequences,	 described	 below	 in
more	detail,	always	support	the	iteration	methods.

One	 method	 needs	 to	 be	 defined	 for	 container	 objects	 to	 provide
iteration	support:

container.__iter__()
Return	 an	 iterator	 object.	 The	 object	 is	 required	 to	 support	 the
iterator	 protocol	 described	below.	 If	 a	 container	 supports	 different
types	 of	 iteration,	 additional	 methods	 can	 be	 provided	 to
specifically	request	iterators	for	those	iteration	types.	(An	example
of	an	object	supporting	multiple	 forms	of	 iteration	would	be	a	 tree
structure	 which	 supports	 both	 breadth-first	 and	 depth-first
traversal.)	 This	 method	 corresponds	 to	 the	 tp_iter	 slot	 of	 the
type	structure	for	Python	objects	in	the	Python/C	API.

The	 iterator	objects	 themselves	are	 required	 to	 support	 the	 following
two	methods,	which	together	form	the	iterator	protocol:

iterator.__iter__()
Return	 the	 iterator	 object	 itself.	 This	 is	 required	 to	 allow	 both
containers	 and	 iterators	 to	 be	 used	 with	 the	 for	 and	 in
statements.	This	method	corresponds	 to	 the	tp_iter	slot	of	 the
type	structure	for	Python	objects	in	the	Python/C	API.

iterator.__next__()
Return	 the	 next	 item	 from	 the	 container.	 If	 there	 are	 no	 further
items,	 raise	 the	 StopIteration	 exception.	 This	 method

corresponds	 to	 the	 tp_iternext	 slot	 of	 the	 type	 structure	 for
Python	objects	in	the	Python/C	API.

Python	 defines	 several	 iterator	 objects	 to	 support	 iteration	 over
general	 and	 specific	 sequence	 types,	 dictionaries,	 and	 other	 more
specialized	 forms.	 The	 specific	 types	 are	 not	 important	 beyond	 their
implementation	of	the	iterator	protocol.

Once	 an	 iterator’s	 __next__()	 method	 raises	 StopIteration,	 it
must	continue	to	do	so	on	subsequent	calls.	 Implementations	that	do
not	obey	this	property	are	deemed	broken.

4.5.1.	Generator	Types

Python’s	 generators	 provide	 a	 convenient	 way	 to	 implement	 the
iterator	 protocol.	 If	 a	 container	 object’s	 __iter__()	 method	 is
implemented	 as	 a	 generator,	 it	 will	 automatically	 return	 an	 iterator
object	(technically,	a	generator	object)	supplying	the	__iter__()	and
__next__()	 methods.	 More	 information	 about	 generators	 can	 be
found	in	the	documentation	for	the	yield	expression.

4.6.	Sequence	Types	—	list,	tuple,
range

There	are	three	basic	sequence	types:	lists,	tuples,	and	range	objects.
Additional	 sequence	 types	 tailored	 for	 processing	of	binary	 data	 and
text	strings	are	described	in	dedicated	sections.

4.6.1.	Common	Sequence	Operations

The	operations	in	the	following	table	are	supported	by	most	sequence
types,	 both	 mutable	 and	 immutable.	 The
collections.abc.Sequence	ABC	is	provided	to	make	it	easier	to
correctly	implement	these	operations	on	custom	sequence	types.

This	 table	 lists	 the	 sequence	 operations	 sorted	 in	 ascending	 priority
(operations	in	the	same	box	have	the	same	priority).	In	the	table,	s	and
t	are	sequences	of	the	same	type,	n,	i,	j	and	k	are	integers	and	x	is	an
arbitrary	object	that	meets	any	type	and	value	restrictions	imposed	by
s.

The	 in	 and	 not	 in	 operations	 have	 the	 same	 priorities	 as	 the
comparison	 operations.	 The	 +	 (concatenation)	 and	 *	 (repetition)
operations	 have	 the	 same	 priority	 as	 the	 corresponding	 numeric
operations.

Operation Result Notes

x	in	s
True	if	an	item	of	s	is	equal	to
x,	else	False (1)

x	not	in	s
False	if	an	item	of	s	is	equal
to	x,	else	True (1)

s	+	t the	concatenation	of	s	and	t (6)(7)

s	*	n	or	n	*	s n	shallow	copies	of	s
concatenated (2)(7)

s[i] ith	item	of	s,	origin	0 (3)

s[i:j] slice	of	s	from	i	to	j (3)(4)

s[i:j:k] slice	of	s	from	i	to	j	with	step	k (3)(5)

len(s) length	of	s 	

min(s) smallest	item	of	s 	

max(s) largest	item	of	s 	

s.index(x[,	i[,

j]])

index	of	the	first	occurrence	of
x	in	s	(at	or	after	index	i	and
before	index	j)

(8)

s.count(x)
total	number	of	occurrences	of
x	in	s 	

Sequences	of	 the	same	type	also	support	comparisons.	 In	particular,
tuples	 and	 lists	 are	 compared	 lexicographically	 by	 comparing
corresponding	 elements.	 This	 means	 that	 to	 compare	 equal,	 every
element	must	compare	equal	and	 the	 two	sequences	must	be	of	 the
same	 type	 and	 have	 the	 same	 length.	 (For	 full	 details	 see
Comparisons	in	the	language	reference.)

Notes:

1.	 While	 the	 in	 and	 not	in	 operations	 are	 used	 only	 for	 simple
containment	 testing	 in	 the	 general	 case,	 some	 specialised
sequences	(such	as	str,	bytes	and	bytearray)	also	use	them
for	subsequence	testing:

>>>	"gg"	in	"eggs"

True

2.	 Values	of	n	 less	 than	0	are	 treated	as	0	 (which	yields	an	empty
sequence	of	 the	same	 type	as	s).	Note	also	 that	 the	 copies	are
shallow;	nested	structures	are	not	copied.	This	often	haunts	new
Python	programmers;	consider:

>>>	lists	=	[[]]	*	3

>>>	lists

[[],	[],	[]]

>>>	lists[0].append(3)

>>>	lists

[[3],	[3],	[3]]

What	has	happened	is	that	[[]]	is	a	one-element	list	containing
an	empty	list,	so	all	three	elements	of	[[]]	*	3	are	(pointers	to)
this	 single	 empty	 list.	 Modifying	 any	 of	 the	 elements	 of	 lists
modifies	this	single	list.	You	can	create	a	list	of	different	lists	this
way:

>>>	lists	=	[[]	for	i	in	range(3)]

>>>	lists[0].append(3)

>>>	lists[1].append(5)

>>>	lists[2].append(7)

>>>	lists

[[3],	[5],	[7]]

3.	 If	 i	or	 j	 is	negative,	 the	 index	 is	 relative	 to	 the	end	of	 the	string:
len(s)	+	i	or	len(s)	+	j	is	substituted.	But	note	that	-0	 is
still	0.

4.	 The	slice	of	s	from	i	to	j	is	defined	as	the	sequence	of	items	with
index	k	such	that	i	<=	k	<	j.	If	 i	or	 j	 is	greater	 than	len(s),
use	len(s).	If	i	is	omitted	or	None,	use	0.	If	j	is	omitted	or	None,
use	len(s).	If	i	is	greater	than	or	equal	to	j,	the	slice	is	empty.

5.	 The	slice	of	s	from	i	to	j	with	step	k	is	defined	as	the	sequence	of
items	with	index	x	=	i	+	n*k	such	that	0	<=	n	<	(j-i)/k.
In	other	words,	the	indices	are	i,	i+k,	i+2*k,	i+3*k	and	so	on,
stopping	 when	 j	 is	 reached	 (but	 never	 including	 j).	 If	 i	 or	 j	 is
greater	than	len(s),	use	len(s).	If	i	or	 j	are	omitted	or	None,
they	become	“end”	values	(which	end	depends	on	the	sign	of	k).
Note,	k	cannot	be	zero.	If	k	is	None,	it	is	treated	like	1.

6.	 Concatenating	 immutable	 sequences	 always	 results	 in	 a	 new
object.	 This	 means	 that	 building	 up	 a	 sequence	 by	 repeated
concatenation	 will	 have	 a	 quadratic	 runtime	 cost	 in	 the	 total
sequence	length.	To	get	a	linear	runtime	cost,	you	must	switch	to
one	of	the	alternatives	below:

if	 concatenating	 str	 objects,	 you	 can	 build	 a	 list	 and	 use
str.join()	 at	 the	 end	 or	 else	 write	 to	 a	 io.StringIO
instance	and	retrieve	its	value	when	complete
if	 concatenating	 bytes	 objects,	 you	 can	 similarly	 use
bytes.join()	 or	 io.BytesIO,	 or	 you	 can	 do	 in-place
concatenation	 with	 a	 bytearray	 object.	 bytearray

objects	 are	 mutable	 and	 have	 an	 efficient	 overallocation
mechanism
if	concatenating	tuple	objects,	extend	a	list	instead
for	other	types,	investigate	the	relevant	class	documentation

7.	 Some	 sequence	 types	 (such	 as	 range)	 only	 support	 item
sequences	 that	 follow	specific	patterns,	and	hence	don’t	support
sequence	concatenation	or	repetition.

8.	 index	 raises	 ValueError	 when	 x	 is	 not	 found	 in	 s.	 When
supported,	 the	 additional	 arguments	 to	 the	 index	 method	 allow
efficient	 searching	 of	 subsections	 of	 the	 sequence.	 Passing	 the
extra	 arguments	 is	 roughly	 equivalent	 to	 using

s[i:j].index(x),	only	without	copying	any	data	and	with	 the
returned	 index	being	 relative	 to	 the	 start	 of	 the	 sequence	 rather
than	the	start	of	the	slice.

4.6.2.	Immutable	Sequence	Types

The	 only	 operation	 that	 immutable	 sequence	 types	 generally
implement	that	is	not	also	implemented	by	mutable	sequence	types	is
support	for	the	hash()	built-in.

This	support	allows	immutable	sequences,	such	as	tuple	 instances,
to	 be	 used	 as	 dict	 keys	 and	 stored	 in	 set	 and	 frozenset
instances.

Attempting	to	hash	an	immutable	sequence	that	contains	unhashable
values	will	result	in	TypeError.

4.6.3.	Mutable	Sequence	Types

The	operations	in	the	following	table	are	defined	on	mutable	sequence
types.	The	collections.abc.MutableSequence	ABC	is	provided
to	make	 it	 easier	 to	 correctly	 implement	 these	operations	on	 custom
sequence	types.

In	 the	 table	 s	 is	 an	 instance	 of	 a	 mutable	 sequence	 type,	 t	 is	 any
iterable	 object	 and	 x	 is	 an	 arbitrary	 object	 that	 meets	 any	 type	 and
value	 restrictions	 imposed	 by	 s	 (for	 example,	 bytearray	 only
accepts	integers	that	meet	the	value	restriction	0	<=	x	<=	255).

Operation Result Notes

s[i]	=	x
item	i	of	s	is	replaced	by
x 	

s[i:j]	=	t

slice	of	s	from	i	to	j	is
replaced	by	the	contents
of	the	iterable	t

	

del	s[i:j] same	as	s[i:j]	=	[] 	

s[i:j:k]	=	t

the	elements	of
s[i:j:k]	are	replaced
by	those	of	t

(1)

del	s[i:j:k]
removes	the	elements	of
s[i:j:k]	from	the	list 	

s.append(x)

appends	x	to	the	end	of
the	sequence	(same	as
s[len(s):len(s)]	=

[x])

	

s.clear()
removes	all	items	from	s
(same	as	del	s[:]) (5)

s.copy()
creates	a	shallow	copy
of	s	(same	as	s[:]) (5)

s.extend(t)

extends	s	with	the
contents	of	t	(same	as
s[len(s):len(s)]	=

t)

	

s.insert(i,	x)

inserts	x	into	s	at	the
index	given	by	i	(same
as	s[i:i]	=	[x])

	

s.pop([i])

retrieves	the	item	at	i
and	also	removes	it	from
s

(2)

s.remove(x)

remove	the	first	item
from	s	where	s[i]	==
x

(3)

s.reverse() reverses	the	items	of	s
in	place

(4)

Notes:

1.	 t	must	have	the	same	length	as	the	slice	it	is	replacing.

2.	 The	optional	argument	i	defaults	to	-1,	so	that	by	default	the	last
item	is	removed	and	returned.

3.	 remove	raises	ValueError	when	x	is	not	found	in	s.

4.	 The	 reverse()	 method	 modifies	 the	 sequence	 in	 place	 for
economy	of	 space	when	 reversing	a	 large	 sequence.	To	 remind
users	 that	 it	 operates	 by	 side	 effect,	 it	 does	 not	 return	 the
reversed	sequence.

5.	 clear()	 and	 copy()	 are	 included	 for	 consistency	 with	 the
interfaces	 of	 mutable	 containers	 that	 don’t	 support	 slicing
operations	(such	as	dict	and	set)

New	in	version	3.3:	clear()	and	copy()	methods.

4.6.4.	Lists

Lists	 are	 mutable	 sequences,	 typically	 used	 to	 store	 collections	 of
homogeneous	 items	 (where	 the	 precise	 degree	 of	 similarity	will	 vary
by	application).

class	list([iterable])
Lists	may	be	constructed	in	several	ways:

Using	a	pair	of	square	brackets	to	denote	the	empty	list:	[]
Using	 square	 brackets,	 separating	 items	with	 commas:	 [a],
[a,	b,	c]

Using	a	list	comprehension:	[x	for	x	in	iterable]
Using	the	type	constructor:	list()	or	list(iterable)

The	constructor	builds	a	list	whose	items	are	the	same	and	in	the
same	order	as	iterable‘s	items.	iterable	may	be	either	a	sequence,
a	container	that	supports	iteration,	or	an	iterator	object.	If	iterable	is
already	 a	 list,	 a	 copy	 is	 made	 and	 returned,	 similar	 to
iterable[:].	For	example,	list('abc')	returns	['a',	'b',
'c']	 and	 list((1,	 2,	 3))	 returns	 [1,	 2,	 3].	 If	 no
argument	is	given,	the	constructor	creates	a	new	empty	list,	[].

Many	other	operations	also	produce	lists,	including	the	sorted()
built-in.

Lists	 implement	 all	 of	 the	 common	 and	 mutable	 sequence
operations.	Lists	also	provide	the	following	additional	method:

sort(*,	key=None,	reverse=None)
This	method	 sorts	 the	 list	 in	 place,	 using	 only	 <	 comparisons
between	 items.	 Exceptions	 are	 not	 suppressed	 -	 if	 any
comparison	operations	fail,	the	entire	sort	operation	will	fail	(and
the	list	will	likely	be	left	in	a	partially	modified	state).

sort()	 accepts	 two	 arguments	 that	 can	 only	 be	 passed	 by
keyword	(keyword-only	arguments):

key	specifies	a	function	of	one	argument	that	is	used	to	extract
a	 comparison	 key	 from	 each	 list	 element	 (for	 example,
key=str.lower).	The	key	corresponding	 to	each	 item	 in	 the
list	 is	 calculated	 once	 and	 then	 used	 for	 the	 entire	 sorting
process.	 The	 default	 value	 of	 None	means	 that	 list	 items	 are
sorted	directly	without	calculating	a	separate	key	value.

The	functools.cmp_to_key()	utility	 is	available	 to	convert
a	2.x	style	cmp	function	to	a	key	function.

reverse	is	a	boolean	value.	If	set	to	True,	then	the	list	elements
are	sorted	as	if	each	comparison	were	reversed.

This	 method	 modifies	 the	 sequence	 in	 place	 for	 economy	 of
space	when	sorting	a	 large	sequence.	To	 remind	users	 that	 it
operates	by	side	effect,	 it	does	not	return	the	sorted	sequence
(use	sorted()	to	explicitly	request	a	new	sorted	list	instance).

The	sort()	method	is	guaranteed	to	be	stable.	A	sort	is	stable
if	it	guarantees	not	to	change	the	relative	order	of	elements	that
compare	equal	—	 this	 is	 helpful	 for	 sorting	 in	multiple	 passes
(for	example,	sort	by	department,	then	by	salary	grade).

CPython	implementation	detail:	While	a	list	is	being	sorted,
the	effect	of	attempting	to	mutate,	or	even	 inspect,	 the	 list	 is
undefined.	 The	 C	 implementation	 of	 Python	 makes	 the	 list
appear	 empty	 for	 the	 duration,	 and	 raises	 ValueError	 if	 it
can	detect	that	the	list	has	been	mutated	during	a	sort.

4.6.5.	Tuples

Tuples	are	immutable	sequences,	typically	used	to	store	collections	of
heterogeneous	 data	 (such	 as	 the	 2-tuples	 produced	 by	 the
enumerate()	 built-in).	 Tuples	 are	 also	 used	 for	 cases	 where	 an
immutable	 sequence	 of	 homogeneous	 data	 is	 needed	 (such	 as
allowing	storage	in	a	set	or	dict	instance).

class	tuple([iterable])
Tuples	may	be	constructed	in	a	number	of	ways:

Using	a	pair	of	parentheses	to	denote	the	empty	tuple:	()
Using	a	trailing	comma	for	a	singleton	tuple:	a,	or	(a,)
Separating	items	with	commas:	a,	b,	c	or	(a,	b,	c)
Using	the	tuple()	built-in:	tuple()	or	tuple(iterable)

The	constructor	builds	a	tuple	whose	items	are	the	same	and	in	the
same	order	as	iterable‘s	items.	iterable	may	be	either	a	sequence,
a	container	that	supports	iteration,	or	an	iterator	object.	If	iterable	is
already	 a	 tuple,	 it	 is	 returned	 unchanged.	 For	 example,
tuple('abc')	 returns	 ('a',	 'b',	 'c')	 and	 tuple([1,
2,	 3])	 returns	 (1,	 2,	 3).	 If	 no	 argument	 is	 given,	 the
constructor	creates	a	new	empty	tuple,	().

Note	 that	 it	 is	 actually	 the	 comma	which	makes	 a	 tuple,	 not	 the
parentheses.	 The	 parentheses	 are	 optional,	 except	 in	 the	 empty
tuple	case,	or	when	they	are	needed	to	avoid	syntactic	ambiguity.
For	example,	f(a,	b,	c)	is	a	function	call	with	three	arguments,
while	f((a,	b,	c))	 is	a	 function	call	with	a	3-tuple	as	 the	sole
argument.

Tuples	implement	all	of	the	common	sequence	operations.

For	 heterogeneous	 collections	 of	 data	 where	 access	 by	 name	 is
clearer	than	access	by	index,	collections.namedtuple()	may	be
a	more	appropriate	choice	than	a	simple	tuple	object.

4.6.6.	Ranges

The	range	 type	represents	an	 immutable	sequence	of	numbers	and
is	commonly	used	for	looping	a	specific	number	of	times	in	for	loops.

class	range(stop)

class	range(start,	stop[,	step])
The	 arguments	 to	 the	 range	 constructor	must	 be	 integers	 (either
built-in	int	or	any	object	that	implements	the	__index__	special
method).	If	the	step	argument	is	omitted,	it	defaults	to	1.	If	the	start
argument	is	omitted,	it	defaults	to	0.	If	step	 is	zero,	ValueError
is	raised.

For	a	positive	step,	 the	 contents	of	 a	 range	 r	 are	determined	by
the	formula	r[i]	=	start	+	step*i	where	i	>=	0	and	r[i]
<	stop.

For	a	negative	step,	the	contents	of	the	range	are	still	determined
by	the	formula	r[i]	=	start	+	step*i,	but	the	constraints	are
i	>=	0	and	r[i]	>	stop.

A	 range	 object	 will	 be	 empty	 if	 r[0]	 does	 not	 meet	 the	 value
constraint.	 Ranges	 do	 support	 negative	 indices,	 but	 these	 are
interpreted	as	 indexing	 from	 the	end	of	 the	sequence	determined
by	the	positive	indices.

Ranges	containing	absolute	values	larger	than	sys.maxsize	are
permitted	 but	 some	 features	 (such	 as	 len())	 may	 raise
OverflowError.

Range	examples:

>>>	list(range(10))

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

>>>	list(range(1,	11))

[1,	2,	3,	4,	5,	6,	7,	8,	9,	10]

>>>	list(range(0,	30,	5))

[0,	5,	10,	15,	20,	25]

>>>	list(range(0,	10,	3))

[0,	3,	6,	9]

>>>	list(range(0,	-10,	-1))

[0,	-1,	-2,	-3,	-4,	-5,	-6,	-7,	-8,	-9]

>>>	list(range(0))

[]

>>>	list(range(1,	0))

[]

Ranges	implement	all	of	the	common	sequence	operations	except
concatenation	and	repetition	(due	to	the	fact	that	range	objects	can
only	represent	sequences	that	follow	a	strict	pattern	and	repetition
and	concatenation	will	usually	violate	that	pattern).

The	advantage	of	 the	range	 type	over	a	 regular	list	or	tuple	 is
that	 a	 range	 object	 will	 always	 take	 the	 same	 (small)	 amount	 of
memory,	no	matter	the	size	of	the	range	it	represents	(as	it	only	stores
the	start,	stop	 and	 step	 values,	 calculating	 individual	 items	 and
subranges	as	needed).

Range	 objects	 implement	 the	 collections.abc.Sequence	 ABC,
and	provide	features	such	as	containment	tests,	element	index	lookup,
slicing	and	support	 for	negative	 indices	(see	Sequence	Types	—	 list,
tuple,	range):

>>>	r	=	range(0,	20,	2)

>>>	r

range(0,	20,	2)

>>>	11	in	r

False

>>>	10	in	r

True

>>>	r.index(10)

5

>>>	r[5]

10

>>>	r[:5]

range(0,	10,	2)

>>>	r[-1]

18

Testing	range	objects	for	equality	with	==	and	!=	compares	them	as
sequences.	 That	 is,	 two	 range	 objects	 are	 considered	 equal	 if	 they
represent	the	same	sequence	of	values.	(Note	that	two	range	objects
that	 compare	 equal	 might	 have	 different	 start,	 stop	 and	 step
attributes,	 for	 example	 range(0)	 ==	 range(2,	 1,	 3)	 or
range(0,	3,	2)	==	range(0,	4,	2).)

Changed	 in	 version	 3.2:	 Implement	 the	 Sequence	 ABC.	 Support
slicing	 and	 negative	 indices.	 Test	 int	 objects	 for	 membership	 in
constant	time	instead	of	iterating	through	all	items.

Changed	in	version	3.3:	Define	‘==’	and	‘!=’	to	compare	range	objects
based	 on	 the	 sequence	 of	 values	 they	 define	 (instead	 of	 comparing
based	on	object	identity).

New	in	version	3.3:	The	start,	stop	and	step	attributes.

4.7.	Text	Sequence	Type	—	str

Textual	data	in	Python	is	handled	with	str	objects,	or	strings.	Strings
are	 immutable	sequences	 of	Unicode	 code	 points.	 String	 literals	 are
written	in	a	variety	of	ways:

Single	quotes:	'allows	embedded	"double"	quotes'
Double	quotes:	"allows	embedded	'single'	quotes".
Triple	 quoted:	 '''Three	 single	 quotes''',	 """Three
double	quotes"""

Triple	 quoted	 strings	 may	 span	 multiple	 lines	 -	 all	 associated
whitespace	will	be	included	in	the	string	literal.

String	 literals	 that	 are	 part	 of	 a	 single	 expression	 and	 have	 only
whitespace	between	them	will	be	implicitly	converted	to	a	single	string
literal.	That	is,	("spam	"	"eggs")	==	"spam	eggs".

See	String	and	Bytes	literals	for	more	about	the	various	forms	of	string
literal,	including	supported	escape	sequences,	and	the	r	(“raw”)	prefix
that	disables	most	escape	sequence	processing.

Strings	 may	 also	 be	 created	 from	 other	 objects	 using	 the	 str
constructor.

Since	there	is	no	separate	“character”	type,	indexing	a	string	produces
strings	 of	 length	 1.	 That	 is,	 for	 a	 non-empty	 string	 s,	 s[0]	 ==

s[0:1].

There	 is	 also	 no	 mutable	 string	 type,	 but	 str.join()	 or
io.StringIO	 can	 be	 used	 to	 efficiently	 construct	 strings	 from
multiple	fragments.

Changed	in	version	3.3:	For	backwards	compatibility	with	the	Python	2
series,	the	u	prefix	is	once	again	permitted	on	string	literals.	It	has	no
effect	on	 the	meaning	of	 string	 literals	and	cannot	be	combined	with
the	r	prefix.

class	str(object='')
class	str(object=b'',	encoding='utf-8',	errors='strict')

Return	a	string	version	of	object.	 If	object	 is	not	provided,	 returns
the	 empty	 string.	 Otherwise,	 the	 behavior	 of	 str()	 depends	 on
whether	encoding	or	errors	is	given,	as	follows.

If	 neither	 encoding	 nor	 errors	 is	 given,	 str(object)	 returns
object.__str__(),	 which	 is	 the	 “informal”	 or	 nicely	 printable
string	representation	of	object.	For	string	objects,	 this	 is	 the	string
itself.	 If	object	does	not	have	a	__str__()	method,	 then	str()
falls	back	to	returning	repr(object).

If	 at	 least	 one	 of	encoding	 or	errors	 is	 given,	object	 should	 be	 a
bytes-like	object	(e.g.	bytes	or	bytearray).	In	this	case,	if	object
is	 a	 bytes	 (or	 bytearray)	 object,	 then	 str(bytes,

encoding,	 errors)	 is	 equivalent	 to
bytes.decode(encoding,	 errors).	 Otherwise,	 the	 bytes
object	 underlying	 the	 buffer	 object	 is	 obtained	 before	 calling
bytes.decode().	 See	 Binary	 Sequence	 Types	 —	 bytes,
bytearray,	 memoryview	 and	 Buffer	 Protocol	 for	 information	 on
buffer	objects.

Passing	a	bytes	object	 to	str()	without	 the	encoding	or	errors
arguments	falls	under	the	first	case	of	returning	the	informal	string
representation	 (see	 also	 the	 -b	 command-line	 option	 to	 Python).
For	example:

>>>	str(b'Zoot!')

"b'Zoot!'"

For	more	 information	on	the	str	class	and	 its	methods,	see	Text
Sequence	 Type	—	 str	 and	 the	String	Methods	 section	 below.	 To
output	 formatted	 strings,	 see	 the	 String	 Formatting	 section.	 In
addition,	see	the	Text	Processing	Services	section.

4.7.1.	String	Methods

Strings	implement	all	of	the	common	sequence	operations,	along	with
the	additional	methods	described	below.

Strings	 also	 support	 two	 styles	 of	 string	 formatting,	 one	 providing	 a
large	 degree	 of	 flexibility	 and	 customization	 (see	 str.format(),
Format	String	Syntax	and	String	Formatting)	and	the	other	based	on	C
printf	style	formatting	that	handles	a	narrower	range	of	types	and	is
slightly	harder	to	use	correctly,	but	 is	often	faster	for	 the	cases	it	can
handle	(printf-style	String	Formatting).

The	Text	Processing	Services	section	of	the	standard	library	covers	a
number	 of	 other	 modules	 that	 provide	 various	 text	 related	 utilities
(including	regular	expression	support	in	the	re	module).

str.capitalize()
Return	a	 copy	of	 the	string	with	 its	 first	 character	 capitalized	and
the	rest	lowercased.

str.casefold()
Return	a	casefolded	copy	of	the	string.	Casefolded	strings	may	be
used	for	caseless	matching.

Casefolding	is	similar	to	lowercasing	but	more	aggressive	because
it	 is	 intended	 to	 remove	 all	 case	 distinctions	 in	 a	 string.	 For
example,	the	German	lowercase	letter	'ß'	is	equivalent	to	"ss".
Since	it	 is	already	lowercase,	lower()	would	do	nothing	to	'ß';
casefold()	converts	it	to	"ss".

The	 casefolding	 algorithm	 is	 described	 in	 section	 3.13	 of	 the
Unicode	Standard.

New	in	version	3.3.

str.center(width[,	fillchar])
Return	centered	in	a	string	of	length	width.	Padding	is	done	using
the	specified	fillchar	(default	is	a	space).

str.count(sub[,	start[,	end]])
Return	 the	 number	 of	 non-overlapping	 occurrences	 of	 substring
sub	in	the	range	[start,	end].	Optional	arguments	start	and	end	are
interpreted	as	in	slice	notation.

str.encode(encoding="utf-8",	errors="strict")
Return	an	encoded	version	of	the	string	as	a	bytes	object.	Default
encoding	is	'utf-8'.	errors	may	be	given	to	set	a	different	error
handling	 scheme.	 The	 default	 for	 errors	 is	 'strict',	 meaning
that	 encoding	 errors	 raise	 a	 UnicodeError.	 Other	 possible
values	 are	 'ignore',	 'replace',	 'xmlcharrefreplace',
'backslashreplace'	 and	 any	 other	 name	 registered	 via
codecs.register_error(),	see	section	Codec	Base	Classes.
For	a	list	of	possible	encodings,	see	section	Standard	Encodings.

Changed	in	version	3.1:	Support	for	keyword	arguments	added.

str.endswith(suffix[,	start[,	end]])
Return	True	 if	 the	string	ends	with	 the	specified	suffix,	otherwise
return	False.	suffix	can	also	be	a	tuple	of	suffixes	to	look	for.	With
optional	 start,	 test	 beginning	 at	 that	 position.	 With	 optional	 end,
stop	comparing	at	that	position.

str.expandtabs(tabsize=8)
Return	a	copy	of	the	string	where	all	tab	characters	are	replaced	by
one	 or	 more	 spaces,	 depending	 on	 the	 current	 column	 and	 the
given	 tab	 size.	 Tab	 positions	 occur	 every	 tabsize	 characters
(default	is	8,	giving	tab	positions	at	columns	0,	8,	16	and	so	on).	To
expand	the	string,	the	current	column	is	set	to	zero	and	the	string	is
examined	character	by	character.	If	the	character	is	a	tab	(\t),	one
or	more	space	characters	are	inserted	in	the	result	until	the	current
column	is	equal	to	the	next	tab	position.	(The	tab	character	itself	is
not	copied.)	 If	 the	character	 is	a	newline	 (\n)	or	 return	 (\r),	 it	 is
copied	and	the	current	column	is	reset	to	zero.	Any	other	character
is	copied	unchanged	and	the	current	column	is	incremented	by	one
regardless	of	how	the	character	is	represented	when	printed.

>>>	'01\t012\t0123\t01234'.expandtabs()

'01						012					0123				01234'

>>>	'01\t012\t0123\t01234'.expandtabs(4)

'01		012	0123				01234'

str.find(sub[,	start[,	end]])
Return	the	lowest	index	in	the	string	where	substring	sub	is	found,
such	 that	sub	 is	 contained	 in	 the	 slice	 s[start:end].	 Optional
arguments	start	and	end	are	interpreted	as	in	slice	notation.	Return
-1	if	sub	is	not	found.

Note: 	The	find()	method	should	be	used	only	 if	you	need	to
know	 the	position	of	sub.	To	check	 if	sub	 is	 a	 substring	 or	 not,
use	the	in	operator:

>>>	'Py'	in	'Python'

True

str.format(*args,	**kwargs)
Perform	 a	 string	 formatting	 operation.	 The	 string	 on	 which	 this
method	 is	 called	 can	 contain	 literal	 text	 or	 replacement	 fields
delimited	by	braces	{}.	Each	replacement	field	contains	either	the
numeric	index	of	a	positional	argument,	or	the	name	of	a	keyword
argument.	Returns	 a	 copy	 of	 the	 string	 where	 each	 replacement
field	 is	 replaced	 with	 the	 string	 value	 of	 the	 corresponding
argument.

>>>	"The	sum	of	1	+	2	is	{0}".format(1+2)

'The	sum	of	1	+	2	is	3'

See	 Format	 String	 Syntax	 for	 a	 description	 of	 the	 various
formatting	options	that	can	be	specified	in	format	strings.

str.format_map(mapping)
Similar	 to	 str.format(**mapping),	 except	 that	 mapping	 is
used	 directly	 and	 not	 copied	 to	 a	 dict.	 This	 is	 useful	 if	 for
example	mapping	is	a	dict	subclass:

>>>	class	Default(dict):

...					def	__missing__(self,	key):

...									return	key

...

>>>	'{name}	was	born	in	{country}'.format_map(Default

'Guido	was	born	in	country'

New	in	version	3.2.

str.index(sub[,	start[,	end]])
Like	 find(),	 but	 raise	 ValueError	 when	 the	 substring	 is	 not
found.

str.isalnum()
Return	 true	 if	 all	 characters	 in	 the	 string	 are	 alphanumeric	 and
there	 is	 at	 least	 one	 character,	 false	 otherwise.	 A	 character	 c	 is
alphanumeric	if	one	of	the	following	returns	True:	c.isalpha(),
c.isdecimal(),	c.isdigit(),	or	c.isnumeric().

str.isalpha()
Return	true	if	all	characters	in	the	string	are	alphabetic	and	there	is
at	 least	 one	 character,	 false	 otherwise.	Alphabetic	characters	are
those	 characters	 defined	 in	 the	 Unicode	 character	 database	 as
“Letter”,	 i.e.,	 those	 with	 general	 category	 property	 being	 one	 of
“Lm”,	 “Lt”,	 “Lu”,	 “Ll”,	 or	 “Lo”.	 Note	 that	 this	 is	 different	 from	 the
“Alphabetic”	property	defined	in	the	Unicode	Standard.

str.isdecimal()
Return	true	if	all	characters	in	the	string	are	decimal	characters	and
there	is	at	least	one	character,	false	otherwise.	Decimal	characters
are	those	from	general	category	“Nd”.	This	category	includes	digit
characters,	 and	 all	 characters	 that	 can	 be	 used	 to	 form	 decimal-
radix	numbers,	e.g.	U+0660,	ARABIC-INDIC	DIGIT	ZERO.

str.isdigit()
Return	 true	 if	all	characters	 in	 the	string	are	digits	and	 there	 is	at
least	 one	 character,	 false	 otherwise.	 Digits	 include	 decimal

characters	 and	 digits	 that	 need	 special	 handling,	 such	 as	 the
compatibility	superscript	digits.	Formally,	a	digit	 is	a	character	that
has	 the	 property	 value	 Numeric_Type=Digit	 or
Numeric_Type=Decimal.

str.isidentifier()
Return	 true	 if	 the	 string	 is	 a	 valid	 identifier	 according	 to	 the
language	definition,	section	Identifiers	and	keywords.

Use	keyword.iskeyword()	 to	 test	 for	reserved	 identifiers	such
as	def	and	class.

str.islower()
Return	 true	 if	 all	 cased	characters	 [4]	 in	 the	 string	are	 lowercase
and	there	is	at	least	one	cased	character,	false	otherwise.

str.isnumeric()
Return	 true	 if	 all	 characters	 in	 the	 string	 are	 numeric	 characters,
and	 there	 is	 at	 least	 one	 character,	 false	 otherwise.	 Numeric
characters	include	digit	characters,	and	all	characters	that	have	the
Unicode	 numeric	 value	 property,	 e.g.	 U+2155,	 VULGAR
FRACTION	ONE	 FIFTH.	 Formally,	 numeric	 characters	 are	 those
with	 the	 property	 value	 Numeric_Type=Digit,
Numeric_Type=Decimal	or	Numeric_Type=Numeric.

str.isprintable()
Return	true	if	all	characters	in	the	string	are	printable	or	the	string
is	 empty,	 false	 otherwise.	 Nonprintable	 characters	 are	 those
characters	defined	in	the	Unicode	character	database	as	“Other”	or
“Separator”,	excepting	the	ASCII	space	(0x20)	which	is	considered
printable.	 (Note	 that	printable	 characters	 in	 this	 context	are	 those
which	should	not	be	escaped	when	repr()	is	invoked	on	a	string.

It	has	no	bearing	on	the	handling	of	strings	written	to	sys.stdout
or	sys.stderr.)

str.isspace()
Return	true	if	there	are	only	whitespace	characters	in	the	string	and
there	 is	 at	 least	 one	 character,	 false	 otherwise.	 Whitespace
characters	are	 those	characters	defined	 in	 the	Unicode	character
database	 as	 “Other”	 or	 “Separator”	 and	 those	 with	 bidirectional
property	being	one	of	“WS”,	“B”,	or	“S”.

str.istitle()
Return	 true	 if	 the	string	 is	a	 titlecased	string	and	 there	 is	at	 least
one	character,	 for	example	uppercase	characters	may	only	 follow
uncased	 characters	 and	 lowercase	 characters	 only	 cased	 ones.
Return	false	otherwise.

str.isupper()
Return	 true	 if	all	cased	characters	 [4]	 in	 the	string	are	uppercase
and	there	is	at	least	one	cased	character,	false	otherwise.

str.join(iterable)
Return	 a	 string	 which	 is	 the	 concatenation	 of	 the	 strings	 in	 the
iterable	iterable.	A	TypeError	will	be	raised	if	there	are	any	non-
string	 values	 in	 iterable,	 including	 bytes	 objects.	 The	 separator
between	elements	is	the	string	providing	this	method.

str.ljust(width[,	fillchar])
Return	the	string	left	justified	in	a	string	of	length	width.	Padding	is
done	using	 the	specified	 fillchar	 (default	 is	 a	 space).	 The	 original
string	is	returned	if	width	is	less	than	or	equal	to	len(s).

str.lower()

Return	 a	 copy	 of	 the	 string	 with	 all	 the	 cased	 characters	 [4]
converted	to	lowercase.

The	lowercasing	algorithm	used	is	described	in	section	3.13	of	the
Unicode	Standard.

str.lstrip([chars])
Return	a	copy	of	 the	string	with	 leading	characters	 removed.	The
chars	 argument	 is	 a	 string	 specifying	 the	 set	 of	 characters	 to	 be
removed.	 If	 omitted	 or	 None,	 the	 chars	 argument	 defaults	 to
removing	whitespace.	The	chars	argument	is	not	a	prefix;	rather,	all
combinations	of	its	values	are	stripped:

>>>	'			spacious			'.lstrip()

'spacious			'

>>>	'www.example.com'.lstrip('cmowz.')

'example.com'

static	str.maketrans(x[,	y[,	z]])
This	 static	 method	 returns	 a	 translation	 table	 usable	 for
str.translate().

If	 there	 is	 only	 one	 argument,	 it	 must	 be	 a	 dictionary	 mapping
Unicode	 ordinals	 (integers)	 or	 characters	 (strings	 of	 length	 1)	 to
Unicode	ordinals,	strings	(of	arbitrary	 lengths)	or	None.	Character
keys	will	then	be	converted	to	ordinals.

If	 there	are	 two	arguments,	 they	must	 be	 strings	of	 equal	 length,
and	in	the	resulting	dictionary,	each	character	in	x	will	be	mapped
to	 the	 character	 at	 the	 same	 position	 in	 y.	 If	 there	 is	 a	 third
argument,	it	must	be	a	string,	whose	characters	will	be	mapped	to
None	in	the	result.

str.partition(sep)
Split	 the	string	at	 the	 first	occurrence	of	sep,	and	 return	a	3-tuple
containing	 the	 part	 before	 the	 separator,	 the	 separator	 itself,	 and
the	part	after	the	separator.	If	the	separator	is	not	found,	return	a	3-
tuple	containing	the	string	itself,	followed	by	two	empty	strings.

str.replace(old,	new[,	count])
Return	 a	 copy	 of	 the	 string	 with	 all	 occurrences	 of	 substring	 old
replaced	by	new.	If	 the	optional	argument	count	 is	given,	only	 the
first	count	occurrences	are	replaced.

str.rfind(sub[,	start[,	end]])
Return	the	highest	index	in	the	string	where	substring	sub	is	found,
such	 that	 sub	 is	 contained	 within	 s[start:end].	 Optional
arguments	start	and	end	are	interpreted	as	in	slice	notation.	Return
-1	on	failure.

str.rindex(sub[,	start[,	end]])
Like	rfind()	but	raises	ValueError	when	the	substring	sub	 is
not	found.

str.rjust(width[,	fillchar])
Return	the	string	right	 justified	in	a	string	of	 length	width.	Padding
is	done	using	the	specified	fillchar	(default	is	a	space).	The	original
string	is	returned	if	width	is	less	than	or	equal	to	len(s).

str.rpartition(sep)
Split	 the	string	at	 the	 last	occurrence	of	sep,	and	 return	a	3-tuple
containing	 the	 part	 before	 the	 separator,	 the	 separator	 itself,	 and
the	part	after	the	separator.	If	the	separator	is	not	found,	return	a	3-
tuple	containing	two	empty	strings,	followed	by	the	string	itself.

str.rsplit(sep=None,	maxsplit=-1)
Return	a	 list	of	 the	words	 in	 the	string,	using	sep	as	 the	delimiter
string.	 If	maxsplit	 is	 given,	 at	 most	maxsplit	 splits	 are	 done,	 the
rightmost	 ones.	 If	 sep	 is	 not	 specified	 or	 None,	 any	 whitespace
string	is	a	separator.	Except	for	splitting	from	the	right,	rsplit()
behaves	like	split()	which	is	described	in	detail	below.

str.rstrip([chars])
Return	a	 copy	of	 the	 string	with	 trailing	 characters	 removed.	The
chars	 argument	 is	 a	 string	 specifying	 the	 set	 of	 characters	 to	 be
removed.	 If	 omitted	 or	 None,	 the	 chars	 argument	 defaults	 to
removing	whitespace.	The	chars	argument	is	not	a	suffix;	rather,	all
combinations	of	its	values	are	stripped:

>>>	'			spacious			'.rstrip()

'			spacious'

>>>	'mississippi'.rstrip('ipz')

'mississ'

str.split(sep=None,	maxsplit=-1)
Return	a	 list	of	 the	words	 in	 the	string,	using	sep	as	 the	delimiter
string.	 If	maxsplit	 is	given,	at	most	maxsplit	 splits	are	done	 (thus,
the	list	will	have	at	most	maxsplit+1	elements).	If	maxsplit	is	not
specified	or	-1,	 then	 there	 is	no	 limit	on	 the	number	of	splits	 (all
possible	splits	are	made).

If	sep	is	given,	consecutive	delimiters	are	not	grouped	together	and
are	 deemed	 to	 delimit	 empty	 strings	 (for	 example,
'1,,2'.split(',')	 returns	 ['1',	 '',	 '2']).	 The	 sep
argument	 may	 consist	 of	 multiple	 characters	 (for	 example,
'1<>2<>3'.split('<>')	 returns	 ['1',	 '2',	 '3']).
Splitting	an	empty	string	with	a	specified	separator	returns	[''].

If	sep	 is	not	specified	or	 is	None,	 a	different	 splitting	algorithm	 is
applied:	 runs	of	consecutive	whitespace	are	 regarded	as	a	single
separator,	and	the	result	will	contain	no	empty	strings	at	the	start	or
end	 if	 the	string	has	 leading	or	 trailing	whitespace.	Consequently,
splitting	 an	 empty	 string	 or	 a	 string	 consisting	 of	 just	 whitespace
with	a	None	separator	returns	[].

For	example,	'	1		2			3		'.split()	 returns	['1',	'2',
'3'],	and	'		1		2			3		'.split(None,	1)	returns	['1',
'2			3		'].

str.splitlines([keepends])
Return	a	list	of	the	lines	in	the	string,	breaking	at	 line	boundaries.
This	 method	 uses	 the	 universal	 newlines	 approach	 to	 splitting
lines.	 Line	 breaks	 are	 not	 included	 in	 the	 resulting	 list	 unless
keepends	is	given	and	true.

For	 example,	 'ab	 c\n\nde	 fg\rkl\r\n'.splitlines()

returns	['ab	c',	'',	'de	fg',	'kl'],	while	 the	same	call
with	 splitlines(True)	 returns	 ['ab	 c\n',	 '\n',	 'de

fg\r',	'kl\r\n'].

Unlike	split()	when	a	delimiter	string	sep	 is	given,	 this	method
returns	an	empty	list	for	the	empty	string,	and	a	terminal	line	break
does	not	result	in	an	extra	line.

str.startswith(prefix[,	start[,	end]])
Return	 True	 if	 string	 starts	 with	 the	 prefix,	 otherwise	 return
False.	 prefix	 can	 also	 be	 a	 tuple	 of	 prefixes	 to	 look	 for.	 With
optional	start,	 test	 string	 beginning	 at	 that	 position.	With	 optional
end,	stop	comparing	string	at	that	position.

str.strip([chars])
Return	a	copy	of	the	string	with	the	leading	and	trailing	characters
removed.	 The	 chars	 argument	 is	 a	 string	 specifying	 the	 set	 of
characters	to	be	removed.	If	omitted	or	None,	the	chars	argument
defaults	 to	 removing	 whitespace.	 The	 chars	 argument	 is	 not	 a
prefix	or	suffix;	rather,	all	combinations	of	its	values	are	stripped:

>>>	'			spacious			'.strip()

'spacious'

>>>	'www.example.com'.strip('cmowz.')

'example'

str.swapcase()
Return	a	copy	of	the	string	with	uppercase	characters	converted	to
lowercase	and	vice	versa.	Note	 that	 it	 is	not	necessarily	 true	 that
s.swapcase().swapcase()	==	s.

str.title()
Return	a	titlecased	version	of	the	string	where	words	start	with	an
uppercase	character	and	the	remaining	characters	are	lowercase.

The	algorithm	uses	a	simple	 language-independent	definition	of	a
word	as	groups	of	consecutive	letters.	The	definition	works	in	many
contexts	 but	 it	 means	 that	 apostrophes	 in	 contractions	 and
possessives	form	word	boundaries,	which	may	not	be	the	desired
result:

>>>	"they're	bill's	friends	from	the	UK".title()

"They'Re	Bill'S	Friends	From	The	Uk"

A	 workaround	 for	 apostrophes	 can	 be	 constructed	 using	 regular
expressions:

>>>	import	re

>>>	def	titlecase(s):

...					return	re.sub(r"[A-Za-z]+('[A-Za-z]+)?",

...																			lambda	mo:	mo.group(0)[0].upper

...																														mo.group(0)[1:].lower

...																			s)

...

>>>	titlecase("they're	bill's	friends.")

"They're	Bill's	Friends."

str.translate(map)
Return	 a	 copy	 of	 the	 s	 where	 all	 characters	 have	 been	mapped
through	 the	map	 which	must	 be	 a	 dictionary	 of	 Unicode	 ordinals
(integers)	 to	 Unicode	 ordinals,	 strings	 or	 None.	 Unmapped
characters	 are	 left	 untouched.	 Characters	 mapped	 to	 None	 are
deleted.

You	can	use	str.maketrans()	to	create	a	translation	map	from
character-to-character	mappings	in	different	formats.

Note: 	 An	 even	 more	 flexible	 approach	 is	 to	 create	 a	 custom
character	 mapping	 codec	 using	 the	 codecs	 module	 (see
encodings.cp1251	for	an	example).

str.upper()
Return	 a	 copy	 of	 the	 string	 with	 all	 the	 cased	 characters	 [4]
converted	 to	 uppercase.	 Note	 that	 str.upper().isupper()
might	be	False	if	s	contains	uncased	characters	or	if	the	Unicode
category	 of	 the	 resulting	 character(s)	 is	 not	 “Lu”	 (Letter,
uppercase),	but	e.g.	“Lt”	(Letter,	titlecase).

The	uppercasing	algorithm	used	is	described	in	section	3.13	of	the

Unicode	Standard.

str.zfill(width)
Return	the	numeric	string	 left	 filled	with	zeros	 in	a	string	of	 length
width.	 A	 sign	 prefix	 is	 handled	 correctly.	 The	 original	 string	 is
returned	if	width	is	less	than	or	equal	to	len(s).

4.7.2.	printf-style	String	Formatting

Note: 	The	formatting	operations	described	here	exhibit	a	variety	of
quirks	that	lead	to	a	number	of	common	errors	(such	as	failing	to
display	tuples	and	dictionaries	correctly).	Using	the	newer
str.format()	interface	helps	avoid	these	errors,	and	also
provides	a	generally	more	powerful,	flexible	and	extensible	approach
to	formatting	text.

String	 objects	 have	 one	 unique	 built-in	 operation:	 the	 %	 operator
(modulo).	This	 is	also	known	as	 the	string	 formatting	or	 interpolation
operator.	 Given	 format	 %	 values	 (where	 format	 is	 a	 string),	 %
conversion	 specifications	 in	 format	 are	 replaced	 with	 zero	 or	 more
elements	of	values.	 The	effect	 is	 similar	 to	 using	 the	 sprintf()	 in
the	C	language.

If	format	requires	a	single	argument,	values	may	be	a	single	non-tuple
object.	[5]	Otherwise,	values	must	be	a	tuple	with	exactly	the	number
of	items	specified	by	the	format	string,	or	a	single	mapping	object	(for
example,	a	dictionary).

A	 conversion	 specifier	 contains	 two	 or	more	 characters	 and	 has	 the
following	components,	which	must	occur	in	this	order:

1.	 The	'%'	character,	which	marks	the	start	of	the	specifier.

2.	 Mapping	 key	 (optional),	 consisting	 of	 a	 parenthesised	 sequence
of	characters	(for	example,	(somename)).

3.	 Conversion	 flags	 (optional),	 which	 affect	 the	 result	 of	 some
conversion	types.

4.	 Minimum	 field	width	 (optional).	 If	 specified	as	an	 '*'	 (asterisk),
the	 actual	 width	 is	 read	 from	 the	 next	 element	 of	 the	 tuple	 in
values,	 and	 the	object	 to	 convert	 comes	after	 the	minimum	 field
width	and	optional	precision.

5.	 Precision	 (optional),	 given	 as	 a	 '.'	 (dot)	 followed	 by	 the
precision.	If	specified	as	'*'	(an	asterisk),	the	actual	precision	is
read	from	the	next	element	of	the	tuple	in	values,	and	the	value	to
convert	comes	after	the	precision.

6.	 Length	modifier	(optional).
7.	 Conversion	type.

When	the	right	argument	is	a	dictionary	(or	other	mapping	type),	then
the	 formats	 in	 the	 string	must	 include	 a	 parenthesised	mapping	 key
into	 that	dictionary	 inserted	 immediately	after	 the	'%'	character.	The
mapping	key	selects	the	value	to	be	formatted	from	the	mapping.	For
example:

>>>	print('%(language)s	has	%(number)03d	quote	types.'

...							{'language':	"Python",	"number":	2})

Python	has	002	quote	types.

In	this	case	no	*	specifiers	may	occur	in	a	format	(since	they	require	a
sequential	parameter	list).

The	conversion	flag	characters	are:

Flag Meaning

'#'
The	value	conversion	will	use	the	“alternate	form”	(where
defined	below).

'0' The	conversion	will	be	zero	padded	for	numeric	values.

'-'
The	converted	value	is	left	adjusted	(overrides	the	'0'
conversion	if	both	are	given).

'	'
(a	space)	A	blank	should	be	left	before	a	positive	number
(or	empty	string)	produced	by	a	signed	conversion.

'+'
A	sign	character	('+'	or	'-')	will	precede	the	conversion
(overrides	a	“space”	flag).

A	length	modifier	(h,	l,	or	L)	may	be	present,	but	is	ignored	as	it	is	not
necessary	for	Python	–	so	e.g.	%ld	is	identical	to	%d.

The	conversion	types	are:

Conversion Meaning Notes

'd' Signed	integer	decimal. 	

'i' Signed	integer	decimal. 	

'o' Signed	octal	value. (1)

'u' Obsolete	type	–	it	is	identical	to	'd'. (7)

'x' Signed	hexadecimal	(lowercase). (2)

'X' Signed	hexadecimal	(uppercase). (2)

'e'
Floating	point	exponential	format
(lowercase). (3)

'E'
Floating	point	exponential	format
(uppercase). (3)

'f' Floating	point	decimal	format. (3)

'F' Floating	point	decimal	format. (3)

'g'

Floating	point	format.	Uses	lowercase
exponential	format	if	exponent	is	less	than
-4	or	not	less	than	precision,	decimal	format (4)

otherwise.

'G'

Floating	point	format.	Uses	uppercase
exponential	format	if	exponent	is	less	than
-4	or	not	less	than	precision,	decimal	format
otherwise.

(4)

'c'
Single	character	(accepts	integer	or	single
character	string). 	

'r'
String	(converts	any	Python	object	using
repr()). (5)

's'
String	(converts	any	Python	object	using
str()). (5)

'a'
String	(converts	any	Python	object	using
ascii()). (5)

'%'
No	argument	is	converted,	results	in	a	'%'
character	in	the	result. 	

Notes:

1.	 The	 alternate	 form	 causes	 a	 leading	 zero	 ('0')	 to	 be	 inserted
between	left-hand	padding	and	the	formatting	of	the	number	if	the
leading	character	of	the	result	is	not	already	a	zero.

2.	 The	 alternate	 form	 causes	 a	 leading	 '0x'	 or	 '0X'	 (depending
on	 whether	 the	 'x'	 or	 'X'	 format	 was	 used)	 to	 be	 inserted
between	left-hand	padding	and	the	formatting	of	the	number	if	the
leading	character	of	the	result	is	not	already	a	zero.

3.	 The	alternate	form	causes	the	result	to	always	contain	a	decimal
point,	even	if	no	digits	follow	it.

The	 precision	 determines	 the	 number	 of	 digits	 after	 the	 decimal
point	and	defaults	to	6.

4.	 The	alternate	form	causes	the	result	to	always	contain	a	decimal
point,	 and	 trailing	 zeroes	 are	 not	 removed	 as	 they	 would
otherwise	be.

The	 precision	 determines	 the	 number	 of	 significant	 digits	 before
and	after	the	decimal	point	and	defaults	to	6.

5.	 If	precision	is	N,	the	output	is	truncated	to	N	characters.

7.	 See	PEP	237.

Since	Python	 strings	 have	 an	 explicit	 length,	 %s	 conversions	 do	 not
assume	that	'\0'	is	the	end	of	the	string.

Changed	in	version	3.1:	%f	conversions	for	numbers	whose	absolute
value	is	over	1e50	are	no	longer	replaced	by	%g	conversions.

http://www.python.org/dev/peps/pep-0237

4.8.	Binary	Sequence	Types	—	bytes,
bytearray,	memoryview

The	 core	 built-in	 types	 for	 manipulating	 binary	 data	 are	 bytes	 and
bytearray.	 They	 are	 supported	 by	 memoryview	 which	 uses	 the
buffer	protocol	 to	access	 the	memory	of	 other	binary	objects	without
needing	to	make	a	copy.

The	array	module	supports	efficient	storage	of	basic	data	types	like
32-bit	integers	and	IEEE754	double-precision	floating	values.

4.8.1.	Bytes

Bytes	objects	are	 immutable	 sequences	of	 single	bytes.	Since	many
major	 binary	 protocols	 are	 based	 on	 the	 ASCII	 text	 encoding,	 bytes
objects	 offer	 several	methods	 that	 are	 only	 valid	 when	working	 with
ASCII	 compatible	 data	 and	 are	 closely	 related	 to	 string	 objects	 in	 a
variety	of	other	ways.

Firstly,	the	syntax	for	bytes	literals	is	largely	the	same	as	that	for	string
literals,	except	that	a	b	prefix	is	added:

Single	 quotes:	 b'still	 allows	 embedded	 "double"

quotes'

Double	 quotes:	 b"still	 allows	 embedded	 'single'

quotes".
Triple	 quoted:	 b'''3	 single	 quotes''',	 b"""3	 double
quotes"""

Only	ASCII	characters	are	permitted	in	bytes	literals	(regardless	of	the
declared	source	code	encoding).	Any	binary	values	over	127	must	be

entered	into	bytes	literals	using	the	appropriate	escape	sequence.

As	with	string	literals,	bytes	literals	may	also	use	a	r	prefix	to	disable
processing	 of	 escape	 sequences.	 See	 String	 and	 Bytes	 literals	 for
more	 about	 the	 various	 forms	 of	 bytes	 literal,	 including	 supported
escape	sequences.

While	bytes	literals	and	representations	are	based	on	ASCII	text,	bytes
objects	 actually	 behave	 like	 immutable	 sequences	 of	 integers,	 with
each	 value	 in	 the	 sequence	 restricted	 such	 that	 0	 <=	 x	 <	 256
(attempts	 to	 violate	 this	 restriction	 will	 trigger	 ValueError.	 This	 is
done	deliberately	to	emphasise	that	while	many	binary	formats	include
ASCII	 based	 elements	 and	 can	 be	 usefully	 manipulated	 with	 some
text-oriented	 algorithms,	 this	 is	 not	 generally	 the	 case	 for	 arbitrary
binary	data	(blindly	applying	text	processing	algorithms	to	binary	data
formats	 that	 are	 not	 ASCII	 compatible	 will	 usually	 lead	 to	 data
corruption).

In	 addition	 to	 the	 literal	 forms,	 bytes	 objects	 can	 be	 created	 in	 a
number	of	other	ways:

A	zero-filled	bytes	object	of	a	specified	length:	bytes(10)
From	an	iterable	of	integers:	bytes(range(20))
Copying	existing	binary	data	via	the	buffer	protocol:	bytes(obj)

Also	see	the	bytes	built-in.

Since	 bytes	 objects	 are	 sequences	 of	 integers,	 for	 a	 bytes	 object	b,
b[0]	will	be	an	integer,	while	b[0:1]	will	be	a	bytes	object	of	length
1.	(This	contrasts	with	text	strings,	where	both	indexing	and	slicing	will
produce	a	string	of	length	1)

The	 representation	of	 bytes	objects	uses	 the	 literal	 format	 (b'...')

since	it	 is	often	more	useful	than	e.g.	bytes([46,	46,	46]).	You
can	 always	 convert	 a	 bytes	 object	 into	 a	 list	 of	 integers	 using
list(b).

Note: 	For	Python	2.x	users:	In	the	Python	2.x	series,	a	variety	of
implicit	conversions	between	8-bit	strings	(the	closest	thing	2.x	offers
to	a	built-in	binary	data	type)	and	Unicode	strings	were	permitted.
This	was	a	backwards	compatibility	workaround	to	account	for	the
fact	that	Python	originally	only	supported	8-bit	text,	and	Unicode	text
was	a	later	addition.	In	Python	3.x,	those	implicit	conversions	are
gone	-	conversions	between	8-bit	binary	data	and	Unicode	text	must
be	explicit,	and	bytes	and	string	objects	will	always	compare
unequal.

4.8.2.	Bytearray	Objects

bytearray	 objects	 are	 a	 mutable	 counterpart	 to	 bytes	 objects.
There	is	no	dedicated	literal	syntax	for	bytearray	objects,	instead	they
are	always	created	by	calling	the	constructor:

Creating	an	empty	instance:	bytearray()
Creating	 a	 zero-filled	 instance	 with	 a	 given	 length:
bytearray(10)

From	an	iterable	of	integers:	bytearray(range(20))
Copying	 existing	 binary	 data	 via	 the	 buffer	 protocol:
bytearray(b'Hi!')

As	bytearray	objects	are	mutable,	they	support	the	mutable	sequence
operations	 in	addition	 to	 the	common	bytes	and	bytearray	operations
described	in	Bytes	and	Bytearray	Operations.

Also	see	the	bytearray	built-in.

4.8.3.	Bytes	and	Bytearray	Operations

Both	 bytes	 and	 bytearray	 objects	 support	 the	 common	 sequence
operations.	They	interoperate	not	just	with	operands	of	the	same	type,
but	 with	 any	 object	 that	 supports	 the	 buffer	 protocol.	 Due	 to	 this
flexibility,	 they	 can	 be	 freely	 mixed	 in	 operations	 without	 causing
errors.	However,	the	return	type	of	the	result	may	depend	on	the	order
of	operands.

Due	to	the	common	use	of	ASCII	text	as	the	basis	for	binary	protocols,
bytes	and	bytearray	objects	provide	almost	all	methods	found	on	text
strings,	with	the	exceptions	of:

str.encode()	(which	converts	text	strings	to	bytes	objects)
str.format()	 and	 str.format_map()	 (which	 are	 used	 to
format	text	for	display	to	users)
str.isidentifier(),	 str.isnumeric(),
str.isdecimal(),	 str.isprintable()	 (which	 are	 used	 to
check	 various	 properties	 of	 text	 strings	 which	 are	 not	 typically
applicable	to	binary	protocols).

All	other	string	methods	are	supported,	although	sometimes	with	slight
differences	in	functionality	and	semantics	(as	described	below).

Note: 	The	methods	on	bytes	and	bytearray	objects	don’t	accept
strings	as	their	arguments,	just	as	the	methods	on	strings	don’t
accept	bytes	as	their	arguments.	For	example,	you	have	to	write:

a	=	"abc"

b	=	a.replace("a",	"f")

and:

a	=	b"abc"

b	=	a.replace(b"a",	b"f")

Whenever	a	bytes	or	bytearray	method	needs	to	interpret	the	bytes	as
characters	 (e.g.	 the	 is...()	 methods,	 split(),	 strip()),	 the
ASCII	character	set	is	assumed	(text	strings	use	Unicode	semantics).

Note: 	Using	these	ASCII	based	methods	to	manipulate	binary	data
that	is	not	stored	in	an	ASCII	based	format	may	lead	to	data
corruption.

The	search	operations	(in,	count(),	find(),	index(),	rfind()
and	 rindex())	 all	 accept	 both	 integers	 in	 the	 range	 0	 to	 255
(inclusive)	as	well	as	bytes	and	byte	array	sequences.

Changed	 in	 version	 3.3:	 All	 of	 the	 search	 methods	 also	 accept	 an
integer	in	the	range	0	to	255	(inclusive)	as	their	first	argument.

Each	bytes	and	bytearray	instance	provides	a	decode()	convenience
method	that	is	the	inverse	of	str.encode():

bytes.decode(encoding="utf-8",	errors="strict")
bytearray.decode(encoding="utf-8",	errors="strict")

Return	a	string	decoded	from	the	given	bytes.	Default	encoding	is
'utf-8'.	 errors	 may	 be	 given	 to	 set	 a	 different	 error	 handling
scheme.	 The	 default	 for	 errors	 is	 'strict',	 meaning	 that
encoding	errors	raise	a	UnicodeError.	Other	possible	values	are
'ignore',	 'replace'	 and	 any	 other	 name	 registered	 via
codecs.register_error(),	see	section	Codec	Base	Classes.
For	a	list	of	possible	encodings,	see	section	Standard	Encodings.

Changed	in	version	3.1:	Added	support	for	keyword	arguments.

Since	 2	 hexadecimal	 digits	 correspond	 precisely	 to	 a	 single	 byte,
hexadecimal	 numbers	 are	 a	 commonly	 used	 format	 for	 describing
binary	 data.	 Accordingly,	 the	 bytes	 and	 bytearray	 types	 have	 an
additional	class	method	to	read	data	in	that	format:

classmethod	bytes.fromhex(string)
classmethod	bytearray.fromhex(string)

This	 bytes	 class	 method	 returns	 a	 bytes	 or	 bytearray	 object,
decoding	 the	 given	 string	 object.	 The	 string	 must	 contain	 two
hexadecimal	digits	per	byte,	spaces	are	ignored.

>>>	bytes.fromhex('2Ef0	F1f2		')

b'.\xf0\xf1\xf2'

The	 maketrans	 and	 translate	 methods	 differ	 in	 semantics	 from	 the
versions	available	on	strings:

bytes.translate(table[,	delete])
bytearray.translate(table[,	delete])

Return	 a	 copy	 of	 the	 bytes	 or	 bytearray	 object	 where	 all	 bytes
occurring	 in	 the	 optional	 argument	 delete	 are	 removed,	 and	 the
remaining	bytes	have	been	mapped	 through	 the	given	 translation
table,	which	must	be	a	bytes	object	of	length	256.

You	 can	 use	 the	 bytes.maketrans()	 method	 to	 create	 a
translation	table.

Set	 the	 table	 argument	 to	 None	 for	 translations	 that	 only	 delete
characters:

>>>	b'read	this	short	text'.translate(None,	b'aeiou'

b'rd	ths	shrt	txt'

static	bytes.maketrans(from,	to)
static	bytearray.maketrans(from,	to)

This	 static	 method	 returns	 a	 translation	 table	 usable	 for
bytes.translate()	 that	 will	 map	 each	 character	 in	 from	 into
the	character	at	the	same	position	in	to;	from	and	to	must	be	bytes
objects	and	have	the	same	length.

New	in	version	3.1.

4.8.4.	Memory	Views

memoryview	objects	allow	Python	code	to	access	the	internal	data	of
an	object	that	supports	the	buffer	protocol	without	copying.

class	memoryview(obj)
Create	 a	 memoryview	 that	 references	obj.	obj	must	 support	 the
buffer	 protocol.	 Built-in	 objects	 that	 support	 the	 buffer	 protocol
include	bytes	and	bytearray.

A	memoryview	has	the	notion	of	an	element,	which	is	the	atomic
memory	unit	handled	by	the	originating	object	obj.	For	many	simple
types	 such	 as	 bytes	 and	 bytearray,	 an	 element	 is	 a	 single
byte,	 but	 other	 types	 such	 as	 array.array	 may	 have	 bigger
elements.

len(view)	is	equal	to	the	length	of	tolist.	If	view.ndim	=	0,
the	 length	 is	 1.	 If	 view.ndim	 =	 1,	 the	 length	 is	 equal	 to	 the
number	of	elements	in	the	view.	For	higher	dimensions,	the	length
is	equal	to	the	length	of	the	nested	list	representation	of	the	view.
The	 itemsize	 attribute	 will	 give	 you	 the	 number	 of	 bytes	 in	 a
single	element.

A	memoryview	 supports	 slicing	 to	 expose	 its	 data.	 If	 format	 is
one	 of	 the	 native	 format	 specifiers	 from	 the	 struct	 module,
indexing	 will	 return	 a	 single	 element	 with	 the	 correct	 type.	 Full
slicing	will	result	in	a	subview:

>>>	v	=	memoryview(b'abcefg')

>>>	v[1]

98

>>>	v[-1]

103

>>>	v[1:4]

<memory	at	0x7f3ddc9f4350>

>>>	bytes(v[1:4])

b'bce'

Other	native	formats:

>>>	import	array

>>>	a	=	array.array('l',	[-11111111,	22222222,	-33333333

>>>	a[0]

-11111111

>>>	a[-1]

44444444

>>>	a[2:3].tolist()

[-33333333]

>>>	a[::2].tolist()

[-11111111,	-33333333]

>>>	a[::-1].tolist()

[44444444,	-33333333,	22222222,	-11111111]

New	in	version	3.3.

If	 the	underlying	object	 is	writable,	the	memoryview	supports	slice
assignment.	Resizing	is	not	allowed:

>>>	data	=	bytearray(b'abcefg')

>>>	v	=	memoryview(data)

>>>	v.readonly

False

>>>	v[0]	=	ord(b'z')

>>>	data

bytearray(b'zbcefg')

>>>	v[1:4]	=	b'123'

>>>	data

bytearray(b'z123fg')

>>>	v[2:3]	=	b'spam'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	memoryview	assignment:	lvalue	and	rvalue	have	different	structures

>>>	v[2:6]	=	b'spam'

>>>	data

bytearray(b'z1spam')

One-dimensional	memoryviews	of	hashable	(read-only)	types	with
formats	 ‘B’,	 ‘b’	 or	 ‘c’	 are	 also	 hashable.	 The	 hash	 is	 defined	 as
hash(m)	==	hash(m.tobytes()):

>>>	v	=	memoryview(b'abcefg')

>>>	hash(v)	==	hash(b'abcefg')

True

>>>	hash(v[2:4])	==	hash(b'ce')

True

>>>	hash(v[::-2])	==	hash(b'abcefg'[::-2])

True

Changed	 in	 version	 3.3:	 One-dimensional	 memoryviews	 with
formats	‘B’,	‘b’	or	‘c’	are	now	hashable.

Changed	 in	 version	 3.4:	 memoryview	 is	 now	 registered
automatically	with	collections.abc.Sequence

memoryview	has	several	methods:

__eq__(exporter)
A	 memoryview	 and	 a	 PEP	 3118	 exporter	 are	 equal	 if	 their
shapes	are	equivalent	and	if	all	corresponding	values	are	equal
when	 the	 operands’	 respective	 format	 codes	 are	 interpreted
using	struct	syntax.

For	the	subset	of	struct	format	strings	currently	supported	by
tolist(),	 v	 and	 w	 are	 equal	 if	 v.tolist()	 ==

w.tolist():

>>>	import	array

>>>	a	=	array.array('I',	[1,	2,	3,	4,	5])

>>>	b	=	array.array('d',	[1.0,	2.0,	3.0,	4.0,	5.0

>>>	c	=	array.array('b',	[5,	3,	1])

>>>	x	=	memoryview(a)

>>>	y	=	memoryview(b)

>>>	x	==	a	==	y	==	b

True

>>>	x.tolist()	==	a.tolist()	==	y.tolist()	==	b

True

>>>	z	=	y[::-2]

>>>	z	==	c

True

>>>	z.tolist()	==	c.tolist()

True

If	either	 format	string	 is	not	supported	by	the	struct	module,
then	 the	 objects	 will	 always	 compare	 as	 unequal	 (even	 if	 the
format	strings	and	buffer	contents	are	identical):

>>>	from	ctypes	import	BigEndianStructure,	c_long

>>>	class	BEPoint(BigEndianStructure):

http://www.python.org/dev/peps/pep-3118

...					_fields_	=	[("x",	c_long),	("y",	c_long

...

>>>	point	=	BEPoint(100,	200)

>>>	a	=	memoryview(point)

>>>	b	=	memoryview(point)

>>>	a	==	point

False

>>>	a	==	b

False

Note	 that,	 as	 with	 floating	 point	 numbers,	 v	 is	 w	 does	 not
imply	v	==	w	for	memoryview	objects.

Changed	 in	 version	 3.3:	Previous	 versions	 compared	 the	 raw
memory	 disregarding	 the	 item	 format	 and	 the	 logical	 array
structure.

tobytes()
Return	the	data	in	the	buffer	as	a	bytestring.	This	is	equivalent
to	calling	the	bytes	constructor	on	the	memoryview.

>>>	m	=	memoryview(b"abc")

>>>	m.tobytes()

b'abc'

>>>	bytes(m)

b'abc'

For	non-contiguous	arrays	the	result	is	equal	to	the	flattened	list
representation	 with	 all	 elements	 converted	 to	 bytes.
tobytes()	supports	all	format	strings,	including	those	that	are
not	in	struct	module	syntax.

tolist()
Return	the	data	in	the	buffer	as	a	list	of	elements.

>>>	memoryview(b'abc').tolist()

[97,	98,	99]

>>>	import	array

>>>	a	=	array.array('d',	[1.1,	2.2,	3.3])

>>>	m	=	memoryview(a)

>>>	m.tolist()

[1.1,	2.2,	3.3]

Changed	 in	 version	 3.3:	 tolist()	 now	 supports	 all	 single
character	native	 formats	 in	struct	module	syntax	as	well	 as
multi-dimensional	representations.

release()
Release	 the	 underlying	 buffer	 exposed	 by	 the	 memoryview
object.	Many	objects	 take	special	actions	when	a	view	 is	held
on	 them	 (for	example,	a	bytearray	would	 temporarily	 forbid
resizing);	 therefore,	calling	 release()	 is	handy	 to	 remove	 these
restrictions	 (and	 free	 any	 dangling	 resources)	 as	 soon	 as
possible.

After	this	method	has	been	called,	any	further	operation	on	the
view	 raises	 a	 ValueError	 (except	 release()	 itself	 which
can	be	called	multiple	times):

>>>	m	=	memoryview(b'abc')

>>>	m.release()

>>>	m[0]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	operation	forbidden	on	released	memoryview	object

The	 context	 management	 protocol	 can	 be	 used	 for	 a	 similar

effect,	using	the	with	statement:

>>>	with	memoryview(b'abc')	as	m:

...					m[0]

...

97

>>>	m[0]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	operation	forbidden	on	released	memoryview	object

New	in	version	3.2.

cast(format[,	shape])
Cast	a	memoryview	to	a	new	format	or	shape.	shape	defaults	to
[byte_length//new_itemsize],	 which	 means	 that	 the
result	view	will	be	one-dimensional.	The	return	value	 is	a	new
memoryview,	but	the	buffer	itself	is	not	copied.	Supported	casts
are	1D	->	C-contiguous	and	C-contiguous	->	1D.

Both	 formats	are	 restricted	 to	single	element	native	 formats	 in
struct	syntax.	One	of	the	formats	must	be	a	byte	format	(‘B’,
‘b’	or	‘c’).	The	byte	length	of	the	result	must	be	the	same	as	the
original	length.

Cast	1D/long	to	1D/unsigned	bytes:

>>>	import	array

>>>	a	=	array.array('l',	[1,2,3])

>>>	x	=	memoryview(a)

>>>	x.format

'l'

>>>	x.itemsize

8

>>>	len(x)

3

>>>	x.nbytes

24

>>>	y	=	x.cast('B')

>>>	y.format

'B'

>>>	y.itemsize

1

>>>	len(y)

24

>>>	y.nbytes

24

Cast	1D/unsigned	bytes	to	1D/char:

>>>	b	=	bytearray(b'zyz')

>>>	x	=	memoryview(b)

>>>	x[0]	=	b'a'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ValueError:	memoryview:	invalid	value	for	format	"B"

>>>	y	=	x.cast('c')

>>>	y[0]	=	b'a'

>>>	b

bytearray(b'ayz')

Cast	1D/bytes	to	3D/ints	to	1D/signed	char:

>>>	import	struct

>>>	buf	=	struct.pack("i"*12,	*list(range(12)))

>>>	x	=	memoryview(buf)

>>>	y	=	x.cast('i',	shape=[2,2,3])

>>>	y.tolist()

[[[0,	1,	2],	[3,	4,	5]],	[[6,	7,	8],	[9,	10,	11]]]

>>>	y.format

'i'

>>>	y.itemsize

4

>>>	len(y)

2

>>>	y.nbytes

48

>>>	z	=	y.cast('b')

>>>	z.format

'b'

>>>	z.itemsize

1

>>>	len(z)

48

>>>	z.nbytes

48

Cast	1D/unsigned	char	to	2D/unsigned	long:

>>>	buf	=	struct.pack("L"*6,	*list(range(6)))

>>>	x	=	memoryview(buf)

>>>	y	=	x.cast('L',	shape=[2,3])

>>>	len(y)

2

>>>	y.nbytes

48

>>>	y.tolist()

[[0,	1,	2],	[3,	4,	5]]

New	in	version	3.3.

There	are	also	several	readonly	attributes	available:

obj

The	underlying	object	of	the	memoryview:

>>>	b		=	bytearray(b'xyz')

>>>	m	=	memoryview(b)

>>>	m.obj	is	b

True

New	in	version	3.3.

nbytes

nbytes	 ==	 product(shape)	 *	 itemsize	 ==

len(m.tobytes()).	This	is	the	amount	of	space	in	bytes	that
the	 array	 would	 use	 in	 a	 contiguous	 representation.	 It	 is	 not
necessarily	equal	to	len(m):

>>>	import	array

>>>	a	=	array.array('i',	[1,2,3,4,5])

>>>	m	=	memoryview(a)

>>>	len(m)

5

>>>	m.nbytes

20

>>>	y	=	m[::2]

>>>	len(y)

3

>>>	y.nbytes

12

>>>	len(y.tobytes())

12

Multi-dimensional	arrays:

>>>	import	struct

>>>	buf	=	struct.pack("d"*12,	*[1.5*x	for	x	in	

>>>	x	=	memoryview(buf)

>>>	y	=	x.cast('d',	shape=[3,4])

>>>	y.tolist()

[[0.0,	1.5,	3.0,	4.5],	[6.0,	7.5,	9.0,	10.5],	[12.0,	13.5,	15.0,	16.5]]

>>>	len(y)

3

>>>	y.nbytes

96

New	in	version	3.3.

readonly

A	bool	indicating	whether	the	memory	is	read	only.

format

A	 string	 containing	 the	 format	 (in	 struct	 module	 style)	 for
each	element	 in	 the	view.	A	memoryview	can	be	created	 from
exporters	with	arbitrary	format	strings,	but	some	methods	(e.g.
tolist())	are	restricted	to	native	single	element	formats.

Changed	 in	version	3.3:	 format	'B'	 is	now	handled	according
to	 the	 struct	 module	 syntax.	 This	 means	 that
memoryview(b'abc')[0]	==	b'abc'[0]	==	97.

itemsize

The	size	in	bytes	of	each	element	of	the	memoryview:

>>>	import	array,	struct

>>>	m	=	memoryview(array.array('H',	[32000,	32001

>>>	m.itemsize

2

>>>	m[0]

32000

>>>	struct.calcsize('H')	==	m.itemsize

True

ndim

An	 integer	 indicating	 how	 many	 dimensions	 of	 a	 multi-
dimensional	array	the	memory	represents.

shape

A	 tuple	of	 integers	 the	 length	of	ndim	giving	 the	shape	of	 the
memory	as	an	N-dimensional	array.

Changed	in	version	3.3:	An	empty	tuple	 instead	of	None	when
ndim	=	0.

strides

A	tuple	of	integers	the	length	of	ndim	giving	the	size	in	bytes	to
access	each	element	for	each	dimension	of	the	array.

Changed	in	version	3.3:	An	empty	tuple	 instead	of	None	when
ndim	=	0.

suboffsets

Used	 internally	 for	PIL-style	arrays.	The	value	 is	 informational
only.

c_contiguous

A	bool	indicating	whether	the	memory	is	C-contiguous.

New	in	version	3.3.

f_contiguous

A	bool	indicating	whether	the	memory	is	Fortran	contiguous.

New	in	version	3.3.

contiguous

A	bool	indicating	whether	the	memory	is	contiguous.

New	in	version	3.3.

4.9.	Set	Types	—	set,	frozenset

A	set	 object	 is	 an	 unordered	 collection	 of	 distinct	 hashable	 objects.
Common	uses	 include	membership	 testing,	removing	duplicates	 from
a	 sequence,	 and	 computing	 mathematical	 operations	 such	 as
intersection,	 union,	 difference,	 and	 symmetric	 difference.	 (For	 other
containers	see	the	built-in	dict,	list,	and	tuple	classes,	and	the
collections	module.)

Like	other	collections,	sets	support	x	in	set,	len(set),	and	for
x	in	set.	Being	an	unordered	collection,	sets	do	not	record	element
position	 or	 order	 of	 insertion.	 Accordingly,	 sets	 do	 not	 support
indexing,	slicing,	or	other	sequence-like	behavior.

There	are	currently	 two	built-in	set	 types,	set	and	frozenset.	The
set	 type	 is	mutable	—	the	contents	can	be	changed	using	methods
like	add()	and	remove().	Since	 it	 is	mutable,	 it	has	no	hash	value
and	 cannot	 be	 used	 as	 either	 a	 dictionary	 key	 or	 as	 an	 element	 of
another	set.	The	frozenset	 type	 is	 immutable	and	hashable	—	 its
contents	cannot	be	altered	after	it	is	created;	it	can	therefore	be	used
as	a	dictionary	key	or	as	an	element	of	another	set.

Non-empty	sets	(not	frozensets)	can	be	created	by	placing	a	comma-
separated	 list	 of	 elements	 within	 braces,	 for	 example:	 {'jack',
'sjoerd'},	in	addition	to	the	set	constructor.

The	constructors	for	both	classes	work	the	same:

class	set([iterable])
class	frozenset([iterable])

Return	 a	 new	 set	 or	 frozenset	 object	 whose	 elements	 are	 taken

from	 iterable.	 The	 elements	 of	 a	 set	 must	 be	 hashable.	 To
represent	sets	of	sets,	the	inner	sets	must	be	frozenset	objects.
If	iterable	is	not	specified,	a	new	empty	set	is	returned.

Instances	 of	 set	 and	 frozenset	 provide	 the	 following
operations:

len(s)

Return	the	cardinality	of	set	s.

x	in	s

Test	x	for	membership	in	s.

x	not	in	s

Test	x	for	non-membership	in	s.

isdisjoint(other)
Return	True	if	the	set	has	no	elements	in	common	with	other.
Sets	are	disjoint	if	and	only	if	their	intersection	is	the	empty	set.

issubset(other)
set	<=	other

Test	whether	every	element	in	the	set	is	in	other.

set	<	other

Test	whether	the	set	is	a	proper	subset	of	other,	that	is,	set	<=
other	and	set	!=	other.

issuperset(other)
set	>=	other

Test	whether	every	element	in	other	is	in	the	set.

set	>	other

Test	whether	the	set	is	a	proper	superset	of	other,	that	 is,	set
>=	other	and	set	!=	other.

union(other,	...)
set	|	other	|	...

Return	a	new	set	with	elements	from	the	set	and	all	others.

intersection(other,	...)
set	&	other	&	...

Return	 a	 new	 set	 with	 elements	 common	 to	 the	 set	 and	 all
others.

difference(other,	...)
set	-	other	-	...

Return	 a	 new	 set	with	 elements	 in	 the	 set	 that	 are	 not	 in	 the
others.

symmetric_difference(other)
set	^	other

Return	a	new	set	with	elements	in	either	the	set	or	other	but	not
both.

copy()
Return	a	new	set	with	a	shallow	copy	of	s.

Note,	 the	non-operator	versions	of	union(),	intersection(),
difference(),	 and	 symmetric_difference(),
issubset(),	 and	 issuperset()	 methods	 will	 accept	 any
iterable	 as	 an	 argument.	 In	 contrast,	 their	 operator	 based
counterparts	 require	 their	 arguments	 to	 be	 sets.	 This	 precludes
error-prone	constructions	 like	set('abc')	&	'cbs'	 in	 favor	 of
the	more	readable	set('abc').intersection('cbs').

Both	 set	 and	 frozenset	 support	 set	 to	 set	 comparisons.	 Two
sets	are	equal	if	and	only	if	every	element	of	each	set	is	contained
in	 the	 other	 (each	 is	 a	 subset	 of	 the	 other).	 A	 set	 is	 less	 than
another	 set	 if	 and	 only	 if	 the	 first	 set	 is	 a	 proper	 subset	 of	 the
second	 set	 (is	 a	 subset,	 but	 is	 not	 equal).	 A	 set	 is	 greater	 than
another	 set	 if	 and	 only	 if	 the	 first	 set	 is	 a	 proper	 superset	 of	 the
second	set	(is	a	superset,	but	is	not	equal).

Instances	of	set	are	compared	to	instances	of	frozenset	based
on	 their	 members.	 For	 example,	 set('abc')	 ==

frozenset('abc')	returns	True	and	so	does	set('abc')	in
set([frozenset('abc')]).

The	subset	and	equality	comparisons	do	not	generalize	 to	a	 total
ordering	function.	For	example,	any	two	nonempty	disjoint	sets	are
not	equal	and	are	not	subsets	of	each	other,	so	all	of	the	following
return	False:	a<b,	a==b,	or	a>b.

Since	 sets	 only	 define	 partial	 ordering	 (subset	 relationships),	 the
output	of	the	list.sort()	method	is	undefined	for	lists	of	sets.

Set	elements,	like	dictionary	keys,	must	be	hashable.

Binary	operations	that	mix	set	 instances	with	frozenset	 return
the	type	of	the	first	operand.	For	example:	frozenset('ab')	|
set('bc')	returns	an	instance	of	frozenset.

The	 following	 table	 lists	 operations	 available	 for	 set	 that	 do	 not
apply	to	immutable	instances	of	frozenset:

update(other,	...)
set	|=	other	|	...

Update	the	set,	adding	elements	from	all	others.

intersection_update(other,	...)
set	&=	other	&	...

Update	the	set,	keeping	only	elements	found	in	it	and	all	others.

difference_update(other,	...)
set	-=	other	|	...

Update	the	set,	removing	elements	found	in	others.

symmetric_difference_update(other)
set	^=	other

Update	 the	set,	keeping	only	elements	 found	 in	either	set,	but
not	in	both.

add(elem)
Add	element	elem	to	the	set.

remove(elem)
Remove	element	elem	from	the	set.	Raises	KeyError	 if	elem
is	not	contained	in	the	set.

discard(elem)
Remove	element	elem	from	the	set	if	it	is	present.

pop()
Remove	 and	 return	 an	 arbitrary	 element	 from	 the	 set.	 Raises
KeyError	if	the	set	is	empty.

clear()
Remove	all	elements	from	the	set.

Note,	 the	 non-operator	 versions	 of	 the	 update(),
intersection_update(),	 difference_update(),	 and
symmetric_difference_update()	 methods	 will	 accept	 any

iterable	as	an	argument.

Note,	 the	 elem	 argument	 to	 the	 __contains__(),	 remove(),
and	discard()	methods	may	be	a	set.	To	support	searching	for
an	equivalent	frozenset,	the	elem	set	is	temporarily	mutated	during
the	 search	 and	 then	 restored.	 During	 the	 search,	 the	 elem	 set
should	not	be	read	or	mutated	since	it	does	not	have	a	meaningful
value.

4.10.	Mapping	Types	—	dict

A	mapping	object	maps	hashable	values	to	arbitrary	objects.	Mappings
are	 mutable	 objects.	 There	 is	 currently	 only	 one	 standard	 mapping
type,	the	dictionary.	(For	other	containers	see	the	built-in	list,	set,
and	tuple	classes,	and	the	collections	module.)

A	 dictionary’s	 keys	 are	 almost	 arbitrary	 values.	 Values	 that	 are	 not
hashable,	that	is,	values	containing	lists,	dictionaries	or	other	mutable
types	(that	are	compared	by	value	rather	than	by	object	identity)	may
not	 be	 used	 as	 keys.	Numeric	 types	 used	 for	 keys	 obey	 the	 normal
rules	for	numeric	comparison:	if	two	numbers	compare	equal	(such	as
1	and	1.0)	then	they	can	be	used	interchangeably	to	index	the	same
dictionary	 entry.	 (Note	 however,	 that	 since	 computers	 store	 floating-
point	numbers	as	approximations	 it	 is	usually	unwise	 to	use	 them	as
dictionary	keys.)

Dictionaries	 can	 be	 created	 by	 placing	 a	 comma-separated	 list	 of
key:	 value	 pairs	 within	 braces,	 for	 example:	 {'jack':	 4098,
'sjoerd':	4127}	 or	 {4098:	'jack',	 4127:	 'sjoerd'},	 or
by	the	dict	constructor.

class	dict(**kwarg)
class	dict(mapping,	**kwarg)
class	dict(iterable,	**kwarg)

Return	 a	 new	 dictionary	 initialized	 from	 an	 optional	 positional
argument	and	a	possibly	empty	set	of	keyword	arguments.

If	no	positional	argument	is	given,	an	empty	dictionary	is	created.	If
a	 positional	 argument	 is	 given	 and	 it	 is	 a	 mapping	 object,	 a
dictionary	is	created	with	the	same	key-value	pairs	as	the	mapping

object.	 Otherwise,	 the	 positional	 argument	 must	 be	 an	 iterator
object.	 Each	 item	 in	 the	 iterable	 must	 itself	 be	 an	 iterator	 with
exactly	two	objects.	The	first	object	of	each	item	becomes	a	key	in
the	new	dictionary,	and	the	second	object	the	corresponding	value.
If	a	key	occurs	more	than	once,	the	last	value	for	that	key	becomes
the	corresponding	value	in	the	new	dictionary.

If	keyword	arguments	are	given,	the	keyword	arguments	and	their
values	 are	 added	 to	 the	 dictionary	 created	 from	 the	 positional
argument.	If	a	key	being	added	is	already	present,	 the	value	from
the	 keyword	 argument	 replaces	 the	 value	 from	 the	 positional
argument.

To	illustrate,	the	following	examples	all	return	a	dictionary	equal	to
{"one":	1,	"two":	2,	"three":	3}:

>>>	a	=	dict(one=1,	two=2,	three=3)

>>>	b	=	{'one':	1,	'two':	2,	'three':	3}

>>>	c	=	dict(zip(['one',	'two',	'three'],	[1,	2,	3

>>>	d	=	dict([('two',	2),	('one',	1),	('three',	3)])

>>>	e	=	dict({'three':	3,	'one':	1,	'two':	2})

>>>	a	==	b	==	c	==	d	==	e

True

Providing	keyword	arguments	as	in	the	first	example	only	works	for
keys	that	are	valid	Python	identifiers.	Otherwise,	any	valid	keys	can
be	used.

These	are	 the	operations	 that	dictionaries	support	 (and	 therefore,
custom	mapping	types	should	support	too):

len(d)

Return	the	number	of	items	in	the	dictionary	d.

d[key]

Return	the	item	of	d	with	key	key.	Raises	a	KeyError	if	key	is
not	in	the	map.

If	a	subclass	of	dict	defines	a	method	__missing__(),	 if	 the
key	key	is	not	present,	the	d[key]	operation	calls	that	method
with	 the	 key	 key	 as	 argument.	 The	 d[key]	 operation	 then
returns	 or	 raises	 whatever	 is	 returned	 or	 raised	 by	 the
__missing__(key)	 call	 if	 the	 key	 is	 not	 present.	 No	 other
operations	 or	 methods	 invoke	 __missing__().	 If
__missing__()	 is	 not	 defined,	 KeyError	 is	 raised.
__missing__()	must	be	a	method;	 it	cannot	be	an	 instance
variable:

>>>	class	Counter(dict):

...					def	__missing__(self,	key):

...									return	0

>>>	c	=	Counter()

>>>	c['red']

0

>>>	c['red']	+=	1

>>>	c['red']

1

See	 collections.Counter	 for	 a	 complete	 implementation
including	other	methods	helpful	for	accumulating	and	managing
tallies.

d[key]	=	value

Set	d[key]	to	value.

del	d[key]

Remove	d[key]	 from	d.	Raises	 a	 KeyError	 if	key	 is	 not	 in

the	map.

key	in	d

Return	True	if	d	has	a	key	key,	else	False.

key	not	in	d

Equivalent	to	not	key	in	d.

iter(d)

Return	 an	 iterator	 over	 the	 keys	 of	 the	 dictionary.	 This	 is	 a
shortcut	for	iter(d.keys()).

clear()
Remove	all	items	from	the	dictionary.

copy()
Return	a	shallow	copy	of	the	dictionary.

classmethod	fromkeys(seq[,	value])
Create	a	new	dictionary	with	keys	 from	seq	and	values	set	 to
value.

fromkeys()	 is	a	class	method	 that	 returns	a	new	dictionary.
value	defaults	to	None.

get(key[,	default])
Return	the	value	for	key	if	key	is	in	the	dictionary,	else	default.	If
default	 is	 not	 given,	 it	 defaults	 to	 None,	 so	 that	 this	 method
never	raises	a	KeyError.

items()
Return	 a	 new	 view	 of	 the	 dictionary’s	 items	 ((key,	value)

pairs).	See	the	documentation	of	view	objects.

keys()
Return	 a	 new	 view	 of	 the	 dictionary’s	 keys.	 See	 the
documentation	of	view	objects.

pop(key[,	default])
If	key	 is	 in	 the	 dictionary,	 remove	 it	 and	 return	 its	 value,	 else
return	 default.	 If	 default	 is	 not	 given	 and	 key	 is	 not	 in	 the
dictionary,	a	KeyError	is	raised.

popitem()
Remove	and	return	an	arbitrary	(key,	value)	pair	 from	 the
dictionary.

popitem()	 is	useful	 to	destructively	 iterate	over	a	dictionary,
as	often	used	in	set	algorithms.	If	the	dictionary	is	empty,	calling
popitem()	raises	a	KeyError.

setdefault(key[,	default])
If	key	is	in	the	dictionary,	return	its	value.	If	not,	insert	key	with	a
value	of	default	and	return	default.	default	defaults	to	None.

update([other])
Update	 the	 dictionary	 with	 the	 key/value	 pairs	 from	 other,
overwriting	existing	keys.	Return	None.

update()	 accepts	 either	 another	 dictionary	 object	 or	 an
iterable	of	key/value	pairs	(as	tuples	or	other	iterables	of	length
two).	If	keyword	arguments	are	specified,	the	dictionary	is	then
updated	 with	 those	 key/value	 pairs:	 d.update(red=1,

blue=2).

values()
Return	 a	 new	 view	 of	 the	 dictionary’s	 values.	 See	 the
documentation	of	view	objects.

See	also: 	types.MappingProxyType	can	be	used	to	create	a
read-only	view	of	a	dict.

4.10.1.	Dictionary	view	objects

The	 objects	 returned	 by	 dict.keys(),	 dict.values()	 and
dict.items()	are	view	objects.	They	provide	a	dynamic	view	on	the
dictionary’s	 entries,	 which	means	 that	 when	 the	 dictionary	 changes,
the	view	reflects	these	changes.

Dictionary	views	can	be	iterated	over	to	yield	their	respective	data,	and
support	membership	tests:

len(dictview)

Return	the	number	of	entries	in	the	dictionary.

iter(dictview)

Return	an	 iterator	over	 the	keys,	values	or	 items	 (represented	as
tuples	of	(key,	value))	in	the	dictionary.

Keys	 and	 values	 are	 iterated	 over	 in	 an	 arbitrary	 order	 which	 is
non-random,	varies	across	Python	 implementations,	and	depends
on	 the	 dictionary’s	 history	 of	 insertions	 and	 deletions.	 If	 keys,
values	 and	 items	 views	 are	 iterated	 over	 with	 no	 intervening
modifications	 to	 the	 dictionary,	 the	 order	 of	 items	 will	 directly
correspond.	This	allows	the	creation	of	(value,	key)	pairs	using
zip():	pairs	=	zip(d.values(),	d.keys()).	Another	way
to	create	 the	same	list	 is	pairs	=	[(v,	k)	for	(k,	v)	in

d.items()].

Iterating	 views	 while	 adding	 or	 deleting	 entries	 in	 the	 dictionary
may	raise	a	RuntimeError	or	fail	to	iterate	over	all	entries.

x	in	dictview

Return	 True	 if	x	 is	 in	 the	 underlying	 dictionary’s	 keys,	 values	 or
items	(in	the	latter	case,	x	should	be	a	(key,	value)	tuple).

Keys	views	are	set-like	since	their	entries	are	unique	and	hashable.	If
all	values	are	hashable,	so	that	(key,	value)	pairs	are	unique	and
hashable,	 then	 the	 items	view	 is	 also	 set-like.	 (Values	 views	 are	 not
treated	as	set-like	since	the	entries	are	generally	not	unique.)	For	set-
like	 views,	 all	 of	 the	 operations	 defined	 for	 the	 abstract	 base	 class
collections.abc.Set	are	available	(for	example,	==,	<,	or	^).

An	example	of	dictionary	view	usage:

>>>	dishes	=	{'eggs':	2,	'sausage':	1,	'bacon':	1,	'spam'

>>>	keys	=	dishes.keys()

>>>	values	=	dishes.values()

>>>	#	iteration

>>>	n	=	0

>>>	for	val	in	values:

...					n	+=	val

>>>	print(n)

504

>>>	#	keys	and	values	are	iterated	over	in	the	same	order

>>>	list(keys)

['eggs',	'bacon',	'sausage',	'spam']

>>>	list(values)

[2,	1,	1,	500]

>>>	#	view	objects	are	dynamic	and	reflect	dict	changes

>>>	del	dishes['eggs']

>>>	del	dishes['sausage']

>>>	list(keys)

['spam',	'bacon']

>>>	#	set	operations

>>>	keys	&	{'eggs',	'bacon',	'salad'}

{'bacon'}

>>>	keys	^	{'sausage',	'juice'}

{'juice',	'sausage',	'bacon',	'spam'}

4.11.	Context	Manager	Types

Python’s	 with	 statement	 supports	 the	 concept	 of	 a	 runtime	 context
defined	 by	 a	 context	 manager.	 This	 is	 implemented	 using	 a	 pair	 of
methods	 that	 allow	 user-defined	 classes	 to	 define	 a	 runtime	 context
that	is	entered	before	the	statement	body	is	executed	and	exited	when
the	statement	ends:

contextmanager.__enter__()
Enter	 the	 runtime	 context	 and	 return	either	 this	 object	 or	 another
object	 related	 to	 the	 runtime	 context.	 The	 value	 returned	 by	 this
method	 is	 bound	 to	 the	 identifier	 in	 the	 as	 clause	 of	 with
statements	using	this	context	manager.

An	example	of	a	context	manager	that	returns	itself	is	a	file	object.
File	objects	return	themselves	from	__enter__()	to	allow	open()	to
be	used	as	the	context	expression	in	a	with	statement.

An	example	of	a	context	manager	 that	 returns	a	 related	object	 is
the	 one	 returned	 by	 decimal.localcontext().	 These
managers	set	 the	active	decimal	context	 to	a	copy	of	 the	original
decimal	context	and	 then	 return	 the	copy.	This	allows	changes	 to
be	made	 to	 the	 current	 decimal	 context	 in	 the	 body	 of	 the	 with
statement	without	affecting	code	outside	the	with	statement.

contextmanager.__exit__(exc_type,	exc_val,	exc_tb)
Exit	the	runtime	context	and	return	a	Boolean	flag	indicating	if	any
exception	 that	 occurred	 should	 be	 suppressed.	 If	 an	 exception
occurred	 while	 executing	 the	 body	 of	 the	 with	 statement,	 the
arguments	 contain	 the	 exception	 type,	 value	 and	 traceback
information.	Otherwise,	all	three	arguments	are	None.

Returning	 a	 true	 value	 from	 this	 method	 will	 cause	 the	 with
statement	 to	 suppress	 the	exception	and	 continue	execution	with
the	 statement	 immediately	 following	 the	 with	 statement.
Otherwise	 the	 exception	 continues	 propagating	 after	 this	 method
has	 finished	executing.	Exceptions	 that	occur	during	execution	of
this	method	will	replace	any	exception	that	occurred	in	the	body	of
the	with	statement.

The	 exception	 passed	 in	 should	 never	 be	 reraised	 explicitly	 -
instead,	this	method	should	return	a	false	value	to	indicate	that	the
method	completed	successfully	and	does	not	want	to	suppress	the
raised	exception.	This	allows	context	management	code	 (such	as
contextlib.nested)	 to	 easily	 detect	 whether	 or	 not	 an
__exit__()	method	has	actually	failed.

Python	 defines	 several	 context	 managers	 to	 support	 easy	 thread
synchronisation,	prompt	closure	of	 files	or	other	objects,	and	simpler
manipulation	 of	 the	 active	 decimal	 arithmetic	 context.	 The	 specific
types	 are	 not	 treated	 specially	 beyond	 their	 implementation	 of	 the
context	management	protocol.	See	the	contextlib	module	for	some
examples.

Python’s	 generators	 and	 the	 contextlib.contextmanager

decorator	provide	a	convenient	way	to	implement	these	protocols.	If	a
generator	 function	 is	 decorated	 with	 the
contextlib.contextmanager	 decorator,	 it	 will	 return	 a	 context
manager	 implementing	 the	 necessary	 __enter__()	 and
__exit__()	 methods,	 rather	 than	 the	 iterator	 produced	 by	 an
undecorated	generator	function.

Note	that	there	is	no	specific	slot	for	any	of	these	methods	in	the	type
structure	 for	 Python	 objects	 in	 the	 Python/C	 API.	 Extension	 types

wanting	 to	 define	 these	 methods	 must	 provide	 them	 as	 a	 normal
Python	 accessible	method.	 Compared	 to	 the	 overhead	 of	 setting	 up
the	runtime	context,	the	overhead	of	a	single	class	dictionary	lookup	is
negligible.

4.12.	Other	Built-in	Types

The	interpreter	supports	several	other	kinds	of	objects.	Most	of	these
support	only	one	or	two	operations.

4.12.1.	Modules

The	only	special	operation	on	a	module	 is	attribute	access:	m.name,
where	m	 is	 a	 module	 and	 name	 accesses	 a	 name	 defined	 in	m‘s
symbol	 table.	 Module	 attributes	 can	 be	 assigned	 to.	 (Note	 that	 the
import	statement	is	not,	strictly	speaking,	an	operation	on	a	module
object;	import	foo	does	not	require	a	module	object	named	 foo	 to
exist,	rather	it	requires	an	(external)	definition	for	a	module	named	foo
somewhere.)

A	special	attribute	of	every	module	is	__dict__.	This	is	the	dictionary
containing	 the	 module’s	 symbol	 table.	 Modifying	 this	 dictionary	 will
actually	 change	 the	module’s	 symbol	 table,	 but	 direct	 assignment	 to
the	 __dict__	 attribute	 is	 not	 possible	 (you	 can	 write
m.__dict__['a']	=	1,	which	defines	m.a	 to	be	1,	 but	 you	can’t
write	 m.__dict__	 =	 {}).	 Modifying	 __dict__	 directly	 is	 not
recommended.

Modules	built	into	the	interpreter	are	written	like	this:	<module	'sys'
(built-in)>.	 If	 loaded	 from	 a	 file,	 they	 are	 written	 as	 <module
'os'	from	'/usr/local/lib/pythonX.Y/os.pyc'>.

4.12.2.	Classes	and	Class	Instances

See	Objects,	values	and	types	and	Class	definitions	for	these.

4.12.3.	Functions

Function	 objects	 are	 created	 by	 function	 definitions.	 The	 only
operation	on	a	function	object	is	to	call	it:	func(argument-list).

There	are	 really	 two	 flavors	of	 function	objects:	built-in	 functions	and
user-defined	 functions.	Both	 support	 the	 same	 operation	 (to	 call	 the
function),	but	the	implementation	is	different,	hence	the	different	object
types.

See	Function	definitions	for	more	information.

4.12.4.	Methods

Methods	 are	 functions	 that	 are	 called	 using	 the	 attribute	 notation.
There	are	 two	 flavors:	built-in	methods	 (such	as	 append()	 on	 lists)
and	class	 instance	methods.	Built-in	methods	are	described	with	 the
types	that	support	them.

If	 you	 access	 a	 method	 (a	 function	 defined	 in	 a	 class	 namespace)
through	an	 instance,	you	get	a	special	object:	a	bound	method	 (also
called	 instance	 method)	 object.	 When	 called,	 it	 will	 add	 the	 self
argument	to	the	argument	list.	Bound	methods	have	two	special	read-
only	 attributes:	 m.__self__	 is	 the	 object	 on	 which	 the	 method
operates,	and	m.__func__	is	the	function	implementing	the	method.
Calling	m(arg-1,	arg-2,	...,	arg-n)	 is	completely	equivalent
to	 calling	 m.__func__(m.__self__,	 arg-1,	 arg-2,	 ...,

arg-n).

Like	 function	objects,	bound	method	objects	support	getting	arbitrary
attributes.	However,	since	method	attributes	are	actually	stored	on	the

underlying	 function	 object	 (meth.__func__),	 setting	 method
attributes	 on	 bound	 methods	 is	 disallowed.	 Attempting	 to	 set	 an
attribute	on	a	method	results	in	an	AttributeError	being	raised.	In
order	 to	 set	 a	 method	 attribute,	 you	 need	 to	 explicitly	 set	 it	 on	 the
underlying	function	object:

>>>	class	C:

...					def	method(self):

...									pass

...

>>>	c	=	C()

>>>	c.method.whoami	=	'my	name	is	method'		#	can't	set	on	the	method

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

AttributeError:	'method'	object	has	no	attribute	'whoami'

>>>	c.method.__func__.whoami	=	'my	name	is	method'

>>>	c.method.whoami

'my	name	is	method'

See	The	standard	type	hierarchy	for	more	information.

4.12.5.	Code	Objects

Code	 objects	 are	 used	 by	 the	 implementation	 to	 represent	 “pseudo-
compiled”	executable	Python	code	such	as	a	function	body.	They	differ
from	 function	objects	because	 they	don’t	 contain	a	 reference	 to	 their
global	execution	environment.	Code	objects	are	returned	by	the	built-
in	 compile()	 function	 and	 can	 be	 extracted	 from	 function	 objects
through	their	__code__	attribute.	See	also	the	code	module.

A	code	object	can	be	executed	or	evaluated	by	passing	it	(instead	of	a
source	string)	to	the	exec()	or	eval()	built-in	functions.

See	The	standard	type	hierarchy	for	more	information.

4.12.6.	Type	Objects

Type	 objects	 represent	 the	 various	 object	 types.	 An	 object’s	 type	 is
accessed	 by	 the	 built-in	 function	 type().	 There	 are	 no	 special
operations	on	types.	The	standard	module	types	defines	names	 for
all	standard	built-in	types.

Types	are	written	like	this:	<class	'int'>.

4.12.7.	The	Null	Object

This	object	is	returned	by	functions	that	don’t	explicitly	return	a	value.
It	 supports	 no	 special	 operations.	 There	 is	 exactly	 one	 null	 object,
named	 None	 (a	 built-in	 name).	 type(None)()	 produces	 the	 same
singleton.

It	is	written	as	None.

4.12.8.	The	Ellipsis	Object

This	object	is	commonly	used	by	slicing	(see	Slicings).	It	supports	no
special	 operations.	 There	 is	 exactly	 one	 ellipsis	 object,	 named
Ellipsis	 (a	 built-in	 name).	 type(Ellipsis)()	 produces	 the
Ellipsis	singleton.

It	is	written	as	Ellipsis	or

4.12.9.	The	NotImplemented	Object

This	object	is	returned	from	comparisons	and	binary	operations	when
they	 are	 asked	 to	 operate	 on	 types	 they	 don’t	 support.	 See
Comparisons	 for	 more	 information.	 There	 is	 exactly	 one
NotImplemented	 object.	 type(NotImplemented)()	 produces
the	singleton	instance.

It	is	written	as	NotImplemented.

4.12.10.	Boolean	Values

Boolean	values	are	the	two	constant	objects	False	and	True.	They
are	used	to	represent	truth	values	(although	other	values	can	also	be
considered	false	or	true).	In	numeric	contexts	(for	example	when	used
as	 the	 argument	 to	 an	 arithmetic	 operator),	 they	 behave	 like	 the
integers	 0	 and	 1,	 respectively.	 The	 built-in	 function	 bool()	 can	 be
used	to	convert	any	value	to	a	Boolean,	if	the	value	can	be	interpreted
as	a	truth	value	(see	section	Truth	Value	Testing	above).

They	are	written	as	False	and	True,	respectively.

4.12.11.	Internal	Objects

See	The	standard	type	hierarchy	for	this	information.	It	describes	stack
frame	objects,	traceback	objects,	and	slice	objects.

4.13.	Special	Attributes

The	implementation	adds	a	few	special	read-only	attributes	to	several
object	types,	where	they	are	relevant.	Some	of	these	are	not	reported
by	the	dir()	built-in	function.

object.__dict__

A	 dictionary	 or	 other	 mapping	 object	 used	 to	 store	 an	 object’s
(writable)	attributes.

instance.__class__

The	class	to	which	a	class	instance	belongs.

class.__bases__

The	tuple	of	base	classes	of	a	class	object.

class.__name__

The	name	of	the	class	or	type.

class.__qualname__

The	qualified	name	of	the	class	or	type.

New	in	version	3.3.

class.__mro__

This	attribute	is	a	tuple	of	classes	that	are	considered	when	looking
for	base	classes	during	method	resolution.

class.mro()
This	method	 can	 be	 overridden	 by	 a	metaclass	 to	 customize	 the
method	 resolution	 order	 for	 its	 instances.	 It	 is	 called	 at	 class
instantiation,	and	its	result	is	stored	in	__mro__.

class.__subclasses__()
Each	 class	 keeps	 a	 list	 of	 weak	 references	 to	 its	 immediate
subclasses.	This	method	 returns	a	 list	of	all	 those	 references	still
alive.	Example:

>>>	int.__subclasses__()

[<class	'bool'>]

Footnotes

[1] Additional	information	on	these	special	methods	may	be	found
in	the	Python	Reference	Manual	(Basic	customization).

[2] As	a	consequence,	the	list	[1,	2]	is	considered	equal	to
[1.0,	2.0],	and	similarly	for	tuples.

[3] They	must	have	since	the	parser	can’t	tell	the	type	of	the
operands.

[4]
(1,	2,	3,	4)	Cased	characters	are	those	with	general	category
property	being	one	of	“Lu”	(Letter,	uppercase),	“Ll”	(Letter,
lowercase),	or	“Lt”	(Letter,	titlecase).

[5] To	format	only	a	tuple	you	should	therefore	provide	a	singleton
tuple	whose	only	element	is	the	tuple	to	be	formatted.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

5.	Built-in	Exceptions
In	 Python,	 all	 exceptions	 must	 be	 instances	 of	 a	 class	 that	 derives
from	 BaseException.	 In	 a	 try	 statement	 with	 an	 except	 clause
that	 mentions	 a	 particular	 class,	 that	 clause	 also	 handles	 any
exception	 classes	derived	 from	 that	 class	 (but	 not	 exception	 classes
from	which	it	is	derived).	Two	exception	classes	that	are	not	related	via
subclassing	are	never	equivalent,	even	if	they	have	the	same	name.

The	 built-in	 exceptions	 listed	 below	 can	 be	 generated	 by	 the
interpreter	or	built-in	functions.	Except	where	mentioned,	they	have	an
“associated	value”	indicating	the	detailed	cause	of	the	error.	This	may
be	 a	 string	 or	 a	 tuple	 of	 several	 items	 of	 information	 (e.g.,	 an	 error
code	and	a	string	explaining	the	code).	The	associated	value	is	usually
passed	as	arguments	to	the	exception	class’s	constructor.

User	code	can	 raise	built-in	exceptions.	This	 can	be	used	 to	 test	 an
exception	handler	or	to	report	an	error	condition	“just	like”	the	situation
in	 which	 the	 interpreter	 raises	 the	 same	 exception;	 but	 beware	 that
there	 is	 nothing	 to	 prevent	 user	 code	 from	 raising	 an	 inappropriate
error.

The	 built-in	 exception	 classes	 can	 be	 sub-classed	 to	 define	 new
exceptions;	 programmers	 are	 encouraged	 to	 at	 least	 derive	 new
exceptions	 from	 the	 Exception	 class	 and	 not	 BaseException.
More	 information	 on	 defining	 exceptions	 is	 available	 in	 the	 Python
Tutorial	under	User-defined	Exceptions.

When	 raising	 (or	 re-raising)	 an	 exception	 in	 an	 except	 clause
__context__	is	automatically	set	to	the	last	exception	caught;	if	the
new	 exception	 is	 not	 handled	 the	 traceback	 that	 is	 eventually

displayed	 will	 include	 the	 originating	 exception(s)	 and	 the	 final
exception.

When	raising	a	new	exception	(rather	than	using	a	bare	raise	to	re-
raise	 the	 exception	 currently	 being	 handled),	 the	 implicit	 exception
context	 can	 be	 supplemented	 with	 an	 explicit	 cause	 by	 using	 from
with	raise:

raise	new_exc	from	original_exc

The	expression	following	from	must	be	an	exception	or	None.	 It	will
be	 set	 as	 __cause__	 on	 the	 raised	 exception.	 Setting	 __cause__
also	 implicitly	 sets	 the	 __suppress_context__	 attribute	 to	 True,
so	 that	using	raise	new_exc	from	None	 effectively	 replaces	 the
old	exception	with	 the	new	one	 for	display	purposes	 (e.g.	 converting
KeyError	 to	 AttributeError,	 while	 leaving	 the	 old	 exception
available	in	__context__	for	introspection	when	debugging.

The	default	traceback	display	code	shows	these	chained	exceptions	in
addition	to	the	traceback	for	the	exception	itself.	An	explicitly	chained
exception	in	__cause__	is	always	shown	when	present.	An	implicitly
chained	 exception	 in	 __context__	 is	 shown	 only	 if	 __cause__	 is
None	and	__suppress_context__	is	false.

In	either	case,	the	exception	itself	 is	always	shown	after	any	chained
exceptions	so	that	the	final	line	of	the	traceback	always	shows	the	last
exception	that	was	raised.

5.1.	Base	classes

The	 following	 exceptions	 are	 used	mostly	 as	 base	 classes	 for	 other
exceptions.

exception	BaseException
The	 base	 class	 for	 all	 built-in	 exceptions.	 It	 is	 not	 meant	 to	 be
directly	 inherited	 by	 user-defined	 classes	 (for	 that,	 use
Exception).	 If	str()	 is	 called	on	an	 instance	of	 this	 class,	 the
representation	of	 the	argument(s)	 to	 the	 instance	are	 returned,	or
the	empty	string	when	there	were	no	arguments.

args

The	 tuple	 of	 arguments	 given	 to	 the	 exception	 constructor.
Some	 built-in	 exceptions	 (like	 IOError)	 expect	 a	 certain
number	 of	 arguments	 and	 assign	 a	 special	 meaning	 to	 the
elements	of	this	tuple,	while	others	are	usually	called	only	with
a	single	string	giving	an	error	message.

with_traceback(tb)
This	method	sets	tb	as	the	new	traceback	for	the	exception	and
returns	 the	 exception	 object.	 It	 is	 usually	 used	 in	 exception
handling	code	like	this:

try:

				...

except	SomeException:

				tb	=	sys.exc_info()[2]

				raise	OtherException(...).with_traceback(tb

exception	Exception

All	 built-in,	 non-system-exiting	 exceptions	 are	 derived	 from	 this
class.	All	user-defined	exceptions	should	also	be	derived	from	this
class.

exception	ArithmeticError
The	 base	 class	 for	 those	 built-in	 exceptions	 that	 are	 raised	 for
various	 arithmetic	 errors:	 OverflowError,
ZeroDivisionError,	FloatingPointError.

exception	BufferError
Raised	when	a	buffer	related	operation	cannot	be	performed.

exception	LookupError
The	base	 class	 for	 the	 exceptions	 that	 are	 raised	when	a	 key	 or
index	 used	 on	 a	 mapping	 or	 sequence	 is	 invalid:	 IndexError,
KeyError.	This	can	be	raised	directly	by	codecs.lookup().

5.2.	Concrete	exceptions

The	following	exceptions	are	the	exceptions	that	are	usually	raised.

exception	AssertionError
Raised	when	an	assert	statement	fails.

exception	AttributeError
Raised	 when	 an	 attribute	 reference	 (see	Attribute	 references)	 or
assignment	 fails.	 (When	 an	 object	 does	 not	 support	 attribute
references	or	attribute	assignments	at	all,	TypeError	is	raised.)

exception	EOFError
Raised	 when	 the	 input()	 function	 hits	 an	 end-of-file	 condition
(EOF)	without	 reading	 any	 data.	 (N.B.:	 the	 io.IOBase.read()
and	 io.IOBase.readline()	 methods	 return	 an	 empty	 string
when	they	hit	EOF.)

exception	FloatingPointError
Raised	 when	 a	 floating	 point	 operation	 fails.	 This	 exception	 is
always	defined,	but	can	only	be	raised	when	Python	is	configured
with	the	--with-fpectl	option,	or	the	WANT_SIGFPE_HANDLER
symbol	is	defined	in	the	pyconfig.h	file.

exception	GeneratorExit
Raise	 when	 a	 generator‘s	 close()	 method	 is	 called.	 It	 directly
inherits	 from	 BaseException	 instead	 of	 Exception	 since	 it	 is
technically	not	an	error.

exception	ImportError
Raised	 when	 an	 import	 statement	 fails	 to	 find	 the	 module

definition	or	when	a	from	...	import	fails	to	find	a	name	that	is
to	be	imported.

The	 name	 and	 path	 attributes	 can	 be	 set	 using	 keyword-only
arguments	to	the	constructor.	When	set	they	represent	the	name	of
the	module	that	was	attempted	to	be	imported	and	the	path	to	any
file	which	triggered	the	exception,	respectively.

Changed	in	version	3.3:	Added	the	name	and	path	attributes.

exception	IndexError
Raised	when	a	sequence	subscript	 is	out	of	 range.	 (Slice	 indices
are	silently	truncated	to	fall	in	the	allowed	range;	if	an	index	is	not
an	integer,	TypeError	is	raised.)

exception	KeyError
Raised	when	a	mapping	(dictionary)	key	 is	not	found	in	the	set	of
existing	keys.

exception	KeyboardInterrupt
Raised	when	the	user	hits	the	interrupt	key	(normally	Control-C
or	 Delete).	 During	 execution,	 a	 check	 for	 interrupts	 is	 made
regularly.	 The	 exception	 inherits	 from	 BaseException	 so	 as	 to
not	be	accidentally	caught	by	code	 that	catches	Exception	and
thus	prevent	the	interpreter	from	exiting.

exception	MemoryError
Raised	 when	 an	 operation	 runs	 out	 of	 memory	 but	 the	 situation
may	 still	 be	 rescued	 (by	 deleting	 some	 objects).	 The	 associated
value	is	a	string	indicating	what	kind	of	(internal)	operation	ran	out
of	 memory.	 Note	 that	 because	 of	 the	 underlying	 memory
management	architecture	(C’s	malloc()	function),	the	interpreter

may	not	always	be	able	to	completely	recover	from	this	situation;	it
nevertheless	raises	an	exception	so	that	a	stack	traceback	can	be
printed,	in	case	a	run-away	program	was	the	cause.

exception	NameError
Raised	when	a	local	or	global	name	is	not	found.	This	applies	only
to	 unqualified	 names.	 The	 associated	 value	 is	 an	 error	message
that	includes	the	name	that	could	not	be	found.

exception	NotImplementedError
This	 exception	 is	 derived	 from	 RuntimeError.	 In	 user	 defined
base	classes,	abstract	methods	should	 raise	 this	exception	when
they	require	derived	classes	to	override	the	method.

exception	OSError
This	exception	is	raised	when	a	system	function	returns	a	system-
related	error,	including	I/O	failures	such	as	“file	not	found”	or	“disk
full”	(not	for	illegal	argument	types	or	other	incidental	errors).	Often
a	subclass	of	OSError	will	actually	be	raised	as	described	in	OS
exceptions	 below.	 The	 errno	 attribute	 is	 a	 numeric	 error	 code
from	the	C	variable	errno.

Under	 Windows,	 the	 winerror	 attribute	 gives	 you	 the	 native
Windows	error	code.	The	errno	attribute	 is	 then	an	approximate
translation,	in	POSIX	terms,	of	that	native	error	code.

Under	all	 platforms,	 the	 strerror	 attribute	 is	 the	 corresponding
error	message	as	provided	by	the	operating	system	(as	formatted
by	 the	 C	 functions	 perror()	 under	 POSIX,	 and
FormatMessage()	Windows).

For	exceptions	that	involve	a	file	system	path	(such	as	open()	or

os.unlink()),	 the	 exception	 instance	will	 contain	 an	 additional
attribute,	filename,	which	is	the	file	name	passed	to	the	function.
For	 functions	 that	 involve	 two	 file	 system	 paths	 (such	 as
os.rename()),	 the	 exception	 instance	 will	 contain	 a	 second
filename2	 attribute	 corresponding	 to	 the	 second	 file	 name
passed	to	the	function.

Changed	 in	 version	 3.3:	 EnvironmentError,	 IOError,
WindowsError,	 VMSError,	 socket.error,	 select.error
and	mmap.error	have	been	merged	into	OSError.

Changed	 in	 version	 3.4:	 The	 filename	 attribute	 is	 now	 the
original	 file	 name	 passed	 to	 the	 function,	 instead	 of	 the	 name
encoded	 to	 or	 decoded	 from	 the	 filesystem	 encoding.	 Also,	 the
filename2	attribute	was	added.

exception	OverflowError
Raised	when	the	result	of	an	arithmetic	operation	is	too	large	to	be
represented.	 This	 cannot	 occur	 for	 integers	 (which	 would	 rather
raise	 MemoryError	 than	 give	 up).	 Because	 of	 the	 lack	 of
standardization	 of	 floating	 point	 exception	 handling	 in	 C,	 most
floating	point	operations	also	aren’t	checked.

exception	ReferenceError
This	exception	is	raised	when	a	weak	reference	proxy,	created	by
the	weakref.proxy()	function,	is	used	to	access	an	attribute	of
the	 referent	 after	 it	 has	 been	 garbage	 collected.	 For	 more
information	on	weak	references,	see	the	weakref	module.

exception	RuntimeError
Raised	 when	 an	 error	 is	 detected	 that	 doesn’t	 fall	 in	 any	 of	 the
other	categories.	The	associated	 value	 is	a	 string	 indicating	what

precisely	went	wrong.

exception	StopIteration
Raised	by	built-in	function	next()	and	an	iterator‘s	__next__()
method	 to	 signal	 that	 there	are	 no	 further	 items	produced	by	 the
iterator.

The	exception	object	has	a	single	attribute	value,	which	is	given
as	an	argument	when	constructing	 the	exception,	and	defaults	 to
None.

When	 a	 generator	 function	 returns,	 a	 new	 StopIteration
instance	 is	 raised,	and	 the	value	 returned	by	 the	 function	 is	used
as	the	value	parameter	to	the	constructor	of	the	exception.

Changed	in	version	3.3:	Added	value	attribute	and	the	ability	 for
generator	functions	to	use	it	to	return	a	value.

exception	SyntaxError
Raised	when	the	parser	encounters	a	syntax	error.	This	may	occur
in	an	import	statement,	in	a	call	to	the	built-in	functions	exec()
or	eval(),	or	when	reading	the	initial	script	or	standard	input	(also
interactively).

Instances	 of	 this	 class	 have	 attributes	 filename,	 lineno,
offset	and	text	 for	easier	access	 to	 the	details.	str()	of	 the
exception	instance	returns	only	the	message.

exception	IndentationError
Base	class	for	syntax	errors	related	to	incorrect	indentation.	This	is
a	subclass	of	SyntaxError.

exception	TabError

Raised	when	indentation	contains	an	inconsistent	use	of	tabs	and
spaces.	This	is	a	subclass	of	IndentationError.

exception	SystemError
Raised	when	the	interpreter	finds	an	internal	error,	but	the	situation
does	 not	 look	 so	 serious	 to	 cause	 it	 to	 abandon	 all	 hope.	 The
associated	 value	 is	 a	 string	 indicating	 what	 went	 wrong	 (in	 low-
level	terms).

You	should	 report	 this	 to	 the	author	or	maintainer	of	 your	Python
interpreter.	Be	sure	 to	 report	 the	version	of	 the	Python	 interpreter
(sys.version;	 it	 is	 also	 printed	 at	 the	 start	 of	 an	 interactive
Python	 session),	 the	 exact	 error	 message	 (the	 exception’s
associated	 value)	 and	 if	 possible	 the	 source	 of	 the	 program	 that
triggered	the	error.

exception	SystemExit
This	exception	 is	 raised	by	 the	sys.exit()	 function.	When	 it	 is
not	 handled,	 the	 Python	 interpreter	 exits;	 no	 stack	 traceback	 is
printed.	If	the	associated	value	is	an	integer,	it	specifies	the	system
exit	status	(passed	to	C’s	exit()	 function);	 if	 it	 is	None,	 the	exit
status	is	zero;	if	it	has	another	type	(such	as	a	string),	the	object’s
value	is	printed	and	the	exit	status	is	one.

Instances	have	an	attribute	code	which	is	set	to	the	proposed	exit
status	or	error	message	(defaulting	 to	None).	Also,	 this	exception
derives	directly	from	BaseException	and	not	Exception,	since
it	is	not	technically	an	error.

A	call	to	sys.exit()	is	translated	into	an	exception	so	that	clean-
up	 handlers	 (finally	 clauses	 of	 try	 statements)	 can	 be
executed,	 and	 so	 that	 a	 debugger	 can	 execute	 a	 script	 without

running	 the	 risk	 of	 losing	 control.	 The	 os._exit()	 function	 can
be	used	 if	 it	 is	absolutely	positively	necessary	 to	exit	 immediately
(for	example,	in	the	child	process	after	a	call	to	os.fork()).

The	 exception	 inherits	 from	 BaseException	 instead	 of
Exception	 so	 that	 it	 is	 not	 accidentally	 caught	 by	 code	 that
catches	 Exception.	 This	 allows	 the	 exception	 to	 properly
propagate	up	and	cause	the	interpreter	to	exit.

exception	TypeError
Raised	 when	 an	 operation	 or	 function	 is	 applied	 to	 an	 object	 of
inappropriate	 type.	The	associated	 value	 is	a	 string	giving	details
about	the	type	mismatch.

exception	UnboundLocalError
Raised	when	a	reference	is	made	to	a	local	variable	in	a	function	or
method,	 but	 no	 value	 has	 been	 bound	 to	 that	 variable.	 This	 is	 a
subclass	of	NameError.

exception	UnicodeError
Raised	when	a	Unicode-related	encoding	or	decoding	error	occurs.
It	is	a	subclass	of	ValueError.

UnicodeError	 has	 attributes	 that	 describe	 the	 encoding	 or
decoding	 error.	 For	 example,
err.object[err.start:err.end]	gives	 the	particular	 invalid
input	that	the	codec	failed	on.

encoding

The	name	of	the	encoding	that	raised	the	error.

reason

A	string	describing	the	specific	codec	error.

object

The	object	the	codec	was	attempting	to	encode	or	decode.

start

The	first	index	of	invalid	data	in	object.

end

The	index	after	the	last	invalid	data	in	object.

exception	UnicodeEncodeError
Raised	when	a	Unicode-related	error	occurs	during	encoding.	It	 is
a	subclass	of	UnicodeError.

exception	UnicodeDecodeError
Raised	when	a	Unicode-related	error	occurs	during	decoding.	It	 is
a	subclass	of	UnicodeError.

exception	UnicodeTranslateError
Raised	when	a	Unicode-related	error	occurs	during	translating.	It	is
a	subclass	of	UnicodeError.

exception	ValueError
Raised	when	a	built-in	operation	or	function	receives	an	argument
that	has	the	right	type	but	an	inappropriate	value,	and	the	situation
is	 not	 described	 by	 a	 more	 precise	 exception	 such	 as
IndexError.

exception	ZeroDivisionError
Raised	 when	 the	 second	 argument	 of	 a	 division	 or	 modulo
operation	 is	 zero.	 The	 associated	 value	 is	 a	 string	 indicating	 the
type	of	the	operands	and	the	operation.

The	 following	 exceptions	 are	 kept	 for	 compatibility	 with	 previous

versions;	starting	from	Python	3.3,	they	are	aliases	of	OSError.

exception	EnvironmentError

exception	IOError

exception	VMSError
Only	available	on	VMS.

exception	WindowsError
Only	available	on	Windows.

5.2.1.	OS	exceptions

The	following	exceptions	are	subclasses	of	OSError,	they	get	raised
depending	on	the	system	error	code.

exception	BlockingIOError
Raised	when	an	operation	would	block	on	an	object	 (e.g.	socket)
set	 for	 non-blocking	 operation.	 Corresponds	 to	 errno	 EAGAIN,
EALREADY,	EWOULDBLOCK	and	EINPROGRESS.

In	 addition	 to	 those	 of	 OSError,	 BlockingIOError	 can	 have
one	more	attribute:

characters_written

An	 integer	 containing	 the	 number	 of	 characters	 written	 to	 the
stream	before	it	blocked.	This	attribute	is	available	when	using
the	buffered	I/O	classes	from	the	io	module.

exception	ChildProcessError
Raised	when	an	operation	on	a	child	process	failed.	Corresponds
to	errno	ECHILD.

exception	ConnectionError
A	base	class	for	connection-related	issues.

Subclasses	 are	 BrokenPipeError,
ConnectionAbortedError,	 ConnectionRefusedError	 and
ConnectionResetError.

exception	BrokenPipeError
A	subclass	of	ConnectionError,	raised	when	trying	to	write	on	a
pipe	while	 the	other	end	has	been	closed,	or	 trying	 to	write	on	a
socket	 which	 has	 been	 shutdown	 for	 writing.	 Corresponds	 to
errno	EPIPE	and	ESHUTDOWN.

exception	ConnectionAbortedError
A	 subclass	 of	 ConnectionError,	 raised	 when	 a	 connection
attempt	 is	 aborted	 by	 the	 peer.	 Corresponds	 to	 errno

ECONNABORTED.

exception	ConnectionRefusedError
A	 subclass	 of	 ConnectionError,	 raised	 when	 a	 connection
attempt	 is	 refused	 by	 the	 peer.	 Corresponds	 to	 errno

ECONNREFUSED.

exception	ConnectionResetError
A	 subclass	 of	 ConnectionError,	 raised	 when	 a	 connection	 is
reset	by	the	peer.	Corresponds	to	errno	ECONNRESET.

exception	FileExistsError
Raised	 when	 trying	 to	 create	 a	 file	 or	 directory	 which	 already
exists.	Corresponds	to	errno	EEXIST.

exception	FileNotFoundError

Raised	 when	 a	 file	 or	 directory	 is	 requested	 but	 doesn’t	 exist.
Corresponds	to	errno	ENOENT.

exception	InterruptedError
Raised	 when	 a	 system	 call	 is	 interrupted	 by	 an	 incoming	 signal.
Corresponds	to	errno	EINTR.

exception	IsADirectoryError
Raised	when	a	file	operation	(such	as	os.remove())	is	requested
on	a	directory.	Corresponds	to	errno	EISDIR.

exception	NotADirectoryError
Raised	 when	 a	 directory	 operation	 (such	 as	 os.listdir())	 is
requested	 on	 something	which	 is	 not	 a	 directory.	Corresponds	 to
errno	ENOTDIR.

exception	PermissionError
Raised	 when	 trying	 to	 run	 an	 operation	 without	 the	 adequate
access	rights	-	for	example	filesystem	permissions.	Corresponds	to
errno	EACCES	and	EPERM.

exception	ProcessLookupError
Raised	when	a	given	process	doesn’t	exist.	Corresponds	to	errno
ESRCH.

exception	TimeoutError
Raised	 when	 a	 system	 function	 timed	 out	 at	 the	 system	 level.
Corresponds	to	errno	ETIMEDOUT.

New	in	version	3.3:	All	the	above	OSError	subclasses	were	added.

See	also: 	PEP	3151	-	Reworking	the	OS	and	IO	exception

http://www.python.org/dev/peps/pep-3151

hierarchy

5.3.	Warnings

The	 following	 exceptions	 are	 used	 as	 warning	 categories;	 see	 the
warnings	module	for	more	information.

exception	Warning
Base	class	for	warning	categories.

exception	UserWarning
Base	class	for	warnings	generated	by	user	code.

exception	DeprecationWarning
Base	class	for	warnings	about	deprecated	features.

exception	PendingDeprecationWarning
Base	class	for	warnings	about	features	which	will	be	deprecated	in
the	future.

exception	SyntaxWarning
Base	class	for	warnings	about	dubious	syntax

exception	RuntimeWarning
Base	class	for	warnings	about	dubious	runtime	behavior.

exception	FutureWarning
Base	 class	 for	 warnings	 about	 constructs	 that	 will	 change
semantically	in	the	future.

exception	ImportWarning
Base	 class	 for	 warnings	 about	 probable	 mistakes	 in	 module
imports.

exception	UnicodeWarning

Base	class	for	warnings	related	to	Unicode.

exception	BytesWarning
Base	class	for	warnings	related	to	bytes	and	bytearray.

exception	ResourceWarning
Base	class	for	warnings	related	to	resource	usage.

New	in	version	3.2.

5.4.	Exception	hierarchy

The	class	hierarchy	for	built-in	exceptions	is:

BaseException

	+--	SystemExit

	+--	KeyboardInterrupt

	+--	GeneratorExit

	+--	Exception

						+--	StopIteration

						+--	ArithmeticError

						|				+--	FloatingPointError

						|				+--	OverflowError

						|				+--	ZeroDivisionError

						+--	AssertionError

						+--	AttributeError

						+--	BufferError

						+--	EOFError

						+--	ImportError

						+--	LookupError

						|				+--	IndexError

						|				+--	KeyError

						+--	MemoryError

						+--	NameError

						|				+--	UnboundLocalError

						+--	OSError

						|				+--	BlockingIOError

						|				+--	ChildProcessError

						|				+--	ConnectionError

						|				|				+--	BrokenPipeError

						|				|				+--	ConnectionAbortedError

						|				|				+--	ConnectionRefusedError

						|				|				+--	ConnectionResetError

						|				+--	FileExistsError

						|				+--	FileNotFoundError

						|				+--	InterruptedError

						|				+--	IsADirectoryError

						|				+--	NotADirectoryError

						|				+--	PermissionError

						|				+--	ProcessLookupError

						|				+--	TimeoutError

						+--	ReferenceError

						+--	RuntimeError

						|				+--	NotImplementedError

						+--	SyntaxError

						|				+--	IndentationError

						|									+--	TabError

						+--	SystemError

						+--	TypeError

						+--	ValueError

						|				+--	UnicodeError

						|									+--	UnicodeDecodeError

						|									+--	UnicodeEncodeError

						|									+--	UnicodeTranslateError

						+--	Warning

											+--	DeprecationWarning

											+--	PendingDeprecationWarning

											+--	RuntimeWarning

											+--	SyntaxWarning

											+--	UserWarning

											+--	FutureWarning

											+--	ImportWarning

											+--	UnicodeWarning

											+--	BytesWarning

											+--	ResourceWarning

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

6.	Text	Processing	Services
The	modules	described	in	this	chapter	provide	a	wide	range	of	string
manipulation	operations	and	other	text	processing	services.

The	 codecs	 module	 described	 under	Binary	 Data	 Services	 is	 also
highly	relevant	 to	 text	processing.	 In	addition,	see	the	documentation
for	Python’s	built-in	string	type	in	Text	Sequence	Type	—	str.

6.1.	string	—	Common	string	operations
6.1.1.	String	constants
6.1.2.	String	Formatting
6.1.3.	Format	String	Syntax

6.1.3.1.	Format	Specification	Mini-Language
6.1.3.2.	Format	examples

6.1.4.	Template	strings
6.1.5.	Helper	functions

6.2.	re	—	Regular	expression	operations
6.2.1.	Regular	Expression	Syntax
6.2.2.	Module	Contents
6.2.3.	Regular	Expression	Objects
6.2.4.	Match	Objects
6.2.5.	Regular	Expression	Examples

6.2.5.1.	Checking	for	a	Pair
6.2.5.2.	Simulating	scanf()
6.2.5.3.	search()	vs.	match()
6.2.5.4.	Making	a	Phonebook
6.2.5.5.	Text	Munging
6.2.5.6.	Finding	all	Adverbs
6.2.5.7.	Finding	all	Adverbs	and	their	Positions
6.2.5.8.	Raw	String	Notation
6.2.5.9.	Writing	a	Tokenizer

6.3.	difflib	—	Helpers	for	computing	deltas
6.3.1.	SequenceMatcher	Objects
6.3.2.	SequenceMatcher	Examples
6.3.3.	Differ	Objects
6.3.4.	Differ	Example
6.3.5.	A	command-line	interface	to	difflib

6.4.	textwrap	—	Text	wrapping	and	filling
6.5.	unicodedata	—	Unicode	Database
6.6.	stringprep	—	Internet	String	Preparation
6.7.	readline	—	GNU	readline	interface

6.7.1.	Example
6.8.	rlcompleter	—	Completion	function	for	GNU	readline

6.8.1.	Completer	Objects

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.1.	string	—	Common	string
operations
Source	code:	Lib/string.py

See	also: 	Text	Sequence	Type	—	str

String	Methods

http://hg.python.org/cpython/file/3.4/Lib/string.py

6.1.1.	String	constants

The	constants	defined	in	this	module	are:

string.ascii_letters

The	 concatenation	 of	 the	 ascii_lowercase	 and
ascii_uppercase	 constants	described	below.	This	 value	 is	not
locale-dependent.

string.ascii_lowercase

The	 lowercase	 letters	 'abcdefghijklmnopqrstuvwxyz'.	 This
value	is	not	locale-dependent	and	will	not	change.

string.ascii_uppercase

The	uppercase	 letters	'ABCDEFGHIJKLMNOPQRSTUVWXYZ'.	 This
value	is	not	locale-dependent	and	will	not	change.

string.digits

The	string	'0123456789'.

string.hexdigits

The	string	'0123456789abcdefABCDEF'.

string.octdigits

The	string	'01234567'.

string.punctuation

String	 of	 ASCII	 characters	 which	 are	 considered	 punctuation
characters	in	the	C	locale.

string.printable

String	of	ASCII	characters	which	are	considered	printable.	This	is	a

combination	 of	 digits,	 ascii_letters,	 punctuation,	 and
whitespace.

string.whitespace

A	 string	 containing	 all	 ASCII	 characters	 that	 are	 considered
whitespace.	 This	 includes	 the	 characters	 space,	 tab,	 linefeed,
return,	formfeed,	and	vertical	tab.

6.1.2.	String	Formatting

The	 built-in	 string	 class	 provides	 the	 ability	 to	 do	 complex	 variable
substitutions	 and	 value	 formatting	 via	 the	 format()	 method
described	in	PEP	3101.	The	Formatter	class	in	the	string	module
allows	 you	 to	 create	 and	 customize	 your	 own	 string	 formatting
behaviors	 using	 the	 same	 implementation	 as	 the	 built-in	 format()
method.

class	string.Formatter
The	Formatter	class	has	the	following	public	methods:

format(format_string,	*args,	**kwargs)
format()	 is	 the	primary	API	method.	 It	 takes	a	 format	string
and	 an	 arbitrary	 set	 of	 positional	 and	 keyword	 arguments.
format()	is	just	a	wrapper	that	calls	vformat().

vformat(format_string,	args,	kwargs)
This	 function	does	 the	actual	work	of	 formatting.	 It	 is	exposed
as	a	separate	 function	 for	cases	where	you	want	 to	pass	 in	a
predefined	dictionary	of	arguments,	 rather	 than	unpacking	and
repacking	 the	 dictionary	 as	 individual	 arguments	 using	 the
*args	 and	 **kwargs	 syntax.	 vformat()	 does	 the	work	 of
breaking	 up	 the	 format	 string	 into	 character	 data	 and
replacement	 fields.	 It	 calls	 the	 various	 methods	 described
below.

In	addition,	the	Formatter	defines	a	number	of	methods	that	are
intended	to	be	replaced	by	subclasses:

parse(format_string)

http://www.python.org/dev/peps/pep-3101

Loop	 over	 the	 format_string	 and	 return	 an	 iterable	 of	 tuples
(literal_text,	field_name,	format_spec,	conversion).	This	is	used
by	 vformat()	 to	 break	 the	 string	 into	 either	 literal	 text,	 or
replacement	fields.

The	values	in	the	tuple	conceptually	represent	a	span	of	 literal
text	 followed	by	a	single	replacement	field.	 If	 there	 is	no	 literal
text	 (which	 can	 happen	 if	 two	 replacement	 fields	 occur
consecutively),	 then	 literal_text	 will	 be	 a	 zero-length	 string.	 If
there	 is	 no	 replacement	 field,	 then	 the	 values	 of	 field_name,
format_spec	and	conversion	will	be	None.

get_field(field_name,	args,	kwargs)
Given	 field_name	 as	 returned	 by	 parse()	 (see	 above),
convert	 it	 to	 an	 object	 to	 be	 formatted.	 Returns	 a	 tuple	 (obj,
used_key).	The	default	version	takes	strings	of	the	form	defined
in	PEP	3101,	such	as	“0[name]”	or	“label.title”.	args	and	kwargs
are	 as	 passed	 in	 to	 vformat().	 The	 return	 value	 used_key
has	the	same	meaning	as	the	key	parameter	to	get_value().

get_value(key,	args,	kwargs)
Retrieve	a	given	field	value.	The	key	argument	will	be	either	an
integer	or	a	string.	 If	 it	 is	an	 integer,	 it	 represents	 the	 index	of
the	 positional	 argument	 in	 args;	 if	 it	 is	 a	 string,	 then	 it
represents	a	named	argument	in	kwargs.

The	args	parameter	is	set	to	the	list	of	positional	arguments	to
vformat(),	and	the	kwargs	parameter	is	set	to	the	dictionary
of	keyword	arguments.

For	compound	 field	names,	 these	 functions	are	only	called	 for
the	first	component	of	the	field	name;	Subsequent	components

http://www.python.org/dev/peps/pep-3101

are	handled	through	normal	attribute	and	indexing	operations.

So	 for	 example,	 the	 field	 expression	 ‘0.name’	 would	 cause
get_value()	to	be	called	with	a	key	argument	of	0.	The	name
attribute	 will	 be	 looked	 up	 after	 get_value()	 returns	 by
calling	the	built-in	getattr()	function.

If	 the	 index	 or	 keyword	 refers	 to	 an	 item	 that	 does	 not	 exist,
then	an	IndexError	or	KeyError	should	be	raised.

check_unused_args(used_args,	args,	kwargs)
Implement	 checking	 for	 unused	 arguments	 if	 desired.	 The
arguments	 to	 this	 function	 is	 the	set	of	all	 argument	keys	 that
were	 actually	 referred	 to	 in	 the	 format	 string	 (integers	 for
positional	arguments,	and	strings	for	named	arguments),	and	a
reference	 to	 the	args	and	kwargs	 that	was	passed	 to	 vformat.
The	 set	 of	 unused	 args	 can	 be	 calculated	 from	 these
parameters.	 check_unused_args()	 is	 assumed	 to	 raise	 an
exception	if	the	check	fails.

format_field(value,	format_spec)
format_field()	 simply	 calls	 the	 global	 format()	 built-in.
The	method	is	provided	so	that	subclasses	can	override	it.

convert_field(value,	conversion)
Converts	 the	 value	 (returned	 by	 get_field())	 given	 a
conversion	 type	 (as	 in	 the	 tuple	 returned	 by	 the	 parse()
method).	The	default	version	understands	‘s’	(str),	‘r’	(repr)	and
‘a’	(ascii)	conversion	types.

6.1.3.	Format	String	Syntax

The	 str.format()	 method	 and	 the	 Formatter	 class	 share	 the
same	syntax	 for	 format	strings	 (although	 in	 the	case	of	Formatter,
subclasses	can	define	their	own	format	string	syntax).

Format	strings	contain	“replacement	fields”	surrounded	by	curly	braces
{}.	Anything	that	 is	not	contained	in	braces	is	considered	literal	 text,
which	 is	 copied	 unchanged	 to	 the	 output.	 If	 you	 need	 to	 include	 a
brace	character	 in	 the	 literal	 text,	 it	 can	be	escaped	by	doubling:	{{
and	}}.

The	grammar	for	a	replacement	field	is	as	follows:

replacement_field	::=		"{"	[field_name]	["!"	conversion

field_name								::=		arg_name	("."	attribute_name

arg_name										::=		[identifier	|	integer]

attribute_name				::=		identifier

element_index					::=		integer	|	index_string

index_string						::=		<any	source	character	except	"]">	+

conversion								::=		"r"	|	"s"	|	"a"

format_spec							::=		<described	in	the	next	section>

In	less	formal	terms,	the	replacement	field	can	start	with	a	field_name
that	specifies	 the	object	whose	value	 is	 to	be	 formatted	and	 inserted
into	 the	 output	 instead	 of	 the	 replacement	 field.	 The	 field_name	 is
optionally	 followed	 by	 a	 conversion	 field,	 which	 is	 preceded	 by	 an
exclamation	 point	 '!',	 and	 a	 format_spec,	 which	 is	 preceded	 by	 a
colon	 ':'.	 These	 specify	 a	 non-default	 format	 for	 the	 replacement
value.

See	also	the	Format	Specification	Mini-Language	section.

The	field_name	itself	begins	with	an	arg_name	that	is	either	a	number
or	a	keyword.	If	it’s	a	number,	it	refers	to	a	positional	argument,	and	if
it’s	a	keyword,	it	refers	to	a	named	keyword	argument.	If	the	numerical
arg_names	in	a	format	string	are	0,	1,	2,	...	 in	sequence,	they	can	all
be	 omitted	 (not	 just	 some)	 and	 the	 numbers	 0,	 1,	 2,	 ...	 will	 be
automatically	 inserted	 in	 that	order.	Because	arg_name	 is	not	quote-
delimited,	it	is	not	possible	to	specify	arbitrary	dictionary	keys	(e.g.,	the
strings	'10'	or	':-]')	within	a	format	string.	The	arg_name	can	be
followed	 by	 any	 number	 of	 index	 or	 attribute	 expressions.	 An
expression	 of	 the	 form	 '.name'	 selects	 the	 named	 attribute	 using
getattr(),	 while	 an	 expression	 of	 the	 form	 '[index]'	 does	 an
index	lookup	using	__getitem__().

Changed	 in	 version	 3.1:	 The	 positional	 argument	 specifiers	 can	 be
omitted,	so	'{}	{}'	is	equivalent	to	'{0}	{1}'.

Some	simple	format	string	examples:

"First,	thou	shalt	count	to	{0}"	#	References	first	positional	argument

"Bring	me	a	{}"																		#	Implicitly	references	the	first	positional	argument

"From	{}	to	{}"																		#	Same	as	"From	{0}	to	{1}"

"My	quest	is	{name}"													#	References	keyword	argument	'name'

"Weight	in	tons	{0.weight}"						#	'weight'	attribute	of	first	positional	arg

"Units	destroyed:	{players[0]}"		#	First	element	of	keyword	argument	'players'.

The	 conversion	 field	 causes	 a	 type	 coercion	 before	 formatting.
Normally,	the	job	of	formatting	a	value	is	done	by	the	__format__()
method	of	 the	value	 itself.	However,	 in	 some	cases	 it	 is	desirable	 to
force	a	type	to	be	formatted	as	a	string,	overriding	its	own	definition	of
formatting.	 By	 converting	 the	 value	 to	 a	 string	 before	 calling
__format__(),	the	normal	formatting	logic	is	bypassed.

Three	 conversion	 flags	 are	 currently	 supported:	 '!s'	 which	 calls
str()	on	the	value,	'!r'	which	calls	repr()	and	'!a'	which	calls
ascii().

Some	examples:

"Harold's	a	clever	{0!s}"								#	Calls	str()	on	the	argument	first

"Bring	out	the	holy	{name!r}"				#	Calls	repr()	on	the	argument	first

"More	{!a}"																						#	Calls	ascii()	on	the	argument	first

The	format_spec	field	contains	a	specification	of	how	the	value	should
be	presented,	including	such	details	as	field	width,	alignment,	padding,
decimal	 precision	 and	 so	 on.	 Each	 value	 type	 can	 define	 its	 own
“formatting	mini-language”	or	interpretation	of	the	format_spec.

Most	built-in	types	support	a	common	formatting	mini-language,	which
is	described	in	the	next	section.

A	format_spec	 field	can	also	 include	nested	replacement	 fields	within
it.	 These	 nested	 replacement	 fields	 can	 contain	 only	 a	 field	 name;
conversion	 flags	 and	 format	 specifications	 are	 not	 allowed.	 The
replacement	 fields	within	 the	 format_spec	 are	 substituted	 before	 the
format_spec	string	is	interpreted.	This	allows	the	formatting	of	a	value
to	be	dynamically	specified.

See	the	Format	examples	section	for	some	examples.

6.1.3.1.	Format	Specification	Mini-Language

“Format	 specifications”	 are	 used	 within	 replacement	 fields	 contained
within	 a	 format	 string	 to	 define	 how	 individual	 values	 are	 presented
(see	Format	String	Syntax).	They	 can	also	 be	passed	directly	 to	 the

built-in	format()	function.	Each	formattable	type	may	define	how	the
format	specification	is	to	be	interpreted.

Most	 built-in	 types	 implement	 the	 following	 options	 for	 format
specifications,	 although	 some	 of	 the	 formatting	 options	 are	 only
supported	by	the	numeric	types.

A	general	convention	is	that	an	empty	format	string	("")	produces	the
same	 result	 as	 if	 you	 had	 called	 str()	 on	 the	 value.	 A	 non-empty
format	string	typically	modifies	the	result.

The	general	form	of	a	standard	format	specifier	is:

format_spec	::=		[[fill]align][sign][#][0][width][,][.

fill								::=		<any	character>

align							::=		"<"	|	">"	|	"="	|	"^"

sign								::=		"+"	|	"-"	|	"	"

width							::=		integer

precision			::=		integer

type								::=		"b"	|	"c"	|	"d"	|	"e"	|	"E"	|	"f"	|	"F"	|	"g"	|	"G"	|	"n"	|	"o"	|	"s"	|	"x"	|	"X"	|	"%"

If	a	valid	align	value	is	specified,	it	can	be	preceded	by	a	fill	character
that	can	be	any	character	and	defaults	to	a	space	if	omitted.	Note	that
it	 is	 not	 possible	 to	 use	 {	 and	 }	 as	 fill	 char	 while	 using	 the
str.format()	 method;	 this	 limitation	 however	 doesn’t	 affect	 the
format()	function.

The	meaning	of	the	various	alignment	options	is	as	follows:

Option Meaning

'<'
Forces	the	field	to	be	left-aligned	within	the	available
space	(this	is	the	default	for	most	objects).

'>' Forces	the	field	to	be	right-aligned	within	the	available

space	(this	is	the	default	for	numbers).

'='

Forces	the	padding	to	be	placed	after	the	sign	(if	any)
but	before	the	digits.	This	is	used	for	printing	fields	in
the	form	‘+000000120’.	This	alignment	option	is	only
valid	for	numeric	types.

'^'
Forces	the	field	to	be	centered	within	the	available
space.

Note	 that	unless	a	minimum	field	width	 is	defined,	 the	 field	width	will
always	 be	 the	 same	 size	 as	 the	 data	 to	 fill	 it,	 so	 that	 the	 alignment
option	has	no	meaning	in	this	case.

The	sign	option	is	only	valid	for	number	types,	and	can	be	one	of	the
following:

Option Meaning

'+'
indicates	that	a	sign	should	be	used	for	both	positive
as	well	as	negative	numbers.

'-'
indicates	that	a	sign	should	be	used	only	for	negative
numbers	(this	is	the	default	behavior).

space
indicates	that	a	leading	space	should	be	used	on
positive	numbers,	and	a	minus	sign	on	negative
numbers.

The	 '#'	 option	 causes	 the	 “alternate	 form”	 to	 be	 used	 for	 the
conversion.	The	alternate	form	is	defined	differently	for	different	types.
This	option	is	only	valid	for	integer,	float,	complex	and	Decimal	types.
For	 integers,	when	 binary,	 octal,	 or	 hexadecimal	 output	 is	 used,	 this
option	adds	the	prefix	respective	'0b',	'0o',	or	'0x'	 to	 the	output
value.	For	floats,	complex	and	Decimal	the	alternate	form	causes	the
result	 of	 the	 conversion	 to	 always	 contain	 a	 decimal-point	 character,
even	if	no	digits	follow	it.	Normally,	a	decimal-point	character	appears

in	 the	result	of	 these	conversions	only	 if	a	digit	 follows	 it.	 In	addition,
for	'g'	and	'G'	conversions,	trailing	zeros	are	not	removed	from	the
result.

The	','	option	signals	the	use	of	a	comma	for	a	thousands	separator.
For	a	 locale	aware	 separator,	 use	 the	 'n'	 integer	presentation	 type
instead.

Changed	in	version	3.1:	Added	the	','	option	(see	also	PEP	378).

width	 is	 a	 decimal	 integer	 defining	 the	 minimum	 field	 width.	 If	 not
specified,	then	the	field	width	will	be	determined	by	the	content.

Preceding	 the	 width	 field	 by	 a	 zero	 ('0')	 character	 enables	 sign-
aware	 zero-padding	 for	 numeric	 types.	 This	 is	 equivalent	 to	 a	 fill
character	of	'0'	with	an	alignment	type	of	'='.

The	precision	 is	a	decimal	number	 indicating	how	many	digits	should
be	displayed	after	the	decimal	point	for	a	floating	point	value	formatted
with	'f'	and	'F',	or	before	and	after	the	decimal	point	for	a	floating
point	value	formatted	with	'g'	or	'G'.	For	non-number	types	the	field
indicates	 the	 maximum	 field	 size	 -	 in	 other	 words,	 how	 many
characters	 will	 be	 used	 from	 the	 field	 content.	 The	 precision	 is	 not
allowed	for	integer	values.

Finally,	the	type	determines	how	the	data	should	be	presented.

The	available	string	presentation	types	are:

Type Meaning

's'
String	format.	This	is	the	default	type	for	strings	and
may	be	omitted.

None The	same	as	's'.

http://www.python.org/dev/peps/pep-0378

The	available	integer	presentation	types	are:

Type Meaning

'b' Binary	format.	Outputs	the	number	in	base	2.

'c'
Character.	Converts	the	integer	to	the	corresponding
unicode	character	before	printing.

'd' Decimal	Integer.	Outputs	the	number	in	base	10.

'o' Octal	format.	Outputs	the	number	in	base	8.

'x'
Hex	format.	Outputs	the	number	in	base	16,	using
lower-	case	letters	for	the	digits	above	9.

'X'
Hex	format.	Outputs	the	number	in	base	16,	using
upper-	case	letters	for	the	digits	above	9.

'n'

Number.	This	is	the	same	as	'd',	except	that	it	uses
the	current	locale	setting	to	insert	the	appropriate
number	separator	characters.

None The	same	as	'd'.

In	addition	to	the	above	presentation	types,	integers	can	be	formatted
with	the	floating	point	presentation	types	listed	below	(except	'n'	and
None).	When	doing	so,	float()	 is	used	 to	convert	 the	 integer	 to	a
floating	point	number	before	formatting.

The	available	presentation	types	for	floating	point	and	decimal	values
are:

Type Meaning

'e'

Exponent	notation.	Prints	the	number	in	scientific
notation	using	the	letter	‘e’	to	indicate	the	exponent.
The	default	precision	is	6.

'E'
Exponent	notation.	Same	as	'e'	except	it	uses	an
upper	case	‘E’	as	the	separator	character.

'f'
Fixed	point.	Displays	the	number	as	a	fixed-point
number.	The	default	precision	is	6.

'F'
Fixed	point.	Same	as	'f',	but	converts	nan	to	NAN
and	inf	to	INF.

'g'

General	 format.	 For	 a	 given	 precision	 p	 >=	 1,	 this
rounds	 the	 number	 to	 p	 significant	 digits	 and	 then
formats	 the	 result	 in	 either	 fixed-point	 format	 or	 in
scientific	notation,	depending	on	its	magnitude.

The	 precise	 rules	 are	 as	 follows:	 suppose	 that	 the
result	 formatted	 with	 presentation	 type	 'e'	 and
precision	p-1	would	have	exponent	 exp.	 Then	 if	 -4
<=	 exp	 <	 p,	 the	 number	 is	 formatted	 with
presentation	 type	 'f'	 and	 precision	 p-1-exp.
Otherwise,	 the	 number	 is	 formatted	with	 presentation
type	 'e'	 and	 precision	 p-1.	 In	 both	 cases
insignificant	 trailing	 zeros	 are	 removed	 from	 the
significand,	 and	 the	 decimal	 point	 is	 also	 removed	 if
there	are	no	remaining	digits	following	it.

Positive	 and	 negative	 infinity,	 positive	 and	 negative
zero,	 and	 nans,	 are	 formatted	 as	 inf,	 -inf,	 0,	 -0
and	nan	respectively,	regardless	of	the	precision.

A	precision	of	0	is	treated	as	equivalent	to	a	precision
of	1.	The	default	precision	is	6.

'G'

General	format.	Same	as	'g'	except	switches	to	'E'
if	the	number	gets	too	large.	The	representations	of
infinity	and	NaN	are	uppercased,	too.

'n'

Number.	This	is	the	same	as	'g',	except	that	it	uses
the	current	locale	setting	to	insert	the	appropriate

number	separator	characters.

'%'
Percentage.	Multiplies	the	number	by	100	and	displays
in	fixed	('f')	format,	followed	by	a	percent	sign.

None

Similar	to	'g',	except	with	at	least	one	digit	past	the
decimal	point	and	a	default	precision	of	12.	This	is
intended	to	match	str(),	except	you	can	add	the
other	format	modifiers.

6.1.3.2.	Format	examples

This	 section	 contains	 examples	 of	 the	 new	 format	 syntax	 and
comparison	with	the	old	%-formatting.

In	most	of	the	cases	the	syntax	is	similar	to	the	old	%-formatting,	with
the	 addition	 of	 the	 {}	 and	 with	 :	 used	 instead	 of	 %.	 For	 example,
'%03.2f'	can	be	translated	to	'{:03.2f}'.

The	new	format	syntax	also	supports	new	and	different	options,	shown
in	the	follow	examples.

Accessing	arguments	by	position:

>>>	'{0},	{1},	{2}'.format('a',	'b',	'c')

'a,	b,	c'

>>>	'{},	{},	{}'.format('a',	'b',	'c')		#	3.1+	only

'a,	b,	c'

>>>	'{2},	{1},	{0}'.format('a',	'b',	'c')

'c,	b,	a'

>>>	'{2},	{1},	{0}'.format(*'abc')						#	unpacking	argument	sequence

'c,	b,	a'

>>>	'{0}{1}{0}'.format('abra',	'cad')			#	arguments'	indices	can	be	repeated

'abracadabra'

Accessing	arguments	by	name:

>>>	'Coordinates:	{latitude},	{longitude}'.format(latitude

'Coordinates:	37.24N,	-115.81W'

>>>	coord	=	{'latitude':	'37.24N',	'longitude':	'-115.81W'

>>>	'Coordinates:	{latitude},	{longitude}'.format(**

'Coordinates:	37.24N,	-115.81W'

Accessing	arguments’	attributes:

>>>	c	=	3-5j

>>>	('The	complex	number	{0}	is	formed	from	the	real	part	{0.real}	'

...		'and	the	imaginary	part	{0.imag}.').format(c)

'The	complex	number	(3-5j)	is	formed	from	the	real	part	3.0	and	the	imaginary	part	-5.0.'

>>>	class	Point:

...					def	__init__(self,	x,	y):

...									self.x,	self.y	=	x,	y

...					def	__str__(self):

...									return	'Point({self.x},	{self.y})'.format

...

>>>	str(Point(4,	2))

'Point(4,	2)'

Accessing	arguments’	items:

>>>	coord	=	(3,	5)

>>>	'X:	{0[0]};		Y:	{0[1]}'.format(coord)

'X:	3;		Y:	5'

Replacing	%s	and	%r:

>>>	"repr()	shows	quotes:	{!r};	str()	doesn't:	{!s}"

"repr()	shows	quotes:	'test1';	str()	doesn't:	test2"

Aligning	the	text	and	specifying	a	width:

>>>	'{:<30}'.format('left	aligned')

'left	aligned																		'

>>>	'{:>30}'.format('right	aligned')

'																	right	aligned'

>>>	'{:^30}'.format('centered')

'											centered											'

>>>	'{:*^30}'.format('centered')		#	use	'*'	as	a	fill	char

'***********centered***********'

Replacing	%+f,	%-f,	and	%	f	and	specifying	a	sign:

>>>	'{:+f};	{:+f}'.format(3.14,	-3.14)		#	show	it	always

'+3.140000;	-3.140000'

>>>	'{:	f};	{:	f}'.format(3.14,	-3.14)		#	show	a	space	for	positive	numbers

'	3.140000;	-3.140000'

>>>	'{:-f};	{:-f}'.format(3.14,	-3.14)		#	show	only	the	minus	--	same	as	'{:f};	{:f}'

'3.140000;	-3.140000'

Replacing	%x	and	%o	and	converting	the	value	to	different	bases:

>>>	#	format	also	supports	binary	numbers

>>>	"int:	{0:d};		hex:	{0:x};		oct:	{0:o};		bin:	{0:b}"

'int:	42;		hex:	2a;		oct:	52;		bin:	101010'

>>>	#	with	0x,	0o,	or	0b	as	prefix:

>>>	"int:	{0:d};		hex:	{0:#x};		oct:	{0:#o};		bin:	{0:#b}"

'int:	42;		hex:	0x2a;		oct:	0o52;		bin:	0b101010'

Using	the	comma	as	a	thousands	separator:

>>>	'{:,}'.format(1234567890)

'1,234,567,890'

Expressing	a	percentage:

>>>	points	=	19

>>>	total	=	22

>>>	'Correct	answers:	{:.2%}'.format(points/total)

'Correct	answers:	86.36%'

Using	type-specific	formatting:

>>>	import	datetime

>>>	d	=	datetime.datetime(2010,	7,	4,	12,	15,	58)

>>>	'{:%Y-%m-%d	%H:%M:%S}'.format(d)

'2010-07-04	12:15:58'

Nesting	arguments	and	more	complex	examples:

>>>	for	align,	text	in	zip('<^>',	['left',	'center',

...					'{0:{fill}{align}16}'.format(text,	fill=align

...

'left<<<<<<<<<<<<'

'^^^^^center^^^^^'

'>>>>>>>>>>>right'

>>>

>>>	octets	=	[192,	168,	0,	1]

>>>	'{:02X}{:02X}{:02X}{:02X}'.format(*octets)

'C0A80001'

>>>	int(_,	16)

3232235521

>>>

>>>	width	=	5

>>>	for	num	in	range(5,12):	

...					for	base	in	'dXob':

...									print('{0:{width}{base}}'.format(num,	base

...					print()

...

				5					5					5			101

				6					6					6			110

				7					7					7			111

				8					8				10		1000

				9					9				11		1001

			10					A				12		1010

			11					B				13		1011

6.1.4.	Template	strings

Templates	 provide	 simpler	 string	 substitutions	 as	 described	 in	 PEP
292.	 Instead	of	 the	normal	%-based	 substitutions,	 Templates	 support
$-based	substitutions,	using	the	following	rules:

$$	is	an	escape;	it	is	replaced	with	a	single	$.
$identifier	 names	 a	 substitution	 placeholder	 matching	 a
mapping	 key	 of	 "identifier".	 By	 default,	 "identifier"
must	 spell	 a	 Python	 identifier.	 The	 first	 non-identifier	 character
after	the	$	character	terminates	this	placeholder	specification.
${identifier}	 is	 equivalent	 to	 $identifier.	 It	 is	 required
when	valid	identifier	characters	follow	the	placeholder	but	are	not
part	of	the	placeholder,	such	as	"${noun}ification".

Any	other	appearance	of	$	 in	 the	string	will	 result	 in	a	ValueError
being	raised.

The	 string	 module	 provides	 a	 Template	 class	 that	 implements
these	rules.	The	methods	of	Template	are:

class	string.Template(template)
The	 constructor	 takes	 a	 single	 argument	 which	 is	 the	 template
string.

substitute(mapping,	**kwds)
Performs	 the	 template	 substitution,	 returning	 a	 new	 string.
mapping	 is	 any	dictionary-like	object	with	 keys	 that	match	 the
placeholders	 in	 the	 template.	 Alternatively,	 you	 can	 provide
keyword	arguments,	where	the	keywords	are	the	placeholders.
When	 both	 mapping	 and	 kwds	 are	 given	 and	 there	 are
duplicates,	the	placeholders	from	kwds	take	precedence.

http://www.python.org/dev/peps/pep-0292

safe_substitute(mapping,	**kwds)
Like	 substitute(),	 except	 that	 if	 placeholders	 are	 missing
from	 mapping	 and	 kwds,	 instead	 of	 raising	 a	 KeyError
exception,	 the	 original	 placeholder	 will	 appear	 in	 the	 resulting
string	 intact.	 Also,	 unlike	 with	 substitute(),	 any	 other
appearances	 of	 the	 $	 will	 simply	 return	 $	 instead	 of	 raising
ValueError.

While	 other	 exceptions	 may	 still	 occur,	 this	 method	 is	 called
“safe”	 because	 substitutions	 always	 tries	 to	 return	 a	 usable
string	 instead	 of	 raising	 an	 exception.	 In	 another	 sense,
safe_substitute()	may	be	anything	other	than	safe,	since
it	 will	 silently	 ignore	malformed	 templates	 containing	 dangling
delimiters,	unmatched	braces,	or	placeholders	that	are	not	valid
Python	identifiers.

Template	instances	also	provide	one	public	data	attribute:

template

This	 is	 the	 object	 passed	 to	 the	 constructor’s	 template
argument.	 In	 general,	 you	 shouldn’t	 change	 it,	 but	 read-only
access	is	not	enforced.

Here	is	an	example	of	how	to	use	a	Template:

>>>	from	string	import	Template

>>>	s	=	Template('$who	likes	$what')

>>>	s.substitute(who='tim',	what='kung	pao')

'tim	likes	kung	pao'

>>>	d	=	dict(who='tim')

>>>	Template('Give	$who	$100').substitute(d)

Traceback	(most	recent	call	last):

...

ValueError:	Invalid	placeholder	in	string:	line	1,	col	11

>>>	Template('$who	likes	$what').substitute(d)

Traceback	(most	recent	call	last):

...

KeyError:	'what'

>>>	Template('$who	likes	$what').safe_substitute(d)

'tim	likes	$what'

Advanced	 usage:	 you	 can	 derive	 subclasses	 of	 Template	 to
customize	 the	 placeholder	 syntax,	 delimiter	 character,	 or	 the	 entire
regular	expression	used	to	parse	template	strings.	To	do	this,	you	can
override	these	class	attributes:

delimiter	 –	 This	 is	 the	 literal	 string	 describing	 a	 placeholder
introducing	delimiter.	The	default	value	is	$.	Note	that	this	should
not	 be	 a	 regular	 expression,	 as	 the	 implementation	 will	 call
re.escape()	on	this	string	as	needed.

idpattern	 –	 This	 is	 the	 regular	 expression	 describing	 the	 pattern
for	 non-braced	 placeholders	 (the	 braces	 will	 be	 added
automatically	 as	 appropriate).	 The	 default	 value	 is	 the	 regular
expression	[_a-z][_a-z0-9]*.

flags	 –	 The	 regular	 expression	 flags	 that	 will	 be	 applied	 when
compiling	 the	 regular	 expression	 used	 for	 recognizing
substitutions.	 The	 default	 value	 is	 re.IGNORECASE.	 Note	 that
re.VERBOSE	 will	 always	 be	 added	 to	 the	 flags,	 so	 custom
idpatterns	 must	 follow	 conventions	 for	 verbose	 regular
expressions.

New	in	version	3.2.

Alternatively,	you	can	provide	the	entire	regular	expression	pattern	by

overriding	the	class	attribute	pattern.	If	you	do	this,	the	value	must	be
a	 regular	 expression	 object	 with	 four	 named	 capturing	 groups.	 The
capturing	groups	correspond	to	the	rules	given	above,	along	with	the
invalid	placeholder	rule:

escaped	–	This	group	matches	the	escape	sequence,	e.g.	$$,	in
the	default	pattern.
named	–	This	group	matches	 the	unbraced	placeholder	name;	 it
should	not	include	the	delimiter	in	capturing	group.
braced	 –	 This	 group	 matches	 the	 brace	 enclosed	 placeholder
name;	 it	 should	 not	 include	 either	 the	 delimiter	 or	 braces	 in	 the
capturing	group.
invalid	–	This	group	matches	any	other	delimiter	pattern	(usually	a
single	 delimiter),	 and	 it	 should	 appear	 last	 in	 the	 regular
expression.

6.1.5.	Helper	functions

string.capwords(s,	sep=None)
Split	the	argument	into	words	using	str.split(),	capitalize	each
word	 using	 str.capitalize(),	 and	 join	 the	 capitalized	 words
using	str.join().	If	the	optional	second	argument	sep	is	absent
or	None,	 runs	 of	whitespace	 characters	 are	 replaced	by	 a	 single
space	and	leading	and	trailing	whitespace	are	removed,	otherwise
sep	is	used	to	split	and	join	the	words.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.2.	re	—	Regular	expression
operations
This	module	provides	 regular	expression	matching	operations	similar
to	those	found	in	Perl.

Both	patterns	and	strings	 to	be	 searched	can	be	Unicode	strings	as
well	as	8-bit	strings.	However,	Unicode	strings	and	8-bit	strings	cannot
be	 mixed:	 that	 is,	 you	 cannot	 match	 an	 Unicode	 string	 with	 a	 byte
pattern	 or	 vice-versa;	 similarly,	 when	 asking	 for	 a	 substitution,	 the
replacement	string	must	be	of	the	same	type	as	both	the	pattern	and
the	search	string.

Regular	 expressions	 use	 the	 backslash	 character	 ('\')	 to	 indicate
special	 forms	 or	 to	 allow	 special	 characters	 to	 be	 used	 without
invoking	 their	 special	 meaning.	 This	 collides	 with	 Python’s	 usage	 of
the	same	character	for	the	same	purpose	in	string	literals;	for	example,
to	match	a	 literal	backslash,	one	might	have	 to	write	'\\\\'	as	 the
pattern	string,	because	the	regular	expression	must	be	\\,	and	each
backslash	 must	 be	 expressed	 as	 \\	 inside	 a	 regular	 Python	 string
literal.

The	 solution	 is	 to	 use	 Python’s	 raw	 string	 notation	 for	 regular
expression	patterns;	backslashes	are	not	handled	 in	any	special	way
in	a	string	literal	prefixed	with	'r'.	So	r"\n"	is	a	two-character	string
containing	 '\'	 and	 'n',	 while	 "\n"	 is	 a	 one-character	 string
containing	 a	 newline.	 Usually	 patterns	 will	 be	 expressed	 in	 Python
code	using	this	raw	string	notation.

It	 is	 important	 to	 note	 that	 most	 regular	 expression	 operations	 are

available	as	module-level	functions	and	methods	on	compiled	regular
expressions.	 The	 functions	 are	 shortcuts	 that	 don’t	 require	 you	 to
compile	a	regex	object	first,	but	miss	some	fine-tuning	parameters.

See	also:

Mastering	Regular	Expressions
Book	 on	 regular	 expressions	 by	 Jeffrey	 Friedl,	 published	 by
O’Reilly.	The	second	edition	of	the	book	no	longer	covers	Python
at	all,	but	the	first	edition	covered	writing	good	regular	expression
patterns	in	great	detail.

6.2.1.	Regular	Expression	Syntax

A	regular	expression	(or	RE)	specifies	a	set	of	strings	that	matches	it;
the	functions	in	this	module	let	you	check	if	a	particular	string	matches
a	given	regular	expression	(or	if	a	given	regular	expression	matches	a
particular	string,	which	comes	down	to	the	same	thing).

Regular	 expressions	 can	 be	 concatenated	 to	 form	 new	 regular
expressions;	if	A	and	B	are	both	regular	expressions,	then	AB	is	also	a
regular	 expression.	 In	 general,	 if	 a	 string	 p	 matches	A	 and	 another
string	q	matches	B,	the	string	pq	will	match	AB.	This	holds	unless	A	or
B	contain	low	precedence	operations;	boundary	conditions	between	A
and	 B;	 or	 have	 numbered	 group	 references.	 Thus,	 complex
expressions	 can	 easily	 be	 constructed	 from	 simpler	 primitive
expressions	like	the	ones	described	here.	For	details	of	the	theory	and
implementation	 of	 regular	 expressions,	 consult	 the	 Friedl	 book
referenced	above,	or	almost	any	textbook	about	compiler	construction.

A	 brief	 explanation	 of	 the	 format	 of	 regular	 expressions	 follows.	 For
further	 information	 and	 a	 gentler	 presentation,	 consult	 the	 Regular
Expression	HOWTO.

Regular	expressions	can	contain	both	special	and	ordinary	characters.
Most	 ordinary	 characters,	 like	 'A',	 'a',	 or	 '0',	 are	 the	 simplest
regular	 expressions;	 they	 simply	 match	 themselves.	 You	 can
concatenate	 ordinary	 characters,	 so	 last	 matches	 the	 string
'last'.	(In	the	rest	of	this	section,	we’ll	write	RE’s	in	this	special
style,	 usually	 without	 quotes,	 and	 strings	 to	 be	 matched	 'in
single	quotes'.)

Some	 characters,	 like	 '|'	 or	 '(',	 are	 special.	 Special	 characters
either	 stand	 for	 classes	 of	 ordinary	 characters,	 or	 affect	 how	 the

regular	expressions	around	 them	are	 interpreted.	Regular	expression
pattern	strings	may	not	contain	null	bytes,	but	can	specify	the	null	byte
using	a	\number	notation	such	as	'\x00'.

The	special	characters	are:

'.'

(Dot.)	 In	 the	 default	 mode,	 this	 matches	 any	 character	 except	 a
newline.	 If	 the	DOTALL	 flag	has	been	specified,	 this	matches	any
character	including	a	newline.

'^'

(Caret.)	Matches	 the	start	of	 the	string,	and	 in	MULTILINE	mode
also	matches	immediately	after	each	newline.

'$'

Matches	the	end	of	the	string	or	just	before	the	newline	at	the	end
of	 the	 string,	 and	 in	 MULTILINE	 mode	 also	 matches	 before	 a
newline.	 foo	 matches	 both	 ‘foo’	 and	 ‘foobar’,	 while	 the	 regular
expression	foo$	matches	only	 ‘foo’.	More	 interestingly,	searching
for	foo.$	in	'foo1\nfoo2\n'	matches	‘foo2’	normally,	but	‘foo1’
in	MULTILINE	mode;	searching	for	a	single	$	in	'foo\n'	will	find
two	(empty)	matches:	one	 just	before	the	newline,	and	one	at	 the
end	of	the	string.

'*'

Causes	 the	 resulting	 RE	 to	 match	 0	 or	 more	 repetitions	 of	 the
preceding	RE,	as	many	repetitions	as	are	possible.	ab*	will	match
‘a’,	‘ab’,	or	‘a’	followed	by	any	number	of	‘b’s.

'+'

Causes	 the	 resulting	 RE	 to	 match	 1	 or	 more	 repetitions	 of	 the
preceding	RE.	ab+	will	match	‘a’	followed	by	any	non-zero	number
of	‘b’s;	it	will	not	match	just	‘a’.

'?'

Causes	 the	 resulting	 RE	 to	 match	 0	 or	 1	 repetitions	 of	 the

preceding	RE.	ab?	will	match	either	‘a’	or	‘ab’.

*?,	+?,	??
The	 '*',	 '+',	 and	 '?'	 qualifiers	 are	 all	greedy;	 they	match	 as
much	 text	 as	 possible.	 Sometimes	 this	 behaviour	 isn’t	 desired;	 if
the	 RE	 <.*>	 is	 matched	 against	 '<H1>title</H1>',	 it	 will
match	the	entire	string,	and	not	just	'<H1>'.	Adding	'?'	after	the
qualifier	 makes	 it	 perform	 the	 match	 in	 non-greedy	 or	 minimal
fashion;	as	few	characters	as	possible	will	be	matched.	Using	.*?
in	the	previous	expression	will	match	only	'<H1>'.

{m}

Specifies	 that	 exactly	 m	 copies	 of	 the	 previous	 RE	 should	 be
matched;	 fewer	 matches	 cause	 the	 entire	 RE	 not	 to	 match.	 For
example,	a{6}	will	match	exactly	six	'a'	characters,	but	not	five.

{m,n}

Causes	 the	 resulting	RE	 to	match	 from	m	 to	n	 repetitions	 of	 the
preceding	 RE,	 attempting	 to	 match	 as	 many	 repetitions	 as
possible.	 For	 example,	 a{3,5}	 will	 match	 from	 3	 to	 5	 'a'
characters.	 Omitting	 m	 specifies	 a	 lower	 bound	 of	 zero,	 and
omitting	 n	 specifies	 an	 infinite	 upper	 bound.	 As	 an	 example,
a{4,}b	will	match	aaaab	or	a	thousand	'a'	characters	followed
by	 a	 b,	 but	 not	 aaab.	 The	 comma	 may	 not	 be	 omitted	 or	 the
modifier	would	be	confused	with	the	previously	described	form.

{m,n}?

Causes	 the	 resulting	RE	 to	match	 from	m	 to	n	 repetitions	 of	 the
preceding	RE,	attempting	to	match	as	few	 repetitions	as	possible.
This	 is	 the	 non-greedy	 version	 of	 the	 previous	 qualifier.	 For
example,	on	the	6-character	string	'aaaaaa',	a{3,5}	will	match
5	'a'	characters,	while	a{3,5}?	will	only	match	3	characters.

'\'

Either	 escapes	 special	 characters	 (permitting	 you	 to	 match
characters	 like	 '*',	 '?',	 and	 so	 forth),	 or	 signals	 a	 special

sequence;	special	sequences	are	discussed	below.

If	 you’re	not	using	a	 raw	string	 to	express	 the	pattern,	 remember
that	 Python	 also	 uses	 the	 backslash	 as	 an	 escape	 sequence	 in
string	literals;	if	the	escape	sequence	isn’t	recognized	by	Python’s
parser,	the	backslash	and	subsequent	character	are	included	in	the
resulting	 string.	However,	 if	 Python	would	 recognize	 the	 resulting
sequence,	 the	 backslash	 should	 be	 repeated	 twice.	 This	 is
complicated	 and	 hard	 to	 understand,	 so	 it’s	 highly	 recommended
that	you	use	raw	strings	for	all	but	the	simplest	expressions.

[]

Used	to	indicate	a	set	of	characters.	In	a	set:

Characters	 can	 be	 listed	 individually,	 e.g.	 [amk]	 will	 match
'a',	'm',	or	'k'.
Ranges	 of	 characters	 can	 be	 indicated	 by	 giving	 two
characters	and	separating	them	by	a	'-',	for	example	[a-z]
will	match	any	lowercase	ASCII	letter,	[0-5][0-9]	will	match
all	the	two-digits	numbers	from	00	to	59,	and	[0-9A-Fa-f]
will	match	any	hexadecimal	digit.	 If	-	 is	 escaped	 (e.g.	 [a\-
z])	or	if	it’s	placed	as	the	first	or	last	character	(e.g.	[a-]),	 it
will	match	a	literal	'-'.
Special	characters	lose	their	special	meaning	inside	sets.	For
example,	[(+*)]	will	match	any	of	the	literal	characters	'(',
'+',	'*',	or	')'.
Character	classes	such	as	\w	or	\S	(defined	below)	are	also
accepted	 inside	 a	 set,	 although	 the	 characters	 they	 match
depends	on	whether	ASCII	or	LOCALE	mode	is	in	force.
Characters	 that	 are	 not	 within	 a	 range	 can	 be	 matched	 by
complementing	the	set.	If	the	first	character	of	the	set	is	'^',
all	 the	characters	 that	are	not	 in	 the	set	will	be	matched.	For
example,	 [^5]	 will	 match	 any	 character	 except	 '5',	 and

[^^]	will	match	any	character	except	'^'.	^	has	no	special
meaning	if	it’s	not	the	first	character	in	the	set.
To	 match	 a	 literal	 ']'	 inside	 a	 set,	 precede	 it	 with	 a
backslash,	or	place	it	at	the	beginning	of	the	set.	For	example,
both	 [()[\]{}]	 and	 []()[{}]	 will	 both	 match	 a
parenthesis.

'|'

A|B,	 where	 A	 and	 B	 can	 be	 arbitrary	 REs,	 creates	 a	 regular
expression	 that	 will	 match	 either	 A	 or	 B.	 An	 arbitrary	 number	 of
REs	can	be	separated	by	 the	'|'	 in	 this	way.	This	 can	 be	 used
inside	groups	(see	below)	as	well.	As	the	target	string	is	scanned,
REs	separated	by	'|'	are	tried	from	left	to	right.	When	one	pattern
completely	 matches,	 that	 branch	 is	 accepted.	 This	 means	 that
once	 A	 matches,	 B	 will	 not	 be	 tested	 further,	 even	 if	 it	 would
produce	a	longer	overall	match.	In	other	words,	the	'|'	operator	is
never	greedy.	To	match	a	literal	'|',	use	\|,	or	enclose	it	inside	a
character	class,	as	in	[|].

(...)

Matches	 whatever	 regular	 expression	 is	 inside	 the	 parentheses,
and	indicates	the	start	and	end	of	a	group;	the	contents	of	a	group
can	 be	 retrieved	 after	 a	match	 has	 been	 performed,	 and	 can	 be
matched	 later	 in	 the	 string	 with	 the	 \number	 special	 sequence,
described	below.	To	match	the	literals	'('	or	')',	use	\(or	\),
or	enclose	them	inside	a	character	class:	[(]	[)].

(?...)

This	 is	 an	 extension	 notation	 (a	 '?'	 following	 a	 '('	 is	 not
meaningful	otherwise).	The	first	character	after	the	'?'	determines
what	the	meaning	and	further	syntax	of	the	construct	is.	Extensions
usually	 do	 not	 create	 a	 new	 group;	 (?P<name>...)	 is	 the	 only
exception	 to	 this	 rule.	 Following	 are	 the	 currently	 supported
extensions.

(?aiLmsux)

(One	or	more	letters	from	the	set	'a',	'i',	'L',	'm',	's',	'u',
'x'.)	 The	 group	 matches	 the	 empty	 string;	 the	 letters	 set	 the
corresponding	 flags:	 re.A	 (ASCII-only	 matching),	 re.I	 (ignore
case),	 re.L	 (locale	 dependent),	 re.M	 (multi-line),	 re.S	 (dot
matches	 all),	 and	 re.X	 (verbose),	 for	 the	 entire	 regular
expression.	 (The	 flags	are	described	 in	Module	Contents.)	This	 is
useful	 if	 you	 wish	 to	 include	 the	 flags	 as	 part	 of	 the	 regular
expression,	 instead	 of	 passing	 a	 flag	 argument	 to	 the
re.compile()	function.

Note	that	the	(?x)	 flag	changes	how	the	expression	 is	parsed.	 It
should	be	used	first	 in	 the	expression	string,	or	after	one	or	more
whitespace	 characters.	 If	 there	 are	 non-whitespace	 characters
before	the	flag,	the	results	are	undefined.

(?:...)

A	non-capturing	version	of	regular	parentheses.	Matches	whatever
regular	 expression	 is	 inside	 the	 parentheses,	 but	 the	 substring
matched	by	the	group	cannot	be	retrieved	after	performing	a	match
or	referenced	later	in	the	pattern.

(?P<name>...)

Similar	 to	 regular	 parentheses,	 but	 the	 substring	matched	 by	 the
group	 is	 accessible	 via	 the	 symbolic	 group	 name	 name.	 Group
names	 must	 be	 valid	 Python	 identifiers,	 and	 each	 group	 name
must	be	defined	only	once	within	a	regular	expression.	A	symbolic
group	 is	 also	 a	 numbered	 group,	 just	 as	 if	 the	 group	 were	 not
named.

Named	groups	can	be	referenced	in	three	contexts.	If	the	pattern	is
(?P<quote>['"]).*?(?P=quote)	 (i.e.	 matching	 a	 string
quoted	with	either	single	or	double	quotes):

Context	of	reference	to	group
“quote” Ways	to	reference	it

in	the	same	pattern	itself
(?P=quote)	 (as
shown)
\1

when	processing	match	object	m
m.group('quote')

m.end('quote')

(etc.)

in	a	string	passed	to	the	repl
argument	of	re.sub()

\g<quote>

\g<1>

\1

(?P=name)

A	backreference	 to	a	named	group;	 it	matches	whatever	 text	was
matched	by	the	earlier	group	named	name.

(?#...)

A	comment;	the	contents	of	the	parentheses	are	simply	ignored.

(?=...)

Matches	 if	 ...	 matches	 next,	 but	 doesn’t	 consume	 any	 of	 the
string.	This	 is	 called	 a	 lookahead	assertion.	 For	 example,	 Isaac
(?=Asimov)	 will	 match	 'Isaac	 '	 only	 if	 it’s	 followed	 by
'Asimov'.

(?!...)

Matches	 if	...	doesn’t	match	next.	This	 is	a	negative	 lookahead
assertion.	For	example,	Isaac	(?!Asimov)	will	match	'Isaac
'	only	if	it’s	not	followed	by	'Asimov'.

(?<=...)

Matches	if	the	current	position	in	the	string	is	preceded	by	a	match
for	...	 that	ends	at	 the	current	position.	This	 is	called	a	positive

lookbehind	assertion.	(?<=abc)def	will	 find	a	match	in	abcdef,
since	 the	 lookbehind	 will	 back	 up	 3	 characters	 and	 check	 if	 the
contained	pattern	matches.	The	contained	pattern	must	only	match
strings	of	some	fixed	length,	meaning	that	abc	or	a|b	are	allowed,
but	 a*	 and	 a{3,4}	 are	 not.	 Note	 that	 patterns	 which	 start	 with
positive	 lookbehind	 assertions	 will	 not	 match	 at	 the	 beginning	 of
the	 string	 being	 searched;	 you	 will	 most	 likely	 want	 to	 use	 the
search()	function	rather	than	the	match()	function:

>>>	import	re

>>>	m	=	re.search('(?<=abc)def',	'abcdef')

>>>	m.group(0)

'def'

This	example	looks	for	a	word	following	a	hyphen:

>>>	m	=	re.search('(?<=-)\w+',	'spam-egg')

>>>	m.group(0)

'egg'

(?<!...)

Matches	 if	 the	 current	 position	 in	 the	 string	 is	 not	 preceded	by	 a
match	 for		 This	 is	 called	 a	 negative	 lookbehind	 assertion.
Similar	 to	 positive	 lookbehind	 assertions,	 the	 contained	 pattern
must	only	match	strings	of	some	fixed	length.	Patterns	which	start
with	negative	lookbehind	assertions	may	match	at	the	beginning	of
the	string	being	searched.

(?(id/name)yes-pattern|no-pattern)

Will	 try	 to	match	with	yes-pattern	 if	 the	group	with	given	 id	or
name	exists,	and	with	no-pattern	 if	 it	 doesn’t.	no-pattern	 is
optional	 and	 can	 be	 omitted.	 For	 example,	 (<)?(\w+@\w+
(?:\.\w+)+)(?(1)>|$)	is	a	poor	email	matching	pattern,	which
will	 match	 with	 '<user@host.com>'	 as	 well	 as

'user@host.com',	 but	 not	 with	 '<user@host.com'	 nor
'user@host.com>'.

The	 special	 sequences	 consist	 of	 '\'	 and	 a	 character	 from	 the	 list
below.	If	the	ordinary	character	is	not	on	the	list,	then	the	resulting	RE
will	 match	 the	 second	 character.	 For	 example,	 \$	 matches	 the
character	'$'.

\number

Matches	the	contents	of	the	group	of	the	same	number.	Groups	are
numbered	starting	from	1.	For	example,	(.+)	\1	matches	'the
the'	 or	 '55	55',	 but	 not	 'thethe'	 (note	 the	 space	 after	 the
group).	This	 special	 sequence	can	only	be	used	 to	match	one	of
the	first	99	groups.	If	 the	 first	digit	of	number	 is	0,	or	number	 is	3
octal	digits	long,	it	will	not	be	interpreted	as	a	group	match,	but	as
the	character	with	octal	value	number.	Inside	the	'['	and	']'	of	a
character	class,	all	numeric	escapes	are	treated	as	characters.

\A

Matches	only	at	the	start	of	the	string.

\b

Matches	 the	 empty	 string,	 but	 only	 at	 the	 beginning	 or	 end	 of	 a
word.	A	word	is	defined	as	a	sequence	of	Unicode	alphanumeric	or
underscore	 characters,	 so	 the	 end	 of	 a	 word	 is	 indicated	 by
whitespace	 or	 a	 non-alphanumeric,	 non-underscore	 Unicode
character.	 Note	 that	 formally,	 \b	 is	 defined	 as	 the	 boundary
between	a	\w	and	a	\W	character	(or	vice	versa),	or	between	\w
and	the	beginning/end	of	the	string.	This	means	that	r'\bfoo\b'
matches	 'foo',	 'foo.',	 '(foo)',	 'bar	 foo	 baz'	 but	 not
'foobar'	or	'foo3'.

By	default	Unicode	alphanumerics	are	the	ones	used,	but	this	can
be	changed	by	using	the	ASCII	flag.	Inside	a	character	range,	\b

represents	the	backspace	character,	for	compatibility	with	Python’s
string	literals.

\B

Matches	the	empty	string,	but	only	when	it	 is	not	at	the	beginning
or	end	of	a	word.	This	means	that	r'py\B'	matches	'python',
'py3',	 'py2',	 but	 not	 'py',	 'py.',	 or	 'py!'.	 \B	 is	 just	 the
opposite	of	\b,	so	word	characters	are	Unicode	alphanumerics	or
the	underscore,	although	this	can	be	changed	by	using	the	ASCII
flag.

\d

For	Unicode	(str)	patterns:
Matches	 any	 Unicode	 decimal	 digit	 (that	 is,	 any	 character	 in
Unicode	 character	 category	 [Nd]).	 This	 includes	 [0-9],	 and
also	many	other	digit	characters.	If	the	ASCII	flag	is	used	only
[0-9]	 is	 matched	 (but	 the	 flag	 affects	 the	 entire	 regular
expression,	so	in	such	cases	using	an	explicit	[0-9]	may	be	a
better	choice).

For	8-bit	(bytes)	patterns:
Matches	any	decimal	digit;	this	is	equivalent	to	[0-9].

\D

Matches	any	character	which	is	not	a	Unicode	decimal	digit.	This	is
the	 opposite	 of	 \d.	 If	 the	 ASCII	 flag	 is	 used	 this	 becomes	 the
equivalent	 of	 [^0-9]	 (but	 the	 flag	 affects	 the	 entire	 regular
expression,	so	 in	such	cases	using	an	explicit	[^0-9]	may	be	a
better	choice).

\s

For	Unicode	(str)	patterns:
Matches	 Unicode	 whitespace	 characters	 (which	 includes	 [
\t\n\r\f\v],	 and	 also	 many	 other	 characters,	 for	 example
the	 non-breaking	 spaces	 mandated	 by	 typography	 rules	 in

many	 languages).	 If	 the	 ASCII	 flag	 is	 used,	 only	 [

\t\n\r\f\v]	 is	 matched	 (but	 the	 flag	 affects	 the	 entire
regular	 expression,	 so	 in	 such	 cases	 using	 an	 explicit	 [
\t\n\r\f\v]	may	be	a	better	choice).

For	8-bit	(bytes)	patterns:
Matches	 characters	 considered	 whitespace	 in	 the	 ASCII
character	set;	this	is	equivalent	to	[\t\n\r\f\v].

\S

Matches	 any	 character	 which	 is	 not	 a	 Unicode	 whitespace
character.	This	is	the	opposite	of	\s.	If	the	ASCII	flag	is	used	this
becomes	the	equivalent	of	[^	\t\n\r\f\v]	(but	the	flag	affects
the	entire	regular	expression,	so	in	such	cases	using	an	explicit	[^
\t\n\r\f\v]	may	be	a	better	choice).

\w

For	Unicode	(str)	patterns:
Matches	 Unicode	 word	 characters;	 this	 includes	 most
characters	that	can	be	part	of	a	word	in	any	language,	as	well
as	numbers	and	the	underscore.	If	the	ASCII	flag	is	used,	only
[a-zA-Z0-9_]	 is	 matched	 (but	 the	 flag	 affects	 the	 entire
regular	expression,	so	in	such	cases	using	an	explicit	[a-zA-
Z0-9_]	may	be	a	better	choice).

For	8-bit	(bytes)	patterns:
Matches	 characters	 considered	 alphanumeric	 in	 the	 ASCII
character	set;	this	is	equivalent	to	[a-zA-Z0-9_].

\W

Matches	any	character	which	is	not	a	Unicode	word	character.	This
is	 the	opposite	of	\w.	 If	 the	ASCII	 flag	 is	used	 this	becomes	 the
equivalent	 of	 [^a-zA-Z0-9_]	 (but	 the	 flag	 affects	 the	 entire
regular	 expression,	 so	 in	 such	 cases	 using	 an	 explicit	 [^a-zA-
Z0-9_]	may	be	a	better	choice).

\Z

Matches	only	at	the	end	of	the	string.

Most	of	 the	standard	escapes	supported	by	Python	string	 literals	are
also	accepted	by	the	regular	expression	parser:

\a						\b						\f						\n

\r						\t						\u						\U

\v						\x						\\

(Note	 that	 \b	 is	 used	 to	 represent	 word	 boundaries,	 and	 means
“backspace”	only	inside	character	classes.)

'\u'	 and	 '\U'	 escape	 sequences	 are	 only	 recognized	 in	 Unicode
patterns.	In	bytes	patterns	they	are	not	treated	specially.

Octal	escapes	are	included	in	a	limited	form.	If	the	first	digit	is	a	0,	or	if
there	 are	 three	 octal	 digits,	 it	 is	 considered	 an	 octal	 escape.
Otherwise,	it	is	a	group	reference.	As	for	string	literals,	octal	escapes
are	always	at	most	three	digits	in	length.

Changed	in	version	3.3:	The	'\u'	and	'\U'	escape	sequences	have
been	added.

6.2.2.	Module	Contents

The	module	 defines	 several	 functions,	 constants,	 and	 an	 exception.
Some	 of	 the	 functions	 are	 simplified	 versions	 of	 the	 full	 featured
methods	 for	 compiled	 regular	 expressions.	 Most	 non-trivial
applications	always	use	the	compiled	form.

re.compile(pattern,	flags=0)
Compile	 a	 regular	 expression	 pattern	 into	 a	 regular	 expression
object,	 which	 can	 be	 used	 for	 matching	 using	 its	 match()	 and
search()	methods,	described	below.

The	expression’s	behaviour	can	be	modified	by	specifying	a	 flags
value.	 Values	 can	 be	 any	 of	 the	 following	 variables,	 combined
using	bitwise	OR	(the	|	operator).

The	sequence

prog	=	re.compile(pattern)

result	=	prog.match(string)

is	equivalent	to

result	=	re.match(pattern,	string)

but	 using	 re.compile()	 and	 saving	 the	 resulting	 regular
expression	object	 for	 reuse	 is	more	efficient	when	 the	expression
will	be	used	several	times	in	a	single	program.

Note: 	The	compiled	versions	of	the	most	recent	patterns	passed
to	re.compile()	and	the	module-level	matching	functions	are
cached,	so	programs	that	use	only	a	few	regular	expressions	at	a

time	needn’t	worry	about	compiling	regular	expressions.

re.A

re.ASCII

Make	 \w,	 \W,	 \b,	 \B,	 \d,	 \D,	 \s	 and	 \S	 perform	 ASCII-only
matching	instead	of	full	Unicode	matching.	This	is	only	meaningful
for	Unicode	patterns,	and	is	ignored	for	byte	patterns.

Note	 that	 for	backward	compatibility,	 the	re.U	 flag	still	 exists	 (as
well	 as	 its	 synonym	 re.UNICODE	 and	 its	 embedded	 counterpart
(?u)),	 but	 these	 are	 redundant	 in	 Python	 3	 since	 matches	 are
Unicode	by	default	for	strings	(and	Unicode	matching	isn’t	allowed
for	bytes).

re.DEBUG

Display	debug	information	about	compiled	expression.

re.I

re.IGNORECASE

Perform	 case-insensitive	 matching;	 expressions	 like	 [A-Z]	 will
match	 lowercase	 letters,	 too.	 This	 is	 not	 affected	 by	 the	 current
locale	and	works	for	Unicode	characters	as	expected.

re.L

re.LOCALE

Make	\w,	\W,	\b,	\B,	\s	and	\S	dependent	on	the	current	locale.
The	use	of	this	flag	is	discouraged	as	the	locale	mechanism	is	very
unreliable,	and	it	only	handles	one	“culture”	at	a	time	anyway;	you
should	 use	 Unicode	 matching	 instead,	 which	 is	 the	 default	 in
Python	3	for	Unicode	(str)	patterns.

re.M

re.MULTILINE

When	 specified,	 the	 pattern	 character	 '^'	 matches	 at	 the
beginning	 of	 the	 string	 and	 at	 the	 beginning	 of	 each	 line
(immediately	 following	 each	 newline);	 and	 the	 pattern	 character
'$'	matches	at	 the	end	of	 the	string	and	at	 the	end	of	each	 line
(immediately	 preceding	 each	 newline).	 By	 default,	 '^'	 matches
only	at	the	beginning	of	the	string,	and	'$'	only	at	the	end	of	the
string	and	immediately	before	the	newline	(if	any)	at	the	end	of	the
string.

re.S

re.DOTALL

Make	 the	 '.'	 special	 character	 match	 any	 character	 at	 all,
including	 a	 newline;	 without	 this	 flag,	 '.'	 will	 match	 anything
except	a	newline.

re.X

re.VERBOSE

This	 flag	 allows	 you	 to	 write	 regular	 expressions	 that	 look	 nicer.
Whitespace	 within	 the	 pattern	 is	 ignored,	 except	 when	 in	 a
character	 class	 or	 preceded	 by	 an	 unescaped	 backslash,	 and,
when	 a	 line	 contains	 a	 '#'	 neither	 in	 a	 character	 class	 or
preceded	 by	 an	 unescaped	 backslash,	 all	 characters	 from	 the
leftmost	such	'#'	through	the	end	of	the	line	are	ignored.

That	means	 that	 the	 two	 following	 regular	expression	objects	 that
match	a	decimal	number	are	functionally	equal:

a	=	re.compile(r"""\d	+		#	the	integral	part

																			\.				#	the	decimal	point

																			\d	*		#	some	fractional	digits"""

b	=	re.compile(r"\d+\.\d*")

re.search(pattern,	string,	flags=0)
Scan	 through	 string	 looking	 for	 a	 location	 where	 the	 regular
expression	pattern	produces	a	match,	and	return	a	corresponding
match	object.	Return	None	if	no	position	in	the	string	matches	the
pattern;	note	that	this	 is	different	from	finding	a	zero-length	match
at	some	point	in	the	string.

re.match(pattern,	string,	flags=0)
If	 zero	 or	 more	 characters	 at	 the	 beginning	 of	 string	 match	 the
regular	 expression	 pattern,	 return	 a	 corresponding	match	 object.
Return	None	if	the	string	does	not	match	the	pattern;	note	that	this
is	different	from	a	zero-length	match.

Note	that	even	in	MULTILINE	mode,	re.match()	will	only	match
at	the	beginning	of	the	string	and	not	at	the	beginning	of	each	line.

If	 you	want	 to	 locate	a	match	anywhere	 in	string,	use	search()
instead	(see	also	search()	vs.	match()).

re.fullmatch(pattern,	string,	flags=0)
If	the	whole	string	matches	the	regular	expression	pattern,	return	a
corresponding	match	 object.	 Return	 None	 if	 the	 string	 does	 not
match	 the	 pattern;	 note	 that	 this	 is	 different	 from	 a	 zero-length
match.

New	in	version	3.4.

re.split(pattern,	string,	maxsplit=0,	flags=0)
Split	string	by	the	occurrences	of	pattern.	If	capturing	parentheses
are	used	 in	pattern,	 then	 the	 text	 of	 all	 groups	 in	 the	 pattern	 are
also	returned	as	part	of	the	resulting	list.	If	maxsplit	 is	nonzero,	at
most	 maxsplit	 splits	 occur,	 and	 the	 remainder	 of	 the	 string	 is

returned	as	the	final	element	of	the	list.

>>>	re.split('\W+',	'Words,	words,	words.')

['Words',	'words',	'words',	'']

>>>	re.split('(\W+)',	'Words,	words,	words.')

['Words',	',	',	'words',	',	',	'words',	'.',	'']

>>>	re.split('\W+',	'Words,	words,	words.',	1)

['Words',	'words,	words.']

>>>	re.split('[a-f]+',	'0a3B9',	flags=re.IGNORECASE

['0',	'3',	'9']

If	there	are	capturing	groups	in	the	separator	and	it	matches	at	the
start	 of	 the	 string,	 the	 result	 will	 start	 with	 an	 empty	 string.	 The
same	holds	for	the	end	of	the	string:

>>>	re.split('(\W+)',	'...words,	words...')

['',	'...',	'words',	',	',	'words',	'...',	'']

That	 way,	 separator	 components	 are	 always	 found	 at	 the	 same
relative	indices	within	the	result	list.

Note	 that	split	will	never	split	a	string	on	an	empty	pattern	match.
For	example:

>>>	re.split('x*',	'foo')

['foo']

>>>	re.split("(?m)^$",	"foo\n\nbar\n")

['foo\n\nbar\n']

Changed	in	version	3.1:	Added	the	optional	flags	argument.

re.findall(pattern,	string,	flags=0)
Return	all	non-overlapping	matches	of	pattern	in	string,	as	a	list	of
strings.	 The	 string	 is	 scanned	 left-to-right,	 and	 matches	 are

returned	 in	 the	order	 found.	 If	one	or	more	groups	are	present	 in
the	pattern,	return	a	list	of	groups;	this	will	be	a	list	of	tuples	if	the
pattern	has	more	than	one	group.	Empty	matches	are	 included	 in
the	result	unless	they	touch	the	beginning	of	another	match.

re.finditer(pattern,	string,	flags=0)
Return	an	 iterator	 yielding	match	objects	 over	all	 non-overlapping
matches	for	the	RE	pattern	in	string.	The	string	 is	scanned	 left-to-
right,	and	matches	are	returned	in	the	order	found.	Empty	matches
are	 included	 in	 the	 result	 unless	 they	 touch	 the	 beginning	 of
another	match.

re.sub(pattern,	repl,	string,	count=0,	flags=0)
Return	 the	 string	 obtained	 by	 replacing	 the	 leftmost	 non-
overlapping	 occurrences	 of	 pattern	 in	 string	 by	 the	 replacement
repl.	 If	 the	 pattern	 isn’t	 found,	 string	 is	 returned	 unchanged.	 repl
can	be	a	string	or	a	function;	if	it	is	a	string,	any	backslash	escapes
in	 it	 are	 processed.	 That	 is,	 \n	 is	 converted	 to	 a	 single	 newline
character,	 \r	 is	 converted	 to	 a	 carriage	 return,	 and	 so	 forth.
Unknown	escapes	such	as	\j	are	left	alone.	Backreferences,	such
as	\6,	are	replaced	with	 the	substring	matched	by	group	6	 in	 the
pattern.	For	example:

>>>	re.sub(r'def\s+([a-zA-Z_][a-zA-Z_0-9]*)\s*\(\s*\):'

...								r'static	PyObject*\npy_\1(void)\n{',

...								'def	myfunc():')

'static	PyObject*\npy_myfunc(void)\n{'

If	 repl	 is	 a	 function,	 it	 is	 called	 for	 every	 non-overlapping
occurrence	 of	 pattern.	 The	 function	 takes	 a	 single	 match	 object
argument,	and	returns	the	replacement	string.	For	example:

>>>	def	dashrepl(matchobj):

...					if	matchobj.group(0)	==	'-':	return	'	'

...					else:	return	'-'

>>>	re.sub('-{1,2}',	dashrepl,	'pro----gram-files'

'pro--gram	files'

>>>	re.sub(r'\sAND\s',	'	&	',	'Baked	Beans	And	Spam'

'Baked	Beans	&	Spam'

The	pattern	may	be	a	string	or	an	RE	object.

The	 optional	 argument	 count	 is	 the	 maximum	 number	 of	 pattern
occurrences	to	be	replaced;	count	must	be	a	non-negative	integer.
If	omitted	or	zero,	all	occurrences	will	be	replaced.	Empty	matches
for	 the	pattern	are	 replaced	only	when	not	adjacent	 to	a	previous
match,	so	sub('x*',	'-',	'abc')	returns	'-a-b-c-'.

In	string-type	repl	arguments,	 in	addition	to	the	character	escapes
and	 backreferences	 described	 above,	 \g<name>	 will	 use	 the
substring	matched	by	the	group	named	name,	as	defined	by	the	(?
P<name>...)	 syntax.	 \g<number>	 uses	 the	 corresponding
group	 number;	 \g<2>	 is	 therefore	 equivalent	 to	 \2,	 but	 isn’t
ambiguous	 in	 a	 replacement	 such	 as	 \g<2>0.	 \20	 would	 be
interpreted	as	a	reference	to	group	20,	not	a	reference	to	group	2
followed	 by	 the	 literal	 character	 '0'.	 The	 backreference	 \g<0>
substitutes	in	the	entire	substring	matched	by	the	RE.

Changed	in	version	3.1:	Added	the	optional	flags	argument.

re.subn(pattern,	repl,	string,	count=0,	flags=0)
Perform	 the	 same	 operation	 as	 sub(),	 but	 return	 a	 tuple
(new_string,	number_of_subs_made).

Changed	in	version	3.1:	Added	the	optional	flags	argument.

re.escape(string)
Escape	all	the	characters	in	pattern	except	ASCII	letters,	numbers
and	 '_'.	 This	 is	 useful	 if	 you	 want	 to	 match	 an	 arbitrary	 literal
string	that	may	have	regular	expression	metacharacters	in	it.

Changed	in	version	3.3:	The	'_'	character	is	no	longer	escaped.

re.purge()
Clear	the	regular	expression	cache.

exception	re.error
Exception	raised	when	a	string	passed	to	one	of	the	functions	here
is	 not	 a	 valid	 regular	 expression	 (for	 example,	 it	 might	 contain
unmatched	parentheses)	or	when	some	other	error	occurs	during
compilation	or	matching.	It	is	never	an	error	if	a	string	contains	no
match	for	a	pattern.

6.2.3.	Regular	Expression	Objects

Compiled	 regular	 expression	 objects	 support	 the	 following	 methods
and	attributes:

regex.search(string[,	pos[,	endpos]])
Scan	 through	 string	 looking	 for	 a	 location	 where	 this	 regular
expression	 produces	 a	match,	 and	 return	 a	 corresponding	match
object.	Return	None	if	no	position	in	the	string	matches	the	pattern;
note	that	this	is	different	from	finding	a	zero-length	match	at	some
point	in	the	string.

The	 optional	 second	 parameter	 pos	 gives	 an	 index	 in	 the	 string
where	the	search	is	to	start;	it	defaults	to	0.	This	is	not	completely
equivalent	to	slicing	the	string;	the	'^'	pattern	character	matches
at	 the	 real	 beginning	 of	 the	 string	 and	 at	 positions	 just	 after	 a
newline,	 but	 not	 necessarily	 at	 the	 index	 where	 the	 search	 is	 to
start.

The	 optional	 parameter	 endpos	 limits	 how	 far	 the	 string	 will	 be
searched;	 it	will	 be	 as	 if	 the	 string	 is	endpos	 characters	 long,	 so
only	the	characters	from	pos	to	endpos	-	1	will	be	searched	for
a	 match.	 If	 endpos	 is	 less	 than	 pos,	 no	 match	 will	 be	 found;
otherwise,	 if	 rx	 is	 a	 compiled	 regular	 expression	 object,
rx.search(string,	 0,	 50)	 is	 equivalent	 to
rx.search(string[:50],	0).

>>>	pattern	=	re.compile("d")

>>>	pattern.search("dog")					#	Match	at	index	0

<_sre.SRE_Match	object;	span=(0,	1),	match='d'>

>>>	pattern.search("dog",	1)		#	No	match;	search	doesn't	include	the	"d"

regex.match(string[,	pos[,	endpos]])
If	 zero	 or	 more	 characters	 at	 the	 beginning	 of	 string	 match	 this
regular	 expression,	 return	 a	 corresponding	match	 object.	 Return
None	 if	 the	 string	 does	 not	 match	 the	 pattern;	 note	 that	 this	 is
different	from	a	zero-length	match.

The	optional	pos	and	endpos	parameters	have	the	same	meaning
as	for	the	search()	method.

>>>	pattern	=	re.compile("o")

>>>	pattern.match("dog")						#	No	match	as	"o"	is	not	at	the	start	of	"dog".

>>>	pattern.match("dog",	1)			#	Match	as	"o"	is	the	2nd	character	of	"dog".

<_sre.SRE_Match	object;	span=(1,	2),	match='o'>

If	 you	want	 to	 locate	a	match	anywhere	 in	string,	use	search()
instead	(see	also	search()	vs.	match()).

regex.fullmatch(string[,	pos[,	endpos]])
If	 the	 whole	 string	 matches	 this	 regular	 expression,	 return	 a
corresponding	match	 object.	 Return	 None	 if	 the	 string	 does	 not
match	 the	 pattern;	 note	 that	 this	 is	 different	 from	 a	 zero-length
match.

The	optional	pos	and	endpos	parameters	have	the	same	meaning
as	for	the	search()	method.

>>>	pattern	=	re.compile("o[gh]")

>>>	pattern.fullmatch("dog")						#	No	match	as	"o"	is	not	at	the	start	of	"dog".

>>>	pattern.fullmatch("ogre")					#	No	match	as	not	the	full	string	matches.

>>>	pattern.fullmatch("doggie",	1,	3)			#	Matches	within	given	limits.

<_sre.SRE_Match	object;	span=(1,	3),	match='og'>

New	in	version	3.4.

regex.split(string,	maxsplit=0)
Identical	to	the	split()	function,	using	the	compiled	pattern.

regex.findall(string[,	pos[,	endpos]])
Similar	to	the	findall()	function,	using	the	compiled	pattern,	but
also	 accepts	 optional	 pos	 and	 endpos	 parameters	 that	 limit	 the
search	region	like	for	match().

regex.finditer(string[,	pos[,	endpos]])
Similar	 to	 the	 finditer()	 function,	 using	 the	 compiled	 pattern,
but	also	accepts	optional	pos	and	endpos	parameters	that	limit	the
search	region	like	for	match().

regex.sub(repl,	string,	count=0)
Identical	to	the	sub()	function,	using	the	compiled	pattern.

regex.subn(repl,	string,	count=0)
Identical	to	the	subn()	function,	using	the	compiled	pattern.

regex.flags

The	regex	matching	flags.	This	is	a	combination	of	the	flags	given
to	compile(),	any	(?...)	inline	flags	in	the	pattern,	and	implicit
flags	such	as	UNICODE	if	the	pattern	is	a	Unicode	string.

regex.groups

The	number	of	capturing	groups	in	the	pattern.

regex.groupindex

A	 dictionary	 mapping	 any	 symbolic	 group	 names	 defined	 by	 (?
P<id>)	 to	group	numbers.	The	dictionary	is	empty	if	no	symbolic

groups	were	used	in	the	pattern.

regex.pattern

The	pattern	string	from	which	the	RE	object	was	compiled.

6.2.4.	Match	Objects

Match	objects	always	have	a	boolean	value	of	True.	Since	match()
and	 search()	 return	 None	 when	 there	 is	 no	 match,	 you	 can	 test
whether	there	was	a	match	with	a	simple	if	statement:

match	=	re.search(pattern,	string)

if	match:

				process(match)

Match	objects	support	the	following	methods	and	attributes:

match.expand(template)
Return	 the	string	obtained	by	doing	backslash	substitution	on	 the
template	string	template,	as	done	by	the	sub()	method.	Escapes
such	 as	 \n	 are	 converted	 to	 the	 appropriate	 characters,	 and
numeric	 backreferences	 (\1,	 \2)	 and	 named	 backreferences
(\g<1>,	 \g<name>)	 are	 replaced	 by	 the	 contents	 of	 the
corresponding	group.

match.group([group1,	...])
Returns	one	or	more	subgroups	of	 the	match.	 If	 there	 is	a	single
argument,	 the	 result	 is	 a	 single	 string;	 if	 there	 are	 multiple
arguments,	 the	 result	 is	 a	 tuple	 with	 one	 item	 per	 argument.
Without	 arguments,	 group1	 defaults	 to	 zero	 (the	 whole	 match	 is
returned).	 If	a	groupN	argument	 is	zero,	 the	corresponding	 return
value	 is	 the	 entire	 matching	 string;	 if	 it	 is	 in	 the	 inclusive	 range
[1..99],	 it	 is	 the	 string	matching	 the	 corresponding	 parenthesized
group.	If	a	group	number	 is	negative	or	 larger	than	the	number	of
groups	defined	in	the	pattern,	an	IndexError	exception	is	raised.
If	a	group	 is	contained	 in	a	part	of	 the	pattern	 that	did	not	match,

the	corresponding	result	is	None.	 If	a	group	is	contained	in	a	part
of	 the	 pattern	 that	 matched	 multiple	 times,	 the	 last	 match	 is
returned.

>>>	m	=	re.match(r"(\w+)	(\w+)",	"Isaac	Newton,	physicist"

>>>	m.group(0)							#	The	entire	match

'Isaac	Newton'

>>>	m.group(1)							#	The	first	parenthesized	subgroup.

'Isaac'

>>>	m.group(2)							#	The	second	parenthesized	subgroup.

'Newton'

>>>	m.group(1,	2)				#	Multiple	arguments	give	us	a	tuple.

('Isaac',	'Newton')

If	 the	 regular	 expression	 uses	 the	 (?P<name>...)	 syntax,	 the
groupN	arguments	may	also	be	strings	 identifying	groups	by	 their
group	name.	 If	a	string	argument	 is	not	used	as	a	group	name	 in
the	pattern,	an	IndexError	exception	is	raised.

A	moderately	complicated	example:

>>>	m	=	re.match(r"(?P<first_name>\w+)	(?P<last_name>\w+)"

>>>	m.group('first_name')

'Malcolm'

>>>	m.group('last_name')

'Reynolds'

Named	groups	can	also	be	referred	to	by	their	index:

>>>	m.group(1)

'Malcolm'

>>>	m.group(2)

'Reynolds'

If	a	group	matches	multiple	times,	only	the	last	match	is	accessible:

>>>	m	=	re.match(r"(..)+",	"a1b2c3")		#	Matches	3	times.

>>>	m.group(1)																								#	Returns	only	the	last	match.

'c3'

match.groups(default=None)
Return	a	tuple	containing	all	the	subgroups	of	the	match,	from	1	up
to	however	many	groups	are	 in	the	pattern.	The	default	argument
is	used	for	groups	that	did	not	participate	in	the	match;	it	defaults	to
None.

For	example:

>>>	m	=	re.match(r"(\d+)\.(\d+)",	"24.1632")

>>>	m.groups()

('24',	'1632')

If	we	make	the	decimal	place	and	everything	after	it	optional,	not	all
groups	might	participate	in	the	match.	These	groups	will	default	to
None	unless	the	default	argument	is	given:

>>>	m	=	re.match(r"(\d+)\.?(\d+)?",	"24")

>>>	m.groups()						#	Second	group	defaults	to	None.

('24',	None)

>>>	m.groups('0')			#	Now,	the	second	group	defaults	to	'0'.

('24',	'0')

match.groupdict(default=None)
Return	 a	 dictionary	 containing	 all	 the	 named	 subgroups	 of	 the
match,	keyed	by	the	subgroup	name.	The	default	argument	is	used
for	groups	that	did	not	participate	in	the	match;	it	defaults	to	None.

For	example:

>>>	m	=	re.match(r"(?P<first_name>\w+)	(?P<last_name>\w+)"

>>>	m.groupdict()

{'first_name':	'Malcolm',	'last_name':	'Reynolds'}

match.start([group])
match.end([group])

Return	the	indices	of	the	start	and	end	of	the	substring	matched	by
group;	 group	 defaults	 to	 zero	 (meaning	 the	 whole	 matched
substring).	Return	-1	 if	group	 exists	but	 did	not	 contribute	 to	 the
match.	For	a	match	object	m,	and	a	group	g	 that	did	contribute	to
the	 match,	 the	 substring	 matched	 by	 group	 g	 (equivalent	 to
m.group(g))	is

m.string[m.start(g):m.end(g)]

Note	 that	 m.start(group)	 will	 equal	 m.end(group)	 if	 group
matched	 a	 null	 string.	 For	 example,	 after	 m	 =

re.search('b(c?)',	'cba'),	 m.start(0)	 is	 1,	 m.end(0)
is	2,	m.start(1)	and	m.end(1)	are	both	2,	and	m.start(2)
raises	an	IndexError	exception.

An	example	that	will	remove	remove_this	from	email	addresses:

>>>	email	=	"tony@tiremove_thisger.net"

>>>	m	=	re.search("remove_this",	email)

>>>	email[:m.start()]	+	email[m.end():]

'tony@tiger.net'

match.span([group])
For	 a	 match	 m,	 return	 the	 2-tuple	 (m.start(group),

m.end(group)).	 Note	 that	 if	 group	 did	 not	 contribute	 to	 the
match,	this	is	(-1,	-1).	group	defaults	to	zero,	the	entire	match.

match.pos

The	value	of	pos	which	was	passed	to	the	search()	or	match()
method	of	a	regex	object.	This	is	the	index	into	the	string	at	which
the	RE	engine	started	looking	for	a	match.

match.endpos

The	 value	 of	 endpos	 which	 was	 passed	 to	 the	 search()	 or
match()	method	of	a	regex	object.	This	is	the	index	into	the	string
beyond	which	the	RE	engine	will	not	go.

match.lastindex

The	 integer	 index	of	 the	 last	matched	capturing	group,	or	None	 if
no	group	was	matched	at	all.	For	example,	the	expressions	(a)b,
((a)(b)),	and	((ab))	will	have	lastindex	==	1	if	applied	to
the	 string	 'ab',	 while	 the	 expression	 (a)(b)	 will	 have
lastindex	==	2,	if	applied	to	the	same	string.

match.lastgroup

The	 name	 of	 the	 last	 matched	 capturing	 group,	 or	 None	 if	 the
group	didn’t	have	a	name,	or	if	no	group	was	matched	at	all.

match.re

The	 regular	 expression	 object	 whose	 match()	 or	 search()
method	produced	this	match	instance.

match.string

The	string	passed	to	match()	or	search().

6.2.5.	Regular	Expression	Examples

6.2.5.1.	Checking	for	a	Pair

In	this	example,	we’ll	use	the	following	helper	function	to	display	match
objects	a	little	more	gracefully:

def	displaymatch(match):

				if	match	is	None:

								return	None

				return	'<Match:	%r,	groups=%r>'	%	(match.group(),

Suppose	 you	 are	 writing	 a	 poker	 program	where	 a	 player’s	 hand	 is
represented	as	a	5-character	string	with	each	character	representing	a
card,	“a”	for	ace,	“k”	for	king,	“q”	for	queen,	“j”	for	jack,	“t”	for	10,	and
“2”	through	“9”	representing	the	card	with	that	value.

To	see	if	a	given	string	is	a	valid	hand,	one	could	do	the	following:

>>>	valid	=	re.compile(r"^[a2-9tjqk]{5}$")

>>>	displaymatch(valid.match("akt5q"))		#	Valid.

"<Match:	'akt5q',	groups=()>"

>>>	displaymatch(valid.match("akt5e"))		#	Invalid.

>>>	displaymatch(valid.match("akt"))				#	Invalid.

>>>	displaymatch(valid.match("727ak"))		#	Valid.

"<Match:	'727ak',	groups=()>"

That	last	hand,	"727ak",	contained	a	pair,	or	two	of	the	same	valued
cards.	 To	 match	 this	 with	 a	 regular	 expression,	 one	 could	 use
backreferences	as	such:

>>>	pair	=	re.compile(r".*(.).*\1")

>>>	displaymatch(pair.match("717ak"))					#	Pair	of	7s.

"<Match:	'717',	groups=('7',)>"

>>>	displaymatch(pair.match("718ak"))					#	No	pairs.

>>>	displaymatch(pair.match("354aa"))					#	Pair	of	aces.

"<Match:	'354aa',	groups=('a',)>"

To	find	out	what	card	the	pair	consists	of,	one	could	use	the	group()
method	of	the	match	object	in	the	following	manner:

>>>	pair.match("717ak").group(1)

'7'

#	Error	because	re.match()	returns	None,	which	doesn't	have	a	group()	method:

>>>	pair.match("718ak").group(1)

Traceback	(most	recent	call	last):

		File	"<pyshell#23>",	line	1,	in	<module>

				re.match(r".*(.).*\1",	"718ak").group(1)

AttributeError:	'NoneType'	object	has	no	attribute	'group'

>>>	pair.match("354aa").group(1)

'a'

6.2.5.2.	Simulating	scanf()

Python	 does	 not	 currently	 have	 an	 equivalent	 to	 scanf().	 Regular
expressions	are	generally	more	powerful,	 though	also	more	verbose,
than	scanf()	 format	 strings.	The	 table	 below	 offers	 some	more-or-
less	 equivalent	 mappings	 between	 scanf()	 format	 tokens	 and
regular	expressions.

scanf()	Token Regular	Expression

%c .

%5c .{5}

%d [-+]?\d+

%e,	%E,	%f,	%g [-+]?(\d+(\.\d*)?|\.\d+)

([eE][-+]?\d+)?

%i
[-+]?(0[xX][\dA-Fa-f]+|0[0-

7]*|\d+)

%o [-+]?[0-7]+

%s \S+

%u \d+

%x,	%X [-+]?(0[xX])?[\dA-Fa-f]+

To	extract	the	filename	and	numbers	from	a	string	like

/usr/sbin/sendmail	-	0	errors,	4	warnings

you	would	use	a	scanf()	format	like

%s	-	%d	errors,	%d	warnings

The	equivalent	regular	expression	would	be

(\S+)	-	(\d+)	errors,	(\d+)	warnings

6.2.5.3.	search()	vs.	match()

Python	 offers	 two	 different	 primitive	 operations	 based	 on	 regular
expressions:	re.match()	checks	for	a	match	only	at	the	beginning	of
the	string,	while	 re.search()	 checks	 for	 a	match	anywhere	 in	 the
string	(this	is	what	Perl	does	by	default).

For	example:

>>>	re.match("c",	"abcdef")		#	No	match

>>>	re.search("c",	"abcdef")	#	Match

<_sre.SRE_Match	object;	span=(2,	3),	match='c'>

Regular	expressions	beginning	with	'^'	can	be	used	with	search()
to	restrict	the	match	at	the	beginning	of	the	string:

>>>	re.match("c",	"abcdef")		#	No	match

>>>	re.search("^c",	"abcdef")	#	No	match

>>>	re.search("^a",	"abcdef")		#	Match

<_sre.SRE_Match	object;	span=(0,	1),	match='a'>

Note	however	that	in	MULTILINE	mode	match()	only	matches	at	the
beginning	 of	 the	 string,	 whereas	 using	 search()	 with	 a	 regular
expression	 beginning	 with	 '^'	 will	 match	 at	 the	 beginning	 of	 each
line.

>>>	re.match('X',	'A\nB\nX',	re.MULTILINE)		#	No	match

>>>	re.search('^X',	'A\nB\nX',	re.MULTILINE)		#	Match

<_sre.SRE_Match	object;	span=(4,	5),	match='X'>

6.2.5.4.	Making	a	Phonebook

split()	splits	a	string	into	a	list	delimited	by	the	passed	pattern.	The
method	 is	 invaluable	 for	 converting	 textual	 data	 into	 data	 structures
that	can	be	easily	read	and	modified	by	Python	as	demonstrated	in	the
following	example	that	creates	a	phonebook.

First,	here	is	the	input.	Normally	it	may	come	from	a	file,	here	we	are
using	triple-quoted	string	syntax:

>>>	text	=	"""Ross	McFluff:	834.345.1254	155	Elm	Street

...

...	Ronald	Heathmore:	892.345.3428	436	Finley	Avenue

...	Frank	Burger:	925.541.7625	662	South	Dogwood	Way

...

...

...	Heather	Albrecht:	548.326.4584	919	Park	Place"""

The	entries	are	separated	by	one	or	more	newlines.	Now	we	convert
the	string	into	a	list	with	each	nonempty	line	having	its	own	entry:

>>>	entries	=	re.split("\n+",	text)

>>>	entries

['Ross	McFluff:	834.345.1254	155	Elm	Street',

'Ronald	Heathmore:	892.345.3428	436	Finley	Avenue',

'Frank	Burger:	925.541.7625	662	South	Dogwood	Way',

'Heather	Albrecht:	548.326.4584	919	Park	Place']

Finally,	split	each	entry	into	a	list	with	first	name,	last	name,	telephone
number,	and	address.	We	use	the	maxsplit	parameter	of	split()
because	the	address	has	spaces,	our	splitting	pattern,	in	it:

>>>	[re.split(":?	",	entry,	3)	for	entry	in	entries]

[['Ross',	'McFluff',	'834.345.1254',	'155	Elm	Street'],

['Ronald',	'Heathmore',	'892.345.3428',	'436	Finley	Avenue'],

['Frank',	'Burger',	'925.541.7625',	'662	South	Dogwood	Way'],

['Heather',	'Albrecht',	'548.326.4584',	'919	Park	Place']]

The	:?	pattern	matches	the	colon	after	the	last	name,	so	that	it	does
not	occur	in	the	result	list.	With	a	maxsplit	of	4,	we	could	separate
the	house	number	from	the	street	name:

>>>	[re.split(":?	",	entry,	4)	for	entry	in	entries]

[['Ross',	'McFluff',	'834.345.1254',	'155',	'Elm	Street'],

['Ronald',	'Heathmore',	'892.345.3428',	'436',	'Finley	Avenue'],

['Frank',	'Burger',	'925.541.7625',	'662',	'South	Dogwood	Way'],

['Heather',	'Albrecht',	'548.326.4584',	'919',	'Park	Place']]

6.2.5.5.	Text	Munging

sub()	 replaces	 every	 occurrence	 of	 a	 pattern	 with	 a	 string	 or	 the
result	 of	 a	 function.	This	 example	demonstrates	using	 sub()	with	a
function	to	“munge”	text,	or	randomize	the	order	of	all	the	characters	in
each	word	of	a	sentence	except	for	the	first	and	last	characters:

>>>	def	repl(m):

...			inner_word	=	list(m.group(2))

...			random.shuffle(inner_word)

...			return	m.group(1)	+	"".join(inner_word)	+	m.group

>>>	text	=	"Professor	Abdolmalek,	please	report	your	absences	promptly."

>>>	re.sub(r"(\w)(\w+)(\w)",	repl,	text)

'Poefsrosr	Aealmlobdk,	pslaee	reorpt	your	abnseces	plmrptoy.'

>>>	re.sub(r"(\w)(\w+)(\w)",	repl,	text)

'Pofsroser	Aodlambelk,	plasee	reoprt	yuor	asnebces	potlmrpy.'

6.2.5.6.	Finding	all	Adverbs

findall()	matches	all	occurrences	of	a	pattern,	not	just	the	first	one
as	search()	does.	For	example,	 if	one	was	a	writer	and	wanted	 to
find	all	of	the	adverbs	in	some	text,	he	or	she	might	use	findall()
in	the	following	manner:

>>>	text	=	"He	was	carefully	disguised	but	captured	quickly	by	police."

>>>	re.findall(r"\w+ly",	text)

['carefully',	'quickly']

6.2.5.7.	Finding	all	Adverbs	and	their	Positions

If	one	wants	more	information	about	all	matches	of	a	pattern	than	the
matched	 text,	 finditer()	 is	 useful	 as	 it	 provides	 match	 objects
instead	of	strings.	Continuing	with	the	previous	example,	if	one	was	a
writer	who	wanted	to	find	all	of	the	adverbs	and	their	positions	in	some
text,	he	or	she	would	use	finditer()	in	the	following	manner:

>>>	text	=	"He	was	carefully	disguised	but	captured	quickly	by	police."

>>>	for	m	in	re.finditer(r"\w+ly",	text):

...					print('%02d-%02d:	%s'	%	(m.start(),	m.end(),

07-16:	carefully

40-47:	quickly

6.2.5.8.	Raw	String	Notation

Raw	 string	 notation	 (r"text")	 keeps	 regular	 expressions	 sane.
Without	it,	every	backslash	('\')	 in	a	regular	expression	would	have
to	 be	 prefixed	 with	 another	 one	 to	 escape	 it.	 For	 example,	 the	 two
following	lines	of	code	are	functionally	identical:

>>>	re.match(r"\W(.)\1\W",	"	ff	")

<_sre.SRE_Match	object;	span=(0,	4),	match='	ff	'>

>>>	re.match("\\W(.)\\1\\W",	"	ff	")

<_sre.SRE_Match	object;	span=(0,	4),	match='	ff	'>

When	one	wants	 to	match	a	 literal	backslash,	 it	must	be	escaped	 in
the	 regular	 expression.	With	 raw	 string	 notation,	 this	means	 r"\\".
Without	 raw	 string	 notation,	 one	 must	 use	 "\\\\",	 making	 the
following	lines	of	code	functionally	identical:

>>>	re.match(r"\\",	r"\\")

<_sre.SRE_Match	object;	span=(0,	1),	match='\\'>

>>>	re.match("\\\\",	r"\\")

<_sre.SRE_Match	object;	span=(0,	1),	match='\\'>

6.2.5.9.	Writing	a	Tokenizer

A	 tokenizer	 or	 scanner	 analyzes	 a	 string	 to	 categorize	 groups	 of
characters.	This	is	a	useful	first	step	in	writing	a	compiler	or	interpreter.

The	 text	 categories	 are	 specified	 with	 regular	 expressions.	 The
technique	is	to	combine	those	into	a	single	master	regular	expression
and	to	loop	over	successive	matches:

import	collections

import	re

Token	=	collections.namedtuple('Token',	['typ',	'value'

def	tokenize(s):

				keywords	=	{'IF',	'THEN',	'ENDIF',	'FOR',	'NEXT'

				token_specification	=	[

								('NUMBER',		r'\d+(\.\d*)?'),	#	Integer	or	decimal	number

								('ASSIGN',		r':='),										#	Assignment	operator

								('END',					r';'),											#	Statement	terminator

								('ID',						r'[A-Za-z]+'),			#	Identifiers

								('OP',						r'[+*\/\-]'),				#	Arithmetic	operators

								('NEWLINE',	r'\n'),										#	Line	endings

								('SKIP',				r'[\t]'),							#	Skip	over	spaces	and	tabs

]

				tok_regex	=	'|'.join('(?P<%s>%s)'	%	pair	for	pair

				get_token	=	re.compile(tok_regex).match

				line	=	1

				pos	=	line_start	=	0

				mo	=	get_token(s)

http://en.wikipedia.org/wiki/Lexical_analysis

				while	mo	is	not	None:

								typ	=	mo.lastgroup

								if	typ	==	'NEWLINE':

												line_start	=	pos

												line	+=	1

								elif	typ	!=	'SKIP':

												val	=	mo.group(typ)

												if	typ	==	'ID'	and	val	in	keywords:

																typ	=	val

												yield	Token(typ,	val,	line,	mo.start()-line_start

								pos	=	mo.end()

								mo	=	get_token(s,	pos)

				if	pos	!=	len(s):

								raise	RuntimeError('Unexpected	character	%r	on	line	%d'

statements	=	'''

				IF	quantity	THEN

								total	:=	total	+	price	*	quantity;

								tax	:=	price	*	0.05;

				ENDIF;

'''

for	token	in	tokenize(statements):

				print(token)

The	tokenizer	produces	the	following	output:

Token(typ='IF',	value='IF',	line=2,	column=5)

Token(typ='ID',	value='quantity',	line=2,	column=8)

Token(typ='THEN',	value='THEN',	line=2,	column=17)

Token(typ='ID',	value='total',	line=3,	column=9)

Token(typ='ASSIGN',	value=':=',	line=3,	column=15)

Token(typ='ID',	value='total',	line=3,	column=18)

Token(typ='OP',	value='+',	line=3,	column=24)

Token(typ='ID',	value='price',	line=3,	column=26)

Token(typ='OP',	value='*',	line=3,	column=32)

Token(typ='ID',	value='quantity',	line=3,	column=34)

Token(typ='END',	value=';',	line=3,	column=42)

Token(typ='ID',	value='tax',	line=4,	column=9)

Token(typ='ASSIGN',	value=':=',	line=4,	column=13)

Token(typ='ID',	value='price',	line=4,	column=16)

Token(typ='OP',	value='*',	line=4,	column=22)

Token(typ='NUMBER',	value='0.05',	line=4,	column=24)

Token(typ='END',	value=';',	line=4,	column=28)

Token(typ='ENDIF',	value='ENDIF',	line=5,	column=5)

Token(typ='END',	value=';',	line=5,	column=10)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.3.	difflib	—	Helpers	for
computing	deltas
This	module	provides	classes	and	functions	for	comparing	sequences.
It	 can	 be	 used	 for	 example,	 for	 comparing	 files,	 and	 can	 produce
difference	information	in	various	formats,	including	HTML	and	context
and	 unified	 diffs.	 For	 comparing	 directories	 and	 files,	 see	 also,	 the
filecmp	module.

class	difflib.SequenceMatcher
This	 is	 a	 flexible	 class	 for	 comparing	 pairs	 of	 sequences	 of	 any
type,	so	 long	as	 the	sequence	elements	are	hashable.	The	 basic
algorithm	 predates,	 and	 is	 a	 little	 fancier	 than,	 an	 algorithm
published	 in	 the	 late	 1980’s	 by	 Ratcliff	 and	Obershelp	 under	 the
hyperbolic	name	“gestalt	pattern	matching.”	The	idea	is	to	find	the
longest	contiguous	matching	subsequence	 that	contains	no	 “junk”
elements	 (the	 Ratcliff	 and	 Obershelp	 algorithm	 doesn’t	 address
junk).	The	 same	 idea	 is	 then	 applied	 recursively	 to	 the	 pieces	 of
the	 sequences	 to	 the	 left	 and	 to	 the	 right	 of	 the	 matching
subsequence.	 This	 does	 not	 yield	 minimal	 edit	 sequences,	 but
does	tend	to	yield	matches	that	“look	right”	to	people.

Timing:	The	basic	Ratcliff-Obershelp	algorithm	is	cubic	time	in	the
worst	 case	 and	 quadratic	 time	 in	 the	 expected	 case.
SequenceMatcher	 is	quadratic	 time	 for	 the	worst	 case	and	has
expected-case	behavior	 dependent	 in	 a	 complicated	way	on	how
many	elements	the	sequences	have	in	common;	best	case	time	is
linear.

Automatic	 junk	 heuristic:	 SequenceMatcher	 supports	 a

heuristic	 that	automatically	 treats	certain	sequence	 items	as	 junk.
The	heuristic	counts	how	many	times	each	individual	item	appears
in	the	sequence.	If	an	item’s	duplicates	(after	the	first	one)	account
for	more	than	1%	of	the	sequence	and	the	sequence	is	at	least	200
items	long,	this	item	is	marked	as	“popular”	and	is	treated	as	junk
for	the	purpose	of	sequence	matching.	This	heuristic	can	be	turned
off	by	setting	the	autojunk	argument	to	False	when	creating	the
SequenceMatcher.

New	in	version	3.2:	The	autojunk	parameter.

class	difflib.Differ
This	 is	 a	 class	 for	 comparing	 sequences	 of	 lines	 of	 text,	 and
producing	 human-readable	 differences	 or	 deltas.	 Differ	 uses
SequenceMatcher	 both	 to	 compare	 sequences	 of	 lines,	 and	 to
compare	 sequences	 of	 characters	 within	 similar	 (near-matching)
lines.

Each	line	of	a	Differ	delta	begins	with	a	two-letter	code:

Code Meaning

'-	' line	unique	to	sequence	1

'+	' line	unique	to	sequence	2

'		' line	common	to	both	sequences

'?	'
line	not	present	in	either	input
sequence

Lines	 beginning	 with	 ‘?‘	 attempt	 to	 guide	 the	 eye	 to	 intraline
differences,	and	were	not	present	in	either	input	sequence.	These
lines	can	be	confusing	if	the	sequences	contain	tab	characters.

class	difflib.HtmlDiff

This	 class	 can	 be	 used	 to	 create	 an	HTML	 table	 (or	 a	 complete
HTML	file	containing	the	table)	showing	a	side	by	side,	line	by	line
comparison	of	 text	with	 inter-line	and	 intra-line	change	highlights.
The	 table	 can	 be	 generated	 in	 either	 full	 or	 contextual	 difference
mode.

The	constructor	for	this	class	is:

__init__(tabsize=8,	 wrapcolumn=None,	 linejunk=None,
charjunk=IS_CHARACTER_JUNK)

Initializes	instance	of	HtmlDiff.

tabsize	 is	 an	 optional	 keyword	 argument	 to	 specify	 tab	 stop
spacing	and	defaults	to	8.

wrapcolumn	 is	an	optional	 keyword	 to	 specify	 column	number
where	 lines	are	broken	and	wrapped,	defaults	 to	 None	where
lines	are	not	wrapped.

linejunk	and	charjunk	 are	optional	 keyword	arguments	passed
into	ndiff()	(used	by	HtmlDiff	to	generate	the	side	by	side
HTML	differences).	See	ndiff()	documentation	for	argument
default	values	and	descriptions.

The	following	methods	are	public:

make_file(fromlines,	 tolines,	 fromdesc='',	 todesc='',
context=False,	numlines=5)

Compares	 fromlines	and	 tolines	 (lists	of	 strings)	and	 returns	a
string	which	is	a	complete	HTML	file	containing	a	table	showing
line	 by	 line	 differences	 with	 inter-line	 and	 intra-line	 changes
highlighted.

fromdesc	and	todesc	are	optional	keyword	arguments	to	specify
from/to	 file	 column	 header	 strings	 (both	 default	 to	 an	 empty
string).

context	and	numlines	are	both	optional	keyword	arguments.	Set
context	to	True	when	contextual	differences	are	 to	be	shown,
else	 the	 default	 is	 False	 to	 show	 the	 full	 files.	 numlines
defaults	 to	 5.	 When	 context	 is	 True	 numlines	 controls	 the
number	 of	 context	 lines	 which	 surround	 the	 difference
highlights.	 When	 context	 is	 False	 numlines	 controls	 the
number	of	 lines	which	are	shown	before	a	difference	highlight
when	using	 the	 “next”	 hyperlinks	 (setting	 to	 zero	would	 cause
the	“next”	hyperlinks	to	place	the	next	difference	highlight	at	the
top	of	the	browser	without	any	leading	context).

make_table(fromlines,	 tolines,	 fromdesc='',	 todesc='',
context=False,	numlines=5)

Compares	 fromlines	and	 tolines	 (lists	of	 strings)	and	 returns	a
string	 which	 is	 a	 complete	 HTML	 table	 showing	 line	 by	 line
differences	with	inter-line	and	intra-line	changes	highlighted.

The	arguments	 for	 this	method	are	 the	same	as	 those	 for	 the
make_file()	method.

Tools/scripts/diff.py	 is	 a	 command-line	 front-end	 to	 this
class	and	contains	a	good	example	of	its	use.

difflib.context_diff(a,	b,	fromfile='',	tofile='',	fromfiledate='',
tofiledate='',	n=3,	lineterm='\n')

Compare	 a	 and	 b	 (lists	 of	 strings);	 return	 a	 delta	 (a	 generator
generating	the	delta	lines)	in	context	diff	format.

Context	diffs	are	a	compact	way	of	showing	just	the	lines	that	have

changed	plus	a	few	lines	of	context.	The	changes	are	shown	in	a
before/after	 style.	 The	 number	 of	 context	 lines	 is	 set	 by	 n	 which
defaults	to	three.

By	 default,	 the	 diff	 control	 lines	 (those	 with	 ***	 or	 ---)	 are
created	with	a	trailing	newline.	This	is	helpful	so	that	inputs	created
from	io.IOBase.readlines()	result	in	diffs	that	are	suitable	for
use	with	 io.IOBase.writelines()	 since	 both	 the	 inputs	 and
outputs	have	trailing	newlines.

For	 inputs	 that	 do	 not	 have	 trailing	 newlines,	 set	 the	 lineterm
argument	to	""	so	that	the	output	will	be	uniformly	newline	free.

The	 context	 diff	 format	 normally	 has	 a	 header	 for	 filenames	 and
modification	 times.	 Any	 or	 all	 of	 these	 may	 be	 specified	 using
strings	 for	 fromfile,	 tofile,	 fromfiledate,	 and	 tofiledate.	 The
modification	times	are	normally	expressed	in	the	ISO	8601	format.
If	not	specified,	the	strings	default	to	blanks.

>>>	s1	=	['bacon\n',	'eggs\n',	'ham\n',	'guido\n']

>>>	s2	=	['python\n',	'eggy\n',	'hamster\n',	'guido

>>>	for	line	in	context_diff(s1,	s2,	fromfile='before.py'

...					sys.stdout.write(line)		

***	before.py

---	after.py

***	1,4	****

!	bacon

!	eggs

!	ham

		guido

---	1,4	----

!	python

!	eggy

!	hamster

		guido

See	 A	 command-line	 interface	 to	 difflib	 for	 a	 more	 detailed
example.

difflib.get_close_matches(word,	possibilities,	n=3,
cutoff=0.6)

Return	 a	 list	 of	 the	 best	 “good	 enough”	 matches.	 word	 is	 a
sequence	for	which	close	matches	are	desired	(typically	a	string),
and	possibilities	is	a	list	of	sequences	against	which	to	match	word
(typically	a	list	of	strings).

Optional	argument	n	 (default	3)	 is	 the	maximum	number	of	 close
matches	to	return;	n	must	be	greater	than	0.

Optional	argument	cutoff	(default	0.6)	is	a	float	in	the	range	[0,	1].
Possibilities	 that	 don’t	 score	 at	 least	 that	 similar	 to	 word	 are
ignored.

The	 best	 (no	 more	 than	 n)	 matches	 among	 the	 possibilities	 are
returned	in	a	list,	sorted	by	similarity	score,	most	similar	first.

>>>	get_close_matches('appel',	['ape',	'apple',	'peach'

['apple',	'ape']

>>>	import	keyword

>>>	get_close_matches('wheel',	keyword.kwlist)

['while']

>>>	get_close_matches('apple',	keyword.kwlist)

[]

>>>	get_close_matches('accept',	keyword.kwlist)

['except']

difflib.ndiff(a,	b,	linejunk=None,

charjunk=IS_CHARACTER_JUNK)
Compare	a	and	b	 (lists	of	strings);	 return	a	Differ-style	delta	(a
generator	generating	the	delta	lines).

Optional	 keyword	 parameters	 linejunk	 and	 charjunk	 are	 for	 filter
functions	(or	None):

linejunk:	 A	 function	 that	 accepts	 a	 single	 string	 argument,	 and
returns	true	if	the	string	is	junk,	or	false	if	not.	The	default	is	None.
There	 is	 also	 a	 module-level	 function	 IS_LINE_JUNK(),	 which
filters	 out	 lines	without	 visible	 characters,	 except	 for	 at	most	 one
pound	 character	 ('#')	 –	 however	 the	 underlying
SequenceMatcher	class	does	a	dynamic	analysis	of	which	lines
are	so	frequent	as	to	constitute	noise,	and	this	usually	works	better
than	using	this	function.

charjunk:	A	function	that	accepts	a	character	(a	string	of	length	1),
and	 returns	 if	 the	 character	 is	 junk,	 or	 false	 if	 not.	 The	 default	 is
module-level	 function	 IS_CHARACTER_JUNK(),	 which	 filters	 out
whitespace	 characters	 (a	 blank	 or	 tab;	 note:	 bad	 idea	 to	 include
newline	in	this!).

Tools/scripts/ndiff.py	 is	 a	 command-line	 front-end	 to	 this
function.

>>>	diff	=	ndiff('one\ntwo\nthree\n'.splitlines(1),

...														'ore\ntree\nemu\n'.splitlines(1))

>>>	print(''.join(diff),	end="")

-	one

?		^

+	ore

?		^

-	two

-	three

?		-

+	tree

+	emu

difflib.restore(sequence,	which)
Return	one	of	the	two	sequences	that	generated	a	delta.

Given	 a	 sequence	 produced	 by	 Differ.compare()	 or
ndiff(),	 extract	 lines	 originating	 from	 file	 1	 or	 2	 (parameter
which),	stripping	off	line	prefixes.

Example:

>>>	diff	=	ndiff('one\ntwo\nthree\n'.splitlines(1),

...														'ore\ntree\nemu\n'.splitlines(1))

>>>	diff	=	list(diff)	#	materialize	the	generated	delta	into	a	list

>>>	print(''.join(restore(diff,	1)),	end="")

one

two

three

>>>	print(''.join(restore(diff,	2)),	end="")

ore

tree

emu

difflib.unified_diff(a,	b,	fromfile='',	tofile='',	fromfiledate='',
tofiledate='',	n=3,	lineterm='\n')

Compare	 a	 and	 b	 (lists	 of	 strings);	 return	 a	 delta	 (a	 generator
generating	the	delta	lines)	in	unified	diff	format.

Unified	diffs	are	a	compact	way	of	showing	just	the	lines	that	have
changed	plus	a	few	lines	of	context.	The	changes	are	shown	in	a
inline	style	(instead	of	separate	before/after	blocks).	The	number	of

context	lines	is	set	by	n	which	defaults	to	three.

By	default,	 the	diff	control	 lines	 (those	with	---,	+++,	or	@@)	 are
created	with	a	trailing	newline.	This	is	helpful	so	that	inputs	created
from	io.IOBase.readlines()	result	in	diffs	that	are	suitable	for
use	with	 io.IOBase.writelines()	 since	 both	 the	 inputs	 and
outputs	have	trailing	newlines.

For	 inputs	 that	 do	 not	 have	 trailing	 newlines,	 set	 the	 lineterm
argument	to	""	so	that	the	output	will	be	uniformly	newline	free.

The	 context	 diff	 format	 normally	 has	 a	 header	 for	 filenames	 and
modification	 times.	 Any	 or	 all	 of	 these	 may	 be	 specified	 using
strings	 for	 fromfile,	 tofile,	 fromfiledate,	 and	 tofiledate.	 The
modification	times	are	normally	expressed	in	the	ISO	8601	format.
If	not	specified,	the	strings	default	to	blanks.

>>>	s1	=	['bacon\n',	'eggs\n',	'ham\n',	'guido\n']

>>>	s2	=	['python\n',	'eggy\n',	'hamster\n',	'guido

>>>	for	line	in	unified_diff(s1,	s2,	fromfile='before.py'

...					sys.stdout.write(line)			

---	before.py

+++	after.py

@@	-1,4	+1,4	@@

-bacon

-eggs

-ham

+python

+eggy

+hamster

	guido

See	 A	 command-line	 interface	 to	 difflib	 for	 a	 more	 detailed
example.

difflib.IS_LINE_JUNK(line)
Return	 true	 for	 ignorable	 lines.	The	 line	 line	 is	 ignorable	 if	 line	 is
blank	or	contains	a	single	'#',	otherwise	it	is	not	ignorable.	Used
as	a	default	for	parameter	linejunk	in	ndiff()	in	older	versions.

difflib.IS_CHARACTER_JUNK(ch)
Return	true	for	ignorable	characters.	The	character	ch	is	ignorable
if	ch	 is	 a	 space	 or	 tab,	 otherwise	 it	 is	 not	 ignorable.	 Used	 as	 a
default	for	parameter	charjunk	in	ndiff().

See	also:

Pattern	Matching:	The	Gestalt	Approach
Discussion	 of	 a	 similar	 algorithm	 by	 John	W.	Ratcliff	 and	D.	 E.
Metzener.	This	was	published	in	Dr.	Dobb’s	Journal	in	July,	1988.

http://www.ddj.com/184407970?pgno=5
http://www.ddj.com/

6.3.1.	SequenceMatcher	Objects

The	SequenceMatcher	class	has	this	constructor:

class	difflib.SequenceMatcher(isjunk=None,	a='',	b='',
autojunk=True)

Optional	 argument	 isjunk	 must	 be	 None	 (the	 default)	 or	 a	 one-
argument	function	that	takes	a	sequence	element	and	returns	true
if	and	only	if	the	element	is	“junk”	and	should	be	ignored.	Passing
None	 for	 isjunk	 is	equivalent	 to	passing	lambda	x:	0;	 in	 other
words,	no	elements	are	ignored.	For	example,	pass:

lambda	x:	x	in	"	\t"

if	 you’re	 comparing	 lines	 as	 sequences	 of	 characters,	 and	 don’t
want	to	synch	up	on	blanks	or	hard	tabs.

The	optional	 arguments	a	and	b	 are	 sequences	 to	 be	 compared;
both	 default	 to	 empty	 strings.	 The	 elements	 of	 both	 sequences
must	be	hashable.

The	 optional	 argument	 autojunk	 can	 be	 used	 to	 disable	 the
automatic	junk	heuristic.

New	in	version	3.2:	The	autojunk	parameter.

SequenceMatcher	objects	get	three	data	attributes:	bjunk	is	the	set
of	 elements	 of	b	 for	which	 isjunk	 is	 True;	bpopular	 is	 the	 set	 of
non-junk	elements	considered	popular	by	 the	heuristic	 (if	 it	 is	not
disabled);	b2j	is	a	dict	mapping	the	remaining	elements	of	b	to	a	list
of	 positions	 where	 they	 occur.	 All	 three	 are	 reset	 whenever	 b	 is
reset	with	set_seqs()	or	set_seq2().

New	in	version	3.2:	The	bjunk	and	bpopular	attributes.

SequenceMatcher	objects	have	the	following	methods:

set_seqs(a,	b)
Set	the	two	sequences	to	be	compared.

SequenceMatcher	 computes	 and	 caches	 detailed	 information
about	 the	 second	 sequence,	 so	 if	 you	 want	 to	 compare	 one
sequence	 against	many	 sequences,	 use	 set_seq2()	 to	 set	 the
commonly	used	sequence	once	and	call	set_seq1()	 repeatedly,
once	for	each	of	the	other	sequences.

set_seq1(a)
Set	 the	 first	sequence	 to	be	compared.	The	second	sequence
to	be	compared	is	not	changed.

set_seq2(b)
Set	 the	second	sequence	 to	be	compared.	The	first	sequence
to	be	compared	is	not	changed.

find_longest_match(alo,	ahi,	blo,	bhi)
Find	 longest	 matching	 block	 in	 a[alo:ahi]	 and
b[blo:bhi].

If	 isjunk	 was	 omitted	 or	 None,	 find_longest_match()
returns	 (i,	 j,	 k)	 such	 that	 a[i:i+k]	 is	 equal	 to
b[j:j+k],	where	alo	<=	i	<=	i+k	<=	ahi	and	blo	<=
j	<=	j+k	<=	bhi.	 For	 all	 (i',	j',	k')	 meeting	 those
conditions,	the	additional	conditions	k	>=	k',	i	<=	i',	and	if
i	 ==	 i',	 j	 <=	 j'	 are	 also	 met.	 In	 other	 words,	 of	 all
maximal	 matching	 blocks,	 return	 one	 that	 starts	 earliest	 in	 a,

and	of	all	those	maximal	matching	blocks	that	start	earliest	in	a,
return	the	one	that	starts	earliest	in	b.

>>>	s	=	SequenceMatcher(None,	"	abcd",	"abcd	abcd"

>>>	s.find_longest_match(0,	5,	0,	9)

Match(a=0,	b=4,	size=5)

If	 isjunk	 was	 provided,	 first	 the	 longest	 matching	 block	 is
determined	as	above,	but	with	the	additional	restriction	that	no
junk	element	appears	in	the	block.	Then	that	block	is	extended
as	 far	 as	 possible	 by	 matching	 (only)	 junk	 elements	 on	 both
sides.	So	the	resulting	block	never	matches	on	 junk	except	as
identical	junk	happens	to	be	adjacent	to	an	interesting	match.

Here’s	 the	same	example	as	before,	but	considering	blanks	to
be	junk.	That	prevents	'	abcd'	 from	matching	the	'	abcd'
at	the	tail	end	of	the	second	sequence	directly.	Instead	only	the
'abcd'	 can	match,	 and	matches	 the	 leftmost	 'abcd'	 in	 the
second	sequence:

>>>	s	=	SequenceMatcher(lambda	x:	x=="	",	"	abcd"

>>>	s.find_longest_match(0,	5,	0,	9)

Match(a=1,	b=0,	size=4)

If	no	blocks	match,	this	returns	(alo,	blo,	0).

This	method	returns	a	named	tuple	Match(a,	b,	size).

get_matching_blocks()
Return	 list	 of	 triples	 describing	matching	 subsequences.	Each
triple	 is	 of	 the	 form	 (i,	j,	n),	 and	means	 that	 a[i:i+n]
==	 b[j:j+n].	 The	 triples	 are	 monotonically	 increasing	 in	 i

and	j.

The	 last	 triple	 is	 a	 dummy,	 and	 has	 the	 value	 (len(a),
len(b),	0).	It	is	the	only	triple	with	n	==	0.	If	(i,	j,	n)
and	 (i',	 j',	 n')	 are	 adjacent	 triples	 in	 the	 list,	 and	 the
second	is	not	the	last	triple	in	the	list,	then	i+n	!=	i'	or	j+n
!=	j';	 in	 other	 words,	 adjacent	 triples	 always	 describe	 non-
adjacent	equal	blocks.

>>>	s	=	SequenceMatcher(None,	"abxcd",	"abcd")

>>>	s.get_matching_blocks()

[Match(a=0,	b=0,	size=2),	Match(a=3,	b=2,	size=2),	Match(a=5,	b=4,	size=0)]

get_opcodes()
Return	 list	 of	 5-tuples	 describing	 how	 to	 turn	 a	 into	 b.	 Each
tuple	is	of	the	form	(tag,	i1,	i2,	j1,	j2).	The	first	tuple
has	i1	==	j1	==	0,	and	 remaining	 tuples	have	 i1	equal	 to
the	 i2	 from	 the	 preceding	 tuple,	 and,	 likewise,	 j1	 equal	 to	 the
previous	j2.

The	tag	values	are	strings,	with	these	meanings:

Value Meaning

'replace'
a[i1:i2]	should	be	replaced	by
b[j1:j2].

'delete'
a[i1:i2]	should	be	deleted.	Note	that	j1
==	j2	in	this	case.

'insert'
b[j1:j2]	should	be	inserted	at	a[i1:i1].
Note	that	i1	==	i2	in	this	case.

'equal'
a[i1:i2]	==	b[j1:j2]	(the	sub-
sequences	are	equal).

For	example:

>>>	a	=	"qabxcd"

>>>	b	=	"abycdf"

>>>	s	=	SequenceMatcher(None,	a,	b)

>>>	for	tag,	i1,	i2,	j1,	j2	in	s.get_opcodes():

				print('{:7}			a[{}:{}]	-->	b[{}:{}]	{!r:>8}	-->	{!r}'.format(

								tag,	i1,	i2,	j1,	j2,	a[i1:i2],	b[j1:j2]))

delete	a[0:1]	–>	b[0:0]	‘q’	–>	‘’	equal	a[1:3]	–>	b[0:2]	‘ab’	–>
‘ab’	replace	a[3:4]	–>	b[2:3]	‘x’	–>	‘y’	equal	a[4:6]	–>	b[3:5]
‘cd’	–>	‘cd’	insert	a[6:6]	–>	b[5:6]	‘’	–>	‘f’

get_grouped_opcodes(n=3)
Return	a	generator	of	groups	with	up	to	n	lines	of	context.

Starting	 with	 the	 groups	 returned	 by	 get_opcodes(),	 this
method	 splits	 out	 smaller	 change	 clusters	 and	 eliminates
intervening	ranges	which	have	no	changes.

The	 groups	 are	 returned	 in	 the	 same	 format	 as
get_opcodes().

ratio()
Return	a	measure	of	the	sequences’	similarity	as	a	float	 in	the
range	[0,	1].

Where	 T	 is	 the	 total	 number	 of	 elements	 in	 both	 sequences,
and	M	is	the	number	of	matches,	this	is	2.0*M	/	T.	Note	that	this
is	 1.0	 if	 the	 sequences	 are	 identical,	 and	 0.0	 if	 they	 have
nothing	in	common.

This	is	expensive	to	compute	if	get_matching_blocks()	or

get_opcodes()	hasn’t	already	been	called,	in	which	case	you
may	want	 to	 try	 quick_ratio()	 or	 real_quick_ratio()
first	to	get	an	upper	bound.

quick_ratio()
Return	an	upper	bound	on	ratio()	relatively	quickly.

real_quick_ratio()
Return	an	upper	bound	on	ratio()	very	quickly.

The	three	methods	that	return	the	ratio	of	matching	to	total	characters
can	 give	 different	 results	 due	 to	 differing	 levels	 of	 approximation,
although	quick_ratio()	and	real_quick_ratio()	are	always	at
least	as	large	as	ratio():

>>>	s	=	SequenceMatcher(None,	"abcd",	"bcde")

>>>	s.ratio()

0.75

>>>	s.quick_ratio()

0.75

>>>	s.real_quick_ratio()

1.0

6.3.2.	SequenceMatcher	Examples

This	example	compares	two	strings,	considering	blanks	to	be	“junk”:

>>>	s	=	SequenceMatcher(lambda	x:	x	==	"	",

...																					"private	Thread	currentThread;"

...																					"private	volatile	Thread	currentThread;"

ratio()	 returns	 a	 float	 in	 [0,	 1],	 measuring	 the	 similarity	 of	 the
sequences.	As	a	rule	of	thumb,	a	ratio()	value	over	0.6	means	the
sequences	are	close	matches:

>>>	print(round(s.ratio(),	3))

0.866

If	 you’re	 only	 interested	 in	 where	 the	 sequences	 match,
get_matching_blocks()	is	handy:

>>>	for	block	in	s.get_matching_blocks():

...					print("a[%d]	and	b[%d]	match	for	%d	elements"

a[0]	and	b[0]	match	for	8	elements

a[8]	and	b[17]	match	for	21	elements

a[29]	and	b[38]	match	for	0	elements

Note	 that	 the	 last	 tuple	 returned	 by	 get_matching_blocks()	 is
always	a	dummy,	(len(a),	len(b),	0),	and	this	is	the	only	case
in	which	the	last	tuple	element	(number	of	elements	matched)	is	0.

If	you	want	to	know	how	to	change	the	first	sequence	into	the	second,
use	get_opcodes():

>>>	for	opcode	in	s.get_opcodes():

...					print("%6s	a[%d:%d]	b[%d:%d]"	%	opcode)

	equal	a[0:8]	b[0:8]

insert	a[8:8]	b[8:17]

	equal	a[8:29]	b[17:38]

See	also:

The	 get_close_matches()	 function	 in	 this	 module	 which
shows	how	simple	code	building	on	SequenceMatcher	can	be
used	to	do	useful	work.
Simple	 version	 control	 recipe	 for	 a	 small	 application	 built	 with
SequenceMatcher.

http://code.activestate.com/recipes/576729/

6.3.3.	Differ	Objects

Note	 that	 Differ-generated	 deltas	 make	 no	 claim	 to	 be	minimal
diffs.	To	the	contrary,	minimal	diffs	are	often	counter-intuitive,	because
they	synch	up	anywhere	possible,	sometimes	accidental	matches	100
pages	 apart.	 Restricting	 synch	 points	 to	 contiguous	 matches
preserves	some	notion	of	locality,	at	the	occasional	cost	of	producing	a
longer	diff.

The	Differ	class	has	this	constructor:

class	difflib.Differ(linejunk=None,	charjunk=None)
Optional	 keyword	 parameters	 linejunk	 and	 charjunk	 are	 for	 filter
functions	(or	None):

linejunk:	 A	 function	 that	 accepts	 a	 single	 string	 argument,	 and
returns	true	if	the	string	is	junk.	The	default	is	None,	meaning	that
no	line	is	considered	junk.

charjunk:	 A	 function	 that	 accepts	 a	 single	 character	 argument	 (a
string	 of	 length	 1),	 and	 returns	 true	 if	 the	 character	 is	 junk.	 The
default	is	None,	meaning	that	no	character	is	considered	junk.

Differ	objects	are	used	(deltas	generated)	via	a	single	method:

compare(a,	b)
Compare	 two	 sequences	 of	 lines,	 and	 generate	 the	 delta	 (a
sequence	of	lines).

Each	 sequence	 must	 contain	 individual	 single-line	 strings
ending	 with	 newlines.	 Such	 sequences	 can	 be	 obtained	 from
the	 readlines()	 method	 of	 file-like	 objects.	 The	 delta

generated	also	consists	of	newline-terminated	strings,	ready	to
be	 printed	 as-is	 via	 the	 writelines()	 method	 of	 a	 file-like
object.

6.3.4.	Differ	Example

This	 example	 compares	 two	 texts.	 First	 we	 set	 up	 the	 texts,
sequences	of	 individual	single-line	strings	ending	with	newlines	(such
sequences	 can	also	 be	obtained	 from	 the	 readlines()	method	 of
file-like	objects):

>>>	text1	=	'''		1.	Beautiful	is	better	than	ugly.

...			2.	Explicit	is	better	than	implicit.

...			3.	Simple	is	better	than	complex.

...			4.	Complex	is	better	than	complicated.

...	'''.splitlines(1)

>>>	len(text1)

4

>>>	text1[0][-1]

'\n'

>>>	text2	=	'''		1.	Beautiful	is	better	than	ugly.

...			3.			Simple	is	better	than	complex.

...			4.	Complicated	is	better	than	complex.

...			5.	Flat	is	better	than	nested.

...	'''.splitlines(1)

Next	we	instantiate	a	Differ	object:

>>>	d	=	Differ()

Note	that	when	instantiating	a	Differ	object	we	may	pass	functions
to	 filter	out	 line	and	character	 “junk.”	See	 the	Differ()	constructor
for	details.

Finally,	we	compare	the	two:

>>>	result	=	list(d.compare(text1,	text2))

result	is	a	list	of	strings,	so	let’s	pretty-print	it:

>>>	from	pprint	import	pprint

>>>	pprint(result)

['				1.	Beautiful	is	better	than	ugly.\n',

	'-			2.	Explicit	is	better	than	implicit.\n',

	'-			3.	Simple	is	better	than	complex.\n',

	'+			3.			Simple	is	better	than	complex.\n',

	'?					++\n',

	'-			4.	Complex	is	better	than	complicated.\n',

	'?												^																					----	^\n',

	'+			4.	Complicated	is	better	than	complex.\n',

	'?											++++	^																						^\n',

	'+			5.	Flat	is	better	than	nested.\n']

As	a	single	multi-line	string	it	looks	like	this:

>>>	import	sys

>>>	sys.stdout.writelines(result)

				1.	Beautiful	is	better	than	ugly.

-			2.	Explicit	is	better	than	implicit.

-			3.	Simple	is	better	than	complex.

+			3.			Simple	is	better	than	complex.

?					++

-			4.	Complex	is	better	than	complicated.

?												^																					----	^

+			4.	Complicated	is	better	than	complex.

?											++++	^																						^

+			5.	Flat	is	better	than	nested.

6.3.5.	A	command-line	interface	to	difflib

This	example	shows	how	to	use	difflib	to	create	a	diff-like	utility.	It	is
also	 contained	 in	 the	 Python	 source	 distribution,	 as
Tools/scripts/diff.py.

"""	Command	line	interface	to	difflib.py	providing	diffs	in	four	formats:

*	ndiff:				lists	every	line	and	highlights	interline	changes.

*	context:		highlights	clusters	of	changes	in	a	before/after	format.

*	unified:		highlights	clusters	of	changes	in	an	inline	format.

*	html:					generates	side	by	side	comparison	with	change	highlights.

"""

import	sys,	os,	time,	difflib,	optparse

def	main():

					#	Configure	the	option	parser

				usage	=	"usage:	%prog	[options]	fromfile	tofile"

				parser	=	optparse.OptionParser(usage)

				parser.add_option("-c",	action="store_true",	default

																						help='Produce	a	context	format	diff	(default)'

				parser.add_option("-u",	action="store_true",	default

																						help='Produce	a	unified	format	diff'

				hlp	=	'Produce	HTML	side	by	side	diff	(can	use	-c	and	-l	in	conjunction)'

				parser.add_option("-m",	action="store_true",	default

				parser.add_option("-n",	action="store_true",	default

																						help='Produce	a	ndiff	format	diff'

				parser.add_option("-l",	"--lines",	type="int",	default

																						help='Set	number	of	context	lines	(default	3)'

				(options,	args)	=	parser.parse_args()

				if	len(args)	==	0:

								parser.print_help()

								sys.exit(1)

				if	len(args)	!=	2:

								parser.error("need	to	specify	both	a	fromfile	and	tofile"

				n	=	options.lines

				fromfile,	tofile	=	args	#	as	specified	in	the	usage	string

				#	we're	passing	these	as	arguments	to	the	diff	function

				fromdate	=	time.ctime(os.stat(fromfile).st_mtime

				todate	=	time.ctime(os.stat(tofile).st_mtime)

				with	open(fromfile)	as	fromf,	open(tofile)	as	tof

								fromlines,	tolines	=	list(fromf),	list(tof)

				if	options.u:

								diff	=	difflib.unified_diff(fromlines,	tolines

																																				fromdate,	todate

				elif	options.n:

								diff	=	difflib.ndiff(fromlines,	tolines)

				elif	options.m:

								diff	=	difflib.HtmlDiff().make_file(fromlines

																																												tofile,	

																																												numlines

				else:

								diff	=	difflib.context_diff(fromlines,	tolines

																																				fromdate,	todate

				#	we're	using	writelines	because	diff	is	a	generator

				sys.stdout.writelines(diff)

if	__name__	==	'__main__':

				main()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.4.	textwrap	—	Text	wrapping
and	filling
Source	code:	Lib/textwrap.py

The	textwrap	module	provides	some	convenience	functions,	as	well
as	 TextWrapper,	 the	 class	 that	 does	 all	 the	 work.	 If	 you’re	 just
wrapping	or	 filling	one	or	 two	 text	 strings,	 the	 convenience	 functions
should	 be	 good	 enough;	 otherwise,	 you	 should	 use	 an	 instance	 of
TextWrapper	for	efficiency.

textwrap.wrap(text,	width=70,	**kwargs)
Wraps	 the	 single	 paragraph	 in	 text	 (a	 string)	 so	 every	 line	 is	 at
most	width	 characters	 long.	Returns	a	 list	 of	 output	 lines,	without
final	newlines.

Optional	keyword	arguments	correspond	to	the	instance	attributes
of	TextWrapper,	documented	below.	width	defaults	to	70.

See	 the	TextWrapper.wrap()	method	 for	 additional	 details	 on
how	wrap()	behaves.

textwrap.fill(text,	width=70,	**kwargs)
Wraps	 the	 single	 paragraph	 in	 text,	 and	 returns	 a	 single	 string
containing	the	wrapped	paragraph.	fill()	is	shorthand	for

"\n".join(wrap(text,	...))

In	 particular,	 fill()	 accepts	 exactly	 the	 same	 keyword
arguments	as	wrap().

http://hg.python.org/cpython/file/3.4/Lib/textwrap.py

textwrap.shorten(text,	width,	**kwargs)
Collapse	and	truncate	the	given	text	to	fit	in	the	given	width.

First	the	whitespace	in	text	is	collapsed	(all	whitespace	is	replaced
by	 single	 spaces).	 If	 the	 result	 fits	 in	 the	 width,	 it	 is	 returned.
Otherwise,	 enough	 words	 are	 dropped	 from	 the	 end	 so	 that	 the
remaining	words	plus	the	placeholder	fit	within	width:

>>>	textwrap.shorten("Hello		world!",	width=12)

'Hello	world!'

>>>	textwrap.shorten("Hello		world!",	width=11)

'Hello	[...]'

>>>	textwrap.shorten("Hello	world",	width=10,	placeholder

'Hello...'

Optional	keyword	arguments	correspond	to	the	instance	attributes
of	TextWrapper,	documented	below.	Note	that	the	whitespace	is
collapsed	before	the	text	is	passed	to	the	TextWrapper	fill()
function,	 so	 changing	 the	 value	 of	 tabsize,	 expand_tabs,
drop_whitespace,	 and	 replace_whitespace	 will	 have	 no
effect.

New	in	version	3.4.

textwrap.dedent(text)
Remove	any	common	leading	whitespace	from	every	line	in	text.

This	can	be	used	to	make	triple-quoted	strings	line	up	with	the	left
edge	of	the	display,	while	still	presenting	them	in	the	source	code	in
indented	form.

Note	that	tabs	and	spaces	are	both	treated	as	whitespace,	but	they
are	 not	 equal:	 the	 lines	 "	 	 hello"	 and	 "\thello"	 are

considered	to	have	no	common	leading	whitespace.

For	example:

def	test():

				#	end	first	line	with	\	to	avoid	the	empty	line!

				s	=	'''\

				hello

						world

				'''

				print(repr(s))										#	prints	'				hello\n						world\n				'

				print(repr(dedent(s)))		#	prints	'hello\n		world\n'

textwrap.indent(text,	prefix,	predicate=None)
Add	prefix	to	the	beginning	of	selected	lines	in	text.

Lines	are	separated	by	calling	text.splitlines(True).

By	default,	prefix	 is	added	to	all	 lines	 that	do	not	consist	solely	of
whitespace	(including	any	line	endings).

For	example:

>>>	s	=	'hello\n\n	\nworld'

>>>	indent(s,	'		')

'		hello\n\n	\n		world'

The	optional	predicate	argument	can	be	used	to	control	which	lines
are	 indented.	For	example,	 it	 is	easy	 to	add	prefix	 to	even	empty
and	whitespace-only	lines:

>>>	print(indent(s,	'+	',	lambda	line:	True))

+	hello

+

+

+	world

wrap(),	fill()	and	shorten()	work	by	creating	a	TextWrapper
instance	and	calling	a	single	method	on	it.	That	instance	is	not	reused,
so	 for	 applications	 that	 process	 many	 text	 strings	 using	 wrap()
and/or	 fill(),	 it	 may	 be	 more	 efficient	 to	 create	 your	 own
TextWrapper	object.

Text	is	preferably	wrapped	on	whitespaces	and	right	after	the	hyphens
in	hyphenated	words;	only	then	will	long	words	be	broken	if	necessary,
unless	TextWrapper.break_long_words	is	set	to	false.

class	textwrap.TextWrapper(**kwargs)
The	 TextWrapper	 constructor	 accepts	 a	 number	 of	 optional
keyword	 arguments.	 Each	 keyword	 argument	 corresponds	 to	 an
instance	attribute,	so	for	example

wrapper	=	TextWrapper(initial_indent="*	")

is	the	same	as

wrapper	=	TextWrapper()

wrapper.initial_indent	=	"*	"

You	can	 re-use	 the	same	TextWrapper	 object	many	 times,	 and
you	 can	 change	 any	 of	 its	 options	 through	 direct	 assignment	 to
instance	attributes	between	uses.

The	TextWrapper	instance	attributes	(and	keyword	arguments	to
the	constructor)	are	as	follows:

width

(default:	70)	The	maximum	length	of	wrapped	lines.	As	long	as

there	 are	 no	 individual	 words	 in	 the	 input	 text	 longer	 than
width,	 TextWrapper	 guarantees	 that	 no	 output	 line	 will	 be
longer	than	width	characters.

expand_tabs

(default:	 True)	 If	 true,	 then	 all	 tab	 characters	 in	 text	 will	 be
expanded	to	spaces	using	the	expandtabs()	method	of	text.

tabsize

(default:	8)	 If	expand_tabs	 is	 true,	 then	all	 tab	characters	 in
text	will	be	expanded	to	zero	or	more	spaces,	depending	on	the
current	column	and	the	given	tab	size.

New	in	version	3.3.

replace_whitespace

(default:	True)	If	true,	after	tab	expansion	but	before	wrapping,
the	 wrap()	 method	 will	 replace	 each	 whitespace	 character
with	a	single	space.	The	whitespace	characters	replaced	are	as
follows:	tab,	newline,	vertical	tab,	formfeed,	and	carriage	return
('\t\n\v\f\r').

Note: 	If	expand_tabs	is	false	and	replace_whitespace
is	true,	each	tab	character	will	be	replaced	by	a	single	space,
which	is	not	the	same	as	tab	expansion.

Note: 	 If	 replace_whitespace	 is	 false,	 newlines	 may
appear	 in	 the	middle	of	a	 line	and	cause	strange	output.	For
this	 reason,	 text	 should	 be	 split	 into	 paragraphs	 (using
str.splitlines()	 or	 similar)	 which	 are	 wrapped
separately.

drop_whitespace

(default:	True)	If	true,	whitespace	at	the	beginning	and	ending
of	 every	 line	 (after	wrapping	 but	 before	 indenting)	 is	 dropped.
Whitespace	at	 the	beginning	of	 the	paragraph,	however,	 is	not
dropped	 if	 non-whitespace	 follows	 it.	 If	 whitespace	 being
dropped	takes	up	an	entire	line,	the	whole	line	is	dropped.

initial_indent

(default:	 '')	 String	 that	 will	 be	 prepended	 to	 the	 first	 line	 of
wrapped	output.	Counts	towards	the	length	of	the	first	line.	The
empty	string	is	not	indented.

subsequent_indent

(default:	 '')	 String	 that	 will	 be	 prepended	 to	 all	 lines	 of
wrapped	 output	 except	 the	 first.	Counts	 towards	 the	 length	 of
each	line	except	the	first.

fix_sentence_endings

(default:	 False)	 If	 true,	 TextWrapper	 attempts	 to	 detect
sentence	 endings	 and	 ensure	 that	 sentences	 are	 always
separated	by	exactly	 two	spaces.	This	 is	generally	desired	 for
text	 in	 a	 monospaced	 font.	 However,	 the	 sentence	 detection
algorithm	 is	 imperfect:	 it	 assumes	 that	 a	 sentence	 ending
consists	of	a	 lowercase	letter	 followed	by	one	of	'.',	'!',	or
'?',	 possibly	 followed	 by	 one	 of	 '"'	 or	 "'",	 followed	 by	 a
space.	One	problem	with	this	is	algorithm	is	that	it	 is	unable	to
detect	the	difference	between	“Dr.”	in

[...]	Dr.	Frankenstein's	monster	[...]

and	“Spot.”	in

[...]	See	Spot.	See	Spot	run	[...]

fix_sentence_endings	is	false	by	default.

Since	 the	 sentence	 detection	 algorithm	 relies	 on
string.lowercase	for	the	definition	of	“lowercase	letter,”	and
a	 convention	 of	 using	 two	 spaces	 after	 a	 period	 to	 separate
sentences	 on	 the	 same	 line,	 it	 is	 specific	 to	English-language
texts.

break_long_words

(default:	 True)	 If	 true,	 then	words	 longer	 than	 width	 will	 be
broken	in	order	to	ensure	that	no	lines	are	longer	than	width.
If	it	is	false,	long	words	will	not	be	broken,	and	some	lines	may
be	 longer	 than	 width.	 (Long	 words	 will	 be	 put	 on	 a	 line	 by
themselves,	in	order	to	minimize	the	amount	by	which	width	is
exceeded.)

break_on_hyphens

(default:	 True)	 If	 true,	 wrapping	 will	 occur	 preferably	 on
whitespaces	and	right	after	hyphens	 in	compound	words,	as	 it
is	 customary	 in	 English.	 If	 false,	 only	 whitespaces	 will	 be
considered	as	potentially	 good	places	 for	 line	breaks,	 but	 you
need	 to	 set	 break_long_words	 to	 false	 if	 you	 want	 truly
insecable	words.	Default	behaviour	in	previous	versions	was	to
always	allow	breaking	hyphenated	words.

max_lines

(default:	None)	If	not	None,	then	the	output	will	contain	at	most
max_lines	 lines,	with	placeholder	 appearing	 at	 the	 end	 of	 the
output.

New	in	version	3.4.

placeholder

(default:	 '	[...]')	 String	 that	 will	 appear	 at	 the	 end	 of	 the
output	text	if	it	has	been	truncated.

New	in	version	3.4.

TextWrapper	 also	provides	some	public	methods,	analogous	 to
the	module-level	convenience	functions:

wrap(text)
Wraps	the	single	paragraph	in	text	(a	string)	so	every	line	is	at
most	 width	 characters	 long.	 All	 wrapping	 options	 are	 taken
from	instance	attributes	of	the	TextWrapper	instance.	Returns
a	 list	 of	 output	 lines,	 without	 final	 newlines.	 If	 the	 wrapped
output	has	no	content,	the	returned	list	is	empty.

fill(text)
Wraps	the	single	paragraph	 in	 text,	and	returns	a	single	string
containing	the	wrapped	paragraph.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.5.	unicodedata	—	Unicode
Database
This	 module	 provides	 access	 to	 the	 Unicode	 Character	 Database
(UCD)	which	defines	character	properties	 for	all	Unicode	characters.
The	data	contained	in	this	database	is	compiled	from	the	UCD	version
6.3.0.

The	 module	 uses	 the	 same	 names	 and	 symbols	 as	 defined	 by
Unicode	 Standard	 Annex	 #44,	 “Unicode	 Character	 Database”.	 It
defines	the	following	functions:

unicodedata.lookup(name)
Look	up	character	by	name.	If	a	character	with	the	given	name	is
found,	return	the	corresponding	character.	If	not	found,	KeyError
is	raised.

Changed	 in	version	3.3:	Support	 for	name	aliases	 [1]	and	named
sequences	[2]	has	been	added.

unicodedata.name(chr[,	default])
Returns	 the	name	assigned	 to	 the	character	chr	as	a	string.	 If	no
name	is	defined,	default	 is	returned,	or,	if	not	given,	ValueError
is	raised.

unicodedata.decimal(chr[,	default])
Returns	the	decimal	value	assigned	to	the	character	chr	as	integer.
If	 no	 such	 value	 is	 defined,	 default	 is	 returned,	 or,	 if	 not	 given,
ValueError	is	raised.

http://www.unicode.org/Public/6.3.0/ucd
http://www.unicode.org/reports/tr44/tr44-6.html

unicodedata.digit(chr[,	default])
Returns	the	digit	value	assigned	to	the	character	chr	as	integer.	If
no	 such	 value	 is	 defined,	 default	 is	 returned,	 or,	 if	 not	 given,
ValueError	is	raised.

unicodedata.numeric(chr[,	default])
Returns	the	numeric	value	assigned	to	the	character	chr	as	float.	If
no	 such	 value	 is	 defined,	 default	 is	 returned,	 or,	 if	 not	 given,
ValueError	is	raised.

unicodedata.category(chr)
Returns	 the	 general	 category	 assigned	 to	 the	 character	 chr	 as
string.

unicodedata.bidirectional(chr)
Returns	 the	 bidirectional	 class	 assigned	 to	 the	 character	 chr	 as
string.	If	no	such	value	is	defined,	an	empty	string	is	returned.

unicodedata.combining(chr)
Returns	 the	 canonical	 combining	 class	 assigned	 to	 the	 character
chr	as	integer.	Returns	0	if	no	combining	class	is	defined.

unicodedata.east_asian_width(chr)
Returns	 the	 east	 asian	 width	 assigned	 to	 the	 character	 chr	 as
string.

unicodedata.mirrored(chr)
Returns	 the	 mirrored	 property	 assigned	 to	 the	 character	 chr	 as
integer.	 Returns	 1	 if	 the	 character	 has	 been	 identified	 as	 a
“mirrored”	character	in	bidirectional	text,	0	otherwise.

unicodedata.decomposition(chr)

Returns	 the	 character	 decomposition	 mapping	 assigned	 to	 the
character	chr	as	string.	An	empty	string	is	returned	in	case	no	such
mapping	is	defined.

unicodedata.normalize(form,	unistr)
Return	 the	 normal	 form	 form	 for	 the	 Unicode	 string	 unistr.	 Valid
values	for	form	are	‘NFC’,	‘NFKC’,	‘NFD’,	and	‘NFKD’.

The	 Unicode	 standard	 defines	 various	 normalization	 forms	 of	 a
Unicode	 string,	 based	 on	 the	 definition	 of	 canonical	 equivalence
and	compatibility	equivalence.	 In	Unicode,	several	characters	can
be	expressed	in	various	way.	For	example,	the	character	U+00C7
(LATIN	 CAPITAL	 LETTER	 C	 WITH	 CEDILLA)	 can	 also	 be
expressed	as	the	sequence	U+0043	(LATIN	CAPITAL	LETTER	C)
U+0327	(COMBINING	CEDILLA).

For	each	character,	there	are	two	normal	forms:	normal	form	C	and
normal	 form	D.	Normal	 form	D	 (NFD)	 is	also	known	as	canonical
decomposition,	and	translates	each	character	into	its	decomposed
form.	Normal	form	C	(NFC)	first	applies	a	canonical	decomposition,
then	composes	pre-combined	characters	again.

In	 addition	 to	 these	 two	 forms,	 there	 are	 two	 additional	 normal
forms	 based	 on	 compatibility	 equivalence.	 In	 Unicode,	 certain
characters	 are	 supported	 which	 normally	 would	 be	 unified	 with
other	characters.	For	example,	U+2160	(ROMAN	NUMERAL	ONE)
is	 really	 the	 same	 thing	 as	U+0049	 (LATIN	CAPITAL	LETTER	 I).
However,	 it	 is	 supported	 in	Unicode	 for	 compatibility	with	existing
character	sets	(e.g.	gb2312).

The	 normal	 form	 KD	 (NFKD)	 will	 apply	 the	 compatibility
decomposition,	 i.e.	 replace	 all	 compatibility	 characters	 with	 their
equivalents.	 The	 normal	 form	 KC	 (NFKC)	 first	 applies	 the

compatibility	 decomposition,	 followed	 by	 the	 canonical
composition.

Even	if	two	unicode	strings	are	normalized	and	look	the	same	to	a
human	 reader,	 if	 one	 has	 combining	 characters	 and	 the	 other
doesn’t,	they	may	not	compare	equal.

In	addition,	the	module	exposes	the	following	constant:

unicodedata.unidata_version

The	version	of	the	Unicode	database	used	in	this	module.

unicodedata.ucd_3_2_0

This	is	an	object	that	has	the	same	methods	as	the	entire	module,
but	uses	the	Unicode	database	version	3.2	instead,	for	applications
that	require	this	specific	version	of	the	Unicode	database	(such	as
IDNA).

Examples:

>>>	import	unicodedata

>>>	unicodedata.lookup('LEFT	CURLY	BRACKET')

'{'

>>>	unicodedata.name('/')

'SOLIDUS'

>>>	unicodedata.decimal('9')

9

>>>	unicodedata.decimal('a')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	not	a	decimal

>>>	unicodedata.category('A')		#	'L'etter,	'u'ppercase

'Lu'

>>>	unicodedata.bidirectional('\u0660')	#	'A'rabic,	'N'umber

'AN'

Footnotes

[1] http://www.unicode.org/Public/6.3.0/ucd/NameAliases.txt

[2] http://www.unicode.org/Public/6.3.0/ucd/NamedSequences.txt

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.unicode.org/Public/6.3.0/ucd/NameAliases.txt
http://www.unicode.org/Public/6.3.0/ucd/NamedSequences.txt
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.6.	stringprep	—	Internet
String	Preparation
When	identifying	things	(such	as	host	names)	in	the	internet,	it	is	often
necessary	 to	compare	such	 identifications	 for	 “equality”.	Exactly	how
this	 comparison	 is	 executed	may	depend	on	 the	application	domain,
e.g.	 whether	 it	 should	 be	 case-insensitive	 or	 not.	 It	 may	 be	 also
necessary	 to	 restrict	 the	 possible	 identifications,	 to	 allow	 only
identifications	consisting	of	“printable”	characters.

RFC	 3454	 defines	 a	 procedure	 for	 “preparing”	 Unicode	 strings	 in
internet	 protocols.	 Before	 passing	 strings	 onto	 the	 wire,	 they	 are
processed	 with	 the	 preparation	 procedure,	 after	 which	 they	 have	 a
certain	normalized	 form.	The	RFC	defines	a	set	of	 tables,	which	can
be	 combined	 into	 profiles.	 Each	 profile	 must	 define	 which	 tables	 it
uses,	and	what	other	optional	parts	of	the	stringprep	procedure	are
part	 of	 the	 profile.	 One	 example	 of	 a	 stringprep	 profile	 is
nameprep,	which	is	used	for	internationalized	domain	names.

The	module	stringprep	only	exposes	the	tables	from	RFC	3454.	As
these	tables	would	be	very	 large	to	represent	them	as	dictionaries	or
lists,	the	module	uses	the	Unicode	character	database	internally.	The
module	 source	 code	 itself	 was	 generated	 using	 the
mkstringprep.py	utility.

As	 a	 result,	 these	 tables	 are	 exposed	 as	 functions,	 not	 as	 data
structures.	 There	 are	 two	 kinds	 of	 tables	 in	 the	 RFC:	 sets	 and
mappings.	 For	 a	 set,	 stringprep	 provides	 the	 “characteristic
function”,	i.e.	a	function	that	returns	true	if	the	parameter	is	part	of	the
set.	For	mappings,	 it	provides	 the	mapping	 function:	given	 the	key,	 it

http://tools.ietf.org/html/rfc3454.html

returns	the	associated	value.	Below	is	a	list	of	all	functions	available	in
the	module.

stringprep.in_table_a1(code)
Determine	whether	code	is	in	tableA.1	(Unassigned	code	points	in
Unicode	3.2).

stringprep.in_table_b1(code)
Determine	 whether	 code	 is	 in	 tableB.1	 (Commonly	 mapped	 to
nothing).

stringprep.map_table_b2(code)
Return	the	mapped	value	for	code	according	to	tableB.2	(Mapping
for	case-folding	used	with	NFKC).

stringprep.map_table_b3(code)
Return	the	mapped	value	for	code	according	to	tableB.3	(Mapping
for	case-folding	used	with	no	normalization).

stringprep.in_table_c11(code)
Determine	whether	code	is	in	tableC.1.1	(ASCII	space	characters).

stringprep.in_table_c12(code)
Determine	 whether	 code	 is	 in	 tableC.1.2	 (Non-ASCII	 space
characters).

stringprep.in_table_c11_c12(code)
Determine	whether	code	is	in	tableC.1	(Space	characters,	union	of
C.1.1	and	C.1.2).

stringprep.in_table_c21(code)
Determine	 whether	 code	 is	 in	 tableC.2.1	 (ASCII	 control
characters).

stringprep.in_table_c22(code)
Determine	 whether	 code	 is	 in	 tableC.2.2	 (Non-ASCII	 control
characters).

stringprep.in_table_c21_c22(code)
Determine	whether	code	 is	 in	 tableC.2	 (Control	 characters,	union
of	C.2.1	and	C.2.2).

stringprep.in_table_c3(code)
Determine	whether	code	is	in	tableC.3	(Private	use).

stringprep.in_table_c4(code)
Determine	 whether	 code	 is	 in	 tableC.4	 (Non-character	 code
points).

stringprep.in_table_c5(code)
Determine	whether	code	is	in	tableC.5	(Surrogate	codes).

stringprep.in_table_c6(code)
Determine	whether	code	is	in	tableC.6	(Inappropriate	for	plain	text).

stringprep.in_table_c7(code)
Determine	whether	code	is	in	tableC.7	(Inappropriate	for	canonical
representation).

stringprep.in_table_c8(code)
Determine	whether	code	is	in	tableC.8	(Change	display	properties
or	are	deprecated).

stringprep.in_table_c9(code)
Determine	whether	code	is	in	tableC.9	(Tagging	characters).

stringprep.in_table_d1(code)

Determine	 whether	 code	 is	 in	 tableD.1	 (Characters	 with
bidirectional	property	“R”	or	“AL”).

stringprep.in_table_d2(code)
Determine	 whether	 code	 is	 in	 tableD.2	 (Characters	 with
bidirectional	property	“L”).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.7.	readline	—	GNU	readline
interface
The	 readline	 module	 defines	 a	 number	 of	 functions	 to	 facilitate
completion	 and	 reading/writing	 of	 history	 files	 from	 the	 Python
interpreter.	This	module	can	be	used	directly	or	via	the	rlcompleter
module.	Settings	made	using	this	module	affect	the	behaviour	of	both
the	 interpreter’s	 interactive	 prompt	 and	 the	 prompts	 offered	 by	 the
built-in	input()	function.

Note: 	On	MacOS	X	the	readline	module	can	be	implemented
using	the	libedit	library	instead	of	GNU	readline.

The	 configuration	 file	 for	 libedit	 is	 different	 from	 that	 of	 GNU
readline.	 If	you	programmatically	 load	configuration	strings	you	can
check	 for	 the	 text	 “libedit”	 in	 readline.__doc__	 to	 differentiate
between	GNU	readline	and	libedit.

The	readline	module	defines	the	following	functions:

readline.parse_and_bind(string)
Parse	and	execute	single	line	of	a	readline	init	file.

readline.get_line_buffer()
Return	the	current	contents	of	the	line	buffer.

readline.insert_text(string)
Insert	text	into	the	command	line.

readline.read_init_file([filename])

Parse	a	 readline	 initialization	 file.	 The	default	 filename	 is	 the	 last
filename	used.

readline.read_history_file([filename])
Load	a	readline	history	file.	The	default	filename	is	~/.history.

readline.write_history_file([filename])
Save	a	readline	history	file.	The	default	filename	is	~/.history.

readline.clear_history()
Clear	the	current	history.	(Note:	 this	function	 is	not	available	 if	 the
installed	version	of	GNU	readline	doesn’t	support	it.)

readline.get_history_length()
Return	the	desired	length	of	the	history	file.	Negative	values	imply
unlimited	history	file	size.

readline.set_history_length(length)
Set	 the	 number	 of	 lines	 to	 save	 in	 the	 history	 file.
write_history_file()	 uses	 this	 value	 to	 truncate	 the	history
file	when	saving.	Negative	values	imply	unlimited	history	file	size.

readline.get_current_history_length()
Return	the	number	of	lines	currently	in	the	history.	(This	is	different
from	 get_history_length(),	 which	 returns	 the	 maximum
number	of	lines	that	will	be	written	to	a	history	file.)

readline.get_history_item(index)
Return	the	current	contents	of	history	item	at	index.

readline.remove_history_item(pos)
Remove	history	item	specified	by	its	position	from	the	history.

readline.replace_history_item(pos,	line)
Replace	history	item	specified	by	its	position	with	the	given	line.

readline.redisplay()
Change	 what’s	 displayed	 on	 the	 screen	 to	 reflect	 the	 current
contents	of	the	line	buffer.

readline.set_startup_hook([function])
Set	or	remove	the	startup_hook	function.	If	function	 is	specified,	 it
will	be	used	as	the	new	startup_hook	function;	if	omitted	or	None,
any	hook	 function	already	 installed	 is	 removed.	The	startup_hook
function	is	called	with	no	arguments	just	before	readline	prints	the
first	prompt.

readline.set_pre_input_hook([function])
Set	or	remove	the	pre_input_hook	function.	If	function	is	specified,
it	 will	 be	 used	 as	 the	 new	 pre_input_hook	 function;	 if	 omitted	 or
None,	 any	 hook	 function	 already	 installed	 is	 removed.	 The
pre_input_hook	 function	 is	called	with	no	arguments	after	 the	 first
prompt	 has	 been	 printed	 and	 just	 before	 readline	 starts	 reading
input	characters.

readline.set_completer([function])
Set	or	remove	the	completer	function.	If	function	is	specified,	it	will
be	 used	 as	 the	 new	 completer	 function;	 if	 omitted	 or	 None,	 any
completer	 function	 already	 installed	 is	 removed.	 The	 completer
function	is	called	as	function(text,	state),	for	state	in	0,	1,
2,	 ...,	 until	 it	 returns	 a	 non-string	 value.	 It	 should	 return	 the	 next
possible	completion	starting	with	text.

readline.get_completer()

Get	 the	completer	 function,	or	None	 if	 no	 completer	 function	has
been	set.

readline.get_completion_type()
Get	the	type	of	completion	being	attempted.

readline.get_begidx()
Get	the	beginning	index	of	the	readline	tab-completion	scope.

readline.get_endidx()
Get	the	ending	index	of	the	readline	tab-completion	scope.

readline.set_completer_delims(string)
Set	the	readline	word	delimiters	for	tab-completion.

readline.get_completer_delims()
Get	the	readline	word	delimiters	for	tab-completion.

readline.set_completion_display_matches_hook([function
Set	 or	 remove	 the	 completion	 display	 function.	 If	 function	 is
specified,	it	will	be	used	as	the	new	completion	display	function;	if
omitted	or	None,	any	completion	display	function	already	installed
is	 removed.	 The	 completion	 display	 function	 is	 called	 as
function(substitution,	 [matches],

longest_match_length)	 once	each	 time	matches	need	 to	 be
displayed.

readline.add_history(line)
Append	a	line	to	the	history	buffer,	as	if	it	was	the	last	line	typed.

See	also:

Module	rlcompleter

Completion	of	Python	identifiers	at	the	interactive	prompt.

6.7.1.	Example

The	 following	 example	 demonstrates	 how	 to	 use	 the	 readline
module’s	 history	 reading	 and	 writing	 functions	 to	 automatically	 load
and	 save	 a	 history	 file	 named	 .python_history	 from	 the	 user’s
home	 directory.	 The	 code	 below	 would	 normally	 be	 executed
automatically	 during	 interactive	 sessions	 from	 the	 user’s
PYTHONSTARTUP	file.

import	atexit

import	os

import	readline

histfile	=	os.path.join(os.path.expanduser("~"),	".python_history"

try:

				readline.read_history_file(histfile)

except	FileNotFoundError:

				pass

atexit.register(readline.write_history_file,	histfile

This	 code	 is	 actually	 automatically	 run	 when	 Python	 is	 run	 in
interactive	mode	(see	Readline	configuration).

The	 following	 example	 extends	 the	 code.InteractiveConsole
class	to	support	history	save/restore.

import	atexit

import	code

import	os

import	readline

class	HistoryConsole(code.InteractiveConsole):

				def	__init__(self,	locals=None,	filename="<console>"

																	histfile=os.path.expanduser("~/.console-history"

								code.InteractiveConsole.__init__(self,	locals

								self.init_history(histfile)

				def	init_history(self,	histfile):

								readline.parse_and_bind("tab:	complete")

								if	hasattr(readline,	"read_history_file"):

												try:

																readline.read_history_file(histfile)

												except	FileNotFoundError:

																pass

												atexit.register(self.save_history,	histfile

				def	save_history(self,	histfile):

								readline.write_history_file(histfile)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

http://www.python.org/

6.8.	rlcompleter	—	Completion
function	for	GNU	readline
Source	code:	Lib/rlcompleter.py

The	rlcompleter	module	defines	a	completion	function	suitable	for
the	 readline	 module	 by	 completing	 valid	 Python	 identifiers	 and
keywords.

When	this	module	is	imported	on	a	Unix	platform	with	the	readline
module	 available,	 an	 instance	 of	 the	 Completer	 class	 is
automatically	 created	 and	 its	 complete()	 method	 is	 set	 as	 the
readline	completer.

Example:

>>>	import	rlcompleter

>>>	import	readline

>>>	readline.parse_and_bind("tab:	complete")

>>>	readline.	<TAB	PRESSED>

readline.__doc__										readline.get_line_buffer(readline.read_init_file(

readline.__file__									readline.insert_text(readline.set_completer(

readline.__name__									readline.parse_and_bind(

>>>	readline.

The	 rlcompleter	 module	 is	 designed	 for	 use	 with	 Python’s
interactive	mode.	Unless	Python	is	run	with	the	-S	option,	the	module
is	automatically	imported	and	configured	(see	Readline	configuration).

On	 platforms	 without	 readline,	 the	 Completer	 class	 defined	 by

http://hg.python.org/cpython/file/3.4/Lib/rlcompleter.py

this	module	can	still	be	used	for	custom	purposes.

6.8.1.	Completer	Objects

Completer	objects	have	the	following	method:

Completer.complete(text,	state)
Return	the	stateth	completion	for	text.

If	called	for	text	that	doesn’t	include	a	period	character	('.'),	it	will
complete	 from	names	currently	defined	 in	__main__,	builtins
and	keywords	(as	defined	by	the	keyword	module).

If	 called	 for	a	dotted	name,	 it	will	 try	 to	evaluate	anything	without
obvious	 side-effects	 (functions	 will	 not	 be	 evaluated,	 but	 it	 can
generate	 calls	 to	 __getattr__())	 up	 to	 the	 last	 part,	 and	 find
matches	for	the	rest	via	the	dir()	function.	Any	exception	raised
during	 the	 evaluation	 of	 the	 expression	 is	 caught,	 silenced	 and
None	is	returned.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	6.	Text	Processing	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

7.	Binary	Data	Services
The	modules	 described	 in	 this	 chapter	 provide	 some	 basic	 services
operations	for	manipulation	of	binary	data.	Other	operations	on	binary
data,	specifically	 in	relation	 to	 file	 formats	and	network	protocols,	are
described	in	the	relevant	sections.

Some	 libraries	 described	 under	 Text	 Processing	 Services	 also	 work
with	 either	 ASCII-compatible	 binary	 formats	 (for	 example,	 re)	 or	 all
binary	data	(for	example,	difflib).

In	 addition,	 see	 the	 documentation	 for	 Python’s	 built-in	 binary	 data
types	in	Binary	Sequence	Types	—	bytes,	bytearray,	memoryview.

7.1.	struct	—	Interpret	bytes	as	packed	binary	data
7.1.1.	Functions	and	Exceptions
7.1.2.	Format	Strings

7.1.2.1.	Byte	Order,	Size,	and	Alignment
7.1.2.2.	Format	Characters
7.1.2.3.	Examples

7.1.3.	Classes
7.2.	codecs	—	Codec	registry	and	base	classes

7.2.1.	Codec	Base	Classes
7.2.1.1.	Codec	Objects
7.2.1.2.	IncrementalEncoder	Objects
7.2.1.3.	IncrementalDecoder	Objects
7.2.1.4.	StreamWriter	Objects
7.2.1.5.	StreamReader	Objects
7.2.1.6.	StreamReaderWriter	Objects
7.2.1.7.	StreamRecoder	Objects

7.2.2.	Encodings	and	Unicode
7.2.3.	Standard	Encodings

7.2.4.	Python	Specific	Encodings
7.2.4.1.	Text	Encodings
7.2.4.2.	Binary	Transforms
7.2.4.3.	Text	Transforms

7.2.5.	 encodings.idna	 —	 Internationalized	 Domain
Names	in	Applications
7.2.6.	encodings.mbcs	—	Windows	ANSI	codepage
7.2.7.	 encodings.utf_8_sig	—	 UTF-8	 codec	 with	 BOM
signature

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	7.	Binary	Data	Services	»

http://www.python.org/

7.1.	struct	—	Interpret	bytes	as
packed	binary	data
This	 module	 performs	 conversions	 between	 Python	 values	 and	 C
structs	 represented	 as	 Python	 bytes	 objects.	 This	 can	 be	 used	 in
handling	 binary	 data	 stored	 in	 files	 or	 from	 network	 connections,
among	other	sources.	It	uses	Format	Strings	as	compact	descriptions
of	 the	 layout	 of	 the	 C	 structs	 and	 the	 intended	 conversion	 to/from
Python	values.

Note: 	By	default,	the	result	of	packing	a	given	C	struct	includes	pad
bytes	in	order	to	maintain	proper	alignment	for	the	C	types	involved;
similarly,	alignment	is	taken	into	account	when	unpacking.	This
behavior	is	chosen	so	that	the	bytes	of	a	packed	struct	correspond
exactly	to	the	layout	in	memory	of	the	corresponding	C	struct.	To
handle	platform-independent	data	formats	or	omit	implicit	pad	bytes,
use	standard	size	and	alignment	instead	of	native	size	and
alignment:	see	Byte	Order,	Size,	and	Alignment	for	details.

7.1.1.	Functions	and	Exceptions

The	module	defines	the	following	exception	and	functions:

exception	struct.error
Exception	 raised	 on	 various	 occasions;	 argument	 is	 a	 string
describing	what	is	wrong.

struct.pack(fmt,	v1,	v2,	...)
Return	 a	 bytes	 object	 containing	 the	 values	 v1,	 v2,	 ...	 packed
according	to	the	format	string	fmt.	The	arguments	must	match	the
values	required	by	the	format	exactly.

struct.pack_into(fmt,	buffer,	offset,	v1,	v2,	...)
Pack	 the	values	v1,	v2,	 ...	 according	 to	 the	 format	 string	 fmt	and
write	 the	 packed	 bytes	 into	 the	 writable	 buffer	 buffer	 starting	 at
position	offset.	Note	that	offset	is	a	required	argument.

struct.unpack(fmt,	buffer)
Unpack	from	the	buffer	buffer	(presumably	packed	by	pack(fmt,
...))	according	to	the	format	string	fmt.	The	result	is	a	tuple	even
if	 it	contains	exactly	one	item.	The	buffer	must	contain	exactly	the
amount	of	data	 required	by	 the	 format	 (len(bytes)	must	 equal
calcsize(fmt)).

struct.unpack_from(fmt,	buffer,	offset=0)
Unpack	 from	 buffer	 starting	 at	 position	 offset,	 according	 to	 the
format	 string	 fmt.	 The	 result	 is	 a	 tuple	 even	 if	 it	 contains	 exactly
one	item.	buffer	must	contain	at	least	the	amount	of	data	required
by	 the	 format	 (len(buffer[offset:])	 must	 be	 at	 least
calcsize(fmt)).

struct.iter_unpack(fmt,	buffer)
Iteratively	 unpack	 from	 the	 buffer	 buffer	 according	 to	 the	 format
string	fmt.	This	function	returns	an	iterator	which	will	read	equally-
sized	 chunks	 from	 the	 buffer	 until	 all	 its	 contents	 have	 been
consumed.	 The	 buffer’s	 size	 in	 bytes	 must	 be	 a	 multiple	 of	 the
amount	 of	 data	 required	 by	 the	 format,	 as	 reflected	 by
calcsize().

Each	iteration	yields	a	tuple	as	specified	by	the	format	string.

New	in	version	3.4.

struct.calcsize(fmt)
Return	 the	 size	 of	 the	 struct	 (and	 hence	 of	 the	 bytes	 object
produced	 by	 pack(fmt,	 ...))	 corresponding	 to	 the	 format
string	fmt.

7.1.2.	Format	Strings

Format	strings	are	the	mechanism	used	to	specify	the	expected	layout
when	 packing	 and	 unpacking	 data.	 They	 are	 built	 up	 from	 Format
Characters,	which	specify	the	type	of	data	being	packed/unpacked.	In
addition,	 there	 are	 special	 characters	 for	 controlling	 the	Byte	 Order,
Size,	and	Alignment.

7.1.2.1.	Byte	Order,	Size,	and	Alignment

By	default,	C	types	are	represented	in	the	machine’s	native	format	and
byte	 order,	 and	 properly	 aligned	 by	 skipping	 pad	 bytes	 if	 necessary
(according	to	the	rules	used	by	the	C	compiler).

Alternatively,	 the	 first	 character	 of	 the	 format	 string	 can	 be	 used	 to
indicate	 the	 byte	 order,	 size	 and	 alignment	 of	 the	 packed	 data,
according	to	the	following	table:

Character Byte	order Size Alignment

@ native native native

= native standard none

< little-endian standard none

> big-endian standard none

! network	(=	big-endian) standard none

If	the	first	character	is	not	one	of	these,	'@'	is	assumed.

Native	byte	order	is	big-endian	or	little-endian,	depending	on	the	host
system.	For	example,	Intel	x86	and	AMD64	(x86-64)	are	little-endian;
Motorola	 68000	 and	 PowerPC	 G5	 are	 big-endian;	 ARM	 and	 Intel

Itanium	 feature	 switchable	 endianness	 (bi-endian).	 Use
sys.byteorder	to	check	the	endianness	of	your	system.

Native	 size	 and	 alignment	 are	 determined	 using	 the	 C	 compiler’s
sizeof	expression.	This	is	always	combined	with	native	byte	order.

Standard	size	depends	only	on	the	format	character;	see	the	table	in
the	Format	Characters	section.

Note	the	difference	between	'@'	and	'=':	both	use	native	byte	order,
but	the	size	and	alignment	of	the	latter	is	standardized.

The	 form	'!'	 is	available	 for	 those	poor	 souls	who	claim	 they	can’t
remember	whether	network	byte	order	is	big-endian	or	little-endian.

There	 is	 no	 way	 to	 indicate	 non-native	 byte	 order	 (force	 byte-
swapping);	use	the	appropriate	choice	of	'<'	or	'>'.

Notes:

1.	 Padding	 is	 only	 automatically	 added	 between	 successive
structure	members.	No	padding	 is	added	at	 the	beginning	or	 the
end	of	the	encoded	struct.

2.	 No	padding	 is	added	when	using	non-native	size	and	alignment,
e.g.	with	‘<’,	‘>’,	‘=’,	and	‘!’.

3.	 To	align	 the	end	of	a	structure	 to	 the	alignment	requirement	of	a
particular	 type,	end	 the	 format	with	 the	code	 for	 that	 type	with	a
repeat	count	of	zero.	See	Examples.

7.1.2.2.	Format	Characters

Format	 characters	 have	 the	 following	 meaning;	 the	 conversion
between	 C	 and	 Python	 values	 should	 be	 obvious	 given	 their	 types.
The	 ‘Standard	size’	 column	 refers	 to	 the	size	of	 the	packed	value	 in

bytes	when	using	standard	size;	that	 is,	when	the	format	string	starts
with	one	of	'<',	'>',	'!'	or	'='.	When	using	native	size,	the	size	of
the	packed	value	is	platform-dependent.

Format C	Type Python	type Standard
size Notes

x pad	byte no	value 	 	

c char
bytes	of
length	1 1 	

b signed	char integer 1 (1),(3)

B unsigned	char integer 1 (3)

? _Bool bool 1 (1)

h short integer 2 (3)

H
unsigned

short
integer 2 (3)

i int integer 4 (3)

I unsigned	int integer 4 (3)

l long integer 4 (3)

L unsigned	long integer 4 (3)

q long	long integer 8 (2),	(3)

Q
unsigned	long

long
integer 8 (2),	(3)

n ssize_t integer 	 (4)

N size_t integer 	 (4)

f float float 4 (5)

d double float 8 (5)

s char[] bytes 	 	

p char[] bytes 	 	

P void	* integer 	 (6)

Changed	in	version	3.3:	Added	support	for	the	'n'	and	'N'	formats.

Notes:

1.	 The	'?'	conversion	code	corresponds	to	the	_Bool	type	defined
by	C99.	If	this	type	is	not	available,	it	is	simulated	using	a	char.
In	standard	mode,	it	is	always	represented	by	one	byte.

2.	 The	'q'	and	'Q'	conversion	codes	are	available	in	native	mode
only	 if	 the	 platform	 C	 compiler	 supports	 C	 long	long,	 or,	 on
Windows,	 __int64.	 They	 are	 always	 available	 in	 standard
modes.

3.	 When	attempting	 to	 pack	a	 non-integer	 using	any	of	 the	 integer
conversion	codes,	if	the	non-integer	has	a	__index__()	method
then	 that	method	 is	called	 to	convert	 the	argument	 to	an	 integer
before	packing.

Changed	 in	 version	 3.2:	Use	 of	 the	 __index__()	 method	 for
non-integers	is	new	in	3.2.

4.	 The	 'n'	 and	 'N'	 conversion	 codes	 are	 only	 available	 for	 the
native	 size	 (selected	 as	 the	 default	 or	 with	 the	 '@'	 byte	 order
character).	For	 the	 standard	 size,	 you	can	use	whichever	of	 the
other	integer	formats	fits	your	application.

5.	 For	 the	 'f'	 and	 'd'	 conversion	 codes,	 the	 packed
representation	uses	the	IEEE	754	binary32	(for	'f')	or	binary64
(for	'd')	 format,	 regardless	 of	 the	 floating-point	 format	 used	 by
the	platform.

6.	 The	 'P'	 format	 character	 is	 only	 available	 for	 the	 native	 byte
ordering	 (selected	 as	 the	 default	 or	 with	 the	 '@'	 byte	 order
character).	The	byte	order	character	'='	chooses	to	use	little-	or
big-endian	ordering	based	on	the	host	system.	The	struct	module
does	not	interpret	this	as	native	ordering,	so	the	'P'	format	is	not
available.

A	format	character	may	be	preceded	by	an	integral	repeat	count.	For
example,	the	format	string	'4h'	means	exactly	the	same	as	'hhhh'.

Whitespace	characters	between	 formats	are	 ignored;	a	count	and	 its
format	must	not	contain	whitespace	though.

For	the	's'	format	character,	the	count	is	interpreted	as	the	length	of
the	bytes,	not	a	 repeat	count	 like	 for	 the	other	 format	characters;	 for
example,	'10s'	means	a	single	10-byte	string,	while	'10c'	means
10	characters.	If	a	count	is	not	given,	it	defaults	to	1.	For	packing,	the
string	is	truncated	or	padded	with	null	bytes	as	appropriate	to	make	it
fit.	 For	 unpacking,	 the	 resulting	 bytes	 object	 always	 has	 exactly	 the
specified	number	of	bytes.	As	a	special	case,	'0s'	means	a	single,
empty	string	(while	'0c'	means	0	characters).

When	packing	a	value	x	using	one	of	the	integer	formats	('b',	'B',
'h',	'H',	'i',	'I',	'l',	'L',	'q',	'Q'),	 if	x	 is	outside	 the	valid
range	for	that	format	then	struct.error	is	raised.

Changed	 in	version	3.1:	 In	3.0,	some	of	 the	 integer	 formats	wrapped
out-of-range	 values	 and	 raised	 DeprecationWarning	 instead	 of
struct.error.

The	'p'	format	character	encodes	a	“Pascal	string”,	meaning	a	short
variable-length	string	stored	 in	a	 fixed	number	of	bytes,	 given	by	 the

count.	 The	 first	 byte	 stored	 is	 the	 length	 of	 the	 string,	 or	 255,
whichever	is	smaller.	The	bytes	of	the	string	follow.	If	the	string	passed
in	 to	 pack()	 is	 too	 long	 (longer	 than	 the	 count	 minus	 1),	 only	 the
leading	count-1	bytes	of	the	string	are	stored.	If	the	string	is	shorter
than	count-1,	it	is	padded	with	null	bytes	so	that	exactly	count	bytes
in	 all	 are	 used.	 Note	 that	 for	 unpack(),	 the	 'p'	 format	 character
consumes	count	bytes,	but	that	the	string	returned	can	never	contain
more	than	255	bytes.

For	 the	 '?'	 format	 character,	 the	 return	 value	 is	 either	 True	 or
False.	When	packing,	the	truth	value	of	the	argument	object	is	used.
Either	 0	 or	 1	 in	 the	 native	 or	 standard	 bool	 representation	 will	 be
packed,	and	any	non-zero	value	will	be	True	when	unpacking.

7.1.2.3.	Examples

Note: 	All	examples	assume	a	native	byte	order,	size,	and	alignment
with	a	big-endian	machine.

A	basic	example	of	packing/unpacking	three	integers:

>>>	from	struct	import	*

>>>	pack('hhl',	1,	2,	3)

b'\x00\x01\x00\x02\x00\x00\x00\x03'

>>>	unpack('hhl',	b'\x00\x01\x00\x02\x00\x00\x00\x03

(1,	2,	3)

>>>	calcsize('hhl')

8

Unpacked	 fields	can	be	named	by	assigning	 them	 to	variables	or	by
wrapping	the	result	in	a	named	tuple:

>>>	record	=	b'raymond			\x32\x12\x08\x01\x08'

>>>	name,	serialnum,	school,	gradelevel	=	unpack('<10sHHb'

>>>	from	collections	import	namedtuple

>>>	Student	=	namedtuple('Student',	'name	serialnum	school	gradelevel'

>>>	Student._make(unpack('<10sHHb',	record))

Student(name=b'raymond			',	serialnum=4658,	school=264,	gradelevel=8)

The	ordering	of	 format	characters	may	have	an	 impact	on	size	since
the	padding	needed	to	satisfy	alignment	requirements	is	different:

>>>	pack('ci',	b'*',	0x12131415)

b'*\x00\x00\x00\x12\x13\x14\x15'

>>>	pack('ic',	0x12131415,	b'*')

b'\x12\x13\x14\x15*'

>>>	calcsize('ci')

8

>>>	calcsize('ic')

5

The	 following	 format	 'llh0l'	 specifies	 two	 pad	 bytes	 at	 the	 end,
assuming	longs	are	aligned	on	4-byte	boundaries:

>>>	pack('llh0l',	1,	2,	3)

b'\x00\x00\x00\x01\x00\x00\x00\x02\x00\x03\x00\x00'

This	only	works	when	native	size	and	alignment	are	in	effect;	standard
size	and	alignment	does	not	enforce	any	alignment.

See	also:

Module	array
Packed	binary	storage	of	homogeneous	data.

Module	xdrlib

Packing	and	unpacking	of	XDR	data.

7.1.3.	Classes

The	struct	module	also	defines	the	following	type:

class	struct.Struct(format)
Return	 a	 new	 Struct	 object	 which	 writes	 and	 reads	 binary	 data
according	to	the	format	string	format.	Creating	a	Struct	object	once
and	 calling	 its	methods	 is	more	efficient	 than	 calling	 the	 struct
functions	with	 the	same	format	since	the	format	string	only	needs
to	be	compiled	once.

Compiled	 Struct	 objects	 support	 the	 following	 methods	 and
attributes:

pack(v1,	v2,	...)
Identical	 to	 the	 pack()	 function,	 using	 the	 compiled	 format.
(len(result)	will	equal	self.size.)

pack_into(buffer,	offset,	v1,	v2,	...)
Identical	 to	 the	 pack_into()	 function,	 using	 the	 compiled
format.

unpack(buffer)
Identical	to	the	unpack()	function,	using	the	compiled	format.
(len(buffer)	must	equal	self.size).

unpack_from(buffer,	offset=0)
Identical	 to	 the	 unpack_from()	 function,	 using	 the	 compiled
format.	 (len(buffer[offset:])	 must	 be	 at	 least
self.size).

iter_unpack(buffer)
Identical	 to	 the	 iter_unpack()	 function,	 using	 the	 compiled
format.	(len(buffer)	must	be	a	multiple	of	self.size).

New	in	version	3.4.

format

The	format	string	used	to	construct	this	Struct	object.

size

The	calculated	size	of	the	struct	(and	hence	of	the	bytes	object
produced	by	the	pack()	method)	corresponding	to	format.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	7.	Binary	Data	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	7.	Binary	Data	Services	»

http://www.python.org/

7.2.	codecs	—	Codec	registry	and
base	classes
This	 module	 defines	 base	 classes	 for	 standard	 Python	 codecs
(encoders	and	decoders)	and	provides	access	 to	 the	 internal	Python
codec	 registry	 which	manages	 the	 codec	 and	 error	 handling	 lookup
process.

It	defines	the	following	functions:

codecs.encode(obj,	encoding='utf-8',	errors='strict')
Encodes	obj	using	the	codec	registered	for	encoding.

Errors	may	be	given	to	set	the	desired	error	handling	scheme.	The
default	error	handler	is	strict	meaning	that	encoding	errors	raise
ValueError	 (or	 a	 more	 codec	 specific	 subclass,	 such	 as
UnicodeEncodeError).	Refer	 to	Codec	Base	Classes	 for	more
information	on	codec	error	handling.

codecs.decode(obj,	encoding='utf-8',	errors='strict')
Decodes	obj	using	the	codec	registered	for	encoding.

Errors	may	be	given	to	set	the	desired	error	handling	scheme.	The
default	error	handler	is	strict	meaning	that	decoding	errors	raise
ValueError	 (or	 a	 more	 codec	 specific	 subclass,	 such	 as
UnicodeDecodeError).	Refer	 to	Codec	Base	Classes	 for	more
information	on	codec	error	handling.

codecs.register(search_function)
Register	a	codec	search	function.	Search	functions	are	expected	to

take	 one	 argument,	 the	 encoding	 name	 in	 all	 lower	 case	 letters,
and	return	a	CodecInfo	object	having	the	following	attributes:

name	The	name	of	the	encoding;
encode	The	stateless	encoding	function;
decode	The	stateless	decoding	function;
incrementalencoder	 An	 incremental	 encoder	 class	 or
factory	function;
incrementaldecoder	 An	 incremental	 decoder	 class	 or
factory	function;
streamwriter	A	stream	writer	class	or	factory	function;
streamreader	A	stream	reader	class	or	factory	function.

The	various	functions	or	classes	take	the	following	arguments:

encode	 and	decode:	 These	must	 be	 functions	 or	methods	which
have	the	same	interface	as	the	encode()/decode()	methods	of
Codec	instances	(see	Codec	Interface).	The	functions/methods	are
expected	to	work	in	a	stateless	mode.

incrementalencoder	 and	 incrementaldecoder:	 These	 have	 to	 be
factory	functions	providing	the	following	interface:

factory(errors='strict')

The	 factory	 functions	must	 return	objects	providing	 the	 interfaces
defined	 by	 the	 base	 classes	 IncrementalEncoder	 and
IncrementalDecoder,	 respectively.	 Incremental	 codecs	 can
maintain	state.

streamreader	and	streamwriter:	These	have	to	be	factory	functions
providing	the	following	interface:

factory(stream,	errors='strict')

The	 factory	 functions	must	 return	objects	providing	 the	 interfaces
defined	by	the	base	classes	StreamReader	and	StreamWriter,
respectively.	Stream	codecs	can	maintain	state.

Possible	values	for	errors	are

'strict':	raise	an	exception	in	case	of	an	encoding	error
'replace':	 replace	 malformed	 data	 with	 a	 suitable
replacement	marker,	such	as	'?'	or	'\ufffd'
'ignore':	 ignore	 malformed	 data	 and	 continue	 without
further	notice
'xmlcharrefreplace':	 replace	 with	 the	 appropriate	 XML
character	reference	(for	encoding	only)
'backslashreplace':	 replace	 with	 backslashed	 escape
sequences	(for	encoding	only)
'surrogateescape':	on	decoding,	replace	with	code	points
in	 the	 Unicode	 Private	 Use	 Area	 ranging	 from	 U+DC80	 to
U+DCFF.	These	private	code	points	will	 then	be	 turned	back
into	 the	 same	 bytes	 when	 the	 surrogateescape	 error
handler	 is	 used	 when	 encoding	 the	 data.	 (See	PEP	383	 for
more.)

as	 well	 as	 any	 other	 error	 handling	 name	 defined	 via
register_error().

In	case	a	search	 function	cannot	 find	a	given	encoding,	 it	 should
return	None.

codecs.lookup(encoding)
Looks	up	the	codec	info	in	the	Python	codec	registry	and	returns	a
CodecInfo	object	as	defined	above.

Encodings	are	 first	 looked	up	 in	 the	registry’s	cache.	 If	not	 found,
the	list	of	registered	search	functions	is	scanned.	If	no	CodecInfo

http://www.python.org/dev/peps/pep-0383

object	 is	 found,	 a	 LookupError	 is	 raised.	 Otherwise,	 the
CodecInfo	object	is	stored	in	the	cache	and	returned	to	the	caller.

To	simplify	access	 to	 the	various	codecs,	 the	module	provides	 these
additional	functions	which	use	lookup()	for	the	codec	lookup:

codecs.getencoder(encoding)
Look	up	 the	 codec	 for	 the	given	encoding	and	 return	 its	 encoder
function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

codecs.getdecoder(encoding)
Look	up	 the	 codec	 for	 the	given	encoding	and	 return	 its	 decoder
function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

codecs.getincrementalencoder(encoding)
Look	 up	 the	 codec	 for	 the	 given	 encoding	 and	 return	 its
incremental	encoder	class	or	factory	function.

Raises	a	LookupError	 in	case	the	encoding	cannot	be	found	or
the	codec	doesn’t	support	an	incremental	encoder.

codecs.getincrementaldecoder(encoding)
Look	 up	 the	 codec	 for	 the	 given	 encoding	 and	 return	 its
incremental	decoder	class	or	factory	function.

Raises	a	LookupError	 in	case	the	encoding	cannot	be	found	or
the	codec	doesn’t	support	an	incremental	decoder.

codecs.getreader(encoding)

Look	 up	 the	 codec	 for	 the	 given	 encoding	 and	 return	 its
StreamReader	class	or	factory	function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

codecs.getwriter(encoding)
Look	 up	 the	 codec	 for	 the	 given	 encoding	 and	 return	 its
StreamWriter	class	or	factory	function.

Raises	a	LookupError	in	case	the	encoding	cannot	be	found.

codecs.register_error(name,	error_handler)
Register	the	error	handling	function	error_handler	under	the	name
name.	error_handler	will	be	called	during	encoding	and	decoding	in
case	of	an	error,	when	name	is	specified	as	the	errors	parameter.

For	 encoding	 error_handler	 will	 be	 called	 with	 a
UnicodeEncodeError	 instance,	 which	 contains	 information
about	the	location	of	the	error.	The	error	handler	must	either	raise
this	or	a	different	exception	or	return	a	tuple	with	a	replacement	for
the	unencodable	part	 of	 the	 input	and	a	position	where	encoding
should	continue.	The	replacement	may	be	either	str	or	bytes.	If
the	 replacement	 is	 bytes,	 the	 encoder	will	 simply	 copy	 them	 into
the	 output	 buffer.	 If	 the	 replacement	 is	 a	 string,	 the	 encoder	 will
encode	 the	 replacement.	 Encoding	 continues	 on	 original	 input	 at
the	 specified	 position.	Negative	 position	 values	will	 be	 treated	 as
being	relative	to	the	end	of	the	input	string.	If	the	resulting	position
is	out	of	bound	an	IndexError	will	be	raised.

Decoding	 and	 translating	 works	 similar,	 except
UnicodeDecodeError	 or	 UnicodeTranslateError	 will	 be
passed	 to	 the	 handler	 and	 that	 the	 replacement	 from	 the	 error
handler	will	be	put	into	the	output	directly.

codecs.lookup_error(name)
Return	 the	 error	 handler	 previously	 registered	 under	 the	 name
name.

Raises	a	LookupError	in	case	the	handler	cannot	be	found.

codecs.strict_errors(exception)
Implements	the	strict	error	handling:	each	encoding	or	decoding
error	raises	a	UnicodeError.

codecs.replace_errors(exception)
Implements	 the	 replace	 error	 handling:	 malformed	 data	 is
replaced	 with	 a	 suitable	 replacement	 character	 such	 as	 '?'	 in
bytestrings	and	'\ufffd'	in	Unicode	strings.

codecs.ignore_errors(exception)
Implements	the	ignore	error	handling:	malformed	data	is	ignored
and	encoding	or	decoding	is	continued	without	further	notice.

codecs.xmlcharrefreplace_errors(exception)
Implements	 the	 xmlcharrefreplace	 error	 handling	 (for
encoding	 only):	 the	 unencodable	 character	 is	 replaced	 by	 an
appropriate	XML	character	reference.

codecs.backslashreplace_errors(exception)
Implements	the	backslashreplace	error	handling	(for	encoding
only):	 the	 unencodable	 character	 is	 replaced	 by	 a	 backslashed
escape	sequence.

To	 simplify	 working	 with	 encoded	 files	 or	 stream,	 the	 module	 also
defines	these	utility	functions:

codecs.open(filename,	mode[,	encoding[,	errors[,	buffering]]])
Open	an	encoded	file	using	the	given	mode	and	return	a	wrapped
version	 providing	 transparent	 encoding/decoding.	 The	 default	 file
mode	is	'r'	meaning	to	open	the	file	in	read	mode.

Note: 	 The	 wrapped	 version’s	 methods	 will	 accept	 and	 return
strings	only.	Bytes	arguments	will	be	rejected.

Note: 	Files	are	always	opened	in	binary	mode,	even	if	no	binary
mode	 was	 specified.	 This	 is	 done	 to	 avoid	 data	 loss	 due	 to
encodings	 using	 8-bit	 values.	 This	 means	 that	 no	 automatic
conversion	of	b'\n'	is	done	on	reading	and	writing.

encoding	specifies	the	encoding	which	is	to	be	used	for	the	file.

errors	 may	 be	 given	 to	 define	 the	 error	 handling.	 It	 defaults	 to
'strict'	which	causes	a	ValueError	 to	be	raised	 in	case	an
encoding	error	occurs.

buffering	 has	 the	 same	 meaning	 as	 for	 the	 built-in	 open()
function.	It	defaults	to	line	buffered.

codecs.EncodedFile(file,	data_encoding,	file_encoding=None,
errors='strict')

Return	 a	 wrapped	 version	 of	 file	 which	 provides	 transparent
encoding	translation.

Bytes	written	 to	 the	wrapped	 file	 are	 interpreted	 according	 to	 the
given	data_encoding	 and	 then	written	 to	 the	original	 file	 as	bytes
using	the	file_encoding.

If	file_encoding	is	not	given,	it	defaults	to	data_encoding.

errors	 may	 be	 given	 to	 define	 the	 error	 handling.	 It	 defaults	 to
'strict',	 which	 causes	 ValueError	 to	 be	 raised	 in	 case	 an
encoding	error	occurs.

codecs.iterencode(iterator,	encoding,	errors='strict',	**kwargs)
Uses	 an	 incremental	 encoder	 to	 iteratively	 encode	 the	 input
provided	by	iterator.	This	function	is	a	generator.	errors	(as	well	as
any	other	keyword	argument)	is	passed	through	to	the	incremental
encoder.

codecs.iterdecode(iterator,	encoding,	errors='strict',	**kwargs)
Uses	 an	 incremental	 decoder	 to	 iteratively	 decode	 the	 input
provided	by	iterator.	This	function	is	a	generator.	errors	(as	well	as
any	other	keyword	argument)	is	passed	through	to	the	incremental
decoder.

The	module	also	provides	the	following	constants	which	are	useful	for
reading	and	writing	to	platform	dependent	files:

codecs.BOM

codecs.BOM_BE

codecs.BOM_LE

codecs.BOM_UTF8

codecs.BOM_UTF16

codecs.BOM_UTF16_BE

codecs.BOM_UTF16_LE

codecs.BOM_UTF32

codecs.BOM_UTF32_BE

codecs.BOM_UTF32_LE

These	 constants	 define	 various	 encodings	 of	 the	 Unicode	 byte
order	 mark	 (BOM)	 used	 in	 UTF-16	 and	 UTF-32	 data	 streams	 to
indicate	the	byte	order	used	in	the	stream	or	file	and	in	UTF-8	as	a
Unicode	 signature.	 BOM_UTF16	 is	 either	 BOM_UTF16_BE	 or

BOM_UTF16_LE	 depending	 on	 the	 platform’s	 native	 byte	 order,
BOM	 is	an	alias	for	BOM_UTF16,	BOM_LE	for	BOM_UTF16_LE	and
BOM_BE	 for	 BOM_UTF16_BE.	 The	 others	 represent	 the	 BOM	 in
UTF-8	and	UTF-32	encodings.

7.2.1.	Codec	Base	Classes

The	codecs	module	defines	a	set	of	base	classes	which	define	 the
interface	and	can	also	be	used	to	easily	write	your	own	codecs	for	use
in	Python.

Each	codec	has	to	define	four	interfaces	to	make	it	usable	as	codec	in
Python:	 stateless	 encoder,	 stateless	 decoder,	 stream	 reader	 and
stream	 writer.	 The	 stream	 reader	 and	 writers	 typically	 reuse	 the
stateless	encoder/decoder	to	implement	the	file	protocols.

The	 Codec	 class	 defines	 the	 interface	 for	 stateless
encoders/decoders.

To	 simplify	 and	 standardize	 error	 handling,	 the	 encode()	 and
decode()	methods	may	implement	different	error	handling	schemes
by	providing	the	errors	string	argument.	The	following	string	values	are
defined	and	implemented	by	all	standard	Python	codecs:

Value Meaning

'strict'
Raise	UnicodeError	(or	a	subclass);
this	is	the	default.

'ignore'
Ignore	the	character	and	continue	with
the	next.

'replace'

Replace	with	a	suitable	replacement
character;	Python	will	use	the	official
U+FFFD	REPLACEMENT
CHARACTER	for	the	built-in	Unicode
codecs	on	decoding	and	‘?’	on
encoding.

'xmlcharrefreplace'
Replace	with	the	appropriate	XML
character	reference	(only	for	encoding).

'backslashreplace'
Replace	with	backslashed	escape
sequences	(only	for	encoding).

'surrogateescape'
Replace	byte	with	surrogate	U+DCxx,
as	defined	in	PEP	383.

In	 addition,	 the	 following	 error	 handlers	 are	 specific	 to	 Unicode
encoding	schemes:

Value Codec Meaning

'surrogatepass'

utf-8,	utf-16,
utf-32,	utf-16-
be,	utf-16-le,
utf-32-be,	utf-
32-le

Allow	encoding	and
decoding	of	surrogate
codes	in	all	the	Unicode
encoding	schemes.

New	 in	 version	 3.1:	 The	 'surrogateescape'	 and
'surrogatepass'	error	handlers.

Changed	in	version	3.4:	The	'surrogatepass'	error	handlers	now
works	with	utf-16*	and	utf-32*	codecs.

The	set	of	allowed	values	can	be	extended	via	register_error().

7.2.1.1.	Codec	Objects

The	 Codec	 class	 defines	 these	 methods	 which	 also	 define	 the
function	interfaces	of	the	stateless	encoder	and	decoder:

Codec.encode(input[,	errors])
Encodes	the	object	input	and	returns	a	tuple	(output	object,	length
consumed).	 Encoding	 converts	 a	 string	 object	 to	 a	 bytes	 object
using	 a	 particular	 character	 set	 encoding	 (e.g.,	 cp1252	 or	 iso-

http://www.python.org/dev/peps/pep-0383

8859-1).

errors	defines	the	error	handling	to	apply.	It	defaults	to	'strict'
handling.

The	 method	 may	 not	 store	 state	 in	 the	 Codec	 instance.	 Use
StreamCodec	 for	 codecs	 which	 have	 to	 keep	 state	 in	 order	 to
make	encoding/decoding	efficient.

The	encoder	must	be	able	 to	handle	zero	 length	 input	and	 return
an	empty	object	of	the	output	object	type	in	this	situation.

Codec.decode(input[,	errors])
Decodes	the	object	input	and	returns	a	tuple	(output	object,	length
consumed).	 Decoding	 converts	 a	 bytes	 object	 encoded	 using	 a
particular	character	set	encoding	to	a	string	object.

input	must	be	a	bytes	object	or	one	which	provides	 the	 read-only
character	buffer	interface	–	for	example,	buffer	objects	and	memory
mapped	files.

errors	defines	the	error	handling	to	apply.	It	defaults	to	'strict'
handling.

The	 method	 may	 not	 store	 state	 in	 the	 Codec	 instance.	 Use
StreamCodec	 for	 codecs	 which	 have	 to	 keep	 state	 in	 order	 to
make	encoding/decoding	efficient.

The	decoder	must	be	able	 to	handle	zero	 length	 input	and	 return
an	empty	object	of	the	output	object	type	in	this	situation.

The	 IncrementalEncoder	 and	 IncrementalDecoder	 classes
provide	 the	 basic	 interface	 for	 incremental	 encoding	 and	 decoding.

Encoding/decoding	 the	 input	 isn’t	 done	with	one	call	 to	 the	 stateless
encoder/decoder	 function,	 but	 with	 multiple	 calls	 to	 the
encode()/decode()	 method	 of	 the	 incremental	 encoder/decoder.
The	 incremental	 encoder/decoder	 keeps	 track	 of	 the
encoding/decoding	process	during	method	calls.

The	joined	output	of	calls	to	the	encode()/decode()	method	is	the
same	as	if	all	the	single	inputs	were	joined	into	one,	and	this	input	was
encoded/decoded	with	the	stateless	encoder/decoder.

7.2.1.2.	IncrementalEncoder	Objects

The	 IncrementalEncoder	 class	 is	 used	 for	 encoding	 an	 input	 in
multiple	 steps.	 It	 defines	 the	 following	 methods	 which	 every
incremental	 encoder	 must	 define	 in	 order	 to	 be	 compatible	 with	 the
Python	codec	registry.

class	codecs.IncrementalEncoder([errors])
Constructor	for	an	IncrementalEncoder	instance.

All	 incremental	 encoders	 must	 provide	 this	 constructor	 interface.
They	 are	 free	 to	 add	 additional	 keyword	 arguments,	 but	 only	 the
ones	defined	here	are	used	by	the	Python	codec	registry.

The	 IncrementalEncoder	 may	 implement	 different	 error
handling	 schemes	 by	 providing	 the	 errors	 keyword	 argument.
These	parameters	are	predefined:

'strict'	 Raise	 ValueError	 (or	 a	 subclass);	 this	 is	 the
default.
'ignore'	Ignore	the	character	and	continue	with	the	next.
'replace'	Replace	with	a	suitable	replacement	character

'xmlcharrefreplace'	 Replace	 with	 the	 appropriate	 XML
character	reference
'backslashreplace'	 Replace	 with	 backslashed	 escape
sequences.

The	errors	 argument	will	 be	assigned	 to	an	attribute	of	 the	 same
name.	 Assigning	 to	 this	 attribute	 makes	 it	 possible	 to	 switch
between	different	error	handling	strategies	during	the	lifetime	of	the
IncrementalEncoder	object.

The	set	of	allowed	values	for	the	errors	argument	can	be	extended
with	register_error().

encode(object[,	final])
Encodes	 object	 (taking	 the	 current	 state	 of	 the	 encoder	 into
account)	and	returns	the	resulting	encoded	object.	If	this	is	the
last	call	to	encode()	final	must	be	true	(the	default	is	false).

reset()
Reset	 the	encoder	 to	 the	 initial	state.	The	output	 is	discarded:
call	.encode('',	final=True)	to	reset	the	encoder	and	to
get	the	output.

IncrementalEncoder.getstate()
Return	the	current	state	of	the	encoder	which	must	be	an	integer.
The	implementation	should	make	sure	that	0	is	the	most	common
state.	 (States	 that	 are	 more	 complicated	 than	 integers	 can	 be
converted	 into	 an	 integer	 by	 marshaling/pickling	 the	 state	 and
encoding	the	bytes	of	the	resulting	string	into	an	integer).

IncrementalEncoder.setstate(state)
Set	 the	 state	 of	 the	 encoder	 to	 state.	state	 must	 be	 an	 encoder
state	returned	by	getstate().

7.2.1.3.	IncrementalDecoder	Objects

The	 IncrementalDecoder	 class	 is	 used	 for	 decoding	 an	 input	 in
multiple	 steps.	 It	 defines	 the	 following	 methods	 which	 every
incremental	 decoder	 must	 define	 in	 order	 to	 be	 compatible	 with	 the
Python	codec	registry.

class	codecs.IncrementalDecoder([errors])
Constructor	for	an	IncrementalDecoder	instance.

All	 incremental	 decoders	 must	 provide	 this	 constructor	 interface.
They	 are	 free	 to	 add	 additional	 keyword	 arguments,	 but	 only	 the
ones	defined	here	are	used	by	the	Python	codec	registry.

The	 IncrementalDecoder	 may	 implement	 different	 error
handling	 schemes	 by	 providing	 the	 errors	 keyword	 argument.
These	parameters	are	predefined:

'strict'	 Raise	 ValueError	 (or	 a	 subclass);	 this	 is	 the
default.
'ignore'	Ignore	the	character	and	continue	with	the	next.
'replace'	Replace	with	a	suitable	replacement	character.

The	errors	 argument	will	 be	assigned	 to	an	attribute	of	 the	 same
name.	 Assigning	 to	 this	 attribute	 makes	 it	 possible	 to	 switch
between	different	error	handling	strategies	during	the	lifetime	of	the
IncrementalDecoder	object.

The	set	of	allowed	values	for	the	errors	argument	can	be	extended
with	register_error().

decode(object[,	final])
Decodes	 object	 (taking	 the	 current	 state	 of	 the	 decoder	 into

account)	and	returns	the	resulting	decoded	object.	If	this	is	the
last	call	to	decode()	final	must	be	true	(the	default	is	false).	If
final	 is	true	the	decoder	must	decode	the	input	completely	and
must	 flush	 all	 buffers.	 If	 this	 isn’t	 possible	 (e.g.	 because	 of
incomplete	 byte	 sequences	 at	 the	 end	 of	 the	 input)	 it	 must
initiate	error	handling	just	like	in	the	stateless	case	(which	might
raise	an	exception).

reset()
Reset	the	decoder	to	the	initial	state.

getstate()
Return	 the	 current	 state	 of	 the	 decoder.	 This	must	 be	 a	 tuple
with	 two	 items,	 the	 first	must	 be	 the	 buffer	 containing	 the	 still
undecoded	 input.	The	second	must	be	an	 integer	and	can	be
additional	 state	 info.	 (The	 implementation	 should	 make	 sure
that	 0	 is	 the	 most	 common	 additional	 state	 info.)	 If	 this
additional	state	info	is	0	it	must	be	possible	to	set	the	decoder
to	the	state	which	has	no	input	buffered	and	0	as	the	additional
state	 info,	 so	 that	 feeding	 the	 previously	 buffered	 input	 to	 the
decoder	 returns	 it	 to	 the	previous	 state	without	 producing	any
output.	 (Additional	 state	 info	 that	 is	 more	 complicated	 than
integers	can	be	converted	into	an	integer	by	marshaling/pickling
the	 info	 and	encoding	 the	bytes	 of	 the	 resulting	 string	 into	 an
integer.)

setstate(state)
Set	 the	state	of	 the	encoder	 to	state.	state	must	be	a	decoder
state	returned	by	getstate().

The	 StreamWriter	 and	 StreamReader	 classes	 provide	 generic
working	 interfaces	 which	 can	 be	 used	 to	 implement	 new	 encoding

submodules	 very	 easily.	 See	 encodings.utf_8	 for	 an	 example	 of
how	this	is	done.

7.2.1.4.	StreamWriter	Objects

The	 StreamWriter	 class	 is	 a	 subclass	 of	 Codec	 and	 defines	 the
following	methods	which	every	stream	writer	must	define	in	order	to	be
compatible	with	the	Python	codec	registry.

class	codecs.StreamWriter(stream[,	errors])
Constructor	for	a	StreamWriter	instance.

All	stream	writers	must	provide	this	constructor	interface.	They	are
free	 to	 add	 additional	 keyword	 arguments,	 but	 only	 the	 ones
defined	here	are	used	by	the	Python	codec	registry.

stream	must	be	a	file-like	object	open	for	writing	binary	data.

The	 StreamWriter	 may	 implement	 different	 error	 handling
schemes	 by	 providing	 the	 errors	 keyword	 argument.	 These
parameters	are	predefined:

'strict'	 Raise	 ValueError	 (or	 a	 subclass);	 this	 is	 the
default.
'ignore'	Ignore	the	character	and	continue	with	the	next.
'replace'	Replace	with	a	suitable	replacement	character
'xmlcharrefreplace'	 Replace	 with	 the	 appropriate	 XML
character	reference
'backslashreplace'	 Replace	 with	 backslashed	 escape
sequences.

The	errors	 argument	will	 be	assigned	 to	an	attribute	of	 the	 same
name.	 Assigning	 to	 this	 attribute	 makes	 it	 possible	 to	 switch

between	different	error	handling	strategies	during	the	lifetime	of	the
StreamWriter	object.

The	set	of	allowed	values	for	the	errors	argument	can	be	extended
with	register_error().

write(object)
Writes	the	object’s	contents	encoded	to	the	stream.

writelines(list)
Writes	the	concatenated	list	of	strings	to	the	stream	(possibly	by
reusing	the	write()	method).

reset()
Flushes	and	resets	the	codec	buffers	used	for	keeping	state.

Calling	this	method	should	ensure	that	the	data	on	the	output	is
put	 into	a	clean	state	 that	allows	appending	of	new	 fresh	data
without	having	to	rescan	the	whole	stream	to	recover	state.

In	 addition	 to	 the	 above	 methods,	 the	 StreamWriter	 must	 also
inherit	all	other	methods	and	attributes	from	the	underlying	stream.

7.2.1.5.	StreamReader	Objects

The	 StreamReader	 class	 is	 a	 subclass	 of	 Codec	 and	 defines	 the
following	methods	which	every	stream	reader	must	define	 in	order	 to
be	compatible	with	the	Python	codec	registry.

class	codecs.StreamReader(stream[,	errors])
Constructor	for	a	StreamReader	instance.

All	stream	readers	must	provide	this	constructor	interface.	They	are

free	 to	 add	 additional	 keyword	 arguments,	 but	 only	 the	 ones
defined	here	are	used	by	the	Python	codec	registry.

stream	must	be	a	file-like	object	open	for	reading	(binary)	data.

The	 StreamReader	 may	 implement	 different	 error	 handling
schemes	 by	 providing	 the	 errors	 keyword	 argument.	 These
parameters	are	defined:

'strict'	 Raise	 ValueError	 (or	 a	 subclass);	 this	 is	 the
default.
'ignore'	Ignore	the	character	and	continue	with	the	next.
'replace'	Replace	with	a	suitable	replacement	character.

The	errors	 argument	will	 be	assigned	 to	an	attribute	of	 the	 same
name.	 Assigning	 to	 this	 attribute	 makes	 it	 possible	 to	 switch
between	different	error	handling	strategies	during	the	lifetime	of	the
StreamReader	object.

The	set	of	allowed	values	for	the	errors	argument	can	be	extended
with	register_error().

read([size[,	chars[,	firstline]]])
Decodes	data	from	the	stream	and	returns	the	resulting	object.

chars	 indicates	 the	 number	 of	 characters	 to	 read	 from	 the
stream.	read()	will	never	 return	more	 than	chars	characters,
but	 it	 might	 return	 less,	 if	 there	 are	 not	 enough	 characters
available.

size	 indicates	 the	 approximate	 maximum	 number	 of	 bytes	 to
read	from	the	stream	for	decoding	purposes.	The	decoder	can
modify	this	setting	as	appropriate.	The	default	value	-1	indicates
to	 read	 and	 decode	 as	much	 as	 possible.	 size	 is	 intended	 to

prevent	having	to	decode	huge	files	in	one	step.

firstline	indicates	that	it	would	be	sufficient	to	only	return	the	first
line,	if	there	are	decoding	errors	on	later	lines.

The	method	should	use	a	greedy	read	strategy	meaning	that	it
should	read	as	much	data	as	is	allowed	within	the	definition	of
the	 encoding	 and	 the	 given	 size,	 e.g.	 if	 optional	 encoding
endings	 or	 state	 markers	 are	 available	 on	 the	 stream,	 these
should	be	read	too.

readline([size[,	keepends]])
Read	 one	 line	 from	 the	 input	 stream	 and	 return	 the	 decoded
data.

size,	 if	 given,	 is	 passed	 as	 size	 argument	 to	 the	 stream’s
read()	method.

If	keepends	 is	 false	 line-endings	will	be	stripped	from	the	 lines
returned.

readlines([sizehint[,	keepends]])
Read	all	lines	available	on	the	input	stream	and	return	them	as
a	list	of	lines.

Line-endings	 are	 implemented	 using	 the	 codec’s	 decoder
method	and	are	included	in	the	list	entries	if	keepends	is	true.

sizehint,	if	given,	is	passed	as	the	size	argument	to	the	stream’s
read()	method.

reset()
Resets	the	codec	buffers	used	for	keeping	state.

Note	 that	 no	 stream	 repositioning	 should	 take	 place.	 This
method	 is	 primarily	 intended	 to	 be	 able	 to	 recover	 from
decoding	errors.

In	 addition	 to	 the	 above	 methods,	 the	 StreamReader	 must	 also
inherit	all	other	methods	and	attributes	from	the	underlying	stream.

The	next	two	base	classes	are	included	for	convenience.	They	are	not
needed	by	the	codec	registry,	but	may	provide	useful	in	practice.

7.2.1.6.	StreamReaderWriter	Objects

The	StreamReaderWriter	 allows	wrapping	streams	which	work	 in
both	read	and	write	modes.

The	design	is	such	that	one	can	use	the	factory	functions	returned	by
the	lookup()	function	to	construct	the	instance.

class	codecs.StreamReaderWriter(stream,	Reader,	Writer,
errors)

Creates	a	StreamReaderWriter	instance.	stream	must	be	a	file-
like	object.	Reader	and	Writer	must	be	factory	functions	or	classes
providing	the	StreamReader	and	StreamWriter	interface	resp.
Error	handling	 is	done	 in	 the	same	way	as	defined	for	 the	stream
readers	and	writers.

StreamReaderWriter	 instances	 define	 the	 combined	 interfaces	 of
StreamReader	 and	 StreamWriter	 classes.	 They	 inherit	 all	 other
methods	and	attributes	from	the	underlying	stream.

7.2.1.7.	StreamRecoder	Objects

The	StreamRecoder	provide	a	frontend	-	backend	view	of	encoding
data	which	 is	sometimes	useful	when	dealing	with	different	encoding
environments.

The	design	is	such	that	one	can	use	the	factory	functions	returned	by
the	lookup()	function	to	construct	the	instance.

class	codecs.StreamRecoder(stream,	encode,	decode,	Reader,
Writer,	errors)

Creates	a	StreamRecoder	instance	which	implements	a	two-way
conversion:	encode	and	decode	work	on	the	frontend	(the	input	to
read()	and	output	of	write())	while	Reader	and	Writer	work	on
the	backend	(reading	and	writing	to	the	stream).

You	can	use	these	objects	to	do	transparent	direct	recodings	from
e.g.	Latin-1	to	UTF-8	and	back.

stream	must	be	a	file-like	object.

encode,	 decode	 must	 adhere	 to	 the	 Codec	 interface.	 Reader,
Writer	must	be	factory	functions	or	classes	providing	objects	of	the
StreamReader	and	StreamWriter	interface	respectively.

encode	 and	 decode	 are	 needed	 for	 the	 frontend	 translation,
Reader	and	Writer	for	the	backend	translation.

Error	handling	 is	done	 in	 the	same	way	as	defined	for	 the	stream
readers	and	writers.

StreamRecoder	 instances	 define	 the	 combined	 interfaces	 of
StreamReader	 and	 StreamWriter	 classes.	 They	 inherit	 all	 other
methods	and	attributes	from	the	underlying	stream.

7.2.2.	Encodings	and	Unicode

Strings	are	stored	internally	as	sequences	of	codepoints	in	range	0	-
10FFFF	 (see	PEP	 393	 for	 more	 details	 about	 the	 implementation).
Once	 a	 string	 object	 is	 used	 outside	 of	 CPU	 and	 memory,	 CPU
endianness	 and	 how	 these	 arrays	 are	 stored	 as	 bytes	 become	 an
issue.	Transforming	a	string	object	 into	a	sequence	of	bytes	 is	called
encoding	and	recreating	the	string	object	from	the	sequence	of	bytes
is	known	as	decoding.	There	are	many	different	methods	for	how	this
transformation	 can	 be	 done	 (these	 methods	 are	 also	 called
encodings).	 The	 simplest	method	 is	 to	map	 the	 codepoints	 0-255	 to
the	 bytes	 0x0-0xff.	 This	 means	 that	 a	 string	 object	 that	 contains
codepoints	above	U+00FF	can’t	be	encoded	with	 this	method	(which
is	called	'latin-1'	or	'iso-8859-1').	str.encode()	will	raise	a
UnicodeEncodeError	that	looks	like	this:	UnicodeEncodeError:
'latin-1'	 codec	 can't	 encode	 character	 '\u1234'	 in

position	3:	ordinal	not	in	range(256).

There’s	 another	 group	 of	 encodings	 (the	 so	 called	 charmap
encodings)	 that	 choose	a	different	 subset	of	all	Unicode	code	points
and	how	these	codepoints	are	mapped	to	the	bytes	0x0-0xff.	To	see
how	this	is	done	simply	open	e.g.	encodings/cp1252.py	(which	is
an	 encoding	 that	 is	 used	 primarily	 on	 Windows).	 There’s	 a	 string
constant	 with	 256	 characters	 that	 shows	 you	 which	 character	 is
mapped	to	which	byte	value.

All	of	these	encodings	can	only	encode	256	of	the	1114112	codepoints
defined	 in	Unicode.	A	 simple	 and	 straightforward	way	 that	 can	 store
each	 Unicode	 code	 point,	 is	 to	 store	 each	 codepoint	 as	 four
consecutive	 bytes.	 There	 are	 two	possibilities:	 store	 the	 bytes	 in	 big
endian	or	in	little	endian	order.	These	two	encodings	are	called	UTF-

http://www.python.org/dev/peps/pep-0393

32-BE	and	UTF-32-LE	respectively.	Their	disadvantage	is	that	if	e.g.
you	use	UTF-32-BE	on	a	 little	endian	machine	you	will	always	have
to	 swap	 bytes	 on	 encoding	 and	 decoding.	 UTF-32	 avoids	 this
problem:	bytes	will	always	be	in	natural	endianness.	When	these	bytes
are	read	by	a	CPU	with	a	different	endianness,	then	bytes	have	to	be
swapped	though.	To	be	able	to	detect	the	endianness	of	a	UTF-16	or
UTF-32	 byte	 sequence,	 there’s	 the	 so	 called	 BOM	 (“Byte	 Order
Mark”).	This	is	the	Unicode	character	U+FEFF.	This	character	can	be
prepended	 to	 every	 UTF-16	 or	 UTF-32	 byte	 sequence.	 The	 byte
swapped	version	of	this	character	(0xFFFE)	is	an	illegal	character	that
may	not	appear	 in	a	Unicode	 text.	So	when	 the	 first	 character	 in	an
UTF-16	or	UTF-32	byte	sequence	appears	to	be	a	U+FFFE	the	bytes
have	to	be	swapped	on	decoding.	Unfortunately	the	character	U+FEFF
had	 a	 second	 purpose	 as	 a	 ZERO	 WIDTH	 NO-BREAK	 SPACE:	 a
character	that	has	no	width	and	doesn’t	allow	a	word	to	be	split.	It	can
e.g.	 be	 used	 to	 give	 hints	 to	 a	 ligature	 algorithm.	With	 Unicode	 4.0
using	 U+FEFF	 as	 a	 ZERO	 WIDTH	 NO-BREAK	 SPACE	 has	 been
deprecated	 (with	 U+2060	 (WORD	 JOINER)	 assuming	 this	 role).
Nevertheless	Unicode	software	still	must	be	able	to	handle	U+FEFF	in
both	roles:	as	a	BOM	it’s	a	device	to	determine	the	storage	 layout	of
the	encoded	bytes,	 and	 vanishes	once	 the	byte	 sequence	has	been
decoded	 into	 a	 string;	 as	 a	 ZERO	WIDTH	NO-BREAK	SPACE	 it’s	 a
normal	character	that	will	be	decoded	like	any	other.

There’s	 another	 encoding	 that	 is	 able	 to	 encoding	 the	 full	 range	 of
Unicode	characters:	UTF-8.	UTF-8	is	an	8-bit	encoding,	which	means
there	are	no	 issues	with	 byte	order	 in	UTF-8.	Each	byte	 in	 a	UTF-8
byte	sequence	consists	of	two	parts:	marker	bits	(the	most	significant
bits)	and	payload	bits.	The	marker	bits	are	a	sequence	of	zero	to	four
1	 bits	 followed	by	a	 0	 bit.	Unicode	 characters	 are	 encoded	 like	 this
(with	x	being	payload	bits,	which	when	concatenated	give	the	Unicode

character):

Range Encoding

U-00000000	...	U-
0000007F

0xxxxxxx

U-00000080	...	U-
000007FF

110xxxxx	10xxxxxx

U-00000800	...	U-
0000FFFF

1110xxxx	10xxxxxx	10xxxxxx

U-00010000	...	U-
0010FFFF

11110xxx	10xxxxxx	10xxxxxx
10xxxxxx

The	least	significant	bit	of	the	Unicode	character	is	the	rightmost	x	bit.

As	UTF-8	 is	an	8-bit	encoding	no	BOM	 is	 required	and	any	U+FEFF
character	 in	 the	 decoded	 string	 (even	 if	 it’s	 the	 first	 character)	 is
treated	as	a	ZERO	WIDTH	NO-BREAK	SPACE.

Without	external	information	it’s	impossible	to	reliably	determine	which
encoding	was	used	for	encoding	a	string.	Each	charmap	encoding	can
decode	any	random	byte	sequence.	However	that’s	not	possible	with
UTF-8,	as	UTF-8	byte	sequences	have	a	structure	 that	doesn’t	allow
arbitrary	byte	sequences.	To	increase	the	reliability	with	which	a	UTF-8
encoding	can	be	detected,	Microsoft	invented	a	variant	of	UTF-8	(that
Python	2.5	calls	"utf-8-sig")	for	 its	Notepad	program:	Before	any
of	the	Unicode	characters	is	written	to	the	file,	a	UTF-8	encoded	BOM
(which	 looks	 like	 this	 as	 a	 byte	 sequence:	 0xef,	 0xbb,	 0xbf)	 is
written.	As	it’s	rather	improbable	that	any	charmap	encoded	file	starts
with	these	byte	values	(which	would	e.g.	map	to

LATIN	SMALL	LETTER	I	WITH	DIAERESIS
RIGHT-POINTING	DOUBLE	ANGLE	QUOTATION	MARK

INVERTED	QUESTION	MARK

in	 iso-8859-1),	 this	 increases	 the	 probability	 that	 a	 utf-8-sig
encoding	can	be	correctly	guessed	 from	the	byte	sequence.	So	here
the	BOM	is	not	used	to	be	able	 to	determine	the	byte	order	used	for
generating	 the	 byte	 sequence,	 but	 as	 a	 signature	 that	 helps	 in
guessing	 the	 encoding.	 On	 encoding	 the	 utf-8-sig	 codec	 will	 write
0xef,	 0xbb,	 0xbf	 as	 the	 first	 three	 bytes	 to	 the	 file.	 On	 decoding
utf-8-sig	will	skip	those	three	bytes	if	they	appear	as	the	first	three
bytes	 in	 the	 file.	 In	 UTF-8,	 the	 use	 of	 the	 BOM	 is	 discouraged	 and
should	generally	be	avoided.

7.2.3.	Standard	Encodings

Python	comes	with	a	number	of	codecs	built-in,	either	implemented	as
C	functions	or	with	dictionaries	as	mapping	tables.	The	following	table
lists	the	codecs	by	name,	together	with	a	few	common	aliases,	and	the
languages	 for	 which	 the	 encoding	 is	 likely	 used.	 Neither	 the	 list	 of
aliases	nor	the	list	of	languages	is	meant	to	be	exhaustive.	Notice	that
spelling	alternatives	that	only	differ	in	case	or	use	a	hyphen	instead	of
an	 underscore	 are	 also	 valid	 aliases;	 therefore,	 e.g.	 'utf-8'	 is	 a
valid	alias	for	the	'utf_8'	codec.

CPython	 implementation	 detail:	 Some	 common	 encodings	 can
bypass	 the	 codecs	 lookup	 machinery	 to	 improve	 performance.
These	optimization	opportunities	are	only	recognized	by	CPython	for
a	 limited	 set	 of	 aliases:	 utf-8,	 utf8,	 latin-1,	 latin1,	 iso-8859-1,	mbcs
(Windows	only),	ascii,	utf-16,	and	utf-32.	Using	alternative	spellings
for	these	encodings	may	result	in	slower	execution.

Many	of	the	character	sets	support	the	same	languages.	They	vary	in
individual	 characters	 (e.g.	 whether	 the	 EURO	 SIGN	 is	 supported	 or
not),	 and	 in	 the	 assignment	 of	 characters	 to	 code	 positions.	 For	 the
European	languages	in	particular,	the	following	variants	typically	exist:

an	ISO	8859	codeset
a	Microsoft	Windows	code	page,	which	is	typically	derived	from	a
8859	 codeset,	 but	 replaces	 control	 characters	 with	 additional
graphic	characters
an	IBM	EBCDIC	code	page
an	IBM	PC	code	page,	which	is	ASCII	compatible

Codec Aliases Languages

ascii 646,	us-ascii English

big5 big5-tw,	csbig5 Traditional	Chinese

big5hkscs big5-hkscs,	hkscs Traditional	Chinese

cp037 IBM037,	IBM039 English

cp273 273,	IBM273,
csIBM273

German

New	in	version	3.4.

cp424 EBCDIC-CP-HE,
IBM424 Hebrew

cp437 437,	IBM437 English

cp500
EBCDIC-CP-BE,
EBCDIC-CP-CH,
IBM500

Western	Europe

cp720 	 Arabic

cp737 	 Greek

cp775 IBM775 Baltic	languages

cp850 850,	IBM850 Western	Europe

cp852 852,	IBM852 Central	and	Eastern
Europe

cp855 855,	IBM855

Bulgarian,
Byelorussian,
Macedonian,
Russian,	Serbian

cp856 	 Hebrew

cp857 857,	IBM857 Turkish

cp858 858,	IBM858 Western	Europe

cp860 860,	IBM860 Portuguese

cp861 861,	CP-IS,	IBM861 Icelandic

cp862 862,	IBM862 Hebrew

cp863 863,	IBM863 Canadian

cp864 IBM864 Arabic

cp865 865,	IBM865 Danish,	Norwegian

cp866 866,	IBM866 Russian

cp869 869,	CP-GR,	IBM869 Greek

cp874 	 Thai

cp875 	 Greek

cp932 932,	ms932,	mskanji,
ms-kanji Japanese

cp949 949,	ms949,	uhc Korean

cp950 950,	ms950 Traditional	Chinese

cp1006 	 Urdu

cp1026 ibm1026 Turkish

cp1125 1125,	ibm1125,	cp866u,
ruscii

Ukrainian

New	in	version	3.4.

cp1140 ibm1140 Western	Europe

cp1250 windows-1250 Central	and	Eastern
Europe

cp1251 windows-1251

Bulgarian,
Byelorussian,
Macedonian,
Russian,	Serbian

cp1252 windows-1252 Western	Europe

cp1253 windows-1253 Greek

cp1254 windows-1254 Turkish

cp1255 windows-1255 Hebrew

cp1256 windows-1256 Arabic

cp1257 windows-1257 Baltic	languages

cp1258 windows-1258 Vietnamese

cp65001 	

Windows	 only:
Windows	 UTF-8
(CP_UTF8)

New	in	version	3.3.

euc_jp eucjp,	ujis,	u-jis Japanese

euc_jis_2004 jisx0213,	eucjis2004 Japanese

euc_jisx0213 eucjisx0213 Japanese

euc_kr

euckr,	korean,	ksc5601,
ks_c-5601,	ks_c-5601-
1987,	ksx1001,	ks_x-
1001

Korean

gb2312

chinese,
csiso58gb231280,	euc-
cn,	euccn,	eucgb2312-
cn,	gb2312-1980,
gb2312-80,	iso-	ir-58

Simplified	Chinese

gbk 936,	cp936,	ms936 Unified	Chinese

gb18030 gb18030-2000 Unified	Chinese

hz hzgb,	hz-gb,	hz-gb-
2312 Simplified	Chinese

iso2022_jp csiso2022jp,	iso2022jp,
iso-2022-jp Japanese

iso2022_jp_1 iso2022jp-1,	iso-2022-
jp-1

Japanese

iso2022_jp_2 iso2022jp-2,	iso-2022-
jp-2

Japanese,	Korean,
Simplified	Chinese,
Western	Europe,
Greek

iso2022_jp_2004 iso2022jp-2004,	iso-
2022-jp-2004 Japanese

iso2022_jp_3 iso2022jp-3,	iso-2022-
jp-3 Japanese

iso2022_jp_ext iso2022jp-ext,	iso-
2022-jp-ext Japanese

iso2022_kr csiso2022kr,	iso2022kr,
iso-2022-kr Korean

latin_1
iso-8859-1,	iso8859-1,
8859,	cp819,	latin,
latin1,	L1

West	Europe

iso8859_2 iso-8859-2,	latin2,	L2 Central	and	Eastern
Europe

iso8859_3 iso-8859-3,	latin3,	L3 Esperanto,	Maltese

iso8859_4 iso-8859-4,	latin4,	L4 Baltic	languages

iso8859_5 iso-8859-5,	cyrillic

Bulgarian,
Byelorussian,
Macedonian,
Russian,	Serbian

iso8859_6 iso-8859-6,	arabic Arabic

iso8859_7 iso-8859-7,	greek,
greek8 Greek

iso8859_8 iso-8859-8,	hebrew Hebrew

iso8859_9 iso-8859-9,	latin5,	L5 Turkish

iso8859_10 iso-8859-10,	latin6,	L6 Nordic	languages

iso8859_13 iso-8859-13,	latin7,	L7 Baltic	languages

iso8859_14 iso-8859-14,	latin8,	L8 Celtic	languages

iso8859_15 iso-8859-15,	latin9,	L9 Western	Europe

iso8859_16 iso-8859-16,	latin10,
L10

South-Eastern
Europe

johab cp1361,	ms1361 Korean

koi8_r 	 Russian

koi8_u 	 Ukrainian

mac_cyrillic maccyrillic

Bulgarian,
Byelorussian,
Macedonian,
Russian,	Serbian

mac_greek macgreek Greek

mac_iceland maciceland Icelandic

mac_latin2 maclatin2,
maccentraleurope

Central	and	Eastern
Europe

mac_roman macroman,	macintosh Western	Europe

mac_turkish macturkish Turkish

ptcp154 csptcp154,	pt154,
cp154,	cyrillic-asian Kazakh

shift_jis csshiftjis,	shiftjis,	sjis,
s_jis Japanese

shift_jis_2004 shiftjis2004,	sjis_2004,
sjis2004 Japanese

shift_jisx0213 shiftjisx0213,	sjisx0213,
s_jisx0213 Japanese

utf_32 U32,	utf32 all	languages

utf_32_be UTF-32BE all	languages

utf_32_le UTF-32LE all	languages

utf_16 U16,	utf16 all	languages

utf_16_be UTF-16BE all	languages

utf_16_le UTF-16LE all	languages

utf_7 U7,	unicode-1-1-utf-7 all	languages

utf_8 U8,	UTF,	utf8 all	languages

utf_8_sig 	 all	languages

Changed	 in	 version	 3.4:	The	 utf-16*	 and	 utf-32*	 encoders	 no	 longer
allow	 surrogate	 code	 points	 (U+D800–U+DFFF)	 to	 be	 encoded.	 The
utf-32*	decoders	no	longer	decode	byte	sequences	that	correspond	to
surrogate	code	points.

7.2.4.	Python	Specific	Encodings

A	number	of	predefined	codecs	are	specific	to	Python,	so	their	codec
names	have	no	meaning	outside	Python.	These	are	listed	in	the	tables
below	based	on	the	expected	 input	and	output	 types	(note	 that	while
text	 encodings	 are	 the	 most	 common	 use	 case	 for	 codecs,	 the
underlying	 codec	 infrastructure	 supports	 arbitrary	 data	 transforms
rather	 than	 just	 text	 encodings).	 For	 asymmetric	 codecs,	 the	 stated
purpose	describes	the	encoding	direction.

7.2.4.1.	Text	Encodings

The	following	codecs	provide	str	 to	bytes	encoding	and	bytes-like
object	to	str	decoding,	similar	to	the	Unicode	text	encodings.

Codec Aliases Purpose

idna 	 Implements	RFC	3490,	see
also	encodings.idna

mbcs dbcs
Windows	only:	Encode
operand	according	to	the	ANSI
codepage	(CP_ACP)

palmos 	 Encoding	of	PalmOS	3.5

punycode 	 Implements	RFC	3492

raw_unicode_escape 	
Produce	a	string	that	is	suitable
as	raw	Unicode	literal	in
Python	source	code

undefined 	

Raise	an	exception	for	all
conversions.	Can	be	used	as
the	system	encoding	if	no
automatic	coercion	between
byte	and	Unicode	strings	is

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html

desired.

unicode_escape 	
Produce	a	string	that	is	suitable
as	Unicode	literal	in	Python
source	code

unicode_internal 	

Return	 the	 internal
representation	of	the	operand

Deprecated	 since	 version
3.3.

7.2.4.2.	Binary	Transforms

The	 following	 codecs	 provide	 binary	 transforms:	 bytes-like	 object	 to
bytes	mappings.

Codec Aliases Purpose Encoder	/	decoder

base64_codec
[1]

base64,
base_64

Convert
operand	 to
MIME	 base64
(the	 result
always
includes	 a
trailing	'\n')

Changed	 in
version	 3.4:
accepts	 any
bytes-like
object	as	 input
for	 encoding

base64.b64encode()

base64.b64decode()

and	decoding

bz2_codec bz2
Compress	the
operand	using
bz2

bz2.compress()

bz2.decompress()

hex_codec hex

Convert
operand	to
hexadecimal
representation,
with	two	digits
per	byte

base64.b16encode()

base64.b16decode()

quopri_codec
quopri,
quotedprintable,
quoted_printable

Convert
operand	to
MIME	quoted
printable

quopri.encodestring()

/
quopri.decodestring()

uu_codec uu
Convert	the
operand	using
uuencode

uu.encode()	/
uu.decode()

zlib_codec zip,	zlib
Compress	the
operand	using
gzip

zlib.compress()

zlib.decompress()

[1] In	addition	to	bytes-like	objects,	'base64_codec'	also
accepts	ASCII-only	instances	of	str	for	decoding

New	in	version	3.2:	Restoration	of	the	binary	transforms.

Changed	 in	 version	 3.4:	 Restoration	 of	 the	 aliases	 for	 the	 binary
transforms.

7.2.4.3.	Text	Transforms

The	following	codec	provides	a	text	transform:	a	str	to	str	mapping.

Codec Aliases Purpose

rot_13 rot13 Returns	the	Caesar-cypher
encryption	of	the	operand

New	in	version	3.2:	Restoration	of	the	rot_13	text	transform.

Changed	in	version	3.4:	Restoration	of	the	rot13	alias.

7.2.5.	encodings.idna	—
Internationalized	Domain	Names	in
Applications

This	module	implements	RFC	3490	(Internationalized	Domain	Names
in	 Applications)	 and	RFC	 3492	 (Nameprep:	 A	 Stringprep	 Profile	 for
Internationalized	Domain	Names	(IDN)).	It	builds	upon	the	punycode
encoding	and	stringprep.

These	 RFCs	 together	 define	 a	 protocol	 to	 support	 non-ASCII
characters	 in	 domain	 names.	 A	 domain	 name	 containing	 non-ASCII
characters	 (such	 as	 www.Alliancefrançaise.nu)	 is	 converted
into	 an	 ASCII-compatible	 encoding	 (ACE,	 such	 as	 www.xn--

alliancefranaise-npb.nu).	The	ACE	form	of	the	domain	name	is
then	used	 in	all	places	where	arbitrary	characters	are	not	allowed	by
the	protocol,	such	as	DNS	queries,	HTTP	Host	fields,	and	so	on.	This
conversion	 is	carried	out	 in	 the	application;	 if	possible	 invisible	to	 the
user:	 The	 application	 should	 transparently	 convert	 Unicode	 domain
labels	 to	 IDNA	on	 the	wire,	and	convert	back	ACE	 labels	 to	Unicode
before	presenting	them	to	the	user.

Python	 supports	 this	 conversion	 in	 several	 ways:	 the	 idna	 codec
performs	conversion	between	Unicode	and	ACE,	separating	an	 input
string	into	labels	based	on	the	separator	characters	defined	in	section
3.1	 (1)	 of	RFC	3490	 and	 converting	 each	 label	 to	ACE	as	 required,
and	conversely	separating	an	input	byte	string	into	labels	based	on	the
.	 separator	 and	 converting	 any	 ACE	 labels	 found	 into	 unicode.
Furthermore,	the	socket	module	transparently	converts	Unicode	host
names	 to	 ACE,	 so	 that	 applications	 need	 not	 be	 concerned	 about
converting	host	names	themselves	when	they	pass	them	to	the	socket

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3492.html
http://tools.ietf.org/html/rfc3490#section-3.1
http://tools.ietf.org/html/rfc3490.html

module.	 On	 top	 of	 that,	 modules	 that	 have	 host	 names	 as	 function
parameters,	 such	 as	 http.client	 and	 ftplib,	 accept	 Unicode
host	 names	 (http.client	 then	 also	 transparently	 sends	 an	 IDNA
hostname	in	the	Host	field	if	it	sends	that	field	at	all).

When	 receiving	host	names	 from	 the	wire	 (such	as	 in	 reverse	name
lookup),	 no	 automatic	 conversion	 to	 Unicode	 is	 performed:
Applications	wishing	 to	 present	 such	 host	 names	 to	 the	 user	 should
decode	them	to	Unicode.

The	 module	 encodings.idna	 also	 implements	 the	 nameprep
procedure,	which	 performs	 certain	 normalizations	 on	 host	 names,	 to
achieve	case-insensitivity	of	international	domain	names,	and	to	unify
similar	 characters.	 The	 nameprep	 functions	 can	 be	 used	 directly	 if
desired.

encodings.idna.nameprep(label)
Return	 the	 nameprepped	 version	 of	 label.	 The	 implementation
currently	assumes	query	strings,	so	AllowUnassigned	is	true.

encodings.idna.ToASCII(label)
Convert	 a	 label	 to	 ASCII,	 as	 specified	 in	 RFC	 3490.
UseSTD3ASCIIRules	is	assumed	to	be	false.

encodings.idna.ToUnicode(label)
Convert	a	label	to	Unicode,	as	specified	in	RFC	3490.

http://tools.ietf.org/html/rfc3490.html
http://tools.ietf.org/html/rfc3490.html

7.2.6.	encodings.mbcs	—	Windows
ANSI	codepage

Encode	operand	according	to	the	ANSI	codepage	(CP_ACP).

Availability:	Windows	only.

Changed	in	version	3.3:	Support	any	error	handler.

Changed	in	version	3.2:	Before	3.2,	the	errors	argument	was	ignored;
'replace'	was	always	used	to	encode,	and	'ignore'	to	decode.

7.2.7.	encodings.utf_8_sig	—	UTF-8
codec	with	BOM	signature

This	module	implements	a	variant	of	the	UTF-8	codec:	On	encoding	a
UTF-8	encoded	BOM	will	be	prepended	to	the	UTF-8	encoded	bytes.
For	the	stateful	encoder	this	is	only	done	once	(on	the	first	write	to	the
byte	 stream).	 For	 decoding	 an	 optional	 UTF-8	 encoded	 BOM	 at	 the
start	of	the	data	will	be	skipped.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	7.	Binary	Data	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

8.	Data	Types
The	modules	described	in	this	chapter	provide	a	variety	of	specialized
data	 types	such	as	dates	and	 times,	 fixed-type	arrays,	heap	queues,
synchronized	queues,	and	sets.

Python	 also	 provides	 some	 built-in	 data	 types,	 in	 particular,	 dict,
list,	set	and	frozenset,	and	tuple.	The	 str	 class	 is	 used	 to
hold	Unicode	strings,	and	the	bytes	class	is	used	to	hold	binary	data.

The	following	modules	are	documented	in	this	chapter:

8.1.	datetime	—	Basic	date	and	time	types
8.1.1.	Available	Types
8.1.2.	timedelta	Objects
8.1.3.	date	Objects
8.1.4.	datetime	Objects
8.1.5.	time	Objects
8.1.6.	tzinfo	Objects
8.1.7.	timezone	Objects
8.1.8.	strftime()	and	strptime()	Behavior

8.2.	calendar	—	General	calendar-related	functions
8.3.	collections	—	Container	datatypes

8.3.1.	ChainMap	objects
8.3.1.1.	ChainMap	Examples	and	Recipes

8.3.2.	Counter	objects
8.3.3.	deque	objects

8.3.3.1.	deque	Recipes
8.3.4.	defaultdict	objects

8.3.4.1.	defaultdict	Examples
8.3.5.	 namedtuple()	 Factory	 Function	 for	 Tuples	 with

Named	Fields
8.3.6.	OrderedDict	objects

8.3.6.1.	OrderedDict	Examples	and	Recipes
8.3.7.	UserDict	objects
8.3.8.	UserList	objects
8.3.9.	UserString	objects

8.4.	collections.abc	—	Abstract	Base	Classes	for	Containers
8.4.1.	Collections	Abstract	Base	Classes

8.5.	heapq	—	Heap	queue	algorithm
8.5.1.	Basic	Examples
8.5.2.	Priority	Queue	Implementation	Notes
8.5.3.	Theory

8.6.	bisect	—	Array	bisection	algorithm
8.6.1.	Searching	Sorted	Lists
8.6.2.	Other	Examples

8.7.	array	—	Efficient	arrays	of	numeric	values
8.8.	weakref	—	Weak	references

8.8.1.	Weak	Reference	Objects
8.8.2.	Example
8.8.3.	Finalizer	Objects
8.8.4.	Comparing	finalizers	with	__del__()	methods

8.9.	types	—	Dynamic	type	creation	and	names	for	built-in	types
8.9.1.	Dynamic	Type	Creation
8.9.2.	Standard	Interpreter	Types
8.9.3.	Additional	Utility	Classes	and	Functions

8.10.	copy	—	Shallow	and	deep	copy	operations
8.11.	pprint	—	Data	pretty	printer

8.11.1.	PrettyPrinter	Objects
8.11.2.	Example

8.12.	reprlib	—	Alternate	repr()	implementation
8.12.1.	Repr	Objects
8.12.2.	Subclassing	Repr	Objects

8.13.	enum	—	Support	for	enumerations

8.13.1.	Module	Contents
8.13.2.	Creating	an	Enum
8.13.3.	 Programmatic	 access	 to	 enumeration	members	 and
their	attributes
8.13.4.	Duplicating	enum	members	and	values
8.13.5.	Ensuring	unique	enumeration	values
8.13.6.	Iteration
8.13.7.	Comparisons
8.13.8.	Allowed	members	and	attributes	of	enumerations
8.13.9.	Restricted	subclassing	of	enumerations
8.13.10.	Pickling
8.13.11.	Functional	API
8.13.12.	Derived	Enumerations

8.13.12.1.	IntEnum
8.13.12.2.	Others

8.13.13.	Interesting	examples
8.13.13.1.	AutoNumber
8.13.13.2.	OrderedEnum
8.13.13.3.	DuplicateFreeEnum
8.13.13.4.	Planet

8.13.14.	How	are	Enums	different?
8.13.14.1.	Enum	Classes
8.13.14.2.	Enum	Members	(aka	instances)
8.13.14.3.	Finer	Points

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.1.	datetime	—	Basic	date	and
time	types
The	 datetime	module	 supplies	 classes	 for	manipulating	 dates	 and
times	 in	 both	 simple	 and	 complex	 ways.	 While	 date	 and	 time
arithmetic	is	supported,	the	focus	of	the	implementation	is	on	efficient
attribute	extraction	for	output	formatting	and	manipulation.	For	related
functionality,	see	also	the	time	and	calendar	modules.

There	are	two	kinds	of	date	and	time	objects:	“naive”	and	“aware”.

An	aware	object	has	sufficient	knowledge	of	applicable	algorithmic	and
political	time	adjustments,	such	as	time	zone	and	daylight	saving	time
information,	 to	 locate	 itself	 relative	 to	other	aware	objects.	An	 aware
object	is	used	to	represent	a	specific	moment	in	time	that	is	not	open
to	interpretation	[1].

A	naive	object	does	not	contain	enough	information	to	unambiguously
locate	itself	relative	to	other	date/time	objects.	Whether	a	naive	object
represents	 Coordinated	Universal	 Time	 (UTC),	 local	 time,	 or	 time	 in
some	other	 timezone	 is	purely	up	 to	 the	program,	 just	 like	 it	 is	up	 to
the	program	whether	a	particular	number	represents	metres,	miles,	or
mass.	Naive	objects	are	easy	 to	understand	and	 to	work	with,	at	 the
cost	of	ignoring	some	aspects	of	reality.

For	applications	requiring	aware	objects,	datetime	and	time	objects
have	an	optional	time	zone	information	attribute,	tzinfo,	that	can	be
set	to	an	instance	of	a	subclass	of	the	abstract	tzinfo	class.	These
tzinfo	objects	capture	 information	about	 the	offset	 from	UTC	 time,
the	 time	 zone	 name,	 and	whether	Daylight	 Saving	 Time	 is	 in	 effect.

Note	 that	 only	 one	 concrete	 tzinfo	 class,	 the	 timezone	 class,	 is
supplied	 by	 the	 datetime	 module.	 The	 timezone	 class	 can
represent	simple	 timezones	with	 fixed	offset	 from	UTC,	such	as	UTC
itself	 or	 North	 American	 EST	 and	 EDT	 timezones.	 Supporting
timezones	at	deeper	levels	of	detail	is	up	to	the	application.	The	rules
for	 time	adjustment	across	 the	world	are	more	political	 than	 rational,
change	 frequently,	 and	 there	 is	 no	 standard	 suitable	 for	 every
application	aside	from	UTC.

The	datetime	module	exports	the	following	constants:

datetime.MINYEAR

The	smallest	year	number	allowed	in	a	date	or	datetime	object.
MINYEAR	is	1.

datetime.MAXYEAR

The	 largest	year	number	allowed	 in	a	date	or	datetime	object.
MAXYEAR	is	9999.

See	also:

Module	calendar
General	calendar	related	functions.

Module	time
Time	access	and	conversions.

8.1.1.	Available	Types

class	datetime.date
An	idealized	naive	date,	assuming	the	current	Gregorian	calendar
always	was,	and	always	will	be,	in	effect.	Attributes:	year,	month,
and	day.

class	datetime.time
An	idealized	time,	independent	of	any	particular	day,	assuming	that
every	 day	 has	 exactly	 24*60*60	 seconds	 (there	 is	 no	 notion	 of
“leap	 seconds”	 here).	 Attributes:	 hour,	 minute,	 second,
microsecond,	and	tzinfo.

class	datetime.datetime
A	combination	of	a	date	and	a	time.	Attributes:	year,	month,	day,
hour,	minute,	second,	microsecond,	and	tzinfo.

class	datetime.timedelta
A	duration	expressing	the	difference	between	two	date,	time,	or
datetime	instances	to	microsecond	resolution.

class	datetime.tzinfo
An	 abstract	 base	 class	 for	 time	 zone	 information	 objects.	 These
are	 used	 by	 the	 datetime	 and	 time	 classes	 to	 provide	 a
customizable	notion	of	time	adjustment	(for	example,	to	account	for
time	zone	and/or	daylight	saving	time).

class	datetime.timezone
A	class	that	implements	the	tzinfo	abstract	base	class	as	a	fixed
offset	from	the	UTC.

New	in	version	3.2.

Objects	of	these	types	are	immutable.

Objects	of	the	date	type	are	always	naive.

An	 object	 of	 type	 time	 or	 datetime	 may	 be	 naive	 or	 aware.	 A
datetime	 object	 d	 is	 aware	 if	 d.tzinfo	 is	 not	 None	 and
d.tzinfo.utcoffset(d)	 does	 not	 return	 None.	 If	 d.tzinfo	 is
None,	 or	 if	 d.tzinfo	 is	 not	 None	 but	 d.tzinfo.utcoffset(d)
returns	None,	d	is	naive.	A	time	object	t	is	aware	if	t.tzinfo	is	not
None	 and	 t.tzinfo.utcoffset(None)	 does	 not	 return	 None.
Otherwise,	t	is	naive.

The	distinction	between	naive	and	aware	doesn’t	apply	to	timedelta
objects.

Subclass	relationships:

object

				timedelta

				tzinfo

								timezone

				time

				date

								datetime

8.1.2.	timedelta	Objects

A	 timedelta	 object	 represents	 a	 duration,	 the	 difference	 between
two	dates	or	times.

class	datetime.timedelta(days=0,	seconds=0,
microseconds=0,	milliseconds=0,	minutes=0,	hours=0,	weeks=0)

All	 arguments	 are	 optional	 and	 default	 to	 0.	 Arguments	 may	 be
integers	or	floats,	and	may	be	positive	or	negative.

Only	 days,	 seconds	 and	 microseconds	 are	 stored	 internally.
Arguments	are	converted	to	those	units:

A	millisecond	is	converted	to	1000	microseconds.
A	minute	is	converted	to	60	seconds.
An	hour	is	converted	to	3600	seconds.
A	week	is	converted	to	7	days.

and	days,	seconds	and	microseconds	are	then	normalized	so	that
the	representation	is	unique,	with

0	<=	microseconds	<	1000000

0	<=	seconds	<	3600*24	(the	number	of	seconds	in	one
day)
-999999999	<=	days	<=	999999999

If	 any	 argument	 is	 a	 float	 and	 there	 are	 fractional	microseconds,
the	 fractional	 microseconds	 left	 over	 from	 all	 arguments	 are
combined	 and	 their	 sum	 is	 rounded	 to	 the	 nearest	 microsecond
using	 round-half-to-even	 tiebreaker.	 If	 no	 argument	 is	 a	 float,	 the
conversion	and	normalization	processes	are	exact	(no	information
is	lost).

If	 the	 normalized	 value	 of	 days	 lies	 outside	 the	 indicated	 range,

OverflowError	is	raised.

Note	 that	 normalization	 of	 negative	 values	 may	 be	 surprising	 at
first.	For	example,

>>>	from	datetime	import	timedelta

>>>	d	=	timedelta(microseconds=-1)

>>>	(d.days,	d.seconds,	d.microseconds)

(-1,	86399,	999999)

Class	attributes	are:

timedelta.min

The	 most	 negative	 timedelta	 object,
timedelta(-999999999).

timedelta.max

The	 most	 positive	 timedelta	 object,
timedelta(days=999999999,	 hours=23,	 minutes=59,

seconds=59,	microseconds=999999).

timedelta.resolution

The	 smallest	 possible	 difference	 between	 non-equal	 timedelta
objects,	timedelta(microseconds=1).

Note	 that,	 because	 of	 normalization,	 timedelta.max	 >	 -

timedelta.min.	 -timedelta.max	 is	 not	 representable	 as	 a
timedelta	object.

Instance	attributes	(read-only):

Attribute Value

Between	-999999999	and	999999999

days inclusive

seconds Between	0	and	86399	inclusive

microseconds Between	0	and	999999	inclusive

Supported	operations:

Operation Result

t1	=	t2	+	t3
Sum	of	t2	and	t3.	Afterwards	t1-t2	==
t3	and	t1-t3	==	t2	are	true.	(1)

t1	=	t2	-	t3
Difference	of	t2	and	t3.	Afterwards	t1
==	t2	-	t3	and	t2	==	t1	+	t3	are	true.	(1)

t1	=	t2	*	i	or	t1	=

i	*	t2

Delta	multiplied	by	an	integer.
Afterwards	t1	//	i	==	t2	is	true,	provided
i	!=	0.

	 In	general,	t1	*	i	==	t1	*	(i-1)	+	t1	is
true.	(1)

t1	=	t2	*	f	or	t1	=

f	*	t2

Delta	multiplied	by	a	float.	The	result	is
rounded	to	the	nearest	multiple	of
timedelta.resolution	using	round-half-
to-even.

f	=	t2	/	t3
Division	(3)	of	t2	by	t3.	Returns	a
float	object.

t1	=	t2	/	f	or	t1	=

t2	/	i

Delta	divided	by	a	float	or	an	int.	The
result	is	rounded	to	the	nearest
multiple	of	timedelta.resolution	using
round-half-to-even.

t1	=	t2	//	i	or	t1	=
t2	//	t3

The	floor	is	computed	and	the
remainder	(if	any)	is	thrown	away.	In
the	second	case,	an	integer	is
returned.	(3)

The	remainder	is	computed	as	a

t1	=	t2	%	t3 timedelta	object.	(3)

q,	r	=	divmod(t1,

t2)

Computes	the	quotient	and	the
remainder:	q	=	t1	//	t2	(3)	and	r
=	t1	%	t2.	q	is	an	integer	and	r	is	a
timedelta	object.

+t1
Returns	a	timedelta	object	with	the
same	value.	(2)

-t1

equivalent	to	timedelta(-t1.days,	-
t1.seconds,	-t1.microseconds),	and	to
t1*	-1.	(1)(4)

abs(t)
equivalent	to	+t	when	t.days	>=	0,
and	to	-t	when	t.days	<	0.	(2)

str(t)

Returns	a	string	in	the	form	[D
day[s],][H]H:MM:SS[.UUUUUU],
where	D	is	negative	for	negative	t.	(5)

repr(t)

Returns	a	string	in	the	form
datetime.timedelta(D[,	S[,

U]]),	where	D	is	negative	for	negative
t.	(5)

Notes:

1.	 This	is	exact,	but	may	overflow.

2.	 This	is	exact,	and	cannot	overflow.

3.	 Division	by	0	raises	ZeroDivisionError.

4.	 -timedelta.max	is	not	representable	as	a	timedelta	object.

5.	 String	 representations	 of	 timedelta	 objects	 are	 normalized
similarly	 to	 their	 internal	 representation.	This	 leads	 to	 somewhat

unusual	results	for	negative	timedeltas.	For	example:

>>>	timedelta(hours=-5)

datetime.timedelta(-1,	68400)

>>>	print(_)

-1	day,	19:00:00

In	addition	to	the	operations	listed	above	timedelta	objects	support
certain	additions	and	subtractions	with	date	and	datetime	 objects
(see	below).

Changed	 in	 version	 3.2:	 Floor	 division	 and	 true	 division	 of	 a
timedelta	object	by	another	timedelta	object	are	now	supported,
as	are	remainder	operations	and	the	divmod()	function.	True	division
and	multiplication	of	a	timedelta	object	by	a	float	object	are	now
supported.

Comparisons	 of	 timedelta	 objects	 are	 supported	 with	 the
timedelta	object	representing	the	smaller	duration	considered	to	be
the	 smaller	 timedelta.	 In	 order	 to	 stop	mixed-type	 comparisons	 from
falling	 back	 to	 the	 default	 comparison	 by	 object	 address,	 when	 a
timedelta	 object	 is	 compared	 to	 an	 object	 of	 a	 different	 type,
TypeError	 is	 raised	unless	 the	comparison	 is	==	or	!=.	The	 latter
cases	return	False	or	True,	respectively.

timedelta	objects	are	hashable	(usable	as	dictionary	keys),	support
efficient	 pickling,	 and	 in	 Boolean	 contexts,	 a	 timedelta	 object	 is
considered	to	be	true	if	and	only	if	it	isn’t	equal	to	timedelta(0).

Instance	methods:

timedelta.total_seconds()
Return	 the	 total	 number	 of	 seconds	 contained	 in	 the	 duration.

Equivalent	to	td	/	timedelta(seconds=1).

Note	 that	 for	 very	 large	 time	 intervals	 (greater	 than	270	years	on
most	platforms)	this	method	will	lose	microsecond	accuracy.

New	in	version	3.2.

Example	usage:

>>>	from	datetime	import	timedelta

>>>	year	=	timedelta(days=365)

>>>	another_year	=	timedelta(weeks=40,	days=84,	hours

...																										minutes=50,	seconds=600

>>>	year.total_seconds()

31536000.0

>>>	year	==	another_year

True

>>>	ten_years	=	10	*	year

>>>	ten_years,	ten_years.days	//	365

(datetime.timedelta(3650),	10)

>>>	nine_years	=	ten_years	-	year

>>>	nine_years,	nine_years.days	//	365

(datetime.timedelta(3285),	9)

>>>	three_years	=	nine_years	//	3;

>>>	three_years,	three_years.days	//	365

(datetime.timedelta(1095),	3)

>>>	abs(three_years	-	ten_years)	==	2	*	three_years	

True

8.1.3.	date	Objects

A	date	object	represents	a	date	(year,	month	and	day)	in	an	idealized
calendar,	the	current	Gregorian	calendar	indefinitely	extended	in	both
directions.	January	1	of	year	1	 is	called	day	number	1,	January	2	of
year	1	is	called	day	number	2,	and	so	on.	This	matches	the	definition
of	 the	 “proleptic	 Gregorian”	 calendar	 in	 Dershowitz	 and	 Reingold’s
book	 Calendrical	 Calculations,	 where	 it’s	 the	 base	 calendar	 for	 all
computations.	 See	 the	 book	 for	 algorithms	 for	 converting	 between
proleptic	Gregorian	ordinals	and	many	other	calendar	systems.

class	datetime.date(year,	month,	day)
All	 arguments	 are	 required.	 Arguments	 may	 be	 integers,	 in	 the
following	ranges:

MINYEAR	<=	year	<=	MAXYEAR

1	<=	month	<=	12

1	<=	day	<=	number	of	days	in	the	given	month

and	year

If	 an	 argument	 outside	 those	 ranges	 is	 given,	 ValueError	 is
raised.

Other	constructors,	all	class	methods:

classmethod	date.today()
Return	 the	 current	 local	 date.	 This	 is	 equivalent	 to
date.fromtimestamp(time.time()).

classmethod	date.fromtimestamp(timestamp)
Return	the	local	date	corresponding	to	the	POSIX	timestamp,	such
as	 is	 returned	 by	 time.time().	 This	 may	 raise

OverflowError,	 if	 the	 timestamp	 is	 out	 of	 the	 range	 of	 values
supported	 by	 the	 platform	 C	 localtime()	 function,	 and
OSError	 on	 localtime()	 failure.	 It’s	 common	 for	 this	 to	 be
restricted	 to	 years	 from	 1970	 through	 2038.	 Note	 that	 on	 non-
POSIX	 systems	 that	 include	 leap	 seconds	 in	 their	 notion	 of	 a
timestamp,	leap	seconds	are	ignored	by	fromtimestamp().

Changed	 in	 version	 3.3:	 Raise	 OverflowError	 instead	 of
ValueError	 if	 the	 timestamp	 is	 out	 of	 the	 range	 of	 values
supported	 by	 the	 platform	 C	 localtime()	 function.	 Raise
OSError	instead	of	ValueError	on	localtime()	failure.

classmethod	date.fromordinal(ordinal)
Return	 the	 date	 corresponding	 to	 the	 proleptic	Gregorian	 ordinal,
where	 January	 1	 of	 year	 1	 has	 ordinal	 1.	 ValueError	 is	 raised
unless	1	<=	ordinal	<=	date.max.toordinal().	 For	 any
date	d,	date.fromordinal(d.toordinal())	==	d.

Class	attributes:

date.min

The	earliest	representable	date,	date(MINYEAR,	1,	1).

date.max

The	latest	representable	date,	date(MAXYEAR,	12,	31).

date.resolution

The	smallest	possible	difference	between	non-equal	date	objects,
timedelta(days=1).

Instance	attributes	(read-only):

date.year

Between	MINYEAR	and	MAXYEAR	inclusive.

date.month

Between	1	and	12	inclusive.

date.day

Between	1	and	the	number	of	days	in	the	given	month	of	the	given
year.

Supported	operations:

Operation Result

date2	=	date1	+

timedelta

date2	is	timedelta.days	days
removed	from	date1.	(1)

date2	=	date1	-

timedelta

Computes	date2	such	that	date2	+
timedelta	==	date1.	(2)

timedelta	=	date1	-

date2
(3)

date1	<	date2
date1	is	considered	less	than	date2
when	date1	precedes	date2	in	time.	(4)

Notes:

1.	 date2	 is	 moved	 forward	 in	 time	 if	 timedelta.days	 >	 0,	 or
backward	if	timedelta.days	<	0.	Afterward	date2	-	date1
==	 timedelta.days.	 timedelta.seconds	 and
timedelta.microseconds	 are	 ignored.	 OverflowError	 is
raised	if	date2.year	would	be	smaller	 than	MINYEAR	or	 larger
than	MAXYEAR.

2.	 This	 isn’t	 quite	 equivalent	 to	 date1	 +	 (-timedelta),	 because	 -
timedelta	 in	 isolation	 can	 overflow	 in	 cases	 where	 date1	 -
timedelta	 does	 not.	 timedelta.seconds	 and

timedelta.microseconds	are	ignored.
3.	 This	 is	 exact,	 and	 cannot	 overflow.	 timedelta.seconds	 and

timedelta.microseconds	 are	 0,	 and	 date2	 +	 timedelta	 ==	 date1
after.

4.	 In	 other	 words,	 date1	 <	 date2	 if	 and	 only	 if
date1.toordinal()	 <	 date2.toordinal().	 In	 order	 to
stop	 comparison	 from	 falling	 back	 to	 the	 default	 scheme	 of
comparing	 object	 addresses,	 date	 comparison	 normally	 raises
TypeError	 if	 the	 other	 comparand	 isn’t	 also	 a	 date	 object.
However,	 NotImplemented	 is	 returned	 instead	 if	 the	 other
comparand	has	a	timetuple()	attribute.	This	hook	gives	other
kinds	 of	 date	 objects	 a	 chance	 at	 implementing	 mixed-type
comparison.	If	not,	when	a	date	object	is	compared	to	an	object
of	a	different	type,	TypeError	is	raised	unless	the	comparison	is
==	or	!=.	The	latter	cases	return	False	or	True,	respectively.

Dates	can	be	used	as	dictionary	keys.	 In	Boolean	contexts,	all	date
objects	are	considered	to	be	true.

Instance	methods:

date.replace(year,	month,	day)
Return	 a	 date	with	 the	 same	 value,	 except	 for	 those	 parameters
given	new	values	by	whichever	keyword	arguments	are	specified.
For	 example,	 if	 d	 ==	 date(2002,	 12,	 31),	 then
d.replace(day=26)	==	date(2002,	12,	26).

date.timetuple()
Return	 a	 time.struct_time	 such	 as	 returned	 by
time.localtime().	The	hours,	minutes	and	seconds	are	0,	and
the	 DST	 flag	 is	 -1.	 d.timetuple()	 is	 equivalent	 to
time.struct_time((d.year,	 d.month,	 d.day,	 0,	 0,

0,	 d.weekday(),	 yday,	 -1)),	 where	 yday	 =

d.toordinal()	 -	 date(d.year,	 1,	 1).toordinal()	 +

1	 is	 the	 day	 number	 within	 the	 current	 year	 starting	 with	 1	 for
January	1st.

date.toordinal()
Return	the	proleptic	Gregorian	ordinal	of	the	date,	where	January	1
of	 year	 1	 has	 ordinal	 1.	 For	 any	 date	 object	 d,
date.fromordinal(d.toordinal())	==	d.

date.weekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	0	and
Sunday	 is	 6.	 For	 example,	 date(2002,	 12,	 4).weekday()
==	2,	a	Wednesday.	See	also	isoweekday().

date.isoweekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	1	and
Sunday	 is	 7.	 For	 example,	 date(2002,	 12,

4).isoweekday()	==	3,	a	Wednesday.	See	also	weekday(),
isocalendar().

date.isocalendar()
Return	a	3-tuple,	(ISO	year,	ISO	week	number,	ISO	weekday).

The	 ISO	 calendar	 is	 a	 widely	 used	 variant	 of	 the	 Gregorian
calendar.	 See
http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm	 for	 a	 good
explanation.

The	 ISO	year	consists	of	52	or	53	 full	weeks,	and	where	a	week
starts	 on	a	Monday	and	ends	on	a	Sunday.	The	 first	week	of	 an
ISO	year	is	the	first	(Gregorian)	calendar	week	of	a	year	containing

http://www.phys.uu.nl/~vgent/calendar/isocalendar.htm

a	Thursday.	This	is	called	week	number	1,	and	the	ISO	year	of	that
Thursday	is	the	same	as	its	Gregorian	year.

For	example,	2004	begins	on	a	Thursday,	so	the	first	week	of	ISO
year	2004	begins	on	Monday,	29	Dec	2003	and	ends	on	Sunday,	4
Jan	2004,	so	 that	date(2003,	12,	29).isocalendar()	==
(2004,	1,	1)	and	date(2004,	1,	4).isocalendar()	==
(2004,	1,	7).

date.isoformat()
Return	a	string	 representing	 the	date	 in	 ISO	8601	 format,	 ‘YYYY-
MM-DD’.	For	example,	date(2002,	12,	4).isoformat()	==
'2002-12-04'.

date.__str__()
For	a	date	d,	str(d)	is	equivalent	to	d.isoformat().

date.ctime()
Return	 a	 string	 representing	 the	 date,	 for	 example	 date(2002,
12,	 4).ctime()	 ==	 'Wed	 Dec	 4	 00:00:00	 2002'.
d.ctime()	 is	 equivalent	 to
time.ctime(time.mktime(d.timetuple()))	 on	 platforms
where	 the	 native	 C	 ctime()	 function	 (which	 time.ctime()
invokes,	but	which	date.ctime()	does	not	 invoke)	conforms	 to
the	C	standard.

date.strftime(format)
Return	 a	 string	 representing	 the	 date,	 controlled	 by	 an	 explicit
format	string.	Format	codes	referring	to	hours,	minutes	or	seconds
will	 see	0	values.	For	a	complete	 list	of	 formatting	directives,	see
strftime()	and	strptime()	Behavior.

date.__format__(format)
Same	 as	 date.strftime().	 This	 makes	 it	 possible	 to	 specify
format	string	for	a	date	object	when	using	str.format().	For	a
complete	 list	 of	 formatting	directives,	 see	strftime()	and	strptime()
Behavior.

Example	of	counting	days	to	an	event:

>>>	import	time

>>>	from	datetime	import	date

>>>	today	=	date.today()

>>>	today

datetime.date(2007,	12,	5)

>>>	today	==	date.fromtimestamp(time.time())

True

>>>	my_birthday	=	date(today.year,	6,	24)

>>>	if	my_birthday	<	today:

...					my_birthday	=	my_birthday.replace(year=today

>>>	my_birthday

datetime.date(2008,	6,	24)

>>>	time_to_birthday	=	abs(my_birthday	-	today)

>>>	time_to_birthday.days

202

Example	of	working	with	date:

>>>	from	datetime	import	date

>>>	d	=	date.fromordinal(730920)	#	730920th	day	after	1.	1.	0001

>>>	d

datetime.date(2002,	3,	11)

>>>	t	=	d.timetuple()

>>>	for	i	in	t:					

...					print(i)

2002																#	year

3																			#	month

11																		#	day

0

0

0

0																			#	weekday	(0	=	Monday)

70																		#	70th	day	in	the	year

-1

>>>	ic	=	d.isocalendar()

>>>	for	i	in	ic:				

...					print(i)

2002																#	ISO	year

11																		#	ISO	week	number

1																			#	ISO	day	number	(1	=	Monday)

>>>	d.isoformat()

'2002-03-11'

>>>	d.strftime("%d/%m/%y")

'11/03/02'

>>>	d.strftime("%A	%d.	%B	%Y")

'Monday	11.	March	2002'

>>>	'The	{1}	is	{0:%d},	the	{2}	is	{0:%B}.'.format(d

'The	day	is	11,	the	month	is	March.'

8.1.4.	datetime	Objects

A	 datetime	 object	 is	 a	 single	 object	 containing	 all	 the	 information
from	 a	 date	 object	 and	 a	 time	 object.	 Like	 a	 date	 object,
datetime	assumes	the	current	Gregorian	calendar	extended	in	both
directions;	 like	 a	 time	 object,	 datetime	 assumes	 there	 are	 exactly
3600*24	seconds	in	every	day.

Constructor:

class	datetime.datetime(year,	month,	day,	hour=0,	minute=0,
second=0,	microsecond=0,	tzinfo=None)

The	 year,	month	 and	 day	 arguments	 are	 required.	 tzinfo	may	 be
None,	 or	 an	 instance	 of	 a	 tzinfo	 subclass.	 The	 remaining
arguments	may	be	integers,	in	the	following	ranges:

MINYEAR	<=	year	<=	MAXYEAR

1	<=	month	<=	12

1	<=	day	<=	number	of	days	in	the	given	month

and	year

0	<=	hour	<	24

0	<=	minute	<	60

0	<=	second	<	60

0	<=	microsecond	<	1000000

If	 an	 argument	 outside	 those	 ranges	 is	 given,	 ValueError	 is
raised.

Other	constructors,	all	class	methods:

classmethod	datetime.today()
Return	 the	 current	 local	 datetime,	 with	 tzinfo	 None.	 This	 is

equivalent	 to	datetime.fromtimestamp(time.time()).	 See
also	now(),	fromtimestamp().

classmethod	datetime.now(tz=None)
Return	 the	 current	 local	 date	 and	 time.	 If	 optional	 argument	 tz	 is
None	 or	 not	 specified,	 this	 is	 like	 today(),	 but,	 if	 possible,
supplies	more	precision	 than	can	be	gotten	 from	going	 through	a
time.time()	 timestamp	 (for	 example,	 this	may	 be	 possible	 on
platforms	supplying	the	C	gettimeofday()	function).

Else	tz	must	be	an	instance	of	a	class	tzinfo	subclass,	and	the
current	date	and	time	are	converted	to	tz‘s	time	zone.	In	this	case
the	 result	 is	 equivalent	 to
tz.fromutc(datetime.utcnow().replace(tzinfo=tz)).
See	also	today(),	utcnow().

classmethod	datetime.utcnow()
Return	the	current	UTC	date	and	time,	with	tzinfo	None.	This	is
like	now(),	but	returns	the	current	UTC	date	and	time,	as	a	naive
datetime	 object.	 An	 aware	 current	 UTC	 datetime	 can	 be
obtained	 by	 calling	 datetime.now(timezone.utc).	 See	 also
now().

classmethod	datetime.fromtimestamp(timestamp,	tz=None)
Return	 the	 local	 date	 and	 time	 corresponding	 to	 the	 POSIX
timestamp,	 such	 as	 is	 returned	 by	 time.time().	 If	 optional
argument	tz	is	None	or	not	specified,	the	timestamp	is	converted	to
the	 platform’s	 local	 date	 and	 time,	 and	 the	 returned	 datetime
object	is	naive.

Else	tz	must	be	an	instance	of	a	class	tzinfo	subclass,	and	the

timestamp	is	converted	to	tz‘s	time	zone.	In	this	case	the	result	 is
equivalent	 to
tz.fromutc(datetime.utcfromtimestamp(timestamp).replace(tzinfo=tz))

fromtimestamp()	may	raise	OverflowError,	if	the	timestamp
is	 out	 of	 the	 range	 of	 values	 supported	 by	 the	 platform	 C
localtime()	 or	 gmtime()	 functions,	 and	 OSError	 on
localtime()	 or	 gmtime()	 failure.	 It’s	 common	 for	 this	 to	 be
restricted	to	years	in	1970	through	2038.	Note	that	on	non-POSIX
systems	 that	 include	 leap	seconds	 in	 their	notion	of	a	 timestamp,
leap	 seconds	 are	 ignored	 by	 fromtimestamp(),	 and	 then	 it’s
possible	 to	 have	 two	 timestamps	 differing	 by	 a	 second	 that	 yield
identical	datetime	objects.	See	also	utcfromtimestamp().

Changed	 in	 version	 3.3:	 Raise	 OverflowError	 instead	 of
ValueError	 if	 the	 timestamp	 is	 out	 of	 the	 range	 of	 values
supported	 by	 the	 platform	 C	 localtime()	 or	 gmtime()

functions.	 Raise	 OSError	 instead	 of	 ValueError	 on
localtime()	or	gmtime()	failure.

classmethod	datetime.utcfromtimestamp(timestamp)
Return	 the	 UTC	 datetime	 corresponding	 to	 the	 POSIX
timestamp,	with	tzinfo	None.	This	may	raise	OverflowError,
if	 the	 timestamp	 is	 out	 of	 the	 range	 of	 values	 supported	 by	 the
platform	 C	 gmtime()	 function,	 and	 OSError	 on	 gmtime()
failure.	 It’s	 common	 for	 this	 to	 be	 restricted	 to	 years	 in	 1970
through	2038.	See	also	fromtimestamp().

On	 the	 POSIX	 compliant	 platforms,
utcfromtimestamp(timestamp)	 is	 equivalent	 to	 the	 following
expression:

datetime(1970,	1,	1)	+	timedelta(seconds=timestamp

Changed	 in	 version	 3.3:	 Raise	 OverflowError	 instead	 of
ValueError	 if	 the	 timestamp	 is	 out	 of	 the	 range	 of	 values
supported	by	 the	platform	C	gmtime()	 function.	Raise	OSError
instead	of	ValueError	on	gmtime()	failure.

classmethod	datetime.fromordinal(ordinal)
Return	 the	 datetime	 corresponding	 to	 the	 proleptic	 Gregorian
ordinal,	where	January	1	of	year	1	has	ordinal	1.	ValueError	is
raised	 unless	 1	 <=	 ordinal	 <=

datetime.max.toordinal().	 The	 hour,	 minute,	 second	 and
microsecond	of	the	result	are	all	0,	and	tzinfo	is	None.

classmethod	datetime.combine(date,	time)
Return	a	new	datetime	object	whose	date	components	are	equal
to	 the	 given	 date	 object’s,	 and	 whose	 time	 components	 and
tzinfo	 attributes	 are	 equal	 to	 the	 given	 time	 object’s.	 For	 any
datetime	 object	 d,	 d	 ==	 datetime.combine(d.date(),

d.timetz()).	If	date	is	a	datetime	object,	its	time	components
and	tzinfo	attributes	are	ignored.

classmethod	datetime.strptime(date_string,	format)
Return	 a	 datetime	 corresponding	 to	 date_string,	 parsed
according	 to	 format.	 This	 is	 equivalent	 to	 datetime(*

(time.strptime(date_string,	 format)[0:6])).
ValueError	 is	 raised	 if	 the	 date_string	 and	 format	 can’t	 be
parsed	by	time.strptime()	or	if	it	returns	a	value	which	isn’t	a
time	tuple.	For	a	complete	list	of	formatting	directives,	see	strftime()
and	strptime()	Behavior.

Class	attributes:

datetime.min

The	earliest	representable	datetime,	datetime(MINYEAR,	1,
1,	tzinfo=None).

datetime.max

The	 latest	 representable	datetime,	datetime(MAXYEAR,	12,
31,	23,	59,	59,	999999,	tzinfo=None).

datetime.resolution

The	 smallest	 possible	 difference	 between	 non-equal	 datetime
objects,	timedelta(microseconds=1).

Instance	attributes	(read-only):

datetime.year

Between	MINYEAR	and	MAXYEAR	inclusive.

datetime.month

Between	1	and	12	inclusive.

datetime.day

Between	1	and	the	number	of	days	in	the	given	month	of	the	given
year.

datetime.hour

In	range(24).

datetime.minute

In	range(60).

datetime.second

In	range(60).

datetime.microsecond

In	range(1000000).

datetime.tzinfo

The	 object	 passed	 as	 the	 tzinfo	 argument	 to	 the	 datetime
constructor,	or	None	if	none	was	passed.

Supported	operations:

Operation Result

datetime2	=	datetime1	+

timedelta
(1)

datetime2	=	datetime1	-

timedelta
(2)

timedelta	=	datetime1	-

datetime2
(3)

datetime1	<	datetime2
Compares	datetime	to
datetime.	(4)

1.	 datetime2	 is	 a	 duration	 of	 timedelta	 removed	 from	 datetime1,
moving	 forward	 in	 time	 if	timedelta.days	>	0,	or	backward	 if
timedelta.days	 <	 0.	 The	 result	 has	 the	 same	 tzinfo
attribute	 as	 the	 input	 datetime,	 and	 datetime2	 -	 datetime1	 ==
timedelta	after.	OverflowError	is	raised	if	datetime2.year	would
be	smaller	 than	MINYEAR	or	 larger	 than	MAXYEAR.	Note	 that	no
time	 zone	 adjustments	 are	 done	 even	 if	 the	 input	 is	 an	 aware
object.

2.	 Computes	 the	 datetime2	 such	 that	 datetime2	 +	 timedelta	 ==
datetime1.	 As	 for	 addition,	 the	 result	 has	 the	 same	 tzinfo

attribute	as	the	input	datetime,	and	no	time	zone	adjustments	are
done	 even	 if	 the	 input	 is	 aware.	 This	 isn’t	 quite	 equivalent	 to
datetime1	 +	 (-timedelta),	 because	 -timedelta	 in	 isolation	 can
overflow	in	cases	where	datetime1	-	timedelta	does	not.

3.	 Subtraction	of	 a	 datetime	 from	a	 datetime	 is	 defined	 only	 if
both	operands	are	naive,	or	if	both	are	aware.	If	one	is	aware	and
the	other	is	naive,	TypeError	is	raised.

If	both	are	naive,	or	both	are	aware	and	have	the	same	tzinfo
attribute,	 the	 tzinfo	 attributes	 are	 ignored,	 and	 the	 result	 is	 a
timedelta	 object	 t	 such	 that	 datetime2	 +	 t	 ==

datetime1.	No	time	zone	adjustments	are	done	in	this	case.

If	both	are	aware	and	have	different	tzinfo	attributes,	a-b	acts
as	 if	a	 and	b	 were	 first	 converted	 to	 naive	 UTC	 datetimes	 first.
The	 result	 is	 (a.replace(tzinfo=None)	 -

a.utcoffset())	 -	 (b.replace(tzinfo=None)	 -

b.utcoffset())	 except	 that	 the	 implementation	 never
overflows.

4.	 datetime1	 is	 considered	 less	 than	 datetime2	 when	 datetime1
precedes	datetime2	in	time.

If	one	comparand	is	naive	and	the	other	is	aware,	TypeError	is
raised	 if	 an	 order	 comparison	 is	 attempted.	 For	 equality
comparisons,	naive	instances	are	never	equal	to	aware	instances.

If	 both	 comparands	 are	 aware,	 and	 have	 the	 same	 tzinfo
attribute,	 the	common	tzinfo	attribute	 is	 ignored	and	 the	base
datetimes	are	compared.	If	both	comparands	are	aware	and	have
different	tzinfo	attributes,	the	comparands	are	first	adjusted	by

subtracting	 their	 UTC	 offsets	 (obtained	 from
self.utcoffset()).

Changed	in	version	3.3:	Equality	comparisons	between	naive	and
aware	datetime	instances	don’t	raise	TypeError.

Note: 	 In	 order	 to	 stop	 comparison	 from	 falling	 back	 to	 the
default	 scheme	 of	 comparing	 object	 addresses,	 datetime
comparison	normally	raises	TypeError	if	the	other	comparand
isn’t	 also	 a	 datetime	 object.	 However,	 NotImplemented	 is
returned	 instead	 if	 the	 other	 comparand	 has	 a	 timetuple()
attribute.	This	hook	gives	other	kinds	of	date	objects	a	chance	at
implementing	mixed-type	comparison.	If	not,	when	a	datetime
object	is	compared	to	an	object	of	a	different	type,	TypeError
is	 raised	unless	 the	comparison	 is	 ==	or	!=.	 The	 latter	 cases
return	False	or	True,	respectively.

datetime	 objects	 can	 be	 used	 as	 dictionary	 keys.	 In	 Boolean
contexts,	all	datetime	objects	are	considered	to	be	true.

Instance	methods:

datetime.date()
Return	date	object	with	same	year,	month	and	day.

datetime.time()
Return	 time	 object	 with	 same	 hour,	 minute,	 second	 and
microsecond.	tzinfo	is	None.	See	also	method	timetz().

datetime.timetz()
Return	time	object	with	same	hour,	minute,	second,	microsecond,
and	tzinfo	attributes.	See	also	method	time().

datetime.replace([year[,	month[,	day[,	hour[,	minute[,	second[,
microsecond[,	tzinfo]]]]]]]])

Return	 a	 datetime	 with	 the	 same	 attributes,	 except	 for	 those
attributes	given	new	values	by	whichever	keyword	arguments	are
specified.	Note	 that	 tzinfo=None	 can	 be	 specified	 to	 create	 a
naive	datetime	from	an	aware	datetime	with	no	conversion	of	date
and	time	data.

datetime.astimezone(tz=None)
Return	a	datetime	object	with	new	tzinfo	attribute	tz,	adjusting
the	date	and	time	data	so	the	result	is	the	same	UTC	time	as	self,
but	in	tz‘s	local	time.

If	provided,	tz	must	be	an	instance	of	a	tzinfo	subclass,	and	 its
utcoffset()	 and	 dst()	 methods	 must	 not	 return	 None.	 self
must	 be	 aware	 (self.tzinfo	 must	 not	 be	 None,	 and
self.utcoffset()	must	not	return	None).

If	 called	 without	 arguments	 (or	 with	 tz=None)	 the	 system	 local
timezone	 is	 assumed.	 The	 tzinfo	 attribute	 of	 the	 converted
datetime	instance	will	be	set	to	an	instance	of	timezone	with	the
zone	name	and	offset	obtained	from	the	OS.

If	 self.tzinfo	 is	 tz,	 self.astimezone(tz)	 is	 equal	 to	self:
no	adjustment	of	date	or	time	data	is	performed.	Else	the	result	is
local	time	in	time	zone	tz,	representing	the	same	UTC	time	as	self:
after	 astz	 =	 dt.astimezone(tz),	 astz	 -

astz.utcoffset()	 will	 usually	 have	 the	 same	 date	 and	 time
data	 as	 dt	 -	 dt.utcoffset().	 The	 discussion	 of	 class
tzinfo	 explains	 the	 cases	 at	 Daylight	 Saving	 Time	 transition

boundaries	 where	 this	 cannot	 be	 achieved	 (an	 issue	 only	 if	 tz
models	both	standard	and	daylight	time).

If	you	merely	want	to	attach	a	time	zone	object	tz	to	a	datetime	dt
without	 adjustment	 of	 date	 and	 time	 data,	 use
dt.replace(tzinfo=tz).	 If	 you	 merely	 want	 to	 remove	 the
time	zone	object	 from	an	aware	datetime	dt	without	conversion	of
date	and	time	data,	use	dt.replace(tzinfo=None).

Note	 that	 the	 default	 tzinfo.fromutc()	 method	 can	 be
overridden	 in	 a	 tzinfo	 subclass	 to	 affect	 the	 result	 returned	 by
astimezone().	Ignoring	error	cases,	astimezone()	acts	like:

def	astimezone(self,	tz):

				if	self.tzinfo	is	tz:

								return	self

				#	Convert	self	to	UTC,	and	attach	the	new	time	zone	object.

				utc	=	(self	-	self.utcoffset()).replace(tzinfo

				#	Convert	from	UTC	to	tz's	local	time.

				return	tz.fromutc(utc)

Changed	in	version	3.3:	tz	now	can	be	omitted.

datetime.utcoffset()
If	 tzinfo	 is	 None,	 returns	 None,	 else	 returns
self.tzinfo.utcoffset(self),	 and	 raises	 an	 exception	 if
the	 latter	 doesn’t	 return	 None,	 or	 a	 timedelta	 object
representing	a	whole	number	of	minutes	with	magnitude	less	than
one	day.

datetime.dst()
If	 tzinfo	 is	 None,	 returns	 None,	 else	 returns

self.tzinfo.dst(self),	 and	 raises	 an	 exception	 if	 the	 latter
doesn’t	return	None,	or	a	timedelta	object	representing	a	whole
number	of	minutes	with	magnitude	less	than	one	day.

datetime.tzname()
If	 tzinfo	 is	 None,	 returns	 None,	 else	 returns
self.tzinfo.tzname(self),	 raises	 an	 exception	 if	 the	 latter
doesn’t	return	None	or	a	string	object,

datetime.timetuple()
Return	 a	 time.struct_time	 such	 as	 returned	 by
time.localtime().	 d.timetuple()	 is	 equivalent	 to
time.struct_time((d.year,	d.month,	d.day,	d.hour,

d.minute,	d.second,	d.weekday(),	yday,	dst)),	where
yday	 =	 d.toordinal()	 -	 date(d.year,	 1,

1).toordinal()	+	1	is	the	day	number	within	the	current	year
starting	with	1	for	January	1st.	The	tm_isdst	flag	of	the	result	is
set	 according	 to	 the	 dst()	method:	 tzinfo	 is	 None	 or	 dst()
returns	None,	tm_isdst	is	set	to	-1;	else	if	dst()	returns	a	non-
zero	value,	tm_isdst	is	set	to	1;	else	tm_isdst	is	set	to	0.

datetime.utctimetuple()
If	 datetime	 instance	 d	 is	 naive,	 this	 is	 the	 same	 as
d.timetuple()	except	that	tm_isdst	 is	forced	to	0	regardless
of	what	d.dst()	returns.	DST	is	never	in	effect	for	a	UTC	time.

If	 d	 is	 aware,	 d	 is	 normalized	 to	 UTC	 time,	 by	 subtracting
d.utcoffset(),	and	a	time.struct_time	 for	 the	normalized
time	 is	 returned.	 tm_isdst	 is	 forced	 to	 0.	 Note	 that	 an
OverflowError	 may	 be	 raised	 if	 d.year	 was	 MINYEAR	 or
MAXYEAR	and	UTC	adjustment	spills	over	a	year	boundary.

datetime.toordinal()
Return	 the	 proleptic	 Gregorian	 ordinal	 of	 the	 date.	 The	 same	 as
self.date().toordinal().

datetime.timestamp()
Return	 POSIX	 timestamp	 corresponding	 to	 the	 datetime

instance.	The	 return	value	 is	a	float	 similar	 to	 that	 returned	by
time.time().

Naive	 datetime	 instances	 are	 assumed	 to	 represent	 local	 time
and	 this	 method	 relies	 on	 the	 platform	 C	 mktime()	 function	 to
perform	the	conversion.	Since	datetime	supports	wider	range	of
values	than	mktime()	on	many	platforms,	this	method	may	raise
OverflowError	for	times	far	in	the	past	or	far	in	the	future.

For	aware	datetime	instances,	the	return	value	is	computed	as:

(dt	-	datetime(1970,	1,	1,	tzinfo=timezone.utc)).total_seconds

New	in	version	3.3.

Note: 	 There	 is	 no	 method	 to	 obtain	 the	 POSIX	 timestamp
directly	from	a	naive	datetime	instance	representing	UTC	time.
If	 your	 application	 uses	 this	 convention	 and	 your	 system
timezone	is	not	set	to	UTC,	you	can	obtain	the	POSIX	timestamp
by	supplying	tzinfo=timezone.utc:

timestamp	=	dt.replace(tzinfo=timezone.utc).timestamp

or	by	calculating	the	timestamp	directly:

timestamp	=	(dt	-	datetime(1970,	1,	1))	/	timedelta

datetime.weekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	0	and
Sunday	 is	6.	The	same	as	self.date().weekday().	See	also
isoweekday().

datetime.isoweekday()
Return	the	day	of	the	week	as	an	integer,	where	Monday	is	1	and
Sunday	 is	 7.	 The	 same	 as	 self.date().isoweekday().	 See
also	weekday(),	isocalendar().

datetime.isocalendar()
Return	a	3-tuple,	(ISO	year,	ISO	week	number,	ISO	weekday).	The
same	as	self.date().isocalendar().

datetime.isoformat(sep='T')
Return	a	string	representing	the	date	and	time	in	ISO	8601	format,
YYYY-MM-DDTHH:MM:SS.mmmmmm	 or,	 if	 microsecond	 is	 0,
YYYY-MM-DDTHH:MM:SS

If	 utcoffset()	 does	 not	 return	 None,	 a	 6-character	 string	 is
appended,	 giving	 the	 UTC	 offset	 in	 (signed)	 hours	 and	 minutes:
YYYY-MM-DDTHH:MM:SS.mmmmmm+HH:MM	 or,	 if
microsecond	is	0	YYYY-MM-DDTHH:MM:SS+HH:MM

The	 optional	 argument	 sep	 (default	 'T')	 is	 a	 one-character
separator,	placed	between	the	date	and	time	portions	of	the	result.
For	example,

>>>	from	datetime	import	tzinfo,	timedelta,	datetime

>>>	class	TZ(tzinfo):

...					def	utcoffset(self,	dt):	return	timedelta(

...

>>>	datetime(2002,	12,	25,	tzinfo=TZ()).isoformat(

'2002-12-25	00:00:00-06:39'

datetime.__str__()
For	 a	 datetime	 instance	 d,	 str(d)	 is	 equivalent	 to
d.isoformat('	').

datetime.ctime()
Return	 a	 string	 representing	 the	 date	 and	 time,	 for	 example
datetime(2002,	12,	4,	20,	30,	40).ctime()	==	'Wed

Dec	 	 4	 20:30:40	 2002'.	 d.ctime()	 is	 equivalent	 to
time.ctime(time.mktime(d.timetuple()))	 on	 platforms
where	 the	 native	 C	 ctime()	 function	 (which	 time.ctime()
invokes,	 but	 which	 datetime.ctime()	 does	 not	 invoke)
conforms	to	the	C	standard.

datetime.strftime(format)
Return	 a	 string	 representing	 the	 date	 and	 time,	 controlled	 by	 an
explicit	 format	 string.	 For	 a	 complete	 list	 of	 formatting	 directives,
see	strftime()	and	strptime()	Behavior.

datetime.__format__(format)
Same	 as	 datetime.strftime().	 This	 makes	 it	 possible	 to
specify	 format	 string	 for	 a	 datetime	 object	 when	 using
str.format().	 For	 a	 complete	 list	 of	 formatting	 directives,	 see
strftime()	and	strptime()	Behavior.

Examples	of	working	with	datetime	objects:

>>>	from	datetime	import	datetime,	date,	time

>>>	#	Using	datetime.combine()

>>>	d	=	date(2005,	7,	14)

>>>	t	=	time(12,	30)

>>>	datetime.combine(d,	t)

datetime.datetime(2005,	7,	14,	12,	30)

>>>	#	Using	datetime.now()	or	datetime.utcnow()

>>>	datetime.now()			

datetime.datetime(2007,	12,	6,	16,	29,	43,	79043)			#	GMT	+1

>>>	datetime.utcnow()			

datetime.datetime(2007,	12,	6,	15,	29,	43,	79060)

>>>	#	Using	datetime.strptime()

>>>	dt	=	datetime.strptime("21/11/06	16:30",	"%d/%m/%y	%H:%M"

>>>	dt

datetime.datetime(2006,	11,	21,	16,	30)

>>>	#	Using	datetime.timetuple()	to	get	tuple	of	all	attributes

>>>	tt	=	dt.timetuple()

>>>	for	it	in	tt:			

...					print(it)

...

2006				#	year

11						#	month

21						#	day

16						#	hour

30						#	minute

0							#	second

1							#	weekday	(0	=	Monday)

325					#	number	of	days	since	1st	January

-1						#	dst	-	method	tzinfo.dst()	returned	None

>>>	#	Date	in	ISO	format

>>>	ic	=	dt.isocalendar()

>>>	for	it	in	ic:			

...					print(it)

...

2006				#	ISO	year

47						#	ISO	week

2							#	ISO	weekday

>>>	#	Formatting	datetime

>>>	dt.strftime("%A,	%d.	%B	%Y	%I:%M%p")

'Tuesday,	21.	November	2006	04:30PM'

>>>	'The	{1}	is	{0:%d},	the	{2}	is	{0:%B},	the	{3}	is	{0:%I:%M%p}.'

'The	day	is	21,	the	month	is	November,	the	time	is	04:30PM.'

Using	datetime	with	tzinfo:

>>>	from	datetime	import	timedelta,	datetime,	tzinfo

>>>	class	GMT1(tzinfo):

...					def	utcoffset(self,	dt):

...									return	timedelta(hours=1)	+	self.dst(dt)

...					def	dst(self,	dt):

...									#	DST	starts	last	Sunday	in	March

...									d	=	datetime(dt.year,	4,	1)			#	ends	last	Sunday	in	October

...									self.dston	=	d	-	timedelta(days=d.weekday

...									d	=	datetime(dt.year,	11,	1)

...									self.dstoff	=	d	-	timedelta(days=d.weekday

...									if	self.dston	<=		dt.replace(tzinfo=None

...													return	timedelta(hours=1)

...									else:

...													return	timedelta(0)

...					def	tzname(self,dt):

...										return	"GMT	+1"

...

>>>	class	GMT2(tzinfo):

...					def	utcoffset(self,	dt):

...									return	timedelta(hours=2)	+	self.dst(dt)

...					def	dst(self,	dt):

...									d	=	datetime(dt.year,	4,	1)

...									self.dston	=	d	-	timedelta(days=d.weekday

...									d	=	datetime(dt.year,	11,	1)

...									self.dstoff	=	d	-	timedelta(days=d.weekday

...									if	self.dston	<=		dt.replace(tzinfo=None

...													return	timedelta(hours=1)

...									else:

...													return	timedelta(0)

...					def	tzname(self,dt):

...									return	"GMT	+2"

...

>>>	gmt1	=	GMT1()

>>>	#	Daylight	Saving	Time

>>>	dt1	=	datetime(2006,	11,	21,	16,	30,	tzinfo=gmt1

>>>	dt1.dst()

datetime.timedelta(0)

>>>	dt1.utcoffset()

datetime.timedelta(0,	3600)

>>>	dt2	=	datetime(2006,	6,	14,	13,	0,	tzinfo=gmt1)

>>>	dt2.dst()

datetime.timedelta(0,	3600)

>>>	dt2.utcoffset()

datetime.timedelta(0,	7200)

>>>	#	Convert	datetime	to	another	time	zone

>>>	dt3	=	dt2.astimezone(GMT2())

>>>	dt3					

datetime.datetime(2006,	6,	14,	14,	0,	tzinfo=<GMT2	object	at	0x...>)

>>>	dt2					

datetime.datetime(2006,	6,	14,	13,	0,	tzinfo=<GMT1	object	at	0x...>)

>>>	dt2.utctimetuple()	==	dt3.utctimetuple()

True

8.1.5.	time	Objects

A	 time	 object	 represents	 a	 (local)	 time	 of	 day,	 independent	 of	 any
particular	day,	and	subject	to	adjustment	via	a	tzinfo	object.

class	datetime.time(hour=0,	minute=0,	second=0,
microsecond=0,	tzinfo=None)

All	arguments	are	optional.	tzinfo	may	be	None,	or	an	instance	of	a
tzinfo	 subclass.	 The	 remaining	 arguments	may	 be	 integers,	 in
the	following	ranges:

0	<=	hour	<	24

0	<=	minute	<	60

0	<=	second	<	60

0	<=	microsecond	<	1000000.

If	 an	 argument	 outside	 those	 ranges	 is	 given,	 ValueError	 is
raised.	All	default	to	0	except	tzinfo,	which	defaults	to	None.

Class	attributes:

time.min

The	earliest	representable	time,	time(0,	0,	0,	0).

time.max

The	latest	representable	time,	time(23,	59,	59,	999999).

time.resolution

The	smallest	possible	difference	between	non-equal	time	objects,
timedelta(microseconds=1),	although	note	that	arithmetic	on
time	objects	is	not	supported.

Instance	attributes	(read-only):

time.hour

In	range(24).

time.minute

In	range(60).

time.second

In	range(60).

time.microsecond

In	range(1000000).

time.tzinfo

The	object	passed	as	the	tzinfo	argument	to	the	time	constructor,
or	None	if	none	was	passed.

Supported	operations:

comparison	of	time	to	time,	where	a	 is	considered	 less	 than	b
when	a	 precedes	b	 in	 time.	 If	 one	 comparand	 is	 naive	 and	 the
other	 is	 aware,	 TypeError	 is	 raised	 if	 an	 order	 comparison	 is
attempted.	 For	 equality	 comparisons,	 naive	 instances	 are	 never
equal	to	aware	instances.

If	 both	 comparands	 are	 aware,	 and	 have	 the	 same	 tzinfo
attribute,	 the	common	tzinfo	attribute	 is	 ignored	and	 the	base
times	 are	 compared.	 If	 both	 comparands	 are	 aware	 and	 have
different	tzinfo	attributes,	the	comparands	are	first	adjusted	by
subtracting	 their	 UTC	 offsets	 (obtained	 from
self.utcoffset()).	 In	 order	 to	 stop	mixed-type	 comparisons
from	 falling	 back	 to	 the	 default	 comparison	 by	 object	 address,

when	a	time	object	is	compared	to	an	object	of	a	different	type,
TypeError	 is	 raised	 unless	 the	 comparison	 is	 ==	 or	 !=.	 The
latter	cases	return	False	or	True,	respectively.

Changed	in	version	3.3:	Equality	comparisons	between	naive	and
aware	time	instances	don’t	raise	TypeError.

hash,	use	as	dict	key

efficient	pickling

in	Boolean	contexts,	a	time	object	is	considered	to	be	true	if	and
only	 if,	 after	 converting	 it	 to	 minutes	 and	 subtracting
utcoffset()	(or	0	if	that’s	None),	the	result	is	non-zero.

Instance	methods:

time.replace([hour[,	minute[,	second[,	microsecond[,	tzinfo]]]]])
Return	 a	 time	 with	 the	 same	 value,	 except	 for	 those	 attributes
given	new	values	by	whichever	keyword	arguments	are	specified.
Note	that	tzinfo=None	can	be	specified	to	create	a	naive	time
from	an	aware	time,	without	conversion	of	the	time	data.

time.isoformat()
Return	 a	 string	 representing	 the	 time	 in	 ISO	 8601	 format,
HH:MM:SS.mmmmmm	 or,	 if	 self.microsecond	 is	 0,	 HH:MM:SS	 If
utcoffset()	 does	 not	 return	 None,	 a	 6-character	 string	 is
appended,	 giving	 the	 UTC	 offset	 in	 (signed)	 hours	 and	 minutes:
HH:MM:SS.mmmmmm+HH:MM	 or,	 if	 self.microsecond	 is	 0,
HH:MM:SS+HH:MM

time.__str__()
For	a	time	t,	str(t)	is	equivalent	to	t.isoformat().

time.strftime(format)
Return	 a	 string	 representing	 the	 time,	 controlled	 by	 an	 explicit
format	 string.	 For	 a	 complete	 list	 of	 formatting	 directives,	 see
strftime()	and	strptime()	Behavior.

time.__format__(format)
Same	 as	 time.strftime().	 This	 makes	 it	 possible	 to	 specify
format	string	for	a	time	object	when	using	str.format().	For	a
complete	 list	 of	 formatting	directives,	 see	strftime()	and	strptime()
Behavior.

time.utcoffset()
If	 tzinfo	 is	 None,	 returns	 None,	 else	 returns
self.tzinfo.utcoffset(None),	 and	 raises	 an	 exception	 if
the	latter	doesn’t	return	None	or	a	timedelta	object	representing
a	whole	number	of	minutes	with	magnitude	less	than	one	day.

time.dst()
If	 tzinfo	 is	 None,	 returns	 None,	 else	 returns
self.tzinfo.dst(None),	 and	 raises	 an	 exception	 if	 the	 latter
doesn’t	return	None,	or	a	timedelta	object	representing	a	whole
number	of	minutes	with	magnitude	less	than	one	day.

time.tzname()
If	 tzinfo	 is	 None,	 returns	 None,	 else	 returns
self.tzinfo.tzname(None),	or	raises	an	exception	if	the	latter
doesn’t	return	None	or	a	string	object.

Example:

>>>	from	datetime	import	time,	tzinfo

>>>	class	GMT1(tzinfo):

...					def	utcoffset(self,	dt):

...									return	timedelta(hours=1)

...					def	dst(self,	dt):

...									return	timedelta(0)

...					def	tzname(self,dt):

...									return	"Europe/Prague"

...

>>>	t	=	time(12,	10,	30,	tzinfo=GMT1())

>>>	t																															

datetime.time(12,	10,	30,	tzinfo=<GMT1	object	at	0x...>)

>>>	gmt	=	GMT1()

>>>	t.isoformat()

'12:10:30+01:00'

>>>	t.dst()

datetime.timedelta(0)

>>>	t.tzname()

'Europe/Prague'

>>>	t.strftime("%H:%M:%S	%Z")

'12:10:30	Europe/Prague'

>>>	'The	{}	is	{:%H:%M}.'.format("time",	t)

'The	time	is	12:10.'

8.1.6.	tzinfo	Objects

tzinfo	is	an	abstract	base	class,	meaning	that	this	class	should	not
be	 instantiated	directly.	You	need	 to	derive	a	concrete	subclass,	and
(at	 least)	 supply	 implementations	 of	 the	 standard	 tzinfo	 methods
needed	by	the	datetime	methods	you	use.	The	datetime	module
supplies	a	simple	concrete	subclass	of	tzinfo	timezone	which	can
represent	timezones	with	fixed	offset	from	UTC	such	as	UTC	itself	or
North	American	EST	and	EDT.

An	instance	of	(a	concrete	subclass	of)	tzinfo	can	be	passed	to	the
constructors	for	datetime	and	time	objects.	The	latter	objects	view
their	attributes	as	being	in	local	time,	and	the	tzinfo	object	supports
methods	revealing	offset	of	local	time	from	UTC,	the	name	of	the	time
zone,	 and	DST	offset,	 all	 relative	 to	 a	 date	 or	 time	object	 passed	 to
them.

Special	 requirement	 for	 pickling:	 A	 tzinfo	 subclass	 must	 have	 an
__init__()	 method	 that	 can	 be	 called	 with	 no	 arguments,	 else	 it
can	 be	 pickled	 but	 possibly	 not	 unpickled	 again.	 This	 is	 a	 technical
requirement	that	may	be	relaxed	in	the	future.

A	concrete	subclass	of	tzinfo	may	need	to	implement	the	following
methods.	 Exactly	 which	 methods	 are	 needed	 depends	 on	 the	 uses
made	of	aware	datetime	objects.	If	in	doubt,	simply	implement	all	of
them.

tzinfo.utcoffset(dt)
Return	 offset	 of	 local	 time	 from	UTC,	 in	minutes	 east	 of	 UTC.	 If
local	time	is	west	of	UTC,	this	should	be	negative.	Note	that	this	is
intended	to	be	the	total	offset	from	UTC;	for	example,	if	a	tzinfo

object	 represents	 both	 time	 zone	 and	 DST	 adjustments,
utcoffset()	 should	 return	 their	 sum.	 If	 the	 UTC	 offset	 isn’t
known,	 return	 None.	 Else	 the	 value	 returned	 must	 be	 a
timedelta	 object	 specifying	 a	 whole	 number	 of	 minutes	 in	 the
range	-1439	to	1439	inclusive	(1440	=	24*60;	the	magnitude	of	the
offset	 must	 be	 less	 than	 one	 day).	 Most	 implementations	 of
utcoffset()	will	probably	look	like	one	of	these	two:

return	CONSTANT																	#	fixed-offset	class

return	CONSTANT	+	self.dst(dt)		#	daylight-aware	class

If	utcoffset()	does	not	 return	None,	dst()	 should	not	 return
None	either.

The	 default	 implementation	 of	 utcoffset()	 raises
NotImplementedError.

tzinfo.dst(dt)
Return	the	daylight	saving	time	(DST)	adjustment,	in	minutes	east
of	 UTC,	 or	 None	 if	 DST	 information	 isn’t	 known.	 Return
timedelta(0)	if	DST	is	not	in	effect.	If	DST	is	in	effect,	return	the
offset	 as	 a	 timedelta	 object	 (see	 utcoffset()	 for	 details).
Note	that	DST	offset,	 if	applicable,	has	already	been	added	to	the
UTC	 offset	 returned	 by	 utcoffset(),	 so	 there’s	 no	 need	 to
consult	 dst()	 unless	 you’re	 interested	 in	 obtaining	 DST	 info
separately.	 For	 example,	 datetime.timetuple()	 calls	 its
tzinfo	 attribute’s	 dst()	 method	 to	 determine	 how	 the
tm_isdst	 flag	 should	 be	 set,	 and	 tzinfo.fromutc()	 calls
dst()	to	account	for	DST	changes	when	crossing	time	zones.

An	 instance	 tz	 of	 a	 tzinfo	 subclass	 that	models	 both	 standard

and	daylight	times	must	be	consistent	in	this	sense:

tz.utcoffset(dt)	-	tz.dst(dt)

must	 return	 the	 same	 result	 for	 every	 datetime	 dt	 with
dt.tzinfo	==	tz	For	sane	tzinfo	subclasses,	this	expression
yields	 the	 time	zone’s	 “standard	offset”,	which	should	not	depend
on	 the	 date	 or	 the	 time,	 but	 only	 on	 geographic	 location.	 The
implementation	 of	 datetime.astimezone()	 relies	 on	 this,	 but
cannot	 detect	 violations;	 it’s	 the	 programmer’s	 responsibility	 to
ensure	 it.	 If	a	tzinfo	 subclass	cannot	guarantee	 this,	 it	may	be
able	 to	 override	 the	 default	 implementation	 of
tzinfo.fromutc()	 to	 work	 correctly	 with	 astimezone()

regardless.

Most	implementations	of	dst()	will	probably	look	like	one	of	these
two:

def	dst(self,	dt):

				#	a	fixed-offset	class:		doesn't	account	for	DST

				return	timedelta(0)

or

def	dst(self,	dt):

				#	Code	to	set	dston	and	dstoff	to	the	time	zone's	DST

				#	transition	times	based	on	the	input	dt.year,	and	expressed

				#	in	standard	local	time.		Then

				if	dston	<=	dt.replace(tzinfo=None)	<	dstoff:

								return	timedelta(hours=1)

				else:

								return	timedelta(0)

The	 default	 implementation	 of	 dst()	 raises
NotImplementedError.

tzinfo.tzname(dt)
Return	the	time	zone	name	corresponding	to	the	datetime	object
dt,	 as	 a	 string.	 Nothing	 about	 string	 names	 is	 defined	 by	 the
datetime	 module,	 and	 there’s	 no	 requirement	 that	 it	 mean
anything	 in	particular.	For	example,	“GMT”,	“UTC”,	“-500”,	 “-5:00”,
“EDT”,	 “US/Eastern”,	 “America/New	 York”	 are	 all	 valid	 replies.
Return	 None	 if	 a	 string	 name	 isn’t	 known.	 Note	 that	 this	 is	 a
method	rather	than	a	fixed	string	primarily	because	some	tzinfo
subclasses	 will	 wish	 to	 return	 different	 names	 depending	 on	 the
specific	 value	 of	 dt	 passed,	 especially	 if	 the	 tzinfo	 class	 is
accounting	for	daylight	time.

The	 default	 implementation	 of	 tzname()	 raises
NotImplementedError.

These	 methods	 are	 called	 by	 a	 datetime	 or	 time	 object,	 in
response	 to	 their	methods	 of	 the	 same	 names.	 A	 datetime	 object
passes	itself	as	the	argument,	and	a	time	object	passes	None	as	the
argument.	 A	 tzinfo	 subclass’s	 methods	 should	 therefore	 be
prepared	to	accept	a	dt	argument	of	None,	or	of	class	datetime.

When	None	is	passed,	it’s	up	to	the	class	designer	to	decide	the	best
response.	 For	 example,	 returning	 None	 is	 appropriate	 if	 the	 class
wishes	 to	 say	 that	 time	 objects	 don’t	 participate	 in	 the	 tzinfo
protocols.	It	may	be	more	useful	for	utcoffset(None)	to	return	the
standard	UTC	offset,	 as	 there	 is	no	other	 convention	 for	 discovering
the	standard	offset.

When	 a	 datetime	 object	 is	 passed	 in	 response	 to	 a	 datetime

method,	dt.tzinfo	is	the	same	object	as	self.	tzinfo	methods	can
rely	 on	 this,	 unless	 user	 code	 calls	 tzinfo	 methods	 directly.	 The
intent	 is	 that	 the	tzinfo	methods	 interpret	dt	as	being	 in	 local	 time,
and	not	need	worry	about	objects	in	other	timezones.

There	 is	 one	 more	 tzinfo	 method	 that	 a	 subclass	 may	 wish	 to
override:

tzinfo.fromutc(dt)
This	 is	 called	 from	 the	 default	 datetime.astimezone()

implementation.	 When	 called	 from	 that,	 dt.tzinfo	 is	 self,	 and
dt‘s	date	and	time	data	are	to	be	viewed	as	expressing	a	UTC	time.
The	 purpose	 of	 fromutc()	 is	 to	 adjust	 the	 date	 and	 time	 data,
returning	an	equivalent	datetime	in	self‘s	local	time.

Most	 tzinfo	 subclasses	 should	 be	 able	 to	 inherit	 the	 default
fromutc()	 implementation	without	 problems.	 It’s	 strong	 enough
to	 handle	 fixed-offset	 time	 zones,	 and	 time	 zones	 accounting	 for
both	 standard	 and	 daylight	 time,	 and	 the	 latter	 even	 if	 the	 DST
transition	times	differ	in	different	years.	An	example	of	a	time	zone
the	default	fromutc()	implementation	may	not	handle	correctly	in
all	cases	is	one	where	the	standard	offset	(from	UTC)	depends	on
the	specific	date	and	 time	passed,	which	can	happen	 for	political
reasons.	 The	 default	 implementations	 of	 astimezone()	 and
fromutc()	may	 not	 produce	 the	 result	 you	want	 if	 the	 result	 is
one	 of	 the	 hours	 straddling	 the	 moment	 the	 standard	 offset
changes.

Skipping	 code	 for	 error	 cases,	 the	 default	 fromutc()

implementation	acts	like:

def	fromutc(self,	dt):

				#	raise	ValueError	error	if	dt.tzinfo	is	not	self

				dtoff	=	dt.utcoffset()

				dtdst	=	dt.dst()

				#	raise	ValueError	if	dtoff	is	None	or	dtdst	is	None

				delta	=	dtoff	-	dtdst		#	this	is	self's	standard	offset

				if	delta:

								dt	+=	delta			#	convert	to	standard	local	time

								dtdst	=	dt.dst()

								#	raise	ValueError	if	dtdst	is	None

				if	dtdst:

								return	dt	+	dtdst

				else:

								return	dt

Example	tzinfo	classes:

from	datetime	import	tzinfo,	timedelta,	datetime

ZERO	=	timedelta(0)

HOUR	=	timedelta(hours=1)

#	A	UTC	class.

class	UTC(tzinfo):

				"""UTC"""

				def	utcoffset(self,	dt):

								return	ZERO

				def	tzname(self,	dt):

								return	"UTC"

				def	dst(self,	dt):

								return	ZERO

utc	=	UTC()

#	A	class	building	tzinfo	objects	for	fixed-offset	time	zones.

#	Note	that	FixedOffset(0,	"UTC")	is	a	different	way	to	build	a

#	UTC	tzinfo	object.

class	FixedOffset(tzinfo):

				"""Fixed	offset	in	minutes	east	from	UTC."""

				def	__init__(self,	offset,	name):

								self.__offset	=	timedelta(minutes=offset)

								self.__name	=	name

				def	utcoffset(self,	dt):

								return	self.__offset

				def	tzname(self,	dt):

								return	self.__name

				def	dst(self,	dt):

								return	ZERO

#	A	class	capturing	the	platform's	idea	of	local	time.

import	time	as	_time

STDOFFSET	=	timedelta(seconds	=	-_time.timezone)

if	_time.daylight:

				DSTOFFSET	=	timedelta(seconds	=	-_time.altzone)

else:

				DSTOFFSET	=	STDOFFSET

DSTDIFF	=	DSTOFFSET	-	STDOFFSET

class	LocalTimezone(tzinfo):

				def	utcoffset(self,	dt):

								if	self._isdst(dt):

												return	DSTOFFSET

								else:

												return	STDOFFSET

				def	dst(self,	dt):

								if	self._isdst(dt):

												return	DSTDIFF

								else:

												return	ZERO

				def	tzname(self,	dt):

								return	_time.tzname[self._isdst(dt)]

				def	_isdst(self,	dt):

								tt	=	(dt.year,	dt.month,	dt.day,

														dt.hour,	dt.minute,	dt.second,

														dt.weekday(),	0,	0)

								stamp	=	_time.mktime(tt)

								tt	=	_time.localtime(stamp)

								return	tt.tm_isdst	>	0

Local	=	LocalTimezone()

#	A	complete	implementation	of	current	DST	rules	for	major	US	time	zones.

def	first_sunday_on_or_after(dt):

				days_to_go	=	6	-	dt.weekday()

				if	days_to_go:

								dt	+=	timedelta(days_to_go)

				return	dt

#	US	DST	Rules

#

#	This	is	a	simplified	(i.e.,	wrong	for	a	few	cases)	set	of	rules	for	US

#	DST	start	and	end	times.	For	a	complete	and	up-to-date	set	of	DST	rules

#	and	timezone	definitions,	visit	the	Olson	Database	(or	try	pytz):

#	http://www.twinsun.com/tz/tz-link.htm

#	http://sourceforge.net/projects/pytz/	(might	not	be	up-to-date)

#

#	In	the	US,	since	2007,	DST	starts	at	2am	(standard	time)	on	the	second

#	Sunday	in	March,	which	is	the	first	Sunday	on	or	after	Mar	8.

DSTSTART_2007	=	datetime(1,	3,	8,	2)

#	and	ends	at	2am	(DST	time;	1am	standard	time)	on	the	first	Sunday	of	Nov.

DSTEND_2007	=	datetime(1,	11,	1,	1)

#	From	1987	to	2006,	DST	used	to	start	at	2am	(standard	time)	on	the	first

#	Sunday	in	April	and	to	end	at	2am	(DST	time;	1am	standard	time)	on	the	last

#	Sunday	of	October,	which	is	the	first	Sunday	on	or	after	Oct	25.

DSTSTART_1987_2006	=	datetime(1,	4,	1,	2)

DSTEND_1987_2006	=	datetime(1,	10,	25,	1)

#	From	1967	to	1986,	DST	used	to	start	at	2am	(standard	time)	on	the	last

#	Sunday	in	April	(the	one	on	or	after	April	24)	and	to	end	at	2am	(DST	time;

#	1am	standard	time)	on	the	last	Sunday	of	October,	which	is	the	first	Sunday

#	on	or	after	Oct	25.

DSTSTART_1967_1986	=	datetime(1,	4,	24,	2)

DSTEND_1967_1986	=	DSTEND_1987_2006

class	USTimeZone(tzinfo):

				def	__init__(self,	hours,	reprname,	stdname,	dstname

								self.stdoffset	=	timedelta(hours=hours)

								self.reprname	=	reprname

								self.stdname	=	stdname

								self.dstname	=	dstname

				def	__repr__(self):

								return	self.reprname

				def	tzname(self,	dt):

								if	self.dst(dt):

												return	self.dstname

								else:

												return	self.stdname

				def	utcoffset(self,	dt):

								return	self.stdoffset	+	self.dst(dt)

				def	dst(self,	dt):

								if	dt	is	None	or	dt.tzinfo	is	None:

												#	An	exception	may	be	sensible	here,	in	one	or	both	cases.

												#	It	depends	on	how	you	want	to	treat	them.		The	default

												#	fromutc()	implementation	(called	by	the	default	astimezone()

												#	implementation)	passes	a	datetime	with	dt.tzinfo	is	self.

												return	ZERO

								assert	dt.tzinfo	is	self

								#	Find	start	and	end	times	for	US	DST.	For	years	before	1967,	return

								#	ZERO	for	no	DST.

								if	2006	<	dt.year:

												dststart,	dstend	=	DSTSTART_2007,	DSTEND_2007

								elif	1986	<	dt.year	<	2007:

												dststart,	dstend	=	DSTSTART_1987_2006,	DSTEND_1987_2006

								elif	1966	<	dt.year	<	1987:

												dststart,	dstend	=	DSTSTART_1967_1986,	DSTEND_1967_1986

								else:

												return	ZERO

								start	=	first_sunday_on_or_after(dststart.replace

								end	=	first_sunday_on_or_after(dstend.replace

								#	Can't	compare	naive	to	aware	objects,	so	strip	the	timezone	from

								#	dt	first.

								if	start	<=	dt.replace(tzinfo=None)	<	end:

												return	HOUR

								else:

												return	ZERO

Eastern		=	USTimeZone(-5,	"Eastern",		"EST",	"EDT")

Central		=	USTimeZone(-6,	"Central",		"CST",	"CDT")

Mountain	=	USTimeZone(-7,	"Mountain",	"MST",	"MDT")

Pacific		=	USTimeZone(-8,	"Pacific",		"PST",	"PDT")

Note	that	there	are	unavoidable	subtleties	twice	per	year	in	a	tzinfo
subclass	accounting	 for	both	standard	and	daylight	 time,	at	 the	DST
transition	points.	For	concreteness,	consider	US	Eastern	(UTC	-0500),
where	EDT	begins	the	minute	after	1:59	(EST)	on	the	second	Sunday
in	March,	and	ends	the	minute	after	1:59	(EDT)	on	the	first	Sunday	in
November:

		UTC			3:MM		4:MM		5:MM		6:MM		7:MM		8:MM

		EST		22:MM	23:MM		0:MM		1:MM		2:MM		3:MM

		EDT		23:MM		0:MM		1:MM		2:MM		3:MM		4:MM

start		22:MM	23:MM		0:MM		1:MM		3:MM		4:MM

		end		23:MM		0:MM		1:MM		1:MM		2:MM		3:MM

When	DST	starts	(the	“start”	line),	the	local	wall	clock	leaps	from	1:59
to	3:00.	A	wall	 time	of	 the	 form	2:MM	doesn’t	 really	make	 sense	 on
that	day,	so	astimezone(Eastern)	won’t	deliver	a	result	with	hour
==	2	on	 the	day	DST	begins.	 In	order	 for	 astimezone()	 to	make
this	 guarantee,	 the	 tzinfo.dst()	 method	 must	 consider	 times	 in
the	“missing	hour”	(2:MM	for	Eastern)	to	be	in	daylight	time.

When	DST	ends	(the	“end”	 line),	 there’s	a	potentially	worse	problem:
there’s	an	hour	that	can’t	be	spelled	unambiguously	in	local	wall	time:
the	last	hour	of	daylight	time.	In	Eastern,	that’s	times	of	the	form	5:MM
UTC	on	 the	 day	 daylight	 time	 ends.	 The	 local	 wall	 clock	 leaps	 from
1:59	(daylight	time)	back	to	1:00	(standard	time)	again.	Local	times	of
the	 form	 1:MM	 are	 ambiguous.	 astimezone()	 mimics	 the	 local
clock’s	 behavior	 by	mapping	 two	adjacent	UTC	hours	 into	 the	 same
local	hour	then.	In	the	Eastern	example,	UTC	times	of	the	form	5:MM

and	6:MM	both	map	to	1:MM	when	converted	to	Eastern.	In	order	for
astimezone()	to	make	this	guarantee,	the	tzinfo.dst()	method
must	consider	times	in	the	“repeated	hour”	to	be	in	standard	time.	This
is	easily	arranged,	as	in	the	example,	by	expressing	DST	switch	times
in	the	time	zone’s	standard	local	time.

Applications	that	can’t	bear	such	ambiguities	should	avoid	using	hybrid
tzinfo	subclasses;	there	are	no	ambiguities	when	using	timezone,
or	 any	 other	 fixed-offset	 tzinfo	 subclass	 (such	 as	 a	 class
representing	only	EST	(fixed	offset	-5	hours),	or	only	EDT	(fixed	offset
-4	hours)).

See	also:

pytz
The	standard	 library	has	no	tzinfo	 instances	except	 for	UTC,
but	 there	 exists	 a	 third-party	 library	 which	 brings	 the	 IANA
timezone	 database	 (also	 known	 as	 the	 Olson	 database)	 to
Python:	pytz.

pytz	 contains	 up-to-date	 information	 and	 its	 usage	 is
recommended.

IANA	timezone	database
The	Time	Zone	Database	 (often	 called	 tz	 or	 zoneinfo)	 contains
code	and	data	 that	 represent	 the	history	 of	 local	 time	 for	many
representative	 locations	 around	 the	 globe.	 It	 is	 updated
periodically	 to	 reflect	 changes	made	 by	 political	 bodies	 to	 time
zone	boundaries,	UTC	offsets,	and	daylight-saving	rules.

http://pypi.python.org/pypi/pytz/
http://www.iana.org/time-zones

8.1.7.	timezone	Objects

The	timezone	class	is	a	subclass	of	tzinfo,	each	instance	of	which
represents	a	 timezone	defined	by	a	 fixed	offset	 from	UTC.	Note	 that
objects	of	this	class	cannot	be	used	to	represent	timezone	information
in	the	locations	where	different	offsets	are	used	in	different	days	of	the
year	or	where	historical	changes	have	been	made	to	civil	time.

class	datetime.timezone(offset[,	name])
The	 offset	 argument	 must	 be	 specified	 as	 a	 timedelta	 object
representing	 the	 difference	 between	 the	 local	 time	 and	 UTC.	 It
must	 be	 strictly	 between	 -timedelta(hours=24)	 and
timedelta(hours=24)	 and	 represent	 a	 whole	 number	 of
minutes,	otherwise	ValueError	is	raised.

The	name	argument	is	optional.	If	specified	it	must	be	a	string	that
is	 used	 as	 the	 value	 returned	 by	 the	 tzname(dt)	 method.
Otherwise,	tzname(dt)	 returns	a	 string	 ‘UTCsHH:MM’,	where	 s
is	the	sign	of	offset,	HH	and	MM	are	two	digits	of	offset.hours
and	offset.minutes	respectively.

timezone.utcoffset(dt)
Return	 the	 fixed	 value	 specified	when	 the	 timezone	 instance	 is
constructed.	 The	 dt	 argument	 is	 ignored.	 The	 return	 value	 is	 a
timedelta	 instance	 equal	 to	 the	 difference	 between	 the	 local
time	and	UTC.

timezone.tzname(dt)
Return	 the	 fixed	 value	 specified	when	 the	 timezone	 instance	 is
constructed	or	a	string	‘UTCsHH:MM’,	where	s	is	the	sign	of	offset,

HH	 and	 MM	 are	 two	 digits	 of	 offset.hours	 and
offset.minutes	respectively.

timezone.dst(dt)
Always	returns	None.

timezone.fromutc(dt)
Return	 dt	 +	 offset.	 The	 dt	 argument	 must	 be	 an	 aware
datetime	instance,	with	tzinfo	set	to	self.

Class	attributes:

timezone.utc

The	UTC	timezone,	timezone(timedelta(0)).

8.1.8.	strftime()	and	strptime()
Behavior

date,	 datetime,	 and	 time	 objects	 all	 support	 a
strftime(format)	method,	to	create	a	string	representing	the	time
under	 the	 control	 of	 an	 explicit	 format	 string.	 Broadly	 speaking,
d.strftime(fmt)	 acts	 like	 the	 time	 module’s
time.strftime(fmt,	d.timetuple())	 although	 not	 all	 objects
support	a	timetuple()	method.

Conversely,	 the	 datetime.strptime()	 class	 method	 creates	 a
datetime	 object	 from	 a	 string	 representing	 a	 date	 and	 time	 and	 a
corresponding	 format	 string.	 datetime.strptime(date_string,
format)	 is	 equivalent	 to	 datetime(*

(time.strptime(date_string,	format)[0:6])).

For	time	objects,	 the	 format	codes	 for	year,	month,	and	day	should
not	 be	 used,	 as	 time	 objects	 have	 no	 such	 values.	 If	 they’re	 used
anyway,	1900	is	substituted	for	the	year,	and	1	for	the	month	and	day.

For	date	objects,	the	format	codes	for	hours,	minutes,	seconds,	and
microseconds	 should	 not	 be	 used,	 as	 date	 objects	 have	 no	 such
values.	If	they’re	used	anyway,	0	is	substituted	for	them.

The	 full	 set	 of	 format	 codes	 supported	 varies	 across	 platforms,
because	Python	 calls	 the	 platform	C	 library’s	 strftime()	 function,
and	 platform	 variations	 are	 common.	 To	 see	 the	 full	 set	 of	 format
codes	 supported	 on	 your	 platform,	 consult	 the	 strftime(3)
documentation.

The	following	is	a	list	of	all	the	format	codes	that	the	C	standard	(1989

version)	 requires,	and	 these	work	on	all	 platforms	with	a	standard	C
implementation.	Note	 that	 the	1999	version	of	 the	C	standard	added
additional	format	codes.

Directive Meaning Example Notes

%a
Weekday	as	locale’s
abbreviated	name.

Sun,	Mon,	...,	Sat
(en_US);
So,	Mo,	...,	Sa
(de_DE)

(1)

%A
Weekday	as	locale’s	full
name.

Sunday,	Monday,
...,	Saturday
(en_US);
Sonntag,	Montag,
...,	Samstag
(de_DE)

(1)

%w

Weekday	as	a	decimal
number,	where	0	is
Sunday	and	6	is
Saturday.

0,	1,	...,	6 	

%d

Day	of	the	month	as	a
zero-padded	decimal
number.

01,	02,	...,	31 	

%b
Month	as	locale’s
abbreviated	name.

Jan,	Feb,	...,	Dec
(en_US);
Jan,	Feb,	...,	Dez
(de_DE)

(1)

%B
Month	as	locale’s	full
name.

January,	February,
...,	December
(en_US);
Januar,	Februar,
...,	Dezember
(de_DE)

(1)

%m Month	as	a	zero-padded
decimal	number.

01,	02,	...,	12 	

%y

Year	without	century	as	a
zero-padded	decimal
number.

00,	01,	...,	99 	

%Y
Year	with	century	as	a
decimal	number.

0001,	0002,	...,
2013,	2014,	...,
9998,	9999

(2)

%H

Hour	(24-hour	clock)	as	a
zero-padded	decimal
number.

00,	01,	...,	23 	

%I

Hour	(12-hour	clock)	as	a
zero-padded	decimal
number.

01,	02,	...,	12 	

%p
Locale’s	equivalent	of
either	AM	or	PM.

AM,	PM	(en_US);
am,	pm	(de_DE)

(1),
(3)

%M
Minute	as	a	zero-padded
decimal	number. 00,	01,	...,	59 	

%S
Second	as	a	zero-padded
decimal	number. 00,	01,	...,	59 (4)

%f

Microsecond	as	a
decimal	number,	zero-
padded	on	the	left.

000000,	000001,
...,	999999 (5)

%z

UTC	offset	in	the	form
+HHMM	or	-HHMM
(empty	string	if	the	the
object	is	naive).

(empty),	+0000,
-0400,	+1030 (6)

%Z

Time	zone	name	(empty
string	if	the	object	is
naive).

(empty),	UTC,
EST,	CST 	

%j
Day	of	the	year	as	a	zero-
padded	decimal	number. 001,	002,	...,	366 	

Week	number	of	the	year
(Sunday	as	the	first	day

%U

of	the	week)	as	a	zero
padded	decimal	number.
All	days	in	a	new	year
preceding	the	first
Sunday	are	considered	to
be	in	week	0.

00,	01,	...,	53 (7)

%W

Week	number	of	the	year
(Monday	as	the	first	day
of	the	week)	as	a	decimal
number.	All	days	in	a	new
year	preceding	the	first
Monday	are	considered
to	be	in	week	0.

00,	01,	...,	53 (7)

%c
Locale’s	appropriate	date
and	time	representation.

Tue	Aug	16
21:30:00	1988
(en_US);
Di	16	Aug
21:30:00	1988
(de_DE)

(1)

%x
Locale’s	appropriate	date
representation.

08/16/88	(None);
08/16/1988
(en_US);
16.08.1988
(de_DE)

(1)

%X
Locale’s	appropriate	time
representation.

21:30:00	(en_US);
21:30:00	(de_DE) (1)

%% A	literal	'%'	character. % 	

Notes:

1.	 Because	the	format	depends	on	the	current	locale,	care	should	be
taken	 when	 making	 assumptions	 about	 the	 output	 value.	 Field
orderings	 will	 vary	 (for	 example,	 “month/day/year”	 versus
“day/month/year”),	 and	 the	 output	 may	 contain	 Unicode

characters	 encoded	 using	 the	 locale’s	 default	 encoding	 (for
example,	 if	 the	 current	 locale	 is	 ja_JP,	 the	 default	 encoding
could	 be	 any	 one	 of	 eucJP,	 SJIS,	 or	 utf-8;	 use
locale.getlocale()	 to	 determine	 the	 current	 locale’s
encoding).

2.	 The	 strptime()	 method	 can	 parse	 years	 in	 the	 full	 [1,	 9999]
range,	but	years	<	1000	must	be	zero-filled	to	4-digit	width.

Changed	 in	 version	 3.2:	 In	 previous	 versions,	 strftime()
method	was	restricted	to	years	>=	1900.

Changed	in	version	3.3:	In	version	3.2,	strftime()	method	was
restricted	to	years	>=	1000.

3.	 When	used	with	 the	strptime()	method,	 the	%p	directive	only
affects	the	output	hour	field	if	the	%I	directive	is	used	to	parse	the
hour.

4.	 Unlike	the	time	module,	the	datetime	module	does	not	support
leap	seconds.

5.	 When	 used	 with	 the	 strptime()	 method,	 the	 %f	 directive
accepts	from	one	to	six	digits	and	zero	pads	on	the	right.	%f	is	an
extension	 to	 the	 set	 of	 format	 characters	 in	 the	C	 standard	 (but
implemented	separately	in	datetime	objects,	and	therefore	always
available).

6.	 For	a	naive	object,	 the	%z	and	%Z	 format	codes	are	replaced	by
empty	strings.

For	an	aware	object:

%z

utcoffset()	 is	 transformed	 into	a	5-character	string	of	 the
form	+HHMM	or	 -HHMM,	where	HH	 is	 a	 2-digit	 string	 giving
the	 number	 of	 UTC	 offset	 hours,	 and	 MM	 is	 a	 2-digit	 string
giving	 the	 number	 of	 UTC	 offset	 minutes.	 For	 example,	 if
utcoffset()	 returns	 timedelta(hours=-3,

minutes=-30),	%z	is	replaced	with	the	string	'-0330'.

%Z

If	tzname()	returns	None,	%Z	is	replaced	by	an	empty	string.
Otherwise	%Z	is	replaced	by	the	returned	value,	which	must	be
a	string.

Changed	in	version	3.2:	When	the	%z	directive	is	provided	to	the
strptime()	 method,	 an	 aware	 datetime	 object	 will	 be
produced.	The	 tzinfo	 of	 the	 result	will	 be	 set	 to	 a	 timezone
instance.

7.	 When	used	with	 the	strptime()	method,	%U	and	%W	 are	 only
used	 in	calculations	when	 the	day	of	 the	week	and	 the	year	are
specified.

Footnotes

[1] If,	that	is,	we	ignore	the	effects	of	Relativity

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.2.	calendar	—	General
calendar-related	functions
Source	code:	Lib/calendar.py

This	module	allows	you	to	output	calendars	like	the	Unix	cal	program,
and	 provides	 additional	 useful	 functions	 related	 to	 the	 calendar.	 By
default,	these	calendars	have	Monday	as	the	first	day	of	the	week,	and
Sunday	 as	 the	 last	 (the	 European	 convention).	 Use
setfirstweekday()	to	set	the	first	day	of	the	week	to	Sunday	(6)	or
to	 any	 other	 weekday.	 Parameters	 that	 specify	 dates	 are	 given	 as
integers.	For	 related	 functionality,	see	also	 the	datetime	and	time
modules.

Most	 of	 these	 functions	 and	 classes	 rely	 on	 the	 datetime	 module
which	 uses	 an	 idealized	 calendar,	 the	 current	 Gregorian	 calendar
extended	 in	 both	 directions.	 This	 matches	 the	 definition	 of	 the
“proleptic	 Gregorian”	 calendar	 in	 Dershowitz	 and	 Reingold’s	 book
“Calendrical	 Calculations”,	 where	 it’s	 the	 base	 calendar	 for	 all
computations.

class	calendar.Calendar(firstweekday=0)
Creates	a	Calendar	object.	 firstweekday	 is	an	 integer	specifying
the	first	day	of	the	week.	0	is	Monday	(the	default),	6	is	Sunday.

A	Calendar	object	provides	several	methods	that	can	be	used	for
preparing	 the	 calendar	 data	 for	 formatting.	 This	 class	 doesn’t	 do
any	formatting	itself.	This	is	the	job	of	subclasses.

Calendar	instances	have	the	following	methods:

http://hg.python.org/cpython/file/3.4/Lib/calendar.py

iterweekdays()
Return	an	 iterator	 for	 the	week	day	numbers	 that	will	be	used
for	one	week.	The	first	value	from	the	iterator	will	be	the	same
as	the	value	of	the	firstweekday	property.

itermonthdates(year,	month)
Return	an	iterator	for	the	month	month	(1-12)	in	the	year	year.
This	 iterator	will	 return	 all	 days	 (as	 datetime.date	 objects)
for	the	month	and	all	days	before	the	start	of	the	month	or	after
the	end	of	the	month	that	are	required	to	get	a	complete	week.

itermonthdays2(year,	month)
Return	an	iterator	for	the	month	month	 in	the	year	year	similar
to	 itermonthdates().	 Days	 returned	 will	 be	 tuples
consisting	of	a	day	number	and	a	week	day	number.

itermonthdays(year,	month)
Return	an	iterator	for	the	month	month	 in	the	year	year	similar
to	 itermonthdates().	 Days	 returned	 will	 simply	 be	 day
numbers.

monthdatescalendar(year,	month)
Return	a	list	of	the	weeks	in	the	month	month	of	the	year	as	full
weeks.	Weeks	are	lists	of	seven	datetime.date	objects.

monthdays2calendar(year,	month)
Return	a	list	of	the	weeks	in	the	month	month	of	the	year	as	full
weeks.	 Weeks	 are	 lists	 of	 seven	 tuples	 of	 day	 numbers	 and
weekday	numbers.

monthdayscalendar(year,	month)
Return	a	list	of	the	weeks	in	the	month	month	of	the	year	as	full

weeks.	Weeks	are	lists	of	seven	day	numbers.

yeardatescalendar(year,	width=3)
Return	the	data	for	the	specified	year	ready	for	formatting.	The
return	value	 is	a	 list	of	month	 rows.	Each	month	 row	contains
up	 to	 width	 months	 (defaulting	 to	 3).	 Each	 month	 contains
between	 4	 and	 6	 weeks	 and	 each	 week	 contains	 1–7	 days.
Days	are	datetime.date	objects.

yeardays2calendar(year,	width=3)
Return	 the	 data	 for	 the	 specified	 year	 ready	 for	 formatting
(similar	 to	yeardatescalendar()).	Entries	 in	 the	week	 lists
are	 tuples	 of	 day	 numbers	 and	 weekday	 numbers.	 Day
numbers	outside	this	month	are	zero.

yeardayscalendar(year,	width=3)
Return	 the	 data	 for	 the	 specified	 year	 ready	 for	 formatting
(similar	 to	yeardatescalendar()).	Entries	 in	 the	week	 lists
are	day	numbers.	Day	numbers	outside	this	month	are	zero.

class	calendar.TextCalendar(firstweekday=0)
This	class	can	be	used	to	generate	plain	text	calendars.

TextCalendar	instances	have	the	following	methods:

formatmonth(theyear,	themonth,	w=0,	l=0)
Return	a	month’s	calendar	in	a	multi-line	string.	If	w	is	provided,
it	specifies	the	width	of	the	date	columns,	which	are	centered.	If
l	 is	 given,	 it	 specifies	 the	 number	 of	 lines	 that	 each	week	will
use.	 Depends	 on	 the	 first	 weekday	 as	 specified	 in	 the
constructor	or	set	by	the	setfirstweekday()	method.

prmonth(theyear,	themonth,	w=0,	l=0)

Print	a	month’s	calendar	as	returned	by	formatmonth().

formatyear(theyear,	w=2,	l=1,	c=6,	m=3)
Return	a	m-column	 calendar	 for	 an	 entire	 year	 as	 a	multi-line
string.	 Optional	 parameters	 w,	 l,	 and	 c	 are	 for	 date	 column
width,	 lines	 per	week,	 and	 number	 of	 spaces	 between	month
columns,	 respectively.	 Depends	 on	 the	 first	 weekday	 as
specified	in	the	constructor	or	set	by	the	setfirstweekday()
method.	 The	 earliest	 year	 for	 which	 a	 calendar	 can	 be
generated	is	platform-dependent.

pryear(theyear,	w=2,	l=1,	c=6,	m=3)
Print	 the	 calendar	 for	 an	 entire	 year	 as	 returned	 by
formatyear().

class	calendar.HTMLCalendar(firstweekday=0)
This	class	can	be	used	to	generate	HTML	calendars.

HTMLCalendar	instances	have	the	following	methods:

formatmonth(theyear,	themonth,	withyear=True)
Return	a	month’s	calendar	as	an	HTML	table.	If	withyear	is	true
the	year	will	be	included	in	the	header,	otherwise	just	the	month
name	will	be	used.

formatyear(theyear,	width=3)
Return	a	year’s	calendar	as	an	HTML	table.	width	(defaulting	to
3)	specifies	the	number	of	months	per	row.

formatyearpage(theyear,	 width=3,	 css='calendar.css',
encoding=None)

Return	 a	 year’s	 calendar	 as	 a	 complete	 HTML	 page.	 width
(defaulting	to	3)	specifies	the	number	of	months	per	row.	css	is

the	name	 for	 the	cascading	style	sheet	 to	be	used.	None	 can
be	passed	if	no	style	sheet	should	be	used.	encoding	specifies
the	encoding	to	be	used	for	the	output	(defaulting	to	the	system
default	encoding).

class	calendar.LocaleTextCalendar(firstweekday=0,
locale=None)

This	subclass	of	TextCalendar	can	be	passed	a	locale	name	in
the	 constructor	 and	will	 return	month	 and	weekday	 names	 in	 the
specified	 locale.	 If	 this	 locale	 includes	 an	 encoding	 all	 strings
containing	month	and	weekday	names	will	be	returned	as	unicode.

class	calendar.LocaleHTMLCalendar(firstweekday=0,
locale=None)

This	subclass	of	HTMLCalendar	can	be	passed	a	locale	name	in
the	 constructor	 and	will	 return	month	 and	weekday	 names	 in	 the
specified	 locale.	 If	 this	 locale	 includes	 an	 encoding	 all	 strings
containing	month	and	weekday	names	will	be	returned	as	unicode.

Note: 	The	formatweekday()	and	formatmonthname()
methods	of	these	two	classes	temporarily	change	the	current	locale
to	the	given	locale.	Because	the	current	locale	is	a	process-wide
setting,	they	are	not	thread-safe.

For	simple	text	calendars	this	module	provides	the	following	functions.

calendar.setfirstweekday(weekday)
Sets	the	weekday	(0	is	Monday,	6	 is	Sunday)	to	start	each	week.
The	values	MONDAY,	TUESDAY,	WEDNESDAY,	THURSDAY,	FRIDAY,
SATURDAY,	 and	 SUNDAY	 are	 provided	 for	 convenience.	 For
example,	to	set	the	first	weekday	to	Sunday:

import	calendar

calendar.setfirstweekday(calendar.SUNDAY)

calendar.firstweekday()
Returns	the	current	setting	for	the	weekday	to	start	each	week.

calendar.isleap(year)
Returns	True	if	year	is	a	leap	year,	otherwise	False.

calendar.leapdays(y1,	y2)
Returns	 the	 number	 of	 leap	 years	 in	 the	 range	 from	 y1	 to	 y2
(exclusive),	where	y1	and	y2	are	years.

This	function	works	for	ranges	spanning	a	century	change.

calendar.weekday(year,	month,	day)
Returns	 the	 day	 of	 the	 week	 (0	 is	 Monday)	 for	 year	 (1970–...),
month	(1–12),	day	(1–31).

calendar.weekheader(n)
Return	 a	 header	 containing	 abbreviated	 weekday	 names.	 n
specifies	the	width	in	characters	for	one	weekday.

calendar.monthrange(year,	month)
Returns	weekday	of	 first	day	of	 the	month	and	number	of	days	 in
month,	for	the	specified	year	and	month.

calendar.monthcalendar(year,	month)
Returns	 a	 matrix	 representing	 a	 month’s	 calendar.	 Each	 row
represents	 a	 week;	 days	 outside	 of	 the	 month	 a	 represented	 by
zeros.	 Each	 week	 begins	 with	 Monday	 unless	 set	 by
setfirstweekday().

calendar.prmonth(theyear,	themonth,	w=0,	l=0)
Prints	a	month’s	calendar	as	returned	by	month().

calendar.month(theyear,	themonth,	w=0,	l=0)
Returns	 a	 month’s	 calendar	 in	 a	 multi-line	 string	 using	 the
formatmonth()	of	the	TextCalendar	class.

calendar.prcal(year,	w=0,	l=0,	c=6,	m=3)
Prints	the	calendar	for	an	entire	year	as	returned	by	calendar().

calendar.calendar(year,	w=2,	l=1,	c=6,	m=3)
Returns	 a	 3-column	 calendar	 for	 an	 entire	 year	 as	 a	 multi-line
string	using	the	formatyear()	of	the	TextCalendar	class.

calendar.timegm(tuple)
An	 unrelated	 but	 handy	 function	 that	 takes	 a	 time	 tuple	 such	 as
returned	 by	 the	 gmtime()	 function	 in	 the	 time	 module,	 and
returns	 the	 corresponding	 Unix	 timestamp	 value,	 assuming	 an
epoch	of	1970,	and	the	POSIX	encoding.	In	fact,	time.gmtime()
and	timegm()	are	each	others’	inverse.

The	calendar	module	exports	the	following	data	attributes:

calendar.day_name

An	array	that	represents	the	days	of	the	week	in	the	current	locale.

calendar.day_abbr

An	array	 that	 represents	 the	abbreviated	days	of	 the	week	 in	 the
current	locale.

calendar.month_name

An	 array	 that	 represents	 the	 months	 of	 the	 year	 in	 the	 current

locale.	 This	 follows	 normal	 convention	 of	 January	 being	 month
number	 1,	 so	 it	 has	 a	 length	 of	 13	 and	 month_name[0]	 is	 the
empty	string.

calendar.month_abbr

An	array	that	represents	the	abbreviated	months	of	the	year	in	the
current	 locale.	 This	 follows	 normal	 convention	 of	 January	 being
month	number	1,	so	it	has	a	length	of	13	and	month_abbr[0]	 is
the	empty	string.

See	also:

Module	datetime
Object-oriented	 interface	 to	 dates	 and	 times	 with	 similar
functionality	to	the	time	module.

Module	time
Low-level	time	related	functions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.3.	collections	—	Container
datatypes
Source	code:	Lib/collections/__init__.py

This	 module	 implements	 specialized	 container	 datatypes	 providing
alternatives	 to	 Python’s	 general	 purpose	 built-in	 containers,	 dict,
list,	set,	and	tuple.

namedtuple()
factory	function	for	creating	tuple	subclasses	with
named	fields

deque
list-like	container	with	fast	appends	and	pops	on
either	end

ChainMap
dict-like	class	for	creating	a	single	view	of
multiple	mappings

Counter dict	subclass	for	counting	hashable	objects

OrderedDict
dict	subclass	that	remembers	the	order	entries
were	added

defaultdict
dict	subclass	that	calls	a	factory	function	to
supply	missing	values

UserDict
wrapper	around	dictionary	objects	for	easier	dict
subclassing

UserList
wrapper	around	list	objects	for	easier	list
subclassing

UserString
wrapper	around	string	objects	for	easier	string
subclassing

Changed	in	version	3.3:	Moved	Collections	Abstract	Base	Classes	 to

http://hg.python.org/cpython/file/3.4/Lib/collections/__init__.py

the	 collections.abc	 module.	 For	 backwards	 compatibility,	 they
continue	to	be	visible	in	this	module	as	well.

8.3.1.	ChainMap	objects

New	in	version	3.3.

A	 ChainMap	 class	 is	 provided	 for	 quickly	 linking	 a	 number	 of
mappings	 so	 they	 can	 be	 treated	 as	 a	 single	 unit.	 It	 is	 often	much
faster	than	creating	a	new	dictionary	and	running	multiple	update()
calls.

The	 class	 can	 be	 used	 to	 simulate	 nested	 scopes	 and	 is	 useful	 in
templating.

class	collections.ChainMap(*maps)
A	ChainMap	 groups	multiple	dicts	 or	 other	mappings	 together	 to
create	a	single,	updateable	view.	If	no	maps	are	specified,	a	single
empty	 dictionary	 is	 provided	 so	 that	 a	 new	 chain	 always	 has	 at
least	one	mapping.

The	underlying	mappings	are	stored	in	a	list.	That	list	is	public	and
can	 accessed	 or	 updated	 using	 the	maps	 attribute.	 There	 is	 no
other	state.

Lookups	search	 the	underlying	mappings	successively	until	a	key
is	found.	In	contrast,	writes,	updates,	and	deletions	only	operate	on
the	first	mapping.

A	ChainMap	 incorporates	 the	underlying	mappings	by	 reference.
So,	if	one	of	the	underlying	mappings	gets	updated,	those	changes
will	be	reflected	in	ChainMap.

All	of	the	usual	dictionary	methods	are	supported.	In	addition,	there
is	a	maps	attribute,	a	method	for	creating	new	subcontexts,	and	a

property	for	accessing	all	but	the	first	mapping:

maps

A	user	updateable	list	of	mappings.	The	list	is	ordered	from	first-
searched	to	last-searched.	It	is	the	only	stored	state	and	can	be
modified	 to	 change	 which	 mappings	 are	 searched.	 The	 list
should	always	contain	at	least	one	mapping.

new_child(m=None)
Returns	a	new	ChainMap	containing	a	new	map	followed	by	all
of	the	maps	in	the	current	instance.	If	m	is	specified,	it	becomes
the	new	map	at	the	front	of	the	list	of	mappings;	if	not	specified,
an	 empty	 dict	 is	 used,	 so	 that	 a	 call	 to	 d.new_child()	 is
equivalent	 to:	 ChainMap({},	 *d.maps).	 This	 method	 is
used	 for	 creating	 subcontexts	 that	 can	 be	 updated	 without
altering	values	in	any	of	the	parent	mappings.

Changed	in	version	3.4:	The	optional	m	parameter	was	added.

parents

Property	returning	a	new	ChainMap	containing	all	of	the	maps
in	 the	 current	 instance	 except	 the	 first	 one.	 This	 is	 useful	 for
skipping	 the	 first	map	 in	 the	 search.	Use	 cases	 are	 similar	 to
those	 for	 the	nonlocal	keyword	used	 in	nested	scopes.	 The
use	cases	also	parallel	those	for	the	built-in	super()	function.
A	 reference	 to	 d.parents	 is	 equivalent	 to:
ChainMap(*d.maps[1:]).

See	also:

The	 MultiContext	 class	 in	 the	 Enthought	 CodeTools	 package
has	options	to	support	writing	to	any	mapping	in	the	chain.

https://github.com/enthought/codetools/blob/4.0.0/codetools/contexts/multi_context.py
https://github.com/enthought/codetools

Django’s	 Context	 class	 for	 templating	 is	 a	 read-only	 chain	 of
mappings.	 It	 also	 features	 pushing	 and	 popping	 of	 contexts
similar	 to	 the	 new_child()	 method	 and	 the	 parents()
property.
The	 Nested	 Contexts	 recipe	 has	 options	 to	 control	 whether
writes	and	other	mutations	apply	only	to	the	first	mapping	or	to
any	mapping	in	the	chain.
A	greatly	simplified	read-only	version	of	Chainmap.

8.3.1.1.	ChainMap	Examples	and	Recipes

This	section	shows	various	approaches	to	working	with	chained	maps.

Example	of	simulating	Python’s	internal	lookup	chain:

import	builtins

pylookup	=	ChainMap(locals(),	globals(),	vars(builtins

Example	 of	 letting	 user	 specified	 command-line	 arguments	 take
precedence	over	environment	variables	which	in	turn	take	precedence
over	default	values:

import	os,	argparse

defaults	=	{'color':	'red',	'user':	'guest'}

parser	=	argparse.ArgumentParser()

parser.add_argument('-u',	'--user')

parser.add_argument('-c',	'--color')

namespace	=	parser.parse_args()

command_line_args	=	{k:v	for	k,	v	in	vars(namespace)

combined	=	ChainMap(command_line_args,	os.environ,	defaults

print(combined['color'])

http://code.djangoproject.com/browser/django/trunk/django/template/context.py
http://code.activestate.com/recipes/577434/
http://code.activestate.com/recipes/305268/

print(combined['user'])

Example	 patterns	 for	 using	 the	 ChainMap	 class	 to	 simulate	 nested
contexts:

c	=	ChainMap()								#	Create	root	context

d	=	c.new_child()					#	Create	nested	child	context

e	=	c.new_child()					#	Child	of	c,	independent	from	d

e.maps[0]													#	Current	context	dictionary	--	like	Python's	locals()

e.maps[-1]												#	Root	context	--	like	Python's	globals()

e.parents													#	Enclosing	context	chain	--	like	Python's	nonlocals

d['x']																#	Get	first	key	in	the	chain	of	contexts

d['x']	=	1												#	Set	value	in	current	context

del	d['x']												#	Delete	from	current	context

list(d)															#	All	nested	values

k	in	d																#	Check	all	nested	values

len(d)																#	Number	of	nested	values

d.items()													#	All	nested	items

dict(d)															#	Flatten	into	a	regular	dictionary

The	ChainMap	class	only	makes	updates	(writes	and	deletions)	to	the
first	 mapping	 in	 the	 chain	 while	 lookups	 will	 search	 the	 full	 chain.
However,	if	deep	writes	and	deletions	are	desired,	it	is	easy	to	make	a
subclass	that	updates	keys	found	deeper	in	the	chain:

class	DeepChainMap(ChainMap):

				'Variant	of	ChainMap	that	allows	direct	updates	to	inner	scopes'

				def	__setitem__(self,	key,	value):

								for	mapping	in	self.maps:

												if	key	in	mapping:

																mapping[key]	=	value

																return

								self.maps[0][key]	=	value

				def	__delitem__(self,	key):

								for	mapping	in	self.maps:

												if	key	in	mapping:

																del	mapping[key]

																return

								raise	KeyError(key)

>>>	d	=	DeepChainMap({'zebra':	'black'},	{'elephant'

>>>	d['lion']	=	'orange'									#	update	an	existing	key	two	levels	down

>>>	d['snake']	=	'red'											#	new	keys	get	added	to	the	topmost	dict

>>>	del	d['elephant']												#	remove	an	existing	key	one	level	down

DeepChainMap({'zebra':	'black',	'snake':	'red'},	{},

8.3.2.	Counter	objects

A	counter	tool	 is	provided	to	support	convenient	and	rapid	tallies.	For
example:

>>>	#	Tally	occurrences	of	words	in	a	list

>>>	cnt	=	Counter()

>>>	for	word	in	['red',	'blue',	'red',	'green',	'blue'

...					cnt[word]	+=	1

>>>	cnt

Counter({'blue':	3,	'red':	2,	'green':	1})

>>>	#	Find	the	ten	most	common	words	in	Hamlet

>>>	import	re

>>>	words	=	re.findall(r'\w+',	open('hamlet.txt').read

>>>	Counter(words).most_common(10)

[('the',	1143),	('and',	966),	('to',	762),	('of',	669),	('i',	631),

	('you',	554),		('a',	546),	('my',	514),	('hamlet',	471),	('in',	451)]

class	collections.Counter([iterable-or-mapping])
A	Counter	is	a	dict	subclass	for	counting	hashable	objects.	It	is
an	 unordered	 collection	 where	 elements	 are	 stored	 as	 dictionary
keys	and	 their	counts	are	stored	as	dictionary	values.	Counts	are
allowed	to	be	any	integer	value	including	zero	or	negative	counts.
The	 Counter	 class	 is	 similar	 to	 bags	 or	 multisets	 in	 other
languages.

Elements	 are	 counted	 from	an	 iterable	 or	 initialized	 from	another
mapping	(or	counter):

>>>	c	=	Counter()																											#	a	new,	empty	counter

>>>	c	=	Counter('gallahad')																	#	a	new	counter	from	an	iterable

>>>	c	=	Counter({'red':	4,	'blue':	2})						#	a	new	counter	from	a	mapping

>>>	c	=	Counter(cats=4,	dogs=8)													#	a	new	counter	from	keyword	args

Counter	objects	have	a	dictionary	interface	except	that	they	return
a	zero	count	for	missing	items	instead	of	raising	a	KeyError:

>>>	c	=	Counter(['eggs',	'ham'])

>>>	c['bacon']																														#	count	of	a	missing	element	is	zero

0

Setting	 a	 count	 to	 zero	 does	 not	 remove	 an	 element	 from	 a
counter.	Use	del	to	remove	it	entirely:

>>>	c['sausage']	=	0																								#	counter	entry	with	a	zero	count

>>>	del	c['sausage']																								#	del	actually	removes	the	entry

New	in	version	3.1.

Counter	objects	support	three	methods	beyond	those	available	for
all	dictionaries:

elements()
Return	an	iterator	over	elements	repeating	each	as	many	times
as	 its	 count.	 Elements	 are	 returned	 in	 arbitrary	 order.	 If	 an
element’s	count	is	less	than	one,	elements()	will	ignore	it.

>>>	c	=	Counter(a=4,	b=2,	c=0,	d=-2)

>>>	list(c.elements())

['a',	'a',	'a',	'a',	'b',	'b']

most_common([n])
Return	a	list	of	 the	n	most	common	elements	and	their	counts

from	 the	 most	 common	 to	 the	 least.	 If	 n	 is	 not	 specified,
most_common()	returns	all	elements	in	the	counter.	Elements
with	equal	counts	are	ordered	arbitrarily:

>>>	Counter('abracadabra').most_common(3)

[('a',	5),	('r',	2),	('b',	2)]

subtract([iterable-or-mapping])
Elements	 are	 subtracted	 from	 an	 iterable	 or	 from	 another
mapping	 (or	 counter).	 Like	 dict.update()	 but	 subtracts
counts	instead	of	replacing	them.	Both	inputs	and	outputs	may
be	zero	or	negative.

>>>	c	=	Counter(a=4,	b=2,	c=0,	d=-2)

>>>	d	=	Counter(a=1,	b=2,	c=3,	d=4)

>>>	c.subtract(d)

>>>	c

Counter({'a':	3,	'b':	0,	'c':	-3,	'd':	-6})

New	in	version	3.2.

The	 usual	 dictionary	methods	 are	 available	 for	 Counter	 objects
except	for	two	which	work	differently	for	counters.

fromkeys(iterable)
This	class	method	is	not	implemented	for	Counter	objects.

update([iterable-or-mapping])
Elements	are	counted	from	an	iterable	or	added-in	from	another
mapping	 (or	 counter).	 Like	 dict.update()	 but	 adds	 counts
instead	of	replacing	them.	Also,	the	iterable	is	expected	to	be	a
sequence	 of	 elements,	 not	 a	 sequence	 of	 (key,	 value)

pairs.

Common	patterns	for	working	with	Counter	objects:

sum(c.values())																	#	total	of	all	counts

c.clear()																							#	reset	all	counts

list(c)																									#	list	unique	elements

set(c)																										#	convert	to	a	set

dict(c)																									#	convert	to	a	regular	dictionary

c.items()																							#	convert	to	a	list	of	(elem,	cnt)	pairs

Counter(dict(list_of_pairs))				#	convert	from	a	list	of	(elem,	cnt)	pairs

c.most_common()[:-n-1:-1]							#	n	least	common	elements

+c																														#	remove	zero	and	negative	counts

Several	mathematical	operations	are	provided	for	combining	Counter
objects	 to	produce	multisets	 (counters	 that	have	counts	greater	 than
zero).	 Addition	 and	 subtraction	 combine	 counters	 by	 adding	 or
subtracting	 the	 counts	 of	 corresponding	 elements.	 Intersection	 and
union	 return	 the	 minimum	 and	 maximum	 of	 corresponding	 counts.
Each	operation	 can	accept	 inputs	with	 signed	counts,	 but	 the	output
will	exclude	results	with	counts	of	zero	or	less.

>>>	c	=	Counter(a=3,	b=1)

>>>	d	=	Counter(a=1,	b=2)

>>>	c	+	d																							#	add	two	counters	together:		c[x]	+	d[x]

Counter({'a':	4,	'b':	3})

>>>	c	-	d																							#	subtract	(keeping	only	positive	counts)

Counter({'a':	2})

>>>	c	&	d																							#	intersection:		min(c[x],	d[x])

Counter({'a':	1,	'b':	1})

>>>	c	|	d																							#	union:		max(c[x],	d[x])

Counter({'a':	3,	'b':	2})

Unary	 addition	 and	 substraction	 are	 shortcuts	 for	 adding	 an	 empty
counter	or	subtracting	from	an	empty	counter.

>>>	c	=	Counter(a=2,	b=-4)

>>>	+c

Counter({'a':	2})

>>>	-c

Counter({'b':	4})

New	in	version	3.3:	Added	support	for	unary	plus,	unary	minus,	and	in-
place	multiset	operations.

Note: 	Counters	were	primarily	designed	to	work	with	positive
integers	to	represent	running	counts;	however,	care	was	taken	to	not
unnecessarily	preclude	use	cases	needing	other	types	or	negative
values.	To	help	with	those	use	cases,	this	section	documents	the
minimum	range	and	type	restrictions.

The	 Counter	 class	 itself	 is	 a	 dictionary	 subclass	 with	 no
restrictions	on	 its	keys	and	values.	The	values	are	 intended	 to
be	numbers	representing	counts,	but	you	could	store	anything	in
the	value	field.
The	most_common()	method	requires	only	 that	 the	values	be
orderable.
For	in-place	operations	such	as	c[key]	+=	1,	 the	value	type
need	only	support	addition	and	subtraction.	So	fractions,	floats,
and	 decimals	 would	 work	 and	 negative	 values	 are	 supported.
The	same	 is	also	 true	 for	update()	and	subtract()	which
allow	negative	and	zero	values	for	both	inputs	and	outputs.
The	 multiset	 methods	 are	 designed	 only	 for	 use	 cases	 with
positive	 values.	 The	 inputs	may	 be	 negative	 or	 zero,	 but	 only
outputs	 with	 positive	 values	 are	 created.	 There	 are	 no	 type
restrictions,	 but	 the	 value	 type	 needs	 to	 support	 addition,
subtraction,	and	comparison.
The	 elements()	 method	 requires	 integer	 counts.	 It	 ignores
zero	and	negative	counts.

See	also:

Bag	class	in	Smalltalk.

Wikipedia	entry	for	Multisets.

C++	multisets	tutorial	with	examples.

For	mathematical	operations	on	multisets	and	 their	use	cases,
see	Knuth,	Donald.	The	Art	of	Computer	Programming	Volume
II,	Section	4.6.3,	Exercise	19.

To	enumerate	all	distinct	multisets	of	a	given	size	over	a	given
set	 of	 elements,	 see
itertools.combinations_with_replacement().

map(Counter,	 combinations_with_replacement(‘ABC’,	 2))	 –
>	AA	AB	AC	BB	BC	CC

http://www.gnu.org/software/smalltalk/manual-base/html_node/Bag.html
http://en.wikipedia.org/wiki/Multiset
http://www.demo2s.com/Tutorial/Cpp/0380__set-multiset/Catalog0380__set-multiset.htm

8.3.3.	deque	objects

class	collections.deque([iterable[,	maxlen]])
Returns	 a	 new	 deque	 object	 initialized	 left-to-right	 (using
append())	with	data	from	 iterable.	 If	 iterable	 is	not	specified,	 the
new	deque	is	empty.

Deques	 are	 a	 generalization	 of	 stacks	 and	 queues	 (the	 name	 is
pronounced	“deck”	and	is	short	for	“double-ended	queue”).	Deques
support	 thread-safe,	 memory	 efficient	 appends	 and	 pops	 from
either	 side	 of	 the	 deque	 with	 approximately	 the	 same	 O(1)
performance	in	either	direction.

Though	 list	 objects	 support	 similar	 operations,	 they	 are
optimized	 for	 fast	 fixed-length	 operations	 and	 incur	O(n)	memory
movement	 costs	 for	 pop(0)	 and	 insert(0,	 v)	 operations
which	 change	 both	 the	 size	 and	 position	 of	 the	 underlying	 data
representation.

If	maxlen	 is	 not	 specified	 or	 is	 None,	 deques	 may	 grow	 to	 an
arbitrary	 length.	Otherwise,	 the	deque	 is	bounded	to	 the	specified
maximum	length.	Once	a	bounded	length	deque	is	full,	when	new
items	are	added,	a	corresponding	number	of	 items	are	discarded
from	 the	 opposite	 end.	 Bounded	 length	 deques	 provide
functionality	similar	to	the	tail	filter	in	Unix.	They	are	also	useful
for	 tracking	 transactions	 and	 other	 pools	 of	 data	 where	 only	 the
most	recent	activity	is	of	interest.

Deque	objects	support	the	following	methods:

append(x)

Add	x	to	the	right	side	of	the	deque.

appendleft(x)
Add	x	to	the	left	side	of	the	deque.

clear()
Remove	all	elements	from	the	deque	leaving	it	with	length	0.

count(x)
Count	the	number	of	deque	elements	equal	to	x.

New	in	version	3.2.

extend(iterable)
Extend	the	right	side	of	the	deque	by	appending	elements	from
the	iterable	argument.

extendleft(iterable)
Extend	 the	 left	side	of	 the	deque	by	appending	elements	 from
iterable.	Note,	the	series	of	left	appends	results	in	reversing	the
order	of	elements	in	the	iterable	argument.

pop()
Remove	and	return	an	element	from	the	right	side	of	the	deque.
If	no	elements	are	present,	raises	an	IndexError.

popleft()
Remove	and	return	an	element	from	the	left	side	of	the	deque.
If	no	elements	are	present,	raises	an	IndexError.

remove(value)
Removed	 the	 first	 occurrence	 of	 value.	 If	 not	 found,	 raises	 a
ValueError.

reverse()
Reverse	 the	 elements	 of	 the	 deque	 in-place	 and	 then	 return
None.

New	in	version	3.2.

rotate(n)
Rotate	the	deque	n	steps	to	the	right.	If	n	is	negative,	rotate	to
the	 left.	 Rotating	 one	 step	 to	 the	 right	 is	 equivalent	 to:
d.appendleft(d.pop()).

Deque	objects	also	provide	one	read-only	attribute:

maxlen

Maximum	size	of	a	deque	or	None	if	unbounded.

New	in	version	3.1.

In	addition	 to	 the	above,	deques	support	 iteration,	pickling,	 len(d),
reversed(d),	copy.copy(d),	 copy.deepcopy(d),	membership
testing	with	the	in	operator,	and	subscript	references	such	as	d[-1].
Indexed	access	 is	O(1)	at	both	ends	but	slows	to	O(n)	 in	 the	middle.
For	fast	random	access,	use	lists	instead.

Example:

>>>	from	collections	import	deque

>>>	d	=	deque('ghi')																	#	make	a	new	deque	with	three	items

>>>	for	elem	in	d:																			#	iterate	over	the	deque's	elements

...					print(elem.upper())

G

H

I

>>>	d.append('j')																				#	add	a	new	entry	to	the	right	side

>>>	d.appendleft('f')																#	add	a	new	entry	to	the	left	side

>>>	d																																#	show	the	representation	of	the	deque

deque(['f',	'g',	'h',	'i',	'j'])

>>>	d.pop()																										#	return	and	remove	the	rightmost	item

'j'

>>>	d.popleft()																						#	return	and	remove	the	leftmost	item

'f'

>>>	list(d)																										#	list	the	contents	of	the	deque

['g',	'h',	'i']

>>>	d[0]																													#	peek	at	leftmost	item

'g'

>>>	d[-1]																												#	peek	at	rightmost	item

'i'

>>>	list(reversed(d))																#	list	the	contents	of	a	deque	in	reverse

['i',	'h',	'g']

>>>	'h'	in	d																									#	search	the	deque

True

>>>	d.extend('jkl')																		#	add	multiple	elements	at	once

>>>	d

deque(['g',	'h',	'i',	'j',	'k',	'l'])

>>>	d.rotate(1)																						#	right	rotation

>>>	d

deque(['l',	'g',	'h',	'i',	'j',	'k'])

>>>	d.rotate(-1)																					#	left	rotation

>>>	d

deque(['g',	'h',	'i',	'j',	'k',	'l'])

>>>	deque(reversed(d))															#	make	a	new	deque	in	reverse	order

deque(['l',	'k',	'j',	'i',	'h',	'g'])

>>>	d.clear()																								#	empty	the	deque

>>>	d.pop()																										#	cannot	pop	from	an	empty	deque

Traceback	(most	recent	call	last):

				File	"<pyshell#6>",	line	1,	in	-toplevel-

								d.pop()

IndexError:	pop	from	an	empty	deque

>>>	d.extendleft('abc')														#	extendleft()	reverses	the	input	order

>>>	d

deque(['c',	'b',	'a'])

8.3.3.1.	deque	Recipes

This	section	shows	various	approaches	to	working	with	deques.

Bounded	length	deques	provide	functionality	similar	to	the	tail	 filter
in	Unix:

def	tail(filename,	n=10):

				'Return	the	last	n	lines	of	a	file'

				with	open(filename)	as	f:

								return	deque(f,	n)

Another	 approach	 to	 using	 deques	 is	 to	 maintain	 a	 sequence	 of
recently	added	elements	by	appending	to	the	right	and	popping	to	the
left:

def	moving_average(iterable,	n=3):

				#	moving_average([40,	30,	50,	46,	39,	44])	-->	40.0	42.0	45.0	43.0

				#	http://en.wikipedia.org/wiki/Moving_average

				it	=	iter(iterable)

				d	=	deque(itertools.islice(it,	n-1))

				d.appendleft(0)

				s	=	sum(d)

				for	elem	in	it:

								s	+=	elem	-	d.popleft()

								d.append(elem)

								yield	s	/	n

The	 rotate()	method	 provides	 a	way	 to	 implement	 deque	 slicing
and	 deletion.	 For	 example,	 a	 pure	 Python	 implementation	 of	 del
d[n]	 relies	 on	 the	 rotate()	 method	 to	 position	 elements	 to	 be
popped:

def	delete_nth(d,	n):

				d.rotate(-n)

				d.popleft()

				d.rotate(n)

To	 implement	 deque	 slicing,	 use	 a	 similar	 approach	 applying
rotate()	 to	 bring	 a	 target	 element	 to	 the	 left	 side	 of	 the	 deque.
Remove	 old	 entries	 with	 popleft(),	 add	 new	 entries	 with
extend(),	 and	 then	 reverse	 the	 rotation.	 With	 minor	 variations	 on
that	approach,	it	is	easy	to	implement	Forth	style	stack	manipulations
such	as	dup,	drop,	swap,	over,	pick,	rot,	and	roll.

8.3.4.	defaultdict	objects

class	collections.defaultdict([default_factory[,	...]])
Returns	a	new	dictionary-like	object.	defaultdict	 is	a	subclass
of	 the	built-in	dict	 class.	 It	overrides	one	method	and	adds	one
writable	instance	variable.	The	remaining	functionality	 is	the	same
as	for	the	dict	class	and	is	not	documented	here.

The	 first	 argument	 provides	 the	 initial	 value	 for	 the
default_factory	 attribute;	 it	 defaults	 to	 None.	 All	 remaining
arguments	 are	 treated	 the	 same	 as	 if	 they	 were	 passed	 to	 the
dict	constructor,	including	keyword	arguments.

defaultdict	objects	support	the	following	method	in	addition	to
the	standard	dict	operations:

__missing__(key)
If	 the	 default_factory	 attribute	 is	 None,	 this	 raises	 a
KeyError	exception	with	the	key	as	argument.

If	 default_factory	 is	 not	 None,	 it	 is	 called	 without
arguments	 to	 provide	 a	 default	 value	 for	 the	 given	 key,	 this
value	is	inserted	in	the	dictionary	for	the	key,	and	returned.

If	 calling	 default_factory	 raises	 an	 exception	 this
exception	is	propagated	unchanged.

This	method	 is	 called	 by	 the	 __getitem__()	method	 of	 the
dict	 class	when	 the	 requested	 key	 is	 not	 found;	whatever	 it
returns	 or	 raises	 is	 then	 returned	 or	 raised	 by
__getitem__().

Note	 that	 __missing__()	 is	 not	 called	 for	 any	 operations
besides	 __getitem__().	 This	 means	 that	 get()	 will,	 like
normal	dictionaries,	return	None	as	a	default	rather	than	using
default_factory.

defaultdict	objects	support	the	following	instance	variable:

default_factory

This	 attribute	 is	 used	 by	 the	 __missing__()	 method;	 it	 is
initialized	 from	the	 first	argument	 to	 the	constructor,	 if	present,
or	to	None,	if	absent.

8.3.4.1.	defaultdict	Examples

Using	 list	 as	 the	 default_factory,	 it	 is	 easy	 to	 group	 a
sequence	of	key-value	pairs	into	a	dictionary	of	lists:

>>>	s	=	[('yellow',	1),	('blue',	2),	('yellow',	3),	

>>>	d	=	defaultdict(list)

>>>	for	k,	v	in	s:

...					d[k].append(v)

...

>>>	list(d.items())

[('blue',	[2,	4]),	('red',	[1]),	('yellow',	[1,	3])]

When	each	key	is	encountered	for	the	first	time,	it	is	not	already	in	the
mapping;	 so	 an	 entry	 is	 automatically	 created	 using	 the
default_factory	 function	 which	 returns	 an	 empty	 list.	 The
list.append()	 operation	 then	 attaches	 the	 value	 to	 the	 new	 list.
When	 keys	 are	 encountered	 again,	 the	 look-up	 proceeds	 normally
(returning	 the	 list	 for	 that	 key)	 and	 the	 list.append()	 operation
adds	another	value	to	the	list.	This	technique	is	simpler	and	faster	than

an	equivalent	technique	using	dict.setdefault():

>>>	d	=	{}

>>>	for	k,	v	in	s:

...					d.setdefault(k,	[]).append(v)

...

>>>	list(d.items())

[('blue',	[2,	4]),	('red',	[1]),	('yellow',	[1,	3])]

Setting	 the	 default_factory	 to	 int	 makes	 the	 defaultdict
useful	for	counting	(like	a	bag	or	multiset	in	other	languages):

>>>	s	=	'mississippi'

>>>	d	=	defaultdict(int)

>>>	for	k	in	s:

...					d[k]	+=	1

...

>>>	list(d.items())

[('i',	4),	('p',	2),	('s',	4),	('m',	1)]

When	a	 letter	 is	 first	encountered,	 it	 is	missing	 from	the	mapping,	so
the	 default_factory	 function	 calls	 int()	 to	 supply	 a	 default
count	 of	 zero.	 The	 increment	 operation	 then	 builds	 up	 the	 count	 for
each	letter.

The	function	int()	which	always	returns	zero	is	just	a	special	case	of
constant	 functions.	A	 faster	and	more	 flexible	way	 to	create	constant
functions	 is	 to	use	a	 lambda	 function	which	can	supply	any	constant
value	(not	just	zero):

>>>	def	constant_factory(value):

...					return	lambda:	value

>>>	d	=	defaultdict(constant_factory('<missing>'))

>>>	d.update(name='John',	action='ran')

>>>	'%(name)s	%(action)s	to	%(object)s'	%	d

'John	ran	to	<missing>'

Setting	 the	 default_factory	 to	 set	 makes	 the	 defaultdict
useful	for	building	a	dictionary	of	sets:

>>>	s	=	[('red',	1),	('blue',	2),	('red',	3),	('blue'

>>>	d	=	defaultdict(set)

>>>	for	k,	v	in	s:

...					d[k].add(v)

...

>>>	list(d.items())

[('blue',	{2,	4}),	('red',	{1,	3})]

8.3.5.	namedtuple()	Factory	Function
for	Tuples	with	Named	Fields

Named	tuples	assign	meaning	to	each	position	in	a	tuple	and	allow	for
more	 readable,	 self-documenting	 code.	 They	 can	 be	 used	 wherever
regular	 tuples	 are	 used,	 and	 they	 add	 the	 ability	 to	 access	 fields	 by
name	instead	of	position	index.

collections.namedtuple(typename,	field_names,
verbose=False,	rename=False)

Returns	a	new	tuple	subclass	named	typename.	The	new	subclass
is	 used	 to	 create	 tuple-like	 objects	 that	 have	 fields	 accessible	 by
attribute	lookup	as	well	as	being	indexable	and	iterable.	Instances
of	 the	subclass	also	have	a	helpful	docstring	 (with	 typename	and
field_names)	 and	 a	 helpful	 __repr__()	 method	 which	 lists	 the
tuple	contents	in	a	name=value	format.

The	field_names	are	a	single	string	with	each	fieldname	separated
by	whitespace	 and/or	 commas,	 for	 example	 'x	y'	 or	 'x,	 y'.
Alternatively,	 field_names	 can	 be	 a	 sequence	 of	 strings	 such	 as
['x',	'y'].

Any	valid	Python	identifier	may	be	used	for	a	fieldname	except	for
names	 starting	 with	 an	 underscore.	 Valid	 identifiers	 consist	 of
letters,	 digits,	 and	 underscores	 but	 do	 not	 start	 with	 a	 digit	 or
underscore	and	cannot	be	a	keyword	 such	as	class,	 for,	 return,
global,	pass,	or	raise.

If	rename	is	true,	invalid	fieldnames	are	automatically	replaced	with
positional	 names.	 For	 example,	 ['abc',	 'def',	 'ghi',

'abc']	 is	 converted	 to	 ['abc',	 '_1',	 'ghi',	 '_3'],

eliminating	the	keyword	def	and	the	duplicate	fieldname	abc.

If	verbose	is	true,	the	class	definition	is	printed	after	it	is	built.	This
option	 is	 outdated;	 instead,	 it	 is	 simpler	 to	 print	 the	 _source
attribute.

Named	 tuple	 instances	 do	 not	 have	 per-instance	 dictionaries,	 so
they	 are	 lightweight	 and	 require	 no	 more	 memory	 than	 regular
tuples.

Changed	in	version	3.1:	Added	support	for	rename.

>>>	#	Basic	example

>>>	Point	=	namedtuple('Point',	['x',	'y'])

>>>	p	=	Point(11,	y=22)					#	instantiate	with	positional	or	keyword	arguments

>>>	p[0]	+	p[1]													#	indexable	like	the	plain	tuple	(11,	22)

33

>>>	x,	y	=	p																#	unpack	like	a	regular	tuple

>>>	x,	y

(11,	22)

>>>	p.x	+	p.y															#	fields	also	accessible	by	name

33

>>>	p																							#	readable	__repr__	with	a	name=value	style

Point(x=11,	y=22)

Named	tuples	are	especially	useful	for	assigning	field	names	to	result
tuples	returned	by	the	csv	or	sqlite3	modules:

EmployeeRecord	=	namedtuple('EmployeeRecord',	'name,	age,	title,	department,	paygrade'

import	csv

for	emp	in	map(EmployeeRecord._make,	csv.reader(open

				print(emp.name,	emp.title)

import	sqlite3

conn	=	sqlite3.connect('/companydata')

cursor	=	conn.cursor()

cursor.execute('SELECT	name,	age,	title,	department,	paygrade	FROM	employees'

for	emp	in	map(EmployeeRecord._make,	cursor.fetchall

				print(emp.name,	emp.title)

In	addition	to	the	methods	inherited	from	tuples,	named	tuples	support
three	additional	methods	and	 two	attributes.	To	prevent	conflicts	with
field	names,	the	method	and	attribute	names	start	with	an	underscore.

classmethod	somenamedtuple._make(iterable)
Class	 method	 that	 makes	 a	 new	 instance	 from	 an	 existing
sequence	or	iterable.

>>>	t	=	[11,	22]

>>>	Point._make(t)

Point(x=11,	y=22)

somenamedtuple._asdict()
Return	 a	 new	 OrderedDict	 which	 maps	 field	 names	 to	 their
corresponding	values.	Note,	this	method	is	no	longer	needed	now
that	the	same	effect	can	be	achieved	by	using	the	built-in	vars()
function:

>>>	vars(p)

OrderedDict([('x',	11),	('y',	22)])

Changed	 in	 version	 3.1:	Returns	 an	 OrderedDict	 instead	 of	 a
regular	dict.

somenamedtuple._replace(kwargs)
Return	a	new	instance	of	the	named	tuple	replacing	specified	fields
with	new	values:

>>>	p	=	Point(x=11,	y=22)

>>>	p._replace(x=33)

Point(x=33,	y=22)

>>>	for	partnum,	record	in	inventory.items():

...					inventory[partnum]	=	record._replace(price

somenamedtuple._source

A	 string	 with	 the	 pure	 Python	 source	 code	 used	 to	 create	 the
named	 tuple	 class.	 The	 source	 makes	 the	 named	 tuple	 self-
documenting.	It	can	be	printed,	executed	using	exec(),	or	saved
to	a	file	and	imported.

New	in	version	3.3.

somenamedtuple._fields

Tuple	of	strings	listing	the	field	names.	Useful	for	introspection	and
for	creating	new	named	tuple	types	from	existing	named	tuples.

>>>	p._fields												#	view	the	field	names

('x',	'y')

>>>	Color	=	namedtuple('Color',	'red	green	blue')

>>>	Pixel	=	namedtuple('Pixel',	Point._fields	+	Color

>>>	Pixel(11,	22,	128,	255,	0)

Pixel(x=11,	y=22,	red=128,	green=255,	blue=0)

To	 retrieve	 a	 field	 whose	 name	 is	 stored	 in	 a	 string,	 use	 the
getattr()	function:

>>>	getattr(p,	'x')

11

To	convert	a	dictionary	to	a	named	tuple,	use	the	double-star-operator
(as	described	in	Unpacking	Argument	Lists):

>>>	d	=	{'x':	11,	'y':	22}

>>>	Point(**d)

Point(x=11,	y=22)

Since	 a	 named	 tuple	 is	 a	 regular	 Python	 class,	 it	 is	 easy	 to	 add	 or
change	functionality	with	a	subclass.	Here	is	how	to	add	a	calculated
field	and	a	fixed-width	print	format:

>>>	class	Point(namedtuple('Point',	'x	y')):

				__slots__	=	()

				@property

				def	hypot(self):

								return	(self.x	**	2	+	self.y	**	2)	**	0.5

				def	__str__(self):

								return	'Point:	x=%6.3f		y=%6.3f		hypot=%6.3f'	%	(self.x,	self.y,	self.hypot)

>>>	for	p	in	Point(3,	4),	Point(14,	5/7):

				print(p)

Point:	x=	3.000		y=	4.000		hypot=	5.000

Point:	x=14.000		y=	0.714		hypot=14.018

The	subclass	shown	above	sets	__slots__	 to	an	empty	 tuple.	This
helps	 keep	 memory	 requirements	 low	 by	 preventing	 the	 creation	 of
instance	dictionaries.

Subclassing	is	not	useful	for	adding	new,	stored	fields.	Instead,	simply
create	a	new	named	tuple	type	from	the	_fields	attribute:

>>>	Point3D	=	namedtuple('Point3D',	Point._fields	+	

Default	 values	 can	 be	 implemented	 by	 using	 _replace()	 to
customize	a	prototype	instance:

>>>	Account	=	namedtuple('Account',	'owner	balance	transaction_count'

>>>	default_account	=	Account('<owner	name>',	0.0,	0

>>>	johns_account	=	default_account._replace(owner='John'

>>>	janes_account	=	default_account._replace(owner='Jane'

Enumerated	constants	can	be	 implemented	with	named	tuples,	but	 it
is	simpler	and	more	efficient	to	use	a	simple	class	declaration:

>>>	Status	=	namedtuple('Status',	'open	pending	closed'

>>>	Status.open,	Status.pending,	Status.closed

(0,	1,	2)

>>>	class	Status:

				open,	pending,	closed	=	range(3)

Recipe	for	named	tuple	abstract	base	class	with	a	metaclass
mix-in	 by	 Jan	 Kaliszewski.	 Besides	 providing	 an	 abstract
base	 class	 for	 named	 tuples,	 it	 also	 supports	 an	 alternate
metaclass-based	constructor	that	is	convenient	for	use	cases
where	named	tuples	are	being	subclassed.

http://code.activestate.com/recipes/577629-namedtupleabc-abstract-base-class-mix-in-for-named/

8.3.6.	OrderedDict	objects

Ordered	 dictionaries	 are	 just	 like	 regular	 dictionaries	 but	 they
remember	the	order	that	 items	were	 inserted.	When	 iterating	over	an
ordered	dictionary,	the	items	are	returned	in	the	order	their	keys	were
first	added.

class	collections.OrderedDict([items])
Return	an	 instance	of	a	dict	subclass,	supporting	 the	usual	dict
methods.	An	OrderedDict	 is	 a	 dict	 that	 remembers	 the	 order	 that
keys	were	first	inserted.	If	a	new	entry	overwrites	an	existing	entry,
the	original	 insertion	position	 is	 left	 unchanged.	Deleting	 an	 entry
and	reinserting	it	will	move	it	to	the	end.

New	in	version	3.1.

popitem(last=True)
The	 popitem()	 method	 for	 ordered	 dictionaries	 returns	 and
removes	 a	 (key,	 value)	 pair.	 The	 pairs	 are	 returned	 in	 LIFO
order	if	last	is	true	or	FIFO	order	if	false.

move_to_end(key,	last=True)
Move	an	existing	key	to	either	end	of	an	ordered	dictionary.	The
item	is	moved	to	the	right	end	if	last	is	true	(the	default)	or	to	the
beginning	if	last	is	false.	Raises	KeyError	 if	 the	key	does	not
exist:

>>>	d	=	OrderedDict.fromkeys('abcde')

>>>	d.move_to_end('b')

>>>	''.join(d.keys())

'acdeb'

>>>	d.move_to_end('b',	last=False)

>>>	''.join(d.keys())

'bacde'

New	in	version	3.2.

In	 addition	 to	 the	 usual	mapping	methods,	 ordered	 dictionaries	 also
support	reverse	iteration	using	reversed().

Equality	tests	between	OrderedDict	objects	are	order-sensitive	and
are	implemented	as	list(od1.items())==list(od2.items()).
Equality	 tests	 between	 OrderedDict	 objects	 and	 other	 Mapping
objects	 are	 order-insensitive	 like	 regular	 dictionaries.	 This	 allows
OrderedDict	objects	to	be	substituted	anywhere	a	regular	dictionary
is	used.

The	 OrderedDict	 constructor	 and	 update()	 method	 both	 accept
keyword	arguments,	but	 their	order	 is	 lost	because	Python’s	 function
call	semantics	pass-in	keyword	arguments	using	a	regular	unordered
dictionary.

8.3.6.1.	OrderedDict	Examples	and	Recipes

Since	 an	 ordered	 dictionary	 remembers	 its	 insertion	 order,	 it	 can	 be
used	in	conjuction	with	sorting	to	make	a	sorted	dictionary:

>>>	#	regular	unsorted	dictionary

>>>	d	=	{'banana':	3,	'apple':4,	'pear':	1,	'orange'

>>>	#	dictionary	sorted	by	key

>>>	OrderedDict(sorted(d.items(),	key=lambda	t:	t[0]))

OrderedDict([('apple',	4),	('banana',	3),	('orange',	2),	('pear',	1)])

>>>	#	dictionary	sorted	by	value

>>>	OrderedDict(sorted(d.items(),	key=lambda	t:	t[1]))

OrderedDict([('pear',	1),	('orange',	2),	('banana',	3),	('apple',	4)])

>>>	#	dictionary	sorted	by	length	of	the	key	string

>>>	OrderedDict(sorted(d.items(),	key=lambda	t:	len(

OrderedDict([('pear',	1),	('apple',	4),	('orange',	2),	('banana',	3)])

The	new	sorted	dictionaries	maintain	their	sort	order	when	entries	are
deleted.	But	when	new	keys	are	added,	the	keys	are	appended	to	the
end	and	the	sort	is	not	maintained.

It	 is	 also	 straight-forward	 to	 create	an	ordered	dictionary	 variant	 that
remembers	 the	 order	 the	 keys	 were	 last	 inserted.	 If	 a	 new	 entry
overwrites	an	existing	entry,	 the	original	 insertion	position	 is	changed
and	moved	to	the	end:

class	LastUpdatedOrderedDict(OrderedDict):

				'Store	items	in	the	order	the	keys	were	last	added'

				def	__setitem__(self,	key,	value):

								if	key	in	self:

												del	self[key]

								OrderedDict.__setitem__(self,	key,	value)

An	 ordered	 dictionary	 can	 be	 combined	with	 the	 Counter	 class	 so
that	the	counter	remembers	the	order	elements	are	first	encountered:

class	OrderedCounter(Counter,	OrderedDict):

				'Counter	that	remembers	the	order	elements	are	first	encountered'

				def	__repr__(self):

								return	'%s(%r)'	%	(self.__class__.__name__,	

				def	__reduce__(self):

								return	self.__class__,	(OrderedDict(self),)

8.3.7.	UserDict	objects

The	 class,	 UserDict	 acts	 as	 a	 wrapper	 around	 dictionary	 objects.
The	need	for	this	class	has	been	partially	supplanted	by	the	ability	to
subclass	directly	from	dict;	however,	this	class	can	be	easier	to	work
with	because	the	underlying	dictionary	is	accessible	as	an	attribute.

class	collections.UserDict([initialdata])
Class	that	simulates	a	dictionary.	The	instance’s	contents	are	kept
in	a	regular	dictionary,	which	is	accessible	via	the	data	attribute	of
UserDict	 instances.	 If	 initialdata	 is	 provided,	 data	 is	 initialized
with	its	contents;	note	that	a	reference	to	initialdata	will	not	be	kept,
allowing	it	be	used	for	other	purposes.

In	addition	to	supporting	the	methods	and	operations	of	mappings,
UserDict	instances	provide	the	following	attribute:

data

A	 real	 dictionary	 used	 to	 store	 the	 contents	 of	 the	 UserDict
class.

8.3.8.	UserList	objects

This	 class	 acts	 as	 a	wrapper	 around	 list	 objects.	 It	 is	 a	 useful	 base
class	 for	 your	 own	 list-like	 classes	which	 can	 inherit	 from	 them	 and
override	existing	methods	or	add	new	ones.	In	this	way,	one	can	add
new	behaviors	to	lists.

The	need	for	this	class	has	been	partially	supplanted	by	the	ability	to
subclass	directly	from	list;	however,	this	class	can	be	easier	to	work
with	because	the	underlying	list	is	accessible	as	an	attribute.

class	collections.UserList([list])
Class	 that	 simulates	 a	 list.	 The	 instance’s	 contents	 are	 kept	 in	 a
regular	 list,	 which	 is	 accessible	 via	 the	 data	 attribute	 of
UserList	instances.	The	instance’s	contents	are	 initially	set	 to	a
copy	of	list,	defaulting	to	the	empty	list	[].	list	can	be	any	iterable,
for	example	a	real	Python	list	or	a	UserList	object.

In	 addition	 to	 supporting	 the	methods	 and	 operations	 of	mutable
sequences,	UserList	instances	provide	the	following	attribute:

data

A	real	list	object	used	to	store	the	contents	of	the	UserList
class.

Subclassing	requirements:	Subclasses	of	UserList	are	expected
to	offer	a	constructor	which	can	be	called	with	either	no	arguments	or
one	argument.	List	operations	which	return	a	new	sequence	attempt	to
create	 an	 instance	 of	 the	 actual	 implementation	 class.	 To	 do	 so,	 it
assumes	 that	 the	 constructor	 can	 be	 called	with	 a	 single	 parameter,
which	is	a	sequence	object	used	as	a	data	source.

If	a	derived	class	does	not	wish	to	comply	with	this	requirement,	all	of
the	special	methods	supported	by	this	class	will	need	to	be	overridden;
please	 consult	 the	 sources	 for	 information	 about	 the	methods	which
need	to	be	provided	in	that	case.

8.3.9.	UserString	objects

The	class,	UserString	acts	as	a	wrapper	around	string	objects.	The
need	 for	 this	 class	 has	 been	 partially	 supplanted	 by	 the	 ability	 to
subclass	directly	from	str;	however,	this	class	can	be	easier	to	work
with	because	the	underlying	string	is	accessible	as	an	attribute.

class	collections.UserString([sequence])
Class	 that	 simulates	 a	 string	 or	 a	 Unicode	 string	 object.	 The
instance’s	 content	 is	 kept	 in	 a	 regular	 string	 object,	 which	 is
accessible	via	 the	data	attribute	of	UserString	 instances.	The
instance’s	 contents	 are	 initially	 set	 to	 a	 copy	 of	 sequence.	 The
sequence	can	be	an	instance	of	bytes,	str,	UserString	 (or	a
subclass)	or	an	arbitrary	sequence	which	can	be	converted	 into	a
string	using	the	built-in	str()	function.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.4.	collections.abc	—
Abstract	Base	Classes	for
Containers
New	 in	 version	 3.3:	 Formerly,	 this	 module	 was	 part	 of	 the
collections	module.

Source	code:	Lib/_collections_abc.py

This	module	provides	abstract	base	classes	 that	can	be	used	 to	 test
whether	a	class	provides	a	particular	interface;	for	example,	whether	it
is	hashable	or	whether	it	is	a	mapping.

http://hg.python.org/cpython/file/3.4/Lib/_collections_abc.py

8.4.1.	Collections	Abstract	Base	Classes

The	collections	module	offers	the	following	ABCs:

ABC Inherits	from Abstract
Methods Mixin	Methods

Container 	 __contains__ 	

Hashable 	 __hash__ 	

Iterable 	 __iter__ 	

Iterator Iterable __next__ __iter__

Sized 	 __len__ 	

Callable 	 __call__ 	

Sequence

Sized,
Iterable,
Container

__getitem__,
__len__

__contains__

__iter__

__reversed__

index,	and
count

MutableSequence Sequence

__getitem__,
__setitem__,
__delitem__,
__len__,
insert

Inherited
Sequence

methods	and
append,
reverse

extend,	
remove,	and
__iadd__

Set

Sized,
Iterable,

__contains__,
__iter__,

__le__,
__lt__,
__eq__,
__ne__,
__gt__,
__ge__,

Container __len__ __and__

__or__,
__sub__

__xor__

isdisjoint

MutableSet Set

__contains__,
__iter__,
__len__,	add,
discard

Inherited	
methods	and
clear,	pop
remove,
__ior__

__iand__

__ixor__

__isub__

Mapping

Sized,
Iterable,
Container

__getitem__,
__iter__,
__len__

__contains__

keys,	items
values,	
__eq__,	and
__ne__

MutableMapping Mapping

__getitem__,
__setitem__,
__delitem__,
__iter__,
__len__

Inherited
Mapping

methods	and
pop,	popitem
clear,
update,	and
setdefault

MappingView Sized 	 __len__

ItemsView
MappingView,
Set

	 __contains__

__iter__

KeysView
MappingView,
Set

	 __contains__

__iter__

ValuesView MappingView 	 __contains__

__iter__

class	collections.abc.Container
class	collections.abc.Hashable
class	collections.abc.Sized
class	collections.abc.Callable

ABCs	 for	 classes	 that	 provide	 respectively	 the	 methods
__contains__(),	 __hash__(),	 __len__(),	 and
__call__().

class	collections.abc.Iterable
ABC	 for	classes	 that	provide	 the	__iter__()	method.	See	also
the	definition	of	iterable.

class	collections.abc.Iterator
ABC	for	classes	that	provide	the	__iter__()	and	__next__()
methods.	See	also	the	definition	of	iterator.

class	collections.abc.Sequence
class	collections.abc.MutableSequence

ABCs	for	read-only	and	mutable	sequences.

class	collections.abc.Set
class	collections.abc.MutableSet

ABCs	for	read-only	and	mutable	sets.

class	collections.abc.Mapping
class	collections.abc.MutableMapping

ABCs	for	read-only	and	mutable	mappings.

class	collections.abc.MappingView
class	collections.abc.ItemsView
class	collections.abc.KeysView
class	collections.abc.ValuesView

ABCs	for	mapping,	items,	keys,	and	values	views.

These	 ABCs	 allow	 us	 to	 ask	 classes	 or	 instances	 if	 they	 provide
particular	functionality,	for	example:

size	=	None

if	isinstance(myvar,	collections.abc.Sized):

				size	=	len(myvar)

Several	of	 the	ABCs	are	also	useful	as	mixins	 that	make	 it	easier	 to
develop	 classes	 supporting	 container	 APIs.	 For	 example,	 to	 write	 a
class	supporting	the	full	Set	API,	it	only	necessary	to	supply	the	three
underlying	 abstract	methods:	 __contains__(),	 __iter__(),	 and
__len__().	 The	 ABC	 supplies	 the	 remaining	 methods	 such	 as
__and__()	and	isdisjoint():

class	ListBasedSet(collections.abc.Set):

					'''	Alternate	set	implementation	favoring	space	over	speed

									and	not	requiring	the	set	elements	to	be	hashable.	'''

					def	__init__(self,	iterable):

									self.elements	=	lst	=	[]

									for	value	in	iterable:

													if	value	not	in	lst:

																	lst.append(value)

					def	__iter__(self):

									return	iter(self.elements)

					def	__contains__(self,	value):

									return	value	in	self.elements

					def	__len__(self):

									return	len(self.elements)

s1	=	ListBasedSet('abcdef')

s2	=	ListBasedSet('defghi')

overlap	=	s1	&	s2												#	The	__and__()	method	is	supported	automatically

Notes	on	using	Set	and	MutableSet	as	a	mixin:

1.	 Since	 some	 set	 operations	 create	 new	 sets,	 the	 default	 mixin
methods	 need	 a	 way	 to	 create	 new	 instances	 from	 an	 iterable.
The	class	constructor	is	assumed	to	have	a	signature	in	the	form
ClassName(iterable).	That	assumption	 is	 factored-out	 to	an
internal	 classmethod	 called	 _from_iterable()	 which	 calls
cls(iterable)	to	produce	a	new	set.	If	the	Set	mixin	is	being
used	in	a	class	with	a	different	constructor	signature,	you	will	need
to	 override	 _from_iterable()	 with	 a	 classmethod	 that	 can
construct	new	instances	from	an	iterable	argument.

2.	 To	 override	 the	 comparisons	 (presumably	 for	 speed,	 as	 the
semantics	 are	 fixed),	 redefine	 __le__()	 and	 then	 the	 other
operations	will	automatically	follow	suit.

3.	 The	Set	mixin	provides	a	_hash()	method	 to	 compute	a	hash
value	for	 the	set;	however,	__hash__()	 is	not	defined	because
not	 all	 sets	 are	 hashable	 or	 immutable.	 To	 add	 set	 hashabilty
using	 mixins,	 inherit	 from	 both	 Set()	 and	 Hashable(),	 then
define	__hash__	=	Set._hash.

See	also:

OrderedSet	recipe	for	an	example	built	on	MutableSet.
For	more	about	ABCs,	see	the	abc	module	and	PEP	3119.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://code.activestate.com/recipes/576694/
http://www.python.org/dev/peps/pep-3119
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.5.	heapq	—	Heap	queue
algorithm
Source	code:	Lib/heapq.py

This	module	provides	an	implementation	of	the	heap	queue	algorithm,
also	known	as	the	priority	queue	algorithm.

Heaps	are	binary	trees	for	which	every	parent	node	has	a	value	less
than	or	equal	 to	any	of	 its	children.	This	 implementation	uses	arrays
for	 which	 heap[k]	 <=	 heap[2*k+1]	 and	 heap[k]	 <=

heap[2*k+2]	for	all	k,	counting	elements	from	zero.	For	the	sake	of
comparison,	non-existing	elements	are	considered	 to	be	 infinite.	The
interesting	property	of	a	heap	is	that	its	smallest	element	is	always	the
root,	heap[0].

The	API	below	differs	 from	 textbook	heap	algorithms	 in	 two	aspects:
(a)	We	use	zero-based	indexing.	This	makes	the	relationship	between
the	 index	 for	 a	 node	 and	 the	 indexes	 for	 its	 children	 slightly	 less
obvious,	but	is	more	suitable	since	Python	uses	zero-based	indexing.
(b)	Our	pop	method	returns	the	smallest	item,	not	the	largest	(called	a
“min	 heap”	 in	 textbooks;	 a	 “max	 heap”	 is	 more	 common	 in	 texts
because	of	its	suitability	for	in-place	sorting).

These	two	make	 it	possible	to	view	the	heap	as	a	regular	Python	 list
without	surprises:	heap[0]	 is	 the	smallest	 item,	and	heap.sort()
maintains	the	heap	invariant!

To	create	a	heap,	use	a	 list	 initialized	 to	[],	or	you	can	 transform	a
populated	list	into	a	heap	via	function	heapify().

http://hg.python.org/cpython/file/3.4/Lib/heapq.py

The	following	functions	are	provided:

heapq.heappush(heap,	item)
Push	the	value	item	onto	the	heap,	maintaining	the	heap	invariant.

heapq.heappop(heap)
Pop	 and	 return	 the	 smallest	 item	 from	 the	heap,	 maintaining	 the
heap	invariant.	If	the	heap	is	empty,	IndexError	is	raised.

heapq.heappushpop(heap,	item)
Push	item	on	the	heap,	then	pop	and	return	the	smallest	item	from
the	 heap.	 The	 combined	 action	 runs	 more	 efficiently	 than
heappush()	followed	by	a	separate	call	to	heappop().

heapq.heapify(x)
Transform	list	x	into	a	heap,	in-place,	in	linear	time.

heapq.heapreplace(heap,	item)
Pop	and	return	the	smallest	item	from	the	heap,	and	also	push	the
new	 item.	 The	 heap	 size	 doesn’t	 change.	 If	 the	 heap	 is	 empty,
IndexError	is	raised.

This	 one	 step	 operation	 is	 more	 efficient	 than	 a	 heappop()
followed	 by	 heappush()	 and	 can	 be	 more	 appropriate	 when
using	a	fixed-size	heap.	The	pop/push	combination	always	returns
an	element	from	the	heap	and	replaces	it	with	item.

The	value	returned	may	be	larger	than	the	item	added.	If	that	isn’t
desired,	 consider	 using	 heappushpop()	 instead.	 Its	 push/pop
combination	 returns	 the	 smaller	 of	 the	 two	 values,	 leaving	 the
larger	value	on	the	heap.

The	 module	 also	 offers	 three	 general	 purpose	 functions	 based	 on

heaps.

heapq.merge(*iterables)
Merge	 multiple	 sorted	 inputs	 into	 a	 single	 sorted	 output	 (for
example,	 merge	 timestamped	 entries	 from	 multiple	 log	 files).
Returns	an	iterator	over	the	sorted	values.

Similar	 to	 sorted(itertools.chain(*iterables))	 but
returns	an	iterable,	does	not	pull	the	data	into	memory	all	at	once,
and	 assumes	 that	 each	 of	 the	 input	 streams	 is	 already	 sorted
(smallest	to	largest).

heapq.nlargest(n,	iterable,	key=None)
Return	a	 list	with	 the	n	 largest	elements	 from	 the	dataset	defined
by	 iterable.	key,	 if	 provided,	 specifies	a	 function	of	 one	argument
that	is	used	to	extract	a	comparison	key	from	each	element	in	the
iterable:	 key=str.lower	 Equivalent	 to:	 sorted(iterable,
key=key,	reverse=True)[:n]

heapq.nsmallest(n,	iterable,	key=None)
Return	a	list	with	the	n	smallest	elements	from	the	dataset	defined
by	 iterable.	key,	 if	 provided,	 specifies	a	 function	of	 one	argument
that	is	used	to	extract	a	comparison	key	from	each	element	in	the
iterable:	 key=str.lower	 Equivalent	 to:	 sorted(iterable,
key=key)[:n]

The	latter	two	functions	perform	best	for	smaller	values	of	n.	For	larger
values,	 it	 is	more	efficient	 to	use	the	sorted()	function.	Also,	when
n==1,	 it	 is	 more	 efficient	 to	 use	 the	 built-in	 min()	 and	 max()
functions.

8.5.1.	Basic	Examples

A	heapsort	can	be	implemented	by	pushing	all	values	onto	a	heap	and
then	popping	off	the	smallest	values	one	at	a	time:

>>>	def	heapsort(iterable):

...					'Equivalent	to	sorted(iterable)'

...					h	=	[]

...					for	value	in	iterable:

...									heappush(h,	value)

...					return	[heappop(h)	for	i	in	range(len(h))]

...

>>>	heapsort([1,	3,	5,	7,	9,	2,	4,	6,	8,	0])

[0,	1,	2,	3,	4,	5,	6,	7,	8,	9]

Heap	elements	can	be	tuples.	This	is	useful	for	assigning	comparison
values	 (such	 as	 task	 priorities)	 alongside	 the	 main	 record	 being
tracked:

>>>	h	=	[]

>>>	heappush(h,	(5,	'write	code'))

>>>	heappush(h,	(7,	'release	product'))

>>>	heappush(h,	(1,	'write	spec'))

>>>	heappush(h,	(3,	'create	tests'))

>>>	heappop(h)

(1,	'write	spec')

http://en.wikipedia.org/wiki/Heapsort

8.5.2.	Priority	Queue	Implementation
Notes

A	priority	 queue	 is	 common	 use	 for	 a	 heap,	 and	 it	 presents	 several
implementation	challenges:

Sort	stability:	how	do	you	get	two	tasks	with	equal	priorities	to	be
returned	in	the	order	they	were	originally	added?
Tuple	 comparison	 breaks	 for	 (priority,	 task)	 pairs	 if	 the	 priorities
are	equal	and	the	tasks	do	not	have	a	default	comparison	order.
If	 the	 priority	 of	 a	 task	 changes,	 how	 do	 you	move	 it	 to	 a	 new
position	in	the	heap?
Or	if	a	pending	task	needs	to	be	deleted,	how	do	you	find	 it	and
remove	it	from	the	queue?

A	solution	 to	 the	 first	 two	challenges	 is	 to	store	entries	as	3-element
list	including	the	priority,	an	entry	count,	and	the	task.	The	entry	count
serves	 as	 a	 tie-breaker	 so	 that	 two	 tasks	with	 the	 same	 priority	 are
returned	in	the	order	they	were	added.	And	since	no	two	entry	counts
are	 the	 same,	 the	 tuple	 comparison	 will	 never	 attempt	 to	 directly
compare	two	tasks.

The	remaining	challenges	 revolve	around	 finding	a	pending	 task	and
making	 changes	 to	 its	 priority	 or	 removing	 it	 entirely.	 Finding	 a	 task
can	be	done	with	a	dictionary	pointing	to	an	entry	in	the	queue.

Removing	the	entry	or	changing	its	priority	is	more	difficult	because	it
would	break	the	heap	structure	invariants.	So,	a	possible	solution	is	to
mark	 the	 entry	 as	 removed	 and	 add	 a	 new	 entry	 with	 the	 revised
priority:

pq	=	[]																									#	list	of	entries	arranged	in	a	heap

entry_finder	=	{}															#	mapping	of	tasks	to	entries

http://en.wikipedia.org/wiki/Priority_queue

REMOVED	=	'<removed-task>'						#	placeholder	for	a	removed	task

counter	=	itertools.count()					#	unique	sequence	count

def	add_task(task,	priority=0):

				'Add	a	new	task	or	update	the	priority	of	an	existing	task'

				if	task	in	entry_finder:

								remove_task(task)

				count	=	next(counter)

				entry	=	[priority,	count,	task]

				entry_finder[task]	=	entry

				heappush(pq,	entry)

def	remove_task(task):

				'Mark	an	existing	task	as	REMOVED.		Raise	KeyError	if	not	found.'

				entry	=	entry_finder.pop(task)

				entry[-1]	=	REMOVED

def	pop_task():

				'Remove	and	return	the	lowest	priority	task.	Raise	KeyError	if	empty.'

				while	pq:

								priority,	count,	task	=	heappop(pq)

								if	task	is	not	REMOVED:

												del	entry_finder[task]

												return	task

				raise	KeyError('pop	from	an	empty	priority	queue'

8.5.3.	Theory

Heaps	 are	 arrays	 for	 which	 a[k]	 <=	 a[2*k+1]	 and	 a[k]	 <=
a[2*k+2]	 for	 all	 k,	 counting	 elements	 from	 0.	 For	 the	 sake	 of
comparison,	non-existing	elements	are	considered	 to	be	 infinite.	The
interesting	 property	 of	 a	 heap	 is	 that	 a[0]	 is	 always	 its	 smallest
element.

The	 strange	 invariant	 above	 is	 meant	 to	 be	 an	 efficient	 memory
representation	for	a	tournament.	The	numbers	below	are	k,	not	a[k]:

																															0

														1																																	2

						3															4																5															

		7							8							9							10						11						12						13

15	16			17	18			19	20			21	22			23	24			25	26			27	28

In	 the	 tree	 above,	 each	 cell	 k	 is	 topping	 2*k+1	 and	 2*k+2.	 In	 an
usual	binary	tournament	we	see	in	sports,	each	cell	is	the	winner	over
the	two	cells	it	tops,	and	we	can	trace	the	winner	down	the	tree	to	see
all	 opponents	 s/he	 had.	 However,	 in	 many	 computer	 applications	 of
such	tournaments,	we	do	not	need	to	trace	the	history	of	a	winner.	To
be	 more	 memory	 efficient,	 when	 a	 winner	 is	 promoted,	 we	 try	 to
replace	 it	 by	 something	 else	 at	 a	 lower	 level,	 and	 the	 rule	 becomes
that	a	cell	and	the	two	cells	it	tops	contain	three	different	items,	but	the
top	cell	“wins”	over	the	two	topped	cells.

If	 this	 heap	 invariant	 is	 protected	 at	 all	 time,	 index	 0	 is	 clearly	 the

overall	winner.	The	simplest	algorithmic	way	to	remove	it	and	find	the
“next”	winner	 is	 to	move	some	 loser	 (let’s	say	cell	30	 in	 the	diagram
above)	 into	 the	 0	 position,	 and	 then	 percolate	 this	 new	 0	 down	 the
tree,	 exchanging	 values,	 until	 the	 invariant	 is	 re-established.	 This	 is
clearly	logarithmic	on	the	total	number	of	items	in	the	tree.	By	iterating
over	all	items,	you	get	an	O(n	log	n)	sort.

A	nice	 feature	of	 this	sort	 is	 that	 you	can	efficiently	 insert	new	 items
while	 the	 sort	 is	 going	 on,	 provided	 that	 the	 inserted	 items	 are	 not
“better”	 than	 the	 last	 0’th	 element	 you	 extracted.	 This	 is	 especially
useful	in	simulation	contexts,	where	the	tree	holds	all	incoming	events,
and	the	“win”	condition	means	the	smallest	scheduled	time.	When	an
event	 schedules	 other	 events	 for	 execution,	 they	 are	 scheduled	 into
the	future,	so	they	can	easily	go	 into	the	heap.	So,	a	heap	is	a	good
structure	for	implementing	schedulers	(this	is	what	I	used	for	my	MIDI
sequencer	:-).

Various	structures	for	implementing	schedulers	have	been	extensively
studied,	and	heaps	are	good	for	this,	as	they	are	reasonably	speedy,
the	speed	is	almost	constant,	and	the	worst	case	is	not	much	different
than	 the	 average	 case.	 However,	 there	 are	 other	 representations
which	are	more	efficient	overall,	yet	the	worst	cases	might	be	terrible.

Heaps	 are	 also	 very	 useful	 in	 big	 disk	 sorts.	 You	most	 probably	 all
know	 that	 a	 big	 sort	 implies	 producing	 “runs”	 (which	 are	 pre-sorted
sequences,	 which	 size	 is	 usually	 related	 to	 the	 amount	 of	 CPU
memory),	followed	by	a	merging	passes	for	these	runs,	which	merging
is	often	very	cleverly	organised	[1].	 It	 is	very	 important	 that	 the	 initial
sort	produces	the	longest	runs	possible.	Tournaments	are	a	good	way
to	 that.	 If,	 using	 all	 the	memory	 available	 to	 hold	 a	 tournament,	 you
replace	 and	 percolate	 items	 that	 happen	 to	 fit	 the	 current	 run,	 you’ll
produce	runs	which	are	twice	the	size	of	the	memory	for	random	input,
and	much	better	for	input	fuzzily	ordered.

Moreover,	 if	 you	output	 the	0’th	 item	on	disk	and	get	an	 input	which
may	not	 fit	 in	 the	current	 tournament	 (because	 the	value	 “wins”	over
the	last	output	value),	it	cannot	fit	in	the	heap,	so	the	size	of	the	heap
decreases.	 The	 freed	memory	 could	 be	 cleverly	 reused	 immediately
for	progressively	building	a	second	heap,	which	grows	at	exactly	 the
same	 rate	 the	 first	 heap	 is	 melting.	When	 the	 first	 heap	 completely
vanishes,	 you	 switch	 heaps	 and	 start	 a	 new	 run.	 Clever	 and	 quite
effective!

In	a	word,	heaps	are	useful	memory	structures	to	know.	I	use	them	in
a	 few	 applications,	 and	 I	 think	 it	 is	 good	 to	 keep	 a	 ‘heap’	 module
around.	:-)

Footnotes

[1]

The	disk	balancing	algorithms	which	are	current,	nowadays,
are	more	annoying	than	clever,	and	this	is	a	consequence	of
the	seeking	capabilities	of	the	disks.	On	devices	which	cannot
seek,	like	big	tape	drives,	the	story	was	quite	different,	and	one
had	to	be	very	clever	to	ensure	(far	in	advance)	that	each	tape
movement	will	be	the	most	effective	possible	(that	is,	will	best
participate	at	“progressing”	the	merge).	Some	tapes	were	even
able	to	read	backwards,	and	this	was	also	used	to	avoid	the
rewinding	time.	Believe	me,	real	good	tape	sorts	were	quite
spectacular	to	watch!	From	all	times,	sorting	has	always	been	a
Great	Art!	:-)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.6.	bisect	—	Array	bisection
algorithm
Source	code:	Lib/bisect.py

This	 module	 provides	 support	 for	 maintaining	 a	 list	 in	 sorted	 order
without	 having	 to	 sort	 the	 list	 after	 each	 insertion.	 For	 long	 lists	 of
items	 with	 expensive	 comparison	 operations,	 this	 can	 be	 an
improvement	over	the	more	common	approach.	The	module	 is	called
bisect	 because	 it	 uses	 a	 basic	 bisection	 algorithm	 to	 do	 its	 work.
The	 source	 code	may	 be	most	 useful	 as	 a	 working	 example	 of	 the
algorithm	(the	boundary	conditions	are	already	right!).

The	following	functions	are	provided:

bisect.bisect_left(a,	x,	lo=0,	hi=len(a))
Locate	 the	 insertion	point	 for	x	 in	a	 to	maintain	sorted	order.	The
parameters	 lo	and	hi	may	 be	 used	 to	 specify	 a	 subset	 of	 the	 list
which	should	be	considered;	by	default	the	entire	list	is	used.	If	x	is
already	present	in	a,	the	insertion	point	will	be	before	(to	the	left	of)
any	existing	entries.	The	return	value	is	suitable	for	use	as	the	first
parameter	to	list.insert()	assuming	that	a	is	already	sorted.

The	returned	insertion	point	i	partitions	the	array	a	 into	two	halves
so	that	all(val	<	x	for	val	in	a[lo:i])	 for	 the	 left	side
and	all(val	>=	x	for	val	in	a[i:hi])	for	the	right	side.

bisect.bisect_right(a,	x,	lo=0,	hi=len(a))
bisect.bisect(a,	x,	lo=0,	hi=len(a))

Similar	 to	 bisect_left(),	 but	 returns	 an	 insertion	 point	 which

http://hg.python.org/cpython/file/3.4/Lib/bisect.py

comes	after	(to	the	right	of)	any	existing	entries	of	x	in	a.

The	returned	insertion	point	i	partitions	the	array	a	 into	two	halves
so	that	all(val	<=	x	for	val	in	a[lo:i])	for	the	left	side
and	all(val	>	x	for	val	in	a[i:hi])	for	the	right	side.

bisect.insort_left(a,	x,	lo=0,	hi=len(a))
Insert	 x	 in	 a	 in	 sorted	 order.	 This	 is	 equivalent	 to
a.insert(bisect.bisect_left(a,	 x,	 lo,	 hi),	 x)

assuming	that	a	 is	already	sorted.	Keep	 in	mind	 that	 the	O(log	n)
search	is	dominated	by	the	slow	O(n)	insertion	step.

bisect.insort_right(a,	x,	lo=0,	hi=len(a))
bisect.insort(a,	x,	lo=0,	hi=len(a))

Similar	to	insort_left(),	but	 inserting	x	 in	a	after	any	existing
entries	of	x.

See	also: 	SortedCollection	recipe	that	uses	bisect	to	build	a	full-
featured	collection	class	with	straight-forward	search	methods	and
support	for	a	key-function.	The	keys	are	precomputed	to	save
unnecessary	calls	to	the	key	function	during	searches.

http://code.activestate.com/recipes/577197-sortedcollection/

8.6.1.	Searching	Sorted	Lists

The	above	bisect()	 functions	are	useful	 for	 finding	 insertion	points
but	can	be	tricky	or	awkward	to	use	for	common	searching	tasks.	The
following	five	functions	show	how	to	transform	them	into	the	standard
lookups	for	sorted	lists:

def	index(a,	x):

				'Locate	the	leftmost	value	exactly	equal	to	x'

				i	=	bisect_left(a,	x)

				if	i	!=	len(a)	and	a[i]	==	x:

								return	i

				raise	ValueError

def	find_lt(a,	x):

				'Find	rightmost	value	less	than	x'

				i	=	bisect_left(a,	x)

				if	i:

								return	a[i-1]

				raise	ValueError

def	find_le(a,	x):

				'Find	rightmost	value	less	than	or	equal	to	x'

				i	=	bisect_right(a,	x)

				if	i:

								return	a[i-1]

				raise	ValueError

def	find_gt(a,	x):

				'Find	leftmost	value	greater	than	x'

				i	=	bisect_right(a,	x)

				if	i	!=	len(a):

								return	a[i]

				raise	ValueError

def	find_ge(a,	x):

				'Find	leftmost	item	greater	than	or	equal	to	x'

				i	=	bisect_left(a,	x)

				if	i	!=	len(a):

								return	a[i]

				raise	ValueError

8.6.2.	Other	Examples

The	bisect()	function	can	be	useful	for	numeric	table	lookups.	This
example	uses	bisect()	to	look	up	a	letter	grade	for	an	exam	score
(say)	based	on	a	set	of	ordered	numeric	breakpoints:	90	and	up	is	an
‘A’,	80	to	89	is	a	‘B’,	and	so	on:

>>>	def	grade(score,	breakpoints=[60,	70,	80,	90],	grades

...					i	=	bisect(breakpoints,	score)

...					return	grades[i]

...

>>>	[grade(score)	for	score	in	[33,	99,	77,	70,	89,	

['F',	'A',	'C',	'C',	'B',	'A',	'A']

Unlike	 the	 sorted()	 function,	 it	 does	 not	 make	 sense	 for	 the
bisect()	functions	to	have	key	or	reversed	arguments	because	that
would	lead	to	an	inefficient	design	(successive	calls	to	bisect	functions
would	not	“remember”	all	of	the	previous	key	lookups).

Instead,	 it	 is	 better	 to	 search	 a	 list	 of	 precomputed	 keys	 to	 find	 the
index	of	the	record	in	question:

>>>	data	=	[('red',	5),	('blue',	1),	('yellow',	8),	

>>>	data.sort(key=lambda	r:	r[1])

>>>	keys	=	[r[1]	for	r	in	data]									#	precomputed	list	of	keys

>>>	data[bisect_left(keys,	0)]

('black',	0)

>>>	data[bisect_left(keys,	1)]

('blue',	1)

>>>	data[bisect_left(keys,	5)]

('red',	5)

>>>	data[bisect_left(keys,	8)]

('yellow',	8)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.7.	array	—	Efficient	arrays	of
numeric	values
This	module	defines	an	object	type	which	can	compactly	represent	an
array	 of	 basic	 values:	 characters,	 integers,	 floating	 point	 numbers.
Arrays	 are	 sequence	 types	 and	 behave	 very	much	 like	 lists,	 except
that	 the	 type	 of	 objects	 stored	 in	 them	 is	 constrained.	 The	 type	 is
specified	at	object	creation	time	by	using	a	type	code,	which	is	a	single
character.	The	following	type	codes	are	defined:

Type
code C	Type Python	Type Minimum	size

in	bytes Notes

'b' signed	char int 1 	

'B' unsigned	char int 1 	

'u' Py_UNICODE Unicode
character 2 (1)

'h' signed	short int 2 	

'H' unsigned	short int 2 	

'i' signed	int int 2 	

'I' unsigned	int int 2 	

'l' signed	long int 4 	

'L' unsigned	long int 4 	

'q'
signed	long
long int 8 (2)

'Q'
unsigned	long
long int 8 (2)

'f' float float 4 	

'd' double float 8 	

Notes:

1.	 The	 'u'	 type	 code	 corresponds	 to	 Python’s	 obsolete	 unicode
character	 (Py_UNICODE	 which	 is	 wchar_t).	 Depending	 on	 the
platform,	it	can	be	16	bits	or	32	bits.

'u'	will	 be	 removed	 together	with	 the	 rest	 of	 the	 Py_UNICODE
API.

Deprecated	since	version	3.3,	will	be	removed	in	version	4.0.

2.	 The	'q'	and	'Q'	type	codes	are	available	only	if	the	platform	C
compiler	 used	 to	 build	 Python	 supports	 C	 long	 long,	 or,	 on
Windows,	__int64.

New	in	version	3.3.

The	 actual	 representation	 of	 values	 is	 determined	 by	 the	 machine
architecture	 (strictly	 speaking,	 by	 the	 C	 implementation).	 The	 actual
size	can	be	accessed	through	the	itemsize	attribute.

The	module	defines	the	following	type:

class	array.array(typecode[,	initializer])
A	new	array	whose	items	are	restricted	by	typecode,	and	initialized
from	the	optional	initializer	value,	which	must	be	a	list,	a	bytes-like
object,	or	iterable	over	elements	of	the	appropriate	type.

If	given	a	 list	or	string,	 the	 initializer	 is	passed	 to	 the	new	array’s
fromlist(),	 frombytes(),	 or	 fromunicode()	 method	 (see
below)	 to	 add	 initial	 items	 to	 the	 array.	 Otherwise,	 the	 iterable

initializer	is	passed	to	the	extend()	method.

array.typecodes

A	string	with	all	available	type	codes.

Array	 objects	 support	 the	 ordinary	 sequence	 operations	 of	 indexing,
slicing,	 concatenation,	 and	 multiplication.	 When	 using	 slice
assignment,	the	assigned	value	must	be	an	array	object	with	the	same
type	code;	in	all	other	cases,	TypeError	is	raised.	Array	objects	also
implement	 the	buffer	 interface,	and	may	be	used	wherever	bytes-like
objects	are	supported.

The	following	data	items	and	methods	are	also	supported:

array.typecode

The	typecode	character	used	to	create	the	array.

array.itemsize

The	length	in	bytes	of	one	array	item	in	the	internal	representation.

array.append(x)
Append	a	new	item	with	value	x	to	the	end	of	the	array.

array.buffer_info()
Return	a	 tuple	 (address,	length)	 giving	 the	 current	memory
address	 and	 the	 length	 in	 elements	 of	 the	 buffer	 used	 to	 hold
array’s	 contents.	 The	 size	 of	 the	memory	 buffer	 in	 bytes	 can	 be
computed	as	array.buffer_info()[1]	*	array.itemsize.
This	 is	 occasionally	 useful	 when	 working	 with	 low-level	 (and
inherently	 unsafe)	 I/O	 interfaces	 that	 require	memory	 addresses,
such	 as	 certain	 ioctl()	 operations.	 The	 returned	 numbers	 are
valid	as	long	as	the	array	exists	and	no	length-changing	operations
are	applied	to	it.

Note: 	When	using	array	objects	 from	code	written	 in	C	or	C++
(the	 only	 way	 to	 effectively	 make	 use	 of	 this	 information),	 it
makes	more	sense	to	use	the	buffer	interface	supported	by	array
objects.	 This	 method	 is	 maintained	 for	 backward	 compatibility
and	 should	 be	 avoided	 in	 new	 code.	 The	 buffer	 interface	 is
documented	in	Buffer	Protocol.

array.byteswap()
“Byteswap”	all	items	of	the	array.	This	is	only	supported	for	values
which	 are	 1,	 2,	 4,	 or	 8	 bytes	 in	 size;	 for	 other	 types	 of	 values,
RuntimeError	is	raised.	It	is	useful	when	reading	data	from	a	file
written	on	a	machine	with	a	different	byte	order.

array.count(x)
Return	the	number	of	occurrences	of	x	in	the	array.

array.extend(iterable)
Append	 items	 from	 iterable	 to	 the	 end	 of	 the	 array.	 If	 iterable	 is
another	 array,	 it	 must	 have	 exactly	 the	 same	 type	 code;	 if	 not,
TypeError	 will	 be	 raised.	 If	 iterable	 is	 not	 an	 array,	 it	 must	 be
iterable	and	its	elements	must	be	the	right	type	to	be	appended	to
the	array.

array.frombytes(s)
Appends	items	from	the	string,	interpreting	the	string	as	an	array	of
machine	 values	 (as	 if	 it	 had	 been	 read	 from	 a	 file	 using	 the
fromfile()	method).

New	in	version	3.2:	fromstring()	is	renamed	to	frombytes()
for	clarity.

array.fromfile(f,	n)

Read	n	items	(as	machine	values)	from	the	file	object	f	and	append
them	 to	 the	 end	 of	 the	 array.	 If	 less	 than	 n	 items	 are	 available,
EOFError	 is	 raised,	 but	 the	 items	 that	 were	 available	 are	 still
inserted	 into	 the	 array.	 f	 must	 be	 a	 real	 built-in	 file	 object;
something	else	with	a	read()	method	won’t	do.

array.fromlist(list)
Append	items	from	the	list.	This	is	equivalent	to	for	x	in	list:
a.append(x)	 except	 that	 if	 there	 is	 a	 type	 error,	 the	 array	 is
unchanged.

array.fromstring()
Deprecated	alias	for	frombytes().

array.fromunicode(s)
Extends	 this	 array	 with	 data	 from	 the	 given	 unicode	 string.	 The
array	 must	 be	 a	 type	 'u'	 array;	 otherwise	 a	 ValueError	 is
raised.	 Use
array.frombytes(unicodestring.encode(enc))	 to
append	Unicode	data	to	an	array	of	some	other	type.

array.index(x)
Return	the	smallest	i	such	that	i	is	the	index	of	the	first	occurrence
of	x	in	the	array.

array.insert(i,	x)
Insert	 a	 new	 item	 with	 value	 x	 in	 the	 array	 before	 position	 i.
Negative	 values	 are	 treated	 as	 being	 relative	 to	 the	 end	 of	 the
array.

array.pop([i])
Removes	 the	 item	with	 the	 index	 i	 from	 the	 array	 and	 returns	 it.

The	 optional	 argument	 defaults	 to	 -1,	 so	 that	 by	 default	 the	 last
item	is	removed	and	returned.

array.remove(x)
Remove	the	first	occurrence	of	x	from	the	array.

array.reverse()
Reverse	the	order	of	the	items	in	the	array.

array.tobytes()
Convert	 the	 array	 to	 an	 array	 of	 machine	 values	 and	 return	 the
bytes	 representation	 (the	 same	 sequence	 of	 bytes	 that	would	 be
written	to	a	file	by	the	tofile()	method.)

New	 in	 version	 3.2:	 tostring()	 is	 renamed	 to	 tobytes()	 for
clarity.

array.tofile(f)
Write	all	items	(as	machine	values)	to	the	file	object	f.

array.tolist()
Convert	the	array	to	an	ordinary	list	with	the	same	items.

array.tostring()
Deprecated	alias	for	tobytes().

array.tounicode()
Convert	 the	 array	 to	 a	 unicode	 string.	 The	 array	must	 be	 a	 type
'u'	 array;	 otherwise	 a	 ValueError	 is	 raised.	 Use
array.tobytes().decode(enc)	 to	 obtain	 a	 unicode	 string
from	an	array	of	some	other	type.

When	 an	 array	 object	 is	 printed	 or	 converted	 to	 a	 string,	 it	 is

represented	as	array(typecode,	initializer).	The	initializer	is
omitted	if	the	array	is	empty,	otherwise	it	 is	a	string	if	the	typecode	 is
'u',	otherwise	 it	 is	a	 list	of	numbers.	The	string	 is	guaranteed	 to	be
able	 to	be	converted	back	 to	an	array	with	 the	same	 type	and	value
using	eval(),	 so	 long	as	 the	array()	 function	has	been	 imported
using	from	array	import	array.	Examples:

array('l')

array('u',	'hello	\u2641')

array('l',	[1,	2,	3,	4,	5])

array('d',	[1.0,	2.0,	3.14])

See	also:

Module	struct
Packing	and	unpacking	of	heterogeneous	binary	data.

Module	xdrlib
Packing	 and	 unpacking	 of	 External	Data	Representation	 (XDR)
data	as	used	in	some	remote	procedure	call	systems.

The	Numerical	Python	Documentation
The	 Numeric	 Python	 extension	 (NumPy)	 defines	 another	 array
type;	 see	 http://www.numpy.org/	 for	 further	 information	 about
Numerical	Python.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://docs.scipy.org/doc/
http://www.numpy.org/
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.8.	weakref	—	Weak	references

Source	code:	Lib/weakref.py

The	weakref	module	allows	the	Python	programmer	to	create	weak
references	to	objects.

In	the	following,	the	term	referent	means	the	object	which	is	referred	to
by	a	weak	reference.

A	weak	reference	to	an	object	is	not	enough	to	keep	the	object	alive:
when	the	only	remaining	references	to	a	referent	are	weak	references,
garbage	collection	is	free	to	destroy	the	referent	and	reuse	its	memory
for	something	else.	However,	until	the	object	is	actually	destroyed	the
weak	 reference	 may	 return	 the	 object	 even	 if	 there	 are	 no	 strong
references	to	it.

A	 primary	 use	 for	 weak	 references	 is	 to	 implement	 caches	 or
mappings	holding	 large	objects,	where	 it’s	desired	that	a	 large	object
not	be	kept	alive	solely	because	it	appears	in	a	cache	or	mapping.

For	example,	if	you	have	a	number	of	large	binary	image	objects,	you
may	 wish	 to	 associate	 a	 name	 with	 each.	 If	 you	 used	 a	 Python
dictionary	 to	map	names	 to	 images,	 or	 images	 to	names,	 the	 image
objects	would	 remain	alive	 just	 because	 they	appeared	as	 values	or
keys	 in	 the	 dictionaries.	 The	 WeakKeyDictionary	 and
WeakValueDictionary	 classes	 supplied	 by	 the	 weakref	 module
are	an	alternative,	using	weak	 references	 to	construct	mappings	 that
don’t	 keep	 objects	 alive	 solely	 because	 they	 appear	 in	 the	mapping
objects.	 If,	 for	 example,	 an	 image	 object	 is	 a	 value	 in	 a
WeakValueDictionary,	then	when	the	last	remaining	references	to

http://hg.python.org/cpython/file/3.4/Lib/weakref.py

that	 image	 object	 are	 the	 weak	 references	 held	 by	 weak	mappings,
garbage	 collection	 can	 reclaim	 the	 object,	 and	 its	 corresponding
entries	in	weak	mappings	are	simply	deleted.

WeakKeyDictionary	 and	 WeakValueDictionary	 use	 weak
references	in	their	implementation,	setting	up	callback	functions	on	the
weak	references	that	notify	the	weak	dictionaries	when	a	key	or	value
has	been	 reclaimed	by	garbage	collection.	WeakSet	 implements	 the
set	 interface,	but	keeps	weak	 references	 to	 its	elements,	 just	 like	a
WeakKeyDictionary	does.

finalize	 provides	 a	 straight	 forward	 way	 to	 register	 a	 cleanup
function	 to	 be	 called	 when	 an	 object	 is	 garbage	 collected.	 This	 is
simpler	 to	 use	 than	 setting	 up	 a	 callback	 function	 on	 a	 raw	 weak
reference,	 since	 the	 module	 automatically	 ensures	 that	 the	 finalizer
remains	alive	until	the	object	is	collected.

Most	 programs	 should	 find	 that	 using	 one	 of	 these	 weak	 container
types	 or	 finalize	 is	 all	 they	 need	 –	 it’s	 not	 usually	 necessary	 to
create	your	own	weak	references	directly.	The	 low-level	machinery	 is
exposed	by	the	weakref	module	for	the	benefit	of	advanced	uses.

Not	 all	 objects	 can	 be	 weakly	 referenced;	 those	 objects	 which	 can
include	 class	 instances,	 functions	 written	 in	 Python	 (but	 not	 in	 C),
instance	methods,	sets,	frozensets,	some	file	objects,	generators,	type
objects,	 sockets,	 arrays,	 deques,	 regular	 expression	 pattern	 objects,
and	code	objects.

Changed	 in	 version	 3.2:	 Added	 support	 for	 thread.lock,
threading.Lock,	and	code	objects.

Several	built-in	types	such	as	list	and	dict	do	not	directly	support
weak	references	but	can	add	support	through	subclassing:

class	Dict(dict):

				pass

obj	=	Dict(red=1,	green=2,	blue=3)			#	this	object	is	weak	referenceable

Other	 built-in	 types	 such	 as	 tuple	 and	 int	 do	 not	 support	 weak
references	 even	 when	 subclassed	 (This	 is	 an	 implementation	 detail
and	may	be	different	across	various	Python	implementations.).

Extension	types	can	easily	be	made	to	support	weak	references;	see
Weak	Reference	Support.

class	weakref.ref(object[,	callback])
Return	 a	 weak	 reference	 to	 object.	 The	 original	 object	 can	 be
retrieved	by	calling	the	reference	object	if	the	referent	is	still	alive;	if
the	 referent	 is	 no	 longer	 alive,	 calling	 the	 reference	 object	 will
cause	None	 to	be	returned.	 If	callback	 is	provided	and	not	None,
and	 the	 returned	weakref	 object	 is	 still	 alive,	 the	 callback	will	 be
called	when	the	object	is	about	to	be	finalized;	the	weak	reference
object	 will	 be	 passed	 as	 the	 only	 parameter	 to	 the	 callback;	 the
referent	will	no	longer	be	available.

It	 is	allowable	for	many	weak	references	to	be	constructed	for	the
same	object.	Callbacks	registered	for	each	weak	reference	will	be
called	 from	 the	 most	 recently	 registered	 callback	 to	 the	 oldest
registered	callback.

Exceptions	 raised	 by	 the	 callback	 will	 be	 noted	 on	 the	 standard
error	output,	but	cannot	be	propagated;	they	are	handled	in	exactly
the	same	way	as	exceptions	 raised	 from	an	object’s	__del__()
method.

Weak	references	are	hashable	 if	 the	object	 is	hashable.	They	will
maintain	 their	 hash	 value	 even	 after	 the	 object	 was	 deleted.	 If
hash()	 is	 called	 the	 first	 time	only	 after	 the	object	was	 deleted,
the	call	will	raise	TypeError.

Weak	references	support	tests	for	equality,	but	not	ordering.	If	 the
referents	 are	 still	 alive,	 two	 references	 have	 the	 same	 equality
relationship	as	their	referents	(regardless	of	the	callback).	 If	either
referent	 has	 been	 deleted,	 the	 references	 are	 equal	 only	 if	 the
reference	objects	are	the	same	object.

This	is	a	subclassable	type	rather	than	a	factory	function.

__callback__

This	 read-only	 attribute	 returns	 the	 callback	 currently
associated	 to	 the	 weakref.	 If	 there	 is	 no	 callback	 or	 if	 the
referent	of	the	weakref	is	no	longer	alive	then	this	attribute	will
have	value	None.

Changed	in	version	3.4:	Added	the	__callback__	attribute.

weakref.proxy(object[,	callback])
Return	 a	 proxy	 to	 object	 which	 uses	 a	 weak	 reference.	 This
supports	use	of	the	proxy	in	most	contexts	instead	of	requiring	the
explicit	 dereferencing	 used	 with	 weak	 reference	 objects.	 The
returned	 object	 will	 have	 a	 type	 of	 either	 ProxyType	 or
CallableProxyType,	 depending	 on	 whether	 object	 is	 callable.
Proxy	 objects	 are	 not	 hashable	 regardless	 of	 the	 referent;	 this
avoids	 a	 number	 of	 problems	 related	 to	 their	 fundamentally
mutable	nature,	and	prevent	their	use	as	dictionary	keys.	callback
is	 the	 same	 as	 the	 parameter	 of	 the	 same	 name	 to	 the	 ref()
function.

weakref.getweakrefcount(object)
Return	 the	number	of	weak	references	and	proxies	which	refer	 to
object.

weakref.getweakrefs(object)
Return	a	list	of	all	weak	reference	and	proxy	objects	which	refer	to
object.

class	weakref.WeakKeyDictionary([dict])
Mapping	 class	 that	 references	 keys	 weakly.	 Entries	 in	 the
dictionary	 will	 be	 discarded	 when	 there	 is	 no	 longer	 a	 strong
reference	to	the	key.	This	can	be	used	to	associate	additional	data
with	 an	 object	 owned	 by	 other	 parts	 of	 an	 application	 without
adding	 attributes	 to	 those	 objects.	 This	 can	 be	 especially	 useful
with	objects	that	override	attribute	accesses.

Note: 	Caution:	Because	a	WeakKeyDictionary	is	built	on	top
of	 a	 Python	 dictionary,	 it	 must	 not	 change	 size	 when	 iterating
over	 it.	 This	 can	 be	 difficult	 to	 ensure	 for	 a
WeakKeyDictionary	 because	 actions	 performed	 by	 the
program	 during	 iteration	 may	 cause	 items	 in	 the	 dictionary	 to
vanish	“by	magic”	(as	a	side	effect	of	garbage	collection).

WeakKeyDictionary	objects	have	the	following	additional	methods.
These	expose	the	internal	references	directly.	The	references	are	not
guaranteed	 to	 be	 “live”	 at	 the	 time	 they	 are	 used,	 so	 the	 result	 of
calling	 the	 references	 needs	 to	 be	 checked	 before	 being	 used.	 This
can	be	used	to	avoid	creating	references	that	will	cause	the	garbage
collector	to	keep	the	keys	around	longer	than	needed.

WeakKeyDictionary.keyrefs()
Return	an	iterable	of	the	weak	references	to	the	keys.

class	weakref.WeakValueDictionary([dict])
Mapping	 class	 that	 references	 values	 weakly.	 Entries	 in	 the
dictionary	will	be	discarded	when	no	strong	reference	to	the	value
exists	any	more.

Note: 	Caution:	Because	a	WeakValueDictionary	 is	built	on
top	of	a	Python	dictionary,	it	must	not	change	size	when	iterating
over	 it.	 This	 can	 be	 difficult	 to	 ensure	 for	 a
WeakValueDictionary	 because	 actions	 performed	 by	 the
program	 during	 iteration	 may	 cause	 items	 in	 the	 dictionary	 to
vanish	“by	magic”	(as	a	side	effect	of	garbage	collection).

WeakValueDictionary	 objects	 have	 the	 following	 additional
methods.	 These	 method	 have	 the	 same	 issues	 as	 the	 and
keyrefs()	method	of	WeakKeyDictionary	objects.

WeakValueDictionary.valuerefs()
Return	an	iterable	of	the	weak	references	to	the	values.

class	weakref.WeakSet([elements])
Set	class	that	keeps	weak	references	to	 its	elements.	An	element
will	be	discarded	when	no	strong	reference	to	it	exists	any	more.

class	weakref.WeakMethod(method)
A	 custom	 ref	 subclass	 which	 simulates	 a	 weak	 reference	 to	 a
bound	method	(i.e.,	a	method	defined	on	a	class	and	looked	up	on
an	 instance).	 Since	 a	 bound	 method	 is	 ephemeral,	 a	 standard
weak	 reference	cannot	 keep	hold	of	 it.	 WeakMethod	 has	 special
code	 to	 recreate	 the	 bound	method	 until	 either	 the	 object	 or	 the
original	function	dies:

>>>	class	C:

...					def	method(self):

...									print("method	called!")

...

>>>	c	=	C()

>>>	r	=	weakref.ref(c.method)

>>>	r()

>>>	r	=	weakref.WeakMethod(c.method)

>>>	r()

<bound	method	C.method	of	<__main__.C	object	at	0x7fc859830220>>

>>>	r()()

method	called!

>>>	del	c

>>>	gc.collect()

0

>>>	r()

>>>

New	in	version	3.4.

class	weakref.finalize(obj,	func,	*args,	**kwargs)
Return	a	 callable	 finalizer	 object	which	will	 be	 called	when	obj	 is
garbage	 collected.	 Unlike	 an	 ordinary	 weak	 reference,	 a	 finalizer
will	 always	 survive	 until	 the	 reference	 object	 is	 collected,	 greatly
simplifying	lifecycle	management.

A	finalizer	is	considered	alive	until	it	is	called	(either	explicitly	or	at
garbage	collection),	and	after	that	it	is	dead.	Calling	a	live	finalizer
returns	 the	 result	 of	 evaluating	 func(*arg,	 **kwargs),
whereas	calling	a	dead	finalizer	returns	None.

Exceptions	 raised	by	 finalizer	 callbacks	 during	 garbage	 collection
will	 be	 shown	 on	 the	 standard	 error	 output,	 but	 cannot	 be
propagated.	 They	 are	 handled	 in	 the	 same	 way	 as	 exceptions

raised	from	an	object’s	__del__()	method	or	a	weak	reference’s
callback.

When	 the	 program	 exits,	 each	 remaining	 live	 finalizer	 is	 called
unless	its	atexit	attribute	has	been	set	to	false.	They	are	called
in	reverse	order	of	creation.

A	finalizer	will	never	invoke	its	callback	during	the	later	part	of	the
interpreter	shutdown	when	module	globals	are	liable	to	have	been
replaced	by	None.

__call__()
If	 self	 is	 alive	 then	 mark	 it	 as	 dead	 and	 return	 the	 result	 of
calling	func(*args,	**kwargs).	 If	self	 is	dead	 then	 return
None.

detach()
If	self	is	alive	then	mark	it	as	dead	and	return	the	tuple	(obj,
func,	args,	kwargs).	If	self	is	dead	then	return	None.

peek()
If	 self	 is	 alive	 then	 return	 the	 tuple	 (obj,	 func,	 args,
kwargs).	If	self	is	dead	then	return	None.

alive

Property	which	is	true	if	the	finalizer	is	alive,	false	otherwise.

atexit

A	writable	boolean	property	which	by	default	 is	true.	When	the
program	 exits,	 it	 calls	 all	 remaining	 live	 finalizers	 for	 which
atexit	is	true.	They	are	called	in	reverse	order	of	creation.

Note: 	It	is	important	to	ensure	that	func,	args	and	kwargs	do	not
own	 any	 references	 to	 obj,	 either	 directly	 or	 indirectly,	 since
otherwise	obj	will	never	be	garbage	collected.	 In	particular,	 func
should	not	be	a	bound	method	of	obj.

New	in	version	3.4.

weakref.ReferenceType

The	type	object	for	weak	references	objects.

weakref.ProxyType

The	type	object	for	proxies	of	objects	which	are	not	callable.

weakref.CallableProxyType

The	type	object	for	proxies	of	callable	objects.

weakref.ProxyTypes

Sequence	 containing	 all	 the	 type	 objects	 for	 proxies.	 This	 can
make	 it	 simpler	 to	 test	 if	 an	 object	 is	 a	 proxy	 without	 being
dependent	on	naming	both	proxy	types.

exception	weakref.ReferenceError
Exception	 raised	when	 a	 proxy	 object	 is	 used	 but	 the	 underlying
object	 has	 been	 collected.	 This	 is	 the	 same	 as	 the	 standard
ReferenceError	exception.

See	also:

PEP	0205	-	Weak	References
The	 proposal	 and	 rationale	 for	 this	 feature,	 including	 links	 to
earlier	 implementations	and	information	about	similar	features	in
other	languages.

http://www.python.org/dev/peps/pep-0205

8.8.1.	Weak	Reference	Objects

Weak	 reference	 objects	 have	 no	methods	 and	 no	 attributes	 besides
ref.__callback__.	A	weak	reference	object	allows	the	referent	 to
be	obtained,	if	it	still	exists,	by	calling	it:

>>>	import	weakref

>>>	class	Object:

...					pass

...

>>>	o	=	Object()

>>>	r	=	weakref.ref(o)

>>>	o2	=	r()

>>>	o	is	o2

True

If	 the	 referent	 no	 longer	 exists,	 calling	 the	 reference	 object	 returns
None:

>>>	del	o,	o2

>>>	print(r())

None

Testing	that	a	weak	reference	object	 is	still	 live	should	be	done	using
the	expression	ref()	is	not	None.	Normally,	application	code	that
needs	to	use	a	reference	object	should	follow	this	pattern:

#	r	is	a	weak	reference	object

o	=	r()

if	o	is	None:

				#	referent	has	been	garbage	collected

				print("Object	has	been	deallocated;	can't	frobnicate."

else:

				print("Object	is	still	live!")

				o.do_something_useful()

Using	a	separate	test	for	“liveness”	creates	race	conditions	in	threaded
applications;	 another	 thread	 can	 cause	a	weak	 reference	 to	become
invalidated	 before	 the	 weak	 reference	 is	 called;	 the	 idiom	 shown
above	 is	 safe	 in	 threaded	 applications	 as	 well	 as	 single-threaded
applications.

Specialized	 versions	 of	 ref	 objects	 can	 be	 created	 through
subclassing.	 This	 is	 used	 in	 the	 implementation	 of	 the
WeakValueDictionary	 to	 reduce	 the	 memory	 overhead	 for	 each
entry	in	the	mapping.	This	may	be	most	useful	to	associate	additional
information	with	a	reference,	but	could	also	be	used	to	insert	additional
processing	on	calls	to	retrieve	the	referent.

This	 example	 shows	 how	 a	 subclass	 of	 ref	 can	 be	 used	 to	 store
additional	 information	 about	 an	 object	 and	 affect	 the	 value	 that’s
returned	when	the	referent	is	accessed:

import	weakref

class	ExtendedRef(weakref.ref):

				def	__init__(self,	ob,	callback=None,	**annotations

								super(ExtendedRef,	self).__init__(ob,	callback

								self.__counter	=	0

								for	k,	v	in	annotations.items():

												setattr(self,	k,	v)

				def	__call__(self):

								"""Return	a	pair	containing	the	referent	and	the	number	of

								times	the	reference	has	been	called.

								"""

								ob	=	super(ExtendedRef,	self).__call__()

								if	ob	is	not	None:

												self.__counter	+=	1

												ob	=	(ob,	self.__counter)

								return	ob

8.8.2.	Example

This	simple	example	shows	how	an	application	can	use	objects	IDs	to
retrieve	 objects	 that	 it	 has	 seen	 before.	 The	 IDs	 of	 the	 objects	 can
then	 be	 used	 in	 other	 data	 structures	 without	 forcing	 the	 objects	 to
remain	alive,	but	the	objects	can	still	be	retrieved	by	ID	if	they	do.

import	weakref

_id2obj_dict	=	weakref.WeakValueDictionary()

def	remember(obj):

				oid	=	id(obj)

				_id2obj_dict[oid]	=	obj

				return	oid

def	id2obj(oid):

				return	_id2obj_dict[oid]

8.8.3.	Finalizer	Objects

The	 main	 benefit	 of	 using	 finalize	 is	 that	 it	 makes	 it	 simple	 to
register	 a	 callback	without	 needing	 to	 preserve	 the	 returned	 finalizer
object.	For	instance

>>>	import	weakref

>>>	class	Object:

...					pass

...

>>>	kenny	=	Object()

>>>	weakref.finalize(kenny,	print,	"You	killed	Kenny!"

<finalize	object	at	...;	for	'Object'	at	...>

>>>	del	kenny

You	killed	Kenny!

The	 finalizer	can	be	called	directly	as	well.	However	 the	 finalizer	will
invoke	the	callback	at	most	once.

>>>	def	callback(x,	y,	z):

...					print("CALLBACK")

...					return	x	+	y	+	z

...

>>>	obj	=	Object()

>>>	f	=	weakref.finalize(obj,	callback,	1,	2,	z=3)

>>>	assert	f.alive

>>>	assert	f()	==	6

CALLBACK

>>>	assert	not	f.alive

>>>	f()																					#	callback	not	called	because	finalizer	dead

>>>	del	obj																	#	callback	not	called	because	finalizer	dead

You	can	unregister	a	 finalizer	using	 its	detach()	method.	This	 kills

the	finalizer	and	returns	the	arguments	passed	to	the	constructor	when
it	was	created.

>>>	obj	=	Object()

>>>	f	=	weakref.finalize(obj,	callback,	1,	2,	z=3)

>>>	f.detach()																																											

(<__main__.Object	object	...>,	<function	callback	...>,	(1,	2),	{'z':	3})

>>>	newobj,	func,	args,	kwargs	=	_

>>>	assert	not	f.alive

>>>	assert	newobj	is	obj

>>>	assert	func(*args,	**kwargs)	==	6

CALLBACK

Unless	 you	 set	 the	 atexit	 attribute	 to	 False,	 a	 finalizer	 will	 be
called	when	the	program	exits	if	it	is	still	alive.	For	instance

>>>	obj	=	Object()

>>>	weakref.finalize(obj,	print,	"obj	dead	or	exiting"

<finalize	object	at	...;	for	'Object'	at	...>

>>>	exit()																																															

obj	dead	or	exiting

8.8.4.	Comparing	finalizers	with
__del__()	methods

Suppose	 we	 want	 to	 create	 a	 class	 whose	 instances	 represent
temporary	 directories.	 The	 directories	 should	 be	 deleted	 with	 their
contents	when	the	first	of	the	following	events	occurs:

the	object	is	garbage	collected,
the	object’s	remove()	method	is	called,	or
the	program	exits.

We	might	 try	 to	 implement	 the	class	using	a	__del__()	method	as
follows:

class	TempDir:

				def	__init__(self):

								self.name	=	tempfile.mkdtemp()

				def	remove(self):

								if	self.name	is	not	None:

												shutil.rmtree(self.name)

												self.name	=	None

				@property

				def	removed(self):

								return	self.name	is	None

				def	__del__(self):

								self.remove()

Starting	 with	 Python	 3.4,	 __del__()	 methods	 no	 longer	 prevent
reference	 cycles	 from	 being	 garbage	 collected,	 and	 module	 globals
are	 no	 longer	 forced	 to	 None	 during	 interpreter	 shutdown.	 So	 this

code	should	work	without	any	issues	on	CPython.

However,	 handling	 of	 __del__()	 methods	 is	 notoriously
implementation	 specific,	 since	 it	 depends	 on	 internal	 details	 of	 the
interpreter’s	garbage	collector	implementation.

A	 more	 robust	 alternative	 can	 be	 to	 define	 a	 finalizer	 which	 only
references	the	specific	functions	and	objects	that	it	needs,	rather	than
having	access	to	the	full	state	of	the	object:

class	TempDir:

				def	__init__(self):

								self.name	=	tempfile.mkdtemp()

								self._finalizer	=	weakref.finalize(self,	shutil

				def	remove(self):

								self._finalizer()

				@property

				def	removed(self):

								return	not	self._finalizer.alive

Defined	like	this,	our	finalizer	only	receives	a	reference	to	the	details	it
needs	to	clean	up	the	directory	appropriately.	 If	 the	object	never	gets
garbage	collected	the	finalizer	will	still	be	called	at	exit.

The	other	 advantage	of	weakref	 based	 finalizers	 is	 that	 they	 can	be
used	to	register	finalizers	for	classes	where	the	definition	is	controlled
by	a	third	party,	such	as	running	code	when	a	module	is	unloaded:

import	weakref,	sys

def	unloading_module():

				#	implicit	reference	to	the	module	globals	from	the	function	body

weakref.finalize(sys.modules[__name__],	unloading_module

Note: 	If	you	create	a	finalizer	object	in	a	daemonic	thread	just	as
the	the	program	exits	then	there	is	the	possibility	that	the	finalizer
does	not	get	called	at	exit.	However,	in	a	daemonic	thread
atexit.register(),	try:	...	finally:	...	and	with:
...	do	not	guarantee	that	cleanup	occurs	either.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.9.	types	—	Dynamic	type
creation	and	names	for	built-in
types
Source	code:	Lib/types.py

This	 module	 defines	 utility	 function	 to	 assist	 in	 dynamic	 creation	 of
new	types.

It	 also	 defines	 names	 for	 some	 object	 types	 that	 are	 used	 by	 the
standard	 Python	 interpreter,	 but	 not	 exposed	 as	 builtins	 like	 int	 or
str	are.

Finally,	 it	 provides	 some	 additional	 type-related	 utility	 classes	 and
functions	that	are	not	fundamental	enough	to	be	builtins.

http://hg.python.org/cpython/file/3.4/Lib/types.py

8.9.1.	Dynamic	Type	Creation

types.new_class(name,	bases=(),	kwds=None,
exec_body=None)

Creates	 a	 class	 object	 dynamically	 using	 the	 appropriate
metaclass.

The	first	three	arguments	are	the	components	that	make	up	a	class
definition	header:	the	class	name,	the	base	classes	(in	order),	the
keyword	arguments	(such	as	metaclass).

The	exec_body	argument	is	a	callback	that	is	used	to	populate	the
freshly	 created	 class	 namespace.	 It	 should	 accept	 the	 class
namespace	 as	 its	 sole	 argument	 and	 update	 the	 namespace
directly	with	the	class	contents.	If	no	callback	is	provided,	it	has	the
same	effect	as	passing	in	lambda	ns:	ns.

New	in	version	3.3.

types.prepare_class(name,	bases=(),	kwds=None)
Calculates	 the	 appropriate	 metaclass	 and	 creates	 the	 class
namespace.

The	arguments	are	the	components	that	make	up	a	class	definition
header:	 the	 class	 name,	 the	 base	 classes	 (in	 order)	 and	 the
keyword	arguments	(such	as	metaclass).

The	return	value	is	a	3-tuple:	metaclass,	namespace,	kwds

metaclass	 is	 the	 appropriate	 metaclass,	 namespace	 is	 the
prepared	 class	 namespace	 and	 kwds	 is	 an	 updated	 copy	 of	 the
passed	in	kwds	argument	with	any	'metaclass'	entry	removed.

If	no	kwds	argument	is	passed	in,	this	will	be	an	empty	dict.

New	in	version	3.3.

See	also:

Customizing	class	creation
Full	 details	 of	 the	 class	 creation	 process	 supported	 by	 these
functions

PEP	3115	-	Metaclasses	in	Python	3000
Introduced	the	__prepare__	namespace	hook

http://www.python.org/dev/peps/pep-3115

8.9.2.	Standard	Interpreter	Types

This	module	provides	names	for	many	of	the	types	that	are	required	to
implement	a	Python	 interpreter.	 It	 deliberately	avoids	 including	some
of	the	types	that	arise	only	incidentally	during	processing	such	as	the
listiterator	type.

Typical	use	of	these	names	is	for	isinstance()	or	issubclass()
checks.

Standard	names	are	defined	for	the	following	types:

types.FunctionType

types.LambdaType

The	 type	 of	 user-defined	 functions	 and	 functions	 created	 by
lambda	expressions.

types.GeneratorType

The	 type	 of	 generator-iterator	 objects,	 produced	 by	 calling	 a
generator	function.

types.CodeType

The	type	for	code	objects	such	as	returned	by	compile().

types.MethodType

The	type	of	methods	of	user-defined	class	instances.

types.BuiltinFunctionType

types.BuiltinMethodType

The	 type	 of	 built-in	 functions	 like	 len()	 or	 sys.exit(),	 and
methods	of	built-in	classes.	(Here,	the	term	“built-in”	means	“written
in	C”.)

class	types.ModuleType(name,	doc=None)
The	type	of	modules.	Constructor	takes	the	name	of	the	module	to
be	created	and	optionally	its	docstring.

__doc__

The	docstring	of	the	module.	Defaults	to	None.

__loader__

The	loader	which	loaded	the	module.	Defaults	to	None.

Changed	 in	 version	 3.4:	 Defaults	 to	 None.	 Previously	 the
attribute	was	optional.

__name__

The	name	of	the	module.

__package__

Which	package	a	module	belongs	to.	If	the	module	is	top-level
(i.e.	not	a	part	of	any	specific	package)	then	the	attribute	should
be	set	to	'',	else	it	should	be	set	to	the	name	of	the	package
(which	 can	 be	 __name__	 if	 the	 module	 is	 a	 package	 itself).
Defaults	to	None.

Changed	 in	 version	 3.4:	 Defaults	 to	 None.	 Previously	 the
attribute	was	optional.

types.TracebackType

The	type	of	traceback	objects	such	as	found	in	sys.exc_info()
[2].

types.FrameType

The	type	of	frame	objects	such	as	found	in	tb.tb_frame	if	tb	is
a	traceback	object.

types.GetSetDescriptorType

The	 type	 of	 objects	 defined	 in	 extension	 modules	 with
PyGetSetDef,	 such	 as	 FrameType.f_locals	 or
array.array.typecode.	 This	 type	 is	 used	 as	 descriptor	 for
object	attributes;	 it	has	the	same	purpose	as	the	property	 type,
but	for	classes	defined	in	extension	modules.

types.MemberDescriptorType

The	 type	 of	 objects	 defined	 in	 extension	 modules	 with
PyMemberDef,	such	as	datetime.timedelta.days.	This	 type
is	 used	 as	 descriptor	 for	 simple	 C	 data	 members	 which	 use
standard	 conversion	 functions;	 it	 has	 the	 same	 purpose	 as	 the
property	type,	but	for	classes	defined	in	extension	modules.

CPython	 implementation	 detail:	 In	 other	 implementations	 of
Python,	this	type	may	be	identical	to	GetSetDescriptorType.

class	types.MappingProxyType(mapping)
Read-only	proxy	of	a	mapping.	 It	provides	a	dynamic	view	on	the
mapping’s	entries,	which	means	 that	when	 the	mapping	changes,
the	view	reflects	these	changes.

New	in	version	3.3.

key	in	proxy

Return	 True	 if	 the	 underlying	 mapping	 has	 a	 key	 key,	 else
False.

proxy[key]

Return	the	item	of	the	underlying	mapping	with	key	key.	Raises
a	KeyError	if	key	is	not	in	the	underlying	mapping.

iter(proxy)

Return	an	iterator	over	the	keys	of	the	underlying	mapping.	This
is	a	shortcut	for	iter(proxy.keys()).

len(proxy)

Return	the	number	of	items	in	the	underlying	mapping.

copy()
Return	a	shallow	copy	of	the	underlying	mapping.

get(key[,	default])
Return	 the	 value	 for	 key	 if	 key	 is	 in	 the	 underlying	 mapping,
else	default.	 If	default	 is	not	given,	 it	defaults	 to	None,	so	 that
this	method	never	raises	a	KeyError.

items()
Return	a	new	view	of	 the	underlying	mapping’s	 items	 ((key,
value)	pairs).

keys()
Return	a	new	view	of	the	underlying	mapping’s	keys.

values()
Return	a	new	view	of	the	underlying	mapping’s	values.

8.9.3.	Additional	Utility	Classes	and
Functions

class	types.SimpleNamespace
A	 simple	 object	 subclass	 that	 provides	 attribute	 access	 to	 its
namespace,	as	well	as	a	meaningful	repr.

Unlike	object,	with	SimpleNamespace	you	can	add	and	remove
attributes.	 If	 a	 SimpleNamespace	 object	 is	 initialized	 with
keyword	 arguments,	 those	 are	 directly	 added	 to	 the	 underlying
namespace.

The	type	is	roughly	equivalent	to	the	following	code:

class	SimpleNamespace:

				def	__init__(self,	**kwargs):

								self.__dict__.update(kwargs)

				def	__repr__(self):

								keys	=	sorted(self.__dict__)

								items	=	("{}={!r}".format(k,	self.__dict__

								return	"{}({})".format(type(self).__name__

				def	__eq__(self,	other):

								return	self.__dict__	==	other.__dict__

SimpleNamespace	 may	 be	 useful	 as	 a	 replacement	 for	 class
NS:	 pass.	 However,	 for	 a	 structured	 record	 type	 use
namedtuple()	instead.

New	in	version	3.3.

types.DynamicClassAttribute(fget=None,	fset=None,
fdel=None,	doc=None)

Route	attribute	access	on	a	class	to	__getattr__.

This	 is	 a	 descriptor,	 used	 to	 define	 attributes	 that	 act	 differently
when	accessed	through	an	instance	and	through	a	class.	Instance
access	remains	normal,	but	access	to	an	attribute	through	a	class
will	 be	 routed	 to	 the	 class’s	 __getattr__	method;	 this	 is	 done	 by
raising	AttributeError.

This	allows	one	to	have	properties	active	on	an	instance,	and	have
virtual	attributes	on	 the	class	with	 the	same	name	 (see	Enum	 for
an	example).

New	in	version	3.4.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.10.	copy	—	Shallow	and	deep
copy	operations
Assignment	 statements	 in	 Python	 do	 not	 copy	 objects,	 they	 create
bindings	 between	 a	 target	 and	 an	 object.	 For	 collections	 that	 are
mutable	or	contain	mutable	items,	a	copy	is	sometimes	needed	so	one
can	 change	 one	 copy	 without	 changing	 the	 other.	 This	 module
provides	generic	shallow	and	deep	copy	operations	(explained	below).

Interface	summary:

copy.copy(x)
Return	a	shallow	copy	of	x.

copy.deepcopy(x)
Return	a	deep	copy	of	x.

exception	copy.error
Raised	for	module	specific	errors.

The	difference	between	shallow	and	deep	copying	is	only	relevant	for
compound	objects	(objects	that	contain	other	objects,	like	lists	or	class
instances):

A	shallow	copy	 constructs	 a	 new	 compound	 object	 and	 then	 (to
the	extent	possible)	inserts	references	into	it	to	the	objects	found
in	the	original.
A	 deep	 copy	 constructs	 a	 new	 compound	 object	 and	 then,
recursively,	 inserts	 copies	 into	 it	 of	 the	 objects	 found	 in	 the
original.

Two	 problems	 often	 exist	 with	 deep	 copy	 operations	 that	 don’t	 exist

with	shallow	copy	operations:

Recursive	 objects	 (compound	 objects	 that,	 directly	 or	 indirectly,
contain	a	reference	to	themselves)	may	cause	a	recursive	loop.
Because	deep	copy	copies	everything	it	may	copy	too	much,	e.g.,
administrative	 data	 structures	 that	 should	 be	 shared	 even
between	copies.

The	deepcopy()	function	avoids	these	problems	by:

keeping	a	“memo”	dictionary	of	objects	already	copied	during	the
current	copying	pass;	and
letting	user-defined	classes	override	the	copying	operation	or	the
set	of	components	copied.

This	 module	 does	 not	 copy	 types	 like	module,	 method,	 stack	 trace,
stack	 frame,	 file,	 socket,	window,	 array,	 or	 any	 similar	 types.	 It	 does
“copy”	 functions	 and	 classes	 (shallow	 and	 deeply),	 by	 returning	 the
original	 object	 unchanged;	 this	 is	 compatible	with	 the	way	 these	 are
treated	by	the	pickle	module.

Shallow	copies	of	dictionaries	can	be	made	using	dict.copy(),	and
of	 lists	 by	 assigning	 a	 slice	 of	 the	 entire	 list,	 for	 example,
copied_list	=	original_list[:].

Classes	can	use	the	same	interfaces	to	control	copying	that	they	use
to	 control	 pickling.	 See	 the	 description	 of	 module	 pickle	 for
information	 on	 these	 methods.	 In	 fact,	 copy	 module	 uses	 the
registered	pickle	functions	from	copyreg	module.

In	order	for	a	class	to	define	its	own	copy	implementation,	it	can	define
special	methods	__copy__()	and	__deepcopy__().	The	former	is
called	 to	 implement	 the	 shallow	 copy	 operation;	 no	 additional
arguments	are	passed.	The	latter	is	called	to	implement	the	deep	copy

operation;	 it	 is	 passed	 one	 argument,	 the	 memo	 dictionary.	 If	 the
__deepcopy__()	 implementation	needs	 to	make	a	deep	 copy	of	 a
component,	 it	 should	 call	 the	 deepcopy()	 function	 with	 the
component	 as	 first	 argument	 and	 the	 memo	 dictionary	 as	 second
argument.

See	also:

Module	pickle
Discussion	 of	 the	 special	methods	 used	 to	 support	 object	 state
retrieval	and	restoration.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.11.	pprint	—	Data	pretty	printer

Source	code:	Lib/pprint.py

The	 pprint	 module	 provides	 a	 capability	 to	 “pretty-print”	 arbitrary
Python	 data	 structures	 in	 a	 form	which	 can	 be	 used	 as	 input	 to	 the
interpreter.	 If	 the	 formatted	 structures	 include	 objects	 which	 are	 not
fundamental	 Python	 types,	 the	 representation	 may	 not	 be	 loadable.
This	may	be	 the	case	 if	objects	such	as	 files,	sockets	or	classes	are
included,	as	well	 as	many	other	objects	which	are	not	 representable
as	Python	literals.

The	 formatted	 representation	keeps	objects	on	a	single	 line	 if	 it	 can,
and	breaks	them	onto	multiple	lines	if	they	don’t	fit	within	the	allowed
width.	 Construct	 PrettyPrinter	 objects	 explicitly	 if	 you	 need	 to
adjust	the	width	constraint.

Dictionaries	are	sorted	by	key	before	the	display	is	computed.

The	pprint	module	defines	one	class:

class	pprint.PrettyPrinter(indent=1,	width=80,	depth=None,
stream=None,	*,	compact=False)

Construct	 a	 PrettyPrinter	 instance.	 This	 constructor
understands	 several	 keyword	 parameters.	 An	 output	 stream	may
be	 set	 using	 the	 stream	 keyword;	 the	 only	 method	 used	 on	 the
stream	 object	 is	 the	 file	 protocol’s	 write()	 method.	 If	 not
specified,	the	PrettyPrinter	adopts	sys.stdout.	The	amount
of	indentation	added	for	each	recursive	level	is	specified	by	indent;
the	 default	 is	 one.	Other	 values	 can	 cause	 output	 to	 look	 a	 little

http://hg.python.org/cpython/file/3.4/Lib/pprint.py

odd,	 but	 can	make	 nesting	 easier	 to	 spot.	 The	 number	 of	 levels
which	may	be	printed	 is	 controlled	by	depth;	 if	 the	data	 structure
being	printed	 is	 too	deep,	 the	next	contained	 level	 is	 replaced	by
....	By	default,	 there	is	no	constraint	on	the	depth	of	the	objects
being	formatted.	The	desired	output	width	is	constrained	using	the
width	parameter;	the	default	is	80	characters.	If	a	structure	cannot
be	 formatted	 within	 the	 constrained	 width,	 a	 best	 effort	 will	 be
made.	 If	 compact	 is	 false	 (the	 default)	 each	 item	 of	 a	 long
sequence	will	be	 formatted	on	a	separate	 line.	 If	compact	 is	 true,
as	many	items	as	will	fit	within	the	width	will	be	formatted	on	each
output	line.

Changed	in	version	3.4:	Added	the	compact	parameter.

>>>	import	pprint

>>>	stuff	=	['spam',	'eggs',	'lumberjack',	'knights'

>>>	stuff.insert(0,	stuff[:])

>>>	pp	=	pprint.PrettyPrinter(indent=4)

>>>	pp.pprint(stuff)

[['spam',	'eggs',	'lumberjack',	'knights',	'ni'],

				'spam',

				'eggs',

				'lumberjack',

				'knights',

				'ni']

>>>	pp	=	pprint.PrettyPrinter(width=41,	compact=True

>>>	pp.pprint(stuff)

[['spam',	'eggs',	'lumberjack',

		'knights',	'ni'],

	'spam',	'eggs',	'lumberjack',	'knights',

	'ni']

>>>	tup	=	('spam',	('eggs',	('lumberjack',	('knights'

...	('parrot',	('fresh	fruit',))))))))

>>>	pp	=	pprint.PrettyPrinter(depth=6)

>>>	pp.pprint(tup)

('spam',	('eggs',	('lumberjack',	('knights',	('ni',	('dead',	(...)))))))

The	pprint	module	also	provides	several	shortcut	functions:

pprint.pformat(object,	indent=1,	width=80,	depth=None,	*,
compact=False)

Return	 the	 formatted	 representation	 of	object	 as	 a	 string.	 indent,
width,	depth	and	compact	will	be	passed	to	 the	PrettyPrinter
constructor	as	formatting	parameters.

Changed	in	version	3.4:	Added	the	compact	parameter.

pprint.pprint(object,	stream=None,	indent=1,	width=80,
depth=None,	*,	compact=False)

Prints	the	formatted	representation	of	object	on	stream,	followed	by
a	newline.	 If	stream	 is	None,	sys.stdout	 is	 used.	This	may	be
used	in	the	interactive	interpreter	instead	of	the	print()	function
for	 inspecting	 values	 (you	 can	 even	 reassign	 print	 =

pprint.pprint	for	use	within	a	scope).	indent,	width,	depth	and
compact	 will	 be	 passed	 to	 the	 PrettyPrinter	 constructor	 as
formatting	parameters.

Changed	in	version	3.4:	Added	the	compact	parameter.

>>>	import	pprint

>>>	stuff	=	['spam',	'eggs',	'lumberjack',	'knights'

>>>	stuff.insert(0,	stuff)

>>>	pprint.pprint(stuff)

[<Recursion	on	list	with	id=...>,

	'spam',

	'eggs',

	'lumberjack',

	'knights',

	'ni']

pprint.isreadable(object)
Determine	if	the	formatted	representation	of	object	is	“readable,”	or
can	be	used	 to	 reconstruct	 the	value	using	eval().	This	 always
returns	False	for	recursive	objects.

>>>	pprint.isreadable(stuff)

False

pprint.isrecursive(object)
Determine	if	object	requires	a	recursive	representation.

One	more	support	function	is	also	defined:

pprint.saferepr(object)
Return	 a	 string	 representation	 of	 object,	 protected	 against
recursive	data	structures.	If	the	representation	of	object	exposes	a
recursive	 entry,	 the	 recursive	 reference	 will	 be	 represented	 as
<Recursion	 on	 typename	 with	 id=number>.	 The
representation	is	not	otherwise	formatted.

>>>	pprint.saferepr(stuff)

"[<Recursion	on	list	with	id=...>,	'spam',	'eggs',	'lumberjack',	'knights',	'ni']"

8.11.1.	PrettyPrinter	Objects

PrettyPrinter	instances	have	the	following	methods:

PrettyPrinter.pformat(object)
Return	 the	 formatted	 representation	 of	 object.	 This	 takes	 into
account	the	options	passed	to	the	PrettyPrinter	constructor.

PrettyPrinter.pprint(object)
Print	 the	 formatted	 representation	 of	 object	 on	 the	 configured
stream,	followed	by	a	newline.

The	 following	 methods	 provide	 the	 implementations	 for	 the
corresponding	functions	of	the	same	names.	Using	these	methods	on
an	 instance	 is	 slightly	 more	 efficient	 since	 new	 PrettyPrinter
objects	don’t	need	to	be	created.

PrettyPrinter.isreadable(object)
Determine	 if	 the	 formatted	 representation	 of	 the	 object	 is
“readable,”	or	can	be	used	to	reconstruct	the	value	using	eval().
Note	 that	 this	 returns	 False	 for	 recursive	 objects.	 If	 the	 depth
parameter	of	the	PrettyPrinter	is	set	and	the	object	is	deeper
than	allowed,	this	returns	False.

PrettyPrinter.isrecursive(object)
Determine	if	the	object	requires	a	recursive	representation.

This	method	 is	provided	as	a	hook	to	allow	subclasses	to	modify	 the
way	objects	are	converted	to	strings.	The	default	implementation	uses
the	internals	of	the	saferepr()	implementation.

PrettyPrinter.format(object,	context,	maxlevels,	level)

Returns	three	values:	the	formatted	version	of	object	as	a	string,	a
flag	indicating	whether	the	result	 is	readable,	and	a	flag	indicating
whether	recursion	was	detected.	The	first	argument	is	the	object	to
be	presented.	The	second	is	a	dictionary	which	contains	the	id()
of	objects	 that	 are	part	 of	 the	 current	 presentation	 context	 (direct
and	 indirect	 containers	 for	 object	 that	 are	 affecting	 the
presentation)	as	the	keys;	if	an	object	needs	to	be	presented	which
is	already	represented	 in	context,	 the	 third	return	value	should	be
True.	 Recursive	 calls	 to	 the	 format()	 method	 should	 add
additional	 entries	 for	 containers	 to	 this	 dictionary.	 The	 third
argument,	maxlevels,	 gives	 the	 requested	 limit	 to	 recursion;	 this
will	 be	 0	 if	 there	 is	 no	 requested	 limit.	 This	 argument	 should	 be
passed	 unmodified	 to	 recursive	 calls.	 The	 fourth	 argument,	 level,
gives	 the	 current	 level;	 recursive	 calls	 should	 be	 passed	 a	 value
less	than	that	of	the	current	call.

8.11.2.	Example

To	 demonstrate	 several	 uses	 of	 the	 pprint()	 function	 and	 its
parameters,	let’s	fetch	information	about	a	project	from	PyPI:

>>>	import	json

>>>	import	pprint

>>>	from	urllib.request	import	urlopen

>>>	with	urlopen('http://pypi.python.org/pypi/Twisted/json'

...					http_info	=	url.info()

...					raw_data	=	url.read().decode(http_info.get_content_charset

>>>	project_info	=	json.loads(raw_data)

In	its	basic	form,	pprint()	shows	the	whole	object:

>>>	pprint.pprint(project_info)

{'info':	{'_pypi_hidden':	False,

										'_pypi_ordering':	125,

										'author':	'Glyph	Lefkowitz',

										'author_email':	'glyph@twistedmatrix.com',

										'bugtrack_url':	'',

										'cheesecake_code_kwalitee_id':	None,

										'cheesecake_documentation_id':	None,

										'cheesecake_installability_id':	None,

										'classifiers':	['Programming	Language	::	Python	::	2.6',

																										'Programming	Language	::	Python	::	2.7',

																										'Programming	Language	::	Python	::	2	::	Only'],

										'description':	'An	extensible	framework	for	Python	programming,	'

																									'with	special	focus\r\n'

																									'on	event-based	network	programming	and	'

																									'multiprotocol	integration.',

										'docs_url':	'',

										'download_url':	'UNKNOWN',

										'home_page':	'http://twistedmatrix.com/',

https://pypi.python.org

										'keywords':	'',

										'license':	'MIT',

										'maintainer':	'',

										'maintainer_email':	'',

										'name':	'Twisted',

										'package_url':	'http://pypi.python.org/pypi/Twisted',

										'platform':	'UNKNOWN',

										'release_url':	'http://pypi.python.org/pypi/Twisted/12.3.0',

										'requires_python':	None,

										'stable_version':	None,

										'summary':	'An	asynchronous	networking	framework	written	in	Python',

										'version':	'12.3.0'},

	'urls':	[{'comment_text':	'',

											'downloads':	71844,

											'filename':	'Twisted-12.3.0.tar.bz2',

											'has_sig':	False,

											'md5_digest':	'6e289825f3bf5591cfd670874cc0862d',

											'packagetype':	'sdist',

											'python_version':	'source',

											'size':	2615733,

											'upload_time':	'2012-12-26T12:47:03',

											'url':	'https://pypi.python.org/packages/source/T/Twisted/Twisted-12.3.0.tar.bz2'},

										{'comment_text':	'',

											'downloads':	5224,

											'filename':	'Twisted-12.3.0.win32-py2.7.msi',

											'has_sig':	False,

											'md5_digest':	'6b778f5201b622a5519a2aca1a2fe512',

											'packagetype':	'bdist_msi',

											'python_version':	'2.7',

											'size':	2916352,

											'upload_time':	'2012-12-26T12:48:15',

											'url':	'https://pypi.python.org/packages/2.7/T/Twisted/Twisted-12.3.0.win32-py2.7.msi'}]}

The	result	can	be	limited	to	a	certain	depth	(ellipsis	is	used	for	deeper
contents):

>>>	pprint.pprint(project_info,	depth=2)

{'info':	{'_pypi_hidden':	False,

										'_pypi_ordering':	125,

										'author':	'Glyph	Lefkowitz',

										'author_email':	'glyph@twistedmatrix.com',

										'bugtrack_url':	'',

										'cheesecake_code_kwalitee_id':	None,

										'cheesecake_documentation_id':	None,

										'cheesecake_installability_id':	None,

										'classifiers':	[...],

										'description':	'An	extensible	framework	for	Python	programming,	'

																									'with	special	focus\r\n'

																									'on	event-based	network	programming	and	'

																									'multiprotocol	integration.',

										'docs_url':	'',

										'download_url':	'UNKNOWN',

										'home_page':	'http://twistedmatrix.com/',

										'keywords':	'',

										'license':	'MIT',

										'maintainer':	'',

										'maintainer_email':	'',

										'name':	'Twisted',

										'package_url':	'http://pypi.python.org/pypi/Twisted',

										'platform':	'UNKNOWN',

										'release_url':	'http://pypi.python.org/pypi/Twisted/12.3.0',

										'requires_python':	None,

										'stable_version':	None,

										'summary':	'An	asynchronous	networking	framework	written	in	Python',

										'version':	'12.3.0'},

	'urls':	[{...},	{...}]}

Additionally,	 maximum	 character	width	 can	 be	 suggested.	 If	 a	 long
object	cannot	be	split,	the	specified	width	will	be	exceeded:

>>>	pprint.pprint(project_info,	depth=2,	width=50)

{'info':	{'_pypi_hidden':	False,

										'_pypi_ordering':	125,

										'author':	'Glyph	Lefkowitz',

										'author_email':	'glyph@twistedmatrix.com',

										'bugtrack_url':	'',

										'cheesecake_code_kwalitee_id':	None,

										'cheesecake_documentation_id':	None,

										'cheesecake_installability_id':	None,

										'classifiers':	[...],

										'description':	'An	extensible	'

																									'framework	for	'

																									'Python	programming,	'

																									'with	special	'

																									'focus\r\n'

																									'on	event-based	'

																									'network	programming	'

																									'and	multiprotocol	'

																									'integration.',

										'docs_url':	'',

										'download_url':	'UNKNOWN',

										'home_page':	'http://twistedmatrix.com/',

										'keywords':	'',

										'license':	'MIT',

										'maintainer':	'',

										'maintainer_email':	'',

										'name':	'Twisted',

										'package_url':	'http://pypi.python.org/pypi/Twisted',

										'platform':	'UNKNOWN',

										'release_url':	'http://pypi.python.org/pypi/Twisted/12.3.0',

										'requires_python':	None,

										'stable_version':	None,

										'summary':	'An	asynchronous	'

																					'networking	framework	'

																					'written	in	Python',

										'version':	'12.3.0'},

	'urls':	[{...},	{...}]}

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.12.	reprlib	—	Alternate
repr()	implementation

Source	code:	Lib/reprlib.py

The	 reprlib	 module	 provides	 a	 means	 for	 producing	 object
representations	with	 limits	on	 the	size	of	 the	 resulting	strings.	This	 is
used	in	the	Python	debugger	and	may	be	useful	 in	other	contexts	as
well.

This	module	provides	a	class,	an	instance,	and	a	function:

class	reprlib.Repr
Class	 which	 provides	 formatting	 services	 useful	 in	 implementing
functions	 similar	 to	 the	 built-in	 repr();	 size	 limits	 for	 different
object	 types	are	added	 to	avoid	 the	generation	of	 representations
which	are	excessively	long.

reprlib.aRepr

This	is	an	instance	of	Repr	which	 is	used	to	provide	the	repr()
function	described	below.	Changing	the	attributes	of	this	object	will
affect	the	size	limits	used	by	repr()	and	the	Python	debugger.

reprlib.repr(obj)
This	is	the	repr()	method	of	aRepr.	It	returns	a	string	similar	to
that	 returned	 by	 the	 built-in	 function	 of	 the	 same	 name,	 but	 with
limits	on	most	sizes.

In	addition	to	size-limiting	tools,	the	module	also	provides	a	decorator
for	 detecting	 recursive	 calls	 to	 __repr__()	 and	 substituting	 a

http://hg.python.org/cpython/file/3.4/Lib/reprlib.py

placeholder	string	instead.

@reprlib.recursive_repr(fillvalue="...")
Decorator	 for	 __repr__()	 methods	 to	 detect	 recursive	 calls
within	 the	same	 thread.	 If	a	 recursive	call	 is	made,	 the	 fillvalue	 is
returned,	 otherwise,	 the	 usual	 __repr__()	 call	 is	 made.	 For
example:

>>>	class	MyList(list):

...					@recursive_repr()

...						def	__repr__(self):

...										return	'<'	+	'|'.join(map(repr,	self))

...

>>>	m	=	MyList('abc')

>>>	m.append(m)

>>>	m.append('x')

>>>	print(m)

<'a'|'b'|'c'|...|'x'>

New	in	version	3.2.

8.12.1.	Repr	Objects

Repr	 instances	 provide	 several	 attributes	 which	 can	 be	 used	 to
provide	size	limits	for	the	representations	of	different	object	types,	and
methods	which	format	specific	object	types.

Repr.maxlevel

Depth	limit	on	the	creation	of	recursive	representations.	The	default
is	6.

Repr.maxdict

Repr.maxlist

Repr.maxtuple

Repr.maxset

Repr.maxfrozenset

Repr.maxdeque

Repr.maxarray

Limits	on	 the	number	of	entries	represented	 for	 the	named	object
type.	The	default	is	4	for	maxdict,	5	for	maxarray,	and	6	for	the
others.

Repr.maxlong

Maximum	 number	 of	 characters	 in	 the	 representation	 for	 an
integer.	Digits	are	dropped	from	the	middle.	The	default	is	40.

Repr.maxstring

Limit	 on	 the	 number	 of	 characters	 in	 the	 representation	 of	 the
string.	Note	that	the	“normal”	representation	of	the	string	is	used	as
the	 character	 source:	 if	 escape	 sequences	 are	 needed	 in	 the
representation,	 these	may	be	mangled	when	the	representation	 is
shortened.	The	default	is	30.

Repr.maxother

This	 limit	 is	 used	 to	 control	 the	 size	 of	 object	 types	 for	which	 no
specific	 formatting	 method	 is	 available	 on	 the	 Repr	 object.	 It	 is
applied	in	a	similar	manner	as	maxstring.	The	default	is	20.

Repr.repr(obj)
The	 equivalent	 to	 the	 built-in	 repr()	 that	 uses	 the	 formatting
imposed	by	the	instance.

Repr.repr1(obj,	level)
Recursive	implementation	used	by	repr().	This	uses	the	type	of
obj	to	determine	which	formatting	method	to	call,	passing	it	obj	and
level.	The	 type-specific	methods	 should	 call	 repr1()	 to	 perform
recursive	formatting,	with	level	-	1	 for	the	value	of	 level	 in	 the
recursive	call.

Repr.repr_TYPE(obj,	level)
Formatting	methods	for	specific	types	are	implemented	as	methods
with	a	name	based	on	the	type	name.	In	the	method	name,	TYPE
is	 replaced	 by
string.join(string.split(type(obj).__name__,

'_')).	Dispatch	to	these	methods	is	handled	by	repr1().	Type-
specific	methods	which	need	 to	 recursively	 format	a	value	should
call	self.repr1(subobj,	level	-	1).

8.12.2.	Subclassing	Repr	Objects

The	use	of	dynamic	dispatching	by	Repr.repr1()	allows	subclasses
of	Repr	to	add	support	for	additional	built-in	object	types	or	to	modify
the	 handling	 of	 types	 already	 supported.	 This	 example	 shows	 how
special	support	for	file	objects	could	be	added:

import	reprlib

import	sys

class	MyRepr(reprlib.Repr):

				def	repr_file(self,	obj,	level):

								if	obj.name	in	['<stdin>',	'<stdout>',	'<stderr>'

												return	obj.name

								else:

												return	repr(obj)

aRepr	=	MyRepr()

print(aRepr.repr(sys.stdin))									#	prints	'<stdin>'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

http://www.python.org/

8.13.	enum	—	Support	for
enumerations
New	in	version	3.4.

Source	code:	Lib/enum.py

An	 enumeration	 is	 a	 set	 of	 symbolic	 names	 (members)	 bound	 to
unique,	constant	values.	Within	an	enumeration,	the	members	can	be
compared	by	identity,	and	the	enumeration	itself	can	be	iterated	over.

http://hg.python.org/cpython/file/3.4/Lib/enum.py

8.13.1.	Module	Contents

This	 module	 defines	 two	 enumeration	 classes	 that	 can	 be	 used	 to
define	unique	sets	of	names	and	values:	Enum	and	IntEnum.	 It	also
defines	one	decorator,	unique().

class	enum.Enum
Base	 class	 for	 creating	 enumerated	 constants.	 See	 section
Functional	API	for	an	alternate	construction	syntax.

class	enum.IntEnum
Base	 class	 for	 creating	 enumerated	 constants	 that	 are	 also
subclasses	of	int.

enum.unique()
Enum	class	decorator	that	ensures	only	one	name	is	bound	to	any
one	value.

8.13.2.	Creating	an	Enum

Enumerations	are	created	using	the	class	syntax,	which	makes	them
easy	to	read	and	write.	An	alternative	creation	method	is	described	in
Functional	API.	To	define	an	enumeration,	subclass	Enum	as	follows:

>>>	from	enum	import	Enum

>>>	class	Color(Enum):

...					red	=	1

...					green	=	2

...					blue	=	3

...

Note: 	Nomenclature

The	class	Color	is	an	enumeration	(or	enum)
The	 attributes	 Color.red,	 Color.green,	 etc.,	 are
enumeration	members	(or	enum	members).
The	 enum	 members	 have	 names	 and	 values	 (the	 name	 of
Color.red	is	red,	the	value	of	Color.blue	is	3,	etc.)

Note: 	Even	though	we	use	the	class	syntax	to	create	Enums,
Enums	are	not	normal	Python	classes.	See	How	are	Enums
different?	for	more	details.

Enumeration	members	have	human	readable	string	representations:

>>>	print(Color.red)

Color.red

...while	their	repr	has	more	information:

>>>	print(repr(Color.red))

<Color.red:	1>

The	type	of	an	enumeration	member	is	the	enumeration	it	belongs	to:

>>>	type(Color.red)

<enum	'Color'>

>>>	isinstance(Color.green,	Color)

True

>>>

Enum	 members	 also	 have	 a	 property	 that	 contains	 just	 their	 item
name:

>>>	print(Color.red.name)

red

Enumerations	support	iteration,	in	definition	order:

>>>	class	Shake(Enum):

...					vanilla	=	7

...					chocolate	=	4

...					cookies	=	9

...					mint	=	3

...

>>>	for	shake	in	Shake:

...					print(shake)

...

Shake.vanilla

Shake.chocolate

Shake.cookies

Shake.mint

Enumeration	 members	 are	 hashable,	 so	 they	 can	 be	 used	 in
dictionaries	and	sets:

>>>	apples	=	{}

>>>	apples[Color.red]	=	'red	delicious'

>>>	apples[Color.green]	=	'granny	smith'

>>>	apples	==	{Color.red:	'red	delicious',	Color.green

True

8.13.3.	Programmatic	access	to
enumeration	members	and	their	attributes

Sometimes	 it’s	 useful	 to	 access	 members	 in	 enumerations
programmatically	(i.e.	situations	where	Color.red	won’t	do	because
the	 exact	 color	 is	 not	 known	 at	 program-writing	 time).	 Enum	 allows
such	access:

>>>	Color(1)

<Color.red:	1>

>>>	Color(3)

<Color.blue:	3>

If	you	want	to	access	enum	members	by	name,	use	item	access:

>>>	Color['red']

<Color.red:	1>

>>>	Color['green']

<Color.green:	2>

If	you	have	an	enum	member	and	need	its	name	or	value:

>>>	member	=	Color.red

>>>	member.name

'red'

>>>	member.value

1

8.13.4.	Duplicating	enum	members	and
values

Having	two	enum	members	with	the	same	name	is	invalid:

>>>	class	Shape(Enum):

...					square	=	2

...					square	=	3

...

Traceback	(most	recent	call	last):

...

TypeError:	Attempted	to	reuse	key:	'square'

However,	 two	 enum	members	 are	 allowed	 to	 have	 the	 same	 value.
Given	two	members	A	and	B	with	the	same	value	(and	A	defined	first),
B	is	an	alias	to	A.	By-value	lookup	of	the	value	of	A	and	B	will	return	A.
By-name	lookup	of	B	will	also	return	A:

>>>	class	Shape(Enum):

...					square	=	2

...					diamond	=	1

...					circle	=	3

...					alias_for_square	=	2

...

>>>	Shape.square

<Shape.square:	2>

>>>	Shape.alias_for_square

<Shape.square:	2>

>>>	Shape(2)

<Shape.square:	2>

Note: 	Attempting	to	create	a	member	with	the	same	name	as	an
already	defined	attribute	(another	member,	a	method,	etc.)	or

attempting	to	create	an	attribute	with	the	same	name	as	a	member	is
not	allowed.

8.13.5.	Ensuring	unique	enumeration
values

By	default,	enumerations	allow	multiple	names	as	aliases	for	the	same
value.	When	this	behavior	isn’t	desired,	the	following	decorator	can	be
used	to	ensure	each	value	is	used	only	once	in	the	enumeration:

@enum.unique

A	 class	 decorator	 specifically	 for	 enumerations.	 It	 searches	 an
enumeration’s	__members__	gathering	any	aliases	it	finds;	if	any	are
found	ValueError	is	raised	with	the	details:

>>>	from	enum	import	Enum,	unique

>>>	@unique

...	class	Mistake(Enum):

...					one	=	1

...					two	=	2

...					three	=	3

...					four	=	3

...

Traceback	(most	recent	call	last):

...

ValueError:	duplicate	values	found	in	<enum	'Mistake'>:	four	->	three

8.13.6.	Iteration

Iterating	over	the	members	of	an	enum	does	not	provide	the	aliases:

>>>	list(Shape)

[<Shape.square:	2>,	<Shape.diamond:	1>,	<Shape.circle:	3>]

The	special	attribute	__members__	is	an	ordered	dictionary	mapping
names	to	members.	It	 includes	all	names	defined	in	the	enumeration,
including	the	aliases:

>>>	for	name,	member	in	Shape.__members__.items():

...					name,	member

...

('square',	<Shape.square:	2>)

('diamond',	<Shape.diamond:	1>)

('circle',	<Shape.circle:	3>)

('alias_for_square',	<Shape.square:	2>)

The	 __members__	 attribute	 can	 be	 used	 for	 detailed	 programmatic
access	 to	 the	 enumeration	 members.	 For	 example,	 finding	 all	 the
aliases:

>>>	[name	for	name,	member	in	Shape.__members__.items

['alias_for_square']

8.13.7.	Comparisons

Enumeration	members	are	compared	by	identity:

>>>	Color.red	is	Color.red

True

>>>	Color.red	is	Color.blue

False

>>>	Color.red	is	not	Color.blue

True

Ordered	comparisons	between	enumeration	values	are	not	supported.
Enum	members	are	not	integers	(but	see	IntEnum	below):

>>>	Color.red	<	Color.blue

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	unorderable	types:	Color()	<	Color()

Equality	comparisons	are	defined	though:

>>>	Color.blue	==	Color.red

False

>>>	Color.blue	!=	Color.red

True

>>>	Color.blue	==	Color.blue

True

Comparisons	against	non-enumeration	values	will	always	compare	not
equal	 (again,	IntEnum	was	explicitly	 designed	 to	behave	differently,
see	below):

>>>	Color.blue	==	2

False

8.13.8.	Allowed	members	and	attributes	of
enumerations

The	 examples	 above	 use	 integers	 for	 enumeration	 values.	 Using
integers	is	short	and	handy	(and	provided	by	default	by	the	Functional
API),	but	not	strictly	enforced.	 In	 the	vast	majority	of	use-cases,	one
doesn’t	 care	 what	 the	 actual	 value	 of	 an	 enumeration	 is.	 But	 if	 the
value	is	important,	enumerations	can	have	arbitrary	values.

Enumerations	are	Python	classes,	and	can	have	methods	and	special
methods	as	usual.	If	we	have	this	enumeration:

>>>	class	Mood(Enum):

...					funky	=	1

...					happy	=	3

...

...					def	describe(self):

...									#	self	is	the	member	here

...									return	self.name,	self.value

...

...					def	__str__(self):

...									return	'my	custom	str!	{0}'.format(self.

...

...					@classmethod

...					def	favorite_mood(cls):

...									#	cls	here	is	the	enumeration

...									return	cls.happy

...

Then:

>>>	Mood.favorite_mood()

<Mood.happy:	3>

>>>	Mood.happy.describe()

('happy',	3)

>>>	str(Mood.funky)

'my	custom	str!	1'

The	rules	for	what	is	allowed	are	as	follows:	_sunder_	names	(starting
and	 ending	 with	 a	 single	 underscore)	 are	 reserved	 by	 enum	 and
cannot	be	used;	all	other	attributes	defined	within	an	enumeration	will
become	 members	 of	 this	 enumeration,	 with	 the	 exception	 of
__dunder__	names	and	descriptors	(methods	are	also	descriptors).

Note:	 if	 your	 enumeration	 defines	 __new__()	 and/or	 __init__()
then	whatever	value(s)	were	given	to	the	enum	member	will	be	passed
into	those	methods.	See	Planet	for	an	example.

8.13.9.	Restricted	subclassing	of
enumerations

Subclassing	an	enumeration	 is	allowed	only	 if	 the	enumeration	does
not	define	any	members.	So	this	is	forbidden:

>>>	class	MoreColor(Color):

...					pink	=	17

...

Traceback	(most	recent	call	last):

...

TypeError:	Cannot	extend	enumerations

But	this	is	allowed:

>>>	class	Foo(Enum):

...					def	some_behavior(self):

...									pass

...

>>>	class	Bar(Foo):

...					happy	=	1

...					sad	=	2

...

Allowing	subclassing	of	enums	 that	define	members	would	 lead	 to	a
violation	of	some	important	 invariants	of	 types	and	 instances.	On	the
other	hand,	 it	makes	sense	 to	allow	sharing	some	common	behavior
between	 a	 group	 of	 enumerations.	 (See	 OrderedEnum	 for	 an
example.)

8.13.10.	Pickling

Enumerations	can	be	pickled	and	unpickled:

>>>	from	test.test_enum	import	Fruit

>>>	from	pickle	import	dumps,	loads

>>>	Fruit.tomato	is	loads(dumps(Fruit.tomato))

True

The	 usual	 restrictions	 for	 pickling	 apply:	 picklable	 enums	 must	 be
defined	in	the	top	level	of	a	module,	since	unpickling	requires	them	to
be	importable	from	that	module.

Note: 	With	pickle	protocol	version	4	it	is	possible	to	easily	pickle
enums	nested	in	other	classes.

It	 is	possible	 to	modify	how	Enum	members	are	pickled/unpickled	by
defining	__reduce_ex__()	in	the	enumeration	class.

8.13.11.	Functional	API

The	Enum	class	is	callable,	providing	the	following	functional	API:

>>>	Animal	=	Enum('Animal',	'ant	bee	cat	dog')

>>>	Animal

<enum	'Animal'>

>>>	Animal.ant

<Animal.ant:	1>

>>>	Animal.ant.value

1

>>>	list(Animal)

[<Animal.ant:	1>,	<Animal.bee:	2>,	<Animal.cat:	3>,	<Animal.dog:	4>]

The	semantics	of	this	API	resemble	namedtuple.	The	first	argument
of	the	call	to	Enum	is	the	name	of	the	enumeration.

The	second	argument	is	the	source	of	enumeration	member	names.	It
can	 be	 a	 whitespace-separated	 string	 of	 names,	 a	 sequence	 of
names,	 a	 sequence	 of	 2-tuples	 with	 key/value	 pairs,	 or	 a	 mapping
(e.g.	 dictionary)	 of	 names	 to	 values.	 The	 last	 two	 options	 enable
assigning	 arbitrary	 values	 to	 enumerations;	 the	 others	 auto-assign
increasing	integers	starting	with	1.	A	new	class	derived	from	Enum	 is
returned.	 In	 other	 words,	 the	 above	 assignment	 to	 Animal	 is
equivalent	to:

>>>	class	Animals(Enum):

...					ant	=	1

...					bee	=	2

...					cat	=	3

...					dog	=	4

...

The	reason	for	defaulting	to	1	as	the	starting	number	and	not	0	is	that
0	 is	 False	 in	 a	 boolean	 sense,	 but	 enum	members	 all	 evaluate	 to
True.

Pickling	enums	created	with	the	functional	API	can	be	tricky	as	frame
stack	 implementation	 details	 are	 used	 to	 try	 and	 figure	 out	 which
module	the	enumeration	is	being	created	in	(e.g.	it	will	fail	if	you	use	a
utility	 function	 in	 separate	 module,	 and	 also	 may	 not	 work	 on
IronPython	 or	 Jython).	 The	 solution	 is	 to	 specify	 the	 module	 name
explicitly	as	follows:

>>>	Animals	=	Enum('Animals',	'ant	bee	cat	dog',	module

Warning: 	If	module	is	not	supplied,	and	Enum	cannot	determine
what	it	is,	the	new	Enum	members	will	not	be	unpicklable;	to	keep
errors	closer	to	the	source,	pickling	will	be	disabled.

The	 new	 pickle	 protocol	 4	 also,	 in	 some	 circumstances,	 relies	 on
__qualname__	being	set	to	the	location	where	pickle	will	be	able	to
find	 the	class.	For	example,	 if	 the	class	was	made	available	 in	class
SomeData	in	the	global	scope:

>>>	Animals	=	Enum('Animals',	'ant	bee	cat	dog',	qualname

The	complete	signature	is:

Enum(value='NewEnumName',	names=<...>,	*,	module='...'

value: What	the	new	Enum	class	will	record	as	its	name.

The	Enum	members.	This	can	be	a	whitespace	or	comma	seperated	string

names:

(values	will	start	at	1):

'red	green	blue'	|	'red,green,blue'	|	'red,	green,	blue'

or	an	iterator	of	(name,	value)	pairs:

[('cyan',	4),	('magenta',	5),	('yellow',	

or	a	mapping:

{'chartruese':	7,	'sea_green':	11,	'rosemary'

module: name	of	module	where	new	Enum	class	can	be	found.

qualname: where	in	module	new	Enum	class	can	be	found.

type: type	to	mix	in	to	new	Enum	class.

8.13.12.	Derived	Enumerations

8.13.12.1.	IntEnum

A	 variation	 of	 Enum	 is	 provided	 which	 is	 also	 a	 subclass	 of	 int.
Members	of	an	IntEnum	can	be	compared	to	integers;	by	extension,
integer	enumerations	of	different	types	can	also	be	compared	to	each
other:

>>>	from	enum	import	IntEnum

>>>	class	Shape(IntEnum):

...					circle	=	1

...					square	=	2

...

>>>	class	Request(IntEnum):

...					post	=	1

...					get	=	2

...

>>>	Shape	==	1

False

>>>	Shape.circle	==	1

True

>>>	Shape.circle	==	Request.post

True

However,	they	still	can’t	be	compared	to	standard	Enum	enumerations:

>>>	class	Shape(IntEnum):

...					circle	=	1

...					square	=	2

...

>>>	class	Color(Enum):

...					red	=	1

...					green	=	2

...

>>>	Shape.circle	==	Color.red

False

IntEnum	values	behave	like	integers	in	other	ways	you’d	expect:

>>>	int(Shape.circle)

1

>>>	['a',	'b',	'c'][Shape.circle]

'b'

>>>	[i	for	i	in	range(Shape.square)]

[0,	1]

For	 the	vast	majority	of	 code,	Enum	 is	 strongly	 recommended,	 since
IntEnum	 breaks	 some	 semantic	 promises	 of	 an	 enumeration	 (by
being	 comparable	 to	 integers,	 and	 thus	 by	 transitivity	 to	 other
unrelated	 enumerations).	 It	 should	 be	 used	 only	 in	 special	 cases
where	 there’s	 no	 other	 choice;	 for	 example,	 when	 integer	 constants
are	 replaced	 with	 enumerations	 and	 backwards	 compatibility	 is
required	with	code	that	still	expects	integers.

8.13.12.2.	Others

While	IntEnum	is	part	of	the	enum	module,	it	would	be	very	simple	to
implement	independently:

class	IntEnum(int,	Enum):

				pass

This	demonstrates	how	similar	derived	enumerations	can	be	defined;
for	example	a	StrEnum	that	mixes	in	str	instead	of	int.

Some	rules:

1.	 When	subclassing	Enum,	mix-in	 types	must	appear	before	Enum
itself	 in	 the	 sequence	 of	 bases,	 as	 in	 the	 IntEnum	 example
above.

2.	 While	Enum	can	have	members	of	any	type,	once	you	mix	 in	an
additional	 type,	 all	 the	members	must	 have	 values	 of	 that	 type,
e.g.	int	above.	This	 restriction	does	not	apply	 to	mix-ins	which
only	 add	methods	 and	 don’t	 specify	 another	 data	 type	 such	 as
int	or	str.

3.	 When	another	data	type	is	mixed	in,	the	value	attribute	is	not	the
same	as	the	enum	member	itself,	although	it	is	equivalant	and	will
compare	equal.

4.	 %-style	 formatting:	 %s	 and	 %r	 call	 Enum‘s	 __str__()	 and
__repr__()	 respectively;	 other	 codes	 (such	 as	%i	 or	%h	 for
IntEnum)	treat	the	enum	member	as	its	mixed-in	type.

5.	 str.__format__()	(or	format())	will	use	the	mixed-in	type’s
__format__().	If	the	Enum‘s	str()	or	repr()	 is	desired	use
the	!s	or	!r	str	format	codes.

8.13.13.	Interesting	examples

While	Enum	and	IntEnum	are	expected	to	cover	the	majority	of	use-
cases,	they	cannot	cover	them	all.	Here	are	recipes	for	some	different
types	 of	 enumerations	 that	 can	 be	 used	 directly,	 or	 as	 examples	 for
creating	one’s	own.

8.13.13.1.	AutoNumber

Avoids	having	to	specify	the	value	for	each	enumeration	member:

>>>	class	AutoNumber(Enum):

...					def	__new__(cls):

...									value	=	len(cls.__members__)	+	1

...									obj	=	object.__new__(cls)

...									obj._value_	=	value

...									return	obj

...

>>>	class	Color(AutoNumber):

...					red	=	()

...					green	=	()

...					blue	=	()

...

>>>	Color.green.value	==	2

True

Note: 	The	__new__()	method,	if	defined,	is	used	during	creation
of	the	Enum	members;	it	is	then	replaced	by	Enum’s	__new__()
which	is	used	after	class	creation	for	lookup	of	existing	members.
Due	to	the	way	Enums	are	supposed	to	behave,	there	is	no	way	to
customize	Enum’s	__new__().

8.13.13.2.	OrderedEnum

An	 ordered	 enumeration	 that	 is	 not	 based	 on	 IntEnum	 and	 so
maintains	the	normal	Enum	 invariants	(such	as	not	being	comparable
to	other	enumerations):

>>>	class	OrderedEnum(Enum):

...					def	__ge__(self,	other):

...									if	self.__class__	is	other.__class__:

...													return	self.value	>=	other.value

...									return	NotImplemented

...					def	__gt__(self,	other):

...									if	self.__class__	is	other.__class__:

...													return	self.value	>	other.value

...									return	NotImplemented

...					def	__le__(self,	other):

...									if	self.__class__	is	other.__class__:

...													return	self.value	<=	other.value

...									return	NotImplemented

...					def	__lt__(self,	other):

...									if	self.__class__	is	other.__class__:

...													return	self.value	<	other.value

...									return	NotImplemented

...

>>>	class	Grade(OrderedEnum):

...					A	=	5

...					B	=	4

...					C	=	3

...					D	=	2

...					F	=	1

...

>>>	Grade.C	<	Grade.A

True

8.13.13.3.	DuplicateFreeEnum

Raises	 an	 error	 if	 a	 duplicate	 member	 name	 is	 found	 instead	 of
creating	an	alias:

>>>	class	DuplicateFreeEnum(Enum):

...					def	__init__(self,	*args):

...									cls	=	self.__class__

...									if	any(self.value	==	e.value	for	e	in	cls

...													a	=	self.name

...													e	=	cls(self.value).name

...													raise	ValueError(

...																	"aliases	not	allowed	in	DuplicateFreeEnum:		%r	-->	%r"

...																	%	(a,	e))

...

>>>	class	Color(DuplicateFreeEnum):

...					red	=	1

...					green	=	2

...					blue	=	3

...					grene	=	2

...

Traceback	(most	recent	call	last):

...

ValueError:	aliases	not	allowed	in	DuplicateFreeEnum:		'grene'	-->	'green'

Note: 	This	is	a	useful	example	for	subclassing	Enum	to	add	or
change	other	behaviors	as	well	as	disallowing	aliases.	If	the	only
desired	change	is	disallowing	aliases,	the	unique()	decorator	can
be	used	instead.

8.13.13.4.	Planet

If	 __new__()	 or	 __init__()	 is	 defined	 the	 value	 of	 the	 enum
member	will	be	passed	to	those	methods:

>>>	class	Planet(Enum):

...					MERCURY	=	(3.303e+23,	2.4397e6)

...					VENUS			=	(4.869e+24,	6.0518e6)

...					EARTH			=	(5.976e+24,	6.37814e6)

...					MARS				=	(6.421e+23,	3.3972e6)

...					JUPITER	=	(1.9e+27,			7.1492e7)

...					SATURN		=	(5.688e+26,	6.0268e7)

...					URANUS		=	(8.686e+25,	2.5559e7)

...					NEPTUNE	=	(1.024e+26,	2.4746e7)

...					def	__init__(self,	mass,	radius):

...									self.mass	=	mass							#	in	kilograms

...									self.radius	=	radius			#	in	meters

...					@property

...					def	surface_gravity(self):

...									#	universal	gravitational	constant		(m3	kg-1	s-2)

...									G	=	6.67300E-11

...									return	G	*	self.mass	/	(self.radius	*	self

...

>>>	Planet.EARTH.value

(5.976e+24,	6378140.0)

>>>	Planet.EARTH.surface_gravity

9.802652743337129

8.13.14.	How	are	Enums	different?

Enums	 have	 a	 custom	metaclass	 that	 affects	many	 aspects	 of	 both
derived	Enum	classes	and	their	instances	(members).

8.13.14.1.	Enum	Classes

The	 EnumMeta	 metaclass	 is	 responsible	 for	 providing	 the
__contains__(),	 __dir__(),	 __iter__()	 and	 other	 methods
that	 allow	one	 to	 do	 things	with	 an	 Enum	 class	 that	 fail	 on	 a	 typical
class,	 such	 as	 list(Color)	 or	 some_var	 in	 Color.	 EnumMeta	 is
responsible	for	ensuring	that	various	other	methods	on	the	final	Enum
class	 are	 correct	 (such	 as	 __new__(),	 __getnewargs__(),
__str__()	and	__repr__())

8.13.14.2.	Enum	Members	(aka	instances)

The	 most	 interesting	 thing	 about	 Enum	 members	 is	 that	 they	 are
singletons.	EnumMeta	 creates	 them	all	while	 it	 is	 creating	 the	 Enum
class	 itself,	 and	 then	 puts	 a	 custom	 __new__()	 in	 place	 to	 ensure
that	no	new	ones	are	ever	 instantiated	by	 returning	only	 the	existing
member	instances.

8.13.14.3.	Finer	Points

Enum	 members	 are	 instances	 of	 an	 Enum	 class,	 and	 even	 though
they	 are	 accessible	 as	EnumClass.member,	 they	 are	 not	 accessible
directly	from	the	member:

>>>	Color.red

<Color.red:	1>

>>>	Color.red.blue

Traceback	(most	recent	call	last):

...

AttributeError:	'Color'	object	has	no	attribute	'blue'

Likewise,	the	__members__	is	only	available	on	the	class.

If	 you	give	 your	 Enum	 subclass	extra	methods,	 like	 the	Planet	 class
above,	those	methods	will	show	up	in	a	dir()	of	the	member,	but	not
of	the	class:

>>>	dir(Planet)

['EARTH',	'JUPITER',	'MARS',	'MERCURY',	'NEPTUNE',	'SATURN',	'URANUS',	'VENUS',	'__class__',	'__doc__',	'__members__',	'__module__']

>>>	dir(Planet.EARTH)

['__class__',	'__doc__',	'__module__',	'name',	'surface_gravity',	'value']

A	__new__()	method	will	only	be	used	for	 the	creation	of	 the	Enum
members	–	after	that	it	is	replaced.	This	means	if	you	wish	to	change
how	Enum	members	are	 looked	up	you	either	have	 to	write	a	helper
function	or	a	classmethod().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	8.	Data	Types	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

9.	Numeric	and	Mathematical
Modules
The	 modules	 described	 in	 this	 chapter	 provide	 numeric	 and	 math-
related	 functions	 and	 data	 types.	 The	 numbers	 module	 defines	 an
abstract	 hierarchy	of	 numeric	 types.	The	 math	 and	 cmath	modules
contain	various	mathematical	 functions	for	 floating-point	and	complex
numbers.	 The	 decimal	 module	 supports	 exact	 representations	 of
decimal	numbers,	using	arbitrary	precision	arithmetic.

The	following	modules	are	documented	in	this	chapter:

9.1.	numbers	—	Numeric	abstract	base	classes
9.1.1.	The	numeric	tower
9.1.2.	Notes	for	type	implementors

9.1.2.1.	Adding	More	Numeric	ABCs
9.1.2.2.	Implementing	the	arithmetic	operations

9.2.	math	—	Mathematical	functions
9.2.1.	Number-theoretic	and	representation	functions
9.2.2.	Power	and	logarithmic	functions
9.2.3.	Trigonometric	functions
9.2.4.	Angular	conversion
9.2.5.	Hyperbolic	functions
9.2.6.	Special	functions
9.2.7.	Constants

9.3.	cmath	—	Mathematical	functions	for	complex	numbers
9.3.1.	Conversions	to	and	from	polar	coordinates
9.3.2.	Power	and	logarithmic	functions
9.3.3.	Trigonometric	functions
9.3.4.	Hyperbolic	functions
9.3.5.	Classification	functions

9.3.6.	Constants
9.4.	decimal	—	Decimal	fixed	point	and	floating	point	arithmetic

9.4.1.	Quick-start	Tutorial
9.4.2.	Decimal	objects

9.4.2.1.	Logical	operands
9.4.3.	Context	objects
9.4.4.	Constants
9.4.5.	Rounding	modes
9.4.6.	Signals
9.4.7.	Floating	Point	Notes

9.4.7.1.	 Mitigating	 round-off	 error	 with	 increased
precision
9.4.7.2.	Special	values

9.4.8.	Working	with	threads
9.4.9.	Recipes
9.4.10.	Decimal	FAQ

9.5.	fractions	—	Rational	numbers
9.6.	random	—	Generate	pseudo-random	numbers

9.6.1.	Notes	on	Reproducibility
9.6.2.	Examples	and	Recipes

9.7.	statistics	—	Mathematical	statistics	functions
9.7.1.	Averages	and	measures	of	central	location
9.7.2.	Measures	of	spread
9.7.3.	Function	details
9.7.4.	Exceptions

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

http://www.python.org/

9.1.	numbers	—	Numeric	abstract
base	classes
The	 numbers	 module	 (PEP	 3141)	 defines	 a	 hierarchy	 of	 numeric
abstract	 base	 classes	 which	 progressively	 define	 more	 operations.
None	of	the	types	defined	in	this	module	can	be	instantiated.

class	numbers.Number
The	 root	of	 the	numeric	hierarchy.	 If	 you	 just	want	 to	 check	 if	 an
argument	 x	 is	 a	 number,	 without	 caring	 what	 kind,	 use
isinstance(x,	Number).

http://www.python.org/dev/peps/pep-3141

9.1.1.	The	numeric	tower

class	numbers.Complex
Subclasses	of	this	type	describe	complex	numbers	and	include	the
operations	 that	 work	 on	 the	 built-in	 complex	 type.	 These	 are:
conversions	 to	 complex	 and	 bool,	 real,	 imag,	 +,	 -,	 *,	 /,
abs(),	 conjugate(),	 ==,	 and	 !=.	 All	 except	 -	 and	 !=	 are
abstract.

real

Abstract.	Retrieves	the	real	component	of	this	number.

imag

Abstract.	Retrieves	the	imaginary	component	of	this	number.

conjugate()
Abstract.	 Returns	 the	 complex	 conjugate.	 For	 example,
(1+3j).conjugate()	==	(1-3j).

class	numbers.Real
To	 Complex,	 Real	 adds	 the	 operations	 that	 work	 on	 real
numbers.

In	 short,	 those	 are:	 a	 conversion	 to	 float,	 math.trunc(),
round(),	math.floor(),	math.ceil(),	divmod(),	//,	%,	<,
<=,	>,	and	>=.

Real	 also	 provides	 defaults	 for	 complex(),	 real,	 imag,	 and
conjugate().

class	numbers.Rational
Subtypes	 Real	 and	 adds	 numerator	 and	 denominator

properties,	which	should	be	in	lowest	terms.	With	these,	it	provides
a	default	for	float().

numerator

Abstract.

denominator

Abstract.

class	numbers.Integral
Subtypes	 Rational	 and	 adds	 a	 conversion	 to	 int.	 Provides
defaults	 for	 float(),	 numerator,	 and	 denominator.	 Adds
abstract	methods	for	**	and	bit-string	operations:	<<,	>>,	&,	^,	|,
~.

9.1.2.	Notes	for	type	implementors

Implementors	 should	 be	 careful	 to	 make	 equal	 numbers	 equal	 and
hash	 them	 to	 the	 same	 values.	 This	may	 be	 subtle	 if	 there	 are	 two
different	 extensions	 of	 the	 real	 numbers.	 For	 example,
fractions.Fraction	implements	hash()	as	follows:

def	__hash__(self):

				if	self.denominator	==	1:

								#	Get	integers	right.

								return	hash(self.numerator)

				#	Expensive	check,	but	definitely	correct.

				if	self	==	float(self):

								return	hash(float(self))

				else:

								#	Use	tuple's	hash	to	avoid	a	high	collision	rate	on

								#	simple	fractions.

								return	hash((self.numerator,	self.denominator

9.1.2.1.	Adding	More	Numeric	ABCs

There	are,	of	course,	more	possible	ABCs	for	numbers,	and	this	would
be	a	poor	hierarchy	if	it	precluded	the	possibility	of	adding	those.	You
can	add	MyFoo	between	Complex	and	Real	with:

class	MyFoo(Complex):	...

MyFoo.register(Real)

9.1.2.2.	Implementing	the	arithmetic	operations

We	want	 to	 implement	 the	arithmetic	operations	so	 that	mixed-mode

operations	either	call	an	implementation	whose	author	knew	about	the
types	of	 both	arguments,	 or	 convert	 both	 to	 the	nearest	 built	 in	 type
and	 do	 the	 operation	 there.	 For	 subtypes	 of	 Integral,	 this	means
that	__add__()	and	__radd__()	should	be	defined	as:

class	MyIntegral(Integral):

				def	__add__(self,	other):

								if	isinstance(other,	MyIntegral):

												return	do_my_adding_stuff(self,	other)

								elif	isinstance(other,	OtherTypeIKnowAbout):

												return	do_my_other_adding_stuff(self,	other

								else:

												return	NotImplemented

				def	__radd__(self,	other):

								if	isinstance(other,	MyIntegral):

												return	do_my_adding_stuff(other,	self)

								elif	isinstance(other,	OtherTypeIKnowAbout):

												return	do_my_other_adding_stuff(other,	self

								elif	isinstance(other,	Integral):

												return	int(other)	+	int(self)

								elif	isinstance(other,	Real):

												return	float(other)	+	float(self)

								elif	isinstance(other,	Complex):

												return	complex(other)	+	complex(self)

								else:

												return	NotImplemented

There	are	5	different	cases	for	a	mixed-type	operation	on	subclasses
of	 Complex.	 I’ll	 refer	 to	 all	 of	 the	 above	 code	 that	 doesn’t	 refer	 to
MyIntegral	and	OtherTypeIKnowAbout	as	“boilerplate”.	a	will	be
an	 instance	 of	 A,	 which	 is	 a	 subtype	 of	 Complex	 (a	 :	 A	 <:

Complex),	and	b	:	B	<:	Complex.	I’ll	consider	a	+	b:

1.	 If	A	defines	an	__add__()	which	accepts	b,	all	is	well.
2.	 If	A	falls	back	to	the	boilerplate	code,	and	it	were	to	return	a

value	 from	 __add__(),	 we’d	 miss	 the	 possibility	 that	 B
defines	 a	 more	 intelligent	 __radd__(),	 so	 the	 boilerplate
should	 return	 NotImplemented	 from	 __add__().	 (Or	 A
may	not	implement	__add__()	at	all.)

3.	 Then	B‘s	__radd__()	gets	a	chance.	 If	 it	accepts	a,	all	 is
well.

4.	 If	 it	 falls	back	 to	 the	boilerplate,	 there	are	no	more	possible
methods	 to	 try,	 so	 this	 is	 where	 the	 default	 implementation
should	live.

5.	 If	 B	<:	A,	 Python	 tries	 B.__radd__	 before	 A.__add__.
This	is	ok,	because	it	was	implemented	with	knowledge	of	A,
so	 it	 can	 handle	 those	 instances	 before	 delegating	 to
Complex.

If	 A	 <:	 Complex	 and	 B	 <:	 Real	 without	 sharing	 any	 other
knowledge,	then	the	appropriate	shared	operation	is	the	one	involving
the	built	in	complex,	and	both	__radd__()	s	land	there,	so	a+b	==
b+a.

Because	most	of	the	operations	on	any	given	type	will	be	very	similar,
it	 can	 be	 useful	 to	 define	 a	 helper	 function	 which	 generates	 the
forward	 and	 reverse	 instances	 of	 any	 given	 operator.	 For	 example,
fractions.Fraction	uses:

def	_operator_fallbacks(monomorphic_operator,	fallback_operator

				def	forward(a,	b):

								if	isinstance(b,	(int,	Fraction)):

												return	monomorphic_operator(a,	b)

								elif	isinstance(b,	float):

												return	fallback_operator(float(a),	b)

								elif	isinstance(b,	complex):

												return	fallback_operator(complex(a),	b)

								else:

												return	NotImplemented

				forward.__name__	=	'__'	+	fallback_operator.__name__

				forward.__doc__	=	monomorphic_operator.__doc__

				def	reverse(b,	a):

								if	isinstance(a,	Rational):

												#	Includes	ints.

												return	monomorphic_operator(a,	b)

								elif	isinstance(a,	numbers.Real):

												return	fallback_operator(float(a),	float

								elif	isinstance(a,	numbers.Complex):

												return	fallback_operator(complex(a),	complex

								else:

												return	NotImplemented

				reverse.__name__	=	'__r'	+	fallback_operator.__name__

				reverse.__doc__	=	monomorphic_operator.__doc__

				return	forward,	reverse

def	_add(a,	b):

				"""a	+	b"""

				return	Fraction(a.numerator	*	b.denominator	+

																				b.numerator	*	a.denominator,

																				a.denominator	*	b.denominator)

__add__,	__radd__	=	_operator_fallbacks(_add,	operator

#	...

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

http://www.python.org/

9.2.	math	—	Mathematical
functions
This	 module	 is	 always	 available.	 It	 provides	 access	 to	 the
mathematical	functions	defined	by	the	C	standard.

These	 functions	 cannot	 be	 used	 with	 complex	 numbers;	 use	 the
functions	 of	 the	 same	 name	 from	 the	 cmath	 module	 if	 you	 require
support	for	complex	numbers.	The	distinction	between	functions	which
support	complex	numbers	and	those	which	don’t	 is	made	since	most
users	do	not	want	to	learn	quite	as	much	mathematics	as	required	to
understand	 complex	 numbers.	 Receiving	 an	 exception	 instead	 of	 a
complex	 result	 allows	 earlier	 detection	 of	 the	 unexpected	 complex
number	used	as	a	parameter,	so	that	 the	programmer	can	determine
how	and	why	it	was	generated	in	the	first	place.

The	 following	 functions	 are	 provided	 by	 this	 module.	 Except	 when
explicitly	noted	otherwise,	all	return	values	are	floats.

9.2.1.	Number-theoretic	and
representation	functions

math.ceil(x)
Return	the	ceiling	of	x,	the	smallest	integer	greater	than	or	equal	to
x.	 If	x	 is	 not	 a	 float,	 delegates	 to	 x.__ceil__(),	which	 should
return	an	Integral	value.

math.copysign(x,	y)
Return	a	float	with	the	magnitude	(absolute	value)	of	x	but	the	sign
of	 y.	 On	 platforms	 that	 support	 signed	 zeros,	 copysign(1.0,
-0.0)	returns	-1.0.

math.fabs(x)
Return	the	absolute	value	of	x.

math.factorial(x)
Return	 x	 factorial.	 Raises	 ValueError	 if	 x	 is	 not	 integral	 or	 is
negative.

math.floor(x)
Return	the	floor	of	x,	the	largest	integer	less	than	or	equal	to	x.	If	x
is	not	a	 float,	delegates	 to	x.__floor__(),	which	should	 return
an	Integral	value.

math.fmod(x,	y)
Return	 fmod(x,	y),	 as	 defined	 by	 the	 platform	 C	 library.	 Note
that	the	Python	expression	x	%	y	may	not	return	the	same	result.
The	 intent	 of	 the	 C	 standard	 is	 that	 fmod(x,	 y)	 be	 exactly
(mathematically;	 to	 infinite	precision)	equal	 to	x	-	n*y	 for	 some

integer	 n	 such	 that	 the	 result	 has	 the	 same	 sign	 as	 x	 and
magnitude	less	than	abs(y).	Python’s	x	%	y	returns	a	result	with
the	sign	of	y	 instead,	and	may	not	be	exactly	computable	for	float
arguments.	For	example,	fmod(-1e-100,	1e100)	 is	-1e-100,
but	the	result	of	Python’s	-1e-100	%	1e100	is	1e100-1e-100,
which	cannot	be	represented	exactly	as	a	float,	and	rounds	to	the
surprising	 1e100.	 For	 this	 reason,	 function	 fmod()	 is	 generally
preferred	 when	 working	 with	 floats,	 while	 Python’s	 x	 %	 y	 is
preferred	when	working	with	integers.

math.frexp(x)
Return	the	mantissa	and	exponent	of	x	as	the	pair	(m,	e).	m	is	a
float	and	e	is	an	integer	such	that	x	==	m	*	2**e	exactly.	If	x	is
zero,	returns	(0.0,	0),	otherwise	0.5	<=	abs(m)	<	1.	This	is
used	 to	 “pick	 apart”	 the	 internal	 representation	 of	 a	 float	 in	 a
portable	way.

math.fsum(iterable)
Return	 an	 accurate	 floating	 point	 sum	 of	 values	 in	 the	 iterable.
Avoids	 loss	 of	 precision	 by	 tracking	 multiple	 intermediate	 partial
sums:

>>>	sum([.1,	.1,	.1,	.1,	.1,	.1,	.1,	.1,	.1,	.1])

0.9999999999999999

>>>	fsum([.1,	.1,	.1,	.1,	.1,	.1,	.1,	.1,	.1,	.1])

1.0

The	 algorithm’s	 accuracy	 depends	 on	 IEEE-754	 arithmetic
guarantees	and	the	typical	case	where	the	rounding	mode	is	half-
even.	On	some	non-Windows	builds,	the	underlying	C	library	uses
extended	precision	addition	and	may	occasionally	double-round	an
intermediate	sum	causing	it	to	be	off	in	its	least	significant	bit.

For	 further	 discussion	 and	 two	 alternative	 approaches,	 see	 the
ASPN	cookbook	recipes	for	accurate	floating	point	summation.

math.isfinite(x)
Return	 True	 if	 x	 is	 neither	 an	 infinity	 nor	 a	 NaN,	 and	 False
otherwise.	(Note	that	0.0	is	considered	finite.)

New	in	version	3.2.

math.isinf(x)
Return	 True	 if	 x	 is	 a	 positive	 or	 negative	 infinity,	 and	 False
otherwise.

math.isnan(x)
Return	True	if	x	is	a	NaN	(not	a	number),	and	False	otherwise.

math.ldexp(x,	i)
Return	 x	 *	 (2**i).	 This	 is	 essentially	 the	 inverse	 of	 function
frexp().

math.modf(x)
Return	 the	fractional	and	 integer	parts	of	x.	Both	 results	carry	 the
sign	of	x	and	are	floats.

math.trunc(x)
Return	 the	 Real	 value	x	 truncated	 to	 an	 Integral	 (usually	 an
integer).	Delegates	to	x.__trunc__().

Note	 that	 frexp()	 and	 modf()	 have	 a	 different	 call/return	 pattern
than	their	C	equivalents:	they	take	a	single	argument	and	return	a	pair
of	 values,	 rather	 than	 returning	 their	 second	 return	 value	 through	an
‘output	parameter’	(there	is	no	such	thing	in	Python).

http://code.activestate.com/recipes/393090/

For	 the	 ceil(),	 floor(),	 and	 modf()	 functions,	 note	 that	 all
floating-point	 numbers	 of	 sufficiently	 large	 magnitude	 are	 exact
integers.	Python	floats	typically	carry	no	more	than	53	bits	of	precision
(the	 same	as	 the	platform	C	double	 type),	 in	which	 case	any	 float	x
with	abs(x)	>=	2**52	necessarily	has	no	fractional	bits.

9.2.2.	Power	and	logarithmic	functions

math.exp(x)
Return	e**x.

math.expm1(x)
Return	e**x	-	1.	For	small	floats	x,	the	subtraction	in	exp(x)	-
1	can	result	in	a	significant	loss	of	precision;	the	expm1()	function
provides	a	way	to	compute	this	quantity	to	full	precision:

>>>	from	math	import	exp,	expm1

>>>	exp(1e-5)	-	1		#	gives	result	accurate	to	11	places

1.0000050000069649e-05

>>>	expm1(1e-5)				#	result	accurate	to	full	precision

1.0000050000166668e-05

New	in	version	3.2.

math.log(x[,	base])
With	one	argument,	return	the	natural	logarithm	of	x	(to	base	e).

With	 two	 arguments,	 return	 the	 logarithm	of	x	 to	 the	 given	base,
calculated	as	log(x)/log(base).

math.log1p(x)
Return	 the	 natural	 logarithm	 of	 1+x	 (base	 e).	 The	 result	 is
calculated	in	a	way	which	is	accurate	for	x	near	zero.

math.log2(x)
Return	 the	 base-2	 logarithm	 of	 x.	 This	 is	 usually	 more	 accurate
than	log(x,	2).

http://en.wikipedia.org/wiki/Loss_of_significance

New	in	version	3.3.

See	 also: 	 int.bit_length()	 returns	 the	 number	 of	 bits
necessary	 to	 represent	 an	 integer	 in	 binary,	 excluding	 the	 sign
and	leading	zeros.

math.log10(x)
Return	 the	base-10	 logarithm	of	x.	 This	 is	 usually	more	 accurate
than	log(x,	10).

math.pow(x,	y)
Return	x	raised	to	the	power	y.	Exceptional	cases	follow	Annex	‘F’
of	the	C99	standard	as	far	as	possible.	In	particular,	pow(1.0,	x)
and	pow(x,	0.0)	always	return	1.0,	even	when	x	is	a	zero	or	a
NaN.	 If	 both	 x	 and	 y	 are	 finite,	 x	 is	 negative,	 and	 y	 is	 not	 an
integer	then	pow(x,	y)	is	undefined,	and	raises	ValueError.

Unlike	 the	 built-in	 **	 operator,	 math.pow()	 converts	 both	 its
arguments	 to	 type	float.	Use	**	 or	 the	 built-in	 pow()	 function
for	computing	exact	integer	powers.

math.sqrt(x)
Return	the	square	root	of	x.

9.2.3.	Trigonometric	functions

math.acos(x)
Return	the	arc	cosine	of	x,	in	radians.

math.asin(x)
Return	the	arc	sine	of	x,	in	radians.

math.atan(x)
Return	the	arc	tangent	of	x,	in	radians.

math.atan2(y,	x)
Return	atan(y	/	x),	in	radians.	The	result	is	between	-pi	and
pi.	The	vector	in	the	plane	from	the	origin	to	point	(x,	y)	makes
this	angle	with	the	positive	X	axis.	The	point	of	atan2()	is	that	the
signs	of	both	inputs	are	known	to	it,	so	it	can	compute	the	correct
quadrant	for	the	angle.	For	example,	atan(1)	and	atan2(1,	1)
are	both	pi/4,	but	atan2(-1,	-1)	is	-3*pi/4.

math.cos(x)
Return	the	cosine	of	x	radians.

math.hypot(x,	y)
Return	the	Euclidean	norm,	sqrt(x*x	+	y*y).	This	is	the	length
of	the	vector	from	the	origin	to	point	(x,	y).

math.sin(x)
Return	the	sine	of	x	radians.

math.tan(x)
Return	the	tangent	of	x	radians.

9.2.4.	Angular	conversion

math.degrees(x)
Converts	angle	x	from	radians	to	degrees.

math.radians(x)
Converts	angle	x	from	degrees	to	radians.

9.2.5.	Hyperbolic	functions

Hyperbolic	 functions	 are	 analogs	 of	 trigonometric	 functions	 that	 are
based	on	hyperbolas	instead	of	circles.

math.acosh(x)
Return	the	inverse	hyperbolic	cosine	of	x.

math.asinh(x)
Return	the	inverse	hyperbolic	sine	of	x.

math.atanh(x)
Return	the	inverse	hyperbolic	tangent	of	x.

math.cosh(x)
Return	the	hyperbolic	cosine	of	x.

math.sinh(x)
Return	the	hyperbolic	sine	of	x.

math.tanh(x)
Return	the	hyperbolic	tangent	of	x.

http://en.wikipedia.org/wiki/Hyperbolic_function

9.2.6.	Special	functions

math.erf(x)
Return	the	error	function	at	x.

The	erf()	 function	can	be	used	 to	compute	 traditional	statistical
functions	such	as	the	cumulative	standard	normal	distribution:

def	phi(x):

				'Cumulative	distribution	function	for	the	standard	normal	distribution'

				return	(1.0	+	erf(x	/	sqrt(2.0)))	/	2.0

New	in	version	3.2.

math.erfc(x)
Return	the	complementary	error	function	at	x.	The	complementary
error	 function	 is	 defined	 as	 1.0	-	erf(x).	 It	 is	 used	 for	 large
values	 of	x	 where	 a	 subtraction	 from	 one	would	 cause	 a	 loss	 of
significance.

New	in	version	3.2.

math.gamma(x)
Return	the	Gamma	function	at	x.

New	in	version	3.2.

math.lgamma(x)
Return	 the	natural	 logarithm	of	 the	absolute	value	of	 the	Gamma
function	at	x.

New	in	version	3.2.

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Normal_distribution#Cumulative_distribution_function
http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Loss_of_significance
http://en.wikipedia.org/wiki/Gamma_function

9.2.7.	Constants

math.pi

The	mathematical	constant	π	=	3.141592...,	to	available	precision.

math.e

The	mathematical	constant	e	=	2.718281...,	to	available	precision.

CPython	implementation	detail:	The	math	module	consists	mostly
of	 thin	 wrappers	 around	 the	 platform	 C	 math	 library	 functions.
Behavior	 in	exceptional	cases	follows	Annex	F	of	the	C99	standard
where	 appropriate.	 The	 current	 implementation	 will	 raise
ValueError	for	invalid	operations	like	sqrt(-1.0)	or	log(0.0)
(where	 C99	 Annex	 F	 recommends	 signaling	 invalid	 operation	 or
divide-by-zero),	 and	 OverflowError	 for	 results	 that	 overflow	 (for
example,	exp(1000.0)).	A	NaN	will	not	be	returned	from	any	of	the
functions	above	unless	one	or	more	of	 the	 input	 arguments	was	a
NaN;	 in	 that	 case,	 most	 functions	 will	 return	 a	 NaN,	 but	 (again
following	C99	Annex	F)	 there	are	 some	exceptions	 to	 this	 rule,	 for
example	pow(float('nan'),	0.0)	or	hypot(float('nan'),
float('inf')).
Note	that	Python	makes	no	effort	to	distinguish	signaling	NaNs	from
quiet	 NaNs,	 and	 behavior	 for	 signaling	NaNs	 remains	 unspecified.
Typical	behavior	is	to	treat	all	NaNs	as	though	they	were	quiet.

See	also:

Module	cmath
Complex	number	versions	of	many	of	these	functions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

http://www.python.org/

9.3.	cmath	—	Mathematical
functions	for	complex	numbers
This	module	 is	 always	 available.	 It	 provides	 access	 to	mathematical
functions	 for	 complex	 numbers.	 The	 functions	 in	 this	module	 accept
integers,	 floating-point	 numbers	 or	 complex	 numbers	 as	 arguments.
They	 will	 also	 accept	 any	 Python	 object	 that	 has	 either	 a
__complex__()	 or	 a	 __float__()	 method:	 these	 methods	 are
used	 to	 convert	 the	 object	 to	 a	 complex	 or	 floating-point	 number,
respectively,	 and	 the	 function	 is	 then	 applied	 to	 the	 result	 of	 the
conversion.

Note: 	On	platforms	with	hardware	and	system-level	support	for
signed	zeros,	functions	involving	branch	cuts	are	continuous	on	both
sides	of	the	branch	cut:	the	sign	of	the	zero	distinguishes	one	side	of
the	branch	cut	from	the	other.	On	platforms	that	do	not	support
signed	zeros	the	continuity	is	as	specified	below.

9.3.1.	Conversions	to	and	from	polar
coordinates

A	Python	complex	number	z	 is	stored	 internally	using	 rectangular	 or
Cartesian	 coordinates.	 It	 is	 completely	 determined	 by	 its	 real	 part
z.real	and	its	imaginary	part	z.imag.	In	other	words:

z	==	z.real	+	z.imag*1j

Polar	 coordinates	 give	 an	 alternative	 way	 to	 represent	 a	 complex
number.	 In	 polar	 coordinates,	 a	 complex	number	z	 is	 defined	by	 the
modulus	r	and	the	phase	angle	phi.	The	modulus	r	is	the	distance	from
z	 to	 the	 origin,	 while	 the	 phase	 phi	 is	 the	 counterclockwise	 angle,
measured	in	radians,	from	the	positive	x-axis	to	the	line	segment	that
joins	the	origin	to	z.

The	 following	 functions	 can	 be	 used	 to	 convert	 from	 the	 native
rectangular	coordinates	to	polar	coordinates	and	back.

cmath.phase(x)
Return	the	phase	of	x	(also	known	as	the	argument	of	x),	as	a	float.
phase(x)	 is	 equivalent	 to	 math.atan2(x.imag,	 x.real).
The	 result	 lies	 in	 the	 range	 [-π,	 π],	 and	 the	 branch	 cut	 for	 this
operation	lies	along	the	negative	real	axis,	continuous	from	above.
On	 systems	 with	 support	 for	 signed	 zeros	 (which	 includes	 most
systems	in	current	use),	this	means	that	the	sign	of	the	result	is	the
same	as	the	sign	of	x.imag,	even	when	x.imag	is	zero:

>>>	phase(complex(-1.0,	0.0))

3.141592653589793

>>>	phase(complex(-1.0,	-0.0))

-3.141592653589793

Note: 	The	modulus	(absolute	value)	of	a	complex	number	x	can	be
computed	using	the	built-in	abs()	function.	There	is	no	separate
cmath	module	function	for	this	operation.

cmath.polar(x)
Return	the	representation	of	x	in	polar	coordinates.	Returns	a	pair
(r,	phi)	where	r	 is	the	modulus	of	x	and	phi	 is	 the	phase	of	x.
polar(x)	is	equivalent	to	(abs(x),	phase(x)).

cmath.rect(r,	phi)
Return	 the	 complex	 number	 x	 with	 polar	 coordinates	 r	 and	 phi.
Equivalent	to	r	*	(math.cos(phi)	+	math.sin(phi)*1j).

9.3.2.	Power	and	logarithmic	functions

cmath.exp(x)
Return	the	exponential	value	e**x.

cmath.log(x[,	base])
Returns	 the	 logarithm	 of	 x	 to	 the	 given	 base.	 If	 the	 base	 is	 not
specified,	 returns	 the	natural	 logarithm	of	x.	 There	 is	 one	 branch
cut,	 from	 0	 along	 the	 negative	 real	 axis	 to	 -∞,	 continuous	 from
above.

cmath.log10(x)
Return	 the	base-10	 logarithm	of	x.	This	has	 the	same	branch	cut
as	log().

cmath.sqrt(x)
Return	 the	 square	 root	 of	 x.	 This	 has	 the	 same	 branch	 cut	 as
log().

9.3.3.	Trigonometric	functions

cmath.acos(x)
Return	the	arc	cosine	of	x.	There	are	two	branch	cuts:	One	extends
right	 from	1	along	 the	 real	axis	 to	∞,	continuous	 from	below.	The
other	extends	left	from	-1	along	the	real	axis	to	-∞,	continuous	from
above.

cmath.asin(x)
Return	 the	 arc	 sine	 of	 x.	 This	 has	 the	 same	 branch	 cuts	 as
acos().

cmath.atan(x)
Return	 the	 arc	 tangent	 of	 x.	 There	 are	 two	 branch	 cuts:	 One
extends	from	1j	along	the	 imaginary	axis	 to	∞j,	continuous	from
the	right.	The	other	extends	from	-1j	along	the	imaginary	axis	to	-
∞j,	continuous	from	the	left.

cmath.cos(x)
Return	the	cosine	of	x.

cmath.sin(x)
Return	the	sine	of	x.

cmath.tan(x)
Return	the	tangent	of	x.

9.3.4.	Hyperbolic	functions

cmath.acosh(x)
Return	 the	 hyperbolic	 arc	 cosine	 of	 x.	 There	 is	 one	 branch	 cut,
extending	 left	 from	 1	 along	 the	 real	 axis	 to	 -∞,	 continuous	 from
above.

cmath.asinh(x)
Return	the	hyperbolic	arc	sine	of	x.	There	are	two	branch	cuts:	One
extends	from	1j	along	the	 imaginary	axis	 to	∞j,	continuous	from
the	right.	The	other	extends	from	-1j	along	the	imaginary	axis	to	-
∞j,	continuous	from	the	left.

cmath.atanh(x)
Return	the	hyperbolic	arc	tangent	of	x.	There	are	two	branch	cuts:
One	 extends	 from	 1	 along	 the	 real	 axis	 to	 ∞,	 continuous	 from
below.	 The	 other	 extends	 from	 -1	 along	 the	 real	 axis	 to	 -∞,
continuous	from	above.

cmath.cosh(x)
Return	the	hyperbolic	cosine	of	x.

cmath.sinh(x)
Return	the	hyperbolic	sine	of	x.

cmath.tanh(x)
Return	the	hyperbolic	tangent	of	x.

9.3.5.	Classification	functions

cmath.isfinite(x)
Return	True	if	both	the	real	and	imaginary	parts	of	x	are	finite,	and
False	otherwise.

New	in	version	3.2.

cmath.isinf(x)
Return	 True	 if	 either	 the	 real	 or	 the	 imaginary	 part	 of	 x	 is	 an
infinity,	and	False	otherwise.

cmath.isnan(x)
Return	True	 if	either	the	real	or	the	imaginary	part	of	x	 is	a	NaN,
and	False	otherwise.

9.3.6.	Constants

cmath.pi

The	mathematical	constant	π,	as	a	float.

cmath.e

The	mathematical	constant	e,	as	a	float.

Note	that	the	selection	of	functions	is	similar,	but	not	identical,	to	that
in	 module	 math.	 The	 reason	 for	 having	 two	 modules	 is	 that	 some
users	aren’t	 interested	 in	 complex	numbers,	 and	perhaps	don’t	 even
know	what	 they	are.	They	would	 rather	have	math.sqrt(-1)	 raise
an	 exception	 than	 return	 a	 complex	 number.	 Also	 note	 that	 the
functions	defined	 in	cmath	always	 return	a	complex	number,	even	 if
the	 answer	 can	 be	 expressed	 as	 a	 real	 number	 (in	 which	 case	 the
complex	number	has	an	imaginary	part	of	zero).

A	note	on	branch	cuts:	They	are	curves	along	which	the	given	function
fails	to	be	continuous.	They	are	a	necessary	feature	of	many	complex
functions.	 It	 is	 assumed	 that	 if	 you	 need	 to	 compute	 with	 complex
functions,	you	will	understand	about	branch	cuts.	Consult	almost	any
(not	too	elementary)	book	on	complex	variables	for	enlightenment.	For
information	 of	 the	 proper	 choice	 of	 branch	 cuts	 for	 numerical
purposes,	a	good	reference	should	be	the	following:

See	also: 	Kahan,	W:	Branch	cuts	for	complex	elementary
functions;	or,	Much	ado	about	nothing’s	sign	bit.	In	Iserles,	A.,	and
Powell,	M.	(eds.),	The	state	of	the	art	in	numerical	analysis.
Clarendon	Press	(1987)	pp165-211.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»	9.	Numeric	and	Mathematical	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

http://www.python.org/

9.4.	decimal	—	Decimal	fixed
point	and	floating	point	arithmetic
The	 decimal	 module	 provides	 support	 for	 fast	 correctly-rounded
decimal	floating	point	arithmetic.	It	offers	several	advantages	over	the
float	datatype:

Decimal	“is	based	on	a	 floating-point	model	which	was	designed
with	 people	 in	 mind,	 and	 necessarily	 has	 a	 paramount	 guiding
principle	–	computers	must	provide	an	arithmetic	that	works	in	the
same	way	as	the	arithmetic	that	people	learn	at	school.”	–	excerpt
from	the	decimal	arithmetic	specification.

Decimal	 numbers	 can	 be	 represented	 exactly.	 In	 contrast,
numbers	like	1.1	and	2.2	do	not	have	exact	representations	 in
binary	floating	point.	End	users	typically	would	not	expect	1.1	+
2.2	 to	display	as	3.3000000000000003	as	 it	does	with	binary
floating	point.

The	 exactness	 carries	 over	 into	 arithmetic.	 In	 decimal	 floating
point,	 0.1	+	0.1	+	0.1	-	0.3	 is	 exactly	 equal	 to	 zero.	 In
binary	floating	point,	the	result	 is	5.5511151231257827e-017.
While	near	to	zero,	the	differences	prevent	reliable	equality	testing
and	 differences	 can	 accumulate.	 For	 this	 reason,	 decimal	 is
preferred	 in	 accounting	 applications	 which	 have	 strict	 equality
invariants.

The	decimal	module	incorporates	a	notion	of	significant	places	so
that	1.30	+	1.20	 is	2.50.	The	trailing	zero	 is	kept	 to	 indicate
significance.	 This	 is	 the	 customary	 presentation	 for	 monetary

applications.	 For	 multiplication,	 the	 “schoolbook”	 approach	 uses
all	 the	 figures	 in	 the	 multiplicands.	 For	 instance,	 1.3	 *	 1.2
gives	1.56	while	1.30	*	1.20	gives	1.5600.

Unlike	hardware	based	binary	 floating	point,	 the	decimal	module
has	a	user	alterable	precision	(defaulting	to	28	places)	which	can
be	as	large	as	needed	for	a	given	problem:

>>>	from	decimal	import	*

>>>	getcontext().prec	=	6

>>>	Decimal(1)	/	Decimal(7)

Decimal('0.142857')

>>>	getcontext().prec	=	28

>>>	Decimal(1)	/	Decimal(7)

Decimal('0.1428571428571428571428571429')

Both	binary	and	decimal	 floating	point	are	 implemented	 in	 terms
of	published	standards.	While	the	built-in	float	type	exposes	only	a
modest	portion	of	its	capabilities,	the	decimal	module	exposes	all
required	 parts	 of	 the	 standard.	 When	 needed,	 the	 programmer
has	 full	 control	 over	 rounding	and	signal	handling.	This	 includes
an	option	to	enforce	exact	arithmetic	by	using	exceptions	to	block
any	inexact	operations.

The	decimal	module	was	designed	to	support	 “without	prejudice,
both	exact	unrounded	decimal	arithmetic	(sometimes	called	fixed-
point	arithmetic)	and	rounded	floating-point	arithmetic.”	–	excerpt
from	the	decimal	arithmetic	specification.

The	 module	 design	 is	 centered	 around	 three	 concepts:	 the	 decimal
number,	the	context	for	arithmetic,	and	signals.

A	decimal	number	is	immutable.	It	has	a	sign,	coefficient	digits,	and	an
exponent.	 To	 preserve	 significance,	 the	 coefficient	 digits	 do	 not

truncate	 trailing	 zeros.	Decimals	 also	 include	 special	 values	 such	as
Infinity,	 -Infinity,	 and	 NaN.	 The	 standard	 also	 differentiates
-0	from	+0.

The	 context	 for	 arithmetic	 is	 an	 environment	 specifying	 precision,
rounding	 rules,	 limits	 on	 exponents,	 flags	 indicating	 the	 results	 of
operations,	 and	 trap	 enablers	 which	 determine	 whether	 signals	 are
treated	 as	 exceptions.	 Rounding	 options	 include	 ROUND_CEILING,
ROUND_DOWN,	 ROUND_FLOOR,	 ROUND_HALF_DOWN,
ROUND_HALF_EVEN,	 ROUND_HALF_UP,	 ROUND_UP,	 and
ROUND_05UP.

Signals	are	groups	of	exceptional	conditions	arising	during	the	course
of	 computation.	 Depending	 on	 the	 needs	 of	 the	 application,	 signals
may	be	ignored,	considered	as	informational,	or	treated	as	exceptions.
The	 signals	 in	 the	 decimal	 module	 are:	 Clamped,
InvalidOperation,	 DivisionByZero,	 Inexact,	 Rounded,
Subnormal,	Overflow,	Underflow	and	FloatOperation.

For	 each	 signal	 there	 is	 a	 flag	and	a	 trap	enabler.	When	a	 signal	 is
encountered,	 its	 flag	 is	 set	 to	 one,	 then,	 if	 the	 trap	 enabler	 is	 set	 to
one,	 an	 exception	 is	 raised.	 Flags	 are	 sticky,	 so	 the	 user	 needs	 to
reset	them	before	monitoring	a	calculation.

See	also:

IBM’s	 General	 Decimal	 Arithmetic	 Specification,	 The	 General
Decimal	Arithmetic	Specification.
IEEE	standard	854-1987,	Unofficial	IEEE	854	Text.

http://speleotrove.com/decimal/decarith.html
http://754r.ucbtest.org/standards/854.pdf

9.4.1.	Quick-start	Tutorial

The	usual	start	to	using	decimals	is	importing	the	module,	viewing	the
current	 context	 with	 getcontext()	 and,	 if	 necessary,	 setting	 new
values	for	precision,	rounding,	or	enabled	traps:

>>>	from	decimal	import	*

>>>	getcontext()

Context(prec=28,	rounding=ROUND_HALF_EVEN,	Emin=-999999,	Emax=999999,

								capitals=1,	clamp=0,	flags=[],	traps=[Overflow,	DivisionByZero,

								InvalidOperation])

>>>	getcontext().prec	=	7							#	Set	a	new	precision

Decimal	instances	can	be	constructed	from	integers,	strings,	floats,	or
tuples.	 Construction	 from	 an	 integer	 or	 a	 float	 performs	 an	 exact
conversion	 of	 the	 value	 of	 that	 integer	 or	 float.	 Decimal	 numbers
include	special	values	such	as	NaN	which	stands	for	“Not	a	number”,
positive	and	negative	Infinity,	and	-0:

>>>	getcontext().prec	=	28

>>>	Decimal(10)

Decimal('10')

>>>	Decimal('3.14')

Decimal('3.14')

>>>	Decimal(3.14)

Decimal('3.140000000000000124344978758017532527446746826171875')

>>>	Decimal((0,	(3,	1,	4),	-2))

Decimal('3.14')

>>>	Decimal(str(2.0	**	0.5))

Decimal('1.4142135623730951')

>>>	Decimal(2)	**	Decimal('0.5')

Decimal('1.414213562373095048801688724')

>>>	Decimal('NaN')

Decimal('NaN')

>>>	Decimal('-Infinity')

Decimal('-Infinity')

If	 the	 FloatOperation	 signal	 is	 trapped,	 accidental	 mixing	 of
decimals	and	floats	in	constructors	or	ordering	comparisons	raises	an
exception:

>>>	c	=	getcontext()

>>>	c.traps[FloatOperation]	=	True

>>>	Decimal(3.14)

Traceback	(most	recent	call	last):

File	"<stdin>",	line	1,	in	<module>

decimal.FloatOperation:	[<class	'decimal.FloatOperation'>]

>>>	Decimal('3.5')	<	3.7

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

decimal.FloatOperation:	[<class	'decimal.FloatOperation'>]

>>>	Decimal('3.5')	==	3.5

True

New	in	version	3.3.

The	significance	of	a	new	Decimal	is	determined	solely	by	the	number
of	 digits	 input.	 Context	 precision	 and	 rounding	 only	 come	 into	 play
during	arithmetic	operations.

>>>	getcontext().prec	=	6

>>>	Decimal('3.0')

Decimal('3.0')

>>>	Decimal('3.1415926535')

Decimal('3.1415926535')

>>>	Decimal('3.1415926535')	+	Decimal('2.7182818285'

Decimal('5.85987')

>>>	getcontext().rounding	=	ROUND_UP

>>>	Decimal('3.1415926535')	+	Decimal('2.7182818285'

Decimal('5.85988')

If	 the	 internal	 limits	 of	 the	 C	 version	 are	 exceeded,	 constructing	 a
decimal	raises	InvalidOperation:

>>>	Decimal("1e9999999999999999999")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

decimal.InvalidOperation:	[<class	'decimal.InvalidOperation'>]

Changed	in	version	3.3.

Decimals	interact	well	with	much	of	the	rest	of	Python.	Here	is	a	small
decimal	floating	point	flying	circus:

>>>	data	=	list(map(Decimal,	'1.34	1.87	3.45	2.35	1.00	0.03	9.25'

>>>	max(data)

Decimal('9.25')

>>>	min(data)

Decimal('0.03')

>>>	sorted(data)

[Decimal('0.03'),	Decimal('1.00'),	Decimal('1.34'),	Decimal('1.87'),

	Decimal('2.35'),	Decimal('3.45'),	Decimal('9.25')]

>>>	sum(data)

Decimal('19.29')

>>>	a,b,c	=	data[:3]

>>>	str(a)

'1.34'

>>>	float(a)

1.34

>>>	round(a,	1)

Decimal('1.3')

>>>	int(a)

1

>>>	a	*	5

Decimal('6.70')

>>>	a	*	b

Decimal('2.5058')

>>>	c	%	a

Decimal('0.77')

And	some	mathematical	functions	are	also	available	to	Decimal:

>>>	getcontext().prec	=	28

>>>	Decimal(2).sqrt()

Decimal('1.414213562373095048801688724')

>>>	Decimal(1).exp()

Decimal('2.718281828459045235360287471')

>>>	Decimal('10').ln()

Decimal('2.302585092994045684017991455')

>>>	Decimal('10').log10()

Decimal('1')

The	quantize()	method	rounds	a	number	to	a	fixed	exponent.	This
method	is	useful	for	monetary	applications	that	often	round	results	to	a
fixed	number	of	places:

>>>	Decimal('7.325').quantize(Decimal('.01'),	rounding

Decimal('7.32')

>>>	Decimal('7.325').quantize(Decimal('1.'),	rounding

Decimal('8')

As	shown	above,	 the	 getcontext()	 function	 accesses	 the	 current
context	and	allows	 the	settings	 to	be	changed.	This	approach	meets
the	needs	of	most	applications.

For	more	advanced	work,	it	may	be	useful	to	create	alternate	contexts
using	the	Context()	constructor.	To	make	an	alternate	active,	use	 the
setcontext()	function.

In	accordance	with	 the	standard,	 the	Decimal	module	provides	 two
ready	 to	 use	 standard	 contexts,	 BasicContext	 and
ExtendedContext.	 The	 former	 is	 especially	 useful	 for	 debugging
because	many	of	the	traps	are	enabled:

>>>	myothercontext	=	Context(prec=60,	rounding=ROUND_HALF_DOWN

>>>	setcontext(myothercontext)

>>>	Decimal(1)	/	Decimal(7)

Decimal('0.142857142857142857142857142857142857142857142857142857142857')

>>>	ExtendedContext

Context(prec=9,	rounding=ROUND_HALF_EVEN,	Emin=-999999,	Emax=999999,

								capitals=1,	clamp=0,	flags=[],	traps=[])

>>>	setcontext(ExtendedContext)

>>>	Decimal(1)	/	Decimal(7)

Decimal('0.142857143')

>>>	Decimal(42)	/	Decimal(0)

Decimal('Infinity')

>>>	setcontext(BasicContext)

>>>	Decimal(42)	/	Decimal(0)

Traceback	(most	recent	call	last):

		File	"<pyshell#143>",	line	1,	in	-toplevel-

				Decimal(42)	/	Decimal(0)

DivisionByZero:	x	/	0

Contexts	also	have	signal	 flags	 for	monitoring	exceptional	 conditions
encountered	during	computations.	The	flags	remain	set	until	explicitly
cleared,	 so	 it	 is	 best	 to	 clear	 the	 flags	 before	 each	 set	 of	monitored
computations	by	using	the	clear_flags()	method.

>>>	setcontext(ExtendedContext)

>>>	getcontext().clear_flags()

>>>	Decimal(355)	/	Decimal(113)

Decimal('3.14159292')

>>>	getcontext()

Context(prec=9,	rounding=ROUND_HALF_EVEN,	Emin=-999999,	Emax=999999,

								capitals=1,	clamp=0,	flags=[Inexact,	Rounded],	traps=[])

The	 flags	 entry	 shows	 that	 the	 rational	 approximation	 to	 Pi	 was
rounded	 (digits	beyond	 the	context	precision	were	 thrown	away)	and
that	the	result	is	inexact	(some	of	the	discarded	digits	were	non-zero).

Individual	 traps	 are	 set	 using	 the	 dictionary	 in	 the	 traps	 field	 of	 a
context:

>>>	setcontext(ExtendedContext)

>>>	Decimal(1)	/	Decimal(0)

Decimal('Infinity')

>>>	getcontext().traps[DivisionByZero]	=	1

>>>	Decimal(1)	/	Decimal(0)

Traceback	(most	recent	call	last):

		File	"<pyshell#112>",	line	1,	in	-toplevel-

				Decimal(1)	/	Decimal(0)

DivisionByZero:	x	/	0

Most	programs	adjust	the	current	context	only	once,	at	the	beginning
of	 the	 program.	 And,	 in	 many	 applications,	 data	 is	 converted	 to
Decimal	 with	 a	 single	 cast	 inside	 a	 loop.	 With	 context	 set	 and
decimals	 created,	 the	 bulk	 of	 the	 program	manipulates	 the	 data	 no
differently	than	with	other	Python	numeric	types.

9.4.2.	Decimal	objects

class	decimal.Decimal(value="0",	context=None)
Construct	a	new	Decimal	object	based	from	value.

value	can	be	an	integer,	string,	tuple,	float,	or	another	Decimal
object.	 If	no	value	 is	 given,	 returns	 Decimal('0').	 If	value	 is	 a
string,	it	should	conform	to	the	decimal	numeric	string	syntax	after
leading	and	trailing	whitespace	characters	are	removed:

sign											::=		'+'	|	'-'

digit										::=		'0'	|	'1'	|	'2'	|	'3'	|	'4'	|	

indicator						::=		'e'	|	'E'

digits									::=		digit	[digit]...

decimal-part			::=		digits	'.'	[digits]	|	['.']	digits

exponent-part		::=		indicator	[sign]	digits

infinity							::=		'Infinity'	|	'Inf'

nan												::=		'NaN'	[digits]	|	'sNaN'	[digits

numeric-value		::=		decimal-part	[exponent-part]	|

numeric-string	::=		[sign]	numeric-value	|	[sign]	

Other	 Unicode	 decimal	 digits	 are	 also	 permitted	 where	 digit
appears	 above.	 These	 include	 decimal	 digits	 from	 various	 other
alphabets	 (for	example,	Arabic-Indic	and	Devanāgarī	digits)	along
with	the	fullwidth	digits	'\uff10'	through	'\uff19'.

If	value	is	a	tuple,	it	should	have	three	components,	a	sign	(0	for
positive	 or	 1	 for	 negative),	 a	 tuple	 of	 digits,	 and	 an	 integer
exponent.	For	example,	Decimal((0,	(1,	4,	1,	4),	-3))
returns	Decimal('1.414').

If	 value	 is	 a	 float,	 the	 binary	 floating	 point	 value	 is	 losslessly

converted	 to	 its	 exact	 decimal	 equivalent.	 This	 conversion	 can
often	 require	 53	 or	 more	 digits	 of	 precision.	 For	 example,
Decimal(float('1.1'))	 converts	 to
Decimal('1.100000000000000088817841970012523233890533447265625')

The	context	precision	does	not	affect	how	many	digits	are	stored.
That	is	determined	exclusively	by	the	number	of	digits	in	value.	For
example,	Decimal('3.00000')	records	all	five	zeros	even	if	the
context	precision	is	only	three.

The	purpose	of	 the	context	argument	 is	determining	what	 to	do	 if
value	 is	 a	 malformed	 string.	 If	 the	 context	 traps
InvalidOperation,	 an	 exception	 is	 raised;	 otherwise,	 the
constructor	returns	a	new	Decimal	with	the	value	of	NaN.

Once	constructed,	Decimal	objects	are	immutable.

Changed	 in	 version	 3.2:	The	 argument	 to	 the	 constructor	 is	 now
permitted	to	be	a	float	instance.

Changed	in	version	3.3:	float	arguments	raise	an	exception	if	the
FloatOperation	trap	is	set.	By	default	the	trap	is	off.

Decimal	floating	point	objects	share	many	properties	with	the	other
built-in	 numeric	 types	 such	 as	 float	 and	 int.	 All	 of	 the	 usual
math	 operations	 and	 special	 methods	 apply.	 Likewise,	 decimal
objects	 can	 be	 copied,	 pickled,	 printed,	 used	 as	 dictionary	 keys,
used	as	 set	elements,	 compared,	 sorted,	and	coerced	 to	another
type	(such	as	float	or	int).

There	are	some	small	 differences	between	arithmetic	on	Decimal
objects	and	arithmetic	on	integers	and	floats.	When	the	remainder
operator	%	 is	 applied	 to	Decimal	 objects,	 the	 sign	of	 the	 result	 is

the	sign	of	the	dividend	rather	than	the	sign	of	the	divisor:

>>>	(-7)	%	4

1

>>>	Decimal(-7)	%	Decimal(4)

Decimal('-3')

The	 integer	 division	 operator	 //	 behaves	 analogously,	 returning
the	integer	part	of	the	true	quotient	(truncating	towards	zero)	rather
than	its	floor,	so	as	to	preserve	the	usual	identity	x	==	(x	//	y)
*	y	+	x	%	y:

>>>	-7	//	4

-2

>>>	Decimal(-7)	//	Decimal(4)

Decimal('-1')

The	%	and	//	operators	implement	the	remainder	and	divide-
integer	 operations	 (respectively)	 as	 described	 in	 the
specification.

Decimal	 objects	 cannot	 generally	 be	 combined	 with	 floats	 or
instances	 of	 fractions.Fraction	 in	 arithmetic	 operations:	 an
attempt	 to	add	a	 Decimal	 to	a	 float,	 for	 example,	will	 raise	a
TypeError.	However,	 it	 is	 possible	 to	 use	 Python’s	 comparison
operators	to	compare	a	Decimal	instance	x	with	another	number
y.	This	avoids	confusing	results	when	doing	equality	comparisons
between	numbers	of	different	types.

Changed	 in	 version	 3.2:	 Mixed-type	 comparisons	 between
Decimal	 instances	 and	 other	 numeric	 types	 are	 now	 fully
supported.

In	 addition	 to	 the	 standard	 numeric	 properties,	 decimal	 floating
point	objects	also	have	a	number	of	specialized	methods:

adjusted()
Return	the	adjusted	exponent	after	shifting	out	the	coefficient’s
rightmost	 digits	 until	 only	 the	 lead	 digit	 remains:
Decimal('321e+5').adjusted()	 returns	 seven.	 Used	 for
determining	the	position	of	the	most	significant	digit	with	respect
to	the	decimal	point.

as_tuple()
Return	 a	 named	 tuple	 representation	 of	 the	 number:
DecimalTuple(sign,	digits,	exponent).

canonical()
Return	 the	canonical	encoding	of	 the	argument.	Currently,	 the
encoding	 of	 a	 Decimal	 instance	 is	 always	 canonical,	 so	 this
operation	returns	its	argument	unchanged.

compare(other,	context=None)
Compare	 the	 values	 of	 two	 Decimal	 instances.	 compare()
returns	a	Decimal	instance,	and	if	either	operand	is	a	NaN	then
the	result	is	a	NaN:

a	or	b	is	a	NaN		==>	Decimal('NaN')

a	<	b												==>	Decimal('-1')

a	==	b											==>	Decimal('0')

a	>	b												==>	Decimal('1')

compare_signal(other,	context=None)
This	 operation	 is	 identical	 to	 the	 compare()	 method,	 except
that	 all	NaNs	 signal.	 That	 is,	 if	 neither	 operand	 is	 a	 signaling

NaN	then	any	quiet	NaN	operand	is	treated	as	though	it	were	a
signaling	NaN.

compare_total(other,	context=None)
Compare	 two	 operands	 using	 their	 abstract	 representation
rather	 than	 their	 numerical	 value.	 Similar	 to	 the	 compare()
method,	 but	 the	 result	 gives	 a	 total	 ordering	 on	 Decimal
instances.	 Two	 Decimal	 instances	 with	 the	 same	 numeric
value	 but	 different	 representations	 compare	 unequal	 in	 this
ordering:

>>>	Decimal('12.0').compare_total(Decimal('12'))

Decimal('-1')

Quiet	and	signaling	NaNs	are	also	included	in	the	total	ordering.
The	 result	of	 this	 function	 is	Decimal('0')	 if	 both	operands
have	 the	 same	 representation,	 Decimal('-1')	 if	 the	 first
operand	 is	 lower	 in	 the	 total	 order	 than	 the	 second,	 and
Decimal('1')	 if	 the	 first	operand	 is	higher	 in	 the	 total	order
than	the	second	operand.	See	the	specification	for	details	of	the
total	order.

This	operation	is	unaffected	by	context	and	is	quiet:	no	flags	are
changed	and	no	rounding	is	performed.	As	an	exception,	the	C
version	 may	 raise	 InvalidOperation	 if	 the	 second	 operand
cannot	be	converted	exactly.

compare_total_mag(other,	context=None)
Compare	 two	 operands	 using	 their	 abstract	 representation
rather	 than	 their	 value	as	 in	compare_total(),	but	 ignoring
the	 sign	 of	 each	 operand.	 x.compare_total_mag(y)	 is
equivalent	 to

x.copy_abs().compare_total(y.copy_abs()).

This	operation	is	unaffected	by	context	and	is	quiet:	no	flags	are
changed	and	no	rounding	is	performed.	As	an	exception,	the	C
version	 may	 raise	 InvalidOperation	 if	 the	 second	 operand
cannot	be	converted	exactly.

conjugate()
Just	returns	self,	this	method	is	only	to	comply	with	the	Decimal
Specification.

copy_abs()
Return	 the	 absolute	 value	 of	 the	 argument.	 This	 operation	 is
unaffected	 by	 the	 context	 and	 is	 quiet:	 no	 flags	 are	 changed
and	no	rounding	is	performed.

copy_negate()
Return	 the	 negation	 of	 the	 argument.	 This	 operation	 is
unaffected	 by	 the	 context	 and	 is	 quiet:	 no	 flags	 are	 changed
and	no	rounding	is	performed.

copy_sign(other,	context=None)
Return	 a	 copy	of	 the	 first	 operand	with	 the	 sign	 set	 to	 be	 the
same	as	the	sign	of	the	second	operand.	For	example:

>>>	Decimal('2.3').copy_sign(Decimal('-1.5'))

Decimal('-2.3')

This	operation	is	unaffected	by	context	and	is	quiet:	no	flags	are
changed	and	no	rounding	is	performed.	As	an	exception,	the	C
version	 may	 raise	 InvalidOperation	 if	 the	 second	 operand
cannot	be	converted	exactly.

exp(context=None)
Return	 the	value	of	 the	 (natural)	exponential	 function	e**x	at
the	 given	 number.	 The	 result	 is	 correctly	 rounded	 using	 the
ROUND_HALF_EVEN	rounding	mode.

>>>	Decimal(1).exp()

Decimal('2.718281828459045235360287471')

>>>	Decimal(321).exp()

Decimal('2.561702493119680037517373933E+139')

from_float(f)
Classmethod	that	converts	a	float	to	a	decimal	number,	exactly.

Note	Decimal.from_float(0.1)	is	not	the	same	as	Decimal(‘0.1’).
Since	 0.1	 is	 not	 exactly	 representable	 in	 binary	 floating	 point,
the	value	is	stored	as	the	nearest	representable	value	which	is
0x1.999999999999ap-4.	 That	 equivalent	 value	 in	 decimal	 is
0.1000000000000000055511151231257827021181583404541015625

Note: 	From	Python	 3.2	 onwards,	 a	 Decimal	 instance	 can
also	be	constructed	directly	from	a	float.

>>>	Decimal.from_float(0.1)

Decimal('0.1000000000000000055511151231257827021181583404541015625')

>>>	Decimal.from_float(float('nan'))

Decimal('NaN')

>>>	Decimal.from_float(float('inf'))

Decimal('Infinity')

>>>	Decimal.from_float(float('-inf'))

Decimal('-Infinity')

New	in	version	3.1.

fma(other,	third,	context=None)
Fused	multiply-add.	Return	self*other+third	with	no	rounding	of
the	intermediate	product	self*other.

>>>	Decimal(2).fma(3,	5)

Decimal('11')

is_canonical()
Return	 True	 if	 the	 argument	 is	 canonical	 and	 False

otherwise.	Currently,	a	Decimal	 instance	 is	always	canonical,
so	this	operation	always	returns	True.

is_finite()
Return	True	 if	 the	argument	 is	a	 finite	number,	and	False	 if
the	argument	is	an	infinity	or	a	NaN.

is_infinite()
Return	 True	 if	 the	 argument	 is	 either	 positive	 or	 negative
infinity	and	False	otherwise.

is_nan()
Return	True	 if	 the	argument	 is	a	(quiet	or	signaling)	NaN	and
False	otherwise.

is_normal(context=None)
Return	True	 if	 the	argument	is	a	normal	 finite	number.	Return
False	if	the	argument	is	zero,	subnormal,	infinite	or	a	NaN.

is_qnan()
Return	 True	 if	 the	 argument	 is	 a	 quiet	 NaN,	 and	 False
otherwise.

is_signed()
Return	True	 if	 the	argument	 has	a	negative	 sign	and	 False
otherwise.	Note	that	zeros	and	NaNs	can	both	carry	signs.

is_snan()
Return	 True	 if	 the	 argument	 is	 a	 signaling	 NaN	 and	 False
otherwise.

is_subnormal(context=None)
Return	 True	 if	 the	 argument	 is	 subnormal,	 and	 False
otherwise.

is_zero()
Return	True	if	the	argument	is	a	(positive	or	negative)	zero	and
False	otherwise.

ln(context=None)
Return	the	natural	(base	e)	logarithm	of	the	operand.	The	result
is	 correctly	 rounded	 using	 the	 ROUND_HALF_EVEN	 rounding
mode.

log10(context=None)
Return	 the	 base	 ten	 logarithm	 of	 the	 operand.	 The	 result	 is
correctly	 rounded	 using	 the	 ROUND_HALF_EVEN	 rounding
mode.

logb(context=None)
For	 a	 nonzero	 number,	 return	 the	 adjusted	 exponent	 of	 its
operand	as	a	Decimal	instance.	If	 the	operand	is	a	zero	then
Decimal('-Infinity')	 is	 returned	 and	 the
DivisionByZero	 flag	 is	 raised.	 If	 the	 operand	 is	 an	 infinity
then	Decimal('Infinity')	is	returned.

logical_and(other,	context=None)
logical_and()	is	a	logical	operation	which	takes	two	 logical
operands	 (see	 Logical	 operands).	 The	 result	 is	 the	 digit-wise
and	of	the	two	operands.

logical_invert(context=None)
logical_invert()	 is	 a	 logical	 operation.	 The	 result	 is	 the
digit-wise	inversion	of	the	operand.

logical_or(other,	context=None)
logical_or()	 is	 a	 logical	 operation	which	 takes	 two	 logical
operands	(see	Logical	operands).	The	result	is	the	digit-wise	or
of	the	two	operands.

logical_xor(other,	context=None)
logical_xor()	is	a	logical	operation	which	takes	two	 logical
operands	 (see	 Logical	 operands).	 The	 result	 is	 the	 digit-wise
exclusive	or	of	the	two	operands.

max(other,	context=None)
Like	max(self,	other)	except	that	the	context	rounding	rule
is	 applied	 before	 returning	 and	 that	 NaN	 values	 are	 either
signaled	or	ignored	(depending	on	the	context	and	whether	they
are	signaling	or	quiet).

max_mag(other,	context=None)
Similar	to	the	max()	method,	but	the	comparison	is	done	using
the	absolute	values	of	the	operands.

min(other,	context=None)
Like	min(self,	other)	except	that	the	context	rounding	rule
is	 applied	 before	 returning	 and	 that	 NaN	 values	 are	 either

signaled	or	ignored	(depending	on	the	context	and	whether	they
are	signaling	or	quiet).

min_mag(other,	context=None)
Similar	to	the	min()	method,	but	the	comparison	is	done	using
the	absolute	values	of	the	operands.

next_minus(context=None)
Return	 the	 largest	 number	 representable	 in	 the	 given	 context
(or	 in	the	current	thread’s	context	 if	no	context	 is	given)	that	 is
smaller	than	the	given	operand.

next_plus(context=None)
Return	the	smallest	number	representable	 in	the	given	context
(or	 in	the	current	thread’s	context	 if	no	context	 is	given)	that	 is
larger	than	the	given	operand.

next_toward(other,	context=None)
If	 the	 two	operands	are	unequal,	 return	 the	number	closest	 to
the	first	operand	in	the	direction	of	the	second	operand.	If	both
operands	 are	 numerically	 equal,	 return	 a	 copy	 of	 the	 first
operand	 with	 the	 sign	 set	 to	 be	 the	 same	 as	 the	 sign	 of	 the
second	operand.

normalize(context=None)
Normalize	 the	number	by	stripping	 the	 rightmost	 trailing	zeros
and	 converting	 any	 result	 equal	 to	 Decimal('0')	 to
Decimal('0e0').	 Used	 for	 producing	 canonical	 values	 for
attributes	 of	 an	 equivalence	 class.	 For	 example,
Decimal('32.100')	and	Decimal('0.321000e+2')	both
normalize	to	the	equivalent	value	Decimal('32.1').

number_class(context=None)
Return	 a	 string	 describing	 the	 class	 of	 the	 operand.	 The
returned	value	is	one	of	the	following	ten	strings.

"-Infinity",	 indicating	 that	 the	 operand	 is	 negative
infinity.
"-Normal",	 indicating	 that	 the	 operand	 is	 a	 negative
normal	number.
"-Subnormal",	 indicating	 that	 the	 operand	 is	 negative
and	subnormal.
"-Zero",	indicating	that	the	operand	is	a	negative	zero.
"+Zero",	indicating	that	the	operand	is	a	positive	zero.
"+Subnormal",	indicating	that	the	operand	is	positive	and
subnormal.
"+Normal",	 indicating	 that	 the	 operand	 is	 a	 positive
normal	number.
"+Infinity",	 indicating	 that	 the	 operand	 is	 positive
infinity.
"NaN",	 indicating	 that	 the	operand	 is	a	quiet	NaN	 (Not	a
Number).
"sNaN",	indicating	that	the	operand	is	a	signaling	NaN.

quantize(exp,	rounding=None,	context=None,	watchexp=True)
Return	 a	 value	 equal	 to	 the	 first	 operand	 after	 rounding	 and
having	the	exponent	of	the	second	operand.

>>>	Decimal('1.41421356').quantize(Decimal('1.000'

Decimal('1.414')

Unlike	other	operations,	if	the	length	of	the	coefficient	after	the
quantize	 operation	 would	 be	 greater	 than	 precision,	 then	 an
InvalidOperation	is	signaled.	This	guarantees	that,	unless

there	 is	 an	 error	 condition,	 the	 quantized	 exponent	 is	 always
equal	to	that	of	the	right-hand	operand.

Also	unlike	other	operations,	quantize	never	signals	Underflow,
even	if	the	result	is	subnormal	and	inexact.

If	the	exponent	of	the	second	operand	is	larger	than	that	of	the
first	then	rounding	may	be	necessary.	In	this	case,	the	rounding
mode	 is	determined	by	 the	rounding	argument	 if	given,	else
by	 the	given	 context	 argument;	 if	 neither	 argument	 is	 given
the	rounding	mode	of	the	current	thread’s	context	is	used.

If	watchexp	 is	set	(default),	then	an	error	is	returned	whenever
the	 resulting	 exponent	 is	 greater	 than	 Emax	 or	 less	 than
Etiny.

Deprecated	since	version	3.3:	watchexp	is	an	implementation
detail	from	the	pure	Python	version	and	is	not	present	in	the	C
version.	It	will	be	removed	in	version	3.4,	where	it	defaults	to
True.

radix()
Return	Decimal(10),	 the	radix	(base)	in	which	the	Decimal
class	does	all	 its	arithmetic.	 Included	 for	 compatibility	with	 the
specification.

remainder_near(other,	context=None)
Return	 the	 remainder	 from	 dividing	 self	 by	 other.	 This	 differs
from	 self	 %	 other	 in	 that	 the	 sign	 of	 the	 remainder	 is
chosen	so	as	to	minimize	its	absolute	value.	More	precisely,	the
return	 value	 is	 self	-	n	*	other	 where	 n	 is	 the	 integer
nearest	 to	 the	 exact	 value	 of	 self	 /	 other,	 and	 if	 two

integers	are	equally	near	then	the	even	one	is	chosen.

If	the	result	is	zero	then	its	sign	will	be	the	sign	of	self.

>>>	Decimal(18).remainder_near(Decimal(10))

Decimal('-2')

>>>	Decimal(25).remainder_near(Decimal(10))

Decimal('5')

>>>	Decimal(35).remainder_near(Decimal(10))

Decimal('-5')

rotate(other,	context=None)
Return	the	result	of	rotating	the	digits	of	the	first	operand	by	an
amount	specified	by	the	second	operand.	The	second	operand
must	 be	 an	 integer	 in	 the	 range	 -precision	 through	 precision.
The	absolute	value	of	the	second	operand	gives	the	number	of
places	to	rotate.	If	the	second	operand	is	positive	then	rotation
is	to	the	left;	otherwise	rotation	is	to	the	right.	The	coefficient	of
the	 first	 operand	 is	 padded	 on	 the	 left	 with	 zeros	 to	 length
precision	 if	 necessary.	 The	 sign	 and	 exponent	 of	 the	 first
operand	are	unchanged.

same_quantum(other,	context=None)
Test	whether	self	and	other	have	the	same	exponent	or	whether
both	are	NaN.

This	operation	is	unaffected	by	context	and	is	quiet:	no	flags	are
changed	and	no	rounding	is	performed.	As	an	exception,	the	C
version	 may	 raise	 InvalidOperation	 if	 the	 second	 operand
cannot	be	converted	exactly.

scaleb(other,	context=None)
Return	the	first	operand	with	exponent	adjusted	by	the	second.

Equivalently,	return	the	first	operand	multiplied	by	10**other.
The	second	operand	must	be	an	integer.

shift(other,	context=None)
Return	the	result	of	shifting	the	digits	of	the	first	operand	by	an
amount	specified	by	the	second	operand.	The	second	operand
must	 be	 an	 integer	 in	 the	 range	 -precision	 through	 precision.
The	absolute	value	of	the	second	operand	gives	the	number	of
places	to	shift.	If	the	second	operand	is	positive	then	the	shift	is
to	 the	 left;	otherwise	 the	shift	 is	 to	 the	 right.	Digits	shifted	 into
the	 coefficient	 are	 zeros.	 The	 sign	 and	 exponent	 of	 the	 first
operand	are	unchanged.

sqrt(context=None)
Return	the	square	root	of	the	argument	to	full	precision.

to_eng_string(context=None)
Convert	to	an	engineering-type	string.

Engineering	notation	has	an	exponent	which	is	a	multiple	of	3,
so	 there	 are	 up	 to	 3	 digits	 left	 of	 the	 decimal	 place.	 For
example,	 converts	 Decimal('123E+1')	 to
Decimal('1.23E+3')

to_integral(rounding=None,	context=None)
Identical	 to	 the	 to_integral_value()	 method.	 The
to_integral	name	has	been	kept	for	compatibility	with	older
versions.

to_integral_exact(rounding=None,	context=None)
Round	 to	 the	nearest	 integer,	signaling	Inexact	or	Rounded
as	 appropriate	 if	 rounding	 occurs.	 The	 rounding	 mode	 is

determined	 by	 the	 rounding	 parameter	 if	 given,	 else	 by	 the
given	context.	If	neither	parameter	is	given	then	the	rounding
mode	of	the	current	context	is	used.

to_integral_value(rounding=None,	context=None)
Round	 to	 the	 nearest	 integer	 without	 signaling	 Inexact	 or
Rounded.	 If	 given,	 applies	 rounding;	 otherwise,	 uses	 the
rounding	method	 in	 either	 the	 supplied	 context	 or	 the	 current
context.

9.4.2.1.	Logical	operands

The	 logical_and(),	 logical_invert(),	 logical_or(),	 and
logical_xor()	 methods	 expect	 their	 arguments	 to	 be	 logical
operands.	A	 logical	operand	 is	a	Decimal	 instance	whose	exponent
and	sign	are	both	zero,	and	whose	digits	are	all	either	0	or	1.

9.4.3.	Context	objects

Contexts	 are	 environments	 for	 arithmetic	 operations.	 They	 govern
precision,	set	 rules	 for	 rounding,	determine	which	signals	are	 treated
as	exceptions,	and	limit	the	range	for	exponents.

Each	thread	has	its	own	current	context	which	is	accessed	or	changed
using	the	getcontext()	and	setcontext()	functions:

decimal.getcontext()
Return	the	current	context	for	the	active	thread.

decimal.setcontext(c)
Set	the	current	context	for	the	active	thread	to	c.

You	 can	 also	 use	 the	 with	 statement	 and	 the	 localcontext()
function	to	temporarily	change	the	active	context.

decimal.localcontext(ctx=None)
Return	a	context	manager	 that	will	 set	 the	current	context	 for	 the
active	 thread	 to	 a	 copy	of	ctx	 on	 entry	 to	 the	with-statement	 and
restore	the	previous	context	when	exiting	the	with-statement.	If	no
context	is	specified,	a	copy	of	the	current	context	is	used.

For	example,	the	following	code	sets	the	current	decimal	precision
to	 42	 places,	 performs	 a	 calculation,	 and	 then	 automatically
restores	the	previous	context:

from	decimal	import	localcontext

with	localcontext()	as	ctx:

				ctx.prec	=	42			#	Perform	a	high	precision	calculation

				s	=	calculate_something()

s	=	+s		#	Round	the	final	result	back	to	the	default	precision

New	 contexts	 can	 also	 be	 created	 using	 the	 Context	 constructor
described	 below.	 In	 addition,	 the	 module	 provides	 three	 pre-made
contexts:

class	decimal.BasicContext
This	 is	 a	 standard	 context	 defined	 by	 the	 General	 Decimal
Arithmetic	Specification.	Precision	is	set	to	nine.	Rounding	is	set	to
ROUND_HALF_UP.	 All	 flags	 are	 cleared.	 All	 traps	 are	 enabled
(treated	 as	 exceptions)	 except	 Inexact,	 Rounded,	 and
Subnormal.

Because	many	of	 the	 traps	are	enabled,	 this	context	 is	useful	 for
debugging.

class	decimal.ExtendedContext
This	 is	 a	 standard	 context	 defined	 by	 the	 General	 Decimal
Arithmetic	Specification.	Precision	is	set	to	nine.	Rounding	is	set	to
ROUND_HALF_EVEN.	 All	 flags	 are	 cleared.	 No	 traps	 are	 enabled
(so	that	exceptions	are	not	raised	during	computations).

Because	 the	 traps	 are	 disabled,	 this	 context	 is	 useful	 for
applications	 that	prefer	 to	have	result	value	of	NaN	or	Infinity
instead	 of	 raising	 exceptions.	 This	 allows	 an	 application	 to
complete	a	run	in	the	presence	of	conditions	that	would	otherwise
halt	the	program.

class	decimal.DefaultContext
This	context	is	used	by	the	Context	constructor	as	a	prototype	for
new	contexts.	Changing	a	field	(such	a	precision)	has	the	effect	of
changing	 the	 default	 for	 new	 contexts	 created	 by	 the	 Context

constructor.

This	 context	 is	 most	 useful	 in	 multi-threaded	 environments.
Changing	one	of	the	fields	before	threads	are	started	has	the	effect
of	 setting	 system-wide	defaults.	Changing	 the	 fields	after	 threads
have	 started	 is	 not	 recommended	 as	 it	 would	 require	 thread
synchronization	to	prevent	race	conditions.

In	 single	 threaded	 environments,	 it	 is	 preferable	 to	 not	 use	 this
context	 at	 all.	 Instead,	 simply	 create	 contexts	 explicitly	 as
described	below.

The	 default	 values	 are	 prec=28,
rounding=ROUND_HALF_EVEN,	 and	 enabled	 traps	 for
Overflow,	InvalidOperation,	and	DivisionByZero.

In	addition	to	the	three	supplied	contexts,	new	contexts	can	be	created
with	the	Context	constructor.

class	decimal.Context(prec=None,	rounding=None,	Emin=None,
Emax=None,	capitals=None,	clamp=None,	flags=None,	traps=None)

Creates	 a	 new	 context.	 If	 a	 field	 is	 not	 specified	 or	 is	 None,	 the
default	values	are	copied	from	the	DefaultContext.	 If	 the	 flags
field	is	not	specified	or	is	None,	all	flags	are	cleared.

prec	 is	 an	 integer	 in	 the	 range	 [1,	 MAX_PREC]	 that	 sets	 the
precision	for	arithmetic	operations	in	the	context.

The	 rounding	 option	 is	 one	 of	 the	 constants	 listed	 in	 the	 section
Rounding	Modes.

The	traps	and	flags	fields	list	any	signals	to	be	set.	Generally,	new
contexts	should	only	set	traps	and	leave	the	flags	clear.

The	Emin	and	Emax	 fields	are	 integers	specifying	 the	outer	 limits
allowable	 for	 exponents.	Emin	must	 be	 in	 the	 range	 [MIN_EMIN,
0],	Emax	in	the	range	[0,	MAX_EMAX].

The	 capitals	 field	 is	 either	 0	 or	 1	 (the	 default).	 If	 set	 to	 1,
exponents	are	printed	with	a	capital	E;	otherwise,	a	lowercase	e	is
used:	Decimal('6.02e+23').

The	 clamp	 field	 is	 either	 0	 (the	 default)	 or	 1.	 If	 set	 to	 1,	 the
exponent	e	of	a	Decimal	instance	representable	in	this	context	is
strictly	limited	to	the	range	Emin	-	prec	+	1	<=	e	<=	Emax
-	prec	+	1.	 If	clamp	 is	 0	 then	 a	 weaker	 condition	 holds:	 the
adjusted	 exponent	 of	 the	 Decimal	 instance	 is	 at	 most	 Emax.
When	clamp	is	1,	a	large	normal	number	will,	where	possible,	have
its	exponent	reduced	and	a	corresponding	number	of	zeros	added
to	 its	 coefficient,	 in	 order	 to	 fit	 the	 exponent	 constraints;	 this
preserves	 the	 value	 of	 the	 number	 but	 loses	 information	 about
significant	trailing	zeros.	For	example:

>>>	Context(prec=6,	Emax=999,	clamp=1).create_decimal

Decimal('1.23000E+999')

A	clamp	value	of	1	allows	compatibility	with	the	fixed-width	decimal
interchange	formats	specified	in	IEEE	754.

The	Context	 class	defines	several	general	purpose	methods	as
well	as	a	large	number	of	methods	for	doing	arithmetic	directly	in	a
given	 context.	 In	 addition,	 for	 each	 of	 the	 Decimal	 methods
described	 above	 (with	 the	 exception	 of	 the	 adjusted()	 and
as_tuple()	 methods)	 there	 is	 a	 corresponding	 Context

method.	 For	 example,	 for	 a	 Context	 instance	 C	 and	 Decimal

instance	 x,	 C.exp(x)	 is	 equivalent	 to	 x.exp(context=C).
Each	Context	method	accepts	a	Python	 integer	 (an	 instance	of
int)	anywhere	that	a	Decimal	instance	is	accepted.

clear_flags()
Resets	all	of	the	flags	to	0.

clear_traps()
Resets	all	of	the	traps	to	0.

New	in	version	3.3.

copy()
Return	a	duplicate	of	the	context.

copy_decimal(num)
Return	a	copy	of	the	Decimal	instance	num.

create_decimal(num)
Creates	 a	 new	 Decimal	 instance	 from	 num	 but	 using	 self	 as
context.	Unlike	the	Decimal	constructor,	the	context	precision,
rounding	method,	flags,	and	traps	are	applied	to	the	conversion.

This	 is	 useful	 because	 constants	 are	 often	 given	 to	 a	 greater
precision	 than	 is	needed	by	 the	application.	Another	benefit	 is
that	 rounding	 immediately	 eliminates	 unintended	 effects	 from
digits	 beyond	 the	 current	 precision.	 In	 the	 following	 example,
using	unrounded	 inputs	means	 that	adding	zero	 to	a	sum	can
change	the	result:

>>>	getcontext().prec	=	3

>>>	Decimal('3.4445')	+	Decimal('1.0023')

Decimal('4.45')

>>>	Decimal('3.4445')	+	Decimal(0)	+	Decimal('1.0023'

Decimal('4.44')

This	 method	 implements	 the	 to-number	 operation	 of	 the	 IBM
specification.	 If	 the	argument	 is	 a	 string,	 no	 leading	or	 trailing
whitespace	is	permitted.

create_decimal_from_float(f)
Creates	 a	 new	 Decimal	 instance	 from	 a	 float	 f	 but	 rounding
using	self	as	the	context.	Unlike	the	Decimal.from_float()
class	 method,	 the	 context	 precision,	 rounding	 method,	 flags,
and	traps	are	applied	to	the	conversion.

>>>	context	=	Context(prec=5,	rounding=ROUND_DOWN

>>>	context.create_decimal_from_float(math.pi)

Decimal('3.1415')

>>>	context	=	Context(prec=5,	traps=[Inexact])

>>>	context.create_decimal_from_float(math.pi)

Traceback	(most	recent	call	last):

				...

decimal.Inexact:	None

New	in	version	3.1.

Etiny()
Returns	 a	 value	 equal	 to	 Emin	 -	 prec	 +	 1	 which	 is	 the
minimum	 exponent	 value	 for	 subnormal	 results.	 When
underflow	occurs,	the	exponent	is	set	to	Etiny.

Etop()
Returns	a	value	equal	to	Emax	-	prec	+	1.

The	usual	approach	to	working	with	decimals	is	to	create	Decimal

instances	 and	 then	 apply	 arithmetic	 operations	 which	 take	 place
within	 the	 current	 context	 for	 the	 active	 thread.	 An	 alternative
approach	is	to	use	context	methods	for	calculating	within	a	specific
context.	The	methods	are	similar	 to	 those	 for	 the	Decimal	class
and	are	only	briefly	recounted	here.

abs(x)
Returns	the	absolute	value	of	x.

add(x,	y)
Return	the	sum	of	x	and	y.

canonical(x)
Returns	the	same	Decimal	object	x.

compare(x,	y)
Compares	x	and	y	numerically.

compare_signal(x,	y)
Compares	the	values	of	the	two	operands	numerically.

compare_total(x,	y)
Compares	two	operands	using	their	abstract	representation.

compare_total_mag(x,	y)
Compares	 two	 operands	 using	 their	 abstract	 representation,
ignoring	sign.

copy_abs(x)
Returns	a	copy	of	x	with	the	sign	set	to	0.

copy_negate(x)
Returns	a	copy	of	x	with	the	sign	inverted.

copy_sign(x,	y)
Copies	the	sign	from	y	to	x.

divide(x,	y)
Return	x	divided	by	y.

divide_int(x,	y)
Return	x	divided	by	y,	truncated	to	an	integer.

divmod(x,	y)
Divides	two	numbers	and	returns	the	integer	part	of	the	result.

exp(x)
Returns	e	**	x.

fma(x,	y,	z)
Returns	x	multiplied	by	y,	plus	z.

is_canonical(x)
Returns	True	if	x	is	canonical;	otherwise	returns	False.

is_finite(x)
Returns	True	if	x	is	finite;	otherwise	returns	False.

is_infinite(x)
Returns	True	if	x	is	infinite;	otherwise	returns	False.

is_nan(x)
Returns	 True	 if	 x	 is	 a	 qNaN	 or	 sNaN;	 otherwise	 returns
False.

is_normal(x)
Returns	 True	 if	 x	 is	 a	 normal	 number;	 otherwise	 returns

False.

is_qnan(x)
Returns	True	if	x	is	a	quiet	NaN;	otherwise	returns	False.

is_signed(x)
Returns	True	if	x	is	negative;	otherwise	returns	False.

is_snan(x)
Returns	True	if	x	is	a	signaling	NaN;	otherwise	returns	False.

is_subnormal(x)
Returns	True	if	x	is	subnormal;	otherwise	returns	False.

is_zero(x)
Returns	True	if	x	is	a	zero;	otherwise	returns	False.

ln(x)
Returns	the	natural	(base	e)	logarithm	of	x.

log10(x)
Returns	the	base	10	logarithm	of	x.

logb(x)
Returns	the	exponent	of	the	magnitude	of	the	operand’s	MSD.

logical_and(x,	y)
Applies	 the	 logical	 operation	 and	 between	 each	 operand’s
digits.

logical_invert(x)
Invert	all	the	digits	in	x.

logical_or(x,	y)
Applies	the	logical	operation	or	between	each	operand’s	digits.

logical_xor(x,	y)
Applies	the	logical	operation	xor	between	each	operand’s	digits.

max(x,	y)
Compares	two	values	numerically	and	returns	the	maximum.

max_mag(x,	y)
Compares	the	values	numerically	with	their	sign	ignored.

min(x,	y)
Compares	two	values	numerically	and	returns	the	minimum.

min_mag(x,	y)
Compares	the	values	numerically	with	their	sign	ignored.

minus(x)
Minus	 corresponds	 to	 the	 unary	 prefix	 minus	 operator	 in
Python.

multiply(x,	y)
Return	the	product	of	x	and	y.

next_minus(x)
Returns	the	largest	representable	number	smaller	than	x.

next_plus(x)
Returns	the	smallest	representable	number	larger	than	x.

next_toward(x,	y)
Returns	the	number	closest	to	x,	in	direction	towards	y.

normalize(x)
Reduces	x	to	its	simplest	form.

number_class(x)
Returns	an	indication	of	the	class	of	x.

plus(x)
Plus	 corresponds	 to	 the	 unary	 prefix	 plus	 operator	 in	 Python.
This	operation	applies	the	context	precision	and	rounding,	so	it
is	not	an	identity	operation.

power(x,	y,	modulo=None)
Return	x	to	the	power	of	y,	reduced	modulo	modulo	if	given.

With	 two	 arguments,	 compute	 x**y.	 If	 x	 is	 negative	 then	 y
must	be	integral.	The	result	will	be	 inexact	unless	y	 is	 integral
and	 the	 result	 is	 finite	 and	 can	 be	 expressed	 exactly	 in
‘precision’	 digits.	 The	 rounding	 mode	 of	 the	 context	 is	 used.
Results	are	always	correctly-rounded	in	the	Python	version.

Changed	 in	version	3.3:	The	C	module	computes	power()	 in
terms	of	the	correctly-rounded	exp()	and	ln()	functions.	The
result	 is	 well-defined	 but	 only	 “almost	 always	 correctly-
rounded”.

With	 three	 arguments,	 compute	 (x**y)	%	modulo.	 For	 the
three	 argument	 form,	 the	 following	 restrictions	 on	 the
arguments	hold:

all	three	arguments	must	be	integral
y	must	be	nonnegative
at	least	one	of	x	or	y	must	be	nonzero
modulo	must	be	nonzero	and	have	at	most	‘precision’

digits

The	value	resulting	from	Context.power(x,	y,	modulo)	is
equal	 to	 the	 value	 that	 would	 be	 obtained	 by	 computing
(x**y)	 %	 modulo	 with	 unbounded	 precision,	 but	 is
computed	more	 efficiently.	 The	 exponent	 of	 the	 result	 is	 zero,
regardless	of	the	exponents	of	x,	y	and	modulo.	The	result	 is
always	exact.

quantize(x,	y)
Returns	a	value	equal	to	x	(rounded),	having	the	exponent	of	y.

radix()
Just	returns	10,	as	this	is	Decimal,	:)

remainder(x,	y)
Returns	the	remainder	from	integer	division.

The	 sign	 of	 the	 result,	 if	 non-zero,	 is	 the	 same	as	 that	 of	 the
original	dividend.

remainder_near(x,	y)
Returns	x	-	y	*	n,	where	n	 is	 the	 integer	nearest	the	exact
value	of	x	/	y	(if	the	result	is	0	then	its	sign	will	be	the	sign	of
x).

rotate(x,	y)
Returns	a	rotated	copy	of	x,	y	times.

same_quantum(x,	y)
Returns	True	if	the	two	operands	have	the	same	exponent.

scaleb(x,	y)

Returns	the	first	operand	after	adding	the	second	value	its	exp.

shift(x,	y)
Returns	a	shifted	copy	of	x,	y	times.

sqrt(x)
Square	root	of	a	non-negative	number	to	context	precision.

subtract(x,	y)
Return	the	difference	between	x	and	y.

to_eng_string(x)
Converts	a	number	to	a	string,	using	scientific	notation.

to_integral_exact(x)
Rounds	to	an	integer.

to_sci_string(x)
Converts	a	number	to	a	string	using	scientific	notation.

9.4.4.	Constants

The	constants	in	this	section	are	only	relevant	for	the	C	module.	They
are	also	included	in	the	pure	Python	version	for	compatibility.

	 32-bit 64-bit

decimal.MAX_PREC 425000000 999999999999999999

decimal.MAX_EMAX 425000000 999999999999999999

decimal.MIN_EMIN -425000000 -999999999999999999

decimal.MIN_ETINY -849999999 -1999999999999999997

decimal.HAVE_THREADS

The	default	 value	 is	True.	 If	Python	 is	compiled	without	 threads,
the	 C	 version	 automatically	 disables	 the	 expensive	 thread	 local
context	machinery.	In	this	case,	the	value	is	False.

9.4.5.	Rounding	modes

decimal.ROUND_CEILING

Round	towards	Infinity.

decimal.ROUND_DOWN

Round	towards	zero.

decimal.ROUND_FLOOR

Round	towards	-Infinity.

decimal.ROUND_HALF_DOWN

Round	to	nearest	with	ties	going	towards	zero.

decimal.ROUND_HALF_EVEN

Round	to	nearest	with	ties	going	to	nearest	even	integer.

decimal.ROUND_HALF_UP

Round	to	nearest	with	ties	going	away	from	zero.

decimal.ROUND_UP

Round	away	from	zero.

decimal.ROUND_05UP

Round	 away	 from	 zero	 if	 last	 digit	 after	 rounding	 towards	 zero
would	have	been	0	or	5;	otherwise	round	towards	zero.

9.4.6.	Signals

Signals	 represent	 conditions	 that	 arise	 during	 computation.	 Each
corresponds	to	one	context	flag	and	one	context	trap	enabler.

The	 context	 flag	 is	 set	whenever	 the	 condition	 is	 encountered.	After
the	computation,	flags	may	be	checked	for	informational	purposes	(for
instance,	 to	 determine	 whether	 a	 computation	 was	 exact).	 After
checking	 the	 flags,	 be	 sure	 to	 clear	 all	 flags	 before	 starting	 the	next
computation.

If	 the	 context’s	 trap	 enabler	 is	 set	 for	 the	 signal,	 then	 the	 condition
causes	 a	 Python	 exception	 to	 be	 raised.	 For	 example,	 if	 the
DivisionByZero	trap	is	set,	then	a	DivisionByZero	exception	is
raised	upon	encountering	the	condition.

class	decimal.Clamped
Altered	an	exponent	to	fit	representation	constraints.

Typically,	 clamping	 occurs	 when	 an	 exponent	 falls	 outside	 the
context’s	 Emin	 and	 Emax	 limits.	 If	 possible,	 the	 exponent	 is
reduced	to	fit	by	adding	zeros	to	the	coefficient.

class	decimal.DecimalException
Base	 class	 for	 other	 signals	 and	 a	 subclass	 of
ArithmeticError.

class	decimal.DivisionByZero
Signals	the	division	of	a	non-infinite	number	by	zero.

Can	occur	with	division,	modulo	division,	or	when	raising	a	number
to	a	negative	power.	If	this	signal	is	not	trapped,	returns	Infinity

or	 -Infinity	 with	 the	 sign	 determined	 by	 the	 inputs	 to	 the
calculation.

class	decimal.Inexact
Indicates	that	rounding	occurred	and	the	result	is	not	exact.

Signals	when	non-zero	digits	were	discarded	during	rounding.	The
rounded	result	is	returned.	The	signal	flag	or	trap	is	used	to	detect
when	results	are	inexact.

class	decimal.InvalidOperation
An	invalid	operation	was	performed.

Indicates	 that	 an	 operation	 was	 requested	 that	 does	 not	 make
sense.	If	not	trapped,	returns	NaN.	Possible	causes	include:

Infinity	-	Infinity

0	*	Infinity

Infinity	/	Infinity

x	%	0

Infinity	%	x

sqrt(-x)	and	x	>	0

0	**	0

x	**	(non-integer)

x	**	Infinity

class	decimal.Overflow
Numerical	overflow.

Indicates	 the	 exponent	 is	 larger	 than	 Emax	 after	 rounding	 has
occurred.	If	not	trapped,	the	result	depends	on	the	rounding	mode,
either	 pulling	 inward	 to	 the	 largest	 representable	 finite	 number	or
rounding	 outward	 to	 Infinity.	 In	 either	 case,	 Inexact	 and
Rounded	are	also	signaled.

class	decimal.Rounded
Rounding	occurred	though	possibly	no	information	was	lost.

Signaled	 whenever	 rounding	 discards	 digits;	 even	 if	 those	 digits
are	zero	 (such	as	 rounding	5.00	 to	5.0).	 If	 not	 trapped,	 returns
the	 result	 unchanged.	 This	 signal	 is	 used	 to	 detect	 loss	 of
significant	digits.

class	decimal.Subnormal
Exponent	was	lower	than	Emin	prior	to	rounding.

Occurs	when	an	operation	result	is	subnormal	(the	exponent	is	too
small).	If	not	trapped,	returns	the	result	unchanged.

class	decimal.Underflow
Numerical	underflow	with	result	rounded	to	zero.

Occurs	 when	 a	 subnormal	 result	 is	 pushed	 to	 zero	 by	 rounding.
Inexact	and	Subnormal	are	also	signaled.

class	decimal.FloatOperation
Enable	stricter	semantics	for	mixing	floats	and	Decimals.

If	 the	signal	 is	not	trapped	(default),	mixing	floats	and	Decimals	is
permitted	 in	 the	 Decimal	 constructor,	 create_decimal()	 and
all	 comparison	 operators.	 Both	 conversion	 and	 comparisons	 are
exact.	Any	occurrence	of	a	mixed	operation	is	silently	recorded	by
setting	FloatOperation	in	the	context	flags.	Explicit	conversions
with	 from_float()	 or	 create_decimal_from_float()	 do
not	set	the	flag.

Otherwise	 (the	 signal	 is	 trapped),	 only	 equality	 comparisons	 and
explicit	 conversions	 are	 silent.	 All	 other	 mixed	 operations	 raise

FloatOperation.

The	following	table	summarizes	the	hierarchy	of	signals:

exceptions.ArithmeticError(exceptions.Exception)

				DecimalException

								Clamped

								DivisionByZero(DecimalException,	exceptions.

								Inexact

												Overflow(Inexact,	Rounded)

												Underflow(Inexact,	Rounded,	Subnormal)

								InvalidOperation

								Rounded

								Subnormal

								FloatOperation(DecimalException,	exceptions.

9.4.7.	Floating	Point	Notes

9.4.7.1.	Mitigating	round-off	error	with	increased
precision

The	 use	 of	 decimal	 floating	 point	 eliminates	 decimal	 representation
error	 (making	 it	 possible	 to	 represent	 0.1	 exactly);	 however,	 some
operations	can	still	 incur	round-off	error	when	non-zero	digits	exceed
the	fixed	precision.

The	 effects	 of	 round-off	 error	 can	 be	 amplified	 by	 the	 addition	 or
subtraction	 of	 nearly	 offsetting	 quantities	 resulting	 in	 loss	 of
significance.	Knuth	provides	 two	 instructive	examples	where	rounded
floating	 point	 arithmetic	 with	 insufficient	 precision	 causes	 the
breakdown	of	the	associative	and	distributive	properties	of	addition:

#	Examples	from	Seminumerical	Algorithms,	Section	4.2.2.

>>>	from	decimal	import	Decimal,	getcontext

>>>	getcontext().prec	=	8

>>>	u,	v,	w	=	Decimal(11111113),	Decimal(-11111111),

>>>	(u	+	v)	+	w

Decimal('9.5111111')

>>>	u	+	(v	+	w)

Decimal('10')

>>>	u,	v,	w	=	Decimal(20000),	Decimal(-6),	Decimal('6.0000003'

>>>	(u*v)	+	(u*w)

Decimal('0.01')

>>>	u	*	(v+w)

Decimal('0.0060000')

The	 decimal	 module	makes	 it	 possible	 to	 restore	 the	 identities	 by

expanding	the	precision	sufficiently	to	avoid	loss	of	significance:

>>>	getcontext().prec	=	20

>>>	u,	v,	w	=	Decimal(11111113),	Decimal(-11111111),

>>>	(u	+	v)	+	w

Decimal('9.51111111')

>>>	u	+	(v	+	w)

Decimal('9.51111111')

>>>

>>>	u,	v,	w	=	Decimal(20000),	Decimal(-6),	Decimal('6.0000003'

>>>	(u*v)	+	(u*w)

Decimal('0.0060000')

>>>	u	*	(v+w)

Decimal('0.0060000')

9.4.7.2.	Special	values

The	number	system	for	the	decimal	module	provides	special	values
including	NaN,	sNaN,	-Infinity,	Infinity,	and	two	zeros,	+0	and
-0.

Infinities	 can	 be	 constructed	 directly	 with:	 Decimal('Infinity').
Also,	 they	 can	 arise	 from	 dividing	 by	 zero	 when	 the
DivisionByZero	 signal	 is	 not	 trapped.	 Likewise,	 when	 the
Overflow	 signal	 is	 not	 trapped,	 infinity	 can	 result	 from	 rounding
beyond	the	limits	of	the	largest	representable	number.

The	 infinities	 are	 signed	 (affine)	 and	 can	 be	 used	 in	 arithmetic
operations	 where	 they	 get	 treated	 as	 very	 large,	 indeterminate
numbers.	 For	 instance,	 adding	 a	 constant	 to	 infinity	 gives	 another
infinite	result.

Some	 operations	 are	 indeterminate	 and	 return	 NaN,	 or	 if	 the

InvalidOperation	 signal	 is	 trapped,	 raise	 an	 exception.	 For
example,	0/0	returns	NaN	which	means	“not	a	number”.	This	variety
of	NaN	is	quiet	and,	once	created,	will	flow	through	other	computations
always	 resulting	 in	 another	 NaN.	 This	 behavior	 can	 be	 useful	 for	 a
series	 of	 computations	 that	 occasionally	 have	 missing	 inputs	 —	 it
allows	 the	 calculation	 to	 proceed	 while	 flagging	 specific	 results	 as
invalid.

A	variant	is	sNaN	which	signals	rather	than	remaining	quiet	after	every
operation.	This	is	a	useful	return	value	when	an	invalid	result	needs	to
interrupt	a	calculation	for	special	handling.

The	 behavior	 of	 Python’s	 comparison	 operators	 can	 be	 a	 little
surprising	where	a	NaN	is	involved.	A	test	for	equality	where	one	of	the
operands	 is	 a	 quiet	 or	 signaling	 NaN	 always	 returns	 False	 (even
when	doing	Decimal('NaN')==Decimal('NaN')),	while	a	test	for
inequality	always	returns	True.	An	attempt	to	compare	two	Decimals
using	 any	 of	 the	 <,	 <=,	 >	 or	 >=	 operators	 will	 raise	 the
InvalidOperation	 signal	 if	 either	 operand	 is	 a	 NaN,	 and	 return
False	 if	 this	 signal	 is	 not	 trapped.	 Note	 that	 the	 General	 Decimal
Arithmetic	 specification	 does	 not	 specify	 the	 behavior	 of	 direct
comparisons;	these	rules	for	comparisons	involving	a	NaN	were	taken
from	 the	 IEEE	854	 standard	 (see	Table	 3	 in	 section	 5.7).	 To	 ensure
strict	 standards-compliance,	 use	 the	 compare()	 and	 compare-
signal()	methods	instead.

The	 signed	 zeros	 can	 result	 from	 calculations	 that	 underflow.	 They
keep	 the	 sign	 that	 would	 have	 resulted	 if	 the	 calculation	 had	 been
carried	 out	 to	 greater	 precision.	 Since	 their	 magnitude	 is	 zero,	 both
positive	 and	 negative	 zeros	 are	 treated	 as	 equal	 and	 their	 sign	 is
informational.

In	addition	to	the	two	signed	zeros	which	are	distinct	yet	equal,	there
are	 various	 representations	 of	 zero	 with	 differing	 precisions	 yet
equivalent	 in	 value.	 This	 takes	 a	 bit	 of	 getting	 used	 to.	 For	 an	 eye
accustomed	 to	 normalized	 floating	 point	 representations,	 it	 is	 not
immediately	 obvious	 that	 the	 following	 calculation	 returns	 a	 value
equal	to	zero:

>>>	1	/	Decimal('Infinity')

Decimal('0E-1000026')

9.4.8.	Working	with	threads

The	getcontext()	function	accesses	a	different	Context	object	for
each	thread.	Having	separate	thread	contexts	means	that	threads	may
make	 changes	 (such	 as	 getcontext().prec=10)	 without
interfering	with	other	threads.

Likewise,	the	setcontext()	function	automatically	assigns	its	target
to	the	current	thread.

If	setcontext()	 has	not	been	called	before	 getcontext(),	 then
getcontext()	will	automatically	create	a	new	context	for	use	in	the
current	thread.

The	 new	 context	 is	 copied	 from	 a	 prototype	 context	 called
DefaultContext.	To	control	the	defaults	so	that	each	thread	will	use	the
same	 values	 throughout	 the	 application,	 directly	 modify	 the
DefaultContext	 object.	 This	 should	 be	 done	 before	 any	 threads	 are
started	so	that	there	won’t	be	a	race	condition	between	threads	calling
getcontext().	For	example:

#	Set	applicationwide	defaults	for	all	threads	about	to	be	launched

DefaultContext.prec	=	12

DefaultContext.rounding	=	ROUND_DOWN

DefaultContext.traps	=	ExtendedContext.traps.copy()

DefaultContext.traps[InvalidOperation]	=	1

setcontext(DefaultContext)

#	Afterwards,	the	threads	can	be	started

t1.start()

t2.start()

t3.start()

	.	.	.

9.4.9.	Recipes

Here	 are	 a	 few	 recipes	 that	 serve	 as	 utility	 functions	 and	 that
demonstrate	ways	to	work	with	the	Decimal	class:

def	moneyfmt(value,	places=2,	curr='',	sep=',',	dp='.'

													pos='',	neg='-',	trailneg=''):

				"""Convert	Decimal	to	a	money	formatted	string.

				places:		required	number	of	places	after	the	decimal	point

				curr:				optional	currency	symbol	before	the	sign	(may	be	blank)

				sep:					optional	grouping	separator	(comma,	period,	space,	or	blank)

				dp:						decimal	point	indicator	(comma	or	period)

													only	specify	as	blank	when	places	is	zero

				pos:					optional	sign	for	positive	numbers:	'+',	space	or	blank

				neg:					optional	sign	for	negative	numbers:	'-',	'(',	space	or	blank

				trailneg:optional	trailing	minus	indicator:		'-',	')',	space	or	blank

				>>>	d	=	Decimal('-1234567.8901')

				>>>	moneyfmt(d,	curr='$')

				'-$1,234,567.89'

				>>>	moneyfmt(d,	places=0,	sep='.',	dp='',	neg='',	trailneg='-')

				'1.234.568-'

				>>>	moneyfmt(d,	curr='$',	neg='(',	trailneg=')')

				'($1,234,567.89)'

				>>>	moneyfmt(Decimal(123456789),	sep='	')

				'123	456	789.00'

				>>>	moneyfmt(Decimal('-0.02'),	neg='<',	trailneg='>')

				'<0.02>'

				"""

				q	=	Decimal(10)	**	-places						#	2	places	-->	'0.01'

				sign,	digits,	exp	=	value.quantize(q).as_tuple()

				result	=	[]

				digits	=	list(map(str,	digits))

				build,	next	=	result.append,	digits.pop

				if	sign:

								build(trailneg)

				for	i	in	range(places):

								build(next()	if	digits	else	'0')

				if	places:

								build(dp)

				if	not	digits:

								build('0')

				i	=	0

				while	digits:

								build(next())

								i	+=	1

								if	i	==	3	and	digits:

												i	=	0

												build(sep)

				build(curr)

				build(neg	if	sign	else	pos)

				return	''.join(reversed(result))

def	pi():

				"""Compute	Pi	to	the	current	precision.

				>>>	print(pi())

				3.141592653589793238462643383

				"""

				getcontext().prec	+=	2		#	extra	digits	for	intermediate	steps

				three	=	Decimal(3)						#	substitute	"three=3.0"	for	regular	floats

				lasts,	t,	s,	n,	na,	d,	da	=	0,	three,	3,	1,	0,	0

				while	s	!=	lasts:

								lasts	=	s

								n,	na	=	n+na,	na+8

								d,	da	=	d+da,	da+32

								t	=	(t	*	n)	/	d

								s	+=	t

				getcontext().prec	-=	2

				return	+s															#	unary	plus	applies	the	new	precision

def	exp(x):

				"""Return	e	raised	to	the	power	of	x.		Result	type	matches	input	type.

				>>>	print(exp(Decimal(1)))

				2.718281828459045235360287471

				>>>	print(exp(Decimal(2)))

				7.389056098930650227230427461

				>>>	print(exp(2.0))

				7.38905609893

				>>>	print(exp(2+0j))

				(7.38905609893+0j)

				"""

				getcontext().prec	+=	2

				i,	lasts,	s,	fact,	num	=	0,	0,	1,	1,	1

				while	s	!=	lasts:

								lasts	=	s

								i	+=	1

								fact	*=	i

								num	*=	x

								s	+=	num	/	fact

				getcontext().prec	-=	2

				return	+s

def	cos(x):

				"""Return	the	cosine	of	x	as	measured	in	radians.

				The	Taylor	series	approximation	works	best	for	a	small	value	of	x.

				For	larger	values,	first	compute	x	=	x	%	(2	*	pi).

				>>>	print(cos(Decimal('0.5')))

				0.8775825618903727161162815826

				>>>	print(cos(0.5))

				0.87758256189

				>>>	print(cos(0.5+0j))

				(0.87758256189+0j)

				"""

				getcontext().prec	+=	2

				i,	lasts,	s,	fact,	num,	sign	=	0,	0,	1,	1,	1,	1

				while	s	!=	lasts:

								lasts	=	s

								i	+=	2

								fact	*=	i	*	(i-1)

								num	*=	x	*	x

								sign	*=	-1

								s	+=	num	/	fact	*	sign

				getcontext().prec	-=	2

				return	+s

def	sin(x):

				"""Return	the	sine	of	x	as	measured	in	radians.

				The	Taylor	series	approximation	works	best	for	a	small	value	of	x.

				For	larger	values,	first	compute	x	=	x	%	(2	*	pi).

				>>>	print(sin(Decimal('0.5')))

				0.4794255386042030002732879352

				>>>	print(sin(0.5))

				0.479425538604

				>>>	print(sin(0.5+0j))

				(0.479425538604+0j)

				"""

				getcontext().prec	+=	2

				i,	lasts,	s,	fact,	num,	sign	=	1,	0,	x,	1,	x,	1

				while	s	!=	lasts:

								lasts	=	s

								i	+=	2

								fact	*=	i	*	(i-1)

								num	*=	x	*	x

								sign	*=	-1

								s	+=	num	/	fact	*	sign

				getcontext().prec	-=	2

				return	+s

9.4.10.	Decimal	FAQ

Q.	 It	 is	 cumbersome	 to	 type	 decimal.Decimal('1234.5').	 Is
there	a	way	to	minimize	typing	when	using	the	interactive	interpreter?

A.	Some	users	abbreviate	the	constructor	to	just	a	single	letter:

>>>	D	=	decimal.Decimal

>>>	D('1.23')	+	D('3.45')

Decimal('4.68')

Q.	 In	 a	 fixed-point	 application	with	 two	 decimal	 places,	 some	 inputs
have	many	places	and	need	to	be	rounded.	Others	are	not	supposed
to	have	excess	digits	and	need	to	be	validated.	What	methods	should
be	used?

A.	 The	 quantize()	 method	 rounds	 to	 a	 fixed	 number	 of	 decimal
places.	If	the	Inexact	trap	is	set,	it	is	also	useful	for	validation:

>>>	TWOPLACES	=	Decimal(10)	**	-2							#	same	as	Decimal('0.01')

>>>	#	Round	to	two	places

>>>	Decimal('3.214').quantize(TWOPLACES)

Decimal('3.21')

>>>	#	Validate	that	a	number	does	not	exceed	two	places

>>>	Decimal('3.21').quantize(TWOPLACES,	context=Context

Decimal('3.21')

>>>	Decimal('3.214').quantize(TWOPLACES,	context=Context

Traceback	(most	recent	call	last):

			...

Inexact:	None

Q.	Once	I	have	valid	two	place	inputs,	how	do	I	maintain	that	invariant
throughout	an	application?

A.	Some	operations	like	addition,	subtraction,	and	multiplication	by	an
integer	will	automatically	preserve	 fixed	point.	Others	operations,	 like
division	 and	 non-integer	 multiplication,	 will	 change	 the	 number	 of
decimal	places	and	need	to	be	followed-up	with	a	quantize()	step:

>>>	a	=	Decimal('102.72')											#	Initial	fixed-point	values

>>>	b	=	Decimal('3.17')

>>>	a	+	b																											#	Addition	preserves	fixed-point

Decimal('105.89')

>>>	a	-	b

Decimal('99.55')

>>>	a	*	42																										#	So	does	integer	multiplication

Decimal('4314.24')

>>>	(a	*	b).quantize(TWOPLACES)					#	Must	quantize	non-integer	multiplication

Decimal('325.62')

>>>	(b	/	a).quantize(TWOPLACES)					#	And	quantize	division

Decimal('0.03')

In	 developing	 fixed-point	 applications,	 it	 is	 convenient	 to	 define
functions	to	handle	the	quantize()	step:

>>>	def	mul(x,	y,	fp=TWOPLACES):

...					return	(x	*	y).quantize(fp)

>>>	def	div(x,	y,	fp=TWOPLACES):

...					return	(x	/	y).quantize(fp)

>>>	mul(a,	b)																							#	Automatically	preserve	fixed-point

Decimal('325.62')

>>>	div(b,	a)

Decimal('0.03')

Q.	 There	 are	many	 ways	 to	 express	 the	 same	 value.	 The	 numbers
200,	200.000,	2E2,	and	02E+4	all	have	the	same	value	at	various
precisions.	 Is	 there	a	way	 to	 transform	them	to	a	single	recognizable
canonical	value?

A.	The	normalize()	method	maps	all	equivalent	values	to	a	single
representative:

>>>	values	=	map(Decimal,	'200	200.000	2E2	.02E+4'.split

>>>	[v.normalize()	for	v	in	values]

[Decimal('2E+2'),	Decimal('2E+2'),	Decimal('2E+2'),	Decimal('2E+2')]

Q.	 Some	 decimal	 values	 always	 print	 with	 exponential	 notation.	 Is
there	a	way	to	get	a	non-exponential	representation?

A.	For	 some	values,	exponential	 notation	 is	 the	only	way	 to	express
the	 number	 of	 significant	 places	 in	 the	 coefficient.	 For	 example,
expressing	 5.0E+3	 as	 5000	 keeps	 the	 value	 constant	 but	 cannot
show	the	original’s	two-place	significance.

If	an	application	does	not	care	about	tracking	significance,	it	is	easy	to
remove	 the	 exponent	 and	 trailing	 zeroes,	 losing	 significance,	 but
keeping	the	value	unchanged:

>>>	def	remove_exponent(d):

...					return	d.quantize(Decimal(1))	if	d	==	d.to_integral

>>>	remove_exponent(Decimal('5E+3'))

Decimal('5000')

Q.	Is	there	a	way	to	convert	a	regular	float	to	a	Decimal?

A.	Yes,	any	binary	floating	point	number	can	be	exactly	expressed	as
a	Decimal	 though	an	exact	conversion	may	take	more	precision	than
intuition	would	suggest:

>>>	Decimal(math.pi)

Decimal('3.141592653589793115997963468544185161590576171875')

Q.	Within	a	complex	calculation,	how	can	 I	make	sure	 that	 I	 haven’t
gotten	a	spurious	 result	because	of	 insufficient	precision	or	 rounding
anomalies.

A.	The	decimal	module	makes	it	easy	to	test	results.	A	best	practice	is
to	 re-run	 calculations	 using	 greater	 precision	 and	 with	 various
rounding	modes.	Widely	differing	results	indicate	insufficient	precision,
rounding	mode	issues,	ill-conditioned	inputs,	or	a	numerically	unstable
algorithm.

Q.	 I	 noticed	 that	 context	 precision	 is	 applied	 to	 the	 results	 of
operations	 but	 not	 to	 the	 inputs.	 Is	 there	 anything	 to	 watch	 out	 for
when	mixing	values	of	different	precisions?

A.	Yes.	The	principle	is	that	all	values	are	considered	to	be	exact	and
so	is	the	arithmetic	on	those	values.	Only	the	results	are	rounded.	The
advantage	 for	 inputs	 is	 that	 “what	 you	 type	 is	 what	 you	 get”.	 A
disadvantage	 is	 that	 the	 results	 can	 look	 odd	 if	 you	 forget	 that	 the
inputs	haven’t	been	rounded:

>>>	getcontext().prec	=	3

>>>	Decimal('3.104')	+	Decimal('2.104')

Decimal('5.21')

>>>	Decimal('3.104')	+	Decimal('0.000')	+	Decimal('2.104'

Decimal('5.20')

The	 solution	 is	 either	 to	 increase	 precision	 or	 to	 force	 rounding	 of
inputs	using	the	unary	plus	operation:

>>>	getcontext().prec	=	3

>>>	+Decimal('1.23456789')						#	unary	plus	triggers	rounding

Decimal('1.23')

Alternatively,	 inputs	 can	 be	 rounded	 upon	 creation	 using	 the
Context.create_decimal()	method:

>>>	Context(prec=5,	rounding=ROUND_DOWN).create_decimal

Decimal('1.2345')

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

http://www.python.org/

9.5.	fractions	—	Rational
numbers
Source	code:	Lib/fractions.py

The	 fractions	 module	 provides	 support	 for	 rational	 number
arithmetic.

A	Fraction	 instance	can	be	 constructed	 from	a	pair	 of	 integers,	 from
another	rational	number,	or	from	a	string.

class	fractions.Fraction(numerator=0,	denominator=1)
class	fractions.Fraction(other_fraction)
class	fractions.Fraction(float)
class	fractions.Fraction(decimal)
class	fractions.Fraction(string)

The	 first	 version	 requires	 that	 numerator	 and	 denominator	 are
instances	of	numbers.Rational	 and	 returns	 a	 new	 Fraction
instance	with	value	numerator/denominator.	If	denominator	is
0,	it	raises	a	ZeroDivisionError.	The	second	version	requires
that	 other_fraction	 is	 an	 instance	 of	 numbers.Rational	 and
returns	a	Fraction	 instance	with	 the	same	value.	The	 next	 two
versions	accept	either	a	float	or	a	decimal.Decimal	instance,
and	return	a	Fraction	instance	with	exactly	the	same	value.	Note
that	due	to	the	usual	issues	with	binary	floating-point	(see	Floating
Point	 Arithmetic:	 Issues	 and	 Limitations),	 the	 argument	 to
Fraction(1.1)	 is	 not	 exactly	 equal	 to	 11/10,	 and	 so
Fraction(1.1)	 does	 not	 return	 Fraction(11,	 10)	 as	 one
might	 expect.	 (But	 see	 the	 documentation	 for	 the

http://hg.python.org/cpython/file/3.4/Lib/fractions.py

limit_denominator()	method	 below.)	 The	 last	 version	 of	 the
constructor	 expects	 a	 string	 or	 unicode	 instance.	 The	 usual	 form
for	this	instance	is:

[sign]	numerator	['/'	denominator]

where	 the	optional	sign	may	be	either	 ‘+’	or	 ‘-‘	and	numerator
and	 denominator	 (if	 present)	 are	 strings	 of	 decimal	 digits.	 In
addition,	any	string	 that	 represents	a	 finite	 value	and	 is	accepted
by	 the	 float	 constructor	 is	 also	 accepted	 by	 the	 Fraction
constructor.	 In	 either	 form	 the	 input	 string	may	also	 have	 leading
and/or	trailing	whitespace.	Here	are	some	examples:

>>>	from	fractions	import	Fraction

>>>	Fraction(16,	-10)

Fraction(-8,	5)

>>>	Fraction(123)

Fraction(123,	1)

>>>	Fraction()

Fraction(0,	1)

>>>	Fraction('3/7')

Fraction(3,	7)

>>>	Fraction('	-3/7	')

Fraction(-3,	7)

>>>	Fraction('1.414213	\t\n')

Fraction(1414213,	1000000)

>>>	Fraction('-.125')

Fraction(-1,	8)

>>>	Fraction('7e-6')

Fraction(7,	1000000)

>>>	Fraction(2.25)

Fraction(9,	4)

>>>	Fraction(1.1)

Fraction(2476979795053773,	2251799813685248)

>>>	from	decimal	import	Decimal

>>>	Fraction(Decimal('1.1'))

Fraction(11,	10)

The	 Fraction	 class	 inherits	 from	 the	 abstract	 base	 class
numbers.Rational,	 and	 implements	 all	 of	 the	 methods	 and
operations	from	that	class.	Fraction	instances	are	hashable,	and
should	 be	 treated	 as	 immutable.	 In	 addition,	 Fraction	 has	 the
following	properties	and	methods:

Changed	 in	version	3.2:	The	Fraction	 constructor	now	accepts
float	and	decimal.Decimal	instances.

numerator

Numerator	of	the	Fraction	in	lowest	term.

denominator

Denominator	of	the	Fraction	in	lowest	term.

from_float(flt)
This	 class	 method	 constructs	 a	 Fraction	 representing	 the
exact	 value	 of	 flt,	 which	 must	 be	 a	 float.	 Beware	 that
Fraction.from_float(0.3)	 is	 not	 the	 same	 value	 as
Fraction(3,	10)

Note: 	 From	Python	 3.2	 onwards,	 you	 can	 also	 construct	 a
Fraction	instance	directly	from	a	float.

from_decimal(dec)
This	 class	 method	 constructs	 a	 Fraction	 representing	 the
exact	 value	 of	 dec,	 which	 must	 be	 a	 decimal.Decimal
instance.

Note: 	 From	Python	 3.2	 onwards,	 you	 can	 also	 construct	 a
Fraction	 instance	 directly	 from	 a	 decimal.Decimal
instance.

limit_denominator(max_denominator=1000000)
Finds	 and	 returns	 the	 closest	 Fraction	 to	 self	 that	 has
denominator	 at	most	max_denominator.	This	method	 is	useful
for	 finding	 rational	 approximations	 to	 a	 given	 floating-point
number:

>>>	from	fractions	import	Fraction

>>>	Fraction('3.1415926535897932').limit_denominator

Fraction(355,	113)

or	for	recovering	a	rational	number	that’s	represented	as	a	float:

>>>	from	math	import	pi,	cos

>>>	Fraction(cos(pi/3))

Fraction(4503599627370497,	9007199254740992)

>>>	Fraction(cos(pi/3)).limit_denominator()

Fraction(1,	2)

>>>	Fraction(1.1).limit_denominator()

Fraction(11,	10)

__floor__()
Returns	the	greatest	int	<=	self.	This	method	can	also	be
accessed	through	the	math.floor()	function:

>>>	from	math	import	floor

>>>	floor(Fraction(355,	113))

3

__ceil__()

Returns	 the	 least	 int	 >=	 self.	 This	 method	 can	 also	 be
accessed	through	the	math.ceil()	function.

__round__()
__round__(ndigits)

The	first	version	returns	the	nearest	int	to	self,	rounding	half
to	 even.	 The	 second	 version	 rounds	 self	 to	 the	 nearest
multiple	 of	 Fraction(1,	 10**ndigits)	 (logically,	 if
ndigits	 is	 negative),	 again	 rounding	 half	 toward	 even.	 This
method	can	also	be	accessed	through	the	round()	function.

fractions.gcd(a,	b)
Return	 the	 greatest	 common	 divisor	 of	 the	 integers	 a	 and	 b.	 If
either	a	or	b	is	nonzero,	then	the	absolute	value	of	gcd(a,	b)	 is
the	 largest	 integer	 that	 divides	both	a	 and	b.	 gcd(a,b)	 has	 the
same	 sign	 as	b	 if	b	 is	 nonzero;	 otherwise	 it	 takes	 the	 sign	 of	 a.
gcd(0,	0)	returns	0.

See	also:

Module	numbers
The	abstract	base	classes	making	up	the	numeric	tower.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

http://www.python.org/

9.6.	random	—	Generate	pseudo-
random	numbers
Source	code:	Lib/random.py

This	 module	 implements	 pseudo-random	 number	 generators	 for
various	distributions.

For	 integers,	there	is	uniform	selection	from	a	range.	For	sequences,
there	is	uniform	selection	of	a	random	element,	a	function	to	generate
a	 random	 permutation	 of	 a	 list	 in-place,	 and	 a	 function	 for	 random
sampling	without	replacement.

On	 the	 real	 line,	 there	 are	 functions	 to	 compute	 uniform,	 normal
(Gaussian),	 lognormal,	 negative	 exponential,	 gamma,	 and	 beta
distributions.	 For	 generating	 distributions	 of	 angles,	 the	 von	 Mises
distribution	is	available.

Almost	all	module	functions	depend	on	the	basic	function	random(),
which	generates	a	random	float	uniformly	in	the	semi-open	range	[0.0,
1.0).	 Python	 uses	 the	 Mersenne	 Twister	 as	 the	 core	 generator.	 It
produces	53-bit	precision	 floats	and	has	a	period	of	2**19937-1.	The
underlying	 implementation	 in	 C	 is	 both	 fast	 and	 threadsafe.	 The
Mersenne	 Twister	 is	 one	 of	 the	 most	 extensively	 tested	 random
number	 generators	 in	 existence.	 However,	 being	 completely
deterministic,	 it	 is	 not	 suitable	 for	 all	 purposes,	 and	 is	 completely
unsuitable	for	cryptographic	purposes.

The	functions	supplied	by	this	module	are	actually	bound	methods	of	a
hidden	 instance	 of	 the	 random.Random	 class.	 You	 can	 instantiate

http://hg.python.org/cpython/file/3.4/Lib/random.py

your	 own	 instances	 of	 Random	 to	 get	 generators	 that	 don’t	 share
state.

Class	Random	 can	also	be	subclassed	 if	you	want	 to	use	a	different
basic	 generator	 of	 your	 own	 devising:	 in	 that	 case,	 override	 the
random(),	 seed(),	 getstate(),	 and	 setstate()	 methods.
Optionally,	a	new	generator	can	supply	a	getrandbits()	method	—
this	 allows	 randrange()	 to	 produce	 selections	 over	 an	 arbitrarily
large	range.

The	 random	module	 also	 provides	 the	 SystemRandom	 class	 which
uses	 the	 system	 function	 os.urandom()	 to	 generate	 random
numbers	from	sources	provided	by	the	operating	system.

Warning: 	The	pseudo-random	generators	of	this	module	should
not	be	used	for	security	purposes.	Use	os.urandom()	or
SystemRandom	if	you	require	a	cryptographically	secure	pseudo-
random	number	generator.

Bookkeeping	functions:

random.seed(a=None,	version=2)
Initialize	the	random	number	generator.

If	 a	 is	 omitted	 or	 None,	 the	 current	 system	 time	 is	 used.	 If
randomness	 sources	 are	 provided	 by	 the	 operating	 system,	 they
are	 used	 instead	 of	 the	 system	 time	 (see	 the	 os.urandom()
function	for	details	on	availability).

If	a	is	an	int,	it	is	used	directly.

With	version	2	(the	default),	a	str,	bytes,	or	bytearray	object

gets	converted	to	an	int	and	all	of	its	bits	are	used.	With	version
1,	the	hash()	of	a	is	used	instead.

Changed	 in	 version	 3.2:	Moved	 to	 the	 version	 2	 scheme	 which
uses	all	of	the	bits	in	a	string	seed.

random.getstate()
Return	 an	 object	 capturing	 the	 current	 internal	 state	 of	 the
generator.	 This	 object	 can	 be	 passed	 to	 setstate()	 to	 restore
the	state.

random.setstate(state)
state	 should	 have	 been	 obtained	 from	 a	 previous	 call	 to
getstate(),	and	setstate()	 restores	 the	 internal	state	of	 the
generator	to	what	it	was	at	the	time	getstate()	was	called.

random.getrandbits(k)
Returns	 a	 Python	 integer	 with	 k	 random	 bits.	 This	 method	 is
supplied	 with	 the	 MersenneTwister	 generator	 and	 some	 other
generators	may	also	provide	it	as	an	optional	part	of	the	API.	When
available,	 getrandbits()	 enables	 randrange()	 to	 handle
arbitrarily	large	ranges.

Functions	for	integers:

random.randrange(stop)
random.randrange(start,	stop[,	step])

Return	a	randomly	selected	element	from	range(start,	stop,
step).	 This	 is	 equivalent	 to	 choice(range(start,	 stop,

step)),	but	doesn’t	actually	build	a	range	object.

The	 positional	 argument	 pattern	 matches	 that	 of	 range().

Keyword	arguments	should	not	be	used	because	the	function	may
use	them	in	unexpected	ways.

Changed	 in	 version	 3.2:	 randrange()	 is	 more	 sophisticated
about	producing	equally	distributed	values.	Formerly	it	used	a	style
like	 int(random()*n)	 which	 could	 produce	 slightly	 uneven
distributions.

random.randint(a,	b)
Return	 a	 random	 integer	N	 such	 that	 a	 <=	 N	 <=	 b.	 Alias	 for
randrange(a,	b+1).

Functions	for	sequences:

random.choice(seq)
Return	a	random	element	from	the	non-empty	sequence	seq.	If	seq
is	empty,	raises	IndexError.

random.shuffle(x[,	random])
Shuffle	the	sequence	x	in	place.	The	optional	argument	random	 is
a	 0-argument	 function	 returning	 a	 random	 float	 in	 [0.0,	 1.0);	 by
default,	this	is	the	function	random().

Note	 that	 for	 even	 rather	 small	 len(x),	 the	 total	 number	 of
permutations	of	x	is	larger	than	the	period	of	most	random	number
generators;	this	implies	that	most	permutations	of	a	long	sequence
can	never	be	generated.

random.sample(population,	k)
Return	 a	 k	 length	 list	 of	 unique	 elements	 chosen	 from	 the
population	 sequence	 or	 set.	 Used	 for	 random	 sampling	 without
replacement.

Returns	 a	 new	 list	 containing	 elements	 from	 the	 population	while
leaving	 the	 original	 population	 unchanged.	 The	 resulting	 list	 is	 in
selection	 order	 so	 that	 all	 sub-slices	 will	 also	 be	 valid	 random
samples.	This	allows	 raffle	winners	 (the	sample)	 to	be	partitioned
into	grand	prize	and	second	place	winners	(the	subslices).

Members	of	the	population	need	not	be	hashable	or	unique.	If	 the
population	 contains	 repeats,	 then	 each	 occurrence	 is	 a	 possible
selection	in	the	sample.

To	 choose	 a	 sample	 from	 a	 range	 of	 integers,	 use	 an	 range()
object	as	an	argument.	This	 is	especially	 fast	 and	space	efficient
for	 sampling	 from	 a	 large	 population:
sample(range(10000000),	60).

If	 the	 sample	 size	 is	 larger	 than	 the	 population	 size,	 a
ValueError	is	raised.

The	 following	 functions	 generate	 specific	 real-valued	 distributions.
Function	 parameters	 are	 named	 after	 the	 corresponding	 variables	 in
the	distribution’s	equation,	as	used	in	common	mathematical	practice;
most	of	these	equations	can	be	found	in	any	statistics	text.

random.random()
Return	 the	 next	 random	 floating	 point	 number	 in	 the	 range	 [0.0,
1.0).

random.uniform(a,	b)
Return	a	random	floating	point	number	N	such	that	a	<=	N	<=	b
for	a	<=	b	and	b	<=	N	<=	a	for	b	<	a.

The	 end-point	 value	 b	may	 or	may	 not	 be	 included	 in	 the	 range
depending	on	 floating-point	 rounding	 in	 the	equation	a	+	(b-a)

*	random().

random.triangular(low,	high,	mode)
Return	a	random	floating	point	number	N	such	that	low	<=	N	<=
high	and	with	the	specified	mode	between	those	bounds.	The	low
and	 high	 bounds	 default	 to	 zero	 and	 one.	 The	mode	 argument
defaults	 to	 the	midpoint	 between	 the	 bounds,	 giving	 a	 symmetric
distribution.

random.betavariate(alpha,	beta)
Beta	 distribution.	Conditions	 on	 the	 parameters	 are	 alpha	>	 0
and	beta	>	0.	Returned	values	range	between	0	and	1.

random.expovariate(lambd)
Exponential	distribution.	lambd	is	1.0	divided	by	the	desired	mean.
It	 should	 be	 nonzero.	 (The	 parameter	 would	 be	 called	 “lambda”,
but	that	is	a	reserved	word	in	Python.)	Returned	values	range	from
0	to	positive	infinity	if	lambd	is	positive,	and	from	negative	infinity	to
0	if	lambd	is	negative.

random.gammavariate(alpha,	beta)
Gamma	distribution.	(Not	 the	gamma	 function!)	Conditions	on	 the
parameters	are	alpha	>	0	and	beta	>	0.

The	probability	distribution	function	is:

										x	**	(alpha	-	1)	*	math.exp(-x	/	beta)

pdf(x)	=		--------------------------------------

												math.gamma(alpha)	*	beta	**	alpha

random.gauss(mu,	sigma)
Gaussian	distribution.	mu	 is	 the	mean,	and	sigma	 is	 the	standard

deviation.	 This	 is	 slightly	 faster	 than	 the	 normalvariate()
function	defined	below.

random.lognormvariate(mu,	sigma)
Log	 normal	 distribution.	 If	 you	 take	 the	 natural	 logarithm	 of	 this
distribution,	 you’ll	 get	 a	 normal	 distribution	 with	 mean	 mu	 and
standard	deviation	sigma.	mu	can	have	any	value,	and	sigma	must
be	greater	than	zero.

random.normalvariate(mu,	sigma)
Normal	 distribution.	mu	 is	 the	 mean,	 and	 sigma	 is	 the	 standard
deviation.

random.vonmisesvariate(mu,	kappa)
mu	 is	 the	mean	angle,	expressed	 in	 radians	between	0	and	2*pi,
and	kappa	 is	 the	concentration	parameter,	which	must	be	greater
than	 or	 equal	 to	 zero.	 If	kappa	 is	 equal	 to	 zero,	 this	 distribution
reduces	to	a	uniform	random	angle	over	the	range	0	to	2*pi.

random.paretovariate(alpha)
Pareto	distribution.	alpha	is	the	shape	parameter.

random.weibullvariate(alpha,	beta)
Weibull	 distribution.	alpha	 is	 the	 scale	 parameter	 and	beta	 is	 the
shape	parameter.

Alternative	Generator:

class	random.SystemRandom([seed])
Class	 that	 uses	 the	 os.urandom()	 function	 for	 generating
random	numbers	 from	sources	provided	by	 the	operating	system.
Not	available	on	all	systems.	Does	not	rely	on	software	state,	and

sequences	are	not	reproducible.	Accordingly,	the	seed()	method
has	no	effect	and	is	ignored.	The	getstate()	and	setstate()
methods	raise	NotImplementedError	if	called.

See	also: 	M.	Matsumoto	and	T.	Nishimura,	“Mersenne	Twister:	A
623-dimensionally	equidistributed	uniform	pseudorandom	number
generator”,	ACM	Transactions	on	Modeling	and	Computer
Simulation	Vol.	8,	No.	1,	January	pp.3-30	1998.

Complementary-Multiply-with-Carry	 recipe	 for	 a	 compatible
alternative	 random	 number	 generator	 with	 a	 long	 period	 and
comparatively	simple	update	operations.

http://code.activestate.com/recipes/576707/

9.6.1.	Notes	on	Reproducibility

Sometimes	it	is	useful	to	be	able	to	reproduce	the	sequences	given	by
a	 pseudo	 random	 number	 generator.	 By	 re-using	 a	 seed	 value,	 the
same	 sequence	 should	 be	 reproducible	 from	 run	 to	 run	 as	 long	 as
multiple	threads	are	not	running.

Most	 of	 the	 random	 module’s	 algorithms	 and	 seeding	 functions	 are
subject	 to	 change	 across	 Python	 versions,	 but	 two	 aspects	 are
guaranteed	not	to	change:

If	 a	new	seeding	method	 is	added,	 then	a	backward	 compatible
seeder	will	be	offered.
The	generator’s	random()	method	will	 continue	 to	 produce	 the
same	 sequence	when	 the	 compatible	 seeder	 is	 given	 the	 same
seed.

9.6.2.	Examples	and	Recipes

Basic	usage:

>>>	random.random()																						#	Random	float	x,	0.0	<=	x	<	1.0

0.37444887175646646

>>>	random.uniform(1,	10)																#	Random	float	x,	1.0	<=	x	<	10.0

1.1800146073117523

>>>	random.randrange(10)																	#	Integer	from	0	to	9

7

>>>	random.randrange(0,	101,	2)										#	Even	integer	from	0	to	100

26

>>>	random.choice('abcdefghij')										#	Single	random	element

'c'

>>>	items	=	[1,	2,	3,	4,	5,	6,	7]

>>>	random.shuffle(items)

>>>	items

[7,	3,	2,	5,	6,	4,	1]

>>>	random.sample([1,	2,	3,	4,	5],		3)			#	Three	samples	without	replacement

[4,	1,	5]

A	 common	 task	 is	 to	 make	 a	 random.choice()	 with	 weighted
probabilities.

If	the	weights	are	small	integer	ratios,	a	simple	technique	is	to	build	a
sample	population	with	repeats:

>>>	weighted_choices	=	[('Red',	3),	('Blue',	2),	('Yellow'

>>>	population	=	[val	for	val,	cnt	in	weighted_choices

>>>	random.choice(population)

'Green'

A	more	 general	 approach	 is	 to	 arrange	 the	 weights	 in	 a	 cumulative
distribution	 with	 itertools.accumulate(),	 and	 then	 locate	 the
random	value	with	bisect.bisect():

>>>	choices,	weights	=	zip(*weighted_choices)

>>>	cumdist	=	list(itertools.accumulate(weights))

>>>	x	=	random.random()	*	cumdist[-1]

>>>	choices[bisect.bisect(cumdist,	x)]

'Blue'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

http://www.python.org/

9.7.	statistics	—	Mathematical
statistics	functions
New	in	version	3.4.

Source	code:	Lib/statistics.py

This	module	provides	 functions	 for	calculating	mathematical	statistics
of	numeric	(Real-valued)	data.

Note: 	Unless	explicitly	noted	otherwise,	these	functions	support
int,	float,	decimal.Decimal	and	fractions.Fraction.
Behaviour	with	other	types	(whether	in	the	numeric	tower	or	not)	is
currently	unsupported.	Mixed	types	are	also	undefined	and
implementation-dependent.	If	your	input	data	consists	of	mixed
types,	you	may	be	able	to	use	map()	to	ensure	a	consistent	result,
e.g.	map(float,	input_data).

http://hg.python.org/cpython/file/3.4/Lib/statistics.py

9.7.1.	Averages	and	measures	of	central
location

These	 functions	 calculate	 an	 average	 or	 typical	 value	 from	 a
population	or	sample.

mean() Arithmetic	mean	(“average”)	of	data.

median() Median	(middle	value)	of	data.

median_low() Low	median	of	data.

median_high() High	median	of	data.

median_grouped() Median,	or	50th	percentile,	of	grouped	data.

mode()
Mode	(most	common	value)	of	discrete
data.

9.7.2.	Measures	of	spread

These	 functions	 calculate	a	measure	of	 how	much	 the	population	or
sample	tends	to	deviate	from	the	typical	or	average	values.

pstdev()
Population	standard	deviation	of
data.

pvariance() Population	variance	of	data.

stdev() Sample	standard	deviation	of	data.

variance() Sample	variance	of	data.

9.7.3.	Function	details

Note:	The	functions	do	not	require	the	data	given	to	them	to	be	sorted.
However,	for	reading	convenience,	most	of	the	examples	show	sorted
sequences.

statistics.mean(data)
Return	the	sample	arithmetic	mean	of	data,	a	sequence	or	iterator
of	real-valued	numbers.

The	arithmetic	mean	is	the	sum	of	the	data	divided	by	the	number
of	data	points.	 It	 is	 commonly	 called	 “the	 average”,	 although	 it	 is
only	one	of	many	different	mathematical	averages.	It	is	a	measure
of	the	central	location	of	the	data.

If	data	is	empty,	StatisticsError	will	be	raised.

Some	examples	of	use:

>>>	mean([1,	2,	3,	4,	4])

2.8

>>>	mean([-1.0,	2.5,	3.25,	5.75])

2.625

>>>	from	fractions	import	Fraction	as	F

>>>	mean([F(3,	7),	F(1,	21),	F(5,	3),	F(1,	3)])

Fraction(13,	21)

>>>	from	decimal	import	Decimal	as	D

>>>	mean([D("0.5"),	D("0.75"),	D("0.625"),	D("0.375"

Decimal('0.5625')

Note: 	 The	 mean	 is	 strongly	 affected	 by	 outliers	 and	 is	 not	 a

robust	estimator	for	central	location:	the	mean	is	not	necessarily
a	 typical	example	of	 the	data	points.	For	more	 robust,	although
less	 efficient,	measures	 of	 central	 location,	 see	 median()	 and
mode().	 (In	 this	 case,	 “efficient”	 refers	 to	 statistical	 efficiency
rather	than	computational	efficiency.)
The	 sample	 mean	 gives	 an	 unbiased	 estimate	 of	 the	 true
population	mean,	 which	means	 that,	 taken	 on	 average	 over	 all
the	 possible	 samples,	 mean(sample)	 converges	 on	 the	 true
mean	 of	 the	 entire	 population.	 If	 data	 represents	 the	 entire
population	rather	than	a	sample,	then	mean(data)	is	equivalent
to	calculating	the	true	population	mean	μ.

statistics.median(data)
Return	 the	 median	 (middle	 value)	 of	 numeric	 data,	 using	 the
common	 “mean	 of	 middle	 two”	 method.	 If	 data	 is	 empty,
StatisticsError	is	raised.

The	median	 is	 a	 robust	 measure	 of	 central	 location,	 and	 is	 less
affected	by	the	presence	of	outliers	in	your	data.	When	the	number
of	data	points	is	odd,	the	middle	data	point	is	returned:

>>>	median([1,	3,	5])

3

When	the	number	of	data	points	is	even,	the	median	is	interpolated
by	taking	the	average	of	the	two	middle	values:

>>>	median([1,	3,	5,	7])

4.0

This	 is	 suited	 for	when	your	data	 is	discrete,	and	you	don’t	mind
that	the	median	may	not	be	an	actual	data	point.

See	 also: 	 median_low(),	 median_high(),
median_grouped()

statistics.median_low(data)
Return	 the	 low	 median	 of	 numeric	 data.	 If	 data	 is	 empty,
StatisticsError	is	raised.

The	 low	median	 is	 always	 a	member	 of	 the	 data	 set.	When	 the
number	of	data	points	is	odd,	the	middle	value	is	returned.	When	it
is	even,	the	smaller	of	the	two	middle	values	is	returned.

>>>	median_low([1,	3,	5])

3

>>>	median_low([1,	3,	5,	7])

3

Use	the	low	median	when	your	data	are	discrete	and	you	prefer	the
median	to	be	an	actual	data	point	rather	than	interpolated.

statistics.median_high(data)
Return	 the	 high	 median	 of	 data.	 If	 data	 is	 empty,
StatisticsError	is	raised.

The	 high	median	 is	 always	 a	member	 of	 the	 data	 set.	When	 the
number	of	data	points	is	odd,	the	middle	value	is	returned.	When	it
is	even,	the	larger	of	the	two	middle	values	is	returned.

>>>	median_high([1,	3,	5])

3

>>>	median_high([1,	3,	5,	7])

5

Use	 the	high	median	when	your	data	are	discrete	and	you	prefer

the	median	to	be	an	actual	data	point	rather	than	interpolated.

statistics.median_grouped(data,	interval=1)
Return	 the	median	of	grouped	continuous	data,	calculated	as	 the
50th	 percentile,	 using	 interpolation.	 If	 data	 is	 empty,
StatisticsError	is	raised.

>>>	median_grouped([52,	52,	53,	54])

52.5

In	the	following	example,	the	data	are	rounded,	so	that	each	value
represents	 the	midpoint	 of	 data	 classes,	 e.g.	 1	 is	 the	midpoint	 of
the	class	0.5-1.5,	2	 is	the	midpoint	of	1.5-2.5,	3	 is	the	midpoint	of
2.5-3.5,	etc.	With	the	data	given,	the	middle	value	falls	somewhere
in	the	class	3.5-4.5,	and	interpolation	is	used	to	estimate	it:

>>>	median_grouped([1,	2,	2,	3,	4,	4,	4,	4,	4,	5])

3.7

Optional	 argument	 interval	 represents	 the	 class	 interval,	 and
defaults	to	1.	Changing	the	class	interval	naturally	will	change	the
interpolation:

>>>	median_grouped([1,	3,	3,	5,	7],	interval=1)

3.25

>>>	median_grouped([1,	3,	3,	5,	7],	interval=2)

3.5

This	 function	does	not	check	whether	 the	data	points	are	at	 least
interval	apart.

CPython	 implementation	 detail:	 Under	 some	 circumstances,
median_grouped()	 may	 coerce	 data	 points	 to	 floats.	 This

behaviour	is	likely	to	change	in	the	future.

See	also:
“Statistics	 for	 the	 Behavioral	 Sciences”,	 Frederick	 J
Gravetter	and	Larry	B	Wallnau	(8th	Edition).
Calculating	the	median.
The	 SSMEDIAN	 function	 in	 the	 Gnome	 Gnumeric
spreadsheet,	including	this	discussion.

statistics.mode(data)
Return	the	most	common	data	point	from	discrete	or	nominal	data.
The	mode	(when	it	exists)	is	the	most	typical	value,	and	is	a	robust
measure	of	central	location.

If	data	is	empty,	or	if	there	is	not	exactly	one	most	common	value,
StatisticsError	is	raised.

mode	 assumes	 discrete	 data,	 and	 returns	 a	 single	 value.	 This	 is
the	 standard	 treatment	 of	 the	 mode	 as	 commonly	 taught	 in
schools:

>>>	mode([1,	1,	2,	3,	3,	3,	3,	4])

3

The	mode	is	unique	in	that	it	is	the	only	statistic	which	also	applies
to	nominal	(non-numeric)	data:

>>>	mode(["red",	"blue",	"blue",	"red",	"green",	"red"

'red'

statistics.pstdev(data,	mu=None)
Return	 the	 population	 standard	 deviation	 (the	 square	 root	 of	 the

http://www.ualberta.ca/~opscan/median.html
https://projects.gnome.org/gnumeric/doc/gnumeric-function-SSMEDIAN.shtml
https://mail.gnome.org/archives/gnumeric-list/2011-April/msg00018.html

population	variance).	See	pvariance()	 for	arguments	and	other
details.

>>>	pstdev([1.5,	2.5,	2.5,	2.75,	3.25,	4.75])

0.986893273527251

statistics.pvariance(data,	mu=None)
Return	 the	 population	 variance	 of	 data,	 a	 non-empty	 iterable	 of
real-valued	 numbers.	 Variance,	 or	 second	 moment	 about	 the
mean,	is	a	measure	of	the	variability	(spread	or	dispersion)	of	data.
A	 large	 variance	 indicates	 that	 the	 data	 is	 spread	 out;	 a	 small
variance	indicates	it	is	clustered	closely	around	the	mean.

If	the	optional	second	argument	mu	is	given,	it	should	be	the	mean
of	 data.	 If	 it	 is	 missing	 or	 None	 (the	 default),	 the	 mean	 is
automatically	calculated.

Use	 this	 function	 to	 calculate	 the	 variance	 from	 the	 entire
population.	 To	 estimate	 the	 variance	 from	 a	 sample,	 the
variance()	function	is	usually	a	better	choice.

Raises	StatisticsError	if	data	is	empty.

Examples:

>>>	data	=	[0.0,	0.25,	0.25,	1.25,	1.5,	1.75,	2.75

>>>	pvariance(data)

1.25

If	you	have	already	calculated	the	mean	of	your	data,	you	can	pass
it	as	the	optional	second	argument	mu	to	avoid	recalculation:

>>>	mu	=	mean(data)

>>>	pvariance(data,	mu)

1.25

This	 function	does	not	attempt	 to	verify	 that	you	have	passed	 the
actual	 mean	 as	mu.	 Using	 arbitrary	 values	 for	mu	 may	 lead	 to
invalid	or	impossible	results.

Decimals	and	Fractions	are	supported:

>>>	from	decimal	import	Decimal	as	D

>>>	pvariance([D("27.5"),	D("30.25"),	D("30.25"),	

Decimal('24.815')

>>>	from	fractions	import	Fraction	as	F

>>>	pvariance([F(1,	4),	F(5,	4),	F(1,	2)])

Fraction(13,	72)

Note: 	 When	 called	 with	 the	 entire	 population,	 this	 gives	 the
population	variance	σ².	When	called	on	a	sample	instead,	this	is
the	 biased	 sample	 variance	 s²,	 also	 known	 as	 variance	 with	 N
degrees	of	freedom.
If	you	somehow	know	the	true	population	mean	μ,	you	may	use
this	 function	 to	 calculate	 the	 variance	 of	 a	 sample,	 giving	 the
known	 population	mean	 as	 the	 second	 argument.	 Provided	 the
data	 points	 are	 representative	 (e.g.	 independent	 and	 identically
distributed),	 the	 result	 will	 be	 an	 unbiased	 estimate	 of	 the
population	variance.

statistics.stdev(data,	xbar=None)
Return	 the	 sample	 standard	 deviation	 (the	 square	 root	 of	 the
sample	 variance).	 See	 variance()	 for	 arguments	 and	 other
details.

>>>	stdev([1.5,	2.5,	2.5,	2.75,	3.25,	4.75])

1.0810874155219827

statistics.variance(data,	xbar=None)
Return	the	sample	variance	of	data,	an	iterable	of	at	least	two	real-
valued	numbers.	Variance,	or	second	moment	about	the	mean,	is	a
measure	 of	 the	 variability	 (spread	 or	 dispersion)	 of	 data.	 A	 large
variance	 indicates	 that	 the	 data	 is	 spread	 out;	 a	 small	 variance
indicates	it	is	clustered	closely	around	the	mean.

If	 the	 optional	 second	 argument	 xbar	 is	 given,	 it	 should	 be	 the
mean	 of	data.	 If	 it	 is	missing	 or	 None	 (the	 default),	 the	mean	 is
automatically	calculated.

Use	this	function	when	your	data	is	a	sample	from	a	population.	To
calculate	 the	 variance	 from	 the	 entire	 population,	 see
pvariance().

Raises	StatisticsError	if	data	has	fewer	than	two	values.

Examples:

>>>	data	=	[2.75,	1.75,	1.25,	0.25,	0.5,	1.25,	3.5

>>>	variance(data)

1.3720238095238095

If	you	have	already	calculated	the	mean	of	your	data,	you	can	pass
it	as	the	optional	second	argument	xbar	to	avoid	recalculation:

>>>	m	=	mean(data)

>>>	variance(data,	m)

1.3720238095238095

This	 function	does	not	attempt	 to	verify	 that	you	have	passed	 the
actual	mean	 as	xbar.	Using	 arbitrary	 values	 for	 xbar	 can	 lead	 to
invalid	or	impossible	results.

Decimal	and	Fraction	values	are	supported:

>>>	from	decimal	import	Decimal	as	D

>>>	variance([D("27.5"),	D("30.25"),	D("30.25"),	D

Decimal('31.01875')

>>>	from	fractions	import	Fraction	as	F

>>>	variance([F(1,	6),	F(1,	2),	F(5,	3)])

Fraction(67,	108)

Note: 	 This	 is	 the	 sample	 variance	 s²	 with	 Bessel’s	 correction,
also	known	as	variance	with	N-1	degrees	of	 freedom.	Provided
that	 the	 data	 points	 are	 representative	 (e.g.	 independent	 and
identically	distributed),	the	result	should	be	an	unbiased	estimate
of	the	true	population	variance.
If	you	somehow	know	 the	actual	population	mean	μ	you	should
pass	it	to	the	pvariance()	function	as	the	mu	parameter	to	get
the	variance	of	a	sample.

9.7.4.	Exceptions

A	single	exception	is	defined:

exception	statistics.StatisticsError
Subclass	of	ValueError	for	statistics-related	exceptions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	9.	Numeric	and	Mathematical	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

10.	Functional	Programming
Modules
The	modules	described	 in	 this	chapter	provide	 functions	and	classes
that	 support	 a	 functional	 programming	 style,	 and	 general	 operations
on	callables.

The	following	modules	are	documented	in	this	chapter:

10.1.	 itertools	 —	 Functions	 creating	 iterators	 for	 efficient
looping

10.1.1.	Itertool	functions
10.1.2.	Itertools	Recipes

10.2.	 functools	 —	 Higher-order	 functions	 and	 operations	 on
callable	objects

10.2.1.	partial	Objects
10.3.	operator	—	Standard	operators	as	functions

10.3.1.	Mapping	Operators	to	Functions
10.3.2.	Inplace	Operators

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	10.	Functional	Programming	Modules	»

http://www.python.org/

10.1.	itertools	—	Functions
creating	iterators	for	efficient
looping
This	module	 implements	a	number	of	 iterator	building	blocks	 inspired
by	constructs	from	APL,	Haskell,	and	SML.	Each	has	been	recast	in	a
form	suitable	for	Python.

The	module	standardizes	a	core	set	of	fast,	memory	efficient	tools	that
are	 useful	 by	 themselves	 or	 in	 combination.	 Together,	 they	 form	 an
“iterator	 algebra”	 making	 it	 possible	 to	 construct	 specialized	 tools
succinctly	and	efficiently	in	pure	Python.

For	 instance,	 SML	 provides	 a	 tabulation	 tool:	 tabulate(f)	 which
produces	a	 sequence	 f(0),	f(1),	 The	 same	effect	 can	 be
achieved	 in	 Python	 by	 combining	 map()	 and	 count()	 to	 form
map(f,	count()).

These	tools	and	their	built-in	counterparts	also	work	well	with	the	high-
speed	 functions	 in	 the	 operator	 module.	 For	 example,	 the
multiplication	operator	can	be	mapped	across	two	vectors	 to	 form	an
efficient	 dot-product:	 sum(map(operator.mul,	 vector1,

vector2)).

Infinite	Iterators:

Iterator Arguments Results Example

count() start,	[step] start,	start+step,
start+2*step,	...

count(10)	-->

10	11	12	13	14

...

cycle() p p0,	p1,	...	plast,
p0,	p1,	...

cycle('ABCD')

-->	A	B	C	D	A

B	C	D	...

repeat() elem	[,n]
elem,	elem,	elem,
...	endlessly	or	up
to	n	times

repeat(10,	3)

-->	10	10	10

Iterators	terminating	on	the	shortest	input	sequence:

Iterator Arguments Results

accumulate() p	[,func] p0,	p0+p1,
p0+p1+p2,	...

accumulate([1,2,3,4,5])

1	

chain() p,	q,	... p0,	p1,	...	plast,
q0,	q1,	...

chain('ABC',

C	

chain.from_iterable() iterable p0,	p1,	...	plast,
q0,	q1,	...

chain.from_iterable(['ABC',

'DEF'])

compress()
data,
selectors

(d[0]	if	s[0]),	(d[1]	if
s[1]),	...

compress('ABCDEF',

[1,0,1,0,1,1])

dropwhile() pred,	seq
seq[n],	seq[n+1],
starting	when	pred
fails

dropwhile(lambda

[1,4,6,4,1])

filterfalse() pred,	seq
elements	of	seq
where	pred(elem)
is	false

filterfalse(lambda

range(10))

groupby()
iterable[,
keyfunc]

sub-iterators
grouped	by	value
of	keyfunc(v)

	

islice()
seq,	[start,]
stop	[,	step]

elements	from
seq[start:stop:step]

islice('ABCDEFG',

-->

starmap() func,	seq func(*seq[0]),
func(*seq[1]),	...

starmap(pow,

(10,3)])

seq[0],	seq[1],	until takewhile(lambda

takewhile() pred,	seq pred	fails [1,4,6,4,1])

tee() it,	n it1,	it2,	...	itn	splits
one	iterator	into	n 	

zip_longest() p,	q,	... (p[0],	q[0]),	(p[1],
q[1]),	...

zip_longest('ABCD',

fillvalue='-')

D-

Combinatoric	generators:

Iterator Arguments Results

product()
p,	q,	...
[repeat=1]

cartesian
product,
equivalent
to	a
nested
for-loop

permutations() p[,	r]

r-length
tuples,	all
possible
orderings,
no
repeated
elements

combinations() p,	r

r-length
tuples,	in
sorted
order,	no
repeated
elements

combinations_with_replacement() p,	r

r-length
tuples,	in
sorted
order,
with

repeated
elements

product('ABCD',	repeat=2) 	

AA

AC

BA

BC

CA

CC

DA

DC

permutations('ABCD',	2) 	

AB

AD

BC

CA

CD

DB

combinations('ABCD',	2) 	
AB

AD

BD

combinations_with_replacement('ABCD',

2)
	

AA

AC

BB

BD

CD

10.1.1.	Itertool	functions

The	following	module	functions	all	construct	and	return	iterators.	Some
provide	streams	of	infinite	length,	so	they	should	only	be	accessed	by
functions	or	loops	that	truncate	the	stream.

itertools.accumulate(iterable[,	func])
Make	an	iterator	that	returns	accumulated	sums.	Elements	may	be
any	addable	type	including	Decimal	or	Fraction.	If	the	optional
func	argument	is	supplied,	it	should	be	a	function	of	two	arguments
and	it	will	be	used	instead	of	addition.

Equivalent	to:

def	accumulate(iterable,	func=operator.add):

				'Return	running	totals'

				#	accumulate([1,2,3,4,5])	-->	1	3	6	10	15

				#	accumulate([1,2,3,4,5],	operator.mul)	-->	1	2	6	24	120

				it	=	iter(iterable)

				total	=	next(it)

				yield	total

				for	element	in	it:

								total	=	func(total,	element)

								yield	total

There	are	a	number	of	uses	for	the	func	argument.	It	can	be	set	to
min()	for	a	running	minimum,	max()	 for	a	running	maximum,	or
operator.mul()	 for	a	 running	product.	Amortization	 tables	can
be	 built	 by	 accumulating	 interest	 and	 applying	 payments.	 First-
order	recurrence	relations	can	be	modeled	by	supplying	the	 initial
value	 in	 the	 iterable	and	using	only	 the	accumulated	 total	 in	 func
argument:

http://en.wikipedia.org/wiki/Recurrence_relation

>>>	data	=	[3,	4,	6,	2,	1,	9,	0,	7,	5,	8]

>>>	list(accumulate(data,	operator.mul))					#	running	product

[3,	12,	72,	144,	144,	1296,	0,	0,	0,	0]

>>>	list(accumulate(data,	max))														#	running	maximum

[3,	4,	6,	6,	6,	9,	9,	9,	9,	9]

#	Amortize	a	5%	loan	of	1000	with	4	annual	payments	of	90

>>>	cashflows	=	[1000,	-90,	-90,	-90,	-90]

>>>	list(accumulate(cashflows,	lambda	bal,	pmt:	bal

[1000,	960.0,	918.0,	873.9000000000001,	827.5950000000001]

#	Chaotic	recurrence	relation	http://en.wikipedia.org/wiki/Logistic_map

>>>	logistic_map	=	lambda	x,	_:		r	*	x	*	(1	-	x)

>>>	r	=	3.8

>>>	x0	=	0.4

>>>	inputs	=	repeat(x0,	36)					#	only	the	initial	value	is	used

>>>	[format(x,	'.2f')	for	x	in	accumulate(inputs,	

['0.40',	'0.91',	'0.30',	'0.81',	'0.60',	'0.92',	'0.29',	'0.79',	'0.63',

	'0.88',	'0.39',	'0.90',	'0.33',	'0.84',	'0.52',	'0.95',	'0.18',	'0.57',

	'0.93',	'0.25',	'0.71',	'0.79',	'0.63',	'0.88',	'0.39',	'0.91',	'0.32',

	'0.83',	'0.54',	'0.95',	'0.20',	'0.60',	'0.91',	'0.30',	'0.80',	'0.60']

See	functools.reduce()	for	a	similar	function	that	returns	only
the	final	accumulated	value.

New	in	version	3.2.

Changed	in	version	3.3:	Added	the	optional	func	parameter.

itertools.chain(*iterables)
Make	an	iterator	that	returns	elements	from	the	first	iterable	until	it
is	 exhausted,	 then	 proceeds	 to	 the	 next	 iterable,	 until	 all	 of	 the
iterables	are	exhausted.	Used	 for	 treating	consecutive	sequences
as	a	single	sequence.	Equivalent	to:

def	chain(*iterables):

				#	chain('ABC',	'DEF')	-->	A	B	C	D	E	F

				for	it	in	iterables:

								for	element	in	it:

												yield	element

classmethod	chain.from_iterable(iterable)
Alternate	 constructor	 for	 chain().	 Gets	 chained	 inputs	 from	 a
single	iterable	argument	that	is	evaluated	lazily.	Roughly	equivalent
to:

def	from_iterable(iterables):

				#	chain.from_iterable(['ABC',	'DEF'])	-->	A	B	C	D	E	F

				for	it	in	iterables:

								for	element	in	it:

												yield	element

itertools.combinations(iterable,	r)
Return	r	length	subsequences	of	elements	from	the	input	iterable.

Combinations	 are	 emitted	 in	 lexicographic	 sort	 order.	 So,	 if	 the
input	iterable	 is	sorted,	 the	combination	tuples	will	be	produced	in
sorted	order.

Elements	are	treated	as	unique	based	on	their	position,	not	on	their
value.	So	if	 the	input	elements	are	unique,	there	will	be	no	repeat
values	in	each	combination.

Equivalent	to:

def	combinations(iterable,	r):

				#	combinations('ABCD',	2)	-->	AB	AC	AD	BC	BD	CD

				#	combinations(range(4),	3)	-->	012	013	023	123

				pool	=	tuple(iterable)

				n	=	len(pool)

				if	r	>	n:

								return

				indices	=	list(range(r))

				yield	tuple(pool[i]	for	i	in	indices)

				while	True:

								for	i	in	reversed(range(r)):

												if	indices[i]	!=	i	+	n	-	r:

																break

								else:

												return

								indices[i]	+=	1

								for	j	in	range(i+1,	r):

												indices[j]	=	indices[j-1]	+	1

								yield	tuple(pool[i]	for	i	in	indices)

The	 code	 for	 combinations()	 can	 be	 also	 expressed	 as	 a
subsequence	of	permutations()	after	filtering	entries	where	the
elements	are	not	in	sorted	order	(according	to	their	position	in	the
input	pool):

def	combinations(iterable,	r):

				pool	=	tuple(iterable)

				n	=	len(pool)

				for	indices	in	permutations(range(n),	r):

								if	sorted(indices)	==	list(indices):

												yield	tuple(pool[i]	for	i	in	indices)

The	number	of	items	returned	is	n!	/	r!	/	(n-r)!	when	0	<=
r	<=	n	or	zero	when	r	>	n.

itertools.combinations_with_replacement(iterable,	r)
Return	r	 length	subsequences	of	elements	 from	 the	 input	 iterable
allowing	individual	elements	to	be	repeated	more	than	once.

Combinations	 are	 emitted	 in	 lexicographic	 sort	 order.	 So,	 if	 the
input	iterable	 is	sorted,	 the	combination	tuples	will	be	produced	in
sorted	order.

Elements	are	treated	as	unique	based	on	their	position,	not	on	their
value.	 So	 if	 the	 input	 elements	 are	 unique,	 the	 generated
combinations	will	also	be	unique.

Equivalent	to:

def	combinations_with_replacement(iterable,	r):

				#	combinations_with_replacement('ABC',	2)	-->	AA	AB	AC	BB	BC	CC

				pool	=	tuple(iterable)

				n	=	len(pool)

				if	not	n	and	r:

								return

				indices	=	[0]	*	r

				yield	tuple(pool[i]	for	i	in	indices)

				while	True:

								for	i	in	reversed(range(r)):

												if	indices[i]	!=	n	-	1:

																break

								else:

												return

								indices[i:]	=	[indices[i]	+	1]	*	(r	-	i)

								yield	tuple(pool[i]	for	i	in	indices)

The	 code	 for	 combinations_with_replacement()	 can	 be
also	 expressed	 as	 a	 subsequence	 of	 product()	 after	 filtering
entries	where	 the	 elements	 are	 not	 in	 sorted	 order	 (according	 to
their	position	in	the	input	pool):

def	combinations_with_replacement(iterable,	r):

				pool	=	tuple(iterable)

				n	=	len(pool)

				for	indices	in	product(range(n),	repeat=r):

								if	sorted(indices)	==	list(indices):

												yield	tuple(pool[i]	for	i	in	indices)

The	 number	 of	 items	 returned	 is	 (n+r-1)!	 /	 r!	 /	 (n-1)!
when	n	>	0.

New	in	version	3.1.

itertools.compress(data,	selectors)
Make	an	iterator	that	filters	elements	from	data	returning	only	those
that	 have	 a	 corresponding	 element	 in	 selectors	 that	 evaluates	 to
True.	Stops	when	either	the	data	or	selectors	 iterables	has	been
exhausted.	Equivalent	to:

def	compress(data,	selectors):

				#	compress('ABCDEF',	[1,0,1,0,1,1])	-->	A	C	E	F

				return	(d	for	d,	s	in	zip(data,	selectors)	if	

New	in	version	3.1.

itertools.count(start=0,	step=1)
Make	 an	 iterator	 that	 returns	 evenly	 spaced	 values	 starting	 with
number	start.	 Often	 used	 as	 an	 argument	 to	 map()	 to	 generate
consecutive	data	points.	Also,	used	with	zip()	 to	add	sequence
numbers.	Equivalent	to:

def	count(start=0,	step=1):

				#	count(10)	-->	10	11	12	13	14	...

				#	count(2.5,	0.5)	->	2.5	3.0	3.5	...

				n	=	start

				while	True:

								yield	n

								n	+=	step

When	 counting	 with	 floating	 point	 numbers,	 better	 accuracy	 can
sometimes	be	achieved	by	substituting	multiplicative	code	such	as:
(start	+	step	*	i	for	i	in	count()).

Changed	 in	 version	 3.1:	Added	step	 argument	 and	 allowed	 non-
integer	arguments.

itertools.cycle(iterable)
Make	an	iterator	returning	elements	from	the	iterable	and	saving	a
copy	of	each.	When	the	iterable	is	exhausted,	return	elements	from
the	saved	copy.	Repeats	indefinitely.	Equivalent	to:

def	cycle(iterable):

				#	cycle('ABCD')	-->	A	B	C	D	A	B	C	D	A	B	C	D	...

				saved	=	[]

				for	element	in	iterable:

								yield	element

								saved.append(element)

				while	saved:

								for	element	in	saved:

														yield	element

Note,	 this	 member	 of	 the	 toolkit	 may	 require	 significant	 auxiliary
storage	(depending	on	the	length	of	the	iterable).

itertools.dropwhile(predicate,	iterable)
Make	an	 iterator	 that	drops	elements	 from	the	 iterable	as	 long	as
the	predicate	 is	 true;	afterwards,	 returns	every	element.	Note,	 the
iterator	 does	 not	 produce	 any	 output	 until	 the	 predicate	 first
becomes	false,	so	 it	may	have	a	 lengthy	start-up	time.	Equivalent

to:

def	dropwhile(predicate,	iterable):

				#	dropwhile(lambda	x:	x<5,	[1,4,6,4,1])	-->	6	4	1

				iterable	=	iter(iterable)

				for	x	in	iterable:

								if	not	predicate(x):

												yield	x

												break

				for	x	in	iterable:

								yield	x

itertools.filterfalse(predicate,	iterable)
Make	 an	 iterator	 that	 filters	 elements	 from	 iterable	 returning	 only
those	for	which	the	predicate	is	False.	If	predicate	is	None,	return
the	items	that	are	false.	Equivalent	to:

def	filterfalse(predicate,	iterable):

				#	filterfalse(lambda	x:	x%2,	range(10))	-->	0	2	4	6	8

				if	predicate	is	None:

								predicate	=	bool

				for	x	in	iterable:

								if	not	predicate(x):

												yield	x

itertools.groupby(iterable,	key=None)
Make	an	iterator	that	returns	consecutive	keys	and	groups	from	the
iterable.	 The	 key	 is	 a	 function	 computing	 a	 key	 value	 for	 each
element.	 If	 not	 specified	 or	 is	 None,	 key	 defaults	 to	 an	 identity
function	and	returns	the	element	unchanged.	Generally,	the	iterable
needs	to	already	be	sorted	on	the	same	key	function.

The	operation	of	groupby()	is	similar	to	the	uniq	filter	in	Unix.	It

generates	 a	 break	 or	 new	group	 every	 time	 the	 value	 of	 the	 key
function	 changes	 (which	 is	 why	 it	 is	 usually	 necessary	 to	 have
sorted	the	data	using	the	same	key	function).	That	behavior	differs
from	 SQL’s	 GROUP	 BY	 which	 aggregates	 common	 elements
regardless	of	their	input	order.

The	 returned	group	 is	 itself	 an	 iterator	 that	 shares	 the	underlying
iterable	with	groupby().	Because	the	source	is	shared,	when	the
groupby()	 object	 is	 advanced,	 the	 previous	 group	 is	 no	 longer
visible.	So,	if	that	data	is	needed	later,	it	should	be	stored	as	a	list:

groups	=	[]

uniquekeys	=	[]

data	=	sorted(data,	key=keyfunc)

for	k,	g	in	groupby(data,	keyfunc):

				groups.append(list(g))						#	Store	group	iterator	as	a	list

				uniquekeys.append(k)

groupby()	is	equivalent	to:

class	groupby:

				#	[k	for	k,	g	in	groupby('AAAABBBCCDAABBB')]	-->	A	B	C	D	A	B

				#	[list(g)	for	k,	g	in	groupby('AAAABBBCCD')]	-->	AAAA	BBB	CC	D

				def	__init__(self,	iterable,	key=None):

								if	key	is	None:

												key	=	lambda	x:	x

								self.keyfunc	=	key

								self.it	=	iter(iterable)

								self.tgtkey	=	self.currkey	=	self.currvalue

				def	__iter__(self):

								return	self

				def	__next__(self):

								while	self.currkey	==	self.tgtkey:

												self.currvalue	=	next(self.it)				#	Exit	on	StopIteration

												self.currkey	=	self.keyfunc(self.currvalue

								self.tgtkey	=	self.currkey

								return	(self.currkey,	self._grouper(self.tgtkey

				def	_grouper(self,	tgtkey):

								while	self.currkey	==	tgtkey:

												yield	self.currvalue

												self.currvalue	=	next(self.it)				#	Exit	on	StopIteration

												self.currkey	=	self.keyfunc(self.currvalue

itertools.islice(iterable,	stop)
itertools.islice(iterable,	start,	stop[,	step])

Make	an	iterator	that	returns	selected	elements	from	the	iterable.	If
start	is	non-zero,	then	elements	from	the	iterable	are	skipped	until
start	 is	 reached.	 Afterward,	 elements	 are	 returned	 consecutively
unless	 step	 is	 set	 higher	 than	 one	 which	 results	 in	 items	 being
skipped.	If	stop	is	None,	then	iteration	continues	until	the	iterator	is
exhausted,	 if	 at	 all;	 otherwise,	 it	 stops	 at	 the	 specified	 position.
Unlike	regular	slicing,	islice()	does	not	support	negative	values
for	start,	stop,	or	step.	Can	be	used	 to	extract	 related	 fields	 from
data	where	the	internal	structure	has	been	flattened	(for	example,	a
multi-line	 report	 may	 list	 a	 name	 field	 on	 every	 third	 line).
Equivalent	to:

def	islice(iterable,	*args):

				#	islice('ABCDEFG',	2)	-->	A	B

				#	islice('ABCDEFG',	2,	4)	-->	C	D

				#	islice('ABCDEFG',	2,	None)	-->	C	D	E	F	G

				#	islice('ABCDEFG',	0,	None,	2)	-->	A	C	E	G

				s	=	slice(*args)

				it	=	iter(range(s.start	or	0,	s.stop	or	sys.maxsize

				nexti	=	next(it)

				for	i,	element	in	enumerate(iterable):

								if	i	==	nexti:

												yield	element

												nexti	=	next(it)

If	start	 is	None,	 then	 iteration	starts	at	zero.	 If	step	 is	None,	 then
the	step	defaults	to	one.

itertools.permutations(iterable,	r=None)
Return	 successive	 r	 length	 permutations	 of	 elements	 in	 the
iterable.

If	r	 is	not	specified	or	 is	None,	then	r	defaults	 to	 the	 length	of	 the
iterable	and	all	possible	full-length	permutations	are	generated.

Permutations	are	emitted	in	lexicographic	sort	order.	So,	if	the	input
iterable	is	sorted,	the	permutation	tuples	will	be	produced	in	sorted
order.

Elements	are	treated	as	unique	based	on	their	position,	not	on	their
value.	So	if	 the	input	elements	are	unique,	there	will	be	no	repeat
values	in	each	permutation.

Equivalent	to:

def	permutations(iterable,	r=None):

				#	permutations('ABCD',	2)	-->	AB	AC	AD	BA	BC	BD	CA	CB	CD	DA	DB	DC

				#	permutations(range(3))	-->	012	021	102	120	201	210

				pool	=	tuple(iterable)

				n	=	len(pool)

				r	=	n	if	r	is	None	else	r

				if	r	>	n:

								return

				indices	=	list(range(n))

				cycles	=	list(range(n,	n-r,	-1))

				yield	tuple(pool[i]	for	i	in	indices[:r])

				while	n:

								for	i	in	reversed(range(r)):

												cycles[i]	-=	1

												if	cycles[i]	==	0:

																indices[i:]	=	indices[i+1:]	+	indices

																cycles[i]	=	n	-	i

												else:

																j	=	cycles[i]

																indices[i],	indices[-j]	=	indices[

																yield	tuple(pool[i]	for	i	in	indices

																break

								else:

												return

The	 code	 for	 permutations()	 can	 be	 also	 expressed	 as	 a
subsequence	 of	 product(),	 filtered	 to	 exclude	 entries	 with
repeated	elements	(those	from	the	same	position	in	the	input	pool):

def	permutations(iterable,	r=None):

				pool	=	tuple(iterable)

				n	=	len(pool)

				r	=	n	if	r	is	None	else	r

				for	indices	in	product(range(n),	repeat=r):

								if	len(set(indices))	==	r:

												yield	tuple(pool[i]	for	i	in	indices)

The	number	of	items	returned	is	n!	/	(n-r)!	when	0	<=	r	<=
n	or	zero	when	r	>	n.

itertools.product(*iterables,	repeat=1)
Cartesian	product	of	input	iterables.

Equivalent	 to	 nested	 for-loops	 in	 a	 generator	 expression.	 For
example,	product(A,	B)	 returns	 the	same	as	((x,y)	for	x

in	A	for	y	in	B).

The	 nested	 loops	 cycle	 like	 an	 odometer	 with	 the	 rightmost
element	 advancing	 on	 every	 iteration.	 This	 pattern	 creates	 a
lexicographic	ordering	so	that	if	the	input’s	iterables	are	sorted,	the
product	tuples	are	emitted	in	sorted	order.

To	 compute	 the	 product	 of	 an	 iterable	 with	 itself,	 specify	 the
number	of	 repetitions	with	 the	optional	 repeat	 keyword	argument.
For	 example,	 product(A,	 repeat=4)	 means	 the	 same	 as
product(A,	A,	A,	A).

This	 function	 is	 equivalent	 to	 the	 following	 code,	 except	 that	 the
actual	 implementation	 does	 not	 build	 up	 intermediate	 results	 in
memory:

def	product(*args,	repeat=1):

				#	product('ABCD',	'xy')	-->	Ax	Ay	Bx	By	Cx	Cy	Dx	Dy

				#	product(range(2),	repeat=3)	-->	000	001	010	011	100	101	110	111

				pools	=	[tuple(pool)	for	pool	in	args]	*	repeat

				result	=	[[]]

				for	pool	in	pools:

								result	=	[x+[y]	for	x	in	result	for	y	in	pool

				for	prod	in	result:

								yield	tuple(prod)

itertools.repeat(object[,	times])
Make	 an	 iterator	 that	 returns	 object	 over	 and	 over	 again.	 Runs
indefinitely	 unless	 the	 times	 argument	 is	 specified.	 Used	 as
argument	to	map()	for	invariant	parameters	to	the	called	function.
Also	used	with	zip()	to	create	an	invariant	part	of	a	tuple	record.
Equivalent	to:

def	repeat(object,	times=None):

				#	repeat(10,	3)	-->	10	10	10

				if	times	is	None:

								while	True:

												yield	object

				else:

								for	i	in	range(times):

												yield	object

A	common	use	for	repeat	is	to	supply	a	stream	of	constant	values
to	map	or	zip:

>>>	list(map(pow,	range(10),	repeat(2)))

[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

itertools.starmap(function,	iterable)
Make	 an	 iterator	 that	 computes	 the	 function	 using	 arguments
obtained	from	the	iterable.	Used	instead	of	map()	when	argument
parameters	 are	 already	 grouped	 in	 tuples	 from	 a	 single	 iterable
(the	data	has	been	 “pre-zipped”).	 The	difference	between	 map()
and	 starmap()	 parallels	 the	 distinction	 between
function(a,b)	and	function(*c).	Equivalent	to:

def	starmap(function,	iterable):

				#	starmap(pow,	[(2,5),	(3,2),	(10,3)])	-->	32	9	1000

				for	args	in	iterable:

								yield	function(*args)

itertools.takewhile(predicate,	iterable)
Make	an	iterator	that	returns	elements	from	the	iterable	as	long	as
the	predicate	is	true.	Equivalent	to:

def	takewhile(predicate,	iterable):

				#	takewhile(lambda	x:	x<5,	[1,4,6,4,1])	-->	1	4

				for	x	in	iterable:

								if	predicate(x):

												yield	x

								else:

												break

itertools.tee(iterable,	n=2)
Return	n	independent	iterators	from	a	single	iterable.	Equivalent	to:

def	tee(iterable,	n=2):

				it	=	iter(iterable)

				deques	=	[collections.deque()	for	i	in	range(n

				def	gen(mydeque):

								while	True:

												if	not	mydeque:													#	when	the	local	deque	is	empty

																newval	=	next(it)							#	fetch	a	new	value	and

																for	d	in	deques:								#	load	it	to	all	the	deques

																				d.append(newval)

												yield	mydeque.popleft()

				return	tuple(gen(d)	for	d	in	deques)

Once	tee()	has	made	a	split,	 the	original	 iterable	should	not	be
used	 anywhere	 else;	 otherwise,	 the	 iterable	 could	 get	 advanced
without	the	tee	objects	being	informed.

This	itertool	may	require	significant	auxiliary	storage	(depending	on
how	much	 temporary	data	needs	 to	be	stored).	 In	general,	 if	one
iterator	uses	most	or	all	of	the	data	before	another	iterator	starts,	it
is	faster	to	use	list()	instead	of	tee().

itertools.zip_longest(*iterables,	fillvalue=None)
Make	 an	 iterator	 that	 aggregates	 elements	 from	 each	 of	 the

iterables.	 If	 the	 iterables	are	of	uneven	length,	missing	values	are
filled-in	with	fillvalue.	Iteration	continues	until	the	longest	iterable	is
exhausted.	Equivalent	to:

class	ZipExhausted(Exception):

				pass

def	zip_longest(*args,	**kwds):

				#	zip_longest('ABCD',	'xy',	fillvalue='-')	-->	Ax	By	C-	D-

				fillvalue	=	kwds.get('fillvalue')

				counter	=	len(args)	-	1

				def	sentinel():

								nonlocal	counter

								if	not	counter:

												raise	ZipExhausted

								counter	-=	1

								yield	fillvalue

				fillers	=	repeat(fillvalue)

				iterators	=	[chain(it,	sentinel(),	fillers)	for

				try:

								while	iterators:

												yield	tuple(map(next,	iterators))

				except	ZipExhausted:

								pass

If	 one	 of	 the	 iterables	 is	 potentially	 infinite,	 then	 the
zip_longest()	function	should	be	wrapped	with	something	that
limits	 the	 number	 of	 calls	 (for	 example	 islice()	 or
takewhile()).	If	not	specified,	fillvalue	defaults	to	None.

10.1.2.	Itertools	Recipes

This	section	shows	recipes	for	creating	an	extended	toolset	using	the
existing	itertools	as	building	blocks.

The	extended	tools	offer	the	same	high	performance	as	the	underlying
toolset.	 The	 superior	 memory	 performance	 is	 kept	 by	 processing
elements	 one	 at	 a	 time	 rather	 than	 bringing	 the	 whole	 iterable	 into
memory	 all	 at	 once.	 Code	 volume	 is	 kept	 small	 by	 linking	 the	 tools
together	 in	 a	 functional	 style	 which	 helps	 eliminate	 temporary
variables.	 High	 speed	 is	 retained	 by	 preferring	 “vectorized”	 building
blocks	over	the	use	of	for-loops	and	generators	which	incur	interpreter
overhead.

def	take(n,	iterable):

				"Return	first	n	items	of	the	iterable	as	a	list"

				return	list(islice(iterable,	n))

def	tabulate(function,	start=0):

				"Return	function(0),	function(1),	..."

				return	map(function,	count(start))

def	consume(iterator,	n):

				"Advance	the	iterator	n-steps	ahead.	If	n	is	none,	consume	entirely."

				#	Use	functions	that	consume	iterators	at	C	speed.

				if	n	is	None:

								#	feed	the	entire	iterator	into	a	zero-length	deque

								collections.deque(iterator,	maxlen=0)

				else:

								#	advance	to	the	empty	slice	starting	at	position	n

								next(islice(iterator,	n,	n),	None)

def	nth(iterable,	n,	default=None):

				"Returns	the	nth	item	or	a	default	value"

				return	next(islice(iterable,	n,	None),	default)

def	quantify(iterable,	pred=bool):

				"Count	how	many	times	the	predicate	is	true"

				return	sum(map(pred,	iterable))

def	padnone(iterable):

				"""Returns	the	sequence	elements	and	then	returns	None	indefinitely.

				Useful	for	emulating	the	behavior	of	the	built-in	map()	function.

				"""

				return	chain(iterable,	repeat(None))

def	ncycles(iterable,	n):

				"Returns	the	sequence	elements	n	times"

				return	chain.from_iterable(repeat(tuple(iterable

def	dotproduct(vec1,	vec2):

				return	sum(map(operator.mul,	vec1,	vec2))

def	flatten(listOfLists):

				"Flatten	one	level	of	nesting"

				return	chain.from_iterable(listOfLists)

def	repeatfunc(func,	times=None,	*args):

				"""Repeat	calls	to	func	with	specified	arguments.

				Example:		repeatfunc(random.random)

				"""

				if	times	is	None:

								return	starmap(func,	repeat(args))

				return	starmap(func,	repeat(args,	times))

def	pairwise(iterable):

				"s	->	(s0,s1),	(s1,s2),	(s2,	s3),	..."

				a,	b	=	tee(iterable)

				next(b,	None)

				return	zip(a,	b)

def	grouper(iterable,	n,	fillvalue=None):

				"Collect	data	into	fixed-length	chunks	or	blocks"

				#	grouper('ABCDEFG',	3,	'x')	-->	ABC	DEF	Gxx"

				args	=	[iter(iterable)]	*	n

				return	zip_longest(*args,	fillvalue=fillvalue)

def	roundrobin(*iterables):

				"roundrobin('ABC',	'D',	'EF')	-->	A	D	E	B	F	C"

				#	Recipe	credited	to	George	Sakkis

				pending	=	len(iterables)

				nexts	=	cycle(iter(it).__next__	for	it	in	iterables

				while	pending:

								try:

												for	next	in	nexts:

																yield	next()

								except	StopIteration:

												pending	-=	1

												nexts	=	cycle(islice(nexts,	pending))

def	partition(pred,	iterable):

				'Use	a	predicate	to	partition	entries	into	false	entries	and	true	entries'

				#	partition(is_odd,	range(10))	-->	0	2	4	6	8			and		1	3	5	7	9

				t1,	t2	=	tee(iterable)

				return	filterfalse(pred,	t1),	filter(pred,	t2)

def	powerset(iterable):

				"powerset([1,2,3])	-->	()	(1,)	(2,)	(3,)	(1,2)	(1,3)	(2,3)	(1,2,3)"

				s	=	list(iterable)

				return	chain.from_iterable(combinations(s,	r)	for

def	unique_everseen(iterable,	key=None):

				"List	unique	elements,	preserving	order.	Remember	all	elements	ever	seen."

				#	unique_everseen('AAAABBBCCDAABBB')	-->	A	B	C	D

				#	unique_everseen('ABBCcAD',	str.lower)	-->	A	B	C	D

				seen	=	set()

				seen_add	=	seen.add

				if	key	is	None:

								for	element	in	filterfalse(seen.__contains__

												seen_add(element)

												yield	element

				else:

								for	element	in	iterable:

												k	=	key(element)

												if	k	not	in	seen:

																seen_add(k)

																yield	element

def	unique_justseen(iterable,	key=None):

				"List	unique	elements,	preserving	order.	Remember	only	the	element	just	seen."

				#	unique_justseen('AAAABBBCCDAABBB')	-->	A	B	C	D	A	B

				#	unique_justseen('ABBCcAD',	str.lower)	-->	A	B	C	A	D

				return	map(next,	map(itemgetter(1),	groupby(iterable

def	iter_except(func,	exception,	first=None):

				"""	Call	a	function	repeatedly	until	an	exception	is	raised.

				Converts	a	call-until-exception	interface	to	an	iterator	interface.

				Like	builtins.iter(func,	sentinel)	but	uses	an	exception	instead

				of	a	sentinel	to	end	the	loop.

				Examples:

								iter_except(functools.partial(heappop,	h),	IndexError)			#	priority	queue	iterator

								iter_except(d.popitem,	KeyError)																									#	non-blocking	dict	iterator

								iter_except(d.popleft,	IndexError)																							#	non-blocking	deque	iterator

								iter_except(q.get_nowait,	Queue.Empty)																			#	loop	over	a	producer	Queue

								iter_except(s.pop,	KeyError)																													#	non-blocking	set	iterator

				"""

				try:

								if	first	is	not	None:

												yield	first()												#	For	database	APIs	needing	an	initial	cast	to	db.first()

								while	1:

												yield	func()

				except	exception:

								pass

def	random_product(*args,	repeat=1):

				"Random	selection	from	itertools.product(*args,	**kwds)"

				pools	=	[tuple(pool)	for	pool	in	args]	*	repeat

				return	tuple(random.choice(pool)	for	pool	in	pools

def	random_permutation(iterable,	r=None):

				"Random	selection	from	itertools.permutations(iterable,	r)"

				pool	=	tuple(iterable)

				r	=	len(pool)	if	r	is	None	else	r

				return	tuple(random.sample(pool,	r))

def	random_combination(iterable,	r):

				"Random	selection	from	itertools.combinations(iterable,	r)"

				pool	=	tuple(iterable)

				n	=	len(pool)

				indices	=	sorted(random.sample(range(n),	r))

				return	tuple(pool[i]	for	i	in	indices)

def	random_combination_with_replacement(iterable,	r):

				"Random	selection	from	itertools.combinations_with_replacement(iterable,	r)"

				pool	=	tuple(iterable)

				n	=	len(pool)

				indices	=	sorted(random.randrange(n)	for	i	in	range

				return	tuple(pool[i]	for	i	in	indices)

Note,	many	of	the	above	recipes	can	be	optimized	by	replacing	global
lookups	with	 local	 variables	 defined	 as	 default	 values.	 For	 example,
the	dotproduct	recipe	can	be	written	as:

def	dotproduct(vec1,	vec2,	sum=sum,	map=map,	mul=operator

				return	sum(map(mul,	vec1,	vec2))

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	10.	Functional	Programming	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	10.	Functional	Programming	Modules	»

http://www.python.org/

10.2.	functools	—	Higher-order
functions	and	operations	on
callable	objects
Source	code:	Lib/functools.py

The	 functools	module	 is	 for	 higher-order	 functions:	 functions	 that
act	on	or	return	other	functions.	In	general,	any	callable	object	can	be
treated	as	a	function	for	the	purposes	of	this	module.

The	functools	module	defines	the	following	functions:

functools.cmp_to_key(func)
Transform	an	old-style	comparison	function	to	a	key	function.	Used
with	 tools	 that	accept	 key	 functions	 (such	as	 sorted(),	 min(),
max(),	 heapq.nlargest(),	 heapq.nsmallest(),
itertools.groupby()).	 This	 function	 is	 primarily	 used	 as	 a
transition	 tool	 for	 programs	being	converted	 from	Python	2	which
supported	the	use	of	comparison	functions.

A	comparison	 function	 is	any	callable	 that	accept	 two	arguments,
compares	them,	and	returns	a	negative	number	for	less-than,	zero
for	equality,	or	a	positive	number	for	greater-than.	A	key	function	is
a	 callable	 that	 accepts	 one	 argument	 and	 returns	 another	 value
indicating	the	position	in	the	desired	collation	sequence.

Example:

sorted(iterable,	key=cmp_to_key(locale.strcoll))		

http://hg.python.org/cpython/file/3.4/Lib/functools.py

New	in	version	3.2.

@functools.lru_cache(maxsize=128,	typed=False)
Decorator	to	wrap	a	function	with	a	memoizing	callable	that	saves
up	 to	 the	maxsize	 most	 recent	 calls.	 It	 can	 save	 time	 when	 an
expensive	or	I/O	bound	function	is	periodically	called	with	the	same
arguments.

Since	 a	 dictionary	 is	 used	 to	 cache	 results,	 the	 positional	 and
keyword	arguments	to	the	function	must	be	hashable.

If	maxsize	 is	 set	 to	 None,	 the	 LRU	 feature	 is	 disabled	 and	 the
cache	 can	 grow	 without	 bound.	 The	 LRU	 feature	 performs	 best
when	maxsize	is	a	power-of-two.

If	typed	is	set	to	True,	function	arguments	of	different	types	will	be
cached	separately.	For	example,	f(3)	and	f(3.0)	will	be	treated
as	distinct	calls	with	distinct	results.

To	 help	 measure	 the	 effectiveness	 of	 the	 cache	 and	 tune	 the
maxsize	 parameter,	 the	 wrapped	 function	 is	 instrumented	 with	 a
cache_info()	 function	that	returns	a	named	tuple	showing	hits,
misses,	maxsize	and	currsize.	In	a	multi-threaded	environment,	the
hits	and	misses	are	approximate.

The	 decorator	 also	 provides	 a	 cache_clear()	 function	 for
clearing	or	invalidating	the	cache.

The	 original	 underlying	 function	 is	 accessible	 through	 the
__wrapped__	 attribute.	 This	 is	 useful	 for	 introspection,	 for
bypassing	the	cache,	or	for	rewrapping	the	function	with	a	different
cache.

An	 LRU	 (least	 recently	 used)	 cache	 works	 best	 when	 the	 most
recent	calls	are	the	best	predictors	of	upcoming	calls	(for	example,
the	most	 popular	 articles	 on	 a	 news	 server	 tend	 to	 change	 each
day).	The	cache’s	size	limit	assures	that	the	cache	does	not	grow
without	bound	on	long-running	processes	such	as	web	servers.

Example	of	an	LRU	cache	for	static	web	content:

@lru_cache(maxsize=32)

def	get_pep(num):

				'Retrieve	text	of	a	Python	Enhancement	Proposal'

				resource	=	'http://www.python.org/dev/peps/pep-%04d/'

				try:

								with	urllib.request.urlopen(resource)	as	s

												return	s.read()

				except	urllib.error.HTTPError:

								return	'Not	Found'

>>>	for	n	in	8,	290,	308,	320,	8,	218,	320,	279,	289

...					pep	=	get_pep(n)

...					print(n,	len(pep))

>>>	get_pep.cache_info()

CacheInfo(hits=3,	misses=8,	maxsize=32,	currsize=8

Example	of	efficiently	computing	Fibonacci	numbers	using	a	cache
to	implement	a	dynamic	programming	technique:

@lru_cache(maxsize=None)

def	fib(n):

				if	n	<	2:

								return	n

				return	fib(n-1)	+	fib(n-2)

>>>	[fib(n)	for	n	in	range(16)]

http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
http://en.wikipedia.org/wiki/Fibonacci_number
http://en.wikipedia.org/wiki/Dynamic_programming

[0,	1,	1,	2,	3,	5,	8,	13,	21,	34,	55,	89,	144,	233

>>>	fib.cache_info()

CacheInfo(hits=28,	misses=16,	maxsize=None,	currsize

New	in	version	3.2.

Changed	in	version	3.3:	Added	the	typed	option.

@functools.total_ordering

Given	 a	 class	 defining	 one	 or	 more	 rich	 comparison	 ordering
methods,	this	class	decorator	supplies	the	rest.	This	simplifies	 the
effort	 involved	 in	 specifying	 all	 of	 the	 possible	 rich	 comparison
operations:

The	class	must	define	one	of	__lt__(),	__le__(),	__gt__(),
or	__ge__().	 In	addition,	 the	class	should	supply	an	__eq__()
method.

For	example:

@total_ordering

class	Student:

				def	_is_valid_operand(self,	other):

								return	(hasattr(other,	"lastname")	and

																hasattr(other,	"firstname"))

				def	__eq__(self,	other):

								if	not	self._is_valid_operand(other):

												return	NotImplemented

								return	((self.lastname.lower(),	self.firstname

																(other.lastname.lower(),	other.firstname

				def	__lt__(self,	other):

								if	not	self._is_valid_operand(other):

												return	NotImplemented

								return	((self.lastname.lower(),	self.firstname

																(other.lastname.lower(),	other.firstname

Note: 	While	this	decorator	makes	it	easy	to	create	well	behaved
totally	ordered	types,	it	does	come	at	the	cost	of	slower	execution
and	 more	 complex	 stack	 traces	 for	 the	 derived	 comparison
methods.	 If	 performance	 benchmarking	 indicates	 this	 is	 a
bottleneck	 for	 a	 given	 application,	 implementing	 all	 six	 rich
comparison	methods	 instead	 is	 likely	 to	 provide	an	easy	 speed
boost.

New	in	version	3.2.

Changed	 in	 version	 3.4:	 Returning	 NotImplemented	 from	 the
underlying	 comparison	 function	 for	 unrecognised	 types	 is	 now
supported.

functools.partial(func,	*args,	**keywords)
Return	a	new	partial	object	which	when	called	will	behave	 like
func	 called	 with	 the	 positional	 arguments	 args	 and	 keyword
arguments	keywords.	 If	more	 arguments	 are	 supplied	 to	 the	 call,
they	 are	 appended	 to	 args.	 If	 additional	 keyword	 arguments	 are
supplied,	 they	extend	and	override	keywords.	Roughly	 equivalent
to:

def	partial(func,	*args,	**keywords):

				def	newfunc(*fargs,	**fkeywords):

								newkeywords	=	keywords.copy()

								newkeywords.update(fkeywords)

								return	func(*(args	+	fargs),	**newkeywords

				newfunc.func	=	func

				newfunc.args	=	args

				newfunc.keywords	=	keywords

				return	newfunc

The	 partial()	 is	 used	 for	 partial	 function	 application	 which
“freezes”	some	portion	of	a	function’s	arguments	and/or	keywords
resulting	 in	a	new	object	with	a	simplified	signature.	For	example,
partial()	can	be	used	to	create	a	callable	that	behaves	like	the
int()	function	where	the	base	argument	defaults	to	two:

>>>	from	functools	import	partial

>>>	basetwo	=	partial(int,	base=2)

>>>	basetwo.__doc__	=	'Convert	base	2	string	to	an	int.'

>>>	basetwo('10010')

18

class	functools.partialmethod(func,	*args,	**keywords)
Return	 a	 new	 partialmethod	 descriptor	 which	 behaves	 like
partial	 except	 that	 it	 is	 designed	 to	 be	 used	 as	 a	 method
definition	rather	than	being	directly	callable.

func	must	be	a	descriptor	or	a	callable	(objects	which	are	both,	like
normal	functions,	are	handled	as	descriptors).

When	 func	 is	 a	 descriptor	 (such	 as	 a	 normal	 Python	 function,
classmethod(),	 staticmethod(),	 abstractmethod()	 or
another	 instance	 of	 partialmethod),	 calls	 to	 __get__	 are
delegated	 to	 the	 underlying	 descriptor,	 and	 an	 appropriate
partial	object	returned	as	the	result.

When	 func	 is	 a	 non-descriptor	 callable,	 an	 appropriate	 bound
method	is	created	dynamically.	This	behaves	like	a	normal	Python
function	when	used	as	a	method:	the	self	argument	will	be	inserted
as	the	first	positional	argument,	even	before	the	args	and	keywords
supplied	to	the	partialmethod	constructor.

Example:

>>>	class	Cell(object):

...					@property

...					def	alive(self):

...									return	self._alive

...					def	set_state(self,	state):

...									self._alive	=	bool(state)

...					set_alive	=	partialmethod(set_state,	True)

...					set_dead	=	partialmethod(set_state,	False)

...

>>>	c	=	Cell()

>>>	c.alive

False

>>>	c.set_alive()

>>>	c.alive

True

New	in	version	3.4.

functools.reduce(function,	iterable[,	initializer])
Apply	 function	 of	 two	 arguments	 cumulatively	 to	 the	 items	 of
sequence,	 from	 left	 to	 right,	 so	 as	 to	 reduce	 the	 sequence	 to	 a
single	value.	For	example,	reduce(lambda	x,	y:	x+y,	[1,
2,	 3,	 4,	 5])	 calculates	 ((((1+2)+3)+4)+5).	 The	 left
argument,	x,	is	the	accumulated	value	and	the	right	argument,	y,	is
the	 update	 value	 from	 the	 sequence.	 If	 the	 optional	 initializer	 is
present,	 it	 is	 placed	 before	 the	 items	 of	 the	 sequence	 in	 the
calculation,	and	serves	as	a	default	when	the	sequence	is	empty.	If
initializer	 is	 not	 given	 and	 sequence	 contains	 only	 one	 item,	 the
first	item	is	returned.

Equivalent	to:

def	reduce(function,	iterable,	initializer=None):

				it	=	iter(iterable)

				if	initializer	is	None:

								value	=	next(it)

				else:

								value	=	initializer

				for	element	in	it:

								value	=	function(value,	element)

				return	value

@functools.singledispatch(default)
Transforms	a	function	into	a	single-dispatch	generic	function.

To	 define	 a	 generic	 function,	 decorate	 it	 with	 the
@singledispatch	decorator.	Note	that	the	dispatch	happens	on
the	type	of	the	first	argument,	create	your	function	accordingly:

>>>	from	functools	import	singledispatch

>>>	@singledispatch

...	def	fun(arg,	verbose=False):

...					if	verbose:

...									print("Let	me	just	say,",	end="	")

...					print(arg)

To	 add	 overloaded	 implementations	 to	 the	 function,	 use	 the
register()	 attribute	 of	 the	 generic	 function.	 It	 is	 a	 decorator,
taking	 a	 type	 parameter	 and	 decorating	 a	 function	 implementing
the	operation	for	that	type:

>>>	@fun.register(int)

...	def	_(arg,	verbose=False):

...					if	verbose:

...									print("Strength	in	numbers,	eh?",	end=

...					print(arg)

...

>>>	@fun.register(list)

...	def	_(arg,	verbose=False):

...					if	verbose:

...									print("Enumerate	this:")

...					for	i,	elem	in	enumerate(arg):

...									print(i,	elem)

To	 enable	 registering	 lambdas	 and	 pre-existing	 functions,	 the
register()	attribute	can	be	used	in	a	functional	form:

>>>	def	nothing(arg,	verbose=False):

...					print("Nothing.")

...

>>>	fun.register(type(None),	nothing)

The	register()	attribute	returns	the	undecorated	function	which
enables	decorator	stacking,	pickling,	as	well	as	creating	unit	 tests
for	each	variant	independently:

>>>	@fun.register(float)

...	@fun.register(Decimal)

...	def	fun_num(arg,	verbose=False):

...					if	verbose:

...									print("Half	of	your	number:",	end="	")

...					print(arg	/	2)

...

>>>	fun_num	is	fun

False

When	called,	the	generic	function	dispatches	on	the	type	of	the	first
argument:

>>>	fun("Hello,	world.")

Hello,	world.

>>>	fun("test.",	verbose=True)

Let	me	just	say,	test.

>>>	fun(42,	verbose=True)

Strength	in	numbers,	eh?	42

>>>	fun(['spam',	'spam',	'eggs',	'spam'],	verbose=

Enumerate	this:

0	spam

1	spam

2	eggs

3	spam

>>>	fun(None)

Nothing.

>>>	fun(1.23)

0.615

Where	there	is	no	registered	implementation	for	a	specific	type,	its
method	 resolution	 order	 is	 used	 to	 find	 a	 more	 generic
implementation.	 The	 original	 function	 decorated	 with
@singledispatch	is	registered	for	the	base	object	type,	which
means	it	is	used	if	no	better	implementation	is	found.

To	check	which	implementation	will	the	generic	function	choose	for
a	given	type,	use	the	dispatch()	attribute:

>>>	fun.dispatch(float)

<function	fun_num	at	0x1035a2840>

>>>	fun.dispatch(dict)				#	note:	default	implementation

<function	fun	at	0x103fe0000>

To	 access	 all	 registered	 implementations,	 use	 the	 read-only
registry	attribute:

>>>	fun.registry.keys()

dict_keys([<class	'NoneType'>,	<class	'int'>,	<class	'object'>,

										<class	'decimal.Decimal'>,	<class	'list'>,

										<class	'float'>])

>>>	fun.registry[float]

<function	fun_num	at	0x1035a2840>

>>>	fun.registry[object]

<function	fun	at	0x103fe0000>

New	in	version	3.4.

functools.update_wrapper(wrapper,	wrapped,
assigned=WRAPPER_ASSIGNMENTS,
updated=WRAPPER_UPDATES)

Update	a	wrapper	 function	 to	 look	 like	 the	wrapped	 function.	The
optional	 arguments	 are	 tuples	 to	 specify	 which	 attributes	 of	 the
original	function	are	assigned	directly	to	the	matching	attributes	on
the	wrapper	 function	and	which	attributes	of	 the	wrapper	 function
are	 updated	 with	 the	 corresponding	 attributes	 from	 the	 original
function.	 The	 default	 values	 for	 these	 arguments	 are	 the	module
level	constants	WRAPPER_ASSIGNMENTS	(which	assigns	to	the
wrapper	 function’s	__name__,	__module__,	__annotations__	 and
__doc__,	 the	 documentation	 string)	 and	 WRAPPER_UPDATES
(which	 updates	 the	 wrapper	 function’s	 __dict__,	 i.e.	 the	 instance
dictionary).

To	allow	access	to	the	original	function	for	 introspection	and	other
purposes	 (e.g.	 bypassing	 a	 caching	 decorator	 such	 as
lru_cache()),	this	function	automatically	adds	a	__wrapped__
attribute	to	the	wrapper	that	refers	to	the	function	being	wrapped.

The	main	 intended	 use	 for	 this	 function	 is	 in	 decorator	 functions
which	wrap	 the	 decorated	 function	 and	 return	 the	wrapper.	 If	 the
wrapper	 function	 is	 not	 updated,	 the	 metadata	 of	 the	 returned

function	will	 reflect	 the	wrapper	 definition	 rather	 than	 the	 original
function	definition,	which	is	typically	less	than	helpful.

update_wrapper()	 may	 be	 used	 with	 callables	 other	 than
functions.	 Any	 attributes	 named	 in	 assigned	 or	 updated	 that	 are
missing	 from	 the	 object	 being	 wrapped	 are	 ignored	 (i.e.	 this
function	 will	 not	 attempt	 to	 set	 them	 on	 the	 wrapper	 function).
AttributeError	 is	 still	 raised	 if	 the	 wrapper	 function	 itself	 is
missing	any	attributes	named	in	updated.

New	 in	 version	 3.2:	 Automatic	 addition	 of	 the	 __wrapped__
attribute.

New	 in	 version	 3.2:	Copying	 of	 the	 __annotations__	 attribute
by	default.

Changed	 in	 version	 3.2:	Missing	 attributes	 no	 longer	 trigger	 an
AttributeError.

Changed	 in	version	3.4:	The	__wrapped__	attribute	now	always
refers	 to	 the	 wrapped	 function,	 even	 if	 that	 function	 defined	 a
__wrapped__	attribute.	(see	issue	17482)

@functools.wraps(wrapped,
assigned=WRAPPER_ASSIGNMENTS,
updated=WRAPPER_UPDATES)

This	 is	 a	 convenience	 function	 for	 invoking
partial(update_wrapper,	 wrapped=wrapped,

assigned=assigned,	 updated=updated)	 as	 a	 function
decorator	when	defining	a	wrapper	function.	For	example:

>>>	from	functools	import	wraps

>>>	def	my_decorator(f):

http://bugs.python.org/issue17482

...					@wraps(f)

...					def	wrapper(*args,	**kwds):

...									print('Calling	decorated	function')

...									return	f(*args,	**kwds)

...					return	wrapper

...

>>>	@my_decorator

...	def	example():

...					"""Docstring"""

...					print('Called	example	function')

...

>>>	example()

Calling	decorated	function

Called	example	function

>>>	example.__name__

'example'

>>>	example.__doc__

'Docstring'

Without	the	use	of	this	decorator	factory,	the	name	of	the	example
function	 would	 have	 been	 'wrapper',	 and	 the	 docstring	 of	 the
original	example()	would	have	been	lost.

10.2.1.	partial	Objects

partial	 objects	 are	 callable	 objects	 created	 by	 partial().	 They
have	three	read-only	attributes:

partial.func

A	callable	object	or	 function.	Calls	 to	 the	 partial	 object	will	 be
forwarded	to	func	with	new	arguments	and	keywords.

partial.args

The	 leftmost	 positional	 arguments	 that	 will	 be	 prepended	 to	 the
positional	arguments	provided	to	a	partial	object	call.

partial.keywords

The	keyword	arguments	 that	will	 be	supplied	when	 the	partial
object	is	called.

partial	objects	are	like	function	objects	in	that	they	are	callable,
weak	referencable,	and	can	have	attributes.	There	are	some	important
differences.	For	instance,	the	__name__	and	__doc__	attributes	are
not	 created	 automatically.	 Also,	 partial	 objects	 defined	 in	 classes
behave	like	static	methods	and	do	not	 transform	into	bound	methods
during	instance	attribute	look-up.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	10.	Functional	Programming	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	10.	Functional	Programming	Modules	»

http://www.python.org/

10.3.	operator	—	Standard
operators	as	functions
Source	code:	Lib/operator.py

The	 operator	 module	 exports	 a	 set	 of	 efficient	 functions
corresponding	 to	 the	 intrinsic	 operators	 of	 Python.	 For	 example,
operator.add(x,	 y)	 is	 equivalent	 to	 the	 expression	 x+y.	 The
function	 names	 are	 those	 used	 for	 special	 class	 methods;	 variants
without	leading	and	trailing	__	are	also	provided	for	convenience.

The	 functions	 fall	 into	 categories	 that	 perform	 object	 comparisons,
logical	operations,	mathematical	operations	and	sequence	operations.

The	 object	 comparison	 functions	 are	 useful	 for	 all	 objects,	 and	 are
named	after	the	rich	comparison	operators	they	support:

operator.lt(a,	b)
operator.le(a,	b)
operator.eq(a,	b)
operator.ne(a,	b)
operator.ge(a,	b)
operator.gt(a,	b)
operator.__lt__(a,	b)
operator.__le__(a,	b)
operator.__eq__(a,	b)
operator.__ne__(a,	b)
operator.__ge__(a,	b)
operator.__gt__(a,	b)

http://hg.python.org/cpython/file/3.4/Lib/operator.py

Perform	 “rich	comparisons”	between	a	and	b.	Specifically,	lt(a,
b)	 is	equivalent	 to	a	<	b,	le(a,	b)	 is	equivalent	 to	a	<=	b,
eq(a,	b)	is	equivalent	to	a	==	b,	ne(a,	b)	is	equivalent	to	a
!=	 b,	 gt(a,	 b)	 is	 equivalent	 to	 a	 >	 b	 and	 ge(a,	 b)	 is
equivalent	 to	 a	>=	b.	Note	 that	 these	 functions	 can	 return	 any
value,	which	may	or	may	not	be	interpretable	as	a	Boolean	value.
See	Comparisons	for	more	information	about	rich	comparisons.

The	logical	operations	are	also	generally	applicable	to	all	objects,	and
support	truth	tests,	identity	tests,	and	boolean	operations:

operator.not_(obj)
operator.__not__(obj)

Return	the	outcome	of	not	obj.	(Note	that	there	is	no	__not__()
method	 for	object	 instances;	only	 the	 interpreter	core	defines	 this
operation.	 The	 result	 is	 affected	 by	 the	 __bool__()	 and
__len__()	methods.)

operator.truth(obj)
Return	True	if	obj	is	true,	and	False	otherwise.	This	is	equivalent
to	using	the	bool	constructor.

operator.is_(a,	b)
Return	a	is	b.	Tests	object	identity.

operator.is_not(a,	b)
Return	a	is	not	b.	Tests	object	identity.

The	mathematical	and	bitwise	operations	are	the	most	numerous:

operator.abs(obj)
operator.__abs__(obj)

Return	the	absolute	value	of	obj.

operator.add(a,	b)
operator.__add__(a,	b)

Return	a	+	b,	for	a	and	b	numbers.

operator.and_(a,	b)
operator.__and__(a,	b)

Return	the	bitwise	and	of	a	and	b.

operator.floordiv(a,	b)
operator.__floordiv__(a,	b)

Return	a	//	b.

operator.index(a)
operator.__index__(a)

Return	a	converted	to	an	integer.	Equivalent	to	a.__index__().

operator.inv(obj)
operator.invert(obj)
operator.__inv__(obj)
operator.__invert__(obj)

Return	the	bitwise	inverse	of	the	number	obj.	This	is	equivalent	to
~obj.

operator.lshift(a,	b)
operator.__lshift__(a,	b)

Return	a	shifted	left	by	b.

operator.mod(a,	b)
operator.__mod__(a,	b)

Return	a	%	b.

operator.mul(a,	b)
operator.__mul__(a,	b)

Return	a	*	b,	for	a	and	b	numbers.

operator.neg(obj)
operator.__neg__(obj)

Return	obj	negated	(-obj).

operator.or_(a,	b)
operator.__or__(a,	b)

Return	the	bitwise	or	of	a	and	b.

operator.pos(obj)
operator.__pos__(obj)

Return	obj	positive	(+obj).

operator.pow(a,	b)
operator.__pow__(a,	b)

Return	a	**	b,	for	a	and	b	numbers.

operator.rshift(a,	b)
operator.__rshift__(a,	b)

Return	a	shifted	right	by	b.

operator.sub(a,	b)
operator.__sub__(a,	b)

Return	a	-	b.

operator.truediv(a,	b)
operator.__truediv__(a,	b)

Return	a	/	b	where	2/3	is	.66	rather	than	0.	This	is	also	known	as
“true”	division.

operator.xor(a,	b)
operator.__xor__(a,	b)

Return	the	bitwise	exclusive	or	of	a	and	b.

Operations	which	work	with	sequences	(some	of	them	with	mappings
too)	include:

operator.concat(a,	b)
operator.__concat__(a,	b)

Return	a	+	b	for	a	and	b	sequences.

operator.contains(a,	b)
operator.__contains__(a,	b)

Return	 the	 outcome	 of	 the	 test	 b	 in	 a.	 Note	 the	 reversed
operands.

operator.countOf(a,	b)
Return	the	number	of	occurrences	of	b	in	a.

operator.delitem(a,	b)
operator.__delitem__(a,	b)

Remove	the	value	of	a	at	index	b.

operator.getitem(a,	b)
operator.__getitem__(a,	b)

Return	the	value	of	a	at	index	b.

operator.indexOf(a,	b)
Return	the	index	of	the	first	of	occurrence	of	b	in	a.

operator.setitem(a,	b,	c)
operator.__setitem__(a,	b,	c)

Set	the	value	of	a	at	index	b	to	c.

Example:	Build	a	dictionary	 that	maps	 the	ordinals	 from	0	 to	255	 to
their	character	equivalents.

>>>	d	=	{}

>>>	keys	=	range(256)

>>>	vals	=	map(chr,	keys)

>>>	map(operator.setitem,	[d]*len(keys),	keys,	vals)

operator.length_hint(obj,	default=0)
Return	 an	estimated	 length	 for	 the	 object	o.	 First	 try	 to	 return	 its
actual	 length,	 then	 an	 estimate	 using
object.__length_hint__(),	 and	 finally	 return	 the	 default
value.

New	in	version	3.4.

The	operator	module	also	defines	tools	for	generalized	attribute	and
item	 lookups.	 These	 are	 useful	 for	 making	 fast	 field	 extractors	 as
arguments	for	map(),	sorted(),	itertools.groupby(),	or	other
functions	that	expect	a	function	argument.

operator.attrgetter(attr)
operator.attrgetter(*attrs)

Return	a	callable	object	that	fetches	attr	 from	its	operand.	If	more
than	 one	 attribute	 is	 requested,	 returns	 a	 tuple	 of	 attributes.	 The
attribute	names	can	also	contain	dots.	For	example:

After	 f	 =	 attrgetter('name'),	 the	 call	 f(b)	 returns
b.name.
After	f	=	attrgetter('name',	'date'),	 the	 call	 f(b)
returns	(b.name,	b.date).

After	f	=	attrgetter('name.first',	'name.last'),
the	call	f(b)	returns	(b.name.first,	b.name.last).

Equivalent	to:

def	attrgetter(*items):

				if	any(not	isinstance(item,	str)	for	item	in	items

								raise	TypeError('attribute	name	must	be	a	string'

				if	len(items)	==	1:

								attr	=	items[0]

								def	g(obj):

												return	resolve_attr(obj,	attr)

				else:

								def	g(obj):

												return	tuple(resolve_attr(obj,	attr)	for

				return	g

def	resolve_attr(obj,	attr):

				for	name	in	attr.split("."):

								obj	=	getattr(obj,	name)

				return	obj

operator.itemgetter(item)
operator.itemgetter(*items)

Return	 a	 callable	 object	 that	 fetches	 item	 from	 its	 operand	 using
the	 operand’s	 __getitem__()	 method.	 If	 multiple	 items	 are
specified,	returns	a	tuple	of	lookup	values.	For	example:

After	f	=	itemgetter(2),	the	call	f(r)	returns	r[2].
After	 g	=	itemgetter(2,	5,	 3),	 the	 call	 g(r)	 returns
(r[2],	r[5],	r[3]).

Equivalent	to:

def	itemgetter(*items):

				if	len(items)	==	1:

								item	=	items[0]

								def	g(obj):

												return	obj[item]

				else:

								def	g(obj):

												return	tuple(obj[item]	for	item	in	items

				return	g

The	 items	 can	 be	 any	 type	 accepted	 by	 the	 operand’s
__getitem__()	method.	Dictionaries	accept	any	hashable	value.
Lists,	tuples,	and	strings	accept	an	index	or	a	slice:

>>>	itemgetter(1)('ABCDEFG')

'B'

>>>	itemgetter(1,3,5)('ABCDEFG')

('B',	'D',	'F')

>>>	itemgetter(slice(2,None))('ABCDEFG')

'CDEFG'

Example	of	using	itemgetter()	to	retrieve	specific	fields	from	a
tuple	record:

>>>	inventory	=	[('apple',	3),	('banana',	2),	('pear'

>>>	getcount	=	itemgetter(1)

>>>	list(map(getcount,	inventory))

[3,	2,	5,	1]

>>>	sorted(inventory,	key=getcount)

[('orange',	1),	('banana',	2),	('apple',	3),	('pear',	5)]

operator.methodcaller(name[,	args...])
Return	a	callable	object	that	calls	the	method	name	on	its	operand.
If	additional	arguments	and/or	keyword	arguments	are	given,	 they

will	be	given	to	the	method	as	well.	For	example:

After	f	=	methodcaller('name'),	 the	 call	 f(b)	 returns
b.name().
After	f	=	methodcaller('name',	'foo',	bar=1),	 the
call	f(b)	returns	b.name('foo',	bar=1).

Equivalent	to:

def	methodcaller(name,	*args,	**kwargs):

				def	caller(obj):

								return	getattr(obj,	name)(*args,	**kwargs)

				return	caller

10.3.1.	Mapping	Operators	to	Functions

This	 table	 shows	 how	 abstract	 operations	 correspond	 to	 operator
symbols	 in	 the	 Python	 syntax	 and	 the	 functions	 in	 the	 operator
module.

Operation Syntax Function

Addition a	+	b add(a,	b)

Concatenation seq1	+	seq2 concat(seq1,	seq2)

Containment
Test

obj	in	seq contains(seq,	obj)

Division a	/	b truediv(a,	b)

Division a	//	b floordiv(a,	b)

Bitwise	And a	&	b and_(a,	b)

Bitwise
Exclusive	Or

a	^	b xor(a,	b)

Bitwise
Inversion

~	a invert(a)

Bitwise	Or a	|	b or_(a,	b)

Exponentiation a	**	b pow(a,	b)

Identity a	is	b is_(a,	b)

Identity a	is	not	b is_not(a,	b)

Indexed
Assignment

obj[k]	=	v setitem(obj,	k,	v)

Indexed
Deletion

del	obj[k] delitem(obj,	k)

Indexing obj[k] getitem(obj,	k)

Left	Shift a	<<	b lshift(a,	b)

Modulo a	%	b mod(a,	b)

Multiplication a	*	b mul(a,	b)

Negation
(Arithmetic)

-	a neg(a)

Negation
(Logical)

not	a not_(a)

Positive +	a pos(a)

Right	Shift a	>>	b rshift(a,	b)

Slice
Assignment

seq[i:j]	=

values

setitem(seq,	slice(i,

j),	values)

Slice	Deletion del	seq[i:j]
delitem(seq,	slice(i,

j))

Slicing seq[i:j]
getitem(seq,	slice(i,

j))

String
Formatting

s	%	obj mod(s,	obj)

Subtraction a	-	b sub(a,	b)

Truth	Test obj truth(obj)

Ordering a	<	b lt(a,	b)

Ordering a	<=	b le(a,	b)

Equality a	==	b eq(a,	b)

Difference a	!=	b ne(a,	b)

Ordering a	>=	b ge(a,	b)

Ordering a	>	b gt(a,	b)

10.3.2.	Inplace	Operators

Many	operations	have	an	“in-place”	version.	Listed	below	are	functions
providing	a	more	primitive	access	to	in-place	operators	than	the	usual
syntax	does;	for	example,	the	statement	x	+=	y	is	equivalent	to	x	=
operator.iadd(x,	y).	 Another	 way	 to	 put	 it	 is	 to	 say	 that	 z	 =
operator.iadd(x,	y)	 is	equivalent	 to	the	compound	statement	z
=	x;	z	+=	y.

In	 those	examples,	note	 that	when	an	 in-place	method	 is	 called,	 the
computation	 and	 assignment	 are	 performed	 in	 two	 separate	 steps.
The	in-place	functions	listed	below	only	do	the	first	step,	calling	the	in-
place	method.	The	second	step,	assignment,	is	not	handled.

For	 immutable	 targets	 such	 as	 strings,	 numbers,	 and	 tuples,	 the
updated	 value	 is	 computed,	 but	 not	 assigned	 back	 to	 the	 input
variable:

>>>	a	=	'hello'

>>>	iadd(a,	'	world')

'hello	world'

>>>	a

'hello'

For	mutable	targets	such	as	lists	and	dictionaries,	the	inplace	method
will	perform	the	update,	so	no	subsequent	assignment	is	necessary:

>>>	s	=	['h',	'e',	'l',	'l',	'o']

>>>	iadd(s,	['	',	'w',	'o',	'r',	'l',	'd'])

['h',	'e',	'l',	'l',	'o',	'	',	'w',	'o',	'r',	'l',	'd']

>>>	s

['h',	'e',	'l',	'l',	'o',	'	',	'w',	'o',	'r',	'l',	'd']

operator.iadd(a,	b)
operator.__iadd__(a,	b)

a	=	iadd(a,	b)	is	equivalent	to	a	+=	b.

operator.iand(a,	b)
operator.__iand__(a,	b)

a	=	iand(a,	b)	is	equivalent	to	a	&=	b.

operator.iconcat(a,	b)
operator.__iconcat__(a,	b)

a	 =	 iconcat(a,	 b)	 is	 equivalent	 to	 a	 +=	 b	 for	 a	 and	 b
sequences.

operator.ifloordiv(a,	b)
operator.__ifloordiv__(a,	b)

a	=	ifloordiv(a,	b)	is	equivalent	to	a	//=	b.

operator.ilshift(a,	b)
operator.__ilshift__(a,	b)

a	=	ilshift(a,	b)	is	equivalent	to	a	<<=	b.

operator.imod(a,	b)
operator.__imod__(a,	b)

a	=	imod(a,	b)	is	equivalent	to	a	%=	b.

operator.imul(a,	b)
operator.__imul__(a,	b)

a	=	imul(a,	b)	is	equivalent	to	a	*=	b.

operator.ior(a,	b)
operator.__ior__(a,	b)

a	=	ior(a,	b)	is	equivalent	to	a	|=	b.

operator.ipow(a,	b)
operator.__ipow__(a,	b)

a	=	ipow(a,	b)	is	equivalent	to	a	**=	b.

operator.irshift(a,	b)
operator.__irshift__(a,	b)

a	=	irshift(a,	b)	is	equivalent	to	a	>>=	b.

operator.isub(a,	b)
operator.__isub__(a,	b)

a	=	isub(a,	b)	is	equivalent	to	a	-=	b.

operator.itruediv(a,	b)
operator.__itruediv__(a,	b)

a	=	itruediv(a,	b)	is	equivalent	to	a	/=	b.

operator.ixor(a,	b)
operator.__ixor__(a,	b)

a	=	ixor(a,	b)	is	equivalent	to	a	^=	b.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	10.	Functional	Programming	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

11.	File	and	Directory	Access
The	 modules	 described	 in	 this	 chapter	 deal	 with	 disk	 files	 and
directories.	For	example,	there	are	modules	for	reading	the	properties
of	files,	manipulating	paths	in	a	portable	way,	and	creating	temporary
files.	The	full	list	of	modules	in	this	chapter	is:

11.1.	pathlib	—	Object-oriented	filesystem	paths
11.1.1.	Basic	use
11.1.2.	Pure	paths

11.1.2.1.	General	properties
11.1.2.2.	Operators
11.1.2.3.	Accessing	individual	parts
11.1.2.4.	Methods	and	properties

11.1.3.	Concrete	paths
11.1.3.1.	Methods

11.2.	os.path	—	Common	pathname	manipulations
11.3.	fileinput	—	Iterate	over	lines	from	multiple	input	streams
11.4.	stat	—	Interpreting	stat()	results
11.5.	filecmp	—	File	and	Directory	Comparisons

11.5.1.	The	dircmp	class
11.6.	tempfile	—	Generate	temporary	files	and	directories

11.6.1.	Examples
11.7.	glob	—	Unix	style	pathname	pattern	expansion
11.8.	fnmatch	—	Unix	filename	pattern	matching
11.9.	linecache	—	Random	access	to	text	lines
11.10.	shutil	—	High-level	file	operations

11.10.1.	Directory	and	files	operations
11.10.1.1.	copytree	example

11.10.2.	Archiving	operations
11.10.2.1.	Archiving	example

11.10.3.	Querying	the	size	of	the	output	terminal

11.11.	macpath	—	Mac	OS	9	path	manipulation	functions

See	also:

Module	os
Operating	system	interfaces,	including	functions	to	work	with	files
at	a	lower	level	than	Python	file	objects.

Module	io
Python’s	 built-in	 I/O	 library,	 including	 both	 abstract	 classes	 and
some	concrete	classes	such	as	file	I/O.

Built-in	function	open()
The	 standard	 way	 to	 open	 files	 for	 reading	 and	 writing	 with
Python.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.1.	pathlib	—	Object-oriented
filesystem	paths
New	in	version	3.4.

This	 module	 offers	 classes	 representing	 filesystem	 paths	 with
semantics	 appropriate	 for	 different	 operating	 systems.	 Path	 classes
are	 divided	 between	pure	 paths,	which	 provide	 purely	 computational
operations	 without	 I/O,	 and	 concrete	 paths,	 which	 inherit	 from	 pure
paths	but	also	provide	I/O	operations.

If	you’ve	never	used	this	module	before	or	just	aren’t	sure	which	class

is	right	for	your	task,	Path	is	most	likely	what	you	need.	It	instantiates
a	concrete	path	for	the	platform	the	code	is	running	on.

Pure	paths	are	useful	in	some	special	cases;	for	example:

1.	 If	you	want	 to	manipulate	Windows	paths	on	a	Unix	machine	(or
vice	versa).	You	cannot	instantiate	a	WindowsPath	when	running
on	Unix,	but	you	can	instantiate	PureWindowsPath.

2.	 You	 want	 to	 make	 sure	 that	 your	 code	 only	 manipulates	 paths
without	actually	accessing	the	OS.	 In	 this	case,	 instantiating	one
of	 the	pure	classes	may	be	useful	since	those	simply	don’t	have
any	OS-accessing	operations.

Note: 	This	module	has	been	included	in	the	standard	library	on	a
provisional	basis.	Backwards	incompatible	changes	(up	to	and
including	removal	of	the	package)	may	occur	if	deemed	necessary
by	the	core	developers.

See	also: 	PEP	428:	The	pathlib	module	–	object-oriented
filesystem	paths.

See	also: 	For	low-level	path	manipulation	on	strings,	you	can	also
use	the	os.path	module.

http://www.python.org/dev/peps/pep-0428

11.1.1.	Basic	use

Importing	the	main	class:

>>>	from	pathlib	import	Path

Listing	subdirectories:

>>>	p	=	Path('.')

>>>	[x	for	x	in	p.iterdir()	if	x.is_dir()]

[PosixPath('.hg'),	PosixPath('docs'),	PosixPath('dist'),

	PosixPath('__pycache__'),	PosixPath('build')]

Listing	Python	source	files	in	this	directory	tree:

>>>	list(p.glob('**/*.py'))

[PosixPath('test_pathlib.py'),	PosixPath('setup.py'),

	PosixPath('pathlib.py'),	PosixPath('docs/conf.py'),

	PosixPath('build/lib/pathlib.py')]

Navigating	inside	a	directory	tree:

>>>	p	=	Path('/etc')

>>>	q	=	p	/	'init.d'	/	'reboot'

>>>	q

PosixPath('/etc/init.d/reboot')

>>>	q.resolve()

PosixPath('/etc/rc.d/init.d/halt')

Querying	path	properties:

>>>	q.exists()

True

>>>	q.is_dir()

False

Opening	a	file:

>>>	with	q.open()	as	f:	f.readline()

...

'#!/bin/bash\n'

11.1.2.	Pure	paths

Pure	 path	 objects	 provide	 path-handling	 operations	 which	 don’t
actually	 access	 a	 filesystem.	 There	 are	 three	 ways	 to	 access	 these
classes,	which	we	also	call	flavours:

class	pathlib.PurePath(*pathsegments)
A	 generic	 class	 that	 represents	 the	 system’s	 path	 flavour
(instantiating	 it	 creates	 either	 a	 PurePosixPath	 or	 a
PureWindowsPath):

>>>	PurePath('setup.py')						#	Running	on	a	Unix	machine

PurePosixPath('setup.py')

Each	 element	 of	 pathsegments	 can	 be	 either	 a	 string	 or	 bytes
object	 representing	 a	 path	 segment;	 it	 can	 also	 be	 another	 path
object:

>>>	PurePath('foo',	'some/path',	'bar')

PurePosixPath('foo/some/path/bar')

>>>	PurePath(Path('foo'),	Path('bar'))

PurePosixPath('foo/bar')

When	pathsegments	is	empty,	the	current	directory	is	assumed:

>>>	PurePath()

PurePosixPath('.')

When	 several	 absolute	 paths	 are	 given,	 the	 last	 is	 taken	 as	 an
anchor	(mimicking	os.path.join()‘s	behaviour):

>>>	PurePath('/etc',	'/usr',	'lib64')

PurePosixPath('/usr/lib64')

>>>	PureWindowsPath('c:/Windows',	'd:bar')

PureWindowsPath('d:bar')

However,	 in	 a	 Windows	 path,	 changing	 the	 local	 root	 doesn’t
discard	the	previous	drive	setting:

>>>	PureWindowsPath('c:/Windows',	'/Program	Files'

PureWindowsPath('c:/Program	Files')

Spurious	 slashes	 and	 single	 dots	 are	 collapsed,	 but	 double	 dots
('..')	are	not,	since	this	would	change	the	meaning	of	a	path	in
the	face	of	symbolic	links:

>>>	PurePath('foo//bar')

PurePosixPath('foo/bar')

>>>	PurePath('foo/./bar')

PurePosixPath('foo/bar')

>>>	PurePath('foo/../bar')

PurePosixPath('foo/../bar')

(a	 naïve	 approach	 would	 make
PurePosixPath('foo/../bar')	 equivalent	 to
PurePosixPath('bar'),	 which	 is	 wrong	 if	 foo	 is	 a	 symbolic
link	to	another	directory)

class	pathlib.PurePosixPath(*pathsegments)
A	 subclass	 of	 PurePath,	 this	 path	 flavour	 represents	 non-
Windows	filesystem	paths:

>>>	PurePosixPath('/etc')

PurePosixPath('/etc')

pathsegments	is	specified	similarly	to	PurePath.

class	pathlib.PureWindowsPath(*pathsegments)
A	 subclass	 of	 PurePath,	 this	 path	 flavour	 represents	 Windows
filesystem	paths:

>>>	PureWindowsPath('c:/Program	Files/')

PureWindowsPath('c:/Program	Files')

pathsegments	is	specified	similarly	to	PurePath.

Regardless	of	the	system	you’re	running	on,	you	can	instantiate	all	of
these	classes,	since	they	don’t	provide	any	operation	that	does	system
calls.

11.1.2.1.	General	properties

Paths	 are	 immutable	 and	 hashable.	 Paths	 of	 a	 same	 flavour	 are
comparable	 and	 orderable.	 These	 properties	 respect	 the	 flavour’s
case-folding	semantics:

>>>	PurePosixPath('foo')	==	PurePosixPath('FOO')

False

>>>	PureWindowsPath('foo')	==	PureWindowsPath('FOO')

True

>>>	PureWindowsPath('FOO')	in	{	PureWindowsPath('foo'

True

>>>	PureWindowsPath('C:')	<	PureWindowsPath('d:')

True

Paths	of	a	different	flavour	compare	unequal	and	cannot	be	ordered:

>>>	PureWindowsPath('foo')	==	PurePosixPath('foo')

False

>>>	PureWindowsPath('foo')	<	PurePosixPath('foo')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

TypeError:	unorderable	types:	PureWindowsPath()	<	PurePosixPath()

11.1.2.2.	Operators

The	 slash	 operator	 helps	 create	 child	 paths,	 similarly	 to
os.path.join():

>>>	p	=	PurePath('/etc')

>>>	p

PurePosixPath('/etc')

>>>	p	/	'init.d'	/	'apache2'

PurePosixPath('/etc/init.d/apache2')

>>>	q	=	PurePath('bin')

>>>	'/usr'	/	q

PurePosixPath('/usr/bin')

The	string	representation	of	a	path	is	the	raw	filesystem	path	itself	(in
native	 form,	 e.g.	 with	 backslashes	 under	 Windows),	 which	 you	 can
pass	to	any	function	taking	a	file	path	as	a	string:

>>>	p	=	PurePath('/etc')

>>>	str(p)

'/etc'

>>>	p	=	PureWindowsPath('c:/Program	Files')

>>>	str(p)

'c:\\Program	Files'

Similarly,	calling	bytes	on	a	path	gives	the	raw	filesystem	path	as	a
bytes	object,	as	encoded	by	os.fsencode():

>>>	bytes(p)

b'/etc'

Note: 	Calling	bytes	is	only	recommended	under	Unix.	Under
Windows,	the	unicode	form	is	the	canonical	representation	of
filesystem	paths.

11.1.2.3.	Accessing	individual	parts

To	 access	 the	 individual	 “parts”	 (components)	 of	 a	 path,	 use	 the
following	property:

PurePath.parts

A	tuple	giving	access	to	the	path’s	various	components:

>>>	p	=	PurePath('/usr/bin/python3')

>>>	p.parts

('/',	'usr',	'bin',	'python3')

>>>	p	=	PureWindowsPath('c:/Program	Files/PSF')

>>>	p.parts

('c:\\',	'Program	Files',	'PSF')

(note	how	the	drive	and	local	root	are	regrouped	in	a	single	part)

11.1.2.4.	Methods	and	properties

Pure	paths	provide	the	following	methods	and	properties:

PurePath.drive

A	string	representing	the	drive	letter	or	name,	if	any:

>>>	PureWindowsPath('c:/Program	Files/').drive

'c:'

>>>	PureWindowsPath('/Program	Files/').drive

''

>>>	PurePosixPath('/etc').drive

''

UNC	shares	are	also	considered	drives:

>>>	PureWindowsPath('//host/share/foo.txt').drive

'\\\\host\\share'

PurePath.root

A	string	representing	the	(local	or	global)	root,	if	any:

>>>	PureWindowsPath('c:/Program	Files/').root

'\\'

>>>	PureWindowsPath('c:Program	Files/').root

''

>>>	PurePosixPath('/etc').root

'/'

UNC	shares	always	have	a	root:

>>>	PureWindowsPath('//host/share').root

'\\'

PurePath.anchor

The	concatenation	of	the	drive	and	root:

>>>	PureWindowsPath('c:/Program	Files/').anchor

'c:\\'

>>>	PureWindowsPath('c:Program	Files/').anchor

'c:'

>>>	PurePosixPath('/etc').anchor

'/'

>>>	PureWindowsPath('//host/share').anchor

'\\\\host\\share\\'

PurePath.parents

An	 immutable	sequence	providing	access	 to	 the	 logical	ancestors
of	the	path:

>>>	p	=	PureWindowsPath('c:/foo/bar/setup.py')

>>>	p.parents[0]

PureWindowsPath('c:/foo/bar')

>>>	p.parents[1]

PureWindowsPath('c:/foo')

>>>	p.parents[2]

PureWindowsPath('c:/')

PurePath.parent

The	logical	parent	of	the	path:

>>>	p	=	PurePosixPath('/a/b/c/d')

>>>	p.parent

PurePosixPath('/a/b/c')

You	cannot	go	past	an	anchor,	or	empty	path:

>>>	p	=	PurePosixPath('/')

>>>	p.parent

PurePosixPath('/')

>>>	p	=	PurePosixPath('.')

>>>	p.parent

PurePosixPath('.')

Note: 	 This	 is	 a	 purely	 lexical	 operation,	 hence	 the	 following
behaviour:

>>>	p	=	PurePosixPath('foo/..')

>>>	p.parent

PurePosixPath('foo')

If	 you	 want	 to	 walk	 an	 arbitrary	 filesystem	 path	 upwards,	 it	 is
recommended	 to	 first	 call	 Path.resolve()	 so	 as	 to	 resolve
symlinks	and	eliminate	”..”	components.

PurePath.name

A	string	representing	the	final	path	component,	excluding	the	drive
and	root,	if	any:

>>>	PurePosixPath('my/library/setup.py').name

'setup.py'

UNC	drive	names	are	not	considered:

>>>	PureWindowsPath('//some/share/setup.py').name

'setup.py'

>>>	PureWindowsPath('//some/share').name

''

PurePath.suffix

The	file	extension	of	the	final	component,	if	any:

>>>	PurePosixPath('my/library/setup.py').suffix

'.py'

>>>	PurePosixPath('my/library.tar.gz').suffix

'.gz'

>>>	PurePosixPath('my/library').suffix

''

PurePath.suffixes

A	list	of	the	path’s	file	extensions:

>>>	PurePosixPath('my/library.tar.gar').suffixes

['.tar',	'.gar']

>>>	PurePosixPath('my/library.tar.gz').suffixes

['.tar',	'.gz']

>>>	PurePosixPath('my/library').suffixes

[]

PurePath.stem

The	final	path	component,	without	its	suffix:

>>>	PurePosixPath('my/library.tar.gz').stem

'library.tar'

>>>	PurePosixPath('my/library.tar').stem

'library'

>>>	PurePosixPath('my/library').stem

'library'

PurePath.as_posix()
Return	a	string	representation	of	the	path	with	forward	slashes	(/):

>>>	p	=	PureWindowsPath('c:\\windows')

>>>	str(p)

'c:\\windows'

>>>	p.as_posix()

'c:/windows'

PurePath.as_uri()
Represent	 the	path	as	a	file	URI.	ValueError	 is	 raised	 if	 the
path	isn’t	absolute.

>>>	p	=	PurePosixPath('/etc/passwd')

>>>	p.as_uri()

'file:///etc/passwd'

>>>	p	=	PureWindowsPath('c:/Windows')

>>>	p.as_uri()

'file:///c:/Windows'

PurePath.is_absolute()
Return	whether	 the	 path	 is	 absolute	 or	 not.	A	 path	 is	 considered
absolute	if	it	has	both	a	root	and	(if	the	flavour	allows)	a	drive:

>>>	PurePosixPath('/a/b').is_absolute()

True

>>>	PurePosixPath('a/b').is_absolute()

False

>>>	PureWindowsPath('c:/a/b').is_absolute()

True

>>>	PureWindowsPath('/a/b').is_absolute()

False

>>>	PureWindowsPath('c:').is_absolute()

False

>>>	PureWindowsPath('//some/share').is_absolute()

True

PurePath.is_reserved()
With	 PureWindowsPath,	 return	 True	 if	 the	 path	 is	 considered
reserved	 under	 Windows,	 False	 otherwise.	 With
PurePosixPath,	False	is	always	returned.

>>>	PureWindowsPath('nul').is_reserved()

True

>>>	PurePosixPath('nul').is_reserved()

False

File	 system	calls	on	 reserved	paths	can	 fail	mysteriously	or	have
unintended	effects.

PurePath.joinpath(*other)

Calling	this	method	is	equivalent	to	combining	the	path	with	each	of
the	other	arguments	in	turn:

>>>	PurePosixPath('/etc').joinpath('passwd')

PurePosixPath('/etc/passwd')

>>>	PurePosixPath('/etc').joinpath(PurePosixPath('passwd'

PurePosixPath('/etc/passwd')

>>>	PurePosixPath('/etc').joinpath('init.d',	'apache2'

PurePosixPath('/etc/init.d/apache2')

>>>	PureWindowsPath('c:').joinpath('/Program	Files'

PureWindowsPath('c:/Program	Files')

PurePath.match(pattern)
Match	 this	 path	 against	 the	 provided	 glob-style	 pattern.	 Return
True	if	matching	is	successful,	False	otherwise.

If	pattern	is	relative,	the	path	can	be	either	relative	or	absolute,	and
matching	is	done	from	the	right:

>>>	PurePath('a/b.py').match('*.py')

True

>>>	PurePath('/a/b/c.py').match('b/*.py')

True

>>>	PurePath('/a/b/c.py').match('a/*.py')

False

If	pattern	 is	 absolute,	 the	 path	must	 be	 absolute,	 and	 the	 whole
path	must	match:

>>>	PurePath('/a.py').match('/*.py')

True

>>>	PurePath('a/b.py').match('/*.py')

False

As	with	other	methods,	case-sensitivity	is	observed:

>>>	PureWindowsPath('b.py').match('*.PY')

True

PurePath.relative_to(*other)
Compute	a	version	of	this	path	relative	to	the	path	represented	by
other.	If	it’s	impossible,	ValueError	is	raised:

>>>	p	=	PurePosixPath('/etc/passwd')

>>>	p.relative_to('/')

PurePosixPath('etc/passwd')

>>>	p.relative_to('/etc')

PurePosixPath('passwd')

>>>	p.relative_to('/usr')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"pathlib.py",	line	694,	in	relative_to

				.format(str(self),	str(formatted)))

ValueError:	'/etc/passwd'	does	not	start	with	'/usr'

PurePath.with_name(name)
Return	 a	 new	 path	 with	 the	 name	 changed.	 If	 the	 original	 path
doesn’t	have	a	name,	ValueError	is	raised:

>>>	p	=	PureWindowsPath('c:/Downloads/pathlib.tar.gz'

>>>	p.with_name('setup.py')

PureWindowsPath('c:/Downloads/setup.py')

>>>	p	=	PureWindowsPath('c:/')

>>>	p.with_name('setup.py')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"/home/antoine/cpython/default/Lib/pathlib.py"

				raise	ValueError("%r	has	an	empty	name"	%	(self

ValueError:	PureWindowsPath('c:/')	has	an	empty	name

PurePath.with_suffix(suffix)
Return	a	new	path	with	 the	suffix	 changed.	 If	 the	original	path
doesn’t	have	a	suffix,	the	new	suffix	is	appended	instead:

>>>	p	=	PureWindowsPath('c:/Downloads/pathlib.tar.gz'

>>>	p.with_suffix('.bz2')

PureWindowsPath('c:/Downloads/pathlib.tar.bz2')

>>>	p	=	PureWindowsPath('README')

>>>	p.with_suffix('.txt')

PureWindowsPath('README.txt')

11.1.3.	Concrete	paths

Concrete	paths	are	subclasses	of	the	pure	path	classes.	In	addition	to
operations	 provided	 by	 the	 latter,	 they	 also	 provide	 methods	 to	 do
system	 calls	 on	 path	 objects.	 There	 are	 three	 ways	 to	 instantiate
concrete	paths:

class	pathlib.Path(*pathsegments)
A	subclass	of	PurePath,	 this	class	 represents	concrete	paths	of
the	 system’s	 path	 flavour	 (instantiating	 it	 creates	 either	 a
PosixPath	or	a	WindowsPath):

>>>	Path('setup.py')

PosixPath('setup.py')

pathsegments	is	specified	similarly	to	PurePath.

class	pathlib.PosixPath(*pathsegments)
A	 subclass	 of	 Path	 and	 PurePosixPath,	 this	 class	 represents
concrete	non-Windows	filesystem	paths:

>>>	PosixPath('/etc')

PosixPath('/etc')

pathsegments	is	specified	similarly	to	PurePath.

class	pathlib.WindowsPath(*pathsegments)
A	subclass	of	Path	and	PureWindowsPath,	this	class	represents
concrete	Windows	filesystem	paths:

>>>	WindowsPath('c:/Program	Files/')

WindowsPath('c:/Program	Files')

pathsegments	is	specified	similarly	to	PurePath.

You	 can	 only	 instantiate	 the	 class	 flavour	 that	 corresponds	 to	 your
system	 (allowing	system	calls	on	non-compatible	path	 flavours	could
lead	to	bugs	or	failures	in	your	application):

>>>	import	os

>>>	os.name

'posix'

>>>	Path('setup.py')

PosixPath('setup.py')

>>>	PosixPath('setup.py')

PosixPath('setup.py')

>>>	WindowsPath('setup.py')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"pathlib.py",	line	798,	in	__new__

				%	(cls.__name__,))

NotImplementedError:	cannot	instantiate	'WindowsPath'	on	your	system

11.1.3.1.	Methods

Concrete	paths	provide	the	following	methods	in	addition	to	pure	paths
methods.	Many	of	 these	methods	can	raise	an	OSError	 if	a	system
call	fails	(for	example	because	the	path	doesn’t	exist):

classmethod	Path.cwd()
Return	 a	 new	 path	 object	 representing	 the	 current	 directory	 (as
returned	by	os.getcwd()):

>>>	Path.cwd()

PosixPath('/home/antoine/pathlib')

Path.stat()
Return	 information	about	 this	path	 (similarly	 to	os.stat()).	The
result	is	looked	up	at	each	call	to	this	method.

>>>	p	=	Path('setup.py')

>>>	p.stat().st_size

956

>>>	p.stat().st_mtime

1327883547.852554

Path.chmod(mode)
Change	the	file	mode	and	permissions,	like	os.chmod():

>>>	p	=	Path('setup.py')

>>>	p.stat().st_mode

33277

>>>	p.chmod(0o444)

>>>	p.stat().st_mode

33060

Path.exists()
Whether	the	path	points	to	an	existing	file	or	directory:

>>>	Path('.').exists()

True

>>>	Path('setup.py').exists()

True

>>>	Path('/etc').exists()

True

>>>	Path('nonexistentfile').exists()

False

Note: 	If	the	path	points	to	a	symlink,	exists()	returns	whether
the	symlink	points	to	an	existing	file	or	directory.

Path.glob(pattern)
Glob	 the	 given	 pattern	 in	 the	 directory	 represented	 by	 this	 path,
yielding	all	matching	files	(of	any	kind):

>>>	sorted(Path('.').glob('*.py'))

[PosixPath('pathlib.py'),	PosixPath('setup.py'),	PosixPath('test_pathlib.py')]

>>>	sorted(Path('.').glob('*/*.py'))

[PosixPath('docs/conf.py')]

The	 “**”	 pattern	 means	 “this	 directory	 and	 all	 subdirectories,
recursively”.	In	other	words,	it	enables	recursive	globbing:

>>>	sorted(Path('.').glob('**/*.py'))

[PosixPath('build/lib/pathlib.py'),

	PosixPath('docs/conf.py'),

	PosixPath('pathlib.py'),

	PosixPath('setup.py'),

	PosixPath('test_pathlib.py')]

Note: 	 Using	 the	 “**”	 pattern	 in	 large	 directory	 trees	 may
consume	an	inordinate	amount	of	time.

Path.group()
Return	the	name	of	the	group	owning	the	file.	KeyError	is	raised
if	the	file’s	gid	isn’t	found	in	the	system	database.

Path.is_dir()
Return	 True	 if	 the	 path	 points	 to	 a	 directory	 (or	 a	 symbolic	 link
pointing	to	a	directory),	False	if	it	points	to	another	kind	of	file.

False	 is	 also	 returned	 if	 the	 path	 doesn’t	 exist	 or	 is	 a	 broken
symlink;	other	errors	(such	as	permission	errors)	are	propagated.

Path.is_file()
Return	True	 if	 the	path	points	 to	a	regular	 file	(or	a	symbolic	 link
pointing	to	a	regular	file),	False	if	it	points	to	another	kind	of	file.

False	 is	 also	 returned	 if	 the	 path	 doesn’t	 exist	 or	 is	 a	 broken
symlink;	other	errors	(such	as	permission	errors)	are	propagated.

Path.is_symlink()
Return	True	if	the	path	points	to	a	symbolic	link,	False	otherwise.

False	is	also	returned	if	the	path	doesn’t	exist;	other	errors	(such
as	permission	errors)	are	propagated.

Path.is_socket()
Return	True	if	the	path	points	to	a	Unix	socket	(or	a	symbolic	link
pointing	to	a	Unix	socket),	False	if	it	points	to	another	kind	of	file.

False	 is	 also	 returned	 if	 the	 path	 doesn’t	 exist	 or	 is	 a	 broken
symlink;	other	errors	(such	as	permission	errors)	are	propagated.

Path.is_fifo()
Return	 True	 if	 the	 path	 points	 to	 a	 FIFO	 (or	 a	 symbolic	 link
pointing	to	a	FIFO),	False	if	it	points	to	another	kind	of	file.

False	 is	 also	 returned	 if	 the	 path	 doesn’t	 exist	 or	 is	 a	 broken
symlink;	other	errors	(such	as	permission	errors)	are	propagated.

Path.is_block_device()
Return	True	if	the	path	points	to	a	block	device	(or	a	symbolic	link
pointing	to	a	block	device),	False	if	it	points	to	another	kind	of	file.

False	 is	 also	 returned	 if	 the	 path	 doesn’t	 exist	 or	 is	 a	 broken
symlink;	other	errors	(such	as	permission	errors)	are	propagated.

Path.is_char_device()
Return	True	if	the	path	points	to	a	character	device	(or	a	symbolic
link	 pointing	 to	 a	 character	 device),	 False	 if	 it	 points	 to	 another
kind	of	file.

False	 is	 also	 returned	 if	 the	 path	 doesn’t	 exist	 or	 is	 a	 broken
symlink;	other	errors	(such	as	permission	errors)	are	propagated.

Path.iterdir()
When	 the	 path	 points	 to	 a	 directory,	 yield	 path	 objects	 of	 the
directory	contents:

>>>	p	=	Path('docs')

>>>	for	child	in	p.iterdir():	child

...

PosixPath('docs/conf.py')

PosixPath('docs/_templates')

PosixPath('docs/make.bat')

PosixPath('docs/index.rst')

PosixPath('docs/_build')

PosixPath('docs/_static')

PosixPath('docs/Makefile')

Path.lchmod(mode)
Like	Path.chmod()	but,	 if	 the	path	points	to	a	symbolic	 link,	 the
symbolic	link’s	mode	is	changed	rather	than	its	target’s.

Path.lstat()
Like	Path.stat()	but,	if	the	path	points	to	a	symbolic	link,	return
the	symbolic	link’s	information	rather	than	its	target’s.

Path.mkdir(mode=0o777,	parents=False)
Create	 a	 new	 directory	 at	 this	 given	 path.	 If	mode	 is	 given,	 it	 is

combined	 with	 the	 process’	 umask	 value	 to	 determine	 the	 file
mode	 and	 access	 flags.	 If	 the	 path	 already	 exists,
FileExistsError	is	raised.

If	parents	 is	 true,	any	missing	parents	of	 this	path	are	created	as
needed;	 they	 are	 created	 with	 the	 default	 permissions	 without
taking	 mode	 into	 account	 (mimicking	 the	 POSIX	 mkdir	 -p

command).

If	 parents	 is	 false	 (the	 default),	 a	 missing	 parent	 raises
FileNotFoundError.

Path.open(mode='r',	buffering=-1,	encoding=None,	errors=None,
newline=None)

Open	 the	 file	 pointed	 to	 by	 the	 path,	 like	 the	 built-in	 open()
function	does:

>>>	p	=	Path('setup.py')

>>>	with	p.open()	as	f:

...					f.readline()

...

'#!/usr/bin/env	python3\n'

Path.owner()
Return	the	name	of	the	user	owning	the	file.	KeyError	is	raised	if
the	file’s	uid	isn’t	found	in	the	system	database.

Path.rename(target)
Rename	 this	 file	 or	 directory	 to	 the	 given	 target.	 target	 can	 be
either	a	string	or	another	path	object:

>>>	p	=	Path('foo')

>>>	p.open('w').write('some	text')

9

>>>	target	=	Path('bar')

>>>	p.rename(target)

>>>	target.open().read()

'some	text'

Path.replace(target)
Rename	this	file	or	directory	to	the	given	 target.	If	 target	points	 to
an	existing	file	or	directory,	it	will	be	unconditionally	replaced.

Path.resolve()
Make	the	path	absolute,	resolving	any	symlinks.	A	new	path	object
is	returned:

>>>	p	=	Path()

>>>	p

PosixPath('.')

>>>	p.resolve()

PosixPath('/home/antoine/pathlib')

”..”	components	are	also	eliminated	(this	 is	 the	only	method	 to	do
so):

>>>	p	=	Path('docs/../setup.py')

>>>	p.resolve()

PosixPath('/home/antoine/pathlib/setup.py')

If	 the	 path	 doesn’t	 exist,	 FileNotFoundError	 is	 raised.	 If	 an
infinite	 loop	 is	 encountered	 along	 the	 resolution	 path,
RuntimeError	is	raised.

Path.rglob(pattern)
This	 is	 like	 calling	 glob()	with	 “**”	 added	 in	 front	 of	 the	 given
pattern:

>>>	sorted(Path().rglob("*.py"))

[PosixPath('build/lib/pathlib.py'),

	PosixPath('docs/conf.py'),

	PosixPath('pathlib.py'),

	PosixPath('setup.py'),

	PosixPath('test_pathlib.py')]

Path.rmdir()
Remove	this	directory.	The	directory	must	be	empty.

Path.symlink_to(target,	target_is_directory=False)
Make	 this	 path	 a	 symbolic	 link	 to	 target.	 Under	 Windows,
target_is_directory	must	be	true	(default	False)	if	the	link’s	target
is	a	directory.	Under	POSIX,	target_is_directory‘s	value	is	ignored.

>>>	p	=	Path('mylink')

>>>	p.symlink_to('setup.py')

>>>	p.resolve()

PosixPath('/home/antoine/pathlib/setup.py')

>>>	p.stat().st_size

956

>>>	p.lstat().st_size

8

Note: 	 The	 order	 of	 arguments	 (link,	 target)	 is	 the	 reverse	 of
os.symlink()‘s.

Path.touch(mode=0o777,	exist_ok=True)
Create	a	file	at	this	given	path.	If	mode	is	given,	it	is	combined	with
the	process’	umask	 value	 to	determine	 the	 file	mode	and	access
flags.	If	 the	file	already	exists,	 the	function	succeeds	 if	exist_ok	 is
true	 (and	 its	 modification	 time	 is	 updated	 to	 the	 current	 time),
otherwise	FileExistsError	is	raised.

Path.unlink()
Remove	 this	 file	or	symbolic	 link.	 If	 the	path	points	 to	a	directory,
use	Path.rmdir()	instead.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.2.	os.path	—	Common
pathname	manipulations
This	module	implements	some	useful	functions	on	pathnames.	To	read
or	write	files	see	open(),	and	for	accessing	the	filesystem	see	the	os
module.	 The	 path	 parameters	 can	 be	 passed	 as	 either	 strings,	 or
bytes.	 Applications	 are	 encouraged	 to	 represent	 file	 names	 as
(Unicode)	 character	 strings.	Unfortunately,	 some	 file	 names	may	 not
be	 representable	 as	 strings	 on	 Unix,	 so	 applications	 that	 need	 to
support	 arbitrary	 file	 names	 on	 Unix	 should	 use	 bytes	 objects	 to
represent	 path	 names.	 Vice	 versa,	 using	 bytes	 objects	 cannot
represent	all	file	names	on	Windows	(in	the	standard	mbcs	encoding),
hence	Windows	 applications	 should	 use	 string	 objects	 to	 access	 all
files.

Unlike	 a	 unix	 shell,	 Python	 does	 not	 do	 any	 automatic	 path
expansions.	Functions	such	as	expanduser()	and	expandvars()
can	 be	 invoked	 explicitly	 when	 an	 application	 desires	 shell-like	 path
expansion.	(See	also	the	glob	module.)

See	also: 	The	pathlib	module	offers	high-level	path	objects.

Note: 	All	of	these	functions	accept	either	only	bytes	or	only	string
objects	as	their	parameters.	The	result	is	an	object	of	the	same	type,
if	a	path	or	file	name	is	returned.

Note: 	Since	different	operating	systems	have	different	path	name
conventions,	there	are	several	versions	of	this	module	in	the
standard	library.	The	os.path	module	is	always	the	path	module
suitable	for	the	operating	system	Python	is	running	on,	and	therefore

usable	for	local	paths.	However,	you	can	also	import	and	use	the
individual	modules	if	you	want	to	manipulate	a	path	that	is	always	in
one	of	the	different	formats.	They	all	have	the	same	interface:

posixpath	for	UNIX-style	paths
ntpath	for	Windows	paths
macpath	for	old-style	MacOS	paths

os.path.abspath(path)
Return	a	normalized	absolutized	version	of	the	pathname	path.	On
most	 platforms,	 this	 is	 equivalent	 to	 calling	 the	 function
normpath()	 as	 follows:	 normpath(join(os.getcwd(),

path)).

os.path.basename(path)
Return	 the	 base	 name	 of	 pathname	 path.	 This	 is	 the	 second
element	 of	 the	 pair	 returned	 by	 passing	 path	 to	 the	 function
split().	Note	that	the	result	of	 this	function	is	different	from	the
Unix	 basename	 program;	 where	 basename	 for	 '/foo/bar/'
returns	'bar',	the	basename()	 function	returns	an	empty	string
('').

os.path.commonprefix(list)
Return	the	longest	path	prefix	(taken	character-by-character)	that	is
a	prefix	of	all	paths	 in	 list.	 If	 list	 is	 empty,	 return	 the	empty	 string
('').	 Note	 that	 this	may	 return	 invalid	 paths	 because	 it	 works	 a
character	at	a	time.

os.path.dirname(path)
Return	 the	 directory	 name	 of	 pathname	 path.	 This	 is	 the	 first
element	 of	 the	 pair	 returned	 by	 passing	 path	 to	 the	 function

split().

os.path.exists(path)
Return	 True	 if	 path	 refers	 to	 an	 existing	 path	 or	 an	 open	 file
descriptor.	 Returns	 False	 for	 broken	 symbolic	 links.	 On	 some
platforms,	 this	 function	 may	 return	 False	 if	 permission	 is	 not
granted	 to	execute	os.stat()	 on	 the	 requested	 file,	even	 if	 the
path	physically	exists.

Changed	 in	 version	 3.3:	 path	 can	 now	 be	 an	 integer:	 True	 is
returned	if	it	is	an	open	file	descriptor,	False	otherwise.

os.path.lexists(path)
Return	True	 if	path	 refers	 to	 an	 existing	 path.	Returns	 True	 for
broken	 symbolic	 links.	 Equivalent	 to	 exists()	 on	 platforms
lacking	os.lstat().

os.path.expanduser(path)
On	 Unix	 and	 Windows,	 return	 the	 argument	 with	 an	 initial
component	of	~	or	~user	replaced	by	that	user‘s	home	directory.

On	Unix,	an	initial	~	is	replaced	by	the	environment	variable	HOME
if	it	is	set;	otherwise	the	current	user’s	home	directory	is	looked	up
in	the	password	directory	through	the	built-in	module	pwd.	An	initial
~user	is	looked	up	directly	in	the	password	directory.

On	 Windows,	 HOME	 and	 USERPROFILE	 will	 be	 used	 if	 set,
otherwise	 a	 combination	 of	 HOMEPATH	 and	 HOMEDRIVE	 will	 be
used.	 An	 initial	 ~user	 is	 handled	 by	 stripping	 the	 last	 directory
component	from	the	created	user	path	derived	above.

If	the	expansion	fails	or	if	the	path	does	not	begin	with	a	tilde,	the

path	is	returned	unchanged.

os.path.expandvars(path)
Return	 the	 argument	 with	 environment	 variables	 expanded.
Substrings	 of	 the	 form	 $name	 or	 ${name}	 are	 replaced	 by	 the
value	 of	 environment	 variable	 name.	 Malformed	 variable	 names
and	references	to	non-existing	variables	are	left	unchanged.

On	 Windows,	 %name%	 expansions	 are	 supported	 in	 addition	 to
$name	and	${name}.

os.path.getatime(path)
Return	 the	 time	 of	 last	 access	 of	 path.	 The	 return	 value	 is	 a
number	 giving	 the	 number	 of	 seconds	 since	 the	 epoch	 (see	 the
time	 module).	 Raise	 OSError	 if	 the	 file	 does	 not	 exist	 or	 is
inaccessible.

If	os.stat_float_times()	returns	True,	the	result	is	a	floating
point	number.

os.path.getmtime(path)
Return	 the	 time	of	 last	modification	of	path.	The	 return	value	 is	a
number	 giving	 the	 number	 of	 seconds	 since	 the	 epoch	 (see	 the
time	 module).	 Raise	 OSError	 if	 the	 file	 does	 not	 exist	 or	 is
inaccessible.

If	os.stat_float_times()	returns	True,	the	result	is	a	floating
point	number.

os.path.getctime(path)
Return	 the	 system’s	 ctime	which,	 on	 some	systems	 (like	Unix)	 is
the	 time	 of	 the	 last	 metadata	 change,	 and,	 on	 others	 (like
Windows),	 is	 the	 creation	 time	 for	 path.	 The	 return	 value	 is	 a

number	 giving	 the	 number	 of	 seconds	 since	 the	 epoch	 (see	 the
time	 module).	 Raise	 OSError	 if	 the	 file	 does	 not	 exist	 or	 is
inaccessible.

os.path.getsize(path)
Return	 the	size,	 in	bytes,	of	path.	Raise	OSError	 if	 the	 file	does
not	exist	or	is	inaccessible.

os.path.isabs(path)
Return	True	if	path	is	an	absolute	pathname.	On	Unix,	that	means
it	begins	with	a	slash,	on	Windows	that	it	begins	with	a	(back)slash
after	chopping	off	a	potential	drive	letter.

os.path.isfile(path)
Return	True	if	path	is	an	existing	regular	file.	This	follows	symbolic
links,	so	both	islink()	and	isfile()	can	be	true	for	the	same
path.

os.path.isdir(path)
Return	True	 if	path	 is	an	existing	directory.	This	 follows	symbolic
links,	so	both	islink()	and	isdir()	can	be	 true	 for	 the	same
path.

os.path.islink(path)
Return	True	 if	path	 refers	 to	 a	 directory	 entry	 that	 is	 a	 symbolic
link.	Always	False	if	symbolic	links	are	not	supported.

os.path.ismount(path)
Return	 True	 if	 pathname	path	 is	 a	mount	 point:	 a	 point	 in	 a	 file
system	 where	 a	 different	 file	 system	 has	 been	 mounted.	 On
POSIX,	the	function	checks	whether	path‘s	parent,	path/..,	is	on
a	different	device	than	path,	or	whether	path/..	and	path	point	to

the	same	 i-node	on	 the	same	device	—	 this	should	detect	mount
points	for	all	Unix	and	POSIX	variants.	On	Windows,	a	drive	letter
root	and	a	share	UNC	are	always	mount	points,	and	for	any	other
path	GetVolumePathName	is	called	to	see	if	it	is	different	from	the
input	path.

New	in	version	3.4:	Support	for	detecting	non-root	mount	points	on
Windows.

os.path.join(path1[,	path2[,	...]])
Join	one	or	more	path	components	intelligently.	If	any	component	is
an	absolute	path,	all	previous	components	(on	Windows,	including
the	 previous	 drive	 letter,	 if	 there	was	 one)	 are	 thrown	 away,	 and
joining	continues.	The	 return	 value	 is	 the	 concatenation	of	path1,
and	 optionally	 path2,	 etc.,	 with	 exactly	 one	 directory	 separator
(os.sep)	 following	 each	 non-empty	 part	 except	 the	 last.	 (This
means	that	an	empty	last	part	will	result	in	a	path	that	ends	with	a
separator.)	Note	that	on	Windows,	since	there	is	a	current	directory
for	each	drive,	os.path.join("c:",	"foo")	represents	a	path
relative	to	the	current	directory	on	drive	C:	(c:foo),	not	c:\foo.

os.path.normcase(path)
Normalize	 the	case	of	a	pathname.	On	Unix	and	Mac	OS	X,	 this
returns	 the	 path	 unchanged;	 on	 case-insensitive	 filesystems,	 it
converts	 the	 path	 to	 lowercase.	 On	 Windows,	 it	 also	 converts
forward	slashes	to	backward	slashes.	Raise	a	TypeError	if	the	type
of	path	is	not	str	or	bytes.

os.path.normpath(path)
Normalize	a	pathname	by	collapsing	redundant	separators	and	up-
level	references	so	that	A//B,	A/B/,	A/./B	and	A/foo/../B	all
become	A/B.	This	string	manipulation	may	change	the	meaning	of

a	 path	 that	 contains	 symbolic	 links.	 On	 Windows,	 it	 converts
forward	 slashes	 to	 backward	 slashes.	 To	 normalize	 case,	 use
normcase().

os.path.realpath(path)
Return	the	canonical	path	of	the	specified	filename,	eliminating	any
symbolic	links	encountered	in	the	path	(if	they	are	supported	by	the
operating	system).

os.path.relpath(path,	start=None)
Return	a	relative	filepath	to	path	either	from	the	current	directory	or
from	 an	 optional	 start	 directory.	 This	 is	 a	 path	 computation:	 the
filesystem	 is	 not	 accessed	 to	 confirm	 the	 existence	 or	 nature	 of
path	or	start.

start	defaults	to	os.curdir.

Availability:	Unix,	Windows.

os.path.samefile(path1,	path2)
Return	True	if	both	pathname	arguments	refer	to	the	same	file	or
directory.	 This	 is	 determined	 by	 the	 device	 number	 and	 i-node
number	 and	 raises	 an	 exception	 if	 a	 os.stat()	 call	 on	 either
pathname	fails.

Availability:	Unix,	Windows.

Changed	in	version	3.2:	Added	Windows	support.

Changed	 in	 version	 3.4:	 Windows	 now	 uses	 the	 same
implementation	as	all	other	platforms.

os.path.sameopenfile(fp1,	fp2)

Return	True	 if	 the	 file	 descriptors	 fp1	 and	 fp2	 refer	 to	 the	 same
file.

Availability:	Unix,	Windows.

Changed	in	version	3.2:	Added	Windows	support.

os.path.samestat(stat1,	stat2)
Return	True	if	the	stat	tuples	stat1	and	stat2	refer	to	the	same	file.
These	 structures	 may	 have	 been	 returned	 by	 os.fstat(),
os.lstat(),	 or	 os.stat().	 This	 function	 implements	 the
underlying	 comparison	 used	 by	 samefile()	 and
sameopenfile().

Availability:	Unix,	Windows.

Changed	in	version	3.4:	Added	Windows	support.

os.path.split(path)
Split	 the	pathname	path	 into	a	pair,	(head,	tail)	where	 tail	 is
the	last	pathname	component	and	head	is	everything	leading	up	to
that.	The	tail	part	will	never	contain	a	slash;	if	path	ends	in	a	slash,
tail	will	be	empty.	If	there	is	no	slash	in	path,	head	will	be	empty.	If
path	 is	 empty,	 both	head	 and	 tail	 are	 empty.	 Trailing	 slashes	 are
stripped	from	head	unless	it	is	the	root	(one	or	more	slashes	only).
In	 all	 cases,	 join(head,	 tail)	 returns	 a	 path	 to	 the	 same
location	as	path	(but	the	strings	may	differ).	Also	see	the	functions
dirname()	and	basename().

os.path.splitdrive(path)
Split	the	pathname	path	 into	a	pair	(drive,	tail)	where	drive
is	either	a	mount	point	or	 the	empty	string.	On	systems	which	do
not	use	drive	specifications,	drive	will	always	be	the	empty	string.

In	all	cases,	drive	+	tail	will	be	the	same	as	path.

On	 Windows,	 splits	 a	 pathname	 into	 drive/UNC	 sharepoint	 and
relative	path.

If	the	path	contains	a	drive	letter,	drive	will	contain	everything	up	to
and	 including	 the	 colon.	 e.g.	 splitdrive("c:/dir")	 returns
("c:",	"/dir")

If	 the	path	contains	a	UNC	path,	drive	will	contain	 the	host	name
and	 share,	 up	 to	 but	 not	 including	 the	 fourth	 separator.	 e.g.
splitdrive("//host/computer/dir")	 returns
("//host/computer",	"/dir")

os.path.splitext(path)
Split	the	pathname	path	into	a	pair	(root,	ext)	such	that	root
+	ext	==	path,	 and	ext	 is	 empty	 or	 begins	with	 a	 period	 and
contains	at	most	one	period.	Leading	periods	on	the	basename	are
ignored;	splitext('.cshrc')	returns	('.cshrc',	'').

os.path.splitunc(path)

Deprecated	since	version	3.1:	Use	splitdrive	instead.

Split	 the	pathname	path	 into	a	pair	(unc,	rest)	 so	 that	unc	 is
the	 UNC	 mount	 point	 (such	 as	 r'\\host\mount'),	 if	 present,
and	rest	the	rest	of	the	path	(such	as	r'\path\file.ext').	For
paths	containing	drive	letters,	unc	will	always	be	the	empty	string.

Availability:	Windows.

os.path.supports_unicode_filenames

True	if	arbitrary	Unicode	strings	can	be	used	as	file	names	(within
limitations	imposed	by	the	file	system).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.3.	fileinput	—	Iterate	over
lines	from	multiple	input	streams
Source	code:	Lib/fileinput.py

This	module	implements	a	helper	class	and	functions	to	quickly	write	a
loop	over	 standard	 input	 or	 a	 list	 of	 files.	 If	 you	 just	want	 to	 read	or
write	one	file	see	open().

The	typical	use	is:

import	fileinput

for	line	in	fileinput.input():

				process(line)

This	 iterates	 over	 the	 lines	 of	 all	 files	 listed	 in	 sys.argv[1:],
defaulting	to	sys.stdin	if	the	list	is	empty.	If	a	filename	is	'-',	it	 is
also	 replaced	 by	 sys.stdin.	 To	 specify	 an	 alternative	 list	 of
filenames,	pass	it	as	the	first	argument	to	input().	A	single	file	name
is	also	allowed.

All	files	are	opened	in	text	mode	by	default,	but	you	can	override	this
by	 specifying	 the	 mode	 parameter	 in	 the	 call	 to	 input()	 or
FileInput.	 If	 an	 I/O	 error	 occurs	 during	 opening	 or	 reading	 a	 file,
OSError	is	raised.

Changed	in	version	3.3:	IOError	used	to	be	raised;	it	is	now	an	alias
of	OSError.

If	sys.stdin	is	used	more	than	once,	the	second	and	further	use	will

http://hg.python.org/cpython/file/3.4/Lib/fileinput.py

return	 no	 lines,	 except	 perhaps	 for	 interactive	 use,	 or	 if	 it	 has	 been
explicitly	reset	(e.g.	using	sys.stdin.seek(0)).

Empty	 files	 are	 opened	 and	 immediately	 closed;	 the	 only	 time	 their
presence	in	the	list	of	filenames	is	noticeable	at	all	is	when	the	last	file
opened	is	empty.

Lines	are	returned	with	any	newlines	intact,	which	means	that	the	last
line	in	a	file	may	not	have	one.

You	can	control	how	files	are	opened	by	providing	an	opening	hook	via
the	openhook	parameter	to	fileinput.input()	or	FileInput().
The	hook	must	be	a	function	that	takes	two	arguments,	 filename	and
mode,	 and	 returns	an	accordingly	opened	 file-like	object.	Two	useful
hooks	are	already	provided	by	this	module.

The	following	function	is	the	primary	interface	of	this	module:

fileinput.input(files=None,	inplace=False,	backup='',
bufsize=0,	mode='r',	openhook=None)

Create	an	instance	of	the	FileInput	class.	The	 instance	will	be
used	as	global	 state	 for	 the	 functions	 of	 this	module,	 and	 is	 also
returned	to	use	during	iteration.	The	parameters	to	this	function	will
be	passed	along	to	the	constructor	of	the	FileInput	class.

The	 FileInput	 instance	 can	 be	 used	 as	 a	 context	manager	 in
the	with	statement.	In	this	example,	input	is	closed	after	the	with
statement	is	exited,	even	if	an	exception	occurs:

with	fileinput.input(files=('spam.txt',	'eggs.txt'

				for	line	in	f:

								process(line)

Changed	in	version	3.2:	Can	be	used	as	a	context	manager.

The	 following	 functions	 use	 the	 global	 state	 created	 by
fileinput.input();	 if	 there	 is	no	active	state,	RuntimeError	 is
raised.

fileinput.filename()
Return	the	name	of	the	file	currently	being	read.	Before	the	first	line
has	been	read,	returns	None.

fileinput.fileno()
Return	the	integer	“file	descriptor”	for	the	current	file.	When	no	file
is	opened	(before	the	first	line	and	between	files),	returns	-1.

fileinput.lineno()
Return	 the	 cumulative	 line	 number	 of	 the	 line	 that	 has	 just	 been
read.	Before	 the	 first	 line	has	been	 read,	 returns	0.	After	 the	 last
line	of	 the	 last	 file	has	been	 read,	 returns	 the	 line	number	of	 that
line.

fileinput.filelineno()
Return	 the	 line	number	 in	 the	current	 file.	Before	 the	first	 line	has
been	 read,	 returns	 0.	 After	 the	 last	 line	 of	 the	 last	 file	 has	 been
read,	returns	the	line	number	of	that	line	within	the	file.

fileinput.isfirstline()
Returns	true	if	the	line	just	read	is	the	first	line	of	its	file,	otherwise
returns	false.

fileinput.isstdin()
Returns	true	 if	 the	 last	 line	was	read	from	sys.stdin,	otherwise
returns	false.

fileinput.nextfile()
Close	the	current	file	so	that	the	next	iteration	will	read	the	first	line
from	the	next	file	(if	any);	lines	not	read	from	the	file	will	not	count
towards	 the	 cumulative	 line	 count.	 The	 filename	 is	 not	 changed
until	after	the	first	line	of	the	next	file	has	been	read.	Before	the	first
line	has	been	read,	this	function	has	no	effect;	it	cannot	be	used	to
skip	 the	 first	 file.	After	 the	 last	 line	of	 the	 last	 file	has	been	 read,
this	function	has	no	effect.

fileinput.close()
Close	the	sequence.

The	 class	which	 implements	 the	 sequence	behavior	 provided	by	 the
module	is	available	for	subclassing	as	well:

class	fileinput.FileInput(files=None,	inplace=False,
backup='',	bufsize=0,	mode='r',	openhook=None)

Class	 FileInput	 is	 the	 implementation;	 its	 methods
filename(),	 fileno(),	 lineno(),	 filelineno(),
isfirstline(),	 isstdin(),	 nextfile()	 and	 close()

correspond	 to	 the	 functions	 of	 the	 same	 name	 in	 the	module.	 In
addition	it	has	a	readline()	method	which	returns	the	next	input
line,	 and	 a	 __getitem__()	 method	 which	 implements	 the
sequence	 behavior.	 The	 sequence	 must	 be	 accessed	 in	 strictly
sequential	 order;	 random	 access	 and	 readline()	 cannot	 be
mixed.

With	mode	 you	 can	 specify	 which	 file	 mode	 will	 be	 passed	 to
open().	It	must	be	one	of	'r',	'rU',	'U'	and	'rb'.

The	 openhook,	 when	 given,	 must	 be	 a	 function	 that	 takes	 two
arguments,	filename	and	mode,	and	returns	an	accordingly	opened

file-like	object.	You	cannot	use	inplace	and	openhook	together.

A	FileInput	 instance	can	be	used	as	a	context	manager	 in	 the
with	 statement.	 In	 this	 example,	 input	 is	 closed	 after	 the	 with
statement	is	exited,	even	if	an	exception	occurs:

with	FileInput(files=('spam.txt',	'eggs.txt'))	as	

				process(input)

Changed	in	version	3.2:	Can	be	used	as	a	context	manager.

Deprecated	since	version	3.4:	The	'rU'	and	'U'	modes.

Optional	in-place	filtering:	if	the	keyword	argument	inplace=True
is	passed	to	fileinput.input()	or	to	the	FileInput	constructor,
the	file	is	moved	to	a	backup	file	and	standard	output	is	directed	to	the
input	file	(if	a	file	of	the	same	name	as	the	backup	file	already	exists,	it
will	 be	 replaced	 silently).	 This	makes	 it	 possible	 to	write	 a	 filter	 that
rewrites	 its	 input	 file	 in	 place.	 If	 the	 backup	 parameter	 is	 given
(typically	 as	 backup='.<some	 extension>'),	 it	 specifies	 the
extension	for	 the	backup	file,	and	the	backup	file	remains	around;	by
default,	the	extension	is	'.bak'	and	it	is	deleted	when	the	output	file
is	closed.	In-place	filtering	is	disabled	when	standard	input	is	read.

The	two	following	opening	hooks	are	provided	by	this	module:

fileinput.hook_compressed(filename,	mode)
Transparently	 opens	 files	 compressed	 with	 gzip	 and	 bzip2
(recognized	 by	 the	 extensions	 '.gz'	 and	 '.bz2')	 using	 the
gzip	and	bz2	modules.	If	the	filename	extension	is	not	'.gz'	or
'.bz2',	the	file	is	opened	normally	(ie,	using	open()	without	any
decompression).

Usage	 example:	 fi	 =

fileinput.FileInput(openhook=fileinput.hook_compressed)

fileinput.hook_encoded(encoding)
Returns	a	hook	which	opens	each	file	with	codecs.open(),	using
the	given	encoding	to	read	the	file.

Usage	 example:	 fi	 =

fileinput.FileInput(openhook=fileinput.hook_encoded("iso-

8859-1"))

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.4.	stat	—	Interpreting	stat()
results
Source	code:	Modules/_stat.c

Lib/stat.py

The	stat	module	defines	constants	and	functions	for	interpreting	the
results	of	os.stat(),	os.fstat()	and	os.lstat()	(if	they	exist).
For	 complete	 details	 about	 the	 stat(),	 fstat()	 and	 lstat()
calls,	consult	the	documentation	for	your	system.

Changed	 in	 version	 3.4:	 The	 stat	 module	 is	 backed	 by	 a	 C
implementation.

The	stat	module	defines	the	following	functions	to	test	for	specific	file
types:

stat.S_ISDIR(mode)
Return	non-zero	if	the	mode	is	from	a	directory.

stat.S_ISCHR(mode)
Return	non-zero	if	the	mode	is	from	a	character	special	device	file.

stat.S_ISBLK(mode)
Return	non-zero	if	the	mode	is	from	a	block	special	device	file.

stat.S_ISREG(mode)
Return	non-zero	if	the	mode	is	from	a	regular	file.

stat.S_ISFIFO(mode)

http://hg.python.org/cpython/file/3.4/Modules/_stat.c
http://hg.python.org/cpython/file/3.4/Lib/stat.py

Return	non-zero	if	the	mode	is	from	a	FIFO	(named	pipe).

stat.S_ISLNK(mode)
Return	non-zero	if	the	mode	is	from	a	symbolic	link.

stat.S_ISSOCK(mode)
Return	non-zero	if	the	mode	is	from	a	socket.

stat.S_ISDOOR(mode)
Return	non-zero	if	the	mode	is	from	a	door.

New	in	version	3.4.

stat.S_ISPORT(mode)
Return	non-zero	if	the	mode	is	from	an	event	port.

New	in	version	3.4.

stat.S_ISWHT(mode)
Return	non-zero	if	the	mode	is	from	a	whiteout.

New	in	version	3.4.

Two	additional	functions	are	defined	for	more	general	manipulation	of
the	file’s	mode:

stat.S_IMODE(mode)
Return	 the	 portion	 of	 the	 file’s	 mode	 that	 can	 be	 set	 by
os.chmod()—that	is,	the	file’s	permission	bits,	plus	the	sticky	bit,
set-group-id,	and	set-user-id	bits	(on	systems	that	support	them).

stat.S_IFMT(mode)
Return	 the	 portion	 of	 the	 file’s	 mode	 that	 describes	 the	 file	 type
(used	by	the	S_IS*()	functions	above).

Normally,	you	would	use	the	os.path.is*()	functions	for	testing	the
type	of	a	file;	the	functions	here	are	useful	when	you	are	doing	multiple
tests	of	 the	same	file	and	wish	to	avoid	the	overhead	of	 the	stat()
system	 call	 for	 each	 test.	 These	 are	 also	 useful	 when	 checking	 for
information	about	a	 file	 that	 isn’t	handled	by	os.path,	 like	 the	 tests
for	block	and	character	devices.

Example:

import	os,	sys

from	stat	import	*

def	walktree(top,	callback):

				'''recursively	descend	the	directory	tree	rooted	at	top,

							calling	the	callback	function	for	each	regular	file'''

				for	f	in	os.listdir(top):

								pathname	=	os.path.join(top,	f)

								mode	=	os.stat(pathname).st_mode

								if	S_ISDIR(mode):

												#	It's	a	directory,	recurse	into	it

												walktree(pathname,	callback)

								elif	S_ISREG(mode):

												#	It's	a	file,	call	the	callback	function

												callback(pathname)

								else:

												#	Unknown	file	type,	print	a	message

												print('Skipping	%s'	%	pathname)

def	visitfile(file):

				print('visiting',	file)

if	__name__	==	'__main__':

				walktree(sys.argv[1],	visitfile)

An	 additional	 utility	 function	 is	 provided	 to	 covert	 a	 file’s	 mode	 in	 a
human	readable	string:

stat.filemode(mode)
Convert	a	file’s	mode	to	a	string	of	the	form	‘-rwxrwxrwx’.

New	in	version	3.3.

Changed	 in	 version	 3.4:	 The	 function	 supports	 S_IFDOOR,
S_IFPORT	and	S_IFWHT.

All	 the	variables	below	are	simply	symbolic	 indexes	 into	 the	10-tuple
returned	by	os.stat(),	os.fstat()	or	os.lstat().

stat.ST_MODE

Inode	protection	mode.

stat.ST_INO

Inode	number.

stat.ST_DEV

Device	inode	resides	on.

stat.ST_NLINK

Number	of	links	to	the	inode.

stat.ST_UID

User	id	of	the	owner.

stat.ST_GID

Group	id	of	the	owner.

stat.ST_SIZE

Size	in	bytes	of	a	plain	file;	amount	of	data	waiting	on	some	special

files.

stat.ST_ATIME

Time	of	last	access.

stat.ST_MTIME

Time	of	last	modification.

stat.ST_CTIME

The	 “ctime”	 as	 reported	 by	 the	 operating	 system.	 On	 some
systems	(like	Unix)	is	the	time	of	the	last	metadata	change,	and,	on
others	 (like	 Windows),	 is	 the	 creation	 time	 (see	 platform
documentation	for	details).

The	interpretation	of	“file	size”	changes	according	to	the	file	type.	For
plain	 files	 this	 is	 the	size	of	 the	 file	 in	bytes.	For	FIFOs	and	sockets
under	most	flavors	of	Unix	(including	Linux	in	particular),	 the	“size”	 is
the	 number	 of	 bytes	 waiting	 to	 be	 read	 at	 the	 time	 of	 the	 call	 to
os.stat(),	os.fstat(),	or	os.lstat();	 this	can	sometimes	be
useful,	 especially	 for	 polling	 one	 of	 these	 special	 files	 after	 a	 non-
blocking	open.	The	meaning	of	 the	size	 field	 for	other	 character	and
block	 devices	 varies	 more,	 depending	 on	 the	 implementation	 of	 the
underlying	system	call.

The	variables	below	define	the	flags	used	in	the	ST_MODE	field.

Use	of	the	functions	above	is	more	portable	than	use	of	the	first	set	of
flags:

stat.S_IFSOCK

Socket.

stat.S_IFLNK

Symbolic	link.

stat.S_IFREG

Regular	file.

stat.S_IFBLK

Block	device.

stat.S_IFDIR

Directory.

stat.S_IFCHR

Character	device.

stat.S_IFIFO

FIFO.

stat.S_IFDOOR

Door.

New	in	version	3.4.

stat.S_IFPORT

Event	port.

New	in	version	3.4.

stat.S_IFWHT

Whiteout.

New	in	version	3.4.

Note: 	S_IFDOOR,	S_IFPORT	or	S_IFWHT	are	defined	as	0	when
the	platform	does	not	have	support	for	the	file	types.

The	 following	 flags	 can	 also	 be	 used	 in	 the	 mode	 argument	 of
os.chmod():

stat.S_ISUID

Set	UID	bit.

stat.S_ISGID

Set-group-ID	bit.	This	bit	has	several	special	uses.	For	a	directory	it
indicates	that	BSD	semantics	 is	to	be	used	for	that	directory:	 files
created	there	inherit	their	group	ID	from	the	directory,	not	from	the
effective	group	ID	of	 the	creating	process,	and	directories	created
there	 will	 also	 get	 the	 S_ISGID	 bit	 set.	 For	 a	 file	 that	 does	 not
have	 the	group	execution	bit	 (S_IXGRP)	 set,	 the	 set-group-ID	bit
indicates	mandatory	file/record	locking	(see	also	S_ENFMT).

stat.S_ISVTX

Sticky	bit.	When	this	bit	is	set	on	a	directory	it	means	that	a	file	in
that	directory	can	be	renamed	or	deleted	only	by	the	owner	of	the
file,	by	the	owner	of	the	directory,	or	by	a	privileged	process.

stat.S_IRWXU

Mask	for	file	owner	permissions.

stat.S_IRUSR

Owner	has	read	permission.

stat.S_IWUSR

Owner	has	write	permission.

stat.S_IXUSR

Owner	has	execute	permission.

stat.S_IRWXG

Mask	for	group	permissions.

stat.S_IRGRP

Group	has	read	permission.

stat.S_IWGRP

Group	has	write	permission.

stat.S_IXGRP

Group	has	execute	permission.

stat.S_IRWXO

Mask	for	permissions	for	others	(not	in	group).

stat.S_IROTH

Others	have	read	permission.

stat.S_IWOTH

Others	have	write	permission.

stat.S_IXOTH

Others	have	execute	permission.

stat.S_ENFMT

System	 V	 file	 locking	 enforcement.	 This	 flag	 is	 shared	 with
S_ISGID:	 file/record	 locking	 is	enforced	on	 files	 that	do	not	have
the	group	execution	bit	(S_IXGRP)	set.

stat.S_IREAD

Unix	V7	synonym	for	S_IRUSR.

stat.S_IWRITE

Unix	V7	synonym	for	S_IWUSR.

stat.S_IEXEC

Unix	V7	synonym	for	S_IXUSR.

The	 following	 flags	 can	 be	 used	 in	 the	 flags	 argument	 of
os.chflags():

stat.UF_NODUMP

Do	not	dump	the	file.

stat.UF_IMMUTABLE

The	file	may	not	be	changed.

stat.UF_APPEND

The	file	may	only	be	appended	to.

stat.UF_OPAQUE

The	directory	is	opaque	when	viewed	through	a	union	stack.

stat.UF_NOUNLINK

The	file	may	not	be	renamed	or	deleted.

stat.UF_COMPRESSED

The	file	is	stored	compressed	(Mac	OS	X	10.6+).

stat.UF_HIDDEN

The	file	should	not	be	displayed	in	a	GUI	(Mac	OS	X	10.5+).

stat.SF_ARCHIVED

The	file	may	be	archived.

stat.SF_IMMUTABLE

The	file	may	not	be	changed.

stat.SF_APPEND

The	file	may	only	be	appended	to.

stat.SF_NOUNLINK

The	file	may	not	be	renamed	or	deleted.

stat.SF_SNAPSHOT

The	file	is	a	snapshot	file.

See	 the	 *BSD	 or	 Mac	 OS	 systems	 man	 page	 chflags(2)	 for	 more
information.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.5.	filecmp	—	File	and
Directory	Comparisons
Source	code:	Lib/filecmp.py

The	 filecmp	 module	 defines	 functions	 to	 compare	 files	 and
directories,	 with	 various	 optional	 time/correctness	 trade-offs.	 For
comparing	files,	see	also	the	difflib	module.

The	filecmp	module	defines	the	following	functions:

filecmp.cmp(f1,	f2,	shallow=True)
Compare	 the	 files	named	 f1	and	 f2,	 returning	True	 if	 they	 seem
equal,	False	otherwise.

If	 shallow	 is	 true,	 files	 with	 identical	 os.stat()	 signatures	 are
taken	 to	 be	 equal.	 Otherwise,	 the	 contents	 of	 the	 files	 are
compared.

Note	that	no	external	programs	are	called	from	this	function,	giving
it	portability	and	efficiency.

This	 function	uses	a	cache	 for	past	 comparisons	and	 the	 results,
with	cache	entries	invalidated	if	the	os.stat()	information	for	the
file	 changes.	 The	 entire	 cache	 may	 be	 cleared	 using
clear_cache().

filecmp.cmpfiles(dir1,	dir2,	common,	shallow=True)
Compare	the	files	in	the	two	directories	dir1	and	dir2	whose	names
are	given	by	common.

http://hg.python.org/cpython/file/3.4/Lib/filecmp.py

Returns	 three	 lists	of	 file	names:	match,	mismatch,	errors.	match
contains	 the	 list	of	 files	 that	match,	mismatch	contains	 the	names
of	those	that	don’t,	and	errors	 lists	 the	names	of	 files	which	could
not	be	compared.	Files	are	listed	in	errors	if	they	don’t	exist	in	one
of	the	directories,	the	user	 lacks	permission	to	read	them	or	 if	 the
comparison	could	not	be	done	for	some	other	reason.

The	shallow	parameter	has	the	same	meaning	and	default	value	as
for	filecmp.cmp().

For	 example,	 cmpfiles('a',	 'b',	 ['c',	 'd/e'])	 will
compare	a/c	with	b/c	and	a/d/e	with	b/d/e.	'c'	and	'd/e'
will	each	be	in	one	of	the	three	returned	lists.

filecmp.clear_cache()
Clear	the	filecmp	cache.	This	may	be	useful	if	a	file	is	compared	so
quickly	after	it	is	modified	that	it	is	within	the	mtime	resolution	of	the
underlying	filesystem.

New	in	version	3.4.

11.5.1.	The	dircmp	class

class	filecmp.dircmp(a,	b,	ignore=None,	hide=None)
Construct	 a	 new	 directory	 comparison	 object,	 to	 compare	 the
directories	a	and	b.	ignore	is	a	list	of	names	to	ignore,	and	defaults
to	filecmp.DEFAULT_IGNORES.	hide	 is	a	 list	of	names	 to	hide,
and	defaults	to	[os.curdir,	os.pardir].

The	 dircmp	 class	 compares	 files	 by	 doing	shallow	 comparisons
as	described	for	filecmp.cmp().

The	dircmp	class	provides	the	following	methods:

report()
Print	(to	sys.stdout)	a	comparison	between	a	and	b.

report_partial_closure()
Print	 a	 comparison	 between	a	 and	b	 and	 common	 immediate
subdirectories.

report_full_closure()
Print	 a	 comparison	 between	 a	 and	 b	 and	 common
subdirectories	(recursively).

The	 dircmp	 class	 offers	 a	 number	 of	 interesting	 attributes	 that
may	be	used	to	get	various	bits	of	 information	about	 the	directory
trees	being	compared.

Note	that	via	__getattr__()	hooks,	all	attributes	are	computed
lazily,	so	there	is	no	speed	penalty	if	only	those	attributes	which	are
lightweight	to	compute	are	used.

left

The	directory	a.

right

The	directory	b.

left_list

Files	and	subdirectories	in	a,	filtered	by	hide	and	ignore.

right_list

Files	and	subdirectories	in	b,	filtered	by	hide	and	ignore.

common

Files	and	subdirectories	in	both	a	and	b.

left_only

Files	and	subdirectories	only	in	a.

right_only

Files	and	subdirectories	only	in	b.

common_dirs

Subdirectories	in	both	a	and	b.

common_files

Files	in	both	a	and	b.

common_funny

Names	in	both	a	and	b,	such	that	 the	type	differs	between	the
directories,	or	names	for	which	os.stat()	reports	an	error.

same_files

Files	which	are	 identical	 in	both	a	and	b,	using	 the	class’s	 file
comparison	operator.

diff_files

Files	which	are	in	both	a	and	b,	whose	contents	differ	according
to	the	class’s	file	comparison	operator.

funny_files

Files	which	are	in	both	a	and	b,	but	could	not	be	compared.

subdirs

A	 dictionary	 mapping	 names	 in	 common_dirs	 to	 dircmp
objects.

filecmp.DEFAULT_IGNORES

New	in	version	3.4.

List	of	directories	ignored	by	dircmp	by	default.

Here	is	a	simplified	example	of	using	the	subdirs	attribute	to	search
recursively	through	two	directories	to	show	common	different	files:

>>>	from	filecmp	import	dircmp

>>>	def	print_diff_files(dcmp):

...					for	name	in	dcmp.diff_files:

...									print("diff_file	%s	found	in	%s	and	%s"	

...															dcmp.right))

...					for	sub_dcmp	in	dcmp.subdirs.values():

...									print_diff_files(sub_dcmp)

...

>>>	dcmp	=	dircmp('dir1',	'dir2')	

>>>	print_diff_files(dcmp)	

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.6.	tempfile	—	Generate
temporary	files	and	directories
Source	code:	Lib/tempfile.py

This	module	generates	temporary	files	and	directories.	It	works	on	all
supported	 platforms.	 It	 provides	 three	 new	 functions,
NamedTemporaryFile(),	 mkstemp(),	 and	 mkdtemp(),	 which
should	 eliminate	 all	 remaining	 need	 to	 use	 the	 insecure	 mktemp()
function.	 Temporary	 file	 names	 created	 by	 this	 module	 no	 longer
contain	 the	 process	 ID;	 instead	 a	 string	 of	 six	 random	 characters	 is
used.

Also,	 all	 the	 user-callable	 functions	 now	 take	 additional	 arguments
which	 allow	 direct	 control	 over	 the	 location	 and	 name	 of	 temporary
files.	 It	 is	no	 longer	necessary	 to	use	 the	global	 tempdir	 variable.	To
maintain	backward	compatibility,	the	argument	order	is	somewhat	odd;
it	is	recommended	to	use	keyword	arguments	for	clarity.

The	module	defines	the	following	user-callable	items:

tempfile.TemporaryFile(mode='w+b',	buffering=None,
encoding=None,	newline=None,	suffix='',	prefix='tmp',	dir=None)

Return	a	 file-like	object	 that	 can	be	used	as	a	 temporary	 storage
area.	The	file	is	created	using	mkstemp().	It	will	be	destroyed	as
soon	as	 it	 is	closed	(including	an	 implicit	close	when	the	object	 is
garbage	 collected).	 Under	 Unix,	 the	 directory	 entry	 for	 the	 file	 is
removed	 immediately	 after	 the	 file	 is	 created.	Other	 platforms	 do
not	 support	 this;	 your	 code	 should	 not	 rely	 on	 a	 temporary	 file
created	using	 this	 function	having	or	not	having	a	visible	name	 in

http://hg.python.org/cpython/file/3.4/Lib/tempfile.py

the	file	system.

The	mode	parameter	defaults	to	'w+b'	so	that	the	file	created	can
be	read	and	written	without	being	closed.	Binary	mode	is	used	so
that	 it	behaves	consistently	on	all	platforms	without	regard	for	 the
data	that	is	stored.	buffering,	encoding	and	newline	are	interpreted
as	for	open().

The	dir,	prefix	and	suffix	parameters	are	passed	to	mkstemp().

The	 returned	 object	 is	 a	 true	 file	 object	 on	 POSIX	 platforms.	On
other	platforms,	 it	 is	a	 file-like	object	whose	file	 attribute	 is	 the
underlying	 true	 file	 object.	 This	 file-like	 object	 can	 be	 used	 in	 a
with	statement,	just	like	a	normal	file.

tempfile.NamedTemporaryFile(mode='w+b',
buffering=None,	encoding=None,	newline=None,	suffix='',	prefix='tmp',
dir=None,	delete=True)

This	 function	 operates	 exactly	 as	 TemporaryFile()	 does,
except	that	the	file	is	guaranteed	to	have	a	visible	name	in	the	file
system	 (on	 Unix,	 the	 directory	 entry	 is	 not	 unlinked).	 That	 name
can	be	retrieved	from	the	name	attribute	of	the	file	object.	Whether
the	 name	 can	 be	 used	 to	 open	 the	 file	 a	 second	 time,	while	 the
named	 temporary	 file	 is	 still	 open,	 varies	across	platforms	 (it	 can
be	so	used	on	Unix;	it	cannot	on	Windows	NT	or	later).	If	delete	is
true	 (the	 default),	 the	 file	 is	 deleted	 as	 soon	 as	 it	 is	 closed.	 The
returned	object	is	always	a	file-like	object	whose	file	attribute	is
the	underlying	true	file	object.	This	file-like	object	can	be	used	in	a
with	statement,	just	like	a	normal	file.

tempfile.SpooledTemporaryFile(max_size=0,	mode='w+b',
buffering=None,	encoding=None,	newline=None,	suffix='',	prefix='tmp',
dir=None)

This	 function	 operates	 exactly	 as	 TemporaryFile()	 does,
except	 that	 data	 is	 spooled	 in	memory	until	 the	 file	 size	exceeds
max_size,	or	until	 the	 file’s	fileno()	method	 is	called,	at	which
point	 the	 contents	 are	 written	 to	 disk	 and	 operation	 proceeds	 as
with	TemporaryFile().

The	resulting	file	has	one	additional	method,	rollover(),	which
causes	the	file	to	roll	over	to	an	on-disk	file	regardless	of	its	size.

The	 returned	 object	 is	 a	 file-like	 object	whose	 _file	 attribute	 is
either	 a	 io.BytesIO	 or	 io.StringIO	 object	 (depending	 on
whether	 binary	 or	 text	mode	 was	 specified)	 or	 a	 true	 file	 object,
depending	on	whether	rollover()	has	been	called.	This	file-like
object	can	be	used	in	a	with	statement,	just	like	a	normal	file.

Changed	in	version	3.3:	the	truncate	method	now	accepts	a	size
argument.

tempfile.TemporaryDirectory(suffix='',	prefix='tmp',
dir=None)

This	function	creates	a	temporary	directory	using	mkdtemp()	(the
supplied	arguments	are	passed	directly	to	the	underlying	function).
The	resulting	object	can	be	used	as	a	context	manager	(see	With
Statement	 Context	 Managers).	 On	 completion	 of	 the	 context	 or
destruction	 of	 the	 temporary	 directory	 object	 the	 newly	 created
temporary	 directory	 and	 all	 its	 contents	 are	 removed	 from	 the
filesystem.

The	directory	name	can	be	retrieved	from	the	name	attribute	of	the
returned	 object.	 When	 the	 returned	 object	 is	 used	 as	 a	 context
manager,	the	name	will	be	assigned	to	the	target	of	the	as	clause
in	the	with	statement,	if	there	is	one.

The	 directory	 can	 be	 explicitly	 cleaned	 up	 by	 calling	 the
cleanup()	method.

New	in	version	3.2.

tempfile.mkstemp(suffix='',	prefix='tmp',	dir=None,	text=False)
Creates	 a	 temporary	 file	 in	 the	 most	 secure	 manner	 possible.
There	 are	 no	 race	 conditions	 in	 the	 file’s	 creation,	 assuming	 that
the	 platform	 properly	 implements	 the	 os.O_EXCL	 flag	 for
os.open().	The	file	is	readable	and	writable	only	by	the	creating
user	ID.	If	 the	platform	uses	permission	bits	 to	 indicate	whether	a
file	 is	 executable,	 the	 file	 is	 executable	 by	 no	 one.	 The	 file
descriptor	is	not	inherited	by	child	processes.

Unlike	TemporaryFile(),	the	user	of	mkstemp()	is	responsible
for	deleting	the	temporary	file	when	done	with	it.

If	suffix	is	specified,	the	file	name	will	end	with	that	suffix,	otherwise
there	will	be	no	suffix.	mkstemp()	does	not	put	a	dot	between	the
file	name	and	the	suffix;	if	you	need	one,	put	it	at	the	beginning	of
suffix.

If	 prefix	 is	 specified,	 the	 file	 name	 will	 begin	 with	 that	 prefix;
otherwise,	a	default	prefix	is	used.

If	dir	is	specified,	the	file	will	be	created	in	that	directory;	otherwise,
a	default	directory	 is	used.	The	default	directory	 is	chosen	 from	a
platform-dependent	 list,	but	the	user	of	the	application	can	control
the	 directory	 location	 by	 setting	 the	 TMPDIR,	 TEMP	 or	 TMP
environment	 variables.	 There	 is	 thus	 no	 guarantee	 that	 the
generated	 filename	 will	 have	 any	 nice	 properties,	 such	 as	 not
requiring	 quoting	 when	 passed	 to	 external	 commands	 via
os.popen().

If	 text	 is	 specified,	 it	 indicates	 whether	 to	 open	 the	 file	 in	 binary
mode	(the	default)	or	text	mode.	On	some	platforms,	this	makes	no
difference.

mkstemp()	 returns	 a	 tuple	 containing	 an	OS-level	 handle	 to	 an
open	file	(as	would	be	returned	by	os.open())	and	the	absolute
pathname	of	that	file,	in	that	order.

tempfile.mkdtemp(suffix='',	prefix='tmp',	dir=None)
Creates	a	temporary	directory	in	the	most	secure	manner	possible.
There	 are	 no	 race	 conditions	 in	 the	 directory’s	 creation.	 The
directory	is	readable,	writable,	and	searchable	only	by	the	creating
user	ID.

The	user	of	mkdtemp()	 is	 responsible	 for	deleting	the	temporary
directory	and	its	contents	when	done	with	it.

The	 prefix,	 suffix,	 and	 dir	 arguments	 are	 the	 same	 as	 for
mkstemp().

mkdtemp()	returns	the	absolute	pathname	of	the	new	directory.

tempfile.mktemp(suffix='',	prefix='tmp',	dir=None)

Deprecated	since	version	2.3:	Use	mkstemp()	instead.

Return	an	absolute	pathname	of	a	file	that	did	not	exist	at	the	time
the	call	is	made.	The	prefix,	suffix,	and	dir	arguments	are	the	same
as	for	mkstemp().

Warning: 	Use	of	 this	 function	may	 introduce	a	security	hole	 in
your	program.	By	the	time	you	get	around	to	doing	anything	with
the	 file	name	 it	 returns,	 someone	else	may	have	beaten	you	 to
the	 punch.	 mktemp()	 usage	 can	 be	 replaced	 easily	 with

NamedTemporaryFile(),	 passing	 it	 the	 delete=False

parameter:

>>>	f	=	NamedTemporaryFile(delete=False)

>>>	f.name

'/tmp/tmptjujjt'

>>>	f.write(b"Hello	World!\n")

13

>>>	f.close()

>>>	os.unlink(f.name)

>>>	os.path.exists(f.name)

False

The	module	 uses	 two	 global	 variables	 that	 tell	 it	 how	 to	 construct	 a
temporary	 name.	 They	 are	 initialized	 at	 the	 first	 call	 to	 any	 of	 the
functions	above.	The	caller	may	change	them,	but	this	is	discouraged;
use	the	appropriate	function	arguments,	instead.

tempfile.tempdir

When	 set	 to	 a	 value	 other	 than	 None,	 this	 variable	 defines	 the
default	value	for	the	dir	argument	to	all	the	functions	defined	in	this
module.

If	 tempdir	 is	 unset	 or	 None	 at	 any	 call	 to	 any	 of	 the	 above
functions,	Python	 searches	a	 standard	 list	 of	 directories	and	 sets
tempdir	 to	 the	 first	 one	which	 the	 calling	 user	 can	 create	 files	 in.
The	list	is:

1.	 The	directory	named	by	the	TMPDIR	environment	variable.
2.	 The	directory	named	by	the	TEMP	environment	variable.
3.	 The	directory	named	by	the	TMP	environment	variable.
4.	 A	platform-specific	location:

On	Windows,	the	directories	C:\TEMP,	C:\TMP,	\TEMP,

and	\TMP,	in	that	order.
On	all	other	platforms,	 the	directories	/tmp,	 /var/tmp,
and	/usr/tmp,	in	that	order.

5.	 As	a	last	resort,	the	current	working	directory.

tempfile.gettempdir()
Return	the	directory	currently	selected	to	create	temporary	files	in.
If	tempdir	is	not	None,	this	simply	returns	its	contents;	otherwise,
the	search	described	above	is	performed,	and	the	result	returned.

tempfile.gettempprefix()
Return	the	filename	prefix	used	to	create	temporary	files.	This	does
not	contain	the	directory	component.

11.6.1.	Examples

Here	are	some	examples	of	typical	usage	of	the	tempfile	module:

>>>	import	tempfile

#	create	a	temporary	file	and	write	some	data	to	it

>>>	fp	=	tempfile.TemporaryFile()

>>>	fp.write(b'Hello	world!')

#	read	data	from	file

>>>	fp.seek(0)

>>>	fp.read()

b'Hello	world!'

#	close	the	file,	it	will	be	removed

>>>	fp.close()

#	create	a	temporary	file	using	a	context	manager

>>>	with	tempfile.TemporaryFile()	as	fp:

...					fp.write(b'Hello	world!')

...					fp.seek(0)

...					fp.read()

b'Hello	world!'

>>>

#	file	is	now	closed	and	removed

#	create	a	temporary	directory	using	the	context	manager

>>>	with	tempfile.TemporaryDirectory()	as	tmpdirname

...					print('created	temporary	directory',	tmpdirname

>>>

#	directory	and	contents	have	been	removed

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.7.	glob	—	Unix	style	pathname
pattern	expansion
Source	code:	Lib/glob.py

The	 glob	 module	 finds	 all	 the	 pathnames	 matching	 a	 specified
pattern	 according	 to	 the	 rules	 used	 by	 the	 Unix	 shell.	 No	 tilde
expansion	is	done,	but	*,	?,	and	character	ranges	expressed	with	[]
will	be	correctly	matched.	This	 is	done	by	using	 the	os.listdir()
and	 fnmatch.fnmatch()	 functions	 in	 concert,	 and	 not	 by	 actually
invoking	 a	 subshell.	 Note	 that	 unlike	 fnmatch.fnmatch(),	 glob
treats	 filenames	beginning	with	a	dot	 (.)	as	special	 cases.	 (For	 tilde
and	 shell	 variable	 expansion,	 use	 os.path.expanduser()	 and
os.path.expandvars().)

For	 a	 literal	 match,	 wrap	 the	 meta-characters	 in	 brackets.	 For
example,	'[?]'	matches	the	character	'?'.

See	also: 	The	pathlib	module	offers	high-level	path	objects.

glob.glob(pathname)
Return	a	possibly-empty	 list	of	path	names	 that	match	pathname,
which	must	be	a	 string	 containing	a	path	 specification.	pathname
can	be	either	absolute	(like	/usr/src/Python-1.5/Makefile)
or	 relative	 (like	../../Tools/*/*.gif),	 and	 can	 contain	 shell-
style	wildcards.	Broken	symlinks	are	 included	 in	 the	results	 (as	 in
the	shell).

glob.iglob(pathname)

http://hg.python.org/cpython/file/3.4/Lib/glob.py

Return	an	iterator	which	yields	the	same	values	as	glob()	without
actually	storing	them	all	simultaneously.

glob.escape(pathname)
Escape	all	special	characters	('?',	'*'	and	'[').	This	is	useful	if
you	want	to	match	an	arbitrary	 literal	string	that	may	have	special
characters	 in	 it.	 Special	 characters	 in	 drive/UNC	 sharepoints	 are
not	 escaped,	 e.g.	 on	 Windows	 escape('//?/c:/Quo

vadis?.txt')	returns	'//?/c:/Quo	vadis[?].txt'.

New	in	version	3.4.

For	 example,	 consider	 a	 directory	 containing	 only	 the	 following	 files:
1.gif,	 2.txt,	 and	 card.gif.	 glob()	 will	 produce	 the	 following
results.	Notice	how	any	leading	components	of	the	path	are	preserved.

>>>	import	glob

>>>	glob.glob('./[0-9].*')

['./1.gif',	'./2.txt']

>>>	glob.glob('*.gif')

['1.gif',	'card.gif']

>>>	glob.glob('?.gif')

['1.gif']

If	the	directory	contains	files	starting	with	.	they	won’t	be	matched	by
default.	For	example,	consider	a	directory	containing	card.gif	 and
.card.gif:

>>>	import	glob

>>>	glob.glob('*.gif')

['card.gif']

>>>	glob.glob('.c*')

['.card.gif']

See	also:

Module	fnmatch
Shell-style	filename	(not	path)	expansion

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.8.	fnmatch	—	Unix	filename
pattern	matching
Source	code:	Lib/fnmatch.py

This	module	provides	support	for	Unix	shell-style	wildcards,	which	are
not	the	same	as	regular	expressions	(which	are	documented	in	the	re
module).	The	special	characters	used	in	shell-style	wildcards	are:

Pattern Meaning

* matches	everything

? matches	any	single	character

[seq] matches	any	character	in	seq

[!seq]
matches	any	character	not	in
seq

For	 a	 literal	 match,	 wrap	 the	 meta-characters	 in	 brackets.	 For
example,	'[?]'	matches	the	character	'?'.

Note	 that	 the	 filename	separator	 ('/'	on	Unix)	 is	not	 special	 to	 this
module.	 See	 module	 glob	 for	 pathname	 expansion	 (glob	 uses
fnmatch()	 to	 match	 pathname	 segments).	 Similarly,	 filenames
starting	with	a	period	are	not	special	for	this	module,	and	are	matched
by	the	*	and	?	patterns.

fnmatch.fnmatch(filename,	pattern)
Test	 whether	 the	 filename	 string	 matches	 the	 pattern	 string,
returning	 True	 or	 False.	 If	 the	 operating	 system	 is	 case-

http://hg.python.org/cpython/file/3.4/Lib/fnmatch.py

insensitive,	then	both	parameters	will	be	normalized	to	all	lower-	or
upper-case	before	the	comparison	is	performed.	fnmatchcase()
can	be	used	to	perform	a	case-sensitive	comparison,	regardless	of
whether	that’s	standard	for	the	operating	system.

This	 example	will	 print	 all	 file	 names	 in	 the	 current	 directory	with
the	extension	.txt:

import	fnmatch

import	os

for	file	in	os.listdir('.'):

				if	fnmatch.fnmatch(file,	'*.txt'):

								print(file)

fnmatch.fnmatchcase(filename,	pattern)
Test	whether	filename	matches	pattern,	returning	True	or	False;
the	comparison	is	case-sensitive.

fnmatch.filter(names,	pattern)
Return	the	subset	of	the	list	of	names	that	match	pattern.	 It	 is	 the
same	as	[n	for	n	in	names	if	fnmatch(n,	pattern)],
but	implemented	more	efficiently.

fnmatch.translate(pattern)
Return	the	shell-style	pattern	converted	to	a	regular	expression.

Example:

>>>	import	fnmatch,	re

>>>

>>>	regex	=	fnmatch.translate('*.txt')

>>>	regex

'.*\\.txt$'

>>>	reobj	=	re.compile(regex)

>>>	reobj.match('foobar.txt')

<_sre.SRE_Match	object;	span=(0,	10),	match='foobar.txt'>

See	also:

Module	glob
Unix	shell-style	path	expansion.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.9.	linecache	—	Random
access	to	text	lines
Source	code:	Lib/linecache.py

The	linecache	module	allows	one	to	get	any	line	from	any	file,	while
attempting	 to	 optimize	 internally,	 using	 a	 cache,	 the	 common	 case
where	 many	 lines	 are	 read	 from	 a	 single	 file.	 This	 is	 used	 by	 the
traceback	 module	 to	 retrieve	 source	 lines	 for	 inclusion	 in	 the
formatted	traceback.

The	linecache	module	defines	the	following	functions:

linecache.getline(filename,	lineno,	module_globals=None)
Get	 line	 lineno	 from	 file	 named	 filename.	 This	 function	will	 never
raise	 an	 exception	—	 it	 will	 return	 ''	 on	 errors	 (the	 terminating
newline	character	will	be	included	for	lines	that	are	found).

If	a	file	named	 filename	 is	not	found,	the	function	will	 look	for	 it	 in
the	module	search	path,	sys.path,	after	first	checking	for	a	PEP
302	 __loader__	 in	 module_globals,	 in	 case	 the	 module	 was
imported	from	a	zipfile	or	other	non-filesystem	import	source.

linecache.clearcache()
Clear	the	cache.	Use	this	function	if	you	no	longer	need	lines	from
files	previously	read	using	getline().

linecache.checkcache(filename=None)
Check	the	cache	for	validity.	Use	this	 function	 if	 files	 in	 the	cache
may	have	changed	on	disk,	and	you	require	the	updated	version.	If

http://hg.python.org/cpython/file/3.4/Lib/linecache.py
http://www.python.org/dev/peps/pep-0302

filename	is	omitted,	it	will	check	all	the	entries	in	the	cache.

Example:

>>>	import	linecache

>>>	linecache.getline('/etc/passwd',	4)

'sys:x:3:3:sys:/dev:/bin/sh\n'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.10.	shutil	—	High-level	file
operations
Source	code:	Lib/shutil.py

The	shutil	module	offers	a	number	of	high-level	operations	on	files
and	 collections	 of	 files.	 In	 particular,	 functions	 are	 provided	 which
support	 file	 copying	 and	 removal.	 For	 operations	 on	 individual	 files,
see	also	the	os	module.

Warning: 	Even	the	higher-level	file	copying	functions
(shutil.copy(),	shutil.copy2())	cannot	copy	all	file
metadata.

On	POSIX	platforms,	 this	means	 that	 file	owner	and	group	are	 lost
as	well	as	ACLs.	On	Mac	OS,	the	resource	fork	and	other	metadata
are	not	used.	This	means	that	resources	will	be	lost	and	file	type	and
creator	 codes	 will	 not	 be	 correct.	 On	Windows,	 file	 owners,	 ACLs
and	alternate	data	streams	are	not	copied.

http://hg.python.org/cpython/file/3.4/Lib/shutil.py

11.10.1.	Directory	and	files	operations

shutil.copyfileobj(fsrc,	fdst[,	length])
Copy	 the	 contents	 of	 the	 file-like	 object	 fsrc	 to	 the	 file-like	 object
fdst.	The	 integer	 length,	 if	given,	 is	 the	buffer	size.	 In	particular,	a
negative	length	value	means	to	copy	the	data	without	looping	over
the	source	data	in	chunks;	by	default	the	data	is	read	in	chunks	to
avoid	 uncontrolled	memory	 consumption.	 Note	 that	 if	 the	 current
file	position	of	 the	 fsrc	 object	 is	not	0,	only	 the	contents	 from	 the
current	file	position	to	the	end	of	the	file	will	be	copied.

shutil.copyfile(src,	dst,	*,	follow_symlinks=True)
Copy	 the	 contents	 (no	 metadata)	 of	 the	 file	 named	 src	 to	 a	 file
named	dst	 and	 return	dst.	src	 and	 dst	 are	 path	 names	 given	 as
strings.	 dst	 must	 be	 the	 complete	 target	 file	 name;	 look	 at
shutil.copy()	for	a	copy	that	accepts	a	target	directory	path.	If
src	and	dst	specify	the	same	file,	SameFileError	is	raised.

The	destination	location	must	be	writable;	otherwise,	an	OSError
exception	 will	 be	 raised.	 If	 dst	 already	 exists,	 it	 will	 be	 replaced.
Special	 files	such	as	character	or	block	devices	and	pipes	cannot
be	copied	with	this	function.

If	 follow_symlinks	 is	 false	 and	 src	 is	 a	 symbolic	 link,	 a	 new
symbolic	 link	will	be	created	 instead	of	copying	 the	 file	src	 points
to.

Changed	 in	 version	 3.3:	 IOError	 used	 to	 be	 raised	 instead	 of
OSError.	Added	follow_symlinks	argument.	Now	returns	dst.

Changed	 in	 version	 3.4:	 Raise	 SameFileError	 instead	 of

Error.	Since	the	former	is	a	subclass	of	the	latter,	this	change	is
backward	compatible.

exception	shutil.SameFileError
This	exception	is	raised	if	source	and	destination	in	copyfile()
are	the	same	file.

New	in	version	3.4.

shutil.copymode(src,	dst,	*,	follow_symlinks=True)
Copy	the	permission	bits	from	src	to	dst.	The	file	contents,	owner,
and	 group	 are	 unaffected.	 src	 and	 dst	 are	 path	 names	 given	 as
strings.	 If	 follow_symlinks	 is	 false,	 and	 both	 src	 and	 dst	 are
symbolic	links,	copymode()	will	attempt	to	modify	the	mode	of	dst
itself	 (rather	 than	 the	 file	 it	 points	 to).	 This	 functionality	 is	 not
available	 on	 every	 platform;	 please	 see	 copystat()	 for	 more
information.	 If	 copymode()	 cannot	modify	 symbolic	 links	 on	 the
local	platform,	and	it	is	asked	to	do	so,	it	will	do	nothing	and	return.

Changed	in	version	3.3:	Added	follow_symlinks	argument.

shutil.copystat(src,	dst,	*,	follow_symlinks=True)
Copy	 the	permission	bits,	 last	access	 time,	 last	modification	 time,
and	flags	from	src	to	dst.	On	Linux,	copystat()	also	copies	 the
“extended	attributes”	where	possible.	The	file	contents,	owner,	and
group	are	unaffected.	src	and	dst	are	path	names	given	as	strings.

If	 follow_symlinks	 is	 false,	and	src	and	dst	 both	 refer	 to	 symbolic
links,	copystat()	will	operate	on	 the	symbolic	 links	 themselves
rather	 than	 the	 files	 the	 symbolic	 links	 refer	 to–reading	 the
information	 from	 the	src	symbolic	 link,	and	writing	 the	 information
to	the	dst	symbolic	link.

Note: 	Not	all	platforms	provide	the	ability	to	examine	and	modify
symbolic	 links.	 Python	 itself	 can	 tell	 you	 what	 functionality	 is
locally	available.

If	 os.chmod	 in	 os.supports_follow_symlinks	 is
True,	 copystat()	 can	 modify	 the	 permission	 bits	 of	 a
symbolic	link.
If	 os.utime	 in	 os.supports_follow_symlinks	 is
True,	 copystat()	 can	 modify	 the	 last	 access	 and
modification	times	of	a	symbolic	link.
If	os.chflags	in	os.supports_follow_symlinks	 is
True,	copystat()	can	modify	the	flags	of	a	symbolic	link.
(os.chflags	is	not	available	on	all	platforms.)

On	platforms	where	some	or	all	of	this	functionality	is	unavailable,
when	 asked	 to	 modify	 a	 symbolic	 link,	 copystat()	 will	 copy
everything	it	can.	copystat()	never	returns	failure.

Please	 see	 os.supports_follow_symlinks	 for	 more
information.

Changed	 in	 version	 3.3:	 Added	 follow_symlinks	 argument	 and
support	for	Linux	extended	attributes.

shutil.copy(src,	dst,	*,	follow_symlinks=True)
Copies	the	file	src	to	the	file	or	directory	dst.	src	and	dst	should	be
strings.	 If	dst	 specifies	 a	 directory,	 the	 file	will	 be	 copied	 into	dst
using	 the	 base	 filename	 from	 src.	Returns	 the	 path	 to	 the	 newly
created	file.

If	 follow_symlinks	 is	 false,	 and	 src	 is	 a	 symbolic	 link,	 dst	 will	 be
created	as	a	symbolic	 link.	 If	 follow_symlinks	 is	 true	and	src	 is	 a
symbolic	link,	dst	will	be	a	copy	of	the	file	src	refers	to.

copy()	 copies	 the	 file	 data	 and	 the	 file’s	 permission	mode	 (see

os.chmod()).	 Other	 metadata,	 like	 the	 file’s	 creation	 and
modification	 times,	 is	not	preserved.	To	preserve	all	 file	metadata
from	the	original,	use	copy2()	instead.

Changed	 in	 version	 3.3:	 Added	 follow_symlinks	 argument.	 Now
returns	path	to	the	newly	created	file.

shutil.copy2(src,	dst,	*,	follow_symlinks=True)
Identical	 to	 copy()	 except	 that	 copy2()	 also	 attempts	 to
preserve	all	file	metadata.

When	follow_symlinks	is	false,	and	src	is	a	symbolic	link,	copy2()
attempts	 to	 copy	 all	 metadata	 from	 the	 src	 symbolic	 link	 to	 the
newly-created	dst	 symbolic	 link.	However,	 this	 functionality	 is	 not
available	on	all	 platforms.	On	platforms	where	some	or	all	 of	 this
functionality	is	unavailable,	copy2()	will	preserve	all	the	metadata
it	can;	copy2()	never	returns	failure.

copy2()	uses	copystat()	to	copy	the	file	metadata.	Please	see
copystat()	 for	 more	 information	 about	 platform	 support	 for
modifying	symbolic	link	metadata.

Changed	 in	 version	 3.3:	Added	 follow_symlinks	 argument,	 try	 to
copy	extended	file	system	attributes	too	(currently	Linux	only).	Now
returns	path	to	the	newly	created	file.

shutil.ignore_patterns(*patterns)
This	 factory	 function	 creates	 a	 function	 that	 can	 be	 used	 as	 a
callable	 for	 copytree()‘s	 ignore	 argument,	 ignoring	 files	 and
directories	that	match	one	of	the	glob-style	patterns	provided.	See
the	example	below.

shutil.copytree(src,	dst,	symlinks=False,	ignore=None,

copy_function=copy2,	ignore_dangling_symlinks=False)
Recursively	 copy	 an	 entire	 directory	 tree	 rooted	 at	 src,	 returning
the	destination	directory.	The	destination	directory,	named	by	dst,
must	not	already	exist;	it	will	be	created	as	well	as	missing	parent
directories.	 Permissions	 and	 times	 of	 directories	 are	 copied	 with
copystat(),	individual	files	are	copied	using	shutil.copy2().

If	symlinks	is	true,	symbolic	links	in	the	source	tree	are	represented
as	symbolic	 links	 in	the	new	tree	and	the	metadata	of	 the	original
links	will	be	copied	as	far	as	the	platform	allows;	if	false	or	omitted,
the	contents	and	metadata	of	the	linked	files	are	copied	to	the	new
tree.

When	symlinks	 is	 false,	 if	 the	 file	 pointed	 by	 the	 symlink	 doesn’t
exist,	 a	 exception	 will	 be	 added	 in	 the	 list	 of	 errors	 raised	 in	 a
Error	exception	at	the	end	of	the	copy	process.	You	can	set	the
optional	 ignore_dangling_symlinks	 flag	 to	 true	 if	 you	 want	 to
silence	 this	 exception.	 Notice	 that	 this	 option	 has	 no	 effect	 on
platforms	that	don’t	support	os.symlink().

If	 ignore	 is	 given,	 it	 must	 be	 a	 callable	 that	 will	 receive	 as	 its
arguments	the	directory	being	visited	by	copytree(),	and	a	list	of
its	contents,	as	 returned	by	os.listdir().	Since	copytree()
is	called	recursively,	the	ignore	callable	will	be	called	once	for	each
directory	 that	 is	 copied.	 The	 callable	 must	 return	 a	 sequence	 of
directory	 and	 file	 names	 relative	 to	 the	 current	 directory	 (i.e.	 a
subset	of	the	items	in	its	second	argument);	these	names	will	then
be	 ignored	 in	 the	 copy	 process.	 ignore_patterns()	 can	 be
used	to	create	such	a	callable	that	ignores	names	based	on	glob-
style	patterns.

If	exception(s)	occur,	an	Error	is	raised	with	a	list	of	reasons.

If	copy_function	 is	given,	 it	must	be	a	callable	that	will	be	used	to
copy	 each	 file.	 It	 will	 be	 called	 with	 the	 source	 path	 and	 the
destination	 path	 as	 arguments.	 By	 default,	 shutil.copy2()	 is
used,	 but	 any	 function	 that	 supports	 the	 same	 signature	 (like
shutil.copy())	can	be	used.

Changed	 in	 version	 3.3:	Copy	 metadata	 when	 symlinks	 is	 false.
Now	returns	dst.

Changed	 in	version	3.2:	Added	the	copy_function	argument	 to	be
able	 to	 provide	 a	 custom	 copy	 function.	 Added	 the
ignore_dangling_symlinks	 argument	 to	 silent	 dangling	 symlinks
errors	when	symlinks	is	false.

shutil.rmtree(path,	ignore_errors=False,	onerror=None)
Delete	an	entire	directory	 tree;	path	must	point	 to	a	directory	 (but
not	 a	 symbolic	 link	 to	 a	 directory).	 If	 ignore_errors	 is	 true,	 errors
resulting	 from	 failed	 removals	 will	 be	 ignored;	 if	 false	 or	 omitted,
such	errors	are	handled	by	calling	a	handler	 specified	by	onerror
or,	if	that	is	omitted,	they	raise	an	exception.

Note: 	 On	 platforms	 that	 support	 the	 necessary	 fd-based
functions	a	symlink	attack	resistant	version	of	rmtree()	is	used
by	default.	On	other	platforms,	the	rmtree()	 implementation	 is
susceptible	 to	 a	 symlink	 attack:	 given	 proper	 timing	 and
circumstances,	 attackers	 can	 manipulate	 symlinks	 on	 the
filesystem	 to	 delete	 files	 they	 wouldn’t	 be	 able	 to	 access
otherwise.	 Applications	 can	 use	 the
rmtree.avoids_symlink_attacks	 function	 attribute	 to
determine	which	case	applies.

If	 onerror	 is	 provided,	 it	 must	 be	 a	 callable	 that	 accepts	 three

parameters:	function,	path,	and	excinfo.

The	 first	 parameter,	 function,	 is	 the	 function	 which	 raised	 the
exception;	 it	 depends	 on	 the	 platform	 and	 implementation.	 The
second	parameter,	path,	will	be	the	path	name	passed	to	function.
The	 third	 parameter,	 excinfo,	 will	 be	 the	 exception	 information
returned	by	sys.exc_info().	 Exceptions	 raised	 by	onerror	will
not	be	caught.

Changed	 in	version	3.3:	Added	a	symlink	attack	 resistant	version
that	is	used	automatically	if	platform	supports	fd-based	functions.

rmtree.avoids_symlink_attacks

Indicates	 whether	 the	 current	 platform	 and	 implementation
provides	 a	 symlink	 attack	 resistant	 version	 of	 rmtree().
Currently	 this	 is	 only	 true	 for	 platforms	 supporting	 fd-based
directory	access	functions.

New	in	version	3.3.

shutil.move(src,	dst)
Recursively	move	a	 file	or	directory	 (src)	 to	another	 location	 (dst)
and	return	the	destination.

If	the	destination	is	a	directory	or	a	symlink	to	a	directory,	then	src
is	moved	inside	that	directory.

The	destination	directory	must	not	already	exist.	 If	 the	destination
already	 exists	 but	 is	 not	 a	 directory,	 it	 may	 be	 overwritten
depending	on	os.rename()	semantics.

If	 the	destination	is	on	the	current	filesystem,	then	os.rename()
is	used.	Otherwise,	src	is	copied	(using	shutil.copy2())	to	dst

and	then	removed.	In	case	of	symlinks,	a	new	symlink	pointing	to
the	 target	 of	 src	 will	 be	 created	 in	 or	 as	 dst	 and	 src	 will	 be
removed.

Changed	in	version	3.3:	Added	explicit	symlink	handling	for	foreign
filesystems,	 thus	 adapting	 it	 to	 the	 behavior	 of	 GNU’s	mv.	 Now
returns	dst.

shutil.disk_usage(path)
Return	disk	usage	statistics	about	the	given	path	as	a	named	tuple
with	 the	 attributes	 total,	used	 and	 free,	 which	 are	 the	 amount	 of
total,	used	and	free	space,	in	bytes.

New	in	version	3.3.

Availability:	Unix,	Windows.

shutil.chown(path,	user=None,	group=None)
Change	owner	user	and/or	group	of	the	given	path.

user	 can	 be	 a	 system	 user	 name	 or	 a	 uid;	 the	 same	 applies	 to
group.	At	least	one	argument	is	required.

See	also	os.chown(),	the	underlying	function.

Availability:	Unix.

New	in	version	3.3.

shutil.which(cmd,	mode=os.F_OK	|	os.X_OK,	path=None)
Return	 the	path	 to	an	executable	which	would	be	 run	 if	 the	given
cmd	was	called.	If	no	cmd	would	be	called,	return	None.

mode	is	a	permission	mask	passed	a	to	os.access(),	by	default

determining	if	the	file	exists	and	executable.

When	no	path	is	specified,	the	results	of	os.environ()	are	used,
returning	either	the	“PATH”	value	or	a	fallback	of	os.defpath.

On	Windows,	the	current	directory	is	always	prepended	to	the	path
whether	or	not	you	use	 the	default	or	provide	your	own,	which	 is
the	 behavior	 the	 command	 shell	 uses	 when	 finding	 executables.
Additionaly,	 when	 finding	 the	 cmd	 in	 the	 path,	 the	 PATHEXT
environment	 variable	 is	 checked.	 For	 example,	 if	 you	 call
shutil.which("python"),	 which()	 will	 search	 PATHEXT	 to
know	 that	 it	 should	 look	 for	 python.exe	 within	 the	 path
directories.	For	example,	on	Windows:

>>>	shutil.which("python")

'C:\\Python33\\python.EXE'

New	in	version	3.3.

exception	shutil.Error
This	exception	collects	exceptions	that	are	raised	during	a	multi-file
operation.	For	copytree(),	the	exception	argument	is	a	list	of	3-
tuples	(srcname,	dstname,	exception).

11.10.1.1.	copytree	example

This	 example	 is	 the	 implementation	 of	 the	 copytree()	 function,
described	above,	with	the	docstring	omitted.	It	demonstrates	many	of
the	other	functions	provided	by	this	module.

def	copytree(src,	dst,	symlinks=False):

				names	=	os.listdir(src)

				os.makedirs(dst)

				errors	=	[]

				for	name	in	names:

								srcname	=	os.path.join(src,	name)

								dstname	=	os.path.join(dst,	name)

								try:

												if	symlinks	and	os.path.islink(srcname):

																linkto	=	os.readlink(srcname)

																os.symlink(linkto,	dstname)

												elif	os.path.isdir(srcname):

																copytree(srcname,	dstname,	symlinks)

												else:

																copy2(srcname,	dstname)

												#	XXX	What	about	devices,	sockets	etc.?

								except	OSError	as	why:

												errors.append((srcname,	dstname,	str(why

								#	catch	the	Error	from	the	recursive	copytree	so	that	we	can

								#	continue	with	other	files

								except	Error	as	err:

												errors.extend(err.args[0])

				try:

								copystat(src,	dst)

				except	OSError	as	why:

								#	can't	copy	file	access	times	on	Windows

								if	why.winerror	is	None:

												errors.extend((src,	dst,	str(why)))

				if	errors:

								raise	Error(errors)

Another	example	that	uses	the	ignore_patterns()	helper:

from	shutil	import	copytree,	ignore_patterns

copytree(source,	destination,	ignore=ignore_patterns

This	 will	 copy	 everything	 except	 .pyc	 files	 and	 files	 or	 directories

whose	name	starts	with	tmp.

Another	example	that	uses	the	ignore	argument	to	add	a	logging	call:

from	shutil	import	copytree

import	logging

def	_logpath(path,	names):

				logging.info('Working	in	%s'	%	path)

				return	[]			#	nothing	will	be	ignored

copytree(source,	destination,	ignore=_logpath)

11.10.2.	Archiving	operations

New	in	version	3.2.

High-level	 utilities	 to	 create	 and	 read	 compressed	 and	 archived	 files
are	also	provided.	They	rely	on	the	zipfile	and	tarfile	modules.

shutil.make_archive(base_name,	format[,	root_dir[,
base_dir[,	verbose[,	dry_run[,	owner[,	group[,	logger]]]]]]])

Create	an	archive	file	(such	as	zip	or	tar)	and	return	its	name.

base_name	 is	 the	 name	 of	 the	 file	 to	 create,	 including	 the	 path,
minus	any	 format-specific	extension.	 format	 is	 the	archive	 format:
one	of	“zip”,	“tar”,	“bztar”	(if	the	bz2	module	is	available)	or	“gztar”.

root_dir	 is	a	directory	that	will	be	the	root	directory	of	 the	archive;
for	 example,	 we	 typically	 chdir	 into	 root_dir	 before	 creating	 the
archive.

base_dir	 is	 the	 directory	 where	 we	 start	 archiving	 from;	 i.e.
base_dir	will	be	the	common	prefix	of	all	files	and	directories	in	the
archive.

root_dir	and	base_dir	both	default	to	the	current	directory.

owner	and	group	are	used	when	creating	a	tar	archive.	By	default,
uses	the	current	owner	and	group.

logger	 must	 be	 an	 object	 compatible	 with	 PEP	 282,	 usually	 an
instance	of	logging.Logger.

shutil.get_archive_formats()
Return	 a	 list	 of	 supported	 formats	 for	 archiving.	Each	 element	 of

http://www.python.org/dev/peps/pep-0282

the	returned	sequence	is	a	tuple	(name,	description)

By	default	shutil	provides	these	formats:

gztar:	gzip’ed	tar-file
bztar:	bzip2’ed	tar-file	(if	the	bz2	module	is	available.)
tar:	uncompressed	tar	file
zip:	ZIP	file

You	can	register	new	formats	or	provide	your	own	archiver	for	any
existing	formats,	by	using	register_archive_format().

shutil.register_archive_format(name,	function[,
extra_args[,	description]])

Register	an	archiver	for	the	format	name.	function	is	a	callable	that
will	be	used	to	invoke	the	archiver.

If	given,	extra_args	 is	a	sequence	of	(name,	value)	pairs	 that
will	 be	 used	 as	 extra	 keywords	 arguments	 when	 the	 archiver
callable	is	used.

description	 is	 used	 by	 get_archive_formats()	which	 returns
the	list	of	archivers.	Defaults	to	an	empty	list.

shutil.unregister_archive_format(name)
Remove	 the	 archive	 format	 name	 from	 the	 list	 of	 supported
formats.

shutil.unpack_archive(filename[,	extract_dir[,	format]])
Unpack	an	archive.	filename	is	the	full	path	of	the	archive.

extract_dir	is	the	name	of	the	target	directory	where	the	archive	is
unpacked.	If	not	provided,	the	current	working	directory	is	used.

format	 is	 the	archive	 format:	one	of	 “zip”,	 “tar”,	 or	 “gztar”.	Or	any
other	format	registered	with	register_unpack_format().	If	not
provided,	 unpack_archive()	 will	 use	 the	 archive	 file	 name
extension	and	see	if	an	unpacker	was	registered	for	that	extension.
In	case	none	is	found,	a	ValueError	is	raised.

shutil.register_unpack_format(name,	extensions,
function[,	extra_args[,	description]])

Registers	an	unpack	 format.	name	 is	 the	name	of	 the	 format	and
extensions	 is	a	 list	of	extensions	corresponding	to	the	format,	 like
.zip	for	Zip	files.

function	 is	 the	 callable	 that	will	 be	 used	 to	 unpack	 archives.	 The
callable	 will	 receive	 the	 path	 of	 the	 archive,	 followed	 by	 the
directory	the	archive	must	be	extracted	to.

When	 provided,	 extra_args	 is	 a	 sequence	 of	 (name,	 value)
tuples	that	will	be	passed	as	keywords	arguments	to	the	callable.

description	 can	 be	 provided	 to	 describe	 the	 format,	 and	 will	 be
returned	by	the	get_unpack_formats()	function.

shutil.unregister_unpack_format(name)
Unregister	an	unpack	format.	name	is	the	name	of	the	format.

shutil.get_unpack_formats()
Return	a	list	of	all	registered	formats	for	unpacking.	Each	element
of	 the	 returned	 sequence	 is	 a	 tuple	 (name,	 extensions,

description).

By	default	shutil	provides	these	formats:

gztar:	gzip’ed	tar-file

bztar:	bzip2’ed	tar-file	(if	the	bz2	module	is	available.)
tar:	uncompressed	tar	file
zip:	ZIP	file

You	can	register	new	formats	or	provide	your	own	unpacker	for	any
existing	formats,	by	using	register_unpack_format().

11.10.2.1.	Archiving	example

In	this	example,	we	create	a	gzip’ed	tar-file	archive	containing	all	files
found	in	the	.ssh	directory	of	the	user:

>>>	from	shutil	import	make_archive

>>>	import	os

>>>	archive_name	=	os.path.expanduser(os.path.join('~'

>>>	root_dir	=	os.path.expanduser(os.path.join('~',	

>>>	make_archive(archive_name,	'gztar',	root_dir)

'/Users/tarek/myarchive.tar.gz'

The	resulting	archive	contains:

$	tar	-tzvf	/Users/tarek/myarchive.tar.gz

drwx------	tarek/staff							0	2010-02-01	16:23:40	./

-rw-r--r--	tarek/staff					609	2008-06-09	13:26:54	./authorized_keys

-rwxr-xr-x	tarek/staff						65	2008-06-09	13:26:54	./config

-rwx------	tarek/staff					668	2008-06-09	13:26:54	./id_dsa

-rwxr-xr-x	tarek/staff					609	2008-06-09	13:26:54	./id_dsa.pub

-rw-------	tarek/staff				1675	2008-06-09	13:26:54	./id_rsa

-rw-r--r--	tarek/staff					397	2008-06-09	13:26:54	./id_rsa.pub

-rw-r--r--	tarek/staff			37192	2010-02-06	18:23:10	./known_hosts

11.10.3.	Querying	the	size	of	the	output
terminal

New	in	version	3.3.

shutil.get_terminal_size(fallback=(columns,	lines))
Get	the	size	of	the	terminal	window.

For	 each	 of	 the	 two	 dimensions,	 the	 environment	 variable,
COLUMNS	 and	 LINES	 respectively,	 is	 checked.	 If	 the	 variable	 is
defined	and	the	value	is	a	positive	integer,	it	is	used.

When	 COLUMNS	 or	 LINES	 is	 not	 defined,	 which	 is	 the	 common
case,	 the	 terminal	 connected	 to	 sys.__stdout__	 is	 queried	 by
invoking	os.get_terminal_size().

If	the	terminal	size	cannot	be	successfully	queried,	either	because
the	 system	 doesn’t	 support	 querying,	 or	 because	 we	 are	 not
connected	to	a	terminal,	the	value	given	in	fallback	parameter	is
used.	fallback	defaults	 to	(80,	24)	which	 is	 the	default	 size
used	by	many	terminal	emulators.

The	value	returned	is	a	named	tuple	of	type	os.terminal_size.

See	 also:	 The	 Single	 UNIX	 Specification,	 Version	 2,	 Other
Environment	Variables.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://pubs.opengroup.org/onlinepubs/7908799/xbd/envvar.html#tag_002_003
http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

http://www.python.org/

11.11.	macpath	—	Mac	OS	9	path
manipulation	functions
This	 module	 is	 the	 Mac	 OS	 9	 (and	 earlier)	 implementation	 of	 the
os.path	module.	 It	 can	 be	 used	 to	manipulate	 old-style	Macintosh
pathnames	on	Mac	OS	X	(or	any	other	platform).

The	 following	 functions	 are	 available	 in	 this	 module:	 normcase(),
normpath(),	isabs(),	join(),	split(),	 isdir(),	 isfile(),
walk(),	 exists().	 For	 other	 functions	 available	 in	 os.path
dummy	counterparts	are	available.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	11.	File	and	Directory	Access	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

12.	Data	Persistence
The	modules	described	in	this	chapter	support	storing	Python	data	in	a
persistent	form	on	disk.	The	pickle	and	marshal	modules	can	turn
many	Python	data	types	into	a	stream	of	bytes	and	then	recreate	the
objects	 from	 the	 bytes.	 The	 various	DBM-related	modules	 support	 a
family	 of	 hash-based	 file	 formats	 that	 store	 a	 mapping	 of	 strings	 to
other	strings.

The	list	of	modules	described	in	this	chapter	is:

12.1.	pickle	—	Python	object	serialization
12.1.1.	Relationship	to	other	Python	modules

12.1.1.1.	Comparison	with	marshal
12.1.1.2.	Comparison	with	json

12.1.2.	Data	stream	format
12.1.3.	Module	Interface
12.1.4.	What	can	be	pickled	and	unpickled?
12.1.5.	Pickling	Class	Instances

12.1.5.1.	Persistence	of	External	Objects
12.1.5.2.	Dispatch	Tables
12.1.5.3.	Handling	Stateful	Objects

12.1.6.	Restricting	Globals
12.1.7.	Performance
12.1.8.	Examples

12.2.	copyreg	—	Register	pickle	support	functions
12.2.1.	Example

12.3.	shelve	—	Python	object	persistence
12.3.1.	Restrictions
12.3.2.	Example

12.4.	marshal	—	Internal	Python	object	serialization
12.5.	dbm	—	Interfaces	to	Unix	“databases”

12.5.1.	dbm.gnu	—	GNU’s	reinterpretation	of	dbm
12.5.2.	dbm.ndbm	—	Interface	based	on	ndbm
12.5.3.	dbm.dumb	—	Portable	DBM	implementation

12.6.	sqlite3	—	DB-API	2.0	interface	for	SQLite	databases
12.6.1.	Module	functions	and	constants
12.6.2.	Connection	Objects
12.6.3.	Cursor	Objects
12.6.4.	Row	Objects
12.6.5.	SQLite	and	Python	types

12.6.5.1.	Introduction
12.6.5.2.	Using	adapters	to	store	additional	Python	types
in	SQLite	databases

12.6.5.2.1.	Letting	your	object	adapt	itself
12.6.5.2.2.	Registering	an	adapter	callable

12.6.5.3.	 Converting	 SQLite	 values	 to	 custom	 Python
types
12.6.5.4.	Default	adapters	and	converters

12.6.6.	Controlling	Transactions
12.6.7.	Using	sqlite3	efficiently

12.6.7.1.	Using	shortcut	methods
12.6.7.2.	 Accessing	 columns	 by	 name	 instead	 of	 by
index
12.6.7.3.	Using	the	connection	as	a	context	manager

12.6.8.	Common	issues
12.6.8.1.	Multithreading

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

http://www.python.org/

12.1.	pickle	—	Python	object
serialization
The	 pickle	module	 implements	 binary	 protocols	 for	 serializing	 and
de-serializing	 a	 Python	 object	 structure.	 “Pickling”	 is	 the	 process
whereby	 a	 Python	 object	 hierarchy	 is	 converted	 into	 a	 byte	 stream,
and	“unpickling”	is	the	inverse	operation,	whereby	a	byte	stream	(from
a	 binary	 file	 or	 bytes-like	 object)	 is	 converted	 back	 into	 an	 object
hierarchy.	 Pickling	 (and	 unpickling)	 is	 alternatively	 known	 as
“serialization”,	 “marshalling,”	 [1]	 or	 “flattening”;	 however,	 to	 avoid
confusion,	the	terms	used	here	are	“pickling”	and	“unpickling”.

Warning: 	The	pickle	module	is	not	intended	to	be	secure	against
erroneous	or	maliciously	constructed	data.	Never	unpickle	data
received	from	an	untrusted	or	unauthenticated	source.

12.1.1.	Relationship	to	other	Python
modules
12.1.1.1.	Comparison	with	marshal

Python	has	a	more	primitive	serialization	module	called	marshal,	but
in	 general	 pickle	 should	 always	 be	 the	 preferred	 way	 to	 serialize
Python	 objects.	 marshal	 exists	 primarily	 to	 support	 Python’s	 .pyc
files.

The	pickle	module	differs	from	marshal	in	several	significant	ways:

The	 pickle	 module	 keeps	 track	 of	 the	 objects	 it	 has	 already
serialized,	 so	 that	 later	 references	 to	 the	 same	 object	 won’t	 be
serialized	again.	marshal	doesn’t	do	this.

This	 has	 implications	 both	 for	 recursive	 objects	 and	 object
sharing.	Recursive	objects	are	objects	 that	contain	 references	 to
themselves.	 These	 are	 not	 handled	 by	 marshal,	 and	 in	 fact,
attempting	 to	 marshal	 recursive	 objects	 will	 crash	 your	 Python
interpreter.	 Object	 sharing	 happens	 when	 there	 are	 multiple
references	 to	 the	 same	 object	 in	 different	 places	 in	 the	 object
hierarchy	being	serialized.	pickle	stores	such	objects	only	once,
and	 ensures	 that	 all	 other	 references	 point	 to	 the	 master	 copy.
Shared	 objects	 remain	 shared,	 which	 can	 be	 very	 important	 for
mutable	objects.

marshal	 cannot	 be	 used	 to	 serialize	 user-defined	 classes	 and
their	 instances.	 pickle	 can	 save	 and	 restore	 class	 instances
transparently,	however	the	class	definition	must	be	importable	and
live	in	the	same	module	as	when	the	object	was	stored.

The	 marshal	 serialization	 format	 is	 not	 guaranteed	 to	 be
portable	across	Python	versions.	Because	its	primary	job	in	life	is
to	support	.pyc	 files,	 the	Python	 implementers	reserve	the	right
to	 change	 the	 serialization	 format	 in	 non-backwards	 compatible
ways	 should	 the	need	arise.	The	 pickle	 serialization	 format	 is
guaranteed	to	be	backwards	compatible	across	Python	releases.

12.1.1.2.	Comparison	with	json

There	 are	 fundamental	 differences	 between	 the	 pickle	 protocols	 and
JSON	(JavaScript	Object	Notation):

JSON	 is	 a	 text	 serialization	 format	 (it	 outputs	 unicode	 text,
although	 most	 of	 the	 time	 it	 is	 then	 encoded	 to	 utf-8),	 while
pickle	is	a	binary	serialization	format;
JSON	is	human-readable,	while	pickle	is	not;
JSON	 is	 interoperable	 and	 widely	 used	 outside	 of	 the	 Python
ecosystem,	while	pickle	is	Python-specific;
JSON,	by	default,	can	only	represent	a	subset	of	the	Python	built-
in	 types,	 and	 no	 custom	 classes;	 pickle	 can	 represent	 an
extremely	 large	 number	 of	 Python	 types	 (many	 of	 them
automatically,	by	clever	usage	of	Python’s	 introspection	facilities;
complex	 cases	 can	 be	 tackled	 by	 implementing	 specific	 object
APIs).

See	also: 	The	json	module:	a	standard	library	module	allowing
JSON	serialization	and	deserialization.

http://json.org

12.1.2.	Data	stream	format

The	 data	 format	 used	 by	 pickle	 is	 Python-specific.	 This	 has	 the
advantage	that	there	are	no	restrictions	imposed	by	external	standards
such	 as	 JSON	 or	 XDR	 (which	 can’t	 represent	 pointer	 sharing);
however	 it	 means	 that	 non-Python	 programs	 may	 not	 be	 able	 to
reconstruct	pickled	Python	objects.

By	default,	 the	pickle	data	 format	uses	a	 relatively	compact	binary
representation.	 If	 you	 need	 optimal	 size	 characteristics,	 you	 can
efficiently	compress	pickled	data.

The	module	pickletools	contains	tools	for	analyzing	data	streams
generated	 by	 pickle.	 pickletools	 source	 code	 has	 extensive
comments	about	opcodes	used	by	pickle	protocols.

There	 are	 currently	 5	 different	 protocols	 which	 can	 be	 used	 for
pickling.	The	higher	the	protocol	used,	the	more	recent	the	version	of
Python	needed	to	read	the	pickle	produced.

Protocol	version	0	is	the	original	“human-readable”	protocol	and	is
backwards	compatible	with	earlier	versions	of	Python.
Protocol	version	1	is	an	old	binary	format	which	is	also	compatible
with	earlier	versions	of	Python.
Protocol	version	2	was	introduced	in	Python	2.3.	It	provides	much
more	efficient	pickling	of	new-style	classes.	Refer	to	PEP	307	 for
information	about	improvements	brought	by	protocol	2.
Protocol	version	3	was	added	in	Python	3.0.	It	has	explicit	support
for	bytes	objects	and	cannot	be	unpickled	by	Python	2.x.	This	is
the	 default	 protocol,	 and	 the	 recommended	 protocol	 when
compatibility	with	other	Python	3	versions	is	required.
Protocol	 version	4	was	added	 in	Python	3.4.	 It	 adds	support	 for
very	large	objects,	pickling	more	kinds	of	objects,	and	some	data

http://www.python.org/dev/peps/pep-0307

format	 optimizations.	 Refer	 to	 PEP	 3154	 for	 information	 about
improvements	brought	by	protocol	4.

Note: 	Serialization	is	a	more	primitive	notion	than	persistence;
although	pickle	reads	and	writes	file	objects,	it	does	not	handle
the	issue	of	naming	persistent	objects,	nor	the	(even	more
complicated)	issue	of	concurrent	access	to	persistent	objects.	The
pickle	module	can	transform	a	complex	object	into	a	byte	stream
and	it	can	transform	the	byte	stream	into	an	object	with	the	same
internal	structure.	Perhaps	the	most	obvious	thing	to	do	with	these
byte	streams	is	to	write	them	onto	a	file,	but	it	is	also	conceivable	to
send	them	across	a	network	or	store	them	in	a	database.	The
shelve	module	provides	a	simple	interface	to	pickle	and	unpickle
objects	on	DBM-style	database	files.

http://www.python.org/dev/peps/pep-3154

12.1.3.	Module	Interface

To	serialize	an	object	hierarchy,	you	simply	call	the	dumps()	function.
Similarly,	to	de-serialize	a	data	stream,	you	call	the	loads()	function.
However,	 if	 you	 want	 more	 control	 over	 serialization	 and	 de-
serialization,	 you	 can	 create	 a	 Pickler	 or	 an	 Unpickler	 object,
respectively.

The	pickle	module	provides	the	following	constants:

pickle.HIGHEST_PROTOCOL

An	 integer,	 the	highest	protocol	 version	 available.	 This	 value	 can
be	passed	as	a	protocol	value	to	functions	dump()	and	dumps()
as	well	as	the	Pickler	constructor.

pickle.DEFAULT_PROTOCOL

An	 integer,	 the	default	protocol	version	 used	 for	 pickling.	May	 be
less	than	HIGHEST_PROTOCOL.	Currently	the	default	protocol	is	3,
a	new	protocol	designed	for	Python	3.

The	 pickle	 module	 provides	 the	 following	 functions	 to	 make	 the
pickling	process	more	convenient:

pickle.dump(obj,	file,	protocol=None,	*,	fix_imports=True)
Write	a	pickled	representation	of	obj	to	the	open	file	object	file.	This
is	equivalent	to	Pickler(file,	protocol).dump(obj).

The	optional	protocol	argument,	an	integer,	tells	the	pickler	to	use
the	 given	 protocol;	 supported	 protocols	 are	 0	 to
HIGHEST_PROTOCOL.	 If	 not	 specified,	 the	 default	 is
DEFAULT_PROTOCOL.	 If	 a	 negative	 number	 is	 specified,

HIGHEST_PROTOCOL	is	selected.

The	file	argument	must	have	a	write()	method	that	accepts	a	single
bytes	 argument.	 It	 can	 thus	 be	 an	 on-disk	 file	 opened	 for	 binary
writing,	a	io.BytesIO	 instance,	or	any	other	custom	object	 that
meets	this	interface.

If	 fix_imports	 is	 true	 and	protocol	 is	 less	 than	 3,	 pickle	will	 try	 to
map	 the	 new	Python	 3	 names	 to	 the	 old	module	 names	 used	 in
Python	2,	so	that	the	pickle	data	stream	is	readable	with	Python	2.

pickle.dumps(obj,	protocol=None,	*,	fix_imports=True)
Return	the	pickled	representation	of	the	object	as	a	bytes	object,
instead	of	writing	it	to	a	file.

Arguments	protocol	and	fix_imports	have	the	same	meaning	as	 in
dump().

pickle.load(file,	*,	fix_imports=True,	encoding="ASCII",
errors="strict")

Read	a	pickled	object	 representation	 from	the	open	 file	object	 file
and	return	the	reconstituted	object	hierarchy	specified	therein.	This
is	equivalent	to	Unpickler(file).load().

The	protocol	version	of	 the	pickle	 is	detected	automatically,	so	no
protocol	 argument	 is	 needed.	 Bytes	 past	 the	 pickled	 object’s
representation	are	ignored.

The	 argument	 file	must	 have	 two	methods,	 a	 read()	method	 that
takes	an	 integer	argument,	 and	a	 readline()	method	 that	 requires
no	arguments.	Both	methods	should	return	bytes.	Thus	file	can	be
an	on-disk	file	opened	for	binary	reading,	a	io.BytesIO	object,	or
any	other	custom	object	that	meets	this	interface.

Optional	keyword	arguments	are	fix_imports,	encoding	and	errors,
which	 are	 used	 to	 control	 compatibility	 support	 for	 pickle	 stream
generated	by	Python	2.	If	fix_imports	 is	 true,	pickle	will	 try	to	map
the	old	Python	2	names	to	the	new	names	used	in	Python	3.	The
encoding	and	errors	tell	pickle	how	to	decode	8-bit	string	instances
pickled	 by	 Python	 2;	 these	 default	 to	 ‘ASCII’	 and	 ‘strict’,
respectively.	The	encoding	can	be	‘bytes’	to	read	these	8-bit	string
instances	as	bytes	objects.

pickle.loads(bytes_object,	*,	fix_imports=True,
encoding="ASCII",	errors="strict")

Read	 a	 pickled	 object	 hierarchy	 from	 a	 bytes	 object	 and	 return
the	reconstituted	object	hierarchy	specified	therein

The	protocol	version	of	 the	pickle	 is	detected	automatically,	so	no
protocol	 argument	 is	 needed.	 Bytes	 past	 the	 pickled	 object’s
representation	are	ignored.

Optional	keyword	arguments	are	fix_imports,	encoding	and	errors,
which	 are	 used	 to	 control	 compatibility	 support	 for	 pickle	 stream
generated	by	Python	2.	If	fix_imports	 is	 true,	pickle	will	 try	to	map
the	old	Python	2	names	to	the	new	names	used	in	Python	3.	The
encoding	and	errors	tell	pickle	how	to	decode	8-bit	string	instances
pickled	 by	 Python	 2;	 these	 default	 to	 ‘ASCII’	 and	 ‘strict’,
respectively.	The	encoding	can	be	‘bytes’	to	read	these	8-bit	string
instances	as	bytes	objects.

The	pickle	module	defines	three	exceptions:

exception	pickle.PickleError
Common	 base	 class	 for	 the	 other	 pickling	 exceptions.	 It	 inherits
Exception.

exception	pickle.PicklingError
Error	 raised	 when	 an	 unpicklable	 object	 is	 encountered	 by
Pickler.	It	inherits	PickleError.

Refer	to	What	can	be	pickled	and	unpickled?	to	learn	what	kinds	of
objects	can	be	pickled.

exception	pickle.UnpicklingError
Error	raised	when	there	is	a	problem	unpickling	an	object,	such	as
a	data	corruption	or	a	security	violation.	It	inherits	PickleError.

Note	 that	 other	 exceptions	may	 also	 be	 raised	 during	 unpickling,
including	 (but	 not	 necessarily	 limited	 to)	AttributeError,	 EOFError,
ImportError,	and	IndexError.

The	pickle	module	exports	two	classes,	Pickler	and	Unpickler:

class	pickle.Pickler(file,	protocol=None,	*,	fix_imports=True)
This	takes	a	binary	file	for	writing	a	pickle	data	stream.

The	optional	protocol	argument,	an	integer,	tells	the	pickler	to	use
the	 given	 protocol;	 supported	 protocols	 are	 0	 to
HIGHEST_PROTOCOL.	 If	 not	 specified,	 the	 default	 is
DEFAULT_PROTOCOL.	 If	 a	 negative	 number	 is	 specified,
HIGHEST_PROTOCOL	is	selected.

The	file	argument	must	have	a	write()	method	that	accepts	a	single
bytes	 argument.	 It	 can	 thus	 be	 an	 on-disk	 file	 opened	 for	 binary
writing,	a	io.BytesIO	 instance,	or	any	other	custom	object	 that
meets	this	interface.

If	 fix_imports	 is	 true	 and	protocol	 is	 less	 than	 3,	 pickle	will	 try	 to
map	 the	 new	Python	 3	 names	 to	 the	 old	module	 names	 used	 in

Python	2,	so	that	the	pickle	data	stream	is	readable	with	Python	2.

dump(obj)
Write	 a	 pickled	 representation	 of	 obj	 to	 the	 open	 file	 object
given	in	the	constructor.

persistent_id(obj)
Do	nothing	by	default.	This	exists	so	a	subclass	can	override	it.

If	 persistent_id()	 returns	 None,	 obj	 is	 pickled	 as	 usual.
Any	other	value	causes	Pickler	to	emit	the	returned	value	as
a	persistent	ID	for	obj.	The	meaning	of	this	persistent	ID	should
be	 defined	 by	 Unpickler.persistent_load().	 Note	 that
the	value	returned	by	persistent_id()	cannot	 itself	have	a
persistent	ID.

See	Persistence	of	External	Objects	for	details	and	examples	of
uses.

dispatch_table

A	 pickler	 object’s	 dispatch	 table	 is	 a	 registry	 of	 reduction
functions	 of	 the	 kind	 which	 can	 be	 declared	 using
copyreg.pickle().	It	 is	a	mapping	whose	keys	are	classes
and	whose	values	are	reduction	functions.	A	reduction	function
takes	 a	 single	 argument	 of	 the	 associated	 class	 and	 should
conform	to	the	same	interface	as	a	__reduce__()	method.

By	default,	 a	 pickler	 object	will	 not	 have	a	 dispatch_table
attribute,	 and	 it	 will	 instead	 use	 the	 global	 dispatch	 table
managed	by	the	copyreg	module.	However,	to	customize	the
pickling	 for	 a	 specific	 pickler	 object	 one	 can	 set	 the
dispatch_table	attribute	to	a	dict-like	object.	Alternatively,	if

a	subclass	of	Pickler	has	a	dispatch_table	attribute	then
this	will	 be	used	as	 the	default	 dispatch	 table	 for	 instances	of
that	class.

See	Dispatch	Tables	for	usage	examples.

New	in	version	3.3.

fast

Deprecated.	Enable	 fast	mode	 if	 set	 to	 a	 true	 value.	 The	 fast
mode	 disables	 the	 usage	 of	 memo,	 therefore	 speeding	 the
pickling	process	by	not	generating	superfluous	PUT	opcodes.	It
should	not	be	used	with	self-referential	objects,	doing	otherwise
will	cause	Pickler	to	recurse	infinitely.

Use	 pickletools.optimize()	 if	 you	 need	 more	 compact
pickles.

class	pickle.Unpickler(file,	*,	fix_imports=True,
encoding="ASCII",	errors="strict")

This	takes	a	binary	file	for	reading	a	pickle	data	stream.

The	protocol	version	of	 the	pickle	 is	detected	automatically,	so	no
protocol	argument	is	needed.

The	 argument	 file	must	 have	 two	methods,	 a	 read()	method	 that
takes	an	 integer	argument,	 and	a	 readline()	method	 that	 requires
no	arguments.	Both	methods	should	return	bytes.	Thus	file	can	be
an	 on-disk	 file	 object	 opened	 for	 binary	 reading,	 a	 io.BytesIO
object,	or	any	other	custom	object	that	meets	this	interface.

Optional	keyword	arguments	are	fix_imports,	encoding	and	errors,
which	 are	 used	 to	 control	 compatibility	 support	 for	 pickle	 stream

generated	by	Python	2.	If	fix_imports	 is	 true,	pickle	will	 try	to	map
the	old	Python	2	names	to	the	new	names	used	in	Python	3.	The
encoding	and	errors	tell	pickle	how	to	decode	8-bit	string	instances
pickled	 by	 Python	 2;	 these	 default	 to	 ‘ASCII’	 and	 ‘strict’,
respectively.	 The	 encoding	 can	 be	 ‘bytes’	 to	 read	 these	 ß8-bit
string	instances	as	bytes	objects.

load()
Read	a	pickled	object	 representation	 from	 the	open	 file	object
given	 in	 the	 constructor,	 and	 return	 the	 reconstituted	 object
hierarchy	 specified	 therein.	 Bytes	 past	 the	 pickled	 object’s
representation	are	ignored.

persistent_load(pid)
Raise	an	UnpicklingError	by	default.

If	 defined,	 persistent_load()	 should	 return	 the	 object
specified	by	 the	persistent	 ID	pid.	 If	 an	 invalid	persistent	 ID	 is
encountered,	an	UnpicklingError	should	be	raised.

See	Persistence	of	External	Objects	for	details	and	examples	of
uses.

find_class(module,	name)
Import	module	 if	 necessary	and	 return	 the	object	 called	name
from	 it,	 where	 the	 module	 and	 name	 arguments	 are	 str
objects.	Note,	unlike	its	name	suggests,	find_class()	is	also
used	for	finding	functions.

Subclasses	may	override	this	to	gain	control	over	what	type	of
objects	 and	 how	 they	 can	 be	 loaded,	 potentially	 reducing
security	risks.	Refer	to	Restricting	Globals	for	details.

12.1.4.	What	can	be	pickled	and
unpickled?

The	following	types	can	be	pickled:

None,	True,	and	False
integers,	floating	point	numbers,	complex	numbers
strings,	bytes,	bytearrays
tuples,	 lists,	 sets,	 and	 dictionaries	 containing	 only	 picklable
objects
functions	 defined	 at	 the	 top	 level	 of	 a	 module	 (using	 def,	 not
lambda)
built-in	functions	defined	at	the	top	level	of	a	module
classes	that	are	defined	at	the	top	level	of	a	module
instances	 of	 such	 classes	 whose	 __dict__	 or	 the	 result	 of
calling	__getstate__()	is	picklable	(see	section	Pickling	Class
Instances	for	details).

Attempts	to	pickle	unpicklable	objects	will	raise	the	PicklingError
exception;	 when	 this	 happens,	 an	 unspecified	 number	 of	 bytes	may
have	 already	 been	 written	 to	 the	 underlying	 file.	 Trying	 to	 pickle	 a
highly	 recursive	 data	 structure	 may	 exceed	 the	 maximum	 recursion
depth,	a	RuntimeError	will	be	raised	in	this	case.	You	can	carefully
raise	this	limit	with	sys.setrecursionlimit().

Note	 that	 functions	 (built-in	 and	 user-defined)	 are	 pickled	 by	 “fully
qualified”	name	reference,	not	by	value.	 [2]	This	means	 that	only	 the
function	 name	 is	 pickled,	 along	 with	 the	 name	 of	 the	 module	 the
function	 is	 defined	 in.	 Neither	 the	 function’s	 code,	 nor	 any	 of	 its
function	 attributes	 are	 pickled.	 Thus	 the	 defining	 module	 must	 be
importable	in	the	unpickling	environment,	and	the	module	must	contain
the	named	object,	otherwise	an	exception	will	be	raised.	[3]

Similarly,	 classes	 are	 pickled	 by	 named	 reference,	 so	 the	 same
restrictions	in	the	unpickling	environment	apply.	Note	that	none	of	the
class’s	code	or	data	 is	pickled,	so	 in	 the	 following	example	 the	class
attribute	attr	is	not	restored	in	the	unpickling	environment:

class	Foo:

				attr	=	'A	class	attribute'

picklestring	=	pickle.dumps(Foo)

These	 restrictions	 are	 why	 picklable	 functions	 and	 classes	 must	 be
defined	in	the	top	level	of	a	module.

Similarly,	when	class	instances	are	pickled,	their	class’s	code	and	data
are	not	 pickled	along	with	 them.	Only	 the	 instance	 data	 are	 pickled.
This	 is	 done	 on	 purpose,	 so	 you	 can	 fix	 bugs	 in	 a	 class	 or	 add
methods	 to	 the	class	and	still	 load	objects	 that	were	created	with	an
earlier	version	of	the	class.	If	you	plan	to	have	long-lived	objects	that
will	see	many	versions	of	a	class,	it	may	be	worthwhile	to	put	a	version
number	in	the	objects	so	that	suitable	conversions	can	be	made	by	the
class’s	__setstate__()	method.

12.1.5.	Pickling	Class	Instances

In	this	section,	we	describe	the	general	mechanisms	available	to	you
to	define,	customize,	and	control	how	class	instances	are	pickled	and
unpickled.

In	 most	 cases,	 no	 additional	 code	 is	 needed	 to	 make	 instances
picklable.	By	default,	pickle	will	retrieve	the	class	and	the	attributes	of
an	 instance	via	 introspection.	When	a	class	 instance	 is	unpickled,	 its
__init__()	 method	 is	 usually	 not	 invoked.	 The	 default	 behaviour
first	 creates	 an	 uninitialized	 instance	 and	 then	 restores	 the	 saved
attributes.	 The	 following	 code	 shows	 an	 implementation	 of	 this
behaviour:

def	save(obj):

				return	(obj.__class__,	obj.__dict__)

def	load(cls,	attributes):

				obj	=	cls.__new__(cls)

				obj.__dict__.update(attributes)

				return	obj

Classes	 can	 alter	 the	 default	 behaviour	 by	 providing	 one	 or	 several
special	methods:

object.__getnewargs_ex__()
In	 protocols	 4	 and	 newer,	 classes	 that	 implements	 the
__getnewargs_ex__()	method	can	dictate	the	values	passed	to
the	__new__()	method	upon	unpickling.	The	method	must	return
a	 pair	 (args,	 kwargs)	 where	 args	 is	 a	 tuple	 of	 positional
arguments	 and	 kwargs	 a	 dictionary	 of	 named	 arguments	 for
constructing	 the	 object.	 Those	will	 be	 passed	 to	 the	 __new__()

method	upon	unpickling.

You	 should	 implement	 this	 method	 if	 the	 __new__()	 method	 of
your	 class	 requires	 keyword-only	 arguments.	 Otherwise,	 it	 is
recommended	 for	 compatibility	 to	 implement
__getnewargs__().

object.__getnewargs__()
This	method	serve	a	similar	purpose	as	__getnewargs_ex__()
but	for	protocols	2	and	newer.	It	must	return	a	tuple	of	arguments
args	 which	 will	 be	 passed	 to	 the	 __new__()	 method	 upon
unpickling.

In	protocols	4	and	newer,	__getnewargs__()	will	not	be	called	if
__getnewargs_ex__()	is	defined.

object.__getstate__()
Classes	can	further	influence	how	their	instances	are	pickled;	if	the
class	 defines	 the	method	 __getstate__(),	 it	 is	 called	 and	 the
returned	object	is	pickled	as	the	contents	for	the	instance,	instead
of	 the	 contents	 of	 the	 instance’s	 dictionary.	 If	 the
__getstate__()	method	is	absent,	the	instance’s	__dict__	is
pickled	as	usual.

object.__setstate__(state)
Upon	unpickling,	if	the	class	defines	__setstate__(),	it	is	called
with	 the	unpickled	state.	 In	 that	 case,	 there	 is	no	 requirement	 for
the	 state	 object	 to	 be	 a	 dictionary.	 Otherwise,	 the	 pickled	 state
must	 be	 a	 dictionary	 and	 its	 items	 are	 assigned	 to	 the	 new
instance’s	dictionary.

Note: 	 If	 __getstate__()	 returns	 a	 false	 value,	 the

__setstate__()	method	will	not	be	called	upon	unpickling.

Refer	 to	 the	 section	Handling	 Stateful	 Objects	 for	 more	 information
about	 how	 to	 use	 the	 methods	 __getstate__()	 and
__setstate__().

Note: 	At	unpickling	time,	some	methods	like	__getattr__(),
__getattribute__(),	or	__setattr__()	may	be	called	upon
the	instance.	In	case	those	methods	rely	on	some	internal	invariant
being	true,	the	type	should	implement	__getnewargs__()	or
__getnewargs_ex__()	to	establish	such	an	invariant;	otherwise,
neither	__new__()	nor	__init__()	will	be	called.

As	we	shall	 see,	pickle	does	not	use	directly	 the	methods	described
above.	 In	 fact,	 these	 methods	 are	 part	 of	 the	 copy	 protocol	 which
implements	 the	 __reduce__()	 special	 method.	 The	 copy	 protocol
provides	 a	 unified	 interface	 for	 retrieving	 the	 data	 necessary	 for
pickling	and	copying	objects.	[4]

Although	 powerful,	 implementing	 __reduce__()	 directly	 in	 your
classes	is	error	prone.	For	this	reason,	class	designers	should	use	the
high-level	 interface	 (i.e.,	 __getnewargs_ex__(),
__getstate__()	 and	 __setstate__())	 whenever	 possible.	 We
will	 show,	 however,	 cases	 where	 using	 __reduce__()	 is	 the	 only
option	or	leads	to	more	efficient	pickling	or	both.

object.__reduce__()
The	interface	is	currently	defined	as	follows.	The	__reduce__()
method	 takes	 no	 argument	 and	 shall	 return	 either	 a	 string	 or
preferably	 a	 tuple	 (the	 returned	 object	 is	 often	 referred	 to	 as	 the
“reduce	value”).

If	a	string	is	returned,	the	string	should	be	interpreted	as	the	name
of	a	global	variable.	It	should	be	the	object’s	local	name	relative	to
its	module;	the	pickle	module	searches	the	module	namespace	to
determine	the	object’s	module.	This	behaviour	is	typically	useful	for
singletons.

When	a	 tuple	 is	 returned,	 it	must	 be	between	 two	and	 five	 items
long.	 Optional	 items	 can	 either	 be	 omitted,	 or	 None	 can	 be
provided	as	their	value.	The	semantics	of	each	item	are	in	order:

A	callable	object	that	will	be	called	to	create	the	initial	version
of	the	object.
A	 tuple	 of	 arguments	 for	 the	 callable	 object.	 An	 empty	 tuple
must	be	given	if	the	callable	does	not	accept	any	argument.
Optionally,	 the	 object’s	 state,	 which	 will	 be	 passed	 to	 the
object’s	__setstate__()	method	as	previously	described.	If
the	 object	 has	 no	 such	 method	 then,	 the	 value	 must	 be	 a
dictionary	 and	 it	 will	 be	 added	 to	 the	 object’s	 __dict__
attribute.
Optionally,	 an	 iterator	 (and	 not	 a	 sequence)	 yielding
successive	items.	These	items	will	be	appended	to	the	object
either	 using	 obj.append(item)	 or,	 in	 batch,	 using
obj.extend(list_of_items).	 This	 is	 primarily	 used	 for
list	subclasses,	but	may	be	used	by	other	classes	as	 long	as
they	 have	 append()	 and	 extend()	 methods	 with	 the
appropriate	 signature.	 (Whether	 append()	 or	 extend()	 is
used	depends	on	which	pickle	protocol	version	is	used	as	well
as	 the	 number	 of	 items	 to	 append,	 so	 both	 must	 be
supported.)
Optionally,	 an	 iterator	 (not	 a	 sequence)	 yielding	 successive
key-value	pairs.	These	items	will	be	stored	to	the	object	using
obj[key]	 =	 value.	 This	 is	 primarily	 used	 for	 dictionary
subclasses,	but	may	be	used	by	other	classes	as	long	as	they

implement	__setitem__().

object.__reduce_ex__(protocol)
Alternatively,	a	__reduce_ex__()	method	may	be	defined.	The
only	 difference	 is	 this	 method	 should	 take	 a	 single	 integer
argument,	 the	protocol	 version.	When	defined,	pickle	will	 prefer	 it
over	 the	 __reduce__()	 method.	 In	 addition,	 __reduce__()
automatically	 becomes	 a	 synonym	 for	 the	 extended	 version.	 The
main	 use	 for	 this	 method	 is	 to	 provide	 backwards-compatible
reduce	values	for	older	Python	releases.

12.1.5.1.	Persistence	of	External	Objects

For	the	benefit	of	object	persistence,	the	pickle	module	supports	the
notion	 of	 a	 reference	 to	 an	 object	 outside	 the	 pickled	 data	 stream.
Such	objects	are	referenced	by	a	persistent	ID,	which	should	be	either
a	 string	 of	 alphanumeric	 characters	 (for	 protocol	 0)	 [5]	 or	 just	 an
arbitrary	object	(for	any	newer	protocol).

The	 resolution	 of	 such	 persistent	 IDs	 is	 not	 defined	 by	 the	 pickle
module;	it	will	delegate	this	resolution	to	the	user	defined	methods	on
the	 pickler	 and	 unpickler,	 persistent_id()	 and
persistent_load()	respectively.

To	pickle	objects	 that	have	an	external	persistent	 id,	 the	pickler	must
have	a	custom	persistent_id()	method	that	takes	an	object	as	an
argument	and	returns	either	None	or	 the	persistent	 id	 for	 that	object.
When	 None	 is	 returned,	 the	 pickler	 simply	 pickles	 the	 object	 as
normal.	When	a	persistent	ID	string	is	returned,	the	pickler	will	pickle
that	object,	along	with	a	marker	so	that	 the	unpickler	will	 recognize	 it
as	a	persistent	ID.

To	 unpickle	 external	 objects,	 the	 unpickler	 must	 have	 a	 custom
persistent_load()	method	 that	 takes	 a	 persistent	 ID	 object	 and
returns	the	referenced	object.

Here	 is	 a	 comprehensive	 example	 presenting	 how	persistent	 ID	 can
be	used	to	pickle	external	objects	by	reference.

#	Simple	example	presenting	how	persistent	ID	can	be	used	to	pickle

#	external	objects	by	reference.

import	pickle

import	sqlite3

from	collections	import	namedtuple

#	Simple	class	representing	a	record	in	our	database.

MemoRecord	=	namedtuple("MemoRecord",	"key,	task")

class	DBPickler(pickle.Pickler):

				def	persistent_id(self,	obj):

								#	Instead	of	pickling	MemoRecord	as	a	regular	class	instance,	we	emit	a

								#	persistent	ID.

								if	isinstance(obj,	MemoRecord):

												#	Here,	our	persistent	ID	is	simply	a	tuple,	containing	a	tag	and	a

												#	key,	which	refers	to	a	specific	record	in	the	database.

												return	("MemoRecord",	obj.key)

								else:

												#	If	obj	does	not	have	a	persistent	ID,	return	None.	This	means	obj

												#	needs	to	be	pickled	as	usual.

												return	None

class	DBUnpickler(pickle.Unpickler):

				def	__init__(self,	file,	connection):

								super().__init__(file)

								self.connection	=	connection

				def	persistent_load(self,	pid):

								#	This	method	is	invoked	whenever	a	persistent	ID	is	encountered.

								#	Here,	pid	is	the	tuple	returned	by	DBPickler.

								cursor	=	self.connection.cursor()

								type_tag,	key_id	=	pid

								if	type_tag	==	"MemoRecord":

												#	Fetch	the	referenced	record	from	the	database	and	return	it.

												cursor.execute("SELECT	*	FROM	memos	WHERE	key=?"

												key,	task	=	cursor.fetchone()

												return	MemoRecord(key,	task)

								else:

												#	Always	raises	an	error	if	you	cannot	return	the	correct	object.

												#	Otherwise,	the	unpickler	will	think	None	is	the	object	referenced

												#	by	the	persistent	ID.

												raise	pickle.UnpicklingError("unsupported	persistent	object"

def	main():

				import	io

				import	pprint

				#	Initialize	and	populate	our	database.

				conn	=	sqlite3.connect(":memory:")

				cursor	=	conn.cursor()

				cursor.execute("CREATE	TABLE	memos(key	INTEGER	PRIMARY	KEY,	task	TEXT)"

				tasks	=	(

								'give	food	to	fish',

								'prepare	group	meeting',

								'fight	with	a	zebra',

)

				for	task	in	tasks:

								cursor.execute("INSERT	INTO	memos	VALUES(NULL,	?)"

				#	Fetch	the	records	to	be	pickled.

				cursor.execute("SELECT	*	FROM	memos")

				memos	=	[MemoRecord(key,	task)	for	key,	task	in	

				#	Save	the	records	using	our	custom	DBPickler.

				file	=	io.BytesIO()

				DBPickler(file).dump(memos)

				print("Pickled	records:")

				pprint.pprint(memos)

				#	Update	a	record,	just	for	good	measure.

				cursor.execute("UPDATE	memos	SET	task='learn	italian'	WHERE	key=1"

				#	Load	the	records	from	the	pickle	data	stream.

				file.seek(0)

				memos	=	DBUnpickler(file,	conn).load()

				print("Unpickled	records:")

				pprint.pprint(memos)

if	__name__	==	'__main__':

				main()

12.1.5.2.	Dispatch	Tables

If	one	wants	to	customize	pickling	of	some	classes	without	disturbing
any	 other	 code	 which	 depends	 on	 pickling,	 then	 one	 can	 create	 a
pickler	with	a	private	dispatch	table.

The	 global	 dispatch	 table	 managed	 by	 the	 copyreg	 module	 is
available	 as	 copyreg.dispatch_table.	 Therefore,	 one	 may
choose	to	use	a	modified	copy	of	copyreg.dispatch_table	as	a
private	dispatch	table.

For	example

f	=	io.BytesIO()

p	=	pickle.Pickler(f)

p.dispatch_table	=	copyreg.dispatch_table.copy()

p.dispatch_table[SomeClass]	=	reduce_SomeClass

creates	an	instance	of	pickle.Pickler	with	a	private	dispatch	table
which	handles	the	SomeClass	class	specially.	Alternatively,	the	code

class	MyPickler(pickle.Pickler):

				dispatch_table	=	copyreg.dispatch_table.copy()

				dispatch_table[SomeClass]	=	reduce_SomeClass

f	=	io.BytesIO()

p	=	MyPickler(f)

does	the	same,	but	all	 instances	of	MyPickler	will	by	default	share
the	 same	 dispatch	 table.	 The	 equivalent	 code	 using	 the	 copyreg
module	is

copyreg.pickle(SomeClass,	reduce_SomeClass)

f	=	io.BytesIO()

p	=	pickle.Pickler(f)

12.1.5.3.	Handling	Stateful	Objects

Here’s	an	example	 that	 shows	how	 to	modify	 pickling	behavior	 for	 a
class.	The	TextReader	 class	opens	a	 text	 file,	and	 returns	 the	 line
number	and	line	contents	each	time	its	readline()	method	is	called.
If	 a	 TextReader	 instance	 is	 pickled,	 all	 attributes	 except	 the	 file
object	member	are	saved.	When	 the	 instance	 is	unpickled,	 the	 file	 is
reopened,	 and	 reading	 resumes	 from	 the	 last	 location.	 The
__setstate__()	 and	 __getstate__()	 methods	 are	 used	 to
implement	this	behavior.

class	TextReader:

				"""Print	and	number	lines	in	a	text	file."""

				def	__init__(self,	filename):

								self.filename	=	filename

								self.file	=	open(filename)

								self.lineno	=	0

				def	readline(self):

								self.lineno	+=	1

								line	=	self.file.readline()

								if	not	line:

												return	None

								if	line.endswith('\n'):

												line	=	line[:-1]

								return	"%i:	%s"	%	(self.lineno,	line)

				def	__getstate__(self):

								#	Copy	the	object's	state	from	self.__dict__	which	contains

								#	all	our	instance	attributes.	Always	use	the	dict.copy()

								#	method	to	avoid	modifying	the	original	state.

								state	=	self.__dict__.copy()

								#	Remove	the	unpicklable	entries.

								del	state['file']

								return	state

				def	__setstate__(self,	state):

								#	Restore	instance	attributes	(i.e.,	filename	and	lineno).

								self.__dict__.update(state)

								#	Restore	the	previously	opened	file's	state.	To	do	so,	we	need	to

								#	reopen	it	and	read	from	it	until	the	line	count	is	restored.

								file	=	open(self.filename)

								for	_	in	range(self.lineno):

												file.readline()

								#	Finally,	save	the	file.

								self.file	=	file

A	sample	usage	might	be	something	like	this:

>>>	reader	=	TextReader("hello.txt")

>>>	reader.readline()

'1:	Hello	world!'

>>>	reader.readline()

'2:	I	am	line	number	two.'

>>>	new_reader	=	pickle.loads(pickle.dumps(reader))

>>>	new_reader.readline()

'3:	Goodbye!'

12.1.6.	Restricting	Globals

By	default,	 unpickling	will	 import	any	class	or	 function	 that	 it	 finds	 in
the	pickle	data.	For	many	applications,	this	behaviour	is	unacceptable
as	 it	 permits	 the	 unpickler	 to	 import	 and	 invoke	 arbitrary	 code.	 Just
consider	what	this	hand-crafted	pickle	data	stream	does	when	loaded:

>>>	import	pickle

>>>	pickle.loads(b"cos\nsystem\n(S'echo	hello	world'

hello	world

0

In	this	example,	the	unpickler	imports	the	os.system()	function	and
then	 apply	 the	 string	 argument	 “echo	 hello	 world”.	 Although	 this
example	 is	 inoffensive,	 it	 is	 not	 difficult	 to	 imagine	 one	 that	 could
damage	your	system.

For	 this	 reason,	 you	 may	 want	 to	 control	 what	 gets	 unpickled	 by
customizing	Unpickler.find_class().	Unlike	 its	name	suggests,
Unpickler.find_class()	is	called	whenever	a	global	(i.e.,	a	class
or	 a	 function)	 is	 requested.	 Thus	 it	 is	 possible	 to	 either	 completely
forbid	globals	or	restrict	them	to	a	safe	subset.

Here	is	an	example	of	an	unpickler	allowing	only	few	safe	classes	from
the	builtins	module	to	be	loaded:

import	builtins

import	io

import	pickle

safe_builtins	=	{

				'range',

				'complex',

				'set',

				'frozenset',

				'slice',

}

class	RestrictedUnpickler(pickle.Unpickler):

				def	find_class(self,	module,	name):

								#	Only	allow	safe	classes	from	builtins.

								if	module	==	"builtins"	and	name	in	safe_builtins

												return	getattr(builtins,	name)

								#	Forbid	everything	else.

								raise	pickle.UnpicklingError("global	'%s.%s'	is	forbidden"

																																					(module,	name))

def	restricted_loads(s):

				"""Helper	function	analogous	to	pickle.loads()."""

				return	RestrictedUnpickler(io.BytesIO(s)).load()

A	sample	usage	of	our	unpickler	working	has	intended:

>>>	restricted_loads(pickle.dumps([1,	2,	range(15)]))

[1,	2,	range(0,	15)]

>>>	restricted_loads(b"cos\nsystem\n(S'echo	hello	world'

Traceback	(most	recent	call	last):

		...

pickle.UnpicklingError:	global	'os.system'	is	forbidden

>>>	restricted_loads(b'cbuiltins\neval\n'

...																		b'(S\'getattr(__import__("os"),	"system")'

...																		b'("echo	hello	world")\'\ntR.')

Traceback	(most	recent	call	last):

		...

pickle.UnpicklingError:	global	'builtins.eval'	is	forbidden

As	our	examples	shows,	you	have	to	be	careful	with	what	you	allow	to
be	 unpickled.	 Therefore	 if	 security	 is	 a	 concern,	 you	 may	 want	 to
consider	alternatives	such	as	the	marshalling	API	in	xmlrpc.client
or	third-party	solutions.

12.1.7.	Performance

Recent	versions	of	 the	pickle	protocol	 (from	protocol	2	and	upwards)
feature	 efficient	 binary	 encodings	 for	 several	 common	 features	 and
built-in	 types.	Also,	 the	 pickle	module	 has	 a	 transparent	 optimizer
written	in	C.

12.1.8.	Examples

For	the	simplest	code,	use	the	dump()	and	load()	functions.

import	pickle

#	An	arbitrary	collection	of	objects	supported	by	pickle.

data	=	{

				'a':	[1,	2.0,	3,	4+6j],

				'b':	("character	string",	b"byte	string"),

				'c':	set([None,	True,	False])

}

with	open('data.pickle',	'wb')	as	f:

				#	Pickle	the	'data'	dictionary	using	the	highest	protocol	available.

				pickle.dump(data,	f,	pickle.HIGHEST_PROTOCOL)

The	following	example	reads	the	resulting	pickled	data.

import	pickle

with	open('data.pickle',	'rb')	as	f:

				#	The	protocol	version	used	is	detected	automatically,	so	we	do	not

				#	have	to	specify	it.

				data	=	pickle.load(f)

See	also:

Module	copyreg
Pickle	interface	constructor	registration	for	extension	types.

Module	pickletools
Tools	for	working	with	and	analyzing	pickled	data.

Module	shelve
Indexed	databases	of	objects;	uses	pickle.

Module	copy
Shallow	and	deep	object	copying.

Module	marshal
High-performance	serialization	of	built-in	types.

Footnotes

[1] Don’t	confuse	this	with	the	marshal	module

[2] This	is	why	lambda	functions	cannot	be	pickled:	all	lambda
functions	share	the	same	name:	<lambda>.

[3] The	exception	raised	will	likely	be	an	ImportError	or	an
AttributeError	but	it	could	be	something	else.

[4] The	copy	module	uses	this	protocol	for	shallow	and	deep
copying	operations.

[5]

The	limitation	on	alphanumeric	characters	is	due	to	the	fact	the
persistent	IDs,	in	protocol	0,	are	delimited	by	the	newline
character.	Therefore	if	any	kind	of	newline	characters	occurs	in
persistent	IDs,	the	resulting	pickle	will	become	unreadable.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

http://www.python.org/

12.2.	copyreg	—	Register
pickle	support	functions

The	 copyreg	 module	 offers	 a	 way	 to	 define	 fuctions	 used	 while
pickling	specific	objects.	The	pickle	 and	 copy	modules	 use	 those
functions	 when	 pickling/copying	 those	 objects.	 The	 module	 provides
configuration	 information	 about	 object	 constructors	 which	 are	 not
classes.	 Such	 constructors	 may	 be	 factory	 functions	 or	 class
instances.

copyreg.constructor(object)
Declares	object	 to	 be	 a	 valid	 constructor.	 If	object	 is	 not	 callable
(and	hence	not	valid	as	a	constructor),	raises	TypeError.

copyreg.pickle(type,	function,	constructor=None)
Declares	that	function	should	be	used	as	a	“reduction”	function	for
objects	of	type	type.	function	should	return	either	a	string	or	a	tuple
containing	two	or	three	elements.

The	optional	constructor	parameter,	if	provided,	is	a	callable	object
which	can	be	used	 to	 reconstruct	 the	object	when	called	with	 the
tuple	 of	 arguments	 returned	 by	 function	 at	 pickling	 time.
TypeError	will	be	raised	if	object	 is	a	class	or	constructor	is	not
callable.

See	the	pickle	module	for	more	details	on	the	interface	expected
of	 function	 and	 constructor.	 Note	 that	 the	 dispatch_table
attribute	of	a	pickler	object	or	subclass	of	pickle.Pickler	can
also	be	used	for	declaring	reduction	functions.

12.2.1.	Example

The	 example	 below	 would	 like	 to	 show	 how	 to	 register	 a	 pickle
function	and	how	it	will	be	used:

>>>	import	copyreg,	copy,	pickle

>>>	class	C(object):

...					def	__init__(self,	a):

...									self.a	=	a

...

>>>	def	pickle_c(c):

...					print("pickling	a	C	instance...")

...					return	C,	(c.a,)

...

>>>	copyreg.pickle(C,	pickle_c)

>>>	c	=	C(1)

>>>	d	=	copy.copy(c)

pickling	a	C	instance...

>>>	p	=	pickle.dumps(c)

pickling	a	C	instance...

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

http://www.python.org/

12.3.	shelve	—	Python	object
persistence
Source	code:	Lib/shelve.py

A	 “shelf”	 is	 a	 persistent,	 dictionary-like	 object.	 The	 difference	 with
“dbm”	databases	 is	 that	 the	 values	 (not	 the	 keys!)	 in	 a	 shelf	 can	be
essentially	 arbitrary	 Python	 objects	 —	 anything	 that	 the	 pickle
module	can	handle.	This	includes	most	class	instances,	recursive	data
types,	and	objects	containing	lots	of	shared	sub-objects.	The	keys	are
ordinary	strings.

shelve.open(filename,	flag='c',	protocol=None,	writeback=False)
Open	 a	 persistent	 dictionary.	 The	 filename	 specified	 is	 the	 base
filename	for	the	underlying	database.	As	a	side-effect,	an	extension
may	 be	 added	 to	 the	 filename	 and	 more	 than	 one	 file	 may	 be
created.	 By	 default,	 the	 underlying	 database	 file	 is	 opened	 for
reading	 and	 writing.	 The	 optional	 flag	 parameter	 has	 the	 same
interpretation	as	the	flag	parameter	of	dbm.open().

By	 default,	 version	 3	 pickles	 are	 used	 to	 serialize	 values.	 The
version	 of	 the	 pickle	 protocol	 can	 be	 specified	 with	 the	 protocol
parameter.

Because	 of	 Python	 semantics,	 a	 shelf	 cannot	 know	 when	 a
mutable	persistent-dictionary	entry	is	modified.	By	default	modified
objects	are	written	only	when	assigned	to	the	shelf	(see	Example).
If	 the	 optional	 writeback	 parameter	 is	 set	 to	 True,	 all	 entries
accessed	are	also	cached	in	memory,	and	written	back	on	sync()

http://hg.python.org/cpython/file/3.4/Lib/shelve.py

and	close();	 this	can	make	it	handier	 to	mutate	mutable	entries
in	the	persistent	dictionary,	but,	if	many	entries	are	accessed,	it	can
consume	vast	amounts	of	memory	for	the	cache,	and	it	can	make
the	close	operation	very	slow	since	all	accessed	entries	are	written
back	 (there	 is	 no	 way	 to	 determine	 which	 accessed	 entries	 are
mutable,	nor	which	ones	were	actually	mutated).

Note: 	 Do	 not	 rely	 on	 the	 shelf	 being	 closed	 automatically;
always	call	close()	explicitly	when	you	don’t	need	it	any	more,
or	use	shelve.open()	as	a	context	manager:

with	shelve.open('spam')	as	db:

				db['eggs']	=	'eggs'

Warning: 	Because	the	shelve	module	is	backed	by	pickle,	it	is
insecure	to	load	a	shelf	from	an	untrusted	source.	Like	with	pickle,
loading	a	shelf	can	execute	arbitrary	code.

Shelf	 objects	 support	 all	 methods	 supported	 by	 dictionaries.	 This
eases	 the	 transition	 from	 dictionary	 based	 scripts	 to	 those	 requiring
persistent	storage.

Two	additional	methods	are	supported:

Shelf.sync()
Write	 back	 all	 entries	 in	 the	 cache	 if	 the	 shelf	 was	 opened	 with
writeback	set	to	True.	Also	empty	the	cache	and	synchronize	the
persistent	dictionary	on	disk,	if	feasible.	This	is	called	automatically
when	the	shelf	is	closed	with	close().

Shelf.close()
Synchronize	and	close	 the	persistent	dict	object.	Operations	on	a

closed	shelf	will	fail	with	a	ValueError.

See	also: 	Persistent	dictionary	recipe	with	widely	supported
storage	formats	and	having	the	speed	of	native	dictionaries.

http://code.activestate.com/recipes/576642/

12.3.1.	Restrictions

The	 choice	 of	 which	 database	 package	 will	 be	 used	 (such	 as
dbm.ndbm	or	dbm.gnu)	depends	on	which	interface	is	available.
Therefore	 it	 is	not	safe	 to	open	the	database	directly	using	dbm.
The	database	 is	 also	 (unfortunately)	 subject	 to	 the	 limitations	 of
dbm,	if	it	is	used	—	this	means	that	(the	pickled	representation	of)
the	objects	stored	 in	 the	database	should	be	 fairly	 small,	 and	 in
rare	 cases	 key	 collisions	 may	 cause	 the	 database	 to	 refuse
updates.
The	 shelve	 module	 does	 not	 support	 concurrent	 read/write
access	to	shelved	objects.	 (Multiple	simultaneous	read	accesses
are	safe.)	When	a	program	has	a	shelf	open	for	writing,	no	other
program	 should	 have	 it	 open	 for	 reading	 or	 writing.	 Unix	 file
locking	 can	 be	 used	 to	 solve	 this,	 but	 this	 differs	 across	 Unix
versions	 and	 requires	 knowledge	 about	 the	 database
implementation	used.

class	shelve.Shelf(dict,	protocol=None,	writeback=False,
keyencoding='utf-8')

A	 subclass	 of	 collections.abc.MutableMapping	 which
stores	pickled	values	in	the	dict	object.

By	 default,	 version	 0	 pickles	 are	 used	 to	 serialize	 values.	 The
version	 of	 the	 pickle	 protocol	 can	 be	 specified	 with	 the	 protocol
parameter.	See	the	pickle	documentation	for	a	discussion	of	the
pickle	protocols.

If	the	writeback	parameter	is	True,	the	object	will	hold	a	cache	of
all	 entries	 accessed	 and	write	 them	back	 to	 the	dict	 at	 sync	 and
close	times.	This	allows	natural	operations	on	mutable	entries,	but
can	consume	much	more	memory	and	make	sync	and	close	take	a

long	time.

The	keyencoding	parameter	 is	 the	encoding	used	to	encode	keys
before	they	are	used	with	the	underlying	dict.

A	Shelf	object	can	also	be	used	as	a	context	manager,	 in	which
case	it	will	be	automatically	closed	when	the	with	block	ends.

Changed	 in	 version	 3.2:	 Added	 the	 keyencoding	 parameter;
previously,	keys	were	always	encoded	in	UTF-8.

Changed	in	version	3.4:	Added	context	manager	support.

class	shelve.BsdDbShelf(dict,	protocol=None,	writeback=False,
keyencoding='utf-8')

A	 subclass	 of	 Shelf	 which	 exposes	 first(),	 next(),
previous(),	 last()	 and	 set_location()	 which	 are
available	in	the	third-party	bsddb	module	from	pybsddb	but	not	in
other	database	modules.	The	dict	object	passed	to	the	constructor
must	 support	 those	 methods.	 This	 is	 generally	 accomplished	 by
calling	 one	 of	 bsddb.hashopen(),	 bsddb.btopen()	 or
bsddb.rnopen().	 The	 optional	 protocol,	 writeback,	 and
keyencoding	 parameters	 have	 the	 same	 interpretation	 as	 for	 the
Shelf	class.

class	shelve.DbfilenameShelf(filename,	flag='c',
protocol=None,	writeback=False)

A	subclass	of	 Shelf	which	accepts	a	 filename	 instead	of	 a	dict-
like	object.	The	underlying	file	will	be	opened	using	dbm.open().
By	 default,	 the	 file	will	 be	 created	 and	 opened	 for	 both	 read	 and
write.	The	optional	 flag	 parameter	 has	 the	 same	 interpretation	as
for	 the	 open()	 function.	 The	 optional	 protocol	 and	 writeback

http://www.jcea.es/programacion/pybsddb.htm

parameters	have	the	same	interpretation	as	for	the	Shelf	class.

12.3.2.	Example

To	 summarize	 the	 interface	 (key	 is	 a	 string,	 data	 is	 an	 arbitrary
object):

import	shelve

d	=	shelve.open(filename)	#	open	--	file	may	get	suffix	added	by	low-level

																										#	library

d[key]	=	data			#	store	data	at	key	(overwrites	old	data	if

																#	using	an	existing	key)

data	=	d[key]			#	retrieve	a	COPY	of	data	at	key	(raise	KeyError	if	no

																#	such	key)

del	d[key]						#	delete	data	stored	at	key	(raises	KeyError

																#	if	no	such	key)

flag	=	key	in	d								#	true	if	the	key	exists

klist	=	list(d.keys())	#	a	list	of	all	existing	keys	(slow!)

#	as	d	was	opened	WITHOUT	writeback=True,	beware:

d['xx']	=	[0,	1,	2]				#	this	works	as	expected,	but...

d['xx'].append(3)						#	*this	doesn't!*	--	d['xx']	is	STILL	[0,	1,	2]!

#	having	opened	d	without	writeback=True,	you	need	to	code	carefully:

temp	=	d['xx']						#	extracts	the	copy

temp.append(5)						#	mutates	the	copy

d['xx']	=	temp						#	stores	the	copy	right	back,	to	persist	it

#	or,	d=shelve.open(filename,writeback=True)	would	let	you	just	code

#	d['xx'].append(5)	and	have	it	work	as	expected,	BUT	it	would	also

#	consume	more	memory	and	make	the	d.close()	operation	slower.

d.close()							#	close	it

See	also:

Module	dbm
Generic	interface	to	dbm-style	databases.

Module	pickle
Object	serialization	used	by	shelve.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

http://www.python.org/

12.4.	marshal	—	Internal	Python
object	serialization
This	module	contains	functions	that	can	read	and	write	Python	values
in	a	binary	format.	The	format	is	specific	to	Python,	but	independent	of
machine	architecture	 issues	 (e.g.,	 you	can	write	a	Python	value	 to	a
file	on	a	PC,	transport	the	file	to	a	Sun,	and	read	it	back	there).	Details
of	 the	format	are	undocumented	on	purpose;	 it	may	change	between
Python	versions	(although	it	rarely	does).	[1]

This	 is	 not	 a	 general	 “persistence”	 module.	 For	 general	 persistence
and	 transfer	 of	 Python	 objects	 through	 RPC	 calls,	 see	 the	modules
pickle	and	shelve.	The	marshal	module	exists	mainly	to	support
reading	and	writing	the	“pseudo-compiled”	code	for	Python	modules	of
.pyc	 files.	 Therefore,	 the	 Python	 maintainers	 reserve	 the	 right	 to
modify	the	marshal	format	 in	backward	incompatible	ways	should	the
need	arise.	If	you’re	serializing	and	de-serializing	Python	objects,	use
the	pickle	module	instead	–	the	performance	is	comparable,	version
independence	is	guaranteed,	and	pickle	supports	a	substantially	wider
range	of	objects	than	marshal.

Warning: 	The	marshal	module	is	not	intended	to	be	secure
against	erroneous	or	maliciously	constructed	data.	Never	unmarshal
data	received	from	an	untrusted	or	unauthenticated	source.

Not	 all	 Python	 object	 types	 are	 supported;	 in	 general,	 only	 objects
whose	value	is	independent	from	a	particular	invocation	of	Python	can
be	written	and	read	by	this	module.	The	following	types	are	supported:
booleans,	integers,	floating	point	numbers,	complex	numbers,	strings,
bytes,	bytearrays,	tuples,	lists,	sets,	frozensets,	dictionaries,	and	code

objects,	 where	 it	 should	 be	 understood	 that	 tuples,	 lists,	 sets,
frozensets	and	dictionaries	are	only	supported	as	 long	as	 the	values
contained	 therein	 are	 themselves	 supported.	 singletons	 None,
Ellipsis	 and	 StopIteration	 can	 also	 be	 marshalled	 and
unmarshalled.	 For	 format	 version	 lower	 than	 3,	 recursive	 lists,	 sets
and	dictionaries	cannot	be	written	(see	below).

There	are	functions	that	read/write	files	as	well	as	functions	operating
on	strings.

The	module	defines	these	functions:

marshal.dump(value,	file[,	version])
Write	 the	 value	 on	 the	 open	 file.	 The	 value	must	 be	a	 supported
type.	The	file	must	be	an	open	file	object	such	as	sys.stdout	or
returned	by	open()	or	os.popen().	It	must	be	opened	in	binary
mode	('wb'	or	'w+b').

If	 the	 value	 has	 (or	 contains	 an	 object	 that	 has)	 an	 unsupported
type,	a	ValueError	exception	 is	 raised	—	but	garbage	data	will
also	be	written	to	the	file.	The	object	will	not	be	properly	read	back
by	load().

The	version	argument	 indicates	 the	data	 format	 that	dump	should
use	(see	below).

marshal.load(file)
Read	one	value	from	the	open	file	and	return	it.	If	no	valid	value	is
read	 (e.g.	 because	 the	 data	 has	 a	 different	 Python	 version’s
incompatible	 marshal	 format),	 raise	 EOFError,	 ValueError	 or
TypeError.	The	file	must	be	an	open	file	object	opened	in	binary
mode	('rb'	or	'r+b').

Note: 	 If	 an	 object	 containing	 an	 unsupported	 type	 was
marshalled	 with	 dump(),	 load()	 will	 substitute	 None	 for	 the
unmarshallable	type.

marshal.dumps(value[,	version])
Return	 the	string	 that	would	be	written	 to	a	 file	by	dump(value,
file).	 The	 value	 must	 be	 a	 supported	 type.	 Raise	 a
ValueError	 exception	 if	 value	 has	 (or	 contains	 an	 object	 that
has)	an	unsupported	type.

The	version	argument	indicates	the	data	format	that	dumps	should
use	(see	below).

marshal.loads(string)
Convert	 the	 string	 to	 a	 value.	 If	 no	 valid	 value	 is	 found,	 raise
EOFError,	ValueError	or	TypeError.	Extra	characters	 in	 the
string	are	ignored.

In	addition,	the	following	constants	are	defined:

marshal.version

Indicates	 the	 format	 that	 the	 module	 uses.	 Version	 0	 is	 the
historical	 format,	 version	 1	 shares	 interned	 strings	 and	 version	 2
uses	 a	 binary	 format	 for	 floating	 point	 numbers.	 Version	 3	 adds
support	for	object	 instancing	and	recursion.	The	current	version	is
3.

Footnotes

The	name	of	this	module	stems	from	a	bit	of	terminology	used
by	the	designers	of	Modula-3	(amongst	others),	who	use	the
term	“marshalling”	for	shipping	of	data	around	in	a	self-

[1] contained	form.	Strictly	speaking,	“to	marshal”	means	to
convert	some	data	from	internal	to	external	form	(in	an	RPC
buffer	for	instance)	and	“unmarshalling”	for	the	reverse
process.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

http://www.python.org/

12.5.	dbm	—	Interfaces	to	Unix
“databases”
dbm	 is	 a	 generic	 interface	 to	 variants	 of	 the	 DBM	 database	 —
dbm.gnu	 or	 dbm.ndbm.	 If	 none	 of	 these	 modules	 is	 installed,	 the
slow-but-simple	 implementation	 in	 module	 dbm.dumb	 will	 be	 used.
There	is	a	third	party	interface	to	the	Oracle	Berkeley	DB.

exception	dbm.error
A	tuple	containing	the	exceptions	that	can	be	raised	by	each	of	the
supported	 modules,	 with	 a	 unique	 exception	 also	 named
dbm.error	 as	 the	 first	 item	 —	 the	 latter	 is	 used	 when
dbm.error	is	raised.

dbm.whichdb(filename)
This	 function	 attempts	 to	 guess	 which	 of	 the	 several	 simple
database	 modules	 available	 —	 dbm.gnu,	 dbm.ndbm	 or
dbm.dumb	—	should	be	used	to	open	a	given	file.

Returns	 one	 of	 the	 following	 values:	 None	 if	 the	 file	 can’t	 be
opened	because	 it’s	unreadable	or	doesn’t	exist;	 the	empty	string
('')	if	the	file’s	format	can’t	be	guessed;	or	a	string	containing	the
required	module	name,	such	as	'dbm.ndbm'	or	'dbm.gnu'.

dbm.open(file,	flag='r',	mode=0o666)
Open	the	database	file	file	and	return	a	corresponding	object.

If	the	database	file	already	exists,	the	whichdb()	function	is	used
to	determine	its	type	and	the	appropriate	module	is	used;	if	it	does
not	 exist,	 the	 first	 module	 listed	 above	 that	 can	 be	 imported	 is

http://www.jcea.es/programacion/pybsddb.htm

used.

The	optional	flag	argument	can	be:

Value Meaning

'r' Open	existing	database	for	reading	only	(default)

'w' Open	existing	database	for	reading	and	writing

'c'
Open	database	for	reading	and	writing,	creating	it	if	it
doesn’t	exist

'n'
Always	create	a	new,	empty	database,	open	for
reading	and	writing

The	optional	mode	argument	is	the	Unix	mode	of	the	file,	used	only
when	 the	 database	has	 to	 be	 created.	 It	 defaults	 to	 octal	 0o666
(and	will	be	modified	by	the	prevailing	umask).

The	object	returned	by	open()	supports	the	same	basic	functionality
as	 dictionaries;	 keys	 and	 their	 corresponding	 values	 can	 be	 stored,
retrieved,	and	deleted,	and	the	in	operator	and	the	keys()	method
are	available,	as	well	as	get()	and	setdefault().

Changed	 in	 version	 3.2:	 get()	 and	 setdefault()	 are	 now
available	in	all	database	modules.

Key	 and	 values	 are	 always	 stored	 as	 bytes.	 This	 means	 that	 when
strings	are	used	 they	are	 implicitly	converted	 to	 the	default	encoding
before	being	stored.

These	objects	also	support	being	used	in	a	with	statement,	which	will
automatically	close	them	when	done.

Changed	 in	 version	 3.4:	 Added	 native	 support	 for	 the	 context
management	protocol	to	the	objects	returned	by	open().

The	following	example	records	some	hostnames	and	a	corresponding
title,	and	then	prints	out	the	contents	of	the	database:

import	dbm

#	Open	database,	creating	it	if	necessary.

with	dbm.open('cache',	'c')	as	db:

				#	Record	some	values

				db[b'hello']	=	b'there'

				db['www.python.org']	=	'Python	Website'

				db['www.cnn.com']	=	'Cable	News	Network'

				#	Note	that	the	keys	are	considered	bytes	now.

				assert	db[b'www.python.org']	==	b'Python	Website'

				#	Notice	how	the	value	is	now	in	bytes.

				assert	db['www.cnn.com']	==	b'Cable	News	Network'

				#	Often-used	methods	of	the	dict	interface	work	too.

				print(db.get('python.org',	b'not	present'))

				#	Storing	a	non-string	key	or	value	will	raise	an	exception	(most

				#	likely	a	TypeError).

				db['www.yahoo.com']	=	4

#	db	is	automatically	closed	when	leaving	the	with	statement.

See	also:

Module	shelve
Persistence	module	which	stores	non-string	data.

The	individual	submodules	are	described	in	the	following	sections.

12.5.1.	dbm.gnu	—	GNU’s
reinterpretation	of	dbm

This	 module	 is	 quite	 similar	 to	 the	 dbm	 module,	 but	 uses	 the	 GNU
library	 gdbm	 instead	 to	 provide	 some	 additional	 functionality.	 Please
note	 that	 the	 file	 formats	 created	 by	 dbm.gnu	 and	 dbm.ndbm	 are
incompatible.

The	dbm.gnu	module	provides	an	 interface	to	the	GNU	DBM	library.
dbm.gnu.gdbm	 objects	 behave	 like	 mappings	 (dictionaries),	 except
that	 keys	 and	 values	 are	 always	 converted	 to	 bytes	 before	 storing.
Printing	 a	 gdbm	 object	 doesn’t	 print	 the	 keys	 and	 values,	 and	 the
items()	and	values()	methods	are	not	supported.

exception	dbm.gnu.error
Raised	on	dbm.gnu-specific	errors,	such	as	I/O	errors.	KeyError
is	raised	for	general	mapping	errors	like	specifying	an	incorrect	key.

dbm.gnu.open(filename[,	flag[,	mode]])
Open	 a	 gdbm	 database	 and	 return	 a	 gdbm	 object.	 The	 filename
argument	is	the	name	of	the	database	file.

The	optional	flag	argument	can	be:

Value Meaning

'r' Open	existing	database	for	reading	only	(default)

'w' Open	existing	database	for	reading	and	writing

'c'
Open	database	for	reading	and	writing,	creating	it	if	it
doesn’t	exist

'n' Always	create	a	new,	empty	database,	open	for

reading	and	writing

The	following	additional	characters	may	be	appended	to	the	flag	to
control	how	the	database	is	opened:

Value Meaning

'f'
Open	the	database	in	fast	mode.	Writes	to	the
database	will	not	be	synchronized.

's'
Synchronized	mode.	This	will	cause	changes	to	the
database	to	be	immediately	written	to	the	file.

'u' Do	not	lock	database.

Not	all	flags	are	valid	for	all	versions	of	gdbm.	The	module	constant
open_flags	 is	 a	 string	 of	 supported	 flag	 characters.	 The
exception	error	is	raised	if	an	invalid	flag	is	specified.

The	optional	mode	argument	is	the	Unix	mode	of	the	file,	used	only
when	the	database	has	to	be	created.	It	defaults	to	octal	0o666.

In	 addition	 to	 the	dictionary-like	methods,	 gdbm	 objects	 have	 the
following	methods:

gdbm.firstkey()
It’s	possible	 to	 loop	over	every	key	 in	 the	database	using	 this
method	and	the	nextkey()	method.	The	 traversal	 is	ordered
by	gdbm‘s	internal	hash	values,	and	won’t	be	sorted	by	the	key
values.	This	method	returns	the	starting	key.

gdbm.nextkey(key)
Returns	the	key	that	follows	key	 in	the	traversal.	The	following
code	 prints	 every	 key	 in	 the	 database	 db,	 without	 having	 to
create	a	list	in	memory	that	contains	them	all:

k	=	db.firstkey()

while	k	!=	None:

				print(k)

				k	=	db.nextkey(k)

gdbm.reorganize()
If	you	have	carried	out	a	lot	of	deletions	and	would	like	to	shrink
the	space	used	by	the	gdbm	file,	this	routine	will	reorganize	the
database.	 gdbm	 objects	 will	 not	 shorten	 the	 length	 of	 a
database	 file	 except	 by	 using	 this	 reorganization;	 otherwise,
deleted	 file	space	will	be	kept	and	reused	as	new	(key,	value)
pairs	are	added.

gdbm.sync()
When	the	database	has	been	opened	in	fast	mode,	this	method
forces	any	unwritten	data	to	be	written	to	the	disk.

12.5.2.	dbm.ndbm	—	Interface	based	on
ndbm

The	 dbm.ndbm	 module	 provides	 an	 interface	 to	 the	 Unix	 “(n)dbm”
library.	Dbm	objects	 behave	 like	mappings	 (dictionaries),	 except	 that
keys	 and	 values	 are	 always	 stored	 as	 bytes.	 Printing	 a	 dbm	 object
doesn’t	print	 the	keys	and	values,	and	 the	items()	and	values()
methods	are	not	supported.

This	module	can	be	used	with	the	“classic”	ndbm	interface	or	the	GNU
GDBM	 compatibility	 interface.	 On	 Unix,	 the	 configure	 script	 will
attempt	 to	 locate	 the	 appropriate	 header	 file	 to	 simplify	 building	 this
module.

exception	dbm.ndbm.error
Raised	 on	 dbm.ndbm-specific	 errors,	 such	 as	 I/O	 errors.
KeyError	 is	 raised	 for	general	mapping	errors	 like	specifying	an
incorrect	key.

dbm.ndbm.library

Name	of	the	ndbm	implementation	library	used.

dbm.ndbm.open(filename[,	flag[,	mode]])
Open	 a	 dbm	 database	 and	 return	 a	 dbm	 object.	 The	 filename
argument	 is	 the	 name	 of	 the	 database	 file	 (without	 the	 .dir	 or
.pag	extensions).

The	optional	flag	argument	must	be	one	of	these	values:

Value Meaning

'r' Open	existing	database	for	reading	only	(default)

'w' Open	existing	database	for	reading	and	writing

'c'
Open	database	for	reading	and	writing,	creating	it	if	it
doesn’t	exist

'n'
Always	create	a	new,	empty	database,	open	for
reading	and	writing

The	optional	mode	argument	is	the	Unix	mode	of	the	file,	used	only
when	 the	 database	has	 to	 be	 created.	 It	 defaults	 to	 octal	 0o666
(and	will	be	modified	by	the	prevailing	umask).

12.5.3.	dbm.dumb	—	Portable	DBM
implementation

Note: 	The	dbm.dumb	module	is	intended	as	a	last	resort	fallback
for	the	dbm	module	when	a	more	robust	module	is	not	available.	The
dbm.dumb	module	is	not	written	for	speed	and	is	not	nearly	as
heavily	used	as	the	other	database	modules.

The	dbm.dumb	module	provides	a	persistent	dictionary-like	 interface
which	 is	 written	 entirely	 in	 Python.	 Unlike	 other	 modules	 such	 as
dbm.gnu	 no	 external	 library	 is	 required.	 As	 with	 other	 persistent
mappings,	the	keys	and	values	are	always	stored	as	bytes.

The	module	defines	the	following:

exception	dbm.dumb.error
Raised	 on	 dbm.dumb-specific	 errors,	 such	 as	 I/O	 errors.
KeyError	 is	 raised	 for	general	mapping	errors	 like	specifying	an
incorrect	key.

dbm.dumb.open(filename[,	flag[,	mode]])
Open	 a	 dumbdbm	 database	 and	 return	 a	 dumbdbm	 object.	 The
filename	 argument	 is	 the	 basename	 of	 the	 database	 file	 (without
any	 specific	 extensions).	When	 a	 dumbdbm	database	 is	 created,
files	with	.dat	and	.dir	extensions	are	created.

The	 optional	 flag	 argument	 is	 currently	 ignored;	 the	 database	 is
always	opened	for	update,	and	will	be	created	if	it	does	not	exist.

The	optional	mode	argument	is	the	Unix	mode	of	the	file,	used	only
when	 the	 database	has	 to	 be	 created.	 It	 defaults	 to	 octal	 0o666

(and	will	be	modified	by	the	prevailing	umask).

In	 addition	 to	 the	 methods	 provided	 by	 the
collections.abc.MutableMapping	 class,	 dumbdbm	 objects
provide	the	following	method:

dumbdbm.sync()
Synchronize	the	on-disk	directory	and	data	files.	This	method	is
called	by	the	Shelve.sync()	method.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

http://www.python.org/

12.6.	sqlite3	—	DB-API	2.0
interface	for	SQLite	databases
SQLite	 is	a	C	 library	 that	provides	a	 lightweight	disk-based	database
that	doesn’t	 require	a	 separate	 server	process	and	allows	accessing
the	database	using	a	nonstandard	variant	of	the	SQL	query	language.
Some	applications	can	use	SQLite	 for	 internal	data	storage.	 It’s	also
possible	 to	 prototype	 an	 application	 using	 SQLite	 and	 then	 port	 the
code	to	a	larger	database	such	as	PostgreSQL	or	Oracle.

sqlite3	was	written	 by	Gerhard	Häring	 and	 provides	 a	SQL	 interface
compliant	with	the	DB-API	2.0	specification	described	by	PEP	249.

To	use	 the	module,	 you	must	 first	 create	a	 Connection	object	 that
represents	 the	 database.	 Here	 the	 data	 will	 be	 stored	 in	 the
example.db	file:

import	sqlite3

conn	=	sqlite3.connect('example.db')

You	can	also	supply	the	special	name	:memory:	to	create	a	database
in	RAM.

Once	you	have	a	Connection,	you	can	create	a	Cursor	object	and
call	its	execute()	method	to	perform	SQL	commands:

c	=	conn.cursor()

#	Create	table

c.execute('''create	table	stocks

(date	text,	trans	text,	symbol	text,

http://www.python.org/dev/peps/pep-0249

	qty	real,	price	real)''')

#	Insert	a	row	of	data

c.execute("""insert	into	stocks

										values	('2006-01-05','BUY','RHAT',100,35.14)"""

#	Save	(commit)	the	changes

conn.commit()

#	We	can	also	close	the	cursor	if	we	are	done	with	it

c.close()

Usually	 your	 SQL	 operations	 will	 need	 to	 use	 values	 from	 Python
variables.	 You	 shouldn’t	 assemble	 your	 query	 using	 Python’s	 string
operations	 because	 doing	 so	 is	 insecure;	 it	 makes	 your	 program
vulnerable	to	an	SQL	injection	attack.

Instead,	 use	 the	 DB-API’s	 parameter	 substitution.	 Put	 ?	 as	 a
placeholder	 wherever	 you	 want	 to	 use	 a	 value,	 and	 then	 provide	 a
tuple	 of	 values	 as	 the	 second	 argument	 to	 the	 cursor’s	 execute()
method.	 (Other	 database	 modules	 may	 use	 a	 different	 placeholder,
such	as	%s	or	:1.)	For	example:

#	Never	do	this	--	insecure!

symbol	=	'IBM'

c.execute("select	*	from	stocks	where	symbol	=	'%s'"

#	Do	this	instead

t	=	('IBM',)

c.execute('select	*	from	stocks	where	symbol=?',	t)

#	Larger	example

for	t	in	[('2006-03-28',	'BUY',	'IBM',	1000,	45.00),

										('2006-04-05',	'BUY',	'MSFT',	1000,	72.00),

										('2006-04-06',	'SELL',	'IBM',	500,	53.00),

]:

				c.execute('insert	into	stocks	values	(?,?,?,?,?)'

To	retrieve	data	after	executing	a	SELECT	statement,	you	can	either
treat	the	cursor	as	an	 iterator,	call	 the	cursor’s	fetchone()	method
to	retrieve	a	single	matching	row,	or	call	fetchall()	 to	get	a	 list	of
the	matching	rows.

This	example	uses	the	iterator	form:

>>>	c	=	conn.cursor()

>>>	c.execute('select	*	from	stocks	order	by	price')

>>>	for	row	in	c:

...					print(row)

...

('2006-01-05',	'BUY',	'RHAT',	100,	35.14)

('2006-03-28',	'BUY',	'IBM',	1000,	45.0)

('2006-04-06',	'SELL',	'IBM',	500,	53.0)

('2006-04-05',	'BUY',	'MSOFT',	1000,	72.0)

>>>

See	also:

https://github.com/ghaering/pysqlite
The	pysqlite	web	page	–	sqlite3	is	developed	externally	under	the
name	“pysqlite”.

http://www.sqlite.org
The	SQLite	web	page;	 the	 documentation	 describes	 the	 syntax
and	the	available	data	types	for	the	supported	SQL	dialect.

PEP	249	-	Database	API	Specification	2.0
PEP	written	by	Marc-André	Lemburg.

https://github.com/ghaering/pysqlite
http://www.sqlite.org
http://www.python.org/dev/peps/pep-0249

12.6.1.	Module	functions	and	constants

sqlite3.version

The	 version	 number	 of	 this	 module,	 as	 a	 string.	 This	 is	 not	 the
version	of	the	SQLite	library.

sqlite3.version_info

The	version	number	of	 this	module,	as	a	tuple	of	 integers.	This	 is
not	the	version	of	the	SQLite	library.

sqlite3.sqlite_version

The	version	number	of	the	run-time	SQLite	library,	as	a	string.

sqlite3.sqlite_version_info

The	 version	 number	 of	 the	 run-time	 SQLite	 library,	 as	 a	 tuple	 of
integers.

sqlite3.PARSE_DECLTYPES

This	constant	is	meant	to	be	used	with	the	detect_types	parameter
of	the	connect()	function.

Setting	it	makes	the	sqlite3	module	parse	the	declared	type	for
each	 column	 it	 returns.	 It	 will	 parse	 out	 the	 first	 word	 of	 the
declared	 type,	 i.	 e.	 for	 “integer	 primary	 key”,	 it	 will	 parse	 out
“integer”,	 or	 for	 “number(10)”	 it	 will	 parse	 out	 “number”.	 Then	 for
that	column,	 it	will	 look	 into	 the	converters	dictionary	and	use	 the
converter	function	registered	for	that	type	there.

sqlite3.PARSE_COLNAMES

This	constant	is	meant	to	be	used	with	the	detect_types	parameter
of	the	connect()	function.

Setting	this	makes	the	SQLite	interface	parse	the	column	name	for
each	column	 it	 returns.	 It	will	 look	 for	a	 string	 formed	 [mytype]	 in
there,	and	then	decide	that	‘mytype’	is	the	type	of	the	column.	It	will
try	to	find	an	entry	of	‘mytype’	in	the	converters	dictionary	and	then
use	 the	 converter	 function	 found	 there	 to	 return	 the	 value.	 The
column	 name	 found	 in	 Cursor.description	 is	 only	 the	 first
word	of	 the	column	name,	 i.	e.	 if	you	use	something	 like	'as	"x
[datetime]"'	 in	 your	 SQL,	 then	 we	 will	 parse	 out	 everything
until	 the	 first	blank	 for	 the	column	name:	 the	column	name	would
simply	be	“x”.

sqlite3.connect(database[,	timeout,	detect_types,
isolation_level,	check_same_thread,	factory,	cached_statements,	uri])

Opens	a	connection	to	the	SQLite	database	file	database.	You	can
use	 ":memory:"	 to	 open	 a	 database	 connection	 to	 a	 database
that	resides	in	RAM	instead	of	on	disk.

When	a	database	is	accessed	by	multiple	connections,	and	one	of
the	 processes	 modifies	 the	 database,	 the	 SQLite	 database	 is
locked	until	 that	 transaction	 is	 committed.	 The	 timeout	 parameter
specifies	 how	 long	 the	 connection	 should	 wait	 for	 the	 lock	 to	 go
away	 until	 raising	 an	 exception.	 The	 default	 for	 the	 timeout
parameter	is	5.0	(five	seconds).

For	 the	 isolation_level	 parameter,	 please	 see	 the
Connection.isolation_level	 property	 of	 Connection

objects.

SQLite	 natively	 supports	 only	 the	 types	 TEXT,	 INTEGER,	 REAL,
BLOB	 and	 NULL.	 If	 you	 want	 to	 use	 other	 types	 you	 must	 add
support	 for	 them	 yourself.	 The	 detect_types	 parameter	 and	 the
using	 custom	 converters	 registered	 with	 the	 module-level

register_converter()	function	allow	you	to	easily	do	that.

detect_types	defaults	to	0	(i.	e.	off,	no	type	detection),	you	can	set
it	 to	 any	 combination	 of	 PARSE_DECLTYPES	 and
PARSE_COLNAMES	to	turn	type	detection	on.

By	default,	 the	 sqlite3	module	uses	 its	 Connection	 class	 for
the	 connect	 call.	 You	 can,	 however,	 subclass	 the	 Connection
class	and	make	 connect()	 use	 your	 class	 instead	by	providing
your	class	for	the	factory	parameter.

Consult	 the	 section	SQLite	 and	 Python	 types	 of	 this	 manual	 for
details.

The	sqlite3	module	 internally	uses	a	statement	cache	 to	avoid
SQL	parsing	overhead.	 If	you	want	 to	explicitly	set	 the	number	of
statements	 that	 are	 cached	 for	 the	 connection,	 you	 can	 set	 the
cached_statements	 parameter.	 The	 currently	 implemented	default
is	to	cache	100	statements.

If	uri	 is	 true,	database	 is	 interpreted	as	a	URI.	This	allows	you	 to
specify	 options.	 For	 example,	 to	 open	 a	 database	 in	 read-only
mode	you	can	use:

db	=	sqlite3.connect('file:path/to/database?mode=ro'

More	 information	about	 this	 feature,	 including	a	 list	 of	 recognized
options,	can	be	found	in	the	SQLite	URI	documentation.

Changed	in	version	3.4:	Added	the	uri	parameter.

sqlite3.register_converter(typename,	callable)
Registers	a	callable	to	convert	a	bytestring	from	the	database	into

http://www.sqlite.org/uri.html

a	custom	Python	type.	The	callable	will	be	invoked	for	all	database
values	 that	 are	 of	 the	 type	 typename.	 Confer	 the	 parameter
detect_types	of	the	connect()	function	for	how	the	type	detection
works.	Note	that	the	case	of	typename	and	the	name	of	the	type	in
your	query	must	match!

sqlite3.register_adapter(type,	callable)
Registers	 a	 callable	 to	 convert	 the	 custom	Python	 type	 type	 into
one	of	SQLite’s	supported	types.	The	callable	callable	accepts	as
single	parameter	the	Python	value,	and	must	return	a	value	of	the
following	types:	int,	float,	str	or	bytes.

sqlite3.complete_statement(sql)
Returns	True	if	the	string	sql	contains	one	or	more	complete	SQL
statements	 terminated	 by	 semicolons.	 It	 does	 not	 verify	 that	 the
SQL	is	syntactically	correct,	only	that	there	are	no	unclosed	string
literals	and	the	statement	is	terminated	by	a	semicolon.

This	 can	 be	 used	 to	 build	 a	 shell	 for	 SQLite,	 as	 in	 the	 following
example:

#	A	minimal	SQLite	shell	for	experiments

import	sqlite3

con	=	sqlite3.connect(":memory:")

con.isolation_level	=	None

cur	=	con.cursor()

buffer	=	""

print("Enter	your	SQL	commands	to	execute	in	sqlite3."

print("Enter	a	blank	line	to	exit.")

while	True:

				line	=	input()

				if	line	==	"":

								break

				buffer	+=	line

				if	sqlite3.complete_statement(buffer):

								try:

												buffer	=	buffer.strip()

												cur.execute(buffer)

												if	buffer.lstrip().upper().startswith(

																print(cur.fetchall())

								except	sqlite3.Error	as	e:

												print("An	error	occurred:",	e.args[0])

								buffer	=	""

con.close()

sqlite3.enable_callback_tracebacks(flag)
By	default	you	will	not	get	any	tracebacks	in	user-defined	functions,
aggregates,	 converters,	 authorizer	 callbacks	 etc.	 If	 you	 want	 to
debug	 them,	 you	 can	 call	 this	 function	 with	 flag	 set	 to	 True.
Afterwards,	 you	 will	 get	 tracebacks	 from	 callbacks	 on
sys.stderr.	Use	False	to	disable	the	feature	again.

12.6.2.	Connection	Objects

class	sqlite3.Connection
A	 SQLite	 database	 connection	 has	 the	 following	 attributes	 and
methods:

isolation_level

Get	 or	 set	 the	 current	 isolation	 level.	 None	 for	 autocommit
mode	or	one	of	“DEFERRED”,	“IMMEDIATE”	or	“EXCLUSIVE”.
See	 section	 Controlling	 Transactions	 for	 a	 more	 detailed
explanation.

in_transaction

True	 if	 a	 transaction	 is	 active	 (there	 are	 uncommitted
changes),	False	otherwise.	Read-only	attribute.

New	in	version	3.2.

cursor([cursorClass])
The	 cursor	 method	 accepts	 a	 single	 optional	 parameter
cursorClass.	If	supplied,	this	must	be	a	custom	cursor	class	that
extends	sqlite3.Cursor.

commit()
This	method	 commits	 the	 current	 transaction.	 If	 you	 don’t	 call
this	method,	anything	you	did	since	the	last	call	to	commit()	is
not	visible	from	other	database	connections.	If	you	wonder	why
you	don’t	 see	 the	data	 you’ve	written	 to	 the	database,	 please
check	you	didn’t	forget	to	call	this	method.

rollback()

This	method	rolls	back	any	changes	to	the	database	since	the
last	call	to	commit().

close()
This	 closes	 the	 database	 connection.	 Note	 that	 this	 does	 not
automatically	 call	 commit().	 If	 you	 just	 close	 your	 database
connection	without	calling	commit()	first,	your	changes	will	be
lost!

execute(sql[,	parameters])
This	 is	 a	 nonstandard	 shortcut	 that	 creates	 an	 intermediate
cursor	 object	 by	 calling	 the	 cursor	 method,	 then	 calls	 the
cursor’s	execute	method	with	the	parameters	given.

executemany(sql[,	parameters])
This	 is	 a	 nonstandard	 shortcut	 that	 creates	 an	 intermediate
cursor	 object	 by	 calling	 the	 cursor	 method,	 then	 calls	 the
cursor’s	executemany	method	with	the	parameters	given.

executescript(sql_script)
This	 is	 a	 nonstandard	 shortcut	 that	 creates	 an	 intermediate
cursor	 object	 by	 calling	 the	 cursor	 method,	 then	 calls	 the
cursor’s	executescript	method	with	the	parameters	given.

create_function(name,	num_params,	func)
Creates	 a	 user-defined	 function	 that	 you	 can	 later	 use	 from
within	 SQL	 statements	 under	 the	 function	 name	 name.
num_params	is	the	number	of	parameters	the	function	accepts,
and	func	is	a	Python	callable	that	is	called	as	the	SQL	function.

The	function	can	return	any	of	 the	types	supported	by	SQLite:
bytes,	str,	int,	float	and	None.

Example:

import	sqlite3

import	hashlib

def	md5sum(t):

				return	hashlib.md5(t).hexdigest()

con	=	sqlite3.connect(":memory:")

con.create_function("md5",	1,	md5sum)

cur	=	con.cursor()

cur.execute("select	md5(?)",	(b"foo",))

print(cur.fetchone()[0])

create_aggregate(name,	num_params,	aggregate_class)
Creates	a	user-defined	aggregate	function.

The	 aggregate	 class	 must	 implement	 a	 step	 method,	 which
accepts	 the	 number	 of	 parameters	 num_params,	 and	 a
finalize	 method	 which	 will	 return	 the	 final	 result	 of	 the
aggregate.

The	finalize	method	can	return	any	of	 the	 types	supported
by	SQLite:	bytes,	str,	int,	float	and	None.

Example:

import	sqlite3

class	MySum:

				def	__init__(self):

								self.count	=	0

				def	step(self,	value):

								self.count	+=	value

				def	finalize(self):

								return	self.count

con	=	sqlite3.connect(":memory:")

con.create_aggregate("mysum",	1,	MySum)

cur	=	con.cursor()

cur.execute("create	table	test(i)")

cur.execute("insert	into	test(i)	values	(1)")

cur.execute("insert	into	test(i)	values	(2)")

cur.execute("select	mysum(i)	from	test")

print(cur.fetchone()[0])

create_collation(name,	callable)
Creates	 a	 collation	with	 the	 specified	name	 and	callable.	 The
callable	will	be	passed	two	string	arguments.	It	should	return	-1
if	 the	 first	 is	 ordered	 lower	 than	 the	 second,	 0	 if	 they	 are
ordered	 equal	 and	 1	 if	 the	 first	 is	 ordered	 higher	 than	 the
second.	Note	that	this	controls	sorting	(ORDER	BY	in	SQL)	so
your	comparisons	don’t	affect	other	SQL	operations.

Note	 that	 the	 callable	 will	 get	 its	 parameters	 as	 Python
bytestrings,	which	will	normally	be	encoded	in	UTF-8.

The	following	example	shows	a	custom	collation	that	sorts	“the
wrong	way”:

import	sqlite3

def	collate_reverse(string1,	string2):

				if	string1	==	string2:

								return	0

				elif	string1	<	string2:

								return	1

				else:

								return	-1

con	=	sqlite3.connect(":memory:")

con.create_collation("reverse",	collate_reverse

cur	=	con.cursor()

cur.execute("create	table	test(x)")

cur.executemany("insert	into	test(x)	values	(?)"

cur.execute("select	x	from	test	order	by	x	collate	reverse"

for	row	in	cur:

				print(row)

con.close()

To	remove	a	collation,	call	create_collation	with	None	as
callable:

con.create_collation("reverse",	None)

interrupt()
You	 can	 call	 this	method	 from	 a	 different	 thread	 to	 abort	 any
queries	 that	might	be	executing	on	 the	connection.	The	query
will	then	abort	and	the	caller	will	get	an	exception.

set_authorizer(authorizer_callback)
This	 routine	 registers	 a	 callback.	 The	 callback	 is	 invoked	 for
each	 attempt	 to	 access	 a	 column	 of	 a	 table	 in	 the	 database.
The	 callback	 should	 return	 SQLITE_OK	 if	 access	 is	 allowed,
SQLITE_DENY	 if	 the	 entire	SQL	 statement	 should	 be	 aborted
with	 an	 error	 and	 SQLITE_IGNORE	 if	 the	 column	 should	 be
treated	as	a	NULL	value.	These	constants	are	available	 in	 the
sqlite3	module.

The	 first	 argument	 to	 the	 callback	 signifies	 what	 kind	 of

operation	 is	 to	 be	authorized.	The	 second	and	 third	argument
will	 be	 arguments	 or	 None	 depending	 on	 the	 first	 argument.
The	4th	argument	is	the	name	of	the	database	(“main”,	“temp”,
etc.)	 if	applicable.	The	5th	argument	 is	 the	name	of	 the	 inner-
most	 trigger	or	view	 that	 is	 responsible	 for	 the	access	attempt
or	None	if	this	access	attempt	is	directly	from	input	SQL	code.

Please	 consult	 the	 SQLite	 documentation	 about	 the	 possible
values	 for	 the	 first	 argument	 and	 the	 meaning	 of	 the	 second
and	 third	 argument	 depending	 on	 the	 first	 one.	 All	 necessary
constants	are	available	in	the	sqlite3	module.

set_progress_handler(handler,	n)
This	 routine	 registers	 a	 callback.	 The	 callback	 is	 invoked	 for
every	n	instructions	of	the	SQLite	virtual	machine.	This	is	useful
if	 you	 want	 to	 get	 called	 from	 SQLite	 during	 long-running
operations,	for	example	to	update	a	GUI.

If	 you	want	 to	 clear	 any	 previously	 installed	 progress	 handler,
call	the	method	with	None	for	handler.

set_trace_callback(trace_callback)
Registers	 trace_callback	 to	 be	 called	 for	 each	SQL	 statement
that	is	actually	executed	by	the	SQLite	backend.

The	only	argument	passed	to	the	callback	is	the	statement	(as
string)	that	is	being	executed.	The	return	value	of	the	callback	is
ignored.	 Note	 that	 the	 backend	 does	 not	 only	 run	 statements
passed	 to	 the	 Cursor.execute()	 methods.	 Other	 sources
include	the	transaction	management	of	the	Python	module	and
the	execution	of	triggers	defined	in	the	current	database.

Passing	None	as	trace_callback	will	disable	the	trace	callback.

New	in	version	3.3.

enable_load_extension(enabled)
This	routine	allows/disallows	the	SQLite	engine	to	 load	SQLite
extensions	from	shared	libraries.	SQLite	extensions	can	define
new	 functions,	 aggregates	 or	 whole	 new	 virtual	 table
implementations.	 One	 well-known	 extension	 is	 the	 fulltext-
search	extension	distributed	with	SQLite.

Loadable	extensions	are	disabled	by	default.	See	[1].

New	in	version	3.2.

import	sqlite3

con	=	sqlite3.connect(":memory:")

#	enable	extension	loading

con.enable_load_extension(True)

#	Load	the	fulltext	search	extension

con.execute("select	load_extension('./fts3.so')"

#	alternatively	you	can	load	the	extension	using	an	API	call:

#	con.load_extension("./fts3.so")

#	disable	extension	laoding	again

con.enable_load_extension(False)

#	example	from	SQLite	wiki

con.execute("create	virtual	table	recipe	using	fts3(name,	ingredients)"

con.executescript("""

				insert	into	recipe	(name,	ingredients)	values	('broccoli	stew',	'broccoli	peppers	cheese	tomatoes');

				insert	into	recipe	(name,	ingredients)	values	('pumpkin	stew',	'pumpkin	onions	garlic	celery');

				insert	into	recipe	(name,	ingredients)	values	('broccoli	pie',	'broccoli	cheese	onions	flour');

				insert	into	recipe	(name,	ingredients)	values	('pumpkin	pie',	'pumpkin	sugar	flour	butter');

				""")

for	row	in	con.execute("select	rowid,	name,	ingredients	from	recipe	where	name	match	'pie'"

				print(row)

load_extension(path)
This	routine	loads	a	SQLite	extension	from	a	shared	library.	You
have	 to	 enable	 extension	 loading	 with
enable_load_extension()	before	you	can	use	this	routine.

Loadable	extensions	are	disabled	by	default.	See	[1].

New	in	version	3.2.

row_factory

You	 can	 change	 this	 attribute	 to	 a	 callable	 that	 accepts	 the
cursor	 and	 the	 original	 row	 as	 a	 tuple	 and	will	 return	 the	 real
result	 row.	This	way,	you	can	 implement	more	advanced	ways
of	 returning	 results,	 such	 as	 returning	 an	 object	 that	 can	 also
access	columns	by	name.

Example:

import	sqlite3

def	dict_factory(cursor,	row):

				d	=	{}

				for	idx,	col	in	enumerate(cursor.description

								d[col[0]]	=	row[idx]

				return	d

con	=	sqlite3.connect(":memory:")

con.row_factory	=	dict_factory

cur	=	con.cursor()

cur.execute("select	1	as	a")

print(cur.fetchone()["a"])

If	 returning	 a	 tuple	 doesn’t	 suffice	 and	 you	 want	 name-based
access	to	columns,	you	should	consider	setting	row_factory
to	the	highly-optimized	sqlite3.Row	type.	Row	provides	both
index-based	 and	 case-insensitive	 name-based	 access	 to
columns	with	 almost	 no	memory	 overhead.	 It	will	 probably	 be
better	than	your	own	custom	dictionary-based	approach	or	even
a	db_row	based	solution.

text_factory

Using	 this	 attribute	 you	 can	 control	what	 objects	 are	 returned
for	 the	TEXT	data	 type.	By	default,	 this	attribute	 is	set	 to	str
and	the	sqlite3	module	will	return	Unicode	objects	for	TEXT.
If	 you	 want	 to	 return	 bytestrings	 instead,	 you	 can	 set	 it	 to
bytes.

For	efficiency	reasons,	there’s	also	a	way	to	return	str	objects
only	 for	 non-ASCII	 data,	 and	 bytes	 otherwise.	 To	 activate	 it,
set	this	attribute	to	sqlite3.OptimizedUnicode.

You	can	also	 set	 it	 to	any	other	 callable	 that	accepts	a	 single
bytestring	parameter	and	returns	the	resulting	object.

See	the	following	example	code	for	illustration:

import	sqlite3

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

AUSTRIA	=	"\xd6sterreich"

#	by	default,	rows	are	returned	as	Unicode

cur.execute("select	?",	(AUSTRIA,))

row	=	cur.fetchone()

assert	row[0]	==	AUSTRIA

#	but	we	can	make	sqlite3	always	return	bytestrings	...

con.text_factory	=	bytes

cur.execute("select	?",	(AUSTRIA,))

row	=	cur.fetchone()

assert	type(row[0])	is	bytes

#	the	bytestrings	will	be	encoded	in	UTF-8,	unless	you	stored	garbage	in	the

#	database	...

assert	row[0]	==	AUSTRIA.encode("utf-8")

#	we	can	also	implement	a	custom	text_factory	...

#	here	we	implement	one	that	appends	"foo"	to	all	strings

con.text_factory	=	lambda	x:	x.decode("utf-8")	

cur.execute("select	?",	("bar",))

row	=	cur.fetchone()

assert	row[0]	==	"barfoo"

total_changes

Returns	 the	 total	 number	 of	 database	 rows	 that	 have	 been
modified,	 inserted,	 or	 deleted	 since	 the	 database	 connection
was	opened.

iterdump

Returns	an	iterator	to	dump	the	database	in	an	SQL	text	format.
Useful	 when	 saving	 an	 in-memory	 database	 for	 later
restoration.	This	function	provides	the	same	capabilities	as	the
.dump	command	in	the	sqlite3	shell.

Example:

#	Convert	file	existing_db.db	to	SQL	dump	file	dump.sql

import	sqlite3,	os

con	=	sqlite3.connect('existing_db.db')

with	open('dump.sql',	'w')	as	f:

				for	line	in	con.iterdump():

								f.write('%s\n'	%	line)

12.6.3.	Cursor	Objects

class	sqlite3.Cursor
A	Cursor	instance	has	the	following	attributes	and	methods.

execute(sql[,	parameters])
Executes	 an	 SQL	 statement.	 The	 SQL	 statement	 may	 be
parametrized	 (i.	 e.	 placeholders	 instead	 of	 SQL	 literals).	 The
sqlite3	module	supports	two	kinds	of	placeholders:	question
marks	(qmark	style)	and	named	placeholders	(named	style).

Here’s	an	example	of	both	styles:

import	sqlite3

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

cur.execute("create	table	people	(name_last,	age)"

who	=	"Yeltsin"

age	=	72

#	This	is	the	qmark	style:

cur.execute("insert	into	people	values	(?,	?)",

#	And	this	is	the	named	style:

cur.execute("select	*	from	people	where	name_last=:who	and	age=:age"

print(cur.fetchone())

execute()	will	only	execute	a	single	SQL	statement.	If	you	try
to	 execute	 more	 than	 one	 statement	 with	 it,	 it	 will	 raise	 a
Warning.	 Use	 executescript()	 if	 you	 want	 to	 execute

multiple	SQL	statements	with	one	call.

executemany(sql,	seq_of_parameters)
Executes	an	SQL	command	against	all	parameter	sequences	or
mappings	 found	 in	 the	 sequence	 sql.	 The	 sqlite3	 module
also	 allows	 using	 an	 iterator	 yielding	 parameters	 instead	 of	 a
sequence.

import	sqlite3

class	IterChars:

				def	__init__(self):

								self.count	=	ord('a')

				def	__iter__(self):

								return	self

				def	__next__(self):

								if	self.count	>	ord('z'):

												raise	StopIteration

								self.count	+=	1

								return	(chr(self.count	-	1),)	#	this	is	a	1-tuple

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

cur.execute("create	table	characters(c)")

theIter	=	IterChars()

cur.executemany("insert	into	characters(c)	values	(?)"

cur.execute("select	c	from	characters")

print(cur.fetchall())

Here’s	a	shorter	example	using	a	generator:

import	sqlite3

import	string

def	char_generator():

				for	c	in	string.ascii_lowercase:

								yield	(c,)

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

cur.execute("create	table	characters(c)")

cur.executemany("insert	into	characters(c)	values	(?)"

cur.execute("select	c	from	characters")

print(cur.fetchall())

executescript(sql_script)
This	 is	 a	 nonstandard	 convenience	 method	 for	 executing
multiple	SQL	statements	at	once.	It	issues	a	COMMIT	statement
first,	then	executes	the	SQL	script	it	gets	as	a	parameter.

sql_script	can	be	an	instance	of	str	or	bytes.

Example:

import	sqlite3

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

cur.executescript("""

				create	table	person(

								firstname,

								lastname,

								age

);

				create	table	book(

								title,

								author,

								published

);

				insert	into	book(title,	author,	published)

				values	(

								'Dirk	Gently''s	Holistic	Detective	Agency',

								'Douglas	Adams',

								1987

);

				""")

fetchone()
Fetches	 the	 next	 row	 of	 a	 query	 result	 set,	 returning	 a	 single
sequence,	or	None	when	no	more	data	is	available.

fetchmany(size=cursor.arraysize)
Fetches	 the	next	set	of	 rows	of	a	query	result,	 returning	a	 list.
An	empty	list	is	returned	when	no	more	rows	are	available.

The	 number	 of	 rows	 to	 fetch	 per	 call	 is	 specified	 by	 the	 size
parameter.	 If	 it	 is	 not	 given,	 the	 cursor’s	 arraysize	determines
the	 number	 of	 rows	 to	 be	 fetched.	 The	 method	 should	 try	 to
fetch	as	many	rows	as	indicated	by	the	size	parameter.	If	this	is
not	 possible	 due	 to	 the	 specified	 number	 of	 rows	 not	 being
available,	fewer	rows	may	be	returned.

Note	 there	 are	 performance	 considerations	 involved	 with	 the
size	 parameter.	 For	 optimal	 performance,	 it	 is	 usually	 best	 to
use	the	arraysize	attribute.	If	the	size	parameter	is	used,	then	it
is	best	 for	 it	 to	retain	the	same	value	from	one	fetchmany()

call	to	the	next.

fetchall()
Fetches	all	 (remaining)	 rows	of	a	query	 result,	 returning	a	 list.
Note	 that	 the	 cursor’s	 arraysize	 attribute	 can	 affect	 the
performance	 of	 this	 operation.	An	 empty	 list	 is	 returned	when
no	rows	are	available.

rowcount

Although	 the	 Cursor	 class	 of	 the	 sqlite3	 module
implements	this	attribute,	the	database	engine’s	own	support	for
the	determination	of	“rows	affected”/”rows	selected”	is	quirky.

For	executemany()	statements,	 the	number	of	modifications
are	summed	up	into	rowcount.

As	 required	 by	 the	 Python	 DB	 API	 Spec,	 the	 rowcount
attribute	 “is	 -1	 in	case	no	executeXX()	 has	been	performed
on	 the	 cursor	 or	 the	 rowcount	 of	 the	 last	 operation	 is	 not
determinable	 by	 the	 interface”.	 This	 includes	 SELECT

statements	because	we	cannot	determine	the	number	of	rows	a
query	produced	until	all	rows	were	fetched.

With	SQLite	versions	before	3.6.5,	rowcount	is	set	to	0	if	you
make	a	DELETE	FROM	table	without	any	condition.

lastrowid

This	 read-only	attribute	provides	 the	 rowid	of	 the	 last	modified
row.	 It	 is	only	set	 if	you	 issued	a	INSERT	statement	using	the
execute()	 method.	 For	 operations	 other	 than	 INSERT	 or
when	executemany()	is	called,	lastrowid	is	set	to	None.

description

This	 read-only	attribute	provides	 the	column	names	of	 the	 last
query.	To	remain	compatible	with	the	Python	DB	API,	it	returns
a	7-tuple	for	each	column	where	the	last	six	items	of	each	tuple
are	None.

It	 is	set	 for	SELECT	statements	without	any	matching	 rows	as
well.

12.6.4.	Row	Objects

class	sqlite3.Row
A	 Row	 instance	 serves	 as	 a	 highly	 optimized	 row_factory	 for
Connection	 objects.	 It	 tries	 to	 mimic	 a	 tuple	 in	 most	 of	 its
features.

It	supports	mapping	access	by	column	name	and	 index,	 iteration,
representation,	equality	testing	and	len().

If	 two	 Row	 objects	 have	 exactly	 the	 same	 columns	 and	 their
members	are	equal,	they	compare	equal.

keys()
This	method	returns	a	tuple	of	column	names.	Immediately	after
a	 query,	 it	 is	 the	 first	 member	 of	 each	 tuple	 in
Cursor.description.

Let’s	assume	we	initialize	a	table	as	in	the	example	given	above:

conn	=	sqlite3.connect(":memory:")

c	=	conn.cursor()

c.execute('''create	table	stocks

(date	text,	trans	text,	symbol	text,

	qty	real,	price	real)''')

c.execute("""insert	into	stocks

										values	('2006-01-05','BUY','RHAT',100,35.14)"""

conn.commit()

c.close()

Now	we	plug	Row	in:

>>>	conn.row_factory	=	sqlite3.Row

>>>	c	=	conn.cursor()

>>>	c.execute('select	*	from	stocks')

<sqlite3.Cursor	object	at	0x7f4e7dd8fa80>

>>>	r	=	c.fetchone()

>>>	type(r)

<class	'sqlite3.Row'>

>>>	tuple(r)

('2006-01-05',	'BUY',	'RHAT',	100.0,	35.14)

>>>	len(r)

5

>>>	r[2]

'RHAT'

>>>	r.keys()

['date',	'trans',	'symbol',	'qty',	'price']

>>>	r['qty']

100.0

>>>	for	member	in	r:

...					print(member)

...

2006-01-05

BUY

RHAT

100.0

35.14

12.6.5.	SQLite	and	Python	types

12.6.5.1.	Introduction

SQLite	natively	supports	the	following	types:	NULL,	INTEGER,	REAL,
TEXT,	BLOB.

The	 following	 Python	 types	 can	 thus	 be	 sent	 to	 SQLite	 without	 any
problem:

Python	type SQLite
type

None NULL

int INTEGER

float REAL

str TEXT

bytes BLOB

This	is	how	SQLite	types	are	converted	to	Python	types	by	default:

SQLite	type Python	type

NULL None

INTEGER int

REAL float

TEXT depends	on	text_factory,	str	by	default

BLOB bytes

The	 type	 system	of	 the	 sqlite3	module	 is	 extensible	 in	 two	ways:
you	can	store	additional	Python	types	in	a	SQLite	database	via	object

adaptation,	 and	 you	 can	 let	 the	 sqlite3	 module	 convert	 SQLite
types	to	different	Python	types	via	converters.

12.6.5.2.	Using	adapters	to	store	additional
Python	types	in	SQLite	databases

As	 described	 before,	 SQLite	 supports	 only	 a	 limited	 set	 of	 types
natively.	To	use	other	Python	types	with	SQLite,	you	must	adapt	them
to	 one	 of	 the	 sqlite3	 module’s	 supported	 types	 for	 SQLite:	 one	 of
NoneType,	int,	float,	str,	bytes.

The	sqlite3	module	uses	Python	object	adaptation,	as	described	in
PEP	246	for	this.	The	protocol	to	use	is	PrepareProtocol.

There	are	two	ways	to	enable	the	sqlite3	module	to	adapt	a	custom
Python	type	to	one	of	the	supported	ones.

12.6.5.2.1.	Letting	your	object	adapt	itself

This	is	a	good	approach	if	you	write	the	class	yourself.	Let’s	suppose
you	have	a	class	like	this:

class	Point:

				def	__init__(self,	x,	y):

								self.x,	self.y	=	x,	y

Now	you	want	to	store	the	point	in	a	single	SQLite	column.	First	you’ll
have	 to	 choose	 one	 of	 the	 supported	 types	 first	 to	 be	 used	 for
representing	the	point.	Let’s	just	use	str	and	separate	the	coordinates
using	 a	 semicolon.	 Then	 you	 need	 to	 give	 your	 class	 a	 method
__conform__(self,	protocol)	which	must	return	the	converted
value.	The	parameter	protocol	will	be	PrepareProtocol.

http://www.python.org/dev/peps/pep-0246

import	sqlite3

class	Point:

				def	__init__(self,	x,	y):

								self.x,	self.y	=	x,	y

				def	__conform__(self,	protocol):

								if	protocol	is	sqlite3.PrepareProtocol:

												return	"%f;%f"	%	(self.x,	self.y)

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

p	=	Point(4.0,	-3.2)

cur.execute("select	?",	(p,))

print(cur.fetchone()[0])

12.6.5.2.2.	Registering	an	adapter	callable

The	other	possibility	is	to	create	a	function	that	converts	the	type	to	the
string	 representation	 and	 register	 the	 function	 with
register_adapter().

import	sqlite3

class	Point:

				def	__init__(self,	x,	y):

								self.x,	self.y	=	x,	y

def	adapt_point(point):

				return	"%f;%f"	%	(point.x,	point.y)

sqlite3.register_adapter(Point,	adapt_point)

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

p	=	Point(4.0,	-3.2)

cur.execute("select	?",	(p,))

print(cur.fetchone()[0])

The	 sqlite3	 module	 has	 two	 default	 adapters	 for	 Python’s	 built-in
datetime.date	 and	 datetime.datetime	 types.	 Now	 let’s
suppose	we	want	 to	 store	datetime.datetime	 objects	not	 in	 ISO
representation,	but	as	a	Unix	timestamp.

import	sqlite3

import	datetime

import	time

def	adapt_datetime(ts):

				return	time.mktime(ts.timetuple())

sqlite3.register_adapter(datetime.datetime,	adapt_datetime

con	=	sqlite3.connect(":memory:")

cur	=	con.cursor()

now	=	datetime.datetime.now()

cur.execute("select	?",	(now,))

print(cur.fetchone()[0])

12.6.5.3.	Converting	SQLite	values	to	custom
Python	types

Writing	an	adapter	lets	you	send	custom	Python	types	to	SQLite.	But
to	 make	 it	 really	 useful	 we	 need	 to	 make	 the	 Python	 to	 SQLite	 to
Python	roundtrip	work.

Enter	converters.

Let’s	go	back	to	the	Point	class.	We	stored	the	x	and	y	coordinates
separated	via	semicolons	as	strings	in	SQLite.

First,	 we’ll	 define	 a	 converter	 function	 that	 accepts	 the	 string	 as	 a
parameter	and	constructs	a	Point	object	from	it.

Note: 	Converter	functions	always	get	called	with	a	string,	no	matter
under	which	data	type	you	sent	the	value	to	SQLite.

def	convert_point(s):

				x,	y	=	map(float,	s.split(b";"))

				return	Point(x,	y)

Now	 you	 need	 to	 make	 the	 sqlite3	 module	 know	 that	 what	 you
select	 from	 the	 database	 is	 actually	 a	 point.	 There	 are	 two	ways	 of
doing	this:

Implicitly	via	the	declared	type
Explicitly	via	the	column	name

Both	ways	are	described	in	section	Module	functions	and	constants,	in
the	 entries	 for	 the	 constants	 PARSE_DECLTYPES	 and
PARSE_COLNAMES.

The	following	example	illustrates	both	approaches.

import	sqlite3

class	Point:

				def	__init__(self,	x,	y):

								self.x,	self.y	=	x,	y

				def	__repr__(self):

								return	"(%f;%f)"	%	(self.x,	self.y)

def	adapt_point(point):

				return	("%f;%f"	%	(point.x,	point.y)).encode('ascii'

def	convert_point(s):

				x,	y	=	list(map(float,	s.split(b";")))

				return	Point(x,	y)

#	Register	the	adapter

sqlite3.register_adapter(Point,	adapt_point)

#	Register	the	converter

sqlite3.register_converter("point",	convert_point)

p	=	Point(4.0,	-3.2)

#########################

#	1)	Using	declared	types

con	=	sqlite3.connect(":memory:",	detect_types=sqlite3

cur	=	con.cursor()

cur.execute("create	table	test(p	point)")

cur.execute("insert	into	test(p)	values	(?)",	(p,))

cur.execute("select	p	from	test")

print("with	declared	types:",	cur.fetchone()[0])

cur.close()

con.close()

#######################

#	1)	Using	column	names

con	=	sqlite3.connect(":memory:",	detect_types=sqlite3

cur	=	con.cursor()

cur.execute("create	table	test(p)")

cur.execute("insert	into	test(p)	values	(?)",	(p,))

cur.execute('select	p	as	"p	[point]"	from	test')

print("with	column	names:",	cur.fetchone()[0])

cur.close()

con.close()

12.6.5.4.	Default	adapters	and	converters

There	 are	 default	 adapters	 for	 the	 date	 and	 datetime	 types	 in	 the
datetime	module.	They	will	 be	 sent	as	 ISO	dates/ISO	 timestamps	 to
SQLite.

The	 default	 converters	 are	 registered	 under	 the	 name	 “date”	 for
datetime.date	 and	 under	 the	 name	 “timestamp”	 for
datetime.datetime.

This	 way,	 you	 can	 use	 date/timestamps	 from	 Python	 without	 any
additional	 fiddling	 in	most	 cases.	 The	 format	 of	 the	 adapters	 is	 also
compatible	with	the	experimental	SQLite	date/time	functions.

The	following	example	demonstrates	this.

import	sqlite3

import	datetime

con	=	sqlite3.connect(":memory:",	detect_types=sqlite3

cur	=	con.cursor()

cur.execute("create	table	test(d	date,	ts	timestamp)"

today	=	datetime.date.today()

now	=	datetime.datetime.now()

cur.execute("insert	into	test(d,	ts)	values	(?,	?)",

cur.execute("select	d,	ts	from	test")

row	=	cur.fetchone()

print(today,	"=>",	row[0],	type(row[0]))

print(now,	"=>",	row[1],	type(row[1]))

cur.execute('select	current_date	as	"d	[date]",	current_timestamp	as	"ts	[timestamp]"'

row	=	cur.fetchone()

print("current_date",	row[0],	type(row[0]))

print("current_timestamp",	row[1],	type(row[1]))

If	 a	 timestamp	 stored	 in	 SQLite	 has	 a	 fractional	 part	 longer	 than	 6
numbers,	 its	 value	will	 be	 truncated	 to	microsecond	precision	by	 the
timestamp	converter.

12.6.6.	Controlling	Transactions

By	default,	the	sqlite3	module	opens	transactions	implicitly	before	a
Data	 Modification	 Language	 (DML)	 statement	 (i.e.
INSERT/UPDATE/DELETE/REPLACE),	 and	 commits	 transactions
implicitly	before	a	non-DML,	non-query	statement	(i.	e.	anything	other
than	SELECT	or	the	aforementioned).

So	if	you	are	within	a	transaction	and	issue	a	command	like	CREATE
TABLE	 ...,	 VACUUM,	 PRAGMA,	 the	 sqlite3	 module	 will	 commit
implicitly	 before	executing	 that	 command.	There	are	 two	 reasons	 for
doing	that.	The	first	is	that	some	of	these	commands	don’t	work	within
transactions.	The	other	 reason	 is	 that	 sqlite3	needs	 to	 keep	 track	of
the	 transaction	 state	 (if	 a	 transaction	 is	 active	 or	 not).	 The	 current
transaction	 state	 is	 exposed	 through	 the
Connection.in_transaction	attribute	of	the	connection	object.

You	 can	 control	 which	 kind	 of	 BEGIN	 statements	 sqlite3	 implicitly
executes	 (or	 none	 at	 all)	 via	 the	 isolation_level	 parameter	 to	 the
connect()	 call,	 or	 via	 the	 isolation_level	 property	 of
connections.

If	you	want	autocommit	mode,	then	set	isolation_level	to	None.

Otherwise	 leave	 it	 at	 its	 default,	 which	will	 result	 in	 a	 plain	 “BEGIN”
statement,	 or	 set	 it	 to	 one	 of	 SQLite’s	 supported	 isolation	 levels:
“DEFERRED”,	“IMMEDIATE”	or	“EXCLUSIVE”.

12.6.7.	Using	sqlite3	efficiently

12.6.7.1.	Using	shortcut	methods

Using	 the	 nonstandard	 execute(),	 executemany()	 and
executescript()	methods	 of	 the	 Connection	 object,	 your	 code
can	be	written	more	concisely	because	you	don’t	 have	 to	 create	 the
(often	 superfluous)	 Cursor	 objects	 explicitly.	 Instead,	 the	 Cursor
objects	 are	 created	 implicitly	 and	 these	 shortcut	methods	 return	 the
cursor	 objects.	This	way,	 you	 can	execute	a	 SELECT	 statement	 and
iterate	 over	 it	 directly	 using	 only	 a	 single	 call	 on	 the	 Connection
object.

import	sqlite3

persons	=	[

				("Hugo",	"Boss"),

				("Calvin",	"Klein")

]

con	=	sqlite3.connect(":memory:")

#	Create	the	table

con.execute("create	table	person(firstname,	lastname)"

#	Fill	the	table

con.executemany("insert	into	person(firstname,	lastname)	values	(?,	?)"

#	Print	the	table	contents

for	row	in	con.execute("select	firstname,	lastname	from	person"

				print(row)

print("I	just	deleted",	con.execute("delete	from	person"

12.6.7.2.	Accessing	columns	by	name	instead	of
by	index

One	 useful	 feature	 of	 the	 sqlite3	 module	 is	 the	 built-in
sqlite3.Row	class	designed	to	be	used	as	a	row	factory.

Rows	 wrapped	 with	 this	 class	 can	 be	 accessed	 both	 by	 index	 (like
tuples)	and	case-insensitively	by	name:

import	sqlite3

con	=	sqlite3.connect(":memory:")

con.row_factory	=	sqlite3.Row

cur	=	con.cursor()

cur.execute("select	'John'	as	name,	42	as	age")

for	row	in	cur:

				assert	row[0]	==	row["name"]

				assert	row["name"]	==	row["nAmE"]

				assert	row[1]	==	row["age"]

				assert	row[1]	==	row["AgE"]

12.6.7.3.	Using	the	connection	as	a	context
manager

Connection	 objects	 can	 be	 used	 as	 context	 managers	 that
automatically	 commit	 or	 rollback	 transactions.	 In	 the	 event	 of	 an
exception,	 the	transaction	 is	rolled	back;	otherwise,	 the	transaction	 is
committed:

import	sqlite3

con	=	sqlite3.connect(":memory:")

con.execute("create	table	person	(id	integer	primary	key,	firstname	varchar	unique)"

#	Successful,	con.commit()	is	called	automatically	afterwards

with	con:

				con.execute("insert	into	person(firstname)	values	(?)"

#	con.rollback()	is	called	after	the	with	block	finishes	with	an	exception,	the

#	exception	is	still	raised	and	must	be	caught

try:

				with	con:

								con.execute("insert	into	person(firstname)	values	(?)"

except	sqlite3.IntegrityError:

				print("couldn't	add	Joe	twice")

12.6.8.	Common	issues

12.6.8.1.	Multithreading

Older	SQLite	 versions	 had	 issues	with	 sharing	 connections	 between
threads.	That’s	why	the	Python	module	disallows	sharing	connections
and	cursors	between	 threads.	 If	you	still	 try	 to	do	so,	you	will	get	an
exception	at	runtime.

The	only	 exception	 is	 calling	 the	 interrupt()	method,	which	 only
makes	sense	to	call	from	a	different	thread.

Footnotes

[1]

(1,	2)	The	sqlite3	module	is	not	built	with	loadable	extension
support	by	default,	because	some	platforms	(notably	Mac	OS
X)	have	SQLite	libraries	which	are	compiled	without	this
feature.	To	get	loadable	extension	support,	you	must	pass	–
enable-loadable-sqlite-extensions	to	configure.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	12.	Data	Persistence	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

13.	Data	Compression	and
Archiving
The	modules	described	in	this	chapter	support	data	compression	with
the	zlib,	gzip,	bzip2	and	lzma	algorithms,	and	the	creation	of	ZIP-	and
tar-format	 archives.	 See	 also	 Archiving	 operations	 provided	 by	 the
shutil	module.

13.1.	zlib	—	Compression	compatible	with	gzip
13.2.	gzip	—	Support	for	gzip	files

13.2.1.	Examples	of	usage
13.3.	bz2	—	Support	for	bzip2	compression

13.3.1.	(De)compression	of	files
13.3.2.	Incremental	(de)compression
13.3.3.	One-shot	(de)compression

13.4.	lzma	—	Compression	using	the	LZMA	algorithm
13.4.1.	Reading	and	writing	compressed	files
13.4.2.	Compressing	and	decompressing	data	in	memory
13.4.3.	Miscellaneous
13.4.4.	Specifying	custom	filter	chains
13.4.5.	Examples

13.5.	zipfile	—	Work	with	ZIP	archives
13.5.1.	ZipFile	Objects
13.5.2.	PyZipFile	Objects
13.5.3.	ZipInfo	Objects

13.6.	tarfile	—	Read	and	write	tar	archive	files
13.6.1.	TarFile	Objects
13.6.2.	TarInfo	Objects
13.6.3.	Command	Line	Interface

13.6.3.1.	Command	line	options
13.6.4.	Examples

13.6.5.	Supported	tar	formats
13.6.6.	Unicode	issues

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

http://www.python.org/

13.1.	zlib	—	Compression
compatible	with	gzip
For	 applications	 that	 require	 data	 compression,	 the	 functions	 in	 this
module	allow	compression	and	decompression,	using	 the	zlib	 library.
The	 zlib	 library	 has	 its	 own	 home	 page	 at	 http://www.zlib.net.	 There
are	known	incompatibilities	between	the	Python	module	and	versions
of	 the	zlib	 library	earlier	 than	1.1.3;	1.1.3	has	a	security	vulnerability,
so	we	recommend	using	1.1.4	or	later.

zlib’s	 functions	 have	 many	 options	 and	 often	 need	 to	 be	 used	 in	 a
particular	order.	This	documentation	doesn’t	attempt	to	cover	all	of	the
permutations;	 consult	 the	 zlib	 manual	 at
http://www.zlib.net/manual.html	for	authoritative	information.

For	reading	and	writing	.gz	files	see	the	gzip	module.

The	available	exception	and	functions	in	this	module	are:

exception	zlib.error
Exception	raised	on	compression	and	decompression	errors.

zlib.adler32(data[,	value])
Computes	a	Adler-32	checksum	of	data.	(An	Adler-32	checksum	is
almost	as	 reliable	as	a	CRC32	but	 can	be	computed	much	more
quickly.)	 If	value	 is	present,	 it	 is	used	as	 the	starting	value	of	 the
checksum;	 otherwise,	 a	 fixed	 default	 value	 is	 used.	 This	 allows
computing	a	 running	checksum	over	 the	concatenation	of	several
inputs.	 The	 algorithm	 is	 not	 cryptographically	 strong,	 and	 should
not	 be	 used	 for	 authentication	 or	 digital	 signatures.	 Since	 the

http://www.zlib.net
http://www.zlib.net/manual.html

algorithm	 is	 designed	 for	 use	 as	 a	 checksum	 algorithm,	 it	 is	 not
suitable	for	use	as	a	general	hash	algorithm.

Always	returns	an	unsigned	32-bit	integer.

Note: 	To	generate	the	same	numeric	value	across	all	Python
versions	and	platforms	use	adler32(data)	&	0xffffffff.	If	you	are	only
using	the	checksum	in	packed	binary	format	this	is	not	necessary	as
the	return	value	is	the	correct	32bit	binary	representation	regardless
of	sign.

zlib.compress(data[,	level])
Compresses	the	bytes	in	data,	returning	a	bytes	object	containing
compressed	 data.	 level	 is	 an	 integer	 from	 0	 to	 9	 controlling	 the
level	 of	 compression;	 1	 is	 fastest	 and	 produces	 the	 least
compression,	 9	 is	 slowest	 and	 produces	 the	 most.	 0	 is	 no
compression.	The	default	value	is	6.	Raises	the	error	exception
if	any	error	occurs.

zlib.compressobj(level=-1,	method=DEFLATED,	wbits=15,
memlevel=8,	strategy=Z_DEFAULT_STRATEGY[,	zdict])

Returns	 a	 compression	 object,	 to	 be	 used	 for	 compressing	 data
streams	that	won’t	fit	into	memory	at	once.

level	is	the	compression	level	–	an	integer	from	0	to	9.	A	value	of
1	is	fastest	and	produces	the	least	compression,	while	a	value	of	9
is	 slowest	 and	 produces	 the	 most.	 0	 is	 no	 compression.	 The
default	value	is	6.

method	is	the	compression	algorithm.	Currently,	the	only	supported
value	is	DEFLATED.

wbits	 is	 the	 base	 two	 logarithm	 of	 the	 size	 of	 the	window	 buffer.
This	should	be	an	integer	from	8	to	15.	Higher	values	give	better
compression,	but	use	more	memory.

memlevel	 controls	 the	 amount	 of	 memory	 used	 for	 internal
compression	state.	Valid	values	range	from	1	 to	9.	Higher	values
using	more	memory,	but	are	faster	and	produce	smaller	output.

strategy	 is	 used	 to	 tune	 the	 compression	 algorithm.	 Possible
values	 are	 Z_DEFAULT_STRATEGY,	 Z_FILTERED,	 and
Z_HUFFMAN_ONLY.

zdict	is	a	predefined	compression	dictionary.	This	is	a	sequence	of
bytes	(such	as	a	bytes	object)	containing	subsequences	that	are
expected	to	occur	frequently	in	the	data	that	is	to	be	compressed.
Those	subsequences	that	are	expected	to	be	most	common	should
come	at	the	end	of	the	dictionary.

Changed	 in	 version	3.3:	Added	 the	zdict	 parameter	 and	 keyword
argument	support.

zlib.crc32(data[,	value])
Computes	a	CRC	(Cyclic	Redundancy	Check)	checksum	of	data.	If
value	 is	present,	 it	 is	used	as	 the	starting	value	of	 the	checksum;
otherwise,	 a	 fixed	default	 value	 is	 used.	This	 allows	 computing	 a
running	 checksum	 over	 the	 concatenation	 of	 several	 inputs.	 The
algorithm	 is	 not	 cryptographically	 strong,	 and	 should	not	 be	used
for	 authentication	 or	 digital	 signatures.	 Since	 the	 algorithm	 is
designed	for	use	as	a	checksum	algorithm,	it	is	not	suitable	for	use
as	a	general	hash	algorithm.

Always	returns	an	unsigned	32-bit	integer.

Note: 	 To	 generate	 the	 same	 numeric	 value	 across	 all	 Python
versions	and	platforms,	use	crc32(data)	&	0xffffffff.	 If
you	are	only	using	the	checksum	in	packed	binary	format	this	 is
not	 necessary	 as	 the	 return	 value	 is	 the	 correct	 32-bit	 binary
representation	regardless	of	sign.

zlib.decompress(data[,	wbits[,	bufsize]])
Decompresses	 the	 bytes	 in	 data,	 returning	 a	 bytes	 object
containing	 the	 uncompressed	 data.	 The	wbits	 parameter	 controls
the	 size	 of	 the	 window	 buffer,	 and	 is	 discussed	 further	 below.	 If
bufsize	 is	 given,	 it	 is	 used	 as	 the	 initial	 size	 of	 the	 output	 buffer.
Raises	the	error	exception	if	any	error	occurs.

The	absolute	value	of	wbits	is	the	base	two	logarithm	of	the	size	of
the	history	buffer	(the	“window	size”)	used	when	compressing	data.
Its	absolute	value	should	be	between	8	and	15	for	the	most	recent
versions	 of	 the	 zlib	 library,	 larger	 values	 resulting	 in	 better
compression	 at	 the	 expense	 of	 greater	 memory	 usage.	 When
decompressing	a	stream,	wbits	must	not	be	smaller	 than	 the	size
originally	used	to	compress	the	stream;	using	a	too-small	value	will
result	 in	 an	 exception.	 The	 default	 value	 is	 therefore	 the	 highest
value,	 15.	 When	wbits	 is	 negative,	 the	 standard	 gzip	 header	 is
suppressed.

bufsize	 is	 the	 initial	size	of	 the	buffer	used	 to	hold	decompressed
data.	If	more	space	is	required,	the	buffer	size	will	be	increased	as
needed,	so	you	don’t	have	to	get	this	value	exactly	right;	 tuning	it
will	only	save	a	few	calls	to	malloc().	The	default	size	is	16384.

zlib.decompressobj(wbits=15[,	zdict])
Returns	 a	 decompression	 object,	 to	 be	 used	 for	 decompressing

data	streams	that	won’t	fit	into	memory	at	once.

The	wbits	parameter	controls	the	size	of	the	window	buffer.

The	zdict	parameter	specifies	a	predefined	compression	dictionary.
If	provided,	 this	must	be	 the	same	dictionary	as	was	used	by	 the
compressor	that	produced	the	data	that	is	to	be	decompressed.

Note: 	If	zdict	 is	a	mutable	object	 (such	as	a	bytearray),	you
must	 not	 modify	 its	 contents	 between	 the	 call	 to
decompressobj()	 and	 the	 first	 call	 to	 the	 decompressor’s
decompress()	method.

Changed	in	version	3.3:	Added	the	zdict	parameter.

Compression	objects	support	the	following	methods:

Compress.compress(data)
Compress	 data,	 returning	 a	 bytes	 object	 containing	 compressed
data	 for	 at	 least	 part	 of	 the	 data	 in	 data.	 This	 data	 should	 be
concatenated	to	the	output	produced	by	any	preceding	calls	to	the
compress()	method.	Some	input	may	be	kept	 in	 internal	buffers
for	later	processing.

Compress.flush([mode])
All	 pending	 input	 is	 processed,	and	a	bytes	object	 containing	 the
remaining	 compressed	 output	 is	 returned.	mode	 can	 be	 selected
from	 the	 constants	 Z_SYNC_FLUSH,	 Z_FULL_FLUSH,	 or
Z_FINISH,	 defaulting	 to	 Z_FINISH.	 Z_SYNC_FLUSH	 and
Z_FULL_FLUSH	 allow	 compressing	 further	 bytestrings	 of	 data,
while	 Z_FINISH	 finishes	 the	 compressed	 stream	 and	 prevents
compressing	any	more	data.	After	calling	flush()	with	mode	set

to	 Z_FINISH,	 the	 compress()	 method	 cannot	 be	 called	 again;
the	only	realistic	action	is	to	delete	the	object.

Compress.copy()
Returns	 a	 copy	 of	 the	 compression	 object.	 This	 can	 be	 used	 to
efficiently	compress	a	set	of	data	that	share	a	common	initial	prefix.

Decompression	objects	support	the	following	methods	and	attributes:

Decompress.unused_data

A	 bytes	 object	 which	 contains	 any	 bytes	 past	 the	 end	 of	 the
compressed	data.	That	is,	this	remains	b""	until	the	last	byte	that
contains	 compression	 data	 is	 available.	 If	 the	 whole	 bytestring
turned	out	to	contain	compressed	data,	this	is	b"",	an	empty	bytes
object.

Decompress.unconsumed_tail

A	bytes	 object	 that	 contains	 any	 data	 that	was	 not	 consumed	by
the	last	decompress()	call	because	 it	exceeded	the	 limit	 for	 the
uncompressed	data	buffer.	This	data	has	not	yet	been	seen	by	the
zlib	 machinery,	 so	 you	 must	 feed	 it	 (possibly	 with	 further	 data
concatenated	to	it)	back	to	a	subsequent	decompress()	method
call	in	order	to	get	correct	output.

Decompress.eof

A	 boolean	 indicating	 whether	 the	 end	 of	 the	 compressed	 data
stream	has	been	reached.

This	 makes	 it	 possible	 to	 distinguish	 between	 a	 properly-formed
compressed	stream,	and	an	incomplete	or	truncated	one.

New	in	version	3.3.

Decompress.decompress(data[,	max_length])
Decompress	 data,	 returning	 a	 bytes	 object	 containing	 the
uncompressed	 data	 corresponding	 to	 at	 least	 part	 of	 the	 data	 in
string.	This	data	should	be	concatenated	to	the	output	produced	by
any	preceding	 calls	 to	 the	 decompress()	method.	Some	of	 the
input	data	may	be	preserved	in	internal	buffers	for	later	processing.

If	 the	 optional	 parameter	max_length	 is	 supplied	 then	 the	 return
value	will	be	no	 longer	 than	max_length.	This	may	mean	 that	not
all	 of	 the	 compressed	 input	 can	 be	 processed;	 and	 unconsumed
data	 will	 be	 stored	 in	 the	 attribute	 unconsumed_tail.	 This
bytestring	must	be	passed	to	a	subsequent	call	to	decompress()
if	decompression	is	to	continue.	If	max_length	is	not	supplied	then
the	 whole	 input	 is	 decompressed,	 and	 unconsumed_tail	 is
empty.

Decompress.flush([length])
All	 pending	 input	 is	 processed,	and	a	bytes	object	 containing	 the
remaining	 uncompressed	 output	 is	 returned.	 After	 calling
flush(),	the	decompress()	method	cannot	be	called	again;	the
only	realistic	action	is	to	delete	the	object.

The	 optional	 parameter	 length	 sets	 the	 initial	 size	 of	 the	 output
buffer.

Decompress.copy()
Returns	a	copy	of	 the	decompression	object.	This	can	be	used	to
save	 the	 state	 of	 the	 decompressor	 midway	 through	 the	 data
stream	 in	 order	 to	 speed	 up	 random	 seeks	 into	 the	 stream	 at	 a
future	point.

Information	 about	 the	 version	 of	 the	 zlib	 library	 in	 use	 is	 available

through	the	following	constants:

zlib.ZLIB_VERSION

The	version	string	of	the	zlib	library	that	was	used	for	building	the
module.	This	may	be	different	from	the	zlib	library	actually	used	at
runtime,	which	is	available	as	ZLIB_RUNTIME_VERSION.

zlib.ZLIB_RUNTIME_VERSION

The	 version	 string	 of	 the	 zlib	 library	 actually	 loaded	 by	 the
interpreter.

New	in	version	3.3.

See	also:

Module	gzip
Reading	and	writing	gzip-format	files.

http://www.zlib.net
The	zlib	library	home	page.

http://www.zlib.net/manual.html
The	zlib	manual	explains	the	semantics	and	usage	of	the	library’s
many	functions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.zlib.net
http://www.zlib.net/manual.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

http://www.python.org/

13.2.	gzip	—	Support	for	gzip
files
Source	code:	Lib/gzip.py

This	module	provides	a	simple	interface	to	compress	and	decompress
files	just	like	the	GNU	programs	gzip	and	gunzip	would.

The	data	compression	is	provided	by	the	zlib	module.

The	 gzip	 module	 provides	 the	 GzipFile	 class,	 as	 well	 as	 the
open(),	 compress()	 and	 decompress()	 convenience	 functions.
The	GzipFile	class	reads	and	writes	gzip-format	files,	automatically
compressing	 or	 decompressing	 the	 data	 so	 that	 it	 looks	 like	 an
ordinary	file	object.

Note	 that	 additional	 file	 formats	which	 can	 be	 decompressed	 by	 the
gzip	 and	 gunzip	 programs,	 such	 as	 those	 produced	 by	 compress
and	pack,	are	not	supported	by	this	module.

The	module	defines	the	following	items:

gzip.open(filename,	mode='rb',	compresslevel=9,	encoding=None,
errors=None,	newline=None)

Open	a	gzip-compressed	file	in	binary	or	text	mode,	returning	a	file
object.

The	 filename	 argument	 can	 be	 an	 actual	 filename	 (a	 str	 or
bytes	object),	or	an	existing	file	object	to	read	from	or	write	to.

http://hg.python.org/cpython/file/3.4/Lib/gzip.py

The	mode	argument	can	be	any	of	'r',	'rb',	'a',	'ab',	'w',
'wb',	 'x'	 or	 'xb'	 for	 binary	mode,	 or	 'rt',	 'at',	 'wt',	 or
'xt'	for	text	mode.	The	default	is	'rb'.

The	compresslevel	argument	 is	an	 integer	 from	0	 to	9,	as	 for	 the
GzipFile	constructor.

For	 binary	 mode,	 this	 function	 is	 equivalent	 to	 the	 GzipFile
constructor:	 GzipFile(filename,	mode,	 compresslevel).
In	this	case,	the	encoding,	errors	and	newline	arguments	must	not
be	provided.

For	text	mode,	a	GzipFile	object	 is	created,	and	wrapped	in	an
io.TextIOWrapper	 instance	 with	 the	 specified	 encoding,	 error
handling	behavior,	and	line	ending(s).

Changed	 in	 version	 3.3:	Added	 support	 for	 filename	 being	 a	 file
object,	support	for	text	mode,	and	the	encoding,	errors	and	newline
arguments.

Changed	 in	 version	 3.4:	 Added	 support	 for	 the	 'x',	 'xb'	 and
'xt'	modes.

class	gzip.GzipFile(filename=None,	mode=None,
compresslevel=9,	fileobj=None,	mtime=None)

Constructor	 for	 the	GzipFile	class,	which	simulates	most	of	 the
methods	 of	 a	 file	 object,	 with	 the	 exception	 of	 the	 truncate()
method.	At	 least	one	of	 fileobj	and	filename	must	be	given	a	non-
trivial	value.

The	new	class	instance	is	based	on	fileobj,	which	can	be	a	regular
file,	a	io.BytesIO	object,	or	any	other	object	which	simulates	a
file.	 It	 defaults	 to	 None,	 in	 which	 case	 filename	 is	 opened	 to

provide	a	file	object.

When	fileobj	is	not	None,	the	filename	argument	is	only	used	to	be
included	 in	 the	 gzip	 file	 header,	 which	 may	 include	 the	 original
filename	 of	 the	 uncompressed	 file.	 It	 defaults	 to	 the	 filename	 of
fileobj,	if	discernible;	otherwise,	it	defaults	to	the	empty	string,	and
in	this	case	the	original	filename	is	not	included	in	the	header.

The	mode	argument	can	be	any	of	'r',	'rb',	'a',	'ab',	'w',
'wb',	'x',	or	'xb',	depending	on	whether	the	file	will	be	read	or
written.	The	default	 is	 the	mode	of	 fileobj	 if	discernible;	otherwise,
the	default	is	'rb'.

Note	 that	 the	 file	 is	 always	 opened	 in	 binary	 mode.	 To	 open	 a
compressed	 file	 in	 text	 mode,	 use	 open()	 (or	 wrap	 your
GzipFile	with	an	io.TextIOWrapper).

The	compresslevel	argument	 is	an	 integer	 from	0	 to	9	controlling
the	 level	 of	 compression;	 1	 is	 fastest	 and	 produces	 the	 least
compression,	 and	 9	 is	 slowest	 and	 produces	 the	 most
compression.	0	is	no	compression.	The	default	is	9.

The	 mtime	 argument	 is	 an	 optional	 numeric	 timestamp	 to	 be
written	 to	 the	 stream	 when	 compressing.	 All	 gzip	 compressed
streams	are	 required	 to	 contain	a	 timestamp.	 If	 omitted	or	 None,
the	current	time	is	used.	This	module	ignores	the	timestamp	when
decompressing;	however,	some	programs,	such	as	gunzip,	make
use	of	 it.	The	 format	of	 the	 timestamp	 is	 the	same	as	 that	of	 the
return	 value	 of	 time.time()	 and	 of	 the	 st_mtime	 attribute	 of
the	object	returned	by	os.stat().

Calling	 a	 GzipFile	 object’s	 close()	 method	 does	 not	 close

fileobj,	 since	 you	 might	 wish	 to	 append	 more	 material	 after	 the
compressed	 data.	 This	 also	 allows	 you	 to	 pass	 a	 io.BytesIO
object	 opened	 for	 writing	 as	 fileobj,	 and	 retrieve	 the	 resulting
memory	 buffer	 using	 the	 io.BytesIO	 object’s	 getvalue()
method.

GzipFile	 supports	 the	 io.BufferedIOBase	 interface,
including	iteration	and	the	with	statement.	Only	the	truncate()
method	isn’t	implemented.

GzipFile	also	provides	the	following	method:

peek([n])
Read	n	uncompressed	bytes	without	advancing	the	file	position.
At	most	one	single	read	on	the	compressed	stream	is	done	to
satisfy	the	call.	The	number	of	bytes	returned	may	be	more	or
less	than	requested.

Note: 	 While	 calling	 peek()	 does	 not	 change	 the	 file
position	of	 the	GzipFile,	 it	may	change	 the	position	of	 the
underlying	 file	object	 (e.g.	 if	 the	GzipFile	was	constructed
with	the	fileobj	parameter).

New	in	version	3.2.

Changed	 in	 version	 3.1:	 Support	 for	 the	 with	 statement	 was
added,	along	with	the	mtime	argument.

Changed	 in	version	3.2:	Support	 for	zero-padded	and	unseekable
files	was	added.

Changed	 in	 version	 3.3:	 The	 io.BufferedIOBase.read1()
method	is	now	implemented.

Changed	 in	 version	 3.4:	 Added	 support	 for	 the	 'x'	 and	 'xb'
modes.

gzip.compress(data,	compresslevel=9)
Compress	 the	 data,	 returning	 a	 bytes	 object	 containing	 the
compressed	data.	compresslevel	has	the	same	meaning	as	in	the
GzipFile	constructor	above.

New	in	version	3.2.

gzip.decompress(data)
Decompress	 the	 data,	 returning	 a	 bytes	 object	 containing	 the
uncompressed	data.

New	in	version	3.2.

13.2.1.	Examples	of	usage

Example	of	how	to	read	a	compressed	file:

import	gzip

with	gzip.open('/home/joe/file.txt.gz',	'rb')	as	f:

				file_content	=	f.read()

Example	of	how	to	create	a	compressed	GZIP	file:

import	gzip

content	=	b"Lots	of	content	here"

with	gzip.open('/home/joe/file.txt.gz',	'wb')	as	f:

				f.write(content)

Example	of	how	to	GZIP	compress	an	existing	file:

import	gzip

with	open('/home/joe/file.txt',	'rb')	as	f_in:

				with	gzip.open('/home/joe/file.txt.gz',	'wb')	as

								f_out.writelines(f_in)

Example	of	how	to	GZIP	compress	a	binary	string:

import	gzip

s_in	=	b"Lots	of	content	here"

s_out	=	gzip.compress(s_in)

See	also:

Module	zlib
The	basic	data	compression	module	needed	to	support	the	gzip
file	format.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

http://www.python.org/

13.3.	bz2	—	Support	for	bzip2
compression
This	module	provides	a	comprehensive	interface	for	compressing	and
decompressing	data	using	the	bzip2	compression	algorithm.

The	bz2	module	contains:

The	open()	function	and	BZ2File	class	for	reading	and	writing
compressed	files.
The	 BZ2Compressor	 and	 BZ2Decompressor	 classes	 for
incremental	(de)compression.
The	 compress()	 and	 decompress()	 functions	 for	 one-shot
(de)compression.

All	of	the	classes	in	this	module	may	safely	be	accessed	from	multiple
threads.

13.3.1.	(De)compression	of	files

bz2.open(filename,	mode='r',	compresslevel=9,	encoding=None,
errors=None,	newline=None)

Open	a	bzip2-compressed	 file	 in	binary	or	 text	mode,	 returning	a
file	object.

As	with	 the	 constructor	 for	 BZ2File,	 the	 filename	 argument	 can
be	an	actual	filename	(a	str	or	bytes	object),	or	an	existing	file
object	to	read	from	or	write	to.

The	mode	argument	can	be	any	of	'r',	'rb',	'w',	'wb',	'x',
'xb',	 'a'	 or	 'ab'	 for	 binary	mode,	 or	 'rt',	 'wt',	 'xt',	 or
'at'	for	text	mode.	The	default	is	'rb'.

The	compresslevel	argument	 is	an	 integer	 from	1	 to	9,	as	 for	 the
BZ2File	constructor.

For	 binary	 mode,	 this	 function	 is	 equivalent	 to	 the	 BZ2File
constructor:	 BZ2File(filename,	 mode,

compresslevel=compresslevel).	 In	 this	 case,	 the	encoding,
errors	and	newline	arguments	must	not	be	provided.

For	 text	mode,	 a	 BZ2File	 object	 is	 created,	 and	wrapped	 in	 an
io.TextIOWrapper	 instance	 with	 the	 specified	 encoding,	 error
handling	behavior,	and	line	ending(s).

New	in	version	3.3.

Changed	 in	 version	 3.4:	The	 'x'	 (exclusive	 creation)	mode	was
added.

class	bz2.BZ2File(filename,	mode='r',	buffering=None,
compresslevel=9)

Open	a	bzip2-compressed	file	in	binary	mode.

If	filename	is	a	str	or	bytes	object,	open	the	named	file	directly.
Otherwise,	 filename	should	be	a	 file	object,	which	will	 be	used	 to
read	or	write	the	compressed	data.

The	mode	argument	can	be	either	'r'	 for	 reading	 (default),	'w'
for	overwriting,	'x'	 for	exclusive	creation,	or	'a'	 for	appending.
These	can	equivalently	be	given	as	'rb',	'wb',	'xb'	and	'ab'
respectively.

If	filename	is	a	file	object	(rather	than	an	actual	file	name),	a	mode
of	'w'	does	not	truncate	the	file,	and	is	instead	equivalent	to	'a'.

The	buffering	argument	is	ignored.	Its	use	is	deprecated.

If	mode	is	'w'	or	'a',	compresslevel	can	be	a	number	between	1
and	 9	 specifying	 the	 level	 of	 compression:	 1	 produces	 the	 least
compression,	and	9	(default)	produces	the	most	compression.

If	mode	is	'r',	the	input	file	may	be	the	concatenation	of	multiple
compressed	streams.

BZ2File	 provides	 all	 of	 the	 members	 specified	 by	 the
io.BufferedIOBase,	 except	 for	 detach()	 and	 truncate().
Iteration	and	the	with	statement	are	supported.

BZ2File	also	provides	the	following	method:

peek([n])
Return	buffered	data	without	advancing	the	file	position.	At	least

one	 byte	 of	 data	 will	 be	 returned	 (unless	 at	 EOF).	 The	 exact
number	of	bytes	returned	is	unspecified.

Note: 	 While	 calling	 peek()	 does	 not	 change	 the	 file
position	 of	 the	 BZ2File,	 it	 may	 change	 the	 position	 of	 the
underlying	file	object	(e.g.	if	the	BZ2File	was	constructed	by
passing	a	file	object	for	filename).

New	in	version	3.3.

Changed	 in	 version	 3.1:	 Support	 for	 the	 with	 statement	 was
added.

Changed	 in	 version	 3.3:	 The	 fileno(),	 readable(),
seekable(),	 writable(),	 read1()	 and	 readinto()

methods	were	added.

Changed	 in	version	3.3:	Support	was	added	 for	 filename	 being	 a
file	object	instead	of	an	actual	filename.

Changed	 in	 version	 3.3:	 The	 'a'	 (append)	 mode	 was	 added,
along	with	support	for	reading	multi-stream	files.

Changed	 in	 version	 3.4:	The	 'x'	 (exclusive	 creation)	mode	was
added.

13.3.2.	Incremental	(de)compression

class	bz2.BZ2Compressor(compresslevel=9)
Create	 a	 new	 compressor	 object.	 This	 object	 may	 be	 used	 to
compress	 data	 incrementally.	 For	 one-shot	 compression,	 use	 the
compress()	function	instead.

compresslevel,	if	given,	must	be	a	number	between	1	and	9.	The
default	is	9.

compress(data)
Provide	 data	 to	 the	 compressor	 object.	 Returns	 a	 chunk	 of
compressed	data	if	possible,	or	an	empty	byte	string	otherwise.

When	you	have	finished	providing	data	to	the	compressor,	call
the	flush()	method	to	finish	the	compression	process.

flush()
Finish	the	compression	process.	Returns	the	compressed	data
left	in	internal	buffers.

The	compressor	object	may	not	be	used	after	this	method	has
been	called.

class	bz2.BZ2Decompressor
Create	 a	 new	 decompressor	 object.	 This	 object	 may	 be	 used	 to
decompress	data	incrementally.	For	one-shot	compression,	use	the
decompress()	function	instead.

Note: 	This	class	does	not	transparently	handle	inputs	containing
multiple	 compressed	 streams,	 unlike	 decompress()	 and
BZ2File.	 If	 you	need	 to	decompress	a	multi-stream	 input	with

BZ2Decompressor,	 you	 must	 use	 a	 new	 decompressor	 for
each	stream.

decompress(data)
Provide	 data	 to	 the	 decompressor	 object.	 Returns	 a	 chunk	 of
decompressed	 data	 if	 possible,	 or	 an	 empty	 byte	 string
otherwise.

Attempting	 to	 decompress	 data	 after	 the	 end	 of	 the	 current
stream	 is	 reached	 raises	 an	 EOFError.	 If	 any	 data	 is	 found
after	 the	 end	 of	 the	 stream,	 it	 is	 ignored	 and	 saved	 in	 the
unused_data	attribute.

eof

True	if	the	end-of-stream	marker	has	been	reached.

New	in	version	3.3.

unused_data

Data	found	after	the	end	of	the	compressed	stream.

If	 this	 attribute	 is	 accessed	 before	 the	 end	 of	 the	 stream	 has
been	reached,	its	value	will	be	b''.

13.3.3.	One-shot	(de)compression

bz2.compress(data,	compresslevel=9)
Compress	data.

compresslevel,	if	given,	must	be	a	number	between	1	and	9.	The
default	is	9.

For	incremental	compression,	use	a	BZ2Compressor	instead.

bz2.decompress(data)
Decompress	data.

If	 data	 is	 the	 concatenation	 of	 multiple	 compressed	 streams,
decompress	all	of	the	streams.

For	 incremental	 decompression,	 use	 a	 BZ2Decompressor

instead.

Changed	 in	 version	 3.3:	 Support	 for	 multi-stream	 inputs	 was
added.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

http://www.python.org/

13.4.	lzma	—	Compression	using
the	LZMA	algorithm
New	in	version	3.3.

This	 module	 provides	 classes	 and	 convenience	 functions	 for
compressing	 and	 decompressing	 data	 using	 the	 LZMA	 compression
algorithm.	 Also	 included	 is	 a	 file	 interface	 supporting	 the	 .xz	 and
legacy	 .lzma	 file	 formats	 used	 by	 the	 xz	 utility,	 as	 well	 as	 raw
compressed	streams.

The	interface	provided	by	this	module	is	very	similar	to	that	of	the	bz2
module.	 However,	 note	 that	 LZMAFile	 is	 not	 thread-safe,	 unlike
bz2.BZ2File,	 so	 if	 you	 need	 to	 use	 a	 single	 LZMAFile	 instance
from	multiple	threads,	it	is	necessary	to	protect	it	with	a	lock.

exception	lzma.LZMAError
This	exception	is	raised	when	an	error	occurs	during	compression
or	 decompression,	 or	 while	 initializing	 the
compressor/decompressor	state.

13.4.1.	Reading	and	writing	compressed
files

lzma.open(filename,	mode="rb",	*,	format=None,	check=-1,
preset=None,	filters=None,	encoding=None,	errors=None,
newline=None)

Open	an	LZMA-compressed	file	in	binary	or	text	mode,	returning	a
file	object.

The	filename	argument	can	be	either	an	actual	file	name	(given	as
a	str	or	bytes	object),	in	which	case	the	named	file	is	opened,	or
it	can	be	an	existing	file	object	to	read	from	or	write	to.

The	mode	argument	can	be	any	of	"r",	"rb",	"w",	"wb",	"x",
"xb",	 "a"	 or	 "ab"	 for	 binary	mode,	 or	 "rt",	 "wt",	 "xt",	 or
"at"	for	text	mode.	The	default	is	"rb".

When	opening	a	 file	 for	 reading,	 the	 format	and	 filters	 arguments
have	 the	 same	 meanings	 as	 for	 LZMADecompressor.	 In	 this
case,	the	check	and	preset	arguments	should	not	be	used.

When	opening	a	file	for	writing,	the	format,	check,	preset	and	filters
arguments	have	the	same	meanings	as	for	LZMACompressor.

For	 binary	 mode,	 this	 function	 is	 equivalent	 to	 the	 LZMAFile
constructor:	 LZMAFile(filename,	mode,	...).	 In	 this	 case,
the	encoding,	errors	and	newline	arguments	must	not	be	provided.

For	text	mode,	a	LZMAFile	object	 is	created,	and	wrapped	in	an
io.TextIOWrapper	 instance	 with	 the	 specified	 encoding,	 error
handling	behavior,	and	line	ending(s).

Changed	 in	 version	 3.4:	 Added	 support	 for	 the	 "x",	 "xb"	 and
"xt"	modes.

class	lzma.LZMAFile(filename=None,	mode="r",	*,	format=None,
check=-1,	preset=None,	filters=None)

Open	an	LZMA-compressed	file	in	binary	mode.

An	 LZMAFile	 can	 wrap	 an	 already-open	 file	 object,	 or	 operate
directly	on	a	named	file.	The	filename	argument	specifies	either	the
file	 object	 to	wrap,	 or	 the	 name	 of	 the	 file	 to	 open	 (as	 a	 str	 or
bytes	object).	When	wrapping	an	existing	file	object,	the	wrapped
file	will	not	be	closed	when	the	LZMAFile	is	closed.

The	mode	argument	can	be	either	"r"	 for	 reading	 (default),	"w"
for	overwriting,	"x"	 for	exclusive	creation,	or	"a"	 for	appending.
These	can	equivalently	be	given	as	"rb",	"wb",	"xb"	and	"ab"
respectively.

If	filename	is	a	file	object	(rather	than	an	actual	file	name),	a	mode
of	"w"	does	not	truncate	the	file,	and	is	instead	equivalent	to	"a".

When	 opening	 a	 file	 for	 reading,	 the	 input	 file	 may	 be	 the
concatenation	 of	 multiple	 separate	 compressed	 streams.	 These
are	transparently	decoded	as	a	single	logical	stream.

When	opening	a	 file	 for	 reading,	 the	 format	and	 filters	 arguments
have	 the	 same	 meanings	 as	 for	 LZMADecompressor.	 In	 this
case,	the	check	and	preset	arguments	should	not	be	used.

When	opening	a	file	for	writing,	the	format,	check,	preset	and	filters
arguments	have	the	same	meanings	as	for	LZMACompressor.

LZMAFile	 supports	 all	 the	 members	 specified	 by

io.BufferedIOBase,	 except	 for	 detach()	 and	 truncate().
Iteration	and	the	with	statement	are	supported.

The	following	method	is	also	provided:

peek(size=-1)
Return	buffered	data	without	advancing	the	file	position.	At	least
one	 byte	 of	 data	 will	 be	 returned,	 unless	 EOF	 has	 been
reached.	 The	 exact	 number	 of	 bytes	 returned	 is	 unspecified
(the	size	argument	is	ignored).

Note: 	 While	 calling	 peek()	 does	 not	 change	 the	 file
position	of	 the	LZMAFile,	 it	may	change	 the	position	of	 the
underlying	 file	object	 (e.g.	 if	 the	LZMAFile	was	constructed
by	passing	a	file	object	for	filename).

Changed	 in	 version	 3.4:	 Added	 support	 for	 the	 "x"	 and	 "xb"
modes.

13.4.2.	Compressing	and	decompressing
data	in	memory

class	lzma.LZMACompressor(format=FORMAT_XZ,	check=-1,
preset=None,	filters=None)

Create	a	compressor	object,	which	can	be	used	to	compress	data
incrementally.

For	a	more	convenient	way	of	compressing	a	single	chunk	of	data,
see	compress().

The	 format	 argument	 specifies	 what	 container	 format	 should	 be
used.	Possible	values	are:

FORMAT_XZ:	The	.xz	container	format.
This	is	the	default	format.

FORMAT_ALONE:	The	legacy	.lzma	container	format.
This	format	is	more	limited	than	.xz	–	it	does	not	support
integrity	checks	or	multiple	filters.

FORMAT_RAW:	 A	 raw	 data	 stream,	 not	 using	 any	 container
format.

This	format	specifier	does	not	support	integrity	checks,	and
requires	 that	 you	always	specify	a	 custom	 filter	 chain	 (for
both	 compression	 and	 decompression).	 Additionally,	 data
compressed	in	this	manner	cannot	be	decompressed	using
FORMAT_AUTO	(see	LZMADecompressor).

The	check	argument	specifies	the	type	of	integrity	check	to	include
in	the	compressed	data.	This	check	is	used	when	decompressing,
to	 ensure	 that	 the	 data	 has	 not	 been	 corrupted.	 Possible	 values

are:

CHECK_NONE:	No	 integrity	check.	This	 is	 the	default	(and	the
only	acceptable	value)	for	FORMAT_ALONE	and	FORMAT_RAW.
CHECK_CRC32:	32-bit	Cyclic	Redundancy	Check.
CHECK_CRC64:	 64-bit	Cyclic	Redundancy	Check.	This	 is	 the
default	for	FORMAT_XZ.
CHECK_SHA256:	256-bit	Secure	Hash	Algorithm.

If	the	specified	check	is	not	supported,	an	LZMAError	is	raised.

The	 compression	 settings	 can	 be	 specified	 either	 as	 a	 preset
compression	 level	 (with	 the	 preset	 argument),	 or	 in	 detail	 as	 a
custom	filter	chain	(with	the	filters	argument).

The	preset	argument	(if	provided)	should	be	an	integer	between	0
and	 9	 (inclusive),	 optionally	 OR-ed	 with	 the	 constant
PRESET_EXTREME.	 If	 neither	 preset	 nor	 filters	 are	 given,	 the
default	 behavior	 is	 to	 use	 PRESET_DEFAULT	 (preset	 level	 6).
Higher	presets	produce	smaller	output,	but	make	the	compression
process	slower.

Note: 	 In	 addition	 to	 being	 more	 CPU-intensive,	 compression
with	 higher	 presets	 also	 requires	 much	 more	 memory	 (and
produces	output	that	needs	more	memory	to	decompress).	With
preset	 9	 for	 example,	 the	 overhead	 for	 an	 LZMACompressor
object	can	be	as	high	as	800	MiB.	For	this	reason,	it	is	generally
best	to	stick	with	the	default	preset.

The	filters	argument	(if	provided)	should	be	a	filter	chain	specifier.
See	Specifying	custom	filter	chains	for	details.

compress(data)

Compress	 data	 (a	 bytes	 object),	 returning	 a	 bytes	 object
containing	compressed	data	for	at	least	part	of	the	input.	Some
of	 data	 may	 be	 buffered	 internally,	 for	 use	 in	 later	 calls	 to
compress()	 and	 flush().	 The	 returned	 data	 should	 be
concatenated	 with	 the	 output	 of	 any	 previous	 calls	 to
compress().

flush()
Finish	 the	 compression	 process,	 returning	 a	 bytes	 object
containing	any	data	stored	in	the	compressor’s	internal	buffers.

The	 compressor	 cannot	 be	 used	 after	 this	 method	 has	 been
called.

class	lzma.LZMADecompressor(format=FORMAT_AUTO,
memlimit=None,	filters=None)

Create	a	decompressor	object,	which	can	be	used	to	decompress
data	incrementally.

For	 a	 more	 convenient	 way	 of	 decompressing	 an	 entire
compressed	stream	at	once,	see	decompress().

The	format	argument	specifies	the	container	format	that	should	be
used.	The	default	 is	 FORMAT_AUTO,	which	 can	 decompress	 both
.xz	 and	 .lzma	 files.	 Other	 possible	 values	 are	 FORMAT_XZ,
FORMAT_ALONE,	and	FORMAT_RAW.

The	memlimit	argument	specifies	a	limit	(in	bytes)	on	the	amount	of
memory	 that	 the	 decompressor	 can	 use.	When	 this	 argument	 is
used,	 decompression	 will	 fail	 with	 an	 LZMAError	 if	 it	 is	 not
possible	to	decompress	the	input	within	the	given	memory	limit.

The	 filters	 argument	 specifies	 the	 filter	 chain	 that	 was	 used	 to

create	the	stream	being	decompressed.	This	argument	is	required
if	format	is	FORMAT_RAW,	but	should	not	be	used	for	other	formats.
See	Specifying	custom	filter	chains	for	more	information	about	filter
chains.

Note: 	This	class	does	not	transparently	handle	inputs	containing
multiple	 compressed	 streams,	 unlike	 decompress()	 and
LZMAFile.	 To	 decompress	 a	 multi-stream	 input	 with
LZMADecompressor,	you	must	create	a	new	decompressor	for
each	stream.

decompress(data)
Decompress	data	 (a	bytes	object),	 returning	a	bytes	 object
containing	the	decompressed	data	for	at	least	part	of	the	input.
Some	of	data	may	be	buffered	internally,	for	use	in	later	calls	to
decompress().	 The	 returned	 data	 should	 be	 concatenated
with	the	output	of	any	previous	calls	to	decompress().

check

The	ID	of	the	integrity	check	used	by	the	input	stream.	This	may
be	 CHECK_UNKNOWN	 until	 enough	 of	 the	 input	 has	 been
decoded	to	determine	what	integrity	check	it	uses.

eof

True	if	the	end-of-stream	marker	has	been	reached.

unused_data

Data	found	after	the	end	of	the	compressed	stream.

Before	the	end	of	the	stream	is	reached,	this	will	be	b"".

lzma.compress(data,	format=FORMAT_XZ,	check=-1,

preset=None,	filters=None)
Compress	data	 (a	bytes	 object),	 returning	 the	 compressed	 data
as	a	bytes	object.

See	 LZMACompressor	 above	 for	 a	 description	 of	 the	 format,
check,	preset	and	filters	arguments.

lzma.decompress(data,	format=FORMAT_AUTO,
memlimit=None,	filters=None)

Decompress	data	 (a	 bytes	 object),	 returning	 the	 uncompressed
data	as	a	bytes	object.

If	 data	 is	 the	 concatenation	 of	 multiple	 distinct	 compressed
streams,	 decompress	 all	 of	 these	 streams,	 and	 return	 the
concatenation	of	the	results.

See	 LZMADecompressor	 above	 for	 a	 description	 of	 the	 format,
memlimit	and	filters	arguments.

13.4.3.	Miscellaneous

lzma.is_check_supported(check)
Returns	 true	 if	 the	 given	 integrity	 check	 is	 supported	 on	 this
system.

CHECK_NONE	 and	 CHECK_CRC32	 are	 always	 supported.
CHECK_CRC64	and	CHECK_SHA256	may	be	unavailable	if	you	are
using	a	version	of	liblzma	that	was	compiled	with	a	limited	feature
set.

13.4.4.	Specifying	custom	filter	chains

A	 filter	 chain	 specifier	 is	 a	 sequence	 of	 dictionaries,	 where	 each
dictionary	 contains	 the	 ID	 and	 options	 for	 a	 single	 filter.	 Each
dictionary	must	contain	the	key	"id",	and	may	contain	additional	keys
to	specify	filter-dependent	options.	Valid	filter	IDs	are	as	follows:

Compression	filters:
FILTER_LZMA1	(for	use	with	FORMAT_ALONE)
FILTER_LZMA2	 (for	 use	 with	 FORMAT_XZ	 and
FORMAT_RAW)

Delta	filter:
FILTER_DELTA

Branch-Call-Jump	(BCJ)	filters:
FILTER_X86

FILTER_IA64

FILTER_ARM

FILTER_ARMTHUMB

FILTER_POWERPC

FILTER_SPARC

A	filter	chain	can	consist	of	up	to	4	filters,	and	cannot	be	empty.	The
last	filter	in	the	chain	must	be	a	compression	filter,	and	any	other	filters
must	be	delta	or	BCJ	filters.

Compression	 filters	 support	 the	 following	 options	 (specified	 as
additional	entries	in	the	dictionary	representing	the	filter):

preset:	A	compression	preset	to	use	as	a	source	of	default
values	for	options	that	are	not	specified	explicitly.
dict_size:	 Dictionary	 size	 in	 bytes.	 This	 should	 be

between	4	KiB	and	1.5	GiB	(inclusive).
lc:	Number	of	literal	context	bits.
lp:	Number	of	 literal	position	bits.	The	sum	lc	+	lp	must
be	at	most	4.
pb:	Number	of	position	bits;	must	be	at	most	4.
mode:	MODE_FAST	or	MODE_NORMAL.
nice_len:	What	should	be	considered	a	“nice	 length”	 for	a
match.	This	should	be	273	or	less.
mf:	What	match	finder	to	use	–	MF_HC3,	MF_HC4,	MF_BT2,
MF_BT3,	or	MF_BT4.
depth:	 Maximum	 search	 depth	 used	 by	 match	 finder.	 0
(default)	means	 to	 select	 automatically	 based	on	other	 filter
options.

The	delta	 filter	stores	 the	differences	between	bytes,	producing	more
repetitive	 input	 for	 the	 compressor	 in	 certain	 circumstances.	 It	 only
supports	a	single	The	delta	filter	supports	only	one	option,	dist.	This
indicates	the	distance	between	bytes	to	be	subtracted.	The	default	 is
1,	i.e.	take	the	differences	between	adjacent	bytes.

The	 BCJ	 filters	 are	 intended	 to	 be	 applied	 to	 machine	 code.	 They
convert	relative	branches,	calls	and	jumps	in	the	code	to	use	absolute
addressing,	 with	 the	 aim	 of	 increasing	 the	 redundancy	 that	 can	 be
exploited	 by	 the	 compressor.	 These	 filters	 support	 one	 option,
start_offset.	This	specifies	the	address	that	should	be	mapped	to
the	beginning	of	the	input	data.	The	default	is	0.

13.4.5.	Examples

Reading	in	a	compressed	file:

import	lzma

with	lzma.open("file.xz")	as	f:

				file_content	=	f.read()

Creating	a	compressed	file:

import	lzma

data	=	b"Insert	Data	Here"

with	lzma.open("file.xz",	"w")	as	f:

				f.write(data)

Compressing	data	in	memory:

import	lzma

data_in	=	b"Insert	Data	Here"

data_out	=	lzma.compress(data_in)

Incremental	compression:

import	lzma

lzc	=	lzma.LZMACompressor()

out1	=	lzc.compress(b"Some	data\n")

out2	=	lzc.compress(b"Another	piece	of	data\n")

out3	=	lzc.compress(b"Even	more	data\n")

out4	=	lzc.flush()

#	Concatenate	all	the	partial	results:

result	=	b"".join([out1,	out2,	out3,	out4])

Writing	compressed	data	to	an	already-open	file:

import	lzma

with	open("file.xz",	"wb")	as	f:

				f.write(b"This	data	will	not	be	compressed\n")

				with	lzma.open(f,	"w")	as	lzf:

								lzf.write(b"This	*will*	be	compressed\n")

				f.write(b"Not	compressed\n")

Creating	a	compressed	file	using	a	custom	filter	chain:

import	lzma

my_filters	=	[

				{"id":	lzma.FILTER_DELTA,	"dist":	5},

				{"id":	lzma.FILTER_LZMA2,	"preset":	7	|	lzma.PRESET_EXTREME

]

with	lzma.open("file.xz",	"w",	filters=my_filters)	as

				f.write(b"blah	blah	blah")

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

http://www.python.org/

13.5.	zipfile	—	Work	with	ZIP
archives
Source	code:	Lib/zipfile.py

The	ZIP	 file	 format	 is	a	common	archive	and	compression	standard.
This	module	 provides	 tools	 to	 create,	 read,	write,	 append,	 and	 list	 a
ZIP	 file.	 Any	 advanced	 use	 of	 this	 module	 will	 require	 an
understanding	of	the	format,	as	defined	in	PKZIP	Application	Note.

This	 module	 does	 not	 currently	 handle	 multi-disk	 ZIP	 files.	 It	 can
handle	ZIP	files	that	use	the	ZIP64	extensions	(that	is	ZIP	files	that	are
more	 than	4	GiB	 in	size).	 It	 supports	decryption	of	encrypted	 files	 in
ZIP	 archives,	 but	 it	 currently	 cannot	 create	 an	 encrypted	 file.
Decryption	 is	 extremely	 slow	 as	 it	 is	 implemented	 in	 native	 Python
rather	than	C.

The	module	defines	the	following	items:

exception	zipfile.BadZipFile
The	error	raised	for	bad	ZIP	files.

New	in	version	3.2.

exception	zipfile.BadZipfile
Alias	of	BadZipFile,	for	compatibility	with	older	Python	versions.

Deprecated	since	version	3.2.

exception	zipfile.LargeZipFile

http://hg.python.org/cpython/file/3.4/Lib/zipfile.py
http://www.pkware.com/documents/casestudies/APPNOTE.TXT

The	error	 raised	when	a	ZIP	 file	would	require	ZIP64	 functionality
but	that	has	not	been	enabled.

class	zipfile.ZipFile
The	 class	 for	 reading	 and	 writing	 ZIP	 files.	 See	 section	 ZipFile
Objects	for	constructor	details.

class	zipfile.PyZipFile
Class	for	creating	ZIP	archives	containing	Python	libraries.

class	zipfile.ZipInfo(filename='NoName',	date_time=(1980,	1,
1,	0,	0,	0))

Class	used	to	represent	information	about	a	member	of	an	archive.
Instances	 of	 this	 class	 are	 returned	 by	 the	 getinfo()	 and
infolist()	 methods	 of	 ZipFile	 objects.	 Most	 users	 of	 the
zipfile	module	will	not	need	to	create	these,	but	only	use	those
created	 by	 this	module.	 filename	 should	 be	 the	 full	 name	 of	 the
archive	member,	 and	date_time	 should	 be	 a	 tuple	 containing	 six
fields	which	describe	the	time	of	the	last	modification	to	the	file;	the
fields	are	described	in	section	ZipInfo	Objects.

zipfile.is_zipfile(filename)
Returns	 True	 if	 filename	 is	 a	 valid	 ZIP	 file	 based	 on	 its	 magic
number,	otherwise	returns	False.	filename	may	be	a	file	or	file-like
object	too.

Changed	in	version	3.1:	Support	for	file	and	file-like	objects.

zipfile.ZIP_STORED

The	numeric	constant	for	an	uncompressed	archive	member.

zipfile.ZIP_DEFLATED

The	numeric	constant	for	the	usual	ZIP	compression	method.	This

requires	the	zlib	module.

zipfile.ZIP_BZIP2

The	 numeric	 constant	 for	 the	 BZIP2	 compression	 method.	 This
requires	the	bz2	module.

New	in	version	3.3.

zipfile.ZIP_LZMA

The	 numeric	 constant	 for	 the	 LZMA	 compression	 method.	 This
requires	the	lzma	module.

New	in	version	3.3.

Note: 	The	ZIP	file	format	specification	has	included	support	for
bzip2	compression	since	2001,	and	for	LZMA	compression	since
2006.	However,	some	tools	(including	older	Python	releases)	do
not	support	 these	compression	methods,	and	may	either	 refuse
to	process	the	ZIP	file	altogether,	or	fail	to	extract	individual	files.

See	also:

PKZIP	Application	Note
Documentation	on	the	ZIP	file	format	by	Phil	Katz,	the	creator	of
the	format	and	algorithms	used.

Info-ZIP	Home	Page
Information	about	the	Info-ZIP	project’s	ZIP	archive	programs	and
development	libraries.

http://www.pkware.com/documents/casestudies/APPNOTE.TXT
http://www.info-zip.org/

13.5.1.	ZipFile	Objects

class	zipfile.ZipFile(file,	mode='r',
compression=ZIP_STORED,	allowZip64=True)

Open	a	ZIP	file,	where	file	can	be	either	a	path	to	a	file	(a	string)	or
a	 file-like	object.	The	mode	 parameter	 should	be	 'r'	 to	 read	an
existing	file,	'w'	to	truncate	and	write	a	new	file,	or	'a'	to	append
to	an	existing	file.	If	mode	is	'a'	and	file	refers	to	an	existing	ZIP
file,	 then	additional	 files	are	added	 to	 it.	 If	 file	 does	not	 refer	 to	a
ZIP	 file,	 then	 a	 new	 ZIP	 archive	 is	 appended	 to	 the	 file.	 This	 is
meant	 for	 adding	 a	 ZIP	 archive	 to	 another	 file	 (such	 as
python.exe).	 If	mode	 is	a	and	 the	 file	does	not	exist	at	all,	 it	 is
created.	compression	is	the	ZIP	compression	method	to	use	when
writing	the	archive,	and	should	be	ZIP_STORED,	ZIP_DEFLATED,
ZIP_BZIP2	 or	 ZIP_LZMA;	 unrecognized	 values	 will	 cause
RuntimeError	 to	 be	 raised.	 If	 ZIP_DEFLATED,	 ZIP_BZIP2	 or
ZIP_LZMA	is	specified	but	the	corresponding	module	(zlib,	bz2
or	 lzma)	 is	 not	 available,	 RuntimeError	 is	 also	 raised.	 The
default	 is	ZIP_STORED.	 If	allowZip64	 is	True	 (the	default)	zipfile
will	create	ZIP	files	that	use	the	ZIP64	extensions	when	the	zipfile
is	 larger	 than	2	GiB.	 If	 it	 is	 false	zipfile	will	 raise	an	exception
when	the	ZIP	file	would	require	ZIP64	extensions.

If	 the	 file	 is	 created	 with	 mode	 'a'	 or	 'w'	 and	 then	 closed
without	 adding	 any	 files	 to	 the	 archive,	 the	 appropriate	 ZIP
structures	for	an	empty	archive	will	be	written	to	the	file.

ZipFile	is	also	a	context	manager	and	therefore	supports	the	with
statement.	 In	 the	 example,	 myzip	 is	 closed	 after	 the	 with
statement’s	suite	is	finished—even	if	an	exception	occurs:

with	ZipFile('spam.zip',	'w')	as	myzip:

				myzip.write('eggs.txt')

New	in	version	3.2:	Added	the	ability	to	use	ZipFile	as	a	context
manager.

Changed	 in	 version	 3.3:	 Added	 support	 for	 bzip2	 and	 lzma
compression.

Changed	in	version	3.4:	ZIP64	extensions	are	enabled	by	default.

ZipFile.close()
Close	the	archive	file.	You	must	call	close()	before	exiting	your
program	or	essential	records	will	not	be	written.

ZipFile.getinfo(name)
Return	 a	 ZipInfo	 object	 with	 information	 about	 the	 archive
member	 name.	 Calling	 getinfo()	 for	 a	 name	 not	 currently
contained	in	the	archive	will	raise	a	KeyError.

ZipFile.infolist()
Return	a	list	containing	a	ZipInfo	object	for	each	member	of	the
archive.	The	objects	are	 in	 the	same	order	as	 their	entries	 in	 the
actual	ZIP	file	on	disk	if	an	existing	archive	was	opened.

ZipFile.namelist()
Return	a	list	of	archive	members	by	name.

ZipFile.open(name,	mode='r',	pwd=None)
Extract	a	member	from	the	archive	as	a	file-like	object	(ZipExtFile).
name	 is	 the	name	of	the	file	 in	the	archive,	or	a	ZipInfo	object.
The	mode	parameter,	if	included,	must	be	one	of	the	following:	'r'

(the	 default),	 'U',	 or	 'rU'.	 Choosing	 'U'	 or	 'rU'	 will	 enable
universal	 newlines	 support	 in	 the	 read-only	 object.	 pwd	 is	 the
password	 used	 for	 encrypted	 files.	 Calling	 open()	 on	 a	 closed
ZipFile	will	raise	a	RuntimeError.

Note: 	The	file-like	object	is	read-only	and	provides	the	following
methods:	read(),	readline(),	readlines(),	__iter__(),
__next__().

Note: 	 If	 the	ZipFile	was	created	by	passing	 in	a	 file-like	object
as	the	first	argument	to	the	constructor,	then	the	object	returned
by	 open()	 shares	 the	 ZipFile’s	 file	 pointer.	 Under	 these
circumstances,	 the	 object	 returned	 by	 open()	 should	 not	 be
used	after	any	additional	operations	are	performed	on	the	ZipFile
object.	 If	 the	 ZipFile	 was	 created	 by	 passing	 in	 a	 string	 (the
filename)	as	 the	 first	argument	 to	 the	constructor,	 then	open()
will	 create	 a	 new	 file	 object	 that	 will	 be	 held	 by	 the	 ZipExtFile,
allowing	it	to	operate	independently	of	the	ZipFile.

Note: 	 The	 open(),	 read()	 and	 extract()	 methods	 can
take	 a	 filename	 or	 a	 ZipInfo	 object.	 You	 will	 appreciate	 this
when	 trying	 to	 read	 a	 ZIP	 file	 that	 contains	 members	 with
duplicate	names.

Deprecated	since	version	3.4,	will	be	removed	in	version	3.6:	The
'U'	 or	 'rU'	 mode.	 Use	 io.TextIOWrapper	 for	 reading
compressed	text	files	in	universal	newlines	mode.

ZipFile.extract(member,	path=None,	pwd=None)
Extract	a	member	from	the	archive	to	the	current	working	directory;
member	 must	 be	 its	 full	 name	 or	 a	 ZipInfo	 object).	 Its	 file

information	is	extracted	as	accurately	as	possible.	path	specifies	a
different	 directory	 to	 extract	 to.	member	 can	 be	 a	 filename	 or	 a
ZipInfo	object.	pwd	is	the	password	used	for	encrypted	files.

Note: 	 If	 a	member	 filename	 is	 an	 absolute	 path,	 a	 drive/UNC
sharepoint	 and	 leading	 (back)slashes	 will	 be	 stripped,	 e.g.:
///foo/bar	 becomes	 foo/bar	 on	 Unix,	 and	 C:\foo\bar
becomes	foo\bar	on	Windows.	And	all	".."	components	in	a
member	 filename	 will	 be	 removed,	 e.g.:
../../foo../../ba..r	 becomes	 foo../ba..r.	 On
Windows	illegal	characters	(:,	<,	>,	|,	",	?,	and	*)	replaced	by
underscore	(_).

ZipFile.extractall(path=None,	members=None,	pwd=None)
Extract	 all	 members	 from	 the	 archive	 to	 the	 current	 working
directory.	path	specifies	a	different	directory	to	extract	to.	members
is	 optional	 and	 must	 be	 a	 subset	 of	 the	 list	 returned	 by
namelist().	pwd	is	the	password	used	for	encrypted	files.

Warning: 	Never	extract	archives	from	untrusted	sources	without
prior	 inspection.	 It	 is	 possible	 that	 files	 are	 created	 outside	 of
path,	 e.g.	 members	 that	 have	 absolute	 filenames	 starting	 with
"/"	 or	 filenames	with	 two	dots	 "..".	This	module	attempts	 to
prevent	that.	See	extract()	note.

ZipFile.printdir()
Print	a	table	of	contents	for	the	archive	to	sys.stdout.

ZipFile.setpassword(pwd)
Set	pwd	as	default	password	to	extract	encrypted	files.

ZipFile.read(name,	pwd=None)
Return	the	bytes	of	the	file	name	in	the	archive.	name	is	the	name
of	the	file	in	the	archive,	or	a	ZipInfo	object.	The	archive	must	be
open	for	read	or	append.	pwd	 is	the	password	used	for	encrypted
files	and,	 if	specified,	 it	will	override	the	default	password	set	with
setpassword().	Calling	read()	on	a	closed	ZipFile	will	 raise	a
RuntimeError.

ZipFile.testzip()
Read	 all	 the	 files	 in	 the	 archive	 and	 check	 their	 CRC’s	 and	 file
headers.	Return	the	name	of	the	first	bad	file,	or	else	return	None.
Calling	 testzip()	 on	 a	 closed	 ZipFile	 will	 raise	 a
RuntimeError.

ZipFile.write(filename,	arcname=None,	compress_type=None)
Write	 the	 file	named	 filename	 to	 the	 archive,	 giving	 it	 the	 archive
name	arcname	 (by	default,	 this	will	be	 the	same	as	 filename,	 but
without	a	drive	letter	and	with	leading	path	separators	removed).	If
given,	 compress_type	 overrides	 the	 value	 given	 for	 the
compression	 parameter	 to	 the	 constructor	 for	 the	 new	entry.	 The
archive	must	be	open	with	mode	'w'	or	'a'	–	calling	write()
on	a	ZipFile	created	with	mode	'r'	will	 raise	a	RuntimeError.
Calling	write()	on	a	closed	ZipFile	will	raise	a	RuntimeError.

Note: 	There	is	no	official	file	name	encoding	for	ZIP	files.	If	you
have	unicode	file	names,	you	must	convert	them	to	byte	strings	in
your	desired	encoding	before	passing	them	to	write().	WinZip
interprets	 all	 file	 names	 as	 encoded	 in	 CP437,	 also	 known	 as
DOS	Latin.

Note: 	Archive	names	should	be	relative	to	the	archive	root,	that

is,	they	should	not	start	with	a	path	separator.

Note: 	 If	 arcname	 (or	 filename,	 if	 arcname	 is	 not	 given)
contains	 a	 null	 byte,	 the	 name	 of	 the	 file	 in	 the	 archive	will	 be
truncated	at	the	null	byte.

ZipFile.writestr(zinfo_or_arcname,	bytes[,	compress_type])
Write	the	string	bytes	to	the	archive;	zinfo_or_arcname	is	either	the
file	name	it	will	be	given	in	the	archive,	or	a	ZipInfo	instance.	If
it’s	an	instance,	at	least	the	filename,	date,	and	time	must	be	given.
If	it’s	a	name,	the	date	and	time	is	set	to	the	current	date	and	time.
The	 archive	 must	 be	 opened	 with	 mode	 'w'	 or	 'a'	 –	 calling
writestr()	 on	 a	 ZipFile	 created	 with	 mode	 'r'	 will	 raise	 a
RuntimeError.	 Calling	 writestr()	 on	 a	 closed	 ZipFile	 will
raise	a	RuntimeError.

If	 given,	 compress_type	 overrides	 the	 value	 given	 for	 the
compression	parameter	 to	 the	constructor	 for	 the	new	entry,	or	 in
the	zinfo_or_arcname	(if	that	is	a	ZipInfo	instance).

Note: 	 When	 passing	 a	 ZipInfo	 instance	 as	 the
zinfo_or_arcname	parameter,	 the	compression	method	used	will
be	 that	 specified	 in	 the	 compress_type	 member	 of	 the	 given
ZipInfo	instance.	By	default,	the	ZipInfo	constructor	sets	this
member	to	ZIP_STORED.

Changed	in	version	3.2:	The	compress_type	argument.

The	following	data	attributes	are	also	available:

ZipFile.debug

The	 level	 of	 debug	 output	 to	 use.	 This	 may	 be	 set	 from	 0	 (the

default,	no	output)	to	3	(the	most	output).	Debugging	information	is
written	to	sys.stdout.

ZipFile.comment

The	 comment	 text	 associated	 with	 the	 ZIP	 file.	 If	 assigning	 a
comment	to	a	ZipFile	instance	created	with	mode	‘a’	or	‘w’,	this
should	be	a	string	no	 longer	 than	65535	bytes.	Comments	 longer
than	this	will	be	truncated	in	the	written	archive	when	close()	is
called.

13.5.2.	PyZipFile	Objects

The	 PyZipFile	 constructor	 takes	 the	 same	 parameters	 as	 the
ZipFile	constructor,	and	one	additional	parameter,	optimize.

class	zipfile.PyZipFile(file,	mode='r',
compression=ZIP_STORED,	allowZip64=True,	optimize=-1)

New	in	version	3.2:	The	optimize	parameter.

Changed	in	version	3.4:	ZIP64	extensions	are	enabled	by	default.

Instances	 have	 one	 method	 in	 addition	 to	 those	 of	 ZipFile
objects:

writepy(pathname,	basename='',	filterfunc=None)
Search	 for	 files	 *.py	 and	 add	 the	 corresponding	 file	 to	 the
archive.

If	the	optimize	parameter	 to	PyZipFile	was	not	given	or	-1,
the	corresponding	file	is	a	*.pyo	file	if	available,	else	a	*.pyc
file,	compiling	if	necessary.

If	 the	optimize	 parameter	 to	 PyZipFile	was	0,	 1	 or	 2,	 only
files	with	that	optimization	level	(see	compile())	are	added	to
the	archive,	compiling	if	necessary.

If	pathname	 is	a	file,	the	filename	must	end	with	.py,	and	just
the	(corresponding	*.py[co])	file	is	added	at	the	top	level	(no
path	 information).	 If	pathname	 is	 a	 file	 that	 does	 not	 end	with
.py,	a	RuntimeError	will	be	raised.	If	it	is	a	directory,	and	the
directory	is	not	a	package	directory,	then	all	the	files	*.py[co]
are	 added	 at	 the	 top	 level.	 If	 the	 directory	 is	 a	 package

directory,	 then	 all	 *.py[co]	 are	 added	 under	 the	 package
name	 as	 a	 file	 path,	 and	 if	 any	 subdirectories	 are	 package
directories,	all	of	these	are	added	recursively.

basename	is	intended	for	internal	use	only.

filterfunc,	 if	 given,	 must	 be	 a	 function	 taking	 a	 single	 string
argument.	It	will	be	passed	each	path	(including	each	individual
full	file	path)	before	it	is	added	to	the	archive.	If	filterfunc	returns
a	false	value,	the	path	will	not	be	added,	and	if	it	is	a	directory
its	contents	will	be	ignored.	For	example,	if	our	test	files	are	all
either	in	test	directories	or	start	with	the	string	test_,	we	can
use	a	filterfunc	to	exclude	them:

>>>	zf	=	PyZipFile('myprog.zip')

>>>	def	notests(s):

...					fn	=	os.path.basename(s)

...					return	(not	(fn	==	'test'	or	fn.startswith

>>>	zf.writepy('myprog',	filterfunc=notests)

The	 writepy()	method	makes	 archives	with	 file	 names	 like
this:

string.pyc																			#	Top	level	name

test/__init__.pyc												#	Package	directory

test/testall.pyc													#	Module	test.testall

test/bogus/__init__.pyc						#	Subpackage	directory

test/bogus/myfile.pyc								#	Submodule	test.bogus.myfile

New	in	version	3.4:	The	filterfunc	parameter.

13.5.3.	ZipInfo	Objects

Instances	of	the	ZipInfo	class	are	returned	by	the	getinfo()	and
infolist()	 methods	 of	 ZipFile	 objects.	 Each	 object	 stores
information	about	a	single	member	of	the	ZIP	archive.

Instances	have	the	following	attributes:

ZipInfo.filename

Name	of	the	file	in	the	archive.

ZipInfo.date_time

The	time	and	date	of	 the	 last	modification	to	the	archive	member.
This	is	a	tuple	of	six	values:

Index Value

0 Year	(>=	1980)

1 Month	(one-based)

2 Day	of	month	(one-based)

3 Hours	(zero-based)

4 Minutes	(zero-based)

5 Seconds	(zero-based)

Note: 	The	ZIP	 file	 format	 does	 not	 support	 timestamps	before
1980.

ZipInfo.compress_type

Type	of	compression	for	the	archive	member.

ZipInfo.comment

Comment	for	the	individual	archive	member.

ZipInfo.extra

Expansion	 field	data.	The	PKZIP	Application	Note	 contains	 some
comments	 on	 the	 internal	 structure	 of	 the	 data	 contained	 in	 this
string.

ZipInfo.create_system

System	which	created	ZIP	archive.

ZipInfo.create_version

PKZIP	version	which	created	ZIP	archive.

ZipInfo.extract_version

PKZIP	version	needed	to	extract	archive.

ZipInfo.reserved

Must	be	zero.

ZipInfo.flag_bits

ZIP	flag	bits.

ZipInfo.volume

Volume	number	of	file	header.

ZipInfo.internal_attr

Internal	attributes.

ZipInfo.external_attr

External	file	attributes.

ZipInfo.header_offset

Byte	offset	to	the	file	header.

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

ZipInfo.CRC

CRC-32	of	the	uncompressed	file.

ZipInfo.compress_size

Size	of	the	compressed	data.

ZipInfo.file_size

Size	of	the	uncompressed	file.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

http://www.python.org/

13.6.	tarfile	—	Read	and	write
tar	archive	files
Source	code:	Lib/tarfile.py

The	tarfile	module	makes	it	possible	to	read	and	write	tar	archives,
including	 those	 using	 gzip,	 bz2	 and	 lzma	 compression.	 Use	 the
zipfile	 module	 to	 read	 or	 write	 .zip	 files,	 or	 the	 higher-level
functions	in	shutil.

Some	facts	and	figures:

reads	and	writes	gzip,	bz2	and	lzma	compressed	archives.
read/write	support	for	the	POSIX.1-1988	(ustar)	format.
read/write	support	for	the	GNU	tar	format	including	longname	and
longlink	 extensions,	 read-only	 support	 for	 all	 variants	 of	 the
sparse	extension	including	restoration	of	sparse	files.
read/write	support	for	the	POSIX.1-2001	(pax)	format.
handles	 directories,	 regular	 files,	 hardlinks,	 symbolic	 links,	 fifos,
character	 devices	 and	 block	 devices	 and	 is	 able	 to	 acquire	 and
restore	 file	 information	 like	 timestamp,	 access	 permissions	 and
owner.

Changed	in	version	3.3:	Added	support	for	lzma	compression.

tarfile.open(name=None,	mode='r',	fileobj=None,
bufsize=10240,	**kwargs)

Return	 a	 TarFile	 object	 for	 the	 pathname	 name.	 For	 detailed
information	on	TarFile	objects	and	 the	keyword	arguments	 that
are	allowed,	see	TarFile	Objects.

http://hg.python.org/cpython/file/3.4/Lib/tarfile.py

mode	 has	 to	 be	 a	 string	 of	 the	 form
'filemode[:compression]',	 it	 defaults	 to	'r'.	Here	 is	 a	 full
list	of	mode	combinations:

mode action

'r'	or	'r:*'
Open	for	reading	with	transparent
compression	(recommended).

'r:'
Open	for	reading	exclusively	without
compression.

'r:gz' Open	for	reading	with	gzip	compression.

'r:bz2' Open	for	reading	with	bzip2	compression.

'r:xz' Open	for	reading	with	lzma	compression.

'a'	or	'a:'
Open	for	appending	with	no	compression.
The	file	is	created	if	it	does	not	exist.

'w'	or	'w:' Open	for	uncompressed	writing.

'w:gz' Open	for	gzip	compressed	writing.

'w:bz2' Open	for	bzip2	compressed	writing.

'w:xz' Open	for	lzma	compressed	writing.

Note	that	'a:gz',	'a:bz2'	or	'a:xz'	is	not	possible.	If	mode	is
not	 suitable	 to	 open	 a	 certain	 (compressed)	 file	 for	 reading,
ReadError	 is	 raised.	 Use	 mode	 'r'	 to	 avoid	 this.	 If	 a
compression	 method	 is	 not	 supported,	 CompressionError	 is
raised.

If	 fileobj	 is	 specified,	 it	 is	 used	 as	 an	 alternative	 to	 a	 file	 object
opened	in	binary	mode	for	name.	It	is	supposed	to	be	at	position	0.

For	 special	 purposes,	 there	 is	 a	 second	 format	 for	 mode:
'filemode|[compression]'.	 tarfile.open()	 will	 return	 a

TarFile	object	that	processes	its	data	as	a	stream	of	blocks.	No
random	seeking	will	be	done	on	the	file.	If	given,	fileobj	may	be	any
object	that	has	a	read()	or	write()	method	(depending	on	the
mode).	bufsize	specifies	 the	blocksize	and	defaults	 to	20	*	512
bytes.	 Use	 this	 variant	 in	 combination	 with	 e.g.	 sys.stdin,	 a
socket	 file	 object	 or	 a	 tape	 device.	 However,	 such	 a	 TarFile
object	is	limited	in	that	it	does	not	allow	to	be	accessed	randomly,
see	Examples.	The	currently	possible	modes:

Mode Action

'r|*'
Open	a	stream	of	tar	blocks	for	reading	with
transparent	compression.

'r|'
Open	a	stream	of	uncompressed	tar	blocks	for
reading.

'r|gz' Open	a	gzip	compressed	stream	for	reading.

'r|bz2' Open	a	bzip2	compressed	stream	for	reading.

'r|xz' Open	a	lzma	compressed	stream	for	reading.

'w|' Open	an	uncompressed	stream	for	writing.

'w|gz' Open	a	gzip	compressed	stream	for	writing.

'w|bz2' Open	a	bzip2	compressed	stream	for	writing.

'w|xz' Open	an	lzma	compressed	stream	for	writing.

class	tarfile.TarFile
Class	 for	 reading	 and	 writing	 tar	 archives.	 Do	 not	 use	 this	 class
directly,	 better	 use	 tarfile.open()	 instead.	 See	 TarFile
Objects.

tarfile.is_tarfile(name)
Return	True	if	name	is	a	tar	archive	file,	that	the	tarfile	module

can	read.

The	tarfile	module	defines	the	following	exceptions:

exception	tarfile.TarError
Base	class	for	all	tarfile	exceptions.

exception	tarfile.ReadError
Is	 raised	 when	 a	 tar	 archive	 is	 opened,	 that	 either	 cannot	 be
handled	by	the	tarfile	module	or	is	somehow	invalid.

exception	tarfile.CompressionError
Is	raised	when	a	compression	method	is	not	supported	or	when	the
data	cannot	be	decoded	properly.

exception	tarfile.StreamError
Is	raised	for	the	limitations	that	are	typical	for	stream-like	TarFile
objects.

exception	tarfile.ExtractError
Is	 raised	 for	 non-fatal	 errors	 when	 using	 TarFile.extract(),
but	only	if	TarFile.errorlevel==	2.

exception	tarfile.HeaderError
Is	raised	by	TarInfo.frombuf()	if	the	buffer	it	gets	is	invalid.

Each	of	 the	 following	 constants	defines	a	 tar	 archive	 format	 that	 the
tarfile	module	is	able	to	create.	See	section	Supported	tar	formats
for	details.

tarfile.USTAR_FORMAT

POSIX.1-1988	(ustar)	format.

tarfile.GNU_FORMAT

GNU	tar	format.

tarfile.PAX_FORMAT

POSIX.1-2001	(pax)	format.

tarfile.DEFAULT_FORMAT

The	 default	 format	 for	 creating	 archives.	 This	 is	 currently
GNU_FORMAT.

The	following	variables	are	available	on	module	level:

tarfile.ENCODING

The	 default	 character	 encoding:	 'utf-8'	 on	 Windows,
sys.getfilesystemencoding()	otherwise.

See	also:

Module	zipfile
Documentation	of	the	zipfile	standard	module.

GNU	tar	manual,	Basic	Tar	Format
Documentation	for	tar	archive	files,	including	GNU	tar	extensions.

http://www.gnu.org/software/tar/manual/html_node/Standard.html

13.6.1.	TarFile	Objects

The	 TarFile	 object	 provides	 an	 interface	 to	 a	 tar	 archive.	 A	 tar
archive	is	a	sequence	of	blocks.	An	archive	member	(a	stored	file)	 is
made	up	of	a	header	block	 followed	by	data	blocks.	 It	 is	possible	 to
store	 a	 file	 in	 a	 tar	 archive	 several	 times.	 Each	 archive	 member	 is
represented	by	a	TarInfo	object,	see	TarInfo	Objects	for	details.

A	 TarFile	 object	 can	 be	 used	 as	 a	 context	 manager	 in	 a	 with
statement.	It	will	automatically	be	closed	when	the	block	is	completed.
Please	note	 that	 in	 the	event	of	 an	exception	an	archive	opened	 for
writing	will	not	be	 finalized;	only	 the	 internally	used	 file	object	will	be
closed.	See	the	Examples	section	for	a	use	case.

New	in	version	3.2:	Added	support	for	the	context	manager	protocol.

class	tarfile.TarFile(name=None,	mode='r',	fileobj=None,
format=DEFAULT_FORMAT,	tarinfo=TarInfo,	dereference=False,
ignore_zeros=False,	encoding=ENCODING,	errors='surrogateescape',
pax_headers=None,	debug=0,	errorlevel=0)

All	 following	 arguments	 are	 optional	 and	 can	 be	 accessed	 as
instance	attributes	as	well.

name	 is	the	pathname	of	the	archive.	It	can	be	omitted	if	fileobj	is
given.	 In	 this	 case,	 the	 file	 object’s	 name	 attribute	 is	 used	 if	 it
exists.

mode	 is	 either	 'r'	 to	 read	 from	 an	 existing	 archive,	 'a'	 to
append	 data	 to	 an	 existing	 file	 or	 'w'	 to	 create	 a	 new	 file
overwriting	an	existing	one.

If	fileobj	 is	given,	 it	 is	used	for	reading	or	writing	data.	 If	 it	can	be

determined,	mode	 is	 overridden	 by	 fileobj‘s	 mode.	 fileobj	 will	 be
used	from	position	0.

Note: 	fileobj	is	not	closed,	when	TarFile	is	closed.

format	controls	the	archive	format.	It	must	be	one	of	the	constants
USTAR_FORMAT,	 GNU_FORMAT	 or	 PAX_FORMAT	 that	 are	 defined
at	module	level.

The	tarinfo	argument	can	be	used	to	replace	the	default	TarInfo
class	with	a	different	one.

If	 dereference	 is	 False,	 add	 symbolic	 and	 hard	 links	 to	 the
archive.	 If	 it	 is	 True,	 add	 the	 content	 of	 the	 target	 files	 to	 the
archive.	This	has	no	effect	on	systems	that	do	not	support	symbolic
links.

If	 ignore_zeros	 is	False,	 treat	an	empty	block	as	 the	end	of	 the
archive.	If	it	is	True,	skip	empty	(and	invalid)	blocks	and	try	to	get
as	 many	 members	 as	 possible.	 This	 is	 only	 useful	 for	 reading
concatenated	or	damaged	archives.

debug	can	be	set	from	0	(no	debug	messages)	up	to	3	(all	debug
messages).	The	messages	are	written	to	sys.stderr.

If	 errorlevel	 is	 0,	 all	 errors	 are	 ignored	 when	 using
TarFile.extract().	 Nevertheless,	 they	 appear	 as	 error
messages	in	the	debug	output,	when	debugging	is	enabled.	If	1,	all
fatal	 errors	 are	 raised	 as	 OSError	 exceptions.	 If	 2,	 all	non-fatal
errors	are	raised	as	TarError	exceptions	as	well.

The	encoding	and	errors	arguments	define	the	character	encoding
to	be	used	 for	 reading	or	writing	 the	archive	and	how	conversion

errors	 are	 going	 to	 be	 handled.	 The	 default	 settings	will	 work	 for
most	users.	See	section	Unicode	issues	for	in-depth	information.

Changed	in	version	3.2:	Use	'surrogateescape'	as	the	default
for	the	errors	argument.

The	 pax_headers	 argument	 is	 an	 optional	 dictionary	 of	 strings
which	 will	 be	 added	 as	 a	 pax	 global	 header	 if	 format	 is
PAX_FORMAT.

TarFile.open(...)
Alternative	constructor.	The	tarfile.open()	function	is	actually
a	shortcut	to	this	classmethod.

TarFile.getmember(name)
Return	a	TarInfo	object	 for	member	name.	 If	name	 can	 not	 be
found	in	the	archive,	KeyError	is	raised.

Note: 	If	a	member	occurs	more	than	once	in	the	archive,	its	last
occurrence	is	assumed	to	be	the	most	up-to-date	version.

TarFile.getmembers()
Return	 the	members	of	 the	archive	as	a	 list	of	TarInfo	objects.
The	list	has	the	same	order	as	the	members	in	the	archive.

TarFile.getnames()
Return	the	members	as	a	list	of	their	names.	It	has	the	same	order
as	the	list	returned	by	getmembers().

TarFile.list(verbose=True)
Print	a	table	of	contents	to	sys.stdout.	If	verbose	is	False,	only
the	names	of	the	members	are	printed.	If	it	is	True,	output	similar

to	that	of	ls	-l	is	produced.

TarFile.next()
Return	the	next	member	of	the	archive	as	a	TarInfo	object,	when
TarFile	 is	opened	 for	 reading.	Return	None	 if	 there	 is	no	more
available.

TarFile.extractall(path=".",	members=None)
Extract	 all	 members	 from	 the	 archive	 to	 the	 current	 working
directory	or	directory	path.	If	optional	members	is	given,	it	must	be
a	 subset	 of	 the	 list	 returned	 by	 getmembers().	 Directory
information	 like	 owner,	modification	 time	 and	 permissions	 are	 set
after	 all	 members	 have	 been	 extracted.	 This	 is	 done	 to	 work
around	two	problems:	A	directory’s	modification	time	is	reset	each
time	a	 file	 is	created	 in	 it.	And,	 if	a	directory’s	permissions	do	not
allow	writing,	extracting	files	to	it	will	fail.

Warning: 	Never	extract	archives	from	untrusted	sources	without
prior	 inspection.	 It	 is	 possible	 that	 files	 are	 created	 outside	 of
path,	 e.g.	 members	 that	 have	 absolute	 filenames	 starting	 with
"/"	or	filenames	with	two	dots	"..".

TarFile.extract(member,	path="",	set_attrs=True)
Extract	a	member	from	the	archive	to	the	current	working	directory,
using	its	full	name.	Its	file	information	is	extracted	as	accurately	as
possible.	member	 may	 be	 a	 filename	 or	 a	 TarInfo	 object.	 You
can	specify	a	different	directory	using	path.	File	attributes	 (owner,
mtime,	mode)	are	set	unless	set_attrs	is	false.

Note: 	 The	 extract()	method	 does	 not	 take	 care	 of	 several
extraction	 issues.	 In	most	 cases	 you	 should	 consider	 using	 the

extractall()	method.

Warning: 	See	the	warning	for	extractall().

Changed	in	version	3.2:	Added	the	set_attrs	parameter.

TarFile.extractfile(member)
Extract	a	member	from	the	archive	as	a	file	object.	member	may	be
a	 filename	or	 a	 TarInfo	 object.	 If	member	 is	 a	 regular	 file	 or	 a
link,	an	io.BufferedReader	object	is	returned.	Otherwise,	None
is	returned.

Changed	in	version	3.3:	Return	an	io.BufferedReader	object.

TarFile.add(name,	arcname=None,	recursive=True,
exclude=None,	*,	filter=None)

Add	 the	 file	 name	 to	 the	 archive.	 name	 may	 be	 any	 type	 of	 file
(directory,	 fifo,	 symbolic	 link,	 etc.).	 If	 given,	arcname	 specifies	 an
alternative	name	 for	 the	 file	 in	 the	archive.	Directories	are	added
recursively	by	default.	This	can	be	avoided	by	setting	recursive	 to
False.	 If	 exclude	 is	 given,	 it	 must	 be	 a	 function	 that	 takes	 one
filename	argument	and	returns	a	boolean	value.	Depending	on	this
value	 the	 respective	 file	 is	 either	 excluded	 (True)	 or	 added
(False).	 If	 filter	 is	 specified	 it	 must	 be	 a	 keyword	 argument.	 It
should	 be	a	 function	 that	 takes	 a	 TarInfo	 object	 argument	 and
returns	the	changed	TarInfo	object.	If	it	instead	returns	None	the
TarInfo	object	will	be	excluded	from	the	archive.	See	Examples
for	an	example.

Changed	in	version	3.2:	Added	the	filter	parameter.

Deprecated	 since	 version	 3.2:	 The	 exclude	 parameter	 is

deprecated,	please	use	the	filter	parameter	instead.

TarFile.addfile(tarinfo,	fileobj=None)
Add	 the	TarInfo	object	 tarinfo	 to	 the	 archive.	 If	 fileobj	 is	 given,
tarinfo.size	bytes	are	 read	 from	 it	and	added	 to	 the	archive.
You	can	create	TarInfo	objects	using	gettarinfo().

Note: 	On	Windows	platforms,	 fileobj	 should	always	be	opened
with	mode	'rb'	to	avoid	irritation	about	the	file	size.

TarFile.gettarinfo(name=None,	arcname=None,
fileobj=None)

Create	a	TarInfo	object	for	either	the	file	name	or	the	file	object
fileobj	 (using	os.fstat()	 on	 its	 file	 descriptor).	You	 can	modify
some	 of	 the	 TarInfo‘s	 attributes	 before	 you	 add	 it	 using
addfile().	 If	 given,	arcname	 specifies	 an	 alternative	 name	 for
the	file	in	the	archive.

TarFile.close()
Close	 the	TarFile.	 In	write	mode,	 two	 finishing	zero	blocks	are
appended	to	the	archive.

TarFile.pax_headers

A	dictionary	containing	key-value	pairs	of	pax	global	headers.

13.6.2.	TarInfo	Objects

A	TarInfo	object	represents	one	member	in	a	TarFile.	Aside	from
storing	 all	 required	 attributes	 of	 a	 file	 (like	 file	 type,	 size,	 time,
permissions,	 owner	 etc.),	 it	 provides	 some	 useful	 methods	 to
determine	its	type.	It	does	not	contain	the	file’s	data	itself.

TarInfo	 objects	 are	 returned	 by	 TarFile‘s	 methods
getmember(),	getmembers()	and	gettarinfo().

class	tarfile.TarInfo(name="")
Create	a	TarInfo	object.

TarInfo.frombuf(buf)
Create	and	return	a	TarInfo	object	from	string	buffer	buf.

Raises	HeaderError	if	the	buffer	is	invalid..

TarInfo.fromtarfile(tarfile)
Read	the	next	member	from	the	TarFile	object	tarfile	and	return
it	as	a	TarInfo	object.

TarInfo.tobuf(format=DEFAULT_FORMAT,
encoding=ENCODING,	errors='surrogateescape')

Create	a	string	buffer	 from	a	TarInfo	object.	For	 information	on
the	arguments	see	the	constructor	of	the	TarFile	class.

Changed	in	version	3.2:	Use	'surrogateescape'	as	the	default
for	the	errors	argument.

A	TarInfo	object	has	the	following	public	data	attributes:

TarInfo.name

Name	of	the	archive	member.

TarInfo.size

Size	in	bytes.

TarInfo.mtime

Time	of	last	modification.

TarInfo.mode

Permission	bits.

TarInfo.type

File	 type.	 type	 is	 usually	 one	 of	 these	 constants:	 REGTYPE,
AREGTYPE,	 LNKTYPE,	 SYMTYPE,	 DIRTYPE,	 FIFOTYPE,
CONTTYPE,	 CHRTYPE,	 BLKTYPE,	 GNUTYPE_SPARSE.	 To
determine	 the	 type	 of	 a	 TarInfo	 object	 more	 conveniently,	 use
the	is_*()	methods	below.

TarInfo.linkname

Name	 of	 the	 target	 file	 name,	which	 is	 only	 present	 in	 TarInfo
objects	of	type	LNKTYPE	and	SYMTYPE.

TarInfo.uid

User	ID	of	the	user	who	originally	stored	this	member.

TarInfo.gid

Group	ID	of	the	user	who	originally	stored	this	member.

TarInfo.uname

User	name.

TarInfo.gname

Group	name.

TarInfo.pax_headers

A	 dictionary	 containing	 key-value	 pairs	 of	 an	 associated	 pax
extended	header.

A	TarInfo	object	also	provides	some	convenient	query	methods:

TarInfo.isfile()
Return	True	if	the	Tarinfo	object	is	a	regular	file.

TarInfo.isreg()
Same	as	isfile().

TarInfo.isdir()
Return	True	if	it	is	a	directory.

TarInfo.issym()
Return	True	if	it	is	a	symbolic	link.

TarInfo.islnk()
Return	True	if	it	is	a	hard	link.

TarInfo.ischr()
Return	True	if	it	is	a	character	device.

TarInfo.isblk()
Return	True	if	it	is	a	block	device.

TarInfo.isfifo()
Return	True	if	it	is	a	FIFO.

TarInfo.isdev()

Return	True	if	it	is	one	of	character	device,	block	device	or	FIFO.

13.6.3.	Command	Line	Interface

New	in	version	3.4.

The	 tarfile	 module	 provides	 a	 simple	 command	 line	 interface	 to
interact	with	tar	archives.

If	you	want	 to	create	a	new	 tar	archive,	specify	 its	name	after	 the	 -c
option	and	then	list	the	filename(s)	that	should	be	included:

$	python	-m	tarfile	-c	monty.tar		spam.txt	eggs.txt

Passing	a	directory	is	also	acceptable:

$	python	-m	tarfile	-c	monty.tar	life-of-brian_1979/

If	you	want	to	extract	a	tar	archive	into	the	current	directory,	use	the	-e
option:

$	python	-m	tarfile	-e	monty.tar

You	can	also	extract	a	tar	archive	into	a	different	directory	by	passing
the	directory’s	name:

$	python	-m	tarfile	-e	monty.tar		other-dir/

For	a	list	of	the	files	in	a	tar	archive,	use	the	-l	option:

$	python	-m	tarfile	-l	monty.tar

13.6.3.1.	Command	line	options

-l	<tarfile>

--list	<tarfile>

List	files	in	a	tarfile.

-c	<tarfile>	<source1>	<sourceN>

--create	<tarfile>	<source1>	<sourceN>

Create	tarfile	from	source	files.

-e	<tarfile>	[<output_dir>]

--extract	<tarfile>	[<output_dir>]

Extract	tarfile	into	the	current	directory	if	output_dir	is	not	specified.

-t	<tarfile>

--test	<tarfile>

Test	whether	the	tarfile	is	valid	or	not.

-v ,	--verbose

Verbose	output

13.6.4.	Examples

How	to	extract	an	entire	tar	archive	to	the	current	working	directory:

import	tarfile

tar	=	tarfile.open("sample.tar.gz")

tar.extractall()

tar.close()

How	 to	 extract	 a	 subset	 of	 a	 tar	 archive	 with
TarFile.extractall()	using	a	generator	function	instead	of	a	list:

import	os

import	tarfile

def	py_files(members):

				for	tarinfo	in	members:

								if	os.path.splitext(tarinfo.name)[1]	==	".py"

												yield	tarinfo

tar	=	tarfile.open("sample.tar.gz")

tar.extractall(members=py_files(tar))

tar.close()

How	to	create	an	uncompressed	tar	archive	from	a	list	of	filenames:

import	tarfile

tar	=	tarfile.open("sample.tar",	"w")

for	name	in	["foo",	"bar",	"quux"]:

				tar.add(name)

tar.close()

The	same	example	using	the	with	statement:

import	tarfile

with	tarfile.open("sample.tar",	"w")	as	tar:

				for	name	in	["foo",	"bar",	"quux"]:

								tar.add(name)

How	to	read	a	gzip	compressed	tar	archive	and	display	some	member
information:

import	tarfile

tar	=	tarfile.open("sample.tar.gz",	"r:gz")

for	tarinfo	in	tar:

				print(tarinfo.name,	"is",	tarinfo.size,	"bytes	in	size	and	is"

				if	tarinfo.isreg():

								print("a	regular	file.")

				elif	tarinfo.isdir():

								print("a	directory.")

				else:

								print("something	else.")

tar.close()

How	to	create	an	archive	and	reset	the	user	information	using	the	filter
parameter	in	TarFile.add():

import	tarfile

def	reset(tarinfo):

				tarinfo.uid	=	tarinfo.gid	=	0

				tarinfo.uname	=	tarinfo.gname	=	"root"

				return	tarinfo

tar	=	tarfile.open("sample.tar.gz",	"w:gz")

tar.add("foo",	filter=reset)

tar.close()

13.6.5.	Supported	tar	formats

There	 are	 three	 tar	 formats	 that	 can	 be	 created	 with	 the	 tarfile
module:

The	 POSIX.1-1988	 ustar	 format	 (USTAR_FORMAT).	 It	 supports
filenames	up	to	a	length	of	at	best	256	characters	and	linknames
up	to	100	characters.	The	maximum	file	size	is	8	GiB.	This	is	an
old	and	limited	but	widely	supported	format.

The	 GNU	 tar	 format	 (GNU_FORMAT).	 It	 supports	 long	 filenames
and	linknames,	files	bigger	than	8	GiB	and	sparse	files.	It	is	the	de
facto	 standard	 on	 GNU/Linux	 systems.	 tarfile	 fully	 supports
the	 GNU	 tar	 extensions	 for	 long	 names,	 sparse	 file	 support	 is
read-only.

The	 POSIX.1-2001	 pax	 format	 (PAX_FORMAT).	 It	 is	 the	 most
flexible	 format	with	 virtually	 no	 limits.	 It	 supports	 long	 filenames
and	 linknames,	 large	 files	 and	 stores	 pathnames	 in	 a	 portable
way.	 However,	 not	 all	 tar	 implementations	 today	 are	 able	 to
handle	pax	archives	properly.

The	pax	format	is	an	extension	to	the	existing	ustar	format.	It	uses
extra	 headers	 for	 information	 that	 cannot	 be	 stored	 otherwise.
There	 are	 two	 flavours	 of	 pax	 headers:	 Extended	 headers	 only
affect	the	subsequent	file	header,	global	headers	are	valid	for	the
complete	archive	and	affect	all	following	files.	All	the	data	in	a	pax
header	is	encoded	in	UTF-8	for	portability	reasons.

There	are	some	more	variants	of	the	tar	format	which	can	be	read,	but
not	created:

The	 ancient	 V7	 format.	 This	 is	 the	 first	 tar	 format	 from	 Unix
Seventh	Edition,	storing	only	regular	files	and	directories.	Names
must	 not	 be	 longer	 than	 100	 characters,	 there	 is	 no	 user/group
name	 information.	 Some	 archives	 have	 miscalculated	 header
checksums	in	case	of	fields	with	non-ASCII	characters.
The	SunOS	 tar	 extended	 format.	 This	 format	 is	 a	 variant	 of	 the
POSIX.1-2001	pax	format,	but	is	not	compatible.

13.6.6.	Unicode	issues

The	 tar	 format	 was	 originally	 conceived	 to	 make	 backups	 on	 tape
drives	 with	 the	 main	 focus	 on	 preserving	 file	 system	 information.
Nowadays	 tar	 archives	 are	 commonly	 used	 for	 file	 distribution	 and
exchanging	 archives	 over	 networks.	 One	 problem	 of	 the	 original
format	 (which	 is	 the	 basis	 of	 all	 other	 formats)	 is	 that	 there	 is	 no
concept	of	supporting	different	character	encodings.	For	example,	an
ordinary	 tar	 archive	 created	 on	 a	 UTF-8	 system	 cannot	 be	 read
correctly	 on	 a	 Latin-1	 system	 if	 it	 contains	 non-ASCII	 characters.
Textual	 metadata	 (like	 filenames,	 linknames,	 user/group	 names)	 will
appear	 damaged.	 Unfortunately,	 there	 is	 no	 way	 to	 autodetect	 the
encoding	 of	 an	 archive.	 The	 pax	 format	 was	 designed	 to	 solve	 this
problem.	 It	 stores	 non-ASCII	metadata	 using	 the	 universal	 character
encoding	UTF-8.

The	details	of	character	conversion	in	tarfile	are	controlled	by	the
encoding	and	errors	keyword	arguments	of	the	TarFile	class.

encoding	defines	the	character	encoding	to	use	for	the	metadata	in	the
archive.	 The	 default	 value	 is	 sys.getfilesystemencoding()	 or
'ascii'	as	a	fallback.	Depending	on	whether	the	archive	is	read	or
written,	the	metadata	must	be	either	decoded	or	encoded.	If	encoding
is	not	set	appropriately,	this	conversion	may	fail.

The	errors	 argument	 defines	 how	 characters	 are	 treated	 that	 cannot
be	 converted.	 Possible	 values	 are	 listed	 in	 section	 Codec	 Base
Classes.	The	default	scheme	is	'surrogateescape'	which	Python
also	 uses	 for	 its	 file	 system	 calls,	 see	 File	 Names,	 Command	 Line
Arguments,	and	Environment	Variables.

In	 case	 of	 PAX_FORMAT	 archives,	encoding	 is	 generally	 not	 needed

because	all	the	metadata	is	stored	using	UTF-8.	encoding	is	only	used
in	 the	 rare	 cases	 when	 binary	 pax	 headers	 are	 decoded	 or	 when
strings	with	surrogate	characters	are	stored.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	13.	Data	Compression	and	Archiving	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

14.	File	Formats
The	modules	 described	 in	 this	 chapter	 parse	 various	 miscellaneous
file	formats	that	aren’t	markup	languages	and	are	not	related	to	e-mail.

14.1.	csv	—	CSV	File	Reading	and	Writing
14.1.1.	Module	Contents
14.1.2.	Dialects	and	Formatting	Parameters
14.1.3.	Reader	Objects
14.1.4.	Writer	Objects
14.1.5.	Examples

14.2.	configparser	—	Configuration	file	parser
14.2.1.	Quick	Start
14.2.2.	Supported	Datatypes
14.2.3.	Fallback	Values
14.2.4.	Supported	INI	File	Structure
14.2.5.	Interpolation	of	values
14.2.6.	Mapping	Protocol	Access
14.2.7.	Customizing	Parser	Behaviour
14.2.8.	Legacy	API	Examples
14.2.9.	ConfigParser	Objects
14.2.10.	RawConfigParser	Objects
14.2.11.	Exceptions

14.3.	netrc	—	netrc	file	processing
14.3.1.	netrc	Objects

14.4.	xdrlib	—	Encode	and	decode	XDR	data
14.4.1.	Packer	Objects
14.4.2.	Unpacker	Objects
14.4.3.	Exceptions

14.5.	plistlib	—	Generate	and	parse	Mac	OS	X	.plist	files
14.5.1.	Examples

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

http://www.python.org/

14.1.	csv	—	CSV	File	Reading
and	Writing
The	 so-called	 CSV	 (Comma	 Separated	 Values)	 format	 is	 the	 most
common	 import	 and	 export	 format	 for	 spreadsheets	 and	 databases.
CSV	format	was	used	for	many	years	prior	to	attempts	to	describe	the
format	in	a	standardized	way	in	RFC	4180.	The	lack	of	a	well-defined
standard	 means	 that	 subtle	 differences	 often	 exist	 in	 the	 data
produced	 and	 consumed	 by	 different	 applications.	 These	 differences
can	make	it	annoying	to	process	CSV	files	from	multiple	sources.	Still,
while	 the	delimiters	and	quoting	characters	vary,	 the	overall	 format	 is
similar	 enough	 that	 it	 is	 possible	 to	write	 a	 single	module	which	 can
efficiently	 manipulate	 such	 data,	 hiding	 the	 details	 of	 reading	 and
writing	the	data	from	the	programmer.

The	csv	module	implements	classes	to	read	and	write	tabular	data	in
CSV	format.	It	allows	programmers	to	say,	“write	this	data	in	the	format
preferred	by	Excel,”	or	 “read	data	 from	 this	 file	which	was	generated
by	Excel,”	without	knowing	the	precise	details	of	the	CSV	format	used
by	 Excel.	 Programmers	 can	 also	 describe	 the	 CSV	 formats
understood	by	other	applications	or	define	 their	own	special-purpose
CSV	formats.

The	 csv	 module’s	 reader	 and	 writer	 objects	 read	 and	 write
sequences.	Programmers	 can	 also	 read	 and	write	 data	 in	 dictionary
form	using	the	DictReader	and	DictWriter	classes.

See	also:

PEP	305	-	CSV	File	API

http://tools.ietf.org/html/rfc4180.html
http://www.python.org/dev/peps/pep-0305

The	Python	Enhancement	Proposal	which	proposed	this	addition
to	Python.

14.1.1.	Module	Contents

The	csv	module	defines	the	following	functions:

csv.reader(csvfile,	dialect='excel',	**fmtparams)
Return	 a	 reader	 object	 which	 will	 iterate	 over	 lines	 in	 the	 given
csvfile.	 csvfile	 can	 be	 any	 object	 which	 supports	 the	 iterator
protocol	and	returns	a	string	each	time	its	__next__()	method	is
called	—	file	objects	and	list	objects	are	both	suitable.	If	csvfile	is	a
file	object,	 it	should	be	opened	with	newline=''.	[1]	An	optional
dialect	 parameter	 can	 be	 given	 which	 is	 used	 to	 define	 a	 set	 of
parameters	 specific	 to	 a	 particular	 CSV	 dialect.	 It	 may	 be	 an
instance	of	a	subclass	of	the	Dialect	class	or	one	of	the	strings
returned	 by	 the	 list_dialects()	 function.	 The	 other	 optional
fmtparams	keyword	arguments	can	be	given	to	override	individual
formatting	parameters	 in	 the	current	dialect.	For	 full	 details	about
the	 dialect	 and	 formatting	 parameters,	 see	 section	 Dialects	 and
Formatting	Parameters.

Each	row	read	from	the	csv	file	 is	returned	as	a	list	of	strings.	No
automatic	 data	 type	 conversion	 is	 performed	 unless	 the
QUOTE_NONNUMERIC	 format	 option	 is	 specified	 (in	 which	 case
unquoted	fields	are	transformed	into	floats).

A	short	usage	example:

>>>	import	csv

>>>	with	open('eggs.csv',	newline='')	as	csvfile:

...					spamreader	=	csv.reader(csvfile,	delimiter

...					for	row	in	spamreader:

...									print(',	'.join(row))

Spam,	Spam,	Spam,	Spam,	Spam,	Baked	Beans

Spam,	Lovely	Spam,	Wonderful	Spam

csv.writer(csvfile,	dialect='excel',	**fmtparams)
Return	 a	 writer	 object	 responsible	 for	 converting	 the	 user’s	 data
into	delimited	strings	on	the	given	file-like	object.	csvfile	can	be	any
object	with	a	write()	method.	 If	csvfile	 is	a	 file	object,	 it	should
be	 opened	 with	 newline=''	 [1].	 An	 optional	 dialect	 parameter
can	be	given	which	is	used	to	define	a	set	of	parameters	specific	to
a	particular	CSV	dialect.	It	may	be	an	instance	of	a	subclass	of	the
Dialect	 class	 or	 one	 of	 the	 strings	 returned	 by	 the
list_dialects()	 function.	 The	 other	 optional	 fmtparams
keyword	arguments	can	be	given	 to	override	 individual	 formatting
parameters	 in	 the	current	dialect.	For	 full	details	about	 the	dialect
and	 formatting	 parameters,	 see	 section	 Dialects	 and	 Formatting
Parameters.	 To	 make	 it	 as	 easy	 as	 possible	 to	 interface	 with
modules	which	implement	the	DB	API,	the	value	None	is	written	as
the	 empty	 string.	 While	 this	 isn’t	 a	 reversible	 transformation,	 it
makes	 it	 easier	 to	 dump	 SQL	 NULL	 data	 values	 to	 CSV	 files
without	preprocessing	 the	data	 returned	 from	a	cursor.fetch*
call.	 All	 other	 non-string	 data	 are	 stringified	 with	 str()	 before
being	written.

A	short	usage	example:

import	csv

with	open('eggs.csv',	'w',	newline='')	as	csvfile:

				spamwriter	=	csv.writer(csvfile,	delimiter='	'

																												quotechar='|',	quoting

				spamwriter.writerow(['Spam']	*	5	+	['Baked	Beans'

				spamwriter.writerow(['Spam',	'Lovely	Spam',	'Wonderful	Spam'

csv.register_dialect(name[,	dialect],	**fmtparams)
Associate	dialect	with	name.	name	must	 be	 a	 string.	 The	 dialect
can	be	specified	either	by	passing	a	sub-class	of	Dialect,	or	by
fmtparams	 keyword	 arguments,	 or	 both,	with	 keyword	 arguments
overriding	 parameters	 of	 the	 dialect.	 For	 full	 details	 about	 the
dialect	 and	 formatting	 parameters,	 see	 section	 Dialects	 and
Formatting	Parameters.

csv.unregister_dialect(name)
Delete	 the	dialect	 associated	with	name	 from	 the	 dialect	 registry.
An	Error	is	raised	if	name	is	not	a	registered	dialect	name.

csv.get_dialect(name)
Return	 the	 dialect	 associated	 with	 name.	 An	 Error	 is	 raised	 if
name	 is	 not	 a	 registered	 dialect	 name.	 This	 function	 returns	 an
immutable	Dialect.

csv.list_dialects()
Return	the	names	of	all	registered	dialects.

csv.field_size_limit([new_limit])
Returns	 the	 current	maximum	 field	 size	 allowed	 by	 the	 parser.	 If
new_limit	is	given,	this	becomes	the	new	limit.

The	csv	module	defines	the	following	classes:

class	csv.DictReader(csvfile,	fieldnames=None,	restkey=None,
restval=None,	dialect='excel',	*args,	**kwds)

Create	an	object	which	operates	like	a	regular	reader	but	maps	the
information	 read	 into	a	dict	whose	keys	are	given	by	 the	optional
fieldnames	parameter.	The	 fieldnames	 parameter	 is	 a	 sequence
whose	elements	are	associated	with	the	fields	of	the	input	data	in

order.	These	elements	become	the	keys	of	the	resulting	dictionary.
If	the	fieldnames	parameter	is	omitted,	the	values	in	the	first	row	of
the	csvfile	will	be	used	as	the	fieldnames.	If	the	row	read	has	more
fields	 than	 the	 fieldnames	sequence,	 the	remaining	data	 is	added
as	a	sequence	keyed	by	the	value	of	restkey.	 If	 the	row	read	has
fewer	fields	than	the	fieldnames	sequence,	the	remaining	keys	take
the	 value	of	 the	optional	 restval	parameter.	Any	 other	 optional	 or
keyword	 arguments	 are	 passed	 to	 the	 underlying	 reader

instance.

class	csv.DictWriter(csvfile,	fieldnames,	restval='',
extrasaction='raise',	dialect='excel',	*args,	**kwds)

Create	 an	 object	 which	 operates	 like	 a	 regular	 writer	 but	 maps
dictionaries	 onto	 output	 rows.	 The	 fieldnames	 parameter	 is	 a
sequence	 of	 keys	 that	 identify	 the	 order	 in	 which	 values	 in	 the
dictionary	 passed	 to	 the	 writerow()	 method	 are	 written	 to	 the
csvfile.	 The	 optional	 restval	 parameter	 specifies	 the	 value	 to	 be
written	 if	 the	 dictionary	 is	 missing	 a	 key	 in	 fieldnames.	 If	 the
dictionary	passed	to	 the	writerow()	method	contains	a	key	not
found	 in	 fieldnames,	 the	optional	extrasaction	parameter	 indicates
what	 action	 to	 take.	 If	 it	 is	 set	 to	 'raise'	 a	 ValueError	 is
raised.	 If	 it	 is	set	 to	'ignore',	extra	values	 in	 the	dictionary	are
ignored.	Any	 other	 optional	 or	 keyword	 arguments	 are	 passed	 to
the	underlying	writer	instance.

Note	that	unlike	the	DictReader	class,	the	fieldnames	parameter
of	 the	DictWriter	 is	not	optional.	Since	Python’s	dict	 objects
are	 not	 ordered,	 there	 is	 not	 enough	 information	 available	 to
deduce	the	order	in	which	the	row	should	be	written	to	the	csvfile.

class	csv.Dialect
The	Dialect	class	 is	a	container	class	 relied	on	primarily	 for	 its

attributes,	which	are	used	 to	 define	 the	parameters	 for	 a	 specific
reader	or	writer	instance.

class	csv.excel
The	 excel	 class	 defines	 the	 usual	 properties	 of	 an	 Excel-
generated	CSV	file.	It	is	registered	with	the	dialect	name	'excel'.

class	csv.excel_tab
The	 excel_tab	 class	 defines	 the	 usual	 properties	 of	 an	 Excel-
generated	TAB-delimited	file.	It	 is	registered	with	the	dialect	name
'excel-tab'.

class	csv.unix_dialect
The	unix_dialect	 class	defines	 the	usual	properties	of	a	CSV
file	generated	on	UNIX	systems,	i.e.	using	'\n'	as	line	terminator
and	 quoting	 all	 fields.	 It	 is	 registered	 with	 the	 dialect	 name
'unix'.

New	in	version	3.2.

class	csv.Sniffer
The	Sniffer	class	is	used	to	deduce	the	format	of	a	CSV	file.

The	Sniffer	class	provides	two	methods:

sniff(sample,	delimiters=None)
Analyze	 the	 given	 sample	 and	 return	 a	 Dialect	 subclass
reflecting	 the	 parameters	 found.	 If	 the	 optional	 delimiters
parameter	 is	 given,	 it	 is	 interpreted	 as	 a	 string	 containing
possible	valid	delimiter	characters.

has_header(sample)
Analyze	 the	 sample	 text	 (presumed	 to	be	 in	CSV	 format)	 and

return	 True	 if	 the	 first	 row	 appears	 to	 be	 a	 series	 of	 column
headers.

An	example	for	Sniffer	use:

with	open('example.csv')	as	csvfile:

				dialect	=	csv.Sniffer().sniff(csvfile.read(1024))

				csvfile.seek(0)

				reader	=	csv.reader(csvfile,	dialect)

				#	...	process	CSV	file	contents	here	...

The	csv	module	defines	the	following	constants:

csv.QUOTE_ALL

Instructs	writer	objects	to	quote	all	fields.

csv.QUOTE_MINIMAL

Instructs	writer	objects	 to	only	quote	 those	fields	which	contain
special	 characters	 such	 as	 delimiter,	 quotechar	 or	 any	 of	 the
characters	in	lineterminator.

csv.QUOTE_NONNUMERIC

Instructs	writer	objects	to	quote	all	non-numeric	fields.

Instructs	the	reader	to	convert	all	non-quoted	fields	to	type	float.

csv.QUOTE_NONE

Instructs	writer	objects	 to	never	quote	 fields.	When	 the	current
delimiter	 occurs	 in	 output	 data	 it	 is	 preceded	 by	 the	 current
escapechar	character.	If	escapechar	is	not	set,	the	writer	will	raise
Error	if	any	characters	that	require	escaping	are	encountered.

Instructs	 reader	 to	 perform	 no	 special	 processing	 of	 quote

characters.

The	csv	module	defines	the	following	exception:

exception	csv.Error
Raised	by	any	of	the	functions	when	an	error	is	detected.

14.1.2.	Dialects	and	Formatting
Parameters

To	make	 it	 easier	 to	 specify	 the	 format	 of	 input	 and	 output	 records,
specific	 formatting	 parameters	 are	 grouped	 together	 into	 dialects.	 A
dialect	 is	 a	 subclass	 of	 the	 Dialect	 class	 having	 a	 set	 of	 specific
methods	and	a	single	validate()	method.	When	creating	reader
or	writer	objects,	the	programmer	can	specify	a	string	or	a	subclass
of	 the	 Dialect	 class	 as	 the	 dialect	 parameter.	 In	 addition	 to,	 or
instead	 of,	 the	 dialect	 parameter,	 the	 programmer	 can	 also	 specify
individual	 formatting	parameters,	which	have	the	same	names	as	the
attributes	defined	below	for	the	Dialect	class.

Dialects	support	the	following	attributes:

Dialect.delimiter

A	one-character	string	used	to	separate	fields.	It	defaults	to	','.

Dialect.doublequote

Controls	 how	 instances	 of	 quotechar	 appearing	 inside	 a	 field
should	 be	 themselves	 be	 quoted.	 When	 True,	 the	 character	 is
doubled.	When	False,	 the	escapechar	 is	used	as	a	prefix	 to	 the
quotechar.	It	defaults	to	True.

On	 output,	 if	 doublequote	 is	 False	 and	 no	 escapechar	 is	 set,
Error	is	raised	if	a	quotechar	is	found	in	a	field.

Dialect.escapechar

A	one-character	string	used	by	the	writer	to	escape	the	delimiter	 if
quoting	is	set	to	QUOTE_NONE	and	the	quotechar	if	doublequote	is
False.	On	reading,	the	escapechar	removes	any	special	meaning

from	 the	 following	 character.	 It	 defaults	 to	 None,	 which	 disables
escaping.

Dialect.lineterminator

The	 string	 used	 to	 terminate	 lines	 produced	 by	 the	 writer.	 It
defaults	to	'\r\n'.

Note: 	The	reader	 is	 hard-coded	 to	 recognise	either	 '\r'	 or
'\n'	 as	 end-of-line,	 and	 ignores	 lineterminator.	 This	 behavior
may	change	in	the	future.

Dialect.quotechar

A	 one-character	 string	 used	 to	 quote	 fields	 containing	 special
characters,	 such	 as	 the	 delimiter	 or	 quotechar,	 or	 which	 contain
new-line	characters.	It	defaults	to	'"'.

Dialect.quoting

Controls	 when	 quotes	 should	 be	 generated	 by	 the	 writer	 and
recognised	 by	 the	 reader.	 It	 can	 take	 on	 any	 of	 the	 QUOTE_*
constants	 (see	 section	 Module	 Contents)	 and	 defaults	 to
QUOTE_MINIMAL.

Dialect.skipinitialspace

When	 True,	 whitespace	 immediately	 following	 the	 delimiter	 is
ignored.	The	default	is	False.

Dialect.strict

When	True,	raise	exception	Error	on	bad	CSV	input.	The	default
is	False.

14.1.3.	Reader	Objects

Reader	objects	(DictReader	 instances	and	objects	 returned	by	 the
reader()	function)	have	the	following	public	methods:

csvreader.__next__()
Return	the	next	row	of	the	reader’s	iterable	object	as	a	list,	parsed
according	 to	 the	 current	 dialect.	 Usually	 you	 should	 call	 this	 as
next(reader).

Reader	objects	have	the	following	public	attributes:

csvreader.dialect

A	read-only	description	of	the	dialect	in	use	by	the	parser.

csvreader.line_num

The	number	of	 lines	 read	 from	 the	source	 iterator.	This	 is	not	 the
same	 as	 the	 number	 of	 records	 returned,	 as	 records	 can	 span
multiple	lines.

DictReader	objects	have	the	following	public	attribute:

csvreader.fieldnames

If	 not	 passed	 as	 a	 parameter	 when	 creating	 the	 object,	 this
attribute	 is	 initialized	upon	 first	 access	or	when	 the	 first	 record	 is
read	from	the	file.

14.1.4.	Writer	Objects

Writer	objects	(DictWriter	instances	and	objects	returned	by	the
writer()	function)	have	the	following	public	methods.	A	row	must	be
a	sequence	of	strings	or	numbers	for	Writer	objects	and	a	dictionary
mapping	 fieldnames	 to	strings	or	numbers	 (by	passing	 them	 through
str()	first)	for	DictWriter	objects.	Note	that	complex	numbers	are
written	out	surrounded	by	parens.	This	may	cause	some	problems	for
other	programs	which	read	CSV	files	(assuming	they	support	complex
numbers	at	all).

csvwriter.writerow(row)
Write	 the	 row	 parameter	 to	 the	 writer’s	 file	 object,	 formatted
according	to	the	current	dialect.

csvwriter.writerows(rows)
Write	 all	 the	 rows	 parameters	 (a	 list	 of	 row	 objects	 as	 described
above)	to	the	writer’s	file	object,	formatted	according	to	the	current
dialect.

Writer	objects	have	the	following	public	attribute:

csvwriter.dialect

A	read-only	description	of	the	dialect	in	use	by	the	writer.

DictWriter	objects	have	the	following	public	method:

DictWriter.writeheader()
Write	a	row	with	the	field	names	(as	specified	in	the	constructor).

New	in	version	3.2.

14.1.5.	Examples

The	simplest	example	of	reading	a	CSV	file:

import	csv

with	open('some.csv',	newline='')	as	f:

				reader	=	csv.reader(f)

				for	row	in	reader:

								print(row)

Reading	a	file	with	an	alternate	format:

import	csv

with	open('passwd',	newline='')	as	f:

				reader	=	csv.reader(f,	delimiter=':',	quoting=csv

				for	row	in	reader:

								print(row)

The	corresponding	simplest	possible	writing	example	is:

import	csv

with	open('some.csv',	'w',	newline='')	as	f:

				writer	=	csv.writer(f)

				writer.writerows(someiterable)

Since	open()	 is	used	 to	open	a	CSV	file	 for	 reading,	 the	 file	will	by
default	 be	 decoded	 into	 unicode	 using	 the	 system	 default	 encoding
(see	locale.getpreferredencoding()).	To	decode	a	file	using	a
different	encoding,	use	the	encoding	argument	of	open:

import	csv

with	open('some.csv',	newline='',	encoding='utf-8')	

				reader	=	csv.reader(f)

				for	row	in	reader:

								print(row)

The	same	applies	to	writing	in	something	other	than	the	system	default
encoding:	specify	the	encoding	argument	when	opening	the	output	file.

Registering	a	new	dialect:

import	csv

csv.register_dialect('unixpwd',	delimiter=':',	quoting

with	open('passwd',	newline='')	as	f:

				reader	=	csv.reader(f,	'unixpwd')

A	slightly	more	advanced	use	of	the	reader	—	catching	and	reporting
errors:

import	csv,	sys

filename	=	'some.csv'

with	open(filename,	newline='')	as	f:

				reader	=	csv.reader(f)

				try:

								for	row	in	reader:

												print(row)

				except	csv.Error	as	e:

								sys.exit('file	{},	line	{}:	{}'.format(filename

And	while	 the	module	 doesn’t	 directly	 support	 parsing	 strings,	 it	 can
easily	be	done:

import	csv

for	row	in	csv.reader(['one,two,three']):

				print(row)

Footnotes

[1]

(1,	2)	If	newline=''	is	not	specified,	newlines	embedded
inside	quoted	fields	will	not	be	interpreted	correctly,	and	on
platforms	that	use	\r\n	linendings	on	write	an	extra	\r	will	be
added.	It	should	always	be	safe	to	specify	newline='',	since
the	csv	module	does	its	own	(universal)	newline	handling.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

http://www.python.org/

14.2.	configparser	—
Configuration	file	parser
This	module	provides	 the	ConfigParser	 class	which	 implements	a
basic	 configuration	 language	 which	 provides	 a	 structure	 similar	 to
what’s	found	in	Microsoft	Windows	INI	files.	You	can	use	this	to	write
Python	programs	which	can	be	customized	by	end	users	easily.

Note: 	This	library	does	not	interpret	or	write	the	value-type	prefixes
used	in	the	Windows	Registry	extended	version	of	INI	syntax.

See	also:

Module	shlex
Support	 for	 a	 creating	Unix	 shell-like	mini-languages	which	 can
be	used	as	an	alternate	format	for	application	configuration	files.

Module	json
The	json	module	implements	a	subset	of	JavaScript	syntax	which
can	also	be	used	for	this	purpose.

14.2.1.	Quick	Start

Let’s	take	a	very	basic	configuration	file	that	looks	like	this:

[DEFAULT]

ServerAliveInterval	=	45

Compression	=	yes

CompressionLevel	=	9

ForwardX11	=	yes

[bitbucket.org]

User	=	hg

[topsecret.server.com]

Port	=	50022

ForwardX11	=	no

The	 structure	 of	 INI	 files	 is	 described	 in	 the	 following	 section.
Essentially,	 the	 file	consists	of	sections,	each	of	which	contains	keys
with	 values.	 configparser	 classes	 can	 read	 and	 write	 such	 files.
Let’s	start	by	creating	the	above	configuration	file	programatically.

>>>	import	configparser

>>>	config	=	configparser.ConfigParser()

>>>	config['DEFAULT']	=	{'ServerAliveInterval':	'45'

...																						'Compression':	'yes',

...																						'CompressionLevel':	'9'}

>>>	config['bitbucket.org']	=	{}

>>>	config['bitbucket.org']['User']	=	'hg'

>>>	config['topsecret.server.com']	=	{}

>>>	topsecret	=	config['topsecret.server.com']

>>>	topsecret['Port']	=	'50022'					#	mutates	the	parser

>>>	topsecret['ForwardX11']	=	'no'		#	same	here

>>>	config['DEFAULT']['ForwardX11']	=	'yes'

>>>	with	open('example.ini',	'w')	as	configfile:

...			config.write(configfile)

...

As	you	can	see,	we	can	 treat	a	config	parser	much	 like	a	dictionary.
There	are	differences,	outlined	later,	but	the	behavior	 is	very	close	to
what	you	would	expect	from	a	dictionary.

Now	that	we	have	created	and	saved	a	configuration	file,	 let’s	read	it
back	and	explore	the	data	it	holds.

>>>	import	configparser

>>>	config	=	configparser.ConfigParser()

>>>	config.sections()

[]

>>>	config.read('example.ini')

['example.ini']

>>>	config.sections()

['bitbucket.org',	'topsecret.server.com']

>>>	'bitbucket.org'	in	config

True

>>>	'bytebong.com'	in	config

False

>>>	config['bitbucket.org']['User']

'hg'

>>>	config['DEFAULT']['Compression']

'yes'

>>>	topsecret	=	config['topsecret.server.com']

>>>	topsecret['ForwardX11']

'no'

>>>	topsecret['Port']

'50022'

>>>	for	key	in	config['bitbucket.org']:	print(key)

...

user

compressionlevel

serveraliveinterval

compression

forwardx11

>>>	config['bitbucket.org']['ForwardX11']

'yes'

As	we	can	see	above,	the	API	is	pretty	straightforward.	The	only	bit	of
magic	involves	the	DEFAULT	section	which	provides	default	values	for
all	 other	 sections	 [1].	 Note	 also	 that	 keys	 in	 sections	 are	 case-
insensitive	and	stored	in	lowercase	[1].

14.2.2.	Supported	Datatypes

Config	parsers	do	not	guess	datatypes	of	values	in	configuration	files,
always	storing	them	internally	as	strings.	This	means	that	if	you	need
other	datatypes,	you	should	convert	on	your	own:

>>>	int(topsecret['Port'])

50022

>>>	float(topsecret['CompressionLevel'])

9.0

Extracting	 Boolean	 values	 is	 not	 that	 simple,	 though.	 Passing	 the
value	 to	 bool()	 would	 do	 no	 good	 since	 bool('False')	 is	 still
True.	This	 is	why	config	parsers	also	provide	getboolean().	 This
method	 is	 case-insensitive	 and	 recognizes	 Boolean	 values	 from
'yes'/'no',	'on'/'off'	and	'1'/'0'	[1].	For	example:

>>>	topsecret.getboolean('ForwardX11')

False

>>>	config['bitbucket.org'].getboolean('ForwardX11')

True

>>>	config.getboolean('bitbucket.org',	'Compression'

True

Apart	 from	 getboolean(),	 config	 parsers	 also	 provide	 equivalent
getint()	and	getfloat()	methods,	but	 these	are	 far	 less	useful
since	 conversion	 using	 int()	 and	 float()	 is	 sufficient	 for	 these
types.

14.2.3.	Fallback	Values

As	with	a	dictionary,	you	can	use	a	section’s	get()	method	to	provide
fallback	values:

>>>	topsecret.get('Port')

'50022'

>>>	topsecret.get('CompressionLevel')

'9'

>>>	topsecret.get('Cipher')

>>>	topsecret.get('Cipher',	'3des-cbc')

'3des-cbc'

Please	note	that	default	values	have	precedence	over	fallback	values.
For	 instance,	 in	 our	 example	 the	 'CompressionLevel'	 key	 was
specified	only	 in	 the	'DEFAULT'	 section.	 If	we	 try	 to	 get	 it	 from	 the
section	'topsecret.server.com',	we	will	always	get	 the	default,
even	if	we	specify	a	fallback:

>>>	topsecret.get('CompressionLevel',	'3')

'9'

One	more	thing	to	be	aware	of	is	that	the	parser-level	get()	method
provides	a	custom,	more	complex	interface,	maintained	for	backwards
compatibility.	 When	 using	 this	 method,	 a	 fallback	 value	 can	 be
provided	via	the	fallback	keyword-only	argument:

>>>	config.get('bitbucket.org',	'monster',

...												fallback='No	such	things	as	monsters'

'No	such	things	as	monsters'

The	 same	 fallback	 argument	 can	 be	 used	 with	 the	 getint(),

getfloat()	and	getboolean()	methods,	for	example:

>>>	'BatchMode'	in	topsecret

False

>>>	topsecret.getboolean('BatchMode',	fallback=True)

True

>>>	config['DEFAULT']['BatchMode']	=	'no'

>>>	topsecret.getboolean('BatchMode',	fallback=True)

False

14.2.4.	Supported	INI	File	Structure

A	 configuration	 file	 consists	 of	 sections,	 each	 led	 by	 a	 [section]
header,	followed	by	key/value	entries	separated	by	a	specific	string	(=
or	:	by	default	 [1]).	By	default,	section	names	are	case	sensitive	but
keys	are	not	[1].	Leading	and	trailing	whitespace	is	removed	from	keys
and	 values.	 Values	 can	 be	 omitted,	 in	 which	 case	 the	 key/value
delimiter	may	also	be	left	out.	Values	can	also	span	multiple	lines,	as
long	 as	 they	 are	 indented	 deeper	 than	 the	 first	 line	 of	 the	 value.
Depending	on	the	parser’s	mode,	blank	lines	may	be	treated	as	parts
of	multiline	values	or	ignored.

Configuration	 files	 may	 include	 comments,	 prefixed	 by	 specific
characters	(#	and	;	 by	default	 [1]).	Comments	may	 appear	 on	 their
own	on	an	otherwise	empty	line,	possibly	indented.	[1]

For	example:

[Simple	Values]

key=value

spaces	in	keys=allowed

spaces	in	values=allowed	as	well

spaces	around	the	delimiter	=	obviously

you	can	also	use	:	to	delimit	keys	from	values

[All	Values	Are	Strings]

values	like	this:	1000000

or	this:	3.14159265359

are	they	treated	as	numbers?	:	no

integers,	floats	and	booleans	are	held	as:	strings

can	use	the	API	to	get	converted	values	directly:	true

[Multiline	Values]

chorus:	I'm	a	lumberjack,	and	I'm	okay

				I	sleep	all	night	and	I	work	all	day

[No	Values]

key_without_value

empty	string	value	here	=

[You	can	use	comments]

#	like	this

;	or	this

#	By	default	only	in	an	empty	line.

#	Inline	comments	can	be	harmful	because	they	prevent	users

#	from	using	the	delimiting	characters	as	parts	of	values.

#	That	being	said,	this	can	be	customized.

				[Sections	Can	Be	Indented]

								can_values_be_as_well	=	True

								does_that_mean_anything_special	=	False

								purpose	=	formatting	for	readability

								multiline_values	=	are

												handled	just	fine	as

												long	as	they	are	indented

												deeper	than	the	first	line

												of	a	value

								#	Did	I	mention	we	can	indent	comments,	too?

14.2.5.	Interpolation	of	values

On	 top	 of	 the	 core	 functionality,	 ConfigParser	 supports
interpolation.	This	means	values	can	be	preprocessed	before	returning
them	from	get()	calls.

class	configparser.BasicInterpolation
The	 default	 implementation	 used	 by	 ConfigParser.	 It	 enables
values	 to	contain	 format	strings	which	 refer	 to	other	values	 in	 the
same	section,	or	values	in	the	special	default	section	[1].	Additional
default	values	can	be	provided	on	initialization.

For	example:

[Paths]

home_dir:	/Users

my_dir:	%(home_dir)s/lumberjack

my_pictures:	%(my_dir)s/Pictures

In	 the	 example	 above,	 ConfigParser	 with	 interpolation	 set	 to
BasicInterpolation()	 would	 resolve	 %(home_dir)s	 to	 the
value	of	home_dir	(/Users	 in	this	case).	%(my_dir)s	 in	effect
would	 resolve	 to	 /Users/lumberjack.	 All	 interpolations	 are
done	on	demand	so	keys	used	 in	 the	chain	of	 references	do	not
have	to	be	specified	in	any	specific	order	in	the	configuration	file.

With	interpolation	set	to	None,	the	parser	would	simply	return
%(my_dir)s/Pictures	 as	 the	 value	 of	 my_pictures	 and	 %
(home_dir)s/lumberjack	as	the	value	of	my_dir.

class	configparser.ExtendedInterpolation
An	 alternative	 handler	 for	 interpolation	which	 implements	 a	more

advanced	 syntax,	 used	 for	 instance	 in	 zc.buildout.	 Extended
interpolation	 is	 using	 ${section:option}	 to	 denote	 a	 value
from	a	 foreign	section.	 Interpolation	 can	span	multiple	 levels.	For
convenience,	 if	 the	 section:	 part	 is	 omitted,	 interpolation
defaults	to	the	current	section	(and	possibly	the	default	values	from
the	special	section).

For	 example,	 the	 configuration	 specified	 above	 with	 basic
interpolation,	would	look	like	this	with	extended	interpolation:

[Paths]

home_dir:	/Users

my_dir:	${home_dir}/lumberjack

my_pictures:	${my_dir}/Pictures

Values	from	other	sections	can	be	fetched	as	well:

[Common]

home_dir:	/Users

library_dir:	/Library

system_dir:	/System

macports_dir:	/opt/local

[Frameworks]

Python:	3.2

path:	${Common:system_dir}/Library/Frameworks/

[Arthur]

nickname:	Two	Sheds

last_name:	Jackson

my_dir:	${Common:home_dir}/twosheds

my_pictures:	${my_dir}/Pictures

python_dir:	${Frameworks:path}/Python/Versions/${Frameworks:Python}

14.2.6.	Mapping	Protocol	Access

New	in	version	3.2.

Mapping	 protocol	 access	 is	 a	 generic	 name	 for	 functionality	 that
enables	using	custom	objects	as	 if	 they	were	dictionaries.	 In	case	of
configparser,	 the	 mapping	 interface	 implementation	 is	 using	 the
parser['section']['option']	notation.

parser['section']	 in	 particular	 returns	 a	 proxy	 for	 the	 section’s
data	in	the	parser.	This	means	that	the	values	are	not	copied	but	they
are	 taken	 from	 the	 original	 parser	 on	 demand.	 What’s	 even	 more
important	is	that	when	values	are	changed	on	a	section	proxy,	they	are
actually	mutated	in	the	original	parser.

configparser	 objects	 behave	 as	 close	 to	 actual	 dictionaries	 as
possible.	 The	 mapping	 interface	 is	 complete	 and	 adheres	 to	 the
MutableMapping	 ABC.	 However,	 there	 are	 a	 few	 differences	 that
should	be	taken	into	account:

By	default,	all	keys	in	sections	are	accessible	in	a	case-insensitive
manner	[1].	E.g.	for	option	in	parser["section"]	yields
only	 optionxform‘ed	 option	 key	 names.	 This	 means
lowercased	keys	by	default.	At	 the	same	 time,	 for	a	section	 that
holds	the	key	'a',	both	expressions	return	True:

"a"	in	parser["section"]

"A"	in	parser["section"]

All	 sections	 include	 DEFAULTSECT	 values	 as	well	which	means
that	 .clear()	 on	 a	 section	 may	 not	 leave	 the	 section	 visibly
empty.	This	is	because	default	values	cannot	be	deleted	from	the

section	 (because	 technically	 they	 are	 not	 there).	 If	 they	 are
overriden	 in	 the	 section,	 deleting	 causes	 the	default	 value	 to	be
visible	 again.	 Trying	 to	 delete	 a	 default	 value	 causes	 a
KeyError.

DEFAULTSECT	cannot	be	removed	from	the	parser:

trying	to	delete	it	raises	ValueError,
parser.clear()	leaves	it	intact,
parser.popitem()	never	returns	it.

parser.get(section,	 option,	 **kwargs)	 -	 the	 second
argument	is	not	a	 fallback	value.	Note	however	 that	 the	section-
level	 get()	 methods	 are	 compatible	 both	 with	 the	 mapping
protocol	and	the	classic	configparser	API.

parser.items()	 is	 compatible	 with	 the	 mapping	 protocol
(returns	a	 list	of	section_name,	section_proxy	pairs	 including	 the
DEFAULTSECT).	However,	this	method	can	also	be	invoked	with
arguments:	 parser.items(section,	 raw,	 vars).	 The
latter	 call	 returns	 a	 list	 of	 option,	 value	 pairs	 for	 a	 specified
section,	with	all	 interpolations	expanded	 (unless	raw=True	 is
provided).

The	mapping	protocol	is	implemented	on	top	of	the	existing	legacy	API
so	 that	 subclasses	 overriding	 the	 original	 interface	 still	 should	 have
mappings	working	as	expected.

14.2.7.	Customizing	Parser	Behaviour

There	are	nearly	as	many	INI	format	variants	as	there	are	applications
using	 it.	configparser	 goes	a	 long	way	 to	provide	support	 for	 the
largest	sensible	set	of	 INI	styles	available.	The	default	functionality	is
mainly	dictated	by	historical	background	and	it’s	very	likely	that	you	will
want	to	customize	some	of	the	features.

The	most	 common	 way	 to	 change	 the	 way	 a	 specific	 config	 parser
works	is	to	use	the	__init__()	options:

defaults,	default	value:	None

This	option	accepts	a	dictionary	of	 key-value	pairs	which	will	 be
initially	 put	 in	 the	 DEFAULT	 section.	 This	 makes	 for	 an	 elegant
way	to	support	concise	configuration	files	that	don’t	specify	values
which	are	the	same	as	the	documented	default.

Hint:	 if	 you	want	 to	 specify	 default	 values	 for	 a	 specific	 section,
use	read_dict()	before	you	read	the	actual	file.

dict_type,	default	value:	collections.OrderedDict

This	option	has	a	major	impact	on	how	the	mapping	protocol	will
behave	 and	 how	 the	 written	 configuration	 files	 look.	 With	 the
default	ordered	dictionary,	every	section	is	stored	in	the	order	they
were	added	to	the	parser.	Same	goes	for	options	within	sections.

An	 alternative	 dictionary	 type	 can	 be	 used	 for	 example	 to	 sort
sections	 and	 options	 on	write-back.	 You	 can	 also	 use	 a	 regular
dictionary	for	performance	reasons.

Please	note:	 there	are	ways	 to	add	a	set	of	key-value	pairs	 in	a

single	 operation.	 When	 you	 use	 a	 regular	 dictionary	 in	 those
operations,	the	order	of	the	keys	may	be	random.	For	example:

>>>	parser	=	configparser.ConfigParser()

>>>	parser.read_dict({'section1':	{'key1':	'value1'

...																																'key2':	'value2'

...																																'key3':	'value3'

...																			'section2':	{'keyA':	'valueA'

...																																'keyB':	'valueB'

...																																'keyC':	'valueC'

...																			'section3':	{'foo':	'x',

...																																'bar':	'y',

...																																'baz':	'z'}

...	})

>>>	parser.sections()

['section3',	'section2',	'section1']

>>>	[option	for	option	in	parser['section3']]

['baz',	'foo',	'bar']

In	these	operations	you	need	to	use	an	ordered	dictionary	as	well:

>>>	from	collections	import	OrderedDict

>>>	parser	=	configparser.ConfigParser()

>>>	parser.read_dict(

...			OrderedDict((

...					('s1',

...						OrderedDict((

...								('1',	'2'),

...								('3',	'4'),

...								('5',	'6'),

...))

...),

...					('s2',

...						OrderedDict((

...								('a',	'b'),

...								('c',	'd'),

...								('e',	'f'),

...))

...),

...))

...)

>>>	parser.sections()

['s1',	's2']

>>>	[option	for	option	in	parser['s1']]

['1',	'3',	'5']

>>>	[option	for	option	in	parser['s2'].values()]

['b',	'd',	'f']

allow_no_value,	default	value:	False

Some	 configuration	 files	 are	 known	 to	 include	 settings	 without
values,	but	which	otherwise	conform	 to	 the	syntax	 supported	by
configparser.	 The	 allow_no_value	 parameter	 to	 the
constructor	 can	 be	 used	 to	 indicate	 that	 such	 values	 should	 be
accepted:

>>>	import	configparser

>>>	sample_config	=	"""

...	[mysqld]

...			user	=	mysql

...			pid-file	=	/var/run/mysqld/mysqld.pid

...			skip-external-locking

...			old_passwords	=	1

...			skip-bdb

...			#	we	don't	need	ACID	today

...			skip-innodb

...	"""

>>>	config	=	configparser.ConfigParser(allow_no_value

>>>	config.read_string(sample_config)

>>>	#	Settings	with	values	are	treated	as	before:

>>>	config["mysqld"]["user"]

'mysql'

>>>	#	Settings	without	values	provide	None:

>>>	config["mysqld"]["skip-bdb"]

>>>	#	Settings	which	aren't	specified	still	raise	an	error:

>>>	config["mysqld"]["does-not-exist"]

Traceback	(most	recent	call	last):

		...

KeyError:	'does-not-exist'

delimiters,	default	value:	('=',	':')

Delimiters	 are	 substrings	 that	 delimit	 keys	 from	 values	 within	 a
section.	The	first	occurrence	of	a	delimiting	substring	on	a	line	is
considered	 a	 delimiter.	 This	 means	 values	 (but	 not	 keys)	 can
contain	the	delimiters.

See	 also	 the	 space_around_delimiters	 argument	 to
ConfigParser.write().

comment_prefixes,	default	value:	('#',	';')

inline_comment_prefixes,	default	value:	None

Comment	 prefixes	 are	 strings	 that	 indicate	 the	 start	 of	 a	 valid
comment	within	a	config	file.	comment_prefixes	are	used	only	on
otherwise	 empty	 lines	 (optionally	 indented)	 whereas
inline_comment_prefixes	can	be	used	after	every	valid	value	(e.g.
section	names,	options	and	empty	lines	as	well).	By	default	inline
comments	are	disabled	and	'#'	and	';'	are	used	as	prefixes	for
whole	line	comments.

Changed	 in	version	3.2:	 In	previous	versions	of	configparser
behaviour	 matched	 comment_prefixes=('#',';')	 and
inline_comment_prefixes=(';',).

Please	 note	 that	 config	 parsers	 don’t	 support	 escaping	 of
comment	prefixes	so	using	inline_comment_prefixes	may	prevent
users	 from	 specifying	 option	 values	 with	 characters	 used	 as
comment	 prefixes.	 When	 in	 doubt,	 avoid	 setting
inline_comment_prefixes.	 In	 any	 circumstances,	 the	 only	way	 of
storing	 comment	 prefix	 characters	 at	 the	 beginning	 of	 a	 line	 in
multiline	values	is	to	interpolate	the	prefix,	for	example:

>>>	from	configparser	import	ConfigParser,	ExtendedInterpolation

>>>	parser	=	ConfigParser(interpolation=ExtendedInterpolation

>>>	#	the	default	BasicInterpolation	could	be	used	as	well

>>>	parser.read_string("""

...	[DEFAULT]

...	hash	=	#

...

...	[hashes]

...	shebang	=

...			${hash}!/usr/bin/env	python

...			${hash}	-*-	coding:	utf-8	-*-

...

...	extensions	=

...			enabled_extension

...			another_extension

...			#disabled_by_comment

...			yet_another_extension

...

...	interpolation	not	necessary	=	if	#	is	not	at	line	start

...	even	in	multiline	values	=	line	#1

...			line	#2

...			line	#3

...	""")

>>>	print(parser['hashes']['shebang'])

#!/usr/bin/env	python

#	-*-	coding:	utf-8	-*-

>>>	print(parser['hashes']['extensions'])

enabled_extension

another_extension

yet_another_extension

>>>	print(parser['hashes']['interpolation	not	necessary'

if	#	is	not	at	line	start

>>>	print(parser['hashes']['even	in	multiline	values'

line	#1

line	#2

line	#3

strict,	default	value:	True

When	 set	 to	 True,	 the	 parser	 will	 not	 allow	 for	 any	 section	 or
option	 duplicates	 while	 reading	 from	 a	 single	 source	 (using
read_file(),	 read_string()	 or	 read_dict()).	 It	 is
recommended	to	use	strict	parsers	in	new	applications.

Changed	 in	version	3.2:	 In	previous	versions	of	configparser
behaviour	matched	strict=False.

empty_lines_in_values,	default	value:	True

In	config	parsers,	values	can	span	multiple	 lines	as	 long	as	they
are	 indented	 more	 than	 the	 key	 that	 holds	 them.	 By	 default
parsers	 also	 let	 empty	 lines	 to	 be	 parts	 of	 values.	 At	 the	 same
time,	 keys	 can	 be	 arbitrarily	 indented	 themselves	 to	 improve
readability.	 In	consequence,	when	configuration	 files	get	big	and
complex,	 it	 is	easy	 for	 the	user	 to	 lose	 track	of	 the	 file	structure.

Take	for	instance:

[Section]

key	=	multiline

		value	with	a	gotcha

	this	=	is	still	a	part	of	the	multiline	value	of	'key'

This	 can	 be	 especially	 problematic	 for	 the	 user	 to	 see	 if	 she’s
using	 a	 proportional	 font	 to	 edit	 the	 file.	 That	 is	 why	when	 your
application	 does	 not	 need	 values	 with	 empty	 lines,	 you	 should
consider	disallowing	 them.	This	will	make	 empty	 lines	 split	 keys
every	time.	In	the	example	above,	it	would	produce	two	keys,	key
and	this.

default_section,	 default	 value:	 configparser.DEFAULTSECT
(that	is:	"DEFAULT")

The	convention	of	allowing	a	special	section	of	default	values	for
other	sections	or	 interpolation	purposes	 is	a	powerful	concept	of
this	 library,	 letting	 users	 create	 complex	 declarative
configurations.	 This	 section	 is	 normally	 called	 "DEFAULT"	 but
this	can	be	customized	 to	point	 to	any	other	valid	section	name.
Some	 typical	 values	 include:	 "general"	 or	 "common".	 The
name	 provided	 is	 used	 for	 recognizing	 default	 sections	 when
reading	 from	any	 source	 and	 is	 used	when	writing	 configuration
back	 to	 a	 file.	 Its	 current	 value	 can	 be	 retrieved	 using	 the
parser_instance.default_section	 attribute	 and	 may	 be
modified	 at	 runtime	 (i.e.	 to	 convert	 files	 from	 one	 format	 to
another).

interpolation,	 default	 value:

configparser.BasicInterpolation

Interpolation	behaviour	may	be	customized	by	providing	a	custom
handler	through	the	interpolation	argument.	None	can	be	used	to
turn	 off	 interpolation	 completely,	 ExtendedInterpolation()
provides	 a	 more	 advanced	 variant	 inspired	 by	 zc.buildout.
More	 on	 the	 subject	 in	 the	 dedicated	 documentation	 section.
RawConfigParser	has	a	default	value	of	None.

More	advanced	customization	may	be	achieved	by	overriding	default
values	 of	 these	 parser	 attributes.	 The	 defaults	 are	 defined	 on	 the
classes,	 so	 they	 may	 be	 overriden	 by	 subclasses	 or	 by	 attribute
assignment.

configparser.BOOLEAN_STATES

By	 default	 when	 using	 getboolean(),	 config	 parsers	 consider
the	 following	values	 True:	'1',	 'yes',	 'true',	 'on'	 and	 the
following	 values	 False:	 '0',	 'no',	 'false',	 'off'.	 You	 can
override	this	by	specifying	a	custom	dictionary	of	strings	and	their
Boolean	outcomes.	For	example:

>>>	custom	=	configparser.ConfigParser()

>>>	custom['section1']	=	{'funky':	'nope'}

>>>	custom['section1'].getboolean('funky')

Traceback	(most	recent	call	last):

...

ValueError:	Not	a	boolean:	nope

>>>	custom.BOOLEAN_STATES	=	{'sure':	True,	'nope':

>>>	custom['section1'].getboolean('funky')

False

Other	 typical	 Boolean	 pairs	 include	 accept/reject	 or
enabled/disabled.

configparser.optionxform(option)
This	method	 transforms	 option	 names	 on	 every	 read,	 get,	 or	 set
operation.	The	default	 converts	 the	name	 to	 lowercase.	This	also
means	 that	when	a	configuration	 file	gets	written,	all	 keys	will	 be
lowercase.	Override	this	method	if	that’s	unsuitable.	For	example:

>>>	config	=	"""

...	[Section1]

...	Key	=	Value

...

...	[Section2]

...	AnotherKey	=	Value

...	"""

>>>	typical	=	configparser.ConfigParser()

>>>	typical.read_string(config)

>>>	list(typical['Section1'].keys())

['key']

>>>	list(typical['Section2'].keys())

['anotherkey']

>>>	custom	=	configparser.RawConfigParser()

>>>	custom.optionxform	=	lambda	option:	option

>>>	custom.read_string(config)

>>>	list(custom['Section1'].keys())

['Key']

>>>	list(custom['Section2'].keys())

['AnotherKey']

configparser.SECTCRE

A	compiled	regular	expression	used	to	parse	section	headers.	The
default	 matches	 [section]	 to	 the	 name	 "section".
Whitespace	 is	 considered	 part	 of	 the	 section	 name,	 thus	 [
larch]	 will	 be	 read	 as	 a	 section	 of	 name	 "	 	 larch	 	 ".
Override	this	attribute	if	that’s	unsuitable.	For	example:

>>>	config	=	"""

...	[Section	1]

...	option	=	value

...

...	[Section	2]

...	another	=	val

...	"""

>>>	typical	=	ConfigParser()

>>>	typical.read_string(config)

>>>	typical.sections()

['Section	1',	'		Section	2		']

>>>	custom	=	ConfigParser()

>>>	custom.SECTCRE	=	re.compile(r"\[*(?P<header>[^]]+?)	*\]"

>>>	custom.read_string(config)

>>>	custom.sections()

['Section	1',	'Section	2']

Note: 	While	ConfigParser	objects	also	use	an	OPTCRE	attribute
for	 recognizing	option	 lines,	 it’s	 not	 recommended	 to	 override	 it
because	 that	 would	 interfere	 with	 constructor	 options
allow_no_value	and	delimiters.

14.2.8.	Legacy	API	Examples

Mainly	because	of	backwards	compatibility	concerns,	configparser
provides	also	a	legacy	API	with	explicit	get/set	methods.	While	there
are	valid	use	cases	for	the	methods	outlined	below,	mapping	protocol
access	is	preferred	for	new	projects.	The	legacy	API	is	at	times	more
advanced,	low-level	and	downright	counterintuitive.

An	example	of	writing	to	a	configuration	file:

import	configparser

config	=	configparser.RawConfigParser()

#	Please	note	that	using	RawConfigParser's	set	functions,	you	can	assign

#	non-string	values	to	keys	internally,	but	will	receive	an	error	when

#	attempting	to	write	to	a	file	or	when	you	get	it	in	non-raw	mode.	Setting

#	values	using	the	mapping	protocol	or	ConfigParser's	set()	does	not	allow

#	such	assignments	to	take	place.

config.add_section('Section1')

config.set('Section1',	'an_int',	'15')

config.set('Section1',	'a_bool',	'true')

config.set('Section1',	'a_float',	'3.1415')

config.set('Section1',	'baz',	'fun')

config.set('Section1',	'bar',	'Python')

config.set('Section1',	'foo',	'%(bar)s	is	%(baz)s!')

#	Writing	our	configuration	file	to	'example.cfg'

with	open('example.cfg',	'w')	as	configfile:

				config.write(configfile)

An	example	of	reading	the	configuration	file	again:

import	configparser

config	=	configparser.RawConfigParser()

config.read('example.cfg')

#	getfloat()	raises	an	exception	if	the	value	is	not	a	float

#	getint()	and	getboolean()	also	do	this	for	their	respective	types

a_float	=	config.getfloat('Section1',	'a_float')

an_int	=	config.getint('Section1',	'an_int')

print(a_float	+	an_int)

#	Notice	that	the	next	output	does	not	interpolate	'%(bar)s'	or	'%(baz)s'.

#	This	is	because	we	are	using	a	RawConfigParser().

if	config.getboolean('Section1',	'a_bool'):

				print(config.get('Section1',	'foo'))

To	get	interpolation,	use	ConfigParser:

import	configparser

cfg	=	configparser.ConfigParser()

cfg.read('example.cfg')

#	Set	the	optional	*raw*	argument	of	get()	to	True	if	you	wish	to	disable

#	interpolation	in	a	single	get	operation.

print(cfg.get('Section1',	'foo',	raw=False))	#	->	"Python	is	fun!"

print(cfg.get('Section1',	'foo',	raw=True))		#	->	"%(bar)s	is	%(baz)s!"

#	The	optional	*vars*	argument	is	a	dict	with	members	that	will	take

#	precedence	in	interpolation.

print(cfg.get('Section1',	'foo',	vars={'bar':	'Documentation'

																																										'baz':	'evil'

#	The	optional	*fallback*	argument	can	be	used	to	provide	a	fallback	value

print(cfg.get('Section1',	'foo'))

						#	->	"Python	is	fun!"

print(cfg.get('Section1',	'foo',	fallback='Monty	is	not.'

						#	->	"Python	is	fun!"

print(cfg.get('Section1',	'monster',	fallback='No	such	things	as	monsters.'

						#	->	"No	such	things	as	monsters."

#	A	bare	print(cfg.get('Section1',	'monster'))	would	raise	NoOptionError

#	but	we	can	also	use:

print(cfg.get('Section1',	'monster',	fallback=None))

						#	->	None

Default	values	are	available	in	both	types	of	ConfigParsers.	They	are
used	in	interpolation	if	an	option	used	is	not	defined	elsewhere.

import	configparser

#	New	instance	with	'bar'	and	'baz'	defaulting	to	'Life'	and	'hard'	each

config	=	configparser.ConfigParser({'bar':	'Life',	'baz'

config.read('example.cfg')

print(config.get('Section1',	'foo'))	#	->	"Python	is	fun!"

config.remove_option('Section1',	'bar')

config.remove_option('Section1',	'baz')

print(config.get('Section1',	'foo'))	#	->	"Life	is	hard!"

14.2.9.	ConfigParser	Objects

class	configparser.ConfigParser(defaults=None,
dict_type=collections.OrderedDict,	allow_no_value=False,	delimiters=
('=',	':'),	comment_prefixes=('#',	';'),	inline_comment_prefixes=None,
strict=True,	empty_lines_in_values=True,
default_section=configparser.DEFAULTSECT,
interpolation=BasicInterpolation())

The	 main	 configuration	 parser.	 When	 defaults	 is	 given,	 it	 is
initialized	into	the	dictionary	of	intrinsic	defaults.	When	dict_type	is
given,	 it	will	be	used	to	create	 the	dictionary	objects	 for	 the	 list	of
sections,	for	the	options	within	a	section,	and	for	the	default	values.

When	delimiters	 is	 given,	 it	 is	 used	 as	 the	 set	 of	 substrings	 that
divide	keys	from	values.	When	comment_prefixes	is	given,	it	will	be
used	 as	 the	 set	 of	 substrings	 that	 prefix	 comments	 in	 otherwise
empty	 lines.	 Comments	 can	 be	 indented.	 When
inline_comment_prefixes	 is	 given,	 it	 will	 be	 used	 as	 the	 set	 of
substrings	that	prefix	comments	in	non-empty	lines.

When	strict	 is	 True	 (the	 default),	 the	 parser	 won’t	 allow	 for	 any
section	or	option	duplicates	while	reading	from	a	single	source	(file,
string	 or	 dictionary),	 raising	 DuplicateSectionError	 or
DuplicateOptionError.	 When	 empty_lines_in_values	 is
False	 (default:	 True),	 each	 empty	 line	 marks	 the	 end	 of	 an
option.	Otherwise,	internal	empty	lines	of	a	multiline	option	are	kept
as	 part	 of	 the	 value.	 When	 allow_no_value	 is	 True	 (default:
False),	 options	 without	 values	 are	 accepted;	 the	 value	 held	 for
these	is	None	and	they	are	serialized	without	the	trailing	delimiter.

When	default_section	is	given,	it	specifies	the	name	for	the	special
section	holding	default	 values	 for	other	 sections	and	 interpolation

purposes	 (normally	 named	 "DEFAULT").	 This	 value	 can	 be
retrieved	 and	 changed	 on	 runtime	 using	 the	 default_section
instance	attribute.

Interpolation	behaviour	may	be	customized	by	providing	a	custom
handler	 through	the	 interpolation	argument.	None	 can	be	used	 to
turn	 off	 interpolation	 completely,	 ExtendedInterpolation()
provides	 a	 more	 advanced	 variant	 inspired	 by	 zc.buildout.
More	on	the	subject	in	the	dedicated	documentation	section.

All	 option	names	used	 in	 interpolation	will	 be	passed	 through	 the
optionxform()	 method	 just	 like	 any	 other	 option	 name
reference.	 For	 example,	 using	 the	 default	 implementation	 of
optionxform()	 (which	 converts	 option	 names	 to	 lower	 case),
the	values	foo	%(bar)s	and	foo	%(BAR)s	are	equivalent.

Changed	 in	 version	 3.1:	 The	 default	 dict_type	 is
collections.OrderedDict.

Changed	 in	 version	 3.2:	 allow_no_value,	 delimiters,
comment_prefixes,	 strict,	 empty_lines_in_values,	 default_section
and	interpolation	were	added.

defaults()
Return	a	dictionary	containing	the	instance-wide	defaults.

sections()
Return	a	list	of	the	sections	available;	the	default	section	is	not
included	in	the	list.

add_section(section)
Add	a	section	named	section	to	the	instance.	If	a	section	by	the
given	 name	 already	 exists,	 DuplicateSectionError	 is

raised.	 If	 the	default	section	 name	 is	 passed,	 ValueError	 is
raised.	 The	 name	 of	 the	 section	 must	 be	 a	 string;	 if	 not,
TypeError	is	raised.

Changed	 in	 version	 3.2:	 Non-string	 section	 names	 raise
TypeError.

has_section(section)
Indicates	 whether	 the	 named	 section	 is	 present	 in	 the
configuration.	The	default	section	is	not	acknowledged.

options(section)
Return	a	list	of	options	available	in	the	specified	section.

has_option(section,	option)
If	the	given	section	exists,	and	contains	the	given	option,	return
True;	otherwise	return	False.	If	the	specified	section	is	None
or	an	empty	string,	DEFAULT	is	assumed.

read(filenames,	encoding=None)
Attempt	to	read	and	parse	a	list	of	filenames,	returning	a	list	of
filenames	 which	 were	 successfully	 parsed.	 If	 filenames	 is	 a
string,	 it	 is	 treated	 as	 a	 single	 filename.	 If	 a	 file	 named	 in
filenames	 cannot	 be	 opened,	 that	 file	 will	 be	 ignored.	 This	 is
designed	so	that	you	can	specify	a	list	of	potential	configuration
file	 locations	 (for	 example,	 the	 current	 directory,	 the	 user’s
home	 directory,	 and	 some	 system-wide	 directory),	 and	 all
existing	configuration	files	in	the	list	will	be	read.	If	none	of	the
named	files	exist,	 the	ConfigParser	 instance	will	contain	an
empty	dataset.	An	application	which	requires	initial	values	to	be
loaded	 from	 a	 file	 should	 load	 the	 required	 file	 or	 files	 using
read_file()	before	calling	read()	for	any	optional	files:

import	configparser,	os

config	=	configparser.ConfigParser()

config.read_file(open('defaults.cfg'))

config.read(['site.cfg',	os.path.expanduser('~/.myapp.cfg'

												encoding='cp1250')

New	in	version	3.2:	The	encoding	parameter.	Previously,	all	files
were	read	using	the	default	encoding	for	open().

read_file(f,	source=None)
Read	 and	 parse	 configuration	 data	 from	 f	 which	 must	 be	 an
iterable	 yielding	 Unicode	 strings	 (for	 example	 files	 opened	 in
text	mode).

Optional	argument	source	 specifies	 the	name	of	 the	 file	being
read.	 If	 not	 given	and	 f	 has	 a	 name	 attribute,	 that	 is	 used	 for
source;	the	default	is	'<???>'.

New	in	version	3.2:	Replaces	readfp().

read_string(string,	source='<string>')
Parse	configuration	data	from	a	string.

Optional	argument	source	specifies	a	context-specific	name	of
the	 string	 passed.	 If	 not	 given,	 '<string>'	 is	 used.	 This
should	commonly	be	a	filesystem	path	or	a	URL.

New	in	version	3.2.

read_dict(dictionary,	source='<dict>')
Load	 configuration	 from	 any	 object	 that	 provides	 a	 dict-like
items()	 method.	 Keys	 are	 section	 names,	 values	 are

dictionaries	with	keys	and	values	that	should	be	present	in	the
section.	 If	 the	 used	 dictionary	 type	 preserves	 order,	 sections
and	their	keys	will	be	added	 in	order.	Values	are	automatically
converted	to	strings.

Optional	argument	source	specifies	a	context-specific	name	of
the	dictionary	passed.	If	not	given,	<dict>	is	used.

This	method	can	be	used	to	copy	state	between	parsers.

New	in	version	3.2.

get(section,	option,	*,	raw=False,	vars=None[,	fallback])
Get	an	option	value	for	the	named	section.	If	vars	is	provided,	it
must	 be	 a	 dictionary.	 The	 option	 is	 looked	 up	 in	 vars	 (if
provided),	section,	 and	 in	DEFAULTSECT	 in	 that	 order.	 If	 the
key	is	not	found	and	fallback	is	provided,	it	is	used	as	a	fallback
value.	None	can	be	provided	as	a	fallback	value.

All	 the	 '%'	 interpolations	 are	 expanded	 in	 the	 return	 values,
unless	 the	 raw	 argument	 is	 true.	Values	 for	 interpolation	 keys
are	looked	up	in	the	same	manner	as	the	option.

Changed	 in	version	3.2:	Arguments	raw,	vars	and	 fallback	are
keyword	 only	 to	 protect	 users	 from	 trying	 to	 use	 the	 third
argument	 as	 the	 fallback	 fallback	 (especially	 when	 using	 the
mapping	protocol).

getint(section,	option,	*,	raw=False,	vars=None[,	fallback])
A	 convenience	 method	 which	 coerces	 the	 option	 in	 the
specified	section	 to	 an	 integer.	 See	 get()	 for	 explanation	 of
raw,	vars	and	fallback.

getfloat(section,	option,	*,	raw=False,	vars=None[,	fallback])
A	 convenience	 method	 which	 coerces	 the	 option	 in	 the
specified	 section	 to	 a	 floating	 point	 number.	 See	 get()	 for
explanation	of	raw,	vars	and	fallback.

getboolean(section,	 option,	 *,	 raw=False,	 vars=None[,
fallback])

A	 convenience	 method	 which	 coerces	 the	 option	 in	 the
specified	section	 to	 a	 Boolean	 value.	 Note	 that	 the	 accepted
values	 for	 the	 option	 are	 '1',	 'yes',	 'true',	 and	 'on',
which	 cause	 this	 method	 to	 return	 True,	 and	 '0',	 'no',
'false',	and	'off',	which	cause	 it	 to	return	False.	These
string	 values	 are	 checked	 in	 a	 case-insensitive	 manner.	 Any
other	value	will	cause	it	 to	raise	ValueError.	See	get()	 for
explanation	of	raw,	vars	and	fallback.

items(raw=False,	vars=None)
items(section,	raw=False,	vars=None)

When	 section	 is	 not	 given,	 return	 a	 list	 of	 section_name,
section_proxy	pairs,	including	DEFAULTSECT.

Otherwise,	 return	a	 list	of	name,	value	 pairs	 for	 the	options	 in
the	given	section.	Optional	arguments	have	the	same	meaning
as	for	the	get()	method.

Changed	in	version	3.2:	Items	present	in	vars	no	longer	appear
in	 the	 result.	 The	 previous	 behaviour	 mixed	 actual	 parser
options	with	variables	provided	for	interpolation.

set(section,	option,	value)
If	the	given	section	exists,	set	the	given	option	to	the	specified

value;	 otherwise	 raise	 NoSectionError.	 option	 and	 value
must	be	strings;	if	not,	TypeError	is	raised.

write(fileobject,	space_around_delimiters=True)
Write	a	 representation	of	 the	configuration	 to	 the	specified	 file
object,	which	must	be	opened	in	text	mode	(accepting	strings).
This	 representation	can	be	parsed	by	a	 future	read()	 call.	 If
space_around_delimiters	 is	 true,	 delimiters	 between	 keys	 and
values	are	surrounded	by	spaces.

remove_option(section,	option)
Remove	 the	specified	option	 from	 the	 specified	section.	 If	 the
section	 does	 not	 exist,	 raise	 NoSectionError.	 If	 the	 option
existed	to	be	removed,	return	True;	otherwise	return	False.

remove_section(section)
Remove	 the	 specified	 section	 from	 the	 configuration.	 If	 the
section	in	fact	existed,	return	True.	Otherwise	return	False.

optionxform(option)
Transforms	the	option	name	option	as	 found	 in	an	 input	 file	or
as	passed	in	by	client	code	to	the	form	that	should	be	used	in
the	 internal	 structures.	 The	 default	 implementation	 returns	 a
lower-case	 version	 of	option;	 subclasses	may	 override	 this	 or
client	 code	 can	 set	 an	 attribute	 of	 this	 name	 on	 instances	 to
affect	this	behavior.

You	don’t	need	to	subclass	the	parser	to	use	this	method,	you
can	also	set	 it	on	an	 instance,	 to	a	function	that	 takes	a	string
argument	 and	 returns	a	 string.	Setting	 it	 to	 str,	 for	 example,
would	make	option	names	case	sensitive:

cfgparser	=	ConfigParser()

cfgparser.optionxform	=	str

Note	 that	when	 reading	 configuration	 files,	whitespace	around
the	option	names	is	stripped	before	optionxform()	is	called.

readfp(fp,	filename=None)

Deprecated	since	version	3.2:	Use	read_file()	instead.

Changed	in	version	3.2:	readfp()	now	iterates	on	f	instead	of
calling	f.readline().

For	existing	code	calling	readfp()	with	arguments	which	don’t
support	 iteration,	 the	 following	 generator	 may	 be	 used	 as	 a
wrapper	around	the	file-like	object:

def	readline_generator(f):

				line	=	f.readline()

				while	line:

								yield	line

								line	=	f.readline()

Instead	 of	 parser.readfp(f)	 use
parser.read_file(readline_generator(f)).

configparser.MAX_INTERPOLATION_DEPTH

The	maximum	depth	for	recursive	interpolation	for	get()	when	the
raw	 parameter	 is	 false.	 This	 is	 relevant	 only	 when	 the	 default
interpolation	is	used.

14.2.10.	RawConfigParser	Objects

class	configparser.RawConfigParser(defaults=None,
dict_type=collections.OrderedDict,	allow_no_value=False,	*,
delimiters=('=',	':'),	comment_prefixes=('#',	';'),
inline_comment_prefixes=None,	strict=True,
empty_lines_in_values=True,
default_section=configparser.DEFAULTSECT[,	interpolation])

Legacy	 variant	 of	 the	 ConfigParser	 with	 interpolation	 disabled
by	default	and	unsafe	add_section	and	set	methods.

Note: 	 Consider	 using	 ConfigParser	 instead	 which	 checks
types	 of	 the	 values	 to	 be	 stored	 internally.	 If	 you	 don’t	 want
interpolation,	 you	 can	 use
ConfigParser(interpolation=None).

add_section(section)
Add	a	section	named	section	to	the	instance.	If	a	section	by	the
given	 name	 already	 exists,	 DuplicateSectionError	 is
raised.	 If	 the	default	section	 name	 is	 passed,	 ValueError	 is
raised.

Type	 of	 section	 is	 not	 checked	 which	 lets	 users	 create	 non-
string	named	sections.	This	behaviour	is	unsupported	and	may
cause	internal	errors.

set(section,	option,	value)
If	the	given	section	exists,	set	the	given	option	to	the	specified
value;	 otherwise	 raise	 NoSectionError.	While	 it	 is	 possible
to	 use	 RawConfigParser	 (or	 ConfigParser	 with	 raw
parameters	set	to	true)	for	internal	storage	of	non-string	values,

full	 functionality	(including	 interpolation	and	output	 to	 files)	can
only	be	achieved	using	string	values.

This	 method	 lets	 users	 assign	 non-string	 values	 to	 keys
internally.	This	behaviour	 is	unsupported	and	will	 cause	errors
when	attempting	to	write	to	a	file	or	get	it	in	non-raw	mode.	Use
the	 mapping	 protocol	 API	 which	 does	 not	 allow	 such
assignments	to	take	place.

14.2.11.	Exceptions

exception	configparser.Error
Base	class	for	all	other	configparser	exceptions.

exception	configparser.NoSectionError
Exception	raised	when	a	specified	section	is	not	found.

exception	configparser.DuplicateSectionError
Exception	raised	 if	add_section()	 is	called	with	 the	name	of	a
section	that	is	already	present	or	in	strict	parsers	when	a	section	if
found	more	than	once	in	a	single	input	file,	string	or	dictionary.

New	 in	version	3.2:	Optional	source	and	lineno	attributes	and
arguments	to	__init__()	were	added.

exception	configparser.DuplicateOptionError
Exception	 raised	by	strict	parsers	 if	a	single	option	appears	 twice
during	reading	 from	a	single	 file,	string	or	dictionary.	This	catches
misspellings	 and	 case	 sensitivity-related	 errors,	 e.g.	 a	 dictionary
may	 have	 two	 keys	 representing	 the	 same	 case-insensitive
configuration	key.

exception	configparser.NoOptionError
Exception	 raised	 when	 a	 specified	 option	 is	 not	 found	 in	 the
specified	section.

exception	configparser.InterpolationError
Base	class	for	exceptions	raised	when	problems	occur	performing
string	interpolation.

exception	configparser.InterpolationDepthError

Exception	 raised	 when	 string	 interpolation	 cannot	 be	 completed
because	 the	 number	 of	 iterations	 exceeds
MAX_INTERPOLATION_DEPTH.	 Subclass	 of
InterpolationError.

exception
configparser.InterpolationMissingOptionError

Exception	raised	when	an	option	referenced	from	a	value	does	not
exist.	Subclass	of	InterpolationError.

exception	configparser.InterpolationSyntaxError
Exception	raised	when	the	source	text	into	which	substitutions	are
made	 does	 not	 conform	 to	 the	 required	 syntax.	 Subclass	 of
InterpolationError.

exception	configparser.MissingSectionHeaderError
Exception	 raised	 when	 attempting	 to	 parse	 a	 file	 which	 has	 no
section	headers.

exception	configparser.ParsingError
Exception	raised	when	errors	occur	attempting	to	parse	a	file.

Changed	 in	 version	 3.2:	 The	 filename	 attribute	 and
__init__()	argument	were	renamed	to	source	for	consistency.

Footnotes

[1]

(1,	2,	3,	4,	5,	6,	7,	8,	9)	Config	parsers	allow	for	heavy
customization.	If	you	are	interested	in	changing	the	behaviour
outlined	by	the	footnote	reference,	consult	the	Customizing
Parser	Behaviour	section.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»	14.	File	Formats	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

http://www.python.org/

14.3.	netrc	—	netrc	file
processing
Source	code:	Lib/netrc.py

The	netrc	class	parses	and	encapsulates	 the	netrc	 file	 format	used
by	the	Unix	ftp	program	and	other	FTP	clients.

class	netrc.netrc([file])
A	netrc	 instance	or	subclass	 instance	encapsulates	data	 from	a
netrc	file.	The	initialization	argument,	if	present,	specifies	the	file	to
parse.	If	no	argument	is	given,	the	file	.netrc	in	the	user’s	home
directory	will	 be	 read.	Parse	errors	will	 raise	 NetrcParseError
with	 diagnostic	 information	 including	 the	 file	 name,	 line	 number,
and	 terminating	 token.	 If	 no	 argument	 is	 specified	 on	 a	 POSIX
system,	the	presence	of	passwords	in	the	.netrc	file	will	raise	a
NetrcParseError	 if	 the	 file	 ownership	 or	 permissions	 are
insecure	(owned	by	a	user	other	than	the	user	running	the	process,
or	accessible	for	read	or	write	by	any	other	user).	This	implements
security	behavior	equivalent	to	that	of	 ftp	and	other	programs	that
use	.netrc.

Changed	in	version	3.4:	Added	the	POSIX	permission	check.

exception	netrc.NetrcParseError
Exception	 raised	by	 the	 netrc	 class	when	 syntactical	 errors	 are
encountered	 in	 source	 text.	 Instances	 of	 this	 exception	 provide
three	 interesting	 attributes:	 msg	 is	 a	 textual	 explanation	 of	 the
error,	filename	is	the	name	of	the	source	file,	and	lineno	gives

http://hg.python.org/cpython/file/3.4/Lib/netrc.py

the	line	number	on	which	the	error	was	found.

14.3.1.	netrc	Objects

A	netrc	instance	has	the	following	methods:

netrc.authenticators(host)
Return	 a	 3-tuple	 (login,	 account,	 password)	 of
authenticators	for	host.	If	the	netrc	file	did	not	contain	an	entry	for
the	given	host,	return	the	tuple	associated	with	the	‘default’	entry.	If
neither	matching	host	nor	default	entry	is	available,	return	None.

netrc.__repr__()
Dump	the	class	data	as	a	string	in	the	format	of	a	netrc	file.	(This
discards	comments	and	may	reorder	the	entries.)

Instances	of	netrc	have	public	instance	variables:

netrc.hosts

Dictionary	 mapping	 host	 names	 to	 (login,	 account,

password)	 tuples.	The	 ‘default’	entry,	 if	any,	 is	 represented	as	a
pseudo-host	by	that	name.

netrc.macros

Dictionary	mapping	macro	names	to	string	lists.

Note: 	Passwords	are	limited	to	a	subset	of	the	ASCII	character	set.
All	ASCII	punctuation	is	allowed	in	passwords,	however,	note	that
whitespace	and	non-printable	characters	are	not	allowed	in
passwords.	This	is	a	limitation	of	the	way	the	.netrc	file	is	parsed	and
may	be	removed	in	the	future.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»	14.	File	Formats	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

http://www.python.org/

14.4.	xdrlib	—	Encode	and
decode	XDR	data
Source	code:	Lib/xdrlib.py

The	 xdrlib	 module	 supports	 the	 External	 Data	 Representation
Standard	 as	 described	 in	RFC	 1014,	 written	 by	 Sun	 Microsystems,
Inc.	 June	 1987.	 It	 supports	most	 of	 the	 data	 types	 described	 in	 the
RFC.

The	 xdrlib	module	 defines	 two	 classes,	 one	 for	 packing	 variables
into	 XDR	 representation,	 and	 another	 for	 unpacking	 from	 XDR
representation.	There	are	also	two	exception	classes.

class	xdrlib.Packer
Packer	is	the	class	for	packing	data	into	XDR	representation.	The
Packer	class	is	instantiated	with	no	arguments.

class	xdrlib.Unpacker(data)
Unpacker	 is	 the	 complementary	 class	which	unpacks	XDR	data
values	from	a	string	buffer.	The	input	buffer	is	given	as	data.

See	also:

RFC	1014	-	XDR:	External	Data	Representation	Standard
This	RFC	 defined	 the	 encoding	 of	 data	which	was	 XDR	 at	 the
time	 this	 module	 was	 originally	 written.	 It	 has	 apparently	 been
obsoleted	by	RFC	1832.

RFC	1832	-	XDR:	External	Data	Representation	Standard
Newer	RFC	that	provides	a	revised	definition	of	XDR.

http://hg.python.org/cpython/file/3.4/Lib/xdrlib.py
http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1014.html
http://tools.ietf.org/html/rfc1832.html
http://tools.ietf.org/html/rfc1832.html

14.4.1.	Packer	Objects

Packer	instances	have	the	following	methods:

Packer.get_buffer()
Returns	the	current	pack	buffer	as	a	string.

Packer.reset()
Resets	the	pack	buffer	to	the	empty	string.

In	general,	you	can	pack	any	of	the	most	common	XDR	data	types	by
calling	 the	appropriate	pack_type()	method.	Each	method	 takes	a
single	 argument,	 the	 value	 to	 pack.	 The	 following	 simple	 data	 type
packing	 methods	 are	 supported:	 pack_uint(),	 pack_int(),
pack_enum(),	 pack_bool(),	 pack_uhyper(),	 and
pack_hyper().

Packer.pack_float(value)
Packs	the	single-precision	floating	point	number	value.

Packer.pack_double(value)
Packs	the	double-precision	floating	point	number	value.

The	 following	 methods	 support	 packing	 strings,	 bytes,	 and	 opaque
data:

Packer.pack_fstring(n,	s)
Packs	a	fixed	length	string,	s.	n	 is	 the	 length	of	 the	string	but	 it	 is
not	packed	into	the	data	buffer.	The	string	is	padded	with	null	bytes
if	necessary	to	guaranteed	4	byte	alignment.

Packer.pack_fopaque(n,	data)

Packs	 a	 fixed	 length	 opaque	 data	 stream,	 similarly	 to
pack_fstring().

Packer.pack_string(s)
Packs	 a	 variable	 length	 string,	 s.	 The	 length	 of	 the	 string	 is	 first
packed	as	an	unsigned	integer,	then	the	string	data	is	packed	with
pack_fstring().

Packer.pack_opaque(data)
Packs	 a	 variable	 length	 opaque	 data	 string,	 similarly	 to
pack_string().

Packer.pack_bytes(bytes)
Packs	a	variable	length	byte	stream,	similarly	to	pack_string().

The	following	methods	support	packing	arrays	and	lists:

Packer.pack_list(list,	pack_item)
Packs	a	 list	of	homogeneous	items.	This	method	is	useful	 for	 lists
with	 an	 indeterminate	 size;	 i.e.	 the	 size	 is	 not	 available	 until	 the
entire	 list	has	been	walked.	For	each	 item	in	 the	 list,	an	unsigned
integer	1	 is	packed	 first,	 followed	by	 the	data	value	 from	 the	 list.
pack_item	 is	the	function	that	is	called	to	pack	the	individual	item.
At	the	end	of	the	list,	an	unsigned	integer	0	is	packed.

For	example,	to	pack	a	list	of	integers,	the	code	might	appear	like
this:

import	xdrlib

p	=	xdrlib.Packer()

p.pack_list([1,	2,	3],	p.pack_int)

Packer.pack_farray(n,	array,	pack_item)

Packs	 a	 fixed	 length	 list	 (array)	 of	 homogeneous	 items.	 n	 is	 the
length	of	the	list;	it	is	not	packed	into	the	buffer,	but	a	ValueError
exception	 is	 raised	 if	 len(array)	 is	 not	 equal	 to	 n.	 As	 above,
pack_item	is	the	function	used	to	pack	each	element.

Packer.pack_array(list,	pack_item)
Packs	a	variable	length	list	of	homogeneous	items.	First,	the	length
of	 the	 list	 is	packed	as	an	unsigned	 integer,	 then	each	element	 is
packed	as	in	pack_farray()	above.

14.4.2.	Unpacker	Objects

The	Unpacker	class	offers	the	following	methods:

Unpacker.reset(data)
Resets	the	string	buffer	with	the	given	data.

Unpacker.get_position()
Returns	the	current	unpack	position	in	the	data	buffer.

Unpacker.set_position(position)
Sets	 the	 data	 buffer	 unpack	 position	 to	 position.	 You	 should	 be
careful	about	using	get_position()	and	set_position().

Unpacker.get_buffer()
Returns	the	current	unpack	data	buffer	as	a	string.

Unpacker.done()
Indicates	unpack	completion.	Raises	an	Error	exception	 if	all	of
the	data	has	not	been	unpacked.

In	addition,	every	data	type	that	can	be	packed	with	a	Packer,	can	be
unpacked	 with	 an	 Unpacker.	 Unpacking	 methods	 are	 of	 the	 form
unpack_type(),	and	take	no	arguments.	They	return	the	unpacked
object.

Unpacker.unpack_float()
Unpacks	a	single-precision	floating	point	number.

Unpacker.unpack_double()
Unpacks	 a	 double-precision	 floating	 point	 number,	 similarly	 to
unpack_float().

In	addition,	 the	 following	methods	unpack	strings,	bytes,	and	opaque
data:

Unpacker.unpack_fstring(n)
Unpacks	 and	 returns	 a	 fixed	 length	 string.	 n	 is	 the	 number	 of
characters	expected.	Padding	with	null	bytes	to	guaranteed	4	byte
alignment	is	assumed.

Unpacker.unpack_fopaque(n)
Unpacks	and	returns	a	 fixed	 length	opaque	data	stream,	similarly
to	unpack_fstring().

Unpacker.unpack_string()
Unpacks	 and	 returns	 a	 variable	 length	 string.	 The	 length	 of	 the
string	is	first	unpacked	as	an	unsigned	integer,	then	the	string	data
is	unpacked	with	unpack_fstring().

Unpacker.unpack_opaque()
Unpacks	and	returns	a	variable	length	opaque	data	string,	similarly
to	unpack_string().

Unpacker.unpack_bytes()
Unpacks	 and	 returns	 a	 variable	 length	 byte	 stream,	 similarly	 to
unpack_string().

The	following	methods	support	unpacking	arrays	and	lists:

Unpacker.unpack_list(unpack_item)
Unpacks	 and	 returns	 a	 list	 of	 homogeneous	 items.	 The	 list	 is
unpacked	 one	 element	 at	 a	 time	 by	 first	 unpacking	 an	 unsigned
integer	 flag.	 If	 the	 flag	 is	 1,	 then	 the	 item	 is	 unpacked	 and
appended	 to	 the	 list.	 A	 flag	 of	 0	 indicates	 the	 end	 of	 the	 list.

unpack_item	is	the	function	that	is	called	to	unpack	the	items.

Unpacker.unpack_farray(n,	unpack_item)
Unpacks	 and	 returns	 (as	 a	 list)	 a	 fixed	 length	 array	 of
homogeneous	items.	n	 is	number	of	 list	elements	to	expect	 in	the
buffer.	As	above,	unpack_item	is	the	function	used	to	unpack	each
element.

Unpacker.unpack_array(unpack_item)
Unpacks	and	returns	a	variable	length	 list	of	homogeneous	 items.
First,	the	length	of	the	list	is	unpacked	as	an	unsigned	integer,	then
each	element	is	unpacked	as	in	unpack_farray()	above.

14.4.3.	Exceptions

Exceptions	in	this	module	are	coded	as	class	instances:

exception	xdrlib.Error
The	base	exception	class.	Error	has	a	single	public	attribute	msg
containing	the	description	of	the	error.

exception	xdrlib.ConversionError
Class	 derived	 from	 Error.	 Contains	 no	 additional	 instance
variables.

Here	is	an	example	of	how	you	would	catch	one	of	these	exceptions:

import	xdrlib

p	=	xdrlib.Packer()

try:

				p.pack_double(8.01)

except	xdrlib.ConversionError	as	instance:

				print('packing	the	double	failed:',	instance.msg

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

http://www.python.org/

14.5.	plistlib	—	Generate	and
parse	Mac	OS	X	.plist	files

Source	code:	Lib/plistlib.py

This	module	provides	an	interface	for	reading	and	writing	the	“property
list”	files	used	mainly	by	Mac	OS	X	and	supports	both	binary	and	XML
plist	files.

The	 property	 list	 (.plist)	 file	 format	 is	 a	 simple	 serialization
supporting	 basic	 object	 types,	 like	 dictionaries,	 lists,	 numbers	 and
strings.	Usually	the	top	level	object	is	a	dictionary.

To	write	 out	 and	 to	 parse	 a	 plist	 file,	 use	 the	 dump()	 and	 load()
functions.

To	work	with	plist	data	in	bytes	objects,	use	dumps()	and	loads().

Values	 can	 be	 strings,	 integers,	 floats,	 booleans,	 tuples,	 lists,
dictionaries	(but	only	with	string	keys),	Data,	bytes,	bytesarray	or
datetime.datetime	objects.

Changed	 in	 version	 3.4:	New	 API,	 old	 API	 deprecated.	 Support	 for
binary	format	plists	added.

See	also:

PList	manual	page
Apple’s	documentation	of	the	file	format.

http://hg.python.org/cpython/file/3.4/Lib/plistlib.py
http://developer.apple.com/documentation/Darwin/Reference/ManPages/man5/plist.5.html

This	module	defines	the	following	functions:

plistlib.load(fp,	*,	fmt=None,	use_builtin_types=True,
dict_type=dict)

Read	 a	 plist	 file.	 fp	 should	 be	 a	 readable	 and	 binary	 file	 object.
Return	the	unpacked	root	object	(which	usually	is	a	dictionary).

The	fmt	is	the	format	of	the	file	and	the	following	values	are	valid:

None:	Autodetect	the	file	format
FMT_XML:	XML	file	format
FMT_BINARY:	Binary	plist	format

If	use_builtin_types	is	true	(the	default)	binary	data	will	be	returned
as	 instances	 of	 bytes,	 otherwise	 it	 is	 returned	 as	 instances	 of
Data.

The	dict_type	 is	 the	 type	used	 for	 dictionaries	 that	 are	 read	 from
the	plist	 file.	The	exact	structure	of	 the	plist	 can	be	 recovered	by
using	 collections.OrderedDict	 (although	 the	 order	 of	 keys
shouldn’t	be	important	in	plist	files).

XML	data	for	the	FMT_XML	format	is	parsed	using	the	Expat	parser
from	xml.parsers.expat	 –	 see	 its	 documentation	 for	 possible
exceptions	 on	 ill-formed	 XML.	 Unknown	 elements	 will	 simply	 be
ignored	by	the	plist	parser.

The	parser	for	the	binary	format	raises	InvalidFileException
when	the	file	cannot	be	parsed.

New	in	version	3.4.

plistlib.loads(data,	*,	fmt=None,	use_builtin_types=True,
dict_type=dict)

Load	a	plist	from	a	bytes	object.	See	load()	for	an	explanation	of
the	keyword	arguments.

New	in	version	3.4.

plistlib.dump(value,	fp,	*,	fmt=FMT_XML,	sort_keys=True,
skipkeys=False)

Write	value	to	a	plist	file.	Fp	should	be	a	writable,	binary	file	object.

The	 fmt	argument	specifies	 the	 format	of	 the	plist	 file	and	can	be
one	of	the	following	values:

FMT_XML:	XML	formatted	plist	file
FMT_BINARY:	Binary	formatted	plist	file

When	sort_keys	is	true	(the	default)	the	keys	for	dictionaries	will	be
written	to	the	plist	 in	sorted	order,	otherwise	they	will	be	written	in
the	iteration	order	of	the	dictionary.

When	 skipkeys	 is	 false	 (the	 default)	 the	 function	 raises
TypeError	when	a	key	of	a	dictionary	 is	not	a	string,	otherwise
such	keys	are	skipped.

A	TypeError	will	be	raised	if	the	object	is	of	an	unsupported	type
or	a	container	that	contains	objects	of	unsupported	types.

An	OverflowError	will	 be	 raised	 for	 integer	 values	 that	 cannot
be	represented	in	(binary)	plist	files.

New	in	version	3.4.

plistlib.dumps(value,	*,	fmt=FMT_XML,	sort_keys=True,
skipkeys=False)

Return	 value	 as	 a	 plist-formatted	 bytes	 object.	 See	 the

documentation	 for	 dump()	 for	 an	 explanation	 of	 the	 keyword
arguments	of	this	function.

New	in	version	3.4.

The	following	functions	are	deprecated:

plistlib.readPlist(pathOrFile)
Read	 a	 plist	 file.	 pathOrFile	 may	 be	 either	 a	 file	 name	 or	 a
(readable	and	binary)	file	object.	Returns	the	unpacked	root	object
(which	usually	is	a	dictionary).

This	 function	 calls	 load()	 to	 do	 the	 actual	 work,	 the	 the
documentation	 of	 that	 function	 for	 an	 explanation	 of	 the
keyword	arguments.

Note: 	Dict	 values	 in	 the	 result	 have	 a	 __getattr__	method
that	 defers	 to	 __getitem_.	 This	 means	 that	 you	 can	 use
attribute	access	to	access	items	of	these	dictionaries.

Deprecated	since	version	3.4:	Use	load()	instead.

plistlib.writePlist(rootObject,	pathOrFile)
Write	rootObject	to	an	XML	plist	file.	pathOrFile	may	be	either	a	file
name	or	a	(writable	and	binary)	file	object

Deprecated	since	version	3.4:	Use	dump()	instead.

plistlib.readPlistFromBytes(data)
Read	a	plist	data	from	a	bytes	object.	Return	the	root	object.

See	load()	for	a	description	of	the	keyword	arguments.

Note: 	Dict	 values	 in	 the	 result	 have	 a	 __getattr__	method
that	 defers	 to	 __getitem_.	 This	 means	 that	 you	 can	 use
attribute	access	to	access	items	of	these	dictionaries.

Deprecated	since	version	3.4:	Use	loads()	instead.

plistlib.writePlistToBytes(rootObject)
Return	rootObject	as	an	XML	plist-formatted	bytes	object.

Deprecated	since	version	3.4:	Use	dumps()	instead.

The	following	classes	are	available:

Dict([dict]):

Return	 an	 extended	 mapping	 object	 with	 the	 same	 value	 as
dictionary	dict.

This	 class	 is	 a	 subclass	 of	 dict	 where	 attribute	 access	 can	 be
used	 to	 access	 items.	 That	 is,	 aDict.key	 is	 the	 same	 as
aDict['key']	 for	 getting,	 setting	 and	 deleting	 items	 in	 the
mapping.

Deprecated	since	version	3.0.

class	plistlib.Data(data)
Return	a	“data”	wrapper	object	around	the	bytes	object	data.	This
is	 used	 in	 functions	 converting	 from/to	 plists	 to	 represent	 the
<data>	type	available	in	plists.

It	has	one	attribute,	data,	that	can	be	used	to	retrieve	the	Python
bytes	object	stored	in	it.

Deprecated	since	version	3.4:	Use	a	bytes	object	instead

The	following	constants	are	available:

plistlib.FMT_XML

The	XML	format	for	plist	files.

New	in	version	3.4.

plistlib.FMT_BINARY

The	binary	format	for	plist	files

New	in	version	3.4.

14.5.1.	Examples

Generating	a	plist:

pl	=	dict(

				aString	=	"Doodah",

				aList	=	["A",	"B",	12,	32.1,	[1,	2,	3]],

				aFloat	=	0.1,

				anInt	=	728,

				aDict	=	dict(

								anotherString	=	"<hello	&	hi	there!>",

								aThirdString	=	"M\xe4ssig,	Ma\xdf",

								aTrueValue	=	True,

								aFalseValue	=	False,

),

				someData	=	b"<binary	gunk>",

				someMoreData	=	b"<lots	of	binary	gunk>"	*	10,

				aDate	=	datetime.datetime.fromtimestamp(time.mktime

)

with	open(fileName,	'wb')	as	fp:

				dump(pl,	fp)

Parsing	a	plist:

with	open(fileName,	'rb')	as	fp:

				pl	=	load(fp)

print(pl["aKey"])

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	14.	File	Formats	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

15.	Cryptographic	Services
The	modules	described	in	this	chapter	implement	various	algorithms	of
a	 cryptographic	 nature.	 They	 are	 available	 at	 the	 discretion	 of	 the
installation.	 On	 Unix	 systems,	 the	 crypt	 module	 may	 also	 be
available.	Here’s	an	overview:

15.1.	hashlib	—	Secure	hashes	and	message	digests
15.1.1.	Hash	algorithms
15.1.2.	Key	Derivation	Function

15.2.	hmac	—	Keyed-Hashing	for	Message	Authentication

Hardcore	 cypherpunks	 will	 probably	 find	 the	 cryptographic	 modules
written	 by	 A.M.	 Kuchling	 of	 further	 interest;	 the	 package	 contains
modules	 for	various	encryption	algorithms,	most	notably	AES.	These
modules	are	not	distributed	with	Python	but	available	separately.	See
the	URL	http://www.pycrypto.org	for	more	information.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.pycrypto.org
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	15.	Cryptographic	Services	»

http://www.python.org/

15.1.	hashlib	—	Secure	hashes
and	message	digests
Source	code:	Lib/hashlib.py

This	module	implements	a	common	interface	to	many	different	secure
hash	 and	message	 digest	 algorithms.	 Included	 are	 the	 FIPS	 secure
hash	 algorithms	 SHA1,	 SHA224,	 SHA256,	 SHA384,	 and	 SHA512
(defined	 in	FIPS	180-2)	 as	well	 as	RSA’s	MD5	algorithm	 (defined	 in
Internet	RFC	1321).	 The	 terms	 “secure	 hash”	 and	 “message	 digest”
are	 interchangeable.	Older	 algorithms	 were	 called	message	 digests.
The	modern	term	is	secure	hash.

Note: 	If	you	want	the	adler32	or	crc32	hash	functions,	they	are
available	in	the	zlib	module.

Warning: 	Some	algorithms	have	known	hash	collision
weaknesses,	refer	to	the	“See	also”	section	at	the	end.

http://hg.python.org/cpython/file/3.4/Lib/hashlib.py
http://tools.ietf.org/html/rfc1321.html

15.1.1.	Hash	algorithms

There	 is	 one	 constructor	 method	 named	 for	 each	 type	 of	 hash.	 All
return	a	hash	object	with	the	same	simple	interface.	For	example:	use
sha1()	 to	create	a	SHA1	hash	object.	You	can	now	feed	this	object
with	bytes-like	objects	(normally	bytes)	using	the	update()	method.
At	any	point	you	can	ask	 it	 for	 the	digest	of	 the	concatenation	of	 the
data	fed	to	it	so	far	using	the	digest()	or	hexdigest()	methods.

Note: 	For	better	multithreading	performance,	the	Python	GIL	is
released	for	data	larger	than	2047	bytes	at	object	creation	or	on
update.

Note: 	Feeding	string	objects	into	update()	is	not	supported,	as
hashes	work	on	bytes,	not	on	characters.

Constructors	 for	 hash	 algorithms	 that	 are	 always	 present	 in	 this
module	are	md5(),	sha1(),	sha224(),	sha256(),	sha384(),	and
sha512().	 Additional	 algorithms	 may	 also	 be	 available	 depending
upon	the	OpenSSL	library	that	Python	uses	on	your	platform.

For	 example,	 to	 obtain	 the	 digest	 of	 the	 byte	 string	 b'Nobody
inspects	the	spammish	repetition':

>>>	import	hashlib

>>>	m	=	hashlib.md5()

>>>	m.update(b"Nobody	inspects")

>>>	m.update(b"	the	spammish	repetition")

>>>	m.digest()

b'\xbbd\x9c\x83\xdd\x1e\xa5\xc9\xd9\xde\xc9\xa1\x8d\xf0\xff\xe9'

>>>	m.digest_size

16

>>>	m.block_size

64

More	condensed:

>>>	hashlib.sha224(b"Nobody	inspects	the	spammish	repetition"

'a4337bc45a8fc544c03f52dc550cd6e1e87021bc896588bd79e901e2'

hashlib.new(name[,	data])
Is	a	generic	constructor	 that	 takes	 the	string	name	of	 the	desired
algorithm	as	its	first	parameter.	It	also	exists	to	allow	access	to	the
above	 listed	 hashes	 as	 well	 as	 any	 other	 algorithms	 that	 your
OpenSSL	 library	 may	 offer.	 The	 named	 constructors	 are	 much
faster	than	new()	and	should	be	preferred.

Using	new()	with	an	algorithm	provided	by	OpenSSL:

>>>	h	=	hashlib.new('ripemd160')

>>>	h.update(b"Nobody	inspects	the	spammish	repetition"

>>>	h.hexdigest()

'cc4a5ce1b3df48aec5d22d1f16b894a0b894eccc'

Hashlib	provides	the	following	constant	attributes:

hashlib.algorithms_guaranteed

A	set	containing	 the	names	of	 the	hash	algorithms	guaranteed	 to
be	supported	by	this	module	on	all	platforms.

New	in	version	3.2.

hashlib.algorithms_available

A	 set	 containing	 the	 names	 of	 the	 hash	 algorithms	 that	 are

available	 in	 the	 running	 Python	 interpreter.	 These	 names	 will	 be
recognized	 when	 passed	 to	 new().	 algorithms_guaranteed
will	always	be	a	subset.	The	same	algorithm	may	appear	multiple
times	in	this	set	under	different	names	(thanks	to	OpenSSL).

New	in	version	3.2.

The	 following	 values	are	provided	as	 constant	 attributes	of	 the	hash
objects	returned	by	the	constructors:

hash.digest_size

The	size	of	the	resulting	hash	in	bytes.

hash.block_size

The	internal	block	size	of	the	hash	algorithm	in	bytes.

A	hash	object	has	the	following	attributes:

hash.name

The	 canonical	 name	 of	 this	 hash,	 always	 lowercase	 and	 always
suitable	 as	 a	 parameter	 to	 new()	 to	 create	 another	 hash	 of	 this
type.

Changed	 in	 version	 3.4:	The	 name	attribute	 has	 been	 present	 in
CPython	since	 its	 inception,	but	until	Python	3.4	was	not	 formally
specified,	so	may	not	exist	on	some	platforms.

A	hash	object	has	the	following	methods:

hash.update(arg)
Update	 the	 hash	 object	 with	 the	 object	 arg,	 which	 must	 be
interpretable	as	a	buffer	of	bytes.	Repeated	calls	are	equivalent	to
a	 single	 call	 with	 the	 concatenation	 of	 all	 the	 arguments:
m.update(a);	 m.update(b)	 is	 equivalent	 to

m.update(a+b).

Changed	in	version	3.1:	The	Python	GIL	is	released	to	allow	other
threads	to	run	while	hash	updates	on	data	larger	than	2047	bytes
is	taking	place	when	using	hash	algorithms	supplied	by	OpenSSL.

hash.digest()
Return	the	digest	of	the	data	passed	to	the	update()	method	so
far.	This	is	a	bytes	object	of	size	digest_size	which	may	contain
bytes	in	the	whole	range	from	0	to	255.

hash.hexdigest()
Like	digest()	except	 the	digest	 is	returned	as	a	string	object	of
double	 length,	 containing	 only	 hexadecimal	 digits.	 This	 may	 be
used	 to	 exchange	 the	 value	 safely	 in	 email	 or	 other	 non-binary
environments.

hash.copy()
Return	 a	 copy	 (“clone”)	 of	 the	 hash	 object.	 This	 can	 be	 used	 to
efficiently	 compute	 the	 digests	 of	 data	 sharing	 a	 common	 initial
substring.

15.1.2.	Key	Derivation	Function

Key	derivation	and	key	stretching	algorithms	are	designed	for	secure
password	hashing.	Naive	algorithms	 such	as	 sha1(password)	 are
not	 resistant	 against	 brute-force	 attacks.	 A	 good	 password	 hashing
function	must	be	tunable,	slow	and	include	a	salt.

hashlib.pbkdf2_hmac(name,	password,	salt,	rounds,
dklen=None)

The	 function	 provides	 PKCS#5	 password-based	 key	 derivation
function	2.	It	uses	HMAC	as	pseudorandom	function.

The	string	name	 is	 the	desired	name	of	 the	hash	digest	algorithm
for	 HMAC,	 e.g.	 ‘sha1’	 or	 ‘sha256’.	 password	 and	 salt	 are
interpreted	 as	 buffers	 of	 bytes.	 Applications	 and	 libraries	 should
limit	password	to	a	sensible	value	(e.g.	1024).	salt	should	be	about
16	or	more	bytes	from	a	proper	source,	e.g.	os.urandom().

The	 number	 of	 rounds	 should	 be	 chosen	 based	 on	 the	 hash
algorithm	 and	 computing	 power.	 As	 of	 2013	 a	 value	 of	 at	 least
100,000	rounds	of	SHA-256	have	been	suggested.

dklen	 is	 the	 length	 of	 the	 derived	 key.	 If	dklen	 is	 None	 then	 the
digest	size	of	 the	hash	algorithm	name	 is	used,	e.g.	64	 for	SHA-
512.

>>>	import	hashlib,	binascii

>>>	dk	=	hashlib.pbkdf2_hmac('sha256',	b'password'

>>>	binascii.hexlify(dk)

b'0394a2ede332c9a13eb82e9b24631604c31df978b4e2f0fbd2c549944f9d79a5'

New	in	version	3.4.

Note: 	 A	 fast	 implementation	 of	 pbkdf2_hmac	 is	 available	 with
OpenSSL.	The	Python	 implementation	uses	an	 inline	version	of
hmac.	It	is	about	three	times	slower	and	doesn’t	release	the	GIL.

See	also:

Module	hmac
A	 module	 to	 generate	 message	 authentication	 codes	 using
hashes.

Module	base64
Another	 way	 to	 encode	 binary	 hashes	 for	 non-binary
environments.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
The	FIPS	180-2	publication	on	Secure	Hash	Algorithms.

http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
Wikipedia	 article	 with	 information	 on	 which	 algorithms	 have
known	issues	and	what	that	means	regarding	their	use.

http://www.ietf.org/rfc/rfc2898.txt
PKCS	 #5:	 Password-Based	 Cryptography	 Specification	 Version
2.0

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	15.	Cryptographic	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
http://en.wikipedia.org/wiki/Cryptographic_hash_function#Cryptographic_hash_algorithms
http://www.ietf.org/rfc/rfc2898.txt
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	15.	Cryptographic	Services	»

http://www.python.org/

15.2.	hmac	—	Keyed-Hashing	for
Message	Authentication
Source	code:	Lib/hmac.py

This	module	 implements	 the	 HMAC	 algorithm	 as	 described	 by	RFC
2104.

hmac.new(key,	msg=None,	digestmod=None)
Return	a	new	hmac	object.	key	is	a	bytes	or	bytearray	object	giving
the	secret	key.	If	msg	is	present,	the	method	call	update(msg)	is
made.	digestmod	is	the	digest	name,	digest	constructor	or	module
for	 the	 HMAC	 object	 to	 use.	 It	 supports	 any	 name	 suitable	 to
hashlib.new()	and	defaults	to	the	hashlib.md5	constructor.

Changed	in	version	3.4:	Parameter	key	can	be	a	bytes	or	bytearray
object.	Parameter	msg	can	be	of	any	type	supported	by	hashlib.
Paramter	digestmod	can	be	the	name	of	a	hash	algorithm.

Deprecated	since	version	3.4:	MD5	as	 implicit	default	digest	 for
digestmod	is	deprecated.

An	HMAC	object	has	the	following	methods:

HMAC.update(msg)
Update	the	hmac	object	with	msg.	Repeated	calls	are	equivalent	to
a	 single	 call	 with	 the	 concatenation	 of	 all	 the	 arguments:
m.update(a);	m.update(b)	 is	 equivalent	 to	 m.update(a	+
b).

http://hg.python.org/cpython/file/3.4/Lib/hmac.py
http://tools.ietf.org/html/rfc2104.html

Changed	 in	 version	 3.4:	 Parameter	 msg	 can	 be	 of	 any	 type
supported	by	hashlib.

HMAC.digest()
Return	the	digest	of	the	bytes	passed	to	the	update()	method	so
far.	This	bytes	object	will	be	the	same	length	as	the	digest_size	of
the	digest	given	to	the	constructor.	It	may	contain	non-ASCII	bytes,
including	NUL	bytes.

Warning: 	 When	 comparing	 the	 output	 of	 digest()	 to	 an
externally-supplied	 digest	 during	 a	 verification	 routine,	 it	 is
recommended	 to	use	 the	compare_digest()	 function	 instead
of	the	==	operator	to	reduce	the	vulnerability	to	timing	attacks.

HMAC.hexdigest()
Like	digest()	except	the	digest	is	returned	as	a	string	twice	the
length	 containing	 only	 hexadecimal	 digits.	 This	 may	 be	 used	 to
exchange	 the	 value	 safely	 in	 email	 or	 other	 non-binary
environments.

Warning: 	When	comparing	 the	output	of	hexdigest()	 to	 an
externally-supplied	 digest	 during	 a	 verification	 routine,	 it	 is
recommended	 to	use	 the	compare_digest()	 function	 instead
of	the	==	operator	to	reduce	the	vulnerability	to	timing	attacks.

HMAC.copy()
Return	 a	 copy	 (“clone”)	 of	 the	 hmac	 object.	 This	 can	 be	 used	 to
efficiently	 compute	 the	 digests	 of	 strings	 that	 share	 a	 common
initial	substring.

A	hash	object	has	the	following	attributes:

HMAC.digest_size

The	size	of	the	resulting	HMAC	digest	in	bytes.

HMAC.block_size

The	internal	block	size	of	the	hash	algorithm	in	bytes.

New	in	version	3.4.

HMAC.name

The	canonical	name	of	this	HMAC,	always	lowercase,	e.g.	hmac-
md5.

New	in	version	3.4.

This	module	also	provides	the	following	helper	function:

hmac.compare_digest(a,	b)
Return	 a	 ==	 b.	 This	 function	 uses	 an	 approach	 designed	 to
prevent	 timing	analysis	by	avoiding	 content-based	short	 circuiting
behaviour,	 making	 it	 appropriate	 for	 cryptography.	 a	 and	 b	 must
both	be	of	the	same	type:	either	str	(ASCII	only,	as	e.g.	returned
by	HMAC.hexdigest()),	or	a	bytes-like	object.

Note: 	If	a	and	b	are	of	different	lengths,	or	if	an	error	occurs,	a
timing	 attack	 could	 theoretically	 reveal	 information	 about	 the
types	and	lengths	of	a	and	b–but	not	their	values.

New	in	version	3.3.

See	also:

Module	hashlib
The	Python	module	providing	secure	hash	functions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	15.	Cryptographic	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

16.	Generic	Operating	System
Services
The	modules	described	in	this	chapter	provide	interfaces	to	operating
system	 features	 that	are	available	on	 (almost)	all	 operating	systems,
such	as	 files	and	a	clock.	The	 interfaces	are	generally	modeled	after
the	Unix	or	C	interfaces,	but	they	are	available	on	most	other	systems
as	well.	Here’s	an	overview:

16.1.	os	—	Miscellaneous	operating	system	interfaces
16.1.1.	 File	 Names,	 Command	 Line	 Arguments,	 and
Environment	Variables
16.1.2.	Process	Parameters
16.1.3.	File	Object	Creation
16.1.4.	File	Descriptor	Operations

16.1.4.1.	Querying	the	size	of	a	terminal
16.1.4.2.	Inheritance	of	File	Descriptors

16.1.5.	Files	and	Directories
16.1.5.1.	Linux	extended	attributes

16.1.6.	Process	Management
16.1.7.	Interface	to	the	scheduler
16.1.8.	Miscellaneous	System	Information
16.1.9.	Miscellaneous	Functions

16.2.	io	—	Core	tools	for	working	with	streams
16.2.1.	Overview

16.2.1.1.	Text	I/O
16.2.1.2.	Binary	I/O
16.2.1.3.	Raw	I/O

16.2.2.	High-level	Module	Interface
16.2.2.1.	In-memory	streams

16.2.3.	Class	hierarchy

16.2.3.1.	I/O	Base	Classes
16.2.3.2.	Raw	File	I/O
16.2.3.3.	Buffered	Streams
16.2.3.4.	Text	I/O

16.2.4.	Performance
16.2.4.1.	Binary	I/O
16.2.4.2.	Text	I/O
16.2.4.3.	Multi-threading
16.2.4.4.	Reentrancy

16.3.	time	—	Time	access	and	conversions
16.4.	argparse	—	Parser	for	command-line	options,	arguments
and	sub-commands

16.4.1.	Example
16.4.1.1.	Creating	a	parser
16.4.1.2.	Adding	arguments
16.4.1.3.	Parsing	arguments

16.4.2.	ArgumentParser	objects
16.4.2.1.	prog
16.4.2.2.	usage
16.4.2.3.	description
16.4.2.4.	epilog
16.4.2.5.	parents
16.4.2.6.	formatter_class
16.4.2.7.	prefix_chars
16.4.2.8.	fromfile_prefix_chars
16.4.2.9.	argument_default
16.4.2.10.	conflict_handler
16.4.2.11.	add_help

16.4.3.	The	add_argument()	method
16.4.3.1.	name	or	flags
16.4.3.2.	action
16.4.3.3.	nargs
16.4.3.4.	const
16.4.3.5.	default

16.4.3.6.	type
16.4.3.7.	choices
16.4.3.8.	required
16.4.3.9.	help
16.4.3.10.	metavar
16.4.3.11.	dest

16.4.4.	The	parse_args()	method
16.4.4.1.	Option	value	syntax
16.4.4.2.	Invalid	arguments
16.4.4.3.	Arguments	containing	-
16.4.4.4.	Argument	abbreviations	(prefix	matching)
16.4.4.5.	Beyond	sys.argv
16.4.4.6.	The	Namespace	object

16.4.5.	Other	utilities
16.4.5.1.	Sub-commands
16.4.5.2.	FileType	objects
16.4.5.3.	Argument	groups
16.4.5.4.	Mutual	exclusion
16.4.5.5.	Parser	defaults
16.4.5.6.	Printing	help
16.4.5.7.	Partial	parsing
16.4.5.8.	Customizing	file	parsing
16.4.5.9.	Exiting	methods

16.4.6.	Upgrading	optparse	code
16.5.	optparse	—	Parser	for	command	line	options

16.5.1.	Background
16.5.1.1.	Terminology
16.5.1.2.	What	are	options	for?
16.5.1.3.	What	are	positional	arguments	for?

16.5.2.	Tutorial
16.5.2.1.	Understanding	option	actions
16.5.2.2.	The	store	action
16.5.2.3.	Handling	boolean	(flag)	options
16.5.2.4.	Other	actions

16.5.2.5.	Default	values
16.5.2.6.	Generating	help

16.5.2.6.1.	Grouping	Options
16.5.2.7.	Printing	a	version	string
16.5.2.8.	How	optparse	handles	errors
16.5.2.9.	Putting	it	all	together

16.5.3.	Reference	Guide
16.5.3.1.	Creating	the	parser
16.5.3.2.	Populating	the	parser
16.5.3.3.	Defining	options
16.5.3.4.	Option	attributes
16.5.3.5.	Standard	option	actions
16.5.3.6.	Standard	option	types
16.5.3.7.	Parsing	arguments
16.5.3.8.	Querying	and	manipulating	your	option	parser
16.5.3.9.	Conflicts	between	options
16.5.3.10.	Cleanup
16.5.3.11.	Other	methods

16.5.4.	Option	Callbacks
16.5.4.1.	Defining	a	callback	option
16.5.4.2.	How	callbacks	are	called
16.5.4.3.	Raising	errors	in	a	callback
16.5.4.4.	Callback	example	1:	trivial	callback
16.5.4.5.	Callback	example	2:	check	option	order
16.5.4.6.	 Callback	 example	 3:	 check	 option	 order
(generalized)
16.5.4.7.	Callback	example	4:	check	arbitrary	condition
16.5.4.8.	Callback	example	5:	fixed	arguments
16.5.4.9.	Callback	example	6:	variable	arguments

16.5.5.	Extending	optparse
16.5.5.1.	Adding	new	types
16.5.5.2.	Adding	new	actions

16.6.	getopt	—	C-style	parser	for	command	line	options
16.7.	logging	—	Logging	facility	for	Python

16.7.1.	Logger	Objects
16.7.2.	Logging	Levels
16.7.3.	Handler	Objects
16.7.4.	Formatter	Objects
16.7.5.	Filter	Objects
16.7.6.	LogRecord	Objects
16.7.7.	LogRecord	attributes
16.7.8.	LoggerAdapter	Objects
16.7.9.	Thread	Safety
16.7.10.	Module-Level	Functions
16.7.11.	Module-Level	Attributes
16.7.12.	Integration	with	the	warnings	module

16.8.	logging.config	—	Logging	configuration
16.8.1.	Configuration	functions
16.8.2.	Configuration	dictionary	schema

16.8.2.1.	Dictionary	Schema	Details
16.8.2.2.	Incremental	Configuration
16.8.2.3.	Object	connections
16.8.2.4.	User-defined	objects
16.8.2.5.	Access	to	external	objects
16.8.2.6.	Access	to	internal	objects
16.8.2.7.	Import	resolution	and	custom	importers

16.8.3.	Configuration	file	format
16.9.	logging.handlers	—	Logging	handlers

16.9.1.	StreamHandler
16.9.2.	FileHandler
16.9.3.	NullHandler
16.9.4.	WatchedFileHandler
16.9.5.	BaseRotatingHandler
16.9.6.	RotatingFileHandler
16.9.7.	TimedRotatingFileHandler
16.9.8.	SocketHandler
16.9.9.	DatagramHandler
16.9.10.	SysLogHandler

16.9.11.	NTEventLogHandler
16.9.12.	SMTPHandler
16.9.13.	MemoryHandler
16.9.14.	HTTPHandler
16.9.15.	QueueHandler
16.9.16.	QueueListener

16.10.	getpass	—	Portable	password	input
16.11.	curses	—	Terminal	handling	for	character-cell	displays

16.11.1.	Functions
16.11.2.	Window	Objects
16.11.3.	Constants

16.12.	 curses.textpad	 —	 Text	 input	 widget	 for	 curses
programs

16.12.1.	Textbox	objects
16.13.	curses.ascii	—	Utilities	for	ASCII	characters
16.14.	curses.panel	—	A	panel	stack	extension	for	curses

16.14.1.	Functions
16.14.2.	Panel	Objects

16.15.	 platform	—	 Access	 to	 underlying	 platform’s	 identifying
data

16.15.1.	Cross	Platform
16.15.2.	Java	Platform
16.15.3.	Windows	Platform

16.15.3.1.	Win95/98	specific
16.15.4.	Mac	OS	Platform
16.15.5.	Unix	Platforms

16.16.	errno	—	Standard	errno	system	symbols
16.17.	ctypes	—	A	foreign	function	library	for	Python

16.17.1.	ctypes	tutorial
16.17.1.1.	Loading	dynamic	link	libraries
16.17.1.2.	Accessing	functions	from	loaded	dlls
16.17.1.3.	Calling	functions
16.17.1.4.	Fundamental	data	types
16.17.1.5.	Calling	functions,	continued

16.17.1.6.	Calling	 functions	with	 your	 own	 custom	 data
types
16.17.1.7.	 Specifying	 the	 required	 argument	 types
(function	prototypes)
16.17.1.8.	Return	types
16.17.1.9.	 Passing	 pointers	 (or:	 passing	 parameters	 by
reference)
16.17.1.10.	Structures	and	unions
16.17.1.11.	Structure/union	alignment	and	byte	order
16.17.1.12.	Bit	fields	in	structures	and	unions
16.17.1.13.	Arrays
16.17.1.14.	Pointers
16.17.1.15.	Type	conversions
16.17.1.16.	Incomplete	Types
16.17.1.17.	Callback	functions
16.17.1.18.	Accessing	values	exported	from	dlls
16.17.1.19.	Surprises
16.17.1.20.	Variable-sized	data	types

16.17.2.	ctypes	reference
16.17.2.1.	Finding	shared	libraries
16.17.2.2.	Loading	shared	libraries
16.17.2.3.	Foreign	functions
16.17.2.4.	Function	prototypes
16.17.2.5.	Utility	functions
16.17.2.6.	Data	types
16.17.2.7.	Fundamental	data	types
16.17.2.8.	Structured	data	types
16.17.2.9.	Arrays	and	pointers

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.1.	os	—	Miscellaneous
operating	system	interfaces
This	 module	 provides	 a	 portable	 way	 of	 using	 operating	 system
dependent	 functionality.	 If	 you	 just	 want	 to	 read	 or	 write	 a	 file	 see
open(),	 if	you	want	 to	manipulate	paths,	see	the	os.path	module,
and	if	you	want	to	read	all	the	lines	in	all	the	files	on	the	command	line
see	 the	 fileinput	 module.	 For	 creating	 temporary	 files	 and
directories	 see	 the	 tempfile	 module,	 and	 for	 high-level	 file	 and
directory	handling	see	the	shutil	module.

Notes	on	the	availability	of	these	functions:

The	design	of	all	built-in	operating	system	dependent	modules	of
Python	is	such	that	as	long	as	the	same	functionality	is	available,
it	 uses	 the	 same	 interface;	 for	 example,	 the	 function
os.stat(path)	returns	stat	information	about	path	in	the	same
format	 (which	 happens	 to	 have	 originated	 with	 the	 POSIX
interface).
Extensions	 peculiar	 to	 a	 particular	 operating	 system	 are	 also
available	 through	 the	 os	module,	 but	 using	 them	 is	 of	 course	 a
threat	to	portability.
All	 functions	accepting	path	or	 file	names	accept	both	bytes	and
string	objects,	and	result	in	an	object	of	the	same	type,	if	a	path	or
file	name	is	returned.
An	“Availability:	Unix”	note	means	 that	 this	 function	 is	commonly
found	 on	 Unix	 systems.	 It	 does	 not	 make	 any	 claims	 about	 its
existence	on	a	specific	operating	system.
If	not	separately	noted,	all	 functions	that	claim	“Availability:	Unix”
are	supported	on	Mac	OS	X,	which	builds	on	a	Unix	core.

Note: 	All	functions	in	this	module	raise	OSError	in	the	case	of
invalid	or	inaccessible	file	names	and	paths,	or	other	arguments	that
have	the	correct	type,	but	are	not	accepted	by	the	operating	system.

exception	os.error
An	alias	for	the	built-in	OSError	exception.

os.name

The	 name	 of	 the	 operating	 system	 dependent	 module	 imported.
The	 following	 names	 have	 currently	 been	 registered:	 'posix',
'nt',	'mac',	'ce',	'java'.

See	also: 	sys.platform	has	a	finer	granularity.	os.uname()
gives	system-dependent	version	information.
The	platform	module	provides	detailed	checks	for	the	system’s
identity.

16.1.1.	File	Names,	Command	Line
Arguments,	and	Environment	Variables

In	 Python,	 file	 names,	 command	 line	 arguments,	 and	 environment
variables	 are	 represented	 using	 the	 string	 type.	 On	 some	 systems,
decoding	these	strings	to	and	from	bytes	is	necessary	before	passing
them	to	the	operating	system.	Python	uses	the	file	system	encoding	to
perform	this	conversion	(see	sys.getfilesystemencoding()).

Changed	 in	version	3.1:	On	some	systems,	conversion	using	 the	 file
system	 encoding	 may	 fail.	 In	 this	 case,	 Python	 uses	 the
surrogateescape	 encoding	 error	 handler,	 which	 means	 that
undecodable	bytes	are	 replaced	by	a	Unicode	character	U+DCxx	on
decoding,	 and	 these	 are	 again	 translated	 to	 the	 original	 byte	 on
encoding.

The	 file	 system	 encoding	must	 guarantee	 to	 successfully	 decode	 all
bytes	 below	 128.	 If	 the	 file	 system	 encoding	 fails	 to	 provide	 this
guarantee,	API	functions	may	raise	UnicodeErrors.

16.1.2.	Process	Parameters

These	 functions	 and	 data	 items	 provide	 information	 and	 operate	 on
the	current	process	and	user.

os.ctermid()
Return	the	filename	corresponding	to	the	controlling	terminal	of	the
process.

Availability:	Unix.

os.environ

A	 mapping	 object	 representing	 the	 string	 environment.	 For
example,	 environ['HOME']	 is	 the	 pathname	 of	 your	 home
directory	 (on	 some	 platforms),	 and	 is	 equivalent	 to
getenv("HOME")	in	C.

This	mapping	is	captured	the	first	time	the	os	module	is	imported,
typically	 during	 Python	 startup	 as	 part	 of	 processing	 site.py.
Changes	to	the	environment	made	after	this	time	are	not	reflected
in	 os.environ,	 except	 for	 changes	 made	 by	 modifying
os.environ	directly.

If	the	platform	supports	the	putenv()	function,	this	mapping	may
be	 used	 to	 modify	 the	 environment	 as	 well	 as	 query	 the
environment.	 putenv()	 will	 be	 called	 automatically	 when	 the
mapping	is	modified.

On	Unix,	keys	and	values	use	sys.getfilesystemencoding()
and	 'surrogateescape'	 error	 handler.	 Use	 environb	 if	 you
would	like	to	use	a	different	encoding.

Note: 	 Calling	 putenv()	 directly	 does	 not	 change
os.environ,	so	it’s	better	to	modify	os.environ.

Note: 	On	 some	platforms,	 including	FreeBSD	and	Mac	OS	X,
setting	environ	may	cause	memory	leaks.	Refer	to	the	system
documentation	for	putenv().

If	putenv()	is	not	provided,	a	modified	copy	of	this	mapping	may
be	passed	 to	 the	appropriate	process-creation	 functions	 to	 cause
child	processes	to	use	a	modified	environment.

If	the	platform	supports	the	unsetenv()	 function,	you	can	delete
items	 in	 this	 mapping	 to	 unset	 environment	 variables.
unsetenv()	will	be	called	automatically	when	an	 item	is	deleted
from	 os.environ,	 and	 when	 one	 of	 the	 pop()	 or	 clear()
methods	is	called.

os.environb

Bytes	 version	 of	 environ:	 a	 mapping	 object	 representing	 the
environment	 as	 byte	 strings.	 environ	 and	 environb	 are
synchronized	 (modify	 environb	 updates	 environ,	 and	 vice
versa).

environb	 is	 only	 available	 if	 supports_bytes_environ	 is
True.

New	in	version	3.2.

os.chdir(path)
os.fchdir(fd)
os.getcwd()

These	functions	are	described	in	Files	and	Directories.

os.fsencode(filename)
Encode	 filename	 to	 the	 filesystem	 encoding	 with
'surrogateescape'	 error	 handler,	 or	 'strict'	 on	Windows;
return	bytes	unchanged.

fsdecode()	is	the	reverse	function.

New	in	version	3.2.

os.fsdecode(filename)
Decode	 filename	 from	 the	 filesystem	 encoding	 with
'surrogateescape'	 error	 handler,	 or	 'strict'	 on	Windows;
return	str	unchanged.

fsencode()	is	the	reverse	function.

New	in	version	3.2.

os.getenv(key,	default=None)
Return	 the	 value	 of	 the	 environment	 variable	 key	 if	 it	 exists,	 or
default	if	it	doesn’t.	key,	default	and	the	result	are	str.

On	 Unix,	 keys	 and	 values	 are	 decoded	 with
sys.getfilesystemencoding()	 and	 'surrogateescape'
error	 handler.	 Use	 os.getenvb()	 if	 you	 would	 like	 to	 use	 a
different	encoding.

Availability:	most	flavors	of	Unix,	Windows.

os.getenvb(key,	default=None)
Return	 the	 value	 of	 the	 environment	 variable	 key	 if	 it	 exists,	 or
default	if	it	doesn’t.	key,	default	and	the	result	are	bytes.

Availability:	most	flavors	of	Unix.

New	in	version	3.2.

os.get_exec_path(env=None)
Returns	 the	 list	 of	 directories	 that	 will	 be	 searched	 for	 a	 named
executable,	similar	to	a	shell,	when	launching	a	process.	env,	when
specified,	 should	be	an	environment	 variable	dictionary	 to	 lookup
the	PATH	in.	By	default,	when	env	is	None,	environ	is	used.

New	in	version	3.2.

os.getegid()
Return	 the	 effective	 group	 id	 of	 the	 current	 process.	 This
corresponds	 to	 the	 “set	 id”	 bit	 on	 the	 file	 being	 executed	 in	 the
current	process.

Availability:	Unix.

os.geteuid()
Return	the	current	process’s	effective	user	id.

Availability:	Unix.

os.getgid()
Return	the	real	group	id	of	the	current	process.

Availability:	Unix.

os.getgrouplist(user,	group)
Return	 list	of	group	 ids	 that	user	belongs	to.	 If	group	 is	not	 in	 the
list,	it	is	included;	typically,	group	 is	specified	as	the	group	ID	field
from	the	password	record	for	user.

Availability:	Unix.

New	in	version	3.3.

os.getgroups()
Return	 list	 of	 supplemental	 group	 ids	 associated	with	 the	 current
process.

Availability:	Unix.

Note: 	On	Mac	OS	X,	getgroups()	behavior	differs	somewhat
from	other	Unix	platforms.	If	the	Python	interpreter	was	built	with
a	 deployment	 target	 of	 10.5	 or	 earlier,	 getgroups()	 returns
the	 list	 of	 effective	 group	 ids	 associated	 with	 the	 current	 user
process;	this	list	is	limited	to	a	system-defined	number	of	entries,
typically	 16,	 and	may	 be	modified	 by	 calls	 to	 setgroups()	 if
suitably	privileged.	 If	built	with	a	deployment	 target	greater	 than
10.5,	 getgroups()	 returns	 the	 current	 group	 access	 list	 for
the	user	associated	with	the	effective	user	id	of	the	process;	the
group	access	list	may	change	over	the	lifetime	of	the	process,	it
is	 not	 affected	 by	 calls	 to	 setgroups(),	 and	 its	 length	 is	 not
limited	 to	 16.	 The	 deployment	 target	 value,
MACOSX_DEPLOYMENT_TARGET,	 can	 be	 obtained	 with
sysconfig.get_config_var().

os.getlogin()
Return	the	name	of	the	user	logged	in	on	the	controlling	terminal	of
the	 process.	 For	 most	 purposes,	 it	 is	 more	 useful	 to	 use	 the
environment	variables	LOGNAME	or	USERNAME	to	find	out	who	the
user	 is,	 or	 pwd.getpwuid(os.getuid())[0]	 to	 get	 the	 login
name	of	the	currently	effective	user	id.

Availability:	Unix,	Windows.

os.getpgid(pid)
Return	 the	process	group	 id	of	 the	process	with	process	 id	pid.	 If
pid	is	0,	the	process	group	id	of	the	current	process	is	returned.

Availability:	Unix.

os.getpgrp()
Return	the	id	of	the	current	process	group.

Availability:	Unix.

os.getpid()
Return	the	current	process	id.

Availability:	Unix,	Windows.

os.getppid()
Return	 the	 parent’s	 process	 id.	 When	 the	 parent	 process	 has
exited,	on	Unix	the	id	returned	is	the	one	of	the	init	process	(1),	on
Windows	 it	 is	 still	 the	 same	 id,	 which	may	 be	 already	 reused	 by
another	process.

Availability:	Unix,	Windows.

Changed	in	version	3.2:	Added	support	for	Windows.

os.getpriority(which,	who)
Get	 program	 scheduling	 priority.	 The	 value	 which	 is	 one	 of
PRIO_PROCESS,	 PRIO_PGRP,	 or	 PRIO_USER,	 and	 who	 is
interpreted	 relative	 to	 which	 (a	 process	 identifier	 for
PRIO_PROCESS,	 process	 group	 identifier	 for	 PRIO_PGRP,	 and	 a
user	 ID	 for	 PRIO_USER).	 A	 zero	 value	 for	 who	 denotes

(respectively)	 the	calling	process,	 the	process	group	of	 the	calling
process,	or	the	real	user	ID	of	the	calling	process.

Availability:	Unix.

New	in	version	3.3.

os.PRIO_PROCESS

os.PRIO_PGRP

os.PRIO_USER

Parameters	 for	 the	 getpriority()	 and	 setpriority()

functions.

Availability:	Unix.

New	in	version	3.3.

os.getresuid()
Return	a	tuple	(ruid,	euid,	suid)	denoting	the	current	process’s	real,
effective,	and	saved	user	ids.

Availability:	Unix.

New	in	version	3.2.

os.getresgid()
Return	a	tuple	(rgid,	egid,	sgid)	denoting	the	current	process’s	real,
effective,	and	saved	group	ids.

Availability:	Unix.

New	in	version	3.2.

os.getuid()
Return	the	current	process’s	user	id.

Availability:	Unix.

os.initgroups(username,	gid)
Call	the	system	initgroups()	to	initialize	the	group	access	list	with	all
of	 the	groups	of	which	 the	specified	username	 is	a	member,	plus
the	specified	group	id.

Availability:	Unix.

New	in	version	3.2.

os.putenv(key,	value)
Set	the	environment	variable	named	key	 to	the	string	value.	Such
changes	 to	 the	 environment	 affect	 subprocesses	 started	 with
os.system(),	popen()	or	fork()	and	execv().

Availability:	most	flavors	of	Unix,	Windows.

Note: 	On	 some	platforms,	 including	FreeBSD	and	Mac	OS	X,
setting	environ	may	cause	memory	leaks.	Refer	to	the	system
documentation	for	putenv.

When	 putenv()	 is	 supported,	 assignments	 to	 items	 in
os.environ	are	automatically	translated	into	corresponding	calls
to	 putenv();	 however,	 calls	 to	 putenv()	 don’t	 update
os.environ,	 so	 it	 is	 actually	 preferable	 to	 assign	 to	 items	 of
os.environ.

os.setegid(egid)
Set	the	current	process’s	effective	group	id.

Availability:	Unix.

os.seteuid(euid)
Set	the	current	process’s	effective	user	id.

Availability:	Unix.

os.setgid(gid)
Set	the	current	process’	group	id.

Availability:	Unix.

os.setgroups(groups)
Set	 the	 list	of	 supplemental	group	 ids	associated	with	 the	current
process	to	groups.	groups	must	be	a	sequence,	and	each	element
must	be	an	 integer	 identifying	a	group.	This	operation	 is	 typically
available	only	to	the	superuser.

Availability:	Unix.

Note: 	On	Mac	OS	X,	the	 length	of	groups	may	not	exceed	the
system-defined	maximum	number	of	effective	group	ids,	typically
16.	See	the	documentation	for	getgroups()	for	cases	where	it
may	not	return	the	same	group	list	set	by	calling	setgroups().

os.setpgrp()
Call	 the	 system	call	 setpgrp()	or	setpgrp(0,	0)	 depending
on	which	version	is	implemented	(if	any).	See	the	Unix	manual	for
the	semantics.

Availability:	Unix.

os.setpgid(pid,	pgrp)
Call	the	system	call	setpgid()	to	set	the	process	group	id	of	the
process	with	id	pid	to	the	process	group	with	id	pgrp.	See	the	Unix

manual	for	the	semantics.

Availability:	Unix.

os.setpriority(which,	who,	priority)
Set	 program	 scheduling	 priority.	 The	 value	 which	 is	 one	 of
PRIO_PROCESS,	 PRIO_PGRP,	 or	 PRIO_USER,	 and	 who	 is
interpreted	 relative	 to	 which	 (a	 process	 identifier	 for
PRIO_PROCESS,	 process	 group	 identifier	 for	 PRIO_PGRP,	 and	 a
user	 ID	 for	 PRIO_USER).	 A	 zero	 value	 for	 who	 denotes
(respectively)	 the	calling	process,	 the	process	group	of	 the	calling
process,	or	the	real	user	ID	of	the	calling	process.	priority	is	a	value
in	 the	 range	 -20	 to	 19.	 The	 default	 priority	 is	 0;	 lower	 priorities
cause	more	favorable	scheduling.

Availability:	Unix

New	in	version	3.3.

os.setregid(rgid,	egid)
Set	the	current	process’s	real	and	effective	group	ids.

Availability:	Unix.

os.setresgid(rgid,	egid,	sgid)
Set	the	current	process’s	real,	effective,	and	saved	group	ids.

Availability:	Unix.

New	in	version	3.2.

os.setresuid(ruid,	euid,	suid)
Set	the	current	process’s	real,	effective,	and	saved	user	ids.

Availability:	Unix.

New	in	version	3.2.

os.setreuid(ruid,	euid)
Set	the	current	process’s	real	and	effective	user	ids.

Availability:	Unix.

os.getsid(pid)
Call	 the	 system	 call	 getsid().	 See	 the	 Unix	 manual	 for	 the
semantics.

Availability:	Unix.

os.setsid()
Call	 the	 system	 call	 setsid().	 See	 the	 Unix	 manual	 for	 the
semantics.

Availability:	Unix.

os.setuid(uid)
Set	the	current	process’s	user	id.

Availability:	Unix.

os.strerror(code)
Return	the	error	message	corresponding	to	the	error	code	in	code.
On	 platforms	 where	 strerror()	 returns	 NULL	 when	 given	 an
unknown	error	number,	ValueError	is	raised.

Availability:	Unix,	Windows.

os.supports_bytes_environ

True	if	the	native	OS	type	of	the	environment	is	bytes	(eg.	False
on	Windows).

New	in	version	3.2.

os.umask(mask)
Set	the	current	numeric	umask	and	return	the	previous	umask.

Availability:	Unix,	Windows.

os.uname()
Returns	 information	 identifying	 the	 current	 operating	 system.	 The
return	value	is	an	object	with	five	attributes:

sysname	-	operating	system	name
nodename	 -	 name	 of	 machine	 on	 network	 (implementation-
defined)
release	-	operating	system	release
version	-	operating	system	version
machine	-	hardware	identifier

For	 backwards	 compatibility,	 this	 object	 is	 also	 iterable,	 behaving
like	 a	 five-tuple	 containing	 sysname,	 nodename,	 release,
version,	and	machine	in	that	order.

Some	 systems	 truncate	 nodename	 to	 8	 characters	 or	 to	 the
leading	 component;	 a	 better	 way	 to	 get	 the	 hostname	 is
socket.gethostname()	 or	 even
socket.gethostbyaddr(socket.gethostname()).

Availability:	recent	flavors	of	Unix.

Changed	 in	 version	 3.3:	Return	 type	 changed	 from	 a	 tuple	 to	 a
tuple-like	object	with	named	attributes.

os.unsetenv(key)
Unset	(delete)	the	environment	variable	named	key.	Such	changes
to	 the	 environment	 affect	 subprocesses	 started	 with
os.system(),	popen()	or	fork()	and	execv().

When	 unsetenv()	 is	 supported,	 deletion	 of	 items	 in
os.environ	 is	automatically	 translated	 into	a	corresponding	call
to	 unsetenv();	 however,	 calls	 to	 unsetenv()	 don’t	 update
os.environ,	 so	 it	 is	 actually	 preferable	 to	 delete	 items	 of
os.environ.

Availability:	most	flavors	of	Unix,	Windows.

16.1.3.	File	Object	Creation

This	function	creates	new	 file	objects.	 (See	also	open()	 for	opening
file	descriptors.)

os.fdopen(fd,	*args,	**kwargs)
Return	an	open	file	object	connected	to	the	file	descriptor	 fd.	This
is	 an	alias	 of	 the	 open()	 built-in	 function	and	accepts	 the	 same
arguments.	 The	 only	 difference	 is	 that	 the	 first	 argument	 of
fdopen()	must	always	be	an	integer.

16.1.4.	File	Descriptor	Operations

These	 functions	 operate	 on	 I/O	 streams	 referenced	 using	 file
descriptors.

File	 descriptors	 are	 small	 integers	 corresponding	 to	 a	 file	 that	 has
been	opened	by	 the	current	process.	For	 example,	 standard	 input	 is
usually	file	descriptor	0,	standard	output	is	1,	and	standard	error	is	2.
Further	files	opened	by	a	process	will	then	be	assigned	3,	4,	5,	and	so
forth.	 The	 name	 “file	 descriptor”	 is	 slightly	 deceptive;	 on	 Unix
platforms,	sockets	and	pipes	are	also	referenced	by	file	descriptors.

The	 fileno()	 method	 can	 be	 used	 to	 obtain	 the	 file	 descriptor
associated	 with	 a	 file	 object	 when	 required.	 Note	 that	 using	 the	 file
descriptor	directly	will	bypass	the	file	object	methods,	ignoring	aspects
such	as	internal	buffering	of	data.

os.close(fd)
Close	file	descriptor	fd.

Availability:	Unix,	Windows.

Note: 	 This	 function	 is	 intended	 for	 low-level	 I/O	 and	 must	 be
applied	 to	 a	 file	 descriptor	 as	 returned	 by	 os.open()	 or
pipe().	To	close	a	“file	object”	 returned	by	 the	built-in	 function
open()	 or	 by	 popen()	 or	 fdopen(),	 use	 its	 close()
method.

os.closerange(fd_low,	fd_high)
Close	 all	 file	 descriptors	 from	 fd_low	 (inclusive)	 to	 fd_high
(exclusive),	ignoring	errors.	Equivalent	to	(but	much	faster	than):

for	fd	in	range(fd_low,	fd_high):

				try:

								os.close(fd)

				except	OSError:

								pass

Availability:	Unix,	Windows.

os.device_encoding(fd)
Return	 a	 string	 describing	 the	 encoding	 of	 the	 device	 associated
with	fd	if	it	is	connected	to	a	terminal;	else	return	None.

os.dup(fd)
Return	 a	 duplicate	 of	 file	 descriptor	 fd.	 The	 new	 file	 descriptor	 is
non-inheritable.

On	 Windows,	 when	 duplicating	 a	 standard	 stream	 (0:	 stdin,	 1:
stdout,	2:	stderr),	the	new	file	descriptor	is	inheritable.

Availability:	Unix,	Windows.

Changed	 in	 version	 3.4:	 The	 new	 file	 descriptor	 is	 now	 non-
inheritable.

os.dup2(fd,	fd2,	inheritable=True)
Duplicate	file	descriptor	fd	to	fd2,	closing	the	latter	first	if	necessary.
The	file	descriptor	fd2	is	inheritable	by	default,	or	non-inheritable	if
inheritable	is	False.

Availability:	Unix,	Windows.

Changed	in	version	3.4:	Add	the	optional	inheritable	parameter.

os.fchmod(fd,	mode)

Change	the	mode	of	the	file	given	by	fd	to	the	numeric	mode.	See
the	docs	 for	chmod()	 for	possible	values	of	mode.	As	of	Python
3.3,	this	is	equivalent	to	os.chmod(fd,	mode).

Availability:	Unix.

os.fchown(fd,	uid,	gid)
Change	 the	 owner	 and	 group	 id	 of	 the	 file	 given	 by	 fd	 to	 the
numeric	uid	and	gid.	To	leave	one	of	the	ids	unchanged,	set	it	to	-1.
See	 chown().	 As	 of	 Python	 3.3,	 this	 is	 equivalent	 to
os.chown(fd,	uid,	gid).

Availability:	Unix.

os.fdatasync(fd)
Force	 write	 of	 file	 with	 filedescriptor	 fd	 to	 disk.	 Does	 not	 force
update	of	metadata.

Availability:	Unix.

Note: 	This	function	is	not	available	on	MacOS.

os.fpathconf(fd,	name)
Return	 system	 configuration	 information	 relevant	 to	 an	 open	 file.
name	 specifies	 the	 configuration	 value	 to	 retrieve;	 it	 may	 be	 a
string	which	 is	 the	name	of	a	defined	system	value;	 these	names
are	specified	in	a	number	of	standards	(POSIX.1,	Unix	95,	Unix	98,
and	others).	Some	platforms	define	additional	names	as	well.	The
names	 known	 to	 the	 host	 operating	 system	 are	 given	 in	 the
pathconf_names	 dictionary.	 For	 configuration	 variables	 not
included	 in	 that	 mapping,	 passing	 an	 integer	 for	 name	 is	 also
accepted.

If	name	 is	a	string	and	 is	not	known,	ValueError	 is	 raised.	 If	a
specific	value	for	name	is	not	supported	by	the	host	system,	even	if
it	 is	 included	 in	 pathconf_names,	 an	 OSError	 is	 raised	 with
errno.EINVAL	for	the	error	number.

As	of	Python	3.3,	this	is	equivalent	to	os.pathconf(fd,	name).

Availability:	Unix.

os.fstat(fd)
Return	status	for	file	descriptor	fd,	like	stat().	As	of	Python	3.3,
this	is	equivalent	to	os.stat(fd).

Availability:	Unix,	Windows.

os.fstatvfs(fd)
Return	 information	 about	 the	 filesystem	 containing	 the	 file
associated	 with	 file	 descriptor	 fd,	 like	 statvfs().	 As	 of	 Python
3.3,	this	is	equivalent	to	os.statvfs(fd).

Availability:	Unix.

os.fsync(fd)
Force	write	of	 file	with	 filedescriptor	 fd	 to	disk.	On	Unix,	 this	calls
the	 native	 fsync()	 function;	 on	Windows,	 the	 MS	 _commit()
function.

If	 you’re	 starting	 with	 a	 buffered	 Python	 file	 object	 f,	 first	 do
f.flush(),	 and	 then	 do	 os.fsync(f.fileno()),	 to	 ensure
that	all	internal	buffers	associated	with	f	are	written	to	disk.

Availability:	Unix,	Windows.

os.ftruncate(fd,	length)
Truncate	the	file	corresponding	to	file	descriptor	 fd,	so	 that	 it	 is	at
most	 length	 bytes	 in	 size.	As	 of	 Python	 3.3,	 this	 is	 equivalent	 to
os.truncate(fd,	length).

Availability:	Unix.

os.isatty(fd)
Return	 True	 if	 the	 file	 descriptor	 fd	 is	 open	 and	 connected	 to	 a
tty(-like)	device,	else	False.

os.lockf(fd,	cmd,	len)
Apply,	test	or	remove	a	POSIX	lock	on	an	open	file	descriptor.	fd	is
an	open	file	descriptor.	cmd	specifies	the	command	to	use	-	one	of
F_LOCK,	F_TLOCK,	F_ULOCK	or	F_TEST.	len	specifies	the	section
of	the	file	to	lock.

Availability:	Unix.

New	in	version	3.3.

os.F_LOCK

os.F_TLOCK

os.F_ULOCK

os.F_TEST

Flags	that	specify	what	action	lockf()	will	take.

Availability:	Unix.

New	in	version	3.3.

os.lseek(fd,	pos,	how)
Set	the	current	position	of	file	descriptor	fd	to	position	pos,	modified

by	how:	SEEK_SET	or	0	to	set	the	position	relative	to	the	beginning
of	the	file;	SEEK_CUR	or	1	to	set	it	relative	to	the	current	position;
SEEK_END	or	2	 to	set	 it	 relative	 to	 the	end	of	 the	 file.	Return	 the
new	cursor	position	in	bytes,	starting	from	the	beginning.

Availability:	Unix,	Windows.

os.SEEK_SET

os.SEEK_CUR

os.SEEK_END

Parameters	to	the	lseek()	function.	Their	values	are	0,	1,	and	2,
respectively.

Availability:	Unix,	Windows.

New	 in	 version	 3.3:	 Some	 operating	 systems	 could	 support
additional	values,	like	os.SEEK_HOLE	or	os.SEEK_DATA.

os.open(file,	flags,	mode=0o777,	*,	dir_fd=None)
Open	 the	 file	 file	 and	 set	 various	 flags	 according	 to	 flags	 and
possibly	 its	mode	according	to	mode.	When	computing	mode,	 the
current	umask	value	 is	 first	masked	out.	Return	 the	file	descriptor
for	the	newly	opened	file.	The	new	file	descriptor	is	non-inheritable.

For	a	description	of	the	flag	and	mode	values,	see	the	C	run-time
documentation;	flag	constants	(like	O_RDONLY	and	O_WRONLY)	are
defined	 in	 the	 os	 module.	 In	 particular,	 on	 Windows	 adding
O_BINARY	is	needed	to	open	files	in	binary	mode.

This	 function	 can	 support	 paths	 relative	 to	 directory	 descriptors
with	the	dir_fd	parameter.

Availability:	Unix,	Windows.

Changed	 in	 version	 3.4:	 The	 new	 file	 descriptor	 is	 now	 non-
inheritable.

Note: 	 This	 function	 is	 intended	 for	 low-level	 I/O.	 For	 normal
usage,	 use	 the	 built-in	 function	 open(),	 which	 returns	 a	 file
object	with	read()	and	write()	methods	(and	many	more).	To
wrap	a	file	descriptor	in	a	file	object,	use	fdopen().

New	in	version	3.3:	The	dir_fd	argument.

The	 following	 constants	 are	 options	 for	 the	 flags	 parameter	 to	 the
open()	 function.	 They	 can	 be	 combined	 using	 the	 bitwise	 OR
operator	 |.	 Some	 of	 them	 are	 not	 available	 on	 all	 platforms.	 For
descriptions	of	 their	 availability	 and	use,	 consult	 the	open(2)	manual
page	on	Unix	or	the	MSDN	on	Windows.

os.O_RDONLY

os.O_WRONLY

os.O_RDWR

os.O_APPEND

os.O_CREAT

os.O_EXCL

os.O_TRUNC

These	constants	are	available	on	Unix	and	Windows.

os.O_DSYNC

os.O_RSYNC

os.O_SYNC

os.O_NDELAY

os.O_NONBLOCK

os.O_NOCTTY

os.O_SHLOCK

os.O_EXLOCK

http://msdn.microsoft.com/en-us/library/z0kc8e3z.aspx

os.O_CLOEXEC

These	constants	are	only	available	on	Unix.

Changed	in	version	3.3:	Add	O_CLOEXEC	constant.

os.O_BINARY

os.O_NOINHERIT

os.O_SHORT_LIVED

os.O_TEMPORARY

os.O_RANDOM

os.O_SEQUENTIAL

os.O_TEXT

These	constants	are	only	available	on	Windows.

os.O_ASYNC

os.O_DIRECT

os.O_DIRECTORY

os.O_NOFOLLOW

os.O_NOATIME

os.O_PATH

os.O_TMPFILE

These	constants	are	GNU	extensions	and	not	present	 if	 they	are
not	defined	by	the	C	library.

Changed	 in	version	3.4:	Add	O_PATH	 on	systems	 that	 support	 it.
Add	O_TMPFILE,	only	available	on	Linux	Kernel	3.11	or	newer.

os.openpty()
Open	a	new	pseudo-terminal	pair.	Return	a	pair	of	file	descriptors
(master,	slave)	 for	 the	pty	and	the	tty,	 respectively.	The	new
file	 descriptors	 are	non-inheritable.	 For	 a	 (slightly)	 more	 portable
approach,	use	the	pty	module.

Availability:	some	flavors	of	Unix.

Changed	 in	 version	 3.4:	 The	 new	 file	 descriptors	 are	 now	 non-
inheritable.

os.pipe()
Create	a	pipe.	Return	a	pair	of	file	descriptors	(r,	w)	usable	 for
reading	 and	 writing,	 respectively.	 The	 new	 file	 descriptor	 is	 non-
inheritable.

Availability:	Unix,	Windows.

Changed	 in	 version	 3.4:	 The	 new	 file	 descriptors	 are	 now	 non-
inheritable.

os.pipe2(flags)
Create	a	pipe	with	flags	set	atomically.	flags	can	be	constructed	by
ORing	 together	 one	 or	 more	 of	 these	 values:	 O_NONBLOCK,
O_CLOEXEC.	Return	 a	 pair	 of	 file	 descriptors	 (r,	w)	 usable	 for
reading	and	writing,	respectively.

Availability:	some	flavors	of	Unix.

New	in	version	3.3.

os.posix_fallocate(fd,	offset,	len)
Ensures	that	enough	disk	space	is	allocated	for	the	file	specified	by
fd	starting	from	offset	and	continuing	for	len	bytes.

Availability:	Unix.

New	in	version	3.3.

os.posix_fadvise(fd,	offset,	len,	advice)

Announces	 an	 intention	 to	 access	 data	 in	 a	 specific	 pattern	 thus
allowing	 the	 kernel	 to	make	 optimizations.	 The	 advice	 applies	 to
the	region	of	the	file	specified	by	fd	starting	at	offset	and	continuing
for	 len	 bytes.	 advice	 is	 one	 of	 POSIX_FADV_NORMAL,
POSIX_FADV_SEQUENTIAL,	 POSIX_FADV_RANDOM,
POSIX_FADV_NOREUSE,	 POSIX_FADV_WILLNEED	 or
POSIX_FADV_DONTNEED.

Availability:	Unix.

New	in	version	3.3.

os.POSIX_FADV_NORMAL

os.POSIX_FADV_SEQUENTIAL

os.POSIX_FADV_RANDOM

os.POSIX_FADV_NOREUSE

os.POSIX_FADV_WILLNEED

os.POSIX_FADV_DONTNEED

Flags	 that	 can	 be	 used	 in	 advice	 in	 posix_fadvise()	 that
specify	the	access	pattern	that	is	likely	to	be	used.

Availability:	Unix.

New	in	version	3.3.

os.pread(fd,	buffersize,	offset)
Read	from	a	file	descriptor,	fd,	at	a	position	of	offset.	It	will	read	up
to	buffersize	number	of	bytes.	The	file	offset	remains	unchanged.

Availability:	Unix.

New	in	version	3.3.

os.pwrite(fd,	string,	offset)

Write	string	to	a	file	descriptor,	fd,	from	offset,	leaving	the	file	offset
unchanged.

Availability:	Unix.

New	in	version	3.3.

os.read(fd,	n)
Read	 at	most	n	 bytes	 from	 file	 descriptor	 fd.	 Return	 a	 bytestring
containing	the	bytes	read.	If	the	end	of	the	file	referred	to	by	fd	has
been	reached,	an	empty	bytes	object	is	returned.

Availability:	Unix,	Windows.

Note: 	 This	 function	 is	 intended	 for	 low-level	 I/O	 and	 must	 be
applied	 to	 a	 file	 descriptor	 as	 returned	 by	 os.open()	 or
pipe().	To	 read	a	 “file	 object”	 returned	by	 the	 built-in	 function
open()	 or	 by	 popen()	or	fdopen(),	or	sys.stdin,	 use	 its
read()	or	readline()	methods.

os.sendfile(out,	in,	offset,	nbytes)
os.sendfile(out,	in,	offset,	nbytes,	headers=None,	trailers=None,
flags=0)

Copy	 nbytes	 bytes	 from	 file	 descriptor	 in	 to	 file	 descriptor	 out
starting	at	offset.	Return	 the	number	of	bytes	sent.	When	EOF	 is
reached	return	0.

The	first	 function	notation	is	supported	by	all	platforms	that	define
sendfile().

On	Linux,	 if	offset	 is	given	as	None,	 the	bytes	 are	 read	 from	 the
current	position	of	in	and	the	position	of	in	is	updated.

The	second	case	may	be	used	on	Mac	OS	X	and	FreeBSD	where
headers	 and	 trailers	 are	 arbitrary	 sequences	 of	 buffers	 that	 are
written	 before	 and	 after	 the	 data	 from	 in	 is	 written.	 It	 returns	 the
same	as	the	first	case.

On	Mac	OS	X	and	FreeBSD,	a	value	of	0	 for	nbytes	 specifies	 to
send	until	the	end	of	in	is	reached.

All	 platforms	 support	 sockets	 as	 out	 file	 descriptor,	 and	 some
platforms	allow	other	types	(e.g.	regular	file,	pipe)	as	well.

Availability:	Unix.

New	in	version	3.3.

os.SF_NODISKIO

os.SF_MNOWAIT

os.SF_SYNC

Parameters	 to	 the	 sendfile()	 function,	 if	 the	 implementation
supports	them.

Availability:	Unix.

New	in	version	3.3.

os.readv(fd,	buffers)
Read	from	a	file	descriptor	 fd	 into	a	number	of	mutable	bytes-like
objects	buffers.	readv()	will	 transfer	data	 into	each	buffer	until	 it
is	full	and	then	move	on	to	the	next	buffer	in	the	sequence	to	hold
the	 rest	 of	 the	 data.	 readv()	 returns	 the	 total	 number	 of	 bytes
read	(which	may	be	less	than	the	total	capacity	of	all	the	objects).

Availability:	Unix.

New	in	version	3.3.

os.tcgetpgrp(fd)
Return	the	process	group	associated	with	the	terminal	given	by	fd
(an	open	file	descriptor	as	returned	by	os.open()).

Availability:	Unix.

os.tcsetpgrp(fd,	pg)
Set	the	process	group	associated	with	the	terminal	given	by	fd	(an
open	file	descriptor	as	returned	by	os.open())	to	pg.

Availability:	Unix.

os.ttyname(fd)
Return	a	string	which	specifies	the	terminal	device	associated	with
file	descriptor	 fd.	 If	 fd	 is	not	associated	with	a	 terminal	device,	an
exception	is	raised.

Availability:	Unix.

os.write(fd,	str)
Write	the	bytestring	in	str	to	file	descriptor	fd.	Return	the	number	of
bytes	actually	written.

Availability:	Unix,	Windows.

Note: 	 This	 function	 is	 intended	 for	 low-level	 I/O	 and	 must	 be
applied	 to	 a	 file	 descriptor	 as	 returned	 by	 os.open()	 or
pipe().	To	write	a	 “file	object”	 returned	by	 the	built-in	 function
open()	 or	 by	 popen()	 or	 fdopen(),	 or	 sys.stdout	 or
sys.stderr,	use	its	write()	method.

os.writev(fd,	buffers)
Write	the	contents	of	buffers	to	file	descriptor	fd.	buffers	must	be	a
sequence	 of	bytes-like	 objects.	 writev()	writes	 the	 contents	 of
each	 object	 to	 the	 file	 descriptor	 and	 returns	 the	 total	 number	 of
bytes	written.

Availability:	Unix.

New	in	version	3.3.

16.1.4.1.	Querying	the	size	of	a	terminal

New	in	version	3.3.

os.get_terminal_size(fd=STDOUT_FILENO)
Return	 the	 size	of	 the	 terminal	window	as	 (columns,	lines),
tuple	of	type	terminal_size.

The	optional	argument	fd	 (default	STDOUT_FILENO,	or	 standard
output)	specifies	which	file	descriptor	should	be	queried.

If	the	file	descriptor	is	not	connected	to	a	terminal,	an	OSError	is
raised.

shutil.get_terminal_size()	is	the	high-level	function	which
should	 normally	 be	 used,	 os.get_terminal_size	 is	 the	 low-
level	implementation.

Availability:	Unix,	Windows.

class	os.terminal_size
A	subclass	of	 tuple,	holding	(columns,	lines)	 of	 the	 terminal
window	size.

columns

Width	of	the	terminal	window	in	characters.

lines

Height	of	the	terminal	window	in	characters.

16.1.4.2.	Inheritance	of	File	Descriptors

New	in	version	3.4.

A	 file	 descriptor	 has	 an	 “inheritable”	 flag	 which	 indicates	 if	 the	 file
descriptor	can	be	 inherited	by	child	processes.	Since	Python	3.4,	 file
descriptors	created	by	Python	are	non-inheritable	by	default.

On	UNIX,	non-inheritable	file	descriptors	are	closed	in	child	processes
at	the	execution	of	a	new	program,	other	file	descriptors	are	inherited.

On	Windows,	non-inheritable	handles	and	file	descriptors	are	closed	in
child	processes,	except	for	standard	streams	(file	descriptors	0,	1	and
2:	stdin,	stdout	and	stderr),	which	are	always	inherited.	Using	spawn*
functions,	all	inheritable	handles	and	all	inheritable	file	descriptors	are
inherited.	Using	 the	 subprocess	module,	 all	 file	 descriptors	 except
standard	 streams	 are	 closed,	 and	 inheritable	 handles	 are	 only
inherited	if	the	close_fds	parameter	is	False.

os.get_inheritable(fd)
Get	the	“inheritable”	flag	of	the	specified	file	descriptor	(a	boolean).

os.set_inheritable(fd,	inheritable)
Set	the	“inheritable”	flag	of	the	specified	file	descriptor.

os.get_handle_inheritable(handle)
Get	the	“inheritable”	flag	of	the	specified	handle	(a	boolean).

Availability:	Windows.

os.set_handle_inheritable(handle,	inheritable)
Set	the	“inheritable”	flag	of	the	specified	handle.

Availability:	Windows.

16.1.5.	Files	and	Directories

On	some	Unix	platforms,	many	of	these	functions	support	one	or	more
of	these	features:

specifying	 a	 file	 descriptor:	 For	 some	 functions,	 the	 path
argument	can	be	not	only	a	string	giving	a	path	name,	but	also	a
file	descriptor.	The	function	will	then	operate	on	the	file	referred	to
by	the	descriptor.	(For	POSIX	systems,	Python	will	call	the	f...
version	of	the	function.)

You	 can	 check	 whether	 or	 not	 path	 can	 be	 specified	 as	 a	 file
descriptor	 on	 your	 platform	 using	 os.supports_fd.	 If	 it	 is
unavailable,	using	it	will	raise	a	NotImplementedError.

If	the	function	also	supports	dir_fd	or	follow_symlinks	arguments,
it	is	an	error	to	specify	one	of	those	when	supplying	path	as	a	file
descriptor.

paths	relative	to	directory	descriptors:	If	dir_fd	 is	not	None,	 it
should	be	a	file	descriptor	referring	to	a	directory,	and	the	path	to
operate	 on	 should	 be	 relative;	 path	 will	 then	 be	 relative	 to	 that
directory.	 If	 the	 path	 is	 absolute,	 dir_fd	 is	 ignored.	 (For	 POSIX
systems,	 Python	 will	 call	 the	 ...at	 or	 f...at	 version	 of	 the
function.)

You	can	check	whether	or	not	dir_fd	is	supported	on	your	platform
using	 os.supports_dir_fd.	 If	 it	 is	 unavailable,	 using	 it	 will
raise	a	NotImplementedError.

not	following	symlinks:	If	follow_symlinks	is	False,	and	the	last
element	of	the	path	to	operate	on	is	a	symbolic	 link,	the	function

will	 operate	on	 the	 symbolic	 link	 itself	 instead	of	 the	 file	 the	 link
points	to.	(For	POSIX	systems,	Python	will	call	the	l...	version
of	the	function.)

You	 can	 check	 whether	 or	 not	 follow_symlinks	 is	 supported	 on
your	 platform	 using	 os.supports_follow_symlinks.	 If	 it	 is
unavailable,	using	it	will	raise	a	NotImplementedError.

os.access(path,	mode,	*,	dir_fd=None,	effective_ids=False,
follow_symlinks=True)

Use	 the	 real	 uid/gid	 to	 test	 for	 access	 to	 path.	 Note	 that	 most
operations	will	use	 the	effective	uid/gid,	 therefore	 this	 routine	can
be	used	in	a	suid/sgid	environment	to	test	if	the	invoking	user	has
the	 specified	 access	 to	 path.	mode	 should	 be	 F_OK	 to	 test	 the
existence	of	path,	or	 it	can	be	the	 inclusive	OR	of	one	or	more	of
R_OK,	W_OK,	and	X_OK	to	test	permissions.	Return	True	if	access
is	 allowed,	 False	 if	 not.	 See	 the	 Unix	 man	 page	 access(2)	 for
more	information.

This	 function	 can	 support	 specifying	 paths	 relative	 to	 directory
descriptors	and	not	following	symlinks.

If	effective_ids	is	True,	access()	will	perform	its	access	checks
using	 the	effective	uid/gid	 instead	of	 the	 real	uid/gid.	effective_ids
may	not	be	supported	on	your	platform;	you	can	check	whether	or
not	 it	 is	 available	 using	 os.supports_effective_ids.	 If	 it	 is
unavailable,	using	it	will	raise	a	NotImplementedError.

Availability:	Unix,	Windows.

Note: 	Using	access()	 to	check	 if	a	user	 is	authorized	to	e.g.
open	 a	 file	 before	 actually	 doing	 so	 using	 open()	 creates	 a

security	 hole,	 because	 the	 user	 might	 exploit	 the	 short	 time
interval	between	checking	and	opening	 the	 file	 to	manipulate	 it.
It’s	preferable	to	use	EAFP	techniques.	For	example:

if	os.access("myfile",	os.R_OK):

				with	open("myfile")	as	fp:

								return	fp.read()

return	"some	default	data"

is	better	written	as:

try:

				fp	=	open("myfile")

except	PermissionError:

				return	"some	default	data"

else:

				with	fp:

								return	fp.read()

Note: 	 I/O	 operations	may	 fail	 even	when	 access()	 indicates
that	 they	would	 succeed,	 particularly	 for	 operations	 on	 network
filesystems	which	may	have	permissions	 semantics	 beyond	 the
usual	POSIX	permission-bit	model.

Changed	 in	 version	 3.3:	 Added	 the	 dir_fd,	 effective_ids,	 and
follow_symlinks	parameters.

os.F_OK

os.R_OK

os.W_OK

os.X_OK

Values	 to	 pass	 as	 the	mode	 parameter	 of	 access()	 to	 test	 the
existence,	 readability,	 writability	 and	 executability	 of	 path,
respectively.

os.chdir(path)
Change	the	current	working	directory	to	path.

This	 function	 can	 support	 specifying	 a	 file	 descriptor.	 The
descriptor	must	refer	to	an	opened	directory,	not	an	open	file.

Availability:	Unix,	Windows.

New	 in	 version	 3.3:	 Added	 support	 for	 specifying	 path	 as	 a	 file
descriptor	on	some	platforms.

os.chflags(path,	flags,	*,	follow_symlinks=True)
Set	 the	 flags	 of	 path	 to	 the	 numeric	 flags.	 flags	 may	 take	 a
combination	(bitwise	OR)	of	the	following	values	(as	defined	in	the
stat	module):

stat.UF_NODUMP

stat.UF_IMMUTABLE

stat.UF_APPEND

stat.UF_OPAQUE

stat.UF_NOUNLINK

stat.UF_COMPRESSED

stat.UF_HIDDEN

stat.SF_ARCHIVED

stat.SF_IMMUTABLE

stat.SF_APPEND

stat.SF_NOUNLINK

stat.SF_SNAPSHOT

This	function	can	support	not	following	symlinks.

Availability:	Unix.

New	in	version	3.3:	The	follow_symlinks	argument.

os.chmod(path,	mode,	*,	dir_fd=None,	follow_symlinks=True)
Change	 the	mode	 of	path	 to	 the	 numeric	mode.	mode	 may	 take
one	 of	 the	 following	 values	 (as	 defined	 in	 the	 stat	 module)	 or
bitwise	ORed	combinations	of	them:

stat.S_ISUID

stat.S_ISGID

stat.S_ENFMT

stat.S_ISVTX

stat.S_IREAD

stat.S_IWRITE

stat.S_IEXEC

stat.S_IRWXU

stat.S_IRUSR

stat.S_IWUSR

stat.S_IXUSR

stat.S_IRWXG

stat.S_IRGRP

stat.S_IWGRP

stat.S_IXGRP

stat.S_IRWXO

stat.S_IROTH

stat.S_IWOTH

stat.S_IXOTH

This	function	can	support	specifying	a	file	descriptor,	paths	relative
to	directory	descriptors	and	not	following	symlinks.

Availability:	Unix,	Windows.

Note: 	Although	Windows	supports	chmod(),	you	can	only	set
the	 file’s	 read-only	 flag	 with	 it	 (via	 the	 stat.S_IWRITE	 and

stat.S_IREAD	constants	or	a	corresponding	integer	value).	All
other	bits	are	ignored.

New	in	version	3.3:	Added	support	for	specifying	path	as	an	open
file	descriptor,	and	the	dir_fd	and	follow_symlinks	arguments.

os.chown(path,	uid,	gid,	*,	dir_fd=None,	follow_symlinks=True)
Change	the	owner	and	group	id	of	path	to	the	numeric	uid	and	gid.
To	leave	one	of	the	ids	unchanged,	set	it	to	-1.

This	function	can	support	specifying	a	file	descriptor,	paths	relative
to	directory	descriptors	and	not	following	symlinks.

See	 shutil.chown()	 for	 a	 higher-level	 function	 that	 accepts
names	in	addition	to	numeric	ids.

Availability:	Unix.

New	 in	 version	 3.3:	 Added	 support	 for	 specifying	 an	 open	 file
descriptor	for	path,	and	the	dir_fd	and	follow_symlinks	arguments.

os.chroot(path)
Change	the	root	directory	of	the	current	process	to	path.

Availability:	Unix.

os.fchdir(fd)
Change	 the	current	working	directory	 to	 the	directory	 represented
by	 the	 file	 descriptor	 fd.	 The	 descriptor	must	 refer	 to	 an	 opened
directory,	 not	 an	open	 file.	As	 of	Python	3.3,	 this	 is	 equivalent	 to
os.chdir(fd).

Availability:	Unix.

os.getcwd()
Return	a	string	representing	the	current	working	directory.

Availability:	Unix,	Windows.

os.getcwdb()
Return	a	bytestring	representing	the	current	working	directory.

Availability:	Unix,	Windows.

os.lchflags(path,	flags)
Set	the	flags	of	path	to	the	numeric	flags,	like	chflags(),	but	do
not	 follow	 symbolic	 links.	 As	 of	 Python	 3.3,	 this	 is	 equivalent	 to
os.chflags(path,	flags,	follow_symlinks=False).

Availability:	Unix.

os.lchmod(path,	mode)
Change	the	mode	of	path	to	the	numeric	mode.	If	path	is	a	symlink,
this	 affects	 the	 symlink	 rather	 than	 the	 target.	 See	 the	 docs	 for
chmod()	 for	 possible	 values	 of	mode.	 As	 of	 Python	 3.3,	 this	 is
equivalent	 to	 os.chmod(path,	 mode,

follow_symlinks=False).

Availability:	Unix.

os.lchown(path,	uid,	gid)
Change	the	owner	and	group	id	of	path	to	the	numeric	uid	and	gid.
This	function	will	not	follow	symbolic	links.	As	of	Python	3.3,	this	is
equivalent	 to	 os.chown(path,	 uid,	 gid,

follow_symlinks=False).

Availability:	Unix.

os.link(src,	dst,	*,	src_dir_fd=None,	dst_dir_fd=None,
follow_symlinks=True)

Create	a	hard	link	pointing	to	src	named	dst.

This	function	can	support	specifying	src_dir_fd	and/or	dst_dir_fd	to
supply	 paths	 relative	 to	 directory	 descriptors,	 and	 not	 following
symlinks.

Availability:	Unix,	Windows.

Changed	in	version	3.2:	Added	Windows	support.

New	 in	 version	 3.3:	 Added	 the	 src_dir_fd,	 dst_dir_fd,	 and
follow_symlinks	arguments.

os.listdir(path='.')
Return	 a	 list	 containing	 the	 names	 of	 the	 entries	 in	 the	 directory
given	by	path.	The	list	is	in	arbitrary	order,	and	does	not	include	the
special	 entries	 '.'	 and	 '..'	 even	 if	 they	 are	 present	 in	 the
directory.

path	may	be	either	of	type	str	or	of	type	bytes.	If	path	is	of	type
bytes,	 the	 filenames	 returned	will	 also	 be	 of	 type	 bytes;	 in	 all
other	circumstances,	they	will	be	of	type	str.

This	 function	can	also	support	specifying	a	 file	descriptor;	 the	 file
descriptor	must	refer	to	a	directory.

Note: 	To	encode	str	filenames	to	bytes,	use	fsencode().

Availability:	Unix,	Windows.

Changed	in	version	3.2:	The	path	parameter	became	optional.

New	 in	 version	 3.3:	 Added	 support	 for	 specifying	 an	 open	 file
descriptor	for	path.

os.lstat(path,	*,	dir_fd=None)
Perform	 the	 equivalent	 of	 an	 lstat()	 system	 call	 on	 the	 given
path.	 Similar	 to	 stat(),	 but	 does	 not	 follow	 symbolic	 links.	 On
platforms	 that	 do	 not	 support	 symbolic	 links,	 this	 is	 an	 alias	 for
stat().	As	of	Python	3.3,	 this	 is	equivalent	 to	os.stat(path,
dir_fd=dir_fd,	follow_symlinks=False).

This	 function	 can	 also	 support	 paths	 relative	 to	 directory
descriptors.

Changed	 in	 version	 3.2:	Added	 support	 for	 Windows	 6.0	 (Vista)
symbolic	links.

Changed	in	version	3.3:	Added	the	dir_fd	parameter.

os.mkdir(path,	mode=0o777,	*,	dir_fd=None)
Create	a	directory	named	path	with	numeric	mode	mode.

On	some	systems,	mode	 is	 ignored.	Where	 it	 is	used,	 the	current
umask	 value	 is	 first	 masked	 out.	 If	 the	 directory	 already	 exists,
OSError	is	raised.

This	 function	 can	 also	 support	 paths	 relative	 to	 directory
descriptors.

It	 is	 also	 possible	 to	 create	 temporary	 directories;	 see	 the
tempfile	module’s	tempfile.mkdtemp()	function.

Availability:	Unix,	Windows.

New	in	version	3.3:	The	dir_fd	argument.

os.makedirs(path,	mode=0o777,	exist_ok=False)
Recursive	directory	creation	function.	Like	mkdir(),	but	makes	all
intermediate-level	directories	needed	to	contain	the	leaf	directory.

The	 default	mode	 is	 0o777	 (octal).	 On	 some	 systems,	mode	 is
ignored.	Where	it	 is	used,	the	current	umask	value	is	first	masked
out.

If	 exist_ok	 is	 False	 (the	 default),	 an	 OSError	 is	 raised	 if	 the
target	directory	already	exists.	If	exist_ok	 is	True	an	OSError	 is
still	raised	if	the	umask-masked	mode	is	different	from	the	existing
mode,	on	systems	where	the	mode	is	used.	OSError	will	also	be
raised	if	the	directory	creation	fails.

Note: 	makedirs()	will	become	confused	if	 the	path	elements
to	create	include	pardir	(eg.	”..”	on	UNIX	systems).

This	function	handles	UNC	paths	correctly.

New	in	version	3.2:	The	exist_ok	parameter.

os.mkfifo(path,	mode=0o666,	*,	dir_fd=None)
Create	 a	 FIFO	 (a	 named	 pipe)	 named	 path	 with	 numeric	 mode
mode.	The	current	umask	value	is	first	masked	out	from	the	mode.

This	 function	 can	 also	 support	 paths	 relative	 to	 directory
descriptors.

FIFOs	are	pipes	that	can	be	accessed	like	regular	files.	FIFOs	exist
until	they	are	deleted	(for	example	with	os.unlink()).	Generally,
FIFOs	are	used	as	rendezvous	between	“client”	and	“server”	 type
processes:	 the	 server	 opens	 the	FIFO	 for	 reading,	 and	 the	 client
opens	it	for	writing.	Note	that	mkfifo()	doesn’t	open	the	FIFO	—

it	just	creates	the	rendezvous	point.

Availability:	Unix.

New	in	version	3.3:	The	dir_fd	argument.

os.mknod(filename,	mode=0o600,	device=0,	*,	dir_fd=None)
Create	 a	 filesystem	node	 (file,	 device	 special	 file	 or	 named	pipe)
named	 filename.	mode	specifies	both	 the	permissions	 to	use	and
the	type	of	node	to	be	created,	being	combined	(bitwise	OR)	with
one	 of	 stat.S_IFREG,	 stat.S_IFCHR,	 stat.S_IFBLK,	 and
stat.S_IFIFO	 (those	 constants	 are	 available	 in	 stat).	 For
stat.S_IFCHR	 and	 stat.S_IFBLK,	 device	 defines	 the	 newly
created	 device	 special	 file	 (probably	 using	 os.makedev()),
otherwise	it	is	ignored.

This	 function	 can	 also	 support	 paths	 relative	 to	 directory
descriptors.

New	in	version	3.3:	The	dir_fd	argument.

os.major(device)
Extract	 the	 device	 major	 number	 from	 a	 raw	 device	 number
(usually	the	st_dev	or	st_rdev	field	from	stat).

os.minor(device)
Extract	 the	 device	 minor	 number	 from	 a	 raw	 device	 number
(usually	the	st_dev	or	st_rdev	field	from	stat).

os.makedev(major,	minor)
Compose	a	 raw	device	number	 from	 the	major	and	minor	device
numbers.

os.pathconf(path,	name)
Return	 system	 configuration	 information	 relevant	 to	 a	 named	 file.
name	 specifies	 the	 configuration	 value	 to	 retrieve;	 it	 may	 be	 a
string	which	 is	 the	name	of	a	defined	system	value;	 these	names
are	specified	in	a	number	of	standards	(POSIX.1,	Unix	95,	Unix	98,
and	others).	Some	platforms	define	additional	names	as	well.	The
names	 known	 to	 the	 host	 operating	 system	 are	 given	 in	 the
pathconf_names	 dictionary.	 For	 configuration	 variables	 not
included	 in	 that	 mapping,	 passing	 an	 integer	 for	 name	 is	 also
accepted.

If	name	 is	a	string	and	 is	not	known,	ValueError	 is	 raised.	 If	a
specific	value	for	name	is	not	supported	by	the	host	system,	even	if
it	 is	 included	 in	 pathconf_names,	 an	 OSError	 is	 raised	 with
errno.EINVAL	for	the	error	number.

This	function	can	support	specifying	a	file	descriptor.

Availability:	Unix.

os.pathconf_names

Dictionary	 mapping	 names	 accepted	 by	 pathconf()	 and
fpathconf()	 to	 the	 integer	 values	 defined	 for	 those	 names	 by
the	host	operating	system.	This	can	be	used	to	determine	the	set
of	names	known	to	the	system.

Availability:	Unix.

os.readlink(path,	*,	dir_fd=None)
Return	 a	 string	 representing	 the	 path	 to	 which	 the	 symbolic	 link
points.	The	result	may	be	either	an	absolute	or	relative	pathname;
if	it	is	relative,	it	may	be	converted	to	an	absolute	pathname	using
os.path.join(os.path.dirname(path),	result).

If	the	path	 is	a	string	object,	 the	result	will	also	be	a	string	object,
and	 the	 call	 may	 raise	 an	 UnicodeDecodeError.	 If	 the	 path	 is	 a
bytes	object,	the	result	will	be	a	bytes	object.

This	 function	 can	 also	 support	 paths	 relative	 to	 directory
descriptors.

Availability:	Unix,	Windows

Changed	 in	 version	 3.2:	Added	 support	 for	 Windows	 6.0	 (Vista)
symbolic	links.

New	in	version	3.3:	The	dir_fd	argument.

os.remove(path,	*,	dir_fd=None)
Remove	 (delete)	 the	 file	path.	 If	path	 is	 a	 directory,	 OSError	 is
raised.	Use	rmdir()	to	remove	directories.

This	function	can	support	paths	relative	to	directory	descriptors.

On	Windows,	attempting	to	remove	a	file	that	 is	 in	use	causes	an
exception	to	be	raised;	on	Unix,	the	directory	entry	is	removed	but
the	 storage	 allocated	 to	 the	 file	 is	 not	 made	 available	 until	 the
original	file	is	no	longer	in	use.

This	function	is	identical	to	unlink().

Availability:	Unix,	Windows.

New	in	version	3.3:	The	dir_fd	argument.

os.removedirs(path)
Remove	directories	recursively.	Works	like	rmdir()	except	that,	if

the	leaf	directory	is	successfully	removed,	removedirs()	tries	 to
successively	remove	every	parent	directory	mentioned	in	path	until
an	 error	 is	 raised	 (which	 is	 ignored,	 because	 it	 generally	 means
that	 a	 parent	 directory	 is	 not	 empty).	 For	 example,
os.removedirs('foo/bar/baz')	 will	 first	 remove	 the
directory	 'foo/bar/baz',	 and	 then	 remove	 'foo/bar'	 and
'foo'	 if	 they	 are	 empty.	 Raises	 OSError	 if	 the	 leaf	 directory
could	not	be	successfully	removed.

os.rename(src,	dst,	*,	src_dir_fd=None,	dst_dir_fd=None)
Rename	 the	 file	 or	 directory	 src	 to	 dst.	 If	 dst	 is	 a	 directory,
OSError	will	be	raised.	On	Unix,	if	dst	exists	and	is	a	file,	it	will	be
replaced	silently	if	the	user	has	permission.	The	operation	may	fail
on	some	Unix	 flavors	 if	src	and	dst	are	on	different	 filesystems.	 If
successful,	 the	 renaming	 will	 be	 an	 atomic	 operation	 (this	 is	 a
POSIX	requirement).	On	Windows,	if	dst	already	exists,	OSError
will	be	raised	even	if	it	is	a	file.

This	function	can	support	specifying	src_dir_fd	and/or	dst_dir_fd	to
supply	paths	relative	to	directory	descriptors.

If	 you	 want	 cross-platform	 overwriting	 of	 the	 destination,	 use
replace().

Availability:	Unix,	Windows.

New	in	version	3.3:	The	src_dir_fd	and	dst_dir_fd	arguments.

os.renames(old,	new)
Recursive	 directory	 or	 file	 renaming	 function.	 Works	 like
rename(),	except	creation	of	any	intermediate	directories	needed
to	 make	 the	 new	 pathname	 good	 is	 attempted	 first.	 After	 the
rename,	 directories	 corresponding	 to	 rightmost	 path	 segments	 of

the	old	name	will	be	pruned	away	using	removedirs().

Note: 	 This	 function	 can	 fail	 with	 the	 new	 directory	 structure
made	if	you	lack	permissions	needed	to	remove	the	leaf	directory
or	file.

os.replace(src,	dst,	*,	src_dir_fd=None,	dst_dir_fd=None)
Rename	 the	 file	 or	 directory	 src	 to	 dst.	 If	 dst	 is	 a	 directory,
OSError	will	be	raised.	If	dst	exists	and	is	a	file,	it	will	be	replaced
silently	if	the	user	has	permission.	The	operation	may	fail	if	src	and
dst	are	on	different	filesystems.	If	successful,	the	renaming	will	be
an	atomic	operation	(this	is	a	POSIX	requirement).

This	function	can	support	specifying	src_dir_fd	and/or	dst_dir_fd	to
supply	paths	relative	to	directory	descriptors.

Availability:	Unix,	Windows.

New	in	version	3.3.

os.rmdir(path,	*,	dir_fd=None)
Remove	(delete)	the	directory	path.	Only	works	when	the	directory
is	empty,	otherwise,	OSError	 is	raised.	In	order	to	remove	whole
directory	trees,	shutil.rmtree()	can	be	used.

This	function	can	support	paths	relative	to	directory	descriptors.

Availability:	Unix,	Windows.

New	in	version	3.3:	The	dir_fd	parameter.

os.stat(path,	*,	dir_fd=None,	follow_symlinks=True)
Perform	the	equivalent	of	a	stat()	system	call	on	the	given	path.

path	 may	 be	 specified	 as	 either	 a	 string	 or	 as	 an	 open	 file
descriptor.	 (This	 function	 normally	 follows	 symlinks;	 to	 stat	 a
symlink	 add	 the	 argument	 follow_symlinks=False,	 or	 use
lstat().)

The	return	value	is	an	object	whose	attributes	correspond	roughly
to	the	members	of	the	stat	structure,	namely:

st_mode	-	protection	bits,
st_ino	-	inode	number,
st_dev	-	device,
st_nlink	-	number	of	hard	links,
st_uid	-	user	id	of	owner,
st_gid	-	group	id	of	owner,
st_size	-	size	of	file,	in	bytes,
st_atime	 -	 time	 of	 most	 recent	 access	 expressed	 in
seconds,
st_mtime	 -	 time	 of	 most	 recent	 content	 modification
expressed	in	seconds,
st_ctime	 -	 platform	 dependent;	 time	 of	 most	 recent
metadata	change	on	Unix,	or	the	time	of	creation	on	Windows,
expressed	in	seconds
st_atime_ns	 -	 time	 of	 most	 recent	 access	 expressed	 in
nanoseconds	as	an	integer,
st_mtime_ns	 -	 time	 of	 most	 recent	 content	 modification
expressed	in	nanoseconds	as	an	integer,
st_ctime_ns	 -	 platform	 dependent;	 time	 of	 most	 recent
metadata	change	on	Unix,	or	the	time	of	creation	on	Windows,
expressed	in	nanoseconds	as	an	integer

On	 some	 Unix	 systems	 (such	 as	 Linux),	 the	 following	 attributes
may	also	be	available:

st_blocks	-	number	of	512-byte	blocks	allocated	for	file

st_blksize	-	filesystem	blocksize	for	efficient	file	system	I/O
st_rdev	-	type	of	device	if	an	inode	device
st_flags	-	user	defined	flags	for	file

On	other	Unix	systems	(such	as	FreeBSD),	the	following	attributes
may	 be	 available	 (but	 may	 be	 only	 filled	 out	 if	 root	 tries	 to	 use
them):

st_gen	-	file	generation	number
st_birthtime	-	time	of	file	creation

On	 Mac	 OS	 systems,	 the	 following	 attributes	 may	 also	 be
available:

st_rsize

st_creator

st_type

Note: 	 The	 exact	 meaning	 and	 resolution	 of	 the	 st_atime,
st_mtime,	 and	 st_ctime	 attributes	 depend	 on	 the	 operating
system	and	 the	 file	 system.	For	example,	on	Windows	systems
using	 the	FAT	 or	 FAT32	 file	 systems,	 st_mtime	 has	 2-second
resolution,	 and	 st_atime	 has	 only	 1-day	 resolution.	 See	 your
operating	 system	 documentation	 for	 details.	 Similarly,	 although
st_atime_ns,	 st_mtime_ns,	 and	 st_ctime_ns	 are	 always
expressed	 in	 nanoseconds,	 many	 systems	 do	 not	 provide
nanosecond	precision.	On	systems	 that	do	provide	nanosecond
precision,	 the	 floating-point	 object	 used	 to	 store	 st_atime,
st_mtime,	and	st_ctime	cannot	preserve	all	of	it,	and	as	such
will	 be	 slightly	 inexact.	 If	 you	 need	 the	 exact	 timestamps	 you
should	 always	 use	 st_atime_ns,	 st_mtime_ns,	 and
st_ctime_ns.

For	 backward	 compatibility,	 the	 return	 value	 of	 stat()	 is	 also

accessible	 as	 a	 tuple	 of	 at	 least	 10	 integers	 giving	 the	 most
important	 (and	 portable)	 members	 of	 the	 stat	 structure,	 in	 the
order	st_mode,	st_ino,	st_dev,	st_nlink,	st_uid,	st_gid,
st_size,	st_atime,	st_mtime,	st_ctime.	More	items	may	be
added	at	the	end	by	some	implementations.

This	 function	 can	 support	 specifying	 a	 file	 descriptor	 and	 not
following	symlinks.

The	 standard	module	 stat	 defines	 functions	 and	 constants	 that
are	 useful	 for	 extracting	 information	 from	 a	 stat	 structure.	 (On
Windows,	some	items	are	filled	with	dummy	values.)

Example:

>>>	import	os

>>>	statinfo	=	os.stat('somefile.txt')

>>>	statinfo

posix.stat_result(st_mode=33188,	st_ino=7876932,	st_dev=234881026,

st_nlink=1,	st_uid=501,	st_gid=501,	st_size=264,	st_atime=1297230295,

st_mtime=1297230027,	st_ctime=1297230027)

>>>	statinfo.st_size

264

Availability:	Unix,	Windows.

New	 in	 version	 3.3:	 Added	 the	 dir_fd	 and	 follow_symlinks
arguments,	 specifying	 a	 file	 descriptor	 instead	 of	 a	 path,	 and	 the
st_atime_ns,	st_mtime_ns,	and	st_ctime_ns	members.

os.stat_float_times([newvalue])
Determine	whether	stat_result	represents	time	stamps	as	float
objects.	If	newvalue	is	True,	future	calls	to	stat()	return	floats,	if

it	 is	False,	 future	 calls	 return	 ints.	 If	newvalue	 is	 omitted,	 return
the	current	setting.

For	 compatibility	 with	 older	 Python	 versions,	 accessing
stat_result	as	a	tuple	always	returns	integers.

Python	now	returns	 float	values	by	default.	Applications	which	do
not	 work	 correctly	 with	 floating	 point	 time	 stamps	 can	 use	 this
function	to	restore	the	old	behaviour.

The	 resolution	 of	 the	 timestamps	 (that	 is	 the	 smallest	 possible
fraction)	 depends	 on	 the	 system.	 Some	 systems	 only	 support
second	 resolution;	 on	 these	 systems,	 the	 fraction	 will	 always	 be
zero.

It	 is	 recommended	 that	 this	 setting	 is	 only	 changed	 at	 program
startup	time	in	the	__main__	module;	libraries	should	never	change
this	setting.	If	an	application	uses	a	library	that	works	incorrectly	if
floating	 point	 time	 stamps	 are	 processed,	 this	 application	 should
turn	the	feature	off	until	the	library	has	been	corrected.

Deprecated	since	version	3.3.

os.statvfs(path)
Perform	a	statvfs()	 system	call	 on	 the	given	path.	The	 return
value	 is	an	object	whose	attributes	describe	the	filesystem	on	the
given	 path,	 and	 correspond	 to	 the	 members	 of	 the	 statvfs
structure,	 namely:	 f_bsize,	 f_frsize,	 f_blocks,	 f_bfree,
f_bavail,	 f_files,	 f_ffree,	 f_favail,	 f_flag,
f_namemax.

Two	module-level	constants	are	defined	for	the	f_flag	attribute’s

bit-flags:	if	ST_RDONLY	is	set,	the	filesystem	is	mounted	read-only,
and	 if	 ST_NOSUID	 is	 set,	 the	 semantics	 of	 setuid/setgid	 bits	 are
disabled	or	not	supported.

Additional	module-level	constants	are	defined	for	GNU/glibc	based
systems.	These	are	ST_NODEV	(disallow	access	to	device	special
files),	 ST_NOEXEC	 (disallow	 program	 execution),
ST_SYNCHRONOUS	 (writes	 are	 synced	 at	 once),	 ST_MANDLOCK
(allow	 mandatory	 locks	 on	 an	 FS),	 ST_WRITE	 (write	 on
file/directory/symlink),	 ST_APPEND	 (append-only	 file),
ST_IMMUTABLE	 (immutable	 file),	 ST_NOATIME	 (do	 not	 update
access	 times),	ST_NODIRATIME	 (do	 not	 update	 directory	 access
times),	ST_RELATIME	(update	atime	relative	to	mtime/ctime).

This	function	can	support	specifying	a	file	descriptor.

Changed	 in	 version	 3.2:	 The	 ST_RDONLY	 and	 ST_NOSUID
constants	were	added.

Changed	 in	 version	 3.4:	 The	 ST_NODEV,	 ST_NOEXEC,
ST_SYNCHRONOUS,	 ST_MANDLOCK,	 ST_WRITE,	 ST_APPEND,
ST_IMMUTABLE,	 ST_NOATIME,	 ST_NODIRATIME,	 and
ST_RELATIME	constants	were	added.

Availability:	Unix.

New	 in	 version	 3.3:	 Added	 support	 for	 specifying	 an	 open	 file
descriptor	for	path.

os.supports_dir_fd

A	 Set	 object	 indicating	which	 functions	 in	 the	 os	 module	 permit
use	of	 their	dir_fd	 parameter.	Different	 platforms	 provide	 different

functionality,	 and	 an	 option	 that	 might	 work	 on	 one	 might	 be
unsupported	 on	 another.	 For	 consistency’s	 sakes,	 functions	 that
support	dir_fd	always	allow	specifying	the	parameter,	but	will	raise
an	exception	if	the	functionality	is	not	actually	available.

To	 check	 whether	 a	 particular	 function	 permits	 use	 of	 its	 dir_fd
parameter,	 use	 the	 in	 operator	 on	 supports_dir_fd.	 As	 an
example,	this	expression	determines	whether	the	dir_fd	parameter
of	os.stat()	is	locally	available:

os.stat	in	os.supports_dir_fd

Currently	dir_fd	 parameters	only	work	on	Unix	platforms;	 none	of
them	work	on	Windows.

New	in	version	3.3.

os.supports_effective_ids

A	 Set	 object	 indicating	which	 functions	 in	 the	 os	 module	 permit
use	of	 the	effective_ids	 parameter	 for	 os.access().	 If	 the	 local
platform	 supports	 it,	 the	 collection	 will	 contain	 os.access(),
otherwise	it	will	be	empty.

To	 check	 whether	 you	 can	 use	 the	 effective_ids	 parameter	 for
os.access(),	use	 the	in	operator	on	supports_dir_fd,	 like
so:

os.access	in	os.supports_effective_ids

Currently	effective_ids	 only	 works	 on	 Unix	 platforms;	 it	 does	 not
work	on	Windows.

New	in	version	3.3.

os.supports_fd

A	 Set	 object	 indicating	which	 functions	 in	 the	 os	 module	 permit
specifying	their	path	parameter	as	an	open	file	descriptor.	Different
platforms	 provide	 different	 functionality,	 and	 an	 option	 that	 might
work	on	one	might	be	unsupported	on	another.	For	 consistency’s
sakes,	 functions	 that	 support	 fd	 always	 allow	 specifying	 the
parameter,	 but	 will	 raise	 an	 exception	 if	 the	 functionality	 is	 not
actually	available.

To	check	whether	a	particular	 function	permits	specifying	an	open
file	 descriptor	 for	 its	 path	 parameter,	 use	 the	 in	 operator	 on
supports_fd.	 As	 an	 example,	 this	 expression	 determines
whether	 os.chdir()	 accepts	 open	 file	 descriptors	 when	 called
on	your	local	platform:

os.chdir	in	os.supports_fd

New	in	version	3.3.

os.supports_follow_symlinks

A	 Set	 object	 indicating	which	 functions	 in	 the	 os	 module	 permit
use	of	their	follow_symlinks	parameter.	Different	platforms	provide
different	 functionality,	and	an	option	that	might	work	on	one	might
be	unsupported	on	another.	For	consistency’s	sakes,	functions	that
support	follow_symlinks	always	allow	specifying	the	parameter,	but
will	raise	an	exception	if	the	functionality	is	not	actually	available.

To	 check	 whether	 a	 particular	 function	 permits	 use	 of	 its
follow_symlinks	 parameter,	 use	 the	 in	 operator	 on
supports_follow_symlinks.	 As	 an	 example,	 this	 expression
determines	whether	the	follow_symlinks	parameter	of	os.stat()
is	locally	available:

os.stat	in	os.supports_follow_symlinks

New	in	version	3.3.

os.symlink(source,	link_name,	target_is_directory=False,	*,
dir_fd=None)

Create	a	symbolic	link	pointing	to	source	named	link_name.

On	Windows,	a	symlink	represents	either	a	file	or	a	directory,	and
does	not	morph	 to	 the	 target	dynamically.	 If	 the	 target	 is	present,
the	 type	 of	 the	 symlink	 will	 be	 created	 to	 match.	 Otherwise,	 the
symlink	will	be	created	as	a	directory	if	target_is_directory	is	True
or	a	file	symlink	(the	default)	otherwise.	On	non-Window	platforms,
target_is_directory	is	ignored.

Symbolic	 link	 support	 was	 introduced	 in	 Windows	 6.0	 (Vista).
symlink()	 will	 raise	 a	 NotImplementedError	 on	 Windows
versions	earlier	than	6.0.

This	function	can	support	paths	relative	to	directory	descriptors.

Note: 	 On	 Windows,	 the	 SeCreateSymbolicLinkPrivilege	 is
required	in	order	to	successfully	create	symlinks.	This	privilege	is
not	typically	granted	to	regular	users	but	is	available	to	accounts
which	 can	 escalate	 privileges	 to	 the	 administrator	 level.	 Either
obtaining	 the	 privilege	 or	 running	 your	 application	 as	 an
administrator	are	ways	to	successfully	create	symlinks.
OSError	is	raised	when	the	function	is	called	by	an	unprivileged
user.

Availability:	Unix,	Windows.

Changed	 in	 version	 3.2:	Added	 support	 for	 Windows	 6.0	 (Vista)

symbolic	links.

New	 in	 version	 3.3:	 Added	 the	 dir_fd	 argument,	 and	 now	 allow
target_is_directory	on	non-Windows	platforms.

os.sync()
Force	write	of	everything	to	disk.

Availability:	Unix.

New	in	version	3.3.

os.truncate(path,	length)
Truncate	the	file	corresponding	to	path,	so	that	it	is	at	most	 length
bytes	in	size.

This	function	can	support	specifying	a	file	descriptor.

Availability:	Unix.

New	in	version	3.3.

os.unlink(path,	*,	dir_fd=None)
Remove	 (delete)	 the	 file	 path.	 This	 function	 is	 identical	 to
remove();	the	unlink	name	is	its	traditional	Unix	name.	Please
see	the	documentation	for	remove()	for	further	information.

Availability:	Unix,	Windows.

New	in	version	3.3:	The	dir_fd	parameter.

os.utime(path,	times=None,	*,	ns=None,	dir_fd=None,
follow_symlinks=True)

Set	the	access	and	modified	times	of	the	file	specified	by	path.

utime()	 takes	 two	 optional	 parameters,	 times	 and	 ns.	 These
specify	the	times	set	on	path	and	are	used	as	follows:

If	ns	is	not	None,	it	must	be	a	2-tuple	of	the	form	(atime_ns,
mtime_ns)	 where	 each	 member	 is	 an	 int	 expressing
nanoseconds.
If	times	is	not	None,	it	must	be	a	2-tuple	of	the	form	(atime,
mtime)	 where	 each	 member	 is	 an	 int	 or	 float	 expressing
seconds.
If	times	and	ns	are	both	None,	this	is	equivalent	to	specifying
ns=(atime_ns,	 mtime_ns)	 where	 both	 times	 are	 the
current	time.

It	is	an	error	to	specify	tuples	for	both	times	and	ns.

Whether	a	directory	can	be	given	for	path	depends	on	whether	the
operating	 system	 implements	 directories	 as	 files	 (for	 example,
Windows	does	not).	Note	that	the	exact	times	you	set	here	may	not
be	 returned	 by	 a	 subsequent	 stat()	 call,	 depending	 on	 the
resolution	 with	 which	 your	 operating	 system	 records	 access	 and
modification	 times;	 see	 stat().	The	best	way	 to	 preserve	exact
times	 is	 to	 use	 the	 st_atime_ns	 and	st_mtime_ns	 fields	 from	 the
os.stat()	result	object	with	the	ns	parameter	to	utime.

This	function	can	support	specifying	a	file	descriptor,	paths	relative
to	directory	descriptors	and	not	following	symlinks.

Availability:	Unix,	Windows.

New	 in	 version	 3.3:	 Added	 support	 for	 specifying	 an	 open	 file
descriptor	 for	 path,	 and	 the	 dir_fd,	 follow_symlinks,	 and	 ns
parameters.

os.walk(top,	topdown=True,	onerror=None,	followlinks=False)

Generate	 the	 file	 names	 in	 a	 directory	 tree	 by	 walking	 the	 tree
either	top-down	or	bottom-up.	For	each	directory	in	the	tree	rooted
at	directory	top	(including	top	itself),	it	yields	a	3-tuple	(dirpath,
dirnames,	filenames).

dirpath	is	a	string,	the	path	to	the	directory.	dirnames	is	a	list	of	the
names	of	the	subdirectories	in	dirpath	 (excluding	'.'	and	'..').
filenames	is	a	list	of	the	names	of	the	non-directory	files	in	dirpath.
Note	 that	 the	 names	 in	 the	 lists	 contain	 no	 path	 components.	 To
get	 a	 full	 path	 (which	 begins	 with	 top)	 to	 a	 file	 or	 directory	 in
dirpath,	do	os.path.join(dirpath,	name).

If	optional	argument	topdown	is	True	or	not	specified,	the	triple	for
a	 directory	 is	 generated	 before	 the	 triples	 for	 any	 of	 its
subdirectories	 (directories	are	generated	 top-down).	 If	 topdown	 is
False,	the	triple	for	a	directory	is	generated	after	the	triples	for	all
of	its	subdirectories	(directories	are	generated	bottom-up).

When	topdown	is	True,	the	caller	can	modify	the	dirnames	list	in-
place	 (perhaps	using	 del	 or	 slice	 assignment),	 and	 walk()	will
only	 recurse	 into	 the	 subdirectories	 whose	 names	 remain	 in
dirnames;	this	can	be	used	to	prune	the	search,	impose	a	specific
order	 of	 visiting,	 or	 even	 to	 inform	 walk()	 about	 directories	 the
caller	 creates	 or	 renames	 before	 it	 resumes	 walk()	 again.
Modifying	 dirnames	 when	 topdown	 is	 False	 is	 ineffective,
because	 in	 bottom-up	 mode	 the	 directories	 in	 dirnames	 are
generated	before	dirpath	itself	is	generated.

By	default,	errors	from	the	listdir()	call	are	ignored.	If	optional
argument	 onerror	 is	 specified,	 it	 should	 be	 a	 function;	 it	 will	 be
called	with	one	argument,	an	OSError	instance.	It	can	report	 the
error	to	continue	with	the	walk,	or	raise	the	exception	to	abort	the

walk.	Note	that	the	filename	is	available	as	the	filename	attribute
of	the	exception	object.

By	 default,	 walk()	 will	 not	 walk	 down	 into	 symbolic	 links	 that
resolve	 to	 directories.	 Set	 followlinks	 to	 True	 to	 visit	 directories
pointed	to	by	symlinks,	on	systems	that	support	them.

Note: 	 Be	 aware	 that	 setting	 followlinks	 to	 True	 can	 lead	 to
infinite	 recursion	 if	 a	 link	 points	 to	 a	 parent	 directory	 of	 itself.
walk()	does	not	keep	track	of	the	directories	it	visited	already.

Note: 	If	you	pass	a	relative	pathname,	don’t	change	the	current
working	 directory	 between	 resumptions	 of	 walk().	 walk()
never	changes	 the	current	directory,	and	assumes	 that	 its	caller
doesn’t	either.

This	example	displays	the	number	of	bytes	taken	by	non-directory
files	 in	 each	 directory	 under	 the	 starting	 directory,	 except	 that	 it
doesn’t	look	under	any	CVS	subdirectory:

import	os

from	os.path	import	join,	getsize

for	root,	dirs,	files	in	os.walk('python/Lib/email'

				print(root,	"consumes",	end="	")

				print(sum(getsize(join(root,	name))	for	name	in

				print("bytes	in",	len(files),	"non-directory	files"

				if	'CVS'	in	dirs:

								dirs.remove('CVS')		#	don't	visit	CVS	directories

In	 the	 next	 example,	 walking	 the	 tree	 bottom-up	 is	 essential:
rmdir()	doesn’t	allow	deleting	a	directory	before	the	directory	is
empty:

#	Delete	everything	reachable	from	the	directory	named	in	"top",

#	assuming	there	are	no	symbolic	links.

#	CAUTION:		This	is	dangerous!		For	example,	if	top	==	'/',	it

#	could	delete	all	your	disk	files.

import	os

for	root,	dirs,	files	in	os.walk(top,	topdown=False

				for	name	in	files:

								os.remove(os.path.join(root,	name))

				for	name	in	dirs:

								os.rmdir(os.path.join(root,	name))

os.fwalk(top='.',	topdown=True,	onerror=None,	*,
follow_symlinks=False,	dir_fd=None)

This	 behaves	 exactly	 like	 walk(),	 except	 that	 it	 yields	 a	 4-tuple
(dirpath,	dirnames,	filenames,	dirfd),	and	it	supports
dir_fd.

dirpath,	dirnames	 and	 filenames	 are	 identical	 to	 walk()	 output,
and	dirfd	is	a	file	descriptor	referring	to	the	directory	dirpath.

This	function	always	supports	paths	relative	to	directory	descriptors
and	 not	 following	 symlinks.	 Note	 however	 that,	 unlike	 other
functions,	the	fwalk()	default	value	for	follow_symlinks	is	False.

Note: 	 Since	 fwalk()	 yields	 file	 descriptors,	 those	 are	 only
valid	 until	 the	 next	 iteration	 step,	 so	 you	 should	 duplicate	 them
(e.g.	with	dup())	if	you	want	to	keep	them	longer.

This	example	displays	the	number	of	bytes	taken	by	non-directory
files	 in	 each	 directory	 under	 the	 starting	 directory,	 except	 that	 it
doesn’t	look	under	any	CVS	subdirectory:

import	os

for	root,	dirs,	files,	rootfd	in	os.fwalk('python/Lib/email'

				print(root,	"consumes",	end="")

				print(sum([os.stat(name,	dir_fd=rootfd).st_size

										end="")

				print("bytes	in",	len(files),	"non-directory	files"

				if	'CVS'	in	dirs:

								dirs.remove('CVS')		#	don't	visit	CVS	directories

In	 the	 next	 example,	 walking	 the	 tree	 bottom-up	 is	 essential:
rmdir()	doesn’t	allow	deleting	a	directory	before	the	directory	is
empty:

#	Delete	everything	reachable	from	the	directory	named	in	"top",

#	assuming	there	are	no	symbolic	links.

#	CAUTION:		This	is	dangerous!		For	example,	if	top	==	'/',	it

#	could	delete	all	your	disk	files.

import	os

for	root,	dirs,	files,	rootfd	in	os.fwalk(top,	topdown

				for	name	in	files:

								os.unlink(name,	dir_fd=rootfd)

				for	name	in	dirs:

								os.rmdir(name,	dir_fd=rootfd)

Availability:	Unix.

New	in	version	3.3.

16.1.5.1.	Linux	extended	attributes

New	in	version	3.3.

These	functions	are	all	available	on	Linux	only.

os.getxattr(path,	attribute,	*,	follow_symlinks=True)

Return	 the	 value	 of	 the	 extended	 filesystem	attribute	attribute	 for
path.	attribute	can	be	bytes	or	str.	If	 it	 is	str,	 it	 is	encoded	with	the
filesystem	encoding.

This	 function	 can	 support	 specifying	 a	 file	 descriptor	 and	 not
following	symlinks.

os.listxattr(path=None,	*,	follow_symlinks=True)
Return	 a	 list	 of	 the	 extended	 filesystem	 attributes	 on	 path.	 The
attributes	 in	 the	 list	 are	 represented	 as	 strings	 decoded	 with	 the
filesystem	encoding.	 If	path	 is	None,	listxattr()	will	 examine
the	current	directory.

This	 function	 can	 support	 specifying	 a	 file	 descriptor	 and	 not
following	symlinks.

os.removexattr(path,	attribute,	*,	follow_symlinks=True)
Removes	 the	 extended	 filesystem	 attribute	 attribute	 from	 path.
attribute	should	be	bytes	or	str.	If	it	is	a	string,	it	is	encoded	with	the
filesystem	encoding.

This	 function	 can	 support	 specifying	 a	 file	 descriptor	 and	 not
following	symlinks.

os.setxattr(path,	attribute,	value,	flags=0,	*,
follow_symlinks=True)

Set	 the	 extended	 filesystem	 attribute	 attribute	 on	 path	 to	 value.
attribute	must	be	a	bytes	or	str	with	no	embedded	NULs.	 If	 it	 is	a
str,	 it	 is	 encoded	 with	 the	 filesystem	 encoding.	 flags	 may	 be
XATTR_REPLACE	or	XATTR_CREATE.	If	XATTR_REPLACE	is	given
and	 the	 attribute	 does	 not	 exist,	 EEXISTS	 will	 be	 raised.	 If
XATTR_CREATE	 is	 given	 and	 the	 attribute	 already	 exists,	 the
attribute	will	not	be	created	and	ENODATA	will	be	raised.

This	 function	 can	 support	 specifying	 a	 file	 descriptor	 and	 not
following	symlinks.

Note: 	 A	 bug	 in	 Linux	 kernel	 versions	 less	 than	 2.6.39	 caused
the	flags	argument	to	be	ignored	on	some	filesystems.

os.XATTR_SIZE_MAX

The	 maximum	 size	 the	 value	 of	 an	 extended	 attribute	 can	 be.
Currently,	this	is	64	KiB	on	Linux.

os.XATTR_CREATE

This	is	a	possible	value	for	the	flags	argument	in	setxattr().	It
indicates	the	operation	must	create	an	attribute.

os.XATTR_REPLACE

This	is	a	possible	value	for	the	flags	argument	in	setxattr().	It
indicates	the	operation	must	replace	an	existing	attribute.

16.1.6.	Process	Management

These	functions	may	be	used	to	create	and	manage	processes.

The	 various	 exec*	 functions	 take	 a	 list	 of	 arguments	 for	 the	 new
program	 loaded	 into	 the	 process.	 In	 each	 case,	 the	 first	 of	 these
arguments	is	passed	to	the	new	program	as	its	own	name	rather	than
as	an	argument	a	user	may	have	typed	on	a	command	line.	For	the	C
programmer,	this	is	the	argv[0]	passed	to	a	program’s	main().	For
example,	 os.execv('/bin/echo',	['foo',	'bar'])	 will	 only
print	bar	on	standard	output;	foo	will	seem	to	be	ignored.

os.abort()
Generate	a	SIGABRT	 signal	 to	 the	current	process.	On	Unix,	 the
default	 behavior	 is	 to	 produce	 a	 core	 dump;	 on	 Windows,	 the
process	 immediately	 returns	 an	 exit	 code	 of	 3.	 Be	 aware	 that
calling	 this	 function	 will	 not	 call	 the	 Python	 signal	 handler
registered	for	SIGABRT	with	signal.signal().

Availability:	Unix,	Windows.

os.execl(path,	arg0,	arg1,	...)
os.execle(path,	arg0,	arg1,	...,	env)
os.execlp(file,	arg0,	arg1,	...)
os.execlpe(file,	arg0,	arg1,	...,	env)
os.execv(path,	args)
os.execve(path,	args,	env)
os.execvp(file,	args)
os.execvpe(file,	args,	env)

These	 functions	all	execute	a	new	program,	 replacing	 the	current
process;	they	do	not	return.	On	Unix,	the	new	executable	is	loaded

into	the	current	process,	and	will	have	the	same	process	id	as	the
caller.	Errors	will	be	reported	as	OSError	exceptions.

The	current	process	is	replaced	immediately.	Open	file	objects	and
descriptors	 are	 not	 flushed,	 so	 if	 there	may	 be	 data	 buffered	 on
these	 open	 files,	 you	 should	 flush	 them	 using
sys.stdout.flush()	or	os.fsync()	before	calling	an	exec*
function.

The	 “l”	 and	 “v”	 variants	 of	 the	 exec*	 functions	 differ	 in	 how
command-line	arguments	are	passed.	The	“l”	variants	are	perhaps
the	easiest	to	work	with	if	the	number	of	parameters	is	fixed	when
the	 code	 is	 written;	 the	 individual	 parameters	 simply	 become
additional	parameters	to	the	execl*()	functions.	The	“v”	variants
are	 good	 when	 the	 number	 of	 parameters	 is	 variable,	 with	 the
arguments	being	passed	in	a	list	or	tuple	as	the	args	parameter.	In
either	 case,	 the	 arguments	 to	 the	 child	 process	 should	 start	 with
the	name	of	the	command	being	run,	but	this	is	not	enforced.

The	 variants	 which	 include	 a	 “p”	 near	 the	 end	 (execlp(),
execlpe(),	 execvp(),	 and	 execvpe())	 will	 use	 the	 PATH
environment	 variable	 to	 locate	 the	 program	 file.	 When	 the
environment	is	being	replaced	(using	one	of	the	exec*e	variants,
discussed	in	the	next	paragraph),	the	new	environment	is	used	as
the	 source	 of	 the	 PATH	 variable.	 The	 other	 variants,	 execl(),
execle(),	 execv(),	 and	 execve(),	 will	 not	 use	 the	 PATH
variable	to	locate	the	executable;	path	must	contain	an	appropriate
absolute	or	relative	path.

For	 execle(),	 execlpe(),	 execve(),	 and	 execvpe()	 (note
that	 these	 all	 end	 in	 “e”),	 the	env	 parameter	must	 be	 a	mapping
which	 is	 used	 to	 define	 the	 environment	 variables	 for	 the	 new

process	 (these	 are	 used	 instead	 of	 the	 current	 process’
environment);	 the	 functions	execl(),	execlp(),	execv(),	and
execvp()	all	cause	the	new	process	to	inherit	the	environment	of
the	current	process.

For	execve()	on	some	platforms,	path	may	also	be	specified	as
an	open	file	descriptor.	This	functionality	may	not	be	supported	on
your	 platform;	 you	 can	 check	whether	 or	 not	 it	 is	 available	 using
os.supports_fd.	 If	 it	 is	 unavailable,	 using	 it	 will	 raise	 a
NotImplementedError.

Availability:	Unix,	Windows.

New	 in	 version	 3.3:	 Added	 support	 for	 specifying	 an	 open	 file
descriptor	for	path	for	execve().

os._exit(n)
Exit	 the	 process	 with	 status	 n,	 without	 calling	 cleanup	 handlers,
flushing	stdio	buffers,	etc.

Availability:	Unix,	Windows.

Note: 	 The	 standard	 way	 to	 exit	 is	 sys.exit(n).	 _exit()
should	 normally	 only	 be	 used	 in	 the	 child	 process	 after	 a
fork().

The	following	exit	codes	are	defined	and	can	be	used	with	_exit(),
although	 they	 are	 not	 required.	 These	 are	 typically	 used	 for	 system
programs	written	in	Python,	such	as	a	mail	server’s	external	command
delivery	program.

Note: 	Some	of	these	may	not	be	available	on	all	Unix	platforms,

since	there	is	some	variation.	These	constants	are	defined	where
they	are	defined	by	the	underlying	platform.

os.EX_OK

Exit	code	that	means	no	error	occurred.

Availability:	Unix.

os.EX_USAGE

Exit	code	that	means	the	command	was	used	incorrectly,	such	as
when	the	wrong	number	of	arguments	are	given.

Availability:	Unix.

os.EX_DATAERR

Exit	code	that	means	the	input	data	was	incorrect.

Availability:	Unix.

os.EX_NOINPUT

Exit	code	that	means	an	input	file	did	not	exist	or	was	not	readable.

Availability:	Unix.

os.EX_NOUSER

Exit	code	that	means	a	specified	user	did	not	exist.

Availability:	Unix.

os.EX_NOHOST

Exit	code	that	means	a	specified	host	did	not	exist.

Availability:	Unix.

os.EX_UNAVAILABLE

Exit	code	that	means	that	a	required	service	is	unavailable.

Availability:	Unix.

os.EX_SOFTWARE

Exit	code	that	means	an	internal	software	error	was	detected.

Availability:	Unix.

os.EX_OSERR

Exit	 code	 that	 means	 an	 operating	 system	 error	 was	 detected,
such	as	the	inability	to	fork	or	create	a	pipe.

Availability:	Unix.

os.EX_OSFILE

Exit	code	that	means	some	system	file	did	not	exist,	could	not	be
opened,	or	had	some	other	kind	of	error.

Availability:	Unix.

os.EX_CANTCREAT

Exit	 code	 that	 means	 a	 user	 specified	 output	 file	 could	 not	 be
created.

Availability:	Unix.

os.EX_IOERR

Exit	 code	 that	 means	 that	 an	 error	 occurred	 while	 doing	 I/O	 on
some	file.

Availability:	Unix.

os.EX_TEMPFAIL

Exit	code	 that	means	a	 temporary	 failure	occurred.	This	 indicates

something	 that	 may	 not	 really	 be	 an	 error,	 such	 as	 a	 network
connection	that	couldn’t	be	made	during	a	retryable	operation.

Availability:	Unix.

os.EX_PROTOCOL

Exit	code	that	means	that	a	protocol	exchange	was	illegal,	invalid,
or	not	understood.

Availability:	Unix.

os.EX_NOPERM

Exit	 code	 that	 means	 that	 there	 were	 insufficient	 permissions	 to
perform	the	operation	(but	not	intended	for	file	system	problems).

Availability:	Unix.

os.EX_CONFIG

Exit	 code	 that	 means	 that	 some	 kind	 of	 configuration	 error
occurred.

Availability:	Unix.

os.EX_NOTFOUND

Exit	code	that	means	something	like	“an	entry	was	not	found”.

Availability:	Unix.

os.fork()
Fork	a	child	process.	Return	0	 in	the	child	and	the	child’s	process
id	in	the	parent.	If	an	error	occurs	OSError	is	raised.

Note	 that	 some	 platforms	 including	 FreeBSD	<=	 6.3	 and	Cygwin
have	known	issues	when	using	fork()	from	a	thread.

Warning: 	 See	 ssl	 for	 applications	 that	 use	 the	 SSL	 module
with	fork().

Availability:	Unix.

os.forkpty()
Fork	 a	 child	 process,	 using	 a	 new	pseudo-terminal	 as	 the	 child’s
controlling	terminal.	Return	a	pair	of	(pid,	fd),	where	pid	is	0	in
the	child,	the	new	child’s	process	id	in	the	parent,	and	fd	is	the	file
descriptor	 of	 the	master	 end	 of	 the	 pseudo-terminal.	 For	 a	more
portable	 approach,	 use	 the	 pty	 module.	 If	 an	 error	 occurs
OSError	is	raised.

Availability:	some	flavors	of	Unix.

os.kill(pid,	sig)
Send	 signal	 sig	 to	 the	 process	 pid.	 Constants	 for	 the	 specific
signals	available	on	 the	host	 platform	are	defined	 in	 the	 signal
module.

Windows:	 The	 signal.CTRL_C_EVENT	 and
signal.CTRL_BREAK_EVENT	 signals	 are	 special	 signals	 which
can	 only	 be	 sent	 to	 console	 processes	 which	 share	 a	 common
console	window,	e.g.,	some	subprocesses.	Any	other	value	for	sig
will	 cause	 the	 process	 to	 be	 unconditionally	 killed	 by	 the
TerminateProcess	 API,	 and	 the	 exit	 code	 will	 be	 set	 to	 sig.	 The
Windows	version	of	kill()	additionally	takes	process	handles	to
be	killed.

See	also	signal.pthread_kill().

New	in	version	3.2:	Windows	support.

os.killpg(pgid,	sig)
Send	the	signal	sig	to	the	process	group	pgid.

Availability:	Unix.

os.nice(increment)
Add	 increment	 to	 the	 process’s	 “niceness”.	 Return	 the	 new
niceness.

Availability:	Unix.

os.plock(op)
Lock	program	segments	 into	memory.	The	value	of	op	 (defined	 in
<sys/lock.h>)	determines	which	segments	are	locked.

Availability:	Unix.

os.popen(...)
Run	child	processes,	 returning	opened	pipes	 for	communications.
These	functions	are	described	in	section	File	Object	Creation.

os.spawnl(mode,	path,	...)
os.spawnle(mode,	path,	...,	env)
os.spawnlp(mode,	file,	...)
os.spawnlpe(mode,	file,	...,	env)
os.spawnv(mode,	path,	args)
os.spawnve(mode,	path,	args,	env)
os.spawnvp(mode,	file,	args)
os.spawnvpe(mode,	file,	args,	env)

Execute	the	program	path	in	a	new	process.

(Note	 that	 the	 subprocess	 module	 provides	 more	 powerful
facilities	 for	 spawning	 new	 processes	 and	 retrieving	 their	 results;

using	 that	 module	 is	 preferable	 to	 using	 these	 functions.	 Check
especially	 the	 Replacing	 Older	 Functions	 with	 the	 subprocess
Module	section.)

If	mode	 is	 P_NOWAIT,	 this	 function	 returns	 the	 process	 id	 of	 the
new	process;	if	mode	is	P_WAIT,	returns	the	process’s	exit	code	if
it	exits	normally,	or	-signal,	where	signal	 is	the	signal	that	killed
the	 process.	 On	 Windows,	 the	 process	 id	 will	 actually	 be	 the
process	handle,	so	can	be	used	with	the	waitpid()	function.

The	 “l”	 and	 “v”	 variants	 of	 the	 spawn*	 functions	 differ	 in	 how
command-line	arguments	are	passed.	The	“l”	variants	are	perhaps
the	easiest	to	work	with	if	the	number	of	parameters	is	fixed	when
the	 code	 is	 written;	 the	 individual	 parameters	 simply	 become
additional	 parameters	 to	 the	 spawnl*()	 functions.	 The	 “v”
variants	are	good	when	the	number	of	parameters	is	variable,	with
the	 arguments	 being	 passed	 in	 a	 list	 or	 tuple	 as	 the	 args
parameter.	In	either	case,	the	arguments	to	the	child	process	must
start	with	the	name	of	the	command	being	run.

The	 variants	 which	 include	 a	 second	 “p”	 near	 the	 end
(spawnlp(),	spawnlpe(),	spawnvp(),	 and	 spawnvpe())	will
use	 the	 PATH	 environment	 variable	 to	 locate	 the	 program	 file.
When	 the	 environment	 is	 being	 replaced	 (using	 one	 of	 the
spawn*e	 variants,	 discussed	 in	 the	 next	 paragraph),	 the	 new
environment	is	used	as	the	source	of	the	PATH	variable.	The	other
variants,	 spawnl(),	 spawnle(),	 spawnv(),	 and	 spawnve(),
will	not	use	the	PATH	variable	to	locate	the	executable;	path	must
contain	an	appropriate	absolute	or	relative	path.

For	 spawnle(),	 spawnlpe(),	 spawnve(),	 and	 spawnvpe()
(note	 that	 these	 all	 end	 in	 “e”),	 the	 env	 parameter	 must	 be	 a

mapping	which	is	used	to	define	the	environment	variables	for	the
new	 process	 (they	 are	 used	 instead	 of	 the	 current	 process’
environment);	 the	 functions	 spawnl(),	 spawnlp(),	 spawnv(),
and	 spawnvp()	 all	 cause	 the	 new	 process	 to	 inherit	 the
environment	of	 the	current	process.	Note	 that	 keys	and	values	 in
the	env	dictionary	must	be	strings;	invalid	keys	or	values	will	cause
the	function	to	fail,	with	a	return	value	of	127.

As	 an	 example,	 the	 following	 calls	 to	 spawnlp()	 and
spawnvpe()	are	equivalent:

import	os

os.spawnlp(os.P_WAIT,	'cp',	'cp',	'index.html',	'/dev/null'

L	=	['cp',	'index.html',	'/dev/null']

os.spawnvpe(os.P_WAIT,	'cp',	L,	os.environ)

Availability:	 Unix,	 Windows.	 spawnlp(),	 spawnlpe(),
spawnvp()	 and	 spawnvpe()	 are	 not	 available	 on	 Windows.
spawnle()	and	spawnve()	are	not	thread-safe	on	Windows;	we
advise	you	to	use	the	subprocess	module	instead.

os.P_NOWAIT

os.P_NOWAITO

Possible	 values	 for	 the	mode	 parameter	 to	 the	 spawn*	 family	of
functions.	 If	 either	 of	 these	 values	 is	 given,	 the	 spawn*()
functions	will	return	as	soon	as	the	new	process	has	been	created,
with	the	process	id	as	the	return	value.

Availability:	Unix,	Windows.

os.P_WAIT

Possible	 value	 for	 the	mode	 parameter	 to	 the	 spawn*	 family	 of
functions.	If	this	is	given	as	mode,	the	spawn*()	functions	will	not
return	until	 the	new	process	has	run	 to	completion	and	will	 return
the	exit	code	of	the	process	the	run	is	successful,	or	-signal	if	a
signal	kills	the	process.

Availability:	Unix,	Windows.

os.P_DETACH

os.P_OVERLAY

Possible	 values	 for	 the	mode	 parameter	 to	 the	 spawn*	 family	of
functions.	 These	 are	 less	 portable	 than	 those	 listed	 above.
P_DETACH	 is	 similar	 to	 P_NOWAIT,	 but	 the	 new	 process	 is
detached	from	the	console	of	the	calling	process.	If	P_OVERLAY	is
used,	the	current	process	will	be	replaced;	the	spawn*	function	will
not	return.

Availability:	Windows.

os.startfile(path[,	operation])
Start	a	file	with	its	associated	application.

When	operation	 is	not	specified	or	'open',	 this	acts	 like	double-
clicking	the	file	in	Windows	Explorer,	or	giving	the	file	name	as	an
argument	 to	 the	 start	 command	 from	 the	 interactive	 command
shell:	 the	 file	 is	 opened	 with	 whatever	 application	 (if	 any)	 its
extension	is	associated.

When	another	operation	is	given,	it	must	be	a	“command	verb”	that
specifies	 what	 should	 be	 done	 with	 the	 file.	 Common	 verbs
documented	by	Microsoft	are	'print'	and	'edit'	 (to	be	used
on	 files)	 as	 well	 as	 'explore'	 and	 'find'	 (to	 be	 used	 on

directories).

startfile()	 returns	 as	 soon	 as	 the	 associated	 application	 is
launched.	 There	 is	 no	 option	 to	 wait	 for	 the	 application	 to	 close,
and	 no	 way	 to	 retrieve	 the	 application’s	 exit	 status.	 The	 path
parameter	is	relative	to	the	current	directory.	If	you	want	to	use	an
absolute	path,	make	sure	 the	 first	 character	 is	not	a	slash	 ('/');
the	underlying	Win32	ShellExecute()	function	doesn’t	work	if	it
is.	 Use	 the	 os.path.normpath()	 function	 to	 ensure	 that	 the
path	is	properly	encoded	for	Win32.

Availability:	Windows.

os.system(command)
Execute	the	command	(a	string)	in	a	subshell.	This	is	implemented
by	calling	 the	Standard	C	 function	system(),	and	has	 the	same
limitations.	 Changes	 to	 sys.stdin,	 etc.	 are	 not	 reflected	 in	 the
environment	of	the	executed	command.	If	command	generates	any
output,	it	will	be	sent	to	the	interpreter	standard	output	stream.

On	Unix,	the	return	value	is	the	exit	status	of	the	process	encoded
in	 the	 format	 specified	 for	 wait().	 Note	 that	 POSIX	 does	 not
specify	 the	 meaning	 of	 the	 return	 value	 of	 the	 C	 system()
function,	 so	 the	 return	 value	 of	 the	 Python	 function	 is	 system-
dependent.

On	Windows,	the	return	value	is	that	returned	by	the	system	shell
after	 running	 command.	 The	 shell	 is	 given	 by	 the	 Windows
environment	 variable	 COMSPEC:	 it	 is	 usually	 cmd.exe,	 which
returns	 the	 exit	 status	 of	 the	 command	 run;	 on	 systems	 using	 a
non-native	shell,	consult	your	shell	documentation.

The	 subprocess	 module	 provides	 more	 powerful	 facilities	 for

spawning	 new	 processes	 and	 retrieving	 their	 results;	 using	 that
module	 is	 preferable	 to	 using	 this	 function.	 See	 the	 Replacing
Older	 Functions	 with	 the	 subprocess	 Module	 section	 in	 the
subprocess	documentation	for	some	helpful	recipes.

Availability:	Unix,	Windows.

os.times()
Returns	 the	 current	 global	 process	 times.	 The	 return	 value	 is	 an
object	with	five	attributes:

user	-	user	time
system	-	system	time
children_user	-	user	time	of	all	child	processes
children_system	-	system	time	of	all	child	processes
elapsed	-	elapsed	real	time	since	a	fixed	point	in	the	past

For	 backwards	 compatibility,	 this	 object	 also	 behaves	 like	 a	 five-
tuple	 containing	 user,	 system,	 children_user,
children_system,	and	elapsed	in	that	order.

See	the	Unix	manual	page	times(2)	or	the	corresponding	Windows
Platform	API	documentation.	On	Windows,	only	user	and	system
are	known;	the	other	attributes	are	zero.

Availability:	Unix,	Windows.

Changed	 in	 version	 3.3:	Return	 type	 changed	 from	 a	 tuple	 to	 a
tuple-like	object	with	named	attributes.

os.wait()
Wait	for	completion	of	a	child	process,	and	return	a	tuple	containing
its	pid	and	exit	status	indication:	a	16-bit	number,	whose	low	byte	is
the	signal	number	 that	killed	 the	process,	and	whose	high	byte	 is

the	exit	status	(if	the	signal	number	is	zero);	the	high	bit	of	the	low
byte	is	set	if	a	core	file	was	produced.

Availability:	Unix.

os.waitid(idtype,	id,	options)
Wait	for	the	completion	of	one	or	more	child	processes.	idtype	can
be	 P_PID,	 P_PGID	 or	 P_ALL.	 id	 specifies	 the	 pid	 to	 wait	 on.
options	is	constructed	from	the	ORing	of	one	or	more	of	WEXITED,
WSTOPPED	 or	 WCONTINUED	 and	 additionally	 may	 be	 ORed	 with
WNOHANG	or	WNOWAIT.	The	return	value	is	an	object	representing
the	data	contained	in	the	siginfo_t	structure,	namely:	si_pid,
si_uid,	si_signo,	si_status,	si_code	or	None	if	WNOHANG
is	specified	and	there	are	no	children	in	a	waitable	state.

Availability:	Unix.

New	in	version	3.3.

os.P_PID

os.P_PGID

os.P_ALL

These	are	the	possible	values	for	idtype	in	waitid().	They	affect
how	id	is	interpreted.

Availability:	Unix.

New	in	version	3.3.

os.WEXITED

os.WSTOPPED

os.WNOWAIT

Flags	that	can	be	used	 in	options	 in	waitid()	 that	specify	what

child	signal	to	wait	for.

Availability:	Unix.

New	in	version	3.3.

os.CLD_EXITED

os.CLD_DUMPED

os.CLD_TRAPPED

os.CLD_CONTINUED

These	are	 the	possible	values	for	si_code	 in	 the	 result	 returned
by	waitid().

Availability:	Unix.

New	in	version	3.3.

os.waitpid(pid,	options)
The	details	of	this	function	differ	on	Unix	and	Windows.

On	Unix:	Wait	for	completion	of	a	child	process	given	by	process	id
pid,	 and	 return	 a	 tuple	 containing	 its	 process	 id	 and	 exit	 status
indication	(encoded	as	for	wait()).	The	semantics	of	the	call	are
affected	by	the	value	of	the	integer	options,	which	should	be	0	 for
normal	operation.

If	pid	is	greater	than	0,	waitpid()	requests	status	information	for
that	specific	process.	If	pid	is	0,	the	request	is	for	the	status	of	any
child	 in	the	process	group	of	 the	current	process.	 If	pid	 is	-1,	 the
request	pertains	 to	any	child	of	 the	current	process.	 If	pid	 is	 less
than	-1,	status	is	requested	for	any	process	in	the	process	group
-pid	(the	absolute	value	of	pid).

An	 OSError	 is	 raised	 with	 the	 value	 of	 errno	 when	 the	 syscall
returns	-1.

On	Windows:	Wait	 for	 completion	 of	 a	 process	 given	 by	 process
handle	pid,	 and	 return	 a	 tuple	 containing	 pid,	 and	 its	 exit	 status
shifted	 left	 by	 8	 bits	 (shifting	 makes	 cross-platform	 use	 of	 the
function	 easier).	 A	 pid	 less	 than	 or	 equal	 to	 0	 has	 no	 special
meaning	 on	 Windows,	 and	 raises	 an	 exception.	 The	 value	 of
integer	options	has	no	effect.	pid	can	refer	to	any	process	whose	id
is	 known,	not	necessarily	a	 child	process.	The	 spawn*	 functions
called	with	P_NOWAIT	return	suitable	process	handles.

os.wait3(options)
Similar	to	waitpid(),	except	no	process	id	argument	is	given	and
a	 3-element	 tuple	 containing	 the	 child’s	 process	 id,	 exit	 status
indication,	 and	 resource	 usage	 information	 is	 returned.	 Refer	 to
resource.getrusage()	 for	 details	 on	 resource	 usage
information.	The	option	argument	 is	 the	same	as	 that	provided	 to
waitpid()	and	wait4().

Availability:	Unix.

os.wait4(pid,	options)
Similar	 to	 waitpid(),	 except	 a	 3-element	 tuple,	 containing	 the
child’s	 process	 id,	 exit	 status	 indication,	 and	 resource	 usage
information	 is	 returned.	 Refer	 to	 resource.getrusage()	 for
details	on	resource	usage	information.	The	arguments	to	wait4()
are	the	same	as	those	provided	to	waitpid().

Availability:	Unix.

os.WNOHANG

The	 option	 for	 waitpid()	 to	 return	 immediately	 if	 no	 child
process	status	 is	available	 immediately.	The	 function	 returns	(0,
0)	in	this	case.

Availability:	Unix.

os.WCONTINUED

This	 option	 causes	 child	 processes	 to	 be	 reported	 if	 they	 have
been	continued	from	a	 job	control	stop	since	their	status	was	 last
reported.

Availability:	some	Unix	systems.

os.WUNTRACED

This	 option	 causes	 child	 processes	 to	 be	 reported	 if	 they	 have
been	stopped	but	 their	 current	 state	has	not	 been	 reported	 since
they	were	stopped.

Availability:	Unix.

The	 following	 functions	 take	 a	 process	 status	 code	 as	 returned	 by
system(),	 wait(),	 or	 waitpid()	 as	 a	 parameter.	 They	 may	 be
used	to	determine	the	disposition	of	a	process.

os.WCOREDUMP(status)
Return	 True	 if	 a	 core	 dump	 was	 generated	 for	 the	 process,
otherwise	return	False.

Availability:	Unix.

os.WIFCONTINUED(status)
Return	True	if	the	process	has	been	continued	from	a	job	control
stop,	otherwise	return	False.

Availability:	Unix.

os.WIFSTOPPED(status)
Return	 True	 if	 the	 process	 has	 been	 stopped,	 otherwise	 return
False.

Availability:	Unix.

os.WIFSIGNALED(status)
Return	True	if	the	process	exited	due	to	a	signal,	otherwise	return
False.

Availability:	Unix.

os.WIFEXITED(status)
Return	 True	 if	 the	 process	 exited	 using	 the	 exit(2)	 system	 call,
otherwise	return	False.

Availability:	Unix.

os.WEXITSTATUS(status)
If	 WIFEXITED(status)	 is	 true,	 return	 the	 integer	 parameter	 to
the	exit(2)	system	call.	Otherwise,	the	return	value	is	meaningless.

Availability:	Unix.

os.WSTOPSIG(status)
Return	the	signal	which	caused	the	process	to	stop.

Availability:	Unix.

os.WTERMSIG(status)
Return	the	signal	which	caused	the	process	to	exit.

Availability:	Unix.

16.1.7.	Interface	to	the	scheduler

These	 functions	control	how	a	process	 is	allocated	CPU	 time	by	 the
operating	system.	They	are	only	available	on	some	Unix	platforms.	For
more	detailed	information,	consult	your	Unix	manpages.

New	in	version	3.3.

The	following	scheduling	policies	are	exposed	if	they	are	supported	by
the	operating	system.

os.SCHED_OTHER

The	default	scheduling	policy.

os.SCHED_BATCH

Scheduling	 policy	 for	 CPU-intensive	 processes	 that	 tries	 to
preserve	interactivity	on	the	rest	of	the	computer.

os.SCHED_IDLE

Scheduling	policy	for	extremely	low	priority	background	tasks.

os.SCHED_SPORADIC

Scheduling	policy	for	sporadic	server	programs.

os.SCHED_FIFO

A	First	In	First	Out	scheduling	policy.

os.SCHED_RR

A	round-robin	scheduling	policy.

os.SCHED_RESET_ON_FORK

This	 flag	 can	 OR’ed	 with	 any	 other	 scheduling	 policy.	 When	 a
process	 with	 this	 flag	 set	 forks,	 its	 child’s	 scheduling	 policy	 and

priority	are	reset	to	the	default.

class	os.sched_param(sched_priority)
This	 class	 represents	 tunable	 scheduling	 parameters	 used	 in
sched_setparam(),	 sched_setscheduler(),	 and
sched_getparam().	It	is	immutable.

At	the	moment,	there	is	only	one	possible	parameter:

sched_priority

The	scheduling	priority	for	a	scheduling	policy.

os.sched_get_priority_min(policy)
Get	 the	 minimum	 priority	 value	 for	 policy.	 policy	 is	 one	 of	 the
scheduling	policy	constants	above.

os.sched_get_priority_max(policy)
Get	 the	 maximum	 priority	 value	 for	 policy.	 policy	 is	 one	 of	 the
scheduling	policy	constants	above.

os.sched_setscheduler(pid,	policy,	param)
Set	 the	scheduling	policy	 for	 the	process	with	PID	pid.	A	pid	of	0
means	 the	 calling	 process.	policy	 is	 one	 of	 the	 scheduling	 policy
constants	above.	param	is	a	sched_param	instance.

os.sched_getscheduler(pid)
Return	the	scheduling	policy	for	the	process	with	PID	pid.	A	pid	of	0
means	 the	 calling	 process.	 The	 result	 is	 one	 of	 the	 scheduling
policy	constants	above.

os.sched_setparam(pid,	param)
Set	a	scheduling	parameters	for	the	process	with	PID	pid.	A	pid	of
0	means	the	calling	process.	param	is	a	sched_param	instance.

os.sched_getparam(pid)
Return	the	scheduling	parameters	as	a	sched_param	instance	for
the	process	with	PID	pid.	A	pid	of	0	means	the	calling	process.

os.sched_rr_get_interval(pid)
Return	 the	 round-robin	 quantum	 in	 seconds	 for	 the	 process	 with
PID	pid.	A	pid	of	0	means	the	calling	process.

os.sched_yield()
Voluntarily	relinquish	the	CPU.

os.sched_setaffinity(pid,	mask)
Restrict	the	process	with	PID	pid	(or	the	current	process	if	zero)	to
a	set	of	CPUs.	mask	is	an	iterable	of	integers	representing	the	set
of	CPUs	to	which	the	process	should	be	restricted.

os.sched_getaffinity(pid)
Return	 the	 set	 of	CPUs	 the	 process	with	 PID	pid	 (or	 the	 current
process	if	zero)	is	restricted	to.

16.1.8.	Miscellaneous	System	Information

os.confstr(name)
Return	 string-valued	 system	 configuration	 values.	name	 specifies
the	configuration	value	 to	 retrieve;	 it	may	be	a	string	which	 is	 the
name	of	 a	 defined	 system	value;	 these	names	are	 specified	 in	 a
number	of	standards	(POSIX,	Unix	95,	Unix	98,	and	others).	Some
platforms	define	additional	names	as	well.	The	names	known	to	the
host	 operating	 system	 are	 given	 as	 the	 keys	 of	 the
confstr_names	 dictionary.	 For	 configuration	 variables	 not
included	 in	 that	 mapping,	 passing	 an	 integer	 for	 name	 is	 also
accepted.

If	 the	configuration	value	specified	by	name	 isn’t	defined,	None	 is
returned.

If	name	 is	a	string	and	 is	not	known,	ValueError	 is	 raised.	 If	a
specific	value	for	name	is	not	supported	by	the	host	system,	even	if
it	 is	 included	 in	 confstr_names,	 an	 OSError	 is	 raised	 with
errno.EINVAL	for	the	error	number.

Availability:	Unix.

os.confstr_names

Dictionary	mapping	names	accepted	by	confstr()	to	the	integer
values	defined	for	those	names	by	the	host	operating	system.	This
can	be	used	to	determine	the	set	of	names	known	to	the	system.

Availability:	Unix.

os.cpu_count()
Return	 the	 number	 of	 CPUs	 in	 the	 system.	 Returns	 None	 if

undetermined.

New	in	version	3.4.

os.getloadavg()
Return	the	number	of	processes	in	the	system	run	queue	averaged
over	 the	 last	1,	5,	and	15	minutes	or	 raises	OSError	 if	 the	 load
average	was	unobtainable.

Availability:	Unix.

os.sysconf(name)
Return	 integer-valued	 system	 configuration	 values.	 If	 the
configuration	value	specified	by	name	isn’t	defined,	-1	is	returned.
The	 comments	 regarding	 the	 name	 parameter	 for	 confstr()
apply	here	as	well;	 the	dictionary	 that	provides	 information	on	the
known	names	is	given	by	sysconf_names.

Availability:	Unix.

os.sysconf_names

Dictionary	mapping	names	accepted	by	sysconf()	to	the	integer
values	defined	for	those	names	by	the	host	operating	system.	This
can	be	used	to	determine	the	set	of	names	known	to	the	system.

Availability:	Unix.

The	 following	 data	 values	 are	 used	 to	 support	 path	 manipulation
operations.	These	are	defined	for	all	platforms.

Higher-level	 operations	 on	 pathnames	 are	 defined	 in	 the	 os.path
module.

os.curdir

The	 constant	 string	 used	 by	 the	 operating	 system	 to	 refer	 to	 the
current	 directory.	 This	 is	 '.'	 for	 Windows	 and	 POSIX.	 Also
available	via	os.path.

os.pardir

The	 constant	 string	 used	 by	 the	 operating	 system	 to	 refer	 to	 the
parent	 directory.	 This	 is	 '..'	 for	 Windows	 and	 POSIX.	 Also
available	via	os.path.

os.sep

The	character	used	by	the	operating	system	to	separate	pathname
components.	This	is	'/'	for	POSIX	and	'\\'	 for	Windows.	Note
that	knowing	this	is	not	sufficient	to	be	able	to	parse	or	concatenate
pathnames	—	use	os.path.split()	and	os.path.join()	—
but	it	is	occasionally	useful.	Also	available	via	os.path.

os.altsep

An	alternative	character	used	by	the	operating	system	to	separate
pathname	 components,	 or	 None	 if	 only	 one	 separator	 character
exists.	 This	 is	 set	 to	 '/'	 on	Windows	 systems	 where	 sep	 is	 a
backslash.	Also	available	via	os.path.

os.extsep

The	 character	 which	 separates	 the	 base	 filename	 from	 the
extension;	 for	 example,	 the	 '.'	 in	 os.py.	 Also	 available	 via
os.path.

os.pathsep

The	 character	 conventionally	 used	 by	 the	 operating	 system	 to
separate	search	path	components	 (as	 in	PATH),	 such	as	 ':'	 for
POSIX	or	';'	for	Windows.	Also	available	via	os.path.

os.defpath

The	default	 search	path	used	by	 exec*p*	and	spawn*p*	 if	 the
environment	 doesn’t	 have	 a	 'PATH'	 key.	 Also	 available	 via
os.path.

os.linesep

The	 string	 used	 to	 separate	 (or,	 rather,	 terminate)	 lines	 on	 the
current	platform.	This	may	be	a	single	character,	such	as	'\n'	for
POSIX,	or	multiple	characters,	for	example,	'\r\n'	for	Windows.
Do	 not	 use	 os.linesep	 as	 a	 line	 terminator	 when	 writing	 files
opened	in	text	mode	(the	default);	use	a	single	'\n'	instead,	on	all
platforms.

os.devnull

The	 file	 path	 of	 the	 null	 device.	 For	 example:	 '/dev/null'	 for
POSIX,	'nul'	for	Windows.	Also	available	via	os.path.

os.RTLD_LAZY

os.RTLD_NOW

os.RTLD_GLOBAL

os.RTLD_LOCAL

os.RTLD_NODELETE

os.RTLD_NOLOAD

os.RTLD_DEEPBIND

Flags	 for	 use	 with	 the	 setdlopenflags()	 and
getdlopenflags()	 functions.	 See	 the	 Unix	 manual	 page
dlopen(3)	for	what	the	different	flags	mean.

New	in	version	3.3.

16.1.9.	Miscellaneous	Functions

os.urandom(n)
Return	a	string	of	n	random	bytes	suitable	for	cryptographic	use.

This	 function	 returns	 random	 bytes	 from	 an	 OS-specific
randomness	 source.	 The	 returned	 data	 should	 be	 unpredictable
enough	 for	 cryptographic	 applications,	 though	 its	 exact	 quality
depends	on	the	OS	implementation.	On	a	Unix-like	system	this	will
query	 /dev/urandom,	 and	 on	 Windows	 it	 will	 use
CryptGenRandom().	 If	 a	 randomness	 source	 is	 not	 found,
NotImplementedError	will	be	raised.

For	 an	 easy-to-use	 interface	 to	 the	 random	 number	 generator
provided	by	your	platform,	please	see	random.SystemRandom.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.2.	io	—	Core	tools	for	working
with	streams

16.2.1.	Overview

The	 io	 module	 provides	 Python’s	 main	 facilities	 for	 dealing	 with
various	types	of	I/O.	There	are	three	main	types	of	I/O:	text	I/O,	binary
I/O	 and	 raw	 I/O.	 These	 are	 generic	 categories,	 and	 various	 backing
stores	can	be	used	 for	each	of	 them.	A	concrete	object	belonging	 to
any	of	these	categories	is	called	a	file	object.	Other	common	terms	are
stream	and	file-like	object.

Independently	 of	 its	 category,	 each	 concrete	 stream	 object	 will	 also
have	various	capabilities:	it	can	be	read-only,	write-only,	or	read-write.
It	 can	 also	 allow	 arbitrary	 random	 access	 (seeking	 forwards	 or
backwards	to	any	location),	or	only	sequential	access	(for	example	in
the	case	of	a	socket	or	pipe).

All	 streams	are	 careful	 about	 the	 type	of	 data	 you	give	 to	 them.	For
example	 giving	 a	 str	 object	 to	 the	 write()	 method	 of	 a	 binary
stream	will	 raise	a	TypeError.	So	will	giving	a	bytes	object	 to	 the
write()	method	of	a	text	stream.

Changed	in	version	3.3:	Operations	that	used	to	raise	IOError	now
raise	OSError,	since	IOError	is	now	an	alias	of	OSError.

16.2.1.1.	Text	I/O

Text	 I/O	 expects	 and	 produces	 str	 objects.	 This	 means	 that
whenever	the	backing	store	is	natively	made	of	bytes	(such	as	in	the
case	of	a	 file),	encoding	and	decoding	of	data	 is	made	 transparently
as	well	as	optional	translation	of	platform-specific	newline	characters.

The	 easiest	 way	 to	 create	 a	 text	 stream	 is	 with	 open(),	 optionally

specifying	an	encoding:

f	=	open("myfile.txt",	"r",	encoding="utf-8")

In-memory	text	streams	are	also	available	as	StringIO	objects:

f	=	io.StringIO("some	initial	text	data")

The	 text	 stream	 API	 is	 described	 in	 detail	 in	 the	 documentation	 of
TextIOBase.

16.2.1.2.	Binary	I/O

Binary	 I/O	 (also	 called	 buffered	 I/O)	 expects	 and	 produces	 bytes
objects.	No	 encoding,	 decoding,	 or	 newline	 translation	 is	 performed.
This	 category	 of	 streams	 can	 be	 used	 for	 all	 kinds	 of	 non-text	 data,
and	also	when	manual	control	over	the	handling	of	text	data	is	desired.

The	easiest	way	to	create	a	binary	stream	is	with	open()	with	'b'	in
the	mode	string:

f	=	open("myfile.jpg",	"rb")

In-memory	binary	streams	are	also	available	as	BytesIO	objects:

f	=	io.BytesIO(b"some	initial	binary	data:	\x00\x01"

The	 binary	 stream	 API	 is	 described	 in	 detail	 in	 the	 docs	 of
BufferedIOBase.

Other	 library	modules	may	 provide	 additional	 ways	 to	 create	 text	 or
binary	streams.	See	socket.socket.makefile()	for	example.

16.2.1.3.	Raw	I/O

Raw	I/O	(also	called	unbuffered	I/O)	 is	generally	used	as	a	 low-level
building-block	for	binary	and	text	streams;	it	is	rarely	useful	to	directly
manipulate	 a	 raw	 stream	 from	 user	 code.	 Nevertheless,	 you	 can
create	 a	 raw	 stream	by	 opening	 a	 file	 in	 binary	mode	with	 buffering
disabled:

f	=	open("myfile.jpg",	"rb",	buffering=0)

The	raw	stream	API	is	described	in	detail	in	the	docs	of	RawIOBase.

16.2.2.	High-level	Module	Interface

io.DEFAULT_BUFFER_SIZE

An	 int	 containing	 the	 default	 buffer	 size	 used	 by	 the	 module’s
buffered	 I/O	classes.	 open()	 uses	 the	 file’s	 blksize	 (as	 obtained
by	os.stat())	if	possible.

io.open(file,	mode='r',	buffering=-1,	encoding=None,	errors=None,
newline=None,	closefd=True,	opener=None)

This	is	an	alias	for	the	builtin	open()	function.

exception	io.BlockingIOError
This	 is	 a	 compatibility	 alias	 for	 the	 builtin	 BlockingIOError
exception.

exception	io.UnsupportedOperation
An	exception	 inheriting	OSError	and	ValueError	 that	 is	 raised
when	an	unsupported	operation	is	called	on	a	stream.

16.2.2.1.	In-memory	streams

It	is	also	possible	to	use	a	str	or	bytes-like	object	as	a	file	for	both
reading	 and	 writing.	 For	 strings	 StringIO	 can	 be	 used	 like	 a	 file
opened	 in	 text	 mode.	 BytesIO	 can	 be	 used	 like	 a	 file	 opened	 in
binary	 mode.	 Both	 provide	 full	 read-write	 capabilities	 with	 random
access.

See	also:

sys

contains	 the	 standard	 IO	 streams:	 sys.stdin,	 sys.stdout,

and	sys.stderr.

16.2.3.	Class	hierarchy

The	 implementation	 of	 I/O	 streams	 is	 organized	 as	 a	 hierarchy	 of
classes.	First	abstract	base	classes	(ABCs),	which	are	used	to	specify
the	various	categories	of	streams,	then	concrete	classes	providing	the
standard	stream	implementations.

Note: 	The	abstract	base	classes	also	provide	default
implementations	of	some	methods	in	order	to	help
implementation	of	concrete	stream	classes.	For	example,
BufferedIOBase	provides	unoptimized	implementations	of
readinto()	and	readline().

At	 the	 top	of	 the	 I/O	hierarchy	 is	 the	abstract	base	class	IOBase.	 It
defines	the	basic	interface	to	a	stream.	Note,	however,	that	there	is	no
separation	 between	 reading	 and	writing	 to	 streams;	 implementations
are	allowed	to	raise	UnsupportedOperation	 if	they	do	not	support
a	given	operation.

The	RawIOBase	ABC	extends	IOBase.	It	deals	with	the	reading	and
writing	 of	 bytes	 to	 a	 stream.	 FileIO	 subclasses	 RawIOBase	 to
provide	an	interface	to	files	in	the	machine’s	file	system.

The	 BufferedIOBase	 ABC	 deals	 with	 buffering	 on	 a	 raw	 byte
stream	 (RawIOBase).	 Its	 subclasses,	 BufferedWriter,
BufferedReader,	 and	 BufferedRWPair	 buffer	 streams	 that	 are
readable,	writable,	and	both	readable	and	writable.	BufferedRandom
provides	 a	 buffered	 interface	 to	 random	 access	 streams.	 Another
BufferedIOBase	 subclass,	 BytesIO,	 is	 a	 stream	 of	 in-memory
bytes.

The	 TextIOBase	 ABC,	 another	 subclass	 of	 IOBase,	 deals	 with
streams	 whose	 bytes	 represent	 text,	 and	 handles	 encoding	 and
decoding	to	and	from	strings.	TextIOWrapper,	which	extends	it,	is	a
buffered	 text	 interface	 to	a	buffered	raw	stream	(BufferedIOBase).
Finally,	StringIO	is	an	in-memory	stream	for	text.

Argument	 names	 are	 not	 part	 of	 the	 specification,	 and	 only	 the
arguments	of	open()	are	intended	to	be	used	as	keyword	arguments.

The	following	table	summarizes	the	ABCs	provided	by	the	io	module:

ABC Inherits Stub
Methods

Mixin	Methods	and
Properties

IOBase 	
fileno,
seek,	and
truncate

close,	closed,
__enter__,
__exit__,	flush,
isatty,	__iter__,
__next__,
readable,
readline,
readlines,
seekable,	tell,
writable,	and
writelines

RawIOBase IOBase
readinto

and	write

Inherited	IOBase
methods,	read,	and
readall

BufferedIOBase IOBase

detach,
read,
read1,	and
write

Inherited	IOBase
methods,	readinto

TextIOBase IOBase

detach,
read,

Inherited	IOBase
methods,

readline,
and	write

encoding,	errors,
and	newlines

16.2.3.1.	I/O	Base	Classes

class	io.IOBase
The	 abstract	 base	 class	 for	 all	 I/O	 classes,	 acting	 on	 streams	 of
bytes.	There	is	no	public	constructor.

This	 class	 provides	 empty	 abstract	 implementations	 for	 many
methods	 that	derived	classes	can	override	selectively;	 the	default
implementations	 represent	 a	 file	 that	 cannot	 be	 read,	 written	 or
seeked.

Even	though	IOBase	does	not	declare	read(),	readinto(),	or
write()	because	 their	signatures	will	vary,	 implementations	and
clients	 should	 consider	 those	methods	part	 of	 the	 interface.	Also,
implementations	 may	 raise	 a	 ValueError	 (or
UnsupportedOperation)	when	 operations	 they	 do	 not	 support
are	called.

The	basic	type	used	for	binary	data	read	from	or	written	to	a	file	is
bytes.	bytearrays	are	accepted	too,	and	in	some	cases	(such
as	readinto())	required.	Text	I/O	classes	work	with	str	data.

Note	that	calling	any	method	(even	inquiries)	on	a	closed	stream	is
undefined.	Implementations	may	raise	ValueError	in	this	case.

IOBase	 (and	 its	 subclasses)	 supports	 the	 iterator	 protocol,
meaning	 that	an	IOBase	 object	 can	be	 iterated	over	 yielding	 the
lines	in	a	stream.	Lines	are	defined	slightly	differently	depending	on
whether	 the	 stream	 is	 a	 binary	 stream	 (yielding	 bytes),	 or	 a	 text

stream	(yielding	character	strings).	See	readline()	below.

IOBase	 is	 also	 a	 context	 manager	 and	 therefore	 supports	 the
with	 statement.	 In	 this	 example,	 file	 is	 closed	 after	 the	 with
statement’s	suite	is	finished—even	if	an	exception	occurs:

with	open('spam.txt',	'w')	as	file:

				file.write('Spam	and	eggs!')

IOBase	provides	these	data	attributes	and	methods:

close()
Flush	and	close	this	stream.	This	method	has	no	effect	if	the	file
is	already	closed.	Once	the	file	is	closed,	any	operation	on	the
file	(e.g.	reading	or	writing)	will	raise	a	ValueError.

As	a	 convenience,	 it	 is	 allowed	 to	 call	 this	method	more	 than
once;	only	the	first	call,	however,	will	have	an	effect.

closed

True	if	the	stream	is	closed.

fileno()
Return	the	underlying	file	descriptor	(an	integer)	of	the	stream	if
it	exists.	An	OSError	 is	raised	if	the	IO	object	does	not	use	a
file	descriptor.

flush()
Flush	 the	 write	 buffers	 of	 the	 stream	 if	 applicable.	 This	 does
nothing	for	read-only	and	non-blocking	streams.

isatty()
Return	 True	 if	 the	 stream	 is	 interactive	 (i.e.,	 connected	 to	 a

terminal/tty	device).

readable()
Return	True	if	the	stream	can	be	read	from.	If	False,	read()
will	raise	OSError.

readline(size=-1)
Read	and	return	one	line	from	the	stream.	If	size	is	specified,	at
most	size	bytes	will	be	read.

The	 line	 terminator	 is	 always	 b'\n'	 for	 binary	 files;	 for	 text
files,	 the	newlines	argument	 to	open()	 can	be	used	 to	select
the	line	terminator(s)	recognized.

readlines(hint=-1)
Read	 and	 return	 a	 list	 of	 lines	 from	 the	 stream.	 hint	 can	 be
specified	to	control	the	number	of	lines	read:	no	more	lines	will
be	 read	 if	 the	 total	size	 (in	bytes/characters)	of	all	 lines	so	 far
exceeds	hint.

Note	 that	 it’s	 already	 possible	 to	 iterate	 on	 file	 objects	 using
for	 line	 in	 file:	 ...	 without	 calling
file.readlines().

seek(offset,	whence=SEEK_SET)
Change	 the	 stream	 position	 to	 the	 given	 byte	 offset.	offset	 is
interpreted	relative	to	the	position	indicated	by	whence.	Values
for	whence	are:

SEEK_SET	or	0	 –	 start	 of	 the	 stream	 (the	 default);	offset
should	be	zero	or	positive
SEEK_CUR	 or	 1	 –	 current	 stream	 position;	offset	may	 be
negative

SEEK_END	 or	 2	 –	 end	 of	 the	 stream;	 offset	 is	 usually
negative

Return	the	new	absolute	position.

New	in	version	3.1:	The	SEEK_*	constants.

New	 in	 version	 3.3:	 Some	 operating	 systems	 could	 support
additional	values,	like	os.SEEK_HOLE	or	os.SEEK_DATA.	The
valid	values	 for	a	 file	could	depend	on	 it	being	open	 in	 text	or
binary	mode.

seekable()
Return	True	 if	 the	stream	supports	random	access.	 If	False,
seek(),	tell()	and	truncate()	will	raise	OSError.

tell()
Return	the	current	stream	position.

truncate(size=None)
Resize	 the	 stream	 to	 the	 given	 size	 in	 bytes	 (or	 the	 current
position	if	size	is	not	specified).	The	current	stream	position	isn’t
changed.	 This	 resizing	 can	 extend	 or	 reduce	 the	 current	 file
size.	 In	 case	 of	 extension,	 the	 contents	 of	 the	 new	 file	 area
depend	on	the	platform	(on	most	systems,	additional	bytes	are
zero-filled,	 on	 Windows	 they’re	 undetermined).	 The	 new	 file
size	is	returned.

writable()
Return	True	if	the	stream	supports	writing.	If	False,	write()
and	truncate()	will	raise	OSError.

writelines(lines)

Write	 a	 list	 of	 lines	 to	 the	 stream.	 Line	 separators	 are	 not
added,	so	it	is	usual	for	each	of	the	lines	provided	to	have	a	line
separator	at	the	end.

class	io.RawIOBase
Base	class	for	raw	binary	I/O.	It	inherits	IOBase.	There	is	no	public
constructor.

Raw	binary	I/O	typically	provides	low-level	access	to	an	underlying
OS	device	or	API,	and	does	not	 try	 to	encapsulate	 it	 in	high-level
primitives	(this	is	left	to	Buffered	I/O	and	Text	I/O,	described	later	in
this	page).

In	 addition	 to	 the	 attributes	 and	 methods	 from	 IOBase,
RawIOBase	provides	the	following	methods:

read(size=-1)
Read	 up	 to	size	 bytes	 from	 the	 object	 and	 return	 them.	 As	 a
convenience,	if	size	is	unspecified	or	-1,	readall()	 is	called.
Otherwise,	only	one	system	call	is	ever	made.	Fewer	than	size
bytes	may	be	returned	if	the	operating	system	call	returns	fewer
than	size	bytes.

If	0	bytes	are	returned,	and	size	was	not	0,	this	indicates	end	of
file.	 If	 the	 object	 is	 in	 non-blocking	 mode	 and	 no	 bytes	 are
available,	None	is	returned.

readall()
Read	and	return	all	the	bytes	from	the	stream	until	EOF,	using
multiple	calls	to	the	stream	if	necessary.

readinto(b)
Read	 up	 to	 len(b)	 bytes	 into	 bytearray	b	 and	 return	 the

number	of	bytes	read.	If	the	object	is	in	non-blocking	mode	and
no	bytes	are	available,	None	is	returned.

write(b)
Write	 the	 given	 bytes	 or	 bytearray	 object,	 b,	 to	 the
underlying	 raw	stream	and	return	 the	number	of	bytes	written.
This	 can	be	 less	 than	len(b),	 depending	on	 specifics	 of	 the
underlying	 raw	 stream,	 and	 especially	 if	 it	 is	 in	 non-blocking
mode.	None	is	returned	if	the	raw	stream	is	set	not	to	block	and
no	single	byte	could	be	readily	written	to	it.

class	io.BufferedIOBase
Base	class	for	binary	streams	that	support	some	kind	of	buffering.
It	inherits	IOBase.	There	is	no	public	constructor.

The	 main	 difference	 with	 RawIOBase	 is	 that	 methods	 read(),
readinto()	and	write()	will	try	(respectively)	to	read	as	much
input	as	requested	or	to	consume	all	given	output,	at	the	expense
of	making	perhaps	more	than	one	system	call.

In	 addition,	 those	 methods	 can	 raise	 BlockingIOError	 if	 the
underlying	raw	stream	is	in	non-blocking	mode	and	cannot	take	or
give	enough	data;	unlike	 their	RawIOBase	 counterparts,	 they	will
never	return	None.

Besides,	 the	 read()	 method	 does	 not	 have	 a	 default
implementation	that	defers	to	readinto().

A	typical	BufferedIOBase	implementation	should	not	inherit	from
a	 RawIOBase	 implementation,	 but	 wrap	 one,	 like
BufferedWriter	and	BufferedReader	do.

BufferedIOBase	 provides	 or	 overrides	 these	 methods	 and
attribute	in	addition	to	those	from	IOBase:

raw

The	 underlying	 raw	 stream	 (a	 RawIOBase	 instance)	 that
BufferedIOBase	 deals	 with.	 This	 is	 not	 part	 of	 the
BufferedIOBase	 API	 and	 may	 not	 exist	 on	 some
implementations.

detach()
Separate	the	underlying	raw	stream	from	the	buffer	and	return
it.

After	 the	 raw	 stream	 has	 been	 detached,	 the	 buffer	 is	 in	 an
unusable	state.

Some	 buffers,	 like	 BytesIO,	 do	 not	 have	 the	 concept	 of	 a
single	 raw	 stream	 to	 return	 from	 this	 method.	 They	 raise
UnsupportedOperation.

New	in	version	3.1.

read(size=-1)
Read	 and	 return	 up	 to	 size	 bytes.	 If	 the	 argument	 is	 omitted,
None,	 or	 negative,	 data	 is	 read	 and	 returned	 until	 EOF	 is
reached.	An	 empty	 bytes	 object	 is	 returned	 if	 the	 stream	 is
already	at	EOF.

If	the	argument	is	positive,	and	the	underlying	raw	stream	is	not
interactive,	multiple	raw	reads	may	be	issued	to	satisfy	the	byte
count	 (unless	 EOF	 is	 reached	 first).	 But	 for	 interactive	 raw
streams,	at	most	one	raw	read	will	be	issued,	and	a	short	result
does	not	imply	that	EOF	is	imminent.

A	BlockingIOError	 is	raised	if	 the	underlying	raw	stream	is
in	 non	 blocking-mode,	 and	 has	 no	 data	 available	 at	 the
moment.

read1(size=-1)
Read	and	return	up	 to	size	bytes,	with	at	most	one	call	 to	 the
underlying	raw	stream’s	read()	method.	This	can	be	useful	 if
you	 are	 implementing	 your	 own	 buffering	 on	 top	 of	 a
BufferedIOBase	object.

readinto(b)
Read	 up	 to	 len(b)	 bytes	 into	 bytearray	 b	 and	 return	 the
number	of	bytes	read.

Like	read(),	multiple	 reads	may	 be	 issued	 to	 the	 underlying
raw	stream,	unless	the	latter	is	interactive.

A	BlockingIOError	 is	raised	if	 the	underlying	raw	stream	is
in	 non	 blocking-mode,	 and	 has	 no	 data	 available	 at	 the
moment.

write(b)
Write	the	given	bytes	or	bytearray	object,	b	and	return	the
number	of	bytes	written	 (never	 less	 than	len(b),	since	 if	 the
write	fails	an	OSError	will	be	raised).	Depending	on	the	actual
implementation,	 these	 bytes	 may	 be	 readily	 written	 to	 the
underlying	 stream,	 or	 held	 in	 a	 buffer	 for	 performance	 and
latency	reasons.

When	in	non-blocking	mode,	a	BlockingIOError	 is	raised	if
the	data	needed	to	be	written	 to	 the	raw	stream	but	 it	couldn’t
accept	all	the	data	without	blocking.

16.2.3.2.	Raw	File	I/O

class	io.FileIO(name,	mode='r',	closefd=True,	opener=None)
FileIO	 represents	 an	 OS-level	 file	 containing	 bytes	 data.	 It
implements	 the	RawIOBase	 interface	 (and	 therefore	 the	IOBase
interface,	too).

The	name	can	be	one	of	two	things:

a	character	string	or	bytes	object	representing	the	path	to	the
file	which	will	be	opened;
an	integer	representing	the	number	of	an	existing	OS-level	file
descriptor	 to	 which	 the	 resulting	 FileIO	 object	 will	 give
access.

The	mode	 can	 be	 'r',	 'w',	 'x'	 or	 'a'	 for	 reading	 (default),
writing,	exclusive	creation	or	appending.	The	file	will	be	created	if	it
doesn’t	 exist	 when	 opened	 for	 writing	 or	 appending;	 it	 will	 be
truncated	 when	 opened	 for	 writing.	 FileExistsError	 will	 be
raised	if	 it	already	exists	when	opened	for	creating.	Opening	a	file
for	creating	implies	writing,	so	this	mode	behaves	in	a	similar	way
to	'w'.	Add	a	'+'	to	the	mode	to	allow	simultaneous	reading	and
writing.

The	read()	(when	called	with	a	positive	argument),	readinto()
and	 write()	 methods	 on	 this	 class	 will	 only	make	 one	 system
call.

A	custom	opener	can	be	used	by	passing	a	callable	as	opener.	The
underlying	 file	 descriptor	 for	 the	 file	 object	 is	 then	 obtained	 by
calling	opener	with	(name,	 flags).	opener	must	return	an	open	file
descriptor	 (passing	 os.open	 as	 opener	 results	 in	 functionality

similar	to	passing	None).

The	newly	created	file	is	non-inheritable.

See	the	open()	built-in	function	for	examples	on	using	the	opener
parameter.

Changed	 in	 version	 3.3:	The	opener	 parameter	 was	 added.	 The
'x'	mode	was	added.

Changed	in	version	3.4:	The	file	is	now	non-inheritable.

In	 addition	 to	 the	 attributes	 and	 methods	 from	 IOBase	 and
RawIOBase,	FileIO	provides	the	following	data	attributes:

mode

The	mode	as	given	in	the	constructor.

name

The	 file	 name.	 This	 is	 the	 file	 descriptor	 of	 the	 file	 when	 no
name	is	given	in	the	constructor.

16.2.3.3.	Buffered	Streams

Buffered	I/O	streams	provide	a	higher-level	 interface	to	an	I/O	device
than	raw	I/O	does.

class	io.BytesIO([initial_bytes])
A	 stream	 implementation	 using	 an	 in-memory	 bytes	 buffer.	 It
inherits	BufferedIOBase.

The	argument	initial_bytes	contains	optional	initial	bytes	data.

BytesIO	provides	or	overrides	these	methods	in	addition	to	those
from	BufferedIOBase	and	IOBase:

getbuffer()
Return	 a	 readable	 and	writable	 view	 over	 the	 contents	 of	 the
buffer	 without	 copying	 them.	 Also,	 mutating	 the	 view	 will
transparently	update	the	contents	of	the	buffer:

>>>	b	=	io.BytesIO(b"abcdef")

>>>	view	=	b.getbuffer()

>>>	view[2:4]	=	b"56"

>>>	b.getvalue()

b'ab56ef'

Note: 	 As	 long	 as	 the	 view	 exists,	 the	 BytesIO	 object
cannot	be	resized.

New	in	version	3.2.

getvalue()
Return	bytes	containing	the	entire	contents	of	the	buffer.

read1()
In	BytesIO,	this	is	the	same	as	read().

class	io.BufferedReader(raw,
buffer_size=DEFAULT_BUFFER_SIZE)

A	 buffer	 providing	 higher-level	 access	 to	 a	 readable,	 sequential
RawIOBase	 object.	 It	 inherits	 BufferedIOBase.	 When	 reading
data	 from	 this	 object,	 a	 larger	 amount	 of	 data	may	be	 requested
from	the	underlying	raw	stream,	and	kept	in	an	internal	buffer.	The
buffered	data	can	then	be	returned	directly	on	subsequent	reads.

The	 constructor	 creates	 a	 BufferedReader	 for	 the	 given
readable	 raw	 stream	 and	 buffer_size.	 If	 buffer_size	 is	 omitted,
DEFAULT_BUFFER_SIZE	is	used.

BufferedReader	provides	or	overrides	these	methods	in	addition
to	those	from	BufferedIOBase	and	IOBase:

peek([size])
Return	bytes	from	the	stream	without	advancing	the	position.	At
most	one	single	 read	on	 the	 raw	stream	 is	done	 to	satisfy	 the
call.	 The	number	of	 bytes	 returned	may	be	 less	or	more	 than
requested.

read([size])
Read	and	return	size	bytes,	or	 if	size	 is	not	given	or	negative,
until	EOF	or	if	the	read	call	would	block	in	non-blocking	mode.

read1(size)
Read	and	return	up	to	size	bytes	with	only	one	call	on	the	raw
stream.	If	at	 least	one	byte	is	buffered,	only	buffered	bytes	are
returned.	Otherwise,	one	raw	stream	read	call	is	made.

class	io.BufferedWriter(raw,
buffer_size=DEFAULT_BUFFER_SIZE)

A	 buffer	 providing	 higher-level	 access	 to	 a	 writeable,	 sequential
RawIOBase	object.	It	inherits	BufferedIOBase.	When	writing	to
this	 object,	 data	 is	 normally	 placed	 into	 an	 internal	 buffer.	 The
buffer	will	be	written	out	to	the	underlying	RawIOBase	object	under
various	conditions,	including:

when	the	buffer	gets	too	small	for	all	pending	data;
when	flush()	is	called;

when	a	seek()	is	requested	(for	BufferedRandom	objects);
when	the	BufferedWriter	object	is	closed	or	destroyed.

The	 constructor	 creates	 a	 BufferedWriter	 for	 the	 given
writeable	raw	 stream.	 If	 the	buffer_size	 is	not	given,	 it	defaults	 to
DEFAULT_BUFFER_SIZE.

BufferedWriter	provides	or	overrides	these	methods	in	addition
to	those	from	BufferedIOBase	and	IOBase:

flush()
Force	 bytes	 held	 in	 the	 buffer	 into	 the	 raw	 stream.	 A
BlockingIOError	should	be	raised	if	the	raw	stream	blocks.

write(b)
Write	 the	 bytes	 or	 bytearray	 object,	 b	 and	 return	 the
number	 of	 bytes	 written.	 When	 in	 non-blocking	 mode,	 a
BlockingIOError	 is	 raised	 if	 the	buffer	needs	 to	be	written
out	but	the	raw	stream	blocks.

class	io.BufferedRandom(raw,
buffer_size=DEFAULT_BUFFER_SIZE)

A	 buffered	 interface	 to	 random	 access	 streams.	 It	 inherits
BufferedReader	 and	 BufferedWriter,	 and	 further	 supports
seek()	and	tell()	functionality.

The	 constructor	 creates	 a	 reader	 and	 writer	 for	 a	 seekable	 raw
stream,	given	 in	 the	 first	argument.	 If	 the	buffer_size	 is	 omitted	 it
defaults	to	DEFAULT_BUFFER_SIZE.

BufferedRandom	 is	 capable	 of	 anything	 BufferedReader	 or
BufferedWriter	can	do.

class	io.BufferedRWPair(reader,	writer,
buffer_size=DEFAULT_BUFFER_SIZE)

A	 buffered	 I/O	 object	 combining	 two	 unidirectional	 RawIOBase
objects	 –	 one	 readable,	 the	 other	 writeable	 –	 into	 a	 single
bidirectional	endpoint.	It	inherits	BufferedIOBase.

reader	 and	writer	 are	 RawIOBase	 objects	 that	 are	 readable	 and
writeable	 respectively.	 If	 the	 buffer_size	 is	 omitted	 it	 defaults	 to
DEFAULT_BUFFER_SIZE.

BufferedRWPair	 implements	 all	 of	 BufferedIOBase‘s
methods	 except	 for	 detach(),	 which	 raises
UnsupportedOperation.

Warning: 	 BufferedRWPair	 does	 not	 attempt	 to	 synchronize
accesses	 to	 its	 underlying	 raw	 streams.	You	 should	 not	 pass	 it
the	 same	 object	 as	 reader	 and	 writer;	 use	 BufferedRandom
instead.

16.2.3.4.	Text	I/O

class	io.TextIOBase
Base	 class	 for	 text	 streams.	 This	 class	 provides	 a	 character	 and
line	 based	 interface	 to	 stream	 I/O.	 There	 is	 no	 readinto()
method	 because	 Python’s	 character	 strings	 are	 immutable.	 It
inherits	IOBase.	There	is	no	public	constructor.

TextIOBase	 provides	 or	 overrides	 these	 data	 attributes	 and
methods	in	addition	to	those	from	IOBase:

encoding

The	name	of	 the	encoding	used	 to	decode	 the	stream’s	bytes
into	strings,	and	to	encode	strings	into	bytes.

errors

The	error	setting	of	the	decoder	or	encoder.

newlines

A	 string,	 a	 tuple	 of	 strings,	 or	 None,	 indicating	 the	 newlines
translated	 so	 far.	 Depending	 on	 the	 implementation	 and	 the
initial	constructor	flags,	this	may	not	be	available.

buffer

The	 underlying	 binary	 buffer	 (a	 BufferedIOBase	 instance)
that	 TextIOBase	 deals	 with.	 This	 is	 not	 part	 of	 the
TextIOBase	API	and	may	not	exist	in	some	implementations.

detach()
Separate	 the	 underlying	 binary	 buffer	 from	 the	 TextIOBase
and	return	it.

After	 the	 underlying	 buffer	 has	 been	 detached,	 the
TextIOBase	is	in	an	unusable	state.

Some	TextIOBase	implementations,	like	StringIO,	may	not
have	 the	 concept	 of	 an	 underlying	 buffer	 and	 calling	 this
method	will	raise	UnsupportedOperation.

New	in	version	3.1.

read(size)
Read	and	return	at	most	size	characters	 from	the	stream	as	a
single	str.	If	size	is	negative	or	None,	reads	until	EOF.

readline(size=-1)
Read	 until	 newline	 or	 EOF	 and	 return	 a	 single	 str.	 If	 the
stream	is	already	at	EOF,	an	empty	string	is	returned.

If	size	is	specified,	at	most	size	characters	will	be	read.

seek(offset,	whence=SEEK_SET)
Change	 the	 stream	 position	 to	 the	 given	 offset.	 Behaviour
depends	on	the	whence	parameter:

SEEK_SET	 or	 0:	 seek	 from	 the	 start	 of	 the	 stream	 (the
default);	 offset	 must	 either	 be	 a	 number	 returned	 by
TextIOBase.tell(),	 or	 zero.	 Any	 other	 offset	 value
produces	undefined	behaviour.
SEEK_CUR	or	1:	“seek”	to	the	current	position;	offset	must
be	 zero,	 which	 is	 a	 no-operation	 (all	 other	 values	 are
unsupported).
SEEK_END	or	2:	seek	to	the	end	of	the	stream;	offset	must
be	zero	(all	other	values	are	unsupported).

Return	the	new	absolute	position	as	an	opaque	number.

New	in	version	3.1:	The	SEEK_*	constants.

tell()
Return	 the	current	stream	position	as	an	opaque	number.	The
number	 does	 not	 usually	 represent	 a	 number	 of	 bytes	 in	 the
underlying	binary	storage.

write(s)
Write	 the	 string	 s	 to	 the	 stream	 and	 return	 the	 number	 of
characters	written.

class	io.TextIOWrapper(buffer,	encoding=None,	errors=None,

newline=None,	line_buffering=False,	write_through=False)
A	buffered	text	stream	over	a	BufferedIOBase	binary	stream.	It
inherits	TextIOBase.

encoding	 gives	 the	name	of	 the	encoding	 that	 the	 stream	will	 be
decoded	 or	 encoded	 with.	 It	 defaults	 to
locale.getpreferredencoding(False).

errors	 is	 an	 optional	 string	 that	 specifies	 how	 encoding	 and
decoding	 errors	 are	 to	 be	 handled.	 Pass	 'strict'	 to	 raise	 a
ValueError	exception	if	there	is	an	encoding	error	(the	default	of
None	 has	 the	 same	 effect),	 or	 pass	 'ignore'	 to	 ignore	 errors.
(Note	 that	 ignoring	 encoding	 errors	 can	 lead	 to	 data	 loss.)
'replace'	 causes	 a	 replacement	 marker	 (such	 as	 '?')	 to	 be
inserted	 where	 there	 is	 malformed	 data.	 When	 writing,
'xmlcharrefreplace'	 (replace	 with	 the	 appropriate	 XML
character	 reference)	 or	 'backslashreplace'	 (replace	 with
backslashed	 escape	 sequences)	 can	 be	 used.	 Any	 other	 error
handling	 name	 that	 has	 been	 registered	 with
codecs.register_error()	is	also	valid.

newline	controls	how	line	endings	are	handled.	It	can	be	None,	'',
'\n',	'\r',	and	'\r\n'.	It	works	as	follows:

When	 reading	 input	 from	 the	 stream,	 if	 newline	 is	 None,
universal	newlines	mode	is	enabled.	Lines	in	the	input	can	end
in	 '\n',	 '\r',	 or	 '\r\n',	 and	 these	 are	 translated	 into
'\n'	before	being	returned	to	the	caller.	 If	 it	 is	'',	universal
newlines	mode	is	enabled,	but	line	endings	are	returned	to	the
caller	untranslated.	If	it	has	any	of	the	other	legal	values,	input
lines	 are	 only	 terminated	 by	 the	 given	 string,	 and	 the	 line
ending	is	returned	to	the	caller	untranslated.

When	 writing	 output	 to	 the	 stream,	 if	 newline	 is	 None,	 any
'\n'	 characters	written	 are	 translated	 to	 the	 system	 default
line	 separator,	 os.linesep.	 If	 newline	 is	 ''	 or	 '\n',	 no
translation	 takes	 place.	 If	 newline	 is	 any	 of	 the	 other	 legal
values,	 any	 '\n'	 characters	 written	 are	 translated	 to	 the
given	string.

If	 line_buffering	 is	True,	flush()	 is	 implied	when	a	call	 to	write
contains	a	newline	character.

If	write_through	 is	True,	calls	 to	write()	are	guaranteed	not	 to
be	 buffered:	 any	 data	 written	 on	 the	 TextIOWrapper	 object	 is
immediately	handled	to	its	underlying	binary	buffer.

Changed	 in	 version	 3.3:	 The	 write_through	 argument	 has	 been
added.

Changed	 in	 version	 3.3:	 The	 default	 encoding	 is	 now
locale.getpreferredencoding(False)	 instead	 of
locale.getpreferredencoding().	 Don’t	 change	 temporary
the	locale	encoding	using	locale.setlocale(),	use	the	current
locale	encoding	instead	of	the	user	preferred	encoding.

TextIOWrapper	 provides	 one	 attribute	 in	 addition	 to	 those	 of
TextIOBase	and	its	parents:

line_buffering

Whether	line	buffering	is	enabled.

class	io.StringIO(initial_value='',	newline='\n')
An	in-memory	stream	for	text	I/O.

The	initial	value	of	the	buffer	(an	empty	string	by	default)	can	be	set
by	providing	 initial_value.	The	newline	argument	works	 like	 that	of

TextIOWrapper.	The	default	is	to	consider	only	\n	characters	as
end	of	lines	and	to	do	no	newline	translation.

StringIO	 provides	 this	 method	 in	 addition	 to	 those	 from
TextIOBase	and	its	parents:

getvalue()
Return	a	str	containing	the	entire	contents	of	the	buffer	at	any
time	before	the	StringIO	object’s	close()	method	is	called.

Example	usage:

import	io

output	=	io.StringIO()

output.write('First	line.\n')

print('Second	line.',	file=output)

#	Retrieve	file	contents	--	this	will	be

#	'First	line.\nSecond	line.\n'

contents	=	output.getvalue()

#	Close	object	and	discard	memory	buffer	--

#	.getvalue()	will	now	raise	an	exception.

output.close()

class	io.IncrementalNewlineDecoder
A	helper	codec	that	decodes	newlines	for	universal	newlines	mode.
It	inherits	codecs.IncrementalDecoder.

16.2.4.	Performance

This	section	discusses	 the	performance	of	 the	provided	concrete	 I/O
implementations.

16.2.4.1.	Binary	I/O

By	reading	and	writing	only	large	chunks	of	data	even	when	the	user
asks	for	a	single	byte,	buffered	I/O	hides	any	inefficiency	in	calling	and
executing	 the	 operating	 system’s	 unbuffered	 I/O	 routines.	 The	 gain
depends	 on	 the	 OS	 and	 the	 kind	 of	 I/O	 which	 is	 performed.	 For
example,	on	some	modern	OSes	such	as	Linux,	unbuffered	disk	 I/O
can	 be	 as	 fast	 as	 buffered	 I/O.	 The	 bottom	 line,	 however,	 is	 that
buffered	I/O	offers	predictable	performance	regardless	of	the	platform
and	 the	 backing	 device.	 Therefore,	 it	 is	 almost	 always	 preferable	 to
use	buffered	I/O	rather	than	unbuffered	I/O	for	binary	data.

16.2.4.2.	Text	I/O

Text	 I/O	 over	 a	 binary	 storage	 (such	 as	 a	 file)	 is	 significantly	 slower
than	 binary	 I/O	 over	 the	 same	 storage,	 because	 it	 requires
conversions	 between	 unicode	 and	 binary	 data	 using	 a	 character
codec.	 This	 can	 become	 noticeable	 handling	 huge	 amounts	 of	 text
data	 like	 large	 log	 files.	 Also,	 TextIOWrapper.tell()	 and
TextIOWrapper.seek()	 are	 both	 quite	 slow	 due	 to	 the
reconstruction	algorithm	used.

StringIO,	however,	is	a	native	in-memory	unicode	container	and	will
exhibit	similar	speed	to	BytesIO.

16.2.4.3.	Multi-threading

FileIO	 objects	 are	 thread-safe	 to	 the	 extent	 that	 the	 operating
system	calls	(such	as	read(2)	under	Unix)	they	wrap	are	thread-safe
too.

Binary	 buffered	 objects	 (instances	 of	 BufferedReader,
BufferedWriter,	 BufferedRandom	 and	 BufferedRWPair)
protect	their	internal	structures	using	a	lock;	it	is	therefore	safe	to	call
them	from	multiple	threads	at	once.

TextIOWrapper	objects	are	not	thread-safe.

16.2.4.4.	Reentrancy

Binary	 buffered	 objects	 (instances	 of	 BufferedReader,
BufferedWriter,	 BufferedRandom	 and	 BufferedRWPair)	 are
not	 reentrant.	 While	 reentrant	 calls	 will	 not	 happen	 in	 normal
situations,	 they	 can	 arise	 from	 doing	 I/O	 in	 a	 signal	 handler.	 If	 a
thread	tries	to	re-enter	a	buffered	object	which	it	is	already	accessing,
a	 RuntimeError	 is	 raised.	 Note	 this	 doesn’t	 prohibit	 a	 different
thread	from	entering	the	buffered	object.

The	above	 implicitly	 extends	 to	 text	 files,	 since	 the	 open()	 function
will	 wrap	 a	 buffered	 object	 inside	 a	 TextIOWrapper.	 This	 includes
standard	streams	and	 therefore	affects	 the	built-in	 function	print()
as	well.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.3.	time	—	Time	access	and
conversions
This	 module	 provides	 various	 time-related	 functions.	 For	 related
functionality,	see	also	the	datetime	and	calendar	modules.

Although	 this	 module	 is	 always	 available,	 not	 all	 functions	 are
available	on	all	platforms.	Most	of	the	functions	defined	in	this	module
call	platform	C	library	functions	with	the	same	name.	It	may	sometimes
be	 helpful	 to	 consult	 the	 platform	 documentation,	 because	 the
semantics	of	these	functions	varies	among	platforms.

An	explanation	of	some	terminology	and	conventions	is	in	order.

The	epoch	 is	 the	point	where	 the	 time	starts.	On	January	1st	of
that	year,	at	0	hours,	the	“time	since	the	epoch”	is	zero.	For	Unix,
the	 epoch	 is	 1970.	 To	 find	 out	 what	 the	 epoch	 is,	 look	 at
gmtime(0).

The	 functions	 in	 this	 module	 may	 not	 handle	 dates	 and	 times
before	the	epoch	or	far	in	the	future.	The	cut-off	point	in	the	future
is	determined	by	the	C	library;	for	32-bit	systems,	it	is	typically	in
2038.

Year	 2000	 (Y2K)	 issues:	 Python	 depends	 on	 the	 platform’s	 C
library,	which	generally	 doesn’t	 have	 year	 2000	 issues,	 since	all
dates	and	 times	are	 represented	 internally	as	seconds	since	 the
epoch.	Function	strptime()	can	parse	2-digit	years	when	given
%y	 format	 code.	 When	 2-digit	 years	 are	 parsed,	 they	 are
converted	according	 to	 the	POSIX	and	 ISO	C	standards:	values
69–99	are	mapped	 to	1969–1999,	and	values	0–68	are	mapped
to	2000–2068.

UTC	 is	 Coordinated	 Universal	 Time	 (formerly	 known	 as
Greenwich	 Mean	 Time,	 or	 GMT).	 The	 acronym	 UTC	 is	 not	 a
mistake	but	a	compromise	between	English	and	French.

DST	 is	Daylight	Saving	Time,	an	adjustment	of	 the	 timezone	by
(usually)	 one	 hour	 during	 part	 of	 the	 year.	DST	 rules	 are	magic
(determined	by	local	law)	and	can	change	from	year	to	year.	The
C	 library	 has	 a	 table	 containing	 the	 local	 rules	 (often	 it	 is	 read
from	 a	 system	 file	 for	 flexibility)	 and	 is	 the	 only	 source	 of	 True
Wisdom	in	this	respect.

The	precision	of	the	various	real-time	functions	may	be	less	than
suggested	 by	 the	 units	 in	 which	 their	 value	 or	 argument	 is
expressed.	E.g.	on	most	Unix	systems,	the	clock	“ticks”	only	50	or
100	times	a	second.

On	 the	 other	 hand,	 the	 precision	 of	 time()	 and	 sleep()	 is
better	than	their	Unix	equivalents:	times	are	expressed	as	floating
point	numbers,	time()	returns	the	most	accurate	time	available
(using	 Unix	 gettimeofday()	 where	 available),	 and	 sleep()
will	accept	a	time	with	a	nonzero	fraction	(Unix	select()	is	used
to	implement	this,	where	available).

The	 time	 value	 as	 returned	 by	 gmtime(),	 localtime(),	 and
strptime(),	 and	 accepted	 by	 asctime(),	 mktime()	 and
strftime(),	 is	a	sequence	of	9	 integers.	The	 return	 values	of
gmtime(),	localtime(),	and	strptime()	also	offer	attribute
names	for	individual	fields.

See	struct_time	for	a	description	of	these	objects.

Changed	in	version	3.3:	The	struct_time	type	was	extended	to
provide	 the	 tm_gmtoff	 and	 tm_zone	 attributes	 when	 platform

supports	corresponding	struct	tm	members.

Use	 the	 following	 functions	 to	 convert	 between	 time
representations:

From To Use

seconds	since
the	epoch

struct_time	in
UTC

gmtime()

seconds	since
the	epoch

struct_time	in
local	time

localtime()

struct_time	in
UTC

seconds	since
the	epoch calendar.timegm()

struct_time	in
local	time

seconds	since
the	epoch mktime()

The	module	defines	the	following	functions	and	data	items:

time.altzone

The	offset	of	 the	 local	DST	 timezone,	 in	seconds	west	of	UTC,	 if
one	is	defined.	This	is	negative	if	the	local	DST	timezone	is	east	of
UTC	 (as	 in	 Western	 Europe,	 including	 the	 UK).	 Only	 use	 this	 if
daylight	is	nonzero.

time.asctime([t])
Convert	a	tuple	or	struct_time	representing	a	time	as	returned
by	gmtime()	or	localtime()	 to	a	string	of	 the	 following	 form:
'Sun	Jun	20	23:21:05	1993'.	If	t	is	not	provided,	the	current
time	as	 returned	by	localtime()	 is	used.	Locale	 information	 is
not	used	by	asctime().

Note: 	 Unlike	 the	 C	 function	 of	 the	 same	 name,	 asctime()

does	not	add	a	trailing	newline.

time.clock()
On	 Unix,	 return	 the	 current	 processor	 time	 as	 a	 floating	 point
number	expressed	in	seconds.	The	precision,	and	in	fact	 the	very
definition	 of	 the	meaning	 of	 “processor	 time”,	 depends	 on	 that	 of
the	 C	 function	 of	 the	 same	 name,	 but	 in	 any	 case,	 this	 is	 the
function	to	use	for	benchmarking	Python	or	timing	algorithms.

On	 Windows,	 this	 function	 returns	 wall-clock	 seconds	 elapsed
since	the	first	call	to	this	function,	as	a	floating	point	number,	based
on	 the	 Win32	 function	 QueryPerformanceCounter().	 The
resolution	is	typically	better	than	one	microsecond.

Deprecated	 since	 version	 3.3:	 The	 behaviour	 of	 this	 function
depends	 on	 the	 platform:	 use	 perf_counter()	 or
process_time()	 instead,	depending	on	your	 requirements,	 to
have	a	well	defined	behaviour.

time.clock_getres(clk_id)
Return	the	resolution	(precision)	of	the	specified	clock	clk_id.

Availability:	Unix.

New	in	version	3.3.

time.clock_gettime(clk_id)
Return	the	time	of	the	specified	clock	clk_id.

Availability:	Unix.

New	in	version	3.3.

time.clock_settime(clk_id,	time)
Set	the	time	of	the	specified	clock	clk_id.

Availability:	Unix.

New	in	version	3.3.

time.CLOCK_HIGHRES

The	 Solaris	 OS	 has	 a	 CLOCK_HIGHRES	 timer	 that	 attempts	 to
use	 an	 optimal	 hardware	 source,	 and	 may	 give	 close	 to
nanosecond	 resolution.	 CLOCK_HIGHRES	 is	 the	 nonadjustable,
high-resolution	clock.

Availability:	Solaris.

New	in	version	3.3.

time.CLOCK_MONOTONIC

Clock	 that	 cannot	 be	 set	 and	 represents	 monotonic	 time	 since
some	unspecified	starting	point.

Availability:	Unix.

New	in	version	3.3.

time.CLOCK_MONOTONIC_RAW

Similar	 to	 CLOCK_MONOTONIC,	 but	 provides	 access	 to	 a	 raw
hardware-based	time	that	is	not	subject	to	NTP	adjustments.

Availability:	Linux	2.6.28	or	later.

New	in	version	3.3.

time.CLOCK_PROCESS_CPUTIME_ID

High-resolution	per-process	timer	from	the	CPU.

Availability:	Unix.

New	in	version	3.3.

time.CLOCK_REALTIME

System-wide	real-time	clock.	Setting	this	clock	requires	appropriate
privileges.

Availability:	Unix.

New	in	version	3.3.

time.CLOCK_THREAD_CPUTIME_ID

Thread-specific	CPU-time	clock.

Availability:	Unix.

New	in	version	3.3.

time.ctime([secs])
Convert	a	 time	expressed	 in	seconds	since	 the	epoch	 to	a	string
representing	local	time.	If	secs	is	not	provided	or	None,	the	current
time	as	returned	by	time()	 is	used.	ctime(secs)	is	equivalent
to	asctime(localtime(secs)).	Locale	information	is	not	used
by	ctime().

time.daylight

Nonzero	if	a	DST	timezone	is	defined.

time.get_clock_info(name)
Get	 information	 on	 the	 specified	 clock	 as	 a	 namespace	 object.
Supported	 clock	 names	 and	 the	 corresponding	 functions	 to	 read
their	value	are:

'clock':	time.clock()
'monotonic':	time.monotonic()
'perf_counter':	time.perf_counter()
'process_time':	time.process_time()
'time':	time.time()

The	result	has	the	following	attributes:

adjustable:	 True	 if	 the	 clock	 can	 be	 changed	 automatically
(e.g.	 by	 a	 NTP	 daemon)	 or	 manually	 by	 the	 system
administrator,	False	otherwise
implementation:	The	name	of	 the	underlying	C	 function	used
to	get	the	clock	value
monotonic:	 True	 if	 the	 clock	 cannot	 go	 backward,	 False
otherwise
resolution:	The	resolution	of	the	clock	in	seconds	(float)

New	in	version	3.3.

time.gmtime([secs])
Convert	 a	 time	 expressed	 in	 seconds	 since	 the	 epoch	 to	 a
struct_time	in	UTC	in	which	the	dst	flag	is	always	zero.	If	secs
is	not	provided	or	None,	the	current	time	as	returned	by	time()	is
used.	 Fractions	 of	 a	 second	 are	 ignored.	 See	 above	 for	 a
description	 of	 the	 struct_time	 object.	 See
calendar.timegm()	for	the	inverse	of	this	function.

time.localtime([secs])
Like	gmtime()	but	converts	to	local	time.	If	secs	is	not	provided	or
None,	 the	 current	 time	 as	 returned	 by	 time()	 is	 used.	 The	 dst
flag	is	set	to	1	when	DST	applies	to	the	given	time.

time.mktime(t)

This	 is	 the	 inverse	 function	of	localtime().	 Its	argument	 is	 the
struct_time	or	full	9-tuple	(since	the	dst	flag	is	needed;	use	-1
as	 the	dst	 flag	 if	 it	 is	unknown)	which	expresses	 the	 time	 in	 local
time,	not	UTC.	 It	 returns	a	 floating	point	number,	 for	 compatibility
with	time().	 If	 the	 input	value	cannot	be	 represented	as	a	valid
time,	 either	 OverflowError	 or	 ValueError	 will	 be	 raised
(which	depends	on	whether	 the	 invalid	value	 is	caught	by	Python
or	 the	 underlying	 C	 libraries).	 The	 earliest	 date	 for	 which	 it	 can
generate	a	time	is	platform-dependent.

time.monotonic()
Return	the	value	(in	fractional	seconds)	of	a	monotonic	clock,	i.e.	a
clock	 that	 cannot	 go	 backwards.	 The	 clock	 is	 not	 affected	 by
system	clock	updates.	The	reference	point	of	the	returned	value	is
undefined,	 so	 that	 only	 the	 difference	 between	 the	 results	 of
consecutive	calls	is	valid.

On	 Windows	 versions	 older	 than	 Vista,	 monotonic()	 detects
GetTickCount()	 integer	 overflow	 (32	 bits,	 roll-over	 after	 49.7
days).	 It	 increases	an	 internal	epoch	(reference	time)	by	232	each
time	 that	 an	 overflow	 is	 detected.	 The	 epoch	 is	 stored	 in	 the
process-local	 state	 and	 so	 the	 value	 of	 monotonic()	 may	 be
different	 in	 two	Python	processes	 running	 for	more	 than	49	days.
On	 more	 recent	 versions	 of	 Windows	 and	 on	 other	 operating
systems,	monotonic()	is	system-wide.

Availability:	 Windows,	 Mac	 OS	 X,	 Linux,	 FreeBSD,	 OpenBSD,
Solaris.

New	in	version	3.3.

time.perf_counter()

Return	the	value	(in	fractional	seconds)	of	a	performance	counter,
i.e.	a	clock	with	the	highest	available	resolution	to	measure	a	short
duration.	It	does	include	time	elapsed	during	sleep	and	is	system-
wide.	 The	 reference	 point	 of	 the	 returned	 value	 is	 undefined,	 so
that	only	the	difference	between	the	results	of	consecutive	calls	is
valid.

New	in	version	3.3.

time.process_time()
Return	 the	value	 (in	 fractional	seconds)	of	 the	sum	of	 the	system
and	user	CPU	time	of	the	current	process.	It	does	not	include	time
elapsed	 during	 sleep.	 It	 is	 process-wide	 by	 definition.	 The
reference	point	of	the	returned	value	is	undefined,	so	that	only	the
difference	between	the	results	of	consecutive	calls	is	valid.

New	in	version	3.3.

time.sleep(secs)
Suspend	 execution	 for	 the	 given	 number	 of	 seconds.	 The
argument	 may	 be	 a	 floating	 point	 number	 to	 indicate	 a	 more
precise	sleep	 time.	The	actual	suspension	 time	may	be	 less	 than
that	 requested	 because	 any	 caught	 signal	 will	 terminate	 the
sleep()	following	execution	of	that	signal’s	catching	routine.	Also,
the	suspension	time	may	be	longer	than	requested	by	an	arbitrary
amount	because	of	the	scheduling	of	other	activity	in	the	system.

time.strftime(format[,	t])
Convert	a	tuple	or	struct_time	representing	a	time	as	returned
by	 gmtime()	 or	 localtime()	 to	 a	 string	 as	 specified	 by	 the
format	argument.	 If	 t	 is	not	provided,	 the	current	 time	as	 returned
by	localtime()	 is	used.	 format	must	be	a	string.	ValueError

is	raised	if	any	field	in	t	is	outside	of	the	allowed	range.

0	 is	 a	 legal	 argument	 for	 any	 position	 in	 the	 time	 tuple;	 if	 it	 is
normally	illegal	the	value	is	forced	to	a	correct	one.

The	 following	 directives	 can	 be	 embedded	 in	 the	 format	 string.
They	 are	 shown	 without	 the	 optional	 field	 width	 and	 precision
specification,	 and	 are	 replaced	by	 the	 indicated	 characters	 in	 the
strftime()	result:

Directive Meaning Notes

%a Locale’s	abbreviated	weekday	name. 	

%A Locale’s	full	weekday	name. 	

%b Locale’s	abbreviated	month	name. 	

%B Locale’s	full	month	name. 	

%c
Locale’s	appropriate	date	and	time
representation. 	

%d
Day	of	the	month	as	a	decimal	number
[01,31]. 	

%H
Hour	(24-hour	clock)	as	a	decimal	number
[00,23]. 	

%I
Hour	(12-hour	clock)	as	a	decimal	number
[01,12]. 	

%j
Day	of	the	year	as	a	decimal	number
[001,366]. 	

%m Month	as	a	decimal	number	[01,12]. 	

%M Minute	as	a	decimal	number	[00,59]. 	

%p Locale’s	equivalent	of	either	AM	or	PM. (1)

%S Second	as	a	decimal	number	[00,61]. (2)

%U

Week	number	of	the	year	(Sunday	as	the
first	day	of	the	week)	as	a	decimal	number
[00,53].	All	days	in	a	new	year	preceding
the	first	Sunday	are	considered	to	be	in
week	0.

(3)

%w
Weekday	as	a	decimal	number
[0(Sunday),6]. 	

%W

Week	number	of	the	year	(Monday	as	the
first	day	of	the	week)	as	a	decimal	number
[00,53].	All	days	in	a	new	year	preceding
the	first	Monday	are	considered	to	be	in
week	0.

(3)

%x Locale’s	appropriate	date	representation. 	

%X Locale’s	appropriate	time	representation. 	

%y
Year	without	century	as	a	decimal	number
[00,99]. 	

%Y Year	with	century	as	a	decimal	number. 	

%z

Time	zone	offset	indicating	a	positive	or
negative	time	difference	from	UTC/GMT	of
the	form	+HHMM	or	-HHMM,	where	H
represents	decimal	hour	digits	and	M
represents	decimal	minute	digits	[-23:59,
+23:59].

	

%Z
Time	zone	name	(no	characters	if	no	time
zone	exists). 	

%% A	literal	'%'	character. 	

Notes:

1.	 When	 used	with	 the	 strptime()	 function,	 the	 %p	 directive
only	affects	the	output	hour	field	if	 the	%I	directive	is	used	to
parse	the	hour.

2.	 The	 range	 really	 is	0	 to	61;	 value	60	 is	 valid	 in	 timestamps

representing	 leap	 seconds	 and	 value	 61	 is	 supported	 for
historical	reasons.

3.	 When	 used	 with	 the	 strptime()	 function,	 %U	 and	 %W	 are
only	 used	 in	 calculations	when	 the	 day	 of	 the	week	 and	 the
year	are	specified.

Here	 is	 an	 example,	 a	 format	 for	 dates	 compatible	 with	 that
specified	in	the	RFC	2822	Internet	email	standard.	[1]

>>>	from	time	import	gmtime,	strftime

>>>	strftime("%a,	%d	%b	%Y	%H:%M:%S	+0000",	gmtime

'Thu,	28	Jun	2001	14:17:15	+0000'

Additional	 directives	 may	 be	 supported	 on	 certain	 platforms,	 but
only	the	ones	listed	here	have	a	meaning	standardized	by	ANSI	C.
To	 see	 the	 full	 set	 of	 format	 codes	 supported	 on	 your	 platform,
consult	the	strftime(3)	documentation.

On	 some	 platforms,	 an	 optional	 field	 width	 and	 precision
specification	can	immediately	follow	the	initial	'%'	of	a	directive	in
the	 following	 order;	 this	 is	 also	 not	 portable.	 The	 field	 width	 is
normally	2	except	for	%j	where	it	is	3.

time.strptime(string[,	format])
Parse	 a	 string	 representing	 a	 time	 according	 to	 a	 format.	 The
return	 value	 is	 a	 struct_time	 as	 returned	 by	 gmtime()	 or
localtime().

The	 format	parameter	uses	the	same	directives	as	 those	used	by
strftime();	 it	 defaults	 to	 "%a	%b	%d	%H:%M:%S	%Y"	which
matches	 the	 formatting	 returned	by	ctime().	 If	string	 cannot	 be
parsed	according	 to	 format,	or	 if	 it	has	excess	data	after	parsing,
ValueError	 is	 raised.	 The	 default	 values	 used	 to	 fill	 in	 any

http://tools.ietf.org/html/rfc2822.html

missing	 data	 when	more	 accurate	 values	 cannot	 be	 inferred	 are
(1900,	1,	1,	0,	0,	0,	0,	1,	-1).	Both	string	and	format
must	be	strings.

For	example:

>>>	import	time

>>>	time.strptime("30	Nov	00",	"%d	%b	%y")			

time.struct_time(tm_year=2000,	tm_mon=11,	tm_mday=30,	tm_hour=0,	tm_min=0,

																	tm_sec=0,	tm_wday=3,	tm_yday=335,	tm_isdst=-1)

Support	 for	 the	 %Z	 directive	 is	 based	 on	 the	 values	 contained	 in
tzname	 and	 whether	 daylight	 is	 true.	 Because	 of	 this,	 it	 is
platform-specific	 except	 for	 recognizing	UTC	and	GMT	which	 are
always	 known	 (and	 are	 considered	 to	 be	 non-daylight	 savings
timezones).

Only	 the	directives	specified	 in	 the	documentation	are	supported.
Because	 strftime()	 is	 implemented	 per	 platform	 it	 can
sometimes	 offer	 more	 directives	 than	 those	 listed.	 But
strptime()	 is	 independent	 of	 any	 platform	 and	 thus	 does	 not
necessarily	support	all	directives	available	that	are	not	documented
as	supported.

class	time.struct_time

The	type	of	 the	time	value	sequence	returned	by	gmtime(),
localtime(),	 and	 strptime().	 It	 is	 an	 object	 with	 a
named	tuple	 interface:	values	can	be	accessed	by	 index	and
by	attribute	name.	The	following	values	are	present:

Index Attribute Values

0 tm_year (for	example,	1993)

1 tm_mon range	[1,	12]

2 tm_mday range	[1,	31]

3 tm_hour range	[0,	23]

4 tm_min range	[0,	59]

5 tm_sec
range	[0,	61];	see	(2)	in
strftime()	description

6 tm_wday range	[0,	6],	Monday	is	0

7 tm_yday range	[1,	366]

8 tm_isdst 0,	1	or	-1;	see	below

N/A tm_zone abbreviation	of	timezone	name

N/A tm_gmtoff offset	east	of	UTC	in	seconds

Note	that	unlike	the	C	structure,	the	month	value	is	a	range	of
[1,	12],	not	[0,	11].	A	-1	argument	as	the	daylight	savings	flag,
passed	to	mktime()	will	usually	result	in	the	correct	daylight
savings	state	to	be	filled	in.

When	a	 tuple	with	an	 incorrect	 length	 is	passed	to	a	 function
expecting	a	struct_time,	or	having	elements	of	 the	wrong
type,	a	TypeError	is	raised.

Changed	 in	version	3.3:	tm_gmtoff	and	tm_zone	attributes	are
available	on	platforms	with	C	 library	supporting	 the	corresponding
fields	in	struct	tm.

time.time()
Return	 the	 time	 in	 seconds	 since	 the	 epoch	 as	 a	 floating	 point
number.	 Note	 that	 even	 though	 the	 time	 is	 always	 returned	 as	 a
floating	 point	 number,	 not	 all	 systems	 provide	 time	 with	 a	 better

precision	than	1	second.	While	this	 function	normally	returns	non-
decreasing	values,	it	can	return	a	lower	value	than	a	previous	call	if
the	system	clock	has	been	set	back	between	the	two	calls.

time.timezone

The	 offset	 of	 the	 local	 (non-DST)	 timezone,	 in	 seconds	 west	 of
UTC	(negative	in	most	of	Western	Europe,	positive	in	the	US,	zero
in	the	UK).

time.tzname

A	 tuple	 of	 two	 strings:	 the	 first	 is	 the	 name	of	 the	 local	 non-DST
timezone,	the	second	is	the	name	of	the	local	DST	timezone.	If	no
DST	timezone	is	defined,	the	second	string	should	not	be	used.

time.tzset()
Resets	the	time	conversion	rules	used	by	the	library	routines.	The
environment	variable	TZ	specifies	how	this	is	done.

Availability:	Unix.

Note: 	 Although	 in	 many	 cases,	 changing	 the	 TZ	 environment
variable	 may	 affect	 the	 output	 of	 functions	 like	 localtime()
without	calling	tzset(),	this	behavior	should	not	be	relied	on.
The	TZ	environment	variable	should	contain	no	whitespace.

The	standard	format	of	the	TZ	environment	variable	is	(whitespace
added	for	clarity):

std	offset	[dst	[offset	[,start[/time],	end[/time]]]]

Where	the	components	are:

std	and	dst
Three	 or	 more	 alphanumerics	 giving	 the	 timezone
abbreviations.	These	will	be	propagated	into	time.tzname

offset

The	offset	has	the	form:	±	hh[:mm[:ss]].	This	indicates	the
value	added	the	local	time	to	arrive	at	UTC.	If	preceded	by	a	‘-‘,
the	timezone	is	east	of	the	Prime	Meridian;	otherwise,	it	is	west.
If	no	offset	follows	dst,	summer	time	is	assumed	to	be	one	hour
ahead	of	standard	time.

start[/time],	end[/time]

Indicates	when	to	change	to	and	back	from	DST.	The	format	of
the	start	and	end	dates	are	one	of	the	following:

Jn

The	 Julian	 day	 n	 (1	 <=	 n	 <=	 365).	 Leap	 days	 are	 not
counted,	so	in	all	years	February	28	is	day	59	and	March	1
is	day	60.

n

The	zero-based	Julian	day	(0	<=	n	<=	365).	Leap	days	are
counted,	and	it	is	possible	to	refer	to	February	29.

Mm.n.d

The	d‘th	day	(0	<=	d	<=	6)	or	week	n	of	month	m	of	the	year
(1	<=	n	<=	5,	1	<=	m	<=	12,	where	week	5	means	“the	last	d
day	in	month	m”	which	may	occur	in	either	the	fourth	or	the
fifth	week).	Week	 1	 is	 the	 first	week	 in	which	 the	d‘th	 day
occurs.	Day	zero	is	Sunday.

time	has	the	same	format	as	offset	except	 that	no	 leading
sign	 (‘-‘	 or	 ‘+’)	 is	 allowed.	 The	 default,	 if	 time	 is	 not	 given,	 is
02:00:00.

>>>	os.environ['TZ']	=	'EST+05EDT,M4.1.0,M10.5.0'

>>>	time.tzset()

>>>	time.strftime('%X	%x	%Z')

'02:07:36	05/08/03	EDT'

>>>	os.environ['TZ']	=	'AEST-10AEDT-11,M10.5.0,M3.5.0'

>>>	time.tzset()

>>>	time.strftime('%X	%x	%Z')

'16:08:12	05/08/03	AEST'

On	 many	 Unix	 systems	 (including	 *BSD,	 Linux,	 Solaris,	 and
Darwin),	 it	 is	 more	 convenient	 to	 use	 the	 system’s	 zoneinfo
(tzfile(5))	database	to	specify	the	timezone	rules.	To	do	this,	set	the
TZ	 environment	 variable	 to	 the	 path	 of	 the	 required	 timezone
datafile,	 relative	 to	 the	 root	 of	 the	 systems	 ‘zoneinfo’	 timezone
database,	 usually	 located	 at	 /usr/share/zoneinfo.	 For
example,	'US/Eastern',	'Australia/Melbourne',	'Egypt'
or	'Europe/Amsterdam'.

>>>	os.environ['TZ']	=	'US/Eastern'

>>>	time.tzset()

>>>	time.tzname

('EST',	'EDT')

>>>	os.environ['TZ']	=	'Egypt'

>>>	time.tzset()

>>>	time.tzname

('EET',	'EEST')

See	also:

Module	datetime
More	object-oriented	interface	to	dates	and	times.

Module	locale
Internationalization	 services.	 The	 locale	 setting	 affects	 the
interpretation	 of	 many	 format	 specifiers	 in	 strftime()	 and

strptime().

Module	calendar
General	 calendar-related	 functions.	 timegm()	 is	 the	 inverse	of
gmtime()	from	this	module.

Footnotes

[1]

The	use	of	%Z	is	now	deprecated,	but	the	%z	escape	that
expands	to	the	preferred	hour/minute	offset	is	not	supported	by
all	ANSI	C	libraries.	Also,	a	strict	reading	of	the	original	1982
RFC	822	standard	calls	for	a	two-digit	year	(%y	rather	than
%Y),	but	practice	moved	to	4-digit	years	long	before	the	year
2000.	After	that,	RFC	822	became	obsolete	and	the	4-digit	year
has	been	first	recommended	by	RFC	1123	and	then	mandated
by	RFC	2822.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc1123.html
http://tools.ietf.org/html/rfc2822.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

Tutorial

This	page	 contains	 the	API
reference	information.	For	a
more	 gentle	 introduction	 to
Python	 command-line
parsing,	 have	 a	 look	 at	 the
argparse	tutorial.

16.4.	argparse	—	Parser	for
command-line	options,	arguments
and	sub-commands
New	in	version	3.2.

Source	code:	Lib/argparse.py

The	argparse	module	makes	it	easy
to	 write	 user-friendly	 command-line
interfaces.	The	program	defines	what
arguments	it	requires,	and	argparse
will	 figure	out	how	to	parse	those	out
of	 sys.argv.	 The	 argparse

module	 also	 automatically	 generates
help	and	usage	messages	and	issues
errors	 when	 users	 give	 the	 program
invalid	arguments.

http://hg.python.org/cpython/file/3.4/Lib/argparse.py

16.4.1.	Example

The	 following	 code	 is	 a	Python	 program	 that	 takes	 a	 list	 of	 integers
and	produces	either	the	sum	or	the	max:

import	argparse

parser	=	argparse.ArgumentParser(description='Process	some	integers.'

parser.add_argument('integers',	metavar='N',	type=int

																			help='an	integer	for	the	accumulator'

parser.add_argument('--sum',	dest='accumulate',	action

																			const=sum,	default=max,

																			help='sum	the	integers	(default:	find	the	max)'

args	=	parser.parse_args()

print(args.accumulate(args.integers))

Assuming	the	Python	code	above	is	saved	into	a	file	called	prog.py,
it	can	be	run	at	the	command	line	and	provides	useful	help	messages:

$	python	prog.py	-h

usage:	prog.py	[-h]	[--sum]	N	[N	...]

Process	some	integers.

positional	arguments:

	N											an	integer	for	the	accumulator

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--sum							sum	the	integers	(default:	find	the	max)

When	 run	with	 the	appropriate	arguments,	 it	prints	either	 the	sum	or

the	max	of	the	command-line	integers:

$	python	prog.py	1	2	3	4

4

$	python	prog.py	1	2	3	4	--sum

10

If	invalid	arguments	are	passed	in,	it	will	issue	an	error:

$	python	prog.py	a	b	c

usage:	prog.py	[-h]	[--sum]	N	[N	...]

prog.py:	error:	argument	N:	invalid	int	value:	'a'

The	following	sections	walk	you	through	this	example.

16.4.1.1.	Creating	a	parser

The	 first	 step	 in	 using	 the	 argparse	 is	 creating	 an
ArgumentParser	object:

>>>	parser	=	argparse.ArgumentParser(description='Process	some	integers.'

The	ArgumentParser	 object	will	 hold	all	 the	 information	necessary
to	parse	the	command	line	into	Python	data	types.

16.4.1.2.	Adding	arguments

Filling	 an	 ArgumentParser	 with	 information	 about	 program
arguments	is	done	by	making	calls	to	the	add_argument()	method.
Generally,	 these	 calls	 tell	 the	 ArgumentParser	 how	 to	 take	 the
strings	 on	 the	 command	 line	 and	 turn	 them	 into	 objects.	 This

information	 is	 stored	 and	 used	 when	 parse_args()	 is	 called.	 For
example:

>>>	parser.add_argument('integers',	metavar='N',	type

...																					help='an	integer	for	the	accumulator'

>>>	parser.add_argument('--sum',	dest='accumulate',	

...																					const=sum,	default=max,

...																					help='sum	the	integers	(default:	find	the	max)'

Later,	calling	parse_args()	will	return	an	object	with	two	attributes,
integers	and	accumulate.	The	integers	attribute	will	be	a	list	of
one	 or	 more	 ints,	 and	 the	 accumulate	 attribute	 will	 be	 either	 the
sum()	 function,	 if	--sum	was	specified	at	 the	command	 line,	or	 the
max()	function	if	it	was	not.

16.4.1.3.	Parsing	arguments

ArgumentParser	 parses	 arguments	 through	 the	 parse_args()
method.	This	will	inspect	the	command	line,	convert	each	argument	to
the	appropriate	 type	and	 then	 invoke	 the	appropriate	action.	 In	most
cases,	 this	means	 a	 simple	 Namespace	 object	 will	 be	 built	 up	 from
attributes	parsed	out	of	the	command	line:

>>>	parser.parse_args(['--sum',	'7',	'-1',	'42'])

Namespace(accumulate=<built-in	function	sum>,	integers=[7,	-1,	42])

In	a	script,	parse_args()	will	typically	be	called	with	no	arguments,
and	the	ArgumentParser	will	automatically	determine	the	command-
line	arguments	from	sys.argv.

16.4.2.	ArgumentParser	objects

class	argparse.ArgumentParser(prog=None,	usage=None,
description=None,	epilog=None,	parents=[],
formatter_class=argparse.HelpFormatter,	prefix_chars='-',
fromfile_prefix_chars=None,	argument_default=None,
conflict_handler='error',	add_help=True)

Create	a	new	ArgumentParser	object.	All	parameters	should	be
passed	as	keyword	arguments.	Each	parameter	has	its	own	more
detailed	description	below,	but	in	short	they	are:

prog	-	The	name	of	the	program	(default:	sys.argv[0])
usage	 -	 The	 string	 describing	 the	 program	 usage	 (default:
generated	from	arguments	added	to	parser)
description	-	Text	to	display	before	the	argument	help	(default:
none)
epilog	-	Text	to	display	after	the	argument	help	(default:	none)
parents	 -	 A	 list	 of	 ArgumentParser	 objects	 whose
arguments	should	also	be	included
formatter_class	-	A	class	for	customizing	the	help	output
prefix_chars	 -	 The	 set	 of	 characters	 that	 prefix	 optional
arguments	(default:	‘-‘)
fromfile_prefix_chars	 -	 The	 set	 of	 characters	 that	 prefix	 files
from	 which	 additional	 arguments	 should	 be	 read	 (default:
None)
argument_default	 -	 The	 global	 default	 value	 for	 arguments
(default:	None)
conflict_handler	 -	 The	 strategy	 for	 resolving	 conflicting
optionals	(usually	unnecessary)
add_help	-	Add	a	-h/–help	option	to	the	parser	(default:	True)

The	following	sections	describe	how	each	of	these	are	used.

16.4.2.1.	prog

By	 default,	 ArgumentParser	 objects	 uses	 sys.argv[0]	 to
determine	how	to	display	the	name	of	the	program	in	help	messages.
This	default	 is	almost	always	desirable	because	 it	will	make	 the	help
messages	match	how	the	program	was	invoked	on	the	command	line.
For	example,	consider	a	file	named	myprogram.py	with	the	following
code:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument('--foo',	help='foo	help')

args	=	parser.parse_args()

The	help	for	this	program	will	display	myprogram.py	as	the	program
name	(regardless	of	where	the	program	was	invoked	from):

$	python	myprogram.py	--help

usage:	myprogram.py	[-h]	[--foo	FOO]

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo	FOO			foo	help

$	cd	..

$	python	subdir\myprogram.py	--help

usage:	myprogram.py	[-h]	[--foo	FOO]

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo	FOO			foo	help

To	change	this	default	behavior,	another	value	can	be	supplied	using
the	prog=	argument	to	ArgumentParser:

>>>	parser	=	argparse.ArgumentParser(prog='myprogram'

>>>	parser.print_help()

usage:	myprogram	[-h]

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

Note	that	the	program	name,	whether	determined	from	sys.argv[0]
or	from	the	prog=	argument,	is	available	to	help	messages	using	the
%(prog)s	format	specifier.

>>>	parser	=	argparse.ArgumentParser(prog='myprogram'

>>>	parser.add_argument('--foo',	help='foo	of	the	%(prog)s	program'

>>>	parser.print_help()

usage:	myprogram	[-h]	[--foo	FOO]

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo	FOO			foo	of	the	myprogram	program

16.4.2.2.	usage

By	default,	ArgumentParser	calculates	the	usage	message	from	the
arguments	it	contains:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('--foo',	nargs='?',	help='foo	help'

>>>	parser.add_argument('bar',	nargs='+',	help='bar	help'

>>>	parser.print_help()

usage:	PROG	[-h]	[--foo	[FOO]]	bar	[bar	...]

positional	arguments:

	bar										bar	help

optional	arguments:

	-h,	--help			show	this	help	message	and	exit

	--foo	[FOO]		foo	help

The	 default	 message	 can	 be	 overridden	 with	 the	 usage=	 keyword
argument:

>>>	parser	=	argparse.ArgumentParser(prog='PROG',	usage

>>>	parser.add_argument('--foo',	nargs='?',	help='foo	help'

>>>	parser.add_argument('bar',	nargs='+',	help='bar	help'

>>>	parser.print_help()

usage:	PROG	[options]

positional	arguments:

	bar										bar	help

optional	arguments:

	-h,	--help			show	this	help	message	and	exit

	--foo	[FOO]		foo	help

The	%(prog)s	format	specifier	is	available	to	fill	in	the	program	name
in	your	usage	messages.

16.4.2.3.	description

Most	 calls	 to	 the	 ArgumentParser	 constructor	 will	 use	 the
description=	 keyword	 argument.	 This	 argument	 gives	 a	 brief
description	 of	 what	 the	 program	 does	 and	 how	 it	 works.	 In	 help
messages,	 the	 description	 is	 displayed	 between	 the	 command-line
usage	string	and	the	help	messages	for	the	various	arguments:

>>>	parser	=	argparse.ArgumentParser(description='A	foo	that	bars'

>>>	parser.print_help()

usage:	argparse.py	[-h]

A	foo	that	bars

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

By	default,	the	description	will	be	line-wrapped	so	that	it	fits	within	the
given	 space.	 To	 change	 this	 behavior,	 see	 the	 formatter_class
argument.

16.4.2.4.	epilog

Some	 programs	 like	 to	 display	 additional	 description	 of	 the	 program
after	 the	 description	 of	 the	 arguments.	 Such	 text	 can	 be	 specified
using	the	epilog=	argument	to	ArgumentParser:

>>>	parser	=	argparse.ArgumentParser(

...					description='A	foo	that	bars',

...					epilog="And	that's	how	you'd	foo	a	bar")

>>>	parser.print_help()

usage:	argparse.py	[-h]

A	foo	that	bars

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

And	that's	how	you'd	foo	a	bar

As	with	the	description	argument,	the	epilog=	text	is	by	default	line-
wrapped,	 but	 this	 behavior	 can	 be	 adjusted	with	 the	 formatter_class
argument	to	ArgumentParser.

16.4.2.5.	parents

Sometimes,	 several	 parsers	 share	 a	 common	 set	 of	 arguments.
Rather	 than	 repeating	 the	 definitions	 of	 these	 arguments,	 a	 single
parser	 with	 all	 the	 shared	 arguments	 and	 passed	 to	 parents=
argument	 to	 ArgumentParser	 can	 be	 used.	 The	 parents=

argument	 takes	 a	 list	 of	 ArgumentParser	 objects,	 collects	 all	 the
positional	and	optional	actions	 from	 them,	and	adds	 these	actions	 to
the	ArgumentParser	object	being	constructed:

>>>	parent_parser	=	argparse.ArgumentParser(add_help

>>>	parent_parser.add_argument('--parent',	type=int)

>>>	foo_parser	=	argparse.ArgumentParser(parents=[parent_parser

>>>	foo_parser.add_argument('foo')

>>>	foo_parser.parse_args(['--parent',	'2',	'XXX'])

Namespace(foo='XXX',	parent=2)

>>>	bar_parser	=	argparse.ArgumentParser(parents=[parent_parser

>>>	bar_parser.add_argument('--bar')

>>>	bar_parser.parse_args(['--bar',	'YYY'])

Namespace(bar='YYY',	parent=None)

Note	 that	 most	 parent	 parsers	 will	 specify	 add_help=False.
Otherwise,	 the	 ArgumentParser	 will	 see	 two	 -h/--help	 options
(one	in	the	parent	and	one	in	the	child)	and	raise	an	error.

Note: 	You	must	fully	initialize	the	parsers	before	passing	them	via
parents=.	If	you	change	the	parent	parsers	after	the	child	parser,
those	changes	will	not	be	reflected	in	the	child.

16.4.2.6.	formatter_class

ArgumentParser	objects	allow	the	help	formatting	to	be	customized
by	 specifying	 an	 alternate	 formatting	 class.	 Currently,	 there	 are	 four
such	classes:

class	argparse.RawDescriptionHelpFormatter
class	argparse.RawTextHelpFormatter
class	argparse.ArgumentDefaultsHelpFormatter
class	argparse.MetavarTypeHelpFormatter

RawDescriptionHelpFormatter	 and	 RawTextHelpFormatter
give	 more	 control	 over	 how	 textual	 descriptions	 are	 displayed.	 By
default,	 ArgumentParser	 objects	 line-wrap	 the	 description	 and
epilog	texts	in	command-line	help	messages:

>>>	parser	=	argparse.ArgumentParser(

...					prog='PROG',

...					description='''this	description

...									was	indented	weird

...													but	that	is	okay''',

...					epilog='''

...													likewise	for	this	epilog	whose	whitespace	will

...									be	cleaned	up	and	whose	words	will	be	wrapped

...									across	a	couple	lines''')

>>>	parser.print_help()

usage:	PROG	[-h]

this	description	was	indented	weird	but	that	is	okay

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

likewise	for	this	epilog	whose	whitespace	will	be	cleaned	up	and	whose	words

will	be	wrapped	across	a	couple	lines

Passing	 RawDescriptionHelpFormatter	 as
formatter_class=	indicates	that	description	and	epilog	are	already
correctly	formatted	and	should	not	be	line-wrapped:

>>>	parser	=	argparse.ArgumentParser(

...					prog='PROG',

...					formatter_class=argparse.RawDescriptionHelpFormatter

...					description=textwrap.dedent('''\

...									Please	do	not	mess	up	this	text!

...									--------------------------------

...													I	have	indented	it

...													exactly	the	way

...													I	want	it

...									'''))

>>>	parser.print_help()

usage:	PROG	[-h]

Please	do	not	mess	up	this	text!

			I	have	indented	it

			exactly	the	way

			I	want	it

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

RawTextHelpFormatter	maintains	whitespace	 for	all	 sorts	of	help
text,	including	argument	descriptions.

ArgumentDefaultsHelpFormatter	automatically	adds	information
about	default	values	to	each	of	the	argument	help	messages:

>>>	parser	=	argparse.ArgumentParser(

...					prog='PROG',

...					formatter_class=argparse.ArgumentDefaultsHelpFormatter

>>>	parser.add_argument('--foo',	type=int,	default=42

>>>	parser.add_argument('bar',	nargs='*',	default=[1

>>>	parser.print_help()

usage:	PROG	[-h]	[--foo	FOO]	[bar	[bar	...]]

positional	arguments:

	bar									BAR!	(default:	[1,	2,	3])

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo	FOO			FOO!	(default:	42)

MetavarTypeHelpFormatter	uses	the	name	of	the	type	argument
for	each	argument	as	the	display	name	for	its	values	(rather	than	using
the	dest	as	the	regular	formatter	does):

>>>	parser	=	argparse.ArgumentParser(

...					prog='PROG',

...					formatter_class=argparse.MetavarTypeHelpFormatter

>>>	parser.add_argument('--foo',	type=int)

>>>	parser.add_argument('bar',	type=float)

>>>	parser.print_help()

usage:	PROG	[-h]	[--foo	int]	float

positional	arguments:

		float

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

		--foo	int

16.4.2.7.	prefix_chars

Most	command-line	options	will	use	-	as	 the	prefix,	e.g.	-f/--foo.

Parsers	 that	need	 to	support	different	or	additional	prefix	 characters,
e.g.	 for	 options	 like	 +f	 or	 /foo,	 may	 specify	 them	 using	 the
prefix_chars=	argument	to	the	ArgumentParser	constructor:

>>>	parser	=	argparse.ArgumentParser(prog='PROG',	prefix_chars

>>>	parser.add_argument('+f')

>>>	parser.add_argument('++bar')

>>>	parser.parse_args('+f	X	++bar	Y'.split())

Namespace(bar='Y',	f='X')

The	prefix_chars=	 argument	 defaults	 to	 '-'.	 Supplying	 a	 set	 of
characters	that	does	not	include	-	will	cause	-f/--foo	options	to	be
disallowed.

16.4.2.8.	fromfile_prefix_chars

Sometimes,	 for	 example	 when	 dealing	 with	 a	 particularly	 long
argument	 lists,	 it	may	make	sense	 to	keep	 the	 list	of	arguments	 in	a
file	 rather	 than	 typing	 it	 out	 at	 the	 command	 line.	 If	 the
fromfile_prefix_chars=	 argument	 is	 given	 to	 the
ArgumentParser	constructor,	 then	arguments	 that	start	with	any	of
the	specified	characters	will	be	treated	as	files,	and	will	be	replaced	by
the	arguments	they	contain.	For	example:

>>>	with	open('args.txt',	'w')	as	fp:

...				fp.write('-f\nbar')

>>>	parser	=	argparse.ArgumentParser(fromfile_prefix_chars

>>>	parser.add_argument('-f')

>>>	parser.parse_args(['-f',	'foo',	'@args.txt'])

Namespace(f='bar')

Arguments	 read	 from	a	 file	must	by	default	 be	one	per	 line	 (but	 see

also	 convert_arg_line_to_args())	 and	 are	 treated	 as	 if	 they
were	in	the	same	place	as	the	original	file	referencing	argument	on	the
command	 line.	 So	 in	 the	 example	 above,	 the	 expression	 ['-f',
'foo',	'@args.txt']	 is	 considered	equivalent	 to	 the	 expression
['-f',	'foo',	'-f',	'bar'].

The	 fromfile_prefix_chars=	 argument	 defaults	 to	 None,
meaning	that	arguments	will	never	be	treated	as	file	references.

16.4.2.9.	argument_default

Generally,	argument	defaults	are	specified	either	by	passing	a	default
to	 add_argument()	 or	 by	 calling	 the	 set_defaults()	 methods
with	a	specific	set	of	name-value	pairs.	Sometimes	however,	it	may	be
useful	to	specify	a	single	parser-wide	default	for	arguments.	This	can
be	 accomplished	 by	 passing	 the	 argument_default=	 keyword
argument	 to	 ArgumentParser.	 For	 example,	 to	 globally	 suppress
attribute	 creation	 on	 parse_args()	 calls,	 we	 supply
argument_default=SUPPRESS:

>>>	parser	=	argparse.ArgumentParser(argument_default

>>>	parser.add_argument('--foo')

>>>	parser.add_argument('bar',	nargs='?')

>>>	parser.parse_args(['--foo',	'1',	'BAR'])

Namespace(bar='BAR',	foo='1')

>>>	parser.parse_args([])

Namespace()

16.4.2.10.	conflict_handler

ArgumentParser	 objects	 do	 not	 allow	 two	 actions	 with	 the	 same

option	 string.	 By	 default,	 ArgumentParser	 objects	 raises	 an
exception	if	an	attempt	is	made	to	create	an	argument	with	an	option
string	that	is	already	in	use:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-f',	'--foo',	help='old	foo	help'

>>>	parser.add_argument('--foo',	help='new	foo	help'

Traceback	(most	recent	call	last):

	..

ArgumentError:	argument	--foo:	conflicting	option	string(s):	--foo

Sometimes	 (e.g.	 when	 using	 parents)	 it	 may	 be	 useful	 to	 simply
override	any	older	arguments	with	the	same	option	string.	To	get	this
behavior,	 the	 value	 'resolve'	 can	 be	 supplied	 to	 the
conflict_handler=	argument	of	ArgumentParser:

>>>	parser	=	argparse.ArgumentParser(prog='PROG',	conflict_handler

>>>	parser.add_argument('-f',	'--foo',	help='old	foo	help'

>>>	parser.add_argument('--foo',	help='new	foo	help'

>>>	parser.print_help()

usage:	PROG	[-h]	[-f	FOO]	[--foo	FOO]

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	-f	FOO						old	foo	help

	--foo	FOO			new	foo	help

Note	that	ArgumentParser	objects	only	remove	an	action	if	all	of	its
option	strings	are	overridden.	So,	in	the	example	above,	the	old	-f/-
-foo	 action	 is	 retained	 as	 the	 -f	 action,	 because	 only	 the	 --foo
option	string	was	overridden.

16.4.2.11.	add_help

By	 default,	 ArgumentParser	 objects	 add	 an	 option	 which	 simply
displays	 the	 parser’s	 help	 message.	 For	 example,	 consider	 a	 file
named	myprogram.py	containing	the	following	code:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument('--foo',	help='foo	help')

args	=	parser.parse_args()

If	-h	or	--help	is	supplied	at	the	command	line,	the	ArgumentParser
help	will	be	printed:

$	python	myprogram.py	--help

usage:	myprogram.py	[-h]	[--foo	FOO]

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo	FOO			foo	help

Occasionally,	 it	 may	 be	 useful	 to	 disable	 the	 addition	 of	 this	 help
option.	This	 can	be	achieved	by	passing	 False	 as	 the	 add_help=
argument	to	ArgumentParser:

>>>	parser	=	argparse.ArgumentParser(prog='PROG',	add_help

>>>	parser.add_argument('--foo',	help='foo	help')

>>>	parser.print_help()

usage:	PROG	[--foo	FOO]

optional	arguments:

	--foo	FOO		foo	help

The	help	option	is	typically	-h/--help.	The	exception	to	this	is	if	the
prefix_chars=	is	specified	and	does	not	include	-,	in	which	case	-
h	and	--help	are	not	valid	options.	In	this	case,	the	first	character	in
prefix_chars	is	used	to	prefix	the	help	options:

>>>	parser	=	argparse.ArgumentParser(prog='PROG',	prefix_chars

>>>	parser.print_help()

usage:	PROG	[+h]

optional	arguments:

		+h,	++help		show	this	help	message	and	exit

16.4.3.	The	add_argument()	method

ArgumentParser.add_argument(name	or	flags...[,	action][,
nargs][,	const][,	default][,	type][,	choices][,	required][,	help][,
metavar][,	dest])

Define	 how	 a	 single	 command-line	 argument	 should	 be	 parsed.
Each	parameter	has	its	own	more	detailed	description	below,	but	in
short	they	are:

name	or	 flags	 -	Either	a	name	or	a	 list	of	option	strings,	e.g.
foo	or	-f,	--foo.
action	 -	 The	 basic	 type	 of	 action	 to	 be	 taken	 when	 this
argument	is	encountered	at	the	command	line.
nargs	 -	 The	 number	 of	 command-line	 arguments	 that	 should
be	consumed.
const	 -	 A	 constant	 value	 required	 by	 some	action	 and	 nargs
selections.
default	 -	 The	 value	 produced	 if	 the	 argument	 is	 absent	 from
the	command	line.
type	 -	The	 type	 to	which	 the	 command-line	argument	 should
be	converted.
choices	-	A	container	of	the	allowable	values	for	the	argument.
required	 -	 Whether	 or	 not	 the	 command-line	 option	 may	 be
omitted	(optionals	only).
help	-	A	brief	description	of	what	the	argument	does.
metavar	-	A	name	for	the	argument	in	usage	messages.
dest	 -	 The	 name	 of	 the	 attribute	 to	 be	 added	 to	 the	 object
returned	by	parse_args().

The	following	sections	describe	how	each	of	these	are	used.

16.4.3.1.	name	or	flags

The	 add_argument()	 method	 must	 know	 whether	 an	 optional
argument,	 like	 -f	 or	 --foo,	 or	 a	 positional	 argument,	 like	 a	 list	 of
filenames,	 is	 expected.	 The	 first	 arguments	 passed	 to
add_argument()	 must	 therefore	 be	 either	 a	 series	 of	 flags,	 or	 a
simple	argument	name.	For	example,	an	optional	argument	could	be
created	like:

>>>	parser.add_argument('-f',	'--foo')

while	a	positional	argument	could	be	created	like:

>>>	parser.add_argument('bar')

When	parse_args()	 is	called,	optional	arguments	will	be	 identified
by	the	-	prefix,	and	 the	 remaining	arguments	will	be	assumed	 to	be
positional:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-f',	'--foo')

>>>	parser.add_argument('bar')

>>>	parser.parse_args(['BAR'])

Namespace(bar='BAR',	foo=None)

>>>	parser.parse_args(['BAR',	'--foo',	'FOO'])

Namespace(bar='BAR',	foo='FOO')

>>>	parser.parse_args(['--foo',	'FOO'])

usage:	PROG	[-h]	[-f	FOO]	bar

PROG:	error:	too	few	arguments

16.4.3.2.	action

ArgumentParser	 objects	 associate	 command-line	 arguments	 with
actions.	These	actions	can	do	just	about	anything	with	the	command-

line	arguments	associated	with	them,	though	most	actions	simply	add
an	 attribute	 to	 the	 object	 returned	 by	 parse_args().	 The	 action
keyword	argument	specifies	how	the	command-line	arguments	should
be	handled.	The	supported	actions	are:

'store'	 -	 This	 just	 stores	 the	 argument’s	 value.	 This	 is	 the
default	action.	For	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo')

>>>	parser.parse_args('--foo	1'.split())

Namespace(foo='1')

'store_const'	 -	 This	 stores	 the	 value	 specified	 by	 the	 const
keyword	 argument.	 (Note	 that	 the	 const	 keyword	 argument
defaults	 to	 the	 rather	 unhelpful	 None.)	 The	 'store_const'
action	 is	 most	 commonly	 used	 with	 optional	 arguments	 that
specify	some	sort	of	flag.	For	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	action='store_const'

>>>	parser.parse_args('--foo'.split())

Namespace(foo=42)

'store_true'	and	'store_false'	 -	These	store	 the	values
True	 and	 False	 respectively.	 These	 are	 special	 cases	 of
'store_const'.	For	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	action='store_true'

>>>	parser.add_argument('--bar',	action='store_false'

>>>	parser.parse_args('--foo	--bar'.split())

Namespace(bar=False,	foo=True)

'append'	-	This	stores	a	list,	and	appends	each	argument	value
to	the	list.	This	is	useful	to	allow	an	option	to	be	specified	multiple
times.	Example	usage:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	action='append')

>>>	parser.parse_args('--foo	1	--foo	2'.split())

Namespace(foo=['1',	'2'])

'append_const'	 -	 This	 stores	 a	 list,	 and	 appends	 the	 value
specified	by	the	const	keyword	argument	to	the	list.	(Note	that	the
const	 keyword	 argument	 defaults	 to	 None.)	 The
'append_const'	 action	 is	 typically	 useful	 when	 multiple
arguments	need	to	store	constants	to	the	same	list.	For	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--str',	dest='types',	action

>>>	parser.add_argument('--int',	dest='types',	action

>>>	parser.parse_args('--str	--int'.split())

Namespace(types=[<class	'str'>,	<class	'int'>])

'count'	-	This	counts	the	number	of	times	a	keyword	argument
occurs.	For	example,	this	is	useful	for	increasing	verbosity	levels:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--verbose',	'-v',	action

>>>	parser.parse_args('-vvv'.split())

Namespace(verbose=3)

'help'	-	This	prints	a	complete	help	message	for	all	the	options
in	 the	 current	 parser	 and	 then	 exits.	 By	 default	 a	 help	 action	 is

automatically	 added	 to	 the	 parser.	 See	 ArgumentParser	 for
details	of	how	the	output	is	created.

'version'	-	This	expects	a	version=	keyword	argument	in	the
add_argument()	 call,	 and	 prints	 version	 information	 and	 exits
when	invoked:

>>>	import	argparse

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('--version',	action='version'

>>>	parser.parse_args(['--version'])

PROG	2.0

You	 can	 also	 specify	 an	 arbitrary	 action	 by	 passing	 an	 object	 that
implements	 the	 Action	 API.	 The	 easiest	 way	 to	 do	 this	 is	 to	 extend
argparse.Action,	 supplying	 an	 appropriate	 __call__	 method.
The	__call__	method	should	accept	four	parameters:

parser	-	The	ArgumentParser	object	which	contains	this	action.
namespace	 -	 The	 Namespace	 object	 that	 will	 be	 returned	 by
parse_args().	Most	actions	add	an	attribute	to	this	object.
values	-	The	associated	command-line	arguments,	with	any	type
conversions	 applied.	 (Type	 conversions	 are	 specified	 with	 the
type	keyword	argument	to	add_argument().)
option_string	-	The	option	string	that	was	used	to	invoke	this
action.	 The	 option_string	 argument	 is	 optional,	 and	 will	 be
absent	if	the	action	is	associated	with	a	positional	argument.

An	example	of	a	custom	action:

>>>	class	FooAction(argparse.Action):

...					def	__call__(self,	parser,	namespace,	values

...									print('%r	%r	%r'	%	(namespace,	values,	option_string

...									setattr(namespace,	self.dest,	values)

...

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	action=FooAction)

>>>	parser.add_argument('bar',	action=FooAction)

>>>	args	=	parser.parse_args('1	--foo	2'.split())

Namespace(bar=None,	foo=None)	'1'	None

Namespace(bar='1',	foo=None)	'2'	'--foo'

>>>	args

Namespace(bar='1',	foo='2')

16.4.3.3.	nargs

ArgumentParser	 objects	 usually	 associate	 a	 single	 command-line
argument	 with	 a	 single	 action	 to	 be	 taken.	 The	 nargs	 keyword
argument	 associates	 a	 different	 number	 of	 command-line	 arguments
with	a	single	action.	The	supported	values	are:

N	 (an	 integer).	 N	 arguments	 from	 the	 command	 line	 will	 be
gathered	together	into	a	list.	For	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	nargs=2)

>>>	parser.add_argument('bar',	nargs=1)

>>>	parser.parse_args('c	--foo	a	b'.split())

Namespace(bar=['c'],	foo=['a',	'b'])

Note	 that	nargs=1	 produces	a	 list	of	one	 item.	This	 is	different
from	the	default,	in	which	the	item	is	produced	by	itself.

'?'.	One	argument	will	 be	consumed	 from	 the	command	 line	 if
possible,	 and	 produced	 as	 a	 single	 item.	 If	 no	 command-line
argument	is	present,	the	value	from	default	will	be	produced.	Note

that	 for	 optional	 arguments,	 there	 is	 an	 additional	 case	 -	 the
option	 string	 is	 present	 but	 not	 followed	 by	 a	 command-line
argument.	 In	 this	 case	 the	 value	 from	 const	 will	 be	 produced.
Some	examples	to	illustrate	this:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	nargs='?',	const

>>>	parser.add_argument('bar',	nargs='?',	default

>>>	parser.parse_args('XX	--foo	YY'.split())

Namespace(bar='XX',	foo='YY')

>>>	parser.parse_args('XX	--foo'.split())

Namespace(bar='XX',	foo='c')

>>>	parser.parse_args(''.split())

Namespace(bar='d',	foo='d')

One	of	the	more	common	uses	of	nargs='?'	is	to	allow	optional
input	and	output	files:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('infile',	nargs='?',	type

...																					default=sys.stdin)

>>>	parser.add_argument('outfile',	nargs='?',	type

...																					default=sys.stdout)

>>>	parser.parse_args(['input.txt',	'output.txt'])

Namespace(infile=<_io.TextIOWrapper	name='input.txt'	encoding='UTF-8'>,

										outfile=<_io.TextIOWrapper	name='output.txt'	encoding='UTF-8'>)

>>>	parser.parse_args([])

Namespace(infile=<_io.TextIOWrapper	name='<stdin>'	encoding='UTF-8'>,

										outfile=<_io.TextIOWrapper	name='<stdout>'	encoding='UTF-8'>)

'*'.	All	command-line	arguments	present	are	gathered	into	a	list.
Note	 that	 it	 generally	 doesn’t	 make	 much	 sense	 to	 have	 more
than	 one	 positional	 argument	 with	 nargs='*',	 but	 multiple

optional	arguments	with	nargs='*'	is	possible.	For	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	nargs='*')

>>>	parser.add_argument('--bar',	nargs='*')

>>>	parser.add_argument('baz',	nargs='*')

>>>	parser.parse_args('a	b	--foo	x	y	--bar	1	2'.split

Namespace(bar=['1',	'2'],	baz=['a',	'b'],	foo=['x',	'y'])

'+'.	Just	 like	'*',	 all	 command-line	args	present	are	gathered
into	a	list.	Additionally,	an	error	message	will	be	generated	if	there
wasn’t	 at	 least	 one	 command-line	 argument	 present.	 For
example:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('foo',	nargs='+')

>>>	parser.parse_args('a	b'.split())

Namespace(foo=['a',	'b'])

>>>	parser.parse_args(''.split())

usage:	PROG	[-h]	foo	[foo	...]

PROG:	error:	too	few	arguments

argparse.REMAINDER.	 All	 the	 remaining	 command-line
arguments	 are	 gathered	 into	 a	 list.	 This	 is	 commonly	 useful	 for
command	line	utilities	that	dispatch	to	other	command	line	utilities:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('--foo')

>>>	parser.add_argument('command')

>>>	parser.add_argument('args',	nargs=argparse.REMAINDER

>>>	print(parser.parse_args('--foo	B	cmd	--arg1	XX	ZZ'

Namespace(args=['--arg1',	'XX',	'ZZ'],	command='cmd',	foo='B')

If	 the	 nargs	 keyword	 argument	 is	 not	 provided,	 the	 number	 of
arguments	 consumed	 is	 determined	 by	 the	 action.	 Generally	 this
means	 a	 single	 command-line	 argument	 will	 be	 consumed	 and	 a
single	item	(not	a	list)	will	be	produced.

16.4.3.4.	const

The	const	argument	of	add_argument()	 is	used	 to	hold	constant
values	 that	are	not	 read	 from	 the	command	 line	but	are	 required	 for
the	various	ArgumentParser	actions.	The	two	most	common	uses	of
it	are:

When	 add_argument()	 is	 called	 with
action='store_const'	 or	 action='append_const'.
These	actions	add	the	const	value	to	one	of	the	attributes	of	the
object	returned	by	parse_args().	See	the	action	description	for
examples.
When	add_argument()	 is	called	with	option	strings	(like	-f	or
--foo)	and	nargs='?'.	This	creates	an	optional	argument	that
can	be	 followed	by	zero	or	one	command-line	arguments.	When
parsing	the	command	line,	if	the	option	string	is	encountered	with
no	command-line	argument	following	it,	the	value	of	const	will	be
assumed	instead.	See	the	nargs	description	for	examples.

The	const	keyword	argument	defaults	to	None.

16.4.3.5.	default

All	optional	arguments	and	some	positional	arguments	may	be	omitted
at	 the	 command	 line.	 The	 default	 keyword	 argument	 of
add_argument(),	 whose	 value	 defaults	 to	 None,	 specifies	 what
value	should	be	used	if	the	command-line	argument	is	not	present.	For

optional	arguments,	the	default	value	is	used	when	the	option	string
was	not	present	at	the	command	line:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	default=42)

>>>	parser.parse_args('--foo	2'.split())

Namespace(foo='2')

>>>	parser.parse_args(''.split())

Namespace(foo=42)

If	 the	default	 value	 is	a	string,	 the	parser	parses	 the	value	as	 if	 it
were	a	command-line	argument.	 In	particular,	 the	parser	applies	any
type	conversion	argument,	 if	provided,	before	setting	 the	attribute	on
the	Namespace	return	value.	Otherwise,	the	parser	uses	the	value	as
is:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--length',	default='10',	type

>>>	parser.add_argument('--width',	default=10.5,	type

>>>	parser.parse_args()

Namespace(length=10,	width=10.5)

For	 positional	 arguments	 with	 nargs	 equal	 to	 ?	 or	 *,	 the	 default
value	is	used	when	no	command-line	argument	was	present:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('foo',	nargs='?',	default=42

>>>	parser.parse_args('a'.split())

Namespace(foo='a')

>>>	parser.parse_args(''.split())

Namespace(foo=42)

Providing	default=argparse.SUPPRESS	causes	no	attribute	to	be

added	if	the	command-line	argument	was	not	present.:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	default=argparse.SUPPRESS

>>>	parser.parse_args([])

Namespace()

>>>	parser.parse_args(['--foo',	'1'])

Namespace(foo='1')

16.4.3.6.	type

By	default,	ArgumentParser	objects	read	command-line	arguments
in	 as	 simple	 strings.	 However,	 quite	 often	 the	 command-line	 string
should	 instead	be	 interpreted	as	another	 type,	 like	a	float	or	int.
The	 type	 keyword	 argument	 of	 add_argument()	 allows	 any
necessary	 type-checking	 and	 type	 conversions	 to	 be	 performed.
Common	built-in	types	and	functions	can	be	used	directly	as	the	value
of	the	type	argument:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('foo',	type=int)

>>>	parser.add_argument('bar',	type=open)

>>>	parser.parse_args('2	temp.txt'.split())

Namespace(bar=<_io.TextIOWrapper	name='temp.txt'	encoding='UTF-8'>,	foo=2)

See	 the	 section	 on	 the	 default	 keyword	 argument	 for	 information	 on
when	the	type	argument	is	applied	to	default	arguments.

To	ease	the	use	of	various	types	of	files,	the	argparse	module	provides
the	factory	FileType	which	takes	the	mode=,	bufsize=,	encoding=
and	 errors=	 arguments	 of	 the	 open()	 function.	 For	 example,
FileType('w')	can	be	used	to	create	a	writable	file:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('bar',	type=argparse.FileType

>>>	parser.parse_args(['out.txt'])

Namespace(bar=<_io.TextIOWrapper	name='out.txt'	encoding='UTF-8'>)

type=	can	take	any	callable	 that	 takes	a	single	string	argument	and
returns	the	converted	value:

>>>	def	perfect_square(string):

...					value	=	int(string)

...					sqrt	=	math.sqrt(value)

...					if	sqrt	!=	int(sqrt):

...									msg	=	"%r	is	not	a	perfect	square"	%	string

...									raise	argparse.ArgumentTypeError(msg)

...					return	value

...

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('foo',	type=perfect_square)

>>>	parser.parse_args('9'.split())

Namespace(foo=9)

>>>	parser.parse_args('7'.split())

usage:	PROG	[-h]	foo

PROG:	error:	argument	foo:	'7'	is	not	a	perfect	square

The	 choices	 keyword	 argument	 may	 be	 more	 convenient	 for	 type
checkers	that	simply	check	against	a	range	of	values:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('foo',	type=int,	choices=range

>>>	parser.parse_args('7'.split())

Namespace(foo=7)

>>>	parser.parse_args('11'.split())

usage:	PROG	[-h]	{5,6,7,8,9}

PROG:	error:	argument	foo:	invalid	choice:	11	(choose	from	5,	6,	7,	8,	9)

See	the	choices	section	for	more	details.

16.4.3.7.	choices

Some	command-line	arguments	should	be	selected	 from	a	 restricted
set	of	values.	These	can	be	handled	by	passing	a	container	object	as
the	 choices	 keyword	 argument	 to	 add_argument().	 When	 the
command	 line	 is	 parsed,	 argument	 values	 will	 be	 checked,	 and	 an
error	message	will	 be	 displayed	 if	 the	 argument	was	 not	 one	 of	 the
acceptable	values:

>>>	parser	=	argparse.ArgumentParser(prog='game.py')

>>>	parser.add_argument('move',	choices=['rock',	'paper'

>>>	parser.parse_args(['rock'])

Namespace(move='rock')

>>>	parser.parse_args(['fire'])

usage:	game.py	[-h]	{rock,paper,scissors}

game.py:	error:	argument	move:	invalid	choice:	'fire'	(choose	from	'rock',

'paper',	'scissors')

Note	that	inclusion	in	the	choices	container	 is	checked	after	any	type
conversions	 have	 been	 performed,	 so	 the	 type	 of	 the	 objects	 in	 the
choices	container	should	match	the	type	specified:

>>>	parser	=	argparse.ArgumentParser(prog='doors.py'

>>>	parser.add_argument('door',	type=int,	choices=range

>>>	print(parser.parse_args(['3']))

Namespace(door=3)

>>>	parser.parse_args(['4'])

usage:	doors.py	[-h]	{1,2,3}

doors.py:	error:	argument	door:	invalid	choice:	4	(choose	from	1,	2,	3)

Any	 object	 that	 supports	 the	 in	 operator	 can	 be	 passed	 as	 the
choices	value,	so	dict	objects,	set	objects,	custom	containers,	etc.
are	all	supported.

16.4.3.8.	required

In	general,	the	argparse	module	assumes	that	flags	like	-f	and	--
bar	indicate	optional	arguments,	which	can	always	be	omitted	at	 the
command	line.	To	make	an	option	required,	True	can	be	specified	for
the	required=	keyword	argument	to	add_argument():

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	required=True)

>>>	parser.parse_args(['--foo',	'BAR'])

Namespace(foo='BAR')

>>>	parser.parse_args([])

usage:	argparse.py	[-h]	[--foo	FOO]

argparse.py:	error:	option	--foo	is	required

As	 the	 example	 shows,	 if	 an	 option	 is	 marked	 as	 required,
parse_args()	will	report	an	error	if	that	option	is	not	present	at	the
command	line.

Note: 	Required	options	are	generally	considered	bad	form	because
users	expect	options	to	be	optional,	and	thus	they	should	be	avoided
when	possible.

16.4.3.9.	help

The	 help	 value	 is	 a	 string	 containing	 a	 brief	 description	 of	 the
argument.	When	a	user	requests	help	(usually	by	using	-h	or	--help
at	the	command	line),	 these	help	descriptions	will	be	displayed	with

each	argument:

>>>	parser	=	argparse.ArgumentParser(prog='frobble')

>>>	parser.add_argument('--foo',	action='store_true'

...									help='foo	the	bars	before	frobbling')

>>>	parser.add_argument('bar',	nargs='+',

...									help='one	of	the	bars	to	be	frobbled')

>>>	parser.parse_args('-h'.split())

usage:	frobble	[-h]	[--foo]	bar	[bar	...]

positional	arguments:

	bar					one	of	the	bars	to	be	frobbled

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo			foo	the	bars	before	frobbling

The	 help	 strings	 can	 include	 various	 format	 specifiers	 to	 avoid
repetition	of	things	like	the	program	name	or	the	argument	default.	The
available	 specifiers	 include	 the	program	name,	 %(prog)s	and	most
keyword	 arguments	 to	 add_argument(),	 e.g.	 %(default)s,	 %
(type)s,	etc.:

>>>	parser	=	argparse.ArgumentParser(prog='frobble')

>>>	parser.add_argument('bar',	nargs='?',	type=int,	

...									help='the	bar	to	%(prog)s	(default:	%(default)s)'

>>>	parser.print_help()

usage:	frobble	[-h]	[bar]

positional	arguments:

	bar					the	bar	to	frobble	(default:	42)

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

As	 the	 help	 string	 supports	 %-formatting,	 if	 you	 want	 a	 literal	 %	 to
appear	in	the	help	string,	you	must	escape	it	as	%%.

argparse	 supports	 silencing	 the	 help	 entry	 for	 certain	 options,	 by
setting	the	help	value	to	argparse.SUPPRESS:

>>>	parser	=	argparse.ArgumentParser(prog='frobble')

>>>	parser.add_argument('--foo',	help=argparse.SUPPRESS

>>>	parser.print_help()

usage:	frobble	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

16.4.3.10.	metavar

When	 ArgumentParser	 generates	 help	 messages,	 it	 needs	 some
way	to	refer	 to	each	expected	argument.	By	default,	ArgumentParser
objects	use	the	dest	value	as	the	“name”	of	each	object.	By	default,	for
positional	 argument	 actions,	 the	 dest	 value	 is	 used	 directly,	 and	 for
optional	argument	actions,	the	dest	value	is	uppercased.	So,	a	single
positional	 argument	with	 dest='bar'	will	 be	 referred	 to	 as	 bar.	 A
single	optional	 argument	 --foo	 that	 should	 be	 followed	 by	 a	 single
command-line	argument	will	be	referred	to	as	FOO.	An	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo')

>>>	parser.add_argument('bar')

>>>	parser.parse_args('X	--foo	Y'.split())

Namespace(bar='X',	foo='Y')

>>>	parser.print_help()

usage:		[-h]	[--foo	FOO]	bar

positional	arguments:

	bar

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo	FOO

An	alternative	name	can	be	specified	with	metavar:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	metavar='YYY')

>>>	parser.add_argument('bar',	metavar='XXX')

>>>	parser.parse_args('X	--foo	Y'.split())

Namespace(bar='X',	foo='Y')

>>>	parser.print_help()

usage:		[-h]	[--foo	YYY]	XXX

positional	arguments:

	XXX

optional	arguments:

	-h,	--help		show	this	help	message	and	exit

	--foo	YYY

Note	 that	metavar	only	changes	 the	displayed	 name	 -	 the	name	of
the	attribute	on	 the	 parse_args()	 object	 is	 still	 determined	 by	 the
dest	value.

Different	values	of	nargs	may	cause	the	metavar	to	be	used	multiple
times.	Providing	 a	 tuple	 to	 metavar	 specifies	 a	 different	 display	 for
each	of	the	arguments:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-x',	nargs=2)

>>>	parser.add_argument('--foo',	nargs=2,	metavar=('bar'

>>>	parser.print_help()

usage:	PROG	[-h]	[-x	X	X]	[--foo	bar	baz]

optional	arguments:

	-h,	--help					show	this	help	message	and	exit

	-x	X	X

	--foo	bar	baz

16.4.3.11.	dest

Most	ArgumentParser	actions	add	some	value	as	an	attribute	of	the
object	 returned	 by	 parse_args().	 The	 name	 of	 this	 attribute	 is
determined	by	the	dest	keyword	argument	of	add_argument().	For
positional	 argument	 actions,	 dest	 is	 normally	 supplied	 as	 the	 first
argument	to	add_argument():

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('bar')

>>>	parser.parse_args('XXX'.split())

Namespace(bar='XXX')

For	optional	argument	actions,	the	value	of	dest	 is	normally	inferred
from	 the	 option	 strings.	 ArgumentParser	 generates	 the	 value	 of
dest	by	taking	the	first	long	option	string	and	stripping	away	the	initial
--	string.	If	no	long	option	strings	were	supplied,	dest	will	be	derived
from	the	first	short	option	string	by	stripping	the	initial	-	character.	Any
internal	-	characters	will	be	converted	 to	_	 characters	 to	make	sure
the	string	is	a	valid	attribute	name.	The	examples	below	illustrate	this
behavior:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('-f',	'--foo-bar',	'--foo')

>>>	parser.add_argument('-x',	'-y')

>>>	parser.parse_args('-f	1	-x	2'.split())

Namespace(foo_bar='1',	x='2')

>>>	parser.parse_args('--foo	1	-y	2'.split())

Namespace(foo_bar='1',	x='2')

dest	allows	a	custom	attribute	name	to	be	provided:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	dest='bar')

>>>	parser.parse_args('--foo	XXX'.split())

Namespace(bar='XXX')

16.4.4.	The	parse_args()	method

ArgumentParser.parse_args(args=None,	namespace=None)
Convert	argument	strings	to	objects	and	assign	them	as	attributes
of	the	namespace.	Return	the	populated	namespace.

Previous	 calls	 to	 add_argument()	 determine	 exactly	 what
objects	 are	 created	 and	 how	 they	 are	 assigned.	 See	 the
documentation	for	add_argument()	for	details.

By	default,	the	argument	strings	are	taken	from	sys.argv,	and	a
new	empty	Namespace	object	is	created	for	the	attributes.

16.4.4.1.	Option	value	syntax

The	parse_args()	method	supports	several	ways	of	specifying	the
value	of	an	option	(if	it	takes	one).	In	the	simplest	case,	the	option	and
its	value	are	passed	as	two	separate	arguments:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-x')

>>>	parser.add_argument('--foo')

>>>	parser.parse_args('-x	X'.split())

Namespace(foo=None,	x='X')

>>>	parser.parse_args('--foo	FOO'.split())

Namespace(foo='FOO',	x=None)

For	 long	options	(options	with	names	longer	than	a	single	character),
the	 option	 and	 value	 can	 also	 be	 passed	 as	 a	 single	 command-line
argument,	using	=	to	separate	them:

>>>	parser.parse_args('--foo=FOO'.split())

Namespace(foo='FOO',	x=None)

For	short	options	(options	only	one	character	long),	the	option	and	its
value	can	be	concatenated:

>>>	parser.parse_args('-xX'.split())

Namespace(foo=None,	x='X')

Several	 short	 options	 can	 be	 joined	 together,	 using	 only	 a	 single	 -
prefix,	 as	 long	 as	 only	 the	 last	 option	 (or	 none	 of	 them)	 requires	 a
value:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-x',	action='store_true')

>>>	parser.add_argument('-y',	action='store_true')

>>>	parser.add_argument('-z')

>>>	parser.parse_args('-xyzZ'.split())

Namespace(x=True,	y=True,	z='Z')

16.4.4.2.	Invalid	arguments

While	parsing	the	command	line,	parse_args()	checks	for	a	variety
of	 errors,	 including	 ambiguous	 options,	 invalid	 types,	 invalid	 options,
wrong	number	of	positional	arguments,	etc.	When	 it	encounters	such
an	error,	it	exits	and	prints	the	error	along	with	a	usage	message:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('--foo',	type=int)

>>>	parser.add_argument('bar',	nargs='?')

>>>	#	invalid	type

>>>	parser.parse_args(['--foo',	'spam'])

usage:	PROG	[-h]	[--foo	FOO]	[bar]

PROG:	error:	argument	--foo:	invalid	int	value:	'spam'

>>>	#	invalid	option

>>>	parser.parse_args(['--bar'])

usage:	PROG	[-h]	[--foo	FOO]	[bar]

PROG:	error:	no	such	option:	--bar

>>>	#	wrong	number	of	arguments

>>>	parser.parse_args(['spam',	'badger'])

usage:	PROG	[-h]	[--foo	FOO]	[bar]

PROG:	error:	extra	arguments	found:	badger

16.4.4.3.	Arguments	containing	-

The	 parse_args()	 method	 attempts	 to	 give	 errors	 whenever	 the
user	 has	 clearly	made	a	mistake,	 but	 some	 situations	 are	 inherently
ambiguous.	For	example,	the	command-line	argument	-1	could	either
be	an	attempt	to	specify	an	option	or	an	attempt	to	provide	a	positional
argument.	 The	 parse_args()	 method	 is	 cautious	 here:	 positional
arguments	may	only	begin	with	-	 if	 they	 look	 like	 negative	 numbers
and	there	are	no	options	in	the	parser	that	look	like	negative	numbers:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-x')

>>>	parser.add_argument('foo',	nargs='?')

>>>	#	no	negative	number	options,	so	-1	is	a	positional	argument

>>>	parser.parse_args(['-x',	'-1'])

Namespace(foo=None,	x='-1')

>>>	#	no	negative	number	options,	so	-1	and	-5	are	positional	arguments

>>>	parser.parse_args(['-x',	'-1',	'-5'])

Namespace(foo='-5',	x='-1')

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-1',	dest='one')

>>>	parser.add_argument('foo',	nargs='?')

>>>	#	negative	number	options	present,	so	-1	is	an	option

>>>	parser.parse_args(['-1',	'X'])

Namespace(foo=None,	one='X')

>>>	#	negative	number	options	present,	so	-2	is	an	option

>>>	parser.parse_args(['-2'])

usage:	PROG	[-h]	[-1	ONE]	[foo]

PROG:	error:	no	such	option:	-2

>>>	#	negative	number	options	present,	so	both	-1s	are	options

>>>	parser.parse_args(['-1',	'-1'])

usage:	PROG	[-h]	[-1	ONE]	[foo]

PROG:	error:	argument	-1:	expected	one	argument

If	you	have	positional	arguments	that	must	begin	with	-	and	don’t	look
like	 negative	 numbers,	 you	 can	 insert	 the	 pseudo-argument	 '--'
which	 tells	 parse_args()	 that	 everything	 after	 that	 is	 a	 positional
argument:

>>>	parser.parse_args(['--',	'-f'])

Namespace(foo='-f',	one=None)

16.4.4.4.	Argument	abbreviations	(prefix
matching)

The	parse_args()	method	allows	long	options	to	be	abbreviated	to
a	 prefix,	 if	 the	 abbreviation	 is	 unambiguous	 (the	 prefix	 matches	 a
unique	option):

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('-bacon')

>>>	parser.add_argument('-badger')

>>>	parser.parse_args('-bac	MMM'.split())

Namespace(bacon='MMM',	badger=None)

>>>	parser.parse_args('-bad	WOOD'.split())

Namespace(bacon=None,	badger='WOOD')

>>>	parser.parse_args('-ba	BA'.split())

usage:	PROG	[-h]	[-bacon	BACON]	[-badger	BADGER]

PROG:	error:	ambiguous	option:	-ba	could	match	-badger,	-bacon

An	error	is	produced	for	arguments	that	could	produce	more	than	one
options.

16.4.4.5.	Beyond	sys.argv

Sometimes	 it	 may	 be	 useful	 to	 have	 an	 ArgumentParser	 parse
arguments	other	than	those	of	sys.argv.	This	can	be	accomplished
by	passing	a	list	of	strings	to	parse_args().	This	is	useful	for	testing
at	the	interactive	prompt:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument(

...					'integers',	metavar='int',	type=int,	choices

...		nargs='+',	help='an	integer	in	the	range	0..9')

>>>	parser.add_argument(

...					'--sum',	dest='accumulate',	action='store_const'

...			default=max,	help='sum	the	integers	(default:	find	the	max)'

>>>	parser.parse_args(['1',	'2',	'3',	'4'])

Namespace(accumulate=<built-in	function	max>,	integers=[1,	2,	3,	4])

>>>	parser.parse_args('1	2	3	4	--sum'.split())

Namespace(accumulate=<built-in	function	sum>,	integers=[1,	2,	3,	4])

16.4.4.6.	The	Namespace	object

class	argparse.Namespace
Simple	 class	 used	 by	 default	 by	 parse_args()	 to	 create	 an
object	holding	attributes	and	return	it.

This	 class	 is	 deliberately	 simple,	 just	 an	 object	 subclass	 with	 a
readable	 string	 representation.	 If	 you	 prefer	 to	 have	 dict-like	 view	 of
the	attributes,	you	can	use	the	standard	Python	idiom,	vars():

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo')

>>>	args	=	parser.parse_args(['--foo',	'BAR'])

>>>	vars(args)

{'foo':	'BAR'}

It	may	also	be	useful	to	have	an	ArgumentParser	assign	attributes
to	 an	 already	 existing	 object,	 rather	 than	 a	 new	 Namespace	 object.
This	 can	 be	 achieved	 by	 specifying	 the	 namespace=	 keyword
argument:

>>>	class	C:

...					pass

...

>>>	c	=	C()

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo')

>>>	parser.parse_args(args=['--foo',	'BAR'],	namespace

>>>	c.foo

'BAR'

16.4.5.	Other	utilities

16.4.5.1.	Sub-commands

ArgumentParser.add_subparsers([title][,	description][,	prog]
[,	parser_class][,	action][,	option_string][,	dest][,	help][,	metavar])

Many	 programs	 split	 up	 their	 functionality	 into	 a	 number	 of	 sub-
commands,	 for	 example,	 the	 svn	 program	 can	 invoke	 sub-
commands	like	svn	checkout,	svn	update,	and	svn	commit.
Splitting	 up	 functionality	 this	way	 can	 be	 a	 particularly	 good	 idea
when	a	program	performs	several	different	functions	which	require
different	 kinds	 of	 command-line	 arguments.	 ArgumentParser
supports	 the	 creation	 of	 such	 sub-commands	 with	 the
add_subparsers()	method.	 The	 add_subparsers()	method
is	normally	called	with	no	arguments	and	 returns	a	special	action
object.	 This	 object	 has	 a	 single	 method,	 add_parser(),	 which
takes	 a	 command	 name	 and	 any	 ArgumentParser	 constructor
arguments,	 and	 returns	an	 ArgumentParser	 object	 that	 can	be
modified	as	usual.

Description	of	parameters:

title	 -	 title	 for	 the	 sub-parser	 group	 in	 help	 output;	 by	 default
“subcommands”	if	description	is	provided,	otherwise	uses	title
for	positional	arguments
description	 -	 description	 for	 the	 sub-parser	 group	 in	 help
output,	by	default	None
prog	 -	 usage	 information	 that	 will	 be	 displayed	 with	 sub-
command	help,	by	default	 the	name	of	 the	program	and	any
positional	arguments	before	the	subparser	argument
parser_class	 -	 class	which	will	 be	 used	 to	 create	 sub-parser

instances,	 by	 default	 the	 class	 of	 the	 current	 parser	 (e.g.
ArgumentParser)
dest	-	name	of	the	attribute	under	which	sub-command	name
will	be	stored;	by	default	None	and	no	value	is	stored
help	 -	 help	 for	 sub-parser	 group	 in	 help	 output,	 by	 default
None
metavar	 -	 string	 presenting	 available	 sub-commands	 in	 help;
by	 default	 it	 is	 None	 and	 presents	 sub-commands	 in	 form
{cmd1,	cmd2,	..}

Some	example	usage:

>>>	#	create	the	top-level	parser

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	parser.add_argument('--foo',	action='store_true'

>>>	subparsers	=	parser.add_subparsers(help='sub-command	help'

>>>

>>>	#	create	the	parser	for	the	"a"	command

>>>	parser_a	=	subparsers.add_parser('a',	help='a	help'

>>>	parser_a.add_argument('bar',	type=int,	help='bar	help'

>>>

>>>	#	create	the	parser	for	the	"b"	command

>>>	parser_b	=	subparsers.add_parser('b',	help='b	help'

>>>	parser_b.add_argument('--baz',	choices='XYZ',	

>>>

>>>	#	parse	some	argument	lists

>>>	parser.parse_args(['a',	'12'])

Namespace(bar=12,	foo=False)

>>>	parser.parse_args(['--foo',	'b',	'--baz',	'Z'])

Namespace(baz='Z',	foo=True)

Note	that	 the	object	 returned	by	parse_args()	will	only	contain
attributes	for	the	main	parser	and	the	subparser	that	was	selected
by	 the	 command	 line	 (and	 not	 any	 other	 subparsers).	 So	 in	 the
example	above,	when	 the	a	 command	 is	 specified,	only	 the	 foo

and	 bar	 attributes	 are	 present,	 and	 when	 the	 b	 command	 is
specified,	only	the	foo	and	baz	attributes	are	present.

Similarly,	 when	 a	 help	 message	 is	 requested	 from	 a	 subparser,
only	 the	 help	 for	 that	 particular	 parser	 will	 be	 printed.	 The	 help
message	will	not	include	parent	parser	or	sibling	parser	messages.
(A	help	message	 for	 each	 subparser	 command,	 however,	 can	be
given	 by	 supplying	 the	 help=	 argument	 to	 add_parser()	 as
above.)

>>>	parser.parse_args(['--help'])

usage:	PROG	[-h]	[--foo]	{a,b}	...

positional	arguments:

		{a,b}			sub-command	help

				a					a	help

				b					b	help

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

		--foo			foo	help

>>>	parser.parse_args(['a',	'--help'])

usage:	PROG	a	[-h]	bar

positional	arguments:

		bar					bar	help

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

>>>	parser.parse_args(['b',	'--help'])

usage:	PROG	b	[-h]	[--baz	{X,Y,Z}]

optional	arguments:

		-h,	--help					show	this	help	message	and	exit

		--baz	{X,Y,Z}		baz	help

The	 add_subparsers()	 method	 also	 supports	 title	 and
description	 keyword	 arguments.	 When	 either	 is	 present,	 the
subparser’s	commands	will	 appear	 in	 their	own	group	 in	 the	help
output.	For	example:

>>>	parser	=	argparse.ArgumentParser()

>>>	subparsers	=	parser.add_subparsers(title='subcommands'

...																																				description

...																																				help='additional	help'

>>>	subparsers.add_parser('foo')

>>>	subparsers.add_parser('bar')

>>>	parser.parse_args(['-h'])

usage:		[-h]	{foo,bar}	...

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

subcommands:

		valid	subcommands

		{foo,bar}			additional	help

Furthermore,	 add_parser	 supports	 an	 additional	 aliases

argument,	 which	 allows	 multiple	 strings	 to	 refer	 to	 the	 same
subparser.	This	example,	 like	svn,	aliases	co	as	a	shorthand	 for
checkout:

>>>	parser	=	argparse.ArgumentParser()

>>>	subparsers	=	parser.add_subparsers()

>>>	checkout	=	subparsers.add_parser('checkout',	aliases

>>>	checkout.add_argument('foo')

>>>	parser.parse_args(['co',	'bar'])

Namespace(foo='bar')

One	 particularly	 effective	 way	 of	 handling	 sub-commands	 is	 to
combine	the	use	of	the	add_subparsers()	method	with	calls	to
set_defaults()	 so	 that	 each	 subparser	 knows	 which	 Python
function	it	should	execute.	For	example:

>>>	#	sub-command	functions

>>>	def	foo(args):

...					print(args.x	*	args.y)

...

>>>	def	bar(args):

...					print('((%s))'	%	args.z)

...

>>>	#	create	the	top-level	parser

>>>	parser	=	argparse.ArgumentParser()

>>>	subparsers	=	parser.add_subparsers()

>>>

>>>	#	create	the	parser	for	the	"foo"	command

>>>	parser_foo	=	subparsers.add_parser('foo')

>>>	parser_foo.add_argument('-x',	type=int,	default

>>>	parser_foo.add_argument('y',	type=float)

>>>	parser_foo.set_defaults(func=foo)

>>>

>>>	#	create	the	parser	for	the	"bar"	command

>>>	parser_bar	=	subparsers.add_parser('bar')

>>>	parser_bar.add_argument('z')

>>>	parser_bar.set_defaults(func=bar)

>>>

>>>	#	parse	the	args	and	call	whatever	function	was	selected

>>>	args	=	parser.parse_args('foo	1	-x	2'.split())

>>>	args.func(args)

2.0

>>>

>>>	#	parse	the	args	and	call	whatever	function	was	selected

>>>	args	=	parser.parse_args('bar	XYZYX'.split())

>>>	args.func(args)

((XYZYX))

This	 way,	 you	 can	 let	 parse_args()	 do	 the	 job	 of	 calling	 the
appropriate	 function	 after	 argument	 parsing	 is	 complete.
Associating	 functions	with	 actions	 like	 this	 is	 typically	 the	 easiest
way	 to	 handle	 the	 different	 actions	 for	 each	 of	 your	 subparsers.
However,	if	it	is	necessary	to	check	the	name	of	the	subparser	that
was	 invoked,	 the	 dest	 keyword	 argument	 to	 the
add_subparsers()	call	will	work:

>>>	parser	=	argparse.ArgumentParser()

>>>	subparsers	=	parser.add_subparsers(dest='subparser_name'

>>>	subparser1	=	subparsers.add_parser('1')

>>>	subparser1.add_argument('-x')

>>>	subparser2	=	subparsers.add_parser('2')

>>>	subparser2.add_argument('y')

>>>	parser.parse_args(['2',	'frobble'])

Namespace(subparser_name='2',	y='frobble')

16.4.5.2.	FileType	objects

class	argparse.FileType(mode='r',	bufsize=-1,	encoding=None,
errors=None)

The	FileType	 factory	creates	objects	 that	can	be	passed	 to	 the
type	 argument	 of	 ArgumentParser.add_argument().
Arguments	 that	 have	 FileType	 objects	 as	 their	 type	 will	 open
command-line	arguments	as	files	with	the	requested	modes,	buffer
sizes,	encodings	and	error	handling	(see	the	open()	 function	for
more	details):

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--raw',	type=argparse.FileType

>>>	parser.add_argument('out',	type=argparse.FileType

>>>	parser.parse_args(['--raw',	'raw.dat',	'file.txt'

Namespace(out=<_io.TextIOWrapper	name='file.txt'	mode='w'	encoding='UTF-8'>,	raw=<_io.FileIO	name='raw.dat'	mode='wb'>)

FileType	 objects	 understand	 the	 pseudo-argument	 '-'	 and
automatically	convert	this	into	sys.stdin	for	readable	FileType
objects	and	sys.stdout	for	writable	FileType	objects:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('infile',	type=argparse.FileType

>>>	parser.parse_args(['-'])

Namespace(infile=<_io.TextIOWrapper	name='<stdin>'	encoding='UTF-8'>)

New	in	version	3.4:	The	encodings	and	errors	keyword	arguments.

16.4.5.3.	Argument	groups

ArgumentParser.add_argument_group(title=None,
description=None)

By	 default,	 ArgumentParser	 groups	 command-line	 arguments
into	 “positional	 arguments”	 and	 “optional	 arguments”	 when
displaying	 help	 messages.	 When	 there	 is	 a	 better	 conceptual
grouping	 of	 arguments	 than	 this	 default	 one,	 appropriate	 groups
can	be	created	using	the	add_argument_group()	method:

>>>	parser	=	argparse.ArgumentParser(prog='PROG',	

>>>	group	=	parser.add_argument_group('group')

>>>	group.add_argument('--foo',	help='foo	help')

>>>	group.add_argument('bar',	help='bar	help')

>>>	parser.print_help()

usage:	PROG	[--foo	FOO]	bar

group:

		bar				bar	help

		--foo	FOO		foo	help

The	 add_argument_group()	 method	 returns	 an	 argument
group	 object	which	 has	 an	 add_argument()	method	 just	 like	 a
regular	 ArgumentParser.	 When	 an	 argument	 is	 added	 to	 the
group,	the	parser	treats	it	just	like	a	normal	argument,	but	displays
the	 argument	 in	 a	 separate	 group	 for	 help	 messages.	 The
add_argument_group()	 method	 accepts	 title	 and	 description
arguments	which	can	be	used	to	customize	this	display:

>>>	parser	=	argparse.ArgumentParser(prog='PROG',	

>>>	group1	=	parser.add_argument_group('group1',	'group1	description'

>>>	group1.add_argument('foo',	help='foo	help')

>>>	group2	=	parser.add_argument_group('group2',	'group2	description'

>>>	group2.add_argument('--bar',	help='bar	help')

>>>	parser.print_help()

usage:	PROG	[--bar	BAR]	foo

group1:

		group1	description

		foo				foo	help

group2:

		group2	description

		--bar	BAR		bar	help

Note	 that	any	arguments	not	 in	your	user-defined	groups	will	end
up	 back	 in	 the	 usual	 “positional	 arguments”	 and	 “optional

arguments”	sections.

16.4.5.4.	Mutual	exclusion

ArgumentParser.add_mutually_exclusive_group(required=False
Create	a	mutually	exclusive	group.	argparse	will	make	sure	that
only	 one	 of	 the	 arguments	 in	 the	 mutually	 exclusive	 group	 was
present	on	the	command	line:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	group	=	parser.add_mutually_exclusive_group()

>>>	group.add_argument('--foo',	action='store_true'

>>>	group.add_argument('--bar',	action='store_false'

>>>	parser.parse_args(['--foo'])

Namespace(bar=True,	foo=True)

>>>	parser.parse_args(['--bar'])

Namespace(bar=False,	foo=False)

>>>	parser.parse_args(['--foo',	'--bar'])

usage:	PROG	[-h]	[--foo	|	--bar]

PROG:	error:	argument	--bar:	not	allowed	with	argument	--foo

The	add_mutually_exclusive_group()	method	also	accepts
a	required	 argument,	 to	 indicate	 that	 at	 least	 one	of	 the	mutually
exclusive	arguments	is	required:

>>>	parser	=	argparse.ArgumentParser(prog='PROG')

>>>	group	=	parser.add_mutually_exclusive_group(required

>>>	group.add_argument('--foo',	action='store_true'

>>>	group.add_argument('--bar',	action='store_false'

>>>	parser.parse_args([])

usage:	PROG	[-h]	(--foo	|	--bar)

PROG:	error:	one	of	the	arguments	--foo	--bar	is	required

Note	 that	 currently	 mutually	 exclusive	 argument	 groups	 do	 not
support	 the	 title	 and	 description	 arguments	 of
add_argument_group().

16.4.5.5.	Parser	defaults

ArgumentParser.set_defaults(**kwargs)
Most	 of	 the	 time,	 the	 attributes	 of	 the	 object	 returned	 by
parse_args()	 will	 be	 fully	 determined	 by	 inspecting	 the
command-line	 arguments	 and	 the	 argument	 actions.
set_defaults()	 allows	 some	 additional	 attributes	 that	 are
determined	 without	 any	 inspection	 of	 the	 command	 line	 to	 be
added:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('foo',	type=int)

>>>	parser.set_defaults(bar=42,	baz='badger')

>>>	parser.parse_args(['736'])

Namespace(bar=42,	baz='badger',	foo=736)

Note	 that	 parser-level	 defaults	 always	 override	 argument-level
defaults:

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	default='bar')

>>>	parser.set_defaults(foo='spam')

>>>	parser.parse_args([])

Namespace(foo='spam')

Parser-level	defaults	can	be	particularly	useful	when	working	with
multiple	 parsers.	 See	 the	 add_subparsers()	 method	 for	 an
example	of	this	type.

ArgumentParser.get_default(dest)
Get	 the	 default	 value	 for	 a	 namespace	attribute,	 as	 set	 by	 either
add_argument()	or	by	set_defaults():

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	default='badger')

>>>	parser.get_default('foo')

'badger'

16.4.5.6.	Printing	help

In	 most	 typical	 applications,	 parse_args()	 will	 take	 care	 of
formatting	 and	 printing	 any	 usage	 or	 error	 messages.	 However,
several	formatting	methods	are	available:

ArgumentParser.print_usage(file=None)
Print	 a	 brief	 description	 of	 how	 the	 ArgumentParser	 should	 be
invoked	 on	 the	 command	 line.	 If	 file	 is	 None,	 sys.stdout	 is
assumed.

ArgumentParser.print_help(file=None)
Print	a	help	message,	including	the	program	usage	and	information
about	the	arguments	registered	with	the	ArgumentParser.	 If	 file
is	None,	sys.stdout	is	assumed.

There	 are	 also	 variants	 of	 these	methods	 that	 simply	 return	 a	 string
instead	of	printing	it:

ArgumentParser.format_usage()
Return	 a	 string	 containing	 a	 brief	 description	 of	 how	 the
ArgumentParser	should	be	invoked	on	the	command	line.

ArgumentParser.format_help()
Return	a	string	containing	a	help	message,	 including	the	program
usage	 and	 information	 about	 the	 arguments	 registered	 with	 the
ArgumentParser.

16.4.5.7.	Partial	parsing

ArgumentParser.parse_known_args(args=None,
namespace=None)

Sometimes	 a	 script	 may	 only	 parse	 a	 few	 of	 the	 command-line
arguments,	 passing	 the	 remaining	arguments	on	 to	 another	 script	 or
program.	In	these	cases,	the	parse_known_args()	method	can	be
useful.	 It	 works	 much	 like	 parse_args()	 except	 that	 it	 does	 not
produce	an	error	when	extra	arguments	are	present.	Instead,	it	returns
a	 two	 item	 tuple	 containing	 the	populated	namespace	and	 the	 list	 of
remaining	argument	strings.

>>>	parser	=	argparse.ArgumentParser()

>>>	parser.add_argument('--foo',	action='store_true'

>>>	parser.add_argument('bar')

>>>	parser.parse_known_args(['--foo',	'--badger',	'BAR'

(Namespace(bar='BAR',	foo=True),	['--badger',	'spam'])

Warning: 	Prefix	matching	rules	apply	to	parse_known_args().
The	parser	may	consume	an	option	even	if	it’s	just	a	prefix	of	one	of
its	known	options,	instead	of	leaving	it	in	the	remaining	arguments
list.

16.4.5.8.	Customizing	file	parsing

ArgumentParser.convert_arg_line_to_args(arg_line)
Arguments	 that	are	read	from	a	file	(see	the	 fromfile_prefix_chars
keyword	argument	to	the	ArgumentParser	constructor)	are	read
one	argument	per	 line.	convert_arg_line_to_args()	can	be
overriden	for	fancier	reading.

This	 method	 takes	 a	 single	 argument	 arg_line	 which	 is	 a	 string
read	 from	 the	argument	 file.	 It	 returns	a	 list	 of	 arguments	parsed
from	this	string.	The	method	 is	called	once	per	 line	read	 from	the
argument	file,	in	order.

A	 useful	 override	 of	 this	 method	 is	 one	 that	 treats	 each	 space-
separated	word	as	an	argument:

def	convert_arg_line_to_args(self,	arg_line):

				for	arg	in	arg_line.split():

								if	not	arg.strip():

												continue

								yield	arg

16.4.5.9.	Exiting	methods

ArgumentParser.exit(status=0,	message=None)
This	 method	 terminates	 the	 program,	 exiting	 with	 the	 specified
status	and,	if	given,	it	prints	a	message	before	that.

ArgumentParser.error(message)
This	method	prints	a	usage	message	including	the	message	to	the
standard	error	and	terminates	the	program	with	a	status	code	of	2.

16.4.6.	Upgrading	optparse	code

Originally,	 the	 argparse	 module	 had	 attempted	 to	 maintain
compatibility	 with	 optparse.	 However,	 optparse	 was	 difficult	 to
extend	transparently,	particularly	with	the	changes	required	to	support
the	new	nargs=	 specifiers	and	better	usage	messages.	When	most
everything	in	optparse	had	either	been	copy-pasted	over	or	monkey-
patched,	it	no	longer	seemed	practical	to	try	to	maintain	the	backwards
compatibility.

A	partial	upgrade	path	from	optparse	to	argparse:

Replace	 all	 optparse.OptionParser.add_option()	 calls
with	ArgumentParser.add_argument()	calls.
Replace	 (options,	 args)	 =	 parser.parse_args()	 with
args	 =	 parser.parse_args()	 and	 add	 additional
ArgumentParser.add_argument()	 calls	 for	 the	 positional
arguments.	 Keep	 in	 mind	 that	 what	 was	 previously	 called
options,	now	in	argparse	context	is	called	args.
Replace	 callback	 actions	 and	 the	 callback_*	 keyword
arguments	with	type	or	action	arguments.
Replace	 string	 names	 for	 type	 keyword	 arguments	 with	 the
corresponding	type	objects	(e.g.	int,	float,	complex,	etc).
Replace	 optparse.Values	 with	 Namespace	 and
optparse.OptionError	 and
optparse.OptionValueError	with	ArgumentError.
Replace	 strings	 with	 implicit	 arguments	 such	 as	 %default	 or
%prog	 with	 the	 standard	 Python	 syntax	 to	 use	 dictionaries	 to
format	strings,	that	is,	%(default)s	and	%(prog)s.
Replace	the	OptionParser	constructor	version	argument	with	a
call	 to	 parser.add_argument('--version',

action='version',	version='<the	version>')

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.5.	optparse	—	Parser	for
command	line	options

Deprecated	since	version	3.2:	The	optparse	module	is	deprecated
and	will	not	be	developed	further;	development	will	continue	with	the
argparse	module.

Source	code:	Lib/optparse.py

optparse	 is	 a	 more	 convenient,	 flexible,	 and	 powerful	 library	 for
parsing	 command-line	 options	 than	 the	 old	 getopt	 module.
optparse	 uses	 a	 more	 declarative	 style	 of	 command-line	 parsing:
you	 create	 an	 instance	 of	 OptionParser,	 populate	 it	 with	 options,
and	 parse	 the	 command	 line.	 optparse	 allows	 users	 to	 specify
options	 in	 the	 conventional	 GNU/POSIX	 syntax,	 and	 additionally
generates	usage	and	help	messages	for	you.

Here’s	an	example	of	using	optparse	in	a	simple	script:

from	optparse	import	OptionParser

[...]

parser	=	OptionParser()

parser.add_option("-f",	"--file",	dest="filename",

																		help="write	report	to	FILE",	metavar

parser.add_option("-q",	"--quiet",

																		action="store_false",	dest="verbose"

																		help="don't	print	status	messages	to	stdout"

(options,	args)	=	parser.parse_args()

http://hg.python.org/cpython/file/3.4/Lib/optparse.py

With	 these	 few	 lines	 of	 code,	 users	 of	 your	 script	 can	 now	 do	 the
“usual	thing”	on	the	command-line,	for	example:

<yourscript>	--file=outfile	-q

As	 it	 parses	 the	 command	 line,	 optparse	 sets	 attributes	 of	 the
options	object	returned	by	parse_args()	based	on	user-supplied
command-line	values.	When	parse_args()	returns	from	parsing	this
command	 line,	 options.filename	 will	 be	 "outfile"	 and
options.verbose	 will	 be	 False.	 optparse	 supports	 both	 long
and	 short	 options,	 allows	 short	 options	 to	 be	 merged	 together,	 and
allows	 options	 to	 be	 associated	 with	 their	 arguments	 in	 a	 variety	 of
ways.	 Thus,	 the	 following	 command	 lines	 are	 all	 equivalent	 to	 the
above	example:

<yourscript>	-f	outfile	--quiet

<yourscript>	--quiet	--file	outfile

<yourscript>	-q	-foutfile

<yourscript>	-qfoutfile

Additionally,	users	can	run	one	of

<yourscript>	-h

<yourscript>	--help

and	optparse	will	print	out	a	brief	summary	of	your	script’s	options:

Usage:	<yourscript>	[options]

Options:

		-h,	--help												show	this	help	message	and	exit

		-f	FILE,	--file=FILE		write	report	to	FILE

		-q,	--quiet											don't	print	status	messages	to	stdout

where	the	value	of	yourscript	 is	determined	at	runtime	(normally	from
sys.argv[0]).

16.5.1.	Background

optparse	 was	 explicitly	 designed	 to	 encourage	 the	 creation	 of
programs	with	straightforward,	conventional	command-line	 interfaces.
To	 that	end,	 it	supports	only	 the	most	common	command-line	syntax
and	 semantics	 conventionally	 used	 under	Unix.	 If	 you	 are	 unfamiliar
with	 these	 conventions,	 read	 this	 section	 to	 acquaint	 yourself	 with
them.

16.5.1.1.	Terminology

argument
a	string	entered	on	the	command-line,	and	passed	by	the	shell	 to
execl()	 or	 execv().	 In	 Python,	 arguments	 are	 elements	 of
sys.argv[1:]	(sys.argv[0]	is	the	name	of	the	program	being
executed).	Unix	shells	also	use	the	term	“word”.

It	is	occasionally	desirable	to	substitute	an	argument	list	other	than
sys.argv[1:],	so	you	should	read	“argument”	as	“an	element	of
sys.argv[1:],	or	of	some	other	 list	provided	as	a	substitute	for
sys.argv[1:]”.

option
an	 argument	 used	 to	 supply	 extra	 information	 to	 guide	 or
customize	 the	 execution	 of	 a	 program.	 There	 are	 many	 different
syntaxes	 for	 options;	 the	 traditional	Unix	 syntax	 is	 a	 hyphen	 (“-”)
followed	 by	 a	 single	 letter,	 e.g.	 -x	 or	 -F.	 Also,	 traditional	 Unix
syntax	allows	multiple	options	to	be	merged	into	a	single	argument,
e.g.	-x	-F	 is	equivalent	 to	-xF.	The	GNU	project	 introduced	--
followed	by	a	series	of	hyphen-separated	words,	e.g.	--file	or	-
-dry-run.	 These	 are	 the	 only	 two	 option	 syntaxes	 provided	 by

optparse.

Some	other	option	syntaxes	that	the	world	has	seen	include:

a	 hyphen	 followed	 by	 a	 few	 letters,	 e.g.	 -pf	 (this	 is	not	 the
same	as	multiple	options	merged	into	a	single	argument)
a	 hyphen	 followed	 by	 a	 whole	 word,	 e.g.	 -file	 (this	 is
technically	 equivalent	 to	 the	 previous	 syntax,	 but	 they	 aren’t
usually	seen	in	the	same	program)
a	 plus	 sign	 followed	 by	 a	 single	 letter,	 or	 a	 few	 letters,	 or	 a
word,	e.g.	+f,	+rgb
a	slash	followed	by	a	letter,	or	a	few	letters,	or	a	word,	e.g.	/f,
/file

These	option	syntaxes	are	not	supported	by	optparse,	and	they
never	will	be.	This	is	deliberate:	the	first	three	are	non-standard	on
any	 environment,	 and	 the	 last	 only	 makes	 sense	 if	 you’re
exclusively	targeting	VMS,	MS-DOS,	and/or	Windows.

option	argument
an	argument	that	follows	an	option,	 is	closely	associated	with	that
option,	and	is	consumed	from	the	argument	list	when	that	option	is.
With	 optparse,	 option	 arguments	 may	 either	 be	 in	 a	 separate
argument	from	their	option:

-f	foo

--file	foo

or	included	in	the	same	argument:

-ffoo

--file=foo

Typically,	a	given	option	either	takes	an	argument	or	it	doesn’t.	Lots

of	 people	 want	 an	 “optional	 option	 arguments”	 feature,	 meaning
that	some	options	will	take	an	argument	if	they	see	it,	and	won’t	if
they	 don’t.	 This	 is	 somewhat	 controversial,	 because	 it	 makes
parsing	 ambiguous:	 if	 -a	 takes	 an	 optional	 argument	 and	 -b	 is
another	option	entirely,	how	do	we	interpret	-ab?	Because	of	 this
ambiguity,	optparse	does	not	support	this	feature.

positional	argument
something	 leftover	 in	 the	 argument	 list	 after	 options	 have	 been
parsed,	 i.e.	 after	 options	 and	 their	 arguments	 have	 been	 parsed
and	removed	from	the	argument	list.

required	option
an	option	that	must	be	supplied	on	the	command-line;	note	that	the
phrase	“required	option”	is	self-contradictory	in	English.	optparse
doesn’t	 prevent	 you	 from	 implementing	 required	 options,	 but
doesn’t	give	you	much	help	at	it	either.

For	example,	consider	this	hypothetical	command-line:

prog	-v	--report	report.txt	foo	bar

-v	and	--report	are	both	options.	Assuming	that	--report	 takes
one	argument,	report.txt	is	an	option	argument.	foo	and	bar	are
positional	arguments.

16.5.1.2.	What	are	options	for?

Options	are	used	to	provide	extra	information	to	tune	or	customize	the
execution	 of	 a	 program.	 In	 case	 it	 wasn’t	 clear,	 options	 are	 usually
optional.	 A	 program	 should	 be	 able	 to	 run	 just	 fine	 with	 no	 options
whatsoever.	 (Pick	a	random	program	from	the	Unix	or	GNU	toolsets.
Can	 it	 run	without	any	options	at	all	and	still	make	sense?	The	main

exceptions	are	find,	tar,	and	dd—all	of	which	are	mutant	oddballs
that	 have	 been	 rightly	 criticized	 for	 their	 non-standard	 syntax	 and
confusing	interfaces.)

Lots	of	people	want	 their	programs	 to	have	 “required	options”.	Think
about	 it.	 If	 it’s	 required,	 then	 it’s	 not	 optional!	 If	 there	 is	 a	 piece	 of
information	 that	 your	 program	 absolutely	 requires	 in	 order	 to	 run
successfully,	that’s	what	positional	arguments	are	for.

As	an	example	of	good	command-line	 interface	design,	 consider	 the
humble	cp	utility,	for	copying	files.	It	doesn’t	make	much	sense	to	try
to	copy	 files	without	supplying	a	destination	and	at	 least	one	source.
Hence,	 cp	 fails	 if	 you	 run	 it	 with	 no	 arguments.	 However,	 it	 has	 a
flexible,	useful	syntax	that	does	not	require	any	options	at	all:

cp	SOURCE	DEST

cp	SOURCE	...	DEST-DIR

You	can	get	pretty	far	with	just	that.	Most	cp	implementations	provide
a	bunch	of	options	to	tweak	exactly	how	the	files	are	copied:	you	can
preserve	 mode	 and	 modification	 time,	 avoid	 following	 symlinks,	 ask
before	clobbering	existing	files,	etc.	But	none	of	this	distracts	from	the
core	 mission	 of	 cp,	 which	 is	 to	 copy	 either	 one	 file	 to	 another,	 or
several	files	to	another	directory.

16.5.1.3.	What	are	positional	arguments	for?

Positional	 arguments	 are	 for	 those	 pieces	 of	 information	 that	 your
program	absolutely,	positively	requires	to	run.

A	 good	 user	 interface	 should	 have	 as	 few	 absolute	 requirements	 as
possible.	 If	your	program	requires	17	distinct	pieces	of	 information	 in

order	 to	 run	 successfully,	 it	 doesn’t	 much	 matter	 how	 you	 get	 that
information	 from	 the	 user—most	 people	 will	 give	 up	 and	 walk	 away
before	 they	 successfully	 run	 the	 program.	 This	 applies	 whether	 the
user	interface	is	a	command-line,	a	configuration	file,	or	a	GUI:	if	you
make	that	many	demands	on	your	users,	most	of	them	will	simply	give
up.

In	 short,	 try	 to	 minimize	 the	 amount	 of	 information	 that	 users	 are
absolutely	 required	 to	 supply—use	 sensible	 defaults	 whenever
possible.	Of	course,	you	also	want	to	make	your	programs	reasonably
flexible.	That’s	what	options	are	for.	Again,	it	doesn’t	matter	if	they	are
entries	in	a	config	file,	widgets	in	the	“Preferences”	dialog	of	a	GUI,	or
command-line	 options—the	 more	 options	 you	 implement,	 the	 more
flexible	your	program	is,	and	the	more	complicated	its	implementation
becomes.	Too	much	 flexibility	 has	 drawbacks	 as	well,	 of	 course;	 too
many	options	can	overwhelm	users	and	make	your	code	much	harder
to	maintain.

16.5.2.	Tutorial

While	optparse	is	quite	flexible	and	powerful,	it’s	also	straightforward
to	use	 in	most	cases.	This	section	covers	 the	code	patterns	 that	are
common	to	any	optparse-based	program.

First,	 you	 need	 to	 import	 the	 OptionParser	 class;	 then,	 early	 in	 the
main	program,	create	an	OptionParser	instance:

from	optparse	import	OptionParser

[...]

parser	=	OptionParser()

Then	you	can	start	defining	options.	The	basic	syntax	is:

parser.add_option(opt_str,	...,

																		attr=value,	...)

Each	option	has	one	or	more	option	strings,	such	as	-f	or	--file,
and	several	 option	attributes	 that	 tell	 optparse	what	 to	 expect	 and
what	to	do	when	it	encounters	that	option	on	the	command	line.

Typically,	 each	option	will	 have	one	short	 option	 string	and	one	 long
option	string,	e.g.:

parser.add_option("-f",	"--file",	...)

You’re	 free	 to	define	as	many	short	option	strings	and	as	many	 long
option	strings	as	you	like	(including	zero),	as	long	as	there	is	at	least
one	option	string	overall.

The	 option	 strings	 passed	 to	 OptionParser.add_option()	 are
effectively	labels	for	the	option	defined	by	that	call.	For	brevity,	we	will

frequently	 refer	 to	 encountering	 an	 option	 on	 the	 command	 line;	 in
reality,	optparse	encounters	option	strings	and	looks	up	options	from
them.

Once	all	of	your	options	are	defined,	instruct	optparse	to	parse	your
program’s	command	line:

(options,	args)	=	parser.parse_args()

(If	you	like,	you	can	pass	a	custom	argument	 list	 to	parse_args(),
but	that’s	rarely	necessary:	by	default	it	uses	sys.argv[1:].)

parse_args()	returns	two	values:

options,	an	object	containing	values	for	all	of	your	options—e.g.
if	--file	 takes	 a	 single	 string	 argument,	 then	 options.file
will	be	the	filename	supplied	by	the	user,	or	None	 if	 the	user	did
not	supply	that	option
args,	 the	 list	 of	 positional	 arguments	 leftover	 after	 parsing
options

This	 tutorial	 section	 only	 covers	 the	 four	 most	 important	 option
attributes:	 action,	 type,	 dest	 (destination),	 and	 help.	 Of	 these,
action	is	the	most	fundamental.

16.5.2.1.	Understanding	option	actions

Actions	tell	optparse	what	to	do	when	it	encounters	an	option	on	the
command	 line.	 There	 is	 a	 fixed	 set	 of	 actions	 hard-coded	 into
optparse;	 adding	 new	 actions	 is	 an	 advanced	 topic	 covered	 in
section	Extending	 optparse.	 Most	 actions	 tell	 optparse	 to	 store	 a
value	in	some	variable—for	example,	take	a	string	from	the	command

line	and	store	it	in	an	attribute	of	options.

If	you	don’t	specify	an	option	action,	optparse	defaults	to	store.

16.5.2.2.	The	store	action

The	most	common	option	action	 is	store,	which	 tells	optparse	 to
take	 the	 next	 argument	 (or	 the	 remainder	 of	 the	 current	 argument),
ensure	 that	 it	 is	 of	 the	 correct	 type,	 and	 store	 it	 to	 your	 chosen
destination.

For	example:

parser.add_option("-f",	"--file",

																		action="store",	type="string",	dest

Now	let’s	make	up	a	fake	command	line	and	ask	optparse	to	parse
it:

args	=	["-f",	"foo.txt"]

(options,	args)	=	parser.parse_args(args)

When	 optparse	 sees	 the	 option	 string	 -f,	 it	 consumes	 the	 next
argument,	foo.txt,	and	stores	 it	 in	options.filename.	So,	 after
this	call	to	parse_args(),	options.filename	is	"foo.txt".

Some	 other	 option	 types	 supported	 by	 optparse	 are	 int	 and
float.	Here’s	an	option	that	expects	an	integer	argument:

parser.add_option("-n",	type="int",	dest="num")

Note	 that	 this	 option	 has	 no	 long	 option	 string,	 which	 is	 perfectly

acceptable.	Also,	there’s	no	explicit	action,	since	the	default	is	store.

Let’s	parse	another	fake	command-line.	This	time,	we’ll	jam	the	option
argument	 right	 up	 against	 the	 option:	 since	 -n42	 (one	 argument)	 is
equivalent	to	-n	42	(two	arguments),	the	code

(options,	args)	=	parser.parse_args(["-n42"])

print(options.num)

will	print	42.

If	 you	don’t	 specify	a	 type,	 optparse	assumes	string.	Combined
with	 the	 fact	 that	 the	 default	 action	 is	 store,	 that	 means	 our	 first
example	can	be	a	lot	shorter:

parser.add_option("-f",	"--file",	dest="filename")

If	 you	 don’t	 supply	 a	 destination,	 optparse	 figures	 out	 a	 sensible
default	from	the	option	strings:	if	the	first	long	option	string	is	--foo-
bar,	 then	 the	 default	 destination	 is	 foo_bar.	 If	 there	 are	 no	 long
option	 strings,	 optparse	 looks	 at	 the	 first	 short	 option	 string:	 the
default	destination	for	-f	is	f.

optparse	 also	 includes	 the	 built-in	 complex	 type.	Adding	 types	 is
covered	in	section	Extending	optparse.

16.5.2.3.	Handling	boolean	(flag)	options

Flag	options—set	a	variable	to	true	or	false	when	a	particular	option	is
seen	 —are	 quite	 common.	 optparse	 supports	 them	 with	 two
separate	actions,	store_true	and	store_false.	For	example,	you
might	have	a	verbose	flag	that	is	turned	on	with	-v	and	off	with	-q:

parser.add_option("-v",	action="store_true",	dest="verbose"

parser.add_option("-q",	action="store_false",	dest="verbose"

Here	we	have	two	different	options	with	the	same	destination,	which	is
perfectly	OK.	(It	 just	means	you	have	to	be	a	bit	careful	when	setting
default	values—	see	below.)

When	 optparse	 encounters	 -v	 on	 the	 command	 line,	 it	 sets
options.verbose	 to	 True;	 when	 it	 encounters	 -q,
options.verbose	is	set	to	False.

16.5.2.4.	Other	actions

Some	other	actions	supported	by	optparse	are:

"store_const"

store	a	constant	value

"append"

append	this	option’s	argument	to	a	list

"count"

increment	a	counter	by	one

"callback"

call	a	specified	function

These	are	covered	in	section	Reference	Guide,	Reference	Guide	and
section	Option	Callbacks.

16.5.2.5.	Default	values

All	 of	 the	 above	 examples	 involve	 setting	 some	 variable	 (the
“destination”)	 when	 certain	 command-line	 options	 are	 seen.	 What

happens	if	those	options	are	never	seen?	Since	we	didn’t	supply	any
defaults,	they	are	all	set	to	None.	This	 is	usually	 fine,	but	sometimes
you	want	more	control.	optparse	 lets	you	supply	a	default	value	for
each	 destination,	 which	 is	 assigned	 before	 the	 command	 line	 is
parsed.

First,	consider	the	verbose/quiet	example.	If	we	want	optparse	to	set
verbose	to	True	unless	-q	is	seen,	then	we	can	do	this:

parser.add_option("-v",	action="store_true",	dest="verbose"

parser.add_option("-q",	action="store_false",	dest="verbose"

Since	 default	 values	 apply	 to	 the	 destination	 rather	 than	 to	 any
particular	 option,	 and	 these	 two	 options	 happen	 to	 have	 the	 same
destination,	this	is	exactly	equivalent:

parser.add_option("-v",	action="store_true",	dest="verbose"

parser.add_option("-q",	action="store_false",	dest="verbose"

Consider	this:

parser.add_option("-v",	action="store_true",	dest="verbose"

parser.add_option("-q",	action="store_false",	dest="verbose"

Again,	 the	 default	 value	 for	 verbose	 will	 be	 True:	 the	 last	 default
value	supplied	for	any	particular	destination	is	the	one	that	counts.

A	 clearer	 way	 to	 specify	 default	 values	 is	 the	 set_defaults()
method	of	OptionParser,	which	you	can	call	at	any	time	before	calling
parse_args():

parser.set_defaults(verbose=True)

parser.add_option(...)

(options,	args)	=	parser.parse_args()

As	before,	the	last	value	specified	for	a	given	option	destination	is	the
one	 that	 counts.	 For	 clarity,	 try	 to	 use	 one	 method	 or	 the	 other	 of
setting	default	values,	not	both.

16.5.2.6.	Generating	help

optparse‘s	 ability	 to	 generate	 help	 and	 usage	 text	 automatically	 is
useful	for	creating	user-friendly	command-line	interfaces.	All	you	have
to	do	 is	 supply	a	help	 value	 for	each	option,	and	optionally	a	 short
usage	 message	 for	 your	 whole	 program.	 Here’s	 an	 OptionParser
populated	with	user-friendly	(documented)	options:

usage	=	"usage:	%prog	[options]	arg1	arg2"

parser	=	OptionParser(usage=usage)

parser.add_option("-v",	"--verbose",

																		action="store_true",	dest="verbose"

																		help="make	lots	of	noise	[default]"

parser.add_option("-q",	"--quiet",

																		action="store_false",	dest="verbose"

																		help="be	vewwy	quiet	(I'm	hunting	wabbits)"

parser.add_option("-f",	"--filename",

																		metavar="FILE",	help="write	output	to	FILE"

parser.add_option("-m",	"--mode",

																		default="intermediate",

																		help="interaction	mode:	novice,	intermediate,	"

																							"or	expert	[default:	%default]"

If	optparse	encounters	either	-h	or	--help	on	 the	command-line,
or	 if	 you	 just	 call	 parser.print_help(),	 it	 prints	 the	 following	 to
standard	output:

Usage:	<yourscript>	[options]	arg1	arg2

Options:

		-h,	--help												show	this	help	message	and	exit

		-v,	--verbose									make	lots	of	noise	[default]

		-q,	--quiet											be	vewwy	quiet	(I'm	hunting	wabbits)

		-f	FILE,	--filename=FILE

																								write	output	to	FILE

		-m	MODE,	--mode=MODE		interaction	mode:	novice,	intermediate,	or

																								expert	[default:	intermediate]

(If	the	help	output	is	triggered	by	a	help	option,	optparse	exits	after
printing	the	help	text.)

There’s	 a	 lot	 going	 on	 here	 to	 help	 optparse	 generate	 the	 best
possible	help	message:

the	script	defines	its	own	usage	message:

usage	=	"usage:	%prog	[options]	arg1	arg2"

optparse	expands	%prog	in	the	usage	string	to	the	name	of	the
current	program,	i.e.	os.path.basename(sys.argv[0]).	The
expanded	string	is	then	printed	before	the	detailed	option	help.

If	 you	don’t	 supply	 a	 usage	 string,	 optparse	 uses	 a	 bland	 but
sensible	default:	"Usage:	%prog	[options]",	which	is	fine	if
your	script	doesn’t	take	any	positional	arguments.

every	option	defines	a	help	string,	and	doesn’t	worry	about	 line-
wrapping—	optparse	 takes	care	of	wrapping	 lines	and	making
the	help	output	look	good.

options	 that	 take	a	value	 indicate	 this	 fact	 in	 their	automatically-

generated	help	message,	e.g.	for	the	“mode”	option:

-m	MODE,	--mode=MODE

Here,	 “MODE”	 is	 called	 the	 meta-variable:	 it	 stands	 for	 the
argument	 that	 the	user	 is	expected	 to	supply	 to	-m/--mode.	 By
default,	 optparse	 converts	 the	 destination	 variable	 name	 to
uppercase	and	uses	that	for	the	meta-variable.	Sometimes,	that’s
not	 what	 you	 want—for	 example,	 the	 --filename	 option
explicitly	 sets	 metavar="FILE",	 resulting	 in	 this	 automatically-
generated	option	description:

-f	FILE,	--filename=FILE

This	 is	 important	 for	 more	 than	 just	 saving	 space,	 though:	 the
manually	 written	 help	 text	 uses	 the	meta-variable	 FILE	 to	 clue
the	 user	 in	 that	 there’s	 a	 connection	 between	 the	 semi-formal
syntax	 -f	 FILE	 and	 the	 informal	 semantic	 description	 “write
output	 to	FILE”.	This	 is	a	simple	but	effective	way	 to	make	your
help	text	a	lot	clearer	and	more	useful	for	end	users.

options	 that	 have	 a	 default	 value	 can	 include	 %default	 in	 the
help	string—optparse	will	 replace	 it	with	str()	of	 the	option’s
default	 value.	 If	 an	 option	 has	 no	 default	 value	 (or	 the	 default
value	is	None),	%default	expands	to	none.

16.5.2.6.1.	Grouping	Options

When	 dealing	 with	 many	 options,	 it	 is	 convenient	 to	 group	 these
options	for	better	help	output.	An	OptionParser	can	contain	several
option	groups,	each	of	which	can	contain	several	options.

An	option	group	is	obtained	using	the	class	OptionGroup:

class	optparse.OptionGroup(parser,	title,	description=None)
where

parser	 is	 the	 OptionParser	 instance	 the	 group	 will	 be
insterted	in	to
title	is	the	group	title
description,	optional,	is	a	long	description	of	the	group

OptionGroup	 inherits	 from	 OptionContainer	 (like
OptionParser)	and	so	the	add_option()	method	can	be	used	to
add	an	option	to	the	group.

Once	all	 the	options	are	declared,	using	the	OptionParser	method
add_option_group()	 the	group	is	added	to	the	previously	defined
parser.

Continuing	with	the	parser	defined	 in	the	previous	section,	adding	an
OptionGroup	to	a	parser	is	easy:

group	=	OptionGroup(parser,	"Dangerous	Options",

																				"Caution:	use	these	options	at	your	own	risk.		"

																				"It	is	believed	that	some	of	them	bite."

group.add_option("-g",	action="store_true",	help="Group	option."

parser.add_option_group(group)

This	would	result	in	the	following	help	output:

Usage:	<yourscript>	[options]	arg1	arg2

Options:

		-h,	--help												show	this	help	message	and	exit

		-v,	--verbose									make	lots	of	noise	[default]

		-q,	--quiet											be	vewwy	quiet	(I'm	hunting	wabbits)

		-f	FILE,	--filename=FILE

																								write	output	to	FILE

		-m	MODE,	--mode=MODE		interaction	mode:	novice,	intermediate,	or

																								expert	[default:	intermediate]

		Dangerous	Options:

				Caution:	use	these	options	at	your	own	risk.		It	is	believed	that	some

				of	them	bite.

				-g																		Group	option.

A	 bit	 more	 complete	 example	 might	 involve	 using	 more	 than	 one
group:	still	extending	the	previous	example:

group	=	OptionGroup(parser,	"Dangerous	Options",

																				"Caution:	use	these	options	at	your	own	risk.		"

																				"It	is	believed	that	some	of	them	bite."

group.add_option("-g",	action="store_true",	help="Group	option."

parser.add_option_group(group)

group	=	OptionGroup(parser,	"Debug	Options")

group.add_option("-d",	"--debug",	action="store_true"

																	help="Print	debug	information")

group.add_option("-s",	"--sql",	action="store_true",

																	help="Print	all	SQL	statements	executed"

group.add_option("-e",	action="store_true",	help="Print	every	action	done"

parser.add_option_group(group)

that	results	in	the	following	output:

Usage:	<yourscript>	[options]	arg1	arg2

Options:

		-h,	--help												show	this	help	message	and	exit

		-v,	--verbose									make	lots	of	noise	[default]

		-q,	--quiet											be	vewwy	quiet	(I'm	hunting	wabbits)

		-f	FILE,	--filename=FILE

																								write	output	to	FILE

		-m	MODE,	--mode=MODE		interaction	mode:	novice,	intermediate,	or	expert

																								[default:	intermediate]

		Dangerous	Options:

				Caution:	use	these	options	at	your	own	risk.		It	is	believed	that	some

				of	them	bite.

				-g																		Group	option.

		Debug	Options:

				-d,	--debug									Print	debug	information

				-s,	--sql											Print	all	SQL	statements	executed

				-e																		Print	every	action	done

Another	 interesting	 method,	 in	 particular	 when	 working
programmatically	with	option	groups	is:

OptionParser.get_option_group(opt_str)
Return	 the	OptionGroup	 to	which	the	short	or	 long	option	string
opt_str	 (e.g.	 '-o'	 or	 '--option')	 belongs.	 If	 there’s	 no	 such
OptionGroup,	return	None.

16.5.2.7.	Printing	a	version	string

Similar	 to	 the	brief	 usage	string,	 optparse	 can	also	print	 a	 version
string	for	your	program.	You	have	to	supply	the	string	as	the	version
argument	to	OptionParser:

parser	=	OptionParser(usage="%prog	[-f]	[-q]",	version

%prog	is	expanded	just	like	it	is	in	usage.	Apart	from	that,	version
can	 contain	 anything	 you	 like.	 When	 you	 supply	 it,	 optparse
automatically	 adds	 a	 --version	 option	 to	 your	 parser.	 If	 it
encounters	this	option	on	the	command	line,	it	expands	your	version
string	(by	replacing	%prog),	prints	it	to	stdout,	and	exits.

For	example,	if	your	script	is	called	/usr/bin/foo:

$	/usr/bin/foo	--version

foo	1.0

The	following	two	methods	can	be	used	to	print	and	get	the	version
string:

OptionParser.print_version(file=None)
Print	 the	 version	 message	 for	 the	 current	 program
(self.version)	to	file	(default	stdout).	As	with	print_usage(),
any	occurrence	of	%prog	 in	self.version	 is	 replaced	with	 the
name	of	 the	 current	 program.	Does	 nothing	 if	 self.version	 is
empty	or	undefined.

OptionParser.get_version()
Same	as	print_version()	but	returns	the	version	string	instead
of	printing	it.

16.5.2.8.	How	optparse	handles	errors

There	 are	 two	 broad	 classes	 of	 errors	 that	 optparse	 has	 to	 worry
about:	 programmer	 errors	 and	 user	 errors.	 Programmer	 errors	 are
usually	 erroneous	 calls	 to	 OptionParser.add_option(),	 e.g.
invalid	 option	 strings,	 unknown	 option	 attributes,	 missing	 option

attributes,	 etc.	 These	 are	 dealt	 with	 in	 the	 usual	 way:	 raise	 an
exception	 (either	 optparse.OptionError	 or	 TypeError)	 and	 let
the	program	crash.

Handling	 user	 errors	 is	 much	 more	 important,	 since	 they	 are
guaranteed	to	happen	no	matter	how	stable	your	code	is.	optparse
can	 automatically	 detect	 some	 user	 errors,	 such	 as	 bad	 option
arguments	 (passing	 -n	 4x	 where	 -n	 takes	 an	 integer	 argument),
missing	 arguments	 (-n	 at	 the	 end	 of	 the	 command	 line,	 where	 -n
takes	 an	 argument	 of	 any	 type).	 Also,	 you	 can	 call
OptionParser.error()	 to	 signal	 an	 application-defined	 error
condition:

(options,	args)	=	parser.parse_args()

[...]

if	options.a	and	options.b:

				parser.error("options	-a	and	-b	are	mutually	exclusive"

In	either	case,	optparse	handles	the	error	the	same	way:	it	prints	the
program’s	 usage	 message	 and	 an	 error	 message	 to	 standard	 error
and	exits	with	error	status	2.

Consider	 the	 first	 example	 above,	 where	 the	 user	 passes	 4x	 to	 an
option	that	takes	an	integer:

$	/usr/bin/foo	-n	4x

Usage:	foo	[options]

foo:	error:	option	-n:	invalid	integer	value:	'4x'

Or,	where	the	user	fails	to	pass	a	value	at	all:

$	/usr/bin/foo	-n

Usage:	foo	[options]

foo:	error:	-n	option	requires	an	argument

optparse-generated	error	messages	take	care	always	to	mention	the
option	 involved	 in	 the	 error;	 be	 sure	 to	 do	 the	 same	 when	 calling
OptionParser.error()	from	your	application	code.

If	 optparse‘s	 default	 error-handling	 behaviour	 does	 not	 suit	 your
needs,	you’ll	need	to	subclass	OptionParser	and	override	its	exit()
and/or	error()	methods.

16.5.2.9.	Putting	it	all	together

Here’s	what	optparse-based	scripts	usually	look	like:

from	optparse	import	OptionParser

[...]

def	main():

				usage	=	"usage:	%prog	[options]	arg"

				parser	=	OptionParser(usage)

				parser.add_option("-f",	"--file",	dest="filename"

																						help="read	data	from	FILENAME"

				parser.add_option("-v",	"--verbose",

																						action="store_true",	dest="verbose"

				parser.add_option("-q",	"--quiet",

																						action="store_false",	dest="verbose"

				[...]

				(options,	args)	=	parser.parse_args()

				if	len(args)	!=	1:

								parser.error("incorrect	number	of	arguments"

				if	options.verbose:

								print("reading	%s..."	%	options.filename)

				[...]

if	__name__	==	"__main__":

				main()

16.5.3.	Reference	Guide

16.5.3.1.	Creating	the	parser

The	 first	 step	 in	 using	 optparse	 is	 to	 create	 an	 OptionParser
instance.

class	optparse.OptionParser(...)
The	 OptionParser	 constructor	 has	 no	 required	 arguments,	 but	 a
number	 of	 optional	 keyword	 arguments.	 You	 should	 always	 pass
them	as	keyword	arguments,	i.e.	do	not	rely	on	the	order	in	which
the	arguments	are	declared.

usage	(default:	"%prog	[options]")
The	 usage	 summary	 to	 print	 when	 your	 program	 is	 run
incorrectly	 or	 with	 a	 help	 option.	 When	 optparse	 prints	 the
usage	 string,	 it	 expands	 %prog	 to
os.path.basename(sys.argv[0])	 (or	 to	 prog	 if	 you
passed	 that	 keyword	 argument).	 To	 suppress	 a	 usage
message,	 pass	 the	 special	 value
optparse.SUPPRESS_USAGE.

option_list	(default:	[])
A	list	of	Option	objects	to	populate	the	parser	with.	The	options
in	 option_list	 are	 added	 after	 any	 options	 in
standard_option_list	(a	class	attribute	that	may	be	set	by
OptionParser	 subclasses),	 but	 before	 any	 version	 or	 help
options.	 Deprecated;	 use	 add_option()	 after	 creating	 the
parser	instead.

option_class	(default:	optparse.Option)
Class	 to	 use	 when	 adding	 options	 to	 the	 parser	 in
add_option().

version	(default:	None)
A	version	string	to	print	when	the	user	supplies	a	version	option.
If	 you	 supply	 a	 true	 value	 for	 version,	 optparse

automatically	adds	a	version	option	with	the	single	option	string
--version.	 The	 substring	 %prog	 is	 expanded	 the	 same	 as
for	usage.

conflict_handler	(default:	"error")
Specifies	what	to	do	when	options	with	conflicting	option	strings
are	added	to	the	parser;	see	section	Conflicts	between	options.

description	(default:	None)
A	 paragraph	 of	 text	 giving	 a	 brief	 overview	 of	 your	 program.
optparse	 reformats	 this	 paragraph	 to	 fit	 the	 current	 terminal
width	 and	prints	 it	when	 the	user	 requests	 help	 (after	 usage,
but	before	the	list	of	options).

formatter	(default:	a	new	IndentedHelpFormatter)
An	 instance	 of	 optparse.HelpFormatter	 that	 will	 be	 used	 for
printing	help	text.	optparse	provides	two	concrete	classes	for
this	purpose:	IndentedHelpFormatter	and	TitledHelpFormatter.

add_help_option	(default:	True)
If	true,	optparse	will	add	a	help	option	(with	option	strings	-h
and	--help)	to	the	parser.

prog

The	 string	 to	 use	 when	 expanding	 %prog	 in	 usage	 and
version	instead	of	os.path.basename(sys.argv[0]).

epilog	(default:	None)
A	paragraph	of	help	text	to	print	after	the	option	help.

16.5.3.2.	Populating	the	parser

There	 are	 several	 ways	 to	 populate	 the	 parser	 with	 options.	 The
preferred	way	is	by	using	OptionParser.add_option(),	as	shown
in	section	Tutorial.	add_option()	can	be	called	in	one	of	two	ways:

pass	it	an	Option	instance	(as	returned	by	make_option())
pass	it	any	combination	of	positional	and	keyword	arguments	that
are	 acceptable	 to	 make_option()	 (i.e.,	 to	 the	 Option
constructor),	and	it	will	create	the	Option	instance	for	you

The	 other	 alternative	 is	 to	 pass	 a	 list	 of	 pre-constructed	 Option
instances	to	the	OptionParser	constructor,	as	in:

option_list	=	[

				make_option("-f",	"--filename",

																action="store",	type="string",	dest=

				make_option("-q",	"--quiet",

																action="store_false",	dest="verbose"

]

parser	=	OptionParser(option_list=option_list)

(make_option()	 is	a	 factory	 function	 for	creating	Option	 instances;
currently	 it	 is	 an	 alias	 for	 the	Option	 constructor.	 A	 future	 version	 of
optparse	 may	 split	 Option	 into	 several	 classes,	 and
make_option()	 will	 pick	 the	 right	 class	 to	 instantiate.	 Do	 not
instantiate	Option	directly.)

16.5.3.3.	Defining	options

Each	Option	 instance	represents	a	set	of	synonymous	command-line
option	strings,	e.g.	-f	and	--file.	You	 can	 specify	 any	 number	 of
short	or	 long	option	strings,	but	you	must	specify	at	 least	one	overall
option	string.

The	 canonical	 way	 to	 create	 an	 Option	 instance	 is	 with	 the
add_option()	method	of	OptionParser.

OptionParser.add_option(option)
OptionParser.add_option(*opt_str,	attr=value,	...)

To	define	an	option	with	only	a	short	option	string:

parser.add_option("-f",	attr=value,	...)

And	to	define	an	option	with	only	a	long	option	string:

parser.add_option("--foo",	attr=value,	...)

The	keyword	arguments	define	attributes	of	the	new	Option	object.
The	 most	 important	 option	 attribute	 is	 action,	 and	 it	 largely
determines	which	 other	 attributes	 are	 relevant	 or	 required.	 If	 you
pass	 irrelevant	 option	 attributes,	 or	 fail	 to	 pass	 required	 ones,
optparse	 raises	 an	 OptionError	 exception	 explaining	 your
mistake.

An	 option’s	 action	 determines	 what	 optparse	 does	 when	 it
encounters	 this	option	on	 the	command-line.	The	standard	option
actions	hard-coded	into	optparse	are:

"store"

store	this	option’s	argument	(default)

"store_const"

store	a	constant	value

"store_true"

store	a	true	value

"store_false"

store	a	false	value

"append"

append	this	option’s	argument	to	a	list

"append_const"

append	a	constant	value	to	a	list

"count"

increment	a	counter	by	one

"callback"

call	a	specified	function

"help"

print	 a	 usage	 message	 including	 all	 options	 and	 the
documentation	for	them

(If	 you	 don’t	 supply	 an	 action,	 the	 default	 is	 "store".	 For	 this
action,	you	may	also	supply	type	and	dest	option	attributes;	see
Standard	option	actions.)

As	 you	 can	 see,	 most	 actions	 involve	 storing	 or	 updating	 a	 value
somewhere.	 optparse	 always	 creates	 a	 special	 object	 for	 this,
conventionally	 called	 options	 (it	 happens	 to	 be	 an	 instance	 of
optparse.Values).	 Option	 arguments	 (and	 various	 other	 values)
are	 stored	 as	 attributes	 of	 this	 object,	 according	 to	 the	 dest
(destination)	option	attribute.

For	example,	when	you	call

parser.parse_args()

one	of	the	first	things	optparse	does	is	create	the	options	object:

options	=	Values()

If	one	of	the	options	in	this	parser	is	defined	with

parser.add_option("-f",	"--file",	action="store",	type

and	the	command-line	being	parsed	includes	any	of	the	following:

-ffoo

-f	foo

--file=foo

--file	foo

then	optparse,	on	seeing	this	option,	will	do	the	equivalent	of

options.filename	=	"foo"

The	 type	 and	 dest	 option	 attributes	 are	 almost	 as	 important	 as
action,	but	action	is	the	only	one	that	makes	sense	for	all	options.

16.5.3.4.	Option	attributes

The	following	option	attributes	may	be	passed	as	keyword	arguments
to	 OptionParser.add_option().	 If	 you	 pass	 an	 option	 attribute
that	 is	 not	 relevant	 to	 a	 particular	 option,	 or	 fail	 to	 pass	 a	 required
option	attribute,	optparse	raises	OptionError.

Option.action

(default:	"store")

Determines	optparse‘s	behaviour	when	this	option	is	seen	on	the
command	line;	the	available	options	are	documented	here.

Option.type

(default:	"string")

The	 argument	 type	 expected	 by	 this	 option	 (e.g.,	 "string"	 or
"int");	the	available	option	types	are	documented	here.

Option.dest

(default:	derived	from	option	strings)

If	 the	 option’s	 action	 implies	 writing	 or	 modifying	 a	 value
somewhere,	this	tells	optparse	where	to	write	it:	dest	names	an
attribute	of	the	options	object	that	optparse	builds	as	it	parses
the	command	line.

Option.default

The	 value	 to	 use	 for	 this	 option’s	 destination	 if	 the	 option	 is	 not
seen	 on	 the	 command	 line.	 See	 also
OptionParser.set_defaults().

Option.nargs

(default:	1)

How	many	arguments	of	type	type	should	be	consumed	when	this
option	 is	 seen.	 If	 >	 1,	 optparse	 will	 store	 a	 tuple	 of	 values	 to
dest.

Option.const

For	actions	that	store	a	constant	value,	the	constant	value	to	store.

Option.choices

For	 options	 of	 type	 "choice",	 the	 list	 of	 strings	 the	 user	 may
choose	from.

Option.callback

For	options	with	action	"callback",	the	callable	to	call	when	this
option	 is	 seen.	 See	 section	 Option	 Callbacks	 for	 detail	 on	 the

arguments	passed	to	the	callable.

Option.callback_args

Option.callback_kwargs

Additional	positional	and	keyword	arguments	to	pass	to	callback
after	the	four	standard	callback	arguments.

Option.help

Help	 text	 to	 print	 for	 this	 option	when	 listing	 all	 available	 options
after	the	user	supplies	a	help	option	(such	as	--help).	If	no	help
text	 is	supplied,	 the	option	will	be	 listed	without	help	 text.	To	hide
this	option,	use	the	special	value	optparse.SUPPRESS_HELP.

Option.metavar

(default:	derived	from	option	strings)

Stand-in	for	the	option	argument(s)	to	use	when	printing	help	text.
See	section	Tutorial	for	an	example.

16.5.3.5.	Standard	option	actions

The	various	option	actions	all	have	slightly	different	requirements	and
effects.	Most	actions	have	several	relevant	option	attributes	which	you
may	 specify	 to	 guide	 optparse‘s	 behaviour;	 a	 few	 have	 required
attributes,	which	you	must	specify	for	any	option	using	that	action.

"store"	[relevant:	type,	dest,	nargs,	choices]

The	option	must	be	followed	by	an	argument,	which	is	converted
to	a	value	according	to	type	and	stored	in	dest.	If	nargs	>	1,
multiple	arguments	will	be	consumed	from	the	command	 line;	all
will	 be	 converted	 according	 to	 type	 and	 stored	 to	 dest	 as	 a

tuple.	See	the	Standard	option	types	section.

If	choices	is	supplied	(a	list	or	tuple	of	strings),	the	type	defaults
to	"choice".

If	type	is	not	supplied,	it	defaults	to	"string".

If	dest	is	not	supplied,	optparse	derives	a	destination	from	the
first	 long	 option	 string	 (e.g.,	 --foo-bar	 implies	 foo_bar).	 If
there	are	no	long	option	strings,	optparse	derives	a	destination
from	the	first	short	option	string	(e.g.,	-f	implies	f).

Example:

parser.add_option("-f")

parser.add_option("-p",	type="float",	nargs=3,	dest

As	it	parses	the	command	line

-f	foo.txt	-p	1	-3.5	4	-fbar.txt

optparse	will	set

options.f	=	"foo.txt"

options.point	=	(1.0,	-3.5,	4.0)

options.f	=	"bar.txt"

"store_const"	[required:	const;	relevant:	dest]

The	value	const	is	stored	in	dest.

Example:

parser.add_option("-q",	"--quiet",

																		action="store_const",	const=0,	

parser.add_option("-v",	"--verbose",

																		action="store_const",	const=1,	

parser.add_option("--noisy",

																		action="store_const",	const=2,	

If	--noisy	is	seen,	optparse	will	set

options.verbose	=	2

"store_true"	[relevant:	dest]

A	 special	 case	 of	 "store_const"	 that	 stores	 a	 true	 value	 to
dest.

"store_false"	[relevant:	dest]

Like	"store_true",	but	stores	a	false	value.

Example:

parser.add_option("--clobber",	action="store_true"

parser.add_option("--no-clobber",	action="store_false"

"append"	[relevant:	type,	dest,	nargs,	choices]

The	option	must	be	followed	by	an	argument,	which	is	appended
to	 the	 list	 in	 dest.	 If	 no	 default	 value	 for	 dest	 is	 supplied,	 an
empty	 list	 is	 automatically	 created	 when	 optparse	 first
encounters	 this	 option	 on	 the	 command-line.	 If	 nargs	 >	 1,
multiple	arguments	are	consumed,	and	a	tuple	of	length	nargs	is
appended	to	dest.

The	 defaults	 for	 type	 and	 dest	 are	 the	 same	 as	 for	 the
"store"	action.

Example:

parser.add_option("-t",	"--tracks",	action="append"

If	 -t3	 is	 seen	 on	 the	 command-line,	 optparse	 does	 the
equivalent	of:

options.tracks	=	[]

options.tracks.append(int("3"))

If,	a	little	later	on,	--tracks=4	is	seen,	it	does:

options.tracks.append(int("4"))

The	append	action	calls	the	append	method	on	the	current	value
of	 the	 option.	 This	means	 that	 any	 default	 value	 specified	must
have	an	append	method.	It	also	means	that	if	the	default	value	is
non-empty,	 the	 default	 elements	 will	 be	 present	 in	 the	 parsed
value	 for	 the	 option,	 with	 any	 values	 from	 the	 command	 line
appended	after	those	default	values:

>>>	parser.add_option("--files",	action="append",

>>>	opts,	args	=	parser.parse_args(['--files',	'overrides.mypkg'

>>>	opts.files

['~/.mypkg/defaults',	'overrides.mypkg']

"append_const"	[required:	const;	relevant:	dest]

Like	 "store_const",	 but	 the	 value	 const	 is	 appended	 to

dest;	as	with	"append",	dest	defaults	to	None,	and	an	empty
list	 is	 automatically	 created	 the	 first	 time	 the	 option	 is
encountered.

"count"	[relevant:	dest]

Increment	 the	 integer	 stored	 at	 dest.	 If	 no	 default	 value	 is
supplied,	dest	 is	 set	 to	 zero	 before	 being	 incremented	 the	 first
time.

Example:

parser.add_option("-v",	action="count",	dest="verbosity"

The	first	time	-v	 is	seen	on	the	command	 line,	optparse	does
the	equivalent	of:

options.verbosity	=	0

options.verbosity	+=	1

Every	subsequent	occurrence	of	-v	results	in

options.verbosity	+=	1

"callback"	 [required:	 callback;	 relevant:	 type,	 nargs,
callback_args,	callback_kwargs]

Call	the	function	specified	by	callback,	which	is	called	as

func(option,	opt_str,	value,	parser,	*args,	**kwargs

See	section	Option	Callbacks	for	more	detail.

"help"

Prints	a	complete	help	message	for	all	 the	options	 in	the	current
option	parser.	The	help	message	 is	constructed	 from	the	usage
string	passed	 to	OptionParser’s	constructor	and	 the	help	 string
passed	to	every	option.

If	no	help	string	 is	supplied	 for	an	option,	 it	will	still	be	 listed	 in
the	 help	 message.	 To	 omit	 an	 option	 entirely,	 use	 the	 special
value	optparse.SUPPRESS_HELP.

optparse	 automatically	 adds	 a	 help	 option	 to	 all
OptionParsers,	so	you	do	not	normally	need	to	create	one.

Example:

from	optparse	import	OptionParser,	SUPPRESS_HELP

#	usually,	a	help	option	is	added	automatically,	but	that	can

#	be	suppressed	using	the	add_help_option	argument

parser	=	OptionParser(add_help_option=False)

parser.add_option("-h",	"--help",	action="help")

parser.add_option("-v",	action="store_true",	dest

																		help="Be	moderately	verbose")

parser.add_option("--file",	dest="filename",

																		help="Input	file	to	read	data	from"

parser.add_option("--secret",	help=SUPPRESS_HELP)

If	optparse	sees	either	-h	or	--help	on	 the	command	 line,	 it
will	 print	 something	 like	 the	 following	 help	 message	 to	 stdout
(assuming	sys.argv[0]	is	"foo.py"):

Usage:	foo.py	[options]

Options:

		-h,	--help								Show	this	help	message	and	exit

		-v																Be	moderately	verbose

		--file=FILENAME			Input	file	to	read	data	from

After	 printing	 the	 help	 message,	 optparse	 terminates	 your
process	with	sys.exit(0).

"version"

Prints	the	version	number	supplied	to	the	OptionParser	to	stdout
and	exits.	The	version	number	is	actually	formatted	and	printed	by
the	print_version()	method	of	OptionParser.	Generally	 only
relevant	if	the	version	argument	is	supplied	to	the	OptionParser
constructor.	As	with	help	options,	you	will	rarely	create	version
options,	since	optparse	automatically	adds	them	when	needed.

16.5.3.6.	Standard	option	types

optparse	 has	 five	 built-in	 option	 types:	 "string",	 "int",
"choice",	"float"	and	"complex".	If	you	need	to	add	new	option
types,	see	section	Extending	optparse.

Arguments	to	string	options	are	not	checked	or	converted	in	any	way:
the	text	on	the	command	line	is	stored	in	the	destination	(or	passed	to
the	callback)	as-is.

Integer	arguments	(type	"int")	are	parsed	as	follows:

if	the	number	starts	with	0x,	it	is	parsed	as	a	hexadecimal	number
if	the	number	starts	with	0,	it	is	parsed	as	an	octal	number

if	the	number	starts	with	0b,	it	is	parsed	as	a	binary	number
otherwise,	the	number	is	parsed	as	a	decimal	number

The	conversion	is	done	by	calling	int()	with	the	appropriate	base	(2,
8,	 10,	 or	 16).	 If	 this	 fails,	 so	 will	 optparse,	 although	 with	 a	 more
useful	error	message.

"float"	 and	 "complex"	 option	 arguments	 are	 converted	 directly
with	float()	and	complex(),	with	similar	error-handling.

"choice"	 options	 are	 a	 subtype	 of	 "string"	 options.	 The
choices	 option	 attribute	 (a	 sequence	 of	 strings)	 defines	 the	 set	 of
allowed	 option	 arguments.	 optparse.check_choice()	 compares
user-supplied	 option	 arguments	 against	 this	 master	 list	 and	 raises
OptionValueError	if	an	invalid	string	is	given.

16.5.3.7.	Parsing	arguments

The	whole	point	of	creating	and	populating	an	OptionParser	 is	to	call
its	parse_args()	method:

(options,	args)	=	parser.parse_args(args=None,	values

where	the	input	parameters	are

args

the	list	of	arguments	to	process	(default:	sys.argv[1:])

values

a	optparse.Values	object	to	store	option	arguments	in	(default:
a	 new	 instance	 of	 Values)	 –	 if	 you	 give	 an	 existing	 object,	 the
option	defaults	will	not	be	initialized	on	it

and	the	return	values	are

options

the	 same	 object	 that	 was	 passed	 in	 as	 values,	 or	 the
optparse.Values	instance	created	by	optparse

args

the	 leftover	 positional	 arguments	 after	 all	 options	 have	 been
processed

The	most	 common	 usage	 is	 to	 supply	 neither	 keyword	 argument.	 If
you	supply	values,	it	will	be	modified	with	repeated	setattr()	calls
(roughly	one	for	every	option	argument	stored	to	an	option	destination)
and	returned	by	parse_args().

If	parse_args()	encounters	any	errors	 in	 the	argument	 list,	 it	calls
the	 OptionParser’s	 error()	 method	 with	 an	 appropriate	 end-user
error	 message.	 This	 ultimately	 terminates	 your	 process	 with	 an	 exit
status	of	2	(the	traditional	Unix	exit	status	for	command-line	errors).

16.5.3.8.	Querying	and	manipulating	your	option
parser

The	default	behavior	of	 the	option	parser	can	be	customized	slightly,
and	 you	 can	 also	 poke	 around	 your	 option	 parser	 and	 see	 what’s
there.	OptionParser	provides	several	methods	to	help	you	out:

OptionParser.disable_interspersed_args()
Set	parsing	to	stop	on	the	first	non-option.	For	example,	if	-a	and
-b	 are	 both	 simple	 options	 that	 take	 no	 arguments,	 optparse
normally	accepts	this	syntax:

prog	-a	arg1	-b	arg2

and	treats	it	as	equivalent	to

prog	-a	-b	arg1	arg2

To	 disable	 this	 feature,	 call	 disable_interspersed_args().
This	 restores	 traditional	 Unix	 syntax,	 where	 option	 parsing	 stops
with	the	first	non-option	argument.

Use	 this	 if	 you	 have	 a	 command	 processor	 which	 runs	 another
command	which	has	options	of	its	own	and	you	want	to	make	sure
these	 options	 don’t	 get	 confused.	 For	 example,	 each	 command
might	have	a	different	set	of	options.

OptionParser.enable_interspersed_args()
Set	 parsing	 to	 not	 stop	 on	 the	 first	 non-option,	 allowing
interspersing	 switches	 with	 command	 arguments.	 This	 is	 the
default	behavior.

OptionParser.get_option(opt_str)
Returns	the	Option	instance	with	the	option	string	opt_str,	or	None
if	no	options	have	that	option	string.

OptionParser.has_option(opt_str)
Return	 true	 if	 the	 OptionParser	 has	 an	 option	 with	 option	 string
opt_str	(e.g.,	-q	or	--verbose).

OptionParser.remove_option(opt_str)
If	the	OptionParser	has	an	option	corresponding	to	opt_str,	that
option	is	removed.	If	that	option	provided	any	other	option	strings,
all	of	those	option	strings	become	invalid.	If	opt_str	does	not	occur
in	 any	 option	 belonging	 to	 this	 OptionParser,	 raises
ValueError.

16.5.3.9.	Conflicts	between	options

If	you’re	not	careful,	 it’s	easy	 to	define	options	with	conflicting	option
strings:

parser.add_option("-n",	"--dry-run",	...)

[...]

parser.add_option("-n",	"--noisy",	...)

(This	 is	 particularly	 true	 if	 you’ve	 defined	 your	 own	 OptionParser
subclass	with	some	standard	options.)

Every	 time	 you	 add	 an	 option,	 optparse	 checks	 for	 conflicts	 with
existing	options.	 If	 it	 finds	any,	 it	 invokes	 the	current	conflict-handling
mechanism.	You	can	set	the	conflict-handling	mechanism	either	in	the
constructor:

parser	=	OptionParser(...,	conflict_handler=handler)

or	with	a	separate	call:

parser.set_conflict_handler(handler)

The	available	conflict	handlers	are:

"error"	(default)
assume	 option	 conflicts	 are	 a	 programming	 error	 and	 raise
OptionConflictError

"resolve"

resolve	option	conflicts	intelligently	(see	below)

As	an	example,	let’s	define	an	OptionParser	that	resolves	conflicts
intelligently	and	add	conflicting	options	to	it:

parser	=	OptionParser(conflict_handler="resolve")

parser.add_option("-n",	"--dry-run",	...,	help="do	no	harm"

parser.add_option("-n",	"--noisy",	...,	help="be	noisy"

At	 this	 point,	 optparse	 detects	 that	 a	 previously-added	 option	 is
already	 using	 the	 -n	 option	 string.	 Since	 conflict_handler	 is
"resolve",	 it	resolves	the	situation	by	removing	-n	from	the	earlier
option’s	list	of	option	strings.	Now	--dry-run	is	the	only	way	for	the
user	to	activate	that	option.	If	the	user	asks	for	help,	the	help	message
will	reflect	that:

Options:

		--dry-run					do	no	harm

		[...]

		-n,	--noisy			be	noisy

It’s	possible	 to	whittle	away	 the	option	strings	 for	a	previously-added
option	until	 there	are	none	 left,	and	 the	user	has	no	way	of	 invoking
that	option	from	the	command-line.	In	 that	case,	optparse	 removes
that	option	completely,	so	it	doesn’t	show	up	in	help	text	or	anywhere
else.	Carrying	on	with	our	existing	OptionParser:

parser.add_option("--dry-run",	...,	help="new	dry-run	option"

At	 this	 point,	 the	 original	 -n/--dry-run	 option	 is	 no	 longer
accessible,	so	optparse	removes	it,	leaving	this	help	text:

Options:

		[...]

		-n,	--noisy			be	noisy

		--dry-run					new	dry-run	option

16.5.3.10.	Cleanup

OptionParser	 instances	 have	 several	 cyclic	 references.	 This	 should
not	be	a	problem	for	Python’s	garbage	collector,	but	you	may	wish	to
break	 the	 cyclic	 references	 explicitly	 by	 calling	 destroy()	 on	 your
OptionParser	once	you	are	done	with	 it.	This	 is	 particularly	 useful	 in
long-running	 applications	 where	 large	 object	 graphs	 are	 reachable
from	your	OptionParser.

16.5.3.11.	Other	methods

OptionParser	supports	several	other	public	methods:

OptionParser.set_usage(usage)
Set	the	usage	string	according	to	the	rules	described	above	for	the
usage	 constructor	 keyword	 argument.	 Passing	 None	 sets	 the
default	 usage	 string;	 use	 optparse.SUPPRESS_USAGE	 to
suppress	a	usage	message.

OptionParser.print_usage(file=None)
Print	the	usage	message	for	the	current	program	(self.usage)	to
file	 (default	 stdout).	 Any	 occurrence	 of	 the	 string	 %prog	 in
self.usage	 is	 replaced	 with	 the	 name	 of	 the	 current	 program.
Does	nothing	if	self.usage	is	empty	or	not	defined.

OptionParser.get_usage()
Same	as	print_usage()	but	returns	the	usage	string	instead	of
printing	it.

OptionParser.set_defaults(dest=value,	...)
Set	 default	 values	 for	 several	 option	 destinations	 at	 once.	 Using

set_defaults()	 is	 the	 preferred	 way	 to	 set	 default	 values	 for
options,	since	multiple	options	can	share	the	same	destination.	For
example,	 if	 several	 “mode”	 options	 all	 set	 the	 same	 destination,
any	one	of	them	can	set	the	default,	and	the	last	one	wins:

parser.add_option("--advanced",	action="store_const"

																		dest="mode",	const="advanced",

																		default="novice")				#	overridden	below

parser.add_option("--novice",	action="store_const"

																		dest="mode",	const="novice",

																		default="advanced")		#	overrides	above	setting

To	avoid	this	confusion,	use	set_defaults():

parser.set_defaults(mode="advanced")

parser.add_option("--advanced",	action="store_const"

																		dest="mode",	const="advanced")

parser.add_option("--novice",	action="store_const"

																		dest="mode",	const="novice")

16.5.4.	Option	Callbacks

When	optparse‘s	 built-in	 actions	and	 types	aren’t	 quite	enough	 for
your	 needs,	 you	 have	 two	 choices:	 extend	 optparse	 or	 define	 a
callback	option.	Extending	optparse	is	more	general,	but	overkill	for
a	lot	of	simple	cases.	Quite	often	a	simple	callback	is	all	you	need.

There	are	two	steps	to	defining	a	callback	option:

define	the	option	itself	using	the	"callback"	action
write	the	callback;	this	is	a	function	(or	method)	that	takes	at	least
four	arguments,	as	described	below

16.5.4.1.	Defining	a	callback	option

As	always,	the	easiest	way	to	define	a	callback	option	is	by	using	the
OptionParser.add_option()	 method.	 Apart	 from	 action,	 the
only	 option	 attribute	 you	must	 specify	 is	 callback,	 the	 function	 to
call:

parser.add_option("-c",	action="callback",	callback=

callback	 is	a	 function	 (or	other	callable	object),	 so	you	must	have
already	 defined	 my_callback()	 when	 you	 create	 this	 callback
option.	In	this	simple	case,	optparse	doesn’t	even	know	if	-c	takes
any	 arguments,	 which	 usually	 means	 that	 the	 option	 takes	 no
arguments—the	 mere	 presence	 of	 -c	 on	 the	 command-line	 is	 all	 it
needs	to	know.	 In	some	circumstances,	 though,	you	might	want	your
callback	to	consume	an	arbitrary	number	of	command-line	arguments.
This	 is	 where	 writing	 callbacks	 gets	 tricky;	 it’s	 covered	 later	 in	 this

section.

optparse	always	passes	four	particular	arguments	to	your	callback,
and	 it	 will	 only	 pass	 additional	 arguments	 if	 you	 specify	 them	 via
callback_args	 and	 callback_kwargs.	 Thus,	 the	 minimal
callback	function	signature	is:

def	my_callback(option,	opt,	value,	parser):

The	four	arguments	to	a	callback	are	described	below.

There	are	several	other	option	attributes	that	you	can	supply	when	you
define	a	callback	option:

type

has	its	usual	meaning:	as	with	the	"store"	or	"append"	actions,
it	instructs	optparse	 to	consume	one	argument	and	convert	 it	 to
type.	 Rather	 than	 storing	 the	 converted	 value(s)	 anywhere,
though,	optparse	passes	it	to	your	callback	function.

nargs

also	has	its	usual	meaning:	if	it	is	supplied	and	>	1,	optparse	will
consume	nargs	arguments,	each	of	which	must	be	convertible	to
type.	It	then	passes	a	tuple	of	converted	values	to	your	callback.

callback_args

a	tuple	of	extra	positional	arguments	to	pass	to	the	callback

callback_kwargs

a	dictionary	of	extra	keyword	arguments	to	pass	to	the	callback

16.5.4.2.	How	callbacks	are	called

All	callbacks	are	called	as	follows:

func(option,	opt_str,	value,	parser,	*args,	**kwargs

where

option

is	the	Option	instance	that’s	calling	the	callback

opt_str

is	the	option	string	seen	on	the	command-line	that’s	triggering	the
callback.	(If	an	abbreviated	long	option	was	used,	opt_str	will	be
the	full,	canonical	option	string—e.g.	if	the	user	puts	--foo	on	the
command-line	 as	 an	 abbreviation	 for	 --foobar,	 then	 opt_str
will	be	"--foobar".)

value

is	 the	 argument	 to	 this	 option	 seen	 on	 the	 command-line.
optparse	will	only	expect	an	argument	if	type	is	set;	the	type	of
value	will	be	the	type	implied	by	the	option’s	type.	If	type	for	this
option	is	None	(no	argument	expected),	then	value	will	be	None.
If	nargs	 >	1,	 value	will	 be	 a	 tuple	 of	 values	 of	 the	 appropriate
type.

parser

is	the	OptionParser	instance	driving	the	whole	thing,	mainly	useful
because	 you	 can	 access	 some	 other	 interesting	 data	 through	 its
instance	attributes:

parser.largs

the	 current	 list	 of	 leftover	 arguments,	 ie.	 arguments	 that	 have
been	consumed	but	are	neither	options	nor	option	arguments.
Feel	 free	 to	 modify	 parser.largs,	 e.g.	 by	 adding	 more
arguments	to	it.	(This	 list	will	become	args,	the	second	return
value	of	parse_args().)

parser.rargs

the	current	 list	of	 remaining	arguments,	 ie.	with	opt_str	and
value	 (if	 applicable)	 removed,	 and	 only	 the	 arguments
following	 them	still	 there.	Feel	 free	 to	modify	parser.rargs,
e.g.	by	consuming	more	arguments.

parser.values

the	 object	 where	 option	 values	 are	 by	 default	 stored	 (an
instance	of	optparse.OptionValues).	This	 lets	callbacks	use	the
same	mechanism	 as	 the	 rest	 of	 optparse	 for	 storing	 option
values;	you	don’t	need	to	mess	around	with	globals	or	closures.
You	 can	 also	 access	 or	 modify	 the	 value(s)	 of	 any	 options
already	encountered	on	the	command-line.

args

is	 a	 tuple	 of	 arbitrary	 positional	 arguments	 supplied	 via	 the
callback_args	option	attribute.

kwargs

is	 a	 dictionary	 of	 arbitrary	 keyword	 arguments	 supplied	 via
callback_kwargs.

16.5.4.3.	Raising	errors	in	a	callback

The	 callback	 function	 should	 raise	 OptionValueError	 if	 there	 are
any	problems	with	 the	 option	 or	 its	 argument(s).	 optparse	 catches
this	 and	 terminates	 the	 program,	 printing	 the	 error	 message	 you
supply	to	stderr.	Your	message	should	be	clear,	concise,	accurate,	and
mention	the	option	at	 fault.	Otherwise,	 the	user	will	have	a	hard	 time
figuring	out	what	he	did	wrong.

16.5.4.4.	Callback	example	1:	trivial	callback

Here’s	an	example	of	a	callback	option	that	takes	no	arguments,	and
simply	records	that	the	option	was	seen:

def	record_foo_seen(option,	opt_str,	value,	parser):

				parser.values.saw_foo	=	True

parser.add_option("--foo",	action="callback",	callback

Of	course,	you	could	do	that	with	the	"store_true"	action.

16.5.4.5.	Callback	example	2:	check	option	order

Here’s	a	slightly	more	 interesting	example:	 record	 the	 fact	 that	-a	 is
seen,	but	blow	up	if	it	comes	after	-b	in	the	command-line.

def	check_order(option,	opt_str,	value,	parser):

				if	parser.values.b:

								raise	OptionValueError("can't	use	-a	after	-b"

				parser.values.a	=	1

[...]

parser.add_option("-a",	action="callback",	callback=

parser.add_option("-b",	action="store_true",	dest="b"

16.5.4.6.	Callback	example	3:	check	option	order
(generalized)

If	 you	 want	 to	 re-use	 this	 callback	 for	 several	 similar	 options	 (set	 a
flag,	but	blow	up	if	-b	has	already	been	seen),	it	needs	a	bit	of	work:
the	error	message	and	the	flag	that	it	sets	must	be	generalized.

def	check_order(option,	opt_str,	value,	parser):

				if	parser.values.b:

								raise	OptionValueError("can't	use	%s	after	-b"

				setattr(parser.values,	option.dest,	1)

[...]

parser.add_option("-a",	action="callback",	callback=

parser.add_option("-b",	action="store_true",	dest="b"

parser.add_option("-c",	action="callback",	callback=

16.5.4.7.	Callback	example	4:	check	arbitrary
condition

Of	course,	you	could	put	any	condition	in	there—you’re	not	 limited	to
checking	 the	 values	 of	 already-defined	 options.	 For	 example,	 if	 you
have	options	 that	should	not	be	called	when	 the	moon	 is	 full,	all	you
have	to	do	is	this:

def	check_moon(option,	opt_str,	value,	parser):

				if	is_moon_full():

								raise	OptionValueError("%s	option	invalid	when	moon	is	full"

																															%	opt_str)

				setattr(parser.values,	option.dest,	1)

[...]

parser.add_option("--foo",

																		action="callback",	callback=check_moon

(The	 definition	 of	 is_moon_full()	 is	 left	 as	 an	 exercise	 for	 the
reader.)

16.5.4.8.	Callback	example	5:	fixed	arguments

Things	get	slightly	more	 interesting	when	you	define	callback	options
that	 take	 a	 fixed	 number	 of	 arguments.	 Specifying	 that	 a	 callback
option	takes	arguments	is	similar	to	defining	a	"store"	or	"append"
option:	 if	 you	define	 type,	 then	 the	 option	 takes	 one	 argument	 that
must	be	convertible	to	that	type;	if	you	further	define	nargs,	then	the

option	takes	nargs	arguments.

Here’s	an	example	that	just	emulates	the	standard	"store"	action:

def	store_value(option,	opt_str,	value,	parser):

				setattr(parser.values,	option.dest,	value)

[...]

parser.add_option("--foo",

																		action="callback",	callback=store_value

																		type="int",	nargs=3,	dest="foo")

Note	 that	 optparse	 takes	 care	 of	 consuming	 3	 arguments	 and
converting	them	to	 integers	for	you;	all	you	have	to	do	 is	store	them.
(Or	whatever;	obviously	you	don’t	need	a	callback	for	this	example.)

16.5.4.9.	Callback	example	6:	variable	arguments

Things	get	hairy	when	you	want	an	option	to	take	a	variable	number	of
arguments.	 For	 this	 case,	 you	must	 write	 a	 callback,	 as	 optparse
doesn’t	 provide	 any	 built-in	 capabilities	 for	 it.	 And	 you	 have	 to	 deal
with	certain	intricacies	of	conventional	Unix	command-line	parsing	that
optparse	 normally	 handles	 for	 you.	 In	 particular,	 callbacks	 should
implement	the	conventional	rules	for	bare	--	and	-	arguments:

either	--	or	-	can	be	option	arguments
bare	--	 (if	not	 the	argument	to	some	option):	halt	command-line
processing	and	discard	the	--
bare	 -	 (if	 not	 the	 argument	 to	 some	option):	 halt	 command-line
processing	but	keep	the	-	(append	it	to	parser.largs)

If	you	want	an	option	that	takes	a	variable	number	of	arguments,	there
are	 several	 subtle,	 tricky	 issues	 to	 worry	 about.	 The	 exact

implementation	 you	 choose	will	 be	 based	 on	which	 trade-offs	 you’re
willing	 to	make	 for	your	application	 (which	 is	why	optparse	doesn’t
support	this	sort	of	thing	directly).

Nevertheless,	 here’s	 a	 stab	 at	 a	 callback	 for	 an	 option	with	 variable
arguments:

	def	vararg_callback(option,	opt_str,	value,	parser):

					assert	value	is	None

					value	=	[]

					def	floatable(str):

									try:

													float(str)

													return	True

									except	ValueError:

													return	False

					for	arg	in	parser.rargs:

									#	stop	on	--foo	like	options

									if	arg[:2]	==	"--"	and	len(arg)	>	2:

													break

									#	stop	on	-a,	but	not	on	-3	or	-3.0

									if	arg[:1]	==	"-"	and	len(arg)	>	1	and	not	

													break

									value.append(arg)

					del	parser.rargs[:len(value)]

					setattr(parser.values,	option.dest,	value)

[...]

parser.add_option("-c",	"--callback",	dest="vararg_attr"

																		action="callback",	callback=vararg_callback

16.5.5.	Extending	optparse

Since	 the	 two	major	 controlling	 factors	 in	 how	 optparse	 interprets
command-line	options	are	the	action	and	type	of	each	option,	the	most
likely	direction	of	extension	is	to	add	new	actions	and	new	types.

16.5.5.1.	Adding	new	types

To	 add	 new	 types,	 you	 need	 to	 define	 your	 own	 subclass	 of
optparse‘s	Option	class.	This	class	has	a	couple	of	attributes	that
define	optparse‘s	types:	TYPES	and	TYPE_CHECKER.

Option.TYPES

A	tuple	of	type	names;	in	your	subclass,	simply	define	a	new	tuple
TYPES	that	builds	on	the	standard	one.

Option.TYPE_CHECKER

A	 dictionary	 mapping	 type	 names	 to	 type-checking	 functions.	 A
type-checking	function	has	the	following	signature:

def	check_mytype(option,	opt,	value)

where	 option	 is	 an	 Option	 instance,	 opt	 is	 an	 option	 string
(e.g.,	 -f),	 and	 value	 is	 the	 string	 from	 the	 command	 line	 that
must	 be	 checked	 and	 converted	 to	 your	 desired	 type.
check_mytype()	should	return	an	object	of	the	hypothetical	type
mytype.	The	value	returned	by	a	type-checking	function	will	wind
up	 in	 the	 OptionValues	 instance	 returned	 by
OptionParser.parse_args(),	 or	 be	 passed	 to	 a	 callback	 as
the	value	parameter.

Your	type-checking	function	should	raise	OptionValueError	if	it
encounters	 any	 problems.	 OptionValueError	 takes	 a	 single
string	 argument,	 which	 is	 passed	 as-is	 to	 OptionParser‘s
error()	method,	which	 in	 turn	prepends	the	program	name	and
the	 string	 "error:"	 and	 prints	 everything	 to	 stderr	 before
terminating	the	process.

Here’s	a	silly	example	that	demonstrates	adding	a	"complex"	option
type	 to	 parse	 Python-style	 complex	 numbers	 on	 the	 command	 line.
(This	is	even	sillier	than	it	used	to	be,	because	optparse	1.3	added
built-in	support	for	complex	numbers,	but	never	mind.)

First,	the	necessary	imports:

from	copy	import	copy

from	optparse	import	Option,	OptionValueError

You	need	to	define	your	type-checker	first,	since	it’s	referred	to	later	(in
the	TYPE_CHECKER	class	attribute	of	your	Option	subclass):

def	check_complex(option,	opt,	value):

				try:

								return	complex(value)

				except	ValueError:

								raise	OptionValueError(

												"option	%s:	invalid	complex	value:	%r"	%

Finally,	the	Option	subclass:

class	MyOption	(Option):

				TYPES	=	Option.TYPES	+	("complex",)

				TYPE_CHECKER	=	copy(Option.TYPE_CHECKER)

				TYPE_CHECKER["complex"]	=	check_complex

(If	we	didn’t	make	a	copy()	of	Option.TYPE_CHECKER,	we	would
end	up	modifying	the	TYPE_CHECKER	attribute	of	optparse‘s	Option
class.	 This	 being	 Python,	 nothing	 stops	 you	 from	 doing	 that	 except
good	manners	and	common	sense.)

That’s	it!	Now	you	can	write	a	script	that	uses	the	new	option	type	just
like	 any	 other	 optparse-based	 script,	 except	 you	 have	 to	 instruct
your	OptionParser	to	use	MyOption	instead	of	Option:

parser	=	OptionParser(option_class=MyOption)

parser.add_option("-c",	type="complex")

Alternately,	 you	 can	 build	 your	 own	 option	 list	 and	 pass	 it	 to
OptionParser;	if	you	don’t	use	add_option()	in	the	above	way,	you
don’t	need	to	tell	OptionParser	which	option	class	to	use:

option_list	=	[MyOption("-c",	action="store",	type="complex"

parser	=	OptionParser(option_list=option_list)

16.5.5.2.	Adding	new	actions

Adding	new	actions	 is	a	bit	 trickier,	because	you	have	 to	understand
that	optparse	has	a	couple	of	classifications	for	actions:

“store”	actions
actions	 that	 result	 in	optparse	 storing	a	 value	 to	an	attribute	of
the	 current	OptionValues	 instance;	 these	 options	 require	 a	 dest
attribute	to	be	supplied	to	the	Option	constructor.

“typed”	actions
actions	that	take	a	value	from	the	command	line	and	expect	it	to	be
of	 a	 certain	 type;	 or	 rather,	 a	 string	 that	 can	 be	 converted	 to	 a
certain	type.	These	options	require	a	type	attribute	to	the	Option

constructor.

These	 are	 overlapping	 sets:	 some	 default	 “store”	 actions	 are
"store",	 "store_const",	 "append",	 and	 "count",	 while	 the
default	“typed”	actions	are	"store",	"append",	and	"callback".

When	 you	add	an	action,	 you	need	 to	 categorize	 it	 by	 listing	 it	 in	 at
least	 one	 of	 the	 following	 class	 attributes	 of	 Option	 (all	 are	 lists	 of
strings):

Option.ACTIONS

All	actions	must	be	listed	in	ACTIONS.

Option.STORE_ACTIONS

“store”	actions	are	additionally	listed	here.

Option.TYPED_ACTIONS

“typed”	actions	are	additionally	listed	here.

Option.ALWAYS_TYPED_ACTIONS

Actions	that	always	take	a	 type	(i.e.	whose	options	always	take	a
value)	 are	 additionally	 listed	 here.	 The	 only	 effect	 of	 this	 is	 that
optparse	assigns	the	default	type,	"string",	to	options	with	no
explicit	type	whose	action	is	listed	in	ALWAYS_TYPED_ACTIONS.

In	 order	 to	 actually	 implement	 your	 new	 action,	 you	 must	 override
Option’s	 take_action()	 method	 and	 add	 a	 case	 that	 recognizes
your	action.

For	 example,	 let’s	 add	 an	 "extend"	 action.	 This	 is	 similar	 to	 the
standard	"append"	action,	but	 instead	of	 taking	a	single	value	 from
the	command-line	and	appending	it	 to	an	existing	list,	"extend"	will
take	multiple	values	in	a	single	comma-delimited	string,	and	extend	an

existing	list	with	them.	That	is,	 if	--names	 is	an	"extend"	option	of
type	"string",	the	command	line

--names=foo,bar	--names	blah	--names	ding,dong

would	result	in	a	list

["foo",	"bar",	"blah",	"ding",	"dong"]

Again	we	define	a	subclass	of	Option:

class	MyOption(Option):

				ACTIONS	=	Option.ACTIONS	+	("extend",)

				STORE_ACTIONS	=	Option.STORE_ACTIONS	+	("extend"

				TYPED_ACTIONS	=	Option.TYPED_ACTIONS	+	("extend"

				ALWAYS_TYPED_ACTIONS	=	Option.ALWAYS_TYPED_ACTIONS

				def	take_action(self,	action,	dest,	opt,	value,	

								if	action	==	"extend":

												lvalue	=	value.split(",")

												values.ensure_value(dest,	[]).extend(lvalue

								else:

												Option.take_action(

																self,	action,	dest,	opt,	value,	values

Features	of	note:

"extend"	both	expects	a	value	on	the	command-line	and	stores
that	 value	 somewhere,	 so	 it	 goes	 in	 both	 STORE_ACTIONS	and
TYPED_ACTIONS.

to	ensure	that	optparse	assigns	 the	default	 type	of	"string"
to	 "extend"	 actions,	 we	 put	 the	 "extend"	 action	 in

ALWAYS_TYPED_ACTIONS	as	well.

MyOption.take_action()	 implements	 just	 this	 one	 new
action,	and	passes	control	back	to	Option.take_action()	for
the	standard	optparse	actions.

values	is	an	instance	of	the	optparse_parser.Values	class,	which
provides	 the	 very	 useful	 ensure_value()	 method.
ensure_value()	is	essentially	getattr()	with	a	safety	valve;
it	is	called	as

values.ensure_value(attr,	value)

If	 the	 attr	 attribute	 of	 values	 doesn’t	 exist	 or	 is	 None,	 then
ensure_value()	first	sets	it	to	value,	and	then	returns	‘value.	This
is	 very	 handy	 for	 actions	 like	 "extend",	 "append",	 and
"count",	all	of	which	accumulate	data	 in	a	variable	and	expect
that	 variable	 to	 be	 of	 a	 certain	 type	 (a	 list	 for	 the	 first	 two,	 an
integer	for	the	latter).	Using	ensure_value()	means	that	scripts
using	your	action	don’t	have	to	worry	about	setting	a	default	value
for	 the	 option	 destinations	 in	 question;	 they	 can	 just	 leave	 the
default	as	None	and	ensure_value()	will	take	care	of	getting	it
right	when	it’s	needed.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.6.	getopt	—	C-style	parser	for
command	line	options
Source	code:	Lib/getopt.py

Note: 	The	getopt	module	is	a	parser	for	command	line	options
whose	API	is	designed	to	be	familiar	to	users	of	the	C	getopt()
function.	Users	who	are	unfamiliar	with	the	C	getopt()	function	or
who	would	like	to	write	less	code	and	get	better	help	and	error
messages	should	consider	using	the	argparse	module	instead.

This	 module	 helps	 scripts	 to	 parse	 the	 command	 line	 arguments	 in
sys.argv.	It	supports	the	same	conventions	as	the	Unix	getopt()
function	(including	the	special	meanings	of	arguments	of	 the	form	‘-‘
and	 ‘--‘).	Long	 options	 similar	 to	 those	 supported	 by	GNU	 software
may	be	used	as	well	via	an	optional	third	argument.

This	module	provides	two	functions	and	an	exception:

getopt.getopt(args,	shortopts,	longopts=[])
Parses	 command	 line	 options	 and	 parameter	 list.	 args	 is	 the
argument	 list	 to	 be	 parsed,	 without	 the	 leading	 reference	 to	 the
running	program.	Typically,	this	means	sys.argv[1:].	shortopts
is	the	string	of	option	letters	that	the	script	wants	to	recognize,	with
options	that	require	an	argument	followed	by	a	colon	(':';	i.e.,	the
same	format	that	Unix	getopt()	uses).

Note: 	Unlike	GNU	getopt(),	after	a	non-option	argument,	all
further	arguments	are	considered	also	non-options.	This	is	similar

http://hg.python.org/cpython/file/3.4/Lib/getopt.py

to	the	way	non-GNU	Unix	systems	work.

longopts,	if	specified,	must	be	a	list	of	strings	with	the	names	of	the
long	 options	 which	 should	 be	 supported.	 The	 leading	 '--'
characters	should	not	be	included	in	the	option	name.	Long	options
which	 require	 an	 argument	 should	 be	 followed	 by	 an	 equal	 sign
('=').	Optional	arguments	are	not	supported.	To	accept	only	long
options,	shortopts	should	be	an	empty	string.	Long	options	on	the
command	line	can	be	recognized	so	long	as	they	provide	a	prefix
of	 the	 option	 name	 that	 matches	 exactly	 one	 of	 the	 accepted
options.	For	example,	if	longopts	is	['foo',	'frob'],	the	option
--fo	 will	 match	 as	 --foo,	 but	 --f	 will	 not	match	 uniquely,	 so
GetoptError	will	be	raised.

The	 return	 value	 consists	 of	 two	 elements:	 the	 first	 is	 a	 list	 of
(option,	 value)	 pairs;	 the	 second	 is	 the	 list	 of	 program
arguments	 left	 after	 the	 option	 list	 was	 stripped	 (this	 is	 a	 trailing
slice	of	args).	Each	option-and-value	pair	 returned	has	 the	option
as	 its	 first	element,	prefixed	with	a	hyphen	 for	short	options	 (e.g.,
'-x')	or	two	hyphens	for	long	options	(e.g.,	'--long-option'),
and	the	option	argument	as	its	second	element,	or	an	empty	string
if	 the	option	has	no	argument.	The	options	occur	 in	 the	 list	 in	 the
same	 order	 in	 which	 they	 were	 found,	 thus	 allowing	 multiple
occurrences.	Long	and	short	options	may	be	mixed.

getopt.gnu_getopt(args,	shortopts,	longopts=[])
This	 function	 works	 like	 getopt(),	 except	 that	 GNU	 style
scanning	mode	is	used	by	default.	This	means	that	option	and	non-
option	 arguments	 may	 be	 intermixed.	 The	 getopt()	 function
stops	 processing	 options	 as	 soon	 as	 a	 non-option	 argument	 is
encountered.

If	 the	 first	 character	 of	 the	 option	 string	 is	 '+',	 or	 if	 the
environment	 variable	 POSIXLY_CORRECT	 is	 set,	 then	 option
processing	 stops	 as	 soon	 as	 a	 non-option	 argument	 is
encountered.

exception	getopt.GetoptError
This	 is	 raised	 when	 an	 unrecognized	 option	 is	 found	 in	 the
argument	 list	 or	 when	 an	 option	 requiring	 an	 argument	 is	 given
none.	 The	 argument	 to	 the	 exception	 is	 a	 string	 indicating	 the
cause	 of	 the	 error.	 For	 long	 options,	 an	 argument	 given	 to	 an
option	which	does	not	require	one	will	also	cause	this	exception	to
be	raised.	The	attributes	msg	and	opt	give	the	error	message	and
related	option;	 if	 there	is	no	specific	option	to	which	the	exception
relates,	opt	is	an	empty	string.

exception	getopt.error
Alias	for	GetoptError;	for	backward	compatibility.

An	example	using	only	Unix	style	options:

>>>	import	getopt

>>>	args	=	'-a	-b	-cfoo	-d	bar	a1	a2'.split()

>>>	args

['-a',	'-b',	'-cfoo',	'-d',	'bar',	'a1',	'a2']

>>>	optlist,	args	=	getopt.getopt(args,	'abc:d:')

>>>	optlist

[('-a',	''),	('-b',	''),	('-c',	'foo'),	('-d',	'bar')]

>>>	args

['a1',	'a2']

Using	long	option	names	is	equally	easy:

>>>	s	=	'--condition=foo	--testing	--output-file	abc.def	-x	a1	a2'

>>>	args	=	s.split()

>>>	args

['--condition=foo',	'--testing',	'--output-file',	'abc.def',	'-x',	'a1',	'a2']

>>>	optlist,	args	=	getopt.getopt(args,	'x',	[

...					'condition=',	'output-file=',	'testing'])

>>>	optlist

[('--condition',	'foo'),	('--testing',	''),	('--output-file',	'abc.def'),	('-x',	'')]

>>>	args

['a1',	'a2']

In	a	script,	typical	usage	is	something	like	this:

import	getopt,	sys

def	main():

				try:

								opts,	args	=	getopt.getopt(sys.argv[1:],	"ho:v"

				except	getopt.GetoptError	as	err:

								#	print	help	information	and	exit:

								print(err)	#	will	print	something	like	"option	-a	not	recognized"

								usage()

								sys.exit(2)

				output	=	None

				verbose	=	False

				for	o,	a	in	opts:

								if	o	==	"-v":

												verbose	=	True

								elif	o	in	("-h",	"--help"):

												usage()

												sys.exit()

								elif	o	in	("-o",	"--output"):

												output	=	a

								else:

												assert	False,	"unhandled	option"

				#	...

if	__name__	==	"__main__":

				main()

Note	 that	 an	 equivalent	 command	 line	 interface	 could	 be	 produced
with	less	code	and	more	informative	help	and	error	messages	by	using
the	argparse	module:

import	argparse

if	__name__	==	'__main__':

				parser	=	argparse.ArgumentParser()

				parser.add_argument('-o',	'--output')

				parser.add_argument('-v',	dest='verbose',	action

				args	=	parser.parse_args()

				#	...	do	something	with	args.output	...

				#	...	do	something	with	args.verbose	..

See	also:

Module	argparse
Alternative	command	line	option	and	argument	parsing	library.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

Important

This	page	 contains	 the	API
reference	 information.	 For
tutorial	 information	 and
discussion	 of	 more
advanced	topics,	see

Basic	Tutorial
Advanced	Tutorial
Logging	Cookbook

16.7.	logging	—	Logging	facility
for	Python
Source	code:	Lib/logging/__init__.py

This	 module	 defines	 functions	 and
classes	 which	 implement	 a	 flexible
event	 logging	 system	 for	 applications
and	libraries.

The	key	benefit	of	having	the	 logging
API	 provided	 by	 a	 standard	 library
module	is	that	all	Python	modules	can
participate	 in	 logging,	 so	 your
application	 log	 can	 include	 your	 own	 messages	 integrated	 with
messages	from	third-party	modules.

The	 module	 provides	 a	 lot	 of	 functionality	 and	 flexibility.	 If	 you	 are
unfamiliar	with	logging,	the	best	way	to	get	to	grips	with	it	is	to	see	the
tutorials	(see	the	links	on	the	right).

The	basic	classes	defined	by	the	module,	together	with	their	functions,
are	listed	below.

Loggers	expose	the	interface	that	application	code	directly	uses.
Handlers	 send	 the	 log	 records	 (created	 by	 loggers)	 to	 the
appropriate	destination.
Filters	 provide	 a	 finer	 grained	 facility	 for	 determining	 which	 log
records	to	output.
Formatters	specify	the	layout	of	log	records	in	the	final	output.

http://hg.python.org/cpython/file/3.4/Lib/logging/__init__.py

16.7.1.	Logger	Objects

Loggers	have	the	following	attributes	and	methods.	Note	that	Loggers
are	 never	 instantiated	 directly,	 but	 always	 through	 the	 module-level
function	 logging.getLogger(name).	 Multiple	 calls	 to
getLogger()	with	 the	same	name	will	always	return	a	reference	 to
the	same	Logger	object.

The	 name	 is	 potentially	 a	 period-separated	 hierarchical	 value,	 like
foo.bar.baz	 (though	 it	could	also	be	 just	plain	foo,	 for	example).
Loggers	 that	 are	 further	 down	 in	 the	 hierarchical	 list	 are	 children	 of
loggers	higher	up	in	the	list.	For	example,	given	a	logger	with	a	name
of	 foo,	 loggers	 with	 names	 of	 foo.bar,	 foo.bar.baz,	 and
foo.bam	are	all	descendants	of	foo.	The	 logger	name	hierarchy	 is
analogous	 to	 the	Python	package	hierarchy,	and	 identical	 to	 it	 if	 you
organise	your	loggers	on	a	per-module	basis	using	the	recommended
construction	logging.getLogger(__name__).	That’s	because	in	a
module,	 __name__	 is	 the	 module’s	 name	 in	 the	 Python	 package
namespace.

class	logging.Logger

Logger.propagate

If	this	evaluates	to	true,	events	logged	to	this	logger	will	be	passed
to	the	handlers	of	higher	level	(ancestor)	loggers,	in	addition	to	any
handlers	attached	 to	 this	 logger.	Messages	are	passed	directly	 to
the	ancestor	 loggers’	handlers	 -	neither	 the	 level	nor	 filters	of	 the
ancestor	loggers	in	question	are	considered.

If	 this	evaluates	to	false,	 logging	messages	are	not	passed	to	the
handlers	of	ancestor	loggers.

The	constructor	sets	this	attribute	to	True.

Note: 	If	you	attach	a	handler	to	a	logger	and	one	or	more	of	its
ancestors,	it	may	emit	the	same	record	multiple	times.	In	general,
you	should	not	need	to	attach	a	handler	to	more	than	one	logger
-	if	you	just	attach	it	to	the	appropriate	logger	which	is	highest	in
the	 logger	 hierarchy,	 then	 it	 will	 see	 all	 events	 logged	 by	 all
descendant	 loggers,	 provided	 that	 their	 propagate	 setting	 is	 left
set	to	True.	A	common	scenario	is	to	attach	handlers	only	to	the
root	logger,	and	to	let	propagation	take	care	of	the	rest.

Logger.setLevel(lvl)
Sets	 the	 threshold	 for	 this	 logger	 to	 lvl.	 Logging	messages	which
are	less	severe	than	 lvl	will	be	ignored.	When	a	logger	is	created,
the	 level	 is	 set	 to	 NOTSET	 (which	 causes	 all	 messages	 to	 be
processed	when	the	logger	 is	the	root	 logger,	or	delegation	to	the
parent	 when	 the	 logger	 is	 a	 non-root	 logger).	 Note	 that	 the	 root
logger	is	created	with	level	WARNING.

The	 term	 ‘delegation	 to	 the	 parent’	means	 that	 if	 a	 logger	 has	 a
level	 of	 NOTSET,	 its	 chain	 of	 ancestor	 loggers	 is	 traversed	 until
either	an	ancestor	with	a	level	other	than	NOTSET	is	found,	or	the
root	is	reached.

If	an	ancestor	 is	 found	with	a	 level	other	 than	NOTSET,	 then	 that
ancestor’s	level	is	treated	as	the	effective	level	of	the	logger	where
the	ancestor	search	began,	and	is	used	to	determine	how	a	logging
event	is	handled.

If	 the	 root	 is	 reached,	 and	 it	 has	 a	 level	 of	 NOTSET,	 then	 all
messages	 will	 be	 processed.	 Otherwise,	 the	 root’s	 level	 will	 be
used	as	the	effective	level.

See	Logging	Levels	for	a	list	of	levels.

Changed	 in	 version	 3.2:	The	 lvl	 parameter	 now	 accepts	 a	 string
representation	of	 the	 level	such	as	 ‘INFO’	as	an	alternative	 to	 the
integer	constants	such	as	INFO.

Logger.isEnabledFor(lvl)
Indicates	 if	 a	message	of	 severity	 lvl	would	be	processed	by	 this
logger.	 This	 method	 checks	 first	 the	 module-level	 level	 set	 by
logging.disable(lvl)	and	then	the	logger’s	effective	level	as
determined	by	getEffectiveLevel().

Logger.getEffectiveLevel()
Indicates	 the	 effective	 level	 for	 this	 logger.	 If	 a	 value	 other	 than
NOTSET	 has	 been	 set	 using	 setLevel(),	 it	 is	 returned.
Otherwise,	the	hierarchy	is	traversed	towards	the	root	until	a	value
other	than	NOTSET	is	found,	and	that	value	is	returned.

Logger.getChild(suffix)
Returns	 a	 logger	 which	 is	 a	 descendant	 to	 this	 logger,	 as
determined	 by	 the	 suffix.	 Thus,
logging.getLogger('abc').getChild('def.ghi')	 would
return	 the	 same	 logger	 as	 would	 be	 returned	 by
logging.getLogger('abc.def.ghi').	This	is	a	convenience
method,	 useful	 when	 the	 parent	 logger	 is	 named	 using	 e.g.
__name__	rather	than	a	literal	string.

New	in	version	3.2.

Logger.debug(msg,	*args,	**kwargs)
Logs	a	message	with	 level	DEBUG	on	 this	 logger.	The	msg	 is	 the
message	format	string,	and	the	args	are	the	arguments	which	are

merged	 into	msg	 using	 the	 string	 formatting	 operator.	 (Note	 that
this	means	that	you	can	use	keywords	in	the	format	string,	together
with	a	single	dictionary	argument.)

There	are	three	keyword	arguments	in	kwargs	which	are	inspected:
exc_info	which,	 if	 it	 does	not	evaluate	as	 false,	causes	exception
information	 to	 be	 added	 to	 the	 logging	message.	 If	 an	 exception
tuple	(in	the	format	returned	by	sys.exc_info())	 is	provided,	 it
is	 used;	 otherwise,	 sys.exc_info()	 is	 called	 to	 get	 the
exception	information.

The	 second	 optional	 keyword	 argument	 is	 stack_info,	 which
defaults	to	False.	If	true,	stack	information	is	added	to	the	logging
message,	including	the	actual	logging	call.	Note	that	this	is	not	the
same	 stack	 information	 as	 that	 displayed	 through	 specifying
exc_info:	The	former	 is	stack	frames	from	the	bottom	of	the	stack
up	 to	 the	 logging	 call	 in	 the	 current	 thread,	whereas	 the	 latter	 is
information	 about	 stack	 frames	 which	 have	 been	 unwound,
following	an	exception,	while	searching	for	exception	handlers.

You	can	specify	stack_info	 independently	of	exc_info,	 e.g.	 to	 just
show	how	you	got	 to	a	certain	point	 in	your	code,	even	when	no
exceptions	were	 raised.	 The	 stack	 frames	are	 printed	 following	 a
header	line	which	says:

Stack	(most	recent	call	last):

This	 mimics	 the	 Traceback	 (most	 recent	 call	 last):
which	is	used	when	displaying	exception	frames.

The	third	keyword	argument	is	extra	which	can	be	used	to	pass	a
dictionary	which	is	used	to	populate	the	__dict__	of	the	LogRecord
created	 for	 the	 logging	 event	 with	 user-defined	 attributes.	 These

custom	attributes	can	then	be	used	as	you	like.	For	example,	they
could	be	incorporated	into	logged	messages.	For	example:

FORMAT	=	'%(asctime)-15s	%(clientip)s	%(user)-8s	%(message)s'

logging.basicConfig(format=FORMAT)

d	=	{'clientip':	'192.168.0.1',	'user':	'fbloggs'}

logger	=	logging.getLogger('tcpserver')

logger.warning('Protocol	problem:	%s',	'connection	reset'

would	print	something	like

2006-02-08	22:20:02,165	192.168.0.1	fbloggs		Protocol

The	keys	in	the	dictionary	passed	in	extra	should	not	clash	with	the
keys	 used	 by	 the	 logging	 system.	 (See	 the	 Formatter

documentation	for	more	information	on	which	keys	are	used	by	the
logging	system.)

If	 you	 choose	 to	 use	 these	 attributes	 in	 logged	 messages,	 you
need	 to	 exercise	 some	care.	 In	 the	above	example,	 for	 instance,
the	 Formatter	 has	 been	 set	 up	 with	 a	 format	 string	 which
expects	 ‘clientip’	 and	 ‘user’	 in	 the	 attribute	 dictionary	 of	 the
LogRecord.	 If	 these	are	missing,	 the	message	will	 not	 be	 logged
because	 a	 string	 formatting	 exception	will	 occur.	 So	 in	 this	 case,
you	always	need	to	pass	the	extra	dictionary	with	these	keys.

While	 this	 might	 be	 annoying,	 this	 feature	 is	 intended	 for	 use	 in
specialized	 circumstances,	 such	 as	multi-threaded	 servers	where
the	 same	 code	 executes	 in	 many	 contexts,	 and	 interesting
conditions	 which	 arise	 are	 dependent	 on	 this	 context	 (such	 as
remote	 client	 IP	 address	 and	 authenticated	 user	 name,	 in	 the
above	example).	In	such	circumstances,	it	is	likely	that	specialized

Formatters	would	be	used	with	particular	Handlers.

New	in	version	3.2:	The	stack_info	parameter	was	added.

Logger.info(msg,	*args,	**kwargs)
Logs	a	message	with	level	INFO	on	this	logger.	The	arguments	are
interpreted	as	for	debug().

Logger.warning(msg,	*args,	**kwargs)
Logs	a	message	with	level	WARNING	on	this	logger.	The	arguments
are	interpreted	as	for	debug().

Note: 	There	 is	an	obsolete	method	warn	which	 is	 functionally
identical	to	warning.	As	warn	is	deprecated,	please	do	not	use
it	-	use	warning	instead.

Logger.error(msg,	*args,	**kwargs)
Logs	a	message	with	 level	ERROR	on	 this	 logger.	The	arguments
are	interpreted	as	for	debug().

Logger.critical(msg,	*args,	**kwargs)
Logs	 a	 message	 with	 level	 CRITICAL	 on	 this	 logger.	 The
arguments	are	interpreted	as	for	debug().

Logger.log(lvl,	msg,	*args,	**kwargs)
Logs	 a	 message	 with	 integer	 level	 lvl	 on	 this	 logger.	 The	 other
arguments	are	interpreted	as	for	debug().

Logger.exception(msg,	*args)
Logs	a	message	with	 level	ERROR	on	 this	 logger.	The	arguments
are	 interpreted	 as	 for	 debug().	 Exception	 info	 is	 added	 to	 the

logging	 message.	 This	 method	 should	 only	 be	 called	 from	 an
exception	handler.

Logger.addFilter(filt)
Adds	the	specified	filter	filt	to	this	logger.

Logger.removeFilter(filt)
Removes	the	specified	filter	filt	from	this	logger.

Logger.filter(record)
Applies	this	logger’s	filters	to	the	record	and	returns	a	true	value	if
the	record	is	to	be	processed.	The	filters	are	consulted	in	turn,	until
one	 of	 them	 returns	 a	 false	 value.	 If	 none	 of	 them	 return	 a	 false
value,	 the	 record	 will	 be	 processed	 (passed	 to	 handlers).	 If	 one
returns	a	false	value,	no	further	processing	of	the	record	occurs.

Logger.addHandler(hdlr)
Adds	the	specified	handler	hdlr	to	this	logger.

Logger.removeHandler(hdlr)
Removes	the	specified	handler	hdlr	from	this	logger.

Logger.findCaller(stack_info=False)
Finds	 the	 caller’s	 source	 filename	 and	 line	 number.	 Returns	 the
filename,	line	number,	function	name	and	stack	information	as	a	4-
element	 tuple.	 The	 stack	 information	 is	 returned	 as	None	 unless
stack_info	is	True.

Logger.handle(record)
Handles	a	record	by	passing	it	to	all	handlers	associated	with	this
logger	and	its	ancestors	(until	a	false	value	of	propagate	is	found).
This	method	is	used	for	unpickled	records	received	from	a	socket,
as	 well	 as	 those	 created	 locally.	 Logger-level	 filtering	 is	 applied

using	filter().

Logger.makeRecord(name,	lvl,	fn,	lno,	msg,	args,	exc_info,
func=None,	extra=None,	sinfo=None)

This	is	a	factory	method	which	can	be	overridden	in	subclasses	to
create	specialized	LogRecord	instances.

Logger.hasHandlers()
Checks	 to	 see	 if	 this	 logger	has	any	handlers	 configured.	This	 is
done	by	 looking	 for	 handlers	 in	 this	 logger	 and	 its	 parents	 in	 the
logger	 hierarchy.	 Returns	 True	 if	 a	 handler	 was	 found,	 else
False.	The	method	stops	searching	up	the	hierarchy	whenever	a
logger	with	the	‘propagate’	attribute	set	to	False	is	found	-	that	will
be	the	last	logger	which	is	checked	for	the	existence	of	handlers.

New	in	version	3.2.

16.7.2.	Logging	Levels

The	numeric	values	of	 logging	 levels	are	given	 in	 the	 following	 table.
These	are	primarily	of	 interest	 if	 you	want	 to	define	your	own	 levels,
and	 need	 them	 to	 have	 specific	 values	 relative	 to	 the	 predefined
levels.	If	you	define	a	level	with	the	same	numeric	value,	it	overwrites
the	predefined	value;	the	predefined	name	is	lost.

Level Numeric
value

CRITICAL 50

ERROR 40

WARNING 30

INFO 20

DEBUG 10

NOTSET 0

16.7.3.	Handler	Objects

Handlers	 have	 the	 following	 attributes	 and	 methods.	 Note	 that
Handler	 is	 never	 instantiated	directly;	 this	 class	acts	 as	 a	 base	 for
more	 useful	 subclasses.	 However,	 the	 __init__()	 method	 in
subclasses	needs	to	call	Handler.__init__().

Handler.__init__(level=NOTSET)
Initializes	the	Handler	instance	by	setting	its	level,	setting	the	list
of	 filters	 to	 the	 empty	 list	 and	 creating	 a	 lock	 (using
createLock())	for	serializing	access	to	an	I/O	mechanism.

Handler.createLock()
Initializes	a	 thread	 lock	which	 can	be	used	 to	 serialize	 access	 to
underlying	I/O	functionality	which	may	not	be	threadsafe.

Handler.acquire()
Acquires	the	thread	lock	created	with	createLock().

Handler.release()
Releases	the	thread	lock	acquired	with	acquire().

Handler.setLevel(lvl)
Sets	the	threshold	for	this	handler	to	 lvl.	Logging	messages	which
are	less	severe	than	lvl	will	be	ignored.	When	a	handler	is	created,
the	 level	 is	 set	 to	 NOTSET	 (which	 causes	 all	 messages	 to	 be
processed).

See	Logging	Levels	for	a	list	of	levels.

Changed	 in	 version	 3.2:	The	 lvl	 parameter	 now	 accepts	 a	 string
representation	of	 the	 level	such	as	 ‘INFO’	as	an	alternative	 to	 the

integer	constants	such	as	INFO.

Handler.setFormatter(form)
Sets	the	Formatter	for	this	handler	to	form.

Handler.addFilter(filt)
Adds	the	specified	filter	filt	to	this	handler.

Handler.removeFilter(filt)
Removes	the	specified	filter	filt	from	this	handler.

Handler.filter(record)
Applies	this	handler’s	filters	to	the	record	and	returns	a	true	value	if
the	record	is	to	be	processed.	The	filters	are	consulted	in	turn,	until
one	 of	 them	 returns	 a	 false	 value.	 If	 none	 of	 them	 return	 a	 false
value,	 the	 record	will	be	emitted.	 If	one	 returns	a	 false	value,	 the
handler	will	not	emit	the	record.

Handler.flush()
Ensure	 all	 logging	 output	 has	 been	 flushed.	 This	 version	 does
nothing	and	is	intended	to	be	implemented	by	subclasses.

Handler.close()
Tidy	up	any	resources	used	by	 the	handler.	This	version	does	no
output	 but	 removes	 the	 handler	 from	 an	 internal	 list	 of	 handlers
which	 is	 closed	when	 shutdown()	 is	 called.	 Subclasses	 should
ensure	that	this	gets	called	from	overridden	close()	methods.

Handler.handle(record)
Conditionally	 emits	 the	 specified	 logging	 record,	 depending	 on
filters	which	may	have	been	added	to	the	handler.	Wraps	the	actual
emission	 of	 the	 record	 with	 acquisition/release	 of	 the	 I/O	 thread

lock.

Handler.handleError(record)
This	method	should	be	called	from	handlers	when	an	exception	is
encountered	 during	 an	 emit()	 call.	 If	 the	module-level	 attribute
raiseExceptions	 is	 False,	 exceptions	 get	 silently	 ignored.
This	is	what	is	mostly	wanted	for	a	logging	system	-	most	users	will
not	 care	 about	 errors	 in	 the	 logging	 system,	 they	 are	 more
interested	 in	 application	 errors.	 You	 could,	 however,	 replace	 this
with	a	custom	handler	if	you	wish.	The	specified	record	is	the	one
which	 was	 being	 processed	 when	 the	 exception	 occurred.	 (The
default	 value	 of	 raiseExceptions	 is	 True,	 as	 that	 is	 more
useful	during	development).

Handler.format(record)
Do	formatting	for	a	record	-	if	a	formatter	is	set,	use	it.	Otherwise,
use	the	default	formatter	for	the	module.

Handler.emit(record)
Do	whatever	 it	 takes	 to	 actually	 log	 the	 specified	 logging	 record.
This	version	 is	 intended	to	be	 implemented	by	subclasses	and	so
raises	a	NotImplementedError.

For	a	list	of	handlers	included	as	standard,	see	logging.handlers.

16.7.4.	Formatter	Objects

Formatter	objects	have	 the	 following	attributes	and	methods.	They
are	 responsible	 for	 converting	 a	 LogRecord	 to	 (usually)	 a	 string
which	can	be	interpreted	by	either	a	human	or	an	external	system.	The
base	Formatter	allows	a	formatting	string	to	be	specified.	If	none	is
supplied,	the	default	value	of	'%(message)s'	is	used.

A	Formatter	can	be	initialized	with	a	format	string	which	makes	use	of
knowledge	 of	 the	 LogRecord	 attributes	 -	 such	 as	 the	 default	 value
mentioned	above	making	use	of	the	fact	that	the	user’s	message	and
arguments	are	pre-formatted	 into	a	LogRecord‘s	message	 attribute.
This	 format	 string	 contains	 standard	 Python	 %-style	 mapping	 keys.
See	 section	 printf-style	 String	 Formatting	 for	 more	 information	 on
string	formatting.

The	useful	mapping	keys	in	a	LogRecord	are	given	in	the	section	on
LogRecord	attributes.

class	logging.Formatter(fmt=None,	datefmt=None,	style='%')
Returns	a	new	instance	of	the	Formatter	class.	The	 instance	 is
initialized	with	a	format	string	for	the	message	as	a	whole,	as	well
as	a	format	string	for	the	date/time	portion	of	a	message.	If	no	fmt
is	 specified,	 '%(message)s'	 is	 used.	 If	 no	datefmt	 is	 specified,
the	ISO8601	date	format	is	used.

The	style	 parameter	 can	 be	 one	 of	 ‘%’,	 ‘{‘	 or	 ‘$’	 and	 determines
how	the	format	string	will	be	merged	with	its	data:	using	one	of	%-
formatting,	 str.format()	 or	 string.Template.	 See	 Using
particular	 formatting	 styles	 throughout	 your	 application	 for	 more
information	on	using	{-	and	$-formatting	for	log	messages.

Changed	in	version	3.2:	The	style	parameter	was	added.

format(record)
The	 record’s	 attribute	 dictionary	 is	 used	 as	 the	 operand	 to	 a
string	 formatting	operation.	Returns	the	resulting	string.	Before
formatting	 the	 dictionary,	 a	 couple	 of	 preparatory	 steps	 are
carried	 out.	 The	message	 attribute	 of	 the	 record	 is	 computed
using	 msg	 %	 args.	 If	 the	 formatting	 string	 contains
'(asctime)',	 formatTime()	 is	 called	 to	 format	 the	 event
time.	 If	 there	 is	 exception	 information,	 it	 is	 formatted	 using
formatException()	 and	 appended	 to	 the	 message.	 Note
that	 the	 formatted	 exception	 information	 is	 cached	 in	 attribute
exc_text.	This	 is	useful	because	the	exception	 information	can
be	pickled	and	sent	across	the	wire,	but	you	should	be	careful	if
you	 have	 more	 than	 one	 Formatter	 subclass	 which
customizes	the	formatting	of	exception	information.	In	this	case,
you	 will	 have	 to	 clear	 the	 cached	 value	 after	 a	 formatter	 has
done	 its	 formatting,	 so	 that	 the	 next	 formatter	 to	 handle	 the
event	doesn’t	use	the	cached	value	but	recalculates	it	afresh.

If	 stack	 information	 is	 available,	 it’s	 appended	 after	 the
exception	information,	using	formatStack()	to	transform	it	if
necessary.

formatTime(record,	datefmt=None)
This	method	 should	 be	 called	 from	 format()	 by	 a	 formatter
which	wants	to	make	use	of	a	formatted	time.	This	method	can
be	 overridden	 in	 formatters	 to	 provide	 for	 any	 specific
requirement,	but	 the	basic	behavior	 is	as	 follows:	 if	datefmt	 (a
string)	is	specified,	it	is	used	with	time.strftime()	to	format
the	creation	time	of	the	record.	Otherwise,	the	ISO8601	format
is	used.	The	resulting	string	is	returned.

This	 function	 uses	 a	 user-configurable	 function	 to	 convert	 the
creation	 time	 to	 a	 tuple.	 By	 default,	 time.localtime()	 is
used;	to	change	this	for	a	particular	formatter	 instance,	set	the
converter	attribute	 to	a	 function	with	 the	same	signature	as
time.localtime()	or	time.gmtime().	To	change	it	for	all
formatters,	 for	 example	 if	 you	 want	 all	 logging	 times	 to	 be
shown	in	GMT,	set	the	converter	attribute	in	the	Formatter
class.

Changed	in	version	3.3:	Previously,	the	default	ISO	8601	format
was	 hard-coded	 as	 in	 this	 example:	 2010-09-06

22:38:15,292	where	 the	 part	 before	 the	 comma	 is	 handled
by	a	strptime	format	string	('%Y-%m-%d	%H:%M:%S'),	and	the
part	after	 the	comma	 is	a	millisecond	value.	Because	strptime
does	 not	 have	 a	 format	 placeholder	 for	 milliseconds,	 the
millisecond	 value	 is	 appended	 using	 another	 format	 string,
'%s,%03d'	 –	 and	 both	 of	 these	 format	 strings	 have	 been
hardcoded	into	this	method.	With	the	change,	these	strings	are
defined	as	class-level	attributes	which	can	be	overridden	at	the
instance	 level	 when	 desired.	 The	 names	 of	 the	 attributes	 are
default_time_format	 (for	 the	 strptime	 format	 string)	 and
default_msec_format	 (for	 appending	 the	 millisecond
value).

formatException(exc_info)
Formats	 the	 specified	 exception	 information	 (a	 standard
exception	tuple	as	returned	by	sys.exc_info())	as	a	string.
This	 default	 implementation	 just	 uses
traceback.print_exception().	 The	 resulting	 string	 is
returned.

formatStack(stack_info)
Formats	the	specified	stack	information	(a	string	as	returned	by
traceback.print_stack(),	 but	 with	 the	 last	 newline
removed)	 as	 a	 string.	 This	 default	 implementation	 just	 returns
the	input	value.

16.7.5.	Filter	Objects

Filters	 can	 be	 used	 by	 Handlers	 and	 Loggers	 for	 more
sophisticated	filtering	than	 is	provided	by	 levels.	The	base	filter	class
only	 allows	 events	 which	 are	 below	 a	 certain	 point	 in	 the	 logger
hierarchy.	 For	 example,	 a	 filter	 initialized	 with	 ‘A.B’	 will	 allow	 events
logged	by	loggers	‘A.B’,	 ‘A.B.C’,	 ‘A.B.C.D’,	‘A.B.D’	etc.	but	not	‘A.BB’,
‘B.A.B’	etc.	If	initialized	with	the	empty	string,	all	events	are	passed.

class	logging.Filter(name='')
Returns	an	 instance	of	 the	Filter	class.	 If	name	 is	 specified,	 it
names	 a	 logger	 which,	 together	 with	 its	 children,	 will	 have	 its
events	allowed	through	the	filter.	If	name	is	the	empty	string,	allows
every	event.

filter(record)
Is	 the	 specified	 record	 to	 be	 logged?	 Returns	 zero	 for	 no,
nonzero	 for	 yes.	 If	 deemed	 appropriate,	 the	 record	 may	 be
modified	in-place	by	this	method.

Note	that	filters	attached	to	handlers	are	consulted	before	an	event	is
emitted	 by	 the	 handler,	 whereas	 filters	 attached	 to	 loggers	 are
consulted	 whenever	 an	 event	 is	 logged	 (using	 debug(),	 info(),
etc.),	 before	 sending	 an	 event	 to	 handlers.	 This	 means	 that	 events
which	have	been	generated	by	descendant	loggers	will	not	be	filtered
by	 a	 logger’s	 filter	 setting,	 unless	 the	 filter	 has	 also	 been	 applied	 to
those	descendant	loggers.

You	 don’t	 actually	 need	 to	 subclass	 Filter:	 you	 can	 pass	 any
instance	which	has	a	filter	method	with	the	same	semantics.

Changed	in	version	3.2:	You	don’t	need	to	create	specialized	Filter

classes,	or	use	other	classes	with	a	filter	method:	you	can	use	a
function	 (or	 other	 callable)	 as	 a	 filter.	 The	 filtering	 logic	will	 check	 to
see	if	the	filter	object	has	a	filter	attribute:	if	it	does,	it’s	assumed	to
be	 a	 Filter	 and	 its	 filter()	 method	 is	 called.	 Otherwise,	 it’s
assumed	 to	 be	 a	 callable	 and	 called	 with	 the	 record	 as	 the	 single
parameter.	 The	 returned	 value	 should	 conform	 to	 that	 returned	 by
filter().

Although	 filters	 are	 used	 primarily	 to	 filter	 records	 based	 on	 more
sophisticated	criteria	than	levels,	they	get	to	see	every	record	which	is
processed	 by	 the	 handler	 or	 logger	 they’re	 attached	 to:	 this	 can	 be
useful	 if	you	want	 to	do	 things	 like	counting	how	many	 records	were
processed	 by	 a	 particular	 logger	 or	 handler,	 or	 adding,	 changing	 or
removing	 attributes	 in	 the	 LogRecord	 being	 processed.	 Obviously
changing	the	LogRecord	needs	to	be	done	with	some	care,	but	it	does
allow	the	injection	of	contextual	information	into	logs	(see	Using	Filters
to	impart	contextual	information).

16.7.6.	LogRecord	Objects

LogRecord	instances	are	created	automatically	by	the	Logger	every
time	 something	 is	 logged,	 and	 can	 be	 created	 manually	 via
makeLogRecord()	(for	example,	from	a	pickled	event	received	over
the	wire).

class	logging.LogRecord(name,	level,	pathname,	lineno,	msg,
args,	exc_info,	func=None,	sinfo=None)

Contains	all	the	information	pertinent	to	the	event	being	logged.

The	 primary	 information	 is	 passed	 in	 msg	 and	 args,	 which	 are
combined	using	msg	%	args	 to	create	 the	message	 field	of	 the
record.

Parameters:

name	 –	 The	 name	 of	 the	 logger	 used	 to	 log
the	event	represented	by	this	LogRecord.	Note
that	 this	 name	 will	 always	 have	 this	 value,
even	 though	 it	 may	 be	 emitted	 by	 a	 handler
attached	to	a	different	(ancestor)	logger.
level	–	The	numeric	level	of	the	logging	event
(one	 of	 DEBUG,	 INFO	 etc.)	 Note	 that	 this	 is
converted	 to	 two	 attributes	 of	 the	 LogRecord:
levelno	 for	 the	 numeric	 value	 and
levelname	for	the	corresponding	level	name.
pathname	 –	The	 full	 pathname	of	 the	 source
file	where	the	logging	call	was	made.
lineno	 –	 The	 line	 number	 in	 the	 source	 file
where	the	logging	call	was	made.
msg	 –	 The	 event	 description	 message,
possibly	 a	 format	 string	 with	 placeholders	 for
variable	data.

args	 –	 Variable	 data	 to	 merge	 into	 the	msg
argument	to	obtain	the	event	description.
exc_info	–	An	exception	tuple	with	the	current
exception	information,	or	None	 if	no	exception
information	is	available.
func	 –	 The	 name	 of	 the	 function	 or	 method
from	which	the	logging	call	was	invoked.
sinfo	 –	 A	 text	 string	 representing	 stack
information	 from	 the	 base	 of	 the	 stack	 in	 the
current	thread,	up	to	the	logging	call.

getMessage()
Returns	 the	 message	 for	 this	 LogRecord	 instance	 after
merging	any	user-supplied	arguments	with	the	message.	If	 the
user-supplied	 message	 argument	 to	 the	 logging	 call	 is	 not	 a
string,	str()	is	called	on	it	to	convert	it	to	a	string.	This	allows
use	 of	 user-defined	 classes	 as	 messages,	 whose	 __str__
method	can	return	the	actual	format	string	to	be	used.

Changed	 in	version	3.2:	The	creation	of	a	LogRecord	 has	 been
made	more	 configurable	 by	 providing	 a	 factory	 which	 is	 used	 to
create	 the	 record.	 The	 factory	 can	 be	 set	 using
getLogRecordFactory()	 and	 setLogRecordFactory()

(see	this	for	the	factory’s	signature).

This	 functionality	 can	 be	 used	 to	 inject	 your	 own	 values	 into	 a
LogRecord	at	creation	time.	You	can	use	the	following	pattern:

old_factory	=	logging.getLogRecordFactory()

def	record_factory(*args,	**kwargs):

				record	=	old_factory(*args,	**kwargs)

				record.custom_attribute	=	0xdecafbad

				return	record

logging.setLogRecordFactory(record_factory)

With	this	pattern,	multiple	factories	could	be	chained,	and	as	 long
as	 they	 don’t	 overwrite	 each	 other’s	 attributes	 or	 unintentionally
overwrite	 the	standard	attributes	 listed	above,	 there	should	be	no
surprises.

16.7.7.	LogRecord	attributes

The	LogRecord	has	a	number	of	attributes,	most	of	which	are	derived
from	 the	parameters	 to	 the	constructor.	 (Note	 that	 the	names	do	not
always	 correspond	 exactly	 between	 the	 LogRecord	 constructor
parameters	 and	 the	 LogRecord	 attributes.)	 These	 attributes	 can	 be
used	 to	 merge	 data	 from	 the	 record	 into	 the	 format	 string.	 The
following	 table	 lists	 (in	 alphabetical	 order)	 the	 attribute	 names,	 their
meanings	 and	 the	 corresponding	 placeholder	 in	 a	 %-style	 format
string.

If	 you	 are	 using	 {}-formatting	 (str.format()),	 you	 can	 use
{attrname}	as	the	placeholder	in	the	format	string.	If	you	are	using
$-formatting	 (string.Template),	 use	 the	 form	 ${attrname}.	 In
both	 cases,	 of	 course,	 replace	 attrname	 with	 the	 actual	 attribute
name	you	want	to	use.

In	the	case	of	{}-formatting,	you	can	specify	formatting	flags	by	placing
them	 after	 the	 attribute	 name,	 separated	 from	 it	 with	 a	 colon.	 For
example:	a	placeholder	of	{msecs:03d}	would	 format	a	millisecond
value	of	4	as	004.	Refer	to	the	str.format()	documentation	for	full
details	on	the	options	available	to	you.

Attribute
name Format Description

args You	shouldn’t	need	to
format	this	yourself.

The	tuple	of	arguments
merged	into	msg	to
produce	message.

Human-readable	time
when	the	LogRecord
was	created.	By	default
this	is	of	the	form	‘2003-

asctime %(asctime)s 07-08	16:49:45,896’	(the
numbers	after	the
comma	are	millisecond
portion	of	the	time).

created %(created)f

Time	when	the
LogRecord	was
created	(as	returned	by
time.time()).

exc_info You	shouldn’t	need	to
format	this	yourself.

Exception	tuple	(à	la
sys.exc_info)	or,	if
no	exception	has
occurred,	None.

filename %(filename)s
Filename	portion	of
pathname.

funcName %(funcName)s

Name	of	function
containing	the	logging
call.

levelname %(levelname)s

Text	logging	level	for	the
message	('DEBUG',
'INFO',	'WARNING',
'ERROR',
'CRITICAL').

levelno %(levelno)s

Numeric	logging	level
for	the	message
(DEBUG,	INFO,
WARNING,	ERROR,
CRITICAL).

lineno %(lineno)d

Source	line	number
where	the	logging	call
was	issued	(if	available).

module %(module)s
Module	(name	portion	of
filename).

Millisecond	portion	of

msecs %(msecs)d
the	time	when	the
LogRecord	was
created.

message %(message)s

The	logged	message,
computed	as	msg	%
args.	This	is	set	when
Formatter.format()

is	invoked.

msg You	shouldn’t	need	to
format	this	yourself.

The	format	string
passed	in	the	original
logging	call.	Merged
with	args	to	produce
message,	or	an
arbitrary	object	(see
Using	arbitrary	objects
as	messages).

name %(name)s
Name	of	the	logger
used	to	log	the	call.

pathname %(pathname)s

Full	pathname	of	the
source	file	where	the
logging	call	was	issued
(if	available).

process %(process)d Process	ID	(if	available).

processName %(processName)s
Process	name	(if
available).

relativeCreated
%

(relativeCreated)d

Time	in	milliseconds
when	the	LogRecord
was	created,	relative	to
the	time	the	logging
module	was	loaded.

Stack	frame	information
(where	available)	from
the	bottom	of	the	stack
in	the	current	thread,	up

stack_info You	shouldn’t	need	to
format	this	yourself.

to	and	including	the
stack	frame	of	the
logging	call	which
resulted	in	the	creation
of	this	record.

thread %(thread)d Thread	ID	(if	available).

threadName %(threadName)s
Thread	name	(if
available).

Changed	in	version	3.1:	processName	was	added.

16.7.8.	LoggerAdapter	Objects

LoggerAdapter	 instances	are	used	to	conveniently	pass	contextual
information	into	logging	calls.	For	a	usage	example,	see	the	section	on
adding	contextual	information	to	your	logging	output.

class	logging.LoggerAdapter(logger,	extra)
Returns	 an	 instance	 of	 LoggerAdapter	 initialized	 with	 an
underlying	Logger	instance	and	a	dict-like	object.

process(msg,	kwargs)
Modifies	 the	message	and/or	keyword	arguments	passed	 to	a
logging	 call	 in	 order	 to	 insert	 contextual	 information.	 This
implementation	 takes	 the	 object	 passed	 as	 extra	 to	 the
constructor	and	adds	 it	 to	kwargs	using	key	 ‘extra’.	The	return
value	is	a	(msg,	kwargs)	tuple	which	has	the	(possibly	modified)
versions	of	the	arguments	passed	in.

In	 addition	 to	 the	 above,	 LoggerAdapter	 supports	 the	 following
methods	 of	 Logger:	 debug(),	 info(),	 warning(),	 error(),
exception(),	 critical(),	 log(),	 isEnabledFor(),
getEffectiveLevel(),	 setLevel()	 and	 hasHandlers().
These	 methods	 have	 the	 same	 signatures	 as	 their	 counterparts	 in
Logger,	so	you	can	use	the	two	types	of	instances	interchangeably.

Changed	 in	 version	 3.2:	 The	 isEnabledFor(),
getEffectiveLevel(),	 setLevel()	 and	 hasHandlers()

methods	were	added	to	LoggerAdapter.	These	methods	delegate	to
the	underlying	logger.

16.7.9.	Thread	Safety

The	logging	module	is	 intended	to	be	thread-safe	without	any	special
work	needing	 to	be	done	by	 its	clients.	 It	achieves	 this	 though	using
threading	 locks;	 there	 is	one	 lock	 to	serialize	access	 to	 the	module’s
shared	data,	and	each	handler	also	creates	a	lock	to	serialize	access
to	its	underlying	I/O.

If	 you	 are	 implementing	 asynchronous	 signal	 handlers	 using	 the
signal	module,	you	may	not	be	able	to	use	logging	from	within	such
handlers.	 This	 is	 because	 lock	 implementations	 in	 the	 threading
module	are	not	always	re-entrant,	and	so	cannot	be	invoked	from	such
signal	handlers.

16.7.10.	Module-Level	Functions

In	 addition	 to	 the	 classes	 described	 above,	 there	 are	 a	 number	 of
module-	level	functions.

logging.getLogger(name=None)
Return	a	logger	with	the	specified	name	or,	if	name	is	None,	return
a	 logger	which	 is	 the	root	 logger	of	 the	hierarchy.	 If	specified,	 the
name	is	typically	a	dot-separated	hierarchical	name	like	‘a’,	‘a.b’	or
‘a.b.c.d’.	Choice	of	these	names	is	entirely	up	to	the	developer	who
is	using	logging.

All	calls	to	this	function	with	a	given	name	return	the	same	logger
instance.	 This	 means	 that	 logger	 instances	 never	 need	 to	 be
passed	between	different	parts	of	an	application.

logging.getLoggerClass()
Return	either	the	standard	Logger	class,	or	the	last	class	passed
to	setLoggerClass().	This	function	may	be	called	from	within	a
new	class	definition,	to	ensure	that	installing	a	customized	Logger
class	will	not	undo	customizations	already	applied	by	other	code.
For	example:

class	MyLogger(logging.getLoggerClass()):

				#	...	override	behaviour	here

logging.getLogRecordFactory()
Return	a	callable	which	is	used	to	create	a	LogRecord.

New	 in	 version	 3.2:	This	 function	 has	 been	 provided,	 along	 with
setLogRecordFactory(),	 to	 allow	 developers	 more	 control

over	 how	 the	 LogRecord	 representing	 a	 logging	 event	 is
constructed.

See	 setLogRecordFactory()	 for	 more	 information	 about	 the
how	the	factory	is	called.

logging.debug(msg,	*args,	**kwargs)
Logs	a	message	with	 level	DEBUG	on	 the	root	 logger.	The	msg	 is
the	message	format	string,	and	the	args	are	the	arguments	which
are	 merged	 into	msg	 using	 the	 string	 formatting	 operator.	 (Note
that	 this	 means	 that	 you	 can	 use	 keywords	 in	 the	 format	 string,
together	with	a	single	dictionary	argument.)

There	are	three	keyword	arguments	in	kwargs	which	are	inspected:
exc_info	which,	 if	 it	 does	not	evaluate	as	 false,	causes	exception
information	 to	 be	 added	 to	 the	 logging	message.	 If	 an	 exception
tuple	(in	the	format	returned	by	sys.exc_info())	 is	provided,	 it
is	 used;	 otherwise,	 sys.exc_info()	 is	 called	 to	 get	 the
exception	information.

The	 second	 optional	 keyword	 argument	 is	 stack_info,	 which
defaults	to	False.	If	true,	stack	information	is	added	to	the	logging
message,	including	the	actual	logging	call.	Note	that	this	is	not	the
same	 stack	 information	 as	 that	 displayed	 through	 specifying
exc_info:	The	former	 is	stack	frames	from	the	bottom	of	the	stack
up	 to	 the	 logging	 call	 in	 the	 current	 thread,	whereas	 the	 latter	 is
information	 about	 stack	 frames	 which	 have	 been	 unwound,
following	an	exception,	while	searching	for	exception	handlers.

You	can	specify	stack_info	 independently	of	exc_info,	 e.g.	 to	 just
show	how	you	got	 to	a	certain	point	 in	your	code,	even	when	no
exceptions	were	 raised.	 The	 stack	 frames	are	 printed	 following	 a
header	line	which	says:

Stack	(most	recent	call	last):

This	 mimics	 the	 Traceback	 (most	 recent	 call	 last):
which	is	used	when	displaying	exception	frames.

The	third	optional	keyword	argument	is	extra	which	can	be	used	to
pass	 a	 dictionary	 which	 is	 used	 to	 populate	 the	 __dict__	 of	 the
LogRecord	 created	 for	 the	 logging	 event	 with	 user-defined
attributes.	These	custom	attributes	can	 then	be	used	as	you	 like.
For	 example,	 they	 could	 be	 incorporated	 into	 logged	 messages.
For	example:

FORMAT	=	'%(asctime)-15s	%(clientip)s	%(user)-8s	%(message)s'

logging.basicConfig(format=FORMAT)

d	=	{'clientip':	'192.168.0.1',	'user':	'fbloggs'}

logging.warning('Protocol	problem:	%s',	'connection	reset'

would	print	something	like:

2006-02-08	22:20:02,165	192.168.0.1	fbloggs		Protocol

The	keys	in	the	dictionary	passed	in	extra	should	not	clash	with	the
keys	 used	 by	 the	 logging	 system.	 (See	 the	 Formatter

documentation	for	more	information	on	which	keys	are	used	by	the
logging	system.)

If	 you	 choose	 to	 use	 these	 attributes	 in	 logged	 messages,	 you
need	 to	 exercise	 some	care.	 In	 the	above	example,	 for	 instance,
the	 Formatter	 has	 been	 set	 up	 with	 a	 format	 string	 which
expects	 ‘clientip’	 and	 ‘user’	 in	 the	 attribute	 dictionary	 of	 the
LogRecord.	 If	 these	are	missing,	 the	message	will	 not	 be	 logged

because	 a	 string	 formatting	 exception	will	 occur.	 So	 in	 this	 case,
you	always	need	to	pass	the	extra	dictionary	with	these	keys.

While	 this	 might	 be	 annoying,	 this	 feature	 is	 intended	 for	 use	 in
specialized	 circumstances,	 such	 as	multi-threaded	 servers	where
the	 same	 code	 executes	 in	 many	 contexts,	 and	 interesting
conditions	 which	 arise	 are	 dependent	 on	 this	 context	 (such	 as
remote	 client	 IP	 address	 and	 authenticated	 user	 name,	 in	 the
above	example).	In	such	circumstances,	it	is	likely	that	specialized
Formatters	would	be	used	with	particular	Handlers.

New	in	version	3.2:	The	stack_info	parameter	was	added.

logging.info(msg,	*args,	**kwargs)
Logs	 a	 message	 with	 level	 INFO	 on	 the	 root	 logger.	 The
arguments	are	interpreted	as	for	debug().

logging.warning(msg,	*args,	**kwargs)
Logs	 a	 message	 with	 level	 WARNING	 on	 the	 root	 logger.	 The
arguments	are	interpreted	as	for	debug().

Note: 	There	 is	an	obsolete	 function	warn	which	 is	 functionally
identical	to	warning.	As	warn	is	deprecated,	please	do	not	use
it	-	use	warning	instead.

logging.error(msg,	*args,	**kwargs)
Logs	 a	 message	 with	 level	 ERROR	 on	 the	 root	 logger.	 The
arguments	are	interpreted	as	for	debug().

logging.critical(msg,	*args,	**kwargs)
Logs	 a	 message	 with	 level	 CRITICAL	 on	 the	 root	 logger.	 The
arguments	are	interpreted	as	for	debug().

logging.exception(msg,	*args)
Logs	 a	 message	 with	 level	 ERROR	 on	 the	 root	 logger.	 The
arguments	are	interpreted	as	for	debug().	Exception	info	is	added
to	 the	 logging	message.	This	 function	 should	only	be	 called	 from
an	exception	handler.

logging.log(level,	msg,	*args,	**kwargs)
Logs	 a	 message	 with	 level	 level	 on	 the	 root	 logger.	 The	 other
arguments	are	interpreted	as	for	debug().

Note: 	 The	 above	 module-level	 convenience	 functions,	 which
delegate	to	the	root	logger,	call	basicConfig()	to	ensure	that
at	least	one	handler	is	available.	Because	of	this,	they	should	not
be	used	 in	 threads,	 in	versions	of	Python	earlier	 than	2.7.1	and
3.2,	 unless	 at	 least	 one	 handler	 has	 been	 added	 to	 the	 root
logger	 before	 the	 threads	 are	 started.	 In	 earlier	 versions	 of
Python,	due	to	a	thread	safety	shortcoming	in	basicConfig(),
this	can	(under	rare	circumstances)	lead	to	handlers	being	added
multiple	times	to	the	root	logger,	which	can	in	turn	lead	to	multiple
messages	for	the	same	event.

logging.disable(lvl)
Provides	 an	 overriding	 level	 lvl	 for	 all	 loggers	 which	 takes
precedence	over	 the	 logger’s	own	 level.	When	the	need	arises	 to
temporarily	 throttle	 logging	 output	 down	 across	 the	 whole
application,	 this	 function	 can	 be	 useful.	 Its	 effect	 is	 to	 disable	 all
logging	calls	of	 severity	 lvl	 and	below,	 so	 that	 if	 you	call	 it	with	a
value	 of	 INFO,	 then	 all	 INFO	 and	 DEBUG	 events	 would	 be
discarded,	whereas	those	of	severity	WARNING	and	above	would
be	 processed	 according	 to	 the	 logger’s	 effective	 level.	 If
logging.disable(logging.NOTSET)	 is	 called,	 it	 effectively

removes	this	overriding	level,	so	that	logging	output	again	depends
on	the	effective	levels	of	individual	loggers.

logging.addLevelName(lvl,	levelName)
Associates	 level	 lvl	 with	 text	 levelName	 in	 an	 internal	 dictionary,
which	is	used	to	map	numeric	levels	to	a	textual	representation,	for
example	 when	 a	 Formatter	 formats	 a	 message.	 This	 function
can	also	be	used	 to	define	your	own	 levels.	The	only	 constraints
are	 that	 all	 levels	 used	 must	 be	 registered	 using	 this	 function,
levels	 should	 be	 positive	 integers	 and	 they	 should	 increase	 in
increasing	order	of	severity.

Note: 	If	you	are	thinking	of	defining	your	own	levels,	please	see
the	section	on	Custom	Levels.

logging.getLevelName(lvl)
Returns	the	textual	representation	of	logging	level	lvl.	If	the	level	is
one	of	the	predefined	levels	CRITICAL,	ERROR,	WARNING,	INFO
or	 DEBUG	 then	 you	 get	 the	 corresponding	 string.	 If	 you	 have
associated	 levels	 with	 names	 using	 addLevelName()	 then	 the
name	you	have	associated	with	 lvl	 is	 returned.	 If	a	numeric	value
corresponding	 to	 one	 of	 the	 defined	 levels	 is	 passed	 in,	 the
corresponding	 string	 representation	 is	 returned.	 Otherwise,	 the
string	‘Level	%s’	%	lvl	is	returned.

logging.makeLogRecord(attrdict)
Creates	and	returns	a	new	LogRecord	 instance	whose	attributes
are	defined	by	attrdict.	This	 function	 is	useful	 for	 taking	a	pickled
LogRecord	 attribute	 dictionary,	 sent	 over	 a	 socket,	 and
reconstituting	it	as	a	LogRecord	instance	at	the	receiving	end.

logging.basicConfig(**kwargs)

Does	 basic	 configuration	 for	 the	 logging	 system	 by	 creating	 a
StreamHandler	with	a	default	Formatter	 and	adding	 it	 to	 the
root	 logger.	 The	 functions	 debug(),	 info(),	 warning(),
error()	 and	 critical()	 will	 call	 basicConfig()

automatically	if	no	handlers	are	defined	for	the	root	logger.

This	 function	does	nothing	 if	 the	root	 logger	already	has	handlers
configured	for	it.

Note: 	 This	 function	 should	 be	 called	 from	 the	 main	 thread
before	 other	 threads	 are	 started.	 In	 versions	 of	 Python	 prior	 to
2.7.1	and	3.2,	if	this	function	is	called	from	multiple	threads,	it	 is
possible	 (in	 rare	circumstances)	 that	a	handler	will	 be	added	 to
the	 root	 logger	 more	 than	 once,	 leading	 to	 unexpected	 results
such	as	messages	being	duplicated	in	the	log.

The	following	keyword	arguments	are	supported.

Format Description

filename

Specifies	that	a	FileHandler	be	created,	using
the	specified	filename,	rather	than	a
StreamHandler.

filemode

Specifies	the	mode	to	open	the	file,	if	filename	is
specified	(if	filemode	is	unspecified,	it	defaults	to
‘a’).

format Use	the	specified	format	string	for	the	handler.

datefmt Use	the	specified	date/time	format.

style

If	format	is	specified,	use	this	style	for	the
format	string.	One	of	‘%’,	‘{‘	or	‘$’	for	%-
formatting,	str.format()	or
string.Template	respectively,	and	defaulting
to	‘%’	if	not	specified.

level Set	the	root	logger	level	to	the	specified	level.

stream

Use	the	specified	stream	to	initialize	the
StreamHandler.	Note	that	this	argument	is
incompatible	with	‘filename’	-	if	both	are	present,
a	ValueError	is	raised.

handlers

If	specified,	this	should	be	an	iterable	of	already
created	handlers	to	add	to	the	root	logger.	Any
handlers	which	don’t	already	have	a	formatter
set	will	be	assigned	the	default	formatter	created
in	this	function.	Note	that	this	argument	is
incompatible	with	‘filename’	or	‘stream’	-	if	both
are	present,	a	ValueError	is	raised.

Changed	in	version	3.2:	The	style	argument	was	added.

Changed	 in	 version	 3.3:	 The	 handlers	 argument	 was	 added.
Additional	 checks	 were	 added	 to	 catch	 situations	 where
incompatible	 arguments	 are	 specified	 (e.g.	 handlers	 together
with	stream	or	filename,	or	stream	together	with	filename).

logging.shutdown()
Informs	 the	 logging	 system	 to	 perform	 an	 orderly	 shutdown	 by
flushing	 and	 closing	 all	 handlers.	 This	 should	 be	 called	 at
application	exit	and	no	further	use	of	the	logging	system	should	be
made	after	this	call.

logging.setLoggerClass(klass)
Tells	the	logging	system	to	use	the	class	klass	when	instantiating	a
logger.	 The	 class	 should	 define	 __init__()	 such	 that	 only	 a
name	 argument	 is	 required,	 and	 the	 __init__()	 should	 call
Logger.__init__().	This	function	is	typically	called	before	any
loggers	are	instantiated	by	applications	which	need	to	use	custom
logger	behavior.

logging.setLogRecordFactory(factory)
Set	a	callable	which	is	used	to	create	a	LogRecord.

Parameters: factory	–	The	factory	callable	to	be	used	to
instantiate	a	log	record.

New	 in	 version	 3.2:	This	 function	 has	 been	 provided,	 along	 with
getLogRecordFactory(),	 to	 allow	 developers	 more	 control
over	 how	 the	 LogRecord	 representing	 a	 logging	 event	 is
constructed.

The	factory	has	the	following	signature:

factory(name,	 level,	 fn,	 lno,	 msg,	 args,

exc_info,	func=None,	sinfo=None,	**kwargs)

name: The	logger	name.

level: The	logging	level	(numeric).

fn: The	full	pathname	of	the	file	where	the	logging
call	was	made.

lno: The	line	number	in	the	file	where	the	logging
call	was	made.

msg: The	logging	message.

args: The	arguments	for	the	logging	message.

exc_info: An	exception	tuple,	or	None.

func: The	name	of	the	function	or	method	which
invoked	the	logging	call.

sinfo:
A	stack	traceback	such	as	is	provided	by
traceback.print_stack(),	showing	the
call	hierarchy.

kwargs: Additional	keyword	arguments.

16.7.11.	Module-Level	Attributes

logging.lastResort

A	“handler	of	last	resort”	is	available	through	this	attribute.	This	is	a
StreamHandler	writing	to	sys.stderr	with	a	level	of	WARNING,
and	is	used	to	handle	logging	events	in	the	absence	of	any	logging
configuration.	 The	 end	 result	 is	 to	 just	 print	 the	 message	 to
sys.stderr.	This	replaces	the	earlier	error	message	saying	that
“no	handlers	could	be	found	for	logger	XYZ”.	If	you	need	the	earlier
behaviour	for	some	reason,	lastResort	can	be	set	to	None.

New	in	version	3.2.

16.7.12.	Integration	with	the	warnings
module

The	 captureWarnings()	 function	 can	 be	 used	 to	 integrate
logging	with	the	warnings	module.

logging.captureWarnings(capture)
This	function	is	used	to	turn	the	capture	of	warnings	by	logging	on
and	off.

If	capture	is	True,	warnings	issued	by	the	warnings	module	will
be	redirected	to	the	logging	system.	Specifically,	a	warning	will	be
formatted	using	warnings.formatwarning()	and	the	resulting
string	 logged	to	a	 logger	named	'py.warnings'	with	a	severity
of	WARNING.

If	 capture	 is	 False,	 the	 redirection	 of	 warnings	 to	 the	 logging
system	will	 stop,	 and	 warnings	 will	 be	 redirected	 to	 their	 original
destinations	 (i.e.	 those	 in	 effect	 before
captureWarnings(True)	was	called).

See	also:

Module	logging.config
Configuration	API	for	the	logging	module.

Module	logging.handlers
Useful	handlers	included	with	the	logging	module.

PEP	282	-	A	Logging	System
The	 proposal	 which	 described	 this	 feature	 for	 inclusion	 in	 the
Python	standard	library.

http://www.python.org/dev/peps/pep-0282

Original	Python	logging	package
This	is	the	original	source	for	the	logging	package.	The	version
of	 the	 package	 available	 from	 this	 site	 is	 suitable	 for	 use	 with
Python	1.5.2,	2.1.x	and	2.2.x,	which	do	not	include	the	logging
package	in	the	standard	library.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.red-dove.com/python_logging.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

Important

This	 page	 contains	 only
reference	 information.	 For
tutorials,	please	see

Basic	Tutorial
Advanced	Tutorial
Logging	Cookbook

16.8.	logging.config	—
Logging	configuration
Source	code:	Lib/logging/config.py

This	 section	 describes	 the	 API	 for
configuring	the	logging	module.

http://hg.python.org/cpython/file/3.4/Lib/logging/config.py

16.8.1.	Configuration	functions

The	following	functions	configure	the	logging	module.	They	are	located
in	 the	 logging.config	 module.	 Their	 use	 is	 optional	 —	 you	 can
configure	the	logging	module	using	these	functions	or	by	making	calls
to	 the	 main	 API	 (defined	 in	 logging	 itself)	 and	 defining	 handlers
which	are	declared	either	in	logging	or	logging.handlers.

logging.config.dictConfig(config)

Takes	the	logging	configuration	from	a	dictionary.	The	contents
of	 this	 dictionary	 are	 described	 in	 Configuration	 dictionary
schema	below.

If	an	error	is	encountered	during	configuration,	this	function	will
raise	 a	 ValueError,	 TypeError,	 AttributeError	 or
ImportError	 with	 a	 suitably	 descriptive	 message.	 The
following	is	a	(possibly	incomplete)	list	of	conditions	which	will
raise	an	error:

A	 level	 which	 is	 not	 a	 string	 or	 which	 is	 a	 string	 not
corresponding	to	an	actual	logging	level.
A	propagate	value	which	is	not	a	boolean.
An	id	which	does	not	have	a	corresponding	destination.
A	non-existent	handler	id	found	during	an	incremental	call.
An	invalid	logger	name.
Inability	to	resolve	to	an	internal	or	external	object.

Parsing	 is	 performed	 by	 the	 DictConfigurator	 class,
whose	 constructor	 is	 passed	 the	 dictionary	 used	 for
configuration,	 and	 has	 a	 configure()	 method.	 The
logging.config	 module	 has	 a	 callable	 attribute

dictConfigClass	 which	 is	 initially	 set	 to
DictConfigurator.	 You	 can	 replace	 the	 value	 of
dictConfigClass	 with	 a	 suitable	 implementation	 of	 your
own.

dictConfig()	 calls	 dictConfigClass	 passing	 the
specified	dictionary,	and	then	calls	the	configure()	method
on	the	returned	object	to	put	the	configuration	into	effect:

def	dictConfig(config):

				dictConfigClass(config).configure()

For	 example,	 a	 subclass	 of	 DictConfigurator	 could	 call
DictConfigurator.__init__()	 in	 its	own	__init__(),
then	 set	 up	 custom	 prefixes	 which	 would	 be	 usable	 in	 the
subsequent	 configure()	 call.	 dictConfigClass	 would
be	 bound	 to	 this	 new	 subclass,	 and	 then	 dictConfig()
could	be	called	exactly	as	in	the	default,	uncustomized	state.

New	in	version	3.2.

logging.config.fileConfig(fname,	defaults=None,
disable_existing_loggers=True)

Reads	the	logging	configuration	from	a	configparser-format	file.
The	 format	of	 the	 file	should	be	as	described	 in	Configuration	 file
format.	 This	 function	 can	 be	 called	 several	 times	 from	 an
application,	allowing	an	end	user	to	select	from	various	pre-canned
configurations	 (if	 the	developer	 provides	a	mechanism	 to	present
the	choices	and	load	the	chosen	configuration).

fname	–	A	filename,	or	a	file-like	object,	or	an
instance	 derived	 from	 RawConfigParser.	 If

Parameters:

a	 RawConfigParser-derived	 instance	 is
passed,	 it	 is	 used	 as	 is.	 Otherwise,	 a
Configparser	 is	 instantiated,	 and	 the
configuration	read	by	it	from	the	object	passed
in	fname.	 If	 that	has	a	readline()	method,
it	 is	assumed	 to	be	a	 file-like	object	and	 read
using	read_file();	otherwise,	it	is	assumed
to	be	a	filename	and	passed	to	read().
defaults	 –	 Defaults	 to	 be	 passed	 to	 the
ConfigParser	 can	 be	 specified	 in	 this
argument.
disable_existing_loggers	 –	 If	 specified	 as
False,	 loggers	 which	 exist	 when	 this	 call	 is
made	 are	 left	 alone.	 The	 default	 is	 True
because	 this	 enables	 old	 behaviour	 in	 a
backward-	 compatible	 way.	 This	 behaviour	 is
to	disable	any	existing	 loggers	unless	 they	or
their	 ancestors	 are	 explicitly	 named	 in	 the
logging	configuration.

Changed	 in	 version	 3.4:	 An	 instance	 of	 a	 subclass	 of
RawConfigParser	 is	now	accepted	as	a	value	 for	fname.	 This
facilitates:

Use	of	 a	 configuration	 file	where	 logging	configuration	 is	 just
part	of	the	overall	application	configuration.
Use	of	a	configuration	 read	 from	a	 file,	and	 then	modified	by
the	using	application	(e.g.	based	on	command-line	parameters
or	 other	 aspects	 of	 the	 runtime	 environment)	 before	 being
passed	to	fileConfig.

logging.config.listen(port=DEFAULT_LOGGING_CONFIG_PORT
verify=None)

Starts	up	a	socket	server	on	the	specified	port,	and	listens	for	new

configurations.	 If	 no	 port	 is	 specified,	 the	 module’s	 default
DEFAULT_LOGGING_CONFIG_PORT	 is	 used.	 Logging
configurations	 will	 be	 sent	 as	 a	 file	 suitable	 for	 processing	 by
fileConfig().	 Returns	 a	 Thread	 instance	 on	 which	 you	 can
call	start()	to	start	the	server,	and	which	you	can	join()	when
appropriate.	To	stop	the	server,	call	stopListening().

The	 verify	 argument,	 if	 specified,	 should	 be	 a	 callable	 which
should	 verify	 whether	 bytes	 received	 across	 the	 socket	 are	 valid
and	should	be	processed.	This	could	be	done	by	encrypting	and/or
signing	 what	 is	 sent	 across	 the	 socket,	 such	 that	 the	 verify
callable	 can	 perform	 signature	 verification	 and/or	 decryption.	 The
verify	 callable	 is	 called	 with	 a	 single	 argument	 -	 the	 bytes
received	 across	 the	 socket	 -	 and	 should	 return	 the	 bytes	 to	 be
processed,	or	None	to	indicate	that	the	bytes	should	be	discarded.
The	returned	bytes	could	be	the	same	as	the	passed	in	bytes	(e.g.
when	 only	 verification	 is	 done),	 or	 they	 could	 be	 completely
different	(perhaps	if	decryption	were	performed).

To	send	a	configuration	to	the	socket,	read	in	the	configuration	file
and	send	 it	 to	 the	socket	as	a	string	of	bytes	preceded	by	a	four-
byte	 length	 string	 packed	 in	 binary	 using	 struct.pack('>L',
n).

Note: 	Because	portions	of	the	configuration	are	passed	through
eval(),	 use	 of	 this	 function	 may	 open	 its	 users	 to	 a	 security
risk.	While	 the	 function	 only	 binds	 to	 a	 socket	 on	 localhost,
and	so	does	not	accept	connections	from	remote	machines,	there
are	 scenarios	 where	 untrusted	 code	 could	 be	 run	 under	 the
account	of	the	process	which	calls	listen().	Specifically,	if	the
process	calling	listen()	 runs	on	a	multi-user	machine	where

users	 cannot	 trust	 each	 other,	 then	 a	 malicious	 user	 could
arrange	 to	 run	 essentially	 arbitrary	 code	 in	 a	 victim	 user’s
process,	simply	by	connecting	 to	 the	victim’s	listen()	 socket
and	 sending	 a	 configuration	 which	 runs	 whatever	 code	 the
attacker	wants	 to	have	executed	 in	 the	victim’s	process.	This	 is
especially	easy	to	do	if	the	default	port	is	used,	but	not	hard	even
if	a	different	port	is	used).	To	avoid	the	risk	of	this	happening,	use
the	 verify	 argument	 to	 listen()	 to	 prevent	 unrecognised
configurations	from	being	applied.

Changed	in	version	3.4.:	The	verify	argument	was	added.

logging.config.stopListening()
Stops	 the	 listening	 server	 which	 was	 created	 with	 a	 call	 to
listen().	 This	 is	 typically	 called	 before	 calling	 join()	 on	 the
return	value	from	listen().

16.8.2.	Configuration	dictionary	schema

Describing	a	 logging	configuration	 requires	 listing	 the	various	objects
to	 create	 and	 the	 connections	 between	 them;	 for	 example,	 you	may
create	a	handler	named	‘console’	and	then	say	that	the	logger	named
‘startup’	will	send	its	messages	to	the	‘console’	handler.	These	objects
aren’t	limited	to	those	provided	by	the	logging	module	because	you
might	 write	 your	 own	 formatter	 or	 handler	 class.	 The	 parameters	 to
these	 classes	 may	 also	 need	 to	 include	 external	 objects	 such	 as
sys.stderr.	 The	 syntax	 for	 describing	 these	 objects	 and
connections	is	defined	in	Object	connections	below.

16.8.2.1.	Dictionary	Schema	Details

The	dictionary	passed	 to	dictConfig()	must	 contain	 the	 following
keys:

version	 -	 to	 be	 set	 to	 an	 integer	 value	 representing	 the	 schema
version.	The	only	valid	value	at	present	 is	1,	but	having	 this	key
allows	 the	 schema	 to	 evolve	 while	 still	 preserving	 backwards
compatibility.

All	 other	 keys	 are	 optional,	 but	 if	 present	 they	will	 be	 interpreted	 as
described	 below.	 In	 all	 cases	 below	 where	 a	 ‘configuring	 dict’	 is
mentioned,	 it	 will	 be	 checked	 for	 the	 special	 '()'	 key	 to	 see	 if	 a
custom	 instantiation	 is	 required.	 If	 so,	 the	 mechanism	 described	 in
User-defined	objects	 below	 is	used	 to	 create	an	 instance;	otherwise,
the	context	is	used	to	determine	what	to	instantiate.

formatters	 -	 the	corresponding	value	will	be	a	dict	 in	which	each
key	 is	 a	 formatter	 id	 and	each	 value	 is	 a	dict	 describing	how	 to

configure	the	corresponding	Formatter	instance.

The	configuring	dict	 is	searched	for	keys	format	and	datefmt
(with	 defaults	 of	 None)	 and	 these	 are	 used	 to	 construct	 a
Formatter	instance.

filters	-	the	corresponding	value	will	be	a	dict	in	which	each	key	is
a	filter	id	and	each	value	is	a	dict	describing	how	to	configure	the
corresponding	Filter	instance.

The	 configuring	dict	 is	 searched	 for	 the	 key	 name	 (defaulting	 to
the	 empty	 string)	 and	 this	 is	 used	 to	 construct	 a
logging.Filter	instance.

handlers	-	the	corresponding	value	will	be	a	dict	in	which	each	key
is	 a	 handler	 id	 and	 each	 value	 is	 a	 dict	 describing	 how	 to
configure	the	corresponding	Handler	instance.

The	configuring	dict	is	searched	for	the	following	keys:

class	 (mandatory).	 This	 is	 the	 fully	 qualified	 name	 of	 the
handler	class.
level	(optional).	The	level	of	the	handler.
formatter	 (optional).	 The	 id	 of	 the	 formatter	 for	 this
handler.
filters	(optional).	A	list	of	ids	of	the	filters	for	this	handler.

All	other	 keys	are	passed	 through	as	 keyword	arguments	 to	 the
handler’s	constructor.	For	example,	given	the	snippet:

handlers:

		console:

				class	:	logging.StreamHandler

				formatter:	brief

				level			:	INFO

				filters:	[allow_foo]

				stream		:	ext://sys.stdout

		file:

				class	:	logging.handlers.RotatingFileHandler

				formatter:	precise

				filename:	logconfig.log

				maxBytes:	1024

				backupCount:	3

the	 handler	 with	 id	 console	 is	 instantiated	 as	 a
logging.StreamHandler,	 using	 sys.stdout	 as	 the
underlying	stream.	The	handler	with	 id	file	 is	 instantiated	as	a
logging.handlers.RotatingFileHandler	 with	 the
keyword	 arguments	 filename='logconfig.log',

maxBytes=1024,	backupCount=3.

loggers	-	the	corresponding	value	will	be	a	dict	in	which	each	key
is	 a	 logger	 name	 and	 each	 value	 is	 a	 dict	 describing	 how	 to
configure	the	corresponding	Logger	instance.

The	configuring	dict	is	searched	for	the	following	keys:

level	(optional).	The	level	of	the	logger.
propagate	(optional).	The	propagation	setting	of	the	logger.
filters	(optional).	A	list	of	ids	of	the	filters	for	this	logger.
handlers	 (optional).	 A	 list	 of	 ids	 of	 the	 handlers	 for	 this
logger.

The	 specified	 loggers	 will	 be	 configured	 according	 to	 the	 level,
propagation,	filters	and	handlers	specified.

root	-	this	will	be	the	configuration	for	the	root	logger.	Processing
of	 the	 configuration	 will	 be	 as	 for	 any	 logger,	 except	 that	 the

propagate	setting	will	not	be	applicable.

incremental	 -	 whether	 the	 configuration	 is	 to	 be	 interpreted	 as
incremental	 to	 the	 existing	 configuration.	 This	 value	 defaults	 to
False,	which	means	that	the	specified	configuration	replaces	the
existing	 configuration	 with	 the	 same	 semantics	 as	 used	 by	 the
existing	fileConfig()	API.

If	 the	specified	value	 is	True,	 the	configuration	 is	processed	as
described	in	the	section	on	Incremental	Configuration.

disable_existing_loggers	-	whether	any	existing	loggers	are	to	be
disabled.	This	setting	mirrors	the	parameter	of	the	same	name	in
fileConfig().	If	absent,	this	parameter	defaults	to	True.	This
value	is	ignored	if	incremental	is	True.

16.8.2.2.	Incremental	Configuration

It	is	difficult	to	provide	complete	flexibility	for	incremental	configuration.
For	 example,	 because	 objects	 such	 as	 filters	 and	 formatters	 are
anonymous,	once	a	configuration	is	set	up,	it	is	not	possible	to	refer	to
such	anonymous	objects	when	augmenting	a	configuration.

Furthermore,	 there	 is	not	a	compelling	case	for	arbitrarily	altering	the
object	graph	of	loggers,	handlers,	filters,	formatters	at	run-time,	once	a
configuration	 is	set	up;	 the	verbosity	of	 loggers	and	handlers	can	be
controlled	 just	 by	 setting	 levels	 (and,	 in	 the	 case	 of	 loggers,
propagation	flags).	Changing	the	object	graph	arbitrarily	in	a	safe	way
is	problematic	 in	a	multi-threaded	environment;	while	not	 impossible,
the	benefits	are	not	worth	the	complexity	it	adds	to	the	implementation.

Thus,	when	 the	incremental	 key	of	a	configuration	dict	 is	present

and	is	True,	the	system	will	completely	ignore	any	formatters	and
filters	 entries,	 and	 process	 only	 the	 level	 settings	 in	 the
handlers	 entries,	 and	 the	 level	 and	 propagate	 settings	 in	 the
loggers	and	root	entries.

Using	 a	 value	 in	 the	 configuration	 dict	 lets	 configurations	 to	 be	 sent
over	 the	wire	 as	 pickled	 dicts	 to	 a	 socket	 listener.	 Thus,	 the	 logging
verbosity	of	a	long-running	application	can	be	altered	over	time	with	no
need	to	stop	and	restart	the	application.

16.8.2.3.	Object	connections

The	 schema	 describes	 a	 set	 of	 logging	 objects	 -	 loggers,	 handlers,
formatters,	 filters	 -	 which	 are	 connected	 to	 each	 other	 in	 an	 object
graph.	Thus,	the	schema	needs	to	represent	connections	between	the
objects.	 For	 example,	 say	 that,	 once	 configured,	 a	 particular	 logger
has	 attached	 to	 it	 a	 particular	 handler.	 For	 the	 purposes	 of	 this
discussion,	we	can	say	that	the	logger	represents	the	source,	and	the
handler	the	destination,	of	a	connection	between	the	two.	Of	course	in
the	 configured	 objects	 this	 is	 represented	 by	 the	 logger	 holding	 a
reference	to	the	handler.	In	the	configuration	dict,	this	is	done	by	giving
each	 destination	 object	 an	 id	 which	 identifies	 it	 unambiguously,	 and
then	using	the	id	in	the	source	object’s	configuration	to	indicate	that	a
connection	exists	between	the	source	and	the	destination	object	with
that	id.

So,	for	example,	consider	the	following	YAML	snippet:

formatters:

		brief:

				#	configuration	for	formatter	with	id	'brief'	goes	here

		precise:

				#	configuration	for	formatter	with	id	'precise'	goes	here

handlers:

		h1:	#This	is	an	id

			#	configuration	of	handler	with	id	'h1'	goes	here

			formatter:	brief

		h2:	#This	is	another	id

			#	configuration	of	handler	with	id	'h2'	goes	here

			formatter:	precise

loggers:

		foo.bar.baz:

				#	other	configuration	for	logger	'foo.bar.baz'

				handlers:	[h1,	h2]

(Note:	 YAML	 used	 here	 because	 it’s	 a	 little	more	 readable	 than	 the
equivalent	Python	source	form	for	the	dictionary.)

The	 ids	 for	 loggers	 are	 the	 logger	 names	 which	 would	 be	 used
programmatically	 to	 obtain	 a	 reference	 to	 those	 loggers,	 e.g.
foo.bar.baz.	The	 ids	 for	Formatters	 and	Filters	 can	be	any	 string
value	(such	as	brief,	precise	above)	and	they	are	transient,	in	that
they	 are	 only	 meaningful	 for	 processing	 the	 configuration	 dictionary
and	 used	 to	 determine	 connections	 between	 objects,	 and	 are	 not
persisted	anywhere	when	the	configuration	call	is	complete.

The	above	snippet	indicates	that	logger	named	foo.bar.baz	should
have	two	handlers	attached	to	 it,	which	are	described	by	 the	handler
ids	h1	and	h2.	 The	 formatter	 for	 h1	 is	 that	 described	by	 id	 brief,
and	the	formatter	for	h2	is	that	described	by	id	precise.

16.8.2.4.	User-defined	objects

The	 schema	 supports	 user-defined	 objects	 for	 handlers,	 filters	 and
formatters.	 (Loggers	do	not	 need	 to	have	different	 types	 for	 different
instances,	so	there	is	no	support	in	this	configuration	schema	for	user-

defined	logger	classes.)

Objects	 to	 be	 configured	 are	 described	 by	 dictionaries	 which	 detail
their	configuration.	In	some	places,	the	logging	system	will	be	able	to
infer	from	the	context	how	an	object	 is	to	be	instantiated,	but	when	a
user-defined	object	is	to	be	instantiated,	the	system	will	not	know	how
to	 do	 this.	 In	 order	 to	 provide	 complete	 flexibility	 for	 user-defined
object	 instantiation,	 the	user	 needs	 to	 provide	a	 ‘factory’	 -	 a	 callable
which	 is	 called	with	 a	 configuration	 dictionary	 and	which	 returns	 the
instantiated	object.	This	is	signalled	by	an	absolute	import	path	to	the
factory	 being	made	 available	 under	 the	 special	 key	 '()'.	Here’s	 a
concrete	example:

formatters:

		brief:

				format:	'%(message)s'

		default:

				format:	'%(asctime)s	%(levelname)-8s	%(name)-15s	%(message)s'

				datefmt:	'%Y-%m-%d	%H:%M:%S'

		custom:

						():	my.package.customFormatterFactory

						bar:	baz

						spam:	99.9

						answer:	42

The	 above	 YAML	 snippet	 defines	 three	 formatters.	 The	 first,	 with	 id
brief,	 is	 a	 standard	 logging.Formatter	 instance	 with	 the
specified	 format	 string.	 The	 second,	 with	 id	 default,	 has	 a	 longer
format	and	also	defines	 the	 time	 format	explicitly,	and	will	 result	 in	a
logging.Formatter	initialized	with	those	two	format	strings.	Shown
in	 Python	 source	 form,	 the	 brief	 and	 default	 formatters	 have
configuration	sub-dictionaries:

{

		'format'	:	'%(message)s'

}

and:

{

		'format'	:	'%(asctime)s	%(levelname)-8s	%(name)-15s	%(message)s'

		'datefmt'	:	'%Y-%m-%d	%H:%M:%S'

}

respectively,	and	as	 these	dictionaries	do	not	contain	 the	special	key
'()',	 the	 instantiation	 is	 inferred	 from	 the	 context:	 as	 a	 result,
standard	 logging.Formatter	 instances	 are	 created.	 The
configuration	sub-dictionary	for	the	third	formatter,	with	id	custom,	is:

{

		'()'	:	'my.package.customFormatterFactory',

		'bar'	:	'baz',

		'spam'	:	99.9,

		'answer'	:	42

}

and	 this	 contains	 the	 special	 key	 '()',	 which	 means	 that	 user-
defined	 instantiation	 is	 wanted.	 In	 this	 case,	 the	 specified	 factory
callable	will	be	used.	If	 it	 is	an	actual	callable	it	will	be	used	directly	-
otherwise,	if	you	specify	a	string	(as	in	the	example)	the	actual	callable
will	be	 located	using	normal	 import	mechanisms.	The	callable	will	be
called	with	the	remaining	 items	in	the	configuration	sub-dictionary	as
keyword	 arguments.	 In	 the	 above	 example,	 the	 formatter	 with	 id
custom	will	be	assumed	to	be	returned	by	the	call:

my.package.customFormatterFactory(bar='baz',	spam=99.9

The	key	'()'	has	been	used	as	 the	special	key	because	 it	 is	not	a
valid	keyword	parameter	name,	and	so	will	not	clash	with	the	names	of
the	keyword	arguments	used	 in	 the	call.	The	'()'	also	serves	as	a
mnemonic	that	the	corresponding	value	is	a	callable.

16.8.2.5.	Access	to	external	objects

There	 are	 times	 where	 a	 configuration	 needs	 to	 refer	 to	 objects
external	 to	 the	 configuration,	 for	 example	 sys.stderr.	 If	 the
configuration	 dict	 is	 constructed	 using	 Python	 code,	 this	 is
straightforward,	 but	 a	 problem	 arises	 when	 the	 configuration	 is
provided	 via	a	 text	 file	 (e.g.	 JSON,	YAML).	 In	 a	 text	 file,	 there	 is	 no
standard	 way	 to	 distinguish	 sys.stderr	 from	 the	 literal	 string
'sys.stderr'.	To	facilitate	this	distinction,	the	configuration	system
looks	 for	 certain	 special	 prefixes	 in	 string	 values	 and	 treat	 them
specially.	For	 example,	 if	 the	 literal	 string	 'ext://sys.stderr'	 is
provided	 as	 a	 value	 in	 the	 configuration,	 then	 the	 ext://	 will	 be
stripped	 off	 and	 the	 remainder	 of	 the	 value	 processed	 using	 normal
import	mechanisms.

The	handling	of	such	prefixes	is	done	in	a	way	analogous	to	protocol
handling:	 there	 is	 a	 generic	 mechanism	 to	 look	 for	 prefixes	 which
match	 the	 regular	 expression	 ^(?P<prefix>[a-z]+)://(?

P<suffix>.*)$	whereby,	if	the	prefix	 is	recognised,	the	suffix
is	 processed	 in	 a	 prefix-dependent	 manner	 and	 the	 result	 of	 the
processing	 replaces	 the	 string	 value.	 If	 the	 prefix	 is	 not	 recognised,
then	the	string	value	will	be	left	as-is.

16.8.2.6.	Access	to	internal	objects

As	well	as	external	objects,	there	is	sometimes	also	a	need	to	refer	to
objects	 in	 the	 configuration.	 This	 will	 be	 done	 implicitly	 by	 the
configuration	system	for	 things	 that	 it	knows	about.	For	example,	 the
string	 value	 'DEBUG'	 for	 a	 level	 in	 a	 logger	 or	 handler	 will
automatically	 be	 converted	 to	 the	 value	 logging.DEBUG,	 and	 the
handlers,	filters	 and	 formatter	 entries	will	 take	 an	 object	 id
and	resolve	to	the	appropriate	destination	object.

However,	 a	 more	 generic	 mechanism	 is	 needed	 for	 user-defined
objects	which	 are	 not	 known	 to	 the	 logging	module.	 For	 example,
consider	 logging.handlers.MemoryHandler,	 which	 takes	 a
target	argument	which	is	another	handler	to	delegate	to.	Since	the
system	already	knows	about	 this	class,	 then	 in	 the	configuration,	 the
given	 target	 just	 needs	 to	 be	 the	 object	 id	 of	 the	 relevant	 target
handler,	 and	 the	 system	 will	 resolve	 to	 the	 handler	 from	 the	 id.	 If,
however,	 a	 user	 defines	 a	 my.package.MyHandler	 which	 has	 an
alternate	handler,	the	configuration	system	would	not	know	that	the
alternate	 referred	 to	 a	 handler.	 To	 cater	 for	 this,	 a	 generic
resolution	system	allows	the	user	to	specify:

handlers:

		file:

				#	configuration	of	file	handler	goes	here

		custom:

				():	my.package.MyHandler

				alternate:	cfg://handlers.file

The	 literal	 string	 'cfg://handlers.file'	 will	 be	 resolved	 in	 an
analogous	way	 to	 strings	with	 the	 ext://	 prefix,	 but	 looking	 in	 the
configuration	itself	rather	than	the	import	namespace.	The	mechanism
allows	access	by	dot	or	by	index,	in	a	similar	way	to	that	provided	by

str.format.	Thus,	given	the	following	snippet:

handlers:

		email:

				class:	logging.handlers.SMTPHandler

				mailhost:	localhost

				fromaddr:	my_app@domain.tld

				toaddrs:

						-	support_team@domain.tld

						-	dev_team@domain.tld

				subject:	Houston,	we	have	a	problem.

in	the	configuration,	the	string	'cfg://handlers'	would	resolve	to
the	 dict	 with	 key	 handlers,	 the	 string	 'cfg://handlers.email
would	resolve	to	the	dict	with	key	email	in	the	handlers	dict,	and	so
on.	 The	 string	 'cfg://handlers.email.toaddrs[1]	 would
resolve	 to	 'dev_team.domain.tld'	 and	 the	 string
'cfg://handlers.email.toaddrs[0]'	 would	 resolve	 to	 the
value	 'support_team@domain.tld'.	 The	 subject	 value	 could
be	accessed	using	either	'cfg://handlers.email.subject'	or,
equivalently,	 'cfg://handlers.email[subject]'.	 The	 latter
form	 only	 needs	 to	 be	 used	 if	 the	 key	 contains	 spaces	 or	 non-
alphanumeric	 characters.	 If	 an	 index	 value	 consists	 only	 of	 decimal
digits,	access	will	be	attempted	using	the	corresponding	integer	value,
falling	back	to	the	string	value	if	needed.

Given	a	string	cfg://handlers.myhandler.mykey.123,	 this	will
resolve	 to	 config_dict['handlers']['myhandler']

['mykey']['123'].	 If	 the	 string	 is	 specified	 as
cfg://handlers.myhandler.mykey[123],	 the	 system	 will
attempt	 to	 retrieve	 the	 value	 from	 config_dict['handlers']
['myhandler']['mykey'][123],	 and	 fall	 back	 to

config_dict['handlers']['myhandler']['mykey']['123']

if	that	fails.

16.8.2.7.	Import	resolution	and	custom	importers

Import	resolution,	by	default,	uses	the	builtin	__import__()	function
to	 do	 its	 importing.	 You	 may	 want	 to	 replace	 this	 with	 your	 own
importing	mechanism:	 if	 so,	you	can	 replace	 the	importer	attribute
of	 the	 DictConfigurator	 or	 its	 superclass,	 the
BaseConfigurator	class.	However,	you	need	to	be	careful	because
of	the	way	functions	are	accessed	from	classes	via	descriptors.	If	you
are	using	a	Python	callable	to	do	your	imports,	and	you	want	to	define
it	 at	 class	 level	 rather	 than	 instance	 level,	 you	 need	 to	 wrap	 it	 with
staticmethod().	For	example:

from	importlib	import	import_module

from	logging.config	import	BaseConfigurator

BaseConfigurator.importer	=	staticmethod(import_module

You	 don’t	 need	 to	wrap	with	 staticmethod()	 if	 you’re	 setting	 the
import	callable	on	a	configurator	instance.

16.8.3.	Configuration	file	format

The	configuration	file	format	understood	by	fileConfig()	is	based
on	configparser	functionality.	The	file	must	contain	sections	called
[loggers],	 [handlers]	 and	 [formatters]	 which	 identify	 by
name	the	entities	of	each	type	which	are	defined	in	the	file.	For	each
such	entity,	there	is	a	separate	section	which	identifies	how	that	entity
is	 configured.	 Thus,	 for	 a	 logger	 named	 log01	 in	 the	 [loggers]
section,	 the	 relevant	 configuration	 details	 are	 held	 in	 a	 section
[logger_log01].	 Similarly,	 a	 handler	 called	 hand01	 in	 the
[handlers]	 section	 will	 have	 its	 configuration	 held	 in	 a	 section
called	[handler_hand01],	while	 a	 formatter	 called	 form01	 in	 the
[formatters]	 section	 will	 have	 its	 configuration	 specified	 in	 a
section	called	[formatter_form01].	The	 root	 logger	configuration
must	be	specified	in	a	section	called	[logger_root].

Examples	of	these	sections	in	the	file	are	given	below.

[loggers]

keys=root,log02,log03,log04,log05,log06,log07

[handlers]

keys=hand01,hand02,hand03,hand04,hand05,hand06,hand07

[formatters]

keys=form01,form02,form03,form04,form05,form06,form07

The	root	logger	must	specify	a	level	and	a	list	of	handlers.	An	example
of	a	root	logger	section	is	given	below.

[logger_root]

level=NOTSET

handlers=hand01

The	level	entry	can	be	one	of	DEBUG,	INFO,	WARNING,	ERROR,
CRITICAL	or	NOTSET.	For	 the	root	 logger	only,	NOTSET	means	that
all	 messages	 will	 be	 logged.	 Level	 values	 are	 eval()uated	 in	 the
context	of	the	logging	package’s	namespace.

The	 handlers	 entry	 is	 a	 comma-separated	 list	 of	 handler	 names,
which	must	 appear	 in	 the	 [handlers]	 section.	 These	 names	must
appear	in	the	[handlers]	section	and	have	corresponding	sections
in	the	configuration	file.

For	 loggers	other	 than	the	root	 logger,	some	additional	 information	 is
required.	This	is	illustrated	by	the	following	example.

[logger_parser]

level=DEBUG

handlers=hand01

propagate=1

qualname=compiler.parser

The	 level	 and	 handlers	 entries	 are	 interpreted	 as	 for	 the	 root
logger,	except	that	if	a	non-root	logger’s	level	is	specified	as	NOTSET,
the	system	consults	 loggers	higher	up	the	hierarchy	to	determine	the
effective	 level	 of	 the	 logger.	 The	 propagate	 entry	 is	 set	 to	 1	 to
indicate	 that	 messages	 must	 propagate	 to	 handlers	 higher	 up	 the
logger	hierarchy	 from	 this	 logger,	or	0	 to	 indicate	 that	messages	are
not	propagated	to	handlers	up	the	hierarchy.	The	qualname	entry	is
the	hierarchical	 channel	name	of	 the	 logger,	 that	 is	 to	 say	 the	name
used	by	the	application	to	get	the	logger.

Sections	 which	 specify	 handler	 configuration	 are	 exemplified	 by	 the

following.

[handler_hand01]

class=StreamHandler

level=NOTSET

formatter=form01

args=(sys.stdout,)

The	 class	 entry	 indicates	 the	 handler’s	 class	 (as	 determined	 by
eval()	 in	 the	 logging	 package’s	 namespace).	 The	 level	 is
interpreted	 as	 for	 loggers,	 and	 NOTSET	 is	 taken	 to	 mean	 ‘log
everything’.

The	formatter	entry	indicates	the	key	name	of	the	formatter	for	this
handler.	 If	 blank,	 a	 default	 formatter
(logging._defaultFormatter)	 is	used.	 If	 a	name	 is	 specified,	 it
must	appear	in	the	[formatters]	section	and	have	a	corresponding
section	in	the	configuration	file.

The	args	 entry,	when	 eval()uated	 in	 the	 context	 of	 the	 logging
package’s	namespace,	 is	 the	 list	 of	 arguments	 to	 the	 constructor	 for
the	handler	class.	Refer	to	the	constructors	for	the	relevant	handlers,
or	to	the	examples	below,	to	see	how	typical	entries	are	constructed.

[handler_hand02]

class=FileHandler

level=DEBUG

formatter=form02

args=('python.log',	'w')

[handler_hand03]

class=handlers.SocketHandler

level=INFO

formatter=form03

args=('localhost',	handlers.DEFAULT_TCP_LOGGING_PORT

[handler_hand04]

class=handlers.DatagramHandler

level=WARN

formatter=form04

args=('localhost',	handlers.DEFAULT_UDP_LOGGING_PORT

[handler_hand05]

class=handlers.SysLogHandler

level=ERROR

formatter=form05

args=(('localhost',	handlers.SYSLOG_UDP_PORT),	handlers

[handler_hand06]

class=handlers.NTEventLogHandler

level=CRITICAL

formatter=form06

args=('Python	Application',	'',	'Application')

[handler_hand07]

class=handlers.SMTPHandler

level=WARN

formatter=form07

args=('localhost',	'from@abc',	['user1@abc',	'user2@xyz'

[handler_hand08]

class=handlers.MemoryHandler

level=NOTSET

formatter=form08

target=

args=(10,	ERROR)

[handler_hand09]

class=handlers.HTTPHandler

level=NOTSET

formatter=form09

args=('localhost:9022',	'/log',	'GET')

Sections	 which	 specify	 formatter	 configuration	 are	 typified	 by	 the
following.

[formatter_form01]

format=F1	%(asctime)s	%(levelname)s	%(message)s

datefmt=

class=logging.Formatter

The	format	entry	is	the	overall	format	string,	and	the	datefmt	entry
is	 the	strftime()-compatible	 date/time	 format	 string.	 If	 empty,	 the
package	 substitutes	 ISO8601	 format	 date/times,	 which	 is	 almost
equivalent	 to	 specifying	 the	 date	 format	 string	 '%Y-%m-%d

%H:%M:%S'.	 The	 ISO8601	 format	 also	 specifies	milliseconds,	which
are	 appended	 to	 the	 result	 of	 using	 the	 above	 format	 string,	 with	 a
comma	separator.	An	example	 time	 in	 ISO8601	 format	 is	2003-01-
23	00:29:50,411.

The	class	entry	 is	optional.	 It	 indicates	 the	name	of	 the	 formatter’s
class	 (as	a	dotted	module	and	class	name.)	This	option	 is	useful	 for
instantiating	a	Formatter	subclass.	Subclasses	of	Formatter	 can
present	exception	tracebacks	in	an	expanded	or	condensed	format.

Note: 	Due	to	the	use	of	eval()	as	described	above,	there	are
potential	security	risks	which	result	from	using	the	listen()	to
send	and	receive	configurations	via	sockets.	The	risks	are	limited	to
where	multiple	users	with	no	mutual	trust	run	code	on	the	same
machine;	see	the	listen()	documentation	for	more	information.

See	also:

Module	logging
API	reference	for	the	logging	module.

Module	logging.handlers
Useful	handlers	included	with	the	logging	module.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

Important

This	 page	 contains	 only
reference	 information.	 For
tutorials,	please	see

Basic	Tutorial
Advanced	Tutorial
Logging	Cookbook

16.9.	logging.handlers	—
Logging	handlers
Source	code:	Lib/logging/handlers.py

The	 following	 useful	 handlers	 are
provided	 in	 the	 package.	 Note	 that
three	 of	 the	 handlers
(StreamHandler,	 FileHandler

and	 NullHandler)	 are	 actually
defined	in	the	logging	module	itself,
but	 have	 been	 documented	 here
along	with	the	other	handlers.

http://hg.python.org/cpython/file/3.4/Lib/logging/handlers.py

16.9.1.	StreamHandler

The	 StreamHandler	 class,	 located	 in	 the	 core	 logging	 package,
sends	logging	output	to	streams	such	as	sys.stdout,	sys.stderr	or	any
file-like	object	(or,	more	precisely,	any	object	which	supports	write()
and	flush()	methods).

class	logging.StreamHandler(stream=None)
Returns	a	new	instance	of	the	StreamHandler	class.	If	stream	is
specified,	 the	 instance	 will	 use	 it	 for	 logging	 output;	 otherwise,
sys.stderr	will	be	used.

emit(record)
If	 a	 formatter	 is	 specified,	 it	 is	 used	 to	 format	 the	 record.	The
record	 is	 then	 written	 to	 the	 stream	 with	 a	 terminator.	 If
exception	 information	 is	 present,	 it	 is	 formatted	 using
traceback.print_exception()	 and	 appended	 to	 the
stream.

flush()
Flushes	 the	 stream	by	 calling	 its	 flush()	method.	Note	 that
the	close()	method	 is	 inherited	 from	Handler	and	so	does
no	output,	so	an	explicit	flush()	call	may	be	needed	at	times.

Changed	 in	 version	 3.2:	 The	 StreamHandler	 class	 now	 has	 a
terminator	 attribute,	 default	 value	 '\n',	 which	 is	 used	 as	 the
terminator	 when	writing	 a	 formatted	 record	 to	 a	 stream.	 If	 you	 don’t
want	 this	 newline	 termination,	 you	 can	 set	 the	 handler	 instance’s
terminator	 attribute	 to	 the	 empty	 string.	 In	 earlier	 versions,	 the
terminator	was	hardcoded	as	'\n'.

16.9.2.	FileHandler

The	 FileHandler	 class,	 located	 in	 the	 core	 logging	 package,
sends	 logging	 output	 to	 a	 disk	 file.	 It	 inherits	 the	 output	 functionality
from	StreamHandler.

class	logging.FileHandler(filename,	mode='a',
encoding=None,	delay=False)

Returns	a	new	instance	of	the	FileHandler	class.	The	specified
file	 is	opened	and	used	as	 the	stream	 for	 logging.	 If	mode	 is	 not
specified,	'a'	 is	used.	If	encoding	 is	not	None,	 it	 is	used	to	open
the	 file	 with	 that	 encoding.	 If	 delay	 is	 true,	 then	 file	 opening	 is
deferred	 until	 the	 first	 call	 to	 emit().	 By	 default,	 the	 file	 grows
indefinitely.

close()
Closes	the	file.

emit(record)
Outputs	the	record	to	the	file.

16.9.3.	NullHandler

New	in	version	3.1.

The	 NullHandler	 class,	 located	 in	 the	 core	 logging	 package,
does	not	do	any	formatting	or	output.	It	is	essentially	a	‘no-op’	handler
for	use	by	library	developers.

class	logging.NullHandler
Returns	a	new	instance	of	the	NullHandler	class.

emit(record)
This	method	does	nothing.

handle(record)
This	method	does	nothing.

createLock()
This	 method	 returns	 None	 for	 the	 lock,	 since	 there	 is	 no
underlying	I/O	to	which	access	needs	to	be	serialized.

See	Configuring	Logging	for	a	Library	for	more	information	on	how	to
use	NullHandler.

16.9.4.	WatchedFileHandler

The	 WatchedFileHandler	 class,	 located	 in	 the
logging.handlers	module,	is	a	FileHandler	which	watches	the
file	it	is	logging	to.	If	the	file	changes,	it	is	closed	and	reopened	using
the	file	name.

A	 file	 change	 can	 happen	 because	 of	 usage	 of	 programs	 such	 as
newsyslog	and	 logrotate	which	perform	log	file	rotation.	This	handler,
intended	 for	 use	 under	 Unix/Linux,	 watches	 the	 file	 to	 see	 if	 it	 has
changed	since	 the	 last	emit.	 (A	 file	 is	deemed	 to	have	changed	 if	 its
device	 or	 inode	 have	 changed.)	 If	 the	 file	 has	 changed,	 the	 old	 file
stream	is	closed,	and	the	file	opened	to	get	a	new	stream.

This	handler	is	not	appropriate	for	use	under	Windows,	because	under
Windows	open	log	files	cannot	be	moved	or	renamed	-	logging	opens
the	 files	 with	 exclusive	 locks	 -	 and	 so	 there	 is	 no	 need	 for	 such	 a
handler.	 Furthermore,	 ST_INO	 is	 not	 supported	 under	 Windows;
stat()	always	returns	zero	for	this	value.

class	logging.handlers.WatchedFileHandler(filename[,
mode[,	encoding[,	delay]]])

Returns	a	new	instance	of	the	WatchedFileHandler	class.	The
specified	file	is	opened	and	used	as	the	stream	for	logging.	If	mode
is	not	specified,	'a'	is	used.	If	encoding	is	not	None,	it	 is	used	to
open	the	file	with	that	encoding.	If	delay	is	true,	then	file	opening	is
deferred	 until	 the	 first	 call	 to	 emit().	 By	 default,	 the	 file	 grows
indefinitely.

emit(record)
Outputs	 the	 record	 to	 the	 file,	but	 first	checks	 to	see	 if	 the	 file

has	changed.	If	it	has,	the	existing	stream	is	flushed	and	closed
and	 the	 file	 opened	again,	 before	 outputting	 the	 record	 to	 the
file.

16.9.5.	BaseRotatingHandler

The	 BaseRotatingHandler	 class,	 located	 in	 the
logging.handlers	 module,	 is	 the	 base	 class	 for	 the	 rotating	 file
handlers,	 RotatingFileHandler	 and
TimedRotatingFileHandler.	 You	 should	 not	 need	 to	 instantiate
this	class,	but	it	has	attributes	and	methods	you	may	need	to	override.

class	logging.handlers.BaseRotatingHandler(filename,
mode,	encoding=None,	delay=False)

The	parameters	are	as	for	FileHandler.	The	attributes	are:

namer

If	this	attribute	is	set	to	a	callable,	the	rotation_filename()
method	 delegates	 to	 this	 callable.	 The	 parameters	 passed	 to
the	callable	are	those	passed	to	rotation_filename().

Note: 	The	namer	function	is	called	quite	a	few	times	during
rollover,	so	 it	should	be	as	simple	and	as	 fast	as	possible.	 It
should	 also	 return	 the	 same	 output	 every	 time	 for	 a	 given
input,	 otherwise	 the	 rollover	 behaviour	 may	 not	 work	 as
expected.

New	in	version	3.3.

rotator

If	 this	 attribute	 is	 set	 to	 a	 callable,	 the	 rotate()	 method
delegates	 to	 this	 callable.	 The	 parameters	 passed	 to	 the
callable	are	those	passed	to	rotate().

New	in	version	3.3.

rotation_filename(default_name)
Modify	the	filename	of	a	log	file	when	rotating.

This	is	provided	so	that	a	custom	filename	can	be	provided.

The	 default	 implementation	 calls	 the	 ‘namer’	 attribute	 of	 the
handler,	 if	 it’s	 callable,	 passing	 the	 default	 name	 to	 it.	 If	 the
attribute	 isn’t	 callable	 (the	 default	 is	 None),	 the	 name	 is
returned	unchanged.

Parameters: default_name	–	The	default	name	for	the	log
file.

New	in	version	3.3.

rotate(source,	dest)
When	rotating,	rotate	the	current	log.

The	 default	 implementation	 calls	 the	 ‘rotator’	 attribute	 of	 the
handler,	 if	 it’s	callable,	passing	the	source	and	dest	arguments
to	 it.	 If	 the	 attribute	 isn’t	 callable	 (the	 default	 is	 None),	 the
source	is	simply	renamed	to	the	destination.

Parameters:

source	 –	 The	 source	 filename.	 This	 is
normally	the	base	filename,	e.g.	‘test.log’
dest	 –	 The	 destination	 filename.	 This	 is
normally	what	the	source	is	rotated	to,	e.g.
‘test.log.1’.

New	in	version	3.3.

The	reason	the	attributes	exist	is	to	save	you	having	to	subclass	-	you
can	use	the	same	callables	for	instances	of	RotatingFileHandler
and	 TimedRotatingFileHandler.	 If	 either	 the	 namer	 or	 rotator

callable	raises	an	exception,	 this	will	be	handled	 in	 the	same	way	as
any	 other	 exception	 during	 an	 emit()	 call,	 i.e.	 via	 the
handleError()	method	of	the	handler.

If	you	need	 to	make	more	significant	changes	 to	rotation	processing,
you	can	override	the	methods.

For	 an	 example,	 see	 Using	 a	 rotator	 and	 namer	 to	 customize	 log
rotation	processing.

16.9.6.	RotatingFileHandler

The	 RotatingFileHandler	 class,	 located	 in	 the
logging.handlers	module,	supports	rotation	of	disk	log	files.

class	logging.handlers.RotatingFileHandler(filename,
mode='a',	maxBytes=0,	backupCount=0,	encoding=None,	delay=0)

Returns	 a	 new	 instance	 of	 the	 RotatingFileHandler	 class.
The	specified	file	is	opened	and	used	as	the	stream	for	logging.	If
mode	 is	not	specified,	'a'	 is	used.	 If	encoding	 is	 not	None,	 it	 is
used	 to	open	 the	 file	with	 that	encoding.	 If	delay	 is	 true,	 then	 file
opening	is	deferred	until	the	first	call	to	emit().	By	default,	the	file
grows	indefinitely.

You	 can	use	 the	maxBytes	and	backupCount	 values	 to	 allow	 the
file	 to	rollover	at	a	predetermined	size.	When	 the	size	 is	about	 to
be	exceeded,	the	file	is	closed	and	a	new	file	is	silently	opened	for
output.	 Rollover	 occurs	 whenever	 the	 current	 log	 file	 is	 nearly
maxBytes	 in	 length;	 if	maxBytes	 is	 zero,	 rollover	 never	 occurs.	 If
backupCount	 is	 non-zero,	 the	 system	 will	 save	 old	 log	 files	 by
appending	 the	 extensions	 ‘.1’,	 ‘.2’	 etc.,	 to	 the	 filename.	 For
example,	 with	 a	 backupCount	 of	 5	 and	 a	 base	 file	 name	 of
app.log,	you	would	get	app.log,	app.log.1,	app.log.2,	up
to	app.log.5.	The	file	being	written	to	is	always	app.log.	When
this	file	is	filled,	it	is	closed	and	renamed	to	app.log.1,	and	if	files
app.log.1,	 app.log.2,	 etc.	 exist,	 then	 they	 are	 renamed	 to
app.log.2,	app.log.3	etc.	respectively.

doRollover()
Does	a	rollover,	as	described	above.

emit(record)
Outputs	the	record	to	the	file,	catering	for	rollover	as	described
previously.

16.9.7.	TimedRotatingFileHandler

The	 TimedRotatingFileHandler	 class,	 located	 in	 the
logging.handlers	 module,	 supports	 rotation	 of	 disk	 log	 files	 at
certain	timed	intervals.

class
logging.handlers.TimedRotatingFileHandler(filename,
when='h',	interval=1,	backupCount=0,	encoding=None,	delay=False,
utc=False,	atTime=None)

Returns	 a	 new	 instance	 of	 the	 TimedRotatingFileHandler
class.	 The	 specified	 file	 is	 opened	 and	 used	 as	 the	 stream	 for
logging.	 On	 rotating	 it	 also	 sets	 the	 filename	 suffix.	 Rotating
happens	based	on	the	product	of	when	and	interval.

You	 can	 use	 the	when	 to	 specify	 the	 type	 of	 interval.	 The	 list	 of
possible	values	is	below.	Note	that	they	are	not	case	sensitive.

Value Type	of	interval

'S' Seconds

'M' Minutes

'H' Hours

'D' Days

'W0'-'W6'
Weekday
(0=Monday)

'midnight' Roll	over	at	midnight

When	using	weekday-based	rotation,	specify	‘W0’	for	Monday,	‘W1’
for	 Tuesday,	 and	 so	 on	 up	 to	 ‘W6’	 for	 Sunday.	 In	 this	 case,	 the
value	passed	for	interval	isn’t	used.

The	system	will	save	old	 log	 files	by	appending	extensions	 to	 the
filename.	 The	 extensions	 are	 date-and-time	 based,	 using	 the
strftime	format	%Y-%m-%d_%H-%M-%S	or	a	leading	portion	thereof,
depending	on	the	rollover	interval.

When	computing	the	next	rollover	time	for	the	first	time	(when	the
handler	is	created),	the	last	modification	time	of	an	existing	log	file,
or	else	the	current	time,	is	used	to	compute	when	the	next	rotation
will	occur.

If	 the	utc	 argument	 is	 true,	 times	 in	UTC	will	 be	 used;	 otherwise
local	time	is	used.

If	backupCount	is	nonzero,	at	most	backupCount	files	will	be	kept,
and	if	more	would	be	created	when	rollover	occurs,	the	oldest	one
is	deleted.	The	deletion	logic	uses	the	interval	to	determine	which
files	 to	 delete,	 so	 changing	 the	 interval	 may	 leave	 old	 files	 lying
around.

If	delay	 is	 true,	 then	 file	 opening	 is	 deferred	 until	 the	 first	 call	 to
emit().

If	 atTime	 is	 not	 None,	 it	 must	 be	 a	 datetime.time	 instance
which	specifies	the	time	of	day	when	rollover	occurs,	for	the	cases
where	 rollover	 is	 set	 to	 happen	 “at	 midnight”	 or	 “on	 a	 particular
weekday”.

Changed	in	version	3.4:	atTime	parameter	was	added.

doRollover()
Does	a	rollover,	as	described	above.

emit(record)

Outputs	the	record	to	the	file,	catering	for	rollover	as	described
above.

16.9.8.	SocketHandler

The	 SocketHandler	 class,	 located	 in	 the	 logging.handlers
module,	 sends	 logging	 output	 to	 a	 network	 socket.	 The	 base	 class
uses	a	TCP	socket.

class	logging.handlers.SocketHandler(host,	port)
Returns	a	new	instance	of	the	SocketHandler	class	intended	to
communicate	 with	 a	 remote	machine	whose	 address	 is	 given	 by
host	and	port.

Changed	 in	 version	 3.4:	 If	 port	 is	 specified	 as	 None,	 a	 Unix
domain	 socket	 is	 created	 using	 the	 value	 in	 host	 -	 otherwise,	 a
TCP	socket	is	created.

close()
Closes	the	socket.

emit()
Pickles	 the	 record’s	 attribute	 dictionary	 and	 writes	 it	 to	 the
socket	 in	 binary	 format.	 If	 there	 is	 an	 error	 with	 the	 socket,
silently	drops	the	packet.	If	the	connection	was	previously	lost,
re-establishes	 the	 connection.	 To	 unpickle	 the	 record	 at	 the
receiving	end	into	a	LogRecord,	use	the	makeLogRecord()
function.

handleError()
Handles	an	error	which	has	occurred	during	emit().	The	most
likely	cause	 is	a	 lost	connection.	Closes	the	socket	so	that	we
can	retry	on	the	next	event.

makeSocket()

This	is	a	factory	method	which	allows	subclasses	to	define	the
precise	 type	 of	 socket	 they	 want.	 The	 default	 implementation
creates	a	TCP	socket	(socket.SOCK_STREAM).

makePickle(record)
Pickles	 the	 record’s	attribute	dictionary	 in	binary	 format	with	a
length	 prefix,	 and	 returns	 it	 ready	 for	 transmission	 across	 the
socket.

Note	that	pickles	aren’t	completely	secure.	If	you	are	concerned
about	 security,	 you	 may	 want	 to	 override	 this	 method	 to
implement	 a	 more	 secure	mechanism.	 For	 example,	 you	 can
sign	pickles	using	HMAC	and	then	verify	them	on	the	receiving
end,	or	alternatively	you	can	disable	unpickling	of	global	objects
on	the	receiving	end.

send(packet)
Send	a	pickled	string	packet	to	the	socket.	This	function	allows
for	partial	sends	which	can	happen	when	the	network	is	busy.

createSocket()
Tries	to	create	a	socket;	on	failure,	uses	an	exponential	back-off
algorithm.	On	intial	failure,	the	handler	will	drop	the	message	it
was	 trying	 to	 send.	When	 subsequent	messages	 are	 handled
by	the	same	instance,	 it	will	not	try	connecting	until	some	time
has	 passed.	 The	 default	 parameters	 are	 such	 that	 the	 initial
delay	 is	one	second,	and	 if	after	 that	delay	the	connection	still
can’t	be	made,	the	handler	will	double	the	delay	each	time	up	to
a	maximum	of	30	seconds.

This	behaviour	is	controlled	by	the	following	handler	attributes:

retryStart	(initial	delay,	defaulting	to	1.0	seconds).

retryFactor	(multiplier,	defaulting	to	2.0).
retryMax	(maximum	delay,	defaulting	to	30.0	seconds).

This	means	that	if	the	remote	listener	starts	up	after	the	handler
has	 been	 used,	 you	 could	 lose	 messages	 (since	 the	 handler
won’t	 even	 attempt	 a	 connection	 until	 the	 delay	 has	 elapsed,
but	just	silently	drop	messages	during	the	delay	period).

16.9.9.	DatagramHandler

The	 DatagramHandler	 class,	 located	 in	 the	 logging.handlers
module,	 inherits	 from	 SocketHandler	 to	 support	 sending	 logging
messages	over	UDP	sockets.

class	logging.handlers.DatagramHandler(host,	port)
Returns	a	new	instance	of	the	DatagramHandler	class	intended
to	communicate	with	a	remote	machine	whose	address	is	given	by
host	and	port.

Changed	 in	 version	 3.4:	 If	 port	 is	 specified	 as	 None,	 a	 Unix
domain	 socket	 is	 created	 using	 the	 value	 in	 host	 -	 otherwise,	 a
TCP	socket	is	created.

emit()
Pickles	 the	 record’s	 attribute	 dictionary	 and	 writes	 it	 to	 the
socket	 in	 binary	 format.	 If	 there	 is	 an	 error	 with	 the	 socket,
silently	drops	the	packet.	To	unpickle	the	record	at	the	receiving
end	into	a	LogRecord,	use	the	makeLogRecord()	function.

makeSocket()
The	 factory	method	of	SocketHandler	 is	here	overridden	 to
create	a	UDP	socket	(socket.SOCK_DGRAM).

send(s)
Send	a	pickled	string	to	a	socket.

16.9.10.	SysLogHandler

The	 SysLogHandler	 class,	 located	 in	 the	 logging.handlers
module,	supports	sending	logging	messages	to	a	remote	or	local	Unix
syslog.

class	logging.handlers.SysLogHandler(address=
('localhost',	SYSLOG_UDP_PORT),	facility=LOG_USER,
socktype=socket.SOCK_DGRAM)

Returns	a	new	instance	of	the	SysLogHandler	class	intended	to
communicate	with	a	remote	Unix	machine	whose	address	is	given
by	address	in	the	form	of	a	(host,	port)	tuple.	If	address	is	not
specified,	('localhost',	514)	is	used.	The	address	is	used	to
open	a	socket.	An	alternative	to	providing	a	(host,	port)	 tuple
is	providing	an	address	as	a	string,	 for	example	 ‘/dev/log’.	 In	 this
case,	 a	Unix	 domain	 socket	 is	 used	 to	 send	 the	message	 to	 the
syslog.	 If	 facility	 is	not	specified,	LOG_USER	 is	 used.	The	 type	of
socket	opened	depends	on	the	socktype	argument,	which	defaults
to	socket.SOCK_DGRAM	and	thus	opens	a	UDP	socket.	To	open
a	 TCP	 socket	 (for	 use	 with	 the	 newer	 syslog	 daemons	 such	 as
rsyslog),	specify	a	value	of	socket.SOCK_STREAM.

Note	 that	 if	 your	 server	 is	 not	 listening	 on	 UDP	 port	 514,
SysLogHandler	 may	 appear	 not	 to	 work.	 In	 that	 case,	 check
what	address	you	should	be	using	for	a	domain	socket	-	it’s	system
dependent.	 For	 example,	 on	 Linux	 it’s	 usually	 ‘/dev/log’	 but	 on
OS/X	 it’s	 ‘/var/run/syslog’.	You’ll	 need	 to	 check	 your	 platform	and
use	 the	 appropriate	 address	 (you	 may	 need	 to	 do	 this	 check	 at
runtime	 if	your	application	needs	 to	run	on	several	platforms).	On
Windows,	you	pretty	much	have	to	use	the	UDP	option.

Changed	in	version	3.2:	socktype	was	added.

close()
Closes	the	socket	to	the	remote	host.

emit(record)
The	 record	 is	 formatted,	and	 then	sent	 to	 the	syslog	server.	 If
exception	information	is	present,	it	is	not	sent	to	the	server.

Changed	 in	 version	 3.2.1:	 (See:	 issue	 12168.)	 In	 earlier
versions,	the	message	sent	to	the	syslog	daemons	was	always
terminated	 with	 a	 NUL	 byte,	 because	 early	 versions	 of	 these
daemons	expected	a	NUL	 terminated	message	 -	even	 though
it’s	 not	 in	 the	 relevant	 specification	 (RF	 5424).	 More	 recent
versions	of	these	daemons	don’t	expect	the	NUL	byte	but	strip	it
off	 if	 it’s	 there,	and	even	more	 recent	daemons	 (which	adhere
more	closely	to	RFC	5424)	pass	the	NUL	byte	on	as	part	of	the
message.

To	enable	easier	handling	of	syslog	messages	in	the	face	of	all
these	differing	daemon	behaviours,	 the	appending	of	 the	NUL
byte	has	been	made	configurable,	 through	 the	use	of	a	class-
level	attribute,	append_nul.	This	defaults	to	True	(preserving
the	 existing	 behaviour)	 but	 can	 be	 set	 to	 False	 on	 a
SysLogHandler	 instance	 in	 order	 for	 that	 instance	 to	 not
append	the	NUL	terminator.

Changed	in	version	3.3:	(See:	issue	12419.)	In	earlier	versions,
there	was	no	facility	 for	an	“ident”	or	“tag”	prefix	 to	 identify	 the
source	 of	 the	 message.	 This	 can	 now	 be	 specified	 using	 a
class-level	 attribute,	 defaulting	 to	 ""	 to	 preserve	 existing
behaviour,	but	which	can	be	overridden	on	a	SysLogHandler

http://bugs.python.org/issue12168
http://bugs.python.org/issue12419

instance	in	order	for	that	instance	to	prepend	the	ident	to	every
message	 handled.	 Note	 that	 the	 provided	 ident	must	 be	 text,
not	bytes,	and	is	prepended	to	the	message	exactly	as	is.

encodePriority(facility,	priority)
Encodes	the	facility	and	priority	into	an	integer.	You	can	pass	in
strings	 or	 integers	 -	 if	 strings	 are	 passed,	 internal	 mapping
dictionaries	are	used	to	convert	them	to	integers.

The	symbolic	LOG_	values	are	defined	in	SysLogHandler	and
mirror	the	values	defined	in	the	sys/syslog.h	header	file.

Priorities

Name	(string) Symbolic	value

alert LOG_ALERT

crit	or	critical LOG_CRIT

debug LOG_DEBUG

emerg	or	panic LOG_EMERG

err	or	error LOG_ERR

info LOG_INFO

notice LOG_NOTICE

warn	or	warning LOG_WARNING

Facilities

Name	(string) Symbolic	value

auth LOG_AUTH

authpriv LOG_AUTHPRIV

cron LOG_CRON

daemon LOG_DAEMON

ftp LOG_FTP

kern LOG_KERN

lpr LOG_LPR

mail LOG_MAIL

news LOG_NEWS

syslog LOG_SYSLOG

user LOG_USER

uucp LOG_UUCP

local0 LOG_LOCAL0

local1 LOG_LOCAL1

local2 LOG_LOCAL2

local3 LOG_LOCAL3

local4 LOG_LOCAL4

local5 LOG_LOCAL5

local6 LOG_LOCAL6

local7 LOG_LOCAL7

mapPriority(levelname)
Maps	a	logging	level	name	to	a	syslog	priority	name.	You	may
need	 to	 override	 this	 if	 you	 are	 using	 custom	 levels,	 or	 if	 the
default	 algorithm	 is	 not	 suitable	 for	 your	 needs.	 The	 default
algorithm	 maps	 DEBUG,	 INFO,	 WARNING,	 ERROR	 and
CRITICAL	 to	 the	equivalent	syslog	names,	and	all	other	 level
names	to	‘warning’.

16.9.11.	NTEventLogHandler

The	 NTEventLogHandler	 class,	 located	 in	 the
logging.handlers	module,	supports	sending	logging	messages	to
a	local	Windows	NT,	Windows	2000	or	Windows	XP	event	log.	Before
you	 can	 use	 it,	 you	 need	 Mark	 Hammond’s	 Win32	 extensions	 for
Python	installed.

class	logging.handlers.NTEventLogHandler(appname,
dllname=None,	logtype='Application')

Returns	a	 new	 instance	of	 the	 NTEventLogHandler	 class.	 The
appname	 is	 used	 to	define	 the	application	name	as	 it	 appears	 in
the	 event	 log.	 An	 appropriate	 registry	 entry	 is	 created	 using	 this
name.	 The	dllname	 should	 give	 the	 fully	 qualified	 pathname	of	 a
.dll	or	.exe	which	contains	message	definitions	to	hold	in	the	log	(if
not	 specified,	 'win32service.pyd'	 is	 used	 -	 this	 is	 installed
with	 the	Win32	 extensions	 and	 contains	 some	 basic	 placeholder
message	definitions.	Note	that	use	of	these	placeholders	will	make
your	 event	 logs	 big,	 as	 the	 entire	message	 source	 is	 held	 in	 the
log.	If	you	want	slimmer	logs,	you	have	to	pass	in	the	name	of	your
own	.dll	or	.exe	which	contains	the	message	definitions	you	want	to
use	 in	 the	 event	 log).	 The	 logtype	 is	 one	 of	 'Application',
'System'	or	'Security',	and	defaults	to	'Application'.

close()
At	 this	 point,	 you	 can	 remove	 the	 application	 name	 from	 the
registry	 as	 a	 source	 of	 event	 log	 entries.	 However,	 if	 you	 do
this,	you	will	not	be	able	 to	see	 the	events	as	you	 intended	 in
the	Event	Log	Viewer	-	it	needs	to	be	able	to	access	the	registry
to	get	the	.dll	name.	The	current	version	does	not	do	this.

emit(record)
Determines	 the	 message	 ID,	 event	 category	 and	 event	 type,
and	then	logs	the	message	in	the	NT	event	log.

getEventCategory(record)
Returns	 the	event	category	 for	 the	 record.	Override	 this	 if	 you
want	to	specify	your	own	categories.	This	version	returns	0.

getEventType(record)
Returns	the	event	type	for	the	record.	Override	this	if	you	want
to	specify	your	own	types.	This	version	does	a	mapping	using
the	handler’s	typemap	attribute,	which	is	set	up	in	__init__()
to	 a	 dictionary	 which	 contains	 mappings	 for	 DEBUG,	 INFO,
WARNING,	 ERROR	 and	 CRITICAL.	 If	 you	 are	 using	 your	 own
levels,	 you	will	 either	 need	 to	override	 this	method	or	 place	a
suitable	dictionary	in	the	handler’s	typemap	attribute.

getMessageID(record)
Returns	 the	message	 ID	 for	 the	 record.	 If	 you	 are	 using	 your
own	messages,	you	could	do	this	by	having	the	msg	passed	to
the	 logger	 being	 an	 ID	 rather	 than	 a	 format	 string.	 Then,	 in
here,	you	could	use	a	dictionary	lookup	to	get	the	message	ID.
This	 version	 returns	 1,	 which	 is	 the	 base	 message	 ID	 in
win32service.pyd.

16.9.12.	SMTPHandler

The	 SMTPHandler	 class,	 located	 in	 the	 logging.handlers

module,	supports	sending	 logging	messages	 to	an	email	address	via
SMTP.

class	logging.handlers.SMTPHandler(mailhost,	fromaddr,
toaddrs,	subject,	credentials=None,	secure=None,	timeout=1.0)

Returns	a	new	instance	of	the	SMTPHandler	class.	The	instance
is	initialized	with	the	from	and	to	addresses	and	subject	line	of	the
email.	 The	 toaddrs	 should	 be	 a	 list	 of	 strings.	 To	 specify	 a	 non-
standard	 SMTP	 port,	 use	 the	 (host,	 port)	 tuple	 format	 for	 the
mailhost	argument.	 If	you	use	a	string,	the	standard	SMTP	port	 is
used.	If	your	SMTP	server	requires	authentication,	you	can	specify
a	(username,	password)	tuple	for	the	credentials	argument.

To	specify	the	use	of	a	secure	protocol	(TLS),	pass	in	a	tuple	to	the
secure	 argument.	 This	 will	 only	 be	 used	 when	 authentication
credentials	are	supplied.	The	tuple	should	be	either	an	empty	tuple,
or	a	single-value	tuple	with	the	name	of	a	keyfile,	or	a	2-value	tuple
with	 the	 names	 of	 the	 keyfile	 and	 certificate	 file.	 (This	 tuple	 is
passed	to	the	smtplib.SMTP.starttls()	method.)

A	 timeout	 can	 be	 specified	 for	 communication	 with	 the	 SMTP
server	using	the	timeout	argument.

New	in	version	3.3:	The	timeout	argument	was	added.

emit(record)
Formats	the	record	and	sends	it	to	the	specified	addressees.

getSubject(record)

If	you	want	to	specify	a	subject	line	which	is	record-dependent,
override	this	method.

16.9.13.	MemoryHandler

The	 MemoryHandler	 class,	 located	 in	 the	 logging.handlers
module,	supports	buffering	of	 logging	records	 in	memory,	periodically
flushing	them	to	a	target	handler.	Flushing	occurs	whenever	the	buffer
is	full,	or	when	an	event	of	a	certain	severity	or	greater	is	seen.

MemoryHandler	 is	 a	 subclass	 of	 the	 more	 general
BufferingHandler,	which	is	an	abstract	class.	This	buffers	logging
records	 in	memory.	Whenever	 each	 record	 is	 added	 to	 the	 buffer,	 a
check	is	made	by	calling	shouldFlush()	to	see	if	the	buffer	should
be	flushed.	If	it	should,	then	flush()	is	expected	to	do	the	flushing.

class	logging.handlers.BufferingHandler(capacity)
Initializes	the	handler	with	a	buffer	of	the	specified	capacity.

emit(record)
Appends	 the	 record	 to	 the	 buffer.	 If	 shouldFlush()	 returns
true,	calls	flush()	to	process	the	buffer.

flush()
You	 can	 override	 this	 to	 implement	 custom	 flushing	 behavior.
This	version	just	zaps	the	buffer	to	empty.

shouldFlush(record)
Returns	true	if	the	buffer	is	up	to	capacity.	This	method	can	be
overridden	to	implement	custom	flushing	strategies.

class	logging.handlers.MemoryHandler(capacity,
flushLevel=ERROR,	target=None)

Returns	 a	 new	 instance	 of	 the	 MemoryHandler	 class.	 The

instance	is	 initialized	with	a	buffer	size	of	capacity.	 If	 flushLevel	 is
not	specified,	ERROR	is	used.	If	no	target	is	specified,	the	target	will
need	 to	 be	 set	 using	 setTarget()	 before	 this	 handler	 does
anything	useful.

close()
Calls	flush(),	sets	the	target	to	None	and	clears	the	buffer.

flush()
For	 a	 MemoryHandler,	 flushing	 means	 just	 sending	 the
buffered	records	to	the	target,	if	there	is	one.	The	buffer	is	also
cleared	 when	 this	 happens.	 Override	 if	 you	 want	 different
behavior.

setTarget(target)
Sets	the	target	handler	for	this	handler.

shouldFlush(record)
Checks	for	buffer	full	or	a	record	at	the	flushLevel	or	higher.

16.9.14.	HTTPHandler

The	 HTTPHandler	 class,	 located	 in	 the	 logging.handlers

module,	 supports	 sending	 logging	messages	 to	 a	Web	 server,	 using
either	GET	or	POST	semantics.

class	logging.handlers.HTTPHandler(host,	url,
method='GET',	secure=False,	credentials=None)

Returns	a	new	instance	of	the	HTTPHandler	class.	The	host	can
be	of	the	form	host:port,	should	you	need	to	use	a	specific	port
number.	If	no	method	is	specified,	GET	is	used.	If	secure	is	true,	an
HTTPS	connection	will	be	used.	If	credentials	is	specified,	it	should
be	 a	 2-tuple	 consisting	 of	 userid	 and	 password,	 which	 will	 be
placed	 in	 an	 HTTP	 ‘Authorization’	 header	 using	 Basic
authentication.	 If	 you	 specify	 credentials,	 you	 should	 also	 specify
secure=True	so	 that	your	userid	and	password	are	not	passed	 in
cleartext	across	the	wire.

emit(record)
Sends	 the	 record	 to	 the	 Web	 server	 as	 a	 percent-encoded
dictionary.

16.9.15.	QueueHandler

New	in	version	3.2.

The	 QueueHandler	 class,	 located	 in	 the	 logging.handlers
module,	 supports	 sending	 logging	 messages	 to	 a	 queue,	 such	 as
those	implemented	in	the	queue	or	multiprocessing	modules.

Along	with	the	QueueListener	class,	QueueHandler	can	be	used
to	let	handlers	do	their	work	on	a	separate	thread	from	the	one	which
does	the	logging.	This	is	important	in	Web	applications	and	also	other
service	applications	where	 threads	 servicing	 clients	need	 to	 respond
as	quickly	as	possible,	while	any	potentially	slow	operations	(such	as
sending	an	email	via	SMTPHandler)	are	done	on	a	separate	thread.

class	logging.handlers.QueueHandler(queue)
Returns	a	new	instance	of	the	QueueHandler	class.	The	instance
is	 initialized	with	 the	queue	 to	send	messages	 to.	The	queue	can
be	 any	 queue-	 like	 object;	 it’s	 used	 as-is	 by	 the	 enqueue()
method,	which	needs	to	know	how	to	send	messages	to	it.

emit(record)
Enqueues	the	result	of	preparing	the	LogRecord.

prepare(record)
Prepares	 a	 record	 for	 queuing.	 The	 object	 returned	 by	 this
method	is	enqueued.

The	 base	 implementation	 formats	 the	 record	 to	 merge	 the
message	and	arguments,	and	removes	unpickleable	items	from
the	record	in-place.

You	might	want	 to	override	 this	method	 if	 you	want	 to	convert
the	record	to	a	dict	or	JSON	string,	or	send	a	modified	copy	of
the	record	while	leaving	the	original	intact.

enqueue(record)
Enqueues	the	record	on	the	queue	using	put_nowait();	you
may	want	to	override	this	if	you	want	to	use	blocking	behaviour,
or	a	timeout,	or	a	customized	queue	implementation.

16.9.16.	QueueListener

New	in	version	3.2.

The	 QueueListener	 class,	 located	 in	 the	 logging.handlers
module,	supports	receiving	 logging	messages	from	a	queue,	such	as
those	 implemented	 in	 the	 queue	 or	 multiprocessing	 modules.
The	messages	 are	 received	 from	 a	 queue	 in	 an	 internal	 thread	 and
passed,	on	the	same	thread,	to	one	or	more	handlers	for	processing.
While	QueueListener	 is	not	 itself	a	handler,	 it	 is	documented	here
because	it	works	hand-in-hand	with	QueueHandler.

Along	with	the	QueueHandler	class,	QueueListener	can	be	used
to	let	handlers	do	their	work	on	a	separate	thread	from	the	one	which
does	the	logging.	This	is	important	in	Web	applications	and	also	other
service	applications	where	 threads	 servicing	 clients	need	 to	 respond
as	quickly	as	possible,	while	any	potentially	slow	operations	(such	as
sending	an	email	via	SMTPHandler)	are	done	on	a	separate	thread.

class	logging.handlers.QueueListener(queue,	*handlers)
Returns	 a	 new	 instance	 of	 the	 QueueListener	 class.	 The
instance	is	initialized	with	the	queue	to	send	messages	to	and	a	list
of	 handlers	 which	 will	 handle	 entries	 placed	 on	 the	 queue.	 The
queue	 can	 be	 any	 queue-	 like	 object;	 it’s	 passed	 as-is	 to	 the
dequeue()	method,	which	needs	 to	know	how	 to	get	messages
from	it.

dequeue(block)
Dequeues	a	record	and	return	it,	optionally	blocking.

The	 base	 implementation	 uses	 get().	 You	 may	 want	 to

override	 this	method	 if	 you	want	 to	use	 timeouts	or	work	with
custom	queue	implementations.

prepare(record)
Prepare	a	record	for	handling.

This	implementation	just	returns	the	passed-in	record.	You	may
want	 to	 override	 this	 method	 if	 you	 need	 to	 do	 any	 custom
marshalling	 or	manipulation	 of	 the	 record	 before	 passing	 it	 to
the	handlers.

handle(record)
Handle	a	record.

This	just	loops	through	the	handlers	offering	them	the	record	to
handle.	The	actual	object	passed	to	the	handlers	 is	 that	which
is	returned	from	prepare().

start()
Starts	the	listener.

This	 starts	 up	 a	 background	 thread	 to	 monitor	 the	 queue	 for
LogRecords	to	process.

stop()
Stops	the	listener.

This	asks	the	thread	to	terminate,	and	then	waits	for	it	to	do	so.
Note	 that	 if	 you	 don’t	 call	 this	 before	 your	 application	 exits,
there	may	be	some	records	still	 left	on	the	queue,	which	won’t
be	processed.

enqueue_sentinel()

Writes	 a	 sentinel	 to	 the	 queue	 to	 tell	 the	 listener	 to	 quit.	 This
implementation	 uses	 put_nowait().	 You	 may	 want	 to
override	 this	method	 if	 you	want	 to	use	 timeouts	or	work	with
custom	queue	implementations.

New	in	version	3.3.

See	also:

Module	logging
API	reference	for	the	logging	module.

Module	logging.config
Configuration	API	for	the	logging	module.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.10.	getpass	—	Portable
password	input
The	getpass	module	provides	two	functions:

getpass.getpass(prompt='Password:	',	stream=None)
Prompt	 the	 user	 for	 a	 password	 without	 echoing.	 The	 user	 is
prompted	using	the	string	prompt,	which	defaults	 to	'Password:
'.	 On	 Unix,	 the	 prompt	 is	 written	 to	 the	 file-like	 object	 stream.
stream	defaults	to	the	controlling	terminal	(/dev/tty)	or	 if	 that	 is
unavailable	 to	 sys.stderr	 (this	 argument	 is	 ignored	 on
Windows).

If	 echo	 free	 input	 is	 unavailable	 getpass()	 falls	 back	 to	 printing	 a
warning	 message	 to	 stream	 and	 reading	 from	 sys.stdin	 and
issuing	a	GetPassWarning.

Availability:	Macintosh,	Unix,	Windows.

Note: 	 If	 you	 call	 getpass	 from	 within	 IDLE,	 the	 input	 may	 be
done	in	the	terminal	you	launched	IDLE	from	rather	than	the	idle
window	itself.

exception	getpass.GetPassWarning
A	 UserWarning	 subclass	 issued	 when	 password	 input	 may	 be
echoed.

getpass.getuser()
Return	the	“login	name”	of	the	user.	Availability:	Unix,	Windows.

This	 function	 checks	 the	 environment	 variables	 LOGNAME,	 USER,
LNAME	and	USERNAME,	 in	order,	and	returns	 the	value	of	 the	first
one	which	 is	 set	 to	a	non-empty	string.	 If	 none	are	 set,	 the	 login
name	 from	 the	password	database	 is	 returned	on	 systems	which
support	the	pwd	module,	otherwise,	an	exception	is	raised.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.11.	curses	—	Terminal
handling	for	character-cell	displays
The	 curses	module	 provides	 an	 interface	 to	 the	 curses	 library,	 the
de-facto	standard	for	portable	advanced	terminal	handling.

While	 curses	 is	most	widely	 used	 in	 the	Unix	 environment,	 versions
are	available	for	Windows,	DOS,	and	possibly	other	systems	as	well.
This	 extension	module	 is	 designed	 to	match	 the	 API	 of	 ncurses,	 an
open-source	curses	 library	hosted	on	Linux	and	 the	BSD	variants	of
Unix.

Note: 	Since	version	5.4,	the	ncurses	library	decides	how	to
interpret	non-ASCII	data	using	the	nl_langinfo	function.	That
means	that	you	have	to	call	locale.setlocale()	in	the
application	and	encode	Unicode	strings	using	one	of	the	system’s
available	encodings.	This	example	uses	the	system’s	default
encoding:

import	locale

locale.setlocale(locale.LC_ALL,	'')

code	=	locale.getpreferredencoding()

Then	use	code	as	the	encoding	for	str.encode()	calls.

See	also:

Module	curses.ascii
Utilities	 for	 working	 with	 ASCII	 characters,	 regardless	 of	 your
locale	settings.

Module	curses.panel
A	panel	stack	extension	that	adds	depth	to	curses	windows.

Module	curses.textpad
Editable	text	widget	for	curses	supporting	Emacs-like	bindings.

Curses	Programming	with	Python
Tutorial	 material	 on	 using	 curses	 with	 Python,	 by	 Andrew
Kuchling	and	Eric	Raymond.

The	Tools/demo/	directory	in	the	Python	source	distribution	contains
some	example	programs	using	the	curses	bindings	provided	by	this
module.

http://hg.python.org/cpython/file/3.4/Tools/demo/

16.11.1.	Functions

The	module	curses	defines	the	following	exception:

exception	curses.error
Exception	raised	when	a	curses	library	function	returns	an	error.

Note: 	Whenever	x	or	y	arguments	to	a	function	or	a	method	are
optional,	they	default	to	the	current	cursor	location.	Whenever	attr	is
optional,	it	defaults	to	A_NORMAL.

The	module	curses	defines	the	following	functions:

curses.baudrate()
Return	 the	 output	 speed	 of	 the	 terminal	 in	 bits	 per	 second.	 On
software	terminal	emulators	it	will	have	a	fixed	high	value.	Included
for	historical	 reasons;	 in	 former	 times,	 it	was	used	 to	write	 output
loops	 for	 time	 delays	 and	 occasionally	 to	 change	 interfaces
depending	on	the	line	speed.

curses.beep()
Emit	a	short	attention	sound.

curses.can_change_color()
Return	 True	 or	 False,	 depending	 on	 whether	 the	 programmer
can	change	the	colors	displayed	by	the	terminal.

curses.cbreak()
Enter	 cbreak	 mode.	 In	 cbreak	 mode	 (sometimes	 called	 “rare”
mode)	 normal	 tty	 line	 buffering	 is	 turned	 off	 and	 characters	 are
available	 to	 be	 read	 one	 by	 one.	 However,	 unlike	 raw	 mode,

special	characters	(interrupt,	quit,	suspend,	and	flow	control)	retain
their	 effects	 on	 the	 tty	 driver	 and	 calling	 program.	 Calling	 first
raw()	then	cbreak()	leaves	the	terminal	in	cbreak	mode.

curses.color_content(color_number)
Return	the	intensity	of	the	red,	green,	and	blue	(RGB)	components
in	the	color	color_number,	which	must	be	between	0	and	COLORS.
A	 3-tuple	 is	 returned,	 containing	 the	 R,G,B	 values	 for	 the	 given
color,	 which	 will	 be	 between	 0	 (no	 component)	 and	 1000
(maximum	amount	of	component).

curses.color_pair(color_number)
Return	the	attribute	value	for	displaying	text	 in	the	specified	color.
This	 attribute	 value	 can	 be	 combined	 with	 A_STANDOUT,
A_REVERSE,	and	the	other	A_*	attributes.	pair_number()	is	the
counterpart	to	this	function.

curses.curs_set(visibility)
Set	the	cursor	state.	visibility	can	be	set	to	0,	1,	or	2,	for	invisible,
normal,	 or	 very	 visible.	 If	 the	 terminal	 supports	 the	 visibility
requested,	 the	 previous	 cursor	 state	 is	 returned;	 otherwise,	 an
exception	 is	 raised.	On	many	 terminals,	 the	 “visible”	 mode	 is	 an
underline	cursor	and	the	“very	visible”	mode	is	a	block	cursor.

curses.def_prog_mode()
Save	the	current	terminal	mode	as	the	“program”	mode,	the	mode
when	 the	 running	program	 is	using	curses.	 (Its	 counterpart	 is	 the
“shell”	mode,	 for	when	 the	program	 is	not	 in	curses.)	Subsequent
calls	to	reset_prog_mode()	will	restore	this	mode.

curses.def_shell_mode()
Save	 the	 current	 terminal	 mode	 as	 the	 “shell”	 mode,	 the	 mode

when	 the	 running	program	 is	not	using	curses.	 (Its	counterpart	 is
the	 “program”	 mode,	 when	 the	 program	 is	 using	 curses
capabilities.)	 Subsequent	 calls	 to	 reset_shell_mode()	 will
restore	this	mode.

curses.delay_output(ms)
Insert	an	ms	millisecond	pause	in	output.

curses.doupdate()
Update	 the	 physical	 screen.	 The	 curses	 library	 keeps	 two	 data
structures,	 one	 representing	 the	 current	 physical	 screen	 contents
and	 a	 virtual	 screen	 representing	 the	 desired	 next	 state.	 The
doupdate()	 ground	 updates	 the	 physical	 screen	 to	 match	 the
virtual	screen.

The	virtual	screen	may	be	updated	by	a	noutrefresh()	call	after
write	 operations	 such	 as	 addstr()	 have	 been	 performed	 on	 a
window.	 The	 normal	 refresh()	 call	 is	 simply	 noutrefresh()
followed	by	doupdate();	if	you	have	to	update	multiple	windows,
you	can	speed	performance	and	perhaps	reduce	screen	flicker	by
issuing	noutrefresh()	calls	on	all	windows,	followed	by	a	single
doupdate().

curses.echo()
Enter	echo	mode.	In	echo	mode,	each	character	input	is	echoed	to
the	screen	as	it	is	entered.

curses.endwin()
De-initialize	the	library,	and	return	terminal	to	normal	status.

curses.erasechar()
Return	 the	 user’s	 current	 erase	 character.	 Under	 Unix	 operating

systems	 this	 is	 a	 property	 of	 the	 controlling	 tty	 of	 the	 curses
program,	and	is	not	set	by	the	curses	library	itself.

curses.filter()
The	filter()	routine,	if	used,	must	be	called	before	initscr()
is	called.	The	effect	 is	 that,	during	 those	calls,	LINES	 is	 set	 to	1;
the	capabilities	clear,	cup,	cud,	cud1,	cuu1,	cuu,	vpa	are	disabled;
and	the	home	string	is	set	to	the	value	of	cr.	The	effect	is	that	the
cursor	 is	confined	 to	 the	current	 line,	and	so	are	screen	updates.
This	 may	 be	 used	 for	 enabling	 character-at-a-time	 line	 editing
without	touching	the	rest	of	the	screen.

curses.flash()
Flash	 the	 screen.	 That	 is,	 change	 it	 to	 reverse-video	 and	 then
change	 it	 back	 in	 a	 short	 interval.	 Some	 people	 prefer	 such	 as
‘visible	bell’	to	the	audible	attention	signal	produced	by	beep().

curses.flushinp()
Flush	all	 input	 buffers.	This	 throws	away	any	 typeahead	that	 has
been	 typed	 by	 the	 user	 and	 has	 not	 yet	 been	 processed	 by	 the
program.

curses.getmouse()
After	getch()	 returns	KEY_MOUSE	 to	signal	a	mouse	event,	 this
method	 should	 be	 call	 to	 retrieve	 the	 queued	 mouse	 event,
represented	as	a	5-tuple	(id,	x,	y,	z,	bstate).	 id	 is	an	ID
value	 used	 to	 distinguish	 multiple	 devices,	 and	 x,	 y,	 z	 are	 the
event’s	 coordinates.	 (z	 is	 currently	 unused.)	 bstate	 is	 an	 integer
value	whose	bits	will	be	set	 to	 indicate	 the	 type	of	event,	and	will
be	the	bitwise	OR	of	one	or	more	of	the	following	constants,	where
n	 is	 the	 button	 number	 from	 1	 to	 4:	 BUTTONn_PRESSED,
BUTTONn_RELEASED,	 BUTTONn_CLICKED,

BUTTONn_DOUBLE_CLICKED,	 BUTTONn_TRIPLE_CLICKED,
BUTTON_SHIFT,	BUTTON_CTRL,	BUTTON_ALT.

curses.getsyx()
Return	the	current	coordinates	of	the	virtual	screen	cursor	in	y	and
x.	If	leaveok	is	currently	true,	then	-1,-1	is	returned.

curses.getwin(file)
Read	 window	 related	 data	 stored	 in	 the	 file	 by	 an	 earlier
putwin()	 call.	 The	 routine	 then	 creates	 and	 initializes	 a	 new
window	using	that	data,	returning	the	new	window	object.

curses.has_colors()
Return	 True	 if	 the	 terminal	 can	 display	 colors;	 otherwise,	 return
False.

curses.has_ic()
Return	 True	 if	 the	 terminal	 has	 insert-	 and	 delete-character
capabilities.	This	function	is	included	for	historical	reasons	only,	as
all	modern	software	terminal	emulators	have	such	capabilities.

curses.has_il()
Return	True	if	the	terminal	has	insert-	and	delete-line	capabilities,
or	 can	 simulate	 them	 using	 scrolling	 regions.	 This	 function	 is
included	for	historical	reasons	only,	as	all	modern	software	terminal
emulators	have	such	capabilities.

curses.has_key(ch)
Take	a	key	value	ch,	and	return	True	 if	 the	current	 terminal	 type
recognizes	a	key	with	that	value.

curses.halfdelay(tenths)

Used	 for	half-delay	mode,	which	 is	similar	 to	cbreak	mode	 in	 that
characters	 typed	 by	 the	 user	 are	 immediately	 available	 to	 the
program.	However,	after	blocking	for	 tenths	 tenths	of	seconds,	an
exception	 is	raised	if	nothing	has	been	typed.	The	value	of	tenths
must	be	a	number	between	1	and	255.	Use	nocbreak()	to	leave
half-delay	mode.

curses.init_color(color_number,	r,	g,	b)
Change	the	definition	of	a	color,	 taking	the	number	of	 the	color	 to
be	changed	followed	by	three	RGB	values	(for	the	amounts	of	red,
green,	and	blue	components).	The	value	of	color_number	must	be
between	0	and	COLORS.	Each	of	r,	g,	b,	must	be	a	value	between
0	 and	 1000.	 When	 init_color()	 is	 used,	 all	 occurrences	 of
that	color	on	the	screen	immediately	change	to	the	new	definition.
This	 function	 is	 a	 no-op	 on	 most	 terminals;	 it	 is	 active	 only	 if
can_change_color()	returns	1.

curses.init_pair(pair_number,	fg,	bg)
Change	the	definition	of	a	color-pair.	It	takes	three	arguments:	the
number	 of	 the	 color-pair	 to	 be	 changed,	 the	 foreground	 color
number,	 and	 the	 background	 color	 number.	 The	 value	 of
pair_number	must	be	between	1	and	COLOR_PAIRS	-	1	 (the	0
color	pair	is	wired	to	white	on	black	and	cannot	be	changed).	The
value	of	fg	and	bg	arguments	must	be	between	0	and	COLORS.	 If
the	color-pair	was	previously	initialized,	the	screen	is	refreshed	and
all	occurrences	of	that	color-pair	are	changed	to	the	new	definition.

curses.initscr()
Initialize	the	library.	Return	a	WindowObject	which	represents	the
whole	screen.

Note: 	 If	 there	 is	 an	 error	 opening	 the	 terminal,	 the	 underlying

curses	library	may	cause	the	interpreter	to	exit.

curses.is_term_resized(nlines,	ncols)
Return	 True	 if	 resize_term()	 would	 modify	 the	 window
structure,	False	otherwise.

curses.isendwin()
Return	 True	 if	 endwin()	 has	 been	 called	 (that	 is,	 the	 curses
library	has	been	deinitialized).

curses.keyname(k)
Return	 the	 name	 of	 the	 key	 numbered	 k.	 The	 name	 of	 a	 key
generating	 printable	 ASCII	 character	 is	 the	 key’s	 character.	 The
name	 of	 a	 control-key	 combination	 is	 a	 two-character	 string
consisting	of	a	caret	followed	by	the	corresponding	printable	ASCII
character.	The	name	of	an	alt-key	combination	(128-255)	is	a	string
consisting	 of	 the	 prefix	 ‘M-‘	 followed	 by	 the	 name	 of	 the
corresponding	ASCII	character.

curses.killchar()
Return	 the	user’s	current	 line	kill	 character.	Under	Unix	operating
systems	 this	 is	 a	 property	 of	 the	 controlling	 tty	 of	 the	 curses
program,	and	is	not	set	by	the	curses	library	itself.

curses.longname()
Return	a	string	containing	 the	 terminfo	 long	name	field	describing
the	current	terminal.	The	maximum	length	of	a	verbose	description
is	128	characters.	It	is	defined	only	after	the	call	to	initscr().

curses.meta(yes)
If	yes	is	1,	allow	8-bit	characters	to	be	input.	If	yes	is	0,	allow	only
7-bit	chars.

curses.mouseinterval(interval)
Set	 the	 maximum	 time	 in	 milliseconds	 that	 can	 elapse	 between
press	and	release	events	 in	order	 for	 them	to	be	recognized	as	a
click,	 and	 return	 the	 previous	 interval	 value.	 The	 default	 value	 is
200	msec,	or	one	fifth	of	a	second.

curses.mousemask(mousemask)
Set	 the	 mouse	 events	 to	 be	 reported,	 and	 return	 a	 tuple
(availmask,	 oldmask).	 availmask	 indicates	 which	 of	 the
specified	 mouse	 events	 can	 be	 reported;	 on	 complete	 failure	 it
returns	 0.	 oldmask	 is	 the	 previous	 value	 of	 the	 given	 window’s
mouse	 event	 mask.	 If	 this	 function	 is	 never	 called,	 no	 mouse
events	are	ever	reported.

curses.napms(ms)
Sleep	for	ms	milliseconds.

curses.newpad(nlines,	ncols)
Create	 and	 return	 a	 pointer	 to	 a	 new	pad	data	 structure	with	 the
given	number	of	lines	and	columns.	A	pad	is	returned	as	a	window
object.

A	pad	is	like	a	window,	except	that	it	is	not	restricted	by	the	screen
size,	and	is	not	necessarily	associated	with	a	particular	part	of	the
screen.	Pads	 can	 be	 used	when	 a	 large	window	 is	 needed,	 and
only	 a	 part	 of	 the	 window	 will	 be	 on	 the	 screen	 at	 one	 time.
Automatic	refreshes	of	pads	(such	as	 from	scrolling	or	echoing	of
input)	 do	 not	 occur.	 The	 refresh()	 and	 noutrefresh()
methods	 of	 a	 pad	 require	 6	 arguments	 to	 specify	 the	 part	 of	 the
pad	to	be	displayed	and	the	location	on	the	screen	to	be	used	for
the	 display.	 The	 arguments	 are	 pminrow,	 pmincol,	 sminrow,
smincol,	smaxrow,	smaxcol;	the	p	arguments	refer	to	the	upper	left

corner	 of	 the	 pad	 region	 to	 be	 displayed	 and	 the	 s	 arguments
define	a	clipping	box	on	the	screen	within	which	the	pad	region	is
to	be	displayed.

curses.newwin(nlines,	ncols)
curses.newwin(nlines,	ncols,	begin_y,	begin_x)

Return	 a	 new	window,	whose	 left-upper	 corner	 is	 at	 (begin_y,
begin_x),	and	whose	height/width	is	nlines/ncols.

By	default,	the	window	will	extend	from	the	specified	position	to	the
lower	right	corner	of	the	screen.

curses.nl()
Enter	 newline	 mode.	 This	 mode	 translates	 the	 return	 key	 into
newline	on	 input,	 and	 translates	newline	 into	 return	and	 line-feed
on	output.	Newline	mode	is	initially	on.

curses.nocbreak()
Leave	 cbreak	 mode.	 Return	 to	 normal	 “cooked”	 mode	 with	 line
buffering.

curses.noecho()
Leave	echo	mode.	Echoing	of	input	characters	is	turned	off.

curses.nonl()
Leave	newline	mode.	Disable	 translation	of	 return	 into	newline	on
input,	 and	 disable	 low-level	 translation	 of	 newline	 into
newline/return	on	output	(but	this	does	not	change	the	behavior	of
addch('\n'),	 which	 always	 does	 the	 equivalent	 of	 return	 and
line	 feed	 on	 the	 virtual	 screen).	 With	 translation	 off,	 curses	 can
sometimes	speed	up	vertical	motion	a	 little;	also,	 it	will	be	able	 to
detect	the	return	key	on	input.

curses.noqiflush()
When	the	noqiflush()	routine	is	used,	normal	flush	of	input	and
output	 queues	 associated	 with	 the	 INTR,	 QUIT	 and	 SUSP
characters	will	not	be	done.	You	may	want	to	call	noqiflush()	in
a	 signal	 handler	 if	 you	 want	 output	 to	 continue	 as	 though	 the
interrupt	had	not	occurred,	after	the	handler	exits.

curses.noraw()
Leave	 raw	 mode.	 Return	 to	 normal	 “cooked”	 mode	 with	 line
buffering.

curses.pair_content(pair_number)
Return	a	 tuple	(fg,	bg)	containing	 the	colors	 for	 the	 requested
color	 pair.	 The	 value	 of	 pair_number	 must	 be	 between	 1	 and
COLOR_PAIRS	-	1.

curses.pair_number(attr)
Return	the	number	of	 the	color-pair	set	by	the	attribute	value	attr.
color_pair()	is	the	counterpart	to	this	function.

curses.putp(string)
Equivalent	 to	 tputs(str,	1,	 putchar);	 emit	 the	 value	 of	 a
specified	 terminfo	capability	 for	 the	current	 terminal.	Note	 that	 the
output	of	putp()	always	goes	to	standard	output.

curses.qiflush([flag])
If	flag	is	False,	the	effect	is	the	same	as	calling	noqiflush().	If
flag	 is	 True,	 or	 no	 argument	 is	 provided,	 the	 queues	 will	 be
flushed	when	these	control	characters	are	read.

curses.raw()

Enter	raw	mode.	In	raw	mode,	normal	line	buffering	and	processing
of	 interrupt,	 quit,	 suspend,	 and	 flow	 control	 keys	 are	 turned	 off;
characters	are	presented	to	curses	input	functions	one	by	one.

curses.reset_prog_mode()
Restore	 the	 terminal	 to	 “program”	mode,	 as	 previously	 saved	 by
def_prog_mode().

curses.reset_shell_mode()
Restore	 the	 terminal	 to	 “shell”	 mode,	 as	 previously	 saved	 by
def_shell_mode().

curses.resetty()
Restore	 the	state	of	 the	 terminal	modes	 to	what	 it	was	at	 the	 last
call	to	savetty().

curses.resize_term(nlines,	ncols)
Backend	function	used	by	resizeterm(),	performing	most	of	the
work;	when	resizing	the	windows,	resize_term()	blank-fills	 the
areas	that	are	extended.	The	calling	application	should	fill	in	these
areas	 with	 appropriate	 data.	 The	 resize_term()	 function
attempts	 to	 resize	 all	 windows.	 However,	 due	 to	 the	 calling
convention	 of	 pads,	 it	 is	 not	 possible	 to	 resize	 these	 without
additional	interaction	with	the	application.

curses.resizeterm(nlines,	ncols)
Resize	 the	 standard	 and	 current	 windows	 to	 the	 specified
dimensions,	 and	 adjusts	 other	 bookkeeping	 data	 used	 by	 the
curses	library	that	record	the	window	dimensions	(in	particular	the
SIGWINCH	handler).

curses.savetty()

Save	the	current	state	of	the	terminal	modes	in	a	buffer,	usable	by
resetty().

curses.setsyx(y,	x)
Set	 the	 virtual	 screen	 cursor	 to	y,	x.	 If	y	 and	x	 are	 both	 -1,	 then
leaveok	is	set.

curses.setupterm([termstr,	fd])
Initialize	the	terminal.	termstr	is	a	string	giving	the	terminal	name;	if
omitted,	 the	value	of	 the	TERM	environment	variable	will	be	used.
fd	is	the	file	descriptor	to	which	any	initialization	sequences	will	be
sent;	 if	 not	 supplied,	 the	 file	 descriptor	 for	 sys.stdout	 will	 be
used.

curses.start_color()
Must	be	called	if	 the	programmer	wants	to	use	colors,	and	before
any	other	color	manipulation	routine	is	called.	It	is	good	practice	to
call	this	routine	right	after	initscr().

start_color()	 initializes	 eight	 basic	 colors	 (black,	 red,	 green,
yellow,	blue,	magenta,	cyan,	and	white),	and	two	global	variables	in
the	curses	module,	COLORS	and	COLOR_PAIRS,	 containing	 the
maximum	 number	 of	 colors	 and	 color-pairs	 the	 terminal	 can
support.	 It	 also	 restores	 the	 colors	 on	 the	 terminal	 to	 the	 values
they	had	when	the	terminal	was	just	turned	on.

curses.termattrs()
Return	 a	 logical	 OR	 of	 all	 video	 attributes	 supported	 by	 the
terminal.	This	 information	 is	useful	when	a	curses	program	needs
complete	control	over	the	appearance	of	the	screen.

curses.termname()

Return	the	value	of	the	environment	variable	TERM,	truncated	to	14
characters.

curses.tigetflag(capname)
Return	 the	 value	 of	 the	 Boolean	 capability	 corresponding	 to	 the
terminfo	 capability	 name	 capname.	 The	 value	 -1	 is	 returned	 if
capname	is	not	a	Boolean	capability,	or	0	if	it	is	canceled	or	absent
from	the	terminal	description.

curses.tigetnum(capname)
Return	 the	 value	 of	 the	 numeric	 capability	 corresponding	 to	 the
terminfo	 capability	 name	 capname.	 The	 value	 -2	 is	 returned	 if
capname	 is	 not	 a	 numeric	 capability,	 or	 -1	 if	 it	 is	 canceled	 or
absent	from	the	terminal	description.

curses.tigetstr(capname)
Return	 the	 value	 of	 the	 string	 capability	 corresponding	 to	 the
terminfo	capability	name	capname.	None	is	returned	if	capname	is
not	 a	 string	 capability,	 or	 is	 canceled	or	 absent	 from	 the	 terminal
description.

curses.tparm(str[,	...])
Instantiate	 the	 string	 str	 with	 the	 supplied	 parameters,	 where	 str
should	 be	 a	 parameterized	 string	 obtained	 from	 the	 terminfo
database.	E.g.	tparm(tigetstr("cup"),	5,	3)	 could	 result
in	b'\033[6;4H',	the	exact	result	depending	on	terminal	type.

curses.typeahead(fd)
Specify	that	the	file	descriptor	fd	be	used	for	typeahead	checking.	If
fd	is	-1,	then	no	typeahead	checking	is	done.

The	curses	 library	does	“line-breakout	optimization”	by	 looking	 for

typeahead	periodically	while	updating	the	screen.	If	input	is	found,
and	 it	 is	 coming	 from	a	 tty,	 the	 current	 update	 is	 postponed	until
refresh	 or	 doupdate	 is	 called	 again,	 allowing	 faster	 response	 to
commands	 typed	 in	 advance.	 This	 function	 allows	 specifying	 a
different	file	descriptor	for	typeahead	checking.

curses.unctrl(ch)
Return	a	string	which	is	a	printable	representation	of	the	character
ch.	 Control	 characters	 are	 displayed	 as	 a	 caret	 followed	 by	 the
character,	 for	example	as	^C.	Printing	characters	are	 left	as	 they
are.

curses.ungetch(ch)
Push	ch	so	the	next	getch()	will	return	it.

Note: 	Only	one	ch	can	be	pushed	before	getch()	is	called.

curses.unget_wch(ch)
Push	ch	so	the	next	get_wch()	will	return	it.

Note: 	Only	one	ch	can	be	pushed	before	get_wch()	is	called.

New	in	version	3.3.

curses.ungetmouse(id,	x,	y,	z,	bstate)
Push	 a	 KEY_MOUSE	 event	 onto	 the	 input	 queue,	 associating	 the
given	state	data	with	it.

curses.use_env(flag)
If	 used,	 this	 function	 should	 be	 called	 before	 initscr()	 or
newterm	are	called.	When	 flag	 is	False,	 the	 values	of	 lines	and
columns	 specified	 in	 the	 terminfo	 database	 will	 be	 used,	 even	 if

environment	variables	LINES	and	COLUMNS	(used	by	default)	are
set,	 or	 if	 curses	 is	 running	 in	 a	 window	 (in	 which	 case	 default
behavior	would	be	to	use	the	window	size	if	LINES	and	COLUMNS
are	not	set).

curses.use_default_colors()
Allow	use	of	default	values	 for	colors	on	 terminals	supporting	 this
feature.	Use	 this	 to	support	 transparency	 in	your	application.	The
default	 color	 is	assigned	 to	 the	color	number	 -1.	After	 calling	 this
function,	 init_pair(x,	curses.COLOR_RED,	-1)	 initializes,
for	 instance,	 color	 pair	x	 to	 a	 red	 foreground	color	 on	 the	default
background.

curses.wrapper(func,	...)
Initialize	curses	and	call	another	callable	object,	func,	which	should
be	 the	 rest	 of	 your	 curses-using	 application.	 If	 the	 application
raises	an	exception,	this	function	will	restore	the	terminal	to	a	sane
state	 before	 re-raising	 the	 exception	 and	 generating	 a	 traceback.
The	callable	object	func	is	then	passed	the	main	window	‘stdscr’	as
its	 first	 argument,	 followed	 by	 any	 other	 arguments	 passed	 to
wrapper().	 Before	 calling	 func,	 wrapper()	 turns	 on	 cbreak
mode,	 turns	off	echo,	enables	 the	 terminal	keypad,	and	 initializes
colors	 if	 the	terminal	has	color	support.	On	exit	 (whether	normally
or	 by	 exception)	 it	 restores	 cooked	 mode,	 turns	 on	 echo,	 and
disables	the	terminal	keypad.

16.11.2.	Window	Objects

Window	objects,	 as	 returned	by	 initscr()	 and	 newwin()	 above,
have	the	following	methods	and	attributes:

window.addch(ch[,	attr])
window.addch(y,	x,	ch[,	attr])

Note: 	A	character	means	a	C	character	(an	ASCII	code),	rather
than	a	Python	character	(a	string	of	 length	1).	 (This	note	 is	 true
whenever	 the	documentation	mentions	a	character.)	The	built-in
ord()	is	handy	for	conveying	strings	to	codes.

Paint	character	ch	at	(y,	x)	with	attributes	attr,	overwriting	any
character	 previously	 painter	 at	 that	 location.	 By	 default,	 the
character	 position	 and	 attributes	 are	 the	 current	 settings	 for	 the
window	object.

window.addnstr(str,	n[,	attr])
window.addnstr(y,	x,	str,	n[,	attr])

Paint	 at	 most	 n	 characters	 of	 the	 string	 str	 at	 (y,	 x)	 with
attributes	attr,	overwriting	anything	previously	on	the	display.

window.addstr(str[,	attr])
window.addstr(y,	x,	str[,	attr])

Paint	 the	 string	 str	 at	 (y,	 x)	 with	 attributes	 attr,	 overwriting
anything	previously	on	the	display.

window.attroff(attr)
Remove	 attribute	 attr	 from	 the	 “background”	 set	 applied	 to	 all
writes	to	the	current	window.

window.attron(attr)
Add	attribute	attr	from	the	“background”	set	applied	to	all	writes	to
the	current	window.

window.attrset(attr)
Set	 the	 “background”	set	of	attributes	 to	attr.	This	set	 is	 initially	0
(no	attributes).

window.bkgd(ch[,	attr])
Set	 the	 background	 property	 of	 the	 window	 to	 the	 character	 ch,
with	attributes	attr.	The	change	 is	 then	applied	 to	every	character
position	in	that	window:

The	attribute	of	every	 character	 in	 the	window	 is	 changed	 to
the	new	background	attribute.
Wherever	 the	 former	 background	 character	 appears,	 it	 is
changed	to	the	new	background	character.

window.bkgdset(ch[,	attr])
Set	the	window’s	background.	A	window’s	background	consists	of	a
character	 and	 any	 combination	 of	 attributes.	 The	 attribute	 part	 of
the	background	is	combined	(OR’ed)	with	all	non-blank	characters
that	 are	written	 into	 the	window.	Both	 the	 character	 and	 attribute
parts	 of	 the	 background	 are	 combined	with	 the	 blank	 characters.
The	background	becomes	a	property	of	 the	character	and	moves
with	 the	 character	 through	 any	 scrolling	 and	 insert/delete
line/character	operations.

window.border([ls[,	rs[,	ts[,	bs[,	tl[,	tr[,	bl[,	br]]]]]]]])
Draw	a	border	 around	 the	edges	of	 the	window.	Each	parameter
specifies	the	character	to	use	for	a	specific	part	of	the	border;	see
the	 table	below	 for	more	details.	The	characters	can	be	specified

as	integers	or	as	one-character	strings.

Note: 	 A	 0	 value	 for	 any	 parameter	 will	 cause	 the	 default
character	to	be	used	for	that	parameter.	Keyword	parameters	can
not	be	used.	The	defaults	are	listed	in	this	table:

Parameter Description Default	value

ls Left	side ACS_VLINE

rs Right	side ACS_VLINE

ts Top ACS_HLINE

bs Bottom ACS_HLINE

tl Upper-left	corner ACS_ULCORNER

tr Upper-right	corner ACS_URCORNER

bl Bottom-left	corner ACS_LLCORNER

br Bottom-right	corner ACS_LRCORNER

window.box([vertch,	horch])
Similar	to	border(),	but	both	ls	and	rs	are	vertch	and	both	ts	and
bs	 are	 horch.	 The	 default	 corner	 characters	 are	 always	 used	 by
this	function.

window.chgat(attr)
window.chgat(num,	attr)
window.chgat(y,	x,	attr)
window.chgat(y,	x,	num,	attr)

Set	the	attributes	of	num	characters	at	the	current	cursor	position,
or	at	 position	 (y,	x)	 if	 supplied.	 If	 no	 value	 of	num	 is	 given	 or
num	=	-1,	the	attribute	will	be	set	on	all	the	characters	to	the	end	of
the	line.	This	function	does	not	move	the	cursor.	The	changed	line

will	 be	 touched	 using	 the	 touchline()	 method	 so	 that	 the
contents	will	be	redisplayed	by	the	next	window	refresh.

window.clear()
Like	erase(),	 but	also	cause	 the	whole	window	 to	be	 repainted
upon	next	call	to	refresh().

window.clearok(yes)
If	 yes	 is	 1,	 the	 next	 call	 to	 refresh()	 will	 clear	 the	 window
completely.

window.clrtobot()
Erase	 from	 cursor	 to	 the	 end	 of	 the	 window:	 all	 lines	 below	 the
cursor	 are	 deleted,	 and	 then	 the	 equivalent	 of	 clrtoeol()	 is
performed.

window.clrtoeol()
Erase	from	cursor	to	the	end	of	the	line.

window.cursyncup()
Update	 the	 current	 cursor	 position	 of	 all	 the	 ancestors	 of	 the
window	to	reflect	the	current	cursor	position	of	the	window.

window.delch([y,	x])
Delete	any	character	at	(y,	x).

window.deleteln()
Delete	the	line	under	the	cursor.	All	following	lines	are	moved	up	by
one	line.

window.derwin(begin_y,	begin_x)
window.derwin(nlines,	ncols,	begin_y,	begin_x)

An	 abbreviation	 for	 “derive	 window”,	 derwin()	 is	 the	 same	 as
calling	subwin(),	except	that	begin_y	and	begin_x	are	relative	to
the	origin	of	 the	window,	 rather	 than	 relative	 to	 the	entire	screen.
Return	a	window	object	for	the	derived	window.

window.echochar(ch[,	attr])
Add	 character	 ch	 with	 attribute	 attr,	 and	 immediately	 call
refresh()	on	the	window.

window.enclose(y,	x)
Test	 whether	 the	 given	 pair	 of	 screen-relative	 character-cell
coordinates	are	enclosed	by	 the	given	window,	 returning	True	or
False.	 It	 is	 useful	 for	 determining	 what	 subset	 of	 the	 screen
windows	enclose	the	location	of	a	mouse	event.

window.encoding

Encoding	used	to	encode	method	arguments	(Unicode	strings	and
characters).	 The	 encoding	 attribute	 is	 inherited	 from	 the	 parent
window	 when	 a	 subwindow	 is	 created,	 for	 example	 with
window.subwin().	By	default,	 the	 locale	encoding	 is	used	(see
locale.getpreferredencoding()).

New	in	version	3.3.

window.erase()
Clear	the	window.

window.getbegyx()
Return	a	tuple	(y,	x)	of	co-ordinates	of	upper-left	corner.

window.getbkgd()
Return	 the	 given	window’s	 current	 background	 character/attribute

pair.

window.getch([y,	x])
Get	a	character.	Note	that	the	integer	returned	does	not	have	to	be
in	 ASCII	 range:	 function	 keys,	 keypad	 keys	 and	 so	 on	 return
numbers	higher	than	256.	In	no-delay	mode,	-1	is	returned	if	there
is	no	input,	else	getch()	waits	until	a	key	is	pressed.

window.get_wch([y,	x])
Get	 a	 wide	 character.	 Return	 a	 character	 for	 most	 keys,	 or	 an
integer	for	function	keys,	keypad	keys,	and	other	special	keys.

New	in	version	3.3.

window.getkey([y,	x])
Get	 a	 character,	 returning	 a	 string	 instead	 of	 an	 integer,	 as
getch()	does.	Function	keys,	keypad	keys	and	other	special	keys
return	 a	 multibyte	 string	 containing	 the	 key	 name.	 In	 no-delay
mode,	an	exception	is	raised	if	there	is	no	input.

window.getmaxyx()
Return	a	tuple	(y,	x)	of	the	height	and	width	of	the	window.

window.getparyx()
Return	 the	 beginning	 coordinates	 of	 this	 window	 relative	 to	 its
parent	window	into	two	integer	variables	y	and	x.	Return	-1,	-1	if
this	window	has	no	parent.

window.getstr([y,	x])
Read	a	string	from	the	user,	with	primitive	line	editing	capacity.

window.getyx()

Return	 a	 tuple	 (y,	x)	 of	 current	 cursor	 position	 relative	 to	 the
window’s	upper-left	corner.

window.hline(ch,	n)
window.hline(y,	x,	ch,	n)

Display	a	horizontal	line	starting	at	(y,	x)	with	length	n	consisting
of	the	character	ch.

window.idcok(flag)
If	 flag	 is	 False,	 curses	 no	 longer	 considers	 using	 the	 hardware
insert/delete	character	 feature	of	 the	terminal;	 if	 flag	 is	True,	use
of	character	insertion	and	deletion	is	enabled.	When	curses	is	first
initialized,	use	of	character	insert/delete	is	enabled	by	default.

window.idlok(yes)
If	called	with	yes	equal	to	1,	curses	will	try	and	use	hardware	line
editing	facilities.	Otherwise,	line	insertion/deletion	are	disabled.

window.immedok(flag)
If	 flag	 is	 True,	 any	 change	 in	 the	 window	 image	 automatically
causes	 the	 window	 to	 be	 refreshed;	 you	 no	 longer	 have	 to	 call
refresh()	 yourself.	 However,	 it	 may	 degrade	 performance
considerably,	 due	 to	 repeated	 calls	 to	 wrefresh.	 This	 option	 is
disabled	by	default.

window.inch([y,	x])
Return	 the	 character	 at	 the	 given	 position	 in	 the	 window.	 The
bottom	 8	 bits	 are	 the	 character	 proper,	 and	 upper	 bits	 are	 the
attributes.

window.insch(ch[,	attr])
window.insch(y,	x,	ch[,	attr])

Paint	character	ch	at	(y,	x)	with	attributes	attr,	moving	 the	 line
from	position	x	right	by	one	character.

window.insdelln(nlines)
Insert	nlines	lines	into	the	specified	window	above	the	current	line.
The	nlines	bottom	lines	are	lost.	For	negative	nlines,	delete	nlines
lines	 starting	 with	 the	 one	 under	 the	 cursor,	 and	 move	 the
remaining	 lines	 up.	 The	 bottom	 nlines	 lines	 are	 cleared.	 The
current	cursor	position	remains	the	same.

window.insertln()
Insert	a	blank	 line	under	 the	cursor.	All	 following	 lines	are	moved
down	by	one	line.

window.insnstr(str,	n[,	attr])
window.insnstr(y,	x,	str,	n[,	attr])

Insert	a	character	string	(as	many	characters	as	will	fit	on	the	line)
before	 the	 character	 under	 the	 cursor,	 up	 to	n	 characters.	 If	n	 is
zero	or	negative,	the	entire	string	is	 inserted.	All	characters	to	the
right	of	the	cursor	are	shifted	right,	with	the	rightmost	characters	on
the	 line	 being	 lost.	 The	 cursor	 position	 does	 not	 change	 (after
moving	to	y,	x,	if	specified).

window.insstr(str[,	attr])
window.insstr(y,	x,	str[,	attr])

Insert	a	character	string	(as	many	characters	as	will	fit	on	the	line)
before	the	character	under	the	cursor.	All	characters	to	the	right	of
the	 cursor	 are	 shifted	 right,	 with	 the	 rightmost	 characters	 on	 the
line	being	lost.	The	cursor	position	does	not	change	(after	moving
to	y,	x,	if	specified).

window.instr([n])
window.instr(y,	x[,	n])

Return	a	string	of	characters,	extracted	from	the	window	starting	at
the	 current	 cursor	 position,	 or	 at	 y,	 x	 if	 specified.	 Attributes	 are
stripped	 from	 the	characters.	 If	n	 is	specified,	instr()	 returns	a
string	at	most	n	characters	long	(exclusive	of	the	trailing	NUL).

window.is_linetouched(line)
Return	True	if	the	specified	line	was	modified	since	the	last	call	to
refresh();	 otherwise	 return	 False.	 Raise	 a	 curses.error
exception	if	line	is	not	valid	for	the	given	window.

window.is_wintouched()
Return	 True	 if	 the	 specified	window	was	modified	 since	 the	 last
call	to	refresh();	otherwise	return	False.

window.keypad(yes)
If	yes	 is	 1,	 escape	 sequences	 generated	 by	 some	 keys	 (keypad,
function	 keys)	will	 be	 interpreted	 by	 curses.	 If	yes	 is	 0,	 escape
sequences	will	be	left	as	is	in	the	input	stream.

window.leaveok(yes)
If	yes	 is	1,	cursor	 is	 left	where	 it	 is	on	update,	 instead	of	being	at
“cursor	position.”	This	reduces	cursor	movement	where	possible.	If
possible	the	cursor	will	be	made	invisible.

If	yes	is	0,	cursor	will	always	be	at	“cursor	position”	after	an	update.

window.move(new_y,	new_x)
Move	cursor	to	(new_y,	new_x).

window.mvderwin(y,	x)

Move	 the	 window	 inside	 its	 parent	 window.	 The	 screen-relative
parameters	of	the	window	are	not	changed.	This	routine	is	used	to
display	different	 parts	 of	 the	parent	window	at	 the	 same	physical
position	on	the	screen.

window.mvwin(new_y,	new_x)
Move	the	window	so	its	upper-left	corner	is	at	(new_y,	new_x).

window.nodelay(yes)
If	yes	is	1,	getch()	will	be	non-blocking.

window.notimeout(yes)
If	yes	is	1,	escape	sequences	will	not	be	timed	out.

If	yes	is	0,	after	a	few	milliseconds,	an	escape	sequence	will	not	be
interpreted,	and	will	be	left	in	the	input	stream	as	is.

window.noutrefresh()
Mark	for	refresh	but	wait.	This	function	updates	the	data	structure
representing	the	desired	state	of	the	window,	but	does	not	force	an
update	 of	 the	 physical	 screen.	 To	 accomplish	 that,	 call
doupdate().

window.overlay(destwin[,	sminrow,	smincol,	dminrow,	dmincol,
dmaxrow,	dmaxcol])

Overlay	 the	window	on	 top	of	destwin.	The	windows	need	not	be
the	same	size,	only	the	overlapping	region	is	copied.	This	copy	is
non-destructive,	 which	 means	 that	 the	 current	 background
character	does	not	overwrite	the	old	contents	of	destwin.

To	get	fine-grained	control	over	the	copied	region,	the	second	form
of	overlay()	can	be	used.	sminrow	and	smincol	are	 the	upper-

left	coordinates	of	the	source	window,	and	the	other	variables	mark
a	rectangle	in	the	destination	window.

window.overwrite(destwin[,	sminrow,	smincol,	dminrow,
dmincol,	dmaxrow,	dmaxcol])

Overwrite	the	window	on	top	of	destwin.	The	windows	need	not	be
the	same	size,	in	which	case	only	the	overlapping	region	is	copied.
This	copy	is	destructive,	which	means	that	the	current	background
character	overwrites	the	old	contents	of	destwin.

To	get	fine-grained	control	over	the	copied	region,	the	second	form
of	 overwrite()	 can	 be	 used.	 sminrow	 and	 smincol	 are	 the
upper-left	 coordinates	 of	 the	 source	 window,	 the	 other	 variables
mark	a	rectangle	in	the	destination	window.

window.putwin(file)
Write	 all	 data	 associated	 with	 the	 window	 into	 the	 provided	 file
object.	This	information	can	be	later	retrieved	using	the	getwin()
function.

window.redrawln(beg,	num)
Indicate	 that	 the	 num	 screen	 lines,	 starting	 at	 line	 beg,	 are
corrupted	 and	 should	 be	 completely	 redrawn	 on	 the	 next
refresh()	call.

window.redrawwin()
Touch	 the	 entire	window,	 causing	 it	 to	 be	 completely	 redrawn	 on
the	next	refresh()	call.

window.refresh([pminrow,	pmincol,	sminrow,	smincol,	smaxrow,
smaxcol])

Update	 the	display	 immediately	 (sync	actual	screen	with	previous

drawing/deleting	methods).

The	6	optional	arguments	can	only	be	specified	when	the	window
is	 a	 pad	 created	 with	 newpad().	 The	 additional	 parameters	 are
needed	 to	 indicate	what	part	of	 the	pad	and	screen	are	 involved.
pminrow	 and	 pmincol	 specify	 the	 upper	 left-hand	 corner	 of	 the
rectangle	 to	be	displayed	 in	 the	pad.	sminrow,	smincol,	smaxrow,
and	smaxcol	specify	the	edges	of	the	rectangle	to	be	displayed	on
the	 screen.	 The	 lower	 right-hand	 corner	 of	 the	 rectangle	 to	 be
displayed	 in	 the	 pad	 is	 calculated	 from	 the	 screen	 coordinates,
since	the	rectangles	must	be	the	same	size.	Both	rectangles	must
be	 entirely	 contained	 within	 their	 respective	 structures.	 Negative
values	of	pminrow,	pmincol,	sminrow,	or	smincol	are	 treated	as	 if
they	were	zero.

window.resize(nlines,	ncols)
Reallocate	storage	for	a	curses	window	to	adjust	its	dimensions	to
the	specified	values.	 If	either	dimension	 is	 larger	 than	 the	current
values,	the	window’s	data	is	filled	with	blanks	that	have	the	current
background	rendition	(as	set	by	bkgdset())	merged	into	them.

window.scroll([lines=1])
Scroll	the	screen	or	scrolling	region	upward	by	lines	lines.

window.scrollok(flag)
Control	what	happens	when	 the	cursor	of	a	window	 is	moved	off
the	edge	of	 the	window	or	scrolling	 region,	either	as	a	 result	of	a
newline	action	on	the	bottom	line,	or	typing	the	last	character	of	the
last	line.	If	flag	is	false,	the	cursor	is	left	on	the	bottom	line.	If	flag	is
true,	 the	window	 is	scrolled	up	one	 line.	Note	 that	 in	order	 to	get
the	physical	scrolling	effect	on	the	terminal,	it	 is	also	necessary	to
call	idlok().

window.setscrreg(top,	bottom)
Set	 the	 scrolling	 region	 from	 line	 top	 to	 line	 bottom.	 All	 scrolling
actions	will	take	place	in	this	region.

window.standend()
Turn	off	the	standout	attribute.	On	some	terminals	this	has	the	side
effect	of	turning	off	all	attributes.

window.standout()
Turn	on	attribute	A_STANDOUT.

window.subpad(begin_y,	begin_x)
window.subpad(nlines,	ncols,	begin_y,	begin_x)

Return	 a	 sub-window,	 whose	 upper-left	 corner	 is	 at	 (begin_y,
begin_x),	and	whose	width/height	is	ncols/nlines.

window.subwin(begin_y,	begin_x)
window.subwin(nlines,	ncols,	begin_y,	begin_x)

Return	 a	 sub-window,	 whose	 upper-left	 corner	 is	 at	 (begin_y,
begin_x),	and	whose	width/height	is	ncols/nlines.

By	default,	 the	sub-window	will	extend	 from	the	specified	position
to	the	lower	right	corner	of	the	window.

window.syncdown()
Touch	each	location	in	the	window	that	has	been	touched	in	any	of
its	ancestor	windows.	This	 routine	 is	 called	by	 refresh(),	 so	 it
should	almost	never	be	necessary	to	call	it	manually.

window.syncok(flag)
If	 called	 with	 flag	 set	 to	 True,	 then	 syncup()	 is	 called
automatically	whenever	there	is	a	change	in	the	window.

window.syncup()
Touch	 all	 locations	 in	 ancestors	 of	 the	 window	 that	 have	 been
changed	in	the	window.

window.timeout(delay)
Set	blocking	or	non-blocking	read	behavior	for	the	window.	If	delay
is	 negative,	 blocking	 read	 is	 used	 (which	 will	 wait	 indefinitely	 for
input).	If	delay	 is	zero,	 then	non-blocking	read	is	used,	and	-1	will
be	returned	by	getch()	 if	no	input	is	waiting.	If	delay	 is	positive,
then	 getch()	 will	 block	 for	 delay	 milliseconds,	 and	 return	 -1	 if
there	is	still	no	input	at	the	end	of	that	time.

window.touchline(start,	count[,	changed])
Pretend	count	 lines	have	been	changed,	starting	with	 line	start.	 If
changed	 is	 supplied,	 it	 specifies	 whether	 the	 affected	 lines	 are
marked	 as	 having	 been	 changed	 (changed=1)	 or	 unchanged
(changed=0).

window.touchwin()
Pretend	 the	 whole	 window	 has	 been	 changed,	 for	 purposes	 of
drawing	optimizations.

window.untouchwin()
Mark	 all	 lines	 in	 the	window	as	 unchanged	 since	 the	 last	 call	 to
refresh().

window.vline(ch,	n)
window.vline(y,	x,	ch,	n)

Display	a	vertical	line	starting	at	(y,	x)	with	length	n	consisting	of
the	character	ch.

16.11.3.	Constants

The	curses	module	defines	the	following	data	members:

curses.ERR

Some	 curses	 routines	 that	 return	 an	 integer,	 such	 as	 getch(),
return	ERR	upon	failure.

curses.OK

Some	 curses	 routines	 that	 return	 an	 integer,	 such	 as	 napms(),
return	OK	upon	success.

curses.version

A	 string	 representing	 the	 current	 version	 of	 the	 module.	 Also
available	as	__version__.

Several	constants	are	available	to	specify	character	cell	attributes:

Attribute Meaning

A_ALTCHARSET Alternate	character	set	mode.

A_BLINK Blink	mode.

A_BOLD Bold	mode.

A_DIM Dim	mode.

A_NORMAL Normal	attribute.

A_REVERSE
Reverse	background	and	foreground
colors.

A_STANDOUT Standout	mode.

A_UNDERLINE Underline	mode.

Keys	 are	 referred	 to	 by	 integer	 constants	 with	 names	 starting	 with
KEY_.	The	exact	keycaps	available	are	system	dependent.

Key	constant Key

KEY_MIN Minimum	key	value

KEY_BREAK Break	key	(unreliable)

KEY_DOWN Down-arrow

KEY_UP Up-arrow

KEY_LEFT Left-arrow

KEY_RIGHT Right-arrow

KEY_HOME Home	key	(upward+left	arrow)

KEY_BACKSPACE Backspace	(unreliable)

KEY_F0
Function	keys.	Up	to	64	function	keys	are
supported.

KEY_Fn Value	of	function	key	n

KEY_DL Delete	line

KEY_IL Insert	line

KEY_DC Delete	character

KEY_IC Insert	char	or	enter	insert	mode

KEY_EIC Exit	insert	char	mode

KEY_CLEAR Clear	screen

KEY_EOS Clear	to	end	of	screen

KEY_EOL Clear	to	end	of	line

KEY_SF Scroll	1	line	forward

KEY_SR Scroll	1	line	backward	(reverse)

KEY_NPAGE Next	page

KEY_PPAGE Previous	page

KEY_STAB Set	tab

KEY_CTAB Clear	tab

KEY_CATAB Clear	all	tabs

KEY_ENTER Enter	or	send	(unreliable)

KEY_SRESET Soft	(partial)	reset	(unreliable)

KEY_RESET Reset	or	hard	reset	(unreliable)

KEY_PRINT Print

KEY_LL Home	down	or	bottom	(lower	left)

KEY_A1 Upper	left	of	keypad

KEY_A3 Upper	right	of	keypad

KEY_B2 Center	of	keypad

KEY_C1 Lower	left	of	keypad

KEY_C3 Lower	right	of	keypad

KEY_BTAB Back	tab

KEY_BEG Beg	(beginning)

KEY_CANCEL Cancel

KEY_CLOSE Close

KEY_COMMAND Cmd	(command)

KEY_COPY Copy

KEY_CREATE Create

KEY_END End

KEY_EXIT Exit

KEY_FIND Find

KEY_HELP Help

KEY_MARK Mark

KEY_MESSAGE Message

KEY_MOVE Move

KEY_NEXT Next

KEY_OPEN Open

KEY_OPTIONS Options

KEY_PREVIOUS Prev	(previous)

KEY_REDO Redo

KEY_REFERENCE Ref	(reference)

KEY_REFRESH Refresh

KEY_REPLACE Replace

KEY_RESTART Restart

KEY_RESUME Resume

KEY_SAVE Save

KEY_SBEG Shifted	Beg	(beginning)

KEY_SCANCEL Shifted	Cancel

KEY_SCOMMAND Shifted	Command

KEY_SCOPY Shifted	Copy

KEY_SCREATE Shifted	Create

KEY_SDC Shifted	Delete	char

KEY_SDL Shifted	Delete	line

KEY_SELECT Select

KEY_SEND Shifted	End

KEY_SEOL Shifted	Clear	line

KEY_SEXIT Shifted	Dxit

KEY_SFIND Shifted	Find

KEY_SHELP Shifted	Help

KEY_SHOME Shifted	Home

KEY_SIC Shifted	Input

KEY_SLEFT Shifted	Left	arrow

KEY_SMESSAGE Shifted	Message

KEY_SMOVE Shifted	Move

KEY_SNEXT Shifted	Next

KEY_SOPTIONS Shifted	Options

KEY_SPREVIOUS Shifted	Prev

KEY_SPRINT Shifted	Print

KEY_SREDO Shifted	Redo

KEY_SREPLACE Shifted	Replace

KEY_SRIGHT Shifted	Right	arrow

KEY_SRSUME Shifted	Resume

KEY_SSAVE Shifted	Save

KEY_SSUSPEND Shifted	Suspend

KEY_SUNDO Shifted	Undo

KEY_SUSPEND Suspend

KEY_UNDO Undo

KEY_MOUSE Mouse	event	has	occurred

KEY_RESIZE Terminal	resize	event

KEY_MAX Maximum	key	value

On	 VT100s	 and	 their	 software	 emulations,	 such	 as	 X	 terminal
emulators,	 there	 are	 normally	 at	 least	 four	 function	 keys	 (KEY_F1,

KEY_F2,	KEY_F3,	KEY_F4)	available,	and	the	arrow	keys	mapped	to
KEY_UP,	KEY_DOWN,	KEY_LEFT	and	KEY_RIGHT	in	the	obvious	way.
If	your	machine	has	a	PC	keyboard,	it	is	safe	to	expect	arrow	keys	and
twelve	function	keys	(older	PC	keyboards	may	have	only	ten	function
keys);	also,	the	following	keypad	mappings	are	standard:

Keycap Constant

Insert KEY_IC

Delete KEY_DC

Home KEY_HOME

End KEY_END

Page	Up KEY_NPAGE

Page	Down KEY_PPAGE

The	 following	 table	 lists	 characters	 from	 the	 alternate	 character	 set.
These	 are	 inherited	 from	 the	 VT100	 terminal,	 and	 will	 generally	 be
available	on	software	emulations	such	as	X	 terminals.	When	there	 is
no	 graphic	 available,	 curses	 falls	 back	 on	 a	 crude	 printable	 ASCII
approximation.

Note: 	These	are	available	only	after	initscr()	has	been	called.

ACS	code Meaning

ACS_BBSS alternate	name	for	upper	right	corner

ACS_BLOCK solid	square	block

ACS_BOARD board	of	squares

ACS_BSBS alternate	name	for	horizontal	line

ACS_BSSB alternate	name	for	upper	left	corner

ACS_BSSS alternate	name	for	top	tee

ACS_BTEE bottom	tee

ACS_BULLET bullet

ACS_CKBOARD checker	board	(stipple)

ACS_DARROW arrow	pointing	down

ACS_DEGREE degree	symbol

ACS_DIAMOND diamond

ACS_GEQUAL greater-than-or-equal-to

ACS_HLINE horizontal	line

ACS_LANTERN lantern	symbol

ACS_LARROW left	arrow

ACS_LEQUAL less-than-or-equal-to

ACS_LLCORNER lower	left-hand	corner

ACS_LRCORNER lower	right-hand	corner

ACS_LTEE left	tee

ACS_NEQUAL not-equal	sign

ACS_PI letter	pi

ACS_PLMINUS plus-or-minus	sign

ACS_PLUS big	plus	sign

ACS_RARROW right	arrow

ACS_RTEE right	tee

ACS_S1 scan	line	1

ACS_S3 scan	line	3

ACS_S7 scan	line	7

ACS_S9 scan	line	9

ACS_SBBS alternate	name	for	lower	right	corner

ACS_SBSB alternate	name	for	vertical	line

ACS_SBSS alternate	name	for	right	tee

ACS_SSBB alternate	name	for	lower	left	corner

ACS_SSBS alternate	name	for	bottom	tee

ACS_SSSB alternate	name	for	left	tee

ACS_SSSS alternate	name	for	crossover	or	big	plus

ACS_STERLING pound	sterling

ACS_TTEE top	tee

ACS_UARROW up	arrow

ACS_ULCORNER upper	left	corner

ACS_URCORNER upper	right	corner

ACS_VLINE vertical	line

The	following	table	lists	the	predefined	colors:

Constant Color

COLOR_BLACK Black

COLOR_BLUE Blue

COLOR_CYAN Cyan	(light	greenish	blue)

COLOR_GREEN Green

COLOR_MAGENTA Magenta	(purplish	red)

COLOR_RED Red

COLOR_WHITE White

COLOR_YELLOW Yellow

16.12.	curses.textpad	—	Text
input	widget	for	curses	programs
The	 curses.textpad	 module	 provides	 a	 Textbox	 class	 that
handles	elementary	text	editing	in	a	curses	window,	supporting	a	set	of
keybindings	 resembling	 those	 of	 Emacs	 (thus,	 also	 of	 Netscape
Navigator,	 BBedit	 6.x,	 FrameMaker,	 and	many	 other	 programs).	 The
module	also	provides	a	 rectangle-drawing	 function	useful	 for	 framing
text	boxes	or	for	other	purposes.

The	module	curses.textpad	defines	the	following	function:

curses.textpad.rectangle(win,	uly,	ulx,	lry,	lrx)
Draw	a	rectangle.	The	first	argument	must	be	a	window	object;	the
remaining	arguments	are	coordinates	relative	 to	 that	window.	The
second	 and	 third	 arguments	 are	 the	 y	 and	 x	 coordinates	 of	 the
upper	left	hand	corner	of	the	rectangle	to	be	drawn;	the	fourth	and
fifth	arguments	are	the	y	and	x	coordinates	of	the	lower	right	hand
corner.	 The	 rectangle	 will	 be	 drawn	 using	 VT100/IBM	 PC	 forms
characters	 on	 terminals	 that	 make	 this	 possible	 (including	 xterm
and	most	 other	 software	 terminal	 emulators).	Otherwise	 it	will	 be
drawn	with	ASCII	dashes,	vertical	bars,	and	plus	signs.

16.12.1.	Textbox	objects

You	can	instantiate	a	Textbox	object	as	follows:

class	curses.textpad.Textbox(win)
Return	 a	 textbox	 widget	 object.	 The	win	 argument	 should	 be	 a
curses	 WindowObject	 in	 which	 the	 textbox	 is	 to	 be	 contained.
The	 edit	 cursor	 of	 the	 textbox	 is	 initially	 located	 at	 the	 upper	 left
hand	 corner	 of	 the	 containing	window,	with	 coordinates	 (0,	0).
The	instance’s	stripspaces	flag	is	initially	on.

Textbox	objects	have	the	following	methods:

edit([validator])
This	 is	 the	entry	point	you	will	normally	use.	 It	accepts	editing
keystrokes	until	one	of	the	termination	keystrokes	is	entered.	If
validator	 is	 supplied,	 it	must	be	a	 function.	 It	will	 be	called	 for
each	 keystroke	 entered	 with	 the	 keystroke	 as	 a	 parameter;
command	dispatch	 is	done	on	 the	 result.	This	method	 returns
the	window	contents	as	a	string;	whether	blanks	in	the	window
are	included	is	affected	by	the	stripspaces	attribute.

do_command(ch)
Process	a	single	command	keystroke.	Here	are	 the	supported
special	keystrokes:

Keystroke Action

Control-A Go	to	left	edge	of	window.

Control-B
Cursor	left,	wrapping	to	previous	line	if
appropriate.

Control-D Delete	character	under	cursor.

Control-E
Go	to	right	edge	(stripspaces	off)	or	end
of	line	(stripspaces	on).

Control-F
Cursor	right,	wrapping	to	next	line	when
appropriate.

Control-G Terminate,	returning	the	window	contents.

Control-H Delete	character	backward.

Control-J
Terminate	if	the	window	is	1	line,
otherwise	insert	newline.

Control-K
If	line	is	blank,	delete	it,	otherwise	clear	to
end	of	line.

Control-L Refresh	screen.

Control-N Cursor	down;	move	down	one	line.

Control-O Insert	a	blank	line	at	cursor	location.

Control-P Cursor	up;	move	up	one	line.

Move	operations	do	nothing	 if	 the	cursor	 is	at	an	edge	where
the	 movement	 is	 not	 possible.	 The	 following	 synonyms	 are
supported	where	possible:

Constant Keystroke

KEY_LEFT Control-B

KEY_RIGHT Control-F

KEY_UP Control-P

KEY_DOWN Control-N

KEY_BACKSPACE Control-h

All	 other	 keystrokes	 are	 treated	 as	 a	 command	 to	 insert	 the
given	character	and	move	right	(with	line	wrapping).

gather()
Return	 the	window	contents	as	a	string;	whether	blanks	 in	 the
window	are	included	is	affected	by	the	stripspaces	member.

stripspaces

This	attribute	is	a	flag	which	controls	the	interpretation	of	blanks
in	 the	window.	When	 it	 is	 on,	 trailing	 blanks	 on	 each	 line	 are
ignored;	 any	 cursor	 motion	 that	 would	 land	 the	 cursor	 on	 a
trailing	 blank	 goes	 to	 the	 end	 of	 that	 line	 instead,	 and	 trailing
blanks	are	stripped	when	the	window	contents	are	gathered.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.13.	curses.ascii	—	Utilities
for	ASCII	characters
The	 curses.ascii	 module	 supplies	 name	 constants	 for	 ASCII
characters	 and	 functions	 to	 test	 membership	 in	 various	 ASCII
character	 classes.	 The	 constants	 supplied	 are	 names	 for	 control
characters	as	follows:

Name Meaning

NUL 	

SOH Start	of	heading,	console	interrupt

STX Start	of	text

ETX End	of	text

EOT End	of	transmission

ENQ Enquiry,	goes	with	ACK	flow	control

ACK Acknowledgement

BEL Bell

BS Backspace

TAB Tab

HT Alias	for	TAB:	“Horizontal	tab”

LF Line	feed

NL Alias	for	LF:	“New	line”

VT Vertical	tab

FF Form	feed

CR Carriage	return

SO Shift-out,	begin	alternate	character	set

SI Shift-in,	resume	default	character	set

DLE Data-link	escape

DC1 XON,	for	flow	control

DC2
Device	control	2,	block-mode	flow
control

DC3 XOFF,	for	flow	control

DC4 Device	control	4

NAK Negative	acknowledgement

SYN Synchronous	idle

ETB End	transmission	block

CAN Cancel

EM End	of	medium

SUB Substitute

ESC Escape

FS File	separator

GS Group	separator

RS Record	separator,	block-mode	terminator

US Unit	separator

SP Space

DEL Delete

Note	 that	 many	 of	 these	 have	 little	 practical	 significance	 in	 modern
usage.	 The	 mnemonics	 derive	 from	 teleprinter	 conventions	 that
predate	digital	computers.

The	module	supplies	the	following	functions,	patterned	on	those	in	the

standard	C	library:

curses.ascii.isalnum(c)
Checks	 for	 an	 ASCII	 alphanumeric	 character;	 it	 is	 equivalent	 to
isalpha(c)	or	isdigit(c).

curses.ascii.isalpha(c)
Checks	 for	 an	 ASCII	 alphabetic	 character;	 it	 is	 equivalent	 to
isupper(c)	or	islower(c).

curses.ascii.isascii(c)
Checks	for	a	character	value	that	fits	in	the	7-bit	ASCII	set.

curses.ascii.isblank(c)
Checks	for	an	ASCII	whitespace	character.

curses.ascii.iscntrl(c)
Checks	for	an	ASCII	control	character	(in	the	range	0x00	to	0x1f).

curses.ascii.isdigit(c)
Checks	 for	 an	 ASCII	 decimal	 digit,	 '0'	 through	 '9'.	 This	 is
equivalent	to	c	in	string.digits.

curses.ascii.isgraph(c)
Checks	for	ASCII	any	printable	character	except	space.

curses.ascii.islower(c)
Checks	for	an	ASCII	lower-case	character.

curses.ascii.isprint(c)
Checks	for	any	ASCII	printable	character	including	space.

curses.ascii.ispunct(c)

Checks	 for	any	printable	ASCII	character	which	 is	not	a	space	or
an	alphanumeric	character.

curses.ascii.isspace(c)
Checks	 for	 ASCII	 white-space	 characters;	 space,	 line	 feed,
carriage	return,	form	feed,	horizontal	tab,	vertical	tab.

curses.ascii.isupper(c)
Checks	for	an	ASCII	uppercase	letter.

curses.ascii.isxdigit(c)
Checks	for	an	ASCII	hexadecimal	digit.	This	is	equivalent	to	c	in
string.hexdigits.

curses.ascii.isctrl(c)
Checks	for	an	ASCII	control	character	(ordinal	values	0	to	31).

curses.ascii.ismeta(c)
Checks	for	a	non-ASCII	character	(ordinal	values	0x80	and	above).

These	functions	accept	either	 integers	or	strings;	when	the	argument
is	a	string,	it	is	first	converted	using	the	built-in	function	ord().

Note	that	all	these	functions	check	ordinal	bit	values	derived	from	the
first	 character	 of	 the	 string	 you	 pass	 in;	 they	 do	 not	 actually	 know
anything	about	 the	host	machine’s	character	encoding.	For	 functions
that	 know	 about	 the	 character	 encoding	 (and	 handle
internationalization	properly)	see	the	string	module.

The	 following	 two	 functions	 take	 either	 a	 single-character	 string	 or
integer	byte	value;	they	return	a	value	of	the	same	type.

curses.ascii.ascii(c)

Return	the	ASCII	value	corresponding	to	the	low	7	bits	of	c.

curses.ascii.ctrl(c)
Return	 the	control	character	corresponding	 to	 the	given	character
(the	character	bit	value	is	bitwise-anded	with	0x1f).

curses.ascii.alt(c)
Return	 the	 8-bit	 character	 corresponding	 to	 the	 given	 ASCII
character	(the	character	bit	value	is	bitwise-ored	with	0x80).

The	following	function	takes	either	a	single-character	string	or	integer
value;	it	returns	a	string.

curses.ascii.unctrl(c)
Return	 a	 string	 representation	 of	 the	 ASCII	 character	 c.	 If	 c	 is
printable,	 this	 string	 is	 the	 character	 itself.	 If	 the	 character	 is	 a
control	 character	 (0x00-0x1f)	 the	 string	 consists	 of	 a	 caret	 ('^')
followed	by	the	corresponding	uppercase	 letter.	 If	 the	character	 is
an	ASCII	delete	 (0x7f)	 the	string	 is	'^?'.	 If	 the	character	has	 its
meta	 bit	 (0x80)	 set,	 the	meta	 bit	 is	 stripped,	 the	 preceding	 rules
applied,	and	'!'	prepended	to	the	result.

curses.ascii.controlnames

A	33-element	 string	 array	 that	 contains	 the	ASCII	mnemonics	 for
the	thirty-two	ASCII	control	characters	 from	0	(NUL)	 to	0x1f	(US),
in	order,	plus	the	mnemonic	SP	for	the	space	character.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.14.	curses.panel	—	A	panel
stack	extension	for	curses
Panels	are	windows	with	 the	added	 feature	of	depth,	so	 they	can	be
stacked	 on	 top	 of	 each	 other,	 and	 only	 the	 visible	 portions	 of	 each
window	will	be	displayed.	Panels	can	be	added,	moved	up	or	down	in
the	stack,	and	removed.

16.14.1.	Functions

The	module	curses.panel	defines	the	following	functions:

curses.panel.bottom_panel()
Returns	the	bottom	panel	in	the	panel	stack.

curses.panel.new_panel(win)
Returns	a	panel	 object,	 associating	 it	with	 the	given	window	win.
Be	 aware	 that	 you	 need	 to	 keep	 the	 returned	 panel	 object
referenced	 explicitly.	 If	 you	 don’t,	 the	 panel	 object	 is	 garbage
collected	and	removed	from	the	panel	stack.

curses.panel.top_panel()
Returns	the	top	panel	in	the	panel	stack.

curses.panel.update_panels()
Updates	 the	 virtual	 screen	after	 changes	 in	 the	panel	 stack.	This
does	 not	 call	 curses.doupdate(),	 so	 you’ll	 have	 to	 do	 this
yourself.

16.14.2.	Panel	Objects

Panel	objects,	as	returned	by	new_panel()	above,	are	windows	with
a	 stacking	 order.	 There’s	 always	 a	 window	 associated	 with	 a	 panel
which	 determines	 the	 content,	 while	 the	 panel	 methods	 are
responsible	for	the	window’s	depth	in	the	panel	stack.

Panel	objects	have	the	following	methods:

Panel.above()
Returns	the	panel	above	the	current	panel.

Panel.below()
Returns	the	panel	below	the	current	panel.

Panel.bottom()
Push	the	panel	to	the	bottom	of	the	stack.

Panel.hidden()
Returns	true	if	the	panel	is	hidden	(not	visible),	false	otherwise.

Panel.hide()
Hide	 the	panel.	This	does	not	delete	 the	object,	 it	 just	makes	 the
window	on	screen	invisible.

Panel.move(y,	x)
Move	the	panel	to	the	screen	coordinates	(y,	x).

Panel.replace(win)
Change	the	window	associated	with	the	panel	to	the	window	win.

Panel.set_userptr(obj)

Set	 the	 panel’s	 user	 pointer	 to	obj.	 This	 is	 used	 to	 associate	 an
arbitrary	 piece	 of	 data	 with	 the	 panel,	 and	 can	 be	 any	 Python
object.

Panel.show()
Display	the	panel	(which	might	have	been	hidden).

Panel.top()
Push	panel	to	the	top	of	the	stack.

Panel.userptr()
Returns	 the	user	pointer	 for	 the	panel.	This	might	be	any	Python
object.

Panel.window()
Returns	the	window	object	associated	with	the	panel.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.15.	platform	—	Access	to
underlying	platform’s	identifying
data
Source	code:	Lib/platform.py

Note: 	Specific	platforms	listed	alphabetically,	with	Linux	included	in
the	Unix	section.

http://hg.python.org/cpython/file/3.4/Lib/platform.py

16.15.1.	Cross	Platform

platform.architecture(executable=sys.executable,	bits='',
linkage='')

Queries	 the	 given	 executable	 (defaults	 to	 the	 Python	 interpreter
binary)	for	various	architecture	information.

Returns	 a	 tuple	 (bits,	 linkage)	 which	 contain	 information
about	 the	 bit	 architecture	 and	 the	 linkage	 format	 used	 for	 the
executable.	Both	values	are	returned	as	strings.

Values	 that	 cannot	 be	 determined	 are	 returned	 as	 given	 by	 the
parameter	presets.	 If	bits	 is	given	as	'',	 the	sizeof(pointer)
(or	sizeof(long)	on	Python	version	<	1.5.2)	is	used	as	indicator
for	the	supported	pointer	size.

The	 function	 relies	 on	 the	 system’s	 file	 command	 to	 do	 the
actual	work.	This	is	available	on	most	if	not	all	Unix	platforms	and
some	non-Unix	platforms	and	then	only	if	the	executable	points	to
the	 Python	 interpreter.	 Reasonable	 defaults	 are	 used	 when	 the
above	needs	are	not	met.

Note: 	On	Mac	OS	X	(and	perhaps	other	platforms),	executable
files	may	be	universal	files	containing	multiple	architectures.
To	 get	 at	 the	 “64-bitness”	 of	 the	 current	 interpreter,	 it	 is	 more
reliable	to	query	the	sys.maxsize	attribute:

is_64bits	=	sys.maxsize	>	2**32

platform.machine()
Returns	 the	 machine	 type,	 e.g.	 'i386'.	 An	 empty	 string	 is

returned	if	the	value	cannot	be	determined.

platform.node()
Returns	the	computer’s	network	name	(may	not	be	fully	qualified!).
An	empty	string	is	returned	if	the	value	cannot	be	determined.

platform.platform(aliased=0,	terse=0)
Returns	a	 single	 string	 identifying	 the	underlying	platform	with	as
much	useful	information	as	possible.

The	output	is	intended	to	be	human	readable	rather	than	machine
parseable.	 It	 may	 look	 different	 on	 different	 platforms	 and	 this	 is
intended.

If	aliased	is	true,	the	function	will	use	aliases	for	various	platforms
that	 report	system	names	which	differ	 from	 their	common	names,
for	 example	 SunOS	 will	 be	 reported	 as	 Solaris.	 The
system_alias()	function	is	used	to	implement	this.

Setting	terse	to	true	causes	the	function	to	return	only	the	absolute
minimum	information	needed	to	identify	the	platform.

platform.processor()
Returns	the	(real)	processor	name,	e.g.	'amdk6'.

An	empty	string	is	returned	if	the	value	cannot	be	determined.	Note
that	many	platforms	do	not	provide	this	information	or	simply	return
the	same	value	as	for	machine().	NetBSD	does	this.

platform.python_build()
Returns	 a	 tuple	 (buildno,	 builddate)	 stating	 the	 Python
build	number	and	date	as	strings.

platform.python_compiler()
Returns	a	string	identifying	the	compiler	used	for	compiling	Python.

platform.python_branch()
Returns	 a	 string	 identifying	 the	 Python	 implementation	 SCM
branch.

platform.python_implementation()
Returns	 a	 string	 identifying	 the	 Python	 implementation.	 Possible
return	values	are:	‘CPython’,	‘IronPython’,	‘Jython’,	‘PyPy’.

platform.python_revision()
Returns	 a	 string	 identifying	 the	 Python	 implementation	 SCM
revision.

platform.python_version()
Returns	 the	 Python	 version	 as	 string
'major.minor.patchlevel'

Note	that	unlike	the	Python	sys.version,	the	returned	value	will
always	include	the	patchlevel	(it	defaults	to	0).

platform.python_version_tuple()
Returns	 the	 Python	 version	 as	 tuple	 (major,	 minor,

patchlevel)	of	strings.

Note	that	unlike	the	Python	sys.version,	the	returned	value	will
always	include	the	patchlevel	(it	defaults	to	'0').

platform.release()
Returns	 the	 system’s	 release,	 e.g.	 '2.2.0'	 or	 'NT'	 An	 empty
string	is	returned	if	the	value	cannot	be	determined.

platform.system()
Returns	 the	 system/OS	 name,	 e.g.	 'Linux',	 'Windows',	 or
'Java'.	 An	 empty	 string	 is	 returned	 if	 the	 value	 cannot	 be
determined.

platform.system_alias(system,	release,	version)
Returns	 (system,	 release,	 version)	 aliased	 to	 common
marketing	 names	 used	 for	 some	 systems.	 It	 also	 does	 some
reordering	 of	 the	 information	 in	 some	 cases	 where	 it	 would
otherwise	cause	confusion.

platform.version()
Returns	 the	system’s	 release	version,	e.g.	 '#3	on	degas'.	 An
empty	string	is	returned	if	the	value	cannot	be	determined.

platform.uname()
Fairly	 portable	 uname	 interface.	 Returns	 a	 namedtuple()

containing	 six	 attributes:	 system,	 node,	 release,	 version,
machine,	and	processor.

Note	 that	 this	 adds	 a	 sixth	 attribute	 (processor)	 not	 present	 in
the	os.uname()	result.	Also,	the	attribute	names	are	different	for
the	 first	 two	 attributes;	 os.uname()	 names	 them	 sysname	 and
nodename.

Entries	which	cannot	be	determined	are	set	to	''.

Changed	 in	 version	 3.3:	 Result	 changed	 from	 a	 tuple	 to	 a
namedtuple.

16.15.2.	Java	Platform

platform.java_ver(release='',	vendor='',	vminfo=('',	'',	''),	osinfo=
('',	'',	''))

Version	interface	for	Jython.

Returns	a	 tuple	(release,	vendor,	vminfo,	osinfo)	with
vminfo	 being	 a	 tuple	 (vm_name,	 vm_release,	 vm_vendor)
and	osinfo	being	a	tuple	(os_name,	os_version,	os_arch).
Values	which	cannot	be	determined	are	set	to	the	defaults	given	as
parameters	(which	all	default	to	'').

16.15.3.	Windows	Platform

platform.win32_ver(release='',	version='',	csd='',	ptype='')
Get	additional	version	 information	from	the	Windows	Registry	and
return	a	tuple	(release,	version,	csd,	ptype)	referring	to
OS	release,	version	number,	CSD	level	(service	pack)	and	OS	type
(multi/single	processor).

As	a	hint:	ptype	 is	'Uniprocessor	Free'	 on	 single	 processor
NT	machines	and	'Multiprocessor	Free'	on	multi	processor
machines.	 The	 ‘Free’	 refers	 to	 the	 OS	 version	 being	 free	 of
debugging	code.	It	could	also	state	‘Checked’	which	means	the	OS
version	 uses	 debugging	 code,	 i.e.	 code	 that	 checks	 arguments,
ranges,	etc.

Note: 	 This	 function	 works	 best	 with	 Mark	 Hammond’s
win32all	 package	 installed,	 but	 also	 on	Python	 2.3	 and	 later
(support	for	this	was	added	in	Python	2.6).	It	obviously	only	runs
on	Win32	compatible	platforms.

16.15.3.1.	Win95/98	specific

platform.popen(cmd,	mode='r',	bufsize=-1)
Portable	popen()	interface.	Find	a	working	popen	implementation
preferring	 win32pipe.popen().	 On	 Windows	 NT,
win32pipe.popen()	should	work;	on	Windows	9x	 it	hangs	due
to	bugs	in	the	MS	C	library.

Deprecated	since	version	3.3:	This	function	is	obsolete.	Use	the
subprocess	 module.	 Check	 especially	 the	 Replacing	 Older

Functions	with	the	subprocess	Module	section.

16.15.4.	Mac	OS	Platform

platform.mac_ver(release='',	versioninfo=('',	'',	''),	machine='')
Get	Mac	OS	version	information	and	return	it	as	tuple	(release,
versioninfo,	 machine)	 with	 versioninfo	 being	 a	 tuple
(version,	dev_stage,	non_release_version).

Entries	which	cannot	be	determined	are	set	to	''.	All	tuple	entries
are	strings.

16.15.5.	Unix	Platforms

platform.dist(distname='',	version='',	id='',	supported_dists=
('SuSE',	'debian',	'redhat',	'mandrake',	...))

This	is	another	name	for	linux_distribution().

platform.linux_distribution(distname='',	version='',	id='',
supported_dists=('SuSE',	'debian',	'redhat',	'mandrake',	...),
full_distribution_name=1)

Tries	to	determine	the	name	of	the	Linux	OS	distribution	name.

supported_dists	 may	 be	 given	 to	 define	 the	 set	 of	 Linux
distributions	 to	 look	 for.	 It	 defaults	 to	 a	 list	 of	 currently	 supported
Linux	distributions	identified	by	their	release	file	name.

If	full_distribution_name	is	true	(default),	the	full	distribution
read	from	the	OS	is	returned.	Otherwise	the	short	name	taken	from
supported_dists	is	used.

Returns	a	tuple	(distname,version,id)	which	defaults	 to	 the
args	given	as	parameters.	id	 is	 the	 item	in	parentheses	after	 the
version	number.	It	is	usually	the	version	codename.

platform.libc_ver(executable=sys.executable,	lib='',	version='',
chunksize=2048)

Tries	to	determine	the	libc	version	against	which	the	file	executable
(defaults	 to	 the	 Python	 interpreter)	 is	 linked.	 Returns	 a	 tuple	 of
strings	(lib,	version)	which	default	to	the	given	parameters	in
case	the	lookup	fails.

Note	that	this	function	has	intimate	knowledge	of	how	different	libc
versions	add	symbols	to	the	executable	is	probably	only	usable	for

executables	compiled	using	gcc.

The	file	is	read	and	scanned	in	chunks	of	chunksize	bytes.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.16.	errno	—	Standard	errno
system	symbols
This	module	makes	 available	 standard	 errno	 system	 symbols.	 The
value	of	each	symbol	 is	 the	corresponding	 integer	value.	The	names
and	 descriptions	 are	 borrowed	 from	 linux/include/errno.h,
which	should	be	pretty	all-inclusive.

errno.errorcode

Dictionary	providing	a	mapping	 from	 the	errno	 value	 to	 the	 string
name	 in	 the	 underlying	 system.	 For	 instance,
errno.errorcode[errno.EPERM]	maps	to	'EPERM'.

To	 translate	 a	 numeric	 error	 code	 to	 an	 error	 message,	 use
os.strerror().

Of	the	following	list,	symbols	that	are	not	used	on	the	current	platform
are	not	defined	by	the	module.	The	specific	 list	of	defined	symbols	 is
available	 as	 errno.errorcode.keys().	 Symbols	 available	 can
include:

errno.EPERM

Operation	not	permitted

errno.ENOENT

No	such	file	or	directory

errno.ESRCH

No	such	process

errno.EINTR

Interrupted	system	call

errno.EIO

I/O	error

errno.ENXIO

No	such	device	or	address

errno.E2BIG

Arg	list	too	long

errno.ENOEXEC

Exec	format	error

errno.EBADF

Bad	file	number

errno.ECHILD

No	child	processes

errno.EAGAIN

Try	again

errno.ENOMEM

Out	of	memory

errno.EACCES

Permission	denied

errno.EFAULT

Bad	address

errno.ENOTBLK

Block	device	required

errno.EBUSY

Device	or	resource	busy

errno.EEXIST

File	exists

errno.EXDEV

Cross-device	link

errno.ENODEV

No	such	device

errno.ENOTDIR

Not	a	directory

errno.EISDIR

Is	a	directory

errno.EINVAL

Invalid	argument

errno.ENFILE

File	table	overflow

errno.EMFILE

Too	many	open	files

errno.ENOTTY

Not	a	typewriter

errno.ETXTBSY

Text	file	busy

errno.EFBIG

File	too	large

errno.ENOSPC

No	space	left	on	device

errno.ESPIPE

Illegal	seek

errno.EROFS

Read-only	file	system

errno.EMLINK

Too	many	links

errno.EPIPE

Broken	pipe

errno.EDOM

Math	argument	out	of	domain	of	func

errno.ERANGE

Math	result	not	representable

errno.EDEADLK

Resource	deadlock	would	occur

errno.ENAMETOOLONG

File	name	too	long

errno.ENOLCK

No	record	locks	available

errno.ENOSYS

Function	not	implemented

errno.ENOTEMPTY

Directory	not	empty

errno.ELOOP

Too	many	symbolic	links	encountered

errno.EWOULDBLOCK

Operation	would	block

errno.ENOMSG

No	message	of	desired	type

errno.EIDRM

Identifier	removed

errno.ECHRNG

Channel	number	out	of	range

errno.EL2NSYNC

Level	2	not	synchronized

errno.EL3HLT

Level	3	halted

errno.EL3RST

Level	3	reset

errno.ELNRNG

Link	number	out	of	range

errno.EUNATCH

Protocol	driver	not	attached

errno.ENOCSI

No	CSI	structure	available

errno.EL2HLT

Level	2	halted

errno.EBADE

Invalid	exchange

errno.EBADR

Invalid	request	descriptor

errno.EXFULL

Exchange	full

errno.ENOANO

No	anode

errno.EBADRQC

Invalid	request	code

errno.EBADSLT

Invalid	slot

errno.EDEADLOCK

File	locking	deadlock	error

errno.EBFONT

Bad	font	file	format

errno.ENOSTR

Device	not	a	stream

errno.ENODATA

No	data	available

errno.ETIME

Timer	expired

errno.ENOSR

Out	of	streams	resources

errno.ENONET

Machine	is	not	on	the	network

errno.ENOPKG

Package	not	installed

errno.EREMOTE

Object	is	remote

errno.ENOLINK

Link	has	been	severed

errno.EADV

Advertise	error

errno.ESRMNT

Srmount	error

errno.ECOMM

Communication	error	on	send

errno.EPROTO

Protocol	error

errno.EMULTIHOP

Multihop	attempted

errno.EDOTDOT

RFS	specific	error

errno.EBADMSG

Not	a	data	message

errno.EOVERFLOW

Value	too	large	for	defined	data	type

errno.ENOTUNIQ

Name	not	unique	on	network

errno.EBADFD

File	descriptor	in	bad	state

errno.EREMCHG

Remote	address	changed

errno.ELIBACC

Can	not	access	a	needed	shared	library

errno.ELIBBAD

Accessing	a	corrupted	shared	library

errno.ELIBSCN

.lib	section	in	a.out	corrupted

errno.ELIBMAX

Attempting	to	link	in	too	many	shared	libraries

errno.ELIBEXEC

Cannot	exec	a	shared	library	directly

errno.EILSEQ

Illegal	byte	sequence

errno.ERESTART

Interrupted	system	call	should	be	restarted

errno.ESTRPIPE

Streams	pipe	error

errno.EUSERS

Too	many	users

errno.ENOTSOCK

Socket	operation	on	non-socket

errno.EDESTADDRREQ

Destination	address	required

errno.EMSGSIZE

Message	too	long

errno.EPROTOTYPE

Protocol	wrong	type	for	socket

errno.ENOPROTOOPT

Protocol	not	available

errno.EPROTONOSUPPORT

Protocol	not	supported

errno.ESOCKTNOSUPPORT

Socket	type	not	supported

errno.EOPNOTSUPP

Operation	not	supported	on	transport	endpoint

errno.EPFNOSUPPORT

Protocol	family	not	supported

errno.EAFNOSUPPORT

Address	family	not	supported	by	protocol

errno.EADDRINUSE

Address	already	in	use

errno.EADDRNOTAVAIL

Cannot	assign	requested	address

errno.ENETDOWN

Network	is	down

errno.ENETUNREACH

Network	is	unreachable

errno.ENETRESET

Network	dropped	connection	because	of	reset

errno.ECONNABORTED

Software	caused	connection	abort

errno.ECONNRESET

Connection	reset	by	peer

errno.ENOBUFS

No	buffer	space	available

errno.EISCONN

Transport	endpoint	is	already	connected

errno.ENOTCONN

Transport	endpoint	is	not	connected

errno.ESHUTDOWN

Cannot	send	after	transport	endpoint	shutdown

errno.ETOOMANYREFS

Too	many	references:	cannot	splice

errno.ETIMEDOUT

Connection	timed	out

errno.ECONNREFUSED

Connection	refused

errno.EHOSTDOWN

Host	is	down

errno.EHOSTUNREACH

No	route	to	host

errno.EALREADY

Operation	already	in	progress

errno.EINPROGRESS

Operation	now	in	progress

errno.ESTALE

Stale	NFS	file	handle

errno.EUCLEAN

Structure	needs	cleaning

errno.ENOTNAM

Not	a	XENIX	named	type	file

errno.ENAVAIL

No	XENIX	semaphores	available

errno.EISNAM

Is	a	named	type	file

errno.EREMOTEIO

Remote	I/O	error

errno.EDQUOT

Quota	exceeded

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

http://www.python.org/

16.17.	ctypes	—	A	foreign
function	library	for	Python
ctypes	 is	 a	 foreign	 function	 library	 for	 Python.	 It	 provides	 C
compatible	data	types,	and	allows	calling	functions	in	DLLs	or	shared
libraries.	It	can	be	used	to	wrap	these	libraries	in	pure	Python.

16.17.1.	ctypes	tutorial

Note:	 The	 code	 samples	 in	 this	 tutorial	 use	 doctest	 to	make	 sure
that	 they	actually	work.	Since	some	code	samples	behave	differently
under	Linux,	Windows,	or	Mac	OS	X,	they	contain	doctest	directives	in
comments.

Note:	Some	code	samples	reference	the	ctypes	c_int	type.	This	type
is	an	alias	for	the	c_long	type	on	32-bit	systems.	So,	you	should	not
be	confused	if	c_long	 is	printed	 if	you	would	expect	c_int	—	they
are	actually	the	same	type.

16.17.1.1.	Loading	dynamic	link	libraries

ctypes	exports	the	cdll,	and	on	Windows	windll	and	oledll	objects,	for
loading	dynamic	link	libraries.

You	load	libraries	by	accessing	them	as	attributes	of	these	objects.	cdll
loads	 libraries	 which	 export	 functions	 using	 the	 standard	 cdecl
calling	 convention,	 while	 windll	 libraries	 call	 functions	 using	 the
stdcall	 calling	 convention.	 oledll	 also	 uses	 the	 stdcall	 calling
convention,	 and	 assumes	 the	 functions	 return	 a	Windows	 HRESULT
error	code.	The	error	code	 is	used	to	automatically	raise	a	OSError
exception	when	the	function	call	fails.

Changed	 in	 version	 3.3:	 Windows	 errors	 used	 to	 raise
WindowsError,	which	is	now	an	alias	of	OSError.

Here	are	some	examples	 for	Windows.	Note	 that	msvcrt	 is	 the	MS
standard	C	library	containing	most	standard	C	functions,	and	uses	the
cdecl	calling	convention:

>>>	from	ctypes	import	*

>>>	print(windll.kernel32)	

<WinDLL	'kernel32',	handle	...	at	...>

>>>	print(cdll.msvcrt)	

<CDLL	'msvcrt',	handle	...	at	...>

>>>	libc	=	cdll.msvcrt	

>>>

Windows	appends	the	usual	.dll	file	suffix	automatically.

On	Linux,	it	is	required	to	specify	the	filename	including	the	extension
to	load	a	library,	so	attribute	access	can	not	be	used	to	load	libraries.
Either	the	LoadLibrary()	method	of	the	dll	loaders	should	be	used,
or	 you	 should	 load	 the	 library	 by	 creating	 an	 instance	 of	 CDLL	 by
calling	the	constructor:

>>>	cdll.LoadLibrary("libc.so.6")	

<CDLL	'libc.so.6',	handle	...	at	...>

>>>	libc	=	CDLL("libc.so.6")					

>>>	libc																									

<CDLL	'libc.so.6',	handle	...	at	...>

>>>

16.17.1.2.	Accessing	functions	from	loaded	dlls

Functions	are	accessed	as	attributes	of	dll	objects:

>>>	from	ctypes	import	*

>>>	libc.printf

<_FuncPtr	object	at	0x...>

>>>	print(windll.kernel32.GetModuleHandleA)	

<_FuncPtr	object	at	0x...>

>>>	print(windll.kernel32.MyOwnFunction)	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"ctypes.py",	line	239,	in	__getattr__

				func	=	_StdcallFuncPtr(name,	self)

AttributeError:	function	'MyOwnFunction'	not	found

>>>

Note	that	win32	system	dlls	like	kernel32	and	user32	often	export
ANSI	 as	 well	 as	 UNICODE	 versions	 of	 a	 function.	 The	 UNICODE
version	is	exported	with	an	W	appended	to	the	name,	while	the	ANSI
version	 is	 exported	 with	 an	 A	 appended	 to	 the	 name.	 The	 win32
GetModuleHandle	 function,	 which	 returns	 a	module	 handle	 for	 a
given	module	 name,	 has	 the	 following	 C	 prototype,	 and	 a	macro	 is
used	 to	 expose	 one	 of	 them	 as	 GetModuleHandle	 depending	 on
whether	UNICODE	is	defined	or	not:

/*	ANSI	version	*/

HMODULE	GetModuleHandleA(LPCSTR	lpModuleName);

/*	UNICODE	version	*/

HMODULE	GetModuleHandleW(LPCWSTR	lpModuleName);

windll	does	not	 try	 to	select	one	of	 them	by	magic,	you	must	access
the	 version	 you	 need	 by	 specifying	 GetModuleHandleA	 or
GetModuleHandleW	 explicitly,	 and	 then	 call	 it	 with	 bytes	 or	 string
objects	respectively.

Sometimes,	dlls	export	functions	with	names	which	aren’t	valid	Python
identifiers,	 like	 "??2@YAPAXI@Z".	 In	 this	 case	 you	 have	 to	 use
getattr()	to	retrieve	the	function:

>>>	getattr(cdll.msvcrt,	"??2@YAPAXI@Z")	

<_FuncPtr	object	at	0x...>

>>>

On	Windows,	some	dlls	export	 functions	not	by	name	but	by	ordinal.
These	 functions	 can	be	accessed	by	 indexing	 the	dll	 object	with	 the
ordinal	number:

>>>	cdll.kernel32[1]	

<_FuncPtr	object	at	0x...>

>>>	cdll.kernel32[0]	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"ctypes.py",	line	310,	in	__getitem__

				func	=	_StdcallFuncPtr(name,	self)

AttributeError:	function	ordinal	0	not	found

>>>

16.17.1.3.	Calling	functions

You	 can	 call	 these	 functions	 like	 any	 other	 Python	 callable.	 This
example	 uses	 the	 time()	 function,	 which	 returns	 system	 time	 in
seconds	 since	 the	 Unix	 epoch,	 and	 the	 GetModuleHandleA()
function,	which	returns	a	win32	module	handle.

This	example	calls	both	 functions	with	a	NULL	pointer	 (None	should
be	used	as	the	NULL	pointer):

>>>	print(libc.time(None))	

1150640792

>>>	print(hex(windll.kernel32.GetModuleHandleA(None)))

0x1d000000

>>>

ctypes	 tries	 to	 protect	 you	 from	 calling	 functions	 with	 the	 wrong
number	 of	 arguments	 or	 the	wrong	 calling	 convention.	Unfortunately
this	only	works	on	Windows.	It	does	this	by	examining	the	stack	after

the	 function	 returns,	 so	 although	 an	 error	 is	 raised	 the	 function	 has
been	called:

>>>	windll.kernel32.GetModuleHandleA()	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	Procedure	probably	called	with	not	enough	arguments	(4	bytes	missing)

>>>	windll.kernel32.GetModuleHandleA(0,	0)	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	Procedure	probably	called	with	too	many	arguments	(4	bytes	in	excess)

>>>

The	same	exception	is	raised	when	you	call	an	stdcall	function	with
the	cdecl	calling	convention,	or	vice	versa:

>>>	cdll.kernel32.GetModuleHandleA(None)	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	Procedure	probably	called	with	not	enough	arguments	(4	bytes	missing)

>>>

>>>	windll.msvcrt.printf(b"spam")	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	Procedure	probably	called	with	too	many	arguments	(4	bytes	in	excess)

>>>

To	find	out	 the	correct	calling	convention	you	have	 to	 look	 into	 the	C
header	file	or	the	documentation	for	the	function	you	want	to	call.

On	Windows,	 ctypes	 uses	 win32	 structured	 exception	 handling	 to
prevent	 crashes	 from	 general	 protection	 faults	 when	 functions	 are
called	with	invalid	argument	values:

>>>	windll.kernel32.GetModuleHandleA(32)	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

OSError:	exception:	access	violation	reading	0x00000020

>>>

There	are,	 however,	 enough	ways	 to	 crash	Python	with	 ctypes,	so
you	 should	 be	 careful	 anyway.	 The	 faulthandler	 module	 can	 be
helpful	in	debugging	crashes	(e.g.	from	segmentation	faults	produced
by	erroneous	C	library	calls).

None,	integers,	bytes	objects	and	(unicode)	strings	are	the	only	native
Python	 objects	 that	 can	 directly	 be	 used	 as	 parameters	 in	 these
function	calls.	None	is	passed	as	a	C	NULL	pointer,	bytes	objects	and
strings	are	passed	as	pointer	to	the	memory	block	that	contains	their
data	 (char	*	 or	 wchar_t	 *).	 Python	 integers	 are	 passed	 as	 the
platforms	default	C	 int	 type,	 their	 value	 is	masked	 to	 fit	 into	 the	C
type.

Before	we	move	on	calling	 functions	with	other	parameter	 types,	we
have	to	learn	more	about	ctypes	data	types.

16.17.1.4.	Fundamental	data	types

ctypes	defines	a	number	of	primitive	C	compatible	data	types:

ctypes	type C	type Python	type

c_bool _Bool bool	(1)

c_char char
1-character	bytes
object

c_wchar wchar_t 1-character	string

c_byte char int

c_ubyte unsigned	char int

c_short short int

c_ushort unsigned	short int

c_int int int

c_uint unsigned	int int

c_long long int

c_ulong unsigned	long int

c_longlong __int64	or	long	long int

c_ulonglong
unsigned	__int64	or
unsigned	long	long

int

c_size_t size_t int

c_ssize_t ssize_t	or	Py_ssize_t int

c_float float float

c_double double float

c_longdouble long	double float

c_char_p char	*	(NUL	terminated) bytes	object	or
None

c_wchar_p
wchar_t	*	(NUL
terminated)

string	or	None

c_void_p void	* int	or	None

1.	 The	constructor	accepts	any	object	with	a	truth	value.

All	 these	 types	 can	 be	 created	 by	 calling	 them	 with	 an	 optional
initializer	of	the	correct	type	and	value:

>>>	c_int()

c_long(0)

>>>	c_wchar_p("Hello,	World")

c_wchar_p('Hello,	World')

>>>	c_ushort(-3)

c_ushort(65533)

>>>

Since	 these	 types	 are	 mutable,	 their	 value	 can	 also	 be	 changed
afterwards:

>>>	i	=	c_int(42)

>>>	print(i)

c_long(42)

>>>	print(i.value)

42

>>>	i.value	=	-99

>>>	print(i.value)

-99

>>>

Assigning	 a	 new	 value	 to	 instances	 of	 the	 pointer	 types	 c_char_p,
c_wchar_p,	and	c_void_p	changes	the	memory	location	they	point
to,	 not	 the	 contents	 of	 the	 memory	 block	 (of	 course	 not,	 because
Python	bytes	objects	are	immutable):

>>>	s	=	"Hello,	World"

>>>	c_s	=	c_wchar_p(s)

>>>	print(c_s)

c_wchar_p('Hello,	World')

>>>	c_s.value	=	"Hi,	there"

>>>	print(c_s)

c_wchar_p('Hi,	there')

>>>	print(s)																	#	first	object	is	unchanged

Hello,	World

>>>

You	 should	 be	 careful,	 however,	 not	 to	 pass	 them	 to	 functions
expecting	pointers	 to	mutable	memory.	 If	 you	need	mutable	memory
blocks,	 ctypes	 has	 a	 create_string_buffer()	 function	 which
creates	these	in	various	ways.	The	current	memory	block	contents	can
be	accessed	(or	changed)	with	the	raw	property;	if	you	want	to	access
it	as	NUL	terminated	string,	use	the	value	property:

>>>	from	ctypes	import	*

>>>	p	=	create_string_buffer(3)												#	create	a	3	byte	buffer,	initialized	to	NUL	bytes

>>>	print(sizeof(p),	repr(p.raw))

3	b'\x00\x00\x00'

>>>	p	=	create_string_buffer(b"Hello")					#	create	a	buffer	containing	a	NUL	terminated	string

>>>	print(sizeof(p),	repr(p.raw))

6	b'Hello\x00'

>>>	print(repr(p.value))

b'Hello'

>>>	p	=	create_string_buffer(b"Hello",	10)	#	create	a	10	byte	buffer

>>>	print(sizeof(p),	repr(p.raw))

10	b'Hello\x00\x00\x00\x00\x00'

>>>	p.value	=	b"Hi"

>>>	print(sizeof(p),	repr(p.raw))

10	b'Hi\x00lo\x00\x00\x00\x00\x00'

>>>

The	create_string_buffer()	function	replaces	the	c_buffer()
function	 (which	 is	 still	 available	 as	 an	 alias),	 as	 well	 as	 the
c_string()	 function	 from	 earlier	 ctypes	 releases.	 To	 create	 a
mutable	 memory	 block	 containing	 unicode	 characters	 of	 the	 C	 type
wchar_t	use	the	create_unicode_buffer()	function.

16.17.1.5.	Calling	functions,	continued

Note	 that	 printf	 prints	 to	 the	 real	 standard	 output	 channel,	 not	 to

sys.stdout,	 so	 these	 examples	 will	 only	 work	 at	 the	 console
prompt,	not	from	within	IDLE	or	PythonWin:

>>>	printf	=	libc.printf

>>>	printf(b"Hello,	%s\n",	b"World!")

Hello,	World!

14

>>>	printf(b"Hello,	%S\n",	"World!")

Hello,	World!

14

>>>	printf(b"%d	bottles	of	beer\n",	42)

42	bottles	of	beer

19

>>>	printf(b"%f	bottles	of	beer\n",	42.5)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ArgumentError:	argument	2:	exceptions.TypeError:	Don't	know	how	to	convert	parameter	2

>>>

As	 has	 been	 mentioned	 before,	 all	 Python	 types	 except	 integers,
strings,	and	bytes	objects	have	 to	be	wrapped	 in	 their	corresponding
ctypes	 type,	 so	 that	 they	 can	 be	 converted	 to	 the	 required	C	 data
type:

>>>	printf(b"An	int	%d,	a	double	%f\n",	1234,	c_double

An	int	1234,	a	double	3.140000

31

>>>

16.17.1.6.	Calling	functions	with	your	own	custom
data	types

You	 can	 also	 customize	 ctypes	 argument	 conversion	 to	 allow

instances	 of	 your	 own	 classes	 be	 used	 as	 function	 arguments.
ctypes	looks	for	an	_as_parameter_	attribute	and	uses	this	as	the
function	 argument.	 Of	 course,	 it	 must	 be	 one	 of	 integer,	 string,	 or
bytes:

>>>	class	Bottles:

...					def	__init__(self,	number):

...									self._as_parameter_	=	number

...

>>>	bottles	=	Bottles(42)

>>>	printf(b"%d	bottles	of	beer\n",	bottles)

42	bottles	of	beer

19

>>>

If	you	don’t	want	to	store	the	instance’s	data	in	the	_as_parameter_
instance	 variable,	 you	 could	 define	 a	 property	 which	 makes	 the
attribute	available	on	request.

16.17.1.7.	Specifying	the	required	argument	types
(function	prototypes)

It	 is	 possible	 to	 specify	 the	 required	 argument	 types	 of	 functions
exported	from	DLLs	by	setting	the	argtypes	attribute.

argtypes	must	be	a	sequence	of	C	data	types	(the	printf	function
is	 probably	 not	 a	 good	 example	 here,	 because	 it	 takes	 a	 variable
number	 and	 different	 types	 of	 parameters	 depending	 on	 the	 format
string,	 on	 the	 other	 hand	 this	 is	 quite	 handy	 to	 experiment	 with	 this
feature):

>>>	printf.argtypes	=	[c_char_p,	c_char_p,	c_int,	c_double

>>>	printf(b"String	'%s',	Int	%d,	Double	%f\n",	b"Hi"

String	'Hi',	Int	10,	Double	2.200000

37

>>>

Specifying	a	format	protects	against	incompatible	argument	types	(just
as	a	prototype	for	a	C	function),	and	tries	to	convert	the	arguments	to
valid	types:

>>>	printf(b"%d	%d	%d",	1,	2,	3)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ArgumentError:	argument	2:	exceptions.TypeError:	wrong	type

>>>	printf(b"%s	%d	%f\n",	b"X",	2,	3)

X	2	3.000000

13

>>>

If	you	have	defined	your	own	classes	which	you	pass	to	function	calls,
you	have	to	implement	a	from_param()	class	method	for	them	to	be
able	 to	 use	 them	 in	 the	 argtypes	 sequence.	 The	 from_param()
class	method	receives	the	Python	object	passed	to	the	function	call,	it
should	do	a	typecheck	or	whatever	is	needed	to	make	sure	this	object
is	acceptable,	and	then	return	the	object	 itself,	 its	_as_parameter_
attribute,	or	whatever	you	want	to	pass	as	the	C	function	argument	in
this	 case.	 Again,	 the	 result	 should	 be	 an	 integer,	 string,	 bytes,	 a
ctypes	instance,	or	an	object	with	an	_as_parameter_	attribute.

16.17.1.8.	Return	types

By	 default	 functions	 are	 assumed	 to	 return	 the	 C	 int	 type.	 Other
return	types	can	be	specified	by	setting	the	restype	attribute	of	 the
function	object.

Here	is	a	more	advanced	example,	it	uses	the	strchr	function,	which
expects	a	string	pointer	and	a	char,	and	returns	a	pointer	to	a	string:

>>>	strchr	=	libc.strchr

>>>	strchr(b"abcdef",	ord("d"))	

8059983

>>>	strchr.restype	=	c_char_p			#	c_char_p	is	a	pointer	to	a	string

>>>	strchr(b"abcdef",	ord("d"))

b'def'

>>>	print(strchr(b"abcdef",	ord("x")))

None

>>>

If	 you	 want	 to	 avoid	 the	 ord("x")	 calls	 above,	 you	 can	 set	 the
argtypes	attribute,	and	the	second	argument	will	be	converted	from
a	single	character	Python	bytes	object	into	a	C	char:

>>>	strchr.restype	=	c_char_p

>>>	strchr.argtypes	=	[c_char_p,	c_char]

>>>	strchr(b"abcdef",	b"d")

'def'

>>>	strchr(b"abcdef",	b"def")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ArgumentError:	argument	2:	exceptions.TypeError:	one	character	string	expected

>>>	print(strchr(b"abcdef",	b"x"))

None

>>>	strchr(b"abcdef",	b"d")

'def'

>>>

You	 can	 also	 use	 a	 callable	Python	 object	 (a	 function	 or	 a	 class	 for
example)	as	 the	restype	attribute,	 if	 the	 foreign	 function	 returns	an
integer.	 The	 callable	 will	 be	 called	 with	 the	 integer	 the	 C	 function

returns,	 and	 the	 result	 of	 this	 call	 will	 be	 used	 as	 the	 result	 of	 your
function	 call.	 This	 is	 useful	 to	 check	 for	 error	 return	 values	 and
automatically	raise	an	exception:

>>>	GetModuleHandle	=	windll.kernel32.GetModuleHandleA

>>>	def	ValidHandle(value):

...					if	value	==	0:

...									raise	WinError()

...					return	value

...

>>>

>>>	GetModuleHandle.restype	=	ValidHandle	

>>>	GetModuleHandle(None)	

486539264

>>>	GetModuleHandle("something	silly")	

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"<stdin>",	line	3,	in	ValidHandle

OSError:	[Errno	126]	The	specified	module	could	not	be	found.

>>>

WinError	 is	a	 function	which	will	call	Windows	FormatMessage()
api	 to	 get	 the	 string	 representation	 of	 an	 error	 code,	 and	 returns	 an
exception.	 WinError	 takes	 an	 optional	 error	 code	 parameter,	 if	 no
one	is	used,	it	calls	GetLastError()	to	retrieve	it.

Please	note	that	a	much	more	powerful	error	checking	mechanism	is
available	 through	 the	 errcheck	 attribute;	 see	 the	 reference	manual
for	details.

16.17.1.9.	Passing	pointers	(or:	passing
parameters	by	reference)

Sometimes	 a	 C	 api	 function	 expects	 a	 pointer	 to	 a	 data	 type	 as
parameter,	probably	 to	write	 into	 the	corresponding	 location,	or	 if	 the
data	is	too	large	to	be	passed	by	value.	This	is	also	known	as	passing
parameters	by	reference.

ctypes	 exports	 the	 byref()	 function	 which	 is	 used	 to	 pass
parameters	by	 reference.	The	 same	effect	 can	be	achieved	with	 the
pointer()	 function,	 although	 pointer()	 does	 a	 lot	 more	 work
since	it	constructs	a	real	pointer	object,	so	it	is	faster	to	use	byref()
if	you	don’t	need	the	pointer	object	in	Python	itself:

>>>	i	=	c_int()

>>>	f	=	c_float()

>>>	s	=	create_string_buffer(b'\000'	*	32)

>>>	print(i.value,	f.value,	repr(s.value))

0	0.0	b''

>>>	libc.sscanf(b"1	3.14	Hello",	b"%d	%f	%s",

...													byref(i),	byref(f),	s)

3

>>>	print(i.value,	f.value,	repr(s.value))

1	3.1400001049	b'Hello'

>>>

16.17.1.10.	Structures	and	unions

Structures	and	unions	must	derive	 from	 the	Structure	and	Union
base	classes	which	are	defined	in	the	ctypes	module.	Each	subclass
must	 define	 a	 _fields_	 attribute.	 _fields_	 must	 be	 a	 list	 of	 2-
tuples,	containing	a	field	name	and	a	field	type.

The	 field	 type	 must	 be	 a	 ctypes	 type	 like	 c_int,	 or	 any	 other
derived	ctypes	type:	structure,	union,	array,	pointer.

Here	 is	 a	 simple	 example	 of	 a	 POINT	 structure,	which	 contains	 two
integers	named	x	and	y,	and	also	shows	how	to	initialize	a	structure	in
the	constructor:

>>>	from	ctypes	import	*

>>>	class	POINT(Structure):

...					_fields_	=	[("x",	c_int),

...																	("y",	c_int)]

...

>>>	point	=	POINT(10,	20)

>>>	print(point.x,	point.y)

10	20

>>>	point	=	POINT(y=5)

>>>	print(point.x,	point.y)

0	5

>>>	POINT(1,	2,	3)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	too	many	initializers

>>>

You	 can,	 however,	 build	 much	 more	 complicated	 structures.	 A
structure	can	 itself	contain	other	structures	by	using	a	structure	as	a
field	type.

Here	is	a	RECT	structure	which	contains	two	POINTs	named	upperleft
and	lowerright:

>>>	class	RECT(Structure):

...					_fields_	=	[("upperleft",	POINT),

...																	("lowerright",	POINT)]

...

>>>	rc	=	RECT(point)

>>>	print(rc.upperleft.x,	rc.upperleft.y)

0	5

>>>	print(rc.lowerright.x,	rc.lowerright.y)

0	0

>>>

Nested	structures	can	also	be	 initialized	 in	 the	constructor	 in	several
ways:

>>>	r	=	RECT(POINT(1,	2),	POINT(3,	4))

>>>	r	=	RECT((1,	2),	(3,	4))

Field	descriptors	can	be	 retrieved	 from	 the	class,	 they	are	useful	 for
debugging	because	they	can	provide	useful	information:

>>>	print(POINT.x)

<Field	type=c_long,	ofs=0,	size=4>

>>>	print(POINT.y)

<Field	type=c_long,	ofs=4,	size=4>

>>>

Warning: 	ctypes	does	not	support	passing	unions	or	structures
with	bit-fields	to	functions	by	value.	While	this	may	work	on	32-bit
x86,	it’s	not	guaranteed	by	the	library	to	work	in	the	general	case.
Unions	and	structures	with	bit-fields	should	always	be	passed	to
functions	by	pointer.

16.17.1.11.	Structure/union	alignment	and	byte
order

By	default,	Structure	and	Union	fields	are	aligned	in	the	same	way	the
C	compiler	does	it.	It	is	possible	to	override	this	behavior	be	specifying
a	_pack_	class	attribute	in	the	subclass	definition.	This	must	be	set	to
a	positive	integer	and	specifies	the	maximum	alignment	for	the	fields.
This	is	what	#pragma	pack(n)	also	does	in	MSVC.

ctypes	uses	the	native	byte	order	for	Structures	and	Unions.	To	build
structures	 with	 non-native	 byte	 order,	 you	 can	 use	 one	 of	 the
BigEndianStructure,	 LittleEndianStructure,
BigEndianUnion,	and	LittleEndianUnion	 base	classes.	These
classes	cannot	contain	pointer	fields.

16.17.1.12.	Bit	fields	in	structures	and	unions

It	 is	possible	 to	create	structures	and	unions	containing	bit	 fields.	Bit
fields	are	only	possible	 for	 integer	 fields,	 the	bit	width	 is	specified	as
the	third	item	in	the	_fields_	tuples:

>>>	class	Int(Structure):

...					_fields_	=	[("first_16",	c_int,	16),

...																	("second_16",	c_int,	16)]

...

>>>	print(Int.first_16)

<Field	type=c_long,	ofs=0:0,	bits=16>

>>>	print(Int.second_16)

<Field	type=c_long,	ofs=0:16,	bits=16>

>>>

16.17.1.13.	Arrays

Arrays	are	sequences,	containing	a	 fixed	number	of	 instances	of	 the
same	type.

The	recommended	way	to	create	array	types	 is	by	multiplying	a	data
type	with	a	positive	integer:

TenPointsArrayType	=	POINT	*	10

Here	 is	 an	 example	 of	 an	 somewhat	 artificial	 data	 type,	 a	 structure

containing	4	POINTs	among	other	stuff:

>>>	from	ctypes	import	*

>>>	class	POINT(Structure):

...				_fields_	=	("x",	c_int),	("y",	c_int)

...

>>>	class	MyStruct(Structure):

...				_fields_	=	[("a",	c_int),

...																("b",	c_float),

...																("point_array",	POINT	*	4)]

>>>

>>>	print(len(MyStruct().point_array))

4

>>>

Instances	are	created	in	the	usual	way,	by	calling	the	class:

arr	=	TenPointsArrayType()

for	pt	in	arr:

				print(pt.x,	pt.y)

The	 above	 code	 print	 a	 series	 of	 0	 0	 lines,	 because	 the	 array
contents	is	initialized	to	zeros.

Initializers	of	the	correct	type	can	also	be	specified:

>>>	from	ctypes	import	*

>>>	TenIntegers	=	c_int	*	10

>>>	ii	=	TenIntegers(1,	2,	3,	4,	5,	6,	7,	8,	9,	10)

>>>	print(ii)

<c_long_Array_10	object	at	0x...>

>>>	for	i	in	ii:	print(i,	end="	")

...

1	2	3	4	5	6	7	8	9	10

>>>

16.17.1.14.	Pointers

Pointer	instances	are	created	by	calling	the	pointer()	function	on	a
ctypes	type:

>>>	from	ctypes	import	*

>>>	i	=	c_int(42)

>>>	pi	=	pointer(i)

>>>

Pointer	instances	have	a	contents	attribute	which	returns	the	object
to	which	the	pointer	points,	the	i	object	above:

>>>	pi.contents

c_long(42)

>>>

Note	 that	 ctypes	 does	 not	 have	 OOR	 (original	 object	 return),	 it
constructs	a	new,	equivalent	object	each	time	you	retrieve	an	attribute:

>>>	pi.contents	is	i

False

>>>	pi.contents	is	pi.contents

False

>>>

Assigning	another	c_int	 instance	 to	 the	pointer’s	 contents	 attribute
would	cause	the	pointer	to	point	to	the	memory	location	where	this	is
stored:

>>>	i	=	c_int(99)

>>>	pi.contents	=	i

>>>	pi.contents

c_long(99)

>>>

Pointer	instances	can	also	be	indexed	with	integers:

>>>	pi[0]

99

>>>

Assigning	to	an	integer	index	changes	the	pointed	to	value:

>>>	print(i)

c_long(99)

>>>	pi[0]	=	22

>>>	print(i)

c_long(22)

>>>

It	 is	also	possible	to	use	indexes	different	from	0,	but	you	must	know
what	 you’re	 doing,	 just	 as	 in	C:	You	 can	 access	 or	 change	arbitrary
memory	locations.	Generally	you	only	use	this	feature	if	you	receive	a
pointer	from	a	C	function,	and	you	know	that	the	pointer	actually	points
to	an	array	instead	of	a	single	item.

Behind	 the	 scenes,	 the	 pointer()	 function	does	more	 than	 simply
create	 pointer	 instances,	 it	 has	 to	 create	 pointer	 types	 first.	 This	 is
done	with	the	POINTER()	function,	which	accepts	any	ctypes	 type,
and	returns	a	new	type:

>>>	PI	=	POINTER(c_int)

>>>	PI

<class	'ctypes.LP_c_long'>

>>>	PI(42)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	expected	c_long	instead	of	int

>>>	PI(c_int(42))

<ctypes.LP_c_long	object	at	0x...>

>>>

Calling	 the	pointer	 type	without	an	argument	creates	a	NULL	pointer.
NULL	pointers	have	a	False	boolean	value:

>>>	null_ptr	=	POINTER(c_int)()

>>>	print(bool(null_ptr))

False

>>>

ctypes	 checks	 for	 NULL	 when	 dereferencing	 pointers	 (but
dereferencing	invalid	non-NULL	pointers	would	crash	Python):

>>>	null_ptr[0]

Traceback	(most	recent	call	last):

			

ValueError:	NULL	pointer	access

>>>

>>>	null_ptr[0]	=	1234

Traceback	(most	recent	call	last):

			

ValueError:	NULL	pointer	access

>>>

16.17.1.15.	Type	conversions

Usually,	 ctypes	 does	 strict	 type	 checking.	 This	 means,	 if	 you	 have
POINTER(c_int)	in	the	argtypes	list	of	a	function	or	as	the	type	of
a	member	 field	 in	a	structure	definition,	only	 instances	of	exactly	 the
same	 type	 are	 accepted.	 There	 are	 some	 exceptions	 to	 this	 rule,
where	 ctypes	 accepts	 other	 objects.	 For	 example,	 you	 can	 pass

compatible	 array	 instances	 instead	 of	 pointer	 types.	 So,	 for
POINTER(c_int),	ctypes	accepts	an	array	of	c_int:

>>>	class	Bar(Structure):

...					_fields_	=	[("count",	c_int),	("values",	POINTER

...

>>>	bar	=	Bar()

>>>	bar.values	=	(c_int	*	3)(1,	2,	3)

>>>	bar.count	=	3

>>>	for	i	in	range(bar.count):

...					print(bar.values[i])

...

1

2

3

>>>

In	addition,	if	a	function	argument	is	explicitly	declared	to	be	a	pointer
type	 (such	 as	 POINTER(c_int))	 in	 argtypes,	 an	 object	 of	 the
pointed	 type	 (c_int	 in	 this	 case)	 can	 be	 passed	 to	 the	 function.
ctypes	 will	 apply	 the	 required	 byref()	 conversion	 in	 this	 case
automatically.

To	set	a	POINTER	type	field	to	NULL,	you	can	assign	None:

>>>	bar.values	=	None

>>>

Sometimes	you	have	 instances	of	 incompatible	 types.	 In	C,	 you	can
cast	one	type	into	another	type.	ctypes	provides	a	cast()	function
which	can	be	used	in	the	same	way.	The	Bar	structure	defined	above
accepts	POINTER(c_int)	pointers	or	c_int	arrays	 for	 its	values
field,	but	not	instances	of	other	types:

>>>	bar.values	=	(c_byte	*	4)()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	incompatible	types,	c_byte_Array_4	instance	instead	of	LP_c_long	instance

>>>

For	these	cases,	the	cast()	function	is	handy.

The	 cast()	 function	 can	 be	 used	 to	 cast	 a	 ctypes	 instance	 into	 a
pointer	to	a	different	ctypes	data	type.	cast()	takes	two	parameters,
a	ctypes	object	that	is	or	can	be	converted	to	a	pointer	of	some	kind,
and	 a	 ctypes	 pointer	 type.	 It	 returns	 an	 instance	 of	 the	 second
argument,	 which	 references	 the	 same	 memory	 block	 as	 the	 first
argument:

>>>	a	=	(c_byte	*	4)()

>>>	cast(a,	POINTER(c_int))

<ctypes.LP_c_long	object	at	...>

>>>

So,	 cast()	 can	 be	 used	 to	 assign	 to	 the	 values	 field	 of	 Bar	 the
structure:

>>>	bar	=	Bar()

>>>	bar.values	=	cast((c_byte	*	4)(),	POINTER(c_int))

>>>	print(bar.values[0])

0

>>>

16.17.1.16.	Incomplete	Types

Incomplete	Types	are	structures,	unions	or	arrays	whose	members	are

not	 yet	 specified.	 In	 C,	 they	 are	 specified	 by	 forward	 declarations,
which	are	defined	later:

struct	cell;	/*	forward	declaration	*/

struct	cell	{

				char	*name;

				struct	cell	*next;

};

The	 straightforward	 translation	 into	 ctypes	 code	would	 be	 this,	 but	 it
does	not	work:

>>>	class	cell(Structure):

...					_fields_	=	[("name",	c_char_p),

...																	("next",	POINTER(cell))]

...

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"<stdin>",	line	2,	in	cell

NameError:	name	'cell'	is	not	defined

>>>

because	the	new	class	cell	is	not	available	in	the	class	statement
itself.	 In	 ctypes,	 we	 can	 define	 the	 cell	 class	 and	 set	 the
fields	attribute	later,	after	the	class	statement:

>>>	from	ctypes	import	*

>>>	class	cell(Structure):

...					pass

...

>>>	cell._fields_	=	[("name",	c_char_p),

...																		("next",	POINTER(cell))]

>>>

Lets	 try	 it.	We	 create	 two	 instances	 of	 cell,	 and	 let	 them	 point	 to
each	other,	and	finally	follow	the	pointer	chain	a	few	times:

>>>	c1	=	cell()

>>>	c1.name	=	"foo"

>>>	c2	=	cell()

>>>	c2.name	=	"bar"

>>>	c1.next	=	pointer(c2)

>>>	c2.next	=	pointer(c1)

>>>	p	=	c1

>>>	for	i	in	range(8):

...					print(p.name,	end="	")

...					p	=	p.next[0]

...

foo	bar	foo	bar	foo	bar	foo	bar

>>>

16.17.1.17.	Callback	functions

ctypes	 allows	 to	 create	 C	 callable	 function	 pointers	 from	 Python
callables.	These	are	sometimes	called	callback	functions.

First,	 you	 must	 create	 a	 class	 for	 the	 callback	 function.	 The	 class
knows	 the	 calling	 convention,	 the	 return	 type,	 and	 the	 number	 and
types	of	arguments	this	function	will	receive.

The	 CFUNCTYPE()	 factory	 function	 creates	 types	 for	 callback
functions	 using	 the	 cdecl	 calling	 convention.	 On	 Windows,	 the
WINFUNCTYPE()	factory	function	creates	types	for	callback	functions
using	the	stdcall	calling	convention.

Both	of	 these	 factory	 functions	are	called	with	 the	 result	 type	as	 first
argument,	and	the	callback	functions	expected	argument	types	as	the
remaining	arguments.

I	 will	 present	 an	 example	 here	 which	 uses	 the	 standard	 C	 library’s
qsort()	function,	that	is	used	to	sort	items	with	the	help	of	a	callback
function.	qsort()	will	be	used	to	sort	an	array	of	integers:

>>>	IntArray5	=	c_int	*	5

>>>	ia	=	IntArray5(5,	1,	7,	33,	99)

>>>	qsort	=	libc.qsort

>>>	qsort.restype	=	None

>>>

qsort()	must	be	called	with	a	pointer	to	the	data	to	sort,	the	number
of	 items	 in	 the	data	array,	 the	size	of	one	 item,	and	a	pointer	 to	 the
comparison	function,	the	callback.	The	callback	will	then	be	called	with
two	pointers	to	 items,	and	 it	must	return	a	negative	 integer	 if	 the	first
item	is	smaller	than	the	second,	a	zero	if	they	are	equal,	and	a	positive
integer	otherwise.

So	our	callback	function	receives	pointers	to	integers,	and	must	return
an	integer.	First	we	create	the	type	for	the	callback	function:

>>>	CMPFUNC	=	CFUNCTYPE(c_int,	POINTER(c_int),	POINTER

>>>

To	get	started,	here	is	a	simple	callback	that	shows	the	values	it	gets
passed:

>>>	def	py_cmp_func(a,	b):

...					print("py_cmp_func",	a[0],	b[0])

...					return	0

...

>>>	cmp_func	=	CMPFUNC(py_cmp_func)

>>>

The	result:

>>>	qsort(ia,	len(ia),	sizeof(c_int),	cmp_func)	

py_cmp_func	5	1

py_cmp_func	33	99

py_cmp_func	7	33

py_cmp_func	5	7

py_cmp_func	1	7

>>>

Now	we	can	actually	compare	the	two	items	and	return	a	useful	result:

>>>	def	py_cmp_func(a,	b):

...					print("py_cmp_func",	a[0],	b[0])

...					return	a[0]	-	b[0]

...

>>>

>>>	qsort(ia,	len(ia),	sizeof(c_int),	CMPFUNC(py_cmp_func

py_cmp_func	5	1

py_cmp_func	33	99

py_cmp_func	7	33

py_cmp_func	1	7

py_cmp_func	5	7

>>>

As	we	can	easily	check,	our	array	is	sorted	now:

>>>	for	i	in	ia:	print(i,	end="	")

...

1	5	7	33	99

>>>

Note: 	Make	sure	you	keep	references	to	CFUNCTYPE()	objects	as
long	as	they	are	used	from	C	code.	ctypes	doesn’t,	and	if	you

don’t,	they	may	be	garbage	collected,	crashing	your	program	when	a
callback	is	made.

Also,	note	 that	 if	 the	callback	 function	 is	called	 in	a	 thread	created
outside	 of	 Python’s	 control	 (e.g.	 by	 the	 foreign	 code	 that	 calls	 the
callback),	 ctypes	 creates	 a	 new	 dummy	 Python	 thread	 on	 every
invocation.	This	behavior	 is	correct	for	most	purposes,	but	 it	means
that	 values	 stored	 with	 threading.local	 will	 not	 survive	 across
different	callbacks,	even	when	those	calls	are	made	from	the	same
C	thread.

16.17.1.18.	Accessing	values	exported	from	dlls

Some	 shared	 libraries	 not	 only	 export	 functions,	 they	 also	 export
variables.	 An	 example	 in	 the	 Python	 library	 itself	 is	 the
Py_OptimizeFlag,	an	integer	set	to	0,	1,	or	2,	depending	on	the	-O
or	-OO	flag	given	on	startup.

ctypes	 can	 access	 values	 like	 this	 with	 the	 in_dll()	 class
methods	of	 the	type.	pythonapi	 is	a	predefined	symbol	giving	access
to	the	Python	C	api:

>>>	opt_flag	=	c_int.in_dll(pythonapi,	"Py_OptimizeFlag"

>>>	print(opt_flag)

c_long(0)

>>>

If	 the	 interpreter	would	have	been	started	with	 -O,	 the	sample	would
have	 printed	 c_long(1),	 or	 c_long(2)	 if	 -OO	 would	 have	 been
specified.

An	 extended	 example	 which	 also	 demonstrates	 the	 use	 of	 pointers

accesses	 the	 PyImport_FrozenModules	 pointer	 exported	 by
Python.

Quoting	the	docs	for	that	value:

This	pointer	is	initialized	to	point	to	an	array	of	struct	_frozen
records,	terminated	by	one	whose	members	are	all	NULL	or	zero.
When	a	frozen	module	is	imported,	it	is	searched	in	this	table.
Third-party	code	could	play	tricks	with	this	to	provide	a
dynamically	created	collection	of	frozen	modules.

So	manipulating	 this	 pointer	 could	 even	 prove	 useful.	 To	 restrict	 the
example	size,	we	show	only	how	this	table	can	be	read	with	ctypes:

>>>	from	ctypes	import	*

>>>

>>>	class	struct_frozen(Structure):

...					_fields_	=	[("name",	c_char_p),

...																	("code",	POINTER(c_ubyte)),

...																	("size",	c_int)]

...

>>>

We	have	defined	the	struct	_frozen	data	type,	so	we	can	get	the
pointer	to	the	table:

>>>	FrozenTable	=	POINTER(struct_frozen)

>>>	table	=	FrozenTable.in_dll(pythonapi,	"PyImport_FrozenModules"

>>>

Since	table	is	a	pointer	to	the	array	of	struct_frozen	records,
we	 can	 iterate	 over	 it,	 but	 we	 just	 have	 to	make	 sure	 that	 our	 loop
terminates,	 because	 pointers	 have	 no	 size.	 Sooner	 or	 later	 it	 would
probably	 crash	with	an	access	 violation	or	whatever,	 so	 it’s	 better	 to

break	out	of	the	loop	when	we	hit	the	NULL	entry:

>>>	for	item	in	table:

...				print(item.name,	item.size)

...				if	item.name	is	None:

...								break

...

__hello__	104

__phello__	-104

__phello__.spam	104

None	0

>>>

The	 fact	 that	 standard	 Python	 has	 a	 frozen	 module	 and	 a	 frozen
package	(indicated	by	the	negative	size	member)	is	not	well	known,	it
is	 only	 used	 for	 testing.	 Try	 it	 out	 with	 import	 __hello__	 for
example.

16.17.1.19.	Surprises

There	are	some	edges	in	ctypes	where	you	might	expect	something
other	than	what	actually	happens.

Consider	the	following	example:

>>>	from	ctypes	import	*

>>>	class	POINT(Structure):

...					_fields_	=	("x",	c_int),	("y",	c_int)

...

>>>	class	RECT(Structure):

...					_fields_	=	("a",	POINT),	("b",	POINT)

...

>>>	p1	=	POINT(1,	2)

>>>	p2	=	POINT(3,	4)

>>>	rc	=	RECT(p1,	p2)

>>>	print(rc.a.x,	rc.a.y,	rc.b.x,	rc.b.y)

1	2	3	4

>>>	#	now	swap	the	two	points

>>>	rc.a,	rc.b	=	rc.b,	rc.a

>>>	print(rc.a.x,	rc.a.y,	rc.b.x,	rc.b.y)

3	4	3	4

>>>

Hm.	We	certainly	expected	the	last	statement	to	print	3	4	1	2.	What
happened?	Here	are	the	steps	of	the	rc.a,	rc.b	=	rc.b,	rc.a
line	above:

>>>	temp0,	temp1	=	rc.b,	rc.a

>>>	rc.a	=	temp0

>>>	rc.b	=	temp1

>>>

Note	that	temp0	and	temp1	are	objects	still	using	the	 internal	buffer
of	 the	 rc	 object	 above.	 So	 executing	 rc.a	 =	 temp0	 copies	 the
buffer	contents	of	temp0	 into	rc	 ‘s	buffer.	This,	 in	 turn,	changes	the
contents	of	temp1.	So,	the	last	assignment	rc.b	=	temp1,	doesn’t
have	the	expected	effect.

Keep	 in	mind	 that	 retrieving	 sub-objects	 from	Structure,	Unions,	 and
Arrays	 doesn’t	 copy	 the	 sub-object,	 instead	 it	 retrieves	 a	 wrapper
object	accessing	the	root-object’s	underlying	buffer.

Another	 example	 that	 may	 behave	 different	 from	 what	 one	 would
expect	is	this:

>>>	s	=	c_char_p()

>>>	s.value	=	"abc	def	ghi"

>>>	s.value

'abc	def	ghi'

>>>	s.value	is	s.value

False

>>>

Why	 is	 it	 printing	 False?	 ctypes	 instances	 are	 objects	 containing	 a
memory	 block	 plus	 some	 descriptors	 accessing	 the	 contents	 of	 the
memory.	Storing	a	Python	object	 in	 the	memory	block	does	not	store
the	 object	 itself,	 instead	 the	 contents	 of	 the	 object	 is	 stored.
Accessing	 the	 contents	 again	 constructs	 a	 new	 Python	 object	 each
time!

16.17.1.20.	Variable-sized	data	types

ctypes	 provides	 some	 support	 for	 variable-sized	 arrays	 and
structures.

The	resize()	 function	can	be	used	 to	 resize	 the	memory	buffer	of
an	 existing	 ctypes	 object.	 The	 function	 takes	 the	 object	 as	 first
argument,	 and	 the	 requested	 size	 in	 bytes	as	 the	 second	argument.
The	memory	block	cannot	be	made	smaller	 than	the	natural	memory
block	specified	by	the	objects	type,	a	ValueError	 is	raised	if	this	is
tried:

>>>	short_array	=	(c_short	*	4)()

>>>	print(sizeof(short_array))

8

>>>	resize(short_array,	4)

Traceback	(most	recent	call	last):

				...

ValueError:	minimum	size	is	8

>>>	resize(short_array,	32)

>>>	sizeof(short_array)

32

>>>	sizeof(type(short_array))

8

>>>

This	 is	 nice	 and	 fine,	 but	 how	 would	 one	 access	 the	 additional
elements	contained	in	this	array?	Since	the	type	still	only	knows	about
4	elements,	we	get	errors	accessing	other	elements:

>>>	short_array[:]

[0,	0,	0,	0]

>>>	short_array[7]

Traceback	(most	recent	call	last):

				...

IndexError:	invalid	index

>>>

Another	way	 to	use	variable-sized	data	 types	with	ctypes	 is	 to	use
the	dynamic	nature	of	Python,	and	(re-)define	 the	data	 type	after	 the
required	size	is	already	known,	on	a	case	by	case	basis.

16.17.2.	ctypes	reference

16.17.2.1.	Finding	shared	libraries

When	 programming	 in	 a	 compiled	 language,	 shared	 libraries	 are
accessed	when	compiling/linking	a	program,	and	when	the	program	is
run.

The	purpose	of	the	find_library()	function	is	to	locate	a	library	in
a	 way	 similar	 to	 what	 the	 compiler	 does	 (on	 platforms	 with	 several
versions	of	a	shared	 library	the	most	recent	should	be	 loaded),	while
the	ctypes	library	loaders	act	like	when	a	program	is	run,	and	call	the
runtime	loader	directly.

The	 ctypes.util	 module	 provides	 a	 function	 which	 can	 help	 to
determine	the	library	to	load.

ctypes.util.find_library(name)
Try	 to	 find	 a	 library	 and	 return	 a	 pathname.	 name	 is	 the	 library
name	without	any	prefix	like	lib,	suffix	like	.so,	.dylib	or	version
number	 (this	 is	 the	 form	used	 for	 the	posix	 linker	 option	 -l).	 If	 no
library	can	be	found,	returns	None.

The	exact	functionality	is	system	dependent.

On	 Linux,	 find_library()	 tries	 to	 run	 external	 programs
(/sbin/ldconfig,	 gcc,	 and	 objdump)	 to	 find	 the	 library	 file.	 It
returns	the	filename	of	the	library	file.	Here	are	some	examples:

>>>	from	ctypes.util	import	find_library

>>>	find_library("m")

'libm.so.6'

>>>	find_library("c")

'libc.so.6'

>>>	find_library("bz2")

'libbz2.so.1.0'

>>>

On	 OS	 X,	 find_library()	 tries	 several	 predefined	 naming
schemes	and	paths	to	locate	the	library,	and	returns	a	full	pathname	if
successful:

>>>	from	ctypes.util	import	find_library

>>>	find_library("c")

'/usr/lib/libc.dylib'

>>>	find_library("m")

'/usr/lib/libm.dylib'

>>>	find_library("bz2")

'/usr/lib/libbz2.dylib'

>>>	find_library("AGL")

'/System/Library/Frameworks/AGL.framework/AGL'

>>>

On	Windows,	 find_library()	 searches	 along	 the	 system	 search
path,	and	 returns	 the	 full	pathname,	but	since	 there	 is	no	predefined
naming	scheme	a	call	 like	find_library("c")	will	 fail	 and	 return
None.

If	 wrapping	 a	 shared	 library	 with	 ctypes,	 it	 may	 be	 better	 to
determine	the	shared	library	name	at	development	time,	and	hardcode
that	 into	 the	wrapper	module	 instead	 of	 using	 find_library()	 to
locate	the	library	at	runtime.

16.17.2.2.	Loading	shared	libraries

There	 are	 several	 ways	 to	 loaded	 shared	 libraries	 into	 the	 Python
process.	One	way	is	to	instantiate	one	of	the	following	classes:

class	ctypes.CDLL(name,	mode=DEFAULT_MODE,	handle=None,
use_errno=False,	use_last_error=False)

Instances	of	this	class	represent	loaded	shared	libraries.	Functions
in	 these	 libraries	 use	 the	 standard	C	 calling	 convention,	 and	 are
assumed	to	return	int.

class	ctypes.OleDLL(name,	mode=DEFAULT_MODE,
handle=None,	use_errno=False,	use_last_error=False)

Windows	 only:	 Instances	 of	 this	 class	 represent	 loaded	 shared
libraries,	 functions	 in	 these	 libraries	 use	 the	 stdcall	 calling
convention,	 and	 are	 assumed	 to	 return	 the	 windows	 specific
HRESULT	 code.	 HRESULT	 values	 contain	 information	 specifying
whether	 the	 function	 call	 failed	 or	 succeeded,	 together	 with
additional	 error	 code.	 If	 the	 return	 value	 signals	 a	 failure,	 an
OSError	is	automatically	raised.

Changed	in	version	3.3:	WindowsError	used	to	be	raised.

class	ctypes.WinDLL(name,	mode=DEFAULT_MODE,
handle=None,	use_errno=False,	use_last_error=False)

Windows	 only:	 Instances	 of	 this	 class	 represent	 loaded	 shared
libraries,	 functions	 in	 these	 libraries	 use	 the	 stdcall	 calling
convention,	and	are	assumed	to	return	int	by	default.

On	Windows	CE	only	 the	standard	calling	convention	 is	used,	 for
convenience	 the	 WinDLL	 and	 OleDLL	 use	 the	 standard	 calling
convention	on	this	platform.

The	 Python	 global	 interpreter	 lock	 is	 released	 before	 calling	 any
function	exported	by	these	libraries,	and	reacquired	afterwards.

class	ctypes.PyDLL(name,	mode=DEFAULT_MODE,

handle=None)
Instances	of	this	class	behave	like	CDLL	instances,	except	that	the
Python	GIL	 is	not	 released	 during	 the	 function	 call,	 and	 after	 the
function	execution	the	Python	error	flag	is	checked.	If	the	error	flag
is	set,	a	Python	exception	is	raised.

Thus,	this	is	only	useful	to	call	Python	C	api	functions	directly.

All	these	classes	can	be	instantiated	by	calling	them	with	at	least	one
argument,	the	pathname	of	the	shared	library.	If	you	have	an	existing
handle	 to	 an	 already	 loaded	 shared	 library,	 it	 can	 be	 passed	 as	 the
handle	 named	 parameter,	 otherwise	 the	 underlying	 platforms
dlopen	or	LoadLibrary	function	is	used	to	load	the	library	into	the
process,	and	to	get	a	handle	to	it.

The	mode	parameter	can	be	used	to	specify	how	the	library	is	loaded.
For	 details,	 consult	 the	 dlopen(3)	 manpage,	 on	 Windows,	mode	 is
ignored.

The	 use_errno	 parameter,	 when	 set	 to	 True,	 enables	 a	 ctypes
mechanism	that	allows	to	access	the	system	errno	error	number	in	a
safe	 way.	 ctypes	 maintains	 a	 thread-local	 copy	 of	 the	 systems
errno	 variable;	 if	 you	 call	 foreign	 functions	 created	 with
use_errno=True	 then	 the	 errno	 value	 before	 the	 function	 call	 is
swapped	with	the	ctypes	private	copy,	the	same	happens	immediately
after	the	function	call.

The	function	ctypes.get_errno()	 returns	 the	value	of	 the	ctypes
private	 copy,	 and	 the	 function	 ctypes.set_errno()	 changes	 the
ctypes	private	copy	to	a	new	value	and	returns	the	former	value.

The	use_last_error	 parameter,	 when	 set	 to	 True,	 enables	 the	 same
mechanism	 for	 the	 Windows	 error	 code	 which	 is	 managed	 by	 the

GetLastError()	 and	 SetLastError()	 Windows	 API	 functions;
ctypes.get_last_error()	 and	 ctypes.set_last_error()

are	 used	 to	 request	 and	 change	 the	 ctypes	 private	 copy	 of	 the
windows	error	code.

ctypes.RTLD_GLOBAL

Flag	to	use	as	mode	parameter.	On	platforms	where	this	flag	is	not
available,	it	is	defined	as	the	integer	zero.

ctypes.RTLD_LOCAL

Flag	 to	 use	 as	mode	 parameter.	 On	 platforms	 where	 this	 is	 not
available,	it	is	the	same	as	RTLD_GLOBAL.

ctypes.DEFAULT_MODE

The	default	mode	which	 is	used	to	 load	shared	 libraries.	On	OSX
10.3,	 this	 is	 RTLD_GLOBAL,	 otherwise	 it	 is	 the	 same	 as
RTLD_LOCAL.

Instances	 of	 these	 classes	 have	 no	 public	 methods,	 however
__getattr__()	 and	 __getitem__()	 have	 special	 behavior:
functions	exported	by	the	shared	library	can	be	accessed	as	attributes
of	 by	 index.	 Please	 note	 that	 both	 __getattr__()	 and
__getitem__()	 cache	 their	 result,	 so	 calling	 them	 repeatedly
returns	the	same	object	each	time.

The	following	public	attributes	are	available,	their	name	starts	with	an
underscore	to	not	clash	with	exported	function	names:

PyDLL._handle

The	system	handle	used	to	access	the	library.

PyDLL._name

The	name	of	the	library	passed	in	the	constructor.

Shared	libraries	can	also	be	loaded	by	using	one	of	the	prefabricated
objects,	which	are	 instances	of	 the	LibraryLoader	class,	either	by
calling	 the	 LoadLibrary()	 method,	 or	 by	 retrieving	 the	 library	 as
attribute	of	the	loader	instance.

class	ctypes.LibraryLoader(dlltype)
Class	 which	 loads	 shared	 libraries.	 dlltype	 should	 be	 one	 of	 the
CDLL,	PyDLL,	WinDLL,	or	OleDLL	types.

__getattr__()	has	special	behavior:	 It	allows	to	 load	a	shared
library	by	accessing	it	as	attribute	of	a	library	loader	instance.	The
result	 is	 cached,	 so	 repeated	 attribute	 accesses	 return	 the	 same
library	each	time.

LoadLibrary(name)
Load	 a	 shared	 library	 into	 the	 process	 and	 return	 it.	 This
method	always	returns	a	new	instance	of	the	library.

These	prefabricated	library	loaders	are	available:

ctypes.cdll

Creates	CDLL	instances.

ctypes.windll

Windows	only:	Creates	WinDLL	instances.

ctypes.oledll

Windows	only:	Creates	OleDLL	instances.

ctypes.pydll

Creates	PyDLL	instances.

For	accessing	the	C	Python	api	directly,	a	ready-to-use	Python	shared

library	object	is	available:

ctypes.pythonapi

An	 instance	 of	 PyDLL	 that	 exposes	 Python	 C	 API	 functions	 as
attributes.	Note	 that	 all	 these	 functions	 are	 assumed	 to	 return	 C
int,	which	is	of	course	not	always	the	truth,	so	you	have	to	assign
the	correct	restype	attribute	to	use	these	functions.

16.17.2.3.	Foreign	functions

As	 explained	 in	 the	 previous	 section,	 foreign	 functions	 can	 be
accessed	as	attributes	of	loaded	shared	libraries.	The	function	objects
created	in	this	way	by	default	accept	any	number	of	arguments,	accept
any	ctypes	data	instances	as	arguments,	and	return	the	default	result
type	 specified	 by	 the	 library	 loader.	 They	 are	 instances	 of	 a	 private
class:

class	ctypes._FuncPtr
Base	class	for	C	callable	foreign	functions.

Instances	 of	 foreign	 functions	 are	 also	 C	 compatible	 data	 types;
they	represent	C	function	pointers.

This	behavior	can	be	customized	by	assigning	to	special	attributes
of	the	foreign	function	object.

restype

Assign	 a	 ctypes	 type	 to	 specify	 the	 result	 type	 of	 the	 foreign
function.	Use	None	for	void,	a	function	not	returning	anything.

It	 is	 possible	 to	 assign	 a	 callable	 Python	 object	 that	 is	 not	 a
ctypes	type,	 in	this	case	the	function	is	assumed	to	return	a	C
int,	and	the	callable	will	be	called	with	this	integer,	allowing	to

do	 further	 processing	 or	 error	 checking.	 Using	 this	 is
deprecated,	for	more	flexible	post	processing	or	error	checking
use	a	ctypes	data	type	as	restype	and	assign	a	callable	to	the
errcheck	attribute.

argtypes

Assign	 a	 tuple	 of	 ctypes	 types	 to	 specify	 the	 argument	 types
that	the	function	accepts.	Functions	using	the	stdcall	calling
convention	 can	 only	 be	 called	 with	 the	 same	 number	 of
arguments	 as	 the	 length	 of	 this	 tuple;	 functions	 using	 the	 C
calling	convention	accept	additional,	unspecified	arguments	as
well.

When	 a	 foreign	 function	 is	 called,	 each	 actual	 argument	 is
passed	to	the	from_param()	class	method	of	the	items	in	the
argtypes	 tuple,	 this	 method	 allows	 to	 adapt	 the	 actual
argument	 to	 an	 object	 that	 the	 foreign	 function	 accepts.	 For
example,	a	c_char_p	item	in	the	argtypes	tuple	will	convert
a	 string	 passed	 as	 argument	 into	 a	 bytes	 object	 using	 ctypes
conversion	rules.

New:	 It	 is	now	possible	 to	put	 items	 in	argtypes	which	are	not
ctypes	 types,	 but	 each	 item	 must	 have	 a	 from_param()
method	 which	 returns	 a	 value	 usable	 as	 argument	 (integer,
string,	ctypes	instance).	This	allows	to	define	adapters	that	can
adapt	custom	objects	as	function	parameters.

errcheck

Assign	 a	 Python	 function	 or	 another	 callable	 to	 this	 attribute.
The	callable	will	be	called	with	three	or	more	arguments:

callable(result,	func,	arguments)

result	 is	 what	 the	 foreign	 function	 returns,	 as	 specified	 by
the	restype	attribute.

func	 is	the	foreign	function	object	itself,	this	allows	to	reuse
the	same	callable	object	to	check	or	post	process	the	results
of	several	functions.

arguments	 is	 a	 tuple	 containing	 the	 parameters	 originally
passed	 to	 the	 function	 call,	 this	 allows	 to	 specialize	 the
behavior	on	the	arguments	used.

The	 object	 that	 this	 function	 returns	 will	 be	 returned	 from	 the
foreign	function	call,	but	 it	can	also	check	the	result	value	and
raise	an	exception	if	the	foreign	function	call	failed.

exception	ctypes.ArgumentError
This	exception	is	raised	when	a	foreign	function	call	cannot	convert
one	of	the	passed	arguments.

16.17.2.4.	Function	prototypes

Foreign	 functions	 can	 also	 be	 created	 by	 instantiating	 function
prototypes.	Function	prototypes	are	similar	to	function	prototypes	in	C;
they	 describe	 a	 function	 (return	 type,	 argument	 types,	 calling
convention)	without	defining	an	implementation.	The	factory	 functions
must	be	called	with	the	desired	result	type	and	the	argument	types	of
the	function.

ctypes.CFUNCTYPE(restype,	*argtypes,	use_errno=False,
use_last_error=False)

The	 returned	 function	 prototype	 creates	 functions	 that	 use	 the
standard	 C	 calling	 convention.	 The	 function	 will	 release	 the	 GIL
during	the	call.	If	use_errno	 is	set	to	True,	the	ctypes	private	copy

of	 the	 system	 errno	 variable	 is	 exchanged	with	 the	 real	 errno
value	before	 and	after	 the	 call;	use_last_error	 does	 the	 same	 for
the	Windows	error	code.

ctypes.WINFUNCTYPE(restype,	*argtypes,	use_errno=False,
use_last_error=False)

Windows	 only:	 The	 returned	 function	 prototype	 creates	 functions
that	use	the	stdcall	calling	convention,	except	on	Windows	CE
where	 WINFUNCTYPE()	 is	 the	 same	 as	 CFUNCTYPE().	 The
function	 will	 release	 the	 GIL	 during	 the	 call.	 use_errno	 and
use_last_error	have	the	same	meaning	as	above.

ctypes.PYFUNCTYPE(restype,	*argtypes)
The	 returned	 function	 prototype	 creates	 functions	 that	 use	 the
Python	 calling	 convention.	 The	 function	 will	 not	 release	 the	 GIL
during	the	call.

Function	 prototypes	 created	 by	 these	 factory	 functions	 can	 be
instantiated	 in	 different	ways,	 depending	 on	 the	 type	 and	 number	 of
the	parameters	in	the	call:

prototype(address)
Returns	a	foreign	function	at	the	specified	address	which	must
be	an	integer.

prototype(callable)
Create	 a	 C	 callable	 function	 (a	 callback	 function)	 from	 a
Python	callable.

prototype(func_spec[,	paramflags])
Returns	 a	 foreign	 function	 exported	 by	 a	 shared	 library.
func_spec	 must	 be	 a	 2-tuple	 (name_or_ordinal,

library).	The	first	item	is	the	name	of	the	exported	function
as	 string,	 or	 the	 ordinal	 of	 the	 exported	 function	 as	 small
integer.	The	second	item	is	the	shared	library	instance.

prototype(vtbl_index,	name[,	paramflags[,	iid]])
Returns	 a	 foreign	 function	 that	 will	 call	 a	 COM	 method.
vtbl_index	 is	 the	 index	 into	 the	 virtual	 function	 table,	 a	 small
non-negative	integer.	name	is	name	of	the	COM	method.	iid	is
an	optional	pointer	 to	 the	 interface	 identifier	which	 is	used	 in
extended	error	reporting.

COM	methods	use	a	special	calling	convention:	They	require	a
pointer	 to	 the	COM	 interface	as	 first	argument,	 in	addition	 to
those	parameters	that	are	specified	in	the	argtypes	tuple.

The	 optional	 paramflags	 parameter	 creates	 foreign	 function
wrappers	 with	 much	 more	 functionality	 than	 the	 features
described	above.

paramflags	must	be	a	tuple	of	the	same	length	as	argtypes.

Each	 item	 in	 this	 tuple	 contains	 further	 information	 about	 a
parameter,	it	must	be	a	tuple	containing	one,	two,	or	three	items.

The	 first	 item	 is	an	 integer	 containing	a	combination	of	direction
flags	for	the	parameter:

1
Specifies	an	input	parameter	to	the	function.

2
Output	parameter.	The	foreign	function	fills	in	a	value.

4
Input	parameter	which	defaults	to	the	integer	zero.

The	optional	second	item	is	the	parameter	name	as	string.	If	 this
is	 specified,	 the	 foreign	 function	 can	 be	 called	 with	 named
parameters.

The	optional	third	item	is	the	default	value	for	this	parameter.

This	example	demonstrates	how	to	wrap	the	Windows	MessageBoxA
function	so	that	it	supports	default	parameters	and	named	arguments.
The	C	declaration	from	the	windows	header	file	is	this:

WINUSERAPI	int	WINAPI

MessageBoxA(

				HWND	hWnd,

				LPCSTR	lpText,

				LPCSTR	lpCaption,

				UINT	uType);

Here	is	the	wrapping	with	ctypes:

>>>	from	ctypes	import	c_int,	WINFUNCTYPE,	windll

>>>	from	ctypes.wintypes	import	HWND,	LPCSTR,	UINT

>>>	prototype	=	WINFUNCTYPE(c_int,	HWND,	LPCSTR,	LPCSTR

>>>	paramflags	=	(1,	"hwnd",	0),	(1,	"text",	"Hi"),	

>>>	MessageBox	=	prototype(("MessageBoxA",	windll.user32

>>>

The	MessageBox	foreign	function	can	now	be	called	in	these	ways:

>>>	MessageBox()

>>>	MessageBox(text="Spam,	spam,	spam")

>>>	MessageBox(flags=2,	text="foo	bar")

>>>

A	 second	 example	 demonstrates	 output	 parameters.	 The	 win32

GetWindowRect	 function	 retrieves	 the	 dimensions	 of	 a	 specified
window	 by	 copying	 them	 into	 RECT	 structure	 that	 the	 caller	 has	 to
supply.	Here	is	the	C	declaration:

WINUSERAPI	BOOL	WINAPI

GetWindowRect(

					HWND	hWnd,

					LPRECT	lpRect);

Here	is	the	wrapping	with	ctypes:

>>>	from	ctypes	import	POINTER,	WINFUNCTYPE,	windll,

>>>	from	ctypes.wintypes	import	BOOL,	HWND,	RECT

>>>	prototype	=	WINFUNCTYPE(BOOL,	HWND,	POINTER(RECT

>>>	paramflags	=	(1,	"hwnd"),	(2,	"lprect")

>>>	GetWindowRect	=	prototype(("GetWindowRect",	windll

>>>

Functions	with	 output	 parameters	will	 automatically	 return	 the	 output
parameter	 value	 if	 there	 is	 a	 single	 one,	 or	 a	 tuple	 containing	 the
output	 parameter	 values	 when	 there	 are	 more	 than	 one,	 so	 the
GetWindowRect	function	now	returns	a	RECT	instance,	when	called.

Output	 parameters	 can	be	combined	with	 the	 errcheck	protocol	 to
do	 further	 output	 processing	 and	 error	 checking.	 The	 win32
GetWindowRect	 api	 function	 returns	 a	 BOOL	 to	 signal	 success	 or
failure,	 so	 this	 function	 could	 do	 the	 error	 checking,	 and	 raises	 an
exception	when	the	api	call	failed:

>>>	def	errcheck(result,	func,	args):

...					if	not	result:

...									raise	WinError()

...					return	args

...

>>>	GetWindowRect.errcheck	=	errcheck

>>>

If	 the	 errcheck	 function	 returns	 the	 argument	 tuple	 it	 receives
unchanged,	ctypes	 continues	 the	normal	processing	 it	 does	on	 the
output	parameters.	If	you	want	to	return	a	tuple	of	window	coordinates
instead	of	a	RECT	 instance,	you	can	retrieve	the	fields	in	the	function
and	 return	 them	 instead,	 the	 normal	 processing	 will	 no	 longer	 take
place:

>>>	def	errcheck(result,	func,	args):

...					if	not	result:

...									raise	WinError()

...					rc	=	args[1]

...					return	rc.left,	rc.top,	rc.bottom,	rc.right

...

>>>	GetWindowRect.errcheck	=	errcheck

>>>

16.17.2.5.	Utility	functions

ctypes.addressof(obj)
Returns	the	address	of	the	memory	buffer	as	integer.	obj	must	be
an	instance	of	a	ctypes	type.

ctypes.alignment(obj_or_type)
Returns	 the	alignment	 requirements	of	a	ctypes	 type.	obj_or_type
must	be	a	ctypes	type	or	instance.

ctypes.byref(obj[,	offset])
Returns	a	light-weight	pointer	to	obj,	which	must	be	an	instance	of
a	ctypes	type.	offset	defaults	to	zero,	and	must	be	an	integer	that
will	be	added	to	the	internal	pointer	value.

byref(obj,	offset)	corresponds	to	this	C	code:

(((char	*)&obj)	+	offset)

The	 returned	 object	 can	 only	 be	 used	 as	 a	 foreign	 function	 call
parameter.	 It	 behaves	 similar	 to	 pointer(obj),	 but	 the
construction	is	a	lot	faster.

ctypes.cast(obj,	type)
This	 function	 is	similar	 to	 the	cast	operator	 in	C.	 It	 returns	a	new
instance	 of	 type	 which	 points	 to	 the	 same	memory	 block	 as	obj.
type	must	be	a	pointer	type,	and	obj	must	be	an	object	that	can	be
interpreted	as	a	pointer.

ctypes.create_string_buffer(init_or_size,	size=None)
This	 function	 creates	 a	 mutable	 character	 buffer.	 The	 returned
object	is	a	ctypes	array	of	c_char.

init_or_size	 must	 be	 an	 integer	 which	 specifies	 the	 size	 of	 the
array,	 or	 a	 bytes	 object	 which	 will	 be	 used	 to	 initialize	 the	 array
items.

If	a	bytes	object	 is	specified	as	 first	argument,	 the	buffer	 is	made
one	item	larger	than	its	length	so	that	the	last	element	in	the	array
is	 a	 NUL	 termination	 character.	 An	 integer	 can	 be	 passed	 as
second	argument	which	allows	to	specify	the	size	of	the	array	if	the
length	of	the	bytes	should	not	be	used.

ctypes.create_unicode_buffer(init_or_size,	size=None)
This	 function	 creates	 a	 mutable	 unicode	 character	 buffer.	 The
returned	object	is	a	ctypes	array	of	c_wchar.

init_or_size	 must	 be	 an	 integer	 which	 specifies	 the	 size	 of	 the

array,	or	a	string	which	will	be	used	to	initialize	the	array	items.

If	a	string	is	specified	as	first	argument,	the	buffer	is	made	one	item
larger	 than	 the	 length	of	 the	string	so	 that	 the	 last	element	 in	 the
array	is	a	NUL	termination	character.	An	integer	can	be	passed	as
second	argument	which	allows	to	specify	the	size	of	the	array	if	the
length	of	the	string	should	not	be	used.

ctypes.DllCanUnloadNow()
Windows	only:	This	 function	 is	a	hook	which	allows	 to	 implement
in-process	 COM	 servers	 with	 ctypes.	 It	 is	 called	 from	 the
DllCanUnloadNow	function	that	the	_ctypes	extension	dll	exports.

ctypes.DllGetClassObject()
Windows	only:	This	 function	 is	a	hook	which	allows	 to	 implement
in-process	 COM	 servers	 with	 ctypes.	 It	 is	 called	 from	 the
DllGetClassObject	function	that	the	_ctypes	extension	dll	exports.

ctypes.util.find_library(name)
Try	 to	 find	 a	 library	 and	 return	 a	 pathname.	 name	 is	 the	 library
name	 without	 any	 prefix	 like	 lib,	 suffix	 like	 .so,	 .dylib	 or
version	number	(this	is	the	form	used	for	the	posix	linker	option	-l).
If	no	library	can	be	found,	returns	None.

The	exact	functionality	is	system	dependent.

ctypes.util.find_msvcrt()
Windows	only:	 return	 the	 filename	of	 the	VC	 runtype	 library	used
by	Python,	and	by	the	extension	modules.	If	the	name	of	the	library
cannot	be	determined,	None	is	returned.

If	you	need	to	free	memory,	for	example,	allocated	by	an	extension
module	with	a	call	 to	the	free(void	*),	 it	 is	 important	 that	you

use	the	function	in	the	same	library	that	allocated	the	memory.

ctypes.FormatError([code])
Windows	only:	Returns	a	textual	description	of	the	error	code	code.
If	no	error	code	 is	specified,	 the	 last	error	code	 is	used	by	calling
the	Windows	api	function	GetLastError.

ctypes.GetLastError()
Windows	only:	Returns	 the	 last	error	code	set	by	Windows	 in	 the
calling	 thread.	 This	 function	 calls	 the	 Windows	 GetLastError()
function	 directly,	 it	 does	 not	 return	 the	 ctypes-private	 copy	 of	 the
error	code.

ctypes.get_errno()
Returns	the	current	value	of	the	ctypes-private	copy	of	the	system
errno	variable	in	the	calling	thread.

ctypes.get_last_error()
Windows	only:	returns	the	current	value	of	the	ctypes-private	copy
of	the	system	LastError	variable	in	the	calling	thread.

ctypes.memmove(dst,	src,	count)
Same	as	 the	standard	C	memmove	 library	 function:	copies	count
bytes	 from	 src	 to	 dst.	 dst	 and	 src	 must	 be	 integers	 or	 ctypes
instances	that	can	be	converted	to	pointers.

ctypes.memset(dst,	c,	count)
Same	as	the	standard	C	memset	library	function:	fills	the	memory
block	at	 address	dst	with	count	 bytes	of	 value	c.	dst	must	 be	 an
integer	specifying	an	address,	or	a	ctypes	instance.

ctypes.POINTER(type)

This	factory	function	creates	and	returns	a	new	ctypes	pointer	type.
Pointer	 types	 are	 cached	 an	 reused	 internally,	 so	 calling	 this
function	repeatedly	is	cheap.	type	must	be	a	ctypes	type.

ctypes.pointer(obj)
This	 function	creates	a	new	pointer	 instance,	pointing	 to	obj.	 The
returned	object	is	of	the	type	POINTER(type(obj)).

Note:	 If	 you	 just	want	 to	 pass	 a	 pointer	 to	 an	 object	 to	 a	 foreign
function	call,	you	should	use	byref(obj)	which	is	much	faster.

ctypes.resize(obj,	size)
This	function	resizes	the	internal	memory	buffer	of	obj,	which	must
be	an	instance	of	a	ctypes	type.	It	is	not	possible	to	make	the	buffer
smaller	 than	 the	 native	 size	 of	 the	 objects	 type,	 as	 given	 by
sizeof(type(obj)),	but	it	is	possible	to	enlarge	the	buffer.

ctypes.set_errno(value)
Set	 the	 current	 value	 of	 the	 ctypes-private	 copy	 of	 the	 system
errno	 variable	 in	 the	 calling	 thread	 to	 value	 and	 return	 the
previous	value.

ctypes.set_last_error(value)
Windows	only:	 set	 the	current	value	of	 the	ctypes-private	copy	of
the	system	LastError	variable	in	the	calling	thread	to	value	and
return	the	previous	value.

ctypes.sizeof(obj_or_type)
Returns	 the	 size	 in	 bytes	 of	 a	 ctypes	 type	 or	 instance	 memory
buffer.	Does	the	same	as	the	C	sizeof	operator.

ctypes.string_at(address,	size=-1)

This	 function	 returns	 the	 C	 string	 starting	 at	 memory	 address
address	 as	 a	 bytes	 object.	 If	 size	 is	 specified,	 it	 is	 used	 as	 size,
otherwise	the	string	is	assumed	to	be	zero-terminated.

ctypes.WinError(code=None,	descr=None)
Windows	 only:	 this	 function	 is	 probably	 the	worst-named	 thing	 in
ctypes.	 It	creates	an	 instance	of	OSError.	 If	code	 is	not	specified,
GetLastError	 is	 called	 to	 determine	 the	 error	 code.	 If	descr	 is
not	 specified,	 FormatError()	 is	 called	 to	 get	 a	 textual
description	of	the	error.

Changed	in	version	3.3:	An	instance	of	WindowsError	used	to	be
created.

ctypes.wstring_at(address,	size=-1)
This	 function	 returns	 the	wide	character	string	starting	at	memory
address	address	as	a	string.	 If	size	 is	 specified,	 it	 is	used	as	 the
number	of	characters	of	the	string,	otherwise	the	string	is	assumed
to	be	zero-terminated.

16.17.2.6.	Data	types

class	ctypes._CData
This	non-public	class	is	the	common	base	class	of	all	ctypes	data
types.	 Among	 other	 things,	 all	 ctypes	 type	 instances	 contain	 a
memory	 block	 that	 hold	 C	 compatible	 data;	 the	 address	 of	 the
memory	 block	 is	 returned	 by	 the	 addressof()	 helper	 function.
Another	 instance	variable	 is	exposed	as	_objects;	 this	contains
other	Python	objects	that	need	to	be	kept	alive	in	case	the	memory
block	contains	pointers.

Common	 methods	 of	 ctypes	 data	 types,	 these	 are	 all	 class

methods	(to	be	exact,	they	are	methods	of	the	metaclass):

from_buffer(source[,	offset])
This	method	returns	a	ctypes	instance	that	shares	the	buffer	of
the	source	object.	The	source	object	must	support	the	writeable
buffer	 interface.	 The	 optional	 offset	 parameter	 specifies	 an
offset	 into	 the	source	buffer	 in	bytes;	 the	default	 is	zero.	 If	 the
source	buffer	is	not	large	enough	a	ValueError	is	raised.

from_buffer_copy(source[,	offset])
This	method	creates	a	ctypes	instance,	copying	the	buffer	from
the	source	object	buffer	which	must	be	readable.	The	optional
offset	 parameter	 specifies	 an	 offset	 into	 the	 source	 buffer	 in
bytes;	 the	 default	 is	 zero.	 If	 the	 source	 buffer	 is	 not	 large
enough	a	ValueError	is	raised.

from_address(address)
This	method	returns	a	ctypes	 type	 instance	using	 the	memory
specified	by	address	which	must	be	an	integer.

from_param(obj)
This	method	 adapts	obj	 to	 a	 ctypes	 type.	 It	 is	 called	with	 the
actual	 object	 used	 in	 a	 foreign	 function	 call	 when	 the	 type	 is
present	in	the	foreign	function’s	argtypes	tuple;	it	must	return
an	object	that	can	be	used	as	a	function	call	parameter.

All	 ctypes	 data	 types	 have	 a	 default	 implementation	 of	 this
classmethod	 that	 normally	 returns	obj	 if	 that	 is	 an	 instance	 of
the	type.	Some	types	accept	other	objects	as	well.

in_dll(library,	name)
This	 method	 returns	 a	 ctypes	 type	 instance	 exported	 by	 a

shared	library.	name	is	the	name	of	the	symbol	that	exports	the
data,	library	is	the	loaded	shared	library.

Common	instance	variables	of	ctypes	data	types:

_b_base_

Sometimes	ctypes	data	instances	do	not	own	the	memory	block
they	contain,	 instead	they	share	part	of	the	memory	block	of	a
base	 object.	 The	 _b_base_	 read-only	 member	 is	 the	 root
ctypes	object	that	owns	the	memory	block.

_b_needsfree_

This	 read-only	 variable	 is	 true	when	 the	 ctypes	 data	 instance
has	allocated	the	memory	block	itself,	false	otherwise.

_objects

This	member	 is	either	None	or	a	dictionary	containing	Python
objects	 that	 need	 to	 be	 kept	 alive	 so	 that	 the	 memory	 block
contents	 is	 kept	 valid.	 This	 object	 is	 only	 exposed	 for
debugging;	never	modify	the	contents	of	this	dictionary.

16.17.2.7.	Fundamental	data	types

class	ctypes._SimpleCData
This	 non-public	 class	 is	 the	 base	 class	 of	 all	 fundamental	 ctypes
data	 types.	 It	 is	mentioned	here	because	 it	 contains	 the	common
attributes	of	the	fundamental	ctypes	data	types.	_SimpleCData	is
a	subclass	of	_CData,	so	 it	 inherits	 their	methods	and	attributes.
ctypes	data	types	that	are	not	and	do	not	contain	pointers	can	now
be	pickled.

Instances	have	a	single	attribute:

value

This	 attribute	 contains	 the	 actual	 value	 of	 the	 instance.	 For
integer	and	pointer	types,	it	is	an	integer,	for	character	types,	it
is	a	single	character	bytes	object	or	string,	for	character	pointer
types	it	is	a	Python	bytes	object	or	string.

When	the	value	attribute	 is	 retrieved	 from	a	ctypes	 instance,
usually	a	new	object	 is	 returned	each	 time.	 ctypes	does	not
implement	 original	 object	 return,	 always	 a	 new	 object	 is
constructed.	 The	 same	 is	 true	 for	 all	 other	 ctypes	 object
instances.

Fundamental	 data	 types,	 when	 returned	 as	 foreign	 function	 call
results,	or,	for	example,	by	retrieving	structure	field	members	or	array
items,	 are	 transparently	 converted	 to	 native	 Python	 types.	 In	 other
words,	 if	 a	 foreign	 function	 has	 a	 restype	 of	 c_char_p,	 you	 will
always	receive	a	Python	bytes	object,	not	a	c_char_p	instance.

Subclasses	of	fundamental	data	types	do	not	inherit	this	behavior.	So,
if	 a	 foreign	 functions	 restype	 is	 a	 subclass	 of	 c_void_p,	 you	will
receive	an	instance	of	this	subclass	from	the	function	call.	Of	course,
you	can	get	the	value	of	the	pointer	by	accessing	the	value	attribute.

These	are	the	fundamental	ctypes	data	types:

class	ctypes.c_byte
Represents	 the	 C	 signed	 char	 datatype,	 and	 interprets	 the
value	as	small	integer.	The	constructor	accepts	an	optional	integer
initializer;	no	overflow	checking	is	done.

class	ctypes.c_char
Represents	 the	 C	 char	 datatype,	 and	 interprets	 the	 value	 as	 a
single	 character.	 The	 constructor	 accepts	 an	 optional	 string

initializer,	the	length	of	the	string	must	be	exactly	one	character.

class	ctypes.c_char_p
Represents	 the	 C	 char	 *	 datatype	 when	 it	 points	 to	 a	 zero-
terminated	 string.	 For	 a	 general	 character	 pointer	 that	 may	 also
point	 to	 binary	 data,	 POINTER(c_char)	 must	 be	 used.	 The
constructor	accepts	an	integer	address,	or	a	bytes	object.

class	ctypes.c_double
Represents	 the	C	 double	 datatype.	 The	 constructor	 accepts	 an
optional	float	initializer.

class	ctypes.c_longdouble
Represents	 the	 C	 long	 double	 datatype.	 The	 constructor
accepts	 an	 optional	 float	 initializer.	 On	 platforms	 where
sizeof(long	double)	==	sizeof(double)	 it	 is	an	alias	 to
c_double.

class	ctypes.c_float
Represents	 the	 C	 float	 datatype.	 The	 constructor	 accepts	 an
optional	float	initializer.

class	ctypes.c_int
Represents	the	C	signed	int	datatype.	The	constructor	accepts
an	 optional	 integer	 initializer;	 no	 overflow	 checking	 is	 done.	 On
platforms	where	sizeof(int)	==	sizeof(long)	 it	 is	an	alias
to	c_long.

class	ctypes.c_int8
Represents	the	C	8-bit	signed	int	datatype.	Usually	an	alias	for
c_byte.

class	ctypes.c_int16
Represents	 the	C	16-bit	signed	int	 datatype.	Usually	 an	 alias
for	c_short.

class	ctypes.c_int32
Represents	 the	C	32-bit	signed	int	 datatype.	Usually	 an	 alias
for	c_int.

class	ctypes.c_int64
Represents	 the	C	64-bit	signed	int	 datatype.	Usually	 an	 alias
for	c_longlong.

class	ctypes.c_long
Represents	 the	 C	 signed	 long	 datatype.	 The	 constructor
accepts	an	optional	integer	initializer;	no	overflow	checking	is	done.

class	ctypes.c_longlong
Represents	the	C	signed	long	long	datatype.	The	constructor
accepts	an	optional	integer	initializer;	no	overflow	checking	is	done.

class	ctypes.c_short
Represents	 the	 C	 signed	 short	 datatype.	 The	 constructor
accepts	an	optional	integer	initializer;	no	overflow	checking	is	done.

class	ctypes.c_size_t
Represents	the	C	size_t	datatype.

class	ctypes.c_ssize_t
Represents	the	C	ssize_t	datatype.

New	in	version	3.2.

class	ctypes.c_ubyte

Represents	 the	 C	 unsigned	 char	 datatype,	 it	 interprets	 the
value	as	small	integer.	The	constructor	accepts	an	optional	integer
initializer;	no	overflow	checking	is	done.

class	ctypes.c_uint
Represents	 the	 C	 unsigned	 int	 datatype.	 The	 constructor
accepts	an	optional	integer	initializer;	no	overflow	checking	is	done.
On	 platforms	where	 sizeof(int)	==	sizeof(long)	 it	 is	 an
alias	for	c_ulong.

class	ctypes.c_uint8
Represents	the	C	8-bit	unsigned	int	datatype.	Usually	an	alias
for	c_ubyte.

class	ctypes.c_uint16
Represents	the	C	16-bit	unsigned	int	datatype.	Usually	an	alias
for	c_ushort.

class	ctypes.c_uint32
Represents	the	C	32-bit	unsigned	int	datatype.	Usually	an	alias
for	c_uint.

class	ctypes.c_uint64
Represents	the	C	64-bit	unsigned	int	datatype.	Usually	an	alias
for	c_ulonglong.

class	ctypes.c_ulong
Represents	 the	 C	 unsigned	 long	 datatype.	 The	 constructor
accepts	an	optional	integer	initializer;	no	overflow	checking	is	done.

class	ctypes.c_ulonglong
Represents	 the	 C	 unsigned	 long	 long	 datatype.	 The

constructor	 accepts	 an	 optional	 integer	 initializer;	 no	 overflow
checking	is	done.

class	ctypes.c_ushort
Represents	 the	 C	 unsigned	 short	 datatype.	 The	 constructor
accepts	an	optional	integer	initializer;	no	overflow	checking	is	done.

class	ctypes.c_void_p
Represents	 the	 C	 void	 *	 type.	 The	 value	 is	 represented	 as
integer.	The	constructor	accepts	an	optional	integer	initializer.

class	ctypes.c_wchar
Represents	the	C	wchar_t	datatype,	and	interprets	the	value	as	a
single	 character	 unicode	 string.	 The	 constructor	 accepts	 an
optional	 string	 initializer,	 the	 length	 of	 the	 string	must	 be	 exactly
one	character.

class	ctypes.c_wchar_p
Represents	 the	C	wchar_t	*	datatype,	which	must	be	a	pointer
to	a	zero-terminated	wide	character	string.	The	constructor	accepts
an	integer	address,	or	a	string.

class	ctypes.c_bool
Represent	 the	 C	 bool	 datatype	 (more	 accurately,	 _Bool	 from
C99).	 Its	 value	 can	 be	 True	 or	 False,	 and	 the	 constructor
accepts	any	object	that	has	a	truth	value.

class	ctypes.HRESULT
Windows	 only:	 Represents	 a	 HRESULT	 value,	 which	 contains
success	or	error	information	for	a	function	or	method	call.

class	ctypes.py_object
Represents	 the	C	 PyObject	*	 datatype.	Calling	 this	without	 an

argument	creates	a	NULL	PyObject	*	pointer.

The	ctypes.wintypes	module	provides	quite	some	other	Windows
specific	 data	 types,	 for	 example	 HWND,	 WPARAM,	 or	 DWORD.	 Some
useful	structures	like	MSG	or	RECT	are	also	defined.

16.17.2.8.	Structured	data	types

class	ctypes.Union(*args,	**kw)
Abstract	base	class	for	unions	in	native	byte	order.

class	ctypes.BigEndianStructure(*args,	**kw)
Abstract	base	class	for	structures	in	big	endian	byte	order.

class	ctypes.LittleEndianStructure(*args,	**kw)
Abstract	base	class	for	structures	in	little	endian	byte	order.

Structures	 with	 non-native	 byte	 order	 cannot	 contain	 pointer	 type
fields,	or	any	other	data	types	containing	pointer	type	fields.

class	ctypes.Structure(*args,	**kw)
Abstract	base	class	for	structures	in	native	byte	order.

Concrete	 structure	 and	 union	 types	 must	 be	 created	 by
subclassing	one	of	 these	 types,	 and	at	 least	 define	a	 _fields_
class	variable.	ctypes	will	create	descriptors	which	allow	reading
and	writing	the	fields	by	direct	attribute	accesses.	These	are	the

fields

A	sequence	defining	the	structure	fields.	The	items	must	be	2-
tuples	 or	 3-tuples.	 The	 first	 item	 is	 the	 name	 of	 the	 field,	 the
second	item	specifies	the	type	of	the	field;	it	can	be	any	ctypes

data	type.

For	 integer	type	fields	like	c_int,	a	third	optional	item	can	be
given.	It	must	be	a	small	positive	integer	defining	the	bit	width	of
the	field.

Field	names	must	be	unique	within	one	structure	or	union.	This
is	not	checked,	only	one	field	can	be	accessed	when	names	are
repeated.

It	 is	 possible	 to	 define	 the	 _fields_	 class	 variable	after	 the
class	statement	that	defines	the	Structure	subclass,	this	allows
to	 create	 data	 types	 that	 directly	 or	 indirectly	 reference
themselves:

class	List(Structure):

				pass

List._fields_	=	[("pnext",	POINTER(List)),

																	...

]

The	_fields_	class	variable	must,	however,	be	defined	before
the	 type	 is	 first	 used	 (an	 instance	 is	 created,	 sizeof()	 is
called	 on	 it,	 and	 so	 on).	 Later	 assignments	 to	 the	 _fields_
class	variable	will	raise	an	AttributeError.

Structure	 and	 union	 subclass	 constructors	 accept	 both
positional	 and	 named	 arguments.	 Positional	 arguments	 are
used	to	initialize	the	fields	in	the	same	order	as	they	appear	in
the	 _fields_	 definition,	 named	 arguments	 are	 used	 to
initialize	the	fields	with	the	corresponding	name.

It	is	possible	to	defined	sub-subclasses	of	structure	types,	they

inherit	 the	 fields	of	 the	base	class	plus	 the	_fields_	defined
in	the	sub-subclass,	if	any.

pack

An	optional	small	 integer	 that	allows	 to	override	 the	alignment
of	 structure	 fields	 in	 the	 instance.	 _pack_	 must	 already	 be
defined	when	_fields_	 is	assigned,	otherwise	 it	will	have	no
effect.

anonymous

An	 optional	 sequence	 that	 lists	 the	 names	 of	 unnamed
(anonymous)	 fields.	 _anonymous_	 must	 be	 already	 defined
when	_fields_	is	assigned,	otherwise	it	will	have	no	effect.

The	fields	listed	in	this	variable	must	be	structure	or	union	type
fields.	ctypes	will	create	descriptors	 in	the	structure	type	that
allows	 to	access	 the	nested	 fields	directly,	without	 the	need	 to
create	the	structure	or	union	field.

Here	is	an	example	type	(Windows):

class	_U(Union):

				fields	=	[("lptdesc",	POINTER(TYPEDESC)),

																("lpadesc",	POINTER(ARRAYDESC)),

																("hreftype",	HREFTYPE)]

class	TYPEDESC(Structure):

				anonymous	=	("u",)

				fields	=	[("u",	_U),

																("vt",	VARTYPE)]

The	TYPEDESC	 structure	 describes	 a	COM	data	 type,	 the	 vt
field	specifies	which	one	of	the	union	fields	is	valid.	Since	the	u

field	is	defined	as	anonymous	field,	it	is	now	possible	to	access
the	 members	 directly	 off	 the	 TYPEDESC	 instance.
td.lptdesc	 and	 td.u.lptdesc	 are	 equivalent,	 but	 the
former	 is	 faster	 since	 it	 does	 not	 need	 to	 create	 a	 temporary
union	instance:

td	=	TYPEDESC()

td.vt	=	VT_PTR

td.lptdesc	=	POINTER(some_type)

td.u.lptdesc	=	POINTER(some_type)

It	 is	 possible	 to	 defined	 sub-subclasses	of	 structures,	 they	 inherit
the	 fields	 of	 the	 base	 class.	 If	 the	 subclass	 definition	 has	 a
separate	 _fields_	 variable,	 the	 fields	 specified	 in	 this	 are
appended	to	the	fields	of	the	base	class.

Structure	 and	 union	 constructors	 accept	 both	 positional	 and
keyword	 arguments.	 Positional	 arguments	 are	 used	 to	 initialize
member	fields	in	the	same	order	as	they	are	appear	in	_fields_.
Keyword	arguments	 in	 the	constructor	are	 interpreted	as	attribute
assignments,	so	they	will	initialize	_fields_	with	the	same	name,
or	create	new	attributes	for	names	not	present	in	_fields_.

16.17.2.9.	Arrays	and	pointers

Not	yet	written	-	please	see	the	sections	Pointers	and	section	Arrays	in
the	tutorial.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	16.	Generic	Operating	System	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

17.	Concurrent	Execution
The	modules	described	in	this	chapter	provide	support	for	concurrent
execution	of	code.	The	appropriate	choice	of	 tool	will	depend	on	 the
task	to	be	executed	(CPU	bound	vs	IO	bound)	and	preferred	style	of
development	 (event	 driven	 cooperative	 multitasking	 vs	 preemptive
multitasking).	Here’s	an	overview:

17.1.	threading	—	Thread-based	parallelism
17.1.1.	Thread-Local	Data
17.1.2.	Thread	Objects
17.1.3.	Lock	Objects
17.1.4.	RLock	Objects
17.1.5.	Condition	Objects
17.1.6.	Semaphore	Objects

17.1.6.1.	Semaphore	Example
17.1.7.	Event	Objects
17.1.8.	Timer	Objects
17.1.9.	Barrier	Objects
17.1.10.	 Using	 locks,	 conditions,	 and	 semaphores	 in	 the
with	statement

17.2.	multiprocessing	—	Process-based	parallelism
17.2.1.	Introduction

17.2.1.1.	The	Process	class
17.2.1.2.	Contexts	and	start	methods
17.2.1.3.	Exchanging	objects	between	processes
17.2.1.4.	Synchronization	between	processes
17.2.1.5.	Sharing	state	between	processes
17.2.1.6.	Using	a	pool	of	workers

17.2.2.	Reference
17.2.2.1.	Process	and	exceptions
17.2.2.2.	Pipes	and	Queues

17.2.2.3.	Miscellaneous
17.2.2.4.	Connection	Objects
17.2.2.5.	Synchronization	primitives
17.2.2.6.	Shared	ctypes	Objects

17.2.2.6.1.	 The
multiprocessing.sharedctypes	module

17.2.2.7.	Managers
17.2.2.7.1.	Namespace	objects
17.2.2.7.2.	Customized	managers
17.2.2.7.3.	Using	a	remote	manager

17.2.2.8.	Proxy	Objects
17.2.2.8.1.	Cleanup

17.2.2.9.	Process	Pools
17.2.2.10.	Listeners	and	Clients

17.2.2.10.1.	Address	Formats
17.2.2.11.	Authentication	keys
17.2.2.12.	Logging
17.2.2.13.	The	multiprocessing.dummy	module

17.2.3.	Programming	guidelines
17.2.3.1.	All	start	methods
17.2.3.2.	The	spawn	and	forkserver	start	methods

17.2.4.	Examples
17.3.	The	concurrent	package
17.4.	concurrent.futures	—	Launching	parallel	tasks

17.4.1.	Executor	Objects
17.4.2.	ThreadPoolExecutor

17.4.2.1.	ThreadPoolExecutor	Example
17.4.3.	ProcessPoolExecutor

17.4.3.1.	ProcessPoolExecutor	Example
17.4.4.	Future	Objects
17.4.5.	Module	Functions
17.4.6.	Exception	classes

17.5.	subprocess	—	Subprocess	management
17.5.1.	Using	the	subprocess	Module

17.5.1.1.	Frequently	Used	Arguments
17.5.1.2.	Popen	Constructor
17.5.1.3.	Exceptions
17.5.1.4.	Security

17.5.2.	Popen	Objects
17.5.3.	Windows	Popen	Helpers

17.5.3.1.	Constants
17.5.4.	 Replacing	 Older	 Functions	 with	 the	 subprocess
Module

17.5.4.1.	Replacing	/bin/sh	shell	backquote
17.5.4.2.	Replacing	shell	pipeline
17.5.4.3.	Replacing	os.system()
17.5.4.4.	Replacing	the	os.spawn	family
17.5.4.5.	 Replacing	 os.popen(),	 os.popen2(),
os.popen3()

17.5.4.6.	Replacing	functions	from	the	popen2	module
17.5.5.	Legacy	Shell	Invocation	Functions
17.5.6.	Notes

17.5.6.1.	Converting	 an	 argument	 sequence	 to	 a	 string
on	Windows

17.6.	sched	—	Event	scheduler
17.6.1.	Scheduler	Objects

17.7.	queue	—	A	synchronized	queue	class
17.7.1.	Queue	Objects

The	following	are	support	modules	for	some	of	the	above	services:

17.8.	 dummy_threading	 —	 Drop-in	 replacement	 for	 the
threading	module
17.9.	_thread	—	Low-level	threading	API
17.10.	_dummy_thread	—	Drop-in	replacement	for	the	_thread
module

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.1.	threading	—	Thread-
based	parallelism
Source	code:	Lib/threading.py

This	module	constructs	higher-level	threading	interfaces	on	top	of	the
lower	level	_thread	module.	See	also	the	queue	module.

The	 dummy_threading	 module	 is	 provided	 for	 situations	 where
threading	cannot	be	used	because	_thread	is	missing.

Note: 	While	they	are	not	listed	below,	the	camelCase	names	used
for	some	methods	and	functions	in	this	module	in	the	Python	2.x
series	are	still	supported	by	this	module.

This	module	defines	the	following	functions:

threading.active_count()
Return	the	number	of	Thread	objects	currently	alive.	The	returned
count	is	equal	to	the	length	of	the	list	returned	by	enumerate().

threading.current_thread()
Return	 the	 current	 Thread	 object,	 corresponding	 to	 the	 caller’s
thread	of	 control.	 If	 the	 caller’s	 thread	of	 control	was	not	 created
through	 the	 threading	 module,	 a	 dummy	 thread	 object	 with
limited	functionality	is	returned.

threading.get_ident()
Return	the	‘thread	identifier’	of	the	current	thread.	This	is	a	nonzero

http://hg.python.org/cpython/file/3.4/Lib/threading.py

integer.	Its	value	has	no	direct	meaning;	 it	 is	 intended	as	a	magic
cookie	to	be	used	e.g.	to	index	a	dictionary	of	thread-specific	data.
Thread	 identifiers	 may	 be	 recycled	 when	 a	 thread	 exits	 and
another	thread	is	created.

New	in	version	3.3.

threading.enumerate()
Return	a	list	of	all	Thread	objects	currently	alive.	The	list	includes
daemonic	 threads,	 dummy	 thread	 objects	 created	 by
current_thread(),	and	the	main	thread.	It	excludes	terminated
threads	and	threads	that	have	not	yet	been	started.

threading.main_thread()
Return	 the	 main	 Thread	 object.	 In	 normal	 conditions,	 the	 main
thread	is	the	thread	from	which	the	Python	interpreter	was	started.

New	in	version	3.4.

threading.settrace(func)
Set	 a	 trace	 function	 for	 all	 threads	 started	 from	 the	 threading
module.	 The	 func	 will	 be	 passed	 to	 sys.settrace()	 for	 each
thread,	before	its	run()	method	is	called.

threading.setprofile(func)
Set	a	profile	 function	 for	all	 threads	started	 from	 the	threading
module.	The	func	will	be	passed	to	sys.setprofile()	for	each
thread,	before	its	run()	method	is	called.

threading.stack_size([size])
Return	the	thread	stack	size	used	when	creating	new	threads.	The
optional	 size	 argument	 specifies	 the	 stack	 size	 to	 be	 used	 for

subsequently	 created	 threads,	 and	 must	 be	 0	 (use	 platform	 or
configured	default)	or	a	positive	integer	value	of	at	least	32,768	(32
KiB).	 If	 changing	 the	 thread	 stack	 size	 is	 unsupported,	 a
RuntimeError	 is	 raised.	 If	 the	 specified	 stack	 size	 is	 invalid,	 a
ValueError	is	raised	and	the	stack	size	is	unmodified.	32	KiB	is
currently	 the	 minimum	 supported	 stack	 size	 value	 to	 guarantee
sufficient	 stack	 space	 for	 the	 interpreter	 itself.	 Note	 that	 some
platforms	may	have	particular	 restrictions	 on	 values	 for	 the	 stack
size,	such	as	requiring	a	minimum	stack	size	>	32	KiB	or	requiring
allocation	 in	multiples	of	 the	system	memory	page	size	 -	platform
documentation	 should	 be	 referred	 to	 for	more	 information	 (4	 KiB
pages	are	common;	using	multiples	of	4096	for	the	stack	size	is	the
suggested	approach	 in	 the	absence	of	more	specific	 information).
Availability:	Windows,	systems	with	POSIX	threads.

This	module	also	defines	the	following	constant:

threading.TIMEOUT_MAX

The	maximum	value	allowed	for	the	timeout	parameter	of	blocking
functions	 (Lock.acquire(),	 RLock.acquire(),
Condition.wait(),	etc.).	Specifying	a	timeout	greater	than	this
value	will	raise	an	OverflowError.

New	in	version	3.2.

This	module	 defines	 a	 number	 of	 classes,	 which	 are	 detailed	 in	 the
sections	below.

The	design	of	this	module	is	loosely	based	on	Java’s	threading	model.
However,	 where	 Java	 makes	 locks	 and	 condition	 variables	 basic
behavior	of	every	object,	they	are	separate	objects	in	Python.	Python’s
Thread	 class	 supports	 a	 subset	 of	 the	 behavior	 of	 Java’s	 Thread
class;	currently,	there	are	no	priorities,	no	thread	groups,	and	threads

cannot	 be	 destroyed,	 stopped,	 suspended,	 resumed,	 or	 interrupted.
The	 static	 methods	 of	 Java’s	 Thread	 class,	 when	 implemented,	 are
mapped	to	module-level	functions.

All	of	the	methods	described	below	are	executed	atomically.

17.1.1.	Thread-Local	Data

Thread-local	data	is	data	whose	values	are	thread	specific.	To	manage
thread-local	data,	just	create	an	instance	of	local	(or	a	subclass)	and
store	attributes	on	it:

mydata	=	threading.local()

mydata.x	=	1

The	instance’s	values	will	be	different	for	separate	threads.

class	threading.local
A	class	that	represents	thread-local	data.

For	more	details	and	extensive	examples,	see	 the	documentation
string	of	the	_threading_local	module.

17.1.2.	Thread	Objects

The	 Thread	 class	 represents	 an	 activity	 that	 is	 run	 in	 a	 separate
thread	 of	 control.	 There	 are	 two	 ways	 to	 specify	 the	 activity:	 by
passing	 a	 callable	 object	 to	 the	 constructor,	 or	 by	 overriding	 the
run()	 method	 in	 a	 subclass.	 No	 other	 methods	 (except	 for	 the
constructor)	should	be	overridden	 in	a	subclass.	 In	other	words,	only
override	the	__init__()	and	run()	methods	of	this	class.

Once	a	thread	object	is	created,	its	activity	must	be	started	by	calling
the	 thread’s	start()	method.	This	 invokes	 the	run()	method	 in	a
separate	thread	of	control.

Once	the	thread’s	activity	is	started,	the	thread	is	considered	‘alive’.	It
stops	being	alive	when	its	run()	method	terminates	–	either	normally,
or	by	raising	an	unhandled	exception.	The	is_alive()	method	tests
whether	the	thread	is	alive.

Other	 threads	 can	 call	 a	 thread’s	 join()	 method.	 This	 blocks	 the
calling	 thread	 until	 the	 thread	 whose	 join()	 method	 is	 called	 is
terminated.

A	thread	has	a	name.	The	name	can	be	passed	to	the	constructor,	and
read	or	changed	through	the	name	attribute.

A	thread	can	be	flagged	as	a	“daemon	thread”.	The	significance	of	this
flag	is	that	the	entire	Python	program	exits	when	only	daemon	threads
are	left.	The	initial	value	is	inherited	from	the	creating	thread.	The	flag
can	 be	 set	 through	 the	 daemon	 property	 or	 the	daemon	 constructor
argument.

Note: 	Daemon	threads	are	abruptly	stopped	at	shutdown.	Their

resources	(such	as	open	files,	database	transactions,	etc.)	may	not
be	released	properly.	If	you	want	your	threads	to	stop	gracefully,
make	them	non-daemonic	and	use	a	suitable	signalling	mechanism
such	as	an	Event.

There	is	a	“main	thread”	object;	this	corresponds	to	the	initial	thread	of
control	in	the	Python	program.	It	is	not	a	daemon	thread.

There	is	the	possibility	that	“dummy	thread	objects”	are	created.	These
are	thread	objects	corresponding	to	“alien	threads”,	which	are	threads
of	control	started	outside	the	threading	module,	such	as	directly	 from
C	 code.	 Dummy	 thread	 objects	 have	 limited	 functionality;	 they	 are
always	 considered	 alive	 and	 daemonic,	 and	 cannot	 be	 join()ed.
They	are	never	deleted,	since	it	is	impossible	to	detect	the	termination
of	alien	threads.

class	threading.Thread(group=None,	target=None,	name=None,
args=(),	kwargs={},	*,	daemon=None)

This	constructor	should	always	be	called	with	keyword	arguments.
Arguments	are:

group	 should	 be	 None;	 reserved	 for	 future	 extension	 when	 a
ThreadGroup	class	is	implemented.

target	 is	 the	 callable	object	 to	be	 invoked	by	 the	 run()	method.
Defaults	to	None,	meaning	nothing	is	called.

name	is	the	thread	name.	By	default,	a	unique	name	is	constructed
of	the	form	“Thread-N”	where	N	is	a	small	decimal	number.

args	is	the	argument	tuple	for	the	target	invocation.	Defaults	to	().

kwargs	 is	 a	 dictionary	 of	 keyword	 arguments	 for	 the	 target

invocation.	Defaults	to	{}.

If	 not	 None,	 daemon	 explicitly	 sets	 whether	 the	 thread	 is
daemonic.	If	None	(the	default),	the	daemonic	property	is	inherited
from	the	current	thread.

If	 the	 subclass	 overrides	 the	 constructor,	 it	 must	 make	 sure	 to
invoke	 the	base	class	constructor	 (Thread.__init__())	before
doing	anything	else	to	the	thread.

Changed	in	version	3.3:	Added	the	daemon	argument.

start()
Start	the	thread’s	activity.

It	must	be	called	at	most	once	per	thread	object.	It	arranges	for
the	object’s	run()	method	to	be	invoked	in	a	separate	thread
of	control.

This	 method	 will	 raise	 a	 RuntimeError	 if	 called	 more	 than
once	on	the	same	thread	object.

run()
Method	representing	the	thread’s	activity.

You	 may	 override	 this	 method	 in	 a	 subclass.	 The	 standard
run()	 method	 invokes	 the	 callable	 object	 passed	 to	 the
object’s	 constructor	 as	 the	 target	 argument,	 if	 any,	 with
sequential	 and	 keyword	 arguments	 taken	 from	 the	 args	 and
kwargs	arguments,	respectively.

join(timeout=None)
Wait	until	 the	 thread	 terminates.	This	blocks	 the	calling	 thread

until	 the	 thread	whose	 join()	method	 is	 called	 terminates	–
either	 normally	 or	 through	 an	 unhandled	 exception	 –,	 or	 until
the	optional	timeout	occurs.

When	the	timeout	argument	is	present	and	not	None,	it	should
be	a	floating	point	number	specifying	a	timeout	for	the	operation
in	 seconds	 (or	 fractions	 thereof).	 As	 join()	 always	 returns
None,	 you	 must	 call	 is_alive()	 after	 join()	 to	 decide
whether	 a	 timeout	 happened	 –	 if	 the	 thread	 is	 still	 alive,	 the
join()	call	timed	out.

When	 the	 timeout	 argument	 is	 not	 present	 or	 None,	 the
operation	will	block	until	the	thread	terminates.

A	thread	can	be	join()ed	many	times.

join()	raises	a	RuntimeError	 if	an	attempt	is	made	to	join
the	current	thread	as	that	would	cause	a	deadlock.	It	is	also	an
error	 to	 join()	 a	 thread	 before	 it	 has	 been	 started	 and
attempts	to	do	so	raise	the	same	exception.

name

A	 string	 used	 for	 identification	 purposes	 only.	 It	 has	 no
semantics.	Multiple	threads	may	be	given	the	same	name.	The
initial	name	is	set	by	the	constructor.

getName()
setName()

Old	 getter/setter	 API	 for	 name;	 use	 it	 directly	 as	 a	 property
instead.

ident

The	 ‘thread	 identifier’	 of	 this	 thread	or	 None	 if	 the	 thread	has

not	 been	 started.	 This	 is	 a	 nonzero	 integer.	 See	 the
_thread.get_ident()	 function.	 Thread	 identifiers	 may	 be
recycled	when	a	thread	exits	and	another	thread	is	created.	The
identifier	is	available	even	after	the	thread	has	exited.

is_alive()
Return	whether	the	thread	is	alive.

This	method	returns	True	just	before	the	run()	method	starts
until	 just	 after	 the	 run()	 method	 terminates.	 The	 module
function	enumerate()	returns	a	list	of	all	alive	threads.

daemon

A	 boolean	 value	 indicating	 whether	 this	 thread	 is	 a	 daemon
thread	(True)	or	not	(False).	This	must	be	set	before	start()
is	called,	otherwise	RuntimeError	is	raised.	Its	initial	value	is
inherited	 from	 the	 creating	 thread;	 the	 main	 thread	 is	 not	 a
daemon	 thread	 and	 therefore	 all	 threads	 created	 in	 the	 main
thread	default	to	daemon	=	False.

The	 entire	 Python	 program	 exits	 when	 no	 alive	 non-daemon
threads	are	left.

isDaemon()
setDaemon()

Old	getter/setter	API	 for	daemon;	 use	 it	 directly	as	a	property
instead.

CPython	 implementation	 detail:	 In	 CPython,	 due	 to	 the	 Global
Interpreter	Lock,	only	one	thread	can	execute	Python	code	at	once
(even	though	certain	performance-oriented	libraries	might	overcome
this	limitation).	If	you	want	your	application	to	make	better	use	of	the

computational	resources	of	multi-core	machines,	you	are	advised	to
use	 multiprocessing	 or
concurrent.futures.ProcessPoolExecutor.	 However,
threading	is	still	an	appropriate	model	if	you	want	to	run	multiple	I/O-
bound	tasks	simultaneously.

17.1.3.	Lock	Objects

A	primitive	 lock	 is	a	synchronization	primitive	 that	 is	not	owned	by	a
particular	thread	when	locked.	In	Python,	it	is	currently	the	lowest	level
synchronization	 primitive	 available,	 implemented	 directly	 by	 the
_thread	extension	module.

A	 primitive	 lock	 is	 in	 one	 of	 two	 states,	 “locked”	 or	 “unlocked”.	 It	 is
created	in	the	unlocked	state.	It	has	two	basic	methods,	acquire()
and	release().	When	 the	 state	 is	 unlocked,	 acquire()	 changes
the	state	to	locked	and	returns	immediately.	When	the	state	is	locked,
acquire()	 blocks	 until	 a	 call	 to	 release()	 in	 another	 thread
changes	 it	 to	 unlocked,	 then	 the	 acquire()	 call	 resets	 it	 to	 locked
and	 returns.	 The	 release()	 method	 should	 only	 be	 called	 in	 the
locked	state;	it	changes	the	state	to	unlocked	and	returns	immediately.
If	an	attempt	is	made	to	release	an	unlocked	lock,	a	RuntimeError
will	be	raised.

Locks	also	support	the	context	manager	protocol.

When	more	than	one	thread	is	blocked	in	acquire()	waiting	for	the
state	 to	 turn	 to	 unlocked,	 only	 one	 thread	 proceeds	 when	 a
release()	call	resets	the	state	to	unlocked;	which	one	of	the	waiting
threads	 proceeds	 is	 not	 defined,	 and	 may	 vary	 across
implementations.

All	methods	are	executed	atomically.

class	threading.Lock
The	class	 implementing	primitive	 lock	objects.	Once	a	 thread	has
acquired	a	 lock,	subsequent	attempts	to	acquire	 it	block,	until	 it	 is
released;	any	thread	may	release	it.

Changed	 in	 version	 3.3:	 Changed	 from	 a	 factory	 function	 to	 a
class.

acquire(blocking=True,	timeout=-1)
Acquire	a	lock,	blocking	or	non-blocking.

When	 invoked	 with	 the	 blocking	 argument	 set	 to	 True	 (the
default),	 block	 until	 the	 lock	 is	 unlocked,	 then	 set	 it	 to	 locked
and	return	True.

When	invoked	with	the	blocking	argument	set	to	False,	do	not
block.	 If	 a	 call	 with	 blocking	 set	 to	 True	 would	 block,	 return
False	immediately;	otherwise,	set	the	lock	to	locked	and	return
True.

When	invoked	with	the	floating-point	timeout	argument	set	to	a
positive	 value,	 block	 for	 at	 most	 the	 number	 of	 seconds
specified	 by	 timeout	 and	 as	 long	 as	 the	 lock	 cannot	 be
acquired.	 A	 timeout	 argument	 of	 -1	 specifies	 an	 unbounded
wait.	It	is	forbidden	to	specify	a	timeout	when	blocking	is	false.

The	 return	 value	 is	 True	 if	 the	 lock	 is	 acquired	 successfully,
False	if	not	(for	example	if	the	timeout	expired).

Changed	in	version	3.2:	The	timeout	parameter	is	new.

Changed	in	version	3.2:	Lock	acquires	can	now	be	 interrupted
by	signals	on	POSIX.

release()
Release	a	lock.	This	can	be	called	from	any	thread,	not	only	the
thread	which	has	acquired	the	lock.

When	the	lock	is	locked,	reset	it	to	unlocked,	and	return.	If	any
other	 threads	 are	 blocked	 waiting	 for	 the	 lock	 to	 become
unlocked,	allow	exactly	one	of	them	to	proceed.

When	 invoked	 on	 an	 unlocked	 lock,	 a	 RuntimeError	 is
raised.

There	is	no	return	value.

17.1.4.	RLock	Objects

A	 reentrant	 lock	 is	 a	 synchronization	 primitive	 that	may	 be	 acquired
multiple	 times	by	 the	same	 thread.	 Internally,	 it	uses	 the	concepts	of
“owning	 thread”	 and	 “recursion	 level”	 in	 addition	 to	 the
locked/unlocked	 state	 used	 by	 primitive	 locks.	 In	 the	 locked	 state,
some	thread	owns	the	lock;	in	the	unlocked	state,	no	thread	owns	it.

To	 lock	 the	 lock,	 a	 thread	 calls	 its	 acquire()	method;	 this	 returns
once	 the	 thread	owns	 the	 lock.	To	unlock	 the	 lock,	 a	 thread	calls	 its
release()	 method.	 acquire()/release()	 call	 pairs	 may	 be
nested;	only	 the	 final	release()	 (the	release()	of	 the	outermost
pair)	resets	the	lock	to	unlocked	and	allows	another	thread	blocked	in
acquire()	to	proceed.

Reentrant	locks	also	support	the	context	manager	protocol.

class	threading.RLock
This	class	implements	reentrant	lock	objects.	A	reentrant	lock	must
be	 released	 by	 the	 thread	 that	 acquired	 it.	 Once	 a	 thread	 has
acquired	 a	 reentrant	 lock,	 the	 same	 thread	may	 acquire	 it	 again
without	 blocking;	 the	 thread	must	 release	 it	 once	 for	 each	 time	 it
has	acquired	it.

Note	 that	 RLock	 is	 actually	 a	 factory	 function	 which	 returns	 an
instance	of	 the	most	efficient	version	of	 the	concrete	RLock	class
that	is	supported	by	the	platform.

acquire(blocking=True,	timeout=-1)
Acquire	a	lock,	blocking	or	non-blocking.

When	 invoked	without	 arguments:	 if	 this	 thread	 already	 owns

the	 lock,	 increment	 the	 recursion	 level	 by	 one,	 and	 return
immediately.	Otherwise,	 if	another	 thread	owns	 the	 lock,	block
until	the	lock	is	unlocked.	Once	the	lock	is	unlocked	(not	owned
by	any	thread),	then	grab	ownership,	set	the	recursion	level	to
one,	and	return.	If	more	than	one	thread	is	blocked	waiting	until
the	 lock	 is	 unlocked,	 only	 one	 at	 a	 time	 will	 be	 able	 to	 grab
ownership	of	the	lock.	There	is	no	return	value	in	this	case.

When	 invoked	 with	 the	 blocking	 argument	 set	 to	 true,	 do	 the
same	thing	as	when	called	without	arguments,	and	return	true.

When	 invoked	with	 the	blocking	 argument	 set	 to	 false,	 do	not
block.	 If	 a	 call	 without	 an	 argument	 would	 block,	 return	 false
immediately;	 otherwise,	 do	 the	 same	 thing	 as	 when	 called
without	arguments,	and	return	true.

When	invoked	with	the	floating-point	timeout	argument	set	to	a
positive	 value,	 block	 for	 at	 most	 the	 number	 of	 seconds
specified	 by	 timeout	 and	 as	 long	 as	 the	 lock	 cannot	 be
acquired.	Return	true	if	the	lock	has	been	acquired,	false	if	the
timeout	has	elapsed.

Changed	in	version	3.2:	The	timeout	parameter	is	new.

release()
Release	 a	 lock,	 decrementing	 the	 recursion	 level.	 If	 after	 the
decrement	 it	 is	zero,	 reset	 the	 lock	 to	unlocked	(not	owned	by
any	thread),	and	if	any	other	threads	are	blocked	waiting	for	the
lock	to	become	unlocked,	allow	exactly	one	of	them	to	proceed.
If	 after	 the	 decrement	 the	 recursion	 level	 is	 still	 nonzero,	 the
lock	remains	locked	and	owned	by	the	calling	thread.

Only	call	this	method	when	the	calling	thread	owns	the	lock.	A

RuntimeError	is	raised	if	this	method	is	called	when	the	lock
is	unlocked.

There	is	no	return	value.

17.1.5.	Condition	Objects

A	condition	variable	 is	always	associated	with	some	kind	of	 lock;	 this
can	be	passed	in	or	one	will	be	created	by	default.	Passing	one	 in	 is
useful	 when	 several	 condition	 variables	 must	 share	 the	 same	 lock.
The	 lock	 is	 part	 of	 the	 condition	 object:	 you	 don’t	 have	 to	 track	 it
separately.

A	 condition	 variable	 obeys	 the	 context	 manager	 protocol:	 using	 the
with	 statement	 acquires	 the	 associated	 lock	 for	 the	 duration	 of	 the
enclosed	block.	The	acquire()	and	release()	methods	also	 call
the	corresponding	methods	of	the	associated	lock.

Other	 methods	 must	 be	 called	 with	 the	 associated	 lock	 held.	 The
wait()	 method	 releases	 the	 lock,	 and	 then	 blocks	 until	 another
thread	 awakens	 it	 by	 calling	 notify()	 or	 notify_all().	 Once
awakened,	wait()	re-acquires	the	lock	and	returns.	It	is	also	possible
to	specify	a	timeout.

The	notify()	method	wakes	up	one	of	 the	 threads	waiting	 for	 the
condition	 variable,	 if	 any	 are	 waiting.	 The	 notify_all()	 method
wakes	up	all	threads	waiting	for	the	condition	variable.

Note:	the	notify()	and	notify_all()	methods	don’t	 release	the
lock;	 this	means	 that	 the	 thread	or	 threads	awakened	will	 not	 return
from	 their	 wait()	 call	 immediately,	 but	 only	 when	 the	 thread	 that
called	notify()	or	notify_all()	finally	relinquishes	ownership	of
the	lock.

The	typical	programming	style	using	condition	variables	uses	the	lock
to	 synchronize	 access	 to	 some	 shared	 state;	 threads	 that	 are

interested	in	a	particular	change	of	state	call	wait()	repeatedly	until
they	 see	 the	 desired	 state,	 while	 threads	 that	 modify	 the	 state	 call
notify()	or	notify_all()	when	they	change	the	state	in	such	a
way	that	it	could	possibly	be	a	desired	state	for	one	of	the	waiters.	For
example,	the	following	code	is	a	generic	producer-consumer	situation
with	unlimited	buffer	capacity:

#	Consume	one	item

with	cv:

				while	not	an_item_is_available():

								cv.wait()

				get_an_available_item()

#	Produce	one	item

with	cv:

				make_an_item_available()

				cv.notify()

The	while	 loop	checking	for	 the	application’s	condition	 is	necessary
because	 wait()	 can	 return	 after	 an	 arbitrary	 long	 time,	 and	 the
condition	which	prompted	the	notify()	call	may	no	longer	hold	true.
This	 is	 inherent	 to	 multi-threaded	 programming.	 The	 wait_for()
method	can	be	used	 to	automate	 the	 condition	 checking,	 and	eases
the	computation	of	timeouts:

#	Consume	an	item

with	cv:

				cv.wait_for(an_item_is_available)

				get_an_available_item()

To	 choose	 between	 notify()	 and	 notify_all(),	 consider
whether	one	state	 change	can	be	 interesting	 for	only	one	or	 several
waiting	threads.	E.g.	 in	a	 typical	producer-consumer	situation,	adding

one	item	to	the	buffer	only	needs	to	wake	up	one	consumer	thread.

class	threading.Condition(lock=None)
This	 class	 implements	 condition	 variable	 objects.	 A	 condition
variable	allows	one	or	more	 threads	 to	wait	until	 they	are	notified
by	another	thread.

If	the	 lock	argument	 is	given	and	not	None,	 it	must	be	a	Lock	or
RLock	object,	and	 it	 is	used	as	 the	underlying	 lock.	Otherwise,	a
new	RLock	object	is	created	and	used	as	the	underlying	lock.

Changed	in	version	3.3:	changed	from	a	factory	function	to	a	class.

acquire(*args)
Acquire	 the	 underlying	 lock.	 This	 method	 calls	 the
corresponding	method	on	 the	underlying	 lock;	 the	return	value
is	whatever	that	method	returns.

release()
Release	 the	 underlying	 lock.	 This	 method	 calls	 the
corresponding	method	on	the	underlying	lock;	there	is	no	return
value.

wait(timeout=None)
Wait	until	notified	or	until	a	timeout	occurs.	If	the	calling	thread
has	 not	 acquired	 the	 lock	 when	 this	 method	 is	 called,	 a
RuntimeError	is	raised.

This	method	releases	the	underlying	lock,	and	then	blocks	until
it	 is	awakened	by	a	notify()	or	notify_all()	call	 for	 the
same	condition	variable	 in	another	 thread,	or	until	 the	optional
timeout	occurs.	Once	awakened	or	timed	out,	it	re-acquires	the
lock	and	returns.

When	the	timeout	argument	is	present	and	not	None,	it	should
be	a	floating	point	number	specifying	a	timeout	for	the	operation
in	seconds	(or	fractions	thereof).

When	the	underlying	lock	is	an	RLock,	 it	 is	not	released	using
its	release()	method,	since	this	may	not	actually	unlock	 the
lock	when	it	was	acquired	multiple	times	recursively.	Instead,	an
internal	 interface	 of	 the	 RLock	 class	 is	 used,	 which	 really
unlocks	 it	 even	when	 it	 has	been	 recursively	acquired	several
times.	 Another	 internal	 interface	 is	 then	 used	 to	 restore	 the
recursion	level	when	the	lock	is	reacquired.

The	 return	 value	 is	 True	 unless	 a	 given	 timeout	 expired,	 in
which	case	it	is	False.

Changed	in	version	3.2:	Previously,	the	method	always	returned
None.

wait_for(predicate,	timeout=None)
Wait	until	a	condition	evaluates	 to	True.	predicate	should	be	a
callable	which	 result	will	 be	 interpreted	as	a	boolean	value.	A
timeout	may	be	provided	giving	the	maximum	time	to	wait.

This	 utility	 method	 may	 call	 wait()	 repeatedly	 until	 the
predicate	is	satisfied,	or	until	a	timeout	occurs.	The	return	value
is	 the	 last	 return	 value	 of	 the	 predicate	 and	 will	 evaluate	 to
False	if	the	method	timed	out.

Ignoring	 the	 timeout	 feature,	 calling	 this	 method	 is	 roughly
equivalent	to	writing:

while	not	predicate():

				cv.wait()

Therefore,	the	same	rules	apply	as	with	wait():	The	lock	must
be	held	when	called	and	is	re-aquired	on	return.	The	predicate
is	evaluated	with	the	lock	held.

New	in	version	3.2.

notify(n=1)
By	default,	wake	up	one	thread	waiting	on	this	condition,	if	any.
If	the	calling	thread	has	not	acquired	the	lock	when	this	method
is	called,	a	RuntimeError	is	raised.

This	method	wakes	up	at	most	n	of	the	threads	waiting	for	the
condition	variable;	it	is	a	no-op	if	no	threads	are	waiting.

The	 current	 implementation	 wakes	 up	 exactly	 n	 threads,	 if	 at
least	n	threads	are	waiting.	However,	it’s	not	safe	to	rely	on	this
behavior.	A	 future,	optimized	 implementation	may	occasionally
wake	up	more	than	n	threads.

Note:	 an	 awakened	 thread	 does	 not	 actually	 return	 from	 its
wait()	 call	 until	 it	 can	 reacquire	 the	 lock.	 Since	 notify()
does	not	release	the	lock,	its	caller	should.

notify_all()
Wake	up	all	threads	waiting	on	this	condition.	This	method	acts
like	notify(),	but	wakes	up	all	waiting	threads	instead	of	one.
If	the	calling	thread	has	not	acquired	the	lock	when	this	method
is	called,	a	RuntimeError	is	raised.

17.1.6.	Semaphore	Objects

This	 is	 one	 of	 the	 oldest	 synchronization	 primitives	 in	 the	 history	 of
computer	 science,	 invented	 by	 the	 early	 Dutch	 computer	 scientist
Edsger	 W.	 Dijkstra	 (he	 used	 the	 names	 P()	 and	 V()	 instead	 of
acquire()	and	release()).

A	semaphore	manages	an	 internal	 counter	which	 is	decremented	by
each	acquire()	call	and	incremented	by	each	release()	call.	The
counter	 can	 never	 go	 below	 zero;	 when	 acquire()	 finds	 that	 it	 is
zero,	it	blocks,	waiting	until	some	other	thread	calls	release().

Semaphores	also	support	the	context	manager	protocol.

class	threading.Semaphore(value=1)
This	class	implements	semaphore	objects.	A	semaphore	manages
a	counter	representing	the	number	of	release()	calls	minus	the
number	of	acquire()	calls,	plus	an	initial	value.	The	acquire()
method	blocks	 if	 necessary	 until	 it	 can	 return	without	making	 the
counter	negative.	If	not	given,	value	defaults	to	1.

The	 optional	 argument	 gives	 the	 initial	 value	 for	 the	 internal
counter;	 it	 defaults	 to	 1.	 If	 the	 value	 given	 is	 less	 than	 0,
ValueError	is	raised.

Changed	in	version	3.3:	changed	from	a	factory	function	to	a	class.

acquire(blocking=True,	timeout=None)
Acquire	a	semaphore.

When	 invoked	 without	 arguments:	 if	 the	 internal	 counter	 is
larger	 than	 zero	 on	 entry,	 decrement	 it	 by	 one	 and	 return

immediately.	If	it	is	zero	on	entry,	block,	waiting	until	some	other
thread	has	called	release()	to	make	it	larger	than	zero.	This
is	done	with	proper	 interlocking	so	 that	 if	multiple	acquire()
calls	 are	 blocked,	 release()	 will	 wake	 exactly	 one	 of	 them
up.	The	 implementation	may	pick	one	at	 random,	so	the	order
in	which	blocked	threads	are	awakened	should	not	be	relied	on.
Returns	true	(or	blocks	indefinitely).

When	 invoked	with	blocking	set	 to	 false,	do	not	block.	 If	a	call
without	 an	 argument	 would	 block,	 return	 false	 immediately;
otherwise,	 do	 the	 same	 thing	 as	 when	 called	 without
arguments,	and	return	true.

When	invoked	with	a	timeout	other	than	None,	it	will	block	for	at
most	 timeout	 seconds.	 If	 acquire	 does	 not	 complete
successfully	in	that	interval,	return	false.	Return	true	otherwise.

Changed	in	version	3.2:	The	timeout	parameter	is	new.

release()
Release	 a	 semaphore,	 incrementing	 the	 internal	 counter	 by
one.	When	 it	was	zero	on	entry	and	another	 thread	 is	waiting
for	it	to	become	larger	than	zero	again,	wake	up	that	thread.

class	threading.BoundedSemaphore(value=1)
Class	 implementing	 bounded	 semaphore	 objects.	 A	 bounded
semaphore	checks	 to	make	sure	 its	current	value	doesn’t	exceed
its	initial	value.	If	it	does,	ValueError	is	raised.	In	most	situations
semaphores	 are	 used	 to	 guard	 resources	with	 limited	 capacity.	 If
the	semaphore	 is	 released	 too	many	 times	 it’s	a	sign	of	a	bug.	 If
not	given,	value	defaults	to	1.

Changed	in	version	3.3:	changed	from	a	factory	function	to	a	class.

17.1.6.1.	Semaphore	Example

Semaphores	are	often	used	 to	guard	 resources	with	 limited	capacity,
for	example,	a	database	server.	In	any	situation	where	the	size	of	the
resource	 is	 fixed,	 you	 should	 use	 a	 bounded	 semaphore.	 Before
spawning	 any	 worker	 threads,	 your	 main	 thread	 would	 initialize	 the
semaphore:

maxconnections	=	5

#	...

pool_sema	=	BoundedSemaphore(value=maxconnections)

Once	 spawned,	 worker	 threads	 call	 the	 semaphore’s	 acquire	 and
release	methods	when	they	need	to	connect	to	the	server:

with	pool_sema:

				conn	=	connectdb()

				try:

								#	...	use	connection	...

				finally:

								conn.close()

The	 use	 of	 a	 bounded	 semaphore	 reduces	 the	 chance	 that	 a
programming	error	which	causes	the	semaphore	to	be	released	more
than	it’s	acquired	will	go	undetected.

17.1.7.	Event	Objects

This	 is	 one	 of	 the	 simplest	mechanisms	 for	 communication	 between
threads:	one	thread	signals	an	event	and	other	threads	wait	for	it.

An	event	object	manages	an	internal	 flag	that	can	be	set	to	true	with
the	set()	method	and	reset	to	false	with	the	clear()	method.	The
wait()	method	blocks	until	the	flag	is	true.

class	threading.Event
Class	 implementing	 event	 objects.	 An	 event	manages	 a	 flag	 that
can	be	set	 to	 true	with	 the	set()	method	and	reset	 to	 false	with
the	clear()	method.	The	wait()	method	blocks	until	the	flag	is
true.	The	flag	is	initially	false.

Changed	in	version	3.3:	changed	from	a	factory	function	to	a	class.

is_set()
Return	true	if	and	only	if	the	internal	flag	is	true.

set()
Set	the	internal	flag	to	true.	All	threads	waiting	for	it	to	become
true	are	awakened.	Threads	 that	call	wait()	once	 the	 flag	 is
true	will	not	block	at	all.

clear()
Reset	 the	 internal	 flag	 to	 false.	 Subsequently,	 threads	 calling
wait()	will	block	until	set()	is	called	to	set	the	internal	flag	to
true	again.

wait(timeout=None)
Block	until	the	internal	flag	is	true.	If	the	internal	flag	is	true	on

entry,	return	immediately.	Otherwise,	block	until	another	thread
calls	set()	to	set	the	flag	to	true,	or	until	the	optional	timeout
occurs.

When	the	timeout	argument	is	present	and	not	None,	it	should
be	a	floating	point	number	specifying	a	timeout	for	the	operation
in	seconds	(or	fractions	thereof).

This	method	returns	true	if	and	only	if	the	internal	flag	has	been
set	to	true,	either	before	the	wait	call	or	after	the	wait	starts,	so
it	will	always	 return	True	except	 if	a	 timeout	 is	given	and	 the
operation	times	out.

Changed	in	version	3.1:	Previously,	the	method	always	returned
None.

17.1.8.	Timer	Objects

This	class	represents	an	action	that	should	be	run	only	after	a	certain
amount	of	time	has	passed	—	a	timer.	Timer	is	a	subclass	of	Thread
and	as	such	also	functions	as	an	example	of	creating	custom	threads.

Timers	are	started,	as	with	threads,	by	calling	their	start()	method.
The	timer	can	be	stopped	(before	its	action	has	begun)	by	calling	the
cancel()	method.	The	interval	the	timer	will	wait	before	executing	its
action	may	 not	 be	 exactly	 the	 same	 as	 the	 interval	 specified	 by	 the
user.

For	example:

def	hello():

				print("hello,	world")

t	=	Timer(30.0,	hello)

t.start()	#	after	30	seconds,	"hello,	world"	will	be	printed

class	threading.Timer(interval,	function,	args=None,
kwargs=None)

Create	 a	 timer	 that	 will	 run	 function	 with	 arguments	 args	 and
keyword	arguments	kwargs,	after	interval	seconds	have	passed.	If
args	is	None	(the	default)	then	an	empty	list	will	be	used.	If	kwargs
is	None	(the	default)	then	an	empty	dict	will	be	used.

Changed	in	version	3.3:	changed	from	a	factory	function	to	a	class.

cancel()
Stop	 the	 timer,	and	cancel	 the	execution	of	 the	 timer’s	action.
This	will	only	work	if	the	timer	is	still	in	its	waiting	stage.

17.1.9.	Barrier	Objects

New	in	version	3.2.

This	 class	 provides	 a	 simple	 synchronization	 primitive	 for	 use	 by	 a
fixed	number	of	 threads	that	need	to	wait	 for	each	other.	Each	of	 the
threads	tries	to	pass	the	barrier	by	calling	the	wait()	method	and	will
block	 until	 all	 of	 the	 threads	 have	made	 the	 call.	 At	 this	 points,	 the
threads	are	released	simultanously.

The	barrier	can	be	reused	any	number	of	times	for	the	same	number
of	threads.

As	 an	 example,	 here	 is	 a	 simple	 way	 to	 synchronize	 a	 client	 and
server	thread:

b	=	Barrier(2,	timeout=5)

def	server():

				start_server()

				b.wait()

				while	True:

								connection	=	accept_connection()

								process_server_connection(connection)

def	client():

				b.wait()

				while	True:

								connection	=	make_connection()

								process_client_connection(connection)

class	threading.Barrier(parties,	action=None,	timeout=None)
Create	 a	 barrier	 object	 for	 parties	 number	 of	 threads.	 An	 action,
when	 provided,	 is	 a	 callable	 to	 be	 called	 by	 one	 of	 the	 threads

when	they	are	released.	timeout	is	the	default	timeout	value	if	none
is	specified	for	the	wait()	method.

wait(timeout=None)
Pass	the	barrier.	When	all	the	threads	party	to	the	barrier	have
called	 this	 function,	 they	 are	 all	 released	 simultaneously.	 If	 a
timeout	 is	 provided,	 it	 is	 used	 in	 preference	 to	 any	 that	 was
supplied	to	the	class	constructor.

The	 return	 value	 is	 an	 integer	 in	 the	 range	 0	 to	 parties	 –	 1,
different	for	each	thread.	This	can	be	used	to	select	a	thread	to
do	some	special	housekeeping,	e.g.:

i	=	barrier.wait()

if	i	==	0:

				#	Only	one	thread	needs	to	print	this

				print("passed	the	barrier")

If	an	action	was	provided	to	the	constructor,	one	of	the	threads
will	have	called	it	prior	to	being	released.	Should	this	call	raise
an	error,	the	barrier	is	put	into	the	broken	state.

If	the	call	times	out,	the	barrier	is	put	into	the	broken	state.

This	method	may	 raise	a	BrokenBarrierError	exception	 if
the	barrier	is	broken	or	reset	while	a	thread	is	waiting.

reset()
Return	 the	 barrier	 to	 the	 default,	 empty	 state.	 Any	 threads
waiting	on	it	will	receive	the	BrokenBarrierError	exception.

Note	 that	 using	 this	 function	 may	 can	 require	 some	 external
synchronization	 if	 there	 are	 other	 threads	 whose	 state	 is
unknown.	 If	a	barrier	 is	broken	 it	may	be	better	 to	 just	 leave	 it

and	create	a	new	one.

abort()
Put	 the	 barrier	 into	 a	 broken	 state.	 This	 causes	 any	 active	 or
future	calls	to	wait()	to	fail	with	the	BrokenBarrierError.
Use	 this	 for	 example	 if	 one	 of	 the	 needs	 to	 abort,	 to	 avoid
deadlocking	the	application.

It	may	be	preferable	to	simply	create	the	barrier	with	a	sensible
timeout	value	to	automatically	guard	against	one	of	the	threads
going	awry.

parties

The	number	of	threads	required	to	pass	the	barrier.

n_waiting

The	number	of	threads	currently	waiting	in	the	barrier.

broken

A	boolean	that	is	True	if	the	barrier	is	in	the	broken	state.

exception	threading.BrokenBarrierError
This	exception,	a	subclass	of	RuntimeError,	 is	raised	when	the
Barrier	object	is	reset	or	broken.

17.1.10.	Using	locks,	conditions,	and
semaphores	in	the	with	statement

All	of	 the	objects	provided	by	this	module	that	have	acquire()	and
release()	methods	can	be	used	as	 context	managers	 for	 a	 with
statement.	The	acquire()	method	will	 be	 called	when	 the	 block	 is
entered,	 and	 release()	 will	 be	 called	 when	 the	 block	 is	 exited.
Hence,	the	following	snippet:

with	some_lock:

				#	do	something...

is	equivalent	to:

some_lock.acquire()

try:

				#	do	something...

finally:

				some_lock.release()

Currently,	 Lock,	 RLock,	 Condition,	 Semaphore,	 and
BoundedSemaphore	 objects	 may	 be	 used	 as	 with	 statement
context	managers.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.2.	multiprocessing	—
Process-based	parallelism

17.2.1.	Introduction

multiprocessing	 is	a	package	 that	 supports	 spawning	processes
using	 an	 API	 similar	 to	 the	 threading	 module.	 The
multiprocessing	 package	 offers	 both	 local	 and	 remote
concurrency,	 effectively	 side-stepping	 the	Global	 Interpreter	 Lock	 by
using	 subprocesses	 instead	 of	 threads.	 Due	 to	 this,	 the
multiprocessing	module	allows	 the	programmer	 to	 fully	 leverage
multiple	 processors	 on	 a	 given	 machine.	 It	 runs	 on	 both	 Unix	 and
Windows.

Note: 	Some	of	this	package’s	functionality	requires	a	functioning
shared	semaphore	implementation	on	the	host	operating	system.
Without	one,	the	multiprocessing.synchronize	module	will	be
disabled,	and	attempts	to	import	it	will	result	in	an	ImportError.
See	issue	3770	for	additional	information.

Note: 	Functionality	within	this	package	requires	that	the	__main__
module	be	importable	by	the	children.	This	is	covered	in
Programming	guidelines	however	it	is	worth	pointing	out	here.	This
means	that	some	examples,	such	as	the
multiprocessing.pool.Pool	examples	will	not	work	in	the
interactive	interpreter.	For	example:

>>>	from	multiprocessing	import	Pool

>>>	p	=	Pool(5)

>>>	def	f(x):

...					return	x*x

...

>>>	p.map(f,	[1,2,3])

Process	PoolWorker-1:

Process	PoolWorker-2:

http://bugs.python.org/issue3770

Process	PoolWorker-3:

Traceback	(most	recent	call	last):

AttributeError:	'module'	object	has	no	attribute	'f'

AttributeError:	'module'	object	has	no	attribute	'f'

AttributeError:	'module'	object	has	no	attribute	'f'

(If	you	try	this	 it	will	actually	output	three	full	 tracebacks	interleaved
in	a	semi-random	fashion,	and	then	you	may	have	to	stop	the	master
process	somehow.)

17.2.1.1.	The	Process	class

In	 multiprocessing,	 processes	 are	 spawned	 by	 creating	 a
Process	 object	 and	 then	 calling	 its	 start()	 method.	 Process
follows	 the	 API	 of	 threading.Thread.	 A	 trivial	 example	 of	 a
multiprocess	program	is

from	multiprocessing	import	Process

def	f(name):

				print('hello',	name)

if	__name__	==	'__main__':

				p	=	Process(target=f,	args=('bob',))

				p.start()

				p.join()

To	 show	 the	 individual	 process	 IDs	 involved,	 here	 is	 an	 expanded
example:

from	multiprocessing	import	Process

import	os

def	info(title):

				print(title)

				print('module	name:',	__name__)

				if	hasattr(os,	'getppid'):		#	only	available	on	Unix

								print('parent	process:',	os.getppid())

				print('process	id:',	os.getpid())

def	f(name):

				info('function	f')

				print('hello',	name)

if	__name__	==	'__main__':

				info('main	line')

				p	=	Process(target=f,	args=('bob',))

				p.start()

				p.join()

For	an	explanation	of	why	the	if	__name__	==	'__main__'	part
is	necessary,	see	Programming	guidelines.

17.2.1.2.	Contexts	and	start	methods

Depending	on	the	platform,	multiprocessing	supports	 three	ways
to	start	a	process.	These	start	methods	are

spawn
The	parent	process	starts	a	 fresh	python	 interpreter	process.
The	child	process	will	only	 inherit	 those	 resources	necessary
to	 run	 the	 process	 objects	 run()	 method.	 In	 particular,
unnecessary	 file	 descriptors	 and	 handles	 from	 the	 parent
process	 will	 not	 be	 inherited.	 Starting	 a	 process	 using	 this
method	is	rather	slow	compared	to	using	fork	or	forkserver.

Available	on	Unix	and	Windows.	The	default	on	Windows.

fork
The	 parent	 process	 uses	 os.fork()	 to	 fork	 the	 Python
interpreter.	 The	 child	 process,	 when	 it	 begins,	 is	 effectively
identical	to	the	parent	process.	All	resources	of	the	parent	are
inherited	 by	 the	 child	 process.	 Note	 that	 safely	 forking	 a
multithreaded	process	is	problematic.

Available	on	Unix	only.	The	default	on	Unix.

forkserver
When	 the	 program	 starts	 and	 selects	 the	 forkserver	 start
method,	a	server	process	is	started.	From	then	on,	whenever
a	new	process	is	needed,	the	parent	process	connects	to	the
server	and	requests	that	it	fork	a	new	process.	The	fork	server
process	 is	 single	 threaded	 so	 it	 is	 safe	 for	 it	 to	 use
os.fork().	No	unnecessary	resources	are	inherited.

Available	 on	 Unix	 platforms	 which	 support	 passing	 file
descriptors	over	Unix	pipes.

Changed	 in	 version	 3.4:	 spawn	 added	 on	 all	 unix	 platforms,	 and
forkserver	added	for	some	unix	platforms.	Child	processes	no	 longer
inherit	all	of	the	parents	inheritable	handles	on	Windows.

On	Unix	using	the	spawn	or	 forkserver	start	methods	will	also	start	a
semaphore	 tracker	 process	 which	 tracks	 the	 unlinked	 named
semaphores	 created	 by	 processes	 of	 the	 program.	 When	 all
processes	have	exited	 the	 semaphore	 tracker	 unlinks	any	 remaining
semaphores.	Usually	there	should	be	none,	but	if	a	process	was	killed
by	 a	 signal	 there	 may	 some	 “leaked”	 semaphores.	 (Unlinking	 the
named	semaphores	is	a	serious	matter	since	the	system	allows	only	a
limited	 number,	 and	 they	 will	 not	 be	 automatically	 unlinked	 until	 the
next	reboot.)

To	select	a	 start	method	you	use	 the	 set_start_method()	 in	 the
if	 __name__	 ==	 '__main__'	 clause	 of	 the	 main	 module.	 For
example:

import	multiprocessing	as	mp

def	foo(q):

				q.put('hello')

if	__name__	==	'__main__':

				mp.set_start_method('spawn')

				q	=	mp.Queue()

				p	=	mp.Process(target=foo,	args=(q,))

				p.start()

				print(q.get())

				p.join()

set_start_method()	 should	 not	 be	 used	 more	 than	 once	 in	 the
program.

Alternatively,	you	can	use	get_context()	to	obtain	a	context	object.
Context	 objects	 have	 the	 same	 API	 as	 the	multiprocessing	module,
and	allow	one	to	use	multiple	start	methods	in	the	same	program.

import	multiprocessing	as	mp

def	foo(q):

				q.put('hello')

if	__name__	==	'__main__':

				ctx	=	mp.get_context('spawn')

				q	=	ctx.Queue()

				p	=	ctx.Process(target=foo,	args=(q,))

				p.start()

				print(q.get())

				p.join()

Note	 that	 objects	 related	 to	one	 context	may	not	 be	 compatible	with
processes	for	a	different	context.	In	particular,	locks	created	using	the
fork	context	cannot	be	passed	to	a	processes	started	using	the	spawn
or	forkserver	start	methods.

A	library	which	wants	to	use	a	particular	start	method	should	probably
use	get_context()	to	avoid	interfering	with	the	choice	of	the	library
user.

17.2.1.3.	Exchanging	objects	between	processes

multiprocessing	 supports	 two	 types	 of	 communication	 channel
between	processes:

Queues

The	Queue	class	is	a	near	clone	of	queue.Queue.	For	example:

from	multiprocessing	import	Process,	Queue

def	f(q):

				q.put([42,	None,	'hello'])

if	__name__	==	'__main__':

				q	=	Queue()

				p	=	Process(target=f,	args=(q,))

				p.start()

				print(q.get())				#	prints	"[42,	None,	'hello']"

				p.join()

Queues	are	thread	and	process	safe.

Pipes

The	 Pipe()	 function	 returns	 a	 pair	 of	 connection	 objects
connected	 by	 a	 pipe	 which	 by	 default	 is	 duplex	 (two-way).	 For
example:

from	multiprocessing	import	Process,	Pipe

def	f(conn):

				conn.send([42,	None,	'hello'])

				conn.close()

if	__name__	==	'__main__':

				parent_conn,	child_conn	=	Pipe()

				p	=	Process(target=f,	args=(child_conn,))

				p.start()

				print(parent_conn.recv())			#	prints	"[42,	None,	'hello']"

				p.join()

The	 two	 connection	 objects	 returned	 by	 Pipe()	 represent	 the
two	 ends	 of	 the	 pipe.	 Each	 connection	 object	 has	 send()	 and
recv()	methods	 (among	others).	Note	 that	data	 in	a	pipe	may
become	corrupted	if	two	processes	(or	threads)	try	to	read	from	or
write	 to	 the	 same	 end	 of	 the	 pipe	 at	 the	 same	 time.	 Of	 course
there	is	no	risk	of	corruption	from	processes	using	different	ends
of	the	pipe	at	the	same	time.

17.2.1.4.	Synchronization	between	processes

multiprocessing	 contains	 equivalents	 of	 all	 the	 synchronization
primitives	 from	 threading.	 For	 instance	 one	 can	 use	 a	 lock	 to
ensure	that	only	one	process	prints	to	standard	output	at	a	time:

from	multiprocessing	import	Process,	Lock

def	f(l,	i):

				l.acquire()

				print('hello	world',	i)

				l.release()

if	__name__	==	'__main__':

				lock	=	Lock()

				for	num	in	range(10):

								Process(target=f,	args=(lock,	num)).start()

Without	using	the	 lock	output	 from	the	different	processes	 is	 liable	 to
get	all	mixed	up.

17.2.1.5.	Sharing	state	between	processes

As	mentioned	above,	when	doing	concurrent	programming	it	is	usually
best	to	avoid	using	shared	state	as	far	as	possible.	This	is	particularly
true	when	using	multiple	processes.

However,	 if	 you	 really	 do	 need	 to	 use	 some	 shared	 data	 then
multiprocessing	provides	a	couple	of	ways	of	doing	so.

Shared	memory

Data	 can	 be	 stored	 in	 a	 shared	 memory	 map	 using	 Value	 or
Array.	For	example,	the	following	code

from	multiprocessing	import	Process,	Value,	Array

def	f(n,	a):

				n.value	=	3.1415927

				for	i	in	range(len(a)):

								a[i]	=	-a[i]

if	__name__	==	'__main__':

				num	=	Value('d',	0.0)

				arr	=	Array('i',	range(10))

				p	=	Process(target=f,	args=(num,	arr))

				p.start()

				p.join()

				print(num.value)

				print(arr[:])

will	print

3.1415927

[0,	-1,	-2,	-3,	-4,	-5,	-6,	-7,	-8,	-9]

The	'd'	and	'i'	arguments	used	when	creating	num	and	arr
are	 typecodes	 of	 the	 kind	 used	 by	 the	 array	 module:	 'd'
indicates	 a	 double	 precision	 float	 and	 'i'	 indicates	 a	 signed
integer.	These	shared	objects	will	be	process	and	thread-safe.

For	 more	 flexibility	 in	 using	 shared	 memory	 one	 can	 use	 the
multiprocessing.sharedctypes	module	which	supports	the
creation	of	arbitrary	ctypes	objects	allocated	from	shared	memory.

Server	process

A	 manager	 object	 returned	 by	 Manager()	 controls	 a	 server
process	which	holds	Python	objects	and	allows	other	processes
to	manipulate	them	using	proxies.

A	 manager	 returned	 by	 Manager()	 will	 support	 types	 list,
dict,	 Namespace,	 Lock,	 RLock,	 Semaphore,
BoundedSemaphore,	 Condition,	 Event,	 Barrier,	 Queue,
Value	and	Array.	For	example,

from	multiprocessing	import	Process,	Manager

def	f(d,	l):

				d[1]	=	'1'

				d['2']	=	2

				d[0.25]	=	None

				l.reverse()

if	__name__	==	'__main__':

				with	Manager()	as	manager:

								d	=	manager.dict()

								l	=	manager.list(range(10))

								p	=	Process(target=f,	args=(d,	l))

								p.start()

								p.join()

								print(d)

								print(l)

will	print

{0.25:	None,	1:	'1',	'2':	2}

[9,	8,	7,	6,	5,	4,	3,	2,	1,	0]

Server	 process	 managers	 are	 more	 flexible	 than	 using	 shared
memory	 objects	 because	 they	 can	 be	made	 to	 support	 arbitrary
object	types.	Also,	a	single	manager	can	be	shared	by	processes
on	different	computers	over	a	network.	They	are,	however,	slower
than	using	shared	memory.

17.2.1.6.	Using	a	pool	of	workers

The	 Pool	 class	 represents	 a	 pool	 of	 worker	 processes.	 It	 has
methods	which	allows	tasks	to	be	offloaded	to	the	worker	processes	in
a	few	different	ways.

For	example:

from	multiprocessing	import	Pool

from	time	import	sleep

def	f(x):

				return	x*x

if	__name__	==	'__main__':

				#	start	4	worker	processes

				with	Pool(processes=4)	as	pool:

								#	print	"[0,	1,	4,...,	81]"

								print(pool.map(f,	range(10)))

								#	print	same	numbers	in	arbitrary	order

								for	i	in	pool.imap_unordered(f,	range(10)):

												print(i)

								#	evaluate	"f(10)"	asynchronously

								res	=	pool.apply_async(f,	[10])

								print(res.get(timeout=1))													#	prints	"100"

								#	make	worker	sleep	for	10	secs

								res	=	pool.apply_async(sleep,	10)

								print(res.get(timeout=1))													#	raises	multiprocessing.TimeoutError

				#	exiting	the	'with'-block	has	stopped	the	pool

Note	 that	 the	 methods	 of	 a	 pool	 should	 only	 ever	 be	 used	 by	 the
process	which	created	it.

17.2.2.	Reference

The	 multiprocessing	 package	 mostly	 replicates	 the	 API	 of	 the
threading	module.

17.2.2.1.	Process	and	exceptions

class	multiprocessing.Process(group=None,	target=None,
name=None,	args=(),	kwargs={},	*,	daemon=None)

Process	objects	represent	activity	that	is	run	in	a	separate	process.
The	 Process	 class	 has	 equivalents	 of	 all	 the	 methods	 of
threading.Thread.

The	constructor	should	always	be	called	with	keyword	arguments.
group	should	always	be	None;	it	exists	solely	for	compatibility	with
threading.Thread.	target	is	the	callable	object	to	be	invoked	by
the	run()	method.	It	defaults	to	None,	meaning	nothing	is	called.
name	is	the	process	name	(see	name	for	more	details).	args	is	the
argument	 tuple	 for	 the	 target	 invocation.	kwargs	 is	a	dictionary	of
keyword	 arguments	 for	 the	 target	 invocation.	 If	 provided,	 the
keyword-only	daemon	argument	sets	 the	process	daemon	 flag	 to
True	 or	 False.	 If	 None	 (the	 default),	 this	 flag	 will	 be	 inherited
from	the	creating	process.

By	default,	no	arguments	are	passed	to	target.

If	a	subclass	overrides	the	constructor,	it	must	make	sure	it	invokes
the	base	class	constructor	(Process.__init__())	before	doing
anything	else	to	the	process.

Changed	in	version	3.3:	Added	the	daemon	argument.

run()
Method	representing	the	process’s	activity.

You	 may	 override	 this	 method	 in	 a	 subclass.	 The	 standard
run()	 method	 invokes	 the	 callable	 object	 passed	 to	 the
object’s	 constructor	 as	 the	 target	 argument,	 if	 any,	 with
sequential	 and	 keyword	 arguments	 taken	 from	 the	 args	 and
kwargs	arguments,	respectively.

start()
Start	the	process’s	activity.

This	 must	 be	 called	 at	 most	 once	 per	 process	 object.	 It
arranges	 for	 the	 object’s	 run()	 method	 to	 be	 invoked	 in	 a
separate	process.

join([timeout])
If	 the	 optional	 argument	 timeout	 is	 None	 (the	 default),	 the
method	 blocks	 until	 the	 process	 whose	 join()	 method	 is
called	 terminates.	 If	 timeout	 is	 a	 positive	 number,	 it	 blocks	 at
most	timeout	seconds.

A	process	can	be	joined	many	times.

A	 process	 cannot	 join	 itself	 because	 this	 would	 cause	 a
deadlock.	It	is	an	error	to	attempt	to	join	a	process	before	it	has
been	started.

name

The	process’s	name.	The	name	is	a	string	used	for	identification
purposes	only.	It	has	no	semantics.	Multiple	processes	may	be
given	the	same	name.

The	initial	name	is	set	by	the	constructor.	If	no	explicit	name	is
provided	 to	 the	 constructor,	 a	 name	 of	 the	 form	 ‘Process-
N1:N2:...:Nk‘	 is	constructed,	where	each	Nk	 is	 the	N-th	child	of
its	parent.

is_alive()
Return	whether	the	process	is	alive.

Roughly,	 a	 process	 object	 is	 alive	 from	 the	 moment	 the
start()	method	returns	until	the	child	process	terminates.

daemon

The	process’s	daemon	flag,	a	Boolean	value.	This	must	be	set
before	start()	is	called.

The	initial	value	is	inherited	from	the	creating	process.

When	 a	 process	 exits,	 it	 attempts	 to	 terminate	 all	 of	 its
daemonic	child	processes.

Note	 that	 a	 daemonic	 process	 is	 not	 allowed	 to	 create	 child
processes.	 Otherwise	 a	 daemonic	 process	 would	 leave	 its
children	orphaned	if	 it	gets	terminated	when	its	parent	process
exits.	 Additionally,	 these	 are	 not	 Unix	 daemons	 or	 services,
they	 are	 normal	 processes	 that	 will	 be	 terminated	 (and	 not
joined)	if	non-daemonic	processes	have	exited.

In	addition	to	the	threading.Thread	API,	Process	objects	also
support	the	following	attributes	and	methods:

pid

Return	the	process	ID.	Before	the	process	is	spawned,	this	will
be	None.

exitcode

The	child’s	exit	code.	This	will	be	None	 if	 the	process	has	not
yet	terminated.	A	negative	value	-N	indicates	that	the	child	was
terminated	by	signal	N.

authkey

The	process’s	authentication	key	(a	byte	string).

When	 multiprocessing	 is	 initialized	 the	 main	 process	 is
assigned	a	random	string	using	os.urandom().

When	 a	 Process	 object	 is	 created,	 it	 will	 inherit	 the
authentication	key	of	 its	parent	process,	although	 this	may	be
changed	by	setting	authkey	to	another	byte	string.

See	Authentication	keys.

sentinel

A	numeric	handle	of	a	system	object	which	will	become	“ready”
when	the	process	ends.

You	can	use	this	value	if	you	want	to	wait	on	several	events	at
once	 using	 multiprocessing.connection.wait().
Otherwise	calling	join()	is	simpler.

On	 Windows,	 this	 is	 an	 OS	 handle	 usable	 with	 the
WaitForSingleObject	 and	 WaitForMultipleObjects

family	of	API	calls.	On	Unix,	this	is	a	file	descriptor	usable	with
primitives	from	the	select	module.

New	in	version	3.3.

terminate()

Terminate	the	process.	On	Unix	this	is	done	using	the	SIGTERM
signal;	on	Windows	TerminateProcess()	is	used.	Note	 that
exit	handlers	and	finally	clauses,	etc.,	will	not	be	executed.

Note	 that	 descendant	 processes	 of	 the	 process	 will	 not	 be
terminated	–	they	will	simply	become	orphaned.

Warning: 	 If	 this	 method	 is	 used	 when	 the	 associated
process	 is	 using	 a	 pipe	 or	 queue	 then	 the	 pipe	 or	 queue	 is
liable	 to	 become	 corrupted	 and	 may	 become	 unusable	 by
other	process.	Similarly,	if	the	process	has	acquired	a	lock	or
semaphore	 etc.	 then	 terminating	 it	 is	 liable	 to	 cause	 other
processes	to	deadlock.

Note	 that	 the	 start(),	 join(),	 is_alive(),	 terminate()
and	exitcode	methods	should	only	be	called	by	the	process	that
created	the	process	object.

Example	usage	of	some	of	the	methods	of	Process:

>>>	import	multiprocessing,	time,	signal

>>>	p	=	multiprocessing.Process(target=time.sleep,

>>>	print(p,	p.is_alive())

<Process(Process-1,	initial)>	False

>>>	p.start()

>>>	print(p,	p.is_alive())

<Process(Process-1,	started)>	True

>>>	p.terminate()

>>>	time.sleep(0.1)

>>>	print(p,	p.is_alive())

<Process(Process-1,	stopped[SIGTERM])>	False

>>>	p.exitcode	==	-signal.SIGTERM

True

exception	multiprocessing.ProcessError
The	base	class	of	all	multiprocessing	exceptions.

exception	multiprocessing.BufferTooShort
Exception	 raised	 by	 Connection.recv_bytes_into()	 when
the	supplied	buffer	object	is	too	small	for	the	message	read.

If	e	is	an	instance	of	BufferTooShort	then	e.args[0]	will	give
the	message	as	a	byte	string.

exception	multiprocessing.AuthenticationError
Raised	when	there	is	an	authentication	error.

exception	multiprocessing.TimeoutError
Raised	by	methods	with	a	timeout	when	the	timeout	expires.

17.2.2.2.	Pipes	and	Queues

When	using	multiple	processes,	one	generally	uses	message	passing
for	communication	between	processes	and	avoids	having	 to	use	any
synchronization	primitives	like	locks.

For	 passing	 messages	 one	 can	 use	 Pipe()	 (for	 a	 connection
between	two	processes)	or	a	queue	(which	allows	multiple	producers
and	consumers).

The	 Queue,	 SimpleQueue	 and	 JoinableQueue	 types	 are	 multi-
producer,	 multi-consumer	 FIFO	 queues	 modelled	 on	 the
queue.Queue	class	in	the	standard	library.	They	differ	in	that	Queue
lacks	the	task_done()	and	join()	methods	introduced	into	Python
2.5’s	queue.Queue	class.

If	 you	 use	 JoinableQueue	 then	 you	 must	 call

JoinableQueue.task_done()	 for	 each	 task	 removed	 from	 the
queue	or	else	the	semaphore	used	to	count	the	number	of	unfinished
tasks	may	eventually	overflow,	raising	an	exception.

Note	 that	 one	 can	 also	 create	 a	 shared	 queue	 by	 using	 a	manager
object	–	see	Managers.

Note: 	multiprocessing	uses	the	usual	queue.Empty	and
queue.Full	exceptions	to	signal	a	timeout.	They	are	not	available
in	the	multiprocessing	namespace	so	you	need	to	import	them
from	queue.

Note: 	When	an	object	is	put	on	a	queue,	the	object	is	pickled	and	a
background	thread	later	flushes	the	pickled	data	to	an	underlying
pipe.	This	has	some	consequences	which	are	a	little	surprising,	but
should	not	cause	any	practical	difficulties	–	if	they	really	bother	you
then	you	can	instead	use	a	queue	created	with	a	manager.

1.	 After	 putting	 an	 object	 on	 an	 empty	 queue	 there	 may	 be	 an
infinitesimal	delay	before	the	queue’s	empty()	method	returns
False	 and	 get_nowait()	 can	 return	 without	 raising
queue.Empty.

2.	 If	multiple	processes	are	enqueuing	objects,	it	is	possible	for	the
objects	 to	 be	 received	 at	 the	 other	 end	out-of-order.	However,
objects	 enqueued	 by	 the	 same	 process	 will	 always	 be	 in	 the
expected	order	with	respect	to	each	other.

Warning: 	If	a	process	is	killed	using	Process.terminate()	or
os.kill()	while	it	is	trying	to	use	a	Queue,	then	the	data	in	the
queue	is	likely	to	become	corrupted.	This	may	cause	any	other
process	to	get	an	exception	when	it	tries	to	use	the	queue	later	on.

Warning: 	As	mentioned	above,	if	a	child	process	has	put	items	on
a	queue	(and	it	has	not	used
JoinableQueue.cancel_join_thread),	then	that	process	will
not	terminate	until	all	buffered	items	have	been	flushed	to	the	pipe.

This	 means	 that	 if	 you	 try	 joining	 that	 process	 you	 may	 get	 a
deadlock	unless	you	are	sure	that	all	items	which	have	been	put	on
the	 queue	 have	 been	 consumed.	 Similarly,	 if	 the	 child	 process	 is
non-daemonic	 then	 the	 parent	 process	 may	 hang	 on	 exit	 when	 it
tries	to	join	all	its	non-daemonic	children.

Note	 that	 a	 queue	 created	 using	 a	 manager	 does	 not	 have	 this
issue.	See	Programming	guidelines.

For	 an	 example	 of	 the	 usage	 of	 queues	 for	 interprocess
communication	see	Examples.

multiprocessing.Pipe([duplex])
Returns	 a	 pair	 (conn1,	 conn2)	 of	 Connection	 objects
representing	the	ends	of	a	pipe.

If	 duplex	 is	 True	 (the	 default)	 then	 the	 pipe	 is	 bidirectional.	 If
duplex	is	False	then	the	pipe	is	unidirectional:	conn1	can	only	be
used	 for	 receiving	 messages	 and	 conn2	 can	 only	 be	 used	 for
sending	messages.

class	multiprocessing.Queue([maxsize])
Returns	a	process	shared	queue	implemented	using	a	pipe	and	a
few	 locks/semaphores.	When	 a	 process	 first	 puts	 an	 item	on	 the
queue	 a	 feeder	 thread	 is	 started	 which	 transfers	 objects	 from	 a
buffer	into	the	pipe.

The	 usual	 queue.Empty	 and	 queue.Full	 exceptions	 from	 the
standard	library’s	queue	module	are	raised	to	signal	timeouts.

Queue	 implements	 all	 the	methods	 of	 queue.Queue	 except	 for
task_done()	and	join().

qsize()
Return	 the	 approximate	 size	 of	 the	 queue.	 Because	 of
multithreading/multiprocessing	 semantics,	 this	 number	 is	 not
reliable.

Note	 that	 this	 may	 raise	 NotImplementedError	 on	 Unix
platforms	 like	 Mac	 OS	 X	 where	 sem_getvalue()	 is	 not
implemented.

empty()
Return	True	if	the	queue	is	empty,	False	otherwise.	Because
of	multithreading/multiprocessing	semantics,	this	is	not	reliable.

full()
Return	True	if	the	queue	is	full,	False	otherwise.	Because	of
multithreading/multiprocessing	semantics,	this	is	not	reliable.

put(obj[,	block[,	timeout]])
Put	obj	 into	 the	queue.	 If	 the	optional	argument	block	 is	True
(the	 default)	 and	 timeout	 is	 None	 (the	 default),	 block	 if
necessary	 until	 a	 free	 slot	 is	 available.	 If	 timeout	 is	 a	 positive
number,	 it	 blocks	 at	 most	 timeout	 seconds	 and	 raises	 the
queue.Full	exception	if	no	free	slot	was	available	within	that
time.	Otherwise	(block	is	False),	put	an	item	on	the	queue	if	a
free	slot	 is	 immediately	available,	else	 raise	 the	queue.Full
exception	(timeout	is	ignored	in	that	case).

put_nowait(obj)
Equivalent	to	put(obj,	False).

get([block[,	timeout]])
Remove	 and	 return	 an	 item	 from	 the	 queue.	 If	 optional	 args
block	 is	True	 (the	default)	 and	 timeout	 is	 None	 (the	 default),
block	 if	 necessary	 until	 an	 item	 is	 available.	 If	 timeout	 is	 a
positive	number,	 it	blocks	at	most	 timeout	seconds	and	 raises
the	queue.Empty	exception	if	no	item	was	available	within	that
time.	 Otherwise	 (block	 is	 False),	 return	 an	 item	 if	 one	 is
immediately	available,	else	 raise	 the	queue.Empty	exception
(timeout	is	ignored	in	that	case).

get_nowait()
Equivalent	to	get(False).

multiprocessing.Queue	 has	 a	 few	 additional	 methods	 not
found	 in	queue.Queue.	These	methods	are	usually	unnecessary
for	most	code:

close()
Indicate	 that	 no	 more	 data	 will	 be	 put	 on	 this	 queue	 by	 the
current	 process.	 The	 background	 thread	 will	 quit	 once	 it	 has
flushed	all	buffered	data	to	the	pipe.	This	is	called	automatically
when	the	queue	is	garbage	collected.

join_thread()
Join	 the	 background	 thread.	 This	 can	 only	 be	 used	 after
close()	has	been	called.	It	blocks	until	the	background	thread
exits,	ensuring	that	all	data	in	the	buffer	has	been	flushed	to	the
pipe.

By	default	 if	a	process	 is	not	 the	creator	of	 the	queue	then	on
exit	 it	will	 attempt	 to	 join	 the	queue’s	 background	 thread.	The
process	 can	 call	 cancel_join_thread()	 to	 make
join_thread()	do	nothing.

cancel_join_thread()
Prevent	 join_thread()	 from	 blocking.	 In	 particular,	 this
prevents	the	background	thread	from	being	joined	automatically
when	the	process	exits	–	see	join_thread().

A	 better	 name	 for	 this	 method	 might	 be
allow_exit_without_flush().	 It	 is	 likely	 to	 cause
enqueued	data	to	lost,	and	you	almost	certainly	will	not	need	to
use	 it.	 It	 is	 really	only	 there	 if	you	need	the	current	process	 to
exit	 immediately	without	waiting	 to	 flush	enqueued	data	 to	 the
underlying	pipe,	and	you	don’t	care	about	lost	data.

class	multiprocessing.SimpleQueue
It	is	a	simplified	Queue	type,	very	close	to	a	locked	Pipe.

empty()
Return	True	if	the	queue	is	empty,	False	otherwise.

get()
Remove	and	return	an	item	from	the	queue.

put(item)
Put	item	into	the	queue.

class	multiprocessing.JoinableQueue([maxsize])
JoinableQueue,	 a	 Queue	 subclass,	 is	 a	 queue	 which
additionally	has	task_done()	and	join()	methods.

task_done()
Indicate	 that	 a	 formerly	 enqueued	 task	 is	 complete.	 Used	 by
queue	 consumers.	 For	 each	 get()	 used	 to	 fetch	 a	 task,	 a
subsequent	 call	 to	 task_done()	 tells	 the	 queue	 that	 the
processing	on	the	task	is	complete.

If	a	join()	 is	currently	blocking,	it	will	resume	when	all	 items
have	been	processed	(meaning	that	a	task_done()	call	was
received	for	every	item	that	had	been	put()	into	the	queue).

Raises	 a	 ValueError	 if	 called	 more	 times	 than	 there	 were
items	placed	in	the	queue.

join()
Block	 until	 all	 items	 in	 the	 queue	 have	 been	 gotten	 and
processed.

The	 count	 of	 unfinished	 tasks	 goes	 up	 whenever	 an	 item	 is
added	 to	 the	 queue.	 The	 count	 goes	 down	 whenever	 a
consumer	 calls	 task_done()	 to	 indicate	 that	 the	 item	 was
retrieved	 and	 all	 work	 on	 it	 is	 complete.	 When	 the	 count	 of
unfinished	tasks	drops	to	zero,	join()	unblocks.

17.2.2.3.	Miscellaneous

multiprocessing.active_children()
Return	list	of	all	live	children	of	the	current	process.

Calling	 this	 has	 the	 side	 affect	 of	 “joining”	 any	 processes	 which
have	already	finished.

multiprocessing.cpu_count()

Return	 the	 number	 of	 CPUs	 in	 the	 system.	 May	 raise
NotImplementedError.

See	also: 	os.cpu_count()

multiprocessing.current_process()
Return	the	Process	object	corresponding	to	the	current	process.

An	analogue	of	threading.current_thread().

multiprocessing.freeze_support()
Add	support	 for	when	a	program	which	uses	multiprocessing
has	 been	 frozen	 to	 produce	 a	 Windows	 executable.	 (Has	 been
tested	with	py2exe,	PyInstaller	and	cx_Freeze.)

One	needs	to	call	this	function	straight	after	the	if	__name__	==
'__main__'	line	of	the	main	module.	For	example:

from	multiprocessing	import	Process,	freeze_support

def	f():

				print('hello	world!')

if	__name__	==	'__main__':

				freeze_support()

				Process(target=f).start()

If	 the	 freeze_support()	 line	 is	 omitted	 then	 trying	 to	 run	 the
frozen	executable	will	raise	RuntimeError.

If	 the	module	 is	being	run	normally	by	the	Python	 interpreter	 then
freeze_support()	has	no	effect.

multiprocessing.get_all_start_methods()
Returns	a	 list	of	 the	supported	start	methods,	 the	 first	of	which	 is
the	default.	The	possible	start	methods	are	'fork',	'spawn'	and
'forkserver'.	On	Windows	only	'spawn'	is	available.	On	Unix
'fork'	and	'spawn'	are	always	supported,	with	'fork'	being
the	default.

New	in	version	3.4.

multiprocessing.get_context(method=None)
Return	 a	 context	 object	 which	 has	 the	 same	 attributes	 as	 the
multiprocessing	module.

If	method	 is	None	 then	 the	default	 context	 is	 returned.	Otherwise
method	 should	 be	 'fork',	 'spawn',	 'forkserver'.
ValueError	is	raised	if	the	specified	start	method	is	not	available.

New	in	version	3.4.

multiprocessing.get_start_method(allow_none=False)
Return	the	name	of	start	method	used	for	starting	processes.

If	the	start	method	has	not	been	fixed	and	allow_none	is	false,	then
the	start	method	is	fixed	to	the	default	and	the	name	is	returned.	If
the	 start	method	has	 not	 been	 fixed	 and	allow_none	 is	 true	 then
None	is	returned.

The	 return	 value	 can	 be	 'fork',	 'spawn',	 'forkserver'	 or
None.	'fork'	is	the	default	on	Unix,	while	'spawn'	is	the	default
on	Windows.

New	in	version	3.4.

multiprocessing.set_executable()
Sets	the	path	of	the	Python	interpreter	to	use	when	starting	a	child
process.	 (By	 default	 sys.executable	 is	 used).	 Embedders	will
probably	need	to	do	some	thing	like

set_executable(os.path.join(sys.exec_prefix,	'pythonw.exe'

before	they	can	create	child	processes.

Changed	 in	 version	 3.4:	 Now	 supported	 on	 Unix	 when	 the
'spawn'	start	method	is	used.

multiprocessing.set_start_method(method)
Set	 the	 method	 which	 should	 be	 used	 to	 start	 child	 processes.
method	can	be	'fork',	'spawn'	or	'forkserver'.

Note	 that	 this	 should	 be	 called	 at	 most	 once,	 and	 it	 should	 be
protected	 inside	 the	 if	__name__	==	 '__main__'	 clause	 of
the	main	module.

New	in	version	3.4.

Note: 	multiprocessing	contains	no	analogues	of
threading.active_count(),	threading.enumerate(),
threading.settrace(),	threading.setprofile(),
threading.Timer,	or	threading.local.

17.2.2.4.	Connection	Objects

Connection	 objects	 allow	 the	 sending	 and	 receiving	 of	 picklable
objects	 or	 strings.	 They	 can	 be	 thought	 of	 as	 message	 oriented
connected	sockets.

Connection	 objects	 are	 usually	 created	 using	 Pipe()	 –	 see	 also
Listeners	and	Clients.

class	multiprocessing.Connection
send(obj)

Send	an	object	to	the	other	end	of	the	connection	which	should
be	read	using	recv().

The	object	must	be	picklable.	Very	large	pickles	(approximately
32	MB+,	though	it	depends	on	the	OS)	may	raise	a	ValueError
exception.

recv()
Return	 an	 object	 sent	 from	 the	 other	 end	 of	 the	 connection
using	 send().	 Blocks	 until	 there	 its	 something	 to	 receive.
Raises	 EOFError	 if	 there	 is	 nothing	 left	 to	 receive	 and	 the
other	end	was	closed.

fileno()
Return	the	file	descriptor	or	handle	used	by	the	connection.

close()
Close	the	connection.

This	 is	 called	 automatically	 when	 the	 connection	 is	 garbage
collected.

poll([timeout])
Return	whether	there	is	any	data	available	to	be	read.

If	 timeout	 is	 not	 specified	 then	 it	 will	 return	 immediately.	 If
timeout	 is	 a	 number	 then	 this	 specifies	 the	maximum	 time	 in

seconds	to	block.	If	 timeout	 is	None	 then	an	 infinite	 timeout	 is
used.

Note	that	multiple	connection	objects	may	be	polled	at	once	by
using	multiprocessing.connection.wait().

send_bytes(buffer[,	offset[,	size]])
Send	 byte	 data	 from	 a	 bytes-like	 object	 as	 a	 complete
message.

If	offset	is	given	then	data	is	read	from	that	position	in	buffer.	If
size	is	given	then	that	many	bytes	will	be	read	from	buffer.	Very
large	buffers	(approximately	32	MB+,	though	it	depends	on	the
OS)	may	raise	a	ValueError	exception

recv_bytes([maxlength])
Return	 a	 complete	message	 of	 byte	 data	 sent	 from	 the	 other
end	 of	 the	 connection	 as	 a	 string.	 Blocks	 until	 there	 is
something	to	receive.	Raises	EOFError	 if	 there	is	nothing	left
to	receive	and	the	other	end	has	closed.

If	 maxlength	 is	 specified	 and	 the	 message	 is	 longer	 than
maxlength	 then	OSError	 is	 raised	and	 the	connection	will	 no
longer	be	readable.

Changed	in	version	3.3:	This	function	used	to	raise	a	IOError,
which	is	now	an	alias	of	OSError.

recv_bytes_into(buffer[,	offset])
Read	into	buffer	a	complete	message	of	byte	data	sent	from	the
other	end	of	 the	connection	and	return	 the	number	of	bytes	 in
the	message.	Blocks	until	there	is	something	to	receive.	Raises

EOFError	 if	 there	 is	nothing	 left	 to	 receive	and	 the	other	end
was	closed.

buffer	must	be	a	writable	bytes-like	object.	If	offset	is	given	then
the	message	will	 be	 written	 into	 the	 buffer	 from	 that	 position.
Offset	must	 be	 a	 non-negative	 integer	 less	 than	 the	 length	 of
buffer	(in	bytes).

If	the	buffer	is	too	short	then	a	BufferTooShort	exception	is
raised	and	 the	complete	message	 is	available	as	e.args[0]
where	e	is	the	exception	instance.

Changed	 in	 version	3.3:	Connection	objects	 themselves	 can	now
be	 transferred	 between	 processes	 using	 Connection.send()
and	Connection.recv().

New	 in	 version	 3.3:	Connection	 objects	 now	 support	 the	 context
manager	 protocol	 –	 see	Context	Manager	 Types.	 __enter__()
returns	the	connection	object,	and	__exit__()	calls	close().

For	example:

>>>	from	multiprocessing	import	Pipe

>>>	a,	b	=	Pipe()

>>>	a.send([1,	'hello',	None])

>>>	b.recv()

[1,	'hello',	None]

>>>	b.send_bytes(b'thank	you')

>>>	a.recv_bytes()

b'thank	you'

>>>	import	array

>>>	arr1	=	array.array('i',	range(5))

>>>	arr2	=	array.array('i',	[0]	*	10)

>>>	a.send_bytes(arr1)

>>>	count	=	b.recv_bytes_into(arr2)

>>>	assert	count	==	len(arr1)	*	arr1.itemsize

>>>	arr2

array('i',	[0,	1,	2,	3,	4,	0,	0,	0,	0,	0])

Warning: 	The	Connection.recv()	method	automatically
unpickles	the	data	it	receives,	which	can	be	a	security	risk	unless
you	can	trust	the	process	which	sent	the	message.

Therefore,	 unless	 the	 connection	 object	 was	 produced	 using
Pipe()	 you	 should	 only	 use	 the	 recv()	 and	 send()	 methods
after	 performing	 some	 sort	 of	 authentication.	 See	 Authentication
keys.

Warning: 	If	a	process	is	killed	while	it	is	trying	to	read	or	write	to	a
pipe	then	the	data	in	the	pipe	is	likely	to	become	corrupted,	because
it	may	become	impossible	to	be	sure	where	the	message	boundaries
lie.

17.2.2.5.	Synchronization	primitives

Generally	 synchronization	 primitives	 are	 not	 as	 necessary	 in	 a
multiprocess	program	as	they	are	in	a	multithreaded	program.	See	the
documentation	for	threading	module.

Note	 that	 one	 can	 also	 create	 synchronization	 primitives	 by	 using	 a
manager	object	–	see	Managers.

class	multiprocessing.Barrier(parties[,	action[,	timeout]])
A	barrier	object:	a	clone	of	threading.Barrier.

New	in	version	3.3.

class	multiprocessing.BoundedSemaphore([value])
A	 bounded	 semaphore	 object:	 a	 clone	 of
threading.BoundedSemaphore.

(On	Mac	OS	X,	this	is	indistinguishable	from	Semaphore	because
sem_getvalue()	is	not	implemented	on	that	platform).

class	multiprocessing.Condition([lock])
A	condition	variable:	an	alias	for	threading.Condition.

If	lock	is	specified	then	it	should	be	a	Lock	or	RLock	object	from
multiprocessing.

Changed	in	version	3.3:	The	wait_for()	method	was	added.

class	multiprocessing.Event
A	clone	of	threading.Event.

class	multiprocessing.Lock
A	non-recursive	lock	object:	a	clone	of	threading.Lock.

class	multiprocessing.RLock
A	recursive	lock	object:	a	clone	of	threading.RLock.

class	multiprocessing.Semaphore([value])
A	semaphore	object:	a	clone	of	threading.Semaphore.

Note: 	The	acquire()	and	wait()	methods	of	each	of	these
types	treat	negative	timeouts	as	zero	timeouts.	This	differs	from
threading	where,	since	version	3.2,	the	equivalent	acquire()
methods	treat	negative	timeouts	as	infinite	timeouts.

On	 Mac	 OS	 X,	 sem_timedwait	 is	 unsupported,	 so	 calling
acquire()	 with	 a	 timeout	 will	 emulate	 that	 function’s	 behavior
using	a	sleeping	loop.

Note: 	If	the	SIGINT	signal	generated	by	Ctrl-C	arrives	while	the
main	thread	is	blocked	by	a	call	to
BoundedSemaphore.acquire(),	Lock.acquire(),
RLock.acquire(),	Semaphore.acquire(),
Condition.acquire()	or	Condition.wait()	then	the	call	will
be	immediately	interrupted	and	KeyboardInterrupt	will	be
raised.

This	differs	from	the	behaviour	of	threading	where	SIGINT	will	be
ignored	while	the	equivalent	blocking	calls	are	in	progress.

17.2.2.6.	Shared	ctypes	Objects

It	is	possible	to	create	shared	objects	using	shared	memory	which	can
be	inherited	by	child	processes.

multiprocessing.Value(typecode_or_type,	*args,	lock=True)
Return	a	ctypes	object	allocated	from	shared	memory.	By	default
the	return	value	 is	actually	a	synchronized	wrapper	for	 the	object.
The	 object	 itself	 can	 be	 accessed	 via	 the	 value	 attribute	 of	 a
Value.

typecode_or_type	determines	 the	 type	of	 the	 returned	object:	 it	 is
either	a	ctypes	type	or	a	one	character	typecode	of	the	kind	used
by	the	array	module.	*args	is	passed	on	to	the	constructor	for	the
type.

If	 lock	 is	 True	 (the	 default)	 then	 a	 new	 recursive	 lock	 object	 is
created	 to	 synchronize	 access	 to	 the	 value.	 If	 lock	 is	 a	 Lock	 or
RLock	object	 then	 that	will	be	used	 to	synchronize	access	 to	 the
value.	 If	 lock	 is	False	 then	access	to	 the	returned	object	will	not
be	automatically	 protected	by	a	 lock,	 so	 it	will	 not	 necessarily	 be
“process-safe”.

Operations	like	+=	which	 involve	a	read	and	write	are	not	atomic.
So	if,	for	instance,	you	want	to	atomically	increment	a	shared	value
it	is	insufficient	to	just	do

counter.value	+=	1

Assuming	 the	associated	 lock	 is	 recursive	 (which	 it	 is	 by	default)
you	can	instead	do

with	counter.get_lock():

				counter.value	+=	1

Note	that	lock	is	a	keyword-only	argument.

multiprocessing.Array(typecode_or_type,	size_or_initializer,	*,
lock=True)

Return	 a	 ctypes	 array	 allocated	 from	 shared	memory.	 By	 default
the	return	value	is	actually	a	synchronized	wrapper	for	the	array.

typecode_or_type	 determines	 the	 type	 of	 the	 elements	 of	 the
returned	 array:	 it	 is	 either	 a	 ctypes	 type	 or	 a	 one	 character
typecode	 of	 the	 kind	 used	 by	 the	 array	 module.	 If
size_or_initializer	is	an	integer,	then	it	determines	the	length	of	the
array,	 and	 the	 array	 will	 be	 initially	 zeroed.	 Otherwise,
size_or_initializer	is	a	sequence	which	is	used	to	initialize	the	array
and	whose	length	determines	the	length	of	the	array.

If	 lock	 is	 True	 (the	 default)	 then	 a	 new	 lock	 object	 is	 created	 to
synchronize	access	to	the	value.	If	lock	is	a	Lock	or	RLock	object
then	that	will	be	used	to	synchronize	access	to	the	value.	If	lock	 is
False	then	access	to	the	returned	object	will	not	be	automatically
protected	by	a	lock,	so	it	will	not	necessarily	be	“process-safe”.

Note	that	lock	is	a	keyword	only	argument.

Note	 that	 an	 array	 of	 ctypes.c_char	 has	 value	 and	 raw
attributes	which	allow	one	to	use	it	to	store	and	retrieve	strings.

17.2.2.6.1.	The	multiprocessing.sharedctypes
module

The	multiprocessing.sharedctypes	module	provides	 functions
for	 allocating	 ctypes	 objects	 from	 shared	 memory	 which	 can	 be
inherited	by	child	processes.

Note: 	Although	it	is	possible	to	store	a	pointer	in	shared	memory
remember	that	this	will	refer	to	a	location	in	the	address	space	of	a
specific	process.	However,	the	pointer	is	quite	likely	to	be	invalid	in
the	context	of	a	second	process	and	trying	to	dereference	the	pointer
from	the	second	process	may	cause	a	crash.

multiprocessing.sharedctypes.RawArray(typecode_or_type
size_or_initializer)

Return	a	ctypes	array	allocated	from	shared	memory.

typecode_or_type	 determines	 the	 type	 of	 the	 elements	 of	 the
returned	 array:	 it	 is	 either	 a	 ctypes	 type	 or	 a	 one	 character
typecode	 of	 the	 kind	 used	 by	 the	 array	 module.	 If
size_or_initializer	is	an	integer	then	it	determines	the	length	of	the

array,	 and	 the	 array	 will	 be	 initially	 zeroed.	 Otherwise
size_or_initializer	is	a	sequence	which	is	used	to	initialize	the	array
and	whose	length	determines	the	length	of	the	array.

Note	that	setting	and	getting	an	element	is	potentially	non-atomic	–
use	 Array()	 instead	 to	 make	 sure	 that	 access	 is	 automatically
synchronized	using	a	lock.

multiprocessing.sharedctypes.RawValue(typecode_or_type
*args)

Return	a	ctypes	object	allocated	from	shared	memory.

typecode_or_type	determines	 the	 type	of	 the	 returned	object:	 it	 is
either	a	ctypes	type	or	a	one	character	typecode	of	the	kind	used
by	the	array	module.	*args	is	passed	on	to	the	constructor	for	the
type.

Note	 that	setting	and	getting	 the	value	 is	potentially	non-atomic	–
use	 Value()	 instead	 to	 make	 sure	 that	 access	 is	 automatically
synchronized	using	a	lock.

Note	 that	 an	 array	 of	 ctypes.c_char	 has	 value	 and	 raw
attributes	which	allow	one	 to	use	 it	 to	store	and	 retrieve	strings	–
see	documentation	for	ctypes.

multiprocessing.sharedctypes.Array(typecode_or_type,
size_or_initializer,	*,	lock=True)

The	same	as	RawArray()	except	that	depending	on	the	value	of
lock	 a	 process-safe	 synchronization	 wrapper	 may	 be	 returned
instead	of	a	raw	ctypes	array.

If	 lock	 is	 True	 (the	 default)	 then	 a	 new	 lock	 object	 is	 created	 to
synchronize	access	to	the	value.	If	lock	is	a	Lock	or	RLock	object

then	that	will	be	used	to	synchronize	access	to	the	value.	If	lock	 is
False	then	access	to	the	returned	object	will	not	be	automatically
protected	by	a	lock,	so	it	will	not	necessarily	be	“process-safe”.

Note	that	lock	is	a	keyword-only	argument.

multiprocessing.sharedctypes.Value(typecode_or_type,
*args,	lock=True)

The	same	as	RawValue()	except	that	depending	on	the	value	of
lock	 a	 process-safe	 synchronization	 wrapper	 may	 be	 returned
instead	of	a	raw	ctypes	object.

If	 lock	 is	 True	 (the	 default)	 then	 a	 new	 lock	 object	 is	 created	 to
synchronize	access	to	the	value.	If	lock	is	a	Lock	or	RLock	object
then	that	will	be	used	to	synchronize	access	to	the	value.	If	lock	 is
False	then	access	to	the	returned	object	will	not	be	automatically
protected	by	a	lock,	so	it	will	not	necessarily	be	“process-safe”.

Note	that	lock	is	a	keyword-only	argument.

multiprocessing.sharedctypes.copy(obj)
Return	a	 ctypes	object	 allocated	 from	shared	memory	which	 is	 a
copy	of	the	ctypes	object	obj.

multiprocessing.sharedctypes.synchronized(obj[,	lock])
Return	 a	 process-safe	 wrapper	 object	 for	 a	 ctypes	 object	 which
uses	lock	to	synchronize	access.	If	lock	is	None	(the	default)	then
a	multiprocessing.RLock	object	is	created	automatically.

A	synchronized	wrapper	will	have	two	methods	in	addition	to	those
of	the	object	it	wraps:	get_obj()	returns	the	wrapped	object	and
get_lock()	returns	the	lock	object	used	for	synchronization.

Note	that	accessing	the	ctypes	object	through	the	wrapper	can	be
a	lot	slower	than	accessing	the	raw	ctypes	object.

The	 table	 below	 compares	 the	 syntax	 for	 creating	 shared	 ctypes
objects	 from	 shared	memory	 with	 the	 normal	 ctypes	 syntax.	 (In	 the
table	MyStruct	is	some	subclass	of	ctypes.Structure.)

ctypes sharedctypes	using
type

sharedctypes	using
typecode

c_double(2.4) RawValue(c_double,
2.4) RawValue(‘d’,	2.4)

MyStruct(4,	6) RawValue(MyStruct,	4,
6) 	

(c_short	*	7)() RawArray(c_short,	7) RawArray(‘h’,	7)

(c_int	*	3)(9,	2,
8)

RawArray(c_int,	(9,	2,
8)) RawArray(‘i’,	(9,	2,	8))

Below	 is	an	example	where	a	number	of	ctypes	objects	are	modified
by	a	child	process:

from	multiprocessing	import	Process,	Lock

from	multiprocessing.sharedctypes	import	Value,	Array

from	ctypes	import	Structure,	c_double

class	Point(Structure):

				fields	=	[('x',	c_double),	('y',	c_double)]

def	modify(n,	x,	s,	A):

				n.value	**=	2

				x.value	**=	2

				s.value	=	s.value.upper()

				for	a	in	A:

								a.x	**=	2

								a.y	**=	2

if	__name__	==	'__main__':

				lock	=	Lock()

				n	=	Value('i',	7)

				x	=	Value(c_double,	1.0/3.0,	lock=False)

				s	=	Array('c',	b'hello	world',	lock=lock)

				A	=	Array(Point,	[(1.875,-6.25),	(-5.75,2.0),	(2.375

				p	=	Process(target=modify,	args=(n,	x,	s,	A))

				p.start()

				p.join()

				print(n.value)

				print(x.value)

				print(s.value)

				print([(a.x,	a.y)	for	a	in	A])

The	results	printed	are

49

0.1111111111111111

HELLO	WORLD

[(3.515625,	39.0625),	(33.0625,	4.0),	(5.640625,	90.25)]

17.2.2.7.	Managers

Managers	provide	a	way	to	create	data	which	can	be	shared	between
different	 processes,	 including	 sharing	 over	 a	 network	 between
processes	running	on	different	machines.	A	manager	object	controls	a
server	process	which	manages	shared	objects.	Other	 processes	 can
access	the	shared	objects	by	using	proxies.

multiprocessing.Manager()
Returns	 a	 started	 SyncManager	 object	 which	 can	 be	 used	 for
sharing	objects	between	processes.	The	 returned	manager	object
corresponds	 to	a	 spawned	child	process	and	has	methods	which
will	create	shared	objects	and	return	corresponding	proxies.

Manager	 processes	 will	 be	 shutdown	 as	 soon	 as	 they	 are	 garbage
collected	 or	 their	 parent	 process	 exits.	 The	 manager	 classes	 are
defined	in	the	multiprocessing.managers	module:

class	multiprocessing.managers.BaseManager([address[,
authkey]])

Create	a	BaseManager	object.

Once	 created	 one	 should	 call	 start()	 or
get_server().serve_forever()	 to	ensure	 that	 the	manager
object	refers	to	a	started	manager	process.

address	 is	 the	address	on	which	 the	manager	process	 listens	 for
new	 connections.	 If	 address	 is	 None	 then	 an	 arbitrary	 one	 is
chosen.

authkey	 is	 the	authentication	key	which	will	be	used	 to	check	 the
validity	of	incoming	connections	to	the	server	process.	If	authkey	is
None	 then	 current_process().authkey	 is	 used.	 Otherwise
authkey	is	used	and	it	must	be	a	byte	string.

start([initializer[,	initargs]])
Start	a	subprocess	to	start	the	manager.	If	initializer	is	not	None
then	 the	 subprocess	 will	 call	 initializer(*initargs)
when	it	starts.

get_server()
Returns	 a	 Server	 object	 which	 represents	 the	 actual	 server
under	the	control	of	the	Manager.	The	Server	object	supports
the	serve_forever()	method:

>>>	from	multiprocessing.managers	import	BaseManager

>>>	manager	=	BaseManager(address=('',	50000),	

>>>	server	=	manager.get_server()

>>>	server.serve_forever()

Server	additionally	has	an	address	attribute.

connect()
Connect	a	local	manager	object	to	a	remote	manager	process:

>>>	from	multiprocessing.managers	import	BaseManager

>>>	m	=	BaseManager(address=('127.0.0.1',	5000),

>>>	m.connect()

shutdown()
Stop	the	process	used	by	the	manager.	This	is	only	available	if
start()	has	been	used	to	start	the	server	process.

This	can	be	called	multiple	times.

register(typeid[,	 callable[,	 proxytype[,	 exposed[,
method_to_typeid[,	create_method]]]]])

A	 classmethod	 which	 can	 be	 used	 for	 registering	 a	 type	 or
callable	with	the	manager	class.

typeid	 is	a	“type	identifier”	which	is	used	to	identify	a	particular
type	of	shared	object.	This	must	be	a	string.

callable	 is	 a	 callable	 used	 for	 creating	 objects	 for	 this	 type
identifier.	If	a	manager	instance	will	be	connected	to	the	server
using	 the	 connect()	 method,	 or	 if	 the	 create_method
argument	is	False	then	this	can	be	left	as	None.

proxytype	is	a	subclass	of	BaseProxy	which	is	used	to	create
proxies	for	shared	objects	with	this	typeid.	If	None	then	a	proxy
class	is	created	automatically.

exposed	is	used	to	specify	a	sequence	of	method	names	which
proxies	 for	 this	 typeid	 should	 be	 allowed	 to	 access	 using
BaseProxy._callmethod().	 (If	 exposed	 is	 None	 then
proxytype._exposed_	 is	 used	 instead	 if	 it	 exists.)	 In	 the
case	where	no	exposed	list	is	specified,	all	“public	methods”	of
the	 shared	 object	 will	 be	 accessible.	 (Here	 a	 “public	method”
means	 any	 attribute	 which	 has	 a	 __call__()	 method	 and
whose	name	does	not	begin	with	'_'.)

method_to_typeid	 is	a	mapping	used	to	specify	the	return	type
of	those	exposed	methods	which	should	return	a	proxy.	It	maps
method	names	 to	 typeid	strings.	 (If	method_to_typeid	 is	None
then	proxytype._method_to_typeid_	 is	used	 instead	 if	 it
exists.)	If	a	method’s	name	is	not	a	key	of	this	mapping	or	if	the
mapping	is	None	then	the	object	returned	by	the	method	will	be
copied	by	value.

create_method	 determines	 whether	 a	 method	 should	 be
created	with	name	 typeid	which	can	be	used	 to	 tell	 the	server
process	to	create	a	new	shared	object	and	return	a	proxy	for	it.
By	default	it	is	True.

BaseManager	instances	also	have	one	read-only	property:

address

The	address	used	by	the	manager.

Changed	 in	 version	 3.3:	 Manager	 objects	 support	 the	 context
manager	 protocol	 –	 see	Context	Manager	 Types.	 __enter__()
starts	 the	 server	 process	 (if	 it	 has	 not	 already	 started)	 and	 then
returns	the	manager	object.	__exit__()	calls	shutdown().

In	 previous	 versions	 __enter__()	 did	 not	 start	 the	 manager’s
server	process	if	it	was	not	already	started.

class	multiprocessing.managers.SyncManager
A	 subclass	 of	 BaseManager	 which	 can	 be	 used	 for	 the
synchronization	of	processes.	Objects	of	 this	type	are	returned	by
multiprocessing.Manager().

It	also	supports	creation	of	shared	lists	and	dictionaries.

Barrier(parties[,	action[,	timeout]])
Create	 a	 shared	 threading.Barrier	 object	 and	 return	 a
proxy	for	it.

New	in	version	3.3.

BoundedSemaphore([value])
Create	a	shared	threading.BoundedSemaphore	object	and
return	a	proxy	for	it.

Condition([lock])
Create	a	shared	threading.Condition	object	and	 return	a
proxy	for	it.

If	 lock	 is	 supplied	 then	 it	 should	 be	 a	 proxy	 for	 a

threading.Lock	or	threading.RLock	object.

Changed	in	version	3.3:	The	wait_for()	method	was	added.

Event()
Create	a	shared	threading.Event	object	and	return	a	proxy
for	it.

Lock()
Create	a	shared	threading.Lock	 object	and	 return	a	proxy
for	it.

Namespace()
Create	a	shared	Namespace	object	and	return	a	proxy	for	it.

Queue([maxsize])
Create	a	shared	queue.Queue	object	and	return	a	proxy	for	it.

RLock()
Create	a	shared	threading.RLock	object	and	return	a	proxy
for	it.

Semaphore([value])
Create	a	shared	threading.Semaphore	object	and	 return	a
proxy	for	it.

Array(typecode,	sequence)
Create	an	array	and	return	a	proxy	for	it.

Value(typecode,	value)
Create	 an	object	with	 a	writable	 value	 attribute	and	 return	a
proxy	for	it.

dict()
dict(mapping)
dict(sequence)

Create	a	shared	dict	object	and	return	a	proxy	for	it.

list()
list(sequence)

Create	a	shared	list	object	and	return	a	proxy	for	it.

Note: 	Modifications	 to	mutable	 values	 or	 items	 in	 dict	 and	 list
proxies	will	not	be	propagated	through	the	manager,	because	the
proxy	 has	 no	 way	 of	 knowing	 when	 its	 values	 or	 items	 are
modified.	To	modify	such	an	item,	you	can	re-assign	the	modified
object	to	the	container	proxy:

#	create	a	list	proxy	and	append	a	mutable	object	(a	dictionary)

lproxy	=	manager.list()

lproxy.append({})

#	now	mutate	the	dictionary

d	=	lproxy[0]

d['a']	=	1

d['b']	=	2

#	at	this	point,	the	changes	to	d	are	not	yet	synced,	but	by

#	reassigning	the	dictionary,	the	proxy	is	notified	of	the	change

lproxy[0]	=	d

17.2.2.7.1.	Namespace	objects

A	namespace	object	 has	 no	 public	methods,	 but	 does	 have	writable
attributes.	Its	representation	shows	the	values	of	its	attributes.

However,	 when	 using	 a	 proxy	 for	 a	 namespace	 object,	 an	 attribute

beginning	with	'_'	will	be	an	attribute	of	the	proxy	and	not	an	attribute
of	the	referent:

>>>	manager	=	multiprocessing.Manager()

>>>	Global	=	manager.Namespace()

>>>	Global.x	=	10

>>>	Global.y	=	'hello'

>>>	Global._z	=	12.3				#	this	is	an	attribute	of	the	proxy

>>>	print(Global)

Namespace(x=10,	y='hello')

17.2.2.7.2.	Customized	managers

To	 create	 one’s	 own	 manager,	 one	 creates	 a	 subclass	 of
BaseManager	 and	 uses	 the	 register()	 classmethod	 to	 register
new	types	or	callables	with	the	manager	class.	For	example:

from	multiprocessing.managers	import	BaseManager

class	MathsClass:

				def	add(self,	x,	y):

								return	x	+	y

				def	mul(self,	x,	y):

								return	x	*	y

class	MyManager(BaseManager):

				pass

MyManager.register('Maths',	MathsClass)

if	__name__	==	'__main__':

				with	MyManager()	as	manager:

								maths	=	manager.Maths()

								print(maths.add(4,	3))									#	prints	7

								print(maths.mul(7,	8))									#	prints	56

17.2.2.7.3.	Using	a	remote	manager

It	 is	 possible	 to	 run	 a	 manager	 server	 on	 one	 machine	 and	 have
clients	use	it	from	other	machines	(assuming	that	the	firewalls	involved
allow	it).

Running	the	following	commands	creates	a	server	for	a	single	shared
queue	which	remote	clients	can	access:

>>>	from	multiprocessing.managers	import	BaseManager

>>>	import	queue

>>>	queue	=	queue.Queue()

>>>	class	QueueManager(BaseManager):	pass

>>>	QueueManager.register('get_queue',	callable=lambda

>>>	m	=	QueueManager(address=('',	50000),	authkey=b'abracadabra'

>>>	s	=	m.get_server()

>>>	s.serve_forever()

One	client	can	access	the	server	as	follows:

>>>	from	multiprocessing.managers	import	BaseManager

>>>	class	QueueManager(BaseManager):	pass

>>>	QueueManager.register('get_queue')

>>>	m	=	QueueManager(address=('foo.bar.org',	50000),

>>>	m.connect()

>>>	queue	=	m.get_queue()

>>>	queue.put('hello')

Another	client	can	also	use	it:

>>>	from	multiprocessing.managers	import	BaseManager

>>>	class	QueueManager(BaseManager):	pass

>>>	QueueManager.register('get_queue')

>>>	m	=	QueueManager(address=('foo.bar.org',	50000),

>>>	m.connect()

>>>	queue	=	m.get_queue()

>>>	queue.get()

'hello'

Local	 processes	 can	 also	 access	 that	 queue,	 using	 the	 code	 from
above	on	the	client	to	access	it	remotely:

>>>	from	multiprocessing	import	Process,	Queue

>>>	from	multiprocessing.managers	import	BaseManager

>>>	class	Worker(Process):

...					def	__init__(self,	q):

...									self.q	=	q

...									super(Worker,	self).__init__()

...					def	run(self):

...									self.q.put('local	hello')

...

>>>	queue	=	Queue()

>>>	w	=	Worker(queue)

>>>	w.start()

>>>	class	QueueManager(BaseManager):	pass

...

>>>	QueueManager.register('get_queue',	callable=lambda

>>>	m	=	QueueManager(address=('',	50000),	authkey=b'abracadabra'

>>>	s	=	m.get_server()

>>>	s.serve_forever()

17.2.2.8.	Proxy	Objects

A	 proxy	 is	 an	 object	 which	 refers	 to	 a	 shared	 object	 which	 lives
(presumably)	in	a	different	process.	The	shared	object	is	said	to	be	the
referent	 of	 the	 proxy.	 Multiple	 proxy	 objects	 may	 have	 the	 same
referent.

A	proxy	object	 has	methods	which	 invoke	corresponding	methods	of
its	referent	(although	not	every	method	of	the	referent	will	necessarily
be	available	through	the	proxy).	A	proxy	can	usually	be	used	in	most
of	the	same	ways	that	its	referent	can:

>>>	from	multiprocessing	import	Manager

>>>	manager	=	Manager()

>>>	l	=	manager.list([i*i	for	i	in	range(10)])

>>>	print(l)

[0,	1,	4,	9,	16,	25,	36,	49,	64,	81]

>>>	print(repr(l))

<ListProxy	object,	typeid	'list'	at	0x...>

>>>	l[4]

16

>>>	l[2:5]

[4,	9,	16]

Notice	that	applying	str()	to	a	proxy	will	return	the	representation	of
the	 referent,	whereas	applying	repr()	will	 return	 the	 representation
of	the	proxy.

An	important	feature	of	proxy	objects	is	that	they	are	picklable	so	they
can	be	passed	between	processes.	Note,	however,	 that	 if	 a	proxy	 is
sent	 to	 the	 corresponding	 manager’s	 process	 then	 unpickling	 it	 will
produce	the	referent	 itself.	This	means,	 for	example,	 that	one	shared
object	can	contain	a	second:

>>>	a	=	manager.list()

>>>	b	=	manager.list()

>>>	a.append(b)									#	referent	of	a	now	contains	referent	of	b

>>>	print(a,	b)

[[]]	[]

>>>	b.append('hello')

>>>	print(a,	b)

[['hello']]	['hello']

Note: 	The	proxy	types	in	multiprocessing	do	nothing	to
support	comparisons	by	value.	So,	for	instance,	we	have:

>>>	manager.list([1,2,3])	==	[1,2,3]

False

One	 should	 just	 use	 a	 copy	 of	 the	 referent	 instead	 when	 making
comparisons.

class	multiprocessing.managers.BaseProxy
Proxy	objects	are	instances	of	subclasses	of	BaseProxy.

_callmethod(methodname[,	args[,	kwds]])
Call	and	return	the	result	of	a	method	of	the	proxy’s	referent.

If	proxy	is	a	proxy	whose	referent	is	obj	then	the	expression

proxy._callmethod(methodname,	args,	kwds)

will	evaluate	the	expression

getattr(obj,	methodname)(*args,	**kwds)

in	the	manager’s	process.

The	returned	value	will	be	a	copy	of	 the	 result	of	 the	call	or	a
proxy	 to	 a	 new	 shared	 object	 –	 see	 documentation	 for	 the
method_to_typeid	argument	of	BaseManager.register().

If	 an	 exception	 is	 raised	 by	 the	 call,	 then	 is	 re-raised	 by

_callmethod().	 If	 some	 other	 exception	 is	 raised	 in	 the
manager’s	process	then	this	is	converted	into	a	RemoteError
exception	and	is	raised	by	_callmethod().

Note	 in	 particular	 that	 an	 exception	 will	 be	 raised	 if
methodname	has	not	been	exposed

An	example	of	the	usage	of	_callmethod():

>>>	l	=	manager.list(range(10))

>>>	l._callmethod('__len__')

10

>>>	l._callmethod('__getslice__',	(2,	7))			#	equiv	to	`l[2:7]`

[2,	3,	4,	5,	6]

>>>	l._callmethod('__getitem__',	(20,))					#	equiv	to	`l[20]`

Traceback	(most	recent	call	last):

...

IndexError:	list	index	out	of	range

_getvalue()
Return	a	copy	of	the	referent.

If	the	referent	is	unpicklable	then	this	will	raise	an	exception.

__repr__()
Return	a	representation	of	the	proxy	object.

__str__()
Return	the	representation	of	the	referent.

17.2.2.8.1.	Cleanup

A	proxy	object	uses	a	weakref	callback	so	 that	when	 it	gets	garbage

collected	it	deregisters	itself	from	the	manager	which	owns	its	referent.

A	 shared	 object	 gets	 deleted	 from	 the	manager	 process	when	 there
are	no	longer	any	proxies	referring	to	it.

17.2.2.9.	Process	Pools

One	 can	 create	 a	 pool	 of	 processes	 which	 will	 carry	 out	 tasks
submitted	to	it	with	the	Pool	class.

class	multiprocessing.pool.Pool([processes[,	initializer[,
initargs[,	maxtasksperchild[,	context]]]]])

A	process	pool	object	which	controls	a	pool	of	worker	processes	to
which	jobs	can	be	submitted.	It	supports	asynchronous	results	with
timeouts	and	callbacks	and	has	a	parallel	map	implementation.

processes	is	the	number	of	worker	processes	to	use.	If	processes
is	None	then	the	number	returned	by	os.cpu_count()	is	used.

If	 initializer	 is	 not	 None	 then	 each	 worker	 process	 will	 call
initializer(*initargs)	when	it	starts.

maxtasksperchild	 is	 the	 number	 of	 tasks	 a	 worker	 process	 can
complete	 before	 it	 will	 exit	 and	 be	 replaced	 with	 a	 fresh	 worker
process,	 to	 enable	 unused	 resources	 to	 be	 freed.	 The	 default
maxtasksperchild	is	None,	which	means	worker	processes	will	live
as	long	as	the	pool.

context	 can	 be	 used	 to	 specify	 the	 context	 used	 for	 starting	 the
worker	 processes.	 Usually	 a	 pool	 is	 created	 using	 the	 function
multiprocessing.Pool()	or	the	Pool()	method	of	a	context
object.	In	both	cases	context	is	set	appropriately.

Note	that	the	methods	of	the	pool	object	should	only	be	called	by
the	process	which	created	the	pool.

New	in	version	3.2:	maxtasksperchild

New	in	version	3.4:	context

Note: 	 Worker	 processes	 within	 a	 Pool	 typically	 live	 for	 the
complete	 duration	 of	 the	Pool’s	work	 queue.	A	 frequent	 pattern
found	in	other	systems	(such	as	Apache,	mod_wsgi,	etc)	to	free
resources	held	by	workers	 is	 to	allow	a	worker	within	a	pool	 to
complete	only	a	set	amount	of	work	before	being	exiting,	being
cleaned	up	and	a	new	process	spawned	to	replace	the	old	one.
The	maxtasksperchild	argument	to	the	Pool	exposes	this	ability
to	the	end	user.

apply(func[,	args[,	kwds]])
Call	func	with	arguments	args	and	keyword	arguments	kwds.	It
blocks	 until	 the	 result	 is	 ready.	 Given	 this	 blocks,
apply_async()	 is	 better	 suited	 for	 performing	 work	 in
parallel.	Additionally,	func	is	only	executed	in	one	of	the	workers
of	the	pool.

apply_async(func[,	args[,	kwds[,	callback[,	error_callback]]]])
A	variant	of	the	apply()	method	which	returns	a	result	object.

If	 callback	 is	 specified	 then	 it	 should	 be	 a	 callable	 which
accepts	 a	 single	 argument.	 When	 the	 result	 becomes	 ready
callback	 is	 applied	 to	 it,	 that	 is	unless	 the	call	 failed,	 in	which
case	the	error_callback	is	applied	instead

If	error_callback	 is	specified	 then	 it	should	be	a	callable	which
accepts	a	single	argument.	 If	 the	 target	 function	fails,	 then	the

error_callback	is	called	with	the	exception	instance.

Callbacks	 should	 complete	 immediately	 since	 otherwise	 the
thread	which	handles	the	results	will	get	blocked.

map(func,	iterable[,	chunksize])
A	parallel	equivalent	of	 the	map()	built-in	 function	(it	supports
only	one	 iterable	argument	 though).	 It	blocks	until	 the	 result	 is
ready.

This	method	chops	the	iterable	into	a	number	of	chunks	which	it
submits	 to	 the	 process	 pool	 as	 separate	 tasks.	 The
(approximate)	size	of	these	chunks	can	be	specified	by	setting
chunksize	to	a	positive	integer.

map_async(func,	 iterable[,	 chunksize[,	 callback[,
error_callback]]])

A	variant	of	the	map()	method	which	returns	a	result	object.

If	 callback	 is	 specified	 then	 it	 should	 be	 a	 callable	 which
accepts	 a	 single	 argument.	 When	 the	 result	 becomes	 ready
callback	 is	 applied	 to	 it,	 that	 is	unless	 the	call	 failed,	 in	which
case	the	error_callback	is	applied	instead

If	error_callback	 is	specified	 then	 it	should	be	a	callable	which
accepts	a	single	argument.	 If	 the	 target	 function	fails,	 then	the
error_callback	is	called	with	the	exception	instance.

Callbacks	 should	 complete	 immediately	 since	 otherwise	 the
thread	which	handles	the	results	will	get	blocked.

imap(func,	iterable[,	chunksize])
A	lazier	version	of	map().

The	chunksize	 argument	 is	 the	 same	as	 the	 one	used	 by	 the
map()	method.	For	very	 long	 iterables	using	a	 large	value	for
chunksize	can	make	 the	 job	complete	much	 faster	 than	using
the	default	value	of	1.

Also	 if	chunksize	 is	1	 then	 the	next()	method	of	 the	 iterator
returned	 by	 the	 imap()	 method	 has	 an	 optional	 timeout
parameter:	 next(timeout)	 will	 raise
multiprocessing.TimeoutError	 if	 the	 result	 cannot	 be
returned	within	timeout	seconds.

imap_unordered(func,	iterable[,	chunksize])
The	 same	 as	 imap()	 except	 that	 the	 ordering	 of	 the	 results
from	the	returned	iterator	should	be	considered	arbitrary.	(Only
when	there	is	only	one	worker	process	is	the	order	guaranteed
to	be	“correct”.)

starmap(func,	iterable[,	chunksize])
Like	 map()	 except	 that	 the	 elements	 of	 the	 iterable	 are
expected	to	be	iterables	that	are	unpacked	as	arguments.

Hence	 an	 iterable	 of	 [(1,2),	 (3,	 4)]	 results	 in	 [func(1,2),
func(3,4)].

New	in	version	3.3.

starmap_async(func,	 iterable[,	 chunksize[,	 callback[,
error_back]]])

A	combination	of	starmap()	and	map_async()	 that	 iterates
over	 iterable	 of	 iterables	 and	 calls	 func	 with	 the	 iterables
unpacked.	Returns	a	result	object.

New	in	version	3.3.

close()
Prevents	 any	 more	 tasks	 from	 being	 submitted	 to	 the	 pool.
Once	all	the	tasks	have	been	completed	the	worker	processes
will	exit.

terminate()
Stops	 the	 worker	 processes	 immediately	 without	 completing
outstanding	 work.	 When	 the	 pool	 object	 is	 garbage	 collected
terminate()	will	be	called	immediately.

join()
Wait	 for	 the	worker	processes	to	exit.	One	must	call	close()
or	terminate()	before	using	join().

New	in	version	3.3:	Pool	objects	now	support	the	context	manager
protocol	–	see	Context	Manager	Types.	__enter__()	returns	the
pool	object,	and	__exit__()	calls	terminate().

class	multiprocessing.pool.AsyncResult
The	 class	 of	 the	 result	 returned	 by	 Pool.apply_async()	 and
Pool.map_async().

get([timeout])
Return	the	result	when	it	arrives.	If	timeout	is	not	None	and	the
result	 does	 not	 arrive	 within	 timeout	 seconds	 then
multiprocessing.TimeoutError	 is	 raised.	 If	 the	 remote
call	raised	an	exception	then	that	exception	will	be	reraised	by
get().

wait([timeout])

Wait	until	the	result	is	available	or	until	timeout	seconds	pass.

ready()
Return	whether	the	call	has	completed.

successful()
Return	whether	the	call	completed	without	raising	an	exception.
Will	raise	AssertionError	if	the	result	is	not	ready.

The	following	example	demonstrates	the	use	of	a	pool:

from	multiprocessing	import	Pool

def	f(x):

				return	x*x

if	__name__	==	'__main__':

				with	Pool(processes=4)	as	pool:									#	start	4	worker	processes

								result	=	pool.apply_async(f,	(10,))	#	evaluate	"f(10)"	asynchronously

								print(result.get(timeout=1))								#	prints	"100"	unless	your	computer	is	*very*	slow

								print(pool.map(f,	range(10)))							#	prints	"[0,	1,	4,...,	81]"

								it	=	pool.imap(f,	range(10))

								print(next(it))																					#	prints	"0"

								print(next(it))																					#	prints	"1"

								print(it.next(timeout=1))											#	prints	"4"	unless	your	computer	is	*very*	slow

								import	time

								result	=	pool.apply_async(time.sleep,	(10,))

								print(result.get(timeout=1))								#	raises	TimeoutError

17.2.2.10.	Listeners	and	Clients

Usually	message	passing	between	processes	is	done	using	queues	or
by	using	Connection	objects	returned	by	Pipe().

However,	the	multiprocessing.connection	module	allows	some
extra	flexibility.	It	basically	gives	a	high	level	message	oriented	API	for
dealing	with	sockets	or	Windows	named	pipes.	It	also	has	support	for
digest	authentication	using	the	hmac	module,	and	for	polling	multiple
connections	at	the	same	time.

multiprocessing.connection.deliver_challenge(connection
authkey)

Send	 a	 randomly	 generated	 message	 to	 the	 other	 end	 of	 the
connection	and	wait	for	a	reply.

If	 the	 reply	matches	 the	digest	 of	 the	message	using	authkey	 as
the	key	 then	a	welcome	message	 is	 sent	 to	 the	other	end	of	 the
connection.	Otherwise	AuthenticationError	is	raised.

multiprocessing.connection.answer_challenge(connection
authkey)

Receive	 a	 message,	 calculate	 the	 digest	 of	 the	 message	 using
authkey	as	the	key,	and	then	send	the	digest	back.

If	 a	 welcome	 message	 is	 not	 received,	 then
AuthenticationError	is	raised.

multiprocessing.connection.Client(address[,	family[,
authenticate[,	authkey]]])

Attempt	 to	 set	 up	 a	 connection	 to	 the	 listener	 which	 is	 using
address	address,	returning	a	Connection.

The	 type	of	 the	connection	 is	determined	by	 family	argument,	but
this	can	generally	be	omitted	since	 it	can	usually	be	 inferred	from

the	format	of	address.	(See	Address	Formats)

If	 authenticate	 is	 True	 or	 authkey	 is	 a	 byte	 string	 then	 digest
authentication	 is	 used.	 The	 key	 used	 for	 authentication	 will	 be
either	 authkey	 or	 current_process().authkey	 if	 authkey	 is
None.	 If	 authentication	 fails	 then	 AuthenticationError	 is
raised.	See	Authentication	keys.

class	multiprocessing.connection.Listener([address[,
family[,	backlog[,	authenticate[,	authkey]]]]])

A	wrapper	 for	 a	 bound	 socket	 or	Windows	 named	 pipe	 which	 is
‘listening’	for	connections.

address	 is	the	address	to	be	used	by	the	bound	socket	or	named
pipe	of	the	listener	object.

Note: 	If	an	address	of	‘0.0.0.0’	is	used,	the	address	will	not	be	a
connectable	end	point	on	Windows.	If	you	require	a	connectable
end-point,	you	should	use	‘127.0.0.1’.

family	is	the	type	of	socket	(or	named	pipe)	to	use.	This	can	be	one
of	 the	strings	'AF_INET'	 (for	a	TCP	socket),	'AF_UNIX'	 (for	a
Unix	domain	socket)	or	'AF_PIPE'	(for	a	Windows	named	pipe).
Of	 these	 only	 the	 first	 is	 guaranteed	 to	 be	 available.	 If	 family	 is
None	 then	 the	 family	 is	 inferred	 from	 the	 format	 of	 address.	 If
address	 is	also	None	 then	a	default	 is	chosen.	This	default	 is	 the
family	which	 is	assumed	 to	be	 the	 fastest	available.	See	Address
Formats.	Note	 that	 if	 family	 is	 'AF_UNIX'	 and	 address	 is	 None
then	 the	 socket	 will	 be	 created	 in	 a	 private	 temporary	 directory
created	using	tempfile.mkstemp().

If	 the	 listener	 object	 uses	a	 socket	 then	backlog	 (1	 by	 default)	 is

passed	 to	 the	listen()	method	of	 the	 socket	 once	 it	 has	been
bound.

If	authenticate	is	True	(False	by	default)	or	authkey	 is	not	None
then	digest	authentication	is	used.

If	authkey	is	a	byte	string	then	it	will	be	used	as	the	authentication
key;	otherwise	it	must	be	None.

If	 authkey	 is	 None	 and	 authenticate	 is	 True	 then
current_process().authkey	 is	 used	 as	 the	 authentication
key.	 If	 authkey	 is	 None	 and	 authenticate	 is	 False	 then	 no
authentication	 is	 done.	 If	 authentication	 fails	 then
AuthenticationError	is	raised.	See	Authentication	keys.

accept()
Accept	a	connection	on	the	bound	socket	or	named	pipe	of	the
listener	 object	 and	 return	 a	 Connection	 object.	 If
authentication	 is	 attempted	 and	 fails,	 then
AuthenticationError	is	raised.

close()
Close	 the	 bound	 socket	 or	 named	 pipe	 of	 the	 listener	 object.
This	 is	 called	 automatically	 when	 the	 listener	 is	 garbage
collected.	However	it	is	advisable	to	call	it	explicitly.

Listener	objects	have	the	following	read-only	properties:

address

The	address	which	is	being	used	by	the	Listener	object.

last_accepted

The	address	from	which	the	 last	accepted	connection	came.	If

this	is	unavailable	then	it	is	None.

New	 in	 version	 3.3:	 Listener	 objects	 now	 support	 the	 context
manager	 protocol	 –	 see	Context	Manager	 Types.	 __enter__()
returns	the	listener	object,	and	__exit__()	calls	close().

multiprocessing.connection.wait(object_list,	timeout=None)
Wait	 till	 an	object	 in	object_list	 is	 ready.	Returns	 the	 list	 of	 those
objects	in	object_list	which	are	ready.	If	timeout	 is	a	 float	 then	the
call	blocks	for	at	most	that	many	seconds.	If	timeout	is	None	then	it
will	block	 for	an	unlimited	period.	A	negative	 timeout	 is	equivalent
to	a	zero	timeout.

For	both	Unix	and	Windows,	an	object	can	appear	in	object_list	if	it
is

a	readable	Connection	object;
a	connected	and	readable	socket.socket	object;	or
the	sentinel	attribute	of	a	Process	object.

A	connection	or	socket	object	is	ready	when	there	is	data	available
to	be	read	from	it,	or	the	other	end	has	been	closed.

Unix:	 wait(object_list,	 timeout)	 almost	 equivalent
select.select(object_list,	 [],	 [],	 timeout).	 The
difference	is	that,	if	select.select()	is	interrupted	by	a	signal,
it	 can	 raise	 OSError	 with	 an	 error	 number	 of	 EINTR,	 whereas
wait()	will	not.

Windows:	An	 item	in	object_list	must	either	be	an	 integer	handle
which	 is	 waitable	 (according	 to	 the	 definition	 used	 by	 the
documentation	 of	 the	 Win32	 function
WaitForMultipleObjects())	 or	 it	 can	 be	 an	 object	 with	 a

fileno()	method	which	returns	a	socket	handle	or	pipe	handle.
(Note	 that	 pipe	 handles	 and	 socket	 handles	 are	 not	 waitable
handles.)

New	in	version	3.3.

Examples

The	 following	 server	 code	 creates	 a	 listener	 which	 uses	 'secret
password'	 as	 an	 authentication	 key.	 It	 then	waits	 for	 a	 connection
and	sends	some	data	to	the	client:

from	multiprocessing.connection	import	Listener

from	array	import	array

address	=	('localhost',	6000)					#	family	is	deduced	to	be	'AF_INET'

with	Listener(address,	authkey=b'secret	password')	as

				with	listener.accept()	as	conn:

								print('connection	accepted	from',	listener.last_accepted

								conn.send([2.25,	None,	'junk',	float])

								conn.send_bytes(b'hello')

								conn.send_bytes(array('i',	[42,	1729]))

The	 following	 code	 connects	 to	 the	 server	 and	 receives	 some	 data
from	the	server:

from	multiprocessing.connection	import	Client

from	array	import	array

address	=	('localhost',	6000)

with	Client(address,	authkey=b'secret	password')	as	

				print(conn.recv())																		#	=>	[2.25,	None,	'junk',	float]

				print(conn.recv_bytes())												#	=>	'hello'

				arr	=	array('i',	[0,	0,	0,	0,	0])

				print(conn.recv_bytes_into(arr))				#	=>	8

				print(arr)																										#	=>	array('i',	[42,	1729,	0,	0,	0])

The	 following	code	uses	wait()	 to	wait	 for	messages	 from	multiple
processes	at	once:

import	time,	random

from	multiprocessing	import	Process,	Pipe,	current_process

from	multiprocessing.connection	import	wait

def	foo(w):

				for	i	in	range(10):

								w.send((i,	current_process().name))

				w.close()

if	__name__	==	'__main__':

				readers	=	[]

				for	i	in	range(4):

								r,	w	=	Pipe(duplex=False)

								readers.append(r)

								p	=	Process(target=foo,	args=(w,))

								p.start()

								#	We	close	the	writable	end	of	the	pipe	now	to	be	sure	that

								#	p	is	the	only	process	which	owns	a	handle	for	it.		This

								#	ensures	that	when	p	closes	its	handle	for	the	writable	end,

								#	wait()	will	promptly	report	the	readable	end	as	being	ready.

								w.close()

				while	readers:

								for	r	in	wait(readers):

												try:

																msg	=	r.recv()

												except	EOFError:

																readers.remove(r)

												else:

																print(msg)

17.2.2.10.1.	Address	Formats

An	 'AF_INET'	 address	 is	 a	 tuple	 of	 the	 form	 (hostname,
port)	where	hostname	is	a	string	and	port	is	an	integer.

An	'AF_UNIX'	address	is	a	string	representing	a	filename	on	the
filesystem.

An	'AF_PIPE'	address	is	a	string	of	the	form
r'\\.\pipe\PipeName'.	To	use	Client()	to	connect	to	a
named	 pipe	 on	 a	 remote	 computer	 called	 ServerName	 one
should	 use	 an	 address	 of	 the	 form
r'\\ServerName\pipe\PipeName'	instead.

Note	 that	 any	 string	 beginning	 with	 two	 backslashes	 is	 assumed	 by
default	 to	 be	 an	 'AF_PIPE'	 address	 rather	 than	 an	 'AF_UNIX'
address.

17.2.2.11.	Authentication	keys

When	 one	 uses	 Connection.recv,	 the	 data	 received	 is
automatically	 unpickled.	 Unfortunately	 unpickling	 data	 from	 an
untrusted	 source	 is	 a	 security	 risk.	 Therefore	 Listener	 and
Client()	use	the	hmac	module	to	provide	digest	authentication.

An	 authentication	 key	 is	 a	 byte	 string	which	 can	 be	 thought	 of	 as	 a
password:	 once	 a	 connection	 is	 established	 both	 ends	 will	 demand
proof	that	the	other	knows	the	authentication	key.	(Demonstrating	 that
both	ends	are	using	 the	same	key	does	not	 involve	sending	 the	key
over	the	connection.)

If	 authentication	 is	 requested	 but	 no	 authentication	 key	 is	 specified
then	 the	 return	 value	 of	 current_process().authkey	 is	 used
(see	 Process).	 This	 value	 will	 automatically	 inherited	 by	 any
Process	object	that	the	current	process	creates.	This	means	that	(by
default)	 all	 processes	 of	 a	multi-process	 program	will	 share	 a	 single
authentication	 key	 which	 can	 be	 used	 when	 setting	 up	 connections
between	themselves.

Suitable	 authentication	 keys	 can	 also	 be	 generated	 by	 using
os.urandom().

17.2.2.12.	Logging

Some	 support	 for	 logging	 is	 available.	 Note,	 however,	 that	 the
logging	package	does	not	use	process	shared	locks	so	it	is	possible
(depending	 on	 the	 handler	 type)	 for	 messages	 from	 different
processes	to	get	mixed	up.

multiprocessing.get_logger()
Returns	 the	 logger	 used	 by	 multiprocessing.	 If	 necessary,	 a
new	one	will	be	created.

When	first	created	the	logger	has	level	logging.NOTSET	and	no
default	 handler.	 Messages	 sent	 to	 this	 logger	 will	 not	 by	 default
propagate	to	the	root	logger.

Note	that	on	Windows	child	processes	will	only	inherit	 the	level	of
the	parent	process’s	logger	–	any	other	customization	of	the	logger
will	not	be	inherited.

multiprocessing.log_to_stderr()
This	 function	performs	a	call	 to	get_logger()	but	 in	addition	 to
returning	the	logger	created	by	get_logger,	it	adds	a	handler	which
sends	output	to	sys.stderr	using	format	'[%(levelname)s/%
(processName)s]	%(message)s'.

Below	is	an	example	session	with	logging	turned	on:

>>>	import	multiprocessing,	logging

>>>	logger	=	multiprocessing.log_to_stderr()

>>>	logger.setLevel(logging.INFO)

>>>	logger.warning('doomed')

[WARNING/MainProcess]	doomed

>>>	m	=	multiprocessing.Manager()

[INFO/SyncManager-...]	child	process	calling	self.run()

[INFO/SyncManager-...]	created	temp	directory	/.../pymp-...

[INFO/SyncManager-...]	manager	serving	at	'/.../listener-...'

>>>	del	m

[INFO/MainProcess]	sending	shutdown	message	to	manager

[INFO/SyncManager-...]	manager	exiting	with	exitcode	0

For	a	full	table	of	logging	levels,	see	the	logging	module.

17.2.2.13.	The	multiprocessing.dummy
module

multiprocessing.dummy	replicates	the	API	of	multiprocessing
but	is	no	more	than	a	wrapper	around	the	threading	module.

17.2.3.	Programming	guidelines

There	are	certain	guidelines	and	 idioms	which	should	be	adhered	 to
when	using	multiprocessing.

17.2.3.1.	All	start	methods

The	following	applies	to	all	start	methods.

Avoid	shared	state

As	far	as	possible	one	should	try	to	avoid	shifting	large	amounts
of	data	between	processes.

It	 is	 probably	 best	 to	 stick	 to	 using	 queues	 or	 pipes	 for
communication	 between	 processes	 rather	 than	 using	 the	 lower
level	synchronization	primitives.

Picklability

Ensure	that	the	arguments	to	the	methods	of	proxies	are
picklable.

Thread	safety	of	proxies

Do	not	use	a	proxy	object	from	more	than	one	thread	unless	you
protect	it	with	a	lock.

(There	is	never	a	problem	with	different	processes	using	the	same
proxy.)

Joining	zombie	processes

On	Unix	when	a	process	finishes	but	has	not	been	joined	it

becomes	a	zombie.	There	should	never	be	very	many	because
each	time	a	new	process	starts	(or	active_children()	is
called)	all	completed	processes	which	have	not	yet	been	joined
will	be	joined.	Also	calling	a	finished	process’s
Process.is_alive	will	join	the	process.	Even	so	it	is	probably
good	practice	to	explicitly	join	all	the	processes	that	you	start.

Better	to	inherit	than	pickle/unpickle

When	using	the	spawn	or	forkserver	start	methods	many	types
from	multiprocessing	need	to	be	picklable	so	that	child
processes	can	use	them.	However,	one	should	generally	avoid
sending	shared	objects	to	other	processes	using	pipes	or	queues.
Instead	you	should	arrange	the	program	so	that	a	process	which
needs	access	to	a	shared	resource	created	elsewhere	can	inherit
it	from	an	ancestor	process.

Avoid	terminating	processes

Using	 the	 Process.terminate	 method	 to	 stop	 a	 process	 is
liable	to	cause	any	shared	resources	(such	as	locks,	semaphores,
pipes	and	queues)	currently	being	used	by	the	process	to	become
broken	or	unavailable	to	other	processes.

Therefore	 it	 is	 probably	 best	 to	 only	 consider	 using
Process.terminate	on	processes	which	never	use	any	shared
resources.

Joining	processes	that	use	queues

Bear	in	mind	that	a	process	that	has	put	items	in	a	queue	will	wait
before	 terminating	 until	 all	 the	 buffered	 items	 are	 fed	 by	 the
“feeder”	thread	to	the	underlying	pipe.	(The	child	process	can	call
the	 Queue.cancel_join_thread	 method	 of	 the	 queue	 to
avoid	this	behaviour.)

This	means	 that	whenever	 you	 use	 a	 queue	 you	 need	 to	make
sure	 that	 all	 items	 which	 have	 been	 put	 on	 the	 queue	 will
eventually	 be	 removed	 before	 the	 process	 is	 joined.	 Otherwise
you	cannot	be	sure	 that	processes	which	have	put	 items	on	 the
queue	 will	 terminate.	 Remember	 also	 that	 non-daemonic
processes	will	be	automatically	be	joined.

An	example	which	will	deadlock	is	the	following:

from	multiprocessing	import	Process,	Queue

def	f(q):

				q.put('X'	*	1000000)

if	__name__	==	'__main__':

				queue	=	Queue()

				p	=	Process(target=f,	args=(queue,))

				p.start()

				p.join()																				#	this	deadlocks

				obj	=	queue.get()

A	 fix	 here	would	 be	 to	 swap	 the	 last	 two	 lines	 round	 (or	 simply
remove	the	p.join()	line).

Explicitly	pass	resources	to	child	processes

On	Unix	 using	 the	 fork	 start	method,	 a	 child	 process	 can	make
use	 of	 a	 shared	 resource	 created	 in	 a	 parent	 process	 using	 a
global	 resource.	 However,	 it	 is	 better	 to	 pass	 the	 object	 as	 an
argument	to	the	constructor	for	the	child	process.

Apart	from	making	the	code	(potentially)	compatible	with	Windows
and	the	other	start	methods	this	also	ensures	that	as	long	as	the
child	process	is	still	alive	the	object	will	not	be	garbage	collected

in	the	parent	process.	This	might	be	important	if	some	resource	is
freed	when	the	object	is	garbage	collected	in	the	parent	process.

So	for	instance

from	multiprocessing	import	Process,	Lock

def	f():

				...	do	something	using	"lock"	...

if	__name__	==	'__main__':

			lock	=	Lock()

			for	i	in	range(10):

								Process(target=f).start()

should	be	rewritten	as

from	multiprocessing	import	Process,	Lock

def	f(l):

				...	do	something	using	"l"	...

if	__name__	==	'__main__':

			lock	=	Lock()

			for	i	in	range(10):

								Process(target=f,	args=(lock,)).start()

Beware	of	replacing	sys.stdin	with	a	“file	like	object”

multiprocessing	originally	unconditionally	called:

os.close(sys.stdin.fileno())

in	 the	 multiprocessing.Process._bootstrap()	 method
—	 this	 resulted	 in	 issues	with	 processes-in-processes.	 This	 has

been	changed	to:

sys.stdin.close()

sys.stdin	=	open(os.devnull)

Which	 solves	 the	 fundamental	 issue	 of	 processes	 colliding	 with
each	other	resulting	in	a	bad	file	descriptor	error,	but	introduces	a
potential	danger	to	applications	which	replace	sys.stdin()	with
a	 “file-like	 object”	 with	 output	 buffering.	 This	 danger	 is	 that	 if
multiple	 processes	 call	 close()	 on	 this	 file-like	 object,	 it	 could
result	in	the	same	data	being	flushed	to	the	object	multiple	times,
resulting	in	corruption.

If	you	write	a	file-like	object	and	implement	your	own	caching,	you
can	make	it	fork-safe	by	storing	the	pid	whenever	you	append	to
the	cache,	and	discarding	 the	cache	when	 the	pid	changes.	For
example:

@property

def	cache(self):

				pid	=	os.getpid()

				if	pid	!=	self._pid:

								self._pid	=	pid

								self._cache	=	[]

				return	self._cache

For	more	information,	see	issue	5155,	issue	5313	and	issue	5331

17.2.3.2.	The	spawn	and	forkserver	start	methods

There	 are	 a	 few	 extra	 restriction	 which	 don’t	 apply	 to	 the	 fork	 start
method.

http://bugs.python.org/issue5155
http://bugs.python.org/issue5313
http://bugs.python.org/issue5331

More	picklability

Ensure	 that	 all	 arguments	 to	 Process.__init__()	 are
picklable.	 This	 means,	 in	 particular,	 that	 bound	 or	 unbound
methods	cannot	be	used	directly	as	the	target	(unless	you	use
the	 fork	 start	 method)	 —	 just	 define	 a	 function	 and	 use	 that
instead.

Also,	if	you	subclass	Process	then	make	sure	that	instances	will
be	picklable	when	the	Process.start	method	is	called.

Global	variables

Bear	 in	mind	that	 if	code	run	in	a	child	process	tries	to	access	a
global	 variable,	 then	 the	 value	 it	 sees	 (if	 any)	 may	 not	 be	 the
same	 as	 the	 value	 in	 the	 parent	 process	 at	 the	 time	 that
Process.start	was	called.

However,	global	 variables	which	are	 just	module	 level	 constants
cause	no	problems.

Safe	importing	of	main	module

Make	sure	that	the	main	module	can	be	safely	imported	by	a	new
Python	interpreter	without	causing	unintended	side	effects	(such	a
starting	a	new	process).

For	example,	using	the	spawn	or	forkserver	start	method	running
the	following	module	would	fail	with	a	RuntimeError:

from	multiprocessing	import	Process

def	foo():

				print('hello')

p	=	Process(target=foo)

p.start()

Instead	 one	 should	 protect	 the	 “entry	 point”	 of	 the	 program	 by
using	if	__name__	==	'__main__':	as	follows:

from	multiprocessing	import	Process,	freeze_support

def	foo():

				print('hello')

if	__name__	==	'__main__':

				freeze_support()

				set_start_method('spawn')

				p	=	Process(target=foo)

				p.start()

(The	freeze_support()	line	can	be	omitted	if	the	program	will
be	run	normally	instead	of	frozen.)

This	allows	the	newly	spawned	Python	interpreter	to	safely	import
the	module	and	then	run	the	module’s	foo()	function.

Similar	 restrictions	 apply	 if	 a	 pool	 or	 manager	 is	 created	 in	 the
main	module.

17.2.4.	Examples

Demonstration	 of	 how	 to	 create	 and	 use	 customized	managers	 and
proxies:

from	multiprocessing	import	freeze_support

from	multiprocessing.managers	import	BaseManager,	BaseProxy

import	operator

##

class	Foo:

				def	f(self):

								print('you	called	Foo.f()')

				def	g(self):

								print('you	called	Foo.g()')

				def	_h(self):

								print('you	called	Foo._h()')

#	A	simple	generator	function

def	baz():

				for	i	in	range(10):

								yield	i*i

#	Proxy	type	for	generator	objects

class	GeneratorProxy(BaseProxy):

				exposed	=	['__next__']

				def	__iter__(self):

								return	self

				def	__next__(self):

								return	self._callmethod('__next__')

#	Function	to	return	the	operator	module

def	get_operator_module():

				return	operator

##

class	MyManager(BaseManager):

				pass

#	register	the	Foo	class;	make	`f()`	and	`g()`	accessible	via	proxy

MyManager.register('Foo1',	Foo)

#	register	the	Foo	class;	make	`g()`	and	`_h()`	accessible	via	proxy

MyManager.register('Foo2',	Foo,	exposed=('g',	'_h'))

#	register	the	generator	function	baz;	use	`GeneratorProxy`	to	make	proxies

MyManager.register('baz',	baz,	proxytype=GeneratorProxy

#	register	get_operator_module();	make	public	functions	accessible	via	proxy

MyManager.register('operator',	get_operator_module)

##

def	test():

				manager	=	MyManager()

				manager.start()

				print('-'	*	20)

				f1	=	manager.Foo1()

				f1.f()

				f1.g()

				assert	not	hasattr(f1,	'_h')

				assert	sorted(f1._exposed_)	==	sorted(['f',	'g'])

				print('-'	*	20)

				f2	=	manager.Foo2()

				f2.g()

				f2._h()

				assert	not	hasattr(f2,	'f')

				assert	sorted(f2._exposed_)	==	sorted(['g',	'_h'

				print('-'	*	20)

				it	=	manager.baz()

				for	i	in	it:

								print('<%d>'	%	i,	end='	')

				print()

				print('-'	*	20)

				op	=	manager.operator()

				print('op.add(23,	45)	=',	op.add(23,	45))

				print('op.pow(2,	94)	=',	op.pow(2,	94))

				print('op._exposed_	=',	op._exposed_)

##

if	__name__	==	'__main__':

				freeze_support()

				test()

Using	Pool:

import	multiprocessing

import	time

import	random

import	sys

#

#	Functions	used	by	test	code

#

def	calculate(func,	args):

				result	=	func(*args)

				return	'%s	says	that	%s%s	=	%s'	%	(

								multiprocessing.current_process().name,

								func.__name__,	args,	result

)

def	calculatestar(args):

				return	calculate(*args)

def	mul(a,	b):

				time.sleep(0.5	*	random.random())

				return	a	*	b

def	plus(a,	b):

				time.sleep(0.5	*	random.random())

				return	a	+	b

def	f(x):

				return	1.0	/	(x	-	5.0)

def	pow3(x):

				return	x	**	3

def	noop(x):

				pass

#

#	Test	code

#

def	test():

				PROCESSES	=	4

				print('Creating	pool	with	%d	processes\n'	%	PROCESSES

				with	multiprocessing.Pool(PROCESSES)	as	pool:

								#

								#	Tests

								#

								TASKS	=	[(mul,	(i,	7))	for	i	in	range(10)]	+

																[(plus,	(i,	8))	for	i	in	range(10)]

								results	=	[pool.apply_async(calculate,	t)	for

								imap_it	=	pool.imap(calculatestar,	TASKS)

								imap_unordered_it	=	pool.imap_unordered(calculatestar

								print('Ordered	results	using	pool.apply_async():'

								for	r	in	results:

												print('\t',	r.get())

								print()

								print('Ordered	results	using	pool.imap():')

								for	x	in	imap_it:

												print('\t',	x)

								print()

								print('Unordered	results	using	pool.imap_unordered():'

								for	x	in	imap_unordered_it:

												print('\t',	x)

								print()

								print('Ordered	results	using	pool.map()	---	will	block	till	complete:'

								for	x	in	pool.map(calculatestar,	TASKS):

												print('\t',	x)

								print()

								#

								#	Test	error	handling

								#

								print('Testing	error	handling:')

								try:

												print(pool.apply(f,	(5,)))

								except	ZeroDivisionError:

												print('\tGot	ZeroDivisionError	as	expected	from	pool.apply()'

								else:

												raise	AssertionError('expected	ZeroDivisionError'

								try:

												print(pool.map(f,	list(range(10))))

								except	ZeroDivisionError:

												print('\tGot	ZeroDivisionError	as	expected	from	pool.map()'

								else:

												raise	AssertionError('expected	ZeroDivisionError'

								try:

												print(list(pool.imap(f,	list(range(10)))))

								except	ZeroDivisionError:

												print('\tGot	ZeroDivisionError	as	expected	from	list(pool.imap())'

								else:

												raise	AssertionError('expected	ZeroDivisionError'

								it	=	pool.imap(f,	list(range(10)))

								for	i	in	range(10):

												try:

																x	=	next(it)

												except	ZeroDivisionError:

																if	i	==	5:

																				pass

												except	StopIteration:

																break

												else:

																if	i	==	5:

																				raise	AssertionError('expected	ZeroDivisionError'

								assert	i	==	9

								print('\tGot	ZeroDivisionError	as	expected	from	IMapIterator.next()'

								print()

								#

								#	Testing	timeouts

								#

								print('Testing	ApplyResult.get()	with	timeout:'

								res	=	pool.apply_async(calculate,	TASKS[0])

								while	1:

												sys.stdout.flush()

												try:

																sys.stdout.write('\n\t%s'	%	res.get(

																break

												except	multiprocessing.TimeoutError:

																sys.stdout.write('.')

								print()

								print()

								print('Testing	IMapIterator.next()	with	timeout:'

								it	=	pool.imap(calculatestar,	TASKS)

								while	1:

												sys.stdout.flush()

												try:

																sys.stdout.write('\n\t%s'	%	it.next(

												except	StopIteration:

																break

												except	multiprocessing.TimeoutError:

																sys.stdout.write('.')

								print()

								print()

if	__name__	==	'__main__':

				multiprocessing.freeze_support()

				test()

An	example	showing	how	to	use	queues	to	feed	tasks	to	a	collection
of	worker	processes	and	collect	the	results:

import	time

import	random

from	multiprocessing	import	Process,	Queue,	current_process

#

#	Function	run	by	worker	processes

#

def	worker(input,	output):

				for	func,	args	in	iter(input.get,	'STOP'):

								result	=	calculate(func,	args)

								output.put(result)

#

#	Function	used	to	calculate	result

#

def	calculate(func,	args):

				result	=	func(*args)

				return	'%s	says	that	%s%s	=	%s'	%	\

								(current_process().name,	func.__name__,	args

#

#	Functions	referenced	by	tasks

#

def	mul(a,	b):

				time.sleep(0.5*random.random())

				return	a	*	b

def	plus(a,	b):

				time.sleep(0.5*random.random())

				return	a	+	b

#

#

#

def	test():

				NUMBER_OF_PROCESSES	=	4

				TASKS1	=	[(mul,	(i,	7))	for	i	in	range(20)]

				TASKS2	=	[(plus,	(i,	8))	for	i	in	range(10)]

				#	Create	queues

				task_queue	=	Queue()

				done_queue	=	Queue()

				#	Submit	tasks

				for	task	in	TASKS1:

								task_queue.put(task)

				#	Start	worker	processes

				for	i	in	range(NUMBER_OF_PROCESSES):

								Process(target=worker,	args=(task_queue,	done_queue

				#	Get	and	print	results

				print('Unordered	results:')

				for	i	in	range(len(TASKS1)):

								print('\t',	done_queue.get())

				#	Add	more	tasks	using	`put()`

				for	task	in	TASKS2:

								task_queue.put(task)

				#	Get	and	print	some	more	results

				for	i	in	range(len(TASKS2)):

								print('\t',	done_queue.get())

				#	Tell	child	processes	to	stop

				for	i	in	range(NUMBER_OF_PROCESSES):

								task_queue.put('STOP')

if	__name__	==	'__main__':

				freeze_support()

				test()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.3.	The	concurrent	package

Currently,	there	is	only	one	module	in	this	package:

concurrent.futures	–	Launching	parallel	tasks

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.4.	concurrent.futures	—
Launching	parallel	tasks
New	in	version	3.2.

Source	 code:	 Lib/concurrent/futures/thread.py	 and
Lib/concurrent/futures/process.py

The	 concurrent.futures	 module	 provides	 a	 high-level	 interface
for	asynchronously	executing	callables.

The	 asynchronous	 execution	 can	 be	 performed	 with	 threads,	 using
ThreadPoolExecutor,	 or	 separate	 processes,	 using
ProcessPoolExecutor.	Both	 implement	 the	same	 interface,	which
is	defined	by	the	abstract	Executor	class.

http://hg.python.org/cpython/file/3.4/Lib/concurrent/futures/thread.py
http://hg.python.org/cpython/file/3.4/Lib/concurrent/futures/process.py

17.4.1.	Executor	Objects

class	concurrent.futures.Executor
An	 abstract	 class	 that	 provides	 methods	 to	 execute	 calls
asynchronously.	 It	 should	 not	 be	 used	 directly,	 but	 through	 its
concrete	subclasses.

submit(fn,	*args,	**kwargs)
Schedules	 the	 callable,	 fn,	 to	 be	 executed	 as	 fn(*args
**kwargs)	and	returns	a	Future	object	representing	the
execution	of	the	callable.

with	ThreadPoolExecutor(max_workers=1)	as	executor

				future	=	executor.submit(pow,	323,	1235)

				print(future.result())

map(func,	*iterables,	timeout=None)
Equivalent	 to	 map(func,	 *iterables)	 except	 func	 is
executed	asynchronously	and	several	calls	to	func	may	be
made	 concurrently.	 The	 returned	 iterator	 raises	 a
TimeoutError	 if	 __next__()	 is	 called	 and	 the	 result
isn’t	available	after	timeout	seconds	from	the	original	call	to
Executor.map().	 timeout	 can	 be	 an	 int	 or	 a	 float.	 If
timeout	is	not	specified	or	None,	there	is	no	limit	to	the	wait
time.	 If	a	call	 raises	an	exception,	 then	 that	exception	will
be	raised	when	its	value	is	retrieved	from	the	iterator.

shutdown(wait=True)
Signal	the	executor	that	it	should	free	any	resources	that	it
is	 using	 when	 the	 currently	 pending	 futures	 are	 done

executing.	 Calls	 to	 Executor.submit()	 and
Executor.map()	 made	 after	 shutdown	 will	 raise
RuntimeError.

If	wait	is	True	then	this	method	will	not	return	until	all	the
pending	 futures	 are	 done	 executing	 and	 the	 resources
associated	 with	 the	 executor	 have	 been	 freed.	 If	wait	 is
False	 then	 this	 method	 will	 return	 immediately	 and	 the
resources	associated	with	the	executor	will	be	freed	when
all	pending	 futures	are	done	executing.	Regardless	of	 the
value	of	wait,	the	entire	Python	program	will	not	exit	until	all
pending	futures	are	done	executing.

You	 can	 avoid	 having	 to	 call	 this	method	 explicitly	 if	 you
use	 the	 with	 statement,	 which	 will	 shutdown	 the
Executor	 (waiting	 as	 if	 Executor.shutdown()	 were
called	with	wait	set	to	True):

import	shutil

with	ThreadPoolExecutor(max_workers=4)	as	e:

				e.submit(shutil.copy,	'src1.txt',	'dest1.txt'

				e.submit(shutil.copy,	'src2.txt',	'dest2.txt'

				e.submit(shutil.copy,	'src3.txt',	'dest3.txt'

				e.submit(shutil.copy,	'src3.txt',	'dest4.txt'

17.4.2.	ThreadPoolExecutor

ThreadPoolExecutor	 is	a	Executor	subclass	that	uses	a	pool	of
threads	to	execute	calls	asynchronously.

Deadlocks	 can	 occur	 when	 the	 callable	 associated	 with	 a	 Future
waits	on	the	results	of	another	Future.	For	example:

import	time

def	wait_on_b():

				time.sleep(5)

				print(b.result())	#	b	will	never	complete	because	it	is	waiting	on	a.

				return	5

def	wait_on_a():

				time.sleep(5)

				print(a.result())	#	a	will	never	complete	because	it	is	waiting	on	b.

				return	6

executor	=	ThreadPoolExecutor(max_workers=2)

a	=	executor.submit(wait_on_b)

b	=	executor.submit(wait_on_a)

And:

def	wait_on_future():

				f	=	executor.submit(pow,	5,	2)

				#	This	will	never	complete	because	there	is	only	one	worker	thread	and

				#	it	is	executing	this	function.

				print(f.result())

executor	=	ThreadPoolExecutor(max_workers=1)

executor.submit(wait_on_future)

class
concurrent.futures.ThreadPoolExecutor(max_workers)

An	Executor	subclass	 that	uses	a	pool	of	at	most	max_workers
threads	to	execute	calls	asynchronously.

17.4.2.1.	ThreadPoolExecutor	Example

import	concurrent.futures

import	urllib.request

URLS	=	['http://www.foxnews.com/',

								'http://www.cnn.com/',

								'http://europe.wsj.com/',

								'http://www.bbc.co.uk/',

								'http://some-made-up-domain.com/']

#	Retrieve	a	single	page	and	report	the	url	and	contents

def	load_url(url,	timeout):

				conn	=	urllib.request.urlopen(url,	timeout=timeout

				return	conn.readall()

#	We	can	use	a	with	statement	to	ensure	threads	are	cleaned	up	promptly

with	concurrent.futures.ThreadPoolExecutor(max_workers

				#	Start	the	load	operations	and	mark	each	future	with	its	URL

				future_to_url	=	{executor.submit(load_url,	url,	

				for	future	in	concurrent.futures.as_completed(future_to_url

								url	=	future_to_url[future]

								try:

												data	=	future.result()

								except	Exception	as	exc:

												print('%r	generated	an	exception:	%s'	%	

								else:

												print('%r	page	is	%d	bytes'	%	(url,	len(

17.4.3.	ProcessPoolExecutor

The	 ProcessPoolExecutor	 class	 is	 an	 Executor	 subclass	 that
uses	 a	 pool	 of	 processes	 to	 execute	 calls	 asynchronously.
ProcessPoolExecutor	 uses	 the	 multiprocessing	 module,
which	allows	it	to	side-step	the	Global	Interpreter	Lock	but	also	means
that	only	picklable	objects	can	be	executed	and	returned.

The	__main__	module	must	be	 importable	by	worker	subprocesses.
This	 means	 that	 ProcessPoolExecutor	 will	 not	 work	 in	 the
interactive	interpreter.

Calling	Executor	or	Future	methods	from	a	callable	submitted	to	a
ProcessPoolExecutor	will	result	in	deadlock.

class
concurrent.futures.ProcessPoolExecutor(max_workers=None

An	Executor	subclass	that	executes	calls	asynchronously	using	a
pool	of	at	most	max_workers	processes.	 If	max_workers	 is	None
or	 not	 given,	 it	 will	 default	 to	 the	 number	 of	 processors	 on	 the
machine.

Changed	 in	 version	 3.3:	 When	 one	 of	 the	 worker	 processes
terminates	abruptly,	a	BrokenProcessPool	 error	 is	 now	 raised.
Previously,	 behaviour	 was	 undefined	 but	 operations	 on	 the
executor	or	its	futures	would	often	freeze	or	deadlock.

17.4.3.1.	ProcessPoolExecutor	Example

import	concurrent.futures

import	math

PRIMES	=	[

				112272535095293,

				112582705942171,

				112272535095293,

				115280095190773,

				115797848077099,

				1099726899285419]

def	is_prime(n):

				if	n	%	2	==	0:

								return	False

				sqrt_n	=	int(math.floor(math.sqrt(n)))

				for	i	in	range(3,	sqrt_n	+	1,	2):

								if	n	%	i	==	0:

												return	False

				return	True

def	main():

				with	concurrent.futures.ProcessPoolExecutor()	as

								for	number,	prime	in	zip(PRIMES,	executor.map

												print('%d	is	prime:	%s'	%	(number,	prime

if	__name__	==	'__main__':

				main()

17.4.4.	Future	Objects

The	 Future	 class	 encapsulates	 the	 asynchronous	 execution	 of	 a
callable.	Future	instances	are	created	by	Executor.submit().

class	concurrent.futures.Future
Encapsulates	 the	 asynchronous	 execution	 of	 a	 callable.	 Future
instances	are	created	by	Executor.submit()	and	should	not	be
created	directly	except	for	testing.

cancel()
Attempt	 to	 cancel	 the	 call.	 If	 the	 call	 is	 currently	 being
executed	 and	 cannot	 be	 cancelled	 then	 the	 method	 will
return	False,	otherwise	the	call	will	be	cancelled	and	the
method	will	return	True.

cancelled()
Return	True	if	the	call	was	successfully	cancelled.

running()
Return	 True	 if	 the	 call	 is	 currently	 being	 executed	 and
cannot	be	cancelled.

done()
Return	 True	 if	 the	 call	 was	 successfully	 cancelled	 or
finished	running.

result(timeout=None)
Return	the	value	returned	by	the	call.	 If	 the	call	hasn’t	yet
completed	 then	 this	 method	 will	 wait	 up	 to	 timeout
seconds.	 If	 the	 call	 hasn’t	 completed	 in	 timeout	 seconds,

then	a	TimeoutError	will	be	raised.	timeout	can	be	an	int
or	float.	If	timeout	is	not	specified	or	None,	there	is	no	limit
to	the	wait	time.

If	 the	 future	 is	 cancelled	 before	 completing	 then
CancelledError	will	be	raised.

If	the	call	raised,	this	method	will	raise	the	same	exception.

exception(timeout=None)
Return	the	exception	raised	by	the	call.	If	the	call	hasn’t	yet
completed	 then	 this	 method	 will	 wait	 up	 to	 timeout
seconds.	 If	 the	 call	 hasn’t	 completed	 in	 timeout	 seconds,
then	a	TimeoutError	will	be	raised.	timeout	can	be	an	int
or	float.	If	timeout	is	not	specified	or	None,	there	is	no	limit
to	the	wait	time.

If	 the	 future	 is	 cancelled	 before	 completing	 then
CancelledError	will	be	raised.

If	the	call	completed	without	raising,	None	is	returned.

add_done_callback(fn)
Attaches	the	callable	fn	to	the	future.	fn	will	be	called,	with
the	 future	 as	 its	 only	 argument,	 when	 the	 future	 is
cancelled	or	finishes	running.

Added	 callables	 are	 called	 in	 the	 order	 that	 they	 were
added	and	are	always	called	 in	a	 thread	belonging	 to	 the
process	 that	 added	 them.	 If	 the	 callable	 raises	 a
Exception	subclass,	 it	will	be	 logged	and	 ignored.	 If	 the
callable	 raises	a	BaseException	subclass,	 the	behavior
is	undefined.

If	 the	 future	 has	 already	 completed	 or	 been	 cancelled,	 fn
will	be	called	immediately.

The	following	Future	methods	are	meant	for	use	in	unit	tests	and
Executor	implementations.

set_running_or_notify_cancel()
This	 method	 should	 only	 be	 called	 by	 Executor

implementations	before	executing	the	work	associated	with
the	Future	and	by	unit	tests.

If	 the	 method	 returns	 False	 then	 the	 Future	 was
cancelled,	 i.e.	 Future.cancel()	 was	 called	 and
returned	 True.	 Any	 threads	 waiting	 on	 the	 Future

completing	 (i.e.	 through	 as_completed()	 or	 wait())
will	be	woken	up.

If	 the	 method	 returns	 True	 then	 the	 Future	 was	 not
cancelled	and	has	been	put	in	the	running	state,	i.e.	calls	to
Future.running()	will	return	True.

This	method	can	only	be	called	once	and	cannot	be	called
after	 Future.set_result()	 or
Future.set_exception()	have	been	called.

set_result(result)
Sets	the	result	of	the	work	associated	with	the	Future	to
result.

This	 method	 should	 only	 be	 used	 by	 Executor

implementations	and	unit	tests.

set_exception(exception)

Sets	the	result	of	the	work	associated	with	the	Future	to
the	Exception	exception.

This	 method	 should	 only	 be	 used	 by	 Executor

implementations	and	unit	tests.

17.4.5.	Module	Functions

concurrent.futures.wait(fs,	timeout=None,
return_when=ALL_COMPLETED)

Wait	 for	 the	 Future	 instances	 (possibly	 created	 by	 different
Executor	instances)	given	by	fs	to	complete.	Returns	a	named	2-
tuple	of	sets.	The	first	set,	named	done,	contains	 the	futures	 that
completed	(finished	or	were	cancelled)	before	the	wait	completed.
The	second	set,	named	not_done,	contains	uncompleted	futures.

timeout	can	be	used	to	control	the	maximum	number	of	seconds	to
wait	before	returning.	timeout	can	be	an	int	or	float.	If	timeout	is	not
specified	or	None,	there	is	no	limit	to	the	wait	time.

return_when	indicates	when	this	function	should	return.	It	must	be
one	of	the	following	constants:

Constant Description

FIRST_COMPLETED
The	function	will	return	when	any
future	finishes	or	is	cancelled.

FIRST_EXCEPTION

The	function	will	return	when	any
future	finishes	by	raising	an
exception.	If	no	future	raises	an
exception	then	it	is	equivalent	to
ALL_COMPLETED.

ALL_COMPLETED
The	function	will	return	when	all
futures	finish	or	are	cancelled.

concurrent.futures.as_completed(fs,	timeout=None)
Returns	an	iterator	over	the	Future	instances	(possibly	created	by
different	 Executor	 instances)	 given	 by	 fs	 that	 yields	 futures	 as

they	complete	(finished	or	were	cancelled).	Any	futures	given	by	fs
that	 are	 duplicated	 will	 be	 returned	 once.	 Any	 futures	 that
completed	before	as_completed()	 is	called	will	be	yielded	first.
The	 returned	 iterator	 raises	a	 TimeoutError	 if	 __next__()	 is
called	and	the	result	isn’t	available	after	timeout	seconds	from	the
original	call	to	as_completed().	timeout	can	be	an	int	or	float.	If
timeout	is	not	specified	or	None,	there	is	no	limit	to	the	wait	time.

See	also:

PEP	3148	–	futures	-	execute	computations	asynchronously
The	 proposal	 which	 described	 this	 feature	 for	 inclusion	 in	 the
Python	standard	library.

http://www.python.org/dev/peps/pep-3148

17.4.6.	Exception	classes

exception	concurrent.futures.BrokenProcessPool
Derived	from	RuntimeError,	this	exception	class	is	raised	when
one	of	 the	workers	of	a	ProcessPoolExecutor	has	 terminated
in	 a	 non-clean	 fashion	 (for	 example,	 if	 it	 was	 killed	 from	 the
outside).

New	in	version	3.3.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.5.	subprocess	—	Subprocess
management
The	 subprocess	 module	 allows	 you	 to	 spawn	 new	 processes,
connect	to	their	input/output/error	pipes,	and	obtain	their	return	codes.
This	module	intends	to	replace	several	older	modules	and	functions:

os.system

os.spawn*

Information	 about	 how	 the	 subprocess	 module	 can	 be	 used	 to
replace	 these	 modules	 and	 functions	 can	 be	 found	 in	 the	 following
sections.

See	also: 	PEP	324	–	PEP	proposing	the	subprocess	module

http://www.python.org/dev/peps/pep-0324

17.5.1.	Using	the	subprocess	Module

The	 recommended	approach	 to	 invoking	 subprocesses	 is	 to	 use	 the
following	convenience	functions	for	all	use	cases	they	can	handle.	For
more	 advanced	 use	 cases,	 the	 underlying	 Popen	 interface	 can	 be
used	directly.

subprocess.call(args,	*,	stdin=None,	stdout=None,	stderr=None,
shell=False,	timeout=None)

Run	 the	 command	 described	 by	 args.	 Wait	 for	 command	 to
complete,	then	return	the	returncode	attribute.

The	arguments	shown	above	are	merely	 the	most	common	ones,
described	below	in	Frequently	Used	Arguments	 (hence	the	use	of
keyword-only	 notation	 in	 the	 abbreviated	 signature).	 The	 full
function	 signature	 is	 largely	 the	 same	 as	 that	 of	 the	 Popen
constructor	-	this	function	passes	all	supplied	arguments	other	than
timeout	directly	through	to	that	interface.

The	timeout	argument	is	passed	to	Popen.wait().	If	the	timeout
expires,	 the	child	process	will	be	killed	and	then	waited	for	again.
The	 TimeoutExpired	 exception	will	 be	 re-raised	 after	 the	 child
process	has	terminated.

Examples:

>>>	subprocess.call(["ls",	"-l"])

0

>>>	subprocess.call("exit	1",	shell=True)

1

Warning: 	Invoking	the	system	shell	with	shell=True	can	be	a
security	hazard	if	combined	with	untrusted	input.	See	the	warning
under	Frequently	Used	Arguments	for	details.

Note: 	 Do	 not	 use	 stdout=PIPE	 or	 stderr=PIPE	 with	 this
function.	As	the	pipes	are	not	being	read	in	the	current	process,
the	 child	 process	may	 block	 if	 it	 generates	 enough	 output	 to	 a
pipe	to	fill	up	the	OS	pipe	buffer.

Changed	in	version	3.3:	timeout	was	added.

subprocess.check_call(args,	*,	stdin=None,	stdout=None,
stderr=None,	shell=False,	timeout=None)

Run	command	with	arguments.	Wait	 for	command	 to	complete.	 If
the	 return	 code	 was	 zero	 then	 return,	 otherwise	 raise
CalledProcessError.	 The	 CalledProcessError	 object	 will
have	the	return	code	in	the	returncode	attribute.

The	arguments	shown	above	are	merely	 the	most	common	ones,
described	below	in	Frequently	Used	Arguments	 (hence	the	use	of
keyword-only	 notation	 in	 the	 abbreviated	 signature).	 The	 full
function	 signature	 is	 largely	 the	 same	 as	 that	 of	 the	 Popen
constructor	-	this	function	passes	all	supplied	arguments	other	than
timeout	directly	through	to	that	interface.

The	timeout	argument	is	passed	to	Popen.wait().	If	the	timeout
expires,	 the	child	process	will	be	killed	and	then	waited	for	again.
The	 TimeoutExpired	 exception	will	 be	 re-raised	 after	 the	 child
process	has	terminated.

Examples:

>>>	subprocess.check_call(["ls",	"-l"])

0

>>>	subprocess.check_call("exit	1",	shell=True)

Traceback	(most	recent	call	last):

			...

subprocess.CalledProcessError:	Command	'exit	1'	returned	non-zero	exit	status	1

Warning: 	Invoking	the	system	shell	with	shell=True	can	be	a
security	hazard	if	combined	with	untrusted	input.	See	the	warning
under	Frequently	Used	Arguments	for	details.

Note: 	 Do	 not	 use	 stdout=PIPE	 or	 stderr=PIPE	 with	 this
function.	As	the	pipes	are	not	being	read	in	the	current	process,
the	 child	 process	may	 block	 if	 it	 generates	 enough	 output	 to	 a
pipe	to	fill	up	the	OS	pipe	buffer.

Changed	in	version	3.3:	timeout	was	added.

subprocess.check_output(args,	*,	input=None,	stdin=None,
stderr=None,	shell=False,	universal_newlines=False,	timeout=None)

Run	command	with	arguments	and	return	its	output.

If	 the	 return	 code	 was	 non-zero	 it	 raises	 a
CalledProcessError.	 The	 CalledProcessError	 object	 will
have	the	return	code	in	the	returncode	attribute	and	any	output
in	the	output	attribute.

The	arguments	shown	above	are	merely	 the	most	common	ones,
described	below	in	Frequently	Used	Arguments	 (hence	the	use	of
keyword-only	 notation	 in	 the	 abbreviated	 signature).	 The	 full
function	 signature	 is	 largely	 the	 same	 as	 that	 of	 the	 Popen
constructor	 -	 this	 functions	 passes	 all	 supplied	 arguments	 other

than	input	and	timeout	directly	through	to	that	interface.	In	addition,
stdout	 is	not	permitted	as	an	argument,	as	 it	 is	used	 internally	 to
collect	the	output	from	the	subprocess.

The	timeout	argument	is	passed	to	Popen.wait().	If	the	timeout
expires,	 the	child	process	will	be	killed	and	then	waited	for	again.
The	 TimeoutExpired	 exception	will	 be	 re-raised	 after	 the	 child
process	has	terminated.

The	 input	 argument	 is	 passed	 to	 Popen.communicate()	 and
thus	to	the	subprocess’s	stdin.	If	used	it	must	be	a	byte	sequence,
or	 a	 string	 if	 universal_newlines=True.	 When	 used,	 the
internal	Popen	object	 is	automatically	created	with	stdin=PIPE,
and	the	stdin	argument	may	not	be	used	as	well.

Examples:

>>>	subprocess.check_output(["echo",	"Hello	World!"

b'Hello	World!\n'

>>>	subprocess.check_output(["echo",	"Hello	World!"

'Hello	World!\n'

>>>	subprocess.check_output(["sed",	"-e",	"s/foo/bar/"

...																									input=b"when	in	the	course	of	fooman	events

b'when	in	the	course	of	barman	events\n'

>>>	subprocess.check_output("exit	1",	shell=True)

Traceback	(most	recent	call	last):

			...

subprocess.CalledProcessError:	Command	'exit	1'	returned	non-zero	exit	status	1

By	default,	this	function	will	return	the	data	as	encoded	bytes.	The
actual	encoding	of	 the	output	data	may	depend	on	 the	command

being	invoked,	so	the	decoding	to	text	will	often	need	to	be	handled
at	the	application	level.

This	behaviour	may	be	overridden	by	setting	universal_newlines	to
True	as	described	below	in	Frequently	Used	Arguments.

To	 also	 capture	 standard	 error	 in	 the	 result,	 use
stderr=subprocess.STDOUT:

>>>	subprocess.check_output(

...					"ls	non_existent_file;	exit	0",

...					stderr=subprocess.STDOUT,

...					shell=True)

'ls:	non_existent_file:	No	such	file	or	directory\n'

Warning: 	Invoking	the	system	shell	with	shell=True	can	be	a
security	hazard	if	combined	with	untrusted	input.	See	the	warning
under	Frequently	Used	Arguments	for	details.

Note: 	Do	not	use	stderr=PIPE	with	this	function.	As	the	pipe
is	not	 being	 read	 in	 the	 current	 process,	 the	 child	 process	may
block	 if	 it	 generates	enough	output	 to	 the	pipe	 to	 fill	 up	 the	OS
pipe	buffer.

New	in	version	3.1.

Changed	in	version	3.3:	timeout	was	added.

Changed	in	version	3.4:	input	was	added.

subprocess.DEVNULL

Special	 value	 that	 can	 be	 used	 as	 the	 stdin,	 stdout	 or	 stderr
argument	to	Popen	and	indicates	that	the	special	file	os.devnull

will	be	used.

New	in	version	3.3.

subprocess.PIPE

Special	 value	 that	 can	 be	 used	 as	 the	 stdin,	 stdout	 or	 stderr
argument	 to	 Popen	 and	 indicates	 that	 a	 pipe	 to	 the	 standard
stream	should	be	opened.

subprocess.STDOUT

Special	 value	 that	can	be	used	as	 the	stderr	argument	 to	Popen
and	 indicates	 that	standard	error	should	go	 into	 the	same	handle
as	standard	output.

exception	subprocess.SubprocessError
Base	class	for	all	other	exceptions	from	this	module.

New	in	version	3.3.

exception	subprocess.TimeoutExpired
Subclass	 of	 SubprocessError,	 raised	 when	 a	 timeout	 expires
while	waiting	for	a	child	process.

cmd

Command	that	was	used	to	spawn	the	child	process.

timeout

Timeout	in	seconds.

output

Output	 of	 the	 child	 process	 if	 this	 exception	 is	 raised	 by
check_output().	Otherwise,	None.

New	in	version	3.3.

exception	subprocess.CalledProcessError
Subclass	 of	 SubprocessError,	 raised	 when	 a	 process	 run	 by
check_call()	 or	 check_output()	 returns	 a	 non-zero	 exit
status.

returncode

Exit	status	of	the	child	process.

cmd

Command	that	was	used	to	spawn	the	child	process.

output

Output	 of	 the	 child	 process	 if	 this	 exception	 is	 raised	 by
check_output().	Otherwise,	None.

17.5.1.1.	Frequently	Used	Arguments

To	support	 a	wide	 variety	 of	 use	 cases,	 the	 Popen	 constructor	 (and
the	 convenience	 functions)	 accept	 a	 large	 number	 of	 optional
arguments.	For	most	typical	use	cases,	many	of	these	arguments	can
be	 safely	 left	 at	 their	 default	 values.	 The	 arguments	 that	 are	 most
commonly	needed	are:

args	is	required	for	all	calls	and	should	be	a	string,	or	a	sequence
of	 program	 arguments.	 Providing	 a	 sequence	 of	 arguments	 is
generally	 preferred,	 as	 it	 allows	 the	module	 to	 take	 care	 of	 any
required	 escaping	 and	 quoting	 of	 arguments	 (e.g.	 to	 permit
spaces	in	file	names).	If	passing	a	single	string,	either	shell	must
be	 True	 (see	 below)	 or	 else	 the	 string	 must	 simply	 name	 the
program	to	be	executed	without	specifying	any	arguments.

stdin,	stdout	and	stderr	specify	 the	executed	program’s	standard

input,	 standard	 output	 and	 standard	 error	 file	 handles,
respectively.	 Valid	 values	 are	 PIPE,	 DEVNULL,	 an	 existing	 file
descriptor	 (a	 positive	 integer),	 an	 existing	 file	 object,	 and	 None.
PIPE	 indicates	 that	 a	 new	 pipe	 to	 the	 child	 should	 be	 created.
DEVNULL	indicates	that	the	special	file	os.devnull	will	be	used.
With	 the	 default	 settings	 of	 None,	 no	 redirection	 will	 occur;	 the
child’s	 file	handles	will	be	 inherited	 from	 the	parent.	Additionally,
stderr	can	be	STDOUT,	which	 indicates	 that	 the	stderr	data	 from
the	child	process	should	be	captured	into	the	same	file	handle	as
for	stdout.

If	universal_newlines	 is	 False	 the	 file	 objects	stdin,	stdout	 and
stderr	 will	 be	 opened	 as	 binary	 streams,	 and	 no	 line	 ending
conversion	is	done.

If	universal_newlines	is	True,	these	file	objects	will	be	opened	as
text	 streams	 in	 universal	 newlines	 mode	 using	 the	 encoding
returned	 by	 locale.getpreferredencoding(False).	 For
stdin,	line	ending	characters	'\n'	in	the	input	will	be	converted	to
the	default	line	separator	os.linesep.	For	stdout	and	stderr,	all
line	 endings	 in	 the	 output	 will	 be	 converted	 to	 '\n'.	 For	 more
information	 see	 the	 documentation	 of	 the	 io.TextIOWrapper
class	when	the	newline	argument	to	its	constructor	is	None.

Note: 	The	newlines	attribute	of	the	file	objects	Popen.stdin,
Popen.stdout	and	Popen.stderr	are	not	updated	by	the
Popen.communicate()	method.

If	shell	is	True,	the	specified	command	will	be	executed	through
the	shell.	This	can	be	useful	if	you	are	using	Python	primarily	for
the	 enhanced	 control	 flow	 it	 offers	 over	most	 system	 shells	 and

still	want	convenient	access	to	other	shell	 features	such	as	shell
pipes,	 filename	 wildcards,	 environment	 variable	 expansion,	 and
expansion	 of	 ~	 to	 a	 user’s	 home	 directory.	 However,	 note	 that
Python	itself	offers	implementations	of	many	shell-like	features	(in
particular,	 glob,	 fnmatch,	 os.walk(),
os.path.expandvars(),	 os.path.expanduser(),	 and
shutil).

Changed	 in	 version	 3.3:	When	universal_newlines	 is	 True,	 the
class	 uses	 the	 encoding
locale.getpreferredencoding(False)	 instead	 of
locale.getpreferredencoding().	 See	 the
io.TextIOWrapper	class	for	more	information	on	this	change.

Warning: 	Executing	shell	commands	that	incorporate
unsanitized	input	from	an	untrusted	source	makes	a	program
vulnerable	to	shell	injection,	a	serious	security	flaw	which	can
result	in	arbitrary	command	execution.	For	this	reason,	the	use
of	shell=True	is	strongly	discouraged	in	cases	where	the
command	string	is	constructed	from	external	input:

>>>	from	subprocess	import	call

>>>	filename	=	input("What	file	would	you	like	to	display?

What	file	would	you	like	to	display?

non_existent;	rm	-rf	/	#

>>>	call("cat	"	+	filename,	shell=True)	#	Uh-oh.	This	will	end	badly...

shell=False	 disables	 all	 shell	 based	 features,	 but	 does	 not
suffer	 from	 this	 vulnerability;	 see	 the	 Note	 in	 the	 Popen
constructor	 documentation	 for	 helpful	 hints	 in	 getting
shell=False	to	work.

http://en.wikipedia.org/wiki/Shell_injection#Shell_injection

When	 using	 shell=True,	 shlex.quote()	 can	 be	 used	 to
properly	escape	whitespace	and	shell	metacharacters	in	strings
that	are	going	to	be	used	to	construct	shell	commands.

These	 options,	 along	 with	 all	 of	 the	 other	 options,	 are	 described	 in
more	detail	in	the	Popen	constructor	documentation.

17.5.1.2.	Popen	Constructor

The	 underlying	 process	 creation	 and	management	 in	 this	module	 is
handled	 by	 the	 Popen	 class.	 It	 offers	 a	 lot	 of	 flexibility	 so	 that
developers	are	able	to	handle	the	less	common	cases	not	covered	by
the	convenience	functions.

class	subprocess.Popen(args,	bufsize=-1,	executable=None,
stdin=None,	stdout=None,	stderr=None,	preexec_fn=None,
close_fds=True,	shell=False,	cwd=None,	env=None,
universal_newlines=False,	startupinfo=None,	creationflags=0,
restore_signals=True,	start_new_session=False,	pass_fds=())

Execute	a	child	program	in	a	new	process.	On	Unix,	the	class	uses
os.execvp()-like	 behavior	 to	 execute	 the	 child	 program.	 On
Windows,	 the	 class	 uses	 the	 Windows	 CreateProcess()

function.	The	arguments	to	Popen	are	as	follows.

args	should	be	a	sequence	of	program	arguments	or	else	a	single
string.	By	default,	the	program	to	execute	is	the	first	item	in	args	if
args	is	a	sequence.	If	args	is	a	string,	the	interpretation	is	platform-
dependent	 and	 described	 below.	 See	 the	 shell	 and	 executable
arguments	 for	 additional	 differences	 from	 the	 default	 behavior.
Unless	 otherwise	 stated,	 it	 is	 recommended	 to	 pass	 args	 as	 a
sequence.

On	Unix,	if	args	is	a	string,	the	string	is	interpreted	as	the	name	or
path	of	the	program	to	execute.	However,	this	can	only	be	done	if
not	passing	arguments	to	the	program.

Note: 	 shlex.split()	 can	 be	 useful	 when	 determining	 the
correct	tokenization	for	args,	especially	in	complex	cases:

>>>	import	shlex,	subprocess

>>>	command_line	=	input()

/bin/vikings	-input	eggs.txt	-output	"spam	spam.txt"	-cmd	"echo	'$MONEY'"

>>>	args	=	shlex.split(command_line)

>>>	print(args)

['/bin/vikings',	'-input',	'eggs.txt',	'-output',	'spam	spam.txt',	'-cmd',	"echo	'$MONEY'"]

>>>	p	=	subprocess.Popen(args)	#	Success!

Note	 in	 particular	 that	 options	 (such	 as	 -input)	 and	 arguments
(such	as	eggs.txt)	 that	are	separated	by	whitespace	 in	 the	shell
go	 in	separate	 list	elements,	while	arguments	 that	need	quoting
or	backslash	escaping	when	used	in	the	shell	(such	as	filenames
containing	 spaces	 or	 the	 echo	 command	 shown	 above)	 are
single	list	elements.

On	Windows,	if	args	is	a	sequence,	it	will	be	converted	to	a	string
in	a	manner	described	 in	Converting	an	argument	 sequence	 to	a
string	 on	 Windows.	 This	 is	 because	 the	 underlying
CreateProcess()	operates	on	strings.

The	shell	argument	 (which	defaults	 to	False)	specifies	whether	 to
use	 the	 shell	 as	 the	 program	 to	 execute.	 If	 shell	 is	 True,	 it	 is
recommended	to	pass	args	as	a	string	rather	than	as	a	sequence.

On	Unix	with	shell=True,	the	shell	defaults	to	/bin/sh.	If	args
is	a	string,	the	string	specifies	the	command	to	execute	through	the

shell.	 This	means	 that	 the	 string	must	 be	 formatted	 exactly	 as	 it
would	 be	 when	 typed	 at	 the	 shell	 prompt.	 This	 includes,	 for
example,	quoting	or	backslash	escaping	 filenames	with	spaces	 in
them.	 If	args	 is	a	sequence,	 the	 first	 item	specifies	 the	command
string,	 and	 any	 additional	 items	 will	 be	 treated	 as	 additional
arguments	 to	 the	 shell	 itself.	 That	 is	 to	 say,	 Popen	 does	 the
equivalent	of:

Popen(['/bin/sh',	'-c',	args[0],	args[1],	...])

On	 Windows	 with	 shell=True,	 the	 COMSPEC	 environment
variable	 specifies	 the	 default	 shell.	 The	 only	 time	 you	 need	 to
specify	shell=True	on	Windows	is	when	the	command	you	wish
to	execute	is	built	into	the	shell	(e.g.	dir	or	copy).	You	do	not	need
shell=True	to	run	a	batch	file	or	console-based	executable.

Warning: 	 Passing	 shell=True	 can	 be	 a	 security	 hazard	 if
combined	with	untrusted	input.	See	the	warning	under	Frequently
Used	Arguments	for	details.

bufsize	 will	 be	 supplied	 as	 the	 corresponding	 argument	 to	 the
open()	 function	 when	 creating	 the	 stdin/stdout/stderr	 pipe	 file
objects:	0	means	unbuffered	 (read	and	write	are	one	system	call
and	 can	 return	 short),	 1	 means	 line	 buffered,	 any	 other	 positive
value	means	 use	 a	 buffer	 of	 approximately	 that	 size.	 A	 negative
bufsize	 (the	 default)	 means	 the	 system	 default	 of
io.DEFAULT_BUFFER_SIZE	will	be	used.

Changed	 in	 version	 3.3.1:	 bufsize	 now	 defaults	 to	 -1	 to	 enable
buffering	by	default	to	match	the	behavior	that	most	code	expects.
In	versions	prior	to	Python	3.2.4	and	3.3.1	it	incorrectly	defaulted	to
0	 which	 was	 unbuffered	 and	 allowed	 short	 reads.	 This	 was

unintentional	and	did	not	match	the	behavior	of	Python	2	as	most
code	expected.

The	 executable	 argument	 specifies	 a	 replacement	 program	 to
execute.	 It	 is	 very	 seldom	 needed.	 When	 shell=False,
executable	 replaces	 the	 program	 to	 execute	 specified	 by	 args.
However,	 the	 original	 args	 is	 still	 passed	 to	 the	 program.	 Most
programs	 treat	 the	 program	 specified	 by	 args	 as	 the	 command
name,	 which	 can	 then	 be	 different	 from	 the	 program	 actually
executed.	On	Unix,	 the	args	name	becomes	the	display	name	for
the	executable	in	utilities	such	as	ps.	If	shell=True,	on	Unix	the
executable	argument	specifies	a	 replacement	shell	 for	 the	default
/bin/sh.

stdin,	stdout	 and	 stderr	 specify	 the	 executed	 program’s	 standard
input,	standard	output	and	standard	error	file	handles,	respectively.
Valid	 values	 are	 PIPE,	 DEVNULL,	 an	 existing	 file	 descriptor	 (a
positive	integer),	an	existing	file	object,	and	None.	PIPE	 indicates
that	a	new	pipe	to	the	child	should	be	created.	DEVNULL	indicates
that	 the	 special	 file	 os.devnull	 will	 be	 used.	 With	 the	 default
settings	of	None,	no	 redirection	will	occur;	 the	child’s	 file	handles
will	 be	 inherited	 from	 the	 parent.	 Additionally,	 stderr	 can	 be
STDOUT,	which	indicates	that	the	stderr	data	from	the	applications
should	be	captured	into	the	same	file	handle	as	for	stdout.

If	preexec_fn	is	set	to	a	callable	object,	this	object	will	be	called	in
the	child	process	just	before	the	child	is	executed.	(Unix	only)

Warning: 	 The	preexec_fn	 parameter	 is	 not	 safe	 to	 use	 in	 the
presence	of	threads	in	your	application.	The	child	process	could
deadlock	before	exec	is	called.	If	you	must	use	it,	keep	it	 trivial!
Minimize	the	number	of	libraries	you	call	into.

Note: 	 If	 you	 need	 to	modify	 the	 environment	 for	 the	 child	 use
the	 env	 parameter	 rather	 than	 doing	 it	 in	 a	 preexec_fn.	 The
start_new_session	parameter	can	take	the	place	of	a	previously
common	use	of	preexec_fn	to	call	os.setsid()	in	the	child.

If	close_fds	 is	 true,	 all	 file	 descriptors	 except	 0,	 1	 and	 2	 will	 be
closed	 before	 the	 child	 process	 is	 executed.	 (Unix	 only).	 The
default	varies	by	platform:	Always	 true	on	Unix.	On	Windows	 it	 is
true	 when	 stdin/stdout/stderr	 are	 None,	 false	 otherwise.	 On
Windows,	 if	close_fds	 is	 true	 then	no	handles	will	be	 inherited	by
the	child	process.	Note	that	on	Windows,	you	cannot	set	close_fds
to	 true	 and	 also	 redirect	 the	 standard	 handles	 by	 setting	 stdin,
stdout	or	stderr.

Changed	 in	 version	 3.2:	 The	 default	 for	 close_fds	 was	 changed
from	False	to	what	is	described	above.

pass_fds	 is	an	optional	sequence	of	 file	descriptors	 to	keep	open
between	 the	 parent	 and	 child.	 Providing	 any	 pass_fds	 forces
close_fds	to	be	True.	(Unix	only)

New	in	version	3.2:	The	pass_fds	parameter	was	added.

If	cwd	 is	not	None,	 the	 function	changes	 the	working	directory	 to
cwd	before	executing	the	child.	In	particular,	 the	function	looks	for
executable	 (or	 for	 the	 first	 item	 in	 args)	 relative	 to	 cwd	 if	 the
executable	path	is	a	relative	path.

If	restore_signals	is	true	(the	default)	all	signals	that	Python	has	set
to	SIG_IGN	are	 restored	 to	SIG_DFL	 in	 the	 child	 process	 before
the	 exec.	 Currently	 this	 includes	 the	 SIGPIPE,	 SIGXFZ	 and
SIGXFSZ	signals.	(Unix	only)

Changed	in	version	3.2:	restore_signals	was	added.

If	start_new_session	is	true	the	setsid()	system	call	will	be	made	in
the	 child	 process	 prior	 to	 the	 execution	 of	 the	 subprocess.	 (Unix
only)

Changed	in	version	3.2:	start_new_session	was	added.

If	 env	 is	 not	 None,	 it	 must	 be	 a	 mapping	 that	 defines	 the
environment	variables	for	the	new	process;	these	are	used	instead
of	 the	 default	 behavior	 of	 inheriting	 the	 current	 process’
environment.

Note: 	 If	 specified,	env	must	provide	any	variables	 required	 for
the	program	to	execute.	On	Windows,	 in	order	 to	run	a	side-by-
side	 assembly	 the	 specified	 env	 must	 include	 a	 valid
SystemRoot.

If	 universal_newlines	 is	 True,	 the	 file	 objects	 stdin,	 stdout	 and
stderr	are	opened	as	text	streams	in	universal	newlines	mode,	as
described	 above	 in	 Frequently	 Used	 Arguments,	 otherwise	 they
are	opened	as	binary	streams.

If	 given,	 startupinfo	 will	 be	 a	 STARTUPINFO	 object,	 which	 is
passed	to	the	underlying	CreateProcess	function.	creationflags,
if	 given,	 can	 be	 CREATE_NEW_CONSOLE	 or
CREATE_NEW_PROCESS_GROUP.	(Windows	only)

Popen	 objects	 are	 supported	 as	 context	managers	 via	 the	 with
statement:	 on	 exit,	 standard	 file	 descriptors	 are	 closed,	 and	 the
process	is	waited	for.

with	Popen(["ifconfig"],	stdout=PIPE)	as	proc:

http://en.wikipedia.org/wiki/Side-by-Side_Assembly

				log.write(proc.stdout.read())

Changed	in	version	3.2:	Added	context	manager	support.

17.5.1.3.	Exceptions

Exceptions	 raised	 in	 the	 child	 process,	 before	 the	 new	program	has
started	 to	 execute,	 will	 be	 re-raised	 in	 the	 parent.	 Additionally,	 the
exception	 object	 will	 have	 one	 extra	 attribute	 called
child_traceback,	 which	 is	 a	 string	 containing	 traceback
information	from	the	child’s	point	of	view.

The	 most	 common	 exception	 raised	 is	 OSError.	 This	 occurs,	 for
example,	 when	 trying	 to	 execute	 a	 non-existent	 file.	 Applications
should	prepare	for	OSError	exceptions.

A	 ValueError	 will	 be	 raised	 if	 Popen	 is	 called	 with	 invalid
arguments.

check_call()	 and	 check_output()	 will	 raise
CalledProcessError	 if	 the	 called	 process	 returns	 a	 non-zero
return	code.

All	of	the	functions	and	methods	that	accept	a	timeout	parameter,	such
as	 call()	 and	 Popen.communicate()	 will	 raise
TimeoutExpired	if	the	timeout	expires	before	the	process	exits.

Exceptions	defined	in	this	module	all	inherit	from	SubprocessError.

New	 in	 version	 3.3:	 The	 SubprocessError	 base	 class	 was
added.

17.5.1.4.	Security

Unlike	some	other	popen	functions,	this	implementation	will	never	call
a	system	shell	implicitly.	This	means	that	all	characters,	including	shell
metacharacters,	can	safely	be	passed	to	child	processes.	Obviously,	if
the	shell	is	invoked	explicitly,	then	it	is	the	application’s	responsibility	to
ensure	 that	 all	 whitespace	 and	 metacharacters	 are	 quoted
appropriately.

17.5.2.	Popen	Objects

Instances	of	the	Popen	class	have	the	following	methods:

Popen.poll()
Check	 if	 child	 process	 has	 terminated.	 Set	 and	 return
returncode	attribute.

Popen.wait(timeout=None)
Wait	 for	 child	 process	 to	 terminate.	 Set	 and	 return	 returncode
attribute.

If	 the	 process	 does	 not	 terminate	 after	 timeout	 seconds,	 raise	 a
TimeoutExpired	exception.	It	is	safe	to	catch	this	exception	and
retry	the	wait.

Note: 	 The	 function	 is	 implemented	 using	 a	 busy	 loop	 (non-
blocking	call	and	short	sleeps).	Use	the	asyncio	module	for	an
asynchronous	 wait:	 see
asyncio.create_subprocess_exec.

Warning: 	This	will	deadlock	when	using	stdout=PIPE	and/or
stderr=PIPE	and	the	child	process	generates	enough	output	to
a	pipe	such	that	it	blocks	waiting	for	the	OS	pipe	buffer	to	accept
more	data.	Use	communicate()	to	avoid	that.

Changed	in	version	3.3:	timeout	was	added.

Deprecated	 since	 version	 3.4:	 Do	 not	 use	 the	 undocumented
endtime	 parameter.	 It	 is	was	 unintentionally	 exposed	 in	 3.3	 but
was	intended	to	be	private	for	internal	use.	Use	timeout	instead.

Popen.communicate(input=None,	timeout=None)
Interact	with	 process:	 Send	 data	 to	 stdin.	 Read	 data	 from	 stdout
and	 stderr,	 until	 end-of-file	 is	 reached.	 Wait	 for	 process	 to
terminate.	The	optional	input	argument	should	be	data	to	be	sent	to
the	child	process,	or	None,	 if	no	data	should	be	sent	 to	 the	child.
The	 type	 of	 input	 must	 be	 bytes	 or,	 if	 universal_newlines	 was
True,	a	string.

communicate()	returns	a	tuple	(stdoutdata,	stderrdata).

Note	that	if	you	want	to	send	data	to	the	process’s	stdin,	you	need
to	 create	 the	 Popen	 object	 with	 stdin=PIPE.	 Similarly,	 to	 get
anything	 other	 than	 None	 in	 the	 result	 tuple,	 you	 need	 to	 give
stdout=PIPE	and/or	stderr=PIPE	too.

If	 the	 process	 does	 not	 terminate	 after	 timeout	 seconds,	 a
TimeoutExpired	 exception	 will	 be	 raised.	 Catching	 this
exception	and	retrying	communication	will	not	lose	any	output.

The	child	process	is	not	killed	if	the	timeout	expires,	so	in	order	to
cleanup	 properly	 a	 well-behaved	 application	 should	 kill	 the	 child
process	and	finish	communication:

proc	=	subprocess.Popen(...)

try:

				outs,	errs	=	proc.communicate(timeout=15)

except	TimeoutExpired:

				proc.kill()

				outs,	errs	=	proc.communicate()

Note: 	The	data	read	 is	buffered	 in	memory,	so	do	not	use	 this
method	if	the	data	size	is	large	or	unlimited.

Changed	in	version	3.3:	timeout	was	added.

Popen.send_signal(signal)
Sends	the	signal	signal	to	the	child.

Note: 	On	Windows,	 SIGTERM	 is	 an	 alias	 for	 terminate().
CTRL_C_EVENT	 and	 CTRL_BREAK_EVENT	 can	 be	 sent	 to
processes	started	with	a	creationflags	parameter	which	 includes
CREATE_NEW_PROCESS_GROUP.

Popen.terminate()
Stop	the	child.	On	Posix	OSs	the	method	sends	SIGTERM	to	the
child.	 On	 Windows	 the	 Win32	 API	 function
TerminateProcess()	is	called	to	stop	the	child.

Popen.kill()
Kills	 the	 child.	 On	 Posix	 OSs	 the	 function	 sends	 SIGKILL	 to	 the
child.	On	Windows	kill()	is	an	alias	for	terminate().

The	following	attributes	are	also	available:

Warning: 	Use	communicate()	rather	than	.stdin.write,
.stdout.read	or	.stderr.read	to	avoid	deadlocks	due	to	any
of	the	other	OS	pipe	buffers	filling	up	and	blocking	the	child	process.

Popen.stdin

If	the	stdin	argument	was	PIPE,	this	attribute	is	a	writeable	stream
object	as	returned	by	open().	If	the	universal_newlines	argument
was	 True,	 the	 stream	 is	 a	 text	 stream,	 otherwise	 it	 is	 a	 byte
stream.	If	the	stdin	argument	was	not	PIPE,	this	attribute	is	None.

Popen.stdout

If	 the	 stdout	 argument	 was	 PIPE,	 this	 attribute	 is	 a	 readable
stream	 object	 as	 returned	 by	 open().	 Reading	 from	 the	 stream
provides	 output	 from	 the	 child	 process.	 If	 the	 universal_newlines
argument	was	True,	the	stream	is	a	text	stream,	otherwise	it	 is	a
byte	stream.	If	the	stdout	argument	was	not	PIPE,	this	attribute	is
None.

Popen.stderr

If	the	stderr	argument	was	PIPE,	this	attribute	is	a	readable	stream
object	as	returned	by	open().	Reading	from	the	stream	provides
error	 output	 from	 the	 child	 process.	 If	 the	 universal_newlines
argument	was	True,	the	stream	is	a	text	stream,	otherwise	it	 is	a
byte	stream.	If	 the	stderr	argument	was	not	PIPE,	this	attribute	is
None.

Popen.pid

The	process	ID	of	the	child	process.

Note	that	if	you	set	the	shell	argument	to	True,	this	is	the	process
ID	of	the	spawned	shell.

Popen.returncode

The	child	return	code,	set	by	poll()	and	wait()	 (and	 indirectly
by	 communicate()).	 A	 None	 value	 indicates	 that	 the	 process
hasn’t	terminated	yet.

A	 negative	 value	 -N	 indicates	 that	 the	 child	 was	 terminated	 by
signal	N	(Unix	only).

17.5.3.	Windows	Popen	Helpers

The	 STARTUPINFO	 class	 and	 following	 constants	 are	 only	 available
on	Windows.

class	subprocess.STARTUPINFO
Partial	 support	 of	 the	Windows	 STARTUPINFO	 structure	 is	 used
for	Popen	creation.

dwFlags

A	 bit	 field	 that	 determines	 whether	 certain	 STARTUPINFO
attributes	are	used	when	the	process	creates	a	window.

si	=	subprocess.STARTUPINFO()

si.dwFlags	=	subprocess.STARTF_USESTDHANDLES	|	

hStdInput

If	dwFlags	 specifies	STARTF_USESTDHANDLES,	 this	attribute
is	 the	 standard	 input	 handle	 for	 the	 process.	 If
STARTF_USESTDHANDLES	 is	 not	 specified,	 the	 default	 for
standard	input	is	the	keyboard	buffer.

hStdOutput

If	dwFlags	 specifies	STARTF_USESTDHANDLES,	 this	attribute
is	 the	 standard	 output	 handle	 for	 the	 process.	Otherwise,	 this
attribute	 is	 ignored	 and	 the	 default	 for	 standard	 output	 is	 the
console	window’s	buffer.

hStdError

If	dwFlags	 specifies	STARTF_USESTDHANDLES,	 this	attribute
is	 the	 standard	 error	 handle	 for	 the	 process.	 Otherwise,	 this

http://msdn.microsoft.com/en-us/library/ms686331(v=vs.85).aspx

attribute	 is	 ignored	 and	 the	 default	 for	 standard	 error	 is	 the
console	window’s	buffer.

wShowWindow

If	dwFlags	 specifies	STARTF_USESHOWWINDOW,	 this	attribute
can	be	any	of	the	values	that	can	be	specified	in	the	nCmdShow
parameter	 for	 the	 ShowWindow	 function,	 except	 for
SW_SHOWDEFAULT.	Otherwise,	this	attribute	is	ignored.

SW_HIDE	is	provided	for	this	attribute.	It	is	used	when	Popen	is
called	with	shell=True.

17.5.3.1.	Constants

The	subprocess	module	exposes	the	following	constants.

subprocess.STD_INPUT_HANDLE

The	standard	input	device.	Initially,	this	is	the	console	input	buffer,
CONIN$.

subprocess.STD_OUTPUT_HANDLE

The	 standard	 output	 device.	 Initially,	 this	 is	 the	 active	 console
screen	buffer,	CONOUT$.

subprocess.STD_ERROR_HANDLE

The	standard	error	device.	Initially,	this	is	the	active	console	screen
buffer,	CONOUT$.

subprocess.SW_HIDE

Hides	the	window.	Another	window	will	be	activated.

subprocess.STARTF_USESTDHANDLES

http://msdn.microsoft.com/en-us/library/ms633548(v=vs.85).aspx

Specifies	 that	 the	 STARTUPINFO.hStdInput,
STARTUPINFO.hStdOutput,	 and	 STARTUPINFO.hStdError

attributes	contain	additional	information.

subprocess.STARTF_USESHOWWINDOW

Specifies	that	the	STARTUPINFO.wShowWindow	attribute	contains
additional	information.

subprocess.CREATE_NEW_CONSOLE

The	 new	 process	 has	 a	 new	 console,	 instead	 of	 inheriting	 its
parent’s	console	(the	default).

subprocess.CREATE_NEW_PROCESS_GROUP

A	 Popen	 creationflags	 parameter	 to	 specify	 that	 a	 new
process	 group	 will	 be	 created.	 This	 flag	 is	 necessary	 for	 using
os.kill()	on	the	subprocess.

This	flag	is	ignored	if	CREATE_NEW_CONSOLE	is	specified.

17.5.4.	Replacing	Older	Functions	with	the
subprocess	Module

In	 this	 section,	 “a	 becomes	 b”	 means	 that	 b	 can	 be	 used	 as	 a
replacement	for	a.

Note: 	All	“a”	functions	in	this	section	fail	(more	or	less)	silently	if	the
executed	program	cannot	be	found;	the	“b”	replacements	raise
OSError	instead.

In	addition,	the	replacements	using	check_output()	will	fail	with	a
CalledProcessError	if	the	requested	operation	produces	a	non-
zero	return	code.	The	output	is	still	available	as	the	output	attribute
of	the	raised	exception.

In	the	following	examples,	we	assume	that	the	relevant	functions	have
already	been	imported	from	the	subprocess	module.

17.5.4.1.	Replacing	/bin/sh	shell	backquote

output=`mycmd	myarg`

#	becomes

output	=	check_output(["mycmd",	"myarg"])

17.5.4.2.	Replacing	shell	pipeline

output=`dmesg	|	grep	hda`

#	becomes

p1	=	Popen(["dmesg"],	stdout=PIPE)

p2	=	Popen(["grep",	"hda"],	stdin=p1.stdout,	stdout=PIPE)

p1.stdout.close()		#	Allow	p1	to	receive	a	SIGPIPE	if	p2	exits.

output	=	p2.communicate()[0]

The	p1.stdout.close()	call	after	starting	the	p2	is	important	in	order	for
p1	to	receive	a	SIGPIPE	if	p2	exits	before	p1.

Alternatively,	for	trusted	input,	the	shell’s	own	pipeline	support	may	still
be	used	directly:

output=`dmesg	|	grep	hda`

#	becomes

output=check_output("dmesg	|	grep	hda",	shell=True)

17.5.4.3.	Replacing	os.system()

sts	=	os.system("mycmd"	+	"	myarg")

#	becomes

sts	=	call("mycmd"	+	"	myarg",	shell=True)

Notes:

Calling	the	program	through	the	shell	is	usually	not	required.

A	more	realistic	example	would	look	like	this:

try:

				retcode	=	call("mycmd"	+	"	myarg",	shell=True)

				if	retcode	<	0:

								print("Child	was	terminated	by	signal",	-retcode

				else:

								print("Child	returned",	retcode,	file=sys.stderr

except	OSError	as	e:

				print("Execution	failed:",	e,	file=sys.stderr)

17.5.4.4.	Replacing	the	os.spawn	family

P_NOWAIT	example:

pid	=	os.spawnlp(os.P_NOWAIT,	"/bin/mycmd",	"mycmd",

==>

pid	=	Popen(["/bin/mycmd",	"myarg"]).pid

P_WAIT	example:

retcode	=	os.spawnlp(os.P_WAIT,	"/bin/mycmd",	"mycmd"

==>

retcode	=	call(["/bin/mycmd",	"myarg"])

Vector	example:

os.spawnvp(os.P_NOWAIT,	path,	args)

==>

Popen([path]	+	args[1:])

Environment	example:

os.spawnlpe(os.P_NOWAIT,	"/bin/mycmd",	"mycmd",	"myarg"

==>

Popen(["/bin/mycmd",	"myarg"],	env={"PATH":	"/usr/bin"

17.5.4.5.	Replacing	os.popen(),
os.popen2(),	os.popen3()

(child_stdin,	child_stdout)	=	os.popen2(cmd,	mode,	bufsize

==>

p	=	Popen(cmd,	shell=True,	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	close_fds=True)

(child_stdin,	child_stdout)	=	(p.stdin,	p.stdout)

(child_stdin,

	child_stdout,

	child_stderr)	=	os.popen3(cmd,	mode,	bufsize)

==>

p	=	Popen(cmd,	shell=True,	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	stderr=PIPE,	close_fds

(child_stdin,

	child_stdout,

	child_stderr)	=	(p.stdin,	p.stdout,	p.stderr)

(child_stdin,	child_stdout_and_stderr)	=	os.popen4(cmd

==>

p	=	Popen(cmd,	shell=True,	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	stderr=STDOUT,	close_fds

(child_stdin,	child_stdout_and_stderr)	=	(p.stdin,	p

Return	code	handling	translates	as	follows:

pipe	=	os.popen(cmd,	'w')

...

rc	=	pipe.close()

if	rc	is	not	None	and	rc	>>	8:

				print("There	were	some	errors")

==>

process	=	Popen(cmd,	'w',	stdin=PIPE)

...

process.stdin.close()

if	process.wait()	!=	0:

				print("There	were	some	errors")

17.5.4.6.	Replacing	functions	from	the	popen2
module

Note: 	If	the	cmd	argument	to	popen2	functions	is	a	string,	the
command	is	executed	through	/bin/sh.	If	it	is	a	list,	the	command	is
directly	executed.

(child_stdout,	child_stdin)	=	popen2.popen2("somestring"

==>

p	=	Popen(["somestring"],	shell=True,	bufsize=bufsize

										stdin=PIPE,	stdout=PIPE,	close_fds=True)

(child_stdout,	child_stdin)	=	(p.stdout,	p.stdin)

(child_stdout,	child_stdin)	=	popen2.popen2(["mycmd"

==>

p	=	Popen(["mycmd",	"myarg"],	bufsize=bufsize,

										stdin=PIPE,	stdout=PIPE,	close_fds=True)

(child_stdout,	child_stdin)	=	(p.stdout,	p.stdin)

popen2.Popen3	 and	 popen2.Popen4	 basically	 work	 as
subprocess.Popen,	except	that:

Popen	raises	an	exception	if	the	execution	fails.
the	capturestderr	argument	is	replaced	with	the	stderr	argument.
stdin=PIPE	and	stdout=PIPE	must	be	specified.
popen2	 closes	 all	 file	 descriptors	 by	 default,	 but	 you	 have	 to
specify	close_fds=True	with	Popen	to	guarantee	this	behavior
on	all	platforms	or	past	Python	versions.

17.5.5.	Legacy	Shell	Invocation	Functions

This	module	also	provides	the	following	legacy	functions	from	the	2.x
commands	 module.	 These	 operations	 implicitly	 invoke	 the	 system
shell	and	none	of	 the	guarantees	described	above	regarding	security
and	exception	handling	consistency	are	valid	for	these	functions.

subprocess.getstatusoutput(cmd)
Return	(status,	output)	of	executing	cmd	in	a	shell.

Execute	 the	string	cmd	 in	a	shell	with	Popen.check_output()
and	 return	 a	 2-tuple	 (status,	 output).	 Universal	 newlines
mode	 is	 used;	 see	 the	 notes	 on	Frequently	 Used	 Arguments	 for
more	details.

A	trailing	newline	is	stripped	from	the	output.	The	exit	status	for	the
command	 can	 be	 interpreted	 according	 to	 the	 rules	 for	 the	 C
function	wait().	Example:

>>>	subprocess.getstatusoutput('ls	/bin/ls')

(0,	'/bin/ls')

>>>	subprocess.getstatusoutput('cat	/bin/junk')

(256,	'cat:	/bin/junk:	No	such	file	or	directory')

>>>	subprocess.getstatusoutput('/bin/junk')

(256,	'sh:	/bin/junk:	not	found')

Availability:	Unix	&	Windows

Changed	in	version	3.3.4:	Windows	support	added

subprocess.getoutput(cmd)
Return	output	(stdout	and	stderr)	of	executing	cmd	in	a	shell.

Like	getstatusoutput(),	except	 the	exit	status	 is	 ignored	and
the	 return	 value	 is	 a	 string	 containing	 the	 command’s	 output.
Example:

>>>	subprocess.getoutput('ls	/bin/ls')

'/bin/ls'

Availability:	Unix	&	Windows

Changed	in	version	3.3.4:	Windows	support	added

17.5.6.	Notes

17.5.6.1.	Converting	an	argument	sequence	to	a
string	on	Windows

On	Windows,	an	args	 sequence	 is	 converted	 to	a	 string	 that	 can	be
parsed	using	 the	 following	 rules	 (which	correspond	 to	 the	 rules	used
by	the	MS	C	runtime):

1.	 Arguments	are	delimited	by	white	space,	which	is	either	a	space
or	a	tab.

2.	 A	string	surrounded	by	double	quotation	marks	is	interpreted	as	a
single	 argument,	 regardless	 of	 white	 space	 contained	 within.	 A
quoted	string	can	be	embedded	in	an	argument.

3.	 A	double	quotation	mark	preceded	by	a	backslash	 is	 interpreted
as	a	literal	double	quotation	mark.

4.	 Backslashes	 are	 interpreted	 literally,	 unless	 they	 immediately
precede	a	double	quotation	mark.

5.	 If	 backslashes	 immediately	 precede	 a	 double	 quotation	 mark,
every	pair	of	backslashes	 is	 interpreted	as	a	 literal	backslash.	 If
the	number	of	backslashes	is	odd,	the	last	backslash	escapes	the
next	double	quotation	mark	as	described	in	rule	3.

See	also:

shlex

Module	which	provides	 function	 to	parse	and	escape	command
lines.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.6.	sched	—	Event	scheduler

Source	code:	Lib/sched.py

The	 sched	 module	 defines	 a	 class	 which	 implements	 a	 general
purpose	event	scheduler:

class	sched.scheduler(timefunc=time.monotonic,
delayfunc=time.sleep)

The	 scheduler	 class	 defines	 a	 generic	 interface	 to	 scheduling
events.	 It	 needs	 two	 functions	 to	 actually	 deal	 with	 the	 “outside
world”	 —	 timefunc	 should	 be	 callable	 without	 arguments,	 and
return	 a	 number	 (the	 “time”,	 in	 any	 units	 whatsoever).	 If
time.monotonic	 is	 not	 available,	 the	 timefunc	 default	 is	 time.time
instead.	 The	 delayfunc	 function	 should	 be	 callable	 with	 one
argument,	compatible	with	the	output	of	timefunc,	and	should	delay
that	 many	 time	 units.	 delayfunc	 will	 also	 be	 called	 with	 the
argument	 0	 after	 each	 event	 is	 run	 to	 allow	 other	 threads	 an
opportunity	to	run	in	multi-threaded	applications.

Changed	 in	 version	 3.3:	 timefunc	 and	 delayfunc	 parameters	 are
optional.

Changed	 in	version	3.3:	scheduler	 class	can	be	safely	used	 in
multi-threaded	environments.

Example:

>>>	import	sched,	time

>>>	s	=	sched.scheduler(time.time,	time.sleep)

>>>	def	print_time(a='default'):

http://hg.python.org/cpython/file/3.4/Lib/sched.py

...					print("From	print_time",	time.time(),	a)

...

>>>	def	print_some_times():

...					print(time.time())

...					s.enter(10,	1,	print_time)

...					s.enter(5,	2,	print_time,	argument=('positional'

...					s.enter(5,	1,	print_time,	kwargs={'a':	'keyword'

...					s.run()

...					print(time.time())

...

>>>	print_some_times()

930343690.257

From	print_time	930343695.274	positional

From	print_time	930343695.275	keyword

From	print_time	930343700.273	default

930343700.276

17.6.1.	Scheduler	Objects

scheduler	instances	have	the	following	methods	and	attributes:

scheduler.enterabs(time,	priority,	action,	argument=(),	kwargs=
{})

Schedule	 a	 new	 event.	 The	 time	 argument	 should	 be	 a	 numeric
type	 compatible	 with	 the	 return	 value	 of	 the	 timefunc	 function
passed	to	the	constructor.	Events	scheduled	for	the	same	time	will
be	executed	in	the	order	of	their	priority.

Executing	 the	 event	 means	 executing	 action(*argument,
**kwargs).	 argument	 is	 a	 sequence	 holding	 the	 positional
arguments	 for	action.	kwargs	 is	 a	 dictionary	 holding	 the	 keyword
arguments	for	action.

Return	value	is	an	event	which	may	be	used	for	 later	cancellation
of	the	event	(see	cancel()).

Changed	in	version	3.3:	argument	parameter	is	optional.

New	in	version	3.3:	kwargs	parameter	was	added.

scheduler.enter(delay,	priority,	action,	argument=(),	kwargs={})
Schedule	 an	 event	 for	 delay	 more	 time	 units.	 Other	 than	 the
relative	 time,	 the	other	arguments,	 the	effect	and	 the	 return	value
are	the	same	as	those	for	enterabs().

Changed	in	version	3.3:	argument	parameter	is	optional.

New	in	version	3.3:	kwargs	parameter	was	added.

scheduler.cancel(event)

Remove	 the	 event	 from	 the	 queue.	 If	 event	 is	 not	 an	 event
currently	in	the	queue,	this	method	will	raise	a	ValueError.

scheduler.empty()
Return	true	if	the	event	queue	is	empty.

scheduler.run(blocking=True)
Run	 all	 scheduled	 events.	 This	 method	 will	 wait	 (using	 the
delayfunc()	 function	 passed	 to	 the	 constructor)	 for	 the	 next
event,	then	execute	it	and	so	on	until	there	are	no	more	scheduled
events.

If	blocking	 is	 false	 executes	 the	 scheduled	 events	 due	 to	 expire
soonest	(if	any)	and	then	return	the	deadline	of	the	next	scheduled
call	in	the	scheduler	(if	any).

Either	action	or	delayfunc	 can	 raise	 an	 exception.	 In	 either	 case,
the	 scheduler	 will	 maintain	 a	 consistent	 state	 and	 propagate	 the
exception.	If	an	exception	is	raised	by	action,	the	event	will	not	be
attempted	in	future	calls	to	run().

If	a	sequence	of	events	takes	longer	to	run	than	the	time	available
before	 the	 next	 event,	 the	 scheduler	 will	 simply	 fall	 behind.	 No
events	will	be	dropped;	the	calling	code	is	responsible	for	canceling
events	which	are	no	longer	pertinent.

New	in	version	3.3:	blocking	parameter	was	added.

scheduler.queue

Read-only	attribute	returning	a	list	of	upcoming	events	in	the	order
they	will	 be	 run.	Each	event	 is	 shown	as	a	named	 tuple	with	 the
following	fields:	time,	priority,	action,	argument,	kwargs.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.7.	queue	—	A	synchronized
queue	class
Source	code:	Lib/queue.py

The	 queue	 module	 implements	 multi-producer,	 multi-consumer
queues.	 It	 is	 especially	 useful	 in	 threaded	 programming	 when
information	must	be	exchanged	safely	between	multiple	 threads.	The
Queue	 class	 in	 this	 module	 implements	 all	 the	 required	 locking
semantics.	 It	depends	on	 the	availability	of	 thread	support	 in	Python;
see	the	threading	module.

The	module	implements	three	types	of	queue,	which	differ	only	in	the
order	 in	 which	 the	 entries	 are	 retrieved.	 In	 a	 FIFO	 queue,	 the	 first
tasks	added	are	the	first	retrieved.	In	a	LIFO	queue,	the	most	recently
added	entry	is	the	first	retrieved	(operating	like	a	stack).	With	a	priority
queue,	the	entries	are	kept	sorted	(using	the	heapq	module)	and	the
lowest	valued	entry	is	retrieved	first.

The	queue	module	defines	the	following	classes	and	exceptions:

class	queue.Queue(maxsize=0)
Constructor	for	a	FIFO	queue.	maxsize	 is	an	 integer	 that	sets	 the
upperbound	limit	on	the	number	of	items	that	can	be	placed	in	the
queue.	 Insertion	will	 block	once	 this	 size	has	been	 reached,	 until
queue	 items	 are	 consumed.	 If	maxsize	 is	 less	 than	 or	 equal	 to
zero,	the	queue	size	is	infinite.

class	queue.LifoQueue(maxsize=0)
Constructor	 for	a	LIFO	queue.	maxsize	 is	an	 integer	 that	sets	 the

http://hg.python.org/cpython/file/3.4/Lib/queue.py

upperbound	limit	on	the	number	of	items	that	can	be	placed	in	the
queue.	 Insertion	will	 block	once	 this	 size	has	been	 reached,	 until
queue	 items	 are	 consumed.	 If	maxsize	 is	 less	 than	 or	 equal	 to
zero,	the	queue	size	is	infinite.

class	queue.PriorityQueue(maxsize=0)
Constructor	for	a	priority	queue.	maxsize	is	an	integer	that	sets	the
upperbound	limit	on	the	number	of	items	that	can	be	placed	in	the
queue.	 Insertion	will	 block	once	 this	 size	has	been	 reached,	 until
queue	 items	 are	 consumed.	 If	maxsize	 is	 less	 than	 or	 equal	 to
zero,	the	queue	size	is	infinite.

The	 lowest	 valued	 entries	 are	 retrieved	 first	 (the	 lowest	 valued
entry	 is	 the	 one	 returned	 by	 sorted(list(entries))[0]).	 A
typical	 pattern	 for	 entries	 is	 a	 tuple	 in	 the	 form:
(priority_number,	data).

exception	queue.Empty
Exception	raised	when	non-blocking	get()	(or	get_nowait())	is
called	on	a	Queue	object	which	is	empty.

exception	queue.Full
Exception	raised	when	non-blocking	put()	(or	put_nowait())	is
called	on	a	Queue	object	which	is	full.

17.7.1.	Queue	Objects

Queue	 objects	 (Queue,	 LifoQueue,	 or	 PriorityQueue)	 provide
the	public	methods	described	below.

Queue.qsize()
Return	the	approximate	size	of	the	queue.	Note,	qsize()	>	0	doesn’t
guarantee	that	a	subsequent	get()	will	not	block,	nor	will	qsize()	<
maxsize	guarantee	that	put()	will	not	block.

Queue.empty()
Return	 True	 if	 the	 queue	 is	 empty,	 False	 otherwise.	 If	 empty()
returns	True	 it	 doesn’t	 guarantee	 that	 a	 subsequent	 call	 to	 put()
will	 not	 block.	 Similarly,	 if	 empty()	 returns	 False	 it	 doesn’t
guarantee	that	a	subsequent	call	to	get()	will	not	block.

Queue.full()
Return	True	 if	 the	queue	 is	 full,	False	otherwise.	 If	 full()	 returns
True	 it	 doesn’t	 guarantee	 that	a	 subsequent	 call	 to	get()	will	 not
block.	Similarly,	 if	 full()	 returns	 False	 it	 doesn’t	 guarantee	 that	a
subsequent	call	to	put()	will	not	block.

Queue.put(item,	block=True,	timeout=None)
Put	item	into	the	queue.	If	optional	args	block	is	true	and	timeout	is
None	(the	default),	block	if	necessary	until	a	free	slot	is	available.	If
timeout	is	a	positive	number,	it	blocks	at	most	timeout	seconds	and
raises	the	Full	exception	 if	no	 free	slot	was	available	within	 that
time.	Otherwise	(block	is	false),	put	an	item	on	the	queue	if	a	free
slot	 is	 immediately	 available,	 else	 raise	 the	 Full	 exception
(timeout	is	ignored	in	that	case).

Queue.put_nowait(item)
Equivalent	to	put(item,	False).

Queue.get(block=True,	timeout=None)
Remove	and	return	an	item	from	the	queue.	If	optional	args	block
is	true	and	timeout	is	None	(the	default),	block	if	necessary	until	an
item	is	available.	 If	 timeout	 is	a	positive	number,	 it	blocks	at	most
timeout	 seconds	 and	 raises	 the	 Empty	 exception	 if	 no	 item	was
available	within	that	time.	Otherwise	(block	is	false),	return	an	item
if	 one	 is	 immediately	 available,	 else	 raise	 the	 Empty	 exception
(timeout	is	ignored	in	that	case).

Queue.get_nowait()
Equivalent	to	get(False).

Two	methods	are	offered	to	support	tracking	whether	enqueued	tasks
have	been	fully	processed	by	daemon	consumer	threads.

Queue.task_done()
Indicate	that	a	formerly	enqueued	task	is	complete.	Used	by	queue
consumer	 threads.	 For	 each	 get()	 used	 to	 fetch	 a	 task,	 a
subsequent	 call	 to	 task_done()	 tells	 the	 queue	 that	 the
processing	on	the	task	is	complete.

If	a	join()	is	currently	blocking,	it	will	resume	when	all	items	have
been	processed	(meaning	that	a	task_done()	call	was	received
for	every	item	that	had	been	put()	into	the	queue).

Raises	a	ValueError	if	called	more	times	than	there	were	items
placed	in	the	queue.

Queue.join()

Blocks	 until	 all	 items	 in	 the	 queue	 have	 been	 gotten	 and
processed.

The	count	of	unfinished	tasks	goes	up	whenever	an	item	is	added
to	the	queue.	The	count	goes	down	whenever	a	consumer	thread
calls	task_done()	to	indicate	that	the	item	was	retrieved	and	all
work	on	it	is	complete.	When	the	count	of	unfinished	tasks	drops	to
zero,	join()	unblocks.

Example	of	how	to	wait	for	enqueued	tasks	to	be	completed:

def	worker():

				while	True:

								item	=	q.get()

								do_work(item)

								q.task_done()

q	=	Queue()

for	i	in	range(num_worker_threads):

					t	=	Thread(target=worker)

					t.daemon	=	True

					t.start()

for	item	in	source():

				q.put(item)

q.join()							#	block	until	all	tasks	are	done

See	also:

Class	multiprocessing.Queue
A	 queue	 class	 for	 use	 in	 a	multi-processing	 (rather	 than	multi-
threading)	context.

collections.deque	 is	 an	 alternative	 implementation	 of

unbounded	 queues	 with	 fast	 atomic	 append()	 and	 popleft()
operations	that	do	not	require	locking.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.8.	dummy_threading	—	Drop-
in	replacement	for	the	threading
module
Source	code:	Lib/dummy_threading.py

This	module	provides	a	duplicate	interface	to	the	threading	module.
It	is	meant	to	be	imported	when	the	_thread	module	is	not	provided
on	a	platform.

Suggested	usage	is:

try:

				import	threading

except	ImportError:

				import	dummy_threading	as	threading

Be	careful	to	not	use	this	module	where	deadlock	might	occur	from	a
thread	 being	 created	 that	 blocks	 waiting	 for	 another	 thread	 to	 be
created.	This	often	occurs	with	blocking	I/O.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://hg.python.org/cpython/file/3.4/Lib/dummy_threading.py
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.9.	_thread	—	Low-level
threading	API
This	 module	 provides	 low-level	 primitives	 for	 working	 with	 multiple
threads	 (also	 called	 light-weight	 processes	 or	 tasks)	 —	 multiple
threads	of	control	sharing	their	global	data	space.	For	synchronization,
simple	locks	(also	called	mutexes	or	binary	semaphores)	are	provided.
The	 threading	module	 provides	 an	 easier	 to	 use	 and	 higher-level
threading	API	built	on	top	of	this	module.

The	module	is	optional.	It	 is	supported	on	Windows,	Linux,	SGI	IRIX,
Solaris	 2.x,	 as	well	 as	on	 systems	 that	 have	a	POSIX	 thread	 (a.k.a.
“pthread”)	implementation.	For	systems	lacking	the	_thread	module,
the	_dummy_thread	module	 is	available.	 It	duplicates	 this	module’s
interface	and	can	be	used	as	a	drop-in	replacement.

It	defines	the	following	constants	and	functions:

exception	_thread.error
Raised	on	thread-specific	errors.

Changed	 in	 version	 3.3:	 This	 is	 now	 a	 synonym	 of	 the	 built-in
RuntimeError.

_thread.LockType

This	is	the	type	of	lock	objects.

_thread.start_new_thread(function,	args[,	kwargs])
Start	a	new	thread	and	return	its	identifier.	The	thread	executes	the
function	 function	 with	 the	 argument	 list	 args	 (which	 must	 be	 a

tuple).	 The	 optional	 kwargs	 argument	 specifies	 a	 dictionary	 of
keyword	arguments.	When	the	function	returns,	the	thread	silently
exits.	When	the	function	terminates	with	an	unhandled	exception,	a
stack	 trace	 is	printed	and	 then	 the	 thread	exits	 (but	other	 threads
continue	to	run).

_thread.interrupt_main()
Raise	 a	 KeyboardInterrupt	 exception	 in	 the	 main	 thread.	 A
subthread	can	use	this	function	to	interrupt	the	main	thread.

_thread.exit()
Raise	 the	 SystemExit	 exception.	 When	 not	 caught,	 this	 will
cause	the	thread	to	exit	silently.

_thread.allocate_lock()
Return	a	new	 lock	object.	Methods	of	 locks	are	described	below.
The	lock	is	initially	unlocked.

_thread.get_ident()
Return	the	‘thread	identifier’	of	the	current	thread.	This	is	a	nonzero
integer.	Its	value	has	no	direct	meaning;	 it	 is	 intended	as	a	magic
cookie	to	be	used	e.g.	to	index	a	dictionary	of	thread-specific	data.
Thread	 identifiers	 may	 be	 recycled	 when	 a	 thread	 exits	 and
another	thread	is	created.

_thread.stack_size([size])
Return	the	thread	stack	size	used	when	creating	new	threads.	The
optional	 size	 argument	 specifies	 the	 stack	 size	 to	 be	 used	 for
subsequently	 created	 threads,	 and	 must	 be	 0	 (use	 platform	 or
configured	default)	or	a	positive	integer	value	of	at	least	32,768	(32
KiB).	 If	 changing	 the	 thread	 stack	 size	 is	 unsupported,	 a
RuntimeError	 is	 raised.	 If	 the	 specified	 stack	 size	 is	 invalid,	 a

ValueError	is	raised	and	the	stack	size	is	unmodified.	32	KiB	is
currently	 the	 minimum	 supported	 stack	 size	 value	 to	 guarantee
sufficient	 stack	 space	 for	 the	 interpreter	 itself.	 Note	 that	 some
platforms	may	have	particular	 restrictions	 on	 values	 for	 the	 stack
size,	such	as	requiring	a	minimum	stack	size	>	32	KiB	or	requiring
allocation	 in	multiples	of	 the	system	memory	page	size	 -	platform
documentation	 should	 be	 referred	 to	 for	more	 information	 (4	 KiB
pages	are	common;	using	multiples	of	4096	for	the	stack	size	is	the
suggested	approach	 in	 the	absence	of	more	specific	 information).
Availability:	Windows,	systems	with	POSIX	threads.

_thread.TIMEOUT_MAX

The	 maximum	 value	 allowed	 for	 the	 timeout	 parameter	 of
Lock.acquire().	 Specifying	 a	 timeout	 greater	 than	 this	 value
will	raise	an	OverflowError.

New	in	version	3.2.

Lock	objects	have	the	following	methods:

lock.acquire(waitflag=1,	timeout=-1)
Without	 any	 optional	 argument,	 this	 method	 acquires	 the	 lock
unconditionally,	 if	necessary	waiting	until	 it	 is	 released	by	another
thread	(only	one	thread	at	a	time	can	acquire	a	lock	—	that’s	their
reason	for	existence).

If	 the	 integer	waitflag	argument	 is	present,	 the	action	depends	on
its	value:	if	it	is	zero,	the	lock	is	only	acquired	if	it	can	be	acquired
immediately	 without	 waiting,	 while	 if	 it	 is	 nonzero,	 the	 lock	 is
acquired	unconditionally	as	above.

If	 the	 floating-point	 timeout	 argument	 is	 present	 and	 positive,	 it
specifies	 the	 maximum	 wait	 time	 in	 seconds	 before	 returning.	 A

negative	 timeout	 argument	 specifies	 an	 unbounded	 wait.	 You
cannot	specify	a	timeout	if	waitflag	is	zero.

The	 return	 value	 is	 True	 if	 the	 lock	 is	 acquired	 successfully,
False	if	not.

Changed	in	version	3.2:	The	timeout	parameter	is	new.

Changed	 in	version	3.2:	Lock	acquires	can	now	be	 interrupted	by
signals	on	POSIX.

lock.release()
Releases	the	 lock.	The	 lock	must	have	been	acquired	earlier,	but
not	necessarily	by	the	same	thread.

lock.locked()
Return	the	status	of	the	lock:	True	if	it	has	been	acquired	by	some
thread,	False	if	not.

In	 addition	 to	 these	methods,	 lock	 objects	 can	 also	 be	 used	 via	 the
with	statement,	e.g.:

import	_thread

a_lock	=	_thread.allocate_lock()

with	a_lock:

				print("a_lock	is	locked	while	this	executes")

Caveats:

Threads	 interact	 strangely	 with	 interrupts:	 the
KeyboardInterrupt	exception	will	be	received	by	an	arbitrary
thread.	(When	the	signal	module	is	available,	interrupts	always

go	to	the	main	thread.)
Calling	 sys.exit()	 or	 raising	 the	 SystemExit	 exception	 is
equivalent	to	calling	_thread.exit().
Not	all	built-in	functions	that	may	block	waiting	for	I/O	allow	other
threads	 to	 run.	 (The	 most	 popular	 ones	 (time.sleep(),
io.FileIO.read(),	select.select())	work	as	expected.)
It	is	not	possible	to	interrupt	the	acquire()	method	on	a	lock	—
the	 KeyboardInterrupt	 exception	 will	 happen	 after	 the	 lock
has	been	acquired.
When	the	main	thread	exits,	it	is	system	defined	whether	the	other
threads	 survive.	 On	 most	 systems,	 they	 are	 killed	 without
executing	 try	 ...	 finally	 clauses	 or	 executing	 object
destructors.
When	 the	 main	 thread	 exits,	 it	 does	 not	 do	 any	 of	 its	 usual
cleanup	(except	that	try	...	finally	clauses	are	honored),	and
the	standard	I/O	files	are	not	flushed.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

http://www.python.org/

17.10.	_dummy_thread	—	Drop-
in	replacement	for	the	_thread
module
Source	code:	Lib/_dummy_thread.py

This	module	provides	a	duplicate	interface	to	the	_thread	module.	It
is	meant	to	be	imported	when	the	_thread	module	is	not	provided	on
a	platform.

Suggested	usage	is:

try:

				import	_thread

except	ImportError:

				import	_dummy_thread	as	_thread

Be	careful	to	not	use	this	module	where	deadlock	might	occur	from	a
thread	 being	 created	 that	 blocks	 waiting	 for	 another	 thread	 to	 be
created.	This	often	occurs	with	blocking	I/O.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	17.	Concurrent	Execution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://hg.python.org/cpython/file/3.4/Lib/_dummy_thread.py
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

18.	Interprocess	Communication
and	Networking
The	 modules	 described	 in	 this	 chapter	 provide	 mechanisms	 for
different	processes	to	communicate.

Some	 modules	 only	 work	 for	 two	 processes	 that	 are	 on	 the	 same
machine,	e.g.	signal	and	mmap.	Other	modules	support	networking
protocols	that	two	or	more	processes	can	use	to	communicate	across
machines.

The	list	of	modules	described	in	this	chapter	is:

18.1.	socket	—	Low-level	networking	interface
18.1.1.	Socket	families
18.1.2.	Module	contents

18.1.2.1.	Exceptions
18.1.2.2.	Constants
18.1.2.3.	Functions

18.1.2.3.1.	Creating	sockets
18.1.2.3.2.	Other	functions

18.1.3.	Socket	Objects
18.1.4.	Notes	on	socket	timeouts

18.1.4.1.	Timeouts	and	the	connect	method
18.1.4.2.	Timeouts	and	the	accept	method

18.1.5.	Example
18.2.	ssl	—	TLS/SSL	wrapper	for	socket	objects

18.2.1.	Functions,	Constants,	and	Exceptions
18.2.1.1.	Socket	creation
18.2.1.2.	Context	creation
18.2.1.3.	Random	generation
18.2.1.4.	Certificate	handling

18.2.1.5.	Constants
18.2.2.	SSL	Sockets
18.2.3.	SSL	Contexts
18.2.4.	Certificates

18.2.4.1.	Certificate	chains
18.2.4.2.	CA	certificates
18.2.4.3.	Combined	key	and	certificate
18.2.4.4.	Self-signed	certificates

18.2.5.	Examples
18.2.5.1.	Testing	for	SSL	support
18.2.5.2.	Client-side	operation
18.2.5.3.	Server-side	operation

18.2.6.	Notes	on	non-blocking	sockets
18.2.7.	Security	considerations

18.2.7.1.	Verifying	certificates
18.2.7.2.	Protocol	versions
18.2.7.3.	Cipher	selection
18.2.7.4.	Multi-processing

18.3.	select	—	Waiting	for	I/O	completion
18.3.1.	/dev/poll	Polling	Objects
18.3.2.	Edge	and	Level	Trigger	Polling	(epoll)	Objects
18.3.3.	Polling	Objects
18.3.4.	Kqueue	Objects
18.3.5.	Kevent	Objects

18.4.	selectors	–	High-level	I/O	multiplexing
18.4.1.	Introduction
18.4.2.	Classes
18.4.3.	Examples

18.5.	asyncio	 –	Asynchronous	 I/O,	 event	 loop,	 coroutines	 and
tasks

18.5.1.	Event	loops
18.5.1.1.	Event	loop	policies	and	the	default	policy
18.5.1.2.	Event	loop	functions
18.5.1.3.	Event	loop	policy	interface

18.5.1.4.	Access	to	the	global	loop	policy
18.5.1.5.	Run	an	event	loop
18.5.1.6.	Calls
18.5.1.7.	Delayed	calls
18.5.1.8.	Creating	connections
18.5.1.9.	Creating	listening	connections
18.5.1.10.	Watch	file	descriptors
18.5.1.11.	Low-level	socket	operations
18.5.1.12.	Resolve	host	name
18.5.1.13.	Running	subprocesses
18.5.1.14.	UNIX	signals
18.5.1.15.	Executor
18.5.1.16.	Error	Handling	API
18.5.1.17.	Debug	mode
18.5.1.18.	Server
18.5.1.19.	Handle
18.5.1.20.	Example:	Hello	World	(callback)
18.5.1.21.	Example:	Set	signal	handlers	for	SIGINT	and
SIGTERM

18.5.2.	Tasks	and	coroutines
18.5.2.1.	Coroutines

18.5.2.1.1.	Example:	“Hello	World”	coroutine
18.5.2.1.2.	Example:	Chain	coroutines

18.5.2.2.	InvalidStateError
18.5.2.3.	Future

18.5.2.3.1.	 Example:	 Future	 with
run_until_complete()
18.5.2.3.2.	Example:	Future	with	run_forever()

18.5.2.4.	Task
18.5.2.4.1.	Example:	Parallel	execution	of	tasks

18.5.2.5.	Task	functions
18.5.3.	Transports	and	protocols	(low-level	API)

18.5.3.1.	Transports
18.5.3.1.1.	BaseTransport

18.5.3.1.2.	ReadTransport
18.5.3.1.3.	WriteTransport
18.5.3.1.4.	DatagramTransport
18.5.3.1.5.	BaseSubprocessTransport

18.5.3.2.	Protocols
18.5.3.2.1.	Protocol	classes
18.5.3.2.2.	Connection	callbacks
18.5.3.2.3.	Streaming	protocols
18.5.3.2.4.	Datagram	protocols
18.5.3.2.5.	Flow	control	callbacks
18.5.3.2.6.	Coroutines	and	protocols

18.5.3.3.	Protocol	example:	TCP	echo	server	and	client
18.5.3.3.1.	Echo	client
18.5.3.3.2.	Echo	server

18.5.4.	Streams	(high-level	API)
18.5.4.1.	Stream	functions
18.5.4.2.	StreamReader
18.5.4.3.	StreamWriter
18.5.4.4.	StreamReaderProtocol
18.5.4.5.	IncompleteReadError
18.5.4.6.	Example

18.5.5.	Subprocess
18.5.5.1.	Create	a	subprocess
18.5.5.2.	Constants
18.5.5.3.	Process
18.5.5.4.	Example

18.5.6.	Synchronization	primitives
18.5.6.1.	Locks

18.5.6.1.1.	Lock
18.5.6.1.2.	Event
18.5.6.1.3.	Condition

18.5.6.2.	Semaphores
18.5.6.2.1.	Semaphore
18.5.6.2.2.	BoundedSemaphore

18.5.6.3.	Queues
18.5.6.3.1.	Queue
18.5.6.3.2.	PriorityQueue
18.5.6.3.3.	LifoQueue
18.5.6.3.4.	JoinableQueue
18.5.6.3.5.	Exceptions

18.5.7.	Develop	with	asyncio
18.5.7.1.	Concurrency	and	multithreading
18.5.7.2.	Handle	blocking	functions	correctly
18.5.7.3.	Logging
18.5.7.4.	Detect	coroutine	objects	never	scheduled
18.5.7.5.	Detect	exceptions	not	consumed
18.5.7.6.	Chain	coroutines	correctly

18.6.	asyncore	—	Asynchronous	socket	handler
18.6.1.	asyncore	Example	basic	HTTP	client
18.6.2.	asyncore	Example	basic	echo	server

18.7.	 asynchat	 —	 Asynchronous	 socket	 command/response
handler

18.7.1.	asynchat	-	Auxiliary	Classes
18.7.2.	asynchat	Example

18.8.	signal	—	Set	handlers	for	asynchronous	events
18.8.1.	General	rules

18.8.1.1.	Execution	of	Python	signal	handlers
18.8.1.2.	Signals	and	threads

18.8.2.	Module	contents
18.8.3.	Example

18.9.	mmap	—	Memory-mapped	file	support

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.1.	socket	—	Low-level
networking	interface
This	 module	 provides	 access	 to	 the	 BSD	 socket	 interface.	 It	 is
available	 on	 all	 modern	 Unix	 systems,	 Windows,	 MacOS,	 and
probably	additional	platforms.

Note: 	Some	behavior	may	be	platform	dependent,	since	calls	are
made	to	the	operating	system	socket	APIs.

The	 Python	 interface	 is	 a	 straightforward	 transliteration	 of	 the	 Unix
system	call	and	library	interface	for	sockets	to	Python’s	object-oriented
style:	the	socket()	function	returns	a	socket	object	whose	methods
implement	 the	 various	 socket	 system	 calls.	 Parameter	 types	 are
somewhat	 higher-level	 than	 in	 the	C	 interface:	 as	 with	 read()	 and
write()	 operations	 on	 Python	 files,	 buffer	 allocation	 on	 receive
operations	 is	 automatic,	 and	 buffer	 length	 is	 implicit	 on	 send
operations.

See	also:

Module	socketserver
Classes	that	simplify	writing	network	servers.

Module	ssl
A	TLS/SSL	wrapper	for	socket	objects.

18.1.1.	Socket	families

Depending	 on	 the	 system	 and	 the	 build	 options,	 various	 socket
families	are	supported	by	this	module.

The	 address	 format	 required	 by	 a	 particular	 socket	 object	 is
automatically	selected	based	on	the	address	family	specified	when	the
socket	 object	 was	 created.	 Socket	 addresses	 are	 represented	 as
follows:

The	address	of	an	AF_UNIX	socket	bound	to	a	file	system	node	is
represented	 as	 a	 string,	 using	 the	 file	 system	encoding	 and	 the
'surrogateescape'	error	handler	(see	PEP	383).	An	address
in	Linux’s	abstract	namespace	is	returned	as	a	bytes	object	with
an	 initial	 null	 byte;	 note	 that	 sockets	 in	 this	 namespace	 can
communicate	 with	 normal	 file	 system	 sockets,	 so	 programs
intended	 to	 run	 on	 Linux	 may	 need	 to	 deal	 with	 both	 types	 of
address.	A	string	or	bytes	object	can	be	used	for	either	 type	of
address	when	passing	it	as	an	argument.

Changed	 in	 version	 3.3:	Previously,	 AF_UNIX	 socket	 paths
were	assumed	to	use	UTF-8	encoding.

A	pair	(host,	port)	 is	used	 for	 the	AF_INET	address	 family,
where	host	 is	a	string	representing	either	a	hostname	in	 Internet
domain	notation	like	'daring.cwi.nl'	or	an	IPv4	address	like
'100.50.200.5',	and	port	is	an	integer.

For	 AF_INET6	 address	 family,	 a	 four-tuple	 (host,	 port,

flowinfo,	 scopeid)	 is	 used,	 where	 flowinfo	 and	 scopeid
represent	 the	sin6_flowinfo	and	sin6_scope_id	members

http://www.python.org/dev/peps/pep-0383

in	struct	sockaddr_in6	 in	C.	For	socket	module	methods,
flowinfo	 and	 scopeid	 can	 be	 omitted	 just	 for	 backward
compatibility.	 Note,	 however,	 omission	 of	 scopeid	 can	 cause
problems	in	manipulating	scoped	IPv6	addresses.

AF_NETLINK	 sockets	 are	 represented	 as	 pairs	 (pid,

groups).

Linux-only	 support	 for	 TIPC	 is	 available	 using	 the	 AF_TIPC
address	family.	TIPC	is	an	open,	non-IP	based	networked	protocol
designed	for	use	in	clustered	computer	environments.	Addresses
are	represented	by	a	tuple,	and	the	fields	depend	on	the	address
type.	The	general	tuple	form	is	(addr_type,	v1,	v2,	v3	[,
scope]),	where:

addr_type	 is	 one	 of	 TIPC_ADDR_NAMESEQ,
TIPC_ADDR_NAME,	or	TIPC_ADDR_ID.

scope	 is	 one	 of	 TIPC_ZONE_SCOPE,
TIPC_CLUSTER_SCOPE,	and	TIPC_NODE_SCOPE.

If	addr_type	is	TIPC_ADDR_NAME,	then	v1	is	the	server	type,
v2	is	the	port	identifier,	and	v3	should	be	0.

If	addr_type	 is	TIPC_ADDR_NAMESEQ,	 then	v1	 is	 the	server
type,	v2	 is	 the	 lower	 port	 number,	 and	v3	 is	 the	 upper	 port
number.

If	addr_type	is	TIPC_ADDR_ID,	then	v1	is	the	node,	v2	is	the
reference,	and	v3	should	be	set	to	0.

If	addr_type	is	TIPC_ADDR_ID,	then	v1	is	the	node,	v2	is	the
reference,	and	v3	should	be	set	to	0.

A	tuple	(interface,)	is	used	for	the	AF_CAN	address	family,
where	interface	is	a	string	representing	a	network	interface	name
like	 'can0'.	 The	 network	 interface	 name	 ''	 can	 be	 used	 to
receive	packets	from	all	network	interfaces	of	this	family.

A	 string	 or	 a	 tuple	 (id,	 unit)	 is	 used	 for	 the
SYSPROTO_CONTROL	 protocol	 of	 the	 PF_SYSTEM	 family.	 The
string	 is	 the	 name	 of	 a	 kernel	 control	 using	 a	 dynamically-
assigned	ID.	The	tuple	can	be	used	 if	 ID	and	unit	number	of	 the
kernel	control	are	known	or	if	a	registered	ID	is	used.

New	in	version	3.3.

Certain	 other	 address	 families	 (AF_BLUETOOTH,	 AF_PACKET,
AF_CAN)	support	specific	representations.

For	IPv4	addresses,	two	special	forms	are	accepted	instead	of	a	host
address:	 the	 empty	 string	 represents	 INADDR_ANY,	 and	 the	 string
'<broadcast>'	 represents	 INADDR_BROADCAST.	 This	 behavior	 is
not	compatible	with	IPv6,	therefore,	you	may	want	to	avoid	these	if	you
intend	to	support	IPv6	with	your	Python	programs.

If	you	use	a	hostname	in	 the	host	portion	of	 IPv4/v6	socket	address,
the	 program	may	 show	a	 nondeterministic	 behavior,	 as	Python	uses
the	 first	 address	 returned	 from	 the	 DNS	 resolution.	 The	 socket
address	 will	 be	 resolved	 differently	 into	 an	 actual	 IPv4/v6	 address,
depending	 on	 the	 results	 from	 DNS	 resolution	 and/or	 the	 host
configuration.	 For	 deterministic	 behavior	 use	 a	 numeric	 address	 in
host	portion.

All	errors	raise	exceptions.	The	normal	exceptions	for	invalid	argument
types	 and	 out-of-memory	 conditions	 can	 be	 raised;	 starting	 from
Python	 3.3,	 errors	 related	 to	 socket	 or	 address	 semantics	 raise

OSError	 or	 one	 of	 its	 subclasses	 (they	 used	 to	 raise
socket.error).

Non-blocking	 mode	 is	 supported	 through	 setblocking().	 A
generalization	 of	 this	 based	 on	 timeouts	 is	 supported	 through
settimeout().

18.1.2.	Module	contents

The	module	socket	exports	the	following	elements.

18.1.2.1.	Exceptions

exception	socket.error
A	deprecated	alias	of	OSError.

Changed	in	version	3.3:	Following	PEP	3151,	this	class	was	made
an	alias	of	OSError.

exception	socket.herror
A	subclass	of	OSError,	this	exception	is	raised	for	address-related
errors,	 i.e.	 for	 functions	 that	 use	 h_errno	 in	 the	 POSIX	 C	 API,
including	 gethostbyname_ex()	 and	 gethostbyaddr().	 The
accompanying	value	is	a	pair	(h_errno,	string)	 representing
an	error	returned	by	a	library	call.	h_errno	is	a	numeric	value,	while
string	 represents	 the	 description	 of	 h_errno,	 as	 returned	 by	 the
hstrerror()	C	function.

Changed	 in	 version	 3.3:	 This	 class	 was	 made	 a	 subclass	 of
OSError.

exception	socket.gaierror
A	subclass	of	OSError,	this	exception	is	raised	for	address-related
errors	 by	 getaddrinfo()	 and	 getnameinfo().	 The
accompanying	value	is	a	pair	(error,	string)	representing	an
error	returned	by	a	library	call.	string	represents	the	description	of
error,	 as	 returned	 by	 the	 gai_strerror()	 C	 function.	 The
numeric	error	value	will	match	one	of	the	EAI_*	constants	defined

http://www.python.org/dev/peps/pep-3151

in	this	module.

Changed	 in	 version	 3.3:	 This	 class	 was	 made	 a	 subclass	 of
OSError.

exception	socket.timeout
A	 subclass	 of	 OSError,	 this	 exception	 is	 raised	when	 a	 timeout
occurs	on	a	socket	which	has	had	timeouts	enabled	via	a	prior	call
to	 settimeout()	 (or	 implicitly	 through
setdefaulttimeout()).	 The	 accompanying	 value	 is	 a	 string
whose	value	is	currently	always	“timed	out”.

Changed	 in	 version	 3.3:	 This	 class	 was	 made	 a	 subclass	 of
OSError.

18.1.2.2.	Constants

socket.AF_UNIX

socket.AF_INET

socket.AF_INET6

These	 constants	 represent	 the	 address	 (and	 protocol)	 families,
used	for	the	first	argument	to	socket().	If	the	AF_UNIX	constant
is	 not	 defined	 then	 this	 protocol	 is	 unsupported.	 More	 constants
may	be	available	depending	on	the	system.

socket.SOCK_STREAM

socket.SOCK_DGRAM

socket.SOCK_RAW

socket.SOCK_RDM

socket.SOCK_SEQPACKET

These	constants	 represent	 the	socket	 types,	used	 for	 the	second
argument	 to	 socket().	 More	 constants	 may	 be	 available

depending	on	the	system.	(Only	SOCK_STREAM	and	SOCK_DGRAM
appear	to	be	generally	useful.)

socket.SOCK_CLOEXEC

socket.SOCK_NONBLOCK

These	two	constants,	 if	defined,	can	be	combined	with	the	socket
types	 and	 allow	 you	 to	 set	 some	 flags	 atomically	 (thus	 avoiding
possible	race	conditions	and	the	need	for	separate	calls).

See	also: 	Secure	File	Descriptor	Handling	for	a	more	thorough
explanation.

Availability:	Linux	>=	2.6.27.

New	in	version	3.2.

SO_*

socket.SOMAXCONN

MSG_*

SOL_*

SCM_*

IPPROTO_*

IPPORT_*

INADDR_*

IP_*

IPV6_*

EAI_*

AI_*

NI_*

TCP_*

Many	 constants	 of	 these	 forms,	 documented	 in	 the	 Unix
documentation	on	sockets	and/or	the	IP	protocol,	are	also	defined
in	the	socket	module.	They	are	generally	used	in	arguments	to	the

http://udrepper.livejournal.com/20407.html

setsockopt()	and	getsockopt()	methods	 of	 socket	 objects.
In	 most	 cases,	 only	 those	 symbols	 that	 are	 defined	 in	 the	 Unix
header	 files	 are	 defined;	 for	 a	 few	 symbols,	 default	 values	 are
provided.

socket.AF_CAN

socket.PF_CAN

SOL_CAN_*

CAN_*

Many	 constants	 of	 these	 forms,	 documented	 in	 the	 Linux
documentation,	are	also	defined	in	the	socket	module.

Availability:	Linux	>=	2.6.25.

New	in	version	3.3.

socket.CAN_BCM

CAN_BCM_*

CAN_BCM,	 in	 the	CAN	protocol	 family,	 is	 the	broadcast	manager
(BCM)	protocol.	Broadcast	manager	constants,	documented	in	the
Linux	documentation,	are	also	defined	in	the	socket	module.

Availability:	Linux	>=	2.6.25.

New	in	version	3.4.

socket.AF_RDS

socket.PF_RDS

socket.SOL_RDS

RDS_*

Many	 constants	 of	 these	 forms,	 documented	 in	 the	 Linux
documentation,	are	also	defined	in	the	socket	module.

Availability:	Linux	>=	2.6.30.

New	in	version	3.3.

SIO_*

RCVALL_*

Constants	 for	 Windows’	 WSAIoctl().	 The	 constants	 are	 used	 as
arguments	to	the	ioctl()	method	of	socket	objects.

TIPC_*

TIPC	 related	 constants,	 matching	 the	 ones	 exported	 by	 the	 C
socket	API.	See	the	TIPC	documentation	for	more	information.

socket.AF_LINK

Availability:	BSD,	OSX.

New	in	version	3.4.

socket.has_ipv6

This	 constant	 contains	a	boolean	 value	which	 indicates	 if	 IPv6	 is
supported	on	this	platform.

18.1.2.3.	Functions
18.1.2.3.1.	Creating	sockets

The	following	functions	all	create	socket	objects.

socket.socket(family=AF_INET,	type=SOCK_STREAM,	proto=0,
fileno=None)

Create	a	new	socket	 using	 the	given	address	 family,	 socket	 type
and	protocol	number.	The	address	family	should	be	AF_INET	(the
default),	 AF_INET6,	 AF_UNIX,	 AF_CAN	 or	 AF_RDS.	 The	 socket
type	 should	 be	 SOCK_STREAM	 (the	 default),	 SOCK_DGRAM,
SOCK_RAW	 or	 perhaps	 one	 of	 the	 other	 SOCK_	 constants.	 The

protocol	number	is	usually	zero	and	may	be	omitted	or	in	the	case
where	the	address	family	is	AF_CAN	the	protocol	should	be	one	of
CAN_RAW	or	CAN_BCM.

The	newly	created	socket	is	non-inheritable.

Changed	 in	 version	 3.3:	 The	 AF_CAN	 family	 was	 added.	 The
AF_RDS	family	was	added.

Changed	in	version	3.4:	The	CAN_BCM	protocol	was	added.

Changed	 in	 version	 3.4:	 The	 returned	 socket	 is	 now	 non-
inheritable.

socket.socketpair([family[,	type[,	proto]]])
Build	a	pair	 of	 connected	socket	objects	using	 the	given	address
family,	 socket	 type,	 and	 protocol	 number.	 Address	 family,	 socket
type,	 and	 protocol	 number	 are	 as	 for	 the	 socket()	 function
above.	 The	 default	 family	 is	 AF_UNIX	 if	 defined	 on	 the	 platform;
otherwise,	the	default	is	AF_INET.	Availability:	Unix.

The	newly	created	sockets	are	non-inheritable.

Changed	 in	version	3.2:	The	returned	socket	objects	now	support
the	whole	socket	API,	rather	than	a	subset.

Changed	 in	 version	 3.4:	 The	 returned	 sockets	 are	 now	 non-
inheritable.

socket.create_connection(address[,	timeout[,
source_address]])

Connect	 to	 a	TCP	 service	 listening	 on	 the	 Internet	address	 (a	 2-
tuple	 (host,	 port)),	 and	 return	 the	 socket	 object.	 This	 is	 a

higher-level	 function	 than	 socket.connect():	 if	host	 is	 a	 non-
numeric	 hostname,	 it	 will	 try	 to	 resolve	 it	 for	 both	 AF_INET	 and
AF_INET6,	 and	 then	 try	 to	 connect	 to	 all	 possible	 addresses	 in
turn	until	a	connection	succeeds.	This	makes	it	easy	to	write	clients
that	are	compatible	to	both	IPv4	and	IPv6.

Passing	the	optional	timeout	parameter	will	set	the	timeout	on	the
socket	 instance	 before	 attempting	 to	 connect.	 If	 no	 timeout	 is
supplied,	 the	 global	 default	 timeout	 setting	 returned	 by
getdefaulttimeout()	is	used.

If	supplied,	source_address	must	be	a	2-tuple	(host,	port)	 for
the	 socket	 to	 bind	 to	 as	 its	 source	 address	 before	 connecting.	 If
host	or	port	are	‘’	or	0	respectively	the	OS	default	behavior	will	be
used.

Changed	in	version	3.2:	source_address	was	added.

Changed	 in	 version	 3.2:	 support	 for	 the	 with	 statement	 was
added.

socket.fromfd(fd,	family,	type,	proto=0)
Duplicate	 the	 file	 descriptor	 fd	 (an	 integer	 as	 returned	 by	 a	 file
object’s	 fileno()	 method)	 and	 build	 a	 socket	 object	 from	 the
result.	Address	family,	socket	type	and	protocol	number	are	as	for
the	socket()	function	above.	The	file	descriptor	should	refer	to	a
socket,	 but	 this	 is	 not	 checked	—	 subsequent	 operations	 on	 the
object	may	fail	if	the	file	descriptor	is	invalid.	This	function	is	rarely
needed,	but	can	be	used	to	get	or	set	socket	options	on	a	socket
passed	to	a	program	as	standard	input	or	output	(such	as	a	server
started	by	the	Unix	inet	daemon).	The	socket	is	assumed	to	be	in
blocking	mode.

The	newly	created	socket	is	non-inheritable.

Changed	 in	 version	 3.4:	 The	 returned	 socket	 is	 now	 non-
inheritable.

socket.fromshare(data)
Instantiate	 a	 socket	 from	 data	 obtained	 from	 the
socket.share()	 method.	 The	 socket	 is	 assumed	 to	 be	 in
blocking	mode.

Availability:	Windows.

New	in	version	3.3.

socket.SocketType

This	is	a	Python	type	object	that	represents	the	socket	object	type.
It	is	the	same	as	type(socket(...)).

18.1.2.3.2.	Other	functions

The	socket	module	also	offers	various	network-related	services:

socket.getaddrinfo(host,	port,	family=0,	type=0,	proto=0,
flags=0)

Translate	 the	host/port	argument	 into	a	sequence	of	5-tuples	 that
contain	 all	 the	 necessary	 arguments	 for	 creating	 a	 socket
connected	 to	 that	 service.	 host	 is	 a	 domain	 name,	 a	 string
representation	 of	 an	 IPv4/v6	 address	 or	 None.	 port	 is	 a	 string
service	name	such	as	'http',	 a	numeric	port	 number	or	 None.
By	passing	None	as	the	value	of	host	and	port,	you	can	pass	NULL
to	the	underlying	C	API.

The	family,	type	and	proto	arguments	can	be	optionally	specified	in

order	 to	narrow	 the	 list	of	addresses	 returned.	Passing	zero	as	a
value	for	each	of	these	arguments	selects	the	full	range	of	results.
The	flags	argument	can	be	one	or	several	of	the	AI_*	constants,
and	 will	 influence	 how	 results	 are	 computed	 and	 returned.	 For
example,	 AI_NUMERICHOST	will	 disable	 domain	 name	 resolution
and	will	raise	an	error	if	host	is	a	domain	name.

The	function	returns	a	list	of	5-tuples	with	the	following	structure:

(family,	type,	proto,	canonname,	sockaddr)

In	these	tuples,	family,	type,	proto	are	all	integers	and	are	meant	to
be	passed	to	 the	socket()	 function.	canonname	will	be	a	string
representing	 the	canonical	name	of	 the	host	 if	AI_CANONNAME	 is
part	 of	 the	 flags	 argument;	 else	 canonname	 will	 be	 empty.
sockaddr	 is	 a	 tuple	 describing	 a	 socket	 address,	 whose	 format
depends	on	the	returned	family	(a	(address,	port)	2-tuple	 for
AF_INET,	 a	 (address,	port,	flow	info,	scope	id)	 4-
tuple	 for	 AF_INET6),	 and	 is	 meant	 to	 be	 passed	 to	 the
socket.connect()	method.

The	 following	 example	 fetches	 address	 information	 for	 a
hypothetical	 TCP	 connection	 to	 www.python.org	 on	 port	 80
(results	may	differ	on	your	system	if	IPv6	isn’t	enabled):

>>>	socket.getaddrinfo("www.python.org",	80,	proto

[(2,	1,	6,	'',	('82.94.164.162',	80)),

	(10,	1,	6,	'',	('2001:888:2000:d::a2',	80,	0,	0))]

Changed	 in	 version	 3.2:	 parameters	 can	 now	 be	 passed	 using
keyword	arguments.

socket.getfqdn([name])
Return	a	fully	qualified	domain	name	for	name.	If	name	 is	omitted
or	empty,	it	is	interpreted	as	the	local	host.	To	find	the	fully	qualified
name,	 the	hostname	returned	by	gethostbyaddr()	 is	checked,
followed	by	aliases	for	 the	host,	 if	available.	The	first	name	which
includes	 a	 period	 is	 selected.	 In	 case	 no	 fully	 qualified	 domain
name	is	available,	the	hostname	as	returned	by	gethostname()
is	returned.

socket.gethostbyname(hostname)
Translate	a	host	name	to	IPv4	address	format.	The	IPv4	address	is
returned	as	a	string,	such	as	'100.50.200.5'.	If	the	host	name
is	 an	 IPv4	 address	 itself	 it	 is	 returned	 unchanged.	 See
gethostbyname_ex()	 for	 a	 more	 complete	 interface.
gethostbyname()	 does	 not	 support	 IPv6	 name	 resolution,	 and
getaddrinfo()	 should	 be	 used	 instead	 for	 IPv4/v6	 dual	 stack
support.

socket.gethostbyname_ex(hostname)
Translate	a	host	name	to	IPv4	address	format,	extended	interface.
Return	a	triple	(hostname,	aliaslist,	ipaddrlist)	where
hostname	 is	 the	 primary	 host	 name	 responding	 to	 the	 given
ip_address,	 aliaslist	 is	 a	 (possibly	 empty)	 list	 of	 alternative	 host
names	 for	 the	 same	 address,	 and	 ipaddrlist	 is	 a	 list	 of	 IPv4
addresses	for	 the	same	interface	on	the	same	host	(often	but	not
always	 a	 single	 address).	 gethostbyname_ex()	 does	 not
support	 IPv6	 name	 resolution,	 and	 getaddrinfo()	 should	 be
used	instead	for	IPv4/v6	dual	stack	support.

socket.gethostname()
Return	a	string	containing	the	hostname	of	the	machine	where	the

Python	interpreter	is	currently	executing.

If	 you	 want	 to	 know	 the	 current	 machine’s	 IP	 address,	 you	 may
want	 to	use	gethostbyname(gethostname()).	This	operation
assumes	that	there	is	a	valid	address-to-host	mapping	for	the	host,
and	the	assumption	does	not	always	hold.

Note:	 gethostname()	 doesn’t	 always	 return	 the	 fully	 qualified
domain	name;	use	getfqdn()	(see	above).

socket.gethostbyaddr(ip_address)
Return	a	triple	(hostname,	aliaslist,	ipaddrlist)	where
hostname	 is	 the	 primary	 host	 name	 responding	 to	 the	 given
ip_address,	 aliaslist	 is	 a	 (possibly	 empty)	 list	 of	 alternative	 host
names	 for	 the	 same	 address,	 and	 ipaddrlist	 is	 a	 list	 of	 IPv4/v6
addresses	 for	 the	 same	 interface	 on	 the	 same	 host	 (most	 likely
containing	only	a	single	address).	To	find	the	fully	qualified	domain
name,	use	the	function	getfqdn().	gethostbyaddr()	supports
both	IPv4	and	IPv6.

socket.getnameinfo(sockaddr,	flags)
Translate	 a	 socket	 address	 sockaddr	 into	 a	 2-tuple	 (host,
port).	Depending	on	the	settings	of	flags,	the	result	can	contain	a
fully-qualified	 domain	 name	or	 numeric	 address	 representation	 in
host.	 Similarly,	port	 can	 contain	 a	 string	 port	 name	 or	 a	 numeric
port	number.

socket.getprotobyname(protocolname)
Translate	 an	 Internet	 protocol	 name	 (for	 example,	 'icmp')	 to	 a
constant	suitable	for	passing	as	the	(optional)	third	argument	to	the
socket()	 function.	 This	 is	 usually	 only	 needed	 for	 sockets
opened	in	“raw”	mode	(SOCK_RAW);	 for	the	normal	socket	modes,

the	 correct	 protocol	 is	 chosen	 automatically	 if	 the	 protocol	 is
omitted	or	zero.

socket.getservbyname(servicename[,	protocolname])
Translate	 an	 Internet	 service	 name	 and	 protocol	 name	 to	 a	 port
number	 for	 that	 service.	 The	 optional	 protocol	 name,	 if	 given,
should	be	'tcp'	or	'udp',	otherwise	any	protocol	will	match.

socket.getservbyport(port[,	protocolname])
Translate	an	Internet	port	number	and	protocol	name	to	a	service
name	for	that	service.	The	optional	protocol	name,	if	given,	should
be	'tcp'	or	'udp',	otherwise	any	protocol	will	match.

socket.ntohl(x)
Convert	32-bit	positive	integers	from	network	to	host	byte	order.	On
machines	where	 the	host	byte	order	 is	 the	same	as	network	byte
order,	 this	 is	 a	 no-op;	 otherwise,	 it	 performs	 a	 4-byte	 swap
operation.

socket.ntohs(x)
Convert	16-bit	positive	integers	from	network	to	host	byte	order.	On
machines	where	 the	host	byte	order	 is	 the	same	as	network	byte
order,	 this	 is	 a	 no-op;	 otherwise,	 it	 performs	 a	 2-byte	 swap
operation.

socket.htonl(x)
Convert	32-bit	positive	integers	from	host	to	network	byte	order.	On
machines	where	 the	host	byte	order	 is	 the	same	as	network	byte
order,	 this	 is	 a	 no-op;	 otherwise,	 it	 performs	 a	 4-byte	 swap
operation.

socket.htons(x)

Convert	16-bit	positive	integers	from	host	to	network	byte	order.	On
machines	where	 the	host	byte	order	 is	 the	same	as	network	byte
order,	 this	 is	 a	 no-op;	 otherwise,	 it	 performs	 a	 2-byte	 swap
operation.

socket.inet_aton(ip_string)
Convert	 an	 IPv4	 address	 from	 dotted-quad	 string	 format	 (for
example,	‘123.45.67.89’)	to	32-bit	packed	binary	format,	as	a	bytes
object	 four	 characters	 in	 length.	 This	 is	 useful	 when	 conversing
with	a	program	that	uses	the	standard	C	library	and	needs	objects
of	 type	 struct	 in_addr,	 which	 is	 the	 C	 type	 for	 the	 32-bit
packed	binary	this	function	returns.

inet_aton()	also	accepts	strings	with	 less	than	three	dots;	see
the	Unix	manual	page	inet(3)	for	details.

If	 the	 IPv4	 address	 string	 passed	 to	 this	 function	 is	 invalid,
OSError	will	be	raised.	Note	that	exactly	what	is	valid	depends	on
the	underlying	C	implementation	of	inet_aton().

inet_aton()	does	not	support	 IPv6,	and	inet_pton()	should
be	used	instead	for	IPv4/v6	dual	stack	support.

socket.inet_ntoa(packed_ip)
Convert	 a	 32-bit	 packed	 IPv4	 address	 (a	 bytes	 object	 four
characters	 in	 length)	 to	 its	 standard	 dotted-quad	 string
representation	 (for	 example,	 ‘123.45.67.89’).	 This	 is	 useful	 when
conversing	 with	 a	 program	 that	 uses	 the	 standard	 C	 library	 and
needs	objects	of	 type	struct	in_addr,	which	 is	 the	C	 type	 for
the	32-bit	packed	binary	data	this	function	takes	as	an	argument.

If	the	byte	sequence	passed	to	this	function	is	not	exactly	4	bytes
in	length,	OSError	will	be	raised.	inet_ntoa()	does	not	support

IPv6,	and	inet_ntop()	should	be	used	instead	for	 IPv4/v6	dual
stack	support.

socket.inet_pton(address_family,	ip_string)
Convert	 an	 IP	 address	 from	 its	 family-specific	 string	 format	 to	 a
packed,	binary	 format.	 inet_pton()	 is	 useful	when	 a	 library	 or
network	 protocol	 calls	 for	 an	 object	 of	 type	 struct	 in_addr
(similar	to	inet_aton())	or	struct	in6_addr.

Supported	 values	 for	address_family	 are	 currently	 AF_INET	 and
AF_INET6.	 If	 the	 IP	 address	 string	 ip_string	 is	 invalid,	 OSError
will	be	raised.	Note	that	exactly	what	is	valid	depends	on	both	the
value	 of	 address_family	 and	 the	 underlying	 implementation	 of
inet_pton().

Availability:	Unix	(maybe	not	all	platforms),	Windows.

Changed	in	version	3.4:	Windows	support	added

socket.inet_ntop(address_family,	packed_ip)
Convert	 a	 packed	 IP	address	 (a	 bytes	object	 of	 some	number	 of
characters)	to	its	standard,	family-specific	string	representation	(for
example,	 '7.10.0.5'	 or	 '5aef:2b::8').	 inet_ntop()	 is
useful	when	a	library	or	network	protocol	returns	an	object	of	type
struct	 in_addr	 (similar	 to	 inet_ntoa())	 or	 struct

in6_addr.

Supported	 values	 for	address_family	 are	 currently	 AF_INET	 and
AF_INET6.	If	the	string	packed_ip	 is	not	the	correct	length	for	the
specified	address	family,	ValueError	will	be	raised.	A	OSError
is	raised	for	errors	from	the	call	to	inet_ntop().

Availability:	Unix	(maybe	not	all	platforms),	Windows.

Changed	in	version	3.4:	Windows	support	added

socket.CMSG_LEN(length)
Return	the	total	length,	without	trailing	padding,	of	an	ancillary	data
item	with	associated	data	of	the	given	length.	This	value	can	often
be	used	as	the	buffer	size	for	recvmsg()	to	receive	a	single	item
of	 ancillary	 data,	 but	RFC	3542	 requires	 portable	 applications	 to
use	 CMSG_SPACE()	 and	 thus	 include	 space	 for	 padding,	 even
when	 the	 item	 will	 be	 the	 last	 in	 the	 buffer.	 Raises
OverflowError	 if	 length	 is	 outside	 the	 permissible	 range	 of
values.

Availability:	most	Unix	platforms,	possibly	others.

New	in	version	3.3.

socket.CMSG_SPACE(length)
Return	 the	 buffer	 size	 needed	 for	 recvmsg()	 to	 receive	 an
ancillary	data	 item	with	associated	data	of	 the	given	 length,	along
with	 any	 trailing	 padding.	 The	 buffer	 space	 needed	 to	 receive
multiple	 items	 is	 the	 sum	 of	 the	 CMSG_SPACE()	 values	 for	 their
associated	 data	 lengths.	 Raises	 OverflowError	 if	 length	 is
outside	the	permissible	range	of	values.

Note	 that	 some	 systems	 might	 support	 ancillary	 data	 without
providing	this	 function.	Also	note	 that	setting	 the	buffer	size	using
the	 results	 of	 this	 function	may	 not	 precisely	 limit	 the	 amount	 of
ancillary	 data	 that	 can	be	 received,	 since	additional	 data	may	be
able	to	fit	into	the	padding	area.

Availability:	most	Unix	platforms,	possibly	others.

http://tools.ietf.org/html/rfc3542.html

New	in	version	3.3.

socket.getdefaulttimeout()
Return	 the	 default	 timeout	 in	 seconds	 (float)	 for	 new	 socket
objects.	A	value	of	None	indicates	that	new	socket	objects	have	no
timeout.	When	 the	 socket	module	 is	 first	 imported,	 the	 default	 is
None.

socket.setdefaulttimeout(timeout)
Set	 the	 default	 timeout	 in	 seconds	 (float)	 for	 new	 socket	 objects.
When	the	socket	module	is	first	imported,	the	default	is	None.	See
settimeout()	for	possible	values	and	their	respective	meanings.

socket.sethostname(name)
Set	the	machine’s	hostname	to	name.	This	will	raise	a	OSError	if
you	don’t	have	enough	rights.

Availability:	Unix.

New	in	version	3.3.

socket.if_nameindex()
Return	 a	 list	 of	 network	 interface	 information	 (index	 int,	 name
string)	tuples.	OSError	if	the	system	call	fails.

Availability:	Unix.

New	in	version	3.3.

socket.if_nametoindex(if_name)
Return	 a	 network	 interface	 index	 number	 corresponding	 to	 an
interface	 name.	 OSError	 if	 no	 interface	 with	 the	 given	 name
exists.

Availability:	Unix.

New	in	version	3.3.

socket.if_indextoname(if_index)
Return	 a	 network	 interface	 name	 corresponding	 to	 a	 interface
index	number.	OSError	if	no	interface	with	the	given	index	exists.

Availability:	Unix.

New	in	version	3.3.

18.1.3.	Socket	Objects

Socket	objects	have	the	following	methods.	Except	 for	makefile(),
these	correspond	to	Unix	system	calls	applicable	to	sockets.

socket.accept()
Accept	a	connection.	The	socket	must	be	bound	to	an	address	and
listening	 for	 connections.	 The	 return	 value	 is	 a	 pair	 (conn,
address)	where	conn	is	a	new	socket	object	usable	to	send	and
receive	data	on	the	connection,	and	address	is	the	address	bound
to	the	socket	on	the	other	end	of	the	connection.

The	newly	created	socket	is	non-inheritable.

Changed	in	version	3.4:	The	socket	is	now	non-inheritable.

socket.bind(address)
Bind	the	socket	to	address.	The	socket	must	not	already	be	bound.
(The	 format	 of	 address	 depends	 on	 the	 address	 family	 —	 see
above.)

socket.close()
Mark	the	socket	closed.	The	underlying	system	resource	(e.g.	a	file
descriptor)	 is	also	 closed	when	all	 file	objects	 from	 makefile()
are	closed.	Once	that	happens,	all	future	operations	on	the	socket
object	 will	 fail.	 The	 remote	 end	 will	 receive	 no	 more	 data	 (after
queued	data	is	flushed).

Sockets	are	automatically	closed	when	they	are	garbage-collected,
but	 it	 is	 recommended	 to	 close()	 them	 explicitly,	 or	 to	 use	 a
with	statement	around	them.

Note: 	 close()	 releases	 the	 resource	 associated	 with	 a
connection	 but	 does	 not	 necessarily	 close	 the	 connection
immediately.	 If	 you	 want	 to	 close	 the	 connection	 in	 a	 timely
fashion,	call	shutdown()	before	close().

socket.connect(address)
Connect	 to	 a	 remote	 socket	 at	 address.	 (The	 format	 of	 address
depends	on	the	address	family	—	see	above.)

socket.connect_ex(address)
Like	connect(address),	but	return	an	error	 indicator	 instead	of
raising	an	exception	for	errors	returned	by	the	C-level	connect()
call	 (other	 problems,	 such	 as	 “host	 not	 found,”	 can	 still	 raise
exceptions).	 The	 error	 indicator	 is	 0	 if	 the	 operation	 succeeded,
otherwise	 the	 value	 of	 the	 errno	 variable.	 This	 is	 useful	 to
support,	for	example,	asynchronous	connects.

socket.detach()
Put	the	socket	object	 into	closed	state	without	actually	closing	the
underlying	file	descriptor.	The	file	descriptor	is	returned,	and	can	be
reused	for	other	purposes.

New	in	version	3.2.

socket.dup()
Duplicate	the	socket.

The	newly	created	socket	is	non-inheritable.

Changed	in	version	3.4:	The	socket	is	now	non-inheritable.

socket.fileno()

Return	 the	socket’s	 file	descriptor	 (a	small	 integer).	This	 is	useful
with	select.select().

Under	Windows	 the	small	 integer	 returned	by	 this	method	cannot
be	 used	 where	 a	 file	 descriptor	 can	 be	 used	 (such	 as
os.fdopen()).	Unix	does	not	have	this	limitation.

socket.get_inheritable()
Get	 the	 inheritable	 flag	 of	 the	 socket’s	 file	 descriptor	 or	 socket’s
handle:	 True	 if	 the	 socket	 can	 be	 inherited	 in	 child	 processes,
False	if	it	cannot.

New	in	version	3.4.

socket.getpeername()
Return	the	remote	address	to	which	the	socket	is	connected.	This
is	useful	to	find	out	the	port	number	of	a	remote	IPv4/v6	socket,	for
instance.	 (The	 format	 of	 the	 address	 returned	 depends	 on	 the
address	family	—	see	above.)	On	some	systems	this	function	is	not
supported.

socket.getsockname()
Return	the	socket’s	own	address.	This	is	useful	to	find	out	the	port
number	 of	 an	 IPv4/v6	 socket,	 for	 instance.	 (The	 format	 of	 the
address	returned	depends	on	the	address	family	—	see	above.)

socket.getsockopt(level,	optname[,	buflen])
Return	 the	 value	 of	 the	 given	 socket	 option	 (see	 the	 Unix	 man
page	getsockopt(2)).	The	 needed	 symbolic	 constants	 (SO_*	 etc.)
are	defined	in	this	module.	If	buflen	 is	absent,	an	integer	option	is
assumed	and	its	integer	value	is	returned	by	the	function.	If	buflen
is	 present,	 it	 specifies	 the	maximum	 length	 of	 the	 buffer	 used	 to

receive	the	option	in,	and	this	buffer	is	returned	as	a	bytes	object.	It
is	 up	 to	 the	 caller	 to	 decode	 the	 contents	 of	 the	 buffer	 (see	 the
optional	built-in	module	struct	 for	a	way	to	decode	C	structures
encoded	as	byte	strings).

socket.gettimeout()
Return	 the	 timeout	 in	 seconds	 (float)	 associated	 with	 socket
operations,	or	None	if	no	timeout	is	set.	This	reflects	the	last	call	to
setblocking()	or	settimeout().

socket.ioctl(control,	option)

Platform: Windows

The	ioctl()	method	is	a	limited	interface	to	the	WSAIoctl	system
interface.	 Please	 refer	 to	 the	 Win32	 documentation	 for	 more
information.

On	 other	 platforms,	 the	 generic	 fcntl.fcntl()	 and
fcntl.ioctl()	 functions	 may	 be	 used;	 they	 accept	 a	 socket
object	as	their	first	argument.

socket.listen(backlog)
Listen	for	connections	made	to	the	socket.	The	backlog	argument
specifies	the	maximum	number	of	queued	connections	and	should
be	at	least	0;	the	maximum	value	is	system-dependent	(usually	5),
the	minimum	value	is	forced	to	0.

socket.makefile(mode='r',	buffering=None,	*,	encoding=None,
errors=None,	newline=None)

Return	a	file	object	associated	with	the	socket.	The	exact	returned
type	 depends	 on	 the	 arguments	 given	 to	 makefile().	 These
arguments	are	interpreted	the	same	way	as	by	the	built-in	open()

http://msdn.microsoft.com/en-us/library/ms741621%28VS.85%29.aspx

function.

The	socket	must	be	 in	blocking	mode;	 it	 can	have	a	 timeout,	but
the	file	object’s	internal	buffer	may	end	up	in	a	inconsistent	state	if
a	timeout	occurs.

Closing	 the	 file	 object	 returned	 by	 makefile()	 won’t	 close	 the
original	 socket	 unless	all	 other	 file	objects	have	been	closed	and
socket.close()	has	been	called	on	the	socket	object.

Note: 	On	Windows,	the	file-like	object	created	by	makefile()
cannot	 be	 used	 where	 a	 file	 object	 with	 a	 file	 descriptor	 is
expected,	 such	 as	 the	 stream	 arguments	 of
subprocess.Popen().

socket.recv(bufsize[,	flags])
Receive	data	 from	 the	 socket.	 The	 return	 value	 is	 a	 bytes	 object
representing	 the	 data	 received.	 The	maximum	amount	 of	 data	 to
be	 received	at	once	 is	specified	by	bufsize.	See	 the	Unix	manual
page	 recv(2)	 for	 the	 meaning	 of	 the	 optional	 argument	 flags;	 it
defaults	to	zero.

Note: 	For	best	match	with	hardware	and	network	 realities,	 the
value	 of	 bufsize	 should	 be	 a	 relatively	 small	 power	 of	 2,	 for
example,	4096.

socket.recvfrom(bufsize[,	flags])
Receive	data	from	the	socket.	The	return	value	is	a	pair	(bytes,
address)	 where	 bytes	 is	 a	 bytes	 object	 representing	 the	 data
received	 and	 address	 is	 the	 address	 of	 the	 socket	 sending	 the
data.	See	 the	 Unix	 manual	 page	 recv(2)	 for	 the	 meaning	 of	 the

optional	argument	flags;	it	defaults	to	zero.	(The	format	of	address
depends	on	the	address	family	—	see	above.)

socket.recvmsg(bufsize[,	ancbufsize[,	flags]])
Receive	normal	data	(up	to	bufsize	bytes)	and	ancillary	data	 from
the	socket.	The	ancbufsize	argument	sets	 the	size	 in	bytes	of	 the
internal	 buffer	 used	 to	 receive	 the	 ancillary	 data;	 it	 defaults	 to	 0,
meaning	that	no	ancillary	data	will	be	received.	Appropriate	buffer
sizes	for	ancillary	data	can	be	calculated	using	CMSG_SPACE()	or
CMSG_LEN(),	and	 items	which	do	not	 fit	 into	 the	buffer	might	be
truncated	or	discarded.	The	 flags	argument	defaults	 to	0	and	has
the	same	meaning	as	for	recv().

The	 return	 value	 is	 a	 4-tuple:	 (data,	ancdata,	msg_flags,
address).	 The	 data	 item	 is	 a	 bytes	 object	 holding	 the	 non-
ancillary	data	received.	The	ancdata	 item	is	a	 list	of	zero	or	more
tuples	(cmsg_level,	cmsg_type,	cmsg_data)	 representing
the	 ancillary	 data	 (control	 messages)	 received:	 cmsg_level	 and
cmsg_type	are	 integers	specifying	the	protocol	 level	and	protocol-
specific	 type	 respectively,	 and	 cmsg_data	 is	 a	 bytes	 object
holding	the	associated	data.	The	msg_flags	item	is	the	bitwise	OR
of	various	flags	indicating	conditions	on	the	received	message;	see
your	 system	 documentation	 for	 details.	 If	 the	 receiving	 socket	 is
unconnected,	 address	 is	 the	 address	 of	 the	 sending	 socket,	 if
available;	otherwise,	its	value	is	unspecified.

On	some	systems,	sendmsg()	and	recvmsg()	 can	be	used	 to
pass	file	descriptors	between	processes	over	an	AF_UNIX	socket.
When	 this	 facility	 is	 used	 (it	 is	 often	 restricted	 to	 SOCK_STREAM
sockets),	recvmsg()	will	 return,	 in	 its	ancillary	data,	 items	of	 the
form	 (socket.SOL_SOCKET,	 socket.SCM_RIGHTS,	 fds),

where	fds	 is	a	bytes	object	 representing	the	new	file	descriptors
as	a	binary	array	of	the	native	C	int	type.	If	recvmsg()	raises	an
exception	after	the	system	call	returns,	 it	will	 first	attempt	to	close
any	file	descriptors	received	via	this	mechanism.

Some	systems	do	not	indicate	the	truncated	length	of	ancillary	data
items	which	have	been	only	partially	received.	If	an	item	appears	to
extend	 beyond	 the	 end	 of	 the	 buffer,	 recvmsg()	 will	 issue	 a
RuntimeWarning,	and	will	return	the	part	of	it	which	is	inside	the
buffer	 provided	 it	 has	 not	 been	 truncated	 before	 the	 start	 of	 its
associated	data.

On	 systems	 which	 support	 the	 SCM_RIGHTS	 mechanism,	 the
following	 function	 will	 receive	 up	 to	 maxfds	 file	 descriptors,
returning	 the	 message	 data	 and	 a	 list	 containing	 the	 descriptors
(while	 ignoring	 unexpected	 conditions	 such	 as	 unrelated	 control
messages	being	received).	See	also	sendmsg().

import	socket,	array

def	recv_fds(sock,	msglen,	maxfds):

				fds	=	array.array("i")			#	Array	of	ints

				msg,	ancdata,	flags,	addr	=	sock.recvmsg(msglen

				for	cmsg_level,	cmsg_type,	cmsg_data	in	ancdata

								if	(cmsg_level	==	socket.SOL_SOCKET	and	cmsg_type

												#	Append	data,	ignoring	any	truncated	integers	at	the	end.

												fds.fromstring(cmsg_data[:len(cmsg_data

				return	msg,	list(fds)

Availability:	most	Unix	platforms,	possibly	others.

New	in	version	3.3.

socket.recvmsg_into(buffers[,	ancbufsize[,	flags]])
Receive	normal	data	and	ancillary	data	from	the	socket,	behaving
as	 recvmsg()	 would,	 but	 scatter	 the	 non-ancillary	 data	 into	 a
series	 of	 buffers	 instead	 of	 returning	 a	 new	 bytes	 object.	 The
buffers	argument	must	be	an	iterable	of	objects	that	export	writable
buffers	 (e.g.	 bytearray	 objects);	 these	 will	 be	 filled	 with
successive	 chunks	 of	 the	 non-ancillary	 data	 until	 it	 has	 all	 been
written	or	there	are	no	more	buffers.	The	operating	system	may	set
a	limit	(sysconf()	value	SC_IOV_MAX)	on	the	number	of	buffers
that	 can	 be	 used.	 The	ancbufsize	 and	 flags	 arguments	 have	 the
same	meaning	as	for	recvmsg().

The	 return	 value	 is	 a	 4-tuple:	 (nbytes,	 ancdata,

msg_flags,	 address),	 where	 nbytes	 is	 the	 total	 number	 of
bytes	 of	 non-ancillary	 data	 written	 into	 the	 buffers,	 and	 ancdata,
msg_flags	and	address	are	the	same	as	for	recvmsg().

Example:

>>>	import	socket

>>>	s1,	s2	=	socket.socketpair()

>>>	b1	=	bytearray(b'----')

>>>	b2	=	bytearray(b'0123456789')

>>>	b3	=	bytearray(b'--------------')

>>>	s1.send(b'Mary	had	a	little	lamb')

22

>>>	s2.recvmsg_into([b1,	memoryview(b2)[2:9],	b3])

(22,	[],	0,	None)

>>>	[b1,	b2,	b3]

[bytearray(b'Mary'),	bytearray(b'01	had	a	9'),	bytearray(b'little	lamb---')]

Availability:	most	Unix	platforms,	possibly	others.

New	in	version	3.3.

socket.recvfrom_into(buffer[,	nbytes[,	flags]])
Receive	 data	 from	 the	 socket,	 writing	 it	 into	 buffer	 instead	 of
creating	 a	 new	 bytestring.	 The	 return	 value	 is	 a	 pair	 (nbytes,
address)	 where	 nbytes	 is	 the	 number	 of	 bytes	 received	 and
address	 is	 the	 address	 of	 the	 socket	 sending	 the	 data.	 See	 the
Unix	manual	page	recv(2)	for	the	meaning	of	the	optional	argument
flags;	 it	 defaults	 to	 zero.	 (The	 format	 of	address	 depends	 on	 the
address	family	—	see	above.)

socket.recv_into(buffer[,	nbytes[,	flags]])
Receive	up	to	nbytes	bytes	from	the	socket,	storing	the	data	into	a
buffer	 rather	 than	 creating	 a	 new	 bytestring.	 If	 nbytes	 is	 not
specified	(or	0),	receive	up	to	the	size	available	in	the	given	buffer.
Returns	the	number	of	bytes	received.	See	the	Unix	manual	page
recv(2)	for	the	meaning	of	the	optional	argument	flags;	it	defaults	to
zero.

socket.send(bytes[,	flags])
Send	 data	 to	 the	 socket.	 The	 socket	 must	 be	 connected	 to	 a
remote	socket.	The	optional	flags	argument	has	the	same	meaning
as	 for	 recv()	 above.	 Returns	 the	 number	 of	 bytes	 sent.
Applications	 are	 responsible	 for	 checking	 that	 all	 data	 has	 been
sent;	 if	 only	 some	 of	 the	 data	 was	 transmitted,	 the	 application
needs	 to	 attempt	 delivery	 of	 the	 remaining	 data.	 For	 further
information	 on	 this	 topic,	 consult	 the	 Socket	 Programming
HOWTO.

socket.sendall(bytes[,	flags])
Send	 data	 to	 the	 socket.	 The	 socket	 must	 be	 connected	 to	 a

remote	socket.	The	optional	flags	argument	has	the	same	meaning
as	 for	 recv()	 above.	 Unlike	 send(),	 this	method	 continues	 to
send	data	from	bytes	until	either	all	data	has	been	sent	or	an	error
occurs.	 None	 is	 returned	 on	 success.	 On	 error,	 an	 exception	 is
raised,	 and	 there	 is	 no	way	 to	 determine	 how	much	 data,	 if	 any,
was	successfully	sent.

socket.sendto(bytes,	address)
socket.sendto(bytes,	flags,	address)

Send	data	to	the	socket.	The	socket	should	not	be	connected	to	a
remote	socket,	since	the	destination	socket	is	specified	by	address.
The	optional	flags	argument	has	the	same	meaning	as	for	recv()
above.	Return	 the	 number	 of	 bytes	 sent.	 (The	 format	 of	address
depends	on	the	address	family	—	see	above.)

socket.sendmsg(buffers[,	ancdata[,	flags[,	address]]])
Send	normal	 and	ancillary	 data	 to	 the	 socket,	 gathering	 the	non-
ancillary	data	 from	a	 series	of	 buffers	and	 concatenating	 it	 into	a
single	message.	The	buffers	 argument	 specifies	 the	 non-ancillary
data	 as	 an	 iterable	 of	 buffer-compatible	 objects	 (e.g.	 bytes
objects);	 the	operating	system	may	set	a	 limit	 (sysconf()	value
SC_IOV_MAX)	 on	 the	 number	 of	 buffers	 that	 can	 be	 used.	 The
ancdata	 argument	 specifies	 the	ancillary	data	 (control	messages)
as	 an	 iterable	 of	 zero	 or	 more	 tuples	 (cmsg_level,

cmsg_type,	 cmsg_data),	 where	 cmsg_level	 and	 cmsg_type
are	integers	specifying	the	protocol	level	and	protocol-specific	type
respectively,	and	cmsg_data	 is	 a	 buffer-compatible	 object	 holding
the	 associated	 data.	 Note	 that	 some	 systems	 (in	 particular,
systems	without	CMSG_SPACE())	might	support	sending	only	one
control	message	per	call.	The	flags	argument	defaults	to	0	and	has
the	same	meaning	as	 for	send().	 If	address	 is	 supplied	and	not

None,	 it	 sets	 a	 destination	 address	 for	 the	message.	 The	 return
value	is	the	number	of	bytes	of	non-ancillary	data	sent.

The	following	function	sends	the	list	of	file	descriptors	 fds	over	an
AF_UNIX	 socket,	 on	 systems	 which	 support	 the	 SCM_RIGHTS
mechanism.	See	also	recvmsg().

import	socket,	array

def	send_fds(sock,	msg,	fds):

				return	sock.sendmsg([msg],	[(socket.SOL_SOCKET

Availability:	most	Unix	platforms,	possibly	others.

New	in	version	3.3.

socket.set_inheritable(inheritable)
Set	 the	 inheritable	 flag	 of	 the	 socket’s	 file	 descriptor	 or	 socket’s
handle.

New	in	version	3.4.

socket.setblocking(flag)
Set	blocking	or	non-blocking	mode	of	the	socket:	if	flag	is	false,	the
socket	is	set	to	non-blocking,	else	to	blocking	mode.

This	method	is	a	shorthand	for	certain	settimeout()	calls:

sock.setblocking(True)	 is	 equivalent	 to
sock.settimeout(None)

sock.setblocking(False)	 is	 equivalent	 to
sock.settimeout(0.0)

socket.settimeout(value)
Set	a	 timeout	on	blocking	socket	operations.	The	value	argument
can	be	a	nonnegative	floating	point	number	expressing	seconds,	or
None.	 If	a	non-zero	value	 is	given,	subsequent	socket	operations
will	 raise	 a	 timeout	 exception	 if	 the	 timeout	 period	 value	 has
elapsed	before	 the	operation	has	completed.	 If	 zero	 is	 given,	 the
socket	is	put	in	non-blocking	mode.	If	None	is	given,	the	socket	is
put	in	blocking	mode.

For	 further	 information,	 please	 consult	 the	 notes	 on	 socket
timeouts.

socket.setsockopt(level,	optname,	value)
Set	the	value	of	the	given	socket	option	(see	the	Unix	manual	page
setsockopt(2)).	The	needed	symbolic	constants	are	defined	 in	 the
socket	 module	 (SO_*	 etc.).	 The	 value	 can	 be	 an	 integer	 or	 a
bytes	object	representing	a	buffer.	In	the	 latter	case	it	 is	up	to	the
caller	to	ensure	that	the	bytestring	contains	the	proper	bits	(see	the
optional	built-in	module	struct	 for	a	way	to	encode	C	structures
as	bytestrings).

socket.shutdown(how)
Shut	 down	 one	 or	 both	 halves	 of	 the	 connection.	 If	 how	 is
SHUT_RD,	 further	 receives	 are	 disallowed.	 If	 how	 is	 SHUT_WR,
further	sends	are	disallowed.	 If	how	 is	SHUT_RDWR,	 further	sends
and	receives	are	disallowed.

socket.share(process_id)
Duplicate	a	socket	and	prepare	it	for	sharing	with	a	target	process.
The	target	process	must	be	provided	with	process_id.	The	resulting
bytes	object	can	then	be	passed	to	the	target	process	using	some
form	 of	 interprocess	 communication	 and	 the	 socket	 can	 be

recreated	there	using	fromshare().	Once	this	method	has	been
called,	it	is	safe	to	close	the	socket	since	the	operating	system	has
already	duplicated	it	for	the	target	process.

Availability:	Windows.

New	in	version	3.3.

Note	 that	 there	 are	 no	methods	 read()	 or	 write();	 use	 recv()
and	send()	without	flags	argument	instead.

Socket	objects	also	have	these	(read-only)	attributes	 that	correspond
to	the	values	given	to	the	socket	constructor.

socket.family

The	socket	family.

socket.type

The	socket	type.

socket.proto

The	socket	protocol.

18.1.4.	Notes	on	socket	timeouts

A	socket	object	can	be	in	one	of	three	modes:	blocking,	non-blocking,
or	 timeout.	Sockets	 are	 by	 default	 always	 created	 in	 blocking	mode,
but	this	can	be	changed	by	calling	setdefaulttimeout().

In	blocking	mode,	 operations	 block	 until	 complete	 or	 the	 system
returns	an	error	(such	as	connection	timed	out).
In	 non-blocking	 mode,	 operations	 fail	 (with	 an	 error	 that	 is
unfortunately	 system-dependent)	 if	 they	 cannot	 be	 completed
immediately:	 functions	 from	 the	 select	 can	 be	 used	 to	 know
when	and	whether	a	socket	is	available	for	reading	or	writing.
In	timeout	mode,	operations	fail	if	they	cannot	be	completed	within
the	 timeout	 specified	 for	 the	 socket	 (they	 raise	 a	 timeout
exception)	or	if	the	system	returns	an	error.

Note: 	At	the	operating	system	level,	sockets	in	timeout	mode	are
internally	set	in	non-blocking	mode.	Also,	the	blocking	and	timeout
modes	are	shared	between	file	descriptors	and	socket	objects	that
refer	to	the	same	network	endpoint.	This	implementation	detail	can
have	visible	consequences	if	e.g.	you	decide	to	use	the	fileno()
of	a	socket.

18.1.4.1.	Timeouts	and	the	connect	method

The	connect()	operation	 is	also	subject	 to	 the	timeout	setting,	and
in	 general	 it	 is	 recommended	 to	 call	 settimeout()	 before	 calling
connect()	 or	 pass	 a	 timeout	 parameter	 to
create_connection().	 However,	 the	 system	 network	 stack	 may
also	 return	 a	 connection	 timeout	 error	 of	 its	 own	 regardless	 of	 any
Python	socket	timeout	setting.

18.1.4.2.	Timeouts	and	the	accept	method

If	 getdefaulttimeout()	 is	 not	 None,	 sockets	 returned	 by	 the
accept()	 method	 inherit	 that	 timeout.	 Otherwise,	 the	 behaviour
depends	on	settings	of	the	listening	socket:

if	the	listening	socket	is	in	blocking	mode	or	in	timeout	mode,	 the
socket	returned	by	accept()	is	in	blocking	mode;
if	the	listening	socket	is	in	non-blocking	mode,	whether	the	socket
returned	 by	 accept()	 is	 in	 blocking	 or	 non-blocking	 mode	 is
operating	system-dependent.	If	you	want	to	ensure	cross-platform
behaviour,	it	is	recommended	you	manually	override	this	setting.

18.1.5.	Example

Here	are	four	minimal	example	programs	using	the	TCP/IP	protocol:	a
server	 that	 echoes	 all	 data	 that	 it	 receives	 back	 (servicing	 only	 one
client),	 and	 a	 client	 using	 it.	 Note	 that	 a	 server	 must	 perform	 the
sequence	 socket(),	 bind(),	 listen(),	 accept()	 (possibly
repeating	 the	 accept()	 to	 service	 more	 than	 one	 client),	 while	 a
client	 only	 needs	 the	 sequence	 socket(),	 connect().	 Also	 note
that	 the	 server	 does	 not	 sendall()/recv()	 on	 the	 socket	 it	 is
listening	on	but	on	the	new	socket	returned	by	accept().

The	first	two	examples	support	IPv4	only.

#	Echo	server	program

import	socket

HOST	=	''																	#	Symbolic	name	meaning	all	available	interfaces

PORT	=	50007														#	Arbitrary	non-privileged	port

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

s.bind((HOST,	PORT))

s.listen(1)

conn,	addr	=	s.accept()

print('Connected	by',	addr)

while	True:

				data	=	conn.recv(1024)

				if	not	data:	break

				conn.sendall(data)

conn.close()

#	Echo	client	program

import	socket

HOST	=	'daring.cwi.nl'				#	The	remote	host

PORT	=	50007														#	The	same	port	as	used	by	the	server

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

s.connect((HOST,	PORT))

s.sendall(b'Hello,	world')

data	=	s.recv(1024)

s.close()

print('Received',	repr(data))

The	 next	 two	 examples	 are	 identical	 to	 the	 above	 two,	 but	 support
both	 IPv4	 and	 IPv6.	 The	 server	 side	 will	 listen	 to	 the	 first	 address
family	 available	 (it	 should	 listen	 to	 both	 instead).	 On	 most	 of	 IPv6-
ready	 systems,	 IPv6	 will	 take	 precedence	 and	 the	 server	 may	 not
accept	 IPv4	 traffic.	 The	 client	 side	 will	 try	 to	 connect	 to	 the	 all
addresses	 returned	 as	 a	 result	 of	 the	 name	 resolution,	 and	 sends
traffic	to	the	first	one	connected	successfully.

#	Echo	server	program

import	socket

import	sys

HOST	=	None															#	Symbolic	name	meaning	all	available	interfaces

PORT	=	50007														#	Arbitrary	non-privileged	port

s	=	None

for	res	in	socket.getaddrinfo(HOST,	PORT,	socket.AF_UNSPEC

																														socket.SOCK_STREAM,	0,

				af,	socktype,	proto,	canonname,	sa	=	res

				try:

								s	=	socket.socket(af,	socktype,	proto)

				except	OSError	as	msg:

								s	=	None

								continue

				try:

								s.bind(sa)

								s.listen(1)

				except	OSError	as	msg:

								s.close()

								s	=	None

								continue

				break

if	s	is	None:

				print('could	not	open	socket')

				sys.exit(1)

conn,	addr	=	s.accept()

print('Connected	by',	addr)

while	True:

				data	=	conn.recv(1024)

				if	not	data:	break

				conn.send(data)

conn.close()

#	Echo	client	program

import	socket

import	sys

HOST	=	'daring.cwi.nl'				#	The	remote	host

PORT	=	50007														#	The	same	port	as	used	by	the	server

s	=	None

for	res	in	socket.getaddrinfo(HOST,	PORT,	socket.AF_UNSPEC

				af,	socktype,	proto,	canonname,	sa	=	res

				try:

								s	=	socket.socket(af,	socktype,	proto)

				except	OSError	as	msg:

								s	=	None

								continue

				try:

								s.connect(sa)

				except	OSError	as	msg:

								s.close()

								s	=	None

								continue

				break

if	s	is	None:

				print('could	not	open	socket')

				sys.exit(1)

s.sendall(b'Hello,	world')

data	=	s.recv(1024)

s.close()

print('Received',	repr(data))

The	 next	 example	 shows	 how	 to	write	 a	 very	 simple	 network	 sniffer
with	 raw	 sockets	 on	 Windows.	 The	 example	 requires	 administrator
privileges	to	modify	the	interface:

import	socket

#	the	public	network	interface

HOST	=	socket.gethostbyname(socket.gethostname())

#	create	a	raw	socket	and	bind	it	to	the	public	interface

s	=	socket.socket(socket.AF_INET,	socket.SOCK_RAW,	socket

s.bind((HOST,	0))

#	Include	IP	headers

s.setsockopt(socket.IPPROTO_IP,	socket.IP_HDRINCL,	1

#	receive	all	packages

s.ioctl(socket.SIO_RCVALL,	socket.RCVALL_ON)

#	receive	a	package

print(s.recvfrom(65565))

#	disabled	promiscuous	mode

s.ioctl(socket.SIO_RCVALL,	socket.RCVALL_OFF)

The	 last	 example	 shows	 how	 to	 use	 the	 socket	 interface	 to
communicate	to	a	CAN	network	using	the	raw	socket	protocol.	To	use

CAN	with	the	broadcast	manager	protocol	instead,	open	a	socket	with:

socket.socket(socket.AF_CAN,	socket.SOCK_DGRAM,	socket

After	binding	(CAN_RAW)	or	connecting	(CAN_BCM)	the	socket,	you	can
use	the	socket.send(),	and	the	socket.recv()	operations	(and
their	counterparts)	on	the	socket	object	as	usual.

This	example	might	require	special	priviledge:

import	socket

import	struct

#	CAN	frame	packing/unpacking	(see	'struct	can_frame'	in	<linux/can.h>)

can_frame_fmt	=	"=IB3x8s"

can_frame_size	=	struct.calcsize(can_frame_fmt)

def	build_can_frame(can_id,	data):

				can_dlc	=	len(data)

				data	=	data.ljust(8,	b'\x00')

				return	struct.pack(can_frame_fmt,	can_id,	can_dlc

def	dissect_can_frame(frame):

				can_id,	can_dlc,	data	=	struct.unpack(can_frame_fmt

				return	(can_id,	can_dlc,	data[:can_dlc])

#	create	a	raw	socket	and	bind	it	to	the	'vcan0'	interface

s	=	socket.socket(socket.AF_CAN,	socket.SOCK_RAW,	socket

s.bind(('vcan0',))

while	True:

				cf,	addr	=	s.recvfrom(can_frame_size)

				print('Received:	can_id=%x,	can_dlc=%x,	data=%s'

				try:

								s.send(cf)

				except	OSError:

								print('Error	sending	CAN	frame')

				try:

								s.send(build_can_frame(0x01,	b'\x01\x02\x03'

				except	OSError:

								print('Error	sending	CAN	frame')

Running	 an	 example	 several	 times	 with	 too	 small	 delay	 between
executions,	could	lead	to	this	error:

OSError:	[Errno	98]	Address	already	in	use

This	 is	 because	 the	 previous	 execution	 has	 left	 the	 socket	 in	 a
TIME_WAIT	state,	and	can’t	be	immediately	reused.

There	 is	 a	 socket	 flag	 to	 set,	 in	 order	 to	 prevent	 this,
socket.SO_REUSEADDR:

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

s.setsockopt(socket.SOL_SOCKET,	socket.SO_REUSEADDR,

s.bind((HOST,	PORT))

the	 SO_REUSEADDR	 flag	 tells	 the	 kernel	 to	 reuse	 a	 local	 socket	 in
TIME_WAIT	state,	without	waiting	for	its	natural	timeout	to	expire.

See	also: 	For	an	introduction	to	socket	programming	(in	C),	see	the
following	papers:

An	 Introductory	 4.3BSD	 Interprocess	 Communication	 Tutorial,
by	Stuart	Sechrest
An	Advanced	4.3BSD	Interprocess	Communication	Tutorial,	by
Samuel	J.	Leffler	et	al,

both	in	the	UNIX	Programmer’s	Manual,	Supplementary	Documents
1	 (sections	 PS1:7	 and	 PS1:8).	 The	 platform-specific	 reference
material	 for	 the	 various	 socket-related	 system	 calls	 are	 also	 a
valuable	 source	 of	 information	 on	 the	 details	 of	 socket	 semantics.
For	Unix,	refer	to	the	manual	pages;	for	Windows,	see	the	WinSock
(or	Winsock	2)	specification.	For	IPv6-ready	APIs,	readers	may	want
to	 refer	 to	RFC	 3493	 titled	 Basic	 Socket	 Interface	 Extensions	 for
IPv6.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://tools.ietf.org/html/rfc3493.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.2.	ssl	—	TLS/SSL	wrapper	for
socket	objects
Source	code:	Lib/ssl.py

This	module	provides	access	to	Transport	Layer	Security	(often	known
as	 “Secure	 Sockets	 Layer”)	 encryption	 and	 peer	 authentication
facilities	 for	 network	 sockets,	 both	 client-side	 and	 server-side.	 This
module	uses	 the	OpenSSL	 library.	 It	 is	 available	on	all	modern	Unix
systems,	Windows,	Mac	OS	X,	and	probably	additional	platforms,	as
long	as	OpenSSL	is	installed	on	that	platform.

Note: 	Some	behavior	may	be	platform	dependent,	since	calls	are
made	to	the	operating	system	socket	APIs.	The	installed	version	of
OpenSSL	may	also	cause	variations	in	behavior.	For	example,
TLSv1.1	and	TLSv1.2	come	with	openssl	version	1.0.1.

Warning: 	Don’t	use	this	module	without	reading	the	Security
considerations.	Doing	so	may	lead	to	a	false	sense	of	security,	as
the	default	settings	of	the	ssl	module	are	not	necessarily	appropriate
for	your	application.

This	section	documents	the	objects	and	functions	in	the	ssl	module;
for	 more	 general	 information	 about	 TLS,	 SSL,	 and	 certificates,	 the
reader	 is	 referred	 to	 the	 documents	 in	 the	 “See	Also”	 section	 at	 the
bottom.

This	module	provides	a	class,	ssl.SSLSocket,	which	is	derived	from
the	 socket.socket	 type,	 and	 provides	 a	 socket-like	 wrapper	 that

http://hg.python.org/cpython/file/3.4/Lib/ssl.py

also	encrypts	and	decrypts	the	data	going	over	the	socket	with	SSL.	It
supports	 additional	 methods	 such	 as	 getpeercert(),	 which
retrieves	 the	 certificate	 of	 the	 other	 side	 of	 the	 connection,	 and
cipher(),which	 retrieves	 the	 cipher	 being	 used	 for	 the	 secure
connection.

For	 more	 sophisticated	 applications,	 the	 ssl.SSLContext	 class
helps	manage	settings	and	certificates,	which	can	then	be	inherited	by
SSL	 sockets	 created	 through	 the	 SSLContext.wrap_socket()
method.

18.2.1.	Functions,	Constants,	and
Exceptions

exception	ssl.SSLError
Raised	to	signal	an	error	 from	the	underlying	SSL	 implementation
(currently	 provided	 by	 the	 OpenSSL	 library).	 This	 signifies	 some
problem	 in	 the	 higher-level	 encryption	 and	 authentication	 layer
that’s	 superimposed	 on	 the	 underlying	 network	 connection.	 This
error	 is	 a	 subtype	 of	 OSError.	 The	 error	 code	 and	message	 of
SSLError	instances	are	provided	by	the	OpenSSL	library.

Changed	 in	 version	 3.3:	 SSLError	 used	 to	 be	 a	 subtype	 of
socket.error.

library

A	 string	 mnemonic	 designating	 the	 OpenSSL	 submodule	 in
which	 the	 error	 occurred,	 such	 as	 SSL,	 PEM	 or	 X509.	 The
range	of	possible	values	depends	on	the	OpenSSL	version.

New	in	version	3.3.

reason

A	string	mnemonic	designating	 the	 reason	 this	error	occurred,
for	 example	 CERTIFICATE_VERIFY_FAILED.	 The	 range	 of
possible	values	depends	on	the	OpenSSL	version.

New	in	version	3.3.

exception	ssl.SSLZeroReturnError
A	subclass	of	 SSLError	 raised	when	 trying	 to	 read	or	write	and
the	SSL	connection	has	been	closed	cleanly.	Note	that	this	doesn’t

mean	that	the	underlying	transport	(read	TCP)	has	been	closed.

New	in	version	3.3.

exception	ssl.SSLWantReadError
A	 subclass	 of	 SSLError	 raised	 by	 a	 non-blocking	 SSL	 socket
when	 trying	 to	 read	 or	 write	 data,	 but	 more	 data	 needs	 to	 be
received	on	 the	 underlying	TCP	 transport	 before	 the	 request	 can
be	fulfilled.

New	in	version	3.3.

exception	ssl.SSLWantWriteError
A	 subclass	 of	 SSLError	 raised	 by	 a	 non-blocking	 SSL	 socket
when	trying	to	read	or	write	data,	but	more	data	needs	to	be	sent
on	the	underlying	TCP	transport	before	the	request	can	be	fulfilled.

New	in	version	3.3.

exception	ssl.SSLSyscallError
A	 subclass	 of	 SSLError	 raised	 when	 a	 system	 error	 was
encountered	 while	 trying	 to	 fulfill	 an	 operation	 on	 a	 SSL	 socket.
Unfortunately,	 there	 is	 no	 easy	 way	 to	 inspect	 the	 original	 errno
number.

New	in	version	3.3.

exception	ssl.SSLEOFError
A	 subclass	 of	 SSLError	 raised	 when	 the	 SSL	 connection	 has
been	terminated	abruptly.	Generally,	you	shouldn’t	try	to	reuse	the
underlying	transport	when	this	error	is	encountered.

New	in	version	3.3.

exception	ssl.CertificateError
Raised	 to	 signal	 an	 error	with	 a	 certificate	 (such	 as	mismatching
hostname).	Certificate	errors	detected	by	OpenSSL,	 though,	 raise
an	SSLError.

18.2.1.1.	Socket	creation

The	 following	 function	allows	 for	standalone	socket	creation.	Starting
from	 Python	 3.2,	 it	 can	 be	 more	 flexible	 to	 use
SSLContext.wrap_socket()	instead.

ssl.wrap_socket(sock,	keyfile=None,	certfile=None,
server_side=False,	cert_reqs=CERT_NONE,	ssl_version={see	docs},
ca_certs=None,	do_handshake_on_connect=True,
suppress_ragged_eofs=True,	ciphers=None)

Takes	 an	 instance	 sock	 of	 socket.socket,	 and	 returns	 an
instance	 of	 ssl.SSLSocket,	 a	 subtype	 of	 socket.socket,
which	wraps	the	underlying	socket	 in	an	SSL	context.	sock	must
be	a	SOCK_STREAM	socket;	other	socket	types	are	unsupported.

For	 client-side	 sockets,	 the	 context	 construction	 is	 lazy;	 if	 the
underlying	socket	 isn’t	connected	yet,	the	context	construction	will
be	performed	after	connect()	is	called	on	the	socket.	For	server-
side	sockets,	if	the	socket	has	no	remote	peer,	it	is	assumed	to	be
a	 listening	 socket,	 and	 the	 server-side	 SSL	 wrapping	 is
automatically	 performed	 on	 client	 connections	 accepted	 via	 the
accept()	method.	wrap_socket()	may	raise	SSLError.

The	 keyfile	 and	 certfile	 parameters	 specify	 optional	 files
which	contain	a	 certificate	 to	be	used	 to	 identify	 the	 local	 side	of
the	 connection.	 See	 the	 discussion	 of	 Certificates	 for	 more
information	on	how	the	certificate	is	stored	in	the	certfile.

The	 parameter	 server_side	 is	 a	 boolean	 which	 identifies
whether	 server-side	 or	 client-side	 behavior	 is	 desired	 from	 this
socket.

The	 parameter	 cert_reqs	 specifies	 whether	 a	 certificate	 is
required	 from	the	other	side	of	 the	connection,	and	whether	 it	will
be	 validated	 if	 provided.	 It	 must	 be	 one	 of	 the	 three	 values
CERT_NONE	(certificates	ignored),	CERT_OPTIONAL	(not	required,
but	 validated	 if	 provided),	 or	 CERT_REQUIRED	 (required	 and
validated).	 If	 the	value	of	 this	parameter	 is	not	 CERT_NONE,	 then
the	ca_certs	parameter	must	point	to	a	file	of	CA	certificates.

The	 ca_certs	 file	 contains	 a	 set	 of	 concatenated	 “certification
authority”	 certificates,	 which	 are	 used	 to	 validate	 certificates
passed	from	the	other	end	of	the	connection.	See	the	discussion	of
Certificates	 for	 more	 information	 about	 how	 to	 arrange	 the
certificates	in	this	file.

The	parameter	ssl_version	specifies	which	version	of	 the	SSL
protocol	to	use.	Typically,	 the	server	chooses	a	particular	protocol
version,	and	 the	client	must	adapt	 to	 the	server’s	choice.	Most	of
the	 versions	 are	 not	 interoperable	 with	 the	 other	 versions.	 If	 not
specified,	 the	default	 is	PROTOCOL_SSLv23;	 it	 provides	 the	most
compatibility	with	other	versions.

Here’s	a	 table	showing	which	versions	 in	a	client	 (down	 the	side)
can	connect	to	which	versions	in	a	server	(along	the	top):

client	/
server SSLv2 SSLv3 SSLv23 TLSv1 TLSv1.1 TLSv1.2

SSLv2 yes no yes no no no

SSLv3 no yes yes no no no

SSLv23 yes no yes no no no

TLSv1 no no yes yes no no

TLSv1.1 no no yes no yes no

TLSv1.2 no no yes no no yes

Note: 	Which	 connections	 succeed	 will	 vary	 depending	 on	 the
version	 of	 OpenSSL.	 For	 instance,	 in	 some	 older	 versions	 of
OpenSSL	(such	as	0.9.7l	on	OS	X	10.4),	an	SSLv2	client	could
not	 connect	 to	 an	 SSLv23	 server.	 Another	 example:	 beginning
with	OpenSSL	 1.0.0,	 an	 SSLv23	 client	 will	 not	 actually	 attempt
SSLv2	 connections	 unless	 you	 explicitly	 enable	SSLv2	 ciphers;
for	 example,	 you	 might	 specify	 "ALL"	 or	 "SSLv2"	 as	 the
ciphers	parameter	to	enable	them.

The	 ciphers	 parameter	 sets	 the	 available	 ciphers	 for	 this	 SSL
object.	It	should	be	a	string	in	the	OpenSSL	cipher	list	format.

The	 parameter	 do_handshake_on_connect	 specifies	 whether
to	 do	 the	 SSL	 handshake	 automatically	 after	 doing	 a
socket.connect(),	or	whether	the	application	program	will	call
it	 explicitly,	 by	 invoking	 the	 SSLSocket.do_handshake()

method.	 Calling	 SSLSocket.do_handshake()	 explicitly	 gives
the	 program	 control	 over	 the	 blocking	 behavior	 of	 the	 socket	 I/O
involved	in	the	handshake.

The	 parameter	 suppress_ragged_eofs	 specifies	 how	 the
SSLSocket.recv()	method	should	signal	unexpected	EOF	from
the	other	end	of	the	connection.	If	specified	as	True	(the	default),
it	 returns	 a	 normal	 EOF	 (an	 empty	 bytes	 object)	 in	 response	 to
unexpected	 EOF	 errors	 raised	 from	 the	 underlying	 socket;	 if
False,	it	will	raise	the	exceptions	back	to	the	caller.

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

Changed	in	version	3.2:	New	optional	argument	ciphers.

18.2.1.2.	Context	creation

A	 convenience	 function	 helps	 create	 SSLContext	 objects	 for
common	purposes.

ssl.create_default_context(purpose=Purpose.SERVER_AUTH
cafile=None,	capath=None,	cadata=None)

Return	 a	 new	 SSLContext	 object	 with	 default	 settings	 for	 the
given	purpose.	The	 settings	are	 chosen	by	 the	 ssl	module,	 and
usually	 represent	 a	 higher	 security	 level	 than	 when	 calling	 the
SSLContext	constructor	directly.

cafile,	capath,	cadata	represent	optional	CA	certificates	to	trust	for
certificate	 verification,	 as	 in
SSLContext.load_verify_locations().	 If	 all	 three	 are
None,	 this	 function	 can	 choose	 to	 trust	 the	 system’s	 default	 CA
certificates	instead.

The	 settings	 in	 Python	 3.4	 are:	 PROTOCOL_TLSv1	 with	 high
encryption	cipher	suites	without	RC4	and	without	unauthenticated
cipher	 suites.	 Passing	 SERVER_AUTH	 as	 purpose	 sets
verify_mode	 to	 CERT_REQUIRED	 and	 either	 loads	 CA
certificates	(when	at	least	one	of	cafile,	capath	or	cadata	 is	given)
or	 uses	 SSLContext.load_default_certs()	 to	 load	 default
CA	certificates.

Note: 	 The	 protocol,	 options,	 cipher	 and	 other	 settings	 may
change	 to	 more	 restrictive	 values	 anytime	 without	 prior
deprecation.	 The	 values	 represent	 a	 fair	 balance	 between

compatibility	and	security.
If	 your	 application	 needs	 specific	 settings,	 you	 should	 create	 a
SSLContext	and	apply	the	settings	yourself.

New	in	version	3.4.

18.2.1.3.	Random	generation

ssl.RAND_bytes(num)
Returns	 num	 cryptographically	 strong	 pseudo-random	 bytes.
Raises	 an	 SSLError	 if	 the	 PRNG	 has	 not	 been	 seeded	 with
enough	 data	 or	 if	 the	 operation	 is	 not	 supported	 by	 the	 current
RAND	method.	RAND_status()	can	be	used	to	check	the	status
of	the	PRNG	and	RAND_add()	can	be	used	to	seed	the	PRNG.

Read	 the	 Wikipedia	 article,	 Cryptographically	 secure
pseudorandom	 number	 generator	 (CSPRNG),	 to	 get	 the
requirements	of	a	cryptographically	generator.

New	in	version	3.3.

ssl.RAND_pseudo_bytes(num)
Returns	 (bytes,	 is_cryptographic):	 bytes	 are	num	 pseudo-random
bytes,	 is_cryptographic	 is	 True	 if	 the	 bytes	 generated	 are
cryptographically	 strong.	Raises	an	 SSLError	 if	 the	 operation	 is
not	supported	by	the	current	RAND	method.

Generated	 pseudo-random	byte	 sequences	will	 be	 unique	 if	 they
are	of	sufficient	length,	but	are	not	necessarily	unpredictable.	They
can	 be	 used	 for	 non-cryptographic	 purposes	 and	 for	 certain
purposes	 in	 cryptographic	 protocols,	 but	 usually	 not	 for	 key
generation	etc.

http://en.wikipedia.org/wiki/Cryptographically_secure_pseudorandom_number_generator

New	in	version	3.3.

ssl.RAND_status()
Returns	 True	 if	 the	 SSL	 pseudo-random	 number	 generator	 has
been	 seeded	 with	 ‘enough’	 randomness,	 and	 False	 otherwise.
You	 can	 use	 ssl.RAND_egd()	 and	 ssl.RAND_add()	 to
increase	the	randomness	of	the	pseudo-random	number	generator.

ssl.RAND_egd(path)
If	 you	 are	 running	 an	 entropy-gathering	 daemon	 (EGD)
somewhere,	and	path	is	the	pathname	of	a	socket	connection	open
to	 it,	 this	will	 read	256	bytes	of	 randomness	 from	the	socket,	and
add	it	to	the	SSL	pseudo-random	number	generator	to	increase	the
security	of	generated	secret	keys.	This	 is	 typically	only	necessary
on	systems	without	better	sources	of	randomness.

See	 http://egd.sourceforge.net/	 or	 http://prngd.sourceforge.net/	 for
sources	of	entropy-gathering	daemons.

ssl.RAND_add(bytes,	entropy)
Mixes	 the	 given	 bytes	 into	 the	 SSL	 pseudo-random	 number
generator.	The	parameter	entropy	(a	float)	is	a	lower	bound	on	the
entropy	contained	in	string	(so	you	can	always	use	0.0).	See	RFC
1750	for	more	information	on	sources	of	entropy.

18.2.1.4.	Certificate	handling

ssl.match_hostname(cert,	hostname)
Verify	 that	 cert	 (in	 decoded	 format	 as	 returned	 by
SSLSocket.getpeercert())	matches	the	given	hostname.	The
rules	applied	are	those	for	checking	the	identity	of	HTTPS	servers
as	outlined	in	RFC	2818	and	RFC	6125,	except	that	IP	addresses

http://egd.sourceforge.net/
http://prngd.sourceforge.net/
http://tools.ietf.org/html/rfc1750.html
http://tools.ietf.org/html/rfc2818.html
http://tools.ietf.org/html/rfc6125.html

are	 not	 currently	 supported.	 In	 addition	 to	 HTTPS,	 this	 function
should	 be	 suitable	 for	 checking	 the	 identity	 of	 servers	 in	 various
SSL-based	protocols	such	as	FTPS,	IMAPS,	POPS	and	others.

CertificateError	is	raised	on	failure.	On	success,	the	function
returns	nothing:

>>>	cert	=	{'subject':	((('commonName',	'example.com'

>>>	ssl.match_hostname(cert,	"example.com")

>>>	ssl.match_hostname(cert,	"example.org")

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

		File	"/home/py3k/Lib/ssl.py",	line	130,	in	match_hostname

ssl.CertificateError:	hostname	'example.org'	doesn't	match	'example.com'

New	in	version	3.2.

Changed	 in	 version	 3.3.3:	 The	 function	 now	 follows	 RFC	 6125,
section	 6.4.3	 and	 does	 neither	 match	 multiple	 wildcards	 (e.g.
..com	 or	 *a*.example.org)	 nor	 a	 wildcard	 inside	 an
internationalized	domain	names	(IDN)	fragment.	IDN	A-labels	such
as	 www*.xn--pthon-kva.org	 are	 still	 supported,	 but
x*.python.org	no	longer	matches	xn--tda.python.org.

ssl.cert_time_to_seconds(timestring)
Returns	 a	 floating-point	 value	 containing	 a	 normal	 seconds-after-
the-epoch	 time	 value,	 given	 the	 time-string	 representing	 the
“notBefore”	or	“notAfter”	date	from	a	certificate.

Here’s	an	example:

>>>	import	ssl

>>>	ssl.cert_time_to_seconds("May		9	00:00:00	2007	GMT"

http://tools.ietf.org/html/rfc6125.html

1178694000.0

>>>	import	time

>>>	time.ctime(ssl.cert_time_to_seconds("May		9	00:00:00	2007	GMT"

'Wed	May		9	00:00:00	2007'

ssl.get_server_certificate(addr,
ssl_version=PROTOCOL_SSLv3,	ca_certs=None)

Given	 the	 address	 addr	 of	 an	 SSL-protected	 server,	 as	 a
(hostname,	port-number)	pair,	 fetches	 the	server’s	certificate,	and
returns	it	as	a	PEM-encoded	string.	 If	ssl_version	 is	specified,
uses	that	version	of	 the	SSL	protocol	 to	attempt	to	connect	to	the
server.	If	ca_certs	is	specified,	it	should	be	a	file	containing	a	list
of	 root	 certificates,	 the	 same	 format	 as	 used	 for	 the	 same
parameter	in	wrap_socket().	The	call	will	attempt	to	validate	the
server	certificate	against	that	set	of	root	certificates,	and	will	 fail	 if
the	validation	attempt	fails.

Changed	in	version	3.3:	This	function	is	now	IPv6-compatible.

ssl.DER_cert_to_PEM_cert(DER_cert_bytes)
Given	 a	 certificate	 as	 a	 DER-encoded	 blob	 of	 bytes,	 returns	 a
PEM-encoded	string	version	of	the	same	certificate.

ssl.PEM_cert_to_DER_cert(PEM_cert_string)
Given	 a	 certificate	 as	 an	 ASCII	 PEM	 string,	 returns	 a	 DER-
encoded	sequence	of	bytes	for	that	same	certificate.

ssl.get_default_verify_paths()
Returns	a	named	tuple	with	paths	to	OpenSSL’s	default	cafile	and
capath.	 The	 paths	 are	 the	 same	 as	 used	 by
SSLContext.set_default_verify_paths().	 The	 return
value	is	a	named	tuple	DefaultVerifyPaths:

cafile	 -	 resolved	 path	 to	 cafile	 or	 None	 if	 the	 file	 doesn’t
exist,
capath	 -	 resolved	 path	 to	 capath	 or	 None	 if	 the	 directory
doesn’t	exist,
openssl_cafile_env	 -	 OpenSSL’s	 environment	 key	 that
points	to	a	cafile,
openssl_cafile	-	hard	coded	path	to	a	cafile,
openssl_capath_env	 -	 OpenSSL’s	 environment	 key	 that
points	to	a	capath,
openssl_capath	-	hard	coded	path	to	a	capath	directory

New	in	version	3.4.

ssl.enum_certificates(store_name)
Retrieve	certificates	from	Windows’	system	cert	store.	store_name
may	be	one	of	CA,	ROOT	or	MY.	Windows	may	provide	additional
cert	stores,	too.

The	 function	 returns	 a	 list	 of	 (cert_bytes,	 encoding_type,	 trust)
tuples.	The	encoding_type	specifies	 the	encoding	of	cert_bytes.	 It
is	 either	 x509_asn	 for	 X.509	 ASN.1	 data	 or	 pkcs_7_asn	 for
PKCS#7	ASN.1	data.	Trust	specifies	the	purpose	of	the	certificate
as	a	set	of	OIDS	or	exactly	True	if	the	certificate	is	trustworthy	for
all	purposes.

Example:

>>>	ssl.enum_certificates("CA")

[(b'data...',	'x509_asn',	{'1.3.6.1.5.5.7.3.1',	'1.3.6.1.5.5.7.3.2'}),

	(b'data...',	'x509_asn',	True)]

Availability:	Windows.

New	in	version	3.4.

ssl.enum_crls(store_name)
Retrieve	CRLs	from	Windows’	system	cert	store.	store_name	may
be	one	of	CA,	ROOT	or	MY.	Windows	may	provide	additional	 cert
stores,	too.

The	 function	 returns	 a	 list	 of	 (cert_bytes,	 encoding_type,	 trust)
tuples.	The	encoding_type	specifies	 the	encoding	of	cert_bytes.	 It
is	 either	 x509_asn	 for	 X.509	 ASN.1	 data	 or	 pkcs_7_asn	 for
PKCS#7	ASN.1	data.

Availability:	Windows.

New	in	version	3.4.

18.2.1.5.	Constants

ssl.CERT_NONE

Possible	 value	 for	 SSLContext.verify_mode,	 or	 the
cert_reqs	 parameter	 to	 wrap_socket().	 In	 this	 mode	 (the
default),	no	certificates	will	be	 required	 from	 the	other	side	of	 the
socket	connection.	If	a	certificate	is	received	from	the	other	end,	no
attempt	to	validate	it	is	made.

See	the	discussion	of	Security	considerations	below.

ssl.CERT_OPTIONAL

Possible	 value	 for	 SSLContext.verify_mode,	 or	 the
cert_reqs	 parameter	 to	 wrap_socket().	 In	 this	 mode	 no
certificates	 will	 be	 required	 from	 the	 other	 side	 of	 the	 socket
connection;	 but	 if	 they	 are	 provided,	 validation	 will	 be	 attempted

and	an	SSLError	will	be	raised	on	failure.

Use	 of	 this	 setting	 requires	 a	 valid	 set	 of	 CA	 certificates	 to	 be
passed,	either	 to	SSLContext.load_verify_locations()	or
as	a	value	of	the	ca_certs	parameter	to	wrap_socket().

ssl.CERT_REQUIRED

Possible	 value	 for	 SSLContext.verify_mode,	 or	 the
cert_reqs	 parameter	 to	 wrap_socket().	 In	 this	 mode,
certificates	 are	 required	 from	 the	 other	 side	 of	 the	 socket
connection;	 an	 SSLError	 will	 be	 raised	 if	 no	 certificate	 is
provided,	or	if	its	validation	fails.

Use	 of	 this	 setting	 requires	 a	 valid	 set	 of	 CA	 certificates	 to	 be
passed,	either	 to	SSLContext.load_verify_locations()	or
as	a	value	of	the	ca_certs	parameter	to	wrap_socket().

ssl.VERIFY_DEFAULT

Possible	 value	 for	 SSLContext.verify_flags.	 In	 this	 mode,
certificate	 revocation	 lists	 (CRLs)	 are	 not	 checked.	 By	 default
OpenSSL	does	neither	require	nor	verify	CRLs.

New	in	version	3.4.

ssl.VERIFY_CRL_CHECK_LEAF

Possible	 value	 for	 SSLContext.verify_flags.	 In	 this	 mode,
only	 the	 peer	 cert	 is	 check	 but	 non	 of	 the	 intermediate	 CA
certificates.	The	mode	 requires	a	 valid	CRL	 that	 is	 signed	by	 the
peer	 cert’s	 issuer	 (its	 direct	 ancestor	CA).	 If	 no	 proper	 has	 been
loaded	 SSLContext.load_verify_locations,	 validation	 will
fail.

New	in	version	3.4.

ssl.VERIFY_CRL_CHECK_CHAIN

Possible	 value	 for	 SSLContext.verify_flags.	 In	 this	 mode,
CRLs	of	all	certificates	in	the	peer	cert	chain	are	checked.

New	in	version	3.4.

ssl.VERIFY_X509_STRICT

Possible	 value	 for	 SSLContext.verify_flags	 to	 disable
workarounds	for	broken	X.509	certificates.

New	in	version	3.4.

ssl.PROTOCOL_SSLv2

Selects	SSL	version	2	as	the	channel	encryption	protocol.

This	 protocol	 is	 not	 available	 if	 OpenSSL	 is	 compiled	 with
OPENSSL_NO_SSL2	flag.

Warning: 	 SSL	 version	 2	 is	 insecure.	 Its	 use	 is	 highly
discouraged.

ssl.PROTOCOL_SSLv23

Selects	SSL	version	2	or	3	as	the	channel	encryption	protocol.	This
is	a	setting	to	use	with	servers	for	maximum	compatibility	with	the
other	 end	 of	 an	 SSL	 connection,	 but	 it	 may	 cause	 the	 specific
ciphers	chosen	for	the	encryption	to	be	of	fairly	low	quality.

ssl.PROTOCOL_SSLv3

Selects	 SSL	 version	 3	 as	 the	 channel	 encryption	 protocol.	 For
clients,	this	is	the	maximally	compatible	SSL	variant.

ssl.PROTOCOL_TLSv1

Selects	TLS	version	1.0	as	the	channel	encryption	protocol.

ssl.PROTOCOL_TLSv1_1

Selects	 TLS	 version	 1.1	 as	 the	 channel	 encryption	 protocol.
Available	only	with	openssl	version	1.0.1+.

New	in	version	3.4.

ssl.PROTOCOL_TLSv1_2

Selects	TLS	version	1.2	as	the	channel	encryption	protocol.	This	is
the	 most	 modern	 version,	 and	 probably	 the	 best	 choice	 for
maximum	protection,	if	both	sides	can	speak	it.	Available	only	with
openssl	version	1.0.1+.

New	in	version	3.4.

ssl.OP_ALL

Enables	 workarounds	 for	 various	 bugs	 present	 in	 other	 SSL
implementations.	 This	 option	 is	 set	 by	 default.	 It	 does	 not
necessarily	 set	 the	 same	 flags	 as	 OpenSSL’s	 SSL_OP_ALL
constant.

New	in	version	3.2.

ssl.OP_NO_SSLv2

Prevents	 an	 SSLv2	 connection.	 This	 option	 is	 only	 applicable	 in
conjunction	 with	 PROTOCOL_SSLv23.	 It	 prevents	 the	 peers	 from
choosing	SSLv2	as	the	protocol	version.

New	in	version	3.2.

ssl.OP_NO_SSLv3

Prevents	 an	 SSLv3	 connection.	 This	 option	 is	 only	 applicable	 in
conjunction	 with	 PROTOCOL_SSLv23.	 It	 prevents	 the	 peers	 from
choosing	SSLv3	as	the	protocol	version.

New	in	version	3.2.

ssl.OP_NO_TLSv1

Prevents	 a	 TLSv1	 connection.	 This	 option	 is	 only	 applicable	 in
conjunction	 with	 PROTOCOL_SSLv23.	 It	 prevents	 the	 peers	 from
choosing	TLSv1	as	the	protocol	version.

New	in	version	3.2.

ssl.OP_NO_TLSv1_1

Prevents	 a	 TLSv1.1	 connection.	 This	 option	 is	 only	 applicable	 in
conjunction	 with	 PROTOCOL_SSLv23.	 It	 prevents	 the	 peers	 from
choosing	 TLSv1.1	 as	 the	 protocol	 version.	 Available	 only	 with
openssl	version	1.0.1+.

New	in	version	3.4.

ssl.OP_NO_TLSv1_2

Prevents	 a	 TLSv1.2	 connection.	 This	 option	 is	 only	 applicable	 in
conjunction	 with	 PROTOCOL_SSLv23.	 It	 prevents	 the	 peers	 from
choosing	 TLSv1.2	 as	 the	 protocol	 version.	 Available	 only	 with
openssl	version	1.0.1+.

New	in	version	3.4.

ssl.OP_CIPHER_SERVER_PREFERENCE

Use	 the	 server’s	 cipher	 ordering	 preference,	 rather	 than	 the
client’s.	 This	 option	 has	 no	 effect	 on	 client	 sockets	 and	 SSLv2
server	sockets.

New	in	version	3.3.

ssl.OP_SINGLE_DH_USE

Prevents	re-use	of	the	same	DH	key	for	distinct	SSL	sessions.	This

improves	 forward	 secrecy	 but	 requires	 more	 computational
resources.	This	option	only	applies	to	server	sockets.

New	in	version	3.3.

ssl.OP_SINGLE_ECDH_USE

Prevents	re-use	of	the	same	ECDH	key	for	distinct	SSL	sessions.
This	 improves	 forward	 secrecy	 but	 requires	 more	 computational
resources.	This	option	only	applies	to	server	sockets.

New	in	version	3.3.

ssl.OP_NO_COMPRESSION

Disable	 compression	 on	 the	 SSL	 channel.	 This	 is	 useful	 if	 the
application	protocol	supports	its	own	compression	scheme.

This	option	is	only	available	with	OpenSSL	1.0.0	and	later.

New	in	version	3.3.

ssl.HAS_ECDH

Whether	the	OpenSSL	library	has	built-in	support	for	Elliptic	Curve-
based	Diffie-Hellman	key	exchange.	This	should	be	true	unless	the
feature	was	explicitly	disabled	by	the	distributor.

New	in	version	3.3.

ssl.HAS_SNI

Whether	 the	 OpenSSL	 library	 has	 built-in	 support	 for	 the	Server
Name	Indication	extension	to	 the	SSLv3	and	TLSv1	protocols	(as
defined	 in	 RFC	 4366).	 When	 true,	 you	 can	 use	 the
server_hostname	argument	to	SSLContext.wrap_socket().

New	in	version	3.2.

http://tools.ietf.org/html/rfc4366.html

ssl.HAS_NPN

Whether	the	OpenSSL	library	has	built-in	support	for	Next	Protocol
Negotiation	as	described	in	the	NPN	draft	specification.	When	true,
you	 can	 use	 the	 SSLContext.set_npn_protocols()	method
to	advertise	which	protocols	you	want	to	support.

New	in	version	3.3.

ssl.CHANNEL_BINDING_TYPES

List	of	supported	TLS	channel	binding	types.	Strings	in	this	list	can
be	 used	 as	 arguments	 to
SSLSocket.get_channel_binding().

New	in	version	3.3.

ssl.OPENSSL_VERSION

The	version	string	of	the	OpenSSL	library	loaded	by	the	interpreter:

>>>	ssl.OPENSSL_VERSION

'OpenSSL	0.9.8k	25	Mar	2009'

New	in	version	3.2.

ssl.OPENSSL_VERSION_INFO

A	tuple	of	 five	 integers	representing	version	 information	about	 the
OpenSSL	library:

>>>	ssl.OPENSSL_VERSION_INFO

(0,	9,	8,	11,	15)

New	in	version	3.2.

ssl.OPENSSL_VERSION_NUMBER

The	 raw	 version	 number	 of	 the	 OpenSSL	 library,	 as	 a	 single

http://tools.ietf.org/html/draft-agl-tls-nextprotoneg

integer:

>>>	ssl.OPENSSL_VERSION_NUMBER

9470143

>>>	hex(ssl.OPENSSL_VERSION_NUMBER)

'0x9080bf'

New	in	version	3.2.

ssl.ALERT_DESCRIPTION_HANDSHAKE_FAILURE

ssl.ALERT_DESCRIPTION_INTERNAL_ERROR

ALERT_DESCRIPTION_*

Alert	Descriptions	from	RFC	5246	and	others.	The	IANA	TLS	Alert
Registry	contains	 this	 list	and	references	to	 the	RFCs	where	their
meaning	is	defined.

Used	 as	 the	 return	 value	 of	 the	 callback	 function	 in
SSLContext.set_servername_callback().

New	in	version	3.4.

Purpose.SERVER_AUTH

Option	 for	 create_default_context()	 and
SSLContext.load_default_certs().	 This	 value	 indicates
that	 the	 context	 may	 be	 used	 to	 authenticate	 Web	 servers
(therefore,	it	will	be	used	to	create	client-side	sockets).

New	in	version	3.4.

Purpose.CLIENT_AUTH

Option	 for	 create_default_context()	 and
SSLContext.load_default_certs().	 This	 value	 indicates
that	 the	 context	 may	 be	 used	 to	 authenticate	 Web	 clients
(therefore,	it	will	be	used	to	create	server-side	sockets).

http://tools.ietf.org/html/rfc5246.html
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml#tls-parameters-6

New	in	version	3.4.

18.2.2.	SSL	Sockets

SSL	sockets	provide	the	following	methods	of	Socket	Objects:

accept()

bind()

close()

connect()

detach()

fileno()

getpeername(),	getsockname()
getsockopt(),	setsockopt()
gettimeout(),	settimeout(),	setblocking()
listen()

makefile()

recv(),	 recv_into()	 (but	 passing	 a	 non-zero	 flags

argument	is	not	allowed)
send(),	sendall()	(with	the	same	limitation)
shutdown()

However,	since	the	SSL	(and	TLS)	protocol	has	 its	own	framing	atop
of	TCP,	 the	SSL	sockets	abstraction	can,	 in	certain	respects,	diverge
from	the	specification	of	normal,	OS-level	sockets.	See	especially	 the
notes	on	non-blocking	sockets.

SSL	sockets	also	have	the	following	additional	methods	and	attributes:

SSLSocket.do_handshake()
Perform	the	SSL	setup	handshake.

Changed	 in	 version	 3.4:	 The	 handshake	 method	 also	 performce
match_hostname()	when	the	check_hostname	attribute	of	the

socket’s	context	is	true.

SSLSocket.getpeercert(binary_form=False)
If	 there	 is	 no	 certificate	 for	 the	 peer	 on	 the	 other	 end	 of	 the
connection,	return	None.	 If	 the	SSL	handshake	hasn’t	been	done
yet,	raise	ValueError.

If	 the	 binary_form	 parameter	 is	 False,	 and	 a	 certificate	 was
received	from	the	peer,	this	method	returns	a	dict	instance.	If	the
certificate	was	not	validated,	the	dict	is	empty.	If	the	certificate	was
validated,	 it	 returns	 a	 dict	 with	 several	 keys,	 amongst	 them
subject	 (the	 principal	 for	 which	 the	 certificate	 was	 issued)	 and
issuer	 (the	 principal	 issuing	 the	 certificate).	 If	 a	 certificate
contains	 an	 instance	 of	 the	 Subject	 Alternative	 Name	 extension
(see	RFC	3280),	there	will	also	be	a	subjectAltName	key	in	the
dictionary.

The	 subject	 and	 issuer	 fields	 are	 tuples	 containing	 the
sequence	 of	 relative	 distinguished	 names	 (RDNs)	 given	 in	 the
certificate’s	data	structure	for	the	respective	fields,	and	each	RDN
is	a	sequence	of	name-value	pairs.	Here	is	a	real-world	example:

{'issuer':	((('countryName',	'IL'),),

												(('organizationName',	'StartCom	Ltd.'),),

												(('organizationalUnitName',

														'Secure	Digital	Certificate	Signing'

												(('commonName',

														'StartCom	Class	2	Primary	Intermediate	Server	CA'

	'notAfter':	'Nov	22	08:15:19	2013	GMT',

	'notBefore':	'Nov	21	03:09:52	2011	GMT',

	'serialNumber':	'95F0',

	'subject':	((('description',	'571208-SLe257oHY9fVQ07Z'

													(('countryName',	'US'),),

													(('stateOrProvinceName',	'California'

http://tools.ietf.org/html/rfc3280.html

													(('localityName',	'San	Francisco'),),

													(('organizationName',	'Electronic	Frontier	Foundation,	Inc.'

													(('commonName',	'*.eff.org'),),

													(('emailAddress',	'hostmaster@eff.org'

	'subjectAltName':	(('DNS',	'*.eff.org'),	('DNS',	

	'version':	3}

Note: 	To	 validate	a	 certificate	 for	 a	 particular	 service,	 you	 can
use	the	match_hostname()	function.

If	 the	 binary_form	 parameter	 is	 True,	 and	 a	 certificate	 was
provided,	this	method	returns	the	DER-encoded	form	of	the	entire
certificate	 as	 a	 sequence	 of	 bytes,	 or	 None	 if	 the	 peer	 did	 not
provide	 a	 certificate.	 Whether	 the	 peer	 provides	 a	 certificate
depends	on	the	SSL	socket’s	role:

for	 a	 client	 SSL	 socket,	 the	 server	 will	 always	 provide	 a
certificate,	regardless	of	whether	validation	was	required;
for	a	server	SSL	socket,	the	client	will	only	provide	a	certificate
when	requested	by	the	server;	therefore	getpeercert()	will
return	 None	 if	 you	 used	 CERT_NONE	 (rather	 than
CERT_OPTIONAL	or	CERT_REQUIRED).

Changed	in	version	3.2:	The	returned	dictionary	includes	additional
items	such	as	issuer	and	notBefore.

Changed	 in	 version	 3.4:	 ValueError	 is	 raised	 when	 the
handshake	 isn’t	 done.	The	 returned	dictionary	 includes	additional
X509v3	 extension	 items	 such	 as	 crlDistributionPoints,
caIssuers	and	OCSP	URIs.

SSLSocket.cipher()
Returns	 a	 three-value	 tuple	 containing	 the	 name	 of	 the	 cipher

being	 used,	 the	 version	 of	 the	 SSL	 protocol	 that	 defines	 its	 use,
and	 the	 number	 of	 secret	 bits	 being	 used.	 If	 no	 connection	 has
been	established,	returns	None.

SSLSocket.compression()
Return	the	compression	algorithm	being	used	as	a	string,	or	None
if	the	connection	isn’t	compressed.

If	 the	 higher-level	 protocol	 supports	 its	 own	 compression
mechanism,	 you	 can	 use	 OP_NO_COMPRESSION	 to	 disable	 SSL-
level	compression.

New	in	version	3.3.

SSLSocket.get_channel_binding(cb_type="tls-unique")
Get	channel	binding	data	for	current	connection,	as	a	bytes	object.
Returns	 None	 if	 not	 connected	 or	 the	 handshake	 has	 not	 been
completed.

The	 cb_type	 parameter	 allow	 selection	 of	 the	 desired	 channel
binding	 type.	 Valid	 channel	 binding	 types	 are	 listed	 in	 the
CHANNEL_BINDING_TYPES	 list.	 Currently	 only	 the	 ‘tls-unique’
channel	binding,	defined	by	RFC	5929,	is	supported.	ValueError
will	be	raised	if	an	unsupported	channel	binding	type	is	requested.

New	in	version	3.3.

SSLSocket.selected_npn_protocol()
Returns	 the	 protocol	 that	 was	 selected	 during	 the	 TLS/SSL
handshake.	 If	 SSLContext.set_npn_protocols()	 was	 not
called,	 or	 if	 the	 other	 party	 does	 not	 support	 NPN,	 or	 if	 the
handshake	has	not	yet	happened,	this	will	return	None.

http://tools.ietf.org/html/rfc5929.html

New	in	version	3.3.

SSLSocket.unwrap()
Performs	 the	SSL	 shutdown	 handshake,	which	 removes	 the	TLS
layer	from	the	underlying	socket,	and	returns	the	underlying	socket
object.	 This	 can	 be	 used	 to	 go	 from	 encrypted	 operation	 over	 a
connection	to	unencrypted.	The	returned	socket	should	always	be
used	 for	 further	 communication	 with	 the	 other	 side	 of	 the
connection,	rather	than	the	original	socket.

SSLSocket.context

The	 SSLContext	 object	 this	 SSL	 socket	 is	 tied	 to.	 If	 the	 SSL
socket	was	created	using	 the	 top-level	wrap_socket()	 function
(rather	 than	 SSLContext.wrap_socket()),	 this	 is	 a	 custom
context	object	created	for	this	SSL	socket.

New	in	version	3.2.

18.2.3.	SSL	Contexts

New	in	version	3.2.

An	 SSL	 context	 holds	 various	 data	 longer-lived	 than	 single	 SSL
connections,	 such	 as	 SSL	 configuration	 options,	 certificate(s)	 and
private	 key(s).	 It	 also	manages	 a	 cache	 of	SSL	 sessions	 for	 server-
side	 sockets,	 in	 order	 to	 speed	 up	 repeated	 connections	 from	 the
same	clients.

class	ssl.SSLContext(protocol)
Create	a	new	SSL	context.	You	must	pass	protocol	which	must	be
one	 of	 the	 PROTOCOL_*	 constants	 defined	 in	 this	 module.
PROTOCOL_SSLv23	 is	 currently	 recommended	 for	 maximum
interoperability.

See	also: 	create_default_context()	lets	the	ssl	module
choose	security	settings	for	a	given	purpose.

SSLContext	objects	have	the	following	methods	and	attributes:

SSLContext.cert_store_stats()
Get	statistics	about	quantities	of	loaded	X.509	certificates,	count	of
X.509	 certificates	 flagged	 as	 CA	 certificates	 and	 certificate
revocation	lists	as	dictionary.

Example	for	a	context	with	one	CA	cert	and	one	other	cert:

>>>	context.cert_store_stats()

{'crl':	0,	'x509_ca':	1,	'x509':	2}

New	in	version	3.4.

SSLContext.load_cert_chain(certfile,	keyfile=None,
password=None)

Load	 a	 private	 key	 and	 the	 corresponding	 certificate.	 The	certfile
string	must	be	the	path	to	a	single	file	in	PEM	format	containing	the
certificate	 as	 well	 as	 any	 number	 of	 CA	 certificates	 needed	 to
establish	the	certificate’s	authenticity.	The	keyfile	string,	 if	present,
must	 point	 to	 a	 file	 containing	 the	 private	 key	 in.	 Otherwise	 the
private	key	will	be	taken	from	certfile	as	well.	See	the	discussion	of
Certificates	for	more	information	on	how	the	certificate	is	stored	in
the	certfile.

The	 password	 argument	 may	 be	 a	 function	 to	 call	 to	 get	 the
password	for	decrypting	the	private	key.	It	will	only	be	called	if	the
private	 key	 is	 encrypted	 and	 a	 password	 is	 necessary.	 It	 will	 be
called	with	 no	 arguments,	 and	 it	 should	 return	 a	 string,	 bytes,	 or
bytearray.	If	the	return	value	is	a	string	it	will	be	encoded	as	UTF-8
before	using	 it	 to	 decrypt	 the	 key.	Alternatively	a	 string,	 bytes,	 or
bytearray	 value	 may	 be	 supplied	 directly	 as	 the	 password
argument.	It	will	be	ignored	if	the	private	key	is	not	encrypted	and
no	password	is	needed.

If	 the	 password	 argument	 is	 not	 specified	 and	 a	 password	 is
required,	 OpenSSL’s	 built-in	 password	 prompting	mechanism	will
be	used	to	interactively	prompt	the	user	for	a	password.

An	SSLError	 is	 raised	 if	 the	 private	 key	 doesn’t	match	with	 the
certificate.

Changed	in	version	3.3:	New	optional	argument	password.

SSLContext.load_default_certs(purpose=Purpose.SERVER_AUTH
Load	a	set	of	default	 “certification	authority”	 (CA)	certificates	 from
default	 locations.	On	Windows	 it	 loads	CA	certs	 from	 the	CA	 and

ROOT	 system	 stores.	 On	 other	 systems	 it	 calls
SSLContext.set_default_verify_paths().	 In	 the	 future
the	method	may	load	CA	certificates	from	other	locations,	too.

The	purpose	flag	specifies	what	kind	of	CA	certificates	are	loaded.
The	 default	 settings	 Purpose.SERVER_AUTH	 loads	 certificates,
that	 are	 flagged	 and	 trusted	 for	 TLS	 web	 server	 authentication
(client	 side	 sockets).	 Purpose.CLIENT_AUTH	 loads	 CA
certificates	for	client	certificate	verification	on	the	server	side.

New	in	version	3.4.

SSLContext.load_verify_locations(cafile=None,
capath=None,	cadata=None)

Load	 a	 set	 of	 “certification	 authority”	 (CA)	 certificates	 used	 to
validate	other	peers’	certificates	when	verify_mode	is	other	than
CERT_NONE.	At	least	one	of	cafile	or	capath	must	be	specified.

This	method	 can	 also	 load	 certification	 revocation	 lists	 (CRLs)	 in
PEM	 or	 or	 DER	 format.	 In	 order	 to	 make	 use	 of	 CRLs,
SSLContext.verify_flags	must	be	configured	properly.

The	cafile	string,	if	present,	is	the	path	to	a	file	of	concatenated	CA
certificates	 in	 PEM	 format.	 See	 the	 discussion	 of	Certificates	 for
more	information	about	how	to	arrange	the	certificates	in	this	file.

The	capath	 string,	 if	present,	 is	 the	path	 to	a	directory	containing
several	 CA	 certificates	 in	 PEM	 format,	 following	 an	 OpenSSL
specific	layout.

The	cadata	 object,	 if	 present,	 is	 either	 an	 ASCII	 string	 of	 one	 or
more	 PEM-encoded	 certificates	 or	 a	 bytes-like	 object	 of	 DER-
encoded	 certificates.	 Like	 with	 capath	 extra	 lines	 around	 PEM-

http://www.openssl.org/docs/ssl/SSL_CTX_load_verify_locations.html

encoded	certificates	are	ignored	but	at	least	one	certificate	must	be
present.

Changed	in	version	3.4:	New	optional	argument	cadata

SSLContext.get_ca_certs(binary_form=False)
Get	a	 list	of	 loaded	 “certification	authority”	 (CA)	certificates.	 If	 the
binary_form	parameter	is	False	each	list	entry	is	a	dict	like	the
output	 of	 SSLSocket.getpeercert().	 Otherwise	 the	 method
returns	 a	 list	 of	DER-encoded	 certificates.	 The	 returned	 list	 does
not	 contain	 certificates	 from	 capath	 unless	 a	 certificate	 was
requested	and	loaded	by	a	SSL	connection.

New	in	version	3.4.

SSLContext.set_default_verify_paths()
Load	a	set	of	default	“certification	authority”	(CA)	certificates	from	a
filesystem	 path	 defined	 when	 building	 the	 OpenSSL	 library.
Unfortunately,	 there’s	 no	 easy	 way	 to	 know	whether	 this	method
succeeds:	 no	 error	 is	 returned	 if	 no	 certificates	 are	 to	 be	 found.
When	 the	 OpenSSL	 library	 is	 provided	 as	 part	 of	 the	 operating
system,	though,	it	is	likely	to	be	configured	properly.

SSLContext.set_ciphers(ciphers)
Set	 the	 available	 ciphers	 for	 sockets	 created	 with	 this	 context.	 It
should	be	a	string	 in	 the	OpenSSL	cipher	 list	 format.	 If	 no	 cipher
can	 be	 selected	 (because	 compile-time	 options	 or	 other
configuration	 forbids	 use	 of	 all	 the	 specified	 ciphers),	 an
SSLError	will	be	raised.

Note: 	when	connected,	 the	SSLSocket.cipher()	method	of
SSL	sockets	will	give	the	currently	selected	cipher.

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

SSLContext.set_npn_protocols(protocols)
Specify	 which	 protocols	 the	 socket	 should	 advertise	 during	 the
SSL/TLS	 handshake.	 It	 should	 be	 a	 list	 of	 strings,	 like
['http/1.1',	 'spdy/2'],	 ordered	 by	 preference.	 The
selection	of	a	protocol	will	happen	during	the	handshake,	and	will
play	out	according	to	the	NPN	draft	specification.	After	a	successful
handshake,	 the	 SSLSocket.selected_npn_protocol()

method	will	return	the	agreed-upon	protocol.

This	 method	 will	 raise	 NotImplementedError	 if	 HAS_NPN	 is
False.

New	in	version	3.3.

SSLContext.set_servername_callback(server_name_callback
Register	a	callback	function	that	will	be	called	after	the	TLS	Client
Hello	 handshake	 message	 has	 been	 received	 by	 the	 SSL/TLS
server	when	the	TLS	client	specifies	a	server	name	indication.	The
server	 name	 indication	 mechanism	 is	 specified	 in	 RFC	 6066
section	3	-	Server	Name	Indication.

Only	 one	 callback	 can	 be	 set	 per	 SSLContext.	 If
server_name_callback	 is	 None	 then	 the	 callback	 is	 disabled.
Calling	 this	 function	a	subsequent	 time	will	disable	 the	previously
registered	callback.

The	 callback	 function,	 server_name_callback,	 will	 be	 called	 with
three	arguments;	the	first	being	the	ssl.SSLSocket,	the	second
is	 a	 string	 that	 represents	 the	 server	 name	 that	 the	 client	 is
intending	to	communicate	(or	None	if	the	TLS	Client	Hello	does	not
contain	 a	 server	 name)	 and	 the	 third	 argument	 is	 the	 original
SSLContext.	 The	 server	 name	 argument	 is	 the	 IDNA	 decoded

http://tools.ietf.org/html/draft-agl-tls-nextprotoneg
http://tools.ietf.org/html/rfc6066.html

server	name.

A	 typical	use	of	 this	callback	 is	 to	change	 the	ssl.SSLSocket‘s
SSLSocket.context	 attribute	 to	 a	 new	 object	 of	 type
SSLContext	 representing	 a	 certificate	 chain	 that	 matches	 the
server	name.

Due	 to	 the	 early	 negotiation	 phase	 of	 the	 TLS	 connection,	 only
limited	 methods	 and	 attributes	 are	 usable	 like
SSLSocket.selected_npn_protocol()	 and
SSLSocket.context.	 SSLSocket.getpeercert(),
SSLSocket.getpeercert(),	 SSLSocket.cipher()	 and
SSLSocket.compress()	 methods	 require	 that	 the	 TLS
connection	 has	 progressed	 beyond	 the	 TLS	 Client	 Hello	 and
therefore	will	not	contain	return	meaningful	values	nor	can	they	be
called	safely.

The	server_name_callback	function	must	return	None	to	allow	the
TLS	negotiation	to	continue.	If	a	TLS	failure	is	required,	a	constant
ALERT_DESCRIPTION_*	can	be	returned.	Other	return	values	will
result	 in	 a	 TLS	 fatal	 error	 with
ALERT_DESCRIPTION_INTERNAL_ERROR.

If	 there	 is	 a	 IDNA	 decoding	 error	 on	 the	 server	 name,	 the	 TLS
connection	 will	 terminate	 with	 an
ALERT_DESCRIPTION_INTERNAL_ERROR	 fatal	 TLS	 alert
message	to	the	client.

If	 an	 exception	 is	 raised	 from	 the	 server_name_callback	 function
the	TLS	connection	will	 terminate	with	a	 fatal	TLS	alert	message
ALERT_DESCRIPTION_HANDSHAKE_FAILURE.

This	 method	 will	 raise	 NotImplementedError	 if	 the	 OpenSSL
library	had	OPENSSL_NO_TLSEXT	defined	when	it	was	built.

New	in	version	3.4.

SSLContext.load_dh_params(dhfile)
Load	 the	 key	 generation	 parameters	 for	 Diffie-Helman	 (DH)	 key
exchange.	 Using	 DH	 key	 exchange	 improves	 forward	 secrecy	 at
the	expense	of	computational	resources	(both	on	the	server	and	on
the	 client).	 The	 dhfile	 parameter	 should	 be	 the	 path	 to	 a	 file
containing	DH	parameters	in	PEM	format.

This	setting	doesn’t	apply	 to	client	sockets.	You	can	also	use	 the
OP_SINGLE_DH_USE	option	to	further	improve	security.

New	in	version	3.3.

SSLContext.set_ecdh_curve(curve_name)
Set	the	curve	name	for	Elliptic	Curve-based	Diffie-Hellman	(ECDH)
key	exchange.	ECDH	 is	significantly	 faster	 than	 regular	DH	while
arguably	as	secure.	The	curve_name	parameter	should	be	a	string
describing	 a	 well-known	 elliptic	 curve,	 for	 example	 prime256v1
for	a	widely	supported	curve.

This	setting	doesn’t	apply	 to	client	sockets.	You	can	also	use	 the
OP_SINGLE_ECDH_USE	option	to	further	improve	security.

This	method	is	not	available	if	HAS_ECDH	is	False.

New	in	version	3.3.

See	also:
SSL/TLS	&	Perfect	Forward	Secrecy

http://vincent.bernat.im/en/blog/2011-ssl-perfect-forward-secrecy.html

Vincent	Bernat.

SSLContext.wrap_socket(sock,	server_side=False,
do_handshake_on_connect=True,	suppress_ragged_eofs=True,
server_hostname=None)

Wrap	 an	 existing	 Python	 socket	 sock	 and	 return	 an	 SSLSocket
object.	sock	must	be	a	SOCK_STREAM	 socket;	other	socket	 types
are	unsupported.

The	 returned	 SSL	 socket	 is	 tied	 to	 the	 context,	 its	 settings	 and
certificates.	 The	 parameters	 server_side,
do_handshake_on_connect	 and	 suppress_ragged_eofs	 have	 the
same	meaning	as	in	the	top-level	wrap_socket()	function.

On	 client	 connections,	 the	 optional	 parameter	 server_hostname
specifies	the	hostname	of	the	service	which	we	are	connecting	to.
This	 allows	 a	 single	 server	 to	 host	 multiple	 SSL-based	 services
with	 distinct	 certificates,	 quite	 similarly	 to	 HTTP	 virtual	 hosts.
Specifying	 server_hostname	 will	 raise	 a	 ValueError	 if	 the
OpenSSL	library	doesn’t	have	support	for	it	(that	is,	if	HAS_SNI	is
False).	 Specifying	 server_hostname	 will	 also	 raise	 a
ValueError	if	server_side	is	true.

SSLContext.session_stats()
Get	statistics	about	 the	SSL	sessions	created	or	managed	by	this
context.	 A	 dictionary	 is	 returned	 which	maps	 the	 names	 of	 each
piece	of	 information	 to	 their	numeric	values.	For	example,	here	 is
the	total	number	of	hits	and	misses	in	the	session	cache	since	the
context	was	created:

>>>	stats	=	context.session_stats()

>>>	stats['hits'],	stats['misses']

http://www.openssl.org/docs/ssl/SSL_CTX_sess_number.html

(0,	0)

SSLContext.get_ca_certs(binary_form=False)
Returns	 a	 list	 of	 dicts	 with	 information	 of	 loaded	CA	 certs.	 If	 the
optional	argument	 is	true,	returns	a	DER-encoded	copy	of	the	CA
certificate.

Note: 	Certificates	in	a	capath	directory	aren’t	loaded	unless	they
have	been	used	at	least	once.

New	in	version	3.4.

SSLContext.check_hostname

Wether	 to	 match	 the	 peer	 cert’s	 hostname	 with
match_hostname()	 in	 SSLSocket.do_handshake().	 The
context’s	 verify_mode	 must	 be	 set	 to	 CERT_OPTIONAL	 or
CERT_REQUIRED,	 and	 you	 must	 pass	 server_hostname	 to
wrap_socket()	in	order	to	match	the	hostname.

Example:

import	socket,	ssl

context	=	ssl.SSLContext(ssl.PROTOCOL_TLSv1)

context.verify_mode	=	ssl.CERT_REQUIRED

context.check_hostname	=	True

context.load_default_certs()

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

ssl_sock	=	context.wrap_socket(s,	server_hostname=

			ssl_sock.connect(('www.verisign.com',	443))

New	in	version	3.4.

Note: 	This	features	requires	OpenSSL	0.9.8f	or	newer.

SSLContext.options

An	 integer	 representing	 the	 set	 of	 SSL	 options	 enabled	 on	 this
context.	 The	 default	 value	 is	 OP_ALL,	 but	 you	 can	 specify	 other
options	such	as	OP_NO_SSLv2	by	ORing	them	together.

Note: 	With	 versions	 of	 OpenSSL	 older	 than	 0.9.8m,	 it	 is	 only
possible	to	set	options,	not	to	clear	them.	Attempting	to	clear	an
option	 (by	 resetting	 the	 corresponding	 bits)	 will	 raise	 a
ValueError.

SSLContext.protocol

The	 protocol	 version	 chosen	when	 constructing	 the	 context.	 This
attribute	is	read-only.

SSLContext.verify_flags

The	 flags	 for	 certificate	 verification	 operations.	 You	 can	 set	 flags
like	 VERIFY_CRL_CHECK_LEAF	 by	 ORing	 them	 together.	 By
default	 OpenSSL	 does	 neither	 require	 nor	 verify	 certificate
revocation	lists	(CRLs).	Available	only	with	openssl	version	0.9.8+.

New	in	version	3.4.

SSLContext.verify_mode

Whether	to	try	to	verify	other	peers’	certificates	and	how	to	behave
if	 verification	 fails.	 This	 attribute	 must	 be	 one	 of	 CERT_NONE,
CERT_OPTIONAL	or	CERT_REQUIRED.

18.2.4.	Certificates

Certificates	in	general	are	part	of	a	public-key	/	private-key	system.	In
this	system,	each	principal,	(which	may	be	a	machine,	or	a	person,	or
an	 organization)	 is	 assigned	 a	 unique	 two-part	 encryption	 key.	 One
part	of	the	key	is	public,	and	is	called	the	public	key;	the	other	part	is
kept	secret,	and	is	called	the	private	key.	The	two	parts	are	related,	in
that	if	you	encrypt	a	message	with	one	of	the	parts,	you	can	decrypt	it
with	the	other	part,	and	only	with	the	other	part.

A	certificate	contains	 information	about	 two	principals.	 It	contains	 the
name	 of	 a	 subject,	 and	 the	 subject’s	 public	 key.	 It	 also	 contains	 a
statement	by	a	second	principal,	the	issuer,	that	the	subject	is	who	he
claims	 to	 be,	 and	 that	 this	 is	 indeed	 the	 subject’s	 public	 key.	 The
issuer’s	 statement	 is	 signed	with	 the	 issuer’s	private	 key,	which	only
the	 issuer	knows.	However,	anyone	can	verify	 the	 issuer’s	statement
by	finding	the	issuer’s	public	key,	decrypting	the	statement	with	it,	and
comparing	 it	 to	 the	other	 information	 in	 the	certificate.	The	certificate
also	contains	 information	about	 the	 time	period	over	which	 it	 is	valid.
This	is	expressed	as	two	fields,	called	“notBefore”	and	“notAfter”.

In	the	Python	use	of	certificates,	a	client	or	server	can	use	a	certificate
to	 prove	who	 they	 are.	 The	 other	 side	 of	 a	 network	 connection	 can
also	 be	 required	 to	 produce	 a	 certificate,	 and	 that	 certificate	 can	 be
validated	 to	 the	satisfaction	of	 the	client	or	 server	 that	 requires	such
validation.	The	connection	attempt	can	be	set	to	raise	an	exception	if
the	validation	fails.	Validation	is	done	automatically,	by	the	underlying
OpenSSL	 framework;	 the	 application	 need	 not	 concern	 itself	 with	 its
mechanics.	 But	 the	 application	 does	 usually	 need	 to	 provide	 sets	 of
certificates	to	allow	this	process	to	take	place.

Python	uses	files	to	contain	certificates.	They	should	be	formatted	as

“PEM”	 (see	RFC	1422),	 which	 is	 a	 base-64	 encoded	 form	 wrapped
with	a	header	line	and	a	footer	line:

-----BEGIN	CERTIFICATE-----

...	(certificate	in	base64	PEM	encoding)	...

-----END	CERTIFICATE-----

18.2.4.1.	Certificate	chains

The	Python	files	which	contain	certificates	can	contain	a	sequence	of
certificates,	 sometimes	 called	 a	 certificate	 chain.	 This	 chain	 should
start	with	the	specific	certificate	for	 the	principal	who	“is”	 the	client	or
server,	 and	 then	 the	 certificate	 for	 the	 issuer	 of	 that	 certificate,	 and
then	 the	certificate	 for	 the	 issuer	of	 that	certificate,	and	so	on	up	 the
chain	 till	 you	 get	 to	 a	 certificate	 which	 is	 self-signed,	 that	 is,	 a
certificate	which	has	the	same	subject	and	issuer,	sometimes	called	a
root	certificate.	The	certificates	 should	 just	 be	concatenated	 together
in	the	certificate	file.	For	example,	suppose	we	had	a	three	certificate
chain,	 from	 our	 server	 certificate	 to	 the	 certificate	 of	 the	 certification
authority	that	signed	our	server	certificate,	to	the	root	certificate	of	the
agency	which	issued	the	certification	authority’s	certificate:

-----BEGIN	CERTIFICATE-----

...	(certificate	for	your	server)...

-----END	CERTIFICATE-----

-----BEGIN	CERTIFICATE-----

...	(the	certificate	for	the	CA)...

-----END	CERTIFICATE-----

-----BEGIN	CERTIFICATE-----

...	(the	root	certificate	for	the	CA's	issuer)...

-----END	CERTIFICATE-----

18.2.4.2.	CA	certificates

http://tools.ietf.org/html/rfc1422.html

If	 you	 are	 going	 to	 require	 validation	 of	 the	 other	 side	 of	 the
connection’s	certificate,	you	need	to	provide	a	“CA	certs”	file,	filled	with
the	certificate	chains	for	each	issuer	you	are	willing	to	trust.	Again,	this
file	 just	 contains	 these	 chains	 concatenated	 together.	 For	 validation,
Python	will	use	the	first	chain	it	finds	in	the	file	which	matches.	Some
“standard”	 root	 certificates	 are	 available	 from	 various	 certification
authorities:	 CACert.org,	 Thawte,	 Verisign,	 Positive	 SSL	 (used	 by
python.org),	Equifax	and	GeoTrust.

In	general,	 if	you	are	using	SSL3	or	TLS1,	you	don’t	need	to	put	 the
full	chain	in	your	“CA	certs”	file;	you	only	need	the	root	certificates,	and
the	remote	peer	is	supposed	to	furnish	the	other	certificates	necessary
to	chain	from	its	certificate	to	a	root	certificate.	See	RFC	4158	for	more
discussion	of	the	way	in	which	certification	chains	can	be	built.

18.2.4.3.	Combined	key	and	certificate

Often	the	private	key	is	stored	in	the	same	file	as	the	certificate;	in	this
case,	 only	 the	 certfile	 parameter	 to
SSLContext.load_cert_chain()	and	wrap_socket()	needs	to
be	 passed.	 If	 the	 private	 key	 is	 stored	 with	 the	 certificate,	 it	 should
come	before	the	first	certificate	in	the	certificate	chain:

-----BEGIN	RSA	PRIVATE	KEY-----

...	(private	key	in	base64	encoding)	...

-----END	RSA	PRIVATE	KEY-----

-----BEGIN	CERTIFICATE-----

...	(certificate	in	base64	PEM	encoding)	...

-----END	CERTIFICATE-----

18.2.4.4.	Self-signed	certificates

http://www.cacert.org/index.php?id=3
http://www.thawte.com/roots/
http://www.verisign.com/support/roots.html
http://www.PositiveSSL.com/ssl-certificate-support/cert_installation/UTN-USERFirst-Hardware.crt
http://www.geotrust.com/resources/root_certificates/index.asp
http://tools.ietf.org/html/rfc4158.html

If	 you	 are	 going	 to	 create	 a	 server	 that	 provides	 SSL-encrypted
connection	 services,	 you	 will	 need	 to	 acquire	 a	 certificate	 for	 that
service.	 There	 are	 many	 ways	 of	 acquiring	 appropriate	 certificates,
such	 as	 buying	 one	 from	 a	 certification	 authority.	 Another	 common
practice	is	to	generate	a	self-signed	certificate.	The	simplest	way	to	do
this	is	with	the	OpenSSL	package,	using	something	like	the	following:

%	openssl	req	-new	-x509	-days	365	-nodes	-out	cert.

Generating	a	1024	bit	RSA	private	key

.......++++++

.............................++++++

writing	new	private	key	to	'cert.pem'

You	are	about	to	be	asked	to	enter	information	that	

into	your	certificate	request.

What	you	are	about	to	enter	is	what	is	called	a	Distinguished

There	are	quite	a	few	fields	but	you	can	leave	some	

For	some	fields	there	will	be	a	default	value,

If	you	enter	'.',	the	field	will	be	left	blank.

Country	Name	(2	letter	code)	[AU]:US

State	or	Province	Name	(full	name)	[Some-State]:MyState

Locality	Name	(eg,	city)	[]:Some	City

Organization	Name	(eg,	company)	[Internet	Widgits	Pty

Organizational	Unit	Name	(eg,	section)	[]:My	Group

Common	Name	(eg,	YOUR	name)	[]:myserver.mygroup.myorganization

Email	Address	[]:ops@myserver.mygroup.myorganization

%

The	disadvantage	of	 a	 self-signed	 certificate	 is	 that	 it	 is	 its	 own	 root
certificate,	and	no	one	else	will	 have	 it	 in	 their	 cache	of	 known	 (and
trusted)	root	certificates.

18.2.5.	Examples

18.2.5.1.	Testing	for	SSL	support

To	test	 for	 the	presence	of	SSL	support	 in	a	Python	 installation,	user
code	should	use	the	following	idiom:

try:

				import	ssl

except	ImportError:

				pass

else:

				...	#	do	something	that	requires	SSL	support

18.2.5.2.	Client-side	operation

This	 example	 connects	 to	 an	 SSL	 server	 and	 prints	 the	 server’s
certificate:

import	socket,	ssl,	pprint

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

#	require	a	certificate	from	the	server

ssl_sock	=	ssl.wrap_socket(s,

																											ca_certs="/etc/ca_certs_file"

																											cert_reqs=ssl.CERT_REQUIRED

ssl_sock.connect(('www.verisign.com',	443))

pprint.pprint(ssl_sock.getpeercert())

#	note	that	closing	the	SSLSocket	will	also	close	the	underlying	socket

ssl_sock.close()

As	of	January	6,	2012,	the	certificate	printed	by	this	program	looks	like

this:

{'issuer':	((('countryName',	'US'),),

												(('organizationName',	'VeriSign,	Inc.'),),

												(('organizationalUnitName',	'VeriSign	Trust	Network'

												(('organizationalUnitName',

														'Terms	of	use	at	https://www.verisign.com/rpa	(c)06'

												(('commonName',

														'VeriSign	Class	3	Extended	Validation	SSL	SGC	CA'

	'notAfter':	'May	25	23:59:59	2012	GMT',

	'notBefore':	'May	26	00:00:00	2010	GMT',

	'serialNumber':	'53D2BEF924A7245E83CA01E46CAA2477',

	'subject':	((('1.3.6.1.4.1.311.60.2.1.3',	'US'),),

													(('1.3.6.1.4.1.311.60.2.1.2',	'Delaware'

													(('businessCategory',	'V1.0,	Clause	5.(b)'

													(('serialNumber',	'2497886'),),

													(('countryName',	'US'),),

													(('postalCode',	'94043'),),

													(('stateOrProvinceName',	'California'),),

													(('localityName',	'Mountain	View'),),

													(('streetAddress',	'487	East	Middlefield	Road'

													(('organizationName',	'VeriSign,	Inc.'),),

													(('organizationalUnitName',	'	Production	Security	Services'

													(('commonName',	'www.verisign.com'),)),

	'subjectAltName':	(('DNS',	'www.verisign.com'),

																				('DNS',	'verisign.com'),

																				('DNS',	'www.verisign.net'),

																				('DNS',	'verisign.net'),

																				('DNS',	'www.verisign.mobi'),

																				('DNS',	'verisign.mobi'),

																				('DNS',	'www.verisign.eu'),

																				('DNS',	'verisign.eu')),

	'version':	3}

This	other	 example	 first	 creates	an	SSL	context,	 instructs	 it	 to	 verify
certificates	sent	by	peers,	and	 feeds	 it	a	set	of	 recognized	certificate

authorities	(CA):

>>>	context	=	ssl.SSLContext(ssl.PROTOCOL_SSLv23)

>>>	context.verify_mode	=	ssl.CERT_REQUIRED

>>>	context.load_verify_locations("/etc/ssl/certs/ca-bundle.crt"

(it	 is	 assumed	 your	 operating	 system	 places	 a	 bundle	 of	 all	 CA
certificates	 in	 /etc/ssl/certs/ca-bundle.crt;	 if	 not,	 you’ll	 get
an	error	and	have	to	adjust	the	location)

When	 you	 use	 the	 context	 to	 connect	 to	 a	 server,	 CERT_REQUIRED
validates	 the	 server	 certificate:	 it	 ensures	 that	 the	 server	 certificate
was	signed	with	one	of	 the	CA	certificates,	and	checks	 the	signature
for	correctness:

>>>	conn	=	context.wrap_socket(socket.socket(socket.

>>>	conn.connect(("linuxfr.org",	443))

You	should	then	fetch	the	certificate	and	check	its	fields	for	conformity:

>>>	cert	=	conn.getpeercert()

>>>	ssl.match_hostname(cert,	"linuxfr.org")

Visual	 inspection	 shows	 that	 the	 certificate	 does	 identify	 the	 desired
service	(that	is,	the	HTTPS	host	linuxfr.org):

>>>	pprint.pprint(cert)

{'issuer':	((('organizationName',	'CAcert	Inc.'),),

												(('organizationalUnitName',	'http://www.CAcert.org'),),

												(('commonName',	'CAcert	Class	3	Root'),)),

	'notAfter':	'Jun		7	21:02:24	2013	GMT',

	'notBefore':	'Jun		8	21:02:24	2011	GMT',

	'serialNumber':	'D3E9',

	'subject':	((('commonName',	'linuxfr.org'),),),

	'subjectAltName':	(('DNS',	'linuxfr.org'),

																				('othername',	'<unsupported>'),

																				('DNS',	'linuxfr.org'),

																				('othername',	'<unsupported>'),

																				('DNS',	'dev.linuxfr.org'),

																				('othername',	'<unsupported>'),

																				('DNS',	'prod.linuxfr.org'),

																				('othername',	'<unsupported>'),

																				('DNS',	'alpha.linuxfr.org'),

																				('othername',	'<unsupported>'),

																				('DNS',	'*.linuxfr.org'),

																				('othername',	'<unsupported>')),

	'version':	3}

Now	that	you	are	assured	of	 its	authenticity,	you	can	proceed	 to	 talk
with	the	server:

>>>	conn.sendall(b"HEAD	/	HTTP/1.0\r\nHost:	linuxfr.org

>>>	pprint.pprint(conn.recv(1024).split(b"\r\n"))

[b'HTTP/1.1	302	Found',

	b'Date:	Sun,	16	May	2010	13:43:28	GMT',

	b'Server:	Apache/2.2',

	b'Location:	https://linuxfr.org/pub/',

	b'Vary:	Accept-Encoding',

	b'Connection:	close',

	b'Content-Type:	text/html;	charset=iso-8859-1',

	b'',

	b'']

See	the	discussion	of	Security	considerations	below.

18.2.5.3.	Server-side	operation

For	server	operation,	typically	you’ll	need	to	have	a	server	certificate,
and	private	key,	each	in	a	file.	You’ll	first	create	a	context	holding	the
key	 and	 the	 certificate,	 so	 that	 clients	 can	 check	 your	 authenticity.
Then	you’ll	open	a	socket,	bind	it	to	a	port,	call	listen()	on	it,	and
start	waiting	for	clients	to	connect:

import	socket,	ssl

context	=	ssl.SSLContext(ssl.PROTOCOL_TLSv1)

context.load_cert_chain(certfile="mycertfile",	keyfile

bindsocket	=	socket.socket()

bindsocket.bind(('myaddr.mydomain.com',	10023))

bindsocket.listen(5)

When	a	client	connects,	you’ll	call	accept()	on	the	socket	to	get	the
new	 socket	 from	 the	 other	 end,	 and	 use	 the	 context’s
SSLContext.wrap_socket()	method	 to	 create	a	 server-side	SSL
socket	for	the	connection:

while	True:

				newsocket,	fromaddr	=	bindsocket.accept()

				connstream	=	context.wrap_socket(newsocket,	server_side

				try:

								deal_with_client(connstream)

				finally:

								connstream.shutdown(socket.SHUT_RDWR)

								connstream.close()

Then	you’ll	read	data	from	the	connstream	and	do	something	with	it
till	you	are	finished	with	the	client	(or	the	client	is	finished	with	you):

def	deal_with_client(connstream):

				data	=	connstream.recv(1024)

				#	empty	data	means	the	client	is	finished	with	us

				while	data:

								if	not	do_something(connstream,	data):

												#	we'll	assume	do_something	returns	False

												#	when	we're	finished	with	client

												break

								data	=	connstream.recv(1024)

				#	finished	with	client

And	go	back	to	 listening	for	new	client	connections	(of	course,	a	real
server	 would	 probably	 handle	 each	 client	 connection	 in	 a	 separate
thread,	 or	 put	 the	 sockets	 in	 non-blocking	 mode	 and	 use	 an	 event
loop).

18.2.6.	Notes	on	non-blocking	sockets

When	working	with	non-blocking	sockets,	there	are	several	things	you
need	to	be	aware	of:

Calling	select()	tells	you	that	the	OS-level	socket	can	be	read
from	 (or	 written	 to),	 but	 it	 does	 not	 imply	 that	 there	 is	 sufficient
data	 at	 the	 upper	 SSL	 layer.	 For	 example,	 only	 part	 of	 an	 SSL
frame	might	have	arrived.	Therefore,	you	must	be	ready	to	handle
SSLSocket.recv()	 and	 SSLSocket.send()	 failures,	 and
retry	after	another	call	to	select().

(of	 course,	 similar	 provisions	 apply	 when	 using	 other	 primitives
such	as	poll())

The	 SSL	 handshake	 itself	 will	 be	 non-blocking:	 the
SSLSocket.do_handshake()	method	has	 to	be	 retried	until	 it
returns	successfully.	Here	 is	a	synopsis	using	select()	 to	wait
for	the	socket’s	readiness:

while	True:

				try:

								sock.do_handshake()

								break

				except	ssl.SSLWantReadError:

								select.select([sock],	[],	[])

				except	ssl.SSLWantWriteError:

								select.select([],	[sock],	[])

18.2.7.	Security	considerations

18.2.7.1.	Verifying	certificates

CERT_NONE	 is	 the	 default.	 Since	 it	 does	 not	 authenticate	 the	 other
peer,	it	can	be	insecure,	especially	in	client	mode	where	most	of	time
you	would	like	to	ensure	the	authenticity	of	the	server	you’re	talking	to.
Therefore,	 when	 in	 client	 mode,	 it	 is	 highly	 recommended	 to	 use
CERT_REQUIRED.	However,	 it	 is	 in	 itself	not	sufficient;	you	also	have
to	check	 that	 the	server	certificate,	which	can	be	obtained	by	calling
SSLSocket.getpeercert(),	 matches	 the	 desired	 service.	 For
many	protocols	and	applications,	 the	service	can	be	 identified	by	 the
hostname;	 in	 this	 case,	 the	 match_hostname()	 function	 can	 be
used.	 This	 common	 check	 is	 automatically	 performed	 when
SSLContext.check_hostname	is	enabled.

In	server	mode,	if	you	want	to	authenticate	your	clients	using	the	SSL
layer	 (rather	 than	 using	 a	 higher-level	 authentication	 mechanism),
you’ll	 also	 have	 to	 specify	 CERT_REQUIRED	 and	 similarly	 check	 the
client	certificate.

Note: 	In	client	mode,	CERT_OPTIONAL	and	CERT_REQUIRED
are	equivalent	unless	anonymous	ciphers	are	enabled	(they	are
disabled	by	default).

18.2.7.2.	Protocol	versions

SSL	 version	 2	 is	 considered	 insecure	 and	 is	 therefore	 dangerous	 to
use.	If	you	want	maximum	compatibility	between	clients	and	servers,	it
is	 recommended	 to	 use	 PROTOCOL_SSLv23	 as	 the	 protocol	 version

and	 then	 disable	 SSLv2	 explicitly	 using	 the	 SSLContext.options
attribute:

context	=	ssl.SSLContext(ssl.PROTOCOL_SSLv23)

context.options	|=	ssl.OP_NO_SSLv2

The	 SSL	 context	 created	 above	 will	 allow	 SSLv3	 and	 TLSv1
connections,	but	not	SSLv2.

18.2.7.3.	Cipher	selection

If	you	have	advanced	security	requirements,	fine-tuning	of	the	ciphers
enabled	 when	 negotiating	 a	 SSL	 session	 is	 possible	 through	 the
SSLContext.set_ciphers()	method.	Starting	 from	Python	 3.2.3,
the	ssl	module	disables	certain	weak	ciphers	by	default,	but	you	may
want	to	further	restrict	the	cipher	choice.	For	example:

context	=	ssl.SSLContext(ssl.PROTOCOL_TLSv1)

context.set_ciphers('HIGH:!aNULL:!eNULL')

The	!aNULL:!eNULL	part	of	the	cipher	spec	is	necessary	to	disable
ciphers	 which	 don’t	 provide	 both	 encryption	 and	 authentication.	 Be
sure	to	read	OpenSSL’s	documentation	about	the	cipher	list	format.	 If
you	want	 to	 check	which	 ciphers	 are	 enabled	 by	 a	 given	 cipher	 list,
use	the	openssl	ciphers	command	on	your	system.

18.2.7.4.	Multi-processing

If	using	this	module	as	part	of	a	multi-processed	application	(using,	for
example	 the	 multiprocessing	 or	 concurrent.futures

modules),	 be	 aware	 that	 OpenSSL’s	 internal	 random	 number
generator	 does	 not	 properly	 handle	 forked	 processes.	 Applications

http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

must	 change	 the	PRNG	 state	 of	 the	 parent	 process	 if	 they	 use	 any
SSL	 feature	 with	 os.fork().	 Any	 successful	 call	 of	 RAND_add(),
RAND_bytes()	or	RAND_pseudo_bytes()	is	sufficient.

See	also:

Class	socket.socket
Documentation	of	underlying	socket	class

SSL/TLS	Strong	Encryption:	An	Introduction
Intro	from	the	Apache	webserver	documentation

RFC	1422:	Privacy	Enhancement	for	Internet	Electronic	Mail:
Part	II:	Certificate-Based	Key	Management

Steve	Kent

RFC	1750:	Randomness	Recommendations	for	Security
D.	Eastlake	et.	al.

RFC	3280:	Internet	X.509	Public	Key	Infrastructure	Certificate
and	CRL	Profile

Housley	et.	al.

RFC	4366:	Transport	Layer	Security	(TLS)	Extensions
Blake-Wilson	et.	al.

RFC	5246:	The	Transport	Layer	Security	(TLS)	Protocol	Version
1.2

T.	Dierks	et.	al.

RFC	6066:	Transport	Layer	Security	(TLS)	Extensions
D.	Eastlake

IANA	TLS:	Transport	Layer	Security	(TLS)	Parameters
IANA

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://httpd.apache.org/docs/trunk/en/ssl/ssl_intro.html
http://www.ietf.org/rfc/rfc1422
http://www.ietf.org/rfc/rfc1750
http://www.ietf.org/rfc/rfc3280
http://www.ietf.org/rfc/rfc4366
http://www.ietf.org/rfc/rfc5246
http://www.ietf.org/rfc/rfc6066
http://www.iana.org/assignments/tls-parameters/tls-parameters.xml
http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.3.	select	—	Waiting	for	I/O
completion
This	module	provides	access	to	the	select()	and	poll()	functions
available	in	most	operating	systems,	devpoll()	available	on	Solaris
and	 derivatives,	 epoll()	 available	 on	 Linux	 2.5+	 and	 kqueue()
available	 on	 most	 BSD.	 Note	 that	 on	 Windows,	 it	 only	 works	 for
sockets;	on	other	operating	systems,	 it	also	works	for	other	file	types
(in	particular,	on	Unix,	it	works	on	pipes).	It	cannot	be	used	on	regular
files	to	determine	whether	a	file	has	grown	since	it	was	last	read.

Note: 	The	selectors	module	allows	high-level	and	efficient	I/O
multiplexing,	built	upon	the	select	module	primitives.	Users	are
encouraged	to	use	the	selectors	module	instead,	unless	they
want	precise	control	over	the	OS-level	primitives	used.

The	module	defines	the	following:

exception	select.error
A	deprecated	alias	of	OSError.

Changed	in	version	3.3:	Following	PEP	3151,	this	class	was	made
an	alias	of	OSError.

select.devpoll()
(Only	 supported	 on	 Solaris	 and	 derivatives.)	 Returns	 a
/dev/poll	 polling	 object;	 see	 section	 /dev/poll	 Polling	 Objects
below	for	the	methods	supported	by	devpoll	objects.

devpoll()	 objects	 are	 linked	 to	 the	 number	 of	 file	 descriptors

http://www.python.org/dev/peps/pep-3151

allowed	 at	 the	 time	 of	 instantiation.	 If	 your	 program	 reduces	 this
value,	 devpoll()	 will	 fail.	 If	 your	 program	 increases	 this	 value,
devpoll()	may	return	an	incomplete	list	of	active	file	descriptors.

The	new	file	descriptor	is	non-inheritable.

New	in	version	3.3.

Changed	 in	 version	 3.4:	 The	 new	 file	 descriptor	 is	 now	 non-
inheritable.

select.epoll(sizehint=-1,	flags=0)
(Only	 supported	 on	 Linux	 2.5.44	 and	 newer.)	 Return	 an	 edge
polling	 object,	 which	 can	 be	 used	 as	 Edge	 or	 Level	 Triggered
interface	 for	 I/O	 events.	 sizehint	 is	 deprecated	 and	 completely
ignored.	 flags	 can	 be	 set	 to	 EPOLL_CLOEXEC,	 which	 causes	 the
epoll	descriptor	to	be	closed	automatically	when	os.execve()	 is
called.

See	 the	 Edge	 and	 Level	 Trigger	 Polling	 (epoll)	 Objects	 section
below	for	the	methods	supported	by	epolling	objects.

epoll	 objects	 support	 the	 context	 management	 protocol:	 when
used	in	a	with	statement,	 the	new	file	descriptor	 is	automatically
closed	at	the	end	of	the	block.

The	new	file	descriptor	is	non-inheritable.

Changed	in	version	3.3:	Added	the	flags	parameter.

Changed	 in	 version	 3.4:	 Support	 for	 the	 with	 statement	 was
added.	The	new	file	descriptor	is	now	non-inheritable.

select.poll()

(Not	supported	by	all	operating	systems.)	Returns	a	polling	object,
which	 supports	 registering	 and	 unregistering	 file	 descriptors,	 and
then	polling	them	for	I/O	events;	see	section	Polling	Objects	below
for	the	methods	supported	by	polling	objects.

select.kqueue()
(Only	 supported	 on	 BSD.)	 Returns	 a	 kernel	 queue	 object;	 see
section	 Kqueue	 Objects	 below	 for	 the	 methods	 supported	 by
kqueue	objects.

The	new	file	descriptor	is	non-inheritable.

Changed	 in	 version	 3.4:	 The	 new	 file	 descriptor	 is	 now	 non-
inheritable.

select.kevent(ident,	filter=KQ_FILTER_READ,
flags=KQ_EV_ADD,	fflags=0,	data=0,	udata=0)

(Only	 supported	 on	 BSD.)	 Returns	 a	 kernel	 event	 object;	 see
section	Kevent	Objects	below	for	the	methods	supported	by	kevent
objects.

select.select(rlist,	wlist,	xlist[,	timeout])
This	 is	 a	 straightforward	 interface	 to	 the	Unix	 select()	 system
call.	The	first	three	arguments	are	sequences	of	‘waitable	objects’:
either	 integers	 representing	 file	 descriptors	 or	 objects	 with	 a
parameterless	 method	 named	 fileno()	 returning	 such	 an
integer:

rlist:	wait	until	ready	for	reading
wlist:	wait	until	ready	for	writing
xlist:	wait	for	an	“exceptional	condition”	(see	the	manual	page
for	what	your	system	considers	such	a	condition)

Empty	 sequences	 are	 allowed,	 but	 acceptance	 of	 three	 empty

sequences	is	platform-dependent.	(It	is	known	to	work	on	Unix	but
not	on	Windows.)	The	optional	timeout	argument	specifies	a	time-
out	 as	 a	 floating	 point	 number	 in	 seconds.	 When	 the	 timeout
argument	 is	 omitted	 the	 function	 blocks	 until	 at	 least	 one	 file
descriptor	 is	 ready.	 A	 time-out	 value	 of	 zero	 specifies	 a	 poll	 and
never	blocks.

The	return	value	is	a	triple	of	lists	of	objects	that	are	ready:	subsets
of	the	first	three	arguments.	When	the	time-out	is	reached	without
a	file	descriptor	becoming	ready,	three	empty	lists	are	returned.

Among	 the	 acceptable	 object	 types	 in	 the	 sequences	 are	Python
file	 objects	 (e.g.	 sys.stdin,	 or	 objects	 returned	 by	 open()	 or
os.popen()),	 socket	 objects	 returned	 by	 socket.socket().
You	may	also	define	a	wrapper	class	yourself,	as	long	as	it	has	an
appropriate	fileno()	method	(that	really	returns	a	file	descriptor,
not	just	a	random	integer).

Note: 	File	objects	on	Windows	are	not	acceptable,	but	sockets
are.	On	Windows,	the	underlying	select()	function	is	provided
by	the	WinSock	library,	and	does	not	handle	file	descriptors	that
don’t	originate	from	WinSock.

select.PIPE_BUF

The	 minimum	 number	 of	 bytes	 which	 can	 be	 written	 without
blocking	 to	a	pipe	when	 the	pipe	has	been	 reported	as	 ready	 for
writing	by	select(),	poll()	or	another	interface	in	this	module.
This	doesn’t	apply	to	other	kind	of	file-like	objects	such	as	sockets.

This	value	is	guaranteed	by	POSIX	to	be	at	least	512.	Availability:
Unix.

New	in	version	3.2.

18.3.1.	/dev/poll	Polling	Objects

http://developers.sun.com/solaris/articles/using_devpoll.html
http://developers.sun.com/solaris/articles/polling_efficient.html

Solaris	 and	 derivatives	 have	 /dev/poll.	 While	 select()	 is
O(highest	file	descriptor)	and	poll()	is	O(number	of	file	descriptors),
/dev/poll	is	O(active	file	descriptors).

/dev/poll	behaviour	is	very	close	to	the	standard	poll()	object.

devpoll.close()
Close	the	file	descriptor	of	the	polling	object.

New	in	version	3.4.

devpoll.closed

True	if	the	polling	object	is	closed.

New	in	version	3.4.

devpoll.fileno()
Return	the	file	descriptor	number	of	the	polling	object.

New	in	version	3.4.

devpoll.register(fd[,	eventmask])
Register	a	file	descriptor	with	the	polling	object.	Future	calls	to	the
poll()	method	will	then	check	whether	the	file	descriptor	has	any
pending	I/O	events.	fd	can	be	either	an	integer,	or	an	object	with	a
fileno()	method	that	returns	an	 integer.	File	objects	 implement
fileno(),	so	they	can	also	be	used	as	the	argument.

http://developers.sun.com/solaris/articles/using_devpoll.html
http://developers.sun.com/solaris/articles/polling_efficient.html

eventmask	is	an	optional	bitmask	describing	the	type	of	events	you
want	 to	check	 for.	The	constants	are	 the	same	 that	with	poll()
object.	 The	 default	 value	 is	 a	 combination	 of	 the	 constants
POLLIN,	POLLPRI,	and	POLLOUT.

Warning: 	Registering	a	 file	descriptor	 that’s	already	 registered
is	not	an	error,	but	the	result	is	undefined.	The	appropiate	action
is	 to	unregister	or	modify	 it	 first.	This	 is	an	 important	difference
compared	with	poll().

devpoll.modify(fd[,	eventmask])
This	method	does	an	unregister()	followed	by	a	register().
It	is	(a	bit)	more	efficient	that	doing	the	same	explicitly.

devpoll.unregister(fd)
Remove	a	file	descriptor	being	tracked	by	a	polling	object.	Just	like
the	register()	method,	fd	can	be	an	integer	or	an	object	with	a
fileno()	method	that	returns	an	integer.

Attempting	to	remove	a	file	descriptor	that	was	never	registered	is
safely	ignored.

devpoll.poll([timeout])
Polls	 the	set	of	 registered	 file	descriptors,	and	 returns	a	possibly-
empty	 list	 containing	 (fd,	 event)	 2-tuples	 for	 the	 descriptors
that	 have	 events	 or	 errors	 to	 report.	 fd	 is	 the	 file	 descriptor,	 and
event	 is	 a	 bitmask	 with	 bits	 set	 for	 the	 reported	 events	 for	 that
descriptor	—	POLLIN	 for	waiting	 input,	 POLLOUT	 to	 indicate	 that
the	 descriptor	 can	 be	 written	 to,	 and	 so	 forth.	 An	 empty	 list
indicates	 that	 the	 call	 timed	 out	 and	 no	 file	 descriptors	 had	 any
events	to	report.	If	timeout	is	given,	it	specifies	the	length	of	time	in

milliseconds	which	the	system	will	wait	for	events	before	returning.
If	timeout	is	omitted,	-1,	or	None,	the	call	will	block	until	there	is	an
event	for	this	poll	object.

18.3.2.	Edge	and	Level	Trigger	Polling
(epoll)	Objects

http://linux.die.net/man/4/epoll

eventmask

Constant Meaning

EPOLLIN Available	for	read

EPOLLOUT Available	for	write

EPOLLPRI Urgent	data	for	read

EPOLLERR
Error	condition	happened	on	the	assoc.
fd

EPOLLHUP Hang	up	happened	on	the	assoc.	fd

EPOLLET
Set	Edge	Trigger	behavior,	the	default	is
Level	Trigger	behavior

EPOLLONESHOT
Set	one-shot	behavior.	After	one	event	is
pulled	out,	the	fd	is	internally	disabled

EPOLLRDNORM Equivalent	to	EPOLLIN

EPOLLRDBAND Priority	data	band	can	be	read.

EPOLLWRNORM Equivalent	to	EPOLLOUT

EPOLLWRBAND Priority	data	may	be	written.

EPOLLMSG Ignored.

epoll.close()
Close	the	control	file	descriptor	of	the	epoll	object.

epoll.closed

http://linux.die.net/man/4/epoll

True	if	the	epoll	object	is	closed.

epoll.fileno()
Return	the	file	descriptor	number	of	the	control	fd.

epoll.fromfd(fd)
Create	an	epoll	object	from	a	given	file	descriptor.

epoll.register(fd[,	eventmask])
Register	a	fd	descriptor	with	the	epoll	object.

epoll.modify(fd,	eventmask)
Modify	a	registered	file	descriptor.

epoll.unregister(fd)
Remove	a	registered	file	descriptor	from	the	epoll	object.

epoll.poll(timeout=-1,	maxevents=-1)
Wait	for	events.	timeout	in	seconds	(float)

18.3.3.	Polling	Objects

The	poll()	system	call,	supported	on	most	Unix	systems,	provides
better	scalability	for	network	servers	that	service	many,	many	clients	at
the	 same	 time.	 poll()	 scales	 better	 because	 the	 system	 call	 only
requires	listing	the	file	descriptors	of	interest,	while	select()	builds	a
bitmap,	 turns	 on	 bits	 for	 the	 fds	 of	 interest,	 and	 then	 afterward	 the
whole	 bitmap	 has	 to	 be	 linearly	 scanned	 again.	 select()	 is
O(highest	 file	 descriptor),	 while	 poll()	 is	 O(number	 of	 file
descriptors).

poll.register(fd[,	eventmask])
Register	a	file	descriptor	with	the	polling	object.	Future	calls	to	the
poll()	method	will	then	check	whether	the	file	descriptor	has	any
pending	I/O	events.	fd	can	be	either	an	integer,	or	an	object	with	a
fileno()	method	that	returns	an	 integer.	File	objects	 implement
fileno(),	so	they	can	also	be	used	as	the	argument.

eventmask	is	an	optional	bitmask	describing	the	type	of	events	you
want	 to	 check	 for,	 and	 can	 be	 a	 combination	 of	 the	 constants
POLLIN,	POLLPRI,	and	POLLOUT,	described	in	the	table	below.	If
not	 specified,	 the	 default	 value	 used	will	 check	 for	 all	 3	 types	 of
events.

Constant Meaning

POLLIN There	is	data	to	read

POLLPRI There	is	urgent	data	to	read

POLLOUT
Ready	for	output:	writing	will	not
block

POLLERR Error	condition	of	some	sort

POLLHUP Hung	up

POLLNVAL Invalid	request:	descriptor	not	open

Registering	a	file	descriptor	that’s	already	registered	is	not	an	error,
and	has	the	same	effect	as	registering	the	descriptor	exactly	once.

poll.modify(fd,	eventmask)
Modifies	 an	 already	 registered	 fd.	 This	 has	 the	 same	 effect	 as
register(fd,	 eventmask).	 Attempting	 to	 modify	 a	 file
descriptor	 that	 was	 never	 registered	 causes	 an	 IOError

exception	with	errno	ENOENT	to	be	raised.

poll.unregister(fd)
Remove	a	file	descriptor	being	tracked	by	a	polling	object.	Just	like
the	register()	method,	fd	can	be	an	integer	or	an	object	with	a
fileno()	method	that	returns	an	integer.

Attempting	 to	 remove	 a	 file	 descriptor	 that	 was	 never	 registered
causes	a	KeyError	exception	to	be	raised.

poll.poll([timeout])
Polls	 the	set	of	 registered	 file	descriptors,	and	 returns	a	possibly-
empty	 list	 containing	 (fd,	 event)	 2-tuples	 for	 the	 descriptors
that	 have	 events	 or	 errors	 to	 report.	 fd	 is	 the	 file	 descriptor,	 and
event	 is	 a	 bitmask	 with	 bits	 set	 for	 the	 reported	 events	 for	 that
descriptor	—	POLLIN	 for	waiting	 input,	 POLLOUT	 to	 indicate	 that
the	 descriptor	 can	 be	 written	 to,	 and	 so	 forth.	 An	 empty	 list
indicates	 that	 the	 call	 timed	 out	 and	 no	 file	 descriptors	 had	 any
events	to	report.	If	timeout	is	given,	it	specifies	the	length	of	time	in
milliseconds	which	the	system	will	wait	for	events	before	returning.
If	 timeout	 is	 omitted,	 negative,	 or	 None,	 the	 call	 will	 block	 until
there	is	an	event	for	this	poll	object.

18.3.4.	Kqueue	Objects

kqueue.close()
Close	the	control	file	descriptor	of	the	kqueue	object.

kqueue.closed

True	if	the	kqueue	object	is	closed.

kqueue.fileno()
Return	the	file	descriptor	number	of	the	control	fd.

kqueue.fromfd(fd)
Create	a	kqueue	object	from	a	given	file	descriptor.

kqueue.control(changelist,	max_events[,	timeout=None])	→
eventlist

Low	level	interface	to	kevent

changelist	must	be	an	iterable	of	kevent	object	or	None
max_events	must	be	0	or	a	positive	integer
timeout	in	seconds	(floats	possible)

18.3.5.	Kevent	Objects

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

kevent.ident

Value	used	to	identify	the	event.	The	interpretation	depends	on	the
filter	but	it’s	usually	the	file	descriptor.	In	the	constructor	ident	can
either	 be	 an	 int	 or	 an	 object	 with	 a	 fileno()	 method.	 kevent
stores	the	integer	internally.

kevent.filter

Name	of	the	kernel	filter.

Constant Meaning

KQ_FILTER_READ

Takes	a	descriptor	and	returns
whenever	there	is	data	available	to
read

KQ_FILTER_WRITE

Takes	a	descriptor	and	returns
whenever	there	is	data	available	to
write

KQ_FILTER_AIO AIO	requests

KQ_FILTER_VNODE

Returns	when	one	or	more	of	the
requested	events	watched	in	fflag
occurs

KQ_FILTER_PROC Watch	for	events	on	a	process	id

KQ_FILTER_NETDEV
Watch	for	events	on	a	network	device
[not	available	on	Mac	OS	X]

KQ_FILTER_SIGNAL
Returns	whenever	the	watched	signal
is	delivered	to	the	process

KQ_FILTER_TIMER Establishes	an	arbitrary	timer

http://www.freebsd.org/cgi/man.cgi?query=kqueue&sektion=2

kevent.flags

Filter	action.

Constant Meaning

KQ_EV_ADD Adds	or	modifies	an	event

KQ_EV_DELETE Removes	an	event	from	the	queue

KQ_EV_ENABLE Permitscontrol()	to	returns	the	event

KQ_EV_DISABLE Disablesevent

KQ_EV_ONESHOT Removes	event	after	first	occurrence

KQ_EV_CLEAR
Reset	the	state	after	an	event	is
retrieved

KQ_EV_SYSFLAGS internal	event

KQ_EV_FLAG1 internal	event

KQ_EV_EOF Filter	specific	EOF	condition

KQ_EV_ERROR See	return	values

kevent.fflags

Filter	specific	flags.

KQ_FILTER_READ	and	KQ_FILTER_WRITE	filter	flags:

Constant Meaning

KQ_NOTE_LOWAT
low	water	mark	of	a	socket
buffer

KQ_FILTER_VNODE	filter	flags:

Constant Meaning

KQ_NOTE_DELETE unlink()	was	called

KQ_NOTE_WRITE a	write	occurred

KQ_NOTE_EXTEND the	file	was	extended

KQ_NOTE_ATTRIB an	attribute	was	changed

KQ_NOTE_LINK the	link	count	has	changed

KQ_NOTE_RENAME the	file	was	renamed

KQ_NOTE_REVOKE access	to	the	file	was	revoked

KQ_FILTER_PROC	filter	flags:

Constant Meaning

KQ_NOTE_EXIT the	process	has	exited

KQ_NOTE_FORK the	process	has	called	fork()

KQ_NOTE_EXEC
the	process	has	executed	a	new
process

KQ_NOTE_PCTRLMASK internal	filter	flag

KQ_NOTE_PDATAMASK internal	filter	flag

KQ_NOTE_TRACK follow	a	process	across	fork()

KQ_NOTE_CHILD
returned	on	the	child	process	for
NOTE_TRACK

KQ_NOTE_TRACKERR unable	to	attach	to	a	child

KQ_FILTER_NETDEV	filter	flags	(not	available	on	Mac	OS	X):

Constant Meaning

KQ_NOTE_LINKUP link	is	up

KQ_NOTE_LINKDOWN link	is	down

KQ_NOTE_LINKINV link	state	is	invalid

kevent.data

Filter	specific	data.

kevent.udata

User	defined	value.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.4.	selectors	–	High-level	I/O
multiplexing
New	in	version	3.4.

18.4.1.	Introduction

This	module	allows	high-level	and	efficient	I/O	multiplexing,	built	upon
the	 select	 module	 primitives.	 Users	 are	 encouraged	 to	 use	 this
module	 instead,	 unless	 they	 want	 precise	 control	 over	 the	 OS-level
primitives	used.

It	 defines	 a	 BaseSelector	 abstract	 base	 class,	 along	with	 several
concrete	 implementations	 (KqueueSelector,	 EpollSelector...),
that	can	be	used	 to	wait	 for	 I/O	 readiness	notification	on	multiple	 file
objects.	 In	 the	 following,	 “file	 object”	 refers	 to	 any	 object	 with	 a
fileno()	method,	or	a	raw	file	descriptor.	See	file	object.

DefaultSelector	 is	 an	 alias	 to	 the	 most	 efficient	 implementation
available	on	the	current	platform:	this	should	be	the	default	choice	for
most	users.

Note: 	The	type	of	file	objects	supported	depends	on	the	platform:
on	Windows,	sockets	are	supported,	but	not	pipes,	whereas	on	Unix,
both	are	supported	(some	other	types	may	be	supported	as	well,
such	as	fifos	or	special	file	devices).

See	also:

select

Low-level	I/O	multiplexing	module.

18.4.2.	Classes

Classes	hierarchy:

BaseSelector

+--	SelectSelector

+--	PollSelector

+--	EpollSelector

+--	KqueueSelector

In	 the	following,	events	 is	a	bitwise	mask	 indicating	which	 I/O	events
should	be	waited	for	on	a	given	file	object.	It	can	be	a	combination	of
the	constants	below:

Constant Meaning

EVENT_READ Available	for	read

EVENT_WRITE Available	for	write

class	selectors.SelectorKey
A	SelectorKey	is	a	namedtuple	used	to	associate	a	file	object
to	 its	 underlying	 file	 decriptor,	 selected	 event	mask	 and	 attached
data.	It	is	returned	by	several	BaseSelector	methods.

fileobj

File	object	registered.

fd

Underlying	file	descriptor.

events

Events	that	must	be	waited	for	on	this	file	object.

data

Optional	opaque	data	associated	to	this	file	object:	for	example,
this	could	be	used	to	store	a	per-client	session	ID.

class	selectors.BaseSelector
A	 BaseSelector	 is	 used	 to	 wait	 for	 I/O	 event	 readiness	 on
multiple	 file	 objects.	 It	 supports	 file	 stream	 registration,
unregistration,	 and	 a	 method	 to	 wait	 for	 I/O	 events	 on	 those
streams,	with	 an	 optional	 timeout.	 It’s	 an	 abstract	 base	 class,	 so
cannot	be	instantiated.	Use	DefaultSelector	instead,	or	one	of
SelectSelector,	 KqueueSelector	 etc.	 if	 you	 want	 to
specifically	 use	an	 implementation,	 and	 your	 platform	supports	 it.
BaseSelector	 and	 its	 concrete	 implementations	 support	 the
context	manager	protocol.

register(fileobj,	events,	data=None)
Register	a	file	object	for	selection,	monitoring	it	for	I/O	events.

fileobj	is	the	file	object	to	monitor.	It	may	either	be	an	integer	file
descriptor	or	an	object	with	a	 fileno()	method.	events	 is	 a
bitwise	mask	of	events	to	monitor.	data	is	an	opaque	object.

This	 returns	 a	 new	 SelectorKey	 instance,	 or	 raises	 a
ValueError	in	case	of	invalid	event	mask	or	file	descriptor,	or
KeyError	if	the	file	object	is	already	registered.

unregister(fileobj)
Unregister	 a	 file	 object	 from	 selection,	 removing	 it	 from
monitoring.	 A	 file	 object	 shall	 be	 unregistered	 prior	 to	 being
closed.

fileobj	must	be	a	file	object	previously	registered.

This	returns	the	associated	SelectorKey	instance,	or	raises	a
KeyError	if	fileobj	is	not	registered.	It	will	 raise	ValueError
if	 fileobj	 is	 invalid	 (e.g.	 it	 has	 no	 fileno()	 method	 or	 its
fileno()	method	has	an	invalid	return	value).

modify(fileobj,	events,	data=None)
Change	a	registered	file	object’s	monitored	events	or	attached
data.

This	 is	 equivalent	 to
BaseSelector.unregister(fileobj)()	 followed	 by
BaseSelector.register(fileobj,	events,	data)(),
except	that	it	can	be	implemented	more	efficiently.

This	 returns	 a	 new	 SelectorKey	 instance,	 or	 raises	 a
ValueError	in	case	of	invalid	event	mask	or	file	descriptor,	or
KeyError	if	the	file	object	is	not	registered.

select(timeout=None)
Wait	 until	 some	 registered	 file	 objects	 become	 ready,	 or	 the
timeout	expires.

If	 timeout	 >	 0,	 this	 specifies	 the	 maximum	 wait	 time,	 in
seconds.	If	timeout	<=	0,	the	call	won’t	block,	and	will	report
the	currently	 ready	 file	objects.	 If	 timeout	 is	None,	 the	call	will
block	until	a	monitored	file	object	becomes	ready.

This	 returns	 a	 list	 of	 (key,	 events)	 tuples,	 one	 for	 each
ready	file	object.

key	is	the	SelectorKey	instance	corresponding	to	a	ready	file
object.	events	is	a	bitmask	of	events	ready	on	this	file	object.

Note: 	This	method	can	return	before	any	file	object	becomes
ready	 or	 the	 timeout	 has	 elapsed	 if	 the	 current	 process
receives	a	signal:	in	this	case,	an	empty	list	will	be	returned.

close()
Close	the	selector.

This	must	be	called	to	make	sure	that	any	underlying	resource
is	freed.	The	selector	shall	not	be	used	once	it	has	been	closed.

get_key(fileobj)
Return	the	key	associated	with	a	registered	file	object.

This	returns	 the	SelectorKey	 instance	associated	to	 this	 file
object,	or	raises	KeyError	if	the	file	object	is	not	registered.

get_map()
Return	a	mapping	of	file	objects	to	selector	keys.

This	 returns	 a	 Mapping	 instance	 mapping	 registered	 file
objects	to	their	associated	SelectorKey	instance.

class	selectors.DefaultSelector
The	default	selector	class,	using	the	most	efficient	implementation
available	on	the	current	platform.	This	should	be	the	default	choice
for	most	users.

class	selectors.SelectSelector
select.select()-based	selector.

class	selectors.PollSelector
select.poll()-based	selector.

class	selectors.EpollSelector
select.epoll()-based	selector.

fileno()
This	 returns	 the	 file	 descriptor	 used	 by	 the	 underlying
select.epoll()	object.

class	selectors.KqueueSelector
select.kqueue()-based	selector.

fileno()
This	 returns	 the	 file	 descriptor	 used	 by	 the	 underlying
select.kqueue()	object.

18.4.3.	Examples

Here	is	a	simple	echo	server	implementation:

import	selectors

import	socket

sel	=	selectors.DefaultSelector()

def	accept(sock,	mask):

				conn,	addr	=	sock.accept()		#	Should	be	ready

				print('accepted',	conn,	'from',	addr)

				conn.setblocking(False)

				sel.register(conn,	selectors.EVENT_READ,	read)

def	read(conn,	mask):

				data	=	conn.recv(1000)		#	Should	be	ready

				if	data:

								print('echoing',	repr(data),	'to',	conn)

								conn.send(data)		#	Hope	it	won't	block

				else:

								print('closing',	conn)

								sel.unregister(conn)

								conn.close()

sock	=	socket.socket()

sock.bind(('localhost',	1234))

sock.listen(100)

sock.setblocking(False)

sel.register(sock,	selectors.EVENT_READ,	accept)

while	True:

				events	=	sel.select()

				for	key,	mask	in	events:

								callback	=	key.data

								callback(key.fileobj,	mask)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.5.	asyncio	–	Asynchronous
I/O,	event	loop,	coroutines	and
tasks
New	in	version	3.4.

Source	code:	Lib/asyncio/

This	 module	 provides	 infrastructure	 for	 writing	 single-threaded
concurrent	 code	 using	 coroutines,	 multiplexing	 I/O	 access	 over
sockets	and	other	resources,	running	network	clients	and	servers,	and
other	 related	 primitives.	 Here	 is	 a	more	 detailed	 list	 of	 the	 package
contents:

a	 pluggable	 event	 loop	 with	 various	 system-specific
implementations;
transport	and	protocol	abstractions	(similar	to	those	in	Twisted);
concrete	support	 for	TCP,	UDP,	SSL,	subprocess	pipes,	delayed
calls,	and	others	(some	may	be	system-dependent);
a	 Future	 class	 that	 mimics	 the	 one	 in	 the
concurrent.futures	 module,	 but	 adapted	 for	 use	 with	 the
event	loop;
coroutines	and	tasks	based	on	yield	from	 (PEP	380),	 to	help
write	concurrent	code	in	a	sequential	fashion;
cancellation	support	for	Futures	and	coroutines;
synchronization	primitives	 for	use	between	coroutines	 in	a	single
thread,	mimicking	those	in	the	threading	module;
an	 interface	 for	passing	work	off	 to	a	 threadpool,	 for	 times	when
you	 absolutely,	 positively	 have	 to	 use	 a	 library	 that	 makes
blocking	I/O	calls.

http://hg.python.org/cpython/file/3.4/Lib/asyncio/
http://twistedmatrix.com/
http://www.python.org/dev/peps/pep-0380

Table	of	content:

18.5.1.	Event	loops
18.5.1.1.	Event	loop	policies	and	the	default	policy
18.5.1.2.	Event	loop	functions
18.5.1.3.	Event	loop	policy	interface
18.5.1.4.	Access	to	the	global	loop	policy
18.5.1.5.	Run	an	event	loop
18.5.1.6.	Calls
18.5.1.7.	Delayed	calls
18.5.1.8.	Creating	connections
18.5.1.9.	Creating	listening	connections
18.5.1.10.	Watch	file	descriptors
18.5.1.11.	Low-level	socket	operations
18.5.1.12.	Resolve	host	name
18.5.1.13.	Running	subprocesses
18.5.1.14.	UNIX	signals
18.5.1.15.	Executor
18.5.1.16.	Error	Handling	API
18.5.1.17.	Debug	mode
18.5.1.18.	Server
18.5.1.19.	Handle
18.5.1.20.	Example:	Hello	World	(callback)
18.5.1.21.	 Example:	 Set	 signal	 handlers	 for	 SIGINT	 and
SIGTERM

18.5.2.	Tasks	and	coroutines
18.5.2.1.	Coroutines

18.5.2.1.1.	Example:	“Hello	World”	coroutine
18.5.2.1.2.	Example:	Chain	coroutines

18.5.2.2.	InvalidStateError
18.5.2.3.	Future

18.5.2.3.1.	Example:	Future	with	run_until_complete()
18.5.2.3.2.	Example:	Future	with	run_forever()

18.5.2.4.	Task

18.5.2.4.1.	Example:	Parallel	execution	of	tasks
18.5.2.5.	Task	functions

18.5.3.	Transports	and	protocols	(low-level	API)
18.5.3.1.	Transports

18.5.3.1.1.	BaseTransport
18.5.3.1.2.	ReadTransport
18.5.3.1.3.	WriteTransport
18.5.3.1.4.	DatagramTransport
18.5.3.1.5.	BaseSubprocessTransport

18.5.3.2.	Protocols
18.5.3.2.1.	Protocol	classes
18.5.3.2.2.	Connection	callbacks
18.5.3.2.3.	Streaming	protocols
18.5.3.2.4.	Datagram	protocols
18.5.3.2.5.	Flow	control	callbacks
18.5.3.2.6.	Coroutines	and	protocols

18.5.3.3.	Protocol	example:	TCP	echo	server	and	client
18.5.3.3.1.	Echo	client
18.5.3.3.2.	Echo	server

18.5.4.	Streams	(high-level	API)
18.5.4.1.	Stream	functions
18.5.4.2.	StreamReader
18.5.4.3.	StreamWriter
18.5.4.4.	StreamReaderProtocol
18.5.4.5.	IncompleteReadError
18.5.4.6.	Example

18.5.5.	Subprocess
18.5.5.1.	Create	a	subprocess
18.5.5.2.	Constants
18.5.5.3.	Process
18.5.5.4.	Example

18.5.6.	Synchronization	primitives
18.5.6.1.	Locks

18.5.6.1.1.	Lock

18.5.6.1.2.	Event
18.5.6.1.3.	Condition

18.5.6.2.	Semaphores
18.5.6.2.1.	Semaphore
18.5.6.2.2.	BoundedSemaphore

18.5.6.3.	Queues
18.5.6.3.1.	Queue
18.5.6.3.2.	PriorityQueue
18.5.6.3.3.	LifoQueue
18.5.6.3.4.	JoinableQueue
18.5.6.3.5.	Exceptions

18.5.7.	Develop	with	asyncio
18.5.7.1.	Concurrency	and	multithreading
18.5.7.2.	Handle	blocking	functions	correctly
18.5.7.3.	Logging
18.5.7.4.	Detect	coroutine	objects	never	scheduled
18.5.7.5.	Detect	exceptions	not	consumed
18.5.7.6.	Chain	coroutines	correctly

See	also: 	The	asyncio	module	was	designed	in	the	PEP	3156.
For	a	motivational	primer	on	transports	and	protocols,	see	PEP
3153.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-3156
http://www.python.org/dev/peps/pep-3153
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

http://www.python.org/

18.5.1.	Event	loops
The	event	loop	is	the	central	execution	device	provided	by	asyncio.
It	provides	multiple	facilities,	amongst	which:

Registering,	executing	and	cancelling	delayed	calls	(timeouts).
Creating	 client	 and	 server	 transports	 for	 various	 kinds	 of
communication.
Launching	 subprocesses	 and	 the	 associated	 transports	 for
communication	with	an	external	program.
Delegating	costly	function	calls	to	a	pool	of	threads.

18.5.1.1.	Event	loop	policies	and	the
default	policy

Event	loop	management	is	abstracted	with	a	policy	pattern,	to	provide
maximal	 flexibility	 for	 custom	 platforms	 and	 frameworks.	 Throughout
the	execution	of	a	process,	a	single	global	policy	object	manages	the
event	 loops	available	 to	 the	process	based	on	 the	 calling	 context.	A
policy	 is	 an	 object	 implementing	 the	 AbstractEventLoopPolicy
interface.

For	 most	 users	 of	 asyncio,	 policies	 never	 have	 to	 be	 dealt	 with
explicitly,	since	the	default	global	policy	is	sufficient.

The	default	policy	defines	context	as	the	current	thread,	and	manages
an	 event	 loop	 per	 thread	 that	 interacts	with	 asyncio.	 The	module-
level	 functions	 get_event_loop()	 and	 set_event_loop()

provide	 convenient	 access	 to	 event	 loops	 managed	 by	 the	 default
policy.

18.5.1.2.	Event	loop	functions

The	 following	 functions	 are	 convenient	 shortcuts	 to	 accessing	 the
methods	 of	 the	 global	 policy.	 Note	 that	 this	 provides	 access	 to	 the
default	 policy,	 unless	 an	 alternative	 policy	 was	 set	 by	 calling
set_event_loop_policy()	earlier	in	the	execution	of	the	process.

asyncio.get_event_loop()
Equivalent	 to	 calling
get_event_loop_policy().get_event_loop().

asyncio.set_event_loop(loop)
Equivalent	 to	 calling
get_event_loop_policy().set_event_loop(loop).

asyncio.new_event_loop()
Equivalent	 to	 calling
get_event_loop_policy().new_event_loop().

18.5.1.3.	Event	loop	policy	interface

An	event	loop	policy	must	implement	the	following	interface:

class	asyncio.AbstractEventLoopPolicy
get_event_loop()

Get	the	event	loop	for	current	context.	Returns	an	event	loop	object
implementing	BaseEventLoop	interface,	or	raises	an	exception	in
case	 no	 event	 loop	 has	 been	 set	 for	 the	 current	 context	 and	 the
current	policy	does	not	specify	to	create	one.	It	should	never	return
None.

set_event_loop(loop)

Set	the	event	loop	of	the	current	context	to	loop.

new_event_loop()

Create	and	return	a	new	event	loop	object	according	to	this	policy’s
rules.	If	there’s	need	to	set	this	loop	as	the	event	loop	of	the	current
context,	set_event_loop()	must	be	called	explicitly.

18.5.1.4.	Access	to	the	global	loop	policy

asyncio.get_event_loop_policy()
Get	the	current	event	loop	policy.

asyncio.set_event_loop_policy(policy)
Set	 the	 current	 event	 loop	 policy.	 If	 policy	 is	 None,	 the	 default
policy	is	restored.

18.5.1.5.	Run	an	event	loop

BaseEventLoop.run_forever()
Run	until	stop()	is	called.

BaseEventLoop.run_until_complete(future)
Run	until	the	Future	is	done.

If	the	argument	is	a	coroutine,	it	is	wrapped	in	a	Task.

Return	the	Future’s	result,	or	raise	its	exception.

BaseEventLoop.is_running()
Returns	running	status	of	event	loop.

BaseEventLoop.stop()
Stop	running	the	event	loop.

Every	 callback	 scheduled	 before	 stop()	 is	 called	 will	 run.
Callback	scheduled	after	stop()	 is	called	won’t.	However,	 those
callbacks	will	run	if	run_forever()	is	called	again	later.

BaseEventLoop.close()
Close	the	event	loop.	The	loop	should	not	be	running.

This	clears	the	queues	and	shuts	down	the	executor,	but	does	not
wait	for	the	executor	to	finish.

This	 is	 idempotent	 and	 irreversible.	 No	 other	methods	 should	 be
called	after	this	one.

18.5.1.6.	Calls

BaseEventLoop.call_soon(callback,	*args)
Arrange	for	a	callback	to	be	called	as	soon	as	possible.

This	operates	as	a	FIFO	queue,	callbacks	are	called	in	the	order	in
which	 they	 are	 registered.	 Each	 callback	 will	 be	 called	 exactly
once.

Any	positional	 arguments	after	 the	 callback	will	 be	passed	 to	 the
callback	when	it	is	called.

An	instance	of	asyncio.Handle	is	returned.

BaseEventLoop.call_soon_threadsafe(callback,	*args)
Like	call_soon(),	but	thread	safe.

18.5.1.7.	Delayed	calls

The	 event	 loop	 has	 its	 own	 internal	 clock	 for	 computing	 timeouts.
Which	 clock	 is	 used	 depends	 on	 the	 (platform-specific)	 event	 loop
implementation;	ideally	it	is	a	monotonic	clock.	This	will	generally	be	a
different	clock	than	time.time().

Note: 	Timeouts	(relative	delay	or	absolute	when)	should	not
exceed	one	day.

BaseEventLoop.call_later(delay,	callback,	*args)
Arrange	for	the	callback	to	be	called	after	the	given	delay	seconds
(either	an	int	or	float).

An	instance	of	asyncio.Handle	is	returned.

callback	will	be	called	exactly	once	per	call	 to	call_later().	 If
two	 callbacks	 are	 scheduled	 for	 exactly	 the	 same	 time,	 it	 is
undefined	which	will	be	called	first.

The	optional	positional	args	will	be	passed	to	the	callback	when	it
is	 called.	 If	 you	want	 the	 callback	 to	 be	 called	with	 some	named
arguments,	use	a	closure	or	functools.partial().

BaseEventLoop.call_at(when,	callback,	*args)
Arrange	 for	 the	 callback	 to	 be	 called	 at	 the	 given	 absolute
timestamp	when	(an	int	or	float),	using	the	same	time	reference	as
time().

This	method’s	behavior	is	the	same	as	call_later().

BaseEventLoop.time()

Return	the	current	time,	as	a	float	value,	according	to	the	event
loop’s	internal	clock.

See	also: 	The	asyncio.sleep()	function.

18.5.1.8.	Creating	connections

BaseEventLoop.create_connection(protocol_factory,
host=None,	port=None,	*,	ssl=None,	family=0,	proto=0,	flags=0,
sock=None,	local_addr=None,	server_hostname=None)

Create	 a	 streaming	 transport	 connection	 to	 a	 given	 Internet	host
and	port:	socket	family	AF_INET	or	AF_INET6	depending	on	host
(or	family	if	specified),	socket	type	SOCK_STREAM.	protocol_factory
must	be	a	callable	returning	a	protocol	instance.

This	method	is	a	coroutine	which	will	try	to	establish	the	connection
in	 the	 background.	 When	 successful,	 the	 coroutine	 returns	 a
(transport,	protocol)	pair.

The	 chronological	 synopsis	 of	 the	 underlying	 operation	 is	 as
follows:

1.	 The	 connection	 is	 established,	 and	 a	 transport	 is	 created	 to
represent	it.

2.	 protocol_factory	is	called	without	arguments	and	must	return	a
protocol	instance.

3.	 The	 protocol	 instance	 is	 tied	 to	 the	 transport,	 and	 its
connection_made()	method	is	called.

4.	 The	 coroutine	 returns	 successfully	 with	 the	 (transport,
protocol)	pair.

The	created	transport	is	an	implementation-dependent	bidirectional
stream.

Note: 	 protocol_factory	 can	 be	 any	 kind	 of	 callable,	 not
necessarily	 a	 class.	 For	 example,	 if	 you	 want	 to	 use	 a	 pre-
created	 protocol	 instance,	 you	 can	 pass	 lambda:

my_protocol.

Options	allowing	to	change	how	the	connection	is	created:

ssl:	 if	given	and	not	false,	a	SSL/TLS	transport	 is	created	(by
default	 a	 plain	 TCP	 transport	 is	 created).	 If	 ssl	 is	 a
ssl.SSLContext	 object,	 this	 context	 is	 used	 to	 create	 the
transport;	 if	 ssl	 is	 True,	 a	 context	 with	 some	 unspecified
default	settings	is	used.
server_hostname,	is	only	for	use	together	with	ssl,	and	sets	or
overrides	 the	hostname	 that	 the	 target	server’s	certificate	will
be	matched	against.	By	default	the	value	of	the	host	argument
is	used.	If	host	is	empty,	there	is	no	default	and	you	must	pass
a	value	for	server_hostname.	If	server_hostname	 is	an	empty
string,	 hostname	 matching	 is	 disabled	 (which	 is	 a	 serious
security	risk,	allowing	for	man-in-the-middle-attacks).
family,	 proto,	 flags	 are	 the	 optional	 address	 family,	 protocol
and	 flags	 to	 be	 passed	 through	 to	 getaddrinfo()	 for	 host
resolution.	 If	 given,	 these	 should	 all	 be	 integers	 from	 the
corresponding	socket	module	constants.
sock,	 if	 given,	 should	 be	 an	 existing,	 already	 connected
socket.socket	object	to	be	used	by	the	transport.	If	sock	is
given,	 none	 of	host,	port,	 family,	proto,	 flags	 and	 local_addr
should	be	specified.
local_addr,	if	given,	is	a	(local_host,	local_port)	tuple
used	 to	 bind	 the	 socket	 to	 locally.	 The	 local_host	 and
local_port	 are	 looked	up	using	getaddrinfo(),	 similarly	 to	host
and	port.

See	also: 	The	open_connection()	 function	can	be	used	 to
get	 a	 pair	 of	 (StreamReader,	 StreamWriter)	 instead	 of	 a
protocol.

BaseEventLoop.create_datagram_endpoint(protocol_factory
local_addr=None,	remote_addr=None,	*,	family=0,	proto=0,	flags=0)

Create	 datagram	 connection:	 socket	 family	 AF_INET	 or
AF_INET6	depending	on	host	 (or	 family	 if	 specified),	 socket	 type
SOCK_DGRAM.

This	method	is	a	coroutine	which	will	try	to	establish	the	connection
in	 the	 background.	 When	 successful,	 the	 coroutine	 returns	 a
(transport,	protocol)	pair.

See	 the	 BaseEventLoop.create_connection()	 method	 for
parameters.

BaseEventLoop.create_unix_connection(protocol_factory,
path,	*,	ssl=None,	sock=None,	server_hostname=None)

Create	 UNIX	 connection:	 socket	 family	 AF_UNIX,	 socket	 type
SOCK_STREAM.	 The	 AF_UNIX	 socket	 family	 is	 used	 to
communicate	between	processes	on	the	same	machine	efficiently.

This	method	is	a	coroutine	which	will	try	to	establish	the	connection
in	 the	 background.	 When	 successful,	 the	 coroutine	 returns	 a
(transport,	protocol)	pair.

See	 the	 BaseEventLoop.create_connection()	 method	 for
parameters.

Availability:	UNIX.

18.5.1.9.	Creating	listening	connections

BaseEventLoop.create_server(protocol_factory,	host=None,
port=None,	*,	family=socket.AF_UNSPEC,	flags=socket.AI_PASSIVE,
sock=None,	backlog=100,	ssl=None,	reuse_address=None)

A	coroutine	method	which	creates	a	TCP	server	bound	to	host	and
port.

The	return	value	is	a	AbstractServer	object	which	can	be	used
to	stop	the	service.

If	host	is	an	empty	string	or	None	all	interfaces	are	assumed	and	a
list	of	multiple	sockets	will	be	returned	(most	likely	one	for	IPv4	and
another	one	for	IPv6).

family	 can	 be	 set	 to	 either	 AF_INET	 or	 AF_INET6	 to	 force	 the
socket	to	use	IPv4	or	IPv6.	If	not	set	it	will	be	determined	from	host
(defaults	to	AF_UNSPEC).

flags	is	a	bitmask	for	getaddrinfo().

sock	 can	 optionally	 be	 specified	 in	 order	 to	 use	 a	 preexisting
socket	object.

backlog	is	the	maximum	number	of	queued	connections	passed	to
listen()	(defaults	to	100).

ssl	can	be	set	to	an	SSLContext	to	enable	SSL	over	the	accepted
connections.

reuse_address	 tells	 the	 kernel	 to	 reuse	 a	 local	 socket	 in
TIME_WAIT	state,	without	waiting	for	its	natural	timeout	to	expire.	If
not	specified	will	automatically	be	set	to	True	on	UNIX.

See	 also: 	 The	 function	 start_server()	 creates	 a
(StreamReader,	StreamWriter)	pair	and	calls	back	a	function
with	this	pair.

BaseEventLoop.create_unix_server(protocol_factory,
path=None,	*,	sock=None,	backlog=100,	ssl=None)

Similar	 to	 BaseEventLoop.create_server(),	 but	 specific	 to
the	socket	family	AF_UNIX.

Availability:	UNIX.

18.5.1.10.	Watch	file	descriptors

BaseEventLoop.add_reader(fd,	callback,	*args)
Start	watching	the	file	descriptor	 for	read	availability	and	then	call
the	callback	with	specified	arguments.

BaseEventLoop.remove_reader(fd)
Stop	watching	the	file	descriptor	for	read	availability.

BaseEventLoop.add_writer(fd,	callback,	*args)
Start	watching	the	file	descriptor	for	write	availability	and	then	call
the	callback	with	specified	arguments.

BaseEventLoop.remove_writer(fd)
Stop	watching	the	file	descriptor	for	write	availability.

18.5.1.11.	Low-level	socket	operations

BaseEventLoop.sock_recv(sock,	nbytes)
Receive	data	 from	 the	 socket.	 The	 return	 value	 is	 a	 bytes	 object
representing	 the	 data	 received.	 The	maximum	amount	 of	 data	 to
be	received	at	once	is	specified	by	nbytes.

This	method	is	a	coroutine.

See	also: 	The	socket.socket.recv()	method.

BaseEventLoop.sock_sendall(sock,	data)
Send	 data	 to	 the	 socket.	 The	 socket	 must	 be	 connected	 to	 a
remote	socket.	This	method	continues	to	send	data	from	data	until
either	all	data	has	been	sent	or	an	error	occurs.	None	is	returned
on	success.	On	error,	an	exception	is	raised,	and	there	is	no	way	to
determine	how	much	data,	 if	 any,	was	successfully	processed	by
the	receiving	end	of	the	connection.

This	method	is	a	coroutine.

See	also: 	The	socket.socket.sendall()	method.

BaseEventLoop.sock_connect(sock,	address)
Connect	to	a	remote	socket	at	address.

The	address	must	be	already	resolved	to	avoid	the	trap	of	hanging
the	 entire	 event	 loop	 when	 the	 address	 requires	 doing	 a	 DNS
lookup.	For	example,	 it	must	be	an	 IP	address,	not	an	hostname,
for	 AF_INET	 and	 AF_INET6	 address	 families.	 Use
getaddrinfo()	to	resolve	the	hostname	asynchronously.

This	method	is	a	coroutine.

See	 also: 	 The	 BaseEventLoop.create_connection()

method,	 the	 open_connection()	 function	 and	 the
socket.socket.connect()	method.

BaseEventLoop.sock_accept(sock)
Accept	a	connection.	The	socket	must	be	bound	to	an	address	and
listening	 for	 connections.	 The	 return	 value	 is	 a	 pair	 (conn,
address)	where	conn	is	a	new	socket	object	usable	to	send	and
receive	data	on	the	connection,	and	address	is	the	address	bound
to	the	socket	on	the	other	end	of	the	connection.

This	method	is	a	coroutine.

See	also: 	The	BaseEventLoop.create_server()	method,
the	 start_server()	 function	 and	 the
socket.socket.accept()	method.

18.5.1.12.	Resolve	host	name

BaseEventLoop.getaddrinfo(host,	port,	*,	family=0,	type=0,
proto=0,	flags=0)

This	method	 is	 a	 coroutine,	 similar	 to	 socket.getaddrinfo()
function	but	non-blocking.

BaseEventLoop.getnameinfo(sockaddr,	flags=0)
This	method	 is	 a	 coroutine,	 similar	 to	 socket.getnameinfo()
function	but	non-blocking.

18.5.1.13.	Running	subprocesses

Run	subprocesses	asynchronously	using	the	subprocess	module.

Note: 	On	Windows,	the	default	event	loop	uses
selectors.SelectSelector	which	only	supports	sockets.	The
ProactorEventLoop	should	be	used	to	support	subprocesses.

Note: 	On	Mac	OS	X	older	than	10.9	(Mavericks),
selectors.KqueueSelector	does	not	support	character	devices
like	PTY,	whereas	it	is	used	by	the	default	event	loop.	The
SelectorEventLoop	can	be	used	with	SelectSelector	or
PollSelector	to	handle	character	devices	on	Mac	OS	X	10.6
(Snow	Leopard)	and	later.

BaseEventLoop.subprocess_exec(protocol_factory,	*args,
stdin=subprocess.PIPE,	stdout=subprocess.PIPE,
stderr=subprocess.PIPE,	**kwargs)

Create	 a	 subprocess	 from	 one	 or	 more	 string	 arguments,	 where
the	first	string	specifies	the	program	to	execute,	and	the	remaining
strings	specify	the	program’s	arguments.	(Thus,	together	the	string
arguments	 form	the	sys.argv	value	of	 the	program,	assuming	 it
is	 a	 Python	 script.)	 This	 is	 similar	 to	 the	 standard	 library
subprocess.Popen	 class	called	with	shell=False	and	 the	 list	of
strings	passed	as	the	first	argument;	however,	where	Popen	takes
a	 single	 argument	 which	 is	 list	 of	 strings,	 subprocess_exec()
takes	multiple	string	arguments.

Other	parameters:

stdin:	 Either	 a	 file-like	 object	 representing	 the	 pipe	 to	 be

connected	 to	 the	 subprocess’s	 standard	 input	 stream	 using
connect_write_pipe(),	 or	 the	 constant
subprocess.PIPE	 (the	 default).	 By	 default	 a	 new	 pipe	will
be	created	and	connected.
stdout:	 Either	 a	 file-like	 object	 representing	 the	 pipe	 to	 be
connected	 to	 the	 subprocess’s	 standard	 output	 stream	 using
connect_read_pipe(),	 or	 the	 constant
subprocess.PIPE	 (the	 default).	 By	 default	 a	 new	 pipe	will
be	created	and	connected.
stderr:	 Either	 a	 file-like	 object	 representing	 the	 pipe	 to	 be
connected	 to	 the	 subprocess’s	 standard	 error	 stream	 using
connect_read_pipe(),	 or	 one	 of	 the	 constants
subprocess.PIPE	 (the	 default)	 or	 subprocess.STDOUT.
By	 default	 a	 new	 pipe	will	 be	 created	 and	 connected.	When
subprocess.STDOUT	is	specified,	the	subprocess’s	standard
error	 stream	 will	 be	 connected	 to	 the	 same	 pipe	 as	 the
standard	output	stream.
All	 other	 keyword	 arguments	 are	 passed	 to
subprocess.Popen	 without	 interpretation,	 except	 for
bufsize,	 universal_newlines	 and	 shell,	 which	 should	 not	 be
specified	at	all.

Returns	a	pair	of	(transport,	protocol),	where	 transport	 is
an	instance	of	BaseSubprocessTransport.

This	method	is	a	coroutine.

See	 the	 constructor	 of	 the	 subprocess.Popen	 class	 for
parameters.

BaseEventLoop.subprocess_shell(protocol_factory,	cmd,	*,
stdin=subprocess.PIPE,	stdout=subprocess.PIPE,
stderr=subprocess.PIPE,	**kwargs)

Create	 a	 subprocess	 from	 cmd,	 which	 is	 a	 string	 using	 the

platform’s	 “shell”	 syntax.	 This	 is	 similar	 to	 the	 standard	 library
subprocess.Popen	class	called	with	shell=True.

See	 subprocess_exec()	 for	more	 details	 about	 the	 remaining
arguments.

Returns	a	pair	of	(transport,	protocol),	where	 transport	 is
an	instance	of	BaseSubprocessTransport.

This	method	is	a	coroutine.

See	 the	 constructor	 of	 the	 subprocess.Popen	 class	 for
parameters.

BaseEventLoop.connect_read_pipe(protocol_factory,	pipe)
Register	read	pipe	in	eventloop.

protocol_factory	should	instantiate	object	with	Protocol	interface.
pipe	is	file-like	object	already	switched	to	nonblocking.	Return	pair
(transport,	 protocol),	 where	 transport	 support	 ReadTransport
interface.

This	method	is	a	coroutine.

BaseEventLoop.connect_write_pipe(protocol_factory,
pipe)

Register	write	pipe	in	eventloop.

protocol_factory	 should	 instantiate	 object	 with	 BaseProtocol
interface.	Pipe	 is	 file-like	 object	 already	 switched	 to	 nonblocking.
Return	 pair	 (transport,	 protocol),	 where	 transport	 support
WriteTransport	interface.

This	method	is	a	coroutine.

See	also: 	The	create_subprocess_exec()	and
create_subprocess_shell()	functions.

18.5.1.14.	UNIX	signals

Availability:	UNIX	only.

BaseEventLoop.add_signal_handler(signum,	callback,
*args)

Add	a	handler	for	a	signal.

Raise	ValueError	if	the	signal	number	is	invalid	or	uncatchable.
Raise	RuntimeError	if	there	is	a	problem	setting	up	the	handler.

BaseEventLoop.remove_signal_handler(sig)
Remove	a	handler	for	a	signal.

Return	True	if	a	signal	handler	was	removed,	False	if	not.

See	also: 	The	signal	module.

18.5.1.15.	Executor

Call	a	function	in	an	Executor	(pool	of	threads	or	pool	of	processes).
By	 default,	 an	 event	 loop	 uses	 a	 thread	 pool	 executor
(ThreadPoolExecutor).

BaseEventLoop.run_in_executor(executor,	callback,	*args)
Arrange	for	a	callback	to	be	called	in	the	specified	executor.

The	 executor	 argument	 should	 be	 an	 Executor	 instance.	 The
default	executor	is	used	if	executor	is	None.

This	method	is	a	coroutine.

BaseEventLoop.set_default_executor(executor)
Set	the	default	executor	used	by	run_in_executor().

18.5.1.16.	Error	Handling	API

Allows	to	customize	how	exceptions	are	handled	in	the	event	loop.

BaseEventLoop.set_exception_handler(handler)
Set	handler	as	the	new	event	loop	exception	handler.

If	handler	is	None,	the	default	exception	handler	will	be	set.

If	handler	 is	a	callable	object,	 it	should	have	a	matching	signature
to	 (loop,	 context),	 where	 loop	 will	 be	 a	 reference	 to	 the
active	 event	 loop,	 context	 will	 be	 a	 dict	 object	 (see
call_exception_handler()	 documentation	 for	 details	 about
context).

BaseEventLoop.default_exception_handler(context)
Default	exception	handler.

This	is	called	when	an	exception	occurs	and	no	exception	handler
is	set,	and	can	be	called	by	a	custom	exception	handler	that	wants
to	defer	to	the	default	behavior.

context	 parameter	 has	 the	 same	 meaning	 as	 in
call_exception_handler().

BaseEventLoop.call_exception_handler(context)
Call	the	current	event	loop	exception	handler.

context	 is	a	dict	 object	 containing	 the	 following	keys	 (new	keys
may	be	introduced	later):

‘message’:	Error	message;
‘exception’	(optional):	Exception	object;

‘future’	(optional):	asyncio.Future	instance;
‘handle’	(optional):	asyncio.Handle	instance;
‘protocol’	(optional):	Protocol	instance;
‘transport’	(optional):	Transport	instance;
‘socket’	(optional):	socket.socket	instance.

Note: 	Note:	this	method	should	not	be	overloaded	in	subclassed
event	 loops.	 For	 any	 custom	 exception	 handling,	 use
set_exception_handler()	method.

18.5.1.17.	Debug	mode

BaseEventLoop.get_debug()
Get	the	debug	mode	(bool)	of	the	event	loop,	False	by	default.

BaseEventLoop.set_debug(enabled:	bool)
Set	the	debug	mode	of	the	event	loop.

See	also: 	The	Develop	with	asyncio	section.

18.5.1.18.	Server

class	asyncio.AbstractServer
Abstract	 server	 returned	 by
BaseEventLoop.create_server().

close()
Stop	serving.	This	leaves	existing	connections	open.

wait_closed()
A	coroutine	to	wait	until	service	is	closed.

18.5.1.19.	Handle

class	asyncio.Handle
A	 callback	 wrapper	 object	 returned	 by
BaseEventLoop.call_soon(),
BaseEventLoop.call_soon_threadsafe(),
BaseEventLoop.call_later(),	 and
BaseEventLoop.call_at().

cancel()

Cancel	the	call.

18.5.1.20.	Example:	Hello	World	(callback)

Print	Hello	World	every	two	seconds,	using	a	callback:

import	asyncio

def	print_and_repeat(loop):

				print('Hello	World')

				loop.call_later(2,	print_and_repeat,	loop)

loop	=	asyncio.get_event_loop()

loop.call_soon(print_and_repeat,	loop)

loop.run_forever()

See	also: 	Hello	World	example	using	a	coroutine.

18.5.1.21.	Example:	Set	signal	handlers
for	SIGINT	and	SIGTERM

Register	handlers	for	signals	SIGINT	and	SIGTERM:

import	asyncio

import	functools

import	os

import	signal

def	ask_exit(signame):

				print("got	signal	%s:	exit"	%	signame)

				loop.stop()

loop	=	asyncio.get_event_loop()

for	signame	in	('SIGINT',	'SIGTERM'):

				loop.add_signal_handler(getattr(signal,	signame),

																												functools.partial(ask_exit

print("Event	loop	running	forever,	press	CTRL+c	to	interrupt."

print("pid	%s:	send	SIGINT	or	SIGTERM	to	exit."	%	os

loop.run_forever()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

http://www.python.org/

18.5.2.	Tasks	and	coroutines

18.5.2.1.	Coroutines

A	 coroutine	 is	 a	 generator	 that	 follows	 certain	 conventions.	 For
documentation	 purposes,	 all	 coroutines	 should	 be	 decorated	 with
@asyncio.coroutine,	but	this	cannot	be	strictly	enforced.

Coroutines	 use	 the	 yield	 from	 syntax	 introduced	 in	 PEP	 380,
instead	of	the	original	yield	syntax.

The	 word	 “coroutine”,	 like	 the	 word	 “generator”,	 is	 used	 for	 two
different	(though	related)	concepts:

The	 function	 that	 defines	 a	 coroutine	 (a	 function	 definition
decorated	 with	 @asyncio.coroutine).	 If	 disambiguation	 is
needed	 we	 will	 call	 this	 a	 coroutine	 function
(iscoroutinefunction()	returns	True).
The	 object	 obtained	 by	 calling	 a	 coroutine	 function.	 This	 object
represents	 a	 computation	 or	 an	 I/O	 operation	 (usually	 a
combination)	 that	 will	 complete	 eventually.	 If	 disambiguation	 is
needed	we	will	call	it	a	coroutine	object	(iscoroutine()	returns
True).

Things	a	coroutine	can	do:

result	=	yield	from	future	–	suspends	the	coroutine	until
the	 future	 is	 done,	 then	 returns	 the	 future’s	 result,	 or	 raises	 an
exception,	which	will	be	propagated.	(If	 the	 future	 is	cancelled,	 it
will	 raise	 a	 CancelledError	 exception.)	 Note	 that	 tasks	 are
futures,	and	everything	said	about	futures	also	applies	to	tasks.
result	 =	 yield	 from	 coroutine	 –	 wait	 for	 another
coroutine	to	produce	a	result	(or	raise	an	exception,	which	will	be
propagated).	 The	 coroutine	 expression	 must	 be	 a	 call	 to
another	coroutine.

http://www.python.org/dev/peps/pep-0380

return	expression	–	produce	a	result	to	the	coroutine	that	is
waiting	for	this	one	using	yield	from.
raise	exception	–	raise	an	exception	 in	the	coroutine	that	 is
waiting	for	this	one	using	yield	from.

Calling	 a	 coroutine	 does	 not	 start	 its	 code	 running	 –	 it	 is	 just	 a
generator,	 and	 the	 coroutine	 object	 returned	 by	 the	 call	 is	 really	 a
generator	object,	which	doesn’t	do	anything	until	you	iterate	over	it.	In
the	 case	 of	 a	 coroutine	 object,	 there	 are	 two	 basic	 ways	 to	 start	 it
running:	 call	 yield	 from	 coroutine	 from	 another	 coroutine
(assuming	 the	other	 coroutine	 is	 already	 running!),	 or	 convert	 it	 to	 a
Task.

Coroutines	(and	tasks)	can	only	run	when	the	event	loop	is	running.

@asyncio.coroutine

Decorator	to	mark	coroutines.

If	 the	coroutine	 is	not	yielded	from	before	 it	 is	destroyed,	an	error
message	is	logged.	See	Detect	coroutines	never	scheduled.

Note: 	In	this	documentation,	some	methods	are	documented	as
coroutines,	even	if	they	are	plain	Python	functions	returning	a
Future.	This	is	intentional	to	have	a	freedom	of	tweaking	the
implementation	of	these	functions	in	the	future.	If	such	a	function	is
needed	to	be	used	in	a	callback-style	code,	wrap	its	result	with
async().

18.5.2.1.1.	Example:	“Hello	World”	coroutine

Print	"Hello	World"	every	two	seconds	using	a	coroutine:

import	asyncio

@asyncio.coroutine

def	greet_every_two_seconds():

				while	True:

								print('Hello	World')

								yield	from	asyncio.sleep(2)

loop	=	asyncio.get_event_loop()

loop.run_until_complete(greet_every_two_seconds())

See	also: 	Hello	World	example	using	a	callback.

18.5.2.1.2.	Example:	Chain	coroutines

Example	chaining	coroutines:

import	asyncio

@asyncio.coroutine

def	compute(x,	y):

				print("Compute	%s	+	%s	..."	%	(x,	y))

				yield	from	asyncio.sleep(1.0)

				return	x	+	y

@asyncio.coroutine

def	print_sum(x,	y):

				result	=	yield	from	compute(x,	y)

				print("%s	+	%s	=	%s"	%	(x,	y,	result))

loop	=	asyncio.get_event_loop()

loop.run_until_complete(print_sum(1,	2))

loop.close()

compute()	 is	 chained	 to	 print_sum():	 print_sum()	 coroutine

waits	until	compute()	is	completed	before	returning	its	result.

Sequence	diagram	of	the	example:

The	 “Task”	 is	 created	 by	 the
BaseEventLoop.run_until_complete()	method	when	 it	 gets	 a
coroutine	object	instead	of	a	task.

The	diagram	shows	the	control	flow,	it	does	not	describe	exactly	how
things	 work	 internally.	 For	 example,	 the	 sleep	 coroutine	 creates	 an
internal	future	which	uses	BaseEventLoop.call_later()	to	wake
up	the	task	in	1	second.

18.5.2.2.	InvalidStateError

exception	asyncio.InvalidStateError
The	operation	is	not	allowed	in	this	state.

18.5.2.3.	Future

class	asyncio.Future(*,	loop=None)
This	 class	 is	 almost	 compatible	 with
concurrent.futures.Future.

Differences:

result()	 and	 exception()	 do	 not	 take	 a	 timeout
argument	 and	 raise	 an	 exception	when	 the	 future	 isn’t	 done
yet.
Callbacks	 registered	 with	 add_done_callback()	 are
always	 called	 via	 the	 event	 loop’s
call_soon_threadsafe().
This	 class	 is	 not	 compatible	 with	 the	 wait()	 and
as_completed()	 functions	 in	 the	 concurrent.futures
package.

cancel()
Cancel	the	future	and	schedule	callbacks.

If	 the	 future	 is	 already	 done	 or	 cancelled,	 return	 False.
Otherwise,	change	the	future’s	state	to	cancelled,	schedule	the
callbacks	and	return	True.

cancelled()
Return	True	if	the	future	was	cancelled.

done()
Return	True	if	the	future	is	done.

Done	means	 either	 that	 a	 result	 /	 exception	 are	 available,	 or
that	the	future	was	cancelled.

result()
Return	the	result	this	future	represents.

If	 the	 future	 has	 been	 cancelled,	 raises	 CancelledError.	 If
the	 future’s	 result	 isn’t	 yet	 available,	 raises
InvalidStateError.	 If	 the	 future	 is	 done	 and	 has	 an
exception	set,	this	exception	is	raised.

exception()
Return	the	exception	that	was	set	on	this	future.

The	 exception	 (or	 None	 if	 no	 exception	 was	 set)	 is	 returned
only	 if	 the	 future	 is	 done.	 If	 the	 future	 has	 been	 cancelled,
raises	 CancelledError.	 If	 the	 future	 isn’t	 done	 yet,	 raises
InvalidStateError.

add_done_callback(fn)
Add	a	callback	to	be	run	when	the	future	becomes	done.

The	callback	is	called	with	a	single	argument	-	the	future	object.
If	the	future	is	already	done	when	this	is	called,	the	callback	is
scheduled	with	call_soon().

remove_done_callback(fn)
Remove	all	 instances	of	 a	 callback	 from	 the	 “call	when	done”
list.

Returns	the	number	of	callbacks	removed.

set_result(result)
Mark	the	future	done	and	set	its	result.

If	 the	future	is	already	done	when	this	method	is	called,	raises

InvalidStateError.

set_exception(exception)
Mark	the	future	done	and	set	an	exception.

If	the	future	is	already	done	when	this	method	is	called,	raises
InvalidStateError.

18.5.2.3.1.	Example:	Future	with
run_until_complete()

Example	combining	a	Future	and	a	coroutine	function:

import	asyncio

@asyncio.coroutine

def	slow_operation(future):

				yield	from	asyncio.sleep(1)

				future.set_result('Future	is	done!')

loop	=	asyncio.get_event_loop()

future	=	asyncio.Future()

asyncio.Task(slow_operation(future))

loop.run_until_complete(future)

print(future.result())

loop.close()

The	coroutine	function	is	responsible	of	the	computation	(which	takes
1	 second)	 and	 it	 stores	 the	 result	 into	 the	 future.	 The
run_until_complete()	 method	 waits	 for	 the	 completion	 of	 the
future.

Note: 	The	run_until_complete()	method	uses	internally	the

add_done_callback()	method	to	be	notified	when	the	future	is
done.

18.5.2.3.2.	Example:	Future	with	run_forever()

The	 previous	 example	 can	 be	 written	 differently	 using	 the
Future.add_done_callback()	 method	 to	 describe	 explicitly	 the
control	flow:

import	asyncio

@asyncio.coroutine

def	slow_operation(future):

				yield	from	asyncio.sleep(1)

				future.set_result('Future	is	done!')

def	got_result(future):

				print(future.result())

				loop.stop()

loop	=	asyncio.get_event_loop()

future	=	asyncio.Future()

asyncio.Task(slow_operation(future))

future.add_done_callback(got_result)

try:

				loop.run_forever()

finally:

				loop.close()

In	 this	example,	 the	 future	 is	 responsible	 to	display	 the	 result	and	 to
stop	the	loop.

Note: 	The	“slow_operation”	coroutine	object	is	only	executed	when
the	event	loop	starts	running,	so	it	is	possible	to	add	a	“done

callback”	to	the	future	after	creating	the	task	scheduling	the
coroutine	object.

18.5.2.4.	Task

class	asyncio.Task(coro,	*,	loop=None)
A	coroutine	object	wrapped	in	a	Future.	Subclass	of	Future.

classmethod	all_tasks(loop=None)
Return	a	set	of	all	tasks	for	an	event	loop.

By	default	all	tasks	for	the	current	event	loop	are	returned.

classmethod	current_task(loop=None)
Return	the	currently	running	task	in	an	event	loop	or	None.

By	default	the	current	task	for	the	current	event	loop	is	returned.

None	is	returned	when	called	not	in	the	context	of	a	Task.

get_stack(self,	*,	limit=None)
Return	the	list	of	stack	frames	for	this	task’s	coroutine.

If	 the	 coroutine	 is	 active,	 this	 returns	 the	 stack	 where	 it	 is
suspended.	If	the	coroutine	has	completed	successfully	or	was
cancelled,	 this	 returns	 an	 empty	 list.	 If	 the	 coroutine	 was
terminated	 by	 an	 exception,	 this	 returns	 the	 list	 of	 traceback
frames.

The	frames	are	always	ordered	from	oldest	to	newest.

The	 optional	 limit	 gives	 the	 maximum	 number	 of	 frames	 to
return;	by	default	all	available	frames	are	returned.	Its	meaning
differs	depending	on	whether	a	stack	or	a	traceback	is	returned:
the	 newest	 frames	 of	 a	 stack	 are	 returned,	 but	 the	 oldest
frames	of	a	traceback	are	returned.	(This	matches	the	behavior

of	the	traceback	module.)

For	 reasons	 beyond	 our	 control,	 only	 one	 stack	 frame	 is
returned	for	a	suspended	coroutine.

print_stack(*,	limit=None,	file=None)
Print	the	stack	or	traceback	for	this	task’s	coroutine.

This	produces	output	similar	to	that	of	the	traceback	module,	for
the	 frames	 retrieved	 by	 get_stack().	 The	 limit	 argument	 is
passed	 to	 get_stack().	 The	 file	 argument	 is	 an	 I/O	 stream	 to
which	the	output	goes;	by	default	it	goes	to	sys.stderr.

18.5.2.4.1.	Example:	Parallel	execution	of	tasks

Example	executing	3	tasks	(A,	B,	C)	in	parallel:

import	asyncio

@asyncio.coroutine

def	factorial(name,	number):

				f	=	1

				for	i	in	range(2,	number+1):

								print("Task	%s:	Compute	factorial(%s)..."	%	

								yield	from	asyncio.sleep(1)

								f	*=	i

				print("Task	%s:	factorial(%s)	=	%s"	%	(name,	number

tasks	=	[

				asyncio.Task(factorial("A",	2)),

				asyncio.Task(factorial("B",	3)),

				asyncio.Task(factorial("C",	4))]

loop	=	asyncio.get_event_loop()

loop.run_until_complete(asyncio.wait(tasks))

loop.close()

Output:

Task	A:	Compute	factorial(2)...

Task	B:	Compute	factorial(2)...

Task	C:	Compute	factorial(2)...

Task	A:	factorial(2)	=	2

Task	B:	Compute	factorial(3)...

Task	C:	Compute	factorial(3)...

Task	B:	factorial(3)	=	6

Task	C:	Compute	factorial(4)...

Task	C:	factorial(4)	=	24

A	task	is	automatically	scheduled	for	execution	when	it	is	created.	The
event	loop	stops	when	all	tasks	are	done.

18.5.2.5.	Task	functions

Note: 	In	the	functions	below,	the	optional	loop	argument	allows	to
explicitly	set	the	event	loop	object	used	by	the	underlying	task	or
coroutine.	If	it’s	not	provided,	the	default	event	loop	is	used.

asyncio.as_completed(fs,	*,	loop=None,	timeout=None)
Return	 an	 iterator	 whose	 values,	 when	 waited	 for,	 are	 Future
instances.

Raises	TimeoutError	if	the	timeout	occurs	before	all	Futures	are
done.

Example:

for	f	in	as_completed(fs):

				result	=	yield	from	f		#	The	'yield	from'	may	raise

				#	Use	result

Note: 	The	futures	f	are	not	necessarily	members	of	fs.

asyncio.async(coro_or_future,	*,	loop=None)
Wrap	a	coroutine	object	in	a	future.

If	the	argument	is	a	Future,	it	is	returned	directly.

asyncio.gather(*coros_or_futures,	loop=None,
return_exceptions=False)

Return	 a	 future	 aggregating	 results	 from	 the	 given	 coroutine
objects	or	futures.

All	 futures	 must	 share	 the	 same	 event	 loop.	 If	 all	 the	 tasks	 are
done	successfully,	 the	 returned	 future’s	 result	 is	 the	 list	of	 results
(in	the	order	of	the	original	sequence,	not	necessarily	the	order	of
results	arrival).	If	return_exceptions	is	True,	exceptions	in	the	tasks
are	 treated	 the	 same	 as	 successful	 results,	 and	 gathered	 in	 the
result	 list;	otherwise,	 the	 first	 raised	exception	will	be	 immediately
propagated	to	the	returned	future.

Cancellation:	if	the	outer	Future	is	cancelled,	all	children	(that	have
not	completed	yet)	are	also	cancelled.	If	any	child	is	cancelled,	this
is	treated	as	if	it	raised	CancelledError	–	the	outer	Future	is	not
cancelled	 in	 this	 case.	 (This	 is	 to	prevent	 the	 cancellation	of	 one
child	to	cause	other	children	to	be	cancelled.)

asyncio.iscoroutine(obj)
Return	True	if	obj	is	a	coroutine	object.

asyncio.iscoroutinefunction(obj)
Return	True	if	func	is	a	decorated	coroutine	function.

asyncio.sleep(delay,	result=None,	*,	loop=None)
Create	a	coroutine	that	completes	after	a	given	time	(in	seconds).	If
result	 is	 provided,	 it	 is	 produced	 to	 the	 caller	when	 the	 coroutine
completes.

The	resolution	of	the	sleep	depends	on	the	granularity	of	the	event
loop.

asyncio.shield(arg,	*,	loop=None)
Wait	for	a	future,	shielding	it	from	cancellation.

The	statement:

res	=	yield	from	shield(something())

is	exactly	equivalent	to	the	statement:

res	=	yield	from	something()

except	 that	 if	 the	 coroutine	 containing	 it	 is	 cancelled,	 the	 task
running	in	something()	 is	not	cancelled.	From	the	point	of	view
of	something(),	the	cancellation	did	not	happen.	But	its	caller	is
still	 cancelled,	 so	 the	 yield-from	 expression	 still	 raises
CancelledError.	Note:	 If	 something()	 is	 cancelled	 by	 other
means	this	will	still	cancel	shield().

If	 you	want	 to	 completely	 ignore	 cancellation	 (not	 recommended)
you	can	combine	shield()	with	a	try/except	clause,	as	follows:

try:

				res	=	yield	from	shield(something())

except	CancelledError:

				res	=	None

asyncio.wait(futures,	*,	loop=None,	timeout=None,
return_when=ALL_COMPLETED)

Wait	 for	 the	Futures	and	coroutine	objects	given	by	 the	sequence
futures	to	complete.	Coroutines	will	be	wrapped	in	Tasks.	Returns
two	sets	of	Future:	(done,	pending).

timeout	can	be	used	to	control	the	maximum	number	of	seconds	to
wait	before	returning.	timeout	can	be	an	int	or	float.	If	timeout	is	not
specified	or	None,	there	is	no	limit	to	the	wait	time.

return_when	indicates	when	this	function	should	return.	It	must	be
one	 of	 the	 following	 constants	 of	 the	 concurrent.futures

module:

Constant Description

FIRST_COMPLETED
The	function	will	return	when	any
future	finishes	or	is	cancelled.

FIRST_EXCEPTION

The	function	will	return	when	any
future	finishes	by	raising	an
exception.	If	no	future	raises	an
exception	then	it	is	equivalent	to
ALL_COMPLETED.

ALL_COMPLETED
The	function	will	return	when	all
futures	finish	or	are	cancelled.

This	function	is	a	coroutine.

Usage:

done,	pending	=	yield	from	asyncio.wait(fs)

Note: 	This	does	not	 raise	TimeoutError!	Futures	 that	aren’t
done	when	the	timeout	occurs	are	returned	in	the	second	set.

asyncio.wait_for(fut,	timeout,	*,	loop=None)
Wait	 for	 the	 single	 Future	 or	coroutine	 object	 to	 complete,	 with
timeout.	If	timeout	is	None,	block	until	the	future	completes.

Coroutine	will	be	wrapped	in	Task.

Returns	result	of	the	Future	or	coroutine.	When	a	timeout	occurs,	it
cancels	 the	 task	 and	 raises	 TimeoutError.	 To	 avoid	 the	 task
cancellation,	wrap	it	in	shield().

This	function	is	a	coroutine.

Usage:

result	=	yield	from	asyncio.wait_for(fut,	60.0)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

http://www.python.org/

18.5.3.	Transports	and	protocols
(low-level	API)

18.5.3.1.	Transports

Transports	 are	 classed	 provided	 by	 asyncio	 in	 order	 to	 abstract
various	 kinds	 of	 communication	 channels.	 You	 generally	 won’t
instantiate	 a	 transport	 yourself;	 instead,	 you	 will	 call	 a
BaseEventLoop	 method	 which	 will	 create	 the	 transport	 and	 try	 to
initiate	the	underlying	communication	channel,	calling	you	back	when
it	succeeds.

Once	the	communication	channel	is	established,	a	transport	is	always
paired	 with	 a	 protocol	 instance.	 The	 protocol	 can	 then	 call	 the
transport’s	methods	for	various	purposes.

asyncio	 currently	 implements	 transports	 for	 TCP,	 UDP,	 SSL,	 and
subprocess	 pipes.	 The	methods	 available	 on	 a	 transport	 depend	 on
the	transport’s	kind.

18.5.3.1.1.	BaseTransport

class	asyncio.BaseTransport
Base	class	for	transports.

close(self)
Close	 the	 transport.	 If	 the	 transport	 has	 a	 buffer	 for	 outgoing
data,	 buffered	 data	 will	 be	 flushed	 asynchronously.	 No	 more
data	 will	 be	 received.	 After	 all	 buffered	 data	 is	 flushed,	 the
protocol’s	 connection_lost()	 method	 will	 be	 called	 with
None	as	its	argument.

get_extra_info(name,	default=None)
Return	 optional	 transport	 information.	 name	 is	 a	 string

representing	 the	 piece	 of	 transport-specific	 information	 to	 get,
default	is	the	value	to	return	if	the	information	doesn’t	exist.

This	method	allows	transport	implementations	to	easily	expose
channel-specific	information.

socket:
'peername':	the	remote	address	to	which	the	socket
is	 connected,	 result	 of
socket.socket.getpeername()	(None	on	error)
'socket':	socket.socket	instance
'sockname':	 the	 socket’s	 own	 address,	 result	 of
socket.socket.getsockname()

SSL	socket:
'compression':	 the	 compression	 algorithm	 being
used	 as	 a	 string,	 or	 None	 if	 the	 connection	 isn’t
compressed;	 result	 of
ssl.SSLSocket.compression()

'cipher':	a	three-value	tuple	containing	the	name	of
the	cipher	being	used,	the	version	of	the	SSL	protocol
that	 defines	 its	 use,	 and	 the	 number	 of	 secret	 bits
being	used;	result	of	ssl.SSLSocket.cipher()
'peercert':	 peer	 certificate;	 result	 of
ssl.SSLSocket.getpeercert()

'sslcontext':	ssl.SSLContext	instance

pipe:
'pipe':	pipe	object

subprocess:
'subprocess':	subprocess.Popen	instance

18.5.3.1.2.	ReadTransport

class	asyncio.ReadTransport
Interface	for	read-only	transports.

pause_reading()
Pause	 the	 receiving	 end	 of	 the	 transport.	 No	 data	 will	 be
passed	 to	 the	 protocol’s	 data_received()	 method	 until
meth:resume_reading	is	called.

resume_reading()
Resume	the	receiving	end.	The	protocol’s	data_received()
method	will	 be	called	once	again	 if	 some	data	 is	available	 for
reading.

18.5.3.1.3.	WriteTransport

class	asyncio.WriteTransport
Interface	for	write-only	transports.

abort()
Close	 the	 transport	 immediately,	 without	 waiting	 for	 pending
operations	to	complete.	Buffered	data	will	be	lost.	No	more	data
will	be	received.	The	protocol’s	connection_lost()	method
will	eventually	be	called	with	None	as	its	argument.

can_write_eof()
Return	True	if	the	transport	supports	write_eof(),	False	if
not.

get_write_buffer_size()
Return	 the	 current	 size	 of	 the	 output	 buffer	 used	 by	 the
transport.

set_write_buffer_limits(high=None,	low=None)
Set	the	high-	and	low-water	limits	for	write	flow	control.

These	 two	 values	 control	 when	 call	 the	 protocol’s
pause_writing()	 and	 resume_writing()	 methods	 are
called.	 If	 specified,	 the	 low-water	 limit	 must	 be	 less	 than	 or
equal	 to	 the	 high-water	 limit.	 Neither	 high	 nor	 low	 can	 be
negative.

The	defaults	are	implementation-specific.	If	only	the	high-water
limit	 is	 given,	 the	 low-water	 limit	 defaults	 to	a	 implementation-
specific	value	less	than	or	equal	to	the	high-water	limit.	Setting
high	 to	 zero	 forces	 low	 to	 zero	 as	 well,	 and	 causes
pause_writing()	to	be	called	whenever	the	buffer	becomes
non-empty.	Setting	low	to	zero	causes	resume_writing()	to
be	called	only	once	 the	buffer	 is	empty.	Use	of	zero	 for	either
limit	 is	 generally	 sub-optimal	 as	 it	 reduces	 opportunities	 for
doing	I/O	and	computation	concurrently.

write(data)
Write	some	data	bytes	to	the	transport.

This	method	does	not	block;	it	buffers	the	data	and	arranges	for
it	to	be	sent	out	asynchronously.

writelines(list_of_data)
Write	a	list	(or	any	iterable)	of	data	bytes	to	the	transport.	This
is	 functionally	equivalent	 to	calling	write()	 on	each	element
yielded	 by	 the	 iterable,	 but	 may	 be	 implemented	 more
efficiently.

write_eof()
Close	the	write	end	of	the	transport	after	flushing	buffered	data.

Data	may	still	be	received.

This	method	can	raise	NotImplementedError	if	the	transport
(e.g.	SSL)	doesn’t	support	half-closes.

18.5.3.1.4.	DatagramTransport

DatagramTransport.sendto(data,	addr=None)
Send	the	data	bytes	to	the	remote	peer	given	by	addr	(a	transport-
dependent	target	address).	If	addr	is	None,	the	data	is	sent	to	the
target	address	given	on	transport	creation.

This	method	does	not	block;	it	buffers	the	data	and	arranges	for	it
to	be	sent	out	asynchronously.

DatagramTransport.abort()
Close	 the	 transport	 immediately,	 without	 waiting	 for	 pending
operations	to	complete.	Buffered	data	will	be	lost.	No	more	data	will
be	 received.	 The	 protocol’s	 connection_lost()	 method	 will
eventually	be	called	with	None	as	its	argument.

18.5.3.1.5.	BaseSubprocessTransport

class	asyncio.BaseSubprocessTransport
get_pid()

Return	the	subprocess	process	id	as	an	integer.

get_pipe_transport(fd)
Return	the	transport	for	the	communication	pipe	corresponding
to	 the	 integer	 file	 descriptor	 fd.	 The	 return	 value	 can	 be	 a
readable	or	writable	streaming	transport,	depending	on	the	fd.	If

fd	 doesn’t	 correspond	 to	 a	 pipe	 belonging	 to	 this	 transport,
None	is	returned.

get_returncode()
Return	 the	 subprocess	 returncode	 as	 an	 integer	 or	 None	 if	 it
hasn’t	 returned,	 similarly	 to	 the
subprocess.Popen.returncode	attribute.

kill(self)
Kill	the	subprocess,	as	in	subprocess.Popen.kill()

On	 POSIX	 systems,	 the	 function	 sends	 SIGKILL	 to	 the
subprocess.	 On	 Windows,	 this	 method	 is	 an	 alias	 for
terminate().

send_signal(signal)
Send	 the	 signal	 number	 to	 the	 subprocess,	 as	 in
subprocess.Popen.send_signal().

terminate()
Ask	 the	 subprocess	 to	 stop,	 as	 in
subprocess.Popen.terminate().	This	method	 is	an	alias
for	the	close()	method.

On	 POSIX	 systems,	 this	 method	 sends	 SIGTERM	 to	 the
subprocess.	 On	 Windows,	 the	 Windows	 API	 function
TerminateProcess()	is	called	to	stop	the	subprocess.

18.5.3.2.	Protocols

asyncio	provides	base	classes	 that	you	can	subclass	 to	 implement
your	 network	 protocols.	 Those	 classes	 are	 used	 in	 conjunction	 with
transports	(see	below):	the	protocol	parses	incoming	data	and	asks	for
the	writing	of	outgoing	data,	while	 the	transport	 is	responsible	for	 the
actual	I/O	and	buffering.

When	 subclassing	 a	 protocol	 class,	 it	 is	 recommended	 you	 override
certain	methods.	Those	methods	are	callbacks:	 they	will	be	called	by
the	 transport	 on	 certain	 events	 (for	 example	 when	 some	 data	 is
received);	 you	 shouldn’t	 call	 them	 yourself,	 unless	 you	 are
implementing	a	transport.

Note: 	All	callbacks	have	default	implementations,	which	are	empty.
Therefore,	you	only	need	to	implement	the	callbacks	for	the	events
in	which	you	are	interested.

18.5.3.2.1.	Protocol	classes

class	asyncio.Protocol
The	base	class	for	implementing	streaming	protocols	(for	use	with
e.g.	TCP	and	SSL	transports).

class	asyncio.DatagramProtocol
The	base	class	for	 implementing	datagram	protocols	(for	use	with
e.g.	UDP	transports).

class	asyncio.SubprocessProtocol
The	 base	 class	 for	 implementing	 protocols	 communicating	 with
child	processes	(through	a	set	of	unidirectional	pipes).

18.5.3.2.2.	Connection	callbacks

These	 callbacks	 may	 be	 called	 on	 Protocol	 and
SubprocessProtocol	instances:

BaseProtocol.connection_made(transport)
Called	when	a	connection	is	made.

The	 transport	 argument	 is	 the	 transport	 representing	 the
connection.	You	are	 responsible	 for	storing	 it	 somewhere	 (e.g.	as
an	attribute)	if	you	need	to.

BaseProtocol.connection_lost(exc)
Called	when	the	connection	is	lost	or	closed.

The	 argument	 is	 either	 an	 exception	 object	 or	 None.	 The	 latter
means	a	regular	EOF	is	received,	or	the	connection	was	aborted	or
closed	by	this	side	of	the	connection.

connection_made()	and	connection_lost()	are	called	exactly
once	 per	 successful	 connection.	 All	 other	 callbacks	 will	 be	 called
between	 those	 two	 methods,	 which	 allows	 for	 easier	 resource
management	in	your	protocol	implementation.

The	 following	 callbacks	 may	 be	 called	 only	 on
SubprocessProtocol	instances:

SubprocessProtocol.pipe_data_received(fd,	data)
Called	when	 the	child	process	writes	data	 into	 its	stdout	or	stderr
pipe.	fd	is	the	integer	file	descriptor	of	the	pipe.	data	is	a	non-empty
bytes	object	containing	the	data.

SubprocessProtocol.pipe_connection_lost(fd,	exc)

Called	when	one	of	the	pipes	communicating	with	the	child	process
is	closed.	fd	is	the	integer	file	descriptor	that	was	closed.

SubprocessProtocol.process_exited()
Called	when	the	child	process	has	exited.

18.5.3.2.3.	Streaming	protocols

The	following	callbacks	are	called	on	Protocol	instances:

Protocol.data_received(data)
Called	 when	 some	 data	 is	 received.	 data	 is	 a	 non-empty	 bytes
object	containing	the	incoming	data.

Note: 	Whether	 the	 data	 is	 buffered,	 chunked	 or	 reassembled
depends	 on	 the	 transport.	 In	 general,	 you	 shouldn’t	 rely	 on
specific	 semantics	 and	 instead	make	 your	 parsing	 generic	 and
flexible	enough.	However,	data	 is	always	received	 in	 the	correct
order.

Protocol.eof_received()
Calls	when	the	other	end	signals	it	won’t	send	any	more	data	(for
example	 by	 calling	 write_eof(),	 if	 the	 other	 end	 also	 uses
asyncio).

This	method	may	 return	 a	 false	 value	 (including	None),	 in	which
case	 the	 transport	 will	 close	 itself.	 Conversely,	 if	 this	 method
returns	 a	 true	 value,	 closing	 the	 transport	 is	 up	 to	 the	 protocol.
Since	 the	default	 implementation	 returns	None,	 it	 implicitly	 closes
the	connection.

Note: 	 Some	 transports	 such	 as	 SSL	 don’t	 support	 half-closed

connections,	 in	 which	 case	 returning	 true	 from	 this	method	will
not	prevent	closing	the	connection.

data_received()	can	be	called	an	arbitrary	number	of	times	during
a	connection.	However,	eof_received()	is	called	at	most	once	and,
if	called,	data_received()	won’t	be	called	after	it.

18.5.3.2.4.	Datagram	protocols

The	following	callbacks	are	called	on	DatagramProtocol	instances.

DatagramProtocol.datagram_received(data,	addr)
Called	 when	 a	 datagram	 is	 received.	 data	 is	 a	 bytes	 object
containing	 the	 incoming	 data.	 addr	 is	 the	 address	 of	 the	 peer
sending	the	data;	the	exact	format	depends	on	the	transport.

DatagramProtocol.error_received(exc)
Called	 when	 a	 previous	 send	 or	 receive	 operation	 raises	 an
OSError.	exc	is	the	OSError	instance.

This	method	 is	 called	 in	 rare	 conditions,	when	 the	 transport	 (e.g.
UDP)	detects	that	a	datagram	couldn’t	be	delivered	to	its	recipient.
In	many	conditions	though,	undeliverable	datagrams	will	be	silently
dropped.

18.5.3.2.5.	Flow	control	callbacks

These	callbacks	may	be	called	on	Protocol,	 DatagramProtocol
and	SubprocessProtocol	instances:

BaseProtocol.pause_writing()

Called	when	the	transport’s	buffer	goes	over	the	high-water	mark.

BaseProtocol.resume_writing()
Called	when	the	transport’s	buffer	drains	below	the	low-water	mark.

pause_writing()	 and	 resume_writing()	 calls	 are	 paired	 –
pause_writing()	 is	called	once	when	 the	buffer	goes	strictly	over
the	 high-water	mark	 (even	 if	 subsequent	 writes	 increases	 the	 buffer
size	even	more),	and	eventually	resume_writing()	 is	called	once
when	the	buffer	size	reaches	the	low-water	mark.

Note: 	If	the	buffer	size	equals	the	high-water	mark,
pause_writing()	is	not	called	–	it	must	go	strictly	over.
Conversely,	resume_writing()	is	called	when	the	buffer	size	is
equal	or	lower	than	the	low-water	mark.	These	end	conditions	are
important	to	ensure	that	things	go	as	expected	when	either	mark	is
zero.

Note: 	On	BSD	systems	(OS	X,	FreeBSD,	etc.)	flow	control	is	not
supported	for	DatagramProtocol,	because	send	failures	caused
by	writing	too	many	packets	cannot	be	detected	easily.	The	socket
always	appears	‘ready’	and	excess	packets	are	dropped;	an
OSError	with	errno	set	to	errno.ENOBUFS	may	or	may	not	be
raised;	if	it	is	raised,	it	will	be	reported	to
DatagramProtocol.error_received()	but	otherwise	ignored.

18.5.3.2.6.	Coroutines	and	protocols

Coroutines	 can	 be	 scheduled	 in	 a	 protocol	method	 using	 async(),
but	 there	 is	 not	 guarantee	 on	 the	 execution	 order.	Protocols	 are	 not
aware	of	coroutines	created	 in	protocol	methods	and	so	will	not	wait

for	them.

To	have	a	reliable	execution	order,	use	stream	objects	 in	a	coroutine
with	 yield	 from.	 For	 example,	 the	 StreamWriter.drain()
coroutine	can	be	used	to	wait	until	the	write	buffer	is	flushed.

18.5.3.3.	Protocol	example:	TCP	echo
server	and	client

18.5.3.3.1.	Echo	client

TCP	echo	client	example,	send	data	and	wait	until	 the	connection	 is
closed:

import	asyncio

class	EchoClient(asyncio.Protocol):

				message	=	'This	is	the	message.	It	will	be	echoed.'

				def	connection_made(self,	transport):

								transport.write(self.message.encode())

								print('data	sent:	{}'.format(self.message))

				def	data_received(self,	data):

								print('data	received:	{}'.format(data.decode

				def	connection_lost(self,	exc):

								print('server	closed	the	connection')

								asyncio.get_event_loop().stop()

loop	=	asyncio.get_event_loop()

coro	=	loop.create_connection(EchoClient,	'127.0.0.1'

loop.run_until_complete(coro)

loop.run_forever()

loop.close()

The	 event	 loop	 is	 running	 twice.	 The	 run_until_complete()
method	 is	preferred	 in	 this	short	example	 to	raise	an	exception	 if	 the
server	 is	not	 listening,	 instead	of	having	 to	write	a	short	coroutine	 to

handle	 the	 exception	 and	 stop	 the	 running	 loop.	 At
run_until_complete()	exit,	the	loop	is	no	more	running,	so	there
is	no	need	to	stop	the	loop	in	case	of	an	error.

18.5.3.3.2.	Echo	server

TCP	 echo	 server	 example,	 send	 back	 received	 data	 and	 close	 the
connection:

import	asyncio

class	EchoServer(asyncio.Protocol):

				def	connection_made(self,	transport):

								peername	=	transport.get_extra_info('peername'

								print('connection	from	{}'.format(peername))

								self.transport	=	transport

				def	data_received(self,	data):

								print('data	received:	{}'.format(data.decode

								self.transport.write(data)

								#	close	the	socket

								self.transport.close()

loop	=	asyncio.get_event_loop()

coro	=	loop.create_server(EchoServer,	'127.0.0.1',	8888

server	=	loop.run_until_complete(coro)

print('serving	on	{}'.format(server.sockets[0].getsockname

try:

				loop.run_forever()

except	KeyboardInterrupt:

				print("exit")

finally:

				server.close()

				loop.close()

Transport.close()	 can	 be	 called	 immediately	 after
WriteTransport.write()	 even	 if	 data	 are	 not	 sent	 yet	 on	 the
socket:	both	methods	are	asynchronous.	yield	from	 is	not	needed
because	these	transport	methods	are	not	coroutines.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

http://www.python.org/

18.5.4.	Streams	(high-level	API)

18.5.4.1.	Stream	functions

asyncio.open_connection(host=None,	port=None,	*,
loop=None,	limit=None,	**kwds)

A	wrapper	for	create_connection()	returning	a	(reader,	writer)
pair.

The	reader	returned	 is	a	StreamReader	 instance;	 the	writer	 is	a
StreamWriter	instance.

The	 arguments	 are	 all	 the	 usual	 arguments	 to
BaseEventLoop.create_connection()	 except
protocol_factory;	most	 common	are	 positional	 host	 and	 port,	with
various	optional	keyword	arguments	following.

Additional	 optional	 keyword	arguments	are	 loop	 (to	 set	 the	 event
loop	instance	to	use)	and	limit	(to	set	the	buffer	limit	passed	to	the
StreamReader).

(If	 you	 want	 to	 customize	 the	 StreamReader	 and/or
StreamReaderProtocol	 classes,	 just	 copy	 the	 code	 –	 there’s
really	nothing	special	here	except	some	convenience.)

This	function	is	a	coroutine.

asyncio.start_server(client_connected_cb,	host=None,
port=None,	*,	loop=None,	limit=None,	**kwds)

Start	a	socket	server,	with	a	callback	for	each	client	connected.

The	 first	 parameter,	 client_connected_cb,	 takes	 two	 parameters:
client_reader,	 client_writer.	 client_reader	 is	 a	 StreamReader
object,	 while	 client_writer	 is	 a	 StreamWriter	 object.	 This

parameter	 can	 either	 be	 a	 plain	 callback	 function	 or	 a	 coroutine
function;	 if	 it	 is	 a	 coroutine	 function,	 it	 will	 be	 automatically
converted	into	a	Task.

The	 rest	 of	 the	 arguments	 are	 all	 the	 usual	 arguments	 to
create_server()	 except	 protocol_factory;	 most	 common	 are
positional	host	and	port,	with	various	optional	keyword	arguments
following.	The	return	value	is	the	same	as	create_server().

Additional	 optional	 keyword	arguments	are	 loop	 (to	 set	 the	 event
loop	instance	to	use)	and	limit	(to	set	the	buffer	limit	passed	to	the
StreamReader).

The	 return	 value	 is	 the	 same	 as	 create_server(),	 i.e.	 a
AbstractServer	object	which	can	be	used	to	stop	the	service.

This	function	is	a	coroutine.

asyncio.open_unix_connection(path=None,	*,	loop=None,
limit=None,	**kwds)

A	wrapper	for	create_unix_connection()	returning	a	(reader,
writer)	pair.

See	open_connection()	for	information	about	return	value	and
other	details.

This	function	is	a	coroutine.

Availability:	UNIX.

asyncio.start_unix_server(client_connected_cb,
path=None,	*,	loop=None,	limit=None,	**kwds)

Start	a	UNIX	Domain	Socket	server,	with	a	callback	for	each	client

connected.

See	 start_server()	 for	 information	 about	 return	 value	 and
other	details.

This	function	is	a	coroutine.

Availability:	UNIX.

18.5.4.2.	StreamReader

class	asyncio.StreamReader(limit=None,	loop=None)
exception()

Get	the	exception.

feed_eof()
Acknowledge	the	EOF.

feed_data(data)
Feed	data	bytes	in	the	internal	buffer.	Any	operations	waiting	for
the	data	will	be	resumed.

set_exception(exc)
Set	the	exception.

set_transport(transport)
Set	the	transport.

read(n=-1)
Read	up	to	n	bytes.	If	n	is	not	provided,	or	set	to	-1,	read	until
EOF	and	return	all	read	bytes.

If	the	EOF	was	received	and	the	internal	buffer	is	empty,	return
an	empty	bytes	object.

This	method	is	a	coroutine.

readline()
Read	one	line,	where	“line”	is	a	sequence	of	bytes	ending	with
\n.

If	 EOF	 is	 received,	 and	 \n	 was	 not	 found,	 the	 method	 will
return	the	partial	read	bytes.

If	the	EOF	was	received	and	the	internal	buffer	is	empty,	return
an	empty	bytes	object.

This	method	is	a	coroutine.

readexactly(n)
Read	exactly	n	bytes.	Raise	an	IncompleteReadError	if	the
end	 of	 the	 stream	 is	 reached	 before	 n	 can	 be	 read,	 the
IncompleteReadError.partial	 attribute	 of	 the	 exception
contains	the	partial	read	bytes.

This	method	is	a	coroutine.

at_eof()
Return	 True	 if	 the	 buffer	 is	 empty	 and	 feed_eof()	 was
called.

18.5.4.3.	StreamWriter

class	asyncio.StreamWriter(transport,	protocol,	reader,	loop)
Wraps	a	Transport.

This	 exposes	 write(),	 writelines(),	 can_write_eof(),
write_eof(),	 get_extra_info()	 and	 close().	 It	 adds
drain()	which	returns	an	optional	Future	on	which	you	can	wait
for	flow	control.	It	also	adds	a	transport	attribute	which	references
the	Transport	directly.

transport

Transport.

can_write_eof()
Return	True	if	the	transport	supports	write_eof(),	False	if
not.	See	WriteTransport.can_write_eof().

close()
Close	the	transport:	see	BaseTransport.close().

drain()
Wait	until	the	write	buffer	of	the	underlying	transport	is	flushed.

This	method	has	an	unusual	return	value.	The	intended	use	is
to	write:

w.write(data)

yield	from	w.drain()

When	there’s	nothing	to	wait	for,	drain()	returns	(),	and	the
yield-from	continues	 immediately.	When	 the	 transport	 buffer	 is

full	 (the	 protocol	 is	 paused),	 drain()	 creates	 and	 returns	 a
Future	 and	 the	 yield-from	 will	 block	 until	 that	 Future	 is
completed,	 which	 will	 happen	 when	 the	 buffer	 is	 (partially)
drained	and	the	protocol	is	resumed.

get_extra_info(name,	default=None)
Return	 optional	 transport	 information:	 see
BaseTransport.get_extra_info().

write(data)
Write	 some	 data	 bytes	 to	 the	 transport:	 see
WriteTransport.write().

writelines(data)
Write	a	 list	 (or	any	 iterable)	of	data	bytes	 to	 the	transport:	see
WriteTransport.writelines().

write_eof()
Close	the	write	end	of	the	transport	after	flushing	buffered	data:
see	WriteTransport.write_eof().

18.5.4.4.	StreamReaderProtocol

class	asyncio.StreamReaderProtocol(stream_reader,
client_connected_cb=None,	loop=None)

Trivial	 helper	 class	 to	 adapt	 between	 Protocol	 and
StreamReader.	Sublclass	of	Protocol.

stream_reader	is	a	StreamReader	instance,	client_connected_cb
is	 an	 optional	 function	 called	 with	 (stream_reader,	 stream_writer)
when	a	connection	is	made,	loop	is	the	event	loop	instance	to	use.

(This	 is	a	helper	class	 instead	of	making	StreamReader	 itself	a
Protocol	 subclass,	 because	 the	 StreamReader	 has	 other
potential	 uses,	and	 to	prevent	 the	user	of	 the	 StreamReader	 to
accidentally	call	inappropriate	methods	of	the	protocol.)

18.5.4.5.	IncompleteReadError

exception	asyncio.IncompleteReadError

Incomplete	read	error,	subclass	of	EOFError.

expected

Total	number	of	expected	bytes	(int).

partial

Read	 bytes	 string	 before	 the	 end	 of	 stream	 was	 reached
(bytes).

18.5.4.6.	Example

Simple	 example	 querying	 HTTP	 headers	 of	 the	 URL	 passed	 on	 the
command	line:

import	asyncio

import	urllib.parse

import	sys

@asyncio.coroutine

def	print_http_headers(url):

				url	=	urllib.parse.urlsplit(url)

				reader,	writer	=	yield	from	asyncio.open_connection

				query	=	('HEAD	{url.path}	HTTP/1.0\r\n'

													'Host:	{url.hostname}\r\n'

													'\r\n').format(url=url)

				writer.write(query.encode('latin-1'))

				while	True:

								line	=	yield	from	reader.readline()

								if	not	line:

												break

								line	=	line.decode('latin1').rstrip()

								if	line:

												print('HTTP	header>	%s'	%	line)

url	=	sys.argv[1]

loop	=	asyncio.get_event_loop()

task	=	asyncio.async(print_http_headers(url))

loop.run_until_complete(task)

loop.close()

Usage:

python	example.py	http://example.com/path/page.html

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

http://www.python.org/

18.5.5.	Subprocess

18.5.5.1.	Create	a	subprocess

asyncio.create_subprocess_shell(cmd,	stdin=None,
stdout=None,	stderr=None,	loop=None,	limit=None,	**kwds)

Run	the	shell	command	cmd	given	as	a	string.	Return	a	Process
instance.

This	function	is	a	coroutine.

asyncio.create_subprocess_exec(*args,	stdin=None,
stdout=None,	stderr=None,	loop=None,	limit=None,	**kwds)

Create	a	subprocess.	Return	a	Process	instance.

This	function	is	a	coroutine.

Use	 the	 BaseEventLoop.connect_read_pipe()	 and
BaseEventLoop.connect_write_pipe()	 methods	 to	 connect
pipes.

See	also: 	The	BaseEventLoop.subprocess_exec()	and
BaseEventLoop.subprocess_shell()	methods.

18.5.5.2.	Constants

asyncio.subprocess.PIPE

Special	 value	 that	 can	 be	 used	 as	 the	 stdin,	 stdout	 or	 stderr
argument	 to	 create_subprocess_shell()	 and
create_subprocess_exec()	 and	 indicates	 that	 a	 pipe	 to	 the
standard	stream	should	be	opened.

asyncio.subprocess.STDOUT

Special	 value	 that	 can	 be	 used	 as	 the	 stderr	 argument	 to
create_subprocess_shell()	 and
create_subprocess_exec()	and	 indicates	 that	standard	error
should	go	into	the	same	handle	as	standard	output.

asyncio.subprocess.DEVNULL

Special	 value	 that	 can	 be	 used	 as	 the	 stderr	 argument	 to
create_subprocess_shell()	 and
create_subprocess_exec()	and	 indicates	 that	standard	error
should	go	into	the	same	handle	as	standard	output.

18.5.5.3.	Process

class	asyncio.subprocess.Process
pid

The	identifier	of	the	process.

Note	 that	 if	 you	 set	 the	 shell	 argument	 to	 True,	 this	 is	 the
process	identifier	of	the	spawned	shell.

returncode

Return	 code	 of	 the	 process	 when	 it	 exited.	 A	 None	 value
indicates	that	the	process	has	not	terminated	yet.

A	negative	value	-N	 indicates	that	the	child	was	terminated	by
signal	N	(Unix	only).

stdin

Standard	input	stream	(write),	None	if	the	process	was	created
with	stdin=None.

stdout

Standard	 output	 stream	 (read),	 None	 if	 the	 process	 was
created	with	stdout=None.

stderr

Standard	error	stream	(read),	None	if	the	process	was	created
with	stderr=None.

communicate(input=None)
Interact	with	process:	Send	data	to	stdin.	Read	data	from	stdout
and	 stderr,	 until	 end-of-file	 is	 reached.	 Wait	 for	 process	 to
terminate.	 The	 optional	 input	 argument	 should	 be	 data	 to	 be

sent	to	the	child	process,	or	None,	if	no	data	should	be	sent	to
the	child.	The	type	of	input	must	be	bytes.

communicate()	 returns	 a	 tuple	 (stdoutdata,

stderrdata).

Note	 that	 if	 you	want	 to	 send	data	 to	 the	process’s	 stdin,	 you
need	to	create	the	Process	object	with	stdin=PIPE.	Similarly,
to	get	anything	other	than	None	in	the	result	tuple,	you	need	to
give	stdout=PIPE	and/or	stderr=PIPE	too.

Note: 	The	 data	 read	 is	 buffered	 in	memory,	 so	 do	 not	 use
this	method	if	the	data	size	is	large	or	unlimited.

kill()
Kills	 the	 child.	On	Posix	OSs	 the	 function	 sends	 SIGKILL	 to
the	child.	On	Windows	kill()	is	an	alias	for	terminate().

send_signal(signal)
Sends	the	signal	signal	to	the	child	process.

Note: 	On	Windows,	SIGTERM	is	an	alias	for	terminate().
CTRL_C_EVENT	 and	 CTRL_BREAK_EVENT	 can	 be	 sent	 to
processes	 started	 with	 a	 creationflags	 parameter	 which
includes	CREATE_NEW_PROCESS_GROUP.

terminate()
Stop	 the	 child.	 On	 Posix	 OSs	 the	 method	 sends
signal.SIGTERM	 to	 the	 child.	 On	 Windows	 the	 Win32	 API
function	TerminateProcess()	is	called	to	stop	the	child.

wait(self):

Wait	 for	 child	 process	 to	 terminate.	 Set	 and	 return
returncode	attribute.

18.5.5.4.	Example

Implement	a	function	similar	to	subprocess.getstatusoutput(),
except	 that	 it	does	not	use	a	shell.	Get	 the	output	of	 the	 “python	 -m
platform”	command	and	display	the	output:

import	asyncio

import	sys

from	asyncio	import	subprocess

@asyncio.coroutine

def	getstatusoutput(*args):

				proc	=	yield	from	asyncio.create_subprocess_exec

																																		*args,

																																		stdout=subprocess.

																																		stderr=subprocess.

				try:

								stdout,	_	=	yield	from	proc.communicate()

				except:

								proc.kill()

								yield	from	proc.wait()

								raise

				exitcode	=	yield	from	proc.wait()

				return	(exitcode,	stdout)

loop	=	asyncio.get_event_loop()

coro	=	getstatusoutput(sys.executable,	'-m',	'platform'

exitcode,	stdout	=	loop.run_until_complete(coro)

if	not	exitcode:

				stdout	=	stdout.decode('ascii').rstrip()

				print("Platform:	%s"	%	stdout)

else:

				print("Python	failed	with	exit	code	%s:"	%	exitcode

				sys.stdout.flush()

				sys.stdout.buffer.flush()

				sys.stdout.buffer.write(stdout)

				sys.stdout.buffer.flush()

loop.close()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

http://www.python.org/

18.5.6.	Synchronization	primitives

18.5.6.1.	Locks

18.5.6.1.1.	Lock

class	asyncio.Lock(*,	loop=None)
Primitive	lock	objects.

A	primitive	lock	is	a	synchronization	primitive	that	is	not	owned	by	a
particular	coroutine	when	 locked.	A	primitive	 lock	 is	 in	one	of	 two
states,	‘locked’	or	‘unlocked’.

It	 is	 created	 in	 the	 unlocked	 state.	 It	 has	 two	 basic	 methods,
acquire()	 and	 release().	 When	 the	 state	 is	 unlocked,
acquire()	 changes	 the	 state	 to	 locked	 and	 returns	 immediately.
When	the	state	is	locked,	acquire()	blocks	until	a	call	to	release()	in
another	 coroutine	 changes	 it	 to	 unlocked,	 then	 the	 acquire()	 call
resets	 it	 to	 locked	and	 returns.	The	 release()	method	should	only
be	called	in	the	locked	state;	it	changes	the	state	to	unlocked	and
returns	immediately.	If	an	attempt	 is	made	to	release	an	unlocked
lock,	a	RuntimeError	will	be	raised.

When	more	 than	one	coroutine	 is	blocked	 in	acquire()	waiting	 for
the	state	to	turn	to	unlocked,	only	one	coroutine	proceeds	when	a
release()	call	 resets	 the	state	 to	unlocked;	 first	coroutine	which	 is
blocked	in	acquire()	is	being	processed.

acquire()	 is	 a	 coroutine	 and	 should	 be	 called	 with	 yield
from.

Locks	also	support	 the	context	manager	protocol.	(yield	from
lock)	should	be	used	as	context	manager	expression.

Usage:

lock	=	Lock()

...

yield	from	lock

try:

				...

finally:

				lock.release()

Context	manager	usage:

lock	=	Lock()

...

with	(yield	from	lock):

					...

Lock	objects	can	be	tested	for	locking	state:

if	not	lock.locked():

			yield	from	lock

else:

			#	lock	is	acquired

				...

locked()
Return	True	if	the	lock	is	acquired.

acquire()
Acquire	a	lock.

This	 method	 blocks	 until	 the	 lock	 is	 unlocked,	 then	 sets	 it	 to
locked	and	returns	True.

This	method	is	a	coroutine.

release()
Release	a	lock.

When	the	lock	is	locked,	reset	it	to	unlocked,	and	return.	If	any
other	 coroutines	 are	 blocked	 waiting	 for	 the	 lock	 to	 become
unlocked,	allow	exactly	one	of	them	to	proceed.

When	 invoked	 on	 an	 unlocked	 lock,	 a	 RuntimeError	 is
raised.

There	is	no	return	value.

18.5.6.1.2.	Event

class	asyncio.Event(*,	loop=None)
An	 Event	 implementation,	 asynchronous	 equivalent	 to
threading.Event.

Class	 implementing	 event	 objects.	 An	 event	manages	 a	 flag	 that
can	be	set	 to	 true	with	 the	set()	method	and	reset	 to	 false	with
the	clear()	method.	The	wait()	method	blocks	until	the	flag	is
true.	The	flag	is	initially	false.

clear()
Reset	the	internal	flag	to	false.	Subsequently,	coroutines	calling
wait()	will	block	until	set()	is	called	to	set	the	internal	flag	to
true	again.

is_set()
Return	True	if	and	only	if	the	internal	flag	is	true.

set()

Set	 the	 internal	 flag	 to	 true.	 All	 coroutines	 waiting	 for	 it	 to
become	 true	 are	 awakened.	Coroutine	 that	 call	 wait()	 once
the	flag	is	true	will	not	block	at	all.

wait()
Block	until	the	internal	flag	is	true.

If	 the	 internal	 flag	 is	 true	 on	 entry,	 return	 True	 immediately.
Otherwise,	block	until	another	coroutine	calls	set()	to	set	the
flag	to	true,	then	return	True.

This	method	is	a	coroutine.

18.5.6.1.3.	Condition

class	asyncio.Condition(*,	loop=None)
A	 Condition	 implementation,	 asynchronous	 equivalent	 to
threading.Condition.

This	 class	 implements	 condition	 variable	 objects.	 A	 condition
variable	allows	one	or	more	coroutines	to	wait	until	they	are	notified
by	another	coroutine.

A	new	Lock	object	is	created	and	used	as	the	underlying	lock.

acquire()
Acquire	the	underlying	lock.

This	 method	 blocks	 until	 the	 lock	 is	 unlocked,	 then	 sets	 it	 to
locked	and	returns	True.

This	method	is	a	coroutine.

notify(n=1)
By	default,	wake	up	one	coroutine	waiting	on	 this	 condition,	 if
any.	If	the	calling	coroutine	has	not	acquired	the	lock	when	this
method	is	called,	a	RuntimeError	is	raised.

This	method	wakes	up	at	most	n	 of	 the	coroutines	waiting	 for
the	condition	variable;	it	is	a	no-op	if	no	coroutines	are	waiting.

Note: 	An	awakened	coroutine	does	not	actually	return	 from
its	 wait()	 call	 until	 it	 can	 reacquire	 the	 lock.	 Since
notify()	does	not	release	the	lock,	its	caller	should.

locked()
Return	True	if	the	underlying	lock	is	acquired.

notify_all()
Wake	up	all	threads	waiting	on	this	condition.	This	method	acts
like	notify(),	but	wakes	up	all	waiting	threads	instead	of	one.
If	the	calling	thread	has	not	acquired	the	lock	when	this	method
is	called,	a	RuntimeError	is	raised.

release()
Release	the	underlying	lock.

When	the	lock	is	locked,	reset	it	to	unlocked,	and	return.	If	any
other	 coroutines	 are	 blocked	 waiting	 for	 the	 lock	 to	 become
unlocked,	allow	exactly	one	of	them	to	proceed.

When	 invoked	 on	 an	 unlocked	 lock,	 a	 RuntimeError	 is
raised.

There	is	no	return	value.

wait()
Wait	until	notified.

If	 the	 calling	 coroutine	 has	 not	 acquired	 the	 lock	 when	 this
method	is	called,	a	RuntimeError	is	raised.

This	method	releases	the	underlying	lock,	and	then	blocks	until
it	 is	awakened	by	a	notify()	or	notify_all()	call	 for	 the
same	condition	variable	 in	another	coroutine.	Once	awakened,
it	re-acquires	the	lock	and	returns	True.

This	method	is	a	coroutine.

wait_for(predicate)
Wait	until	a	predicate	becomes	true.

The	 predicate	 should	 be	 a	 callable	 which	 result	 will	 be
interpreted	as	a	boolean	value.	The	final	predicate	value	is	the
return	value.

This	method	is	a	coroutine.

18.5.6.2.	Semaphores

18.5.6.2.1.	Semaphore

class	asyncio.Semaphore(value=1,	*,	loop=None)
A	Semaphore	implementation.

A	semaphore	manages	an	 internal	 counter	which	 is	decremented
by	 each	 acquire()	 call	 and	 incremented	 by	 each	 release()
call.	The	counter	can	never	go	below	zero;	when	acquire()	finds
that	 it	 is	 zero,	 it	 blocks,	 waiting	 until	 some	 other	 thread	 calls
release().

Semaphores	also	support	the	context	manager	protocol.

The	 optional	 argument	 gives	 the	 initial	 value	 for	 the	 internal
counter;	 it	 defaults	 to	 1.	 If	 the	 value	 given	 is	 less	 than	 0,
ValueError	is	raised.

acquire()
Acquire	a	semaphore.

If	the	internal	counter	is	larger	than	zero	on	entry,	decrement	it
by	one	and	return	True	immediately.	If	it	is	zero	on	entry,	block,
waiting	 until	 some	 other	 coroutine	 has	 called	 release()	 to
make	it	larger	than	0,	and	then	return	True.

This	method	is	a	coroutine.

locked()
Returns	True	if	semaphore	can	not	be	acquired	immediately.

release()
Release	 a	 semaphore,	 incrementing	 the	 internal	 counter	 by
one.	When	it	was	zero	on	entry	and	another	coroutine	is	waiting
for	it	to	become	larger	than	zero	again,	wake	up	that	coroutine.

18.5.6.2.2.	BoundedSemaphore

class	asyncio.BoundedSemaphore(value=1,	*,	loop=None)
A	bounded	semaphore	implementation.	Inherit	from	Semaphore.

This	 raises	 ValueError	 in	 release()	 if	 it	 would	 increase	 the
value	above	the	initial	value.

18.5.6.3.	Queues

18.5.6.3.1.	Queue

class	asyncio.Queue(maxsize=0,	*,	loop=None)
A	 queue,	 useful	 for	 coordinating	 producer	 and	 consumer
coroutines.

If	maxsize	is	less	than	or	equal	to	zero,	the	queue	size	is	infinite.	If
it	is	an	integer	greater	than	0,	then	yield	from	put()	will	block
when	 the	 queue	 reaches	maxsize,	 until	 an	 item	 is	 removed	 by
get().

Unlike	 the	 standard	 library	 queue,	 you	 can	 reliably	 know	 this
Queue’s	 size	 with	 qsize(),	 since	 your	 single-threaded	 asyncio
application	 won’t	 be	 interrupted	 between	 calling	 qsize()	 and
doing	an	operation	on	the	Queue.

empty()
Return	True	if	the	queue	is	empty,	False	otherwise.

full()
Return	True	if	there	are	maxsize	items	in	the	queue.

Note: 	 If	 the	 Queue	 was	 initialized	 with	 maxsize=0	 (the
default),	then	full()	is	never	True.

get()
Remove	and	return	an	item	from	the	queue.

If	you	yield	from	get(),	wait	until	a	item	is	available.

This	method	is	a	coroutine.

get_nowait()
Remove	and	return	an	item	from	the	queue.

Return	 an	 item	 if	 one	 is	 immediately	 available,	 else	 raise
QueueEmpty.

put(item)
Put	an	item	into	the	queue.

If	you	yield	from	put(),	wait	until	a	free	slot	is	available	before
adding	item.

This	method	is	a	coroutine.

put_nowait(item)
Put	an	item	into	the	queue	without	blocking.

If	no	free	slot	is	immediately	available,	raise	QueueFull.

qsize()
Number	of	items	in	the	queue.

maxsize

Number	of	items	allowed	in	the	queue.

18.5.6.3.2.	PriorityQueue

class	asyncio.PriorityQueue
A	 subclass	 of	 Queue;	 retrieves	 entries	 in	 priority	 order	 (lowest
first).

Entries	are	typically	tuples	of	the	form:	(priority	number,	data).

18.5.6.3.3.	LifoQueue

class	asyncio.LifoQueue
A	 subclass	 of	 Queue	 that	 retrieves	 most	 recently	 added	 entries
first.

18.5.6.3.4.	JoinableQueue

class	asyncio.JoinableQueue
A	subclass	of	Queue	with	task_done()	and	join()	methods.

join()
Block	 until	 all	 items	 in	 the	 queue	 have	 been	 gotten	 and
processed.

The	 count	 of	 unfinished	 tasks	 goes	 up	 whenever	 an	 item	 is
added	 to	 the	 queue.	 The	 count	 goes	 down	 whenever	 a
consumer	 thread	calls	task_done()	 to	 indicate	 that	 the	 item
was	retrieved	and	all	work	on	it	is	complete.	When	the	count	of
unfinished	tasks	drops	to	zero,	join()	unblocks.

This	method	is	a	coroutine.

task_done()
Indicate	that	a	formerly	enqueued	task	is	complete.

Used	 by	 queue	 consumers.	 For	 each	 get()	 used	 to	 fetch	 a
task,	 a	 subsequent	 call	 to	 task_done()	 tells	 the	 queue	 that
the	processing	on	the	task	is	complete.

If	a	join()	 is	currently	blocking,	it	will	resume	when	all	 items
have	been	processed	(meaning	that	a	task_done()	call	was
received	for	every	item	that	had	been	put()	into	the	queue).

Raises	ValueError	if	called	more	times	than	there	were	items
placed	in	the	queue.

18.5.6.3.5.	Exceptions

exception	asyncio.QueueEmpty
Exception	raised	when	non-blocking	get()	(or	get_nowait())	is
called	on	a	Queue	object	which	is	empty.

exception	asyncio.QueueFull
Exception	raised	when	non-blocking	put()	(or	put_nowait())	is
called	on	a	Queue	object	which	is	full.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

http://www.python.org/

18.5.7.	Develop	with	asyncio
Asynchronous	 programming	 is	 different	 than	 classical	 “sequential”
programming.	This	page	lists	common	traps	and	explains	how	to	avoid
them.

18.5.7.1.	Concurrency	and	multithreading

An	event	loop	runs	in	a	thread	and	executes	all	callbacks	and	tasks	in
the	same	 thread.	While	a	 task	 is	 running	 in	 the	event	 loop,	no	other
task	 is	 running	 in	 the	 same	 thread.	 But	 when	 the	 task	 uses	 yield
from,	 the	 task	 is	 suspended	 and	 the	 event	 loop	 executes	 the	 next
task.

To	 schedule	 a	 callback	 from	 a	 different	 thread,	 the
BaseEventLoop.call_soon_threadsafe()	 method	 should	 be
used.	Example	to	schedule	a	coroutine	from	a	different	thread:

loop.call_soon_threadsafe(asyncio.async,	coro_func())

Most	asyncio	objects	are	not	thread	safe.	You	should	only	worry	if	you
access	objects	outside	the	event	loop.	For	example,	to	cancel	a	future,
don’t	call	directly	its	Future.cancel()	method,	but:

loop.call_soon_threadsafe(fut.cancel)

To	handle	signals	and	to	execute	subprocesses,	 the	event	 loop	must
be	run	in	the	main	thread.

The	 BaseEventLoop.run_in_executor()	 method	 can	 be	 used
with	a	thread	pool	executor	to	execute	a	callback	in	different	thread	to
not	block	the	thread	of	the	event	loop.

See	also: 	See	the	Synchronization	primitives	section	to
synchronize	tasks.

18.5.7.2.	Handle	blocking	functions
correctly

Blocking	 functions	 should	 not	 be	 called	 directly.	 For	 example,	 if	 a
function	 blocks	 for	 1	 second,	 other	 tasks	 are	 delayed	 by	 1	 second
which	can	have	an	important	impact	on	reactivity.

For	 networking	 and	 subprocesses,	 the	 asyncio	 module	 provides
high-level	APIs	like	protocols.

An	executor	can	be	used	to	run	a	task	in	a	different	thread	or	even	in	a
different	 process,	 to	 not	 block	 the	 thread	 of	 the	 event	 loop.	See	 the
BaseEventLoop.run_in_executor()	method.

See	also: 	The	Delayed	calls	section	details	how	the	event	loop
handles	time.

18.5.7.3.	Logging

The	asyncio	module	 logs	 information	with	 the	 logging	module	 in
the	logger	'asyncio'.

18.5.7.4.	Detect	coroutine	objects	never
scheduled

When	a	coroutine	function	is	called	but	not	passed	to	async()	or	 to
the	Task	constructor,	it	is	not	scheduled	and	it	is	probably	a	bug.

To	 detect	 such	 bug,	 set	 the	 environment	 variable
PYTHONASYNCIODEBUG	to	1.	When	the	coroutine	object	is	destroyed
by	the	garbage	collector,	a	log	will	be	emitted	with	the	traceback	where
the	coroutine	function	was	called.	See	the	asyncio	logger.

The	 debug	 flag	 changes	 the	 behaviour	 of	 the	 coroutine()
decorator.	 The	 debug	 flag	 value	 is	 only	 used	 when	 then	 coroutine
function	 is	defined,	not	when	 it	 is	 called.	Coroutine	 functions	defined
before	the	debug	flag	is	set	to	True	will	not	be	tracked.	For	example,
it	is	not	possible	to	debug	coroutines	defined	in	the	asyncio	module,
because	 the	module	must	 be	 imported	 before	 the	 flag	 value	 can	 be
changed.

Example	with	the	bug:

import	asyncio

@asyncio.coroutine

def	test():

				print("never	scheduled")

test()

Output	in	debug	mode:

Coroutine	'test'	defined	at	test.py:4	was	never	yielded

The	 fix	 is	 to	call	 the	async()	 function	or	create	a	Task	object	with
this	coroutine	object.

18.5.7.5.	Detect	exceptions	not	consumed

Python	usually	calls	sys.displayhook()	on	unhandled	exceptions.
If	 Future.set_exception()	 is	 called,	 but	 the	 exception	 is	 not
consumed,	 sys.displayhook()	 is	 not	 called.	 Instead,	 a	 log	 is
emitted	when	 the	 future	 is	deleted	by	 the	garbage	collector,	with	 the
traceback	where	the	exception	was	raised.	See	the	asyncio	logger.

Example	of	unhandled	exception:

import	asyncio

@asyncio.coroutine

def	bug():

				raise	Exception("not	consumed")

loop	=	asyncio.get_event_loop()

asyncio.async(bug())

loop.run_forever()

Output:

Future/Task	exception	was	never	retrieved:

Traceback	(most	recent	call	last):

		File	"/usr/lib/python3.4/asyncio/tasks.py",	line	279

				result	=	next(coro)

		File	"/usr/lib/python3.4/asyncio/tasks.py",	line	80

				res	=	func(*args,	**kw)

		File	"test.py",	line	5,	in	bug

				raise	Exception("not	consumed")

Exception:	not	consumed

There	are	different	options	to	fix	this	issue.	The	first	option	is	to	chain

to	coroutine	in	another	coroutine	and	use	classic	try/except:

@asyncio.coroutine

def	handle_exception():

				try:

								yield	from	bug()

				except	Exception:

								print("exception	consumed")

loop	=	asyncio.get_event_loop()

asyncio.async(handle_exception())

loop.run_forever()

Another	 option	 is	 to	 use	 the
BaseEventLoop.run_until_complete()	function:

task	=	asyncio.async(bug())

try:

				loop.run_until_complete(task)

except	Exception:

				print("exception	consumed")

See	also	the	Future.exception()	method.

18.5.7.6.	Chain	coroutines	correctly

When	a	 coroutine	 function	 calls	 other	 coroutine	 functions	 and	 tasks,
they	 should	 be	 chained	 explicitly	 with	 yield	from.	 Otherwise,	 the
execution	is	not	guaranteed	to	be	sequential.

Example	 with	 different	 bugs	 using	 asyncio.sleep()	 to	 simulate
slow	operations:

import	asyncio

@asyncio.coroutine

def	create():

				yield	from	asyncio.sleep(3.0)

				print("(1)	create	file")

@asyncio.coroutine

def	write():

				yield	from	asyncio.sleep(1.0)

				print("(2)	write	into	file")

@asyncio.coroutine

def	close():

				print("(3)	close	file")

@asyncio.coroutine

def	test():

				asyncio.async(create())

				asyncio.async(write())

				asyncio.async(close())

				yield	from	asyncio.sleep(2.0)

				loop.stop()

loop	=	asyncio.get_event_loop()

asyncio.async(test())

loop.run_forever()

print("Pending	tasks	at	exit:	%s"	%	asyncio.Task.all_tasks

loop.close()

Expected	output:

(1)	create	file

(2)	write	into	file

(3)	close	file

Pending	tasks	at	exit:	set()

Actual	output:

(3)	close	file

(2)	write	into	file

Pending	tasks	at	exit:	{Task(<create>)<PENDING>}

The	loop	stopped	before	the	create()	finished,	close()	has	been
called	 before	 write(),	 whereas	 coroutine	 functions	 were	 called	 in
this	order:	create(),	write(),	close().

To	fix	the	example,	tasks	must	be	marked	with	yield	from:

@asyncio.coroutine

def	test():

				yield	from	asyncio.async(create())

				yield	from	asyncio.async(write())

				yield	from	asyncio.async(close())

				yield	from	asyncio.sleep(2.0)

				loop.stop()

Or	without	asyncio.async():

@asyncio.coroutine

def	test():

				yield	from	create()

				yield	from	write()

				yield	from	close()

				yield	from	asyncio.sleep(2.0)

				loop.stop()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»	18.5.	asyncio	–	Asynchronous

I/O,	event	loop,	coroutines	and	tasks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.6.	asyncore	—	Asynchronous
socket	handler
Source	code:	Lib/asyncore.py

Note: 	This	module	exists	for	backwards	compatibility	only.	For	new
code	we	recommend	using	asyncio.

This	module	provides	the	basic	infrastructure	for	writing	asynchronous
socket	service	clients	and	servers.

There	are	only	two	ways	to	have	a	program	on	a	single	processor	do
“more	 than	 one	 thing	 at	 a	 time.”	 Multi-threaded	 programming	 is	 the
simplest	 and	 most	 popular	 way	 to	 do	 it,	 but	 there	 is	 another	 very
different	 technique,	 that	 lets	 you	 have	 nearly	 all	 the	 advantages	 of
multi-threading,	without	actually	using	multiple	threads.	It’s	 really	only
practical	 if	 your	 program	 is	 largely	 I/O	 bound.	 If	 your	 program	 is
processor	 bound,	 then	 pre-emptive	 scheduled	 threads	 are	 probably
what	 you	 really	 need.	 Network	 servers	 are	 rarely	 processor	 bound,
however.

If	your	operating	system	supports	the	select()	system	call	in	its	I/O
library	 (and	 nearly	 all	 do),	 then	 you	 can	 use	 it	 to	 juggle	 multiple
communication	 channels	 at	 once;	 doing	other	work	while	 your	 I/O	 is
taking	 place	 in	 the	 “background.”	 Although	 this	 strategy	 can	 seem
strange	and	complex,	especially	at	 first,	 it	 is	 in	many	ways	easier	 to
understand	 and	 control	 than	 multi-threaded	 programming.	 The
asyncore	 module	 solves	 many	 of	 the	 difficult	 problems	 for	 you,
making	 the	 task	 of	 building	 sophisticated	 high-performance	 network

http://hg.python.org/cpython/file/3.4/Lib/asyncore.py

servers	 and	 clients	 a	 snap.	 For	 “conversational”	 applications	 and
protocols	the	companion	asynchat	module	is	invaluable.

The	basic	idea	behind	both	modules	is	to	create	one	or	more	network
channels,	 instances	 of	 class	 asyncore.dispatcher	 and
asynchat.async_chat.	 Creating	 the	 channels	 adds	 them	 to	 a
global	map,	used	by	the	loop()	function	if	you	do	not	provide	it	with
your	own	map.

Once	the	initial	channel(s)	is(are)	created,	calling	the	loop()	function
activates	 channel	 service,	 which	 continues	 until	 the	 last	 channel
(including	any	that	have	been	added	to	the	map	during	asynchronous
service)	is	closed.

asyncore.loop([timeout[,	use_poll[,	map[,	count]]]])
Enter	a	polling	loop	that	terminates	after	count	passes	or	all	open
channels	have	been	closed.	All	arguments	are	optional.	The	count
parameter	defaults	 to	None,	 resulting	 in	 the	 loop	 terminating	only
when	all	 channels	 have	been	 closed.	The	 timeout	 argument	 sets
the	 timeout	 parameter	 for	 the	 appropriate	 select()	 or	 poll()
call,	measured	in	seconds;	the	default	is	30	seconds.	The	use_poll
parameter,	 if	 true,	 indicates	 that	 poll()	 should	 be	 used	 in
preference	to	select()	(the	default	is	False).

The	map	parameter	is	a	dictionary	whose	items	are	the	channels	to
watch.	As	channels	are	closed	they	are	deleted	from	their	map.	If
map	 is	 omitted,	 a	 global	 map	 is	 used.	 Channels	 (instances	 of
asyncore.dispatcher,	 asynchat.async_chat	 and
subclasses	thereof)	can	freely	be	mixed	in	the	map.

class	asyncore.dispatcher
The	 dispatcher	 class	 is	 a	 thin	 wrapper	 around	 a	 low-level

socket	 object.	 To	make	 it	 more	 useful,	 it	 has	 a	 few	methods	 for
event-handling	 which	 are	 called	 from	 the	 asynchronous	 loop.
Otherwise,	 it	 can	 be	 treated	 as	 a	 normal	 non-blocking	 socket
object.

The	 firing	 of	 low-level	 events	 at	 certain	 times	 or	 in	 certain
connection	states	 tells	 the	asynchronous	 loop	 that	certain	higher-
level	events	have	taken	place.	For	example,	if	we	have	asked	for	a
socket	to	connect	to	another	host,	we	know	that	the	connection	has
been	made	when	the	socket	becomes	writable	for	the	first	time	(at
this	point	you	know	that	you	may	write	to	it	with	the	expectation	of
success).	The	implied	higher-level	events	are:

Event Description

handle_connect() Implied	by	the	first	read	or	write	event

handle_close()
Implied	by	a	read	event	with	no	data
available

handle_accepted()
Implied	by	a	read	event	on	a	listening
socket

During	 asynchronous	 processing,	 each	 mapped	 channel’s
readable()	 and	 writable()	 methods	 are	 used	 to	 determine
whether	 the	 channel’s	 socket	 should	 be	 added	 to	 the	 list	 of
channels	select()ed	or	poll()ed	for	read	and	write	events.

Thus,	 the	 set	 of	 channel	 events	 is	 larger	 than	 the	 basic	 socket
events.	 The	 full	 set	 of	 methods	 that	 can	 be	 overridden	 in	 your
subclass	follows:

handle_read()
Called	when	the	asynchronous	loop	detects	that	a	read()	call
on	the	channel’s	socket	will	succeed.

handle_write()
Called	 when	 the	 asynchronous	 loop	 detects	 that	 a	 writable
socket	 can	 be	 written.	 Often	 this	 method	 will	 implement	 the
necessary	buffering	for	performance.	For	example:

def	handle_write(self):

				sent	=	self.send(self.buffer)

				self.buffer	=	self.buffer[sent:]

handle_expt()
Called	 when	 there	 is	 out	 of	 band	 (OOB)	 data	 for	 a	 socket
connection.	This	will	almost	never	happen,	as	OOB	is	tenuously
supported	and	rarely	used.

handle_connect()
Called	 when	 the	 active	 opener’s	 socket	 actually	 makes	 a
connection.	 Might	 send	 a	 “welcome”	 banner,	 or	 initiate	 a
protocol	negotiation	with	the	remote	endpoint,	for	example.

handle_close()
Called	when	the	socket	is	closed.

handle_error()
Called	when	an	exception	is	raised	and	not	otherwise	handled.
The	default	version	prints	a	condensed	traceback.

handle_accept()
Called	 on	 listening	 channels	 (passive	 openers)	 when	 a
connection	can	be	established	with	a	new	remote	endpoint	that
has	 issued	 a	 connect()	 call	 for	 the	 local	 endpoint.
Deprecated	in	version	3.2;	use	handle_accepted()	instead.

Deprecated	since	version	3.2.

handle_accepted(sock,	addr)
Called	 on	 listening	 channels	 (passive	 openers)	 when	 a
connection	 has	 been	 established	with	 a	 new	 remote	 endpoint
that	has	issued	a	connect()	call	for	the	local	endpoint.	sock	is
a	new	 socket	 object	 usable	 to	 send	 and	 receive	 data	 on	 the
connection,	and	addr	is	the	address	bound	to	the	socket	on	the
other	end	of	the	connection.

New	in	version	3.2.

readable()
Called	 each	 time	 around	 the	 asynchronous	 loop	 to	 determine
whether	a	channel’s	socket	should	be	added	to	the	list	on	which
read	 events	 can	 occur.	 The	 default	 method	 simply	 returns
True,	 indicating	that	by	default,	all	channels	will	be	 interested
in	read	events.

writable()
Called	 each	 time	 around	 the	 asynchronous	 loop	 to	 determine
whether	a	channel’s	socket	should	be	added	to	the	list	on	which
write	 events	 can	 occur.	 The	 default	 method	 simply	 returns
True,	 indicating	that	by	default,	all	channels	will	be	 interested
in	write	events.

In	addition,	each	channel	delegates	or	extends	many	of	the	socket
methods.	Most	of	these	are	nearly	identical	to	their	socket	partners.

create_socket(family=socket.AF_INET,
type=socket.SOCK_STREAM)

This	is	identical	to	the	creation	of	a	normal	socket,	and	will	use

the	 same	 options	 for	 creation.	 Refer	 to	 the	 socket

documentation	for	information	on	creating	sockets.

Changed	 in	 version	 3.3:	 family	 and	 type	 arguments	 can	 be
omitted.

connect(address)
As	with	 the	 normal	 socket	 object,	address	 is	 a	 tuple	 with	 the
first	 element	 the	 host	 to	 connect	 to,	 and	 the	 second	 the	 port
number.

send(data)
Send	data	to	the	remote	end-point	of	the	socket.

recv(buffer_size)
Read	at	most	buffer_size	bytes	 from	 the	socket’s	 remote	end-
point.	An	empty	bytes	object	implies	that	the	channel	has	been
closed	from	the	other	end.

listen(backlog)
Listen	 for	 connections	 made	 to	 the	 socket.	 The	 backlog
argument	 specifies	 the	 maximum	 number	 of	 queued
connections	 and	 should	 be	 at	 least	 1;	 the	 maximum	 value	 is
system-dependent	(usually	5).

bind(address)
Bind	 the	 socket	 to	 address.	 The	 socket	 must	 not	 already	 be
bound.	(The	format	of	address	depends	on	 the	address	 family
—	refer	to	the	socket	documentation	for	more	information.)	To
mark	 the	 socket	 as	 re-usable	 (setting	 the	 SO_REUSEADDR
option),	 call	 the	 dispatcher	 object’s	 set_reuse_addr()
method.

accept()
Accept	a	connection.	The	socket	must	be	bound	to	an	address
and	 listening	 for	 connections.	 The	 return	 value	 can	 be	 either
None	 or	 a	 pair	 (conn,	 address)	 where	 conn	 is	 a	 new
socket	 object	 usable	 to	 send	 and	 receive	 data	 on	 the
connection,	and	address	is	the	address	bound	to	the	socket	on
the	 other	 end	 of	 the	 connection.	 When	 None	 is	 returned	 it
means	 the	 connection	 didn’t	 take	 place,	 in	 which	 case	 the
server	 should	 just	 ignore	 this	 event	 and	 keep	 listening	 for
further	incoming	connections.

close()
Close	the	socket.	All	future	operations	on	the	socket	object	will
fail.	 The	 remote	 end-point	 will	 receive	 no	 more	 data	 (after
queued	data	is	flushed).	Sockets	are	automatically	closed	when
they	are	garbage-collected.

class	asyncore.dispatcher_with_send
A	 dispatcher	 subclass	 which	 adds	 simple	 buffered	 output
capability,	 useful	 for	 simple	clients.	For	more	sophisticated	usage
use	asynchat.async_chat.

class	asyncore.file_dispatcher
A	file_dispatcher	takes	a	file	descriptor	or	file	object	along	with	an
optional	map	 argument	 and	wraps	 it	 for	 use	with	 the	 poll()	 or
loop()	 functions.	 If	 provided	 a	 file	 object	 or	 anything	 with	 a
fileno()	method,	 that	method	will	 be	called	and	passed	 to	 the
file_wrapper	constructor.	Availability:	UNIX.

class	asyncore.file_wrapper
A	file_wrapper	takes	an	integer	file	descriptor	and	calls	os.dup()
to	duplicate	 the	handle	so	 that	 the	original	handle	may	be	closed

independently	of	the	file_wrapper.	This	class	implements	sufficient
methods	 to	 emulate	 a	 socket	 for	 use	 by	 the	 file_dispatcher
class.	Availability:	UNIX.

18.6.1.	asyncore	Example	basic	HTTP
client

Here	is	a	very	basic	HTTP	client	that	uses	the	dispatcher	class	 to
implement	its	socket	handling:

import	asyncore

class	HTTPClient(asyncore.dispatcher):

				def	__init__(self,	host,	path):

								asyncore.dispatcher.__init__(self)

								self.create_socket()

								self.connect((host,	80))

								self.buffer	=	bytes('GET	%s	HTTP/1.0\r\nHost:	%s

																												(path,	host),	'ascii')

				def	handle_connect(self):

								pass

				def	handle_close(self):

								self.close()

				def	handle_read(self):

								print(self.recv(8192))

				def	writable(self):

								return	(len(self.buffer)	>	0)

				def	handle_write(self):

								sent	=	self.send(self.buffer)

								self.buffer	=	self.buffer[sent:]

	client	=	HTTPClient('www.python.org',	'/')

	asyncore.loop()

18.6.2.	asyncore	Example	basic	echo
server

Here	 is	 a	 basic	 echo	 server	 that	 uses	 the	 dispatcher	 class	 to
accept	 connections	 and	 dispatches	 the	 incoming	 connections	 to	 a
handler:

import	asyncore

class	EchoHandler(asyncore.dispatcher_with_send):

				def	handle_read(self):

								data	=	self.recv(8192)

								if	data:

												self.send(data)

class	EchoServer(asyncore.dispatcher):

				def	__init__(self,	host,	port):

								asyncore.dispatcher.__init__(self)

								self.create_socket()

								self.set_reuse_addr()

								self.bind((host,	port))

								self.listen(5)

				def	handle_accepted(self,	sock,	addr):

								print('Incoming	connection	from	%s'	%	repr(addr

								handler	=	EchoHandler(sock)

server	=	EchoServer('localhost',	8080)

asyncore.loop()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.7.	asynchat	—	Asynchronous
socket	command/response	handler
Source	code:	Lib/asynchat.py

Note: 	This	module	exists	for	backwards	compatibility	only.	For	new
code	we	recommend	using	asyncio.

This	 module	 builds	 on	 the	 asyncore	 infrastructure,	 simplifying
asynchronous	 clients	 and	 servers	 and	 making	 it	 easier	 to	 handle
protocols	whose	elements	are	terminated	by	arbitrary	strings,	or	are	of
variable	 length.	 asynchat	 defines	 the	 abstract	 class	 async_chat
that	 you	 subclass,	 providing	 implementations	 of	 the
collect_incoming_data()	 and	 found_terminator()

methods.	It	uses	the	same	asynchronous	loop	as	asyncore,	and	the
two	 types	 of	 channel,	 asyncore.dispatcher	 and
asynchat.async_chat,	 can	 freely	 be	 mixed	 in	 the	 channel	 map.
Typically	an	asyncore.dispatcher	server	channel	generates	new
asynchat.async_chat	 channel	 objects	 as	 it	 receives	 incoming
connection	requests.

class	asynchat.async_chat
This	class	is	an	abstract	subclass	of	asyncore.dispatcher.	To
make	practical	use	of	 the	code	you	must	subclass	async_chat,
providing	 meaningful	 collect_incoming_data()	 and
found_terminator()	 methods.	 The	 asyncore.dispatcher
methods	 can	 be	 used,	 although	 not	 all	 make	 sense	 in	 a
message/response	context.

http://hg.python.org/cpython/file/3.4/Lib/asynchat.py

Like	 asyncore.dispatcher,	 async_chat	 defines	 a	 set	 of
events	that	are	generated	by	an	analysis	of	socket	conditions	after
a	 select()	 call.	 Once	 the	 polling	 loop	 has	 been	 started	 the
async_chat	object’s	methods	are	called	by	the	event-processing
framework	with	no	action	on	the	part	of	the	programmer.

Two	class	attributes	can	be	modified,	 to	 improve	performance,	or
possibly	even	to	conserve	memory.

ac_in_buffer_size

The	asynchronous	input	buffer	size	(default	4096).

ac_out_buffer_size

The	asynchronous	output	buffer	size	(default	4096).

Unlike	 asyncore.dispatcher,	 async_chat	 allows	 you	 to
define	a	first-in-first-out	queue	(fifo)	of	producers.	A	producer	need
have	 only	 one	method,	 more(),	 which	 should	 return	 data	 to	 be
transmitted	on	the	channel.	The	producer	indicates	exhaustion	(i.e.
that	it	contains	no	more	data)	by	having	its	more()	method	return
the	 empty	 bytes	 object.	 At	 this	 point	 the	 async_chat	 object
removes	 the	 producer	 from	 the	 fifo	 and	 starts	 using	 the	 next
producer,	 if	 any.	 When	 the	 producer	 fifo	 is	 empty	 the
handle_write()	 method	 does	 nothing.	 You	 use	 the	 channel
object’s	 set_terminator()	 method	 to	 describe	 how	 to
recognize	 the	 end	 of,	 or	 an	 important	 breakpoint	 in,	 an	 incoming
transmission	from	the	remote	endpoint.

To	build	 a	 functioning	 async_chat	 subclass	 your	 input	methods
collect_incoming_data()	and	found_terminator()	must
handle	 the	 data	 that	 the	 channel	 receives	 asynchronously.	 The
methods	are	described	below.

async_chat.close_when_done()
Pushes	 a	 None	 on	 to	 the	 producer	 fifo.	 When	 this	 producer	 is
popped	off	the	fifo	it	causes	the	channel	to	be	closed.

async_chat.collect_incoming_data(data)
Called	with	data	holding	an	arbitrary	amount	of	received	data.	The
default	 method,	 which	 must	 be	 overridden,	 raises	 a
NotImplementedError	exception.

async_chat.discard_buffers()
In	emergencies	this	method	will	discard	any	data	held	in	the	input
and/or	output	buffers	and	the	producer	fifo.

async_chat.found_terminator()
Called	 when	 the	 incoming	 data	 stream	 matches	 the	 termination
condition	set	by	set_terminator().	The	default	method,	which
must	be	overridden,	raises	a	NotImplementedError	exception.
The	 buffered	 input	 data	 should	 be	 available	 via	 an	 instance
attribute.

async_chat.get_terminator()
Returns	the	current	terminator	for	the	channel.

async_chat.push(data)
Pushes	 data	 on	 to	 the	 channel’s	 fifo	 to	 ensure	 its	 transmission.
This	is	all	you	need	to	do	to	have	the	channel	write	the	data	out	to
the	network,	although	 it	 is	possible	 to	use	your	own	producers	 in
more	complex	schemes	to	implement	encryption	and	chunking,	for
example.

async_chat.push_with_producer(producer)
Takes	a	producer	object	and	adds	it	to	the	producer	fifo	associated

with	the	channel.	When	all	currently-pushed	producers	have	been
exhausted	the	channel	will	consume	this	producer’s	data	by	calling
its	more()	method	and	send	the	data	to	the	remote	endpoint.

async_chat.set_terminator(term)
Sets	 the	 terminating	 condition	 to	 be	 recognized	 on	 the	 channel.
term	may	be	any	of	 three	 types	of	value,	corresponding	 to	 three
different	ways	to	handle	incoming	protocol	data.

term Description

string Will	call	found_terminator()	when	the	string	is
found	in	the	input	stream

integer Will	call	found_terminator()	when	the
indicated	number	of	characters	have	been	received

None The	channel	continues	to	collect	data	forever

Note	 that	 any	 data	 following	 the	 terminator	 will	 be	 available	 for
reading	by	the	channel	after	found_terminator()	is	called.

18.7.1.	asynchat	-	Auxiliary	Classes

class	asynchat.fifo(list=None)
A	fifo	holding	data	which	has	been	pushed	by	the	application	but
not	yet	popped	for	writing	to	the	channel.	A	fifo	 is	a	 list	used	to
hold	 data	 and/or	 producers	 until	 they	 are	 required.	 If	 the	 list
argument	 is	 provided	 then	 it	 should	 contain	 producers	 or	 data
items	to	be	written	to	the	channel.

is_empty()
Returns	True	if	and	only	if	the	fifo	is	empty.

first()
Returns	the	least-recently	push()ed	item	from	the	fifo.

push(data)
Adds	 the	 given	 data	 (which	 may	 be	 a	 string	 or	 a	 producer
object)	to	the	producer	fifo.

pop()
If	 the	 fifo	 is	not	empty,	 returns	True,	first(),	 deleting	 the
popped	item.	Returns	False,	None	for	an	empty	fifo.

18.7.2.	asynchat	Example

The	following	partial	example	shows	how	HTTP	requests	can	be	read
with	 async_chat.	 A	 web	 server	 might	 create	 an
http_request_handler	object	for	each	incoming	client	connection.
Notice	that	initially	the	channel	terminator	is	set	to	match	the	blank	line
at	the	end	of	the	HTTP	headers,	and	a	flag	indicates	that	the	headers
are	being	read.

Once	 the	 headers	 have	 been	 read,	 if	 the	 request	 is	 of	 type	 POST
(indicating	 that	 further	data	are	present	 in	 the	 input	stream)	 then	 the
Content-Length:	 header	 is	 used	 to	 set	 a	 numeric	 terminator	 to
read	the	right	amount	of	data	from	the	channel.

The	handle_request()	method	is	called	once	all	relevant	input	has
been	 marshalled,	 after	 setting	 the	 channel	 terminator	 to	 None	 to
ensure	that	any	extraneous	data	sent	by	the	web	client	are	ignored.

import	asynchat

class	http_request_handler(asynchat.async_chat):

				def	__init__(self,	sock,	addr,	sessions,	log):

								asynchat.async_chat.__init__(self,	sock=sock

								self.addr	=	addr

								self.sessions	=	sessions

								self.ibuffer	=	[]

								self.obuffer	=	b""

								self.set_terminator(b"\r\n\r\n")

								self.reading_headers	=	True

								self.handling	=	False

								self.cgi_data	=	None

								self.log	=	log

				def	collect_incoming_data(self,	data):

								"""Buffer	the	data"""

								self.ibuffer.append(data)

				def	found_terminator(self):

								if	self.reading_headers:

												self.reading_headers	=	False

												self.parse_headers(b"".join(self.ibuffer

												self.ibuffer	=	[]

												if	self.op.upper()	==	b"POST":

																clen	=	self.headers.getheader("content-length"

																self.set_terminator(int(clen))

												else:

																self.handling	=	True

																self.set_terminator(None)

																self.handle_request()

								elif	not	self.handling:

												self.set_terminator(None)	#	browsers	sometimes	over-send

												self.cgi_data	=	parse(self.headers,	b"".

												self.handling	=	True

												self.ibuffer	=	[]

												self.handle_request()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.8.	signal	—	Set	handlers	for
asynchronous	events
This	module	provides	mechanisms	to	use	signal	handlers	in	Python.

18.8.1.	General	rules

The	signal.signal()	function	allows	to	define	custom	handlers	to
be	 executed	 when	 a	 signal	 is	 received.	 A	 small	 number	 of	 default
handlers	are	 installed:	 SIGPIPE	 is	 ignored	 (so	write	errors	on	pipes
and	 sockets	 can	 be	 reported	 as	 ordinary	 Python	 exceptions)	 and
SIGINT	is	translated	into	a	KeyboardInterrupt	exception.

A	handler	 for	a	particular	signal,	once	set,	 remains	 installed	until	 it	 is
explicitly	reset	(Python	emulates	the	BSD	style	interface	regardless	of
the	underlying	 implementation),	with	 the	exception	of	 the	handler	 for
SIGCHLD,	which	follows	the	underlying	implementation.

There	 is	 no	 way	 to	 “block”	 signals	 temporarily	 from	 critical	 sections
(since	this	is	not	supported	by	all	Unix	flavors).

18.8.1.1.	Execution	of	Python	signal	handlers

A	Python	signal	handler	does	not	get	executed	inside	the	low-level	(C)
signal	handler.	 Instead,	 the	 low-level	signal	handler	sets	a	 flag	which
tells	 the	virtual	machine	 to	 execute	 the	 corresponding	Python	 signal
handler	at	a	 later	point(for	example	at	 the	next	bytecode	 instruction).
This	has	consequences:

It	makes	 little	sense	to	catch	synchronous	errors	 like	SIGFPE	or
SIGSEGV	 that	 are	 caused	 by	 an	 invalid	 operation	 in	 C	 code.
Python	will	return	from	the	signal	handler	to	the	C	code,	which	is
likely	to	raise	the	same	signal	again,	causing	Python	to	apparently
hang.	 From	 Python	 3.3	 onwards,	 you	 can	 use	 the
faulthandler	module	to	report	on	synchronous	errors.
A	 long-running	 calculation	 implemented	 purely	 in	 C	 (such	 as
regular	 expression	 matching	 on	 a	 large	 body	 of	 text)	 may	 run

uninterrupted	 for	 an	 arbitrary	 amount	 of	 time,	 regardless	 of	 any
signals	received.	The	Python	signal	handlers	will	be	called	when
the	calculation	finishes.

18.8.1.2.	Signals	and	threads

Python	 signal	 handlers	 are	 always	 executed	 in	 the	 main	 Python
thread,	even	if	the	signal	was	received	in	another	thread.	This	means
that	signals	can’t	be	used	as	a	means	of	inter-thread	communication.
You	 can	 use	 the	 synchronization	 primitives	 from	 the	 threading
module	instead.

Besides,	only	the	main	thread	is	allowed	to	set	a	new	signal	handler.

18.8.2.	Module	contents

The	variables	defined	in	the	signal	module	are:

signal.SIG_DFL

This	 is	 one	of	 two	 standard	 signal	 handling	options;	 it	will	 simply
perform	 the	 default	 function	 for	 the	 signal.	 For	example,	on	most
systems	the	default	action	for	SIGQUIT	 is	 to	dump	core	and	exit,
while	the	default	action	for	SIGCHLD	is	to	simply	ignore	it.

signal.SIG_IGN

This	is	another	standard	signal	handler,	which	will	simply	ignore	the
given	signal.

SIG*

All	 the	signal	numbers	are	defined	symbolically.	For	example,	 the
hangup	signal	is	defined	as	signal.SIGHUP;	the	variable	names
are	 identical	 to	 the	 names	 used	 in	 C	 programs,	 as	 found	 in
<signal.h>.	The	Unix	man	page	for	‘signal()‘	lists	the	existing
signals	 (on	some	systems	 this	 is	signal(2),	on	others	 the	 list	 is	 in
signal(7)).	Note	 that	not	all	systems	define	 the	same	set	of	signal
names;	 only	 those	 names	 defined	 by	 the	 system	 are	 defined	 by
this	module.

signal.CTRL_C_EVENT

The	 signal	 corresponding	 to	 the	 CTRL+C	 keystroke	 event.	 This
signal	can	only	be	used	with	os.kill().

Availability:	Windows.

New	in	version	3.2.

signal.CTRL_BREAK_EVENT

The	 signal	 corresponding	 to	 the	 CTRL+BREAK	 keystroke	 event.
This	signal	can	only	be	used	with	os.kill().

Availability:	Windows.

New	in	version	3.2.

signal.NSIG

One	more	than	the	number	of	the	highest	signal	number.

signal.ITIMER_REAL

Decrements	interval	timer	in	real	time,	and	delivers	SIGALRM	upon
expiration.

signal.ITIMER_VIRTUAL

Decrements	interval	timer	only	when	the	process	is	executing,	and
delivers	SIGVTALRM	upon	expiration.

signal.ITIMER_PROF

Decrements	 interval	 timer	 both	 when	 the	 process	 executes	 and
when	 the	 system	 is	 executing	 on	 behalf	 of	 the	 process.	Coupled
with	ITIMER_VIRTUAL,	this	timer	is	usually	used	to	profile	the	time
spent	 by	 the	 application	 in	 user	 and	 kernel	 space.	 SIGPROF	 is
delivered	upon	expiration.

signal.SIG_BLOCK

A	possible	value	for	 the	how	parameter	 to	pthread_sigmask()
indicating	that	signals	are	to	be	blocked.

New	in	version	3.3.

signal.SIG_UNBLOCK

A	possible	value	for	 the	how	parameter	 to	pthread_sigmask()
indicating	that	signals	are	to	be	unblocked.

New	in	version	3.3.

signal.SIG_SETMASK

A	possible	value	for	 the	how	parameter	 to	pthread_sigmask()
indicating	that	the	signal	mask	is	to	be	replaced.

New	in	version	3.3.

The	signal	module	defines	one	exception:

exception	signal.ItimerError
Raised	 to	 signal	 an	 error	 from	 the	 underlying	 setitimer()	 or
getitimer()	 implementation.	 Expect	 this	 error	 if	 an	 invalid
interval	timer	or	a	negative	time	is	passed	to	setitimer().	This
error	is	a	subtype	of	OSError.

New	in	version	3.3:	This	error	used	to	be	a	subtype	of	IOError,
which	is	now	an	alias	of	OSError.

The	signal	module	defines	the	following	functions:

signal.alarm(time)
If	time	is	non-zero,	this	function	requests	that	a	SIGALRM	signal	be
sent	 to	 the	 process	 in	 time	 seconds.	 Any	 previously	 scheduled
alarm	is	canceled	(only	one	alarm	can	be	scheduled	at	any	time).
The	 returned	 value	 is	 then	 the	 number	 of	 seconds	 before	 any
previously	set	alarm	was	to	have	been	delivered.	If	time	is	zero,	no
alarm	 is	 scheduled,	 and	 any	 scheduled	 alarm	 is	 canceled.	 If	 the
return	value	is	zero,	no	alarm	is	currently	scheduled.	(See	the	Unix
man	page	alarm(2).)	Availability:	Unix.

signal.getsignal(signalnum)
Return	 the	 current	 signal	 handler	 for	 the	 signal	 signalnum.	 The
returned	 value	 may	 be	 a	 callable	 Python	 object,	 or	 one	 of	 the
special	 values	 signal.SIG_IGN,	 signal.SIG_DFL	 or	 None.
Here,	 signal.SIG_IGN	 means	 that	 the	 signal	 was	 previously
ignored,	signal.SIG_DFL	means	that	the	default	way	of	handling
the	 signal	 was	 previously	 in	 use,	 and	 None	 means	 that	 the
previous	signal	handler	was	not	installed	from	Python.

signal.pause()
Cause	 the	 process	 to	 sleep	 until	 a	 signal	 is	 received;	 the
appropriate	 handler	 will	 then	 be	 called.	 Returns	 nothing.	 Not	 on
Windows.	(See	the	Unix	man	page	signal(2).)

See	also	sigwait(),	sigwaitinfo(),	 sigtimedwait()	 and
sigpending().

signal.pthread_kill(thread_id,	signum)
Send	the	signal	signum	 to	 the	thread	 thread_id,	another	 thread	 in
the	same	process	as	the	caller.	The	target	thread	can	be	executing
any	code	(Python	or	not).	However,	if	the	target	thread	is	executing
the	Python	interpreter,	the	Python	signal	handlers	will	be	executed
by	the	main	thread.	Therefore,	the	only	point	of	sending	a	signal	to
a	particular	Python	thread	would	be	to	force	a	running	system	call
to	fail	with	InterruptedError.

Use	 threading.get_ident()	 or	 the	 ident	 attribute	 of
threading.Thread	objects	to	get	a	suitable	value	for	thread_id.

If	 signum	 is	 0,	 then	 no	 signal	 is	 sent,	 but	 error	 checking	 is	 still
performed;	 this	 can	 be	 used	 to	 check	 if	 the	 target	 thread	 is	 still
running.

Availability:	 Unix	 (see	 the	 man	 page	 pthread_kill(3)	 for	 further
information).

See	also	os.kill().

New	in	version	3.3.

signal.pthread_sigmask(how,	mask)
Fetch	 and/or	 change	 the	 signal	 mask	 of	 the	 calling	 thread.	 The
signal	mask	is	the	set	of	signals	whose	delivery	is	currently	blocked
for	the	caller.	Return	the	old	signal	mask	as	a	set	of	signals.

The	 behavior	 of	 the	 call	 is	 dependent	 on	 the	 value	 of	 how,	 as
follows.

SIG_BLOCK:	 The	 set	 of	 blocked	 signals	 is	 the	 union	 of	 the
current	set	and	the	mask	argument.
SIG_UNBLOCK:	 The	 signals	 in	mask	 are	 removed	 from	 the
current	 set	 of	 blocked	 signals.	 It	 is	 permissible	 to	 attempt	 to
unblock	a	signal	which	is	not	blocked.
SIG_SETMASK:	The	set	of	blocked	signals	 is	set	to	the	mask
argument.

mask	 is	 a	 set	 of	 signal	 numbers	 (e.g.	 {signal.SIGINT,
signal.SIGTERM}).	 Use	 range(1,	 signal.NSIG)	 for	 a	 full
mask	including	all	signals.

For	 example,
signal.pthread_sigmask(signal.SIG_BLOCK,	 [])	 reads
the	signal	mask	of	the	calling	thread.

Availability:	 Unix.	 See	 the	 man	 page	 sigprocmask(3)	 and
pthread_sigmask(3)	for	further	information.

See	also	pause(),	sigpending()	and	sigwait().

New	in	version	3.3.

signal.setitimer(which,	seconds[,	interval])
Sets	 given	 interval	 timer	 (one	 of	 signal.ITIMER_REAL,
signal.ITIMER_VIRTUAL	or	signal.ITIMER_PROF)	specified
by	 which	 to	 fire	 after	 seconds	 (float	 is	 accepted,	 different	 from
alarm())	and	after	that	every	interval	seconds.	The	interval	timer
specified	by	which	can	be	cleared	by	setting	seconds	to	zero.

When	an	 interval	 timer	 fires,	 a	 signal	 is	 sent	 to	 the	process.	The
signal	 sent	 is	 dependent	 on	 the	 timer	 being	 used;
signal.ITIMER_REAL	 will	 deliver	 SIGALRM,
signal.ITIMER_VIRTUAL	 sends	 SIGVTALRM,	 and
signal.ITIMER_PROF	will	deliver	SIGPROF.

The	old	values	are	returned	as	a	tuple:	(delay,	interval).

Attempting	 to	 pass	 an	 invalid	 interval	 timer	 will	 cause	 an
ItimerError.	Availability:	Unix.

signal.getitimer(which)
Returns	current	value	of	a	given	 interval	 timer	specified	by	which.
Availability:	Unix.

signal.set_wakeup_fd(fd)
Set	the	wakeup	file	descriptor	to	fd.	When	a	signal	is	received,	the
signal	number	 is	written	as	a	single	byte	 into	 the	 fd.	This	 can	 be
used	by	a	library	to	wakeup	a	poll	or	select	call,	allowing	the	signal
to	be	fully	processed.

The	old	wakeup	fd	is	returned.	fd	must	be	non-blocking.	It	is	up	to

the	library	to	remove	any	bytes	before	calling	poll	or	select	again.

Use	 for	 example	 struct.unpack('%uB'	 %	 len(data),

data)	to	decode	the	signal	numbers	list.

When	 threads	 are	 enabled,	 this	 function	 can	 only	 be	 called	 from
the	main	thread;	attempting	to	call	it	from	other	threads	will	cause	a
ValueError	exception	to	be	raised.

signal.siginterrupt(signalnum,	flag)
Change	 system	 call	 restart	 behaviour:	 if	 flag	 is	 False,	 system
calls	 will	 be	 restarted	 when	 interrupted	 by	 signal	 signalnum,
otherwise	 system	 calls	 will	 be	 interrupted.	 Returns	 nothing.
Availability:	 Unix	 (see	 the	 man	 page	 siginterrupt(3)	 for	 further
information).

Note	 that	 installing	a	signal	handler	with	signal()	will	 reset	 the
restart	 behaviour	 to	 interruptible	 by	 implicitly	 calling
siginterrupt()	with	a	true	flag	value	for	the	given	signal.

signal.signal(signalnum,	handler)
Set	 the	 handler	 for	 signal	 signalnum	 to	 the	 function	 handler.
handler	can	be	a	callable	Python	object	taking	two	arguments	(see
below),	 or	 one	 of	 the	 special	 values	 signal.SIG_IGN	 or
signal.SIG_DFL.	 The	 previous	 signal	 handler	 will	 be	 returned
(see	the	description	of	getsignal()	above).	(See	the	Unix	man
page	signal(2).)

When	 threads	 are	 enabled,	 this	 function	 can	 only	 be	 called	 from
the	main	thread;	attempting	to	call	it	from	other	threads	will	cause	a
ValueError	exception	to	be	raised.

The	handler	 is	 called	with	 two	arguments:	 the	signal	number	and

the	current	stack	frame	(None	or	a	frame	object;	 for	a	description
of	 frame	objects,	see	 the	description	 in	 the	 type	hierarchy	or	 see
the	attribute	descriptions	in	the	inspect	module).

On	 Windows,	 signal()	 can	 only	 be	 called	 with	 SIGABRT,
SIGFPE,	 SIGILL,	 SIGINT,	 SIGSEGV,	 or	 SIGTERM.	 A
ValueError	will	be	raised	in	any	other	case.

signal.sigpending()
Examine	 the	 set	 of	 signals	 that	 are	 pending	 for	 delivery	 to	 the
calling	 thread	 (i.e.,	 the	 signals	 which	 have	 been	 raised	 while
blocked).	Return	the	set	of	the	pending	signals.

Availability:	 Unix	 (see	 the	 man	 page	 sigpending(2)	 for	 further
information).

See	also	pause(),	pthread_sigmask()	and	sigwait().

New	in	version	3.3.

signal.sigwait(sigset)
Suspend	execution	of	the	calling	thread	until	the	delivery	of	one	of
the	signals	specified	in	the	signal	set	sigset.	The	function	accepts
the	signal	(removes	it	from	the	pending	list	of	signals),	and	returns
the	signal	number.

Availability:	 Unix	 (see	 the	 man	 page	 sigwait(3)	 for	 further
information).

See	 also	 pause(),	 pthread_sigmask(),	 sigpending(),
sigwaitinfo()	and	sigtimedwait().

New	in	version	3.3.

signal.sigwaitinfo(sigset)
Suspend	execution	of	the	calling	thread	until	the	delivery	of	one	of
the	signals	specified	in	the	signal	set	sigset.	The	function	accepts
the	signal	and	removes	it	from	the	pending	list	of	signals.	If	one	of
the	signals	 in	sigset	 is	already	pending	 for	 the	calling	 thread,	 the
function	will	 return	 immediately	with	 information	about	 that	signal.
The	 signal	 handler	 is	 not	 called	 for	 the	 delivered	 signal.	 The
function	 raises	 an	 InterruptedError	 if	 it	 is	 interrupted	 by	 a
signal	that	is	not	in	sigset.

The	return	value	is	an	object	representing	the	data	contained	in	the
siginfo_t	structure,	namely:	si_signo,	si_code,	si_errno,
si_pid,	si_uid,	si_status,	si_band.

Availability:	 Unix	 (see	 the	 man	 page	 sigwaitinfo(2)	 for	 further
information).

See	also	pause(),	sigwait()	and	sigtimedwait().

New	in	version	3.3.

signal.sigtimedwait(sigset,	timeout)
Like	 sigwaitinfo(),	 but	 takes	 an	 additional	 timeout	 argument
specifying	 a	 timeout.	 If	 timeout	 is	 specified	 as	 0,	 a	 poll	 is
performed.	Returns	None	if	a	timeout	occurs.

Availability:	 Unix	 (see	 the	 man	 page	 sigtimedwait(2)	 for	 further
information).

See	also	pause(),	sigwait()	and	sigwaitinfo().

New	in	version	3.3.

18.8.3.	Example

Here	is	a	minimal	example	program.	It	uses	the	alarm()	 function	to
limit	the	time	spent	waiting	to	open	a	file;	this	is	useful	if	the	file	is	for	a
serial	device	that	may	not	be	turned	on,	which	would	normally	cause
the	os.open()	to	hang	indefinitely.	The	solution	is	to	set	a	5-second
alarm	before	opening	the	file;	if	the	operation	takes	too	long,	the	alarm
signal	will	be	sent,	and	the	handler	raises	an	exception.

import	signal,	os

def	handler(signum,	frame):

				print('Signal	handler	called	with	signal',	signum

				raise	OSError("Couldn't	open	device!")

#	Set	the	signal	handler	and	a	5-second	alarm

signal.signal(signal.SIGALRM,	handler)

signal.alarm(5)

#	This	open()	may	hang	indefinitely

fd	=	os.open('/dev/ttyS0',	os.O_RDWR)

signal.alarm(0)										#	Disable	the	alarm

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

http://www.python.org/

18.9.	mmap	—	Memory-mapped	file
support
Memory-mapped	file	objects	behave	like	both	bytearray	and	like	file
objects.	You	can	use	mmap	objects	in	most	places	where	bytearray
are	 expected;	 for	 example,	 you	 can	 use	 the	 re	 module	 to	 search
through	a	memory-mapped	file.	You	can	also	change	a	single	byte	by
doing	obj[index]	=	97,	or	change	a	subsequence	by	assigning	to
a	slice:	obj[i1:i2]	=	b'...'.	You	can	also	 read	and	write	data
starting	 at	 the	 current	 file	 position,	 and	 seek()	 through	 the	 file	 to
different	positions.

A	memory-mapped	 file	 is	 created	 by	 the	 mmap	 constructor,	which	 is
different	on	Unix	and	on	Windows.	In	either	case	you	must	provide	a
file	 descriptor	 for	 a	 file	 opened	 for	 update.	 If	 you	 wish	 to	 map	 an
existing	 Python	 file	 object,	 use	 its	 fileno()	 method	 to	 obtain	 the
correct	value	for	the	fileno	parameter.	Otherwise,	you	can	open	the	file
using	the	os.open()	function,	which	returns	a	file	descriptor	directly
(the	file	still	needs	to	be	closed	when	done).

Note: 	If	you	want	to	create	a	memory-mapping	for	a	writable,
buffered	file,	you	should	flush()	the	file	first.	This	is	necessary	to
ensure	that	local	modifications	to	the	buffers	are	actually	available	to
the	mapping.

For	 both	 the	 Unix	 and	Windows	 versions	 of	 the	 constructor,	 access
may	be	specified	as	an	optional	 keyword	parameter.	access	accepts
one	 of	 three	 values:	 ACCESS_READ,	 ACCESS_WRITE,	 or
ACCESS_COPY	 to	 specify	 read-only,	 write-through	 or	 copy-on-write

memory	respectively.	access	can	be	used	on	both	Unix	and	Windows.
If	 access	 is	 not	 specified,	 Windows	 mmap	 returns	 a	 write-through
mapping.	 The	 initial	 memory	 values	 for	 all	 three	 access	 types	 are
taken	from	the	specified	file.	Assignment	to	an	ACCESS_READ	memory
map	 raises	 a	 TypeError	 exception.	 Assignment	 to	 an
ACCESS_WRITE	memory	map	affects	both	memory	and	the	underlying
file.	 Assignment	 to	 an	 ACCESS_COPY	 memory	 map	 affects	 memory
but	does	not	update	the	underlying	file.

To	map	anonymous	memory,	-1	should	be	passed	as	the	fileno	along
with	the	length.

class	mmap.mmap(fileno,	length,	tagname=None,
access=ACCESS_DEFAULT[,	offset])

(Windows	version)	Maps	 length	 bytes	 from	 the	 file	 specified	 by
the	file	handle	fileno,	and	creates	a	mmap	object.	If	length	is	larger
than	 the	 current	 size	 of	 the	 file,	 the	 file	 is	 extended	 to	 contain
length	bytes.	If	length	is	0,	 the	maximum	length	of	 the	map	is	the
current	 size	 of	 the	 file,	 except	 that	 if	 the	 file	 is	 empty	 Windows
raises	 an	 exception	 (you	 cannot	 create	 an	 empty	 mapping	 on
Windows).

tagname,	 if	specified	and	not	None,	 is	a	string	giving	a	 tag	name
for	 the	 mapping.	 Windows	 allows	 you	 to	 have	 many	 different
mappings	 against	 the	 same	 file.	 If	 you	 specify	 the	 name	 of	 an
existing	tag,	that	tag	is	opened,	otherwise	a	new	tag	of	this	name	is
created.	 If	 this	 parameter	 is	 omitted	 or	 None,	 the	 mapping	 is
created	without	a	name.	Avoiding	the	use	of	the	tag	parameter	will
assist	in	keeping	your	code	portable	between	Unix	and	Windows.

offset	 may	 be	 specified	 as	 a	 non-negative	 integer	 offset.	 mmap
references	will	 be	 relative	 to	 the	 offset	 from	 the	 beginning	 of	 the

file.	 offset	 defaults	 to	 0.	 offset	 must	 be	 a	 multiple	 of	 the
ALLOCATIONGRANULARITY.

class	mmap.mmap(fileno,	length,	flags=MAP_SHARED,
prot=PROT_WRITE|PROT_READ,	access=ACCESS_DEFAULT[,
offset])

(Unix	version)	Maps	length	bytes	from	the	file	specified	by	the	file
descriptor	 fileno,	 and	 returns	 a	 mmap	 object.	 If	 length	 is	 0,	 the
maximum	length	of	the	map	will	be	the	current	size	of	the	file	when
mmap	is	called.

flags	specifies	the	nature	of	the	mapping.	MAP_PRIVATE	creates	a
private	copy-on-write	mapping,	so	changes	 to	 the	contents	of	 the
mmap	 object	 will	 be	 private	 to	 this	 process,	 and	 MAP_SHARED
creates	a	mapping	that’s	shared	with	all	other	processes	mapping
the	same	areas	of	the	file.	The	default	value	is	MAP_SHARED.

prot,	 if	 specified,	 gives	 the	 desired	 memory	 protection;	 the	 two
most	useful	values	are	PROT_READ	and	PROT_WRITE,	 to	specify
that	the	pages	may	be	read	or	written.	prot	defaults	to	PROT_READ
|	PROT_WRITE.

access	 may	 be	 specified	 in	 lieu	 of	 flags	 and	 prot	 as	 an	 optional
keyword	 parameter.	 It	 is	 an	 error	 to	 specify	 both	 flags,	prot	 and
access.	 See	 the	 description	 of	 access	 above	 for	 information	 on
how	to	use	this	parameter.

offset	 may	 be	 specified	 as	 a	 non-negative	 integer	 offset.	 mmap
references	will	 be	 relative	 to	 the	 offset	 from	 the	 beginning	 of	 the
file.	offset	defaults	to	0.	offset	must	be	a	multiple	of	the	PAGESIZE
or	ALLOCATIONGRANULARITY.

To	ensure	validity	of	the	created	memory	mapping	the	file	specified
by	the	descriptor	fileno	is	internally	automatically	synchronized	with
physical	backing	store	on	Mac	OS	X	and	OpenVMS.

This	example	shows	a	simple	way	of	using	mmap:

import	mmap

#	write	a	simple	example	file

with	open("hello.txt",	"wb")	as	f:

				f.write(b"Hello	Python!\n")

with	open("hello.txt",	"r+b")	as	f:

				#	memory-map	the	file,	size	0	means	whole	file

				mm	=	mmap.mmap(f.fileno(),	0)

				#	read	content	via	standard	file	methods

				print(mm.readline())		#	prints	b"Hello	Python!\n"

				#	read	content	via	slice	notation

				print(mm[:5])		#	prints	b"Hello"

				#	update	content	using	slice	notation;

				#	note	that	new	content	must	have	same	size

				mm[6:]	=	b"	world!\n"

				#	...	and	read	again	using	standard	file	methods

				mm.seek(0)

				print(mm.readline())		#	prints	b"Hello		world!\n"

				#	close	the	map

				mm.close()

mmap	 can	 also	 be	 used	 as	 a	 context	 manager	 in	 a	 with
statement.:

import	mmap

with	mmap.mmap(-1,	13)	as	mm:

				mm.write("Hello	world!")

New	in	version	3.2:	Context	manager	support.

The	next	example	demonstrates	how	to	create	an	anonymous	map
and	exchange	data	between	the	parent	and	child	processes:

import	mmap

import	os

mm	=	mmap.mmap(-1,	13)

mm.write(b"Hello	world!")

pid	=	os.fork()

if	pid	==	0:	#	In	a	child	process

				mm.seek(0)

				print(mm.readline())

				mm.close()

Memory-mapped	file	objects	support	the	following	methods:

mmap.close()
Closes	 the	 mmap.	 Subsequent	 calls	 to	 other	 methods	 of	 the
object	will	result	in	a	ValueError	exception	being	raised.	This	will
not	close	the	open	file.

mmap.closed

True	if	the	file	is	closed.

New	in	version	3.2.

mmap.find(sub[,	start[,	end]])
Returns	the	lowest	 index	in	the	object	where	the	subsequence
sub	 is	 found,	 such	 that	 sub	 is	 contained	 in	 the	 range	 [start,

end].	 Optional	 arguments	 start	 and	 end	 are	 interpreted	 as	 in
slice	notation.	Returns	-1	on	failure.

mmap.flush([offset[,	size]])
Flushes	changes	made	to	the	in-memory	copy	of	a	file	back	to
disk.	Without	use	of	this	call	there	is	no	guarantee	that	changes
are	written	back	before	the	object	is	destroyed.	If	offset	and	size
are	specified,	only	changes	to	the	given	range	of	bytes	will	be
flushed	 to	disk;	 otherwise,	 the	whole	extent	 of	 the	mapping	 is
flushed.

(Windows	 version)	 A	 nonzero	 value	 returned	 indicates
success;	zero	indicates	failure.

(Unix	version)	A	zero	value	is	returned	to	indicate	success.	An
exception	is	raised	when	the	call	failed.

mmap.move(dest,	src,	count)
Copy	 the	 count	 bytes	 starting	 at	 offset	 src	 to	 the	 destination
index	dest.	If	the	mmap	was	created	with	ACCESS_READ,	 then
calls	to	move	will	raise	a	TypeError	exception.

mmap.read([n])
Return	 a	 bytes	 containing	 up	 to	 n	 bytes	 starting	 from	 the
current	 file	 position.	 If	 the	 argument	 is	 omitted,	 None	 or
negative,	return	all	bytes	from	the	current	file	position	to	the	end
of	 the	mapping.	 The	 file	 position	 is	 updated	 to	 point	 after	 the
bytes	that	were	returned.

Changed	in	version	3.3:	Argument	can	be	omitted	or	None.

mmap.read_byte()

Returns	 a	 byte	 at	 the	 current	 file	 position	 as	 an	 integer,	 and
advances	the	file	position	by	1.

mmap.readline()
Returns	a	single	line,	starting	at	the	current	file	position	and	up
to	the	next	newline.

mmap.resize(newsize)
Resizes	the	map	and	the	underlying	file,	if	any.	If	the	mmap	was
created	 with	 ACCESS_READ	 or	 ACCESS_COPY,	 resizing	 the
map	will	raise	a	TypeError	exception.

mmap.rfind(sub[,	start[,	end]])
Returns	the	highest	index	in	the	object	where	the	subsequence
sub	 is	 found,	 such	 that	 sub	 is	 contained	 in	 the	 range	 [start,
end].	 Optional	 arguments	 start	 and	 end	 are	 interpreted	 as	 in
slice	notation.	Returns	-1	on	failure.

mmap.seek(pos[,	whence])
Set	the	file’s	current	position.	whence	argument	is	optional	and
defaults	to	os.SEEK_SET	or	0	(absolute	file	positioning);	other
values	 are	 os.SEEK_CUR	 or	 1	 (seek	 relative	 to	 the	 current
position)	 and	 os.SEEK_END	 or	 2	 (seek	 relative	 to	 the	 file’s
end).

mmap.size()
Return	the	length	of	the	file,	which	can	be	larger	than	the	size	of
the	memory-mapped	area.

mmap.tell()
Returns	the	current	position	of	the	file	pointer.

mmap.write(bytes)
Write	 the	bytes	 in	bytes	 into	memory	at	 the	current	position	of
the	 file	 pointer;	 the	 file	 position	 is	 updated	 to	 point	 after	 the
bytes	 that	 were	 written.	 If	 the	 mmap	 was	 created	 with
ACCESS_READ,	 then	 writing	 to	 it	 will	 raise	 a	 TypeError
exception.

mmap.write_byte(byte)
Write	the	integer	byte	into	memory	at	the	current	position	of	the
file	pointer;	the	file	position	is	advanced	by	1.	If	the	mmap	was
created	 with	 ACCESS_READ,	 then	 writing	 to	 it	 will	 raise	 a
TypeError	exception.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	18.	Interprocess	Communication	and	Networking	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

19.	Internet	Data	Handling
This	chapter	describes	modules	which	support	handling	data	 formats
commonly	used	on	the	Internet.

19.1.	email	—	An	email	and	MIME	handling	package
19.1.1.	email.message:	Representing	an	email	message
19.1.2.	email.parser:	Parsing	email	messages

19.1.2.1.	FeedParser	API
19.1.2.2.	Parser	class	API
19.1.2.3.	Additional	notes

19.1.3.	email.generator:	Generating	MIME	documents
19.1.4.	email.policy:	Policy	Objects
19.1.5.	email.headerregistry:	Custom	Header	Objects
19.1.6.	email.contentmanager:	Managing	MIME	Content

19.1.6.1.	Content	Manager	Instances
19.1.7.	email.mime:	Creating	email	and	MIME	objects	from
scratch
19.1.8.	email.header:	Internationalized	headers
19.1.9.	email.charset:	Representing	character	sets
19.1.10.	email.encoders:	Encoders
19.1.11.	email.errors:	Exception	and	Defect	classes
19.1.12.	email.utils:	Miscellaneous	utilities
19.1.13.	email.iterators:	Iterators
19.1.14.	email:	Examples

19.1.14.1.	Examples	using	the	Provisional	API
19.1.15.	Package	History
19.1.16.	Differences	from	mimelib

19.2.	json	—	JSON	encoder	and	decoder
19.2.1.	Basic	Usage
19.2.2.	Encoders	and	Decoders

19.2.3.	Standard	Compliance
19.2.3.1.	Character	Encodings
19.2.3.2.	Top-level	Non-Object,	Non-Array	Values
19.2.3.3.	Infinite	and	NaN	Number	Values
19.2.3.4.	Repeated	Names	Within	an	Object

19.3.	mailcap	—	Mailcap	file	handling
19.4.	mailbox	—	Manipulate	mailboxes	in	various	formats

19.4.1.	Mailbox	objects
19.4.1.1.	Maildir
19.4.1.2.	mbox
19.4.1.3.	MH
19.4.1.4.	Babyl
19.4.1.5.	MMDF

19.4.2.	Message	objects
19.4.2.1.	MaildirMessage
19.4.2.2.	mboxMessage
19.4.2.3.	MHMessage
19.4.2.4.	BabylMessage
19.4.2.5.	MMDFMessage

19.4.3.	Exceptions
19.4.4.	Examples

19.5.	mimetypes	—	Map	filenames	to	MIME	types
19.5.1.	MimeTypes	Objects

19.6.	 base64	 —	 Base16,	 Base32,	 Base64,	 Base85	 Data
Encodings
19.7.	binhex	—	Encode	and	decode	binhex4	files

19.7.1.	Notes
19.8.	binascii	—	Convert	between	binary	and	ASCII
19.9.	quopri	—	Encode	and	decode	MIME	quoted-printable	data
19.10.	uu	—	Encode	and	decode	uuencode	files

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.1.	email	—	An	email	and
MIME	handling	package
The	 email	 package	 is	 a	 library	 for	 managing	 email	 messages,
including	MIME	and	other	RFC	2822-based	message	documents.	It	is
specifically	 not	 designed	 to	 do	 any	 sending	 of	 email	 messages	 to
SMTP	 (RFC	 2821),	 NNTP,	 or	 other	 servers;	 those	 are	 functions	 of
modules	 such	 as	 smtplib	 and	 nntplib.	 The	 email	 package
attempts	to	be	as	RFC-compliant	as	possible,	supporting	in	addition	to
RFC	2822,	such	MIME-related	RFCs	as	RFC	2045,	RFC	2046,	RFC
2047,	and	RFC	2231.

The	 primary	 distinguishing	 feature	 of	 the	 email	 package	 is	 that	 it
splits	the	parsing	and	generating	of	email	messages	from	the	internal
object	model	 representation	 of	 email.	 Applications	 using	 the	 email
package	 deal	 primarily	 with	 objects;	 you	 can	 add	 sub-objects	 to
messages,	remove	sub-objects	from	messages,	completely	re-arrange
the	contents,	etc.	There	is	a	separate	parser	and	a	separate	generator
which	 handles	 the	 transformation	 from	 flat	 text	 to	 the	 object	 model,
and	then	back	to	flat	text	again.	There	are	also	handy	subclasses	for
some	 common	MIME	 object	 types,	 and	 a	 few	miscellaneous	 utilities
that	help	with	such	common	tasks	as	extracting	and	parsing	message
field	values,	creating	RFC-compliant	dates,	etc.

The	 following	 sections	 describe	 the	 functionality	 of	 the	 email
package.	The	ordering	 follows	a	progression	 that	should	be	common
in	 applications:	 an	 email	 message	 is	 read	 as	 flat	 text	 from	 a	 file	 or
other	source,	the	text	is	parsed	to	produce	the	object	structure	of	the
email	 message,	 this	 structure	 is	 manipulated,	 and	 finally,	 the	 object
tree	is	rendered	back	into	flat	text.

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2821.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2231.html

It	 is	perfectly	feasible	to	create	the	object	structure	out	of	whole	cloth
—	i.e.	completely	from	scratch.	From	there,	a	similar	progression	can
be	taken	as	above.

Also	 included	 are	 detailed	 specifications	 of	 all	 the	 classes	 and
modules	that	the	email	package	provides,	the	exception	classes	you
might	 encounter	 while	 using	 the	 email	 package,	 some	 auxiliary
utilities,	 and	 a	 few	 examples.	 For	 users	 of	 the	 older	 mimelib
package,	 or	 previous	 versions	 of	 the	 email	 package,	 a	 section	 on
differences	and	porting	is	provided.

Contents	of	the	email	package	documentation:

19.1.1.	email.message:	Representing	an	email	message
19.1.2.	email.parser:	Parsing	email	messages

19.1.2.1.	FeedParser	API
19.1.2.2.	Parser	class	API
19.1.2.3.	Additional	notes

19.1.3.	email.generator:	Generating	MIME	documents
19.1.4.	email.policy:	Policy	Objects
19.1.5.	email.headerregistry:	Custom	Header	Objects
19.1.6.	email.contentmanager:	Managing	MIME	Content

19.1.6.1.	Content	Manager	Instances
19.1.7.	 email.mime:	 Creating	 email	 and	 MIME	 objects	 from
scratch
19.1.8.	email.header:	Internationalized	headers
19.1.9.	email.charset:	Representing	character	sets
19.1.10.	email.encoders:	Encoders
19.1.11.	email.errors:	Exception	and	Defect	classes
19.1.12.	email.utils:	Miscellaneous	utilities
19.1.13.	email.iterators:	Iterators
19.1.14.	email:	Examples

19.1.14.1.	Examples	using	the	Provisional	API

See	also:

Module	smtplib
SMTP	protocol	client

Module	nntplib
NNTP	protocol	client

19.1.15.	Package	History

This	 table	 describes	 the	 release	 history	 of	 the	 email	 package,
corresponding	to	the	version	of	Python	that	the	package	was	released
with.	 For	 purposes	 of	 this	 document,	 when	 you	 see	 a	 note	 about
change	 or	 added	 versions,	 these	 refer	 to	 the	 Python	 version	 the
change	was	made	 in,	not	 the	email	package	version.	This	 table	also
describes	the	Python	compatibility	of	each	version	of	the	package.

email
version distributed	with compatible	with

1.x Python	2.2.0	to	Python	2.2.1 no	longer	supported

2.5
Python	2.2.2+	and	Python
2.3 Python	2.1	to	2.5

3.0 Python	2.4 Python	2.3	to	2.5

4.0 Python	2.5 Python	2.3	to	2.5

5.0 Python	3.0	and	Python	3.1 Python	3.0	to	3.2

5.1 Python	3.2 Python	3.0	to	3.2

Here	 are	 the	 major	 differences	 between	 email	 version	 5.1	 and
version	5.0:

It	is	once	again	possible	to	parse	messages	containing	non-ASCII
bytes,	and	to	reproduce	such	messages	if	the	data	containing	the
non-ASCII	bytes	is	not	modified.
New	 functions	 message_from_bytes()	 and
message_from_binary_file(),	 and	 new	 classes
BytesFeedParser	 and	 BytesParser	 allow	 binary	 message
data	to	be	parsed	into	model	objects.
Given	bytes	 input	 to	 the	model,	get_payload()	will	by	default

decode	a	message	body	that	has	a	Content-Transfer-Encoding	of
8bit	using	the	charset	specified	in	the	MIME	headers	and	return
the	resulting	string.
Given	bytes	input	to	the	model,	Generator	will	convert	message
bodies	 that	 have	 a	Content-Transfer-Encoding	 of	 8bit	 to	 instead
have	a	7bit	Content-Transfer-Encoding.
New	 class	 BytesGenerator	 produces	 bytes	 as	 output,
preserving	any	unchanged	non-ASCII	data	that	was	present	in	the
input	 used	 to	 build	 the	model,	 including	message	 bodies	with	 a
Content-Transfer-Encoding	of	8bit.

Here	 are	 the	 major	 differences	 between	 email	 version	 5.0	 and
version	4:

All	operations	are	on	unicode	strings.	Text	inputs	must	be	strings,
text	outputs	are	strings.	Outputs	are	limited	to	the	ASCII	character
set	and	so	can	be	encoded	to	ASCII	for	transmission.	Inputs	are
also	 limited	 to	ASCII;	 this	 is	an	acknowledged	 limitation	of	email
5.0	 and	 means	 it	 can	 only	 be	 used	 to	 parse	 email	 that	 is	 7bit
clean.

Here	are	the	major	differences	between	email	version	4	and	version
3:

All	modules	have	been	 renamed	according	 to	PEP	8	 standards.
For	 example,	 the	 version	 3	 module	 email.Message	 was
renamed	to	email.message	in	version	4.

A	new	subpackage	email.mime	was	added	and	all	the	version	3
email.MIME*	 modules	 were	 renamed	 and	 situated	 into	 the
email.mime	 subpackage.	 For	 example,	 the	 version	 3	 module
email.MIMEText	was	renamed	to	email.mime.text.

Note	 that	 the	version	3	names	will	continue	 to	work	until	Python

http://www.python.org/dev/peps/pep-0008

2.6.

The	 email.mime.application	 module	 was	 added,	 which
contains	the	MIMEApplication	class.

Methods	 that	were	deprecated	 in	version	3	have	been	removed.
These	 include	 Generator.__call__(),
Message.get_type(),	 Message.get_main_type(),
Message.get_subtype().

Fixes	have	been	added	for	RFC	2231	support	which	can	change
some	of	 the	 return	 types	 for	Message.get_param	and	 friends.
Under	some	circumstances,	values	which	used	to	return	a	3-tuple
now	 return	 simple	 strings	 (specifically,	 if	 all	 extended	 parameter
segments	 were	 unencoded,	 there	 is	 no	 language	 and	 charset
designation	expected,	so	 the	return	 type	 is	now	a	simple	string).
Also,	 %-decoding	 used	 to	 be	 done	 for	 both	 encoded	 and
unencoded	segments;	this	decoding	is	now	done	only	for	encoded
segments.

Here	are	the	major	differences	between	email	version	3	and	version
2:

The	 FeedParser	 class	was	 introduced,	 and	 the	 Parser	 class
was	 implemented	 in	 terms	 of	 the	 FeedParser.	 All	 parsing
therefore	is	non-strict,	and	parsing	will	make	a	best	effort	never	to
raise	an	exception.	Problems	 found	while	parsing	messages	are
stored	in	the	message’s	defect	attribute.
All	 aspects	 of	 the	API	which	 raised	 DeprecationWarnings	 in
version	 2	 have	 been	 removed.	 These	 include	 the	 _encoder
argument	 to	 the	 MIMEText	 constructor,	 the
Message.add_payload()	 method,	 the
Utils.dump_address_pair()	 function,	 and	 the	 functions

http://tools.ietf.org/html/rfc2231.html

Utils.decode()	and	Utils.encode().
New	 DeprecationWarnings	 have	 been	 added	 to:
Generator.__call__(),	 Message.get_type(),
Message.get_main_type(),	 Message.get_subtype(),
and	the	strict	argument	to	the	Parser	class.	These	are	expected
to	be	removed	in	future	versions.
Support	for	Pythons	earlier	than	2.3	has	been	removed.

Here	are	the	differences	between	email	version	2	and	version	1:

The	email.Header	 and	 email.Charset	modules	 have	 been
added.

The	pickle	format	for	Message	instances	has	changed.	Since	this
was	never	(and	still	 isn’t)	formally	defined,	this	isn’t	considered	a
backward	 incompatibility.	However	 if	your	application	pickles	and
unpickles	Message	instances,	be	aware	that	in	email	version	2,
Message	 instances	 now	 have	 private	 variables	 _charset	 and
_default_type.

Several	methods	in	the	Message	class	have	been	deprecated,	or
their	 signatures	 changed.	 Also,	 many	 new	 methods	 have	 been
added.	See	the	documentation	for	the	Message	class	for	details.
The	changes	should	be	completely	backward	compatible.

The	object	structure	has	changed	 in	 the	 face	of	message/rfc822
content	 types.	 In	 email	 version	 1,	 such	 a	 type	 would	 be
represented	 by	 a	 scalar	 payload,	 i.e.	 the	 container	 message’s
is_multipart()	 returned	 false,	 get_payload()	 was	 not	 a
list	object,	but	a	single	Message	instance.

This	 structure	was	 inconsistent	with	 the	 rest	 of	 the	 package,	 so
the	 object	 representation	 for	message/rfc822	 content	 types	 was

changed.	 In	 email	 version	 2,	 the	 container	 does	 return	 True
from	 is_multipart(),	 and	 get_payload()	 returns	 a	 list
containing	a	single	Message	item.

Note	 that	 this	 is	one	place	 that	backward	compatibility	could	not
be	completely	maintained.	However,	 if	 you’re	already	 testing	 the
return	type	of	get_payload(),	you	should	be	fine.	You	just	need
to	 make	 sure	 your	 code	 doesn’t	 do	 a	 set_payload()	 with	 a
Message	 instance	 on	 a	 container	 with	 a	 content	 type	 of
message/rfc822.

The	 Parser	 constructor’s	 strict	 argument	 was	 added,	 and	 its
parse()	 and	 parsestr()	 methods	 grew	 a	 headersonly
argument.	 The	 strict	 flag	 was	 also	 added	 to	 functions
email.message_from_file()	 and
email.message_from_string().

Generator.__call__()	 is	 deprecated;	 use
Generator.flatten	 instead.	The	 Generator	 class	 has	 also
grown	the	clone()	method.

The	 DecodedGenerator	 class	 in	 the	 email.generator

module	was	added.

The	 intermediate	 base	 classes	 MIMENonMultipart	 and
MIMEMultipart	have	been	added,	and	 interposed	 in	 the	class
hierarchy	for	most	of	the	other	MIME-related	derived	classes.

The	_encoder	 argument	 to	 the	 MIMEText	 constructor	has	been
deprecated.	 Encoding	 now	 happens	 implicitly	 based	 on	 the
_charset	argument.

The	 following	 functions	 in	 the	email.Utils	module	have	been
deprecated:	 dump_address_pairs(),	 decode(),	 and
encode().	 The	 following	 functions	 have	 been	 added	 to	 the
module:	 make_msgid(),	 decode_rfc2231(),
encode_rfc2231(),	and	decode_params().

The	 non-public	 function	 email.Iterators._structure()
was	added.

19.1.16.	Differences	from	mimelib

The	 email	 package	was	 originally	 prototyped	 as	 a	 separate	 library
called	mimelib.	Changes	have	been	made	so	that	method	names	are
more	 consistent,	 and	 some	 methods	 or	 modules	 have	 either	 been
added	or	removed.	The	semantics	of	some	of	the	methods	have	also
changed.	For	the	most	part,	any	functionality	available	in	mimelib	is
still	 available	 in	 the	 email	 package,	 albeit	 often	 in	 a	 different	 way.
Backward	 compatibility	 between	 the	 mimelib	 package	 and	 the
email	package	was	not	a	priority.

Here	 is	 a	 brief	 description	 of	 the	 differences	 between	 the	 mimelib
and	 the	 email	 packages,	 along	 with	 hints	 on	 how	 to	 port	 your
applications.

Of	 course,	 the	most	 visible	 difference	 between	 the	 two	 packages	 is
that	 the	package	name	has	been	changed	to	email.	In	addition,	 the
top-level	package	has	the	following	differences:

messageFromString()	 has	 been	 renamed	 to
message_from_string().
messageFromFile()	 has	 been	 renamed	 to
message_from_file().

The	Message	class	has	the	following	differences:

The	method	asString()	was	renamed	to	as_string().
The	 method	 ismultipart()	 was	 renamed	 to
is_multipart().
The	 get_payload()	 method	 has	 grown	 a	 decode	 optional
argument.
The	method	getall()	was	renamed	to	get_all().

http://mimelib.sf.net/

The	method	addheader()	was	renamed	to	add_header().
The	method	gettype()	was	renamed	to	get_type().
The	 method	 getmaintype()	 was	 renamed	 to
get_main_type().
The	method	getsubtype()	was	renamed	to	get_subtype().
The	 method	 getparams()	 was	 renamed	 to	 get_params().
Also,	 whereas	 getparams()	 returned	 a	 list	 of	 strings,
get_params()	returns	a	list	of	2-tuples,	effectively	the	key/value
pairs	of	the	parameters,	split	on	the	'='	sign.
The	method	getparam()	was	renamed	to	get_param().
The	 method	 getcharsets()	 was	 renamed	 to
get_charsets().
The	 method	 getfilename()	 was	 renamed	 to
get_filename().
The	 method	 getboundary()	 was	 renamed	 to
get_boundary().
The	 method	 setboundary()	 was	 renamed	 to
set_boundary().
The	 method	 getdecodedpayload()	 was	 removed.	 To	 get
similar	 functionality,	 pass	 the	 value	 1	 to	 the	 decode	 flag	 of	 the
get_payload()	method.
The	 method	 getpayloadastext()	 was	 removed.	 Similar
functionality	is	supported	by	the	DecodedGenerator	class	in	the
email.generator	module.
The	 method	 getbodyastext()	 was	 removed.	 You	 can	 get
similar	 functionality	 by	 creating	 an	 iterator	 with
typed_subpart_iterator()	 in	 the	 email.iterators

module.

The	 Parser	 class	 has	 no	 differences	 in	 its	 public	 interface.	 It	 does
have	 some	 additional	 smarts	 to	 recognize	 message/delivery-status
type	messages,	which	it	represents	as	a	Message	instance	containing

separate	 Message	 subparts	 for	 each	 header	 block	 in	 the	 delivery
status	notification	[1].

The	Generator	class	has	no	differences	in	its	public	interface.	There
is	 a	 new	 class	 in	 the	 email.generator	 module	 though,	 called
DecodedGenerator	 which	 provides	 most	 of	 the	 functionality
previously	 available	 in	 the	 Message.getpayloadastext()

method.

The	following	modules	and	classes	have	been	changed:

The	MIMEBase	 class	 constructor	 arguments	_major	 and	_minor
have	changed	to	_maintype	and	_subtype	respectively.

The	Image	class/module	has	been	renamed	to	MIMEImage.	The
_minor	argument	has	been	renamed	to	_subtype.

The	 Text	 class/module	 has	 been	 renamed	 to	 MIMEText.	 The
_minor	argument	has	been	renamed	to	_subtype.

The	 MessageRFC822	 class/module	 has	 been	 renamed	 to
MIMEMessage.	Note	 that	 an	 earlier	 version	 of	 mimelib	 called
this	 class/module	 RFC822,	 but	 that	 clashed	 with	 the	 Python
standard	 library	 module	 rfc822	 on	 some	 case-insensitive	 file
systems.

Also,	the	MIMEMessage	class	now	represents	any	kind	of	MIME
message	with	main	type	message.	It	 takes	an	optional	argument
_subtype	 which	 is	 used	 to	 set	 the	 MIME	 subtype.	 _subtype
defaults	to	rfc822.

mimelib	 provided	 some	 utility	 functions	 in	 its	 address	 and	 date
modules.	 All	 of	 these	 functions	 have	 been	 moved	 to	 the

email.utils	module.

The	MsgReader	 class/module	has	been	 removed.	 Its	 functionality	 is
most	 closely	 supported	 in	 the	 body_line_iterator()	 function	 in
the	email.iterators	module.

Footnotes

[1] Delivery	Status	Notifications	(DSN)	are	defined	in	RFC	1894.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://tools.ietf.org/html/rfc1894.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.1.	email.message:
Representing	an	email	message
The	 central	 class	 in	 the	 email	 package	 is	 the	 Message	 class,
imported	 from	 the	 email.message	module.	 It	 is	 the	 base	 class	 for
the	email	object	model.	Message	provides	the	core	 functionality	 for
setting	and	querying	header	fields,	and	for	accessing	message	bodies.

Conceptually,	 a	 Message	 object	 consists	 of	 headers	 and	 payloads.
Headers	are	RFC	2822	 style	 field	names	and	values	where	 the	 field
name	 and	 value	 are	 separated	 by	 a	 colon.	 The	 colon	 is	 not	 part	 of
either	the	field	name	or	the	field	value.

Headers	 are	 stored	 and	 returned	 in	 case-preserving	 form	 but	 are
matched	 case-insensitively.	 There	 may	 also	 be	 a	 single	 envelope
header,	 also	 known	 as	 the	Unix-From	 header	 or	 the	 From_	 header.
The	payload	is	either	a	string	in	the	case	of	simple	message	objects	or
a	 list	 of	 Message	 objects	 for	 MIME	 container	 documents	 (e.g.
multipart/*	and	message/rfc822).

Message	objects	provide	a	mapping	style	interface	for	accessing	the
message	 headers,	 and	 an	 explicit	 interface	 for	 accessing	 both	 the
headers	 and	 the	 payload.	 It	 provides	 convenience	 methods	 for
generating	 a	 flat	 text	 representation	 of	 the	message	 object	 tree,	 for
accessing	 commonly	 used	 header	 parameters,	 and	 for	 recursively
walking	over	the	object	tree.

Here	are	the	methods	of	the	Message	class:

class	email.message.Message(policy=compat32)

http://tools.ietf.org/html/rfc2822.html

If	policy	is	specified	(it	must	be	an	instance	of	a	policy	class)	use
the	 rules	 it	 specifies	 to	udpate	and	serialize	 the	 representation	of
the	message.	If	policy	 is	not	set,	use	the	compat32	policy,	which
maintains	backward	compatibility	with	the	Python	3.2	version	of	the
email	 package.	 For	 more	 information	 see	 the	 policy

documentation.

Changed	in	version	3.3:	The	policy	keyword	argument	was	added.

as_string(unixfrom=False,	maxheaderlen=0,	policy=None)
Return	the	entire	message	flattened	as	a	string.	When	optional
unixfrom	is	true,	the	envelope	header	is	included	in	the	returned
string.	unixfrom	defaults	 to	False.	For	backward	compabitility
reasons,	maxheaderlen	defaults	to	0,	so	if	you	want	a	different
value	 you	 must	 override	 it	 explicitly	 (the	 value	 specified	 for
max_line_length	 in	 the	 policy	will	 be	 ignored	 by	 this	method).
The	policy	argument	may	be	used	to	override	the	default	policy
obtained	 from	 the	 message	 instance.	 This	 can	 be	 used	 to
control	some	of	 the	 formatting	produced	by	 the	method,	since
the	specified	policy	will	be	passed	to	the	Generator.

Flattening	the	message	may	trigger	changes	to	the	Message	if
defaults	need	to	be	filled	in	to	complete	the	transformation	to	a
string	 (for	 example,	 MIME	 boundaries	 may	 be	 generated	 or
modified).

Note	 that	 this	method	 is	 provided	 as	 a	 convenience	 and	may
not	always	format	the	message	the	way	you	want.	For	example,
by	default	 it	does	not	do	 the	mangling	of	 lines	 that	begin	with
From	 that	 is	 required	 by	 the	 unix	 mbox	 format.	 For	 more
flexibility,	 instantiate	 a	 Generator	 instance	 and	 use	 its
flatten()	method	directly.	For	example:

from	io	import	StringIO

from	email.generator	import	Generator

fp	=	StringIO()

g	=	Generator(fp,	mangle_from_=True,	maxheaderlen

g.flatten(msg)

text	=	fp.getvalue()

If	 the	message	object	contains	binary	data	that	 is	not	encoded
according	 to	 RFC	 standards,	 the	 non-compliant	 data	 will	 be
replaced	 by	 unicode	 “unknown	 character”	 code	 points.	 (See
also	as_bytes()	and	BytesGenerator.)

Changed	 in	 version	 3.4:	 the	 policy	 keyword	 argument	 was
added.

__str__()
Equivalent	 to	 as_string().	 Allows	 str(msg)	 to	 produce	 a
string	containing	the	formatted	message.

as_bytes(unixfrom=False,	policy=None)
Return	 the	 entire	message	 flattened	 as	 a	 bytes	 object.	When
optional	unixfrom	is	true,	the	envelope	header	is	included	in	the
returned	 string.	 unixfrom	 defaults	 to	 False.	 The	 policy
argument	may	be	used	 to	override	 the	default	 policy	obtained
from	the	message	 instance.	This	can	be	used	to	control	some
of	 the	 formatting	produced	by	 the	method,	 since	 the	 specified
policy	will	be	passed	to	the	BytesGenerator.

Flattening	the	message	may	trigger	changes	to	the	Message	if
defaults	need	to	be	filled	in	to	complete	the	transformation	to	a
string	 (for	 example,	 MIME	 boundaries	 may	 be	 generated	 or
modified).

Note	 that	 this	method	 is	 provided	 as	 a	 convenience	 and	may
not	always	format	the	message	the	way	you	want.	For	example,
by	default	 it	does	not	do	 the	mangling	of	 lines	 that	begin	with
From	 that	 is	 required	 by	 the	 unix	 mbox	 format.	 For	 more
flexibility,	 instantiate	a	BytesGenerator	 instance	and	use	 its
flatten()	method	directly.	For	example:

from	io	import	BytesIO

from	email.generator	import	BytesGenerator

fp	=	BytesIO()

g	=	BytesGenerator(fp,	mangle_from_=True,	maxheaderlen

g.flatten(msg)

text	=	fp.getvalue()

New	in	version	3.4.

__bytes__()
Equivalent	to	as_bytes().	Allows	bytes(msg)	to	produce	a
bytes	object	containing	the	formatted	message.

New	in	version	3.4.

is_multipart()
Return	True	if	the	message’s	payload	is	a	list	of	sub-Message
objects,	 otherwise	 return	 False.	 When	 is_multipart()
returns	False,	the	payload	should	be	a	string	object.

set_unixfrom(unixfrom)
Set	 the	message’s	envelope	header	 to	unixfrom,	which	should
be	a	string.

get_unixfrom()

Return	the	message’s	envelope	header.	Defaults	to	None	if	the
envelope	header	was	never	set.

attach(payload)
Add	 the	 given	payload	 to	 the	 current	 payload,	which	must	 be
None	or	a	list	of	Message	objects	before	the	call.	After	the	call,
the	 payload	 will	 always	 be	 a	 list	 of	 Message	 objects.	 If	 you
want	 to	 set	 the	 payload	 to	 a	 scalar	 object	 (e.g.	 a	 string),	 use
set_payload()	instead.

get_payload(i=None,	decode=False)
Return	 the	 current	 payload,	 which	 will	 be	 a	 list	 of	 Message
objects	 when	 is_multipart()	 is	 True,	 or	 a	 string	 when
is_multipart()	 is	 False.	 If	 the	 payload	 is	 a	 list	 and	 you
mutate	 the	 list	 object,	 you	 modify	 the	 message’s	 payload	 in
place.

With	optional	 argument	 i,	 get_payload()	will	 return	 the	 i-th
element	 of	 the	 payload,	 counting	 from	 zero,	 if
is_multipart()	is	True.	An	IndexError	will	be	raised	if	i
is	less	than	0	or	greater	than	or	equal	to	the	number	of	items	in
the	payload.	If	the	payload	is	a	string	(i.e.	is_multipart()	is
False)	and	i	is	given,	a	TypeError	is	raised.

Optional	decode	is	a	flag	indicating	whether	the	payload	should
be	decoded	or	not,	according	to	the	Content-Transfer-Encoding
header.	When	 True	 and	 the	message	 is	 not	 a	 multipart,	 the
payload	 will	 be	 decoded	 if	 this	 header’s	 value	 is	 quoted-
printable	 or	 base64.	 If	 some	 other	 encoding	 is	 used,	 or
Content-Transfer-Encoding	 header	 is	 missing,	 the	 payload	 is
returned	 as-is	 (undecoded).	 In	 all	 cases	 the	 returned	 value	 is
binary	data.	If	the	message	is	a	multipart	and	the	decode	flag	is

True,	 then	 None	 is	 returned.	 If	 the	 payload	 is	 base64	 and	 it
was	not	perfectly	 formed	 (missing	padding,	characters	outside
the	base64	alphabet),	then	an	appropriate	defect	will	be	added
to	 the	 message’s	 defect	 property
(InvalidBase64PaddingDefect	 or
InvalidBase64CharactersDefect,	respectively).

When	decode	is	False	(the	default)	the	body	is	returned	as	a
string	 without	 decoding	 the	 Content-Transfer-Encoding.
However,	for	a	Content-Transfer-Encoding	of	8bit,	an	attempt	is
made	to	decode	the	original	bytes	using	the	charset	specified
by	the	Content-Type	header,	using	the	replace	error	handler.
If	 no	 charset	 is	 specified,	 or	 if	 the	 charset	 given	 is	 not
recognized	 by	 the	 email	 package,	 the	 body	 is	 decoded	 using
the	default	ASCII	charset.

set_payload(payload,	charset=None)
Set	 the	 entire	 message	 object’s	 payload	 to	 payload.	 It	 is	 the
client’s	responsibility	to	ensure	the	payload	invariants.	Optional
charset	 sets	 the	 message’s	 default	 character	 set;	 see
set_charset()	for	details.

set_charset(charset)
Set	the	character	set	of	the	payload	to	charset,	which	can	either
be	 a	 Charset	 instance	 (see	 email.charset),	 a	 string
naming	 a	 character	 set,	 or	 None.	 If	 it	 is	 a	 string,	 it	 will	 be
converted	 to	 a	 Charset	 instance.	 If	 charset	 is	 None,	 the
charset	 parameter	 will	 be	 removed	 from	 the	 Content-Type
header	(the	message	will	not	be	otherwise	modified).	Anything
else	will	generate	a	TypeError.

If	there	is	no	existing	MIME-Version	header	one	will	be	added.	If

there	is	no	existing	Content-Type	header,	one	will	be	added	with
a	value	of	text/plain.	Whether	the	Content-Type	header	already
exists	 or	 not,	 its	 charset	 parameter	 will	 be	 set	 to
charset.output_charset.	 If	 charset.input_charset	 and
charset.output_charset	differ,	the	payload	will	be	re-encoded	to
the	 output_charset.	 If	 there	 is	 no	 existing	 Content-Transfer-
Encoding	header,	 then	 the	payload	will	be	 transfer-encoded,	 if
needed,	 using	 the	 specified	 Charset,	 and	 a	 header	with	 the
appropriate	value	will	be	added.	If	a	Content-Transfer-Encoding
header	 already	 exists,	 the	 payload	 is	 assumed	 to	 already	 be
correctly	encoded	using	that	Content-Transfer-Encoding	and	 is
not	modified.

get_charset()
Return	 the	 Charset	 instance	 associated	 with	 the	message’s
payload.

The	 following	 methods	 implement	 a	 mapping-like	 interface	 for
accessing	 the	message’s	RFC	2822	headers.	Note	 that	 there	are
some	semantic	differences	between	 these	methods	and	a	normal
mapping	 (i.e.	 dictionary)	 interface.	 For	 example,	 in	 a	 dictionary
there	 are	 no	 duplicate	 keys,	 but	 here	 there	 may	 be	 duplicate
message	 headers.	 Also,	 in	 dictionaries	 there	 is	 no	 guaranteed
order	 to	 the	keys	 returned	by	keys(),	but	 in	a	Message	 object,
headers	 are	 always	 returned	 in	 the	 order	 they	 appeared	 in	 the
original	message,	or	were	added	to	the	message	later.	Any	header
deleted	and	then	re-added	are	always	appended	to	the	end	of	the
header	list.

These	semantic	differences	are	 intentional	and	are	biased	 toward
maximal	convenience.

http://tools.ietf.org/html/rfc2822.html

Note	 that	 in	 all	 cases,	 any	 envelope	 header	 present	 in	 the
message	is	not	included	in	the	mapping	interface.

In	 a	 model	 generated	 from	 bytes,	 any	 header	 values	 that	 (in
contravention	 of	 the	 RFCs)	 contain	 non-ASCII	 bytes	 will,	 when
retrieved	through	this	interface,	be	represented	as	Header	objects
with	a	charset	of	unknown-8bit.

__len__()
Return	the	total	number	of	headers,	including	duplicates.

__contains__(name)
Return	 true	 if	 the	 message	 object	 has	 a	 field	 named	 name.
Matching	 is	 done	 case-insensitively	 and	 name	 should	 not
include	the	trailing	colon.	Used	for	the	in	operator,	e.g.:

if	'message-id'	in	myMessage:

			print('Message-ID:',	myMessage['message-id'])

__getitem__(name)
Return	 the	 value	of	 the	named	header	 field.	name	 should	 not
include	the	colon	field	separator.	If	the	header	is	missing,	None
is	returned;	a	KeyError	is	never	raised.

Note	 that	 if	 the	 named	 field	 appears	 more	 than	 once	 in	 the
message’s	headers,	exactly	which	of	 those	 field	values	will	be
returned	 is	undefined.	Use	the	get_all()	method	 to	get	 the
values	of	all	the	extant	named	headers.

__setitem__(name,	val)
Add	a	header	to	the	message	with	field	name	name	and	value
val.	The	field	is	appended	to	the	end	of	the	message’s	existing

fields.

Note	that	this	does	not	overwrite	or	delete	any	existing	header
with	the	same	name.	If	you	want	to	ensure	that	the	new	header
is	 the	only	one	present	 in	 the	message	with	 field	name	name,
delete	the	field	first,	e.g.:

del	msg['subject']

msg['subject']	=	'Python	roolz!'

__delitem__(name)
Delete	 all	 occurrences	 of	 the	 field	 with	 name	 name	 from	 the
message’s	 headers.	No	 exception	 is	 raised	 if	 the	 named	 field
isn’t	present	in	the	headers.

keys()
Return	a	list	of	all	the	message’s	header	field	names.

values()
Return	a	list	of	all	the	message’s	field	values.

items()
Return	 a	 list	 of	 2-tuples	 containing	 all	 the	 message’s	 field
headers	and	values.

get(name,	failobj=None)
Return	the	value	of	the	named	header	field.	This	is	identical	to
__getitem__()	 except	 that	 optional	 failobj	 is	 returned	 if	 the
named	header	is	missing	(defaults	to	None).

Here	are	some	additional	useful	methods:

get_all(name,	failobj=None)

Return	a	list	of	all	the	values	for	the	field	named	name.	If	there
are	no	such	named	headers	in	the	message,	failobj	is	returned
(defaults	to	None).

add_header(_name,	_value,	**_params)
Extended	 header	 setting.	 This	 method	 is	 similar	 to
__setitem__()	except	that	additional	header	parameters	can
be	provided	as	keyword	arguments.	_name	 is	 the	header	 field
to	add	and	_value	is	the	primary	value	for	the	header.

For	each	item	in	the	keyword	argument	dictionary	_params,	the
key	 is	 taken	 as	 the	 parameter	 name,	 with	 underscores
converted	 to	 dashes	 (since	 dashes	 are	 illegal	 in	 Python
identifiers).	 Normally,	 the	 parameter	 will	 be	 added	 as
key="value"	 unless	 the	 value	 is	 None,	 in	 which	 case	 only
the	 key	 will	 be	 added.	 If	 the	 value	 contains	 non-ASCII
characters,	 it	 can	 be	 specified	 as	 a	 three	 tuple	 in	 the	 format
(CHARSET,	LANGUAGE,	VALUE),	where	CHARSET	is	a	string
naming	the	charset	to	be	used	to	encode	the	value,	LANGUAGE
can	usually	be	set	to	None	or	the	empty	string	(see	RFC	2231
for	other	possibilities),	and	VALUE	is	the	string	value	containing
non-ASCII	 code	points.	 If	 a	 three	 tuple	 is	 not	 passed	and	 the
value	 contains	 non-ASCII	 characters,	 it	 is	 automatically
encoded	in	RFC	2231	format	using	a	CHARSET	of	utf-8	and	a
LANGUAGE	of	None.

Here’s	an	example:

msg.add_header('Content-Disposition',	'attachment'

This	will	add	a	header	that	looks	like

http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

Content-Disposition:	attachment;	filename="bud.gif"

An	example	with	non-ASCII	characters:

msg.add_header('Content-Disposition',	'attachment'

															filename=('iso-8859-1',	'',	'Fußballer.ppt'

Which	produces

Content-Disposition:	attachment;	filename*="iso-8859-1''Fu%DFballer.ppt"

replace_header(_name,	_value)
Replace	 a	 header.	 Replace	 the	 first	 header	 found	 in	 the
message	that	matches	_name,	retaining	header	order	and	field
name	case.	 If	no	matching	header	was	 found,	a	KeyError	 is
raised.

get_content_type()
Return	 the	 message’s	 content	 type.	 The	 returned	 string	 is
coerced	 to	 lower	 case	 of	 the	 form	maintype/subtype.	 If	 there
was	no	Content-Type	 header	 in	 the	message	 the	 default	 type
as	 given	 by	 get_default_type()	 will	 be	 returned.	 Since
according	to	RFC	2045,	messages	always	have	a	default	type,
get_content_type()	will	always	return	a	value.

RFC	 2045	 defines	 a	 message’s	 default	 type	 to	 be	 text/plain
unless	 it	 appears	 inside	 a	multipart/digest	 container,	 in	 which
case	 it	 would	 be	message/rfc822.	 If	 the	Content-Type	 header
has	an	invalid	type	specification,	RFC	2045	mandates	that	 the
default	type	be	text/plain.

http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2045.html

get_content_maintype()
Return	 the	message’s	main	content	 type.	This	 is	 the	maintype
part	of	the	string	returned	by	get_content_type().

get_content_subtype()
Return	the	message’s	sub-content	type.	This	is	the	subtype	part
of	the	string	returned	by	get_content_type().

get_default_type()
Return	the	default	content	type.	Most	messages	have	a	default
content	 type	 of	 text/plain,	 except	 for	 messages	 that	 are
subparts	 of	multipart/digest	 containers.	 Such	 subparts	 have	 a
default	content	type	of	message/rfc822.

set_default_type(ctype)
Set	the	default	content	type.	ctype	should	either	be	text/plain	or
message/rfc822,	 although	 this	 is	 not	 enforced.	 The	 default
content	type	is	not	stored	in	the	Content-Type	header.

get_params(failobj=None,	 header='content-type',
unquote=True)

Return	the	message’s	Content-Type	parameters,	as	a	 list.	The
elements	of	the	returned	list	are	2-tuples	of	key/value	pairs,	as
split	on	the	'='	sign.	The	left	hand	side	of	the	'='	is	the	key,
while	the	right	hand	side	is	the	value.	If	there	is	no	'='	sign	in
the	parameter	the	value	is	the	empty	string,	otherwise	the	value
is	 as	 described	 in	 get_param()	 and	 is	 unquoted	 if	 optional
unquote	is	True	(the	default).

Optional	failobj	is	the	object	to	return	if	there	is	no	Content-Type
header.	 Optional	 header	 is	 the	 header	 to	 search	 instead	 of
Content-Type.

get_param(param,	 failobj=None,	 header='content-type',
unquote=True)

Return	 the	 value	 of	 the	 Content-Type	 header’s	 parameter
param	as	a	string.	If	the	message	has	no	Content-Type	header
or	if	there	is	no	such	parameter,	then	failobj	is	returned	(defaults
to	None).

Optional	header	 if	given,	specifies	 the	message	header	 to	use
instead	of	Content-Type.

Parameter	 keys	 are	 always	 compared	 case	 insensitively.	 The
return	value	can	either	be	a	string,	or	a	3-tuple	if	the	parameter
was	RFC	2231	encoded.	When	 it’s	 a	 3-tuple,	 the	 elements	 of
the	 value	 are	 of	 the	 form	 (CHARSET,	LANGUAGE,	VALUE).
Note	that	both	CHARSET	and	LANGUAGE	can	be	None,	in	which
case	 you	 should	 consider	 VALUE	 to	 be	 encoded	 in	 the	 us-
ascii	charset.	You	can	usually	ignore	LANGUAGE.

If	 your	 application	 doesn’t	 care	 whether	 the	 parameter	 was
encoded	as	in	RFC	2231,	you	can	collapse	the	parameter	value
by	 calling	 email.utils.collapse_rfc2231_value(),
passing	in	the	return	value	from	get_param().	This	will	return
a	suitably	decoded	Unicode	string	when	the	value	is	a	tuple,	or
the	original	string	unquoted	if	it	isn’t.	For	example:

rawparam	=	msg.get_param('foo')

param	=	email.utils.collapse_rfc2231_value(rawparam

In	any	case,	the	parameter	value	(either	the	returned	string,	or
the	 VALUE	 item	 in	 the	 3-tuple)	 is	 always	 unquoted,	 unless
unquote	is	set	to	False.

http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

set_param(param,	 value,	 header='Content-Type',
requote=True,	charset=None,	language='',	replace=False)

Set	a	parameter	 in	 the	Content-Type	header.	 If	 the	 parameter
already	 exists	 in	 the	 header,	 its	 value	 will	 be	 replaced	 with
value.	 If	 the	Content-Type	 header	 as	 not	 yet	 been	defined	 for
this	message,	it	will	be	set	to	text/plain	and	the	new	parameter
value	will	be	appended	as	per	RFC	2045.

Optional	 header	 specifies	 an	 alternative	 header	 to	 Content-
Type,	 and	 all	 parameters	 will	 be	 quoted	 as	 necessary	 unless
optional	requote	is	False	(the	default	is	True).

If	optional	charset	 is	 specified,	 the	 parameter	will	 be	 encoded
according	 to	RFC	2231.	Optional	 language	 specifies	 the	RFC
2231	language,	defaulting	to	the	empty	string.	Both	charset	and
language	should	be	strings.

If	replace	is	False	(the	default)	the	header	is	moved	to	the	end
of	 the	 list	 of	 headers.	 If	 replace	 is	 True,	 the	 header	 will	 be
updated	in	place.

Changed	in	version	3.4:	replace	keyword	was	added.

del_param(param,	header='content-type',	requote=True)
Remove	the	given	parameter	completely	from	the	Content-Type
header.	 The	 header	 will	 be	 re-written	 in	 place	 without	 the
parameter	or	 its	value.	All	 values	will	 be	quoted	as	necessary
unless	requote	is	False	(the	default	is	True).	Optional	header
specifies	an	alternative	to	Content-Type.

set_type(type,	header='Content-Type',	requote=True)
Set	 the	 main	 type	 and	 subtype	 for	 the	Content-Type	 header.
type	must	be	a	string	in	the	form	maintype/subtype,	otherwise	a

http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2231.html

ValueError	is	raised.

This	method	replaces	the	Content-Type	header,	keeping	all	the
parameters	 in	 place.	 If	 requote	 is	 False,	 this	 leaves	 the
existing	header’s	quoting	as	is,	otherwise	the	parameters	will	be
quoted	(the	default).

An	alternative	header	can	be	specified	in	the	header	argument.
When	the	Content-Type	 header	 is	 set	a	MIME-Version	header
is	also	added.

get_filename(failobj=None)
Return	 the	 value	of	 the	 filename	 parameter	 of	 the	Content-
Disposition	header	of	the	message.	If	the	header	does	not	have
a	 filename	 parameter,	 this	 method	 falls	 back	 to	 looking	 for
the	name	 parameter	 on	 the	Content-Type	header.	 If	 neither	 is
found,	 or	 the	 header	 is	 missing,	 then	 failobj	 is	 returned.	 The
returned	 string	 will	 always	 be	 unquoted	 as	 per
email.utils.unquote().

get_boundary(failobj=None)
Return	 the	 value	of	 the	 boundary	 parameter	 of	 the	Content-
Type	 header	 of	 the	message,	 or	 failobj	 if	 either	 the	 header	 is
missing,	 or	 has	 no	 boundary	 parameter.	 The	 returned	 string
will	always	be	unquoted	as	per	email.utils.unquote().

set_boundary(boundary)
Set	 the	 boundary	 parameter	 of	 the	Content-Type	 header	 to
boundary.	 set_boundary()	 will	 always	 quote	 boundary	 if
necessary.	 A	 HeaderParseError	 is	 raised	 if	 the	 message
object	has	no	Content-Type	header.

Note	that	using	this	method	is	subtly	different	than	deleting	the
old	Content-Type	 header	 and	adding	a	new	one	with	 the	new
boundary	 via	 add_header(),	 because	 set_boundary()
preserves	 the	 order	 of	 the	Content-Type	 header	 in	 the	 list	 of
headers.	However,	 it	does	not	preserve	any	continuation	 lines
which	 may	 have	 been	 present	 in	 the	 original	 Content-Type
header.

get_content_charset(failobj=None)
Return	 the	 charset	 parameter	 of	 the	 Content-Type	 header,
coerced	to	lower	case.	If	there	is	no	Content-Type	header,	or	if
that	header	has	no	charset	parameter,	failobj	is	returned.

Note	 that	 this	 method	 differs	 from	 get_charset()	 which
returns	 the	 Charset	 instance	 for	 the	 default	 encoding	 of	 the
message	body.

get_charsets(failobj=None)
Return	 a	 list	 containing	 the	 character	 set	 names	 in	 the
message.	If	the	message	is	a	multipart,	then	the	list	will	contain
one	element	 for	each	subpart	 in	 the	payload,	otherwise,	 it	will
be	a	list	of	length	1.

Each	 item	 in	 the	 list	will	 be	 a	 string	which	 is	 the	 value	 of	 the
charset	 parameter	 in	 the	 Content-Type	 header	 for	 the
represented	 subpart.	However,	 if	 the	 subpart	 has	 no	Content-
Type	header,	no	charset	parameter,	or	is	not	of	the	text	main
MIME	type,	then	that	item	in	the	returned	list	will	be	failobj.

walk()
The	walk()	method	is	an	all-purpose	generator	which	can	be
used	 to	 iterate	 over	 all	 the	 parts	 and	 subparts	 of	 a	message

object	 tree,	 in	 depth-first	 traversal	 order.	You	will	 typically	use
walk()	as	the	iterator	in	a	for	loop;	each	iteration	returns	the
next	subpart.

Here’s	an	example	that	prints	the	MIME	type	of	every	part	of	a
multipart	message	structure:

>>>	for	part	in	msg.walk():

...					print(part.get_content_type())

multipart/report

text/plain

message/delivery-status

text/plain

text/plain

message/rfc822

text/plain

Message	 objects	 can	 also	 optionally	 contain	 two	 instance
attributes,	which	can	be	used	when	generating	 the	plain	 text	of	a
MIME	message.

preamble

The	format	of	a	MIME	document	allows	for	some	text	between
the	 blank	 line	 following	 the	 headers,	 and	 the	 first	 multipart
boundary	string.	Normally,	 this	 text	 is	never	visible	 in	a	MIME-
aware	mail	 reader	because	 it	 falls	outside	 the	standard	MIME
armor.	However,	when	viewing	the	raw	text	of	the	message,	or
when	 viewing	 the	message	 in	 a	 non-MIME	aware	 reader,	 this
text	can	become	visible.

The	preamble	attribute	contains	this	leading	extra-armor	text	for
MIME	documents.	When	the	Parser	discovers	some	text	after
the	headers	but	before	the	first	boundary	string,	 it	assigns	this
text	 to	 the	 message’s	 preamble	 attribute.	 When	 the

Generator	 is	 writing	 out	 the	 plain	 text	 representation	 of	 a
MIME	 message,	 and	 it	 finds	 the	 message	 has	 a	 preamble
attribute,	 it	will	write	 this	 text	 in	 the	area	between	 the	headers
and	 the	 first	 boundary.	 See	 email.parser	 and
email.generator	for	details.

Note	that	if	the	message	object	has	no	preamble,	the	preamble
attribute	will	be	None.

epilogue

The	 epilogue	 attribute	 acts	 the	 same	 way	 as	 the	 preamble
attribute,	except	 that	 it	contains	 text	 that	appears	between	 the
last	boundary	and	the	end	of	the	message.

You	do	not	need	to	set	the	epilogue	to	the	empty	string	in	order
for	the	Generator	to	print	a	newline	at	the	end	of	the	file.

defects

The	defects	 attribute	 contains	 a	 list	 of	 all	 the	 problems	 found
when	parsing	this	message.	See	email.errors	for	a	detailed
description	of	the	possible	parsing	defects.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.2.	email.parser:	Parsing
email	messages
Message	 object	 structures	 can	 be	 created	 in	 one	 of	 two	ways:	 they
can	be	created	from	whole	cloth	by	instantiating	Message	objects	and
stringing	them	together	via	attach()	and	set_payload()	calls,	or
they	can	be	created	by	parsing	a	 flat	 text	 representation	of	 the	email
message.

The	 email	 package	 provides	 a	 standard	 parser	 that	 understands
most	email	document	structures,	including	MIME	documents.	You	can
pass	 the	parser	a	string	or	a	 file	object,	and	 the	parser	will	 return	 to
you	 the	 root	 Message	 instance	 of	 the	 object	 structure.	 For	 simple,
non-MIME	messages	 the	 payload	 of	 this	 root	 object	 will	 likely	 be	 a
string	 containing	 the	 text	 of	 the	message.	 For	MIME	messages,	 the
root	object	will	 return	True	 from	 its	is_multipart()	method,	and
the	subparts	can	be	accessed	via	the	get_payload()	and	walk()
methods.

There	are	actually	 two	parser	 interfaces	available	for	use,	 the	classic
Parser	 API	 and	 the	 incremental	 FeedParser	 API.	 The	 classic
Parser	 API	 is	 fine	 if	 you	 have	 the	 entire	 text	 of	 the	 message	 in
memory	as	a	string,	or	 if	 the	entire	message	 lives	 in	a	file	on	the	file
system.	FeedParser	is	more	appropriate	for	when	you’re	reading	the
message	from	a	stream	which	might	block	waiting	for	more	input	(e.g.
reading	 an	 email	 message	 from	 a	 socket).	 The	 FeedParser	 can
consume	and	parse	 the	message	 incrementally,	and	only	 returns	 the
root	object	when	you	close	the	parser	[1].

Note	 that	 the	parser	can	be	extended	 in	 limited	ways,	and	of	course

you	can	implement	your	own	parser	completely	from	scratch.	There	is
no	magical	connection	between	the	email	package’s	bundled	parser
and	the	Message	class,	so	your	custom	parser	can	create	message
object	trees	any	way	it	finds	necessary.

19.1.2.1.	FeedParser	API

The	 FeedParser,	 imported	 from	 the	 email.feedparser	 module,
provides	 an	 API	 that	 is	 conducive	 to	 incremental	 parsing	 of	 email
messages,	such	as	would	be	necessary	when	 reading	 the	 text	of	an
email	 message	 from	 a	 source	 that	 can	 block	 (e.g.	 a	 socket).	 The
FeedParser	can	of	course	be	used	to	parse	an	email	message	fully
contained	 in	 a	 string	 or	 a	 file,	 but	 the	 classic	 Parser	 API	 may	 be
more	convenient	for	such	use	cases.	The	semantics	and	results	of	the
two	parser	APIs	are	identical.

The	 FeedParser‘s	 API	 is	 simple;	 you	 create	 an	 instance,	 feed	 it	 a
bunch	of	text	until	there’s	no	more	to	feed	it,	then	close	the	parser	to
retrieve	 the	 root	 message	 object.	 The	 FeedParser	 is	 extremely
accurate	when	parsing	standards-compliant	messages,	and	 it	does	a
very	 good	 job	 of	 parsing	 non-compliant	 messages,	 providing
information	about	how	a	message	was	deemed	broken.	It	will	populate
a	message	object’s	defects	attribute	with	a	list	of	any	problems	it	found
in	a	message.	See	the	email.errors	module	 for	 the	 list	of	defects
that	it	can	find.

Here	is	the	API	for	the	FeedParser:

class
email.parser.FeedParser(_factory=email.message.Message,
*,	policy=policy.default)

Create	 a	 FeedParser	 instance.	 Optional	 _factory	 is	 a	 no-
argument	 callable	 that	 will	 be	 called	 whenever	 a	 new	 message
object	 is	 needed.	 It	 defaults	 to	 the	 email.message.Message
class.

The	 policy	 keyword	 specifies	 a	 policy	 object	 that	 controls	 a
number	 of	 aspects	 of	 the	 parser’s	 operation.	 The	 default	 policy
maintains	backward	compatibility.

Changed	in	version	3.3:	Added	the	policy	keyword.

feed(data)
Feed	 the	 FeedParser	 some	 more	 data.	 data	 should	 be	 a
string	containing	one	or	more	lines.	The	lines	can	be	partial	and
the	FeedParser	will	stitch	such	partial	lines	together	properly.
The	 lines	 in	 the	string	can	have	any	of	 the	common	 three	 line
endings,	 carriage	 return,	 newline,	 or	 carriage	 return	 and
newline	(they	can	even	be	mixed).

close()
Closing	a	FeedParser	completes	the	parsing	of	all	previously
fed	data,	and	 returns	 the	 root	message	object.	 It	 is	 undefined
what	happens	if	you	feed	more	data	to	a	closed	FeedParser.

class
email.parser.BytesFeedParser(_factory=email.message.Message

Works	 exactly	 like	 FeedParser	 except	 that	 the	 input	 to	 the
feed()	method	must	be	bytes	and	not	string.

New	in	version	3.2.

19.1.2.2.	Parser	class	API

The	 Parser	 class,	 imported	 from	 the	 email.parser	 module,
provides	 an	 API	 that	 can	 be	 used	 to	 parse	 a	 message	 when	 the
complete	contents	of	the	message	are	available	in	a	string	or	file.	The
email.parser	 module	 also	 provides	 header-only	 parsers,	 called
HeaderParser	 and	 BytesHeaderParser,	 which	 can	 be	 used	 if
you’re	only	interested	in	the	headers	of	the	message.	HeaderParser
and	 BytesHeaderParser	 can	 be	 much	 faster	 in	 these	 situations,
since	they	do	not	attempt	to	parse	the	message	body,	instead	setting
the	payload	to	the	raw	body	as	a	string.	They	have	the	same	API	as
the	Parser	and	BytesParser	classes.

New	in	version	3.3:	The	BytesHeaderParser	class.

class	email.parser.Parser(_class=email.message.Message,	*,
policy=policy.default)

The	constructor	for	the	Parser	class	 takes	an	optional	argument
_class.	 This	 must	 be	 a	 callable	 factory	 (such	 as	 a	 function	 or	 a
class),	and	it	is	used	whenever	a	sub-message	object	needs	to	be
created.	 It	 defaults	 to	 Message	 (see	 email.message).	 The
factory	will	be	called	without	arguments.

The	 policy	 keyword	 specifies	 a	 policy	 object	 that	 controls	 a
number	 of	 aspects	 of	 the	 parser’s	 operation.	 The	 default	 policy
maintains	backward	compatibility.

Changed	 in	 version	 3.3:	 Removed	 the	 strict	 argument	 that	 was
deprecated	in	2.4.	Added	the	policy	keyword.

The	other	public	Parser	methods	are:

parse(fp,	headersonly=False)
Read	all	the	data	from	the	file-like	object	fp,	parse	the	resulting
text,	and	return	the	root	message	object.	 fp	must	support	both
the	readline()	and	the	read()	methods	on	file-like	objects.

The	 text	contained	 in	 fp	must	be	 formatted	as	a	block	of	RFC
2822	 style	 headers	 and	 header	 continuation	 lines,	 optionally
preceded	by	a	envelope	header.	The	header	block	is	terminated
either	by	 the	end	of	 the	data	or	by	a	blank	 line.	Following	the
header	 block	 is	 the	 body	 of	 the	message	 (which	may	 contain
MIME-encoded	subparts).

Optional	 headersonly	 is	 a	 flag	 specifying	 whether	 to	 stop
parsing	after	reading	the	headers	or	not.	The	default	is	False,
meaning	it	parses	the	entire	contents	of	the	file.

parsestr(text,	headersonly=False)
Similar	to	the	parse()	method,	except	it	takes	a	string	object
instead	 of	 a	 file-like	 object.	 Calling	 this	method	 on	 a	 string	 is
exactly	equivalent	to	wrapping	text	in	a	StringIO	instance	first
and	calling	parse().

Optional	headersonly	is	as	with	the	parse()	method.

class
email.parser.BytesParser(_class=email.message.Message,
*,	policy=policy.default)

This	class	 is	exactly	parallel	 to	Parser,	but	handles	bytes	 input.
The	_class	and	strict	arguments	are	interpreted	in	the	same	way	as
for	the	Parser	constructor.

The	 policy	 keyword	 specifies	 a	 policy	 object	 that	 controls	 a
number	 of	 aspects	 of	 the	 parser’s	 operation.	 The	 default	 policy

http://tools.ietf.org/html/rfc2822.html

maintains	backward	compatibility.

Changed	 in	version	3.3:	Removed	the	strict	argument.	Added	the
policy	keyword.

parse(fp,	headeronly=False)
Read	 all	 the	 data	 from	 the	 binary	 file-like	 object	 fp,	 parse	 the
resulting	bytes,	and	return	the	message	object.	fp	must	support
both	 the	 readline()	 and	 the	 read()	 methods	 on	 file-like
objects.

The	bytes	contained	in	fp	must	be	formatted	as	a	block	of	RFC
2822	 style	 headers	 and	 header	 continuation	 lines,	 optionally
preceded	by	a	envelope	header.	The	header	block	is	terminated
either	by	 the	end	of	 the	data	or	by	a	blank	 line.	Following	the
header	 block	 is	 the	 body	 of	 the	message	 (which	may	 contain
MIME-encoded	 subparts,	 including	 subparts	 with	 a	 Content-
Transfer-Encoding	of	8bit.

Optional	 headersonly	 is	 a	 flag	 specifying	 whether	 to	 stop
parsing	after	reading	the	headers	or	not.	The	default	is	False,
meaning	it	parses	the	entire	contents	of	the	file.

parsebytes(bytes,	headersonly=False)
Similar	 to	 the	 parse()	method,	 except	 it	 takes	 a	 byte	 string
object	instead	of	a	file-like	object.	Calling	this	method	on	a	byte
string	 is	 exactly	 equivalent	 to	 wrapping	 text	 in	 a	 BytesIO
instance	first	and	calling	parse().

Optional	headersonly	is	as	with	the	parse()	method.

New	in	version	3.2.

http://tools.ietf.org/html/rfc2822.html

Since	creating	a	message	object	structure	from	a	string	or	a	file	object
is	such	a	common	task,	four	functions	are	provided	as	a	convenience.
They	are	available	in	the	top-level	email	package	namespace.

email.message_from_string(s,
_class=email.message.Message,	*,	policy=policy.default)

Return	 a	message	 object	 structure	 from	 a	 string.	 This	 is	 exactly
equivalent	 to	 Parser().parsestr(s).	 _class	 and	 policy	 are
interpreted	as	with	the	Parser	class	constructor.

Changed	 in	version	3.3:	Removed	the	strict	argument.	Added	the
policy	keyword.

email.message_from_bytes(s,
_class=email.message.Message,	*,	policy=policy.default)

Return	 a	 message	 object	 structure	 from	 a	 byte	 string.	 This	 is
exactly	 equivalent	 to	 BytesParser().parsebytes(s).
Optional	_class	and	strict	are	interpreted	as	with	the	Parser	class
constructor.

New	in	version	3.2.

Changed	 in	version	3.3:	Removed	the	strict	argument.	Added	the
policy	keyword.

email.message_from_file(fp,
_class=email.message.Message,	*,	policy=policy.default)

Return	 a	message	 object	 structure	 tree	 from	 an	 open	 file	 object.
This	 is	 exactly	 equivalent	 to	 Parser().parse(fp).	_class	 and
policy	are	interpreted	as	with	the	Parser	class	constructor.

Changed	 in	 version	 Removed:	 the	 strict	 argument.	 Added	 the
policy	keyword.

email.message_from_binary_file(fp,
_class=email.message.Message,	*,	policy=policy.default)

Return	 a	message	 object	 structure	 tree	 from	 an	 open	 binary	 file
object.	 This	 is	 exactly	 equivalent	 to
BytesParser().parse(fp).	_class	 and	 policy	 are	 interpreted
as	with	the	Parser	class	constructor.

New	in	version	3.2.

Changed	 in	version	3.3:	Removed	the	strict	argument.	Added	the
policy	keyword.

Here’s	an	example	of	how	you	might	use	this	at	an	interactive	Python
prompt:

>>>	import	email

>>>	msg	=	email.message_from_string(myString)		

19.1.2.3.	Additional	notes

Here	are	some	notes	on	the	parsing	semantics:

Most	 non-multipart	 type	 messages	 are	 parsed	 as	 a	 single
message	 object	 with	 a	 string	 payload.	 These	 objects	 will	 return
False	 for	 is_multipart().	 Their	 get_payload()	 method
will	return	a	string	object.
All	 multipart	 type	 messages	 will	 be	 parsed	 as	 a	 container
message	 object	 with	 a	 list	 of	 sub-message	 objects	 for	 their
payload.	 The	 outer	 container	 message	 will	 return	 True	 for
is_multipart()	and	their	get_payload()	method	will	return
the	list	of	Message	subparts.
Most	 messages	 with	 a	 content	 type	 of	 message/*	 (e.g.
message/delivery-status	and	message/rfc822)	will	also	be	parsed
as	 container	 object	 containing	 a	 list	 payload	 of	 length	 1.	 Their
is_multipart()	method	will	 return	True.	The	single	element
in	the	list	payload	will	be	a	sub-message	object.
Some	 non-standards	 compliant	messages	may	 not	 be	 internally
consistent	 about	 their	 multipart-edness.	 Such	 messages	 may
have	 a	 Content-Type	 header	 of	 type	 multipart,	 but	 their
is_multipart()	method	may	return	False.	If	such	messages
were	parsed	with	the	FeedParser,	they	will	have	an	instance	of
the	 MultipartInvariantViolationDefect	 class	 in	 their
defects	attribute	list.	See	email.errors	for	details.

Footnotes

[1]

As	of	email	package	version	3.0,	introduced	in	Python	2.4,	the
classic	Parser	was	re-implemented	in	terms	of	the
FeedParser,	so	the	semantics	and	results	are	identical
between	the	two	parsers.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.3.	email.generator:
Generating	MIME	documents
One	of	the	most	common	tasks	is	to	generate	the	flat	text	of	the	email
message	represented	by	a	message	object	structure.	You	will	need	to
do	this	if	you	want	to	send	your	message	via	the	smtplib	module	or
the	nntplib	module,	or	print	 the	message	on	the	console.	Taking	a
message	object	structure	and	producing	a	flat	text	document	is	the	job
of	the	Generator	class.

Again,	 as	with	 the	 email.parser	module,	 you	aren’t	 limited	 to	 the
functionality	 of	 the	 bundled	 generator;	 you	 could	 write	 one	 from
scratch	 yourself.	 However	 the	 bundled	 generator	 knows	 how	 to
generate	 most	 email	 in	 a	 standards-compliant	 way,	 should	 handle
MIME	 and	 non-MIME	 email	 messages	 just	 fine,	 and	 is	 designed	 so
that	 the	 transformation	 from	 flat	 text,	 to	 a	message	 structure	 via	 the
Parser	 class,	 and	 back	 to	 flat	 text,	 is	 idempotent	 (the	 input	 is
identical	to	the	output)	[1].	On	the	other	hand,	using	the	Generator	on
a	 Message	 constructed	 by	 program	 may	 result	 in	 changes	 to	 the
Message	object	as	defaults	are	filled	in.

bytes	output	can	be	generated	using	the	BytesGenerator	class.	If
the	 message	 object	 structure	 contains	 non-ASCII	 bytes,	 this
generator’s	flatten()	method	will	emit	the	original	bytes.	Parsing	a
binary	message	and	 then	 flattening	 it	with	BytesGenerator	should
be	idempotent	for	standards	compliant	messages.

Here	are	the	public	methods	of	the	Generator	class,	 imported	from
the	email.generator	module:

class	email.generator.Generator(outfp,	mangle_from_=True,
maxheaderlen=78,	*,	policy=None)

The	 constructor	 for	 the	 Generator	 class	 takes	 a	 file-like	 object
called	 outfp	 for	 an	 argument.	 outfp	 must	 support	 the	 write()
method	and	be	usable	as	the	output	file	for	the	print()	function.

Optional	 mangle_from_	 is	 a	 flag	 that,	 when	 True,	 puts	 a	 >
character	 in	 front	 of	 any	 line	 in	 the	 body	 that	 starts	 exactly	 as
From,	 i.e.	From	 followed	by	a	space	at	 the	beginning	of	 the	 line.
This	is	the	only	guaranteed	portable	way	to	avoid	having	such	lines
be	mistaken	for	a	Unix	mailbox	format	envelope	header	separator
(see	WHY	THE	CONTENT-LENGTH	FORMAT	IS	BAD	for	details).
mangle_from_	defaults	 to	True,	but	you	might	want	 to	set	 this	 to
False	if	you	are	not	writing	Unix	mailbox	format	files.

Optional	 maxheaderlen	 specifies	 the	 longest	 length	 for	 a	 non-
continued	header.	When	a	header	line	is	longer	than	maxheaderlen
(in	characters,	with	tabs	expanded	to	8	spaces),	the	header	will	be
split	as	defined	in	the	Header	class.	Set	to	zero	to	disable	header
wrapping.	The	default	is	78,	as	recommended	(but	not	required)	by
RFC	2822.

The	 policy	 keyword	 specifies	 a	 policy	 object	 that	 controls	 a
number	 of	 aspects	 of	 the	 generator’s	 operation.	 If	 no	 policy	 is
specified,	then	the	policy	attached	to	the	message	object	passed	to
flatten	is	used.

Changed	in	version	3.3:	Added	the	policy	keyword.

The	other	public	Generator	methods	are:

flatten(msg,	unixfrom=False,	linesep=None)

http://www.jwz.org/doc/content-length.html
http://tools.ietf.org/html/rfc2822.html

Print	the	textual	representation	of	the	message	object	structure
rooted	at	msg	to	the	output	file	specified	when	the	Generator
instance	was	 created.	Subparts	 are	 visited	 depth-first	 and	 the
resulting	text	will	be	properly	MIME	encoded.

Optional	 unixfrom	 is	 a	 flag	 that	 forces	 the	 printing	 of	 the
envelope	header	delimiter	before	the	first	RFC	2822	header	of
the	 root	 message	 object.	 If	 the	 root	 object	 has	 no	 envelope
header,	 a	 standard	 one	 is	 crafted.	 By	 default,	 this	 is	 set	 to
False	to	inhibit	the	printing	of	the	envelope	delimiter.

Note	that	for	subparts,	no	envelope	header	is	ever	printed.

Optional	 linesep	 specifies	 the	 line	separator	character	used	 to
terminate	 lines	 in	 the	output.	 If	 specified	 it	overrides	 the	value
specified	by	the	msg‘s	or	Generator‘s	policy.

Because	strings	cannot	represent	non-ASCII	bytes,	if	the	policy
that	applies	when	flatten	is	run	has	cte_type	set	to	8bit,
Generator	will	operate	as	if	 it	were	set	to	7bit.	This	means
that	messages	parsed	with	a	Bytes	parser	that	have	a	Content-
Transfer-Encoding	of	8bit	will	be	converted	 to	a	use	a	7bit
Content-Transfer-Encoding.	Non-ASCII	bytes	in	the	headers	will
be	RFC	2047	encoded	with	a	charset	of	unknown-8bit.

Changed	 in	 version	 3.2:	Added	 support	 for	 re-encoding	 8bit
message	bodies,	and	the	linesep	argument.

clone(fp)
Return	an	independent	clone	of	this	Generator	 instance	with
the	exact	same	options.

write(s)

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html

Write	the	string	s	to	the	underlying	file	object,	i.e.	outfp	passed
to	Generator‘s	constructor.	This	provides	just	enough	file-like
API	 for	 Generator	 instances	 to	 be	 used	 in	 the	 print()
function.

As	 a	 convenience,	 see	 the	 Message	 methods	 as_string()	 and
str(aMessage),	a.k.a.	__str__(),	which	simplify	the	generation	of
a	formatted	string	representation	of	a	message	object.	For	more	detail,
see	email.message.

class	email.generator.BytesGenerator(outfp,
mangle_from_=True,	maxheaderlen=78,	*,	policy=policy.default)

The	constructor	for	the	BytesGenerator	class	takes	a	binary	file-
like	 object	 called	 outfp	 for	 an	 argument.	 outfp	 must	 support	 a
write()	method	that	accepts	binary	data.

Optional	 mangle_from_	 is	 a	 flag	 that,	 when	 True,	 puts	 a	 >
character	 in	 front	 of	 any	 line	 in	 the	 body	 that	 starts	 exactly	 as
From,	 i.e.	From	 followed	by	a	space	at	 the	beginning	of	 the	 line.
This	is	the	only	guaranteed	portable	way	to	avoid	having	such	lines
be	mistaken	for	a	Unix	mailbox	format	envelope	header	separator
(see	WHY	THE	CONTENT-LENGTH	FORMAT	IS	BAD	for	details).
mangle_from_	defaults	 to	True,	but	you	might	want	 to	set	 this	 to
False	if	you	are	not	writing	Unix	mailbox	format	files.

Optional	 maxheaderlen	 specifies	 the	 longest	 length	 for	 a	 non-
continued	header.	When	a	header	line	is	longer	than	maxheaderlen
(in	characters,	with	tabs	expanded	to	8	spaces),	the	header	will	be
split	as	defined	in	the	Header	class.	Set	to	zero	to	disable	header
wrapping.	The	default	is	78,	as	recommended	(but	not	required)	by
RFC	2822.

http://www.jwz.org/doc/content-length.html
http://tools.ietf.org/html/rfc2822.html

The	 policy	 keyword	 specifies	 a	 policy	 object	 that	 controls	 a
number	of	aspects	of	the	generator’s	operation.	The	default	policy
maintains	backward	compatibility.

Changed	in	version	3.3:	Added	the	policy	keyword.

The	other	public	BytesGenerator	methods	are:

flatten(msg,	unixfrom=False,	linesep=None)
Print	the	textual	representation	of	the	message	object	structure
rooted	 at	 msg	 to	 the	 output	 file	 specified	 when	 the
BytesGenerator	 instance	was	created.	Subparts	are	visited
depth-first	and	the	resulting	text	will	be	properly	MIME	encoded.
If	the	policy	option	cte_type	is	8bit	(the	default),	then	any
bytes	with	 the	high	bit	set	 in	 the	original	parsed	message	 that
have	not	been	modified	will	be	copied	faithfully	to	the	output.	If
cte_type	 is	 7bit,	 the	 bytes	 will	 be	 converted	 as	 needed
using	 an	 ASCII-compatible	 Content-Transfer-Encoding.	 In
particular,	 RFC-invalid	 non-ASCII	 bytes	 in	 headers	 will	 be
encoded	 using	 the	MIME	 unknown-8bit	 character	 set,	 thus
rendering	them	RFC-compliant.

Messages	 parsed	 with	 a	 Bytes	 parser	 that	 have	 a	 Content-
Transfer-Encoding	 of	 8bit	 will	 be	 reconstructed	 as	 8bit	 if	 they
have	not	been	modified.

Optional	 unixfrom	 is	 a	 flag	 that	 forces	 the	 printing	 of	 the
envelope	header	delimiter	before	the	first	RFC	2822	header	of
the	 root	 message	 object.	 If	 the	 root	 object	 has	 no	 envelope
header,	 a	 standard	 one	 is	 crafted.	 By	 default,	 this	 is	 set	 to
False	to	inhibit	the	printing	of	the	envelope	delimiter.

Note	that	for	subparts,	no	envelope	header	is	ever	printed.

http://tools.ietf.org/html/rfc2822.html

Optional	 linesep	 specifies	 the	 line	separator	character	used	 to
terminate	 lines	 in	 the	output.	 If	 specified	 it	overrides	 the	value
specified	by	the	Generator‘s	policy.

clone(fp)
Return	 an	 independent	 clone	 of	 this	 BytesGenerator

instance	with	the	exact	same	options.

write(s)
Write	 the	 string	 s	 to	 the	 underlying	 file	 object.	 s	 is	 encoded
using	the	ASCII	codec	and	written	 to	 the	write	method	of	 the
outfp	outfp	passed	to	the	BytesGenerator‘s	constructor.	This
provides	 just	 enough	 file-like	 API	 for	 BytesGenerator

instances	to	be	used	in	the	print()	function.

New	in	version	3.2.

The	email.generator	module	also	provides	a	derived	class,	called
DecodedGenerator	which	is	like	the	Generator	base	class,	except
that	non-text	parts	are	substituted	with	a	format	string	representing	the
part.

class	email.generator.DecodedGenerator(outfp,
mangle_from_=True,	maxheaderlen=78,	fmt=None)

This	 class,	 derived	 from	 Generator	 walks	 through	 all	 the
subparts	of	a	message.	 If	 the	subpart	 is	of	main	 type	 text,	 then	 it
prints	 the	 decoded	 payload	 of	 the	 subpart.	 Optional
_mangle_from_	 and	maxheaderlen	 are	 as	 with	 the	 Generator
base	class.

If	the	subpart	is	not	of	main	type	text,	optional	fmt	is	a	format	string
that	is	used	instead	of	the	message	payload.	fmt	is	expanded	with

the	following	keywords,	%(keyword)s	format:

type	–	Full	MIME	type	of	the	non-text	part
maintype	–	Main	MIME	type	of	the	non-text	part
subtype	–	Sub-MIME	type	of	the	non-text	part
filename	–	Filename	of	the	non-text	part
description	–	Description	associated	with	the	non-text	part
encoding	–	Content	transfer	encoding	of	the	non-text	part

The	default	value	for	fmt	is	None,	meaning

[Non-text	(%(type)s)	part	of	message	omitted,	filename

Footnotes

[1]

This	statement	assumes	that	you	use	the	appropriate	setting
for	the	unixfrom	argument,	and	that	you	set	maxheaderlen=0
(which	will	preserve	whatever	the	input	line	lengths	were).	It	is
also	not	strictly	true,	since	in	many	cases	runs	of	whitespace	in
headers	are	collapsed	into	single	blanks.	The	latter	is	a	bug
that	will	eventually	be	fixed.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.4.	email.policy:	Policy
Objects
New	in	version	3.3.

The	email	package’s	prime	focus	is	the	handling	of	email	messages
as	 described	 by	 the	 various	 email	 and	 MIME	 RFCs.	 However,	 the
general	 format	 of	 email	 messages	 (a	 block	 of	 header	 fields	 each
consisting	 of	 a	 name	 followed	 by	 a	 colon	 followed	 by	 a	 value,	 the
whole	 block	 followed	 by	 a	 blank	 line	 and	 an	 arbitrary	 ‘body’),	 is	 a
format	 that	 has	 found	 utility	 outside	 of	 the	 realm	 of	 email.	 Some	 of
these	uses	conform	fairly	closely	to	the	main	RFCs,	some	do	not.	And
even	when	working	with	email,	there	are	times	when	it	is	desirable	to
break	strict	compliance	with	the	RFCs.

Policy	objects	give	the	email	package	the	flexibility	to	handle	all	these
disparate	use	cases.

A	 Policy	 object	 encapsulates	 a	 set	 of	 attributes	 and	methods	 that
control	 the	 behavior	 of	 various	 components	 of	 the	 email	 package
during	use.	Policy	 instances	can	be	passed	to	various	classes	and
methods	 in	 the	 email	 package	 to	 alter	 the	 default	 behavior.	 The
settable	values	and	their	defaults	are	described	below.

There	is	a	default	policy	used	by	all	classes	in	the	email	package.	This
policy	is	named	Compat32,	with	a	corresponding	pre-defined	instance
named	compat32.	It	provides	for	complete	backward	compatibility	(in
some	 cases,	 including	 bug	 compatibility)	 with	 the	 pre-Python3.3
version	of	the	email	package.

The	first	part	of	this	documentation	covers	the	features	of	Policy,	an

abstract	base	class	 that	 defines	 the	 features	 that	 are	 common	 to	 all
policy	 objects,	 including	 compat32.	 This	 includes	 certain	 hook
methods	 that	 are	 called	 internally	 by	 the	 email	 package,	 which	 a
custom	policy	could	override	to	obtain	different	behavior.

When	a	Message	object	is	created,	it	acquires	a	policy.	By	default	this
will	 be	 compat32,	 but	 a	 different	 policy	 can	 be	 specified.	 If	 the
Message	 is	created	by	a	parser,	a	policy	passed	 to	 the	parser	will
be	 the	 policy	 used	 by	 the	 Message	 it	 creates.	 If	 the	 Message	 is
created	 by	 the	 program,	 then	 the	 policy	 can	 be	 specified	 when	 it	 is
created.	When	a	Message	is	passed	to	a	generator,	the	generator
uses	the	policy	from	the	Message	by	default,	but	you	can	also	pass	a
specific	policy	to	the	generator	that	will	override	the	one	stored	on	the
Message	object.

Policy	 instances	are	 immutable,	but	 they	can	be	cloned,	accepting
the	same	keyword	arguments	as	the	class	constructor	and	returning	a
new	 Policy	 instance	 that	 is	 a	 copy	 of	 the	 original	 but	 with	 the
specified	attributes	values	changed.

As	 an	 example,	 the	 following	 code	 could	 be	 used	 to	 read	 an	 email
message	 from	 a	 file	 on	 disk	 and	 pass	 it	 to	 the	 system	 sendmail
program	on	a	Unix	system:

>>>	from	email	import	message_from_binary_file

>>>	from	email.generator	import	BytesGenerator

>>>	from	email	import	policy

>>>	from	subprocess	import	Popen,	PIPE

>>>	with	open('mymsg.txt',	'rb')	as	f:

...					msg	=	message_from_binary_file(f,	policy=policy

>>>	p	=	Popen(['sendmail',	msg['To'].addresses[0]],	

>>>	g	=	BytesGenerator(p.stdin,	policy=msg.policy.clone

>>>	g.flatten(msg)

>>>	p.stdin.close()

>>>	rc	=	p.wait()

Here	 we	 are	 telling	 BytesGenerator	 to	 use	 the	 RFC	 correct	 line
separator	 characters	 when	 creating	 the	 binary	 string	 to	 feed	 into
sendmail's	 stdin,	 where	 the	 default	 policy	 would	 use	 \n	 line
separators.

Some	 email	 package	 methods	 accept	 a	 policy	 keyword	 argument,
allowing	the	policy	to	be	overridden	for	that	method.	For	example,	the
following	code	uses	the	as_string()	method	of	the	msg	object	from
the	previous	example	and	writes	the	message	to	a	file	using	the	native
line	separators	for	the	platform	on	which	it	is	running:

>>>	import	os

>>>	with	open('converted.txt',	'wb')	as	f:

...					f.write(msg.as_bytes(policy=msg.policy.clone

17

Policy	 objects	 can	 also	 be	 combined	 using	 the	 addition	 operator,
producing	a	policy	object	whose	settings	are	a	combination	of	the	non-
default	values	of	the	summed	objects:

>>>	compat_SMTP	=	policy.compat32.clone(linesep='\r\n

>>>	compat_strict	=	policy.compat32.clone(raise_on_defect

>>>	compat_strict_SMTP	=	compat_SMTP	+	compat_strict

This	 operation	 is	 not	 commutative;	 that	 is,	 the	 order	 in	 which	 the
objects	are	added	matters.	To	illustrate:

>>>	policy100	=	policy.compat32.clone(max_line_length

>>>	policy80	=	policy.compat32.clone(max_line_length

>>>	apolicy	=	policy100	+	policy80

>>>	apolicy.max_line_length

80

>>>	apolicy	=	policy80	+	policy100

>>>	apolicy.max_line_length

100

class	email.policy.Policy(**kw)
This	 is	 the	 abstract	 base	 class	 for	 all	 policy	 classes.	 It	 provides
default	 implementations	for	a	couple	of	 trivial	methods,	as	well	as
the	 implementation	 of	 the	 immutability	 property,	 the	 clone()
method,	and	the	constructor	semantics.

The	constructor	of	a	policy	class	can	be	passed	various	keyword
arguments.	 The	 arguments	 that	 may	 be	 specified	 are	 any	 non-
method	 properties	 on	 this	 class,	 plus	 any	 additional	 non-method
properties	 on	 the	 concrete	 class.	 A	 value	 specified	 in	 the
constructor	 will	 override	 the	 default	 value	 for	 the	 corresponding
attribute.

This	class	defines	the	following	properties,	and	thus	values	for	the
following	may	be	passed	in	the	constructor	of	any	policy	class:

max_line_length

The	 maximum	 length	 of	 any	 line	 in	 the	 serialized	 output,	 not
counting	 the	 end	 of	 line	 character(s).	 Default	 is	 78,	 per	RFC
5322.	 A	 value	 of	 0	 or	 None	 indicates	 that	 no	 line	 wrapping
should	be	done	at	all.

linesep

The	string	to	be	used	to	terminate	lines	in	serialized	output.	The
default	 is	 \n	 because	 that’s	 the	 internal	 end-of-line	 discipline
used	by	Python,	though	\r\n	is	required	by	the	RFCs.

http://tools.ietf.org/html/rfc5322.html

cte_type

Controls	the	type	of	Content	Transfer	Encodings	that	may	be	or
are	required	to	be	used.	The	possible	values	are:

7bit

all	data	must	be	“7	bit	clean”	(ASCII-only).	This
means	that	where	necessary	data	will	be	encoded
using	either	quoted-printable	or	base64	encoding.

8bit

data	is	not	constrained	to	be	7	bit	clean.	Data	in
headers	is	still	required	to	be	ASCII-only	and	so	will
be	encoded	(see	‘binary_fold’	below	for	an
exception),	but	body	parts	may	use	the	8bit	CTE.

A	 cte_type	 value	 of	 8bit	 only	 works	 with
BytesGenerator,	 not	 Generator,	 because	 strings	 cannot
contain	binary	data.	If	a	Generator	is	operating	under	a	policy
that	 specifies	 cte_type=8bit,	 it	 will	 act	 as	 if	 cte_type	 is
7bit.

raise_on_defect

If	 True,	 any	 defects	 encountered	 will	 be	 raised	 as	 errors.	 If
False	 (the	 default),	 defects	 will	 be	 passed	 to	 the
register_defect()	method.

The	 following	 Policy	 method	 is	 intended	 to	 be	 called	 by	 code
using	 the	 email	 library	 to	 create	 policy	 instances	 with	 custom
settings:

clone(**kw)
Return	a	new	Policy	instance	whose	attributes	have	the	same
values	 as	 the	 current	 instance,	 except	 where	 those	 attributes
are	given	new	values	by	the	keyword	arguments.

The	remaining	Policy	methods	are	called	by	 the	email	package

code,	and	are	not	intended	to	be	called	by	an	application	using	the
email	 package.	 A	 custom	 policy	 must	 implement	 all	 of	 these
methods.

handle_defect(obj,	defect)
Handle	 a	defect	 found	 on	obj.	When	 the	 email	 package	 calls
this	method,	defect	will	always	be	a	subclass	of	Defect.

The	 default	 implementation	 checks	 the	 raise_on_defect
flag.	If	it	is	True,	defect	is	raised	as	an	exception.	If	it	is	False
(the	 default),	 obj	 and	 defect	 are	 passed	 to
register_defect().

register_defect(obj,	defect)
Register	 a	 defect	 on	 obj.	 In	 the	 email	 package,	 defect	 will
always	be	a	subclass	of	Defect.

The	 default	 implementation	 calls	 the	 append	 method	 of	 the
defects	 attribute	 of	 obj.	 When	 the	 email	 package	 calls
handle_defect,	obj	will	 normally	 have	 a	 defects	 attribute
that	has	an	append	method.	Custom	object	types	used	with	the
email	package	(for	example,	custom	Message	objects)	should
also	 provide	 such	 an	 attribute,	 otherwise	 defects	 in	 parsed
messages	will	raise	unexpected	errors.

header_max_count(name)
Return	the	maximum	allowed	number	of	headers	named	name.

Called	 when	 a	 header	 is	 added	 to	 a	 Message	 object.	 If	 the
returned	 value	 is	 not	 0	 or	 None,	 and	 there	 are	 already	 a
number	 of	 headers	 with	 the	 name	 name	 equal	 to	 the	 value
returned,	a	ValueError	is	raised.

Because	the	default	behavior	of	Message.__setitem__	is	to
append	 the	 value	 to	 the	 list	 of	 headers,	 it	 is	 easy	 to	 create
duplicate	 headers	 without	 realizing	 it.	 This	 method	 allows
certain	headers	to	be	limited	in	the	number	of	instances	of	that
header	 that	 may	 be	 added	 to	 a	 Message	 programmatically.
(The	 limit	 is	 not	 observed	 by	 the	 parser,	 which	 will	 faithfully
produce	 as	 many	 headers	 as	 exist	 in	 the	 message	 being
parsed.)

The	default	implementation	returns	None	for	all	header	names.

header_source_parse(sourcelines)
The	email	package	calls	this	method	with	a	list	of	strings,	each
string	 ending	 with	 the	 line	 separation	 characters	 found	 in	 the
source	 being	 parsed.	 The	 first	 line	 includes	 the	 field	 header
name	and	separator.	All	whitespace	in	the	source	is	preserved.
The	method	should	return	the	(name,	value)	tuple	that	is	to
be	stored	in	the	Message	to	represent	the	parsed	header.

If	 an	 implementation	 wishes	 to	 retain	 compatibility	 with	 the
existing	 email	 package	 policies,	 name	 should	 be	 the	 case
preserved	name	 (all	 characters	up	 to	 the	 ‘:‘	 separator),	while
value	 should	 be	 the	 unfolded	 value	 (all	 line	 separator
characters	 removed,	 but	 whitespace	 kept	 intact),	 stripped	 of
leading	whitespace.

sourcelines	may	contain	surrogateescaped	binary	data.

There	is	no	default	implementation

header_store_parse(name,	value)
The	email	package	calls	 this	method	with	 the	name	and	value
provided	 by	 the	 application	 program	 when	 the	 application

program	 is	 modifying	 a	 Message	 programmatically	 (as
opposed	 to	 a	 Message	 created	 by	 a	 parser).	 The	 method
should	return	the	(name,	value)	tuple	that	is	to	be	stored	in
the	Message	to	represent	the	header.

If	 an	 implementation	 wishes	 to	 retain	 compatibility	 with	 the
existing	email	package	policies,	the	name	and	value	should	be
strings	or	 string	 subclasses	 that	 do	not	 change	 the	 content	 of
the	passed	in	arguments.

There	is	no	default	implementation

header_fetch_parse(name,	value)
The	email	package	calls	 this	method	with	 the	name	and	value
currently	stored	in	the	Message	when	that	header	is	requested
by	the	application	program,	and	whatever	the	method	returns	is
what	 is	 passed	 back	 to	 the	 application	 as	 the	 value	 of	 the
header	being	retrieved.	Note	that	there	may	be	more	than	one
header	with	the	same	name	stored	in	the	Message;	the	method
is	passed	the	specific	name	and	value	of	the	header	destined	to
be	returned	to	the	application.

value	may	contain	surrogateescaped	binary	data.	There	should
be	 no	 surrogateescaped	 binary	 data	 in	 the	 value	 returned	 by
the	method.

There	is	no	default	implementation

fold(name,	value)
The	email	package	calls	 this	method	with	 the	name	and	value
currently	 stored	 in	 the	 Message	 for	 a	 given	 header.	 The
method	 should	 return	 a	 string	 that	 represents	 that	 header
“folded”	 correctly	 (according	 to	 the	 policy	 settings)	 by

composing	 the	 name	 with	 the	 value	 and	 inserting	 linesep
characters	 at	 the	 appropriate	 places.	 See	 RFC	 5322	 for	 a
discussion	of	the	rules	for	folding	email	headers.

value	may	contain	surrogateescaped	binary	data.	There	should
be	 no	 surrogateescaped	 binary	 data	 in	 the	 string	 returned	 by
the	method.

fold_binary(name,	value)
The	same	as	fold(),	except	that	the	returned	value	should	be
a	bytes	object	rather	than	a	string.

value	may	contain	surrogateescaped	binary	data.	These	 could
be	converted	back	into	binary	data	in	the	returned	bytes	object.

class	email.policy.Compat32(**kw)
This	 concrete	 Policy	 is	 the	 backward	 compatibility	 policy.	 It
replicates	 the	 behavior	 of	 the	 email	 package	 in	 Python	 3.2.	 The
policy	module	also	defines	an	instance	of	this	class,	compat32,
that	 is	used	as	the	default	policy.	Thus	the	default	behavior	of	 the
email	package	is	to	maintain	compatibility	with	Python	3.2.

The	 class	 provides	 the	 following	 concrete	 implementations	 of	 the
abstract	methods	of	Policy:

header_source_parse(sourcelines)
The	 name	 is	 parsed	 as	 everything	 up	 to	 the	 ‘:‘	 and	 returned
unmodified.	 The	 value	 is	 determined	 by	 stripping	 leading
whitespace	 off	 the	 remainder	 of	 the	 first	 line,	 joining	 all
subsequent	 lines	 together,	 and	 stripping	 any	 trailing	 carriage
return	or	linefeed	characters.

header_store_parse(name,	value)

http://tools.ietf.org/html/rfc5322.html

The	name	and	value	are	returned	unmodified.

header_fetch_parse(name,	value)
If	the	value	contains	binary	data,	it	is	converted	into	a	Header
object	 using	 the	 unknown-8bit	 charset.	 Otherwise	 it	 is
returned	unmodified.

fold(name,	value)
Headers	are	folded	using	the	Header	 folding	algorithm,	which
preserves	 existing	 line	 breaks	 in	 the	 value,	 and	 wraps	 each
resulting	 line	 to	 the	 max_line_length.	 Non-ASCII	 binary
data	are	CTE	encoded	using	the	unknown-8bit	charset.

fold_binary(name,	value)
Headers	are	folded	using	the	Header	 folding	algorithm,	which
preserves	 existing	 line	 breaks	 in	 the	 value,	 and	 wraps	 each
resulting	line	to	the	max_line_length.	If	cte_type	is	7bit,
non-ascii	 binary	 data	 is	 CTE	 encoded	 using	 the	 unknown-
8bit	 charset.	 Otherwise	 the	 original	 source	 header	 is	 used,
with	its	existing	line	breaks	and	any	(RFC	invalid)	binary	data	it
may	contain.

Note: 	The	documentation	below	describes	new	policies	that	are
included	in	the	standard	library	on	a	provisional	basis.	Backwards
incompatible	changes	(up	to	and	including	removal	of	the	feature)
may	occur	if	deemed	necessary	by	the	core	developers.

class	email.policy.EmailPolicy(**kw)
This	concrete	Policy	provides	behavior	that	is	intended	to	be	fully
compliant	with	the	current	email	RFCs.	These	include	(but	are	not
limited	to)	RFC	5322,	RFC	2047,	and	the	current	MIME	RFCs.

http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc2047.html

This	 policy	 adds	 new	 header	 parsing	 and	 folding	 algorithms.
Instead	 of	 simple	 strings,	 headers	 are	 str	 subclasses	 with
attributes	 that	 depend	 on	 the	 type	 of	 the	 field.	 The	 parsing	 and
folding	algorithm	fully	implement	RFC	2047	and	RFC	5322.

In	 addition	 to	 the	 settable	 attributes	 listed	 above	 that	 apply	 to	 all
policies,	this	policy	adds	the	following	additional	attributes:

refold_source

If	the	value	for	a	header	in	the	Message	object	originated	from
a	parser	(as	opposed	to	being	set	by	a	program),	this	attribute
indicates	 whether	 or	 not	 a	 generator	 should	 refold	 that	 value
when	 transforming	 the	 message	 back	 into	 stream	 form.	 The
possible	values	are:

none all	source	values	use	original	folding

long
source	values	that	have	any	line	that	is	longer	than
max_line_length	will	be	refolded

all all	values	are	refolded.

The	default	is	long.

header_factory

A	callable	 that	 takes	two	arguments,	name	and	value,	where
name	is	a	header	field	name	and	value	is	an	unfolded	header
field	 value,	 and	 returns	 a	 string	 subclass	 that	 represents	 that
header.	A	default	header_factory	 (see	headerregistry)
is	 provided	 that	 understands	 some	 of	 the	 RFC	 5322	 header
field	 types.	 (Currently	 address	 fields	 and	 date	 fields	 have
special	 treatment,	 while	 all	 other	 fields	 are	 treated	 as
unstructured.	This	list	will	be	completed	before	the	extension	is
marked	stable.)

http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc5322.html

content_manager

An	 object	 with	 at	 least	 two	 methods:	 get_content	 and
set_content.	When	 the	 get_content()	 or	 set_content()
method	of	a	Message	object	is	called,	it	calls	the	corresponding
method	of	this	object,	passing	it	the	message	object	as	its	first
argument,	and	any	arguments	or	keywords	that	were	passed	to
it	 as	 additional	 arguments.	 By	 default	 content_manager	 is
set	to	raw_data_manager.

New	in	version	3.4.

The	 class	 provides	 the	 following	 concrete	 implementations	 of	 the
abstract	methods	of	Policy:

header_max_count(name)
Returns	the	value	of	the	max_count	attribute	of	the	specialized
class	used	to	represent	the	header	with	the	given	name.

header_source_parse(sourcelines)
The	 implementation	of	 this	method	 is	 the	same	as	 that	 for	 the
Compat32	policy.

header_store_parse(name,	value)
The	name	is	returned	unchanged.	If	the	input	value	has	a	name
attribute	 and	 it	 matches	 name	 ignoring	 case,	 the	 value	 is
returned	unchanged.	Otherwise	the	name	and	value	are	passed
to	 header_factory,	 and	 the	 resulting	 header	 object	 is
returned	as	 the	value.	 In	 this	case	a	ValueError	 is	 raised	 if
the	input	value	contains	CR	or	LF	characters.

header_fetch_parse(name,	value)
If	 the	value	has	a	name	 attribute,	 it	 is	 returned	 to	unmodified.

Otherwise	 the	 name,	 and	 the	 value	 with	 any	 CR	 or	 LF
characters	removed,	are	passed	to	the	header_factory,	and
the	 resulting	header	object	 is	 returned.	Any	 surrogateescaped
bytes	get	turned	into	the	unicode	unknown-character	glyph.

fold(name,	value)
Header	 folding	 is	 controlled	 by	 the	 refold_source	 policy
setting.	A	value	is	considered	to	be	a	‘source	value’	if	and	only	if
it	 does	 not	 have	 a	 name	 attribute	 (having	 a	 name	 attribute
means	 it	 is	 a	 header	 object	 of	 some	 sort).	 If	 a	 source	 value
needs	to	be	refolded	according	to	the	policy,	it	is	converted	into
a	 header	 object	 by	 passing	 the	name	 and	 the	value	 with	 any
CR	 and	 LF	 characters	 removed	 to	 the	 header_factory.
Folding	of	a	header	object	 is	done	by	calling	 its	fold	method
with	the	current	policy.

Source	values	are	split	 into	 lines	using	splitlines().	 If	 the
value	 is	 not	 to	 be	 refolded,	 the	 lines	 are	 rejoined	 using	 the
linesep	 from	 the	policy	and	 returned.	The	exception	 is	 lines
containing	 non-ascii	 binary	 data.	 In	 that	 case	 the	 value	 is
refolded	 regardless	 of	 the	 refold_source	 setting,	 which
causes	 the	 binary	 data	 to	 be	 CTE	 encoded	 using	 the
unknown-8bit	charset.

fold_binary(name,	value)
The	 same	 as	 fold()	 if	 cte_type	 is	 7bit,	 except	 that	 the
returned	value	is	bytes.

If	cte_type	is	8bit,	non-ASCII	binary	data	is	converted	back
into	 bytes.	 Headers	 with	 binary	 data	 are	 not	 refolded,
regardless	 of	 the	 refold_header	 setting,	 since	 there	 is	 no
way	 to	 know	 whether	 the	 binary	 data	 consists	 of	 single	 byte

characters	or	multibyte	characters.

The	following	instances	of	EmailPolicy	provide	defaults	suitable	for
specific	 application	 domains.	 Note	 that	 in	 the	 future	 the	 behavior	 of
these	 instances	(in	particular	 the	HTTP	 instance)	may	be	adjusted	 to
conform	even	more	closely	to	the	RFCs	relevant	to	their	domains.

email.policy.default

An	 instance	 of	 EmailPolicy	 with	 all	 defaults	 unchanged.	 This
policy	 uses	 the	 standard	 Python	 \n	 line	 endings	 rather	 than	 the
RFC-correct	\r\n.

email.policy.SMTP

Suitable	 for	 serializing	 messages	 in	 conformance	 with	 the	 email
RFCs.	 Like	 default,	 but	 with	 linesep	 set	 to	 \r\n,	 which	 is
RFC	compliant.

email.policy.HTTP

Suitable	 for	 serializing	 headers	 with	 for	 use	 in	 HTTP	 traffic.	 Like
SMTP	except	that	max_line_length	is	set	to	None	(unlimited).

email.policy.strict

Convenience	 instance.	 The	 same	 as	 default	 except	 that
raise_on_defect	 is	 set	 to	 True.	 This	 allows	 any	 policy	 to	 be
made	strict	by	writing:

somepolicy	+	policy.strict

With	 all	 of	 these	 EmailPolicies,	 the	 effective	 API	 of	 the	 email
package	is	changed	from	the	Python	3.2	API	in	the	following	ways:

Setting	a	header	on	a	Message	results	in	that	header	being
parsed	and	a	header	object	created.

Fetching	 a	 header	 value	 from	 a	 Message	 results	 in	 that
header	 being	 parsed	 and	 a	 header	 object	 created	 and
returned.
Any	header	object,	or	any	header	that	 is	refolded	due	to	the
policy	 settings,	 is	 folded	 using	 an	 algorithm	 that	 fully
implements	 the	 RFC	 folding	 algorithms,	 including	 knowing
where	encoded	words	are	required	and	allowed.

From	 the	 application	 view,	 this	 means	 that	 any	 header	 obtained
through	the	Message	 is	a	header	object	with	extra	attributes,	whose
string	value	is	the	fully	decoded	unicode	value	of	the	header.	Likewise,
a	 header	 may	 be	 assigned	 a	 new	 value,	 or	 a	 new	 header	 created,
using	a	unicode	string,	and	the	policy	will	 take	care	of	converting	the
unicode	string	into	the	correct	RFC	encoded	form.

The	 header	 objects	 and	 their	 attributes	 are	 described	 in
headerregistry.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.5.
email.headerregistry:
Custom	Header	Objects
Note: 	The	headerregistry	module	has	been	included	in	the
standard	library	on	a	provisional	basis.	Backwards	incompatible
changes	(up	to	and	including	removal	of	the	module)	may	occur	if
deemed	necessary	by	the	core	developers.

New	in	version	3.3:	as	a	provisional	module.

Headers	 are	 represented	 by	 customized	 subclasses	 of	 str.	 The
particular	class	used	to	represent	a	given	header	is	determined	by	the
header_factory	 of	 the	 policy	 in	 effect	 when	 the	 headers	 are
created.	 This	 section	 documents	 the	 particular	 header_factory
implemented	by	 the	email	package	 for	handling	RFC	5322	compliant
email	messages,	which	not	only	provides	customized	header	objects
for	various	header	 types,	but	also	provides	an	extension	mechanism
for	applications	to	add	their	own	custom	header	types.

When	using	any	of	the	policy	objects	derived	from	EmailPolicy,	all
headers	are	produced	by	HeaderRegistry	and	have	BaseHeader
as	 their	 last	 base	 class.	 Each	 header	 class	 has	 an	 additional	 base
class	that	is	determined	by	the	type	of	the	header.	For	example,	many
headers	 have	 the	 class	 UnstructuredHeader	 as	 their	 other	 base
class.	The	specialized	second	class	for	a	header	is	determined	by	the
name	 of	 the	 header,	 using	 a	 lookup	 table	 stored	 in	 the
HeaderRegistry.	All	of	this	is	managed	transparently	for	the	typical
application	 program,	 but	 interfaces	 are	 provided	 for	 modifying	 the

http://tools.ietf.org/html/rfc5322.html

default	behavior	for	use	by	more	complex	applications.

The	sections	below	first	document	the	header	base	classes	and	their
attributes,	 followed	 by	 the	 API	 for	 modifying	 the	 behavior	 of
HeaderRegistry,	and	finally	 the	support	classes	used	to	represent
the	data	parsed	from	structured	headers.

class	email.headerregistry.BaseHeader(name,	value)
name	 and	 value	 are	 passed	 to	 BaseHeader	 from	 the
header_factory	 call.	 The	 string	 value	 of	 any	 header	 object	 is
the	value	fully	decoded	to	unicode.

This	base	class	defines	the	following	read-only	properties:

name

The	name	of	the	header	(the	portion	of	the	field	before	the	‘:’).
This	 is	exactly	 the	value	passed	 in	 the	header_factory	call
for	name;	that	is,	case	is	preserved.

defects

A	 tuple	 of	 HeaderDefect	 instances	 reporting	 any	 RFC
compliance	problems	found	during	parsing.	The	email	package
tries	to	be	complete	about	detecting	compliance	issues.	See	the
errors	 module	 for	 a	 discussion	 of	 the	 types	 of	 defects	 that
may	be	reported.

max_count

The	maximum	number	of	headers	of	this	type	that	can	have	the
same	 name.	 A	 value	 of	 None	 means	 unlimited.	 The
BaseHeader	value	for	this	attribute	is	None;	it	is	expected	that
specialized	header	classes	will	override	this	value	as	needed.

BaseHeader	 also	provides	 the	 following	method,	which	 is	 called

by	 the	 email	 library	 code	 and	 should	 not	 in	 general	 be	 called	 by
application	programs:

fold(*,	policy)
Return	a	string	containing	linesep	 characters	as	 required	 to
correctly	 fold	 the	 header	 according	 to	 policy.	 A	 cte_type	 of
8bit	will	be	 treated	as	 if	 it	were	7bit,	since	strings	may	not
contain	binary	data.

BaseHeader	by	itself	cannot	be	used	to	create	a	header	object.	It
defines	a	protocol	that	each	specialized	header	cooperates	with	in
order	 to	 produce	 the	 header	 object.	 Specifically,	 BaseHeader
requires	 that	 the	 specialized	 class	 provide	 a	 classmethod()
named	parse.	This	method	is	called	as	follows:

parse(string,	kwds)

kwds	 is	a	dictionary	containing	one	pre-initialized	key,	 defects.
defects	 is	an	empty	 list.	The	parse	method	should	append	any
detected	 defects	 to	 this	 list.	On	 return,	 the	 kwds	 dictionary	must
contain	 values	 for	 at	 least	 the	 keys	 decoded	 and	 defects.
decoded	 should	 be	 the	 string	 value	 for	 the	 header	 (that	 is,	 the
header	value	fully	decoded	to	unicode).	The	parse	method	should
assume	 that	 string	 may	 contain	 transport	 encoded	 parts,	 but
should	correctly	handle	all	valid	unicode	characters	as	well	so	that
it	can	parse	un-encoded	header	values.

BaseHeader‘s	 __new__	 then	 creates	 the	 header	 instance,	 and
calls	its	init	method.	The	specialized	class	only	needs	to	provide
an	 init	 method	 if	 it	 wishes	 to	 set	 additional	 attributes	 beyond
those	 provided	 by	 BaseHeader	 itself.	 Such	 an	 init	 method
should	look	like	this:

def	init(self,	*args,	**kw):

				self._myattr	=	kw.pop('myattr')

				super().init(*args,	**kw)

That	 is,	 anything	 extra	 that	 the	 specialized	 class	 puts	 in	 to	 the
kwds	 dictionary	 should	 be	 removed	 and	 handled,	 and	 the
remaining	contents	of	kw	(and	args)	passed	to	the	BaseHeader
init	method.

class	email.headerregistry.UnstructuredHeader
An	 “unstructured”	 header	 is	 the	 default	 type	 of	 header	 in	 RFC
5322.	Any	header	that	does	not	have	a	specified	syntax	is	treated
as	unstructured.	The	classic	example	of	an	unstructured	header	is
the	Subject	header.

In	RFC	5322,	an	unstructured	header	is	a	run	of	arbitrary	text	in	the
ASCII	 character	 set.	 RFC	 2047,	 however,	 has	 an	 RFC	 5322
compatible	 mechanism	 for	 encoding	 non-ASCII	 text	 as	 ASCII
characters	 within	 a	 header	 value.	 When	 a	 value	 containing
encoded	 words	 is	 passed	 to	 the	 constructor,	 the
UnstructuredHeader	 parser	 converts	 such	 encoded	 words
back	 in	 to	 the	 original	 unicode,	 following	 the	RFC	2047	 rules	 for
unstructured	text.	The	parser	uses	heuristics	to	attempt	to	decode
certain	 non-compliant	 encoded	 words.	 Defects	 are	 registered	 in
such	cases,	as	well	as	defects	for	issues	such	as	invalid	characters
within	the	encoded	words	or	the	non-encoded	text.

This	header	type	provides	no	additional	attributes.

class	email.headerregistry.DateHeader
RFC	5322	 specifies	 a	 very	 specific	 format	 for	 dates	 within	 email
headers.	The	DateHeader	parser	recognizes	that	date	format,	as

http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc5322.html

well	as	recognizing	a	number	of	variant	forms	that	are	sometimes
found	“in	the	wild”.

This	header	type	provides	the	following	additional	attributes:

datetime

If	 the	 header	 value	 can	 be	 recognized	 as	 a	 valid	 date	 of	 one
form	or	another,	this	attribute	will	contain	a	datetime	instance
representing	 that	 date.	 If	 the	 timezone	 of	 the	 input	 date	 is
specified	 as	 -0000	 (indicating	 it	 is	 in	 UTC	 but	 contains	 no
information	about	the	source	timezone),	then	datetime	will	be
a	 naive	 datetime.	 If	 a	 specific	 timezone	 offset	 is	 found
(including	 +0000),	 then	 datetime	 will	 contain	 an	 aware
datetime	 that	 uses	 datetime.timezone	 to	 record	 the
timezone	offset.

The	decoded	value	of	the	header	is	determined	by	formatting	the
datetime	according	to	the	RFC	5322	rules;	that	is,	it	is	set	to:

email.utils.format_datetime(self.datetime)

When	creating	a	DateHeader,	value	may	be	datetime	instance.
This	means,	for	example,	that	the	following	code	is	valid	and	does
what	one	would	expect:

msg['Date']		=	datetime(2011,	7,	15,	21)

Because	this	is	a	naive	datetime	 it	will	be	interpreted	as	a	UTC
timestamp,	and	the	resulting	value	will	have	a	timezone	of	-0000.
Much	more	 useful	 is	 to	 use	 the	 localtime()	 function	 from	 the
utils	module:

http://tools.ietf.org/html/rfc5322.html

msg['Date']	=	utils.localtime()

This	 example	 sets	 the	 date	 header	 to	 the	 current	 time	 and	 date
using	the	current	timezone	offset.

class	email.headerregistry.AddressHeader
Address	headers	are	one	of	 the	most	 complex	 structured	header
types.	The	AddressHeader	class	provides	a	generic	 interface	to
any	address	header.

This	header	type	provides	the	following	additional	attributes:

groups

A	 tuple	of	Group	 objects	encoding	 the	addresses	and	groups
found	 in	 the	 header	 value.	 Addresses	 that	 are	 not	 part	 of	 a
group	 are	 represented	 in	 this	 list	 as	 single-address	 Groups
whose	display_name	is	None.

addresses

A	 tuple	 of	 Address	 objects	 encoding	 all	 of	 the	 individual
addresses	from	the	header	value.	If	 the	header	value	contains
any	 groups,	 the	 individual	 addresses	 from	 the	 group	 are
included	 in	 the	 list	 at	 the	point	where	 the	group	occurs	 in	 the
value	 (that	 is,	 the	 list	 of	 addresses	 is	 “flattened”	 into	 a	 one
dimensional	list).

The	 decoded	 value	 of	 the	 header	 will	 have	 all	 encoded	 words
decoded	 to	 unicode.	 idna	 encoded	 domain	 names	 are	 also
decoded	 to	 unicode.	 The	 decoded	 value	 is	 set	 by	 joining	 the
str	value	of	the	elements	of	the	groups	attribute	with	',	'.

A	list	of	Address	and	Group	objects	 in	any	combination	may	be

used	to	set	the	value	of	an	address	header.	Group	objects	whose
display_name	 is	 None	will	 be	 interpreted	 as	 single	 addresses,
which	 allows	 an	 address	 list	 to	 be	 copied	 with	 groups	 intact	 by
using	the	list	obtained	groups	attribute	of	the	source	header.

class	email.headerregistry.SingleAddressHeader
A	subclass	of	AddressHeader	that	adds	one	additional	attribute:

address

The	single	address	encoded	by	the	header	value.	If	the	header
value	actually	contains	more	than	one	address	(which	would	be
a	 violation	 of	 the	 RFC	 under	 the	 default	 policy),	 accessing
this	attribute	will	result	in	a	ValueError.

Many	of	the	above	classes	also	have	a	Unique	variant	(for	example,
UniqueUnstructuredHeader).	 The	 only	 difference	 is	 that	 in	 the
Unique	variant,	max_count	is	set	to	1.

class	email.headerregistry.MIMEVersionHeader
There	 is	 really	only	one	valid	value	 for	 the	MIME-Version	header,
and	 that	 is	 1.0.	 For	 future	 proofing,	 this	 header	 class	 supports
other	valid	version	numbers.	If	a	version	number	has	a	valid	value
per	RFC	2045,	 then	the	header	object	will	have	non-None	values
for	the	following	attributes:

version

The	 version	 number	 as	 a	 string,	 with	 any	 whitespace	 and/or
comments	removed.

major

The	major	version	number	as	an	integer

minor

http://tools.ietf.org/html/rfc2045.html

The	minor	version	number	as	an	integer

class	email.headerregistry.ParameterizedMIMEHeader
MOME	 headers	 all	 start	 with	 the	 prefix	 ‘Content-‘.	 Each	 specific
header	 has	 a	 certain	 value,	 described	 under	 the	 class	 for	 that
header.	 Some	 can	 also	 take	 a	 list	 of	 supplemental	 parameters,
which	have	a	common	format.	This	class	serves	as	a	base	for	all
the	MIME	headers	that	take	parameters.

params

A	dictionary	mapping	parameter	names	to	parameter	values.

class	email.headerregistry.ContentTypeHeader
A	 ParameterizedMIMEHeader	 class	 that	 handles	 the	Content-
Type	header.

content_type

The	content	type	string,	in	the	form	maintype/subtype.

maintype

subtype

class
email.headerregistry.ContentDispositionHeader

A	 ParameterizedMIMEHeader	 class	 that	 handles	 the	Content-
Disposition	header.

content-disposition

inline	and	attachment	are	the	only	valid	values	in	common
use.

class	email.headerregistry.ContentTransferEncoding
Handles	the	Content-Transfer-Encoding	header.

cte

Valid	 values	 are	 7bit,	 8bit,	 base64,	 and	 quoted-

printable.	See	RFC	2045	for	more	information.

class
email.headerregistry.HeaderRegistry(base_class=BaseHeader
default_class=UnstructuredHeader,	use_default_map=True)

This	 is	 the	 factory	 used	 by	 EmailPolicy	 by	 default.
HeaderRegistry	 builds	 the	 class	 used	 to	 create	 a	 header
instance	 dynamically,	 using	 base_class	 and	 a	 specialized	 class
retrieved	from	a	registry	that	 it	holds.	When	a	given	header	name
does	not	appear	in	the	registry,	the	class	specified	by	default_class
is	used	as	 the	specialized	class.	When	use_default_map	 is	True
(the	default),	the	standard	mapping	of	header	names	to	classes	is
copied	 in	 to	 the	 registry	during	 initialization.	base_class	 is	always
the	last	class	in	the	generated	class’s	__bases__	list.

The	default	mappings	are:

subject: UniqueUnstructuredHeader

date: UniqueDateHeader

resent-date: DateHeader

orig-date: UniqueDateHeader

sender: UniqueSingleAddressHeader

resent-sender: SingleAddressHeader

to: UniqueAddressHeader

resent-to: AddressHeader

cc: UniqueAddressHeader

resent-cc: AddressHeader

http://tools.ietf.org/html/rfc2045.html

from: UniqueAddressHeader

resent-from: AddressHeader

reply-to: UniqueAddressHeader

HeaderRegistry	has	the	following	methods:

map_to_type(self,	name,	cls)
name	 is	 the	 name	 of	 the	 header	 to	 be	 mapped.	 It	 will	 be
converted	 to	 lower	 case	 in	 the	 registry.	 cls	 is	 the	 specialized
class	 to	 be	 used,	 along	 with	 base_class,	 to	 create	 the	 class
used	to	instantiate	headers	that	match	name.

__getitem__(name)
Construct	and	return	a	class	to	handle	creating	a	name	header.

__call__(name,	value)
Retrieves	 the	 specialized	 header	 associated	 with	 name	 from
the	registry	(using	default_class	if	name	does	not	appear	in	the
registry)	and	composes	 it	with	base_class	 to	produce	a	class,
calls	 the	 constructed	 class’s	 constructor,	 passing	 it	 the	 same
argument	 list,	 and	 finally	 returns	 the	 class	 instance	 created
thereby.

The	 following	classes	are	 the	classes	used	 to	 represent	data	parsed
from	structured	headers	and	can,	in	general,	be	used	by	an	application
program	to	construct	structured	values	to	assign	to	specific	headers.

class	email.headerregistry.Address(display_name='',
username='',	domain='',	addr_spec=None)

The	class	used	to	represent	an	email	address.	The	general	form	of
an	address	is:

[display_name]	<username@domain>

or:

username@domain

where	each	part	must	conform	to	specific	syntax	rules	spelled	out
in	RFC	5322.

As	a	convenience	addr_spec	can	be	specified	instead	of	username
and	domain,	 in	which	 case	username	 and	domain	will	 be	 parsed
from	the	addr_spec.	An	addr_spec	must	be	a	properly	RFC	quoted
string;	 if	 it	 is	not	Address	will	 raise	an	error.	Unicode	characters
are	 allowed	 and	 will	 be	 property	 encoded	 when	 serialized.
However,	 per	 the	RFCs,	 unicode	 is	not	 allowed	 in	 the	 username
portion	of	the	address.

display_name

The	display	name	portion	of	the	address,	if	any,	with	all	quoting
removed.	 If	 the	 address	 does	 not	 have	 a	 display	 name,	 this
attribute	will	be	an	empty	string.

username

The	 username	 portion	 of	 the	 address,	 with	 all	 quoting
removed.

domain

The	domain	portion	of	the	address.

addr_spec

The	 username@domain	 portion	 of	 the	 address,	 correctly
quoted	 for	 use	 as	 a	 bare	 address	 (the	 second	 form	 shown
above).	This	attribute	is	not	mutable.

http://tools.ietf.org/html/rfc5322.html

__str__()
The	str	value	of	the	object	is	the	address	quoted	according	to
RFC	5322	rules,	but	with	no	Content	Transfer	Encoding	of	any
non-ASCII	characters.

To	 support	 SMTP	 (RFC	 5321),	 Address	 handles	 one	 special
case:	 if	 username	 and	 domain	 are	 both	 the	 empty	 string	 (or
None),	then	the	string	value	of	the	Address	is	<>.

class	email.headerregistry.Group(display_name=None,
addresses=None)

The	class	used	to	represent	an	address	group.	The	general	form	of
an	address	group	is:

display_name:	[address-list];

As	a	convenience	for	processing	lists	of	addresses	that	consist	of	a
mixture	 of	 groups	 and	 single	 addresses,	 a	 Group	 may	 also	 be
used	to	represent	single	addresses	that	are	not	part	of	a	group	by
setting	 display_name	 to	 None	 and	 providing	 a	 list	 of	 the	 single
address	as	addresses.

display_name

The	 display_name	 of	 the	 group.	 If	 it	 is	 None	 and	 there	 is
exactly	 one	 Address	 in	 addresses,	 then	 the	 Group

represents	a	single	address	that	is	not	in	a	group.

addresses

A	 possibly	 empty	 tuple	 of	 Address	 objects	 representing	 the
addresses	in	the	group.

__str__()

http://tools.ietf.org/html/rfc5322.html
http://tools.ietf.org/html/rfc5321.html

The	str	value	of	a	Group	is	formatted	according	to	RFC	5322,
but	 with	 no	 Content	 Transfer	 Encoding	 of	 any	 non-ASCII
characters.	 If	 display_name	 is	 none	 and	 there	 is	 a	 single
Address	 in	 the	 addresses	 list,	 the	 str	 value	 will	 be	 the
same	as	the	str	of	that	single	Address.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://tools.ietf.org/html/rfc5322.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.6.
email.contentmanager:
Managing	MIME	Content
Note: 	The	contentmanager	module	has	been	included	in	the
standard	library	on	a	provisional	basis.	Backwards	incompatible
changes	(up	to	and	including	removal	of	the	module)	may	occur	if
deemed	necessary	by	the	core	developers.

New	in	version	3.4:	as	a	provisional	module.

The	message	module	provides	a	class	that	can	represent	an	arbitrary
email	message.	That	basic	message	model	has	a	useful	and	 flexible
API,	 but	 it	 provides	 only	 a	 lower-level	 API	 for	 interacting	 with	 the
generic	parts	of	a	message	(the	headers,	generic	header	parameters,
and	 the	 payload,	 which	 may	 be	 a	 list	 of	 sub-parts).	 This	 module
provides	 classes	 and	 tools	 that	 provide	 an	 enhanced	and	extensible
API	 for	 dealing	 with	 various	 specific	 types	 of	 content,	 including	 the
ability	 to	 retrieve	 the	content	of	 the	message	as	a	specialized	object
type	 rather	 than	as	a	 simple	bytes	object.	The	module	 automatically
takes	care	of	 the	RFC-specified	MIME	details	 (required	headers	and
parameters,	 etc.)	 for	 the	 certain	 common	 content	 types	 content
properties,	 and	 support	 for	 additional	 types	 can	 be	 added	 by	 an
application	using	the	extension	mechanisms.

This	module	defines	the	eponymous	“Content	Manager”	classes.	The
base	ContentManager	 class	defines	an	API	 for	 registering	 content
management	 functions	 which	 extract	 data	 from	 Message	 objects	 or
insert	data	and	headers	into	Message	objects,	thus	providing	a	way	of

converting	 between	 Message	 objects	 containing	 data	 and	 other
representations	 of	 that	 data	 (Python	 data	 types,	 specialized	 Python
objects,	 external	 files,	 etc).	 The	 module	 also	 defines	 one	 concrete
content	 manager:	 raw_data_manager	 converts	 between	 MIME
content	 types	and	str	or	bytes	data.	 It	also	provides	a	convenient
API	 for	managing	 the	MIME	 parameters	 when	 inserting	 content	 into
Messages.	 It	also	handles	 inserting	and	extracting	Message	objects
when	dealing	with	the	message/rfc822	content	type.

Another	part	of	the	enhanced	interface	is	subclasses	of	Message	that
provide	 new	 convenience	 API	 functions,	 including	 convenience
methods	for	calling	the	Content	Managers	derived	from	this	module.

Note: 	Although	EmailMessage	and	MIMEPart	are	currently
documented	in	this	module	because	of	the	provisional	nature	of	the
code,	the	implementation	lives	in	the	email.message	module.

class	email.message.EmailMessage(policy=default)
If	policy	is	specified	(it	must	be	an	instance	of	a	policy	class)	use
the	 rules	 it	 specifies	 to	udpate	and	serialize	 the	 representation	of
the	message.	 If	policy	 is	 not	 set,	 use	 the	 default	 policy,	which
follows	the	rules	of	the	email	RFCs	except	for	line	endings	(instead
of	 the	RFC	mandated	\r\n,	 it	 uses	 the	Python	standard	\n	 line
endings).	For	more	information	see	the	policy	documentation.

This	 class	 is	 a	 subclass	 of	 Message.	 It	 adds	 the	 following
methods:

is_attachment

Set	 to	 True	 if	 there	 is	 a	Content-Disposition	 header	 and	 its
(case	insensitive)	value	is	attachment,	False	otherwise.

get_body(preferencelist=('related',	'html',	'plain'))
Return	the	MIME	part	that	is	the	best	candidate	to	be	the	“body”
of	the	message.

preferencelist	 must	 be	 a	 sequence	 of	 strings	 from	 the	 set
related,	 html,	 and	 plain,	 and	 indicates	 the	 order	 of
preference	for	the	content	type	of	the	part	returned.

Start	looking	for	candidate	matches	with	the	object	on	which	the
get_body	method	is	called.

If	related	 is	not	 included	 in	preferencelist,	 consider	 the	 root
part	(or	subpart	of	the	root	part)	of	any	related	encountered	as	a
candidate	if	the	(sub-)part	matches	a	preference.

When	encountering	a	multipart/related,	check	the	start
parameter	 and	 if	 a	 part	 with	 a	 matching	Content-ID	 is	 found,
consider	only	it	when	looking	for	candidate	matches.	Otherwise
consider	 only	 the	 first	 (default	 root)	 part	 of	 the
multipart/related.

If	 a	 part	 has	 a	Content-Disposition	 header,	 only	 consider	 the
part	a	candidate	match	if	the	value	of	the	header	is	inline.

If	 none	 of	 the	 candidates	 matches	 any	 of	 the	 preferences	 in
preferneclist,	return	None.

Notes:	 (1)	 For	 most	 applications	 the	 only	 preferencelist
combinations	 that	 really	 make	 sense	 are	 ('plain',),
('html',	 'plain'),	 and	 the	 default,	 ('related',

'html',	 'plain').	 (2)	 Because	 matching	 starts	 with	 the
object	 on	which	 get_body	 is	 called,	 calling	 get_body	 on	 a
multipart/related	 will	 return	 the	 object	 itself	 unless

preferencelist	 has	 a	 non-default	 value.	 (3)	 Messages	 (or
message	 parts)	 that	 do	 not	 specify	 a	Content-Type	 or	 whose
Content-Type	header	 is	 invalid	will	be	 treated	as	 if	 they	are	of
type	 text/plain,	which	may	 occasionally	 cause	 get_body
to	return	unexpected	results.

iter_attachments()
Return	an	iterator	over	all	of	the	parts	of	the	message	that	are
not	candidate	“body”	parts.	That	 is,	skip	the	first	occurrence	of
each	of	text/plain,	text/html,	multipart/related,	or
multipart/alternative	 (unless	 they	are	explicitly	marked
as	attachments	via	Content-Disposition:	attachment),	and	return
all	 remaining	 parts.	 When	 applied	 directly	 to	 a
multipart/related,	 return	 an	 iterator	 over	 the	 all	 the
related	parts	except	the	root	part	(ie:	the	part	pointed	to	by	the
start	 parameter,	 or	 the	 first	 part	 if	 there	 is	 no	 start
parameter	or	the	start	parameter	doesn’t	match	the	Content-
ID	 of	 any	 of	 the	 parts).	 When	 applied	 directly	 to	 a
multipart/alternative	 or	 a	 non-multipart,	 return	 an
empty	iterator.

iter_parts()
Return	 an	 iterator	 over	 all	 of	 the	 immediate	 sub-parts	 of	 the
message,	which	will	be	empty	for	a	non-multipart.	(See	also
walk().)

get_content(*args,	content_manager=None,	**kw)
Call	 the	 get_content	 method	 of	 the	 content_manager,
passing	 self	 as	 the	 message	 object,	 and	 passing	 along	 any
other	 arguments	 or	 keywords	 as	 additional	 arguments.	 If
content_manager	is	not	specified,	use	the	content_manager

specified	by	the	current	policy.

set_content(*args,	content_manager=None,	**kw)
Call	 the	 set_content	 method	 of	 the	 content_manager,
passing	 self	 as	 the	 message	 object,	 and	 passing	 along	 any
other	 arguments	 or	 keywords	 as	 additional	 arguments.	 If
content_manager	is	not	specified,	use	the	content_manager
specified	by	the	current	policy.

make_related(boundary=None)
Convert	 a	 non-multipart	 message	 into	 a
multipart/related	message,	moving	any	existing	Content-
headers	and	payload	into	a	(new)	first	part	of	the	multipart.
If	 boundary	 is	 specified,	 use	 it	 as	 the	 boundary	 string	 in	 the
multipart,	 otherwise	 leave	 the	 boundary	 to	 be	 automatically
created	when	 it	 is	needed	(for	example,	when	 the	message	 is
serialized).

make_alternative(boundary=None)
Convert	a	non-multipart	or	a	multipart/related	 into	a
multipart/alternative,	 moving	 any	 existing	 Content-
headers	and	payload	into	a	(new)	first	part	of	the	multipart.
If	 boundary	 is	 specified,	 use	 it	 as	 the	 boundary	 string	 in	 the
multipart,	 otherwise	 leave	 the	 boundary	 to	 be	 automatically
created	when	 it	 is	needed	(for	example,	when	 the	message	 is
serialized).

make_mixed(boundary=None)
Convert	 a	 non-multipart,	 a	 multipart/related,	 or	 a
multipart-alternative	 into	 a	 multipart/mixed,
moving	any	existing	Content-	headers	and	payload	into	a	(new)

first	part	of	the	multipart.	 If	boundary	 is	specified,	use	 it	as
the	 boundary	 string	 in	 the	 multipart,	 otherwise	 leave	 the
boundary	 to	 be	 automatically	 created	 when	 it	 is	 needed	 (for
example,	when	the	message	is	serialized).

add_related(*args,	content_manager=None,	**kw)
If	 the	 message	 is	 a	 multipart/related,	 create	 a	 new
message	 object,	 pass	 all	 of	 the	 arguments	 to	 its
set_content()	 method,	 and	 attach()	 it	 to	 the
multipart.	 If	 the	 message	 is	 a	 non-multipart,	 call
make_related()	and	then	proceed	as	above.	If	the	message
is	 any	 other	 type	 of	 multipart,	 raise	 a	 TypeError.	 If
content_manager	is	not	specified,	use	the	content_manager
specified	 by	 the	 current	 policy.	 If	 the	 added	 part	 has	 no
Content-Disposition	header,	add	one	with	the	value	inline.

add_alternative(*args,	content_manager=None,	**kw)
If	the	message	is	a	multipart/alternative,	create	a	new
message	 object,	 pass	 all	 of	 the	 arguments	 to	 its
set_content()	 method,	 and	 attach()	 it	 to	 the
multipart.	 If	 the	 message	 is	 a	 non-multipart	 or
multipart/related,	 call	 make_alternative()	 and	 then
proceed	 as	 above.	 If	 the	 message	 is	 any	 other	 type	 of
multipart,	 raise	 a	 TypeError.	 If	 content_manager	 is	 not
specified,	use	the	content_manager	specified	by	the	current
policy.

add_attachment(*args,	content_manager=None,	**kw)
If	 the	 message	 is	 a	 multipart/mixed,	 create	 a	 new
message	 object,	 pass	 all	 of	 the	 arguments	 to	 its
set_content()	 method,	 and	 attach()	 it	 to	 the

multipart.	 If	 the	 message	 is	 a	 non-multipart,
multipart/related,	 or	 multipart/alternative,	 call
make_mixed()	 and	 then	 proceed	 as	 above.	 If
content_manager	is	not	specified,	use	the	content_manager
specified	 by	 the	 current	 policy.	 If	 the	 added	 part	 has	 no
Content-Disposition	 header,	 add	 one	 with	 the	 value
attachment.	 This	 method	 can	 be	 used	 both	 for	 explicit
attachments	 (Content-Disposition:	 attachment	 and	 inline
attachments	 (Content-Disposition:	 inline),	 by	 passing
appropriate	options	to	the	content_manager.

clear()
Remove	the	payload	and	all	of	the	headers.

clear_content()
Remove	the	payload	and	all	of	the	Content-	headers,	leaving
all	other	headers	intact	and	in	their	original	order.

class	email.message.MIMEPart(policy=default)
This	class	represents	a	subpart	of	a	MIME	message.	It	is	identical
to	 EmailMessage,	 except	 that	 no	 MIME-Version	 headers	 are
added	 when	 set_content()	 is	 called,	 since	 sub-parts	 do	 not
need	their	own	MIME-Version	headers.

class	email.contentmanager.ContentManager
Base	 class	 for	 content	managers.	 Provides	 the	 standard	 registry
mechanisms	 to	 register	 converters	 between	 MIME	 content	 and
other	 representations,	 as	 well	 as	 the	 get_content	 and
set_content	dispatch	methods.

get_content(msg,	*args,	**kw)

Look	 up	 a	 handler	 function	 based	 on	 the	 mimetype	 of	msg
(see	next	paragraph),	call	it,	passing	through	all	arguments,	and
return	the	result	of	the	call.	The	expectation	is	that	the	handler
will	 extract	 the	 payload	 from	 msg	 and	 return	 an	 object	 that
encodes	information	about	the	extracted	data.

To	 find	 the	 handler,	 look	 for	 the	 following	 keys	 in	 the	 registry,
stopping	with	the	first	one	found:

the	 string	 representing	 the	 full	 MIME	 type
(maintype/subtype)
the	string	representing	the	maintype
the	empty	string

If	none	of	these	keys	produce	a	handler,	raise	a	KeyError	for
the	full	MIME	type.

set_content(msg,	obj,	*args,	**kw)
If	 the	 maintype	 is	 multipart,	 raise	 a	 TypeError;
otherwise	 look	up	a	handler	 function	based	on	 the	 type	of	obj
(see	next	paragraph),	call	clear_content()	on	the	msg,	and
call	 the	 handler	 function,	 passing	 through	 all	 arguments.	 The
expectation	is	that	the	handler	will	 transform	and	store	obj	 into
msg,	 possibly	making	 other	 changes	 to	msg	 as	well,	 such	 as
adding	various	MIME	headers	to	encode	information	needed	to
interpret	the	stored	data.

To	 find	 the	 handler,	 obtain	 the	 type	 of	 obj	 (typ	 =

type(obj)),	 and	 look	 for	 the	 following	 keys	 in	 the	 registry,
stopping	with	the	first	one	found:

the	type	itself	(typ)
the	 type’s	 fully	 qualified	 name	 (typ.__module__	 +

'.'	+	typ.__qualname__).
the	type’s	qualname	(typ.__qualname__)
the	type’s	name	(typ.__name__).

If	none	of	 the	above	match,	repeat	all	of	 the	checks	above	for
each	 of	 the	 types	 in	 the	MRO	 (typ.__mro__).	 Finally,	 if	 no
other	 key	 yields	 a	 handler,	 check	 for	 a	 handler	 for	 the	 key
None.	If	there	is	no	handler	for	None,	raise	a	KeyError	for	the
fully	qualified	name	of	the	type.

Also	add	a	MIME-Version	header	if	one	is	not	present	(see	also
MIMEPart).

add_get_handler(key,	handler)
Record	 the	 function	 handler	 as	 the	 handler	 for	 key.	 For	 the
possible	values	of	key,	see	get_content().

add_set_handler(typekey,	handler)
Record	handler	as	the	function	to	call	when	an	object	of	a	type
matching	 typekey	 is	 passed	 to	 set_content().	 For	 the
possible	values	of	typekey,	see	set_content().

19.1.6.1.	Content	Manager	Instances

Currently	 the	 email	 package	 provides	 only	 one	 concrete	 content
manager,	raw_data_manager,	although	more	may	be	added	 in	 the
future.	 raw_data_manager	 is	 the	 content_manager	 provided	 by
EmailPolicy	and	its	derivatives.

email.contentmanager.raw_data_manager

This	 content	manager	provides	only	 a	minimum	 interface	beyond
that	 provided	 by	 Message	 itself:	 it	 deals	 only	with	 text,	 raw	 byte
strings,	and	Message	objects.	Nevertheless,	it	provides	significant
advantages	 compared	 to	 the	 base	API:	 get_content	 on	 a	 text
part	will	 return	a	unicode	string	without	 the	application	needing	 to
manually	decode	 it,	 set_content	 provides	a	 rich	 set	of	 options
for	 controlling	 the	 headers	 added	 to	 a	 part	 and	 controlling	 the
content	 transfer	 encoding,	 and	 it	 enables	 the	 use	 of	 the	 various
add_	 methods,	 thereby	 simplifying	 the	 creation	 of	 multipart
messages.

email.contentmanager.get_content(msg,
errors='replace')

Return	 the	 payload	 of	 the	 part	 as	 either	 a	 string	 (for	 text
parts),	a	EmailMessage	object	(for	message/rfc822	parts),
or	 a	 bytes	 object	 (for	 all	 other	 non-multipart	 types).	 Raise	 a
KeyError	if	called	on	a	multipart.	If	the	part	is	a	text	part
and	 errors	 is	 specified,	 use	 it	 as	 the	 error	 handler	 when
decoding	 the	 payload	 to	 unicode.	 The	 default	 error	 handler	 is
replace.

email.contentmanager.set_content(msg,	 <'str'>,
subtype="plain",	 charset='utf-8'	 cte=None,	 disposition=None,

filename=None,	cid=None,	params=None,	headers=None)
email.contentmanager.set_content(msg,	 <'bytes'>,
maintype,	 subtype,	 cte="base64",	 disposition=None,
filename=None,	cid=None,	params=None,	headers=None)
email.contentmanager.set_content(msg,	 <'Message'>,
cte=None,	 disposition=None,	 filename=None,	 cid=None,
params=None,	headers=None)
email.contentmanager.set_content(msg,	 <'list'>,
subtype='mixed',	 disposition=None,	 filename=None,	 cid=None,
params=None,	headers=None)

Add	headers	and	payload	to	msg:

Add	a	Content-Type	header	with	a	maintype/subtype	value.

For	str,	 set	 the	MIME	 maintype	 to	 text,	 and	 set
the	subtype	to	subtype	if	it	is	specified,	or	plain	if	it	is
not.
For	bytes,	 use	 the	 specified	maintype	 and	subtype,
or	raise	a	TypeError	if	they	are	not	specified.
For	Message	 objects,	 set	 the	maintype	 to	 message,
and	 set	 the	 subtype	 to	 subtype	 if	 it	 is	 specified	 or
rfc822	 if	 it	 is	 not.	 If	subtype	 is	 partial,	 raise	 an
error	 (bytes	 objects	 must	 be	 used	 to	 construct
message/partial	parts).
For	<’list’>,	which	should	be	a	list	of	Message	objects,
set	 the	maintype	 to	multipart,	and	 the	subtype
to	subtype	if	it	is	specified,	and	mixed	if	it	is	not.	If	the
message	 parts	 in	 the	 <’list’>	 have	 MIME-Version
headers,	remove	them.

If	charset	 is	provided	(which	 is	valid	only	for	str),	encode	the
string	to	bytes	using	the	specified	character	set.	The	default	 is
utf-8.	If	the	specified	charset	 is	a	known	alias	for	a	standard

MIME	charset	name,	use	the	standard	charset	instead.

If	 cte	 is	 set,	 encode	 the	 payload	 using	 the	 specified	 content
transfer	 encoding,	 and	 set	 the	 Content-Transfer-Endcoding
header	 to	 that	 value.	 For	 str	 objects,	 if	 it	 is	 not	 set	 use
heuristics	 to	 determine	 the	 most	 compact	 encoding.	 Possible
values	for	cte	are	quoted-printable,	base64,	7bit,	8bit,
and	 binary.	 If	 the	 input	 cannot	 be	 encoded	 in	 the	 specified
encoding	(eg:	7bit),	raise	a	ValueError.	For	Message,	per
RFC	2046,	 raise	 an	 error	 if	 a	 cte	 of	 quoted-printable	 or
base64	 is	 requested	 for	 subtype	 rfc822,	 and	 for	 any	 cte
other	 than	 7bit	 for	 subtype	 external-body.	 For
message/rfc822,	 use	 8bit	 if	 cte	 is	 not	 specified.	 For	 all
other	values	of	subtype,	use	7bit.

Note: 	A	cte	of	binary	does	not	actually	work	correctly	yet.
The	 Message	 object	 as	 modified	 by	 set_content	 is
correct,	but	BytesGenerator	does	not	serialize	it	correctly.

If	 disposition	 is	 set,	 use	 it	 as	 the	 value	 of	 the	 Content-
Disposition	 header.	 If	 not	 specified,	 and	 filename	 is	 specified,
add	the	header	with	the	value	attachment.	If	it	is	not	specified
and	filename	 is	also	not	specified,	do	not	add	the	header.	The
only	valid	values	for	disposition	are	attachment	and	inline.

If	 filename	 is	 specified,	 use	 it	 as	 the	 value	 of	 the	 filename
parameter	 of	 the	 Content-Disposition	 header.	 There	 is	 no
default.

If	cid	is	specified,	add	a	Content-ID	header	with	cid	as	its	value.

If	params	 is	 specified,	 iterate	 its	 items	 method	 and	 use	 the

http://tools.ietf.org/html/rfc2046.html

resulting	(key,	value)	 pairs	 to	 set	 additional	 paramters	 on
the	Content-Type	header.

If	 headers	 is	 specified	 and	 is	 a	 list	 of	 strings	 of	 the	 form
headername:	 headervalue	 or	 a	 list	 of	 header	 objects
(distinguised	from	strings	by	having	a	name	attribute),	add	the
headers	to	msg.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.7.	email.mime:	Creating
email	and	MIME	objects	from
scratch
Ordinarily,	 you	 get	 a	 message	 object	 structure	 by	 passing	 a	 file	 or
some	 text	 to	 a	 parser,	 which	 parses	 the	 text	 and	 returns	 the	 root
message	 object.	 However	 you	 can	 also	 build	 a	 complete	 message
structure	from	scratch,	or	even	individual	Message	objects	by	hand.	In
fact,	 you	 can	also	 take	an	existing	 structure	and	add	new	 Message
objects,	 move	 them	 around,	 etc.	 This	 makes	 a	 very	 convenient
interface	for	slicing-and-dicing	MIME	messages.

You	can	create	a	new	object	structure	by	creating	Message	instances,
adding	 attachments	 and	 all	 the	 appropriate	 headers	 manually.	 For
MIME	 messages	 though,	 the	 email	 package	 provides	 some
convenient	subclasses	to	make	things	easier.

Here	are	the	classes:

class	email.mime.base.MIMEBase(_maintype,	_subtype,
**_params)

Module:	email.mime.base

This	 is	 the	 base	 class	 for	 all	 the	 MIME-specific	 subclasses	 of
Message.	 Ordinarily	 you	 won’t	 create	 instances	 specifically	 of
MIMEBase,	although	you	could.	MIMEBase	is	provided	primarily	as
a	convenient	base	class	for	more	specific	MIME-aware	subclasses.

_maintype	is	the	Content-Type	major	type	(e.g.	text	or	image),	and
_subtype	 is	 the	 Content-Type	 minor	 type	 (e.g.	 plain	 or	 gif).

_params	is	a	parameter	key/value	dictionary	and	is	passed	directly
to	Message.add_header.

The	MIMEBase	class	always	adds	a	Content-Type	header	(based
on	 _maintype,	 _subtype,	 and	 _params),	 and	 a	 MIME-Version
header	(always	set	to	1.0).

class	email.mime.nonmultipart.MIMENonMultipart
Module:	email.mime.nonmultipart

A	 subclass	 of	 MIMEBase,	 this	 is	 an	 intermediate	 base	 class	 for
MIME	messages	that	are	not	multipart.	The	primary	purpose	of	this
class	 is	 to	prevent	 the	use	of	 the	 attach()	method,	which	only
makes	 sense	 for	multipart	 messages.	 If	 attach()	 is	 called,	 a
MultipartConversionError	exception	is	raised.

class
email.mime.multipart.MIMEMultipart(_subtype='mixed',
boundary=None,	_subparts=None,	**_params)

Module:	email.mime.multipart

A	 subclass	 of	 MIMEBase,	 this	 is	 an	 intermediate	 base	 class	 for
MIME	messages	 that	are	multipart.	Optional	_subtype	 defaults	 to
mixed,	but	can	be	used	to	specify	 the	subtype	of	 the	message.	A
Content-Type	 header	 of	multipart/_subtype	 will	 be	 added	 to	 the
message	object.	A	MIME-Version	header	will	also	be	added.

Optional	 boundary	 is	 the	 multipart	 boundary	 string.	 When	 None
(the	 default),	 the	 boundary	 is	 calculated	 when	 needed	 (for
example,	when	the	message	is	serialized).

_subparts	is	a	sequence	of	initial	subparts	for	the	payload.	It	must
be	 possible	 to	 convert	 this	 sequence	 to	 a	 list.	 You	 can	 always

attach	 new	 subparts	 to	 the	 message	 by	 using	 the
Message.attach	method.

Additional	parameters	for	the	Content-Type	header	are	taken	from
the	 keyword	 arguments,	 or	 passed	 into	 the	 _params	 argument,
which	is	a	keyword	dictionary.

class	email.mime.application.MIMEApplication(_data,
_subtype='octet-stream',	_encoder=email.encoders.encode_base64,
**_params)

Module:	email.mime.application

A	subclass	of	MIMENonMultipart,	the	MIMEApplication	class
is	 used	 to	 represent	 MIME	 message	 objects	 of	 major	 type
application.	_data	is	a	string	containing	the	raw	byte	data.	Optional
_subtype	specifies	the	MIME	subtype	and	defaults	to	octet-stream.

Optional	_encoder	is	a	callable	(i.e.	function)	which	will	perform	the
actual	 encoding	of	 the	data	 for	 transport.	This	 callable	 takes	 one
argument,	which	is	the	MIMEApplication	instance.	It	should	use
get_payload()	and	set_payload()	to	change	the	payload	to
encoded	form.	It	should	also	add	any	Content-Transfer-Encoding	or
other	 headers	 to	 the	 message	 object	 as	 necessary.	 The	 default
encoding	 is	base64.	See	the	email.encoders	module	 for	a	 list
of	the	built-in	encoders.

_params	are	passed	straight	through	to	the	base	class	constructor.

class	email.mime.audio.MIMEAudio(_audiodata,
_subtype=None,	_encoder=email.encoders.encode_base64,
**_params)

Module:	email.mime.audio

A	subclass	of	MIMENonMultipart,	the	MIMEAudio	class	is	used
to	create	MIME	message	objects	of	major	 type	audio.	_audiodata
is	 a	 string	 containing	 the	 raw	 audio	 data.	 If	 this	 data	 can	 be
decoded	 by	 the	 standard	 Python	 module	 sndhdr,	 then	 the
subtype	will	be	automatically	included	in	the	Content-Type	header.
Otherwise	 you	 can	 explicitly	 specify	 the	 audio	 subtype	 via	 the
_subtype	 argument.	 If	 the	minor	 type	 could	 not	 be	 guessed	 and
_subtype	was	not	given,	then	TypeError	is	raised.

Optional	_encoder	is	a	callable	(i.e.	function)	which	will	perform	the
actual	encoding	of	the	audio	data	for	transport.	This	callable	takes
one	 argument,	 which	 is	 the	 MIMEAudio	 instance.	 It	 should	 use
get_payload()	and	set_payload()	to	change	the	payload	to
encoded	form.	It	should	also	add	any	Content-Transfer-Encoding	or
other	 headers	 to	 the	 message	 object	 as	 necessary.	 The	 default
encoding	 is	base64.	See	the	email.encoders	module	 for	a	 list
of	the	built-in	encoders.

_params	are	passed	straight	through	to	the	base	class	constructor.

class	email.mime.image.MIMEImage(_imagedata,
_subtype=None,	_encoder=email.encoders.encode_base64,
**_params)

Module:	email.mime.image

A	subclass	of	MIMENonMultipart,	the	MIMEImage	class	is	used
to	create	MIME	message	objects	of	major	type	image.	_imagedata
is	 a	 string	 containing	 the	 raw	 image	 data.	 If	 this	 data	 can	 be
decoded	 by	 the	 standard	 Python	 module	 imghdr,	 then	 the
subtype	will	be	automatically	included	in	the	Content-Type	header.
Otherwise	 you	 can	 explicitly	 specify	 the	 image	 subtype	 via	 the
_subtype	 argument.	 If	 the	minor	 type	 could	 not	 be	 guessed	 and

_subtype	was	not	given,	then	TypeError	is	raised.

Optional	_encoder	is	a	callable	(i.e.	function)	which	will	perform	the
actual	encoding	of	the	image	data	for	transport.	This	callable	takes
one	 argument,	 which	 is	 the	 MIMEImage	 instance.	 It	 should	 use
get_payload()	and	set_payload()	to	change	the	payload	to
encoded	form.	It	should	also	add	any	Content-Transfer-Encoding	or
other	 headers	 to	 the	 message	 object	 as	 necessary.	 The	 default
encoding	 is	base64.	See	the	email.encoders	module	 for	a	 list
of	the	built-in	encoders.

_params	are	passed	straight	through	to	the	MIMEBase	constructor.

class	email.mime.message.MIMEMessage(_msg,
_subtype='rfc822')

Module:	email.mime.message

A	 subclass	 of	 MIMENonMultipart,	 the	 MIMEMessage	 class	 is
used	to	create	MIME	objects	of	main	type	message.	_msg	is	used
as	 the	payload,	and	must	be	an	 instance	of	class	Message	 (or	a
subclass	thereof),	otherwise	a	TypeError	is	raised.

Optional	_subtype	sets	 the	subtype	of	 the	message;	 it	defaults	 to
rfc822.

class	email.mime.text.MIMEText(_text,	_subtype='plain',
_charset=None)

Module:	email.mime.text

A	subclass	of	MIMENonMultipart,	 the	MIMEText	class	 is	used
to	create	MIME	objects	of	major	type	text.	_text	is	the	string	for	the
payload.	_subtype	is	the	minor	type	and	defaults	to	plain.	_charset
is	the	character	set	of	the	text	and	is	passed	as	an	argument	to	the

MIMENonMultipart	 constructor;	 it	 defaults	 to	 us-ascii	 if	 the
string	contains	only	ascii	codepoints,	and	utf-8	otherwise.

Unless	 the	 _charset	 argument	 is	 explicitly	 set	 to	 None,	 the
MIMEText	 object	 created	 will	 have	 both	 a	 Content-Type	 header
with	 a	 charset	 parameter,	 and	 a	 Content-Transfer-Endcoding
header.	This	means	that	a	subsequent	set_payload	call	will	not
result	 in	 an	 encoded	 payload,	 even	 if	 a	 charset	 is	 passed	 in	 the
set_payload	command.	You	can	“reset”	this	behavior	by	deleting
the	 Content-Transfer-Encoding	 header,	 after	 which	 a
set_payload	call	will	automatically	encode	the	new	payload	(and
add	a	new	Content-Transfer-Encoding	header).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.8.	email.header:
Internationalized	headers
RFC	 2822	 is	 the	 base	 standard	 that	 describes	 the	 format	 of	 email
messages.	 It	 derives	 from	 the	 older	RFC	822	 standard	 which	 came
into	 widespread	 use	 at	 a	 time	 when	 most	 email	 was	 composed	 of
ASCII	 characters	only.	RFC	2822	 is	 a	 specification	written	assuming
email	contains	only	7-bit	ASCII	characters.

Of	 course,	 as	 email	 has	 been	 deployed	 worldwide,	 it	 has	 become
internationalized,	such	 that	 language	specific	character	sets	can	now
be	 used	 in	 email	 messages.	 The	 base	 standard	 still	 requires	 email
messages	 to	 be	 transferred	 using	 only	 7-bit	 ASCII	 characters,	 so	 a
slew	 of	 RFCs	 have	 been	 written	 describing	 how	 to	 encode	 email
containing	 non-ASCII	 characters	 into	 RFC	 2822-compliant	 format.
These	 RFCs	 include	 RFC	 2045,	 RFC	 2046,	 RFC	 2047,	 and	 RFC
2231.	 The	 email	 package	 supports	 these	 standards	 in	 its
email.header	and	email.charset	modules.

If	you	want	to	include	non-ASCII	characters	in	your	email	headers,	say
in	 the	 Subject	 or	 To	 fields,	 you	 should	 use	 the	 Header	 class	 and
assign	 the	 field	 in	 the	 Message	 object	 to	 an	 instance	 of	 Header
instead	of	using	a	string	for	the	header	value.	Import	the	Header	class
from	the	email.header	module.	For	example:

>>>	from	email.message	import	Message

>>>	from	email.header	import	Header

>>>	msg	=	Message()

>>>	h	=	Header('p\xf6stal',	'iso-8859-1')

>>>	msg['Subject']	=	h

>>>	msg.as_string()

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2045.html
http://tools.ietf.org/html/rfc2046.html
http://tools.ietf.org/html/rfc2047.html
http://tools.ietf.org/html/rfc2231.html

'Subject:	=?iso-8859-1?q?p=F6stal?=\n\n'

Notice	here	how	we	wanted	 the	Subject	 field	 to	contain	a	non-ASCII
character?	We	did	this	by	creating	a	Header	instance	and	passing	in
the	 character	 set	 that	 the	 byte	 string	 was	 encoded	 in.	 When	 the
subsequent	 Message	 instance	 was	 flattened,	 the	 Subject	 field	 was
properly	RFC	2047	 encoded.	MIME-aware	mail	 readers	would	 show
this	header	using	the	embedded	ISO-8859-1	character.

Here	is	the	Header	class	description:

class	email.header.Header(s=None,	charset=None,
maxlinelen=None,	header_name=None,	continuation_ws='	',
errors='strict')

Create	 a	 MIME-compliant	 header	 that	 can	 contain	 strings	 in
different	character	sets.

Optional	s	is	the	initial	header	value.	If	None	(the	default),	the	initial
header	 value	 is	not	 set.	You	can	 later	append	 to	 the	header	with
append()	method	calls.	s	may	be	an	instance	of	bytes	or	str,
but	see	the	append()	documentation	for	semantics.

Optional	charset	serves	two	purposes:	it	has	the	same	meaning	as
the	charset	 argument	 to	 the	 append()	 method.	 It	 also	 sets	 the
default	character	set	 for	all	subsequent	append()	calls	 that	omit
the	charset	argument.	 If	charset	 is	not	provided	 in	 the	constructor
(the	default),	the	us-ascii	character	set	is	used	both	as	s‘s	initial
charset	and	as	the	default	for	subsequent	append()	calls.

The	maximum	line	length	can	be	specified	explicitly	via	maxlinelen.
For	splitting	the	first	line	to	a	shorter	value	(to	account	for	the	field
header	which	isn’t	included	in	s,	e.g.	Subject)	pass	in	the	name	of
the	 field	 in	 header_name.	 The	 default	maxlinelen	 is	 76,	 and	 the

http://tools.ietf.org/html/rfc2047.html

default	value	for	header_name	is	None,	meaning	it	is	not	taken	into
account	for	the	first	line	of	a	long,	split	header.

Optional	 continuation_ws	 must	 be	 RFC	 2822-compliant	 folding
whitespace,	and	is	usually	either	a	space	or	a	hard	tab	character.
This	 character	 will	 be	 prepended	 to	 continuation	 lines.
continuation_ws	defaults	to	a	single	space	character.

Optional	 errors	 is	 passed	 straight	 through	 to	 the	 append()
method.

append(s,	charset=None,	errors='strict')
Append	the	string	s	to	the	MIME	header.

Optional	charset,	 if	given,	should	be	a	Charset	instance	(see
email.charset)	or	the	name	of	a	character	set,	which	will	be
converted	to	a	Charset	instance.	A	value	of	None	(the	default)
means	that	the	charset	given	in	the	constructor	is	used.

s	may	be	an	 instance	of	bytes	or	str.	 If	 it	 is	an	 instance	of
bytes,	 then	charset	 is	 the	encoding	of	 that	byte	string,	and	a
UnicodeError	will	be	 raised	 if	 the	string	cannot	be	decoded
with	that	character	set.

If	s	 is	an	instance	of	str,	then	charset	 is	a	hint	specifying	the
character	set	of	the	characters	in	the	string.

In	either	case,	when	producing	an	RFC	2822-compliant	header
using	RFC	 2047	 rules,	 the	 string	 will	 be	 encoded	 using	 the
output	 codec	 of	 the	 charset.	 If	 the	 string	 cannot	 be	 encoded
using	the	output	codec,	a	UnicodeError	will	be	raised.

Optional	errors	is	passed	as	the	errors	argument	to	the	decode

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html

call	if	s	is	a	byte	string.

encode(splitchars=';,	\t',	maxlinelen=None,	linesep='\n')
Encode	 a	 message	 header	 into	 an	 RFC-compliant	 format,
possibly	wrapping	long	lines	and	encapsulating	non-ASCII	parts
in	base64	or	quoted-printable	encodings.

Optional	 splitchars	 is	 a	 string	 containing	 characters	 which
should	 be	 given	 extra	 weight	 by	 the	 splitting	 algorithm	 during
normal	header	wrapping.	This	 is	 in	very	rough	support	of	RFC
2822‘s	‘higher	level	syntactic	breaks’:	split	points	preceded	by	a
splitchar	are	preferred	during	 line	splitting,	with	 the	characters
preferred	in	the	order	in	which	they	appear	in	the	string.	Space
and	 tab	 may	 be	 included	 in	 the	 string	 to	 indicate	 whether
preference	should	be	given	to	one	over	the	other	as	a	split	point
when	 other	 split	 chars	 do	 not	 appear	 in	 the	 line	 being	 split.
Splitchars	does	not	affect	RFC	2047	encoded	lines.

maxlinelen,	 if	 given,	 overrides	 the	 instance’s	 value	 for	 the
maximum	line	length.

linesep	 specifies	 the	 characters	 used	 to	 separate	 the	 lines	 of
the	folded	header.	It	defaults	to	the	most	useful	value	for	Python
application	 code	 (\n),	 but	 \r\n	 can	 be	 specified	 in	 order	 to
produce	headers	with	RFC-compliant	line	separators.

Changed	in	version	3.2:	Added	the	linesep	argument.

The	Header	class	also	provides	a	number	of	methods	to	support
standard	operators	and	built-in	functions.

__str__()
Returns	an	approximation	of	the	Header	as	a	string,	using	an

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2047.html

unlimited	line	length.	All	pieces	are	converted	to	unicode	using
the	 specified	 encoding	 and	 joined	 together	 appropriately.	 Any
pieces	 with	 a	 charset	 of	 'unknown-8bit'	 are	 decoded	 as
ASCII	using	the	'replace'	error	handler.

Changed	 in	 version	 3.2:	Added	 handling	 for	 the	 'unknown-
8bit'	charset.

__eq__(other)
This	method	allows	you	to	compare	two	Header	 instances	for
equality.

__ne__(other)
This	method	allows	you	to	compare	two	Header	 instances	for
inequality.

The	 email.header	 module	 also	 provides	 the	 following	 convenient
functions.

email.header.decode_header(header)
Decode	a	message	header	value	without	converting	the	character
set.	The	header	value	is	in	header.

This	 function	 returns	 a	 list	 of	 (decoded_string,	 charset)
pairs	containing	each	of	the	decoded	parts	of	the	header.	charset	is
None	for	non-encoded	parts	of	the	header,	otherwise	a	lower	case
string	 containing	 the	 name	 of	 the	 character	 set	 specified	 in	 the
encoded	string.

Here’s	an	example:

>>>	from	email.header	import	decode_header

>>>	decode_header('=?iso-8859-1?q?p=F6stal?=')

[(b'p\xf6stal',	'iso-8859-1')]

email.header.make_header(decoded_seq,	maxlinelen=None,
header_name=None,	continuation_ws='	')

Create	a	Header	instance	from	a	sequence	of	pairs	as	returned	by
decode_header().

decode_header()	 takes	 a	 header	 value	 string	 and	 returns	 a
sequence	of	pairs	of	 the	format	(decoded_string,	charset)
where	charset	is	the	name	of	the	character	set.

This	 function	 takes	one	of	 those	sequence	of	pairs	and	 returns	a
Header	 instance.	 Optional	 maxlinelen,	 header_name,	 and
continuation_ws	are	as	in	the	Header	constructor.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.9.	email.charset:
Representing	character	sets
This	module	provides	a	class	Charset	for	representing	character	sets
and	 character	 set	 conversions	 in	 email	 messages,	 as	 well	 as	 a
character	 set	 registry	 and	 several	 convenience	 methods	 for
manipulating	 this	 registry.	 Instances	of	Charset	are	used	 in	several
other	modules	within	the	email	package.

Import	this	class	from	the	email.charset	module.

class
email.charset.Charset(input_charset=DEFAULT_CHARSET)

Map	character	sets	to	their	email	properties.

This	class	provides	information	about	the	requirements	imposed	on
email	 for	 a	 specific	 character	 set.	 It	 also	 provides	 convenience
routines	 for	 converting	 between	 character	 sets,	 given	 the
availability	of	the	applicable	codecs.	Given	a	character	set,	it	will	do
its	best	 to	provide	 information	on	how	to	use	that	character	set	 in
an	email	message	in	an	RFC-compliant	way.

Certain	 character	 sets	must	 be	 encoded	with	 quoted-printable	 or
base64	when	used	 in	email	 headers	or	bodies.	Certain	 character
sets	must	be	converted	outright,	and	are	not	allowed	in	email.

Optional	input_charset	 is	as	described	below;	 it	 is	always	coerced
to	 lower	 case.	 After	 being	 alias	 normalized	 it	 is	 also	 used	 as	 a
lookup	 into	 the	 registry	 of	 character	 sets	 to	 find	 out	 the	 header
encoding,	body	encoding,	and	output	conversion	codec	to	be	used
for	the	character	set.	For	example,	 if	 input_charset	 is	iso-8859-

1,	then	headers	and	bodies	will	be	encoded	using	quoted-printable
and	 no	 output	 conversion	 codec	 is	 necessary.	 If	 input_charset	 is
euc-jp,	then	headers	will	be	encoded	with	base64,	bodies	will	not
be	 encoded,	 but	 output	 text	 will	 be	 converted	 from	 the	 euc-jp
character	set	to	the	iso-2022-jp	character	set.

Charset	instances	have	the	following	data	attributes:

input_charset

The	 initial	 character	 set	 specified.	 Common	 aliases	 are
converted	 to	 their	 official	 email	 names	 (e.g.	 latin_1	 is
converted	to	iso-8859-1).	Defaults	to	7-bit	us-ascii.

header_encoding

If	the	character	set	must	be	encoded	before	it	can	be	used	in	an
email	 header,	 this	 attribute	 will	 be	 set	 to	 Charset.QP	 (for
quoted-printable),	Charset.BASE64	(for	base64	encoding),	or
Charset.SHORTEST	 for	 the	 shortest	 of	 QP	 or	 BASE64
encoding.	Otherwise,	it	will	be	None.

body_encoding

Same	as	header_encoding,	but	describes	the	encoding	for	 the
mail	message’s	 body,	which	 indeed	may	 be	 different	 than	 the
header	 encoding.	 Charset.SHORTEST	 is	 not	 allowed	 for
body_encoding.

output_charset

Some	 character	 sets	 must	 be	 converted	 before	 they	 can	 be
used	in	email	headers	or	bodies.	 If	the	 input_charset	 is	one	of
them,	 this	 attribute	will	 contain	 the	 name	 of	 the	 character	 set
output	will	be	converted	to.	Otherwise,	it	will	be	None.

input_codec

The	 name	 of	 the	 Python	 codec	 used	 to	 convert	 the
input_charset	to	Unicode.	If	no	conversion	codec	is	necessary,
this	attribute	will	be	None.

output_codec

The	name	of	the	Python	codec	used	to	convert	Unicode	to	the
output_charset.	 If	 no	 conversion	 codec	 is	 necessary,	 this
attribute	will	have	the	same	value	as	the	input_codec.

Charset	instances	also	have	the	following	methods:

get_body_encoding()
Return	the	content	transfer	encoding	used	for	body	encoding.

This	 is	 either	 the	 string	 quoted-printable	 or	 base64
depending	 on	 the	 encoding	 used,	 or	 it	 is	 a	 function,	 in	 which
case	 you	 should	 call	 the	 function	with	 a	 single	 argument,	 the
Message	 object	 being	 encoded.	 The	 function	 should	 then	 set
the	 Content-Transfer-Encoding	 header	 itself	 to	 whatever	 is
appropriate.

Returns	 the	 string	 quoted-printable	 if	 body_encoding	 is
QP,	 returns	 the	 string	 base64	 if	 body_encoding	 is	 BASE64,
and	returns	the	string	7bit	otherwise.

get_output_charset()
Return	the	output	character	set.

This	 is	 the	 output_charset	 attribute	 if	 that	 is	 not	 None,
otherwise	it	is	input_charset.

header_encode(string)

Header-encode	the	string	string.

The	type	of	encoding	(base64	or	quoted-printable)	will	be	based
on	the	header_encoding	attribute.

header_encode_lines(string,	maxlengths)
Header-encode	a	string	by	converting	it	first	to	bytes.

This	is	similar	to	header_encode()	except	that	the	string	is	fit
into	 maximum	 line	 lengths	 as	 given	 by	 the	 argument
maxlengths,	which	must	be	an	 iterator:	each	element	 returned
from	this	iterator	will	provide	the	next	maximum	line	length.

body_encode(string)
Body-encode	the	string	string.

The	type	of	encoding	(base64	or	quoted-printable)	will	be	based
on	the	body_encoding	attribute.

The	Charset	class	also	provides	a	number	of	methods	to	support
standard	operations	and	built-in	functions.

__str__()
Returns	 input_charset	 as	 a	 string	 coerced	 to	 lower	 case.
__repr__()	is	an	alias	for	__str__().

__eq__(other)
This	method	allows	you	to	compare	two	Charset	instances	for
equality.

__ne__(other)
This	method	allows	you	to	compare	two	Charset	instances	for
inequality.

The	email.charset	module	also	provides	the	following	functions	for
adding	 new	 entries	 to	 the	 global	 character	 set,	 alias,	 and	 codec
registries:

email.charset.add_charset(charset,	header_enc=None,
body_enc=None,	output_charset=None)

Add	character	properties	to	the	global	registry.

charset	is	the	input	character	set,	and	must	be	the	canonical	name
of	a	character	set.

Optional	 header_enc	 and	 body_enc	 is	 either	 Charset.QP	 for
quoted-printable,	 Charset.BASE64	 for	 base64	 encoding,
Charset.SHORTEST	 for	 the	 shortest	 of	 quoted-printable	 or
base64	 encoding,	 or	 None	 for	 no	 encoding.	 SHORTEST	 is	 only
valid	for	header_enc.	The	default	is	None	for	no	encoding.

Optional	output_charset	is	the	character	set	that	the	output	should
be	in.	Conversions	will	proceed	from	input	charset,	 to	Unicode,	 to
the	 output	 charset	 when	 the	 method	 Charset.convert()	 is
called.	 The	 default	 is	 to	 output	 in	 the	 same	 character	 set	 as	 the
input.

Both	 input_charset	and	output_charset	must	have	Unicode	codec
entries	 in	 the	 module’s	 character	 set-to-codec	 mapping;	 use
add_codec()	 to	 add	 codecs	 the	module	 does	 not	 know	 about.
See	the	codecs	module’s	documentation	for	more	information.

The	 global	 character	 set	 registry	 is	 kept	 in	 the	 module	 global
dictionary	CHARSETS.

email.charset.add_alias(alias,	canonical)
Add	a	character	set	alias.	alias	 is	 the	alias	name,	e.g.	latin-1.

canonical	is	the	character	set’s	canonical	name,	e.g.	iso-8859-1.

The	 global	 charset	 alias	 registry	 is	 kept	 in	 the	 module	 global
dictionary	ALIASES.

email.charset.add_codec(charset,	codecname)
Add	a	codec	that	map	characters	in	the	given	character	set	to	and
from	Unicode.

charset	is	the	canonical	name	of	a	character	set.	codecname	is	the
name	of	a	Python	codec,	as	appropriate	for	 the	second	argument
to	the	str‘s	encode()	method

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.10.	email.encoders:
Encoders
When	 creating	 Message	 objects	 from	 scratch,	 you	 often	 need	 to
encode	the	payloads	for	transport	through	compliant	mail	servers.	This
is	 especially	 true	 for	 image/*	 and	 text/*	 type	 messages	 containing
binary	data.

The	 email	 package	 provides	 some	 convenient	 encodings	 in	 its
encoders	 module.	 These	 encoders	 are	 actually	 used	 by	 the
MIMEAudio	 and	 MIMEImage	 class	 constructors	 to	 provide	 default
encodings.	 All	 encoder	 functions	 take	 exactly	 one	 argument,	 the
message	object	 to	encode.	They	usually	extract	 the	payload,	encode
it,	 and	 reset	 the	 payload	 to	 this	 newly	 encoded	 value.	 They	 should
also	set	the	Content-Transfer-Encoding	header	as	appropriate.

Note	that	these	functions	are	not	meaningful	for	a	multipart	message.
They	must	be	applied	 to	 individual	 subparts	 instead,	and	will	 raise	a
TypeError	if	passed	a	message	whose	type	is	multipart.

Here	are	the	encoding	functions	provided:

email.encoders.encode_quopri(msg)
Encodes	 the	 payload	 into	 quoted-printable	 form	 and	 sets	 the
Content-Transfer-Encoding	 header	 to	 quoted-printable	 [1].
This	 is	 a	 good	 encoding	 to	 use	 when	 most	 of	 your	 payload	 is
normal	printable	data,	but	contains	a	few	unprintable	characters.

email.encoders.encode_base64(msg)
Encodes	 the	 payload	 into	 base64	 form	 and	 sets	 the	 Content-

Transfer-Encoding	header	 to	base64.	This	 is	a	good	encoding	 to
use	 when	 most	 of	 your	 payload	 is	 unprintable	 data	 since	 it	 is	 a
more	 compact	 form	 than	 quoted-printable.	 The	 drawback	 of
base64	encoding	is	that	it	renders	the	text	non-human	readable.

email.encoders.encode_7or8bit(msg)
This	doesn’t	actually	modify	the	message’s	payload,	but	it	does	set
the	Content-Transfer-Encoding	header	 to	either	7bit	or	8bit	 as
appropriate,	based	on	the	payload	data.

email.encoders.encode_noop(msg)
This	 does	 nothing;	 it	 doesn’t	 even	 set	 the	 Content-Transfer-
Encoding	header.

Footnotes

[1] Note	that	encoding	with	encode_quopri()	also	encodes	all
tabs	and	space	characters	in	the	data.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.11.	email.errors:
Exception	and	Defect	classes
The	 following	 exception	 classes	 are	 defined	 in	 the	 email.errors
module:

exception	email.errors.MessageError
This	 is	 the	base	class	 for	all	 exceptions	 that	 the	email	package
can	 raise.	 It	 is	 derived	 from	 the	 standard	 Exception	 class	 and
defines	no	additional	methods.

exception	email.errors.MessageParseError
This	is	the	base	class	for	exceptions	raised	by	the	Parser	class.	It
is	derived	from	MessageError.

exception	email.errors.HeaderParseError
Raised	under	 some	error	 conditions	when	parsing	 the	RFC	2822
headers	 of	 a	 message,	 this	 class	 is	 derived	 from
MessageParseError.	It	can	be	raised	from	the	Parser.parse
or	Parser.parsestr	methods.

Situations	 where	 it	 can	 be	 raised	 include	 finding	 an	 envelope
header	after	 the	first	RFC	2822	header	of	 the	message,	 finding	a
continuation	 line	 before	 the	 first	 RFC	 2822	 header	 is	 found,	 or
finding	 a	 line	 in	 the	 headers	 which	 is	 neither	 a	 header	 or	 a
continuation	line.

exception	email.errors.BoundaryError
Raised	under	 some	error	 conditions	when	parsing	 the	RFC	2822
headers	 of	 a	 message,	 this	 class	 is	 derived	 from

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

MessageParseError.	It	can	be	raised	from	the	Parser.parse
or	Parser.parsestr	methods.

Situations	where	it	can	be	raised	include	not	being	able	to	find	the
starting	 or	 terminating	 boundary	 in	 a	multipart/*	 message	 when
strict	parsing	is	used.

exception	email.errors.MultipartConversionError
Raised	 when	 a	 payload	 is	 added	 to	 a	 Message	 object	 using
add_payload(),	 but	 the	 payload	 is	 already	 a	 scalar	 and	 the
message’s	 Content-Type	 main	 type	 is	 not	 either	 multipart	 or
missing.	 MultipartConversionError	 multiply	 inherits	 from
MessageError	and	the	built-in	TypeError.

Since	Message.add_payload()	is	deprecated,	this	exception	is
rarely	raised	in	practice.	However	the	exception	may	also	be	raised
if	the	attach()	method	is	called	on	an	instance	of	a	class	derived
from	MIMENonMultipart	(e.g.	MIMEImage).

Here’s	 the	 list	 of	 the	 defects	 that	 the	 FeedParser	 can	 find	 while
parsing	messages.	Note	 that	 the	 defects	 are	 added	 to	 the	message
where	 the	problem	was	 found,	 so	 for	 example,	 if	 a	message	nested
inside	 a	 multipart/alternative	 had	 a	 malformed	 header,	 that	 nested
message	 object	 would	 have	 a	 defect,	 but	 the	 containing	 messages
would	not.

All	 defect	 classes	 are	 subclassed	 from
email.errors.MessageDefect,	but	this	class	is	not	an	exception!

NoBoundaryInMultipartDefect	–	A	message	claimed	 to	be
a	multipart,	but	had	no	boundary	parameter.

StartBoundaryNotFoundDefect	 –	 The	 start	 boundary

claimed	in	the	Content-Type	header	was	never	found.

CloseBoundaryNotFoundDefect	 –	 A	 start	 boundary	 was
found,	but	no	corresponding	close	boundary	was	ever	found.

New	in	version	3.3.

FirstHeaderLineIsContinuationDefect	 –	 The	 message
had	a	continuation	line	as	its	first	header	line.

MisplacedEnvelopeHeaderDefect	 -	 A	 “Unix	 From”	 header
was	found	in	the	middle	of	a	header	block.

MissingHeaderBodySeparatorDefect	 -	 A	 line	 was	 found
while	 parsing	 headers	 that	 had	 no	 leading	 white	 space	 but
contained	 no	 ‘:’.	 Parsing	 continues	 assuming	 that	 the	 line
represents	the	first	line	of	the	body.

New	in	version	3.3.

MalformedHeaderDefect	 –	 A	 header	 was	 found	 that	 was
missing	a	colon,	or	was	otherwise	malformed.

Deprecated	since	version	3.3:	This	defect	has	not	been	used	for
several	Python	versions.

MultipartInvariantViolationDefect	 –	 A	 message
claimed	to	be	a	multipart,	but	no	subparts	were	found.	Note	 that
when	a	message	has	 this	defect,	 its	 is_multipart()	method
may	 return	 false	 even	 though	 its	 content	 type	 claims	 to	 be
multipart.

InvalidBase64PaddingDefect	 –	When	 decoding	 a	 block	 of

base64	 enocded	 bytes,	 the	 padding	 was	 not	 correct.	 Enough
padding	 is	 added	 to	 perform	 the	 decode,	 but	 the	 resulting
decoded	bytes	may	be	invalid.

InvalidBase64CharactersDefect	–	When	decoding	a	block
of	base64	enocded	bytes,	characters	outside	the	base64	alphebet
were	encountered.	The	characters	are	 ignored,	but	 the	 resulting
decoded	bytes	may	be	invalid.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.12.	email.utils:
Miscellaneous	utilities
There	 are	 several	 useful	 utilities	 provided	 in	 the	 email.utils
module:

email.utils.quote(str)
Return	 a	 new	 string	 with	 backslashes	 in	 str	 replaced	 by	 two
backslashes,	 and	 double	 quotes	 replaced	 by	 backslash-double
quote.

email.utils.unquote(str)
Return	a	new	string	which	is	an	unquoted	version	of	str.	If	str	ends
and	begins	with	double	quotes,	they	are	stripped	off.	Likewise	if	str
ends	and	begins	with	angle	brackets,	they	are	stripped	off.

email.utils.parseaddr(address)
Parse	 address	 –	 which	 should	 be	 the	 value	 of	 some	 address-
containing	 field	 such	 as	To	 or	Cc	 –	 into	 its	 constituent	 realname
and	email	address	parts.	Returns	a	tuple	of	that	information,	unless
the	parse	fails,	in	which	case	a	2-tuple	of	('',	'')	is	returned.

email.utils.formataddr(pair,	charset='utf-8')
The	 inverse	 of	 parseaddr(),	 this	 takes	 a	 2-tuple	 of	 the	 form
(realname,	 email_address)	 and	 returns	 the	 string	 value
suitable	 for	a	To	or	Cc	header.	 If	 the	 first	element	of	pair	 is	 false,
then	the	second	element	is	returned	unmodified.

Optional	charset	 is	 the	character	set	 that	will	be	used	 in	 the	RFC
2047	 encoding	 of	 the	 realname	 if	 the	 realname	 contains	 non-

http://tools.ietf.org/html/rfc2047.html

ASCII	 characters.	 Can	 be	 an	 instance	 of	 str	 or	 a	 Charset.
Defaults	to	utf-8.

Changed	in	version	3.3:	Added	the	charset	option.

email.utils.getaddresses(fieldvalues)
This	 method	 returns	 a	 list	 of	 2-tuples	 of	 the	 form	 returned	 by
parseaddr().	fieldvalues	is	a	sequence	of	header	field	values	as
might	 be	 returned	 by	 Message.get_all.	 Here’s	 a	 simple
example	that	gets	all	the	recipients	of	a	message:

from	email.utils	import	getaddresses

tos	=	msg.get_all('to',	[])

ccs	=	msg.get_all('cc',	[])

resent_tos	=	msg.get_all('resent-to',	[])

resent_ccs	=	msg.get_all('resent-cc',	[])

all_recipients	=	getaddresses(tos	+	ccs	+	resent_tos

email.utils.parsedate(date)
Attempts	 to	 parse	 a	 date	 according	 to	 the	 rules	 in	 RFC	 2822.
however,	 some	 mailers	 don’t	 follow	 that	 format	 as	 specified,	 so
parsedate()	 tries	 to	 guess	 correctly	 in	 such	 cases.	 date	 is	 a
string	 containing	 an	 RFC	 2822	 date,	 such	 as	 "Mon,	 20	 Nov
1995	 19:12:08	 -0500".	 If	 it	 succeeds	 in	 parsing	 the	 date,
parsedate()	 returns	 a	 9-tuple	 that	 can	 be	 passed	 directly	 to
time.mktime();	 otherwise	 None	 will	 be	 returned.	 Note	 that
indexes	6,	7,	and	8	of	the	result	tuple	are	not	usable.

email.utils.parsedate_tz(date)
Performs	 the	 same	 function	as	 parsedate(),	 but	 returns	 either
None	or	a	10-tuple;	 the	first	9	elements	make	up	a	tuple	that	can

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2822.html

be	passed	directly	to	time.mktime(),	and	the	tenth	is	the	offset
of	 the	 date’s	 timezone	 from	 UTC	 (which	 is	 the	 official	 term	 for
Greenwich	Mean	Time)	[1].	If	the	input	string	has	no	timezone,	the
last	element	of	the	tuple	returned	is	None.	Note	that	indexes	6,	7,
and	8	of	the	result	tuple	are	not	usable.

email.utils.parsedate_to_datetime(date)
The	inverse	of	format_datetime().	Performs	the	same	function
as	 parsedate(),	 but	 on	 success	 returns	 a	 datetime.	 If	 the
input	date	has	a	timezone	of	-0000,	the	datetime	will	be	a	naive
datetime,	 and	 if	 the	 date	 is	 conforming	 to	 the	 RFCs	 it	 will
represent	a	time	in	UTC	but	with	no	indication	of	the	actual	source
timezone	 of	 the	message	 the	 date	 comes	 from.	 If	 the	 input	 date
has	 any	 other	 valid	 timezone	 offset,	 the	 datetime	 will	 be	 an
aware	datetime	with	the	corresponding	a	timezone	tzinfo.

New	in	version	3.3.

email.utils.mktime_tz(tuple)
Turn	 a	 10-tuple	 as	 returned	 by	 parsedate_tz()	 into	 a	 UTC
timestamp.	It	the	timezone	item	in	the	tuple	is	None,	assume	local
time.	 Minor	 deficiency:	 mktime_tz()	 interprets	 the	 first	 8
elements	 of	 tuple	 as	 a	 local	 time	 and	 then	 compensates	 for	 the
timezone	difference.	This	may	yield	a	slight	error	around	changes
in	 daylight	 savings	 time,	 though	 not	 worth	 worrying	 about	 for
common	use.

email.utils.formatdate(timeval=None,	localtime=False,
usegmt=False)

Returns	a	date	string	as	per	RFC	2822,	e.g.:

Fri,	09	Nov	2001	01:08:47	-0000

http://tools.ietf.org/html/rfc2822.html

Optional	timeval	 if	given	is	a	floating	point	time	value	as	accepted
by	 time.gmtime()	 and	 time.localtime(),	 otherwise	 the
current	time	is	used.

Optional	localtime	is	a	flag	that	when	True,	interprets	timeval,	and
returns	 a	 date	 relative	 to	 the	 local	 timezone	 instead	 of	 UTC,
properly	 taking	 daylight	 savings	 time	 into	 account.	 The	 default	 is
False	meaning	UTC	is	used.

Optional	usegmt	 is	 a	 flag	 that	when	 True,	 outputs	 a	 date	 string
with	 the	 timezone	 as	 an	 ascii	 string	 GMT,	 rather	 than	 a	 numeric
-0000.	 This	 is	 needed	 for	 some	protocols	 (such	as	HTTP).	This
only	applies	when	localtime	is	False.	The	default	is	False.

email.utils.format_datetime(dt,	usegmt=False)
Like	formatdate,	but	the	input	is	a	datetime	instance.	If	 it	 is	a
naive	datetime,	it	is	assumed	to	be	“UTC	with	no	information	about
the	source	timezone”,	and	the	conventional	-0000	is	used	for	the
timezone.	If	 it	 is	an	aware	datetime,	 then	the	numeric	 timezone
offset	 is	 used.	 If	 it	 is	 an	 aware	 timezone	 with	 offset	 zero,	 then
usegmt	may	be	set	to	True,	in	which	case	the	string	GMT	is	used
instead	 of	 the	 numeric	 timezone	 offset.	 This	 provides	 a	 way	 to
generate	standards	conformant	HTTP	date	headers.

New	in	version	3.3.

email.utils.localtime(dt=None)
Return	 local	 time	 as	 an	 aware	 datetime	 object.	 If	 called	 without
arguments,	return	current	time.	Otherwise	dt	argument	should	be	a
datetime	 instance,	 and	 it	 is	 converted	 to	 the	 local	 time	 zone
according	to	the	system	time	zone	database.	If	dt	is	naive	(that	is,
dt.tzinfo	 is	 None),	 it	 is	 assumed	 to	 be	 in	 local	 time.	 In	 this

case,	 a	 positive	 or	 zero	 value	 for	 isdst	 causes	 localtime	 to
presume	 initially	 that	 summer	 time	 (for	 example,	 Daylight	 Saving
Time)	 is	 or	 is	 not	 (respectively)	 in	 effect	 for	 the	 specified	 time.	A
negative	 value	 for	 isdst	 causes	 the	 localtime	 to	 attempt	 to
divine	whether	summer	time	is	in	effect	for	the	specified	time.

New	in	version	3.3.

email.utils.make_msgid(idstring=None,	domain=None)
Returns	a	 string	 suitable	 for	an	RFC	2822-compliant	Message-ID
header.	Optional	idstring	if	given,	is	a	string	used	to	strengthen	the
uniqueness	of	 the	message	 id.	Optional	domain	 if	 given	 provides
the	 portion	 of	 the	 msgid	 after	 the	 ‘@’.	 The	 default	 is	 the	 local
hostname.	It	is	not	normally	necessary	to	override	this	default,	but
may	 be	 useful	 certain	 cases,	 such	 as	 a	 constructing	 distributed
system	that	uses	a	consistent	domain	name	across	multiple	hosts.

Changed	in	version	3.2:	Added	the	domain	keyword.

email.utils.decode_rfc2231(s)
Decode	the	string	s	according	to	RFC	2231.

email.utils.encode_rfc2231(s,	charset=None,
language=None)

Encode	the	string	s	according	to	RFC	2231.	Optional	charset	and
language,	if	given	is	the	character	set	name	and	language	name	to
use.	 If	neither	 is	given,	s	 is	 returned	as-is.	 If	charset	 is	 given	 but
language	 is	 not,	 the	 string	 is	 encoded	 using	 the	 empty	 string	 for
language.

email.utils.collapse_rfc2231_value(value,
errors='replace',	fallback_charset='us-ascii')

When	 a	 header	 parameter	 is	 encoded	 in	 RFC	 2231	 format,

http://tools.ietf.org/html/rfc2822.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html

Message.get_param	 may	 return	 a	 3-tuple	 containing	 the
character	 set,	 language,	 and	 value.
collapse_rfc2231_value()	 turns	 this	 into	 a	 unicode	 string.
Optional	 errors	 is	 passed	 to	 the	 errors	 argument	 of	 str‘s
encode()	 method;	 it	 defaults	 to	 'replace'.	 Optional
fallback_charset	specifies	the	character	set	to	use	if	the	one	in	the
RFC	 2231	 header	 is	 not	 known	 by	 Python;	 it	 defaults	 to	 'us-
ascii'.

For	 convenience,	 if	 the	 value	 passed	 to
collapse_rfc2231_value()	is	not	a	tuple,	it	should	be	a	string
and	it	is	returned	unquoted.

email.utils.decode_params(params)
Decode	 parameters	 list	 according	 to	 RFC	 2231.	 params	 is	 a
sequence	of	2-tuples	containing	elements	of	the	form	(content-
type,	string-value).

Footnotes

[1]

Note	that	the	sign	of	the	timezone	offset	is	the	opposite	of	the
sign	of	the	time.timezone	variable	for	the	same	timezone;
the	latter	variable	follows	the	POSIX	standard	while	this	module
follows	RFC	2822.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2231.html
http://tools.ietf.org/html/rfc2822.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.13.	email.iterators:
Iterators
Iterating	 over	 a	 message	 object	 tree	 is	 fairly	 easy	 with	 the
Message.walk	 method.	 The	 email.iterators	 module	 provides
some	useful	higher	level	iterations	over	message	object	trees.

email.iterators.body_line_iterator(msg,
decode=False)

This	 iterates	 over	 all	 the	 payloads	 in	 all	 the	 subparts	 of	 msg,
returning	 the	 string	 payloads	 line-by-line.	 It	 skips	 over	 all	 the
subpart	headers,	and	it	skips	over	any	subpart	with	a	payload	that
isn’t	 a	Python	 string.	 This	 is	 somewhat	 equivalent	 to	 reading	 the
flat	 text	 representation	 of	 the	 message	 from	 a	 file	 using
readline(),	skipping	over	all	the	intervening	headers.

Optional	decode	is	passed	through	to	Message.get_payload.

email.iterators.typed_subpart_iterator(msg,
maintype='text',	subtype=None)

This	 iterates	 over	 all	 the	 subparts	 of	msg,	 returning	 only	 those
subparts	 that	 match	 the	 MIME	 type	 specified	 by	 maintype	 and
subtype.

Note	 that	subtype	 is	 optional;	 if	 omitted,	 then	 subpart	MIME	 type
matching	is	done	only	with	the	main	type.	maintype	is	optional	too;
it	defaults	to	text.

Thus,	 by	 default	 typed_subpart_iterator()	 returns	 each
subpart	that	has	a	MIME	type	of	text/*.

The	following	function	has	been	added	as	a	useful	debugging	tool.	 It
should	not	be	considered	part	of	the	supported	public	interface	for	the
package.

email.iterators._structure(msg,	fp=None,	level=0,
include_default=False)

Prints	 an	 indented	 representation	 of	 the	 content	 types	 of	 the
message	object	structure.	For	example:

>>>	msg	=	email.message_from_file(somefile)

>>>	_structure(msg)

multipart/mixed

				text/plain

				text/plain

				multipart/digest

								message/rfc822

												text/plain

								message/rfc822

												text/plain

								message/rfc822

												text/plain

								message/rfc822

												text/plain

								message/rfc822

												text/plain

				text/plain

Optional	 fp	 is	 a	 file-like	 object	 to	 print	 the	 output	 to.	 It	 must	 be
suitable	 for	 Python’s	 print()	 function.	 level	 is	 used	 internally.
include_default,	if	true,	prints	the	default	type	as	well.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

http://www.python.org/

19.1.14.	email:	Examples

Here	are	a	few	examples	of	how	to	use	the	email	package	to	read,
write,	 and	 send	 simple	 email	 messages,	 as	 well	 as	 more	 complex
MIME	messages.

First,	let’s	see	how	to	create	and	send	a	simple	text	message:

#	Import	smtplib	for	the	actual	sending	function

import	smtplib

#	Import	the	email	modules	we'll	need

from	email.mime.text	import	MIMEText

#	Open	a	plain	text	file	for	reading.		For	this	example,	assume	that

#	the	text	file	contains	only	ASCII	characters.

fp	=	open(textfile,	'rb')

#	Create	a	text/plain	message

msg	=	MIMEText(fp.read())

fp.close()

#	me	==	the	sender's	email	address

#	you	==	the	recipient's	email	address

msg['Subject']	=	'The	contents	of	%s'	%	textfile

msg['From']	=	me

msg['To']	=	you

#	Send	the	message	via	our	own	SMTP	server.

s	=	smtplib.SMTP('localhost')

s.send_message(msg)

s.quit()

And	 parsing	 RFC822	 headers	 can	 easily	 be	 done	 by	 the

parse(filename)	 or	 parsestr(message_as_string)	 methods	 of	 the
Parser()	class:

#	Import	the	email	modules	we'll	need

from	email.parser	import	Parser

#		If	the	e-mail	headers	are	in	a	file,	uncomment	this	line:

#headers	=	Parser().parse(open(messagefile,	'r'))

#		Or	for	parsing	headers	in	a	string,	use:

headers	=	Parser().parsestr('From:	<user@example.com>

								'To:	<someone_else@example.com>\n'

								'Subject:	Test	message\n'

								'\n'

								'Body	would	go	here\n')

#		Now	the	header	items	can	be	accessed	as	a	dictionary:

print('To:	%s'	%	headers['to'])

print('From:	%s'	%	headers['from'])

print('Subject:	%s'	%	headers['subject'])

Here’s	 an	 example	 of	 how	 to	 send	 a	 MIME	 message	 containing	 a
bunch	of	family	pictures	that	may	be	residing	in	a	directory:

#	Import	smtplib	for	the	actual	sending	function

import	smtplib

#	Here	are	the	email	package	modules	we'll	need

from	email.mime.image	import	MIMEImage

from	email.mime.multipart	import	MIMEMultipart

COMMASPACE	=	',	'

#	Create	the	container	(outer)	email	message.

msg	=	MIMEMultipart()

msg['Subject']	=	'Our	family	reunion'

#	me	==	the	sender's	email	address

#	family	=	the	list	of	all	recipients'	email	addresses

msg['From']	=	me

msg['To']	=	COMMASPACE.join(family)

msg.preamble	=	'Our	family	reunion'

#	Assume	we	know	that	the	image	files	are	all	in	PNG	format

for	file	in	pngfiles:

				#	Open	the	files	in	binary	mode.		Let	the	MIMEImage	class	automatically

				#	guess	the	specific	image	type.

				fp	=	open(file,	'rb')

				img	=	MIMEImage(fp.read())

				fp.close()

				msg.attach(img)

#	Send	the	email	via	our	own	SMTP	server.

s	=	smtplib.SMTP('localhost')

s.send_message(msg)

s.quit()

Here’s	an	example	of	how	to	send	the	entire	contents	of	a	directory	as
an	email	message:	[1]

#!/usr/bin/env	python3

"""Send	the	contents	of	a	directory	as	a	MIME	message."""

import	os

import	sys

import	smtplib

#	For	guessing	MIME	type	based	on	file	name	extension

import	mimetypes

from	argparse	import	ArgumentParser

from	email	import	encoders

from	email.message	import	Message

from	email.mime.audio	import	MIMEAudio

from	email.mime.base	import	MIMEBase

from	email.mime.image	import	MIMEImage

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

COMMASPACE	=	',	'

def	main():

				parser	=	ArgumentParser(description="""\

Send	the	contents	of	a	directory	as	a	MIME	message.

Unless	the	-o	option	is	given,	the	email	is	sent	by	forwarding	to	your	local

SMTP	server,	which	then	does	the	normal	delivery	process.		Your	local	machine

must	be	running	an	SMTP	server.

""")

				parser.add_argument('-d',	'--directory',

																								help="""Mail	the	contents	of	the	specified	directory,

																								otherwise	use	the	current	directory.		Only	the	regular

																								files	in	the	directory	are	sent,	and	we	don't	recurse	to

																								subdirectories.""")

				parser.add_argument('-o',	'--output',

																								metavar='FILE',

																								help="""Print	the	composed	message	to	FILE	instead	of

																								sending	the	message	to	the	SMTP	server."""

				parser.add_argument('-s',	'--sender',	required=True

																								help='The	value	of	the	From:	header	(required)'

				parser.add_argument('-r',	'--recipient',	required

																								action='append',	metavar='RECIPIENT'

																								default=[],	dest='recipients'

																								help='A	To:	header	value	(at	least	one	required)'

				args	=	parser.parse_args()

				directory	=	args.directory

				if	not	directory:

								directory	=	'.'

				#	Create	the	enclosing	(outer)	message

				outer	=	MIMEMultipart()

				outer['Subject']	=	'Contents	of	directory	%s'	%	

				outer['To']	=	COMMASPACE.join(args.recipients)

				outer['From']	=	args.sender

				outer.preamble	=	'You	will	not	see	this	in	a	MIME-aware	mail	reader.

				for	filename	in	os.listdir(directory):

								path	=	os.path.join(directory,	filename)

								if	not	os.path.isfile(path):

												continue

								#	Guess	the	content	type	based	on	the	file's	extension.		Encoding

								#	will	be	ignored,	although	we	should	check	for	simple	things	like

								#	gzip'd	or	compressed	files.

								ctype,	encoding	=	mimetypes.guess_type(path)

								if	ctype	is	None	or	encoding	is	not	None:

												#	No	guess	could	be	made,	or	the	file	is	encoded	(compressed),	so

												#	use	a	generic	bag-of-bits	type.

												ctype	=	'application/octet-stream'

								maintype,	subtype	=	ctype.split('/',	1)

								if	maintype	==	'text':

												with	open(path)	as	fp:

																#	Note:	we	should	handle	calculating	the	charset

																msg	=	MIMEText(fp.read(),	_subtype=subtype

								elif	maintype	==	'image':

												with	open(path,	'rb')	as	fp:

																msg	=	MIMEImage(fp.read(),	_subtype=

								elif	maintype	==	'audio':

												with	open(path,	'rb')	as	fp:

																msg	=	MIMEAudio(fp.read(),	_subtype=

								else:

												with	open(path,	'rb')	as	fp:

																msg	=	MIMEBase(maintype,	subtype)

																msg.set_payload(fp.read())

												#	Encode	the	payload	using	Base64

												encoders.encode_base64(msg)

								#	Set	the	filename	parameter

								msg.add_header('Content-Disposition',	'attachment'

								outer.attach(msg)

				#	Now	send	or	store	the	message

				composed	=	outer.as_string()

				if	args.output:

								with	open(args.output,	'w')	as	fp:

												fp.write(composed)

				else:

								with	smtplib.SMTP('localhost')	as	s:

												s.sendmail(args.sender,	args.recipients,

if	__name__	==	'__main__':

				main()

Here’s	 an	example	 of	 how	 to	 unpack	a	MIME	message	 like	 the	one
above,	into	a	directory	of	files:

#!/usr/bin/env	python3

"""Unpack	a	MIME	message	into	a	directory	of	files."""

import	os

import	sys

import	email

import	errno

import	mimetypes

from	argparse	import	ArgumentParser

def	main():

				parser	=	ArgumentParser(description="""\

Unpack	a	MIME	message	into	a	directory	of	files.

""")

				parser.add_argument('-d',	'--directory',	required

																								help="""Unpack	the	MIME	message	into	the	named

																								directory,	which	will	be	created	if	it	doesn't	already

																								exist.""")

				parser.add_argument('msgfile')

				args	=	parser.parse_args()

				with	open(args.msgfile)	as	fp:

								msg	=	email.message_from_file(fp)

				try:

								os.mkdir(args.directory)

				except	FileExistsError:

								pass

				counter	=	1

				for	part	in	msg.walk():

								#	multipart/*	are	just	containers

								if	part.get_content_maintype()	==	'multipart'

												continue

								#	Applications	should	really	sanitize	the	given	filename	so	that	an

								#	email	message	can't	be	used	to	overwrite	important	files

								filename	=	part.get_filename()

								if	not	filename:

												ext	=	mimetypes.guess_extension(part.get_content_type

												if	not	ext:

																#	Use	a	generic	bag-of-bits	extension

																ext	=	'.bin'

												filename	=	'part-%03d%s'	%	(counter,	ext

								counter	+=	1

								with	open(os.path.join(args.directory,	filename

												fp.write(part.get_payload(decode=True))

if	__name__	==	'__main__':

				main()

Here’s	 an	 example	 of	 how	 to	 create	 an	 HTML	 message	 with	 an
alternative	plain	text	version:	[2]

#!/usr/bin/env	python3

import	smtplib

from	email.mime.multipart	import	MIMEMultipart

from	email.mime.text	import	MIMEText

#	me	==	my	email	address

#	you	==	recipient's	email	address

me	=	"my@email.com"

you	=	"your@email.com"

#	Create	message	container	-	the	correct	MIME	type	is	multipart/alternative.

msg	=	MIMEMultipart('alternative')

msg['Subject']	=	"Link"

msg['From']	=	me

msg['To']	=	you

#	Create	the	body	of	the	message	(a	plain-text	and	an	HTML	version).

text	=	"Hi!\nHow	are	you?\nHere	is	the	link	you	wanted:

html	=	"""\

<html>

		<head></head>

		<body>

				<p>Hi!

							How	are	you?

							Here	is	the	link	you	wanted.

				</p>

		</body>

</html>

"""

#	Record	the	MIME	types	of	both	parts	-	text/plain	and	text/html.

part1	=	MIMEText(text,	'plain')

part2	=	MIMEText(html,	'html')

#	Attach	parts	into	message	container.

#	According	to	RFC	2046,	the	last	part	of	a	multipart	message,	in	this	case

#	the	HTML	message,	is	best	and	preferred.

msg.attach(part1)

msg.attach(part2)

#	Send	the	message	via	local	SMTP	server.

s	=	smtplib.SMTP('localhost')

#	sendmail	function	takes	3	arguments:	sender's	address,	recipient's	address

#	and	message	to	send	-	here	it	is	sent	as	one	string.

s.sendmail(me,	you,	msg.as_string())

s.quit()

19.1.14.1.	Examples	using	the	Provisional
API

Here	 is	a	reworking	of	 the	 last	example	using	the	provisional	API.	To
make	things	a	bit	more	 interesting,	we	include	a	related	 image	in	 the
html	part,	and	we	save	a	copy	of	what	we	are	going	to	send	to	disk,	as
well	as	sending	it.

This	 example	 also	 shows	 how	 easy	 it	 is	 to	 include	 non-ASCII,	 and
simplifies	 the	 sending	 of	 the	 message	 using	 the	 send_message()
method	of	the	smtplib	module.

#!/usr/bin/env	python3

import	smtplib

from	email.message	import	EmailMessage

from	email.headerregistry	import	Address

from	email.utils	import	make_msgid

#	Create	the	base	text	message.

msg	=	EmailMessage()

msg['Subject']	=	"Ayons	asperges	pour	le	déjeuner"

msg['From']	=	Address("Pepé	Le	Pew",	"pepe@example.com"

msg['To']	=	(Address("Penelope	Pussycat",	"penelope@example.com"

													Address("Fabrette	Pussycat",	"fabrette@example.com"

msg.set_content("""\

Salut!

Cela	ressemble	à	un	excellent	recipie[1]	déjeuner.

[1]	http://www.yummly.com/recipe/Roasted-Asparagus-Epicurious-203718

--Pepé

""")

#	Add	the	html	version.		This	converts	the	message	into	a	multipart/alternative

#	container,	with	the	original	text	message	as	the	first	part	and	the	new	html

#	message	as	the	second	part.

asparagus_cid	=	make_msgid()

msg.add_alternative("""\

<html>

		<head></head>

		<body>

				<p>Salut!<\p>

				<p>Cela	ressemble	à	un	excellent

								

												recipie

									déjeuner.

				</p>

				

		</body>

</html>

""".format(asparagus_cid=asparagus_cid[1:-1]),	subtype

#	note	that	we	needed	to	peel	the	<>	off	the	msgid	for	use	in	the	html.

#	Now	add	the	related	image	to	the	html	part.

with	open("roasted-asparagus.jpg",	'rb')	as	img:

				msg.get_payload()[1].add_related(img.read(),	'image'

																																					cid=asparagus_cid

#	Make	a	local	copy	of	what	we	are	going	to	send.

with	open('outgoing.msg',	'wb')	as	f:

				f.write(bytes(msg))

#	Send	the	message	via	local	SMTP	server.

with	smtplib.SMTP('localhost')	as	s:

				s.send_message(msg)

If	we	were	 instead	 sent	 the	message	 from	 the	 last	 example,	 here	 is

one	way	we	could	process	it:

import	os

import	sys

import	tempfile

import	mimetypes

import	webbrowser

#	Import	the	email	modules	we'll	need

from	email	import	policy

from	email.parser	import	BytesParser

#	An	imaginary	module	that	would	make	this	work	and	be	safe.

from	imaginary	import	magic_html_parser

#	In	a	real	program	you'd	get	the	filename	from	the	arguments.

msg	=	BytesParser(policy=policy.default).parse(open(

#	Now	the	header	items	can	be	accessed	as	a	dictionary,	and	any	non-ASCII	will

#	be	converted	to	unicode:

print('To:',	msg['to'])

print('From:',	msg['from'])

print('Subject:',	msg['subject'])

#	If	we	want	to	print	a	priview	of	the	message	content,	we	can	extract	whatever

#	the	least	formatted	payload	is	and	print	the	first	three	lines.		Of	course,

#	if	the	message	has	no	plain	text	part	printing	the	first	three	lines	of	html

#	is	probably	useless,	but	this	is	just	a	conceptual	example.

simplest	=	msg.get_body(preferencelist=('plain',	'html'

print()

print(''.join(simplest.get_content().splitlines(keepends

ans	=	input("View	full	message?")

if	ans.lower()[0]	==	'n':

				sys.exit()

#	We	can	extract	the	richest	alternative	in	order	to	display	it:

richest	=	msg.get_body()

partfiles	=	{}

if	richest['content-type'].maintype	==	'text':

				if	richest['content-type'].subtype	==	'plain':

								for	line	in	richest.get_content().splitlines

												print(line)

								sys.exit()

				elif	richest['content-type'].subtype	==	'html':

								body	=	richest

				else:

								print("Don't	know	how	to	display	{}".format(

								sys.exit()

elif	richest['content-type'].content_type	==	'multipart/related'

				body	=	richest.get_body(preferencelist=('html'))

				for	part	in	richest.iter_attachments():

								fn	=	part.get_filename()

								if	fn:

												extension	=	os.path.splitext(part.get_filename

								else:

												extension	=	mimetypes.guess_extension(part

								with	tempfile.NamedTemporaryFile(suffix=extension

												f.write(part.get_content())

												#	again	strip	the	<>	to	go	from	email	form	of	cid	to	html	form.

												partfiles[part['content-id'][1:-1]]	=	f.

else:

				print("Don't	know	how	to	display	{}".format(richest

				sys.exit()

with	tempfile.NamedTemporaryFile(mode='w',	delete=False

				#	The	magic_html_parser	has	to	rewrite	the	href="cid:...."	attributes	to

				#	point	to	the	filenames	in	partfiles.		It	also	has	to	do	a	safety-sanitize

				#	of	the	html.		It	could	be	written	using	html.parser.

				f.write(magic_html_parser(body.get_content(),	partfiles

webbrowser.open(f.name)

os.remove(f.name)

for	fn	in	partfiles.values():

				os.remove(fn)

#	Of	course,	there	are	lots	of	email	messages	that	could	break	this	simple

#	minded	program,	but	it	will	handle	the	most	common	ones.

Up	to	the	prompt,	the	output	from	the	above	is:

To:	Penelope	Pussycat	<"penelope@example.com">,	Fabrette	Pussycat	<"fabrette@example.com">

From:	Pepé	Le	Pew	<pepe@example.com>

Subject:	Ayons	asperges	pour	le	déjeuner

Salut!

Cela	ressemble	à	un	excellent	recipie[1]	déjeuner.

Footnotes

[1] Thanks	to	Matthew	Dixon	Cowles	for	the	original	inspiration
and	examples.

[2] Contributed	by	Martin	Matejek.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»	19.1.	email	—	An	email	and	MIME	handling	package	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.2.	json	—	JSON	encoder	and
decoder
JSON	 (JavaScript	 Object	 Notation),	 specified	 by	 RFC	 4627,	 is	 a
lightweight	 data	 interchange	 format	 based	on	a	 subset	 of	 JavaScript
syntax	(ECMA-262	3rd	edition).

json	 exposes	 an	 API	 familiar	 to	 users	 of	 the	 standard	 library
marshal	and	pickle	modules.

Encoding	basic	Python	object	hierarchies:

>>>	import	json

>>>	json.dumps(['foo',	{'bar':	('baz',	None,	1.0,	2)}])

'["foo",	{"bar":	["baz",	null,	1.0,	2]}]'

>>>	print(json.dumps("\"foo\bar"))

"\"foo\bar"

>>>	print(json.dumps('\u1234'))

"\u1234"

>>>	print(json.dumps('\\'))

"\\"

>>>	print(json.dumps({"c":	0,	"b":	0,	"a":	0},	sort_keys

{"a":	0,	"b":	0,	"c":	0}

>>>	from	io	import	StringIO

>>>	io	=	StringIO()

>>>	json.dump(['streaming	API'],	io)

>>>	io.getvalue()

'["streaming	API"]'

Compact	encoding:

>>>	import	json

http://json.org
http://tools.ietf.org/html/rfc4627.html
http://en.wikipedia.org/wiki/JavaScript
http://www.ecma-international.org/publications/files/ECMA-ST-ARCH/ECMA-262,%203rd%20edition,%20December%201999.pdf

>>>	json.dumps([1,2,3,{'4':	5,	'6':	7}],	separators=

'[1,2,3,{"4":5,"6":7}]'

Pretty	printing:

>>>	import	json

>>>	print(json.dumps({'4':	5,	'6':	7},	sort_keys=True

{

				"4":	5,

				"6":	7

}

Decoding	JSON:

>>>	import	json

>>>	json.loads('["foo",	{"bar":["baz",	null,	1.0,	2]}]'

['foo',	{'bar':	['baz',	None,	1.0,	2]}]

>>>	json.loads('"\\"foo\\bar"')

'"foo\x08ar'

>>>	from	io	import	StringIO

>>>	io	=	StringIO('["streaming	API"]')

>>>	json.load(io)

['streaming	API']

Specializing	JSON	object	decoding:

>>>	import	json

>>>	def	as_complex(dct):

...					if	'__complex__'	in	dct:

...									return	complex(dct['real'],	dct['imag'])

...					return	dct

...

>>>	json.loads('{"__complex__":	true,	"real":	1,	"imag":	2}'

...					object_hook=as_complex)

(1+2j)

>>>	import	decimal

>>>	json.loads('1.1',	parse_float=decimal.Decimal)

Decimal('1.1')

Extending	JSONEncoder:

>>>	import	json

>>>	class	ComplexEncoder(json.JSONEncoder):

...					def	default(self,	obj):

...									if	isinstance(obj,	complex):

...													return	[obj.real,	obj.imag]

...									#	Let	the	base	class	default	method	raise	the	TypeError

...									return	json.JSONEncoder.default(self,	obj

...

>>>	json.dumps(2	+	1j,	cls=ComplexEncoder)

'[2.0,	1.0]'

>>>	ComplexEncoder().encode(2	+	1j)

'[2.0,	1.0]'

>>>	list(ComplexEncoder().iterencode(2	+	1j))

['[2.0',	',	1.0',	']']

Using	json.tool	from	the	shell	to	validate	and	pretty-print:

$	echo	'{"json":"obj"}'	|	python	-mjson.tool

{

				"json":	"obj"

}

$	echo	'{1.2:3.4}'	|	python	-mjson.tool

Expecting	property	name	enclosed	in	double	quotes:	line	1	column	2	

Note: 	JSON	is	a	subset	of	YAML	1.2.	The	JSON	produced	by	this
module’s	default	settings	(in	particular,	the	default	separators	value)

http://yaml.org/

is	also	a	subset	of	YAML	1.0	and	1.1.	This	module	can	thus	also	be
used	as	a	YAML	serializer.

19.2.1.	Basic	Usage

json.dump(obj,	fp,	skipkeys=False,	ensure_ascii=True,
check_circular=True,	allow_nan=True,	cls=None,	indent=None,
separators=None,	default=None,	sort_keys=False,	**kw)

Serialize	 obj	 as	 a	 JSON	 formatted	 stream	 to	 fp	 (a	 .write()-
supporting	file-like	object)	using	this	conversion	table.

If	skipkeys	is	True	(default:	False),	then	dict	keys	that	are	not	of
a	 basic	 type	 (str,	 int,	 float,	 bool,	 None)	 will	 be	 skipped
instead	of	raising	a	TypeError.

The	 json	 module	 always	 produces	 str	 objects,	 not	 bytes
objects.	Therefore,	fp.write()	must	support	str	input.

If	ensure_ascii	 is	 True	 (the	 default),	 the	 output	 is	 guaranteed	 to
have	all	incoming	non-ASCII	characters	escaped.	If	ensure_ascii	is
False,	these	characters	will	be	output	as-is.

If	 check_circular	 is	 False	 (default:	 True),	 then	 the	 circular
reference	check	 for	container	 types	will	be	skipped	and	a	circular
reference	will	result	in	an	OverflowError	(or	worse).

If	 allow_nan	 is	 False	 (default:	 True),	 then	 it	 will	 be	 a
ValueError	to	serialize	out	of	range	float	values	(nan,	inf,	-
inf)	 in	 strict	 compliance	 of	 the	 JSON	 specification,	 instead	 of
using	the	JavaScript	equivalents	(NaN,	Infinity,	-Infinity).

If	 indent	 is	 a	 non-negative	 integer	 or	 string,	 then	 JSON	 array
elements	and	object	members	will	be	pretty-printed	with	that	indent
level.	An	indent	level	of	0,	negative,	or	""	will	only	insert	newlines.

None	(the	default)	selects	the	most	compact	representation.	Using
a	 positive	 integer	 indent	 indents	 that	 many	 spaces	 per	 level.	 If
indent	is	a	string	(such	as	"\t"),	that	string	is	used	to	indent	each
level.

Changed	 in	 version	 3.2:	 Allow	 strings	 for	 indent	 in	 addition	 to
integers.

If	 specified,	 separators	 should	 be	 an	 (item_separator,

key_separator)	tuple.	The	default	is	(',	',	':	')	if	indent	is
None	 and	 (',',	 ':	 ')	 otherwise.	 To	 get	 the	 most	 compact
JSON	 representation,	 you	 should	 specify	 (',',	 ':')	 to
eliminate	whitespace.

Changed	in	version	3.4:	Use	(',',	':	')	as	default	if	 indent	 is
not	None.

default(obj)	is	a	function	that	should	return	a	serializable	version	of
obj	or	raise	TypeError.	The	default	simply	raises	TypeError.

If	 sort_keys	 is	 True	 (default:	 False),	 then	 the	 output	 of
dictionaries	will	be	sorted	by	key.

To	use	a	custom	JSONEncoder	subclass	(e.g.	one	that	overrides
the	 default()	 method	 to	 serialize	 additional	 types),	 specify	 it
with	the	cls	kwarg;	otherwise	JSONEncoder	is	used.

json.dumps(obj,	skipkeys=False,	ensure_ascii=True,
check_circular=True,	allow_nan=True,	cls=None,	indent=None,
separators=None,	default=None,	sort_keys=False,	**kw)

Serialize	obj	to	a	JSON	formatted	str	using	this	conversion	table.
The	arguments	have	the	same	meaning	as	in	dump().

Note: 	 Unlike	 pickle	 and	 marshal,	 JSON	 is	 not	 a	 framed
protocol,	so	trying	to	serialize	multiple	objects	with	repeated	calls
to	dump()	using	the	same	fp	will	result	in	an	invalid	JSON	file.

Note: 	Keys	 in	 key/value	pairs	of	 JSON	are	always	of	 the	 type
str.	When	a	dictionary	 is	converted	 into	JSON,	all	 the	keys	of
the	 dictionary	 are	 coerced	 to	 strings.	 As	 a	 result	 of	 this,	 if	 a
dictionary	is	converted	into	JSON	and	then	back	into	a	dictionary,
the	 dictionary	 may	 not	 equal	 the	 original	 one.	 That	 is,
loads(dumps(x))	!=	x	if	x	has	non-string	keys.

json.load(fp,	cls=None,	object_hook=None,	parse_float=None,
parse_int=None,	parse_constant=None,	object_pairs_hook=None,
**kw)

Deserialize	 fp	 (a	 .read()-supporting	 file-like	 object	 containing	 a
JSON	document)	to	a	Python	object	using	this	conversion	table.

object_hook	is	an	optional	function	that	will	be	called	with	the	result
of	 any	 object	 literal	 decoded	 (a	 dict).	 The	 return	 value	 of
object_hook	will	be	used	instead	of	the	dict.	This	feature	can	be
used	 to	 implement	 custom	 decoders	 (e.g.	 JSON-RPC	 class
hinting).

object_pairs_hook	is	an	optional	function	that	will	be	called	with	the
result	of	any	object	literal	decoded	with	an	ordered	list	of	pairs.	The
return	value	of	object_pairs_hook	will	be	used	instead	of	the	dict.
This	 feature	can	be	used	 to	 implement	custom	decoders	 that	 rely
on	 the	 order	 that	 the	 key	 and	 value	 pairs	 are	 decoded	 (for
example,	 collections.OrderedDict()	 will	 remember	 the
order	 of	 insertion).	 If	 object_hook	 is	 also	 defined,	 the
object_pairs_hook	takes	priority.

http://www.jsonrpc.org

Changed	in	version	3.1:	Added	support	for	object_pairs_hook.

parse_float,	if	specified,	will	be	called	with	the	string	of	every	JSON
float	 to	 be	 decoded.	 By	 default,	 this	 is	 equivalent	 to
float(num_str).	This	can	be	used	 to	use	another	datatype	or
parser	for	JSON	floats	(e.g.	decimal.Decimal).

parse_int,	 if	specified,	will	be	called	with	the	string	of	every	JSON
int	to	be	decoded.	By	default,	this	is	equivalent	to	int(num_str).
This	 can	 be	 used	 to	 use	 another	 datatype	 or	 parser	 for	 JSON
integers	(e.g.	float).

parse_constant,	if	specified,	will	be	called	with	one	of	the	following
strings:	'-Infinity',	'Infinity',	'NaN'.	This	can	be	used	to
raise	an	exception	if	invalid	JSON	numbers	are	encountered.

Changed	in	version	3.1:	parse_constant	doesn’t	get	called	on	‘null’,
‘true’,	‘false’	anymore.

To	use	a	custom	JSONDecoder	subclass,	specify	 it	with	 the	cls
kwarg;	 otherwise	 JSONDecoder	 is	 used.	 Additional	 keyword
arguments	will	be	passed	to	the	constructor	of	the	class.

If	 the	 data	 being	 deserialized	 is	 not	 a	 valid	 JSON	 document,	 a
ValueError	will	be	raised.

json.loads(s,	encoding=None,	cls=None,	object_hook=None,
parse_float=None,	parse_int=None,	parse_constant=None,
object_pairs_hook=None,	**kw)

Deserialize	s	 (a	str	 instance	containing	a	JSON	document)	 to	a
Python	object	using	this	conversion	table.

The	 other	 arguments	 have	 the	 same	 meaning	 as	 in	 load(),

except	encoding	which	is	ignored	and	deprecated.

If	 the	 data	 being	 deserialized	 is	 not	 a	 valid	 JSON	 document,	 a
ValueError	will	be	raised.

19.2.2.	Encoders	and	Decoders

class	json.JSONDecoder(object_hook=None,	parse_float=None,
parse_int=None,	parse_constant=None,	strict=True,
object_pairs_hook=None)

Simple	JSON	decoder.

Performs	the	following	translations	in	decoding	by	default:

JSON Python

object dict

array list

string str

number	(int) int

number	(real) float

true True

false False

null None

It	 also	 understands	 NaN,	 Infinity,	 and	 -Infinity	 as	 their
corresponding	float	values,	which	is	outside	the	JSON	spec.

object_hook,	 if	 specified,	 will	 be	 called	 with	 the	 result	 of	 every
JSON	object	decoded	and	its	return	value	will	be	used	in	place	of
the	 given	 dict.	 This	 can	 be	 used	 to	 provide	 custom
deserializations	(e.g.	to	support	JSON-RPC	class	hinting).

object_pairs_hook,	if	specified	will	be	called	with	the	result	of	every
JSON	object	decoded	with	an	ordered	list	of	pairs.	The	return	value
of	object_pairs_hook	will	be	used	instead	of	the	dict.	This	feature

can	be	used	to	implement	custom	decoders	that	rely	on	the	order
that	 the	 key	 and	 value	 pairs	 are	 decoded	 (for	 example,
collections.OrderedDict()	 will	 remember	 the	 order	 of
insertion).	 If	 object_hook	 is	 also	 defined,	 the	 object_pairs_hook
takes	priority.

Changed	in	version	3.1:	Added	support	for	object_pairs_hook.

parse_float,	if	specified,	will	be	called	with	the	string	of	every	JSON
float	 to	 be	 decoded.	 By	 default,	 this	 is	 equivalent	 to
float(num_str).	This	can	be	used	 to	use	another	datatype	or
parser	for	JSON	floats	(e.g.	decimal.Decimal).

parse_int,	 if	specified,	will	be	called	with	the	string	of	every	JSON
int	to	be	decoded.	By	default,	this	is	equivalent	to	int(num_str).
This	 can	 be	 used	 to	 use	 another	 datatype	 or	 parser	 for	 JSON
integers	(e.g.	float).

parse_constant,	if	specified,	will	be	called	with	one	of	the	following
strings:	'-Infinity',	'Infinity',	'NaN',	'null',	'true',
'false'.	This	can	be	used	to	raise	an	exception	 if	 invalid	JSON
numbers	are	encountered.

If	strict	is	False	(True	is	the	default),	then	control	characters	will
be	 allowed	 inside	 strings.	 Control	 characters	 in	 this	 context	 are
those	with	character	codes	in	the	0-31	range,	including	'\t'	(tab),
'\n',	'\r'	and	'\0'.

If	 the	 data	 being	 deserialized	 is	 not	 a	 valid	 JSON	 document,	 a
ValueError	will	be	raised.

decode(s)
Return	 the	 Python	 representation	 of	 s	 (a	 str	 instance

containing	a	JSON	document)

raw_decode(s)
Decode	 a	 JSON	 document	 from	 s	 (a	 str	 beginning	 with	 a
JSON	 document)	 and	 return	 a	 2-tuple	 of	 the	 Python
representation	and	the	index	in	s	where	the	document	ended.

This	 can	 be	 used	 to	 decode	 a	 JSON	 document	 from	 a	 string
that	may	have	extraneous	data	at	the	end.

class	json.JSONEncoder(skipkeys=False,	ensure_ascii=True,
check_circular=True,	allow_nan=True,	sort_keys=False,	indent=None,
separators=None,	default=None)

Extensible	JSON	encoder	for	Python	data	structures.

Supports	the	following	objects	and	types	by	default:

Python JSON

dict object

list,	tuple array

str string

int,	float,	int-	&	float-derived	Enums number

True true

False false

None null

Changed	 in	 version	 3.4:	Added	 support	 for	 int-	 and	 float-derived
Enum	classes.

To	extend	this	to	recognize	other	objects,	subclass	and	implement
a	 default()	 method	 with	 another	 method	 that	 returns	 a

serializable	 object	 for	 o	 if	 possible,	 otherwise	 it	 should	 call	 the
superclass	implementation	(to	raise	TypeError).

If	 skipkeys	 is	 False	 (the	 default),	 then	 it	 is	 a	 TypeError	 to
attempt	 encoding	 of	 keys	 that	 are	 not	 str,	 int,	 float	 or	 None.	 If
skipkeys	is	True,	such	items	are	simply	skipped.

If	ensure_ascii	 is	 True	 (the	 default),	 the	 output	 is	 guaranteed	 to
have	all	incoming	non-ASCII	characters	escaped.	If	ensure_ascii	is
False,	these	characters	will	be	output	as-is.

If	check_circular	is	True	(the	default),	then	lists,	dicts,	and	custom
encoded	 objects	 will	 be	 checked	 for	 circular	 references	 during
encoding	 to	 prevent	 an	 infinite	 recursion	 (which	 would	 cause	 an
OverflowError).	Otherwise,	no	such	check	takes	place.

If	allow_nan	 is	 True	 (the	 default),	 then	 NaN,	 Infinity,	 and	 -
Infinity	 will	 be	 encoded	 as	 such.	 This	 behavior	 is	 not	 JSON
specification	 compliant,	 but	 is	 consistent	 with	 most	 JavaScript
based	 encoders	 and	 decoders.	 Otherwise,	 it	 will	 be	 a
ValueError	to	encode	such	floats.

If	 sort_keys	 is	 True	 (default	 False),	 then	 the	 output	 of
dictionaries	will	be	sorted	by	key;	this	is	useful	for	regression	tests
to	ensure	 that	JSON	serializations	can	be	compared	on	a	day-to-
day	basis.

If	 indent	 is	 a	 non-negative	 integer	 or	 string,	 then	 JSON	 array
elements	and	object	members	will	be	pretty-printed	with	that	indent
level.	An	indent	level	of	0,	negative,	or	""	will	only	insert	newlines.
None	(the	default)	selects	the	most	compact	representation.	Using
a	 positive	 integer	 indent	 indents	 that	 many	 spaces	 per	 level.	 If

indent	is	a	string	(such	as	"\t"),	that	string	is	used	to	indent	each
level.

Changed	 in	 version	 3.2:	 Allow	 strings	 for	 indent	 in	 addition	 to
integers.

If	 specified,	 separators	 should	 be	 an	 (item_separator,

key_separator)	tuple.	The	default	is	(',	',	':	')	if	indent	is
None	 and	 (',',	 ':	 ')	 otherwise.	 To	 get	 the	 most	 compact
JSON	 representation,	 you	 should	 specify	 (',',	 ':')	 to
eliminate	whitespace.

Changed	in	version	3.4:	Use	(',',	':	')	as	default	if	 indent	 is
not	None.

If	 specified,	 default	 is	 a	 function	 that	 gets	 called	 for	 objects	 that
can’t	 otherwise	 be	 serialized.	 It	 should	 return	 a	 JSON	encodable
version	of	the	object	or	raise	a	TypeError.

default(o)
Implement	 this	 method	 in	 a	 subclass	 such	 that	 it	 returns	 a
serializable	 object	 for	 o,	 or	 calls	 the	 base	 implementation	 (to
raise	a	TypeError).

For	example,	to	support	arbitrary	iterators,	you	could	implement
default	like	this:

def	default(self,	o):

			try:

							iterable	=	iter(o)

			except	TypeError:

							pass

			else:

							return	list(iterable)

			#	Let	the	base	class	default	method	raise	the	TypeError

			return	json.JSONEncoder.default(self,	o)

encode(o)
Return	a	JSON	string	representation	of	a	Python	data	structure,
o.	For	example:

>>>	json.JSONEncoder().encode({"foo":	["bar",	"baz"

'{"foo":	["bar",	"baz"]}'

iterencode(o)
Encode	the	given	object,	o,	and	yield	each	string	representation
as	available.	For	example:

for	chunk	in	json.JSONEncoder().iterencode(bigobject

				mysocket.write(chunk)

19.2.3.	Standard	Compliance

The	JSON	format	 is	specified	by	RFC	4627.	This	 section	details	 this
module’s	 level	 of	 compliance	 with	 the	 RFC.	 For	 simplicity,
JSONEncoder	and	JSONDecoder	subclasses,	and	parameters	other
than	those	explicitly	mentioned,	are	not	considered.

This	 module	 does	 not	 comply	 with	 the	 RFC	 in	 a	 strict	 fashion,
implementing	some	extensions	 that	are	valid	JavaScript	but	not	valid
JSON.	In	particular:

Top-level	non-object,	non-array	values	are	accepted	and	output;
Infinite	and	NaN	number	values	are	accepted	and	output;
Repeated	 names	 within	 an	 object	 are	 accepted,	 and	 only	 the
value	of	the	last	name-value	pair	is	used.

Since	 the	RFC	 permits	 RFC-compliant	 parsers	 to	 accept	 input	 texts
that	 are	 not	 RFC-compliant,	 this	 module’s	 deserializer	 is	 technically
RFC-compliant	under	default	settings.

19.2.3.1.	Character	Encodings

The	RFC	recommends	that	JSON	be	represented	using	either	UTF-8,
UTF-16,	or	UTF-32,	with	UTF-8	being	the	default.

As	permitted,	though	not	required,	by	the	RFC,	this	module’s	serializer
sets	ensure_ascii=True	by	default,	thus	escaping	the	output	so	that	the
resulting	strings	only	contain	ASCII	characters.

Other	 than	the	ensure_ascii	parameter,	 this	module	 is	defined	strictly
in	 terms	 of	 conversion	 between	 Python	 objects	 and	 Unicode
strings,	and	thus	does	not	otherwise	address	the	issue	of	character

http://tools.ietf.org/html/rfc4627.html

encodings.

19.2.3.2.	Top-level	Non-Object,	Non-Array	Values

The	 RFC	 specifies	 that	 the	 top-level	 value	 of	 a	 JSON	 text	 must	 be
either	a	JSON	object	or	array	(Python	dict	or	list).	This	module’s
deserializer	also	accepts	 input	 texts	consisting	solely	of	a	JSON	null,
boolean,	number,	or	string	value:

>>>	just_a_json_string	=	'"spam	and	eggs"'		#	Not	by	itself	a	valid	JSON	text

>>>	json.loads(just_a_json_string)

'spam	and	eggs'

This	module	 itself	 does	not	 include	a	way	 to	 request	 that	 such	 input
texts	 be	 regarded	 as	 illegal.	 Likewise,	 this	 module’s	 serializer	 also
accepts	single	Python	None,	bool,	numeric,	and	str	values	as	input
and	 will	 generate	 output	 texts	 consisting	 solely	 of	 a	 top-level	 JSON
null,	boolean,	number,	or	string	value	without	raising	an	exception:

>>>	neither_a_list_nor_a_dict	=	"spam	and	eggs"

>>>	json.dumps(neither_a_list_nor_a_dict)		#	The	result	is	not	a	valid	JSON	text

'"spam	and	eggs"'

This	module’s	 serializer	 does	 not	 itself	 include	 a	way	 to	 enforce	 the
aforementioned	constraint.

19.2.3.3.	Infinite	and	NaN	Number	Values

The	RFC	does	not	permit	the	representation	of	infinite	or	NaN	number
values.	 Despite	 that,	 by	 default,	 this	 module	 accepts	 and	 outputs
Infinity,	-Infinity,	and	NaN	as	if	they	were	valid	JSON	number

literal	values:

>>>	#	Neither	of	these	calls	raises	an	exception,	but	the	results	are	not	valid	JSON

>>>	json.dumps(float('-inf'))

'-Infinity'

>>>	json.dumps(float('nan'))

'NaN'

>>>	#	Same	when	deserializing

>>>	json.loads('-Infinity')

-inf

>>>	json.loads('NaN')

nan

In	 the	 serializer,	 the	 allow_nan	 parameter	 can	 be	 used	 to	 alter	 this
behavior.	 In	 the	 deserializer,	 the	 parse_constant	 parameter	 can	 be
used	to	alter	this	behavior.

19.2.3.4.	Repeated	Names	Within	an	Object

The	 RFC	 specifies	 that	 the	 names	 within	 a	 JSON	 object	 should	 be
unique,	 but	 does	 not	 specify	 how	 repeated	 names	 in	 JSON	 objects
should	 be	 handled.	 By	 default,	 this	 module	 does	 not	 raise	 an
exception;	 instead,	 it	 ignores	 all	 but	 the	 last	 name-value	 pair	 for	 a
given	name:

>>>	weird_json	=	'{"x":	1,	"x":	2,	"x":	3}'

>>>	json.loads(weird_json)

{'x':	3}

The	object_pairs_hook	parameter	can	be	used	to	alter	this	behavior.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.3.	mailcap	—	Mailcap	file
handling
Source	code:	Lib/mailcap.py

Mailcap	files	are	used	to	configure	how	MIME-aware	applications	such
as	mail	 readers	and	Web	browsers	 react	 to	 files	with	different	MIME
types.	 (The	 name	 “mailcap”	 is	 derived	 from	 the	 phrase	 “mail
capability”.)	 For	 example,	 a	 mailcap	 file	 might	 contain	 a	 line	 like
video/mpeg;	 xmpeg	 %s.	 Then,	 if	 the	 user	 encounters	 an	 email
message	or	Web	document	with	 the	MIME	 type	video/mpeg,	 %s	will
be	replaced	by	a	filename	(usually	one	belonging	to	a	temporary	file)
and	the	xmpeg	program	can	be	automatically	started	to	view	the	file.

The	 mailcap	 format	 is	 documented	 in	 RFC	 1524,	 “A	 User	 Agent
Configuration	 Mechanism	 For	 Multimedia	 Mail	 Format	 Information,”
but	 is	not	an	 Internet	standard.	However,	mailcap	files	are	supported
on	most	Unix	systems.

mailcap.findmatch(caps,	MIMEtype,	key='view',
filename='/dev/null',	plist=[])

Return	 a	 2-tuple;	 the	 first	 element	 is	 a	 string	 containing	 the
command	 line	 to	 be	 executed	 (which	 can	 be	 passed	 to
os.system()),	and	the	second	element	is	the	mailcap	entry	for	a
given	MIME	type.	If	no	matching	MIME	type	can	be	found,	(None,
None)	is	returned.

key	 is	 the	name	of	 the	 field	desired,	which	represents	 the	 type	of
activity	 to	 be	 performed;	 the	 default	 value	 is	 ‘view’,	 since	 in	 the

http://hg.python.org/cpython/file/3.4/Lib/mailcap.py
http://tools.ietf.org/html/rfc1524.html

most	common	case	you	simply	want	to	view	the	body	of	the	MIME-
typed	data.	Other	possible	values	might	be	‘compose’	and	‘edit’,	if
you	wanted	to	create	a	new	body	of	 the	given	MIME	type	or	alter
the	existing	body	data.	See	RFC	1524	 for	a	complete	 list	of	 these
fields.

filename	 is	 the	 filename	 to	be	substituted	 for	%s	 in	 the	command
line;	 the	default	 value	 is	 '/dev/null'	which	 is	 almost	 certainly
not	 what	 you	 want,	 so	 usually	 you’ll	 override	 it	 by	 specifying	 a
filename.

plist	can	be	a	list	containing	named	parameters;	the	default	value	is
simply	 an	 empty	 list.	 Each	 entry	 in	 the	 list	 must	 be	 a	 string
containing	 the	 parameter	 name,	 an	 equals	 sign	 ('='),	 and	 the
parameter’s	value.	Mailcap	entries	can	contain	named	parameters
like	%{foo},	which	will	be	replaced	by	the	value	of	the	parameter
named	 ‘foo’.	For	example,	 if	 the	command	 line	 showpartial	%
{id}	%{number}	%{total}	was	in	a	mailcap	file,	and	plist	was
set	 to	 ['id=1',	 'number=2',	 'total=3'],	 the	 resulting
command	line	would	be	'showpartial	1	2	3'.

In	a	mailcap	 file,	 the	“test”	 field	can	optionally	be	specified	 to	 test
some	external	condition	(such	as	the	machine	architecture,	or	 the
window	system	in	use)	to	determine	whether	or	not	the	mailcap	line
applies.	 findmatch()	 will	 automatically	 check	 such	 conditions
and	skip	the	entry	if	the	check	fails.

mailcap.getcaps()
Returns	a	dictionary	mapping	MIME	 types	 to	a	 list	of	mailcap	 file
entries.	 This	 dictionary	 must	 be	 passed	 to	 the	 findmatch()
function.	An	entry	is	stored	as	a	list	of	dictionaries,	but	it	shouldn’t
be	necessary	to	know	the	details	of	this	representation.

http://tools.ietf.org/html/rfc1524.html

The	information	is	derived	from	all	of	the	mailcap	files	found	on	the
system.	Settings	 in	 the	user’s	mailcap	 file	$HOME/.mailcap	will
override	 settings	 in	 the	 system	 mailcap	 files	 /etc/mailcap,
/usr/etc/mailcap,	and	/usr/local/etc/mailcap.

An	example	usage:

>>>	import	mailcap

>>>	d=mailcap.getcaps()

>>>	mailcap.findmatch(d,	'video/mpeg',	filename='tmp1223'

('xmpeg	tmp1223',	{'view':	'xmpeg	%s'})

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.4.	mailbox	—	Manipulate
mailboxes	in	various	formats
This	 module	 defines	 two	 classes,	 Mailbox	 and	 Message,	 for
accessing	and	manipulating	on-disk	mailboxes	and	the	messages	they
contain.	 Mailbox	 offers	 a	 dictionary-like	 mapping	 from	 keys	 to
messages.	 Message	 extends	 the	 email.message	 module’s
Message	 class	 with	 format-specific	 state	 and	 behavior.	 Supported
mailbox	formats	are	Maildir,	mbox,	MH,	Babyl,	and	MMDF.

See	also:

Module	email
Represent	and	manipulate	messages.

19.4.1.	Mailbox	objects

class	mailbox.Mailbox
A	mailbox,	which	may	be	inspected	and	modified.

The	Mailbox	class	defines	an	interface	and	is	not	intended	to	be
instantiated.	Instead,	format-specific	subclasses	should	inherit	from
Mailbox	and	your	code	should	instantiate	a	particular	subclass.

The	 Mailbox	 interface	 is	 dictionary-like,	 with	 small	 keys
corresponding	 to	 messages.	 Keys	 are	 issued	 by	 the	 Mailbox
instance	with	which	 they	will	 be	used	and	are	only	meaningful	 to
that	 Mailbox	 instance.	 A	 key	 continues	 to	 identify	 a	 message
even	 if	 the	 corresponding	 message	 is	 modified,	 such	 as	 by
replacing	it	with	another	message.

Messages	may	be	added	to	a	Mailbox	instance	using	the	set-like
method	add()	and	removed	using	a	del	statement	or	the	set-like
methods	remove()	and	discard().

Mailbox	 interface	 semantics	 differ	 from	 dictionary	 semantics	 in
some	noteworthy	ways.	Each	time	a	message	is	requested,	a	new
representation	(typically	a	Message	 instance)	 is	generated	based
upon	the	current	state	of	the	mailbox.	Similarly,	when	a	message	is
added	 to	 a	 Mailbox	 instance,	 the	 provided	 message
representation’s	contents	are	copied.	In	neither	case	is	a	reference
to	the	message	representation	kept	by	the	Mailbox	instance.

The	 default	 Mailbox	 iterator	 iterates	 over	 message
representations,	 not	 keys	 as	 the	 default	 dictionary	 iterator	 does.
Moreover,	 modification	 of	 a	 mailbox	 during	 iteration	 is	 safe	 and

well-defined.	 Messages	 added	 to	 the	 mailbox	 after	 an	 iterator	 is
created	will	 not	 be	 seen	by	 the	 iterator.	Messages	 removed	 from
the	mailbox	before	the	iterator	yields	them	will	be	silently	skipped,
though	 using	 a	 key	 from	 an	 iterator	 may	 result	 in	 a	 KeyError
exception	if	the	corresponding	message	is	subsequently	removed.

Warning: 	 Be	 very	 cautious	 when	 modifying	 mailboxes	 that
might	 be	 simultaneously	 changed	 by	 some	 other	 process.	 The
safest	mailbox	format	to	use	for	such	tasks	is	Maildir;	try	to	avoid
using	 single-file	 formats	 such	 as	mbox	 for	 concurrent	writing.	 If
you’re	 modifying	 a	 mailbox,	 you	 must	 lock	 it	 by	 calling	 the
lock()	and	unlock()	methods	before	 reading	any	messages
in	 the	 file	 or	 making	 any	 changes	 by	 adding	 or	 deleting	 a
message.	 Failing	 to	 lock	 the	 mailbox	 runs	 the	 risk	 of	 losing
messages	or	corrupting	the	entire	mailbox.

Mailbox	instances	have	the	following	methods:

add(message)
Add	message	 to	 the	mailbox	and	return	the	key	that	has	been
assigned	to	it.

Parameter	 message	 may	 be	 a	 Message	 instance,	 an
email.message.Message	instance,	a	string,	a	byte	string,	or
a	 file-like	 object	 (which	 should	 be	 open	 in	 binary	 mode).	 If
message	 is	 an	 instance	 of	 the	 appropriate	 format-specific
Message	subclass	(e.g.,	 if	 it’s	an	mboxMessage	 instance	and
this	 is	 an	 mbox	 instance),	 its	 format-specific	 information	 is
used.	 Otherwise,	 reasonable	 defaults	 for	 format-specific
information	are	used.

Changed	in	version	3.2:	Support	for	binary	input	was	added.

remove(key)
__delitem__(key)
discard(key)

Delete	the	message	corresponding	to	key	from	the	mailbox.

If	no	such	message	exists,	a	KeyError	exception	 is	 raised	 if
the	method	was	called	as	remove()	or	__delitem__()	but
no	exception	is	raised	if	the	method	was	called	as	discard().
The	behavior	of	discard()	may	be	preferred	if	the	underlying
mailbox	 format	 supports	 concurrent	 modification	 by	 other
processes.

__setitem__(key,	message)
Replace	 the	 message	 corresponding	 to	 key	 with	 message.
Raise	 a	 KeyError	 exception	 if	 no	 message	 already
corresponds	to	key.

As	 with	 add(),	 parameter	 message	 may	 be	 a	 Message
instance,	 an	 email.message.Message	 instance,	 a	 string,	 a
byte	string,	or	a	file-like	object	(which	should	be	open	in	binary
mode).	 If	message	 is	 an	 instance	 of	 the	 appropriate	 format-
specific	 Message	 subclass	 (e.g.,	 if	 it’s	 an	 mboxMessage
instance	 and	 this	 is	 an	 mbox	 instance),	 its	 format-specific
information	 is	 used.	Otherwise,	 the	 format-specific	 information
of	 the	 message	 that	 currently	 corresponds	 to	 key	 is	 left
unchanged.

iterkeys()
keys()

Return	 an	 iterator	 over	 all	 keys	 if	 called	 as	 iterkeys()	 or
return	a	list	of	keys	if	called	as	keys().

itervalues()
__iter__()
values()

Return	an	iterator	over	representations	of	all	messages	if	called
as	 itervalues()	 or	 __iter__()	 or	 return	 a	 list	 of	 such
representations	 if	 called	 as	 values().	 The	 messages	 are
represented	 as	 instances	 of	 the	 appropriate	 format-specific
Message	 subclass	 unless	 a	 custom	 message	 factory	 was
specified	when	the	Mailbox	instance	was	initialized.

Note: 	 The	 behavior	 of	 __iter__()	 is	 unlike	 that	 of
dictionaries,	which	iterate	over	keys.

iteritems()
items()

Return	 an	 iterator	 over	 (key,	message)	 pairs,	 where	 key	 is	 a
key	 and	message	 is	 a	 message	 representation,	 if	 called	 as
iteritems()	 or	 return	 a	 list	 of	 such	 pairs	 if	 called	 as
items().	The	messages	are	 represented	as	 instances	of	 the
appropriate	format-specific	Message	subclass	unless	a	custom
message	 factory	 was	 specified	 when	 the	 Mailbox	 instance
was	initialized.

get(key,	default=None)
__getitem__(key)

Return	a	representation	of	the	message	corresponding	to	key.	If
no	such	message	exists,	default	 is	 returned	 if	 the	method	was
called	 as	 get()	 and	 a	 KeyError	 exception	 is	 raised	 if	 the
method	 was	 called	 as	 __getitem__().	 The	 message	 is
represented	 as	 an	 instance	 of	 the	 appropriate	 format-specific
Message	 subclass	 unless	 a	 custom	 message	 factory	 was

specified	when	the	Mailbox	instance	was	initialized.

get_message(key)
Return	a	 representation	of	 the	message	corresponding	 to	key
as	 an	 instance	 of	 the	 appropriate	 format-specific	 Message
subclass,	or	 raise	a	KeyError	exception	 if	no	such	message
exists.

get_bytes(key)
Return	a	byte	representation	of	 the	message	corresponding	to
key,	or	raise	a	KeyError	exception	if	no	such	message	exists.

New	in	version	3.2.

get_string(key)
Return	a	string	representation	of	the	message	corresponding	to
key,	or	raise	a	KeyError	exception	if	no	such	message	exists.
The	 message	 is	 processed	 through
email.message.Message	 to	 convert	 it	 to	 a	 7bit	 clean
representation.

get_file(key)
Return	a	 file-like	representation	of	 the	message	corresponding
to	 key,	 or	 raise	 a	 KeyError	 exception	 if	 no	 such	 message
exists.	The	 file-like	object	 behaves	as	 if	 open	 in	 binary	mode.
This	file	should	be	closed	once	it	is	no	longer	needed.

Changed	 in	 version	 3.2:	The	 file	 object	 really	 is	 a	 binary	 file;
previously	it	was	incorrectly	returned	in	text	mode.	Also,	the	file-
like	object	now	supports	the	context	manager	protocol:	you	can
use	a	with	statement	to	automatically	close	it.

Note: 	 Unlike	 other	 representations	 of	 messages,	 file-like
representations	 are	 not	 necessarily	 independent	 of	 the
Mailbox	 instance	 that	 created	 them	 or	 of	 the	 underlying
mailbox.	 More	 specific	 documentation	 is	 provided	 by	 each
subclass.

__contains__(key)
Return	 True	 if	 key	 corresponds	 to	 a	 message,	 False
otherwise.

__len__()
Return	a	count	of	messages	in	the	mailbox.

clear()
Delete	all	messages	from	the	mailbox.

pop(key,	default=None)
Return	a	 representation	of	 the	message	corresponding	 to	key
and	 delete	 the	 message.	 If	 no	 such	 message	 exists,	 return
default.	 The	 message	 is	 represented	 as	 an	 instance	 of	 the
appropriate	format-specific	Message	subclass	unless	a	custom
message	 factory	 was	 specified	 when	 the	 Mailbox	 instance
was	initialized.

popitem()
Return	an	arbitrary	(key,	message)	pair,	where	key	is	a	key	and
message	 is	 a	 message	 representation,	 and	 delete	 the
corresponding	 message.	 If	 the	 mailbox	 is	 empty,	 raise	 a
KeyError	 exception.	 The	 message	 is	 represented	 as	 an
instance	 of	 the	 appropriate	 format-specific	 Message	 subclass
unless	 a	 custom	 message	 factory	 was	 specified	 when	 the

Mailbox	instance	was	initialized.

update(arg)
Parameter	 arg	 should	 be	 a	 key-to-message	 mapping	 or	 an
iterable	of	 (key,	message)	pairs.	Updates	 the	mailbox	so	 that,
for	each	given	key	and	message,	 the	message	corresponding
to	key	 is	 set	 to	message	 as	 if	 by	 using	 __setitem__().	 As
with	__setitem__(),	each	key	must	already	correspond	to	a
message	in	the	mailbox	or	else	a	KeyError	exception	will	be
raised,	 so	 in	 general	 it	 is	 incorrect	 for	 arg	 to	 be	 a	 Mailbox
instance.

Note: 	Unlike	 with	 dictionaries,	 keyword	 arguments	 are	 not
supported.

flush()
Write	 any	 pending	 changes	 to	 the	 filesystem.	 For	 some
Mailbox	subclasses,	changes	are	always	written	 immediately
and	flush()	does	nothing,	but	you	should	still	make	a	habit	of
calling	this	method.

lock()
Acquire	an	exclusive	advisory	lock	on	the	mailbox	so	that	other
processes	know	not	to	modify	it.	An	ExternalClashError	is
raised	 if	 the	 lock	 is	 not	 available.	 The	 particular	 locking
mechanisms	used	depend	upon	the	mailbox	format.	You	should
always	 lock	the	mailbox	before	making	any	modifications	to	 its
contents.

unlock()
Release	the	lock	on	the	mailbox,	if	any.

close()
Flush	 the	mailbox,	 unlock	 it	 if	 necessary,	 and	 close	 any	 open
files.	 For	 some	 Mailbox	 subclasses,	 this	 method	 does
nothing.

19.4.1.1.	Maildir

class	mailbox.Maildir(dirname,	factory=None,	create=True)
A	subclass	of	Mailbox	for	mailboxes	in	Maildir	format.	Parameter
factory	 is	 a	 callable	 object	 that	 accepts	 a	 file-like	 message
representation	 (which	 behaves	 as	 if	 opened	 in	 binary	mode)	 and
returns	 a	 custom	 representation.	 If	 factory	 is	 None,
MaildirMessage	is	used	as	the	default	message	representation.
If	create	is	True,	the	mailbox	is	created	if	it	does	not	exist.

It	 is	 for	 historical	 reasons	 that	 dirname	 is	 named	 as	 such	 rather
than	path.

Maildir	 is	 a	directory-based	mailbox	 format	 invented	 for	 the	qmail
mail	 transfer	agent	and	now	widely	supported	by	other	programs.
Messages	in	a	Maildir	mailbox	are	stored	in	separate	files	within	a
common	directory	 structure.	This	design	allows	Maildir	mailboxes
to	 be	 accessed	 and	 modified	 by	 multiple	 unrelated	 programs
without	data	corruption,	so	file	locking	is	unnecessary.

Maildir	mailboxes	contain	three	subdirectories,	namely:	tmp,	new,
and	 cur.	 Messages	 are	 created	 momentarily	 in	 the	 tmp

subdirectory	 and	 then	 moved	 to	 the	 new	 subdirectory	 to	 finalize
delivery.	A	mail	user	agent	may	subsequently	move	 the	message
to	the	cur	subdirectory	and	store	information	about	the	state	of	the
message	in	a	special	“info”	section	appended	to	its	file	name.

Folders	of	 the	style	 introduced	by	 the	Courier	mail	 transfer	agent
are	 also	 supported.	 Any	 subdirectory	 of	 the	 main	 mailbox	 is
considered	a	folder	if	'.'	is	the	first	character	in	its	name.	Folder
names	 are	 represented	 by	 Maildir	 without	 the	 leading	 '.'.
Each	folder	 is	 itself	a	Maildir	mailbox	but	should	not	contain	other
folders.	Instead,	a	logical	nesting	is	indicated	using	'.'	 to	delimit
levels,	e.g.,	“Archived.2005.07”.

Note: 	The	Maildir	specification	requires	the	use	of	a	colon	(':')
in	 certain	 message	 file	 names.	 However,	 some	 operating
systems	do	not	permit	this	character	in	file	names,	If	you	wish	to
use	 a	 Maildir-like	 format	 on	 such	 an	 operating	 system,	 you
should	specify	another	character	to	use	instead.	The	exclamation
point	('!')	is	a	popular	choice.	For	example:

import	mailbox

mailbox.Maildir.colon	=	'!'

The	colon	attribute	may	also	be	set	on	a	per-instance	basis.

Maildir	 instances	 have	 all	 of	 the	 methods	 of	 Mailbox	 in
addition	to	the	following:

list_folders()
Return	a	list	of	the	names	of	all	folders.

get_folder(folder)
Return	 a	 Maildir	 instance	 representing	 the	 folder	 whose
name	is	folder.	A	NoSuchMailboxError	exception	is	raised	if
the	folder	does	not	exist.

add_folder(folder)
Create	 a	 folder	 whose	 name	 is	 folder	 and	 return	 a	 Maildir

instance	representing	it.

remove_folder(folder)
Delete	 the	 folder	 whose	 name	 is	 folder.	 If	 the	 folder	 contains
any	messages,	a	NotEmptyError	exception	will	be	raised	and
the	folder	will	not	be	deleted.

clean()
Delete	 temporary	 files	 from	 the	 mailbox	 that	 have	 not	 been
accessed	 in	 the	 last	 36	 hours.	 The	 Maildir	 specification	 says
that	mail-reading	programs	should	do	this	occasionally.

Some	 Mailbox	 methods	 implemented	 by	 Maildir	 deserve
special	remarks:

add(message)
__setitem__(key,	message)
update(arg)

Warning: 	These	methods	generate	unique	file	names	based
upon	 the	 current	 process	 ID.	 When	 using	 multiple	 threads,
undetected	name	clashes	may	occur	and	cause	corruption	of
the	 mailbox	 unless	 threads	 are	 coordinated	 to	 avoid	 using
these	 methods	 to	 manipulate	 the	 same	 mailbox
simultaneously.

flush()
All	 changes	 to	 Maildir	 mailboxes	 are	 immediately	 applied,	 so
this	method	does	nothing.

lock()
unlock()

Maildir	mailboxes	do	not	support	 (or	 require)	 locking,	so	 these

methods	do	nothing.

close()
Maildir	 instances	 do	 not	 keep	 any	 open	 files	 and	 the
underlying	 mailboxes	 do	 not	 support	 locking,	 so	 this	 method
does	nothing.

get_file(key)
Depending	 upon	 the	 host	 platform,	 it	 may	 not	 be	 possible	 to
modify	 or	 remove	 the	 underlying	message	 while	 the	 returned
file	remains	open.

See	also:

maildir	man	page	from	qmail
The	original	specification	of	the	format.

Using	maildir	format
Notes	 on	 Maildir	 by	 its	 inventor.	 Includes	 an	 updated	 name-
creation	scheme	and	details	on	“info”	semantics.

maildir	man	page	from	Courier
Another	 specification	 of	 the	 format.	 Describes	 a	 common
extension	for	supporting	folders.

19.4.1.2.	mbox

class	mailbox.mbox(path,	factory=None,	create=True)
A	subclass	of	Mailbox	 for	mailboxes	 in	mbox	 format.	Parameter
factory	 is	 a	 callable	 object	 that	 accepts	 a	 file-like	 message
representation	 (which	 behaves	 as	 if	 opened	 in	 binary	mode)	 and
returns	a	custom	representation.	If	factory	is	None,	mboxMessage
is	used	as	 the	default	message	representation.	 If	create	 is	True,

http://www.qmail.org/man/man5/maildir.html
http://cr.yp.to/proto/maildir.html
http://www.courier-mta.org/maildir.html

the	mailbox	is	created	if	it	does	not	exist.

The	 mbox	 format	 is	 the	 classic	 format	 for	 storing	 mail	 on	 Unix
systems.	All	messages	 in	an	mbox	mailbox	are	stored	 in	a	single
file	with	the	beginning	of	each	message	indicated	by	a	line	whose
first	five	characters	are	“From	”.

Several	 variations	 of	 the	mbox	 format	 exist	 to	 address	 perceived
shortcomings	 in	 the	original.	 In	 the	 interest	of	 compatibility,	mbox
implements	 the	original	 format,	which	 is	sometimes	referred	 to	as
mboxo.	This	means	 that	 the	Content-Length	header,	 if	present,	 is
ignored	and	that	any	occurrences	of	“From	”	at	the	beginning	of	a
line	 in	a	message	body	are	transformed	to	“>From	”	when	storing
the	 message,	 although	 occurrences	 of	 “>From	 ”	 are	 not
transformed	to	“From	”	when	reading	the	message.

Some	 Mailbox	methods	 implemented	 by	 mbox	 deserve	 special
remarks:

get_file(key)
Using	the	file	after	calling	flush()	or	close()	on	 the	mbox
instance	may	yield	unpredictable	results	or	raise	an	exception.

lock()
unlock()

Three	 locking	 mechanisms	 are	 used—dot	 locking	 and,	 if
available,	the	flock()	and	lockf()	system	calls.

See	also:

mbox	man	page	from	qmail
A	specification	of	the	format	and	its	variations.

mbox	man	page	from	tin

http://www.qmail.org/man/man5/mbox.html
http://www.tin.org/bin/man.cgi?section=5&topic=mbox

Another	specification	of	the	format,	with	details	on	locking.

Configuring	Netscape	Mail	on	Unix:	Why	The	Content-Length
Format	is	Bad

An	 argument	 for	 using	 the	 original	 mbox	 format	 rather	 than	 a
variation.

“mbox”	is	a	family	of	several	mutually	incompatible	mailbox
formats

A	history	of	mbox	variations.

19.4.1.3.	MH

class	mailbox.MH(path,	factory=None,	create=True)
A	 subclass	 of	 Mailbox	 for	 mailboxes	 in	 MH	 format.	 Parameter
factory	 is	 a	 callable	 object	 that	 accepts	 a	 file-like	 message
representation	 (which	 behaves	 as	 if	 opened	 in	 binary	mode)	 and
returns	a	custom	representation.	If	factory	is	None,	MHMessage	is
used	as	the	default	message	representation.	If	create	is	True,	the
mailbox	is	created	if	it	does	not	exist.

MH	 is	 a	 directory-based	 mailbox	 format	 invented	 for	 the	 MH
Message	Handling	System,	a	mail	user	agent.	Each	message	in	an
MH	mailbox	 resides	 in	 its	 own	 file.	 An	MH	mailbox	may	 contain
other	 MH	 mailboxes	 (called	 folders)	 in	 addition	 to	 messages.
Folders	 may	 be	 nested	 indefinitely.	 MH	 mailboxes	 also	 support
sequences,	 which	 are	 named	 lists	 used	 to	 logically	 group
messages	 without	 moving	 them	 to	 sub-folders.	 Sequences	 are
defined	in	a	file	called	.mh_sequences	in	each	folder.

The	MH	class	manipulates	MH	mailboxes,	but	it	does	not	attempt	to
emulate	all	of	mh‘s	behaviors.	In	particular,	it	does	not	modify	and
is	 not	 affected	 by	 the	 context	 or	 .mh_profile	 files	 that	 are

http://www.jwz.org/doc/content-length.html
http://homepages.tesco.net./~J.deBoynePollard/FGA/mail-mbox-formats.html

used	by	mh	to	store	its	state	and	configuration.

MH	instances	have	all	of	the	methods	of	Mailbox	in	addition	to	the
following:

list_folders()
Return	a	list	of	the	names	of	all	folders.

get_folder(folder)
Return	an	MH	 instance	 representing	 the	 folder	whose	name	 is
folder.	 A	 NoSuchMailboxError	 exception	 is	 raised	 if	 the
folder	does	not	exist.

add_folder(folder)
Create	a	folder	whose	name	is	folder	and	return	an	MH	instance
representing	it.

remove_folder(folder)
Delete	 the	 folder	 whose	 name	 is	 folder.	 If	 the	 folder	 contains
any	messages,	a	NotEmptyError	exception	will	be	raised	and
the	folder	will	not	be	deleted.

get_sequences()
Return	a	dictionary	of	sequence	names	mapped	to	key	 lists.	 If
there	are	no	sequences,	the	empty	dictionary	is	returned.

set_sequences(sequences)
Re-define	 the	sequences	 that	exist	 in	 the	mailbox	based	upon
sequences,	 a	 dictionary	 of	 names	 mapped	 to	 key	 lists,	 like
returned	by	get_sequences().

pack()
Rename	 messages	 in	 the	 mailbox	 as	 necessary	 to	 eliminate

gaps	 in	 numbering.	Entries	 in	 the	 sequences	 list	 are	 updated
correspondingly.

Note: 	Already-issued	keys	are	 invalidated	by	 this	operation
and	should	not	be	subsequently	used.

Some	 Mailbox	 methods	 implemented	 by	 MH	 deserve	 special
remarks:

remove(key)
__delitem__(key)
discard(key)

These	 methods	 immediately	 delete	 the	 message.	 The	 MH
convention	of	marking	a	message	for	deletion	by	prepending	a
comma	to	its	name	is	not	used.

lock()
unlock()

Three	 locking	 mechanisms	 are	 used—dot	 locking	 and,	 if
available,	 the	 flock()	 and	 lockf()	 system	 calls.	 For	 MH
mailboxes,	 locking	 the	 mailbox	 means	 locking	 the
.mh_sequences	 file	 and,	 only	 for	 the	 duration	 of	 any
operations	that	affect	them,	locking	individual	message	files.

get_file(key)
Depending	 upon	 the	 host	 platform,	 it	 may	 not	 be	 possible	 to
remove	the	underlying	message	while	the	returned	file	remains
open.

flush()
All	 changes	 to	MH	mailboxes	are	 immediately	applied,	so	 this
method	does	nothing.

close()
MH	 instances	 do	 not	 keep	 any	 open	 files,	 so	 this	 method	 is
equivalent	to	unlock().

See	also:

nmh	-	Message	Handling	System
Home	page	of	nmh,	an	updated	version	of	the	original	mh.

MH	&	nmh:	Email	for	Users	&	Programmers
A	GPL-licensed	book	on	mh	and	nmh,	with	some	information	on
the	mailbox	format.

19.4.1.4.	Babyl

class	mailbox.Babyl(path,	factory=None,	create=True)
A	subclass	of	Mailbox	 for	mailboxes	 in	Babyl	 format.	Parameter
factory	 is	 a	 callable	 object	 that	 accepts	 a	 file-like	 message
representation	 (which	 behaves	 as	 if	 opened	 in	 binary	mode)	 and
returns	 a	 custom	 representation.	 If	 factory	 is	 None,
BabylMessage	 is	used	as	the	default	message	representation.	If
create	is	True,	the	mailbox	is	created	if	it	does	not	exist.

Babyl	 is	 a	 single-file	mailbox	 format	used	by	 the	Rmail	mail	 user
agent	 included	 with	 Emacs.	 The	 beginning	 of	 a	 message	 is
indicated	 by	 a	 line	 containing	 the	 two	 characters	 Control-
Underscore	 ('\037')	 and	 Control-L	 ('\014').	 The	 end	 of	 a
message	 is	 indicated	 by	 the	 start	 of	 the	 next	message	 or,	 in	 the
case	of	 the	 last	message,	a	 line	containing	a	Control-Underscore
('\037')	character.

Messages	 in	 a	 Babyl	mailbox	 have	 two	 sets	 of	 headers,	 original

http://www.nongnu.org/nmh/
http://rand-mh.sourceforge.net/book/

headers	and	so-called	visible	headers.	Visible	headers	are	typically
a	 subset	 of	 the	 original	 headers	 that	 have	 been	 reformatted	 or
abridged	to	be	more	attractive.	Each	message	in	a	Babyl	mailbox
also	has	an	accompanying	list	of	labels,	or	short	strings	that	record
extra	information	about	the	message,	and	a	list	of	all	user-defined
labels	found	in	the	mailbox	is	kept	in	the	Babyl	options	section.

Babyl	 instances	have	all	of	 the	methods	of	Mailbox	 in	addition
to	the	following:

get_labels()
Return	a	list	of	the	names	of	all	user-defined	labels	used	in	the
mailbox.

Note: 	 The	 actual	 messages	 are	 inspected	 to	 determine
which	labels	exist	in	the	mailbox	rather	than	consulting	the	list
of	labels	in	the	Babyl	options	section,	but	the	Babyl	section	is
updated	whenever	the	mailbox	is	modified.

Some	Mailbox	methods	implemented	by	Babyl	deserve	special
remarks:

get_file(key)
In	Babyl	mailboxes,	 the	headers	of	 a	message	are	not	 stored
contiguously	with	the	body	of	the	message.	To	generate	a	file-
like	 representation,	 the	headers	and	body	are	copied	 together
into	a	io.BytesIO	instance,	which	has	an	API	identical	to	that
of	a	 file.	As	a	 result,	 the	 file-like	object	 is	 truly	 independent	of
the	underlying	mailbox	but	does	not	save	memory	compared	to
a	string	representation.

lock()

unlock()
Three	 locking	 mechanisms	 are	 used—dot	 locking	 and,	 if
available,	the	flock()	and	lockf()	system	calls.

See	also:

Format	of	Version	5	Babyl	Files
A	specification	of	the	Babyl	format.

Reading	Mail	with	Rmail
The	Rmail	manual,	with	some	information	on	Babyl	semantics.

19.4.1.5.	MMDF

class	mailbox.MMDF(path,	factory=None,	create=True)
A	subclass	of	Mailbox	for	mailboxes	in	MMDF	format.	Parameter
factory	 is	 a	 callable	 object	 that	 accepts	 a	 file-like	 message
representation	 (which	 behaves	 as	 if	 opened	 in	 binary	mode)	 and
returns	a	custom	representation.	If	factory	is	None,	MMDFMessage
is	used	as	 the	default	message	representation.	 If	create	 is	True,
the	mailbox	is	created	if	it	does	not	exist.

MMDF	is	a	single-file	mailbox	format	invented	for	the	Multichannel
Memorandum	 Distribution	 Facility,	 a	 mail	 transfer	 agent.	 Each
message	 is	 in	 the	 same	 form	 as	 an	 mbox	 message	 but	 is
bracketed	 before	 and	 after	 by	 lines	 containing	 four	 Control-A
('\001')	 characters.	 As	 with	 the	mbox	 format,	 the	 beginning	 of
each	message	is	indicated	by	a	line	whose	first	five	characters	are
“From	”,	but	additional	occurrences	of	“From	”	are	not	transformed
to	 “>From	 ”	 when	 storing	messages	 because	 the	 extra	message
separator	lines	prevent	mistaking	such	occurrences	for	the	starts	of
subsequent	messages.

http://quimby.gnus.org/notes/BABYL
http://www.gnu.org/software/emacs/manual/html_node/emacs/Rmail.html

Some	 Mailbox	methods	 implemented	 by	 MMDF	 deserve	 special
remarks:

get_file(key)
Using	the	file	after	calling	flush()	or	close()	on	 the	MMDF
instance	may	yield	unpredictable	results	or	raise	an	exception.

lock()
unlock()

Three	 locking	 mechanisms	 are	 used—dot	 locking	 and,	 if
available,	the	flock()	and	lockf()	system	calls.

See	also:

mmdf	man	page	from	tin
A	specification	of	MMDF	format	from	the	documentation	of	tin,	a
newsreader.

MMDF
A	 Wikipedia	 article	 describing	 the	 Multichannel	 Memorandum
Distribution	Facility.

http://www.tin.org/bin/man.cgi?section=5&topic=mmdf
http://en.wikipedia.org/wiki/MMDF

19.4.2.	Message	objects

class	mailbox.Message(message=None)
A	 subclass	 of	 the	 email.message	 module’s	 Message.
Subclasses	 of	 mailbox.Message	 add	 mailbox-format-specific
state	and	behavior.

If	message	 is	 omitted,	 the	 new	 instance	 is	 created	 in	 a	 default,
empty	 state.	 If	 message	 is	 an	 email.message.Message

instance,	 its	contents	are	copied;	 furthermore,	any	 format-specific
information	 is	 converted	 insofar	 as	 possible	 if	 message	 is	 a
Message	instance.	If	message	is	a	string,	a	byte	string,	or	a	file,	it
should	 contain	 an	RFC	 2822-compliant	 message,	 which	 is	 read
and	parsed.	Files	 should	 be	 open	 in	 binary	mode,	 but	 text	mode
files	are	accepted	for	backward	compatibility.

The	format-specific	state	and	behaviors	offered	by	subclasses	vary,
but	 in	 general	 it	 is	 only	 the	 properties	 that	 are	 not	 specific	 to	 a
particular	 mailbox	 that	 are	 supported	 (although	 presumably	 the
properties	are	specific	to	a	particular	mailbox	format).	For	example,
file	 offsets	 for	 single-file	 mailbox	 formats	 and	 file	 names	 for
directory-based	mailbox	formats	are	not	retained,	because	they	are
only	applicable	to	the	original	mailbox.	But	state	such	as	whether	a
message	 has	 been	 read	 by	 the	 user	 or	 marked	 as	 important	 is
retained,	because	it	applies	to	the	message	itself.

There	 is	 no	 requirement	 that	 Message	 instances	 be	 used	 to
represent	messages	retrieved	using	Mailbox	 instances.	 In	some
situations,	 the	 time	 and	 memory	 required	 to	 generate	 Message
representations	 might	 not	 be	 acceptable.	 For	 such	 situations,
Mailbox	 instances	 also	 offer	 string	 and	 file-like	 representations,

http://tools.ietf.org/html/rfc2822.html

and	a	custom	message	factory	may	be	specified	when	a	Mailbox
instance	is	initialized.

19.4.2.1.	MaildirMessage

class	mailbox.MaildirMessage(message=None)
A	 message	 with	 Maildir-specific	 behaviors.	 Parameter	 message
has	the	same	meaning	as	with	the	Message	constructor.

Typically,	a	mail	user	agent	application	moves	all	of	the	messages
in	the	new	subdirectory	to	the	cur	subdirectory	after	the	first	time
the	 user	 opens	 and	 closes	 the	 mailbox,	 recording	 that	 the
messages	are	old	whether	or	not	they’ve	actually	been	read.	Each
message	 in	 cur	 has	 an	 “info”	 section	 added	 to	 its	 file	 name	 to
store	information	about	its	state.	(Some	mail	readers	may	also	add
an	“info”	section	to	messages	in	new.)	The	“info”	section	may	take
one	 of	 two	 forms:	 it	 may	 contain	 “2,”	 followed	 by	 a	 list	 of
standardized	flags	(e.g.,	 “2,FR”)	or	 it	may	contain	“1,”	 followed	by
so-called	 experimental	 information.	 Standard	 flags	 for	 Maildir
messages	are	as	follows:

Flag Meaning Explanation

D Draft Under	composition

F Flagged Marked	as	important

P Passed Forwarded,	resent,	or	bounced

R Replied Replied	to

S Seen Read

T Trashed Marked	for	subsequent	deletion

MaildirMessage	instances	offer	the	following	methods:

get_subdir()
Return	either	“new”	(if	the	message	should	be	stored	in	the	new
subdirectory)	 or	 “cur”	 (if	 the	message	 should	 be	 stored	 in	 the
cur	subdirectory).

Note: 	A	message	 is	 typically	moved	 from	new	 to	cur	 after
its	mailbox	has	been	accessed,	whether	or	not	 the	message
is	has	been	read.	A	message	msg	has	been	read	if	"S"	in
msg.get_flags()	is	True.

set_subdir(subdir)
Set	 the	 subdirectory	 the	 message	 should	 be	 stored	 in.
Parameter	subdir	must	be	either	“new”	or	“cur”.

get_flags()
Return	a	string	specifying	the	flags	that	are	currently	set.	If	the
message	complies	with	the	standard	Maildir	format,	the	result	is
the	 concatenation	 in	 alphabetical	 order	 of	 zero	 or	 one
occurrence	of	each	of	'D',	'F',	'P',	'R',	'S',	and	'T'.	The
empty	string	 is	 returned	 if	no	 flags	are	set	or	 if	 “info”	contains
experimental	semantics.

set_flags(flags)
Set	the	flags	specified	by	flags	and	unset	all	others.

add_flag(flag)
Set	the	flag(s)	specified	by	flag	without	changing	other	flags.	To
add	more	than	one	flag	at	a	time,	flag	may	be	a	string	of	more
than	one	character.	The	current	“info”	is	overwritten	whether	or
not	it	contains	experimental	information	rather	than	flags.

remove_flag(flag)

Unset	the	flag(s)	specified	by	flag	without	changing	other	flags.
To	remove	more	than	one	flag	at	a	time,	flag	maybe	a	string	of
more	 than	 one	 character.	 If	 “info”	 contains	 experimental
information	rather	than	flags,	the	current	“info”	is	not	modified.

get_date()
Return	 the	 delivery	 date	 of	 the	 message	 as	 a	 floating-point
number	representing	seconds	since	the	epoch.

set_date(date)
Set	 the	 delivery	 date	 of	 the	message	 to	date,	 a	 floating-point
number	representing	seconds	since	the	epoch.

get_info()
Return	 a	 string	 containing	 the	 “info”	 for	 a	 message.	 This	 is
useful	 for	 accessing	 and	modifying	 “info”	 that	 is	 experimental
(i.e.,	not	a	list	of	flags).

set_info(info)
Set	“info”	to	info,	which	should	be	a	string.

When	 a	 MaildirMessage	 instance	 is	 created	 based	 upon	 an
mboxMessage	 or	 MMDFMessage	 instance,	 the	Status	 and	X-Status
headers	are	omitted	and	the	following	conversions	take	place:

Resulting	state mboxMessage	or	MMDFMessage	state

“cur”	subdirectory O	flag

F	flag F	flag

R	flag A	flag

S	flag R	flag

T	flag D	flag

When	 a	 MaildirMessage	 instance	 is	 created	 based	 upon	 an
MHMessage	instance,	the	following	conversions	take	place:

Resulting	state MHMessage	state

“cur”	subdirectory “unseen”	sequence

“cur”	subdirectory	and	S	flag no	“unseen”	sequence

F	flag “flagged”	sequence

R	flag “replied”	sequence

When	 a	 MaildirMessage	 instance	 is	 created	 based	 upon	 a
BabylMessage	instance,	the	following	conversions	take	place:

Resulting	state BabylMessage	state

“cur”	subdirectory “unseen”	label

“cur”	subdirectory	and	S	flag no	“unseen”	label

P	flag “forwarded”	or	“resent”	label

R	flag “answered”	label

T	flag “deleted”	label

19.4.2.2.	mboxMessage

class	mailbox.mboxMessage(message=None)
A	message	with	mbox-specific	behaviors.	Parameter	message	has
the	same	meaning	as	with	the	Message	constructor.

Messages	in	an	mbox	mailbox	are	stored	together	 in	a	single	file.
The	 sender’s	 envelope	 address	 and	 the	 time	 of	 delivery	 are
typically	 stored	 in	 a	 line	 beginning	 with	 “From	 ”	 that	 is	 used	 to
indicate	 the	 start	 of	 a	 message,	 though	 there	 is	 considerable

variation	 in	 the	 exact	 format	 of	 this	 data	 among	 mbox
implementations.	 Flags	 that	 indicate	 the	 state	 of	 the	 message,
such	 as	 whether	 it	 has	 been	 read	 or	 marked	 as	 important,	 are
typically	stored	in	Status	and	X-Status	headers.

Conventional	flags	for	mbox	messages	are	as	follows:

Flag Meaning Explanation

R Read Read

O Old Previously	detected	by	MUA

D Deleted Marked	for	subsequent	deletion

F Flagged Marked	as	important

A Answered Replied	to

The	“R”	and	“O”	flags	are	stored	in	the	Status	header,	and	the	“D”,
“F”,	and	“A”	flags	are	stored	in	the	X-Status	header.	The	flags	and
headers	typically	appear	in	the	order	mentioned.

mboxMessage	instances	offer	the	following	methods:

get_from()
Return	a	string	representing	the	“From	”	line	that	marks	the	start
of	 the	message	 in	an	mbox	mailbox.	The	 leading	 “From	”	and
the	trailing	newline	are	excluded.

set_from(from_,	time_=None)
Set	the	“From	”	line	to	from_,	which	should	be	specified	without
a	 leading	 “From	 ”	 or	 trailing	 newline.	 For	 convenience,	 time_
may	 be	 specified	 and	 will	 be	 formatted	 appropriately	 and
appended	 to	 from_.	 If	 time_	 is	 specified,	 it	 should	 be	 a
time.struct_time	 instance,	 a	 tuple	 suitable	 for	 passing	 to

time.strftime(),	or	True	(to	use	time.gmtime()).

get_flags()
Return	a	string	specifying	the	flags	that	are	currently	set.	If	the
message	 complies	 with	 the	 conventional	 format,	 the	 result	 is
the	 concatenation	 in	 the	 following	 order	 of	 zero	 or	 one
occurrence	of	each	of	'R',	'O',	'D',	'F',	and	'A'.

set_flags(flags)
Set	the	flags	specified	by	flags	and	unset	all	others.	Parameter
flags	should	be	the	concatenation	in	any	order	of	zero	or	more
occurrences	of	each	of	'R',	'O',	'D',	'F',	and	'A'.

add_flag(flag)
Set	the	flag(s)	specified	by	flag	without	changing	other	flags.	To
add	more	than	one	flag	at	a	time,	flag	may	be	a	string	of	more
than	one	character.

remove_flag(flag)
Unset	the	flag(s)	specified	by	flag	without	changing	other	flags.
To	remove	more	than	one	flag	at	a	time,	flag	maybe	a	string	of
more	than	one	character.

When	 an	 mboxMessage	 instance	 is	 created	 based	 upon	 a
MaildirMessage	 instance,	a	 “From	”	 line	 is	generated	based	upon
the	 MaildirMessage	 instance’s	 delivery	 date,	 and	 the	 following
conversions	take	place:

Resulting	state MaildirMessage	state

R	flag S	flag

O	flag “cur”	subdirectory

D	flag T	flag

F	flag F	flag

A	flag R	flag

When	 an	 mboxMessage	 instance	 is	 created	 based	 upon	 an
MHMessage	instance,	the	following	conversions	take	place:

Resulting	state MHMessage	state

R	flag	and	O	flag no	“unseen”	sequence

O	flag “unseen”	sequence

F	flag “flagged”	sequence

A	flag “replied”	sequence

When	 an	 mboxMessage	 instance	 is	 created	 based	 upon	 a
BabylMessage	instance,	the	following	conversions	take	place:

Resulting	state BabylMessage	state

R	flag	and	O	flag no	“unseen”	label

O	flag “unseen”	label

D	flag “deleted”	label

A	flag “answered”	label

When	a	Message	 instance	is	created	based	upon	an	MMDFMessage
instance,	the	“From	”	line	is	copied	and	all	flags	directly	correspond:

Resulting	state MMDFMessage	state

R	flag R	flag

O	flag O	flag

D	flag D	flag

F	flag F	flag

A	flag A	flag

19.4.2.3.	MHMessage

class	mailbox.MHMessage(message=None)
A	message	 with	MH-specific	 behaviors.	 Parameter	message	 has
the	same	meaning	as	with	the	Message	constructor.

MH	 messages	 do	 not	 support	 marks	 or	 flags	 in	 the	 traditional
sense,	but	they	do	support	sequences,	which	are	logical	groupings
of	arbitrary	messages.	Some	mail	reading	programs	(although	not
the	standard	mh	and	nmh)	use	sequences	in	much	the	same	way
flags	are	used	with	other	formats,	as	follows:

Sequence Explanation

unseen Not	read,	but	previously	detected	by	MUA

replied Replied	to

flagged Marked	as	important

MHMessage	instances	offer	the	following	methods:

get_sequences()
Return	 a	 list	 of	 the	 names	 of	 sequences	 that	 include	 this
message.

set_sequences(sequences)
Set	the	list	of	sequences	that	include	this	message.

add_sequence(sequence)

Add	 sequence	 to	 the	 list	 of	 sequences	 that	 include	 this
message.

remove_sequence(sequence)
Remove	sequence	 from	 the	 list	of	sequences	 that	 include	 this
message.

When	 an	 MHMessage	 instance	 is	 created	 based	 upon	 a
MaildirMessage	instance,	the	following	conversions	take	place:

Resulting	state MaildirMessage	state

“unseen”	sequence no	S	flag

“replied”	sequence R	flag

“flagged”	sequence F	flag

When	 an	 MHMessage	 instance	 is	 created	 based	 upon	 an
mboxMessage	 or	 MMDFMessage	 instance,	 the	Status	 and	X-Status
headers	are	omitted	and	the	following	conversions	take	place:

Resulting	state mboxMessage	or	MMDFMessage	state

“unseen”
sequence no	R	flag

“replied”	sequence A	flag

“flagged”
sequence F	flag

When	 an	 MHMessage	 instance	 is	 created	 based	 upon	 a
BabylMessage	instance,	the	following	conversions	take	place:

Resulting	state BabylMessage	state

“unseen”	sequence “unseen”	label

“replied”	sequence “answered”	label

19.4.2.4.	BabylMessage

class	mailbox.BabylMessage(message=None)
A	message	with	Babyl-specific	behaviors.	Parameter	message	has
the	same	meaning	as	with	the	Message	constructor.

Certain	 message	 labels,	 called	 attributes,	 are	 defined	 by
convention	to	have	special	meanings.	The	attributes	are	as	follows:

Label Explanation

unseen Not	read,	but	previously	detected	by	MUA

deleted Marked	for	subsequent	deletion

filed Copied	to	another	file	or	mailbox

answered Replied	to

forwarded Forwarded

edited Modified	by	the	user

resent Resent

By	 default,	 Rmail	 displays	 only	 visible	 headers.	 The
BabylMessage	class,	though,	uses	the	original	headers	because
they	 are	 more	 complete.	 Visible	 headers	 may	 be	 accessed
explicitly	if	desired.

BabylMessage	instances	offer	the	following	methods:

get_labels()
Return	a	list	of	labels	on	the	message.

set_labels(labels)

Set	the	list	of	labels	on	the	message	to	labels.

add_label(label)
Add	label	to	the	list	of	labels	on	the	message.

remove_label(label)
Remove	label	from	the	list	of	labels	on	the	message.

get_visible()
Return	 an	 Message	 instance	 whose	 headers	 are	 the
message’s	visible	headers	and	whose	body	is	empty.

set_visible(visible)
Set	 the	 message’s	 visible	 headers	 to	 be	 the	 same	 as	 the
headers	 in	message.	Parameter	visible	 should	be	a	 Message
instance,	an	email.message.Message	 instance,	a	string,	or
a	file-like	object	(which	should	be	open	in	text	mode).

update_visible()
When	 a	 BabylMessage	 instance’s	 original	 headers	 are
modified,	 the	visible	headers	are	not	automatically	modified	 to
correspond.	 This	 method	 updates	 the	 visible	 headers	 as
follows:	 each	 visible	 header	 with	 a	 corresponding	 original
header	 is	 set	 to	 the	 value	 of	 the	 original	 header,	 each	 visible
header	without	a	corresponding	original	header	is	removed,	and
any	 of	 Date,	 From,	 Reply-To,	 To,	 CC,	 and	 Subject	 that	 are
present	 in	 the	original	headers	but	not	 the	visible	headers	are
added	to	the	visible	headers.

When	 a	 BabylMessage	 instance	 is	 created	 based	 upon	 a
MaildirMessage	instance,	the	following	conversions	take	place:

Resulting	state MaildirMessage	state

“unseen”	label no	S	flag

“deleted”	label T	flag

“answered”	label R	flag

“forwarded”	label P	flag

When	 a	 BabylMessage	 instance	 is	 created	 based	 upon	 an
mboxMessage	 or	 MMDFMessage	 instance,	 the	Status	 and	X-Status
headers	are	omitted	and	the	following	conversions	take	place:

Resulting	state mboxMessage	or	MMDFMessage	state

“unseen”	label no	R	flag

“deleted”	label D	flag

“answered”	label A	flag

When	 a	 BabylMessage	 instance	 is	 created	 based	 upon	 an
MHMessage	instance,	the	following	conversions	take	place:

Resulting	state MHMessage	state

“unseen”	label “unseen”	sequence

“answered”	label “replied”	sequence

19.4.2.5.	MMDFMessage

class	mailbox.MMDFMessage(message=None)
A	 message	 with	 MMDF-specific	 behaviors.	 Parameter	 message
has	the	same	meaning	as	with	the	Message	constructor.

As	with	message	in	an	mbox	mailbox,	MMDF	messages	are	stored

with	 the	 sender’s	 address	 and	 the	 delivery	 date	 in	 an	 initial	 line
beginning	with	“From	”.	Likewise,	flags	that	indicate	the	state	of	the
message	are	typically	stored	in	Status	and	X-Status	headers.

Conventional	 flags	 for	MMDF	messages	 are	 identical	 to	 those	 of
mbox	message	and	are	as	follows:

Flag Meaning Explanation

R Read Read

O Old Previously	detected	by	MUA

D Deleted Marked	for	subsequent	deletion

F Flagged Marked	as	important

A Answered Replied	to

The	“R”	and	“O”	flags	are	stored	in	the	Status	header,	and	the	“D”,
“F”,	and	“A”	flags	are	stored	in	the	X-Status	header.	The	flags	and
headers	typically	appear	in	the	order	mentioned.

MMDFMessage	 instances	 offer	 the	 following	 methods,	 which	 are
identical	to	those	offered	by	mboxMessage:

get_from()
Return	a	string	representing	the	“From	”	line	that	marks	the	start
of	 the	message	 in	an	mbox	mailbox.	The	 leading	 “From	”	and
the	trailing	newline	are	excluded.

set_from(from_,	time_=None)
Set	the	“From	”	line	to	from_,	which	should	be	specified	without
a	 leading	 “From	 ”	 or	 trailing	 newline.	 For	 convenience,	 time_
may	 be	 specified	 and	 will	 be	 formatted	 appropriately	 and
appended	 to	 from_.	 If	 time_	 is	 specified,	 it	 should	 be	 a

time.struct_time	 instance,	 a	 tuple	 suitable	 for	 passing	 to
time.strftime(),	or	True	(to	use	time.gmtime()).

get_flags()
Return	a	string	specifying	the	flags	that	are	currently	set.	If	the
message	 complies	 with	 the	 conventional	 format,	 the	 result	 is
the	 concatenation	 in	 the	 following	 order	 of	 zero	 or	 one
occurrence	of	each	of	'R',	'O',	'D',	'F',	and	'A'.

set_flags(flags)
Set	the	flags	specified	by	flags	and	unset	all	others.	Parameter
flags	should	be	the	concatenation	in	any	order	of	zero	or	more
occurrences	of	each	of	'R',	'O',	'D',	'F',	and	'A'.

add_flag(flag)
Set	the	flag(s)	specified	by	flag	without	changing	other	flags.	To
add	more	than	one	flag	at	a	time,	flag	may	be	a	string	of	more
than	one	character.

remove_flag(flag)
Unset	the	flag(s)	specified	by	flag	without	changing	other	flags.
To	remove	more	than	one	flag	at	a	time,	flag	maybe	a	string	of
more	than	one	character.

When	 an	 MMDFMessage	 instance	 is	 created	 based	 upon	 a
MaildirMessage	 instance,	a	 “From	”	 line	 is	generated	based	upon
the	 MaildirMessage	 instance’s	 delivery	 date,	 and	 the	 following
conversions	take	place:

Resulting	state MaildirMessage	state

R	flag S	flag

O	flag “cur”	subdirectory

D	flag T	flag

F	flag F	flag

A	flag R	flag

When	 an	 MMDFMessage	 instance	 is	 created	 based	 upon	 an
MHMessage	instance,	the	following	conversions	take	place:

Resulting	state MHMessage	state

R	flag	and	O	flag no	“unseen”	sequence

O	flag “unseen”	sequence

F	flag “flagged”	sequence

A	flag “replied”	sequence

When	 an	 MMDFMessage	 instance	 is	 created	 based	 upon	 a
BabylMessage	instance,	the	following	conversions	take	place:

Resulting	state BabylMessage	state

R	flag	and	O	flag no	“unseen”	label

O	flag “unseen”	label

D	flag “deleted”	label

A	flag “answered”	label

When	 an	 MMDFMessage	 instance	 is	 created	 based	 upon	 an
mboxMessage	instance,	the	“From	”	line	is	copied	and	all	flags	directly
correspond:

Resulting	state mboxMessage	state

R	flag R	flag

O	flag O	flag

D	flag D	flag

F	flag F	flag

A	flag A	flag

19.4.3.	Exceptions

The	following	exception	classes	are	defined	in	the	mailbox	module:

exception	mailbox.Error
The	based	class	for	all	other	module-specific	exceptions.

exception	mailbox.NoSuchMailboxError
Raised	when	a	mailbox	is	expected	but	is	not	found,	such	as	when
instantiating	a	Mailbox	 subclass	with	 a	 path	 that	 does	 not	 exist
(and	with	the	create	parameter	set	to	False),	or	when	opening	a
folder	that	does	not	exist.

exception	mailbox.NotEmptyError
Raised	when	a	mailbox	is	not	empty	but	is	expected	to	be,	such	as
when	deleting	a	folder	that	contains	messages.

exception	mailbox.ExternalClashError
Raised	when	some	mailbox-related	condition	beyond	the	control	of
the	 program	 causes	 it	 to	 be	 unable	 to	 proceed,	 such	 as	 when
failing	to	acquire	a	lock	that	another	program	already	holds	a	lock,
or	when	a	uniquely-generated	file	name	already	exists.

exception	mailbox.FormatError
Raised	when	the	data	in	a	file	cannot	be	parsed,	such	as	when	an
MH	instance	attempts	to	read	a	corrupted	.mh_sequences	file.

19.4.4.	Examples

A	simple	example	of	printing	the	subjects	of	all	messages	in	a	mailbox
that	seem	interesting:

import	mailbox

for	message	in	mailbox.mbox('~/mbox'):

				subject	=	message['subject']							#	Could	possibly	be	None.

				if	subject	and	'python'	in	subject.lower():

								print(subject)

To	copy	all	mail	from	a	Babyl	mailbox	to	an	MH	mailbox,	converting	all
of	the	format-specific	information	that	can	be	converted:

import	mailbox

destination	=	mailbox.MH('~/Mail')

destination.lock()

for	message	in	mailbox.Babyl('~/RMAIL'):

				destination.add(mailbox.MHMessage(message))

destination.flush()

destination.unlock()

This	 example	 sorts	 mail	 from	 several	 mailing	 lists	 into	 different
mailboxes,	 being	 careful	 to	 avoid	 mail	 corruption	 due	 to	 concurrent
modification	 by	 other	 programs,	 mail	 loss	 due	 to	 interruption	 of	 the
program,	or	premature	termination	due	to	malformed	messages	in	the
mailbox:

import	mailbox

import	email.errors

list_names	=	('python-list',	'python-dev',	'python-bugs'

boxes	=	{name:	mailbox.mbox('~/email/%s'	%	name)	for

inbox	=	mailbox.Maildir('~/Maildir',	factory=None)

for	key	in	inbox.iterkeys():

				try:

								message	=	inbox[key]

				except	email.errors.MessageParseError:

								continue																#	The	message	is	malformed.	Just	leave	it.

				for	name	in	list_names:

								list_id	=	message['list-id']

								if	list_id	and	name	in	list_id:

												#	Get	mailbox	to	use

												box	=	boxes[name]

												#	Write	copy	to	disk	before	removing	original.

												#	If	there's	a	crash,	you	might	duplicate	a	message,	but

												#	that's	better	than	losing	a	message	completely.

												box.lock()

												box.add(message)

												box.flush()

												box.unlock()

												#	Remove	original	message

												inbox.lock()

												inbox.discard(key)

												inbox.flush()

												inbox.unlock()

												break															#	Found	destination,	so	stop	looking.

for	box	in	boxes.itervalues():

				box.close()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.5.	mimetypes	—	Map
filenames	to	MIME	types
Source	code:	Lib/mimetypes.py

The	mimetypes	module	converts	between	a	filename	or	URL	and	the
MIME	 type	 associated	with	 the	 filename	 extension.	 Conversions	 are
provided	from	filename	to	MIME	type	and	from	MIME	type	to	filename
extension;	encodings	are	not	supported	for	the	latter	conversion.

The	 module	 provides	 one	 class	 and	 a	 number	 of	 convenience
functions.	 The	 functions	 are	 the	 normal	 interface	 to	 this	module,	 but
some	applications	may	be	interested	in	the	class	as	well.

The	 functions	 described	 below	 provide	 the	 primary	 interface	 for	 this
module.	If	the	module	has	not	been	initialized,	they	will	call	init()	if
they	rely	on	the	information	init()	sets	up.

mimetypes.guess_type(url,	strict=True)
Guess	the	type	of	a	file	based	on	its	filename	or	URL,	given	by	url.
The	 return	 value	 is	 a	 tuple	 (type,	 encoding)	 where	 type	 is
None	if	the	type	can’t	be	guessed	(missing	or	unknown	suffix)	or	a
string	of	 the	form	'type/subtype',	usable	 for	a	MIME	content-
type	header.

encoding	 is	 None	 for	 no	 encoding	 or	 the	 name	 of	 the	 program
used	to	encode	(e.g.	compress	or	gzip).	The	encoding	is	suitable
for	use	as	a	Content-Encoding	header,	not	as	a	Content-Transfer-
Encoding	 header.	 The	 mappings	 are	 table	 driven.	 Encoding
suffixes	 are	 case	 sensitive;	 type	 suffixes	 are	 first	 tried	 case

http://hg.python.org/cpython/file/3.4/Lib/mimetypes.py

sensitively,	then	case	insensitively.

The	optional	strict	argument	is	a	flag	specifying	whether	the	list	of
known	MIME	 types	 is	 limited	 to	 only	 the	 official	 types	 registered
with	 IANA.	When	strict	 is	True	 (the	default),	only	 the	 IANA	 types
are	supported;	when	strict	is	False,	some	additional	non-standard
but	commonly	used	MIME	types	are	also	recognized.

mimetypes.guess_all_extensions(type,	strict=True)
Guess	 the	extensions	 for	a	 file	based	on	 its	MIME	 type,	given	by
type.	The	return	value	is	a	list	of	strings	giving	all	possible	filename
extensions,	including	the	leading	dot	('.').	The	extensions	are	not
guaranteed	 to	 have	 been	 associated	 with	 any	 particular	 data
stream,	 but	 would	 be	 mapped	 to	 the	 MIME	 type	 type	 by
guess_type().

The	 optional	 strict	 argument	 has	 the	 same	 meaning	 as	 with	 the
guess_type()	function.

mimetypes.guess_extension(type,	strict=True)
Guess	 the	 extension	 for	 a	 file	 based	 on	 its	MIME	 type,	 given	 by
type.	 The	 return	 value	 is	 a	 string	 giving	 a	 filename	 extension,
including	the	leading	dot	('.').	The	extension	is	not	guaranteed	to
have	 been	 associated	with	 any	 particular	 data	 stream,	 but	would
be	 mapped	 to	 the	 MIME	 type	 type	 by	 guess_type().	 If	 no
extension	can	be	guessed	for	type,	None	is	returned.

The	 optional	 strict	 argument	 has	 the	 same	 meaning	 as	 with	 the
guess_type()	function.

Some	additional	functions	and	data	items	are	available	for	controlling
the	behavior	of	the	module.

http://www.iana.org/assignments/media-types/

mimetypes.init(files=None)
Initialize	 the	 internal	 data	 structures.	 If	 given,	 files	 must	 be	 a
sequence	 of	 file	 names	 which	 should	 be	 used	 to	 augment	 the
default	 type	map.	 If	omitted,	 the	 file	names	 to	use	are	 taken	 from
knownfiles;	 on	 Windows,	 the	 current	 registry	 settings	 are
loaded.	Each	file	named	in	files	or	knownfiles	takes	precedence
over	those	named	before	it.	Calling	init()	repeatedly	is	allowed.

Specifying	 an	 empty	 list	 for	 files	 will	 prevent	 the	 system	 defaults
from	being	applied:	only	the	well-known	values	will	be	present	from
a	built-in	list.

Changed	in	version	3.2:	Previously,	Windows	registry	settings	were
ignored.

mimetypes.read_mime_types(filename)
Load	 the	 type	map	given	 in	 the	 file	 filename,	 if	 it	exists.	The	type
map	 is	 returned	 as	 a	 dictionary	 mapping	 filename	 extensions,
including	 the	 leading	 dot	 ('.'),	 to	 strings	 of	 the	 form
'type/subtype'.	If	the	file	filename	does	not	exist	or	cannot	be
read,	None	is	returned.

mimetypes.add_type(type,	ext,	strict=True)
Add	 a	 mapping	 from	 the	 MIME	 type	 type	 to	 the	 extension	 ext.
When	the	extension	is	already	known,	the	new	type	will	replace	the
old	 one.	 When	 the	 type	 is	 already	 known	 the	 extension	 will	 be
added	to	the	list	of	known	extensions.

When	strict	 is	 True	 (the	 default),	 the	mapping	 will	 added	 to	 the
official	MIME	types,	otherwise	to	the	non-standard	ones.

mimetypes.inited

Flag	indicating	whether	or	not	the	global	data	structures	have	been
initialized.	This	is	set	to	True	by	init().

mimetypes.knownfiles

List	 of	 type	 map	 file	 names	 commonly	 installed.	 These	 files	 are
typically	 named	 mime.types	 and	 are	 installed	 in	 different
locations	by	different	packages.

mimetypes.suffix_map

Dictionary	 mapping	 suffixes	 to	 suffixes.	 This	 is	 used	 to	 allow
recognition	 of	 encoded	 files	 for	which	 the	 encoding	 and	 the	 type
are	 indicated	 by	 the	 same	 extension.	 For	 example,	 the	 .tgz
extension	is	mapped	to	.tar.gz	to	allow	the	encoding	and	type	to
be	recognized	separately.

mimetypes.encodings_map

Dictionary	mapping	filename	extensions	to	encoding	types.

mimetypes.types_map

Dictionary	mapping	filename	extensions	to	MIME	types.

mimetypes.common_types

Dictionary	 mapping	 filename	 extensions	 to	 non-standard,	 but
commonly	found	MIME	types.

An	example	usage	of	the	module:

>>>	import	mimetypes

>>>	mimetypes.init()

>>>	mimetypes.knownfiles

['/etc/mime.types',	'/etc/httpd/mime.types',	...]

>>>	mimetypes.suffix_map['.tgz']

'.tar.gz'

>>>	mimetypes.encodings_map['.gz']

'gzip'

>>>	mimetypes.types_map['.tgz']

'application/x-tar-gz'

19.5.1.	MimeTypes	Objects

The	MimeTypes	class	may	be	useful	for	applications	which	may	want
more	than	one	MIME-type	database;	it	provides	an	interface	similar	to
the	one	of	the	mimetypes	module.

class	mimetypes.MimeTypes(filenames=(),	strict=True)
This	 class	 represents	 a	 MIME-types	 database.	 By	 default,	 it
provides	access	to	the	same	database	as	the	rest	of	 this	module.
The	initial	database	is	a	copy	of	that	provided	by	the	module,	and
may	be	extended	by	loading	additional	mime.types-style	files	into
the	 database	 using	 the	 read()	 or	 readfp()	 methods.	 The
mapping	dictionaries	may	also	be	cleared	before	loading	additional
data	if	the	default	data	is	not	desired.

The	optional	filenames	parameter	can	be	used	to	cause	additional
files	to	be	loaded	“on	top”	of	the	default	database.

MimeTypes.suffix_map

Dictionary	 mapping	 suffixes	 to	 suffixes.	 This	 is	 used	 to	 allow
recognition	 of	 encoded	 files	 for	which	 the	 encoding	 and	 the	 type
are	 indicated	 by	 the	 same	 extension.	 For	 example,	 the	 .tgz
extension	is	mapped	to	.tar.gz	to	allow	the	encoding	and	type	to
be	 recognized	 separately.	 This	 is	 initially	 a	 copy	 of	 the	 global
suffix_map	defined	in	the	module.

MimeTypes.encodings_map

Dictionary	mapping	filename	extensions	to	encoding	types.	This	is
initially	 a	 copy	 of	 the	 global	 encodings_map	 defined	 in	 the
module.

MimeTypes.types_map

Tuple	containing	two	dictionaries,	mapping	filename	extensions	to
MIME	types:	the	first	dictionary	is	for	the	non-standards	types	and
the	 second	 one	 is	 for	 the	 standard	 types.	 They	 are	 initialized	 by
common_types	and	types_map.

MimeTypes.types_map_inv

Tuple	containing	two	dictionaries,	mapping	MIME	types	to	a	list	of
filename	 extensions:	 the	 first	 dictionary	 is	 for	 the	 non-standards
types	 and	 the	 second	 one	 is	 for	 the	 standard	 types.	 They	 are
initialized	by	common_types	and	types_map.

MimeTypes.guess_extension(type,	strict=True)
Similar	 to	 the	 guess_extension()	 function,	 using	 the	 tables
stored	as	part	of	the	object.

MimeTypes.guess_type(url,	strict=True)
Similar	to	the	guess_type()	function,	using	the	tables	stored	as
part	of	the	object.

MimeTypes.guess_all_extensions(type,	strict=True)
Similar	 to	 the	 guess_all_extensions()	 function,	 using	 the
tables	stored	as	part	of	the	object.

MimeTypes.read(filename,	strict=True)
Load	 MIME	 information	 from	 a	 file	 named	 filename.	 This	 uses
readfp()	to	parse	the	file.

If	strict	is	True,	information	will	be	added	to	list	of	standard	types,
else	to	the	list	of	non-standard	types.

MimeTypes.readfp(fp,	strict=True)

Load	 MIME	 type	 information	 from	 an	 open	 file	 fp.	 The	 file	 must
have	the	format	of	the	standard	mime.types	files.

If	strict	 is	 True,	 information	will	 be	 added	 to	 the	 list	 of	 standard
types,	else	to	the	list	of	non-standard	types.

MimeTypes.read_windows_registry(strict=True)
Load	MIME	type	information	from	the	Windows	registry.	Availability:
Windows.

If	strict	 is	 True,	 information	will	 be	 added	 to	 the	 list	 of	 standard
types,	else	to	the	list	of	non-standard	types.

New	in	version	3.2.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.6.	base64	—	Base16,	Base32,
Base64,	Base85	Data	Encodings
This	module	 provides	 functions	 for	 encoding	 binary	 data	 to	 printable
ASCII	characters	and	decoding	such	encodings	back	to	binary	data.	It
provides	encoding	and	decoding	functions	for	the	encodings	specified
in	 in	 RFC	 3548,	 which	 defines	 the	 Base16,	 Base32,	 and	 Base64
algorithms,	 and	 for	 the	 de-facto	 standard	 Ascii85	 and	 Base85
encodings.

The	RFC	3548	encodings	are	suitable	for	encoding	binary	data	so	that
it	can	safely	sent	by	email,	used	as	parts	of	URLs,	or	included	as	part
of	an	HTTP	POST	request.	The	encoding	algorithm	is	not	the	same	as
the	uuencode	program.

There	 are	 two	 RFC	 3548	 interfaces	 provided	 by	 this	 module.	 The
modern	 interface	 supports	 encoding	 and	 decoding	 ASCII	 byte	 string
objects	 using	 all	 three	 RFC	 3548	 defined	 alphabets	 (normal,	 URL-
safe,	and	 filesystem-safe).	Additionally,	 the	decoding	 functions	of	 the
modern	 interface	 also	 accept	 Unicode	 strings	 containing	 only	 ASCII
characters.	The	 legacy	 interface	provides	 for	encoding	and	decoding
to	and	from	file-like	objects	as	well	as	byte	strings,	but	only	using	the
Base64	standard	alphabet.

Changed	in	version	3.3:	ASCII-only	Unicode	strings	are	now	accepted
by	the	decoding	functions	of	the	modern	interface.

Changed	in	version	3.4:	Any	bytes-like	objects	are	now	accepted	by	all
encoding	 and	 decoding	 functions	 in	 this	 module.	 Ascii85/Base85
support	added.

http://tools.ietf.org/html/rfc3548.html
http://tools.ietf.org/html/rfc3548.html
http://tools.ietf.org/html/rfc3548.html
http://tools.ietf.org/html/rfc3548.html

The	modern	interface	provides:

base64.b64encode(s,	altchars=None)
Encode	a	byte	string	using	Base64.

s	 is	 the	string	 to	encode.	Optional	altchars	must	be	a	string	of	at
least	 length	 2	 (additional	 characters	 are	 ignored)	 which	 specifies
an	alternative	alphabet	for	the	+	and	/	characters.	This	allows	an
application	to	e.g.	generate	URL	or	filesystem	safe	Base64	strings.
The	 default	 is	 None,	 for	 which	 the	 standard	 Base64	 alphabet	 is
used.

The	encoded	byte	string	is	returned.

base64.b64decode(s,	altchars=None,	validate=False)
Decode	a	Base64	encoded	byte	string.

s	is	the	byte	string	to	decode.	Optional	altchars	must	be	a	string	of
at	least	length	2	(additional	characters	are	ignored)	which	specifies
the	alternative	alphabet	used	instead	of	the	+	and	/	characters.

The	decoded	string	is	returned.	A	binascii.Error	exception	 is
raised	if	s	is	incorrectly	padded.

If	validate	is	False	 (the	default),	non-base64-alphabet	characters
are	discarded	prior	to	the	padding	check.	If	validate	is	True,	non-
base64-alphabet	 characters	 in	 the	 input	 result	 in	 a
binascii.Error.

base64.standard_b64encode(s)
Encode	byte	string	s	using	the	standard	Base64	alphabet.

base64.standard_b64decode(s)

Decode	byte	string	s	using	the	standard	Base64	alphabet.

base64.urlsafe_b64encode(s)
Encode	byte	string	s	using	a	URL-safe	alphabet,	which	substitutes
-	instead	of	+	and	_	instead	of	/	in	the	standard	Base64	alphabet.
The	result	can	still	contain	=.

base64.urlsafe_b64decode(s)
Decode	byte	string	s	using	a	URL-safe	alphabet,	which	substitutes
-	instead	of	+	and	_	instead	of	/	in	the	standard	Base64	alphabet.

base64.b32encode(s)
Encode	a	byte	string	using	Base32.	s	 is	the	string	to	encode.	The
encoded	string	is	returned.

base64.b32decode(s,	casefold=False,	map01=None)
Decode	a	Base32	encoded	byte	string.

s	is	the	byte	string	to	decode.	Optional	casefold	is	a	flag	specifying
whether	a	 lowercase	alphabet	 is	acceptable	as	 input.	For	security
purposes,	the	default	is	False.

RFC	3548	allows	 for	optional	mapping	of	 the	digit	0	 (zero)	 to	 the
letter	O	(oh),	and	for	optional	mapping	of	the	digit	1	(one)	to	either
the	letter	I	(eye)	or	letter	L	(el).	The	optional	argument	map01	when
not	None,	 specifies	which	 letter	 the	 digit	 1	 should	 be	mapped	 to
(when	map01	 is	 not	 None,	 the	 digit	 0	 is	 always	 mapped	 to	 the
letter	O).	For	security	purposes	the	default	is	None,	so	that	0	and	1
are	not	allowed	in	the	input.

The	decoded	byte	string	is	returned.	A	binascii.Error	is	raised
if	s	 is	 incorrectly	 padded	 or	 if	 there	 are	 non-alphabet	 characters
present	in	the	string.

http://tools.ietf.org/html/rfc3548.html

base64.b16encode(s)
Encode	a	byte	string	using	Base16.

s	is	the	string	to	encode.	The	encoded	byte	string	is	returned.

base64.b16decode(s,	casefold=False)
Decode	a	Base16	encoded	byte	string.

s	 is	 the	 string	 to	 decode.	 Optional	 casefold	 is	 a	 flag	 specifying
whether	a	 lowercase	alphabet	 is	acceptable	as	 input.	For	security
purposes,	the	default	is	False.

The	decoded	byte	 string	 is	 returned.	A	TypeError	 is	 raised	 if	s
were	 incorrectly	 padded	 or	 if	 there	 are	 non-alphabet	 characters
present	in	the	string.

base64.a85encode(s,	*,	foldspaces=False,	wrapcol=0,
pad=False,	adobe=False)

Encode	a	byte	string	using	Ascii85.

s	is	the	string	to	encode.	The	encoded	byte	string	is	returned.

foldspaces	is	an	optional	flag	that	uses	the	special	short	sequence
‘y’	 instead	of	4	consecutive	spaces	(ASCII	0x20)	as	supported	by
‘btoa’.	 This	 feature	 is	 not	 supported	 by	 the	 “standard”	 Ascii85
encoding.

wrapcol	 controls	 whether	 the	 output	 should	 have	 newline	 (‘n’)
characters	added	to	it.	If	this	is	non-zero,	each	output	line	will	be	at
most	this	many	characters	long.

pad	 controls	whether	 the	 input	string	 is	padded	 to	a	multiple	of	4
before	encoding.	Note	that	the	btoa	implementation	always	pads.

adobe	controls	whether	the	encoded	byte	sequence	is	framed	with
<~	and	~>,	which	is	used	by	the	Adobe	implementation.

New	in	version	3.4.

base64.a85decode(s,	*,	foldspaces=False,	adobe=False,
ignorechars=b'	tnrv')

Decode	an	Ascii85	encoded	byte	string.

s	is	the	byte	string	to	decode.

foldspaces	 is	 a	 flag	 that	 specifies	whether	 the	 ‘y’	 short	 sequence
should	be	accepted	as	shorthand	for	4	consecutive	spaces	(ASCII
0x20).	 This	 feature	 is	 not	 supported	 by	 the	 “standard”	 Ascii85
encoding.

adobe	 controls	 whether	 the	 input	 sequence	 is	 in	 Adobe	 Ascii85
format	(i.e.	is	framed	with	<~	and	~>).

ignorechars	should	be	a	byte	string	containing	characters	to	ignore
from	 the	 input.	 This	 should	 only	 contain	 whitespace	 characters,
and	by	default	contains	all	whitespace	characters	in	ASCII.

New	in	version	3.4.

base64.b85encode(s,	pad=False)
Encode	a	byte	string	using	base85,	as	used	in	e.g.	git-style	binary
diffs.

If	pad	is	true,	the	input	is	padded	with	“\0”	so	its	length	is	a	multiple
of	4	characters	before	encoding.

New	in	version	3.4.

base64.b85decode(b)
Decode	base85-encoded	byte	string.	Padding	is	implicitly	removed,
if	necessary.

New	in	version	3.4.

Note: 	Both	Base85	and	Ascii85	have	an	expansion	factor	of	5	to	4
(5	Base85	or	Ascii85	characters	can	encode	4	binary	bytes),	while
the	better-known	Base64	has	an	expansion	factor	of	6	to	4.	They	are
therefore	more	efficient	when	space	expensive.	They	differ	by	details
such	as	the	character	map	used	for	encoding.

The	legacy	interface:

base64.decode(input,	output)
Decode	the	contents	of	the	binary	input	file	and	write	the	resulting
binary	data	to	the	output	file.	input	and	output	must	be	file	objects.
input	 will	 be	 read	 until	 input.read()	 returns	 an	 empty	 bytes
object.

base64.decodebytes(s)
base64.decodestring(s)

Decode	the	byte	string	s,	which	must	contain	one	or	more	lines	of
base64	 encoded	 data,	 and	 return	 a	 byte	 string	 containing	 the
resulting	binary	data.	decodestring	is	a	deprecated	alias.

New	in	version	3.1.

base64.encode(input,	output)
Encode	the	contents	of	the	binary	 input	file	and	write	the	resulting
base64	encoded	data	 to	 the	output	 file.	 input	and	output	must	be
file	 objects.	 input	 will	 be	 read	 until	 input.read()	 returns	 an

empty	 bytes	 object.	 encode()	 returns	 the	 encoded	 data	 plus	 a
trailing	newline	character	(b'\n').

base64.encodebytes(s)
base64.encodestring(s)

Encode	 the	byte	string	s,	which	can	contain	arbitrary	binary	data,
and	 return	 a	 byte	 string	 containing	 one	 or	more	 lines	 of	 base64-
encoded	data.	encodebytes()	returns	a	string	containing	one	or
more	 lines	 of	 base64-encoded	 data	 always	 including	 an	 extra
trailing	newline	(b'\n').	encodestring	is	a	deprecated	alias.

An	example	usage	of	the	module:

>>>	import	base64

>>>	encoded	=	base64.b64encode(b'data	to	be	encoded'

>>>	encoded

b'ZGF0YSB0byBiZSBlbmNvZGVk'

>>>	data	=	base64.b64decode(encoded)

>>>	data

b'data	to	be	encoded'

See	also:

Module	binascii
Support	 module	 containing	 ASCII-to-binary	 and	 binary-to-ASCII
conversions.

RFC	1521	-	MIME	(Multipurpose	Internet	Mail	Extensions)	Part
One:	Mechanisms	for	Specifying	and	Describing	the	Format	of
Internet	Message	Bodies

Section	 5.2,	 “Base64	 Content-Transfer-Encoding,”	 provides	 the
definition	of	the	base64	encoding.

http://tools.ietf.org/html/rfc1521.html

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.7.	binhex	—	Encode	and
decode	binhex4	files
This	module	 encodes	 and	 decodes	 files	 in	 binhex4	 format,	 a	 format
allowing	representation	of	Macintosh	files	in	ASCII.	Only	the	data	fork
is	handled.

The	binhex	module	defines	the	following	functions:

binhex.binhex(input,	output)
Convert	a	binary	 file	with	 filename	 input	 to	binhex	file	output.	 The
output	parameter	can	either	be	a	filename	or	a	file-like	object	(any
object	supporting	a	write()	and	close()	method).

binhex.hexbin(input,	output)
Decode	a	binhex	 file	 input.	 input	may	 be	 a	 filename	or	 a	 file-like
object	 supporting	 read()	 and	 close()	 methods.	 The	 resulting
file	is	written	to	a	file	named	output,	unless	the	argument	is	None
in	which	case	the	output	filename	is	read	from	the	binhex	file.

The	following	exception	is	also	defined:

exception	binhex.Error
Exception	 raised	 when	 something	 can’t	 be	 encoded	 using	 the
binhex	 format	 (for	 example,	 a	 filename	 is	 too	 long	 to	 fit	 in	 the
filename	field),	or	when	input	is	not	properly	encoded	binhex	data.

See	also:

Module	binascii
Support	 module	 containing	 ASCII-to-binary	 and	 binary-to-ASCII

conversions.

19.7.1.	Notes

There	 is	 an	 alternative,	 more	 powerful	 interface	 to	 the	 coder	 and
decoder,	see	the	source	for	details.

If	 you	 code	 or	 decode	 textfiles	 on	 non-Macintosh	 platforms	 they	will
still	use	the	old	Macintosh	newline	convention	(carriage-return	as	end
of	line).

As	of	this	writing,	hexbin()	appears	to	not	work	in	all	cases.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.8.	binascii	—	Convert
between	binary	and	ASCII
The	 binascii	 module	 contains	 a	 number	 of	 methods	 to	 convert
between	 binary	 and	 various	 ASCII-encoded	 binary	 representations.
Normally,	 you	 will	 not	 use	 these	 functions	 directly	 but	 use	 wrapper
modules	 like	 uu,	 base64,	 or	 binhex	 instead.	 The	 binascii
module	contains	low-level	functions	written	in	C	for	greater	speed	that
are	used	by	the	higher-level	modules.

Note: 	a2b_*	functions	accept	Unicode	strings	containing	only
ASCII	characters.	Other	functions	only	accept	bytes-like	objects
(such	as	bytes,	bytearray	and	other	objects	that	support	the
buffer	protocol).

Changed	 in	 version	 3.3:	 ASCII-only	 unicode	 strings	 are	 now
accepted	by	the	a2b_*	functions.

The	binascii	module	defines	the	following	functions:

binascii.a2b_uu(string)
Convert	a	single	line	of	uuencoded	data	back	to	binary	and	return
the	binary	data.	Lines	normally	contain	45	(binary)	bytes,	except	for
the	last	line.	Line	data	may	be	followed	by	whitespace.

binascii.b2a_uu(data)
Convert	binary	data	to	a	line	of	ASCII	characters,	the	return	value
is	 the	converted	 line,	 including	a	newline	char.	The	 length	of	data
should	be	at	most	45.

binascii.a2b_base64(string)
Convert	 a	 block	 of	 base64	 data	 back	 to	 binary	 and	 return	 the
binary	data.	More	than	one	line	may	be	passed	at	a	time.

binascii.b2a_base64(data)
Convert	binary	data	to	a	line	of	ASCII	characters	in	base64	coding.
The	 return	 value	 is	 the	 converted	 line,	 including	 a	 newline	 char.
The	 length	of	data	should	be	at	most	57	 to	adhere	 to	 the	base64
standard.

binascii.a2b_qp(string,	header=False)
Convert	a	block	of	quoted-printable	data	back	to	binary	and	return
the	binary	data.	More	than	one	line	may	be	passed	at	a	time.	If	the
optional	argument	header	 is	present	and	true,	underscores	will	be
decoded	as	spaces.

Changed	in	version	3.2:	Accept	only	bytestring	or	bytearray	objects
as	input.

binascii.b2a_qp(data,	quotetabs=False,	istext=True,
header=False)

Convert	 binary	 data	 to	 a	 line(s)	 of	 ASCII	 characters	 in	 quoted-
printable	encoding.	The	return	value	is	the	converted	line(s).	If	the
optional	 argument	 quotetabs	 is	 present	 and	 true,	 all	 tabs	 and
spaces	will	be	encoded.	 If	 the	optional	argument	 istext	 is	present
and	true,	newlines	are	not	encoded	but	 trailing	whitespace	will	be
encoded.	 If	 the	 optional	 argument	 header	 is	 present	 and	 true,
spaces	 will	 be	 encoded	 as	 underscores	 per	 RFC1522.	 If	 the
optional	argument	header	is	present	and	false,	newline	characters
will	 be	 encoded	 as	 well;	 otherwise	 linefeed	 conversion	 might
corrupt	the	binary	data	stream.

binascii.a2b_hqx(string)

Convert	 binhex4	 formatted	 ASCII	 data	 to	 binary,	 without	 doing
RLE-decompression.	The	string	should	contain	a	complete	number
of	binary	bytes,	or	(in	case	of	the	last	portion	of	the	binhex4	data)
have	the	remaining	bits	zero.

binascii.rledecode_hqx(data)
Perform	 RLE-decompression	 on	 the	 data,	 as	 per	 the	 binhex4
standard.	 The	 algorithm	 uses	 0x90	 after	 a	 byte	 as	 a	 repeat
indicator,	followed	by	a	count.	A	count	of	0	specifies	a	byte	value	of
0x90.	 The	 routine	 returns	 the	 decompressed	 data,	 unless	 data
input	data	ends	in	an	orphaned	repeat	indicator,	in	which	case	the
Incomplete	exception	is	raised.

Changed	in	version	3.2:	Accept	only	bytestring	or	bytearray	objects
as	input.

binascii.rlecode_hqx(data)
Perform	 binhex4	 style	 RLE-compression	 on	 data	 and	 return	 the
result.

binascii.b2a_hqx(data)
Perform	 hexbin4	 binary-to-ASCII	 translation	 and	 return	 the
resulting	string.	The	argument	should	already	be	RLE-coded,	and
have	a	length	divisible	by	3	(except	possibly	the	last	fragment).

binascii.crc_hqx(data,	crc)
Compute	 the	binhex4	crc	value	of	data,	 starting	with	an	 initial	crc
and	returning	the	result.

binascii.crc32(data[,	crc])
Compute	 CRC-32,	 the	 32-bit	 checksum	 of	 data,	 starting	 with	 an
initial	crc.	This	 is	consistent	with	 the	ZIP	file	checksum.	Since	the

algorithm	 is	 designed	 for	 use	 as	 a	 checksum	 algorithm,	 it	 is	 not
suitable	for	use	as	a	general	hash	algorithm.	Use	as	follows:

print(binascii.crc32(b"hello	world"))

#	Or,	in	two	pieces:

crc	=	binascii.crc32(b"hello")

crc	=	binascii.crc32(b"	world",	crc)	&	0xffffffff

print('crc32	=	{:#010x}'.format(crc))

Note: 	To	generate	the	same	numeric	value	across	all	Python
versions	and	platforms	use	crc32(data)	&	0xffffffff.	If	you	are	only
using	the	checksum	in	packed	binary	format	this	is	not	necessary	as
the	return	value	is	the	correct	32bit	binary	representation	regardless
of	sign.

binascii.b2a_hex(data)
binascii.hexlify(data)

Return	 the	 hexadecimal	 representation	 of	 the	 binary	 data.	 Every
byte	 of	 data	 is	 converted	 into	 the	 corresponding	 2-digit	 hex
representation.	The	returned	bytes	object	is	therefore	twice	as	long
as	the	length	of	data.

binascii.a2b_hex(hexstr)
binascii.unhexlify(hexstr)

Return	 the	 binary	 data	 represented	 by	 the	 hexadecimal	 string
hexstr.	 This	 function	 is	 the	 inverse	 of	 b2a_hex().	 hexstr	 must
contain	an	even	number	of	hexadecimal	digits	(which	can	be	upper
or	lower	case),	otherwise	a	TypeError	is	raised.

Changed	in	version	3.2:	Accept	only	bytestring	or	bytearray	objects
as	input.

exception	binascii.Error
Exception	raised	on	errors.	These	are	usually	programming	errors.

exception	binascii.Incomplete
Exception	 raised	 on	 incomplete	 data.	 These	 are	 usually	 not
programming	errors,	but	may	be	handled	by	 reading	a	 little	more
data	and	trying	again.

See	also:

Module	base64
Support	for	base64	encoding	used	in	MIME	email	messages.

Module	binhex
Support	for	the	binhex	format	used	on	the	Macintosh.

Module	uu
Support	for	UU	encoding	used	on	Unix.

Module	quopri
Support	 for	 quoted-printable	 encoding	 used	 in	 MIME	 email
messages.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.9.	quopri	—	Encode	and
decode	MIME	quoted-printable
data
Source	code:	Lib/quopri.py

This	 module	 performs	 quoted-printable	 transport	 encoding	 and
decoding,	as	defined	in	RFC	1521:	“MIME	(Multipurpose	Internet	Mail
Extensions)	Part	One:	Mechanisms	for	Specifying	and	Describing	the
Format	of	Internet	Message	Bodies”.	The	quoted-printable	encoding	is
designed	 for	 data	 where	 there	 are	 relatively	 few	 nonprintable
characters;	 the	 base64	 encoding	 scheme	 available	 via	 the	 base64
module	is	more	compact	 if	 there	are	many	such	characters,	as	when
sending	a	graphics	file.

quopri.decode(input,	output,	header=False)
Decode	 the	 contents	 of	 the	 input	 file	 and	 write	 the	 resulting
decoded	binary	data	to	the	output	file.	input	and	output	must	be	file
objects.	 input	 will	 be	 read	 until	 input.readline()	 returns	 an
empty	string.	 If	 the	optional	argument	header	 is	present	and	true,
underscore	will	be	decoded	as	space.	This	is	used	to	decode	“Q”-
encoded	headers	as	described	in	RFC	1522:	“MIME	(Multipurpose
Internet	 Mail	 Extensions)	 Part	 Two:	Message	 Header	 Extensions
for	Non-ASCII	Text”.

quopri.encode(input,	output,	quotetabs,	header=False)
Encode	the	contents	of	the	input	file	and	write	the	resulting	quoted-
printable	 data	 to	 the	 output	 file.	 input	 and	 output	 must	 be	 file

http://hg.python.org/cpython/file/3.4/Lib/quopri.py
http://tools.ietf.org/html/rfc1521.html
http://tools.ietf.org/html/rfc1522.html

objects.	 input	 will	 be	 read	 until	 input.readline()	 returns	 an
empty	string.	quotetabs	is	a	flag	which	controls	whether	to	encode
embedded	spaces	and	tabs;	when	true	it	encodes	such	embedded
whitespace,	 and	when	 false	 it	 leaves	 them	unencoded.	Note	 that
spaces	and	tabs	appearing	at	the	end	of	lines	are	always	encoded,
as	 per	RFC	1521.	header	 is	 a	 flag	 which	 controls	 if	 spaces	 are
encoded	as	underscores	as	per	RFC	1522.

quopri.decodestring(s,	header=False)
Like	decode(),	except	that	it	accepts	a	source	string	and	returns
the	corresponding	decoded	string.

quopri.encodestring(s,	quotetabs=False,	header=False)
Like	encode(),	except	that	it	accepts	a	source	string	and	returns
the	 corresponding	 encoded	 string.	 quotetabs	 and	 header	 are
optional	(defaulting	to	False),	and	are	passed	straight	through	to
encode().

See	also:

Module	base64
Encode	and	decode	MIME	base64	data

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://tools.ietf.org/html/rfc1521.html
http://tools.ietf.org/html/rfc1522.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

http://www.python.org/

19.10.	uu	—	Encode	and	decode
uuencode	files
Source	code:	Lib/uu.py

This	module	encodes	and	decodes	files	in	uuencode	format,	allowing
arbitrary	 binary	 data	 to	 be	 transferred	 over	 ASCII-only	 connections.
Wherever	a	 file	argument	 is	expected,	 the	methods	accept	a	 file-like
object.	For	backwards	compatibility,	a	string	containing	a	pathname	is
also	accepted,	 and	 the	 corresponding	 file	will	 be	opened	 for	 reading
and	writing;	 the	 pathname	 '-'	 is	 understood	 to	mean	 the	 standard
input	or	output.	However,	this	interface	is	deprecated;	it’s	better	for	the
caller	to	open	the	file	itself,	and	be	sure	that,	when	required,	the	mode
is	'rb'	or	'wb'	on	Windows.

This	 code	 was	 contributed	 by	 Lance	 Ellinghouse,	 and	 modified	 by
Jack	Jansen.

The	uu	module	defines	the	following	functions:

uu.encode(in_file,	out_file,	name=None,	mode=None)
Uuencode	file	in_file	into	file	out_file.	The	uuencoded	file	will	have
the	 header	 specifying	 name	 and	 mode	 as	 the	 defaults	 for	 the
results	 of	 decoding	 the	 file.	 The	 default	 defaults	 are	 taken	 from
in_file,	or	'-'	and	0o666	respectively.

uu.decode(in_file,	out_file=None,	mode=None,	quiet=False)
This	 call	 decodes	 uuencoded	 file	 in_file	 placing	 the	 result	 on	 file
out_file.	 If	 out_file	 is	 a	 pathname,	 mode	 is	 used	 to	 set	 the
permission	bits	if	the	file	must	be	created.	Defaults	for	out_file	and

http://hg.python.org/cpython/file/3.4/Lib/uu.py

mode	 are	 taken	 from	 the	 uuencode	 header.	 However,	 if	 the	 file
specified	in	the	header	already	exists,	a	uu.Error	is	raised.

decode()	may	print	a	warning	 to	standard	error	 if	 the	 input	was
produced	 by	 an	 incorrect	 uuencoder	 and	 Python	 could	 recover
from	that	error.	Setting	quiet	to	a	true	value	silences	this	warning.

exception	uu.Error
Subclass	 of	 Exception,	 this	 can	 be	 raised	 by	 uu.decode()
under	 various	 situations,	 such	 as	 described	 above,	 but	 also
including	a	badly	formatted	header,	or	truncated	input	file.

See	also:

Module	binascii
Support	 module	 containing	 ASCII-to-binary	 and	 binary-to-ASCII
conversions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	19.	Internet	Data	Handling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

20.	Structured	Markup	Processing
Tools
Python	 supports	 a	 variety	 of	modules	 to	 work	 with	 various	 forms	 of
structured	 data	 markup.	 This	 includes	 modules	 to	 work	 with	 the
Standard	 Generalized	 Markup	 Language	 (SGML)	 and	 the	 Hypertext
Markup	Language	(HTML),	and	several	interfaces	for	working	with	the
Extensible	Markup	Language	(XML).

20.1.	html	—	HyperText	Markup	Language	support
20.2.	html.parser	—	Simple	HTML	and	XHTML	parser

20.2.1.	Example	HTML	Parser	Application
20.2.2.	HTMLParser	Methods
20.2.3.	Examples

20.3.	html.entities	—	Definitions	of	HTML	general	entities
20.4.	XML	Processing	Modules

20.4.1.	XML	vulnerabilities
20.4.2.	The	defusedxml	and	defusedexpat	Packages

20.5.	xml.etree.ElementTree	—	The	ElementTree	XML	API
20.5.1.	Tutorial

20.5.1.1.	XML	tree	and	elements
20.5.1.2.	Parsing	XML
20.5.1.3.	Pull	API	for	non-blocking	parsing
20.5.1.4.	Finding	interesting	elements
20.5.1.5.	Modifying	an	XML	File
20.5.1.6.	Building	XML	documents
20.5.1.7.	Additional	resources

20.5.2.	XPath	support
20.5.2.1.	Example
20.5.2.2.	Supported	XPath	syntax

20.5.3.	Reference

20.5.3.1.	Functions
20.5.3.2.	Element	Objects
20.5.3.3.	ElementTree	Objects
20.5.3.4.	QName	Objects
20.5.3.5.	TreeBuilder	Objects
20.5.3.6.	XMLParser	Objects
20.5.3.7.	XMLPullParser	Objects
20.5.3.8.	Exceptions

20.6.	xml.dom	—	The	Document	Object	Model	API
20.6.1.	Module	Contents
20.6.2.	Objects	in	the	DOM

20.6.2.1.	DOMImplementation	Objects
20.6.2.2.	Node	Objects
20.6.2.3.	NodeList	Objects
20.6.2.4.	DocumentType	Objects
20.6.2.5.	Document	Objects
20.6.2.6.	Element	Objects
20.6.2.7.	Attr	Objects
20.6.2.8.	NamedNodeMap	Objects
20.6.2.9.	Comment	Objects
20.6.2.10.	Text	and	CDATASection	Objects
20.6.2.11.	ProcessingInstruction	Objects
20.6.2.12.	Exceptions

20.6.3.	Conformance
20.6.3.1.	Type	Mapping
20.6.3.2.	Accessor	Methods

20.7.	xml.dom.minidom	—	Minimal	DOM	implementation
20.7.1.	DOM	Objects
20.7.2.	DOM	Example
20.7.3.	minidom	and	the	DOM	standard

20.8.	 xml.dom.pulldom	 —	 Support	 for	 building	 partial	 DOM
trees

20.8.1.	DOMEventStream	Objects
20.9.	xml.sax	—	Support	for	SAX2	parsers

20.9.1.	SAXException	Objects
20.10.	xml.sax.handler	—	Base	classes	for	SAX	handlers

20.10.1.	ContentHandler	Objects
20.10.2.	DTDHandler	Objects
20.10.3.	EntityResolver	Objects
20.10.4.	ErrorHandler	Objects

20.11.	xml.sax.saxutils	—	SAX	Utilities
20.12.	xml.sax.xmlreader	—	Interface	for	XML	parsers

20.12.1.	XMLReader	Objects
20.12.2.	IncrementalParser	Objects
20.12.3.	Locator	Objects
20.12.4.	InputSource	Objects
20.12.5.	The	Attributes	Interface
20.12.6.	The	AttributesNS	Interface

20.13.	xml.parsers.expat	—	Fast	XML	parsing	using	Expat
20.13.1.	XMLParser	Objects
20.13.2.	ExpatError	Exceptions
20.13.3.	Example
20.13.4.	Content	Model	Descriptions
20.13.5.	Expat	error	constants

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.1.	html	—	HyperText	Markup
Language	support
Source	code:	Lib/html/__init__.py

This	module	defines	utilities	to	manipulate	HTML.

html.escape(s,	quote=True)
Convert	 the	 characters	 &,	 <	 and	 >	 in	 string	 s	 to	 HTML-safe
sequences.	Use	this	 if	you	need	to	display	 text	 that	might	contain
such	 characters	 in	 HTML.	 If	 the	 optional	 flag	 quote	 is	 true,	 the
characters	(")	and	(')	are	also	 translated;	 this	helps	 for	 inclusion
in	 an	 HTML	 attribute	 value	 delimited	 by	 quotes,	 as	 in	 .

New	in	version	3.2.

html.unescape(s)
Convert	 all	 named	and	numeric	 character	 references	 (e.g.	 >,
>,	 &x3e;)	 in	 the	 string	 s	 to	 the	 corresponding	 unicode
characters.	 This	 function	 uses	 the	 rules	 defined	 by	 the	 HTML	 5
standard	 for	 both	 valid	 and	 invalid	 character	 references,	 and	 the
list	of	HTML	5	named	character	references.

New	in	version	3.4.

Submodules	in	the	html	package	are:

html.parser	–	HTML/XHTML	parser	with	lenient	parsing	mode

http://hg.python.org/cpython/file/3.4/Lib/html/__init__.py

html.entities	–	HTML	entity	definitions

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.2.	html.parser	—	Simple
HTML	and	XHTML	parser
Source	code:	Lib/html/parser.py

This	module	defines	a	class	HTMLParser	which	serves	as	the	basis
for	parsing	text	files	formatted	in	HTML	(HyperText	Mark-up	Language)
and	XHTML.

class	html.parser.HTMLParser(strict=False,	*,
convert_charrefs=False)

Create	a	parser	instance.

If	 convert_charrefs	 is	 True	 (default:	 False),	 all	 character
references	 (except	 the	 ones	 in	 script/style	 elements)	 are
automatically	converted	 to	 the	corresponding	Unicode	characters.
The	 use	 of	 convert_charrefs=True	 is	 encouraged	 and	 will
become	the	default	in	Python	3.5.

If	 strict	 is	 False	 (the	 default),	 the	 parser	 will	 accept	 and	 parse
invalid	 markup.	 If	 strict	 is	 True	 the	 parser	 will	 raise	 an
HTMLParseError	 exception	 instead	 [1]	 when	 it’s	 not	 able	 to
parse	 the	markup.	The	use	of	strict=True	 is	 discouraged	and
the	strict	argument	is	deprecated.

An	 HTMLParser	 instance	 is	 fed	 HTML	 data	 and	 calls	 handler
methods	 when	 start	 tags,	 end	 tags,	 text,	 comments,	 and	 other
markup	 elements	 are	 encountered.	 The	 user	 should	 subclass
HTMLParser	 and	 override	 its	methods	 to	 implement	 the	 desired

http://hg.python.org/cpython/file/3.4/Lib/html/parser.py

behavior.

This	parser	does	not	check	 that	end	 tags	match	start	 tags	or	call
the	 end-tag	 handler	 for	 elements	 which	 are	 closed	 implicitly	 by
closing	an	outer	element.

Changed	in	version	3.2:	strict	argument	added.

Deprecated	since	version	3.3,	will	be	removed	in	version	3.5:	The
strict	argument	and	 the	strict	mode	have	been	deprecated.	The
parser	is	now	able	to	accept	and	parse	invalid	markup	too.

Changed	 in	 version	 3.4:	 convert_charrefs	 keyword	 argument
added.

An	exception	is	defined	as	well:

exception	html.parser.HTMLParseError
Exception	raised	by	the	HTMLParser	class	when	it	encounters	an
error	 while	 parsing	 and	 strict	 is	 True.	 This	 exception	 provides
three	 attributes:	 msg	 is	 a	 brief	 message	 explaining	 the	 error,
lineno	 is	 the	 number	 of	 the	 line	 on	which	 the	 broken	 construct
was	 detected,	 and	 offset	 is	 the	 number	 of	 characters	 into	 the
line	at	which	the	construct	starts.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 3.5:
This	exception	has	been	deprecated	because	it’s	never	raised	by
the	parser	(when	the	default	non-strict	mode	is	used).

20.2.1.	Example	HTML	Parser	Application

As	 a	 basic	 example,	 below	 is	 a	 simple	 HTML	 parser	 that	 uses	 the
HTMLParser	class	to	print	out	start	tags,	end	tags,	and	data	as	they
are	encountered:

from	html.parser	import	HTMLParser

class	MyHTMLParser(HTMLParser):

				def	handle_starttag(self,	tag,	attrs):

								print("Encountered	a	start	tag:",	tag)

				def	handle_endtag(self,	tag):

								print("Encountered	an	end	tag	:",	tag)

				def	handle_data(self,	data):

								print("Encountered	some	data		:",	data)

parser	=	MyHTMLParser()

parser.feed('<html><head><title>Test</title></head>'

												'<body><h1>Parse	me!</h1></body></html>'

The	output	will	then	be:

Encountered	a	start	tag:	html

Encountered	a	start	tag:	head

Encountered	a	start	tag:	title

Encountered	some	data		:	Test

Encountered	an	end	tag	:	title

Encountered	an	end	tag	:	head

Encountered	a	start	tag:	body

Encountered	a	start	tag:	h1

Encountered	some	data		:	Parse	me!

Encountered	an	end	tag	:	h1

Encountered	an	end	tag	:	body

Encountered	an	end	tag	:	html

20.2.2.	HTMLParser	Methods

HTMLParser	instances	have	the	following	methods:

HTMLParser.feed(data)
Feed	some	text	to	the	parser.	It	is	processed	insofar	as	it	consists
of	complete	elements;	 incomplete	data	 is	buffered	until	more	data
is	fed	or	close()	is	called.	data	must	be	str.

HTMLParser.close()
Force	processing	of	 all	 buffered	data	as	 if	 it	were	 followed	by	an
end-of-file	mark.	This	method	may	be	redefined	by	a	derived	class
to	 define	 additional	 processing	 at	 the	 end	 of	 the	 input,	 but	 the
redefined	version	should	always	call	 the	HTMLParser	base	class
method	close().

HTMLParser.reset()
Reset	 the	 instance.	 Loses	 all	 unprocessed	 data.	 This	 is	 called
implicitly	at	instantiation	time.

HTMLParser.getpos()
Return	current	line	number	and	offset.

HTMLParser.get_starttag_text()
Return	the	text	of	 the	most	recently	opened	start	 tag.	This	should
not	 normally	 be	 needed	 for	 structured	 processing,	 but	 may	 be
useful	 in	 dealing	 with	 HTML	 “as	 deployed”	 or	 for	 re-generating
input	with	minimal	changes	(whitespace	between	attributes	can	be
preserved,	etc.).

The	following	methods	are	called	when	data	or	markup	elements	are

encountered	and	they	are	meant	to	be	overridden	in	a	subclass.	The
base	 class	 implementations	 do	 nothing	 (except	 for
handle_startendtag()):

HTMLParser.handle_starttag(tag,	attrs)
This	 method	 is	 called	 to	 handle	 the	 start	 of	 a	 tag	 (e.g.	 <div
id="main">).

The	tag	argument	is	the	name	of	the	tag	converted	to	lower	case.
The	attrs	 argument	 is	 a	 list	 of	 (name,	value)	 pairs	 containing
the	attributes	found	inside	the	tag’s	<>	brackets.	The	name	will	be
translated	 to	 lower	 case,	 and	 quotes	 in	 the	 value	 have	 been
removed,	and	character	and	entity	references	have	been	replaced.

For	 instance,	 for	 the	 tag	 ,
this	 method	 would	 be	 called	 as	 handle_starttag('a',

[('href',	'http://www.cwi.nl/')]).

All	 entity	 references	 from	 html.entities	 are	 replaced	 in	 the
attribute	values.

HTMLParser.handle_endtag(tag)
This	method	 is	 called	 to	 handle	 the	 end	 tag	 of	 an	 element	 (e.g.
</div>).

The	tag	argument	is	the	name	of	the	tag	converted	to	lower	case.

HTMLParser.handle_startendtag(tag,	attrs)
Similar	 to	 handle_starttag(),	 but	 called	 when	 the	 parser
encounters	 an	 XHTML-style	 empty	 tag	 ().	 This
method	 may	 be	 overridden	 by	 subclasses	 which	 require	 this
particular	 lexical	 information;	 the	 default	 implementation	 simply

calls	handle_starttag()	and	handle_endtag().

HTMLParser.handle_data(data)
This	method	is	called	to	process	arbitrary	data	(e.g.	text	nodes	and
the	 content	 of	 <script>...</script>	 and	 <style>...

</style>).

HTMLParser.handle_entityref(name)
This	method	 is	 called	 to	process	a	named	character	 reference	of
the	 form	 &name;	 (e.g.	 >),	 where	 name	 is	 a	 general	 entity
reference	 (e.g.	 'gt').	 This	 method	 is	 never	 called	 if
convert_charrefs	is	True.

HTMLParser.handle_charref(name)
This	method	is	called	to	process	decimal	and	hexadecimal	numeric
character	 references	 of	 the	 form	 &#NNN;	 and	 &#xNNN;.	 For
example,	 the	decimal	equivalent	 for	>	 is	>,	whereas	the
hexadecimal	is	>;	in	this	case	the	method	will	receive	'62'
or	'x3E'.	This	method	is	never	called	if	convert_charrefs	is	True.

HTMLParser.handle_comment(data)
This	method	is	called	when	a	comment	is	encountered	(e.g.	<!--
comment-->).

For	 example,	 the	 comment	 <!--	comment	-->	 will	 cause	 this
method	to	be	called	with	the	argument	'	comment	'.

The	content	of	Internet	Explorer	conditional	comments	(condcoms)
will	 also	 be	 sent	 to	 this	method,	 so,	 for	 <!--[if	IE	9]>IE9-
specific	 content<![endif]-->,	 this	 method	 will	 receive
'[if	IE	9]>IE-specific	content<![endif]'.

HTMLParser.handle_decl(decl)
This	method	is	called	to	handle	an	HTML	doctype	declaration	(e.g.
<!DOCTYPE	html>).

The	decl	 parameter	 will	 be	 the	 entire	 contents	 of	 the	 declaration
inside	the	<!...>	markup	(e.g.	'DOCTYPE	html').

HTMLParser.handle_pi(data)
Method	called	when	a	processing	 instruction	 is	encountered.	The
data	 parameter	 will	 contain	 the	 entire	 processing	 instruction.	 For
example,	 for	 the	processing	 instruction	<?proc	color='red'>,
this	 method	 would	 be	 called	 as	 handle_pi("proc

color='red'").	 It	 is	 intended	 to	 be	 overridden	 by	 a	 derived
class;	the	base	class	implementation	does	nothing.

Note: 	 The	 HTMLParser	 class	 uses	 the	SGML	 syntactic	 rules
for	 processing	 instructions.	 An	 XHTML	 processing	 instruction
using	the	trailing	'?'	will	cause	the	'?'	to	be	included	in	data.

HTMLParser.unknown_decl(data)
This	method	is	called	when	an	unrecognized	declaration	is	read	by
the	parser.

The	data	 parameter	will	 be	 the	 entire	 contents	 of	 the	 declaration
inside	 the	 <![...]>	 markup.	 It	 is	 sometimes	 useful	 to	 be
overridden	 by	 a	 derived	 class.	 The	 base	 class	 implementation
raises	an	HTMLParseError	when	strict	is	True.

20.2.3.	Examples

The	following	class	implements	a	parser	that	will	be	used	to	illustrate
more	examples:

from	html.parser	import	HTMLParser

from	html.entities	import	name2codepoint

class	MyHTMLParser(HTMLParser):

				def	handle_starttag(self,	tag,	attrs):

								print("Start	tag:",	tag)

								for	attr	in	attrs:

												print("					attr:",	attr)

				def	handle_endtag(self,	tag):

								print("End	tag		:",	tag)

				def	handle_data(self,	data):

								print("Data					:",	data)

				def	handle_comment(self,	data):

								print("Comment		:",	data)

				def	handle_entityref(self,	name):

								c	=	chr(name2codepoint[name])

								print("Named	ent:",	c)

				def	handle_charref(self,	name):

								if	name.startswith('x'):

												c	=	chr(int(name[1:],	16))

								else:

												c	=	chr(int(name))

								print("Num	ent		:",	c)

				def	handle_decl(self,	data):

								print("Decl					:",	data)

parser	=	MyHTMLParser()

Parsing	a	doctype:

>>>	parser.feed('<!DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	'

...													'"http://www.w3.org/TR/html4/strict.dtd">'

Decl					:	DOCTYPE	HTML	PUBLIC	"-//W3C//DTD	HTML	4.01//EN"	"http://www.w3.org/TR/html4/strict.dtd"

Parsing	an	element	with	a	few	attributes	and	a	title:

>>>	parser.feed(''

Start	tag:	img

					attr:	('src',	'python-logo.png')

					attr:	('alt',	'The	Python	logo')

>>>

>>>	parser.feed('<h1>Python</h1>')

Start	tag:	h1

Data					:	Python

End	tag		:	h1

The	content	of	script	and	style	elements	is	returned	as	is,	without
further	parsing:

>>>	parser.feed('<style	type="text/css">#python	{	color:	green	}</style>'

Start	tag:	style

					attr:	('type',	'text/css')

Data					:	#python	{	color:	green	}

End	tag		:	style

>>>

>>>	parser.feed('<script	type="text/javascript">'

...													'alert("hello!");</script>'

Start	tag:	script

					attr:	('type',	'text/javascript')

Data					:	alert("hello!");

End	tag		:	script

Parsing	comments:

>>>	parser.feed('<!--	a	comment	-->'

...													'<!--[if	IE	9]>IE-specific	content<![endif]-->'

Comment		:		a	comment

Comment		:	[if	IE	9]>IE-specific	content<![endif]

Parsing	named	and	numeric	character	references	and	converting	them
to	the	correct	char	(note:	these	3	references	are	all	equivalent	to	'>'):

>>>	parser.feed('>>>')

Named	ent:	>

Num	ent		:	>

Num	ent		:	>

Feeding	 incomplete	 chunks	 to	 feed()	works,	 but	 handle_data()
might	 be	 called	 more	 than	 once	 (unless	 convert_charrefs	 is	 set	 to
True):

>>>	for	chunk	in	['<sp',	'an>buff',	'ered	',	'text</s'

...					parser.feed(chunk)

...

Start	tag:	span

Data					:	buff

Data					:	ered

Data					:	text

End	tag		:	span

Parsing	invalid	HTML	(e.g.	unquoted	attributes)	also	works:

>>>	parser.feed('<p>tag	soup</p	>'

Start	tag:	p

Start	tag:	a

					attr:	('class',	'link')

					attr:	('href',	'#main')

Data					:	tag	soup

End	tag		:	p

End	tag		:	a

Footnotes

[1]
For	backward	compatibility	reasons	strict	mode	does	not	raise
exceptions	for	all	non-compliant	HTML.	That	is,	some	invalid
HTML	is	tolerated	even	in	strict	mode.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.3.	html.entities	—
Definitions	of	HTML	general
entities
Source	code:	Lib/html/entities.py

This	 module	 defines	 four	 dictionaries,	 html5,	 name2codepoint,
codepoint2name,	and	entitydefs.

html.entities.html5

A	dictionary	 that	maps	HTML5	named	character	 references	 [1]	 to
the	 equivalent	 Unicode	 character(s),	 e.g.	 html5['gt;']	 ==

'>'.	Note	that	the	trailing	semicolon	is	included	in	the	name	(e.g.
'gt;'),	however	some	of	the	names	are	accepted	by	the	standard
even	without	 the	semicolon:	 in	 this	case	the	name	is	present	with
and	without	the	';'.	See	also	html.unescape().

New	in	version	3.3.

html.entities.entitydefs

A	 dictionary	 mapping	 XHTML	 1.0	 entity	 definitions	 to	 their
replacement	text	in	ISO	Latin-1.

html.entities.name2codepoint

A	 dictionary	 that	 maps	 HTML	 entity	 names	 to	 the	 Unicode
codepoints.

html.entities.codepoint2name

A	dictionary	that	maps	Unicode	codepoints	to	HTML	entity	names.

http://hg.python.org/cpython/file/3.4/Lib/html/entities.py

Footnotes

[1] See	http://www.w3.org/TR/html5/syntax.html#named-character-
references

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.w3.org/TR/html5/syntax.html#named-character-references
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.4.	XML	Processing	Modules
Python’s	 interfaces	 for	 processing	 XML	 are	 grouped	 in	 the	 xml
package.

Warning: 	The	XML	modules	are	not	secure	against	erroneous	or
maliciously	constructed	data.	If	you	need	to	parse	untrusted	or
unauthenticated	data	see	the	XML	vulnerabilities	and	The
defusedxml	and	defusedexpat	Packages	sections.

It	 is	 important	 to	 note	 that	modules	 in	 the	 xml	 package	 require	 that
there	be	at	least	one	SAX-compliant	XML	parser	available.	The	Expat
parser	is	included	with	Python,	so	the	xml.parsers.expat	module
will	always	be	available.

The	documentation	for	the	xml.dom	and	xml.sax	packages	are	the
definition	of	the	Python	bindings	for	the	DOM	and	SAX	interfaces.

The	XML	handling	submodules	are:

xml.etree.ElementTree:	 the	ElementTree	API,	a	simple	and
lightweight	XML	processor

xml.dom:	the	DOM	API	definition
xml.dom.minidom:	a	minimal	DOM	implementation
xml.dom.pulldom:	support	for	building	partial	DOM	trees

xml.sax:	SAX2	base	classes	and	convenience	functions
xml.parsers.expat:	the	Expat	parser	binding

20.4.1.	XML	vulnerabilities

The	 XML	 processing	 modules	 are	 not	 secure	 against	 maliciously
constructed	 data.	 An	 attacker	 can	 abuse	 XML	 features	 to	 carry	 out
denial	 of	 service	 attacks,	 access	 local	 files,	 generate	 network
connections	to	other	machines,	or	circumvent	firewalls.

The	 following	 table	 gives	 an	 overview	 of	 the	 known	 attacks	 and
whether	the	various	modules	are	vulnerable	to	them.

kind sax etree minidom pulldom xmlrpc

billion	laughs Yes Yes Yes Yes Yes

quadratic	blowup Yes Yes Yes Yes Yes

external	entity
expansion Yes No

(1) No	(2) Yes No	(3)

DTD	retrieval Yes No No Yes No

decompression
bomb No No No No Yes

1.	 xml.etree.ElementTree	doesn’t	expand	external	entities	and
raises	a	ParserError	when	an	entity	occurs.

2.	 xml.dom.minidom	 doesn’t	 expand	external	 entities	and	simply
returns	the	unexpanded	entity	verbatim.

3.	 xmlrpclib	doesn’t	expand	external	entities	and	omits	them.

billion	laughs	/	exponential	entity	expansion
The	 Billion	 Laughs	 attack	 –	 also	 known	 as	 exponential	 entity
expansion	 –	 uses	 multiple	 levels	 of	 nested	 entities.	 Each	 entity
refers	to	another	entity	several	times,	and	the	final	entity	definition
contains	 a	 small	 string.	 The	 exponential	 expansion	 results	 in
several	gigabytes	of	 text	and	consumes	 lots	of	memory	and	CPU

http://en.wikipedia.org/wiki/Billion_laughs

time.

quadratic	blowup	entity	expansion
A	 quadratic	 blowup	 attack	 is	 similar	 to	 a	 Billion	 Laughs	 attack;	 it
abuses	entity	expansion,	 too.	 Instead	of	nested	entities	 it	 repeats
one	 large	 entity	 with	 a	 couple	 of	 thousand	 chars	 over	 and	 over
again.	 The	 attack	 isn’t	 as	 efficient	 as	 the	 exponential	 case	 but	 it
avoids	triggering	parser	countermeasures	that	forbid	deeply-nested
entities.

external	entity	expansion
Entity	declarations	can	contain	more	than	just	text	for	replacement.
They	can	also	point	 to	external	 resources	or	 local	 files.	The	XML
parser	 accesses	 the	 resource	 and	 embeds	 the	 content	 into	 the
XML	document.

DTD	retrieval
Some	 XML	 libraries	 like	 Python’s	 xml.dom.pulldom	 retrieve
document	 type	 definitions	 from	 remote	 or	 local	 locations.	 The
feature	 has	 similar	 implications	 as	 the	 external	 entity	 expansion
issue.

decompression	bomb
Decompression	bombs	 (aka	ZIP	 bomb)	 apply	 to	 all	 XML	 libraries
that	 can	parse	compressed	XML	streams	such	as	gzipped	HTTP
streams	or	LZMA-compressed	 files.	For	an	attacker	 it	can	 reduce
the	amount	of	transmitted	data	by	three	magnitudes	or	more.

The	 documentation	 for	 defusedxml	 on	 PyPI	 has	 further	 information
about	all	known	attack	vectors	with	examples	and	references.

http://en.wikipedia.org/wiki/Billion_laughs
http://en.wikipedia.org/wiki/Zip_bomb
https://pypi.python.org/pypi/defusedxml/

20.4.2.	The	defusedxml	and
defusedexpat	Packages

defusedxml	 is	a	pure	Python	package	with	modified	subclasses	of	all
stdlib	 XML	 parsers	 that	 prevent	 any	 potentially	 malicious	 operation.
Use	of	this	package	is	recommended	for	any	server	code	that	parses
untrusted	 XML	 data.	 The	 package	 also	 ships	 with	 example	 exploits
and	 extended	 documentation	 on	 more	 XML	 exploits	 such	 as	 XPath
injection.

defusedexpat	 provides	 a	modified	 libexpat	 and	 a	 patched	 pyexpat
module	 that	 have	 countermeasures	 against	 entity	 expansion	 DoS
attacks.	 The	 defusedexpat	 module	 still	 allows	 a	 sane	 and
configurable	 amount	 of	 entity	 expansions.	 The	modifications	may	 be
included	 in	some	future	release	of	Python,	but	will	not	be	 included	 in
any	 bugfix	 releases	 of	 Python	 because	 they	 break	 backward
compatibility.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

https://pypi.python.org/pypi/defusedxml/
https://pypi.python.org/pypi/defusedexpat/
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.5.	xml.etree.ElementTree
—	The	ElementTree	XML	API
The	 xml.etree.ElementTree	 module	 implements	 a	 simple	 and
efficient	API	for	parsing	and	creating	XML	data.

Changed	 in	 version	 3.3:	This	module	 will	 use	 a	 fast	 implementation
whenever	 available.	 The	 xml.etree.cElementTree	 module	 is
deprecated.

Warning: 	The	xml.etree.ElementTree	module	is	not	secure
against	maliciously	constructed	data.	If	you	need	to	parse	untrusted
or	unauthenticated	data	see	XML	vulnerabilities.

20.5.1.	Tutorial

This	 is	 a	 short	 tutorial	 for	 using	 xml.etree.ElementTree	 (ET	 in
short).	 The	 goal	 is	 to	 demonstrate	 some	 of	 the	 building	 blocks	 and
basic	concepts	of	the	module.

20.5.1.1.	XML	tree	and	elements

XML	 is	 an	 inherently	 hierarchical	 data	 format,	 and	 the	 most	 natural
way	to	represent	it	is	with	a	tree.	ET	has	two	classes	for	this	purpose	-
ElementTree	 represents	 the	 whole	 XML	 document	 as	 a	 tree,	 and
Element	 represents	 a	 single	 node	 in	 this	 tree.	 Interactions	with	 the
whole	document	(reading	and	writing	to/from	files)	are	usually	done	on
the	ElementTree	 level.	 Interactions	with	a	single	XML	element	and
its	sub-elements	are	done	on	the	Element	level.

20.5.1.2.	Parsing	XML

We’ll	be	using	the	following	XML	document	as	the	sample	data	for	this
section:

<?xml	version="1.0"?>

<data>

				<country	name="Liechtenstein">

								<rank>1</rank>

								<year>2008</year>

								<gdppc>141100</gdppc>

								<neighbor	name="Austria"	direction="E"/>

								<neighbor	name="Switzerland"	direction="W"/>

				</country>

				<country	name="Singapore">

								<rank>4</rank>

								<year>2011</year>

								<gdppc>59900</gdppc>

								<neighbor	name="Malaysia"	direction="N"/>

				</country>

				<country	name="Panama">

								<rank>68</rank>

								<year>2011</year>

								<gdppc>13600</gdppc>

								<neighbor	name="Costa	Rica"	direction="W"/>

								<neighbor	name="Colombia"	direction="E"/>

				</country>

</data>

We	can	import	this	data	by	reading	from	a	file:

import	xml.etree.ElementTree	as	ET

tree	=	ET.parse('country_data.xml')

root	=	tree.getroot()

Or	directly	from	a	string:

root	=	ET.fromstring(country_data_as_string)

fromstring()	parses	XML	 from	a	string	directly	 into	an	Element,
which	 is	 the	 root	element	of	 the	parsed	 tree.	Other	parsing	 functions
may	create	an	ElementTree.	Check	the	documentation	to	be	sure.

As	an	Element,	root	has	a	tag	and	a	dictionary	of	attributes:

>>>	root.tag

'data'

>>>	root.attrib

{}

It	also	has	children	nodes	over	which	we	can	iterate:

>>>	for	child	in	root:

...			print(child.tag,	child.attrib)

...

country	{'name':	'Liechtenstein'}

country	{'name':	'Singapore'}

country	{'name':	'Panama'}

Children	are	nested,	and	we	can	access	specific	child	nodes	by	index:

>>>	root[0][1].text

'2008'

20.5.1.3.	Pull	API	for	non-blocking	parsing

Most	 parsing	 functions	 provided	 by	 this	 module	 require	 the	 whole
document	to	be	read	at	once	before	returning	any	result.	It	is	possible
to	use	an	XMLParser	 and	 feed	data	 into	 it	 incrementally,	 but	 it	 is	 a
push	API	that	calls	methods	on	a	callback	target,	which	is	too	low-level
and	 inconvenient	 for	 most	 needs.	 Sometimes	 what	 the	 user	 really
wants	 is	 to	 be	 able	 to	 parse	 XML	 incrementally,	 without	 blocking
operations,	 while	 enjoying	 the	 convenience	 of	 fully	 constructed
Element	objects.

The	most	powerful	tool	for	doing	this	is	XMLPullParser.	It	does	not
require	a	blocking	read	to	obtain	the	XML	data,	and	is	instead	fed	with
data	 incrementally	 with	 XMLPullParser.feed()	 calls.	 To	 get	 the
parsed	XML	elements,	call	XMLPullParser.read_events().	Here
is	an	example:

>>>	parser	=	ET.XMLPullParser(['start',	'end'])

>>>	parser.feed('<mytag>sometext')

>>>	list(parser.read_events())

[('start',	<Element	'mytag'	at	0x7fa66db2be58>)]

>>>	parser.feed('	more	text</mytag>')

>>>	for	event,	elem	in	parser.read_events():

...			print(event)

...			print(elem.tag,	'text=',	elem.text)

...

end

The	 obvious	 use	 case	 is	 applications	 that	 operate	 in	 a	 non-blocking
fashion	where	 the	XML	data	 is	being	 received	 from	a	socket	or	 read
incrementally	 from	 some	 storage	 device.	 In	 such	 cases,	 blocking
reads	are	unacceptable.

Because	it’s	so	flexible,	XMLPullParser	can	be	inconvenient	to	use
for	simpler	use-cases.	 If	 you	don’t	mind	your	application	blocking	on
reading	 XML	 data	 but	 would	 still	 like	 to	 have	 incremental	 parsing
capabilities,	 take	 a	 look	 at	 iterparse().	 It	 can	 be	 useful	 when
you’re	reading	a	large	XML	document	and	don’t	want	to	hold	it	wholly
in	memory.

20.5.1.4.	Finding	interesting	elements

Element	has	some	useful	methods	that	help	 iterate	recursively	over
all	 the	 sub-tree	 below	 it	 (its	 children,	 their	 children,	 and	 so	 on).	 For
example,	Element.iter():

>>>	for	neighbor	in	root.iter('neighbor'):

...			print(neighbor.attrib)

...

{'name':	'Austria',	'direction':	'E'}

{'name':	'Switzerland',	'direction':	'W'}

{'name':	'Malaysia',	'direction':	'N'}

{'name':	'Costa	Rica',	'direction':	'W'}

{'name':	'Colombia',	'direction':	'E'}

Element.findall()	finds	only	elements	with	a	tag	which	are	direct
children	of	the	current	element.	Element.find()	finds	the	first	child
with	a	particular	tag,	and	Element.text	accesses	the	element’s	text
content.	Element.get()	accesses	the	element’s	attributes:

>>>	for	country	in	root.findall('country'):

...			rank	=	country.find('rank').text

...			name	=	country.get('name')

...			print(name,	rank)

...

Liechtenstein	1

Singapore	4

Panama	68

More	 sophisticated	 specification	 of	 which	 elements	 to	 look	 for	 is
possible	by	using	XPath.

20.5.1.5.	Modifying	an	XML	File

ElementTree	 provides	 a	 simple	 way	 to	 build	 XML	 documents	 and
write	 them	to	 files.	The	ElementTree.write()	method	serves	this
purpose.

Once	 created,	 an	 Element	 object	 may	 be	 manipulated	 by	 directly
changing	 its	 fields	 (such	 as	 Element.text),	 adding	 and	modifying
attributes	(Element.set()	method),	as	well	as	adding	new	children
(for	example	with	Element.append()).

Let’s	 say	 we	 want	 to	 add	 one	 to	 each	 country’s	 rank,	 and	 add	 an
updated	attribute	to	the	rank	element:

>>>	for	rank	in	root.iter('rank'):

...			new_rank	=	int(rank.text)	+	1

...			rank.text	=	str(new_rank)

...			rank.set('updated',	'yes')

...

>>>	tree.write('output.xml')

Our	XML	now	looks	like	this:

<?xml	version="1.0"?>

<data>

				<country	name="Liechtenstein">

								<rank	updated="yes">2</rank>

								<year>2008</year>

								<gdppc>141100</gdppc>

								<neighbor	name="Austria"	direction="E"/>

								<neighbor	name="Switzerland"	direction="W"/>

				</country>

				<country	name="Singapore">

								<rank	updated="yes">5</rank>

								<year>2011</year>

								<gdppc>59900</gdppc>

								<neighbor	name="Malaysia"	direction="N"/>

				</country>

				<country	name="Panama">

								<rank	updated="yes">69</rank>

								<year>2011</year>

								<gdppc>13600</gdppc>

								<neighbor	name="Costa	Rica"	direction="W"/>

								<neighbor	name="Colombia"	direction="E"/>

				</country>

</data>

We	 can	 remove	 elements	 using	 Element.remove().	 Let’s	 say	 we
want	to	remove	all	countries	with	a	rank	higher	than	50:

>>>	for	country	in	root.findall('country'):

...			rank	=	int(country.find('rank').text)

...			if	rank	>	50:

...					root.remove(country)

...

>>>	tree.write('output.xml')

Our	XML	now	looks	like	this:

<?xml	version="1.0"?>

<data>

				<country	name="Liechtenstein">

								<rank	updated="yes">2</rank>

								<year>2008</year>

								<gdppc>141100</gdppc>

								<neighbor	name="Austria"	direction="E"/>

								<neighbor	name="Switzerland"	direction="W"/>

				</country>

				<country	name="Singapore">

								<rank	updated="yes">5</rank>

								<year>2011</year>

								<gdppc>59900</gdppc>

								<neighbor	name="Malaysia"	direction="N"/>

				</country>

</data>

20.5.1.6.	Building	XML	documents

The	 SubElement()	 function	 also	 provides	 a	 convenient	 way	 to
create	new	sub-elements	for	a	given	element:

>>>	a	=	ET.Element('a')

>>>	b	=	ET.SubElement(a,	'b')

>>>	c	=	ET.SubElement(a,	'c')

>>>	d	=	ET.SubElement(c,	'd')

>>>	ET.dump(a)

<a><c><d	/></c>

20.5.1.7.	Additional	resources

See	 http://effbot.org/zone/element-index.htm	 for	 tutorials	 and	 links	 to
other	docs.

http://effbot.org/zone/element-index.htm

20.5.2.	XPath	support

This	 module	 provides	 limited	 support	 for	 XPath	 expressions	 for
locating	elements	in	a	tree.	The	goal	is	to	support	a	small	subset	of	the
abbreviated	 syntax;	 a	 full	 XPath	 engine	 is	 outside	 the	 scope	 of	 the
module.

20.5.2.1.	Example

Here’s	an	example	 that	demonstrates	some	of	 the	XPath	capabilities
of	the	module.	We’ll	be	using	the	countrydata	XML	document	from
the	Parsing	XML	section:

import	xml.etree.ElementTree	as	ET

root	=	ET.fromstring(countrydata)

#	Top-level	elements

root.findall(".")

#	All	'neighbor'	grand-children	of	'country'	children	of	the	top-level

#	elements

root.findall("./country/neighbor")

#	Nodes	with	name='Singapore'	that	have	a	'year'	child

root.findall(".//year/..[@name='Singapore']")

#	'year'	nodes	that	are	children	of	nodes	with	name='Singapore'

root.findall(".//*[@name='Singapore']/year")

#	All	'neighbor'	nodes	that	are	the	second	child	of	their	parent

root.findall(".//neighbor[2]")

http://www.w3.org/TR/xpath

20.5.2.2.	Supported	XPath	syntax

Syntax Meaning

tag

Selects	all	child	elements	with	the	given
tag.	For	example,	spam	selects	all	child
elements	named	spam,	spam/egg
selects	all	grandchildren	named	egg	in	all
children	named	spam.

*

Selects	all	child	elements.	For	example,
*/egg	selects	all	grandchildren	named
egg.

.

Selects	the	current	node.	This	is	mostly
useful	at	the	beginning	of	the	path,	to
indicate	that	it’s	a	relative	path.

//

Selects	all	subelements,	on	all	levels
beneath	the	current	element.	For
example,	.//egg	selects	all	egg
elements	in	the	entire	tree.

..

Selects	the	parent	element.	Returns	None
if	the	path	attempts	to	reach	the	ancestors
of	the	start	element	(the	element	find
was	called	on).

[@attrib]
Selects	all	elements	that	have	the	given
attribute.

[@attrib='value']

Selects	all	elements	for	which	the	given
attribute	has	the	given	value.	The	value
cannot	contain	quotes.

[tag]

Selects	all	elements	that	have	a	child
named	tag.	Only	immediate	children	are
supported.

Selects	all	elements	that	are	located	at	the
given	position.	The	position	can	be	either

[position] an	integer	(1	is	the	first	position),	the
expression	last()	(for	the	last	position),
or	a	position	relative	to	the	last	position
(e.g.	last()-1).

Predicates	(expressions	within	square	brackets)	must	be	preceded	by
a	 tag	name,	an	asterisk,	or	another	predicate.	position	predicates
must	be	preceded	by	a	tag	name.

20.5.3.	Reference

20.5.3.1.	Functions

xml.etree.ElementTree.Comment(text=None)
Comment	element	 factory.	This	 factory	 function	 creates	 a	 special
element	that	will	be	serialized	as	an	XML	comment	by	the	standard
serializer.	 The	 comment	 string	 can	 be	 either	 a	 bytestring	 or	 a
Unicode	 string.	 text	 is	 a	 string	 containing	 the	 comment	 string.
Returns	an	element	instance	representing	a	comment.

xml.etree.ElementTree.dump(elem)
Writes	 an	 element	 tree	 or	 element	 structure	 to	 sys.stdout.	 This
function	should	be	used	for	debugging	only.

The	 exact	 output	 format	 is	 implementation	 dependent.	 In	 this
version,	it’s	written	as	an	ordinary	XML	file.

elem	is	an	element	tree	or	an	individual	element.

xml.etree.ElementTree.fromstring(text)
Parses	 an	XML	 section	 from	a	 string	 constant.	 Same	as	 XML().
text	 is	 a	 string	 containing	 XML	 data.	 Returns	 an	 Element
instance.

xml.etree.ElementTree.fromstringlist(sequence,
parser=None)

Parses	 an	 XML	 document	 from	 a	 sequence	 of	 string	 fragments.
sequence	 is	 a	 list	 or	 other	 sequence	 containing	 XML	 data
fragments.	parser	 is	 an	optional	parser	 instance.	 If	 not	given,	 the
standard	 XMLParser	 parser	 is	 used.	 Returns	 an	 Element
instance.

New	in	version	3.2.

xml.etree.ElementTree.iselement(element)
Checks	if	an	object	appears	to	be	a	valid	element	object.	element
is	an	element	 instance.	Returns	a	 true	value	 if	 this	 is	an	element
object.

xml.etree.ElementTree.iterparse(source,	events=None,
parser=None)

Parses	 an	 XML	 section	 into	 an	 element	 tree	 incrementally,	 and
reports	 what’s	 going	 on	 to	 the	 user.	 source	 is	 a	 filename	 or	 file
object	 containing	 XML	 data.	 events	 is	 a	 sequence	 of	 events	 to
report	 back.	 The	 supported	 events	 are	 the	 strings	 "start",
"end",	"start-ns"	and	"end-ns"	(the	“ns”	events	are	used	to
get	 detailed	 namespace	 information).	 If	 events	 is	 omitted,	 only
"end"	events	are	reported.	parser	 is	an	optional	parser	 instance.
If	not	given,	the	standard	XMLParser	parser	is	used.	parser	must
be	 a	 subclass	 of	 XMLParser	 and	 can	 only	 use	 the	 default
TreeBuilder	as	a	target.	Returns	an	iterator	providing	(event,
elem)	pairs.

Note	 that	 while	 iterparse()	 builds	 the	 tree	 incrementally,	 it
issues	blocking	reads	on	source	(or	the	file	it	names).	As	such,	it’s
unsuitable	 for	 applications	 where	 blocking	 reads	 can’t	 be	 made.
For	fully	non-blocking	parsing,	see	XMLPullParser.

Note: 	iterparse()	 only	 guarantees	 that	 it	 has	 seen	 the	 “>”
character	 of	 a	 starting	 tag	when	 it	 emits	 a	 “start”	 event,	 so	 the
attributes	 are	 defined,	 but	 the	 contents	 of	 the	 text	 and	 tail
attributes	 are	 undefined	 at	 that	 point.	 The	 same	 applies	 to	 the
element	children;	they	may	or	may	not	be	present.
If	 you	 need	 a	 fully	 populated	 element,	 look	 for	 “end”	 events

instead.

Deprecated	since	version	3.4:	The	parser	argument.

xml.etree.ElementTree.parse(source,	parser=None)
Parses	an	XML	section	into	an	element	tree.	source	 is	a	 filename
or	 file	 object	 containing	 XML	 data.	 parser	 is	 an	 optional	 parser
instance.	 If	 not	 given,	 the	 standard	 XMLParser	 parser	 is	 used.
Returns	an	ElementTree	instance.

xml.etree.ElementTree.ProcessingInstruction(target,
text=None)

PI	element	factory.	This	factory	function	creates	a	special	element
that	will	be	serialized	as	an	XML	processing	instruction.	target	is	a
string	 containing	 the	 PI	 target.	 text	 is	 a	 string	 containing	 the	 PI
contents,	 if	 given.	 Returns	 an	 element	 instance,	 representing	 a
processing	instruction.

xml.etree.ElementTree.register_namespace(prefix,	uri)
Registers	 a	 namespace	 prefix.	 The	 registry	 is	 global,	 and	 any
existing	mapping	for	either	the	given	prefix	or	the	namespace	URI
will	be	removed.	prefix	 is	a	namespace	prefix.	uri	 is	a	namespace
uri.	Tags	and	attributes	in	this	namespace	will	be	serialized	with	the
given	prefix,	if	at	all	possible.

New	in	version	3.2.

xml.etree.ElementTree.SubElement(parent,	tag,	attrib={},
**extra)

Subelement	factory.	This	function	creates	an	element	instance,	and
appends	it	to	an	existing	element.

The	 element	 name,	 attribute	 names,	 and	 attribute	 values	 can	 be
either	bytestrings	or	Unicode	strings.	parent	is	the	parent	element.
tag	 is	 the	 subelement	 name.	 attrib	 is	 an	 optional	 dictionary,
containing	 element	 attributes.	extra	 contains	 additional	 attributes,
given	as	keyword	arguments.	Returns	an	element	instance.

xml.etree.ElementTree.tostring(element,	encoding="us-
ascii",	method="xml",	*,	short_empty_elements=True)

Generates	a	string	representation	of	an	XML	element,	including	all
subelements.	element	is	an	Element	instance.	encoding	[1]	is	the
output	 encoding	 (default	 is	 US-ASCII).	 Use
encoding="unicode"	to	generate	a	Unicode	string	(otherwise,	a
bytestring	 is	 generated).	 method	 is	 either	 "xml",	 "html"	 or
"text"	 (default	 is	"xml").	short_empty_elements	has	 the	same
meaning	 as	 in	 ElementTree.write().	 Returns	 an	 (optionally)
encoded	string	containing	the	XML	data.

New	in	version	3.4:	The	short_empty_elements	parameter.

xml.etree.ElementTree.tostringlist(element,
encoding="us-ascii",	method="xml",	*,	short_empty_elements=True)

Generates	a	string	representation	of	an	XML	element,	including	all
subelements.	element	is	an	Element	instance.	encoding	[1]	is	the
output	 encoding	 (default	 is	 US-ASCII).	 Use
encoding="unicode"	to	generate	a	Unicode	string	(otherwise,	a
bytestring	 is	 generated).	 method	 is	 either	 "xml",	 "html"	 or
"text"	 (default	 is	"xml").	short_empty_elements	has	 the	same
meaning	 as	 in	 ElementTree.write().	 Returns	 a	 list	 of
(optionally)	 encoded	 strings	 containing	 the	XML	data.	 It	 does	 not
guarantee	 any	 specific	 sequence,	 except	 that
b"".join(tostringlist(element))	 ==

tostring(element).

New	in	version	3.2.

New	in	version	3.4:	The	short_empty_elements	parameter.

xml.etree.ElementTree.XML(text,	parser=None)
Parses	an	XML	section	from	a	string	constant.	This	function	can	be
used	 to	 embed	 “XML	 literals”	 in	 Python	 code.	 text	 is	 a	 string
containing	XML	data.	parser	 is	an	optional	parser	 instance.	 If	 not
given,	 the	 standard	 XMLParser	 parser	 is	 used.	 Returns	 an
Element	instance.

xml.etree.ElementTree.XMLID(text,	parser=None)
Parses	an	XML	section	from	a	string	constant,	and	also	returns	a
dictionary	 which	 maps	 from	 element	 id:s	 to	 elements.	 text	 is	 a
string	containing	XML	data.	parser	is	an	optional	parser	instance.	If
not	 given,	 the	 standard	 XMLParser	 parser	 is	 used.	 Returns	 a
tuple	containing	an	Element	instance	and	a	dictionary.

20.5.3.2.	Element	Objects

class	xml.etree.ElementTree.Element(tag,	attrib={},	**extra)
Element	 class.	 This	 class	 defines	 the	 Element	 interface,	 and
provides	a	reference	implementation	of	this	interface.

The	 element	 name,	 attribute	 names,	 and	 attribute	 values	 can	 be
either	 bytestrings	 or	 Unicode	 strings.	 tag	 is	 the	 element	 name.
attrib	 is	an	optional	dictionary,	containing	element	attributes.	extra
contains	additional	attributes,	given	as	keyword	arguments.

tag

A	 string	 identifying	 what	 kind	 of	 data	 this	 element	 represents

(the	element	type,	in	other	words).

text

The	 text	 attribute	 can	 be	 used	 to	 hold	 additional	 data
associated	with	the	element.	As	the	name	implies	this	attribute
is	usually	a	string	but	may	be	any	application-specific	object.	If
the	element	is	created	from	an	XML	file	the	attribute	will	contain
any	text	found	between	the	element	tags.

tail

The	tail	attribute	can	be	used	to	hold	additional	data	associated
with	 the	element.	This	 attribute	 is	 usually	 a	 string	but	may	be
any	application-specific	object.	If	the	element	is	created	from	an
XML	 file	 the	 attribute	 will	 contain	 any	 text	 found	 after	 the
element’s	end	tag	and	before	the	next	tag.

attrib

A	dictionary	containing	the	element’s	attributes.	Note	that	while
the	attrib	 value	 is	always	a	 real	mutable	Python	dictionary,	an
ElementTree	 implementation	 may	 choose	 to	 use	 another
internal	 representation,	 and	 create	 the	 dictionary	 only	 if
someone	 asks	 for	 it.	 To	 take	 advantage	 of	 such
implementations,	 use	 the	 dictionary	methods	 below	whenever
possible.

The	 following	 dictionary-like	 methods	 work	 on	 the	 element
attributes.

clear()
Resets	 an	 element.	 This	 function	 removes	 all	 subelements,
clears	all	attributes,	and	sets	the	text	and	tail	attributes	to	None.

get(key,	default=None)

Gets	the	element	attribute	named	key.

Returns	 the	 attribute	 value,	 or	 default	 if	 the	 attribute	 was	 not
found.

items()
Returns	the	element	attributes	as	a	sequence	of	(name,	value)
pairs.	The	attributes	are	returned	in	an	arbitrary	order.

keys()
Returns	the	elements	attribute	names	as	a	list.	The	names	are
returned	in	an	arbitrary	order.

set(key,	value)
Set	the	attribute	key	on	the	element	to	value.

The	 following	 methods	 work	 on	 the	 element’s	 children
(subelements).

append(subelement)
Adds	 the	 element	 subelement	 to	 the	 end	 of	 this	 element’s
internal	 list	of	subelements.	Raises	TypeError	 if	subelement
is	not	an	Element.

extend(subelements)
Appends	 subelements	 from	 a	 sequence	 object	 with	 zero	 or
more	elements.	Raises	 TypeError	 if	 a	 subelement	 is	not	an
Element.

New	in	version	3.2.

find(match,	namespaces=None)
Finds	the	first	subelement	matching	match.	match	may	be	a	tag

name	 or	 a	 path.	 Returns	 an	 element	 instance	 or	 None.
namespaces	 is	an	optional	mapping	from	namespace	prefix	 to
full	name.

findall(match,	namespaces=None)
Finds	all	matching	subelements,	by	tag	name	or	path.	Returns
a	 list	 containing	 all	 matching	 elements	 in	 document	 order.
namespaces	 is	an	optional	mapping	from	namespace	prefix	 to
full	name.

findtext(match,	default=None,	namespaces=None)
Finds	text	for	the	first	subelement	matching	match.	match	may
be	a	 tag	name	or	 a	path.	Returns	 the	 text	 content	 of	 the	 first
matching	element,	or	default	if	no	element	was	found.	Note	that
if	 the	matching	element	has	no	text	content	an	empty	string	 is
returned.	namespaces	is	an	optional	mapping	from	namespace
prefix	to	full	name.

getchildren()

Deprecated	since	version	3.2:	Use	list(elem)	or	iteration.

getiterator(tag=None)

Deprecated	 since	 version	 3.2:	 Use	 method
Element.iter()	instead.

insert(index,	subelement)
Inserts	subelement	at	the	given	position	in	this	element.	Raises
TypeError	if	subelement	is	not	an	Element.

iter(tag=None)
Creates	a	tree	iterator	with	the	current	element	as	the	root.	The

iterator	 iterates	over	 this	element	and	all	elements	below	 it,	 in
document	 (depth	 first)	 order.	 If	 tag	 is	 not	 None	 or	 '*',	 only
elements	whose	tag	equals	tag	are	returned	from	the	iterator.	If
the	 tree	 structure	 is	 modified	 during	 iteration,	 the	 result	 is
undefined.

New	in	version	3.2.

iterfind(match,	namespaces=None)
Finds	all	matching	subelements,	by	tag	name	or	path.	Returns
an	 iterable	 yielding	 all	 matching	 elements	 in	 document	 order.
namespaces	 is	an	optional	mapping	from	namespace	prefix	 to
full	name.

New	in	version	3.2.

itertext()
Creates	a	text	iterator.	The	iterator	loops	over	this	element	and
all	subelements,	in	document	order,	and	returns	all	inner	text.

New	in	version	3.2.

makeelement(tag,	attrib)
Creates	a	new	element	object	of	the	same	type	as	this	element.
Do	 not	 call	 this	 method,	 use	 the	 SubElement()	 factory
function	instead.

remove(subelement)
Removes	 subelement	 from	 the	 element.	 Unlike	 the	 find*
methods	 this	 method	 compares	 elements	 based	 on	 the
instance	identity,	not	on	tag	value	or	contents.

Element	 objects	 also	 support	 the	 following	 sequence	 type

methods	 for	 working	 with	 subelements:	 __delitem__(),
__getitem__(),	__setitem__(),	__len__().

Caution:	 Elements	 with	 no	 subelements	 will	 test	 as	 False.	 This
behavior	will	 change	 in	 future	 versions.	Use	specific	len(elem)
or	elem	is	None	test	instead.

element	=	root.find('foo')

if	not	element:		#	careful!

				print("element	not	found,	or	element	has	no	subelements"

if	element	is	None:

				print("element	not	found")

20.5.3.3.	ElementTree	Objects

class	xml.etree.ElementTree.ElementTree(element=None,
file=None)

ElementTree	 wrapper	 class.	 This	 class	 represents	 an	 entire
element	hierarchy,	and	adds	some	extra	support	for	serialization	to
and	from	standard	XML.

element	is	the	root	element.	The	tree	is	initialized	with	the	contents
of	the	XML	file	if	given.

_setroot(element)
Replaces	 the	 root	 element	 for	 this	 tree.	 This	 discards	 the
current	 contents	 of	 the	 tree,	 and	 replaces	 it	 with	 the	 given
element.	Use	with	care.	element	is	an	element	instance.

find(match,	namespaces=None)

Same	as	Element.find(),	starting	at	the	root	of	the	tree.

findall(match,	namespaces=None)
Same	as	Element.findall(),	starting	at	the	root	of	the	tree.

findtext(match,	default=None,	namespaces=None)
Same	 as	 Element.findtext(),	 starting	 at	 the	 root	 of	 the
tree.

getiterator(tag=None)

Deprecated	 since	 version	 3.2:	 Use	 method
ElementTree.iter()	instead.

getroot()
Returns	the	root	element	for	this	tree.

iter(tag=None)
Creates	 and	 returns	 a	 tree	 iterator	 for	 the	 root	 element.	 The
iterator	loops	over	all	elements	in	this	tree,	in	section	order.	tag
is	the	tag	to	look	for	(default	is	to	return	all	elements)

iterfind(match,	namespaces=None)
Same	 as	 Element.iterfind(),	 starting	 at	 the	 root	 of	 the
tree.

New	in	version	3.2.

parse(source,	parser=None)
Loads	an	external	XML	section	into	this	element	tree.	source	is
a	file	name	or	file	object.	parser	 is	an	optional	parser	 instance.
If	not	given,	 the	standard	XMLParser	parser	 is	used.	Returns
the	section	root	element.

write(file,	 encoding="us-ascii",	 xml_declaration=None,
default_namespace=None,	 method="xml",	 *,
short_empty_elements=True)

Writes	the	element	tree	to	a	file,	as	XML.	file	is	a	file	name,	or	a
file	 object	 opened	 for	 writing.	 encoding	 [1]	 is	 the	 output
encoding	 (default	 is	 US-ASCII).	 xml_declaration	 controls	 if	 an
XML	 declaration	 should	 be	 added	 to	 the	 file.	 Use	 False	 for
never,	True	for	always,	None	for	only	if	not	US-ASCII	or	UTF-8
or	 Unicode	 (default	 is	 None).	 default_namespace	 sets	 the
default	XML	namespace	(for	“xmlns”).	method	is	either	"xml",
"html"	 or	 "text"	 (default	 is	 "xml").	 The	 keyword-only
short_empty_elements	 parameter	 controls	 the	 formatting	 of
elements	that	contain	no	content.	If	True	(the	default),	they	are
emitted	as	a	single	self-closed	 tag,	otherwise	 they	are	emitted
as	a	pair	of	start/end	tags.

The	 output	 is	 either	 a	 string	 (str)	 or	 binary	 (bytes).	 This	 is
controlled	 by	 the	 encoding	 argument.	 If	 encoding	 is
"unicode",	 the	output	 is	a	string;	otherwise,	 it’s	binary.	Note
that	 this	 may	 conflict	 with	 the	 type	 of	 file	 if	 it’s	 an	 open	 file
object;	make	 sure	 you	 do	 not	 try	 to	write	 a	 string	 to	 a	 binary
stream	and	vice	versa.

New	in	version	3.4:	The	short_empty_elements	parameter.

This	is	the	XML	file	that	is	going	to	be	manipulated:

<html>

				<head>

								<title>Example	page</title>

				</head>

				<body>

								<p>Moved	to	example

								or	example.com

				</body>

</html>

Example	 of	 changing	 the	 attribute	 “target”	 of	 every	 link	 in	 first
paragraph:

>>>	from	xml.etree.ElementTree	import	ElementTree

>>>	tree	=	ElementTree()

>>>	tree.parse("index.xhtml")

<Element	'html'	at	0xb77e6fac>

>>>	p	=	tree.find("body/p")					#	Finds	first	occurrence	of	tag	p	in	body

>>>	p

<Element	'p'	at	0xb77ec26c>

>>>	links	=	list(p.iter("a"))			#	Returns	list	of	all	links

>>>	links

[<Element	'a'	at	0xb77ec2ac>,	<Element	'a'	at	0xb77ec1cc>]

>>>	for	i	in	links:													#	Iterates	through	all	found	links

...					i.attrib["target"]	=	"blank"

>>>	tree.write("output.xhtml")

20.5.3.4.	QName	Objects

class	xml.etree.ElementTree.QName(text_or_uri,	tag=None)
QName	 wrapper.	 This	 can	 be	 used	 to	 wrap	 a	 QName	 attribute
value,	 in	 order	 to	 get	 proper	 namespace	 handling	 on	 output.
text_or_uri	 is	 a	 string	 containing	 the	 QName	 value,	 in	 the	 form
{uri}local,	or,	if	the	tag	argument	is	given,	the	URI	part	of	a	QName.
If	tag	is	given,	the	first	argument	is	interpreted	as	an	URI,	and	this
argument	 is	 interpreted	 as	 a	 local	 name.	 QName	 instances	 are
opaque.

20.5.3.5.	TreeBuilder	Objects

class
xml.etree.ElementTree.TreeBuilder(element_factory=None

Generic	 element	 structure	 builder.	 This	 builder	 converts	 a
sequence	 of	 start,	 data,	 and	 end	 method	 calls	 to	 a	 well-formed
element	 structure.	 You	 can	 use	 this	 class	 to	 build	 an	 element
structure	using	a	 custom	XML	parser,	 or	a	parser	 for	 some	other
XML-like	 format.	element_factory,	when	given,	must	be	a	callable
accepting	two	positional	arguments:	a	tag	and	a	dict	of	attributes.	It
is	expected	to	return	a	new	element	instance.

close()
Flushes	 the	builder	buffers,	and	returns	 the	 toplevel	document
element.	Returns	an	Element	instance.

data(data)
Adds	text	to	the	current	element.	data	is	a	string.	This	should	be
either	a	bytestring,	or	a	Unicode	string.

end(tag)
Closes	 the	current	element.	 tag	 is	 the	element	name.	Returns
the	closed	element.

start(tag,	attrs)
Opens	 a	 new	 element.	 tag	 is	 the	 element	 name.	 attrs	 is	 a
dictionary	 containing	 element	 attributes.	 Returns	 the	 opened
element.

In	 addition,	 a	 custom	 TreeBuilder	 object	 can	 provide	 the
following	method:

doctype(name,	pubid,	system)
Handles	 a	 doctype	 declaration.	 name	 is	 the	 doctype	 name.
pubid	is	the	public	identifier.	system	is	the	system	identifier.	This
method	does	not	exist	on	the	default	TreeBuilder	class.

New	in	version	3.2.

20.5.3.6.	XMLParser	Objects

class	xml.etree.ElementTree.XMLParser(html=0,
target=None,	encoding=None)

This	 class	 is	 the	 low-level	 building	 block	 of	 the	 module.	 It	 uses
xml.parsers.expat	for	efficient,	event-based	parsing	of	XML.	It
can	be	 fed	XML	data	 incrementall	with	 the	 feed()	method,	 and
parsing	events	are	translated	to	a	push	API	-	by	invoking	callbacks
on	 the	 target	 object.	 If	 target	 is	 omitted,	 the	 standard
TreeBuilder	 is	 used.	 The	html	 argument	 was	 historically	 used
for	backwards	compatibility	and	is	now	deprecated.	If	encoding	[1]
is	given,	the	value	overrides	the	encoding	specified	in	the	XML	file.

Deprecated	since	version	3.4:	The	html	argument.	The	remaining
arguments	 should	 be	 passed	 via	 keywword	 to	 prepare	 for	 the
removal	of	the	html	argument.

close()
Finishes	feeding	data	to	the	parser.	Returns	the	result	of	calling
the	close()	method	of	the	target	passed	during	construction;
by	default,	this	is	the	toplevel	document	element.

doctype(name,	pubid,	system)

Deprecated	 since	 version	 3.2:	 Define	 the

TreeBuilder.doctype()	method	on	a	custom	TreeBuilder
target.

feed(data)
Feeds	data	to	the	parser.	data	is	encoded	data.

XMLParser.feed()	 calls	 target‘s	 start(tag,	 attrs_dict)
method	 for	 each	 opening	 tag,	 its	 end(tag)	 method	 for	 each
closing	 tag,	 and	 data	 is	 processed	 by	 method	 data(data).
XMLParser.close()	 calls	 target‘s	 method	 close().
XMLParser	can	be	used	not	only	for	building	a	tree	structure.	This
is	an	example	of	counting	the	maximum	depth	of	an	XML	file:

>>>	from	xml.etree.ElementTree	import	XMLParser

>>>	class	MaxDepth:																					#	The	target	object	of	the	parser

...					maxDepth	=	0

...					depth	=	0

...					def	start(self,	tag,	attrib):			#	Called	for	each	opening	tag.

...									self.depth	+=	1

...									if	self.depth	>	self.maxDepth:

...													self.maxDepth	=	self.depth

...					def	end(self,	tag):													#	Called	for	each	closing	tag.

...									self.depth	-=	1

...					def	data(self,	data):

...									pass												#	We	do	not	need	to	do	anything	with	data.

...					def	close(self):				#	Called	when	all	data	has	been	parsed.

...									return	self.maxDepth

...

>>>	target	=	MaxDepth()

>>>	parser	=	XMLParser(target=target)

>>>	exampleXml	=	"""

...	<a>

...			

...			

...			

...					<c>

...							<d>

...							</d>

...					</c>

...			

...	"""

>>>	parser.feed(exampleXml)

>>>	parser.close()

4

20.5.3.7.	XMLPullParser	Objects

class
xml.etree.ElementTree.XMLPullParser(events=None)

A	 pull	 parser	 suitable	 for	 non-blocking	 applications.	 Its	 input-side
API	is	similar	to	that	of	XMLParser,	but	instead	of	pushing	calls	to
a	 callback	 target,	 XMLPullParser	 collects	 an	 internal	 list	 of
parsing	events	and	lets	the	user	read	from	it.	events	is	a	sequence
of	 events	 to	 report	 back.	 The	 supported	 events	 are	 the	 strings
"start",	"end",	"start-ns"	and	"end-ns"	 (the	 “ns”	events
are	 used	 to	 get	 detailed	 namespace	 information).	 If	 events	 is
omitted,	only	"end"	events	are	reported.

feed(data)
Feed	the	given	bytes	data	to	the	parser.

close()
Signal	 the	 parser	 that	 the	 data	 stream	 is	 terminated.	 Unlike
XMLParser.close(),	this	method	always	returns	None.	Any
events	not	yet	 retrieved	when	 the	parser	 is	closed	can	still	be
read	with	read_events().

read_events()
Return	 an	 iterator	 over	 the	 events	 which	 have	 been
encountered	 in	 the	 data	 fed	 to	 the	 parser.	 The	 iterator	 yields
(event,	elem)	 pairs,	 where	 event	 is	 a	 string	 representing
the	 type	 of	 event	 (e.g.	 "end")	 and	 elem	 is	 the	 encountered
Element	object.

Events	provided	in	a	previous	call	 to	read_events()	will	not
be	yielded	again.	Events	are	consumed	from	the	internal	queue
only	 when	 they	 are	 retrieved	 from	 the	 iterator,	 so	 multiple
readers	 iterating	 in	 parallel	 over	 iterators	 obtained	 from
read_events()	will	have	unpredictable	results.

Note: 	XMLPullParser	only	guarantees	that	it	has	seen	the	“>”
character	 of	 a	 starting	 tag	when	 it	 emits	 a	 “start”	 event,	 so	 the
attributes	 are	 defined,	 but	 the	 contents	 of	 the	 text	 and	 tail
attributes	 are	 undefined	 at	 that	 point.	 The	 same	 applies	 to	 the
element	children;	they	may	or	may	not	be	present.
If	 you	 need	 a	 fully	 populated	 element,	 look	 for	 “end”	 events
instead.

New	in	version	3.4.

20.5.3.8.	Exceptions

class	xml.etree.ElementTree.ParseError
XML	 parse	 error,	 raised	 by	 the	 various	 parsing	 methods	 in	 this
module	when	parsing	fails.	The	string	representation	of	an	instance
of	 this	 exception	 will	 contain	 a	 user-friendly	 error	 message.	 In
addition,	it	will	have	the	following	attributes	available:

code

A	 numeric	 error	 code	 from	 the	 expat	 parser.	 See	 the
documentation	 of	 xml.parsers.expat	 for	 the	 list	 of	 error
codes	and	their	meanings.

position

A	 tuple	 of	 line,	 column	 numbers,	 specifying	 where	 the	 error
occurred.

Footnotes

[1]

The	encoding	string	included	in	XML	output	should	conform	to
the	appropriate	standards.	For	example,	“UTF-8”	is	valid,	but
“UTF8”	is	not.	See	http://www.w3.org/TR/2006/REC-xml11-
20060816/#NT-EncodingDecl	and
http://www.iana.org/assignments/character-sets.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.6.	xml.dom	—	The	Document
Object	Model	API
The	Document	Object	Model,	or	“DOM,”	is	a	cross-language	API	from
the	World	Wide	Web	Consortium	(W3C)	 for	accessing	and	modifying
XML	documents.	A	DOM	implementation	presents	an	XML	document
as	a	tree	structure,	or	allows	client	code	to	build	such	a	structure	from
scratch.	It	 then	gives	access	to	the	structure	through	a	set	of	objects
which	provided	well-known	interfaces.

The	 DOM	 is	 extremely	 useful	 for	 random-access	 applications.	 SAX
only	allows	you	a	view	of	one	bit	of	the	document	at	a	time.	If	you	are
looking	at	one	SAX	element,	you	have	no	access	to	another.	If	you	are
looking	at	a	 text	node,	you	have	no	access	 to	a	containing	element.
When	 you	 write	 a	 SAX	 application,	 you	 need	 to	 keep	 track	 of	 your
program’s	 position	 in	 the	 document	 somewhere	 in	 your	 own	 code.
SAX	does	not	do	it	for	you.	Also,	if	you	need	to	look	ahead	in	the	XML
document,	you	are	just	out	of	luck.

Some	applications	are	simply	impossible	in	an	event	driven	model	with
no	 access	 to	 a	 tree.	 Of	 course	 you	 could	 build	 some	 sort	 of	 tree
yourself	 in	SAX	events,	but	 the	DOM	allows	you	to	avoid	writing	 that
code.	The	DOM	is	a	standard	tree	representation	for	XML	data.

The	Document	Object	Model	is	being	defined	by	the	W3C	in	stages,	or
“levels”	 in	 their	 terminology.	 The	 Python	 mapping	 of	 the	 API	 is
substantially	based	on	the	DOM	Level	2	recommendation.

DOM	 applications	 typically	 start	 by	 parsing	 some	 XML	 into	 a	 DOM.
How	 this	 is	accomplished	 is	not	covered	at	all	by	DOM	Level	1,	and
Level	 2	 provides	 only	 limited	 improvements:	 There	 is	 a

DOMImplementation	 object	 class	 which	 provides	 access	 to
Document	 creation	 methods,	 but	 no	 way	 to	 access	 an	 XML
reader/parser/Document	 builder	 in	 an	 implementation-independent
way.	 There	 is	 also	 no	 well-defined	 way	 to	 access	 these	 methods
without	 an	 existing	 Document	 object.	 In	 Python,	 each	 DOM
implementation	will	 provide	 a	 function	 getDOMImplementation().
DOM	 Level	 3	 adds	 a	 Load/Store	 specification,	 which	 defines	 an
interface	 to	 the	 reader,	 but	 this	 is	 not	 yet	 available	 in	 the	 Python
standard	library.

Once	you	have	a	DOM	document	object,	you	can	access	the	parts	of
your	 XML	 document	 through	 its	 properties	 and	 methods.	 These
properties	 are	 defined	 in	 the	 DOM	 specification;	 this	 portion	 of	 the
reference	 manual	 describes	 the	 interpretation	 of	 the	 specification	 in
Python.

The	specification	provided	by	the	W3C	defines	the	DOM	API	for	Java,
ECMAScript,	 and	 OMG	 IDL.	 The	 Python	 mapping	 defined	 here	 is
based	 in	 large	 part	 on	 the	 IDL	 version	 of	 the	 specification,	 but	 strict
compliance	 is	 not	 required	 (though	 implementations	 are	 free	 to
support	 the	strict	mapping	from	IDL).	See	section	Conformance	 for	a
detailed	discussion	of	mapping	requirements.

See	also:

Document	Object	Model	(DOM)	Level	2	Specification
The	W3C	 recommendation	upon	which	 the	Python	DOM	API	 is
based.

Document	Object	Model	(DOM)	Level	1	Specification
The	 W3C	 recommendation	 for	 the	 DOM	 supported	 by
xml.dom.minidom.

Python	Language	Mapping	Specification

http://www.w3.org/TR/DOM-Level-2-Core/
http://www.w3.org/TR/REC-DOM-Level-1/
http://www.omg.org/spec/PYTH/1.2/PDF

This	specifies	the	mapping	from	OMG	IDL	to	Python.

20.6.1.	Module	Contents

The	xml.dom	contains	the	following	functions:

xml.dom.registerDOMImplementation(name,	factory)
Register	 the	 factory	 function	 with	 the	 name	 name.	 The	 factory
function	 should	 return	 an	 object	 which	 implements	 the
DOMImplementation	 interface.	 The	 factory	 function	 can	 return
the	 same	 object	 every	 time,	 or	 a	 new	 one	 for	 each	 call,	 as
appropriate	 for	 the	 specific	 implementation	 (e.g.	 if	 that
implementation	supports	some	customization).

xml.dom.getDOMImplementation(name=None,	features=())
Return	 a	 suitable	DOM	 implementation.	 The	name	 is	 either	well-
known,	the	module	name	of	a	DOM	implementation,	or	None.	If	it
is	 not	 None,	 imports	 the	 corresponding	 module	 and	 returns	 a
DOMImplementation	object	if	the	import	succeeds.	If	no	name	is
given,	 and	 if	 the	 environment	 variable	 PYTHON_DOM	 is	 set,	 this
variable	is	used	to	find	the	implementation.

If	name	 is	not	given,	 this	examines	 the	available	 implementations
to	find	one	with	the	required	feature	set.	 If	no	implementation	can
be	 found,	 raise	 an	 ImportError.	 The	 features	 list	 must	 be	 a
sequence	 of	 (feature,	 version)	 pairs	 which	 are	 passed	 to
the	 hasFeature()	 method	 on	 available	 DOMImplementation
objects.

Some	convenience	constants	are	also	provided:

xml.dom.EMPTY_NAMESPACE

The	value	used	to	indicate	that	no	namespace	is	associated	with	a

node	in	the	DOM.	This	is	typically	found	as	the	namespaceURI	of
a	 node,	 or	 used	 as	 the	 namespaceURI	 parameter	 to	 a
namespaces-specific	method.

xml.dom.XML_NAMESPACE

The	namespace	URI	associated	with	 the	 reserved	prefix	 xml,	as
defined	by	Namespaces	in	XML	(section	4).

xml.dom.XMLNS_NAMESPACE

The	 namespace	 URI	 for	 namespace	 declarations,	 as	 defined	 by
Document	Object	Model	(DOM)	Level	2	Core	Specification	(section
1.1.8).

xml.dom.XHTML_NAMESPACE

The	URI	of	the	XHTML	namespace	as	defined	by	XHTML	1.0:	The
Extensible	HyperText	Markup	Language	(section	3.1.1).

In	 addition,	 xml.dom	 contains	 a	 base	 Node	 class	 and	 the	 DOM
exception	classes.	The	Node	class	provided	by	this	module	does	not
implement	 any	 of	 the	 methods	 or	 attributes	 defined	 by	 the	 DOM
specification;	concrete	DOM	implementations	must	provide	those.	The
Node	class	provided	as	part	of	this	module	does	provide	the	constants
used	for	 the	nodeType	attribute	on	concrete	Node	objects;	 they	are
located	within	the	class	rather	than	at	the	module	level	to	conform	with
the	DOM	specifications.

http://www.w3.org/TR/REC-xml-names/
http://www.w3.org/TR/DOM-Level-2-Core/core.html
http://www.w3.org/TR/xhtml1/

20.6.2.	Objects	in	the	DOM

The	 definitive	 documentation	 for	 the	 DOM	 is	 the	 DOM	 specification
from	the	W3C.

Note	that	DOM	attributes	may	also	be	manipulated	as	nodes	 instead
of	as	simple	strings.	It	is	fairly	rare	that	you	must	do	this,	however,	so
this	usage	is	not	yet	documented.

Interface Section Purpose

DOMImplementation
DOMImplementation
Objects

Interface	to	the
underlying
implementation.

Node Node	Objects
Base	interface
for	most	objects
in	a	document.

NodeList NodeList	Objects
Interface	for	a
sequence	of
nodes.

DocumentType
DocumentType
Objects

Information
about	the
declarations
needed	to
process	a
document.

Document Document	Objects

Object	which
represents	an
entire
document.

Element Element	Objects

Element	nodes
in	the
document
hierarchy.

Attr Attr	Objects
Attribute	value
nodes	on
element	nodes.

Comment Comment	Objects

Representation
of	comments	in
the	source
document.

Text

Text	and
CDATASection
Objects

Nodes
containing
textual	content
from	the
document.

ProcessingInstruction
ProcessingInstruction
Objects

Processing
instruction
representation.

An	additional	section	describes	the	exceptions	defined	for	working	with
the	DOM	in	Python.

20.6.2.1.	DOMImplementation	Objects

The	DOMImplementation	 interface	provides	a	way	 for	 applications
to	determine	the	availability	of	particular	features	in	the	DOM	they	are
using.	DOM	Level	 2	 added	 the	ability	 to	 create	new	 Document	 and
DocumentType	objects	using	the	DOMImplementation	as	well.

DOMImplementation.hasFeature(feature,	version)
Return	true	if	the	feature	identified	by	the	pair	of	strings	feature	and
version	is	implemented.

DOMImplementation.createDocument(namespaceUri,
qualifiedName,	doctype)

Return	a	new	Document	object	(the	root	of	the	DOM),	with	a	child
Element	 object	 having	 the	 given	 namespaceUri	 and
qualifiedName.	 The	 doctype	 must	 be	 a	 DocumentType	 object
created	 by	 createDocumentType(),	 or	 None.	 In	 the	 Python
DOM	API,	 the	 first	 two	 arguments	 can	 also	 be	 None	 in	 order	 to
indicate	that	no	Element	child	is	to	be	created.

DOMImplementation.createDocumentType(qualifiedName,
publicId,	systemId)

Return	a	new	DocumentType	object	 that	encapsulates	 the	given
qualifiedName,	 publicId,	 and	 systemId	 strings,	 representing	 the
information	contained	in	an	XML	document	type	declaration.

20.6.2.2.	Node	Objects

All	of	the	components	of	an	XML	document	are	subclasses	of	Node.

Node.nodeType

An	integer	representing	the	node	type.	Symbolic	constants	 for	 the
types	 are	 on	 the	 Node	 object:	 ELEMENT_NODE,
ATTRIBUTE_NODE,	 TEXT_NODE,	 CDATA_SECTION_NODE,
ENTITY_NODE,	 PROCESSING_INSTRUCTION_NODE,
COMMENT_NODE,	 DOCUMENT_NODE,	 DOCUMENT_TYPE_NODE,
NOTATION_NODE.	This	is	a	read-only	attribute.

Node.parentNode

The	parent	 of	 the	 current	 node,	 or	 None	 for	 the	document	 node.
The	value	is	always	a	Node	object	or	None.	For	Element	nodes,
this	 will	 be	 the	 parent	 element,	 except	 for	 the	 root	 element,	 in
which	case	it	will	be	the	Document	object.	For	Attr	nodes,	this	is
always	None.	This	is	a	read-only	attribute.

Node.attributes

A	NamedNodeMap	of	attribute	objects.	Only	elements	have	actual
values	 for	 this;	 others	 provide	 None	 for	 this	 attribute.	 This	 is	 a
read-only	attribute.

Node.previousSibling

The	node	that	immediately	precedes	this	one	with	the	same	parent.
For	 instance	 the	 element	with	 an	 end-tag	 that	 comes	 just	 before
the	self	element’s	start-tag.	Of	course,	XML	documents	are	made
up	of	more	than	just	elements	so	the	previous	sibling	could	be	text,
a	comment,	or	something	else.	 If	 this	node	 is	 the	first	child	of	 the
parent,	this	attribute	will	be	None.	This	is	a	read-only	attribute.

Node.nextSibling

The	node	 that	 immediately	 follows	 this	one	with	 the	same	parent.
See	also	previousSibling.	If	this	is	the	last	child	of	the	parent,
this	attribute	will	be	None.	This	is	a	read-only	attribute.

Node.childNodes

A	 list	 of	 nodes	 contained	 within	 this	 node.	 This	 is	 a	 read-only
attribute.

Node.firstChild

The	first	child	of	the	node,	if	there	are	any,	or	None.	This	is	a	read-
only	attribute.

Node.lastChild

The	last	child	of	the	node,	if	there	are	any,	or	None.	This	is	a	read-
only	attribute.

Node.localName

The	part	of	 the	tagName	 following	 the	colon	 if	 there	 is	one,	else

the	entire	tagName.	The	value	is	a	string.

Node.prefix

The	part	of	the	tagName	preceding	the	colon	if	 there	is	one,	else
the	empty	string.	The	value	is	a	string,	or	None

Node.namespaceURI

The	namespace	associated	with	the	element	name.	This	will	be	a
string	or	None.	This	is	a	read-only	attribute.

Node.nodeName

This	 has	 a	 different	 meaning	 for	 each	 node	 type;	 see	 the	 DOM
specification	 for	 details.	 You	 can	 always	 get	 the	 information	 you
would	 get	 here	 from	 another	 property	 such	 as	 the	 tagName
property	 for	 elements	 or	 the	 name	 property	 for	 attributes.	 For	 all
node	 types,	 the	 value	 of	 this	 attribute	 will	 be	 either	 a	 string	 or
None.	This	is	a	read-only	attribute.

Node.nodeValue

This	 has	 a	 different	 meaning	 for	 each	 node	 type;	 see	 the	 DOM
specification	 for	 details.	 The	 situation	 is	 similar	 to	 that	 with
nodeName.	The	value	is	a	string	or	None.

Node.hasAttributes()
Returns	true	if	the	node	has	any	attributes.

Node.hasChildNodes()
Returns	true	if	the	node	has	any	child	nodes.

Node.isSameNode(other)
Returns	true	if	other	refers	to	the	same	node	as	this	node.	This	is
especially	useful	 for	DOM	 implementations	which	use	any	sort	 of

proxy	architecture	(because	more	than	one	object	can	refer	to	the
same	node).

Note: 	This	 is	based	on	a	proposed	DOM	Level	3	API	which	 is
still	 in	 the	 “working	 draft”	 stage,	 but	 this	 particular	 interface
appears	 uncontroversial.	 Changes	 from	 the	 W3C	 will	 not
necessarily	 affect	 this	 method	 in	 the	 Python	 DOM	 interface
(though	any	new	W3C	API	for	this	would	also	be	supported).

Node.appendChild(newChild)
Add	a	new	child	node	to	this	node	at	the	end	of	the	list	of	children,
returning	 newChild.	 If	 the	 node	 was	 already	 in	 the	 tree,	 it	 is
removed	first.

Node.insertBefore(newChild,	refChild)
Insert	a	new	child	node	before	an	existing	child.	It	must	be	the	case
that	refChild	 is	a	child	of	 this	node;	 if	not,	ValueError	 is	 raised.
newChild	is	returned.	If	refChild	is	None,	it	inserts	newChild	at	the
end	of	the	children’s	list.

Node.removeChild(oldChild)
Remove	a	child	node.	oldChild	must	be	a	child	of	this	node;	if	not,
ValueError	is	raised.	oldChild	is	returned	on	success.	If	oldChild
will	not	be	used	further,	its	unlink()	method	should	be	called.

Node.replaceChild(newChild,	oldChild)
Replace	an	existing	node	with	a	new	node.	It	must	be	the	case	that
oldChild	is	a	child	of	this	node;	if	not,	ValueError	is	raised.

Node.normalize()
Join	adjacent	text	nodes	so	that	all	stretches	of	text	are	stored	as
single	Text	instances.	This	simplifies	processing	text	from	a	DOM

tree	for	many	applications.

Node.cloneNode(deep)
Clone	 this	 node.	Setting	deep	means	 to	 clone	 all	 child	 nodes	 as
well.	This	returns	the	clone.

20.6.2.3.	NodeList	Objects

A	NodeList	represents	a	sequence	of	nodes.	These	objects	are	used
in	two	ways	in	the	DOM	Core	recommendation:	the	Element	objects
provides	 one	 as	 its	 list	 of	 child	 nodes,	 and	 the
getElementsByTagName()	 and	 getElementsByTagNameNS()

methods	of	Node	return	objects	with	this	 interface	to	represent	query
results.

The	 DOM	 Level	 2	 recommendation	 defines	 one	 method	 and	 one
attribute	for	these	objects:

NodeList.item(i)
Return	 the	 i‘th	 item	 from	 the	 sequence,	 if	 there	 is	 one,	 or	 None.
The	 index	 i	 is	not	allowed	 to	be	 less	 then	zero	or	greater	 than	or
equal	to	the	length	of	the	sequence.

NodeList.length

The	number	of	nodes	in	the	sequence.

In	 addition,	 the	 Python	DOM	 interface	 requires	 that	 some	 additional
support	is	provided	to	allow	NodeList	objects	to	be	used	as	Python
sequences.	All	 NodeList	 implementations	must	 include	 support	 for
__len__()	 and	 __getitem__();	 this	 allows	 iteration	 over	 the
NodeList	in	for	statements	and	proper	support	for	the	len()	built-
in	function.

If	 a	DOM	 implementation	supports	modification	of	 the	document,	 the
NodeList	 implementation	 must	 also	 support	 the	 __setitem__()
and	__delitem__()	methods.

20.6.2.4.	DocumentType	Objects

Information	about	 the	notations	and	entities	declared	by	a	document
(including	the	external	subset	if	the	parser	uses	it	and	can	provide	the
information)	 is	 available	 from	 a	 DocumentType	 object.	 The
DocumentType	 for	 a	 document	 is	 available	 from	 the	 Document
object’s	doctype	attribute;	if	there	is	no	DOCTYPE	declaration	for	the
document,	 the	 document’s	 doctype	 attribute	 will	 be	 set	 to	 None
instead	of	an	instance	of	this	interface.

DocumentType	 is	 a	 specialization	 of	 Node,	 and	 adds	 the	 following
attributes:

DocumentType.publicId

The	public	 identifier	 for	 the	external	 subset	of	 the	document	 type
definition.	This	will	be	a	string	or	None.

DocumentType.systemId

The	system	identifier	for	the	external	subset	of	the	document	type
definition.	This	will	be	a	URI	as	a	string,	or	None.

DocumentType.internalSubset

A	 string	 giving	 the	 complete	 internal	 subset	 from	 the	 document.
This	does	not	include	the	brackets	which	enclose	the	subset.	If	the
document	has	no	internal	subset,	this	should	be	None.

DocumentType.name

The	 name	 of	 the	 root	 element	 as	 given	 in	 the	 DOCTYPE

declaration,	if	present.

DocumentType.entities

This	is	a	NamedNodeMap	giving	the	definitions	of	external	entities.
For	entity	names	defined	more	than	once,	only	the	first	definition	is
provided	 (others	 are	 ignored	 as	 required	 by	 the	 XML
recommendation).	 This	 may	 be	 None	 if	 the	 information	 is	 not
provided	by	the	parser,	or	if	no	entities	are	defined.

DocumentType.notations

This	 is	 a	 NamedNodeMap	 giving	 the	 definitions	 of	 notations.	 For
notation	names	defined	more	than	once,	only	the	first	definition	 is
provided	 (others	 are	 ignored	 as	 required	 by	 the	 XML
recommendation).	 This	 may	 be	 None	 if	 the	 information	 is	 not
provided	by	the	parser,	or	if	no	notations	are	defined.

20.6.2.5.	Document	Objects

A	 Document	 represents	 an	 entire	 XML	 document,	 including	 its
constituent	 elements,	 attributes,	 processing	 instructions,	 comments
etc.	Remember	that	it	inherits	properties	from	Node.

Document.documentElement

The	one	and	only	root	element	of	the	document.

Document.createElement(tagName)
Create	and	return	a	new	element	node.	The	element	is	not	inserted
into	the	document	when	it	is	created.	You	need	to	explicitly	insert	it
with	 one	 of	 the	 other	 methods	 such	 as	 insertBefore()	 or
appendChild().

Document.createElementNS(namespaceURI,	tagName)

Create	and	return	a	new	element	with	a	namespace.	The	tagName
may	have	a	prefix.	The	element	 is	not	 inserted	 into	 the	document
when	 it	 is	 created.	You	need	 to	 explicitly	 insert	 it	with	 one	of	 the
other	methods	such	as	insertBefore()	or	appendChild().

Document.createTextNode(data)
Create	 and	 return	 a	 text	 node	 containing	 the	 data	 passed	 as	 a
parameter.	As	with	 the	other	creation	methods,	 this	one	does	not
insert	the	node	into	the	tree.

Document.createComment(data)
Create	and	return	a	comment	node	containing	the	data	passed	as
a	parameter.	As	with	the	other	creation	methods,	this	one	does	not
insert	the	node	into	the	tree.

Document.createProcessingInstruction(target,	data)
Create	 and	 return	 a	 processing	 instruction	 node	 containing	 the
target	and	data	passed	as	parameters.	As	with	 the	other	creation
methods,	this	one	does	not	insert	the	node	into	the	tree.

Document.createAttribute(name)
Create	 and	 return	 an	 attribute	 node.	 This	 method	 does	 not
associate	the	attribute	node	with	any	particular	element.	You	must
use	 setAttributeNode()	 on	 the	 appropriate	 Element	 object
to	use	the	newly	created	attribute	instance.

Document.createAttributeNS(namespaceURI,
qualifiedName)

Create	 and	 return	 an	 attribute	 node	 with	 a	 namespace.	 The
tagName	may	have	a	prefix.	This	method	does	not	associate	 the
attribute	 node	 with	 any	 particular	 element.	 You	 must	 use
setAttributeNode()	 on	 the	 appropriate	 Element	 object	 to

use	the	newly	created	attribute	instance.

Document.getElementsByTagName(tagName)
Search	for	all	descendants	(direct	children,	children’s	children,	etc.)
with	a	particular	element	type	name.

Document.getElementsByTagNameNS(namespaceURI,
localName)

Search	for	all	descendants	(direct	children,	children’s	children,	etc.)
with	a	particular	namespace	URI	and	localname.	The	localname	is
the	part	of	the	namespace	after	the	prefix.

20.6.2.6.	Element	Objects

Element	 is	a	 subclass	of	Node,	 so	 inherits	 all	 the	attributes	of	 that
class.

Element.tagName

The	element	 type	name.	 In	 a	 namespace-using	 document	 it	may
have	colons	in	it.	The	value	is	a	string.

Element.getElementsByTagName(tagName)
Same	as	equivalent	method	in	the	Document	class.

Element.getElementsByTagNameNS(namespaceURI,
localName)

Same	as	equivalent	method	in	the	Document	class.

Element.hasAttribute(name)
Returns	true	if	the	element	has	an	attribute	named	by	name.

Element.hasAttributeNS(namespaceURI,	localName)

Returns	 true	 if	 the	 element	 has	 an	 attribute	 named	 by
namespaceURI	and	localName.

Element.getAttribute(name)
Return	the	value	of	the	attribute	named	by	name	as	a	string.	If	no
such	attribute	exists,	an	empty	string	is	returned,	as	if	the	attribute
had	no	value.

Element.getAttributeNode(attrname)
Return	the	Attr	node	for	the	attribute	named	by	attrname.

Element.getAttributeNS(namespaceURI,	localName)
Return	 the	 value	 of	 the	 attribute	 named	 by	 namespaceURI	 and
localName	as	a	string.	If	no	such	attribute	exists,	an	empty	string	is
returned,	as	if	the	attribute	had	no	value.

Element.getAttributeNodeNS(namespaceURI,	localName)
Return	an	attribute	value	as	a	node,	given	a	namespaceURI	 and
localName.

Element.removeAttribute(name)
Remove	an	attribute	by	name.	 If	 there	 is	no	matching	attribute,	a
NotFoundErr	is	raised.

Element.removeAttributeNode(oldAttr)
Remove	 and	 return	 oldAttr	 from	 the	 attribute	 list,	 if	 present.	 If
oldAttr	is	not	present,	NotFoundErr	is	raised.

Element.removeAttributeNS(namespaceURI,	localName)
Remove	an	attribute	by	name.	Note	that	it	uses	a	localName,	not	a
qname.	No	exception	is	raised	if	there	is	no	matching	attribute.

Element.setAttribute(name,	value)

Set	an	attribute	value	from	a	string.

Element.setAttributeNode(newAttr)
Add	 a	 new	 attribute	 node	 to	 the	 element,	 replacing	 an	 existing
attribute	 if	 necessary	 if	 the	 name	 attribute	 matches.	 If	 a
replacement	 occurs,	 the	 old	 attribute	 node	 will	 be	 returned.	 If
newAttr	is	already	in	use,	InuseAttributeErr	will	be	raised.

Element.setAttributeNodeNS(newAttr)
Add	 a	 new	 attribute	 node	 to	 the	 element,	 replacing	 an	 existing
attribute	 if	 necessary	 if	 the	 namespaceURI	 and	 localName
attributes	match.	If	a	replacement	occurs,	the	old	attribute	node	will
be	 returned.	 If	 newAttr	 is	 already	 in	 use,	 InuseAttributeErr
will	be	raised.

Element.setAttributeNS(namespaceURI,	qname,	value)
Set	an	attribute	value	from	a	string,	given	a	namespaceURI	and	a
qname.	 Note	 that	 a	 qname	 is	 the	 whole	 attribute	 name.	 This	 is
different	than	above.

20.6.2.7.	Attr	Objects

Attr	inherits	from	Node,	so	inherits	all	its	attributes.

Attr.name

The	 attribute	 name.	 In	 a	 namespace-using	 document	 it	 may
include	a	colon.

Attr.localName

The	part	of	 the	name	 following	 the	colon	 if	 there	 is	one,	else	 the
entire	name.	This	is	a	read-only	attribute.

Attr.prefix

The	part	of	 the	name	preceding	the	colon	if	 there	 is	one,	else	the
empty	string.

Attr.value

The	 text	 value	 of	 the	 attribute.	 This	 is	 a	 synonym	 for	 the
nodeValue	attribute.

20.6.2.8.	NamedNodeMap	Objects

NamedNodeMap	does	not	inherit	from	Node.

NamedNodeMap.length

The	length	of	the	attribute	list.

NamedNodeMap.item(index)
Return	an	attribute	with	a	particular	 index.	The	order	 you	get	 the
attributes	in	is	arbitrary	but	will	be	consistent	for	the	life	of	a	DOM.
Each	 item	 is	 an	 attribute	 node.	 Get	 its	 value	 with	 the	 value
attribute.

There	 are	 also	 experimental	 methods	 that	 give	 this	 class	 more
mapping	behavior.	You	can	use	them	or	you	can	use	the	standardized
getAttribute*()	family	of	methods	on	the	Element	objects.

20.6.2.9.	Comment	Objects

Comment	 represents	 a	 comment	 in	 the	 XML	 document.	 It	 is	 a
subclass	of	Node,	but	cannot	have	child	nodes.

Comment.data

The	content	of	 the	comment	as	a	string.	The	attribute	contains	all

characters	between	 the	 leading	<!--	 and	 trailing	 -->,	 but	 does
not	include	them.

20.6.2.10.	Text	and	CDATASection	Objects

The	Text	interface	represents	text	in	the	XML	document.	If	the	parser
and	DOM	implementation	support	the	DOM’s	XML	extension,	portions
of	 the	 text	 enclosed	 in	 CDATA	 marked	 sections	 are	 stored	 in
CDATASection	 objects.	 These	 two	 interfaces	 are	 identical,	 but
provide	different	values	for	the	nodeType	attribute.

These	 interfaces	extend	 the	 Node	 interface.	They	 cannot	 have	 child
nodes.

Text.data

The	content	of	the	text	node	as	a	string.

Note: 	The	use	of	a	CDATASection	node	does	not	indicate	that	the
node	represents	a	complete	CDATA	marked	section,	only	that	the
content	of	the	node	was	part	of	a	CDATA	section.	A	single	CDATA
section	may	be	represented	by	more	than	one	node	in	the	document
tree.	There	is	no	way	to	determine	whether	two	adjacent
CDATASection	nodes	represent	different	CDATA	marked	sections.

20.6.2.11.	ProcessingInstruction	Objects

Represents	a	processing	instruction	in	the	XML	document;	this	inherits
from	the	Node	interface	and	cannot	have	child	nodes.

ProcessingInstruction.target

The	content	of	the	processing	instruction	up	to	the	first	whitespace

character.	This	is	a	read-only	attribute.

ProcessingInstruction.data

The	 content	 of	 the	 processing	 instruction	 following	 the	 first
whitespace	character.

20.6.2.12.	Exceptions

The	 DOM	 Level	 2	 recommendation	 defines	 a	 single	 exception,
DOMException,	and	a	number	of	constants	that	allow	applications	to
determine	what	sort	of	error	occurred.	DOMException	instances	carry
a	 code	 attribute	 that	 provides	 the	 appropriate	 value	 for	 the	 specific
exception.

The	Python	DOM	 interface	provides	 the	constants,	but	also	expands
the	set	of	exceptions	so	that	a	specific	exception	exists	for	each	of	the
exception	codes	defined	by	the	DOM.	The	implementations	must	raise
the	 appropriate	 specific	 exception,	 each	 of	 which	 carries	 the
appropriate	value	for	the	code	attribute.

exception	xml.dom.DOMException
Base	 exception	 class	 used	 for	 all	 specific	 DOM	 exceptions.	 This
exception	class	cannot	be	directly	instantiated.

exception	xml.dom.DomstringSizeErr
Raised	when	a	specified	range	of	text	does	not	fit	into	a	string.	This
is	not	known	to	be	used	 in	the	Python	DOM	implementations,	but
may	be	received	from	DOM	implementations	not	written	in	Python.

exception	xml.dom.HierarchyRequestErr
Raised	when	an	attempt	is	made	to	insert	a	node	where	the	node
type	is	not	allowed.

exception	xml.dom.IndexSizeErr
Raised	when	an	index	or	size	parameter	to	a	method	is	negative	or
exceeds	the	allowed	values.

exception	xml.dom.InuseAttributeErr
Raised	when	 an	 attempt	 is	made	 to	 insert	 an	 Attr	 node	 that	 is
already	present	elsewhere	in	the	document.

exception	xml.dom.InvalidAccessErr
Raised	 if	 a	 parameter	 or	 an	 operation	 is	 not	 supported	 on	 the
underlying	object.

exception	xml.dom.InvalidCharacterErr
This	 exception	 is	 raised	 when	 a	 string	 parameter	 contains	 a
character	 that	 is	not	permitted	 in	 the	context	 it’s	being	used	 in	by
the	XML	1.0	 recommendation.	 For	 example,	 attempting	 to	 create
an	 Element	 node	 with	 a	 space	 in	 the	 element	 type	 name	 will
cause	this	error	to	be	raised.

exception	xml.dom.InvalidModificationErr
Raised	when	an	attempt	is	made	to	modify	the	type	of	a	node.

exception	xml.dom.InvalidStateErr
Raised	 when	 an	 attempt	 is	 made	 to	 use	 an	 object	 that	 is	 not
defined	or	is	no	longer	usable.

exception	xml.dom.NamespaceErr
If	 an	 attempt	 is	made	 to	 change	 any	 object	 in	 a	 way	 that	 is	 not
permitted	with	regard	to	the	Namespaces	in	XML	recommendation,
this	exception	is	raised.

exception	xml.dom.NotFoundErr
Exception	when	a	node	does	not	 exist	 in	 the	 referenced	 context.

http://www.w3.org/TR/REC-xml-names/

For	 example,	 NamedNodeMap.removeNamedItem()	 will	 raise
this	if	the	node	passed	in	does	not	exist	in	the	map.

exception	xml.dom.NotSupportedErr
Raised	when	 the	 implementation	 does	 not	 support	 the	 requested
type	of	object	or	operation.

exception	xml.dom.NoDataAllowedErr
This	is	raised	if	data	is	specified	for	a	node	which	does	not	support
data.

exception	xml.dom.NoModificationAllowedErr
Raised	on	attempts	to	modify	an	object	where	modifications	are	not
allowed	(such	as	for	read-only	nodes).

exception	xml.dom.SyntaxErr
Raised	when	an	invalid	or	illegal	string	is	specified.

exception	xml.dom.WrongDocumentErr
Raised	 when	 a	 node	 is	 inserted	 in	 a	 different	 document	 than	 it
currently	 belongs	 to,	 and	 the	 implementation	 does	 not	 support
migrating	the	node	from	one	document	to	the	other.

The	exception	codes	defined	in	the	DOM	recommendation	map	to	the
exceptions	described	above	according	to	this	table:

Constant Exception

DOMSTRING_SIZE_ERR DomstringSizeErr

HIERARCHY_REQUEST_ERR HierarchyRequestErr

INDEX_SIZE_ERR IndexSizeErr

INUSE_ATTRIBUTE_ERR InuseAttributeErr

INVALID_ACCESS_ERR InvalidAccessErr

INVALID_CHARACTER_ERR InvalidCharacterErr

INVALID_MODIFICATION_ERR InvalidModificationErr

INVALID_STATE_ERR InvalidStateErr

NAMESPACE_ERR NamespaceErr

NOT_FOUND_ERR NotFoundErr

NOT_SUPPORTED_ERR NotSupportedErr

NO_DATA_ALLOWED_ERR NoDataAllowedErr

NO_MODIFICATION_ALLOWED_ERR NoModificationAllowedErr

SYNTAX_ERR SyntaxErr

WRONG_DOCUMENT_ERR WrongDocumentErr

20.6.3.	Conformance

This	 section	 describes	 the	 conformance	 requirements	 and
relationships	 between	 the	 Python	 DOM	 API,	 the	 W3C	 DOM
recommendations,	and	the	OMG	IDL	mapping	for	Python.

20.6.3.1.	Type	Mapping

The	 IDL	 types	used	 in	 the	DOM	specification	are	mapped	 to	Python
types	according	to	the	following	table.

IDL	Type Python	Type

boolean bool	or	int

int int

long	int int

unsigned	int int

DOMString str	or	bytes

null None

20.6.3.2.	Accessor	Methods

The	mapping	from	OMG	IDL	to	Python	defines	accessor	functions	for
IDL	 attribute	 declarations	 in	 much	 the	 way	 the	 Java	 mapping
does.	Mapping	the	IDL	declarations

readonly	attribute	string	someValue;

									attribute	string	anotherValue;

yields	 three	 accessor	 functions:	 a	 “get”	 method	 for	 someValue

(_get_someValue()),	 and	 “get”	 and	 “set”	 methods	 for
anotherValue	 (_get_anotherValue()	 and
_set_anotherValue()).	 The	 mapping,	 in	 particular,	 does	 not
require	 that	 the	 IDL	 attributes	 are	 accessible	 as	 normal	 Python
attributes:	object.someValue	is	not	required	to	work,	and	may	raise
an	AttributeError.

The	 Python	 DOM	 API,	 however,	 does	 require	 that	 normal	 attribute
access	 work.	 This	 means	 that	 the	 typical	 surrogates	 generated	 by
Python	IDL	compilers	are	not	likely	to	work,	and	wrapper	objects	may
be	needed	on	the	client	if	the	DOM	objects	are	accessed	via	CORBA.
While	 this	 does	 require	 some	 additional	 consideration	 for	 CORBA
DOM	 clients,	 the	 implementers	 with	 experience	 using	 DOM	 over
CORBA	from	Python	do	not	consider	this	a	problem.	Attributes	that	are
declared	 readonly	 may	 not	 restrict	 write	 access	 in	 all	 DOM
implementations.

In	 the	 Python	 DOM	 API,	 accessor	 functions	 are	 not	 required.	 If
provided,	 they	 should	 take	 the	 form	 defined	 by	 the	 Python	 IDL
mapping,	 but	 these	 methods	 are	 considered	 unnecessary	 since	 the
attributes	are	accessible	directly	from	Python.	“Set”	accessors	should
never	be	provided	for	readonly	attributes.

The	IDL	definitions	do	not	fully	embody	the	requirements	of	the	W3C
DOM	API,	 such	 as	 the	 notion	 of	 certain	 objects,	 such	 as	 the	 return
value	of	getElementsByTagName(),	being	“live”.	The	Python	DOM
API	does	not	require	implementations	to	enforce	such	requirements.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.7.	xml.dom.minidom	—
Minimal	DOM	implementation
Source	code:	Lib/xml/dom/minidom.py

xml.dom.minidom	 is	 a	 minimal	 implementation	 of	 the	 Document
Object	Model	interface,	with	an	API	similar	to	that	in	other	languages.
It	 is	 intended	 to	 be	 simpler	 than	 the	 full	 DOM	 and	 also	 significantly
smaller.	 Users	 who	 are	 not	 already	 proficient	 with	 the	 DOM	 should
consider	using	the	xml.etree.ElementTree	module	 for	 their	XML
processing	instead

Warning: 	The	xml.dom.minidom	module	is	not	secure	against
maliciously	constructed	data.	If	you	need	to	parse	untrusted	or
unauthenticated	data	see	XML	vulnerabilities.

DOM	 applications	 typically	 start	 by	 parsing	 some	 XML	 into	 a	 DOM.
With	xml.dom.minidom,	this	is	done	through	the	parse	functions:

from	xml.dom.minidom	import	parse,	parseString

dom1	=	parse('c:\\temp\\mydata.xml')	#	parse	an	XML	file	by	name

datasource	=	open('c:\\temp\\mydata.xml')

dom2	=	parse(datasource)			#	parse	an	open	file

dom3	=	parseString('<myxml>Some	data<empty/>	some	more	data</myxml>'

The	 parse()	 function	 can	 take	 either	 a	 filename	 or	 an	 open	 file

http://hg.python.org/cpython/file/3.4/Lib/xml/dom/minidom.py

object.

xml.dom.minidom.parse(filename_or_file,	parser=None,
bufsize=None)

Return	a	Document	from	the	given	input.	filename_or_file	may	be
either	a	 file	name,	or	a	 file-like	object.	parser,	 if	given,	must	be	a
SAX2	 parser	 object.	 This	 function	 will	 change	 the	 document
handler	 of	 the	 parser	 and	 activate	 namespace	 support;	 other
parser	configuration	(like	setting	an	entity	resolver)	must	have	been
done	in	advance.

If	 you	 have	 XML	 in	 a	 string,	 you	 can	 use	 the	 parseString()
function	instead:

xml.dom.minidom.parseString(string,	parser=None)
Return	 a	 Document	 that	 represents	 the	 string.	 This	 method
creates	a	io.StringIO	object	for	the	string	and	passes	that	on	to
parse().

Both	 functions	return	a	Document	object	 representing	 the	content	of
the	document.

What	the	parse()	and	parseString()	 functions	do	is	connect	an
XML	parser	with	a	 “DOM	builder”	 that	can	accept	parse	events	 from
any	SAX	parser	and	convert	them	into	a	DOM	tree.	The	name	of	 the
functions	are	perhaps	misleading,	but	are	easy	to	grasp	when	learning
the	interfaces.	The	parsing	of	 the	document	will	be	completed	before
these	functions	return;	it’s	simply	that	these	functions	do	not	provide	a
parser	implementation	themselves.

You	 can	 also	 create	 a	 Document	 by	 calling	 a	 method	 on	 a	 “DOM
Implementation”	 object.	 You	 can	 get	 this	 object	 either	 by	 calling	 the

getDOMImplementation()	function	in	the	xml.dom	package	or	the
xml.dom.minidom	module.	Once	 you	 have	 a	 Document,	 you	 can
add	child	nodes	to	it	to	populate	the	DOM:

from	xml.dom.minidom	import	getDOMImplementation

impl	=	getDOMImplementation()

newdoc	=	impl.createDocument(None,	"some_tag",	None)

top_element	=	newdoc.documentElement

text	=	newdoc.createTextNode('Some	textual	content.'

top_element.appendChild(text)

Once	you	have	a	DOM	document	object,	you	can	access	the	parts	of
your	 XML	 document	 through	 its	 properties	 and	 methods.	 These
properties	are	defined	in	the	DOM	specification.	The	main	property	of
the	document	object	is	the	documentElement	property.	It	gives	you
the	main	element	in	the	XML	document:	the	one	that	holds	all	others.
Here	is	an	example	program:

dom3	=	parseString("<myxml>Some	data</myxml>")

assert	dom3.documentElement.tagName	==	"myxml"

When	you	are	 finished	with	a	DOM	 tree,	 you	may	optionally	 call	 the
unlink()	method	to	encourage	early	cleanup	of	 the	now-unneeded
objects.	unlink()	is	a	xml.dom.minidom-specific	extension	to	the
DOM	API	 that	 renders	 the	 node	and	 its	 descendants	 are	 essentially
useless.	 Otherwise,	 Python’s	 garbage	 collector	 will	 eventually	 take
care	of	the	objects	in	the	tree.

See	also:

Document	Object	Model	(DOM)	Level	1	Specification

http://www.w3.org/TR/REC-DOM-Level-1/

The	 W3C	 recommendation	 for	 the	 DOM	 supported	 by
xml.dom.minidom.

20.7.1.	DOM	Objects

The	 definition	 of	 the	 DOM	 API	 for	 Python	 is	 given	 as	 part	 of	 the
xml.dom	 module	 documentation.	 This	 section	 lists	 the	 differences
between	the	API	and	xml.dom.minidom.

Node.unlink()
Break	internal	references	within	the	DOM	so	that	it	will	be	garbage
collected	 on	 versions	 of	 Python	 without	 cyclic	 GC.	 Even	 when
cyclic	 GC	 is	 available,	 using	 this	 can	 make	 large	 amounts	 of
memory	available	sooner,	so	calling	this	on	DOM	objects	as	soon
as	they	are	no	longer	needed	is	good	practice.	This	only	needs	to
be	 called	 on	 the	 Document	 object,	 but	 may	 be	 called	 on	 child
nodes	to	discard	children	of	that	node.

You	 can	 avoid	 calling	 this	 method	 explicitly	 by	 using	 the	 with
statement.	The	 following	code	will	automatically	unlink	dom	when
the	with	block	is	exited:

with	xml.dom.minidom.parse(datasource)	as	dom:

				...	#	Work	with	dom.

Node.writexml(writer,	indent="",	addindent="",	newl="")
Write	XML	to	the	writer	object.	The	writer	should	have	a	write()
method	which	matches	that	of	 the	file	object	 interface.	The	 indent
parameter	 is	 the	 indentation	 of	 the	 current	 node.	 The	 addindent
parameter	is	the	incremental	indentation	to	use	for	subnodes	of	the
current	 one.	 The	 newl	 parameter	 specifies	 the	 string	 to	 use	 to
terminate	newlines.

For	 the	 Document	 node,	 an	 additional	 keyword	 argument

encoding	 can	 be	 used	 to	 specify	 the	 encoding	 field	 of	 the	 XML
header.

Node.toxml(encoding=None)
Return	 a	 string	 or	 byte	 string	 containing	 the	XML	 represented	 by
the	DOM	node.

With	an	explicit	encoding	[1]	argument,	the	result	is	a	byte	string	in
the	specified	encoding.	With	no	encoding	argument,	the	result	is	a
Unicode	string,	and	the	XML	declaration	in	the	resulting	string	does
not	specify	an	encoding.	Encoding	this	string	in	an	encoding	other
than	UTF-8	is	 likely	incorrect,	since	UTF-8	is	the	default	encoding
of	XML.

Node.toprettyxml(indent="",	newl="",	encoding="")
Return	 a	 pretty-printed	 version	 of	 the	 document.	 indent	 specifies
the	indentation	string	and	defaults	to	a	tabulator;	newl	specifies	the
string	emitted	at	the	end	of	each	line	and	defaults	to	\n.

The	encoding	argument	behaves	like	the	corresponding	argument
of	toxml().

20.7.2.	DOM	Example

This	example	program	is	a	fairly	realistic	example	of	a	simple	program.
In	this	particular	case,	we	do	not	take	much	advantage	of	the	flexibility
of	the	DOM.

import	xml.dom.minidom

document	=	"""\

<slideshow>

<title>Demo	slideshow</title>

<slide><title>Slide	title</title>

<point>This	is	a	demo</point>

<point>Of	a	program	for	processing	slides</point>

</slide>

<slide><title>Another	demo	slide</title>

<point>It	is	important</point>

<point>To	have	more	than</point>

<point>one	slide</point>

</slide>

</slideshow>

"""

dom	=	xml.dom.minidom.parseString(document)

def	getText(nodelist):

				rc	=	[]

				for	node	in	nodelist:

								if	node.nodeType	==	node.TEXT_NODE:

												rc.append(node.data)

				return	''.join(rc)

def	handleSlideshow(slideshow):

				print("<html>")

				handleSlideshowTitle(slideshow.getElementsByTagName

				slides	=	slideshow.getElementsByTagName("slide")

				handleToc(slides)

				handleSlides(slides)

				print("</html>")

def	handleSlides(slides):

				for	slide	in	slides:

								handleSlide(slide)

def	handleSlide(slide):

				handleSlideTitle(slide.getElementsByTagName("title"

				handlePoints(slide.getElementsByTagName("point"))

def	handleSlideshowTitle(title):

				print("<title>%s</title>"	%	getText(title.childNodes

def	handleSlideTitle(title):

				print("<h2>%s</h2>"	%	getText(title.childNodes))

def	handlePoints(points):

				print("")

				for	point	in	points:

								handlePoint(point)

				print("")

def	handlePoint(point):

				print("%s"	%	getText(point.childNodes))

def	handleToc(slides):

				for	slide	in	slides:

								title	=	slide.getElementsByTagName("title")[

								print("<p>%s</p>"	%	getText(title.childNodes

handleSlideshow(dom)

20.7.3.	minidom	and	the	DOM	standard

The	xml.dom.minidom	module	is	essentially	a	DOM	1.0-compatible
DOM	with	some	DOM	2	features	(primarily	namespace	features).

Usage	 of	 the	 DOM	 interface	 in	 Python	 is	 straight-forward.	 The
following	mapping	rules	apply:

Interfaces	 are	 accessed	 through	 instance	 objects.	 Applications
should	not	instantiate	the	classes	themselves;	they	should	use	the
creator	 functions	 available	 on	 the	 Document	 object.	 Derived
interfaces	 support	 all	 operations	 (and	 attributes)	 from	 the	 base
interfaces,	plus	any	new	operations.
Operations	are	used	as	methods.	Since	 the	DOM	uses	only	 in
parameters,	 the	arguments	are	passed	in	normal	order	(from	left
to	 right).	 There	 are	 no	 optional	 arguments.	 void	 operations
return	None.
IDL	attributes	map	to	instance	attributes.	For	compatibility	with	the
OMG	IDL	language	mapping	for	Python,	an	attribute	foo	can	also
be	 accessed	 through	 accessor	 methods	 _get_foo()	 and
_set_foo().	readonly	attributes	must	not	be	changed;	this	is
not	enforced	at	runtime.
The	 types	 short	 int,	 unsigned	 int,	 unsigned	 long

long,	and	boolean	all	map	to	Python	integer	objects.
The	 type	 DOMString	 maps	 to	 Python	 strings.
xml.dom.minidom	 supports	 either	 bytes	 or	 strings,	 but	 will
normally	produce	strings.	Values	of	type	DOMString	may	also	be
None	 where	 allowed	 to	 have	 the	 IDL	 null	 value	 by	 the	 DOM
specification	from	the	W3C.
const	 declarations	 map	 to	 variables	 in	 their	 respective	 scope
(e.g.
xml.dom.minidom.Node.PROCESSING_INSTRUCTION_NODE);

they	must	not	be	changed.
DOMException	 is	 currently	 not	 supported	 in
xml.dom.minidom.	Instead,	xml.dom.minidom	uses	standard
Python	exceptions	such	as	TypeError	and	AttributeError.
NodeList	 objects	 are	 implemented	 using	 Python’s	 built-in	 list
type.	 These	 objects	 provide	 the	 interface	 defined	 in	 the	 DOM
specification,	 but	 with	 earlier	 versions	 of	 Python	 they	 do	 not
support	the	official	API.	They	are,	however,	much	more	“Pythonic”
than	the	interface	defined	in	the	W3C	recommendations.

The	 following	 interfaces	 have	 no	 implementation	 in
xml.dom.minidom:

DOMTimeStamp

DocumentType

DOMImplementation

CharacterData

CDATASection

Notation

Entity

EntityReference

DocumentFragment

Most	of	 these	 reflect	 information	 in	 the	XML	document	 that	 is	 not	 of
general	utility	to	most	DOM	users.

Footnotes

[1]

The	encoding	name	included	in	the	XML	output	should	conform
to	the	appropriate	standards.	For	example,	“UTF-8”	is	valid,	but
“UTF8”	is	not	valid	in	an	XML	document’s	declaration,	even
though	Python	accepts	it	as	an	encoding	name.	See
http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-
EncodingDecl	and	http://www.iana.org/assignments/character-

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets

sets.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.8.	xml.dom.pulldom	—
Support	for	building	partial	DOM
trees
Source	code:	Lib/xml/dom/pulldom.py

The	 xml.dom.pulldom	 module	 provides	 a	 “pull	 parser”	 which	 can
also	be	asked	to	produce	DOM-accessible	fragments	of	the	document
where	necessary.	The	basic	concept	 involves	pulling	 “events”	 from	a
stream	 of	 incoming	 XML	 and	 processing	 them.	 In	 contrast	 to	 SAX
which	 also	 employs	 an	 event-driven	 processing	model	 together	 with
callbacks,	 the	user	of	a	pull	parser	 is	responsible	for	explicitly	pulling
events	 from	 the	 stream,	 looping	 over	 those	 events	 until	 either
processing	is	finished	or	an	error	condition	occurs.

Warning: 	The	xml.dom.pulldom	module	is	not	secure	against
maliciously	constructed	data.	If	you	need	to	parse	untrusted	or
unauthenticated	data	see	XML	vulnerabilities.

Example:

from	xml.dom	import	pulldom

doc	=	pulldom.parse('sales_items.xml')

for	event,	node	in	doc:

				if	event	==	pulldom.START_ELEMENT	and	node.tagName

								if	int(node.getAttribute('price'))	>	50:

												doc.expandNode(node)

												print(node.toxml())

http://hg.python.org/cpython/file/3.4/Lib/xml/dom/pulldom.py

event	is	a	constant	and	can	be	one	of:

START_ELEMENT

END_ELEMENT

COMMENT

START_DOCUMENT

END_DOCUMENT

CHARACTERS

PROCESSING_INSTRUCTION

IGNORABLE_WHITESPACE

node	 is	 a	 object	 of	 type	 xml.dom.minidom.Document,
xml.dom.minidom.Element	or	xml.dom.minidom.Text.

Since	 the	 document	 is	 treated	 as	 a	 “flat”	 stream	 of	 events,	 the
document	 “tree”	 is	 implicitly	 traversed	 and	 the	 desired	 elements	 are
found	 regardless	of	 their	depth	 in	 the	 tree.	 In	other	words,	one	does
not	need	 to	consider	hierarchical	 issues	such	as	 recursive	searching
of	 the	 document	 nodes,	 although	 if	 the	 context	 of	 elements	 were
important,	 one	 would	 either	 need	 to	 maintain	 some	 context-related
state	 (i.e.	 remembering	 where	 one	 is	 in	 the	 document	 at	 any	 given
point)	 or	 to	 make	 use	 of	 the	 DOMEventStream.expandNode()
method	and	switch	to	DOM-related	processing.

class	xml.dom.pulldom.PullDom(documentFactory=None)
Subclass	of	xml.sax.handler.ContentHandler.

class	xml.dom.pulldom.SAX2DOM(documentFactory=None)
Subclass	of	xml.sax.handler.ContentHandler.

xml.dom.pulldom.parse(stream_or_string,	parser=None,
bufsize=None)

Return	a	DOMEventStream	from	the	given	input.	stream_or_string
may	be	either	a	file	name,	or	a	file-like	object.	parser,	if	given,	must
be	 a	 XMLReader	 object.	 This	 function	will	 change	 the	 document
handler	 of	 the	 parser	 and	 activate	 namespace	 support;	 other
parser	configuration	(like	setting	an	entity	resolver)	must	have	been
done	in	advance.

If	 you	 have	 XML	 in	 a	 string,	 you	 can	 use	 the	 parseString()
function	instead:

xml.dom.pulldom.parseString(string,	parser=None)
Return	a	DOMEventStream	that	represents	the	(Unicode)	string.

xml.dom.pulldom.default_bufsize

Default	value	for	the	bufsize	parameter	to	parse().

The	value	of	this	variable	can	be	changed	before	calling	parse()
and	the	new	value	will	take	effect.

20.8.1.	DOMEventStream	Objects

class	xml.dom.pulldom.DOMEventStream(stream,	parser,
bufsize)

getEvent()
Return	 a	 tuple	 containing	 event	 and	 the	 current	 node	 as
xml.dom.minidom.Document	 if	 event	 equals
START_DOCUMENT,	 xml.dom.minidom.Element	 if	 event
equals	 START_ELEMENT	 or	 END_ELEMENT	 or
xml.dom.minidom.Text	 if	 event	 equals	 CHARACTERS.	 The
current	 node	 does	 not	 contain	 informations	 about	 its	 children,
unless	expandNode()	is	called.

expandNode(node)
Expands	all	children	of	node	into	node.	Example:

xml	=	'<html><title>Foo</title>	<p>Some	text	<div>and	more</div></p>	</html>'

doc	=	pulldom.parseString(xml)

for	event,	node	in	doc:

				if	event	==	pulldom.START_ELEMENT	and	node.

								#	Following	statement	only	prints	'<p/>'

								print(node.toxml())

								doc.exandNode(node)

								#	Following	statement	prints	node	with	all	its	children	'<p>Some	text	<div>and	more</div></p>'

								print(node.toxml())

reset()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.9.	xml.sax	—	Support	for
SAX2	parsers
The	 xml.sax	 package	 provides	 a	 number	 of	 modules	 which
implement	 the	 Simple	 API	 for	 XML	 (SAX)	 interface	 for	 Python.	 The
package	 itself	 provides	 the	 SAX	 exceptions	 and	 the	 convenience
functions	which	will	be	most	used	by	users	of	the	SAX	API.

Warning: 	The	xml.sax	module	is	not	secure	against	maliciously
constructed	data.	If	you	need	to	parse	untrusted	or	unauthenticated
data	see	XML	vulnerabilities.

The	convenience	functions	are:

xml.sax.make_parser(parser_list=[])
Create	and	return	a	SAX	XMLReader	object.	The	first	parser	found
will	 be	 used.	 If	parser_list	 is	 provided,	 it	 must	 be	 a	 sequence	 of
strings	 which	 name	 modules	 that	 have	 a	 function	 named
create_parser().	 Modules	 listed	 in	 parser_list	 will	 be	 used
before	modules	in	the	default	list	of	parsers.

xml.sax.parse(filename_or_stream,	handler,
error_handler=handler.ErrorHandler())

Create	 a	 SAX	 parser	 and	 use	 it	 to	 parse	 a	 document.	 The
document,	passed	in	as	filename_or_stream,	can	be	a	filename	or
a	 file	 object.	 The	 handler	 parameter	 needs	 to	 be	 a	 SAX
ContentHandler	instance.	If	error_handler	is	given,	it	must	be	a
SAX	 ErrorHandler	 instance;	 if	 omitted,	 SAXParseException
will	be	raised	on	all	errors.	There	is	no	return	value;	all	work	must

be	done	by	the	handler	passed	in.

xml.sax.parseString(string,	handler,
error_handler=handler.ErrorHandler())

Similar	to	parse(),	but	parses	from	a	buffer	string	received	as	a
parameter.

A	 typical	 SAX	 application	 uses	 three	 kinds	 of	 objects:	 readers,
handlers	and	input	sources.	“Reader”	in	this	context	is	another	term	for
parser,	i.e.	some	piece	of	code	that	reads	the	bytes	or	characters	from
the	input	source,	and	produces	a	sequence	of	events.	The	events	then
get	distributed	to	the	handler	objects,	i.e.	the	reader	invokes	a	method
on	 the	 handler.	 A	 SAX	 application	 must	 therefore	 obtain	 a	 reader
object,	 create	 or	 open	 the	 input	 sources,	 create	 the	 handlers,	 and
connect	these	objects	all	together.	As	the	final	step	of	preparation,	the
reader	 is	 called	 to	 parse	 the	 input.	 During	 parsing,	 methods	 on	 the
handler	 objects	 are	 called	 based	 on	 structural	 and	 syntactic	 events
from	the	input	data.

For	 these	objects,	only	 the	 interfaces	are	 relevant;	 they	are	normally
not	 instantiated	by	 the	application	 itself.	Since	Python	does	not	have
an	explicit	notion	of	interface,	they	are	formally	introduced	as	classes,
but	 applications	may	 use	 implementations	 which	 do	 not	 inherit	 from
the	 provided	 classes.	 The	 InputSource,	 Locator,	 Attributes,
AttributesNS,	 and	 XMLReader	 interfaces	 are	 defined	 in	 the
module	xml.sax.xmlreader.	The	handler	 interfaces	are	defined	 in
xml.sax.handler.	For	convenience,	InputSource	(which	is	often
instantiated	directly)	 and	 the	handler	 classes	are	also	available	 from
xml.sax.	These	interfaces	are	described	below.

In	 addition	 to	 these	 classes,	 xml.sax	 provides	 the	 following
exception	classes.

exception	xml.sax.SAXException(msg,	exception=None)
Encapsulate	an	XML	error	or	warning.	This	class	can	contain	basic
error	 or	 warning	 information	 from	 either	 the	 XML	 parser	 or	 the
application:	it	can	be	subclassed	to	provide	additional	functionality
or	 to	 add	 localization.	Note	 that	 although	 the	 handlers	 defined	 in
the	ErrorHandler	interface	receive	instances	of	this	exception,	it
is	not	required	to	actually	raise	the	exception	—	it	is	also	useful	as
a	container	for	information.

When	instantiated,	msg	should	be	a	human-readable	description	of
the	 error.	 The	 optional	 exception	 parameter,	 if	 given,	 should	 be
None	or	an	exception	that	was	caught	by	the	parsing	code	and	is
being	passed	along	as	information.

This	is	the	base	class	for	the	other	SAX	exception	classes.

exception	xml.sax.SAXParseException(msg,	exception,
locator)

Subclass	of	SAXException	 raised	on	parse	errors.	 Instances	of
this	class	are	passed	to	the	methods	of	 the	SAX	ErrorHandler
interface	 to	 provide	 information	 about	 the	 parse	 error.	 This	 class
supports	 the	 SAX	 Locator	 interface	 as	 well	 as	 the
SAXException	interface.

exception	xml.sax.SAXNotRecognizedException(msg,
exception=None)

Subclass	 of	 SAXException	 raised	 when	 a	 SAX	 XMLReader	 is
confronted	 with	 an	 unrecognized	 feature	 or	 property.	 SAX
applications	 and	 extensions	 may	 use	 this	 class	 for	 similar
purposes.

exception	xml.sax.SAXNotSupportedException(msg,

exception=None)
Subclass	 of	 SAXException	 raised	 when	 a	 SAX	 XMLReader	 is
asked	to	enable	a	feature	that	is	not	supported,	or	to	set	a	property
to	 a	 value	 that	 the	 implementation	 does	 not	 support.	 SAX
applications	 and	 extensions	 may	 use	 this	 class	 for	 similar
purposes.

See	also:

SAX:	The	Simple	API	for	XML
This	 site	 is	 the	 focal	 point	 for	 the	 definition	 of	 the	 SAX	 API.	 It
provides	a	Java	implementation	and	online	documentation.	Links
to	implementations	and	historical	information	are	also	available.

Module	xml.sax.handler
Definitions	of	the	interfaces	for	application-provided	objects.

Module	xml.sax.saxutils
Convenience	functions	for	use	in	SAX	applications.

Module	xml.sax.xmlreader
Definitions	of	the	interfaces	for	parser-provided	objects.

http://www.saxproject.org/

20.9.1.	SAXException	Objects

The	SAXException	exception	class	supports	the	following	methods:

SAXException.getMessage()
Return	a	human-readable	message	describing	the	error	condition.

SAXException.getException()
Return	an	encapsulated	exception	object,	or	None.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.10.	xml.sax.handler	—
Base	classes	for	SAX	handlers
The	SAX	API	 defines	 four	 kinds	 of	 handlers:	 content	 handlers,	DTD
handlers,	 error	 handlers,	 and	 entity	 resolvers.	 Applications	 normally
only	 need	 to	 implement	 those	 interfaces	 whose	 events	 they	 are
interested	in;	they	can	implement	the	interfaces	in	a	single	object	or	in
multiple	objects.	Handler	implementations	should	inherit	from	the	base
classes	 provided	 in	 the	 module	 xml.sax.handler,	 so	 that	 all
methods	get	default	implementations.

class	xml.sax.handler.ContentHandler
This	 is	 the	 main	 callback	 interface	 in	 SAX,	 and	 the	 one	 most
important	 to	 applications.	 The	 order	 of	 events	 in	 this	 interface
mirrors	the	order	of	the	information	in	the	document.

class	xml.sax.handler.DTDHandler
Handle	DTD	events.

This	 interface	 specifies	only	 those	DTD	events	 required	 for	 basic
parsing	(unparsed	entities	and	attributes).

class	xml.sax.handler.EntityResolver
Basic	 interface	 for	 resolving	 entities.	 If	 you	 create	 an	 object
implementing	 this	 interface,	 then	 register	 the	 object	 with	 your
Parser,	the	parser	will	call	the	method	in	your	object	to	resolve	all
external	entities.

class	xml.sax.handler.ErrorHandler
Interface	 used	 by	 the	 parser	 to	 present	 error	 and	 warning
messages	 to	 the	 application.	 The	 methods	 of	 this	 object	 control

whether	 errors	 are	 immediately	 converted	 to	 exceptions	 or	 are
handled	in	some	other	way.

In	 addition	 to	 these	 classes,	 xml.sax.handler	 provides	 symbolic
constants	for	the	feature	and	property	names.

xml.sax.handler.feature_namespaces

value:	"http://xml.org/sax/features/namespaces"
true:	Perform	Namespace	processing.
false:	 Optionally	 do	 not	 perform	 Namespace	 processing	 (implies
namespace-prefixes;	default).
access:	(parsing)	read-only;	(not	parsing)	read/write

xml.sax.handler.feature_namespace_prefixes

value:	 "http://xml.org/sax/features/namespace-

prefixes"

true:	 Report	 the	 original	 prefixed	 names	 and	 attributes	 used	 for
Namespace	declarations.
false:	 Do	 not	 report	 attributes	 used	 for	 Namespace	 declarations,
and	optionally	do	not	report	original	prefixed	names	(default).
access:	(parsing)	read-only;	(not	parsing)	read/write

xml.sax.handler.feature_string_interning

value:	 "http://xml.org/sax/features/string-

interning"

true:	 All	 element	 names,	 prefixes,	 attribute	 names,	 Namespace
URIs,	 and	 local	 names	 are	 interned	 using	 the	 built-in	 intern
function.
false:	Names	are	 not	 necessarily	 interned,	 although	 they	may	be
(default).
access:	(parsing)	read-only;	(not	parsing)	read/write

xml.sax.handler.feature_validation

value:	"http://xml.org/sax/features/validation"

true:	 Report	 all	 validation	 errors	 (implies	 external-general-entities
and	external-parameter-entities).
false:	Do	not	report	validation	errors.
access:	(parsing)	read-only;	(not	parsing)	read/write

xml.sax.handler.feature_external_ges

value:	 "http://xml.org/sax/features/external-

general-entities"

true:	Include	all	external	general	(text)	entities.
false:	Do	not	include	external	general	entities.
access:	(parsing)	read-only;	(not	parsing)	read/write

xml.sax.handler.feature_external_pes

value:	 "http://xml.org/sax/features/external-

parameter-entities"

true:	 Include	all	external	parameter	entities,	 including	 the	external
DTD	subset.
false:	 Do	 not	 include	 any	 external	 parameter	 entities,	 even	 the
external	DTD	subset.
access:	(parsing)	read-only;	(not	parsing)	read/write

xml.sax.handler.all_features

List	of	all	features.

xml.sax.handler.property_lexical_handler

value:	 "http://xml.org/sax/properties/lexical-

handler"

data	type:	xml.sax.sax2lib.LexicalHandler	(not	supported	in	Python
2)
description:	 An	 optional	 extension	 handler	 for	 lexical	 events	 like
comments.
access:	read/write

xml.sax.handler.property_declaration_handler

value:	 "http://xml.org/sax/properties/declaration-

handler"

data	type:	xml.sax.sax2lib.DeclHandler	(not	supported	in	Python	2)
description:	An	optional	extension	handler	 for	DTD-related	events
other	than	notations	and	unparsed	entities.
access:	read/write

xml.sax.handler.property_dom_node

value:	"http://xml.org/sax/properties/dom-node"
data	type:	org.w3c.dom.Node	(not	supported	in	Python	2)
description:	When	parsing,	 the	current	DOM	node	being	visited	 if
this	 is	 a	DOM	 iterator;	when	not	 parsing,	 the	 root	DOM	node	 for
iteration.
access:	(parsing)	read-only;	(not	parsing)	read/write

xml.sax.handler.property_xml_string

value:	"http://xml.org/sax/properties/xml-string"
data	type:	String
description:	The	literal	string	of	characters	that	was	the	source	for
the	current	event.
access:	read-only

xml.sax.handler.all_properties

List	of	all	known	property	names.

20.10.1.	ContentHandler	Objects

Users	 are	 expected	 to	 subclass	 ContentHandler	 to	 support	 their
application.	 The	 following	 methods	 are	 called	 by	 the	 parser	 on	 the
appropriate	events	in	the	input	document:

ContentHandler.setDocumentLocator(locator)
Called	 by	 the	 parser	 to	 give	 the	 application	 a	 locator	 for	 locating
the	origin	of	document	events.

SAX	 parsers	 are	 strongly	 encouraged	 (though	 not	 absolutely
required)	to	supply	a	locator:	if	it	does	so,	it	must	supply	the	locator
to	 the	 application	 by	 invoking	 this	method	before	 invoking	 any	 of
the	other	methods	in	the	DocumentHandler	interface.

The	locator	allows	the	application	to	determine	the	end	position	of
any	document-related	event,	even	if	the	parser	is	not	reporting	an
error.	Typically,	the	application	will	use	this	information	for	reporting
its	own	errors	 (such	as	character	content	 that	does	not	match	an
application’s	 business	 rules).	 The	 information	 returned	 by	 the
locator	is	probably	not	sufficient	for	use	with	a	search	engine.

Note	that	the	locator	will	return	correct	 information	only	during	the
invocation	of	the	events	in	this	interface.	The	application	should	not
attempt	to	use	it	at	any	other	time.

ContentHandler.startDocument()
Receive	notification	of	the	beginning	of	a	document.

The	SAX	parser	will	invoke	this	method	only	once,	before	any	other
methods	 in	 this	 interface	 or	 in	 DTDHandler	 (except	 for
setDocumentLocator()).

ContentHandler.endDocument()
Receive	notification	of	the	end	of	a	document.

The	SAX	parser	will	invoke	this	method	only	once,	and	it	will	be	the
last	method	invoked	during	the	parse.	The	parser	shall	not	 invoke
this	method	until	 it	 has	either	abandoned	parsing	 (because	of	 an
unrecoverable	error)	or	reached	the	end	of	input.

ContentHandler.startPrefixMapping(prefix,	uri)
Begin	the	scope	of	a	prefix-URI	Namespace	mapping.

The	 information	 from	 this	 event	 is	 not	 necessary	 for	 normal
Namespace	 processing:	 the	 SAX	 XML	 reader	 will	 automatically
replace	 prefixes	 for	 element	 and	 attribute	 names	 when	 the
feature_namespaces	feature	is	enabled	(the	default).

There	are	cases,	however,	when	applications	need	to	use	prefixes
in	character	data	or	in	attribute	values,	where	they	cannot	safely	be
expanded	 automatically;	 the	 startPrefixMapping()	 and
endPrefixMapping()	 events	 supply	 the	 information	 to	 the
application	to	expand	prefixes	in	those	contexts	itself,	if	necessary.

Note	that	startPrefixMapping()	and	endPrefixMapping()
events	are	not	guaranteed	 to	be	properly	nested	relative	 to	each-
other:	 all	 startPrefixMapping()	 events	 will	 occur	 before	 the
corresponding	 startElement()	 event,	 and	 all
endPrefixMapping()	events	will	occur	after	 the	corresponding
endElement()	event,	but	their	order	is	not	guaranteed.

ContentHandler.endPrefixMapping(prefix)
End	the	scope	of	a	prefix-URI	mapping.

See	startPrefixMapping()	 for	details.	This	event	will	 always

occur	after	the	corresponding	endElement()	event,	but	the	order
of	endPrefixMapping()	events	is	not	otherwise	guaranteed.

ContentHandler.startElement(name,	attrs)
Signals	the	start	of	an	element	in	non-namespace	mode.

The	 name	 parameter	 contains	 the	 raw	 XML	 1.0	 name	 of	 the
element	type	as	a	string	and	the	attrs	parameter	holds	an	object	of
the	 Attributes	 interface	 (see	 The	 Attributes	 Interface)
containing	the	attributes	of	the	element.	The	object	passed	as	attrs
may	be	re-used	by	the	parser;	holding	on	to	a	reference	to	it	is	not
a	reliable	way	to	keep	a	copy	of	 the	attributes.	To	keep	a	copy	of
the	attributes,	use	the	copy()	method	of	the	attrs	object.

ContentHandler.endElement(name)
Signals	the	end	of	an	element	in	non-namespace	mode.

The	name	parameter	contains	 the	name	of	 the	element	 type,	 just
as	with	the	startElement()	event.

ContentHandler.startElementNS(name,	qname,	attrs)
Signals	the	start	of	an	element	in	namespace	mode.

The	name	parameter	contains	 the	name	of	 the	element	 type	as	a
(uri,	localname)	tuple,	the	qname	parameter	contains	the	raw
XML	 1.0	 name	 used	 in	 the	 source	 document,	 and	 the	 attrs
parameter	holds	an	instance	of	the	AttributesNS	interface	(see
The	 AttributesNS	 Interface)	 containing	 the	 attributes	 of	 the
element.	 If	 no	namespace	 is	 associated	with	 the	element,	 the	uri
component	of	name	will	be	None.	The	object	passed	as	attrs	may
be	 re-used	by	 the	parser;	 holding	on	 to	a	 reference	 to	 it	 is	 not	 a
reliable	way	to	keep	a	copy	of	the	attributes.	To	keep	a	copy	of	the

attributes,	use	the	copy()	method	of	the	attrs	object.

Parsers	 may	 set	 the	 qname	 parameter	 to	 None,	 unless	 the
feature_namespace_prefixes	feature	is	activated.

ContentHandler.endElementNS(name,	qname)
Signals	the	end	of	an	element	in	namespace	mode.

The	name	parameter	contains	 the	name	of	 the	element	 type,	 just
as	 with	 the	 startElementNS()	 method,	 likewise	 the	 qname
parameter.

ContentHandler.characters(content)
Receive	notification	of	character	data.

The	Parser	will	call	 this	method	to	report	each	chunk	of	character
data.	 SAX	 parsers	may	 return	 all	 contiguous	 character	 data	 in	 a
single	chunk,	or	they	may	split	 it	 into	several	chunks;	however,	all
of	 the	 characters	 in	 any	 single	 event	 must	 come	 from	 the	 same
external	entity	so	that	the	Locator	provides	useful	information.

content	 may	 be	 a	 string	 or	 bytes	 instance;	 the	 expat	 reader
module	always	produces	strings.

Note: 	The	earlier	SAX	1	interface	provided	by	the	Python	XML
Special	 Interest	 Group	 used	 a	more	 Java-like	 interface	 for	 this
method.	 Since	 most	 parsers	 used	 from	 Python	 did	 not	 take
advantage	 of	 the	 older	 interface,	 the	 simpler	 signature	 was
chosen	 to	 replace	 it.	 To	 convert	 old	 code	 to	 the	 new	 interface,
use	 content	 instead	 of	 slicing	 content	 with	 the	 old	 offset	 and
length	parameters.

ContentHandler.ignorableWhitespace(whitespace)

Receive	notification	of	ignorable	whitespace	in	element	content.

Validating	Parsers	must	 use	 this	method	 to	 report	 each	 chunk	 of
ignorable	 whitespace	 (see	 the	 W3C	 XML	 1.0	 recommendation,
section	 2.10):	 non-validating	 parsers	may	also	 use	 this	method	 if
they	are	capable	of	parsing	and	using	content	models.

SAX	 parsers	 may	 return	 all	 contiguous	 whitespace	 in	 a	 single
chunk,	or	they	may	split	 it	 into	several	chunks;	however,	all	of	the
characters	 in	any	single	event	must	come	from	the	same	external
entity,	so	that	the	Locator	provides	useful	information.

ContentHandler.processingInstruction(target,	data)
Receive	notification	of	a	processing	instruction.

The	 Parser	 will	 invoke	 this	 method	 once	 for	 each	 processing
instruction	 found:	 note	 that	 processing	 instructions	 may	 occur
before	or	after	the	main	document	element.

A	SAX	parser	 should	 never	 report	 an	XML	declaration	 (XML	1.0,
section	2.8)	or	a	text	declaration	(XML	1.0,	section	4.3.1)	using	this
method.

ContentHandler.skippedEntity(name)
Receive	notification	of	a	skipped	entity.

The	Parser	will	 invoke	 this	method	 once	 for	 each	 entity	 skipped.
Non-validating	processors	may	skip	entities	 if	 they	have	not	seen
the	declarations	(because,	for	example,	the	entity	was	declared	in
an	external	DTD	subset).	All	processors	may	skip	external	entities,
depending	on	the	values	of	the	feature_external_ges	and	the
feature_external_pes	properties.

20.10.2.	DTDHandler	Objects

DTDHandler	instances	provide	the	following	methods:

DTDHandler.notationDecl(name,	publicId,	systemId)
Handle	a	notation	declaration	event.

DTDHandler.unparsedEntityDecl(name,	publicId,	systemId,
ndata)

Handle	an	unparsed	entity	declaration	event.

20.10.3.	EntityResolver	Objects

EntityResolver.resolveEntity(publicId,	systemId)
Resolve	 the	 system	 identifier	 of	 an	 entity	 and	 return	 either	 the
system	identifier	to	read	from	as	a	string,	or	an	InputSource	to	read
from.	The	default	implementation	returns	systemId.

20.10.4.	ErrorHandler	Objects

Objects	 with	 this	 interface	 are	 used	 to	 receive	 error	 and	 warning
information	 from	 the	 XMLReader.	 If	 you	 create	 an	 object	 that
implements	 this	 interface,	 then	 register	 the	 object	 with	 your
XMLReader,	the	parser	will	call	the	methods	in	your	object	to	report	all
warnings	 and	 errors.	 There	 are	 three	 levels	 of	 errors	 available:
warnings,	(possibly)	 recoverable	errors,	and	unrecoverable	errors.	All
methods	take	a	SAXParseException	as	the	only	parameter.	Errors
and	warnings	may	be	converted	to	an	exception	by	raising	the	passed-
in	exception	object.

ErrorHandler.error(exception)
Called	 when	 the	 parser	 encounters	 a	 recoverable	 error.	 If	 this
method	 does	 not	 raise	 an	 exception,	 parsing	 may	 continue,	 but
further	 document	 information	 should	 not	 be	 expected	 by	 the
application.	Allowing	 the	 parser	 to	 continue	 may	 allow	 additional
errors	to	be	discovered	in	the	input	document.

ErrorHandler.fatalError(exception)
Called	when	the	parser	encounters	an	error	it	cannot	recover	from;
parsing	is	expected	to	terminate	when	this	method	returns.

ErrorHandler.warning(exception)
Called	when	the	parser	presents	minor	warning	 information	to	the
application.	 Parsing	 is	 expected	 to	 continue	 when	 this	 method
returns,	and	document	information	will	continue	to	be	passed	to	the
application.	Raising	an	exception	in	this	method	will	cause	parsing
to	end.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.11.	xml.sax.saxutils	—
SAX	Utilities
The	module	xml.sax.saxutils	contains	a	number	of	classes	and
functions	 that	 are	 commonly	 useful	 when	 creating	SAX	 applications,
either	in	direct	use,	or	as	base	classes.

xml.sax.saxutils.escape(data,	entities={})
Escape	'&',	'<',	and	'>'	in	a	string	of	data.

You	can	escape	other	strings	of	data	by	passing	a	dictionary	as	the
optional	 entities	 parameter.	 The	 keys	 and	 values	 must	 all	 be
strings;	each	key	will	be	replaced	with	its	corresponding	value.	The
characters	'&',	'<'	and	'>'	are	always	escaped,	even	if	entities
is	provided.

xml.sax.saxutils.unescape(data,	entities={})
Unescape	'&',	'<',	and	'>'	in	a	string	of	data.

You	can	unescape	other	strings	of	data	by	passing	a	dictionary	as
the	 optional	entities	 parameter.	 The	 keys	 and	 values	must	 all	 be
strings;	 each	 key	 will	 be	 replaced	 with	 its	 corresponding	 value.
'&',	 '<',	 and	 '>'	 are	 always	 unescaped,	 even	 if
entities	is	provided.

xml.sax.saxutils.quoteattr(data,	entities={})
Similar	 to	 escape(),	 but	 also	 prepares	 data	 to	 be	 used	 as	 an
attribute	 value.	 The	 return	 value	 is	 a	 quoted	 version	 of	data	with
any	additional	 required	replacements.	quoteattr()	will	 select	a
quote	character	based	on	the	content	of	data,	attempting	to	avoid

encoding	 any	 quote	 characters	 in	 the	 string.	 If	 both	 single-	 and
double-quote	 characters	 are	 already	 in	 data,	 the	 double-quote
characters	 will	 be	 encoded	 and	 data	 will	 be	 wrapped	 in	 double-
quotes.	 The	 resulting	 string	 can	 be	 used	 directly	 as	 an	 attribute
value:

>>>	print("<element	attr=%s>"	%	quoteattr("ab	'	cd	

<element	attr="ab	'	cd	"	ef">

This	 function	 is	useful	when	generating	attribute	values	 for	HTML
or	any	SGML	using	the	reference	concrete	syntax.

class	xml.sax.saxutils.XMLGenerator(out=None,
encoding='iso-8859-1',	short_empty_elements=False)

This	class	 implements	 the	ContentHandler	 interface	by	writing
SAX	events	back	into	an	XML	document.	In	other	words,	using	an
XMLGenerator	as	the	content	handler	will	reproduce	the	original
document	being	parsed.	out	should	be	a	 file-like	object	which	will
default	to	sys.stdout.	encoding	is	the	encoding	of	the	output	stream
which	defaults	to	'iso-8859-1'.	short_empty_elements	controls
the	 formatting	 of	 elements	 that	 contain	 no	 content:	 if	 False	 (the
default)	 they	are	emitted	as	a	pair	of	start/end	 tags,	 if	set	 to	True
they	are	emitted	as	a	single	self-closed	tag.

New	in	version	3.2:	The	short_empty_elements	parameter.

class	xml.sax.saxutils.XMLFilterBase(base)
This	class	is	designed	to	sit	between	an	XMLReader	and	the	client
application’s	 event	 handlers.	 By	 default,	 it	 does	 nothing	 but	 pass
requests	 up	 to	 the	 reader	 and	 events	 on	 to	 the	 handlers
unmodified,	 but	 subclasses	 can	 override	 specific	 methods	 to
modify	the	event	stream	or	the	configuration	requests	as	they	pass

through.

xml.sax.saxutils.prepare_input_source(source,
base='')

This	function	takes	an	input	source	and	an	optional	base	URL	and
returns	 a	 fully	 resolved	 InputSource	 object	 ready	 for	 reading.
The	 input	source	can	be	given	as	a	string,	a	file-like	object,	or	an
InputSource	 object;	 parsers	will	 use	 this	 function	 to	 implement
the	polymorphic	source	argument	to	their	parse()	method.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.12.	xml.sax.xmlreader	—
Interface	for	XML	parsers
SAX	 parsers	 implement	 the	 XMLReader	 interface.	 They	 are
implemented	 in	 a	 Python	 module,	 which	 must	 provide	 a	 function
create_parser().	 This	 function	 is	 invoked	 by
xml.sax.make_parser()	 with	 no	 arguments	 to	 create	 a	 new
parser	object.

class	xml.sax.xmlreader.XMLReader
Base	class	which	can	be	inherited	by	SAX	parsers.

class	xml.sax.xmlreader.IncrementalParser
In	some	cases,	it	is	desirable	not	to	parse	an	input	source	at	once,
but	to	feed	chunks	of	the	document	as	they	get	available.	Note	that
the	reader	will	normally	not	read	the	entire	file,	but	read	it	in	chunks
as	 well;	 still	 parse()	 won’t	 return	 until	 the	 entire	 document	 is
processed.	 So	 these	 interfaces	 should	 be	 used	 if	 the	 blocking
behaviour	of	parse()	is	not	desirable.

When	the	parser	is	instantiated	it	 is	ready	to	begin	accepting	data
from	the	feed	method	immediately.	After	parsing	has	been	finished
with	a	call	 to	 close	 the	 reset	method	must	be	called	 to	make	 the
parser	 ready	 to	 accept	 new	 data,	 either	 from	 feed	 or	 using	 the
parse	method.

Note	that	these	methods	must	not	be	called	during	parsing,	that	is,
after	parse	has	been	called	and	before	it	returns.

By	 default,	 the	 class	 also	 implements	 the	 parse	 method	 of	 the

XMLReader	 interface	using	 the	 feed,	 close	and	 reset	methods	of
the	 IncrementalParser	 interface	 as	 a	 convenience	 to	 SAX	 2.0
driver	writers.

class	xml.sax.xmlreader.Locator
Interface	for	associating	a	SAX	event	with	a	document	location.	A
locator	 object	 will	 return	 valid	 results	 only	 during	 calls	 to
DocumentHandler	 methods;	 at	 any	 other	 time,	 the	 results	 are
unpredictable.	 If	 information	 is	 not	 available,	methods	may	 return
None.

class	xml.sax.xmlreader.InputSource(system_id=None)
Encapsulation	 of	 the	 information	 needed	 by	 the	 XMLReader	 to
read	entities.

This	 class	 may	 include	 information	 about	 the	 public	 identifier,
system	 identifier,	 byte	 stream	 (possibly	 with	 character	 encoding
information)	and/or	the	character	stream	of	an	entity.

Applications	 will	 create	 objects	 of	 this	 class	 for	 use	 in	 the
XMLReader.parse()	 method	 and	 for	 returning	 from
EntityResolver.resolveEntity.

An	 InputSource	 belongs	 to	 the	 application,	 the	 XMLReader	 is
not	allowed	to	modify	InputSource	objects	passed	to	it	from	the
application,	although	it	may	make	copies	and	modify	those.

class	xml.sax.xmlreader.AttributesImpl(attrs)
This	 is	 an	 implementation	 of	 the	 Attributes	 interface	 (see
section	 The	 Attributes	 Interface).	 This	 is	 a	 dictionary-like	 object
which	 represents	 the	 element	 attributes	 in	 a	 startElement()
call.	In	addition	to	the	most	useful	dictionary	operations,	it	supports
a	number	of	other	methods	as	described	by	the	interface.	Objects

of	 this	 class	 should	 be	 instantiated	 by	 readers;	 attrs	 must	 be	 a
dictionary-like	object	containing	a	mapping	from	attribute	names	to
attribute	values.

class	xml.sax.xmlreader.AttributesNSImpl(attrs,
qnames)

Namespace-aware	 variant	 of	 AttributesImpl,	 which	 will	 be
passed	 to	 startElementNS().	 It	 is	 derived	 from
AttributesImpl,	but	understands	attribute	names	as	two-tuples
of	namespaceURI	and	localname.	In	addition,	it	provides	a	number
of	 methods	 expecting	 qualified	 names	 as	 they	 appear	 in	 the
original	 document.	 This	 class	 implements	 the	 AttributesNS
interface	(see	section	The	AttributesNS	Interface).

20.12.1.	XMLReader	Objects

The	XMLReader	interface	supports	the	following	methods:

XMLReader.parse(source)
Process	an	input	source,	producing	SAX	events.	The	source	object
can	be	a	 system	 identifier	 (a	 string	 identifying	 the	 input	 source	–
typically	 a	 file	 name	 or	 an	 URL),	 a	 file-like	 object,	 or	 an
InputSource	 object.	 When	 parse()	 returns,	 the	 input	 is
completely	processed,	and	 the	parser	object	can	be	discarded	or
reset.	As	a	limitation,	the	current	implementation	only	accepts	byte
streams;	processing	of	character	streams	is	for	further	study.

XMLReader.getContentHandler()
Return	the	current	ContentHandler.

XMLReader.setContentHandler(handler)
Set	the	current	ContentHandler.	If	no	ContentHandler	is	set,
content	events	will	be	discarded.

XMLReader.getDTDHandler()
Return	the	current	DTDHandler.

XMLReader.setDTDHandler(handler)
Set	 the	 current	 DTDHandler.	 If	 no	 DTDHandler	 is	 set,	 DTD
events	will	be	discarded.

XMLReader.getEntityResolver()
Return	the	current	EntityResolver.

XMLReader.setEntityResolver(handler)

Set	the	current	EntityResolver.	If	no	EntityResolver	is	set,
attempts	 to	 resolve	 an	 external	 entity	 will	 result	 in	 opening	 the
system	identifier	for	the	entity,	and	fail	if	it	is	not	available.

XMLReader.getErrorHandler()
Return	the	current	ErrorHandler.

XMLReader.setErrorHandler(handler)
Set	 the	 current	 error	 handler.	 If	 no	 ErrorHandler	 is	 set,	 errors
will	be	raised	as	exceptions,	and	warnings	will	be	printed.

XMLReader.setLocale(locale)
Allow	an	application	to	set	the	locale	for	errors	and	warnings.

SAX	parsers	are	not	required	to	provide	localization	for	errors	and
warnings;	 if	 they	 cannot	 support	 the	 requested	 locale,	 however,
they	 must	 raise	 a	 SAX	 exception.	 Applications	 may	 request	 a
locale	change	in	the	middle	of	a	parse.

XMLReader.getFeature(featurename)
Return	the	current	setting	for	feature	featurename.	If	the	feature	is
not	 recognized,	 SAXNotRecognizedException	 is	 raised.	 The
well-known	 featurenames	 are	 listed	 in	 the	 module
xml.sax.handler.

XMLReader.setFeature(featurename,	value)
Set	 the	 featurename	 to	 value.	 If	 the	 feature	 is	 not	 recognized,
SAXNotRecognizedException	 is	 raised.	 If	 the	 feature	 or	 its
setting	is	not	supported	by	the	parser,	SAXNotSupportedException
is	raised.

XMLReader.getProperty(propertyname)

Return	 the	 current	 setting	 for	 property	 propertyname.	 If	 the
property	 is	not	 recognized,	a	SAXNotRecognizedException	 is
raised.	 The	 well-known	 propertynames	 are	 listed	 in	 the	 module
xml.sax.handler.

XMLReader.setProperty(propertyname,	value)
Set	 the	propertyname	 to	value.	 If	 the	 property	 is	 not	 recognized,
SAXNotRecognizedException	 is	 raised.	 If	 the	 property	 or	 its
setting	is	not	supported	by	the	parser,	SAXNotSupportedException
is	raised.

20.12.2.	IncrementalParser	Objects

Instances	 of	 IncrementalParser	 offer	 the	 following	 additional
methods:

IncrementalParser.feed(data)
Process	a	chunk	of	data.

IncrementalParser.close()
Assume	the	end	of	the	document.	That	will	check	well-formedness
conditions	 that	 can	be	 checked	only	 at	 the	end,	 invoke	handlers,
and	may	clean	up	resources	allocated	during	parsing.

IncrementalParser.reset()
This	 method	 is	 called	 after	 close	 has	 been	 called	 to	 reset	 the
parser	so	 that	 it	 is	 ready	 to	parse	new	documents.	The	 results	of
calling	parse	or	feed	after	close	without	calling	reset	are	undefined.

20.12.3.	Locator	Objects

Instances	of	Locator	provide	these	methods:

Locator.getColumnNumber()
Return	the	column	number	where	the	current	event	ends.

Locator.getLineNumber()
Return	the	line	number	where	the	current	event	ends.

Locator.getPublicId()
Return	the	public	identifier	for	the	current	event.

Locator.getSystemId()
Return	the	system	identifier	for	the	current	event.

20.12.4.	InputSource	Objects

InputSource.setPublicId(id)
Sets	the	public	identifier	of	this	InputSource.

InputSource.getPublicId()
Returns	the	public	identifier	of	this	InputSource.

InputSource.setSystemId(id)
Sets	the	system	identifier	of	this	InputSource.

InputSource.getSystemId()
Returns	the	system	identifier	of	this	InputSource.

InputSource.setEncoding(encoding)
Sets	the	character	encoding	of	this	InputSource.

The	 encoding	must	 be	 a	 string	 acceptable	 for	 an	 XML	 encoding
declaration	(see	section	4.3.3	of	the	XML	recommendation).

The	 encoding	 attribute	 of	 the	 InputSource	 is	 ignored	 if	 the
InputSource	also	contains	a	character	stream.

InputSource.getEncoding()
Get	the	character	encoding	of	this	InputSource.

InputSource.setByteStream(bytefile)
Set	 the	 byte	 stream	 (a	 Python	 file-like	 object	 which	 does	 not
perform	byte-to-character	conversion)	for	this	input	source.

The	SAX	parser	will	 ignore	this	 if	 there	is	also	a	character	stream
specified,	but	 it	will	use	a	byte	stream	 in	preference	 to	opening	a

URI	connection	itself.

If	the	application	knows	the	character	encoding	of	the	byte	stream,
it	should	set	it	with	the	setEncoding	method.

InputSource.getByteStream()
Get	the	byte	stream	for	this	input	source.

The	getEncoding	method	will	return	the	character	encoding	for	this
byte	stream,	or	None	if	unknown.

InputSource.setCharacterStream(charfile)
Set	the	character	stream	for	this	input	source.	(The	stream	must	be
a	Python	1.6	Unicode-wrapped	file-like	that	performs	conversion	to
strings.)

If	there	is	a	character	stream	specified,	the	SAX	parser	will	ignore
any	byte	stream	and	will	not	attempt	to	open	a	URI	connection	to
the	system	identifier.

InputSource.getCharacterStream()
Get	the	character	stream	for	this	input	source.

20.12.5.	The	Attributes	Interface

Attributes	 objects	 implement	 a	 portion	 of	 the	mapping	 protocol,
including	 the	 methods	 copy(),	 get(),	 __contains__(),
items(),	keys(),	and	values().	The	 following	methods	are	also
provided:

Attributes.getLength()
Return	the	number	of	attributes.

Attributes.getNames()
Return	the	names	of	the	attributes.

Attributes.getType(name)
Returns	the	type	of	the	attribute	name,	which	is	normally	'CDATA'.

Attributes.getValue(name)
Return	the	value	of	attribute	name.

20.12.6.	The	AttributesNS	Interface

This	interface	is	a	subtype	of	the	Attributes	 interface	(see	section
The	Attributes	 Interface).	All	methods	supported	by	 that	 interface	are
also	available	on	AttributesNS	objects.

The	following	methods	are	also	available:

AttributesNS.getValueByQName(name)
Return	the	value	for	a	qualified	name.

AttributesNS.getNameByQName(name)
Return	the	(namespace,	localname)	pair	for	a	qualified	name.

AttributesNS.getQNameByName(name)
Return	the	qualified	name	for	a	(namespace,	localname)	pair.

AttributesNS.getQNames()
Return	the	qualified	names	of	all	attributes.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

http://www.python.org/

20.13.	xml.parsers.expat	—
Fast	XML	parsing	using	Expat
Warning: 	The	pyexpat	module	is	not	secure	against	maliciously
constructed	data.	If	you	need	to	parse	untrusted	or	unauthenticated
data	see	XML	vulnerabilities.

The	xml.parsers.expat	module	is	a	Python	interface	to	the	Expat
non-validating	 XML	 parser.	 The	 module	 provides	 a	 single	 extension
type,	xmlparser,	that	represents	the	current	state	of	an	XML	parser.
After	an	xmlparser	object	has	been	created,	various	attributes	of	the
object	can	be	set	to	handler	functions.	When	an	XML	document	is	then
fed	 to	 the	 parser,	 the	 handler	 functions	 are	 called	 for	 the	 character
data	and	markup	in	the	XML	document.

This	module	uses	the	pyexpat	module	to	provide	access	to	the	Expat
parser.	Direct	use	of	the	pyexpat	module	is	deprecated.

This	module	provides	one	exception	and	one	type	object:

exception	xml.parsers.expat.ExpatError
The	 exception	 raised	 when	 Expat	 reports	 an	 error.	 See	 section
ExpatError	Exceptions	 for	more	 information	 on	 interpreting	 Expat
errors.

exception	xml.parsers.expat.error
Alias	for	ExpatError.

xml.parsers.expat.XMLParserType

The	type	of	the	return	values	from	the	ParserCreate()	function.

The	xml.parsers.expat	module	contains	two	functions:

xml.parsers.expat.ErrorString(errno)
Returns	an	explanatory	string	for	a	given	error	number	errno.

xml.parsers.expat.ParserCreate(encoding=None,
namespace_separator=None)

Creates	 and	 returns	 a	 new	 xmlparser	 object.	 encoding,	 if
specified,	must	be	a	string	naming	the	encoding	used	by	the	XML
data.	Expat	 doesn’t	 support	 as	many	 encodings	 as	Python	 does,
and	its	repertoire	of	encodings	can’t	be	extended;	it	supports	UTF-
8,	UTF-16,	ISO-8859-1	(Latin1),	and	ASCII.	If	encoding	[1]	is	given
it	will	override	the	implicit	or	explicit	encoding	of	the	document.

Expat	 can	 optionally	 do	 XML	 namespace	 processing	 for	 you,
enabled	by	providing	a	value	for	namespace_separator.	The	value
must	be	a	one-character	string;	a	ValueError	will	be	raised	if	the
string	 has	 an	 illegal	 length	 (None	 is	 considered	 the	 same	 as
omission).	When	namespace	processing	 is	enabled,	element	 type
names	 and	 attribute	 names	 that	 belong	 to	 a	 namespace	 will	 be
expanded.	 The	 element	 name	 passed	 to	 the	 element	 handlers
StartElementHandler	 and	 EndElementHandler	 will	 be	 the
concatenation	 of	 the	 namespace	 URI,	 the	 namespace	 separator
character,	 and	 the	 local	 part	 of	 the	 name.	 If	 the	 namespace
separator	 is	 a	 zero	byte	 (chr(0))	 then	 the	namespace	URI	 and
the	local	part	will	be	concatenated	without	any	separator.

For	example,	 if	namespace_separator	 is	set	 to	a	space	character
('	')	and	the	following	document	is	parsed:

<?xml	version="1.0"?>

<root	xmlns				=	"http://default-namespace.org/"

						xmlns:py	=	"http://www.python.org/ns/">

		<py:elem1	/>

		<elem2	xmlns=""	/>

</root>

StartElementHandler	will	receive	the	following	strings	for	each
element:

http://default-namespace.org/	root

http://www.python.org/ns/	elem1

elem2

See	also:

The	Expat	XML	Parser
Home	page	of	the	Expat	project.

http://www.libexpat.org/

20.13.1.	XMLParser	Objects

xmlparser	objects	have	the	following	methods:

xmlparser.Parse(data[,	isfinal])
Parses	 the	 contents	 of	 the	 string	 data,	 calling	 the	 appropriate
handler	 functions	 to	process	 the	parsed	data.	 isfinal	must	be	true
on	the	final	call	to	this	method.	data	can	be	the	empty	string	at	any
time.

xmlparser.ParseFile(file)
Parse	 XML	 data	 reading	 from	 the	 object	 file.	 file	 only	 needs	 to
provide	 the	 read(nbytes)	 method,	 returning	 the	 empty	 string
when	there’s	no	more	data.

xmlparser.SetBase(base)
Sets	 the	 base	 to	 be	 used	 for	 resolving	 relative	 URIs	 in	 system
identifiers	in	declarations.	Resolving	relative	identifiers	is	left	to	the
application:	this	value	will	be	passed	through	as	the	base	argument
to	 the	 ExternalEntityRefHandler(),
NotationDeclHandler(),	 and
UnparsedEntityDeclHandler()	functions.

xmlparser.GetBase()
Returns	 a	 string	 containing	 the	 base	 set	 by	 a	 previous	 call	 to
SetBase(),	or	None	if	SetBase()	hasn’t	been	called.

xmlparser.GetInputContext()
Returns	the	input	data	that	generated	the	current	event	as	a	string.
The	data	 is	 in	 the	encoding	of	 the	entity	which	 contains	 the	 text.
When	called	while	an	event	handler	 is	not	active,	the	return	value

is	None.

xmlparser.ExternalEntityParserCreate(context[,
encoding])

Create	 a	 “child”	 parser	 which	 can	 be	 used	 to	 parse	 an	 external
parsed	 entity	 referred	 to	 by	 content	 parsed	 by	 the	 parent	 parser.
The	 context	 parameter	 should	 be	 the	 string	 passed	 to	 the
ExternalEntityRefHandler()	 handler	 function,	 described
below.	The	child	parser	is	created	with	the	ordered_attributes
and	specified_attributes	set	to	the	values	of	this	parser.

xmlparser.SetParamEntityParsing(flag)
Control	 parsing	 of	 parameter	 entities	 (including	 the	 external	DTD
subset).	 Possible	 flag	 values	 are
XML_PARAM_ENTITY_PARSING_NEVER,
XML_PARAM_ENTITY_PARSING_UNLESS_STANDALONE	 and
XML_PARAM_ENTITY_PARSING_ALWAYS.	 Return	 true	 if	 setting
the	flag	was	successful.

xmlparser.UseForeignDTD([flag])
Calling	this	with	a	true	value	for	flag	(the	default)	will	cause	Expat
to	 call	 the	 ExternalEntityRefHandler	 with	 None	 for	 all
arguments	to	allow	an	alternate	DTD	to	be	loaded.	If	the	document
does	 not	 contain	 a	 document	 type	 declaration,	 the
ExternalEntityRefHandler	 will	 still	 be	 called,	 but	 the
StartDoctypeDeclHandler	 and	 EndDoctypeDeclHandler
will	not	be	called.

Passing	a	false	value	for	flag	will	cancel	a	previous	call	that	passed
a	true	value,	but	otherwise	has	no	effect.

This	 method	 can	 only	 be	 called	 before	 the	 Parse()	 or
ParseFile()	methods	 are	 called;	 calling	 it	 after	 either	 of	 those
have	been	called	causes	ExpatError	to	be	raised	with	the	code
attribute	 set	 to
errors.codes[errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING]

xmlparser	objects	have	the	following	attributes:

xmlparser.buffer_size

The	 size	 of	 the	 buffer	 used	 when	 buffer_text	 is	 true.	 A	 new
buffer	 size	 can	 be	 set	 by	 assigning	 a	 new	 integer	 value	 to	 this
attribute.	When	the	size	is	changed,	the	buffer	will	be	flushed.

xmlparser.buffer_text

Setting	this	to	true	causes	the	xmlparser	object	to	buffer	textual
content	 returned	 by	 Expat	 to	 avoid	 multiple	 calls	 to	 the
CharacterDataHandler()	 callback	 whenever	 possible.	 This
can	 improve	 performance	 substantially	 since	 Expat	 normally
breaks	 character	 data	 into	 chunks	 at	 every	 line	 ending.	 This
attribute	is	false	by	default,	and	may	be	changed	at	any	time.

xmlparser.buffer_used

If	 buffer_text	 is	 enabled,	 the	 number	 of	 bytes	 stored	 in	 the
buffer.	 These	 bytes	 represent	 UTF-8	 encoded	 text.	 This	 attribute
has	no	meaningful	interpretation	when	buffer_text	is	false.

xmlparser.ordered_attributes

Setting	this	attribute	to	a	non-zero	integer	causes	the	attributes	to
be	 reported	 as	 a	 list	 rather	 than	 a	 dictionary.	 The	 attributes	 are
presented	 in	 the	 order	 found	 in	 the	 document	 text.	 For	 each
attribute,	two	list	entries	are	presented:	the	attribute	name	and	the
attribute	 value.	 (Older	 versions	 of	 this	 module	 also	 used	 this

format.)	By	default,	this	attribute	is	false;	it	may	be	changed	at	any
time.

xmlparser.specified_attributes

If	 set	 to	 a	 non-zero	 integer,	 the	 parser	 will	 report	 only	 those
attributes	which	were	specified	 in	 the	document	 instance	and	not
those	which	were	derived	 from	attribute	declarations.	Applications
which	set	this	need	to	be	especially	careful	to	use	what	additional
information	is	available	from	the	declarations	as	needed	to	comply
with	the	standards	for	the	behavior	of	XML	processors.	By	default,
this	attribute	is	false;	it	may	be	changed	at	any	time.

The	following	attributes	contain	values	relating	to	the	most	recent	error
encountered	 by	 an	 xmlparser	 object,	 and	 will	 only	 have	 correct
values	 once	 a	 call	 to	 Parse()	 or	 ParseFile()	 has	 raised	 a
xml.parsers.expat.ExpatError	exception.

xmlparser.ErrorByteIndex

Byte	index	at	which	an	error	occurred.

xmlparser.ErrorCode

Numeric	code	specifying	the	problem.	This	value	can	be	passed	to
the	 ErrorString()	 function,	 or	 compared	 to	 one	 of	 the
constants	defined	in	the	errors	object.

xmlparser.ErrorColumnNumber

Column	number	at	which	an	error	occurred.

xmlparser.ErrorLineNumber

Line	number	at	which	an	error	occurred.

The	 following	 attributes	 contain	 values	 relating	 to	 the	 current	 parse
location	in	an	xmlparser	object.	During	a	callback	reporting	a	parse

event	 they	 indicate	 the	 location	 of	 the	 first	 of	 the	 sequence	 of
characters	 that	 generated	 the	 event.	 When	 called	 outside	 of	 a
callback,	 the	 position	 indicated	will	 be	 just	 past	 the	 last	 parse	 event
(regardless	of	whether	there	was	an	associated	callback).

xmlparser.CurrentByteIndex

Current	byte	index	in	the	parser	input.

xmlparser.CurrentColumnNumber

Current	column	number	in	the	parser	input.

xmlparser.CurrentLineNumber

Current	line	number	in	the	parser	input.

Here	 is	 the	 list	 of	 handlers	 that	 can	 be	 set.	 To	 set	 a	 handler	 on	 an
xmlparser	 object	o,	 use	 o.handlername	=	func.	handlername
must	 be	 taken	 from	 the	 following	 list,	 and	 func	 must	 be	 a	 callable
object	accepting	the	correct	number	of	arguments.	The	arguments	are
all	strings,	unless	otherwise	stated.

xmlparser.XmlDeclHandler(version,	encoding,	standalone)
Called	when	the	XML	declaration	is	parsed.	The	XML	declaration	is
the	 (optional)	 declaration	 of	 the	 applicable	 version	 of	 the	 XML
recommendation,	 the	 encoding	 of	 the	 document	 text,	 and	 an
optional	 “standalone”	 declaration.	 version	 and	 encoding	 will	 be
strings,	 and	 standalone	 will	 be	 1	 if	 the	 document	 is	 declared
standalone,	 0	 if	 it	 is	 declared	 not	 to	 be	 standalone,	 or	 -1	 if	 the
standalone	 clause	was	 omitted.	 This	 is	 only	 available	with	 Expat
version	1.95.0	or	newer.

xmlparser.StartDoctypeDeclHandler(doctypeName,
systemId,	publicId,	has_internal_subset)

Called	when	Expat	begins	parsing	 the	document	 type	declaration

(<!DOCTYPE	 ...).	 The	 doctypeName	 is	 provided	 exactly	 as
presented.	The	systemId	and	publicId	parameters	give	the	system
and	 public	 identifiers	 if	 specified,	 or	 None	 if	 omitted.
has_internal_subset	 will	 be	 true	 if	 the	 document	 contains	 and
internal	document	declaration	subset.	This	 requires	Expat	version
1.2	or	newer.

xmlparser.EndDoctypeDeclHandler()
Called	when	Expat	is	done	parsing	the	document	type	declaration.
This	requires	Expat	version	1.2	or	newer.

xmlparser.ElementDeclHandler(name,	model)
Called	once	for	each	element	type	declaration.	name	 is	 the	name
of	 the	element	 type,	and	model	 is	a	 representation	of	 the	content
model.

xmlparser.AttlistDeclHandler(elname,	attname,	type,
default,	required)

Called	 for	 each	 declared	 attribute	 for	 an	 element	 type.	 If	 an
attribute	 list	 declaration	 declares	 three	 attributes,	 this	 handler	 is
called	three	times,	once	for	each	attribute.	elname	 is	 the	name	of
the	 element	 to	 which	 the	 declaration	 applies	 and	 attname	 is	 the
name	of	the	attribute	declared.	The	attribute	type	is	a	string	passed
as	 type;	 the	 possible	 values	 are	 'CDATA',	 'ID',	 'IDREF',	 ...
default	 gives	 the	 default	 value	 for	 the	 attribute	 used	 when	 the
attribute	is	not	specified	by	the	document	instance,	or	None	if	there
is	no	default	value	(#IMPLIED	values).	If	the	attribute	is	required	to
be	 given	 in	 the	 document	 instance,	 required	 will	 be	 true.	 This
requires	Expat	version	1.95.0	or	newer.

xmlparser.StartElementHandler(name,	attributes)
Called	 for	 the	 start	 of	 every	element.	name	 is	 a	 string	 containing

the	 element	 name,	 and	 attributes	 is	 the	 element	 attributes.	 If
ordered_attributes	 is	 true,	 this	 is	 a	 list	 (see
ordered_attributes	 for	 a	 full	 description).	 Otherwise	 it’s	 a
dictionary	mapping	names	to	values.

xmlparser.EndElementHandler(name)
Called	for	the	end	of	every	element.

xmlparser.ProcessingInstructionHandler(target,
data)

Called	for	every	processing	instruction.

xmlparser.CharacterDataHandler(data)
Called	 for	character	data.	This	will	 be	called	 for	normal	character
data,	 CDATA	 marked	 content,	 and	 ignorable	 whitespace.
Applications	 which	 must	 distinguish	 these	 cases	 can	 use	 the
StartCdataSectionHandler,	 EndCdataSectionHandler,
and	 ElementDeclHandler	 callbacks	 to	 collect	 the	 required
information.

xmlparser.UnparsedEntityDeclHandler(entityName,
base,	systemId,	publicId,	notationName)

Called	 for	 unparsed	 (NDATA)	 entity	 declarations.	 This	 is	 only
present	 for	 version	 1.2	 of	 the	 Expat	 library;	 for	 more	 recent
versions,	 use	 EntityDeclHandler	 instead.	 (The	 underlying
function	in	the	Expat	library	has	been	declared	obsolete.)

xmlparser.EntityDeclHandler(entityName,
is_parameter_entity,	value,	base,	systemId,	publicId,	notationName)

Called	 for	 all	 entity	 declarations.	 For	 parameter	 and	 internal
entities,	value	will	 be	 a	 string	 giving	 the	 declared	 contents	 of	 the
entity;	 this	 will	 be	 None	 for	 external	 entities.	 The	 notationName

parameter	will	 be	 None	 for	 parsed	 entities,	 and	 the	 name	 of	 the
notation	for	unparsed	entities.	is_parameter_entity	will	be	true	if	the
entity	 is	 a	 parameter	 entity	 or	 false	 for	 general	 entities	 (most
applications	only	need	to	be	concerned	with	general	entities).	This
is	only	available	starting	with	version	1.95.0	of	the	Expat	library.

xmlparser.NotationDeclHandler(notationName,	base,
systemId,	publicId)

Called	 for	 notation	 declarations.	 notationName,	 base,	 and
systemId,	and	publicId	are	strings	if	given.	If	the	public	identifier	is
omitted,	publicId	will	be	None.

xmlparser.StartNamespaceDeclHandler(prefix,	uri)
Called	 when	 an	 element	 contains	 a	 namespace	 declaration.
Namespace	 declarations	 are	 processed	 before	 the
StartElementHandler	 is	 called	 for	 the	 element	 on	 which
declarations	are	placed.

xmlparser.EndNamespaceDeclHandler(prefix)
Called	 when	 the	 closing	 tag	 is	 reached	 for	 an	 element	 that
contained	 a	 namespace	 declaration.	 This	 is	 called	 once	 for	 each
namespace	declaration	on	the	element	in	the	reverse	of	the	order
for	 which	 the	 StartNamespaceDeclHandler	 was	 called	 to
indicate	the	start	of	each	namespace	declaration’s	scope.	Calls	 to
this	 handler	 are	 made	 after	 the	 corresponding
EndElementHandler	for	the	end	of	the	element.

xmlparser.CommentHandler(data)
Called	 for	 comments.	data	 is	 the	 text	 of	 the	 comment,	 excluding
the	leading	'<!--'	and	trailing	'-->'.

xmlparser.StartCdataSectionHandler()

Called	 at	 the	 start	 of	 a	 CDATA	 section.	 This	 and
EndCdataSectionHandler	are	needed	to	be	able	to	identify	the
syntactical	start	and	end	for	CDATA	sections.

xmlparser.EndCdataSectionHandler()
Called	at	the	end	of	a	CDATA	section.

xmlparser.DefaultHandler(data)
Called	 for	 any	 characters	 in	 the	 XML	 document	 for	 which	 no
applicable	handler	has	been	specified.	This	means	characters	that
are	part	of	a	construct	which	could	be	 reported,	but	 for	which	no
handler	has	been	supplied.

xmlparser.DefaultHandlerExpand(data)
This	 is	 the	 same	as	 the	 DefaultHandler(),	but	 doesn’t	 inhibit
expansion	 of	 internal	 entities.	 The	 entity	 reference	 will	 not	 be
passed	to	the	default	handler.

xmlparser.NotStandaloneHandler()
Called	 if	 the	 XML	 document	 hasn’t	 been	 declared	 as	 being	 a
standalone	 document.	 This	 happens	 when	 there	 is	 an	 external
subset	 or	 a	 reference	 to	 a	 parameter	 entity,	 but	 the	 XML
declaration	does	not	set	standalone	to	yes	in	an	XML	declaration.
If	 this	 handler	 returns	 0,	 then	 the	 parser	 will	 raise	 an
XML_ERROR_NOT_STANDALONE	error.	If	this	handler	is	not	set,	no
exception	is	raised	by	the	parser	for	this	condition.

xmlparser.ExternalEntityRefHandler(context,	base,
systemId,	publicId)

Called	for	references	to	external	entities.	base	is	the	current	base,
as	 set	 by	 a	 previous	 call	 to	 SetBase().	 The	 public	 and	 system
identifiers,	systemId	and	publicId,	are	strings	 if	given;	 if	 the	public

identifier	 is	not	given,	publicId	will	be	None.	The	context	 value	 is
opaque	and	should	only	be	used	as	described	below.

For	 external	 entities	 to	 be	 parsed,	 this	 handler	 must	 be
implemented.	 It	 is	 responsible	 for	 creating	 the	 sub-parser	 using
ExternalEntityParserCreate(context),	 initializing	 it	 with
the	 appropriate	 callbacks,	 and	 parsing	 the	 entity.	 This	 handler
should	 return	 an	 integer;	 if	 it	 returns	 0,	 the	 parser	 will	 raise	 an
XML_ERROR_EXTERNAL_ENTITY_HANDLING	 error,	 otherwise
parsing	will	continue.

If	this	handler	is	not	provided,	external	entities	are	reported	by	the
DefaultHandler	callback,	if	provided.

20.13.2.	ExpatError	Exceptions

ExpatError	exceptions	have	a	number	of	interesting	attributes:

ExpatError.code

Expat’s	 internal	 error	 number	 for	 the	 specific	 error.	 The
errors.messages	 dictionary	 maps	 these	 error	 numbers	 to
Expat’s	error	messages.	For	example:

from	xml.parsers.expat	import	ParserCreate,	ExpatError

p	=	ParserCreate()

try:

				p.Parse(some_xml_document)

except	ExpatError	as	err:

				print("Error:",	errors.messages[err.code])

The	errors	module	also	provides	error	message	constants	and	a
dictionary	 codes	 mapping	 these	 messages	 back	 to	 the	 error
codes,	see	below.

ExpatError.lineno

Line	 number	 on	 which	 the	 error	 was	 detected.	 The	 first	 line	 is
numbered	1.

ExpatError.offset

Character	 offset	 into	 the	 line	 where	 the	 error	 occurred.	 The	 first
column	is	numbered	0.

20.13.3.	Example

The	 following	program	defines	 three	handlers	 that	 just	 print	 out	 their
arguments.

import	xml.parsers.expat

#	3	handler	functions

def	start_element(name,	attrs):

				print('Start	element:',	name,	attrs)

def	end_element(name):

				print('End	element:',	name)

def	char_data(data):

				print('Character	data:',	repr(data))

p	=	xml.parsers.expat.ParserCreate()

p.StartElementHandler	=	start_element

p.EndElementHandler	=	end_element

p.CharacterDataHandler	=	char_data

p.Parse("""<?xml	version="1.0"?>

<parent	id="top"><child1	name="paul">Text	goes	here</child1>

<child2	name="fred">More	text</child2>

</parent>""",	1)

The	output	from	this	program	is:

Start	element:	parent	{'id':	'top'}

Start	element:	child1	{'name':	'paul'}

Character	data:	'Text	goes	here'

End	element:	child1

Character	data:	'\n'

Start	element:	child2	{'name':	'fred'}

Character	data:	'More	text'

End	element:	child2

Character	data:	'\n'

End	element:	parent

20.13.4.	Content	Model	Descriptions

Content	 modules	 are	 described	 using	 nested	 tuples.	 Each	 tuple
contains	four	values:	the	type,	the	quantifier,	the	name,	and	a	tuple	of
children.	Children	are	simply	additional	content	module	descriptions.

The	 values	 of	 the	 first	 two	 fields	 are	 constants	 defined	 in	 the
xml.parsers.expat.model	 module.	 These	 constants	 can	 be
collected	in	two	groups:	the	model	type	group	and	the	quantifier	group.

The	constants	in	the	model	type	group	are:

xml.parsers.expat.model.XML_CTYPE_ANY

The	element	 named	by	 the	model	 name	was	declared	 to	 have	a
content	model	of	ANY.

xml.parsers.expat.model.XML_CTYPE_CHOICE

The	named	element	allows	a	choice	from	a	number	of	options;	this
is	used	for	content	models	such	as	(A	|	B	|	C).

xml.parsers.expat.model.XML_CTYPE_EMPTY

Elements	which	are	declared	to	be	EMPTY	have	this	model	type.

xml.parsers.expat.model.XML_CTYPE_MIXED

xml.parsers.expat.model.XML_CTYPE_NAME

xml.parsers.expat.model.XML_CTYPE_SEQ

Models	which	represent	a	series	of	models	which	follow	one	after
the	 other	 are	 indicated	 with	 this	 model	 type.	 This	 is	 used	 for
models	such	as	(A,	B,	C).

The	constants	in	the	quantifier	group	are:

xml.parsers.expat.model.XML_CQUANT_NONE

No	modifier	is	given,	so	it	can	appear	exactly	once,	as	for	A.

xml.parsers.expat.model.XML_CQUANT_OPT

The	model	is	optional:	it	can	appear	once	or	not	at	all,	as	for	A?.

xml.parsers.expat.model.XML_CQUANT_PLUS

The	model	must	occur	one	or	more	times	(like	A+).

xml.parsers.expat.model.XML_CQUANT_REP

The	model	must	occur	zero	or	more	times,	as	for	A*.

20.13.5.	Expat	error	constants

The	 following	 constants	 are	 provided	 in	 the
xml.parsers.expat.errors	module.	These	constants	are	useful
in	 interpreting	 some	 of	 the	 attributes	 of	 the	 ExpatError	 exception
objects	 raised	 when	 an	 error	 has	 occurred.	 Since	 for	 backwards
compatibility	 reasons,	 the	 constants’	 value	 is	 the	 error	message	and
not	 the	 numeric	 error	 code,	 you	 do	 this	 by	 comparing	 its	 code
attribute	 with
errors.codes[errors.XML_ERROR_CONSTANT_NAME].

The	errors	module	has	the	following	attributes:

xml.parsers.expat.errors.codes

A	 dictionary	 mapping	 numeric	 error	 codes	 to	 their	 string
descriptions.

New	in	version	3.2.

xml.parsers.expat.errors.messages

A	dictionary	mapping	string	descriptions	to	their	error	codes.

New	in	version	3.2.

xml.parsers.expat.errors.XML_ERROR_ASYNC_ENTITY

xml.parsers.expat.errors.XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF

An	 entity	 reference	 in	 an	 attribute	 value	 referred	 to	 an	 external
entity	instead	of	an	internal	entity.

xml.parsers.expat.errors.XML_ERROR_BAD_CHAR_REF

A	character	reference	referred	to	a	character	which	is	illegal	in	XML

(for	example,	character	0,	or	‘�‘).

xml.parsers.expat.errors.XML_ERROR_BINARY_ENTITY_REF

An	entity	reference	referred	to	an	entity	which	was	declared	with	a
notation,	so	cannot	be	parsed.

xml.parsers.expat.errors.XML_ERROR_DUPLICATE_ATTRIBUTE

An	attribute	was	used	more	than	once	in	a	start	tag.

xml.parsers.expat.errors.XML_ERROR_INCORRECT_ENCODING

xml.parsers.expat.errors.XML_ERROR_INVALID_TOKEN

Raised	 when	 an	 input	 byte	 could	 not	 properly	 be	 assigned	 to	 a
character;	 for	 example,	 a	 NUL	 byte	 (value	 0)	 in	 a	 UTF-8	 input
stream.

xml.parsers.expat.errors.XML_ERROR_JUNK_AFTER_DOC_ELEMENT

Something	 other	 than	 whitespace	 occurred	 after	 the	 document
element.

xml.parsers.expat.errors.XML_ERROR_MISPLACED_XML_PI

An	XML	declaration	was	 found	somewhere	other	 than	 the	start	of
the	input	data.

xml.parsers.expat.errors.XML_ERROR_NO_ELEMENTS

The	document	contains	no	elements	(XML	requires	all	documents
to	contain	exactly	one	top-level	element)..

xml.parsers.expat.errors.XML_ERROR_NO_MEMORY

Expat	was	not	able	to	allocate	memory	internally.

xml.parsers.expat.errors.XML_ERROR_PARAM_ENTITY_REF

A	parameter	entity	reference	was	found	where	it	was	not	allowed.

xml.parsers.expat.errors.XML_ERROR_PARTIAL_CHAR

An	incomplete	character	was	found	in	the	input.

xml.parsers.expat.errors.XML_ERROR_RECURSIVE_ENTITY_REF

An	entity	reference	contained	another	reference	to	the	same	entity;
possibly	via	a	different	name,	and	possibly	indirectly.

xml.parsers.expat.errors.XML_ERROR_SYNTAX

Some	unspecified	syntax	error	was	encountered.

xml.parsers.expat.errors.XML_ERROR_TAG_MISMATCH

An	end	tag	did	not	match	the	innermost	open	start	tag.

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_TOKEN

Some	token	(such	as	a	start	tag)	was	not	closed	before	the	end	of
the	stream	or	the	next	token	was	encountered.

xml.parsers.expat.errors.XML_ERROR_UNDEFINED_ENTITY

A	reference	was	made	to	a	entity	which	was	not	defined.

xml.parsers.expat.errors.XML_ERROR_UNKNOWN_ENCODING

The	document	encoding	is	not	supported	by	Expat.

xml.parsers.expat.errors.XML_ERROR_UNCLOSED_CDATA_SECTION

A	CDATA	marked	section	was	not	closed.

xml.parsers.expat.errors.XML_ERROR_EXTERNAL_ENTITY_HANDLING

xml.parsers.expat.errors.XML_ERROR_NOT_STANDALONE

The	 parser	 determined	 that	 the	 document	 was	 not	 “standalone”
though	 it	 declared	 itself	 to	 be	 in	 the	 XML	 declaration,	 and	 the
NotStandaloneHandler	was	set	and	returned	0.

xml.parsers.expat.errors.XML_ERROR_UNEXPECTED_STATE

xml.parsers.expat.errors.XML_ERROR_ENTITY_DECLARED_IN_PE

xml.parsers.expat.errors.XML_ERROR_FEATURE_REQUIRES_XML_DTD

An	 operation	 was	 requested	 that	 requires	 DTD	 support	 to	 be
compiled	 in,	but	Expat	was	configured	without	DTD	support.	This
should	 never	 be	 reported	 by	 a	 standard	 build	 of	 the
xml.parsers.expat	module.

xml.parsers.expat.errors.XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING

A	behavioral	change	was	requested	after	parsing	started	 that	can
only	be	changed	before	parsing	has	started.	This	is	(currently)	only
raised	by	UseForeignDTD().

xml.parsers.expat.errors.XML_ERROR_UNBOUND_PREFIX

An	undeclared	prefix	was	found	when	namespace	processing	was
enabled.

xml.parsers.expat.errors.XML_ERROR_UNDECLARING_PREFIX

The	 document	 attempted	 to	 remove	 the	 namespace	 declaration
associated	with	a	prefix.

xml.parsers.expat.errors.XML_ERROR_INCOMPLETE_PE

A	parameter	entity	contained	incomplete	markup.

xml.parsers.expat.errors.XML_ERROR_XML_DECL

The	document	contained	no	document	element	at	all.

xml.parsers.expat.errors.XML_ERROR_TEXT_DECL

There	was	an	error	parsing	a	text	declaration	in	an	external	entity.

xml.parsers.expat.errors.XML_ERROR_PUBLICID

Characters	were	found	in	the	public	id	that	are	not	allowed.

xml.parsers.expat.errors.XML_ERROR_SUSPENDED

The	 requested	 operation	 was	 made	 on	 a	 suspended	 parser,	 but
isn’t	allowed.	This	 includes	attempts	 to	provide	additional	 input	or
to	stop	the	parser.

xml.parsers.expat.errors.XML_ERROR_NOT_SUSPENDED

An	attempt	 to	 resume	 the	parser	was	made	when	 the	parser	had
not	been	suspended.

xml.parsers.expat.errors.XML_ERROR_ABORTED

This	should	not	be	reported	to	Python	applications.

xml.parsers.expat.errors.XML_ERROR_FINISHED

The	requested	operation	was	made	on	a	parser	which	was	finished
parsing	 input,	 but	 isn’t	 allowed.	This	 includes	attempts	 to	provide
additional	input	or	to	stop	the	parser.

xml.parsers.expat.errors.XML_ERROR_SUSPEND_PE

Footnotes

[1]

The	encoding	string	included	in	XML	output	should	conform	to
the	appropriate	standards.	For	example,	“UTF-8”	is	valid,	but
“UTF8”	is	not.	See	http://www.w3.org/TR/2006/REC-xml11-
20060816/#NT-EncodingDecl	and
http://www.iana.org/assignments/character-sets.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	20.	Structured	Markup	Processing	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.w3.org/TR/2006/REC-xml11-20060816/#NT-EncodingDecl
http://www.iana.org/assignments/character-sets
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

21.	Internet	Protocols	and	Support
The	modules	 described	 in	 this	 chapter	 implement	 Internet	 protocols
and	 support	 for	 related	 technology.	 They	 are	 all	 implemented	 in
Python.	Most	 of	 these	modules	 require	 the	 presence	 of	 the	 system-
dependent	 module	 socket,	 which	 is	 currently	 supported	 on	 most
popular	platforms.	Here	is	an	overview:

21.1.	webbrowser	—	Convenient	Web-browser	controller
21.1.1.	Browser	Controller	Objects

21.2.	cgi	—	Common	Gateway	Interface	support
21.2.1.	Introduction
21.2.2.	Using	the	cgi	module
21.2.3.	Higher	Level	Interface
21.2.4.	Functions
21.2.5.	Caring	about	security
21.2.6.	Installing	your	CGI	script	on	a	Unix	system
21.2.7.	Testing	your	CGI	script
21.2.8.	Debugging	CGI	scripts
21.2.9.	Common	problems	and	solutions

21.3.	cgitb	—	Traceback	manager	for	CGI	scripts
21.4.	wsgiref	—	WSGI	Utilities	and	Reference	Implementation

21.4.1.	wsgiref.util	–	WSGI	environment	utilities
21.4.2.	wsgiref.headers	–	WSGI	response	header	tools
21.4.3.	wsgiref.simple_server	–	a	simple	WSGI	HTTP
server
21.4.4.	wsgiref.validate	—	WSGI	conformance	checker
21.4.5.	wsgiref.handlers	–	server/gateway	base	classes
21.4.6.	Examples

21.5.	urllib	—	URL	handling	modules
21.6.	urllib.request	—	Extensible	library	for	opening	URLs

21.6.1.	Request	Objects

21.6.2.	OpenerDirector	Objects
21.6.3.	BaseHandler	Objects
21.6.4.	HTTPRedirectHandler	Objects
21.6.5.	HTTPCookieProcessor	Objects
21.6.6.	ProxyHandler	Objects
21.6.7.	HTTPPasswordMgr	Objects
21.6.8.	AbstractBasicAuthHandler	Objects
21.6.9.	HTTPBasicAuthHandler	Objects
21.6.10.	ProxyBasicAuthHandler	Objects
21.6.11.	AbstractDigestAuthHandler	Objects
21.6.12.	HTTPDigestAuthHandler	Objects
21.6.13.	ProxyDigestAuthHandler	Objects
21.6.14.	HTTPHandler	Objects
21.6.15.	HTTPSHandler	Objects
21.6.16.	FileHandler	Objects
21.6.17.	DataHandler	Objects
21.6.18.	FTPHandler	Objects
21.6.19.	CacheFTPHandler	Objects
21.6.20.	UnknownHandler	Objects
21.6.21.	HTTPErrorProcessor	Objects
21.6.22.	Examples
21.6.23.	Legacy	interface
21.6.24.	urllib.request	Restrictions

21.7.	urllib.response	—	Response	classes	used	by	urllib
21.8.	urllib.parse	—	Parse	URLs	into	components

21.8.1.	URL	Parsing
21.8.2.	Parsing	ASCII	Encoded	Bytes
21.8.3.	Structured	Parse	Results
21.8.4.	URL	Quoting

21.9.	 urllib.error	 —	 Exception	 classes	 raised	 by
urllib.request
21.10.	urllib.robotparser	—	Parser	for	robots.txt
21.11.	http	—	HTTP	modules
21.12.	http.client	—	HTTP	protocol	client

21.12.1.	HTTPConnection	Objects
21.12.2.	HTTPResponse	Objects
21.12.3.	Examples
21.12.4.	HTTPMessage	Objects

21.13.	ftplib	—	FTP	protocol	client
21.13.1.	FTP	Objects
21.13.2.	FTP_TLS	Objects

21.14.	poplib	—	POP3	protocol	client
21.14.1.	POP3	Objects
21.14.2.	POP3	Example

21.15.	imaplib	—	IMAP4	protocol	client
21.15.1.	IMAP4	Objects
21.15.2.	IMAP4	Example

21.16.	nntplib	—	NNTP	protocol	client
21.16.1.	NNTP	Objects

21.16.1.1.	Attributes
21.16.1.2.	Methods

21.16.2.	Utility	functions
21.17.	smtplib	—	SMTP	protocol	client

21.17.1.	SMTP	Objects
21.17.2.	SMTP	Example

21.18.	smtpd	—	SMTP	Server
21.18.1.	SMTPServer	Objects
21.18.2.	DebuggingServer	Objects
21.18.3.	PureProxy	Objects
21.18.4.	MailmanProxy	Objects
21.18.5.	SMTPChannel	Objects

21.19.	telnetlib	—	Telnet	client
21.19.1.	Telnet	Objects
21.19.2.	Telnet	Example

21.20.	uuid	—	UUID	objects	according	to	RFC	4122
21.20.1.	Example

21.21.	socketserver	—	A	framework	for	network	servers

21.21.1.	Server	Creation	Notes
21.21.2.	Server	Objects
21.21.3.	RequestHandler	Objects
21.21.4.	Examples

21.21.4.1.	socketserver.TCPServer	Example
21.21.4.2.	socketserver.UDPServer	Example
21.21.4.3.	Asynchronous	Mixins

21.22.	http.server	—	HTTP	servers
21.23.	http.cookies	—	HTTP	state	management

21.23.1.	Cookie	Objects
21.23.2.	Morsel	Objects
21.23.3.	Example

21.24.	http.cookiejar	—	Cookie	handling	for	HTTP	clients
21.24.1.	CookieJar	and	FileCookieJar	Objects
21.24.2.	FileCookieJar	subclasses	and	co-operation	with	web
browsers
21.24.3.	CookiePolicy	Objects
21.24.4.	DefaultCookiePolicy	Objects
21.24.5.	Cookie	Objects
21.24.6.	Examples

21.25.	xmlrpc	—	XMLRPC	server	and	client	modules
21.26.	xmlrpc.client	—	XML-RPC	client	access

21.26.1.	ServerProxy	Objects
21.26.2.	DateTime	Objects
21.26.3.	Binary	Objects
21.26.4.	Fault	Objects
21.26.5.	ProtocolError	Objects
21.26.6.	MultiCall	Objects
21.26.7.	Convenience	Functions
21.26.8.	Example	of	Client	Usage
21.26.9.	Example	of	Client	and	Server	Usage

21.27.	xmlrpc.server	—	Basic	XML-RPC	servers
21.27.1.	SimpleXMLRPCServer	Objects

21.27.1.1.	SimpleXMLRPCServer	Example

21.27.2.	CGIXMLRPCRequestHandler
21.27.3.	Documenting	XMLRPC	server
21.27.4.	DocXMLRPCServer	Objects
21.27.5.	DocCGIXMLRPCRequestHandler

21.28.	ipaddress	—	IPv4/IPv6	manipulation	library
21.28.1.	Convenience	factory	functions
21.28.2.	IP	Addresses

21.28.2.1.	Address	objects
21.28.2.2.	Conversion	to	Strings	and	Integers
21.28.2.3.	Operators

21.28.2.3.1.	Comparison	operators
21.28.2.3.2.	Arithmetic	operators

21.28.3.	IP	Network	definitions
21.28.3.1.	Prefix,	net	mask	and	host	mask
21.28.3.2.	Network	objects
21.28.3.3.	Operators

21.28.3.3.1.	Logical	operators
21.28.3.3.2.	Iteration
21.28.3.3.3.	Networks	as	containers	of	addresses

21.28.4.	Interface	objects
21.28.5.	Other	Module	Level	Functions
21.28.6.	Custom	Exceptions

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.1.	webbrowser	—	Convenient
Web-browser	controller
Source	code:	Lib/webbrowser.py

The	 webbrowser	 module	 provides	 a	 high-level	 interface	 to	 allow
displaying	 Web-based	 documents	 to	 users.	 Under	 most
circumstances,	 simply	 calling	 the	 open()	 function	 from	 this	module
will	do	the	right	thing.

Under	 Unix,	 graphical	 browsers	 are	 preferred	 under	 X11,	 but	 text-
mode	browsers	will	be	used	if	graphical	browsers	are	not	available	or
an	 X11	 display	 isn’t	 available.	 If	 text-mode	 browsers	 are	 used,	 the
calling	process	will	block	until	the	user	exits	the	browser.

If	the	environment	variable	BROWSER	exists,	it	is	interpreted	to	override
the	platform	default	list	of	browsers,	as	a	os.pathsep-separated	 list
of	browsers	 to	 try	 in	order.	When	the	value	of	a	 list	part	contains	 the
string	%s,	then	it	is	interpreted	as	a	literal	browser	command	line	to	be
used	with	 the	 argument	URL	 substituted	 for	 %s;	 if	 the	part	 does	not
contain	 %s,	 it	 is	 simply	 interpreted	 as	 the	 name	 of	 the	 browser	 to
launch.	[1]

For	 non-Unix	 platforms,	 or	 when	 a	 remote	 browser	 is	 available	 on
Unix,	the	controlling	process	will	not	wait	for	the	user	to	finish	with	the
browser,	but	allow	the	remote	browser	to	maintain	its	own	windows	on
the	 display.	 If	 remote	 browsers	 are	 not	 available	 on	 Unix,	 the
controlling	process	will	launch	a	new	browser	and	wait.

The	script	webbrowser	can	be	used	as	a	command-line	interface	for

http://hg.python.org/cpython/file/3.4/Lib/webbrowser.py

the	 module.	 It	 accepts	 an	 URL	 as	 the	 argument.	 It	 accepts	 the
following	 optional	 parameters:	 -n	 opens	 the	 URL	 in	 a	 new	 browser
window,	if	possible;	-t	opens	the	URL	in	a	new	browser	page	(“tab”).
The	options	are,	naturally,	mutually	exclusive.	Usage	example:

python	-m	webbrowser	-t	"http://www.python.org"

The	following	exception	is	defined:

exception	webbrowser.Error
Exception	raised	when	a	browser	control	error	occurs.

The	following	functions	are	defined:

webbrowser.open(url,	new=0,	autoraise=True)
Display	url	using	the	default	browser.	If	new	is	0,	the	url	is	opened
in	the	same	browser	window	if	possible.	If	new	is	1,	a	new	browser
window	 is	 opened	 if	 possible.	 If	 new	 is	 2,	 a	 new	 browser	 page
(“tab”)	 is	 opened	 if	 possible.	 If	autoraise	 is	 True,	 the	 window	 is
raised	if	possible	(note	that	under	many	window	managers	this	will
occur	regardless	of	the	setting	of	this	variable).

Note	 that	on	some	platforms,	 trying	 to	open	a	 filename	using	 this
function,	 may	 work	 and	 start	 the	 operating	 system’s	 associated
program.	However,	this	is	neither	supported	nor	portable.

webbrowser.open_new(url)
Open	 url	 in	 a	 new	 window	 of	 the	 default	 browser,	 if	 possible,
otherwise,	open	url	in	the	only	browser	window.

webbrowser.open_new_tab(url)
Open	url	 in	a	new	page	 (“tab”)	of	 the	default	browser,	 if	possible,
otherwise	equivalent	to	open_new().

webbrowser.get(using=None)
Return	 a	 controller	 object	 for	 the	 browser	 type	 using.	 If	 using	 is
None,	 return	a	 controller	 for	 a	 default	 browser	 appropriate	 to	 the
caller’s	environment.

webbrowser.register(name,	constructor,	instance=None)
Register	 the	 browser	 type	 name.	 Once	 a	 browser	 type	 is
registered,	 the	 get()	 function	 can	 return	 a	 controller	 for	 that
browser	 type.	 If	 instance	 is	 not	 provided,	 or	 is	 None,	constructor
will	 be	 called	 without	 parameters	 to	 create	 an	 instance	 when
needed.	 If	 instance	 is	 provided,	 constructor	 will	 never	 be	 called,
and	may	be	None.

This	entry	point	is	only	useful	if	you	plan	to	either	set	the	BROWSER
variable	 or	 call	 get()	 with	 a	 nonempty	 argument	 matching	 the
name	of	a	handler	you	declare.

A	number	of	browser	 types	are	predefined.	This	 table	gives	 the	 type
names	 that	 may	 be	 passed	 to	 the	 get()	 function	 and	 the
corresponding	 instantiations	 for	 the	 controller	 classes,	 all	 defined	 in
this	module.

Type	Name Class	Name Notes

'mozilla' Mozilla('mozilla') 	

'firefox' Mozilla('mozilla') 	

'netscape' Mozilla('netscape') 	

'galeon' Galeon('galeon') 	

'epiphany' Galeon('epiphany') 	

'skipstone' BackgroundBrowser('skipstone') 	

'kfmclient' Konqueror() (1)

'konqueror' Konqueror() (1)

'kfm' Konqueror() (1)

'mosaic' BackgroundBrowser('mosaic') 	

'opera' Opera() 	

'grail' Grail() 	

'links' GenericBrowser('links') 	

'elinks' Elinks('elinks') 	

'lynx' GenericBrowser('lynx') 	

'w3m' GenericBrowser('w3m') 	

'windows-

default'
WindowsDefault (2)

'macosx' MacOSX('default') (3)

'safari' MacOSX('safari') (3)

'google-

chrome'
Chrome('google-chrome') 	

'chrome' Chrome('chrome') 	

'chromium' Chromium('chromium') 	

'chromium-

browser'
Chromium('chromium-browser') 	

Notes:

1.	 “Konqueror”	is	the	file	manager	for	the	KDE	desktop	environment
for	Unix,	and	only	makes	sense	 to	use	 if	KDE	 is	 running.	Some
way	of	reliably	detecting	KDE	would	be	nice;	the	KDEDIR	variable
is	not	sufficient.	Note	also	that	the	name	“kfm”	is	used	even	when
using	the	konqueror	command	with	KDE	2	—	the	implementation
selects	the	best	strategy	for	running	Konqueror.

2.	 Only	on	Windows	platforms.

3.	 Only	on	Mac	OS	X	platform.

New	in	version	3.3:	Support	for	Chrome/Chromium	has	been	added.

Here	are	some	simple	examples:

url	=	'http://docs.python.org/'

#	Open	URL	in	a	new	tab,	if	a	browser	window	is	already	open.

webbrowser.open_new_tab(url)

#	Open	URL	in	new	window,	raising	the	window	if	possible.

webbrowser.open_new(url)

21.1.1.	Browser	Controller	Objects

Browser	controllers	provide	these	methods	which	parallel	three	of	the
module-level	convenience	functions:

controller.open(url,	new=0,	autoraise=True)
Display	url	using	the	browser	handled	by	this	controller.	If	new	is	1,
a	 new	 browser	window	 is	 opened	 if	 possible.	 If	new	 is	 2,	 a	 new
browser	page	(“tab”)	is	opened	if	possible.

controller.open_new(url)
Open	url	in	a	new	window	of	the	browser	handled	by	this	controller,
if	 possible,	 otherwise,	 open	url	 in	 the	 only	 browser	window.	Alias
open_new().

controller.open_new_tab(url)
Open	 url	 in	 a	 new	 page	 (“tab”)	 of	 the	 browser	 handled	 by	 this
controller,	if	possible,	otherwise	equivalent	to	open_new().

Footnotes

[1] Executables	named	here	without	a	full	path	will	be	searched	in
the	directories	given	in	the	PATH	environment	variable.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.2.	cgi	—	Common	Gateway
Interface	support
Source	code:	Lib/cgi.py

Support	module	for	Common	Gateway	Interface	(CGI)	scripts.

This	module	defines	a	number	of	utilities	for	use	by	CGI	scripts	written
in	Python.

http://hg.python.org/cpython/file/3.4/Lib/cgi.py

21.2.1.	Introduction

A	CGI	 script	 is	 invoked	 by	 an	HTTP	 server,	 usually	 to	 process	 user
input	submitted	through	an	HTML	<FORM>	or	<ISINDEX>	element.

Most	often,	CGI	scripts	live	in	the	server’s	special	cgi-bin	directory.
The	 HTTP	 server	 places	 all	 sorts	 of	 information	 about	 the	 request
(such	as	 the	client’s	hostname,	 the	 requested	URL,	 the	query	string,
and	 lots	of	other	goodies)	 in	 the	script’s	shell	environment,	executes
the	script,	and	sends	the	script’s	output	back	to	the	client.

The	 script’s	 input	 is	 connected	 to	 the	 client	 too,	 and	 sometimes	 the
form	data	is	read	this	way;	at	other	times	the	form	data	is	passed	via
the	“query	string”	part	of	the	URL.	This	module	is	intended	to	take	care
of	 the	 different	 cases	 and	 provide	 a	 simpler	 interface	 to	 the	 Python
script.	 It	 also	 provides	 a	 number	 of	 utilities	 that	 help	 in	 debugging
scripts,	and	the	latest	addition	is	support	for	file	uploads	from	a	form	(if
your	browser	supports	it).

The	output	of	a	CGI	script	should	consist	of	two	sections,	separated	by
a	blank	line.	The	first	section	contains	a	number	of	headers,	telling	the
client	 what	 kind	 of	 data	 is	 following.	 Python	 code	 to	 generate	 a
minimal	header	section	looks	like	this:

print("Content-Type:	text/html")				#	HTML	is	following

print()																													#	blank	line,	end	of	headers

The	second	section	is	usually	HTML,	which	allows	the	client	software
to	display	nicely	formatted	text	with	header,	in-line	images,	etc.	Here’s
Python	code	that	prints	a	simple	piece	of	HTML:

print("<TITLE>CGI	script	output</TITLE>")

print("<H1>This	is	my	first	CGI	script</H1>")

print("Hello,	world!")

21.2.2.	Using	the	cgi	module

Begin	by	writing	import	cgi.

When	you	write	a	new	script,	consider	adding	these	lines:

import	cgitb

cgitb.enable()

This	 activates	 a	 special	 exception	 handler	 that	 will	 display	 detailed
reports	in	the	Web	browser	if	any	errors	occur.	If	you’d	rather	not	show
the	 guts	 of	 your	 program	 to	 users	 of	 your	 script,	 you	 can	 have	 the
reports	saved	to	files	instead,	with	code	like	this:

import	cgitb

cgitb.enable(display=0,	logdir="/path/to/logdir")

It’s	 very	 helpful	 to	 use	 this	 feature	 during	 script	 development.	 The
reports	produced	by	cgitb	 provide	 information	 that	 can	 save	you	a
lot	of	time	in	tracking	down	bugs.	You	can	always	remove	the	cgitb
line	 later	when	 you	 have	 tested	 your	 script	 and	 are	 confident	 that	 it
works	correctly.

To	 get	 at	 submitted	 form	data,	 use	 the	 FieldStorage	 class.	 If	 the
form	 contains	 non-ASCII	 characters,	 use	 the	 encoding	 keyword
parameter	set	to	the	value	of	the	encoding	defined	for	the	document.	It
is	usually	contained	in	the	META	tag	in	the	HEAD	section	of	the	HTML
document	 or	 by	 the	 Content-Type	 header).	 This	 reads	 the	 form
contents	from	the	standard	input	or	the	environment	(depending	on	the
value	 of	 various	 environment	 variables	 set	 according	 to	 the	 CGI
standard).	 Since	 it	 may	 consume	 standard	 input,	 it	 should	 be
instantiated	only	once.

The	FieldStorage	instance	can	be	indexed	like	a	Python	dictionary.
It	allows	membership	 testing	with	 the	in	operator,	and	also	supports
the	 standard	 dictionary	 method	 keys()	 and	 the	 built-in	 function
len().	Form	 fields	 containing	empty	 strings	are	 ignored	and	do	not
appear	in	the	dictionary;	to	keep	such	values,	provide	a	true	value	for
the	optional	keep_blank_values	keyword	parameter	when	creating	the
FieldStorage	instance.

For	 instance,	 the	 following	 code	 (which	 assumes	 that	 the	 Content-
Type	header	and	blank	line	have	already	been	printed)	checks	that	the
fields	name	and	addr	are	both	set	to	a	non-empty	string:

form	=	cgi.FieldStorage()

if	"name"	not	in	form	or	"addr"	not	in	form:

				print("<H1>Error</H1>")

				print("Please	fill	in	the	name	and	addr	fields."

				return

print("<p>name:",	form["name"].value)

print("<p>addr:",	form["addr"].value)

...further	form	processing	here...

Here	 the	 fields,	 accessed	 through	 form[key],	 are	 themselves
instances	of	FieldStorage	(or	MiniFieldStorage,	depending	on
the	 form	 encoding).	 The	 value	 attribute	 of	 the	 instance	 yields	 the
string	value	of	 the	 field.	The	getvalue()	method	 returns	 this	string
value	 directly;	 it	 also	 accepts	 an	 optional	 second	 argument	 as	 a
default	to	return	if	the	requested	key	is	not	present.

If	the	submitted	form	data	contains	more	than	one	field	with	the	same
name,	the	object	retrieved	by	form[key]	is	not	a	FieldStorage	or
MiniFieldStorage	instance	but	a	list	of	such	instances.	Similarly,	in
this	situation,	form.getvalue(key)	would	return	a	list	of	strings.	If

you	 expect	 this	 possibility	 (when	 your	 HTML	 form	 contains	 multiple
fields	 with	 the	 same	 name),	 use	 the	 getlist()	 method,	 which
always	returns	a	list	of	values	(so	that	you	do	not	need	to	special-case
the	 single	 item	 case).	 For	 example,	 this	 code	 concatenates	 any
number	of	username	fields,	separated	by	commas:

value	=	form.getlist("username")

usernames	=	",".join(value)

If	 a	 field	 represents	 an	 uploaded	 file,	 accessing	 the	 value	 via	 the
value	 attribute	 or	 the	 getvalue()	method	 reads	 the	 entire	 file	 in
memory	as	bytes.	This	may	not	be	what	you	want.	You	can	test	for	an
uploaded	 file	 by	 testing	 either	 the	 filename	 attribute	 or	 the	 file
attribute.	You	can	then	read	the	data	from	the	file	attribute	before	it
is	 automatically	 closed	 as	 part	 of	 the	 garbage	 collection	 of	 the
FieldStorage	 instance	 (the	 read()	 and	 readline()	 methods
will	return	bytes):

fileitem	=	form["userfile"]

if	fileitem.file:

				#	It's	an	uploaded	file;	count	lines

				linecount	=	0

				while	True:

								line	=	fileitem.file.readline()

								if	not	line:	break

								linecount	=	linecount	+	1

If	an	error	is	encountered	when	obtaining	the	contents	of	an	uploaded
file	 (for	 example,	 when	 the	 user	 interrupts	 the	 form	 submission	 by
clicking	on	a	Back	or	Cancel	button)	 the	done	attribute	of	 the	object
for	the	field	will	be	set	to	the	value	-1.

The	 file	 upload	 draft	 standard	 entertains	 the	 possibility	 of	 uploading

multiple	 files	 from	 one	 field	 (using	 a	 recursive	multipart/*	 encoding).
When	 this	 occurs,	 the	 item	 will	 be	 a	 dictionary-like	 FieldStorage
item.	 This	 can	 be	 determined	 by	 testing	 its	 type	 attribute,	 which
should	 be	 multipart/form-data	 (or	 perhaps	 another	 MIME	 type
matching	multipart/*).	 In	 this	 case,	 it	 can	be	 iterated	over	 recursively
just	like	the	top-level	form	object.

When	a	form	is	submitted	in	the	“old”	format	(as	the	query	string	or	as
a	 single	 data	 part	 of	 type	 application/x-www-form-urlencoded),	 the
items	will	actually	be	 instances	of	 the	class	MiniFieldStorage.	 In
this	 case,	 the	 list,	 file,	 and	 filename	 attributes	 are	 always
None.

A	 form	 submitted	 via	POST	 that	 also	 has	 a	 query	 string	will	 contain
both	FieldStorage	and	MiniFieldStorage	items.

Changed	 in	 version	 3.4:	 The	 file	 attribute	 is	 automatically	 closed
upon	the	garbage	collection	of	the	creating	FieldStorage	instance.

21.2.3.	Higher	Level	Interface

The	 previous	 section	 explains	 how	 to	 read	CGI	 form	 data	 using	 the
FieldStorage	class.	This	section	describes	a	higher	level	 interface
which	was	added	to	this	class	to	allow	one	to	do	it	in	a	more	readable
and	intuitive	way.	The	interface	doesn’t	make	the	techniques	described
in	 previous	 sections	 obsolete	—	 they	 are	 still	 useful	 to	 process	 file
uploads	efficiently,	for	example.

The	interface	consists	of	two	simple	methods.	Using	the	methods	you
can	 process	 form	 data	 in	 a	 generic	 way,	 without	 the	 need	 to	 worry
whether	only	one	or	more	values	were	posted	under	one	name.

In	 the	 previous	 section,	 you	 learned	 to	write	 following	 code	 anytime
you	expected	a	user	to	post	more	than	one	value	under	one	name:

item	=	form.getvalue("item")

if	isinstance(item,	list):

				#	The	user	is	requesting	more	than	one	item.

else:

				#	The	user	is	requesting	only	one	item.

This	situation	is	common	for	example	when	a	form	contains	a	group	of
multiple	checkboxes	with	the	same	name:

<input	type="checkbox"	name="item"	value="1"	/>

<input	type="checkbox"	name="item"	value="2"	/>

In	 most	 situations,	 however,	 there’s	 only	 one	 form	 control	 with	 a
particular	 name	 in	 a	 form	 and	 then	 you	 expect	 and	 need	 only	 one
value	associated	with	 this	name.	So	you	write	a	script	 containing	 for
example	this	code:

user	=	form.getvalue("user").upper()

The	problem	with	the	code	is	that	you	should	never	expect	that	a	client
will	provide	valid	 input	 to	your	scripts.	For	example,	 if	a	curious	user
appends	 another	 user=foo	 pair	 to	 the	 query	 string,	 then	 the	 script
would	 crash,	 because	 in	 this	 situation	 the	 getvalue("user")
method	 call	 returns	 a	 list	 instead	 of	 a	 string.	 Calling	 the	 upper()
method	on	a	 list	 is	not	valid	(since	lists	do	not	have	a	method	of	 this
name)	and	results	in	an	AttributeError	exception.

Therefore,	the	appropriate	way	to	read	form	data	values	was	to	always
use	 the	 code	 which	 checks	 whether	 the	 obtained	 value	 is	 a	 single
value	or	a	 list	 of	 values.	That’s	annoying	and	 leads	 to	 less	 readable
scripts.

A	more	convenient	approach	is	to	use	the	methods	getfirst()	and
getlist()	provided	by	this	higher	level	interface.

FieldStorage.getfirst(name,	default=None)
This	method	 always	 returns	 only	 one	 value	 associated	with	 form
field	 name.	 The	 method	 returns	 only	 the	 first	 value	 in	 case	 that
more	values	were	posted	under	such	name.	Please	note	 that	 the
order	 in	which	 the	values	are	 received	may	vary	 from	browser	 to
browser	and	should	not	be	counted	on.	[1]	If	no	such	form	field	or
value	 exists	 then	 the	 method	 returns	 the	 value	 specified	 by	 the
optional	parameter	default.	This	parameter	defaults	 to	None	 if	not
specified.

FieldStorage.getlist(name)
This	method	 always	 returns	 a	 list	 of	 values	 associated	with	 form
field	name.	The	method	returns	an	empty	 list	 if	no	such	form	field
or	value	exists	 for	name.	 It	 returns	a	 list	 consisting	of	one	 item	 if

only	one	such	value	exists.

Using	these	methods	you	can	write	nice	compact	code:

import	cgi

form	=	cgi.FieldStorage()

user	=	form.getfirst("user",	"").upper()				#	This	way	it's	safe.

for	item	in	form.getlist("item"):

				do_something(item)

21.2.4.	Functions

These	are	 useful	 if	 you	want	more	 control,	 or	 if	 you	want	 to	 employ
some	 of	 the	 algorithms	 implemented	 in	 this	 module	 in	 other
circumstances.

cgi.parse(fp=None,	environ=os.environ,
keep_blank_values=False,	strict_parsing=False)

Parse	a	query	in	the	environment	or	from	a	file	(the	file	defaults	to
sys.stdin).	 The	 keep_blank_values	 and	 strict_parsing
parameters	 are	 passed	 to	 urllib.parse.parse_qs()

unchanged.

cgi.parse_qs(qs,	keep_blank_values=False,
strict_parsing=False)

This	 function	 is	 deprecated	 in	 this	 module.	 Use
urllib.parse.parse_qs()	 instead.	 It	 is	maintained	here	only
for	backward	compatibility.

cgi.parse_qsl(qs,	keep_blank_values=False,
strict_parsing=False)

This	 function	 is	 deprecated	 in	 this	 module.	 Use
urllib.parse.parse_qs()	 instead.	 It	 is	maintained	here	only
for	backward	compatibility.

cgi.parse_multipart(fp,	pdict)
Parse	 input	 of	 type	 multipart/form-data	 (for	 file	 uploads).
Arguments	 are	 fp	 for	 the	 input	 file	 and	 pdict	 for	 a	 dictionary
containing	other	parameters	in	the	Content-Type	header.

Returns	a	dictionary	 just	 like	urllib.parse.parse_qs()	keys

are	the	field	names,	each	value	is	a	list	of	values	for	that	field.	This
is	easy	to	use	but	not	much	good	if	you	are	expecting	megabytes
to	 be	 uploaded	 —	 in	 that	 case,	 use	 the	 FieldStorage	 class
instead	which	is	much	more	flexible.

Note	 that	 this	 does	 not	 parse	 nested	 multipart	 parts	 —	 use
FieldStorage	for	that.

cgi.parse_header(string)
Parse	 a	MIME	 header	 (such	 as	Content-Type)	 into	 a	main	 value
and	a	dictionary	of	parameters.

cgi.test()
Robust	 test	 CGI	 script,	 usable	 as	 main	 program.	Writes	 minimal
HTTP	headers	and	formats	all	information	provided	to	the	script	in
HTML	form.

cgi.print_environ()
Format	the	shell	environment	in	HTML.

cgi.print_form(form)
Format	a	form	in	HTML.

cgi.print_directory()
Format	the	current	directory	in	HTML.

cgi.print_environ_usage()
Print	a	list	of	useful	(used	by	CGI)	environment	variables	in	HTML.

cgi.escape(s,	quote=False)
Convert	the	characters	'&',	'<'	and	'>'	in	string	s	to	HTML-safe
sequences.	Use	this	 if	you	need	to	display	 text	 that	might	contain
such	 characters	 in	 HTML.	 If	 the	 optional	 flag	 quote	 is	 true,	 the

quotation	 mark	 character	 (")	 is	 also	 translated;	 this	 helps	 for
inclusion	in	an	HTML	attribute	value	delimited	by	double	quotes,	as
in	.	Note	that	single	quotes	are	never	translated.

Deprecated	 since	 version	 3.2:	 This	 function	 is	 unsafe	 because
quote	 is	 false	 by	 default,	 and	 therefore	 deprecated.	 Use
html.escape()	instead.

21.2.5.	Caring	about	security

There’s	one	important	rule:	if	you	invoke	an	external	program	(via	the
os.system()	 or	 os.popen()	 functions.	 or	 others	 with	 similar
functionality),	make	very	sure	you	don’t	pass	arbitrary	strings	received
from	the	client	to	the	shell.	This	is	a	well-known	security	hole	whereby
clever	hackers	anywhere	on	the	Web	can	exploit	a	gullible	CGI	script
to	 invoke	 arbitrary	 shell	 commands.	 Even	 parts	 of	 the	 URL	 or	 field
names	cannot	be	trusted,	since	the	request	doesn’t	have	to	come	from
your	form!

To	be	on	the	safe	side,	if	you	must	pass	a	string	gotten	from	a	form	to
a	 shell	 command,	 you	 should	 make	 sure	 the	 string	 contains	 only
alphanumeric	characters,	dashes,	underscores,	and	periods.

21.2.6.	Installing	your	CGI	script	on	a	Unix
system

Read	 the	 documentation	 for	 your	 HTTP	 server	 and	 check	 with	 your
local	 system	 administrator	 to	 find	 the	 directory	 where	 CGI	 scripts
should	be	installed;	usually	this	is	in	a	directory	cgi-bin	in	the	server
tree.

Make	sure	that	your	script	is	readable	and	executable	by	“others”;	the
Unix	 file	 mode	 should	 be	 0o755	 octal	 (use	 chmod	 0755

filename).	 Make	 sure	 that	 the	 first	 line	 of	 the	 script	 contains	 #!
starting	 in	 column	 1	 followed	 by	 the	 pathname	 of	 the	 Python
interpreter,	for	instance:

#!/usr/local/bin/python

Make	sure	the	Python	interpreter	exists	and	is	executable	by	“others”.

Make	sure	that	any	files	your	script	needs	to	read	or	write	are	readable
or	writable,	 respectively,	by	 “others”	—	 their	mode	should	be	0o644
for	 readable	 and	 0o666	 for	 writable.	 This	 is	 because,	 for	 security
reasons,	 the	 HTTP	 server	 executes	 your	 script	 as	 user	 “nobody”,
without	 any	 special	 privileges.	 It	 can	 only	 read	 (write,	 execute)	 files
that	 everybody	 can	 read	 (write,	 execute).	 The	 current	 directory	 at
execution	 time	 is	 also	 different	 (it	 is	 usually	 the	 server’s	 cgi-bin
directory)	 and	 the	 set	 of	 environment	 variables	 is	 also	 different	 from
what	you	get	when	you	log	in.	In	particular,	don’t	count	on	the	shell’s
search	path	for	executables	(PATH)	or	the	Python	module	search	path
(PYTHONPATH)	to	be	set	to	anything	interesting.

If	you	need	to	load	modules	from	a	directory	which	is	not	on	Python’s

default	module	 search	path,	 you	 can	 change	 the	path	 in	 your	 script,
before	importing	other	modules.	For	example:

import	sys

sys.path.insert(0,	"/usr/home/joe/lib/python")

sys.path.insert(0,	"/usr/local/lib/python")

(This	way,	the	directory	inserted	last	will	be	searched	first!)

Instructions	for	non-Unix	systems	will	vary;	check	your	HTTP	server’s
documentation	(it	will	usually	have	a	section	on	CGI	scripts).

21.2.7.	Testing	your	CGI	script

Unfortunately,	a	CGI	script	will	generally	not	run	when	you	try	 it	 from
the	command	line,	and	a	script	that	works	perfectly	from	the	command
line	 may	 fail	 mysteriously	 when	 run	 from	 the	 server.	 There’s	 one
reason	why	you	should	still	test	your	script	from	the	command	line:	if	it
contains	a	syntax	error,	 the	Python	 interpreter	won’t	execute	 it	at	all,
and	the	HTTP	server	will	most	likely	send	a	cryptic	error	to	the	client.

Assuming	your	script	has	no	syntax	errors,	yet	 it	does	not	work,	you
have	no	choice	but	to	read	the	next	section.

21.2.8.	Debugging	CGI	scripts

First	 of	 all,	 check	 for	 trivial	 installation	 errors	—	 reading	 the	 section
above	on	installing	your	CGI	script	carefully	can	save	you	a	lot	of	time.
If	you	wonder	whether	you	have	understood	the	installation	procedure
correctly,	 try	 installing	a	 copy	of	 this	module	 file	 (cgi.py)	 as	a	CGI
script.	When	invoked	as	a	script,	the	file	will	dump	its	environment	and
the	contents	of	the	form	in	HTML	form.	Give	it	the	right	mode	etc,	and
send	it	a	request.	If	it’s	installed	in	the	standard	cgi-bin	directory,	it
should	 be	possible	 to	 send	 it	 a	 request	 by	 entering	 a	URL	 into	 your
browser	of	the	form:

http://yourhostname/cgi-bin/cgi.py?name=Joe+Blow&addr=At+Home

If	 this	 gives	an	error	 of	 type	404,	 the	 server	 cannot	 find	 the	 script	 –
perhaps	you	need	to	install	it	in	a	different	directory.	If	it	gives	another
error,	there’s	an	installation	problem	that	you	should	fix	before	trying	to
go	any	further.	If	you	get	a	nicely	formatted	listing	of	the	environment
and	form	content	(in	this	example,	the	fields	should	be	listed	as	“addr”
with	value	“At	Home”	and	“name”	with	value	“Joe	Blow”),	the	cgi.py
script	has	been	installed	correctly.	If	you	follow	the	same	procedure	for
your	own	script,	you	should	now	be	able	to	debug	it.

The	next	step	could	be	to	call	the	cgi	module’s	test()	function	from
your	script:	replace	its	main	code	with	the	single	statement

cgi.test()

This	should	produce	 the	same	results	as	 those	gotten	 from	 installing
the	cgi.py	file	itself.

When	 an	 ordinary	 Python	 script	 raises	 an	 unhandled	 exception	 (for
whatever	 reason:	 of	 a	 typo	 in	 a	 module	 name,	 a	 file	 that	 can’t	 be
opened,	etc.),	the	Python	interpreter	prints	a	nice	traceback	and	exits.
While	 the	 Python	 interpreter	 will	 still	 do	 this	 when	 your	 CGI	 script
raises	an	exception,	most	likely	the	traceback	will	end	up	in	one	of	the
HTTP	server’s	log	files,	or	be	discarded	altogether.

Fortunately,	 once	 you	 have	 managed	 to	 get	 your	 script	 to	 execute
some	code,	you	can	easily	send	tracebacks	to	the	Web	browser	using
the	cgitb	module.	If	you	haven’t	done	so	already,	just	add	the	lines:

import	cgitb

cgitb.enable()

to	 the	 top	 of	 your	 script.	 Then	 try	 running	 it	 again;	 when	 a	 problem
occurs,	you	should	see	a	detailed	report	that	will	likely	make	apparent
the	cause	of	the	crash.

If	 you	 suspect	 that	 there	may	 be	 a	 problem	 in	 importing	 the	 cgitb
module,	you	can	use	an	even	more	robust	approach	(which	only	uses
built-in	modules):

import	sys

sys.stderr	=	sys.stdout

print("Content-Type:	text/plain")

print()

...your	code	here...

This	relies	on	the	Python	interpreter	to	print	the	traceback.	The	content
type	 of	 the	 output	 is	 set	 to	 plain	 text,	 which	 disables	 all	 HTML
processing.	 If	 your	 script	 works,	 the	 raw	 HTML	will	 be	 displayed	 by
your	client.	If	it	raises	an	exception,	most	likely	after	the	first	two	lines
have	been	printed,	a	 traceback	will	be	displayed.	Because	no	HTML

interpretation	is	going	on,	the	traceback	will	be	readable.

21.2.9.	Common	problems	and	solutions

Most	 HTTP	 servers	 buffer	 the	 output	 from	 CGI	 scripts	 until	 the
script	is	completed.	This	means	that	it	is	not	possible	to	display	a
progress	report	on	the	client’s	display	while	the	script	is	running.
Check	the	installation	instructions	above.
Check	 the	 HTTP	 server’s	 log	 files.	 (tail	 -f	 logfile	 in	 a
separate	window	may	be	useful!)
Always	check	a	script	 for	syntax	errors	 first,	by	doing	something
like	python	script.py.
If	your	script	does	not	have	any	syntax	errors,	try	adding	import
cgitb;	cgitb.enable()	to	the	top	of	the	script.
When	invoking	external	programs,	make	sure	they	can	be	found.
Usually,	this	means	using	absolute	path	names	—	PATH	is	usually
not	set	to	a	very	useful	value	in	a	CGI	script.
When	 reading	 or	 writing	 external	 files,	 make	 sure	 they	 can	 be
read	or	written	by	 the	userid	under	which	your	CGI	script	will	be
running:	this	is	typically	the	userid	under	which	the	web	server	is
running,	 or	 some	 explicitly	 specified	 userid	 for	 a	 web	 server’s
suexec	feature.
Don’t	try	to	give	a	CGI	script	a	set-uid	mode.	This	doesn’t	work	on
most	systems,	and	is	a	security	liability	as	well.

Footnotes

[1]

Note	that	some	recent	versions	of	the	HTML	specification	do
state	what	order	the	field	values	should	be	supplied	in,	but
knowing	whether	a	request	was	received	from	a	conforming
browser,	or	even	from	a	browser	at	all,	is	tedious	and	error-
prone.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.3.	cgitb	—	Traceback
manager	for	CGI	scripts
The	 cgitb	module	 provides	 a	 special	 exception	 handler	 for	Python
scripts.	 (Its	 name	 is	 a	 bit	 misleading.	 It	 was	 originally	 designed	 to
display	extensive	traceback	information	in	HTML	for	CGI	scripts.	It	was
later	generalized	to	also	display	this	information	in	plain	text.)	After	this
module	 is	 activated,	 if	 an	 uncaught	 exception	 occurs,	 a	 detailed,
formatted	 report	 will	 be	 displayed.	 The	 report	 includes	 a	 traceback
showing	 excerpts	 of	 the	 source	 code	 for	 each	 level,	 as	 well	 as	 the
values	 of	 the	 arguments	 and	 local	 variables	 to	 currently	 running
functions,	to	help	you	debug	the	problem.	Optionally,	you	can	save	this
information	to	a	file	instead	of	sending	it	to	the	browser.

To	enable	this	feature,	simply	add	this	to	the	top	of	your	CGI	script:

import	cgitb

cgitb.enable()

The	 options	 to	 the	 enable()	 function	 control	 whether	 the	 report	 is
displayed	in	the	browser	and	whether	the	report	is	logged	to	a	file	for
later	analysis.

cgitb.enable(display=1,	logdir=None,	context=5,	format="html")
This	 function	 causes	 the	 cgitb	 module	 to	 take	 over	 the
interpreter’s	default	handling	for	exceptions	by	setting	the	value	of
sys.excepthook.

The	optional	argument	display	defaults	to	1	and	can	be	set	to	0	to
suppress	 sending	 the	 traceback	 to	 the	 browser.	 If	 the	 argument

logdir	 is	 present,	 the	 traceback	 reports	 are	 written	 to	 files.	 The
value	 of	 logdir	 should	 be	 a	 directory	 where	 these	 files	 will	 be
placed.	 The	 optional	 argument	 context	 is	 the	 number	 of	 lines	 of
context	 to	 display	 around	 the	 current	 line	 of	 source	 code	 in	 the
traceback;	 this	 defaults	 to	 5.	 If	 the	 optional	 argument	 format	 is
"html",	the	output	is	formatted	as	HTML.	Any	other	value	forces
plain	text	output.	The	default	value	is	"html".

cgitb.handler(info=None)
This	function	handles	an	exception	using	the	default	settings	(that
is,	show	a	report	in	the	browser,	but	don’t	log	to	a	file).	This	can	be
used	when	you’ve	caught	an	exception	and	want	to	report	it	using
cgitb.	The	optional	 info	argument	should	be	a	3-tuple	containing
an	exception	 type,	exception	value,	and	 traceback	object,	exactly
like	 the	tuple	returned	by	sys.exc_info().	 If	 the	 info	argument
is	 not	 supplied,	 the	 current	 exception	 is	 obtained	 from
sys.exc_info().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.4.	wsgiref	—	WSGI	Utilities
and	Reference	Implementation
The	 Web	 Server	 Gateway	 Interface	 (WSGI)	 is	 a	 standard	 interface
between	web	server	software	and	web	applications	written	in	Python.
Having	a	standard	 interface	makes	 it	easy	 to	use	an	application	 that
supports	WSGI	with	a	number	of	different	web	servers.

Only	 authors	 of	 web	 servers	 and	 programming	 frameworks	 need	 to
know	every	detail	and	corner	case	of	the	WSGI	design.	You	don’t	need
to	understand	every	detail	of	WSGI	 just	 to	 install	a	WSGI	application
or	to	write	a	web	application	using	an	existing	framework.

wsgiref	is	a	reference	implementation	of	the	WSGI	specification	that
can	 be	 used	 to	 add	WSGI	 support	 to	 a	web	 server	 or	 framework.	 It
provides	 utilities	 for	 manipulating	 WSGI	 environment	 variables	 and
response	 headers,	 base	 classes	 for	 implementing	 WSGI	 servers,	 a
demo	 HTTP	 server	 that	 serves	WSGI	 applications,	 and	 a	 validation
tool	that	checks	WSGI	servers	and	applications	for	conformance	to	the
WSGI	specification	(PEP	3333).

See	http://www.wsgi.org	for	more	information	about	WSGI,	and	links	to
tutorials	and	other	resources.

http://www.python.org/dev/peps/pep-3333
http://www.wsgi.org

21.4.1.	wsgiref.util	–	WSGI
environment	utilities

This	 module	 provides	 a	 variety	 of	 utility	 functions	 for	 working	 with
WSGI	 environments.	 A	WSGI	 environment	 is	 a	 dictionary	 containing
HTTP	request	variables	as	described	in	PEP	3333.	All	of	the	functions
taking	an	environ	parameter	expect	a	WSGI-compliant	dictionary	to	be
supplied;	please	see	PEP	3333	for	a	detailed	specification.

wsgiref.util.guess_scheme(environ)
Return	a	guess	 for	whether	 wsgi.url_scheme	 should	 be	 “http”
or	 “https”,	 by	 checking	 for	 a	 HTTPS	 environment	 variable	 in	 the
environ	dictionary.	The	return	value	is	a	string.

This	function	is	useful	when	creating	a	gateway	that	wraps	CGI	or
a	 CGI-like	 protocol	 such	 as	 FastCGI.	 Typically,	 servers	 providing
such	 protocols	 will	 include	 a	 HTTPS	 variable	 with	 a	 value	 of	 “1”
“yes”,	or	“on”	when	a	request	is	received	via	SSL.	So,	this	function
returns	“https”	if	such	a	value	is	found,	and	“http”	otherwise.

wsgiref.util.request_uri(environ,	include_query=True)
Return	 the	 full	 request	 URI,	 optionally	 including	 the	 query	 string,
using	 the	 algorithm	 found	 in	 the	 “URL	Reconstruction”	 section	 of
PEP	3333.	If	include_query	is	false,	the	query	string	is	not	included
in	the	resulting	URI.

wsgiref.util.application_uri(environ)
Similar	 to	 request_uri(),	 except	 that	 the	 PATH_INFO	 and
QUERY_STRING	variables	are	ignored.	The	result	 is	the	base	URI
of	the	application	object	addressed	by	the	request.

http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333

wsgiref.util.shift_path_info(environ)
Shift	a	single	name	from	PATH_INFO	to	SCRIPT_NAME	and	return
the	name.	The	environ	dictionary	is	modified	in-place;	use	a	copy	if
you	need	to	keep	the	original	PATH_INFO	or	SCRIPT_NAME	intact.

If	 there	are	no	 remaining	path	segments	 in	PATH_INFO,	None	 is
returned.

Typically,	this	routine	is	used	to	process	each	portion	of	a	request
URI	 path,	 for	 example	 to	 treat	 the	 path	 as	 a	 series	 of	 dictionary
keys.	 This	 routine	modifies	 the	 passed-in	 environment	 to	make	 it
suitable	for	invoking	another	WSGI	application	that	is	located	at	the
target	URI.	For	example,	 if	 there	 is	 a	WSGI	application	at	 /foo,
and	 the	 request	 URI	 path	 is	 /foo/bar/baz,	 and	 the	 WSGI
application	at	/foo	calls	shift_path_info(),	it	will	receive	the
string	“bar”,	and	the	environment	will	be	updated	to	be	suitable	for
passing	 to	 a	 WSGI	 application	 at	 /foo/bar.	 That	 is,
SCRIPT_NAME	 will	 change	 from	 /foo	 to	 /foo/bar,	 and
PATH_INFO	will	change	from	/bar/baz	to	/baz.

When	PATH_INFO	is	just	a	“/”,	this	routine	returns	an	empty	string
and	appends	a	trailing	slash	to	SCRIPT_NAME,	even	though	empty
path	 segments	 are	 normally	 ignored,	 and	 SCRIPT_NAME	 doesn’t
normally	end	in	a	slash.	This	is	intentional	behavior,	to	ensure	that
an	application	 can	 tell	 the	difference	between	URIs	ending	 in	 /x
from	 ones	 ending	 in	 /x/	 when	 using	 this	 routine	 to	 do	 object
traversal.

wsgiref.util.setup_testing_defaults(environ)
Update	environ	with	trivial	defaults	for	testing	purposes.

This	routine	adds	various	parameters	required	for	WSGI,	including

HTTP_HOST,	 SERVER_NAME,	 SERVER_PORT,	 REQUEST_METHOD,
SCRIPT_NAME,	 PATH_INFO,	 and	 all	 of	 the	 PEP	 3333-defined
wsgi.*	 variables.	 It	 only	 supplies	 default	 values,	 and	 does	 not
replace	any	existing	settings	for	these	variables.

This	 routine	 is	 intended	 to	make	 it	 easier	 for	 unit	 tests	 of	WSGI
servers	and	applications	to	set	up	dummy	environments.	It	should
NOT	 be	 used	 by	 actual	WSGI	 servers	 or	 applications,	 since	 the
data	is	fake!

Example	usage:

from	wsgiref.util	import	setup_testing_defaults

from	wsgiref.simple_server	import	make_server

#	A	relatively	simple	WSGI	application.	It's	going	to	print	out	the

#	environment	dictionary	after	being	updated	by	setup_testing_defaults

def	simple_app(environ,	start_response):

				setup_testing_defaults(environ)

				status	=	'200	OK'

				headers	=	[('Content-type',	'text/plain;	charset=utf-8'

				start_response(status,	headers)

				ret	=	[("%s:	%s\n"	%	(key,	value)).encode("utf-8"

											for	key,	value	in	environ.items()]

				return	ret

httpd	=	make_server('',	8000,	simple_app)

print("Serving	on	port	8000...")

httpd.serve_forever()

In	 addition	 to	 the	 environment	 functions	 above,	 the	 wsgiref.util

http://www.python.org/dev/peps/pep-3333

module	also	provides	these	miscellaneous	utilities:

wsgiref.util.is_hop_by_hop(header_name)
Return	true	if	‘header_name’	is	an	HTTP/1.1	“Hop-by-Hop”	header,
as	defined	by	RFC	2616.

class	wsgiref.util.FileWrapper(filelike,	blksize=8192)
A	wrapper	 to	convert	a	 file-like	object	 to	an	 iterator.	The	 resulting
objects	support	both	__getitem__()	and	__iter__()	 iteration
styles,	for	compatibility	with	Python	2.1	and	Jython.	As	the	object	is
iterated	 over,	 the	 optional	 blksize	 parameter	 will	 be	 repeatedly
passed	to	the	filelike	object’s	read()	method	to	obtain	bytestrings
to	 yield.	 When	 read()	 returns	 an	 empty	 bytestring,	 iteration	 is
ended	and	is	not	resumable.

If	filelike	has	a	close()	method,	the	returned	object	will	also	have
a	close()	method,	and	it	will	invoke	the	filelike	object’s	close()
method	when	called.

Example	usage:

from	io	import	StringIO

from	wsgiref.util	import	FileWrapper

#	We're	using	a	StringIO-buffer	for	as	the	file-like	object

filelike	=	StringIO("This	is	an	example	file-like	object"

wrapper	=	FileWrapper(filelike,	blksize=5)

for	chunk	in	wrapper:

				print(chunk)

http://tools.ietf.org/html/rfc2616.html

21.4.2.	wsgiref.headers	–	WSGI
response	header	tools

This	 module	 provides	 a	 single	 class,	 Headers,	 for	 convenient
manipulation	 of	 WSGI	 response	 headers	 using	 a	 mapping-like
interface.

class	wsgiref.headers.Headers(headers)
Create	a	mapping-like	object	wrapping	headers,	which	must	be	a
list	of	header	name/value	tuples	as	described	in	PEP	3333.

Headers	 objects	 support	 typical	 mapping	 operations	 including
__getitem__(),	 get(),	 __setitem__(),	 setdefault(),
__delitem__()	 and	 __contains__().	 For	 each	 of	 these
methods,	 the	key	 is	 the	header	name	(treated	case-insensitively),
and	the	value	 is	 the	first	value	associated	with	that	header	name.
Setting	a	header	deletes	any	existing	values	for	 that	header,	 then
adds	a	new	value	at	the	end	of	the	wrapped	header	list.	Headers’
existing	order	 is	generally	maintained,	with	new	headers	added	to
the	end	of	the	wrapped	list.

Unlike	a	dictionary,	 Headers	 objects	 do	 not	 raise	 an	 error	when
you	try	to	get	or	delete	a	key	that	 isn’t	 in	the	wrapped	header	list.
Getting	 a	 nonexistent	 header	 just	 returns	 None,	 and	 deleting	 a
nonexistent	header	does	nothing.

Headers	objects	also	support	keys(),	values(),	and	items()
methods.	The	lists	returned	by	keys()	and	items()	can	include
the	same	key	more	than	once	if	there	is	a	multi-valued	header.	The
len()	 of	 a	 Headers	 object	 is	 the	 same	 as	 the	 length	 of	 its
items(),	which	is	the	same	as	the	length	of	the	wrapped	header

http://www.python.org/dev/peps/pep-3333

list.	 In	 fact,	 the	 items()	 method	 just	 returns	 a	 copy	 of	 the
wrapped	header	list.

Calling	 bytes()	 on	 a	 Headers	 object	 returns	 a	 formatted
bytestring	 suitable	 for	 transmission	 as	 HTTP	 response	 headers.
Each	header	is	placed	on	a	line	with	its	value,	separated	by	a	colon
and	a	space.	Each	line	is	terminated	by	a	carriage	return	and	line
feed,	and	the	bytestring	is	terminated	with	a	blank	line.

In	 addition	 to	 their	 mapping	 interface	 and	 formatting	 features,
Headers	objects	also	have	the	following	methods	for	querying	and
adding	multi-valued	 headers,	 and	 for	 adding	 headers	 with	 MIME
parameters:

get_all(name)
Return	a	list	of	all	the	values	for	the	named	header.

The	returned	list	will	be	sorted	in	the	order	they	appeared	in	the
original	 header	 list	 or	 were	 added	 to	 this	 instance,	 and	 may
contain	 duplicates.	 Any	 fields	 deleted	 and	 re-inserted	 are
always	 appended	 to	 the	 header	 list.	 If	 no	 fields	 exist	 with	 the
given	name,	returns	an	empty	list.

add_header(name,	value,	**_params)
Add	 a	 (possibly	 multi-valued)	 header,	 with	 optional	 MIME
parameters	specified	via	keyword	arguments.

name	 is	 the	 header	 field	 to	 add.	 Keyword	 arguments	 can	 be
used	 to	 set	 MIME	 parameters	 for	 the	 header	 field.	 Each
parameter	must	be	a	string	or	None.	Underscores	in	parameter
names	 are	 converted	 to	 dashes,	 since	 dashes	 are	 illegal	 in
Python	 identifiers,	 but	 many	 MIME	 parameter	 names	 include
dashes.	 If	 the	 parameter	 value	 is	 a	 string,	 it	 is	 added	 to	 the

header	 value	 parameters	 in	 the	 form	 name="value".	 If	 it	 is
None,	 only	 the	 parameter	 name	 is	 added.	 (This	 is	 used	 for
MIME	parameters	without	a	value.)	Example	usage:

h.add_header('content-disposition',	'attachment'

The	above	will	add	a	header	that	looks	like	this:

Content-Disposition:	attachment;	filename="bud.gif"

21.4.3.	wsgiref.simple_server	–	a
simple	WSGI	HTTP	server

This	 module	 implements	 a	 simple	 HTTP	 server	 (based	 on
http.server)	 that	serves	WSGI	applications.	Each	server	 instance
serves	a	single	WSGI	application	on	a	given	host	and	port.	If	you	want
to	 serve	multiple	 applications	 on	 a	 single	 host	 and	 port,	 you	 should
create	 a	 WSGI	 application	 that	 parses	 PATH_INFO	 to	 select	 which
application	 to	 invoke	 for	 each	 request.	 (E.g.,	 using	 the
shift_path_info()	function	from	wsgiref.util.)

wsgiref.simple_server.make_server(host,	port,	app,
server_class=WSGIServer,	handler_class=WSGIRequestHandler)

Create	 a	 new	WSGI	 server	 listening	 on	host	 and	port,	 accepting
connections	for	app.	The	return	value	is	an	instance	of	the	supplied
server_class,	 and	 will	 process	 requests	 using	 the	 specified
handler_class.	app	must	be	a	WSGI	application	object,	as	defined
by	PEP	3333.

Example	usage:

from	wsgiref.simple_server	import	make_server,	demo_app

httpd	=	make_server('',	8000,	demo_app)

print("Serving	HTTP	on	port	8000...")

#	Respond	to	requests	until	process	is	killed

httpd.serve_forever()

#	Alternative:	serve	one	request,	then	exit

httpd.handle_request()

http://www.python.org/dev/peps/pep-3333

wsgiref.simple_server.demo_app(environ,	start_response)
This	function	is	a	small	but	complete	WSGI	application	that	returns
a	text	page	containing	the	message	“Hello	world!”	and	a	list	of	the
key/value	 pairs	 provided	 in	 the	 environ	 parameter.	 It’s	 useful	 for
verifying	 that	 a	 WSGI	 server	 (such	 as
wsgiref.simple_server)	 is	 able	 to	 run	 a	 simple	 WSGI
application	correctly.

class	wsgiref.simple_server.WSGIServer(server_address,
RequestHandlerClass)

Create	 a	 WSGIServer	 instance.	 server_address	 should	 be	 a
(host,port)	 tuple,	 and	 RequestHandlerClass	 should	 be	 the
subclass	of	http.server.BaseHTTPRequestHandler	 that	will
be	used	to	process	requests.

You	 do	 not	 normally	 need	 to	 call	 this	 constructor,	 as	 the
make_server()	function	can	handle	all	the	details	for	you.

WSGIServer	is	a	subclass	of	http.server.HTTPServer,	so	all
of	 its	 methods	 (such	 as	 serve_forever()	 and
handle_request())	 are	 available.	 WSGIServer	 also	 provides
these	WSGI-specific	methods:

set_app(application)
Sets	 the	callable	application	 as	 the	WSGI	 application	 that	will
receive	requests.

get_app()
Returns	the	currently-set	application	callable.

Normally,	 however,	 you	 do	 not	 need	 to	 use	 these	 additional
methods,	as	set_app()	 is	normally	 called	by	make_server(),

and	 the	 get_app()	 exists	 mainly	 for	 the	 benefit	 of	 request
handler	instances.

class
wsgiref.simple_server.WSGIRequestHandler(request,
client_address,	server)

Create	 an	 HTTP	 handler	 for	 the	 given	 request	 (i.e.	 a	 socket),
client_address	(a	(host,port)	tuple),	and	server	 (WSGIServer
instance).

You	do	not	need	to	create	instances	of	this	class	directly;	they	are
automatically	 created	 as	 needed	 by	 WSGIServer	 objects.	 You
can,	however,	subclass	this	class	and	supply	it	as	a	handler_class
to	the	make_server()	function.	Some	possibly	relevant	methods
for	overriding	in	subclasses:

get_environ()
Returns	 a	 dictionary	 containing	 the	 WSGI	 environment	 for	 a
request.	The	default	 implementation	copies	the	contents	of	 the
WSGIServer	object’s	base_environ	dictionary	attribute	and
then	 adds	 various	 headers	 derived	 from	 the	 HTTP	 request.
Each	 call	 to	 this	 method	 should	 return	 a	 new	 dictionary
containing	 all	 of	 the	 relevant	 CGI	 environment	 variables	 as
specified	in	PEP	3333.

get_stderr()
Return	 the	 object	 that	 should	 be	 used	 as	 the	 wsgi.errors
stream.	The	default	implementation	just	returns	sys.stderr.

handle()
Process	the	HTTP	request.	The	default	implementation	creates
a	 handler	 instance	 using	 a	 wsgiref.handlers	 class	 to

http://www.python.org/dev/peps/pep-3333

implement	the	actual	WSGI	application	interface.

21.4.4.	wsgiref.validate	—	WSGI
conformance	checker

When	creating	new	WSGI	application	objects,	frameworks,	servers,	or
middleware,	 it	can	be	useful	 to	validate	 the	new	code’s	conformance
using	 wsgiref.validate.	 This	 module	 provides	 a	 function	 that
creates	 WSGI	 application	 objects	 that	 validate	 communications
between	a	WSGI	server	or	gateway	and	a	WSGI	application	object,	to
check	both	sides	for	protocol	conformance.

Note	 that	 this	 utility	 does	 not	 guarantee	 complete	 PEP	 3333
compliance;	 an	 absence	 of	 errors	 from	 this	 module	 does	 not
necessarily	 mean	 that	 errors	 do	 not	 exist.	 However,	 if	 this	 module
does	produce	an	error,	then	it	is	virtually	certain	that	either	the	server
or	application	is	not	100%	compliant.

This	module	is	based	on	the	paste.lint	module	from	Ian	Bicking’s
“Python	Paste”	library.

wsgiref.validate.validator(application)
Wrap	application	 and	 return	 a	 new	WSGI	 application	 object.	 The
returned	 application	 will	 forward	 all	 requests	 to	 the	 original
application,	and	will	check	that	both	the	application	and	the	server
invoking	 it	 are	 conforming	 to	 the	WSGI	 specification	 and	 to	RFC
2616.

Any	 detected	 nonconformance	 results	 in	 an	 AssertionError
being	raised;	note,	however,	 that	how	these	errors	are	handled	 is
server-dependent.	 For	 example,	 wsgiref.simple_server	 and
other	 servers	based	on	 wsgiref.handlers	 (that	don’t	 override
the	error	handling	methods	to	do	something	else)	will	simply	output

http://www.python.org/dev/peps/pep-3333

a	message	that	an	error	has	occurred,	and	dump	the	traceback	to
sys.stderr	or	some	other	error	stream.

This	 wrapper	 may	 also	 generate	 output	 using	 the	 warnings
module	to	 indicate	behaviors	that	are	questionable	but	which	may
not	 actually	 be	 prohibited	 by	 PEP	 3333.	 Unless	 they	 are
suppressed	using	Python	command-line	options	or	the	warnings
API,	 any	 such	 warnings	 will	 be	 written	 to	 sys.stderr	 (not
wsgi.errors,	unless	they	happen	to	be	the	same	object).

Example	usage:

from	wsgiref.validate	import	validator

from	wsgiref.simple_server	import	make_server

#	Our	callable	object	which	is	intentionally	not	compliant	to	the

#	standard,	so	the	validator	is	going	to	break

def	simple_app(environ,	start_response):

				status	=	'200	OK'	#	HTTP	Status

				headers	=	[('Content-type',	'text/plain')]	#	HTTP	Headers

				start_response(status,	headers)

				#	This	is	going	to	break	because	we	need	to	return	a	list,	and

				#	the	validator	is	going	to	inform	us

				return	b"Hello	World"

#	This	is	the	application	wrapped	in	a	validator

validator_app	=	validator(simple_app)

httpd	=	make_server('',	8000,	validator_app)

print("Listening	on	port	8000....")

httpd.serve_forever()

http://www.python.org/dev/peps/pep-3333

21.4.5.	wsgiref.handlers	–
server/gateway	base	classes

This	 module	 provides	 base	 handler	 classes	 for	 implementing	WSGI
servers	and	gateways.	These	base	classes	handle	most	of	the	work	of
communicating	with	a	WSGI	application,	as	 long	as	 they	are	given	a
CGI-like	environment,	along	with	input,	output,	and	error	streams.

class	wsgiref.handlers.CGIHandler
CGI-based	 invocation	 via	 sys.stdin,	 sys.stdout,
sys.stderr	and	os.environ.	This	 is	useful	when	you	have	a
WSGI	application	and	want	to	run	it	as	a	CGI	script.	Simply	invoke
CGIHandler().run(app),	where	 app	 is	 the	WSGI	 application
object	you	wish	to	invoke.

This	 class	 is	 a	 subclass	 of	 BaseCGIHandler	 that	 sets
wsgi.run_once	 to	 true,	 wsgi.multithread	 to	 false,	 and
wsgi.multiprocess	 to	 true,	 and	 always	 uses	 sys	 and	 os	 to
obtain	the	necessary	CGI	streams	and	environment.

class	wsgiref.handlers.IISCGIHandler
A	specialized	alternative	to	CGIHandler,	 for	use	when	deploying
on	 Microsoft’s	 IIS	 web	 server,	 without	 having	 set	 the	 config
allowPathInfo	 option	 (IIS>=7)	 or	 metabase
allowPathInfoForScriptMappings	(IIS<7).

By	 default,	 IIS	 gives	 a	 PATH_INFO	 that	 duplicates	 the
SCRIPT_NAME	 at	 the	 front,	 causing	 problems	 for	 WSGI
applications	that	wish	to	implement	routing.	This	handler	strips	any
such	duplicated	path.

IIS	 can	 be	 configured	 to	 pass	 the	 correct	 PATH_INFO,	 but	 this
causes	another	 bug	where	 PATH_TRANSLATED	 is	wrong.	 Luckily
this	 variable	 is	 rarely	 used	 and	 is	 not	 guaranteed	 by	WSGI.	 On
IIS<7,	 though,	 the	 setting	 can	 only	 be	 made	 on	 a	 vhost	 level,
affecting	 all	 other	 script	 mappings,	 many	 of	 which	 break	 when
exposed	 to	 the	PATH_TRANSLATED	bug.	For	 this	 reason	 IIS<7	 is
almost	 never	 deployed	 with	 the	 fix.	 (Even	 IIS7	 rarely	 uses	 it
because	there	is	still	no	UI	for	it.)

There	is	no	way	for	CGI	code	to	tell	whether	the	option	was	set,	so
a	separate	handler	class	is	provided.	It	is	used	in	the	same	way	as
CGIHandler,	 i.e.,	 by	 calling	 IISCGIHandler().run(app),
where	app	is	the	WSGI	application	object	you	wish	to	invoke.

New	in	version	3.2.

class	wsgiref.handlers.BaseCGIHandler(stdin,	stdout,
stderr,	environ,	multithread=True,	multiprocess=False)

Similar	 to	 CGIHandler,	 but	 instead	 of	 using	 the	 sys	 and	 os
modules,	 the	 CGI	 environment	 and	 I/O	 streams	 are	 specified
explicitly.	The	multithread	and	multiprocess	values	are	used	to	set
the	wsgi.multithread	and	wsgi.multiprocess	flags	for	any
applications	run	by	the	handler	instance.

This	class	is	a	subclass	of	SimpleHandler	intended	for	use	with
software	 other	 than	 HTTP	 “origin	 servers”.	 If	 you	 are	 writing	 a
gateway	 protocol	 implementation	 (such	 as	 CGI,	 FastCGI,	 SCGI,
etc.)	 that	 uses	 a	 Status:	 header	 to	 send	 an	HTTP	 status,	 you
probably	want	to	subclass	this	instead	of	SimpleHandler.

class	wsgiref.handlers.SimpleHandler(stdin,	stdout,	stderr,
environ,	multithread=True,	multiprocess=False)

Similar	 to	 BaseCGIHandler,	 but	 designed	 for	 use	 with	 HTTP
origin	servers.	 If	 you	are	writing	 an	HTTP	server	 implementation,
you	 will	 probably	 want	 to	 subclass	 this	 instead	 of
BaseCGIHandler

This	 class	 is	 a	 subclass	 of	 BaseHandler.	 It	 overrides	 the
__init__(),	 get_stdin(),	 get_stderr(),
add_cgi_vars(),	 _write(),	 and	 _flush()	 methods	 to
support	 explicitly	 setting	 the	 environment	 and	 streams	 via	 the
constructor.	 The	 supplied	 environment	 and	 streams	 are	 stored	 in
the	stdin,	stdout,	stderr,	and	environ	attributes.

class	wsgiref.handlers.BaseHandler
This	is	an	abstract	base	class	for	running	WSGI	applications.	Each
instance	will	 handle	 a	 single	 HTTP	 request,	 although	 in	 principle
you	 could	 create	 a	 subclass	 that	 was	 reusable	 for	 multiple
requests.

BaseHandler	 instances	 have	 only	 one	 method	 intended	 for
external	use:

run(app)
Run	the	specified	WSGI	application,	app.

All	of	the	other	BaseHandler	methods	are	invoked	by	this	method
in	the	process	of	running	the	application,	and	thus	exist	primarily	to
allow	customizing	the	process.

The	following	methods	MUST	be	overridden	in	a	subclass:

_write(data)
Buffer	 the	bytes	data	 for	 transmission	 to	 the	client.	 It’s	 okay	 if
this	 method	 actually	 transmits	 the	 data;	 BaseHandler	 just

separates	write	and	flush	operations	for	greater	efficiency	when
the	underlying	system	actually	has	such	a	distinction.

_flush()
Force	buffered	data	 to	be	 transmitted	 to	 the	client.	 It’s	 okay	 if
this	 method	 is	 a	 no-op	 (i.e.,	 if	 _write()	 actually	 sends	 the
data).

get_stdin()
Return	 an	 input	 stream	 object	 suitable	 for	 use	 as	 the
wsgi.input	of	the	request	currently	being	processed.

get_stderr()
Return	 an	 output	 stream	 object	 suitable	 for	 use	 as	 the
wsgi.errors	of	the	request	currently	being	processed.

add_cgi_vars()
Insert	CGI	 variables	 for	 the	 current	 request	 into	 the	 environ
attribute.

Here	 are	 some	 other	 methods	 and	 attributes	 you	 may	 wish	 to
override.	 This	 list	 is	 only	 a	 summary,	 however,	 and	 does	 not
include	every	method	 that	 can	be	overridden.	You	should	consult
the	 docstrings	 and	 source	 code	 for	 additional	 information	 before
attempting	to	create	a	customized	BaseHandler	subclass.

Attributes	and	methods	for	customizing	the	WSGI	environment:

wsgi_multithread

The	value	to	be	used	for	the	wsgi.multithread	environment
variable.	 It	 defaults	 to	 true	 in	 BaseHandler,	 but	may	have	a
different	 default	 (or	 be	 set	 by	 the	 constructor)	 in	 the	 other
subclasses.

wsgi_multiprocess

The	 value	 to	 be	 used	 for	 the	 wsgi.multiprocess

environment	variable.	 It	 defaults	 to	 true	 in	BaseHandler,	 but
may	have	a	different	default	(or	be	set	by	the	constructor)	in	the
other	subclasses.

wsgi_run_once

The	 value	 to	 be	 used	 for	 the	 wsgi.run_once	 environment
variable.	It	defaults	to	false	in	BaseHandler,	but	CGIHandler
sets	it	to	true	by	default.

os_environ

The	 default	 environment	 variables	 to	 be	 included	 in	 every
request’s	 WSGI	 environment.	 By	 default,	 this	 is	 a	 copy	 of
os.environ	 at	 the	 time	 that	 wsgiref.handlers	 was
imported,	 but	 subclasses	 can	 either	 create	 their	 own	 at	 the
class	 or	 instance	 level.	 Note	 that	 the	 dictionary	 should	 be
considered	read-only,	since	the	default	value	is	shared	between
multiple	classes	and	instances.

server_software

If	 the	origin_server	attribute	 is	set,	 this	attribute’s	value	 is
used	to	set	the	default	SERVER_SOFTWARE	WSGI	environment
variable,	 and	 also	 to	 set	 a	 default	 Server:	 header	 in	 HTTP
responses.	 It	 is	 ignored	 for	 handlers	 (such	 as
BaseCGIHandler	and	CGIHandler)	that	are	not	HTTP	origin
servers.

Changed	 in	 version	 3.3:	 The	 term	 “Python”	 is	 replaced	 with
implementation	specific	term	like	“CPython”,	“Jython”	etc.

get_scheme()
Return	the	URL	scheme	being	used	for	the	current	request.	The
default	 implementation	 uses	 the	 guess_scheme()	 function
from	wsgiref.util	 to	guess	whether	 the	scheme	should	be
“http”	 or	 “https”,	 based	 on	 the	 current	 request’s	 environ
variables.

setup_environ()
Set	 the	 environ	 attribute	 to	 a	 fully-populated	 WSGI
environment.	The	default	 implementation	uses	all	of	 the	above
methods	 and	 attributes,	 plus	 the	 get_stdin(),
get_stderr(),	 and	 add_cgi_vars()	 methods	 and	 the
wsgi_file_wrapper	 attribute.	 It	 also	 inserts	 a
SERVER_SOFTWARE	 key	 if	 not	 present,	 as	 long	 as	 the
origin_server	 attribute	 is	 a	 true	 value	 and	 the
server_software	attribute	is	set.

Methods	and	attributes	for	customizing	exception	handling:

log_exception(exc_info)
Log	the	exc_info	 tuple	 in	 the	server	 log.	exc_info	 is	a	(type,
value,	 traceback)	 tuple.	 The	 default	 implementation
simply	 writes	 the	 traceback	 to	 the	 request’s	 wsgi.errors
stream	and	 flushes	 it.	Subclasses	can	override	 this	method	 to
change	the	format	or	retarget	the	output,	mail	the	traceback	to
an	 administrator,	 or	 whatever	 other	 action	 may	 be	 deemed
suitable.

traceback_limit

The	maximum	number	of	frames	to	include	in	tracebacks	output
by	the	default	log_exception()	method.	If	None,	all	frames

are	included.

error_output(environ,	start_response)
This	method	 is	a	WSGI	application	 to	generate	an	error	 page
for	the	user.	It	is	only	invoked	if	an	error	occurs	before	headers
are	sent	to	the	client.

This	 method	 can	 access	 the	 current	 error	 information	 using
sys.exc_info(),	 and	 should	 pass	 that	 information	 to
start_response	 when	 calling	 it	 (as	 described	 in	 the	 “Error
Handling”	section	of	PEP	3333).

The	 default	 implementation	 just	 uses	 the	 error_status,
error_headers,	and	error_body	attributes	 to	generate	an
output	 page.	 Subclasses	 can	 override	 this	 to	 produce	 more
dynamic	error	output.

Note,	 however,	 that	 it’s	 not	 recommended	 from	 a	 security
perspective	to	spit	out	diagnostics	to	any	old	user;	 ideally,	you
should	 have	 to	 do	 something	 special	 to	 enable	 diagnostic
output,	which	is	why	the	default	implementation	doesn’t	include
any.

error_status

The	HTTP	 status	 used	 for	 error	 responses.	 This	 should	 be	 a
status	string	as	defined	in	PEP	3333;	 it	defaults	 to	a	500	code
and	message.

error_headers

The	HTTP	headers	used	for	error	responses.	This	should	be	a
list	 of	WSGI	 response	 headers	 ((name,	value)	 tuples),	 as
described	 in	PEP	3333.	 The	 default	 list	 just	 sets	 the	 content
type	to	text/plain.

http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333
http://www.python.org/dev/peps/pep-3333

error_body

The	 error	 response	 body.	 This	 should	 be	 an	 HTTP	 response
body	 bytestring.	 It	 defaults	 to	 the	 plain	 text,	 “A	 server	 error
occurred.	Please	contact	the	administrator.”

Methods	and	attributes	for	PEP	3333‘s	 “Optional	Platform-Specific
File	Handling”	feature:

wsgi_file_wrapper

A	wsgi.file_wrapper	factory,	or	None.	The	default	value	of
this	attribute	is	the	wsgiref.util.FileWrapper	class.

sendfile()
Override	 to	 implement	 platform-specific	 file	 transmission.	 This
method	 is	 called	 only	 if	 the	 application’s	 return	 value	 is	 an
instance	 of	 the	 class	 specified	 by	 the	 wsgi_file_wrapper
attribute.	 It	 should	 return	 a	 true	 value	 if	 it	 was	 able	 to
successfully	 transmit	 the	 file,	 so	 that	 the	 default	 transmission
code	will	 not	 be	 executed.	 The	 default	 implementation	 of	 this
method	just	returns	a	false	value.

Miscellaneous	methods	and	attributes:

origin_server

This	 attribute	 should	 be	 set	 to	 a	 true	 value	 if	 the	 handler’s
_write()	 and	 _flush()	 are	 being	 used	 to	 communicate
directly	to	the	client,	rather	than	via	a	CGI-like	gateway	protocol
that	wants	the	HTTP	status	in	a	special	Status:	header.

This	attribute’s	default	value	is	true	in	BaseHandler,	but	false
in	BaseCGIHandler	and	CGIHandler.

http_version

http://www.python.org/dev/peps/pep-3333

If	origin_server	is	true,	this	string	attribute	is	used	to	set	the
HTTP	 version	 of	 the	 response	 set	 to	 the	 client.	 It	 defaults	 to
"1.0".

wsgiref.handlers.read_environ()
Transcode	CGI	variables	from	os.environ	to	PEP	3333	“bytes	in
unicode”	strings,	 returning	a	new	dictionary.	This	 function	 is	used
by	 CGIHandler	 and	 IISCGIHandler	 in	 place	 of	 directly	 using
os.environ,	 which	 is	 not	 necessarily	 WSGI-compliant	 on	 all
platforms	 and	 web	 servers	 using	 Python	 3	 –	 specifically,	 ones
where	 the	OS’s	actual	 environment	 is	Unicode	 (i.e.	Windows),	 or
ones	 where	 the	 environment	 is	 bytes,	 but	 the	 system	 encoding
used	 by	 Python	 to	 decode	 it	 is	 anything	 other	 than	 ISO-8859-1
(e.g.	Unix	systems	using	UTF-8).

If	 you	 are	 implementing	 a	 CGI-based	 handler	 of	 your	 own,	 you
probably	want	to	use	this	routine	instead	of	just	copying	values	out
of	os.environ	directly.

New	in	version	3.2.

21.4.6.	Examples

This	is	a	working	“Hello	World”	WSGI	application:

from	wsgiref.simple_server	import	make_server

#	Every	WSGI	application	must	have	an	application	object	-	a	callable

#	object	that	accepts	two	arguments.	For	that	purpose,	we're	going	to

#	use	a	function	(note	that	you're	not	limited	to	a	function,	you	can

#	use	a	class	for	example).	The	first	argument	passed	to	the	function

#	is	a	dictionary	containing	CGI-style	envrironment	variables	and	the

#	second	variable	is	the	callable	object	(see	PEP	333).

def	hello_world_app(environ,	start_response):

				status	=	'200	OK'	#	HTTP	Status

				headers	=	[('Content-type',	'text/plain;	charset=utf-8'

				start_response(status,	headers)

				#	The	returned	object	is	going	to	be	printed

				return	[b"Hello	World"]

httpd	=	make_server('',	8000,	hello_world_app)

print("Serving	on	port	8000...")

#	Serve	until	process	is	killed

httpd.serve_forever()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.5.	urllib	—	URL	handling
modules
urllib	 is	 a	package	 that	 collects	 several	modules	 for	working	with
URLs:

urllib.request	for	opening	and	reading	URLs
urllib.error	 containing	 the	 exceptions	 raised	 by
urllib.request

urllib.parse	for	parsing	URLs
urllib.robotparser	for	parsing	robots.txt	files

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.6.	urllib.request	—
Extensible	library	for	opening
URLs
The	 urllib.request	module	 defines	 functions	 and	 classes	which
help	in	opening	URLs	(mostly	HTTP)	in	a	complex	world	—	basic	and
digest	authentication,	redirections,	cookies	and	more.

The	urllib.request	module	defines	the	following	functions:

urllib.request.urlopen(url,	data=None[,	timeout],	*,
cafile=None,	capath=None,	cadefault=False)

Open	 the	 URL	 url,	 which	 can	 be	 either	 a	 string	 or	 a	 Request
object.

data	must	be	a	bytes	object	specifying	additional	data	to	be	sent	to
the	server,	or	None	if	no	such	data	is	needed.	data	may	also	be	an
iterable	 object	 and	 in	 that	 case	 Content-Length	 value	 must	 be
specified	 in	 the	 headers.	 Currently	 HTTP	 requests	 are	 the	 only
ones	that	use	data;	the	HTTP	request	will	be	a	POST	instead	of	a
GET	when	the	data	parameter	is	provided.

data	 should	 be	 a	 buffer	 in	 the	 standard	 application/x-www-form-
urlencoded	 format.	 The	 urllib.parse.urlencode()	 function
takes	 a	mapping	 or	 sequence	 of	 2-tuples	 and	 returns	 a	 string	 in
this	format.	It	should	be	encoded	to	bytes	before	being	used	as	the
data	parameter.	The	charset	parameter	in	Content-Type	header
may	be	used	 to	specify	 the	encoding.	 If	 charset	parameter	 is	not
sent	with	the	Content-Type	header,	 the	server	following	the	HTTP

1.1	recommendation	may	assume	that	the	data	is	encoded	in	ISO-
8859-1	 encoding.	 It	 is	 advisable	 to	 use	 charset	 parameter	 with
encoding	used	in	Content-Type	header	with	the	Request.

urllib.request	 module	 uses	 HTTP/1.1	 and	 includes
Connection:close	header	in	its	HTTP	requests.

The	optional	timeout	parameter	specifies	a	 timeout	 in	seconds	for
blocking	operations	like	the	connection	attempt	(if	not	specified,	the
global	default	timeout	setting	will	be	used).	This	actually	only	works
for	HTTP,	HTTPS	and	FTP	connections.

The	optional	cafile	and	capath	parameters	specify	a	set	of	 trusted
CA	certificates	for	HTTPS	requests.	cafile	should	point	to	a	single
file	containing	a	bundle	of	CA	certificates,	whereas	capath	should
point	to	a	directory	of	hashed	certificate	files.	More	information	can
be	found	in	ssl.SSLContext.load_verify_locations().

The	cadefault	parameter	specifies	whether	to	fall	back	to	loading	a
default	certificate	store	defined	by	the	underlying	OpenSSL	library
if	the	cafile	and	capath	parameters	are	omitted.	This	will	only	work
on	some	non-Windows	platforms.

Warning: 	If	neither	cafile	nor	capath	is	specified,	and	cadefault
is	False,	 an	HTTPS	 request	will	 not	 do	 any	 verification	 of	 the
server’s	certificate.

For	 http	 and	 https	 urls,	 this	 function	 returns	 a
http.client.HTTPResponse	 object	 which	 has	 the	 following
HTTPResponse	Objects	methods.

For	ftp,	file,	and	data	urls	and	requests	explicity	handled	by	legacy
URLopener	and	FancyURLopener	classes,	 this	 function	 returns

a	 urllib.response.addinfourl	 object	 which	 can	 work	 as
context	manager	and	has	methods	such	as

geturl()	 —	 return	 the	 URL	 of	 the	 resource	 retrieved,
commonly	used	to	determine	if	a	redirect	was	followed
info()	—	 return	 the	meta-information	of	 the	page,	 such	as
headers,	 in	 the	 form	 of	 an
email.message_from_string()	 instance	 (see	 Quick
Reference	to	HTTP	Headers)
getcode()	–	return	the	HTTP	status	code	of	the	response.

Raises	URLError	on	errors.

Note	that	None	may	be	returned	if	no	handler	handles	the	request
(though	 the	 default	 installed	 global	 OpenerDirector	 uses
UnknownHandler	to	ensure	this	never	happens).

In	 addition,	 if	 proxy	 settings	 are	 detected	 (for	 example,	 when	 a
*_proxy	 environment	 variable	 like	 http_proxy	 is	 set),
ProxyHandler	 is	 default	 installed	and	makes	 sure	 the	 requests
are	handled	through	the	proxy.

The	legacy	urllib.urlopen	function	from	Python	2.6	and	earlier
has	 been	 discontinued;	 urllib.request.urlopen()

corresponds	to	the	old	urllib2.urlopen.	Proxy	handling,	which
was	done	by	passing	a	dictionary	parameter	to	urllib.urlopen,
can	be	obtained	by	using	ProxyHandler	objects.

Changed	in	version	3.2:	cafile	and	capath	were	added.

Changed	in	version	3.2:	HTTPS	virtual	hosts	are	now	supported	if
possible	(that	is,	if	ssl.HAS_SNI	is	true).

New	in	version	3.2:	data	can	be	an	iterable	object.

http://www.cs.tut.fi/~jkorpela/http.html

Changed	in	version	3.3:	cadefault	was	added.

urllib.request.install_opener(opener)
Install	an	OpenerDirector	instance	as	the	default	global	opener.
Installing	an	opener	 is	only	necessary	 if	 you	want	urlopen	 to	use
that	 opener;	 otherwise,	 simply	 call	 OpenerDirector.open()
instead	 of	 urlopen().	 The	 code	 does	 not	 check	 for	 a	 real
OpenerDirector,	 and	 any	 class	 with	 the	 appropriate	 interface
will	work.

urllib.request.build_opener([handler,	...])
Return	an	OpenerDirector	 instance,	which	chains	the	handlers
in	 the	 order	 given.	 handlers	 can	 be	 either	 instances	 of
BaseHandler,	or	subclasses	of	BaseHandler	 (in	which	case	 it
must	 be	possible	 to	 call	 the	 constructor	without	 any	parameters).
Instances	of	 the	 following	classes	will	 be	 in	 front	of	 the	handlers,
unless	the	handlers	contain	them,	instances	of	them	or	subclasses
of	 them:	 ProxyHandler	 (if	 proxy	 settings	 are	 detected),
UnknownHandler,	 HTTPHandler,
HTTPDefaultErrorHandler,	 HTTPRedirectHandler,
FTPHandler,	FileHandler,	HTTPErrorProcessor.

If	 the	Python	 installation	has	SSL	support	 (i.e.,	 if	 the	ssl	module
can	be	imported),	HTTPSHandler	will	also	be	added.

A	BaseHandler	subclass	may	also	change	 its	handler_order
attribute	to	modify	its	position	in	the	handlers	list.

urllib.request.pathname2url(path)
Convert	the	pathname	path	from	the	local	syntax	for	a	path	to	the
form	used	in	the	path	component	of	a	URL.	This	does	not	produce
a	complete	URL.	The	return	value	will	already	be	quoted	using	the

quote()	function.

urllib.request.url2pathname(path)
Convert	the	path	component	path	from	a	percent-encoded	URL	to
the	local	syntax	for	a	path.	This	does	not	accept	a	complete	URL.
This	function	uses	unquote()	to	decode	path.

urllib.request.getproxies()
This	helper	function	returns	a	dictionary	of	scheme	to	proxy	server
URL	 mappings.	 It	 scans	 the	 environment	 for	 variables	 named
<scheme>_proxy,	 in	 a	 case	 insensitive	 approach,	 for	 all
operating	systems	first,	and	when	 it	cannot	 find	 it,	 looks	 for	proxy
information	 from	 Mac	 OSX	 System	 Configuration	 for	 Mac	 OS	 X
and	Windows	Systems	Registry	for	Windows.

The	following	classes	are	provided:

class	urllib.request.Request(url,	data=None,	headers={},
origin_req_host=None,	unverifiable=False,	method=None)

This	class	is	an	abstraction	of	a	URL	request.

url	should	be	a	string	containing	a	valid	URL.

data	must	be	a	bytes	object	 specifying	additional	data	 to	send	 to
the	 server,	 or	 None	 if	 no	 such	 data	 is	 needed.	 Currently	 HTTP
requests	are	the	only	ones	that	use	data;	the	HTTP	request	will	be
a	POST	 instead	 of	 a	GET	when	 the	data	 parameter	 is	 provided.
data	 should	 be	 a	 buffer	 in	 the	 standard	 application/x-www-form-
urlencoded	format.

The	urllib.parse.urlencode()	 function	 takes	a	mapping	or
sequence	of	2-tuples	and	 returns	a	string	 in	 this	 format.	 It	 should
be	encoded	to	bytes	before	being	used	as	the	data	parameter.	The

charset	 parameter	 in	 Content-Type	 header	 may	 be	 used	 to
specify	 the	 encoding.	 If	 charset	 parameter	 is	 not	 sent	 with	 the
Content-Type	 header,	 the	 server	 following	 the	 HTTP	 1.1
recommendation	 may	 assume	 that	 the	 data	 is	 encoded	 in	 ISO-
8859-1	 encoding.	 It	 is	 advisable	 to	 use	 charset	 parameter	 with
encoding	used	in	Content-Type	header	with	the	Request.

headers	 should	 be	 a	 dictionary,	 and	 will	 be	 treated	 as	 if
add_header()	was	called	with	each	key	and	value	as	arguments.
This	 is	 often	 used	 to	 “spoof”	 the	 User-Agent	 header,	 which	 is
used	by	a	browser	to	identify	itself	–	some	HTTP	servers	only	allow
requests	 coming	 from	 common	 browsers	 as	 opposed	 to	 scripts.
For	example,	Mozilla	Firefox	may	identify	itself	as	"Mozilla/5.0
(X11;	 U;	 Linux	 i686)	 Gecko/20071127

Firefox/2.0.0.11",	while	urllib‘s	default	user	agent	string	is
"Python-urllib/2.6"	(on	Python	2.6).

An	example	of	using	Content-Type	header	with	data	 argument
would	 be	 sending	 a	 dictionary	 like	 {"Content-Type":"

application/x-www-form-urlencoded;charset=utf-8"}

The	final	two	arguments	are	only	of	interest	for	correct	handling	of
third-party	HTTP	cookies:

origin_req_host	 should	 be	 the	 request-host	 of	 the	 origin
transaction,	 as	 defined	 by	 RFC	 2965.	 It	 defaults	 to
http.cookiejar.request_host(self).	 This	 is	 the	 host
name	or	IP	address	of	the	original	request	that	was	initiated	by	the
user.	 For	 example,	 if	 the	 request	 is	 for	 an	 image	 in	 an	 HTML
document,	 this	 should	 be	 the	 request-host	 of	 the	 request	 for	 the
page	containing	the	image.

http://tools.ietf.org/html/rfc2965.html

unverifiable	should	indicate	whether	the	request	is	unverifiable,	as
defined	by	RFC	2965.	It	defaults	to	False.	An	unverifiable	request
is	one	whose	URL	the	user	did	not	have	the	option	to	approve.	For
example,	if	the	request	is	for	an	image	in	an	HTML	document,	and
the	 user	 had	 no	 option	 to	 approve	 the	 automatic	 fetching	 of	 the
image,	this	should	be	true.

method	should	be	a	string	that	indicates	the	HTTP	request	method
that	will	be	used	 (e.g.	'HEAD').	 If	 provided,	 its	 value	 is	 stored	 in
the	method	attribute	and	is	used	by	get_method().	Subclasses
may	 indicate	a	default	method	by	setting	 the	 method	attribute	 in
the	class	itself.

Changed	 in	version	3.3:	Request.method	argument	 is	added	to
the	Request	class.

Changed	 in	 version	 3.4:	 Default	 Request.method	 may	 be
indicated	at	the	class	level.

class	urllib.request.OpenerDirector
The	 OpenerDirector	 class	 opens	 URLs	 via	 BaseHandlers
chained	 together.	 It	 manages	 the	 chaining	 of	 handlers,	 and
recovery	from	errors.

class	urllib.request.BaseHandler
This	 is	 the	 base	 class	 for	 all	 registered	 handlers	—	and	 handles
only	the	simple	mechanics	of	registration.

class	urllib.request.HTTPDefaultErrorHandler
A	class	which	defines	a	default	handler	for	HTTP	error	responses;
all	responses	are	turned	into	HTTPError	exceptions.

class	urllib.request.HTTPRedirectHandler

A	class	to	handle	redirections.

class
urllib.request.HTTPCookieProcessor(cookiejar=None)

A	class	to	handle	HTTP	Cookies.

class	urllib.request.ProxyHandler(proxies=None)
Cause	requests	to	go	through	a	proxy.	If	proxies	is	given,	it	must	be
a	 dictionary	 mapping	 protocol	 names	 to	 URLs	 of	 proxies.	 The
default	is	to	read	the	list	of	proxies	from	the	environment	variables
<protocol>_proxy.	 If	 no	 proxy	 environment	 variables	 are	 set,
then	 in	 a	Windows	environment	 proxy	 settings	 are	 obtained	 from
the	 registry’s	 Internet	 Settings	 section,	 and	 in	 a	 Mac	 OS	 X
environment	proxy	 information	 is	 retrieved	 from	the	OS	X	System
Configuration	Framework.

To	disable	autodetected	proxy	pass	an	empty	dictionary.

class	urllib.request.HTTPPasswordMgr
Keep	 a	 database	 of	 (realm,	 uri)	 ->	 (user,	 password)
mappings.

class
urllib.request.HTTPPasswordMgrWithDefaultRealm

Keep	 a	 database	 of	 (realm,	 uri)	 ->	 (user,	 password)
mappings.	A	realm	of	None	is	considered	a	catch-all	realm,	which
is	searched	if	no	other	realm	fits.

class
urllib.request.AbstractBasicAuthHandler(password_mgr=None

This	 is	a	mixin	class	 that	helps	with	HTTP	authentication,	both	 to
the	remote	host	and	to	a	proxy.	password_mgr,	if	given,	should	be
something	 that	 is	 compatible	 with	 HTTPPasswordMgr;	 refer	 to

section	HTTPPasswordMgr	Objects	for	information	on	the	interface
that	must	be	supported.

class
urllib.request.HTTPBasicAuthHandler(password_mgr=None

Handle	 authentication	 with	 the	 remote	 host.	 password_mgr,	 if
given,	 should	 be	 something	 that	 is	 compatible	 with
HTTPPasswordMgr;	 refer	 to	 section	HTTPPasswordMgr	Objects
for	 information	 on	 the	 interface	 that	 must	 be	 supported.
HTTPBasicAuthHandler	will	raise	a	ValueError	when	presented
with	a	wrong	Authentication	scheme.

class
urllib.request.ProxyBasicAuthHandler(password_mgr=None

Handle	 authentication	 with	 the	 proxy.	 password_mgr,	 if	 given,
should	be	something	 that	 is	compatible	with	HTTPPasswordMgr;
refer	 to	section	HTTPPasswordMgr	Objects	 for	 information	on	the
interface	that	must	be	supported.

class
urllib.request.AbstractDigestAuthHandler(password_mgr=None

This	 is	a	mixin	class	 that	helps	with	HTTP	authentication,	both	 to
the	remote	host	and	to	a	proxy.	password_mgr,	if	given,	should	be
something	 that	 is	 compatible	 with	 HTTPPasswordMgr;	 refer	 to
section	HTTPPasswordMgr	Objects	for	information	on	the	interface
that	must	be	supported.

class
urllib.request.HTTPDigestAuthHandler(password_mgr=None

Handle	 authentication	 with	 the	 remote	 host.	 password_mgr,	 if
given,	 should	 be	 something	 that	 is	 compatible	 with
HTTPPasswordMgr;	 refer	 to	 section	HTTPPasswordMgr	Objects
for	information	on	the	interface	that	must	be	supported.	When	both

Digest	 Authentication	 Handler	 and	 Basic	 Authentication	 Handler
are	 both	 added,	 Digest	 Authentication	 is	 always	 tried	 first.	 If	 the
Digest	 Authentication	 returns	 a	 40x	 response	 again,	 it	 is	 sent	 to
Basic	Authentication	handler	 to	Handle.	This	Handler	method	will
raise	 a	 ValueError	 when	 presented	 with	 an	 authentication
scheme	other	than	Digest	or	Basic.

Changed	 in	 version	 3.3:	 Raise	 ValueError	 on	 unsupported
Authentication	Scheme.

class
urllib.request.ProxyDigestAuthHandler(password_mgr=None

Handle	 authentication	 with	 the	 proxy.	 password_mgr,	 if	 given,
should	be	something	 that	 is	compatible	with	HTTPPasswordMgr;
refer	 to	section	HTTPPasswordMgr	Objects	 for	 information	on	the
interface	that	must	be	supported.

class	urllib.request.HTTPHandler
A	class	to	handle	opening	of	HTTP	URLs.

class	urllib.request.HTTPSHandler(debuglevel=0,
context=None,	check_hostname=None)

A	 class	 to	 handle	 opening	 of	 HTTPS	 URLs.	 context	 and
check_hostname	 have	 the	 same	 meaning	 as	 in
http.client.HTTPSConnection.

Changed	in	version	3.2:	context	and	check_hostname	were	added.

class	urllib.request.FileHandler
Open	local	files.

class	urllib.request.DataHandler
Open	data	URLs.

New	in	version	3.4.

class	urllib.request.FTPHandler
Open	FTP	URLs.

class	urllib.request.CacheFTPHandler
Open	 FTP	 URLs,	 keeping	 a	 cache	 of	 open	 FTP	 connections	 to
minimize	delays.

class	urllib.request.UnknownHandler
A	catch-all	class	to	handle	unknown	URLs.

class	urllib.request.HTTPErrorProcessor
Process	HTTP	error	responses.

21.6.1.	Request	Objects

The	following	methods	describe	Request‘s	public	interface,	and	so	all
may	 be	 overridden	 in	 subclasses.	 It	 also	 defines	 several	 public
attributes	that	can	be	used	by	clients	to	inspect	the	parsed	request.

Request.full_url

The	original	URL	passed	to	the	constructor.

Changed	in	version	3.4.

Request.full_url	 is	 a	 property	 with	 setter,	 getter	 and	 a	 deleter.
Getting	 full_url	 returns	 the	 original	 request	 URL	 with	 the
fragment,	if	it	was	present.

Request.type

The	URI	scheme.

Request.host

The	 URI	 authority,	 typically	 a	 host,	 but	 may	 also	 contain	 a	 port
separated	by	a	colon.

Request.origin_req_host

The	original	host	for	the	request,	without	port.

Request.selector

The	URI	path.	 If	 the	Request	uses	a	proxy,	 then	selector	will	be
the	full	url	that	is	passed	to	the	proxy.

Request.data

The	entity	body	for	the	request,	or	None	if	not	specified.

Changed	 in	 version	 3.4:	Changing	 value	 of	 Request.data	 now

deletes	 “Content-Length”	 header	 if	 it	 was	 previously	 set	 or
calculated.

Request.unverifiable

boolean,	indicates	whether	the	request	is	unverifiable	as	defined	by
RFC	2965.

Request.method

The	 HTTP	 request	method	 to	 use.	 By	 default	 its	 value	 is	 None,
which	means	 that	 get_method()	will	 do	 its	normal	 computation
of	the	method	to	be	used.	Its	value	can	be	set	(thus	overriding	the
default	 computation	 in	 get_method())	 either	 by	 providing	 a
default	value	by	setting	it	at	the	class	level	in	a	Request	subclass,
or	 by	 passing	 a	 value	 in	 to	 the	 Request	 constructor	 via	 the
method	argument.

New	in	version	3.3.

Changed	 in	 version	 3.4:	 A	 default	 value	 can	 now	 be	 set	 in
subclasses;	 previously	 it	 could	 only	 be	 set	 via	 the	 constructor
argument.

Request.get_method()
Return	 a	 string	 indicating	 the	 HTTP	 request	 method.	 If
Request.method	 is	not	None,	 return	 its	 value,	otherwise	 return
'GET'	 if	 Request.data	 is	 None,	 or	 'POST'	 if	 it’s	 not.	 This	 is
only	meaningful	for	HTTP	requests.

Changed	 in	 version	 3.3:	 get_method	 now	 looks	 at	 the	 value	 of
Request.method.

Request.add_header(key,	val)
Add	another	header	to	the	request.	Headers	are	currently	 ignored

by	all	handlers	except	HTTP	handlers,	where	they	are	added	to	the
list	of	headers	sent	 to	 the	server.	Note	 that	 there	cannot	be	more
than	one	header	with	the	same	name,	and	later	calls	will	overwrite
previous	calls	in	case	the	key	collides.	Currently,	this	is	no	loss	of
HTTP	 functionality,	 since	 all	 headers	 which	 have	 meaning	 when
used	more	 than	once	have	a	(header-specific)	way	of	gaining	 the
same	functionality	using	only	one	header.

Request.add_unredirected_header(key,	header)
Add	a	header	that	will	not	be	added	to	a	redirected	request.

Request.has_header(header)
Return	whether	 the	 instance	has	 the	named	header	 (checks	both
regular	and	unredirected).

Request.remove_header(header)
Remove	 named	 header	 from	 the	 request	 instance	 (both	 from
regular	and	unredirected	headers).

New	in	version	3.4.

Request.get_full_url()
Return	the	URL	given	in	the	constructor.

Changed	in	version	3.4.

Returns	Request.full_url

Request.set_proxy(host,	type)
Prepare	the	request	by	connecting	to	a	proxy	server.	The	host	and
type	will	replace	those	of	the	instance,	and	the	instance’s	selector
will	be	the	original	URL	given	in	the	constructor.

Request.get_header(header_name,	default=None)
Return	the	value	of	the	given	header.	If	the	header	is	not	present,
return	the	default	value.

Request.header_items()
Return	 a	 list	 of	 tuples	 (header_name,	 header_value)	 of	 the
Request	headers.

Changed	 in	 version	 3.4:	 Request	 methods	 add_data,	 has_data,
get_data,	 get_type,	 get_host,	 get_selector,	 get_origin_req_host	 and
is_unverifiable	deprecated	since	3.3	have	been	removed.

21.6.2.	OpenerDirector	Objects

OpenerDirector	instances	have	the	following	methods:

OpenerDirector.add_handler(handler)
handler	 should	 be	 an	 instance	 of	 BaseHandler.	 The	 following
methods	are	searched,	and	added	to	the	possible	chains	(note	that
HTTP	errors	are	a	special	case).

protocol_open()	—	signal	 that	 the	handler	knows	how	 to
open	protocol	URLs.
http_error_type()	—	signal	 that	 the	handler	knows	how
to	handle	HTTP	errors	with	HTTP	error	code	type.
protocol_error()	—	signal	that	the	handler	knows	how	to
handle	errors	from	(non-http)	protocol.
protocol_request()	—	signal	that	the	handler	knows	how
to	pre-process	protocol	requests.
protocol_response()	 —	 signal	 that	 the	 handler	 knows
how	to	post-process	protocol	responses.

OpenerDirector.open(url,	data=None[,	timeout])
Open	 the	 given	 url	 (which	 can	 be	 a	 request	 object	 or	 a	 string),
optionally	 passing	 the	 given	 data.	 Arguments,	 return	 values	 and
exceptions	 raised	 are	 the	 same	 as	 those	 of	 urlopen()	 (which
simply	 calls	 the	 open()	method	 on	 the	 currently	 installed	 global
OpenerDirector).	 The	 optional	 timeout	 parameter	 specifies	 a
timeout	 in	 seconds	 for	 blocking	 operations	 like	 the	 connection
attempt	 (if	 not	 specified,	 the	 global	 default	 timeout	 setting	will	 be
used).	 The	 timeout	 feature	 actually	works	 only	 for	HTTP,	HTTPS
and	FTP	connections).

OpenerDirector.error(proto,	*args)
Handle	an	error	of	 the	given	protocol.	This	will	 call	 the	 registered
error	 handlers	 for	 the	 given	 protocol	 with	 the	 given	 arguments
(which	are	protocol	specific).	The	HTTP	protocol	 is	a	special	case
which	uses	the	HTTP	response	code	to	determine	the	specific	error
handler;	 refer	 to	 the	 http_error_*()	 methods	 of	 the	 handler
classes.

Return	 values	 and	 exceptions	 raised	 are	 the	 same	 as	 those	 of
urlopen().

OpenerDirector	objects	open	URLs	in	three	stages:

The	 order	 in	 which	 these	 methods	 are	 called	 within	 each	 stage	 is
determined	by	sorting	the	handler	instances.

1.	 Every	handler	with	a	method	named	like	protocol_request()
has	that	method	called	to	pre-process	the	request.

2.	 Handlers	 with	 a	 method	 named	 like	 protocol_open()	 are
called	 to	 handle	 the	 request.	 This	 stage	 ends	 when	 a	 handler
either	 returns	 a	 non-None	 value	 (ie.	 a	 response),	 or	 raises	 an
exception	 (usually	 URLError).	 Exceptions	 are	 allowed	 to
propagate.

In	 fact,	 the	 above	 algorithm	 is	 first	 tried	 for	 methods	 named
default_open().	 If	 all	 such	 methods	 return	 None,	 the
algorithm	 is	 repeated	 for	 methods	 named	 like
protocol_open().	 If	 all	 such	 methods	 return	 None,	 the
algorithm	is	repeated	for	methods	named	unknown_open().

Note	that	the	implementation	of	these	methods	may	involve	calls
of	 the	 parent	 OpenerDirector	 instance’s	 open()	 and

error()	methods.

3.	 Every	 handler	 with	 a	 method	 named	 like
protocol_response()	has	that	method	called	to	post-process
the	response.

21.6.3.	BaseHandler	Objects

BaseHandler	 objects	provide	a	 couple	of	methods	 that	are	directly
useful,	 and	 others	 that	 are	 meant	 to	 be	 used	 by	 derived	 classes.
These	are	intended	for	direct	use:

BaseHandler.add_parent(director)
Add	a	director	as	parent.

BaseHandler.close()
Remove	any	parents.

The	 following	attribute	and	methods	should	only	be	used	by	 classes
derived	from	BaseHandler.

Note: 	The	convention	has	been	adopted	that	subclasses	defining
protocol_request()	or	protocol_response()	methods	are
named	*Processor;	all	others	are	named	*Handler.

BaseHandler.parent

A	 valid	 OpenerDirector,	 which	 can	 be	 used	 to	 open	 using	 a
different	protocol,	or	handle	errors.

BaseHandler.default_open(req)
This	 method	 is	 not	 defined	 in	 BaseHandler,	 but	 subclasses
should	define	it	if	they	want	to	catch	all	URLs.

This	 method,	 if	 implemented,	 will	 be	 called	 by	 the	 parent
OpenerDirector.	 It	 should	 return	a	 file-like	object	as	described
in	the	return	value	of	the	open()	of	OpenerDirector,	or	None.
It	should	raise	URLError,	unless	a	truly	exceptional	thing	happens

(for	 example,	 MemoryError	 should	 not	 be	 mapped	 to
URLError).

This	 method	 will	 be	 called	 before	 any	 protocol-specific	 open
method.

BaseHandler.protocol_open(req)
This	 method	 is	 not	 defined	 in	 BaseHandler,	 but	 subclasses
should	define	it	if	they	want	to	handle	URLs	with	the	given	protocol.

This	 method,	 if	 defined,	 will	 be	 called	 by	 the	 parent
OpenerDirector.	 Return	 values	 should	 be	 the	 same	 as	 for
default_open().

BaseHandler.unknown_open(req)
This	 method	 is	 not	 defined	 in	 BaseHandler,	 but	 subclasses
should	 define	 it	 if	 they	 want	 to	 catch	 all	 URLs	 with	 no	 specific
registered	handler	to	open	it.

This	 method,	 if	 implemented,	 will	 be	 called	 by	 the	 parent
OpenerDirector.	 Return	 values	 should	 be	 the	 same	 as	 for
default_open().

BaseHandler.http_error_default(req,	fp,	code,	msg,	hdrs)
This	 method	 is	 not	 defined	 in	 BaseHandler,	 but	 subclasses
should	override	it	if	they	intend	to	provide	a	catch-all	for	otherwise
unhandled	 HTTP	 errors.	 It	 will	 be	 called	 automatically	 by	 the
OpenerDirector	 getting	 the	 error,	 and	 should	 not	 normally	 be
called	in	other	circumstances.

req	will	 be	a	Request	object,	 fp	will	be	a	 file-like	object	with	 the
HTTP	error	body,	code	will	be	the	three-digit	code	of	the	error,	msg

will	be	 the	user-visible	explanation	of	 the	code	and	hdrs	will	be	a
mapping	object	with	the	headers	of	the	error.

Return	values	and	exceptions	raised	should	be	the	same	as	those
of	urlopen().

BaseHandler.http_error_nnn(req,	fp,	code,	msg,	hdrs)
nnn	should	be	a	 three-digit	HTTP	error	code.	This	method	 is	also
not	defined	 in	BaseHandler,	but	will	be	called,	 if	 it	exists,	on	an
instance	of	a	subclass,	when	an	HTTP	error	with	code	nnn	occurs.

Subclasses	 should	 override	 this	method	 to	 handle	 specific	HTTP
errors.

Arguments,	 return	 values	 and	 exceptions	 raised	 should	 be	 the
same	as	for	http_error_default().

BaseHandler.protocol_request(req)
This	 method	 is	 not	 defined	 in	 BaseHandler,	 but	 subclasses
should	define	 it	 if	 they	want	 to	pre-process	 requests	of	 the	given
protocol.

This	 method,	 if	 defined,	 will	 be	 called	 by	 the	 parent
OpenerDirector.	req	will	be	a	Request	object.	The	return	value
should	be	a	Request	object.

BaseHandler.protocol_response(req,	response)
This	 method	 is	 not	 defined	 in	 BaseHandler,	 but	 subclasses
should	define	it	if	they	want	to	post-process	responses	of	the	given
protocol.

This	 method,	 if	 defined,	 will	 be	 called	 by	 the	 parent
OpenerDirector.	req	will	be	a	Request	object.	response	will	be

an	object	 implementing	 the	 same	 interface	as	 the	 return	 value	of
urlopen().	 The	 return	 value	 should	 implement	 the	 same
interface	as	the	return	value	of	urlopen().

21.6.4.	HTTPRedirectHandler	Objects

Note: 	Some	HTTP	redirections	require	action	from	this	module’s
client	code.	If	this	is	the	case,	HTTPError	is	raised.	See	RFC	2616
for	details	of	the	precise	meanings	of	the	various	redirection	codes.

An	 HTTPError	 exception	 raised	 as	 a	 security	 consideration	 if	 the
HTTPRedirectHandler	is	presented	with	a	redirected	url	which	is	not
an	HTTP,	HTTPS	or	FTP	url.

HTTPRedirectHandler.redirect_request(req,	fp,	code,
msg,	hdrs,	newurl)

Return	a	Request	or	None	in	response	to	a	redirect.	This	is	called
by	 the	 default	 implementations	 of	 the	 http_error_30*()

methods	 when	 a	 redirection	 is	 received	 from	 the	 server.	 If	 a
redirection	 should	 take	 place,	 return	 a	 new	 Request	 to	 allow
http_error_30*()	to	perform	the	redirect	to	newurl.	Otherwise,
raise	HTTPError	if	no	other	handler	should	try	to	handle	this	URL,
or	return	None	if	you	can’t	but	another	handler	might.

Note: 	 The	 default	 implementation	 of	 this	 method	 does	 not
strictly	follow	RFC	2616,	which	says	that	301	and	302	responses
to	 POST	 requests	 must	 not	 be	 automatically	 redirected	 without
confirmation	by	 the	user.	 In	 reality,	browsers	do	allow	automatic
redirection	of	these	responses,	changing	the	POST	to	a	GET,	and
the	default	implementation	reproduces	this	behavior.

HTTPRedirectHandler.http_error_301(req,	fp,	code,	msg,
hdrs)

Redirect	to	the	Location:	or	URI:	URL.	This	method	is	called	by

http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2616.html

the	 parent	 OpenerDirector	 when	 getting	 an	 HTTP	 ‘moved
permanently’	response.

HTTPRedirectHandler.http_error_302(req,	fp,	code,	msg,
hdrs)

The	 same	 as	 http_error_301(),	 but	 called	 for	 the	 ‘found’
response.

HTTPRedirectHandler.http_error_303(req,	fp,	code,	msg,
hdrs)

The	same	as	http_error_301(),	 but	 called	 for	 the	 ‘see	other’
response.

HTTPRedirectHandler.http_error_307(req,	fp,	code,	msg,
hdrs)

The	same	as	 http_error_301(),	 but	 called	 for	 the	 ‘temporary
redirect’	response.

21.6.5.	HTTPCookieProcessor	Objects

HTTPCookieProcessor	instances	have	one	attribute:

HTTPCookieProcessor.cookiejar

The	http.cookiejar.CookieJar	in	which	cookies	are	stored.

21.6.6.	ProxyHandler	Objects

ProxyHandler.protocol_open(request)
The	 ProxyHandler	 will	 have	 a	method	 protocol_open()	 for
every	protocol	which	has	a	proxy	in	the	proxies	dictionary	given	in
the	constructor.	The	method	will	modify	requests	to	go	through	the
proxy,	 by	 calling	 request.set_proxy(),	 and	 call	 the	 next
handler	in	the	chain	to	actually	execute	the	protocol.

21.6.7.	HTTPPasswordMgr	Objects

These	 methods	 are	 available	 on	 HTTPPasswordMgr	 and
HTTPPasswordMgrWithDefaultRealm	objects.

HTTPPasswordMgr.add_password(realm,	uri,	user,	passwd)
uri	can	be	either	a	single	URI,	or	a	sequence	of	URIs.	realm,	user
and	passwd	must	be	strings.	This	causes	(user,	passwd)	to	be
used	as	authentication	tokens	when	authentication	for	realm	and	a
super-URI	of	any	of	the	given	URIs	is	given.

HTTPPasswordMgr.find_user_password(realm,	authuri)
Get	user/password	for	given	realm	and	URI,	if	any.	This	method	will
return	(None,	None)	if	there	is	no	matching	user/password.

For	 HTTPPasswordMgrWithDefaultRealm	 objects,	 the	 realm
None	 will	 be	 searched	 if	 the	 given	 realm	 has	 no	 matching
user/password.

21.6.8.	AbstractBasicAuthHandler	Objects

AbstractBasicAuthHandler.http_error_auth_reqed(authreq
host,	req,	headers)

Handle	an	authentication	request	by	getting	a	user/password	pair,
and	 re-trying	 the	 request.	 authreq	 should	 be	 the	 name	 of	 the
header	 where	 the	 information	 about	 the	 realm	 is	 included	 in	 the
request,	host	 specifies	 the	URL	 and	 path	 to	 authenticate	 for,	 req
should	be	the	(failed)	Request	object,	and	headers	should	be	the
error	headers.

host	 is	 either	 an	 authority	 (e.g.	 "python.org")	 or	 a	 URL
containing	 an	 authority	 component	 (e.g.
"http://python.org/").	 In	either	case,	the	authority	must	not
contain	 a	 userinfo	 component	 (so,	 "python.org"	 and
"python.org:80"	are	 fine,	"joe:password@python.org"	 is
not).

21.6.9.	HTTPBasicAuthHandler	Objects

HTTPBasicAuthHandler.http_error_401(req,	fp,	code,	msg,
hdrs)

Retry	the	request	with	authentication	information,	if	available.

21.6.10.	ProxyBasicAuthHandler	Objects

ProxyBasicAuthHandler.http_error_407(req,	fp,	code,
msg,	hdrs)

Retry	the	request	with	authentication	information,	if	available.

21.6.11.	AbstractDigestAuthHandler
Objects

AbstractDigestAuthHandler.http_error_auth_reqed(authreq
host,	req,	headers)

authreq	 should	be	 the	name	of	 the	header	where	 the	 information
about	the	realm	is	included	in	the	request,	host	should	be	the	host
to	authenticate	to,	req	should	be	the	(failed)	Request	object,	and
headers	should	be	the	error	headers.

21.6.12.	HTTPDigestAuthHandler	Objects

HTTPDigestAuthHandler.http_error_401(req,	fp,	code,
msg,	hdrs)

Retry	the	request	with	authentication	information,	if	available.

21.6.13.	ProxyDigestAuthHandler	Objects

ProxyDigestAuthHandler.http_error_407(req,	fp,	code,
msg,	hdrs)

Retry	the	request	with	authentication	information,	if	available.

21.6.14.	HTTPHandler	Objects

HTTPHandler.http_open(req)
Send	 an	 HTTP	 request,	 which	 can	 be	 either	 GET	 or	 POST,
depending	on	req.has_data().

21.6.15.	HTTPSHandler	Objects

HTTPSHandler.https_open(req)
Send	 an	 HTTPS	 request,	 which	 can	 be	 either	 GET	 or	 POST,
depending	on	req.has_data().

21.6.16.	FileHandler	Objects

FileHandler.file_open(req)
Open	the	file	locally,	 if	there	is	no	host	name,	or	the	host	name	is
'localhost'.

Changed	 in	 version	 3.2:	This	 method	 is	 applicable	 only	 for	 local
hostnames.	When	 a	 remote	 hostname	 is	 given,	 an	 URLError	 is
raised.

21.6.17.	DataHandler	Objects

DataHandler.data_open(req)
Read	a	data	URL.	This	kind	of	URL	contains	the	content	encoded
in	 the	URL	 itself.	The	data	URL	syntax	 is	specified	 in	RFC	2397.
This	implementation	ignores	white	spaces	in	base64	encoded	data
URLs	so	the	URL	may	be	wrapped	in	whatever	source	file	it	comes
from.	But	even	though	some	browsers	don’t	mind	about	a	missing
padding	 at	 the	 end	 of	 a	 base64	 encoded	 data	 URL,	 this
implementation	will	raise	an	ValueError	in	that	case.

http://tools.ietf.org/html/rfc2397.html

21.6.18.	FTPHandler	Objects

FTPHandler.ftp_open(req)
Open	the	FTP	file	 indicated	by	req.	The	login	 is	always	done	with
empty	username	and	password.

21.6.19.	CacheFTPHandler	Objects

CacheFTPHandler	 objects	 are	 FTPHandler	 objects	 with	 the
following	additional	methods:

CacheFTPHandler.setTimeout(t)
Set	timeout	of	connections	to	t	seconds.

CacheFTPHandler.setMaxConns(m)
Set	maximum	number	of	cached	connections	to	m.

21.6.20.	UnknownHandler	Objects

UnknownHandler.unknown_open()
Raise	a	URLError	exception.

21.6.21.	HTTPErrorProcessor	Objects

HTTPErrorProcessor.http_response()
Process	HTTP	error	responses.

For	200	error	codes,	the	response	object	is	returned	immediately.

For	 non-200	 error	 codes,	 this	 simply	 passes	 the	 job	 on	 to	 the
protocol_error_code()	 handler	 methods,	 via
OpenerDirector.error().	 Eventually,
HTTPDefaultErrorHandler	 will	 raise	 an	 HTTPError	 if	 no
other	handler	handles	the	error.

HTTPErrorProcessor.https_response()
Process	HTTPS	error	responses.

The	behavior	is	same	as	http_response().

21.6.22.	Examples

This	example	gets	the	python.org	main	page	and	displays	the	first	300
bytes	of	it.

>>>	import	urllib.request

>>>	f	=	urllib.request.urlopen('http://www.python.org/'

>>>	print(f.read(300))

b'<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\n\n\n<html

xmlns="http://www.w3.org/1999/xhtml"	xml:lang="en"	lang="en">\n\n<head>\n

<meta	http-equiv="content-type"	content="text/html;	charset=utf-8"	/>\n

<title>Python	Programming	'

Note	 that	urlopen	 returns	a	bytes	object.	This	 is	because	 there	 is	no
way	 for	 urlopen	 to	 automatically	 determine	 the	 encoding	 of	 the	 byte
stream	 it	 receives	 from	 the	 http	 server.	 In	 general,	 a	 program	 will
decode	 the	 returned	 bytes	 object	 to	 string	 once	 it	 determines	 or
guesses	the	appropriate	encoding.

The	 following	 W3C	 document,	 http://www.w3.org/International/O-
charset,	lists	the	various	ways	in	which	a	(X)HTML	or	a	XML	document
could	have	specified	its	encoding	information.

As	the	python.org	website	uses	utf-8	encoding	as	specified	in	it’s	meta
tag,	we	will	use	the	same	for	decoding	the	bytes	object.

>>>	with	urllib.request.urlopen('http://www.python.org/'

...					print(f.read(100).decode('utf-8'))

...

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm

http://www.w3.org/International/O-charset

It	is	also	possible	to	achieve	the	same	result	without	using	the	context
manager	approach.

>>>	import	urllib.request

>>>	f	=	urllib.request.urlopen('http://www.python.org/'

>>>	print(f.read(100).decode('utf-8'))

<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtm

In	the	following	example,	we	are	sending	a	data-stream	to	the	stdin	of
a	CGI	and	reading	the	data	it	returns	to	us.	Note	that	this	example	will
only	work	when	the	Python	installation	supports	SSL.

>>>	import	urllib.request

>>>	req	=	urllib.request.Request(url='https://localhost/cgi-bin/test.cgi'

...																							data=b'This	data	is	passed	to	stdin	of	the	CGI'

>>>	f	=	urllib.request.urlopen(req)

>>>	print(f.read().decode('utf-8'))

Got	Data:	"This	data	is	passed	to	stdin	of	the	CGI"

The	code	for	the	sample	CGI	used	in	the	above	example	is:

#!/usr/bin/env	python

import	sys

data	=	sys.stdin.read()

print('Content-type:	text-plain\n\nGot	Data:	"%s"'	%

Here	is	an	example	of	doing	a	PUT	request	using	Request:

import	urllib.request

DATA=b'some	data'

req	=	urllib.request.Request(url='http://localhost:8080'

f	=	urllib.request.urlopen(req)

print(f.status)

print(f.reason)

Use	of	Basic	HTTP	Authentication:

import	urllib.request

#	Create	an	OpenerDirector	with	support	for	Basic	HTTP	Authentication...

auth_handler	=	urllib.request.HTTPBasicAuthHandler()

auth_handler.add_password(realm='PDQ	Application',

																										uri='https://mahler:8092/site-updates.py'

																										user='klem',

																										passwd='kadidd!ehopper')

opener	=	urllib.request.build_opener(auth_handler)

#	...and	install	it	globally	so	it	can	be	used	with	urlopen.

urllib.request.install_opener(opener)

urllib.request.urlopen('http://www.example.com/login.html'

build_opener()	 provides	 many	 handlers	 by	 default,	 including	 a
ProxyHandler.	 By	 default,	 ProxyHandler	 uses	 the	 environment
variables	 named	 <scheme>_proxy,	 where	 <scheme>	 is	 the	 URL
scheme	 involved.	 For	 example,	 the	 http_proxy	 environment
variable	is	read	to	obtain	the	HTTP	proxy’s	URL.

This	example	replaces	the	default	ProxyHandler	with	one	that	uses
programmatically-supplied	proxy	URLs,	and	adds	proxy	authorization
support	with	ProxyBasicAuthHandler.

proxy_handler	=	urllib.request.ProxyHandler({'http':

proxy_auth_handler	=	urllib.request.ProxyBasicAuthHandler

proxy_auth_handler.add_password('realm',	'host',	'username'

opener	=	urllib.request.build_opener(proxy_handler,	

#	This	time,	rather	than	install	the	OpenerDirector,	we	use	it	directly:

opener.open('http://www.example.com/login.html')

Adding	HTTP	headers:

Use	the	headers	argument	to	the	Request	constructor,	or:

import	urllib.request

req	=	urllib.request.Request('http://www.example.com/'

req.add_header('Referer',	'http://www.python.org/')

r	=	urllib.request.urlopen(req)

OpenerDirector	automatically	adds	a	User-Agent	header	 to	every
Request.	To	change	this:

import	urllib.request

opener	=	urllib.request.build_opener()

opener.addheaders	=	[('User-agent',	'Mozilla/5.0')]

opener.open('http://www.example.com/')

Also,	 remember	 that	 a	 few	 standard	 headers	 (Content-Length,
Content-Type	 without	 charset	 parameter	 and	Host)	 are	 added	when
the	 Request	 is	 passed	 to	 urlopen()	 (or
OpenerDirector.open()).

Here	 is	 an	example	 session	 that	 uses	 the	 GET	method	 to	 retrieve	a
URL	containing	parameters:

>>>	import	urllib.request

>>>	import	urllib.parse

>>>	params	=	urllib.parse.urlencode({'spam':	1,	'eggs'

>>>	f	=	urllib.request.urlopen("http://www.musi-cal.com/cgi-bin/query?%s"

>>>	print(f.read().decode('utf-8'))

The	 following	 example	 uses	 the	 POST	 method	 instead.	 Note	 that
params	output	from	urlencode	is	encoded	to	bytes	before	it	is	sent	to
urlopen	as	data:

>>>	import	urllib.request

>>>	import	urllib.parse

>>>	data	=	urllib.parse.urlencode({'spam':	1,	'eggs'

>>>	data	=	data.encode('utf-8')

>>>	request	=	urllib.request.Request("http://requestb.in/xrbl82xr"

>>>	#	adding	charset	parameter	to	the	Content-Type	header.

>>>	request.add_header("Content-Type","application/x-www-form-urlencoded;charset=utf-8"

>>>	f	=	urllib.request.urlopen(request,	data)

>>>	print(f.read().decode('utf-8'))

The	 following	 example	 uses	 an	 explicitly	 specified	 HTTP	 proxy,
overriding	environment	settings:

>>>	import	urllib.request

>>>	proxies	=	{'http':	'http://proxy.example.com:8080/'

>>>	opener	=	urllib.request.FancyURLopener(proxies)

>>>	f	=	opener.open("http://www.python.org")

>>>	f.read().decode('utf-8')

The	following	example	uses	no	proxies	at	all,	overriding	environment
settings:

>>>	import	urllib.request

>>>	opener	=	urllib.request.FancyURLopener({})

>>>	f	=	opener.open("http://www.python.org/")

>>>	f.read().decode('utf-8')

21.6.23.	Legacy	interface

The	 following	 functions	 and	 classes	 are	 ported	 from	 the	 Python	 2
module	 urllib	 (as	 opposed	 to	 urllib2).	 They	 might	 become
deprecated	at	some	point	in	the	future.

urllib.request.urlretrieve(url,	filename=None,
reporthook=None,	data=None)

Copy	a	network	object	denoted	by	a	URL	to	a	local	file.	If	the	URL
points	to	a	local	file,	the	object	will	not	be	copied	unless	filename	is
supplied.	Return	a	tuple	(filename,	headers)	where	filename
is	 the	 local	 file	 name	 under	 which	 the	 object	 can	 be	 found,	 and
headers	is	whatever	the	info()	method	of	the	object	returned	by
urlopen()	 returned	 (for	 a	 remote	 object).	 Exceptions	 are	 the
same	as	for	urlopen().

The	second	argument,	if	present,	specifies	the	file	location	to	copy
to	(if	absent,	the	location	will	be	a	tempfile	with	a	generated	name).
The	third	argument,	if	present,	is	a	hook	function	that	will	be	called
once	 on	 establishment	 of	 the	 network	 connection	 and	 once	 after
each	 block	 read	 thereafter.	 The	 hook	 will	 be	 passed	 three
arguments;	 a	 count	 of	 blocks	 transferred	 so	 far,	 a	 block	 size	 in
bytes,	and	the	total	size	of	the	file.	The	third	argument	may	be	-1
on	older	FTP	servers	which	do	not	return	a	file	size	in	response	to
a	retrieval	request.

The	 following	 example	 illustrates	 the	 most	 common	 usage
scenario:

>>>	import	urllib.request

>>>	local_filename,	headers	=	urllib.request.urlretrieve

>>>	html	=	open(local_filename)

>>>	html.close()

If	 the	 url	 uses	 the	 http:	 scheme	 identifier,	 the	 optional	 data
argument	may	 be	 given	 to	 specify	 a	 POST	 request	 (normally	 the
request	type	is	GET).	The	data	argument	must	be	a	bytes	object	in
standard	 application/x-www-form-urlencoded	 format;	 see	 the
urllib.parse.urlencode()	function.

urlretrieve()	 will	 raise	 ContentTooShortError	 when	 it
detects	 that	 the	 amount	 of	 data	 available	 was	 less	 than	 the
expected	amount	(which	 is	 the	size	reported	by	a	Content-Length
header).	 This	 can	 occur,	 for	 example,	 when	 the	 download	 is
interrupted.

The	Content-Length	 is	 treated	 as	 a	 lower	 bound:	 if	 there’s	more
data	 to	 read,	 urlretrieve	 reads	 more	 data,	 but	 if	 less	 data	 is
available,	it	raises	the	exception.

You	can	still	retrieve	the	downloaded	data	in	this	case,	it	 is	stored
in	the	content	attribute	of	the	exception	instance.

If	 no	 Content-Length	 header	 was	 supplied,	 urlretrieve	 can	 not
check	the	size	of	the	data	it	has	downloaded,	and	just	returns	it.	In
this	 case	 you	 just	 have	 to	 assume	 that	 the	 download	 was
successful.

urllib.request.urlcleanup()
Cleans	 up	 temporary	 files	 that	 may	 have	 been	 left	 behind	 by
previous	calls	to	urlretrieve().

class	urllib.request.URLopener(proxies=None,	**x509)

Deprecated	since	version	3.3.

Base	 class	 for	 opening	 and	 reading	 URLs.	 Unless	 you	 need	 to
support	opening	objects	using	schemes	other	than	http:,	ftp:,
or	file:,	you	probably	want	to	use	FancyURLopener.

By	 default,	 the	 URLopener	 class	 sends	 a	User-Agent	 header	 of
urllib/VVV,	 where	 VVV	 is	 the	 urllib	 version	 number.
Applications	 can	 define	 their	 own	 User-Agent	 header	 by
subclassing	 URLopener	 or	 FancyURLopener	 and	 setting	 the
class	 attribute	 version	 to	 an	 appropriate	 string	 value	 in	 the
subclass	definition.

The	 optional	 proxies	 parameter	 should	 be	 a	 dictionary	 mapping
scheme	 names	 to	 proxy	 URLs,	 where	 an	 empty	 dictionary	 turns
proxies	 off	 completely.	 Its	 default	 value	 is	 None,	 in	 which	 case
environmental	proxy	settings	will	be	used	if	present,	as	discussed
in	the	definition	of	urlopen(),	above.

Additional	keyword	parameters,	collected	in	x509,	may	be	used	for
authentication	of	 the	client	when	using	 the	https:	 scheme.	The
keywords	key_file	 and	cert_file	 are	 supported	 to	 provide	 an	 SSL
key	 and	 certificate;	 both	 are	 needed	 to	 support	 client
authentication.

URLopener	objects	will	raise	an	OSError	exception	if	the	server
returns	an	error	code.

open(fullurl,	data=None)
Open	 fullurl	 using	 the	 appropriate	 protocol.	 This	 method
sets	 up	 cache	 and	 proxy	 information,	 then	 calls	 the
appropriate	 open	 method	 with	 its	 input	 arguments.	 If	 the
scheme	 is	 not	 recognized,	 open_unknown()	 is	 called.
The	 data	 argument	 has	 the	 same	 meaning	 as	 the	 data

argument	of	urlopen().

open_unknown(fullurl,	data=None)
Overridable	interface	to	open	unknown	URL	types.

retrieve(url,	 filename=None,	 reporthook=None,
data=None)

Retrieves	the	contents	of	url	and	places	it	in	filename.	The
return	 value	 is	 a	 tuple	 consisting	 of	 a	 local	 filename	 and
either	a	email.message.Message	object	containing	 the
response	 headers	 (for	 remote	 URLs)	 or	 None	 (for	 local
URLs).	The	caller	must	then	open	and	read	the	contents	of
filename.	 If	 filename	 is	 not	given	and	 the	URL	 refers	 to	a
local	file,	the	input	filename	is	returned.	If	 the	URL	is	non-
local	and	filename	is	not	given,	the	filename	is	the	output	of
tempfile.mktemp()	with	a	suffix	that	matches	the	suffix
of	the	last	path	component	of	the	input	URL.	If	reporthook
is	 given,	 it	 must	 be	 a	 function	 accepting	 three	 numeric
parameters:	 A	 chunk	 number,	 the	 maximum	 size	 chunks
are	 read	 in	 and	 the	 total	 size	 of	 the	 download	 (-1	 if
unknown).	It	will	be	called	once	at	the	start	and	after	each
chunk	 of	 data	 is	 read	 from	 the	 network.	 reporthook	 is
ignored	for	local	URLs.

If	 the	 url	 uses	 the	 http:	 scheme	 identifier,	 the	 optional
data	 argument	 may	 be	 given	 to	 specify	 a	 POST	 request
(normally	 the	 request	 type	 is	 GET).	 The	 data	 argument
must	 in	 standard	 application/x-www-form-urlencoded
format;	see	the	urllib.parse.urlencode()	function.

version

Variable	that	specifies	the	user	agent	of	the	opener	object.

To	 get	 urllib	 to	 tell	 servers	 that	 it	 is	 a	 particular	 user
agent,	 set	 this	 in	a	 subclass	as	a	 class	 variable	or	 in	 the
constructor	before	calling	the	base	constructor.

class	urllib.request.FancyURLopener(...)

Deprecated	since	version	3.3.

FancyURLopener	 subclasses	 URLopener	 providing	 default
handling	 for	 the	 following	 HTTP	 response	 codes:	 301,	 302,	 303,
307	 and	 401.	 For	 the	 30x	 response	 codes	 listed	 above,	 the
Location	header	is	used	to	fetch	the	actual	URL.	For	401	response
codes	 (authentication	 required),	 basic	 HTTP	 authentication	 is
performed.	For	 the	30x	 response	codes,	 recursion	 is	bounded	by
the	value	of	the	maxtries	attribute,	which	defaults	to	10.

For	 all	 other	 response	 codes,	 the	 method
http_error_default()	 is	 called	 which	 you	 can	 override	 in
subclasses	to	handle	the	error	appropriately.

Note: 	 According	 to	 the	 letter	 of	 RFC	 2616,	 301	 and	 302
responses	 to	 POST	 requests	 must	 not	 be	 automatically
redirected	without	 confirmation	 by	 the	 user.	 In	 reality,	 browsers
do	allow	automatic	redirection	of	 these	responses,	changing	the
POST	to	a	GET,	and	urllib	reproduces	this	behaviour.

The	 parameters	 to	 the	 constructor	 are	 the	 same	 as	 those	 for
URLopener.

Note: 	 When	 performing	 basic	 authentication,	 a
FancyURLopener	 instance	 calls	 its	 prompt_user_passwd()
method.	 The	 default	 implementation	 asks	 the	 users	 for	 the
required	 information	on	 the	controlling	 terminal.	A	subclass	may

http://tools.ietf.org/html/rfc2616.html

override	 this	 method	 to	 support	 more	 appropriate	 behavior	 if
needed.

The	 FancyURLopener	 class	 offers	 one	 additional	 method	 that
should	be	overloaded	to	provide	the	appropriate	behavior:

prompt_user_passwd(host,	realm)
Return	information	needed	to	authenticate	the	user	at	the	given
host	in	the	specified	security	realm.	The	return	value	should	be
a	 tuple,	 (user,	 password),	 which	 can	 be	 used	 for	 basic
authentication.

The	 implementation	 prompts	 for	 this	 information	 on	 the
terminal;	an	application	should	override	 this	method	 to	use	an
appropriate	interaction	model	in	the	local	environment.

21.6.24.	urllib.request	Restrictions

Currently,	 only	 the	 following	 protocols	 are	 supported:	 HTTP
(versions	0.9	and	1.0),	FTP,	local	files,	and	data	URLs.

Changed	in	version	3.4:	Added	support	for	data	URLs.

The	caching	feature	of	urlretrieve()	has	been	disabled	until
someone	 finds	 the	 time	 to	 hack	 proper	 processing	 of	 Expiration
time	headers.

There	should	be	a	function	to	query	whether	a	particular	URL	is	in
the	cache.

For	backward	compatibility,	if	a	URL	appears	to	point	to	a	local	file
but	 the	 file	 can’t	 be	opened,	 the	URL	 is	 re-interpreted	using	 the
FTP	 protocol.	 This	 can	 sometimes	 cause	 confusing	 error
messages.

The	 urlopen()	 and	 urlretrieve()	 functions	 can	 cause
arbitrarily	long	delays	while	waiting	for	a	network	connection	to	be
set	up.	This	means	 that	 it	 is	 difficult	 to	 build	 an	 interactive	Web
client	using	these	functions	without	using	threads.

The	data	returned	by	urlopen()	or	urlretrieve()	is	the	raw
data	returned	by	the	server.	This	may	be	binary	data	(such	as	an
image),	 plain	 text	 or	 (for	 example)	 HTML.	 The	 HTTP	 protocol
provides	 type	 information	 in	 the	 reply	 header,	 which	 can	 be
inspected	by	 looking	at	 the	Content-Type	header.	 If	 the	 returned
data	is	HTML,	you	can	use	the	module	html.parser	to	parse	it.

The	code	handling	the	FTP	protocol	cannot	differentiate	between

a	file	and	a	directory.	This	can	lead	to	unexpected	behavior	when
attempting	 to	 read	 a	 URL	 that	 points	 to	 a	 file	 that	 is	 not
accessible.	 If	 the	 URL	 ends	 in	 a	 /,	 it	 is	 assumed	 to	 refer	 to	 a
directory	and	will	be	handled	accordingly.	But	if	an	attempt	to	read
a	file	leads	to	a	550	error	(meaning	the	URL	cannot	be	found	or	is
not	 accessible,	 often	 for	 permission	 reasons),	 then	 the	 path	 is
treated	as	a	directory	in	order	to	handle	the	case	when	a	directory
is	specified	by	a	URL	but	the	trailing	/	has	been	left	off.	This	can
cause	misleading	results	when	you	try	to	fetch	a	file	whose	read
permissions	make	it	inaccessible;	the	FTP	code	will	try	to	read	it,
fail	with	 a	 550	 error,	 and	 then	 perform	a	 directory	 listing	 for	 the
unreadable	 file.	 If	 fine-grained	 control	 is	 needed,	 consider	 using
the	ftplib	module,	subclassing	FancyURLopener,	or	changing
_urlopener	to	meet	your	needs.

21.7.	urllib.response	—
Response	classes	used	by	urllib
The	urllib.response	module	defines	functions	and	classes	which
define	 a	 minimal	 file	 like	 interface,	 including	 read()	 and
readline().	 The	 typical	 response	object	 is	 an	 addinfourl	 instance,
which	 defines	 an	 info()	 method	 and	 that	 returns	 headers	 and	 a
geturl()	 method	 that	 returns	 the	 url.	 Functions	 defined	 by	 this
module	are	used	internally	by	the	urllib.request	module.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.8.	urllib.parse	—	Parse
URLs	into	components
Source	code:	Lib/urllib/parse.py

This	module	defines	a	standard	 interface	 to	break	Uniform	Resource
Locator	(URL)	strings	up	in	components	(addressing	scheme,	network
location,	 path	 etc.),	 to	 combine	 the	 components	 back	 into	 a	 URL
string,	 and	 to	 convert	 a	 “relative	 URL”	 to	 an	 absolute	 URL	 given	 a
“base	URL.”

The	module	has	been	designed	to	match	the	Internet	RFC	on	Relative
Uniform	Resource	 Locators.	 It	 supports	 the	 following	URL	 schemes:
file,	 ftp,	 gopher,	 hdl,	 http,	 https,	 imap,	 mailto,	 mms,
news,	nntp,	prospero,	rsync,	rtsp,	rtspu,	sftp,	shttp,	sip,
sips,	snews,	svn,	svn+ssh,	telnet,	wais.

The	urllib.parse	module	defines	functions	that	fall	into	two	broad
categories:	URL	parsing	and	URL	quoting.	These	are	covered	in	detail
in	the	following	sections.

http://hg.python.org/cpython/file/3.4/Lib/urllib/parse.py

21.8.1.	URL	Parsing

The	 URL	 parsing	 functions	 focus	 on	 splitting	 a	 URL	 string	 into	 its
components,	or	on	combining	URL	components	into	a	URL	string.

urllib.parse.urlparse(urlstring,	scheme='',
allow_fragments=True)

Parse	 a	 URL	 into	 six	 components,	 returning	 a	 6-tuple.	 This
corresponds	 to	 the	 general	 structure	 of	 a	 URL:
scheme://netloc/path;parameters?query#fragment.
Each	 tuple	 item	 is	 a	 string,	 possibly	 empty.	 The	 components	 are
not	broken	up	in	smaller	parts	(for	example,	the	network	location	is
a	single	string),	and	%	escapes	are	not	expanded.	The	delimiters
as	 shown	 above	 are	 not	 part	 of	 the	 result,	 except	 for	 a	 leading
slash	 in	 the	 path	 component,	 which	 is	 retained	 if	 present.	 For
example:

>>>	from	urllib.parse	import	urlparse

>>>	o	=	urlparse('http://www.cwi.nl:80/%7Eguido/Python.html'

>>>	o			

ParseResult(scheme='http',	netloc='www.cwi.nl:80',	path='/%7Eguido/Python.html',

												params='',	query='',	fragment='')

>>>	o.scheme

'http'

>>>	o.port

80

>>>	o.geturl()

'http://www.cwi.nl:80/%7Eguido/Python.html'

Following	 the	 syntax	 specifications	 in	 RFC	 1808,	 urlparse
recognizes	a	netloc	only	if	it	is	properly	introduced	by	‘//’.	Otherwise
the	input	is	presumed	to	be	a	relative	URL	and	thus	to	start	with	a

http://tools.ietf.org/html/rfc1808.html

path	component.

>>>	from	urllib.parse	import	urlparse

>>>	urlparse('//www.cwi.nl:80/%7Eguido/Python.html'

ParseResult(scheme='',	netloc='www.cwi.nl:80',	path='/%7Eguido/Python.html',

											params='',	query='',	fragment='')

>>>	urlparse('www.cwi.nl/%7Eguido/Python.html')

ParseResult(scheme='',	netloc='',	path='www.cwi.nl/%7Eguido/Python.html',

											params='',	query='',	fragment='')

>>>	urlparse('help/Python.html')

ParseResult(scheme='',	netloc='',	path='help/Python.html',	params='',

											query='',	fragment='')

If	the	scheme	argument	is	specified,	it	gives	the	default	addressing
scheme,	 to	 be	 used	 only	 if	 the	 URL	 does	 not	 specify	 one.	 The
default	value	for	this	argument	is	the	empty	string.

If	 the	allow_fragments	 argument	 is	 false,	 fragment	 identifiers	 are
not	allowed.	The	default	value	for	this	argument	is	True.

The	 return	 value	 is	 actually	 an	 instance	 of	 a	 subclass	 of	 tuple.
This	 class	 has	 the	 following	 additional	 read-only	 convenience
attributes:

Attribute Index Value Value	if	not
present

scheme 0 URL	scheme
specifier empty	string

netloc 1 Network	location
part empty	string

path 2 Hierarchical	path empty	string

params 3 Parameters	for	last
path	element empty	string

query 4 Query	component empty	string

fragment 5 Fragment	identifier empty	string

username 	 User	name None

password 	 Password None

hostname 	 Host	name	(lower
case)

None

port 	 Port	number	as
integer,	if	present

None

See	section	Structured	Parse	Results	 for	more	 information	on	the
result	object.

Changed	in	version	3.2:	Added	IPv6	URL	parsing	capabilities.

Changed	 in	 version	3.3:	The	 fragment	 is	 now	parsed	 for	 all	URL
schemes	(unless	allow_fragment	is	false),	in	accordance	with	RFC
3986.	 Previously,	 a	 whitelist	 of	 schemes	 that	 support	 fragments
existed.

urllib.parse.parse_qs(qs,	keep_blank_values=False,
strict_parsing=False,	encoding='utf-8',	errors='replace')

Parse	 a	 query	 string	 given	 as	 a	 string	 argument	 (data	 of	 type
application/x-www-form-urlencoded).	 Data	 are	 returned	 as	 a
dictionary.	 The	 dictionary	 keys	 are	 the	 unique	 query	 variable
names	and	the	values	are	lists	of	values	for	each	name.

The	 optional	 argument	 keep_blank_values	 is	 a	 flag	 indicating
whether	blank	values	in	percent-encoded	queries	should	be	treated
as	 blank	 strings.	 A	 true	 value	 indicates	 that	 blanks	 should	 be
retained	 as	 blank	 strings.	 The	 default	 false	 value	 indicates	 that
blank	 values	 are	 to	 be	 ignored	 and	 treated	 as	 if	 they	 were	 not
included.

http://tools.ietf.org/html/rfc3986.html

The	optional	argument	strict_parsing	is	a	flag	indicating	what	to	do
with	parsing	errors.	If	false	(the	default),	errors	are	silently	ignored.
If	true,	errors	raise	a	ValueError	exception.

The	 optional	 encoding	 and	 errors	 parameters	 specify	 how	 to
decode	 percent-encoded	 sequences	 into	 Unicode	 characters,	 as
accepted	by	the	bytes.decode()	method.

Use	the	urllib.parse.urlencode()	function	(with	the	doseq
parameter	 set	 to	 True)	 to	 convert	 such	 dictionaries	 into	 query
strings.

Changed	in	version	3.2:	Add	encoding	and	errors	parameters.

urllib.parse.parse_qsl(qs,	keep_blank_values=False,
strict_parsing=False,	encoding='utf-8',	errors='replace')

Parse	 a	 query	 string	 given	 as	 a	 string	 argument	 (data	 of	 type
application/x-www-form-urlencoded).	Data	are	returned	as	a	 list	of
name,	value	pairs.

The	 optional	 argument	 keep_blank_values	 is	 a	 flag	 indicating
whether	blank	values	in	percent-encoded	queries	should	be	treated
as	 blank	 strings.	 A	 true	 value	 indicates	 that	 blanks	 should	 be
retained	 as	 blank	 strings.	 The	 default	 false	 value	 indicates	 that
blank	 values	 are	 to	 be	 ignored	 and	 treated	 as	 if	 they	 were	 not
included.

The	optional	argument	strict_parsing	is	a	flag	indicating	what	to	do
with	parsing	errors.	If	false	(the	default),	errors	are	silently	ignored.
If	true,	errors	raise	a	ValueError	exception.

The	 optional	 encoding	 and	 errors	 parameters	 specify	 how	 to
decode	 percent-encoded	 sequences	 into	 Unicode	 characters,	 as

accepted	by	the	bytes.decode()	method.

Use	 the	urllib.parse.urlencode()	 function	 to	convert	 such
lists	of	pairs	into	query	strings.

Changed	in	version	3.2:	Add	encoding	and	errors	parameters.

urllib.parse.urlunparse(parts)
Construct	 a	URL	 from	 a	 tuple	 as	 returned	 by	 urlparse().	 The
parts	 argument	can	be	any	six-item	 iterable.	This	may	 result	 in	a
slightly	 different,	 but	 equivalent	URL,	 if	 the	URL	 that	was	 parsed
originally	 had	 unnecessary	 delimiters	 (for	 example,	 a	 ?	 with	 an
empty	query;	the	RFC	states	that	these	are	equivalent).

urllib.parse.urlsplit(urlstring,	scheme='',
allow_fragments=True)

This	is	similar	to	urlparse(),	but	does	not	split	the	params	from
the	URL.	This	should	generally	be	used	instead	of	urlparse()	if
the	more	recent	URL	syntax	allowing	parameters	 to	be	applied	to
each	 segment	 of	 the	path	 portion	 of	 the	URL	 (see	RFC	2396)	 is
wanted.	 A	 separate	 function	 is	 needed	 to	 separate	 the	 path
segments	 and	 parameters.	 This	 function	 returns	 a	 5-tuple:
(addressing	 scheme,	 network	 location,	 path,	 query,	 fragment
identifier).

The	 return	 value	 is	 actually	 an	 instance	 of	 a	 subclass	 of	 tuple.
This	 class	 has	 the	 following	 additional	 read-only	 convenience
attributes:

Attribute Index Value Value	if	not
present

scheme 0 URL	scheme
specifier empty	string

http://tools.ietf.org/html/rfc2396.html

netloc 1 Network	location
part empty	string

path 2 Hierarchical	path empty	string

query 3 Query	component empty	string

fragment 4 Fragment	identifier empty	string

username 	 User	name None

password 	 Password None

hostname 	 Host	name	(lower
case)

None

port 	 Port	number	as
integer,	if	present

None

See	section	Structured	Parse	Results	 for	more	 information	on	the
result	object.

urllib.parse.urlunsplit(parts)
Combine	the	elements	of	a	tuple	as	returned	by	urlsplit()	into
a	complete	URL	as	a	string.	The	parts	argument	can	be	any	five-
item	 iterable.	This	may	 result	 in	a	slightly	different,	but	equivalent
URL,	 if	 the	 URL	 that	 was	 parsed	 originally	 had	 unnecessary
delimiters	 (for	example,	a	?	with	an	empty	query;	 the	RFC	states
that	these	are	equivalent).

urllib.parse.urljoin(base,	url,	allow_fragments=True)
Construct	a	full	(“absolute”)	URL	by	combining	a	“base	URL”	(base)
with	 another	 URL	 (url).	 Informally,	 this	 uses	 components	 of	 the
base	 URL,	 in	 particular	 the	 addressing	 scheme,	 the	 network
location	and	 (part	 of)	 the	path,	 to	provide	missing	 components	 in
the	relative	URL.	For	example:

>>>	from	urllib.parse	import	urljoin

>>>	urljoin('http://www.cwi.nl/%7Eguido/Python.html'

'http://www.cwi.nl/%7Eguido/FAQ.html'

The	allow_fragments	argument	has	the	same	meaning	and	default
as	for	urlparse().

Note: 	 If	 url	 is	 an	 absolute	 URL	 (that	 is,	 starting	 with	 //	 or
scheme://),	the	url‘s	host	name	and/or	scheme	will	be	present
in	the	result.	For	example:

>>>	urljoin('http://www.cwi.nl/%7Eguido/Python.html'

...									'//www.python.org/%7Eguido')

'http://www.python.org/%7Eguido'

If	 you	 do	 not	 want	 that	 behavior,	 preprocess	 the	 url	 with
urlsplit()	 and	 urlunsplit(),	 removing	 possible	 scheme
and	netloc	parts.

urllib.parse.urldefrag(url)
If	url	contains	a	fragment	identifier,	return	a	modified	version	of	url
with	 no	 fragment	 identifier,	 and	 the	 fragment	 identifier	 as	 a
separate	 string.	 If	 there	 is	 no	 fragment	 identifier	 in	 url,	 return	 url
unmodified	and	an	empty	string.

The	 return	 value	 is	 actually	 an	 instance	 of	 a	 subclass	 of	 tuple.
This	 class	 has	 the	 following	 additional	 read-only	 convenience
attributes:

Attribute Index Value Value	if	not
present

url 0 URL	with	no
fragment empty	string

fragment 1 Fragment	identifier empty	string

See	section	Structured	Parse	Results	 for	more	 information	on	the
result	object.

Changed	in	version	3.2:	Result	is	a	structured	object	rather	than	a
simple	2-tuple.

21.8.2.	Parsing	ASCII	Encoded	Bytes

The	 URL	 parsing	 functions	 were	 originally	 designed	 to	 operate	 on
character	strings	only.	In	practice,	it	is	useful	to	be	able	to	manipulate
properly	 quoted	 and	 encoded	 URLs	 as	 sequences	 of	 ASCII	 bytes.
Accordingly,	 the	URL	parsing	 functions	 in	 this	module	all	 operate	on
bytes	and	bytearray	objects	in	addition	to	str	objects.

If	str	data	 is	passed	in,	 the	result	will	also	contain	only	str	data.	If
bytes	or	bytearray	 data	 is	 passed	 in,	 the	 result	will	 contain	only
bytes	data.

Attempting	 to	 mix	 str	 data	 with	 bytes	 or	 bytearray	 in	 a	 single
function	call	will	result	in	a	TypeError	being	raised,	while	attempting
to	pass	in	non-ASCII	byte	values	will	trigger	UnicodeDecodeError.

To	 support	 easier	 conversion	 of	 result	 objects	 between	 str	 and
bytes,	all	return	values	from	URL	parsing	functions	provide	either	an
encode()	 method	 (when	 the	 result	 contains	 str	 data)	 or	 a
decode()	 method	 (when	 the	 result	 contains	 bytes	 data).	 The
signatures	 of	 these	methods	match	 those	 of	 the	 corresponding	 str
and	 bytes	 methods	 (except	 that	 the	 default	 encoding	 is	 'ascii'
rather	than	'utf-8').	Each	produces	a	value	of	a	corresponding	type
that	contains	either	bytes	data	(for	encode()	methods)	or	str	data
(for	decode()	methods).

Applications	 that	 need	 to	 operate	 on	 potentially	 improperly	 quoted
URLs	 that	 may	 contain	 non-ASCII	 data	 will	 need	 to	 do	 their	 own
decoding	 from	 bytes	 to	 characters	 before	 invoking	 the	 URL	 parsing
methods.

The	 behaviour	 described	 in	 this	 section	 applies	 only	 to	 the	 URL
parsing	functions.	The	URL	quoting	functions	use	their	own	rules	when
producing	 or	 consuming	 byte	 sequences	 as	 detailed	 in	 the
documentation	of	the	individual	URL	quoting	functions.

Changed	 in	 version	 3.2:	 URL	 parsing	 functions	 now	 accept	 ASCII
encoded	byte	sequences

21.8.3.	Structured	Parse	Results

The	 result	 objects	 from	 the	 urlparse(),	 urlsplit()	 and
urldefrag()	 functions	 are	 subclasses	 of	 the	 tuple	 type.	 These
subclasses	 add	 the	 attributes	 listed	 in	 the	 documentation	 for	 those
functions,	 the	 encoding	 and	 decoding	 support	 described	 in	 the
previous	section,	as	well	as	an	additional	method:

urllib.parse.SplitResult.geturl()
Return	 the	 re-combined	 version	 of	 the	 original	 URL	 as	 a	 string.
This	may	differ	 from	 the	original	URL	 in	 that	 the	scheme	may	be
normalized	to	lower	case	and	empty	components	may	be	dropped.
Specifically,	 empty	 parameters,	 queries,	 and	 fragment	 identifiers
will	be	removed.

For	urldefrag()	 results,	only	empty	 fragment	 identifiers	will	be
removed.	 For	 urlsplit()	 and	 urlparse()	 results,	 all	 noted
changes	will	be	made	to	the	URL	returned	by	this	method.

The	 result	 of	 this	 method	 remains	 unchanged	 if	 passed	 back
through	the	original	parsing	function:

>>>	from	urllib.parse	import	urlsplit

>>>	url	=	'HTTP://www.Python.org/doc/#'

>>>	r1	=	urlsplit(url)

>>>	r1.geturl()

'http://www.Python.org/doc/'

>>>	r2	=	urlsplit(r1.geturl())

>>>	r2.geturl()

'http://www.Python.org/doc/'

The	 following	 classes	 provide	 the	 implementations	 of	 the	 structured

parse	results	when	operating	on	str	objects:

class	urllib.parse.DefragResult(url,	fragment)
Concrete	class	for	urldefrag()	results	containing	str	data.	The
encode()	method	returns	a	DefragResultBytes	instance.

New	in	version	3.2.

class	urllib.parse.ParseResult(scheme,	netloc,	path,
params,	query,	fragment)

Concrete	class	for	urlparse()	results	containing	str	data.	The
encode()	method	returns	a	ParseResultBytes	instance.

class	urllib.parse.SplitResult(scheme,	netloc,	path,	query,
fragment)

Concrete	class	for	urlsplit()	results	containing	str	data.	The
encode()	method	returns	a	SplitResultBytes	instance.

The	following	classes	provide	the	implementations	of	the	parse	results
when	operating	on	bytes	or	bytearray	objects:

class	urllib.parse.DefragResultBytes(url,	fragment)
Concrete	class	 for	urldefrag()	 results	containing	bytes	data.
The	decode()	method	returns	a	DefragResult	instance.

New	in	version	3.2.

class	urllib.parse.ParseResultBytes(scheme,	netloc,
path,	params,	query,	fragment)

Concrete	 class	 for	 urlparse()	 results	 containing	 bytes	 data.
The	decode()	method	returns	a	ParseResult	instance.

New	in	version	3.2.

class	urllib.parse.SplitResultBytes(scheme,	netloc,
path,	query,	fragment)

Concrete	 class	 for	 urlsplit()	 results	 containing	 bytes	 data.
The	decode()	method	returns	a	SplitResult	instance.

New	in	version	3.2.

21.8.4.	URL	Quoting

The	URL	quoting	functions	focus	on	taking	program	data	and	making	it
safe	 for	 use	 as	URL	 components	 by	 quoting	 special	 characters	 and
appropriately	 encoding	 non-ASCII	 text.	 They	 also	 support	 reversing
these	operations	 to	 recreate	 the	original	 data	 from	 the	 contents	of	 a
URL	component	 if	 that	 task	 isn’t	already	covered	by	the	URL	parsing
functions	above.

urllib.parse.quote(string,	safe='/',	encoding=None,
errors=None)

Replace	special	characters	in	string	using	the	%xx	escape.	Letters,
digits,	and	the	characters	'_.-'	are	never	quoted.	By	default,	this
function	 is	 intended	 for	 quoting	 the	 path	 section	 of	 URL.	 The
optional	safe	parameter	specifies	additional	ASCII	characters	 that
should	not	be	quoted	—	its	default	value	is	'/'.

string	may	be	either	a	str	or	a	bytes.

The	optional	encoding	and	errors	parameters	specify	how	 to	deal
with	 non-ASCII	 characters,	 as	 accepted	 by	 the	 str.encode()
method.	 encoding	 defaults	 to	 'utf-8'.	 errors	 defaults	 to
'strict',	 meaning	 unsupported	 characters	 raise	 a
UnicodeEncodeError.	 encoding	 and	 errors	 must	 not	 be
supplied	if	string	is	a	bytes,	or	a	TypeError	is	raised.

Note	 that	 quote(string,	 safe,	 encoding,	 errors)	 is
equivalent	 to
quote_from_bytes(string.encode(encoding,	 errors),

safe).

Example:	quote('/El	Niño/')	yields	'/El%20Ni%C3%B1o/'.

urllib.parse.quote_plus(string,	safe='',	encoding=None,
errors=None)

Like	quote(),	but	also	replace	spaces	by	plus	signs,	as	required
for	quoting	HTML	form	values	when	building	up	a	query	string	to	go
into	 a	 URL.	 Plus	 signs	 in	 the	 original	 string	 are	 escaped	 unless
they	are	included	in	safe.	It	also	does	not	have	safe	default	to	'/'.

Example:	 quote_plus('/El	 Niño/')	 yields
'%2FEl+Ni%C3%B1o%2F'.

urllib.parse.quote_from_bytes(bytes,	safe='/')
Like	quote(),	but	accepts	a	bytes	object	rather	than	a	str,	and
does	not	perform	string-to-bytes	encoding.

Example:	quote_from_bytes(b'a&\xef')	yields	'a%26%EF'.

urllib.parse.unquote(string,	encoding='utf-8',	errors='replace')
Replace	 %xx	 escapes	 by	 their	 single-character	 equivalent.	 The
optional	 encoding	 and	 errors	 parameters	 specify	 how	 to	 decode
percent-encoded	sequences	into	Unicode	characters,	as	accepted
by	the	bytes.decode()	method.

string	must	be	a	str.

encoding	 defaults	 to	 'utf-8'.	 errors	 defaults	 to	 'replace',
meaning	 invalid	 sequences	 are	 replaced	 by	 a	 placeholder
character.

Example:	 unquote('/El%20Ni%C3%B1o/')	 yields	 '/El

Niño/'.

urllib.parse.unquote_plus(string,	encoding='utf-8',
errors='replace')

Like	 unquote(),	 but	 also	 replace	 plus	 signs	 by	 spaces,	 as
required	for	unquoting	HTML	form	values.

string	must	be	a	str.

Example:	 unquote_plus('/El+Ni%C3%B1o/')	 yields	 '/El
Niño/'.

urllib.parse.unquote_to_bytes(string)
Replace	%xx	escapes	by	their	single-octet	equivalent,	and	return	a
bytes	object.

string	may	be	either	a	str	or	a	bytes.

If	 it	 is	 a	 str,	 unescaped	 non-ASCII	 characters	 in	 string	 are
encoded	into	UTF-8	bytes.

Example:	unquote_to_bytes('a%26%EF')	yields	b'a&\xef'.

urllib.parse.urlencode(query,	doseq=False,	safe='',
encoding=None,	errors=None)

Convert	 a	 mapping	 object	 or	 a	 sequence	 of	 two-element	 tuples,
which	may	 either	 be	 a	 str	 or	 a	 bytes,	 to	 a	 “percent-encoded”
string.	 If	 the	 resultant	 string	 is	 to	 be	 used	 as	 a	 data	 for	 POST
operation	 with	 urlopen()	 function,	 then	 it	 should	 be	 properly
encoded	to	bytes,	otherwise	it	would	result	in	a	TypeError.

The	 resulting	string	 is	a	series	of	key=value	pairs	separated	by
'&'	 characters,	 where	 both	 key	 and	 value	 are	 quoted	 using
quote_plus()	above.	When	a	sequence	of	two-element	tuples	is
used	as	the	query	argument,	the	first	element	of	each	tuple	is	a	key

and	 the	 second	 is	 a	 value.	 The	 value	 element	 in	 itself	 can	 be	 a
sequence	 and	 in	 that	 case,	 if	 the	 optional	 parameter	 doseq	 is
evaluates	 to	True,	 individual	key=value	pairs	separated	by	'&'
are	generated	for	each	element	of	the	value	sequence	for	the	key.
The	order	of	parameters	in	the	encoded	string	will	match	the	order
of	parameter	tuples	in	the	sequence.

When	 query	 parameter	 is	 a	 str,	 the	 safe,	 encoding	 and	 error
parameters	are	passed	down	to	quote_plus()	for	encoding.

To	 reverse	 this	 encoding	 process,	 parse_qs()	 and
parse_qsl()	are	provided	 in	 this	module	 to	parse	query	strings
into	Python	data	structures.

Refer	to	urllib	examples	 to	find	out	how	urlencode	method	can	be
used	for	generating	query	string	for	a	URL	or	data	for	POST.

Changed	 in	 version	 3.2:	 Query	 parameter	 supports	 bytes	 and
string	objects.

See	also:

RFC	3986	-	Uniform	Resource	Identifiers
This	is	the	current	standard	(STD66).	Any	changes	to	urllib.parse
module	 should	 conform	 to	 this.	 Certain	 deviations	 could	 be
observed,	which	are	mostly	 for	backward	compatibility	purposes
and	 for	 certain	 de-facto	 parsing	 requirements	 as	 commonly
observed	in	major	browsers.

RFC	2732	-	Format	for	Literal	IPv6	Addresses	in	URL’s.
This	specifies	the	parsing	requirements	of	IPv6	URLs.

RFC	2396	-	Uniform	Resource	Identifiers	(URI):	Generic	Syntax
Document	describing	the	generic	syntactic	requirements	for	both
Uniform	 Resource	 Names	 (URNs)	 and	 Uniform	 Resource

http://tools.ietf.org/html/rfc3986.html
http://tools.ietf.org/html/rfc2732.html
http://tools.ietf.org/html/rfc2396.html

Locators	(URLs).

RFC	2368	-	The	mailto	URL	scheme.
Parsing	requirements	for	mailto	url	schemes.

RFC	1808	-	Relative	Uniform	Resource	Locators
This	 Request	 For	 Comments	 includes	 the	 rules	 for	 joining	 an
absolute	and	a	relative	URL,	including	a	fair	number	of	“Abnormal
Examples”	which	govern	the	treatment	of	border	cases.

RFC	1738	-	Uniform	Resource	Locators	(URL)
This	specifies	the	formal	syntax	and	semantics	of	absolute	URLs.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://tools.ietf.org/html/rfc2368.html
http://tools.ietf.org/html/rfc1808.html
http://tools.ietf.org/html/rfc1738.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.9.	urllib.error	—
Exception	classes	raised	by
urllib.request
The	 urllib.error	 module	 defines	 the	 exception	 classes	 for
exceptions	raised	by	urllib.request.	The	base	exception	class	is
URLError.

The	 following	 exceptions	 are	 raised	 by	 urllib.error	 as
appropriate:

exception	urllib.error.URLError
The	 handlers	 raise	 this	 exception	 (or	 derived	 exceptions)	 when
they	run	into	a	problem.	It	is	a	subclass	of	OSError.

reason

The	reason	for	this	error.	It	can	be	a	message	string	or	another
exception	instance.

Changed	in	version	3.3:	URLError	has	been	made	a	subclass	of
OSError	instead	of	IOError.

exception	urllib.error.HTTPError
Though	 being	 an	 exception	 (a	 subclass	 of	 URLError),	 an
HTTPError	can	also	function	as	a	non-exceptional	 file-like	return
value	 (the	 same	 thing	 that	 urlopen()	 returns).	 This	 is	 useful
when	 handling	 exotic	 HTTP	 errors,	 such	 as	 requests	 for
authentication.

code

An	HTTP	 status	 code	 as	 defined	 in	 RFC	2616.	 This	 numeric
value	corresponds	to	a	value	found	in	the	dictionary	of	codes	as
found	 in
http.server.BaseHTTPRequestHandler.responses.

reason

This	is	usually	a	string	explaining	the	reason	for	this	error.

headers

The	HTTP	response	headers	for	the	HTTP	request	that	caused
the	HTTPError.

New	in	version	3.4.

exception	urllib.error.ContentTooShortError(msg,
content)

This	 exception	 is	 raised	 when	 the	 urlretrieve()	 function
detects	 that	 the	 amount	 of	 the	 downloaded	 data	 is	 less	 than	 the
expected	 amount	 (given	 by	 the	 Content-Length	 header).	 The
content	 attribute	 stores	 the	 downloaded	 (and	 supposedly
truncated)	data.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.faqs.org/rfcs/rfc2616.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.10.	urllib.robotparser	—
Parser	for	robots.txt
This	 module	 provides	 a	 single	 class,	 RobotFileParser,	 which
answers	 questions	 about	whether	 or	 not	 a	 particular	 user	 agent	 can
fetch	a	URL	on	the	Web	site	that	published	the	robots.txt	file.	For
more	 details	 on	 the	 structure	 of	 robots.txt	 files,	 see
http://www.robotstxt.org/orig.html.

class	urllib.robotparser.RobotFileParser(url='')
This	class	provides	methods	to	read,	parse	and	answer	questions
about	the	robots.txt	file	at	url.

set_url(url)
Sets	the	URL	referring	to	a	robots.txt	file.

read()
Reads	the	robots.txt	URL	and	feeds	it	to	the	parser.

parse(lines)
Parses	the	lines	argument.

can_fetch(useragent,	url)
Returns	 True	 if	 the	 useragent	 is	 allowed	 to	 fetch	 the	 url
according	 to	 the	 rules	 contained	 in	 the	 parsed	 robots.txt
file.

mtime()
Returns	the	time	the	robots.txt	file	was	last	fetched.	This	is
useful	for	long-running	web	spiders	that	need	to	check	for	new

http://www.robotstxt.org/orig.html

robots.txt	files	periodically.

modified()
Sets	 the	 time	 the	 robots.txt	 file	 was	 last	 fetched	 to	 the
current	time.

The	following	example	demonstrates	basic	use	of	the	RobotFileParser
class.

>>>	import	urllib.robotparser

>>>	rp	=	urllib.robotparser.RobotFileParser()

>>>	rp.set_url("http://www.musi-cal.com/robots.txt")

>>>	rp.read()

>>>	rp.can_fetch("*",	"http://www.musi-cal.com/cgi-bin/search?city=San+Francisco"

False

>>>	rp.can_fetch("*",	"http://www.musi-cal.com/")

True

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.11.	http	—	HTTP	modules

http	 is	a	package	that	collects	several	modules	for	working	with	the
HyperText	Transfer	Protocol:

http.client	 is	a	 low-level	HTTP	protocol	 client;	 for	high-level
URL	opening	use	urllib.request
http.server	 contains	 basic	 HTTP	 server	 classes	 based	 on
socketserver

http.cookies	has	utilities	for	 implementing	state	management
with	cookies
http.cookiejar	provides	persistence	of	cookies

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.12.	http.client	—	HTTP
protocol	client
Source	code:	Lib/http/client.py

This	 module	 defines	 classes	 which	 implement	 the	 client	 side	 of	 the
HTTP	 and	 HTTPS	 protocols.	 It	 is	 normally	 not	 used	 directly	—	 the
module	urllib.request	uses	it	to	handle	URLs	that	use	HTTP	and
HTTPS.

Note: 	HTTPS	support	is	only	available	if	Python	was	compiled	with
SSL	support	(through	the	ssl	module).

The	module	provides	the	following	classes:

class	http.client.HTTPConnection(host,	port=None[,
timeout],	source_address=None)

An	HTTPConnection	instance	represents	one	transaction	with	an
HTTP	 server.	 It	 should	 be	 instantiated	 passing	 it	 a	 host	 and
optional	 port	 number.	 If	 no	 port	 number	 is	 passed,	 the	 port	 is
extracted	 from	 the	host	string	 if	 it	has	 the	 form	host:port,	 else
the	 default	 HTTP	 port	 (80)	 is	 used.	 If	 the	 optional	 timeout
parameter	 is	given,	blocking	operations	(like	connection	attempts)
will	 timeout	 after	 that	many	 seconds	 (if	 it	 is	 not	 given,	 the	 global
default	 timeout	 setting	 is	 used).	 The	 optional	 source_address
parameter	may	 be	 a	 tuple	 of	 a	 (host,	 port)	 to	 use	 as	 the	 source
address	the	HTTP	connection	is	made	from.

For	example,	the	following	calls	all	create	instances	that	connect	to

http://hg.python.org/cpython/file/3.4/Lib/http/client.py

the	server	at	the	same	host	and	port:

>>>	h1	=	http.client.HTTPConnection('www.cwi.nl')

>>>	h2	=	http.client.HTTPConnection('www.cwi.nl:80'

>>>	h3	=	http.client.HTTPConnection('www.cwi.nl',	

>>>	h3	=	http.client.HTTPConnection('www.cwi.nl',	

Changed	in	version	3.2:	source_address	was	added.

Changed	in	version	3.4:	The	strict	parameter	was	removed.	HTTP
0.9-style	“Simple	Responses”	are	not	longer	supported.

class	http.client.HTTPSConnection(host,	port=None,
key_file=None,	cert_file=None[,	timeout],	source_address=None,	*,
context=None,	check_hostname=None)

A	subclass	of	HTTPConnection	that	uses	SSL	for	communication
with	secure	servers.	Default	 port	 is	 443.	 If	context	 is	 specified,	 it
must	be	a	ssl.SSLContext	instance	describing	the	various	SSL
options.	 If	context	 is	 specified	and	has	a	verify_mode	of	either
CERT_OPTIONAL	 or	 CERT_REQUIRED,	 then	 by	 default	 host	 is
matched	 against	 the	 host	 name(s)	 allowed	 by	 the	 server’s
certificate.	If	you	want	to	change	that	behaviour,	you	can	explicitly
set	check_hostname	to	False.

key_file	 and	 cert_file	 are	 deprecated,	 please	 use
ssl.SSLContext.load_cert_chain()	instead.

If	you	access	arbitrary	hosts	on	the	Internet,	it	is	recommended	to
require	 certificate	 checking	 and	 feed	 the	 context	 with	 a	 set	 of
trusted	CA	certificates:

context	=	ssl.SSLContext(ssl.PROTOCOL_TLSv1)

context.verify_mode	=	ssl.CERT_REQUIRED

context.load_verify_locations('/etc/pki/tls/certs/ca-bundle.crt'

h	=	client.HTTPSConnection('svn.python.org',	443,	

Changed	 in	 version	 3.2:	 source_address,	 context	 and
check_hostname	were	added.

Changed	 in	 version	 3.2:	 This	 class	 now	 supports	 HTTPS	 virtual
hosts	if	possible	(that	is,	if	ssl.HAS_SNI	is	true).

Changed	in	version	3.4:	The	strict	parameter	was	removed.	HTTP
0.9-style	“Simple	Responses”	are	no	longer	supported.

class	http.client.HTTPResponse(sock,	debuglevel=0,
method=None,	url=None)

Class	whose	 instances	 are	 returned	 upon	 successful	 connection.
Not	instantiated	directly	by	user.

Changed	in	version	3.4:	The	strict	parameter	was	removed.	HTTP
0.9	style	“Simple	Responses”	are	no	longer	supported.

The	following	exceptions	are	raised	as	appropriate:

exception	http.client.HTTPException
The	 base	 class	 of	 the	 other	 exceptions	 in	 this	 module.	 It	 is	 a
subclass	of	Exception.

exception	http.client.NotConnected
A	subclass	of	HTTPException.

exception	http.client.InvalidURL
A	 subclass	 of	 HTTPException,	 raised	 if	 a	 port	 is	 given	 and	 is
either	non-numeric	or	empty.

exception	http.client.UnknownProtocol
A	subclass	of	HTTPException.

exception	http.client.UnknownTransferEncoding
A	subclass	of	HTTPException.

exception	http.client.UnimplementedFileMode
A	subclass	of	HTTPException.

exception	http.client.IncompleteRead
A	subclass	of	HTTPException.

exception	http.client.ImproperConnectionState
A	subclass	of	HTTPException.

exception	http.client.CannotSendRequest
A	subclass	of	ImproperConnectionState.

exception	http.client.CannotSendHeader
A	subclass	of	ImproperConnectionState.

exception	http.client.ResponseNotReady
A	subclass	of	ImproperConnectionState.

exception	http.client.BadStatusLine
A	subclass	of	HTTPException.	Raised	if	a	server	responds	with	a
HTTP	status	code	that	we	don’t	understand.

The	constants	defined	in	this	module	are:

http.client.HTTP_PORT

The	default	port	for	the	HTTP	protocol	(always	80).

http.client.HTTPS_PORT

The	default	port	for	the	HTTPS	protocol	(always	443).

and	also	the	following	constants	for	integer	status	codes:

Constant Value Definition

CONTINUE 100

HTTP/1.1,
RFC	2616,
Section	10.1.1

SWITCHING_PROTOCOLS 101

HTTP/1.1,
RFC	2616,
Section	10.1.2

PROCESSING 102

WEBDAV,
RFC	2518,
Section	10.1

OK 200

HTTP/1.1,
RFC	2616,
Section	10.2.1

CREATED 201

HTTP/1.1,
RFC	2616,
Section	10.2.2

ACCEPTED 202

HTTP/1.1,
RFC	2616,
Section	10.2.3

NON_AUTHORITATIVE_INFORMATION 203

HTTP/1.1,
RFC	2616,
Section	10.2.4

NO_CONTENT 204

HTTP/1.1,
RFC	2616,
Section	10.2.5

RESET_CONTENT 205

HTTP/1.1,
RFC	2616,

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.1.2
http://www.webdav.org/specs/rfc2518.html#STATUS_102
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.6

Section	10.2.6

PARTIAL_CONTENT 206

HTTP/1.1,
RFC	2616,
Section	10.2.7

MULTI_STATUS 207

WEBDAV	RFC
2518,	Section
10.2

IM_USED 226

Delta	encoding
in	HTTP,	RFC
3229,	Section
10.4.1

MULTIPLE_CHOICES 300

HTTP/1.1,
RFC	2616,
Section	10.3.1

MOVED_PERMANENTLY 301

HTTP/1.1,
RFC	2616,
Section	10.3.2

FOUND 302

HTTP/1.1,
RFC	2616,
Section	10.3.3

SEE_OTHER 303
HTTP/1.1,
RFC	2616,
Section	10.3.4

NOT_MODIFIED 304

HTTP/1.1,
RFC	2616,
Section	10.3.5

USE_PROXY 305

HTTP/1.1,
RFC	2616,
Section	10.3.6

TEMPORARY_REDIRECT 307

HTTP/1.1,
RFC	2616,
Section	10.3.8

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.2.7
http://www.webdav.org/specs/rfc2518.html#STATUS_207
http://tools.ietf.org/html/rfc3229.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.3.8

BAD_REQUEST 400
HTTP/1.1,
RFC	2616,
Section	10.4.1

UNAUTHORIZED 401

HTTP/1.1,
RFC	2616,
Section	10.4.2

PAYMENT_REQUIRED 402

HTTP/1.1,
RFC	2616,
Section	10.4.3

FORBIDDEN 403

HTTP/1.1,
RFC	2616,
Section	10.4.4

NOT_FOUND 404

HTTP/1.1,
RFC	2616,
Section	10.4.5

METHOD_NOT_ALLOWED 405

HTTP/1.1,
RFC	2616,
Section	10.4.6

NOT_ACCEPTABLE 406

HTTP/1.1,
RFC	2616,
Section	10.4.7

PROXY_AUTHENTICATION_REQUIRED 407

HTTP/1.1,
RFC	2616,
Section	10.4.8

REQUEST_TIMEOUT 408

HTTP/1.1,
RFC	2616,
Section	10.4.9

CONFLICT 409

HTTP/1.1,
RFC	2616,
Section
10.4.10

HTTP/1.1,
RFC	2616,

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.3
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.6
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.7
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.8
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.10
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.11

GONE 410 Section
10.4.11

LENGTH_REQUIRED 411

HTTP/1.1,
RFC	2616,
Section
10.4.12

PRECONDITION_FAILED 412

HTTP/1.1,
RFC	2616,
Section
10.4.13

REQUEST_ENTITY_TOO_LARGE 413

HTTP/1.1,
RFC	2616,
Section
10.4.14

REQUEST_URI_TOO_LONG 414

HTTP/1.1,
RFC	2616,
Section
10.4.15

UNSUPPORTED_MEDIA_TYPE 415

HTTP/1.1,
RFC	2616,
Section
10.4.16

REQUESTED_RANGE_NOT_SATISFIABLE 416

HTTP/1.1,
RFC	2616,
Section
10.4.17

EXPECTATION_FAILED 417

HTTP/1.1,
RFC	2616,
Section
10.4.18

UNPROCESSABLE_ENTITY 422

WEBDAV,
RFC	2518,
Section	10.3

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.12
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.13
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.14
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.15
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.16
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.17
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.4.18
http://www.webdav.org/specs/rfc2518.html#STATUS_422

LOCKED 423
WEBDAV	RFC
2518,	Section
10.4

FAILED_DEPENDENCY 424

WEBDAV,
RFC	2518,
Section	10.5

UPGRADE_REQUIRED 426

HTTP	Upgrade
to	TLS,	RFC
2817,	Section
6

PRECONDITION_REQUIRED 428

Additional
HTTP	Status
Codes,	RFC
6585,	Section
3

TOO_MANY_REQUESTS 429

Additional
HTTP	Status
Codes,	RFC
6585,	Section
4

REQUEST_HEADER_FIELDS_TOO_LARGE 431

Additional
HTTP	Status
Codes,	RFC
6585,	Section
5

INTERNAL_SERVER_ERROR 500

HTTP/1.1,
RFC	2616,
Section	10.5.1

NOT_IMPLEMENTED 501

HTTP/1.1,
RFC	2616,
Section	10.5.2

BAD_GATEWAY 502

HTTP/1.1	RFC
2616,	Section
10.5.3

http://www.webdav.org/specs/rfc2518.html#STATUS_423
http://www.webdav.org/specs/rfc2518.html#STATUS_424
http://tools.ietf.org/html/rfc2817.html
http://tools.ietf.org/html/rfc6585.html
http://tools.ietf.org/html/rfc6585.html
http://tools.ietf.org/html/rfc6585.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.1
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.2
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.3

SERVICE_UNAVAILABLE 503

HTTP/1.1,
RFC	2616,
Section	10.5.4

GATEWAY_TIMEOUT 504

HTTP/1.1	RFC
2616,	Section
10.5.5

HTTP_VERSION_NOT_SUPPORTED 505

HTTP/1.1,
RFC	2616,
Section	10.5.6

INSUFFICIENT_STORAGE 507

WEBDAV,
RFC	2518,
Section	10.6

NOT_EXTENDED 510

An	HTTP
Extension
Framework,
RFC	2774,
Section	7

NETWORK_AUTHENTICATION_REQUIRED 511

Additional
HTTP	Status
Codes,	RFC
6585,	Section
6

Changed	 in	version	3.3:	Added	codes	428,	429,	431	and	511	 from
RFC	6585.

http.client.responses

This	 dictionary	 maps	 the	 HTTP	 1.1	 status	 codes	 to	 the	 W3C
names.

Example:
http.client.responses[http.client.NOT_FOUND]	 is
'Not	Found'.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.4
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.5
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html#sec10.5.6
http://www.webdav.org/specs/rfc2518.html#STATUS_507
http://tools.ietf.org/html/rfc2774.html
http://tools.ietf.org/html/rfc6585.html
http://tools.ietf.org/html/rfc6585.html

21.12.1.	HTTPConnection	Objects

HTTPConnection	instances	have	the	following	methods:

HTTPConnection.request(method,	url,	body=None,	headers={})
This	 will	 send	 a	 request	 to	 the	 server	 using	 the	 HTTP	 request
method	 method	 and	 the	 selector	 url.	 If	 the	 body	 argument	 is
present,	it	should	be	string	or	bytes	object	of	data	to	send	after	the
headers	 are	 finished.	 Strings	 are	 encoded	 as	 ISO-8859-1,	 the
default	 charset	 for	 HTTP.	 To	 use	 other	 encodings,	 pass	 a	 bytes
object.	The	Content-Length	header	is	set	to	the	length	of	the	string.

The	 body	 may	 also	 be	 an	 open	 file	 object,	 in	 which	 case	 the
contents	 of	 the	 file	 is	 sent;	 this	 file	 object	 should	 support
fileno()	and	read()	methods.	 The	 header	Content-Length	 is
automatically	set	 to	 the	 length	of	 the	 file	as	 reported	by	stat.	The
body	argument	may	also	be	an	iterable	and	Content-Length	header
should	be	explicitly	provided	when	the	body	is	an	iterable.

The	 headers	 argument	 should	 be	 a	 mapping	 of	 extra	 HTTP
headers	to	send	with	the	request.

New	in	version	3.2:	body	can	now	be	an	iterable.

HTTPConnection.getresponse()
Should	be	called	after	a	 request	 is	sent	 to	get	 the	 response	 from
the	server.	Returns	an	HTTPResponse	instance.

Note: 	Note	that	you	must	have	read	the	whole	response	before
you	can	send	a	new	request	to	the	server.

HTTPConnection.set_debuglevel(level)

Set	the	debugging	level.	The	default	debug	level	is	0,	meaning	no
debugging	output	is	printed.	Any	value	greater	than	0	will	cause	all
currently	 defined	 debug	 output	 to	 be	 printed	 to	 stdout.	 The
debuglevel	 is	 passed	 to	any	new	 HTTPResponse	 objects	 that
are	created.

New	in	version	3.1.

HTTPConnection.set_tunnel(host,	port=None,	headers=None)
Set	 the	host	and	 the	port	 for	HTTP	Connect	Tunnelling.	Normally
used	when	 it	 is	 required	 to	a	HTTPS	Connection	 through	a	proxy
server.

The	 headers	 argument	 should	 be	 a	 mapping	 of	 extra	 HTTP
headers	to	send	with	the	CONNECT	request.

New	in	version	3.2.

HTTPConnection.connect()
Connect	to	the	server	specified	when	the	object	was	created.

HTTPConnection.close()
Close	the	connection	to	the	server.

As	an	alternative	 to	using	 the	request()	method	described	above,
you	 can	 also	 send	 your	 request	 step	 by	 step,	 by	 using	 the	 four
functions	below.

HTTPConnection.putrequest(request,	selector,
skip_host=False,	skip_accept_encoding=False)

This	should	be	the	first	call	after	 the	connection	to	 the	server	has
been	made.	It	sends	a	 line	to	the	server	consisting	of	 the	request
string,	 the	selector	 string,	 and	 the	HTTP	version	 (HTTP/1.1).	 To

disable	 automatic	 sending	 of	 Host:	 or	 Accept-Encoding:
headers	 (for	 example	 to	 accept	 additional	 content	 encodings),
specify	skip_host	or	skip_accept_encoding	with	non-False	values.

HTTPConnection.putheader(header,	argument[,	...])
Send	an	RFC	822-style	header	to	the	server.	It	sends	a	line	to	the
server	consisting	of	the	header,	a	colon	and	a	space,	and	the	first
argument.	If	more	arguments	are	given,	continuation	lines	are	sent,
each	consisting	of	a	tab	and	an	argument.

HTTPConnection.endheaders(message_body=None)
Send	a	blank	line	to	the	server,	signalling	the	end	of	the	headers.
The	 optional	 message_body	 argument	 can	 be	 used	 to	 pass	 a
message	body	associated	with	the	request.	The	message	body	will
be	sent	in	the	same	packet	as	the	message	headers	if	 it	 is	string,
otherwise	it	is	sent	in	a	separate	packet.

HTTPConnection.send(data)
Send	data	to	the	server.	This	should	be	used	directly	only	after	the
endheaders()	 method	 has	 been	 called	 and	 before
getresponse()	is	called.

http://tools.ietf.org/html/rfc822.html

21.12.2.	HTTPResponse	Objects

An	 HTTPResponse	 instance	 wraps	 the	 HTTP	 response	 from	 the
server.	It	provides	access	to	the	request	headers	and	the	entity	body.
The	 response	 is	 an	 iterable	 object	 and	 can	 be	 used	 in	 a	 with
statement.

HTTPResponse.read([amt])
Reads	and	returns	the	response	body,	or	up	to	the	next	amt	bytes.

HTTPResponse.readinto(b)
Reads	 up	 to	 the	 next	 len(b)	 bytes	 of	 the	 response	 body	 into	 the
buffer	b.	Returns	the	number	of	bytes	read.

New	in	version	3.3.

HTTPResponse.getheader(name,	default=None)
Return	 the	 value	 of	 the	 header	 name,	 or	 default	 if	 there	 is	 no
header	matching	name.	 If	 there	 is	more	than	one	header	with	 the
name	name,	return	all	of	the	values	joined	by	‘,	‘.	If	‘default’	is	any
iterable	 other	 than	 a	 single	 string,	 its	 elements	 are	 similarly
returned	joined	by	commas.

HTTPResponse.getheaders()
Return	a	list	of	(header,	value)	tuples.

HTTPResponse.fileno()
Return	the	fileno	of	the	underlying	socket.

HTTPResponse.msg

A	http.client.HTTPMessage	instance	containing	the	response
headers.	 http.client.HTTPMessage	 is	 a	 subclass	 of

email.message.Message.

HTTPResponse.version

HTTP	 protocol	 version	 used	 by	 server.	 10	 for	 HTTP/1.0,	 11	 for
HTTP/1.1.

HTTPResponse.status

Status	code	returned	by	server.

HTTPResponse.reason

Reason	phrase	returned	by	server.

HTTPResponse.debuglevel

A	debugging	hook.	If	debuglevel	is	greater	than	zero,	messages
will	be	printed	to	stdout	as	the	response	is	read	and	parsed.

HTTPResponse.closed

Is	True	if	the	stream	is	closed.

21.12.3.	Examples

Here	is	an	example	session	that	uses	the	GET	method:

>>>	import	http.client

>>>	conn	=	http.client.HTTPConnection("www.python.org"

>>>	conn.request("GET",	"/index.html")

>>>	r1	=	conn.getresponse()

>>>	print(r1.status,	r1.reason)

200	OK

>>>	data1	=	r1.read()		#	This	will	return	entire	content.

>>>	#	The	following	example	demonstrates	reading	data	in	chunks.

>>>	conn.request("GET",	"/index.html")

>>>	r1	=	conn.getresponse()

>>>	while	not	r1.closed:

...					print(r1.read(200))	#	200	bytes

b'<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"...

...

>>>	#	Example	of	an	invalid	request

>>>	conn.request("GET",	"/parrot.spam")

>>>	r2	=	conn.getresponse()

>>>	print(r2.status,	r2.reason)

404	Not	Found

>>>	data2	=	r2.read()

>>>	conn.close()

Here	is	an	example	session	that	uses	the	HEAD	method.	Note	that	the
HEAD	method	never	returns	any	data.

>>>	import	http.client

>>>	conn	=	http.client.HTTPConnection("www.python.org"

>>>	conn.request("HEAD","/index.html")

>>>	res	=	conn.getresponse()

>>>	print(res.status,	res.reason)

200	OK

>>>	data	=	res.read()

>>>	print(len(data))

0

>>>	data	==	b''

True

Here	is	an	example	session	that	shows	how	to	POST	requests:

>>>	import	http.client,	urllib.parse

>>>	params	=	urllib.parse.urlencode({'@number':	12524

>>>	headers	=	{"Content-type":	"application/x-www-form-urlencoded"

...												"Accept":	"text/plain"}

>>>	conn	=	http.client.HTTPConnection("bugs.python.org"

>>>	conn.request("POST",	"",	params,	headers)

>>>	response	=	conn.getresponse()

>>>	print(response.status,	response.reason)

302	Found

>>>	data	=	response.read()

>>>	data

b'Redirecting	to	http://bugs.python.org/issue12524'

>>>	conn.close()

Client	side	HTTP	PUT	requests	are	very	similar	to	POST	requests.	The
difference	 lies	 only	 the	 server	 side	 where	 HTTP	 server	 will	 allow
resources	 to	 be	 created	 via	 PUT	 request.	 It	 should	 be	 noted	 that
custom	 HTTP	 methods	 +are	 also	 handled	 in
urllib.request.Request	 by	 sending	 the	 appropriate	 +method
attribute.Here	 is	 an	 example	 session	 that	 shows	 how	 to	 do	 PUT
request	using	http.client:

>>>	#	This	creates	an	HTTP	message

>>>	#	with	the	content	of	BODY	as	the	enclosed	representation

>>>	#	for	the	resource	http://localhost:8080/foobar

...

>>>	import	http.client

>>>	BODY	=	"***filecontents***"

>>>	conn	=	http.client.HTTPConnection("localhost",	8080

>>>	conn.request("PUT",	"/file",	BODY)

>>>	response	=	conn.getresponse()

>>>	print(response.status,	response.reason)

200,	OK

21.12.4.	HTTPMessage	Objects

An	http.client.HTTPMessage	instance	holds	the	headers	from	an
HTTP	 response.	 It	 is	 implemented	 using	 the
email.message.Message	class.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.13.	ftplib	—	FTP	protocol
client
Source	code:	Lib/ftplib.py

This	module	defines	the	class	FTP	and	a	few	related	items.	The	FTP
class	implements	the	client	side	of	the	FTP	protocol.	You	can	use	this
to	 write	 Python	 programs	 that	 perform	 a	 variety	 of	 automated	 FTP
jobs,	such	as	mirroring	other	ftp	servers.	It	is	also	used	by	the	module
urllib.request	 to	 handle	 URLs	 that	 use	 FTP.	 For	 more
information	on	FTP	(File	Transfer	Protocol),	see	Internet	RFC	959.

Here’s	a	sample	session	using	the	ftplib	module:

>>>	from	ftplib	import	FTP

>>>	ftp	=	FTP('ftp.debian.org')					#	connect	to	host,	default	port

>>>	ftp.login()																					#	user	anonymous,	passwd	anonymous@

'230	Login	successful.'

>>>	ftp.cwd('debian')															#	change	into	"debian"	directory

>>>	ftp.retrlines('LIST')											#	list	directory	contents

-rw-rw-r--				1	1176					1176									1063	Jun	15	10:18	README

...

drwxr-sr-x				5	1176					1176									4096	Dec	19		2000	pool

drwxr-sr-x				4	1176					1176									4096	Nov	17		2008	project

drwxr-xr-x				3	1176					1176									4096	Oct	10		2012	tools

'226	Directory	send	OK.'

>>>	ftp.retrbinary('RETR	README',	open('README',	'wb'

'226	Transfer	complete.'

>>>	ftp.quit()

The	module	defines	the	following	items:

http://hg.python.org/cpython/file/3.4/Lib/ftplib.py
http://tools.ietf.org/html/rfc959.html

class	ftplib.FTP(host='',	user='',	passwd='',	acct='',	timeout=None,
source_address=None)

Return	a	new	 instance	of	 the	FTP	class.	When	host	 is	 given,	 the
method	 call	 connect(host)	 is	 made.	 When	 user	 is	 given,
additionally	 the	 method	 call	 login(user,	 passwd,	 acct)	 is
made	(where	passwd	and	acct	default	to	the	empty	string	when	not
given).	 The	 optional	 timeout	 parameter	 specifies	 a	 timeout	 in
seconds	 for	 blocking	 operations	 like	 the	 connection	 attempt	 (if	 is
not	 specified,	 the	 global	 default	 timeout	 setting	 will	 be	 used).
source_address	is	a	2-tuple	(host,	port)	for	the	socket	to	bind
to	as	its	source	address	before	connecting.

FTP	class	supports	the	with	statement.	Here	is	a	sample	on	how
using	it:

>>>	from	ftplib	import	FTP

>>>	with	FTP("ftp1.at.proftpd.org")	as	ftp:

...					ftp.login()

...					ftp.dir()

...

'230	Anonymous	login	ok,	restrictions	apply.'

dr-xr-xr-x			9	ftp						ftp											154	May		6	10:43	.

dr-xr-xr-x			9	ftp						ftp											154	May		6	10:43	..

dr-xr-xr-x			5	ftp						ftp										4096	May		6	10:43	CentOS

dr-xr-xr-x			3	ftp						ftp												18	Jul	10		2008	Fedora

>>>

Changed	 in	 version	 3.2:	 Support	 for	 the	 with	 statement	 was
added.

Changed	in	version	3.3:	source_address	parameter	was	added.

class	ftplib.FTP_TLS(host='',	user='',	passwd='',	acct='',

keyfile=None,	certfile=None,	context=None,	timeout=None,
source_address=None)

A	FTP	 subclass	which	 adds	TLS	 support	 to	 FTP	as	 described	 in
RFC	4217.	Connect	as	usual	to	port	21	implicitly	securing	the	FTP
control	 connection	 before	 authenticating.	 Securing	 the	 data
connection	 requires	 the	 user	 to	 explicitly	 ask	 for	 it	 by	 calling	 the
prot_p()	 method.	 keyfile	 and	 certfile	 are	 optional	 –	 they	 can
contain	a	PEM	formatted	private	key	and	certificate	chain	file	name
for	the	SSL	connection.	context	parameter	is	a	ssl.SSLContext
object	which	allows	bundling	SSL	configuration	options,	certificates
and	 private	 keys	 into	 a	 single	 (potentially	 long-lived)	 structure.
source_address	is	a	2-tuple	(host,	port)	for	the	socket	to	bind
to	as	its	source	address	before	connecting.

New	in	version	3.2.

Changed	in	version	3.3:	source_address	parameter	was	added.

Changed	 in	version	3.4:	The	class	now	supports	hostname	check
with	SSLContext.check_hostname	and	Server	Name	Indicator
(see	HAS_SNI).

Here’s	a	sample	session	using	the	FTP_TLS	class:

>>>	from	ftplib	import	FTP_TLS

>>>	ftps	=	FTP_TLS('ftp.python.org')

>>>	ftps.login()											#	login	anonymously	before	securing	control	channel

>>>	ftps.prot_p()										#	switch	to	secure	data	connection

>>>	ftps.retrlines('LIST')	#	list	directory	content	securely

total	9

drwxr-xr-x			8	root					wheel								1024	Jan		3		1994	.

drwxr-xr-x			8	root					wheel								1024	Jan		3		1994	..

drwxr-xr-x			2	root					wheel								1024	Jan		3		1994	bin

drwxr-xr-x			2	root					wheel								1024	Jan		3		1994	etc

http://tools.ietf.org/html/rfc4217.html

d-wxrwxr-x			2	ftp						wheel								1024	Sep		5	13:43	incoming

drwxr-xr-x			2	root					wheel								1024	Nov	17		1993	lib

drwxr-xr-x			6	1094					wheel								1024	Sep	13	19:07	pub

drwxr-xr-x			3	root					wheel								1024	Jan		3		1994	usr

-rw-r--r--			1	root					root										312	Aug		1		1994	welcome.msg

'226	Transfer	complete.'

>>>	ftps.quit()

>>>

exception	ftplib.error_reply
Exception	 raised	when	 an	 unexpected	 reply	 is	 received	 from	 the
server.

exception	ftplib.error_temp
Exception	 raised	when	an	error	code	signifying	a	 temporary	error
(response	codes	in	the	range	400–499)	is	received.

exception	ftplib.error_perm
Exception	raised	when	an	error	code	signifying	a	permanent	error
(response	codes	in	the	range	500–599)	is	received.

exception	ftplib.error_proto
Exception	raised	when	a	reply	is	received	from	the	server	that	does
not	fit	the	response	specifications	of	the	File	Transfer	Protocol,	i.e.
begin	with	a	digit	in	the	range	1–5.

ftplib.all_errors

The	 set	 of	 all	 exceptions	 (as	 a	 tuple)	 that	 methods	 of	 FTP
instances	 may	 raise	 as	 a	 result	 of	 problems	 with	 the	 FTP
connection	 (as	 opposed	 to	 programming	 errors	 made	 by	 the
caller).	This	set	includes	the	four	exceptions	listed	above	as	well	as
OSError.

See	also:

Module	netrc
Parser	 for	 the	 .netrc	 file	 format.	 The	 file	 .netrc	 is	 typically
used	 by	 FTP	 clients	 to	 load	 user	 authentication	 information
before	prompting	the	user.

The	 file	 Tools/scripts/ftpmirror.py	 in	 the	 Python	 source
distribution	is	a	script	 that	can	mirror	FTP	sites,	or	portions	thereof,
using	the	ftplib	module.	It	can	be	used	as	an	extended	example
that	applies	this	module.

21.13.1.	FTP	Objects

Several	methods	are	available	in	two	flavors:	one	for	handling	text	files
and	another	for	binary	files.	These	are	named	for	the	command	which
is	 used	 followed	 by	 lines	 for	 the	 text	 version	 or	 binary	 for	 the
binary	version.

FTP	instances	have	the	following	methods:

FTP.set_debuglevel(level)
Set	 the	 instance’s	 debugging	 level.	 This	 controls	 the	 amount	 of
debugging	output	printed.	The	default,	0,	produces	no	debugging
output.	 A	 value	 of	 1	 produces	 a	moderate	 amount	 of	 debugging
output,	generally	a	single	 line	per	 request.	A	value	of	2	or	higher
produces	the	maximum	amount	of	debugging	output,	logging	each
line	sent	and	received	on	the	control	connection.

FTP.connect(host='',	port=0,	timeout=None,
source_address=None)

Connect	to	the	given	host	and	port.	The	default	port	number	is	21,
as	specified	by	the	FTP	protocol	specification.	It	is	rarely	needed	to
specify	a	different	port	number.	This	function	should	be	called	only
once	for	each	instance;	 it	should	not	be	called	at	all	 if	a	host	was
given	when	 the	 instance	was	created.	All	other	methods	can	only
be	used	after	a	connection	has	been	made.	The	optional	 timeout
parameter	 specifies	 a	 timeout	 in	 seconds	 for	 the	 connection
attempt.	If	no	timeout	 is	passed,	 the	global	default	 timeout	setting
will	be	used.	source_address	 is	a	2-tuple	(host,	port)	 for	 the
socket	to	bind	to	as	its	source	address	before	connecting.

Changed	in	version	3.3:	source_address	parameter	was	added.

FTP.getwelcome()
Return	 the	 welcome	message	 sent	 by	 the	 server	 in	 reply	 to	 the
initial	 connection.	 (This	message	 sometimes	 contains	 disclaimers
or	help	information	that	may	be	relevant	to	the	user.)

FTP.login(user='anonymous',	passwd='',	acct='')
Log	 in	 as	 the	 given	 user.	 The	 passwd	 and	 acct	 parameters	 are
optional	and	default	 to	 the	empty	string.	 If	no	user	 is	 specified,	 it
defaults	 to	 'anonymous'.	 If	 user	 is	 'anonymous',	 the	 default
passwd	 is	 'anonymous@'.	 This	 function	 should	 be	 called	 only
once	for	each	instance,	after	a	connection	has	been	established;	it
should	not	be	called	at	all	 if	a	host	and	user	were	given	when	the
instance	was	created.	Most	FTP	commands	are	only	allowed	after
the	client	has	 logged	 in.	The	acct	parameter	supplies	 “accounting
information”;	few	systems	implement	this.

FTP.abort()
Abort	a	file	transfer	that	is	in	progress.	Using	this	does	not	always
work,	but	it’s	worth	a	try.

FTP.sendcmd(cmd)
Send	 a	 simple	 command	 string	 to	 the	 server	 and	 return	 the
response	string.

FTP.voidcmd(cmd)
Send	 a	 simple	 command	 string	 to	 the	 server	 and	 handle	 the
response.	 Return	 nothing	 if	 a	 response	 code	 corresponding	 to
success	 (codes	 in	 the	 range	 200–299)	 is	 received.	 Raise
error_reply	otherwise.

FTP.retrbinary(cmd,	callback,	blocksize=8192,	rest=None)
Retrieve	 a	 file	 in	 binary	 transfer	 mode.	 cmd	 should	 be	 an

appropriate	 RETR	 command:	 'RETR	 filename'.	 The	 callback
function	 is	 called	 for	 each	 block	 of	 data	 received,	 with	 a	 single
string	 argument	 giving	 the	 data	 block.	 The	 optional	 blocksize
argument	 specifies	 the	maximum	 chunk	 size	 to	 read	 on	 the	 low-
level	socket	object	created	to	do	the	actual	transfer	(which	will	also
be	 the	 largest	 size	 of	 the	 data	 blocks	 passed	 to	 callback).	 A
reasonable	default	is	chosen.	rest	means	the	same	thing	as	in	the
transfercmd()	method.

FTP.retrlines(cmd,	callback=None)
Retrieve	 a	 file	 or	 directory	 listing	 in	 ASCII	 transfer	 mode.	 cmd
should	be	an	appropriate	RETR	command	(see	retrbinary())	or
a	 command	 such	 as	 LIST	 or	 NLST	 (usually	 just	 the	 string
'LIST').	LIST	retrieves	a	list	of	files	and	information	about	those
files.	 NLST	 retrieves	 a	 list	 of	 file	 names.	 The	callback	 function	 is
called	for	each	line	with	a	string	argument	containing	the	line	with
the	 trailing	CRLF	 stripped.	 The	 default	 callback	 prints	 the	 line	 to
sys.stdout.

FTP.set_pasv(boolean)
Enable	 “passive”	 mode	 if	 boolean	 is	 true,	 other	 disable	 passive
mode.	Passive	mode	is	on	by	default.

FTP.storbinary(cmd,	file,	blocksize=8192,	callback=None,
rest=None)

Store	a	file	in	binary	transfer	mode.	cmd	should	be	an	appropriate
STOR	command:	"STOR	filename".	 file	 is	a	 file	object	 (opened
in	binary	mode)	which	is	read	until	EOF	using	its	read()	method
in	 blocks	 of	 size	blocksize	 to	 provide	 the	 data	 to	 be	 stored.	 The
blocksize	argument	defaults	to	8192.	callback	is	an	optional	single
parameter	 callable	 that	 is	 called	 on	 each	 block	 of	 data	 after	 it	 is

sent.	 rest	 means	 the	 same	 thing	 as	 in	 the	 transfercmd()
method.

Changed	in	version	3.2:	rest	parameter	added.

FTP.storlines(cmd,	file,	callback=None)
Store	a	file	in	ASCII	transfer	mode.	cmd	should	be	an	appropriate
STOR	 command	 (see	 storbinary()).	Lines	 are	 read	 until	 EOF
from	 the	 file	 object	 file	 (opened	 in	 binary	 mode)	 using	 its
readline()	method	to	provide	the	data	to	be	stored.	callback	 is
an	 optional	 single	 parameter	 callable	 that	 is	 called	 on	 each	 line
after	it	is	sent.

FTP.transfercmd(cmd,	rest=None)
Initiate	a	transfer	over	the	data	connection.	If	the	transfer	is	active,
send	 a	 EPRT	 or	 PORT	 command	 and	 the	 transfer	 command
specified	 by	 cmd,	 and	 accept	 the	 connection.	 If	 the	 server	 is
passive,	send	a	EPSV	or	PASV	command,	connect	 to	 it,	and	start
the	 transfer	 command.	 Either	 way,	 return	 the	 socket	 for	 the
connection.

If	 optional	 rest	 is	 given,	 a	 REST	 command	 is	 sent	 to	 the	 server,
passing	rest	as	an	argument.	rest	 is	usually	a	byte	offset	 into	 the
requested	file,	telling	the	server	to	restart	sending	the	file’s	bytes	at
the	requested	offset,	skipping	over	 the	 initial	bytes.	Note	however
that	 RFC	 959	 requires	 only	 that	 rest	 be	 a	 string	 containing
characters	in	the	printable	range	from	ASCII	code	33	to	ASCII	code
126.	 The	 transfercmd()	method,	 therefore,	 converts	 rest	 to	 a
string,	 but	 no	 check	 is	 performed	 on	 the	 string’s	 contents.	 If	 the
server	does	not	recognize	the	REST	command,	an	error_reply
exception	 will	 be	 raised.	 If	 this	 happens,	 simply	 call
transfercmd()	without	a	rest	argument.

FTP.ntransfercmd(cmd,	rest=None)
Like	transfercmd(),	but	 returns	a	 tuple	of	 the	data	connection
and	the	expected	size	of	the	data.	If	the	expected	size	could	not	be
computed,	 None	will	 be	 returned	 as	 the	 expected	 size.	cmd	 and
rest	means	the	same	thing	as	in	transfercmd().

FTP.mlsd(path="",	facts=[])
List	a	directory	in	a	standardized	format	by	using	MLSD	command
(RFC	3659).	 If	 path	 is	 omitted	 the	 current	 directory	 is	 assumed.
facts	is	a	list	of	strings	representing	the	type	of	information	desired
(e.g.	["type",	"size",	"perm"]).	Return	a	generator	object
yielding	a	 tuple	of	 two	elements	 for	every	 file	 found	 in	path.	First
element	is	the	file	name,	the	second	one	is	a	dictionary	containing
facts	about	the	file	name.	Content	of	this	dictionary	might	be	limited
by	 the	 facts	 argument	 but	 server	 is	 not	 guaranteed	 to	 return	 all
requested	facts.

New	in	version	3.3.

FTP.nlst(argument[,	...])
Return	a	list	of	file	names	as	returned	by	the	NLST	command.	The
optional	argument	is	a	directory	to	list	(default	is	the	current	server
directory).	Multiple	 arguments	 can	 be	 used	 to	 pass	 non-standard
options	to	the	NLST	command.

Deprecated	since	version	3.3:	use	mlsd()	instead.

FTP.dir(argument[,	...])
Produce	 a	 directory	 listing	 as	 returned	 by	 the	 LIST	 command,
printing	it	 to	standard	output.	The	optional	argument	 is	a	directory
to	 list	 (default	 is	 the	 current	 server	 directory).	Multiple	 arguments

http://tools.ietf.org/html/rfc3659.html

can	be	used	to	pass	non-standard	options	to	the	LIST	command.
If	 the	 last	argument	 is	a	 function,	 it	 is	used	as	a	callback	 function
as	 for	 retrlines();	 the	 default	 prints	 to	 sys.stdout.	 This
method	returns	None.

Deprecated	since	version	3.3:	use	mlsd()	instead.

FTP.rename(fromname,	toname)
Rename	file	fromname	on	the	server	to	toname.

FTP.delete(filename)
Remove	 the	 file	 named	 filename	 from	 the	 server.	 If	 successful,
returns	the	text	of	the	response,	otherwise	raises	error_perm	on
permission	errors	or	error_reply	on	other	errors.

FTP.cwd(pathname)
Set	the	current	directory	on	the	server.

FTP.mkd(pathname)
Create	a	new	directory	on	the	server.

FTP.pwd()
Return	the	pathname	of	the	current	directory	on	the	server.

FTP.rmd(dirname)
Remove	the	directory	named	dirname	on	the	server.

FTP.size(filename)
Request	 the	 size	 of	 the	 file	 named	 filename	 on	 the	 server.	 On
success,	 the	 size	 of	 the	 file	 is	 returned	 as	 an	 integer,	 otherwise
None	 is	 returned.	 Note	 that	 the	 SIZE	 command	 is	 not
standardized,	 but	 is	 supported	 by	 many	 common	 server

implementations.

FTP.quit()
Send	 a	 QUIT	 command	 to	 the	 server	 and	 close	 the	 connection.
This	 is	 the	 “polite”	way	 to	close	a	connection,	but	 it	may	 raise	an
exception	 if	 the	 server	 responds	 with	 an	 error	 to	 the	 QUIT
command.	 This	 implies	 a	 call	 to	 the	 close()	 method	 which
renders	the	FTP	instance	useless	for	subsequent	calls	(see	below).

FTP.close()
Close	the	connection	unilaterally.	This	should	not	be	applied	to	an
already	 closed	 connection	 such	 as	 after	 a	 successful	 call	 to
quit().	After	 this	call	 the	FTP	 instance	should	not	be	used	any
more	(after	a	call	 to	close()	or	quit()	 you	cannot	 reopen	 the
connection	by	issuing	another	login()	method).

21.13.2.	FTP_TLS	Objects

FTP_TLS	class	inherits	from	FTP,	defining	these	additional	objects:

FTP_TLS.ssl_version

The	SSL	version	to	use	(defaults	to	TLSv1).

FTP_TLS.auth()
Set	up	secure	control	connection	by	using	TLS	or	SSL,	depending
on	what	specified	in	ssl_version()	attribute.

Changed	 in	 version	 3.4:	 The	 method	 now	 supports	 hostname
check	 with	 SSLContext.check_hostname	 and	 Server	 Name
Indicator	(see	HAS_SNI).

FTP_TLS.ccc()
Revert	control	channel	back	to	plaintext.	This	can	be	useful	to	take
advantage	 of	 firewalls	 that	 know	 how	 to	 handle	 NAT	 with	 non-
secure	FTP	without	opening	fixed	ports.

New	in	version	3.3.

FTP_TLS.prot_p()
Set	up	secure	data	connection.

FTP_TLS.prot_c()
Set	up	clear	text	data	connection.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.14.	poplib	—	POP3	protocol
client
Source	code:	Lib/poplib.py

This	module	defines	a	class,	POP3,	which	encapsulates	a	connection
to	 a	 POP3	 server	 and	 implements	 the	 protocol	 as	 defined	 in	 RFC
1939.	 The	 POP3	 class	 supports	 both	 the	 minimal	 and	 optional
command	 sets	 from	RFC	 1939.	 The	 POP3	 class	 also	 supports	 the
STLS	 command	 introduced	 in	 RFC	 2595	 to	 enable	 encrypted
communication	on	an	already	established	connection.

Additionally,	 this	module	provides	a	class	POP3_SSL,	which	provides
support	for	connecting	to	POP3	servers	that	use	SSL	as	an	underlying
protocol	layer.

Note	 that	 POP3,	 though	 widely	 supported,	 is	 obsolescent.	 The
implementation	quality	of	POP3	servers	 varies	widely,	 and	 too	many
are	quite	poor.	 If	your	mailserver	supports	IMAP,	you	would	be	better
off	 using	 the	 imaplib.IMAP4	 class,	 as	 IMAP	 servers	 tend	 to	 be
better	implemented.

The	poplib	module	provides	two	classes:

class	poplib.POP3(host,	port=POP3_PORT[,	timeout])
This	class	implements	the	actual	POP3	protocol.	The	connection	is
created	 when	 the	 instance	 is	 initialized.	 If	 port	 is	 omitted,	 the
standard	POP3	port	(110)	is	used.	The	optional	timeout	parameter
specifies	 a	 timeout	 in	 seconds	 for	 the	 connection	 attempt	 (if	 not

http://hg.python.org/cpython/file/3.4/Lib/poplib.py
http://tools.ietf.org/html/rfc1939.html
http://tools.ietf.org/html/rfc1939.html
http://tools.ietf.org/html/rfc2595.html

specified,	the	global	default	timeout	setting	will	be	used).

class	poplib.POP3_SSL(host,	port=POP3_SSL_PORT,
keyfile=None,	certfile=None,	timeout=None,	context=None)

This	is	a	subclass	of	POP3	that	connects	to	the	server	over	an	SSL
encrypted	socket.	If	port	is	not	specified,	995,	the	standard	POP3-
over-SSL	port	 is	used.	keyfile	and	certfile	are	also	optional	 -	 they
can	contain	a	PEM	formatted	private	key	and	certificate	chain	 file
for	the	SSL	connection.	timeout	works	as	in	the	POP3	constructor.
context	 parameter	 is	 a	 ssl.SSLContext	 object	 which	 allows
bundling	 SSL	 configuration	 options,	 certificates	 and	 private	 keys
into	a	single	(potentially	long-lived)	structure.

Changed	in	version	3.2:	context	parameter	added.

Changed	 in	version	3.4:	The	class	now	supports	hostname	check
with	SSLContext.check_hostname	and	Server	Name	Indicator
(see	HAS_SNI).

One	exception	is	defined	as	an	attribute	of	the	poplib	module:

exception	poplib.error_proto
Exception	 raised	 on	 any	 errors	 from	 this	 module	 (errors	 from
socket	module	are	not	caught).	The	 reason	 for	 the	exception	 is
passed	to	the	constructor	as	a	string.

See	also:

Module	imaplib
The	standard	Python	IMAP	module.

Frequently	Asked	Questions	About	Fetchmail
The	FAQ	for	the	fetchmail	POP/IMAP	client	collects	 information
on	POP3	server	variations	and	RFC	noncompliance	that	may	be

http://www.catb.org/~esr/fetchmail/fetchmail-FAQ.html

useful	 if	 you	 need	 to	 write	 an	 application	 based	 on	 the	 POP
protocol.

21.14.1.	POP3	Objects

All	POP3	commands	are	represented	by	methods	of	the	same	name,
in	lower-case;	most	return	the	response	text	sent	by	the	server.

An	POP3	instance	has	the	following	methods:

POP3.set_debuglevel(level)
Set	 the	 instance’s	 debugging	 level.	 This	 controls	 the	 amount	 of
debugging	output	printed.	The	default,	0,	produces	no	debugging
output.	 A	 value	 of	 1	 produces	 a	moderate	 amount	 of	 debugging
output,	generally	a	single	 line	per	 request.	A	value	of	2	or	higher
produces	the	maximum	amount	of	debugging	output,	logging	each
line	sent	and	received	on	the	control	connection.

POP3.getwelcome()
Returns	the	greeting	string	sent	by	the	POP3	server.

POP3.capa()
Query	the	server’s	capabilities	as	specified	in	RFC	2449.	Returns	a
dictionary	in	the	form	{'name':	['param'...]}.

New	in	version	3.4.

POP3.user(username)
Send	user	command,	response	should	indicate	that	a	password	is
required.

POP3.pass_(password)
Send	 password,	 response	 includes	 message	 count	 and	 mailbox
size.	 Note:	 the	 mailbox	 on	 the	 server	 is	 locked	 until	 quit()	 is
called.

http://tools.ietf.org/html/rfc2449.html

POP3.apop(user,	secret)
Use	 the	more	 secure	 APOP	 authentication	 to	 log	 into	 the	 POP3
server.

POP3.rpop(user)
Use	RPOP	authentication	(similar	to	UNIX	r-commands)	to	log	into
POP3	server.

POP3.stat()
Get	mailbox	status.	The	result	 is	a	 tuple	of	2	 integers:	(message
count,	mailbox	size).

POP3.list([which])
Request	 message	 list,	 result	 is	 in	 the	 form	 (response,

['mesg_num	octets',	...],	octets).	 If	which	 is	 set,	 it	 is
the	message	to	list.

POP3.retr(which)
Retrieve	 whole	 message	 number	 which,	 and	 set	 its	 seen	 flag.
Result	is	in	form	(response,	['line',	...],	octets).

POP3.dele(which)
Flag	 message	 number	 which	 for	 deletion.	 On	 most	 servers
deletions	 are	 not	 actually	 performed	 until	 QUIT	 (the	 major
exception	is	Eudora	QPOP,	which	deliberately	violates	the	RFCs	by
doing	pending	deletes	on	any	disconnect).

POP3.rset()
Remove	any	deletion	marks	for	the	mailbox.

POP3.noop()
Do	nothing.	Might	be	used	as	a	keep-alive.

POP3.quit()
Signoff:	commit	changes,	unlock	mailbox,	drop	connection.

POP3.top(which,	howmuch)
Retrieves	the	message	header	plus	howmuch	lines	of	the	message
after	 the	 header	 of	 message	 number	 which.	 Result	 is	 in	 form
(response,	['line',	...],	octets).

The	 POP3	 TOP	 command	 this	 method	 uses,	 unlike	 the	 RETR
command,	doesn’t	set	the	message’s	seen	flag;	unfortunately,	TOP
is	poorly	specified	in	the	RFCs	and	is	frequently	broken	in	off-brand
servers.	Test	 this	method	by	hand	against	 the	POP3	servers	you
will	use	before	trusting	it.

POP3.uidl(which=None)
Return	message	digest	(unique	id)	 list.	 If	which	 is	specified,	result
contains	 the	 unique	 id	 for	 that	message	 in	 the	 form	 'response
mesgnum	uid,	otherwise	 result	 is	 list	(response,	['mesgnum
uid',	...],	octets).

POP3.stls(context=None)
Start	a	TLS	session	on	the	active	connection	as	specified	 in	RFC
2595.	This	is	only	allowed	before	user	authentication

context	 parameter	 is	 a	 ssl.SSLContext	 object	 which	 allows
bundling	 SSL	 configuration	 options,	 certificates	 and	 private	 keys
into	a	single	(potentially	long-lived)	structure.	This	method	supports
hostname	 checking	 via	 SSLContext.check_hostname

SSLContext.check_hostname	and	Server	Name	Indicator	(see
HAS_SNI).

New	in	version	3.4.

http://tools.ietf.org/html/rfc2595.html

Instances	of	POP3_SSL	have	no	additional	methods.	The	interface	of
this	subclass	is	identical	to	its	parent.

21.14.2.	POP3	Example

Here	 is	 a	 minimal	 example	 (without	 error	 checking)	 that	 opens	 a
mailbox	and	retrieves	and	prints	all	messages:

import	getpass,	poplib

M	=	poplib.POP3('localhost')

M.user(getpass.getuser())

M.pass_(getpass.getpass())

numMessages	=	len(M.list()[1])

for	i	in	range(numMessages):

				for	j	in	M.retr(i+1)[1]:

								print(j)

At	the	end	of	the	module,	there	is	a	test	section	that	contains	a	more
extensive	example	of	usage.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.15.	imaplib	—	IMAP4
protocol	client
Source	code:	Lib/imaplib.py

This	 module	 defines	 three	 classes,	 IMAP4,	 IMAP4_SSL	 and
IMAP4_stream,	which	encapsulate	a	connection	to	an	IMAP4	server
and	 implement	 a	 large	 subset	 of	 the	 IMAP4rev1	 client	 protocol	 as
defined	 in	 RFC	 2060.	 It	 is	 backward	 compatible	 with	 IMAP4	 (RFC
1730)	servers,	but	note	that	the	STATUS	command	is	not	supported	in
IMAP4.

Three	 classes	 are	 provided	 by	 the	 imaplib	 module,	 IMAP4	 is	 the
base	class:

class	imaplib.IMAP4(host='',	port=IMAP4_PORT)
This	class	 implements	 the	actual	 IMAP4	protocol.	The	connection
is	 created	 and	 protocol	 version	 (IMAP4	 or	 IMAP4rev1)	 is
determined	when	the	instance	is	initialized.	If	host	is	not	specified,
''	(the	 local	host)	 is	used.	If	port	 is	omitted,	 the	standard	IMAP4
port	(143)	is	used.

Three	exceptions	are	defined	as	attributes	of	the	IMAP4	class:

exception	IMAP4.error
Exception	 raised	 on	 any	 errors.	 The	 reason	 for	 the	 exception	 is
passed	to	the	constructor	as	a	string.

exception	IMAP4.abort
IMAP4	 server	 errors	 cause	 this	 exception	 to	 be	 raised.	 This	 is	 a

http://hg.python.org/cpython/file/3.4/Lib/imaplib.py
http://tools.ietf.org/html/rfc2060.html
http://tools.ietf.org/html/rfc1730.html

sub-class	 of	 IMAP4.error.	 Note	 that	 closing	 the	 instance	 and
instantiating	 a	 new	 one	 will	 usually	 allow	 recovery	 from	 this
exception.

exception	IMAP4.readonly
This	 exception	 is	 raised	 when	 a	 writable	 mailbox	 has	 its	 status
changed	 by	 the	 server.	 This	 is	 a	 sub-class	 of	 IMAP4.error.
Some	other	client	now	has	write	permission,	and	 the	mailbox	will
need	to	be	re-opened	to	re-obtain	write	permission.

There’s	also	a	subclass	for	secure	connections:

class	imaplib.IMAP4_SSL(host='',	port=IMAP4_SSL_PORT,
keyfile=None,	certfile=None,	ssl_context=None)

This	is	a	subclass	derived	from	IMAP4	that	connects	over	an	SSL
encrypted	socket	(to	use	this	class	you	need	a	socket	module	that
was	 compiled	with	SSL	 support).	 If	host	 is	 not	 specified,	 ''	 (the
local	host)	is	used.	If	port	is	omitted,	the	standard	IMAP4-over-SSL
port	 (993)	 is	used.	keyfile	and	certfile	are	also	optional	 -	 they	can
contain	 a	PEM	 formatted	 private	 key	 and	 certificate	 chain	 file	 for
the	SSL	connection.	ssl_context	parameter	is	a	ssl.SSLContext
object	which	allows	bundling	SSL	configuration	options,	certificates
and	private	keys	into	a	single	(potentially	long-lived)	structure.	Note
that	 the	 keyfile/certfile	 parameters	 are	 mutually	 exclusive	 with
ssl_context,	a	ValueError	 is	 raised	 if	keyfile/certfile	 is	 provided
along	with	ssl_context.

Changed	in	version	3.3:	ssl_context	parameter	added.

Changed	 in	version	3.4:	The	class	now	supports	hostname	check
with	SSLContext.check_hostname	and	Server	Name	Indicator
(see	HAS_SNI).

The	 second	 subclass	 allows	 for	 connections	 created	 by	 a	 child
process:

class	imaplib.IMAP4_stream(command)
This	 is	 a	 subclass	 derived	 from	 IMAP4	 that	 connects	 to	 the
stdin/stdout	 file	 descriptors	 created	 by	 passing	 command	 to
subprocess.Popen().

The	following	utility	functions	are	defined:

imaplib.Internaldate2tuple(datestr)
Parse	an	IMAP4	INTERNALDATE	string	and	 return	corresponding
local	 time.	 The	 return	 value	 is	 a	 time.struct_time	 tuple	 or
None	if	the	string	has	wrong	format.

imaplib.Int2AP(num)
Converts	 an	 integer	 into	 a	 string	 representation	 using	 characters
from	the	set	[A	..	P].

imaplib.ParseFlags(flagstr)
Converts	an	IMAP4	FLAGS	response	to	a	tuple	of	individual	flags.

imaplib.Time2Internaldate(date_time)
Convert	 date_time	 to	 an	 IMAP4	 INTERNALDATE	 representation.
The	 return	 value	 is	 a	 string	 in	 the	 form:	 "DD-Mmm-YYYY

HH:MM:SS	 +HHMM"	 (including	 double-quotes).	 The	 date_time
argument	can	be	a	number	(int	or	float)	representing	seconds	since
epoch	(as	returned	by	time.time()),	a	9-tuple	representing	local
time	 an	 instance	 of	 time.struct_time	 (as	 returned	 by
time.localtime()),	 an	 aware	 instance	 of
datetime.datetime,	or	a	double-quoted	string.	In	the	last	case,
it	is	assumed	to	already	be	in	the	correct	format.

Note	that	 IMAP4	message	numbers	change	as	the	mailbox	changes;
in	 particular,	 after	 an	 EXPUNGE	 command	 performs	 deletions	 the
remaining	messages	are	renumbered.	So	it	is	highly	advisable	to	use
UIDs	instead,	with	the	UID	command.

At	the	end	of	the	module,	there	is	a	test	section	that	contains	a	more
extensive	example	of	usage.

See	also: 	Documents	describing	the	protocol,	and	sources	and
binaries	for	servers	implementing	it,	can	all	be	found	at	the
University	of	Washington’s	IMAP	Information	Center
(http://www.washington.edu/imap/).

http://www.washington.edu/imap/

21.15.1.	IMAP4	Objects

All	 IMAP4rev1	 commands	 are	 represented	 by	methods	 of	 the	 same
name,	either	upper-case	or	lower-case.

All	 arguments	 to	 commands	 are	 converted	 to	 strings,	 except	 for
AUTHENTICATE,	and	the	last	argument	to	APPEND	which	is	passed	as
an	 IMAP4	 literal.	 If	 necessary	 (the	 string	 contains	 IMAP4	 protocol-
sensitive	 characters	 and	 isn’t	 enclosed	 with	 either	 parentheses	 or
double	 quotes)	 each	 string	 is	 quoted.	 However,	 the	 password
argument	 to	 the	 LOGIN	 command	 is	 always	 quoted.	 If	 you	 want	 to
avoid	 having	 an	 argument	 string	 quoted	 (eg:	 the	 flags	 argument	 to
STORE)	 then	 enclose	 the	 string	 in	 parentheses	 (eg:
r'(\Deleted)').

Each	command	returns	a	tuple:	(type,	[data,	...])	where	type
is	usually	'OK'	or	'NO',	and	data	is	either	the	text	from	the	command
response,	or	mandated	results	from	the	command.	Each	data	is	either
a	string,	or	a	 tuple.	 If	a	 tuple,	 then	 the	 first	part	 is	 the	header	of	 the
response,	and	the	second	part	contains	the	data	(ie:	‘literal’	value).

The	message_set	 options	 to	 commands	 below	 is	 a	 string	 specifying
one	or	more	messages	to	be	acted	upon.	It	may	be	a	simple	message
number	('1'),	a	 range	of	message	numbers	 ('2:4'),	or	a	group	of
non-contiguous	ranges	separated	by	commas	('1:3,6:9').	A	range
can	contain	an	asterisk	to	indicate	an	infinite	upper	bound	('3:*').

An	IMAP4	instance	has	the	following	methods:

IMAP4.append(mailbox,	flags,	date_time,	message)
Append	message	to	named	mailbox.

IMAP4.authenticate(mechanism,	authobject)
Authenticate	command	—	requires	response	processing.

mechanism	 specifies	 which	 authentication	 mechanism	 is	 to	 be
used	-	it	should	appear	in	the	instance	variable	capabilities	in
the	form	AUTH=mechanism.

authobject	must	be	a	callable	object:

data	=	authobject(response)

It	 will	 be	 called	 to	 process	 server	 continuation	 responses;	 the
response	 argument	 it	 is	 passed	 will	 be	 bytes.	 It	 should	 return
bytes	data	that	will	be	base64	encoded	and	sent	to	the	server.	It
should	 return	None	 if	 the	client	abort	 response	*	 should	be	sent
instead.

IMAP4.check()
Checkpoint	mailbox	on	server.

IMAP4.close()
Close	currently	selected	mailbox.	Deleted	messages	are	removed
from	writable	mailbox.	This	 is	 the	recommended	command	before
LOGOUT.

IMAP4.copy(message_set,	new_mailbox)
Copy	message_set	messages	onto	end	of	new_mailbox.

IMAP4.create(mailbox)
Create	new	mailbox	named	mailbox.

IMAP4.delete(mailbox)
Delete	old	mailbox	named	mailbox.

IMAP4.deleteacl(mailbox,	who)
Delete	the	ACLs	(remove	any	rights)	set	for	who	on	mailbox.

IMAP4.expunge()
Permanently	 remove	 deleted	 items	 from	 selected	 mailbox.
Generates	 an	 EXPUNGE	 response	 for	 each	 deleted	 message.
Returned	 data	 contains	 a	 list	 of	 EXPUNGE	 message	 numbers	 in
order	received.

IMAP4.fetch(message_set,	message_parts)
Fetch	 (parts	 of)	messages.	message_parts	 should	 be	 a	 string	 of
message	 part	 names	 enclosed	 within	 parentheses,	 eg:	 "(UID
BODY[TEXT])".	 Returned	 data	 are	 tuples	 of	 message	 part
envelope	and	data.

IMAP4.getacl(mailbox)
Get	 the	 ACLs	 for	mailbox.	 The	 method	 is	 non-standard,	 but	 is
supported	by	the	Cyrus	server.

IMAP4.getannotation(mailbox,	entry,	attribute)
Retrieve	 the	 specified	 ANNOTATIONs	 for	mailbox.	 The	method	 is
non-standard,	but	is	supported	by	the	Cyrus	server.

IMAP4.getquota(root)
Get	 the	 quota	 root‘s	 resource	 usage	 and	 limits.	 This	method	 is
part	of	the	IMAP4	QUOTA	extension	defined	in	rfc2087.

IMAP4.getquotaroot(mailbox)
Get	the	list	of	quota	roots	 for	the	named	mailbox.	This	method
is	part	of	the	IMAP4	QUOTA	extension	defined	in	rfc2087.

IMAP4.list([directory[,	pattern]])

List	mailbox	names	in	directory	matching	pattern.	directory	defaults
to	the	top-level	mail	folder,	and	pattern	defaults	to	match	anything.
Returned	data	contains	a	list	of	LIST	responses.

IMAP4.login(user,	password)
Identify	the	client	using	a	plaintext	password.	The	password	will	be
quoted.

IMAP4.login_cram_md5(user,	password)
Force	use	of	CRAM-MD5	authentication	when	 identifying	 the	client
to	protect	the	password.	Will	only	work	if	the	server	CAPABILITY
response	includes	the	phrase	AUTH=CRAM-MD5.

IMAP4.logout()
Shutdown	connection	to	server.	Returns	server	BYE	response.

IMAP4.lsub(directory='""',	pattern='*')
List	 subscribed	 mailbox	 names	 in	 directory	 matching	 pattern.
directory	defaults	 to	 the	 top	 level	directory	and	pattern	defaults	 to
match	 any	 mailbox.	 Returned	 data	 are	 tuples	 of	 message	 part
envelope	and	data.

IMAP4.myrights(mailbox)
Show	 my	 ACLs	 for	 a	 mailbox	 (i.e.	 the	 rights	 that	 I	 have	 on
mailbox).

IMAP4.namespace()
Returns	IMAP	namespaces	as	defined	in	RFC2342.

IMAP4.noop()
Send	NOOP	to	server.

IMAP4.open(host,	port)
Opens	socket	to	port	at	host.	This	method	is	implicitly	called	by	the
IMAP4	 constructor.	 The	 connection	 objects	 established	 by	 this
method	will	be	used	in	the	IMAP4.read(),	IMAP4.readline(),
IMAP4.send(),	 and	 IMAP4.shutdown()	 methods.	 You	 may
override	this	method.

IMAP4.partial(message_num,	message_part,	start,	length)
Fetch	 truncated	 part	 of	 a	 message.	 Returned	 data	 is	 a	 tuple	 of
message	part	envelope	and	data.

IMAP4.proxyauth(user)
Assume	authentication	as	user.	Allows	an	authorised	administrator
to	proxy	into	any	user’s	mailbox.

IMAP4.read(size)
Reads	size	 bytes	 from	 the	 remote	 server.	 You	may	 override	 this
method.

IMAP4.readline()
Reads	 one	 line	 from	 the	 remote	 server.	 You	 may	 override	 this
method.

IMAP4.recent()
Prompt	 server	 for	 an	 update.	 Returned	 data	 is	 None	 if	 no	 new
messages,	else	value	of	RECENT	response.

IMAP4.rename(oldmailbox,	newmailbox)
Rename	mailbox	named	oldmailbox	to	newmailbox.

IMAP4.response(code)
Return	 data	 for	 response	code	 if	 received,	 or	 None.	Returns	 the

given	code,	instead	of	the	usual	type.

IMAP4.search(charset,	criterion[,	...])
Search	mailbox	for	matching	messages.	charset	may	be	None,	 in
which	 case	 no	 CHARSET	 will	 be	 specified	 in	 the	 request	 to	 the
server.	 The	 IMAP	 protocol	 requires	 that	 at	 least	 one	 criterion	 be
specified;	 an	exception	will	 be	 raised	when	 the	 server	 returns	an
error.

Example:

#	M	is	a	connected	IMAP4	instance...

typ,	msgnums	=	M.search(None,	'FROM',	'"LDJ"')

#	or:

typ,	msgnums	=	M.search(None,	'(FROM	"LDJ")')

IMAP4.select(mailbox='INBOX',	readonly=False)
Select	 a	 mailbox.	 Returned	 data	 is	 the	 count	 of	 messages	 in
mailbox	 (EXISTS	 response).	 The	 default	mailbox	 is	 'INBOX'.	 If
the	 readonly	 flag	 is	 set,	 modifications	 to	 the	 mailbox	 are	 not
allowed.

IMAP4.send(data)
Sends	data	to	the	remote	server.	You	may	override	this	method.

IMAP4.setacl(mailbox,	who,	what)
Set	 an	 ACL	 for	 mailbox.	 The	 method	 is	 non-standard,	 but	 is
supported	by	the	Cyrus	server.

IMAP4.setannotation(mailbox,	entry,	attribute[,	...])
Set	ANNOTATIONs	for	mailbox.	The	method	is	non-standard,	but	is

supported	by	the	Cyrus	server.

IMAP4.setquota(root,	limits)
Set	 the	 quota	 root‘s	 resource	 limits.	 This	 method	 is	 part	 of	 the
IMAP4	QUOTA	extension	defined	in	rfc2087.

IMAP4.shutdown()
Close	 connection	 established	 in	 open.	 This	 method	 is	 implicitly
called	by	IMAP4.logout().	You	may	override	this	method.

IMAP4.socket()
Returns	socket	instance	used	to	connect	to	server.

IMAP4.sort(sort_criteria,	charset,	search_criterion[,	...])
The	sort	command	is	a	variant	of	search	with	sorting	semantics
for	 the	 results.	 Returned	 data	 contains	 a	 space	 separated	 list	 of
matching	message	numbers.

Sort	has	two	arguments	before	the	search_criterion	argument(s);	a
parenthesized	list	of	sort_criteria,	and	the	searching	charset.	Note
that	unlike	search,	the	searching	charset	argument	is	mandatory.
There	is	also	a	uid	sort	command	which	corresponds	to	sort
the	 way	 that	 uid	 search	 corresponds	 to	 search.	 The	 sort
command	first	searches	the	mailbox	for	messages	that	match	the
given	 searching	 criteria	 using	 the	 charset	 argument	 for	 the
interpretation	of	strings	in	the	searching	criteria.	It	then	returns	the
numbers	of	matching	messages.

This	is	an	IMAP4rev1	extension	command.

IMAP4.starttls(ssl_context=None)
Send	 a	 STARTTLS	 command.	 The	 ssl_context	 argument	 is

optional	 and	 should	 be	 a	 ssl.SSLContext	 object.	 This	 will
enable	encryption	on	the	IMAP	connection.

New	in	version	3.2.

Changed	 in	 version	 3.4:	 The	 method	 now	 supports	 hostname
check	 with	 SSLContext.check_hostname	 and	 Server	 Name
Indicator	(see	HAS_SNI).

IMAP4.status(mailbox,	names)
Request	named	status	conditions	for	mailbox.

IMAP4.store(message_set,	command,	flag_list)
Alters	 flag	 dispositions	 for	 messages	 in	 mailbox.	 command	 is
specified	by	section	6.4.6	of	RFC	2060	as	being	one	of	 “FLAGS”,
“+FLAGS”,	or	“-FLAGS”,	optionally	with	a	suffix	of	”.SILENT”.

For	example,	to	set	the	delete	flag	on	all	messages:

typ,	data	=	M.search(None,	'ALL')

for	num	in	data[0].split():

			M.store(num,	'+FLAGS',	'\\Deleted')

M.expunge()

IMAP4.subscribe(mailbox)
Subscribe	to	new	mailbox.

IMAP4.thread(threading_algorithm,	charset,	search_criterion[,	...])
The	 thread	 command	 is	 a	 variant	 of	 search	 with	 threading
semantics	 for	 the	 results.	 Returned	 data	 contains	 a	 space
separated	list	of	thread	members.

Thread	 members	 consist	 of	 zero	 or	 more	 messages	 numbers,

http://tools.ietf.org/html/rfc2060.html

delimited	by	spaces,	indicating	successive	parent	and	child.

Thread	 has	 two	 arguments	 before	 the	 search_criterion
argument(s);	 a	 threading_algorithm,	 and	 the	 searching	 charset.
Note	 that	 unlike	 search,	 the	 searching	 charset	 argument	 is
mandatory.	 There	 is	 also	 a	 uid	 thread	 command	 which
corresponds	to	thread	the	way	that	uid	search	corresponds	to
search.	 The	 thread	 command	 first	 searches	 the	 mailbox	 for
messages	that	match	the	given	searching	criteria	using	the	charset
argument	for	the	interpretation	of	strings	in	the	searching	criteria.	It
then	 returns	 the	 matching	 messages	 threaded	 according	 to	 the
specified	threading	algorithm.

This	is	an	IMAP4rev1	extension	command.

IMAP4.uid(command,	arg[,	...])
Execute	 command	 args	 with	 messages	 identified	 by	 UID,	 rather
than	message	number.	Returns	response	appropriate	to	command.
At	least	one	argument	must	be	supplied;	if	none	are	provided,	the
server	will	return	an	error	and	an	exception	will	be	raised.

IMAP4.unsubscribe(mailbox)
Unsubscribe	from	old	mailbox.

IMAP4.xatom(name[,	...])
Allow	 simple	 extension	 commands	 notified	 by	 server	 in
CAPABILITY	response.

The	following	attributes	are	defined	on	instances	of	IMAP4:

IMAP4.PROTOCOL_VERSION

The	most	recent	supported	protocol	in	the	CAPABILITY	response

from	the	server.

IMAP4.debug

Integer	 value	 to	 control	 debugging	 output.	 The	 initialize	 value	 is
taken	from	the	module	variable	Debug.	Values	greater	 than	 three
trace	each	command.

21.15.2.	IMAP4	Example

Here	 is	 a	 minimal	 example	 (without	 error	 checking)	 that	 opens	 a
mailbox	and	retrieves	and	prints	all	messages:

import	getpass,	imaplib

M	=	imaplib.IMAP4()

M.login(getpass.getuser(),	getpass.getpass())

M.select()

typ,	data	=	M.search(None,	'ALL')

for	num	in	data[0].split():

				typ,	data	=	M.fetch(num,	'(RFC822)')

				print('Message	%s\n%s\n'	%	(num,	data[0][1]))

M.close()

M.logout()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.16.	nntplib	—	NNTP	protocol
client
Source	code:	Lib/nntplib.py

This	module	defines	the	class	NNTP	which	implements	the	client	side
of	the	Network	News	Transfer	Protocol.	It	can	be	used	to	implement	a
news	reader	or	poster,	or	automated	news	processors.	It	is	compatible
with	RFC	3977	as	well	as	the	older	RFC	977	and	RFC	2980.

Here	 are	 two	 small	 examples	 of	 how	 it	 can	 be	 used.	 To	 list	 some
statistics	 about	 a	 newsgroup	 and	 print	 the	 subjects	 of	 the	 last	 10
articles:

>>>	s	=	nntplib.NNTP('news.gmane.org')

>>>	resp,	count,	first,	last,	name	=	s.group('gmane.comp.python.committers'

>>>	print('Group',	name,	'has',	count,	'articles,	range'

Group	gmane.comp.python.committers	has	1096	articles,	range	1	to	1096

>>>	resp,	overviews	=	s.over((last	-	9,	last))

>>>	for	id,	over	in	overviews:

...					print(id,	nntplib.decode_header(over['subject'

...

1087	Re:	Commit	privileges	for	Łukasz	Langa

1088	Re:	3.2	alpha	2	freeze

1089	Re:	3.2	alpha	2	freeze

1090	Re:	Commit	privileges	for	Łukasz	Langa

1091	Re:	Commit	privileges	for	Łukasz	Langa

1092	Updated	ssh	key

1093	Re:	Updated	ssh	key

1094	Re:	Updated	ssh	key

1095	Hello	fellow	committers!

1096	Re:	Hello	fellow	committers!

http://hg.python.org/cpython/file/3.4/Lib/nntplib.py
http://tools.ietf.org/html/rfc3977.html
http://tools.ietf.org/html/rfc977.html
http://tools.ietf.org/html/rfc2980.html

>>>	s.quit()

'205	Bye!'

To	post	an	article	from	a	binary	file	(this	assumes	that	the	article	has
valid	 headers,	 and	 that	 you	 have	 right	 to	 post	 on	 the	 particular
newsgroup):

>>>	s	=	nntplib.NNTP('news.gmane.org')

>>>	f	=	open('article.txt',	'rb')

>>>	s.post(f)

'240	Article	posted	successfully.'

>>>	s.quit()

'205	Bye!'

The	module	itself	defines	the	following	classes:

class	nntplib.NNTP(host,	port=119,	user=None,	password=None,
readermode=None,	usenetrc=False[,	timeout])

Return	a	new	NNTP	object,	representing	a	connection	to	the	NNTP
server	 running	 on	 host	 host,	 listening	 at	 port	 port.	 An	 optional
timeout	can	be	specified	 for	 the	socket	connection.	 If	 the	optional
user	 and	 password	 are	 provided,	 or	 if	 suitable	 credentials	 are
present	 in	 /.netrc	 and	 the	 optional	 flag	 usenetrc	 is	 true,	 the
AUTHINFO	USER	 and	 AUTHINFO	PASS	 commands	 are	 used	 to
identify	and	authenticate	the	user	to	the	server.	If	the	optional	flag
readermode	is	true,	then	a	mode	reader	command	is	sent	before
authentication	is	performed.	Reader	mode	is	sometimes	necessary
if	you	are	connecting	to	an	NNTP	server	on	the	local	machine	and
intend	to	call	reader-specific	commands,	such	as	group.	If	you	get
unexpected	 NNTPPermanentErrors,	 you	 might	 need	 to	 set
readermode.	 NNTP	 class	 supports	 the	 with	 statement	 to
unconditionally	 consume	 OSError	 exceptions	 and	 to	 close	 the

NNTP	connection	when	done.	Here	is	a	sample	on	how	using	it:

>>>	from	nntplib	import	NNTP

>>>	with	NNTP('news.gmane.org')	as	n:

...					n.group('gmane.comp.python.committers')

...

('211	1755	1	1755	gmane.comp.python.committers',	1755,	1,	1755,	'gmane.comp.python.committers')

>>>

Changed	in	version	3.2:	usenetrc	is	now	False	by	default.

Changed	 in	 version	 3.3:	 Support	 for	 the	 with	 statement	 was
added.

class	nntplib.NNTP_SSL(host,	port=563,	user=None,
password=None,	ssl_context=None,	readermode=None,
usenetrc=False[,	timeout])

Return	 a	 new	 NNTP_SSL	 object,	 representing	 an	 encrypted
connection	 to	 the	NNTP	 server	 running	 on	 host	host,	 listening	 at
port	 port.	 NNTP_SSL	 objects	 have	 the	 same	 methods	 as	 NNTP
objects.	If	port	is	omitted,	port	563	(NNTPS)	is	used.	ssl_context	is
also	optional,	 and	 is	 a	 SSLContext	 object.	All	 other	 parameters
behave	the	same	as	for	NNTP.

Note	 that	 SSL-on-563	 is	 discouraged	 per	RFC	4642,	 in	 favor	 of
STARTTLS	 as	 described	 below.	 However,	 some	 servers	 only
support	the	former.

New	in	version	3.2.

Changed	 in	version	3.4:	The	class	now	supports	hostname	check
with	SSLContext.check_hostname	and	Server	Name	Indicator
(see	HAS_SNI).

http://tools.ietf.org/html/rfc4642.html

exception	nntplib.NNTPError
Derived	from	the	standard	exception	Exception,	 this	 is	the	base
class	for	all	exceptions	raised	by	the	nntplib	module.	Instances
of	this	class	have	the	following	attribute:

response

The	response	of	the	server	if	available,	as	a	str	object.

exception	nntplib.NNTPReplyError
Exception	 raised	when	 an	 unexpected	 reply	 is	 received	 from	 the
server.

exception	nntplib.NNTPTemporaryError
Exception	 raised	when	a	 response	code	 in	 the	 range	400–499	 is
received.

exception	nntplib.NNTPPermanentError
Exception	 raised	when	a	 response	code	 in	 the	 range	500–599	 is
received.

exception	nntplib.NNTPProtocolError
Exception	raised	when	a	reply	is	received	from	the	server	that	does
not	begin	with	a	digit	in	the	range	1–5.

exception	nntplib.NNTPDataError
Exception	raised	when	there	is	some	error	in	the	response	data.

21.16.1.	NNTP	Objects

When	connected,	NNTP	and	NNTP_SSL	objects	support	 the	following
methods	and	attributes.

21.16.1.1.	Attributes

NNTP.nntp_version

An	 integer	 representing	 the	 version	 of	 the	 NNTP	 protocol
supported	by	 the	server.	 In	 practice,	 this	 should	be	 2	 for	 servers
advertising	RFC	3977	compliance	and	1	for	others.

New	in	version	3.2.

NNTP.nntp_implementation

A	 string	 describing	 the	 software	 name	 and	 version	 of	 the	 NNTP
server,	or	None	if	not	advertised	by	the	server.

New	in	version	3.2.

21.16.1.2.	Methods

The	 response	 that	 is	 returned	 as	 the	 first	 item	 in	 the	 return	 tuple	 of
almost	all	methods	is	the	server’s	response:	a	string	beginning	with	a
three-digit	 code.	 If	 the	 server’s	 response	 indicates	 an	 error,	 the
method	raises	one	of	the	above	exceptions.

Many	 of	 the	 following	 methods	 take	 an	 optional	 keyword-only
argument	file.	When	the	 file	argument	 is	supplied,	 it	must	be	either	a
file	object	opened	for	binary	writing,	or	 the	name	of	an	on-disk	 file	 to
be	 written	 to.	 The	 method	 will	 then	 write	 any	 data	 returned	 by	 the

http://tools.ietf.org/html/rfc3977.html

server	(except	for	the	response	line	and	the	terminating	dot)	to	the	file;
any	list	of	lines,	tuples	or	objects	that	the	method	normally	returns	will
be	empty.

Changed	 in	 version	 3.2:	Many	 of	 the	 following	 methods	 have	 been
reworked	 and	 fixed,	 which	 makes	 them	 incompatible	 with	 their	 3.1
counterparts.

NNTP.quit()
Send	 a	 QUIT	 command	 and	 close	 the	 connection.	 Once	 this
method	 has	 been	 called,	 no	 other	 methods	 of	 the	 NNTP	 object
should	be	called.

NNTP.getwelcome()
Return	 the	 welcome	message	 sent	 by	 the	 server	 in	 reply	 to	 the
initial	 connection.	 (This	message	 sometimes	 contains	 disclaimers
or	help	information	that	may	be	relevant	to	the	user.)

NNTP.getcapabilities()
Return	 the	RFC	3977	 capabilities	 advertised	 by	 the	 server,	 as	 a
dict	 instance	mapping	capability	names	to	(possibly	empty)	 lists
of	 values.	 On	 legacy	 servers	 which	 don’t	 understand	 the
CAPABILITIES	 command,	 an	 empty	 dictionary	 is	 returned
instead.

>>>	s	=	NNTP('news.gmane.org')

>>>	'POST'	in	s.getcapabilities()

True

New	in	version	3.2.

NNTP.login(user=None,	password=None,	usenetrc=True)
Send	AUTHINFO	commands	with	the	user	name	and	password.	 If

http://tools.ietf.org/html/rfc3977.html

user	and	password	are	None	and	usenetrc	is	true,	credentials	from
~/.netrc	will	be	used	if	possible.

Unless	intentionally	delayed,	login	is	normally	performed	during	the
NNTP	 object	 initialization	 and	 separately	 calling	 this	 function	 is
unnecessary.	To	 force	authentication	 to	be	delayed,	you	must	not
set	 user	 or	 password	 when	 creating	 the	 object,	 and	 must	 set
usenetrc	to	False.

New	in	version	3.2.

NNTP.starttls(ssl_context=None)
Send	 a	 STARTTLS	 command.	 The	 ssl_context	 argument	 is
optional	 and	 should	 be	 a	 ssl.SSLContext	 object.	 This	 will
enable	encryption	on	the	NNTP	connection.

Note	that	this	may	not	be	done	after	authentication	information	has
been	 transmitted,	and	authentication	occurs	by	default	 if	 possible
during	 a	 NNTP	 object	 initialization.	 See	 NNTP.login()	 for
information	on	suppressing	this	behavior.

New	in	version	3.2.

Changed	 in	 version	 3.4:	 The	 method	 now	 supports	 hostname
check	 with	 SSLContext.check_hostname	 and	 Server	 Name
Indicator	(see	HAS_SNI).

NNTP.newgroups(date,	*,	file=None)
Send	 a	 NEWGROUPS	 command.	 The	 date	 argument	 should	 be	 a
datetime.date	or	datetime.datetime	 object.	Return	 a	 pair
(response,	 groups)	 where	 groups	 is	 a	 list	 representing	 the
groups	that	are	new	since	the	given	date.	If	file	is	supplied,	though,
then	groups	will	be	empty.

>>>	from	datetime	import	date,	timedelta

>>>	resp,	groups	=	s.newgroups(date.today()	-	timedelta

>>>	len(groups)

85

>>>	groups[0]

GroupInfo(group='gmane.network.tor.devel',	last='4',	first='1',	flag='m')

NNTP.newnews(group,	date,	*,	file=None)
Send	a	NEWNEWS	command.	Here,	group	is	a	group	name	or	'*',
and	date	 has	 the	 same	meaning	as	 for	 newgroups().	Return	 a
pair	(response,	articles)	where	articles	is	a	list	of	message
ids.

This	 command	 is	 frequently	 disabled	 by	 NNTP	 server
administrators.

NNTP.list(group_pattern=None,	*,	file=None)
Send	 a	 LIST	 or	 LIST	 ACTIVE	 command.	 Return	 a	 pair
(response,	list)	where	 list	 is	a	 list	of	 tuples	 representing	all
the	groups	available	from	this	NNTP	server,	optionally	matching	the
pattern	 string	 group_pattern.	 Each	 tuple	 has	 the	 form	 (group,
last,	first,	flag),	where	group	 is	 a	 group	name,	 last	 and
first	 are	 the	 last	 and	 first	 article	 numbers,	 and	 flag	 usually	 takes
one	of	these	values:

y:	Local	postings	and	articles	from	peers	are	allowed.
m:	The	group	is	moderated	and	all	postings	must	be	approved.
n:	No	local	postings	are	allowed,	only	articles	from	peers.
j:	Articles	from	peers	are	filed	in	the	junk	group	instead.
x:	No	local	postings,	and	articles	from	peers	are	ignored.
=foo.bar:	Articles	are	filed	in	the	foo.bar	group	instead.

If	flag	has	another	value,	then	the	status	of	the	newsgroup	should

be	considered	unknown.

This	 command	 can	 return	 very	 large	 results,	 especially	 if
group_pattern	is	not	specified.	It	is	best	to	cache	the	results	offline
unless	you	really	need	to	refresh	them.

Changed	in	version	3.2:	group_pattern	was	added.

NNTP.descriptions(grouppattern)
Send	 a	 LIST	NEWSGROUPS	 command,	 where	 grouppattern	 is	 a
wildmat	string	as	specified	 in	RFC	3977	 (it’s	essentially	 the	same
as	 DOS	 or	 UNIX	 shell	 wildcard	 strings).	 Return	 a	 pair
(response,	descriptions),	where	descriptions	is	a	dictionary
mapping	group	names	to	textual	descriptions.

>>>	resp,	descs	=	s.descriptions('gmane.comp.python.*'

>>>	len(descs)

295

>>>	descs.popitem()

('gmane.comp.python.bio.general',	'BioPython	discussion	list	(Moderated)')

NNTP.description(group)
Get	a	description	for	a	single	group	group.	If	more	than	one	group
matches	(if	‘group’	is	a	real	wildmat	string),	return	the	first	match.	If
no	group	matches,	return	an	empty	string.

This	 elides	 the	 response	 code	 from	 the	 server.	 If	 the	 response
code	is	needed,	use	descriptions().

NNTP.group(name)
Send	 a	 GROUP	 command,	 where	 name	 is	 the	 group	 name.	 The
group	 is	selected	as	 the	current	group,	 if	 it	 exists.	Return	a	 tuple
(response,	count,	 first,	 last,	 name)	 where	 count	 is

http://tools.ietf.org/html/rfc3977.html

the	 (estimated)	 number	 of	 articles	 in	 the	 group,	 first	 is	 the	 first
article	 number	 in	 the	 group,	 last	 is	 the	 last	 article	 number	 in	 the
group,	and	name	is	the	group	name.

NNTP.over(message_spec,	*,	file=None)
Send	a	OVER	command,	or	a	XOVER	command	on	legacy	servers.
message_spec	 can	be	either	a	string	 representing	a	message	 id,
or	 a	 (first,	 last)	 tuple	 of	 numbers	 indicating	 a	 range	 of
articles	in	the	current	group,	or	a	(first,	None)	tuple	indicating
a	range	of	articles	starting	from	first	to	the	last	article	in	the	current
group,	or	None	to	select	the	current	article	in	the	current	group.

Return	 a	 pair	 (response,	overviews).	overviews	 is	 a	 list	 of
(article_number,	 overview)	 tuples,	 one	 for	 each	 article
selected	by	message_spec.	Each	overview	is	a	dictionary	with	the
same	 number	 of	 items,	 but	 this	 number	 depends	 on	 the	 server.
These	 items	 are	 either	 message	 headers	 (the	 key	 is	 then	 the
lower-cased	header	name)	or	metadata	items	(the	key	is	then	the
metadata	 name	 prepended	 with	 ":").	 The	 following	 items	 are
guaranteed	to	be	present	by	the	NNTP	specification:

the	subject,	from,	date,	message-id	 and	 references
headers
the	:bytes	metadata:	 the	number	of	bytes	 in	 the	entire	 raw
article	(including	headers	and	body)
the	:lines	metadata:	the	number	of	lines	in	the	article	body

The	value	of	each	item	is	either	a	string,	or	None	if	not	present.

It	 is	advisable	 to	use	 the	decode_header()	 function	on	header
values	when	they	may	contain	non-ASCII	characters:

>>>	_,	_,	first,	last,	_	=	s.group('gmane.comp.python.devel'

>>>	resp,	overviews	=	s.over((last,	last))

>>>	art_num,	over	=	overviews[0]

>>>	art_num

117216

>>>	list(over.keys())

['xref',	'from',	':lines',	':bytes',	'references',	'date',	'message-id',	'subject']

>>>	over['from']

'=?UTF-8?B?Ik1hcnRpbiB2LiBMw7Z3aXMi?=	<martin@v.loewis.de>'

>>>	nntplib.decode_header(over['from'])

'"Martin	v.	Löwis"	<martin@v.loewis.de>'

New	in	version	3.2.

NNTP.help(*,	file=None)
Send	 a	 HELP	 command.	 Return	 a	 pair	 (response,	 list)

where	list	is	a	list	of	help	strings.

NNTP.stat(message_spec=None)
Send	 a	 STAT	 command,	 where	 message_spec	 is	 either	 a
message	id	(enclosed	in	'<'	and	'>')	or	an	article	number	in	the
current	 group.	 If	message_spec	 is	 omitted	 or	 None,	 the	 current
article	 in	 the	 current	 group	 is	 considered.	 Return	 a	 triple
(response,	number,	id)	where	number	is	the	article	number
and	id	is	the	message	id.

>>>	_,	_,	first,	last,	_	=	s.group('gmane.comp.python.devel'

>>>	resp,	number,	message_id	=	s.stat(first)

>>>	number,	message_id

(9099,	'<20030112190404.GE29873@epoch.metaslash.com>')

NNTP.next()
Send	a	NEXT	command.	Return	as	for	stat().

NNTP.last()
Send	a	LAST	command.	Return	as	for	stat().

NNTP.article(message_spec=None,	*,	file=None)
Send	an	ARTICLE	command,	where	message_spec	has	the	same
meaning	 as	 for	 stat().	 Return	 a	 tuple	 (response,	 info)
where	 info	 is	 a	 namedtuple	 with	 three	 attributes	 number,
message_id	and	lines	(in	that	order).	number	is	the	article	number
in	 the	group	 (or	0	 if	 the	 information	 is	not	available),	message_id
the	 message	 id	 as	 a	 string,	 and	 lines	 a	 list	 of	 lines	 (without
terminating	 newlines)	 comprising	 the	 raw	 message	 including
headers	and	body.

>>>	resp,	info	=	s.article('<20030112190404.GE29873@epoch.metaslash.com>'

>>>	info.number

0

>>>	info.message_id

'<20030112190404.GE29873@epoch.metaslash.com>'

>>>	len(info.lines)

65

>>>	info.lines[0]

b'Path:	main.gmane.org!not-for-mail'

>>>	info.lines[1]

b'From:	Neal	Norwitz	<neal@metaslash.com>'

>>>	info.lines[-3:]

[b'There	is	a	patch	for	2.3	as	well	as	2.2.',	b'',	b'Neal']

NNTP.head(message_spec=None,	*,	file=None)
Same	 as	 article(),	 but	 sends	 a	 HEAD	 command.	 The	 lines
returned	(or	written	to	 file)	will	only	contain	the	message	headers,
not	the	body.

NNTP.body(message_spec=None,	*,	file=None)

Same	 as	 article(),	 but	 sends	 a	 BODY	 command.	 The	 lines
returned	(or	written	to	file)	will	only	contain	the	message	body,	not
the	headers.

NNTP.post(data)
Post	 an	 article	 using	 the	 POST	 command.	 The	data	 argument	 is
either	 a	 file	 object	 opened	 for	 binary	 reading,	 or	 any	 iterable	 of
bytes	objects	(representing	raw	lines	of	the	article	to	be	posted).	It
should	represent	a	well-formed	news	article,	including	the	required
headers.	 The	 post()	 method	 automatically	 escapes	 lines
beginning	with	.	and	appends	the	termination	line.

If	 the	method	 succeeds,	 the	 server’s	 response	 is	 returned.	 If	 the
server	refuses	posting,	a	NNTPReplyError	is	raised.

NNTP.ihave(message_id,	data)
Send	an	IHAVE	command.	message_id	is	the	id	of	the	message	to
send	to	the	server	(enclosed	in	'<'	and	'>').	The	data	parameter
and	the	return	value	are	the	same	as	for	post().

NNTP.date()
Return	 a	 pair	 (response,	date).	date	 is	 a	 datetime	 object
containing	the	current	date	and	time	of	the	server.

NNTP.slave()
Send	a	SLAVE	command.	Return	the	server’s	response.

NNTP.set_debuglevel(level)
Set	 the	 instance’s	 debugging	 level.	 This	 controls	 the	 amount	 of
debugging	output	printed.	The	default,	0,	produces	no	debugging
output.	 A	 value	 of	 1	 produces	 a	moderate	 amount	 of	 debugging
output,	generally	a	single	line	per	request	or	response.	A	value	of	2

or	 higher	 produces	 the	 maximum	 amount	 of	 debugging	 output,
logging	 each	 line	 sent	 and	 received	 on	 the	 connection	 (including
message	text).

The	 following	 are	 optional	 NNTP	 extensions	 defined	 in	 RFC	 2980.
Some	 of	 them	 have	 been	 superseded	 by	 newer	 commands	 in	RFC
3977.

NNTP.xhdr(hdr,	str,	*,	file=None)
Send	an	XHDR	command.	The	hdr	argument	is	a	header	keyword,
e.g.	'subject'.	The	str	argument	should	have	the	form	'first-
last'	where	first	and	last	are	the	first	and	last	article	numbers	to
search.	Return	a	pair	(response,	list),	where	 list	 is	a	 list	of
pairs	(id,	text),	where	id	is	an	article	number	(as	a	string)	and
text	 is	 the	 text	 of	 the	 requested	 header	 for	 that	 article.	 If	 the	 file
parameter	 is	 supplied,	 then	 the	 output	 of	 the	 XHDR	 command	 is
stored	 in	a	 file.	 If	 file	 is	 a	 string,	 then	 the	method	will	 open	a	 file
with	that	name,	write	to	it	then	close	it.	If	file	is	a	file	object,	then	it
will	start	calling	write()	on	 it	 to	store	 the	 lines	of	 the	command
output.	If	file	is	supplied,	then	the	returned	list	is	an	empty	list.

NNTP.xover(start,	end,	*,	file=None)
Send	 an	 XOVER	 command.	 start	 and	 end	 are	 article	 numbers
delimiting	 the	 range	 of	 articles	 to	 select.	 The	 return	 value	 is	 the
same	of	 for	over().	 It	 is	 recommended	 to	 use	 over()	 instead,
since	 it	 will	 automatically	 use	 the	 newer	 OVER	 command	 if
available.

NNTP.xpath(id)
Return	a	pair	(resp,	path),	where	path	 is	the	directory	path	to
the	article	with	message	 ID	 id.	Most	of	 the	 time,	 this	extension	 is
not	enabled	by	NNTP	server	administrators.

http://tools.ietf.org/html/rfc2980.html
http://tools.ietf.org/html/rfc3977.html

Deprecated	 since	 version	 3.3:	 The	 XPATH	 extension	 is	 not
actively	used.

21.16.2.	Utility	functions

The	module	also	defines	the	following	utility	function:

nntplib.decode_header(header_str)
Decode	 a	 header	 value,	 un-escaping	 any	 escaped	 non-ASCII
characters.	 header_str	 must	 be	 a	 str	 object.	 The	 unescaped
value	 is	 returned.	 Using	 this	 function	 is	 recommended	 to	 display
some	headers	in	a	human	readable	form:

>>>	decode_header("Some	subject")

'Some	subject'

>>>	decode_header("=?ISO-8859-15?Q?D=E9buter_en_Python?="

'Débuter	en	Python'

>>>	decode_header("Re:	=?UTF-8?B?cHJvYmzDqG1lIGRlIG1hdHJpY2U=?="

'Re:	problème	de	matrice'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.17.	smtplib	—	SMTP	protocol
client
Source	code:	Lib/smtplib.py

The	smtplib	module	defines	an	SMTP	client	session	object	that	can
be	used	to	send	mail	to	any	Internet	machine	with	an	SMTP	or	ESMTP
listener	daemon.	For	details	of	SMTP	and	ESMTP	operation,	consult
RFC	 821	 (Simple	 Mail	 Transfer	 Protocol)	 and	 RFC	 1869	 (SMTP
Service	Extensions).

class	smtplib.SMTP(host='',	port=0,	local_hostname=None[,
timeout],	source_address=None)

A	 SMTP	 instance	 encapsulates	 an	 SMTP	 connection.	 It	 has
methods	 that	 support	 a	 full	 repertoire	 of	 SMTP	 and	 ESMTP
operations.	If	the	optional	host	and	port	parameters	are	given,	the
SMTP	connect()	method	is	called	with	those	parameters	during
initialization.	 If	specified,	 local_hostname	 is	used	as	 the	FQDN	of
the	 local	host	 in	 the	HELO/EHLO	command.	Otherwise,	 the	 local
hostname	is	found	using	socket.getfqdn().	If	the	connect()
call	 returns	 anything	 other	 than	 a	 success	 code,	 an
SMTPConnectError	 is	 raised.	 The	 optional	 timeout	 parameter
specifies	 a	 timeout	 in	 seconds	 for	 blocking	 operations	 like	 the
connection	 attempt	 (if	 not	 specified,	 the	 global	 default	 timeout
setting	 will	 be	 used).	 The	 optional	 source_address	 parameter
allows	 to	bind	 to	some	specific	source	address	 in	a	machine	with
multiple	 network	 interfaces,	 and/or	 to	 some	 specific	 source	 TCP
port.	 It	 takes	a	2-tuple	(host,	port),	 for	 the	socket	 to	bind	 to	as	 its

http://hg.python.org/cpython/file/3.4/Lib/smtplib.py
http://tools.ietf.org/html/rfc821.html
http://tools.ietf.org/html/rfc1869.html

source	address	before	connecting.	If	omitted	(or	if	host	or	port	are
''	and/or	0	respectively)	the	OS	default	behavior	will	be	used.

For	normal	use,	you	should	only	 require	 the	 initialization/connect,
sendmail(),	 and	 quit()	 methods.	 An	 example	 is	 included
below.

The	SMTP	class	supports	the	with	statement.	When	used	like	this,
the	SMTP	QUIT	command	is	issued	automatically	when	the	with
statement	exits.	E.g.:

>>>	from	smtplib	import	SMTP

>>>	with	SMTP("domain.org")	as	smtp:

...					smtp.noop()

...

(250,	b'Ok')

>>>

Changed	 in	 version	 3.3:	 Support	 for	 the	 with	 statement	 was
added.

Changed	in	version	3.3:	source_address	argument	was	added.

class	smtplib.SMTP_SSL(host='',	port=0,	local_hostname=None,
keyfile=None,	certfile=None[,	timeout],	context=None,
source_address=None)

A	SMTP_SSL	 instance	behaves	exactly	 the	 same	as	 instances	of
SMTP.	 SMTP_SSL	 should	 be	 used	 for	 situations	 where	 SSL	 is
required	 from	 the	 beginning	 of	 the	 connection	 and	 using
starttls()	 is	not	appropriate.	 If	host	 is	not	 specified,	 the	 local
host	 is	 used.	 If	 port	 is	 zero,	 the	 standard	 SMTP-over-SSL	 port
(465)	 is	 used.	 The	 optional	 arguments	 local_hostname	 and
source_address	 have	 the	 same	meaning	as	 they	do	 in	 the	 SMTP

class.	keyfile	and	certfile	are	also	optional,	and	can	contain	a	PEM
formatted	 private	 key	 and	 certificate	 chain	 file	 for	 the	 SSL
connection.	context	also	optional,	 can	contain	a	SSLContext,	and
is	an	alternative	to	keyfile	and	certfile;	If	 it	 is	specified	both	keyfile
and	 certfile	 must	 be	 None.	 The	 optional	 timeout	 parameter
specifies	 a	 timeout	 in	 seconds	 for	 blocking	 operations	 like	 the
connection	 attempt	 (if	 not	 specified,	 the	 global	 default	 timeout
setting	 will	 be	 used).	 The	 optional	 source_address	 parameter
allows	 to	bind	 to	some	specific	source	address	 in	a	machine	with
multiple	 network	 interfaces,	 and/or	 to	 some	 specific	 source	 tcp
port.	 It	 takes	a	2-tuple	(host,	port),	 for	 the	socket	 to	bind	 to	as	 its
source	address	before	connecting.	If	omitted	(or	if	host	or	port	are
''	and/or	0	respectively)	the	OS	default	behavior	will	be	used.

Changed	in	version	3.3:	context	was	added.

Changed	in	version	3.3:	source_address	argument	was	added.

Changed	 in	version	3.4:	The	class	now	supports	hostname	check
with	SSLContext.check_hostname	and	Server	Name	Indicator
(see	HAS_SNI).

class	smtplib.LMTP(host='',	port=LMTP_PORT,
local_hostname=None,	source_address=None)

The	 LMTP	 protocol,	 which	 is	 very	 similar	 to	 ESMTP,	 is	 heavily
based	 on	 the	 standard	 SMTP	 client.	 It’s	 common	 to	 use	 Unix
sockets	for	LMTP,	so	our	connect()	method	must	support	that	as
well	 as	 a	 regular	 host:port	 server.	 The	 optional	 arguments
local_hostname	 and	 source_address	 have	 the	 same	meaning	 as
they	do	in	the	SMTP	class.	To	specify	a	Unix	socket,	you	must	use
an	absolute	path	for	host,	starting	with	a	‘/’.

Authentication	 is	 supported,	 using	 the	 regular	SMTP	mechanism.

When	using	a	Unix	socket,	LMTP	generally	don’t	support	or	require
any	authentication,	but	your	mileage	might	vary.

A	nice	selection	of	exceptions	is	defined	as	well:

exception	smtplib.SMTPException
Subclass	of	OSError	 that	 is	 the	base	exception	 class	 for	 all	 the
other	exceptions	provided	by	this	module.

Changed	 in	 version	 3.4:	 SMTPException	 became	 subclass	 of
OSError

exception	smtplib.SMTPServerDisconnected
This	 exception	 is	 raised	 when	 the	 server	 unexpectedly
disconnects,	or	when	an	attempt	is	made	to	use	the	SMTP	instance
before	connecting	it	to	a	server.

exception	smtplib.SMTPResponseException
Base	 class	 for	 all	 exceptions	 that	 include	 an	 SMTP	 error	 code.
These	 exceptions	 are	 generated	 in	 some	 instances	 when	 the
SMTP	server	returns	an	error	code.	The	error	code	is	stored	in	the
smtp_code	attribute	of	the	error,	and	the	smtp_error	attribute	is
set	to	the	error	message.

exception	smtplib.SMTPSenderRefused
Sender	address	refused.	 In	addition	 to	 the	attributes	set	by	on	all
SMTPResponseException	 exceptions,	 this	 sets	 ‘sender’	 to	 the
string	that	the	SMTP	server	refused.

exception	smtplib.SMTPRecipientsRefused
All	 recipient	 addresses	 refused.	The	 errors	 for	 each	 recipient	 are
accessible	through	the	attribute	recipients,	which	is	a	dictionary
of	exactly	the	same	sort	as	SMTP.sendmail()	returns.

exception	smtplib.SMTPDataError
The	SMTP	server	refused	to	accept	the	message	data.

exception	smtplib.SMTPConnectError
Error	 occurred	 during	 establishment	 of	 a	 connection	 with	 the
server.

exception	smtplib.SMTPHeloError
The	server	refused	our	HELO	message.

exception	smtplib.SMTPAuthenticationError
SMTP	authentication	went	wrong.	Most	probably	 the	server	didn’t
accept	the	username/password	combination	provided.

See	also:

RFC	821	-	Simple	Mail	Transfer	Protocol
Protocol	 definition	 for	 SMTP.	 This	 document	 covers	 the	model,
operating	procedure,	and	protocol	details	for	SMTP.

RFC	1869	-	SMTP	Service	Extensions
Definition	of	 the	ESMTP	extensions	 for	SMTP.	This	describes	a
framework	 for	extending	SMTP	with	new	commands,	supporting
dynamic	discovery	of	the	commands	provided	by	the	server,	and
defines	a	few	additional	commands.

http://tools.ietf.org/html/rfc821.html
http://tools.ietf.org/html/rfc1869.html

21.17.1.	SMTP	Objects

An	SMTP	instance	has	the	following	methods:

SMTP.set_debuglevel(level)
Set	 the	debug	output	 level.	A	 true	value	for	 level	 results	 in	debug
messages	 for	 connection	 and	 for	 all	 messages	 sent	 to	 and
received	from	the	server.

SMTP.docmd(cmd,	args='')
Send	a	command	cmd	to	the	server.	The	optional	argument	args	is
simply	concatenated	to	the	command,	separated	by	a	space.

This	returns	a	2-tuple	composed	of	a	numeric	response	code	and
the	 actual	 response	 line	 (multiline	 responses	 are	 joined	 into	 one
long	line.)

In	normal	operation	it	should	not	be	necessary	to	call	 this	method
explicitly.	It	is	used	to	implement	other	methods	and	may	be	useful
for	testing	private	extensions.

If	 the	 connection	 to	 the	 server	 is	 lost	 while	 waiting	 for	 the	 reply,
SMTPServerDisconnected	will	be	raised.

SMTP.connect(host='localhost',	port=0)
Connect	 to	a	host	on	a	given	port.	The	defaults	are	 to	connect	 to
the	local	host	at	the	standard	SMTP	port	(25).	If	the	hostname	ends
with	a	colon	(':')	followed	by	a	number,	that	suffix	will	be	stripped
off	 and	 the	 number	 interpreted	 as	 the	 port	 number	 to	 use.	 This
method	 is	 automatically	 invoked	 by	 the	 constructor	 if	 a	 host	 is
specified	 during	 instantiation.	 Returns	 a	 2-tuple	 of	 the	 response
code	and	message	sent	by	the	server	in	its	connection	response.

SMTP.helo(name='')
Identify	 yourself	 to	 the	 SMTP	 server	 using	 HELO.	 The	 hostname
argument	 defaults	 to	 the	 fully	 qualified	 domain	 name	of	 the	 local
host.	 The	 message	 returned	 by	 the	 server	 is	 stored	 as	 the
helo_resp	attribute	of	the	object.

In	normal	operation	it	should	not	be	necessary	to	call	 this	method
explicitly.	 It	 will	 be	 implicitly	 called	 by	 the	 sendmail()	 when
necessary.

SMTP.ehlo(name='')
Identify	 yourself	 to	an	ESMTP	server	using	EHLO.	The	 hostname
argument	 defaults	 to	 the	 fully	 qualified	 domain	 name	of	 the	 local
host.	Examine	the	response	for	ESMTP	option	and	store	them	for
use	by	has_extn().	Also	sets	several	informational	attributes:	the
message	 returned	 by	 the	 server	 is	 stored	 as	 the	 ehlo_resp
attribute,	does_esmtp	is	set	to	true	or	false	depending	on	whether
the	 server	 supports	 ESMTP,	 and	 esmtp_features	 will	 be	 a
dictionary	 containing	 the	 names	 of	 the	 SMTP	 service	 extensions
this	server	supports,	and	their	parameters	(if	any).

Unless	 you	 wish	 to	 use	 has_extn()	 before	 sending	 mail,	 it
should	 not	 be	 necessary	 to	 call	 this	 method	 explicitly.	 It	 will	 be
implicitly	called	by	sendmail()	when	necessary.

SMTP.ehlo_or_helo_if_needed()
This	 method	 call	 ehlo()	 and	 or	 helo()	 if	 there	 has	 been	 no
previous	 EHLO	 or	 HELO	 command	 this	 session.	 It	 tries	 ESMTP
EHLO	first.

SMTPHeloError

The	server	didn’t	reply	properly	to	the	HELO	greeting.

SMTP.has_extn(name)
Return	 True	 if	 name	 is	 in	 the	 set	 of	 SMTP	 service	 extensions
returned	by	the	server,	False	otherwise.	Case	is	ignored.

SMTP.verify(address)
Check	the	validity	of	an	address	on	this	server	using	SMTP	VRFY.
Returns	a	tuple	consisting	of	code	250	and	a	full	RFC	822	address
(including	 human	 name)	 if	 the	 user	 address	 is	 valid.	 Otherwise
returns	an	SMTP	error	code	of	400	or	greater	and	an	error	string.

Note: 	Many	sites	disable	SMTP	VRFY	in	order	to	foil	spammers.

SMTP.login(user,	password)
Log	 in	 on	 an	 SMTP	 server	 that	 requires	 authentication.	 The
arguments	 are	 the	 username	 and	 the	 password	 to	 authenticate
with.	 If	 there	has	been	no	previous	EHLO	or	HELO	 command	 this
session,	 this	 method	 tries	 ESMTP	 EHLO	 first.	 This	 method	 will
return	normally	 if	 the	authentication	was	successful,	or	may	 raise
the	following	exceptions:

SMTPHeloError

The	server	didn’t	reply	properly	to	the	HELO	greeting.

SMTPAuthenticationError

The	server	didn’t	accept	the	username/password	combination.

SMTPException

No	suitable	authentication	method	was	found.

SMTP.starttls(keyfile=None,	certfile=None,	context=None)
Put	the	SMTP	connection	in	TLS	(Transport	Layer	Security)	mode.
All	SMTP	commands	that	follow	will	be	encrypted.	You	should	then
call	ehlo()	again.

http://tools.ietf.org/html/rfc822.html

If	keyfile	and	certfile	are	provided,	these	are	passed	to	the	socket
module’s	ssl()	function.

Optional	context	parameter	 is	a	ssl.SSLContext	object;	This	 is
an	alternative	to	using	a	keyfile	and	a	certfile	and	if	specified	both
keyfile	and	certfile	should	be	None.

If	 there	 has	 been	 no	 previous	 EHLO	 or	 HELO	 command	 this
session,	this	method	tries	ESMTP	EHLO	first.

SMTPHeloError

The	server	didn’t	reply	properly	to	the	HELO	greeting.

SMTPException

The	server	does	not	support	the	STARTTLS	extension.

RuntimeError

SSL/TLS	support	is	not	available	to	your	Python	interpreter.

Changed	in	version	3.3:	context	was	added.

Changed	 in	 version	 3.4:	 The	 method	 now	 supports	 hostname
check	 with	 SSLContext.check_hostname	 and	 Server	 Name
Indicator	(see	HAS_SNI).

SMTP.sendmail(from_addr,	to_addrs,	msg,	mail_options=[],
rcpt_options=[])

Send	mail.	The	required	arguments	are	an	RFC	822	from-address
string,	 a	 list	 of	RFC	822	 to-address	 strings	 (a	 bare	 string	will	 be
treated	as	a	list	with	1	address),	and	a	message	string.	The	caller
may	pass	a	list	of	ESMTP	options	(such	as	8bitmime)	to	be	used
in	MAIL	FROM	commands	as	mail_options.	ESMTP	options	(such
as	DSN	commands)	that	should	be	used	with	all	RCPT	commands
can	 be	 passed	 as	 rcpt_options.	 (If	 you	 need	 to	 use	 different

http://tools.ietf.org/html/rfc822.html
http://tools.ietf.org/html/rfc822.html

ESMTP	options	to	different	recipients	you	have	to	use	the	low-level
methods	 such	 as	 mail(),	 rcpt()	 and	 data()	 to	 send	 the
message.)

Note: 	 The	 from_addr	 and	 to_addrs	 parameters	 are	 used	 to
construct	 the	message	 envelope	 used	 by	 the	 transport	 agents.
sendmail	does	not	modify	the	message	headers	in	any	way.

msg	may	be	a	string	containing	characters	in	the	ASCII	range,	or	a
byte	string.	A	string	is	encoded	to	bytes	using	the	ascii	codec,	and
lone	\r	and	\n	 characters	 are	 converted	 to	 \r\n	 characters.	 A
byte	string	is	not	modified.

If	 there	 has	 been	 no	 previous	 EHLO	 or	 HELO	 command	 this
session,	 this	 method	 tries	 ESMTP	 EHLO	 first.	 If	 the	 server	 does
ESMTP,	 message	 size	 and	 each	 of	 the	 specified	 options	 will	 be
passed	to	it	(if	the	option	is	in	the	feature	set	the	server	advertises).
If	EHLO	fails,	HELO	will	be	tried	and	ESMTP	options	suppressed.

This	method	will	return	normally	if	the	mail	is	accepted	for	at	least
one	 recipient.	Otherwise	 it	 will	 raise	 an	 exception.	 That	 is,	 if	 this
method	 does	 not	 raise	 an	 exception,	 then	 someone	 should	 get
your	mail.	 If	 this	method	does	not	 raise	an	exception,	 it	 returns	a
dictionary,	with	one	entry	for	each	recipient	that	was	refused.	Each
entry	 contains	 a	 tuple	 of	 the	 SMTP	 error	 code	 and	 the
accompanying	error	message	sent	by	the	server.

This	method	may	raise	the	following	exceptions:

SMTPRecipientsRefused

All	 recipients	 were	 refused.	 Nobody	 got	 the	 mail.	 The
recipients	 attribute	 of	 the	 exception	 object	 is	 a	 dictionary
with	 information	 about	 the	 refused	 recipients	 (like	 the	 one

returned	when	at	least	one	recipient	was	accepted).

SMTPHeloError

The	server	didn’t	reply	properly	to	the	HELO	greeting.

SMTPSenderRefused

The	server	didn’t	accept	the	from_addr.

SMTPDataError

The	server	replied	with	an	unexpected	error	code	(other	than	a
refusal	of	a	recipient).

Unless	otherwise	noted,	the	connection	will	be	open	even	after	an
exception	is	raised.

Changed	in	version	3.2:	msg	may	be	a	byte	string.

SMTP.send_message(msg,	from_addr=None,	to_addrs=None,
mail_options=[],	rcpt_options=[])

This	 is	 a	 convenience	 method	 for	 calling	 sendmail()	 with	 the
message	 represented	 by	 an	 email.message.Message	 object.
The	 arguments	 have	 the	 same	 meaning	 as	 for	 sendmail(),
except	that	msg	is	a	Message	object.

If	 from_addr	 is	 None	 or	 to_addrs	 is	 None,	 send_message	 fills
those	 arguments	 with	 addresses	 extracted	 from	 the	 headers	 of
msg	as	specified	in	RFC	2822:	from_addr	is	set	to	the	Sender	field
if	 it	 is	 present,	 and	 otherwise	 to	 the	 From	 field.	 to_adresses
combines	 the	 values	 (if	 any)	 of	 the	 To,	Cc,	 and	Bcc	 fields	 from
msg.	 If	 exactly	 one	 set	 of	 Resent-*	 headers	 appear	 in	 the
message,	 the	 regular	 headers	 are	 ignored	 and	 the	 Resent-*
headers	are	used	instead.	If	the	message	contains	more	than	one
set	of	Resent-*	 headers,	 a	 ValueError	 is	 raised,	 since	 there	 is
no	 way	 to	 unambiguously	 detect	 the	 most	 recent	 set	 of	Resent-

http://tools.ietf.org/html/rfc2822.html

headers.

send_message	 serializes	 msg	 using	 BytesGenerator	 with
\r\n	 as	 the	 linesep,	 and	 calls	 sendmail()	 to	 transmit	 the
resulting	 message.	 Regardless	 of	 the	 values	 of	 from_addr	 and
to_addrs,	 send_message	 does	 not	 transmit	 any	Bcc	 or	Resent-
Bcc	headers	that	may	appear	in	msg.

New	in	version	3.2.

SMTP.quit()
Terminate	the	SMTP	session	and	close	the	connection.	Return	 the
result	of	the	SMTP	QUIT	command.

Low-level	 methods	 corresponding	 to	 the	 standard	 SMTP/ESMTP
commands	 HELP,	 RSET,	 NOOP,	 MAIL,	 RCPT,	 and	 DATA	 are	 also
supported.	Normally	 these	do	not	 need	 to	 be	 called	directly,	 so	 they
are	not	documented	here.	For	details,	consult	the	module	code.

21.17.2.	SMTP	Example

This	example	prompts	the	user	for	addresses	needed	in	the	message
envelope	 (‘To’	 and	 ‘From’	 addresses),	 and	 the	 message	 to	 be
delivered.	Note	that	the	headers	to	be	included	with	the	message	must
be	 included	 in	 the	message	as	entered;	 this	example	doesn’t	do	any
processing	of	 the	RFC	822	headers.	 In	particular,	 the	 ‘To’	and	 ‘From’
addresses	must	be	included	in	the	message	headers	explicitly.

import	smtplib

def	prompt(prompt):

				return	input(prompt).strip()

fromaddr	=	prompt("From:	")

toaddrs		=	prompt("To:	").split()

print("Enter	message,	end	with	^D	(Unix)	or	^Z	(Windows):"

#	Add	the	From:	and	To:	headers	at	the	start!

msg	=	("From:	%s\r\nTo:	%s\r\n\r\n"

							%	(fromaddr,	",	".join(toaddrs)))

while	True:

				try:

								line	=	input()

				except	EOFError:

								break

				if	not	line:

								break

				msg	=	msg	+	line

print("Message	length	is",	len(msg))

server	=	smtplib.SMTP('localhost')

server.set_debuglevel(1)

server.sendmail(fromaddr,	toaddrs,	msg)

http://tools.ietf.org/html/rfc822.html

server.quit()

Note: 	In	general,	you	will	want	to	use	the	email	package’s
features	to	construct	an	email	message,	which	you	can	then	send
via	send_message();	see	email:	Examples.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.18.	smtpd	—	SMTP	Server

Source	code:	Lib/smtpd.py

This	 module	 offers	 several	 classes	 to	 implement	 SMTP	 (email)
servers.

Several	 server	 implementations	 are	 present;	 one	 is	 a	 generic	 do-
nothing	implementation,	which	can	be	overridden,	while	the	other	two
offer	specific	mail-sending	strategies.

Additionally	 the	 SMTPChannel	 may	 be	 extended	 to	 implement	 very
specific	interaction	behaviour	with	SMTP	clients.

The	code	supports	RFC	5321,	plus	the	RFC	1870	SIZE	extension.

http://hg.python.org/cpython/file/3.4/Lib/smtpd.py
http://tools.ietf.org/html/rfc5321.html
http://tools.ietf.org/html/rfc1870.html

21.18.1.	SMTPServer	Objects

class	smtpd.SMTPServer(localaddr,	remoteaddr,
data_size_limit=33554432,	map=None)

Create	 a	 new	 SMTPServer	 object,	 which	 binds	 to	 local	 address
localaddr.	It	will	treat	remoteaddr	as	an	upstream	SMTP	relayer.	It
inherits	from	asyncore.dispatcher,	and	so	will	insert	itself	into
asyncore‘s	event	loop	on	instantiation.

data_size_limit	specifies	the	maximum	number	of	bytes	that	will	be
accepted	 in	 a	 DATA	 command.	A	 value	 of	 None	 or	 0	 means	 no
limit.

A	dictionary	can	be	specified	in	map	to	avoid	using	a	global	socket
map.

process_message(peer,	mailfrom,	rcpttos,	data)
Raise	 NotImplementedError	 exception.	 Override	 this	 in
subclasses	 to	 do	 something	 useful	 with	 this	 message.
Whatever	was	passed	in	the	constructor	as	remoteaddr	will	be
available	 as	 the	 _remoteaddr	 attribute.	 peer	 is	 the	 remote
host’s	address,	mailfrom	 is	 the	envelope	originator,	rcpttos	are
the	 envelope	 recipients	 and	 data	 is	 a	 string	 containing	 the
contents	of	the	e-mail	(which	should	be	in	RFC	2822	format).

channel_class

Override	this	in	subclasses	to	use	a	custom	SMTPChannel	 for
managing	SMTP	clients.

Changed	in	version	3.4:	The	map	argument	was	added.

http://tools.ietf.org/html/rfc2822.html

21.18.2.	DebuggingServer	Objects

class	smtpd.DebuggingServer(localaddr,	remoteaddr)
Create	 a	 new	 debugging	 server.	 Arguments	 are	 as	 per
SMTPServer.	Messages	will	be	discarded,	and	printed	on	stdout.

21.18.3.	PureProxy	Objects

class	smtpd.PureProxy(localaddr,	remoteaddr)
Create	 a	 new	 pure	 proxy	 server.	 Arguments	 are	 as	 per
SMTPServer.	Everything	will	be	relayed	to	remoteaddr.	Note	 that
running	this	has	a	good	chance	to	make	you	into	an	open	relay,	so
please	be	careful.

21.18.4.	MailmanProxy	Objects

class	smtpd.MailmanProxy(localaddr,	remoteaddr)
Create	 a	 new	 pure	 proxy	 server.	 Arguments	 are	 as	 per
SMTPServer.	 Everything	 will	 be	 relayed	 to	 remoteaddr,	 unless
local	 mailman	 configurations	 knows	 about	 an	 address,	 in	 which
case	 it	will	 be	handled	 via	mailman.	Note	 that	 running	 this	has	a
good	chance	to	make	you	into	an	open	relay,	so	please	be	careful.

21.18.5.	SMTPChannel	Objects

class	smtpd.SMTPChannel(server,	conn,	addr,
data_size_limit=33554432,	map=None))

Create	 a	 new	 SMTPChannel	 object	 which	 manages	 the
communication	between	the	server	and	a	single	SMTP	client.

conn	and	addr	are	as	per	the	instance	variables	described	below.

data_size_limit	specifies	the	maximum	number	of	bytes	that	will	be
accepted	 in	 a	 DATA	 command.	A	 value	 of	 None	 or	 0	 means	 no
limit.

A	dictionary	can	be	specified	in	map	to	avoid	using	a	global	socket
map.

To	 use	 a	 custom	 SMTPChannel	 implementation	 you	 need	 to
override	 the	 SMTPServer.channel_class	 of	 your
SMTPServer.

The	SMTPChannel	has	the	following	instance	variables:

smtp_server

Holds	the	SMTPServer	that	spawned	this	channel.

conn

Holds	the	socket	object	connecting	to	the	client.

addr

Holds	 the	address	of	 the	 client,	 the	 second	 value	 returned	by
socket.accept

received_lines

Holds	a	 list	of	 the	 line	strings	(decoded	using	UTF-8)	received
from	 the	 client.	 The	 lines	 have	 their	 "\r\n"	 line	 ending
translated	to	"\n".

smtp_state

Holds	 the	 current	 state	 of	 the	 channel.	 This	 will	 be	 either
COMMAND	 initially	 and	 then	 DATA	 after	 the	 client	 sends	 a
“DATA”	line.

seen_greeting

Holds	 a	 string	 containing	 the	 greeting	 sent	 by	 the	 client	 in	 its
“HELO”.

mailfrom

Holds	 a	 string	 containing	 the	 address	 identified	 in	 the	 “MAIL
FROM:”	line	from	the	client.

rcpttos

Holds	a	list	of	strings	containing	the	addresses	identified	in	the
“RCPT	TO:”	lines	from	the	client.

received_data

Holds	a	string	containing	all	of	the	data	sent	by	the	client	during
the	 DATA	 state,	 up	 to	 but	 not	 including	 the	 terminating
"\r\n.\r\n".

fqdn

Holds	the	fully-qualified	domain	name	of	the	server	as	returned
by	socket.getfqdn().

peer

Holds	 the	 name	 of	 the	 client	 peer	 as	 returned	 by
conn.getpeername()	where	conn	is	conn.

The	 SMTPChannel	 operates	 by	 invoking	 methods	 named
smtp_<command>	 upon	 reception	 of	 a	 command	 line	 from	 the
client.	 Built	 into	 the	 base	 SMTPChannel	 class	 are	 methods	 for
handling	 the	 following	 commands	 (and	 responding	 to	 them
appropriately):

Command Action	taken

HELO
Accepts	the	greeting	from	the	client	and	stores	it	in
seen_greeting.	Sets	server	to	base	command
mode.

EHLO
Accepts	the	greeting	from	the	client	and	stores	it	in
seen_greeting.	Sets	server	to	extended
command	mode.

NOOP Takes	no	action.

QUIT Closes	the	connection	cleanly.

MAIL

Accepts	the	“MAIL	FROM:”	syntax	and	stores	the
supplied	address	as	mailfrom.	In	extended
command	mode,	accepts	the	RFC	1870	SIZE
attribute	and	responds	appropriately	based	on	the
value	of	data_size_limit.

RCPT Accepts	the	“RCPT	TO:”	syntax	and	stores	the
supplied	addresses	in	the	rcpttos	list.

RSET Resets	the	mailfrom,	rcpttos,	and
received_data,	but	not	the	greeting.

DATA
Sets	the	internal	state	to	DATA	and	stores
remaining	lines	from	the	client	in	received_data
until	the	terminator	"\r\n.\r\n"	is	received.

HELP Returns	minimal	information	on	command	syntax

VRFY Returns	code	252	(the	server	doesn’t	know	if	the
address	is	valid)

EXPN Reports	that	the	command	is	not	implemented.

http://tools.ietf.org/html/rfc1870.html

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.19.	telnetlib	—	Telnet	client

Source	code:	Lib/telnetlib.py

The	 telnetlib	 module	 provides	 a	 Telnet	 class	 that	 implements
the	 Telnet	 protocol.	 See	RFC	 854	 for	 details	 about	 the	 protocol.	 In
addition,	 it	 provides	 symbolic	 constants	 for	 the	 protocol	 characters
(see	 below),	 and	 for	 the	 telnet	 options.	 The	 symbolic	 names	 of	 the
telnet	 options	 follow	 the	 definitions	 in	 arpa/telnet.h,	 with	 the
leading	TELOPT_	removed.	For	symbolic	names	of	options	which	are
traditionally	not	included	in	arpa/telnet.h,	see	the	module	source
itself.

The	symbolic	constants	for	the	telnet	commands	are:	IAC,	DONT,	DO,
WONT,	 WILL,	 SE	 (Subnegotiation	 End),	 NOP	 (No	 Operation),	 DM
(Data	Mark),	BRK	 (Break),	 IP	 (Interrupt	 process),	AO	 (Abort	 output),
AYT	(Are	You	There),	EC	(Erase	Character),	EL	(Erase	Line),	GA	(Go
Ahead),	SB	(Subnegotiation	Begin).

class	telnetlib.Telnet(host=None,	port=0[,	timeout])
Telnet	represents	a	connection	to	a	Telnet	server.	The	instance	is
initially	 not	 connected	 by	 default;	 the	 open()	 method	 must	 be
used	 to	 establish	 a	 connection.	 Alternatively,	 the	 host	 name	 and
optional	port	number	can	be	passed	to	the	constructor,	to,	in	which
case	 the	 connection	 to	 the	 server	 will	 be	 established	 before	 the
constructor	 returns.	 The	 optional	 timeout	 parameter	 specifies	 a
timeout	 in	 seconds	 for	 blocking	 operations	 like	 the	 connection
attempt	 (if	 not	 specified,	 the	 global	 default	 timeout	 setting	will	 be
used).

http://hg.python.org/cpython/file/3.4/Lib/telnetlib.py
http://tools.ietf.org/html/rfc854.html

Do	not	reopen	an	already	connected	instance.

This	class	has	many	read_*()	methods.	Note	that	some	of	them
raise	EOFError	when	the	end	of	the	connection	is	read,	because
they	 can	 return	 an	 empty	 string	 for	 other	 reasons.	 See	 the
individual	descriptions	below.

See	also:

RFC	854	-	Telnet	Protocol	Specification
Definition	of	the	Telnet	protocol.

http://tools.ietf.org/html/rfc854.html

21.19.1.	Telnet	Objects

Telnet	instances	have	the	following	methods:

Telnet.read_until(expected,	timeout=None)
Read	 until	 a	 given	 byte	 string,	 expected,	 is	 encountered	 or	 until
timeout	seconds	have	passed.

When	 no	 match	 is	 found,	 return	 whatever	 is	 available	 instead,
possibly	empty	bytes.	Raise	EOFError	if	the	connection	is	closed
and	no	cooked	data	is	available.

Telnet.read_all()
Read	all	data	until	EOF	as	bytes;	block	until	connection	closed.

Telnet.read_some()
Read	at	 least	one	byte	of	 cooked	data	unless	EOF	 is	hit.	Return
b''	if	EOF	is	hit.	Block	if	no	data	is	immediately	available.

Telnet.read_very_eager()
Read	everything	that	can	be	without	blocking	in	I/O	(eager).

Raise	 EOFError	 if	 connection	 closed	 and	 no	 cooked	 data
available.	 Return	 b''	 if	 no	 cooked	 data	 available	 otherwise.	 Do
not	block	unless	in	the	midst	of	an	IAC	sequence.

Telnet.read_eager()
Read	readily	available	data.

Raise	 EOFError	 if	 connection	 closed	 and	 no	 cooked	 data
available.	 Return	 b''	 if	 no	 cooked	 data	 available	 otherwise.	 Do
not	block	unless	in	the	midst	of	an	IAC	sequence.

Telnet.read_lazy()
Process	and	return	data	already	in	the	queues	(lazy).

Raise	 EOFError	 if	 connection	 closed	 and	 no	 data	 available.
Return	 b''	 if	 no	 cooked	 data	 available	 otherwise.	 Do	 not	 block
unless	in	the	midst	of	an	IAC	sequence.

Telnet.read_very_lazy()
Return	any	data	available	in	the	cooked	queue	(very	lazy).

Raise	 EOFError	 if	 connection	 closed	 and	 no	 data	 available.
Return	 b''	 if	 no	 cooked	 data	 available	 otherwise.	 This	 method
never	blocks.

Telnet.read_sb_data()
Return	 the	 data	 collected	 between	 a	 SB/SE	 pair	 (suboption
begin/end).	 The	 callback	 should	 access	 these	 data	 when	 it	 was
invoked	with	a	SE	command.	This	method	never	blocks.

Telnet.open(host,	port=0[,	timeout])
Connect	 to	 a	 host.	 The	 optional	 second	 argument	 is	 the	 port
number,	 which	 defaults	 to	 the	 standard	 Telnet	 port	 (23).	 The
optional	 timeout	 parameter	 specifies	 a	 timeout	 in	 seconds	 for
blocking	operations	like	the	connection	attempt	(if	not	specified,	the
global	default	timeout	setting	will	be	used).

Do	not	try	to	reopen	an	already	connected	instance.

Telnet.msg(msg,	*args)
Print	 a	 debug	 message	 when	 the	 debug	 level	 is	 >	 0.	 If	 extra
arguments	are	present,	they	are	substituted	in	the	message	using
the	standard	string	formatting	operator.

Telnet.set_debuglevel(debuglevel)
Set	the	debug	level.	The	higher	the	value	of	debuglevel,	the	more
debug	output	you	get	(on	sys.stdout).

Telnet.close()
Close	the	connection.

Telnet.get_socket()
Return	the	socket	object	used	internally.

Telnet.fileno()
Return	the	file	descriptor	of	the	socket	object	used	internally.

Telnet.write(buffer)
Write	a	byte	string	to	the	socket,	doubling	any	IAC	characters.	This
can	block	 if	 the	connection	 is	blocked.	May	 raise	OSError	 if	 the
connection	is	closed.

Changed	 in	 version	 3.3:	 This	 method	 used	 to	 raise
socket.error,	which	is	now	an	alias	of	OSError.

Telnet.interact()
Interaction	function,	emulates	a	very	dumb	Telnet	client.

Telnet.mt_interact()
Multithreaded	version	of	interact().

Telnet.expect(list,	timeout=None)
Read	until	one	from	a	list	of	a	regular	expressions	matches.

The	first	argument	 is	a	 list	of	regular	expressions,	either	compiled
(regex	objects)	or	uncompiled	 (byte	strings).	The	optional	 second
argument	 is	 a	 timeout,	 in	 seconds;	 the	 default	 is	 to	 block

indefinitely.

Return	a	tuple	of	three	items:	the	index	in	the	list	of	the	first	regular
expression	that	matches;	the	match	object	returned;	and	the	bytes
read	up	till	and	including	the	match.

If	 end	 of	 file	 is	 found	 and	 no	 bytes	were	 read,	 raise	 EOFError.
Otherwise,	 when	 nothing	 matches,	 return	 (-1,	 None,	 data)
where	data	 is	 the	bytes	 received	so	 far	 (may	be	empty	bytes	 if	a
timeout	happened).

If	a	regular	expression	ends	with	a	greedy	match	(such	as	.*)	or	if
more	 than	one	expression	 can	match	 the	 same	 input,	 the	 results
are	non-deterministic,	and	may	depend	on	the	I/O	timing.

Telnet.set_option_negotiation_callback(callback)
Each	time	a	telnet	option	is	read	on	the	input	flow,	this	callback	(if
set)	is	called	with	the	following	parameters:	callback(telnet	socket,
command	 (DO/DONT/WILL/WONT),	 option).	 No	 other	 action	 is
done	afterwards	by	telnetlib.

21.19.2.	Telnet	Example

A	simple	example	illustrating	typical	use:

import	getpass

import	telnetlib

HOST	=	"localhost"

user	=	input("Enter	your	remote	account:	")

password	=	getpass.getpass()

tn	=	telnetlib.Telnet(HOST)

tn.read_until(b"login:	")

tn.write(user.encode('ascii')	+	b"\n")

if	password:

				tn.read_until(b"Password:	")

				tn.write(password.encode('ascii')	+	b"\n")

tn.write(b"ls\n")

tn.write(b"exit\n")

print(tn.read_all().decode('ascii'))

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.20.	uuid	—	UUID	objects
according	to	RFC	4122
This	module	provides	 immutable	UUID	objects	 (the	UUID	 class)	and
the	functions	uuid1(),	uuid3(),	uuid4(),	uuid5()	for	generating
version	1,	3,	4,	and	5	UUIDs	as	specified	in	RFC	4122.

If	 all	 you	want	 is	 a	unique	 ID,	 you	 should	probably	 call	 uuid1()	or
uuid4().	 Note	 that	 uuid1()	 may	 compromise	 privacy	 since	 it
creates	a	UUID	containing	the	computer’s	network	address.	uuid4()
creates	a	random	UUID.

class	uuid.UUID(hex=None,	bytes=None,	bytes_le=None,
fields=None,	int=None,	version=None)

Create	 a	 UUID	 from	 either	 a	 string	 of	 32	 hexadecimal	 digits,	 a
string	 of	 16	 bytes	 as	 the	bytes	 argument,	 a	 string	 of	 16	 bytes	 in
little-endian	order	as	the	bytes_le	argument,	a	tuple	of	six	integers
(32-bit	 time_low,	 16-bit	 time_mid,	 16-bit	 time_hi_version,	 8-bit
clock_seq_hi_variant,	 8-bit	 clock_seq_low,	 48-bit	 node)	 as	 the
fields	 argument,	 or	 a	 single	 128-bit	 integer	 as	 the	 int	 argument.
When	a	string	of	hex	digits	is	given,	curly	braces,	hyphens,	and	a
URN	 prefix	 are	 all	 optional.	 For	 example,	 these	 expressions	 all
yield	the	same	UUID:

UUID('{12345678-1234-5678-1234-567812345678}')

UUID('12345678123456781234567812345678')

UUID('urn:uuid:12345678-1234-5678-1234-567812345678'

UUID(bytes=b'\x12\x34\x56\x78'*4)

UUID(bytes_le=b'\x78\x56\x34\x12\x34\x12\x78\x56'	

														b'\x12\x34\x56\x78\x12\x34\x56\x78')

UUID(fields=(0x12345678,	0x1234,	0x5678,	0x12,	0x34

http://tools.ietf.org/html/rfc4122.html

UUID(int=0x12345678123456781234567812345678)

Exactly	 one	 of	hex,	bytes,	bytes_le,	 fields,	 or	 int	 must	 be	 given.
The	version	argument	 is	optional;	 if	given,	 the	 resulting	UUID	will
have	 its	 variant	 and	 version	 number	 set	 according	 to	RFC	4122,
overriding	bits	in	the	given	hex,	bytes,	bytes_le,	fields,	or	int.

UUID	instances	have	these	read-only	attributes:

UUID.bytes

The	UUID	as	a	16-byte	 string	 (containing	 the	 six	 integer	 fields	 in
big-endian	byte	order).

UUID.bytes_le

The	 UUID	 as	 a	 16-byte	 string	 (with	 time_low,	 time_mid,	 and
time_hi_version	in	little-endian	byte	order).

UUID.fields

A	 tuple	 of	 the	 six	 integer	 fields	 of	 the	 UUID,	 which	 are	 also
available	as	six	individual	attributes	and	two	derived	attributes:

Field Meaning

time_low the	first	32	bits	of	the	UUID

time_mid the	next	16	bits	of	the	UUID

time_hi_version the	next	16	bits	of	the	UUID

clock_seq_hi_variant the	next	8	bits	of	the	UUID

clock_seq_low the	next	8	bits	of	the	UUID

node the	last	48	bits	of	the	UUID

time the	60-bit	timestamp

clock_seq the	14-bit	sequence	number

UUID.hex

The	UUID	as	a	32-character	hexadecimal	string.

UUID.int

The	UUID	as	a	128-bit	integer.

UUID.urn

The	UUID	as	a	URN	as	specified	in	RFC	4122.

UUID.variant

The	 UUID	 variant,	 which	 determines	 the	 internal	 layout	 of	 the
UUID.	 This	will	 be	 one	 of	 the	 integer	 constants	 RESERVED_NCS,
RFC_4122,	RESERVED_MICROSOFT,	or	RESERVED_FUTURE.

UUID.version

The	UUID	version	number	(1	through	5,	meaningful	only	when	the
variant	is	RFC_4122).

The	uuid	module	defines	the	following	functions:

uuid.getnode()
Get	the	hardware	address	as	a	48-bit	positive	integer.	The	first	time
this	runs,	 it	may	launch	a	separate	program,	which	could	be	quite
slow.	If	all	attempts	to	obtain	the	hardware	address	fail,	we	choose
a	 random	 48-bit	 number	 with	 its	 eighth	 bit	 set	 to	 1	 as
recommended	in	RFC	4122.	“Hardware	address”	means	the	MAC
address	 of	 a	 network	 interface,	 and	 on	 a	 machine	 with	 multiple
network	 interfaces	 the	MAC	address	of	 any	one	of	 them	may	be
returned.

uuid.uuid1(node=None,	clock_seq=None)
Generate	 a	 UUID	 from	 a	 host	 ID,	 sequence	 number,	 and	 the
current	time.	If	node	is	not	given,	getnode()	is	used	to	obtain	the

hardware	address.	If	clock_seq	is	given,	it	is	used	as	the	sequence
number;	otherwise	a	random	14-bit	sequence	number	is	chosen.

uuid.uuid3(namespace,	name)
Generate	 a	 UUID	 based	 on	 the	 MD5	 hash	 of	 a	 namespace
identifier	(which	is	a	UUID)	and	a	name	(which	is	a	string).

uuid.uuid4()
Generate	a	random	UUID.

uuid.uuid5(namespace,	name)
Generate	 a	 UUID	 based	 on	 the	 SHA-1	 hash	 of	 a	 namespace
identifier	(which	is	a	UUID)	and	a	name	(which	is	a	string).

The	uuid	module	defines	the	following	namespace	identifiers	for	use
with	uuid3()	or	uuid5().

uuid.NAMESPACE_DNS

When	 this	 namespace	 is	 specified,	 the	 name	 string	 is	 a	 fully-
qualified	domain	name.

uuid.NAMESPACE_URL

When	this	namespace	is	specified,	the	name	string	is	a	URL.

uuid.NAMESPACE_OID

When	this	namespace	is	specified,	the	name	string	is	an	ISO	OID.

uuid.NAMESPACE_X500

When	this	namespace	is	specified,	the	name	string	is	an	X.500	DN
in	DER	or	a	text	output	format.

The	 uuid	 module	 defines	 the	 following	 constants	 for	 the	 possible
values	of	the	variant	attribute:

uuid.RESERVED_NCS

Reserved	for	NCS	compatibility.

uuid.RFC_4122

Specifies	the	UUID	layout	given	in	RFC	4122.

uuid.RESERVED_MICROSOFT

Reserved	for	Microsoft	compatibility.

uuid.RESERVED_FUTURE

Reserved	for	future	definition.

See	also:

RFC	4122	-	A	Universally	Unique	IDentifier	(UUID)	URN
Namespace

This	specification	defines	a	Uniform	Resource	Name	namespace
for	 UUIDs,	 the	 internal	 format	 of	 UUIDs,	 and	 methods	 of
generating	UUIDs.

http://tools.ietf.org/html/rfc4122.html
http://tools.ietf.org/html/rfc4122.html

21.20.1.	Example

Here	are	some	examples	of	typical	usage	of	the	uuid	module:

>>>	import	uuid

>>>	#	make	a	UUID	based	on	the	host	ID	and	current	time

>>>	uuid.uuid1()

UUID('a8098c1a-f86e-11da-bd1a-00112444be1e')

>>>	#	make	a	UUID	using	an	MD5	hash	of	a	namespace	UUID	and	a	name

>>>	uuid.uuid3(uuid.NAMESPACE_DNS,	'python.org')

UUID('6fa459ea-ee8a-3ca4-894e-db77e160355e')

>>>	#	make	a	random	UUID

>>>	uuid.uuid4()

UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>>	#	make	a	UUID	using	a	SHA-1	hash	of	a	namespace	UUID	and	a	name

>>>	uuid.uuid5(uuid.NAMESPACE_DNS,	'python.org')

UUID('886313e1-3b8a-5372-9b90-0c9aee199e5d')

>>>	#	make	a	UUID	from	a	string	of	hex	digits	(braces	and	hyphens	ignored)

>>>	x	=	uuid.UUID('{00010203-0405-0607-0809-0a0b0c0d0e0f}'

>>>	#	convert	a	UUID	to	a	string	of	hex	digits	in	standard	form

>>>	str(x)

'00010203-0405-0607-0809-0a0b0c0d0e0f'

>>>	#	get	the	raw	16	bytes	of	the	UUID

>>>	x.bytes

b'\x00\x01\x02\x03\x04\x05\x06\x07\x08\t\n\x0b\x0c\r\x0e\x0f'

>>>	#	make	a	UUID	from	a	16-byte	string

>>>	uuid.UUID(bytes=x.bytes)

UUID('00010203-0405-0607-0809-0a0b0c0d0e0f')

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.21.	socketserver	—	A
framework	for	network	servers
Source	code:	Lib/socketserver.py

The	 socketserver	 module	 simplifies	 the	 task	 of	 writing	 network
servers.

There	 are	 four	 basic	 server	 classes:	 TCPServer	 uses	 the	 Internet
TCP	protocol,	which	provides	for	continuous	streams	of	data	between
the	client	and	server.	UDPServer	uses	datagrams,	which	are	discrete
packets	of	 information	that	may	arrive	out	of	order	or	be	 lost	while	 in
transit.	 The	 more	 infrequently	 used	 UnixStreamServer	 and
UnixDatagramServer	 classes	 are	 similar,	 but	 use	 Unix	 domain
sockets;	they’re	not	available	on	non-Unix	platforms.	For	more	details
on	network	programming,	consult	a	book	such	as	W.	Richard	Steven’s
UNIX	 Network	 Programming	 or	 Ralph	 Davis’s	 Win32	 Network
Programming.

These	 four	 classes	 process	 requests	 synchronously;	 each	 request
must	be	completed	before	 the	next	 request	can	be	started.	This	 isn’t
suitable	 if	 each	 request	 takes	 a	 long	 time	 to	 complete,	 because	 it
requires	a	lot	of	computation,	or	because	it	returns	a	lot	of	data	which
the	 client	 is	 slow	 to	 process.	 The	 solution	 is	 to	 create	 a	 separate
process	 or	 thread	 to	 handle	 each	 request;	 the	 ForkingMixIn	 and
ThreadingMixIn	 mix-in	 classes	 can	 be	 used	 to	 support
asynchronous	behaviour.

Creating	 a	 server	 requires	 several	 steps.	 First,	 you	 must	 create	 a

http://hg.python.org/cpython/file/3.4/Lib/socketserver.py

request	 handler	 class	 by	 subclassing	 the	 BaseRequestHandler
class	and	overriding	 its	handle()	method;	 this	method	will	 process
incoming	 requests.	 Second,	 you	 must	 instantiate	 one	 of	 the	 server
classes,	passing	it	the	server’s	address	and	the	request	handler	class.
Finally,	call	 the	handle_request()	or	serve_forever()	method
of	the	server	object	to	process	one	or	many	requests.

When	 inheriting	 from	 ThreadingMixIn	 for	 threaded	 connection
behavior,	you	should	explicitly	declare	how	you	want	your	 threads	 to
behave	on	an	abrupt	shutdown.	The	ThreadingMixIn	class	defines
an	 attribute	 daemon_threads,	 which	 indicates	 whether	 or	 not	 the
server	 should	 wait	 for	 thread	 termination.	 You	 should	 set	 the	 flag
explicitly	if	you	would	like	threads	to	behave	autonomously;	the	default
is	False,	meaning	that	Python	will	not	exit	until	all	threads	created	by
ThreadingMixIn	have	exited.

Server	 classes	 have	 the	 same	 external	 methods	 and	 attributes,	 no
matter	what	network	protocol	they	use.

21.21.1.	Server	Creation	Notes

There	 are	 five	 classes	 in	 an	 inheritance	 diagram,	 four	 of	 which
represent	synchronous	servers	of	four	types:

+------------+

|	BaseServer	|

+------------+

						|

						v

+-----------+								+------------------+

|	TCPServer	|------->|	UnixStreamServer	|

+-----------+								+------------------+

						|

						v

+-----------+								+--------------------+

|	UDPServer	|------->|	UnixDatagramServer	|

+-----------+								+--------------------+

Note	that	UnixDatagramServer	derives	from	UDPServer,	not	from
UnixStreamServer	—	the	only	difference	between	an	IP	and	a	Unix
stream	server	 is	 the	address	 family,	which	 is	simply	repeated	 in	both
Unix	server	classes.

Forking	and	threading	versions	of	each	type	of	server	can	be	created
using	the	ForkingMixIn	and	ThreadingMixIn	mix-in	classes.	For
instance,	a	threading	UDP	server	class	is	created	as	follows:

class	ThreadingUDPServer(ThreadingMixIn,	UDPServer):

The	mix-in	class	must	come	first,	since	it	overrides	a	method	defined
in	UDPServer.	Setting	the	various	attributes	also	change	the	behavior
of	the	underlying	server	mechanism.

To	 implement	 a	 service,	 you	 must	 derive	 a	 class	 from
BaseRequestHandler	and	redefine	its	handle()	method.	You	can
then	 run	 various	 versions	 of	 the	 service	 by	 combining	 one	 of	 the
server	 classes	with	 your	 request	 handler	 class.	 The	 request	 handler
class	must	be	different	 for	datagram	or	stream	services.	This	can	be
hidden	by	using	the	handler	subclasses	StreamRequestHandler	or
DatagramRequestHandler.

Of	course,	you	still	have	to	use	your	head!	For	 instance,	 it	makes	no
sense	to	use	a	 forking	server	 if	 the	service	contains	state	 in	memory
that	can	be	modified	by	different	 requests,	 since	 the	modifications	 in
the	child	process	would	never	reach	the	initial	state	kept	in	the	parent
process	 and	 passed	 to	 each	 child.	 In	 this	 case,	 you	 can	 use	 a
threading	server,	but	you	will	probably	have	to	use	locks	to	protect	the
integrity	of	the	shared	data.

On	the	other	hand,	if	you	are	building	an	HTTP	server	where	all	data	is
stored	externally	(for	instance,	in	the	file	system),	a	synchronous	class
will	 essentially	 render	 the	 service	 “deaf”	 while	 one	 request	 is	 being
handled	 –	 which	 may	 be	 for	 a	 very	 long	 time	 if	 a	 client	 is	 slow	 to
receive	all	the	data	it	has	requested.	Here	a	threading	or	forking	server
is	appropriate.

In	 some	 cases,	 it	 may	 be	 appropriate	 to	 process	 part	 of	 a	 request
synchronously,	but	to	finish	processing	in	a	forked	child	depending	on
the	 request	 data.	 This	 can	 be	 implemented	 by	 using	 a	 synchronous
server	 and	 doing	 an	 explicit	 fork	 in	 the	 request	 handler	 class
handle()	method.

Another	 approach	 to	 handling	 multiple	 simultaneous	 requests	 in	 an
environment	 that	 supports	 neither	 threads	 nor	 fork()	 (or	 where
these	are	too	expensive	or	inappropriate	for	the	service)	is	to	maintain

an	explicit	table	of	partially	finished	requests	and	to	use	select()	to
decide	 which	 request	 to	 work	 on	 next	 (or	 whether	 to	 handle	 a	 new
incoming	 request).	 This	 is	 particularly	 important	 for	 stream	 services
where	 each	 client	 can	 potentially	 be	 connected	 for	 a	 long	 time	 (if
threads	or	subprocesses	cannot	be	used).	See	asyncore	for	another
way	to	manage	this.

21.21.2.	Server	Objects

class	socketserver.BaseServer
This	is	the	superclass	of	all	Server	objects	in	the	module.	It	defines
the	 interface,	 given	 below,	 but	 does	 not	 implement	 most	 of	 the
methods,	which	is	done	in	subclasses.

BaseServer.fileno()
Return	an	integer	file	descriptor	for	the	socket	on	which	the	server
is	 listening.	 This	 function	 is	 most	 commonly	 passed	 to
select.select(),	 to	 allow	 monitoring	 multiple	 servers	 in	 the
same	process.

BaseServer.handle_request()
Process	a	single	request.	This	function	calls	the	following	methods
in	 order:	 get_request(),	 verify_request(),	 and
process_request().	If	the	user-provided	handle()	method	of
the	 handler	 class	 raises	 an	 exception,	 the	 server’s
handle_error()	method	will	be	called.	If	no	request	is	received
within	 self.timeout	 seconds,	 handle_timeout()	 will	 be
called	and	handle_request()	will	return.

BaseServer.serve_forever(poll_interval=0.5)
Handle	 requests	 until	 an	 explicit	 shutdown()	 request.	 Poll	 for
shutdown	every	poll_interval	seconds.	 Ignores	self.timeout.	 It
also	 calls	 service_actions(),	 which	 may	 be	 used	 by	 a
subclass	or	mixin	to	provide	actions	specific	to	a	given	service.	For
example,	 the	 ForkingMixIn	 class	 uses	 service_actions()
to	clean	up	zombie	child	processes.

Changed	 in	 version	 3.3:	 Added	 service_actions	 call	 to	 the

serve_forever	method.

BaseServer.service_actions()
This	is	called	in	the	serve_forever()	loop.	This	method	can	be
overridden	 by	 subclasses	 or	 mixin	 classes	 to	 perform	 actions
specific	to	a	given	service,	such	as	cleanup	actions.

New	in	version	3.3.

BaseServer.shutdown()
Tell	the	serve_forever()	loop	to	stop	and	wait	until	it	does.

BaseServer.address_family

The	 family	 of	 protocols	 to	 which	 the	 server’s	 socket	 belongs.
Common	 examples	 are	 socket.AF_INET	 and
socket.AF_UNIX.

BaseServer.RequestHandlerClass

The	user-provided	request	handler	class;	an	instance	of	this	class
is	created	for	each	request.

BaseServer.server_address

The	 address	 on	 which	 the	 server	 is	 listening.	 The	 format	 of
addresses	 varies	 depending	 on	 the	 protocol	 family;	 see	 the
documentation	 for	 the	 socket	 module	 for	 details.	 For	 Internet
protocols,	this	is	a	tuple	containing	a	string	giving	the	address,	and
an	integer	port	number:	('127.0.0.1',	80),	for	example.

BaseServer.socket

The	 socket	 object	 on	 which	 the	 server	 will	 listen	 for	 incoming
requests.

The	server	classes	support	the	following	class	variables:

BaseServer.allow_reuse_address

Whether	the	server	will	allow	the	reuse	of	an	address.	This	defaults
to	False,	and	can	be	set	in	subclasses	to	change	the	policy.

BaseServer.request_queue_size

The	size	of	the	request	queue.	If	 it	 takes	a	long	time	to	process	a
single	request,	any	requests	that	arrive	while	the	server	is	busy	are
placed	into	a	queue,	up	to	request_queue_size	requests.	Once
the	queue	is	full,	further	requests	from	clients	will	get	a	“Connection
denied”	 error.	 The	 default	 value	 is	 usually	 5,	 but	 this	 can	 be
overridden	by	subclasses.

BaseServer.socket_type

The	 type	 of	 socket	 used	 by	 the	 server;	 socket.SOCK_STREAM
and	socket.SOCK_DGRAM	are	two	common	values.

BaseServer.timeout

Timeout	duration,	measured	 in	 seconds,	or	 None	 if	 no	 timeout	 is
desired.	 If	 handle_request()	 receives	 no	 incoming	 requests
within	 the	 timeout	 period,	 the	 handle_timeout()	 method	 is
called.

There	 are	 various	 server	 methods	 that	 can	 be	 overridden	 by
subclasses	 of	 base	 server	 classes	 like	 TCPServer;	 these	methods
aren’t	useful	to	external	users	of	the	server	object.

BaseServer.finish_request()
Actually	 processes	 the	 request	 by	 instantiating
RequestHandlerClass	and	calling	its	handle()	method.

BaseServer.get_request()
Must	 accept	 a	 request	 from	 the	 socket,	 and	 return	 a	 2-tuple

containing	the	new	socket	object	 to	be	used	to	communicate	with
the	client,	and	the	client’s	address.

BaseServer.handle_error(request,	client_address)
This	function	is	called	if	the	RequestHandlerClass‘s	handle()
method	 raises	 an	 exception.	 The	 default	 action	 is	 to	 print	 the
traceback	 to	 standard	 output	 and	 continue	 handling	 further
requests.

BaseServer.handle_timeout()
This	function	is	called	when	the	timeout	attribute	has	been	set	to
a	value	other	 than	None	 and	 the	 timeout	period	has	passed	with
no	requests	being	received.	The	default	action	for	forking	servers	is
to	collect	the	status	of	any	child	processes	that	have	exited,	while
in	threading	servers	this	method	does	nothing.

BaseServer.process_request(request,	client_address)
Calls	 finish_request()	 to	 create	 an	 instance	 of	 the
RequestHandlerClass.	 If	 desired,	 this	 function	 can	 create	 a
new	process	or	thread	to	handle	the	request;	the	ForkingMixIn
and	ThreadingMixIn	classes	do	this.

BaseServer.server_activate()
Called	 by	 the	 server’s	 constructor	 to	 activate	 the	 server.	 The
default	 behavior	 just	 listen()s	 to	 the	 server’s	 socket.	 May	 be
overridden.

BaseServer.server_bind()
Called	by	the	server’s	constructor	to	bind	the	socket	to	the	desired
address.	May	be	overridden.

BaseServer.verify_request(request,	client_address)

Must	return	a	Boolean	value;	if	the	value	is	True,	the	request	will
be	processed,	 and	 if	 it’s	 False,	 the	 request	will	 be	 denied.	 This
function	 can	 be	 overridden	 to	 implement	 access	 controls	 for	 a
server.	The	default	implementation	always	returns	True.

21.21.3.	RequestHandler	Objects

The	request	handler	class	must	define	a	new	handle()	method,	and
can	override	any	of	the	following	methods.	A	new	instance	is	created
for	each	request.

RequestHandler.finish()
Called	 after	 the	 handle()	 method	 to	 perform	 any	 clean-up
actions	 required.	 The	 default	 implementation	 does	 nothing.	 If
setup()	raises	an	exception,	this	function	will	not	be	called.

RequestHandler.handle()
This	 function	must	 do	 all	 the	work	 required	 to	 service	 a	 request.
The	 default	 implementation	 does	 nothing.	 Several	 instance
attributes	 are	 available	 to	 it;	 the	 request	 is	 available	 as
self.request;	 the	 client	 address	as	 self.client_address;
and	the	server	instance	as	self.server,	in	case	it	needs	access
to	per-server	information.

The	 type	 of	 self.request	 is	 different	 for	 datagram	 or	 stream
services.	For	stream	services,	self.request	 is	a	socket	object;
for	 datagram	 services,	 self.request	 is	 a	 pair	 of	 string	 and
socket.	However,	this	can	be	hidden	by	using	the	request	handler
subclasses	 StreamRequestHandler	 or
DatagramRequestHandler,	 which	 override	 the	 setup()	 and
finish()	methods,	and	provide	self.rfile	and	self.wfile
attributes.	self.rfile	and	self.wfile	can	be	read	or	written,
respectively,	to	get	the	request	data	or	return	data	to	the	client.

RequestHandler.setup()
Called	 before	 the	 handle()	method	 to	 perform	any	 initialization

actions	required.	The	default	implementation	does	nothing.

21.21.4.	Examples
21.21.4.1.	socketserver.TCPServer	Example

This	is	the	server	side:

import	socketserver

class	MyTCPHandler(socketserver.BaseRequestHandler):

				"""

				The	RequestHandler	class	for	our	server.

				It	is	instantiated	once	per	connection	to	the	server,	and	must

				override	the	handle()	method	to	implement	communication	to	the

				client.

				"""

				def	handle(self):

								#	self.request	is	the	TCP	socket	connected	to	the	client

								self.data	=	self.request.recv(1024).strip()

								print("{}	wrote:".format(self.client_address

								print(self.data)

								#	just	send	back	the	same	data,	but	upper-cased

								self.request.sendall(self.data.upper())

if	__name__	==	"__main__":

				HOST,	PORT	=	"localhost",	9999

				#	Create	the	server,	binding	to	localhost	on	port	9999

				server	=	socketserver.TCPServer((HOST,	PORT),	MyTCPHandler

				#	Activate	the	server;	this	will	keep	running	until	you

				#	interrupt	the	program	with	Ctrl-C

				server.serve_forever()

An	alternative	 request	handler	class	 that	makes	use	of	streams	 (file-
like	objects	that	simplify	communication	by	providing	the	standard	file
interface):

class	MyTCPHandler(socketserver.StreamRequestHandler

				def	handle(self):

								#	self.rfile	is	a	file-like	object	created	by	the	handler;

								#	we	can	now	use	e.g.	readline()	instead	of	raw	recv()	calls

								self.data	=	self.rfile.readline().strip()

								print("{}	wrote:".format(self.client_address

								print(self.data)

								#	Likewise,	self.wfile	is	a	file-like	object	used	to	write	back

								#	to	the	client

								self.wfile.write(self.data.upper())

The	difference	is	that	the	readline()	call	in	the	second	handler	will
call	 recv()	 multiple	 times	 until	 it	 encounters	 a	 newline	 character,
while	 the	single	 recv()	 call	 in	 the	 first	 handler	will	 just	 return	what
has	been	sent	from	the	client	in	one	sendall()	call.

This	is	the	client	side:

import	socket

import	sys

HOST,	PORT	=	"localhost",	9999

data	=	"	".join(sys.argv[1:])

#	Create	a	socket	(SOCK_STREAM	means	a	TCP	socket)

sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

try:

				#	Connect	to	server	and	send	data

				sock.connect((HOST,	PORT))

				sock.sendall(bytes(data	+	"\n",	"utf-8"))

				#	Receive	data	from	the	server	and	shut	down

				received	=	str(sock.recv(1024),	"utf-8")

finally:

				sock.close()

print("Sent:					{}".format(data))

print("Received:	{}".format(received))

The	output	of	the	example	should	look	something	like	this:

Server:

$	python	TCPServer.py

127.0.0.1	wrote:

b'hello	world	with	TCP'

127.0.0.1	wrote:

b'python	is	nice'

Client:

$	python	TCPClient.py	hello	world	with	TCP

Sent:					hello	world	with	TCP

Received:	HELLO	WORLD	WITH	TCP

$	python	TCPClient.py	python	is	nice

Sent:					python	is	nice

Received:	PYTHON	IS	NICE

21.21.4.2.	socketserver.UDPServer	Example

This	is	the	server	side:

import	socketserver

class	MyUDPHandler(socketserver.BaseRequestHandler):

				"""

				This	class	works	similar	to	the	TCP	handler	class,	except	that

				self.request	consists	of	a	pair	of	data	and	client	socket,	and	since

				there	is	no	connection	the	client	address	must	be	given	explicitly

				when	sending	data	back	via	sendto().

				"""

				def	handle(self):

								data	=	self.request[0].strip()

								socket	=	self.request[1]

								print("{}	wrote:".format(self.client_address

								print(data)

								socket.sendto(data.upper(),	self.client_address

if	__name__	==	"__main__":

				HOST,	PORT	=	"localhost",	9999

				server	=	socketserver.UDPServer((HOST,	PORT),	MyUDPHandler

				server.serve_forever()

This	is	the	client	side:

import	socket

import	sys

HOST,	PORT	=	"localhost",	9999

data	=	"	".join(sys.argv[1:])

#	SOCK_DGRAM	is	the	socket	type	to	use	for	UDP	sockets

sock	=	socket.socket(socket.AF_INET,	socket.SOCK_DGRAM

#	As	you	can	see,	there	is	no	connect()	call;	UDP	has	no	connections.

#	Instead,	data	is	directly	sent	to	the	recipient	via	sendto().

sock.sendto(bytes(data	+	"\n",	"utf-8"),	(HOST,	PORT

received	=	str(sock.recv(1024),	"utf-8")

print("Sent:					{}".format(data))

print("Received:	{}".format(received))

The	output	of	the	example	should	look	exactly	like	for	the	TCP	server
example.

21.21.4.3.	Asynchronous	Mixins

To	 build	 asynchronous	 handlers,	 use	 the	 ThreadingMixIn	 and
ForkingMixIn	classes.

An	example	for	the	ThreadingMixIn	class:

import	socket

import	threading

import	socketserver

class	ThreadedTCPRequestHandler(socketserver.BaseRequestHandler

				def	handle(self):

								data	=	str(self.request.recv(1024),	'ascii')

								cur_thread	=	threading.current_thread()

								response	=	bytes("{}:	{}".format(cur_thread.

								self.request.sendall(response)

class	ThreadedTCPServer(socketserver.ThreadingMixIn,

				pass

def	client(ip,	port,	message):

				sock	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

				sock.connect((ip,	port))

				try:

								sock.sendall(bytes(message,	'ascii'))

								response	=	str(sock.recv(1024),	'ascii')

								print("Received:	{}".format(response))

				finally:

								sock.close()

if	__name__	==	"__main__":

				#	Port	0	means	to	select	an	arbitrary	unused	port

				HOST,	PORT	=	"localhost",	0

				server	=	ThreadedTCPServer((HOST,	PORT),	ThreadedTCPRequestHandler

				ip,	port	=	server.server_address

				#	Start	a	thread	with	the	server	--	that	thread	will	then	start	one

				#	more	thread	for	each	request

				server_thread	=	threading.Thread(target=server.serve_forever

				#	Exit	the	server	thread	when	the	main	thread	terminates

				server_thread.daemon	=	True

				server_thread.start()

				print("Server	loop	running	in	thread:",	server_thread

				client(ip,	port,	"Hello	World	1")

				client(ip,	port,	"Hello	World	2")

				client(ip,	port,	"Hello	World	3")

				server.shutdown()

The	output	of	the	example	should	look	something	like	this:

$	python	ThreadedTCPServer.py

Server	loop	running	in	thread:	Thread-1

Received:	Thread-2:	Hello	World	1

Received:	Thread-3:	Hello	World	2

Received:	Thread-4:	Hello	World	3

The	ForkingMixIn	 class	 is	 used	 in	 the	 same	way,	except	 that	 the
server	will	spawn	a	new	process	for	each	request.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.22.	http.server	—	HTTP
servers
Source	code:	Lib/http/server.py

This	 module	 defines	 classes	 for	 implementing	 HTTP	 servers	 (Web
servers).

One	class,	HTTPServer,	is	a	socketserver.TCPServer	subclass.
It	creates	and	listens	at	the	HTTP	socket,	dispatching	the	requests	to	a
handler.	Code	to	create	and	run	the	server	looks	like	this:

def	run(server_class=HTTPServer,	handler_class=BaseHTTPRequestHandler

				server_address	=	('',	8000)

				httpd	=	server_class(server_address,	handler_class

				httpd.serve_forever()

class	http.server.HTTPServer(server_address,
RequestHandlerClass)

This	 class	 builds	 on	 the	 TCPServer	 class	 by	 storing	 the	 server
address	 as	 instance	 variables	 named	 server_name	 and
server_port.	 The	 server	 is	 accessible	 by	 the	 handler,	 typically
through	the	handler’s	server	instance	variable.

The	 HTTPServer	 must	 be	 given	 a	 RequestHandlerClass	 on
instantiation,	of	which	this	module	provides	three	different	variants:

class	http.server.BaseHTTPRequestHandler(request,
client_address,	server)

http://hg.python.org/cpython/file/3.4/Lib/http/server.py

This	class	 is	used	 to	handle	 the	HTTP	requests	 that	arrive	at	 the
server.	By	itself,	it	cannot	respond	to	any	actual	HTTP	requests;	it
must	be	subclassed	 to	handle	each	 request	method	 (e.g.	GET	or
POST).	BaseHTTPRequestHandler	provides	a	number	of	class
and	instance	variables,	and	methods	for	use	by	subclasses.

The	 handler	 will	 parse	 the	 request	 and	 the	 headers,	 then	 call	 a
method	 specific	 to	 the	 request	 type.	 The	 method	 name	 is
constructed	from	the	request.	For	example,	for	the	request	method
SPAM,	 the	do_SPAM()	method	will	 be	 called	with	 no	 arguments.
All	of	the	relevant	information	is	stored	in	instance	variables	of	the
handler.	 Subclasses	 should	 not	 need	 to	 override	 or	 extend	 the
__init__()	method.

BaseHTTPRequestHandler	has	the	following	instance	variables:

client_address

Contains	 a	 tuple	 of	 the	 form	 (host,	port)	 referring	 to	 the
client’s	address.

server

Contains	the	server	instance.

command

Contains	the	command	(request	type).	For	example,	'GET'.

path

Contains	the	request	path.

request_version

Contains	 the	 version	 string	 from	 the	 request.	 For	 example,
'HTTP/1.0'.

headers

Holds	an	instance	of	the	class	specified	by	the	MessageClass
class	variable.	This	instance	parses	and	manages	the	headers
in	the	HTTP	request.

rfile

Contains	an	input	stream,	positioned	at	the	start	of	the	optional
input	data.

wfile

Contains	 the	output	 stream	 for	writing	a	 response	back	 to	 the
client.	 Proper	 adherence	 to	 the	 HTTP	 protocol	 must	 be	 used
when	writing	to	this	stream.

BaseHTTPRequestHandler	has	the	following	class	variables:

server_version

Specifies	the	server	software	version.	You	may	want	to	override
this.	The	format	is	multiple	whitespace-separated	strings,	where
each	 string	 is	 of	 the	 form	 name[/version].	 For	 example,
'BaseHTTP/0.2'.

sys_version

Contains	 the	 Python	 system	 version,	 in	 a	 form	 usable	 by	 the
version_string	 method	 and	 the	 server_version	 class
variable.	For	example,	'Python/1.4'.

error_message_format

Specifies	 a	 format	 string	 for	 building	 an	 error	 response	 to	 the
client.	 It	 uses	 parenthesized,	 keyed	 format	 specifiers,	 so	 the
format	operand	must	be	a	dictionary.	The	code	key	should	be
an	 integer,	 specifying	 the	 numeric	 HTTP	 error	 code	 value.
message	 should	 be	 a	 string	 containing	 a	 (detailed)	 error

message	 of	 what	 occurred,	 and	 explain	 should	 be	 an
explanation	 of	 the	 error	 code	 number.	 Default	message	 and
explain	values	can	found	in	the	responses	class	variable.

error_content_type

Specifies	 the	 Content-Type	 HTTP	 header	 of	 error	 responses
sent	to	the	client.	The	default	value	is	'text/html'.

protocol_version

This	specifies	the	HTTP	protocol	version	used	in	responses.	 If
set	 to	 'HTTP/1.1',	 the	 server	 will	 permit	 HTTP	 persistent
connections;	 however,	 your	 server	 must	 then	 include	 an
accurate	 Content-Length	 header	 (using	 send_header())
in	all	of	its	responses	to	clients.	For	backwards	compatibility,	the
setting	defaults	to	'HTTP/1.0'.

MessageClass

Specifies	 an	 email.message.Message-like	 class	 to	 parse
HTTP	headers.	Typically,	 this	 is	not	overridden,	and	 it	defaults
to	http.client.HTTPMessage.

responses

This	variable	contains	a	mapping	of	error	code	integers	to	two-
element	 tuples	 containing	 a	 short	 and	 long	 message.	 For
example,	{code:	(shortmessage,	longmessage)}.	 The
shortmessage	 is	usually	used	as	 the	message	 key	 in	an	error
response,	 and	 longmessage	 as	 the	 explain	 key	 (see	 the
error_message_format	class	variable).

A	 BaseHTTPRequestHandler	 instance	 has	 the	 following
methods:

handle()
Calls	 handle_one_request()	 once	 (or,	 if	 persistent
connections	 are	 enabled,	 multiple	 times)	 to	 handle	 incoming
HTTP	requests.	You	should	never	need	 to	override	 it;	 instead,
implement	appropriate	do_*()	methods.

handle_one_request()
This	 method	 will	 parse	 and	 dispatch	 the	 request	 to	 the
appropriate	 do_*()	 method.	 You	 should	 never	 need	 to
override	it.

handle_expect_100()
When	a	HTTP/1.1	compliant	server	receives	a	Expect:	100-
continue	 request	 header	 it	 responds	 back	 with	 a	 100
Continue	 followed	by	200	OK	headers.	This	method	can	be
overridden	 to	 raise	 an	 error	 if	 the	 server	 does	 not	 want	 the
client	 to	 continue.	 For	 e.g.	 server	 can	 chose	 to	 send	 417
Expectation	 Failed	 as	 a	 response	 header	 and	 return
False.

New	in	version	3.2.

send_error(code,	message=None,	explain=None)
Sends	 and	 logs	 a	 complete	 error	 reply	 to	 the	 client.	 The
numeric	code	specifies	the	HTTP	error	code,	with	message	as
an	optional,	short,	human	readable	description	of	the	error.	The
explain	 argument	 can	 be	 used	 to	 provide	 more	 detailed
information	 about	 the	 error;	 it	 will	 be	 formatted	 using	 the
error_message_format	 class	 variable	 and	 emitted,	 after	 a
complete	 set	 of	 headers,	 as	 the	 response	 body.	 The
responses	 class	 variable	 holds	 the	 default	 values	 for

message	and	explain	 that	will	be	used	 if	no	value	 is	provided;
for	unknown	codes	the	default	value	for	both	is	the	string	???.

Changed	in	version	3.4:	The	error	response	includes	a	Content-
Length	header.	Added	the	explain	argument.

send_response(code,	message=None)
Adds	 a	 response	 header	 to	 the	 headers	 buffer	 and	 logs	 the
accepted	 request.	 The	 HTTP	 response	 line	 is	 written	 to	 the
internal	 buffer,	 followed	 by	 Server	 and	 Date	 headers.	 The
values	 for	 these	 two	 headers	 are	 picked	 up	 from	 the
version_string()	 and	 date_time_string()	 methods,
respectively.	 If	 the	 server	 does	 not	 intend	 to	 send	 any	 other
headers	 using	 the	 send_header()	 method,	 then
send_response()	should	be	followed	by	a	end_headers()
call.

Changed	in	version	3.3:	Headers	are	stored	to	an	internal	buffer
and	end_headers()	needs	to	be	called	explicitly.

send_header(keyword,	value)
Adds	the	HTTP	header	to	an	internal	buffer	which	will	be	written
to	 the	 output	 stream	 when	 either	 end_headers()	 or
flush_headers()	 is	 invoked.	 keyword	 should	 specify	 the
header	keyword,	with	value	specifying	its	value.	Note	that,	after
the	 send_header	 calls	 are	 done,	 end_headers()	 MUST	 BE
called	in	order	to	complete	the	operation.

Changed	 in	 version	 3.2:	 Headers	 are	 stored	 in	 an	 internal
buffer.

send_response_only(code,	message=None)

Sends	 the	 reponse	 header	 only,	 used	 for	 the	 purposes	 when
100	Continue	 response	 is	 sent	 by	 the	 server	 to	 the	 client.
The	headers	not	buffered	and	sent	directly	the	output	stream.If
the	 message	 is	 not	 specified,	 the	 HTTP	 message
corresponding	the	response	code	is	sent.

New	in	version	3.2.

end_headers()
Adds	a	blank	line	(indicating	the	end	of	the	HTTP	headers	in	the
response)	to	the	headers	buffer	and	calls	flush_headers().

Changed	in	version	3.2:	The	buffered	headers	are	written	to	the
output	stream.

flush_headers()
Finally	 send	 the	 headers	 to	 the	 output	 stream	 and	 flush	 the
internal	headers	buffer.

New	in	version	3.3.

log_request(code='-',	size='-')
Logs	an	accepted	(successful)	request.	code	should	specify	the
numeric	HTTP	code	associated	with	 the	 response.	 If	a	size	of
the	response	is	available,	then	it	should	be	passed	as	the	size
parameter.

log_error(...)
Logs	an	error	when	a	request	cannot	be	fulfilled.	By	default,	 it
passes	the	message	to	log_message(),	so	it	takes	the	same
arguments	(format	and	additional	values).

log_message(format,	...)

Logs	 an	 arbitrary	 message	 to	 sys.stderr.	 This	 is	 typically
overridden	 to	 create	 custom	 error	 logging	 mechanisms.	 The
format	argument	 is	a	standard	printf-style	 format	string,	where
the	 additional	 arguments	 to	 log_message()	 are	 applied	 as
inputs	to	the	formatting.	The	client	ip	address	and	current	date
and	time	are	prefixed	to	every	message	logged.

version_string()
Returns	 the	 server	 software’s	 version	 string.	 This	 is	 a
combination	 of	 the	 server_version	 and	 sys_version
class	variables.

date_time_string(timestamp=None)
Returns	the	date	and	time	given	by	 timestamp	 (which	must	be
None	or	in	the	format	returned	by	time.time()),	formatted	for
a	message	header.	 If	 timestamp	 is	omitted,	 it	uses	the	current
date	and	time.

The	result	looks	like	'Sun,	06	Nov	1994	08:49:37	GMT'.

log_date_time_string()
Returns	the	current	date	and	time,	formatted	for	logging.

address_string()
Returns	the	client	address.

Changed	 in	 version	 3.3:	 Previously,	 a	 name	 lookup	 was
performed.	 To	 avoid	 name	 resolution	 delays,	 it	 now	 always
returns	the	IP	address.

class	http.server.SimpleHTTPRequestHandler(request,
client_address,	server)

This	class	serves	files	from	the	current	directory	and	below,	directly

mapping	the	directory	structure	to	HTTP	requests.

A	lot	of	the	work,	such	as	parsing	the	request,	is	done	by	the	base
class	 BaseHTTPRequestHandler.	 This	 class	 implements	 the
do_GET()	and	do_HEAD()	functions.

The	 following	 are	 defined	 as	 class-level	 attributes	 of
SimpleHTTPRequestHandler:

server_version

This	 will	 be	 "SimpleHTTP/"	 +	 __version__,	 where
__version__	is	defined	at	the	module	level.

extensions_map

A	dictionary	mapping	 suffixes	 into	MIME	 types.	 The	 default	 is
signified	 by	 an	 empty	 string,	 and	 is	 considered	 to	 be
application/octet-stream.	 The	 mapping	 is	 used	 case-
insensitively,	and	so	should	contain	only	lower-cased	keys.

The	 SimpleHTTPRequestHandler	 class	 defines	 the	 following
methods:

do_HEAD()
This	 method	 serves	 the	 'HEAD'	 request	 type:	 it	 sends	 the
headers	it	would	send	for	the	equivalent	GET	request.	See	the
do_GET()	 method	 for	 a	 more	 complete	 explanation	 of	 the
possible	headers.

do_GET()
The	request	is	mapped	to	a	local	file	by	interpreting	the	request
as	a	path	relative	to	the	current	working	directory.

If	 the	 request	 was	 mapped	 to	 a	 directory,	 the	 directory	 is

checked	for	a	file	named	index.html	or	index.htm	 (in	 that
order).	 If	 found,	 the	 file’s	 contents	 are	 returned;	 otherwise	 a
directory	 listing	 is	 generated	 by	 calling	 the
list_directory()	 method.	 This	 method	 uses
os.listdir()	 to	scan	the	directory,	and	returns	a	404	error
response	if	the	listdir()	fails.

If	 the	 request	 was	 mapped	 to	 a	 file,	 it	 is	 opened	 and	 the
contents	are	returned.	Any	OSError	exception	 in	opening	the
requested	file	is	mapped	to	a	404,	'File	not	found'	error.
Otherwise,	 the	 content	 type	 is	 guessed	 by	 calling	 the
guess_type()	 method,	 which	 in	 turn	 uses	 the
extensions_map	variable.

A	'Content-type:'	header	with	the	guessed	content	type	is
output,	 followed	 by	 a	 'Content-Length:'	 header	 with	 the
file’s	 size	 and	 a	 'Last-Modified:'	 header	 with	 the	 file’s
modification	time.

Then	follows	a	blank	line	signifying	the	end	of	the	headers,	and
then	 the	contents	of	 the	 file	are	output.	 If	 the	 file’s	MIME	 type
starts	 with	 text/	 the	 file	 is	 opened	 in	 text	 mode;	 otherwise
binary	mode	is	used.

For	 example	 usage,	 see	 the	 implementation	 of	 the	 test()
function	invocation	in	the	http.server	module.

The	 SimpleHTTPRequestHandler	 class	 can	 be	 used	 in	 the
following	 manner	 in	 order	 to	 create	 a	 very	 basic	 webserver	 serving
files	relative	to	the	current	directory:

import	http.server

import	socketserver

PORT	=	8000

Handler	=	http.server.SimpleHTTPRequestHandler

httpd	=	socketserver.TCPServer(("",	PORT),	Handler)

print("serving	at	port",	PORT)

httpd.serve_forever()

http.server	can	also	be	invoked	directly	using	the	-m	switch	of	the
interpreter	 with	 a	 port	 number	 argument.	 Similar	 to	 the	 previous
example,	this	serves	files	relative	to	the	current	directory:

python	-m	http.server	8000

By	default,	server	binds	itself	to	all	interfaces.	The	option	-b/--bind
specifies	a	specific	address	to	which	it	should	bind.	For	example,	the
following	command	causes	the	server	to	bind	to	localhost	only:

python	-m	http.server	8000	--bind	127.0.0.1

New	in	version	3.4:	--bind	argument	was	introduced.

class	http.server.CGIHTTPRequestHandler(request,
client_address,	server)

This	class	is	used	to	serve	either	files	or	output	of	CGI	scripts	from
the	 current	 directory	 and	 below.	 Note	 that	 mapping	 HTTP
hierarchic	 structure	 to	 local	 directory	 structure	 is	 exactly	 as	 in
SimpleHTTPRequestHandler.

Note: 	CGI	scripts	run	by	the	CGIHTTPRequestHandler	class

cannot	 execute	 redirects	 (HTTP	 code	 302),	 because	 code	 200
(script	output	follows)	is	sent	prior	to	execution	of	the	CGI	script.
This	pre-empts	the	status	code.

The	class	will	however,	run	the	CGI	script,	instead	of	serving	it	as	a
file,	if	it	guesses	it	to	be	a	CGI	script.	Only	directory-based	CGI	are
used	—	 the	other	common	server	configuration	 is	 to	 treat	special
extensions	as	denoting	CGI	scripts.

The	do_GET()	and	do_HEAD()	functions	are	modified	to	run	CGI
scripts	and	serve	the	output,	instead	of	serving	files,	if	the	request
leads	to	somewhere	below	the	cgi_directories	path.

The	 CGIHTTPRequestHandler	 defines	 the	 following	 data
member:

cgi_directories

This	 defaults	 to	 ['/cgi-bin',	 '/htbin']	 and	 describes
directories	to	treat	as	containing	CGI	scripts.

The	CGIHTTPRequestHandler	defines	the	following	method:

do_POST()
This	method	serves	the	'POST'	request	type,	only	allowed	for
CGI	 scripts.	 Error	 501,	 “Can	 only	 POST	 to	 CGI	 scripts”,	 is
output	when	trying	to	POST	to	a	non-CGI	url.

Note	 that	 CGI	 scripts	 will	 be	 run	 with	 UID	 of	 user	 nobody,	 for
security	reasons.	Problems	with	the	CGI	script	will	be	translated	to
error	403.

CGIHTTPRequestHandler	can	be	enabled	 in	 the	command	 line	by
passing	the	--cgi	option:

python	-m	http.server	--cgi	8000

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.23.	http.cookies	—	HTTP
state	management
Source	code:	Lib/http/cookies.py

The	 http.cookies	 module	 defines	 classes	 for	 abstracting	 the
concept	 of	 cookies,	 an	 HTTP	 state	 management	 mechanism.	 It
supports	both	simple	string-only	cookies,	and	provides	an	abstraction
for	having	any	serializable	data-type	as	cookie	value.

The	module	formerly	strictly	applied	the	parsing	rules	described	in	the
RFC	2109	and	RFC	2068	specifications.	It	has	since	been	discovered
that	 MSIE	 3.0x	 doesn’t	 follow	 the	 character	 rules	 outlined	 in	 those
specs	and	also	many	current	day	browsers	and	servers	have	relaxed
parsing	rules	when	comes	to	Cookie	handling.	As	a	result,	the	parsing
rules	used	are	a	bit	less	strict.

The	character	set,	string.ascii_letters,	string.digits	and
!#$%&'*+-.^_`|~:	 denote	 the	 set	 of	 valid	 characters	 allowed	 by
this	module	in	Cookie	name	(as	key).

Changed	in	version	3.3:	Allowed	‘:’	as	a	valid	Cookie	name	character.

Note: 	On	encountering	an	invalid	cookie,	CookieError	is	raised,
so	if	your	cookie	data	comes	from	a	browser	you	should	always
prepare	for	invalid	data	and	catch	CookieError	on	parsing.

exception	http.cookies.CookieError
Exception	 failing	 because	 of	 RFC	 2109	 invalidity:	 incorrect

http://hg.python.org/cpython/file/3.4/Lib/http/cookies.py
http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2068.html
http://tools.ietf.org/html/rfc2109.html

attributes,	incorrect	Set-Cookie	header,	etc.

class	http.cookies.BaseCookie([input])
This	 class	 is	 a	 dictionary-like	 object	 whose	 keys	 are	 strings	 and
whose	values	are	Morsel	instances.	Note	that	upon	setting	a	key
to	a	value,	the	value	is	first	converted	to	a	Morsel	containing	the
key	and	the	value.

If	input	is	given,	it	is	passed	to	the	load()	method.

class	http.cookies.SimpleCookie([input])
This	 class	 derives	 from	 BaseCookie	 and	 overrides
value_decode()	and	value_encode()	 to	 be	 the	 identity	 and
str()	respectively.

See	also:

Module	http.cookiejar
HTTP	 cookie	 handling	 for	 web	 clients.	 The	 http.cookiejar
and	http.cookies	modules	do	not	depend	on	each	other.

RFC	2109	-	HTTP	State	Management	Mechanism
This	 is	 the	state	management	specification	 implemented	by	 this
module.

http://tools.ietf.org/html/rfc2109.html

21.23.1.	Cookie	Objects

BaseCookie.value_decode(val)
Return	a	decoded	value	from	a	string	representation.	Return	value
can	be	any	 type.	This	method	does	nothing	 in	BaseCookie	—	 it
exists	so	it	can	be	overridden.

BaseCookie.value_encode(val)
Return	 an	 encoded	 value.	 val	 can	 be	 any	 type,	 but	 return	 value
must	be	a	string.	This	method	does	nothing	 in	BaseCookie	—	 it
exists	so	it	can	be	overridden

In	 general,	 it	 should	 be	 the	 case	 that	 value_encode()	 and
value_decode()	are	inverses	on	the	range	of	value_decode.

BaseCookie.output(attrs=None,	header='Set-Cookie:',	sep='\r\n')
Return	 a	 string	 representation	 suitable	 to	 be	 sent	 as	 HTTP
headers.	attrs	and	header	are	sent	 to	each	Morsel‘s	output()
method.	sep	is	used	to	join	the	headers	together,	and	is	by	default
the	combination	'\r\n'	(CRLF).

BaseCookie.js_output(attrs=None)
Return	 an	 embeddable	 JavaScript	 snippet,	 which,	 if	 run	 on	 a
browser	 which	 supports	 JavaScript,	 will	 act	 the	 same	 as	 if	 the
HTTP	headers	was	sent.

The	meaning	for	attrs	is	the	same	as	in	output().

BaseCookie.load(rawdata)
If	rawdata	 is	 a	 string,	 parse	 it	 as	 an	 HTTP_COOKIE	 and	 add	 the
values	found	there	as	Morsels.	If	it	is	a	dictionary,	it	is	equivalent

to:

for	k,	v	in	rawdata.items():

				cookie[k]	=	v

21.23.2.	Morsel	Objects

class	http.cookies.Morsel
Abstract	a	key/value	pair,	which	has	some	RFC	2109	attributes.

Morsels	are	dictionary-like	objects,	whose	set	of	 keys	 is	 constant
—	the	valid	RFC	2109	attributes,	which	are

expires

path

comment

domain

max-age

secure

version

httponly

The	 attribute	 httponly	 specifies	 that	 the	 cookie	 is	 only
transferred	 in	 HTTP	 requests,	 and	 is	 not	 accessible	 through
JavaScript.	 This	 is	 intended	 to	mitigate	 some	 forms	 of	 cross-site
scripting.

The	keys	are	case-insensitive.

Morsel.value

The	value	of	the	cookie.

Morsel.coded_value

The	encoded	value	of	the	cookie	—	this	is	what	should	be	sent.

Morsel.key

The	name	of	the	cookie.

http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2109.html

Morsel.set(key,	value,	coded_value)
Set	the	key,	value	and	coded_value	attributes.

Morsel.isReservedKey(K)
Whether	K	is	a	member	of	the	set	of	keys	of	a	Morsel.

Morsel.output(attrs=None,	header='Set-Cookie:')
Return	a	string	representation	of	the	Morsel,	suitable	to	be	sent	as
an	HTTP	header.	By	default,	all	the	attributes	are	included,	unless
attrs	 is	given,	in	which	case	it	should	be	a	list	of	attributes	to	use.
header	is	by	default	"Set-Cookie:".

Morsel.js_output(attrs=None)
Return	 an	 embeddable	 JavaScript	 snippet,	 which,	 if	 run	 on	 a
browser	 which	 supports	 JavaScript,	 will	 act	 the	 same	 as	 if	 the
HTTP	header	was	sent.

The	meaning	for	attrs	is	the	same	as	in	output().

Morsel.OutputString(attrs=None)
Return	 a	 string	 representing	 the	Morsel,	 without	 any	 surrounding
HTTP	or	JavaScript.

The	meaning	for	attrs	is	the	same	as	in	output().

21.23.3.	Example

The	following	example	demonstrates	how	to	use	the	http.cookies
module.

>>>	from	http	import	cookies

>>>	C	=	cookies.SimpleCookie()

>>>	C["fig"]	=	"newton"

>>>	C["sugar"]	=	"wafer"

>>>	print(C)	#	generate	HTTP	headers

Set-Cookie:	fig=newton

Set-Cookie:	sugar=wafer

>>>	print(C.output())	#	same	thing

Set-Cookie:	fig=newton

Set-Cookie:	sugar=wafer

>>>	C	=	cookies.SimpleCookie()

>>>	C["rocky"]	=	"road"

>>>	C["rocky"]["path"]	=	"/cookie"

>>>	print(C.output(header="Cookie:"))

Cookie:	rocky=road;	Path=/cookie

>>>	print(C.output(attrs=[],	header="Cookie:"))

Cookie:	rocky=road

>>>	C	=	cookies.SimpleCookie()

>>>	C.load("chips=ahoy;	vienna=finger")	#	load	from	a	string	(HTTP	header)

>>>	print(C)

Set-Cookie:	chips=ahoy

Set-Cookie:	vienna=finger

>>>	C	=	cookies.SimpleCookie()

>>>	C.load('keebler="E=everybody;	L=\\"Loves\\";	fudge=

>>>	print(C)

Set-Cookie:	keebler="E=everybody;	L=\"Loves\";	fudge=\012;"

>>>	C	=	cookies.SimpleCookie()

>>>	C["oreo"]	=	"doublestuff"

>>>	C["oreo"]["path"]	=	"/"

>>>	print(C)

Set-Cookie:	oreo=doublestuff;	Path=/

>>>	C	=	cookies.SimpleCookie()

>>>	C["twix"]	=	"none	for	you"

>>>	C["twix"].value

'none	for	you'

>>>	C	=	cookies.SimpleCookie()

>>>	C["number"]	=	7	#	equivalent	to	C["number"]	=	str(7)

>>>	C["string"]	=	"seven"

>>>	C["number"].value

'7'

>>>	C["string"].value

'seven'

>>>	print(C)

Set-Cookie:	number=7

Set-Cookie:	string=seven

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.24.	http.cookiejar	—
Cookie	handling	for	HTTP	clients
Source	code:	Lib/http/cookiejar.py

The	http.cookiejar	module	defines	classes	for	automatic	handling
of	HTTP	cookies.	It	is	useful	for	accessing	web	sites	that	require	small
pieces	of	data	–	cookies	–	to	be	set	on	the	client	machine	by	an	HTTP
response	 from	a	web	server,	and	 then	 returned	 to	 the	server	 in	 later
HTTP	requests.

Both	the	regular	Netscape	cookie	protocol	and	the	protocol	defined	by
RFC	2965	are	handled.	RFC	2965	handling	is	switched	off	by	default.
RFC	2109	cookies	are	parsed	as	Netscape	cookies	and	subsequently
treated	 either	 as	 Netscape	 or	 RFC	 2965	 cookies	 according	 to	 the
‘policy’	in	effect.	Note	that	the	great	majority	of	cookies	on	the	Internet
are	Netscape	 cookies.	 http.cookiejar	 attempts	 to	 follow	 the	 de-
facto	 Netscape	 cookie	 protocol	 (which	 differs	 substantially	 from	 that
set	out	in	the	original	Netscape	specification),	including	taking	note	of
the	max-age	and	port	cookie-attributes	introduced	with	RFC	2965.

Note: 	The	various	named	parameters	found	in	Set-Cookie	and	Set-
Cookie2	headers	(eg.	domain	and	expires)	are	conventionally
referred	to	as	attributes.	To	distinguish	them	from	Python	attributes,
the	documentation	for	this	module	uses	the	term	cookie-attribute
instead.

The	module	defines	the	following	exception:

http://hg.python.org/cpython/file/3.4/Lib/http/cookiejar.py
http://tools.ietf.org/html/rfc2965.html
http://tools.ietf.org/html/rfc2109.html

exception	http.cookiejar.LoadError
Instances	 of	 FileCookieJar	 raise	 this	 exception	 on	 failure	 to
load	cookies	from	a	file.	LoadError	is	a	subclass	of	OSError.

Changed	 in	 version	 3.3:	 LoadError	 was	 made	 a	 subclass	 of
OSError	instead	of	IOError.

The	following	classes	are	provided:

class	http.cookiejar.CookieJar(policy=None)
policy	is	an	object	implementing	the	CookiePolicy	interface.

The	 CookieJar	 class	 stores	 HTTP	 cookies.	 It	 extracts	 cookies
from	 HTTP	 requests,	 and	 returns	 them	 in	 HTTP	 responses.
CookieJar	 instances	 automatically	 expire	 contained	 cookies
when	necessary.	Subclasses	are	 also	 responsible	 for	 storing	 and
retrieving	cookies	from	a	file	or	database.

class	http.cookiejar.FileCookieJar(filename,
delayload=None,	policy=None)

policy	is	an	object	implementing	the	CookiePolicy	interface.	For
the	other	arguments,	see	the	documentation	for	the	corresponding
attributes.

A	 CookieJar	 which	 can	 load	 cookies	 from,	 and	 perhaps	 save
cookies	to,	a	file	on	disk.	Cookies	are	NOT	loaded	from	the	named
file	 until	 either	 the	 load()	 or	 revert()	 method	 is	 called.
Subclasses	of	 this	class	are	documented	 in	section	FileCookieJar
subclasses	and	co-operation	with	web	browsers.

class	http.cookiejar.CookiePolicy
This	class	 is	responsible	for	deciding	whether	each	cookie	should
be	accepted	from	/	returned	to	the	server.

class
http.cookiejar.DefaultCookiePolicy(blocked_domains=None
allowed_domains=None,	netscape=True,	rfc2965=False,
rfc2109_as_netscape=None,	hide_cookie2=False,
strict_domain=False,	strict_rfc2965_unverifiable=True,
strict_ns_unverifiable=False,
strict_ns_domain=DefaultCookiePolicy.DomainLiberal,
strict_ns_set_initial_dollar=False,	strict_ns_set_path=False)

Constructor	 arguments	 should	 be	 passed	 as	 keyword	 arguments
only.	 blocked_domains	 is	 a	 sequence	 of	 domain	 names	 that	 we
never	accept	cookies	from,	nor	return	cookies	to.	allowed_domains
if	not	None,	 this	 is	a	sequence	of	 the	only	domains	 for	which	we
accept	 and	 return	 cookies.	 For	 all	 other	 arguments,	 see	 the
documentation	 for	CookiePolicy	and	DefaultCookiePolicy
objects.

DefaultCookiePolicy	 implements	the	standard	accept	/	reject
rules	 for	Netscape	and	RFC	2965	cookies.	By	default,	RFC	2109
cookies	(ie.	cookies	received	in	a	Set-Cookie	header	with	a	version
cookie-attribute	of	1)	are	treated	according	to	the	RFC	2965	rules.
However,	 if	 RFC	 2965	 handling	 is	 turned	 off	 or
rfc2109_as_netscape	 is	 True,	 RFC	 2109	 cookies	 are
‘downgraded’	by	the	CookieJar	instance	to	Netscape	cookies,	by
setting	 the	 version	 attribute	 of	 the	 Cookie	 instance	 to	 0.
DefaultCookiePolicy	also	provides	some	parameters	to	allow
some	fine-tuning	of	policy.

class	http.cookiejar.Cookie
This	class	represents	Netscape,	RFC	2109	and	RFC	2965	cookies.
It	 is	not	expected	 that	users	of	http.cookiejar	 construct	 their
own	 Cookie	 instances.	 Instead,	 if	 necessary,	 call
make_cookies()	on	a	CookieJar	instance.

See	also:

Module	urllib.request
URL	opening	with	automatic	cookie	handling.

Module	http.cookies
HTTP	cookie	classes,	principally	useful	for	server-side	code.	The
http.cookiejar	and	http.cookies	modules	do	not	depend
on	each	other.

http://wp.netscape.com/newsref/std/cookie_spec.html
The	 specification	 of	 the	 original	 Netscape	 cookie	 protocol.
Though	 this	 is	 still	 the	 dominant	 protocol,	 the	 ‘Netscape	 cookie
protocol’	 implemented	 by	 all	 the	 major	 browsers	 (and
http.cookiejar)	only	bears	a	passing	resemblance	to	the	one
sketched	out	in	cookie_spec.html.

RFC	2109	-	HTTP	State	Management	Mechanism
Obsoleted	by	RFC	2965.	Uses	Set-Cookie	with	version=1.

RFC	2965	-	HTTP	State	Management	Mechanism
The	Netscape	protocol	with	the	bugs	fixed.	Uses	Set-Cookie2	 in
place	of	Set-Cookie.	Not	widely	used.

http://kristol.org/cookie/errata.html
Unfinished	errata	to	RFC	2965.

RFC	2964	-	Use	of	HTTP	State	Management

http://wp.netscape.com/newsref/std/cookie_spec.html
http://tools.ietf.org/html/rfc2109.html
http://tools.ietf.org/html/rfc2965.html
http://kristol.org/cookie/errata.html
http://tools.ietf.org/html/rfc2964.html

21.24.1.	CookieJar	and	FileCookieJar
Objects

CookieJar	 objects	 support	 the	 iterator	 protocol	 for	 iterating	 over
contained	Cookie	objects.

CookieJar	has	the	following	methods:

CookieJar.add_cookie_header(request)
Add	correct	Cookie	header	to	request.

If	policy	allows	(ie.	the	rfc2965	and	hide_cookie2	attributes	of
the	 CookieJar‘s	 CookiePolicy	 instance	 are	 true	 and	 false
respectively),	the	Cookie2	header	is	also	added	when	appropriate.

The	 request	 object	 (usually	 a	 urllib.request..Request
instance)	 must	 support	 the	 methods	 get_full_url(),
get_host(),	 get_type(),	 unverifiable(),
has_header(),	 get_header(),	 header_items(),
add_unredirected_header()	 and	 origin_req_host

attribute	as	documented	by	urllib.request.

Changed	in	version	3.3:	request	object	needs	origin_req_host
attribute.	 Dependency	 on	 a	 deprecated	 method
get_origin_req_host()	has	been	removed.

CookieJar.extract_cookies(response,	request)
Extract	 cookies	 from	 HTTP	 response	 and	 store	 them	 in	 the
CookieJar,	where	allowed	by	policy.

The	 CookieJar	 will	 look	 for	 allowable	 Set-Cookie	 and	 Set-

Cookie2	headers	 in	 the	response	argument,	and	store	cookies	as
appropriate	 (subject	 to	 the	 CookiePolicy.set_ok()	 method’s
approval).

The	 response	 object	 (usually	 the	 result	 of	 a	 call	 to
urllib.request.urlopen(),	 or	 similar)	 should	 support	 an
info()	 method,	 which	 returns	 a	 email.message.Message
instance.

The	 request	 object	 (usually	 a	 urllib.request.Request

instance)	 must	 support	 the	 methods	 get_full_url(),
get_host(),	 unverifiable(),	 and	 origin_req_host

attribute,	 as	 documented	 by	 urllib.request.	 The	 request	 is
used	 to	 set	 default	 values	 for	 cookie-attributes	 as	 well	 as	 for
checking	that	the	cookie	is	allowed	to	be	set.

Changed	in	version	3.3:	request	object	needs	origin_req_host
attribute.	 Dependency	 on	 a	 deprecated	 method
get_origin_req_host()	has	been	removed.

CookieJar.set_policy(policy)
Set	the	CookiePolicy	instance	to	be	used.

CookieJar.make_cookies(response,	request)
Return	 sequence	 of	 Cookie	 objects	 extracted	 from	 response
object.

See	 the	 documentation	 for	 extract_cookies()	 for	 the
interfaces	required	of	the	response	and	request	arguments.

CookieJar.set_cookie_if_ok(cookie,	request)
Set	a	Cookie	if	policy	says	it’s	OK	to	do	so.

CookieJar.set_cookie(cookie)
Set	a	Cookie,	without	checking	with	policy	to	see	whether	or	not	it
should	be	set.

CookieJar.clear([domain[,	path[,	name]]])
Clear	some	cookies.

If	 invoked	 without	 arguments,	 clear	 all	 cookies.	 If	 given	 a	 single
argument,	only	cookies	belonging	to	that	domain	will	be	removed.
If	given	two	arguments,	cookies	belonging	to	the	specified	domain
and	 URL	 path	 are	 removed.	 If	 given	 three	 arguments,	 then	 the
cookie	with	the	specified	domain,	path	and	name	is	removed.

Raises	KeyError	if	no	matching	cookie	exists.

CookieJar.clear_session_cookies()
Discard	all	session	cookies.

Discards	all	contained	cookies	that	have	a	true	discard	attribute
(usually	because	they	had	either	no	max-age	or	expires	cookie-
attribute,	 or	 an	 explicit	 discard	 cookie-attribute).	 For	 interactive
browsers,	the	end	of	a	session	usually	corresponds	to	closing	the
browser	window.

Note	that	the	save()	method	won’t	save	session	cookies	anyway,
unless	 you	 ask	 otherwise	 by	 passing	 a	 true	 ignore_discard
argument.

FileCookieJar	implements	the	following	additional	methods:

FileCookieJar.save(filename=None,	ignore_discard=False,
ignore_expires=False)

Save	cookies	to	a	file.

This	base	class	raises	NotImplementedError.	Subclasses	may
leave	this	method	unimplemented.

filename	is	the	name	of	file	in	which	to	save	cookies.	If	filename	 is
not	specified,	self.filename	is	used	(whose	default	is	the	value
passed	 to	 the	 constructor,	 if	 any);	 if	 self.filename	 is	 None,
ValueError	is	raised.

ignore_discard:	 save	 even	 cookies	 set	 to	 be	 discarded.
ignore_expires:	save	even	cookies	that	have	expired

The	file	is	overwritten	if	it	already	exists,	thus	wiping	all	the	cookies
it	contains.	Saved	cookies	can	be	restored	later	using	the	load()
or	revert()	methods.

FileCookieJar.load(filename=None,	ignore_discard=False,
ignore_expires=False)

Load	cookies	from	a	file.

Old	cookies	are	kept	unless	overwritten	by	newly	loaded	ones.

Arguments	are	as	for	save().

The	named	file	must	be	 in	 the	 format	understood	by	 the	class,	or
LoadError	 will	 be	 raised.	 Also,	 OSError	 may	 be	 raised,	 for
example	if	the	file	does	not	exist.

Changed	in	version	3.3:	IOError	used	to	be	raised,	 it	 is	now	an
alias	of	OSError.

FileCookieJar.revert(filename=None,	ignore_discard=False,
ignore_expires=False)

Clear	all	cookies	and	reload	cookies	from	a	saved	file.

revert()	can	raise	the	same	exceptions	as	load().	If	there	is	a
failure,	the	object’s	state	will	not	be	altered.

FileCookieJar	instances	have	the	following	public	attributes:

FileCookieJar.filename

Filename	of	default	file	in	which	to	keep	cookies.	This	attribute	may
be	assigned	to.

FileCookieJar.delayload

If	 true,	 load	 cookies	 lazily	 from	disk.	 This	 attribute	 should	 not	 be
assigned	to.	This	is	only	a	hint,	since	this	only	affects	performance,
not	 behaviour	 (unless	 the	 cookies	 on	 disk	 are	 changing).	 A
CookieJar	 object	 may	 ignore	 it.	 None	 of	 the	 FileCookieJar
classes	included	in	the	standard	library	lazily	loads	cookies.

21.24.2.	FileCookieJar	subclasses	and	co-
operation	with	web	browsers

The	 following	 CookieJar	 subclasses	 are	 provided	 for	 reading	 and
writing.

class	http.cookiejar.MozillaCookieJar(filename,
delayload=None,	policy=None)

A	FileCookieJar	that	can	load	from	and	save	cookies	to	disk	in
the	Mozilla	 cookies.txt	 file	 format	 (which	 is	 also	 used	 by	 the
Lynx	and	Netscape	browsers).

Note: 	This	loses	information	about	RFC	2965	cookies,	and	also
about	newer	or	non-standard	cookie-attributes	such	as	port.

Warning: 	 Back	 up	 your	 cookies	 before	 saving	 if	 you	 have
cookies	whose	loss	/	corruption	would	be	inconvenient	(there	are
some	subtleties	which	may	lead	to	slight	changes	in	the	file	over
a	load	/	save	round-trip).

Also	 note	 that	 cookies	 saved	 while	 Mozilla	 is	 running	 will	 get
clobbered	by	Mozilla.

class	http.cookiejar.LWPCookieJar(filename,
delayload=None,	policy=None)

A	FileCookieJar	that	can	load	from	and	save	cookies	to	disk	in
format	compatible	with	the	libwww-perl	library’s	Set-Cookie3	file
format.	This	is	convenient	if	you	want	to	store	cookies	in	a	human-
readable	file.

21.24.3.	CookiePolicy	Objects

Objects	implementing	the	CookiePolicy	interface	have	the	following
methods:

CookiePolicy.set_ok(cookie,	request)
Return	 boolean	 value	 indicating	 whether	 cookie	 should	 be
accepted	from	server.

cookie	is	a	Cookie	instance.	request	is	an	object	implementing	the
interface	 defined	 by	 the	 documentation	 for
CookieJar.extract_cookies().

CookiePolicy.return_ok(cookie,	request)
Return	boolean	value	indicating	whether	cookie	should	be	returned
to	server.

cookie	is	a	Cookie	instance.	request	is	an	object	implementing	the
interface	 defined	 by	 the	 documentation	 for
CookieJar.add_cookie_header().

CookiePolicy.domain_return_ok(domain,	request)
Return	 false	 if	 cookies	 should	 not	 be	 returned,	 given	 cookie
domain.

This	method	 is	an	optimization.	 It	 removes	 the	need	 for	 checking
every	cookie	with	a	particular	domain	(which	might	involve	reading
many	 files).	 Returning	 true	 from	 domain_return_ok()	 and
path_return_ok()	leaves	all	the	work	to	return_ok().

If	 domain_return_ok()	 returns	 true	 for	 the	 cookie	 domain,
path_return_ok()	 is	 called	 for	 the	 cookie	 path.	 Otherwise,

path_return_ok()	and	return_ok()	are	never	called	for	that
cookie	 domain.	 If	 path_return_ok()	 returns	 true,
return_ok()	 is	 called	 with	 the	 Cookie	 object	 itself	 for	 a	 full
check.	 Otherwise,	 return_ok()	 is	 never	 called	 for	 that	 cookie
path.

Note	 that	 domain_return_ok()	 is	 called	 for	 every	 cookie
domain,	not	just	for	the	request	domain.	For	example,	the	function
might	 be	 called	 with	 both	 ".example.com"	 and
"www.example.com"	 if	 the	 request	 domain	 is
"www.example.com".	The	same	goes	for	path_return_ok().

The	request	argument	is	as	documented	for	return_ok().

CookiePolicy.path_return_ok(path,	request)
Return	false	if	cookies	should	not	be	returned,	given	cookie	path.

See	the	documentation	for	domain_return_ok().

In	 addition	 to	 implementing	 the	 methods	 above,	 implementations	 of
the	CookiePolicy	interface	must	also	supply	the	following	attributes,
indicating	 which	 protocols	 should	 be	 used,	 and	 how.	 All	 of	 these
attributes	may	be	assigned	to.

CookiePolicy.netscape

Implement	Netscape	protocol.

CookiePolicy.rfc2965

Implement	RFC	2965	protocol.

CookiePolicy.hide_cookie2

Don’t	add	Cookie2	header	to	requests	(the	presence	of	this	header
indicates	to	the	server	that	we	understand	RFC	2965	cookies).

The	 most	 useful	 way	 to	 define	 a	 CookiePolicy	 class	 is	 by
subclassing	from	DefaultCookiePolicy	and	overriding	some	or	all
of	 the	methods	above.	CookiePolicy	 itself	may	be	used	as	a	 ‘null
policy’	 to	 allow	 setting	 and	 receiving	 any	 and	 all	 cookies	 (this	 is
unlikely	to	be	useful).

21.24.4.	DefaultCookiePolicy	Objects

Implements	the	standard	rules	for	accepting	and	returning	cookies.

Both	 RFC	 2965	 and	 Netscape	 cookies	 are	 covered.	 RFC	 2965
handling	is	switched	off	by	default.

The	 easiest	way	 to	 provide	 your	 own	 policy	 is	 to	 override	 this	 class
and	call	its	methods	in	your	overridden	implementations	before	adding
your	own	additional	checks:

import	http.cookiejar

class	MyCookiePolicy(http.cookiejar.DefaultCookiePolicy

				def	set_ok(self,	cookie,	request):

								if	not	http.cookiejar.DefaultCookiePolicy.set_ok

												return	False

								if	i_dont_want_to_store_this_cookie(cookie):

												return	False

								return	True

In	addition	to	the	features	required	to	 implement	the	CookiePolicy
interface,	this	class	allows	you	to	block	and	allow	domains	from	setting
and	 receiving	 cookies.	 There	 are	 also	 some	 strictness	 switches	 that
allow	you	to	tighten	up	the	rather	loose	Netscape	protocol	rules	a	little
bit	(at	the	cost	of	blocking	some	benign	cookies).

A	domain	blacklist	and	whitelist	 is	provided	(both	off	by	default).	Only
domains	not	in	the	blacklist	and	present	in	the	whitelist	(if	the	whitelist
is	 active)	 participate	 in	 cookie	 setting	 and	 returning.	 Use	 the
blocked_domains	 constructor	 argument,	 and	 blocked_domains()
and	 set_blocked_domains()	 methods	 (and	 the	 corresponding
argument	 and	 methods	 for	 allowed_domains).	 If	 you	 set	 a	 whitelist,

you	can	turn	it	off	again	by	setting	it	to	None.

Domains	in	block	or	allow	lists	that	do	not	start	with	a	dot	must	equal
the	 cookie	 domain	 to	 be	 matched.	 For	 example,	 "example.com"
matches	 a	 blacklist	 entry	 of	 "example.com",	 but
"www.example.com"	does	not.	Domains	that	do	start	with	a	dot	are
matched	 by	 more	 specific	 domains	 too.	 For	 example,	 both
"www.example.com"	 and	 "www.coyote.example.com"	 match
".example.com"	 (but	 "example.com"	 itself	 does	 not).	 IP
addresses	are	an	exception,	and	must	match	exactly.	For	example,	if
blocked_domains	 contains	 "192.168.1.2"	 and	 ".168.1.2",
192.168.1.2	is	blocked,	but	193.168.1.2	is	not.

DefaultCookiePolicy	 implements	 the	 following	 additional
methods:

DefaultCookiePolicy.blocked_domains()
Return	the	sequence	of	blocked	domains	(as	a	tuple).

DefaultCookiePolicy.set_blocked_domains(blocked_domains
Set	the	sequence	of	blocked	domains.

DefaultCookiePolicy.is_blocked(domain)
Return	whether	domain	 is	 on	 the	 blacklist	 for	 setting	 or	 receiving
cookies.

DefaultCookiePolicy.allowed_domains()
Return	None,	or	the	sequence	of	allowed	domains	(as	a	tuple).

DefaultCookiePolicy.set_allowed_domains(allowed_domains
Set	the	sequence	of	allowed	domains,	or	None.

DefaultCookiePolicy.is_not_allowed(domain)
Return	 whether	 domain	 is	 not	 on	 the	 whitelist	 for	 setting	 or
receiving	cookies.

DefaultCookiePolicy	 instances	 have	 the	 following	 attributes,
which	 are	 all	 initialised	 from	 the	 constructor	 arguments	 of	 the	 same
name,	and	which	may	all	be	assigned	to.

DefaultCookiePolicy.rfc2109_as_netscape

If	 true,	 request	 that	 the	 CookieJar	 instance	 downgrade	 RFC
2109	cookies	 (ie.	cookies	 received	 in	a	Set-Cookie	header	with	a
version	 cookie-attribute	 of	 1)	 to	 Netscape	 cookies	 by	 setting	 the
version	attribute	of	the	Cookie	instance	to	0.	The	default	value	is
None,	 in	 which	 case	 RFC	 2109	 cookies	 are	 downgraded	 if	 and
only	 if	 RFC	 2965	 handling	 is	 turned	 off.	 Therefore,	 RFC	 2109
cookies	are	downgraded	by	default.

General	strictness	switches:

DefaultCookiePolicy.strict_domain

Don’t	allow	sites	to	set	two-component	domains	with	country-code
top-level	domains	like	.co.uk,	.gov.uk,	.co.nz.etc.	This	 is	 far
from	perfect	and	isn’t	guaranteed	to	work!

RFC	2965	protocol	strictness	switches:

DefaultCookiePolicy.strict_rfc2965_unverifiable

Follow	 RFC	 2965	 rules	 on	 unverifiable	 transactions	 (usually,	 an
unverifiable	transaction	is	one	resulting	from	a	redirect	or	a	request
for	 an	 image	hosted	on	another	 site).	 If	 this	 is	 false,	 cookies	 are
never	blocked	on	the	basis	of	verifiability

Netscape	protocol	strictness	switches:

DefaultCookiePolicy.strict_ns_unverifiable

apply	 RFC	 2965	 rules	 on	 unverifiable	 transactions	 even	 to
Netscape	cookies

DefaultCookiePolicy.strict_ns_domain

Flags	 indicating	 how	 strict	 to	 be	 with	 domain-matching	 rules	 for
Netscape	cookies.	See	below	for	acceptable	values.

DefaultCookiePolicy.strict_ns_set_initial_dollar

Ignore	 cookies	 in	 Set-Cookie:	 headers	 that	 have	 names	 starting
with	'$'.

DefaultCookiePolicy.strict_ns_set_path

Don’t	allow	setting	cookies	whose	path	doesn’t	path-match	request
URI.

strict_ns_domain	 is	a	collection	of	 flags.	 Its	 value	 is	 constructed
by	 or-ing	 together	 (for	 example,
DomainStrictNoDots|DomainStrictNonDomain	 means	 both
flags	are	set).

DefaultCookiePolicy.DomainStrictNoDots

When	setting	cookies,	the	‘host	prefix’	must	not	contain	a	dot	(eg.
www.foo.bar.com	 can’t	 set	 a	 cookie	 for	 .bar.com,	 because
www.foo	contains	a	dot).

DefaultCookiePolicy.DomainStrictNonDomain

Cookies	 that	 did	 not	 explicitly	 specify	 a	 domain	 cookie-attribute
can	only	be	returned	to	a	domain	equal	to	the	domain	that	set	the
cookie	 (eg.	spam.example.com	won’t	 be	 returned	 cookies	 from
example.com	that	had	no	domain	cookie-attribute).

DefaultCookiePolicy.DomainRFC2965Match

When	setting	cookies,	require	a	full	RFC	2965	domain-match.

The	 following	 attributes	 are	 provided	 for	 convenience,	 and	 are	 the
most	useful	combinations	of	the	above	flags:

DefaultCookiePolicy.DomainLiberal

Equivalent	 to	 0	 (ie.	 all	 of	 the	 above	 Netscape	 domain	 strictness
flags	switched	off).

DefaultCookiePolicy.DomainStrict

Equivalent	 to
DomainStrictNoDots|DomainStrictNonDomain.

21.24.5.	Cookie	Objects

Cookie	 instances	 have	 Python	 attributes	 roughly	 corresponding	 to
the	 standard	 cookie-attributes	 specified	 in	 the	 various	 cookie
standards.	The	correspondence	 is	not	one-to-one,	because	there	are
complicated	rules	for	assigning	default	values,	because	the	max-age
and	 expires	 cookie-attributes	 contain	 equivalent	 information,	 and
because	 RFC	 2109	 cookies	 may	 be	 ‘downgraded’	 by
http.cookiejar	from	version	1	to	version	0	(Netscape)	cookies.

Assignment	to	these	attributes	should	not	be	necessary	other	than	in
rare	circumstances	in	a	CookiePolicy	method.	The	class	does	not
enforce	internal	consistency,	so	you	should	know	what	you’re	doing	if
you	do	that.

Cookie.version

Integer	or	None.	Netscape	 cookies	 have	 version	 0.	RFC	2965
and	 RFC	 2109	 cookies	 have	 a	 version	 cookie-attribute	 of	 1.
However,	note	that	http.cookiejar	may	‘downgrade’	RFC	2109
cookies	to	Netscape	cookies,	in	which	case	version	is	0.

Cookie.name

Cookie	name	(a	string).

Cookie.value

Cookie	value	(a	string),	or	None.

Cookie.port

String	representing	a	port	or	a	set	of	ports	(eg.	 ‘80’,	or	 ‘80,8080’),
or	None.

Cookie.path

Cookie	path	(a	string,	eg.	'/acme/rocket_launchers').

Cookie.secure

True	if	cookie	should	only	be	returned	over	a	secure	connection.

Cookie.expires

Integer	expiry	date	in	seconds	since	epoch,	or	None.	See	also	the
is_expired()	method.

Cookie.discard

True	if	this	is	a	session	cookie.

Cookie.comment

String	 comment	 from	 the	 server	 explaining	 the	 function	 of	 this
cookie,	or	None.

Cookie.comment_url

URL	linking	to	a	comment	from	the	server	explaining	the	function	of
this	cookie,	or	None.

Cookie.rfc2109

True	 if	 this	cookie	was	 received	as	an	RFC	2109	cookie	 (ie.	 the
cookie	arrived	in	a	Set-Cookie	header,	and	the	value	of	the	Version
cookie-attribute	 in	 that	 header	 was	 1).	 This	 attribute	 is	 provided
because	 http.cookiejar	may	 ‘downgrade’	 RFC	 2109	 cookies
to	Netscape	cookies,	in	which	case	version	is	0.

Cookie.port_specified

True	if	a	port	or	set	of	ports	was	explicitly	specified	by	the	server
(in	the	Set-Cookie	/	Set-Cookie2	header).

Cookie.domain_specified

True	if	a	domain	was	explicitly	specified	by	the	server.

Cookie.domain_initial_dot

True	 if	 the	domain	explicitly	specified	by	the	server	began	with	a
dot	('.').

Cookies	 may	 have	 additional	 non-standard	 cookie-attributes.	 These
may	be	accessed	using	the	following	methods:

Cookie.has_nonstandard_attr(name)
Return	true	if	cookie	has	the	named	cookie-attribute.

Cookie.get_nonstandard_attr(name,	default=None)
If	 cookie	 has	 the	 named	 cookie-attribute,	 return	 its	 value.
Otherwise,	return	default.

Cookie.set_nonstandard_attr(name,	value)
Set	the	value	of	the	named	cookie-attribute.

The	Cookie	class	also	defines	the	following	method:

Cookie.is_expired(now=None)
True	if	cookie	has	passed	the	time	at	which	the	server	requested
it	should	expire.	If	now	is	given	(in	seconds	since	the	epoch),	return
whether	the	cookie	has	expired	at	the	specified	time.

21.24.6.	Examples

The	 first	 example	 shows	 the	 most	 common	 usage	 of
http.cookiejar:

import	http.cookiejar,	urllib.request

cj	=	http.cookiejar.CookieJar()

opener	=	urllib.request.build_opener(urllib.request.

r	=	opener.open("http://example.com/")

This	 example	 illustrates	 how	 to	 open	 a	 URL	 using	 your	 Netscape,
Mozilla,	 or	 Lynx	 cookies	 (assumes	 Unix/Netscape	 convention	 for
location	of	the	cookies	file):

import	os,	http.cookiejar,	urllib.request

cj	=	http.cookiejar.MozillaCookieJar()

cj.load(os.path.join(os.path.expanduser("~"),	".netscape"

opener	=	urllib.request.build_opener(urllib.request.

r	=	opener.open("http://example.com/")

The	 next	 example	 illustrates	 the	 use	 of	 DefaultCookiePolicy.
Turn	on	RFC	2965	cookies,	be	more	strict	about	domains	when	setting
and	returning	Netscape	cookies,	and	block	some	domains	from	setting
cookies	or	having	them	returned:

import	urllib.request

from	http.cookiejar	import	CookieJar,	DefaultCookiePolicy

policy	=	DefaultCookiePolicy(

				rfc2965=True,	strict_ns_domain=Policy.DomainStrict

				blocked_domains=["ads.net",	".ads.net"])

cj	=	CookieJar(policy)

opener	=	urllib.request.build_opener(urllib.request.

r	=	opener.open("http://example.com/")

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.25.	xmlrpc	—	XMLRPC	server
and	client	modules
XML-RPC	is	a	Remote	Procedure	Call	method	that	uses	XML	passed
via	 HTTP	 as	 a	 transport.	 With	 it,	 a	 client	 can	 call	 methods	 with
parameters	on	a	remote	server	(the	server	is	named	by	a	URI)	and	get
back	structured	data.

xmlrpc	 is	 a	 package	 that	 collects	 server	 and	 client	 modules
implementing	XML-RPC.	The	modules	are:

xmlrpc.client

xmlrpc.server

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.26.	xmlrpc.client	—	XML-
RPC	client	access
Source	code:	Lib/xmlrpc/client.py

XML-RPC	is	a	Remote	Procedure	Call	method	that	uses	XML	passed
via	 HTTP	 as	 a	 transport.	 With	 it,	 a	 client	 can	 call	 methods	 with
parameters	on	a	remote	server	(the	server	is	named	by	a	URI)	and	get
back	 structured	 data.	 This	 module	 supports	 writing	 XML-RPC	 client
code;	 it	 handles	 all	 the	 details	 of	 translating	 between	 conformable
Python	objects	and	XML	on	the	wire.

Warning: 	The	xmlrpc.client	module	is	not	secure	against
maliciously	constructed	data.	If	you	need	to	parse	untrusted	or
unauthenticated	data	see	XML	vulnerabilities.

class	xmlrpc.client.ServerProxy(uri,	transport=None,
encoding=None,	verbose=False,	allow_none=False,
use_datetime=False,	use_builtin_types=False)

Changed	in	version	3.3:	The	use_builtin_types	flag	was	added.

A	 ServerProxy	 instance	 is	 an	 object	 that	 manages
communication	with	a	 remote	XML-RPC	server.	The	 required	 first
argument	is	a	URI	(Uniform	Resource	Indicator),	and	will	normally
be	 the	 URL	 of	 the	 server.	 The	 optional	 second	 argument	 is	 a
transport	 factory	 instance;	 by	 default	 it	 is	 an	 internal
SafeTransport	 instance	 for	 https:	URLs	and	an	 internal	HTTP
Transport	instance	otherwise.	The	optional	third	argument	is	an
encoding,	 by	 default	 UTF-8.	 The	 optional	 fourth	 argument	 is	 a

http://hg.python.org/cpython/file/3.4/Lib/xmlrpc/client.py

debugging	 flag.	 If	allow_none	 is	 true,	 the	 Python	 constant	 None
will	 be	 translated	 into	 XML;	 the	 default	 behaviour	 is	 for	 None	 to
raise	 a	 TypeError.	 This	 is	 a	 commonly-used	 extension	 to	 the
XML-RPC	 specification,	 but	 isn’t	 supported	 by	 all	 clients	 and
servers;	 see	 http://ontosys.com/xml-rpc/extensions.php	 for	 a
description.	 The	 use_builtin_types	 flag	 can	 be	 used	 to	 cause
date/time	 values	 to	 be	 presented	 as	 datetime.datetime
objects	and	binary	data	to	be	presented	as	bytes	objects;	this	flag
is	false	by	default.	datetime.datetime	and	bytes	objects	may
be	passed	to	calls.

The	obsolete	use_datetime	flag	is	similar	to	use_builtin_types	but	it
applies	only	to	date/time	values.

Both	 the	 HTTP	 and	 HTTPS	 transports	 support	 the	 URL	 syntax
extension	 for	 HTTP	 Basic	 Authentication:
http://user:pass@host:port/path.	 The	 user:pass

portion	will	be	base64-encoded	as	an	HTTP	‘Authorization’	header,
and	 sent	 to	 the	 remote	 server	 as	 part	 of	 the	 connection	 process
when	 invoking	an	XML-RPC	method.	You	only	need	 to	use	 this	 if
the	 remote	 server	 requires	 a	 Basic	 Authentication	 user	 and
password.

The	returned	 instance	 is	a	proxy	object	with	methods	 that	can	be
used	 to	 invoke	 corresponding	RPC	 calls	 on	 the	 remote	 server.	 If
the	 remote	 server	 supports	 the	 introspection	 API,	 the	 proxy	 can
also	be	used	to	query	the	remote	server	for	the	methods	it	supports
(service	discovery)	and	fetch	other	server-associated	metadata.

ServerProxy	 instance	 methods	 take	 Python	 basic	 types	 and
objects	as	arguments	and	return	Python	basic	 types	and	classes.
Types	 that	 are	 conformable	 (e.g.	 that	 can	 be	marshalled	 through

http://ontosys.com/xml-rpc/extensions.php

XML),	 include	 the	 following	 (and	 except	 where	 noted,	 they	 are
unmarshalled	as	the	same	Python	type):

Name Meaning

boolean The	True	and	False	constants

integers Pass	in	directly

floating-point

numbers
Pass	in	directly

strings Pass	in	directly

arrays

Any	Python	sequence	type
containing	conformable	elements.
Arrays	are	returned	as	lists

structures

A	Python	dictionary.	Keys	must	be
strings,	values	may	be	any
conformable	type.	Objects	of	user-
defined	classes	can	be	passed	in;
only	their	__dict__	attribute	is
transmitted.

dates

In	seconds	since	the	epoch.	Pass	in
an	instance	of	the	DateTime	class
or	a	datetime.datetime
instance.

binary	data
Pass	in	an	instance	of	the	Binary
wrapper	class	or	a	bytes	instance.

This	 is	 the	 full	 set	of	data	 types	supported	by	XML-RPC.	Method
calls	may	also	raise	a	special	Fault	instance,	used	to	signal	XML-
RPC	server	errors,	or	ProtocolError	used	to	signal	an	error	 in
the	 HTTP/HTTPS	 transport	 layer.	 Both	 Fault	 and
ProtocolError	 derive	 from	 a	 base	 class	 called	 Error.	 Note
that	the	xmlrpc	client	module	currently	does	not	marshal	instances
of	subclasses	of	built-in	types.

When	passing	strings,	characters	special	to	XML	such	as	<,	>,	and
&	 will	 be	 automatically	 escaped.	 However,	 it’s	 the	 caller’s
responsibility	 to	 ensure	 that	 the	 string	 is	 free	 of	 characters	 that
aren’t	 allowed	 in	XML,	 such	as	 the	 control	 characters	with	ASCII
values	 between	 0	 and	 31	 (except,	 of	 course,	 tab,	 newline	 and
carriage	return);	failing	to	do	this	will	result	in	an	XML-RPC	request
that	 isn’t	well-formed	XML.	 If	you	have	 to	pass	arbitrary	bytes	via
XML-RPC,	use	the	bytes	class	or	the	class:Binary	wrapper	class
described	below.

Server	 is	 retained	as	an	alias	 for	 ServerProxy	 for	backwards
compatibility.	New	code	should	use	ServerProxy.

See	also:

XML-RPC	HOWTO
A	good	description	of	XML-RPC	operation	and	client	software	in
several	 languages.	 Contains	 pretty	 much	 everything	 an	 XML-
RPC	client	developer	needs	to	know.

XML-RPC	Introspection
Describes	the	XML-RPC	protocol	extension	for	introspection.

XML-RPC	Specification
The	official	specification.

Unofficial	XML-RPC	Errata
Fredrik	 Lundh’s	 “unofficial	 errata,	 intended	 to	 clarify	 certain
details	 in	 the	 XML-RPC	 specification,	 as	 well	 as	 hint	 at	 ‘best
practices’	 to	 use	 when	 designing	 your	 own	 XML-RPC
implementations.”

http://www.tldp.org/HOWTO/XML-RPC-HOWTO/index.html
http://xmlrpc-c.sourceforge.net/introspection.html
http://www.xmlrpc.com/spec
http://effbot.org/zone/xmlrpc-errata.htm

21.26.1.	ServerProxy	Objects

A	 ServerProxy	 instance	 has	 a	 method	 corresponding	 to	 each
remote	procedure	 call	 accepted	by	 the	XML-RPC	server.	Calling	 the
method	 performs	 an	 RPC,	 dispatched	 by	 both	 name	 and	 argument
signature	 (e.g.	 the	 same	 method	 name	 can	 be	 overloaded	 with
multiple	argument	signatures).	The	RPC	finishes	by	returning	a	value,
which	may	be	either	returned	data	in	a	conformant	type	or	a	Fault	or
ProtocolError	object	indicating	an	error.

Servers	that	support	the	XML	introspection	API	support	some	common
methods	grouped	under	the	reserved	system	attribute:

ServerProxy.system.listMethods()
This	 method	 returns	 a	 list	 of	 strings,	 one	 for	 each	 (non-system)
method	supported	by	the	XML-RPC	server.

ServerProxy.system.methodSignature(name)
This	 method	 takes	 one	 parameter,	 the	 name	 of	 a	 method
implemented	 by	 the	 XML-RPC	 server.	 It	 returns	 an	 array	 of
possible	 signatures	 for	 this	 method.	 A	 signature	 is	 an	 array	 of
types.	The	first	of	these	types	is	the	return	type	of	the	method,	the
rest	are	parameters.

Because	 multiple	 signatures	 (ie.	 overloading)	 is	 permitted,	 this
method	returns	a	list	of	signatures	rather	than	a	singleton.

Signatures	 themselves	 are	 restricted	 to	 the	 top	 level	 parameters
expected	by	a	method.	For	instance	if	a	method	expects	one	array
of	 structs	 as	 a	 parameter,	 and	 it	 returns	 a	 string,	 its	 signature	 is
simply	 “string,	 array”.	 If	 it	 expects	 three	 integers	 and	 returns	 a
string,	its	signature	is	“string,	int,	int,	int”.

If	 no	 signature	 is	 defined	 for	 the	 method,	 a	 non-array	 value	 is
returned.	In	Python	this	means	that	the	type	of	the	returned	value
will	be	something	other	than	list.

ServerProxy.system.methodHelp(name)
This	 method	 takes	 one	 parameter,	 the	 name	 of	 a	 method
implemented	by	 the	XML-RPC	server.	 It	 returns	a	documentation
string	 describing	 the	 use	 of	 that	 method.	 If	 no	 such	 string	 is
available,	 an	 empty	 string	 is	 returned.	 The	 documentation	 string
may	contain	HTML	markup.

A	working	example	follows.	The	server	code:

from	xmlrpc.server	import	SimpleXMLRPCServer

def	is_even(n):

				return	n%2	==	0

server	=	SimpleXMLRPCServer(("localhost",	8000))

print("Listening	on	port	8000...")

server.register_function(is_even,	"is_even")

server.serve_forever()

The	client	code	for	the	preceding	server:

import	xmlrpc.client

proxy	=	xmlrpc.client.ServerProxy("http://localhost:8000/"

print("3	is	even:	%s"	%	str(proxy.is_even(3)))

print("100	is	even:	%s"	%	str(proxy.is_even(100)))

21.26.2.	DateTime	Objects

This	 class	 may	 be	 initialized	 with	 seconds	 since	 the	 epoch,	 a	 time
tuple,	 an	 ISO	 8601	 time/date	 string,	 or	 a	 datetime.datetime
instance.	 It	 has	 the	 following	methods,	 supported	mainly	 for	 internal
use	by	the	marshalling/unmarshalling	code:

DateTime.decode(string)
Accept	a	string	as	the	instance’s	new	time	value.

DateTime.encode(out)
Write	 the	 XML-RPC	 encoding	 of	 this	 DateTime	 item	 to	 the	 out
stream	object.

It	 also	 supports	 certain	 of	 Python’s	 built-in	 operators	 through	 rich
comparison	and	__repr__()	methods.

A	working	example	follows.	The	server	code:

import	datetime

from	xmlrpc.server	import	SimpleXMLRPCServer

import	xmlrpc.client

def	today():

				today	=	datetime.datetime.today()

				return	xmlrpc.client.DateTime(today)

server	=	SimpleXMLRPCServer(("localhost",	8000))

print("Listening	on	port	8000...")

server.register_function(today,	"today")

server.serve_forever()

The	client	code	for	the	preceding	server:

import	xmlrpc.client

import	datetime

proxy	=	xmlrpc.client.ServerProxy("http://localhost:8000/"

today	=	proxy.today()

#	convert	the	ISO8601	string	to	a	datetime	object

converted	=	datetime.datetime.strptime(today.value,	

print("Today:	%s"	%	converted.strftime("%d.%m.%Y,	%H:%M"

21.26.3.	Binary	Objects

This	 class	 may	 be	 initialized	 from	 bytes	 data	 (which	 may	 include
NULs).	 The	 primary	 access	 to	 the	 content	 of	 a	 Binary	 object	 is
provided	by	an	attribute:

Binary.data

The	binary	data	encapsulated	by	the	Binary	instance.	The	data	is
provided	as	a	bytes	object.

Binary	 objects	 have	 the	 following	 methods,	 supported	 mainly	 for
internal	use	by	the	marshalling/unmarshalling	code:

Binary.decode(bytes)
Accept	 a	 base64	 bytes	 object	 and	 decode	 it	 as	 the	 instance’s
new	data.

Binary.encode(out)
Write	the	XML-RPC	base	64	encoding	of	this	binary	item	to	the	out
stream	object.

The	encoded	data	will	 have	newlines	every	76	 characters	as	per
RFC	 2045	 section	 6.8,	 which	 was	 the	 de	 facto	 standard	 base64
specification	when	the	XML-RPC	spec	was	written.

It	 also	 supports	 certain	 of	 Python’s	 built-in	 operators	 through
__eq__()	and	__ne__()	methods.

Example	usage	of	the	binary	objects.	We’re	going	to	transfer	an	image
over	XMLRPC:

from	xmlrpc.server	import	SimpleXMLRPCServer

http://tools.ietf.org/html/rfc2045#section-6.8

import	xmlrpc.client

def	python_logo():

				with	open("python_logo.jpg",	"rb")	as	handle:

								return	xmlrpc.client.Binary(handle.read())

server	=	SimpleXMLRPCServer(("localhost",	8000))

print("Listening	on	port	8000...")

server.register_function(python_logo,	'python_logo')

server.serve_forever()

The	client	gets	the	image	and	saves	it	to	a	file:

import	xmlrpc.client

proxy	=	xmlrpc.client.ServerProxy("http://localhost:8000/"

with	open("fetched_python_logo.jpg",	"wb")	as	handle

				handle.write(proxy.python_logo().data)

21.26.4.	Fault	Objects

A	 Fault	 object	 encapsulates	 the	 content	 of	 an	 XML-RPC	 fault	 tag.
Fault	objects	have	the	following	attributes:

Fault.faultCode

A	string	indicating	the	fault	type.

Fault.faultString

A	string	containing	a	diagnostic	message	associated	with	the	fault.

In	the	following	example	we’re	going	to	intentionally	cause	a	Fault	by
returning	a	complex	type	object.	The	server	code:

from	xmlrpc.server	import	SimpleXMLRPCServer

#	A	marshalling	error	is	going	to	occur	because	we're	returning	a

#	complex	number

def	add(x,y):

				return	x+y+0j

server	=	SimpleXMLRPCServer(("localhost",	8000))

print("Listening	on	port	8000...")

server.register_function(add,	'add')

server.serve_forever()

The	client	code	for	the	preceding	server:

import	xmlrpc.client

proxy	=	xmlrpc.client.ServerProxy("http://localhost:8000/"

try:

				proxy.add(2,	5)

except	xmlrpc.client.Fault	as	err:

				print("A	fault	occurred")

				print("Fault	code:	%d"	%	err.faultCode)

				print("Fault	string:	%s"	%	err.faultString)

21.26.5.	ProtocolError	Objects

A	ProtocolError	object	describes	a	protocol	error	in	the	underlying
transport	layer	(such	as	a	404	‘not	found’	error	if	the	server	named	by
the	URI	does	not	exist).	It	has	the	following	attributes:

ProtocolError.url

The	URI	or	URL	that	triggered	the	error.

ProtocolError.errcode

The	error	code.

ProtocolError.errmsg

The	error	message	or	diagnostic	string.

ProtocolError.headers

A	 dict	 containing	 the	 headers	 of	 the	 HTTP/HTTPS	 request	 that
triggered	the	error.

In	 the	 following	 example	 we’re	 going	 to	 intentionally	 cause	 a
ProtocolError	by	providing	an	invalid	URI:

import	xmlrpc.client

#	create	a	ServerProxy	with	an	URI	that	doesn't	respond	to	XMLRPC	requests

proxy	=	xmlrpc.client.ServerProxy("http://google.com/"

try:

				proxy.some_method()

except	xmlrpc.client.ProtocolError	as	err:

				print("A	protocol	error	occurred")

				print("URL:	%s"	%	err.url)

				print("HTTP/HTTPS	headers:	%s"	%	err.headers)

				print("Error	code:	%d"	%	err.errcode)

				print("Error	message:	%s"	%	err.errmsg)

21.26.6.	MultiCall	Objects

The	MultiCall	object	provides	a	way	to	encapsulate	multiple	calls	to
a	remote	server	into	a	single	request	[1].

class	xmlrpc.client.MultiCall(server)
Create	 an	 object	 used	 to	 boxcar	 method	 calls.	 server	 is	 the
eventual	target	of	the	call.	Calls	can	be	made	to	the	result	object,
but	they	will	immediately	return	None,	and	only	store	the	call	name
and	parameters	in	the	MultiCall	object.	Calling	the	object	 itself
causes	 all	 stored	 calls	 to	 be	 transmitted	 as	 a	 single
system.multicall	request.	The	result	of	this	call	is	a	generator;
iterating	over	this	generator	yields	the	individual	results.

A	usage	example	of	this	class	follows.	The	server	code:

from	xmlrpc.server	import	SimpleXMLRPCServer

def	add(x,	y):

				return	x	+	y

def	subtract(x,	y):

				return	x	-	y

def	multiply(x,	y):

				return	x	*	y

def	divide(x,	y):

				return	x	//	y

#	A	simple	server	with	simple	arithmetic	functions

server	=	SimpleXMLRPCServer(("localhost",	8000))

print("Listening	on	port	8000...")

server.register_multicall_functions()

server.register_function(add,	'add')

server.register_function(subtract,	'subtract')

server.register_function(multiply,	'multiply')

server.register_function(divide,	'divide')

server.serve_forever()

The	client	code	for	the	preceding	server:

import	xmlrpc.client

proxy	=	xmlrpc.client.ServerProxy("http://localhost:8000/"

multicall	=	xmlrpc.client.MultiCall(proxy)

multicall.add(7,	3)

multicall.subtract(7,	3)

multicall.multiply(7,	3)

multicall.divide(7,	3)

result	=	multicall()

print("7+3=%d,	7-3=%d,	7*3=%d,	7//3=%d"	%	tuple(result

21.26.7.	Convenience	Functions

xmlrpc.client.dumps(params,	methodname=None,
methodresponse=None,	encoding=None,	allow_none=False)

Convert	params	 into	 an	 XML-RPC	 request.	 or	 into	 a	 response	 if
methodresponse	is	true.	params	can	be	either	a	tuple	of	arguments
or	an	instance	of	the	Fault	exception	class.	If	methodresponse	is
true,	 only	 a	 single	 value	 can	 be	 returned,	 meaning	 that	 params
must	be	of	length	1.	encoding,	if	supplied,	is	the	encoding	to	use	in
the	 generated	 XML;	 the	 default	 is	 UTF-8.	 Python’s	 None	 value
cannot	 be	 used	 in	 standard	 XML-RPC;	 to	 allow	 using	 it	 via	 an
extension,	provide	a	true	value	for	allow_none.

xmlrpc.client.loads(data,	use_datetime=False,
use_builtin_types=False)

Convert	an	XML-RPC	 request	or	 response	 into	Python	objects,	a
(params,	 methodname).	 params	 is	 a	 tuple	 of	 argument;
methodname	 is	a	string,	or	None	 if	no	method	name	is	present	in
the	packet.	If	the	XML-RPC	packet	represents	a	fault	condition,	this
function	will	 raise	 a	 Fault	 exception.	 The	use_builtin_types	 flag
can	 be	 used	 to	 cause	 date/time	 values	 to	 be	 presented	 as
datetime.datetime	objects	and	binary	data	to	be	presented	as
bytes	objects;	this	flag	is	false	by	default.

The	obsolete	use_datetime	flag	is	similar	to	use_builtin_types	but	it
applies	only	to	date/time	values.

Changed	in	version	3.3:	The	use_builtin_types	flag	was	added.

21.26.8.	Example	of	Client	Usage

#	simple	test	program	(from	the	XML-RPC	specification)

from	xmlrpc.client	import	ServerProxy,	Error

#	server	=	ServerProxy("http://localhost:8000")	#	local	server

server	=	ServerProxy("http://betty.userland.com")

print(server)

try:

				print(server.examples.getStateName(41))

except	Error	as	v:

				print("ERROR",	v)

To	access	an	XML-RPC	server	through	a	proxy,	you	need	to	define	a
custom	transport.	The	following	example	shows	how:

import	xmlrpc.client,	http.client

class	ProxiedTransport(xmlrpc.client.Transport):

				def	set_proxy(self,	proxy):

								self.proxy	=	proxy

				def	make_connection(self,	host):

								self.realhost	=	host

								h	=	http.client.HTTP(self.proxy)

								return	h

				def	send_request(self,	connection,	handler,	request_body

								connection.putrequest("POST",	'http://%s%s'	

				def	send_host(self,	connection,	host):

								connection.putheader('Host',	self.realhost)

p	=	ProxiedTransport()

p.set_proxy('proxy-server:8080')

server	=	xmlrpc.client.Server('http://time.xmlrpc.com/RPC2'

print(server.currentTime.getCurrentTime())

21.26.9.	Example	of	Client	and	Server
Usage

See	SimpleXMLRPCServer	Example.

Footnotes

[1] This	approach	has	been	first	presented	in	a	discussion	on
xmlrpc.com.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://web.archive.org/web/20060624230303/http://www.xmlrpc.com/discuss/msgReader$1208?mode=topic
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.27.	xmlrpc.server	—	Basic
XML-RPC	servers
Source	code:	Lib/xmlrpc/server.py

The	xmlrpc.server	module	provides	a	basic	server	 framework	 for
XML-RPC	 servers	 written	 in	 Python.	 Servers	 can	 either	 be	 free
standing,	 using	 SimpleXMLRPCServer,	 or	 embedded	 in	 a	 CGI
environment,	using	CGIXMLRPCRequestHandler.

Warning: 	The	xmlrpc.client	module	is	not	secure	against
maliciously	constructed	data.	If	you	need	to	parse	untrusted	or
unauthenticated	data	see	XML	vulnerabilities.

class	xmlrpc.server.SimpleXMLRPCServer(addr,
requestHandler=SimpleXMLRPCRequestHandler,	logRequests=True,
allow_none=False,	encoding=None,	bind_and_activate=True,
use_builtin_types=False)

Create	 a	 new	 server	 instance.	 This	 class	 provides	 methods	 for
registration	 of	 functions	 that	 can	 be	 called	 by	 the	 XML-RPC
protocol.	 The	 requestHandler	 parameter	 should	 be	 a	 factory	 for
request	 handler	 instances;	 it	 defaults	 to
SimpleXMLRPCRequestHandler.	The	addr	and	 requestHandler
parameters	 are	 passed	 to	 the	 socketserver.TCPServer

constructor.	 If	 logRequests	 is	 true	 (the	 default),	 requests	 will	 be
logged;	 setting	 this	 parameter	 to	 false	 will	 turn	 off	 logging.	 The
allow_none	 and	 encoding	 parameters	 are	 passed	 on	 to
xmlrpc.client	and	control	the	XML-RPC	responses	that	will	be
returned	 from	 the	 server.	 The	 bind_and_activate	 parameter

http://hg.python.org/cpython/file/3.4/Lib/xmlrpc/server.py

controls	whether	server_bind()	and	server_activate()	are
called	 immediately	by	the	constructor;	 it	defaults	 to	true.	Setting	 it
to	 false	allows	code	 to	manipulate	 the	allow_reuse_address	class
variable	 before	 the	 address	 is	 bound.	 The	 use_builtin_types
parameter	 is	passed	 to	 the	loads()	 function	and	controls	which
types	 are	 processed	 when	 date/times	 values	 or	 binary	 data	 are
received;	it	defaults	to	false.

Changed	in	version	3.3:	The	use_builtin_types	flag	was	added.

class
xmlrpc.server.CGIXMLRPCRequestHandler(allow_none=False
encoding=None,	use_builtin_types=False)

Create	 a	 new	 instance	 to	 handle	 XML-RPC	 requests	 in	 a	 CGI
environment.	 The	 allow_none	 and	 encoding	 parameters	 are
passed	 on	 to	 xmlrpc.client	 and	 control	 the	 XML-RPC
responses	 that	 will	 be	 returned	 from	 the	 server.	 The
use_builtin_types	 parameter	 is	 passed	 to	 the	 loads()	 function
and	controls	which	types	are	processed	when	date/times	values	or
binary	data	are	received;	it	defaults	to	false.

Changed	in	version	3.3:	The	use_builtin_types	flag	was	added.

class	xmlrpc.server.SimpleXMLRPCRequestHandler
Create	 a	 new	 request	 handler	 instance.	 This	 request	 handler
supports	 POST	 requests	 and	 modifies	 logging	 so	 that	 the
logRequests	parameter	to	the	SimpleXMLRPCServer	constructor
parameter	is	honored.

21.27.1.	SimpleXMLRPCServer	Objects

The	 SimpleXMLRPCServer	 class	 is	 based	 on
socketserver.TCPServer	 and	 provides	 a	 means	 of	 creating
simple,	stand	alone	XML-RPC	servers.

SimpleXMLRPCServer.register_function(function,
name=None)

Register	 a	 function	 that	 can	 respond	 to	 XML-RPC	 requests.	 If
name	is	given,	it	will	be	the	method	name	associated	with	function,
otherwise	function.__name__	will	be	used.	name	can	be	either
a	normal	or	Unicode	string,	and	may	contain	characters	not	legal	in
Python	identifiers,	including	the	period	character.

SimpleXMLRPCServer.register_instance(instance,
allow_dotted_names=False)

Register	an	object	which	 is	used	 to	expose	method	names	which
have	 not	 been	 registered	 using	 register_function().	 If
instance	 contains	 a	 _dispatch()	 method,	 it	 is	 called	 with	 the
requested	method	name	and	the	parameters	from	the	request.	 Its
API	 is	 def	_dispatch(self,	 method,	 params)	 (note	 that
params	does	not	 represent	a	variable	argument	 list).	 If	 it	 calls	an
underlying	 function	 to	 perform	 its	 task,	 that	 function	 is	 called	 as
func(*params),	 expanding	 the	parameter	 list.	The	 return	value
from	 _dispatch()	 is	 returned	 to	 the	 client	 as	 the	 result.	 If
instance	does	not	have	a	_dispatch()	method,	it	is	searched	for
an	attribute	matching	the	name	of	the	requested	method.

If	 the	 optional	 allow_dotted_names	 argument	 is	 true	 and	 the
instance	 does	 not	 have	 a	 _dispatch()	 method,	 then	 if	 the
requested	method	name	contains	periods,	each	component	of	the

method	 name	 is	 searched	 for	 individually,	 with	 the	 effect	 that	 a
simple	hierarchical	search	is	performed.	The	value	found	from	this
search	is	then	called	with	the	parameters	from	the	request,	and	the
return	value	is	passed	back	to	the	client.

Warning: 	 Enabling	 the	 allow_dotted_names	 option	 allows
intruders	to	access	your	module’s	global	variables	and	may	allow
intruders	 to	 execute	 arbitrary	 code	 on	 your	 machine.	 Only	 use
this	option	on	a	secure,	closed	network.

SimpleXMLRPCServer.register_introspection_functions

Registers	 the	 XML-RPC	 introspection	 functions
system.listMethods,	 system.methodHelp	 and
system.methodSignature.

SimpleXMLRPCServer.register_multicall_functions()
Registers	the	XML-RPC	multicall	function	system.multicall.

SimpleXMLRPCRequestHandler.rpc_paths

An	attribute	value	that	must	be	a	tuple	listing	valid	path	portions	of
the	 URL	 for	 receiving	 XML-RPC	 requests.	 Requests	 posted	 to
other	paths	will	 result	 in	a	404	 “no	such	page”	HTTP	error.	 If	 this
tuple	is	empty,	all	paths	will	be	considered	valid.	The	default	value
is	('/',	'/RPC2').

21.27.1.1.	SimpleXMLRPCServer	Example

Server	code:

from	xmlrpc.server	import	SimpleXMLRPCServer

from	xmlrpc.server	import	SimpleXMLRPCRequestHandler

#	Restrict	to	a	particular	path.

class	RequestHandler(SimpleXMLRPCRequestHandler):

				rpc_paths	=	('/RPC2',)

#	Create	server

server	=	SimpleXMLRPCServer(("localhost",	8000),

																												requestHandler=RequestHandler

server.register_introspection_functions()

#	Register	pow()	function;	this	will	use	the	value	of

#	pow.__name__	as	the	name,	which	is	just	'pow'.

server.register_function(pow)

#	Register	a	function	under	a	different	name

def	adder_function(x,y):

				return	x	+	y

server.register_function(adder_function,	'add')

#	Register	an	instance;	all	the	methods	of	the	instance	are

#	published	as	XML-RPC	methods	(in	this	case,	just	'mul').

class	MyFuncs:

				def	mul(self,	x,	y):

								return	x	*	y

server.register_instance(MyFuncs())

#	Run	the	server's	main	loop

server.serve_forever()

The	following	client	code	will	call	 the	methods	made	available	by	 the
preceding	server:

import	xmlrpc.client

s	=	xmlrpc.client.ServerProxy('http://localhost:8000'

print(s.pow(2,3))		#	Returns	2**3	=	8

print(s.add(2,3))		#	Returns	5

print(s.mul(5,2))		#	Returns	5*2	=	10

#	Print	list	of	available	methods

print(s.system.listMethods())

The	following	example	included	in	Lib/xmlrpc/server.py	module	shows
a	server	allowing	dotted	names	and	registering	a	multicall	function.

Warning: 	Enabling	the	allow_dotted_names	option	allows	intruders
to	access	your	module’s	global	variables	and	may	allow	intruders	to
execute	arbitrary	code	on	your	machine.	Only	use	this	example	only
within	a	secure,	closed	network.

import	datetime

class	ExampleService:

				def	getData(self):

								return	'42'

				class	currentTime:

								@staticmethod

								def	getCurrentTime():

												return	datetime.datetime.now()

server	=	SimpleXMLRPCServer(("localhost",	8000))

server.register_function(pow)

server.register_function(lambda	x,y:	x+y,	'add')

server.register_instance(ExampleService(),	allow_dotted_names

server.register_multicall_functions()

print('Serving	XML-RPC	on	localhost	port	8000')

try:

				server.serve_forever()

except	KeyboardInterrupt:

				print("\nKeyboard	interrupt	received,	exiting.")

				server.server_close()

				sys.exit(0)

This	ExampleService	demo	can	be	invoked	from	the	command	line:

python	-m	xmlrpc.server

The	 client	 that	 interacts	 with	 the	 above	 server	 is	 included	 in
Lib/xmlrpc/client.py:

server	=	ServerProxy("http://localhost:8000")

try:

				print(server.currentTime.getCurrentTime())

except	Error	as	v:

				print("ERROR",	v)

multi	=	MultiCall(server)

multi.getData()

multi.pow(2,9)

multi.add(1,2)

try:

				for	response	in	multi():

								print(response)

except	Error	as	v:

				print("ERROR",	v)

This	 client	 which	 interacts	 with	 the	 demo	 XMLRPC	 server	 can	 be
invoked	as:

python	-m	xmlrpc.client

21.27.2.	CGIXMLRPCRequestHandler

The	CGIXMLRPCRequestHandler	class	can	be	used	to	handle	XML-
RPC	requests	sent	to	Python	CGI	scripts.

CGIXMLRPCRequestHandler.register_function(function,
name=None)

Register	 a	 function	 that	 can	 respond	 to	 XML-RPC	 requests.	 If
name	is	given,	it	will	be	the	method	name	associated	with	function,
otherwise	 function.__name__	will	 be	 used.	name	 can	 be	 either	 a
normal	or	Unicode	string,	and	may	contain	characters	not	 legal	 in
Python	identifiers,	including	the	period	character.

CGIXMLRPCRequestHandler.register_instance(instance)
Register	an	object	which	 is	used	 to	expose	method	names	which
have	 not	 been	 registered	 using	 register_function().	 If
instance	 contains	 a	 _dispatch()	 method,	 it	 is	 called	 with	 the
requested	method	name	and	the	parameters	from	the	request;	the
return	value	is	returned	to	the	client	as	the	result.	If	instance	does
not	have	a	 _dispatch()	method,	 it	 is	 searched	 for	 an	attribute
matching	 the	 name	 of	 the	 requested	 method;	 if	 the	 requested
method	 name	 contains	 periods,	 each	 component	 of	 the	 method
name	 is	 searched	 for	 individually,	 with	 the	 effect	 that	 a	 simple
hierarchical	search	is	performed.	The	value	found	from	this	search
is	then	called	with	the	parameters	from	the	request,	and	the	return
value	is	passed	back	to	the	client.

CGIXMLRPCRequestHandler.register_introspection_functions

Register	 the	 XML-RPC	 introspection	 functions
system.listMethods,	 system.methodHelp	 and
system.methodSignature.

CGIXMLRPCRequestHandler.register_multicall_functions

Register	the	XML-RPC	multicall	function	system.multicall.

CGIXMLRPCRequestHandler.handle_request(request_text=None
Handle	a	XML-RPC	request.	 If	 request_text	 is	given,	 it	should	 be
the	 POST	 data	 provided	 by	 the	 HTTP	 server,	 otherwise	 the
contents	of	stdin	will	be	used.

Example:

class	MyFuncs:

				def	mul(self,	x,	y):

								return	x	*	y

handler	=	CGIXMLRPCRequestHandler()

handler.register_function(pow)

handler.register_function(lambda	x,y:	x+y,	'add')

handler.register_introspection_functions()

handler.register_instance(MyFuncs())

handler.handle_request()

21.27.3.	Documenting	XMLRPC	server

These	 classes	 extend	 the	 above	 classes	 to	 serve	 HTML
documentation	in	response	to	HTTP	GET	requests.	Servers	can	either
be	 free	 standing,	 using	 DocXMLRPCServer,	 or	 embedded	 in	 a	CGI
environment,	using	DocCGIXMLRPCRequestHandler.

class	xmlrpc.server.DocXMLRPCServer(addr,
requestHandler=DocXMLRPCRequestHandler,	logRequests=True,
allow_none=False,	encoding=None,	bind_and_activate=True,
use_builtin_types=True)

Create	 a	 new	 server	 instance.	 All	 parameters	 have	 the	 same
meaning	 as	 for	 SimpleXMLRPCServer;	 requestHandler	 defaults
to	DocXMLRPCRequestHandler.

Changed	in	version	3.3:	The	use_builtin_types	flag	was	added.

class	xmlrpc.server.DocCGIXMLRPCRequestHandler
Create	 a	 new	 instance	 to	 handle	 XML-RPC	 requests	 in	 a	 CGI
environment.

class	xmlrpc.server.DocXMLRPCRequestHandler
Create	 a	 new	 request	 handler	 instance.	 This	 request	 handler
supports	XML-RPC	POST	requests,	documentation	GET	requests,
and	 modifies	 logging	 so	 that	 the	 logRequests	 parameter	 to	 the
DocXMLRPCServer	constructor	parameter	is	honored.

21.27.4.	DocXMLRPCServer	Objects

The	 DocXMLRPCServer	 class	 is	 derived	 from
SimpleXMLRPCServer	 and	 provides	 a	 means	 of	 creating	 self-
documenting,	 stand	 alone	 XML-RPC	 servers.	 HTTP	 POST	 requests
are	 handled	 as	 XML-RPC	 method	 calls.	 HTTP	 GET	 requests	 are
handled	by	generating	pydoc-style	HTML	documentation.	This	allows
a	server	to	provide	its	own	web-based	documentation.

DocXMLRPCServer.set_server_title(server_title)
Set	the	title	used	in	the	generated	HTML	documentation.	This	title
will	be	used	inside	the	HTML	“title”	element.

DocXMLRPCServer.set_server_name(server_name)
Set	 the	 name	 used	 in	 the	 generated	 HTML	 documentation.	 This
name	will	appear	at	the	top	of	the	generated	documentation	inside
a	“h1”	element.

DocXMLRPCServer.set_server_documentation(server_documentation
Set	 the	 description	 used	 in	 the	 generated	 HTML	 documentation.
This	 description	 will	 appear	 as	 a	 paragraph,	 below	 the	 server
name,	in	the	documentation.

21.27.5.	DocCGIXMLRPCRequestHandler

The	 DocCGIXMLRPCRequestHandler	 class	 is	 derived	 from
CGIXMLRPCRequestHandler	and	provides	a	means	of	creating	self-
documenting,	 XML-RPC	 CGI	 scripts.	 HTTP	 POST	 requests	 are
handled	as	XML-RPC	method	calls.	HTTP	GET	requests	are	handled
by	generating	pydoc-style	HTML	documentation.	This	allows	a	server
to	provide	its	own	web-based	documentation.

DocCGIXMLRPCRequestHandler.set_server_title(server_title
Set	the	title	used	in	the	generated	HTML	documentation.	This	title
will	be	used	inside	the	HTML	“title”	element.

DocCGIXMLRPCRequestHandler.set_server_name(server_name
Set	 the	 name	 used	 in	 the	 generated	 HTML	 documentation.	 This
name	will	appear	at	the	top	of	the	generated	documentation	inside
a	“h1”	element.

DocCGIXMLRPCRequestHandler.set_server_documentation

Set	 the	 description	 used	 in	 the	 generated	 HTML	 documentation.
This	 description	 will	 appear	 as	 a	 paragraph,	 below	 the	 server
name,	in	the	documentation.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

http://www.python.org/

21.28.	ipaddress	—	IPv4/IPv6
manipulation	library
Source	code:	Lib/ipaddress.py

ipaddress	 provides	 the	 capabilities	 to	 create,	 manipulate	 and
operate	on	IPv4	and	IPv6	addresses	and	networks.

The	 functions	 and	 classes	 in	 this	 module	make	 it	 straightforward	 to
handle	 various	 tasks	 related	 to	 IP	 addresses,	 including	 checking
whether	 or	 not	 two	 hosts	 are	 on	 the	 same	 subnet,	 iterating	 over	 all
hosts	 in	 a	 particular	 subnet,	 checking	 whether	 or	 not	 a	 string
represents	a	valid	IP	address	or	network	definition,	and	so	on.

This	 is	 the	 full	 module	 API	 reference	 -	 for	 an	 overview	 and
introduction,	see	An	introduction	to	the	ipaddress	module.

New	in	version	3.3.

http://hg.python.org/cpython/file/3.4/Lib/ipaddress.py

21.28.1.	Convenience	factory	functions

The	 ipaddress	 module	 provides	 factory	 functions	 to	 conveniently
create	IP	addresses,	networks	and	interfaces:

ipaddress.ip_address(address)
Return	an	IPv4Address	 or	 IPv6Address	 object	 depending	 on
the	IP	address	passed	as	argument.	Either	IPv4	or	IPv6	addresses
may	be	supplied;	integers	less	than	2**32	will	be	considered	to	be
IPv4	 by	 default.	 A	 ValueError	 is	 raised	 if	 address	 does	 not
represent	a	valid	IPv4	or	IPv6	address.

>>>	ipaddress.ip_address('192.168.0.1')

IPv4Address('192.168.0.1')

>>>	ipaddress.ip_address('2001:db8::')

IPv6Address('2001:db8::')

ipaddress.ip_network(address,	strict=True)
Return	an	IPv4Network	 or	 IPv6Network	 object	 depending	 on
the	IP	address	passed	as	argument.	address	 is	a	string	or	integer
representing	the	IP	network.	Either	IPv4	or	IPv6	networks	may	be
supplied;	integers	less	than	2**32	will	be	considered	to	be	IPv4	by
default.	 strict	 is	 passed	 to	 IPv4Network	 or	 IPv6Network
constructor.	A	ValueError	is	raised	if	address	does	not	represent
a	valid	IPv4	or	IPv6	address,	or	if	the	network	has	host	bits	set.

>>>	ipaddress.ip_network('192.168.0.0/28')

IPv4Network('192.168.0.0/28')

ipaddress.ip_interface(address)
Return	an	IPv4Interface	or	IPv6Interface	object	depending

on	 the	 IP	 address	 passed	 as	 argument.	 address	 is	 a	 string	 or
integer	representing	the	IP	address.	Either	IPv4	or	IPv6	addresses
may	be	supplied;	integers	less	than	2**32	will	be	considered	to	be
IPv4	 by	 default.	 A	 ValueError	 is	 raised	 if	 address	 does	 not
represent	a	valid	IPv4	or	IPv6	address.

One	 downside	 of	 these	 convenience	 functions	 is	 that	 the	 need	 to
handle	 both	 IPv4	 and	 IPv6	 formats	 means	 that	 error	 messages
provide	minimal	information	on	the	precise	error,	as	the	functions	don’t
know	 whether	 the	 IPv4	 or	 IPv6	 format	 was	 intended.	 More	 detailed
error	 reporting	 can	 be	 obtained	 by	 calling	 the	 appropriate	 version
specific	class	constructors	directly.

21.28.2.	IP	Addresses

21.28.2.1.	Address	objects

The	IPv4Address	and	IPv6Address	objects	share	a	lot	of	common
attributes.	Some	attributes	that	are	only	meaningful	for	IPv6	addresses
are	also	 implemented	by	 IPv4Address	 objects,	 in	 order	 to	make	 it
easier	to	write	code	that	handles	both	IP	versions	correctly.

class	ipaddress.IPv4Address(address)
Construct	an	IPv4	address.	An	AddressValueError	 is	 raised	 if
address	is	not	a	valid	IPv4	address.

The	following	constitutes	a	valid	IPv4	address:

1.	 A	 string	 in	 decimal-dot	 notation,	 consisting	 of	 four	 decimal
integers	 in	 the	 inclusive	range	0-255,	separated	by	dots	 (e.g.
192.168.0.1).	Each	integer	represents	an	octet	(byte)	in	the
address.	 Leading	 zeroes	 are	 tolerated	 only	 for	 values	 less
then	8	(as	there	is	no	ambiguity	between	the	decimal	and	octal
interpretations	of	such	strings).

2.	 An	integer	that	fits	into	32	bits.
3.	 An	 integer	 packed	 into	 a	 bytes	 object	 of	 length	 4	 (most

significant	octet	first).

>>>	ipaddress.IPv4Address('192.168.0.1')

IPv4Address('192.168.0.1')

>>>	ipaddress.IPv4Address(3232235521)

IPv4Address('192.168.0.1')

>>>	ipaddress.IPv4Address(b'\xC0\xA8\x00\x01')

IPv4Address('192.168.0.1')

version

The	appropriate	version	number:	4	for	IPv4,	6	for	IPv6.

max_prefixlen

The	 total	number	of	bits	 in	 the	address	 representation	 for	 this
version:	32	for	IPv4,	128	for	IPv6.

The	prefix	defines	the	number	of	leading	bits	in	an	address	that
are	compared	to	determine	whether	or	not	an	address	is	part	of
a	network.

compressed

exploded

The	 string	 representation	 in	 dotted	 decimal	 notation.	 Leading
zeroes	are	never	included	in	the	representation.

As	 IPv4	 does	 not	 define	 a	 shorthand	 notation	 for	 addresses
with	 octets	 set	 to	 zero,	 these	 two	 attributes	 are	 always	 the
same	 as	 str(addr)	 for	 IPv4	 addresses.	 Exposing	 these
attributes	makes	it	easier	to	write	display	code	that	can	handle
both	IPv4	and	IPv6	addresses.

packed

The	binary	 representation	of	 this	address	 -	a	bytes	object	of
the	 appropriate	 length	 (most	 significant	 octet	 first).	 This	 is	 4
bytes	for	IPv4	and	16	bytes	for	IPv6.

is_multicast

True	 if	 the	 address	 is	 reserved	 for	 multicast	 use.	 See	RFC
3171	(for	IPv4)	or	RFC	2373	(for	IPv6).

is_private

True	if	the	address	is	allocated	for	private	networks.	See	iana-

http://tools.ietf.org/html/rfc3171.html
http://tools.ietf.org/html/rfc2373.html
http://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml

ipv4-special-registry	 (for	 IPv4)	 or	 iana-ipv6-special-registry	 (for
IPv6).

is_global

True	 if	the	address	is	allocated	for	public	networks.	See	 iana-
ipv4-special-registry	 (for	 IPv4)	 or	 iana-ipv6-special-registry	 (for
IPv6).

New	in	version	3.4.

is_unspecified

True	if	the	address	is	unspecified.	See	RFC	5735	(for	IPv4)	or
RFC	2373	(for	IPv6).

is_reserved

True	if	the	address	is	otherwise	IETF	reserved.

is_loopback

True	if	this	is	a	loopback	address.	See	RFC	3330	(for	IPv4)	or
RFC	2373	(for	IPv6).

is_link_local

True	 if	 the	address	 is	 reserved	 for	 link-local	usage.	See	RFC
3927.

class	ipaddress.IPv6Address(address)
Construct	an	IPv6	address.	An	AddressValueError	 is	 raised	 if
address	is	not	a	valid	IPv6	address.

The	following	constitutes	a	valid	IPv6	address:

1.	 A	string	consisting	of	eight	groups	of	 four	hexadecimal	digits,
each	group	representing	16	bits.	The	groups	are	separated	by
colons.	This	 describes	an	exploded	 (longhand)	 notation.	 The

http://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
http://www.iana.org/assignments/iana-ipv4-special-registry/iana-ipv4-special-registry.xhtml
http://www.iana.org/assignments/iana-ipv6-special-registry/iana-ipv6-special-registry.xhtml
http://tools.ietf.org/html/rfc5735.html
http://tools.ietf.org/html/rfc2373.html
http://tools.ietf.org/html/rfc3330.html
http://tools.ietf.org/html/rfc2373.html
http://tools.ietf.org/html/rfc3927.html

string	can	also	be	compressed	(shorthand	notation)	by	various
means.	 See	 RFC	 4291	 for	 details.	 For	 example,
"0000:0000:0000:0000:0000:0abc:0007:0def"	 can
be	compressed	to	"::abc:7:def".

2.	 An	integer	that	fits	into	128	bits.
3.	 An	 integer	 packed	 into	 a	 bytes	 object	 of	 length	 16,	 big-

endian.

>>>	ipaddress.IPv6Address('2001:db8::1000')

IPv6Address('2001:db8::1000')

compressed

The	short	 form	of	 the	address	representation,	with	 leading	zeroes
in	groups	omitted	and	 the	 longest	 sequence	of	 groups	 consisting
entirely	of	zeroes	collapsed	to	a	single	empty	group.

This	is	also	the	value	returned	by	str(addr)	for	IPv6	addresses.

exploded

The	 long	 form	 of	 the	 address	 representation,	 with	 all	 leading
zeroes	and	groups	consisting	entirely	of	zeroes	included.

For	the	following	attributes,	see	the	corresponding	documention	of
the	IPv4Address	class:

packed

version

max_prefixlen

is_multicast

is_private

http://tools.ietf.org/html/rfc4291.html

is_global

is_unspecified

is_reserved

is_loopback

is_link_local

New	in	version	3.4:	is_global

is_site_local

True	 if	 the	address	 is	 reserved	 for	site-local	usage.	Note	 that
the	 site-local	 address	 space	 has	 been	 deprecated	 by	 RFC
3879.	Use	is_private	to	test	if	this	address	is	in	the	space	of
unique	local	addresses	as	defined	by	RFC	4193.

ipv4_mapped

For	 addresses	 that	 appear	 to	 be	 IPv4	 mapped	 addresses
(starting	 with	 ::FFFF/96),	 this	 property	 will	 report	 the
embedded	 IPv4	address.	For	any	other	address,	 this	property
will	be	None.

sixtofour

For	addresses	 that	appear	 to	be	6to4	addresses	 (starting	with
2002::/16)	as	defined	by	RFC	3056,	 this	property	will	 report
the	 embedded	 IPv4	 address.	 For	 any	 other	 address,	 this
property	will	be	None.

teredo

For	 addresses	 that	 appear	 to	 be	 Teredo	 addresses	 (starting
with	 2001::/32)	 as	 defined	 by	RFC	4380,	 this	 property	 will
report	the	embedded	(server,	client)	IP	address	pair.	For
any	other	address,	this	property	will	be	None.

http://tools.ietf.org/html/rfc3879.html
http://tools.ietf.org/html/rfc4193.html
http://tools.ietf.org/html/rfc3056.html
http://tools.ietf.org/html/rfc4380.html

21.28.2.2.	Conversion	to	Strings	and	Integers

To	interoperate	with	networking	interfaces	such	as	the	socket	module,
addresses	must	 be	 converted	 to	 strings	 or	 integers.	 This	 is	 handled
using	the	str()	and	int()	builtin	functions:

>>>	str(ipaddress.IPv4Address('192.168.0.1'))

'192.168.0.1'

>>>	int(ipaddress.IPv4Address('192.168.0.1'))

3232235521

>>>	str(ipaddress.IPv6Address('::1'))

'::1'

>>>	int(ipaddress.IPv6Address('::1'))

1

21.28.2.3.	Operators

Address	 objects	 support	 some	 operators.	 Unless	 stated	 otherwise,
operators	 can	 only	 be	 applied	 between	 compatible	 objects	 (i.e.	 IPv4
with	IPv4,	IPv6	with	IPv6).

21.28.2.3.1.	Comparison	operators

Address	 objects	 can	 be	 compared	with	 the	 usual	 set	 of	 comparison
operators.	Some	examples:

>>>	IPv4Address('127.0.0.2')	>	IPv4Address('127.0.0.1'

True

>>>	IPv4Address('127.0.0.2')	==	IPv4Address('127.0.0.1'

False

>>>	IPv4Address('127.0.0.2')	!=	IPv4Address('127.0.0.1'

True

21.28.2.3.2.	Arithmetic	operators

Integers	 can	be	added	 to	 or	 subtracted	 from	address	objects.	Some
examples:

>>>	IPv4Address('127.0.0.2')	+	3

IPv4Address('127.0.0.5')

>>>	IPv4Address('127.0.0.2')	-	3

IPv4Address('126.255.255.255')

>>>	IPv4Address('255.255.255.255')	+	1

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

ipaddress.AddressValueError:	4294967296	(>=	2**32)	is	not	permitted	as	an	IPv4	address

21.28.3.	IP	Network	definitions

The	IPv4Network	and	IPv6Network	objects	provide	a	mechanism
for	defining	and	inspecting	IP	network	definitions.	A	network	definition
consists	 of	 a	mask	 and	 a	 network	 address,	 and	 as	 such	 defines	 a
range	of	 IP	addresses	 that	equal	 the	network	address	when	masked
(binary	AND)	with	the	mask.	For	example,	a	network	definition	with	the
mask	 255.255.255.0	 and	 the	 network	 address	 192.168.1.0
consists	 of	 IP	 addresses	 in	 the	 inclusive	 range	 192.168.1.0	 to
192.168.1.255.

21.28.3.1.	Prefix,	net	mask	and	host	mask

There	 are	 several	 equivalent	 ways	 to	 specify	 IP	 network	 masks.	 A
prefix	/<nbits>	is	a	notation	that	denotes	how	many	high-order	bits
are	set	 in	the	network	mask.	A	net	mask	 is	an	IP	address	with	some
number	of	high-order	bits	set.	Thus	the	prefix	/24	is	equivalent	to	the
net	 mask	 255.255.255.0	 in	 IPv4,	 or	 ffff:ff00::	 in	 IPv6.	 In
addition,	 a	 host	 mask	 is	 the	 logical	 inverse	 of	 a	 net	 mask,	 and	 is
sometimes	used	(for	example	in	Cisco	access	control	lists)	to	denote	a
network	 mask.	 The	 host	 mask	 equivalent	 to	 /24	 in	 IPv4	 is
0.0.0.255.

21.28.3.2.	Network	objects

All	 attributes	 implemented	 by	 address	 objects	 are	 implemented	 by
network	 objects	 as	 well.	 In	 addition,	 network	 objects	 implement
additional	attributes.	All	of	these	are	common	between	IPv4Network
and	IPv6Network,	so	to	avoid	duplication	they	are	only	documented
for	IPv4Network.

class	ipaddress.IPv4Network(address,	strict=True)
Construct	 an	 IPv4	 network	 definition.	 address	 can	 be	 one	 of	 the
following:

1.	 A	 string	 consisting	 of	 an	 IP	 address	 and	 an	 optional	 mask,
separated	 by	 a	 slash	 (/).	 The	 IP	 address	 is	 the	 network
address,	and	 the	mask	can	be	either	a	single	number,	which
means	 it’s	 a	 prefix,	 or	 a	 string	 representation	 of	 an	 IPv4
address.	If	it’s	the	latter,	the	mask	is	interpreted	as	a	net	mask
if	 it	 starts	with	a	non-zero	 field,	or	as	a	host	mask	 if	 it	 starts
with	a	zero	field.	If	no	mask	 is	provided,	 it’s	considered	to	be
/32.

For	 example,	 the	 following	 address	 specifications	 are
equivalent:	 192.168.1.0/24,
192.168.1.0/255.255.255.0	 and
192.168.1.0/0.0.0.255.

2.	 An	 integer	 that	 fits	 into	32	bits.	This	 is	equivalent	 to	a	single-
address	network,	with	the	network	address	being	address	and
the	mask	being	/32.

3.	 An	integer	packed	into	a	bytes	object	of	length	4,	big-endian.
The	interpretation	is	similar	to	an	integer	address.

An	AddressValueError	 is	 raised	 if	address	 is	not	a	valid	 IPv4
address.	A	NetmaskValueError	is	raised	if	the	mask	is	not	valid
for	an	IPv4	address.

If	strict	is	True	and	host	bits	are	set	in	the	supplied	address,	then
ValueError	is	raised.	Otherwise,	the	host	bits	are	masked	out	to
determine	the	appropriate	network	address.

Unless	 stated	 otherwise,	 all	 network	 methods	 accepting	 other
network/address	objects	will	raise	TypeError	if	the	argument’s	IP
version	is	incompatible	to	self

version

max_prefixlen

Refer	 to	 the	 corresponding	 attribute	 documentation	 in
IPv4Address

is_multicast

is_private

is_unspecified

is_reserved

is_loopback

is_link_local

These	attributes	are	true	for	the	network	as	a	whole	if	they	are
true	for	both	the	network	address	and	the	broadcast	address

network_address

The	network	address	for	the	network.	The	network	address	and
the	prefix	length	together	uniquely	define	a	network.

broadcast_address

The	 broadcast	 address	 for	 the	 network.	 Packets	 sent	 to	 the
broadcast	 address	 should	 be	 received	 by	 every	 host	 on	 the
network.

hostmask

The	host	mask,	as	a	string.

with_prefixlen

compressed

exploded

A	string	 representation	of	 the	network,	with	 the	mask	 in	prefix
notation.

with_prefixlen	and	compressed	are	always	the	same	as
str(network).	 exploded	 uses	 the	 exploded	 form	 the
network	address.

with_netmask

A	 string	 representation	 of	 the	 network,	 with	 the	 mask	 in	 net
mask	notation.

with_hostmask

A	 string	 representation	 of	 the	 network,	 with	 the	 mask	 in	 host
mask	notation.

num_addresses

The	total	number	of	addresses	in	the	network.

prefixlen

Length	of	the	network	prefix,	in	bits.

hosts()
Returns	 an	 iterator	 over	 the	 usable	 hosts	 in	 the	 network.	 The
usable	 hosts	 are	 all	 the	 IP	 addresses	 that	 belong	 to	 the
network,	 except	 the	 network	 address	 itself	 and	 the	 network
broadcast	address.

>>>	list(ip_network('192.0.2.0/29').hosts())		

[IPv4Address('192.0.2.1'),	IPv4Address('192.0.2.2'),

	IPv4Address('192.0.2.3'),	IPv4Address('192.0.2.4'),

	IPv4Address('192.0.2.5'),	IPv4Address('192.0.2.6')]

overlaps(other)
True	 if	 this	 network	 is	 partly	 or	 wholly	 contained	 in	 other	 or
other	is	wholly	contained	in	this	network.

address_exclude(network)
Computes	 the	 network	 definitions	 resulting	 from	 removing	 the
given	 network	 from	 this	 one.	 Returns	 an	 iterator	 of	 network
objects.	 Raises	 ValueError	 if	 network	 is	 not	 completely
contained	in	this	network.

>>>	n1	=	ip_network('192.0.2.0/28')

>>>	n2	=	ip_network('192.0.2.1/32')

>>>	list(n1.address_exclude(n2))		

[IPv4Network('192.0.2.8/29'),	IPv4Network('192.0.2.4/30'),

	IPv4Network('192.0.2.2/31'),	IPv4Network('192.0.2.0/32')]

subnets(prefixlen_diff=1,	new_prefix=None)
The	 subnets	 that	 join	 to	 make	 the	 current	 network	 definition,
depending	on	the	argument	values.	prefixlen_diff	is	the	amount
our	 prefix	 length	 should	 be	 increased	 by.	 new_prefix	 is	 the
desired	 new	 prefix	 of	 the	 subnets;	 it	 must	 be	 larger	 than	 our
prefix.	One	and	only	one	of	prefixlen_diff	and	new_prefix	must
be	set.	Returns	an	iterator	of	network	objects.

>>>	list(ip_network('192.0.2.0/24').subnets())

[IPv4Network('192.0.2.0/25'),	IPv4Network('192.0.2.128/25')]

>>>	list(ip_network('192.0.2.0/24').subnets(prefixlen_diff

[IPv4Network('192.0.2.0/26'),	IPv4Network('192.0.2.64/26'),

	IPv4Network('192.0.2.128/26'),	IPv4Network('192.0.2.192/26')]

>>>	list(ip_network('192.0.2.0/24').subnets(new_prefix

[IPv4Network('192.0.2.0/26'),	IPv4Network('192.0.2.64/26'),

	IPv4Network('192.0.2.128/26'),	IPv4Network('192.0.2.192/26')]

>>>	list(ip_network('192.0.2.0/24').subnets(new_prefix

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

				raise	ValueError('new	prefix	must	be	longer'

ValueError:	new	prefix	must	be	longer

>>>	list(ip_network('192.0.2.0/24').subnets(new_prefix

[IPv4Network('192.0.2.0/25'),	IPv4Network('192.0.2.128/25')]

supernet(prefixlen_diff=1,	new_prefix=None)
The	 supernet	 containing	 this	 network	 definition,	 depending	 on
the	 argument	 values.	 prefixlen_diff	 is	 the	 amount	 our	 prefix
length	should	be	decreased	by.	new_prefix	 is	 the	desired	new
prefix	of	 the	supernet;	 it	must	be	smaller	 than	our	prefix.	One
and	 only	 one	 of	 prefixlen_diff	 and	 new_prefix	 must	 be	 set.
Returns	a	single	network	object.

>>>	ip_network('192.0.2.0/24').supernet()

IPv4Network('192.0.2.0/23')

>>>	ip_network('192.0.2.0/24').supernet(prefixlen_diff

IPv4Network('192.0.0.0/22')

>>>	ip_network('192.0.2.0/24').supernet(new_prefix

IPv4Network('192.0.0.0/20')

compare_networks(other)
Compare	 this	 network	 to	 other.	 In	 this	 comparison	 only	 the
network	 addresses	 are	 considered;	 host	 bits	 aren’t.	 Returns
either	-1,	0	or	1.

>>>	ip_network('192.0.2.1/32').compare_networks

-1

>>>	ip_network('192.0.2.1/32').compare_networks

1

>>>	ip_network('192.0.2.1/32').compare_networks

0

class	ipaddress.IPv6Network(address,	strict=True)
Construct	 an	 IPv6	 network	 definition.	 address	 can	 be	 one	 of	 the
following:

1.	 A	 string	 consisting	 of	 an	 IP	 address	 and	 an	 optional	 mask,
separated	 by	 a	 slash	 (/).	 The	 IP	 address	 is	 the	 network
address,	and	 the	mask	can	be	either	a	single	number,	which
means	 it’s	 a	 prefix,	 or	 a	 string	 representation	 of	 an	 IPv6
address.	If	it’s	the	latter,	the	mask	is	interpreted	as	a	net	mask.
If	no	mask	is	provided,	it’s	considered	to	be	/128.

For	 example,	 the	 following	 address	 specifications	 are
equivalent:	 2001:db00::0/24	 and
2001:db00::0/ffff:ff00::.

2.	 An	integer	that	fits	into	128	bits.	This	is	equivalent	to	a	single-
address	network,	with	the	network	address	being	address	and
the	mask	being	/128.

3.	 An	 integer	 packed	 into	 a	 bytes	 object	 of	 length	 16,	 bit-
endian.	The	interpretation	is	similar	to	an	integer	address.

An	AddressValueError	 is	 raised	 if	address	 is	not	a	valid	 IPv6
address.	A	NetmaskValueError	is	raised	if	the	mask	is	not	valid
for	an	IPv6	address.

If	strict	is	True	and	host	bits	are	set	in	the	supplied	address,	then
ValueError	is	raised.	Otherwise,	the	host	bits	are	masked	out	to

determine	the	appropriate	network	address.

version

max_prefixlen

is_multicast

is_private

is_unspecified

is_reserved

is_loopback

is_link_local

network_address

broadcast_address

hostmask

with_prefixlen

compressed

exploded

with_netmask

with_hostmask

num_addresses

prefixlen

hosts()

overlaps(other)

address_exclude(network)

subnets(prefixlen_diff=1,	new_prefix=None)

supernet(prefixlen_diff=1,	new_prefix=None)

compare_networks(other)
Refer	 to	 the	 corresponding	 attribute	 documentation	 in
IPv4Network

is_site_local

These	attribute	is	true	for	the	network	as	a	whole	if	it	is	true	for
both	the	network	address	and	the	broadcast	address

21.28.3.3.	Operators

Network	 objects	 support	 some	 operators.	 Unless	 stated	 otherwise,
operators	 can	 only	 be	 applied	 between	 compatible	 objects	 (i.e.	 IPv4
with	IPv4,	IPv6	with	IPv6).

21.28.3.3.1.	Logical	operators

Network	 objects	 can	 be	 compared	 with	 the	 usual	 set	 of	 logical
operators,	similarly	to	address	objects.

21.28.3.3.2.	Iteration

Network	objects	can	be	 iterated	to	 list	all	 the	addresses	belonging	to
the	 network.	 For	 iteration,	all	 hosts	 are	 returned,	 including	 unusable
hosts	(for	usable	hosts,	use	the	hosts()	method).	An	example:

>>>	for	addr	in	IPv4Network('192.0.2.0/28'):

...			addr

...

IPv4Address('192.0.2.0')

IPv4Address('192.0.2.1')

IPv4Address('192.0.2.2')

IPv4Address('192.0.2.3')

IPv4Address('192.0.2.4')

IPv4Address('192.0.2.5')

IPv4Address('192.0.2.6')

IPv4Address('192.0.2.7')

IPv4Address('192.0.2.8')

IPv4Address('192.0.2.9')

IPv4Address('192.0.2.10')

IPv4Address('192.0.2.11')

IPv4Address('192.0.2.12')

IPv4Address('192.0.2.13')

IPv4Address('192.0.2.14')

IPv4Address('192.0.2.15')

21.28.3.3.3.	Networks	as	containers	of	addresses

Network	objects	can	act	as	containers	of	addresses.	Some	examples:

>>>	IPv4Network('192.0.2.0/28')[0]

IPv4Address('192.0.2.0')

>>>	IPv4Network('192.0.2.0/28')[15]

IPv4Address('192.0.2.15')

>>>	IPv4Address('192.0.2.6')	in	IPv4Network('192.0.2.0/28'

True

>>>	IPv4Address('192.0.3.6')	in	IPv4Network('192.0.2.0/28'

False

21.28.4.	Interface	objects

class	ipaddress.IPv4Interface(address)
Construct	an	 IPv4	 interface.	The	meaning	of	address	 is	 as	 in	 the
constructor	of	IPv4Network,	except	that	arbitrary	host	addresses
are	always	accepted.

IPv4Interface	is	a	subclass	of	IPv4Address,	so	it	inherits	all
the	 attributes	 from	 that	 class.	 In	 addition,	 the	 following	 attributes
are	available:

ip

The	address	(IPv4Address)	without	network	information.

>>>	interface	=	IPv4Interface('192.0.2.5/24')

>>>	interface.ip

IPv4Address('192.0.2.5')

network

The	network	(IPv4Network)	this	interface	belongs	to.

>>>	interface	=	IPv4Interface('192.0.2.5/24')

>>>	interface.network

IPv4Network('192.0.2.0/24')

with_prefixlen

A	string	 representation	of	 the	 interface	with	 the	mask	 in	prefix
notation.

>>>	interface	=	IPv4Interface('192.0.2.5/24')

>>>	interface.with_prefixlen

'192.0.2.5/24'

with_netmask

A	string	representation	of	the	interface	with	the	network	as	a	net
mask.

>>>	interface	=	IPv4Interface('192.0.2.5/24')

>>>	interface.with_netmask

'192.0.2.5/255.255.255.0'

with_hostmask

A	 string	 representation	 of	 the	 interface	 with	 the	 network	 as	 a
host	mask.

>>>	interface	=	IPv4Interface('192.0.2.5/24')

>>>	interface.with_hostmask

'192.0.2.5/0.0.0.255'

class	ipaddress.IPv6Interface(address)
Construct	an	 IPv6	 interface.	The	meaning	of	address	 is	 as	 in	 the
constructor	of	IPv6Network,	except	that	arbitrary	host	addresses
are	always	accepted.

IPv6Interface	is	a	subclass	of	IPv6Address,	so	it	inherits	all
the	 attributes	 from	 that	 class.	 In	 addition,	 the	 following	 attributes
are	available:

ip

network

with_prefixlen

with_netmask

with_hostmask

Refer	 to	 the	 corresponding	 attribute	 documentation	 in

IPv4Interface.

21.28.5.	Other	Module	Level	Functions

The	module	also	provides	the	following	module	level	functions:

ipaddress.v4_int_to_packed(address)
Represent	an	address	as	4	packed	bytes	 in	network	 (big-endian)
order.	address	is	an	integer	representation	of	an	IPv4	IP	address.	A
ValueError	 is	raised	if	the	integer	is	negative	or	too	large	to	be
an	IPv4	IP	address.

>>>	ipaddress.ip_address(3221225985)

IPv4Address('192.0.2.1')

>>>	ipaddress.v4_int_to_packed(3221225985)

b'\xc0\x00\x02\x01'

ipaddress.v6_int_to_packed(address)
Represent	an	address	as	16	packed	bytes	in	network	(big-endian)
order.	address	is	an	integer	representation	of	an	IPv6	IP	address.	A
ValueError	 is	raised	if	the	integer	is	negative	or	too	large	to	be
an	IPv6	IP	address.

ipaddress.summarize_address_range(first,	last)
Return	an	iterator	of	the	summarized	network	range	given	the	first
and	 last	 IP	 addresses.	 first	 is	 the	 first	 IPv4Address	 or
IPv6Address	 in	 the	 range	and	 last	 is	 the	 last	IPv4Address	or
IPv6Address	in	the	range.	A	TypeError	 is	raised	if	 first	or	 last
are	 not	 IP	 addresses	 or	 are	 not	 of	 the	 same	 version.	 A
ValueError	 is	 raised	 if	 last	 is	 not	 greater	 than	 first	 or	 if	 first
address	version	is	not	4	or	6.

>>>	[ipaddr	for	ipaddr	in	ipaddress.summarize_address_range

...				ipaddress.IPv4Address('192.0.2.0'),

...				ipaddress.IPv4Address('192.0.2.130'))]

[IPv4Network('192.0.2.0/25'),	IPv4Network('192.0.2.128/31'),	IPv4Network('192.0.2.130/32')]

ipaddress.collapse_addresses(addresses)
Return	 an	 iterator	 of	 the	 collapsed	 IPv4Network	 or
IPv6Network	objects.	addresses	 is	an	iterator	of	IPv4Network
or	 IPv6Network	 objects.	 A	 TypeError	 is	 raised	 if	 addresses
contains	mixed	version	objects.

>>>	[ipaddr	for	ipaddr	in

...	ipaddress.collapse_addresses([ipaddress.IPv4Network

...	ipaddress.IPv4Network('192.0.2.128/25')])]

[IPv4Network('192.0.2.0/24')]

ipaddress.get_mixed_type_key(obj)
Return	a	key	suitable	for	sorting	between	networks	and	addresses.
Address	 and	Network	 objects	 are	 not	 sortable	 by	 default;	 they’re
fundamentally	different,	so	the	expression:

IPv4Address('192.0.2.0')	<=	IPv4Network('192.0.2.0/24'

doesn’t	make	 sense.	 There	 are	 some	 times	 however,	 where	 you
may	wish	to	have	ipaddress	sort	these	anyway.	If	you	need	to	do
this,	you	can	use	this	function	as	the	key	argument	to	sorted().

obj	is	either	a	network	or	address	object.

21.28.6.	Custom	Exceptions

To	 support	more	 specific	 error	 reporting	 from	 class	 constructors,	 the
module	defines	the	following	exceptions:

exception	ipaddress.AddressValueError(ValueError)
Any	value	error	related	to	the	address.

exception	ipaddress.NetmaskValueError(ValueError)
Any	value	error	related	to	the	netmask.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	21.	Internet	Protocols	and	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

22.	Multimedia	Services
The	modules	described	 in	 this	 chapter	 implement	 various	algorithms
or	 interfaces	 that	are	mainly	useful	 for	multimedia	applications.	They
are	available	at	the	discretion	of	the	installation.	Here’s	an	overview:

22.1.	audioop	—	Manipulate	raw	audio	data
22.2.	aifc	—	Read	and	write	AIFF	and	AIFC	files
22.3.	sunau	—	Read	and	write	Sun	AU	files

22.3.1.	AU_read	Objects
22.3.2.	AU_write	Objects

22.4.	wave	—	Read	and	write	WAV	files
22.4.1.	Wave_read	Objects
22.4.2.	Wave_write	Objects

22.5.	chunk	—	Read	IFF	chunked	data
22.6.	colorsys	—	Conversions	between	color	systems
22.7.	imghdr	—	Determine	the	type	of	an	image
22.8.	sndhdr	—	Determine	type	of	sound	file
22.9.	ossaudiodev	—	Access	to	OSS-compatible	audio	devices

22.9.1.	Audio	Device	Objects
22.9.2.	Mixer	Device	Objects

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.1.	audioop	—	Manipulate	raw
audio	data
The	 audioop	 module	 contains	 some	 useful	 operations	 on	 sound
fragments.	It	operates	on	sound	fragments	consisting	of	signed	integer
samples	 8,	 16,	 24	 or	 32	 bits	 wide,	 stored	 in	 bytes-like	 objects.	 All
scalar	items	are	integers,	unless	specified	otherwise.

Changed	 in	 version	 3.4:	Support	 for	 24-bit	 samples	 was	 added.	 All
functions	now	accept	any	bytes-like	object.	String	input	now	results	in
an	immediate	error.

This	module	provides	support	for	a-LAW,	u-LAW	and	Intel/DVI	ADPCM
encodings.

A	 few	 of	 the	more	 complicated	 operations	 only	 take	 16-bit	 samples,
otherwise	 the	 sample	 size	 (in	 bytes)	 is	 always	 a	 parameter	 of	 the
operation.

The	module	defines	the	following	variables	and	functions:

exception	audioop.error
This	exception	is	raised	on	all	errors,	such	as	unknown	number	of
bytes	per	sample,	etc.

audioop.add(fragment1,	fragment2,	width)
Return	a	fragment	which	is	the	addition	of	the	two	samples	passed
as	parameters.	width	is	the	sample	width	in	bytes,	either	1,	2,	3	or
4.	 Both	 fragments	 should	 have	 the	 same	 length.	 Samples	 are
truncated	in	case	of	overflow.

audioop.adpcm2lin(adpcmfragment,	width,	state)
Decode	an	Intel/DVI	ADPCM	coded	fragment	to	a	linear	fragment.
See	 the	 description	 of	 lin2adpcm()	 for	 details	 on	 ADPCM
coding.	Return	a	tuple	(sample,	newstate)	where	the	sample
has	the	width	specified	in	width.

audioop.alaw2lin(fragment,	width)
Convert	 sound	 fragments	 in	 a-LAW	encoding	 to	 linearly	 encoded
sound	fragments.	a-LAW	encoding	always	uses	8	bits	samples,	so
width	refers	only	to	the	sample	width	of	the	output	fragment	here.

audioop.avg(fragment,	width)
Return	the	average	over	all	samples	in	the	fragment.

audioop.avgpp(fragment,	width)
Return	 the	 average	 peak-peak	 value	 over	 all	 samples	 in	 the
fragment.	No	 filtering	 is	done,	 so	 the	usefulness	of	 this	 routine	 is
questionable.

audioop.bias(fragment,	width,	bias)
Return	a	fragment	that	is	the	original	fragment	with	a	bias	added	to
each	sample.	Samples	wrap	around	in	case	of	overflow.

audioop.byteswap(fragment,	width)
“Byteswap”	 all	 samples	 in	 a	 fragment	 and	 returns	 the	 modified
fragment.	 Converts	 big-endian	 samples	 to	 little-endian	 and	 vice
versa.

New	in	version	3.4.

audioop.cross(fragment,	width)
Return	the	number	of	zero	crossings	in	the	fragment	passed	as	an
argument.

audioop.findfactor(fragment,	reference)
Return	 a	 factor	 F	 such	 that	 rms(add(fragment,

mul(reference,	-F)))	 is	 minimal,	 i.e.,	 return	 the	 factor	 with
which	 you	 should	multiply	 reference	 to	make	 it	match	 as	well	 as
possible	 to	 fragment.	 The	 fragments	 should	 both	 contain	 2-byte
samples.

The	time	taken	by	this	routine	is	proportional	to	len(fragment).

audioop.findfit(fragment,	reference)
Try	to	match	reference	as	well	as	possible	to	a	portion	of	fragment
(which	should	be	the	longer	fragment).	This	is	(conceptually)	done
by	taking	slices	out	of	fragment,	using	findfactor()	to	compute
the	 best	match,	 and	minimizing	 the	 result.	 The	 fragments	 should
both	contain	2-byte	samples.	Return	a	tuple	(offset,	factor)
where	offset	is	the	(integer)	offset	into	fragment	where	the	optimal
match	 started	 and	 factor	 is	 the	 (floating-point)	 factor	 as	 per
findfactor().

audioop.findmax(fragment,	length)
Search	 fragment	 for	 a	 slice	 of	 length	 length	 samples	 (not	 bytes!)
with	 maximum	 energy,	 i.e.,	 return	 i	 for	 which
rms(fragment[i*2:(i+length)*2])	 is	 maximal.	 The
fragments	should	both	contain	2-byte	samples.

The	routine	takes	time	proportional	to	len(fragment).

audioop.getsample(fragment,	width,	index)
Return	the	value	of	sample	index	from	the	fragment.

audioop.lin2adpcm(fragment,	width,	state)

Convert	 samples	 to	 4	 bit	 Intel/DVI	 ADPCM	 encoding.	 ADPCM
coding	is	an	adaptive	coding	scheme,	whereby	each	4	bit	number
is	 the	 difference	 between	one	 sample	 and	 the	 next,	 divided	 by	 a
(varying)	step.	The	Intel/DVI	ADPCM	algorithm	has	been	selected
for	use	by	the	IMA,	so	it	may	well	become	a	standard.

state	is	a	tuple	containing	the	state	of	the	coder.	The	coder	returns
a	 tuple	(adpcmfrag,	newstate),	 and	 the	newstate	 should	 be
passed	 to	 the	next	call	of	lin2adpcm().	 In	 the	 initial	 call,	None
can	 be	 passed	 as	 the	 state.	 adpcmfrag	 is	 the	 ADPCM	 coded
fragment	packed	2	4-bit	values	per	byte.

audioop.lin2alaw(fragment,	width)
Convert	 samples	 in	 the	 audio	 fragment	 to	 a-LAW	 encoding	 and
return	 this	as	a	bytes	object.	a-LAW	 is	 an	audio	encoding	 format
whereby	you	get	a	dynamic	range	of	about	13	bits	using	only	8	bit
samples.	It	is	used	by	the	Sun	audio	hardware,	among	others.

audioop.lin2lin(fragment,	width,	newwidth)
Convert	samples	between	1-,	2-,	3-	and	4-byte	formats.

Note: 	In	some	audio	formats,	such	as	.WAV	files,	16,	24	and	32
bit	samples	are	signed,	but	8	bit	samples	are	unsigned.	So	when
converting	 to	8	bit	wide	samples	 for	 these	 formats,	you	need	 to
also	add	128	to	the	result:

new_frames	=	audioop.lin2lin(frames,	old_width,	1

new_frames	=	audioop.bias(new_frames,	1,	128)

The	same,	in	reverse,	has	to	be	applied	when	converting	from	8
to	16,	24	or	32	bit	width	samples.

audioop.lin2ulaw(fragment,	width)
Convert	 samples	 in	 the	 audio	 fragment	 to	 u-LAW	 encoding	 and
return	 this	as	a	bytes	object.	u-LAW	 is	 an	audio	encoding	 format
whereby	you	get	a	dynamic	range	of	about	14	bits	using	only	8	bit
samples.	It	is	used	by	the	Sun	audio	hardware,	among	others.

audioop.max(fragment,	width)
Return	 the	 maximum	 of	 the	 absolute	 value	 of	 all	 samples	 in	 a
fragment.

audioop.maxpp(fragment,	width)
Return	the	maximum	peak-peak	value	in	the	sound	fragment.

audioop.minmax(fragment,	width)
Return	a	tuple	consisting	of	the	minimum	and	maximum	values	of
all	samples	in	the	sound	fragment.

audioop.mul(fragment,	width,	factor)
Return	 a	 fragment	 that	 has	 all	 samples	 in	 the	 original	 fragment
multiplied	by	the	floating-point	value	factor.	Samples	are	truncated
in	case	of	overflow.

audioop.ratecv(fragment,	width,	nchannels,	inrate,	outrate,
state[,	weightA[,	weightB]])

Convert	the	frame	rate	of	the	input	fragment.

state	is	a	tuple	containing	the	state	of	the	converter.	The	converter
returns	 a	 tuple	 (newfragment,	 newstate),	 and	 newstate
should	 be	 passed	 to	 the	 next	 call	 of	 ratecv().	 The	 initial	 call
should	pass	None	as	the	state.

The	weightA	and	weightB	arguments	are	parameters	 for	a	simple

digital	filter	and	default	to	1	and	0	respectively.

audioop.reverse(fragment,	width)
Reverse	 the	 samples	 in	 a	 fragment	 and	 returns	 the	 modified
fragment.

audioop.rms(fragment,	width)
Return	 the	 root-mean-square	 of	 the	 fragment,	 i.e.
sqrt(sum(S_i^2)/n).

This	is	a	measure	of	the	power	in	an	audio	signal.

audioop.tomono(fragment,	width,	lfactor,	rfactor)
Convert	a	stereo	fragment	to	a	mono	fragment.	The	left	channel	is
multiplied	by	 lfactor	and	the	right	channel	by	rfactor	before	adding
the	two	channels	to	give	a	mono	signal.

audioop.tostereo(fragment,	width,	lfactor,	rfactor)
Generate	 a	 stereo	 fragment	 from	a	mono	 fragment.	 Each	 pair	 of
samples	 in	 the	 stereo	 fragment	 are	 computed	 from	 the	 mono
sample,	whereby	left	channel	samples	are	multiplied	by	lfactor	and
right	channel	samples	by	rfactor.

audioop.ulaw2lin(fragment,	width)
Convert	 sound	 fragments	 in	 u-LAW	encoding	 to	 linearly	 encoded
sound	fragments.	u-LAW	encoding	always	uses	8	bits	samples,	so
width	refers	only	to	the	sample	width	of	the	output	fragment	here.

Note	 that	 operations	 such	 as	 mul()	 or	 max()	 make	 no	 distinction
between	 mono	 and	 stereo	 fragments,	 i.e.	 all	 samples	 are	 treated
equal.	If	this	is	a	problem	the	stereo	fragment	should	be	split	into	two
mono	fragments	first	and	recombined	later.	Here	is	an	example	of	how
to	do	that:

def	mul_stereo(sample,	width,	lfactor,	rfactor):

				lsample	=	audioop.tomono(sample,	width,	1,	0)

				rsample	=	audioop.tomono(sample,	width,	0,	1)

				lsample	=	audioop.mul(lsample,	width,	lfactor)

				rsample	=	audioop.mul(rsample,	width,	rfactor)

				lsample	=	audioop.tostereo(lsample,	width,	1,	0)

				rsample	=	audioop.tostereo(rsample,	width,	0,	1)

				return	audioop.add(lsample,	rsample,	width)

If	you	use	 the	ADPCM	coder	 to	build	network	packets	and	you	want
your	 protocol	 to	 be	 stateless	 (i.e.	 to	 be	 able	 to	 tolerate	 packet	 loss)
you	should	not	only	transmit	the	data	but	also	the	state.	Note	that	you
should	 send	 the	 initial	 state	 (the	 one	 you	 passed	 to	 lin2adpcm())
along	to	the	decoder,	not	the	final	state	(as	returned	by	the	coder).	 If
you	want	to	use	struct.Struct	to	store	the	state	in	binary	you	can
code	the	first	element	(the	predicted	value)	in	16	bits	and	the	second
(the	delta	index)	in	8.

The	 ADPCM	 coders	 have	 never	 been	 tried	 against	 other	 ADPCM
coders,	only	against	themselves.	It	could	well	be	that	I	misinterpreted
the	 standards	 in	 which	 case	 they	 will	 not	 be	 interoperable	 with	 the
respective	standards.

The	find*()	 routines	might	 look	a	bit	 funny	at	 first	 sight.	They	are
primarily	meant	 to	do	echo	cancellation.	A	 reasonably	 fast	way	 to	do
this	 is	 to	 pick	 the	most	 energetic	 piece	 of	 the	 output	 sample,	 locate
that	in	the	input	sample	and	subtract	the	whole	output	sample	from	the
input	sample:

def	echocancel(outputdata,	inputdata):

				pos	=	audioop.findmax(outputdata,	800)				#	one	tenth	second

				out_test	=	outputdata[pos*2:]

				in_test	=	inputdata[pos*2:]

				ipos,	factor	=	audioop.findfit(in_test,	out_test

				#	Optional	(for	better	cancellation):

				#	factor	=	audioop.findfactor(in_test[ipos*2:ipos*2+len(out_test)],

				#														out_test)

				prefill	=	'\0'*(pos+ipos)*2

				postfill	=	'\0'*(len(inputdata)-len(prefill)-len

				outputdata	=	prefill	+	audioop.mul(outputdata,2,

				return	audioop.add(inputdata,	outputdata,	2)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.2.	aifc	—	Read	and	write
AIFF	and	AIFC	files
Source	code:	Lib/aifc.py

This	module	provides	support	for	reading	and	writing	AIFF	and	AIFF-C
files.	AIFF	is	Audio	Interchange	File	Format,	a	format	for	storing	digital
audio	samples	 in	a	 file.	AIFF-C	 is	a	newer	version	of	 the	 format	 that
includes	the	ability	to	compress	the	audio	data.

Note: 	Some	operations	may	only	work	under	IRIX;	these	will	raise
ImportError	when	attempting	to	import	the	cl	module,	which	is
only	available	on	IRIX.

Audio	files	have	a	number	of	parameters	that	describe	the	audio	data.
The	sampling	rate	or	frame	rate	is	the	number	of	times	per	second	the
sound	 is	 sampled.	 The	 number	 of	 channels	 indicate	 if	 the	 audio	 is
mono,	 stereo,	 or	 quadro.	 Each	 frame	 consists	 of	 one	 sample	 per
channel.	The	sample	size	is	the	size	in	bytes	of	each	sample.	Thus	a
frame	consists	of	nchannels	*	samplesize	bytes,	and	a	second’s
worth	 of	 audio	 consists	 of	 nchannels	 *	 samplesize	 *

framerate	bytes.

For	 example,	 CD	 quality	 audio	 has	 a	 sample	 size	 of	 two	 bytes	 (16
bits),	 uses	 two	 channels	 (stereo)	 and	 has	 a	 frame	 rate	 of	 44,100
frames/second.	 This	 gives	 a	 frame	 size	 of	 4	 bytes	 (2*2),	 and	 a
second’s	worth	occupies	2*2*44100	bytes	(176,400	bytes).

Module	aifc	defines	the	following	function:

http://hg.python.org/cpython/file/3.4/Lib/aifc.py

aifc.open(file,	mode=None)
Open	 an	 AIFF	 or	 AIFF-C	 file	 and	 return	 an	 object	 instance	 with
methods	 that	 are	 described	 below.	 The	 argument	 file	 is	 either	 a
string	naming	a	 file	 or	 a	 file	 object.	mode	must	 be	 'r'	 or	 'rb'
when	 the	 file	must	be	opened	 for	 reading,	or	'w'	or	'wb'	when
the	file	must	be	opened	for	writing.	If	omitted,	file.mode	is	used
if	it	exists,	otherwise	'rb'	is	used.	When	used	for	writing,	the	file
object	 should	 be	 seekable,	 unless	 you	 know	 ahead	 of	 time	 how
many	 samples	 you	 are	 going	 to	 write	 in	 total	 and	 use
writeframesraw()	and	setnframes().	The	open()	 function
may	 be	 used	 in	 a	 with	 statement.	 When	 the	 with	 block
completes,	the	close()	method	is	called.

Changed	 in	 version	 3.4:	 Support	 for	 the	 with	 statement	 was
added.

Objects	 returned	by	open()	when	a	 file	 is	opened	 for	 reading	have
the	following	methods:

aifc.getnchannels()
Return	the	number	of	audio	channels	(1	for	mono,	2	for	stereo).

aifc.getsampwidth()
Return	the	size	in	bytes	of	individual	samples.

aifc.getframerate()
Return	the	sampling	rate	(number	of	audio	frames	per	second).

aifc.getnframes()
Return	the	number	of	audio	frames	in	the	file.

aifc.getcomptype()

Return	a	bytes	array	of	length	4	describing	the	type	of	compression
used	 in	 the	 audio	 file.	 For	 AIFF	 files,	 the	 returned	 value	 is
b'NONE'.

aifc.getcompname()
Return	a	bytes	array	convertible	 to	a	human-readable	description
of	the	type	of	compression	used	in	the	audio	file.	For	AIFF	files,	the
returned	value	is	b'not	compressed'.

aifc.getparams()
Returns	 a	 namedtuple()	 (nchannels,	 sampwidth,

framerate,	nframes,	comptype,	compname),	equivalent	to
output	of	the	get*()	methods.

aifc.getmarkers()
Return	 a	 list	 of	markers	 in	 the	 audio	 file.	 A	marker	 consists	 of	 a
tuple	of	 three	elements.	The	 first	 is	 the	mark	 ID	 (an	 integer),	 the
second	 is	 the	mark	 position	 in	 frames	 from	 the	 beginning	 of	 the
data	(an	integer),	the	third	is	the	name	of	the	mark	(a	string).

aifc.getmark(id)
Return	the	tuple	as	described	in	getmarkers()	for	the	mark	with
the	given	id.

aifc.readframes(nframes)
Read	and	return	the	next	nframes	 frames	from	the	audio	file.	The
returned	 data	 is	 a	 string	 containing	 for	 each	 frame	 the
uncompressed	samples	of	all	channels.

aifc.rewind()
Rewind	 the	 read	pointer.	The	next	readframes()	will	 start	 from
the	beginning.

aifc.setpos(pos)
Seek	to	the	specified	frame	number.

aifc.tell()
Return	the	current	frame	number.

aifc.close()
Close	 the	 AIFF	 file.	 After	 calling	 this	 method,	 the	 object	 can	 no
longer	be	used.

Objects	returned	by	open()	when	a	file	is	opened	for	writing	have	all
the	 above	 methods,	 except	 for	 readframes()	 and	 setpos().	 In
addition	 the	 following	methods	exist.	The	get*()	methods	 can	 only
be	called	after	the	corresponding	set*()	methods	have	been	called.
Before	 the	 first	 writeframes()	 or	 writeframesraw(),	 all
parameters	except	for	the	number	of	frames	must	be	filled	in.

aifc.aiff()
Create	an	AIFF	 file.	The	default	 is	 that	 an	AIFF-C	 file	 is	 created,
unless	 the	 name	 of	 the	 file	 ends	 in	 '.aiff'	 in	 which	 case	 the
default	is	an	AIFF	file.

aifc.aifc()
Create	an	AIFF-C	file.	The	default	is	that	an	AIFF-C	file	is	created,
unless	 the	 name	 of	 the	 file	 ends	 in	 '.aiff'	 in	 which	 case	 the
default	is	an	AIFF	file.

aifc.setnchannels(nchannels)
Specify	the	number	of	channels	in	the	audio	file.

aifc.setsampwidth(width)
Specify	the	size	in	bytes	of	audio	samples.

aifc.setframerate(rate)
Specify	the	sampling	frequency	in	frames	per	second.

aifc.setnframes(nframes)
Specify	the	number	of	frames	that	are	to	be	written	to	the	audio	file.
If	 this	 parameter	 is	 not	 set,	 or	 not	 set	 correctly,	 the	 file	 needs	 to
support	seeking.

aifc.setcomptype(type,	name)
Specify	 the	compression	 type.	 If	not	specified,	 the	audio	data	will
not	be	compressed.	In	AIFF	files,	compression	is	not	possible.	The
name	 parameter	 should	 be	 a	 human-readable	 description	 of	 the
compression	type	as	a	bytes	array,	the	type	parameter	should	be	a
bytes	array	of	 length	4.	Currently	 the	following	compression	types
are	supported:	b'NONE',	b'ULAW',	b'ALAW',	b'G722'.

aifc.setparams(nchannels,	sampwidth,	framerate,	comptype,
compname)

Set	 all	 the	 above	 parameters	 at	 once.	 The	 argument	 is	 a	 tuple
consisting	of	the	various	parameters.	This	means	that	it	is	possible
to	 use	 the	 result	 of	 a	 getparams()	 call	 as	 argument	 to
setparams().

aifc.setmark(id,	pos,	name)
Add	a	mark	with	the	given	id	(larger	than	0),	and	the	given	name	at
the	given	position.	This	method	 can	be	 called	at	 any	 time	before
close().

aifc.tell()
Return	 the	 current	 write	 position	 in	 the	 output	 file.	 Useful	 in
combination	with	setmark().

aifc.writeframes(data)
Write	data	 to	 the	output	 file.	This	method	can	only	be	called	after
the	audio	file	parameters	have	been	set.

Changed	in	version	3.4:	Any	bytes-like	object	is	now	accepted.

aifc.writeframesraw(data)
Like	writeframes(),	except	 that	 the	header	of	 the	audio	 file	 is
not	updated.

Changed	in	version	3.4:	Any	bytes-like	object	is	now	accepted.

aifc.close()
Close	the	AIFF	file.	The	header	of	the	file	is	updated	to	reflect	the
actual	size	of	 the	audio	data.	After	calling	 this	method,	 the	object
can	no	longer	be	used.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.3.	sunau	—	Read	and	write
Sun	AU	files
Source	code:	Lib/sunau.py

The	 sunau	 module	 provides	 a	 convenient	 interface	 to	 the	 Sun	 AU
sound	 format.	Note	 that	 this	module	 is	 interface-compatible	 with	 the
modules	aifc	and	wave.

An	audio	 file	consists	of	a	header	 followed	by	 the	data.	The	fields	of
the	header	are:

Field Contents

magic	word The	four	bytes	.snd.

header	size Size	of	the	header,	including	info,	in	bytes.

data	size Physical	size	of	the	data,	in	bytes.

encoding Indicates	how	the	audio	samples	are	encoded.

sample	rate The	sampling	rate.

#	of	channels The	number	of	channels	in	the	samples.

info ASCII	string	giving	a	description	of	the	audio	file
(padded	with	null	bytes).

Apart	from	the	info	field,	all	header	fields	are	4	bytes	in	size.	They	are
all	32-bit	unsigned	integers	encoded	in	big-endian	byte	order.

The	sunau	module	defines	the	following	functions:

sunau.open(file,	mode)

http://hg.python.org/cpython/file/3.4/Lib/sunau.py

If	file	is	a	string,	open	the	file	by	that	name,	otherwise	treat	it	as	a
seekable	file-like	object.	mode	can	be	any	of

'r'

Read	only	mode.

'w'

Write	only	mode.

Note	that	it	does	not	allow	read/write	files.

A	mode	of	'r'	returns	a	AU_read	object,	while	a	mode	of	'w'	or
'wb'	returns	a	AU_write	object.

sunau.openfp(file,	mode)
A	synonym	for	open(),	maintained	for	backwards	compatibility.

The	sunau	module	defines	the	following	exception:

exception	sunau.Error
An	error	raised	when	something	is	impossible	because	of	Sun	AU
specs	or	implementation	deficiency.

The	sunau	module	defines	the	following	data	items:

sunau.AUDIO_FILE_MAGIC

An	integer	every	valid	Sun	AU	file	begins	with,	stored	in	big-endian
form.	This	is	the	string	.snd	interpreted	as	an	integer.

sunau.AUDIO_FILE_ENCODING_MULAW_8

sunau.AUDIO_FILE_ENCODING_LINEAR_8

sunau.AUDIO_FILE_ENCODING_LINEAR_16

sunau.AUDIO_FILE_ENCODING_LINEAR_24

sunau.AUDIO_FILE_ENCODING_LINEAR_32

sunau.AUDIO_FILE_ENCODING_ALAW_8

Values	 of	 the	 encoding	 field	 from	 the	 AU	 header	 which	 are
supported	by	this	module.

sunau.AUDIO_FILE_ENCODING_FLOAT

sunau.AUDIO_FILE_ENCODING_DOUBLE

sunau.AUDIO_FILE_ENCODING_ADPCM_G721

sunau.AUDIO_FILE_ENCODING_ADPCM_G722

sunau.AUDIO_FILE_ENCODING_ADPCM_G723_3

sunau.AUDIO_FILE_ENCODING_ADPCM_G723_5

Additional	known	values	of	the	encoding	field	from	the	AU	header,
but	which	are	not	supported	by	this	module.

22.3.1.	AU_read	Objects

AU_read	 objects,	 as	 returned	 by	 open()	 above,	 have	 the	 following
methods:

AU_read.close()
Close	the	stream,	and	make	the	instance	unusable.	(This	is	called
automatically	on	deletion.)

AU_read.getnchannels()
Returns	number	of	audio	channels	(1	for	mone,	2	for	stereo).

AU_read.getsampwidth()
Returns	sample	width	in	bytes.

AU_read.getframerate()
Returns	sampling	frequency.

AU_read.getnframes()
Returns	number	of	audio	frames.

AU_read.getcomptype()
Returns	 compression	 type.	 Supported	 compression	 types	 are
'ULAW',	'ALAW'	and	'NONE'.

AU_read.getcompname()
Human-readable	 version	 of	 getcomptype().	 The	 supported
types	 have	 the	 respective	 names	 'CCITT	 G.711	 u-law',
'CCITT	G.711	A-law'	and	'not	compressed'.

AU_read.getparams()
Returns	 a	 namedtuple()	 (nchannels,	 sampwidth,

framerate,	nframes,	comptype,	compname),	equivalent	to
output	of	the	get*()	methods.

AU_read.readframes(n)
Reads	and	returns	at	most	n	frames	of	audio,	as	a	string	of	bytes.
The	data	will	be	returned	in	linear	format.	If	the	original	data	is	in	u-
LAW	format,	it	will	be	converted.

AU_read.rewind()
Rewind	the	file	pointer	to	the	beginning	of	the	audio	stream.

The	following	two	methods	define	a	term	“position”	which	is	compatible
between	them,	and	is	otherwise	implementation	dependent.

AU_read.setpos(pos)
Set	 the	 file	pointer	 to	 the	specified	position.	Only	values	 returned
from	tell()	should	be	used	for	pos.

AU_read.tell()
Return	 current	 file	 pointer	 position.	 Note	 that	 the	 returned	 value
has	nothing	to	do	with	the	actual	position	in	the	file.

The	following	two	functions	are	defined	for	compatibility	with	the	aifc,
and	don’t	do	anything	interesting.

AU_read.getmarkers()
Returns	None.

AU_read.getmark(id)
Raise	an	error.

22.3.2.	AU_write	Objects

AU_write	 objects,	 as	 returned	by	 open()	 above,	 have	 the	 following
methods:

AU_write.setnchannels(n)
Set	the	number	of	channels.

AU_write.setsampwidth(n)
Set	the	sample	width	(in	bytes.)

Changed	in	version	3.4:	Added	support	for	24-bit	samples.

AU_write.setframerate(n)
Set	the	frame	rate.

AU_write.setnframes(n)
Set	the	number	of	frames.	This	can	be	later	changed,	when	and	if
more	frames	are	written.

AU_write.setcomptype(type,	name)
Set	 the	 compression	 type	 and	 description.	 Only	 'NONE'	 and
'ULAW'	are	supported	on	output.

AU_write.setparams(tuple)
The	 tuple	 should	 be	 (nchannels,	sampwidth,	framerate,
nframes,	 comptype,	 compname),	 with	 values	 valid	 for	 the
set*()	methods.	Set	all	parameters.

AU_write.tell()
Return	current	position	in	the	file,	with	the	same	disclaimer	for	the
AU_read.tell()	and	AU_read.setpos()	methods.

AU_write.writeframesraw(data)
Write	audio	frames,	without	correcting	nframes.

Changed	in	version	3.4:	Any	bytes-like	object	is	now	accepted.

AU_write.writeframes(data)
Write	audio	frames	and	make	sure	nframes	is	correct.

Changed	in	version	3.4:	Any	bytes-like	object	is	now	accepted.

AU_write.close()
Make	sure	nframes	is	correct,	and	close	the	file.

This	method	is	called	upon	deletion.

Note	 that	 it	 is	 invalid	 to	 set	 any	 parameters	 after	 calling
writeframes()	or	writeframesraw().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.4.	wave	—	Read	and	write
WAV	files
Source	code:	Lib/wave.py

The	wave	module	provides	a	convenient	 interface	to	the	WAV	sound
format.	 It	 does	 not	 support	 compression/decompression,	 but	 it	 does
support	mono/stereo.

The	wave	module	defines	the	following	function	and	exception:

wave.open(file,	mode=None)
If	file	is	a	string,	open	the	file	by	that	name,	otherwise	treat	it	as	a
file-like	object.	mode	can	be:

'rb'

Read	only	mode.

'wb'

Write	only	mode.

Note	that	it	does	not	allow	read/write	WAV	files.

A	mode	 of	 'rb'	 returns	 a	 Wave_read	 object,	 while	 a	mode	 of
'wb'	returns	a	Wave_write	object.	If	mode	is	omitted	and	a	file-
like	 object	 is	 passed	 as	 file,	 file.mode	 is	 used	 as	 the	 default
value	for	mode.

If	 you	 pass	 in	 a	 file-like	 object,	 the	 wave	 object	 will	 not	 close	 it
when	its	close()	method	is	called;	 it	 is	the	caller’s	responsibility
to	close	the	file	object.

http://hg.python.org/cpython/file/3.4/Lib/wave.py

The	open()	function	may	be	used	in	a	with	statement.	When	the
with	 block	 completes,	 the	 Wave_read.close()	 or
Wave_write.close()	method	is	called.

Changed	in	version	3.4:	Added	support	for	unseekable	files.

wave.openfp(file,	mode)
A	synonym	for	open(),	maintained	for	backwards	compatibility.

exception	wave.Error
An	error	 raised	when	something	 is	 impossible	because	 it	 violates
the	WAV	specification	or	hits	an	implementation	deficiency.

22.4.1.	Wave_read	Objects

Wave_read	 objects,	 as	 returned	 by	 open(),	 have	 the	 following
methods:

Wave_read.close()
Close	the	stream	if	it	was	opened	by	wave,	and	make	the	instance
unusable.	This	is	called	automatically	on	object	collection.

Wave_read.getnchannels()
Returns	number	of	audio	channels	(1	for	mono,	2	for	stereo).

Wave_read.getsampwidth()
Returns	sample	width	in	bytes.

Wave_read.getframerate()
Returns	sampling	frequency.

Wave_read.getnframes()
Returns	number	of	audio	frames.

Wave_read.getcomptype()
Returns	compression	type	('NONE'	is	the	only	supported	type).

Wave_read.getcompname()
Human-readable	 version	 of	 getcomptype().	 Usually	 'not

compressed'	parallels	'NONE'.

Wave_read.getparams()
Returns	 a	 namedtuple()	 (nchannels,	 sampwidth,

framerate,	nframes,	comptype,	compname),	equivalent	to

output	of	the	get*()	methods.

Wave_read.readframes(n)
Reads	and	returns	at	most	n	frames	of	audio,	as	a	string	of	bytes.

Wave_read.rewind()
Rewind	the	file	pointer	to	the	beginning	of	the	audio	stream.

The	following	two	methods	are	defined	for	compatibility	with	the	aifc
module,	and	don’t	do	anything	interesting.

Wave_read.getmarkers()
Returns	None.

Wave_read.getmark(id)
Raise	an	error.

The	following	two	methods	define	a	term	“position”	which	is	compatible
between	them,	and	is	otherwise	implementation	dependent.

Wave_read.setpos(pos)
Set	the	file	pointer	to	the	specified	position.

Wave_read.tell()
Return	current	file	pointer	position.

22.4.2.	Wave_write	Objects

For	 seekable	 output	 streams,	 the	 wave	 header	will	 automatically	 be
updated	 to	 reflect	 the	 number	 of	 frames	 actually	 written.	 For
unseekable	 streams,	 the	nframes	 value	must	 be	 accurate	 when	 the
first	frame	data	is	written.	An	accurate	nframes	value	can	be	achieved
either	by	calling	setnframes()	or	setparams()	with	the	number	of
frames	 that	will	 be	written	before	 close()	 is	 called	 and	 then	 using
writeframesraw()	 to	 write	 the	 frame	 data,	 or	 by	 calling
writeframes()	with	all	of	the	frame	data	to	be	written.	In	the	latter
case	writeframes()	will	calculate	the	number	of	frames	in	the	data
and	set	nframes	accordingly	before	writing	the	frame	data.

Wave_write	 objects,	 as	 returned	 by	 open(),	 have	 the	 following
methods:

Changed	in	version	3.4:	Added	support	for	unseekable	files.

Wave_write.close()
Make	sure	nframes	is	correct,	and	close	the	file	if	it	was	opened	by
wave.	This	method	is	called	upon	object	collection.	It	will	raise	an
exception	 if	 the	 output	 stream	 is	 not	 seekable	 and	nframes	 does
not	match	the	number	of	frames	actually	written.

Wave_write.setnchannels(n)
Set	the	number	of	channels.

Wave_write.setsampwidth(n)
Set	the	sample	width	to	n	bytes.

Wave_write.setframerate(n)

Set	the	frame	rate	to	n.

Changed	 in	 version	 3.2:	 A	 non-integral	 input	 to	 this	 method	 is
rounded	to	the	nearest	integer.

Wave_write.setnframes(n)
Set	 the	 number	 of	 frames	 to	 n.	 This	 will	 be	 changed	 later	 if	 the
number	of	 frames	actually	written	 is	different	 (this	update	attempt
will	raise	an	error	if	the	output	stream	is	not	seekable).

Wave_write.setcomptype(type,	name)
Set	 the	 compression	 type	 and	 description.	 At	 the	 moment,	 only
compression	type	NONE	is	supported,	meaning	no	compression.

Wave_write.setparams(tuple)
The	 tuple	 should	 be	 (nchannels,	sampwidth,	framerate,
nframes,	 comptype,	 compname),	 with	 values	 valid	 for	 the
set*()	methods.	Sets	all	parameters.

Wave_write.tell()
Return	current	position	in	the	file,	with	the	same	disclaimer	for	the
Wave_read.tell()	and	Wave_read.setpos()	methods.

Wave_write.writeframesraw(data)
Write	audio	frames,	without	correcting	nframes.

Changed	in	version	3.4:	Any	bytes-like	object	is	now	accepted.

Wave_write.writeframes(data)
Write	audio	 frames	and	make	sure	nframes	 is	correct.	 It	will	 raise
an	error	 if	 the	output	stream	is	not	seekable	and	the	total	number
of	frames	that	have	been	written	after	data	has	been	written	does
not	match	the	previously	set	value	for	nframes.

Changed	in	version	3.4:	Any	bytes-like	object	is	now	accepted.

Note	 that	 it	 is	 invalid	 to	 set	 any	 parameters	 after	 calling
writeframes()	or	writeframesraw(),	and	any	attempt	to	do	so
will	raise	wave.Error.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.5.	chunk	—	Read	IFF	chunked
data
This	module	provides	an	interface	for	reading	files	that	use	EA	IFF	85
chunks.	 [1]	This	 format	 is	used	 in	at	 least	 the	Audio	 Interchange	File
Format	 (AIFF/AIFF-C)	and	 the	Real	Media	File	Format	 (RMFF).	The
WAVE	audio	file	format	 is	closely	related	and	can	also	be	read	using
this	module.

A	chunk	has	the	following	structure:

Offset Length Contents

0 4 Chunk	ID

4 4 Size	of	chunk	in	big-endian	byte	order,	not
including	the	header

8 n Data	bytes,	where	n	is	the	size	given	in
the	preceding	field

8	+	n 0	or	1 Pad	byte	needed	if	n	is	odd	and	chunk
alignment	is	used

The	ID	is	a	4-byte	string	which	identifies	the	type	of	chunk.

The	 size	 field	 (a	 32-bit	 value,	 encoded	 using	 big-endian	 byte	 order)
gives	the	size	of	the	chunk	data,	not	including	the	8-byte	header.

Usually	an	IFF-type	file	consists	of	one	or	more	chunks.	The	proposed
usage	of	the	Chunk	class	defined	here	is	to	instantiate	an	instance	at
the	start	of	each	chunk	and	read	from	the	instance	until	it	reaches	the
end,	after	which	a	new	instance	can	be	instantiated.	At	the	end	of	the
file,	creating	a	new	instance	will	fail	with	a	EOFError	exception.

class	chunk.Chunk(file,	align=True,	bigendian=True,
inclheader=False)

Class	which	represents	a	chunk.	The	file	argument	 is	expected	to
be	a	file-like	object.	An	instance	of	this	class	is	specifically	allowed.
The	 only	 method	 that	 is	 needed	 is	 read().	 If	 the	 methods
seek()	 and	 tell()	 are	 present	 and	 don’t	 raise	 an	 exception,
they	 are	 also	 used.	 If	 these	 methods	 are	 present	 and	 raise	 an
exception,	 they	are	expected	to	not	have	altered	the	object.	 If	 the
optional	argument	align	is	true,	chunks	are	assumed	to	be	aligned
on	 2-byte	 boundaries.	 If	align	 is	 false,	 no	 alignment	 is	 assumed.
The	 default	 value	 is	 true.	 If	 the	 optional	 argument	 bigendian	 is
false,	the	chunk	size	is	assumed	to	be	in	little-endian	order.	This	is
needed	 for	 WAVE	 audio	 files.	 The	 default	 value	 is	 true.	 If	 the
optional	 argument	 inclheader	 is	 true,	 the	 size	 given	 in	 the	 chunk
header	includes	the	size	of	the	header.	The	default	value	is	false.

A	Chunk	object	supports	the	following	methods:

getname()
Returns	the	name	(ID)	of	the	chunk.	This	is	the	first	4	bytes	of
the	chunk.

getsize()
Returns	the	size	of	the	chunk.

close()
Close	and	skip	to	the	end	of	the	chunk.	This	does	not	close	the
underlying	file.

The	 remaining	 methods	 will	 raise	 OSError	 if	 called	 after	 the
close()	method	has	been	called.	Before	Python	3.3,	they	used	to
raise	IOError,	now	an	alias	of	OSError.

isatty()
Returns	False.

seek(pos,	whence=0)
Set	 the	 chunk’s	 current	 position.	 The	 whence	 argument	 is
optional	 and	 defaults	 to	 0	 (absolute	 file	 positioning);	 other
values	are	1	(seek	relative	to	the	current	position)	and	2	(seek
relative	 to	 the	 file’s	 end).	 There	 is	 no	 return	 value.	 If	 the
underlying	 file	 does	 not	 allow	 seek,	 only	 forward	 seeks	 are
allowed.

tell()
Return	the	current	position	into	the	chunk.

read(size=-1)
Read	at	most	size	bytes	from	the	chunk	(less	if	the	read	hits	the
end	 of	 the	 chunk	 before	 obtaining	 size	 bytes).	 If	 the	 size
argument	 is	negative	or	omitted,	 read	all	 data	until	 the	end	of
the	chunk.	An	empty	bytes	object	 is	 returned	when	 the	end	of
the	chunk	is	encountered	immediately.

skip()
Skip	to	the	end	of	the	chunk.	All	further	calls	to	read()	for	the
chunk	will	return	b''.	 If	you	are	not	 interested	 in	 the	contents
of	the	chunk,	this	method	should	be	called	so	that	the	file	points
to	the	start	of	the	next	chunk.

Footnotes

[1] “EA	IFF	85”	Standard	for	Interchange	Format	Files,	Jerry
Morrison,	Electronic	Arts,	January	1985.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.6.	colorsys	—	Conversions
between	color	systems
Source	code:	Lib/colorsys.py

The	 colorsys	 module	 defines	 bidirectional	 conversions	 of	 color
values	between	colors	expressed	in	the	RGB	(Red	Green	Blue)	color
space	used	in	computer	monitors	and	three	other	coordinate	systems:
YIQ,	HLS	(Hue	Lightness	Saturation)	and	HSV	(Hue	Saturation	Value).
Coordinates	 in	 all	 of	 these	 color	 spaces	 are	 floating	 point	 values.	 In
the	YIQ	space,	the	Y	coordinate	is	between	0	and	1,	but	the	I	and	Q
coordinates	 can	 be	 positive	 or	 negative.	 In	 all	 other	 spaces,	 the
coordinates	are	all	between	0	and	1.

See	also: 	More	information	about	color	spaces	can	be	found	at
http://www.poynton.com/ColorFAQ.html	and
http://www.cambridgeincolour.com/tutorials/color-spaces.htm.

The	colorsys	module	defines	the	following	functions:

colorsys.rgb_to_yiq(r,	g,	b)
Convert	the	color	from	RGB	coordinates	to	YIQ	coordinates.

colorsys.yiq_to_rgb(y,	i,	q)
Convert	the	color	from	YIQ	coordinates	to	RGB	coordinates.

colorsys.rgb_to_hls(r,	g,	b)
Convert	the	color	from	RGB	coordinates	to	HLS	coordinates.

colorsys.hls_to_rgb(h,	l,	s)

http://hg.python.org/cpython/file/3.4/Lib/colorsys.py
http://www.poynton.com/ColorFAQ.html
http://www.cambridgeincolour.com/tutorials/color-spaces.htm

Convert	the	color	from	HLS	coordinates	to	RGB	coordinates.

colorsys.rgb_to_hsv(r,	g,	b)
Convert	the	color	from	RGB	coordinates	to	HSV	coordinates.

colorsys.hsv_to_rgb(h,	s,	v)
Convert	the	color	from	HSV	coordinates	to	RGB	coordinates.

Example:

>>>	import	colorsys

>>>	colorsys.rgb_to_hsv(0.2,	0.4,	0.4)

(0.5,	0.5,	0.4)

>>>	colorsys.hsv_to_rgb(0.5,	0.5,	0.4)

(0.2,	0.4,	0.4)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.7.	imghdr	—	Determine	the
type	of	an	image
Source	code:	Lib/imghdr.py

The	imghdr	module	determines	the	type	of	image	contained	in	a	file
or	byte	stream.

The	imghdr	module	defines	the	following	function:

imghdr.what(filename,	h=None)
Tests	the	image	data	contained	in	the	file	named	by	filename,	and
returns	a	string	describing	the	image	type.	If	optional	h	is	provided,
the	 filename	 is	 ignored	 and	 h	 is	 assumed	 to	 contain	 the	 byte
stream	to	test.

The	 following	 image	 types	 are	 recognized,	 as	 listed	 below	 with	 the
return	value	from	what():

Value Image	format

'rgb' SGI	ImgLib	Files

'gif' GIF	87a	and	89a	Files

'pbm' Portable	Bitmap	Files

'pgm' Portable	Graymap	Files

'ppm' Portable	Pixmap	Files

'tiff' TIFF	Files

'rast' Sun	Raster	Files

http://hg.python.org/cpython/file/3.4/Lib/imghdr.py

'xbm' X	Bitmap	Files

'jpeg'
JPEG	data	in	JFIF	or	Exif
formats

'bmp' BMP	files

'png' Portable	Network	Graphics

You	 can	 extend	 the	 list	 of	 file	 types	 imghdr	 can	 recognize	 by
appending	to	this	variable:

imghdr.tests

A	 list	 of	 functions	 performing	 the	 individual	 tests.	 Each	 function
takes	two	arguments:	the	byte-stream	and	an	open	file-like	object.
When	what()	 is	called	with	a	byte-stream,	 the	file-like	object	will
be	None.

The	test	function	should	return	a	string	describing	the	image	type	if
the	test	succeeded,	or	None	if	it	failed.

Example:

>>>	import	imghdr

>>>	imghdr.what('bass.gif')

'gif'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.8.	sndhdr	—	Determine	type	of
sound	file
Source	code:	Lib/sndhdr.py

The	sndhdr	provides	utility	functions	which	attempt	to	determine	the
type	of	sound	data	which	is	in	a	file.	When	these	functions	are	able	to
determine	 what	 type	 of	 sound	 data	 is	 stored	 in	 a	 file,	 they	 return	 a
tuple	 (type,	 sampling_rate,	 channels,	 frames,

bits_per_sample).	The	value	for	 type	 indicates	 the	data	 type	and
will	be	one	of	the	strings	'aifc',	'aiff',	'au',	'hcom',	'sndr',
'sndt',	 'voc',	 'wav',	 '8svx',	 'sb',	 'ub',	 or	 'ul'.	 The
sampling_rate	will	be	either	the	actual	value	or	0	if	unknown	or	difficult
to	decode.	Similarly,	channels	will	be	either	the	number	of	channels	or
0	 if	 it	cannot	be	determined	or	 if	 the	value	 is	difficult	 to	decode.	The
value	 for	 frames	will	 be	either	 the	number	of	 frames	or	-1.	The	 last
item	in	the	tuple,	bits_per_sample,	will	either	be	the	sample	size	in	bits
or	'A'	for	A-LAW	or	'U'	for	u-LAW.

sndhdr.what(filename)
Determines	the	type	of	sound	data	stored	in	the	file	filename	using
whathdr().	 If	 it	 succeeds,	 returns	 a	 tuple	 as	 described	 above,
otherwise	None	is	returned.

sndhdr.whathdr(filename)
Determines	the	type	of	sound	data	stored	in	a	file	based	on	the	file
header.	 The	 name	 of	 the	 file	 is	 given	 by	 filename.	 This	 function
returns	a	tuple	as	described	above	on	success,	or	None.

http://hg.python.org/cpython/file/3.4/Lib/sndhdr.py

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

http://www.python.org/

22.9.	ossaudiodev	—	Access	to
OSS-compatible	audio	devices
This	 module	 allows	 you	 to	 access	 the	 OSS	 (Open	 Sound	 System)
audio	interface.	OSS	is	available	for	a	wide	range	of	open-source	and
commercial	Unices,	and	is	the	standard	audio	interface	for	Linux	and
recent	versions	of	FreeBSD.

Changed	in	version	3.3:	Operations	in	this	module	now	raise	OSError
where	IOError	was	raised.

See	also:

Open	Sound	System	Programmer’s	Guide
the	official	documentation	for	the	OSS	C	API

The	 module	 defines	 a	 large	 number	 of	 constants	 supplied	 by	 the
OSS	 device	 driver;	 see	 <sys/soundcard.h>	 on	 either	 Linux	 or
FreeBSD	for	a	listing.

ossaudiodev	defines	the	following	variables	and	functions:

exception	ossaudiodev.OSSAudioError
This	exception	is	raised	on	certain	errors.	The	argument	is	a	string
describing	what	went	wrong.

(If	 ossaudiodev	 receives	 an	 error	 from	 a	 system	 call	 such	 as
open(),	 write(),	 or	 ioctl(),	 it	 raises	 OSError.	 Errors
detected	directly	by	ossaudiodev	result	in	OSSAudioError.)

(For	backwards	compatibility,	 the	exception	class	 is	also	available

http://www.opensound.com/pguide/oss.pdf

as	ossaudiodev.error.)

ossaudiodev.open(mode)
ossaudiodev.open(device,	mode)

Open	an	audio	device	and	return	an	OSS	audio	device	object.	This
object	 supports	 many	 file-like	 methods,	 such	 as	 read(),
write(),	 and	 fileno()	 (although	 there	 are	 subtle	 differences
between	conventional	Unix	read/write	semantics	and	those	of	OSS
audio	 devices).	 It	 also	 supports	 a	 number	 of	 audio-specific
methods;	see	below	for	the	complete	list	of	methods.

device	is	the	audio	device	filename	to	use.	If	it	is	not	specified,	this
module	 first	 looks	 in	 the	 environment	 variable	 AUDIODEV	 for	 a
device	to	use.	If	not	found,	it	falls	back	to	/dev/dsp.

mode	 is	one	of	'r'	 for	 read-only	 (record)	access,	'w'	 for	write-
only	 (playback)	 access	 and	 'rw'	 for	 both.	 Since	 many	 sound
cards	only	allow	one	process	to	have	the	recorder	or	player	open
at	a	time,	 it	 is	a	good	idea	to	open	the	device	only	for	 the	activity
needed.	 Further,	 some	 sound	 cards	 are	 half-duplex:	 they	 can	 be
opened	for	reading	or	writing,	but	not	both	at	once.

Note	the	unusual	calling	syntax:	the	first	argument	is	optional,	and
the	second	is	required.	This	 is	a	historical	artifact	 for	compatibility
with	 the	 older	 linuxaudiodev	 module	 which	 ossaudiodev
supersedes.

ossaudiodev.openmixer([device])
Open	 a	 mixer	 device	 and	 return	 an	 OSS	 mixer	 device	 object.
device	is	the	mixer	device	filename	to	use.	If	it	is	not	specified,	this
module	 first	 looks	 in	 the	 environment	 variable	 MIXERDEV	 for	 a
device	to	use.	If	not	found,	it	falls	back	to	/dev/mixer.

22.9.1.	Audio	Device	Objects

Before	you	can	write	 to	or	 read	 from	an	audio	device,	 you	must	 call
three	methods	in	the	correct	order:

1.	 setfmt()	to	set	the	output	format
2.	 channels()	to	set	the	number	of	channels
3.	 speed()	to	set	the	sample	rate

Alternately,	 you	 can	 use	 the	 setparameters()	 method	 to	 set	 all
three	audio	parameters	at	once.	This	is	more	convenient,	but	may	not
be	as	flexible	in	all	cases.

The	 audio	 device	 objects	 returned	 by	 open()	 define	 the	 following
methods	and	(read-only)	attributes:

oss_audio_device.close()
Explicitly	close	the	audio	device.	When	you	are	done	writing	to	or
reading	 from	 an	 audio	 device,	 you	 should	 explicitly	 close	 it.	 A
closed	device	cannot	be	used	again.

oss_audio_device.fileno()
Return	the	file	descriptor	associated	with	the	device.

oss_audio_device.read(size)
Read	size	bytes	from	the	audio	input	and	return	them	as	a	Python
string.	 Unlike	 most	 Unix	 device	 drivers,	 OSS	 audio	 devices	 in
blocking	 mode	 (the	 default)	 will	 block	 read()	 until	 the	 entire
requested	amount	of	data	is	available.

oss_audio_device.write(data)
Write	 the	 Python	 string	 data	 to	 the	 audio	 device	 and	 return	 the

number	 of	 bytes	 written.	 If	 the	 audio	 device	 is	 in	 blocking	mode
(the	 default),	 the	 entire	 string	 is	 always	 written	 (again,	 this	 is
different	from	usual	Unix	device	semantics).	If	the	device	is	in	non-
blocking	mode,	some	data	may	not	be	written	—see	writeall().

oss_audio_device.writeall(data)
Write	 the	entire	Python	string	data	 to	 the	audio	device:	waits	until
the	audio	device	 is	able	to	accept	data,	writes	as	much	data	as	 it
will	accept,	and	 repeats	until	data	 has	been	completely	written.	 If
the	 device	 is	 in	 blocking	 mode	 (the	 default),	 this	 has	 the	 same
effect	 as	 write();	 writeall()	 is	 only	 useful	 in	 non-blocking
mode.	 Has	 no	 return	 value,	 since	 the	 amount	 of	 data	 written	 is
always	equal	to	the	amount	of	data	supplied.

Changed	in	version	3.2:	Audio	device	objects	also	support	the	context
manager	protocol,	i.e.	they	can	be	used	in	a	with	statement.

The	following	methods	each	map	to	exactly	one	ioctl()	system	call.
The	correspondence	is	obvious:	for	example,	setfmt()	corresponds
to	 the	 SNDCTL_DSP_SETFMT	 ioctl,	 and	 sync()	 to
SNDCTL_DSP_SYNC	 (this	 can	 be	 useful	 when	 consulting	 the	 OSS
documentation).	 If	 the	 underlying	 ioctl()	 fails,	 they	 all	 raise
OSError.

oss_audio_device.nonblock()
Put	 the	 device	 into	 non-blocking	 mode.	 Once	 in	 non-blocking
mode,	there	is	no	way	to	return	it	to	blocking	mode.

oss_audio_device.getfmts()
Return	 a	 bitmask	 of	 the	 audio	 output	 formats	 supported	 by	 the
soundcard.	Some	of	the	formats	supported	by	OSS	are:

Format Description

AFMT_MU_LAW
a	logarithmic	encoding	(used	by	Sun
.au	files	and	/dev/audio)

AFMT_A_LAW a	logarithmic	encoding

AFMT_IMA_ADPCM
a	4:1	compressed	format	defined	by	the
Interactive	Multimedia	Association

AFMT_U8 Unsigned,	8-bit	audio

AFMT_S16_LE
Signed,	16-bit	audio,	little-endian	byte
order	(as	used	by	Intel	processors)

AFMT_S16_BE
Signed,	16-bit	audio,	big-endian	byte
order	(as	used	by	68k,	PowerPC,	Sparc)

AFMT_S8 Signed,	8	bit	audio

AFMT_U16_LE Unsigned,	16-bit	little-endian	audio

AFMT_U16_BE Unsigned,	16-bit	big-endian	audio

Consult	the	OSS	documentation	for	a	full	list	of	audio	formats,	and
note	 that	 most	 devices	 support	 only	 a	 subset	 of	 these	 formats.
Some	 older	 devices	 only	 support	 AFMT_U8;	 the	 most	 common
format	used	today	is	AFMT_S16_LE.

oss_audio_device.setfmt(format)
Try	to	set	the	current	audio	format	to	format—see	getfmts()	 for
a	 list.	Returns	 the	audio	 format	 that	 the	device	was	set	 to,	which
may	not	be	 the	requested	 format.	May	also	be	used	 to	 return	 the
current	 audio	 format—do	 this	 by	 passing	 an	 “audio	 format”	 of
AFMT_QUERY.

oss_audio_device.channels(nchannels)
Set	 the	 number	 of	 output	 channels	 to	 nchannels.	 A	 value	 of	 1
indicates	monophonic	 sound,	 2	 stereophonic.	Some	devices	may

have	more	 than	2	channels,	and	some	high-end	devices	may	not
support	mono.	Returns	the	number	of	channels	the	device	was	set
to.

oss_audio_device.speed(samplerate)
Try	 to	 set	 the	 audio	 sampling	 rate	 to	 samplerate	 samples	 per
second.	Returns	 the	 rate	 actually	 set.	 Most	 sound	 devices	 don’t
support	arbitrary	sampling	rates.	Common	rates	are:

Rate Description

8000 default	rate	for	/dev/audio

11025 speech	recording

22050 	

44100 CD	quality	audio	(at	16	bits/sample	and	2
channels)

96000 DVD	quality	audio	(at	24	bits/sample)

oss_audio_device.sync()
Wait	until	the	sound	device	has	played	every	byte	in	its	buffer.	(This
happens	 implicitly	 when	 the	 device	 is	 closed.)	 The	 OSS
documentation	 recommends	 closing	 and	 re-opening	 the	 device
rather	than	using	sync().

oss_audio_device.reset()
Immediately	 stop	 playing	 or	 recording	 and	 return	 the	 device	 to	 a
state	 where	 it	 can	 accept	 commands.	 The	 OSS	 documentation
recommends	 closing	 and	 re-opening	 the	 device	 after	 calling
reset().

oss_audio_device.post()
Tell	 the	 driver	 that	 there	 is	 likely	 to	 be	 a	 pause	 in	 the	 output,

making	 it	 possible	 for	 the	 device	 to	 handle	 the	 pause	 more
intelligently.	 You	might	 use	 this	 after	 playing	 a	 spot	 sound	 effect,
before	waiting	for	user	input,	or	before	doing	disk	I/O.

The	 following	 convenience	 methods	 combine	 several	 ioctls,	 or	 one
ioctl	and	some	simple	calculations.

oss_audio_device.setparameters(format,	nchannels,
samplerate[,	strict=False])

Set	the	key	audio	sampling	parameters—sample	format,	number	of
channels,	 and	 sampling	 rate—in	 one	 method	 call.	 format,
nchannels,	 and	 samplerate	 should	 be	 as	 specified	 in	 the
setfmt(),	channels(),	and	speed()	methods.	If	strict	 is	 true,
setparameters()	checks	to	see	if	each	parameter	was	actually
set	 to	 the	 requested	 value,	 and	 raises	 OSSAudioError	 if	 not.
Returns	 a	 tuple	 (format,	 nchannels,	 samplerate)	 indicating	 the
parameter	values	 that	were	actually	set	by	 the	device	driver	 (i.e.,
the	 same	 as	 the	 return	 values	 of	 setfmt(),	 channels(),	 and
speed()).

For	example,

(fmt,	channels,	rate)	=	dsp.setparameters(fmt,	channels

is	equivalent	to

fmt	=	dsp.setfmt(fmt)

channels	=	dsp.channels(channels)

rate	=	dsp.rate(rate)

oss_audio_device.bufsize()
Returns	the	size	of	the	hardware	buffer,	in	samples.

oss_audio_device.obufcount()
Returns	the	number	of	samples	that	are	in	the	hardware	buffer	yet
to	be	played.

oss_audio_device.obuffree()
Returns	 the	 number	 of	 samples	 that	 could	 be	 queued	 into	 the
hardware	buffer	to	be	played	without	blocking.

Audio	device	objects	also	support	several	read-only	attributes:

oss_audio_device.closed

Boolean	indicating	whether	the	device	has	been	closed.

oss_audio_device.name

String	containing	the	name	of	the	device	file.

oss_audio_device.mode

The	I/O	mode	for	the	file,	either	"r",	"rw",	or	"w".

22.9.2.	Mixer	Device	Objects

The	mixer	object	provides	two	file-like	methods:

oss_mixer_device.close()
This	method	closes	the	open	mixer	device	file.	Any	further	attempts
to	use	the	mixer	after	this	file	is	closed	will	raise	an	OSError.

oss_mixer_device.fileno()
Returns	the	file	handle	number	of	the	open	mixer	device	file.

Changed	 in	 version	 3.2:	 Mixer	 objects	 also	 support	 the	 context
manager	protocol.

The	remaining	methods	are	specific	to	audio	mixing:

oss_mixer_device.controls()
This	 method	 returns	 a	 bitmask	 specifying	 the	 available	 mixer
controls	 (“Control”	 being	 a	 specific	 mixable	 “channel”,	 such	 as
SOUND_MIXER_PCM	 or	 SOUND_MIXER_SYNTH).	 This	 bitmask
indicates	 a	 subset	 of	 all	 available	 mixer	 controls—the
SOUND_MIXER_*	constants	defined	at	module	level.	To	determine
if,	for	example,	the	current	mixer	object	supports	a	PCM	mixer,	use
the	following	Python	code:

mixer=ossaudiodev.openmixer()

if	mixer.controls()	&	(1	<<	ossaudiodev.SOUND_MIXER_PCM

				#	PCM	is	supported

				...	code	...

For	most	 purposes,	 the	 SOUND_MIXER_VOLUME	 (master	 volume)
and	 SOUND_MIXER_PCM	 controls	 should	 suffice—but	 code	 that

uses	the	mixer	should	be	flexible	when	it	comes	to	choosing	mixer
controls.	 On	 the	 Gravis	 Ultrasound,	 for	 example,
SOUND_MIXER_VOLUME	does	not	exist.

oss_mixer_device.stereocontrols()
Returns	a	bitmask	 indicating	 stereo	mixer	 controls.	 If	 a	 bit	 is	 set,
the	 corresponding	 control	 is	 stereo;	 if	 it	 is	 unset,	 the	 control	 is
either	 monophonic	 or	 not	 supported	 by	 the	 mixer	 (use	 in
combination	with	controls()	to	determine	which).

See	 the	 code	 example	 for	 the	 controls()	 function	 for	 an
example	of	getting	data	from	a	bitmask.

oss_mixer_device.reccontrols()
Returns	a	bitmask	specifying	the	mixer	controls	that	may	be	used
to	record.	See	the	code	example	for	controls()	for	an	example
of	reading	from	a	bitmask.

oss_mixer_device.get(control)
Returns	the	volume	of	a	given	mixer	control.	The	returned	volume
is	 a	 2-tuple	 (left_volume,right_volume).	 Volumes	 are
specified	 as	 numbers	 from	 0	 (silent)	 to	 100	 (full	 volume).	 If	 the
control	is	monophonic,	a	2-tuple	is	still	returned,	but	both	volumes
are	the	same.

Raises	OSSAudioError	 if	 an	 invalid	 control	was	 is	 specified,	 or
OSError	if	an	unsupported	control	is	specified.

oss_mixer_device.set(control,	(left,	right))
Sets	 the	 volume	 for	 a	 given	 mixer	 control	 to	 (left,right).
left	and	right	must	be	ints	and	between	0	(silent)	and	100	(full
volume).	 On	 success,	 the	 new	 volume	 is	 returned	 as	 a	 2-tuple.

Note	 that	 this	 may	 not	 be	 exactly	 the	 same	 as	 the	 volume
specified,	 because	 of	 the	 limited	 resolution	 of	 some	 soundcard’s
mixers.

Raises	OSSAudioError	 if	an	 invalid	mixer	control	was	specified,
or	if	the	specified	volumes	were	out-of-range.

oss_mixer_device.get_recsrc()
This	 method	 returns	 a	 bitmask	 indicating	 which	 control(s)	 are
currently	being	used	as	a	recording	source.

oss_mixer_device.set_recsrc(bitmask)
Call	this	function	to	specify	a	recording	source.	Returns	a	bitmask
indicating	 the	 new	 recording	 source	 (or	 sources)	 if	 successful;
raises	 OSError	 if	 an	 invalid	 source	 was	 specified.	 To	 set	 the
current	recording	source	to	the	microphone	input:

mixer.setrecsrc	(1	<<	ossaudiodev.SOUND_MIXER_MIC)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	22.	Multimedia	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

23.	Internationalization
The	modules	described	in	this	chapter	help	you	write	software	that	 is
independent	 of	 language	 and	 locale	 by	 providing	 mechanisms	 for
selecting	a	 language	to	be	used	in	program	messages	or	by	tailoring
output	to	match	local	conventions.

The	list	of	modules	described	in	this	chapter	is:

23.1.	gettext	—	Multilingual	internationalization	services
23.1.1.	GNU	gettext	API
23.1.2.	Class-based	API

23.1.2.1.	The	NullTranslations	class
23.1.2.2.	The	GNUTranslations	class
23.1.2.3.	Solaris	message	catalog	support
23.1.2.4.	The	Catalog	constructor

23.1.3.	Internationalizing	your	programs	and	modules
23.1.3.1.	Localizing	your	module
23.1.3.2.	Localizing	your	application
23.1.3.3.	Changing	languages	on	the	fly
23.1.3.4.	Deferred	translations

23.1.4.	Acknowledgements
23.2.	locale	—	Internationalization	services

23.2.1.	Background,	details,	hints,	tips	and	caveats
23.2.2.	 For	 extension	 writers	 and	 programs	 that	 embed
Python
23.2.3.	Access	to	message	catalogs

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	23.	Internationalization	»

http://www.python.org/

23.1.	gettext	—	Multilingual
internationalization	services
Source	code:	Lib/gettext.py

The	 gettext	 module	 provides	 internationalization	 (I18N)	 and
localization	(L10N)	services	for	your	Python	modules	and	applications.
It	supports	both	the	GNU	gettext	message	catalog	API	and	a	higher
level,	class-based	API	that	may	be	more	appropriate	for	Python	files.
The	 interface	 described	 below	 allows	 you	 to	 write	 your	 module	 and
application	messages	 in	one	natural	 language,	and	provide	a	catalog
of	translated	messages	for	running	under	different	natural	languages.

Some	 hints	 on	 localizing	 your	 Python	modules	 and	 applications	 are
also	given.

http://hg.python.org/cpython/file/3.4/Lib/gettext.py

23.1.1.	GNU	gettext	API

The	gettext	module	defines	the	following	API,	which	is	very	similar
to	 the	 GNU	 gettext	 API.	 If	 you	 use	 this	 API	 you	 will	 affect	 the
translation	 of	 your	 entire	 application	 globally.	 Often	 this	 is	 what	 you
want	 if	 your	 application	 is	 monolingual,	 with	 the	 choice	 of	 language
dependent	 on	 the	 locale	 of	 your	 user.	 If	 you	 are	 localizing	 a	Python
module,	or	if	your	application	needs	to	switch	languages	on	the	fly,	you
probably	want	to	use	the	class-based	API	instead.

gettext.bindtextdomain(domain,	localedir=None)
Bind	the	domain	 to	 the	 locale	directory	 localedir.	More	concretely,
gettext	will	 look	for	binary	.mo	 files	 for	 the	given	domain	using
the	 path	 (on	 Unix):
localedir/language/LC_MESSAGES/domain.mo,	 where
languages	is	searched	for	in	the	environment	variables	LANGUAGE,
LC_ALL,	LC_MESSAGES,	and	LANG	respectively.

If	localedir	is	omitted	or	None,	then	the	current	binding	for	domain
is	returned.	[1]

gettext.bind_textdomain_codeset(domain,
codeset=None)

Bind	 the	 domain	 to	 codeset,	 changing	 the	 encoding	 of	 strings
returned	 by	 the	 gettext()	 family	 of	 functions.	 If	 codeset	 is
omitted,	then	the	current	binding	is	returned.

gettext.textdomain(domain=None)
Change	 or	 query	 the	 current	 global	 domain.	 If	 domain	 is	 None,
then	 the	 current	 global	 domain	 is	 returned,	 otherwise	 the	 global
domain	is	set	to	domain,	which	is	returned.

gettext.gettext(message)
Return	 the	 localized	translation	of	message,	based	on	the	current
global	 domain,	 language,	 and	 locale	 directory.	 This	 function	 is
usually	 aliased	 as	 _()	 in	 the	 local	 namespace	 (see	 examples
below).

gettext.lgettext(message)
Equivalent	 to	 gettext(),	 but	 the	 translation	 is	 returned	 in	 the
preferred	system	encoding,	 if	no	other	encoding	was	explicitly	set
with	bind_textdomain_codeset().

gettext.dgettext(domain,	message)
Like	 gettext(),	 but	 look	 the	 message	 up	 in	 the	 specified
domain.

gettext.ldgettext(domain,	message)
Equivalent	 to	 dgettext(),	 but	 the	 translation	 is	 returned	 in	 the
preferred	system	encoding,	 if	no	other	encoding	was	explicitly	set
with	bind_textdomain_codeset().

gettext.ngettext(singular,	plural,	n)
Like	 gettext(),	 but	 consider	 plural	 forms.	 If	 a	 translation	 is
found,	 apply	 the	 plural	 formula	 to	 n,	 and	 return	 the	 resulting
message	(some	languages	have	more	than	two	plural	forms).	If	no
translation	is	found,	return	singular	if	n	is	1;	return	plural	otherwise.

The	Plural	 formula	 is	 taken	 from	 the	 catalog	 header.	 It	 is	 a	C	 or
Python	 expression	 that	 has	 a	 free	 variable	 n;	 the	 expression
evaluates	 to	 the	 index	 of	 the	 plural	 in	 the	 catalog.	 See	 the	GNU
gettext	 documentation	 for	 the	 precise	 syntax	 to	 be	 used	 in	 .po
files	and	the	formulas	for	a	variety	of	languages.

https://www.gnu.org/software/gettext/manual/gettext.html

gettext.lngettext(singular,	plural,	n)
Equivalent	 to	 ngettext(),	 but	 the	 translation	 is	 returned	 in	 the
preferred	system	encoding,	 if	no	other	encoding	was	explicitly	set
with	bind_textdomain_codeset().

gettext.dngettext(domain,	singular,	plural,	n)
Like	 ngettext(),	 but	 look	 the	 message	 up	 in	 the	 specified
domain.

gettext.ldngettext(domain,	singular,	plural,	n)
Equivalent	to	dngettext(),	but	 the	translation	 is	returned	in	the
preferred	system	encoding,	 if	no	other	encoding	was	explicitly	set
with	bind_textdomain_codeset().

Note	that	GNU	gettext	also	defines	a	dcgettext()	method,	but	this
was	deemed	not	useful	and	so	it	is	currently	unimplemented.

Here’s	an	example	of	typical	usage	for	this	API:

import	gettext

gettext.bindtextdomain('myapplication',	'/path/to/my/language/directory'

gettext.textdomain('myapplication')

_	=	gettext.gettext

#	...

print(_('This	is	a	translatable	string.'))

23.1.2.	Class-based	API

The	class-based	API	of	the	gettext	module	gives	you	more	flexibility
and	 greater	 convenience	 than	 the	 GNU	 gettext	 API.	 It	 is	 the
recommended	 way	 of	 localizing	 your	 Python	 applications	 and
modules.	 gettext	 defines	 a	 “translations”	 class	 which	 implements
the	parsing	of	GNU	 .mo	 format	 files,	 and	has	methods	 for	 returning
strings.	 Instances	 of	 this	 “translations”	 class	 can	 also	 install
themselves	in	the	built-in	namespace	as	the	function	_().

gettext.find(domain,	localedir=None,	languages=None,
all=False)

This	function	implements	the	standard	.mo	file	search	algorithm.	It
takes	a	domain,	 identical	 to	what	textdomain()	 takes.	Optional
localedir	is	as	in	bindtextdomain()	Optional	languages	is	a	list
of	strings,	where	each	string	is	a	language	code.

If	localedir	 is	not	given,	 then	the	default	system	locale	directory	 is
used.	[2]	If	languages	 is	not	given,	then	the	following	environment
variables	are	searched:	LANGUAGE,	LC_ALL,	LC_MESSAGES,	and
LANG.	 The	 first	 one	 returning	 a	 non-empty	 value	 is	 used	 for	 the
languages	 variable.	 The	 environment	 variables	 should	 contain	 a
colon	separated	list	of	languages,	which	will	be	split	on	the	colon	to
produce	the	expected	list	of	language	code	strings.

find()	 then	 expands	 and	 normalizes	 the	 languages,	 and	 then
iterates	 through	 them,	 searching	 for	 an	 existing	 file	 built	 of	 these
components:

localedir/language/LC_MESSAGES/domain.mo

The	 first	 such	 file	 name	 that	 exists	 is	 returned	 by	 find().	 If	 no
such	file	is	found,	then	None	is	returned.	If	all	is	given,	it	returns	a
list	 of	 all	 file	 names,	 in	 the	 order	 in	 which	 they	 appear	 in	 the
languages	list	or	the	environment	variables.

gettext.translation(domain,	localedir=None,
languages=None,	class_=None,	fallback=False,	codeset=None)

Return	a	Translations	instance	based	on	the	domain,	localedir,
and	languages,	which	are	first	passed	to	find()	to	get	a	list	of	the
associated	.mo	file	paths.	Instances	with	identical	.mo	file	names
are	 cached.	 The	 actual	 class	 instantiated	 is	 either	 class_	 if
provided,	 otherwise	 GNUTranslations.	 The	 class’s	 constructor
must	 take	 a	 single	 file	 object	 argument.	 If	 provided,	 codeset	 will
change	 the	 charset	 used	 to	 encode	 translated	 strings	 in	 the
lgettext()	and	lngettext()	methods.

If	multiple	files	are	found,	later	files	are	used	as	fallbacks	for	earlier
ones.	To	allow	setting	the	fallback,	copy.copy()	is	used	to	clone
each	translation	object	from	the	cache;	the	actual	instance	data	is
still	shared	with	the	cache.

If	no	.mo	 file	 is	 found,	 this	 function	 raises	OSError	 if	 fallback	 is
false	 (which	 is	 the	 default),	 and	 returns	 a	 NullTranslations
instance	if	fallback	is	true.

Changed	 in	 version	 3.3:	 IOError	 used	 to	 be	 raised	 instead	 of
OSError.

gettext.install(domain,	localedir=None,	codeset=None,
names=None)

This	 installs	 the	 function	 _()	 in	 Python’s	 builtins	 namespace,
based	on	domain,	 localedir,	and	codeset	which	are	passed	to	 the

function	translation().

For	 the	 names	 parameter,	 please	 see	 the	 description	 of	 the
translation	object’s	install()	method.

As	seen	below,	you	usually	mark	the	strings	in	your	application	that
are	 candidates	 for	 translation,	 by	 wrapping	 them	 in	 a	 call	 to	 the
_()	function,	like	this:

print(_('This	string	will	be	translated.'))

For	 convenience,	 you	 want	 the	 _()	 function	 to	 be	 installed	 in
Python’s	 builtins	 namespace,	 so	 it	 is	 easily	 accessible	 in	 all
modules	of	your	application.

23.1.2.1.	The	NullTranslations	class

Translation	 classes	 are	 what	 actually	 implement	 the	 translation	 of
original	source	file	message	strings	to	translated	message	strings.	The
base	 class	 used	 by	 all	 translation	 classes	 is	 NullTranslations;
this	 provides	 the	 basic	 interface	 you	 can	 use	 to	 write	 your	 own
specialized	 translation	 classes.	 Here	 are	 the	 methods	 of
NullTranslations:

class	gettext.NullTranslations(fp=None)
Takes	an	optional	file	object	fp,	which	is	ignored	by	the	base	class.
Initializes	 “protected”	 instance	 variables	_info	and	_charset	which
are	 set	 by	 derived	 classes,	 as	 well	 as	 _fallback,	 which	 is	 set
through	add_fallback().	 It	 then	calls	self._parse(fp)	 if	 fp
is	not	None.

_parse(fp)

No-op’d	in	the	base	class,	this	method	takes	file	object	fp,	and
reads	 the	data	 from	 the	 file,	 initializing	 its	message	catalog.	 If
you	 have	 an	 unsupported	 message	 catalog	 file	 format,	 you
should	override	this	method	to	parse	your	format.

add_fallback(fallback)
Add	 fallback	 as	 the	 fallback	 object	 for	 the	 current	 translation
object.	 A	 translation	 object	 should	 consult	 the	 fallback	 if	 it
cannot	provide	a	translation	for	a	given	message.

gettext(message)
If	a	fallback	has	been	set,	forward	gettext()	to	the	fallback.
Otherwise,	 return	 the	 translated	 message.	 Overridden	 in
derived	classes.

lgettext(message)
If	a	fallback	has	been	set,	forward	lgettext()	to	the	fallback.
Otherwise,	 return	 the	 translated	 message.	 Overridden	 in
derived	classes.

ngettext(singular,	plural,	n)
If	a	fallback	has	been	set,	forward	ngettext()	to	the	fallback.
Otherwise,	 return	 the	 translated	 message.	 Overridden	 in
derived	classes.

lngettext(singular,	plural,	n)
If	 a	 fallback	 has	 been	 set,	 forward	 lngettext()	 to	 the
fallback.	Otherwise,	return	the	translated	message.	Overridden
in	derived	classes.

info()
Return	the	“protected”	_info	variable.

charset()
Return	 the	 “protected”	 _charset	 variable,	 which	 is	 the
encoding	of	the	message	catalog	file.

output_charset()
Return	 the	 “protected”	 _output_charset	 variable,	 which
defines	 the	 encoding	 used	 to	 return	 translated	 messages	 in
lgettext()	and	lngettext().

set_output_charset(charset)
Change	 the	 “protected”	 _output_charset	 variable,	 which
defines	the	encoding	used	to	return	translated	messages.

install(names=None)
This	 method	 installs	 self.gettext()	 into	 the	 built-in
namespace,	binding	it	to	_.

If	 the	 names	 parameter	 is	 given,	 it	 must	 be	 a	 sequence
containing	 the	 names	 of	 functions	 you	 want	 to	 install	 in	 the
builtins	 namespace	 in	 addition	 to	 _().	 Supported	 names	 are
'gettext'	 (bound	 to	 self.gettext()),	 'ngettext'

(bound	 to	 self.ngettext()),	 'lgettext'	 and
'lngettext'.

Note	that	this	 is	only	one	way,	albeit	the	most	convenient	way,
to	make	the	_()	function	available	to	your	application.	Because
it	affects	the	entire	application	globally,	and	specifically	the	built-
in	 namespace,	 localized	 modules	 should	 never	 install	 _().
Instead,	 they	 should	 use	 this	 code	 to	 make	 _()	 available	 to
their	module:

import	gettext

t	=	gettext.translation('mymodule',	...)

_	=	t.gettext

This	puts	_()	 only	 in	 the	module’s	global	namespace	and	so
only	affects	calls	within	this	module.

23.1.2.2.	The	GNUTranslations	class

The	 gettext	 module	 provides	 one	 additional	 class	 derived	 from
NullTranslations:	 GNUTranslations.	 This	 class	 overrides
_parse()	 to	 enable	 reading	GNU	gettext	 format	 .mo	 files	 in	 both
big-endian	and	little-endian	format.

GNUTranslations	 parses	 optional	meta-data	 out	 of	 the	 translation
catalog.	It	is	convention	with	GNU	gettext	to	include	meta-data	as	the
translation	 for	 the	 empty	 string.	 This	 meta-data	 is	 in	RFC	 822-style
key:	value	 pairs,	 and	 should	 contain	 the	 Project-Id-Version
key.	If	the	key	Content-Type	is	found,	then	the	charset	property	is
used	 to	 initialize	 the	 “protected”	 _charset	 instance	 variable,
defaulting	 to	 None	 if	 not	 found.	 If	 the	 charset	 encoding	 is	 specified,
then	all	message	 ids	and	message	strings	 read	 from	 the	catalog	are
converted	 to	 Unicode	 using	 this	 encoding,	 else	 ASCII	 encoding	 is
assumed.

Since	message	ids	are	read	as	Unicode	strings	too,	all	*gettext()
methods	will	assume	message	ids	as	Unicode	strings,	not	byte	strings.

The	entire	set	of	key/value	pairs	are	placed	into	a	dictionary	and	set	as
the	“protected”	_info	instance	variable.

If	 the	 .mo	 file’s	magic	 number	 is	 invalid,	 or	 if	 other	 problems	 occur
while	 reading	 the	 file,	 instantiating	 a	 GNUTranslations	 class	 can

http://tools.ietf.org/html/rfc822.html

raise	OSError.

The	 following	 methods	 are	 overridden	 from	 the	 base	 class
implementation:

GNUTranslations.gettext(message)
Look	 up	 the	 message	 id	 in	 the	 catalog	 and	 return	 the
corresponding	message	string,	as	a	Unicode	string.	 If	 there	 is	no
entry	 in	 the	 catalog	 for	 the	message	 id,	 and	 a	 fallback	 has	 been
set,	the	look	up	is	forwarded	to	the	fallback’s	gettext()	method.
Otherwise,	the	message	id	is	returned.

GNUTranslations.lgettext(message)
Equivalent	 to	 gettext(),	 but	 the	 translation	 is	 returned	 as	 a
bytestring	 encoded	 in	 the	 selected	 output	 charset,	 or	 in	 the
preferred	 system	 encoding	 if	 no	 encoding	 was	 explicitly	 set	 with
set_output_charset().

GNUTranslations.ngettext(singular,	plural,	n)
Do	a	plural-forms	lookup	of	a	message	id.	singular	 is	used	as	the
message	id	for	purposes	of	lookup	in	the	catalog,	while	n	is	used	to
determine	which	plural	form	to	use.	The	returned	message	string	is
a	Unicode	string.

If	 the	 message	 id	 is	 not	 found	 in	 the	 catalog,	 and	 a	 fallback	 is
specified,	 the	 request	 is	 forwarded	 to	 the	 fallback’s	 ngettext()
method.	Otherwise,	when	n	 is	1	singular	 is	 returned,	and	plural	 is
returned	in	all	other	cases.

Here	is	an	example:

n	=	len(os.listdir('.'))

cat	=	GNUTranslations(somefile)

message	=	cat.ngettext(

				'There	is	%(num)d	file	in	this	directory',

				'There	are	%(num)d	files	in	this	directory',

				n)	%	{'num':	n}

GNUTranslations.lngettext(singular,	plural,	n)
Equivalent	 to	 gettext(),	 but	 the	 translation	 is	 returned	 as	 a
bytestring	 encoded	 in	 the	 selected	 output	 charset,	 or	 in	 the
preferred	 system	 encoding	 if	 no	 encoding	 was	 explicitly	 set	 with
set_output_charset().

23.1.2.3.	Solaris	message	catalog	support

The	Solaris	operating	system	defines	 its	own	binary	 .mo	 file	 format,
but	 since	 no	 documentation	 can	 be	 found	 on	 this	 format,	 it	 is	 not
supported	at	this	time.

23.1.2.4.	The	Catalog	constructor

GNOME	 uses	 a	 version	 of	 the	 gettext	 module	 by	 James
Henstridge,	but	this	version	has	a	slightly	different	API.	Its	documented
usage	was:

import	gettext

cat	=	gettext.Catalog(domain,	localedir)

_	=	cat.gettext

print(_('hello	world'))

For	compatibility	with	this	older	module,	the	function	Catalog()	is	an
alias	for	the	translation()	function	described	above.

One	 difference	 between	 this	 module	 and	 Henstridge’s:	 his	 catalog

objects	supported	access	through	a	mapping	API,	but	this	appears	to
be	unused	and	so	is	not	currently	supported.

23.1.3.	Internationalizing	your	programs
and	modules

Internationalization	(I18N)	refers	to	the	operation	by	which	a	program
is	made	aware	of	multiple	languages.	Localization	(L10N)	refers	to	the
adaptation	 of	 your	 program,	 once	 internationalized,	 to	 the	 local
language	and	cultural	habits.	In	order	to	provide	multilingual	messages
for	your	Python	programs,	you	need	to	take	the	following	steps:

1.	 prepare	your	program	or	module	by	specially	marking	translatable
strings

2.	 run	 a	 suite	 of	 tools	 over	 your	 marked	 files	 to	 generate	 raw
messages	catalogs

3.	 create	language	specific	translations	of	the	message	catalogs
4.	 use	 the	 gettext	module	 so	 that	message	 strings	 are	 properly

translated

In	 order	 to	 prepare	 your	 code	 for	 I18N,	 you	 need	 to	 look	 at	 all	 the
strings	 in	your	 files.	Any	string	 that	needs	 to	be	 translated	should	be
marked	by	wrapping	 it	 in	_('...')	—	 that	 is,	a	call	 to	 the	 function
_().	For	example:

filename	=	'mylog.txt'

message	=	_('writing	a	log	message')

fp	=	open(filename,	'w')

fp.write(message)

fp.close()

In	 this	example,	 the	string	'writing	a	log	message'	 is	marked
as	 a	 candidate	 for	 translation,	 while	 the	 strings	 'mylog.txt'	 and
'w'	are	not.

There	are	a	few	tools	to	extract	the	strings	meant	for	translation.	The
original	 GNU	 gettext	 only	 supported	 C	 or	 C++	 source	 code	 but	 its
extended	 version	 xgettext	 scans	 code	 written	 in	 a	 number	 of
languages,	 including	 Python,	 to	 find	 strings	 marked	 as	 translatable.
Babel	is	a	Python	internationalization	library	that	includes	a	pybabel
script	 to	 extract	 and	 compile	 message	 catalogs.	 François	 Pinard’s
program	called	xpot	does	a	similar	job	and	is	available	as	part	of	his
po-utils	package.

(Python	also	includes	pure-Python	versions	of	these	programs,	called
pygettext.py	 and	msgfmt.py;	 some	 Python	 distributions	 will	 install
them	for	you.	pygettext.py	is	similar	to	xgettext,	but	only	understands
Python	source	code	and	cannot	handle	other	programming	languages
such	 as	C	 or	C++.	pygettext.py	 supports	 a	 command-line	 interface
similar	 to	 xgettext;	 for	 details	 on	 its	 use,	 run	 pygettext.py	 --
help.	msgfmt.py	is	binary	compatible	with	GNU	msgfmt.	With	these
two	 programs,	 you	 may	 not	 need	 the	 GNU	 gettext	 package	 to
internationalize	your	Python	applications.)

xgettext,	 pygettext,	 and	 similar	 tools	 generate	 .po	 files	 that	 are
message	 catalogs.	 They	 are	 structured	 human-readable	 files	 that
contain	 every	 marked	 string	 in	 the	 source	 code,	 along	 with	 a
placeholder	for	the	translated	versions	of	these	strings.

Copies	 of	 these	 .po	 files	 are	 then	 handed	 over	 to	 the	 individual
human	 translators	who	write	 translations	 for	 every	 supported	 natural
language.	They	 send	back	 the	 completed	 language-specific	 versions
as	 a	 <language-name>.po	 file	 that’s	 compiled	 into	 a	 machine-
readable	.mo	binary	catalog	file	using	the	msgfmt	program.	The	.mo
files	 are	 used	 by	 the	 gettext	 module	 for	 the	 actual	 translation
processing	at	run-time.

http://babel.pocoo.org/
http://po-utils.progiciels-bpi.ca/

How	you	use	the	gettext	module	in	your	code	depends	on	whether
you	 are	 internationalizing	 a	 single	module	 or	 your	 entire	 application.
The	next	two	sections	will	discuss	each	case.

23.1.3.1.	Localizing	your	module

If	 you	 are	 localizing	 your	 module,	 you	 must	 take	 care	 not	 to	 make
global	changes,	e.g.	to	the	built-in	namespace.	You	should	not	use	the
GNU	gettext	API	but	instead	the	class-based	API.

Let’s	 say	 your	 module	 is	 called	 “spam”	 and	 the	 module’s	 various
natural	language	translation	.mo	files	reside	in	/usr/share/locale
in	GNU	gettext	 format.	Here’s	what	you	would	put	at	 the	top	of	your
module:

import	gettext

t	=	gettext.translation('spam',	'/usr/share/locale')

_	=	t.lgettext

23.1.3.2.	Localizing	your	application

If	you	are	localizing	your	application,	you	can	install	 the	_()	 function
globally	 into	 the	built-in	namespace,	usually	 in	 the	main	driver	 file	of
your	application.	This	will	 let	all	your	application-specific	files	just	use
_('...')	without	having	to	explicitly	install	it	in	each	file.

In	the	simple	case	then,	you	need	only	add	the	following	bit	of	code	to
the	main	driver	file	of	your	application:

import	gettext

gettext.install('myapplication')

If	 you	 need	 to	 set	 the	 locale	 directory,	 you	 can	 pass	 it	 into	 the
install()	function:

import	gettext

gettext.install('myapplication',	'/usr/share/locale'

23.1.3.3.	Changing	languages	on	the	fly

If	your	program	needs	 to	support	many	 languages	at	 the	same	 time,
you	may	want	to	create	multiple	translation	instances	and	then	switch
between	them	explicitly,	like	so:

import	gettext

lang1	=	gettext.translation('myapplication',	languages

lang2	=	gettext.translation('myapplication',	languages

lang3	=	gettext.translation('myapplication',	languages

#	start	by	using	language1

lang1.install()

#	...	time	goes	by,	user	selects	language	2

lang2.install()

#	...	more	time	goes	by,	user	selects	language	3

lang3.install()

23.1.3.4.	Deferred	translations

In	most	coding	situations,	strings	are	translated	where	they	are	coded.
Occasionally	 however,	 you	 need	 to	 mark	 strings	 for	 translation,	 but
defer	actual	translation	until	later.	A	classic	example	is:

animals	=	['mollusk',

											'albatross',

											'rat',

											'penguin',

											'python',]

#	...

for	a	in	animals:

				print(a)

Here,	 you	 want	 to	 mark	 the	 strings	 in	 the	 animals	 list	 as	 being
translatable,	but	you	don’t	actually	want	to	translate	them	until	they	are
printed.

Here	is	one	way	you	can	handle	this	situation:

def	_(message):	return	message

animals	=	[_('mollusk'),

											_('albatross'),

											_('rat'),

											_('penguin'),

											_('python'),]

del	_

#	...

for	a	in	animals:

				print(_(a))

This	works	 because	 the	 dummy	definition	 of	 _()	 simply	 returns	 the
string	unchanged.	And	 this	dummy	definition	will	 temporarily	override
any	 definition	 of	 _()	 in	 the	 built-in	 namespace	 (until	 the	 del
command).	Take	care,	though	if	you	have	a	previous	definition	of	_()
in	the	local	namespace.

Note	 that	 the	 second	 use	 of	 _()	 will	 not	 identify	 “a”	 as	 being
translatable	 to	 the	gettext	 program,	 because	 the	 parameter	 is	 not	 a
string	literal.

Another	way	to	handle	this	is	with	the	following	example:

def	N_(message):	return	message

animals	=	[N_('mollusk'),

											N_('albatross'),

											N_('rat'),

											N_('penguin'),

											N_('python'),]

#	...

for	a	in	animals:

				print(_(a))

In	 this	 case,	 you	 are	 marking	 translatable	 strings	 with	 the	 function
N_(),	 which	won’t	 conflict	 with	 any	 definition	 of	 _().	However,	 you
will	 need	 to	 teach	 your	 message	 extraction	 program	 to	 look	 for
translatable	strings	marked	with	N_().	xgettext,	pygettext,	pybabel
extract,	 and	 xpot	 all	 support	 this	 through	 the	 use	 of	 the	 -k
command-line	 switch.	The	 choice	of	 N_()	 here	 is	 totally	 arbitrary;	 it
could	 have	 just	 as	 easily	 been
MarkThisStringForTranslation().

23.1.4.	Acknowledgements

The	following	people	contributed	code,	feedback,	design	suggestions,
previous	 implementations,	and	valuable	experience	 to	 the	creation	of
this	module:

Peter	Funk
James	Henstridge
Juan	David	Ibáñez	Palomar
Marc-André	Lemburg
Martin	von	Löwis
François	Pinard
Barry	Warsaw
Gustavo	Niemeyer

Footnotes

[1]

The	default	locale	directory	is	system	dependent;	for	example,
on	RedHat	Linux	it	is	/usr/share/locale,	but	on	Solaris	it
is	/usr/lib/locale.	The	gettext	module	does	not	try	to
support	these	system	dependent	defaults;	instead	its	default	is
sys.prefix/share/locale.	For	this	reason,	it	is	always
best	to	call	bindtextdomain()	with	an	explicit	absolute	path
at	the	start	of	your	application.

[2] See	the	footnote	for	bindtextdomain()	above.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	23.	Internationalization	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	23.	Internationalization	»

http://www.python.org/

23.2.	locale	—
Internationalization	services
The	locale	module	opens	access	to	the	POSIX	locale	database	and
functionality.	 The	 POSIX	 locale	 mechanism	 allows	 programmers	 to
deal	with	certain	cultural	issues	in	an	application,	without	requiring	the
programmer	 to	 know	 all	 the	 specifics	 of	 each	 country	 where	 the
software	is	executed.

The	locale	module	is	implemented	on	top	of	the	_locale	module,
which	in	turn	uses	an	ANSI	C	locale	implementation	if	available.

The	locale	module	defines	the	following	exception	and	functions:

exception	locale.Error
Exception	raised	when	the	 locale	passed	to	setlocale()	 is	not
recognized.

locale.setlocale(category,	locale=None)
If	locale	is	given	and	not	None,	setlocale()	modifies	the	locale
setting	 for	 the	category.	The	available	categories	are	 listed	 in	 the
data	description	below.	locale	may	be	a	string,	or	an	iterable	of	two
strings	 (language	 code	 and	 encoding).	 If	 it’s	 an	 iterable,	 it’s
converted	 to	 a	 locale	 name	 using	 the	 locale	 aliasing	 engine.	 An
empty	string	specifies	the	user’s	default	settings.	If	the	modification
of	the	locale	fails,	the	exception	Error	is	raised.	If	successful,	the
new	locale	setting	is	returned.

If	 locale	 is	 omitted	 or	 None,	 the	 current	 setting	 for	 category	 is
returned.

setlocale()	 is	 not	 thread-safe	 on	 most	 systems.	 Applications
typically	start	with	a	call	of

import	locale

locale.setlocale(locale.LC_ALL,	'')

This	sets	 the	 locale	 for	all	 categories	 to	 the	user’s	default	 setting
(typically	specified	in	the	LANG	environment	variable).	If	the	locale
is	 not	 changed	 thereafter,	 using	multithreading	 should	 not	 cause
problems.

locale.localeconv()
Returns	the	database	of	the	local	conventions	as	a	dictionary.	This
dictionary	has	the	following	strings	as	keys:

Category Key

LC_NUMERIC 'decimal_point'
Decimal	point
character.

	 'grouping'

Sequence	of
numbers	specifying
which	relative
positions	the
'thousands_sep'

is	expected.	
sequence	is
terminated	with
CHAR_MAX

further	grouping	is
performed.	If	the
sequence
terminates	with	a	
the	last	group	size
is	repeatedly	used.

	 'thousands_sep'
Character	used

between	groups.

LC_MONETARY 'int_curr_symbol'
International
currency	symbol.

	 'currency_symbol'
Local	currency
symbol.

	 'p_cs_precedes/n_cs_precedes'

Whether	the
currency	symbol
precedes	the	value
(for	positive	resp.
negative	values).

	 'p_sep_by_space/n_sep_by_space'

Whether	the
currency	symbol	is
separated	from	the
value	
(for	positive	resp.
negative	values).

	 'mon_decimal_point'
Decimal	point	used
for	monetary	values.

	 'frac_digits'

Number	of	fractional
digits	used	in	local
formatting	of
monetary	values.

	 'int_frac_digits'

Number	of	fractional
digits	used	in
international
formatting	of
monetary	values.

	 'mon_thousands_sep'

Group	separator
used	for	monetary
values.

	 'mon_grouping'

Equivalent	to
'grouping'

for	monetary	values.

	 'positive_sign'
Symbol	used	to
annotate	a	positive
monetary	value.

	 'negative_sign'

Symbol	used	to
annotate	a	negative
monetary	value.

	 'p_sign_posn/n_sign_posn'

The	position	of	the
sign	(for	positive
resp.	negative
values),	see	below.

All	numeric	values	can	be	set	to	CHAR_MAX	to	indicate	that	there	is
no	value	specified	in	this	locale.

The	 possible	 values	 for	 'p_sign_posn'	 and	 'n_sign_posn'
are	given	below.

Value Explanation

0
Currency	and	value	are	surrounded	by
parentheses.

1
The	sign	should	precede	the	value	and
currency	symbol.

2
The	sign	should	follow	the	value	and	currency
symbol.

3 The	sign	should	immediately	precede	the	value.

4 The	sign	should	immediately	follow	the	value.

CHAR_MAX Nothing	is	specified	in	this	locale.

locale.nl_langinfo(option)
Return	some	locale-specific	information	as	a	string.	This	function	is
not	available	on	all	systems,	and	the	set	of	possible	options	might
also	 vary	 across	 platforms.	 The	 possible	 argument	 values	 are

numbers,	 for	which	symbolic	constants	are	available	 in	 the	 locale
module.

The	nl_langinfo()	 function	accepts	one	of	 the	 following	keys.
Most	descriptions	are	 taken	 from	the	corresponding	description	 in
the	GNU	C	library.

locale.CODESET

Get	 a	 string	with	 the	name	of	 the	 character	 encoding	used	 in
the	selected	locale.

locale.D_T_FMT

Get	 a	 string	 that	 can	 be	 used	 as	 a	 format	 string	 for
time.strftime()	 to	 represent	 date	 and	 time	 in	 a	 locale-
specific	way.

locale.D_FMT

Get	 a	 string	 that	 can	 be	 used	 as	 a	 format	 string	 for
time.strftime()	 to	 represent	 a	 date	 in	 a	 locale-specific
way.

locale.T_FMT

Get	 a	 string	 that	 can	 be	 used	 as	 a	 format	 string	 for
time.strftime()	 to	 represent	 a	 time	 in	 a	 locale-specific
way.

locale.T_FMT_AMPM

Get	a	format	string	for	time.strftime()	to	represent	time	in
the	am/pm	format.

DAY_1	...	DAY_7

Get	the	name	of	the	n-th	day	of	the	week.

Note: 	 This	 follows	 the	 US	 convention	 of	 DAY_1	 being
Sunday,	 not	 the	 international	 convention	 (ISO	 8601)	 that
Monday	is	the	first	day	of	the	week.

ABDAY_1	...	ABDAY_7

Get	the	abbreviated	name	of	the	n-th	day	of	the	week.

MON_1	...	MON_12

Get	the	name	of	the	n-th	month.

ABMON_1	...	ABMON_12

Get	the	abbreviated	name	of	the	n-th	month.

locale.RADIXCHAR

Get	the	radix	character	(decimal	dot,	decimal	comma,	etc.)

locale.THOUSEP

Get	 the	 separator	 character	 for	 thousands	 (groups	 of	 three
digits).

locale.YESEXPR

Get	 a	 regular	 expression	 that	 can	 be	 used	 with	 the	 regex
function	to	recognize	a	positive	response	to	a	yes/no	question.

Note: 	 The	 expression	 is	 in	 the	 syntax	 suitable	 for	 the
regex()	 function	 from	the	C	 library,	which	might	differ	 from
the	syntax	used	in	re.

locale.NOEXPR

Get	 a	 regular	 expression	 that	 can	 be	 used	 with	 the	 regex(3)
function	to	recognize	a	negative	response	to	a	yes/no	question.

locale.CRNCYSTR

Get	 the	currency	symbol,	preceded	by	“-”	 if	 the	symbol	should
appear	before	 the	value,	 “+”	 if	 the	symbol	should	appear	after
the	value,	or	”.”	if	the	symbol	should	replace	the	radix	character.

locale.ERA

Get	a	string	that	represents	the	era	used	in	the	current	locale.

Most	 locales	do	not	 define	 this	 value.	An	example	of	 a	 locale
which	does	define	this	value	is	the	Japanese	one.	In	Japan,	the
traditional	representation	of	dates	includes	the	name	of	the	era
corresponding	to	the	then-emperor’s	reign.

Normally	 it	 should	not	be	necessary	 to	use	 this	 value	directly.
Specifying	 the	 E	 modifier	 in	 their	 format	 strings	 causes	 the
time.strftime()	 function	 to	 use	 this	 information.	 The
format	of	the	returned	string	is	not	specified,	and	therefore	you
should	not	assume	knowledge	of	it	on	different	systems.

locale.ERA_D_T_FMT

Get	 a	 format	 string	 for	 time.strftime()	 to	 represent	 date
and	time	in	a	locale-specific	era-based	way.

locale.ERA_D_FMT

Get	a	format	string	for	time.strftime()	to	represent	a	date
in	a	locale-specific	era-based	way.

locale.ERA_T_FMT

Get	a	format	string	for	time.strftime()	to	represent	a	time
in	a	locale-specific	era-based	way.

locale.ALT_DIGITS

Get	a	representation	of	up	to	100	values	used	to	represent	the
values	0	to	99.

locale.getdefaultlocale([envvars])
Tries	to	determine	the	default	locale	settings	and	returns	them	as	a
tuple	of	the	form	(language	code,	encoding).

According	 to	 POSIX,	 a	 program	 which	 has	 not	 called
setlocale(LC_ALL,	'')	 runs	 using	 the	 portable	 'C'	 locale.
Calling	setlocale(LC_ALL,	'')	lets	it	use	the	default	locale	as
defined	 by	 the	 LANG	 variable.	 Since	 we	 do	 not	 want	 to	 interfere
with	the	current	locale	setting	we	thus	emulate	the	behavior	in	the
way	described	above.

To	maintain	 compatibility	with	 other	 platforms,	 not	 only	 the	 LANG
variable	 is	 tested,	 but	 a	 list	 of	 variables	 given	 as	 envvars
parameter.	 The	 first	 found	 to	 be	 defined	 will	 be	 used.	 envvars
defaults	 to	 the	 search	 path	 used	 in	 GNU	 gettext;	 it	 must	 always
contain	the	variable	name	'LANG'.	The	GNU	gettext	search	path
contains	'LC_ALL',	'LC_CTYPE',	'LANG'	and	'LANGUAGE',	in
that	order.

Except	 for	 the	code	'C',	 the	 language	code	corresponds	to	RFC
1766.	 language	 code	 and	 encoding	may	 be	 None	 if	 their	 values
cannot	be	determined.

locale.getlocale(category=LC_CTYPE)
Returns	 the	 current	 setting	 for	 the	 given	 locale	 category	 as
sequence	 containing	 language	 code,	encoding.	 category	 may	 be
one	of	the	LC_*	values	except	LC_ALL.	It	defaults	to	LC_CTYPE.

Except	 for	 the	code	'C',	 the	 language	code	corresponds	to	RFC
1766.	 language	 code	 and	 encoding	may	 be	 None	 if	 their	 values
cannot	be	determined.

http://tools.ietf.org/html/rfc1766.html
http://tools.ietf.org/html/rfc1766.html

locale.getpreferredencoding(do_setlocale=True)
Return	 the	 encoding	 used	 for	 text	 data,	 according	 to	 user
preferences.	 User	 preferences	 are	 expressed	 differently	 on
different	systems,	and	might	not	be	available	programmatically	on
some	systems,	so	this	function	only	returns	a	guess.

On	 some	 systems,	 it	 is	 necessary	 to	 invoke	 setlocale()	 to
obtain	 the	user	preferences,	 so	 this	 function	 is	not	 thread-safe.	 If
invoking	setlocale	is	not	necessary	or	desired,	do_setlocale	should
be	set	to	False.

locale.normalize(localename)
Returns	a	normalized	 locale	code	 for	 the	given	 locale	name.	The
returned	 locale	 code	 is	 formatted	 for	 use	 with	 setlocale().	 If
normalization	fails,	the	original	name	is	returned	unchanged.

If	 the	 given	 encoding	 is	 not	 known,	 the	 function	 defaults	 to	 the
default	encoding	for	the	locale	code	just	like	setlocale().

locale.resetlocale(category=LC_ALL)
Sets	the	locale	for	category	to	the	default	setting.

The	 default	 setting	 is	 determined	 by	 calling
getdefaultlocale().	category	defaults	to	LC_ALL.

locale.strcoll(string1,	string2)
Compares	 two	 strings	 according	 to	 the	 current	 LC_COLLATE
setting.	 As	 any	 other	 compare	 function,	 returns	 a	 negative,	 or	 a
positive	value,	or	0,	depending	on	whether	string1	collates	before
or	after	string2	or	is	equal	to	it.

locale.strxfrm(string)

Transforms	 a	 string	 to	 one	 that	 can	 be	 used	 in	 locale-aware
comparisons.	 For	 example,	 strxfrm(s1)	 <	 strxfrm(s2)	 is
equivalent	to	strcoll(s1,	s2)	<	0.	This	function	can	be	used
when	the	same	string	is	compared	repeatedly,	e.g.	when	collating	a
sequence	of	strings.

locale.format(format,	val,	grouping=False,	monetary=False)
Formats	 a	 number	 val	 according	 to	 the	 current	 LC_NUMERIC
setting.	The	 format	 follows	 the	conventions	of	 the	%	operator.	For
floating	point	values,	the	decimal	point	is	modified	if	appropriate.	If
grouping	is	true,	also	takes	the	grouping	into	account.

If	 monetary	 is	 true,	 the	 conversion	 uses	 monetary	 thousands
separator	and	grouping	strings.

Please	note	that	this	function	will	only	work	for	exactly	one	%char
specifier.	For	whole	format	strings,	use	format_string().

locale.format_string(format,	val,	grouping=False)
Processes	 formatting	 specifiers	 as	 in	 format	%	val,	 but	 takes
the	current	locale	settings	into	account.

locale.currency(val,	symbol=True,	grouping=False,
international=False)

Formats	 a	 number	 val	 according	 to	 the	 current	 LC_MONETARY
settings.

The	returned	string	includes	the	currency	symbol	if	symbol	is	true,
which	 is	 the	default.	 If	grouping	 is	 true	 (which	 is	 not	 the	 default),
grouping	is	done	with	the	value.	If	international	is	true	(which	is	not
the	default),	the	international	currency	symbol	is	used.

Note	that	this	function	will	not	work	with	the	‘C’	locale,	so	you	have

to	set	a	locale	via	setlocale()	first.

locale.str(float)
Formats	a	floating	point	number	using	the	same	format	as	the	built-
in	function	str(float),	but	takes	the	decimal	point	into	account.

locale.atof(string)
Converts	 a	 string	 to	 a	 floating	 point	 number,	 following	 the
LC_NUMERIC	settings.

locale.atoi(string)
Converts	 a	 string	 to	 an	 integer,	 following	 the	 LC_NUMERIC
conventions.

locale.LC_CTYPE

Locale	category	for	the	character	type	functions.	Depending	on	the
settings	of	 this	category,	 the	 functions	of	module	string	dealing
with	case	change	their	behaviour.

locale.LC_COLLATE

Locale	category	for	sorting	strings.	The	functions	strcoll()	and
strxfrm()	of	the	locale	module	are	affected.

locale.LC_TIME

Locale	 category	 for	 the	 formatting	 of	 time.	 The	 function
time.strftime()	follows	these	conventions.

locale.LC_MONETARY

Locale	 category	 for	 formatting	 of	monetary	 values.	 The	 available
options	are	available	from	the	localeconv()	function.

locale.LC_MESSAGES

Locale	 category	 for	 message	 display.	 Python	 currently	 does	 not

support	 application	 specific	 locale-aware	 messages.	 Messages
displayed	 by	 the	 operating	 system,	 like	 those	 returned	 by
os.strerror()	might	be	affected	by	this	category.

locale.LC_NUMERIC

Locale	category	for	formatting	numbers.	The	functions	format(),
atoi(),	atof()	and	str()	of	the	locale	module	are	affected
by	 that	 category.	 All	 other	 numeric	 formatting	 operations	 are	 not
affected.

locale.LC_ALL

Combination	 of	 all	 locale	 settings.	 If	 this	 flag	 is	 used	 when	 the
locale	is	changed,	setting	the	locale	for	all	categories	is	attempted.
If	 that	 fails	 for	any	category,	no	category	 is	changed	at	all.	When
the	locale	is	retrieved	using	this	flag,	a	string	indicating	the	setting
for	 all	 categories	 is	 returned.	 This	 string	 can	 be	 later	 used	 to
restore	the	settings.

locale.CHAR_MAX

This	 is	 a	 symbolic	 constant	 used	 for	 different	 values	 returned	 by
localeconv().

Example:

>>>	import	locale

>>>	loc	=	locale.getlocale()	#	get	current	locale

#	use	German	locale;	name	might	vary	with	platform

>>>	locale.setlocale(locale.LC_ALL,	'de_DE')

>>>	locale.strcoll('f\xe4n',	'foo')	#	compare	a	string	containing	an	umlaut

>>>	locale.setlocale(locale.LC_ALL,	'')	#	use	user's	preferred	locale

>>>	locale.setlocale(locale.LC_ALL,	'C')	#	use	default	(C)	locale

>>>	locale.setlocale(locale.LC_ALL,	loc)	#	restore	saved	locale

23.2.1.	Background,	details,	hints,	tips	and
caveats

The	 C	 standard	 defines	 the	 locale	 as	 a	 program-wide	 property	 that
may	 be	 relatively	 expensive	 to	 change.	 On	 top	 of	 that,	 some
implementation	are	broken	in	such	a	way	that	frequent	locale	changes
may	 cause	 core	 dumps.	 This	makes	 the	 locale	 somewhat	 painful	 to
use	correctly.

Initially,	when	a	program	is	started,	the	locale	is	the	C	locale,	no	matter
what	 the	 user’s	 preferred	 locale	 is.	 There	 is	 one	 exception:	 the
LC_CTYPE	 category	 is	 changed	 at	 startup	 to	 set	 the	 current	 locale
encoding	 to	 the	user’s	preferred	 locale	encoding.	The	program	must
explicitly	say	that	it	wants	the	user’s	preferred	locale	settings	for	other
categories	by	calling	setlocale(LC_ALL,	'').

It	is	generally	a	bad	idea	to	call	setlocale()	in	some	library	routine,
since	 as	 a	 side	 effect	 it	 affects	 the	 entire	 program.	 Saving	 and
restoring	it	 is	almost	as	bad:	it	 is	expensive	and	affects	other	threads
that	happen	to	run	before	the	settings	have	been	restored.

If,	 when	 coding	 a	 module	 for	 general	 use,	 you	 need	 a	 locale
independent	version	of	an	operation	that	is	affected	by	the	locale	(such
as	 certain	 formats	 used	 with	 time.strftime()),	 you	 will	 have	 to
find	 a	 way	 to	 do	 it	 without	 using	 the	 standard	 library	 routine.	 Even
better	is	convincing	yourself	that	using	locale	settings	is	okay.	Only	as
a	last	resort	should	you	document	that	your	module	is	not	compatible
with	non-C	locale	settings.

The	only	way	to	perform	numeric	operations	according	to	the	locale	is
to	use	the	special	functions	defined	by	this	module:	atof(),	atoi(),

format(),	str().

There	 is	 no	 way	 to	 perform	 case	 conversions	 and	 character
classifications	according	to	the	locale.	For	(Unicode)	text	strings	these
are	done	according	to	the	character	value	only,	while	for	byte	strings,
the	 conversions	 and	 classifications	 are	 done	 according	 to	 the	ASCII
value	 of	 the	 byte,	 and	 bytes	 whose	 high	 bit	 is	 set	 (i.e.,	 non-ASCII
bytes)	 are	 never	 converted	 or	 considered	 part	 of	 a	 character	 class
such	as	letter	or	whitespace.

23.2.2.	For	extension	writers	and
programs	that	embed	Python

Extension	 modules	 should	 never	 call	 setlocale(),	 except	 to	 find
out	what	 the	current	 locale	 is.	But	since	the	return	value	can	only	be
used	portably	 to	 restore	 it,	 that	 is	not	very	useful	 (except	perhaps	 to
find	out	whether	or	not	the	locale	is	C).

When	 Python	 code	 uses	 the	 locale	 module	 to	 change	 the	 locale,
this	 also	 affects	 the	 embedding	 application.	 If	 the	 embedding
application	 doesn’t	 want	 this	 to	 happen,	 it	 should	 remove	 the
_locale	extension	module	(which	does	all	the	work)	from	the	table	of
built-in	 modules	 in	 the	 config.c	 file,	 and	 make	 sure	 that	 the
_locale	module	is	not	accessible	as	a	shared	library.

23.2.3.	Access	to	message	catalogs

The	locale	module	exposes	the	C	library’s	gettext	interface	on	systems
that	 provide	 this	 interface.	 It	 consists	 of	 the	 functions	 gettext(),
dgettext(),	 dcgettext(),	 textdomain(),
bindtextdomain(),	 and	 bind_textdomain_codeset().	 These
are	similar	to	the	same	functions	in	the	gettext	module,	but	use	the
C	 library’s	 binary	 format	 for	 message	 catalogs,	 and	 the	 C	 library’s
search	algorithms	for	locating	message	catalogs.

Python	 applications	 should	 normally	 find	 no	 need	 to	 invoke	 these
functions,	and	should	use	gettext	instead.	A	known	exception	to	this
rule	are	applications	that	link	with	additional	C	libraries	which	internally
invoke	gettext()	or	dcgettext().	For	 these	applications,	 it	may
be	necessary	to	bind	the	text	domain,	so	that	the	libraries	can	properly
locate	their	message	catalogs.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	23.	Internationalization	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

24.	Program	Frameworks
The	modules	described	in	this	chapter	are	frameworks	that	will	largely
dictate	the	structure	of	your	program.	Currently	the	modules	described
here	are	all	oriented	toward	writing	command-line	interfaces.

The	full	list	of	modules	described	in	this	chapter	is:

24.1.	turtle	—	Turtle	graphics
24.1.1.	Introduction
24.1.2.	Overview	of	available	Turtle	and	Screen	methods

24.1.2.1.	Turtle	methods
24.1.2.2.	Methods	of	TurtleScreen/Screen

24.1.3.	 Methods	 of	 RawTurtle/Turtle	 and	 corresponding
functions

24.1.3.1.	Turtle	motion
24.1.3.2.	Tell	Turtle’s	state
24.1.3.3.	Settings	for	measurement
24.1.3.4.	Pen	control

24.1.3.4.1.	Drawing	state
24.1.3.4.2.	Color	control
24.1.3.4.3.	Filling
24.1.3.4.4.	More	drawing	control

24.1.3.5.	Turtle	state
24.1.3.5.1.	Visibility
24.1.3.5.2.	Appearance

24.1.3.6.	Using	events
24.1.3.7.	Special	Turtle	methods
24.1.3.8.	Compound	shapes

24.1.4.	 Methods	 of	 TurtleScreen/Screen	 and	 corresponding
functions

24.1.4.1.	Window	control
24.1.4.2.	Animation	control

24.1.4.3.	Using	screen	events
24.1.4.4.	Input	methods
24.1.4.5.	Settings	and	special	methods
24.1.4.6.	Methods	specific	 to	Screen,	not	 inherited	 from
TurtleScreen

24.1.5.	Public	classes
24.1.6.	Help	and	configuration

24.1.6.1.	How	to	use	help
24.1.6.2.	 Translation	 of	 docstrings	 into	 different
languages
24.1.6.3.	How	to	configure	Screen	and	Turtles

24.1.7.	Demo	scripts
24.1.8.	Changes	since	Python	2.6
24.1.9.	Changes	since	Python	3.0

24.2.	cmd	—	Support	for	line-oriented	command	interpreters
24.2.1.	Cmd	Objects
24.2.2.	Cmd	Example

24.3.	shlex	—	Simple	lexical	analysis
24.3.1.	shlex	Objects
24.3.2.	Parsing	Rules

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	24.	Program	Frameworks	»

http://www.python.org/

24.1.	turtle	—	Turtle	graphics

Turtle	star

Turtle	 can	 draw	 intricate
shapes	using	programs	that
repeat	simple	moves.

from	turtle	import	*

color('red',	'yellow')

begin_fill()

while	True:

24.1.1.	Introduction

Turtle	graphics	is	a	popular	way	for	introducing	programming	to	kids.	It
was	 part	 of	 the	 original	 Logo	 programming	 language	 developed	 by
Wally	Feurzig	and	Seymour	Papert	in	1966.

Imagine	 a	 robotic	 turtle	 starting	 at	 (0,	 0)	 in	 the	 x-y	 plane.	 After	 an
import	turtle,	give	it	the	command	turtle.forward(15),	and
it	moves	(on-screen!)	15	pixels	 in	 the	direction	 it	 is	 facing,	drawing	a
line	 as	 it	moves.	Give	 it	 the	 command	 turtle.right(25),	 and	 it
rotates	in-place	25	degrees	clockwise.

By	 combining	 together	 these	 and
similar	 commands,	 intricate	 shapes
and	pictures	can	easily	be	drawn.

The	 turtle	 module	 is	 an	 extended
reimplementation	of	 the	 same-named
module	 from	 the	 Python	 standard
distribution	up	to	version	Python	2.5.

It	 tries	 to	 keep	 the	 merits	 of	 the	 old
turtle	module	and	to	be	(nearly)	100%
compatible	with	 it.	This	means	 in	 the
first	 place	 to	 enable	 the	 learning
programmer	to	use	all	the	commands,
classes	 and	 methods	 interactively
when	 using	 the	 module	 from	 within
IDLE	run	with	the	-n	switch.

The	 turtle	 module	 provides	 turtle
graphics	 primitives,	 in	 both	 object-

				forward(200)

				left(170)

				if	abs(pos())	<	1:

								break

end_fill()

done()

oriented	 and	 procedure-oriented
ways.	 Because	 it	 uses	 tkinter	 for
the	 underlying	 graphics,	 it	 needs	 a
version	 of	 Python	 installed	 with	 Tk
support.

The	 object-oriented	 interface	 uses
essentially	two+two	classes:

1.	 The	 TurtleScreen	 class	 defines	 graphics	 windows	 as	 a
playground	 for	 the	 drawing	 turtles.	 Its	 constructor	 needs	 a
tkinter.Canvas	 or	 a	 ScrolledCanvas	 as	 argument.	 It
should	 be	 used	 when	 turtle	 is	 used	 as	 part	 of	 some
application.

The	 function	 Screen()	 returns	 a	 singleton	 object	 of	 a
TurtleScreen	 subclass.	 This	 function	 should	 be	 used	 when
turtle	 is	 used	 as	 a	 standalone	 tool	 for	 doing	 graphics.	 As	 a
singleton	object,	inheriting	from	its	class	is	not	possible.

All	methods	of	TurtleScreen/Screen	also	exist	as	functions,	i.e.	as
part	of	the	procedure-oriented	interface.

2.	 RawTurtle	(alias:	RawPen)	defines	Turtle	objects	which	draw	on
a	 TurtleScreen.	 Its	 constructor	 needs	 a	 Canvas,
ScrolledCanvas	 or	 TurtleScreen	 as	 argument,	 so	 the	 RawTurtle
objects	know	where	to	draw.

Derived	 from	 RawTurtle	 is	 the	 subclass	 Turtle	 (alias:	 Pen),
which	 draws	 on	 “the”	 Screen	 instance	 which	 is	 automatically
created,	if	not	already	present.

All	methods	of	RawTurtle/Turtle	also	exist	as	functions,	i.e.	part	of

the	procedure-oriented	interface.

The	procedural	interface	provides	functions	which	are	derived	from	the
methods	 of	 the	 classes	 Screen	 and	 Turtle.	 They	 have	 the	 same
names	as	the	corresponding	methods.	A	screen	object	is	automatically
created	whenever	a	function	derived	from	a	Screen	method	is	called.
An	 (unnamed)	 turtle	object	 is	automatically	 created	whenever	any	of
the	functions	derived	from	a	Turtle	method	is	called.

To	use	multiple	turtles	on	a	screen	one	has	to	use	the	object-oriented
interface.

Note: 	In	the	following	documentation	the	argument	list	for	functions
is	given.	Methods,	of	course,	have	the	additional	first	argument	self
which	is	omitted	here.

24.1.2.	Overview	of	available	Turtle	and
Screen	methods

24.1.2.1.	Turtle	methods

Turtle	motion
Move	and	draw

forward()	|	fd()
backward()	|	bk()	|	back()
right()	|	rt()
left()	|	lt()
goto()	|	setpos()	|	setposition()
setx()

sety()

setheading()	|	seth()
home()

circle()

dot()

stamp()

clearstamp()

clearstamps()

undo()

speed()

Tell	Turtle’s	state
position()	|	pos()
towards()

xcor()

ycor()

heading()

distance()

Setting	and	measurement

degrees()

radians()

Pen	control
Drawing	state

pendown()	|	pd()	|	down()
penup()	|	pu()	|	up()
pensize()	|	width()
pen()

isdown()

Color	control
color()

pencolor()

fillcolor()

Filling
filling()

begin_fill()

end_fill()

More	drawing	control
reset()

clear()

write()

Turtle	state
Visibility

showturtle()	|	st()
hideturtle()	|	ht()
isvisible()

Appearance
shape()

resizemode()

shapesize()	|	turtlesize()

shearfactor()

settiltangle()

tiltangle()

tilt()

shapetransform()

get_shapepoly()

Using	events
onclick()

onrelease()

ondrag()

Special	Turtle	methods
begin_poly()

end_poly()

get_poly()

clone()

getturtle()	|	getpen()
getscreen()

setundobuffer()

undobufferentries()

24.1.2.2.	Methods	of	TurtleScreen/Screen

Window	control
bgcolor()

bgpic()

clear()	|	clearscreen()
reset()	|	resetscreen()
screensize()

setworldcoordinates()

Animation	control
delay()

tracer()

update()

Using	screen	events
listen()

onkey()	|	onkeyrelease()
onkeypress()

onclick()	|	onscreenclick()
ontimer()

mainloop()	|	done()

Settings	and	special	methods
mode()

colormode()

getcanvas()

getshapes()

register_shape()	|	addshape()
turtles()

window_height()

window_width()

Input	methods
textinput()

numinput()

Methods	specific	to	Screen
bye()

exitonclick()

setup()

title()

24.1.3.	Methods	of	RawTurtle/Turtle	and
corresponding	functions

Most	of	 the	examples	 in	 this	section	 refer	 to	a	Turtle	 instance	called
turtle.

24.1.3.1.	Turtle	motion

turtle.forward(distance)
turtle.fd(distance)

Parameters: distance	–	a	number	(integer	or	float)

Move	 the	 turtle	 forward	by	 the	specified	distance,	 in	 the	direction
the	turtle	is	headed.

>>>	turtle.position()

(0.00,0.00)

>>>	turtle.forward(25)

>>>	turtle.position()

(25.00,0.00)

>>>	turtle.forward(-75)

>>>	turtle.position()

(-50.00,0.00)

turtle.back(distance)
turtle.bk(distance)
turtle.backward(distance)

Parameters: distance	–	a	number

Move	the	turtle	backward	by	distance,	opposite	to	the	direction	the
turtle	is	headed.	Do	not	change	the	turtle’s	heading.

>>>	turtle.position()

(0.00,0.00)

>>>	turtle.backward(30)

>>>	turtle.position()

(-30.00,0.00)

turtle.right(angle)
turtle.rt(angle)

Parameters: angle	–	a	number	(integer	or	float)

Turn	 turtle	 right	by	angle	units.	 (Units	are	by	default	degrees,	but
can	be	set	via	the	degrees()	and	radians()	 functions.)	Angle
orientation	depends	on	the	turtle	mode,	see	mode().

>>>	turtle.heading()

22.0

>>>	turtle.right(45)

>>>	turtle.heading()

337.0

turtle.left(angle)
turtle.lt(angle)

Parameters: angle	–	a	number	(integer	or	float)

Turn	turtle	left	by	angle	units.	(Units	are	by	default	degrees,	but	can
be	 set	 via	 the	 degrees()	 and	 radians()	 functions.)	 Angle
orientation	depends	on	the	turtle	mode,	see	mode().

>>>	turtle.heading()

22.0

>>>	turtle.left(45)

>>>	turtle.heading()

67.0

turtle.goto(x,	y=None)
turtle.setpos(x,	y=None)
turtle.setposition(x,	y=None)

Parameters: x	–	a	number	or	a	pair/vector	of	numbers
y	–	a	number	or	None

If	y	 is	None,	x	must	be	a	pair	of	coordinates	or	a	Vec2D	 (e.g.	as
returned	by	pos()).

Move	 turtle	 to	an	absolute	position.	 If	 the	pen	 is	down,	draw	 line.
Do	not	change	the	turtle’s	orientation.

>>>	tp	=	turtle.pos()

>>>	tp

(0.00,0.00)

>>>	turtle.setpos(60,30)

>>>	turtle.pos()

(60.00,30.00)

>>>	turtle.setpos((20,80))

>>>	turtle.pos()

(20.00,80.00)

>>>	turtle.setpos(tp)

>>>	turtle.pos()

(0.00,0.00)

turtle.setx(x)

Parameters: x	–	a	number	(integer	or	float)

Set	 the	 turtle’s	 first	 coordinate	 to	 x,	 leave	 second	 coordinate
unchanged.

>>>	turtle.position()

(0.00,240.00)

>>>	turtle.setx(10)

>>>	turtle.position()

(10.00,240.00)

turtle.sety(y)

Parameters: y	–	a	number	(integer	or	float)

Set	 the	 turtle’s	 second	 coordinate	 to	 y,	 leave	 first	 coordinate
unchanged.

>>>	turtle.position()

(0.00,40.00)

>>>	turtle.sety(-10)

>>>	turtle.position()

(0.00,-10.00)

turtle.setheading(to_angle)
turtle.seth(to_angle)

Parameters: to_angle	–	a	number	(integer	or	float)

Set	 the	 orientation	 of	 the	 turtle	 to	 to_angle.	 Here	 are	 some
common	directions	in	degrees:

standard	mode logo	mode

0	-	east 0	-	north

90	-	north 90	-	east

180	-	west 180	-	south

270	-	south 270	-	west

>>>	turtle.setheading(90)

>>>	turtle.heading()

90.0

turtle.home()
Move	turtle	to	the	origin	–	coordinates	(0,0)	–	and	set	its	heading	to
its	start-orientation	(which	depends	on	the	mode,	see	mode()).

>>>	turtle.heading()

90.0

>>>	turtle.position()

(0.00,-10.00)

>>>	turtle.home()

>>>	turtle.position()

(0.00,0.00)

>>>	turtle.heading()

0.0

turtle.circle(radius,	extent=None,	steps=None)

Parameters:
radius	–	a	number
extent	–	a	number	(or	None)
steps	–	an	integer	(or	None)

Draw	a	circle	with	given	radius.	The	center	is	radius	units	left	of	the
turtle;	extent	 –	 an	 angle	 –	 determines	 which	 part	 of	 the	 circle	 is
drawn.	If	extent	is	not	given,	draw	the	entire	circle.	If	extent	is	not	a
full	circle,	one	endpoint	of	the	arc	is	the	current	pen	position.	Draw
the	arc	in	counterclockwise	direction	if	radius	is	positive,	otherwise
in	clockwise	direction.	Finally	the	direction	of	the	turtle	is	changed
by	the	amount	of	extent.

As	 the	 circle	 is	 approximated	 by	 an	 inscribed	 regular	 polygon,
steps	determines	the	number	of	steps	to	use.	If	not	given,	it	will	be
calculated	automatically.	May	be	used	to	draw	regular	polygons.

>>>	turtle.home()

>>>	turtle.position()

(0.00,0.00)

>>>	turtle.heading()

0.0

>>>	turtle.circle(50)

>>>	turtle.position()

(-0.00,0.00)

>>>	turtle.heading()

0.0

>>>	turtle.circle(120,	180)		#	draw	a	semicircle

>>>	turtle.position()

(0.00,240.00)

>>>	turtle.heading()

180.0

turtle.dot(size=None,	*color)

Parameters: size	–	an	integer	>=	1	(if	given)
color	–	a	colorstring	or	a	numeric	color	tuple

Draw	 a	 circular	 dot	with	 diameter	 size,	 using	color.	 If	size	 is	 not
given,	the	maximum	of	pensize+4	and	2*pensize	is	used.

>>>	turtle.home()

>>>	turtle.dot()

>>>	turtle.fd(50);	turtle.dot(20,	"blue");	turtle.

>>>	turtle.position()

(100.00,-0.00)

>>>	turtle.heading()

0.0

turtle.stamp()
Stamp	 a	 copy	 of	 the	 turtle	 shape	 onto	 the	 canvas	 at	 the	 current
turtle	 position.	 Return	 a	 stamp_id	 for	 that	 stamp,	 which	 can	 be
used	to	delete	it	by	calling	clearstamp(stamp_id).

>>>	turtle.color("blue")

>>>	turtle.stamp()

11

>>>	turtle.fd(50)

turtle.clearstamp(stampid)

Parameters: stampid	–	an	integer,	must	be	return	value	of
previous	stamp()	call

Delete	stamp	with	given	stampid.

>>>	turtle.position()

(150.00,-0.00)

>>>	turtle.color("blue")

>>>	astamp	=	turtle.stamp()

>>>	turtle.fd(50)

>>>	turtle.position()

(200.00,-0.00)

>>>	turtle.clearstamp(astamp)

>>>	turtle.position()

(200.00,-0.00)

turtle.clearstamps(n=None)

Parameters: n	–	an	integer	(or	None)

Delete	all	 or	 first/last	n	 of	 turtle’s	 stamps.	 If	n	 is	None,	 delete	 all
stamps,	 if	n	 >	 0	 delete	 first	n	 stamps,	 else	 if	n	 <	 0	 delete	 last	n
stamps.

>>>	for	i	in	range(8):

...					turtle.stamp();	turtle.fd(30)

13

14

15

16

17

18

19

20

>>>	turtle.clearstamps(2)

>>>	turtle.clearstamps(-2)

>>>	turtle.clearstamps()

turtle.undo()
Undo	 (repeatedly)	 the	 last	 turtle	 action(s).	 Number	 of	 available
undo	actions	is	determined	by	the	size	of	the	undobuffer.

>>>	for	i	in	range(4):

...					turtle.fd(50);	turtle.lt(80)

...

>>>	for	i	in	range(8):

...					turtle.undo()

turtle.speed(speed=None)

Parameters: speed	–	an	integer	in	the	range	0..10	or	a
speedstring	(see	below)

Set	 the	 turtle’s	speed	 to	an	 integer	value	 in	 the	range	0..10.	 If	no
argument	is	given,	return	current	speed.

If	 input	 is	a	number	greater	 than	10	or	smaller	 than	0.5,	speed	 is
set	to	0.	Speedstrings	are	mapped	to	speedvalues	as	follows:

“fastest”:	0
“fast”:	10
“normal”:	6
“slow”:	3
“slowest”:	1

Speeds	 from	1	 to	10	enforce	 increasingly	 faster	animation	of	 line

drawing	and	turtle	turning.

Attention:	 speed	 =	 0	 means	 that	 no	 animation	 takes	 place.
forward/back	 makes	 turtle	 jump	 and	 likewise	 left/right	 make	 the
turtle	turn	instantly.

>>>	turtle.speed()

3

>>>	turtle.speed('normal')

>>>	turtle.speed()

6

>>>	turtle.speed(9)

>>>	turtle.speed()

9

24.1.3.2.	Tell	Turtle’s	state

turtle.position()
turtle.pos()

Return	the	turtle’s	current	location	(x,y)	(as	a	Vec2D	vector).

>>>	turtle.pos()

(440.00,-0.00)

turtle.towards(x,	y=None)

Parameters:
x	–	a	number	or	a	pair/vector	of	numbers	or	a
turtle	instance
y	–	a	number	if	x	is	a	number,	else	None

Return	 the	 angle	 between	 the	 line	 from	 turtle	 position	 to	 position
specified	by	 (x,y),	 the	 vector	 or	 the	other	 turtle.	This	depends	on
the	 turtle’s	 start	 orientation	 which	 depends	 on	 the	 mode	 -
“standard”/”world”	or	“logo”).

>>>	turtle.goto(10,	10)

>>>	turtle.towards(0,0)

225.0

turtle.xcor()
Return	the	turtle’s	x	coordinate.

>>>	turtle.home()

>>>	turtle.left(50)

>>>	turtle.forward(100)

>>>	turtle.pos()

(64.28,76.60)

>>>	print(round(turtle.xcor(),	5))

64.27876

turtle.ycor()
Return	the	turtle’s	y	coordinate.

>>>	turtle.home()

>>>	turtle.left(60)

>>>	turtle.forward(100)

>>>	print(turtle.pos())

(50.00,86.60)

>>>	print(round(turtle.ycor(),	5))

86.60254

turtle.heading()
Return	 the	 turtle’s	 current	 heading	 (value	 depends	 on	 the	 turtle
mode,	see	mode()).

>>>	turtle.home()

>>>	turtle.left(67)

>>>	turtle.heading()

67.0

turtle.distance(x,	y=None)

Parameters:
x	–	a	number	or	a	pair/vector	of	numbers	or	a
turtle	instance
y	–	a	number	if	x	is	a	number,	else	None

Return	the	distance	from	the	turtle	to	(x,y),	the	given	vector,	or	the
given	other	turtle,	in	turtle	step	units.

>>>	turtle.home()

>>>	turtle.distance(30,40)

50.0

>>>	turtle.distance((30,40))

50.0

>>>	joe	=	Turtle()

>>>	joe.forward(77)

>>>	turtle.distance(joe)

77.0

24.1.3.3.	Settings	for	measurement

turtle.degrees(fullcircle=360.0)

Parameters: fullcircle	–	a	number

Set	angle	measurement	units,	i.e.	set	number	of	“degrees”	for	a	full
circle.	Default	value	is	360	degrees.

>>>	turtle.home()

>>>	turtle.left(90)

>>>	turtle.heading()

90.0

Change	angle	measurement	unit	to	grad	(also	known	as	gon,

grade,	or	gradian	and	equals	1/100-th	of	the	right	angle.)

>>>	turtle.degrees(400.0)

>>>	turtle.heading()

100.0

>>>	turtle.degrees(360)

>>>	turtle.heading()

90.0

turtle.radians()
Set	 the	 angle	 measurement	 units	 to	 radians.	 Equivalent	 to
degrees(2*math.pi).

>>>	turtle.home()

>>>	turtle.left(90)

>>>	turtle.heading()

90.0

>>>	turtle.radians()

>>>	turtle.heading()

1.5707963267948966

24.1.3.4.	Pen	control
24.1.3.4.1.	Drawing	state

turtle.pendown()
turtle.pd()
turtle.down()

Pull	the	pen	down	–	drawing	when	moving.

turtle.penup()
turtle.pu()
turtle.up()

Pull	the	pen	up	–	no	drawing	when	moving.

turtle.pensize(width=None)

turtle.width(width=None)

Parameters: width	–	a	positive	number

Set	 the	 line	 thickness	 to	width	or	 return	 it.	 If	 resizemode	 is	set	 to
“auto”	and	turtleshape	is	a	polygon,	that	polygon	is	drawn	with	the
same	line	thickness.	If	no	argument	is	given,	the	current	pensize	is
returned.

>>>	turtle.pensize()

1

>>>	turtle.pensize(10)			#	from	here	on	lines	of	width	10	are	drawn

turtle.pen(pen=None,	**pendict)

Parameters:

pen	 –	 a	 dictionary	 with	 some	 or	 all	 of	 the
below	listed	keys
pendict	 –	 one	 or	 more	 keyword-arguments
with	the	below	listed	keys	as	keywords

Return	 or	 set	 the	 pen’s	 attributes	 in	 a	 “pen-dictionary”	 with	 the
following	key/value	pairs:

“shown”:	True/False
“pendown”:	True/False
“pencolor”:	color-string	or	color-tuple
“fillcolor”:	color-string	or	color-tuple
“pensize”:	positive	number
“speed”:	number	in	range	0..10
“resizemode”:	“auto”	or	“user”	or	“noresize”
“stretchfactor”:	(positive	number,	positive	number)
“outline”:	positive	number
“tilt”:	number

This	dictionary	can	be	used	as	argument	 for	a	subsequent	call	 to

pen()	 to	 restore	 the	 former	pen-state.	Moreover	 one	or	more	of
these	attributes	can	be	provided	as	keyword-arguments.	This	can
be	used	to	set	several	pen	attributes	in	one	statement.

>>>	turtle.pen(fillcolor="black",	pencolor="red",	

>>>	sorted(turtle.pen().items())

[('fillcolor',	'black'),	('outline',	1),	('pencolor',	'red'),

	('pendown',	True),	('pensize',	10),	('resizemode',	'noresize'),

	('shearfactor',	0.0),	('shown',	True),	('speed',	9),

	('stretchfactor',	(1.0,	1.0)),	('tilt',	0.0)]

>>>	penstate=turtle.pen()

>>>	turtle.color("yellow",	"")

>>>	turtle.penup()

>>>	sorted(turtle.pen().items())[:3]

[('fillcolor',	''),	('outline',	1),	('pencolor',	'yellow')]

>>>	turtle.pen(penstate,	fillcolor="green")

>>>	sorted(turtle.pen().items())[:3]

[('fillcolor',	'green'),	('outline',	1),	('pencolor',	'red')]

turtle.isdown()
Return	True	if	pen	is	down,	False	if	it’s	up.

>>>	turtle.penup()

>>>	turtle.isdown()

False

>>>	turtle.pendown()

>>>	turtle.isdown()

True

24.1.3.4.2.	Color	control

turtle.pencolor(*args)
Return	or	set	the	pencolor.

Four	input	formats	are	allowed:

pencolor()

Return	the	current	pencolor	as	color	specification	string	or	as	a
tuple	 (see	 example).	 May	 be	 used	 as	 input	 to	 another
color/pencolor/fillcolor	call.

pencolor(colorstring)

Set	 pencolor	 to	 colorstring,	 which	 is	 a	 Tk	 color	 specification
string,	such	as	"red",	"yellow",	or	"#33cc8c".

pencolor((r,	g,	b))

Set	pencolor	to	the	RGB	color	represented	by	the	tuple	of	r,	g,
and	b.	Each	of	r,	g,	and	b	must	be	 in	 the	range	0..colormode,
where	colormode	is	either	1.0	or	255	(see	colormode()).

pencolor(r,	g,	b)

Set	pencolor	 to	the	RGB	color	represented	by	r,	g,	and	b.
Each	of	r,	g,	and	b	must	be	in	the	range	0..colormode.

If	turtleshape	is	a	polygon,	the	outline	of	that	polygon	is	drawn
with	the	newly	set	pencolor.

>>>	colormode()

1.0

>>>	turtle.pencolor()

'red'

>>>	turtle.pencolor("brown")

>>>	turtle.pencolor()

'brown'

>>>	tup	=	(0.2,	0.8,	0.55)

>>>	turtle.pencolor(tup)

>>>	turtle.pencolor()

(0.2,	0.8,	0.5490196078431373)

>>>	colormode(255)

>>>	turtle.pencolor()

(51.0,	204.0,	140.0)

>>>	turtle.pencolor('#32c18f')

>>>	turtle.pencolor()

(50.0,	193.0,	143.0)

turtle.fillcolor(*args)
Return	or	set	the	fillcolor.

Four	input	formats	are	allowed:

fillcolor()

Return	the	current	fillcolor	as	color	specification	string,	possibly
in	tuple	format	(see	example).	May	be	used	as	input	to	another
color/pencolor/fillcolor	call.

fillcolor(colorstring)

Set	 fillcolor	 to	 colorstring,	 which	 is	 a	 Tk	 color	 specification
string,	such	as	"red",	"yellow",	or	"#33cc8c".

fillcolor((r,	g,	b))

Set	 fillcolor	 to	 the	RGB	color	 represented	by	 the	 tuple	of	 r,	g,
and	b.	Each	of	r,	g,	and	b	must	be	 in	 the	range	0..colormode,
where	colormode	is	either	1.0	or	255	(see	colormode()).

fillcolor(r,	g,	b)

Set	 fillcolor	 to	 the	RGB	 color	 represented	 by	 r,	g,	 and	 b.
Each	of	r,	g,	and	b	must	be	in	the	range	0..colormode.

If	turtleshape	is	a	polygon,	the	interior	of	that	polygon	is	drawn
with	the	newly	set	fillcolor.

>>>	turtle.fillcolor("violet")

>>>	turtle.fillcolor()

'violet'

>>>	col	=	turtle.pencolor()

>>>	col

(50.0,	193.0,	143.0)

>>>	turtle.fillcolor(col)

>>>	turtle.fillcolor()

(50.0,	193.0,	143.0)

>>>	turtle.fillcolor('#ffffff')

>>>	turtle.fillcolor()

(255.0,	255.0,	255.0)

turtle.color(*args)
Return	or	set	pencolor	and	fillcolor.

Several	 input	 formats	are	allowed.	They	use	0	 to	3	arguments	as
follows:

color()

Return	the	current	pencolor	and	the	current	fillcolor	as	a	pair	of
color	 specification	 strings	 or	 tuples	 as	 returned	 by
pencolor()	and	fillcolor().

color(colorstring),	color((r,g,b)),	color(r,g,b)
Inputs	 as	 in	 pencolor(),	 set	 both,	 fillcolor	 and	 pencolor,	 to
the	given	value.

color(colorstring1,	 colorstring2),
color((r1,g1,b1),	(r2,g2,b2))

Equivalent	 to	 pencolor(colorstring1)	 and
fillcolor(colorstring2)	 and	 analogously	 if	 the
other	input	format	is	used.

If	turtleshape	is	a	polygon,	outline	and	interior	of	that	polygon	is
drawn	with	the	newly	set	colors.

>>>	turtle.color("red",	"green")

>>>	turtle.color()

('red',	'green')

>>>	color("#285078",	"#a0c8f0")

>>>	color()

((40.0,	80.0,	120.0),	(160.0,	200.0,	240.0))

See	also:	Screen	method	colormode().

24.1.3.4.3.	Filling

turtle.filling()
Return	fillstate	(True	if	filling,	False	else).

>>>	turtle.begin_fill()

>>>	if	turtle.filling():

...				turtle.pensize(5)

...	else:

...				turtle.pensize(3)

turtle.begin_fill()
To	be	called	just	before	drawing	a	shape	to	be	filled.

turtle.end_fill()
Fill	the	shape	drawn	after	the	last	call	to	begin_fill().

>>>	turtle.color("black",	"red")

>>>	turtle.begin_fill()

>>>	turtle.circle(80)

>>>	turtle.end_fill()

24.1.3.4.4.	More	drawing	control

turtle.reset()
Delete	 the	 turtle’s	 drawings	 from	 the	 screen,	 re-center	 the	 turtle
and	set	variables	to	the	default	values.

>>>	turtle.goto(0,-22)

>>>	turtle.left(100)

>>>	turtle.position()

(0.00,-22.00)

>>>	turtle.heading()

100.0

>>>	turtle.reset()

>>>	turtle.position()

(0.00,0.00)

>>>	turtle.heading()

0.0

turtle.clear()
Delete	 the	 turtle’s	 drawings	 from	 the	 screen.	Do	 not	move	 turtle.
State	and	position	of	the	turtle	as	well	as	drawings	of	other	turtles
are	not	affected.

turtle.write(arg,	move=False,	align="left",	font=("Arial",	8,
"normal"))

Parameters:

arg	–	object	to	be	written	to	the	TurtleScreen
move	–	True/False
align	 –	 one	 of	 the	 strings	 “left”,	 “center”	 or
right”
font	–	a	triple	(fontname,	fontsize,	fonttype)

Write	 text	 -	 the	 string	 representation	 of	arg	 -	 at	 the	 current	 turtle
position	 according	 to	 align	 (“left”,	 “center”	 or	 right”)	 and	 with	 the
given	 font.	 If	move	 is	 true,	 the	 pen	 is	 moved	 to	 the	 bottom-right
corner	of	the	text.	By	default,	move	is	False.

>>>	turtle.write("Home	=	",	True,	align="center")

>>>	turtle.write((0,0),	True)

24.1.3.5.	Turtle	state
24.1.3.5.1.	Visibility

turtle.hideturtle()
turtle.ht()

Make	the	turtle	invisible.	It’s	a	good	idea	to	do	this	while	you’re	in
the	 middle	 of	 doing	 some	 complex	 drawing,	 because	 hiding	 the
turtle	speeds	up	the	drawing	observably.

>>>	turtle.hideturtle()

turtle.showturtle()
turtle.st()

Make	the	turtle	visible.

>>>	turtle.showturtle()

turtle.isvisible()
Return	True	if	the	Turtle	is	shown,	False	if	it’s	hidden.

>>>	turtle.hideturtle()

>>>	turtle.isvisible()

False

>>>	turtle.showturtle()

>>>	turtle.isvisible()

True

24.1.3.5.2.	Appearance

turtle.shape(name=None)

Parameters: name	–	a	string	which	is	a	valid	shapename

Set	turtle	shape	to	shape	with	given	name	or,	if	name	is	not	given,
return	name	of	current	shape.	Shape	with	name	must	exist	 in	 the
TurtleScreen’s	 shape	 dictionary.	 Initially	 there	 are	 the	 following
polygon	 shapes:	 “arrow”,	 “turtle”,	 “circle”,	 “square”,	 “triangle”,
“classic”.	 To	 learn	 about	 how	 to	 deal	 with	 shapes	 see	 Screen
method	register_shape().

>>>	turtle.shape()

'classic'

>>>	turtle.shape("turtle")

>>>	turtle.shape()

'turtle'

turtle.resizemode(rmode=None)

Parameters: rmode	–	one	of	the	strings	“auto”,	“user”,
“noresize”

Set	 resizemode	 to	 one	of	 the	 values:	 “auto”,	 “user”,	 “noresize”.	 If
rmode	 is	 not	 given,	 return	 current	 resizemode.	 Different
resizemodes	have	the	following	effects:

“auto”:	 adapts	 the	 appearance	 of	 the	 turtle	 corresponding	 to
the	value	of	pensize.
“user”:	 adapts	 the	 appearance	 of	 the	 turtle	 according	 to	 the
values	of	stretchfactor	and	outlinewidth	(outline),	which	are	set
by	shapesize().
“noresize”:	no	adaption	of	the	turtle’s	appearance	takes	place.

resizemode(“user”)	 is	 called	 by	 shapesize()	 when	 used	 with
arguments.

>>>	turtle.resizemode()

'noresize'

>>>	turtle.resizemode("auto")

>>>	turtle.resizemode()

'auto'

turtle.shapesize(stretch_wid=None,	stretch_len=None,
outline=None)
turtle.turtlesize(stretch_wid=None,	stretch_len=None,
outline=None)

Parameters:
stretch_wid	–	positive	number
stretch_len	–	positive	number
outline	–	positive	number

Return	or	set	 the	pen’s	attributes	x/y-stretchfactors	and/or	outline.
Set	resizemode	to	“user”.	If	and	only	if	resizemode	is	set	to	“user”,
the	turtle	will	be	displayed	stretched	according	to	its	stretchfactors:
stretch_wid	 is	 stretchfactor	 perpendicular	 to	 its	 orientation,
stretch_len	 is	 stretchfactor	 in	 direction	 of	 its	 orientation,	 outline
determines	the	width	of	the	shapes’s	outline.

>>>	turtle.shapesize()

(1.0,	1.0,	1)

>>>	turtle.resizemode("user")

>>>	turtle.shapesize(5,	5,	12)

>>>	turtle.shapesize()

(5,	5,	12)

>>>	turtle.shapesize(outline=8)

>>>	turtle.shapesize()

(5,	5,	8)

turtle.shearfactor(shear=None)

Parameters: shear	–	number	(optional)

Set	 or	 return	 the	 current	 shearfactor.	 Shear	 the	 turtleshape
according	 to	 the	 given	 shearfactor	 shear,	which	 is	 the	 tangent	 of

the	 shear	 angle.	 Do	not	 change	 the	 turtle’s	 heading	 (direction	 of
movement).	 If	shear	 is	not	given:	 return	 the	current	shearfactor,	 i.
e.	 the	 tangent	 of	 the	 shear	 angle,	 by	 which	 lines	 parallel	 to	 the
heading	of	the	turtle	are	sheared.

>>>	turtle.shape("circle")

>>>	turtle.shapesize(5,2)

>>>	turtle.shearfactor(0.5)

>>>	turtle.shearfactor()

0.5

turtle.tilt(angle)

Parameters: angle	–	a	number

Rotate	 the	 turtleshape	 by	angle	 from	 its	 current	 tilt-angle,	 but	 do
not	change	the	turtle’s	heading	(direction	of	movement).

>>>	turtle.reset()

>>>	turtle.shape("circle")

>>>	turtle.shapesize(5,2)

>>>	turtle.tilt(30)

>>>	turtle.fd(50)

>>>	turtle.tilt(30)

>>>	turtle.fd(50)

turtle.settiltangle(angle)

Parameters: angle	–	a	number

Rotate	 the	 turtleshape	 to	point	 in	 the	direction	specified	by	angle,
regardless	 of	 its	 current	 tilt-angle.	 Do	 not	 change	 the	 turtle’s
heading	(direction	of	movement).

>>>	turtle.reset()

>>>	turtle.shape("circle")

>>>	turtle.shapesize(5,2)

>>>	turtle.settiltangle(45)

>>>	turtle.fd(50)

>>>	turtle.settiltangle(-45)

>>>	turtle.fd(50)

Deprecated	since	version	3.1.

turtle.tiltangle(angle=None)

Parameters: angle	–	a	number	(optional)

Set	 or	 return	 the	 current	 tilt-angle.	 If	 angle	 is	 given,	 rotate	 the
turtleshape	 to	point	 in	 the	direction	specified	by	angle,	 regardless
of	its	current	tilt-angle.	Do	not	change	the	turtle’s	heading	(direction
of	movement).	If	angle	is	not	given:	return	the	current	tilt-angle,	i.	e.
the	 angle	 between	 the	 orientation	 of	 the	 turtleshape	 and	 the
heading	of	the	turtle	(its	direction	of	movement).

>>>	turtle.reset()

>>>	turtle.shape("circle")

>>>	turtle.shapesize(5,2)

>>>	turtle.tilt(45)

>>>	turtle.tiltangle()

45.0

turtle.shapetransform(t11=None,	t12=None,	t21=None,
t22=None)

Parameters:

t11	–	a	number	(optional)
t12	–	a	number	(optional)
t21	–	a	number	(optional)
t12	–	a	number	(optional)

Set	or	return	the	current	transformation	matrix	of	the	turtle	shape.

If	none	of	the	matrix	elements	are	given,	return	the	transformation
matrix	as	a	tuple	of	4	elements.	Otherwise	set	the	given	elements
and	transform	the	turtleshape	according	to	the	matrix	consisting	of
first	row	t11,	t12	and	second	row	t21,	22.	The	determinant	t11	*	t22
-	 t12	 *	 t21	must	not	be	zero,	otherwise	an	error	 is	 raised.	Modify
stretchfactor,	 shearfactor	 and	 tiltangle	 according	 to	 the	 given
matrix.

>>>	turtle	=	Turtle()

>>>	turtle.shape("square")

>>>	turtle.shapesize(4,2)

>>>	turtle.shearfactor(-0.5)

>>>	turtle.shapetransform()

(4.0,	-1.0,	-0.0,	2.0)

turtle.get_shapepoly()
Return	the	current	shape	polygon	as	tuple	of	coordinate	pairs.	This
can	be	used	to	define	a	new	shape	or	components	of	a	compound
shape.

>>>	turtle.shape("square")

>>>	turtle.shapetransform(4,	-1,	0,	2)

>>>	turtle.get_shapepoly()

((50,	-20),	(30,	20),	(-50,	20),	(-30,	-20))

24.1.3.6.	Using	events

turtle.onclick(fun,	btn=1,	add=None)

Parameters:

fun	–	a	function	with	two	arguments	which	will
be	 called	 with	 the	 coordinates	 of	 the	 clicked
point	on	the	canvas
num	 –	 number	 of	 the	mouse-button,	 defaults

to	1	(left	mouse	button)
add	 –	 True	 or	 False	 –	 if	 True,	 a	 new
binding	will	be	added,	otherwise	 it	will	 replace
a	former	binding

Bind	fun	to	mouse-click	events	on	this	turtle.	If	fun	is	None,	existing
bindings	are	 removed.	Example	 for	 the	anonymous	 turtle,	 i.e.	 the
procedural	way:

>>>	def	turn(x,	y):

...					left(180)

...

>>>	onclick(turn)		#	Now	clicking	into	the	turtle	will	turn	it.

>>>	onclick(None)		#	event-binding	will	be	removed

turtle.onrelease(fun,	btn=1,	add=None)

Parameters:

fun	–	a	function	with	two	arguments	which	will
be	 called	 with	 the	 coordinates	 of	 the	 clicked
point	on	the	canvas
num	 –	 number	 of	 the	mouse-button,	 defaults
to	1	(left	mouse	button)
add	 –	 True	 or	 False	 –	 if	 True,	 a	 new
binding	will	be	added,	otherwise	 it	will	 replace
a	former	binding

Bind	 fun	 to	 mouse-button-release	 events	 on	 this	 turtle.	 If	 fun	 is
None,	existing	bindings	are	removed.

>>>	class	MyTurtle(Turtle):

...					def	glow(self,x,y):

...									self.fillcolor("red")

...					def	unglow(self,x,y):

...									self.fillcolor("")

...

>>>	turtle	=	MyTurtle()

>>>	turtle.onclick(turtle.glow)					#	clicking	on	turtle	turns	fillcolor	red,

>>>	turtle.onrelease(turtle.unglow)	#	releasing	turns	it	to	transparent.

turtle.ondrag(fun,	btn=1,	add=None)

Parameters:

fun	–	a	function	with	two	arguments	which	will
be	 called	 with	 the	 coordinates	 of	 the	 clicked
point	on	the	canvas
num	 –	 number	 of	 the	mouse-button,	 defaults
to	1	(left	mouse	button)
add	 –	 True	 or	 False	 –	 if	 True,	 a	 new
binding	will	be	added,	otherwise	 it	will	 replace
a	former	binding

Bind	 fun	 to	 mouse-move	 events	 on	 this	 turtle.	 If	 fun	 is	 None,
existing	bindings	are	removed.

Remark:	 Every	 sequence	 of	 mouse-move-events	 on	 a	 turtle	 is
preceded	by	a	mouse-click	event	on	that	turtle.

>>>	turtle.ondrag(turtle.goto)

Subsequently,	clicking	and	dragging	 the	Turtle	will	move	 it	across
the	screen	thereby	producing	handdrawings	(if	pen	is	down).

24.1.3.7.	Special	Turtle	methods

turtle.begin_poly()
Start	 recording	the	vertices	of	a	polygon.	Current	 turtle	position	 is
first	vertex	of	polygon.

turtle.end_poly()

Stop	recording	 the	vertices	of	a	polygon.	Current	 turtle	position	 is
last	vertex	of	polygon.	This	will	be	connected	with	the	first	vertex.

turtle.get_poly()
Return	the	last	recorded	polygon.

>>>	turtle.home()

>>>	turtle.begin_poly()

>>>	turtle.fd(100)

>>>	turtle.left(20)

>>>	turtle.fd(30)

>>>	turtle.left(60)

>>>	turtle.fd(50)

>>>	turtle.end_poly()

>>>	p	=	turtle.get_poly()

>>>	register_shape("myFavouriteShape",	p)

turtle.clone()
Create	and	return	a	clone	of	the	turtle	with	same	position,	heading
and	turtle	properties.

>>>	mick	=	Turtle()

>>>	joe	=	mick.clone()

turtle.getturtle()
turtle.getpen()

Return	the	Turtle	object	itself.	Only	reasonable	use:	as	a	function	to
return	the	“anonymous	turtle”:

>>>	pet	=	getturtle()

>>>	pet.fd(50)

>>>	pet

<turtle.Turtle	object	at	0x...>

turtle.getscreen()
Return	 the	 TurtleScreen	 object	 the	 turtle	 is	 drawing	 on.
TurtleScreen	methods	can	then	be	called	for	that	object.

>>>	ts	=	turtle.getscreen()

>>>	ts

<turtle._Screen	object	at	0x...>

>>>	ts.bgcolor("pink")

turtle.setundobuffer(size)

Parameters: size	–	an	integer	or	None

Set	or	disable	undobuffer.	If	size	is	an	integer	an	empty	undobuffer
of	given	size	is	installed.	size	gives	the	maximum	number	of	turtle
actions	that	can	be	undone	by	the	undo()	method/function.	If	size
is	None,	the	undobuffer	is	disabled.

>>>	turtle.setundobuffer(42)

turtle.undobufferentries()
Return	number	of	entries	in	the	undobuffer.

>>>	while	undobufferentries():

...					undo()

24.1.3.8.	Compound	shapes

To	use	compound	turtle	shapes,	which	consist	of	several	polygons	of
different	 color,	 you	 must	 use	 the	 helper	 class	 Shape	 explicitly	 as
described	below:

1.	 Create	an	empty	Shape	object	of	type	“compound”.

2.	 Add	 as	 many	 components	 to	 this	 object	 as	 desired,	 using	 the
addcomponent()	method.

For	example:

>>>	s	=	Shape("compound")

>>>	poly1	=	((0,0),(10,-5),(0,10),(-10,-5))

>>>	s.addcomponent(poly1,	"red",	"blue")

>>>	poly2	=	((0,0),(10,-5),(-10,-5))

>>>	s.addcomponent(poly2,	"blue",	"red")

3.	 Now	add	the	Shape	to	the	Screen’s	shapelist	and	use	it:

>>>	register_shape("myshape",	s)

>>>	shape("myshape")

Note: 	The	Shape	class	is	used	internally	by	the
register_shape()	method	in	different	ways.	The	application
programmer	has	to	deal	with	the	Shape	class	only	when	using
compound	shapes	like	shown	above!

24.1.4.	Methods	of	TurtleScreen/Screen
and	corresponding	functions

Most	of	 the	examples	 in	 this	section	 refer	 to	a	TurtleScreen	 instance
called	screen.

24.1.4.1.	Window	control

turtle.bgcolor(*args)

Parameters: args	–	a	color	string	or	three	numbers	in	the
range	0..colormode	or	a	3-tuple	of	such	numbers

Set	or	return	background	color	of	the	TurtleScreen.

>>>	screen.bgcolor("orange")

>>>	screen.bgcolor()

'orange'

>>>	screen.bgcolor("#800080")

>>>	screen.bgcolor()

(128.0,	0.0,	128.0)

turtle.bgpic(picname=None)

Parameters: picname	–	a	string,	name	of	a	gif-file	or
"nopic",	or	None

Set	 background	 image	 or	 return	 name	 of	 current
backgroundimage.	If	picname	 is	a	filename,	set	the	corresponding
image	as	background.	If	picname	 is	"nopic",	delete	background
image,	 if	 present.	 If	picname	 is	 None,	 return	 the	 filename	 of	 the
current	backgroundimage.

>>>	screen.bgpic()

'nopic'

>>>	screen.bgpic("landscape.gif")

>>>	screen.bgpic()

"landscape.gif"

turtle.clear()
turtle.clearscreen()

Delete	all	drawings	and	all	turtles	from	the	TurtleScreen.	Reset	the
now	 empty	 TurtleScreen	 to	 its	 initial	 state:	 white	 background,	 no
background	image,	no	event	bindings	and	tracing	on.

Note: 	This	TurtleScreen	method	is	available	as	a	global	function
only	under	the	name	clearscreen.	The	global	function	clear
is	a	different	one	derived	from	the	Turtle	method	clear.

turtle.reset()
turtle.resetscreen()

Reset	all	Turtles	on	the	Screen	to	their	initial	state.

Note: 	This	TurtleScreen	method	is	available	as	a	global	function
only	under	the	name	resetscreen.	The	global	function	reset
is	another	one	derived	from	the	Turtle	method	reset.

turtle.screensize(canvwidth=None,	canvheight=None,
bg=None)

Parameters:

canvwidth	 –	 positive	 integer,	 new	 width	 of
canvas	in	pixels
canvheight	 –	 positive	 integer,	 new	 height	 of
canvas	in	pixels
bg	 –	 colorstring	 or	 color-tuple,	 new

background	color

If	 no	 arguments	 are	 given,	 return	 current	 (canvaswidth,
canvasheight).	Else	 resize	 the	 canvas	 the	 turtles	are	drawing	on.
Do	not	 alter	 the	drawing	window.	To	 observe	 hidden	 parts	 of	 the
canvas,	use	the	scrollbars.	With	this	method,	one	can	make	visible
those	parts	of	a	drawing	which	were	outside	the	canvas	before.

>>>	screen.screensize()

(400,	300)

>>>	screen.screensize(2000,1500)

>>>	screen.screensize()

(2000,	1500)

e.g.	to	search	for	an	erroneously	escaped	turtle	;-)

turtle.setworldcoordinates(llx,	lly,	urx,	ury)

Parameters:

llx	 –	 a	 number,	 x-coordinate	 of	 lower	 left
corner	of	canvas
lly	 –	 a	 number,	 y-coordinate	 of	 lower	 left
corner	of	canvas
urx	 –	 a	 number,	 x-coordinate	 of	 upper	 right
corner	of	canvas
ury	 –	 a	 number,	 y-coordinate	 of	 upper	 right
corner	of	canvas

Set	up	user-defined	coordinate	system	and	switch	to	mode	“world”
if	necessary.	This	performs	a	screen.reset().	If	mode	“world”	is
already	 active,	 all	 drawings	 are	 redrawn	 according	 to	 the	 new
coordinates.

ATTENTION:	 in	 user-defined	 coordinate	 systems	 angles	 may
appear	distorted.

>>>	screen.reset()

>>>	screen.setworldcoordinates(-50,-7.5,50,7.5)

>>>	for	_	in	range(72):

...					left(10)

...

>>>	for	_	in	range(8):

...					left(45);	fd(2)			#	a	regular	octagon

24.1.4.2.	Animation	control

turtle.delay(delay=None)

Parameters: delay	–	positive	integer

Set	 or	 return	 the	 drawing	 delay	 in	 milliseconds.	 (This	 is
approximately	 the	 time	 interval	 between	 two	 consecutive	 canvas
updates.)	The	longer	the	drawing	delay,	the	slower	the	animation.

Optional	argument:

>>>	screen.delay()

10

>>>	screen.delay(5)

>>>	screen.delay()

5

turtle.tracer(n=None,	delay=None)

Parameters: n	–	nonnegative	integer
delay	–	nonnegative	integer

Turn	turtle	animation	on/off	and	set	delay	for	update	drawings.	If	n
is	given,	only	each	n-th	regular	screen	update	is	really	performed.
(Can	 be	 used	 to	 accelerate	 the	 drawing	 of	 complex	 graphics.)
When	called	without	arguments,	returns	the	currently	stored	value

of	n.	Second	argument	sets	delay	value	(see	delay()).

>>>	screen.tracer(8,	25)

>>>	dist	=	2

>>>	for	i	in	range(200):

...					fd(dist)

...					rt(90)

...					dist	+=	2

turtle.update()
Perform	a	TurtleScreen	update.	To	be	used	when	 tracer	 is	 turned
off.

See	also	the	RawTurtle/Turtle	method	speed().

24.1.4.3.	Using	screen	events

turtle.listen(xdummy=None,	ydummy=None)
Set	focus	on	TurtleScreen	(in	order	to	collect	key-events).	Dummy
arguments	are	provided	 in	order	 to	be	able	 to	pass	listen()	 to
the	onclick	method.

turtle.onkey(fun,	key)
turtle.onkeyrelease(fun,	key)

Parameters:
fun	–	a	function	with	no	arguments	or	None
key	 –	 a	 string:	 key	 (e.g.	 “a”)	 or	 key-symbol
(e.g.	“space”)

Bind	fun	to	key-release	event	of	key.	If	fun	is	None,	event	bindings
are	 removed.	Remark:	 in	 order	 to	 be	able	 to	 register	 key-events,
TurtleScreen	must	have	the	focus.	(See	method	listen().)

>>>	def	f():

...					fd(50)

...					lt(60)

...

>>>	screen.onkey(f,	"Up")

>>>	screen.listen()

turtle.onkeypress(fun,	key=None)

Parameters:
fun	–	a	function	with	no	arguments	or	None
key	 –	 a	 string:	 key	 (e.g.	 “a”)	 or	 key-symbol
(e.g.	“space”)

Bind	 fun	 to	 key-press	event	of	 key	 if	 key	 is	given,	 or	 to	any	 key-
press-event	 if	 no	 key	 is	 given.	 Remark:	 in	 order	 to	 be	 able	 to
register	 key-events,	 TurtleScreen	must	 have	 focus.	 (See	method
listen().)

>>>	def	f():

...					fd(50)

...

>>>	screen.onkey(f,	"Up")

>>>	screen.listen()

turtle.onclick(fun,	btn=1,	add=None)
turtle.onscreenclick(fun,	btn=1,	add=None)

Parameters:

fun	–	a	function	with	two	arguments	which	will
be	 called	 with	 the	 coordinates	 of	 the	 clicked
point	on	the	canvas
num	 –	 number	 of	 the	mouse-button,	 defaults
to	1	(left	mouse	button)
add	 –	 True	 or	 False	 –	 if	 True,	 a	 new
binding	will	be	added,	otherwise	 it	will	 replace
a	former	binding

Bind	 fun	 to	 mouse-click	 events	 on	 this	 screen.	 If	 fun	 is	 None,
existing	bindings	are	removed.

Example	for	a	TurtleScreen	instance	named	screen	and	a	Turtle
instance	named	turtle:

>>>	screen.onclick(turtle.goto)	#	Subsequently	clicking	into	the	TurtleScreen	will

>>>																													#	make	the	turtle	move	to	the	clicked	point.

>>>	screen.onclick(None)								#	remove	event	binding	again

Note: 	This	TurtleScreen	method	is	available	as	a	global	function
only	 under	 the	 name	 onscreenclick.	 The	 global	 function
onclick	 is	 another	 one	 derived	 from	 the	 Turtle	 method
onclick.

turtle.ontimer(fun,	t=0)

Parameters: fun	–	a	function	with	no	arguments
t	–	a	number	>=	0

Install	a	timer	that	calls	fun	after	t	milliseconds.

>>>	running	=	True

>>>	def	f():

...					if	running:

...									fd(50)

...									lt(60)

...									screen.ontimer(f,	250)

>>>	f()			###	makes	the	turtle	march	around

>>>	running	=	False

turtle.mainloop()
turtle.done()

Starts	event	loop	-	calling	Tkinter’s	mainloop	function.	Must	be	the
last	statement	 in	a	 turtle	graphics	program.	Must	not	be	used	 if	a
script	 is	 run	 from	 within	 IDLE	 in	 -n	 mode	 (No	 subprocess)	 -	 for
interactive	use	of	turtle	graphics.

>>>	screen.mainloop()

24.1.4.4.	Input	methods

turtle.textinput(title,	prompt)

Parameters: title	–	string
prompt	–	string

Pop	up	a	dialog	window	for	input	of	a	string.	Parameter	title	is	the
title	of	 the	dialog	window,	propmt	 is	a	 text	mostly	describing	what
information	 to	 input.	 Return	 the	 string	 input.	 If	 the	 dialog	 is
canceled,	return	None.

>>>	screen.textinput("NIM",	"Name	of	first	player:"

turtle.numinput(title,	prompt,	default=None,	minval=None,
maxval=None)

Parameters:

title	–	string
prompt	–	string
default	–	number	(optional)
minval	–	number	(optional)
maxval	–	number	(optional)

Pop	up	a	dialog	window	for	input	of	a	number.	title	is	the	title	of	the
dialog	window,	prompt	 is	a	 text	mostly	describing	what	numerical
information	to	 input.	default:	default	value,	minval:	minimum	value

for	imput,	maxval:	maximum	value	for	input	The	number	input	must
be	in	the	range	minval	..	maxval	if	these	are	given.	If	not,	a	hint	is
issued	 and	 the	 dialog	 remains	 open	 for	 correction.	 Return	 the
number	input.	If	the	dialog	is	canceled,	return	None.

>>>	screen.numinput("Poker",	"Your	stakes:",	1000,

24.1.4.5.	Settings	and	special	methods

turtle.mode(mode=None)

Parameters: mode	–	one	of	the	strings	“standard”,	“logo”	or
“world”

Set	turtle	mode	(“standard”,	“logo”	or	“world”)	and	perform	reset.	If
mode	is	not	given,	current	mode	is	returned.

Mode	 “standard”	 is	 compatible	 with	 old	 turtle.	 Mode	 “logo”	 is
compatible	with	most	Logo	turtle	graphics.	Mode	“world”	uses	user-
defined	“world	coordinates”.	Attention:	in	this	mode	angles	appear
distorted	if	x/y	unit-ratio	doesn’t	equal	1.

Mode Initial	turtle	heading positive	angles

“standard” to	the	right	(east) counterclockwise

“logo” upward	(north) clockwise

>>>	mode("logo")			#	resets	turtle	heading	to	north

>>>	mode()

'logo'

turtle.colormode(cmode=None)

Parameters: cmode	–	one	of	the	values	1.0	or	255

Return	 the	colormode	or	set	 it	 to	1.0	or	255.	Subsequently	r,	g,	b
values	of	color	triples	have	to	be	in	the	range	0..cmode.

>>>	screen.colormode(1)

>>>	turtle.pencolor(240,	160,	80)

Traceback	(most	recent	call	last):

					...

TurtleGraphicsError:	bad	color	sequence:	(240,	160,	80)

>>>	screen.colormode()

1.0

>>>	screen.colormode(255)

>>>	screen.colormode()

255

>>>	turtle.pencolor(240,160,80)

turtle.getcanvas()
Return	 the	 Canvas	 of	 this	 TurtleScreen.	 Useful	 for	 insiders	 who
know	what	to	do	with	a	Tkinter	Canvas.

>>>	cv	=	screen.getcanvas()

>>>	cv

<turtle.ScrolledCanvas	object	at	...>

turtle.getshapes()
Return	a	list	of	names	of	all	currently	available	turtle	shapes.

>>>	screen.getshapes()

['arrow',	'blank',	'circle',	...,	'turtle']

turtle.register_shape(name,	shape=None)
turtle.addshape(name,	shape=None)

There	are	three	different	ways	to	call	this	function:

1.	 name	 is	 the	name	of	a	gif-file	and	shape	 is	None:	 Install	 the
corresponding	image	shape.

>>>	screen.register_shape("turtle.gif")

Note: 	 Image	shapes	do	not	 rotate	when	 turning	 the	 turtle,
so	they	do	not	display	the	heading	of	the	turtle!

2.	 name	 is	 an	 arbitrary	 string	 and	 shape	 is	 a	 tuple	 of	 pairs	 of
coordinates:	Install	the	corresponding	polygon	shape.

>>>	screen.register_shape("triangle",	((5,-3),

3.	 name	is	an	arbitrary	string	and	shape	is	a	(compound)	Shape
object:	Install	the	corresponding	compound	shape.

Add	 a	 turtle	 shape	 to	 TurtleScreen’s	 shapelist.	 Only	 thusly
registered	 shapes	 can	 be	 used	 by	 issuing	 the	 command
shape(shapename).

turtle.turtles()
Return	the	list	of	turtles	on	the	screen.

>>>	for	turtle	in	screen.turtles():

...					turtle.color("red")

turtle.window_height()
Return	the	height	of	the	turtle	window.

>>>	screen.window_height()

480

turtle.window_width()

Return	the	width	of	the	turtle	window.

>>>	screen.window_width()

640

24.1.4.6.	Methods	specific	to	Screen,	not	inherited
from	TurtleScreen

turtle.bye()
Shut	the	turtlegraphics	window.

turtle.exitonclick()
Bind	bye()	method	to	mouse	clicks	on	the	Screen.

If	 the	value	 “using_IDLE”	 in	 the	configuration	dictionary	 is	False
(default	value),	also	enter	mainloop.	Remark:	 If	 IDLE	with	 the	-n
switch	(no	subprocess)	is	used,	this	value	should	be	set	to	True	in
turtle.cfg.	 In	 this	case	IDLE’s	own	mainloop	 is	active	also	 for
the	client	script.

turtle.setup(width=_CFG["width"],	height=_CFG["height"],
startx=_CFG["leftright"],	starty=_CFG["topbottom"])

Set	 the	 size	 and	 position	 of	 the	 main	 window.	 Default	 values	 of
arguments	 are	 stored	 in	 the	 configuration	 dictionary	 and	 can	 be
changed	via	a	turtle.cfg	file.

width	–	if	an	integer,	a	size	in	pixels,	if	a	float,
a	 fraction	 of	 the	 screen;	 default	 is	 50%	 of
screen
height	–	if	an	integer,	the	height	 in	pixels,	 if	a
float,	a	fraction	of	the	screen;	default	is	75%	of
screen

Parameters: startx	 –	 if	 positive,	 starting	 position	 in	 pixels
from	 the	 left	 edge	 of	 the	 screen,	 if	 negative
from	 the	 right	 edge,	 if	 None,	 center	 window
horizontally
startx	 –	 if	 positive,	 starting	 position	 in	 pixels
from	 the	 top	 edge	 of	 the	 screen,	 if	 negative
from	the	bottom	edge,	 if	None,	center	window
vertically

>>>	screen.setup	(width=200,	height=200,	startx=0,

>>>														#	sets	window	to	200x200	pixels,	in	upper	left	of	screen

>>>	screen.setup(width=.75,	height=0.5,	startx=None

>>>														#	sets	window	to	75%	of	screen	by	50%	of	screen	and	centers

turtle.title(titlestring)

Parameters: titlestring	–	a	string	that	is	shown	in	the	titlebar
of	the	turtle	graphics	window

Set	title	of	turtle	window	to	titlestring.

>>>	screen.title("Welcome	to	the	turtle	zoo!")

24.1.5.	Public	classes

class	turtle.RawTurtle(canvas)
class	turtle.RawPen(canvas)

Parameters: canvas	–	a	tkinter.Canvas,	a
ScrolledCanvas	or	a	TurtleScreen

Create	 a	 turtle.	 The	 turtle	 has	 all	 methods	 described	 above	 as
“methods	of	Turtle/RawTurtle”.

class	turtle.Turtle
Subclass	 of	 RawTurtle,	 has	 the	 same	 interface	 but	 draws	 on	 a
default	Screen	object	created	automatically	when	needed	for	 the
first	time.

class	turtle.TurtleScreen(cv)

Parameters: cv	–	a	tkinter.Canvas

Provides	 screen	 oriented	 methods	 like	 setbg()	 etc.	 that	 are
described	above.

class	turtle.Screen
Subclass	of	TurtleScreen,	with	four	methods	added.

class	turtle.ScrolledCanvas(master)

Parameters:
master	–	some	Tkinter	widget	to	contain	the
ScrolledCanvas,	i.e.	a	Tkinter-canvas	with
scrollbars	added

Used	 by	 class	 Screen,	 which	 thus	 automatically	 provides	 a
ScrolledCanvas	as	playground	for	the	turtles.

class	turtle.Shape(type_,	data)

Parameters: type_	–	one	of	the	strings	“polygon”,	“image”,
“compound”

Data	structure	modeling	shapes.	The	pair	(type_,	data)	must
follow	this	specification:

type_ data

“polygon” a	polygon-tuple,	i.e.	a	tuple	of	pairs	of	coordinates

“image” an	image	(in	this	form	only	used	internally!)

“compound” None	(a	compound	shape	has	to	be	constructed
using	the	addcomponent()	method)

addcomponent(poly,	fill,	outline=None)

Parameters:

poly	 –	 a	 polygon,	 i.e.	 a	 tuple	 of	 pairs	 of
numbers
fill	–	a	color	the	poly	will	be	filled	with
outline	 –	 a	 color	 for	 the	 poly’s	 outline	 (if
given)

Example:

>>>	poly	=	((0,0),(10,-5),(0,10),(-10,-5))

>>>	s	=	Shape("compound")

>>>	s.addcomponent(poly,	"red",	"blue")

>>>	#	...	add	more	components	and	then	use	register_shape()

See	Compound	shapes.

class	turtle.Vec2D(x,	y)
A	 two-dimensional	 vector	 class,	 used	 as	 a	 helper	 class	 for
implementing	 turtle	 graphics.	 May	 be	 useful	 for	 turtle	 graphics

programs	too.	Derived	from	tuple,	so	a	vector	is	a	tuple!

Provides	(for	a,	b	vectors,	k	number):

a	+	b	vector	addition
a	-	b	vector	subtraction
a	*	b	inner	product
k	*	a	and	a	*	k	multiplication	with	scalar
abs(a)	absolute	value	of	a
a.rotate(angle)	rotation

24.1.6.	Help	and	configuration

24.1.6.1.	How	to	use	help

The	public	methods	of	the	Screen	and	Turtle	classes	are	documented
extensively	via	docstrings.	So	these	can	be	used	as	online-help	via	the
Python	help	facilities:

When	using	 IDLE,	 tooltips	 show	 the	signatures	and	 first	 lines	of
the	docstrings	of	typed	in	function-/method	calls.

Calling	help()	on	methods	or	functions	displays	the	docstrings:

>>>	help(Screen.bgcolor)

Help	on	method	bgcolor	in	module	turtle:

bgcolor(self,	*args)	unbound	turtle.Screen	method

				Set	or	return	backgroundcolor	of	the	TurtleScreen.

				Arguments	(if	given):	a	color	string	or	three	numbers

				in	the	range	0..colormode	or	a	3-tuple	of	such	numbers.

						>>>	screen.bgcolor("orange")

						>>>	screen.bgcolor()

						"orange"

						>>>	screen.bgcolor(0.5,0,0.5)

						>>>	screen.bgcolor()

						"#800080"

>>>	help(Turtle.penup)

Help	on	method	penup	in	module	turtle:

penup(self)	unbound	turtle.Turtle	method

				Pull	the	pen	up	--	no	drawing	when	moving.

				Aliases:	penup	|	pu	|	up

				No	argument

				>>>	turtle.penup()

The	docstrings	of	 the	 functions	which	are	derived	 from	methods
have	a	modified	form:

>>>	help(bgcolor)

Help	on	function	bgcolor	in	module	turtle:

bgcolor(*args)

				Set	or	return	backgroundcolor	of	the	TurtleScreen.

				Arguments	(if	given):	a	color	string	or	three	numbers

				in	the	range	0..colormode	or	a	3-tuple	of	such	numbers.

				Example::

						>>>	bgcolor("orange")

						>>>	bgcolor()

						"orange"

						>>>	bgcolor(0.5,0,0.5)

						>>>	bgcolor()

						"#800080"

>>>	help(penup)

Help	on	function	penup	in	module	turtle:

penup()

				Pull	the	pen	up	--	no	drawing	when	moving.

				Aliases:	penup	|	pu	|	up

				No	argument

				Example:

				>>>	penup()

These	modified	docstrings	are	created	automatically	together	with	the
function	definitions	that	are	derived	from	the	methods	at	import	time.

24.1.6.2.	Translation	of	docstrings	into	different
languages

There	 is	 a	 utility	 to	 create	 a	 dictionary	 the	 keys	 of	 which	 are	 the
method	names	and	the	values	of	which	are	the	docstrings	of	the	public
methods	of	the	classes	Screen	and	Turtle.

turtle.write_docstringdict(filename="turtle_docstringdict"

Parameters: filename	–	a	string,	used	as	filename

Create	 and	 write	 docstring-dictionary	 to	 a	 Python	 script	 with	 the
given	 filename.	 This	 function	 has	 to	 be	 called	 explicitly	 (it	 is	 not
used	by	 the	 turtle	 graphics	 classes).	 The	 docstring	 dictionary	will
be	 written	 to	 the	 Python	 script	 filename.py.	 It	 is	 intended	 to
serve	as	a	 template	 for	 translation	of	 the	docstrings	 into	different
languages.

If	you	(or	your	students)	want	to	use	turtle	with	online	help	in	your
native	 language,	 you	 have	 to	 translate	 the	 docstrings	 and	 save	 the
resulting	file	as	e.g.	turtle_docstringdict_german.py.

If	 you	 have	 an	 appropriate	 entry	 in	 your	 turtle.cfg	 file	 this
dictionary	will	 be	 read	 in	 at	 import	 time	 and	will	 replace	 the	 original
English	docstrings.

At	 the	 time	of	 this	writing	 there	are	docstring	dictionaries	 in	German
and	in	Italian.	(Requests	please	to	glingl@aon.at.)

24.1.6.3.	How	to	configure	Screen	and	Turtles

The	 built-in	 default	 configuration	 mimics	 the	 appearance	 and
behaviour	 of	 the	 old	 turtle	 module	 in	 order	 to	 retain	 best	 possible
compatibility	with	it.

If	 you	 want	 to	 use	 a	 different	 configuration	 which	 better	 reflects	 the
features	of	this	module	or	which	better	fits	to	your	needs,	e.g.	for	use
in	 a	 classroom,	 you	 can	 prepare	 a	 configuration	 file	 turtle.cfg
which	 will	 be	 read	 at	 import	 time	 and	 modify	 the	 configuration
according	to	its	settings.

The	built	in	configuration	would	correspond	to	the	following	turtle.cfg:

width	=	0.5

height	=	0.75

leftright	=	None

topbottom	=	None

canvwidth	=	400

canvheight	=	300

mode	=	standard

colormode	=	1.0

delay	=	10

undobuffersize	=	1000

shape	=	classic

pencolor	=	black

fillcolor	=	black

resizemode	=	noresize

visible	=	True

language	=	english

exampleturtle	=	turtle

examplescreen	=	screen

mailto:glingl%40aon.at

title	=	Python	Turtle	Graphics

using_IDLE	=	False

Short	explanation	of	selected	entries:

The	 first	 four	 lines	 correspond	 to	 the	 arguments	 of	 the
Screen.setup()	method.
Line	 5	 and	 6	 correspond	 to	 the	 arguments	 of	 the	 method
Screen.screensize().
shape	can	be	any	of	the	built-in	shapes,	e.g:	arrow,	turtle,	etc.	For
more	info	try	help(shape).
If	you	want	to	use	no	fillcolor	(i.e.	make	the	turtle	transparent),	you
have	 to	write	fillcolor	=	""	 (but	 all	 nonempty	 strings	must
not	have	quotes	in	the	cfg-file).
If	 you	 want	 to	 reflect	 the	 turtle	 its	 state,	 you	 have	 to	 use
resizemode	=	auto.
If	 you	 set	 e.g.	 language	 =	 italian	 the	 docstringdict
turtle_docstringdict_italian.py	will	be	loaded	at	import
time	(if	present	on	 the	 import	path,	e.g.	 in	 the	same	directory	as
turtle.
The	 entries	exampleturtle	 and	examplescreen	 define	 the	 names
of	 these	 objects	 as	 they	 occur	 in	 the	 docstrings.	 The
transformation	 of	 method-docstrings	 to	 function-docstrings	 will
delete	these	names	from	the	docstrings.
using_IDLE:	Set	this	to	True	if	you	regularly	work	with	IDLE	and
its	-n	switch	(“no	subprocess”).	This	will	prevent	exitonclick()
to	enter	the	mainloop.

There	 can	 be	 a	 turtle.cfg	 file	 in	 the	 directory	 where	 turtle	 is
stored	and	an	additional	one	in	the	current	working	directory.	The	latter
will	override	the	settings	of	the	first	one.

The	 Lib/turtledemo	 directory	 contains	 a	 turtle.cfg	 file.	 You
can	 study	 it	 as	 an	 example	 and	 see	 its	 effects	 when	 running	 the

demos	(preferably	not	from	within	the	demo-viewer).

24.1.7.	Demo	scripts

There	 is	 a	 set	 of	 demo	 scripts	 in	 the	 turtledemo	 package.	 These
scripts	 can	 be	 run	 and	 viewed	 using	 the	 supplied	 demo	 viewer	 as
follows:

python	-m	turtledemo

Alternatively,	you	can	run	the	demo	scripts	individually.	For	example,

python	-m	turtledemo.bytedesign

The	turtledemo	package	directory	contains:

a	 set	 of	 15	 demo	 scripts	 demonstrating	 different	 features	 of	 the
new	module	turtle;
a	 demo	 viewer	 __main__.py	 which	 can	 be	 used	 to	 view	 the
sourcecode	of	 the	scripts	and	 run	 them	at	 the	same	 time.	14	of
the	 examples	 can	 be	 accessed	 via	 the	 Examples	 menu;	 all	 of
them	can	also	be	run	standalone.
The	 example	 turtledemo.two_canvases	 demonstrates	 the
simultaneous	 use	 of	 two	 canvases	 with	 the	 turtle	 module.
Therefore	it	only	can	be	run	standalone.
There	is	a	turtle.cfg	 file	 in	this	directory,	which	serves	as	an
example	for	how	to	write	and	use	such	files.

The	demo	scripts	are:

Name Description Features

bytedesign complex	classical	turtle
graphics	pattern

tracer(),	delay,
update()

graphs	Verhulst

chaos

dynamics,	shows	that
computer’s	computations
can	generate	results
sometimes	against	the
common	sense
expectations

world	coordinates

clock analog	clock	showing
time	of	your	computer

turtles	as	clock’s
hands,	ontimer

colormixer experiment	with	r,	g,	b ondrag()

fractalcurves Hilbert	&	Koch	curves recursion

lindenmayer ethnomathematics
(indian	kolams) L-System

minimal_hanoi Towers	of	Hanoi
Rectangular	Turtles
as	Hanoi	discs
(shape,	shapesize)

nim

play	the	classical	nim
game	with	three	heaps	of
sticks	against	the
computer.

turtles	as
nimsticks,	event
driven	(mouse,
keyboard)

paint super	minimalistic
drawing	program

onclick()

peace elementary turtle:	appearance
and	animation

penrose aperiodic	tiling	with	kites
and	darts

stamp()

planet_and_moon simulation	of	gravitational
system

compound	shapes,
Vec2D

round_dance
dancing	turtles	rotating
pairwise	in	opposite
direction

compound	shapes,
clone	shapesize,
tilt,	get_shapepoly,
update

a	(graphical)	breadth	first

tree tree	(using	generators) clone()

wikipedia
a	pattern	from	the
wikipedia	article	on	turtle
graphics

clone(),	undo()

yingyang another	elementary
example

circle()

Have	fun!

24.1.8.	Changes	since	Python	2.6

The	 methods	 Turtle.tracer(),	 Turtle.window_width()
and	 Turtle.window_height()	 have	 been	 eliminated.
Methods	 with	 these	 names	 and	 functionality	 are	 now	 available
only	 as	 methods	 of	 Screen.	 The	 functions	 derived	 from	 these
remain	 available.	 (In	 fact	 already	 in	 Python	 2.6	 these	 methods
were	 merely	 duplications	 of	 the	 corresponding
TurtleScreen/Screen-methods.)
The	 method	 Turtle.fill()	 has	 been	 eliminated.	 The
behaviour	 of	 begin_fill()	 and	 end_fill()	 have	 changed
slightly:	 now	 every	 filling-process	 must	 be	 completed	 with	 an
end_fill()	call.
A	 method	 Turtle.filling()	 has	 been	 added.	 It	 returns	 a
boolean	 value:	 True	 if	 a	 filling	 process	 is	 under	 way,	 False
otherwise.	This	behaviour	corresponds	 to	a	fill()	 call	without
arguments	in	Python	2.6.

24.1.9.	Changes	since	Python	3.0

The	 methods	 Turtle.shearfactor(),
Turtle.shapetransform()	 and
Turtle.get_shapepoly()	 have	 been	 added.	 Thus	 the	 full
range	 of	 regular	 linear	 transforms	 is	 now	 available	 for
transforming	 turtle	 shapes.	 Turtle.tiltangle()	 has	 been
enhanced	 in	 functionality:	 it	 now	 can	 be	 used	 to	 get	 or	 set	 the
tiltangle.	Turtle.settiltangle()	has	been	deprecated.
The	 method	 Screen.onkeypress()	 has	 been	 added	 as	 a
complement	 to	Screen.onkey()	which	 in	 fact	binds	actions	 to
the	 keyrelease	 event.	 Accordingly	 the	 latter	 has	 got	 an	 alias:
Screen.onkeyrelease().
The	 method	 Screen.mainloop()	 has	 been	 added.	 So	 when
working	 only	 with	 Screen	 and	 Turtle	 objects	 one	 must	 not
additonally	import	mainloop()	anymore.
Two	input	methods	has	been	added	Screen.textinput()	and
Screen.numinput().	 These	 popup	 input	 dialogs	 and	 return
strings	and	numbers	respectively.
Two	 example	 scripts	 tdemo_nim.py	 and
tdemo_round_dance.py	 have	 been	 added	 to	 the
Lib/turtledemo	directory.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	24.	Program	Frameworks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	24.	Program	Frameworks	»

http://www.python.org/

24.2.	cmd	—	Support	for	line-
oriented	command	interpreters
Source	code:	Lib/cmd.py

The	 Cmd	 class	 provides	 a	 simple	 framework	 for	 writing	 line-oriented
command	 interpreters.	 These	 are	 often	 useful	 for	 test	 harnesses,
administrative	 tools,	 and	 prototypes	 that	 will	 later	 be	 wrapped	 in	 a
more	sophisticated	interface.

class	cmd.Cmd(completekey='tab',	stdin=None,	stdout=None)
A	Cmd	 instance	or	 subclass	 instance	 is	 a	 line-oriented	 interpreter
framework.	 There	 is	 no	 good	 reason	 to	 instantiate	 Cmd	 itself;
rather,	it’s	useful	as	a	superclass	of	an	interpreter	class	you	define
yourself	 in	order	 to	 inherit	Cmd‘s	methods	and	encapsulate	action
methods.

The	 optional	 argument	completekey	 is	 the	 readline	 name	of	 a
completion	key;	it	defaults	to	Tab.	If	completekey	is	not	None	and
readline	 is	 available,	 command	 completion	 is	 done
automatically.

The	 optional	 arguments	 stdin	 and	 stdout	 specify	 the	 input	 and
output	 file	objects	 that	 the	Cmd	instance	or	subclass	 instance	will
use	 for	 input	 and	 output.	 If	 not	 specified,	 they	 will	 default	 to
sys.stdin	and	sys.stdout.

If	 you	 want	 a	 given	 stdin	 to	 be	 used,	 make	 sure	 to	 set	 the
instance’s	use_rawinput	attribute	to	False,	otherwise	stdin	will

http://hg.python.org/cpython/file/3.4/Lib/cmd.py

be	ignored.

24.2.1.	Cmd	Objects

A	Cmd	instance	has	the	following	methods:

Cmd.cmdloop(intro=None)
Repeatedly	issue	a	prompt,	accept	input,	parse	an	initial	prefix	off
the	 received	 input,	and	dispatch	 to	action	methods,	passing	 them
the	remainder	of	the	line	as	argument.

The	 optional	 argument	 is	 a	 banner	 or	 intro	 string	 to	 be	 issued
before	the	first	prompt	(this	overrides	the	intro	class	attribute).

If	 the	readline	module	 is	 loaded,	 input	will	automatically	 inherit
bash-like	 history-list	 editing	 (e.g.	 Control-P	 scrolls	 back	 to	 the
last	command,	Control-N	 forward	 to	 the	next	one,	Control-F
moves	the	cursor	to	the	right	non-destructively,	Control-B	moves
the	cursor	to	the	left	non-destructively,	etc.).

An	end-of-file	on	input	is	passed	back	as	the	string	'EOF'.

An	interpreter	instance	will	recognize	a	command	name	foo	if	and
only	 if	 it	 has	 a	 method	 do_foo().	 As	 a	 special	 case,	 a	 line
beginning	 with	 the	 character	 '?'	 is	 dispatched	 to	 the	 method
do_help().	 As	 another	 special	 case,	 a	 line	 beginning	 with	 the
character	'!'	is	dispatched	to	the	method	do_shell()	(if	such	a
method	is	defined).

This	 method	 will	 return	 when	 the	 postcmd()	 method	 returns	 a
true	value.	The	stop	 argument	 to	 postcmd()	 is	 the	 return	 value
from	the	command’s	corresponding	do_*()	method.

If	 completion	 is	 enabled,	 completing	 commands	 will	 be	 done

automatically,	and	completing	of	commands	args	is	done	by	calling
complete_foo()	with	arguments	 text,	 line,	begidx,	 and	endidx.
text	 is	 the	 string	 prefix	 we	 are	 attempting	 to	 match:	 all	 returned
matches	must	begin	with	it.	line	is	the	current	input	line	with	leading
whitespace	 removed,	 begidx	 and	 endidx	 are	 the	 beginning	 and
ending	 indexes	of	 the	prefix	 text,	which	could	be	used	 to	provide
different	 completion	depending	upon	which	position	 the	argument
is	in.

All	 subclasses	 of	 Cmd	 inherit	 a	 predefined	 do_help().	 This
method,	 called	 with	 an	 argument	 'bar',	 invokes	 the
corresponding	 method	 help_bar(),	 and	 if	 that	 is	 not	 present,
prints	 the	docstring	of	do_bar(),	 if	available.	With	no	argument,
do_help()	 lists	 all	 available	 help	 topics	 (that	 is,	 all	 commands
with	 corresponding	 help_*()	 methods	 or	 commands	 that	 have
docstrings),	and	also	lists	any	undocumented	commands.

Cmd.onecmd(str)
Interpret	the	argument	as	though	it	had	been	typed	in	response	to
the	prompt.	This	may	be	overridden,	but	should	not	normally	need
to	 be;	 see	 the	 precmd()	 and	 postcmd()	 methods	 for	 useful
execution	 hooks.	 The	 return	 value	 is	 a	 flag	 indicating	 whether
interpretation	of	commands	by	the	interpreter	should	stop.	If	 there
is	a	do_*()	method	for	the	command	str,	the	return	value	of	that
method	 is	 returned,	 otherwise	 the	 return	 value	 from	 the
default()	method	is	returned.

Cmd.emptyline()
Method	 called	when	 an	 empty	 line	 is	 entered	 in	 response	 to	 the
prompt.	 If	 this	 method	 is	 not	 overridden,	 it	 repeats	 the	 last
nonempty	command	entered.

Cmd.default(line)
Method	 called	 on	 an	 input	 line	 when	 the	 command	 prefix	 is	 not
recognized.	 If	 this	 method	 is	 not	 overridden,	 it	 prints	 an	 error
message	and	returns.

Cmd.completedefault(text,	line,	begidx,	endidx)
Method	called	to	complete	an	input	line	when	no	command-specific
complete_*()	 method	 is	 available.	 By	 default,	 it	 returns	 an
empty	list.

Cmd.precmd(line)
Hook	 method	 executed	 just	 before	 the	 command	 line	 line	 is
interpreted,	 but	 after	 the	 input	 prompt	 is	 generated	 and	 issued.
This	 method	 is	 a	 stub	 in	 Cmd;	 it	 exists	 to	 be	 overridden	 by
subclasses.	The	return	value	is	used	as	the	command	which	will	be
executed	 by	 the	 onecmd()	 method;	 the	 precmd()

implementation	 may	 re-write	 the	 command	 or	 simply	 return	 line
unchanged.

Cmd.postcmd(stop,	line)
Hook	method	executed	 just	after	a	command	dispatch	 is	 finished.
This	 method	 is	 a	 stub	 in	 Cmd;	 it	 exists	 to	 be	 overridden	 by
subclasses.	 line	 is	 the	 command	 line	 which	 was	 executed,	 and
stop	is	a	flag	which	indicates	whether	execution	will	be	terminated
after	 the	 call	 to	 postcmd();	 this	 will	 be	 the	 return	 value	 of	 the
onecmd()	method.	The	return	value	of	this	method	will	be	used	as
the	 new	 value	 for	 the	 internal	 flag	 which	 corresponds	 to	 stop;
returning	false	will	cause	interpretation	to	continue.

Cmd.preloop()
Hook	 method	 executed	 once	 when	 cmdloop()	 is	 called.	 This
method	is	a	stub	in	Cmd;	it	exists	to	be	overridden	by	subclasses.

Cmd.postloop()
Hook	method	executed	once	when	cmdloop()	is	about	to	return.
This	 method	 is	 a	 stub	 in	 Cmd;	 it	 exists	 to	 be	 overridden	 by
subclasses.

Instances	of	Cmd	subclasses	have	some	public	instance	variables:

Cmd.prompt

The	prompt	issued	to	solicit	input.

Cmd.identchars

The	string	of	characters	accepted	for	the	command	prefix.

Cmd.lastcmd

The	last	nonempty	command	prefix	seen.

Cmd.intro

A	string	to	issue	as	an	intro	or	banner.	May	be	overridden	by	giving
the	cmdloop()	method	an	argument.

Cmd.doc_header

The	 header	 to	 issue	 if	 the	 help	 output	 has	 a	 section	 for
documented	commands.

Cmd.misc_header

The	 header	 to	 issue	 if	 the	 help	 output	 has	 a	 section	 for
miscellaneous	 help	 topics	 (that	 is,	 there	 are	 help_*()	 methods
without	corresponding	do_*()	methods).

Cmd.undoc_header

The	 header	 to	 issue	 if	 the	 help	 output	 has	 a	 section	 for
undocumented	 commands	 (that	 is,	 there	 are	 do_*()	 methods

without	corresponding	help_*()	methods).

Cmd.ruler

The	 character	 used	 to	 draw	 separator	 lines	 under	 the	 help-
message	 headers.	 If	 empty,	 no	 ruler	 line	 is	 drawn.	 It	 defaults	 to
'='.

Cmd.use_rawinput

A	 flag,	 defaulting	 to	 true.	 If	 true,	 cmdloop()	 uses	 input()	 to
display	 a	 prompt	 and	 read	 the	 next	 command;	 if	 false,
sys.stdout.write()	and	sys.stdin.readline()	are	used.
(This	means	that	by	importing	readline,	on	systems	that	support
it,	 the	 interpreter	will	automatically	support	Emacs-like	 line	editing
and	command-history	keystrokes.)

24.2.2.	Cmd	Example

The	cmd	module	 is	mainly	useful	 for	building	custom	shells	 that	 let	a
user	work	with	a	program	interactively.

This	section	presents	a	simple	example	of	how	to	build	a	shell	around
a	few	of	the	commands	in	the	turtle	module.

Basic	 turtle	 commands	 such	 as	 forward()	 are	 added	 to	 a	 Cmd
subclass	 with	 method	 named	 do_forward().	 The	 argument	 is
converted	 to	 a	 number	 and	 dispatched	 to	 the	 turtle	 module.	 The
docstring	is	used	in	the	help	utility	provided	by	the	shell.

The	 example	 also	 includes	 a	 basic	 record	 and	 playback	 facility
implemented	 with	 the	 precmd()	 method	 which	 is	 responsible	 for
converting	the	input	to	lowercase	and	writing	the	commands	to	a	file.
The	 do_playback()	 method	 reads	 the	 file	 and	 adds	 the	 recorded
commands	to	the	cmdqueue	for	immediate	playback:

import	cmd,	sys

from	turtle	import	*

class	TurtleShell(cmd.Cmd):

				intro	=	'Welcome	to	the	turtle	shell.			Type	help	or	?	to	list	commands.

				prompt	=	'(turtle)	'

				file	=	None

				#	-----	basic	turtle	commands	-----

				def	do_forward(self,	arg):

								'Move	the	turtle	forward	by	the	specified	distance:		FORWARD	10'

								forward(*parse(arg))

				def	do_right(self,	arg):

								'Turn	turtle	right	by	given	number	of	degrees:		RIGHT	20'

								right(*parse(arg))

				def	do_left(self,	arg):

								'Turn	turtle	left	by	given	number	of	degrees:		LEFT	90'

								left(*parse(arg))

				def	do_goto(self,	arg):

								'Move	turtle	to	an	absolute	position	with	changing	orientation.		GOTO	100	200'

								goto(*parse(arg))

				def	do_home(self,	arg):

								'Return	turtle	to	the	home	postion:		HOME'

								home()

				def	do_circle(self,	arg):

								'Draw	circle	with	given	radius	an	options	extent	and	steps:		CIRCLE	50'

								circle(*parse(arg))

				def	do_position(self,	arg):

								'Print	the	current	turle	position:		POSITION'

								print('Current	position	is	%d	%d\n'	%	position

				def	do_heading(self,	arg):

								'Print	the	current	turle	heading	in	degrees:		HEADING'

								print('Current	heading	is	%d\n'	%	(heading(),))

				def	do_color(self,	arg):

								'Set	the	color:		COLOR	BLUE'

								color(arg.lower())

				def	do_undo(self,	arg):

								'Undo	(repeatedly)	the	last	turtle	action(s):		UNDO'

				def	do_reset(self,	arg):

								'Clear	the	screen	and	return	turtle	to	center:		RESET'

								reset()

				def	do_bye(self,	arg):

								'Stop	recording,	close	the	turtle	window,	and	exit:		BYE'

								print('Thank	you	for	using	Turtle')

								self.close()

								bye()

								return	True

				#	-----	record	and	playback	-----

				def	do_record(self,	arg):

								'Save	future	commands	to	filename:		RECORD	rose.cmd'

								self.file	=	open(arg,	'w')

				def	do_playback(self,	arg):

								'Playback	commands	from	a	file:		PLAYBACK	rose.cmd'

								self.close()

								with	open(arg)	as	f:

												self.cmdqueue.extend(f.read().splitlines

				def	precmd(self,	line):

								line	=	line.lower()

								if	self.file	and	'playback'	not	in	line:

												print(line,	file=self.file)

								return	line

				def	close(self):

								if	self.file:

												self.file.close()

												self.file	=	None

def	parse(arg):

				'Convert	a	series	of	zero	or	more	numbers	to	an	argument	tuple'

				return	tuple(map(int,	arg.split()))

if	__name__	==	'__main__':

				TurtleShell().cmdloop()

Here	 is	 a	 sample	 session	 with	 the	 turtle	 shell	 showing	 the	 help
functions,	 using	 blank	 lines	 to	 repeat	 commands,	 and	 the	 simple
record	and	playback	facility:

Welcome	to	the	turtle	shell.			Type	help	or	?	to	list	commands.

(turtle)	?

Documented	commands	(type	help	<topic>):

==

bye					color				goto					home		playback		record		right

circle		forward		heading		left		position		reset			undo

(turtle)	help	forward

Move	the	turtle	forward	by	the	specified	distance:		FORWARD	10

(turtle)	record	spiral.cmd

(turtle)	position

Current	position	is	0	0

(turtle)	heading

Current	heading	is	0

(turtle)	reset

(turtle)	circle	20

(turtle)	right	30

(turtle)	circle	40

(turtle)	right	30

(turtle)	circle	60

(turtle)	right	30

(turtle)	circle	80

(turtle)	right	30

(turtle)	circle	100

(turtle)	right	30

(turtle)	circle	120

(turtle)	right	30

(turtle)	circle	120

(turtle)	heading

Current	heading	is	180

(turtle)	forward	100

(turtle)

(turtle)	right	90

(turtle)	forward	100

(turtle)

(turtle)	right	90

(turtle)	forward	400

(turtle)	right	90

(turtle)	forward	500

(turtle)	right	90

(turtle)	forward	400

(turtle)	right	90

(turtle)	forward	300

(turtle)	playback	spiral.cmd

Current	position	is	0	0

Current	heading	is	0

Current	heading	is	180

(turtle)	bye

Thank	you	for	using	Turtle

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	24.	Program	Frameworks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	24.	Program	Frameworks	»

http://www.python.org/

24.3.	shlex	—	Simple	lexical
analysis
Source	code:	Lib/shlex.py

The	shlex	 class	makes	 it	 easy	 to	write	 lexical	 analyzers	 for	 simple
syntaxes	resembling	that	of	the	Unix	shell.	This	will	often	be	useful	for
writing	 minilanguages,	 (for	 example,	 in	 run	 control	 files	 for	 Python
applications)	or	for	parsing	quoted	strings.

The	shlex	module	defines	the	following	functions:

shlex.split(s,	comments=False,	posix=True)
Split	the	string	s	using	shell-like	syntax.	If	comments	is	False	(the
default),	 the	 parsing	 of	 comments	 in	 the	 given	 string	 will	 be
disabled	(setting	the	commenters	attribute	of	the	shlex	instance
to	 the	 empty	 string).	 This	 function	 operates	 in	 POSIX	 mode	 by
default,	but	uses	non-POSIX	mode	if	the	posix	argument	is	false.

Note: 	 Since	 the	 split()	 function	 instantiates	 a	 shlex
instance,	 passing	 None	 for	 s	 will	 read	 the	 string	 to	 split	 from
standard	input.

shlex.quote(s)
Return	a	shell-escaped	version	of	the	string	s.	The	returned	value
is	a	string	that	can	safely	be	used	as	one	token	in	a	shell	command
line,	for	cases	where	you	cannot	use	a	list.

This	idiom	would	be	unsafe:

http://hg.python.org/cpython/file/3.4/Lib/shlex.py

>>>	filename	=	'somefile;	rm	-rf	~'

>>>	command	=	'ls	-l	{}'.format(filename)

>>>	print(command)		#	executed	by	a	shell:	boom!

ls	-l	somefile;	rm	-rf	~

quote()	lets	you	plug	the	security	hole:

>>>	command	=	'ls	-l	{}'.format(quote(filename))

>>>	print(command)

ls	-l	'somefile;	rm	-rf	~'

>>>	remote_command	=	'ssh	home	{}'.format(quote(command

>>>	print(remote_command)

ssh	home	'ls	-l	'"'"'somefile;	rm	-rf	~'"'"''

The	quoting	is	compatible	with	UNIX	shells	and	with	split():

>>>	remote_command	=	split(remote_command)

>>>	remote_command

['ssh',	'home',	"ls	-l	'somefile;	rm	-rf	~'"]

>>>	command	=	split(remote_command[-1])

>>>	command

['ls',	'-l',	'somefile;	rm	-rf	~']

New	in	version	3.3.

The	shlex	module	defines	the	following	class:

class	shlex.shlex(instream=None,	infile=None,	posix=False)
A	shlex	instance	or	subclass	instance	is	a	lexical	analyzer	object.
The	 initialization	 argument,	 if	 present,	 specifies	 where	 to	 read
characters	 from.	 It	must	be	a	 file-/stream-like	object	with	read()
and	 readline()	 methods,	 or	 a	 string.	 If	 no	 argument	 is	 given,
input	 will	 be	 taken	 from	 sys.stdin.	 The	 second	 optional

argument	 is	 a	 filename	 string,	 which	 sets	 the	 initial	 value	 of	 the
infile	attribute.	 If	 the	 instream	argument	 is	omitted	or	equal	 to
sys.stdin,	 this	 second	 argument	 defaults	 to	 “stdin”.	 The	 posix
argument	 defines	 the	 operational	 mode:	 when	 posix	 is	 not	 true
(default),	 the	 shlex	 instance	 will	 operate	 in	 compatibility	 mode.
When	operating	in	POSIX	mode,	shlex	will	 try	to	be	as	close	as
possible	to	the	POSIX	shell	parsing	rules.

See	also:

Module	configparser
Parser	for	configuration	files	similar	to	the	Windows	.ini	files.

24.3.1.	shlex	Objects

A	shlex	instance	has	the	following	methods:

shlex.get_token()
Return	 a	 token.	 If	 tokens	 have	 been	 stacked	 using
push_token(),	 pop	 a	 token	 off	 the	 stack.	Otherwise,	 read	 one
from	the	input	stream.	If	reading	encounters	an	immediate	end-of-
file,	 eof	 is	 returned	 (the	 empty	 string	 ('')	 in	 non-POSIX	mode,
and	None	in	POSIX	mode).

shlex.push_token(str)
Push	the	argument	onto	the	token	stack.

shlex.read_token()
Read	a	raw	token.	Ignore	the	pushback	stack,	and	do	not	interpret
source	requests.	(This	 is	not	ordinarily	a	useful	entry	point,	and	is
documented	here	only	for	the	sake	of	completeness.)

shlex.sourcehook(filename)
When	shlex	 detects	 a	 source	 request	 (see	 source	 below)	 this
method	is	given	the	following	token	as	argument,	and	expected	to
return	a	tuple	consisting	of	a	filename	and	an	open	file-like	object.

Normally,	this	method	first	strips	any	quotes	off	the	argument.	If	the
result	 is	 an	absolute	 pathname,	 or	 there	was	no	previous	 source
request	 in	 effect,	 or	 the	 previous	 source	 was	 a	 stream	 (such	 as
sys.stdin),	 the	 result	 is	 left	 alone.	Otherwise,	 if	 the	 result	 is	 a
relative	 pathname,	 the	 directory	 part	 of	 the	 name	 of	 the	 file
immediately	 before	 it	 on	 the	 source	 inclusion	 stack	 is	 prepended
(this	 behavior	 is	 like	 the	 way	 the	 C	 preprocessor	 handles

#include	"file.h").

The	 result	 of	 the	 manipulations	 is	 treated	 as	 a	 filename,	 and
returned	as	the	first	component	of	the	tuple,	with	open()	called	on
it	 to	yield	 the	second	component.	 (Note:	 this	 is	 the	 reverse	of	 the
order	of	arguments	in	instance	initialization!)

This	hook	is	exposed	so	that	you	can	use	it	to	implement	directory
search	 paths,	 addition	 of	 file	 extensions,	 and	 other	 namespace
hacks.	There	is	no	corresponding	‘close’	hook,	but	a	shlex	instance
will	call	the	close()	method	of	the	sourced	input	stream	when	it
returns	EOF.

For	 more	 explicit	 control	 of	 source	 stacking,	 use	 the
push_source()	and	pop_source()	methods.

shlex.push_source(newstream,	newfile=None)
Push	an	 input	source	stream	onto	 the	 input	stack.	 If	 the	 filename
argument	 is	 specified	 it	 will	 later	 be	 available	 for	 use	 in	 error
messages.	 This	 is	 the	 same	 method	 used	 internally	 by	 the
sourcehook()	method.

shlex.pop_source()
Pop	the	 last-pushed	input	source	from	the	 input	stack.	This	 is	 the
same	method	 used	 internally	 when	 the	 lexer	 reaches	 EOF	 on	 a
stacked	input	stream.

shlex.error_leader(infile=None,	lineno=None)
This	method	generates	an	error	message	leader	in	the	format	of	a
Unix	C	compiler	error	 label;	 the	format	 is	'"%s",	line	%d:	',
where	the	%s	 is	 replaced	with	 the	name	of	 the	current	source	file
and	 the	 %d	 with	 the	 current	 input	 line	 number	 (the	 optional

arguments	can	be	used	to	override	these).

This	 convenience	 is	 provided	 to	 encourage	 shlex	 users	 to
generate	 error	 messages	 in	 the	 standard,	 parseable	 format
understood	by	Emacs	and	other	Unix	tools.

Instances	of	shlex	 subclasses	have	some	public	 instance	variables
which	either	control	lexical	analysis	or	can	be	used	for	debugging:

shlex.commenters

The	 string	 of	 characters	 that	 are	 recognized	 as	 comment
beginners.	All	characters	from	the	comment	beginner	to	end	of	line
are	ignored.	Includes	just	'#'	by	default.

shlex.wordchars

The	 string	 of	 characters	 that	 will	 accumulate	 into	 multi-character
tokens.	 By	 default,	 includes	 all	 ASCII	 alphanumerics	 and
underscore.

shlex.whitespace

Characters	 that	 will	 be	 considered	 whitespace	 and	 skipped.
Whitespace	 bounds	 tokens.	 By	 default,	 includes	 space,	 tab,
linefeed	and	carriage-return.

shlex.escape

Characters	 that	 will	 be	 considered	 as	 escape.	 This	 will	 be	 only
used	in	POSIX	mode,	and	includes	just	'\'	by	default.

shlex.quotes

Characters	 that	 will	 be	 considered	 string	 quotes.	 The	 token
accumulates	 until	 the	 same	 quote	 is	 encountered	 again	 (thus,
different	quote	types	protect	each	other	as	in	the	shell.)	By	default,
includes	ASCII	single	and	double	quotes.

shlex.escapedquotes

Characters	in	quotes	that	will	interpret	escape	characters	defined
in	 escape.	 This	 is	 only	 used	 in	 POSIX	mode,	 and	 includes	 just
'"'	by	default.

shlex.whitespace_split

If	True,	tokens	will	only	be	split	in	whitespaces.	This	is	useful,	for
example,	for	parsing	command	lines	with	shlex,	getting	tokens	in
a	similar	way	to	shell	arguments.

shlex.infile

The	 name	 of	 the	 current	 input	 file,	 as	 initially	 set	 at	 class
instantiation	 time	 or	 stacked	 by	 later	 source	 requests.	 It	 may	 be
useful	to	examine	this	when	constructing	error	messages.

shlex.instream

The	 input	 stream	 from	 which	 this	 shlex	 instance	 is	 reading
characters.

shlex.source

This	attribute	 is	 None	 by	default.	 If	 you	assign	 a	 string	 to	 it,	 that
string	will	be	recognized	as	a	lexical-level	inclusion	request	similar
to	the	source	keyword	in	various	shells.	That	is,	the	immediately
following	token	will	opened	as	a	filename	and	input	taken	from	that
stream	 until	 EOF,	 at	 which	 point	 the	 close()	 method	 of	 that
stream	will	 be	 called	and	 the	 input	 source	will	 again	 become	 the
original	input	stream.	Source	requests	may	be	stacked	any	number
of	levels	deep.

shlex.debug

If	 this	 attribute	 is	 numeric	 and	 1	 or	more,	 a	 shlex	 instance	 will
print	 verbose	progress	 output	 on	 its	 behavior.	 If	 you	need	 to	use

this,	you	can	read	the	module	source	code	to	learn	the	details.

shlex.lineno

Source	line	number	(count	of	newlines	seen	so	far	plus	one).

shlex.token

The	 token	buffer.	 It	may	be	useful	 to	examine	 this	when	catching
exceptions.

shlex.eof

Token	used	 to	determine	end	of	 file.	This	will	be	set	 to	 the	empty
string	(''),	in	non-POSIX	mode,	and	to	None	in	POSIX	mode.

24.3.2.	Parsing	Rules

When	 operating	 in	 non-POSIX	mode,	 shlex	 will	 try	 to	 obey	 to	 the
following	rules.

Quote	 characters	 are	 not	 recognized	 within	 words
(Do"Not"Separate	 is	 parsed	 as	 the	 single	 word
Do"Not"Separate);
Escape	characters	are	not	recognized;
Enclosing	 characters	 in	 quotes	 preserve	 the	 literal	 value	 of	 all
characters	within	the	quotes;
Closing	 quotes	 separate	 words	 ("Do"Separate	 is	 parsed	 as
"Do"	and	Separate);
If	whitespace_split	 is	False,	any	character	not	declared	 to
be	a	word	character,	whitespace,	or	a	quote	will	be	returned	as	a
single-character	token.	If	it	is	True,	shlex	will	only	split	words	in
whitespaces;
EOF	is	signaled	with	an	empty	string	('');
It’s	not	possible	to	parse	empty	strings,	even	if	quoted.

When	 operating	 in	 POSIX	 mode,	 shlex	 will	 try	 to	 obey	 to	 the
following	parsing	rules.

Quotes	 are	 stripped	 out,	 and	 do	 not	 separate	 words
("Do"Not"Separate"	 is	 parsed	 as	 the	 single	 word
DoNotSeparate);
Non-quoted	 escape	 characters	 (e.g.	 '\')	 preserve	 the	 literal
value	of	the	next	character	that	follows;
Enclosing	 characters	 in	 quotes	 which	 are	 not	 part	 of
escapedquotes	 (e.g.	 "'")	 preserve	 the	 literal	 value	 of	 all
characters	within	the	quotes;
Enclosing	 characters	 in	 quotes	 which	 are	 part	 of

escapedquotes	 (e.g.	 '"')	 preserves	 the	 literal	 value	 of	 all
characters	within	the	quotes,	with	the	exception	of	the	characters
mentioned	 in	 escape.	 The	 escape	 characters	 retain	 its	 special
meaning	only	when	 followed	by	 the	quote	 in	use,	or	 the	escape
character	 itself.	 Otherwise	 the	 escape	 character	 will	 be
considered	a	normal	character.
EOF	is	signaled	with	a	None	value;
Quoted	empty	strings	('')	are	allowed.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	24.	Program	Frameworks	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

25.	Graphical	User	Interfaces	with
Tk
Tk/Tcl	 has	 long	been	an	 integral	 part	 of	Python.	 It	 provides	 a	 robust
and	platform	independent	windowing	toolkit,	that	is	available	to	Python
programmers	 using	 the	 tkinter	 package,	 and	 its	 extension,	 the
tkinter.tix	and	the	tkinter.ttk	modules.

The	tkinter	package	is	a	thin	object-oriented	layer	on	top	of	Tcl/Tk.
To	use	tkinter,	you	don’t	need	to	write	Tcl	code,	but	you	will	need	to
consult	the	Tk	documentation,	and	occasionally	the	Tcl	documentation.
tkinter	 is	 a	 set	 of	 wrappers	 that	 implement	 the	 Tk	 widgets	 as
Python	classes.	In	addition,	the	internal	module	_tkinter	provides	a
threadsafe	mechanism	which	allows	Python	and	Tcl	to	interact.

tkinter‘s	 chief	 virtues	 are	 that	 it	 is	 fast,	 and	 that	 it	 usually	 comes
bundled	 with	 Python.	 Although	 its	 standard	 documentation	 is	 weak,
good	material	is	available,	which	includes:	references,	tutorials,	a	book
and	others.	tkinter	is	also	famous	for	having	an	outdated	look	and
feel,	 which	 has	 been	 vastly	 improved	 in	 Tk	 8.5.	 Nevertheless,	 there
are	many	other	GUI	libraries	that	you	could	be	interested	in.	For	more
information	about	alternatives,	see	the	Other	Graphical	User	Interface
Packages	section.

25.1.	tkinter	—	Python	interface	to	Tcl/Tk
25.1.1.	Tkinter	Modules
25.1.2.	Tkinter	Life	Preserver

25.1.2.1.	How	To	Use	This	Section
25.1.2.2.	A	Simple	Hello	World	Program

25.1.3.	A	(Very)	Quick	Look	at	Tcl/Tk

25.1.4.	Mapping	Basic	Tk	into	Tkinter
25.1.5.	How	Tk	and	Tkinter	are	Related
25.1.6.	Handy	Reference

25.1.6.1.	Setting	Options
25.1.6.2.	The	Packer
25.1.6.3.	Packer	Options
25.1.6.4.	Coupling	Widget	Variables
25.1.6.5.	The	Window	Manager
25.1.6.6.	Tk	Option	Data	Types
25.1.6.7.	Bindings	and	Events
25.1.6.8.	The	index	Parameter
25.1.6.9.	Images

25.2.	tkinter.ttk	—	Tk	themed	widgets
25.2.1.	Using	Ttk
25.2.2.	Ttk	Widgets
25.2.3.	Widget

25.2.3.1.	Standard	Options
25.2.3.2.	Scrollable	Widget	Options
25.2.3.3.	Label	Options
25.2.3.4.	Compatibility	Options
25.2.3.5.	Widget	States
25.2.3.6.	ttk.Widget

25.2.4.	Combobox
25.2.4.1.	Options
25.2.4.2.	Virtual	events
25.2.4.3.	ttk.Combobox

25.2.5.	Notebook
25.2.5.1.	Options
25.2.5.2.	Tab	Options
25.2.5.3.	Tab	Identifiers
25.2.5.4.	Virtual	Events
25.2.5.5.	ttk.Notebook

25.2.6.	Progressbar
25.2.6.1.	Options

25.2.6.2.	ttk.Progressbar
25.2.7.	Separator

25.2.7.1.	Options
25.2.8.	Sizegrip

25.2.8.1.	Platform-specific	notes
25.2.8.2.	Bugs

25.2.9.	Treeview
25.2.9.1.	Options
25.2.9.2.	Item	Options
25.2.9.3.	Tag	Options
25.2.9.4.	Column	Identifiers
25.2.9.5.	Virtual	Events
25.2.9.6.	ttk.Treeview

25.2.10.	Ttk	Styling
25.2.10.1.	Layouts

25.3.	tkinter.tix	—	Extension	widgets	for	Tk
25.3.1.	Using	Tix
25.3.2.	Tix	Widgets

25.3.2.1.	Basic	Widgets
25.3.2.2.	File	Selectors
25.3.2.3.	Hierarchical	ListBox
25.3.2.4.	Tabular	ListBox
25.3.2.5.	Manager	Widgets
25.3.2.6.	Image	Types
25.3.2.7.	Miscellaneous	Widgets
25.3.2.8.	Form	Geometry	Manager

25.3.3.	Tix	Commands
25.4.	tkinter.scrolledtext	—	Scrolled	Text	Widget
25.5.	IDLE

25.5.1.	Menus
25.5.1.1.	File	menu	(Shell	and	Editor)
25.5.1.2.	Edit	menu	(Shell	and	Editor)
25.5.1.3.	Format	menu	(Editor	window	only)
25.5.1.4.	Run	menu	(Editor	window	only)

25.5.1.5.	Shell	menu	(Shell	window	only)
25.5.1.6.	Debug	menu	(Shell	window	only)
25.5.1.7.	Options	menu	(Shell	and	Editor)
25.5.1.8.	Windows	menu	(Shell	and	Editor)
25.5.1.9.	Help	menu	(Shell	and	Editor)
25.5.1.10.	Editor	Window	context	menu
25.5.1.11.	Shell	Window	context	menu

25.5.2.	Editing	and	navigation
25.5.2.1.	Automatic	indentation
25.5.2.2.	Completions
25.5.2.3.	Python	Shell	window

25.5.3.	Syntax	colors
25.5.4.	Startup

25.5.4.1.	Command	line	usage
25.5.5.	Additional	help	sources
25.5.6.	Other	preferences
25.5.7.	Extensions

25.6.	Other	Graphical	User	Interface	Packages

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

http://www.python.org/

25.1.	tkinter	—	Python	interface
to	Tcl/Tk
The	 tkinter	 package	 (“Tk	 interface”)	 is	 the	 standard	 Python
interface	to	the	Tk	GUI	toolkit.	Both	Tk	and	tkinter	are	available	on
most	Unix	platforms,	as	well	as	on	Windows	systems.	(Tk	itself	is	not
part	 of	 Python;	 it	 is	 maintained	 at	 ActiveState.)	 You	 can	 check	 that
tkinter	is	properly	installed	on	your	system	by	running	python	-m
tkinter	 from	 the	 command	 line;	 this	 should	 open	 a	 window
demonstrating	a	simple	Tk	interface.

See	also:

Python	Tkinter	Resources
The	 Python	 Tkinter	 Topic	 Guide	 provides	 a	 great	 deal	 of
information	on	using	Tk	from	Python	and	links	to	other	sources	of
information	on	Tk.

TKDocs
Extensive	 tutorial	 plus	 friendlier	 widget	 pages	 for	 some	 of	 the
widgets.

Tkinter	reference:	a	GUI	for	Python
On-line	reference	material.

Tkinter	docs	from	effbot
Online	reference	for	tkinter	supported	by	effbot.org.

Tcl/Tk	manual
Official	manual	for	the	latest	tcl/tk	version.

Programming	Python
Book	by	Mark	Lutz,	has	excellent	coverage	of	Tkinter.

Modern	Tkinter	for	Busy	Python	Developers

http://www.python.org/topics/tkinter/
http://www.tkdocs.com/
http://infohost.nmt.edu/tcc/help/pubs/tkinter/
http://effbot.org/tkinterbook/
http://www.tcl.tk/man/tcl8.5/
http://www.amazon.com/Programming-Python-Mark-Lutz/dp/0596158106/
http://www.amazon.com/Modern-Tkinter-Python-Developers-ebook/dp/B0071QDNLO/

Book	 by	 Mark	 Rozerman	 about	 building	 attractive	 and	 modern
graphical	user	interfaces	with	Python	and	Tkinter.

Python	and	Tkinter	Programming
The	book	by	John	Grayson	(ISBN	1-884777-81-3).

http://www.amazon.com/exec/obidos/ASIN/1884777813

25.1.1.	Tkinter	Modules

Most	 of	 the	 time,	 tkinter	 is	 all	 you	 really	 need,	 but	 a	 number	 of
additional	modules	are	available	as	well.	The	Tk	interface	is	located	in
a	 binary	 module	 named	 _tkinter.	 This	 module	 contains	 the	 low-
level	interface	to	Tk,	and	should	never	be	used	directly	by	application
programmers.	It	is	usually	a	shared	library	(or	DLL),	but	might	in	some
cases	be	statically	linked	with	the	Python	interpreter.

In	addition	to	the	Tk	interface	module,	tkinter	includes	a	number	of
Python	 modules,	 tkinter.constants	 being	 one	 of	 the	 most
important.	 Importing	 tkinter	 will	 automatically	 import
tkinter.constants,	 so,	 usually,	 to	 use	 Tkinter	 all	 you	 need	 is	 a
simple	import	statement:

import	tkinter

Or,	more	often:

from	tkinter	import	*

class	tkinter.Tk(screenName=None,	baseName=None,
className='Tk',	useTk=1)

The	 Tk	 class	 is	 instantiated	 without	 arguments.	 This	 creates	 a
toplevel	 widget	 of	 Tk	 which	 usually	 is	 the	 main	 window	 of	 an
application.	Each	instance	has	its	own	associated	Tcl	interpreter.

tkinter.Tcl(screenName=None,	baseName=None,
className='Tk',	useTk=0)

The	Tcl()	 function	 is	a	 factory	 function	which	creates	an	object
much	 like	 that	 created	 by	 the	 Tk	 class,	 except	 that	 it	 does	 not

initialize	the	Tk	subsystem.	This	 is	most	often	useful	when	driving
the	 Tcl	 interpreter	 in	 an	 environment	 where	 one	 doesn’t	 want	 to
create	extraneous	toplevel	windows,	or	where	one	cannot	(such	as
Unix/Linux	systems	without	an	X	server).	An	object	created	by	the
Tcl()	 object	 can	 have	 a	 Toplevel	 window	 created	 (and	 the	 Tk
subsystem	initialized)	by	calling	its	loadtk()	method.

Other	modules	that	provide	Tk	support	include:

tkinter.scrolledtext

Text	widget	with	a	vertical	scroll	bar	built	in.

tkinter.colorchooser

Dialog	to	let	the	user	choose	a	color.

tkinter.commondialog

Base	class	for	the	dialogs	defined	in	the	other	modules	listed	here.

tkinter.filedialog

Common	dialogs	to	allow	the	user	to	specify	a	file	to	open	or	save.

tkinter.font

Utilities	to	help	work	with	fonts.

tkinter.messagebox

Access	to	standard	Tk	dialog	boxes.

tkinter.simpledialog

Basic	dialogs	and	convenience	functions.

tkinter.dnd

Drag-and-drop	 support	 for	 tkinter.	 This	 is	 experimental	 and
should	become	deprecated	when	it	is	replaced	with	the	Tk	DND.

turtle

Turtle	graphics	in	a	Tk	window.

25.1.2.	Tkinter	Life	Preserver

This	section	is	not	designed	to	be	an	exhaustive	tutorial	on	either	Tk	or
Tkinter.	 Rather,	 it	 is	 intended	 as	 a	 stop	 gap,	 providing	 some
introductory	orientation	on	the	system.

Credits:

Tk	was	written	by	John	Ousterhout	while	at	Berkeley.
Tkinter	was	written	by	Steen	Lumholt	and	Guido	van	Rossum.
This	Life	Preserver	was	written	by	Matt	Conway	at	the	University
of	Virginia.
The	 HTML	 rendering,	 and	 some	 liberal	 editing,	 was	 produced
from	a	FrameMaker	version	by	Ken	Manheimer.
Fredrik	 Lundh	 elaborated	 and	 revised	 the	 class	 interface
descriptions,	to	get	them	current	with	Tk	4.2.
Mike	 Clarkson	 converted	 the	 documentation	 to	 LaTeX,	 and
compiled	the	User	Interface	chapter	of	the	reference	manual.

25.1.2.1.	How	To	Use	This	Section

This	 section	 is	 designed	 in	 two	 parts:	 the	 first	 half	 (roughly)	 covers
background	 material,	 while	 the	 second	 half	 can	 be	 taken	 to	 the
keyboard	as	a	handy	reference.

When	trying	to	answer	questions	of	 the	form	“how	do	I	do	blah”,	 it	 is
often	best	to	find	out	how	to	do”blah”	in	straight	Tk,	and	then	convert
this	back	 into	 the	corresponding	tkinter	 call.	Python	programmers
can	often	guess	at	 the	correct	Python	command	by	 looking	at	the	Tk
documentation.	This	means	that	in	order	to	use	Tkinter,	you	will	have
to	know	a	little	bit	about	Tk.	This	document	can’t	fulfill	that	role,	so	the
best	 we	 can	 do	 is	 point	 you	 to	 the	 best	 documentation	 that	 exists.

Here	are	some	hints:

The	authors	strongly	suggest	getting	a	copy	of	the	Tk	man	pages.
Specifically,	the	man	pages	in	the	manN	directory	are	most	useful.
The	man3	man	pages	 describe	 the	C	 interface	 to	 the	Tk	 library
and	thus	are	not	especially	helpful	for	script	writers.
Addison-Wesley	publishes	a	book	called	Tcl	and	the	Tk	Toolkit	by
John	 Ousterhout	 (ISBN	 0-201-63337-X)	 which	 is	 a	 good
introduction	 to	 Tcl	 and	 Tk	 for	 the	 novice.	 The	 book	 is	 not
exhaustive,	and	for	many	details	it	defers	to	the	man	pages.
tkinter/__init__.py	 is	 a	 last	 resort	 for	most,	 but	 can	be	a
good	place	to	go	when	nothing	else	makes	sense.

See	also:

Tcl/Tk	8.6	man	pages
The	Tcl/Tk	manual	on	www.tcl.tk.

ActiveState	Tcl	Home	Page
The	Tk/Tcl	development	is	largely	taking	place	at	ActiveState.

Tcl	and	the	Tk	Toolkit
The	book	by	John	Ousterhout,	the	inventor	of	Tcl.

Practical	Programming	in	Tcl	and	Tk
Brent	Welch’s	encyclopedic	book.

25.1.2.2.	A	Simple	Hello	World	Program

import	tkinter	as	tk

class	Application(tk.Frame):

				def	__init__(self,	master=None):

								tk.Frame.__init__(self,	master)

								self.pack()

								self.createWidgets()

http://www.tcl.tk/man/tcl8.6/
http://tcl.activestate.com/
http://www.amazon.com/exec/obidos/ASIN/020163337X
http://www.amazon.com/exec/obidos/ASIN/0130220280

				def	createWidgets(self):

								self.hi_there	=	tk.Button(self)

								self.hi_there["text"]	=	"Hello	World\n(click	me)"

								self.hi_there["command"]	=	self.say_hi

								self.hi_there.pack(side="top")

								self.QUIT	=	tk.Button(self,	text="QUIT",	fg=

																																												command=

								self.QUIT.pack(side="bottom")

				def	say_hi(self):

								print("hi	there,	everyone!")

root	=	tk.Tk()

app	=	Application(master=root)

app.mainloop()

25.1.3.	A	(Very)	Quick	Look	at	Tcl/Tk

The	 class	 hierarchy	 looks	 complicated,	 but	 in	 actual	 practice,
application	programmers	almost	always	refer	to	the	classes	at	the	very
bottom	of	the	hierarchy.

Notes:

These	classes	are	provided	for	the	purposes	of	organizing	certain
functions	 under	 one	 namespace.	 They	 aren’t	 meant	 to	 be
instantiated	independently.
The	 Tk	 class	 is	 meant	 to	 be	 instantiated	 only	 once	 in	 an
application.	 Application	 programmers	 need	 not	 instantiate	 one
explicitly,	 the	 system	 creates	 one	 whenever	 any	 of	 the	 other
classes	are	instantiated.
The	Widget	class	is	not	meant	to	be	instantiated,	it	is	meant	only
for	 subclassing	 to	make	 “real”	widgets	 (in	C++,	 this	 is	 called	an
‘abstract	class’).

To	make	use	of	 this	 reference	material,	 there	will	be	 times	when	you
will	need	to	know	how	to	read	short	passages	of	Tk	and	how	to	identify
the	 various	 parts	 of	 a	Tk	 command.	 (See	section	Mapping	Basic	 Tk
into	Tkinter	for	the	tkinter	equivalents	of	what’s	below.)

Tk	scripts	are	Tcl	programs.	Like	all	Tcl	programs,	Tk	scripts	are	 just
lists	of	 tokens	separated	by	spaces.	A	Tk	widget	 is	 just	 its	class,	 the
options	 that	 help	 configure	 it,	 and	 the	actions	 that	make	 it	 do	 useful
things.

To	make	a	widget	in	Tk,	the	command	is	always	of	the	form:

classCommand	newPathname	options

classCommand
denotes	which	kind	of	widget	to	make	(a	button,	a	label,	a	menu...)

newPathname
is	 the	new	name	for	 this	widget.	All	names	 in	Tk	must	be	unique.
To	help	enforce	this,	widgets	in	Tk	are	named	with	pathnames,	just
like	files	in	a	file	system.	The	top	level	widget,	the	root,	is	called	.
(period)	and	children	are	delimited	by	more	periods.	For	example,
.myApp.controlPanel.okButton	 might	 be	 the	 name	 of	 a
widget.

options
configure	the	widget’s	appearance	and	in	some	cases,	its	behavior.
The	options	come	in	the	form	of	a	list	of	flags	and	values.	Flags	are
preceded	by	a	 ‘-‘,	 like	Unix	 shell	 command	 flags,	 and	 values	are
put	in	quotes	if	they	are	more	than	one	word.

For	example:

button			.fred			-fg	red	-text	"hi	there"

			^							^					______________________/

			|							|																|

	class				new												options

command		widget		(-opt	val	-opt	val	...)

Once	created,	the	pathname	to	the	widget	becomes	a	new	command.
This	new	widget	command	is	the	programmer’s	handle	for	getting	the
new	 widget	 to	 perform	 some	 action.	 In	 C,	 you’d	 express	 this	 as
someAction(fred,	 someOptions),	 in	 C++,	 you	 would	 express	 this	 as
fred.someAction(someOptions),	and	in	Tk,	you	say:

.fred	someAction	someOptions

Note	that	the	object	name,	.fred,	starts	with	a	dot.

As	you’d	expect,	 the	 legal	 values	 for	someAction	will	 depend	on	 the
widget’s	 class:	 .fred	disable	works	 if	 fred	 is	 a	 button	 (fred	 gets
greyed	out),	but	does	not	work	if	 fred	is	a	 label	(disabling	of	 labels	 is
not	supported	in	Tk).

The	 legal	values	of	someOptions	 is	action	dependent.	Some	actions,
like	 disable,	 require	 no	 arguments,	 others,	 like	 a	 text-entry	 box’s
delete	 command,	would	 need	 arguments	 to	 specify	what	 range	 of
text	to	delete.

25.1.4.	Mapping	Basic	Tk	into	Tkinter

Class	commands	in	Tk	correspond	to	class	constructors	in	Tkinter.

button	.fred																=====>		fred	=	Button()

The	 master	 of	 an	 object	 is	 implicit	 in	 the	 new	 name	 given	 to	 it	 at
creation	time.	In	Tkinter,	masters	are	specified	explicitly.

button	.panel.fred										=====>		fred	=	Button(panel

The	 configuration	 options	 in	 Tk	 are	 given	 in	 lists	 of	 hyphened	 tags
followed	 by	 values.	 In	 Tkinter,	 options	 are	 specified	 as	 keyword-
arguments	in	the	instance	constructor,	and	keyword-args	for	configure
calls	 or	 as	 instance	 indices,	 in	 dictionary	 style,	 for	 established
instances.	See	section	Setting	Options	on	setting	options.

button	.fred	-fg	red								=====>		fred	=	Button(panel

.fred	configure	-fg	red					=====>		fred["fg"]	=	red

																												OR	==>		fred.config(fg="red"

In	 Tk,	 to	 perform	 an	 action	 on	 a	widget,	 use	 the	widget	 name	 as	 a
command,	and	follow	it	with	an	action	name,	possibly	with	arguments
(options).	In	Tkinter,	you	call	methods	on	the	class	instance	to	invoke
actions	on	the	widget.	The	actions	(methods)	that	a	given	widget	can
perform	are	listed	in	tkinter/__init__.py.

.fred	invoke																=====>		fred.invoke()

To	give	a	widget	to	the	packer	(geometry	manager),	you	call	pack	with
optional	 arguments.	 In	 Tkinter,	 the	 Pack	 class	 holds	 all	 this

functionality,	 and	 the	 various	 forms	 of	 the	 pack	 command	 are
implemented	 as	 methods.	 All	 widgets	 in	 tkinter	 are	 subclassed
from	 the	 Packer,	 and	 so	 inherit	 all	 the	 packing	 methods.	 See	 the
tkinter.tix	 module	 documentation	 for	 additional	 information	 on
the	Form	geometry	manager.

pack	.fred	-side	left							=====>		fred.pack(side="left"

25.1.5.	How	Tk	and	Tkinter	are	Related

From	the	top	down:

Your	App	Here	(Python)
A	Python	application	makes	a	tkinter	call.

tkinter	(Python	Package)
This	 call	 (say,	 for	 example,	 creating	 a	 button	 widget),	 is
implemented	in	the	tkinter	package,	which	is	written	in	Python.
This	Python	function	will	parse	the	commands	and	the	arguments
and	convert	them	into	a	form	that	makes	them	look	as	if	they	had
come	from	a	Tk	script	instead	of	a	Python	script.

_tkinter	(C)
These	 commands	 and	 their	 arguments	 will	 be	 passed	 to	 a	 C
function	 in	 the	 _tkinter	 -	 note	 the	 underscore	 -	 extension
module.

Tk	Widgets	(C	and	Tcl)
This	 C	 function	 is	 able	 to	 make	 calls	 into	 other	 C	 modules,
including	 the	 C	 functions	 that	 make	 up	 the	 Tk	 library.	 Tk	 is
implemented	 in	C	and	some	Tcl.	The	Tcl	part	of	 the	Tk	widgets	 is
used	to	bind	certain	default	behaviors	to	widgets,	and	is	executed
once	at	the	point	where	the	Python	tkinter	package	is	imported.
(The	user	never	sees	this	stage).

Tk	(C)
The	Tk	part	of	the	Tk	Widgets	implement	the	final	mapping	to	...

Xlib	(C)
the	Xlib	library	to	draw	graphics	on	the	screen.

25.1.6.	Handy	Reference

25.1.6.1.	Setting	Options

Options	 control	 things	 like	 the	 color	 and	 border	 width	 of	 a	 widget.
Options	can	be	set	in	three	ways:

At	object	creation	time,	using	keyword	arguments

fred	=	Button(self,	fg="red",	bg="blue")

After	object	creation,	treating	the	option	name	like	a	dictionary	index

fred["fg"]	=	"red"

fred["bg"]	=	"blue"

Use	the	config()	method	to	update	multiple	attrs	subsequent	to	object
creation

fred.config(fg="red",	bg="blue")

For	a	complete	explanation	of	a	given	option	and	its	behavior,	see	the
Tk	man	pages	for	the	widget	in	question.

Note	 that	 the	man	pages	 list	 “STANDARD	OPTIONS”	and	 “WIDGET
SPECIFIC	OPTIONS”	for	each	widget.	The	 former	 is	a	 list	of	options
that	are	common	 to	many	widgets,	 the	 latter	are	 the	options	 that	are
idiosyncratic	 to	 that	 particular	 widget.	 The	 Standard	 Options	 are
documented	on	the	options(3)	man	page.

No	distinction	between	standard	and	widget-specific	options	 is	made
in	this	document.	Some	options	don’t	apply	to	some	kinds	of	widgets.
Whether	 a	 given	widget	 responds	 to	 a	 particular	 option	 depends	 on
the	class	of	the	widget;	buttons	have	a	command	option,	labels	do	not.

The	 options	 supported	 by	 a	 given	 widget	 are	 listed	 in	 that	 widget’s
man	 page,	 or	 can	 be	 queried	 at	 runtime	 by	 calling	 the	 config()
method	without	arguments,	or	by	calling	 the	keys()	method	on	 that
widget.	The	return	value	of	these	calls	is	a	dictionary	whose	key	is	the
name	of	 the	option	as	a	string	 (for	example,	'relief')	and	whose
values	are	5-tuples.

Some	 options,	 like	 bg	 are	 synonyms	 for	 common	 options	 with	 long
names	 (bg	 is	 shorthand	 for	 “background”).	 Passing	 the	 config()
method	 the	 name	 of	 a	 shorthand	 option	will	 return	 a	 2-tuple,	 not	 5-
tuple.	The	2-tuple	passed	back	will	contain	the	name	of	the	synonym
and	the	“real”	option	(such	as	('bg',	'background')).

Index Meaning Example

0 option	name 'relief'

1 option	name	for	database	lookup 'relief'

2 option	class	for	database	lookup 'Relief'

3 default	value 'raised'

4 current	value 'groove'

Example:

>>>	print(fred.config())

{'relief':	('relief',	'relief',	'Relief',	'raised',	'groove')}

Of	course,	 the	dictionary	printed	will	 include	all	 the	options	available
and	their	values.	This	is	meant	only	as	an	example.

25.1.6.2.	The	Packer

The	 packer	 is	 one	 of	 Tk’s	 geometry-management	 mechanisms.
Geometry	managers	are	used	to	specify	the	relative	positioning	of	the
positioning	 of	widgets	within	 their	 container	 -	 their	mutual	master.	 In
contrast	 to	 the	 more	 cumbersome	 placer	 (which	 is	 used	 less
commonly,	 and	 we	 do	 not	 cover	 here),	 the	 packer	 takes	 qualitative
relationship	specification	-	above,	to	the	left	of,	filling,	etc	-	and	works
everything	out	to	determine	the	exact	placement	coordinates	for	you.

The	size	of	any	master	widget	is	determined	by	the	size	of	the	“slave
widgets”	 inside.	 The	 packer	 is	 used	 to	 control	 where	 slave	 widgets
appear	 inside	 the	master	 into	which	 they	 are	 packed.	You	 can	 pack
widgets	into	frames,	and	frames	into	other	frames,	in	order	to	achieve
the	 kind	 of	 layout	 you	 desire.	 Additionally,	 the	 arrangement	 is
dynamically	 adjusted	 to	 accommodate	 incremental	 changes	 to	 the
configuration,	once	it	is	packed.

Note	 that	 widgets	 do	 not	 appear	 until	 they	 have	 had	 their	 geometry
specified	 with	 a	 geometry	manager.	 It’s	 a	 common	 early	 mistake	 to
leave	out	the	geometry	specification,	and	then	be	surprised	when	the
widget	is	created	but	nothing	appears.	A	widget	will	appear	only	after	it
has	had,	for	example,	the	packer’s	pack()	method	applied	to	it.

The	pack()	method	can	be	called	with	keyword-option/value	pairs	that
control	where	the	widget	is	to	appear	within	its	container,	and	how	it	is
to	 behave	 when	 the	 main	 application	 window	 is	 resized.	 Here	 are
some	examples:

fred.pack()																					#	defaults	to	side	=	"top"

fred.pack(side="left")

fred.pack(expand=1)

25.1.6.3.	Packer	Options

For	more	extensive	 information	on	 the	packer	and	 the	options	 that	 it
can	 take,	 see	 the	 man	 pages	 and	 page	 183	 of	 John	 Ousterhout’s
book.

anchor
Anchor	type.	Denotes	where	the	packer	is	to	place	each	slave	in	its
parcel.

expand
Boolean,	0	or	1.

fill
Legal	values:	'x',	'y',	'both',	'none'.

ipadx	and	ipady
A	distance	-	designating	internal	padding	on	each	side	of	the	slave
widget.

padx	and	pady
A	distance	-	designating	external	padding	on	each	side	of	the	slave
widget.

side
Legal	values	are:	'left',	'right',	'top',	'bottom'.

25.1.6.4.	Coupling	Widget	Variables

The	current-value	setting	of	some	widgets	(like	text	entry	widgets)	can
be	connected	directly	to	application	variables	by	using	special	options.
These	 options	 are	 variable,	 textvariable,	 onvalue,
offvalue,	 and	 value.	 This	 connection	 works	 both	 ways:	 if	 the
variable	changes	 for	any	 reason,	 the	widget	 it’s	 connected	 to	will	 be
updated	to	reflect	the	new	value.

Unfortunately,	 in	 the	 current	 implementation	 of	 tkinter	 it	 is	 not
possible	to	hand	over	an	arbitrary	Python	variable	to	a	widget	through

a	variable	or	textvariable	option.	The	only	kinds	of	variables	for
which	this	works	are	variables	that	are	subclassed	from	a	class	called
Variable,	defined	in	tkinter.

There	 are	 many	 useful	 subclasses	 of	 Variable	 already	 defined:
StringVar,	 IntVar,	 DoubleVar,	 and	 BooleanVar.	 To	 read	 the
current	value	of	such	a	variable,	call	 the	get()	method	on	 it,	and	to
change	 its	 value	 you	 call	 the	 set()	 method.	 If	 you	 follow	 this
protocol,	the	widget	will	always	track	the	value	of	the	variable,	with	no
further	intervention	on	your	part.

For	example:

class	App(Frame):

				def	__init__(self,	master=None):

								Frame.__init__(self,	master)

								self.pack()

								self.entrythingy	=	Entry()

								self.entrythingy.pack()

								#	here	is	the	application	variable

								self.contents	=	StringVar()

								#	set	it	to	some	value

								self.contents.set("this	is	a	variable")

								#	tell	the	entry	widget	to	watch	this	variable

								self.entrythingy["textvariable"]	=	self.contents

								#	and	here	we	get	a	callback	when	the	user	hits	return.

								#	we	will	have	the	program	print	out	the	value	of	the

								#	application	variable	when	the	user	hits	return

								self.entrythingy.bind('<Key-Return>',

																														self.print_contents)

				def	print_contents(self,	event):

								print("hi.	contents	of	entry	is	now	---->",

														self.contents.get())

25.1.6.5.	The	Window	Manager

In	Tk,	 there	 is	a	utility	command,	wm,	 for	 interacting	with	 the	window
manager.	Options	to	the	wm	command	allow	you	to	control	things	like
titles,	 placement,	 icon	 bitmaps,	 and	 the	 like.	 In	 tkinter,	 these
commands	 have	 been	 implemented	 as	 methods	 on	 the	 Wm	 class.
Toplevel	widgets	are	subclassed	from	the	Wm	class,	and	so	can	call	the
Wm	methods	directly.

To	 get	 at	 the	 toplevel	window	 that	 contains	 a	 given	widget,	 you	 can
often	just	refer	to	the	widget’s	master.	Of	course	if	the	widget	has	been
packed	 inside	 of	 a	 frame,	 the	 master	 won’t	 represent	 a	 toplevel
window.	 To	 get	 at	 the	 toplevel	 window	 that	 contains	 an	 arbitrary
widget,	you	can	call	the	_root()	method.	This	method	begins	with	an
underscore	 to	 denote	 the	 fact	 that	 this	 function	 is	 part	 of	 the
implementation,	and	not	an	interface	to	Tk	functionality.

Here	are	some	examples	of	typical	usage:

from	tkinter	import	*

class	App(Frame):

				def	__init__(self,	master=None):

								Frame.__init__(self,	master)

								self.pack()

#	create	the	application

myapp	=	App()

#

#	here	are	method	calls	to	the	window	manager	class

#

myapp.master.title("My	Do-Nothing	Application")

myapp.master.maxsize(1000,	400)

#	start	the	program

myapp.mainloop()

25.1.6.6.	Tk	Option	Data	Types

anchor
Legal	values	are	points	of	 the	compass:	"n",	"ne",	"e",	 "se",
"s",	"sw",	"w",	"nw",	and	also	"center".

bitmap
There	 are	 eight	 built-in,	 named	 bitmaps:	 'error',	 'gray25',
'gray50',	 'hourglass',	 'info',	 'questhead',
'question',	'warning'.	To	specify	an	X	bitmap	filename,	give
the	 full	 path	 to	 the	 file,	 preceded	 with	 an	 @,	 as	 in
"@/usr/contrib/bitmap/gumby.bit".

boolean
You	can	pass	integers	0	or	1	or	the	strings	"yes"	or	"no".

callback
This	is	any	Python	function	that	takes	no	arguments.	For	example:

def	print_it():

				print("hi	there")

fred["command"]	=	print_it

color
Colors	can	be	given	as	the	names	of	X	colors	in	the	rgb.txt	file,	or
as	 strings	 representing	 RGB	 values	 in	 4	 bit:	 "#RGB",	 8	 bit:
"#RRGGBB",	 12	 bit”	 "#RRRGGGBBB",	 or	 16	 bit

"#RRRRGGGGBBBB"	ranges,	where	R,G,B	here	represent	any	legal
hex	digit.	See	page	160	of	Ousterhout’s	book	for	details.

cursor
The	standard	X	cursor	names	from	cursorfont.h	can	be	used,
without	 the	 XC_	 prefix.	 For	 example	 to	 get	 a	 hand	 cursor
(XC_hand2),	 use	 the	 string	 "hand2".	 You	 can	 also	 specify	 a
bitmap	and	mask	 file	of	your	own.	See	page	179	of	Ousterhout’s
book.

distance
Screen	 distances	 can	 be	 specified	 in	 either	 pixels	 or	 absolute
distances.	Pixels	are	given	as	numbers	and	absolute	distances	as
strings,	with	the	trailing	character	denoting	units:	c	for	centimetres,
i	for	inches,	m	for	millimetres,	p	for	printer’s	points.	For	example,
3.5	inches	is	expressed	as	"3.5i".

font
Tk	uses	a	 list	 font	name	 format,	such	as	{courier	10	bold}.
Font	sizes	with	positive	numbers	are	measured	in	points;	sizes	with
negative	numbers	are	measured	in	pixels.

geometry
This	 is	 a	 string	 of	 the	 form	 widthxheight,	 where	 width	 and
height	 are	measured	 in	 pixels	 for	most	widgets	 (in	 characters	 for
widgets	 displaying	 text).	 For	 example:	 fred["geometry"]	 =

"200x100".

justify
Legal	values	are	the	strings:	"left",	"center",	"right",	and
"fill".

region
This	is	a	string	with	four	space-delimited	elements,	each	of	which	is
a	legal	distance	(see	above).	For	example:	"2	3	4	5"	and	"3i
2i	4.5i	2i"	and	"3c	2c	4c	10.43c"	are	all	legal	regions.

relief
Determines	what	the	border	style	of	a	widget	will	be.	Legal	values
are:	"raised",	"sunken",	"flat",	"groove",	and	"ridge".

scrollcommand
This	is	almost	always	the	set()	method	of	some	scrollbar	widget,
but	can	be	any	widget	method	that	takes	a	single	argument.

wrap:
Must	be	one	of:	"none",	"char",	or	"word".

25.1.6.7.	Bindings	and	Events

The	 bind	method	 from	 the	widget	 command	 allows	 you	 to	watch	 for
certain	events	and	to	have	a	callback	function	trigger	when	that	event
type	occurs.	The	form	of	the	bind	method	is:

def	bind(self,	sequence,	func,	add=''):

where:

sequence
is	a	string	that	denotes	the	target	kind	of	event.	(See	the	bind	man
page	and	page	201	of	John	Ousterhout’s	book	for	details).

func
is	a	Python	function,	taking	one	argument,	to	be	invoked	when	the
event	occurs.	An	Event	 instance	will	be	passed	as	 the	argument.
(Functions	deployed	this	way	are	commonly	known	as	callbacks.)

add
is	optional,	either	''	or	'+'.	Passing	an	empty	string	denotes	that
this	 binding	 is	 to	 replace	 any	 other	 bindings	 that	 this	 event	 is
associated	with.	Passing	a	'+'	means	 that	 this	 function	 is	 to	 be
added	to	the	list	of	functions	bound	to	this	event	type.

For	example:

def	turnRed(self,	event):

				event.widget["activeforeground"]	=	"red"

self.button.bind("<Enter>",	self.turnRed)

Notice	 how	 the	 widget	 field	 of	 the	 event	 is	 being	 accessed	 in	 the
turnRed()	callback.	This	field	contains	the	widget	that	caught	the	X
event.	The	following	table	 lists	the	other	event	fields	you	can	access,
and	how	they	are	denoted	in	Tk,	which	can	be	useful	when	referring	to
the	Tk	man	pages.

Tk Tkinter	Event	Field Tk Tkinter	Event	Field

%f focus %A char

%h height %E send_event

%k keycode %K keysym

%s state %N keysym_num

%t time %T type

%w width %W widget

%x x %X x_root

%y y %Y y_root

25.1.6.8.	The	index	Parameter

A	number	of	widgets	require	“index”	parameters	to	be	passed.	These
are	used	 to	point	at	a	specific	place	 in	a	Text	widget,	or	 to	particular
characters	 in	an	Entry	widget,	or	 to	particular	menu	 items	 in	a	Menu
widget.

Entry	widget	indexes	(index,	view	index,	etc.)

Entry	widgets	have	options	 that	 refer	 to	character	positions	 in	 the
text	 being	 displayed.	 You	 can	 use	 these	 tkinter	 functions	 to
access	these	special	points	in	text	widgets:

Text	widget	indexes
The	 index	 notation	 for	 Text	 widgets	 is	 very	 rich	 and	 is	 best
described	in	the	Tk	man	pages.

Menu	indexes	(menu.invoke(),	menu.entryconfig(),	etc.)
Some	 options	 and	methods	 for	menus	manipulate	 specific	menu
entries.	 Anytime	 a	 menu	 index	 is	 needed	 for	 an	 option	 or	 a
parameter,	you	may	pass	in:

an	integer	which	refers	to	the	numeric	position	of	 the	entry	 in
the	widget,	counted	from	the	top,	starting	with	0;
the	string	"active",	which	refers	to	the	menu	position	that	is
currently	under	the	cursor;
the	string	"last"	which	refers	to	the	last	menu	item;
An	 integer	 preceded	 by	 @,	 as	 in	 @6,	 where	 the	 integer	 is
interpreted	 as	 a	 y	 pixel	 coordinate	 in	 the	menu’s	 coordinate
system;
the	string	"none",	which	indicates	no	menu	entry	at	all,	most
often	 used	with	menu.activate()	 to	 deactivate	 all	 entries,	 and
finally,
a	 text	 string	 that	 is	 pattern	matched	 against	 the	 label	 of	 the
menu	 entry,	 as	 scanned	 from	 the	 top	 of	 the	 menu	 to	 the
bottom.	 Note	 that	 this	 index	 type	 is	 considered	 after	 all	 the
others,	 which	 means	 that	 matches	 for	 menu	 items	 labelled
last,	 active,	 or	 none	 may	 be	 interpreted	 as	 the	 above
literals,	instead.

25.1.6.9.	Images

Bitmap/Pixelmap	 images	 can	 be	 created	 through	 the	 subclasses	 of

tkinter.Image:

BitmapImage	can	be	used	for	X11	bitmap	data.
PhotoImage	can	be	used	for	GIF	and	PPM/PGM	color	bitmaps.

Either	 type	of	 image	 is	created	 through	either	 the	file	or	 the	data
option	(other	options	are	available	as	well).

The	 image	 object	 can	 then	 be	 used	 wherever	 an	 image	 option	 is
supported	 by	 some	 widget	 (e.g.	 labels,	 buttons,	 menus).	 In	 these
cases,	Tk	will	not	keep	a	reference	to	the	image.	When	the	last	Python
reference	to	the	image	object	is	deleted,	the	image	data	is	deleted	as
well,	and	Tk	will	display	an	empty	box	wherever	the	image	was	used.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

http://www.python.org/

25.2.	tkinter.ttk	—	Tk	themed
widgets
The	tkinter.ttk	module	provides	access	to	the	Tk	themed	widget
set,	introduced	in	Tk	8.5.	If	Python	has	not	been	compiled	against	Tk
8.5,	 this	module	can	still	be	accessed	 if	Tile	has	been	 installed.	The
former	method	using	Tk	8.5	provides	additional	benefits	including	anti-
aliased	font	rendering	under	X11	and	window	transparency	(requiring
a	composition	window	manager	on	X11).

The	 basic	 idea	 for	 tkinter.ttk	 is	 to	 separate,	 to	 the	 extent
possible,	 the	 code	 implementing	 a	 widget’s	 behavior	 from	 the	 code
implementing	its	appearance.

See	also:

Tk	Widget	Styling	Support
A	document	introducing	theming	support	for	Tk

http://www.tcl.tk/cgi-bin/tct/tip/48

25.2.1.	Using	Ttk

To	start	using	Ttk,	import	its	module:

from	tkinter	import	ttk

To	 override	 the	 basic	 Tk	 widgets,	 the	 import	 should	 follow	 the	 Tk
import:

from	tkinter	import	*

from	tkinter.ttk	import	*

That	 code	 causes	 several	 tkinter.ttk	 widgets	 (Button,
Checkbutton,	Entry,	Frame,	Label,	LabelFrame,	Menubutton,
PanedWindow,	 Radiobutton,	 Scale	 and	 Scrollbar)	 to
automatically	replace	the	Tk	widgets.

This	 has	 the	 direct	 benefit	 of	 using	 the	 new	 widgets	 which	 gives	 a
better	 look	 and	 feel	 across	 platforms;	 however,	 the	 replacement
widgets	 are	 not	 completely	 compatible.	 The	 main	 difference	 is	 that
widget	options	such	as	 “fg”,	 “bg”	and	others	 related	 to	widget	styling
are	 no	 longer	 present	 in	 Ttk	 widgets.	 Instead,	 use	 the	 ttk.Style
class	for	improved	styling	effects.

See	also:

Converting	existing	applications	to	use	Tile	widgets
A	monograph	 (using	Tcl	 terminology)	 about	 differences	 typically
encountered	when	moving	applications	to	use	the	new	widgets.

http://tktable.sourceforge.net/tile/doc/converting.txt

25.2.2.	Ttk	Widgets

Ttk	comes	with	17	widgets,	eleven	of	which	already	existed	in	tkinter:
Button,	 Checkbutton,	 Entry,	 Frame,	 Label,	 LabelFrame,
Menubutton,	 PanedWindow,	 Radiobutton,	 Scale	 and
Scrollbar.	 The	 other	 six	 are	 new:	 Combobox,	 Notebook,
Progressbar,	 Separator,	 Sizegrip	 and	 Treeview.	 And	 all
them	are	subclasses	of	Widget.

Using	the	Ttk	widgets	gives	the	application	an	improved	look	and	feel.
As	discussed	above,	there	are	differences	in	how	the	styling	is	coded.

Tk	code:

l1	=	tkinter.Label(text="Test",	fg="black",	bg="white"

l2	=	tkinter.Label(text="Test",	fg="black",	bg="white"

Ttk	code:

style	=	ttk.Style()

style.configure("BW.TLabel",	foreground="black",	background

l1	=	ttk.Label(text="Test",	style="BW.TLabel")

l2	=	ttk.Label(text="Test",	style="BW.TLabel")

For	 more	 information	 about	 TtkStyling,	 see	 the	 Style	 class
documentation.

25.2.3.	Widget

ttk.Widget	defines	standard	options	and	methods	supported	by	Tk
themed	widgets	and	is	not	supposed	to	be	directly	instantiated.

25.2.3.1.	Standard	Options

All	the	ttk	Widgets	accepts	the	following	options:

Option Description

class

Specifies	the	window	class.	The	class	is	used	when
querying	the	option	database	for	the	window’s
other	options,	to	determine	the	default	bindtags	for
the	window,	and	to	select	the	widget’s	default
layout	and	style.	This	is	a	read-only	which	may	only
be	specified	when	the	window	is	created

cursor
Specifies	the	mouse	cursor	to	be	used	for	the
widget.	If	set	to	the	empty	string	(the	default),	the
cursor	is	inherited	for	the	parent	widget.

takefocus

Determines	whether	the	window	accepts	the	focus
during	keyboard	traversal.	0,	1	or	an	empty	string	is
returned.	If	0	is	returned,	it	means	that	the	window
should	be	skipped	entirely	during	keyboard
traversal.	If	1,	it	means	that	the	window	should
receive	the	input	focus	as	long	as	it	is	viewable.
And	an	empty	string	means	that	the	traversal
scripts	make	the	decision	about	whether	or	not	to
focus	on	the	window.

style May	be	used	to	specify	a	custom	widget	style.

25.2.3.2.	Scrollable	Widget	Options

The	following	options	are	supported	by	widgets	that	are	controlled	by	a
scrollbar.

Option Description

xscrollcommand

Used	 to	 communicate	 with	 horizontal
scrollbars.

When	 the	 view	 in	 the	 widget’s	 window
change,	 the	 widget	 will	 generate	 a	 Tcl
command	based	on	the	scrollcommand.

Usually	 this	 option	 consists	 of	 the	 method
Scrollbar.set()	of	 some	scrollbar.	This
will	 cause	 the	 scrollbar	 to	 be	 updated
whenever	the	view	in	the	window	changes.

yscrollcommand
Used	to	communicate	with	vertical
scrollbars.	For	some	more	information,	see
above.

25.2.3.3.	Label	Options

The	 following	 options	 are	 supported	 by	 labels,	 buttons	 and	 other
button-like	widgets.

Option Description

text Specifies	a	text	string	to	be	displayed	inside	the
widget.

textvariable Specifies	a	name	whose	value	will	be	used	in
place	of	the	text	option	resource.

underline
If	set,	specifies	the	index	(0-based)	of	a	character
to	underline	in	the	text	string.	The	underline
character	is	used	for	mnemonic	activation.

image

Specifies	an	image	to	display.	This	is	a	list	of	1	or
more	elements.	The	first	element	is	the	default
image	name.	The	rest	of	the	list	if	a	sequence	of
statespec/value	pairs	as	defined	by
Style.map(),	specifying	different	images	to
use	when	the	widget	is	in	a	particular	state	or	a
combination	of	states.	All	images	in	the	list
should	have	the	same	size.

compound

Specifies	how	to	display	the	image	relative	to	the
text,	in	the	case	both	text	and	images	options	are
present.	Valid	values	are:

text:	display	text	only
image:	display	image	only
top,	bottom,	 left,	 right:	display	 image	above,
below,	left	of,	or	right	of	the	text,	respectively.
none:	 the	 default.	 display	 the	 image	 if
present,	otherwise	the	text.

width

If	greater	than	zero,	specifies	how	much	space,	in
character	widths,	to	allocate	for	the	text	label,	if
less	than	zero,	specifies	a	minimum	width.	If	zero
or	unspecified,	the	natural	width	of	the	text	label
is	used.

25.2.3.4.	Compatibility	Options

Option Description

state

May	be	set	to	“normal”	or	“disabled”	to	control	the
“disabled”	state	bit.	This	is	a	write-only	option:	setting
it	changes	the	widget	state,	but	the
Widget.state()	method	does	not	affect	this
option.

25.2.3.5.	Widget	States

The	widget	state	is	a	bitmap	of	independent	state	flags.

Flag Description

active
The	mouse	cursor	is	over	the	widget	and
pressing	a	mouse	button	will	cause	some	action
to	occur

disabled Widget	is	disabled	under	program	control

focus Widget	has	keyboard	focus

pressed Widget	is	being	pressed

selected “On”,	“true”,	or	“current”	for	things	like
Checkbuttons	and	radiobuttons

background

Windows	and	Mac	have	a	notion	of	an	“active”	or
foreground	window.	The	background	state	is	set
for	widgets	in	a	background	window,	and	cleared
for	those	in	the	foreground	window

readonly Widget	should	not	allow	user	modification

alternate A	widget-specific	alternate	display	format

invalid The	widget’s	value	is	invalid

A	state	specification	is	a	sequence	of	state	names,	optionally	prefixed
with	an	exclamation	point	indicating	that	the	bit	is	off.

25.2.3.6.	ttk.Widget

Besides	the	methods	described	below,	the	ttk.Widget	supports	the
methods	 tkinter.Widget.cget()	 and
tkinter.Widget.configure().

class	tkinter.ttk.Widget
identify(x,	y)

Returns	the	name	of	 the	element	at	position	x	y,	or	 the	empty
string	if	the	point	does	not	lie	within	any	element.

x	and	y	are	pixel	coordinates	relative	to	the	widget.

instate(statespec,	callback=None,	*args,	**kw)
Test	 the	 widget’s	 state.	 If	 a	 callback	 is	 not	 specified,	 returns
True	 if	 the	 widget	 state	 matches	 statespec	 and	 False
otherwise.	 If	 callback	 is	 specified	 then	 it	 is	 called	 with	 args	 if
widget	state	matches	statespec.

state(statespec=None)
Modify	or	inquire	widget	state.	If	statespec	is	specified,	sets	the
widget	 state	 according	 to	 it	 and	 return	 a	 new	 statespec
indicating	 which	 flags	 were	 changed.	 If	 statespec	 is	 not
specified,	returns	the	currently-enabled	state	flags.

statespec	will	usually	be	a	list	or	a	tuple.

25.2.4.	Combobox

The	ttk.Combobox	widget	combines	a	text	field	with	a	pop-down	list
of	values.	This	widget	is	a	subclass	of	Entry.

Besides	 the	 methods	 inherited	 from	 Widget:	 Widget.cget(),
Widget.configure(),	 Widget.identify(),
Widget.instate()	 and	 Widget.state(),	 and	 the	 following
inherited	 from	 Entry:	 Entry.bbox(),	 Entry.delete(),
Entry.icursor(),	 Entry.index(),	 Entry.inset(),
Entry.selection(),	 Entry.xview(),	 it	 has	 some	 other
methods,	described	at	ttk.Combobox.

25.2.4.1.	Options

This	widget	accepts	the	following	specific	options:

Option Description

exportselection

Boolean	value.	If	set,	the	widget	selection	is
linked	to	the	Window	Manager	selection
(which	can	be	returned	by	invoking
Misc.selection_get,	for	example).

justify Specifies	how	the	text	is	aligned	within	the
widget.	One	of	“left”,	“center”,	or	“right”.

height Specifies	the	height	of	the	pop-down	listbox,
in	rows.

postcommand

A	script	(possibly	registered	with
Misc.register)	that	is	called	immediately
before	displaying	the	values.	It	may	specify
which	values	to	display.

state

One	of	“normal”,	“readonly”,	or	“disabled”.	In
the	“readonly”	state,	the	value	may	not	be
edited	directly,	and	the	user	can	only
selection	of	the	values	from	the	dropdown	list.
In	the	“normal”	state,	the	text	field	is	directly
editable.	In	the	“disabled”	state,	no	interaction
is	possible.

textvariable

Specifies	a	name	whose	value	is	linked	to	the
widget	value.	Whenever	the	value	associated
with	that	name	changes,	the	widget	value	is
updated,	and	vice	versa.	See
tkinter.StringVar.

values Specifies	the	list	of	values	to	display	in	the
drop-down	listbox.

width
Specifies	an	integer	value	indicating	the
desired	width	of	the	entry	window,	in	average-
size	characters	of	the	widget’s	font.

25.2.4.2.	Virtual	events

The	combobox	widgets	generates	a	<<ComboboxSelected>>	virtual
event	when	the	user	selects	an	element	from	the	list	of	values.

25.2.4.3.	ttk.Combobox

class	tkinter.ttk.Combobox
current(newindex=None)

If	 newindex	 is	 specified,	 sets	 the	 combobox	 value	 to	 the
element	position	newindex.	Otherwise,	returns	the	index	of	 the
current	value	or	-1	if	the	current	value	is	not	in	the	values	list.

get()
Returns	the	current	value	of	the	combobox.

set(value)
Sets	the	value	of	the	combobox	to	value.

25.2.5.	Notebook

Ttk	Notebook	widget	manages	a	collection	of	windows	and	displays	a
single	one	at	a	time.	Each	child	window	is	associated	with	a	tab,	which
the	user	may	select	to	change	the	currently-displayed	window.

25.2.5.1.	Options

This	widget	accepts	the	following	specific	options:

Option Description

height

If	present	and	greater	than	zero,	specifies	the
desired	height	of	the	pane	area	(not	including
internal	padding	or	tabs).	Otherwise,	the	maximum
height	of	all	panes	is	used.

padding

Specifies	the	amount	of	extra	space	to	add	around
the	outside	of	the	notebook.	The	padding	is	a	list	up
to	four	length	specifications	left	top	right	bottom.	If
fewer	than	four	elements	are	specified,	bottom
defaults	to	top,	right	defaults	to	left,	and	top	defaults
to	left.

width

If	present	and	greater	than	zero,	specified	the
desired	width	of	the	pane	area	(not	including	internal
padding).	Otherwise,	the	maximum	width	of	all	panes
is	used.

25.2.5.2.	Tab	Options

There	are	also	specific	options	for	tabs:

Option Description

state
Either	“normal”,	“disabled”	or	“hidden”.	If
“disabled”,	then	the	tab	is	not	selectable.	If
“hidden”,	then	the	tab	is	not	shown.

sticky

Specifies	how	the	child	window	is	positioned	within
the	pane	area.	Value	is	a	string	containing	zero	or
more	of	the	characters	“n”,	“s”,	“e”	or	“w”.	Each
letter	refers	to	a	side	(north,	south,	east	or	west)
that	the	child	window	will	stick	to,	as	per	the
grid()	geometry	manager.

padding

Specifies	the	amount	of	extra	space	to	add
between	the	notebook	and	this	pane.	Syntax	is	the
same	as	for	the	option	padding	used	by	this
widget.

text Specifies	a	text	to	be	displayed	in	the	tab.

image Specifies	an	image	to	display	in	the	tab.	See	the
option	image	described	in	Widget.

compound
Specifies	how	to	display	the	image	relative	to	the
text,	in	the	case	both	options	text	and	image	are
present.	See	Label	Options	for	legal	values.

underline

Specifies	the	index	(0-based)	of	a	character	to
underline	in	the	text	string.	The	underlined
character	is	used	for	mnemonic	activation	if
Notebook.enable_traversal()	is	called.

25.2.5.3.	Tab	Identifiers

The	 tab_id	 present	 in	 several	methods	of	 ttk.Notebook	may	 take
any	of	the	following	forms:

An	integer	between	zero	and	the	number	of	tabs
The	name	of	a	child	window
A	positional	specification	of	 the	 form	 “@x,y”,	which	 identifies	 the
tab

The	 literal	 string	 “current”,	which	 identifies	 the	 currently-selected
tab
The	 literal	 string	 “end”,	 which	 returns	 the	 number	 of	 tabs	 (only
valid	for	Notebook.index())

25.2.5.4.	Virtual	Events

This	 widget	 generates	 a	 <<NotebookTabChanged>>	 virtual	 event
after	a	new	tab	is	selected.

25.2.5.5.	ttk.Notebook

class	tkinter.ttk.Notebook
add(child,	**kw)

Adds	a	new	tab	to	the	notebook.

If	window	is	currently	managed	by	the	notebook	but	hidden,	it	is
restored	to	its	previous	position.

See	Tab	Options	for	the	list	of	available	options.

forget(tab_id)
Removes	the	tab	specified	by	tab_id,	unmaps	and	unmanages
the	associated	window.

hide(tab_id)
Hides	the	tab	specified	by	tab_id.

The	 tab	 will	 not	 be	 displayed,	 but	 the	 associated	 window
remains	 managed	 by	 the	 notebook	 and	 its	 configuration
remembered.	 Hidden	 tabs	 may	 be	 restored	 with	 the	 add()
command.

identify(x,	y)
Returns	 the	 name	 of	 the	 tab	 element	 at	 position	 x,	 y,	 or	 the
empty	string	if	none.

index(tab_id)
Returns	the	numeric	index	of	the	tab	specified	by	tab_id,	or	the
total	number	of	tabs	if	tab_id	is	the	string	“end”.

insert(pos,	child,	**kw)
Inserts	a	pane	at	the	specified	position.

pos	is	either	the	string	“end”,	an	integer	index,	or	the	name	of	a
managed	 child.	 If	 child	 is	 already	 managed	 by	 the	 notebook,
moves	it	to	the	specified	position.

See	Tab	Options	for	the	list	of	available	options.

select(tab_id=None)
Selects	the	specified	tab_id.

The	 associated	 child	 window	 will	 be	 displayed,	 and	 the
previously-selected	window	(if	different)	 is	unmapped.	 If	 tab_id
is	 omitted,	 returns	 the	 widget	 name	 of	 the	 currently	 selected
pane.

tab(tab_id,	option=None,	**kw)
Query	or	modify	the	options	of	the	specific	tab_id.

If	kw	is	not	given,	returns	a	dictionary	of	the	tab	option	values.	If
option	 is	specified,	 returns	 the	value	of	 that	option.	Otherwise,
sets	the	options	to	the	corresponding	values.

tabs()

Returns	a	list	of	windows	managed	by	the	notebook.

enable_traversal()
Enable	keyboard	traversal	for	a	toplevel	window	containing	this
notebook.

This	will	extend	the	bindings	for	the	toplevel	window	containing
the	notebook	as	follows:

Control-Tab:	selects	the	tab	following	the	currently	selected
one.
Shift-Control-Tab:	 selects	 the	 tab	 preceding	 the	 currently
selected	one.
Alt-K:	where	K	 is	 the	mnemonic	 (underlined)	 character	 of
any	tab,	will	select	that	tab.

Multiple	 notebooks	 in	 a	 single	 toplevel	 may	 be	 enabled	 for
traversal,	 including	 nested	 notebooks.	 However,	 notebook
traversal	 only	 works	 properly	 if	 all	 panes	 have	 the	 notebook
they	are	in	as	master.

25.2.6.	Progressbar

The	 ttk.Progressbar	 widget	 shows	 the	 status	 of	 a	 long-running
operation.	It	can	operate	in	two	modes:	1)	the	determinate	mode	which
shows	the	amount	completed	relative	to	the	total	amount	of	work	to	be
done	 and	 2)	 the	 indeterminate	 mode	 which	 provides	 an	 animated
display	to	let	the	user	know	that	work	is	progressing.

25.2.6.1.	Options

This	widget	accepts	the	following	specific	options:

Option Description

orient One	of	“horizontal”	or	“vertical”.	Specifies	the
orientation	of	the	progress	bar.

length Specifies	the	length	of	the	long	axis	of	the	progress
bar	(width	if	horizontal,	height	if	vertical).

mode One	of	“determinate”	or	“indeterminate”.

maximum A	number	specifying	the	maximum	value.	Defaults
to	100.

value

The	current	value	of	the	progress	bar.	In
“determinate”	mode,	this	represents	the	amount	of
work	completed.	In	“indeterminate”	mode,	it	is
interpreted	as	modulo	maximum;	that	is,	the
progress	bar	completes	one	“cycle”	when	its	value
increases	by	maximum.

variable

A	name	which	is	linked	to	the	option	value.	If
specified,	the	value	of	the	progress	bar	is
automatically	set	to	the	value	of	this	name
whenever	the	latter	is	modified.

Read-only	option.	The	widget	periodically

phase
increments	the	value	of	this	option	whenever	its
value	is	greater	than	0	and,	in	determinate	mode,
less	than	maximum.	This	option	may	be	used	by
the	current	theme	to	provide	additional	animation
effects.

25.2.6.2.	ttk.Progressbar

class	tkinter.ttk.Progressbar
start(interval=None)

Begin	 autoincrement	mode:	 schedules	 a	 recurring	 timer	 event
that	calls	Progressbar.step()	every	interval	milliseconds.	If
omitted,	interval	defaults	to	50	milliseconds.

step(amount=None)
Increments	the	progress	bar’s	value	by	amount.

amount	defaults	to	1.0	if	omitted.

stop()
Stop	 autoincrement	 mode:	 cancels	 any	 recurring	 timer	 event
initiated	by	Progressbar.start()	for	this	progress	bar.

25.2.7.	Separator

The	 ttk.Separator	 widget	 displays	 a	 horizontal	 or	 vertical
separator	bar.

It	 has	 no	 other	 methods	 besides	 the	 ones	 inherited	 from
ttk.Widget.

25.2.7.1.	Options

This	widget	accepts	the	following	specific	option:

Option Description

orient One	of	“horizontal”	or	“vertical”.	Specifies	the
orientation	of	the	separator.

25.2.8.	Sizegrip

The	 ttk.Sizegrip	 widget	 (also	 known	 as	 a	 grow	 box)	 allows	 the
user	 to	 resize	 the	 containing	 toplevel	 window	 by	 pressing	 and
dragging	the	grip.

This	widget	has	neither	specific	options	nor	specific	methods,	besides
the	ones	inherited	from	ttk.Widget.

25.2.8.1.	Platform-specific	notes

On	 MacOS	 X,	 toplevel	 windows	 automatically	 include	 a	 built-in
size	grip	by	default.	Adding	a	 Sizegrip	 is	 harmless,	 since	 the
built-in	grip	will	just	mask	the	widget.

25.2.8.2.	Bugs

If	 the	 containing	 toplevel’s	 position	 was	 specified	 relative	 to	 the
right	or	bottom	of	the	screen	(e.g.),	the	Sizegrip	widget	will
not	resize	the	window.
This	widget	supports	only	“southeast”	resizing.

25.2.9.	Treeview

The	ttk.Treeview	widget	displays	a	hierarchical	collection	of	items.
Each	item	has	a	textual	label,	an	optional	image,	and	an	optional	list	of
data	 values.	 The	 data	 values	 are	 displayed	 in	 successive	 columns
after	the	tree	label.

The	 order	 in	 which	 data	 values	 are	 displayed	may	 be	 controlled	 by
setting	the	widget	option	displaycolumns.	The	tree	widget	can	also
display	 column	 headings.	 Columns	may	 be	 accessed	 by	 number	 or
symbolic	 names	 listed	 in	 the	 widget	 option	 columns.	 See	 Column
Identifiers.

Each	 item	 is	 identified	by	an	unique	name.	The	widget	will	 generate
item	IDs	if	they	are	not	supplied	by	the	caller.	There	is	a	distinguished
root	item,	named	{}.	The	root	item	itself	 is	not	displayed;	its	children
appear	at	the	top	level	of	the	hierarchy.

Each	item	also	has	a	list	of	tags,	which	can	be	used	to	associate	event
bindings	with	individual	items	and	control	the	appearance	of	the	item.

The	 Treeview	 widget	 supports	 horizontal	 and	 vertical	 scrolling,
according	 to	 the	 options	described	 in	Scrollable	Widget	Options	 and
the	methods	Treeview.xview()	and	Treeview.yview().

25.2.9.1.	Options

This	widget	accepts	the	following	specific	options:

Option Description

columns A	list	of	column	identifiers,	specifying	the
number	of	columns	and	their	names.

displaycolumns

A	list	of	column	identifiers	(either	symbolic	or
integer	indices)	specifying	which	data
columns	are	displayed	and	the	order	in	which
they	appear,	or	the	string	“#all”.

height

Specifies	the	number	of	rows	which	should
be	visible.	Note:	the	requested	width	is
determined	from	the	sum	of	the	column
widths.

padding
Specifies	the	internal	padding	for	the	widget.
The	padding	is	a	list	of	up	to	four	length
specifications.

selectmode

Controls	 how	 the	 built-in	 class	 bindings
manage	 the	 selection.	 One	 of	 “extended”,
“browse”	 or	 “none”.	 If	 set	 to	 “extended”	 (the
default),	 multiple	 items	 may	 be	 selected.	 If
“browse”,	 only	 a	 single	 item	will	 be	 selected
at	 a	 time.	 If	 “none”,	 the	 selection	will	 not	 be
changed.

Note	 that	 the	 application	 code	 and	 tag
bindings	 can	 set	 the	 selection	 however	 they
wish,	regardless	of	the	value	of	this	option.

show

A	list	containing	zero	or	more	of	the	following
values,	specifying	which	elements	of	the	tree
to	display.

tree:	display	tree	labels	in	column	#0.
headings:	display	the	heading	row.

The	 default	 is	 “tree	 headings”,	 i.e.,	 show	 all
elements.

Note:	 Column	 #0	 always	 refers	 to	 the	 tree

column,	even	if	show=”tree”	is	not	specified.

25.2.9.2.	Item	Options

The	following	item	options	may	be	specified	for	items	in	the	insert	and
item	widget	commands.

Option Description

text The	textual	label	to	display	for	the	item.

image A	Tk	Image,	displayed	to	the	left	of	the	label.

values

The	list	of	values	associated	with	the	item.

Each	item	should	have	the	same	number	of	values	as
the	widget	option	columns.	 If	 there	are	 fewer	 values
than	 columns,	 the	 remaining	 values	 are	 assumed
empty.	 If	 there	 are	 more	 values	 than	 columns,	 the
extra	values	are	ignored.

open True/False	value	indicating	whether	the	item’s
children	should	be	displayed	or	hidden.

tags A	list	of	tags	associated	with	this	item.

25.2.9.3.	Tag	Options

The	following	options	may	be	specified	on	tags:

Option Description

foreground Specifies	the	text	foreground	color.

background Specifies	the	cell	or	item	background	color.

font Specifies	the	font	to	use	when	drawing	text.

image Specifies	the	item	image,	in	case	the	item’s
image	option	is	empty.

25.2.9.4.	Column	Identifiers

Column	identifiers	take	any	of	the	following	forms:

A	symbolic	name	from	the	list	of	columns	option.
An	integer	n,	specifying	the	nth	data	column.
A	string	of	 the	 form	#n,	where	n	 is	an	 integer,	specifying	 the	nth
display	column.

Notes:

Item’s	option	values	may	be	displayed	in	a	different	order	than	the
order	in	which	they	are	stored.
Column	#0	always	refers	to	the	tree	column,	even	 if	show=”tree”
is	not	specified.

A	data	column	number	 is	an	 index	 into	an	 item’s	option	values	 list;	a
display	 column	 number	 is	 the	 column	 number	 in	 the	 tree	where	 the
values	are	displayed.	Tree	labels	are	displayed	in	column	#0.	If	option
displaycolumns	is	not	set,	 then	data	column	n	 is	displayed	 in	column
#n+1.	Again,	column	#0	always	refers	to	the	tree	column.

25.2.9.5.	Virtual	Events

The	Treeview	widget	generates	the	following	virtual	events.

Event Description

<<TreeviewSelect>> Generated	whenever	the	selection
changes.

<<TreeviewOpen>> Generated	just	before	settings	the	focus

item	to	open=True.

<<TreeviewClose>> Generated	just	after	setting	the	focus
item	to	open=False.

The	 Treeview.focus()	 and	 Treeview.selection()	 methods
can	be	used	to	determine	the	affected	item	or	items.

25.2.9.6.	ttk.Treeview

class	tkinter.ttk.Treeview
bbox(item,	column=None)

Returns	 the	 bounding	 box	 (relative	 to	 the	 treeview	 widget’s
window)	of	the	specified	item	in	the	form	(x,	y,	width,	height).

If	column	 is	 specified,	 returns	 the	bounding	box	of	 that	 cell.	 If
the	item	is	not	visible	(i.e.,	if	it	is	a	descendant	of	a	closed	item
or	is	scrolled	offscreen),	returns	an	empty	string.

get_children(item=None)
Returns	the	list	of	children	belonging	to	item.

If	item	is	not	specified,	returns	root	children.

set_children(item,	*newchildren)
Replaces	item‘s	child	with	newchildren.

Children	present	in	item	that	are	not	present	in	newchildren	are
detached	 from	 the	 tree.	 No	 items	 in	 newchildren	 may	 be	 an
ancestor	of	item.	Note	that	not	specifying	newchildren	results	in
detaching	item‘s	children.

column(column,	option=None,	**kw)
Query	or	modify	the	options	for	the	specified	column.

If	kw	 is	not	given,	returns	a	dict	of	the	column	option	values.	If
option	 is	 specified	 then	 the	 value	 for	 that	 option	 is	 returned.
Otherwise,	sets	the	options	to	the	corresponding	values.

The	valid	options/values	are:

id
Returns	the	column	name.	This	is	a	read-only	option.

anchor:	One	of	the	standard	Tk	anchor	values.
Specifies	how	the	text	in	this	column	should	be	aligned
with	respect	to	the	cell.

minwidth:	width
The	 minimum	 width	 of	 the	 column	 in	 pixels.	 The
treeview	widget	 will	 not	make	 the	 column	 any	 smaller
than	specified	by	this	option	when	the	widget	is	resized
or	the	user	drags	a	column.

stretch:	True/False
Specifies	 whether	 the	 column’s	 width	 should	 be
adjusted	when	the	widget	is	resized.

width:	width
The	width	of	the	column	in	pixels.

To	configure	the	tree	column,	call	this	with	column	=	“#0”

delete(*items)
Delete	all	specified	items	and	all	their	descendants.

The	root	item	may	not	be	deleted.

detach(*items)

Unlinks	all	of	the	specified	items	from	the	tree.

The	 items	 and	 all	 of	 their	 descendants	 are	 still	 present,	 and
may	be	 reinserted	at	 another	 point	 in	 the	 tree,	 but	will	 not	 be
displayed.

The	root	item	may	not	be	detached.

exists(item)
Returns	True	if	the	specified	item	is	present	in	the	tree.

focus(item=None)
If	 item	 is	 specified,	 sets	 the	 focus	 item	 to	 item.	 Otherwise,
returns	the	current	focus	item,	or	‘’	if	there	is	none.

heading(column,	option=None,	**kw)
Query	or	modify	the	heading	options	for	the	specified	column.

If	kw	is	not	given,	returns	a	dict	of	the	heading	option	values.	If
option	 is	 specified	 then	 the	 value	 for	 that	 option	 is	 returned.
Otherwise,	sets	the	options	to	the	corresponding	values.

The	valid	options/values	are:

text:	text
The	text	to	display	in	the	column	heading.

image:	imageName
Specifies	an	image	to	display	to	the	right	of	the	column
heading.

anchor:	anchor
Specifies	how	the	heading	text	should	be	aligned.	One
of	the	standard	Tk	anchor	values.

command:	callback
A	 callback	 to	 be	 invoked	 when	 the	 heading	 label	 is
pressed.

To	 configure	 the	 tree	 column	 heading,	 call	 this	with	 column	 =
“#0”.

identify(component,	x,	y)
Returns	 a	 description	 of	 the	 specified	 component	 under	 the
point	given	by	x	and	y,	or	the	empty	string	if	no	such	component
is	present	at	that	position.

identify_row(y)
Returns	the	item	ID	of	the	item	at	position	y.

identify_column(x)
Returns	the	data	column	identifier	of	the	cell	at	position	x.

The	tree	column	has	ID	#0.

identify_region(x,	y)
Returns	one	of:

region meaning

heading Tree	heading	area.

separator Space	between	two	columns	headings.

tree The	tree	area.

cell A	data	cell.

Availability:	Tk	8.6.

identify_element(x,	y)

Returns	the	element	at	position	x,	y.

Availability:	Tk	8.6.

index(item)
Returns	 the	 integer	 index	 of	 item	 within	 its	 parent’s	 list	 of
children.

insert(parent,	index,	iid=None,	**kw)
Creates	a	new	item	and	returns	the	item	identifier	of	the	newly
created	item.

parent	 is	 the	 item	ID	of	 the	parent	 item,	or	 the	empty	string	 to
create	 a	 new	 top-level	 item.	 index	 is	 an	 integer,	 or	 the	 value
“end”,	specifying	where	 in	 the	 list	of	parent’s	children	 to	 insert
the	 new	 item.	 If	 index	 is	 less	 than	 or	 equal	 to	 zero,	 the	 new
node	 is	 inserted	 at	 the	 beginning;	 if	 index	 is	 greater	 than	 or
equal	to	the	current	number	of	children,	it	is	inserted	at	the	end.
If	 iid	 is	 specified,	 it	 is	 used	as	 the	 item	 identifier;	 iid	must	 not
already	exist	 in	 the	 tree.	Otherwise,	 a	new	unique	 identifier	 is
generated.

See	Item	Options	for	the	list	of	available	points.

item(item,	option=None,	**kw)
Query	or	modify	the	options	for	the	specified	item.

If	no	options	are	given,	a	dict	with	options/values	for	the	item	is
returned.	 If	option	 is	specified	 then	 the	value	 for	 that	option	 is
returned.	 Otherwise,	 sets	 the	 options	 to	 the	 corresponding
values	as	given	by	kw.

move(item,	parent,	index)

Moves	item	to	position	index	in	parent‘s	list	of	children.

It	 is	 illegal	 to	 move	 an	 item	 under	 one	 of	 its	 descendants.	 If
index	 is	 less	 than	 or	 equal	 to	 zero,	 item	 is	 moved	 to	 the
beginning;	 if	greater	than	or	equal	to	the	number	of	children,	 it
is	moved	to	the	end.	If	item	was	detached	it	is	reattached.

next(item)
Returns	the	identifier	of	item‘s	next	sibling,	or	‘’	if	item	is	the	last
child	of	its	parent.

parent(item)
Returns	 the	 ID	of	 the	 parent	 of	 item,	 or	 ‘’	 if	 item	 is	 at	 the	 top
level	of	the	hierarchy.

prev(item)
Returns	the	identifier	of	item‘s	previous	sibling,	or	‘’	if	item	is	the
first	child	of	its	parent.

reattach(item,	parent,	index)
An	alias	for	Treeview.move().

see(item)
Ensure	that	item	is	visible.

Sets	all	of	item‘s	ancestors	open	option	to	True,	and	scrolls	the
widget	 if	necessary	so	 that	 item	 is	within	 the	visible	portion	of
the	tree.

selection(selop=None,	items=None)
If	selop	is	not	specified,	returns	selected	items.	Otherwise,	it	will
act	according	to	the	following	selection	methods.

selection_set(items)
items	becomes	the	new	selection.

selection_add(items)
Add	items	to	the	selection.

selection_remove(items)
Remove	items	from	the	selection.

selection_toggle(items)
Toggle	the	selection	state	of	each	item	in	items.

set(item,	column=None,	value=None)
With	one	argument,	 returns	a	dictionary	of	 column/value	pairs
for	 the	specified	 item.	With	 two	arguments,	 returns	 the	current
value	of	 the	 specified	column.	With	 three	arguments,	 sets	 the
value	of	given	column	in	given	item	to	the	specified	value.

tag_bind(tagname,	sequence=None,	callback=None)
Bind	 a	 callback	 for	 the	 given	 event	 sequence	 to	 the	 tag
tagname.	When	an	event	is	delivered	to	an	item,	the	callbacks
for	each	of	the	item’s	tags	option	are	called.

tag_configure(tagname,	option=None,	**kw)
Query	or	modify	the	options	for	the	specified	tagname.

If	 kw	 is	 not	 given,	 returns	 a	 dict	 of	 the	 option	 settings	 for
tagname.	If	option	is	specified,	returns	the	value	for	that	option
for	 the	 specified	 tagname.	 Otherwise,	 sets	 the	 options	 to	 the
corresponding	values	for	the	given	tagname.

tag_has(tagname,	item=None)
If	 item	 is	 specified,	 returns	 1	 or	 0	 depending	 on	 whether	 the

specified	item	has	the	given	 tagname.	Otherwise,	returns	a	list
of	all	items	that	have	the	specified	tag.

Availability:	Tk	8.6

xview(*args)
Query	or	modify	horizontal	position	of	the	treeview.

yview(*args)
Query	or	modify	vertical	position	of	the	treeview.

25.2.10.	Ttk	Styling

Each	 widget	 in	 ttk	 is	 assigned	 a	 style,	 which	 specifies	 the	 set	 of
elements	making	up	the	widget	and	how	they	are	arranged,	along	with
dynamic	and	default	settings	for	element	options.	By	default	the	style
name	is	the	same	as	the	widget’s	class	name,	but	it	may	be	overriden
by	 the	 widget’s	 style	 option.	 If	 you	 don’t	 know	 the	 class	 name	 of	 a
widget,	 use	 the	 method	 Misc.winfo_class()

(somewidget.winfo_class()).

See	also:

Tcl‘2004	conference	presentation
This	document	explains	how	the	theme	engine	works

class	tkinter.ttk.Style
This	class	is	used	to	manipulate	the	style	database.

configure(style,	query_opt=None,	**kw)
Query	or	set	the	default	value	of	the	specified	option(s)	in	style.

Each	 key	 in	 kw	 is	 an	 option	 and	 each	 value	 is	 a	 string
identifying	the	value	for	that	option.

For	example,	to	change	every	default	button	to	be	a	flat	button
with	some	padding	and	a	different	background	color:

from	tkinter	import	ttk

import	tkinter

root	=	tkinter.Tk()

http://tktable.sourceforge.net/tile/tile-tcl2004.pdf

ttk.Style().configure("TButton",	padding=6,	relief

			background="#ccc")

btn	=	ttk.Button(text="Sample")

btn.pack()

root.mainloop()

map(style,	query_opt=None,	**kw)
Query	or	sets	dynamic	values	of	the	specified	option(s)	in	style.

Each	key	in	kw	is	an	option	and	each	value	should	be	a	list	or	a
tuple	(usually)	containing	statespecs	grouped	in	tuples,	lists,	or
some	other	 preference.	A	 statespec	 is	 a	 compound	 of	 one	 or
more	states	and	then	a	value.

An	example	may	make	it	more	understandable:

import	tkinter

from	tkinter	import	ttk

root	=	tkinter.Tk()

style	=	ttk.Style()

style.map("C.TButton",

				foreground=[('pressed',	'red'),	('active',	

				background=[('pressed',	'!disabled',	'black'

)

colored_btn	=	ttk.Button(text="Test",	style="C.TButton"

root.mainloop()

Note	 that	 the	 order	 of	 the	 (states,	 value)	 sequences	 for	 an

option	 does	matter,	 if	 the	 order	 is	 changed	 to	 [('active',
'blue'),	('pressed',	'red')]	in	the	foreground	option,
for	 example,	 the	 result	 would	 be	 a	 blue	 foreground	when	 the
widget	were	in	active	or	pressed	states.

lookup(style,	option,	state=None,	default=None)
Returns	the	value	specified	for	option	in	style.

If	state	 is	specified,	 it	 is	expected	 to	be	a	sequence	of	one	or
more	 states.	 If	 the	 default	 argument	 is	 set,	 it	 is	 used	 as	 a
fallback	value	in	case	no	specification	for	option	is	found.

To	check	what	font	a	Button	uses	by	default:

from	tkinter	import	ttk

print(ttk.Style().lookup("TButton",	"font"))

layout(style,	layoutspec=None)
Define	the	widget	layout	for	given	style.	If	layoutspec	is	omitted,
return	the	layout	specification	for	given	style.

layoutspec,	 if	 specified,	 is	expected	 to	be	a	 list	or	some	other
sequence	type	(excluding	strings),	where	each	item	should	be	a
tuple	and	the	first	item	is	the	layout	name	and	the	second	item
should	have	the	format	described	in	Layouts.

To	understand	 the	 format,	 see	 the	 following	example	 (it	 is	 not
intended	to	do	anything	useful):

from	tkinter	import	ttk

import	tkinter

root	=	tkinter.Tk()

style	=	ttk.Style()

style.layout("TMenubutton",	[

			("Menubutton.background",	None),

			("Menubutton.button",	{"children":

							[("Menubutton.focus",	{"children":

											[("Menubutton.padding",	{"children":

															[("Menubutton.label",	{"side":	"left"

											})]

							})]

			}),

])

mbtn	=	ttk.Menubutton(text='Text')

mbtn.pack()

root.mainloop()

element_create(elementname,	etype,	*args,	**kw)
Create	a	new	element	in	the	current	theme,	of	the	given	etype
which	 is	 expected	 to	 be	 either	 “image”,	 “from”	 or	 “vsapi”.	 The
latter	is	only	available	in	Tk	8.6a	for	Windows	XP	and	Vista	and
is	not	described	here.

If	“image”	is	used,	args	should	contain	the	default	image	name
followed	by	 statespec/value	pairs	 (this	 is	 the	 imagespec),	 and
kw	may	have	the	following	options:

border=padding
padding	 is	 a	 list	 of	 up	 to	 four	 integers,	 specifying
the	left,	top,	right,	and	bottom	borders,	respectively.

height=height
Specifies	a	minimum	height	for	the	element.	If	less
than	 zero,	 the	 base	 image’s	 height	 is	 used	 as	 a

default.

padding=padding
Specifies	the	element’s	interior	padding.	Defaults	to
border’s	value	if	not	specified.

sticky=spec
Specifies	how	 the	 image	 is	 placed	within	 the	 final
parcel.	spec	contains	zero	or	more	characters	 “n”,
“s”,	“w”,	or	“e”.

width=width
Specifies	a	minimum	width	 for	 the	element.	 If	 less
than	 zero,	 the	 base	 image’s	 width	 is	 used	 as	 a
default.

If	 “from”	 is	 used	 as	 the	 value	 of	 etype,	 element_create()
will	 clone	 an	 existing	 element.	 args	 is	 expected	 to	 contain	 a
themename,	 from	 which	 the	 element	 will	 be	 cloned,	 and
optionally	 an	 element	 to	 clone	 from.	 If	 this	 element	 to	 clone
from	 is	 not	 specified,	 an	 empty	 element	 will	 be	 used.	 kw	 is
discarded.

element_names()
Returns	the	list	of	elements	defined	in	the	current	theme.

element_options(elementname)
Returns	the	list	of	elementname‘s	options.

theme_create(themename,	parent=None,	settings=None)
Create	a	new	theme.

It	is	an	error	if	themename	already	exists.	If	parent	is	specified,

the	new	theme	will	inherit	styles,	elements	and	layouts	from	the
parent	theme.	If	settings	are	present	they	are	expected	to	have
the	same	syntax	used	for	theme_settings().

theme_settings(themename,	settings)
Temporarily	 sets	 the	 current	 theme	 to	 themename,	 apply
specified	settings	and	then	restore	the	previous	theme.

Each	key	in	settings	is	a	style	and	each	value	may	contain	the
keys	 ‘configure’,	 ‘map’,	 ‘layout’	 and	 ‘element	 create’	 and	 they
are	 expected	 to	 have	 the	 same	 format	 as	 specified	 by	 the
methods	 Style.configure(),	 Style.map(),
Style.layout()	 and	 Style.element_create()

respectively.

As	 an	 example,	 let’s	 change	 the	 Combobox	 for	 the	 default
theme	a	bit:

from	tkinter	import	ttk

import	tkinter

root	=	tkinter.Tk()

style	=	ttk.Style()

style.theme_settings("default",	{

			"TCombobox":	{

							"configure":	{"padding":	5},

							"map":	{

											"background":	[("active",	"green2"),

																										("!disabled",	"green4"

											"fieldbackground":	[("!disabled",	"green3"

											"foreground":	[("focus",	"OliveDrab1"

																										("!disabled",	"OliveDrab2"

							}

			}

})

combo	=	ttk.Combobox().pack()

root.mainloop()

theme_names()
Returns	a	list	of	all	known	themes.

theme_use(themename=None)
If	themename	is	not	given,	returns	the	theme	in	use.	Otherwise,
sets	the	current	theme	to	themename,	refreshes	all	widgets	and
emits	a	<<ThemeChanged>>	event.

25.2.10.1.	Layouts

A	 layout	can	be	 just	None,	 if	 it	 takes	no	options,	or	a	dict	of	options
specifying	how	to	arrange	the	element.	The	layout	mechanism	uses	a
simplified	 version	 of	 the	 pack	 geometry	 manager:	 given	 an	 initial
cavity,	each	element	is	allocated	a	parcel.	Valid	options/values	are:

side:	whichside
Specifies	 which	 side	 of	 the	 cavity	 to	 place	 the	 element;
one	 of	 top,	 right,	 bottom	 or	 left.	 If	 omitted,	 the	 element
occupies	the	entire	cavity.

sticky:	nswe
Specifies	where	the	element	is	placed	inside	its	allocated
parcel.

unit:	0	or	1
If	set	to	1,	causes	the	element	and	all	of	 its	descendants

to	 be	 treated	 as	 a	 single	 element	 for	 the	 purposes	 of
Widget.identify()	 et	 al.	 It’s	 used	 for	 things	 like
scrollbar	thumbs	with	grips.

children:	[sublayout...]
Specifies	 a	 list	 of	 elements	 to	 place	 inside	 the	 element.
Each	element	 is	 a	 tuple	 (or	 other	 sequence	 type)	where
the	first	item	is	the	layout	name,	and	the	other	is	a	Layout.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

http://www.python.org/

25.3.	tkinter.tix	—	Extension
widgets	for	Tk
The	 tkinter.tix	 (Tk	 Interface	 Extension)	 module	 provides	 an
additional	 rich	 set	 of	 widgets.	 Although	 the	 standard	 Tk	 library	 has
many	useful	widgets,	they	are	far	from	complete.	The	tkinter.tix
library	 provides	 most	 of	 the	 commonly	 needed	 widgets	 that	 are
missing	 from	 standard	 Tk:	 HList,	 ComboBox,	 Control	 (a.k.a.
SpinBox)	and	an	assortment	of	scrollable	widgets.	tkinter.tix	also
includes	many	more	widgets	that	are	generally	useful	in	a	wide	range
of	 applications:	 NoteBook,	 FileEntry,	 PanedWindow,	 etc;	 there
are	more	than	40	of	them.

With	 all	 these	 new	 widgets,	 you	 can	 introduce	 new	 interaction
techniques	 into	 applications,	 creating	more	 useful	 and	more	 intuitive
user	interfaces.	You	can	design	your	application	by	choosing	the	most
appropriate	widgets	to	match	the	special	needs	of	your	application	and
users.

See	also:

Tix	Homepage
The	 home	 page	 for	 Tix.	 This	 includes	 links	 to	 additional
documentation	and	downloads.

Tix	Man	Pages
On-line	version	of	the	man	pages	and	reference	material.

Tix	Programming	Guide
On-line	version	of	the	programmer’s	reference	material.

Tix	Development	Applications

http://tix.sourceforge.net/
http://tix.sourceforge.net/dist/current/man/
http://tix.sourceforge.net/dist/current/docs/tix-book/tix.book.html
http://tix.sourceforge.net/Tixapps/src/Tide.html

Tix	 applications	 for	 development	 of	 Tix	 and	 Tkinter	 programs.
Tide	 applications	 work	 under	 Tk	 or	 Tkinter,	 and	 include
TixInspect,	 an	 inspector	 to	 remotely	 modify	 and	 debug
Tix/Tk/Tkinter	applications.

25.3.1.	Using	Tix

class	tkinter.tix.Tk(screenName=None,	baseName=None,
className='Tix')

Toplevel	widget	of	Tix	which	represents	mostly	the	main	window	of
an	application.	It	has	an	associated	Tcl	interpreter.

Classes	 in	 the	 tkinter.tix	 module	 subclasses	 the	 classes	 in
the	 tkinter.	 The	 former	 imports	 the	 latter,	 so	 to	 use
tkinter.tix	 with	 Tkinter,	 all	 you	 need	 to	 do	 is	 to	 import	 one
module.	 In	 general,	 you	 can	 just	 import	 tkinter.tix,	 and
replace	the	toplevel	call	to	tkinter.Tk	with	tix.Tk:

from	tkinter	import	tix

from	tkinter.constants	import	*

root	=	tix.Tk()

To	 use	 tkinter.tix,	 you	 must	 have	 the	 Tix	 widgets	 installed,
usually	 alongside	 your	 installation	 of	 the	 Tk	 widgets.	 To	 test	 your
installation,	try	the	following:

from	tkinter	import	tix

root	=	tix.Tk()

root.tk.eval('package	require	Tix')

If	this	fails,	you	have	a	Tk	installation	problem	which	must	be	resolved
before	 proceeding.	 Use	 the	 environment	 variable	 TIX_LIBRARY	 to
point	to	the	installed	Tix	library	directory,	and	make	sure	you	have	the
dynamic	 object	 library	 (tix8183.dll	 or	 libtix8183.so)	 in	 the
same	 directory	 that	 contains	 your	 Tk	 dynamic	 object	 library
(tk8183.dll	 or	 libtk8183.so).	 The	 directory	 with	 the	 dynamic

object	 library	 should	 also	 have	 a	 file	 called	 pkgIndex.tcl	 (case
sensitive),	which	contains	the	line:

package	ifneeded	Tix	8.1	[list	load	"[file	join	$dir	tix8183.dll]"

25.3.2.	Tix	Widgets

Tix	introduces	over	40	widget	classes	to	the	tkinter	repertoire.

25.3.2.1.	Basic	Widgets

class	tkinter.tix.Balloon
A	Balloon	 that	 pops	 up	 over	 a	widget	 to	 provide	 help.	When	 the
user	moves	 the	cursor	 inside	a	widget	 to	which	a	Balloon	widget
has	 been	 bound,	 a	 small	 pop-up	 window	 with	 a	 descriptive
message	will	be	shown	on	the	screen.

class	tkinter.tix.ButtonBox
The	 ButtonBox	 widget	 creates	 a	 box	 of	 buttons,	 such	 as	 is
commonly	used	for	Ok	Cancel.

class	tkinter.tix.ComboBox
The	ComboBox	widget	 is	 similar	 to	 the	 combo	box	 control	 in	MS
Windows.	The	user	can	select	a	choice	by	either	typing	in	the	entry
subwidget	or	selecting	from	the	listbox	subwidget.

class	tkinter.tix.Control
The	 Control	 widget	 is	 also	 known	 as	 the	 SpinBox	 widget.	 The
user	can	adjust	the	value	by	pressing	the	two	arrow	buttons	or	by
entering	 the	 value	 directly	 into	 the	 entry.	 The	 new	 value	 will	 be
checked	against	the	user-defined	upper	and	lower	limits.

class	tkinter.tix.LabelEntry
The	LabelEntry	widget	packages	an	entry	widget	and	a	 label	 into
one	mega	widget.	It	can	be	used	be	used	to	simplify	the	creation	of
“entry-form”	type	of	interface.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/TixIntro.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixBalloon.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixComboBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixControl.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelEntry.htm

class	tkinter.tix.LabelFrame
The	LabelFrame	widget	packages	a	frame	widget	and	a	label	 into
one	mega	widget.	To	create	widgets	 inside	a	LabelFrame	widget,
one	creates	the	new	widgets	relative	to	the	frame	subwidget	and
manage	them	inside	the	frame	subwidget.

class	tkinter.tix.Meter
The	 Meter	 widget	 can	 be	 used	 to	 show	 the	 progress	 of	 a
background	job	which	may	take	a	long	time	to	execute.

class	tkinter.tix.OptionMenu
The	OptionMenu	creates	a	menu	button	of	options.

class	tkinter.tix.PopupMenu
The	 PopupMenu	 widget	 can	 be	 used	 as	 a	 replacement	 of	 the
tk_popup	 command.	 The	 advantage	 of	 the	 Tix	 PopupMenu
widget	is	it	requires	less	application	code	to	manipulate.

class	tkinter.tix.Select
The	Select	 widget	 is	 a	 container	 of	 button	 subwidgets.	 It	 can	 be
used	 to	 provide	 radio-box	 or	 check-box	 style	 of	 selection	 options
for	the	user.

class	tkinter.tix.StdButtonBox
The	StdButtonBox	widget	is	a	group	of	standard	buttons	for	Motif-
like	dialog	boxes.

25.3.2.2.	File	Selectors

class	tkinter.tix.DirList
The	DirList	widget	 displays	 a	 list	 view	 of	 a	 directory,	 its	 previous
directories	and	its	sub-directories.	The	user	can	choose	one	of	the

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixLabelFrame.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixMeter.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixOptionMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPopupMenu.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixSelect.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixStdButtonBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirList.htm

directories	displayed	in	the	list	or	change	to	another	directory.

class	tkinter.tix.DirTree
The	DirTree	widget	displays	a	tree	view	of	a	directory,	its	previous
directories	and	its	sub-directories.	The	user	can	choose	one	of	the
directories	displayed	in	the	list	or	change	to	another	directory.

class	tkinter.tix.DirSelectDialog
The	 DirSelectDialog	 widget	 presents	 the	 directories	 in	 the	 file
system	in	a	dialog	window.	The	user	can	use	this	dialog	window	to
navigate	through	the	file	system	to	select	the	desired	directory.

class	tkinter.tix.DirSelectBox
The	DirSelectBox	is	similar	to	the	standard	Motif(TM)	directory-
selection	box.	It	is	generally	used	for	the	user	to	choose	a	directory.
DirSelectBox	stores	 the	directories	mostly	recently	selected	 into	a
ComboBox	widget	so	that	they	can	be	quickly	selected	again.

class	tkinter.tix.ExFileSelectBox
The	 ExFileSelectBox	 widget	 is	 usually	 embedded	 in	 a
tixExFileSelectDialog	widget.	It	provides	an	convenient	method	for
the	user	to	select	files.	The	style	of	the	ExFileSelectBox	widget
is	very	similar	to	the	standard	file	dialog	on	MS	Windows	3.1.

class	tkinter.tix.FileSelectBox
The	FileSelectBox	is	similar	to	the	standard	Motif(TM)	file-selection
box.	It	is	generally	used	for	the	user	to	choose	a	file.	FileSelectBox
stores	the	files	mostly	recently	selected	into	a	ComboBox	widget	so
that	they	can	be	quickly	selected	again.

class	tkinter.tix.FileEntry
The	FileEntry	widget	can	be	used	to	input	a	filename.	The	user	can
type	in	the	filename	manually.	Alternatively,	the	user	can	press	the

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixDirSelectDialog.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixExFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileSelectBox.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixFileEntry.htm

button	widget	 that	 sits	next	 to	 the	entry,	which	will	 bring	up	a	 file
selection	dialog.

25.3.2.3.	Hierarchical	ListBox

class	tkinter.tix.HList
The	 HList	 widget	 can	 be	 used	 to	 display	 any	 data	 that	 have	 a
hierarchical	structure,	for	example,	file	system	directory	trees.	The
list	entries	are	 indented	and	connected	by	branch	 lines	according
to	their	places	in	the	hierarchy.

class	tkinter.tix.CheckList
The	CheckList	widget	displays	a	list	of	items	to	be	selected	by	the
user.	CheckList	acts	similarly	to	the	Tk	checkbutton	or	radiobutton
widgets,	 except	 it	 is	 capable	 of	 handling	 many	 more	 items	 than
checkbuttons	or	radiobuttons.

class	tkinter.tix.Tree
The	Tree	widget	can	be	used	to	display	hierarchical	data	in	a	tree
form.	The	user	can	adjust	the	view	of	the	tree	by	opening	or	closing
parts	of	the	tree.

25.3.2.4.	Tabular	ListBox

class	tkinter.tix.TList
The	TList	widget	can	be	used	 to	display	data	 in	a	 tabular	 format.
The	list	entries	of	a	TList	widget	are	similar	 to	the	entries	 in	the
Tk	 listbox	widget.	The	main	differences	are	 (1)	 the	TList	widget
can	display	the	list	entries	in	a	two	dimensional	format	and	(2)	you
can	use	graphical	 images	as	well	as	multiple	colors	and	 fonts	 for
the	list	entries.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixHList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixCheckList.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTree.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixTList.htm

25.3.2.5.	Manager	Widgets

class	tkinter.tix.PanedWindow
The	 PanedWindow	 widget	 allows	 the	 user	 to	 interactively
manipulate	the	sizes	of	several	panes.	The	panes	can	be	arranged
either	vertically	or	horizontally.	The	user	changes	 the	sizes	of	 the
panes	by	dragging	the	resize	handle	between	two	panes.

class	tkinter.tix.ListNoteBook
The	 ListNoteBook	 widget	 is	 very	 similar	 to	 the	 TixNoteBook
widget:	it	can	be	used	to	display	many	windows	in	a	limited	space
using	a	notebook	metaphor.	The	notebook	is	divided	into	a	stack	of
pages	 (windows).	 At	 one	 time	 only	 one	 of	 these	 pages	 can	 be
shown.	 The	 user	 can	 navigate	 through	 these	 pages	 by	 choosing
the	name	of	the	desired	page	in	the	hlist	subwidget.

class	tkinter.tix.NoteBook
The	NoteBook	widget	can	be	used	 to	display	many	windows	 in	a
limited	space	using	a	notebook	metaphor.	The	notebook	is	divided
into	a	stack	of	pages.	At	one	time	only	one	of	these	pages	can	be
shown.	 The	 user	 can	 navigate	 through	 these	 pages	 by	 choosing
the	visual	“tabs”	at	the	top	of	the	NoteBook	widget.

25.3.2.6.	Image	Types

The	tkinter.tix	module	adds:

pixmap	capabilities	to	all	tkinter.tix	and	tkinter	widgets	to
create	color	images	from	XPM	files.
Compound	 image	 types	 can	 be	 used	 to	 create	 images	 that
consists	 of	multiple	 horizontal	 lines;	 each	 line	 is	 composed	 of	 a
series	of	 items	(texts,	bitmaps,	 images	or	spaces)	arranged	from

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixPanedWindow.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixListNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixNoteBook.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/pixmap.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/compound.htm

left	 to	 right.	 For	 example,	 a	 compound	 image	 can	 be	 used	 to
display	a	bitmap	and	a	text	string	simultaneously	in	a	Tk	Button
widget.

25.3.2.7.	Miscellaneous	Widgets

class	tkinter.tix.InputOnly
The	 InputOnly	widgets	 are	 to	 accept	 inputs	 from	 the	 user,	 which
can	be	done	with	the	bind	command	(Unix	only).

25.3.2.8.	Form	Geometry	Manager

In	addition,	tkinter.tix	augments	tkinter	by	providing:

class	tkinter.tix.Form
The	Form	geometry	manager	based	on	attachment	rules	for	all	Tk
widgets.

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixInputOnly.htm
http://tix.sourceforge.net/dist/current/man/html/TixCmd/tixForm.htm

25.3.3.	Tix	Commands

class	tkinter.tix.tixCommand
The	 tix	 commands	 provide	 access	 to	 miscellaneous	 elements	 of
Tix‘s	 internal	 state	and	 the	Tix	 application	 context.	Most	of	 the
information	 manipulated	 by	 these	 methods	 pertains	 to	 the
application	as	a	whole,	or	 to	a	screen	or	display,	 rather	 than	 to	a
particular	window.

To	view	the	current	settings,	the	common	usage	is:

from	tkinter	import	tix

root	=	tix.Tk()

print(root.tix_configure())

tixCommand.tix_configure(cnf=None,	**kw)
Query	 or	 modify	 the	 configuration	 options	 of	 the	 Tix	 application
context.	 If	 no	 option	 is	 specified,	 returns	 a	 dictionary	 all	 of	 the
available	 options.	 If	 option	 is	 specified	 with	 no	 value,	 then	 the
method	returns	a	list	describing	the	one	named	option	(this	list	will
be	identical	to	the	corresponding	sublist	of	the	value	returned	if	no
option	is	specified).	If	one	or	more	option-value	pairs	are	specified,
then	 the	 method	 modifies	 the	 given	 option(s)	 to	 have	 the	 given
value(s);	 in	 this	 case	 the	method	 returns	an	empty	 string.	Option
may	be	any	of	the	configuration	options.

tixCommand.tix_cget(option)
Returns	 the	 current	 value	 of	 the	 configuration	 option	 given	 by
option.	Option	may	be	any	of	the	configuration	options.

tixCommand.tix_getbitmap(name)
Locates	a	bitmap	file	of	the	name	name.xpm	or	name	in	one	of	the

http://tix.sourceforge.net/dist/current/man/html/TixCmd/tix.htm

bitmap	 directories	 (see	 the	 tix_addbitmapdir()	 method).	 By
using	 tix_getbitmap(),	 you	 can	 avoid	 hard	 coding	 the
pathnames	of	the	bitmap	files	in	your	application.	When	successful,
it	 returns	 the	 complete	pathname	of	 the	bitmap	 file,	 prefixed	with
the	character	@.	The	returned	value	can	be	used	 to	configure	 the
bitmap	option	of	the	Tk	and	Tix	widgets.

tixCommand.tix_addbitmapdir(directory)
Tix	 maintains	 a	 list	 of	 directories	 under	 which	 the
tix_getimage()	 and	 tix_getbitmap()	 methods	 will	 search
for	 image	 files.	 The	 standard	 bitmap	 directory	 is
$TIX_LIBRARY/bitmaps.	 The	 tix_addbitmapdir()	 method
adds	directory	into	this	list.	By	using	this	method,	the	image	files	of
an	applications	 can	also	be	 located	using	 the	 tix_getimage()
or	tix_getbitmap()	method.

tixCommand.tix_filedialog([dlgclass])
Returns	 the	 file	 selection	 dialog	 that	 may	 be	 shared	 among
different	 calls	 from	 this	 application.	 This	method	will	 create	 a	 file
selection	dialog	widget	when	 it	 is	called	 the	 first	 time.	This	dialog
will	 be	 returned	 by	 all	 subsequent	 calls	 to	 tix_filedialog().
An	 optional	 dlgclass	 parameter	 can	 be	 passed	 as	 a	 string	 to
specified	 what	 type	 of	 file	 selection	 dialog	 widget	 is	 desired.
Possible	 options	 are	 tix,	 FileSelectDialog	 or
tixExFileSelectDialog.

tixCommand.tix_getimage(self,	name)
Locates	 an	 image	 file	 of	 the	 name	 name.xpm,	 name.xbm	 or
name.ppm	 in	 one	 of	 the	 bitmap	 directories	 (see	 the
tix_addbitmapdir()	method	above).	If	more	than	one	file	with
the	same	name	(but	different	extensions)	exist,	then	the	image	type

is	chosen	according	to	the	depth	of	the	X	display:	xbm	images	are
chosen	on	monochrome	displays	and	color	images	are	chosen	on
color	 displays.	 By	 using	 tix_getimage(),	 you	 can	 avoid	 hard
coding	the	pathnames	of	the	image	files	in	your	application.	When
successful,	 this	 method	 returns	 the	 name	 of	 the	 newly	 created
image,	which	can	be	used	to	configure	the	image	option	of	the	Tk
and	Tix	widgets.

tixCommand.tix_option_get(name)
Gets	the	options	maintained	by	the	Tix	scheme	mechanism.

tixCommand.tix_resetoptions(newScheme,	newFontSet[,
newScmPrio])

Resets	 the	 scheme	 and	 fontset	 of	 the	 Tix	 application	 to
newScheme	and	newFontSet,	respectively.	This	affects	only	those
widgets	 created	 after	 this	 call.	 Therefore,	 it	 is	 best	 to	 call	 the
resetoptions	 method	 before	 the	 creation	 of	 any	 widgets	 in	 a	 Tix
application.

The	 optional	 parameter	 newScmPrio	 can	 be	 given	 to	 reset	 the
priority	level	of	the	Tk	options	set	by	the	Tix	schemes.

Because	 of	 the	way	 Tk	 handles	 the	 X	 option	 database,	 after	 Tix
has	 been	 has	 imported	 and	 inited,	 it	 is	 not	 possible	 to	 reset	 the
color	 schemes	 and	 font	 sets	 using	 the	 tix_config()	 method.
Instead,	the	tix_resetoptions()	method	must	be	used.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

http://www.python.org/

25.4.	tkinter.scrolledtext
—	Scrolled	Text	Widget
The	tkinter.scrolledtext	module	provides	a	class	of	 the	same
name	which	implements	a	basic	text	widget	which	has	a	vertical	scroll
bar	configured	to	do	the	“right	thing.”	Using	the	ScrolledText	class
is	a	lot	easier	than	setting	up	a	text	widget	and	scroll	bar	directly.	The
constructor	is	the	same	as	that	of	the	tkinter.Text	class.

The	text	widget	and	scrollbar	are	packed	together	in	a	Frame,	and	the
methods	 of	 the	 Grid	 and	 Pack	 geometry	 managers	 are	 acquired
from	the	Frame	object.	This	allows	the	ScrolledText	widget	 to	be
used	directly	to	achieve	most	normal	geometry	management	behavior.

Should	more	specific	control	be	necessary,	the	following	attributes	are
available:

ScrolledText.frame

The	frame	which	surrounds	the	text	and	scroll	bar	widgets.

ScrolledText.vbar

The	scroll	bar	widget.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

http://www.python.org/

25.5.	IDLE
IDLE	is	the	Python	IDE	built	with	the	tkinter	GUI	toolkit.

IDLE	has	the	following	features:

coded	in	100%	pure	Python,	using	the	tkinter	GUI	toolkit
cross-platform:	works	on	Windows,	Unix,	and	Mac	OS	X
multi-window	 text	 editor	 with	 multiple	 undo,	 Python	 colorizing,
smart	indent,	call	tips,	and	many	other	features
Python	shell	window	(a.k.a.	interactive	interpreter)
debugger	 (not	 complete,	 but	 you	 can	 set	 breakpoints,	 view	 and
step)

25.5.1.	Menus

IDLE	has	two	window	types,	the	Shell	window	and	the	Editor	window.
It	 is	 possible	 to	 have	multiple	 editor	windows	 simultaneously.	 IDLE’s
menus	 dynamically	 change	 based	 on	 which	 window	 is	 currently
selected.	Each	menu	documented	below	indicates	which	window	type
it	 is	associated	with.	Click	on	 the	dotted	 line	at	 the	 top	of	a	menu	 to
“tear	 it	 off”:	 a	 separate	 window	 containing	 the	 menu	 is	 created	 (for
Unix	and	Windows	only).

25.5.1.1.	File	menu	(Shell	and	Editor)

New	file
Create	a	new	file	editing	window

Open...
Open	an	existing	file

Open	module...
Open	an	existing	module	(searches	sys.path)

Recent	Files
Open	a	list	of	recent	files

Class	browser
Show	classes	and	methods	in	current	file

Path	browser
Show	sys.path	directories,	modules,	classes	and	methods

Save
Save	current	window	to	the	associated	file	(unsaved	windows	have
a	*	before	and	after	the	window	title)

Save	As...
Save	current	window	to	new	file,	which	becomes	the	associated	file

Save	Copy	As...
Save	 current	 window	 to	 different	 file	 without	 changing	 the
associated	file

Print	Window
Print	the	current	window

Close
Close	current	window	(asks	to	save	if	unsaved)

Exit
Close	all	windows	and	quit	IDLE	(asks	to	save	if	unsaved)

25.5.1.2.	Edit	menu	(Shell	and	Editor)

Undo
Undo	last	change	to	current	window	(a	maximum	of	1000	changes
may	be	undone)

Redo
Redo	last	undone	change	to	current	window

Cut
Copy	 selection	 into	 system-wide	 clipboard;	 then	 delete	 the
selection

Copy
Copy	selection	into	system-wide	clipboard

Paste
Insert	system-wide	clipboard	into	window

Select	All
Select	the	entire	contents	of	the	edit	buffer

Find...
Open	a	search	dialog	box	with	many	options

Find	again
Repeat	last	search

Find	selection
Search	for	the	string	in	the	selection

Find	in	Files...
Open	a	search	dialog	box	for	searching	files

Replace...
Open	a	search-and-replace	dialog	box

Go	to	line
Ask	for	a	line	number	and	show	that	line

Expand	word
Expand	 the	 word	 you	 have	 typed	 to	 match	 another	 word	 in	 the
same	buffer;	repeat	to	get	a	different	expansion

Show	call	tip
After	an	unclosed	parenthesis	for	a	function,	open	a	small	window
with	function	parameter	hints

Show	surrounding	parens
Highlight	the	surrounding	parenthesis

Show	Completions
Open	a	scroll	window	allowing	selection	keywords	and	attributes.
See	Completions	below.

25.5.1.3.	Format	menu	(Editor	window	only)

Indent	region
Shift	selected	lines	right	by	the	indent	width	(default	4	spaces)

Dedent	region
Shift	selected	lines	left	by	the	indent	width	(default	4	spaces)

Comment	out	region
Insert	##	in	front	of	selected	lines

Uncomment	region
Remove	leading	#	or	##	from	selected	lines

Tabify	region
Turns	leading	stretches	of	spaces	into	tabs.	(Note:	We	recommend
using	4	space	blocks	to	indent	Python	code.)

Untabify	region
Turn	all	tabs	into	the	correct	number	of	spaces

Toggle	tabs
Open	a	dialog	to	switch	between	indenting	with	spaces	and	tabs.

New	Indent	Width
Open	a	dialog	to	change	indent	width.	The	accepted	default	by	the
Python	community	is	4	spaces.

Format	Paragraph
Reformat	 the	 current	 blank-line-separated	 paragraph.	 All	 lines	 in
the	paragraph	will	be	formatted	to	less	than	80	columns.

Strip	trailing	whitespace
Removes	any	space	characters	after	the	end	of	the	last	non-space
character

25.5.1.4.	Run	menu	(Editor	window	only)

Python	Shell
Open	or	wake	up	the	Python	Shell	window

Check	module
Check	 the	 syntax	 of	 the	 module	 currently	 open	 in	 the	 Editor
window.	 If	 the	module	 has	 not	 been	 saved	 IDLE	 will	 prompt	 the
user	to	save	the	code.

Run	module
Restart	 the	 shell	 to	 clean	 the	 environment,	 then	 execute	 the
currently	open	module.	If	the	module	has	not	been	saved	IDLE	will
prompt	the	user	to	save	the	code.

25.5.1.5.	Shell	menu	(Shell	window	only)

View	Last	Restart
Scroll	the	shell	window	to	the	last	Shell	restart

Restart	Shell
Restart	the	shell	to	clean	the	environment

25.5.1.6.	Debug	menu	(Shell	window	only)

Go	to	file/line
Look	around	the	insert	point	for	a	filename	and	line	number,	open
the	 file,	 and	 show	 the	 line.	 Useful	 to	 view	 the	 source	 lines
referenced	 in	 an	 exception	 traceback.	 Available	 in	 the	 context
menu	of	the	Shell	window.

Debugger	(toggle)
This	 feature	 is	 not	 complete	 and	 considered	 experimental.	 Run
commands	in	the	shell	under	the	debugger

Stack	viewer
Show	the	stack	traceback	of	the	last	exception

Auto-open	Stack	Viewer
Toggle	 automatically	 opening	 the	 stack	 viewer	 on	 unhandled
exception

25.5.1.7.	Options	menu	(Shell	and	Editor)

Configure	IDLE
Open	a	 configuration	dialog.	Fonts,	 indentation,	 keybindings,	 and
color	themes	may	be	altered.	Startup	Preferences	may	be	set,	and
additional	help	sources	can	be	specified.

Code	Context	(toggle)(Editor	Window	only)
Open	a	pane	at	the	top	of	the	edit	window	which	shows	the	block
context	of	 the	section	of	code	which	 is	scrolling	off	 the	 top	of	 the
window.

25.5.1.8.	Windows	menu	(Shell	and	Editor)

Zoom	Height
Toggles	the	window	between	normal	size	(40x80	initial	setting)	and
maximum	 height.	 The	 initial	 size	 is	 in	 the	 Configure	 IDLE	 dialog
under	the	general	tab.

The	rest	of	this	menu	lists	the	names	of	all	open	windows;	select	one
to	bring	it	to	the	foreground	(deiconifying	it	if	necessary).

25.5.1.9.	Help	menu	(Shell	and	Editor)

About	IDLE
Version,	copyright,	license,	credits

IDLE	Help
Display	 a	 help	 file	 for	 IDLE	 detailing	 the	 menu	 options,	 basic
editing	and	navigation,	and	other	tips.

Python	Docs
Access	local	Python	documentation,	if	installed.	Or	will	start	a	web
browser	 and	 open	 docs.python.org	 showing	 the	 latest	 Python
documentation.

Additional	help	sources	may	be	added	here	with	 the	Configure	 IDLE
dialog	under	the	General	tab.

25.5.1.10.	Editor	Window	context	menu

Right-click	in	Editor	window	(Control-click	on	OS	X)

Cut
Copy	selection	into	system-wide	clipboard;	then	delete	selection

Copy

Copy	selection	into	system-wide	clipboard

Paste
Insert	system-wide	clipboard	into	window

Set	Breakpoint
Sets	 a	 breakpoint.	 Breakpoints	 are	 only	 enabled	 when	 the
debugger	is	open.

Clear	Breakpoint
Clears	the	breakpoint	on	that	line.

25.5.1.11.	Shell	Window	context	menu

Right-click	in	Python	Shell	window	(Control-click	on	OS	X)

Cut
Copy	selection	into	system-wide	clipboard;	then	delete	selection

Copy
Copy	selection	into	system-wide	clipboard

Paste
Insert	system-wide	clipboard	into	window

Go	to	file/line
Same	as	in	Debug	menu.

25.5.2.	Editing	and	navigation

Backspace	deletes	to	the	left;	Del	deletes	to	the	right

C-Backspace	delete	word	left;	C-Del	delete	word	to	the	right

Arrow	keys	and	Page	Up/Page	Down	to	move	around

C-LeftArrow	and	C-RightArrow	moves	by	words

Home/End	go	to	begin/end	of	line

C-Home/C-End	go	to	begin/end	of	file

Some	useful	Emacs	bindings	are	inherited	from	Tcl/Tk:

C-a	beginning	of	line
C-e	end	of	line
C-k	kill	line	(but	doesn’t	put	it	in	clipboard)
C-l	center	window	around	the	insertion	point
C-b	 go	 backwards	 one	 character	 without	 deleting
(usually	you	can	also	use	the	cursor	key	for	this)
C-f	 go	 forward	 one	 character	without	 deleting	 (usually
you	can	also	use	the	cursor	key	for	this)
C-p	go	up	one	line	(usually	you	can	also	use	the	cursor
key	for	this)
C-d	delete	next	character

Standard	keybindings	(like	C-c	to	copy	and	C-v	to	paste)	may	work.
Keybindings	are	selected	in	the	Configure	IDLE	dialog.

25.5.2.1.	Automatic	indentation

After	a	block-opening	statement,	the	next	line	is	indented	by	4	spaces
(in	 the	 Python	 Shell	 window	 by	 one	 tab).	 After	 certain	 keywords
(break,	 return	 etc.)	 the	 next	 line	 is	 dedented.	 In	 leading	 indentation,
Backspace	 deletes	 up	 to	 4	 spaces	 if	 they	 are	 there.	 Tab	 inserts
spaces	 (in	 the	 Python	 Shell	 window	 one	 tab),	 number	 depends	 on
Indent	width.	Currently	tabs	are	restricted	to	four	spaces	due	to	Tcl/Tk
limitations.

See	also	the	indent/dedent	region	commands	in	the	edit	menu.

25.5.2.2.	Completions

Completions	 are	 supplied	 for	 functions,	 classes,	 and	 attributes	 of
classes,	both	built-in	and	user-defined.	Completions	are	also	provided
for	filenames.

The	AutoCompleteWindow	 (ACW)	will	 open	 after	 a	 predefined	 delay
(default	is	two	seconds)	after	a	‘.’	or	(in	a	string)	an	os.sep	is	typed.	If
after	 one	of	 those	 characters	 (plus	 zero	or	more	other	 characters)	 a
tab	is	typed	the	ACW	will	open	immediately	if	a	possible	continuation
is	found.

If	 there	 is	only	one	possible	completion	 for	 the	characters	entered,	a
Tab	will	supply	that	completion	without	opening	the	ACW.

‘Show	Completions’	will	 force	open	a	completions	window,	by	default
the	C-space	will	open	a	completions	window.	In	an	empty	string,	this
will	 contain	 the	 files	 in	 the	 current	 directory.	 On	 a	 blank	 line,	 it	 will
contain	 the	 built-in	 and	 user-defined	 functions	 and	 classes	 in	 the
current	name	spaces,	plus	any	modules	imported.	If	some	characters
have	been	entered,	the	ACW	will	attempt	to	be	more	specific.

If	 a	 string	of	 characters	 is	 typed,	 the	ACW	selection	will	 jump	 to	 the

entry	 most	 closely	 matching	 those	 characters.	 Entering	 a	 tab	 will
cause	 the	 longest	 non-ambiguous	match	 to	 be	 entered	 in	 the	Editor
window	 or	 Shell.	 Two	 tab	 in	 a	 row	 will	 supply	 the	 current	 ACW
selection,	as	will	return	or	a	double	click.	Cursor	keys,	Page	Up/Down,
mouse	selection,	and	the	scroll	wheel	all	operate	on	the	ACW.

“Hidden”	attributes	can	be	accessed	by	typing	the	beginning	of	hidden
name	after	a	‘.’,	e.g.	‘_’.	This	allows	access	to	modules	with	__all__
set,	or	to	class-private	attributes.

Completions	and	the	‘Expand	Word’	facility	can	save	a	lot	of	typing!

Completions	are	currently	limited	to	those	in	the	namespaces.	Names
in	an	Editor	window	which	are	not	via	__main__	and	sys.modules
will	 not	 be	 found.	Run	 the	module	 once	with	 your	 imports	 to	 correct
this	 situation.	 Note	 that	 IDLE	 itself	 places	 quite	 a	 few	 modules	 in
sys.modules,	so	much	can	be	found	by	default,	e.g.	the	re	module.

If	you	don’t	like	the	ACW	popping	up	unbidden,	simply	make	the	delay
longer	or	disable	 the	extension.	Or	another	option	 is	 the	delay	could
be	 set	 to	 zero.	 Another	 alternative	 to	 preventing	 ACW	 popups	 is	 to
disable	the	call	tips	extension.

25.5.2.3.	Python	Shell	window

C-c	interrupts	executing	command

C-d	 sends	 end-of-file;	 closes	 window	 if	 typed	 at	 a	 >>>	 prompt
(this	is	C-z	on	Windows).

Alt-/	(Expand	word)	is	also	useful	to	reduce	typing

Command	history

Alt-p	retrieves	previous	command	matching	what	you	have
typed.	On	OS	X	use	C-p.
Alt-n	retrieves	next.	On	OS	X	use	C-n.
Return	 while	 on	 any	 previous	 command	 retrieves	 that
command

25.5.3.	Syntax	colors

The	 coloring	 is	 applied	 in	 a	 background	 “thread,”	 so	 you	 may
occasionally	 see	 uncolorized	 text.	 To	 change	 the	 color	 scheme,	 edit
the	[Colors]	section	in	config.txt.

Python	syntax	colors:
Keywords

orange

Strings
green

Comments
red

Definitions
blue

Shell	colors:
Console	output

brown

stdout
blue

stderr
dark	green

stdin
black

25.5.4.	Startup

Upon	startup	with	the	-s	option,	IDLE	will	execute	the	file	referenced
by	 the	 environment	 variables	 IDLESTARTUP	 or	 PYTHONSTARTUP.
IDLE	 first	checks	 for	IDLESTARTUP;	 if	IDLESTARTUP	 is	present	 the
file	referenced	is	run.	If	IDLESTARTUP	is	not	present,	IDLE	checks	for
PYTHONSTARTUP.	 Files	 referenced	 by	 these	 environment	 variables
are	convenient	places	to	store	functions	that	are	used	frequently	from
the	 IDLE	shell,	or	 for	executing	 import	statements	 to	 import	common
modules.

In	addition,	Tk	also	loads	a	startup	file	if	it	is	present.	Note	that	the	Tk
file	 is	 loaded	unconditionally.	This	additional	 file	 is	.Idle.py	and	 is
looked	 for	 in	 the	user’s	home	directory.	Statements	 in	 this	 file	will	be
executed	 in	 the	Tk	namespace,	so	 this	 file	 is	not	useful	 for	 importing
functions	to	be	used	from	IDLE’s	Python	shell.

25.5.4.1.	Command	line	usage

idle.py	[-c	command]	[-d]	[-e]	[-s]	[-t	title]	[arg]	...

-c	command		run	this	command

-d										enable	debugger

-e										edit	mode;	arguments	are	files	to	be	edited

-s										run	$IDLESTARTUP	or	$PYTHONSTARTUP	first

-t	title				set	title	of	shell	window

If	there	are	arguments:

1.	 If	 -e	 is	 used,	 arguments	 are	 files	 opened	 for	 editing	 and
sys.argv	reflects	the	arguments	passed	to	IDLE	itself.

2.	 Otherwise,	 if	 -c	 is	 used,	 all	 arguments	 are	 placed	 in
sys.argv[1:...],	with	sys.argv[0]	set	to	'-c'.

3.	 Otherwise,	 if	 neither	 -e	 nor	 -c	 is	 used,	 the	 first	 argument	 is	 a
script	 which	 is	 executed	 with	 the	 remaining	 arguments	 in
sys.argv[1:...]	and	sys.argv[0]	set	to	the	script	name.	If
the	 script	 name	 is	 ‘-‘,	 no	 script	 is	 executed	 but	 an	 interactive
Python	 session	 is	 started;	 the	 arguments	 are	 still	 available	 in
sys.argv.

25.5.5.	Additional	help	sources

IDLE	 includes	a	help	menu	entry	called	 “Python	Docs”	 that	will	open
the	 extensive	 sources	 of	 help,	 including	 tutorials,	 available	 at
docs.python.org.	Selected	URLs	 can	 be	 added	 or	 removed	 from	 the
help	menu	at	any	time	using	the	Configure	IDLE	dialog.	See	the	IDLE
help	option	in	the	help	menu	of	IDLE	for	more	information.

25.5.6.	Other	preferences

The	font	preferences,	highlighting,	keys,	and	general	preferences	can
be	changed	via	the	Configure	IDLE	menu	option.	Be	sure	to	note	that
keys	 can	 be	 user	 defined,	 IDLE	 ships	 with	 four	 built	 in	 key	 sets.	 In
addition	 a	 user	 can	 create	 a	 custom	 key	 set	 in	 the	 Configure	 IDLE
dialog	under	the	keys	tab.

25.5.7.	Extensions

IDLE	 contains	 an	 extension	 facility.	 See	 the	 beginning	 of	 config-
extensions.def	 in	 the	 idlelib	 directory	 for	 further	 information.	 The
default	extensions	are	currently:

FormatParagraph
AutoExpand
ZoomHeight
ScriptBinding
CallTips
ParenMatch
AutoComplete
CodeContext

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

http://www.python.org/

25.6.	Other	Graphical	User
Interface	Packages
Major	cross-platform	(Windows,	Mac	OS	X,	Unix-like)	GUI	toolkits	are
available	for	Python:

See	also:

PyGObject
provides	introspection	bindings	for	C	libraries	using	GObject.	One
of	 these	 libraries	 is	 the	 GTK+	3	 widget	 set.	 GTK+	 comes	 with
many	 more	 widgets	 than	 Tkinter	 provides.	 An	 online	 Python
GTK+	3	Tutorial	is	available.

PyGTK	provides	bindings	for	an	older	version	of	the	library,	GTK+
2.	 It	 provides	 an	 object	 oriented	 interface	 that	 is	 slightly	 higher
level	 than	 the	 C	 one.	 There	 are	 also	 bindings	 to	 GNOME.	 An
online	tutorial	is	available.

PyQt
PyQt	is	a	sip-wrapped	binding	to	the	Qt	toolkit.	Qt	is	an	extensive
C++	GUI	application	development	framework	that	is	available	for
Unix,	 Windows	 and	 Mac	 OS	 X.	 sip	 is	 a	 tool	 for	 generating
bindings	 for	C++	 libraries	as	Python	classes,	and	 is	 specifically
designed	 for	 Python.	 The	 PyQt3	 bindings	 have	 a	 book,	 GUI
Programming	with	Python:	QT	Edition	by	Boudewijn	Rempt.	The
PyQt4	bindings	also	have	a	book,	Rapid	GUI	Programming	with
Python	and	Qt,	by	Mark	Summerfield.

PySide
is	a	newer	binding	to	the	Qt	toolkit,	provided	by	Nokia.	Compared
to	 PyQt,	 its	 licensing	 scheme	 is	 friendlier	 to	 non-open	 source
applications.

https://live.gnome.org/PyGObject
http://developer.gnome.org/gobject/stable/
http://www.gtk.org/
http://python-gtk-3-tutorial.readthedocs.org/en/latest/
http://www.pygtk.org/
http://www.gnome.org
http://www.pygtk.org/pygtk2tutorial/index.html
http://www.riverbankcomputing.co.uk/software/pyqt/
http://www.commandprompt.com/community/pyqt/
http://www.qtrac.eu/pyqtbook.html
http://www.pyside.org/

wxPython
wxPython	 is	 a	 cross-platform	GUI	 toolkit	 for	Python	 that	 is	 built
around	the	popular	wxWidgets	(formerly	wxWindows)	C++	toolkit.
It	 provides	 a	 native	 look	 and	 feel	 for	 applications	 on	Windows,
Mac	 OS	 X,	 and	 Unix	 systems	 by	 using	 each	 platform’s	 native
widgets	 where	 ever	 possible,	 (GTK+	 on	 Unix-like	 systems).	 In
addition	 to	 an	 extensive	 set	 of	 widgets,	 wxPython	 provides
classes	 for	 online	 documentation	 and	 context	 sensitive	 help,
printing,	 HTML	 viewing,	 low-level	 device	 context	 drawing,	 drag
and	 drop,	 system	 clipboard	 access,	 an	 XML-based	 resource
format	 and	 more,	 including	 an	 ever	 growing	 library	 of	 user-
contributed	modules.	wxPython	has	a	book,	wxPython	in	Action,
by	Noel	Rappin	and	Robin	Dunn.

PyGTK,	 PyQt,	 and	 wxPython,	 all	 have	 a	 modern	 look	 and	 feel	 and
more	 widgets	 than	 Tkinter.	 In	 addition,	 there	 are	 many	 other	 GUI
toolkits	for	Python,	both	cross-platform,	and	platform-specific.	See	the
GUI	Programming	page	in	the	Python	Wiki	for	a	much	more	complete
list,	and	also	for	links	to	documents	where	the	different	GUI	toolkits	are
compared.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	25.	Graphical	User	Interfaces	with	Tk	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.wxpython.org
http://www.wxwidgets.org/
http://www.amazon.com/exec/obidos/ASIN/1932394621
http://wiki.python.org/moin/GuiProgramming
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

26.	Development	Tools
The	modules	 described	 in	 this	 chapter	 help	 you	 write	 software.	 For
example,	 the	 pydoc	 module	 takes	 a	 module	 and	 generates
documentation	 based	 on	 the	 module’s	 contents.	 The	 doctest	 and
unittest	 modules	 contains	 frameworks	 for	 writing	 unit	 tests	 that
automatically	 exercise	 code	 and	 verify	 that	 the	 expected	 output	 is
produced.	2to3	can	translate	Python	2.x	source	code	into	valid	Python
3.x	code.

The	list	of	modules	described	in	this	chapter	is:

26.1.	pydoc	—	Documentation	generator	and	online	help	system
26.2.	doctest	—	Test	interactive	Python	examples

26.2.1.	Simple	Usage:	Checking	Examples	in	Docstrings
26.2.2.	Simple	Usage:	Checking	Examples	in	a	Text	File
26.2.3.	How	It	Works

26.2.3.1.	Which	Docstrings	Are	Examined?
26.2.3.2.	How	are	Docstring	Examples	Recognized?
26.2.3.3.	What’s	the	Execution	Context?
26.2.3.4.	What	About	Exceptions?
26.2.3.5.	Option	Flags
26.2.3.6.	Directives
26.2.3.7.	Warnings

26.2.4.	Basic	API
26.2.5.	Unittest	API
26.2.6.	Advanced	API

26.2.6.1.	DocTest	Objects
26.2.6.2.	Example	Objects
26.2.6.3.	DocTestFinder	objects
26.2.6.4.	DocTestParser	objects
26.2.6.5.	DocTestRunner	objects

26.2.6.6.	OutputChecker	objects
26.2.7.	Debugging
26.2.8.	Soapbox

26.3.	unittest	—	Unit	testing	framework
26.3.1.	Basic	example
26.3.2.	Command-Line	Interface

26.3.2.1.	Command-line	options
26.3.3.	Test	Discovery
26.3.4.	Organizing	test	code
26.3.5.	Re-using	old	test	code
26.3.6.	Skipping	tests	and	expected	failures
26.3.7.	Distinguishing	test	iterations	using	subtests
26.3.8.	Classes	and	functions

26.3.8.1.	Test	cases
26.3.8.1.1.	Deprecated	aliases

26.3.8.2.	Grouping	tests
26.3.8.3.	Loading	and	running	tests

26.3.8.3.1.	load_tests	Protocol
26.3.9.	Class	and	Module	Fixtures

26.3.9.1.	setUpClass	and	tearDownClass
26.3.9.2.	setUpModule	and	tearDownModule

26.3.10.	Signal	Handling
26.4.	unittest.mock	—	mock	object	library

26.4.1.	Quick	Guide
26.4.2.	The	Mock	Class

26.4.2.1.	Calling
26.4.2.2.	Deleting	Attributes
26.4.2.3.	Mock	names	and	the	name	attribute
26.4.2.4.	Attaching	Mocks	as	Attributes

26.4.3.	The	patchers
26.4.3.1.	patch
26.4.3.2.	patch.object
26.4.3.3.	patch.dict
26.4.3.4.	patch.multiple

26.4.3.5.	patch	methods:	start	and	stop
26.4.3.6.	TEST_PREFIX
26.4.3.7.	Nesting	Patch	Decorators
26.4.3.8.	Where	to	patch
26.4.3.9.	Patching	Descriptors	and	Proxy	Objects

26.4.4.	MagicMock	and	magic	method	support
26.4.4.1.	Mocking	Magic	Methods
26.4.4.2.	Magic	Mock

26.4.5.	Helpers
26.4.5.1.	sentinel
26.4.5.2.	DEFAULT
26.4.5.3.	call
26.4.5.4.	create_autospec
26.4.5.5.	ANY
26.4.5.6.	FILTER_DIR
26.4.5.7.	mock_open
26.4.5.8.	Autospeccing

26.5.	unittest.mock	—	getting	started
26.5.1.	Using	Mock

26.5.1.1.	Mock	Patching	Methods
26.5.1.2.	Mock	for	Method	Calls	on	an	Object
26.5.1.3.	Mocking	Classes
26.5.1.4.	Naming	your	mocks
26.5.1.5.	Tracking	all	Calls
26.5.1.6.	Setting	Return	Values	and	Attributes
26.5.1.7.	Raising	exceptions	with	mocks
26.5.1.8.	Side	effect	functions	and	iterables
26.5.1.9.	Creating	a	Mock	from	an	Existing	Object

26.5.2.	Patch	Decorators
26.5.3.	Further	Examples

26.5.3.1.	Mocking	chained	calls
26.5.3.2.	Partial	mocking
26.5.3.3.	Mocking	a	Generator	Method
26.5.3.4.	Applying	the	same	patch	to	every	test	method

26.5.3.5.	Mocking	Unbound	Methods
26.5.3.6.	Checking	multiple	calls	with	mock
26.5.3.7.	Coping	with	mutable	arguments
26.5.3.8.	Nesting	Patches
26.5.3.9.	Mocking	a	dictionary	with	MagicMock
26.5.3.10.	Mock	subclasses	and	their	attributes
26.5.3.11.	Mocking	imports	with	patch.dict
26.5.3.12.	 Tracking	 order	 of	 calls	 and	 less	 verbose	 call
assertions
26.5.3.13.	More	complex	argument	matching

26.6.	2to3	-	Automated	Python	2	to	3	code	translation
26.6.1.	Using	2to3
26.6.2.	Fixers
26.6.3.	lib2to3	-	2to3’s	library

26.7.	test	—	Regression	tests	package	for	Python
26.7.1.	Writing	Unit	Tests	for	the	test	package
26.7.2.	Running	tests	using	the	command-line	interface

26.8.	test.support	—	Utilities	for	the	Python	test	suite

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

http://www.python.org/

26.1.	pydoc	—	Documentation
generator	and	online	help	system
Source	code:	Lib/pydoc.py

The	 pydoc	 module	 automatically	 generates	 documentation	 from
Python	modules.	 The	 documentation	 can	 be	 presented	 as	 pages	 of
text	on	the	console,	served	to	a	Web	browser,	or	saved	to	HTML	files.

The	 built-in	 function	 help()	 invokes	 the	 online	 help	 system	 in	 the
interactive	 interpreter,	 which	 uses	 pydoc	 to	 generate	 its
documentation	as	 text	on	 the	console.	The	same	 text	documentation
can	 also	 be	 viewed	 from	 outside	 the	 Python	 interpreter	 by	 running
pydoc	 as	 a	 script	 at	 the	 operating	 system’s	 command	 prompt.	 For
example,	running

pydoc	sys

at	a	shell	prompt	will	display	documentation	on	the	sys	module,	 in	a
style	similar	to	the	manual	pages	shown	by	the	Unix	man	command.
The	 argument	 to	pydoc	 can	 be	 the	 name	 of	 a	 function,	module,	 or
package,	or	a	dotted	reference	to	a	class,	method,	or	function	within	a
module	or	module	in	a	package.	If	the	argument	to	pydoc	looks	like	a
path	(that	is,	it	contains	the	path	separator	for	your	operating	system,
such	as	a	slash	in	Unix),	and	refers	to	an	existing	Python	source	file,
then	documentation	is	produced	for	that	file.

Note: 	In	order	to	find	objects	and	their	documentation,	pydoc
imports	the	module(s)	to	be	documented.	Therefore,	any	code	on

http://hg.python.org/cpython/file/3.4/Lib/pydoc.py

module	level	will	be	executed	on	that	occasion.	Use	an	if
__name__	==	'__main__':	guard	to	only	execute	code	when	a
file	is	invoked	as	a	script	and	not	just	imported.

Specifying	 a	 -w	 flag	 before	 the	 argument	 will	 cause	 HTML
documentation	 to	 be	 written	 out	 to	 a	 file	 in	 the	 current	 directory,
instead	of	displaying	text	on	the	console.

Specifying	a	-k	flag	before	the	argument	will	search	the	synopsis	lines
of	all	available	modules	for	the	keyword	given	as	the	argument,	again
in	a	manner	similar	to	the	Unix	man	command.	The	synopsis	line	of	a
module	is	the	first	line	of	its	documentation	string.

You	can	also	use	pydoc	to	start	an	HTTP	server	on	the	local	machine
that	will	serve	documentation	to	visiting	Web	browsers.	pydoc	-p	1234
will	 start	 a	 HTTP	 server	 on	 port	 1234,	 allowing	 you	 to	 browse	 the
documentation	at	http://localhost:1234/	in	your	preferred	Web
browser.	 Specifying	 0	 as	 the	 port	 number	 will	 select	 an	 arbitrary
unused	port.

pydoc	 -g	 will	 start	 the	 server	 and	 additionally	 bring	 up	 a	 small
tkinter-based	 graphical	 interface	 to	 help	 you	 search	 for
documentation	pages.	The	-g	option	 is	deprecated,	since	 the	server
can	now	be	controlled	directly	from	HTTP	clients.

pydoc	-b	will	start	the	server	and	additionally	open	a	web	browser	to	a
module	index	page.	Each	served	page	has	a	navigation	bar	at	the	top
where	you	can	Get	help	on	an	individual	item,	Search	all	modules	with
a	keyword	 in	 their	synopsis	 line,	and	go	 to	 the	Module	 index,	Topics
and	Keywords	pages.

When	 pydoc	 generates	 documentation,	 it	 uses	 the	 current
environment	and	path	to	locate	modules.	Thus,	invoking	pydoc	spam

documents	 precisely	 the	 version	of	 the	module	 you	would	 get	 if	 you
started	the	Python	interpreter	and	typed	import	spam.

Module	 docs	 for	 core	 modules	 are	 assumed	 to	 reside	 in
http://docs.python.org/X.Y/library/	 where	 X	 and	 Y	 are
the	major	and	minor	 version	numbers	of	 the	Python	 interpreter.	This
can	be	overridden	by	setting	the	PYTHONDOCS	environment	variable	to
a	different	URL	or	to	a	local	directory	containing	the	Library	Reference
Manual	pages.

Changed	 in	 version	 3.2:	 Added	 the	 -b	 option,	 deprecated	 the	 -g
option.

Changed	 in	 version	 3.4:	 pydoc	 now	uses	 inspect.signature()
rather	 than	 inspect.getfullargspec()	 to	 extract	 signature
information	from	callables.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

http://www.python.org/

26.2.	doctest	—	Test	interactive
Python	examples
The	 doctest	 module	 searches	 for	 pieces	 of	 text	 that	 look	 like
interactive	 Python	 sessions,	 and	 then	 executes	 those	 sessions	 to
verify	 that	 they	 work	 exactly	 as	 shown.	 There	 are	 several	 common
ways	to	use	doctest:

To	 check	 that	 a	module’s	 docstrings	 are	 up-to-date	 by	 verifying
that	all	interactive	examples	still	work	as	documented.
To	 perform	 regression	 testing	 by	 verifying	 that	 interactive
examples	from	a	test	file	or	a	test	object	work	as	expected.
To	write	 tutorial	documentation	 for	a	package,	 liberally	 illustrated
with	input-output	examples.	Depending	on	whether	the	examples
or	 the	 expository	 text	 are	 emphasized,	 this	 has	 the	 flavor	 of
“literate	testing”	or	“executable	documentation”.

Here’s	a	complete	but	small	example	module:

"""

This	is	the	"example"	module.

The	example	module	supplies	one	function,	factorial().		For	example,

>>>	factorial(5)

120

"""

def	factorial(n):

				"""Return	the	factorial	of	n,	an	exact	integer	>=	0.

				>>>	[factorial(n)	for	n	in	range(6)]

				[1,	1,	2,	6,	24,	120]

				>>>	factorial(30)

				265252859812191058636308480000000

				>>>	factorial(-1)

				Traceback	(most	recent	call	last):

								...

				ValueError:	n	must	be	>=	0

				Factorials	of	floats	are	OK,	but	the	float	must	be	an	exact	integer:

				>>>	factorial(30.1)

				Traceback	(most	recent	call	last):

								...

				ValueError:	n	must	be	exact	integer

				>>>	factorial(30.0)

				265252859812191058636308480000000

				It	must	also	not	be	ridiculously	large:

				>>>	factorial(1e100)

				Traceback	(most	recent	call	last):

								...

				OverflowError:	n	too	large

				"""

				import	math

				if	not	n	>=	0:

								raise	ValueError("n	must	be	>=	0")

				if	math.floor(n)	!=	n:

								raise	ValueError("n	must	be	exact	integer")

				if	n+1	==	n:		#	catch	a	value	like	1e300

								raise	OverflowError("n	too	large")

				result	=	1

				factor	=	2

				while	factor	<=	n:

								result	*=	factor

								factor	+=	1

				return	result

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod()

If	 you	 run	 example.py	 directly	 from	 the	 command	 line,	 doctest
works	its	magic:

$	python	example.py

$

There’s	 no	 output!	 That’s	 normal,	 and	 it	 means	 all	 the	 examples
worked.	Pass	-v	 to	 the	script,	and	doctest	prints	a	detailed	 log	of
what	it’s	trying,	and	prints	a	summary	at	the	end:

$	python	example.py	-v

Trying:

				factorial(5)

Expecting:

				120

ok

Trying:

				[factorial(n)	for	n	in	range(6)]

Expecting:

				[1,	1,	2,	6,	24,	120]

ok

And	so	on,	eventually	ending	with:

Trying:

				factorial(1e100)

Expecting:

				Traceback	(most	recent	call	last):

								...

				OverflowError:	n	too	large

ok

2	items	passed	all	tests:

			1	tests	in	__main__

			8	tests	in	__main__.factorial

9	tests	in	2	items.

9	passed	and	0	failed.

Test	passed.

$

That’s	 all	 you	 need	 to	 know	 to	 start	 making	 productive	 use	 of
doctest!	 Jump	 in.	 The	 following	 sections	 provide	 full	 details.	 Note
that	there	are	many	examples	of	doctests	in	the	standard	Python	test
suite	 and	 libraries.	 Especially	 useful	 examples	 can	 be	 found	 in	 the
standard	test	file	Lib/test/test_doctest.py.

26.2.1.	Simple	Usage:	Checking	Examples
in	Docstrings

The	simplest	way	 to	start	using	doctest	 (but	not	necessarily	 the	way
you’ll	continue	to	do	it)	is	to	end	each	module	M	with:

if	__name__	==	"__main__":

				import	doctest

				doctest.testmod()

doctest	then	examines	docstrings	in	module	M.

Running	the	module	as	a	script	causes	the	examples	in	the	docstrings
to	get	executed	and	verified:

python	M.py

This	won’t	display	anything	unless	an	example	fails,	in	which	case	the
failing	 example(s)	 and	 the	 cause(s)	 of	 the	 failure(s)	 are	 printed	 to
stdout,	 and	 the	 final	 line	 of	 output	 is	 ***Test	 Failed***	 N

failures.,	where	N	is	the	number	of	examples	that	failed.

Run	it	with	the	-v	switch	instead:

python	M.py	-v

and	a	detailed	report	of	all	examples	tried	is	printed	to	standard	output,
along	with	assorted	summaries	at	the	end.

You	 can	 force	 verbose	 mode	 by	 passing	 verbose=True	 to
testmod(),	 or	 prohibit	 it	 by	 passing	 verbose=False.	 In	 either	 of
those	cases,	sys.argv	 is	not	examined	by	testmod()	(so	passing

-v	or	not	has	no	effect).

There	 is	also	a	 command	 line	 shortcut	 for	 running	 testmod().	 You
can	 instruct	 the	Python	 interpreter	 to	 run	 the	doctest	module	directly
from	 the	 standard	 library	 and	 pass	 the	 module	 name(s)	 on	 the
command	line:

python	-m	doctest	-v	example.py

This	 will	 import	 example.py	 as	 a	 standalone	 module	 and	 run
testmod()	 on	 it.	Note	 that	 this	may	 not	work	 correctly	 if	 the	 file	 is
part	of	a	package	and	imports	other	submodules	from	that	package.

For	more	information	on	testmod(),	see	section	Basic	API.

26.2.2.	Simple	Usage:	Checking	Examples
in	a	Text	File

Another	simple	application	of	doctest	is	testing	interactive	examples	in
a	text	file.	This	can	be	done	with	the	testfile()	function:

import	doctest

doctest.testfile("example.txt")

That	 short	 script	 executes	 and	 verifies	 any	 interactive	 Python
examples	 contained	 in	 the	 file	 example.txt.	 The	 file	 content	 is
treated	as	 if	 it	were	a	 single	giant	 docstring;	 the	 file	doesn’t	 need	 to
contain	 a	 Python	 program!	 For	 example,	 perhaps	 example.txt
contains	this:

The	``example``	module

======================

Using	``factorial``

This	is	an	example	text	file	in	reStructuredText	format.		First	import

``factorial``	from	the	``example``	module:

				>>>	from	example	import	factorial

Now	use	it:

				>>>	factorial(6)

				120

Running	 doctest.testfile("example.txt")	 then	 finds	 the

error	in	this	documentation:

File	"./example.txt",	line	14,	in	example.txt

Failed	example:

				factorial(6)

Expected:

				120

Got:

				720

As	with	testmod(),	testfile()	won’t	 display	anything	unless	an
example	fails.	If	an	example	does	fail,	then	the	failing	example(s)	and
the	 cause(s)	 of	 the	 failure(s)	 are	 printed	 to	 stdout,	 using	 the	 same
format	as	testmod().

By	 default,	 testfile()	 looks	 for	 files	 in	 the	 calling	 module’s
directory.	 See	 section	 Basic	 API	 for	 a	 description	 of	 the	 optional
arguments	that	can	be	used	to	tell	it	to	look	for	files	in	other	locations.

Like	 testmod(),	 testfile()‘s	 verbosity	 can	 be	 set	 with	 the	 -v
command-line	switch	or	with	the	optional	keyword	argument	verbose.

There	is	also	a	command	line	shortcut	for	running	testfile().	You
can	 instruct	 the	Python	 interpreter	 to	 run	 the	doctest	module	directly
from	 the	standard	 library	and	pass	 the	 file	name(s)	on	 the	command
line:

python	-m	doctest	-v	example.txt

Because	the	file	name	does	not	end	with	.py,	doctest	infers	that	it
must	be	run	with	testfile(),	not	testmod().

For	more	information	on	testfile(),	see	section	Basic	API.

26.2.3.	How	It	Works

This	section	examines	in	detail	how	doctest	works:	which	docstrings	it
looks	at,	 how	 it	 finds	 interactive	examples,	what	 execution	 context	 it
uses,	how	it	handles	exceptions,	and	how	option	flags	can	be	used	to
control	 its	behavior.	This	 is	 the	 information	 that	you	need	 to	know	 to
write	doctest	examples;	for	information	about	actually	running	doctest
on	these	examples,	see	the	following	sections.

26.2.3.1.	Which	Docstrings	Are	Examined?

The	module	docstring,	and	all	 function,	 class	and	method	docstrings
are	searched.	Objects	imported	into	the	module	are	not	searched.

In	addition,	if	M.__test__	exists	and	“is	true”,	 it	must	be	a	dict,	and
each	entry	maps	a	(string)	name	to	a	function	object,	class	object,	or
string.	Function	and	class	object	docstrings	found	from	M.__test__
are	 searched,	 and	 strings	 are	 treated	 as	 if	 they	 were	 docstrings.	 In
output,	a	key	K	in	M.__test__	appears	with	name

<name	of	M>.__test__.K

Any	classes	found	are	recursively	searched	similarly,	to	test	docstrings
in	their	contained	methods	and	nested	classes.

CPython	 implementation	 detail:	 Prior	 to	 version	 3.4,	 extension
modules	written	in	C	were	not	fully	searched	by	doctest.

26.2.3.2.	How	are	Docstring	Examples
Recognized?

In	 most	 cases	 a	 copy-and-paste	 of	 an	 interactive	 console	 session
works	 fine,	 but	 doctest	 isn’t	 trying	 to	 do	 an	 exact	 emulation	 of	 any
specific	Python	shell.

>>>	#	comments	are	ignored

>>>	x	=	12

>>>	x

12

>>>	if	x	==	13:

...					print("yes")

...	else:

...					print("no")

...					print("NO")

...					print("NO!!!")

...

no

NO

NO!!!

>>>

Any	 expected	 output	 must	 immediately	 follow	 the	 final	 '>>>	 '	 or
'...	 '	 line	 containing	 the	 code,	 and	 the	 expected	 output	 (if	 any)
extends	to	the	next	'>>>	'	or	all-whitespace	line.

The	fine	print:

Expected	output	cannot	contain	an	all-whitespace	line,	since	such
a	 line	 is	 taken	 to	 signal	 the	end	of	 expected	output.	 If	expected
output	 does	 contain	 a	 blank	 line,	 put	 <BLANKLINE>	 in	 your
doctest	example	each	place	a	blank	line	is	expected.

All	hard	 tab	characters	are	expanded	 to	spaces,	using	8-column
tab	 stops.	 Tabs	 in	 output	 generated	 by	 the	 tested	 code	 are	 not
modified.	 Because	 any	 hard	 tabs	 in	 the	 sample	 output	 are
expanded,	 this	means	that	 if	 the	code	output	 includes	hard	tabs,

the	 only	 way	 the	 doctest	 can	 pass	 is	 if	 the
NORMALIZE_WHITESPACE	 option	 or	 directive	 is	 in	 effect.
Alternatively,	 the	 test	 can	be	 rewritten	 to	capture	 the	output	and
compare	it	to	an	expected	value	as	part	of	the	test.	This	handling
of	 tabs	 in	 the	 source	was	 arrived	 at	 through	 trial	 and	 error,	 and
has	proven	to	be	the	least	error	prone	way	of	handling	them.	It	is
possible	to	use	a	different	algorithm	for	handling	tabs	by	writing	a
custom	DocTestParser	class.

Output	 to	 stdout	 is	 captured,	 but	 not	 output	 to	 stderr	 (exception
tracebacks	are	captured	via	a	different	means).

If	you	continue	a	line	via	backslashing	in	an	interactive	session,	or
for	 any	 other	 reason	 use	 a	 backslash,	 you	 should	 use	 a	 raw
docstring,	 which	 will	 preserve	 your	 backslashes	 exactly	 as	 you
type	them:

>>>	def	f(x):

...					r'''Backslashes	in	a	raw	docstring:	m\n'''

>>>	print(f.__doc__)

Backslashes	in	a	raw	docstring:	m\n

Otherwise,	the	backslash	will	be	interpreted	as	part	of	the	string.
For	 example,	 the	 \n	 above	 would	 be	 interpreted	 as	 a	 newline
character.	 Alternatively,	 you	 can	 double	 each	 backslash	 in	 the
doctest	version	(and	not	use	a	raw	string):

>>>	def	f(x):

...					'''Backslashes	in	a	raw	docstring:	m\\n'''

>>>	print(f.__doc__)

Backslashes	in	a	raw	docstring:	m\n

The	starting	column	doesn’t	matter:

>>>	assert	"Easy!"

						>>>	import	math

										>>>	math.floor(1.9)

										1

and	as	many	leading	whitespace	characters	are	stripped	from	the
expected	output	as	appeared	in	the	initial	'>>>	'	line	that	started
the	example.

26.2.3.3.	What’s	the	Execution	Context?

By	 default,	 each	 time	 doctest	 finds	 a	 docstring	 to	 test,	 it	 uses	 a
shallow	copy	of	M‘s	globals,	so	 that	running	tests	doesn’t	change	the
module’s	 real	 globals,	 and	 so	 that	 one	 test	 in	 M	 can’t	 leave	 behind
crumbs	 that	 accidentally	 allow	 another	 test	 to	 work.	 This	 means
examples	 can	 freely	 use	 any	 names	 defined	 at	 top-level	 in	 M,	 and
names	defined	earlier	in	the	docstring	being	run.	Examples	cannot	see
names	defined	in	other	docstrings.

You	 can	 force	 use	 of	 your	 own	 dict	 as	 the	 execution	 context	 by
passing	globs=your_dict	to	testmod()	or	testfile()	instead.

26.2.3.4.	What	About	Exceptions?

No	problem,	provided	 that	 the	 traceback	 is	 the	only	output	produced
by	 the	 example:	 just	 paste	 in	 the	 traceback.	 [1]	 Since	 tracebacks
contain	details	that	are	likely	to	change	rapidly	(for	example,	exact	file
paths	and	line	numbers),	this	is	one	case	where	doctest	works	hard	to
be	flexible	in	what	it	accepts.

Simple	example:

>>>	[1,	2,	3].remove(42)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	list.remove(x):	x	not	in	list

That	 doctest	 succeeds	 if	 ValueError	 is	 raised,	 with	 the
list.remove(x):	x	not	in	list	detail	as	shown.

The	 expected	 output	 for	 an	 exception	 must	 start	 with	 a	 traceback
header,	which	may	 be	 either	 of	 the	 following	 two	 lines,	 indented	 the
same	as	the	first	line	of	the	example:

Traceback	(most	recent	call	last):

Traceback	(innermost	last):

The	 traceback	 header	 is	 followed	 by	 an	 optional	 traceback	 stack,
whose	 contents	 are	 ignored	 by	 doctest.	 The	 traceback	 stack	 is
typically	omitted,	or	copied	verbatim	from	an	interactive	session.

The	traceback	stack	is	followed	by	the	most	interesting	part:	the	line(s)
containing	the	exception	type	and	detail.	This	is	usually	the	last	line	of
a	traceback,	but	can	extend	across	multiple	lines	if	the	exception	has	a
multi-line	detail:

>>>	raise	ValueError('multi\n				line\ndetail')

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

ValueError:	multi

				line

detail

The	last	three	lines	(starting	with	ValueError)	are	compared	against

the	exception’s	type	and	detail,	and	the	rest	are	ignored.

Best	practice	is	to	omit	the	traceback	stack,	unless	it	adds	significant
documentation	value	to	the	example.	So	the	last	example	is	probably
better	as:

>>>	raise	ValueError('multi\n				line\ndetail')

Traceback	(most	recent	call	last):

				...

ValueError:	multi

				line

detail

Note	 that	 tracebacks	 are	 treated	 very	 specially.	 In	 particular,	 in	 the
rewritten	 example,	 the	 use	 of	 ...	 is	 independent	 of	 doctest’s
ELLIPSIS	 option.	 The	 ellipsis	 in	 that	 example	 could	 be	 left	 out,	 or
could	just	as	well	be	three	(or	three	hundred)	commas	or	digits,	or	an
indented	transcript	of	a	Monty	Python	skit.

Some	details	you	should	read	once,	but	won’t	need	to	remember:

Doctest	can’t	guess	whether	your	expected	output	came	from	an
exception	 traceback	 or	 from	 ordinary	 printing.	 So,	 e.g.,	 an
example	 that	 expects	 ValueError:	 42	 is	 prime	 will	 pass
whether	ValueError	 is	actually	raised	or	 if	 the	example	merely
prints	that	traceback	text.	In	practice,	ordinary	output	rarely	begins
with	a	traceback	header	line,	so	this	doesn’t	create	real	problems.

Each	 line	 of	 the	 traceback	 stack	 (if	 present)	 must	 be	 indented
further	 than	 the	 first	 line	 of	 the	 example,	 or	 start	 with	 a	 non-
alphanumeric	 character.	 The	 first	 line	 following	 the	 traceback
header	 indented	 the	 same	 and	 starting	with	 an	 alphanumeric	 is
taken	 to	be	 the	start	of	 the	exception	detail.	Of	course	 this	does
the	right	thing	for	genuine	tracebacks.

When	 the	 IGNORE_EXCEPTION_DETAIL	 doctest	 option	 is
specified,	everything	following	the	leftmost	colon	and	any	module
information	in	the	exception	name	is	ignored.

The	 interactive	 shell	 omits	 the	 traceback	 header	 line	 for	 some
SyntaxErrors.	But	 doctest	 uses	 the	 traceback	 header	 line	 to
distinguish	 exceptions	 from	non-exceptions.	So	 in	 the	 rare	 case
where	you	need	to	test	a	SyntaxError	that	omits	the	traceback
header,	you	will	need	 to	manually	add	 the	 traceback	header	 line
to	your	test	example.

For	some	SyntaxErrors,	Python	displays	the	character	position
of	the	syntax	error,	using	a	^	marker:

>>>	1	1

		File	"<stdin>",	line	1

				1	1

						^

SyntaxError:	invalid	syntax

Since	the	lines	showing	the	position	of	the	error	come	before	the
exception	 type	 and	 detail,	 they	 are	 not	 checked	 by	 doctest.	 For
example,	the	following	test	would	pass,	even	though	it	puts	the	^
marker	in	the	wrong	location:

>>>	1	1

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1

				1	1

				^

SyntaxError:	invalid	syntax

26.2.3.5.	Option	Flags

A	number	of	option	flags	control	various	aspects	of	doctest’s	behavior.
Symbolic	names	for	the	flags	are	supplied	as	module	constants,	which
can	be	or’ed	together	and	passed	to	various	functions.	The	names	can
also	be	used	in	doctest	directives,	and	may	be	passed	to	the	doctest
command	line	interface	via	the	-o	option.

New	in	version	3.4:	the	-o	command	line	option

The	first	group	of	options	define	test	semantics,	controlling	aspects	of
how	 doctest	 decides	 whether	 actual	 output	 matches	 an	 example’s
expected	output:

doctest.DONT_ACCEPT_TRUE_FOR_1

By	default,	 if	 an	expected	output	block	contains	 just	 1,	 an	 actual
output	block	containing	 just	1	or	 just	True	 is	 considered	 to	be	a
match,	 and	 similarly	 for	 0	 versus	 False.	 When
DONT_ACCEPT_TRUE_FOR_1	 is	 specified,	 neither	 substitution	 is
allowed.	 The	 default	 behavior	 caters	 to	 that	 Python	 changed	 the
return	 type	 of	 many	 functions	 from	 integer	 to	 boolean;	 doctests
expecting	“little	integer”	output	still	work	in	these	cases.	This	option
will	probably	go	away,	but	not	for	several	years.

doctest.DONT_ACCEPT_BLANKLINE

By	default,	 if	 an	expected	output	 block	 contains	a	 line	 containing
only	the	string	<BLANKLINE>,	then	that	line	will	match	a	blank	line
in	 the	 actual	 output.	 Because	 a	 genuinely	 blank	 line	 delimits	 the
expected	output,	this	 is	the	only	way	to	communicate	that	a	blank
line	 is	 expected.	 When	 DONT_ACCEPT_BLANKLINE	 is	 specified,
this	substitution	is	not	allowed.

doctest.NORMALIZE_WHITESPACE

When	 specified,	 all	 sequences	 of	 whitespace	 (blanks	 and
newlines)	are	treated	as	equal.	Any	sequence	of	whitespace	within
the	expected	output	will	match	any	sequence	of	whitespace	within
the	 actual	 output.	 By	 default,	 whitespace	 must	 match	 exactly.
NORMALIZE_WHITESPACE	 is	 especially	 useful	 when	 a	 line	 of
expected	 output	 is	 very	 long,	 and	 you	 want	 to	 wrap	 it	 across
multiple	lines	in	your	source.

doctest.ELLIPSIS

When	 specified,	 an	 ellipsis	 marker	 (...)	 in	 the	 expected	 output
can	 match	 any	 substring	 in	 the	 actual	 output.	 This	 includes
substrings	that	span	line	boundaries,	and	empty	substrings,	so	it’s
best	 to	 keep	usage	of	 this	 simple.	Complicated	uses	 can	 lead	 to
the	same	kinds	of	“oops,	it	matched	too	much!”	surprises	that	.*	is
prone	to	in	regular	expressions.

doctest.IGNORE_EXCEPTION_DETAIL

When	specified,	an	example	that	expects	an	exception	passes	if	an
exception	 of	 the	 expected	 type	 is	 raised,	 even	 if	 the	 exception
detail	 does	 not	 match.	 For	 example,	 an	 example	 expecting
ValueError:	 42	 will	 pass	 if	 the	 actual	 exception	 raised	 is
ValueError:	3*14,	but	will	fail,	e.g.,	if	TypeError	is	raised.

It	 will	 also	 ignore	 the	 module	 name	 used	 in	 Python	 3	 doctest
reports.	 Hence	 both	 of	 these	 variations	 will	 work	 with	 the	 flag
specified,	regardless	of	whether	the	test	is	run	under	Python	2.7	or
Python	3.2	(or	later	versions):

>>>	raise	CustomError('message')

Traceback	(most	recent	call	last):

CustomError:	message

>>>	raise	CustomError('message')

Traceback	(most	recent	call	last):

my_module.CustomError:	message

Note	that	ELLIPSIS	can	also	be	used	to	ignore	the	details	of	the
exception	message,	but	such	a	test	may	still	fail	based	on	whether
or	not	the	module	details	are	printed	as	part	of	the	exception	name.
Using	IGNORE_EXCEPTION_DETAIL	and	the	details	 from	Python
2.3	 is	also	 the	only	clear	way	 to	write	a	doctest	 that	doesn’t	care
about	the	exception	detail	yet	continues	to	pass	under	Python	2.3
or	 earlier	 (those	 releases	 do	 not	 support	 doctest	 directives	 and
ignore	them	as	irrelevant	comments).	For	example:

>>>	(1,	2)[3]	=	'moo'

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	object	doesn't	support	item	assignment

passes	 under	 Python	 2.3	 and	 later	 Python	 versions	with	 the	 flag
specified,	 even	 though	 the	 detail	 changed	 in	 Python	 2.4	 to	 say
“does	not”	instead	of	“doesn’t”.

Changed	 in	 version	3.2:	 IGNORE_EXCEPTION_DETAIL	 now	also
ignores	 any	 information	 relating	 to	 the	 module	 containing	 the
exception	under	test.

doctest.SKIP

When	specified,	do	not	run	the	example	at	all.	This	can	be	useful	in
contexts	 where	 doctest	 examples	 serve	 as	 both	 documentation
and	 test	 cases,	 and	 an	 example	 should	 be	 included	 for
documentation	 purposes,	 but	 should	 not	 be	 checked.	 E.g.,	 the
example’s	output	might	be	random;	or	 the	example	might	depend
on	resources	which	would	be	unavailable	to	the	test	driver.

The	SKIP	 flag	can	also	be	used	 for	 temporarily	 “commenting	out”
examples.

doctest.COMPARISON_FLAGS

A	bitmask	or’ing	together	all	the	comparison	flags	above.

The	second	group	of	options	controls	how	test	failures	are	reported:

doctest.REPORT_UDIFF

When	specified,	failures	that	involve	multi-line	expected	and	actual
outputs	are	displayed	using	a	unified	diff.

doctest.REPORT_CDIFF

When	specified,	failures	that	involve	multi-line	expected	and	actual
outputs	will	be	displayed	using	a	context	diff.

doctest.REPORT_NDIFF

When	specified,	differences	are	computed	by	difflib.Differ,
using	the	same	algorithm	as	the	popular	ndiff.py	utility.	This	is
the	 only	 method	 that	 marks	 differences	 within	 lines	 as	 well	 as
across	lines.	For	example,	if	a	line	of	expected	output	contains	digit
1	 where	 actual	 output	 contains	 letter	 l,	 a	 line	 is	 inserted	with	 a
caret	marking	the	mismatching	column	positions.

doctest.REPORT_ONLY_FIRST_FAILURE

When	 specified,	 display	 the	 first	 failing	 example	 in	 each	 doctest,
but	 suppress	 output	 for	 all	 remaining	 examples.	 This	will	 prevent
doctest	 from	 reporting	 correct	 examples	 that	 break	 because	 of
earlier	 failures;	 but	 it	might	 also	 hide	 incorrect	 examples	 that	 fail
independently	 of	 the	 first	 failure.	 When
REPORT_ONLY_FIRST_FAILURE	 is	 specified,	 the	 remaining
examples	are	still	 run,	and	still	 count	 towards	 the	 total	number	of
failures	reported;	only	the	output	is	suppressed.

doctest.FAIL_FAST

When	specified,	exit	after	the	first	failing	example	and	don’t	attempt
to	 run	 the	 remaining	 examples.	 Thus,	 the	 number	 of	 failures
reported	 will	 be	 at	 most	 1.	 This	 flag	 may	 be	 useful	 during
debugging,	 since	 examples	 after	 the	 first	 failure	 won’t	 even
produce	debugging	output.

The	doctest	command	 line	accepts	 the	option	-f	as	a	shorthand
for	-o	FAIL_FAST.

New	in	version	3.4.

doctest.REPORTING_FLAGS

A	bitmask	or’ing	together	all	the	reporting	flags	above.

There	is	also	a	way	to	register	new	option	flag	names,	though	this	isn’t
useful	unless	you	intend	to	extend	doctest	internals	via	subclassing:

doctest.register_optionflag(name)
Create	 a	 new	option	 flag	with	 a	 given	 name,	 and	 return	 the	 new
flag’s	 integer	 value.	 register_optionflag()	 can	 be	 used
when	subclassing	OutputChecker	or	DocTestRunner	to	create
new	 options	 that	 are	 supported	 by	 your	 subclasses.
register_optionflag()	 should	 always	 be	 called	 using	 the
following	idiom:

MY_FLAG	=	register_optionflag('MY_FLAG')

26.2.3.6.	Directives

Doctest	 directives	 may	 be	 used	 to	 modify	 the	 option	 flags	 for	 an
individual	 example.	 Doctest	 directives	 are	 special	 Python	 comments

following	an	example’s	source	code:

directive													::=		"#"	"doctest:"	directive_options

directive_options					::=		directive_option	(","	directive_option

directive_option						::=		on_or_off	directive_option_name

on_or_off													::=		"+"	\|	"-"

directive_option_name	::=		"DONT_ACCEPT_BLANKLINE"	\|	"NORMALIZE_WHITESPACE"	\|	...

Whitespace	is	not	allowed	between	the	+	or	-	and	the	directive	option
name.	The	directive	option	name	can	be	any	of	the	option	flag	names
explained	above.

An	 example’s	 doctest	 directives	 modify	 doctest’s	 behavior	 for	 that
single	example.	Use	+	to	enable	the	named	behavior,	or	-	to	disable
it.

For	example,	this	test	passes:

>>>	print(list(range(20)))	#	doctest:	+NORMALIZE_WHITESPACE

[0,			1,		2,		3,		4,		5,		6,		7,		8,		9,

10,		11,	12,	13,	14,	15,	16,	17,	18,	19]

Without	 the	 directive	 it	 would	 fail,	 both	 because	 the	 actual	 output
doesn’t	 have	 two	 blanks	 before	 the	 single-digit	 list	 elements,	 and
because	 the	 actual	 output	 is	 on	 a	 single	 line.	 This	 test	 also	 passes,
and	also	requires	a	directive	to	do	so:

>>>	print(list(range(20)))	#	doctest:	+ELLIPSIS

[0,	1,	...,	18,	19]

Multiple	directives	can	be	used	on	a	single	physical	line,	separated	by
commas:

>>>	print(list(range(20)))	#	doctest:	+ELLIPSIS,	+NORMALIZE_WHITESPACE

[0,				1,	...,			18,				19]

If	multiple	directive	comments	are	used	for	a	single	example,	then	they
are	combined:

>>>	print(list(range(20)))	#	doctest:	+ELLIPSIS

...																								#	doctest:	+NORMALIZE_WHITESPACE

[0,				1,	...,			18,				19]

As	 the	 previous	 example	 shows,	 you	 can	 add	 ...	 lines	 to	 your
example	 containing	 only	 directives.	 This	 can	 be	 useful	 when	 an
example	is	too	long	for	a	directive	to	comfortably	fit	on	the	same	line:

>>>	print(list(range(5))	+	list(range(10,	20))	+	list

...	#	doctest:	+ELLIPSIS

[0,	...,	4,	10,	...,	19,	30,	...,	39]

Note	that	since	all	options	are	disabled	by	default,	and	directives	apply
only	 to	 the	 example	 they	 appear	 in,	 enabling	 options	 (via	 +	 in	 a
directive)	is	usually	the	only	meaningful	choice.	However,	option	flags
can	 also	 be	 passed	 to	 functions	 that	 run	 doctests,	 establishing
different	 defaults.	 In	 such	 cases,	 disabling	 an	 option	 via	 -	 in	 a
directive	can	be	useful.

26.2.3.7.	Warnings

doctest	is	serious	about	requiring	exact	matches	in	expected	output.
If	 even	 a	 single	 character	 doesn’t	 match,	 the	 test	 fails.	 This	 will
probably	surprise	you	a	 few	 times,	as	you	 learn	exactly	what	Python
does	and	doesn’t	guarantee	about	output.	For	example,	when	printing

a	 dict,	 Python	 doesn’t	 guarantee	 that	 the	 key-value	 pairs	 will	 be
printed	in	any	particular	order,	so	a	test	like

>>>	foo()

{"Hermione":	"hippogryph",	"Harry":	"broomstick"}

is	vulnerable!	One	workaround	is	to	do

>>>	foo()	==	{"Hermione":	"hippogryph",	"Harry":	"broomstick"

True

instead.	Another	is	to	do

>>>	d	=	sorted(foo().items())

>>>	d

[('Harry',	'broomstick'),	('Hermione',	'hippogryph')]

There	are	others,	but	you	get	the	idea.

Another	bad	idea	is	to	print	things	that	embed	an	object	address,	like

>>>	id(1.0)	#	certain	to	fail	some	of	the	time

7948648

>>>	class	C:	pass

>>>	C()			#	the	default	repr()	for	instances	embeds	an	address

<__main__.C	instance	at	0x00AC18F0>

The	ELLIPSIS	directive	gives	a	nice	approach	for	the	last	example:

>>>	C()	#doctest:	+ELLIPSIS

<__main__.C	instance	at	0x...>

Floating-point	 numbers	 are	 also	 subject	 to	 small	 output	 variations

across	platforms,	because	Python	defers	 to	 the	platform	C	 library	 for
float	formatting,	and	C	libraries	vary	widely	in	quality	here.

>>>	1./7		#	risky

0.14285714285714285

>>>	print(1./7)	#	safer

0.142857142857

>>>	print(round(1./7,	6))	#	much	safer

0.142857

Numbers	 of	 the	 form	 I/2.**J	 are	 safe	 across	 all	 platforms,	 and	 I
often	contrive	doctest	examples	to	produce	numbers	of	that	form:

>>>	3./4		#	utterly	safe

0.75

Simple	 fractions	 are	 also	 easier	 for	 people	 to	 understand,	 and	 that
makes	for	better	documentation.

26.2.4.	Basic	API

The	 functions	 testmod()	 and	 testfile()	 provide	 a	 simple
interface	to	doctest	that	should	be	sufficient	for	most	basic	uses.	For	a
less	 formal	 introduction	 to	 these	 two	 functions,	 see	 sections	Simple
Usage:	 Checking	 Examples	 in	 Docstrings	 and	 Simple	 Usage:
Checking	Examples	in	a	Text	File.

doctest.testfile(filename,	module_relative=True,	name=None,
package=None,	globs=None,	verbose=None,	report=True,
optionflags=0,	extraglobs=None,	raise_on_error=False,
parser=DocTestParser(),	encoding=None)

All	 arguments	 except	 filename	 are	 optional,	 and	 should	 be
specified	in	keyword	form.

Test	 examples	 in	 the	 file	 named	 filename.	 Return
(failure_count,	test_count).

Optional	 argument	 module_relative	 specifies	 how	 the	 filename
should	be	interpreted:

If	 module_relative	 is	 True	 (the	 default),	 then	 filename
specifies	an	OS-independent	module-relative	path.	By	default,
this	path	is	relative	to	the	calling	module’s	directory;	but	if	the
package	 argument	 is	 specified,	 then	 it	 is	 relative	 to	 that
package.	To	ensure	OS-independence,	filename	should	use	/
characters	 to	 separate	 path	 segments,	 and	 may	 not	 be	 an
absolute	path	(i.e.,	it	may	not	begin	with	/).
If	module_relative	 is	 False,	 then	 filename	 specifies	 an	OS-
specific	 path.	 The	 path	 may	 be	 absolute	 or	 relative;	 relative
paths	 are	 resolved	 with	 respect	 to	 the	 current	 working
directory.

Optional	argument	name	gives	the	name	of	the	test;	by	default,	or
if	None,	os.path.basename(filename)	is	used.

Optional	argument	package	is	a	Python	package	or	the	name	of	a
Python	 package	 whose	 directory	 should	 be	 used	 as	 the	 base
directory	for	a	module-relative	filename.	If	no	package	is	specified,
then	the	calling	module’s	directory	is	used	as	the	base	directory	for
module-relative	 filenames.	 It	 is	 an	 error	 to	 specify	 package	 if
module_relative	is	False.

Optional	 argument	 globs	 gives	 a	 dict	 to	 be	 used	 as	 the	 globals
when	 executing	 examples.	 A	 new	 shallow	 copy	 of	 this	 dict	 is
created	for	the	doctest,	so	its	examples	start	with	a	clean	slate.	By
default,	or	if	None,	a	new	empty	dict	is	used.

Optional	argument	extraglobs	gives	a	dict	merged	into	the	globals
used	 to	 execute	 examples.	 This	 works	 like	 dict.update():	 if
globs	and	extraglobs	have	a	common	key,	the	associated	value	in
extraglobs	appears	in	the	combined	dict.	By	default,	or	if	None,	no
extra	 globals	 are	 used.	 This	 is	 an	 advanced	 feature	 that	 allows
parameterization	of	doctests.	For	example,	a	doctest	can	be	written
for	a	base	class,	using	a	generic	name	for	the	class,	then	reused	to
test	 any	 number	 of	 subclasses	 by	 passing	 an	 extraglobs	 dict
mapping	the	generic	name	to	the	subclass	to	be	tested.

Optional	argument	verbose	prints	lots	of	stuff	if	true,	and	prints	only
failures	if	false;	by	default,	or	if	None,	it’s	true	if	and	only	if	'-v'	is
in	sys.argv.

Optional	argument	report	prints	a	summary	at	 the	end	when	 true,
else	prints	 nothing	at	 the	end.	 In	 verbose	mode,	 the	 summary	 is
detailed,	else	 the	summary	 is	very	brief	 (in	 fact,	empty	 if	all	 tests
passed).

Optional	 argument	 optionflags	 or’s	 together	 option	 flags.	 See
section	Option	Flags.

Optional	 argument	 raise_on_error	 defaults	 to	 false.	 If	 true,	 an
exception	is	raised	upon	the	first	failure	or	unexpected	exception	in
an	 example.	 This	 allows	 failures	 to	 be	 post-mortem	 debugged.
Default	behavior	is	to	continue	running	examples.

Optional	 argument	 parser	 specifies	 a	 DocTestParser	 (or
subclass)	 that	 should	 be	 used	 to	 extract	 tests	 from	 the	 files.	 It
defaults	to	a	normal	parser	(i.e.,	DocTestParser()).

Optional	argument	encoding	specifies	an	encoding	that	should	be
used	to	convert	the	file	to	unicode.

doctest.testmod(m=None,	name=None,	globs=None,
verbose=None,	report=True,	optionflags=0,	extraglobs=None,
raise_on_error=False,	exclude_empty=False)

All	arguments	are	optional,	and	all	except	for	m	should	be	specified
in	keyword	form.

Test	 examples	 in	 docstrings	 in	 functions	 and	 classes	 reachable
from	module	m	 (or	 module	 __main__	 if	m	 is	 not	 supplied	 or	 is
None),	starting	with	m.__doc__.

Also	 test	 examples	 reachable	 from	 dict	 m.__test__,	 if	 it	 exists
and	is	not	None.	m.__test__	maps	names	(strings)	to	functions,
classes	and	strings;	function	and	class	docstrings	are	searched	for
examples;	strings	are	searched	directly,	as	if	they	were	docstrings.

Only	 docstrings	 attached	 to	 objects	 belonging	 to	 module	m	 are
searched.

Return	(failure_count,	test_count).

Optional	argument	name	gives	the	name	of	the	module;	by	default,
or	if	None,	m.__name__	is	used.

Optional	argument	exclude_empty	defaults	to	false.	If	true,	objects
for	which	no	doctests	are	 found	are	excluded	 from	consideration.
The	 default	 is	 a	 backward	 compatibility	 hack,	 so	 that	 code	 still
using	 doctest.master.summarize()	 in	 conjunction	 with
testmod()	continues	to	get	output	for	objects	with	no	tests.	The
exclude_empty	 argument	 to	 the	 newer	 DocTestFinder

constructor	defaults	to	true.

Optional	 arguments	 extraglobs,	 verbose,	 report,	 optionflags,
raise_on_error,	 and	 globs	 are	 the	 same	 as	 for	 function
testfile()	above,	except	that	globs	defaults	to	m.__dict__.

There’s	 also	 a	 function	 to	 run	 the	 doctests	 associated	 with	 a	 single
object.	This	function	is	provided	for	backward	compatibility.	There	are
no	plans	to	deprecate	it,	but	it’s	rarely	useful:

doctest.run_docstring_examples(f,	globs,	verbose=False,
name="NoName",	compileflags=None,	optionflags=0)

Test	 examples	 associated	with	 object	 f;	 for	 example,	 f	may	 be	 a
module,	function,	or	class	object.

A	 shallow	 copy	 of	 dictionary	 argument	 globs	 is	 used	 for	 the
execution	context.

Optional	argument	name	is	used	in	failure	messages,	and	defaults
to	"NoName".

If	 optional	 argument	 verbose	 is	 true,	 output	 is	 generated	 even	 if
there	are	no	failures.	By	default,	output	is	generated	only	in	case	of

an	example	failure.

Optional	argument	compileflags	 gives	 the	 set	 of	 flags	 that	 should
be	 used	 by	 the	Python	 compiler	when	 running	 the	 examples.	 By
default,	or	 if	None,	 flags	are	deduced	corresponding	 to	 the	set	of
future	features	found	in	globs.

Optional	argument	optionflags	works	as	 for	 function	testfile()
above.

26.2.5.	Unittest	API

As	your	collection	of	doctest’ed	modules	grows,	you’ll	want	a	way	 to
run	all	 their	doctests	systematically.	doctest	provides	 two	 functions
that	 can	be	used	 to	 create	 unittest	 test	 suites	 from	modules	and
text	 files	 containing	 doctests.	 To	 integrate	 with	 unittest	 test
discovery,	include	a	load_tests()	function	in	your	test	module:

import	unittest

import	doctest

import	my_module_with_doctests

def	load_tests(loader,	tests,	ignore):

				tests.addTests(doctest.DocTestSuite(my_module_with_doctests

				return	tests

There	 are	 two	 main	 functions	 for	 creating	 unittest.TestSuite
instances	from	text	files	and	modules	with	doctests:

doctest.DocFileSuite(*paths,	module_relative=True,
package=None,	setUp=None,	tearDown=None,	globs=None,
optionflags=0,	parser=DocTestParser(),	encoding=None)

Convert	 doctest	 tests	 from	 one	 or	 more	 text	 files	 to	 a
unittest.TestSuite.

The	 returned	unittest.TestSuite	 is	 to	be	 run	by	 the	unittest
framework	 and	 runs	 the	 interactive	 examples	 in	 each	 file.	 If	 an
example	in	any	file	fails,	then	the	synthesized	unit	test	fails,	and	a
failureException	exception	is	raised	showing	the	name	of	the
file	containing	the	test	and	a	(sometimes	approximate)	line	number.

Pass	one	or	more	paths	(as	strings)	to	text	files	to	be	examined.

Options	may	be	provided	as	keyword	arguments:

Optional	argument	module_relative	specifies	how	the	filenames	 in
paths	should	be	interpreted:

If	module_relative	is	True	(the	default),	then	each	filename	in
paths	 specifies	 an	 OS-independent	 module-relative	 path.	 By
default,	 this	 path	 is	 relative	 to	 the	 calling	module’s	 directory;
but	 if	 the	package	argument	 is	specified,	 then	 it	 is	 relative	 to
that	 package.	 To	 ensure	 OS-independence,	 each	 filename
should	use	/	characters	to	separate	path	segments,	and	may
not	be	an	absolute	path	(i.e.,	it	may	not	begin	with	/).
If	 module_relative	 is	 False,	 then	 each	 filename	 in	 paths
specifies	 an	OS-specific	 path.	 The	 path	may	 be	 absolute	 or
relative;	relative	paths	are	resolved	with	respect	to	the	current
working	directory.

Optional	argument	package	is	a	Python	package	or	the	name	of	a
Python	 package	 whose	 directory	 should	 be	 used	 as	 the	 base
directory	 for	module-relative	 filenames	 in	 paths.	 If	 no	 package	 is
specified,	 then	 the	calling	module’s	directory	 is	used	as	 the	base
directory	 for	 module-relative	 filenames.	 It	 is	 an	 error	 to	 specify
package	if	module_relative	is	False.

Optional	 argument	 setUp	 specifies	 a	 set-up	 function	 for	 the	 test
suite.	This	is	called	before	running	the	tests	in	each	file.	The	setUp
function	will	be	passed	a	DocTest	object.	The	setUp	function	can
access	the	test	globals	as	the	globs	attribute	of	the	test	passed.

Optional	argument	tearDown	specifies	a	tear-down	function	for	the
test	 suite.	 This	 is	 called	 after	 running	 the	 tests	 in	 each	 file.	 The
tearDown	 function	 will	 be	 passed	 a	 DocTest	 object.	 The	 setUp
function	 can	 access	 the	 test	 globals	 as	 the	globs	 attribute	 of	 the
test	passed.

Optional	argument	globs	is	a	dictionary	containing	the	initial	global
variables	for	the	tests.	A	new	copy	of	this	dictionary	is	created	for
each	test.	By	default,	globs	is	a	new	empty	dictionary.

Optional	argument	optionflags	specifies	the	default	doctest	options
for	the	tests,	created	by	or-ing	together	individual	option	flags.	See
section	 Option	 Flags.	 See	 function
set_unittest_reportflags()	 below	 for	 a	 better	 way	 to	 set
reporting	options.

Optional	 argument	 parser	 specifies	 a	 DocTestParser	 (or
subclass)	 that	 should	 be	 used	 to	 extract	 tests	 from	 the	 files.	 It
defaults	to	a	normal	parser	(i.e.,	DocTestParser()).

Optional	argument	encoding	specifies	an	encoding	that	should	be
used	to	convert	the	file	to	unicode.

The	global	__file__	is	added	to	the	globals	provided	to	doctests
loaded	from	a	text	file	using	DocFileSuite().

doctest.DocTestSuite(module=None,	globs=None,
extraglobs=None,	test_finder=None,	setUp=None,	tearDown=None,
checker=None)

Convert	doctest	tests	for	a	module	to	a	unittest.TestSuite.

The	 returned	unittest.TestSuite	 is	 to	be	 run	by	 the	unittest
framework	 and	 runs	 each	 doctest	 in	 the	 module.	 If	 any	 of	 the
doctests	 fail,	 then	 the	 synthesized	 unit	 test	 fails,	 and	 a
failureException	exception	is	raised	showing	the	name	of	the
file	containing	the	test	and	a	(sometimes	approximate)	line	number.

Optional	argument	module	provides	the	module	to	be	tested.	It	can
be	 a	 module	 object	 or	 a	 (possibly	 dotted)	 module	 name.	 If	 not

specified,	the	module	calling	this	function	is	used.

Optional	argument	globs	is	a	dictionary	containing	the	initial	global
variables	for	the	tests.	A	new	copy	of	this	dictionary	is	created	for
each	test.	By	default,	globs	is	a	new	empty	dictionary.

Optional	 argument	 extraglobs	 specifies	 an	 extra	 set	 of	 global
variables,	which	is	merged	into	globs.	By	default,	no	extra	globals
are	used.

Optional	argument	test_finder	is	the	DocTestFinder	object	(or	a
drop-in	 replacement)	 that	 is	 used	 to	 extract	 doctests	 from	 the
module.

Optional	 arguments	 setUp,	 tearDown,	 and	 optionflags	 are	 the
same	as	for	function	DocFileSuite()	above.

This	function	uses	the	same	search	technique	as	testmod().

Note: 	Unlike	 testmod()	 and	 DocTestFinder,	 this	 function
raises	a	ValueError	if	module	contains	no	docstrings.	You	can
prevent	this	error	by	passing	a	DocTestFinder	instance	as	the
test_finder	 argument	 with	 its	exclude_empty	 keyword	 argument
set	to	False:

>>>	finder	=	doctest.DocTestFinder(exclude_empty=

>>>	suite	=	doctest.DocTestSuite(test_finder=finder

Under	 the	 covers,	 DocTestSuite()	 creates	 a
unittest.TestSuite	 out	 of	 doctest.DocTestCase	 instances,
and	 DocTestCase	 is	 a	 subclass	 of	 unittest.TestCase.
DocTestCase	 isn’t	 documented	 here	 (it’s	 an	 internal	 detail),	 but

studying	 its	 code	 can	 answer	 questions	 about	 the	 exact	 details	 of
unittest	integration.

Similarly,	DocFileSuite()	creates	a	unittest.TestSuite	out	of
doctest.DocFileCase	instances,	and	DocFileCase	is	a	subclass
of	DocTestCase.

So	both	ways	of	creating	a	unittest.TestSuite	 run	 instances	of
DocTestCase.	 This	 is	 important	 for	 a	 subtle	 reason:	 when	 you	 run
doctest	 functions	yourself,	you	can	control	the	doctest	options	 in
use	directly,	by	passing	option	flags	to	doctest	functions.	However,	if
you’re	writing	a	unittest	 framework,	unittest	ultimately	controls
when	and	how	tests	get	run.	The	framework	author	typically	wants	to
control	 doctest	 reporting	 options	 (perhaps,	 e.g.,	 specified	 by
command	 line	 options),	 but	 there’s	 no	 way	 to	 pass	 options	 through
unittest	to	doctest	test	runners.

For	 this	 reason,	 doctest	 also	 supports	 a	 notion	 of	 doctest
reporting	flags	specific	to	unittest	support,	via	this	function:

doctest.set_unittest_reportflags(flags)
Set	the	doctest	reporting	flags	to	use.

Argument	 flags	 or’s	 together	 option	 flags.	 See	 section	 Option
Flags.	Only	“reporting	flags”	can	be	used.

This	 is	a	module-global	setting,	and	affects	all	 future	doctests	 run
by	module	unittest:	the	runTest()	method	of	DocTestCase
looks	 at	 the	 option	 flags	 specified	 for	 the	 test	 case	 when	 the
DocTestCase	instance	was	constructed.	If	no	reporting	flags	were
specified	 (which	 is	 the	 typical	 and	 expected	 case),	 doctest‘s
unittest	 reporting	 flags	are	or’ed	 into	 the	option	 flags,	and	 the

option	 flags	 so	 augmented	 are	 passed	 to	 the	 DocTestRunner
instance	 created	 to	 run	 the	 doctest.	 If	 any	 reporting	 flags	 were
specified	 when	 the	 DocTestCase	 instance	 was	 constructed,
doctest‘s	unittest	reporting	flags	are	ignored.

The	 value	 of	 the	 unittest	 reporting	 flags	 in	 effect	 before	 the
function	was	called	is	returned	by	the	function.

26.2.6.	Advanced	API

The	 basic	 API	 is	 a	 simple	 wrapper	 that’s	 intended	 to	 make	 doctest
easy	 to	 use.	 It	 is	 fairly	 flexible,	 and	 should	meet	most	 users’	 needs;
however,	if	you	require	more	fine-grained	control	over	testing,	or	wish
to	 extend	 doctest’s	 capabilities,	 then	 you	 should	 use	 the	 advanced
API.

The	advanced	API	 revolves	around	 two	container	classes,	which	are
used	to	store	the	interactive	examples	extracted	from	doctest	cases:

Example:	 A	 single	 Python	 statement,	 paired	 with	 its	 expected
output.
DocTest:	 A	 collection	 of	 Examples,	 typically	 extracted	 from	 a
single	docstring	or	text	file.

Additional	processing	classes	are	defined	to	find,	parse,	and	run,	and
check	doctest	examples:

DocTestFinder:	 Finds	 all	 docstrings	 in	 a	 given	 module,	 and
uses	 a	 DocTestParser	 to	 create	 a	 DocTest	 from	 every
docstring	that	contains	interactive	examples.
DocTestParser:	Creates	a	DocTest	object	from	a	string	(such
as	an	object’s	docstring).
DocTestRunner:	 Executes	 the	 examples	 in	 a	 DocTest,	 and
uses	an	OutputChecker	to	verify	their	output.
OutputChecker:	 Compares	 the	 actual	 output	 from	 a	 doctest
example	 with	 the	 expected	 output,	 and	 decides	 whether	 they
match.

The	relationships	among	these	processing	classes	are	summarized	in
the	following	diagram:

																												list	of:

+------+																			+---------+

|module|	--DocTestFinder->	|	DocTest	|	--DocTestRunner

+------+				|								^					+---------+					|							^

												|								|					|	Example	|					|							|

												v								|					|			...			|					v							|

											DocTestParser			|	Example	|			OutputChecker

																											+---------+

26.2.6.1.	DocTest	Objects

class	doctest.DocTest(examples,	globs,	name,	filename,	lineno,
docstring)

A	 collection	 of	 doctest	 examples	 that	 should	 be	 run	 in	 a	 single
namespace.	 The	 constructor	 arguments	 are	 used	 to	 initialize	 the
attributes	of	the	same	names.

DocTest	 defines	 the	 following	 attributes.	 They	 are	 initialized	 by
the	constructor,	and	should	not	be	modified	directly.

examples

A	 list	 of	 Example	 objects	 encoding	 the	 individual	 interactive
Python	examples	that	should	be	run	by	this	test.

globs

The	namespace	(aka	globals)	that	the	examples	should	be	run
in.	This	is	a	dictionary	mapping	names	to	values.	Any	changes
to	the	namespace	made	by	the	examples	(such	as	binding	new
variables)	will	be	reflected	in	globs	after	the	test	is	run.

name

A	 string	 name	 identifying	 the	 DocTest.	 Typically,	 this	 is	 the

name	of	the	object	or	file	that	the	test	was	extracted	from.

filename

The	name	of	the	file	that	this	DocTest	was	extracted	from;	or
None	 if	 the	 filename	 is	 unknown,	 or	 if	 the	 DocTest	was	 not
extracted	from	a	file.

lineno

The	line	number	within	filename	where	this	DocTest	begins,
or	None	 if	 the	 line	number	 is	unavailable.	This	 line	number	 is
zero-based	with	respect	to	the	beginning	of	the	file.

docstring

The	 string	 that	 the	 test	 was	 extracted	 from,	 or	 ‘None’	 if	 the
string	 is	 unavailable,	 or	 if	 the	 test	 was	 not	 extracted	 from	 a
string.

26.2.6.2.	Example	Objects

class	doctest.Example(source,	want,	exc_msg=None,	lineno=0,
indent=0,	options=None)

A	single	interactive	example,	consisting	of	a	Python	statement	and
its	 expected	 output.	 The	 constructor	 arguments	 are	 used	 to
initialize	the	attributes	of	the	same	names.

Example	 defines	 the	 following	 attributes.	 They	 are	 initialized	 by
the	constructor,	and	should	not	be	modified	directly.

source

A	 string	 containing	 the	 example’s	 source	 code.	 This	 source
code	 consists	 of	 a	 single	Python	 statement,	 and	 always	 ends
with	a	newline;	the	constructor	adds	a	newline	when	necessary.

want

The	expected	 output	 from	 running	 the	 example’s	 source	 code
(either	from	stdout,	or	a	traceback	in	case	of	exception).	want
ends	with	a	newline	unless	no	output	is	expected,	in	which	case
it’s	 an	 empty	 string.	 The	 constructor	 adds	 a	 newline	 when
necessary.

exc_msg

The	 exception	 message	 generated	 by	 the	 example,	 if	 the
example	 is	expected	to	generate	an	exception;	or	None	 if	 it	 is
not	 expected	 to	 generate	 an	 exception.	 This	 exception
message	 is	 compared	 against	 the	 return	 value	 of
traceback.format_exception_only().	 exc_msg	 ends
with	a	newline	unless	it’s	None.	The	constructor	adds	a	newline
if	needed.

lineno

The	line	number	within	the	string	containing	this	example	where
the	 example	 begins.	 This	 line	 number	 is	 zero-based	 with
respect	to	the	beginning	of	the	containing	string.

indent

The	 example’s	 indentation	 in	 the	 containing	 string,	 i.e.,	 the
number	 of	 space	 characters	 that	 precede	 the	 example’s	 first
prompt.

options

A	 dictionary	 mapping	 from	 option	 flags	 to	 True	 or	 False,
which	is	used	to	override	default	options	for	this	example.	Any
option	 flags	 not	 contained	 in	 this	 dictionary	 are	 left	 at	 their
default	 value	 (as	 specified	 by	 the	 DocTestRunner‘s
optionflags).	By	default,	no	options	are	set.

26.2.6.3.	DocTestFinder	objects

class	doctest.DocTestFinder(verbose=False,
parser=DocTestParser(),	recurse=True,	exclude_empty=True)

A	processing	class	used	to	extract	the	DocTests	that	are	relevant
to	 a	 given	 object,	 from	 its	 docstring	 and	 the	 docstrings	 of	 its
contained	 objects.	 DocTests	 can	 be	 extracted	 from	 modules,
classes,	 functions,	 methods,	 staticmethods,	 classmethods,	 and
properties.

The	optional	argument	verbose	can	be	used	to	display	the	objects
searched	by	the	finder.	It	defaults	to	False	(no	output).

The	 optional	 argument	 parser	 specifies	 the	 DocTestParser
object	 (or	 a	 drop-in	 replacement)	 that	 is	 used	 to	 extract	 doctests
from	docstrings.

If	 the	 optional	 argument	 recurse	 is	 false,	 then
DocTestFinder.find()	will	only	examine	the	given	object,	and
not	any	contained	objects.

If	 the	 optional	 argument	 exclude_empty	 is	 false,	 then
DocTestFinder.find()	will	include	tests	for	objects	with	empty
docstrings.

DocTestFinder	defines	the	following	method:

find(obj[,	name][,	module][,	globs][,	extraglobs])
Return	 a	 list	 of	 the	 DocTests	 that	 are	 defined	 by	 obj‘s
docstring,	or	by	any	of	its	contained	objects’	docstrings.

The	optional	 argument	name	 specifies	 the	 object’s	 name;	 this

name	 will	 be	 used	 to	 construct	 names	 for	 the	 returned
DocTests.	 If	 name	 is	 not	 specified,	 then	 obj.__name__	 is
used.

The	optional	parameter	module	is	the	module	that	contains	the
given	object.	If	the	module	is	not	specified	or	is	None,	then	the
test	 finder	 will	 attempt	 to	 automatically	 determine	 the	 correct
module.	The	object’s	module	is	used:

As	a	default	namespace,	if	globs	is	not	specified.
To	 prevent	 the	 DocTestFinder	 from	 extracting	 DocTests
from	 objects	 that	 are	 imported	 from	 other	 modules.
(Contained	 objects	 with	 modules	 other	 than	 module	 are
ignored.)
To	find	the	name	of	the	file	containing	the	object.
To	help	find	the	line	number	of	the	object	within	its	file.

If	module	is	False,	no	attempt	to	find	the	module	will	be	made.
This	is	obscure,	of	use	mostly	in	testing	doctest	itself:	if	module
is	False,	or	is	None	but	cannot	be	found	automatically,	then	all
objects	are	considered	 to	belong	 to	 the	(non-existent)	module,
so	 all	 contained	 objects	 will	 (recursively)	 be	 searched	 for
doctests.

The	 globals	 for	 each	 DocTest	 is	 formed	 by	 combining	 globs
and	 extraglobs	 (bindings	 in	 extraglobs	 override	 bindings	 in
globs).	A	new	shallow	copy	of	 the	globals	dictionary	 is	created
for	each	DocTest.	 If	globs	 is	not	specified,	 then	 it	defaults	 to
the	 module’s	 __dict__,	 if	 specified,	 or	 {}	 otherwise.	 If
extraglobs	is	not	specified,	then	it	defaults	to	{}.

26.2.6.4.	DocTestParser	objects

class	doctest.DocTestParser
A	 processing	 class	 used	 to	 extract	 interactive	 examples	 from	 a
string,	and	use	them	to	create	a	DocTest	object.

DocTestParser	defines	the	following	methods:

get_doctest(string,	globs,	name,	filename,	lineno)
Extract	all	 doctest	 examples	 from	 the	given	string,	and	collect
them	into	a	DocTest	object.

globs,	 name,	 filename,	 and	 lineno	 are	 attributes	 for	 the	 new
DocTest	object.	See	the	documentation	for	DocTest	for	more
information.

get_examples(string,	name='<string>')
Extract	 all	 doctest	 examples	 from	 the	 given	 string,	 and	 return
them	as	a	list	of	Example	objects.	Line	numbers	are	0-based.
The	optional	 argument	name	 is	 a	 name	 identifying	 this	 string,
and	is	only	used	for	error	messages.

parse(string,	name='<string>')
Divide	the	given	string	into	examples	and	intervening	text,	and
return	them	as	a	list	of	alternating	Examples	and	strings.	Line
numbers	for	the	Examples	are	0-based.	The	optional	argument
name	is	a	name	identifying	this	string,	and	is	only	used	for	error
messages.

26.2.6.5.	DocTestRunner	objects

class	doctest.DocTestRunner(checker=None,	verbose=None,
optionflags=0)

A	 processing	 class	 used	 to	 execute	 and	 verify	 the	 interactive

examples	in	a	DocTest.

The	 comparison	 between	 expected	 outputs	 and	 actual	 outputs	 is
done	 by	 an	 OutputChecker.	 This	 comparison	 may	 be
customized	with	a	number	of	option	flags;	see	section	Option	Flags
for	 more	 information.	 If	 the	 option	 flags	 are	 insufficient,	 then	 the
comparison	 may	 also	 be	 customized	 by	 passing	 a	 subclass	 of
OutputChecker	to	the	constructor.

The	 test	 runner’s	 display	 output	 can	 be	 controlled	 in	 two	 ways.
First,	 an	 output	 function	 can	 be	 passed	 to	 TestRunner.run();
this	 function	will	be	called	with	strings	that	should	be	displayed.	 It
defaults	 to	 sys.stdout.write.	 If	 capturing	 the	 output	 is	 not
sufficient,	 then	 the	 display	 output	 can	 be	 also	 customized	 by
subclassing	 DocTestRunner,	 and	 overriding	 the	 methods
report_start(),	 report_success(),
report_unexpected_exception(),	 and
report_failure().

The	 optional	 keyword	 argument	 checker	 specifies	 the
OutputChecker	 object	 (or	 drop-in	 replacement)	 that	 should	 be
used	 to	 compare	 the	 expected	 outputs	 to	 the	 actual	 outputs	 of
doctest	examples.

The	 optional	 keyword	 argument	 verbose	 controls	 the
DocTestRunner‘s	verbosity.	If	verbose	is	True,	then	information
is	 printed	 about	 each	example,	 as	 it	 is	 run.	 If	verbose	 is	 False,
then	only	 failures	are	printed.	 If	verbose	 is	 unspecified,	 or	 None,
then	 verbose	 output	 is	 used	 iff	 the	 command-line	 switch	 -v	 is
used.

The	optional	keyword	argument	optionflags	can	be	used	to	control

how	 the	 test	 runner	 compares	 expected	 output	 to	 actual	 output,
and	 how	 it	 displays	 failures.	 For	 more	 information,	 see	 section
Option	Flags.

DocTestParser	defines	the	following	methods:

report_start(out,	test,	example)
Report	 that	 the	 test	 runner	 is	 about	 to	 process	 the	 given
example.	 This	 method	 is	 provided	 to	 allow	 subclasses	 of
DocTestRunner	 to	 customize	 their	 output;	 it	 should	 not	 be
called	directly.

example	 is	the	example	about	to	be	processed.	test	 is	the	test
containing	example.	out	 is	 the	output	function	that	was	passed
to	DocTestRunner.run().

report_success(out,	test,	example,	got)
Report	that	the	given	example	ran	successfully.	This	method	is
provided	to	allow	subclasses	of	DocTestRunner	to	customize
their	output;	it	should	not	be	called	directly.

example	is	the	example	about	to	be	processed.	got	is	the	actual
output	 from	 the	 example.	 test	 is	 the	 test	 containing	 example.
out	 is	 the	 output	 function	 that	 was	 passed	 to
DocTestRunner.run().

report_failure(out,	test,	example,	got)
Report	that	the	given	example	failed.	This	method	is	provided	to
allow	subclasses	of	DocTestRunner	to	customize	their	output;
it	should	not	be	called	directly.

example	is	the	example	about	to	be	processed.	got	is	the	actual
output	 from	 the	 example.	 test	 is	 the	 test	 containing	 example.

out	 is	 the	 output	 function	 that	 was	 passed	 to
DocTestRunner.run().

report_unexpected_exception(out,	 test,	 example,
exc_info)

Report	that	the	given	example	raised	an	unexpected	exception.
This	 method	 is	 provided	 to	 allow	 subclasses	 of
DocTestRunner	 to	 customize	 their	 output;	 it	 should	 not	 be
called	directly.

example	 is	 the	 example	 about	 to	 be	 processed.	exc_info	 is	 a
tuple	 containing	 information	 about	 the	 unexpected	 exception
(as	returned	by	sys.exc_info()).	 test	 is	 the	 test	 containing
example.	 out	 is	 the	 output	 function	 that	 was	 passed	 to
DocTestRunner.run().

run(test,	compileflags=None,	out=None,	clear_globs=True)
Run	the	examples	 in	 test	 (a	DocTest	object),	and	display	 the
results	using	the	writer	function	out.

The	 examples	 are	 run	 in	 the	 namespace	 test.globs.	 If
clear_globs	 is	 true	 (the	 default),	 then	 this	 namespace	 will	 be
cleared	 after	 the	 test	 runs,	 to	 help	 with	 garbage	 collection.	 If
you	 would	 like	 to	 examine	 the	 namespace	 after	 the	 test
completes,	then	use	clear_globs=False.

compileflags	gives	 the	set	of	 flags	 that	should	be	used	by	 the
Python	 compiler	 when	 running	 the	 examples.	 If	 not	 specified,
then	it	will	default	 to	the	set	of	future-import	flags	that	apply	to
globs.

The	 output	 of	 each	 example	 is	 checked	 using	 the
DocTestRunner‘s	 output	 checker,	 and	 the	 results	 are

formatted	by	the	DocTestRunner.report_*()	methods.

summarize(verbose=None)
Print	a	summary	of	all	the	test	cases	that	have	been	run	by	this
DocTestRunner,	 and	 return	 a	 named	 tuple
TestResults(failed,	attempted).

The	 optional	 verbose	 argument	 controls	 how	 detailed	 the
summary	 is.	 If	 the	 verbosity	 is	 not	 specified,	 then	 the
DocTestRunner‘s	verbosity	is	used.

26.2.6.6.	OutputChecker	objects

class	doctest.OutputChecker
A	class	used	to	check	the	whether	the	actual	output	from	a	doctest
example	matches	 the	 expected	 output.	 OutputChecker	 defines
two	methods:	check_output(),	which	compares	a	given	pair	of
outputs,	 and	 returns	 true	 if	 they	 match;	 and
output_difference(),	 which	 returns	 a	 string	 describing	 the
differences	between	two	outputs.

OutputChecker	defines	the	following	methods:

check_output(want,	got,	optionflags)
Return	 True	 iff	 the	 actual	 output	 from	 an	 example	 (got)
matches	the	expected	output	(want).	These	strings	are	always
considered	to	match	if	they	are	identical;	but	depending	on	what
option	 flags	 the	 test	 runner	 is	 using,	 several	 non-exact	match
types	 are	 also	 possible.	 See	 section	 Option	 Flags	 for	 more
information	about	option	flags.

output_difference(example,	got,	optionflags)

Return	a	string	describing	the	differences	between	the	expected
output	 for	 a	 given	 example	 (example)	 and	 the	 actual	 output
(got).	 optionflags	 is	 the	 set	 of	 option	 flags	 used	 to	 compare
want	and	got.

26.2.7.	Debugging

Doctest	 provides	 several	 mechanisms	 for	 debugging	 doctest
examples:

Several	 functions	 convert	 doctests	 to	 executable	 Python
programs,	which	can	be	run	under	the	Python	debugger,	pdb.

The	DebugRunner	class	 is	a	subclass	of	DocTestRunner	 that
raises	 an	 exception	 for	 the	 first	 failing	 example,	 containing
information	about	 that	example.	This	 information	can	be	used	 to
perform	post-mortem	debugging	on	the	example.

The	 unittest	 cases	 generated	 by	 DocTestSuite()	 support
the	debug()	method	defined	by	unittest.TestCase.

You	can	add	a	call	 to	pdb.set_trace()	 in	a	doctest	example,
and	 you’ll	 drop	 into	 the	 Python	 debugger	 when	 that	 line	 is
executed.	Then	you	can	 inspect	current	values	of	variables,	and
so	 on.	 For	 example,	 suppose	 a.py	 contains	 just	 this	 module
docstring:

"""

>>>	def	f(x):

...					g(x*2)

>>>	def	g(x):

...					print(x+3)

...					import	pdb;	pdb.set_trace()

>>>	f(3)

9

"""

Then	an	interactive	Python	session	may	look	like	this:

>>>	import	a,	doctest

>>>	doctest.testmod(a)

--Return--

>	<doctest	a[1]>(3)g()->None

->	import	pdb;	pdb.set_trace()

(Pdb)	list

		1					def	g(x):

		2									print(x+3)

		3		->					import	pdb;	pdb.set_trace()

[EOF]

(Pdb)	p	x

6

(Pdb)	step

--Return--

>	<doctest	a[0]>(2)f()->None

->	g(x*2)

(Pdb)	list

		1					def	f(x):

		2		->					g(x*2)

[EOF]

(Pdb)	p	x

3

(Pdb)	step

--Return--

>	<doctest	a[2]>(1)?()->None

->	f(3)

(Pdb)	cont

(0,	3)

>>>

Functions	that	convert	doctests	 to	Python	code,	and	possibly	run	the
synthesized	code	under	the	debugger:

doctest.script_from_examples(s)
Convert	text	with	examples	to	a	script.

Argument	s	 is	a	string	containing	doctest	examples.	The	string	 is
converted	 to	 a	 Python	 script,	 where	 doctest	 examples	 in	 s	 are
converted	 to	 regular	 code,	 and	 everything	 else	 is	 converted	 to
Python	comments.	The	generated	script	is	returned	as	a	string.	For
example,

import	doctest

print(doctest.script_from_examples(r"""

				Set	x	and	y	to	1	and	2.

				>>>	x,	y	=	1,	2

				Print	their	sum:

				>>>	print(x+y)

				3

"""))

displays:

#	Set	x	and	y	to	1	and	2.

x,	y	=	1,	2

#

#	Print	their	sum:

print(x+y)

#	Expected:

##	3

This	function	is	used	internally	by	other	functions	(see	below),	but
can	 also	 be	 useful	 when	 you	 want	 to	 transform	 an	 interactive
Python	session	into	a	Python	script.

doctest.testsource(module,	name)
Convert	the	doctest	for	an	object	to	a	script.

Argument	module	is	a	module	object,	or	dotted	name	of	a	module,
containing	 the	 object	 whose	 doctests	 are	 of	 interest.	 Argument

name	 is	 the	 name	 (within	 the	 module)	 of	 the	 object	 with	 the
doctests	of	 interest.	The	 result	 is	 a	 string,	 containing	 the	 object’s
docstring	 converted	 to	 a	 Python	 script,	 as	 described	 for
script_from_examples()	above.	For	example,	if	module	a.py
contains	a	top-level	function	f(),	then

import	a,	doctest

print(doctest.testsource(a,	"a.f"))

prints	 a	 script	 version	 of	 function	 f()‘s	 docstring,	 with	 doctests
converted	to	code,	and	the	rest	placed	in	comments.

doctest.debug(module,	name,	pm=False)
Debug	the	doctests	for	an	object.

The	module	 and	 name	 arguments	 are	 the	 same	 as	 for	 function
testsource()	 above.	 The	 synthesized	 Python	 script	 for	 the
named	 object’s	 docstring	 is	 written	 to	 a	 temporary	 file,	 and	 then
that	file	is	run	under	the	control	of	the	Python	debugger,	pdb.

A	shallow	copy	of	module.__dict__	 is	 used	 for	both	 local	 and
global	execution	context.

Optional	argument	pm	controls	whether	post-mortem	debugging	is
used.	If	pm	has	a	 true	value,	 the	script	 file	 is	run	directly,	and	the
debugger	gets	 involved	only	 if	 the	script	 terminates	via	 raising	an
unhandled	 exception.	 If	 it	 does,	 then	 post-mortem	 debugging	 is
invoked,	via	pdb.post_mortem(),	passing	 the	 traceback	object
from	the	unhandled	exception.	If	pm	is	not	specified,	or	is	false,	the
script	 is	 run	 under	 the	 debugger	 from	 the	 start,	 via	 passing	 an
appropriate	exec()	call	to	pdb.run().

doctest.debug_src(src,	pm=False,	globs=None)

Debug	the	doctests	in	a	string.

This	 is	 like	 function	 debug()	 above,	 except	 that	 a	 string
containing	 doctest	 examples	 is	 specified	 directly,	 via	 the	 src
argument.

Optional	 argument	 pm	 has	 the	 same	 meaning	 as	 in	 function
debug()	above.

Optional	argument	globs	gives	a	dictionary	to	use	as	both	local	and
global	 execution	 context.	 If	 not	 specified,	 or	 None,	 an	 empty
dictionary	 is	used.	 If	 specified,	a	shallow	copy	of	 the	dictionary	 is
used.

The	DebugRunner	class,	and	the	special	exceptions	it	may	raise,	are
of	 most	 interest	 to	 testing	 framework	 authors,	 and	 will	 only	 be
sketched	here.	See	the	source	code,	and	especially	DebugRunner‘s
docstring	(which	is	a	doctest!)	for	more	details:

class	doctest.DebugRunner(checker=None,	verbose=None,
optionflags=0)

A	subclass	of	DocTestRunner	 that	 raises	an	exception	as	soon
as	a	failure	is	encountered.	If	an	unexpected	exception	occurs,	an
UnexpectedException	 exception	 is	 raised,	 containing	 the	 test,
the	 example,	 and	 the	 original	 exception.	 If	 the	 output	 doesn’t
match,	 then	 a	 DocTestFailure	 exception	 is	 raised,	 containing
the	test,	the	example,	and	the	actual	output.

For	 information	 about	 the	 constructor	 parameters	 and	 methods,
see	 the	documentation	 for	DocTestRunner	 in	 section	Advanced
API.

There	 are	 two	 exceptions	 that	 may	 be	 raised	 by	 DebugRunner

instances:

exception	doctest.DocTestFailure(test,	example,	got)
An	exception	 raised	by	 DocTestRunner	 to	 signal	 that	a	doctest
example’s	 actual	 output	 did	 not	 match	 its	 expected	 output.	 The
constructor	 arguments	 are	 used	 to	 initialize	 the	 attributes	 of	 the
same	names.

DocTestFailure	defines	the	following	attributes:

DocTestFailure.test

The	DocTest	object	that	was	being	run	when	the	example	failed.

DocTestFailure.example

The	Example	that	failed.

DocTestFailure.got

The	example’s	actual	output.

exception	doctest.UnexpectedException(test,	example,
exc_info)

An	exception	 raised	by	 DocTestRunner	 to	 signal	 that	a	doctest
example	 raised	 an	 unexpected	 exception.	 The	 constructor
arguments	are	used	to	initialize	the	attributes	of	the	same	names.

UnexpectedException	defines	the	following	attributes:

UnexpectedException.test

The	DocTest	object	that	was	being	run	when	the	example	failed.

UnexpectedException.example

The	Example	that	failed.

UnexpectedException.exc_info

A	tuple	containing	information	about	the	unexpected	exception,	as
returned	by	sys.exc_info().

26.2.8.	Soapbox

As	mentioned	 in	 the	 introduction,	doctest	has	grown	 to	have	 three
primary	uses:

1.	 Checking	examples	in	docstrings.
2.	 Regression	testing.
3.	 Executable	documentation	/	literate	testing.

These	 uses	 have	 different	 requirements,	 and	 it	 is	 important	 to
distinguish	them.	In	particular,	filling	your	docstrings	with	obscure	test
cases	makes	for	bad	documentation.

When	 writing	 a	 docstring,	 choose	 docstring	 examples	 with	 care.
There’s	an	art	to	this	that	needs	to	be	learned—it	may	not	be	natural	at
first.	 Examples	 should	 add	 genuine	 value	 to	 the	 documentation.	 A
good	example	can	often	be	worth	many	words.	If	done	with	care,	the
examples	will	be	invaluable	for	your	users,	and	will	pay	back	the	time	it
takes	to	collect	 them	many	times	over	as	the	years	go	by	and	things
change.	I’m	still	amazed	at	how	often	one	of	my	doctest	examples
stops	working	after	a	“harmless”	change.

Doctest	also	makes	an	excellent	tool	for	regression	testing,	especially
if	 you	 don’t	 skimp	 on	 explanatory	 text.	 By	 interleaving	 prose	 and
examples,	 it	 becomes	 much	 easier	 to	 keep	 track	 of	 what’s	 actually
being	tested,	and	why.	When	a	test	fails,	good	prose	can	make	it	much
easier	to	figure	out	what	the	problem	is,	and	how	it	should	be	fixed.	It’s
true	 that	 you	 could	write	 extensive	 comments	 in	 code-based	 testing,
but	 few	 programmers	 do.	 Many	 have	 found	 that	 using	 doctest
approaches	instead	leads	to	much	clearer	tests.	Perhaps	this	is	simply
because	doctest	makes	writing	prose	a	little	easier	than	writing	code,
while	writing	comments	in	code	is	a	little	harder.	I	think	it	goes	deeper

than	just	that:	the	natural	attitude	when	writing	a	doctest-based	test	is
that	you	want	to	explain	the	fine	points	of	your	software,	and	illustrate
them	with	examples.	This	in	turn	naturally	leads	to	test	files	that	start
with	the	simplest	features,	and	logically	progress	to	complications	and
edge	cases.	A	coherent	narrative	is	the	result,	instead	of	a	collection	of
isolated	 functions	 that	 test	 isolated	 bits	 of	 functionality	 seemingly	 at
random.	It’s	a	different	attitude,	and	produces	different	results,	blurring
the	distinction	between	testing	and	explaining.

Regression	testing	is	best	confined	to	dedicated	objects	or	files.	There
are	several	options	for	organizing	tests:

Write	text	files	containing	test	cases	as	interactive	examples,	and
test	 the	 files	 using	 testfile()	 or	 DocFileSuite().	 This	 is
recommended,	 although	 is	 easiest	 to	 do	 for	 new	 projects,
designed	from	the	start	to	use	doctest.
Define	functions	named	_regrtest_topic	that	consist	of	single
docstrings,	 containing	 test	 cases	 for	 the	 named	 topics.	 These
functions	 can	 be	 included	 in	 the	 same	 file	 as	 the	 module,	 or
separated	out	into	a	separate	test	file.
Define	 a	 __test__	 dictionary	 mapping	 from	 regression	 test
topics	to	docstrings	containing	test	cases.

Footnotes

[1]

Examples	containing	both	expected	output	and	an	exception
are	not	supported.	Trying	to	guess	where	one	ends	and	the
other	begins	is	too	error-prone,	and	that	also	makes	for	a
confusing	test.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

http://www.python.org/

26.3.	unittest	—	Unit	testing
framework
(If	 you	 are	 already	 familiar	 with	 the	 basic	 concepts	 of	 testing,	 you
might	want	to	skip	to	the	list	of	assert	methods.)

The	unittest	unit	testing	framework	was	originally	inspired	by	JUnit
and	 has	 a	 similar	 flavor	 as	 major	 unit	 testing	 frameworks	 in	 other
languages.	It	supports	test	automation,	sharing	of	setup	and	shutdown
code	for	tests,	aggregation	of	tests	into	collections,	and	independence
of	the	tests	from	the	reporting	framework.

To	achieve	 this,	 unittest	 supports	 some	 important	 concepts	 in	an
object-oriented	way:

test	fixture
A	test	fixture	represents	the	preparation	needed	to	perform	one	or
more	 tests,	and	any	associate	cleanup	actions.	This	may	 involve,
for	example,	creating	temporary	or	proxy	databases,	directories,	or
starting	a	server	process.

test	case
A	test	case	 is	 the	 individual	unit	of	 testing.	 It	checks	for	a	specific
response	to	a	particular	set	of	 inputs.	unittest	provides	a	base
class,	TestCase,	which	may	be	used	to	create	new	test	cases.

test	suite
A	 test	suite	 is	 a	 collection	of	 test	 cases,	 test	 suites,	 or	 both.	 It	 is
used	to	aggregate	tests	that	should	be	executed	together.

test	runner
A	 test	 runner	 is	a	component	which	orchestrates	 the	execution	of
tests	and	provides	the	outcome	to	the	user.	The	runner	may	use	a

graphical	 interface,	a	textual	 interface,	or	return	a	special	value	to
indicate	the	results	of	executing	the	tests.

See	also:

Module	doctest
Another	test-support	module	with	a	very	different	flavor.

Simple	Smalltalk	Testing:	With	Patterns
Kent	 Beck’s	 original	 paper	 on	 testing	 frameworks	 using	 the
pattern	shared	by	unittest.

Nose	and	py.test
Third-party	 unittest	 frameworks	 with	 a	 lighter-weight	 syntax	 for
writing	tests.	For	example,	assert	func(10)	==	42.

The	Python	Testing	Tools	Taxonomy
An	 extensive	 list	 of	 Python	 testing	 tools	 including	 functional
testing	frameworks	and	mock	object	libraries.

Testing	in	Python	Mailing	List
A	 special-interest-group	 for	 discussion	 of	 testing,	 and	 testing
tools,	in	Python.

The	script	Tools/unittestgui/unittestgui.py	 in	the	Python
source	 distribution	 is	 a	 GUI	 tool	 for	 test	 discovery	 and	 execution.
This	is	intended	largely	for	ease	of	use	for	those	new	to	unit	testing.
For	production	environments	it	is	recommended	that	tests	be	driven
by	 a	 continuous	 integration	 system	 such	 as	 Buildbot,	 Jenkins	 or
Hudson.

http://www.XProgramming.com/testfram.htm
http://code.google.com/p/python-nose/
http://pytest.org
http://wiki.python.org/moin/PythonTestingToolsTaxonomy
http://lists.idyll.org/listinfo/testing-in-python
http://buildbot.net/trac
http://jenkins-ci.org
http://hudson-ci.org/

26.3.1.	Basic	example

The	 unittest	 module	 provides	 a	 rich	 set	 of	 tools	 for	 constructing
and	running	tests.	This	section	demonstrates	that	a	small	subset	of	the
tools	suffice	to	meet	the	needs	of	most	users.

Here	is	a	short	script	to	test	three	functions	from	the	random	module:

import	random

import	unittest

class	TestSequenceFunctions(unittest.TestCase):

				def	setUp(self):

								self.seq	=	list(range(10))

				def	test_shuffle(self):

								#	make	sure	the	shuffled	sequence	does	not	lose	any	elements

								random.shuffle(self.seq)

								self.seq.sort()

								self.assertEqual(self.seq,	list(range(10)))

								#	should	raise	an	exception	for	an	immutable	sequence

								self.assertRaises(TypeError,	random.shuffle,

				def	test_choice(self):

								element	=	random.choice(self.seq)

								self.assertTrue(element	in	self.seq)

				def	test_sample(self):

								with	self.assertRaises(ValueError):

												random.sample(self.seq,	20)

								for	element	in	random.sample(self.seq,	5):

												self.assertTrue(element	in	self.seq)

if	__name__	==	'__main__':

				unittest.main()

A	 testcase	 is	 created	 by	 subclassing	 unittest.TestCase.	 The
three	individual	tests	are	defined	with	methods	whose	names	start	with
the	 letters	 test.	 This	 naming	 convention	 informs	 the	 test	 runner
about	which	methods	represent	tests.

The	 crux	 of	 each	 test	 is	 a	 call	 to	 assertEqual()	 to	 check	 for	 an
expected	 result;	 assertTrue()	 to	 verify	 a	 condition;	 or
assertRaises()	 to	 verify	 that	 an	 expected	 exception	 gets	 raised.
These	methods	are	used	instead	of	the	assert	statement	so	the	test
runner	can	accumulate	all	test	results	and	produce	a	report.

When	 a	 setUp()	 method	 is	 defined,	 the	 test	 runner	 will	 run	 that
method	 prior	 to	 each	 test.	 Likewise,	 if	 a	 tearDown()	 method	 is
defined,	the	test	runner	will	 invoke	that	method	after	each	test.	In	the
example,	setUp()	was	used	to	create	a	fresh	sequence	for	each	test.

The	 final	 block	 shows	 a	 simple	 way	 to	 run	 the	 tests.
unittest.main()	 provides	 a	 command-line	 interface	 to	 the	 test
script.	When	run	from	the	command	line,	the	above	script	produces	an
output	that	looks	like	this:

...

--

Ran	3	tests	in	0.000s

OK

Passing	 the	 -v	 option	 to	 your	 test	 script	 will	 instruct
unittest.main()	to	enable	a	higher	level	of	verbosity,	and	produce

the	following	output:

test_choice	(__main__.TestSequenceFunctions)	...	ok

test_sample	(__main__.TestSequenceFunctions)	...	ok

test_shuffle	(__main__.TestSequenceFunctions)	...	ok

--

Ran	3	tests	in	0.110s

OK

The	 above	 examples	 show	 the	 most	 commonly	 used	 unittest
features	 which	 are	 sufficient	 to	 meet	 many	 everyday	 testing	 needs.
The	remainder	of	the	documentation	explores	the	full	feature	set	from
first	principles.

26.3.2.	Command-Line	Interface

The	unittest	module	can	be	used	from	the	command	line	to	run	tests
from	modules,	classes	or	even	individual	test	methods:

python	-m	unittest	test_module1	test_module2

python	-m	unittest	test_module.TestClass

python	-m	unittest	test_module.TestClass.test_method

You	can	pass	in	a	list	with	any	combination	of	module	names,	and	fully
qualified	class	or	method	names.

Test	modules	can	be	specified	by	file	path	as	well:

python	-m	unittest	tests/test_something.py

This	allows	you	to	use	the	shell	filename	completion	to	specify	the	test
module.	The	 file	 specified	must	 still	 be	 importable	as	a	module.	The
path	 is	 converted	 to	 a	 module	 name	 by	 removing	 the	 ‘.py’	 and
converting	path	separators	into	‘.’.	If	you	want	to	execute	a	test	file	that
isn’t	 importable	 as	 a	 module	 you	 should	 execute	 the	 file	 directly
instead.

You	can	run	tests	with	more	detail	(higher	verbosity)	by	passing	in	the
-v	flag:

python	-m	unittest	-v	test_module

When	executed	without	arguments	Test	Discovery	is	started:

python	-m	unittest

For	a	list	of	all	the	command-line	options:

python	-m	unittest	-h

Changed	in	version	3.2:	In	earlier	versions	it	was	only	possible	to	run
individual	test	methods	and	not	modules	or	classes.

26.3.2.1.	Command-line	options

unittest	supports	these	command-line	options:

-b ,	--buffer

The	 standard	 output	 and	 standard	 error	 streams	 are	 buffered
during	 the	 test	 run.	 Output	 during	 a	 passing	 test	 is	 discarded.
Output	is	echoed	normally	on	test	fail	or	error	and	is	added	to	the
failure	messages.

-c ,	--catch

Control-C	during	 the	 test	 run	waits	 for	 the	current	 test	 to	end	and
then	 reports	 all	 the	 results	 so	 far.	 A	 second	 control-C	 raises	 the
normal	KeyboardInterrupt	exception.

See	Signal	Handling	for	the	functions	that	provide	this	functionality.

-f ,	--failfast

Stop	the	test	run	on	the	first	error	or	failure.

New	 in	version	3.2:	The	command-line	options	-b,	-c	 and	 -f	were
added.

The	command	line	can	also	be	used	for	test	discovery,	for	running	all
of	the	tests	in	a	project	or	just	a	subset.

26.3.3.	Test	Discovery

New	in	version	3.2.

Unittest	supports	simple	test	discovery.	In	order	to	be	compatible	with
test	 discovery,	 all	 of	 the	 test	 files	 must	 be	 modules	 or	 packages
(including	 namespace	 packages)	 importable	 from	 the	 top-level
directory	of	 the	project	(this	means	that	 their	 filenames	must	be	valid
identifiers).

Test	discovery	is	implemented	in	TestLoader.discover(),	but	can
also	be	used	from	the	command	line.	The	basic	command-line	usage
is:

cd	project_directory

python	-m	unittest	discover

Note: 	As	a	shortcut,	python	-m	unittest	is	the	equivalent	of
python	-m	unittest	discover.	If	you	want	to	pass	arguments
to	test	discovery	the	discover	sub-command	must	be	used
explicitly.

The	discover	sub-command	has	the	following	options:

-v ,	--verbose

Verbose	output

-s ,	--start-directory	directory

Directory	to	start	discovery	(.	default)

-p ,	--pattern	pattern

Pattern	to	match	test	files	(test*.py	default)

-t ,	--top-level-directory	directory

Top	level	directory	of	project	(defaults	to	start	directory)

The	-s,	-p,	and	-t	options	can	be	passed	in	as	positional	arguments	in
that	order.	The	following	two	command	lines	are	equivalent:

python	-m	unittest	discover	-s	project_directory	-p	

python	-m	unittest	discover	project_directory	'*_test.py'

As	well	 as	 being	 a	 path	 it	 is	 possible	 to	 pass	 a	 package	 name,	 for
example	myproject.subpackage.test,	as	the	start	directory.	The
package	name	you	supply	will	then	be	imported	and	its	location	on	the
filesystem	will	be	used	as	the	start	directory.

Caution: 	Test	discovery	loads	tests	by	importing	them.	Once	test
discovery	has	found	all	the	test	files	from	the	start	directory	you
specify	it	turns	the	paths	into	package	names	to	import.	For	example
foo/bar/baz.py	will	be	imported	as	foo.bar.baz.

If	 you	have	a	package	 installed	globally	and	attempt	 test	discovery
on	a	different	copy	of	the	package	then	the	import	could	happen	from
the	wrong	place.	If	this	happens	test	discovery	will	warn	you	and	exit.

If	 you	 supply	 the	 start	 directory	 as	 a	 package	 name	 rather	 than	 a
path	to	a	directory	then	discover	assumes	that	whichever	location	it
imports	 from	 is	 the	 location	 you	 intended,	 so	 you	 will	 not	 get	 the
warning.

Test	modules	and	packages	can	customize	test	loading	and	discovery
by	through	the	load_tests	protocol.

Changed	 in	 version	 3.4:	 Test	 discovery	 supports	 namespace

packages.

26.3.4.	Organizing	test	code

The	 basic	 building	 blocks	 of	 unit	 testing	 are	 test	 cases	 —	 single
scenarios	 that	 must	 be	 set	 up	 and	 checked	 for	 correctness.	 In
unittest,	 test	 cases	 are	 represented	 by	 unittest.TestCase
instances.	To	make	your	own	test	cases	you	must	write	subclasses	of
TestCase	or	use	FunctionTestCase.

The	 testing	 code	 of	 a	 TestCase	 instance	 should	 be	 entirely	 self
contained,	 such	 that	 it	 can	 be	 run	 either	 in	 isolation	 or	 in	 arbitrary
combination	with	any	number	of	other	test	cases.

The	simplest	TestCase	subclass	will	simply	implement	a	test	method
(i.e.	 a	 method	 whose	 name	 starts	 with	 test)	 in	 order	 to	 perform
specific	testing	code:

import	unittest

class	DefaultWidgetSizeTestCase(unittest.TestCase):

				def	test_default_widget_size(self):

								widget	=	Widget('The	widget')

								self.assertEqual(widget.size(),	(50,	50))

Note	 that	 in	order	 to	 test	something,	we	use	one	of	 the	assert*()
methods	 provided	 by	 the	 TestCase	 base	 class.	 If	 the	 test	 fails,	 an
exception	will	be	raised,	and	unittest	will	identify	the	test	case	as	a
failure.	Any	other	exceptions	will	be	treated	as	errors.

Tests	can	be	numerous,	and	their	set-up	can	be	repetitive.	Luckily,	we
can	factor	out	set-up	code	by	implementing	a	method	called	setUp(),
which	the	testing	framework	will	automatically	call	for	every	single	test
we	run:

import	unittest

class	SimpleWidgetTestCase(unittest.TestCase):

				def	setUp(self):

								self.widget	=	Widget('The	widget')

				def	test_default_widget_size(self):

								self.assertEqual(self.widget.size(),	(50,50),

																									'incorrect	default	size')

				def	test_widget_resize(self):

								self.widget.resize(100,150)

								self.assertEqual(self.widget.size(),	(100,150

																									'wrong	size	after	resize')

Note: 	The	order	in	which	the	various	tests	will	be	run	is	determined
by	sorting	the	test	method	names	with	respect	to	the	built-in	ordering
for	strings.

If	the	setUp()	method	raises	an	exception	while	the	test	 is	running,
the	framework	will	consider	the	test	to	have	suffered	an	error,	and	the
test	method	will	not	be	executed.

Similarly,	we	can	provide	a	tearDown()	method	 that	 tidies	up	after
the	test	method	has	been	run:

import	unittest

class	SimpleWidgetTestCase(unittest.TestCase):

				def	setUp(self):

								self.widget	=	Widget('The	widget')

				def	tearDown(self):

								self.widget.dispose()

If	 setUp()	 succeeded,	 tearDown()	 will	 be	 run	 whether	 the	 test
method	succeeded	or	not.

Such	a	working	environment	for	the	testing	code	is	called	a	fixture.

Test	 case	 instances	 are	 grouped	 together	 according	 to	 the	 features
they	 test.	 unittest	 provides	 a	 mechanism	 for	 this:	 the	 test	 suite,
represented	by	unittest‘s	TestSuite	class.	In	most	cases,	calling
unittest.main()	will	do	the	right	thing	and	collect	all	the	module’s
test	cases	for	you,	and	then	execute	them.

However,	should	you	want	to	customize	the	building	of	your	test	suite,
you	can	do	it	yourself:

def	suite():

				suite	=	unittest.TestSuite()

				suite.addTest(WidgetTestCase('test_default_size'

				suite.addTest(WidgetTestCase('test_resize'))

				return	suite

You	can	place	the	definitions	of	test	cases	and	test	suites	in	the	same
modules	as	the	code	they	are	to	test	(such	as	widget.py),	but	there
are	several	advantages	to	placing	the	test	code	in	a	separate	module,
such	as	test_widget.py:

The	test	module	can	be	run	standalone	from	the	command	line.
The	test	code	can	more	easily	be	separated	from	shipped	code.
There	is	less	temptation	to	change	test	code	to	fit	the	code	it	tests
without	a	good	reason.
Test	code	should	be	modified	much	less	frequently	than	the	code
it	tests.
Tested	code	can	be	refactored	more	easily.
Tests	 for	 modules	 written	 in	 C	 must	 be	 in	 separate	 modules

anyway,	so	why	not	be	consistent?
If	 the	 testing	 strategy	 changes,	 there	 is	 no	 need	 to	 change	 the
source	code.

26.3.5.	Re-using	old	test	code

Some	users	will	find	that	they	have	existing	test	code	that	they	would
like	to	run	from	unittest,	without	converting	every	old	test	 function
to	a	TestCase	subclass.

For	 this	 reason,	 unittest	 provides	 a	 FunctionTestCase	 class.
This	 subclass	 of	 TestCase	 can	 be	 used	 to	 wrap	 an	 existing	 test
function.	Set-up	and	tear-down	functions	can	also	be	provided.

Given	the	following	test	function:

def	testSomething():

				something	=	makeSomething()

				assert	something.name	is	not	None

				#	...

one	 can	 create	 an	 equivalent	 test	 case	 instance	 as	 follows,	 with
optional	set-up	and	tear-down	methods:

testcase	=	unittest.FunctionTestCase(testSomething,

																																					setUp=makeSomethingDB

																																					tearDown=deleteSomethingDB

Note: 	Even	though	FunctionTestCase	can	be	used	to	quickly
convert	an	existing	test	base	over	to	a	unittest-based	system,
this	approach	is	not	recommended.	Taking	the	time	to	set	up	proper
TestCase	subclasses	will	make	future	test	refactorings	infinitely
easier.

In	 some	 cases,	 the	 existing	 tests	 may	 have	 been	 written	 using	 the

doctest	module.	 If	 so,	doctest	 provides	 a	 DocTestSuite	 class
that	 can	 automatically	 build	 unittest.TestSuite	 instances	 from
the	existing	doctest-based	tests.

26.3.6.	Skipping	tests	and	expected
failures

New	in	version	3.1.

Unittest	 supports	 skipping	 individual	 test	 methods	 and	 even	 whole
classes	of	tests.	In	addition,	it	supports	marking	a	test	as	a	“expected
failure,”	a	test	that	is	broken	and	will	fail,	but	shouldn’t	be	counted	as	a
failure	on	a	TestResult.

Skipping	a	 test	 is	 simply	a	matter	of	using	 the	skip()	decorator	 or
one	of	its	conditional	variants.

Basic	skipping	looks	like	this:

class	MyTestCase(unittest.TestCase):

				@unittest.skip("demonstrating	skipping")

				def	test_nothing(self):

								self.fail("shouldn't	happen")

				@unittest.skipIf(mylib.__version__	<	(1,	3),

																					"not	supported	in	this	library	version"

				def	test_format(self):

								#	Tests	that	work	for	only	a	certain	version	of	the	library.

								pass

				@unittest.skipUnless(sys.platform.startswith("win"

				def	test_windows_support(self):

								#	windows	specific	testing	code

								pass

This	is	the	output	of	running	the	example	above	in	verbose	mode:

test_format	(__main__.MyTestCase)	...	skipped	'not	supported	in	this	library	version'

test_nothing	(__main__.MyTestCase)	...	skipped	'demonstrating	skipping'

test_windows_support	(__main__.MyTestCase)	...	skipped

--

Ran	3	tests	in	0.005s

OK	(skipped=3)

Classes	can	be	skipped	just	like	methods:

@unittest.skip("showing	class	skipping")

class	MySkippedTestCase(unittest.TestCase):

				def	test_not_run(self):

								pass

TestCase.setUp()	 can	 also	 skip	 the	 test.	 This	 is	 useful	 when	 a
resource	that	needs	to	be	set	up	is	not	available.

Expected	failures	use	the	expectedFailure()	decorator.

class	ExpectedFailureTestCase(unittest.TestCase):

				@unittest.expectedFailure

				def	test_fail(self):

								self.assertEqual(1,	0,	"broken")

It’s	 easy	 to	 roll	 your	own	skipping	decorators	by	making	a	decorator
that	 calls	 skip()	 on	 the	 test	 when	 it	 wants	 it	 to	 be	 skipped.	 This
decorator	 skips	 the	 test	 unless	 the	 passed	 object	 has	 a	 certain
attribute:

def	skipUnlessHasattr(obj,	attr):

				if	hasattr(obj,	attr):

								return	lambda	func:	func

				return	unittest.skip("{!r}	doesn't	have	{!r}".format

The	 following	 decorators	 implement	 test	 skipping	 and	 expected
failures:

@unittest.skip(reason)
Unconditionally	 skip	 the	 decorated	 test.	 reason	 should	 describe
why	the	test	is	being	skipped.

@unittest.skipIf(condition,	reason)
Skip	the	decorated	test	if	condition	is	true.

@unittest.skipUnless(condition,	reason)
Skip	the	decorated	test	unless	condition	is	true.

@unittest.expectedFailure

Mark	the	test	as	an	expected	failure.	If	the	test	fails	when	run,	the
test	is	not	counted	as	a	failure.

exception	unittest.SkipTest(reason)
This	exception	is	raised	to	skip	a	test.

Usually	 you	 can	 use	 TestCase.skipTest()	 or	 one	 of	 the
skipping	decorators	instead	of	raising	this	directly.

Skipped	 tests	 will	 not	 have	 setUp()	 or	 tearDown()	 run	 around
them.	 Skipped	 classes	 will	 not	 have	 setUpClass()	 or
tearDownClass()	 run.	 Skipped	 modules	 will	 not	 have
setUpModule()	or	tearDownModule()	run.

26.3.7.	Distinguishing	test	iterations	using
subtests

New	in	version	3.4.

When	some	of	your	tests	differ	only	by	a	some	very	small	differences,
for	instance	some	parameters,	unittest	allows	you	to	distinguish	them
inside	 the	 body	 of	 a	 test	 method	 using	 the	 subTest()	 context
manager.

For	example,	the	following	test:

class	NumbersTest(unittest.TestCase):

				def	test_even(self):

								"""

								Test	that	numbers	between	0	and	5	are	all	even.

								"""

								for	i	in	range(0,	6):

												with	self.subTest(i=i):

																self.assertEqual(i	%	2,	0)

will	produce	the	following	output:

==

FAIL:	test_even	(__main__.NumbersTest)	(i=1)

--

Traceback	(most	recent	call	last):

		File	"subtests.py",	line	32,	in	test_even

				self.assertEqual(i	%	2,	0)

AssertionError:	1	!=	0

==

FAIL:	test_even	(__main__.NumbersTest)	(i=3)

--

Traceback	(most	recent	call	last):

		File	"subtests.py",	line	32,	in	test_even

				self.assertEqual(i	%	2,	0)

AssertionError:	1	!=	0

==

FAIL:	test_even	(__main__.NumbersTest)	(i=5)

--

Traceback	(most	recent	call	last):

		File	"subtests.py",	line	32,	in	test_even

				self.assertEqual(i	%	2,	0)

AssertionError:	1	!=	0

Without	 using	 a	 subtest,	 execution	 would	 stop	 after	 the	 first	 failure,
and	the	error	would	be	less	easy	to	diagnose	because	the	value	of	i
wouldn’t	be	displayed:

==

FAIL:	test_even	(__main__.NumbersTest)

--

Traceback	(most	recent	call	last):

		File	"subtests.py",	line	32,	in	test_even

				self.assertEqual(i	%	2,	0)

AssertionError:	1	!=	0

26.3.8.	Classes	and	functions

This	section	describes	in	depth	the	API	of	unittest.

26.3.8.1.	Test	cases

class	unittest.TestCase(methodName='runTest')
Instances	of	the	TestCase	class	represent	the	logical	test	units	in
the	 unittest	 universe.	 This	 class	 is	 intended	 to	 be	 used	 as	 a
base	 class,	 with	 specific	 tests	 being	 implemented	 by	 concrete
subclasses.	This	class	implements	the	interface	needed	by	the	test
runner	to	allow	it	to	drive	the	tests,	and	methods	that	the	test	code
can	use	to	check	for	and	report	various	kinds	of	failure.

Each	 instance	 of	 TestCase	 will	 run	 a	 single	 base	 method:	 the
method	 named	 methodName.	 However,	 the	 standard
implementation	of	 the	default	methodName,	runTest(),	will	 run
every	method	starting	with	test	 as	 an	 individual	 test,	 and	 count
successes	 and	 failures	 accordingly.	 Therefore,	 in	 most	 uses	 of
TestCase,	 you	 will	 neither	 change	 the	 methodName	 nor
reimplement	the	default	runTest()	method.

Changed	 in	 version	 3.2:	 TestCase	 can	 be	 instantiated
successfully	without	providing	a	methodName.	This	makes	it	easier
to	experiment	with	TestCase	from	the	interactive	interpreter.

TestCase	 instances	provide	three	groups	of	methods:	one	group
used	 to	 run	 the	 test,	 another	 used	 by	 the	 test	 implementation	 to
check	 conditions	 and	 report	 failures,	 and	 some	 inquiry	 methods
allowing	information	about	the	test	itself	to	be	gathered.

Methods	in	the	first	group	(running	the	test)	are:

setUp()
Method	 called	 to	 prepare	 the	 test	 fixture.	 This	 is	 called
immediately	 before	 calling	 the	 test	 method;	 any	 exception
raised	by	this	method	will	be	considered	an	error	rather	than	a
test	failure.	The	default	implementation	does	nothing.

tearDown()
Method	 called	 immediately	 after	 the	 test	 method	 has	 been
called	 and	 the	 result	 recorded.	 This	 is	 called	 even	 if	 the	 test
method	 raised	 an	 exception,	 so	 the	 implementation	 in
subclasses	may	need	to	be	particularly	careful	about	checking
internal	 state.	 Any	 exception	 raised	 by	 this	 method	 will	 be
considered	an	error	 rather	 than	a	 test	 failure.	This	method	will
only	 be	 called	 if	 the	 setUp()	 succeeds,	 regardless	 of	 the
outcome	of	 the	 test	method.	The	default	 implementation	does
nothing.

setUpClass()
A	 class	method	 called	 before	 tests	 in	 an	 individual	 class	 run.
setUpClass	is	called	with	the	class	as	the	only	argument	and
must	be	decorated	as	a	classmethod():

@classmethod

def	setUpClass(cls):

				...

See	Class	and	Module	Fixtures	for	more	details.

New	in	version	3.2.

tearDownClass()

A	class	method	called	after	tests	in	an	individual	class	have	run.
tearDownClass	is	called	with	the	class	as	the	only	argument
and	must	be	decorated	as	a	classmethod():

@classmethod

def	tearDownClass(cls):

				...

See	Class	and	Module	Fixtures	for	more	details.

New	in	version	3.2.

run(result=None)
Run	the	test,	collecting	the	result	 into	 the	TestResult	object
passed	as	result.	If	result	is	omitted	or	None,	a	temporary	result
object	 is	 created	 (by	 calling	 the	 defaultTestResult()
method)	 and	 used.	 The	 result	 object	 is	 returned	 to	 run()‘s
caller.

The	same	effect	may	be	had	by	simply	calling	 the	TestCase
instance.

Changed	in	version	3.3:	Previous	versions	of	run	did	not	return
the	result.	Neither	did	calling	an	instance.

skipTest(reason)
Calling	this	during	a	test	method	or	setUp()	skips	the	current
test.	 See	 Skipping	 tests	 and	 expected	 failures	 for	 more
information.

New	in	version	3.1.

subTest(msg=None,	**params)

Return	 a	 context	manager	which	 executes	 the	 enclosed	 code
block	 as	 a	 subtest.	 msg	 and	 params	 are	 optional,	 arbitrary
values	which	 are	 displayed	whenever	 a	 subtest	 fails,	 allowing
you	to	identify	them	clearly.

A	 test	 case	 can	 contain	 any	 number	 of	 subtest	 declarations,
and	they	can	be	arbitrarily	nested.

See	 Distinguishing	 test	 iterations	 using	 subtests	 for	 more
information.

New	in	version	3.4.

debug()
Run	the	test	without	collecting	the	result.	This	allows	exceptions
raised	 by	 the	 test	 to	 be	 propagated	 to	 the	 caller,	 and	 can	 be
used	to	support	running	tests	under	a	debugger.

The	TestCase	class	provides	a	number	of	methods	 to	check	 for
and	report	failures,	such	as:

Method Checks	that New	in

assertEqual(a,	b) a	==	b 	

assertNotEqual(a,	b) a	!=	b 	

assertTrue(x) bool(x)	is	True 	

assertFalse(x)
bool(x)	is

False
	

assertIs(a,	b) a	is	b 3.1

assertIsNot(a,	b) a	is	not	b 3.1

assertIsNone(x) x	is	None 3.1

assertIsNotNone(x) x	is	not	None 3.1

assertIn(a,	b) a	in	b 3.1

assertNotIn(a,	b) a	not	in	b 3.1

assertIsInstance(a,	b)
isinstance(a,

b)
3.2

assertNotIsInstance(a,

b)

not

isinstance(a,

b)

3.2

All	the	assert	methods	accept	a	msg	argument	that,	if	specified,	is
used	 as	 the	 error	 message	 on	 failure	 (see	 also	 longMessage).
Note	 that	 the	 msg	 keyword	 argument	 can	 be	 passed	 to
assertRaises(),	 assertRaisesRegex(),	 assertWarns(),
assertWarnsRegex()	 only	 when	 they	 are	 used	 as	 a	 context
manager.

assertEqual(first,	second,	msg=None)
Test	 that	 first	 and	 second	 are	 equal.	 If	 the	 values	 do	 not
compare	equal,	the	test	will	fail.

In	addition,	if	first	and	second	are	the	exact	same	type	and	one
of	 list,	 tuple,	 dict,	 set,	 frozenset	 or	 str	 or	 any	 type	 that	 a
subclass	 registers	 with	 addTypeEqualityFunc()	 the	 type-
specific	 equality	 function	 will	 be	 called	 in	 order	 to	 generate	 a
more	 useful	 default	 error	 message	 (see	 also	 the	 list	 of	 type-
specific	methods).

Changed	 in	 version	 3.1:	Added	 the	 automatic	 calling	 of	 type-
specific	equality	function.

Changed	 in	 version	 3.2:	 assertMultiLineEqual()	 added
as	the	default	type	equality	function	for	comparing	strings.

assertNotEqual(first,	second,	msg=None)
Test	 that	 first	 and	 second	 are	 not	 equal.	 If	 the	 values	 do
compare	equal,	the	test	will	fail.

assertTrue(expr,	msg=None)
assertFalse(expr,	msg=None)

Test	that	expr	is	true	(or	false).

Note	that	this	is	equivalent	to	bool(expr)	is	True	and	not
to	 expr	 is	 True	 (use	 assertIs(expr,	 True)	 for	 the
latter).	This	method	should	also	be	avoided	when	more	specific
methods	 are	 available	 (e.g.	 assertEqual(a,	b)	 instead	 of
assertTrue(a	==	b)),	because	 they	provide	a	better	error
message	in	case	of	failure.

assertIs(first,	second,	msg=None)
assertIsNot(first,	second,	msg=None)

Test	 that	 first	 and	 second	 evaluate	 (or	 don’t	 evaluate)	 to	 the
same	object.

New	in	version	3.1.

assertIsNone(expr,	msg=None)
assertIsNotNone(expr,	msg=None)

Test	that	expr	is	(or	is	not)	None.

New	in	version	3.1.

assertIn(first,	second,	msg=None)
assertNotIn(first,	second,	msg=None)

Test	that	first	is	(or	is	not)	in	second.

New	in	version	3.1.

assertIsInstance(obj,	cls,	msg=None)
assertNotIsInstance(obj,	cls,	msg=None)

Test	 that	obj	 is	 (or	 is	 not)	 an	 instance	 of	cls	 (which	 can	 be	 a
class	or	a	 tuple	of	classes,	as	supported	by	isinstance()).
To	 check	 for	 the	 exact	 type,	 use	 assertIs(type(obj),
cls).

New	in	version	3.2.

It	 is	also	possible	to	check	the	production	of	exceptions,	warnings
and	log	messages	using	the	following	methods:

Method Checks	that New
in

assertRaises(exc,	fun,

*args,	**kwds)

fun(*args,

**kwds)	raises	exc 	

assertRaisesRegex(exc,

r,	fun,	*args,	**kwds)

fun(*args,

**kwds)	raises	exc
and	the	message
matches	regex	r

3.1

assertWarns(warn,	fun,

*args,	**kwds)

fun(*args,

**kwds)	raises	warn 3.2

assertWarnsRegex(warn,

r,	fun,	*args,	**kwds)

fun(*args,

**kwds)	raises	warn
and	the	message
matches	regex	r

3.2

assertLogs(logger,

level)

The	with	block	logs
on	logger	with
minimum	level

3.4

assertRaises(exception,	callable,	*args,	**kwds)
assertRaises(exception,	msg=None)

Test	that	an	exception	is	raised	when	callable	is	called	with	any

positional	 or	 keyword	 arguments	 that	 are	 also	 passed	 to
assertRaises().	The	test	passes	if	exception	is	raised,	is	an
error	 if	 another	 exception	 is	 raised,	 or	 fails	 if	 no	 exception	 is
raised.	To	catch	any	of	a	group	of	exceptions,	a	tuple	containing
the	exception	classes	may	be	passed	as	exception.

If	only	the	exception	and	possibly	the	msg	arguments	are	given,
return	 a	 context	manager	 so	 that	 the	 code	 under	 test	 can	 be
written	inline	rather	than	as	a	function:

with	self.assertRaises(SomeException):

				do_something()

When	used	as	a	context	manager,	assertRaises()	accepts
the	additional	keyword	argument	msg.

The	context	manager	will	 store	 the	caught	exception	object	 in
its	exception	attribute.	This	can	be	useful	if	the	intention	is	to
perform	additional	checks	on	the	exception	raised:

with	self.assertRaises(SomeException)	as	cm:

				do_something()

the_exception	=	cm.exception

self.assertEqual(the_exception.error_code,	3)

Changed	 in	 version	 3.1:	 Added	 the	 ability	 to	 use
assertRaises()	as	a	context	manager.

Changed	in	version	3.2:	Added	the	exception	attribute.

Changed	 in	 version	 3.3:	 Added	 the	 msg	 keyword	 argument
when	used	as	a	context	manager.

assertRaisesRegex(exception,	 regex,	 callable,	 *args,
**kwds)
assertRaisesRegex(exception,	regex,	msg=None)

Like	 assertRaises()	 but	 also	 tests	 that	 regex	 matches	 on
the	string	representation	of	the	raised	exception.	regex	may	be
a	 regular	 expression	 object	 or	 a	 string	 containing	 a	 regular
expression	suitable	for	use	by	re.search().	Examples:

self.assertRaisesRegex(ValueError,	"invalid	literal	for.*XYZ'$"

																							int,	'XYZ')

or:

with	self.assertRaisesRegex(ValueError,	'literal'

			int('XYZ')

New	in	version	3.1:	under	the	name	assertRaisesRegexp.

Changed	 in	 version	 3.2:	 Renamed	 to
assertRaisesRegex().

Changed	 in	 version	 3.3:	 Added	 the	 msg	 keyword	 argument
when	used	as	a	context	manager.

assertWarns(warning,	callable,	*args,	**kwds)
assertWarns(warning,	msg=None)

Test	that	a	warning	is	triggered	when	callable	is	called	with	any
positional	 or	 keyword	 arguments	 that	 are	 also	 passed	 to
assertWarns().	The	 test	 passes	 if	warning	 is	 triggered	and
fails	if	it	isn’t.	Any	exception	is	an	error.	To	catch	any	of	a	group
of	 warnings,	 a	 tuple	 containing	 the	 warning	 classes	 may	 be
passed	as	warnings.

If	only	the	warning	and	possibly	the	msg	arguments	are	given,
return	 a	 context	manager	 so	 that	 the	 code	 under	 test	 can	 be
written	inline	rather	than	as	a	function:

with	self.assertWarns(SomeWarning):

				do_something()

When	 used	 as	 a	 context	manager,	 assertWarns()	 accepts
the	additional	keyword	argument	msg.

The	context	manager	will	store	the	caught	warning	object	in	its
warning	 attribute,	 and	 the	 source	 line	 which	 triggered	 the
warnings	in	the	filename	and	lineno	attributes.	This	can	be
useful	 if	 the	 intention	 is	 to	 perform	 additional	 checks	 on	 the
warning	caught:

with	self.assertWarns(SomeWarning)	as	cm:

				do_something()

self.assertIn('myfile.py',	cm.filename)

self.assertEqual(320,	cm.lineno)

This	 method	 works	 regardless	 of	 the	 warning	 filters	 in	 place
when	it	is	called.

New	in	version	3.2.

Changed	 in	 version	 3.3:	 Added	 the	 msg	 keyword	 argument
when	used	as	a	context	manager.

assertWarnsRegex(warning,	regex,	callable,	*args,	**kwds)
assertWarnsRegex(warning,	regex,	msg=None)

Like	assertWarns()	but	also	tests	that	regex	matches	on	the
message	 of	 the	 triggered	 warning.	 regex	 may	 be	 a	 regular

expression	 object	 or	 a	 string	 containing	 a	 regular	 expression
suitable	for	use	by	re.search().	Example:

self.assertWarnsRegex(DeprecationWarning,

																						r'legacy_function\(\)	is	deprecated'

																						legacy_function,	'XYZ')

or:

with	self.assertWarnsRegex(RuntimeWarning,	'unsafe	frobnicating'

				frobnicate('/etc/passwd')

New	in	version	3.2.

Changed	 in	 version	 3.3:	 Added	 the	 msg	 keyword	 argument
when	used	as	a	context	manager.

assertLogs(logger=None,	level=None)
A	context	manager	to	test	that	at	 least	one	message	is	 logged
on	the	logger	or	one	of	its	children,	with	at	least	the	given	level.

If	given,	logger	should	be	a	logging.Logger	object	or	a	str
giving	 the	 name	 of	 a	 logger.	 The	 default	 is	 the	 root	 logger,
which	will	catch	all	messages.

If	 given,	 level	 should	 be	 either	 a	 numeric	 logging	 level	 or	 its
string	 equivalent	 (for	 example	 either	 "ERROR"	 or
logging.ERROR).	The	default	is	logging.INFO.

The	 test	 passes	 if	 at	 least	 one	 message	 emitted	 inside	 the
with	block	matches	the	logger	and	level	conditions,	otherwise
it	fails.

The	 object	 returned	 by	 the	 context	 manager	 is	 a	 recording
helper	which	keeps	tracks	of	the	matching	log	messages.	It	has
two	attributes:

records

A	list	of	logging.LogRecord	objects	of	 the	matching	 log
messages.

output

A	 list	of	str	objects	with	 the	 formatted	output	of	matching
messages.

Example:

with	self.assertLogs('foo',	level='INFO')	as	cm

			logging.getLogger('foo').info('first	message'

			logging.getLogger('foo.bar').error('second	message'

self.assertEqual(cm.output,	['INFO:foo:first	message'

																													'ERROR:foo.bar:second	message'

New	in	version	3.4.

There	 are	 also	 other	 methods	 used	 to	 perform	 more	 specific
checks,	such	as:

Method Checks	that New	in

assertAlmostEqual(a,	b)
round(a-b,	7)

==	0
	

assertNotAlmostEqual(a,

b)

round(a-b,	7)

!=	0
	

assertGreater(a,	b) a	>	b 3.1

assertGreaterEqual(a, a	>=	b 3.1

b)

assertLess(a,	b) a	<	b 3.1

assertLessEqual(a,	b) a	<=	b 3.1

assertRegex(s,	r) r.search(s) 3.1

assertNotRegex(s,	r) not	r.search(s) 3.2

assertCountEqual(a,	b)

a	and	b	have	the
same	elements	in
the	same	number,
regardless	of	their
order

3.2

assertAlmostEqual(first,	 second,	 places=7,	 msg=None,
delta=None)
assertNotAlmostEqual(first,	 second,	 places=7,
msg=None,	delta=None)

Test	 that	 first	 and	 second	 are	 approximately	 (or	 not
approximately)	equal	by	computing	 the	difference,	 rounding	 to
the	given	number	of	decimal	places	(default	7),	and	comparing
to	zero.	Note	that	these	methods	round	the	values	to	the	given
number	of	decimal	places	 (i.e.	 like	 the	round()	 function)	and
not	significant	digits.

If	 delta	 is	 supplied	 instead	 of	 places	 then	 the	 difference
between	 first	and	second	must	be	 less	or	equal	 to	 (or	greater
than)	delta.

Supplying	both	delta	and	places	raises	a	TypeError.

Changed	 in	 version	 3.2:	 assertAlmostEqual()

automatically	 considers	 almost	 equal	 objects	 that	 compare
equal.	 assertNotAlmostEqual()	 automatically	 fails	 if	 the
objects	compare	equal.	Added	the	delta	keyword	argument.

assertGreater(first,	second,	msg=None)
assertGreaterEqual(first,	second,	msg=None)
assertLess(first,	second,	msg=None)
assertLessEqual(first,	second,	msg=None)

Test	 that	 first	 is	 respectively	 >,	 >=,	 <	 or	 <=	 than	 second
depending	on	the	method	name.	If	not,	the	test	will	fail:

>>>	self.assertGreaterEqual(3,	4)

AssertionError:	"3"	unexpectedly	not	greater	than	or	equal	to	"4"

New	in	version	3.1.

assertRegex(text,	regex,	msg=None)
assertNotRegex(text,	regex,	msg=None)

Test	 that	a	 regex	 search	matches	 (or	does	not	match)	 text.	 In
case	of	 failure,	 the	error	message	will	 include	 the	pattern	and
the	 text	 (or	 the	 pattern	 and	 the	 part	 of	 text	 that	 unexpectedly
matched).	regex	may	be	a	regular	expression	object	or	a	string
containing	 a	 regular	 expression	 suitable	 for	 use	 by
re.search().

New	in	version	3.1:	under	the	name	assertRegexpMatches.

Changed	 in	 version	 3.2:	 The	 method
assertRegexpMatches()	 has	 been	 renamed	 to
assertRegex().

New	in	version	3.2:	assertNotRegex().

assertCountEqual(first,	second,	msg=None)
Test	that	sequence	first	contains	the	same	elements	as	second,
regardless	 of	 their	 order.	When	 they	 don’t,	 an	 error	message

listing	 the	 differences	 between	 the	 sequences	 will	 be
generated.

Duplicate	 elements	 are	not	 ignored	when	 comparing	 first	 and
second.	It	verifies	whether	each	element	has	the	same	count	in
both	 sequences.	 Equivalent	 to:
assertEqual(Counter(list(first)),

Counter(list(second)))	 but	 works	 with	 sequences	 of
unhashable	objects	as	well.

New	in	version	3.2.

The	 assertEqual()	 method	 dispatches	 the	 equality	 check	 for
objects	of	the	same	type	to	different	type-specific	methods.	These
methods	are	already	implemented	for	most	of	the	built-in	types,	but
it’s	 also	 possible	 to	 register	 new	 methods	 using
addTypeEqualityFunc():

addTypeEqualityFunc(typeobj,	function)
Registers	a	type-specific	method	called	by	assertEqual()	to
check	 if	 two	 objects	 of	 exactly	 the	 same	 typeobj	 (not
subclasses)	 compare	 equal.	 function	must	 take	 two	 positional
arguments	 and	 a	 third	 msg=None	 keyword	 argument	 just	 as
assertEqual()	 does.	 It	 must	 raise
self.failureException(msg)	 when	 inequality	 between
the	first	two	parameters	is	detected	–	possibly	providing	useful
information	and	explaining	the	inequalities	in	details	in	the	error
message.

New	in	version	3.1.

The	 list	 of	 type-specific	 methods	 automatically	 used	 by
assertEqual()	are	summarized	in	the	following	table.	Note	that

it’s	usually	not	necessary	to	invoke	these	methods	directly.

Method Used	to	compare New	in

assertMultiLineEqual(a,

b)
strings 3.1

assertSequenceEqual(a,

b)
sequences 3.1

assertListEqual(a,	b) lists 3.1

assertTupleEqual(a,	b) tuples 3.1

assertSetEqual(a,	b) sets	or	frozensets 3.1

assertDictEqual(a,	b) dicts 3.1

assertMultiLineEqual(first,	second,	msg=None)
Test	 that	 the	multiline	string	 first	 is	equal	 to	 the	string	second.
When	 not	 equal	 a	 diff	 of	 the	 two	 strings	 highlighting	 the
differences	will	be	 included	in	the	error	message.	This	method
is	 used	 by	 default	 when	 comparing	 strings	 with
assertEqual().

New	in	version	3.1.

assertSequenceEqual(first,	 second,	 msg=None,
seq_type=None)

Tests	 that	 two	sequences	are	equal.	 If	a	seq_type	 is	supplied,
both	first	and	second	must	be	instances	of	seq_type	or	a	failure
will	be	raised.	If	 the	sequences	are	different	an	error	message
is	constructed	that	shows	the	difference	between	the	two.

This	method	is	not	called	directly	by	assertEqual(),	but	 it’s
used	 to	 implement	 assertListEqual()	 and
assertTupleEqual().

New	in	version	3.1.

assertListEqual(first,	second,	msg=None)
assertTupleEqual(first,	second,	msg=None)

Tests	that	two	lists	or	tuples	are	equal.	If	not,	an	error	message
is	constructed	that	shows	only	the	differences	between	the	two.
An	 error	 is	 also	 raised	 if	 either	 of	 the	 parameters	 are	 of	 the
wrong	 type.	 These	 methods	 are	 used	 by	 default	 when
comparing	lists	or	tuples	with	assertEqual().

New	in	version	3.1.

assertSetEqual(first,	second,	msg=None)
Tests	 that	 two	 sets	 are	 equal.	 If	 not,	 an	 error	 message	 is
constructed	 that	 lists	 the	 differences	 between	 the	 sets.	 This
method	 is	used	by	default	when	comparing	sets	or	 frozensets
with	assertEqual().

Fails	 if	 either	 of	 first	 or	 second	 does	 not	 have	 a
set.difference()	method.

New	in	version	3.1.

assertDictEqual(first,	second,	msg=None)
Test	that	two	dictionaries	are	equal.	If	not,	an	error	message	is
constructed	that	shows	the	differences	 in	the	dictionaries.	This
method	will	be	used	by	default	 to	compare	dictionaries	in	calls
to	assertEqual().

New	in	version	3.1.

Finally	 the	 TestCase	 provides	 the	 following	 methods	 and
attributes:

fail(msg=None)
Signals	a	test	 failure	unconditionally,	with	msg	or	None	 for	 the
error	message.

failureException

This	 class	 attribute	 gives	 the	 exception	 raised	 by	 the	 test
method.	 If	 a	 test	 framework	 needs	 to	 use	 a	 specialized
exception,	 possibly	 to	 carry	 additional	 information,	 it	 must
subclass	 this	 exception	 in	 order	 to	 “play	 fair”	 with	 the
framework.	 The	 initial	 value	 of	 this	 attribute	 is
AssertionError.

longMessage

If	set	to	True	then	any	explicit	failure	message	you	pass	in	to
the	assert	methods	will	be	appended	 to	 the	end	of	 the	normal
failure	 message.	 The	 normal	 messages	 contain	 useful
information	 about	 the	 objects	 involved,	 for	 example	 the
message	 from	 assertEqual	 shows	 you	 the	 repr	 of	 the	 two
unequal	 objects.	 Setting	 this	 attribute	 to	 True	 allows	 you	 to
have	a	custom	error	message	in	addition	to	the	normal	one.

This	 attribute	 defaults	 to	 True.	 If	 set	 to	 False	 then	 a	 custom
message	 passed	 to	 an	 assert	method	 will	 silence	 the	 normal
message.

The	 class	 setting	 can	 be	 overridden	 in	 individual	 tests	 by
assigning	an	instance	attribute	to	True	or	False	before	calling
the	assert	methods.

New	in	version	3.1.

maxDiff

This	 attribute	 controls	 the	 maximum	 length	 of	 diffs	 output	 by

assert	 methods	 that	 report	 diffs	 on	 failure.	 It	 defaults	 to	 80*8
characters.	 Assert	 methods	 affected	 by	 this	 attribute	 are
assertSequenceEqual()	 (including	 all	 the	 sequence
comparison	 methods	 that	 delegate	 to	 it),
assertDictEqual()	and	assertMultiLineEqual().

Setting	 maxDiff	 to	 None	 means	 that	 there	 is	 no	 maximum
length	of	diffs.

New	in	version	3.2.

Testing	 frameworks	 can	 use	 the	 following	 methods	 to	 collect
information	on	the	test:

countTestCases()
Return	the	number	of	tests	represented	by	this	test	object.	For
TestCase	instances,	this	will	always	be	1.

defaultTestResult()
Return	an	instance	of	the	test	result	class	that	should	be	used
for	this	test	case	class	(if	no	other	result	instance	is	provided	to
the	run()	method).

For	 TestCase	 instances,	 this	 will	 always	 be	 an	 instance	 of
TestResult;	subclasses	of	TestCase	should	override	this	as
necessary.

id()
Return	a	string	identifying	the	specific	test	case.	This	is	usually
the	full	name	of	the	test	method,	including	the	module	and	class
name.

shortDescription()

Returns	a	description	of	the	test,	or	None	if	no	description	has
been	 provided.	 The	 default	 implementation	 of	 this	 method
returns	the	first	 line	of	the	test	method’s	docstring,	 if	available,
or	None.

Changed	in	version	3.1:	In	3.1	this	was	changed	to	add	the	test
name	 to	 the	 short	 description	 even	 in	 the	 presence	 of	 a
docstring.	 This	 caused	 compatibility	 issues	 with	 unittest
extensions	 and	 adding	 the	 test	 name	 was	 moved	 to	 the
TextTestResult	in	Python	3.2.

addCleanup(function,	*args,	**kwargs)
Add	 a	 function	 to	 be	 called	 after	 tearDown()	 to	 cleanup
resources	 used	 during	 the	 test.	 Functions	 will	 be	 called	 in
reverse	 order	 to	 the	 order	 they	 are	 added	 (LIFO).	 They	 are
called	with	any	arguments	and	keyword	arguments	passed	into
addCleanup()	when	they	are	added.

If	setUp()	fails,	meaning	that	tearDown()	is	not	called,	then
any	cleanup	functions	added	will	still	be	called.

New	in	version	3.1.

doCleanups()
This	 method	 is	 called	 unconditionally	 after	 tearDown(),	 or
after	setUp()	if	setUp()	raises	an	exception.

It	 is	 responsible	 for	 calling	all	 the	 cleanup	 functions	added	by
addCleanup().	 If	 you	 need	 cleanup	 functions	 to	 be	 called
prior	 to	 tearDown()	 then	 you	 can	 call	 doCleanups()
yourself.

doCleanups()	 pops	 methods	 off	 the	 stack	 of	 cleanup

functions	one	at	a	time,	so	it	can	be	called	at	any	time.

New	in	version	3.1.

class	unittest.FunctionTestCase(testFunc,	setUp=None,
tearDown=None,	description=None)

This	class	implements	the	portion	of	the	TestCase	interface	which
allows	 the	 test	 runner	 to	 drive	 the	 test,	 but	 does	 not	 provide	 the
methods	which	test	code	can	use	to	check	and	report	errors.	This
is	used	to	create	test	cases	using	legacy	test	code,	allowing	it	to	be
integrated	into	a	unittest-based	test	framework.

26.3.8.1.1.	Deprecated	aliases

For	 historical	 reasons,	 some	 of	 the	 TestCase	methods	 had	 one	 or
more	 aliases	 that	 are	 now	 deprecated.	 The	 following	 table	 lists	 the
correct	names	along	with	their	deprecated	aliases:

Method	Name Deprecated	alias Deprecated	alias

assertEqual() failUnlessEqual assertEquals

assertNotEqual() failIfEqual assertNotEquals

assertTrue() failUnless assert_

assertFalse() failIf 	

assertRaises() failUnlessRaises 	

assertAlmostEqual() failUnlessAlmostEqual assertAlmostEquals

assertNotAlmostEqual() failIfAlmostEqual assertNotAlmostEquals

assertRegex() 	 assertRegexpMatches

assertRaisesRegex() 	 assertRaisesRegexp

Deprecated	 since	 version	 3.1:	 the	 fail*	 aliases	 listed	 in	 the
second	column.

Deprecated	 since	 version	 3.2:	 the	 assert*	 aliases	 listed	 in	 the
third	column.

Deprecated	 since	 version	 3.2:	 assertRegexpMatches	 and
assertRaisesRegexp	 have	 been	 renamed	 to
assertRegex()	and	assertRaisesRegex()

26.3.8.2.	Grouping	tests

class	unittest.TestSuite(tests=())
This	class	represents	an	aggregation	of	individual	tests	cases	and
test	 suites.	 The	 class	 presents	 the	 interface	 needed	 by	 the	 test
runner	 to	 allow	 it	 to	 be	 run	 as	 any	 other	 test	 case.	 Running	 a
TestSuite	 instance	 is	 the	 same	 as	 iterating	 over	 the	 suite,
running	each	test	individually.

If	 tests	 is	 given,	 it	must	 be	 an	 iterable	 of	 individual	 test	 cases	 or
other	 test	 suites	 that	 will	 be	 used	 to	 build	 the	 suite	 initially.
Additional	methods	are	provided	to	add	test	cases	and	suites	to	the
collection	later	on.

TestSuite	objects	behave	much	like	TestCase	objects,	except
they	 do	 not	 actually	 implement	 a	 test.	 Instead,	 they	 are	 used	 to
aggregate	 tests	 into	 groups	 of	 tests	 that	 should	 be	 run	 together.
Some	additional	methods	are	available	to	add	tests	to	TestSuite
instances:

addTest(test)
Add	a	TestCase	or	TestSuite	to	the	suite.

addTests(tests)
Add	 all	 the	 tests	 from	 an	 iterable	 of	 TestCase	 and
TestSuite	instances	to	this	test	suite.

This	is	equivalent	to	iterating	over	tests,	calling	addTest()	for
each	element.

TestSuite	shares	the	following	methods	with	TestCase:

run(result)
Run	the	tests	associated	with	this	suite,	collecting	the	result	into
the	 test	 result	 object	 passed	 as	 result.	 Note	 that	 unlike
TestCase.run(),	 TestSuite.run()	 requires	 the	 result
object	to	be	passed	in.

debug()
Run	 the	 tests	 associated	with	 this	 suite	 without	 collecting	 the
result.	 This	 allows	 exceptions	 raised	 by	 the	 test	 to	 be
propagated	 to	 the	 caller	 and	 can	 be	 used	 to	 support	 running
tests	under	a	debugger.

countTestCases()
Return	 the	 number	 of	 tests	 represented	 by	 this	 test	 object,
including	all	individual	tests	and	sub-suites.

__iter__()
Tests	 grouped	 by	 a	 TestSuite	 are	 always	 accessed	 by
iteration.	 Subclasses	 can	 lazily	 provide	 tests	 by	 overriding
__iter__().	 Note	 that	 this	 method	 may	 be	 called	 several

times	 on	 a	 single	 suite	 (for	 example	 when	 counting	 tests	 or
comparing	 for	 equality)	 so	 the	 tests	 returned	 by	 repeated
iterations	 before	 TestSuite.run()	 must	 be	 the	 same	 for
each	call	iteration.	After	TestSuite.run(),	callers	should	not
rely	on	the	tests	returned	by	this	method	unless	the	caller	uses
a	 subclass	 that	 overrides
TestSuite._removeTestAtIndex()	 to	 preserve	 test
references.

Changed	 in	 version	 3.2:	 In	 earlier	 versions	 the	 TestSuite
accessed	 tests	 directly	 rather	 than	 through	 iteration,	 so
overriding	__iter__()	wasn’t	sufficient	for	providing	tests.

Changed	 in	 version	 3.4:	 In	 earlier	 versions	 the	 TestSuite
held	 references	 to	each	TestCase	after	TestSuite.run().
Subclasses	 can	 restore	 that	 behavior	 by	 overriding
TestSuite._removeTestAtIndex().

In	the	typical	usage	of	a	TestSuite	object,	the	run()	method	is
invoked	 by	 a	 TestRunner	 rather	 than	 by	 the	 end-user	 test
harness.

26.3.8.3.	Loading	and	running	tests

class	unittest.TestLoader
The	TestLoader	class	is	used	to	create	test	suites	from	classes
and	modules.	Normally,	 there	 is	no	need	 to	create	an	 instance	of
this	class;	the	unittest	module	provides	an	instance	that	can	be
shared	as	unittest.defaultTestLoader.	Using	a	subclass	or
instance,	 however,	 allows	 customization	 of	 some	 configurable
properties.

TestLoader	objects	have	the	following	methods:

loadTestsFromTestCase(testCaseClass)
Return	 a	 suite	 of	 all	 tests	 cases	 contained	 in	 the	 TestCase-
derived	testCaseClass.

loadTestsFromModule(module)
Return	a	suite	of	all	tests	cases	contained	in	the	given	module.
This	 method	 searches	 module	 for	 classes	 derived	 from
TestCase	 and	 creates	an	 instance	of	 the	 class	 for	 each	 test
method	defined	for	the	class.

Note: 	While	using	a	hierarchy	of	TestCase-derived	classes
can	 be	 convenient	 in	 sharing	 fixtures	 and	 helper	 functions,
defining	test	methods	on	base	classes	that	are	not	intended	to
be	 instantiated	 directly	 does	 not	 play	 well	 with	 this	method.
Doing	 so,	 however,	 can	 be	 useful	 when	 the	 fixtures	 are
different	and	defined	in	subclasses.

If	a	module	provides	a	load_tests	function	it	will	be	called	to
load	 the	 tests.	This	 allows	modules	 to	 customize	 test	 loading.
This	is	the	load_tests	protocol.

Changed	in	version	3.2:	Support	for	load_tests	added.

loadTestsFromName(name,	module=None)
Return	a	suite	of	all	tests	cases	given	a	string	specifier.

The	specifier	name	 is	a	 “dotted	name”	 that	may	resolve	either
to	a	module,	a	test	case	class,	a	test	method	within	a	test	case
class,	a	TestSuite	instance,	or	a	callable	object	which	returns
a	 TestCase	 or	 TestSuite	 instance.	 These	 checks	 are

applied	in	the	order	listed	here;	that	is,	a	method	on	a	possible
test	case	class	will	be	picked	up	as	“a	test	method	within	a	test
case	class”,	rather	than	“a	callable	object”.

For	example,	if	you	have	a	module	SampleTests	containing	a
TestCase-derived	 class	 SampleTestCase	 with	 three	 test
methods	 (test_one(),	 test_two(),	 and	 test_three()),
the	 specifier	 'SampleTests.SampleTestCase'	 would
cause	this	method	to	return	a	suite	which	will	run	all	three	test
methods.	 Using	 the	 specifier
'SampleTests.SampleTestCase.test_two'	would	cause
it	to	return	a	test	suite	which	will	run	only	the	test_two()	test
method.	 The	 specifier	 can	 refer	 to	 modules	 and	 packages
which	have	not	been	imported;	they	will	be	imported	as	a	side-
effect.

The	 method	 optionally	 resolves	 name	 relative	 to	 the	 given
module.

loadTestsFromNames(names,	module=None)
Similar	 to	 loadTestsFromName(),	 but	 takes	 a	 sequence	 of
names	 rather	 than	 a	 single	 name.	 The	 return	 value	 is	 a	 test
suite	which	supports	all	the	tests	defined	for	each	name.

getTestCaseNames(testCaseClass)
Return	 a	 sorted	 sequence	 of	 method	 names	 found	 within
testCaseClass;	this	should	be	a	subclass	of	TestCase.

discover(start_dir,	pattern='test*.py',	top_level_dir=None)
Find	all	 the	 test	modules	by	 recursing	 into	subdirectories	 from
the	 specified	 start	 directory,	 and	 return	 a	 TestSuite	 object
containing	 them.	 Only	 test	 files	 that	 match	 pattern	 will	 be

loaded.	 (Using	 shell	 style	 pattern	 matching.)	 Only	 module
names	that	are	importable	(i.e.	are	valid	Python	identifiers)	will
be	loaded.

All	 test	modules	must	 be	 importable	 from	 the	 top	 level	 of	 the
project.	 If	 the	 start	 directory	 is	 not	 the	 top	 level	 directory	 then
the	top	level	directory	must	be	specified	separately.

If	 importing	a	module	 fails,	 for	example	due	 to	a	 syntax	error,
then	 this	will	 be	 recorded	 as	 a	 single	 error	 and	 discovery	will
continue.	If	the	import	failure	is	due	to	SkipTest	being	raised,
it	will	be	recorded	as	a	skip	instead	of	an	error.

If	a	test	package	name	(directory	with	__init__.py)	matches
the	 pattern	 then	 the	 package	 will	 be	 checked	 for	 a
load_tests	 function.	 If	 this	 exists	 then	 it	 will	 be	 called	with
loader,	tests,	pattern.

If	 load_tests	 exists	 then	 discovery	 does	 not	 recurse	 into	 the
package,	load_tests	is	responsible	for	loading	all	tests	in	the
package.

The	 pattern	 is	 deliberately	 not	 stored	 as	 a	 loader	 attribute	 so
that	packages	can	continue	discovery	themselves.	top_level_dir
is	stored	so	load_tests	does	not	need	to	pass	this	argument
in	to	loader.discover().

start_dir	can	be	a	dotted	module	name	as	well	as	a	directory.

New	in	version	3.2.

Changed	 in	 version	 3.4:	 Modules	 that	 raise	 SkipTest	 on
import	 are	 recorded	 as	 skips,	 not	 errors.	 Discovery	 works	 for

namespace	packages.	Paths	are	sorted	before	being	 imported
so	 that	execution	order	 is	 the	same	even	 if	 the	underlying	 file
system’s	ordering	is	not	dependent	on	file	name.

The	following	attributes	of	a	TestLoader	can	be	configured	either
by	subclassing	or	assignment	on	an	instance:

testMethodPrefix

String	 giving	 the	 prefix	 of	 method	 names	 which	 will	 be
interpreted	as	test	methods.	The	default	value	is	'test'.

This	 affects	 getTestCaseNames()	 and	 all	 the
loadTestsFrom*()	methods.

sortTestMethodsUsing

Function	 to	 be	 used	 to	 compare	method	 names	when	 sorting
them	in	getTestCaseNames()	and	all	the	loadTestsFrom*
()	methods.

suiteClass

Callable	object	 that	 constructs	a	 test	 suite	 from	a	 list	 of	 tests.
No	 methods	 on	 the	 resulting	 object	 are	 needed.	 The	 default
value	is	the	TestSuite	class.

This	affects	all	the	loadTestsFrom*()	methods.

class	unittest.TestResult
This	 class	 is	 used	 to	 compile	 information	about	which	 tests	 have
succeeded	and	which	have	failed.

A	 TestResult	 object	 stores	 the	 results	 of	 a	 set	 of	 tests.	 The
TestCase	 and	 TestSuite	 classes	 ensure	 that	 results	 are
properly	 recorded;	 test	 authors	 do	 not	 need	 to	 worry	 about

recording	the	outcome	of	tests.

Testing	frameworks	built	on	top	of	unittest	may	want	access	to
the	 TestResult	 object	 generated	 by	 running	 a	 set	 of	 tests	 for
reporting	 purposes;	 a	 TestResult	 instance	 is	 returned	 by	 the
TestRunner.run()	method	for	this	purpose.

TestResult	instances	have	the	following	attributes	that	will	be	of
interest	when	inspecting	the	results	of	running	a	set	of	tests:

errors

A	 list	 containing	 2-tuples	 of	 TestCase	 instances	 and	 strings
holding	 formatted	 tracebacks.	 Each	 tuple	 represents	 a	 test
which	raised	an	unexpected	exception.

failures

A	 list	 containing	 2-tuples	 of	 TestCase	 instances	 and	 strings
holding	 formatted	 tracebacks.	 Each	 tuple	 represents	 a	 test
where	 a	 failure	 was	 explicitly	 signalled	 using	 the
TestCase.assert*()	methods.

skipped

A	 list	 containing	 2-tuples	 of	 TestCase	 instances	 and	 strings
holding	the	reason	for	skipping	the	test.

New	in	version	3.1.

expectedFailures

A	 list	 containing	 2-tuples	 of	 TestCase	 instances	 and	 strings
holding	 formatted	 tracebacks.	 Each	 tuple	 represents	 an
expected	failure	of	the	test	case.

unexpectedSuccesses

A	 list	 containing	 TestCase	 instances	 that	 were	 marked	 as
expected	failures,	but	succeeded.

shouldStop

Set	 to	 True	 when	 the	 execution	 of	 tests	 should	 stop	 by
stop().

testsRun

The	total	number	of	tests	run	so	far.

buffer

If	set	to	true,	sys.stdout	and	sys.stderr	will	be	buffered	in
between	 startTest()	 and	 stopTest()	 being	 called.
Collected	output	will	only	be	echoed	onto	the	real	sys.stdout
and	sys.stderr	 if	 the	 test	 fails	or	errors.	Any	output	 is	also
attached	to	the	failure	/	error	message.

New	in	version	3.2.

failfast

If	set	 to	 true	stop()	will	be	called	on	 the	 first	 failure	or	error,
halting	the	test	run.

New	in	version	3.2.

wasSuccessful()
Return	 True	 if	 all	 tests	 run	 so	 far	 have	 passed,	 otherwise
returns	False.

Changed	 in	 version	 3.4:	 Returns	 False	 if	 there	 were	 any
unexpectedSuccesses	 from	 tests	 marked	 with	 the
expectedFailure()	decorator.

stop()
This	method	can	be	called	to	signal	 that	 the	set	of	 tests	being
run	should	be	aborted	by	setting	 the	shouldStop	attribute	 to
True.	TestRunner	objects	should	respect	this	flag	and	return
without	running	any	additional	tests.

For	 example,	 this	 feature	 is	 used	 by	 the	 TextTestRunner
class	 to	 stop	 the	 test	 framework	 when	 the	 user	 signals	 an
interrupt	 from	 the	 keyboard.	 Interactive	 tools	 which	 provide
TestRunner	implementations	can	use	this	in	a	similar	manner.

The	 following	 methods	 of	 the	 TestResult	 class	 are	 used	 to
maintain	 the	 internal	 data	 structures,	 and	 may	 be	 extended	 in
subclasses	 to	 support	 additional	 reporting	 requirements.	 This	 is
particularly	 useful	 in	 building	 tools	 which	 support	 interactive
reporting	while	tests	are	being	run.

startTest(test)
Called	when	the	test	case	test	is	about	to	be	run.

stopTest(test)
Called	after	the	test	case	test	has	been	executed,	regardless	of
the	outcome.

startTestRun(test)
Called	once	before	any	tests	are	executed.

New	in	version	3.1.

stopTestRun(test)
Called	once	after	all	tests	are	executed.

New	in	version	3.1.

addError(test,	err)
Called	when	the	test	case	test	raises	an	unexpected	exception.
err	 is	 a	 tuple	 of	 the	 form	 returned	 by	 sys.exc_info():
(type,	value,	traceback).

The	 default	 implementation	 appends	 a	 tuple	 (test,

formatted_err)	 to	 the	 instance’s	 errors	 attribute,	 where
formatted_err	is	a	formatted	traceback	derived	from	err.

addFailure(test,	err)
Called	when	the	test	case	test	signals	a	failure.	err	is	a	tuple	of
the	 form	 returned	 by	 sys.exc_info():	 (type,	 value,

traceback).

The	 default	 implementation	 appends	 a	 tuple	 (test,

formatted_err)	to	the	instance’s	failures	attribute,	where
formatted_err	is	a	formatted	traceback	derived	from	err.

addSuccess(test)
Called	when	the	test	case	test	succeeds.

The	default	implementation	does	nothing.

addSkip(test,	reason)
Called	when	the	test	case	test	is	skipped.	reason	is	the	reason
the	test	gave	for	skipping.

The	default	implementation	appends	a	tuple	(test,	reason)
to	the	instance’s	skipped	attribute.

addExpectedFailure(test,	err)
Called	when	 the	 test	 case	 test	 fails,	 but	was	marked	with	 the

expectedFailure()	decorator.

The	 default	 implementation	 appends	 a	 tuple	 (test,

formatted_err)	 to	 the	 instance’s	 expectedFailures

attribute,	where	formatted_err	 is	a	 formatted	traceback	derived
from	err.

addUnexpectedSuccess(test)
Called	 when	 the	 test	 case	 test	 was	 marked	 with	 the
expectedFailure()	decorator,	but	succeeded.

The	default	 implementation	appends	 the	 test	 to	 the	 instance’s
unexpectedSuccesses	attribute.

addSubTest(test,	subtest,	outcome)
Called	 when	 a	 subtest	 finishes.	 test	 is	 the	 test	 case
corresponding	 to	 the	 test	 method.	 subtest	 is	 a	 custom
TestCase	instance	describing	the	subtest.

If	outcome	is	None,	the	subtest	succeeded.	Otherwise,	it	failed
with	an	exception	where	outcome	is	a	tuple	of	the	form	returned
by	sys.exc_info():	(type,	value,	traceback).

The	default	 implementation	does	nothing	when	the	outcome	is
a	success,	and	records	subtest	failures	as	normal	failures.

New	in	version	3.4.

class	unittest.TextTestResult(stream,	descriptions,
verbosity)

A	 concrete	 implementation	 of	 TestResult	 used	 by	 the
TextTestRunner.

New	 in	 version	 3.2:	 This	 class	 was	 previously	 named
_TextTestResult.	 The	 old	 name	 still	 exists	 as	 an	 alias	 but	 is
deprecated.

unittest.defaultTestLoader

Instance	 of	 the	 TestLoader	 class	 intended	 to	 be	 shared.	 If	 no
customization	of	the	TestLoader	is	needed,	this	instance	can	be
used	instead	of	repeatedly	creating	new	instances.

class	unittest.TextTestRunner(stream=None,
descriptions=True,	verbosity=1,	failfast=False,	buffer=False,
resultclass=None,	warnings=None)

A	basic	test	runner	implementation	that	outputs	results	to	a	stream.
If	stream	is	None,	the	default,	sys.stderr	 is	used	as	the	output
stream.	 This	 class	 has	 a	 few	 configurable	 parameters,	 but	 is
essentially	very	simple.	Graphical	applications	which	run	test	suites
should	provide	alternate	implementations.

By	 default	 this	 runner	 shows	 DeprecationWarning,
PendingDeprecationWarning,	 ResourceWarning	 and
ImportWarning	even	if	they	are	 ignored	by	default.	Deprecation
warnings	caused	by	deprecated	unittest	methods	are	also	special-
cased	and,	when	the	warning	filters	are	'default'	or	'always',
they	will	appear	only	once	per-module,	in	order	to	avoid	too	many
warning	messages.	This	behavior	can	be	overridden	using	the	-Wd
or	-Wa	options	and	leaving	warnings	to	None.

Changed	in	version	3.2:	Added	the	warnings	argument.

Changed	in	version	3.2:	The	default	stream	is	set	to	sys.stderr
at	instantiation	time	rather	than	import	time.

_makeResult()

This	 method	 returns	 the	 instance	 of	 TestResult	 used	 by
run().	 It	 is	 not	 intended	 to	 be	 called	 directly,	 but	 can	 be
overridden	in	subclasses	to	provide	a	custom	TestResult.

_makeResult()	 instantiates	 the	 class	 or	 callable	 passed	 in
the	 TextTestRunner	 constructor	 as	 the	 resultclass

argument.	It	defaults	to	TextTestResult	if	no	resultclass
is	 provided.	 The	 result	 class	 is	 instantiated	 with	 the	 following
arguments:

stream,	descriptions,	verbosity

run(test)
This	method	is	the	main	public	interface	to	the	TextTestRunner.
This	 method	 takes	 a	 TestSuite	 or	 TestCase	 instance.	 A
TestResult	 is	 created	 by	 calling	 _makeResult()	 and	 the
test(s)	are	run	and	the	results	printed	to	stdout.

unittest.main(module='__main__',	defaultTest=None,
argv=None,	testRunner=None,	testLoader=unittest.defaultTestLoader,
exit=True,	verbosity=1,	failfast=None,	catchbreak=None,	buffer=None,
warnings=None)

A	command-line	program	that	loads	a	set	of	tests	from	module	and
runs	 them;	 this	 is	 primarily	 for	making	 test	modules	 conveniently
executable.	 The	 simplest	 use	 for	 this	 function	 is	 to	 include	 the
following	line	at	the	end	of	a	test	script:

if	__name__	==	'__main__':

				unittest.main()

You	can	run	tests	with	more	detailed	information	by	passing	in	the
verbosity	argument:

if	__name__	==	'__main__':

				unittest.main(verbosity=2)

The	defaultTest	argument	is	either	the	name	of	a	single	test	or	an
iterable	of	test	names	to	run	if	no	test	names	are	specified	via	argv.
If	not	specified	or	None	and	no	test	names	are	provided	via	argv,
all	tests	found	in	module	are	run.

The	argv	argument	can	be	a	list	of	options	passed	to	the	program,
with	 the	 first	element	being	 the	program	name.	 If	not	specified	or
None,	the	values	of	sys.argv	are	used.

The	 testRunner	argument	can	either	be	a	 test	 runner	class	or	an
already	created	instance	of	it.	By	default	main	calls	sys.exit()
with	an	exit	code	indicating	success	or	failure	of	the	tests	run.

The	testLoader	argument	has	to	be	a	TestLoader	 instance,	and
defaults	to	defaultTestLoader.

main	 supports	 being	 used	 from	 the	 interactive	 interpreter	 by
passing	in	the	argument	exit=False.	This	displays	the	result	on
standard	output	without	calling	sys.exit():

>>>	from	unittest	import	main

>>>	main(module='test_module',	exit=False)

The	 failfast,	 catchbreak	 and	 buffer	 parameters	 have	 the	 same
effect	as	the	same-name	command-line	options.

The	warning	 argument	 specifies	 the	warning	 filter	 that	 should	 be
used	while	running	the	tests.	If	it’s	not	specified,	it	will	remain	None
if	 a	 -W	 option	 is	 passed	 to	 python,	 otherwise	 it	 will	 be	 set	 to
'default'.

Calling	 main	 actually	 returns	 an	 instance	 of	 the	 TestProgram
class.	 This	 stores	 the	 result	 of	 the	 tests	 run	 as	 the	 result
attribute.

Changed	in	version	3.1:	The	exit	parameter	was	added.

Changed	 in	version	3.2:	The	verbosity,	 failfast,	catchbreak,	buffer
and	warnings	parameters	were	added.

Changed	in	version	3.4:	The	defaultTest	parameter	was	changed	to
also	accept	an	iterable	of	test	names.

26.3.8.3.1.	load_tests	Protocol

New	in	version	3.2.

Modules	or	packages	can	customize	how	tests	are	loaded	from	them
during	normal	 test	 runs	or	 test	 discovery	by	 implementing	a	 function
called	load_tests.

If	 a	 test	 module	 defines	 load_tests	 it	 will	 be	 called	 by
TestLoader.loadTestsFromModule()	 with	 the	 following
arguments:

load_tests(loader,	standard_tests,	None)

It	should	return	a	TestSuite.

loader	 is	 the	 instance	 of	 TestLoader	 doing	 the	 loading.
standard_tests	are	the	tests	that	would	be	loaded	by	default	from	the
module.	It	is	common	for	test	modules	to	only	want	to	add	or	remove
tests	from	the	standard	set	of	tests.	The	third	argument	is	used	when
loading	packages	as	part	of	test	discovery.

A	typical	load_tests	 function	that	 loads	tests	from	a	specific	set	of
TestCase	classes	may	look	like:

test_cases	=	(TestCase1,	TestCase2,	TestCase3)

def	load_tests(loader,	tests,	pattern):

				suite	=	TestSuite()

				for	test_class	in	test_cases:

								tests	=	loader.loadTestsFromTestCase(test_class

								suite.addTests(tests)

				return	suite

If	 discovery	 is	 started,	 either	 from	 the	 command	 line	 or	 by	 calling
TestLoader.discover(),	 with	 a	 pattern	 that	matches	 a	 package
name	 then	 the	 package	 __init__.py	 will	 be	 checked	 for
load_tests.

Note: 	The	default	pattern	is	'test*.py'.	This	matches	all	Python
files	that	start	with	'test'	but	won’t	match	any	test	directories.

A	pattern	like	'test*'	will	match	test	packages	as	well	as	modules.

If	 the	 package	 __init__.py	 defines	 load_tests	 then	 it	 will	 be
called	and	discovery	not	continued	into	the	package.	load_tests	 is
called	with	the	following	arguments:

load_tests(loader,	standard_tests,	pattern)

This	 should	 return	 a	 TestSuite	 representing	 all	 the	 tests	 from	 the
package.	 (standard_tests	 will	 only	 contain	 tests	 collected	 from
__init__.py.)

Because	the	pattern	is	passed	into	load_tests	 the	package	is	free
to	 continue	 (and	 potentially	 modify)	 test	 discovery.	 A	 ‘do	 nothing’
load_tests	function	for	a	test	package	would	look	like:

def	load_tests(loader,	standard_tests,	pattern):

				#	top	level	directory	cached	on	loader	instance

				this_dir	=	os.path.dirname(__file__)

				package_tests	=	loader.discover(start_dir=this_dir

				standard_tests.addTests(package_tests)

				return	standard_tests

26.3.9.	Class	and	Module	Fixtures

Class	 and	 module	 level	 fixtures	 are	 implemented	 in	 TestSuite.
When	 the	 test	 suite	 encounters	 a	 test	 from	 a	 new	 class	 then
tearDownClass()	from	the	previous	class	(if	there	is	one)	is	called,
followed	by	setUpClass()	from	the	new	class.

Similarly	if	a	test	is	from	a	different	module	from	the	previous	test	then
tearDownModule	 from	 the	 previous	 module	 is	 run,	 followed	 by
setUpModule	from	the	new	module.

After	 all	 the	 tests	 have	 run	 the	 final	 tearDownClass	 and
tearDownModule	are	run.

Note	that	shared	fixtures	do	not	play	well	with	[potential]	features	like
test	parallelization	and	they	break	test	isolation.	They	should	be	used
with	care.

The	default	ordering	of	 tests	created	by	 the	unittest	 test	 loaders	 is	 to
group	all	tests	from	the	same	modules	and	classes	together.	This	will
lead	to	setUpClass	/	setUpModule	(etc)	being	called	exactly	once
per	class	and	module.	 If	you	 randomize	 the	order,	so	 that	 tests	 from
different	modules	and	classes	are	adjacent	 to	each	other,	 then	 these
shared	 fixture	 functions	may	be	called	multiple	 times	 in	a	 single	 test
run.

Shared	fixtures	are	not	intended	to	work	with	suites	with	non-standard
ordering.	A	BaseTestSuite	still	exists	for	frameworks	that	don’t	want
to	support	shared	fixtures.

If	 there	 are	 any	 exceptions	 raised	 during	 one	 of	 the	 shared	 fixture
functions	 the	 test	 is	 reported	 as	 an	 error.	 Because	 there	 is	 no

corresponding	 test	 instance	 an	 _ErrorHolder	 object	 (that	 has	 the
same	 interface	 as	 a	 TestCase)	 is	 created	 to	 represent	 the	 error.	 If
you	 are	 just	 using	 the	 standard	 unittest	 test	 runner	 then	 this	 detail
doesn’t	matter,	but	if	you	are	a	framework	author	it	may	be	relevant.

26.3.9.1.	setUpClass	and	tearDownClass

These	must	be	implemented	as	class	methods:

import	unittest

class	Test(unittest.TestCase):

				@classmethod

				def	setUpClass(cls):

								cls._connection	=	createExpensiveConnectionObject

				@classmethod

				def	tearDownClass(cls):

								cls._connection.destroy()

If	you	want	the	setUpClass	and	tearDownClass	on	base	classes
called	then	you	must	call	up	to	them	yourself.	The	implementations	in
TestCase	are	empty.

If	 an	exception	 is	 raised	during	a	setUpClass	 then	 the	 tests	 in	 the
class	 are	 not	 run	 and	 the	 tearDownClass	 is	 not	 run.	 Skipped
classes	 will	 not	 have	 setUpClass	 or	 tearDownClass	 run.	 If	 the
exception	is	a	SkipTest	exception	then	the	class	will	be	reported	as
having	been	skipped	instead	of	as	an	error.

26.3.9.2.	setUpModule	and	tearDownModule

These	should	be	implemented	as	functions:

def	setUpModule():

				createConnection()

def	tearDownModule():

				closeConnection()

If	an	exception	is	raised	in	a	setUpModule	then	none	of	the	tests	in
the	module	will	 be	 run	and	 the	 tearDownModule	will	 not	be	 run.	 If
the	 exception	 is	 a	 SkipTest	 exception	 then	 the	 module	 will	 be
reported	as	having	been	skipped	instead	of	as	an	error.

26.3.10.	Signal	Handling

New	in	version	3.2.

The	 -c/--catch	 command-line	 option	 to	 unittest,	 along	 with	 the
catchbreak	 parameter	 to	 unittest.main(),	 provide	 more
friendly	 handling	 of	 control-C	 during	 a	 test	 run.	 With	 catch	 break
behavior	 enabled	 control-C	 will	 allow	 the	 currently	 running	 test	 to
complete,	and	 the	 test	 run	will	 then	end	and	 report	all	 the	 results	so
far.	A	second	control-c	will	raise	a	KeyboardInterrupt	in	the	usual
way.

The	 control-c	 handling	 signal	 handler	 attempts	 to	 remain	 compatible
with	 code	 or	 tests	 that	 install	 their	 own	 signal.SIGINT	 handler.	 If
the	 unittest	 handler	 is	 called	 but	 isn’t	 the	 installed
signal.SIGINT	 handler,	 i.e.	 it	 has	 been	 replaced	 by	 the	 system
under	test	and	delegated	to,	then	it	calls	the	default	handler.	This	will
normally	be	the	expected	behavior	by	code	that	replaces	an	installed
handler	and	delegates	 to	 it.	For	 individual	 tests	 that	need	unittest
control-c	handling	disabled	the	removeHandler()	decorator	can	be
used.

There	 are	 a	 few	 utility	 functions	 for	 framework	 authors	 to	 enable
control-c	handling	functionality	within	test	frameworks.

unittest.installHandler()
Install	the	control-c	handler.	When	a	signal.SIGINT	is	received
(usually	 in	 response	 to	 the	 user	 pressing	 control-c)	 all	 registered
results	have	stop()	called.

unittest.registerResult(result)

Register	a	TestResult	object	 for	control-c	handling.	Registering
a	 result	 stores	 a	 weak	 reference	 to	 it,	 so	 it	 doesn’t	 prevent	 the
result	from	being	garbage	collected.

Registering	a	TestResult	 object	 has	no	side-effects	 if	 control-c
handling	 is	 not	 enabled,	 so	 test	 frameworks	 can	 unconditionally
register	 all	 results	 they	 create	 independently	 of	 whether	 or	 not
handling	is	enabled.

unittest.removeResult(result)
Remove	a	registered	result.	Once	a	result	has	been	removed	then
stop()	will	no	longer	be	called	on	that	result	object	in	response	to
a	control-c.

unittest.removeHandler(function=None)
When	called	without	arguments	this	function	removes	the	control-c
handler	if	it	has	been	installed.	This	function	can	also	be	used	as	a
test	decorator	 to	 temporarily	 remove	 the	handler	whilst	 the	 test	 is
being	executed:

@unittest.removeHandler

def	test_signal_handling(self):

				...

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

http://www.python.org/

26.4.	unittest.mock	—	mock
object	library
New	in	version	3.3.

unittest.mock	 is	 a	 library	 for	 testing	 in	 Python.	 It	 allows	 you	 to
replace	parts	of	your	system	under	 test	with	mock	objects	and	make
assertions	about	how	they	have	been	used.

unittest.mock	provides	a	core	Mock	class	removing	the	need	to	create
a	host	of	stubs	throughout	your	test	suite.	After	performing	an	action,
you	can	make	assertions	about	which	methods	/	attributes	were	used
and	 arguments	 they	 were	 called	 with.	 You	 can	 also	 specify	 return
values	and	set	needed	attributes	in	the	normal	way.

Additionally,	 mock	 provides	 a	 patch()	 decorator	 that	 handles
patching	module	and	class	 level	attributes	within	 the	scope	of	a	 test,
along	with	sentinel	for	creating	unique	objects.	See	the	quick	guide
for	some	examples	of	how	to	use	Mock,	MagicMock	and	patch().

Mock	 is	 very	 easy	 to	 use	 and	 is	 designed	 for	 use	 with	 unittest.
Mock	is	based	on	the	‘action	->	assertion’	pattern	instead	of	‘record	->
replay’	used	by	many	mocking	frameworks.

There	 is	 a	 backport	 of	 unittest.mock	 for	 earlier	 versions	 of	 Python,
available	as	mock	on	PyPI.

Source	code:	Lib/unittest/mock.py

http://pypi.python.org/pypi/mock
http://hg.python.org/cpython/file/3.4/Lib/unittest/mock.py

26.4.1.	Quick	Guide

Mock	 and	 MagicMock	 objects	 create	 all	 attributes	 and	methods	 as
you	access	them	and	store	details	of	how	they	have	been	used.	You
can	configure	them,	to	specify	return	values	or	limit	what	attributes	are
available,	and	then	make	assertions	about	how	they	have	been	used:

>>>	from	unittest.mock	import	MagicMock

>>>	thing	=	ProductionClass()

>>>	thing.method	=	MagicMock(return_value=3)

>>>	thing.method(3,	4,	5,	key='value')

3

>>>	thing.method.assert_called_with(3,	4,	5,	key='value'

side_effect	allows	you	to	perform	side	effects,	including	raising	an
exception	when	a	mock	is	called:

>>>	mock	=	Mock(side_effect=KeyError('foo'))

>>>	mock()

Traceback	(most	recent	call	last):

	...

KeyError:	'foo'

>>>	values	=	{'a':	1,	'b':	2,	'c':	3}

>>>	def	side_effect(arg):

...					return	values[arg]

...

>>>	mock.side_effect	=	side_effect

>>>	mock('a'),	mock('b'),	mock('c')

(1,	2,	3)

>>>	mock.side_effect	=	[5,	4,	3,	2,	1]

>>>	mock(),	mock(),	mock()

(5,	4,	3)

Mock	 has	 many	 other	 ways	 you	 can	 configure	 it	 and	 control	 its
behaviour.	 For	 example	 the	 spec	 argument	 configures	 the	 mock	 to
take	 its	 specification	 from	 another	 object.	 Attempting	 to	 access
attributes	or	methods	on	the	mock	that	don’t	exist	on	the	spec	will	fail
with	an	AttributeError.

The	 patch()	 decorator	 /	 context	 manager	 makes	 it	 easy	 to	 mock
classes	or	objects	in	a	module	under	test.	The	object	you	specify	will
be	replaced	with	a	mock	(or	other	object)	during	the	test	and	restored
when	the	test	ends:

>>>	from	unittest.mock	import	patch

>>>	@patch('module.ClassName2')

...	@patch('module.ClassName1')

...	def	test(MockClass1,	MockClass2):

...					module.ClassName1()

...					module.ClassName2()

...					assert	MockClass1	is	module.ClassName1

...					assert	MockClass2	is	module.ClassName2

...					assert	MockClass1.called

...					assert	MockClass2.called

...

>>>	test()

Note: 	When	you	nest	patch	decorators	the	mocks	are	passed	in	to
the	decorated	function	in	the	same	order	they	applied	(the	normal
python	order	that	decorators	are	applied).	This	means	from	the
bottom	up,	so	in	the	example	above	the	mock	for
module.ClassName1	is	passed	in	first.

With	patch	it	matters	that	you	patch	objects	in	the	namespace	where
they	are	 looked	up.	This	 is	normally	straightforward,	but	 for	a	quick
guide	read	where	to	patch.

As	well	as	a	decorator	patch	can	be	used	as	a	context	manager	 in	a
with	statement:

>>>	with	patch.object(ProductionClass,	'method',	return_value

...					thing	=	ProductionClass()

...					thing.method(1,	2,	3)

...

>>>	mock_method.assert_called_once_with(1,	2,	3)

There	 is	 also	 patch.dict()	 for	 setting	 values	 in	 a	 dictionary	 just
during	a	scope	and	 restoring	 the	dictionary	 to	 its	original	 state	when
the	test	ends:

>>>	foo	=	{'key':	'value'}

>>>	original	=	foo.copy()

>>>	with	patch.dict(foo,	{'newkey':	'newvalue'},	clear

...					assert	foo	==	{'newkey':	'newvalue'}

...

>>>	assert	foo	==	original

Mock	 supports	 the	 mocking	 of	 Python	magic	 methods.	 The	 easiest
way	of	using	magic	methods	 is	with	 the	 MagicMock	 class.	 It	 allows
you	to	do	things	like:

>>>	mock	=	MagicMock()

>>>	mock.__str__.return_value	=	'foobarbaz'

>>>	str(mock)

'foobarbaz'

>>>	mock.__str__.assert_called_with()

Mock	 allows	 you	 to	 assign	 functions	 (or	 other	 Mock	 instances)	 to
magic	methods	and	they	will	be	called	appropriately.	The	MagicMock
class	 is	 just	 a	 Mock	 variant	 that	 has	 all	 of	 the	 magic	 methods	 pre-

created	for	you	(well,	all	the	useful	ones	anyway).

The	following	is	an	example	of	using	magic	methods	with	the	ordinary
Mock	class:

>>>	mock	=	Mock()

>>>	mock.__str__	=	Mock(return_value='wheeeeee')

>>>	str(mock)

'wheeeeee'

For	ensuring	that	the	mock	objects	in	your	tests	have	the	same	api	as
the	 objects	 they	 are	 replacing,	 you	 can	 use	 auto-speccing.	 Auto-
speccing	can	be	done	through	the	autospec	argument	to	patch,	or	the
create_autospec()	 function.	Auto-speccing	creates	mock	objects
that	 have	 the	 same	 attributes	 and	methods	 as	 the	 objects	 they	 are
replacing,	 and	 any	 functions	 and	 methods	 (including	 constructors)
have	the	same	call	signature	as	the	real	object.

This	 ensures	 that	 your	 mocks	 will	 fail	 in	 the	 same	 way	 as	 your
production	code	if	they	are	used	incorrectly:

>>>	from	unittest.mock	import	create_autospec

>>>	def	function(a,	b,	c):

...					pass

...

>>>	mock_function	=	create_autospec(function,	return_value

>>>	mock_function(1,	2,	3)

'fishy'

>>>	mock_function.assert_called_once_with(1,	2,	3)

>>>	mock_function('wrong	arguments')

Traceback	(most	recent	call	last):

	...

TypeError:	<lambda>()	takes	exactly	3	arguments	(1	given)

create_autospec	 can	 also	 be	 used	 on	 classes,	 where	 it	 copies	 the
signature	 of	 the	 __init__	 method,	 and	 on	 callable	 objects	 where	 it
copies	the	signature	of	the	__call__	method.

26.4.2.	The	Mock	Class

Mock	is	a	flexible	mock	object	intended	to	replace	the	use	of	stubs	and
test	 doubles	 throughout	 your	 code.	 Mocks	 are	 callable	 and	 create
attributes	 as	 new	 mocks	 when	 you	 access	 them	 [1].	 Accessing	 the
same	attribute	will	 always	 return	 the	 same	mock.	Mocks	 record	how
you	use	them,	allowing	you	to	make	assertions	about	what	your	code
has	done	to	them.

MagicMock	 is	 a	 subclass	 of	Mock	 with	 all	 the	magic	methods	 pre-
created	and	ready	to	use.	There	are	also	non-callable	variants,	useful
when	 you	 are	 mocking	 out	 objects	 that	 aren’t	 callable:
NonCallableMock	and	NonCallableMagicMock

The	patch()	decorators	makes	it	easy	to	temporarily	replace	classes
in	a	particular	module	with	a	Mock	object.	By	default	patch	will	create
a	MagicMock	 for	 you.	 You	 can	 specify	 an	 alternative	 class	 of	Mock
using	the	new_callable	argument	to	patch.

class	unittest.mock.Mock(spec=None,	side_effect=None,
return_value=DEFAULT,	wraps=None,	name=None,	spec_set=None,
**kwargs)

Create	a	new	Mock	object.	Mock	takes	several	optional	arguments
that	specify	the	behaviour	of	the	Mock	object:

spec:	This	can	be	either	a	list	of	strings	or	an	existing	object	(a
class	or	 instance)	 that	 acts	 as	 the	 specification	 for	 the	mock
object.	If	you	pass	in	an	object	then	a	list	of	strings	is	formed
by	 calling	 dir	 on	 the	 object	 (excluding	 unsupported	 magic
attributes	and	methods).	Accessing	any	attribute	not	in	this	list
will	raise	an	AttributeError.

If	 spec	 is	 an	 object	 (rather	 than	 a	 list	 of	 strings)	 then
__class__	 returns	 the	class	of	 the	spec	object.	This	allows
mocks	to	pass	isinstance	tests.

spec_set:	A	stricter	variant	of	spec.	 If	used,	attempting	 to	set
or	get	an	attribute	on	the	mock	that	isn’t	on	the	object	passed
as	spec_set	will	raise	an	AttributeError.

side_effect:	 A	 function	 to	 be	 called	 whenever	 the	 Mock	 is
called.	 See	 the	 side_effect	 attribute.	 Useful	 for	 raising
exceptions	 or	 dynamically	 changing	 return	 values.	 The
function	 is	called	with	 the	same	arguments	as	 the	mock,	and
unless	it	returns	DEFAULT,	 the	return	value	of	 this	 function	 is
used	as	the	return	value.

Alternatively	side_effect	can	be	an	exception	class	or	instance.
In	 this	 case	 the	 exception	 will	 be	 raised	 when	 the	 mock	 is
called.

If	 side_effect	 is	 an	 iterable	 then	 each	 call	 to	 the	 mock	 will
return	the	next	value	from	the	iterable.

A	side_effect	can	be	cleared	by	setting	it	to	None.

return_value:	The	value	returned	when	the	mock	is	called.	By
default	 this	 is	a	new	Mock	 (created	on	 first	access).	See	 the
return_value	attribute.

wraps:	Item	for	the	mock	object	to	wrap.	If	wraps	 is	not	None
then	calling	the	Mock	will	pass	the	call	through	to	the	wrapped
object	(returning	the	real	result).	Attribute	access	on	the	mock
will	return	a	Mock	object	that	wraps	the	corresponding	attribute
of	 the	 wrapped	 object	 (so	 attempting	 to	 access	 an	 attribute

that	doesn’t	exist	will	raise	an	AttributeError).

If	the	mock	has	an	explicit	return_value	set	then	calls	are	not
passed	to	the	wrapped	object	and	the	return_value	is	returned
instead.

name:	If	the	mock	has	a	name	then	it	will	be	used	in	the	repr
of	 the	mock.	This	 can	be	useful	 for	 debugging.	The	name	 is
propagated	to	child	mocks.

Mocks	can	also	be	called	with	arbitrary	keyword	arguments.	These
will	be	used	to	set	attributes	on	the	mock	after	it	is	created.	See	the
configure_mock()	method	for	details.

assert_called_with(*args,	**kwargs)
This	 method	 is	 a	 convenient	 way	 of	 asserting	 that	 calls	 are
made	in	a	particular	way:

>>>	mock	=	Mock()

>>>	mock.method(1,	2,	3,	test='wow')

<Mock	name='mock.method()'	id='...'>

>>>	mock.method.assert_called_with(1,	2,	3,	test

assert_called_once_with(*args,	**kwargs)
Assert	 that	 the	 mock	 was	 called	 exactly	 once	 and	 with	 the
specified	arguments.

>>>	mock	=	Mock(return_value=None)

>>>	mock('foo',	bar='baz')

>>>	mock.assert_called_once_with('foo',	bar='baz'

>>>	mock('foo',	bar='baz')

>>>	mock.assert_called_once_with('foo',	bar='baz'

Traceback	(most	recent	call	last):

		...

AssertionError:	Expected	'mock'	to	be	called	once.	Called	2	times.

assert_any_call(*args,	**kwargs)
assert	the	mock	has	been	called	with	the	specified	arguments.

The	 assert	 passes	 if	 the	 mock	 has	 ever	 been	 called,	 unlike
assert_called_with()	 and
assert_called_once_with()	 that	 only	 pass	 if	 the	 call	 is
the	most	recent	one.

>>>	mock	=	Mock(return_value=None)

>>>	mock(1,	2,	arg='thing')

>>>	mock('some',	'thing',	'else')

>>>	mock.assert_any_call(1,	2,	arg='thing')

assert_has_calls(calls,	any_order=False)
assert	 the	mock	 has	 been	 called	with	 the	 specified	 calls.	 The
mock_calls	list	is	checked	for	the	calls.

If	 any_order	 is	 false	 (the	 default)	 then	 the	 calls	 must	 be
sequential.	There	can	be	extra	calls	before	or	after	the	specified
calls.

If	any_order	is	true	then	the	calls	can	be	in	any	order,	but	they
must	all	appear	in	mock_calls.

>>>	mock	=	Mock(return_value=None)

>>>	mock(1)

>>>	mock(2)

>>>	mock(3)

>>>	mock(4)

>>>	calls	=	[call(2),	call(3)]

>>>	mock.assert_has_calls(calls)

>>>	calls	=	[call(4),	call(2),	call(3)]

>>>	mock.assert_has_calls(calls,	any_order=True

reset_mock()
The	reset_mock	method	resets	all	the	call	attributes	on	a	mock
object:

>>>	mock	=	Mock(return_value=None)

>>>	mock('hello')

>>>	mock.called

True

>>>	mock.reset_mock()

>>>	mock.called

False

This	 can	 be	 useful	 where	 you	 want	 to	 make	 a	 series	 of
assertions	 that	 reuse	 the	 same	 object.	 Note	 that	 reset_mock
doesn’t	 clear	 the	 return	 value,	 side_effect	 or	 any	 child
attributes	you	have	set	using	normal	assignment.	Child	mocks
and	the	return	value	mock	(if	any)	are	reset	as	well.

mock_add_spec(spec,	spec_set=False)
Add	a	spec	to	a	mock.	spec	can	either	be	an	object	or	a	list	of
strings.	Only	attributes	on	the	spec	can	be	fetched	as	attributes
from	the	mock.

If	spec_set	is	True	then	only	attributes	on	the	spec	can	be	set.

attach_mock(mock,	attribute)
Attach	 a	mock	 as	 an	 attribute	 of	 this	 one,	 replacing	 its	 name
and	parent.	Calls	 to	 the	attached	mock	will	be	 recorded	 in	 the
method_calls	and	mock_calls	attributes	of	this	one.

configure_mock(**kwargs)

Set	attributes	on	the	mock	through	keyword	arguments.

Attributes	plus	return	values	and	side	effects	can	be	set	on	child
mocks	using	standard	dot	notation	and	unpacking	a	dictionary
in	the	method	call:

>>>	mock	=	Mock()

>>>	attrs	=	{'method.return_value':	3,	'other.side_effect'

>>>	mock.configure_mock(**attrs)

>>>	mock.method()

3

>>>	mock.other()

Traceback	(most	recent	call	last):

		...

KeyError

The	 same	 thing	 can	 be	 achieved	 in	 the	 constructor	 call	 to
mocks:

>>>	attrs	=	{'method.return_value':	3,	'other.side_effect'

>>>	mock	=	Mock(some_attribute='eggs',	**attrs)

>>>	mock.some_attribute

'eggs'

>>>	mock.method()

3

>>>	mock.other()

Traceback	(most	recent	call	last):

		...

KeyError

configure_mock	exists	to	make	it	easier	to	do	configuration	after
the	mock	has	been	created.

__dir__()

Mock	 objects	 limit	 the	 results	 of	 dir(some_mock)	 to	 useful
results.	 For	mocks	 with	 a	 spec	 this	 includes	 all	 the	 permitted
attributes	for	the	mock.

See	FILTER_DIR	for	what	this	filtering	does,	and	how	to	switch
it	off.

_get_child_mock(**kw)
Create	 the	 child	 mocks	 for	 attributes	 and	 return	 value.	 By
default	 child	 mocks	 will	 be	 the	 same	 type	 as	 the	 parent.
Subclasses	of	Mock	may	want	to	override	this	to	customize	the
way	child	mocks	are	made.

For	non-callable	mocks	the	callable	variant	will	be	used	(rather
than	any	custom	subclass).

called

A	 boolean	 representing	 whether	 or	 not	 the	 mock	 object	 has
been	called:

>>>	mock	=	Mock(return_value=None)

>>>	mock.called

False

>>>	mock()

>>>	mock.called

True

call_count

An	 integer	 telling	 you	 how	 many	 times	 the	 mock	 object	 has
been	called:

>>>	mock	=	Mock(return_value=None)

>>>	mock.call_count

0

>>>	mock()

>>>	mock()

>>>	mock.call_count

2

return_value

Set	this	to	configure	the	value	returned	by	calling	the	mock:

>>>	mock	=	Mock()

>>>	mock.return_value	=	'fish'

>>>	mock()

'fish'

The	default	return	value	is	a	mock	object	and	you	can	configure
it	in	the	normal	way:

>>>	mock	=	Mock()

>>>	mock.return_value.attribute	=	sentinel.Attribute

>>>	mock.return_value()

<Mock	name='mock()()'	id='...'>

>>>	mock.return_value.assert_called_with()

return_value	can	also	be	set	in	the	constructor:

>>>	mock	=	Mock(return_value=3)

>>>	mock.return_value

3

>>>	mock()

3

side_effect

This	 can	 either	 be	 a	 function	 to	 be	 called	 when	 the	 mock	 is
called,	or	an	exception	(class	or	instance)	to	be	raised.

If	you	pass	 in	a	 function	 it	will	be	called	with	same	arguments
as	 the	 mock	 and	 unless	 the	 function	 returns	 the	 DEFAULT
singleton	 the	 call	 to	 the	 mock	 will	 then	 return	 whatever	 the
function	returns.	If	the	function	returns	DEFAULT	then	the	mock
will	return	its	normal	value	(from	the	return_value).

An	 example	 of	 a	 mock	 that	 raises	 an	 exception	 (to	 test
exception	handling	of	an	API):

>>>	mock	=	Mock()

>>>	mock.side_effect	=	Exception('Boom!')

>>>	mock()

Traceback	(most	recent	call	last):

		...

Exception:	Boom!

Using	side_effect	to	return	a	sequence	of	values:

>>>	mock	=	Mock()

>>>	mock.side_effect	=	[3,	2,	1]

>>>	mock(),	mock(),	mock()

(3,	2,	1)

The	side_effect	 function	 is	called	with	 the	same	arguments	as
the	mock	(so	it	is	wise	for	it	to	take	arbitrary	args	and	keyword
arguments)	and	whatever	it	returns	is	used	as	the	return	value
for	the	call.	The	exception	is	if	side_effect	returns	DEFAULT,	in
which	case	the	normal	return_value	is	used.

>>>	mock	=	Mock(return_value=3)

>>>	def	side_effect(*args,	**kwargs):

...					return	DEFAULT

...

>>>	mock.side_effect	=	side_effect

>>>	mock()

3

side_effect	 can	 be	 set	 in	 the	 constructor.	 Here’s	 an	 example
that	adds	one	to	the	value	the	mock	is	called	with	and	returns	it:

>>>	side_effect	=	lambda	value:	value	+	1

>>>	mock	=	Mock(side_effect=side_effect)

>>>	mock(3)

4

>>>	mock(-8)

-7

Setting	side_effect	to	None	clears	it:

>>>	m	=	Mock(side_effect=KeyError,	return_value

>>>	m()

Traceback	(most	recent	call	last):

	...

KeyError

>>>	m.side_effect	=	None

>>>	m()

3

call_args

This	 is	 either	 None	 (if	 the	 mock	 hasn’t	 been	 called),	 or	 the
arguments	that	the	mock	was	last	called	with.	This	will	be	in	the
form	of	a	tuple:	the	first	member	is	any	ordered	arguments	the
mock	 was	 called	 with	 (or	 an	 empty	 tuple)	 and	 the	 second
member	is	any	keyword	arguments	(or	an	empty	dictionary).

>>>	mock	=	Mock(return_value=None)

>>>	print	mock.call_args

None

>>>	mock()

>>>	mock.call_args

call()

>>>	mock.call_args	==	()

True

>>>	mock(3,	4)

>>>	mock.call_args

call(3,	4)

>>>	mock.call_args	==	((3,	4),)

True

>>>	mock(3,	4,	5,	key='fish',	next='w00t!')

>>>	mock.call_args

call(3,	4,	5,	key='fish',	next='w00t!')

call_args,	 along	with	members	of	 the	 lists	 call_args_list,
method_calls	 and	 mock_calls	 are	 call	 objects.	 These
are	 tuples,	 so	 they	 can	 be	 unpacked	 to	 get	 at	 the	 individual
arguments	 and	 make	 more	 complex	 assertions.	 See	 calls	 as
tuples.

call_args_list

This	 is	 a	 list	 of	 all	 the	 calls	 made	 to	 the	 mock	 object	 in
sequence	(so	the	length	of	the	list	is	the	number	of	times	it	has
been	called).	Before	any	calls	have	been	made	 it	 is	an	empty
list.	The	call	object	can	be	used	for	conveniently	constructing
lists	of	calls	to	compare	with	call_args_list.

>>>	mock	=	Mock(return_value=None)

>>>	mock()

>>>	mock(3,	4)

>>>	mock(key='fish',	next='w00t!')

>>>	mock.call_args_list

[call(),	call(3,	4),	call(key='fish',	next='w00t!')]

>>>	expected	=	[(),	((3,	4),),	({'key':	'fish',

>>>	mock.call_args_list	==	expected

True

Members	 of	 call_args_list	 are	 call	 objects.	 These	 can	 be
unpacked	as	tuples	to	get	at	the	individual	arguments.	See	calls
as	tuples.

method_calls

As	well	as	 tracking	calls	 to	 themselves,	mocks	also	 track	calls
to	methods	and	attributes,	and	their	methods	and	attributes:

>>>	mock	=	Mock()

>>>	mock.method()

<Mock	name='mock.method()'	id='...'>

>>>	mock.property.method.attribute()

<Mock	name='mock.property.method.attribute()'	id='...'>

>>>	mock.method_calls

[call.method(),	call.property.method.attribute()]

Members	 of	 method_calls	 are	 call	 objects.	 These	 can	 be
unpacked	as	tuples	to	get	at	the	individual	arguments.	See	calls
as	tuples.

mock_calls

mock_calls	 records	 all	 calls	 to	 the	 mock	 object,	 its	 methods,
magic	methods	and	return	value	mocks.

>>>	mock	=	MagicMock()

>>>	result	=	mock(1,	2,	3)

>>>	mock.first(a=3)

<MagicMock	name='mock.first()'	id='...'>

>>>	mock.second()

<MagicMock	name='mock.second()'	id='...'>

>>>	int(mock)

1

>>>	result(1)

<MagicMock	name='mock()()'	id='...'>

>>>	expected	=	[call(1,	2,	3),	call.first(a=3),

...	call.__int__(),	call()(1)]

>>>	mock.mock_calls	==	expected

True

Members	 of	 mock_calls	 are	 call	 objects.	 These	 can	 be
unpacked	as	tuples	to	get	at	the	individual	arguments.	See	calls
as	tuples.

__class__

Normally	the	__class__	attribute	of	an	object	will	return	its	type.
For	a	mock	object	with	a	spec	__class__	returns	the	spec	class
instead.	 This	 allows	mock	 objects	 to	 pass	 isinstance	 tests	 for
the	object	they	are	replacing	/	masquerading	as:

>>>	mock	=	Mock(spec=3)

>>>	isinstance(mock,	int)

True

__class__	 is	 assignable	 to,	 this	 allows	 a	 mock	 to	 pass	 an
isinstance	check	without	forcing	you	to	use	a	spec:

>>>	mock	=	Mock()

>>>	mock.__class__	=	dict

>>>	isinstance(mock,	dict)

True

class	unittest.mock.NonCallableMock(spec=None,
wraps=None,	name=None,	spec_set=None,	**kwargs)

A	non-callable	version	of	Mock.	The	constructor	parameters	have

the	same	meaning	of	Mock,	with	the	exception	of	return_value	and
side_effect	which	have	no	meaning	on	a	non-callable	mock.

Mock	objects	 that	use	a	class	or	an	 instance	as	a	spec	 or	spec_set
are	able	to	pass	isinstance	tests:

>>>	mock	=	Mock(spec=SomeClass)

>>>	isinstance(mock,	SomeClass)

True

>>>	mock	=	Mock(spec_set=SomeClass())

>>>	isinstance(mock,	SomeClass)

True

The	Mock	 classes	 have	 support	 for	 mocking	 magic	 methods.	 See
magic	methods	for	the	full	details.

The	 mock	 classes	 and	 the	 patch()	 decorators	 all	 take	 arbitrary
keyword	 arguments	 for	 configuration.	 For	 the	 patch	 decorators	 the
keywords	 are	 passed	 to	 the	 constructor	 of	 the	mock	 being	 created.
The	keyword	arguments	are	for	configuring	attributes	of	the	mock:

>>>	m	=	MagicMock(attribute=3,	other='fish')

>>>	m.attribute

3

>>>	m.other

'fish'

The	return	value	and	side	effect	of	child	mocks	can	be	set	in	the	same
way,	using	dotted	notation.	As	you	can’t	use	dotted	names	directly	in	a
call	you	have	to	create	a	dictionary	and	unpack	it	using	**:

>>>	attrs	=	{'method.return_value':	3,	'other.side_effect'

>>>	mock	=	Mock(some_attribute='eggs',	**attrs)

>>>	mock.some_attribute

'eggs'

>>>	mock.method()

3

>>>	mock.other()

Traceback	(most	recent	call	last):

		...

KeyError

A	 callable	mock	which	was	 created	with	 a	 spec	 (or	 a	 spec_set)	will
introspect	 the	 specification	object’s	 signature	when	matching	 calls	 to
the	 mock.	 Therefore,	 it	 can	 match	 the	 actual	 call’s	 arguments
regardless	of	whether	they	were	passed	positionally	or	by	name:

>>>	def	f(a,	b,	c):	pass

...

>>>	mock	=	Mock(spec=f)

>>>	mock(1,	2,	c=3)

<Mock	name='mock()'	id='140161580456576'>

>>>	mock.assert_called_with(1,	2,	3)

>>>	mock.assert_called_with(a=1,	b=2,	c=3)

This	 applies	 to	 assert_called_with(),
assert_called_once_with(),	 assert_has_calls()	 and
assert_any_call().	 When	 Autospeccing,	 it	 will	 also	 apply	 to
method	calls	on	the	mock	object.

Changed	 in	 version	 3.4:	 Added	 signature	 introspection	 on
specced	and	autospecced	mock	objects.

class	unittest.mock.PropertyMock(*args,	**kwargs)
A	mock	intended	to	be	used	as	a	property,	or	other	descriptor,	on	a
class.	PropertyMock	 provides	 __get__	 and	 __set__	 methods	 so
you	can	specify	a	return	value	when	it	is	fetched.

Fetching	a	PropertyMock	 instance	 from	an	object	 calls	 the	mock,

with	no	args.	Setting	it	calls	the	mock	with	the	value	being	set.

>>>	class	Foo:

...					@property

...					def	foo(self):

...									return	'something'

...					@foo.setter

...					def	foo(self,	value):

...									pass

...

>>>	with	patch('__main__.Foo.foo',	new_callable=PropertyMock

...					mock_foo.return_value	=	'mockity-mock'

...					this_foo	=	Foo()

...					print	this_foo.foo

...					this_foo.foo	=	6

...

mockity-mock

>>>	mock_foo.mock_calls

[call(),	call(6)]

Because	of	the	way	mock	attributes	are	stored	you	can’t	directly	attach
a	PropertyMock	 to	 a	 mock	 object.	 Instead	 you	 can	 attach	 it	 to	 the
mock	type	object:

>>>	m	=	MagicMock()

>>>	p	=	PropertyMock(return_value=3)

>>>	type(m).foo	=	p

>>>	m.foo

3

>>>	p.assert_called_once_with()

26.4.2.1.	Calling

Mock	 objects	 are	 callable.	 The	 call	 will	 return	 the	 value	 set	 as	 the

return_value	 attribute.	 The	 default	 return	 value	 is	 a	 new	 Mock
object;	 it	 is	created	 the	 first	 time	 the	 return	value	 is	accessed	 (either
explicitly	or	by	 calling	 the	Mock)	 -	 but	 it	 is	 stored	and	 the	same	one
returned	each	time.

Calls	 made	 to	 the	 object	 will	 be	 recorded	 in	 the	 attributes	 like
call_args	and	call_args_list.

If	 side_effect	 is	 set	 then	 it	 will	 be	 called	 after	 the	 call	 has	 been
recorded,	so	if	side_effect	raises	an	exception	the	call	is	still	recorded.

The	simplest	way	to	make	a	mock	raise	an	exception	when	called	is	to
make	side_effect	an	exception	class	or	instance:

>>>	m	=	MagicMock(side_effect=IndexError)

>>>	m(1,	2,	3)

Traceback	(most	recent	call	last):

		...

IndexError

>>>	m.mock_calls

[call(1,	2,	3)]

>>>	m.side_effect	=	KeyError('Bang!')

>>>	m('two',	'three',	'four')

Traceback	(most	recent	call	last):

		...

KeyError:	'Bang!'

>>>	m.mock_calls

[call(1,	2,	3),	call('two',	'three',	'four')]

If	side_effect	 is	a	function	then	whatever	that	function	returns	is	what
calls	 to	 the	 mock	 return.	 The	 side_effect	 function	 is	 called	 with	 the
same	arguments	as	the	mock.	This	allows	you	to	vary	the	return	value
of	the	call	dynamically,	based	on	the	input:

>>>	def	side_effect(value):

...					return	value	+	1

...

>>>	m	=	MagicMock(side_effect=side_effect)

>>>	m(1)

2

>>>	m(2)

3

>>>	m.mock_calls

[call(1),	call(2)]

If	 you	 want	 the	 mock	 to	 still	 return	 the	 default	 return	 value	 (a	 new
mock),	or	any	set	return	value,	then	there	are	two	ways	of	doing	this.
Either	 return	 mock.return_value	 from	 inside	 side_effect,	 or	 return
DEFAULT:

>>>	m	=	MagicMock()

>>>	def	side_effect(*args,	**kwargs):

...					return	m.return_value

...

>>>	m.side_effect	=	side_effect

>>>	m.return_value	=	3

>>>	m()

3

>>>	def	side_effect(*args,	**kwargs):

...					return	DEFAULT

...

>>>	m.side_effect	=	side_effect

>>>	m()

3

To	 remove	a	side_effect,	and	 return	 to	 the	default	behaviour,	 set	 the
side_effect	to	None:

>>>	m	=	MagicMock(return_value=6)

>>>	def	side_effect(*args,	**kwargs):

...					return	3

...

>>>	m.side_effect	=	side_effect

>>>	m()

3

>>>	m.side_effect	=	None

>>>	m()

6

The	side_effect	can	also	be	any	iterable	object.	Repeated	calls	to	the
mock	will	return	values	from	the	iterable	(until	the	iterable	is	exhausted
and	a	StopIteration	is	raised):

>>>	m	=	MagicMock(side_effect=[1,	2,	3])

>>>	m()

1

>>>	m()

2

>>>	m()

3

>>>	m()

Traceback	(most	recent	call	last):

		...

StopIteration

If	 any	 members	 of	 the	 iterable	 are	 exceptions	 they	 will	 be	 raised
instead	of	returned:

>>>	iterable	=	(33,	ValueError,	66)

>>>	m	=	MagicMock(side_effect=iterable)

>>>	m()

33

>>>	m()

Traceback	(most	recent	call	last):

	...

ValueError

>>>	m()

66

26.4.2.2.	Deleting	Attributes

Mock	 objects	 create	 attributes	 on	 demand.	 This	 allows	 them	 to
pretend	to	be	objects	of	any	type.

You	may	want	a	mock	object	to	return	False	to	a	hasattr	call,	or	raise
an	 AttributeError	 when	 an	 attribute	 is	 fetched.	 You	 can	 do	 this	 by
providing	 an	 object	 as	 a	 spec	 for	 a	 mock,	 but	 that	 isn’t	 always
convenient.

You	 “block”	 attributes	 by	 deleting	 them.	Once	 deleted,	 accessing	 an
attribute	will	raise	an	AttributeError.

>>>	mock	=	MagicMock()

>>>	hasattr(mock,	'm')

True

>>>	del	mock.m

>>>	hasattr(mock,	'm')

False

>>>	del	mock.f

>>>	mock.f

Traceback	(most	recent	call	last):

				...

AttributeError:	f

26.4.2.3.	Mock	names	and	the	name	attribute

Since	“name”	is	an	argument	to	the	Mock	constructor,	if	you	want	your
mock	 object	 to	 have	 a	 “name”	 attribute	 you	 can’t	 just	 pass	 it	 in	 at
creation	 time.	 There	 are	 two	 alternatives.	 One	 option	 is	 to	 use
configure_mock():

>>>	mock	=	MagicMock()

>>>	mock.configure_mock(name='my_name')

>>>	mock.name

'my_name'

A	 simpler	 option	 is	 to	 simply	 set	 the	 “name”	 attribute	 after	 mock
creation:

>>>	mock	=	MagicMock()

>>>	mock.name	=	"foo"

26.4.2.4.	Attaching	Mocks	as	Attributes

When	you	attach	a	mock	as	an	attribute	of	 another	mock	 (or	as	 the
return	value)	 it	becomes	a	“child”	of	 that	mock.	Calls	 to	 the	child	are
recorded	 in	 the	 method_calls	 and	 mock_calls	 attributes	 of	 the
parent.	 This	 is	 useful	 for	 configuring	 child	mocks	 and	 then	 attaching
them	to	the	parent,	or	for	attaching	mocks	to	a	parent	that	records	all
calls	to	the	children	and	allows	you	to	make	assertions	about	the	order
of	calls	between	mocks:

>>>	parent	=	MagicMock()

>>>	child1	=	MagicMock(return_value=None)

>>>	child2	=	MagicMock(return_value=None)

>>>	parent.child1	=	child1

>>>	parent.child2	=	child2

>>>	child1(1)

>>>	child2(2)

>>>	parent.mock_calls

[call.child1(1),	call.child2(2)]

The	exception	 to	 this	 is	 if	 the	mock	has	a	name.	This	 allows	 you	 to
prevent	the	“parenting”	if	for	some	reason	you	don’t	want	it	to	happen.

>>>	mock	=	MagicMock()

>>>	not_a_child	=	MagicMock(name='not-a-child')

>>>	mock.attribute	=	not_a_child

>>>	mock.attribute()

<MagicMock	name='not-a-child()'	id='...'>

>>>	mock.mock_calls

[]

Mocks	created	for	you	by	patch()	are	automatically	given	names.	To
attach	 mocks	 that	 have	 names	 to	 a	 parent	 you	 use	 the
attach_mock()	method:

>>>	thing1	=	object()

>>>	thing2	=	object()

>>>	parent	=	MagicMock()

>>>	with	patch('__main__.thing1',	return_value=None)

...					with	patch('__main__.thing2',	return_value=None

...									parent.attach_mock(child1,	'child1')

...									parent.attach_mock(child2,	'child2')

...									child1('one')

...									child2('two')

...

>>>	parent.mock_calls

[call.child1('one'),	call.child2('two')]

[1]

The	only	exceptions	are	magic	methods	and	attributes	(those
that	have	leading	and	trailing	double	underscores).	Mock
doesn’t	create	these	but	instead	raises	an	AttributeError.
This	is	because	the	interpreter	will	often	implicitly	request	these
methods,	and	gets	very	confused	to	get	a	new	Mock	object
when	it	expects	a	magic	method.	If	you	need	magic	method
support	see	magic	methods.

26.4.3.	The	patchers

The	 patch	 decorators	 are	 used	 for	 patching	 objects	 only	 within	 the
scope	 of	 the	 function	 they	 decorate.	 They	 automatically	 handle	 the
unpatching	for	you,	even	if	exceptions	are	raised.	All	of	these	functions
can	also	be	used	in	with	statements	or	as	class	decorators.

26.4.3.1.	patch

Note: 	patch	is	straightforward	to	use.	The	key	is	to	do	the	patching
in	the	right	namespace.	See	the	section	where	to	patch.

unittest.mock.patch(target,	new=DEFAULT,	spec=None,
create=False,	spec_set=None,	autospec=None,	new_callable=None,
**kwargs)

patch	 acts	 as	 a	 function	 decorator,	 class	 decorator	 or	 a	 context
manager.	 Inside	 the	 body	 of	 the	 function	 or	 with	 statement,	 the
target	 is	 patched	 with	 a	 new	 object.	 When	 the	 function/with
statement	exits	the	patch	is	undone.

If	new	is	omitted,	then	the	target	is	replaced	with	a	MagicMock.	 If
patch	is	used	as	a	decorator	and	new	is	omitted,	the	created	mock
is	 passed	 in	 as	 an	 extra	 argument	 to	 the	 decorated	 function.	 If
patch	 is	used	as	a	context	manager	the	created	mock	 is	returned
by	the	context	manager.

target	should	be	a	string	in	the	form	‘package.module.ClassName’.
The	 target	 is	 imported	 and	 the	 specified	 object	 replaced	with	 the
new	object,	so	the	target	must	be	importable	from	the	environment
you	 are	 calling	 patch	 from.	 The	 target	 is	 imported	 when	 the
decorated	function	is	executed,	not	at	decoration	time.

The	 spec	 and	 spec_set	 keyword	 arguments	 are	 passed	 to	 the
MagicMock	if	patch	is	creating	one	for	you.

In	 addition	 you	 can	 pass	 spec=True	 or	 spec_set=True,	 which
causes	 patch	 to	 pass	 in	 the	 object	 being	 mocked	 as	 the
spec/spec_set	object.

new_callable	 allows	 you	 to	 specify	 a	 different	 class,	 or	 callable
object,	 that	 will	 be	 called	 to	 create	 the	 new	 object.	 By	 default
MagicMock	is	used.

A	 more	 powerful	 form	 of	 spec	 is	 autospec.	 If	 you	 set
autospec=True	then	the	mock	with	be	created	with	a	spec	from	the
object	being	replaced.	All	attributes	of	the	mock	will	also	have	the
spec	 of	 the	 corresponding	 attribute	 of	 the	 object	 being	 replaced.
Methods	 and	 functions	 being	 mocked	 will	 have	 their	 arguments
checked	and	will	raise	a	TypeError	if	they	are	called	with	the	wrong
signature.	 For	 mocks	 replacing	 a	 class,	 their	 return	 value	 (the
‘instance’)	 will	 have	 the	 same	 spec	 as	 the	 class.	 See	 the
create_autospec()	function	and	Autospeccing.

Instead	of	autospec=True	you	can	pass	autospec=some_object	 to
use	 an	 arbitrary	 object	 as	 the	 spec	 instead	 of	 the	 one	 being
replaced.

By	default	patch	will	fail	to	replace	attributes	that	don’t	exist.	If	you
pass	 in	 create=True,	 and	 the	 attribute	 doesn’t	 exist,	 patch	 will
create	the	attribute	for	you	when	the	patched	function	is	called,	and
delete	 it	 again	 afterwards.	 This	 is	 useful	 for	 writing	 tests	 against
attributes	that	your	production	code	creates	at	runtime.	 It	 is	off	by
default	because	it	can	be	dangerous.	With	 it	switched	on	you	can
write	passing	tests	against	APIs	that	don’t	actually	exist!

Patch	 can	 be	 used	 as	 a	 TestCase	 class	 decorator.	 It	 works	 by
decorating	 each	 test	 method	 in	 the	 class.	 This	 reduces	 the
boilerplate	 code	 when	 your	 test	 methods	 share	 a	 common
patchings	set.	patch	 finds	 tests	by	 looking	 for	method	names	 that
start	 with	 patch.TEST_PREFIX.	 By	 default	 this	 is	 test,	 which
matches	the	way	unittest	finds	tests.	You	can	specify	an	alternative
prefix	by	setting	patch.TEST_PREFIX.

Patch	can	be	used	as	a	context	manager,	with	the	with	statement.
Here	 the	 patching	 applies	 to	 the	 indented	 block	 after	 the	 with
statement.	If	you	use	“as”	then	the	patched	object	will	be	bound	to
the	 name	 after	 the	 “as”;	 very	 useful	 if	 patch	 is	 creating	 a	 mock
object	for	you.

patch	takes	arbitrary	keyword	arguments.	These	will	be	passed	to
the	Mock	(or	new_callable)	on	construction.

patch.dict(...),	patch.multiple(...)	 and	patch.object(...)	 are	 available
for	alternate	use-cases.

patch	as	function	decorator,	creating	the	mock	for	you	and	passing	 it
into	the	decorated	function:

>>>	@patch('__main__.SomeClass')

...	def	function(normal_argument,	mock_class):

...					print(mock_class	is	SomeClass)

...

>>>	function(None)

True

Patching	a	class	replaces	the	class	with	a	MagicMock	instance.	If	the
class	 is	 instantiated	 in	 the	 code	 under	 test	 then	 it	 will	 be	 the
return_value	of	the	mock	that	will	be	used.

If	the	class	is	instantiated	multiple	times	you	could	use	side_effect
to	 return	 a	 new	 mock	 each	 time.	 Alternatively	 you	 can	 set	 the
return_value	to	be	anything	you	want.

To	 configure	 return	 values	 on	methods	 of	 instances	 on	 the	 patched
class	you	must	do	this	on	the	return_value.	For	example:

>>>	class	Class:

...					def	method(self):

...									pass

...

>>>	with	patch('__main__.Class')	as	MockClass:

...					instance	=	MockClass.return_value

...					instance.method.return_value	=	'foo'

...					assert	Class()	is	instance

...					assert	Class().method()	==	'foo'

...

If	you	use	spec	or	spec_set	and	patch	 is	 replacing	a	class,	 then	 the
return	value	of	the	created	mock	will	have	the	same	spec.

>>>	Original	=	Class

>>>	patcher	=	patch('__main__.Class',	spec=True)

>>>	MockClass	=	patcher.start()

>>>	instance	=	MockClass()

>>>	assert	isinstance(instance,	Original)

>>>	patcher.stop()

The	 new_callable	 argument	 is	 useful	 where	 you	 want	 to	 use	 an
alternative	class	to	the	default	MagicMock	 for	the	created	mock.	For
example,	if	you	wanted	a	NonCallableMock	to	be	used:

>>>	thing	=	object()

>>>	with	patch('__main__.thing',	new_callable=NonCallableMock

...					assert	thing	is	mock_thing

...					thing()

...

Traceback	(most	recent	call	last):

		...

TypeError:	'NonCallableMock'	object	is	not	callable

Another	 use	 case	 might	 be	 to	 replace	 an	 object	 with	 a	 io.StringIO
instance:

>>>	from	io	import	StringIO

>>>	def	foo():

...					print	'Something'

...

>>>	@patch('sys.stdout',	new_callable=StringIO)

...	def	test(mock_stdout):

...					foo()

...					assert	mock_stdout.getvalue()	==	'Something\n

...

>>>	test()

When	patch	is	creating	a	mock	for	you,	it	is	common	that	the	first	thing
you	need	 to	do	 is	 to	 configure	 the	mock.	Some	of	 that	 configuration
can	be	done	in	the	call	to	patch.	Any	arbitrary	keywords	you	pass	into
the	call	will	be	used	to	set	attributes	on	the	created	mock:

>>>	patcher	=	patch('__main__.thing',	first='one',	second

>>>	mock_thing	=	patcher.start()

>>>	mock_thing.first

'one'

>>>	mock_thing.second

'two'

As	 well	 as	 attributes	 on	 the	 created	 mock	 attributes,	 like	 the

return_value	 and	 side_effect,	 of	 child	 mocks	 can	 also	 be
configured.	 These	 aren’t	 syntactically	 valid	 to	 pass	 in	 directly	 as
keyword	 arguments,	 but	 a	 dictionary	with	 these	 as	 keys	 can	 still	 be
expanded	into	a	patch	call	using	**:

>>>	config	=	{'method.return_value':	3,	'other.side_effect'

>>>	patcher	=	patch('__main__.thing',	**config)

>>>	mock_thing	=	patcher.start()

>>>	mock_thing.method()

3

>>>	mock_thing.other()

Traceback	(most	recent	call	last):

		...

KeyError

26.4.3.2.	patch.object

patch.object(target,	attribute,	new=DEFAULT,	spec=None,
create=False,	spec_set=None,	autospec=None,	new_callable=None,
**kwargs)

patch	 the	 named	member	 (attribute)	 on	 an	 object	 (target)	 with	 a
mock	object.

patch.object	 can	 be	 used	 as	 a	 decorator,	 class	 decorator	 or	 a
context	 manager.	 Arguments	 new,	 spec,	 create,	 spec_set,
autospec	and	new_callable	have	 the	same	meaning	as	 for	patch.
Like	 patch,	 patch.object	 takes	 arbitrary	 keyword	 arguments	 for
configuring	the	mock	object	it	creates.

When	 used	 as	 a	 class	 decorator	 patch.object	 honours
patch.TEST_PREFIX	for	choosing	which	methods	to	wrap.

You	 can	 either	 call	 patch.object	 with	 three	 arguments	 or	 two

arguments.	The	 three	argument	 form	takes	 the	object	 to	be	patched,
the	attribute	name	and	the	object	to	replace	the	attribute	with.

When	 calling	 with	 the	 two	 argument	 form	 you	 omit	 the	 replacement
object,	 and	 a	 mock	 is	 created	 for	 you	 and	 passed	 in	 as	 an	 extra
argument	to	the	decorated	function:

>>>	@patch.object(SomeClass,	'class_method')

...	def	test(mock_method):

...					SomeClass.class_method(3)

...					mock_method.assert_called_with(3)

...

>>>	test()

spec,	create	and	 the	other	arguments	 to	patch.object	have	the	same
meaning	as	they	do	for	patch.

26.4.3.3.	patch.dict

patch.dict(in_dict,	values=(),	clear=False,	**kwargs)
Patch	 a	 dictionary,	 or	 dictionary	 like	 object,	 and	 restore	 the
dictionary	to	its	original	state	after	the	test.

in_dict	 can	 be	 a	 dictionary	 or	 a	mapping	 like	 container.	 If	 it	 is	 a
mapping	then	it	must	at	 least	support	getting,	setting	and	deleting
items	plus	iterating	over	keys.

in_dict	can	also	be	a	string	specifying	 the	name	of	 the	dictionary,
which	will	then	be	fetched	by	importing	it.

values	can	be	a	dictionary	of	values	to	set	in	the	dictionary.	values
can	also	be	an	iterable	of	(key,	value)	pairs.

If	clear	 is	 true	 then	 the	 dictionary	will	 be	 cleared	 before	 the	 new

values	are	set.

patch.dict	 can	also	be	called	with	arbitrary	keyword	arguments	 to
set	values	in	the	dictionary.

patch.dict	 can	 be	 used	as	 a	 context	manager,	 decorator	 or	 class
decorator.	 When	 used	 as	 a	 class	 decorator	 patch.dict	 honours
patch.TEST_PREFIX	for	choosing	which	methods	to	wrap.

patch.dict	can	be	used	to	add	members	to	a	dictionary,	or	simply	let	a
test	 change	a	dictionary,	 and	ensure	 the	dictionary	 is	 restored	when
the	test	ends.

>>>	foo	=	{}

>>>	with	patch.dict(foo,	{'newkey':	'newvalue'}):

...					assert	foo	==	{'newkey':	'newvalue'}

...

>>>	assert	foo	==	{}

>>>	import	os

>>>	with	patch.dict('os.environ',	{'newkey':	'newvalue'

...					print	os.environ['newkey']

...

newvalue

>>>	assert	'newkey'	not	in	os.environ

Keywords	 can	 be	 used	 in	 the	 patch.dict	 call	 to	 set	 values	 in	 the
dictionary:

>>>	mymodule	=	MagicMock()

>>>	mymodule.function.return_value	=	'fish'

>>>	with	patch.dict('sys.modules',	mymodule=mymodule

...					import	mymodule

...					mymodule.function('some',	'args')

...

'fish'

patch.dict	can	be	used	with	dictionary	 like	objects	 that	aren’t	actually
dictionaries.	 At	 the	 very	 minimum	 they	 must	 support	 item	 getting,
setting,	 deleting	 and	 either	 iteration	 or	 membership	 test.	 This
corresponds	 to	 the	 magic	 methods	 __getitem__,	 __setitem__,
__delitem__	and	either	__iter__	or	__contains__.

>>>	class	Container:

...					def	__init__(self):

...									self.values	=	{}

...					def	__getitem__(self,	name):

...									return	self.values[name]

...					def	__setitem__(self,	name,	value):

...									self.values[name]	=	value

...					def	__delitem__(self,	name):

...									del	self.values[name]

...					def	__iter__(self):

...									return	iter(self.values)

...

>>>	thing	=	Container()

>>>	thing['one']	=	1

>>>	with	patch.dict(thing,	one=2,	two=3):

...					assert	thing['one']	==	2

...					assert	thing['two']	==	3

...

>>>	assert	thing['one']	==	1

>>>	assert	list(thing)	==	['one']

26.4.3.4.	patch.multiple

patch.multiple(target,	spec=None,	create=False,
spec_set=None,	autospec=None,	new_callable=None,	**kwargs)

Perform	multiple	patches	 in	a	single	call.	 It	 takes	 the	object	 to	be
patched	 (either	 as	 an	 object	 or	 a	 string	 to	 fetch	 the	 object	 by
importing)	and	keyword	arguments	for	the	patches:

with	patch.multiple(settings,	FIRST_PATCH='one',	SECOND_PATCH

				...

Use	 DEFAULT	 as	 the	 value	 if	 you	 want	 patch.multiple	 to	 create
mocks	 for	 you.	 In	 this	 case	 the	created	mocks	are	passed	 into	a
decorated	 function	by	keyword,	and	a	dictionary	 is	 returned	when
patch.multiple	is	used	as	a	context	manager.

patch.multiple	 can	 be	 used	 as	 a	 decorator,	 class	 decorator	 or	 a
context	manager.	The	arguments	spec,	spec_set,	create,	autospec
and	 new_callable	 have	 the	 same	 meaning	 as	 for	 patch.	 These
arguments	will	be	applied	to	all	patches	done	by	patch.multiple.

When	 used	 as	 a	 class	 decorator	 patch.multiple	 honours
patch.TEST_PREFIX	for	choosing	which	methods	to	wrap.

If	you	want	patch.multiple	 to	create	mocks	for	you,	 then	you	can	use
DEFAULT	as	 the	value.	 If	you	use	patch.multiple	as	a	decorator	 then
the	created	mocks	are	passed	into	the	decorated	function	by	keyword.

>>>	thing	=	object()

>>>	other	=	object()

>>>	@patch.multiple('__main__',	thing=DEFAULT,	other

...	def	test_function(thing,	other):

...					assert	isinstance(thing,	MagicMock)

...					assert	isinstance(other,	MagicMock)

...

>>>	test_function()

patch.multiple	 can	 be	 nested	 with	 other	 patch	 decorators,	 but	 put
arguments	 passed	 by	 keyword	 after	 any	 of	 the	 standard	 arguments
created	by	patch:

>>>	@patch('sys.exit')

...	@patch.multiple('__main__',	thing=DEFAULT,	other

...	def	test_function(mock_exit,	other,	thing):

...					assert	'other'	in	repr(other)

...					assert	'thing'	in	repr(thing)

...					assert	'exit'	in	repr(mock_exit)

...

>>>	test_function()

If	patch.multiple	 is	used	as	a	context	manager,	 the	value	returned	by
the	context	manger	is	a	dictionary	where	created	mocks	are	keyed	by
name:

>>>	with	patch.multiple('__main__',	thing=DEFAULT,	other

...					assert	'other'	in	repr(values['other'])

...					assert	'thing'	in	repr(values['thing'])

...					assert	values['thing']	is	thing

...					assert	values['other']	is	other

...

26.4.3.5.	patch	methods:	start	and	stop

All	the	patchers	have	start	and	stop	methods.	These	make	it	simpler	to
do	 patching	 in	 setUp	 methods	 or	 where	 you	 want	 to	 do	 multiple
patches	without	nesting	decorators	or	with	statements.

To	use	them	call	patch,	patch.object	or	patch.dict	as	normal	and	keep
a	 reference	 to	 the	 returned	patcher	object.	You	can	 then	call	start	 to

put	the	patch	in	place	and	stop	to	undo	it.

If	you	are	using	patch	to	create	a	mock	for	you	then	it	will	be	returned
by	the	call	to	patcher.start.

>>>	patcher	=	patch('package.module.ClassName')

>>>	from	package	import	module

>>>	original	=	module.ClassName

>>>	new_mock	=	patcher.start()

>>>	assert	module.ClassName	is	not	original

>>>	assert	module.ClassName	is	new_mock

>>>	patcher.stop()

>>>	assert	module.ClassName	is	original

>>>	assert	module.ClassName	is	not	new_mock

A	 typical	use	case	 for	 this	might	be	 for	doing	multiple	patches	 in	 the
setUp	method	of	a	TestCase:

>>>	class	MyTest(TestCase):

...					def	setUp(self):

...									self.patcher1	=	patch('package.module.Class1'

...									self.patcher2	=	patch('package.module.Class2'

...									self.MockClass1	=	self.patcher1.start()

...									self.MockClass2	=	self.patcher2.start()

...

...					def	tearDown(self):

...									self.patcher1.stop()

...									self.patcher2.stop()

...

...					def	test_something(self):

...									assert	package.module.Class1	is	self.MockClass1

...									assert	package.module.Class2	is	self.MockClass2

...

>>>	MyTest('test_something').run()

Caution: 	If	you	use	this	technique	you	must	ensure	that	the
patching	is	“undone”	by	calling	stop.	This	can	be	fiddlier	than	you
might	think,	because	if	an	exception	is	raised	in	the	setUp	then
tearDown	is	not	called.	unittest.TestCase.addCleanup()
makes	this	easier:

>>>	class	MyTest(TestCase):

...					def	setUp(self):

...									patcher	=	patch('package.module.Class')

...									self.MockClass	=	patcher.start()

...									self.addCleanup(patcher.stop)

...

...					def	test_something(self):

...									assert	package.module.Class	is	self.MockClass

...

As	an	added	bonus	you	no	 longer	need	 to	keep	a	 reference	 to	 the
patcher	object.

It	is	also	possible	to	stop	all	patches	which	have	been	started	by	using
patch.stopall.

patch.stopall()
Stop	all	active	patches.	Only	stops	patches	started	with	start.

26.4.3.6.	TEST_PREFIX

All	of	the	patchers	can	be	used	as	class	decorators.	When	used	in	this
way	they	wrap	every	test	method	on	the	class.	The	patchers	recognise
methods	 that	start	with	 test	as	being	 test	methods.	This	 is	 the	same
way	that	the	unittest.TestLoader	finds	test	methods	by	default.

It	is	possible	that	you	want	to	use	a	different	prefix	for	your	tests.	You
can	 inform	 the	 patchers	 of	 the	 different	 prefix	 by	 setting
patch.TEST_PREFIX:

>>>	patch.TEST_PREFIX	=	'foo'

>>>	value	=	3

>>>

>>>	@patch('__main__.value',	'not	three')

...	class	Thing:

...					def	foo_one(self):

...									print	value

...					def	foo_two(self):

...									print	value

...

>>>

>>>	Thing().foo_one()

not	three

>>>	Thing().foo_two()

not	three

>>>	value

3

26.4.3.7.	Nesting	Patch	Decorators

If	you	want	to	perform	multiple	patches	then	you	can	simply	stack	up
the	decorators.

You	can	stack	up	multiple	patch	decorators	using	this	pattern:

>>>	@patch.object(SomeClass,	'class_method')

...	@patch.object(SomeClass,	'static_method')

...	def	test(mock1,	mock2):

...					assert	SomeClass.static_method	is	mock1

...					assert	SomeClass.class_method	is	mock2

...					SomeClass.static_method('foo')

...					SomeClass.class_method('bar')

...					return	mock1,	mock2

...

>>>	mock1,	mock2	=	test()

>>>	mock1.assert_called_once_with('foo')

>>>	mock2.assert_called_once_with('bar')

Note	that	the	decorators	are	applied	from	the	bottom	upwards.	This	is
the	 standard	 way	 that	 Python	 applies	 decorators.	 The	 order	 of	 the
created	mocks	passed	into	your	test	function	matches	this	order.

26.4.3.8.	Where	to	patch

patch	works	by	(temporarily)	changing	the	object	that	a	name	points	to
with	another	one.	There	can	be	many	names	pointing	to	any	individual
object,	 so	 for	 patching	 to	 work	 you	must	 ensure	 that	 you	 patch	 the
name	used	by	the	system	under	test.

The	 basic	 principle	 is	 that	 you	 patch	 where	 an	 object	 is	 looked	 up,
which	 is	 not	 necessarily	 the	 same	 place	 as	 where	 it	 is	 defined.	 A
couple	of	examples	will	help	to	clarify	this.

Imagine	 we	 have	 a	 project	 that	 we	 want	 to	 test	 with	 the	 following
structure:

a.py

				->	Defines	SomeClass

b.py

				->	from	a	import	SomeClass

				->	some_function	instantiates	SomeClass

Now	 we	 want	 to	 test	 some_function	 but	 we	 want	 to	 mock	 out
SomeClass	using	patch.	The	problem	is	that	when	we	import	module

b,	which	we	will	have	to	do	then	it	imports	SomeClass	from	module	a.
If	we	use	patch	to	mock	out	a.SomeClass	then	it	will	have	no	effect	on
our	test;	module	b	already	has	a	reference	to	the	real	SomeClass	and
it	looks	like	our	patching	had	no	effect.

The	 key	 is	 to	 patch	 out	SomeClass	 where	 it	 is	 used	 (or	 where	 it	 is
looked	 up).	 In	 this	 case	 some_function	 will	 actually	 look	 up
SomeClass	 in	 module	 b,	 where	 we	 have	 imported	 it.	 The	 patching
should	look	like:

@patch('b.SomeClass')

However,	 consider	 the	 alternative	 scenario	 where	 instead	 of	 from	 a
import	SomeClass	module	 b	 does	 import	 a	 and	some_function	 uses
a.SomeClass.	 Both	 of	 these	 import	 forms	 are	 common.	 In	 this	 case
the	class	we	want	to	patch	is	being	looked	up	on	the	a	module	and	so
we	have	to	patch	a.SomeClass	instead:

@patch('a.SomeClass')

26.4.3.9.	Patching	Descriptors	and	Proxy	Objects

Both	 patch	 and	 patch.object	 correctly	 patch	 and	 restore	 descriptors:
class	methods,	static	methods	and	properties.	You	should	patch	these
on	 the	 class	 rather	 than	 an	 instance.	 They	 also	 work	 with	 some
objects	that	proxy	attribute	access,	like	the	django	settings	object.

http://www.voidspace.org.uk/python/weblog/arch_d7_2010_12_04.shtml#e1198

26.4.4.	MagicMock	and	magic	method
support

26.4.4.1.	Mocking	Magic	Methods

Mock	supports	mocking	the	Python	protocol	methods,	also	known	as
“magic	methods”.	 This	 allows	mock	 objects	 to	 replace	 containers	 or
other	objects	that	implement	Python	protocols.

Because	 magic	 methods	 are	 looked	 up	 differently	 from	 normal
methods	[2],	this	support	has	been	specially	implemented.	This	means
that	 only	 specific	 magic	 methods	 are	 supported.	 The	 supported	 list
includes	almost	 all	 of	 them.	 If	 there	 are	 any	 missing	 that	 you	 need
please	let	us	know.

You	mock	magic	methods	by	setting	the	method	you	are	interested	in
to	 a	 function	 or	 a	mock	 instance.	 If	 you	 are	 using	 a	 function	 then	 it
must	take	self	as	the	first	argument	[3].

>>>	def	__str__(self):

...					return	'fooble'

...

>>>	mock	=	Mock()

>>>	mock.__str__	=	__str__

>>>	str(mock)

'fooble'

>>>	mock	=	Mock()

>>>	mock.__str__	=	Mock()

>>>	mock.__str__.return_value	=	'fooble'

>>>	str(mock)

'fooble'

>>>	mock	=	Mock()

>>>	mock.__iter__	=	Mock(return_value=iter([]))

>>>	list(mock)

[]

One	 use	 case	 for	 this	 is	 for	 mocking	 objects	 used	 as	 context
managers	in	a	with	statement:

>>>	mock	=	Mock()

>>>	mock.__enter__	=	Mock(return_value='foo')

>>>	mock.__exit__	=	Mock(return_value=False)

>>>	with	mock	as	m:

...					assert	m	==	'foo'

...

>>>	mock.__enter__.assert_called_with()

>>>	mock.__exit__.assert_called_with(None,	None,	None

Calls	to	magic	methods	do	not	appear	in	method_calls,	but	they	are
recorded	in	mock_calls.

Note: 	If	you	use	the	spec	keyword	argument	to	create	a	mock	then
attempting	to	set	a	magic	method	that	isn’t	in	the	spec	will	raise	an
AttributeError.

The	full	list	of	supported	magic	methods	is:

__hash__,	__sizeof__,	__repr__	and	__str__
__dir__,	__format__	and	__subclasses__
__floor__,	__trunc__	and	__ceil__
Comparisons:	 __cmp__,	 __lt__,	 __gt__,	 __le__,	 __ge__,
__eq__	and	__ne__
Container	 methods:	 __getitem__,	 __setitem__,
__delitem__,	 __contains__,	 __len__,	 __iter__,

__getslice__,	 __setslice__,	 __reversed__	 and
__missing__

Context	manager:	__enter__	and	__exit__
Unary	numeric	methods:	__neg__,	__pos__	and	__invert__
The	numeric	methods	(including	right	hand	and	in-place	variants):
__add__,	 __sub__,	 __mul__,	 __div__,	 __floordiv__,
__mod__,	 __divmod__,	 __lshift__,	 __rshift__,
__and__,	__xor__,	__or__,	and	__pow__
Numeric	 conversion	 methods:	 __complex__,	 __int__,
__float__,	__index__	and	__coerce__
Descriptor	methods:	__get__,	__set__	and	__delete__
Pickling:	 __reduce__,	 __reduce_ex__,	 __getinitargs__,
__getnewargs__,	__getstate__	and	__setstate__

The	following	methods	exist	but	are	not	supported	as	they	are	either	in
use	by	mock,	can’t	be	set	dynamically,	or	can	cause	problems:

__getattr__,	__setattr__,	__init__	and	__new__
__prepare__,	 __instancecheck__,	 __subclasscheck__,
__del__

26.4.4.2.	Magic	Mock

There	 are	 two	 MagicMock	 variants:	 MagicMock	 and
NonCallableMagicMock.

class	unittest.mock.MagicMock(*args,	**kw)
MagicMock	is	a	subclass	of	Mock	with	default	implementations	of
most	 of	 the	 magic	 methods.	 You	 can	 use	 MagicMock	 without
having	to	configure	the	magic	methods	yourself.

The	constructor	parameters	have	the	same	meaning	as	for	Mock.

If	 you	 use	 the	 spec	 or	 spec_set	 arguments	 then	 only	 magic
methods	that	exist	in	the	spec	will	be	created.

class	unittest.mock.NonCallableMagicMock(*args,	**kw)
A	non-callable	version	of	MagicMock.

The	 constructor	 parameters	 have	 the	 same	 meaning	 as	 for
MagicMock,	 with	 the	 exception	 of	 return_value	 and	 side_effect
which	have	no	meaning	on	a	non-callable	mock.

The	magic	 methods	 are	 setup	 with	MagicMock	 objects,	 so	 you	 can
configure	them	and	use	them	in	the	usual	way:

>>>	mock	=	MagicMock()

>>>	mock[3]	=	'fish'

>>>	mock.__setitem__.assert_called_with(3,	'fish')

>>>	mock.__getitem__.return_value	=	'result'

>>>	mock[2]

'result'

By	default	many	of	the	protocol	methods	are	required	to	return	objects
of	 a	 specific	 type.	 These	 methods	 are	 preconfigured	 with	 a	 default
return	 value,	 so	 that	 they	 can	 be	 used	 without	 you	 having	 to	 do
anything	if	you	aren’t	interested	in	the	return	value.	You	can	still	set	the
return	value	manually	if	you	want	to	change	the	default.

Methods	and	their	defaults:

__lt__:	NotImplemented
__gt__:	NotImplemented
__le__:	NotImplemented
__ge__:	NotImplemented
__int__:	1
__contains__:	False

__len__:	1
__iter__:	iter([])
__exit__:	False
__complex__:	1j
__float__:	1.0
__bool__:	True
__index__:	1
__hash__:	default	hash	for	the	mock
__str__:	default	str	for	the	mock
__sizeof__:	default	sizeof	for	the	mock

For	example:

>>>	mock	=	MagicMock()

>>>	int(mock)

1

>>>	len(mock)

0

>>>	list(mock)

[]

>>>	object()	in	mock

False

The	 two	equality	method,	__eq__	and	__ne__,	 are	 special.	 They	 do
the	default	equality	comparison	on	identity,	using	a	side	effect,	unless
you	change	their	return	value	to	return	something	else:

>>>	MagicMock()	==	3

False

>>>	MagicMock()	!=	3

True

>>>	mock	=	MagicMock()

>>>	mock.__eq__.return_value	=	True

>>>	mock	==	3

True

The	return	value	of	MagicMock.__iter__	can	be	any	iterable	object	and
isn’t	required	to	be	an	iterator:

>>>	mock	=	MagicMock()

>>>	mock.__iter__.return_value	=	['a',	'b',	'c']

>>>	list(mock)

['a',	'b',	'c']

>>>	list(mock)

['a',	'b',	'c']

If	the	return	value	is	an	iterator,	then	iterating	over	it	once	will	consume
it	and	subsequent	iterations	will	result	in	an	empty	list:

>>>	mock.__iter__.return_value	=	iter(['a',	'b',	'c'

>>>	list(mock)

['a',	'b',	'c']

>>>	list(mock)

[]

MagicMock	 has	 all	 of	 the	 supported	 magic	 methods	 configured
except	 for	 some	of	 the	obscure	and	obsolete	ones.	You	 can	 still	 set
these	up	if	you	want.

Magic	 methods	 that	 are	 supported	 but	 not	 setup	 by	 default	 in
MagicMock	are:

__subclasses__

__dir__

__format__

__get__,	__set__	and	__delete__
__reversed__	and	__missing__
__reduce__,	 __reduce_ex__,	 __getinitargs__,
__getnewargs__,	__getstate__	and	__setstate__

__getformat__	and	__setformat__

[2]

Magic	methods	should	be	looked	up	on	the	class	rather	than
the	instance.	Different	versions	of	Python	are	inconsistent
about	applying	this	rule.	The	supported	protocol	methods
should	work	with	all	supported	versions	of	Python.

[3] The	function	is	basically	hooked	up	to	the	class,	but	each	Mock
instance	is	kept	isolated	from	the	others.

26.4.5.	Helpers

26.4.5.1.	sentinel

unittest.mock.sentinel

The	 sentinel	 object	 provides	 a	 convenient	 way	 of	 providing
unique	objects	for	your	tests.

Attributes	are	created	on	demand	when	you	access	them	by	name.
Accessing	 the	 same	 attribute	will	 always	 return	 the	 same	 object.
The	 objects	 returned	 have	 a	 sensible	 repr	 so	 that	 test	 failure
messages	are	readable.

Sometimes	 when	 testing	 you	 need	 to	 test	 that	 a	 specific	 object	 is
passed	 as	 an	 argument	 to	 another	 method,	 or	 returned.	 It	 can	 be
common	 to	 create	 named	 sentinel	 objects	 to	 test	 this.	 sentinel
provides	 a	 convenient	 way	 of	 creating	 and	 testing	 the	 identity	 of
objects	like	this.

In	 this	 example	 we	 monkey	 patch	 method	 to	 return
sentinel.some_object:

>>>	real	=	ProductionClass()

>>>	real.method	=	Mock(name="method")

>>>	real.method.return_value	=	sentinel.some_object

>>>	result	=	real.method()

>>>	assert	result	is	sentinel.some_object

>>>	sentinel.some_object

sentinel.some_object

26.4.5.2.	DEFAULT

unittest.mock.DEFAULT

The	 DEFAULT	 object	 is	 a	 pre-created	 sentinel	 (actually
sentinel.DEFAULT).	 It	can	be	used	by	side_effect	 functions	to
indicate	that	the	normal	return	value	should	be	used.

26.4.5.3.	call

unittest.mock.call(*args,	**kwargs)
call	is	a	helper	object	for	making	simpler	assertions,	for	comparing
with	 call_args,	 call_args_list,	 mock_calls	 and
method_calls.	 call	 can	 also	 be	 used	 with
assert_has_calls().

>>>	m	=	MagicMock(return_value=None)

>>>	m(1,	2,	a='foo',	b='bar')

>>>	m()

>>>	m.call_args_list	==	[call(1,	2,	a='foo',	b='bar'

True

call.call_list()
For	a	call	object	that	represents	multiple	calls,	call_list	returns	a	list
of	all	the	intermediate	calls	as	well	as	the	final	call.

call_list	 is	particularly	useful	for	making	assertions	on	“chained	calls”.
A	chained	call	is	multiple	calls	on	a	single	line	of	code.	This	results	in
multiple	entries	in	mock_calls	on	a	mock.	Manually	constructing	the
sequence	of	calls	can	be	tedious.

call_list()	 can	 construct	 the	 sequence	 of	 calls	 from	 the	 same
chained	call:

>>>	m	=	MagicMock()

>>>	m(1).method(arg='foo').other('bar')(2.0)

<MagicMock	name='mock().method().other()()'	id='...'>

>>>	kall	=	call(1).method(arg='foo').other('bar')(2.0

>>>	kall.call_list()

[call(1),

	call().method(arg='foo'),

	call().method().other('bar'),

	call().method().other()(2.0)]

>>>	m.mock_calls	==	kall.call_list()

True

A	 call	 object	 is	 either	 a	 tuple	 of	 (positional	 args,	 keyword	 args)	 or
(name,	 positional	 args,	 keyword	 args)	 depending	 on	 how	 it	 was
constructed.	When	 you	 construct	 them	 yourself	 this	 isn’t	 particularly
interesting,	 but	 the	 call	 objects	 that	 are	 in	 the	 Mock.call_args,
Mock.call_args_list	 and	 Mock.mock_calls	 attributes	 can	 be
introspected	to	get	at	the	individual	arguments	they	contain.

The	call	 objects	 in	 Mock.call_args	 and	 Mock.call_args_list
are	 two-tuples	 of	 (positional	 args,	 keyword	 args)	 whereas	 the	 call
objects	 in	 Mock.mock_calls,	 along	 with	 ones	 you	 construct
yourself,	are	three-tuples	of	(name,	positional	args,	keyword	args).

You	can	use	 their	 “tupleness”	 to	pull	out	 the	 individual	arguments	 for
more	complex	introspection	and	assertions.	The	positional	arguments
are	a	 tuple	(an	empty	 tuple	 if	 there	are	no	positional	arguments)	and
the	keyword	arguments	are	a	dictionary:

>>>	m	=	MagicMock(return_value=None)

>>>	m(1,	2,	3,	arg='one',	arg2='two')

>>>	kall	=	m.call_args

>>>	args,	kwargs	=	kall

>>>	args

(1,	2,	3)

>>>	kwargs

{'arg2':	'two',	'arg':	'one'}

>>>	args	is	kall[0]

True

>>>	kwargs	is	kall[1]

True

>>>	m	=	MagicMock()

>>>	m.foo(4,	5,	6,	arg='two',	arg2='three')

<MagicMock	name='mock.foo()'	id='...'>

>>>	kall	=	m.mock_calls[0]

>>>	name,	args,	kwargs	=	kall

>>>	name

'foo'

>>>	args

(4,	5,	6)

>>>	kwargs

{'arg2':	'three',	'arg':	'two'}

>>>	name	is	m.mock_calls[0][0]

True

26.4.5.4.	create_autospec

unittest.mock.create_autospec(spec,	spec_set=False,
instance=False,	**kwargs)

Create	a	mock	object	using	another	object	as	a	spec.	Attributes	on
the	mock	will	use	the	corresponding	attribute	on	the	spec	object	as
their	spec.

Functions	 or	 methods	 being	 mocked	 will	 have	 their	 arguments
checked	to	ensure	that	they	are	called	with	the	correct	signature.

If	spec_set	is	True	then	attempting	to	set	attributes	that	don’t	exist
on	the	spec	object	will	raise	an	AttributeError.

If	a	class	is	used	as	a	spec	then	the	return	value	of	the	mock	(the
instance	of	the	class)	will	have	the	same	spec.	You	can	use	a	class
as	the	spec	for	an	 instance	object	by	passing	 instance=True.	The
returned	 mock	 will	 only	 be	 callable	 if	 instances	 of	 the	 mock	 are
callable.

create_autospec	 also	 takes	 arbitrary	 keyword	 arguments	 that	 are
passed	to	the	constructor	of	the	created	mock.

See	 Autospeccing	 for	 examples	 of	 how	 to	 use	 auto-speccing	 with
create_autospec	and	the	autospec	argument	to	patch().

26.4.5.5.	ANY

unittest.mock.ANY

Sometimes	 you	 may	 need	 to	 make	 assertions	 about	 some	 of	 the
arguments	 in	 a	 call	 to	mock,	 but	 either	 not	 care	 about	 some	 of	 the
arguments	 or	 want	 to	 pull	 them	 individually	 out	 of	 call_args	 and
make	more	complex	assertions	on	them.

To	 ignore	 certain	 arguments	 you	 can	 pass	 in	 objects	 that	 compare
equal	 to	 everything.	 Calls	 to	 assert_called_with()	 and
assert_called_once_with()	 will	 then	 succeed	 no	 matter	 what
was	passed	in.

>>>	mock	=	Mock(return_value=None)

>>>	mock('foo',	bar=object())

>>>	mock.assert_called_once_with('foo',	bar=ANY)

ANY	can	also	be	used	in	comparisons	with	call	lists	like	mock_calls:

>>>	m	=	MagicMock(return_value=None)

>>>	m(1)

>>>	m(1,	2)

>>>	m(object())

>>>	m.mock_calls	==	[call(1),	call(1,	2),	ANY]

True

26.4.5.6.	FILTER_DIR

unittest.mock.FILTER_DIR

FILTER_DIR	 is	 a	 module	 level	 variable	 that	 controls	 the	 way	 mock
objects	respond	to	dir	(only	for	Python	2.6	or	more	recent).	The	default
is	True,	which	uses	 the	 filtering	described	below,	 to	only	show	useful
members.	 If	 you	 dislike	 this	 filtering,	 or	 need	 to	 switch	 it	 off	 for
diagnostic	purposes,	then	set	mock.FILTER_DIR	=	False.

With	filtering	on,	dir(some_mock)	shows	only	useful	attributes	and	will
include	 any	 dynamically	 created	 attributes	 that	 wouldn’t	 normally	 be
shown.	 If	 the	mock	was	created	with	a	spec	 (or	autospec	of	 course)
then	all	the	attributes	from	the	original	are	shown,	even	if	they	haven’t
been	accessed	yet:

>>>	dir(Mock())

['assert_any_call',

	'assert_called_once_with',

	'assert_called_with',

	'assert_has_calls',

	'attach_mock',

	...

>>>	from	urllib	import	request

>>>	dir(Mock(spec=request))

['AbstractBasicAuthHandler',

	'AbstractDigestAuthHandler',

	'AbstractHTTPHandler',

	'BaseHandler',

	...

Many	 of	 the	 not-very-useful	 (private	 to	 Mock	 rather	 than	 the	 thing
being	mocked)	underscore	and	double	underscore	prefixed	attributes
have	been	filtered	from	the	result	of	calling	dir	on	a	Mock.	If	you	dislike
this	behaviour	you	can	switch	it	off	by	setting	the	module	level	switch
FILTER_DIR:

>>>	from	unittest	import	mock

>>>	mock.FILTER_DIR	=	False

>>>	dir(mock.Mock())

['_NonCallableMock__get_return_value',

	'_NonCallableMock__get_side_effect',

	'_NonCallableMock__return_value_doc',

	'_NonCallableMock__set_return_value',

	'_NonCallableMock__set_side_effect',

	'__call__',

	'__class__',

	...

Alternatively	you	can	just	use	vars(my_mock)	(instance	members)	and
dir(type(my_mock))	(type	members)	to	bypass	the	filtering	irrespective
of	mock.FILTER_DIR.

26.4.5.7.	mock_open

unittest.mock.mock_open(mock=None,	read_data=None)
A	helper	 function	 to	 create	a	mock	 to	 replace	 the	use	of	open.	 It
works	for	open	called	directly	or	used	as	a	context	manager.

The	mock	argument	 is	 the	mock	object	 to	configure.	 If	None	 (the
default)	 then	 a	MagicMock	 will	 be	 created	 for	 you,	 with	 the	 API
limited	to	methods	or	attributes	available	on	standard	file	handles.

read_data	 is	 a	 string	 for	 the	 read(),	 readline(),	 and
readlines()	methods	of	the	file	handle	to	return.	Calls	to	those
methods	 will	 take	 data	 from	 read_data	 until	 it	 is	 depleted.	 The
mock	of	these	methods	is	pretty	simplistic.	If	you	need	more	control
over	the	data	that	you	are	feeding	to	the	tested	code	you	will	need
to	customize	 this	mock	 for	yourself.	 read_data	 is	 an	empty	 string
by	default.

Using	open	 as	a	 context	manager	 is	a	great	way	 to	ensure	 your	 file
handles	are	closed	properly	and	is	becoming	common:

with	open('/some/path',	'w')	as	f:

				f.write('something')

The	issue	is	that	even	if	you	mock	out	the	call	to	open	it	is	the	returned
object	 that	 is	 used	 as	 a	 context	 manager	 (and	 has	 __enter__	 and
__exit__	called).

Mocking	context	managers	with	a	MagicMock	is	common	enough	and
fiddly	enough	that	a	helper	function	is	useful.

>>>	m	=	mock_open()

>>>	with	patch('__main__.open',	m,	create=True):

...					with	open('foo',	'w')	as	h:

...									h.write('some	stuff')

...

>>>	m.mock_calls

[call('foo',	'w'),

	call().__enter__(),

	call().write('some	stuff'),

	call().__exit__(None,	None,	None)]

>>>	m.assert_called_once_with('foo',	'w')

>>>	handle	=	m()

>>>	handle.write.assert_called_once_with('some	stuff'

And	for	reading	files:

>>>	with	patch('__main__.open',	mock_open(read_data=

...					with	open('foo')	as	h:

...									result	=	h.read()

...

>>>	m.assert_called_once_with('foo')

>>>	assert	result	==	'bibble'

26.4.5.8.	Autospeccing

Autospeccing	 is	based	on	 the	existing	spec	 feature	of	mock.	 It	 limits
the	 api	 of	mocks	 to	 the	 api	 of	 an	 original	 object	 (the	 spec),	 but	 it	 is
recursive	 (implemented	 lazily)	 so	 that	 attributes	 of	mocks	 only	 have
the	 same	 api	 as	 the	 attributes	 of	 the	 spec.	 In	 addition	 mocked
functions	 /	methods	 have	 the	 same	 call	 signature	 as	 the	 original	 so
they	raise	a	TypeError	if	they	are	called	incorrectly.

Before	I	explain	how	auto-speccing	works,	here’s	why	it	is	needed.

Mock	 is	 a	 very	 powerful	 and	 flexible	 object,	 but	 it	 suffers	 from	 two
flaws	when	used	to	mock	out	objects	from	a	system	under	test.	One	of
these	flaws	is	specific	to	the	Mock	api	and	the	other	is	a	more	general
problem	with	using	mock	objects.

First	the	problem	specific	to	Mock.	Mock	has	two	assert	methods	that
are	 extremely	 handy:	 assert_called_with()	 and
assert_called_once_with().

>>>	mock	=	Mock(name='Thing',	return_value=None)

>>>	mock(1,	2,	3)

>>>	mock.assert_called_once_with(1,	2,	3)

>>>	mock(1,	2,	3)

>>>	mock.assert_called_once_with(1,	2,	3)

Traceback	(most	recent	call	last):

	...

AssertionError:	Expected	'mock'	to	be	called	once.	Called	2	times.

Because	mocks	 auto-create	 attributes	 on	 demand,	 and	 allow	 you	 to
call	them	with	arbitrary	arguments,	if	you	misspell	one	of	these	assert
methods	then	your	assertion	is	gone:

>>>	mock	=	Mock(name='Thing',	return_value=None)

>>>	mock(1,	2,	3)

>>>	mock.assret_called_once_with(4,	5,	6)

Your	tests	can	pass	silently	and	incorrectly	because	of	the	typo.

The	second	issue	is	more	general	to	mocking.	If	you	refactor	some	of
your	code,	rename	members	and	so	on,	any	tests	for	code	that	is	still
using	 the	old	api	 but	 uses	mocks	 instead	of	 the	 real	 objects	will	 still
pass.	 This	means	 your	 tests	 can	 all	 pass	 even	 though	 your	 code	 is
broken.

Note	that	this	is	another	reason	why	you	need	integration	tests	as	well
as	unit	tests.	Testing	everything	in	isolation	is	all	fine	and	dandy,	but	if
you	don’t	 test	how	your	units	are	 “wired	 together”	 there	 is	still	 lots	of
room	for	bugs	that	tests	might	have	caught.

mock	 already	provides	a	 feature	 to	help	with	 this,	 called	speccing.	 If
you	use	a	class	or	instance	as	the	spec	for	a	mock	then	you	can	only
access	attributes	on	the	mock	that	exist	on	the	real	class:

>>>	from	urllib	import	request

>>>	mock	=	Mock(spec=request.Request)

>>>	mock.assret_called_with

Traceback	(most	recent	call	last):

	...

AttributeError:	Mock	object	has	no	attribute	'assret_called_with'

The	 spec	 only	 applies	 to	 the	mock	 itself,	 so	we	 still	 have	 the	 same
issue	with	any	methods	on	the	mock:

>>>	mock.has_data()

<mock.Mock	object	at	0x...>

>>>	mock.has_data.assret_called_with()

Auto-speccing	 solves	 this	 problem.	 You	 can	 either	 pass
autospec=True	 to	 patch	 /	 patch.object	 or	 use	 the	 create_autospec
function	 to	create	a	mock	with	a	spec.	 If	you	use	 the	autospec=True
argument	to	patch	 then	the	object	 that	 is	being	replaced	will	be	used
as	the	spec	object.	Because	the	speccing	is	done	“lazily”	(the	spec	is
created	as	attributes	on	 the	mock	are	accessed)	you	can	use	 it	with
very	 complex	 or	 deeply	 nested	 objects	 (like	 modules	 that	 import
modules	that	import	modules)	without	a	big	performance	hit.

Here’s	an	example	of	it	in	use:

>>>	from	urllib	import	request

>>>	patcher	=	patch('__main__.request',	autospec=True

>>>	mock_request	=	patcher.start()

>>>	request	is	mock_request

True

>>>	mock_request.Request

<MagicMock	name='request.Request'	spec='Request'	id='...'>

You	can	see	that	request.Request	has	a	spec.	request.Request	takes
two	arguments	 in	 the	 constructor	 (one	of	which	 is	self).	Here’s	what
happens	if	we	try	to	call	it	incorrectly:

>>>	req	=	request.Request()

Traceback	(most	recent	call	last):

	...

TypeError:	<lambda>()	takes	at	least	2	arguments	(1	given)

The	spec	also	applies	 to	 instantiated	classes	 (i.e.	 the	 return	value	of
specced	mocks):

>>>	req	=	request.Request('foo')

>>>	req

<NonCallableMagicMock	name='request.Request()'	spec='Request'	id='...'>

Request	 objects	 are	 not	 callable,	 so	 the	 return	 value	 of	 instantiating
our	mocked	out	request.Request	is	a	non-callable	mock.	With	the	spec
in	place	any	typos	in	our	asserts	will	raise	the	correct	error:

>>>	req.add_header('spam',	'eggs')

<MagicMock	name='request.Request().add_header()'	id='...'>

>>>	req.add_header.assret_called_with

Traceback	(most	recent	call	last):

	...

AttributeError:	Mock	object	has	no	attribute	'assret_called_with'

>>>	req.add_header.assert_called_with('spam',	'eggs'

In	 many	 cases	 you	 will	 just	 be	 able	 to	 add	 autospec=True	 to	 your
existing	patch	calls	and	 then	be	protected	against	bugs	due	 to	 typos
and	api	changes.

As	 well	 as	 using	 autospec	 through	 patch	 there	 is	 a
create_autospec()	for	creating	autospecced	mocks	directly:

>>>	from	urllib	import	request

>>>	mock_request	=	create_autospec(request)

>>>	mock_request.Request('foo',	'bar')

<NonCallableMagicMock	name='mock.Request()'	spec='Request'	id='...'>

This	 isn’t	without	 caveats	 and	 limitations	however,	which	 is	why	 it	 is
not	 the	 default	 behaviour.	 In	 order	 to	 know	 what	 attributes	 are
available	 on	 the	 spec	 object,	 autospec	 has	 to	 introspect	 (access
attributes)	 the	 spec.	 As	 you	 traverse	 attributes	 on	 the	 mock	 a
corresponding	 traversal	 of	 the	original	 object	 is	happening	under	 the
hood.	 If	 any	 of	 your	 specced	 objects	 have	 properties	 or	 descriptors
that	 can	 trigger	 code	 execution	 then	 you	 may	 not	 be	 able	 to	 use
autospec.	On	 the	other	hand	 it	 is	much	better	 to	design	your	objects
so	that	introspection	is	safe	[4].

A	more	serious	problem	is	that	it	 is	common	for	instance	attributes	to
be	created	in	the	__init__	method	and	not	to	exist	on	the	class	at	all.
autospec	 can’t	 know	 about	 any	 dynamically	 created	 attributes	 and
restricts	the	api	to	visible	attributes.

>>>	class	Something:

...			def	__init__(self):

...					self.a	=	33

...

>>>	with	patch('__main__.Something',	autospec=True):

...			thing	=	Something()

...			thing.a

...

Traceback	(most	recent	call	last):

		...

AttributeError:	Mock	object	has	no	attribute	'a'

There	are	a	few	different	ways	of	resolving	this	problem.	The	easiest,
but	 not	 necessarily	 the	 least	 annoying,	 way	 is	 to	 simply	 set	 the
required	attributes	on	the	mock	after	creation.	Just	because	autospec

doesn’t	 allow	 you	 to	 fetch	 attributes	 that	 don’t	 exist	 on	 the	 spec	 it
doesn’t	prevent	you	setting	them:

>>>	with	patch('__main__.Something',	autospec=True):

...			thing	=	Something()

...			thing.a	=	33

...

There	 is	 a	more	 aggressive	 version	 of	 both	 spec	 and	autospec	 that
does	prevent	you	setting	non-existent	attributes.	This	 is	useful	 if	 you
want	to	ensure	your	code	only	sets	valid	attributes	too,	but	obviously	it
prevents	this	particular	scenario:

>>>	with	patch('__main__.Something',	autospec=True,	

...			thing	=	Something()

...			thing.a	=	33

...

Traceback	(most	recent	call	last):

	...

AttributeError:	Mock	object	has	no	attribute	'a'

Probably	the	best	way	of	solving	the	problem	is	to	add	class	attributes
as	default	values	for	instance	members	initialised	in	__init__.	Note	that
if	you	are	only	setting	default	attributes	in	__init__	then	providing	them
via	class	attributes	(shared	between	instances	of	course)	is	faster	too.
e.g.

class	Something:

				a	=	33

This	 brings	 up	 another	 issue.	 It	 is	 relatively	 common	 to	 provide	 a
default	 value	 of	None	 for	 members	 that	 will	 later	 be	 an	 object	 of	 a
different	type.	None	would	be	useless	as	a	spec	because	it	wouldn’t	let

you	access	any	attributes	or	methods	on	it.	As	None	is	never	going	to
be	 useful	 as	 a	 spec,	 and	 probably	 indicates	 a	 member	 that	 will
normally	 of	 some	 other	 type,	 autospec	 doesn’t	 use	 a	 spec	 for
members	that	are	set	to	None.	These	will	just	be	ordinary	mocks	(well
-	MagicMocks):

>>>	class	Something:

...					member	=	None

...

>>>	mock	=	create_autospec(Something)

>>>	mock.member.foo.bar.baz()

<MagicMock	name='mock.member.foo.bar.baz()'	id='...'>

If	modifying	your	production	classes	to	add	defaults	isn’t	to	your	liking
then	there	are	more	options.	One	of	these	is	simply	to	use	an	instance
as	the	spec	rather	than	the	class.	The	other	is	to	create	a	subclass	of
the	 production	 class	 and	 add	 the	 defaults	 to	 the	 subclass	 without
affecting	 the	 production	 class.	 Both	 of	 these	 require	 you	 to	 use	 an
alternative	object	as	the	spec.	Thankfully	patch	supports	this	-	you	can
simply	pass	the	alternative	object	as	the	autospec	argument:

>>>	class	Something:

...			def	__init__(self):

...					self.a	=	33

...

>>>	class	SomethingForTest(Something):

...			a	=	33

...

>>>	p	=	patch('__main__.Something',	autospec=SomethingForTest

>>>	mock	=	p.start()

>>>	mock.a

<NonCallableMagicMock	name='Something.a'	spec='int'	id='...'>

[4]
This	only	applies	to	classes	or	already	instantiated	objects.
Calling	a	mocked	class	to	create	a	mock	instance	does	not
create	a	real	instance.	It	is	only	attribute	lookups	-	along	with
calls	to	dir	-	that	are	done.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

http://www.python.org/

26.5.	unittest.mock	—	getting
started
New	in	version	3.3.

26.5.1.	Using	Mock

26.5.1.1.	Mock	Patching	Methods

Common	uses	for	Mock	objects	include:

Patching	methods
Recording	method	calls	on	objects

You	might	want	 to	 replace	a	method	on	an	object	 to	 check	 that	 it	 is
called	with	the	correct	arguments	by	another	part	of	the	system:

>>>	real	=	SomeClass()

>>>	real.method	=	MagicMock(name='method')

>>>	real.method(3,	4,	5,	key='value')

<MagicMock	name='method()'	id='...'>

Once	 our	mock	 has	 been	 used	 (real.method	 in	 this	 example)	 it	 has
methods	and	attributes	that	allow	you	to	make	assertions	about	how	it
has	been	used.

Note: 	In	most	of	these	examples	the	Mock	and	MagicMock
classes	are	interchangeable.	As	the	MagicMock	is	the	more	capable
class	it	makes	a	sensible	one	to	use	by	default.

Once	 the	mock	 has	 been	 called	 its	 called	 attribute	 is	 set	 to	True.
More	 importantly	 we	 can	 use	 the	 assert_called_with()	 or
assert_called_once_with()	method	 to	check	 that	 it	was	called
with	the	correct	arguments.

This	example	 tests	 that	calling	ProductionClass().method	 results	 in	a
call	to	the	something	method:

>>>	class	ProductionClass:

...					def	method(self):

...									self.something(1,	2,	3)

...					def	something(self,	a,	b,	c):

...									pass

...

>>>	real	=	ProductionClass()

>>>	real.something	=	MagicMock()

>>>	real.method()

>>>	real.something.assert_called_once_with(1,	2,	3)

26.5.1.2.	Mock	for	Method	Calls	on	an	Object

In	 the	 last	 example	 we	 patched	 a	 method	 directly	 on	 an	 object	 to
check	that	it	was	called	correctly.	Another	common	use	case	is	to	pass
an	object	 into	a	method	(or	some	part	of	 the	system	under	 test)	and
then	check	that	it	is	used	in	the	correct	way.

The	simple	ProductionClass	below	has	a	closer	method.	If	 it	 is	called
with	an	object	then	it	calls	close	on	it.

>>>	class	ProductionClass:

...					def	closer(self,	something):

...									something.close()

...

So	 to	 test	 it	 we	 need	 to	 pass	 in	 an	 object	with	 a	 close	method	 and
check	that	it	was	called	correctly.

>>>	real	=	ProductionClass()

>>>	mock	=	Mock()

>>>	real.closer(mock)

>>>	mock.close.assert_called_with()

We	don’t	 have	 to	 do	 any	work	 to	 provide	 the	 ‘close’	method	 on	 our
mock.	 Accessing	 close	 creates	 it.	 So,	 if	 ‘close’	 hasn’t	 already	 been
called	 then	 accessing	 it	 in	 the	 test	 will	 create	 it,	 but
assert_called_with()	will	raise	a	failure	exception.

26.5.1.3.	Mocking	Classes

A	common	use	case	is	to	mock	out	classes	instantiated	by	your	code
under	test.	When	you	patch	a	class,	then	that	class	is	replaced	with	a
mock.	 Instances	 are	 created	 by	 calling	 the	 class.	 This	 means	 you
access	 the	 “mock	 instance”	 by	 looking	 at	 the	 return	 value	 of	 the
mocked	class.

In	 the	 example	 below	 we	 have	 a	 function	 some_function	 that
instantiates	Foo	and	calls	a	method	on	 it.	The	call	 to	patch	 replaces
the	class	Foo	with	a	mock.	The	Foo	instance	is	the	result	of	calling	the
mock,	so	it	is	configured	by	modifying	the	mock	return_value.

>>>	def	some_function():

...					instance	=	module.Foo()

...					return	instance.method()

...

>>>	with	patch('module.Foo')	as	mock:

...					instance	=	mock.return_value

...					instance.method.return_value	=	'the	result'

...					result	=	some_function()

...					assert	result	==	'the	result'

26.5.1.4.	Naming	your	mocks

It	can	be	useful	to	give	your	mocks	a	name.	The	name	is	shown	in	the
repr	 of	 the	mock	and	 can	be	helpful	when	 the	mock	appears	 in	 test
failure	 messages.	 The	 name	 is	 also	 propagated	 to	 attributes	 or

methods	of	the	mock:

>>>	mock	=	MagicMock(name='foo')

>>>	mock

<MagicMock	name='foo'	id='...'>

>>>	mock.method

<MagicMock	name='foo.method'	id='...'>

26.5.1.5.	Tracking	all	Calls

Often	 you	 want	 to	 track	 more	 than	 a	 single	 call	 to	 a	 method.	 The
mock_calls	attribute	records	all	calls	to	child	attributes	of	the	mock	-
and	also	to	their	children.

>>>	mock	=	MagicMock()

>>>	mock.method()

<MagicMock	name='mock.method()'	id='...'>

>>>	mock.attribute.method(10,	x=53)

<MagicMock	name='mock.attribute.method()'	id='...'>

>>>	mock.mock_calls

[call.method(),	call.attribute.method(10,	x=53)]

If	 you	 make	 an	 assertion	 about	 mock_calls	 and	 any	 unexpected
methods	have	been	called,	 then	 the	assertion	will	 fail.	 This	 is	 useful
because	as	well	 as	asserting	 that	 the	calls	 you	expected	have	been
made,	 you	are	 also	 checking	 that	 they	were	made	 in	 the	 right	 order
and	with	no	additional	calls:

You	 use	 the	 call	 object	 to	 construct	 lists	 for	 comparing	 with
mock_calls:

>>>	expected	=	[call.method(),	call.attribute.method

>>>	mock.mock_calls	==	expected

True

26.5.1.6.	Setting	Return	Values	and	Attributes

Setting	the	return	values	on	a	mock	object	is	trivially	easy:

>>>	mock	=	Mock()

>>>	mock.return_value	=	3

>>>	mock()

3

Of	course	you	can	do	the	same	for	methods	on	the	mock:

>>>	mock	=	Mock()

>>>	mock.method.return_value	=	3

>>>	mock.method()

3

The	return	value	can	also	be	set	in	the	constructor:

>>>	mock	=	Mock(return_value=3)

>>>	mock()

3

If	you	need	an	attribute	setting	on	your	mock,	just	do	it:

>>>	mock	=	Mock()

>>>	mock.x	=	3

>>>	mock.x

3

Sometimes	 you	 want	 to	mock	 up	 a	more	 complex	 situation,	 like	 for
example	mock.connection.cursor().execute(“SELECT	1”).	If	we	wanted
this	 call	 to	 return	 a	 list,	 then	 we	 have	 to	 configure	 the	 result	 of	 the
nested	call.

We	can	use	call	 to	construct	the	set	of	calls	 in	a	“chained	call”	 like
this	for	easy	assertion	afterwards:

>>>	mock	=	Mock()

>>>	cursor	=	mock.connection.cursor.return_value

>>>	cursor.execute.return_value	=	['foo']

>>>	mock.connection.cursor().execute("SELECT	1")

['foo']

>>>	expected	=	call.connection.cursor().execute("SELECT	1"

>>>	mock.mock_calls

[call.connection.cursor(),	call.connection.cursor().execute('SELECT	1')]

>>>	mock.mock_calls	==	expected

True

It	 is	 the	 call	 to	 .call_list()	 that	 turns	 our	 call	 object	 into	 a	 list	 of	 calls
representing	the	chained	calls.

26.5.1.7.	Raising	exceptions	with	mocks

A	 useful	 attribute	 is	 side_effect.	 If	 you	 set	 this	 to	 an	 exception
class	or	 instance	 then	 the	exception	will	be	 raised	when	 the	mock	 is
called.

>>>	mock	=	Mock(side_effect=Exception('Boom!'))

>>>	mock()

Traceback	(most	recent	call	last):

		...

Exception:	Boom!

26.5.1.8.	Side	effect	functions	and	iterables

side_effect	can	also	be	set	to	a	function	or	an	iterable.	The	use	case
for	side_effect	as	an	iterable	is	where	your	mock	is	going	to	be	called

several	times,	and	you	want	each	call	to	return	a	different	value.	When
you	 set	side_effect	 to	 an	 iterable	 every	 call	 to	 the	mock	 returns	 the
next	value	from	the	iterable:

>>>	mock	=	MagicMock(side_effect=[4,	5,	6])

>>>	mock()

4

>>>	mock()

5

>>>	mock()

6

For	 more	 advanced	 use	 cases,	 like	 dynamically	 varying	 the	 return
values	depending	on	what	the	mock	is	called	with,	side_effect	can	be
a	function.	The	function	will	be	called	with	the	same	arguments	as	the
mock.	Whatever	the	function	returns	is	what	the	call	returns:

>>>	vals	=	{(1,	2):	1,	(2,	3):	2}

>>>	def	side_effect(*args):

...					return	vals[args]

...

>>>	mock	=	MagicMock(side_effect=side_effect)

>>>	mock(1,	2)

1

>>>	mock(2,	3)

2

26.5.1.9.	Creating	a	Mock	from	an	Existing	Object

One	problem	with	over	use	of	mocking	is	that	it	couples	your	tests	to
the	implementation	of	your	mocks	rather	than	your	real	code.	Suppose
you	have	a	class	that	implements	some_method.	In	a	test	for	another
class,	 you	 provide	 a	 mock	 of	 this	 object	 that	 also	 provides
some_method.	 If	 later	you	refactor	 the	first	class,	so	 that	 it	no	 longer

has	some_method	-	then	your	tests	will	continue	to	pass	even	though
your	code	is	now	broken!

Mock	allows	you	to	provide	an	object	as	a	specification	for	the	mock,
using	the	spec	keyword	argument.	Accessing	methods	/	attributes	on
the	mock	that	don’t	exist	on	your	specification	object	will	 immediately
raise	 an	 attribute	 error.	 If	 you	 change	 the	 implementation	 of	 your
specification,	then	tests	that	use	that	class	will	start	failing	immediately
without	you	having	to	instantiate	the	class	in	those	tests.

>>>	mock	=	Mock(spec=SomeClass)

>>>	mock.old_method()

Traceback	(most	recent	call	last):

			...

AttributeError:	object	has	no	attribute	'old_method'

Using	a	specification	also	enables	a	smarter	matching	of	calls	made	to
the	 mock,	 regardless	 of	 whether	 some	 parameters	 were	 passed	 as
positional	or	named	arguments:

>>>	def	f(a,	b,	c):	pass

...

>>>	mock	=	Mock(spec=f)

>>>	mock(1,	2,	3)

<Mock	name='mock()'	id='140161580456576'>

>>>	mock.assert_called_with(a=1,	b=2,	c=3)

If	you	want	this	smarter	matching	to	also	work	with	method	calls	on	the
mock,	you	can	use	auto-speccing.

If	you	want	a	stronger	form	of	specification	that	prevents	the	setting	of
arbitrary	 attributes	 as	 well	 as	 the	 getting	 of	 them	 then	 you	 can	 use
spec_set	instead	of	spec.

26.5.2.	Patch	Decorators

Note: 	With	patch	it	matters	that	you	patch	objects	in	the
namespace	where	they	are	looked	up.	This	is	normally
straightforward,	but	for	a	quick	guide	read	where	to	patch.

A	 common	 need	 in	 tests	 is	 to	 patch	 a	 class	 attribute	 or	 a	 module
attribute,	for	example	patching	a	builtin	or	patching	a	class	in	a	module
to	 test	 that	 it	 is	 instantiated.	 Modules	 and	 classes	 are	 effectively
global,	 so	 patching	 on	 them	 has	 to	 be	 undone	 after	 the	 test	 or	 the
patch	 will	 persist	 into	 other	 tests	 and	 cause	 hard	 to	 diagnose
problems.

mock	 provides	 three	 convenient	 decorators	 for	 this:	 patch,
patch.object	 and	 patch.dict.	 patch	 takes	 a	 single	 string,	 of	 the	 form
package.module.Class.attribute	 to	 specify	 the	 attribute	 you	 are
patching.	It	also	optionally	takes	a	value	that	you	want	the	attribute	(or
class	or	whatever)	 to	be	 replaced	with.	 ‘patch.object’	 takes	an	object
and	 the	name	of	 the	attribute	you	would	 like	patched,	plus	optionally
the	value	to	patch	it	with.

patch.object:

>>>	original	=	SomeClass.attribute

>>>	@patch.object(SomeClass,	'attribute',	sentinel.attribute

...	def	test():

...					assert	SomeClass.attribute	==	sentinel.attribute

...

>>>	test()

>>>	assert	SomeClass.attribute	==	original

>>>	@patch('package.module.attribute',	sentinel.attribute

...	def	test():

...					from	package.module	import	attribute

...					assert	attribute	is	sentinel.attribute

...

>>>	test()

If	 you	 are	 patching	 a	module	 (including	 builtins)	 then	 use	 patch
instead	of	patch.object:

>>>	mock	=	MagicMock(return_value=sentinel.file_handle

>>>	with	patch('builtins.open',	mock):

...					handle	=	open('filename',	'r')

...

>>>	mock.assert_called_with('filename',	'r')

>>>	assert	handle	==	sentinel.file_handle,	"incorrect	file	handle	returned"

The	 module	 name	 can	 be	 ‘dotted’,	 in	 the	 form	 package.module	 if
needed:

>>>	@patch('package.module.ClassName.attribute',	sentinel

...	def	test():

...					from	package.module	import	ClassName

...					assert	ClassName.attribute	==	sentinel.attribute

...

>>>	test()

A	nice	pattern	is	to	actually	decorate	test	methods	themselves:

>>>	class	MyTest(unittest2.TestCase):

...					@patch.object(SomeClass,	'attribute',	sentinel

...					def	test_something(self):

...									self.assertEqual(SomeClass.attribute,	sentinel

...

>>>	original	=	SomeClass.attribute

>>>	MyTest('test_something').test_something()

>>>	assert	SomeClass.attribute	==	original

If	 you	want	 to	 patch	with	 a	Mock,	 you	 can	 use	patch	 with	 only	 one
argument	 (or	 patch.object	 with	 two	 arguments).	 The	 mock	 will	 be
created	for	you	and	passed	into	the	test	function	/	method:

>>>	class	MyTest(unittest2.TestCase):

...					@patch.object(SomeClass,	'static_method')

...					def	test_something(self,	mock_method):

...									SomeClass.static_method()

...									mock_method.assert_called_with()

...

>>>	MyTest('test_something').test_something()

You	can	stack	up	multiple	patch	decorators	using	this	pattern:

>>>	class	MyTest(unittest2.TestCase):

...					@patch('package.module.ClassName1')

...					@patch('package.module.ClassName2')

...					def	test_something(self,	MockClass2,	MockClass1

...									self.assertIs(package.module.ClassName1,

...									self.assertIs(package.module.ClassName2,

...

>>>	MyTest('test_something').test_something()

When	 you	 nest	 patch	 decorators	 the	 mocks	 are	 passed	 in	 to	 the
decorated	function	in	the	same	order	they	applied	(the	normal	python
order	that	decorators	are	applied).	This	means	from	the	bottom	up,	so
in	 the	 example	 above	 the	 mock	 for	 test_module.ClassName2	 is
passed	in	first.

There	 is	 also	 patch.dict()	 for	 setting	 values	 in	 a	 dictionary	 just
during	a	scope	and	 restoring	 the	dictionary	 to	 its	original	 state	when

the	test	ends:

>>>	foo	=	{'key':	'value'}

>>>	original	=	foo.copy()

>>>	with	patch.dict(foo,	{'newkey':	'newvalue'},	clear

...					assert	foo	==	{'newkey':	'newvalue'}

...

>>>	assert	foo	==	original

patch,	 patch.object	 and	 patch.dict	 can	 all	 be	 used	 as	 context
managers.

Where	 you	 use	 patch	 to	 create	 a	 mock	 for	 you,	 you	 can	 get	 a
reference	to	the	mock	using	the	“as”	form	of	the	with	statement:

>>>	class	ProductionClass:

...					def	method(self):

...									pass

...

>>>	with	patch.object(ProductionClass,	'method')	as	

...					mock_method.return_value	=	None

...					real	=	ProductionClass()

...					real.method(1,	2,	3)

...

>>>	mock_method.assert_called_with(1,	2,	3)

As	 an	 alternative	patch,	patch.object	 and	patch.dict	 can	 be	 used	 as
class	decorators.	When	used	in	this	way	it	is	the	same	as	applying	the
decorator	individually	to	every	method	whose	name	starts	with	“test”.

26.5.3.	Further	Examples

Here	 are	 some	 more	 examples	 for	 some	 slightly	 more	 advanced
scenarios.

26.5.3.1.	Mocking	chained	calls

Mocking	chained	calls	 is	actually	straightforward	with	mock	once	you
understand	 the	return_value	 attribute.	When	a	mock	 is	 called	 for
the	first	time,	or	you	fetch	its	return_value	before	it	has	been	called,	a
new	Mock	is	created.

This	means	that	you	can	see	how	the	object	returned	from	a	call	to	a
mocked	object	has	been	used	by	interrogating	the	return_value	mock:

>>>	mock	=	Mock()

>>>	mock().foo(a=2,	b=3)

<Mock	name='mock().foo()'	id='...'>

>>>	mock.return_value.foo.assert_called_with(a=2,	b=

From	here	 it	 is	a	simple	step	 to	configure	and	 then	make	assertions
about	chained	calls.	Of	course	another	alternative	is	writing	your	code
in	a	more	testable	way	in	the	first	place...

So,	suppose	we	have	some	code	that	looks	a	little	bit	like	this:

>>>	class	Something:

...					def	__init__(self):

...									self.backend	=	BackendProvider()

...					def	method(self):

...									response	=	self.backend.get_endpoint('foobar'

...									#	more	code

Assuming	that	BackendProvider	is	already	well	tested,	how	do	we	test
method()?	Specifically,	we	want	 to	 test	 that	 the	code	section	#	more
code	uses	the	response	object	in	the	correct	way.

As	 this	 chain	 of	 calls	 is	 made	 from	 an	 instance	 attribute	 we	 can
monkey	patch	the	backend	attribute	on	a	Something	 instance.	 In	 this
particular	case	we	are	only	interested	in	the	return	value	from	the	final
call	 to	 start_call	 so	 we	 don’t	 have	 much	 configuration	 to	 do.	 Let’s
assume	 the	 object	 it	 returns	 is	 ‘file-like’,	 so	 we’ll	 ensure	 that	 our
response	object	uses	the	builtin	open	as	its	spec.

To	do	this	we	create	a	mock	instance	as	our	mock	backend	and	create
a	mock	response	object	for	it.	To	set	the	response	as	the	return	value
for	that	final	start_call	we	could	do	this:

mock_backend.get_endpoint.return_value.create_call.return_value.start_call.return_value
=	mock_response.

We	can	do	that	in	a	slightly	nicer	way	using	the	configure_mock()
method	to	directly	set	the	return	value	for	us:

>>>	something	=	Something()

>>>	mock_response	=	Mock(spec=open)

>>>	mock_backend	=	Mock()

>>>	config	=	{'get_endpoint.return_value.create_call.return_value.start_call.return_value'

>>>	mock_backend.configure_mock(**config)

With	 these	 we	monkey	 patch	 the	 “mock	 backend”	 in	 place	 and	 can
make	the	real	call:

>>>	something.backend	=	mock_backend

>>>	something.method()

Using	 mock_calls	 we	 can	 check	 the	 chained	 call	 with	 a	 single
assert.	A	chained	call	is	several	calls	in	one	line	of	code,	so	there	will
be	several	entries	in	mock_calls.	We	can	use	call.call_list()	to
create	this	list	of	calls	for	us:

>>>	chained	=	call.get_endpoint('foobar').create_call

>>>	call_list	=	chained.call_list()

>>>	assert	mock_backend.mock_calls	==	call_list

26.5.3.2.	Partial	mocking

In	some	 tests	 I	wanted	 to	mock	out	a	call	 to	datetime.date.today()	 to
return	a	known	date,	but	 I	didn’t	want	 to	prevent	 the	code	under	 test
from	creating	new	date	objects.	Unfortunately	datetime.date	 is	written
in	 C,	 and	 so	 I	 couldn’t	 just	 monkey-patch	 out	 the	 static	 date.today
method.

I	 found	a	 simple	way	 of	 doing	 this	 that	 involved	 effectively	wrapping
the	 date	 class	 with	 a	 mock,	 but	 passing	 through	 calls	 to	 the
constructor	to	the	real	class	(and	returning	real	instances).

The	patch	decorator	 is	used	here	 to	mock	out	 the	date	 class	 in
the	module	under	test.	The	side_effect	attribute	on	the	mock	date
class	 is	 then	set	 to	a	 lambda	 function	 that	 returns	a	 real	date.	When
the	 mock	 date	 class	 is	 called	 a	 real	 date	 will	 be	 constructed	 and
returned	by	side_effect.

>>>	from	datetime	import	date

>>>	with	patch('mymodule.date')	as	mock_date:

...					mock_date.today.return_value	=	date(2010,	10

...					mock_date.side_effect	=	lambda	*args,	**kw:	

...

http://docs.python.org/library/datetime.html#datetime.date.today

...					assert	mymodule.date.today()	==	date(2010,	10

...					assert	mymodule.date(2009,	6,	8)	==	date(2009

...

Note	that	we	don’t	patch	datetime.date	globally,	we	patch	date	 in	 the
module	that	uses	it.	See	where	to	patch.

When	date.today()	 is	called	a	known	date	is	returned,	but	calls	to	the
date(...)	constructor	still	return	normal	dates.	Without	this	you	can	find
yourself	having	to	calculate	an	expected	result	using	exactly	the	same
algorithm	 as	 the	 code	 under	 test,	 which	 is	 a	 classic	 testing	 anti-
pattern.

Calls	to	the	date	constructor	are	recorded	in	the	mock_date	attributes
(call_count	and	friends)	which	may	also	be	useful	for	your	tests.

An	 alternative	 way	 of	 dealing	 with	 mocking	 dates,	 or	 other	 builtin
classes,	is	discussed	in	this	blog	entry.

26.5.3.3.	Mocking	a	Generator	Method

A	 Python	 generator	 is	 a	 function	 or	 method	 that	 uses	 the	 yield
statement	to	return	a	series	of	values	when	iterated	over	[1].

A	generator	method	/	function	is	called	to	return	the	generator	object.	It
is	the	generator	object	that	is	then	iterated	over.	The	protocol	method
for	iteration	is	__iter__,	so	we	can	mock	this	using	a	MagicMock.

Here’s	 an	 example	 class	 with	 an	 “iter”	 method	 implemented	 as	 a
generator:

>>>	class	Foo:

...					def	iter(self):

http://williamjohnbert.com/2011/07/how-to-unit-testing-in-django-with-mocking-and-patching/
http://docs.python.org/reference/simple_stmts.html#the-yield-statement
http://docs.python.org/library/stdtypes.html#container.__iter__

...									for	i	in	[1,	2,	3]:

...													yield	i

...

>>>	foo	=	Foo()

>>>	list(foo.iter())

[1,	2,	3]

How	would	we	mock	this	class,	and	in	particular	its	“iter”	method?

To	configure	the	values	returned	from	the	 iteration	(implicit	 in	 the	call
to	list),	we	need	to	configure	the	object	returned	by	the	call	to	foo.iter().

>>>	mock_foo	=	MagicMock()

>>>	mock_foo.iter.return_value	=	iter([1,	2,	3])

>>>	list(mock_foo.iter())

[1,	2,	3]

[1]

There	are	also	generator	expressions	and	more	advanced	uses
of	generators,	but	we	aren’t	concerned	about	them	here.	A	very
good	introduction	to	generators	and	how	powerful	they	are	is:
Generator	Tricks	for	Systems	Programmers.

26.5.3.4.	Applying	the	same	patch	to	every	test
method

If	 you	 want	 several	 patches	 in	 place	 for	 multiple	 test	 methods	 the
obvious	way	 is	 to	 apply	 the	 patch	 decorators	 to	 every	method.	 This
can	 feel	 like	 unnecessary	 repetition.	 For	 Python	 2.6	 or	 more	 recent
you	can	use	patch	(in	all	 its	various	forms)	as	a	class	decorator.	This
applies	the	patches	to	all	test	methods	on	the	class.	A	test	method	is
identified	by	methods	whose	names	start	with	test:

>>>	@patch('mymodule.SomeClass')

...	class	MyTest(TestCase):

http://www.dabeaz.com/coroutines/index.html
http://www.dabeaz.com/generators/

...

...					def	test_one(self,	MockSomeClass):

...									self.assertIs(mymodule.SomeClass,	MockSomeClass

...

...					def	test_two(self,	MockSomeClass):

...									self.assertIs(mymodule.SomeClass,	MockSomeClass

...

...					def	not_a_test(self):

...									return	'something'

...

>>>	MyTest('test_one').test_one()

>>>	MyTest('test_two').test_two()

>>>	MyTest('test_two').not_a_test()

'something'

An	alternative	way	of	managing	patches	is	to	use	the	patch	methods:
start	and	stop.	These	allow	you	to	move	the	patching	into	your	setUp
and	tearDown	methods.

>>>	class	MyTest(TestCase):

...					def	setUp(self):

...									self.patcher	=	patch('mymodule.foo')

...									self.mock_foo	=	self.patcher.start()

...

...					def	test_foo(self):

...									self.assertIs(mymodule.foo,	self.mock_foo

...

...					def	tearDown(self):

...									self.patcher.stop()

...

>>>	MyTest('test_foo').run()

If	 you	 use	 this	 technique	 you	 must	 ensure	 that	 the	 patching	 is
“undone”	 by	 calling	 stop.	 This	 can	 be	 fiddlier	 than	 you	 might	 think,

because	 if	 an	 exception	 is	 raised	 in	 the	 setUp	 then	 tearDown	 is	 not
called.	unittest.TestCase.addCleanup()	makes	this	easier:

>>>	class	MyTest(TestCase):

...					def	setUp(self):

...									patcher	=	patch('mymodule.foo')

...									self.addCleanup(patcher.stop)

...									self.mock_foo	=	patcher.start()

...

...					def	test_foo(self):

...									self.assertIs(mymodule.foo,	self.mock_foo

...

>>>	MyTest('test_foo').run()

26.5.3.5.	Mocking	Unbound	Methods

Whilst	 writing	 tests	 today	 I	 needed	 to	 patch	 an	 unbound	 method
(patching	 the	 method	 on	 the	 class	 rather	 than	 on	 the	 instance).	 I
needed	self	 to	be	passed	 in	as	 the	 first	argument	because	 I	want	 to
make	asserts	about	which	objects	were	calling	this	particular	method.
The	issue	is	that	you	can’t	patch	with	a	mock	for	this,	because	if	you
replace	an	unbound	method	with	a	mock	 it	doesn’t	become	a	bound
method	 when	 fetched	 from	 the	 instance,	 and	 so	 it	 doesn’t	 get	 self
passed	in.	The	workaround	is	to	patch	the	unbound	method	with	a	real
function	instead.	The	patch()	decorator	makes	it	so	simple	to	patch
out	methods	with	a	mock	that	having	to	create	a	real	function	becomes
a	nuisance.

If	 you	pass	autospec=True	 to	 patch	 then	 it	 does	 the	patching	with	 a
real	function	object.	This	function	object	has	the	same	signature	as	the
one	 it	 is	 replacing,	but	delegates	 to	a	mock	under	 the	hood.	You	still
get	your	mock	auto-created	in	exactly	the	same	way	as	before.	What	it

means	though,	is	that	if	you	use	it	to	patch	out	an	unbound	method	on
a	class	the	mocked	function	will	be	turned	into	a	bound	method	if	it	is
fetched	 from	 an	 instance.	 It	 will	 have	 self	 passed	 in	 as	 the	 first
argument,	which	is	exactly	what	I	wanted:

>>>	class	Foo:

...			def	foo(self):

...					pass

...

>>>	with	patch.object(Foo,	'foo',	autospec=True)	as	

...			mock_foo.return_value	=	'foo'

...			foo	=	Foo()

...			foo.foo()

...

'foo'

>>>	mock_foo.assert_called_once_with(foo)

If	we	don’t	 use	autospec=True	 then	 the	 unbound	method	 is	 patched
out	with	a	Mock	instance	instead,	and	isn’t	called	with	self.

26.5.3.6.	Checking	multiple	calls	with	mock

mock	 has	 a	 nice	 API	 for	 making	 assertions	 about	 how	 your	 mock
objects	are	used.

>>>	mock	=	Mock()

>>>	mock.foo_bar.return_value	=	None

>>>	mock.foo_bar('baz',	spam='eggs')

>>>	mock.foo_bar.assert_called_with('baz',	spam='eggs'

If	 your	 mock	 is	 only	 being	 called	 once	 you	 can	 use	 the
assert_called_once_with()	 method	 that	 also	 asserts	 that	 the
call_count	is	one.

>>>	mock.foo_bar.assert_called_once_with('baz',	spam

>>>	mock.foo_bar()

>>>	mock.foo_bar.assert_called_once_with('baz',	spam

Traceback	(most	recent	call	last):

				...

AssertionError:	Expected	to	be	called	once.	Called	2	times.

Both	assert_called_with	and	assert_called_once_with	make	assertions
about	the	most	recent	call.	 If	your	mock	 is	going	to	be	called	several
times,	and	you	want	to	make	assertions	about	all	those	calls	you	can
use	call_args_list:

>>>	mock	=	Mock(return_value=None)

>>>	mock(1,	2,	3)

>>>	mock(4,	5,	6)

>>>	mock()

>>>	mock.call_args_list

[call(1,	2,	3),	call(4,	5,	6),	call()]

The	call	helper	makes	it	easy	to	make	assertions	about	these	calls.
You	 can	 build	 up	 a	 list	 of	 expected	 calls	 and	 compare	 it	 to
call_args_list.	 This	 looks	 remarkably	 similar	 to	 the	 repr	 of	 the
call_args_list:

>>>	expected	=	[call(1,	2,	3),	call(4,	5,	6),	call()]

>>>	mock.call_args_list	==	expected

True

26.5.3.7.	Coping	with	mutable	arguments

Another	situation	is	rare,	but	can	bite	you,	is	when	your	mock	is	called
with	mutable	arguments.	call_args	and	call_args_list	store	references

to	the	arguments.	If	the	arguments	are	mutated	by	the	code	under	test
then	you	can	no	 longer	make	assertions	about	what	 the	values	were
when	the	mock	was	called.

Here’s	 some	 example	 code	 that	 shows	 the	 problem.	 Imagine	 the
following	functions	defined	in	‘mymodule’:

def	frob(val):

				pass

def	grob(val):

				"First	frob	and	then	clear	val"

				frob(val)

				val.clear()

When	we	try	to	test	that	grob	calls	frob	with	the	correct	argument	look
what	happens:

>>>	with	patch('mymodule.frob')	as	mock_frob:

...					val	=	set([6])

...					mymodule.grob(val)

...

>>>	val

set([])

>>>	mock_frob.assert_called_with(set([6]))

Traceback	(most	recent	call	last):

				...

AssertionError:	Expected:	((set([6]),),	{})

Called	with:	((set([]),),	{})

One	possibility	would	be	for	mock	to	copy	the	arguments	you	pass	in.
This	could	then	cause	problems	if	you	do	assertions	that	rely	on	object
identity	for	equality.

Here’s	 one	 solution	 that	 uses	 the	 side_effect	 functionality.	 If	 you

provide	a	side_effect	function	for	a	mock	then	side_effect	will	be	called
with	the	same	args	as	the	mock.	This	gives	us	an	opportunity	to	copy
the	arguments	and	store	them	for	later	assertions.	In	this	example	I’m
using	another	mock	to	store	the	arguments	so	that	I	can	use	the	mock
methods	 for	doing	 the	assertion.	Again	a	helper	 function	sets	 this	up
for	me.

>>>	from	copy	import	deepcopy

>>>	from	unittest.mock	import	Mock,	patch,	DEFAULT

>>>	def	copy_call_args(mock):

...					new_mock	=	Mock()

...					def	side_effect(*args,	**kwargs):

...									args	=	deepcopy(args)

...									kwargs	=	deepcopy(kwargs)

...									new_mock(*args,	**kwargs)

...									return	DEFAULT

...					mock.side_effect	=	side_effect

...					return	new_mock

...

>>>	with	patch('mymodule.frob')	as	mock_frob:

...					new_mock	=	copy_call_args(mock_frob)

...					val	=	set([6])

...					mymodule.grob(val)

...

>>>	new_mock.assert_called_with(set([6]))

>>>	new_mock.call_args

call(set([6]))

copy_call_args	 is	called	with	the	mock	that	will	be	called.	 It	 returns	a
new	mock	that	we	do	the	assertion	on.	The	side_effect	function	makes
a	copy	of	the	args	and	calls	our	new_mock	with	the	copy.

Note: 	If	your	mock	is	only	going	to	be	used	once	there	is	an	easier
way	of	checking	arguments	at	the	point	they	are	called.	You	can
simply	do	the	checking	inside	a	side_effect	function.

>>>	def	side_effect(arg):

...					assert	arg	==	set([6])

...

>>>	mock	=	Mock(side_effect=side_effect)

>>>	mock(set([6]))

>>>	mock(set())

Traceback	(most	recent	call	last):

				...

AssertionError

An	alternative	approach	is	to	create	a	subclass	of	Mock	or	MagicMock
that	 copies	 (using	 copy.deepcopy())	 the	 arguments.	 Here’s	 an
example	implementation:

>>>	from	copy	import	deepcopy

>>>	class	CopyingMock(MagicMock):

...					def	__call__(self,	*args,	**kwargs):

...									args	=	deepcopy(args)

...									kwargs	=	deepcopy(kwargs)

...									return	super(CopyingMock,	self).__call__

...

>>>	c	=	CopyingMock(return_value=None)

>>>	arg	=	set()

>>>	c(arg)

>>>	arg.add(1)

>>>	c.assert_called_with(set())

>>>	c.assert_called_with(arg)

Traceback	(most	recent	call	last):

				...

AssertionError:	Expected	call:	mock(set([1]))

Actual	call:	mock(set([]))

>>>	c.foo

<CopyingMock	name='mock.foo'	id='...'>

When	 you	 subclass	 Mock	 or	 MagicMock	 all	 dynamically	 created

attributes,	 and	 the	 return_value	will	 use	 your	 subclass	 automatically.
That	 means	 all	 children	 of	 a	 CopyingMock	 will	 also	 have	 the	 type
CopyingMock.

26.5.3.8.	Nesting	Patches

Using	 patch	 as	 a	 context	 manager	 is	 nice,	 but	 if	 you	 do	 multiple
patches	you	can	end	up	with	nested	with	statements	indenting	further
and	further	to	the	right:

>>>	class	MyTest(TestCase):

...

...					def	test_foo(self):

...									with	patch('mymodule.Foo')	as	mock_foo:

...													with	patch('mymodule.Bar')	as	mock_bar

...																	with	patch('mymodule.Spam')	as	mock_spam

...																					assert	mymodule.Foo	is	mock_foo

...																					assert	mymodule.Bar	is	mock_bar

...																					assert	mymodule.Spam	is	mock_spam

...

>>>	original	=	mymodule.Foo

>>>	MyTest('test_foo').test_foo()

>>>	assert	mymodule.Foo	is	original

With	unittest	cleanup	functions	and	the	patch	methods:	start	and	stop
we	 can	 achieve	 the	 same	 effect	 without	 the	 nested	 indentation.	 A
simple	 helper	 method,	 create_patch,	 puts	 the	 patch	 in	 place	 and
returns	the	created	mock	for	us:

>>>	class	MyTest(TestCase):

...

...					def	create_patch(self,	name):

...									patcher	=	patch(name)

...									thing	=	patcher.start()

...									self.addCleanup(patcher.stop)

...									return	thing

...

...					def	test_foo(self):

...									mock_foo	=	self.create_patch('mymodule.Foo'

...									mock_bar	=	self.create_patch('mymodule.Bar'

...									mock_spam	=	self.create_patch('mymodule.Spam'

...

...									assert	mymodule.Foo	is	mock_foo

...									assert	mymodule.Bar	is	mock_bar

...									assert	mymodule.Spam	is	mock_spam

...

>>>	original	=	mymodule.Foo

>>>	MyTest('test_foo').run()

>>>	assert	mymodule.Foo	is	original

26.5.3.9.	Mocking	a	dictionary	with	MagicMock

You	 may	 want	 to	 mock	 a	 dictionary,	 or	 other	 container	 object,
recording	all	access	to	it	whilst	having	it	still	behave	like	a	dictionary.

We	can	do	this	with	MagicMock,	which	will	behave	 like	a	dictionary,
and	 using	 side_effect	 to	 delegate	 dictionary	 access	 to	 a	 real
underlying	dictionary	that	is	under	our	control.

When	 the	__getitem__	 and	__setitem__	 methods	 of	 our	MagicMock
are	called	(normal	dictionary	access)	then	side_effect	is	called	with	the
key	 (and	 in	 the	 case	 of	 __setitem__	 the	 value	 too).	 We	 can	 also
control	what	is	returned.

After	 the	 MagicMock	 has	 been	 used	 we	 can	 use	 attributes	 like
call_args_list	to	assert	about	how	the	dictionary	was	used:

>>>	my_dict	=	{'a':	1,	'b':	2,	'c':	3}

>>>	def	getitem(name):

...						return	my_dict[name]

...

>>>	def	setitem(name,	val):

...					my_dict[name]	=	val

...

>>>	mock	=	MagicMock()

>>>	mock.__getitem__.side_effect	=	getitem

>>>	mock.__setitem__.side_effect	=	setitem

Note: 	An	alternative	to	using	MagicMock	is	to	use	Mock	and	only
provide	the	magic	methods	you	specifically	want:

>>>	mock	=	Mock()

>>>	mock.__setitem__	=	Mock(side_effect=getitem)

>>>	mock.__getitem__	=	Mock(side_effect=setitem)

A	third	option	is	to	use	MagicMock	but	passing	in	dict	as	the	spec	(or
spec_set)	 argument	 so	 that	 the	 MagicMock	 created	 only	 has
dictionary	magic	methods	available:

>>>	mock	=	MagicMock(spec_set=dict)

>>>	mock.__getitem__.side_effect	=	getitem

>>>	mock.__setitem__.side_effect	=	setitem

With	 these	side	effect	 functions	 in	place,	 the	mock	will	behave	 like	a
normal	dictionary	but	recording	the	access.	It	even	raises	a	KeyError	if
you	try	to	access	a	key	that	doesn’t	exist.

>>>	mock['a']

1

>>>	mock['c']

3

>>>	mock['d']

Traceback	(most	recent	call	last):

				...

KeyError:	'd'

>>>	mock['b']	=	'fish'

>>>	mock['d']	=	'eggs'

>>>	mock['b']

'fish'

>>>	mock['d']

'eggs'

After	 it	 has	 been	 used	 you	 can	 make	 assertions	 about	 the	 access
using	the	normal	mock	methods	and	attributes:

>>>	mock.__getitem__.call_args_list

[call('a'),	call('c'),	call('d'),	call('b'),	call('d')]

>>>	mock.__setitem__.call_args_list

[call('b',	'fish'),	call('d',	'eggs')]

>>>	my_dict

{'a':	1,	'c':	3,	'b':	'fish',	'd':	'eggs'}

26.5.3.10.	Mock	subclasses	and	their	attributes

There	are	various	reasons	why	you	might	want	to	subclass	Mock.	One
reason	might	be	to	add	helper	methods.	Here’s	a	silly	example:

>>>	class	MyMock(MagicMock):

...					def	has_been_called(self):

...									return	self.called

...

>>>	mymock	=	MyMock(return_value=None)

>>>	mymock

<MyMock	id='...'>

>>>	mymock.has_been_called()

False

>>>	mymock()

>>>	mymock.has_been_called()

True

The	standard	behaviour	 for	Mock	 instances	 is	 that	attributes	and	 the
return	 value	 mocks	 are	 of	 the	 same	 type	 as	 the	 mock	 they	 are
accessed	 on.	 This	 ensures	 that	 Mock	 attributes	 are	 Mocks	 and
MagicMock	attributes	are	MagicMocks	[2].	So	if	you’re	subclassing	to
add	helper	methods	then	they’ll	also	be	available	on	the	attributes	and
return	value	mock	of	instances	of	your	subclass.

>>>	mymock.foo

<MyMock	name='mock.foo'	id='...'>

>>>	mymock.foo.has_been_called()

False

>>>	mymock.foo()

<MyMock	name='mock.foo()'	id='...'>

>>>	mymock.foo.has_been_called()

True

Sometimes	this	is	inconvenient.	For	example,	one	user	is	subclassing
mock	 to	 created	 a	 Twisted	 adaptor.	Having	 this	 applied	 to	 attributes
too	actually	causes	errors.

Mock	 (in	 all	 its	 flavours)	 uses	 a	 method	 called	 _get_child_mock	 to
create	 these	 “sub-mocks”	 for	 attributes	 and	 return	 values.	 You	 can
prevent	 your	 subclass	 being	 used	 for	 attributes	 by	 overriding	 this
method.	 The	 signature	 is	 that	 it	 takes	 arbitrary	 keyword	 arguments
(**kwargs)	which	are	then	passed	onto	the	mock	constructor:

>>>	class	Subclass(MagicMock):

...					def	_get_child_mock(self,	**kwargs):

...									return	MagicMock(**kwargs)

...

>>>	mymock	=	Subclass()

https://code.google.com/p/mock/issues/detail?id=105
http://twistedmatrix.com/documents/11.0.0/api/twisted.python.components.html

>>>	mymock.foo

<MagicMock	name='mock.foo'	id='...'>

>>>	assert	isinstance(mymock,	Subclass)

>>>	assert	not	isinstance(mymock.foo,	Subclass)

>>>	assert	not	isinstance(mymock(),	Subclass)

[2]
An	exception	to	this	rule	are	the	non-callable	mocks.	Attributes
use	the	callable	variant	because	otherwise	non-callable	mocks
couldn’t	have	callable	methods.

26.5.3.11.	Mocking	imports	with	patch.dict

One	situation	where	mocking	can	be	hard	 is	where	you	have	a	 local
import	inside	a	function.	These	are	harder	to	mock	because	they	aren’t
using	an	object	from	the	module	namespace	that	we	can	patch	out.

Generally	 local	 imports	are	 to	be	avoided.	They	are	sometimes	done
to	 prevent	 circular	 dependencies,	 for	 which	 there	 is	 usually	 a	much
better	way	 to	solve	 the	problem	(refactor	 the	code)	or	 to	prevent	 “up
front	costs”	by	delaying	 the	 import.	This	can	also	be	solved	 in	better
ways	than	an	unconditional	 local	 import	(store	the	module	as	a	class
or	module	attribute	and	only	do	the	import	on	first	use).

That	aside	there	is	a	way	to	use	mock	to	affect	the	results	of	an	import.
Importing	fetches	an	object	from	the	sys.modules	dictionary.	Note	that
it	fetches	an	object,	which	need	not	be	a	module.	Importing	a	module
for	 the	 first	 time	results	 in	a	module	object	being	put	 in	sys.modules,
so	 usually	when	 you	 import	 something	 you	get	 a	module	 back.	This
need	not	be	the	case	however.

This	means	you	can	use	patch.dict()	to	temporarily	put	a	mock	in
place	in	sys.modules.	Any	imports	whilst	this	patch	is	active	will	fetch
the	mock.	When	 the	patch	 is	complete	 (the	decorated	 function	exits,

the	with	 statement	body	 is	 complete	or	patcher.stop()	 is	 called)	 then
whatever	was	there	previously	will	be	restored	safely.

Here’s	an	example	that	mocks	out	the	‘fooble’	module.

>>>	mock	=	Mock()

>>>	with	patch.dict('sys.modules',	{'fooble':	mock}):

...				import	fooble

...				fooble.blob()

...

<Mock	name='mock.blob()'	id='...'>

>>>	assert	'fooble'	not	in	sys.modules

>>>	mock.blob.assert_called_once_with()

As	 you	 can	 see	 the	 import	 fooble	 succeeds,	 but	 on	 exit	 there	 is	 no
‘fooble’	left	in	sys.modules.

This	also	works	for	the	from	module	import	name	form:

>>>	mock	=	Mock()

>>>	with	patch.dict('sys.modules',	{'fooble':	mock}):

...				from	fooble	import	blob

...				blob.blip()

...

<Mock	name='mock.blob.blip()'	id='...'>

>>>	mock.blob.blip.assert_called_once_with()

With	slightly	more	work	you	can	also	mock	package	imports:

>>>	mock	=	Mock()

>>>	modules	=	{'package':	mock,	'package.module':	mock

>>>	with	patch.dict('sys.modules',	modules):

...				from	package.module	import	fooble

...				fooble()

...

<Mock	name='mock.module.fooble()'	id='...'>

>>>	mock.module.fooble.assert_called_once_with()

26.5.3.12.	Tracking	order	of	calls	and	less	verbose
call	assertions

The	Mock	class	allows	you	to	track	the	order	of	method	calls	on	your
mock	objects	through	the	method_calls	attribute.	This	doesn’t	allow
you	 to	 track	 the	 order	 of	 calls	 between	 separate	 mock	 objects,
however	we	can	use	mock_calls	to	achieve	the	same	effect.

Because	 mocks	 track	 calls	 to	 child	 mocks	 in	 mock_calls,	 and
accessing	 an	 arbitrary	 attribute	 of	 a	mock	 creates	 a	 child	mock,	 we
can	create	our	separate	mocks	from	a	parent	one.	Calls	to	those	child
mock	 will	 then	 all	 be	 recorded,	 in	 order,	 in	 the	 mock_calls	 of	 the
parent:

>>>	manager	=	Mock()

>>>	mock_foo	=	manager.foo

>>>	mock_bar	=	manager.bar

>>>	mock_foo.something()

<Mock	name='mock.foo.something()'	id='...'>

>>>	mock_bar.other.thing()

<Mock	name='mock.bar.other.thing()'	id='...'>

>>>	manager.mock_calls

[call.foo.something(),	call.bar.other.thing()]

We	can	then	assert	about	the	calls,	including	the	order,	by	comparing
with	the	mock_calls	attribute	on	the	manager	mock:

>>>	expected_calls	=	[call.foo.something(),	call.bar

>>>	manager.mock_calls	==	expected_calls

True

If	patch	 is	 creating,	 and	 putting	 in	 place,	 your	 mocks	 then	 you	 can
attach	them	to	a	manager	mock	using	the	attach_mock()	method.
After	attaching	calls	will	be	recorded	in	mock_calls	of	the	manager.

>>>	manager	=	MagicMock()

>>>	with	patch('mymodule.Class1')	as	MockClass1:

...					with	patch('mymodule.Class2')	as	MockClass2:

...									manager.attach_mock(MockClass1,	'MockClass1'

...									manager.attach_mock(MockClass2,	'MockClass2'

...									MockClass1().foo()

...									MockClass2().bar()

...

<MagicMock	name='mock.MockClass1().foo()'	id='...'>

<MagicMock	name='mock.MockClass2().bar()'	id='...'>

>>>	manager.mock_calls

[call.MockClass1(),

	call.MockClass1().foo(),

	call.MockClass2(),

	call.MockClass2().bar()]

If	many	calls	have	been	made,	but	you’re	only	interested	in	a	particular
sequence	 of	 them	 then	 an	 alternative	 is	 to	 use	 the
assert_has_calls()	method.	This	takes	a	list	of	calls	(constructed
with	 the	call	 object).	 If	 that	 sequence	 of	 calls	 are	 in	 mock_calls
then	the	assert	succeeds.

>>>	m	=	MagicMock()

>>>	m().foo().bar().baz()

<MagicMock	name='mock().foo().bar().baz()'	id='...'>

>>>	m.one().two().three()

<MagicMock	name='mock.one().two().three()'	id='...'>

>>>	calls	=	call.one().two().three().call_list()

>>>	m.assert_has_calls(calls)

Even	though	the	chained	call	m.one().two().three()	aren’t	the	only	calls
that	have	been	made	to	the	mock,	the	assert	still	succeeds.

Sometimes	 a	mock	may	 have	 several	 calls	made	 to	 it,	 and	 you	 are
only	 interested	 in	 asserting	 about	some	 of	 those	 calls.	 You	may	 not
even	care	about	the	order.	In	this	case	you	can	pass	any_order=True
to	assert_has_calls:

>>>	m	=	MagicMock()

>>>	m(1),	m.two(2,	3),	m.seven(7),	m.fifty('50')

(...)

>>>	calls	=	[call.fifty('50'),	call(1),	call.seven(7

>>>	m.assert_has_calls(calls,	any_order=True)

26.5.3.13.	More	complex	argument	matching

Using	the	same	basic	concept	as	ANY	we	can	implement	matchers	to
do	more	complex	assertions	on	objects	used	as	arguments	to	mocks.

Suppose	 we	 expect	 some	 object	 to	 be	 passed	 to	 a	 mock	 that	 by
default	compares	equal	based	on	object	 identity	(which	is	the	Python
default	 for	 user	 defined	 classes).	 To	 use	 assert_called_with()
we	 would	 need	 to	 pass	 in	 the	 exact	 same	 object.	 If	 we	 are	 only
interested	in	some	of	the	attributes	of	this	object	then	we	can	create	a
matcher	that	will	check	these	attributes	for	us.

You	 can	 see	 in	 this	 example	 how	 a	 ‘standard’	 call	 to
assert_called_with	isn’t	sufficient:

>>>	class	Foo:

...					def	__init__(self,	a,	b):

...									self.a,	self.b	=	a,	b

...

>>>	mock	=	Mock(return_value=None)

>>>	mock(Foo(1,	2))

>>>	mock.assert_called_with(Foo(1,	2))

Traceback	(most	recent	call	last):

				...

AssertionError:	Expected:	call(<__main__.Foo	object	at	0x...>)

Actual	call:	call(<__main__.Foo	object	at	0x...>)

A	comparison	function	for	our	Foo	class	might	look	something	like	this:

>>>	def	compare(self,	other):

...					if	not	type(self)	==	type(other):

...									return	False

...					if	self.a	!=	other.a:

...									return	False

...					if	self.b	!=	other.b:

...									return	False

...					return	True

...

And	a	matcher	object	that	can	use	comparison	functions	like	this	for	its
equality	operation	would	look	something	like	this:

>>>	class	Matcher:

...					def	__init__(self,	compare,	some_obj):

...									self.compare	=	compare

...									self.some_obj	=	some_obj

...					def	__eq__(self,	other):

...									return	self.compare(self.some_obj,	other

...

Putting	all	this	together:

>>>	match_foo	=	Matcher(compare,	Foo(1,	2))

>>>	mock.assert_called_with(match_foo)

The	Matcher	 is	 instantiated	 with	 our	 compare	 function	 and	 the	 Foo
object	we	want	to	compare	against.	In	assert_called_with	the	Matcher
equality	method	will	 be	 called,	which	 compares	 the	 object	 the	mock
was	called	with	against	 the	one	we	created	our	matcher	with.	 If	 they
match	 then	 assert_called_with	 passes,	 and	 if	 they	 don’t	 an
AssertionError	is	raised:

>>>	match_wrong	=	Matcher(compare,	Foo(3,	4))

>>>	mock.assert_called_with(match_wrong)

Traceback	(most	recent	call	last):

				...

AssertionError:	Expected:	((<Matcher	object	at	0x...>,),	{})

Called	with:	((<Foo	object	at	0x...>,),	{})

With	a	bit	 of	 tweaking	you	could	have	 the	comparison	 function	 raise
the	AssertionError	directly	and	provide	a	more	useful	failure	message.

As	 of	 version	 1.5,	 the	 Python	 testing	 library	 PyHamcrest	 provides
similar	functionality,	that	may	be	useful	here,	in	the	form	of	its	equality
matcher	(hamcrest.library.integration.match_equality).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://pypi.python.org/pypi/PyHamcrest
http://packages.python.org/PyHamcrest/integration.html#hamcrest.library.integration.match_equality
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

http://www.python.org/

26.6.	2to3	-	Automated	Python	2	to
3	code	translation
2to3	 is	 a	 Python	 program	 that	 reads	 Python	 2.x	 source	 code	 and
applies	a	series	of	fixers	to	transform	it	into	valid	Python	3.x	code.	The
standard	library	contains	a	rich	set	of	fixers	that	will	handle	almost	all
code.	 2to3	 supporting	 library	 lib2to3	 is,	 however,	 a	 flexible	 and
generic	 library,	 so	 it	 is	 possible	 to	 write	 your	 own	 fixers	 for	 2to3.
lib2to3	 could	 also	 be	 adapted	 to	 custom	 applications	 in	 which
Python	code	needs	to	be	edited	automatically.

26.6.1.	Using	2to3

2to3	will	usually	be	installed	with	the	Python	interpreter	as	a	script.	It	is
also	located	in	the	Tools/scripts	directory	of	the	Python	root.

2to3’s	 basic	 arguments	 are	 a	 list	 of	 files	 or	 directories	 to	 transform.
The	directories	are	recursively	traversed	for	Python	sources.

Here	is	a	sample	Python	2.x	source	file,	example.py:

def	greet(name):

				print	"Hello,	{0}!".format(name)

print	"What's	your	name?"

name	=	raw_input()

greet(name)

It	can	be	converted	to	Python	3.x	code	via	2to3	on	the	command	line:

$	2to3	example.py

A	diff	against	the	original	source	file	is	printed.	2to3	can	also	write	the
needed	modifications	 right	 back	 to	 the	 source	 file.	 (A	 backup	 of	 the
original	file	is	made	unless	-n	is	also	given.)	Writing	the	changes	back
is	enabled	with	the	-w	flag:

$	2to3	-w	example.py

After	transformation,	example.py	looks	like	this:

def	greet(name):

				print("Hello,	{0}!".format(name))

print("What's	your	name?")

name	=	input()

greet(name)

Comments	 and	 exact	 indentation	 are	 preserved	 throughout	 the
translation	process.

By	 default,	 2to3	 runs	 a	 set	 of	 predefined	 fixers.	 The	 -l	 flag	 lists	 all
available	 fixers.	 An	 explicit	 set	 of	 fixers	 to	 run	 can	 be	 given	 with	 -f.
Likewise	the	-x	explicitly	disables	a	 fixer.	The	following	example	runs
only	the	imports	and	has_key	fixers:

$	2to3	-f	imports	-f	has_key	example.py

This	command	runs	every	fixer	except	the	apply	fixer:

$	2to3	-x	apply	example.py

Some	fixers	are	explicit,	meaning	they	aren’t	run	by	default	and	must
be	 listed	 on	 the	 command	 line	 to	 be	 run.	 Here,	 in	 addition	 to	 the
default	fixers,	the	idioms	fixer	is	run:

$	2to3	-f	all	-f	idioms	example.py

Notice	how	passing	all	enables	all	default	fixers.

Sometimes	2to3	will	find	a	place	in	your	source	code	that	needs	to	be
changed,	but	2to3	cannot	fix	automatically.	In	this	case,	2to3	will	print
a	warning	beneath	the	diff	for	a	file.	You	should	address	the	warning	in
order	to	have	compliant	3.x	code.

2to3	can	also	refactor	doctests.	To	enable	this	mode,	use	the	-d	 flag.
Note	that	only	doctests	will	be	refactored.	This	also	doesn’t	require	the
module	 to	 be	 valid	Python.	 For	 example,	 doctest	 like	 examples	 in	 a
reST	document	could	also	be	refactored	with	this	option.

The	 -v	 option	 enables	 output	 of	 more	 information	 on	 the	 translation
process.

Since	 some	 print	 statements	 can	 be	 parsed	 as	 function	 calls	 or
statements,	2to3	cannot	always	read	files	containing	the	print	function.
When	2to3	detects	the	presence	of	the	from	__future__	import
print_function	compiler	directive,	 it	modifies	its	 internal	grammar
to	interpret	print()	as	a	function.	This	change	can	also	be	enabled
manually	with	the	-p	flag.	Use	-p	to	run	fixers	on	code	that	already	has
had	its	print	statements	converted.

The	 -o	 or	 --output-dir	 option	 allows	 specification	 of	 an	 alternate
directory	 for	 processed	 output	 files	 to	 be	 written	 to.	 The	 -n	 flag	 is
required	when	using	this	as	backup	files	do	not	make	sense	when	not
overwriting	the	input	files.

New	in	version	3.2.3:	The	-o	option	was	added.

The	-W	or	--write-unchanged-files	flag	tells	2to3	to	always	write	output
files	even	 if	no	changes	were	required	to	 the	file.	This	 is	most	useful
with	-o	so	that	an	entire	Python	source	tree	is	copied	with	translation
from	 one	 directory	 to	 another.	 This	 option	 implies	 the	 -w	 flag	 as	 it
would	not	make	sense	otherwise.

New	in	version	3.2.3:	The	-W	flag	was	added.

The	 --add-suffix	 option	 specifies	 a	 string	 to	 append	 to	 all	 output
filenames.	The	-n	flag	is	required	when	specifying	this	as	backups	are
not	necessary	when	writing	to	different	filenames.	Example:

$	2to3	-n	-W	--add-suffix=3	example.py

Will	cause	a	converted	file	named	example.py3	to	be	written.

New	in	version	3.2.3:	The	--add-suffix	option	was	added.

To	translate	an	entire	project	from	one	directory	tree	to	another	use:

$	2to3	--output-dir=python3-version/mycode	-W	-n	python2-version/mycode

26.6.2.	Fixers

Each	 step	 of	 transforming	 code	 is	 encapsulated	 in	 a	 fixer.	 The
command	2to3	-l	 lists	 them.	As	documented	 above,	 each	 can	 be
turned	on	and	off	individually.	They	are	described	here	in	more	detail.

apply

Removes	 usage	 of	 apply().	 For	 example	 apply(function,
*args,	 **kwargs)	 is	 converted	 to	 function(*args,

**kwargs).

asserts

Replaces	 deprecated	 unittest	 method	 names	with	 the	 correct
ones.

From To

failUnlessEqual(a,	b) assertEqual(a,	b)

assertEquals(a,	b) assertEqual(a,	b)

failIfEqual(a,	b) assertNotEqual(a,	b)

assertNotEquals(a,	b) assertNotEqual(a,	b)

failUnless(a) assertTrue(a)

assert_(a) assertTrue(a)

failIf(a) assertFalse(a)

failUnlessRaises(exc,

cal)
assertRaises(exc,	cal)

failUnlessAlmostEqual(a,

b)
assertAlmostEqual(a,	b)

assertAlmostEquals(a,	b) assertAlmostEqual(a,	b)

failIfAlmostEqual(a,	b) assertNotAlmostEqual(a,

b)

assertNotAlmostEquals(a,

b)

assertNotAlmostEqual(a,

b)

basestring

Converts	basestring	to	str.

buffer

Converts	buffer	 to	memoryview.	This	 fixer	 is	optional	because
the	memoryview	API	is	similar	but	not	exactly	the	same	as	that	of
buffer.

callable

Converts	 callable(x)	 to	 isinstance(x,

collections.Callable),	adding	an	import	to	collections	if
needed.	Note	callable(x)	has	returned	in	Python	3.2,	so	if	you
do	not	intend	to	support	Python	3.1,	you	can	disable	this	fixer.

dict

Fixes	 dictionary	 iteration	 methods.	 dict.iteritems()	 is
converted	 to	 dict.items(),	 dict.iterkeys()	 to
dict.keys(),	 and	 dict.itervalues()	 to	 dict.values().
Similarly,	 dict.viewitems(),	 dict.viewkeys()	 and
dict.viewvalues()	 are	 converted	 respectively	 to
dict.items(),	 dict.keys()	 and	 dict.values().	 It	 also
wraps	 existing	 usages	 of	 dict.items(),	 dict.keys(),	 and
dict.values()	in	a	call	to	list.

except

Converts	except	X,	T	to	except	X	as	T.

exec

Converts	the	exec	statement	to	the	exec()	function.

execfile

Removes	usage	of	execfile().	The	argument	 to	execfile()
is	wrapped	in	calls	to	open(),	compile(),	and	exec().

exitfunc

Changes	 assignment	 of	 sys.exitfunc	 to	 use	 of	 the	 atexit
module.

filter

Wraps	filter()	usage	in	a	list	call.

funcattrs

Fixes	 function	 attributes	 that	 have	 been	 renamed.	 For	 example,
my_function.func_closure	 is	 converted	 to
my_function.__closure__.

future

Removes	 from	 __future__	 import	 new_feature

statements.

getcwdu

Renames	os.getcwdu()	to	os.getcwd().

has_key

Changes	dict.has_key(key)	to	key	in	dict.

idioms

This	 optional	 fixer	 performs	 several	 transformations	 that	 make
Python	code	more	idiomatic.	Type	comparisons	like	type(x)	is

SomeClass	 and	 type(x)	 ==	 SomeClass	 are	 converted	 to
isinstance(x,	 SomeClass).	 while	 1	 becomes	 while
True.	This	fixer	also	tries	to	make	use	of	sorted()	in	appropriate
places.	For	example,	this	block

L	=	list(some_iterable)

L.sort()

is	changed	to

L	=	sorted(some_iterable)

import

Detects	sibling	imports	and	converts	them	to	relative	imports.

imports

Handles	module	renames	in	the	standard	library.

imports2

Handles	 other	 modules	 renames	 in	 the	 standard	 library.	 It	 is
separate	 from	 the	 imports	 fixer	 only	 because	 of	 technical
limitations.

input

Converts	input(prompt)	to	eval(input(prompt))

intern

Converts	intern()	to	sys.intern().

isinstance

Fixes	duplicate	types	 in	the	second	argument	of	isinstance().
For	 example,	 isinstance(x,	 (int,	 int))	 is	 converted	 to
isinstance(x,	(int)).

itertools_imports

Removes	 imports	 of	 itertools.ifilter(),
itertools.izip(),	 and	 itertools.imap().	 Imports	 of
itertools.ifilterfalse()	 are	 also	 changed	 to
itertools.filterfalse().

itertools

Changes	 usage	 of	 itertools.ifilter(),
itertools.izip(),	 and	 itertools.imap()	 to	 their	 built-in
equivalents.	 itertools.ifilterfalse()	 is	 changed	 to
itertools.filterfalse().

long

Renames	long	to	int.

map

Wraps	map()	 in	a	list	call.	 It	also	changes	map(None,	x)	 to
list(x).	 Using	 from	 future_builtins	 import	 map

disables	this	fixer.

metaclass

Converts	 the	old	metaclass	syntax	(__metaclass__	=	Meta	 in
the	class	body)	to	the	new	(class	X(metaclass=Meta)).

methodattrs

Fixes	old	method	attribute	names.	For	example,	meth.im_func	is
converted	to	meth.__func__.

ne

Converts	the	old	not-equal	syntax,	<>,	to	!=.

next

Converts	 the	 use	 of	 iterator’s	 next()	 methods	 to	 the	 next()
function.	It	also	renames	next()	methods	to	__next__().

nonzero

Renames	__nonzero__()	to	__bool__().

numliterals

Converts	octal	literals	into	the	new	syntax.

operator

Converts	 calls	 to	 various	 functions	 in	 the	 operator	 module	 to
other,	but	equivalent,	function	calls.	When	needed,	the	appropriate
import	statements	are	added,	e.g.	import	collections.	The
following	mapping	are	made:

From To

operator.isCallable(obj)
hasattr(obj,

'__call__')

operator.sequenceIncludes(obj) operator.contains(obj)

operator.isSequenceType(obj)
isinstance(obj,

collections.Sequence)

operator.isMappingType(obj)
isinstance(obj,

collections.Mapping)

operator.isNumberType(obj)
isinstance(obj,

numbers.Number)

operator.repeat(obj,	n) operator.mul(obj,

operator.irepeat(obj,	n) operator.imul(obj,

paren

Add	 extra	 parenthesis	 where	 they	 are	 required	 in	 list
comprehensions.	For	example,	[x	for	x	in	1,	2]	 becomes

[x	for	x	in	(1,	2)].

print

Converts	the	print	statement	to	the	print()	function.

raise

Converts	raise	E,	V	to	raise	E(V),	and	raise	E,	V,	T	to
raise	 E(V).with_traceback(T).	 If	 E	 is	 a	 tuple,	 the
translation	 will	 be	 incorrect	 because	 substituting	 tuples	 for
exceptions	has	been	removed	in	3.0.

raw_input

Converts	raw_input()	to	input().

reduce

Handles	the	move	of	reduce()	to	functools.reduce().

reload

Converts	reload()	to	imp.reload().

renames

Changes	sys.maxint	to	sys.maxsize.

repr

Replaces	backtick	repr	with	the	repr()	function.

set_literal

Replaces	use	of	 the	set	constructor	with	set	 literals.	This	 fixer	 is
optional.

standard_error

Renames	StandardError	to	Exception.

sys_exc

Changes	 the	 deprecated	 sys.exc_value,	 sys.exc_type,
sys.exc_traceback	to	use	sys.exc_info().

throw

Fixes	the	API	change	in	generator’s	throw()	method.

tuple_params

Removes	 implicit	 tuple	 parameter	 unpacking.	 This	 fixer	 inserts
temporary	variables.

types

Fixes	 code	 broken	 from	 the	 removal	 of	 some	 members	 in	 the
types	module.

unicode

Renames	unicode	to	str.

urllib

Handles	 the	 rename	 of	 urllib	 and	 urllib2	 to	 the	 urllib
package.

ws_comma

Removes	 excess	 whitespace	 from	 comma	 separated	 items.	 This
fixer	is	optional.

xrange

Renames	 xrange()	 to	 range()	 and	 wraps	 existing	 range()
calls	with	list.

xreadlines

Changes	for	x	in	file.xreadlines()	to	for	x	in	file.

zip

Wraps	zip()	usage	 in	a	list	call.	This	 is	disabled	when	from
future_builtins	import	zip	appears.

26.6.3.	lib2to3	-	2to3’s	library

Note: 	The	lib2to3	API	should	be	considered	unstable	and	may
change	drastically	in	the	future.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

http://www.python.org/

26.7.	test	—	Regression	tests
package	for	Python
Note: 	The	test	package	is	meant	for	internal	use	by	Python	only.
It	is	documented	for	the	benefit	of	the	core	developers	of	Python.
Any	use	of	this	package	outside	of	Python’s	standard	library	is
discouraged	as	code	mentioned	here	can	change	or	be	removed
without	notice	between	releases	of	Python.

The	test	package	contains	all	regression	tests	for	Python	as	well	as
the	modules	test.support	and	test.regrtest.	test.support
is	 used	 to	 enhance	 your	 tests	 while	 test.regrtest	 drives	 the
testing	suite.

Each	module	in	the	test	package	whose	name	starts	with	test_	 is
a	testing	suite	for	a	specific	module	or	feature.	All	new	tests	should	be
written	 using	 the	 unittest	 or	 doctest	 module.	 Some	 older	 tests
are	 written	 using	 a	 “traditional”	 testing	 style	 that	 compares	 output
printed	to	sys.stdout;	this	style	of	test	is	considered	deprecated.

See	also:

Module	unittest
Writing	PyUnit	regression	tests.

Module	doctest
Tests	embedded	in	documentation	strings.

26.7.1.	Writing	Unit	Tests	for	the	test
package

It	 is	preferred	 that	 tests	 that	use	 the	unittest	module	 follow	a	 few
guidelines.	One	 is	 to	name	the	 test	module	by	starting	 it	with	test_
and	end	it	with	the	name	of	the	module	being	tested.	The	test	methods
in	the	test	module	should	start	with	test_	and	end	with	a	description
of	what	the	method	is	testing.	This	is	needed	so	that	the	methods	are
recognized	by	the	test	driver	as	test	methods.	Also,	no	documentation
string	 for	 the	 method	 should	 be	 included.	 A	 comment	 (such	 as	 #
Tests	 function	 returns	 only	 True	 or	 False)	 should	 be
used	to	provide	documentation	for	test	methods.	This	is	done	because
documentation	strings	get	printed	out	if	they	exist	and	thus	what	test	is
being	run	is	not	stated.

A	basic	boilerplate	is	often	used:

import	unittest

from	test	import	support

class	MyTestCase1(unittest.TestCase):

				#	Only	use	setUp()	and	tearDown()	if	necessary

				def	setUp(self):

								...	code	to	execute	in	preparation	for	tests

				def	tearDown(self):

								...	code	to	execute	to	clean	up	after	tests	

				def	test_feature_one(self):

								#	Test	feature	one.

								...	testing	code	...

				def	test_feature_two(self):

								#	Test	feature	two.

								...	testing	code	...

				...	more	test	methods	...

class	MyTestCase2(unittest.TestCase):

				...	same	structure	as	MyTestCase1	...

...	more	test	classes	...

if	__name__	==	'__main__':

				unittest.main()

This	 code	 pattern	 allows	 the	 testing	 suite	 to	 be	 run	 by
test.regrtest,	on	its	own	as	a	script	that	supports	the	unittest
CLI,	or	via	the	python	-m	unittest	CLI.

The	goal	for	regression	testing	is	to	try	to	break	code.	This	leads	to	a
few	guidelines	to	be	followed:

The	 testing	 suite	 should	 exercise	 all	 classes,	 functions,	 and
constants.	 This	 includes	 not	 just	 the	 external	 API	 that	 is	 to	 be
presented	to	the	outside	world	but	also	“private”	code.

Whitebox	testing	(examining	the	code	being	tested	when	the	tests
are	being	written)	 is	preferred.	Blackbox	 testing	 (testing	only	 the
published	user	interface)	is	not	complete	enough	to	make	sure	all
boundary	and	edge	cases	are	tested.

Make	 sure	 all	 possible	 values	 are	 tested	 including	 invalid	 ones.
This	makes	sure	that	not	only	all	valid	values	are	acceptable	but
also	that	improper	values	are	handled	correctly.

Exhaust	as	many	code	paths	as	possible.	Test	where	branching
occurs	and	thus	tailor	input	to	make	sure	as	many	different	paths
through	the	code	are	taken.

Add	an	explicit	 test	 for	any	bugs	discovered	 for	 the	 tested	code.
This	will	make	 sure	 that	 the	 error	 does	 not	 crop	 up	 again	 if	 the
code	is	changed	in	the	future.

Make	sure	to	clean	up	after	your	tests	(such	as	close	and	remove
all	temporary	files).

If	 a	 test	 is	 dependent	 on	 a	 specific	 condition	 of	 the	 operating
system	then	verify	 the	condition	already	exists	before	attempting
the	test.

Import	as	few	modules	as	possible	and	do	it	as	soon	as	possible.
This	minimizes	external	dependencies	of	tests	and	also	minimizes
possible	 anomalous	 behavior	 from	 side-effects	 of	 importing	 a
module.

Try	 to	 maximize	 code	 reuse.	 On	 occasion,	 tests	 will	 vary	 by
something	as	small	as	what	type	of	input	is	used.	Minimize	code
duplication	 by	 subclassing	 a	 basic	 test	 class	 with	 a	 class	 that
specifies	the	input:

class	TestFuncAcceptsSequencesMixin:

				func	=	mySuperWhammyFunction

				def	test_func(self):

								self.func(self.arg)

class	AcceptLists(TestFuncAcceptsSequencesMixin,	

				arg	=	[1,	2,	3]

class	AcceptStrings(TestFuncAcceptsSequencesMixin

				arg	=	'abc'

class	AcceptTuples(TestFuncAcceptsSequencesMixin,

				arg	=	(1,	2,	3)

When	 using	 this	 pattern,	 remember	 that	 all	 classes	 that	 inherit
from	 unittest.TestCase	 are	 run	 as	 tests.	 The	Mixin	 class	 in	 the
example	 above	 does	 not	 have	 any	 data	 and	 so	 can’t	 be	 run	 by
itself,	thus	it	does	not	inherit	from	unittest.TestCase.

See	also:

Test	Driven	Development
A	book	by	Kent	Beck	on	writing	tests	before	code.

26.7.2.	Running	tests	using	the	command-
line	interface

The	test	package	can	be	run	as	a	script	to	drive	Python’s	regression
test	suite,	thanks	to	the	-m	option:	python	-m	test.	Under	the	hood,	it
uses	 test.regrtest;	 the	 call	 python	 -m	 test.regrtest	 used	 in
previous	 Python	 versions	 still	 works).	 Running	 the	 script	 by	 itself
automatically	starts	running	all	regression	tests	in	the	test	package.
It	does	this	by	finding	all	modules	 in	the	package	whose	name	starts
with	 test_,	 importing	 them,	 and	 executing	 the	 function
test_main()	 if	 present	 or	 loading	 the	 tests	 via
unittest.TestLoader.loadTestsFromModule	 if	 test_main	 does	 not
exist.	The	names	of	tests	to	execute	may	also	be	passed	to	the	script.
Specifying	 a	 single	 regression	 test	 (python	 -m	 test	 test_spam)	will
minimize	output	and	only	print	whether	the	test	passed	or	failed.

Running	test	directly	allows	what	resources	are	available	for	tests	to
use	 to	 be	 set.	 You	 do	 this	 by	 using	 the	 -u	 command-line	 option.
Specifying	 all	 as	 the	 value	 for	 the	 -u	 option	 enables	 all	 possible
resources:	python	-m	test	-uall.	 If	all	but	one	resource	 is	desired	(a
more	common	case),	a	comma-separated	list	of	resources	that	are	not
desired	may	be	listed	after	all.	The	command	python	-m	test	-uall,-
audio,-largefile	 will	 run	 test	 with	 all	 resources	 except	 the	 audio
and	 largefile	 resources.	 For	 a	 list	 of	 all	 resources	 and	 more
command-line	options,	run	python	-m	test	-h.

Some	 other	 ways	 to	 execute	 the	 regression	 tests	 depend	 on	 what
platform	the	tests	are	being	executed	on.	On	Unix,	you	can	run	make
test	 at	 the	 top-level	 directory	where	Python	was	 built.	On	Windows,
executing	 rt.bat	 from	 your	 PCBuild	 directory	 will	 run	 all	 regression

tests.

26.8.	test.support	—	Utilities
for	the	Python	test	suite
The	test.support	module	provides	support	for	Python’s	regression
test	suite.

Note: 	test.support	is	not	a	public	module.	It	is	documented
here	to	help	Python	developers	write	tests.	The	API	of	this	module	is
subject	to	change	without	backwards	compatibility	concerns	between
releases.

This	module	defines	the	following	exceptions:

exception	test.support.TestFailed
Exception	to	be	raised	when	a	test	fails.	This	is	deprecated	in	favor
of	 unittest-based	 tests	 and	 unittest.TestCase‘s	 assertion
methods.

exception	test.support.ResourceDenied
Subclass	of	unittest.SkipTest.	Raised	when	a	resource	(such
as	 a	 network	 connection)	 is	 not	 available.	 Raised	 by	 the
requires()	function.

The	test.support	module	defines	the	following	constants:

test.support.verbose

True	when	verbose	output	 is	enabled.	Should	be	checked	when
more	detailed	information	is	desired	about	a	running	test.	verbose
is	set	by	test.regrtest.

test.support.is_jython

True	if	the	running	interpreter	is	Jython.

test.support.TESTFN

Set	to	a	name	that	is	safe	to	use	as	the	name	of	a	temporary	file.
Any	 temporary	 file	 that	 is	 created	 should	 be	 closed	 and	 unlinked
(removed).

The	test.support	module	defines	the	following	functions:

test.support.forget(module_name)
Remove	 the	 module	 named	 module_name	 from	 sys.modules
and	delete	any	byte-compiled	files	of	the	module.

test.support.is_resource_enabled(resource)
Return	 True	 if	 resource	 is	 enabled	 and	 available.	 The	 list	 of
available	resources	is	only	set	when	test.regrtest	is	executing
the	tests.

test.support.requires(resource,	msg=None)
Raise	 ResourceDenied	 if	 resource	 is	 not	 available.	msg	 is	 the
argument	to	ResourceDenied	if	it	is	raised.	Always	returns	True
if	 called	 by	 a	 function	 whose	 __name__	 is	 '__main__'.	 Used
when	tests	are	executed	by	test.regrtest.

test.support.findfile(filename,	subdir=None)
Return	 the	 path	 to	 the	 file	 named	 filename.	 If	 no	match	 is	 found
filename	is	returned.	This	does	not	equal	a	failure	since	it	could	be
the	path	to	the	file.

Setting	subdir	 indicates	 a	 relative	 path	 to	 use	 to	 find	 the	 file
rather	than	looking	directly	in	the	path	directories.

test.support.run_unittest(*classes)
Execute	unittest.TestCase	subclasses	passed	to	the	function.
The	function	scans	the	classes	for	methods	starting	with	the	prefix
test_	and	executes	the	tests	individually.

It	is	also	legal	to	pass	strings	as	parameters;	these	should	be	keys
in	 sys.modules.	 Each	 associated	 module	 will	 be	 scanned	 by
unittest.TestLoader.loadTestsFromModule().	 This	 is
usually	seen	in	the	following	test_main()	function:

def	test_main():

				support.run_unittest(__name__)

This	will	run	all	tests	defined	in	the	named	module.

test.support.run_doctest(module,	verbosity=None)
Run	 doctest.testmod()	 on	 the	 given	 module.	 Return
(failure_count,	test_count).

If	verbosity	 is	 None,	 doctest.testmod()	 is	 run	with	 verbosity
set	to	verbose.	Otherwise,	it	is	run	with	verbosity	set	to	None.

test.support.check_warnings(*filters,	quiet=True)
A	convenience	wrapper	 for	warnings.catch_warnings()	 that
makes	 it	 easier	 to	 test	 that	 a	 warning	 was	 correctly	 raised.	 It	 is
approximately	 equivalent	 to	 calling
warnings.catch_warnings(record=True)	 with
warnings.simplefilter()	set	to	always	and	with	the	option
to	automatically	validate	the	results	that	are	recorded.

check_warnings	 accepts	 2-tuples	 of	 the	 form	 ("message
regexp",	WarningCategory)	 as	 positional	 arguments.	 If	 one

or	more	 filters	 are	 provided,	 or	 if	 the	 optional	 keyword	 argument
quiet	 is	 False,	 it	 checks	 to	 make	 sure	 the	 warnings	 are	 as
expected:	 each	 specified	 filter	 must	 match	 at	 least	 one	 of	 the
warnings	 raised	by	 the	enclosed	code	or	 the	 test	 fails,	and	 if	any
warnings	are	 raised	 that	 do	not	match	any	of	 the	 specified	 filters
the	test	fails.	To	disable	the	first	of	these	checks,	set	quiet	to	True.

If	no	arguments	are	specified,	it	defaults	to:

check_warnings(("",	Warning),	quiet=True)

In	this	case	all	warnings	are	caught	and	no	errors	are	raised.

On	entry	to	the	context	manager,	a	WarningRecorder	instance	is
returned.	The	underlying	warnings	 list	 from	 catch_warnings()
is	 available	 via	 the	 recorder	 object’s	 warnings	 attribute.	 As	 a
convenience,	 the	 attributes	 of	 the	 object	 representing	 the	 most
recent	warning	can	also	be	accessed	directly	through	the	recorder
object	 (see	example	below).	 If	 no	warning	 has	 been	 raised,	 then
any	of	the	attributes	that	would	otherwise	be	expected	on	an	object
representing	a	warning	will	return	None.

The	recorder	object	also	has	a	reset()	method,	which	clears	the
warnings	list.

The	context	manager	is	designed	to	be	used	like	this:

with	check_warnings(("assertion	is	always	true",	SyntaxWarning

																				("",	UserWarning)):

				exec('assert(False,	"Hey!")')

				warnings.warn(UserWarning("Hide	me!"))

In	this	case	if	either	warning	was	not	raised,	or	some	other	warning

was	raised,	check_warnings()	would	raise	an	error.

When	a	 test	needs	 to	 look	more	deeply	 into	 the	warnings,	 rather
than	just	checking	whether	or	not	they	occurred,	code	like	this	can
be	used:

with	check_warnings(quiet=True)	as	w:

				warnings.warn("foo")

				assert	str(w.args[0])	==	"foo"

				warnings.warn("bar")

				assert	str(w.args[0])	==	"bar"

				assert	str(w.warnings[0].args[0])	==	"foo"

				assert	str(w.warnings[1].args[0])	==	"bar"

				w.reset()

				assert	len(w.warnings)	==	0

Here	 all	 warnings	 will	 be	 caught,	 and	 the	 test	 code	 tests	 the
captured	warnings	directly.

Changed	in	version	3.2:	New	optional	arguments	filters	and	quiet.

test.support.captured_stdin()
test.support.captured_stdout()
test.support.captured_stderr()

A	 context	managers	 that	 temporarily	 replaces	 the	 named	 stream
with	io.StringIO	object.

Example	use	with	output	streams:

with	captured_stdout()	as	stdout,	captured_stderr()

				print("hello")

				print("error",	file=sys.stderr)

assert	stdout.getvalue()	==	"hello\n"

assert	stderr.getvalue()	==	"error\n"

Example	use	with	input	stream:

with	captured_stdin()	as	stdin:

				stdin.write('hello\n')

				stdin.seek(0)

				#	call	test	code	that	consumes	from	sys.stdin

				captured	=	input()

self.assertEqual(captured,	"hello")

test.support.temp_dir(path=None,	quiet=False)
A	context	manager	that	creates	a	temporary	directory	at	path	and
yields	the	directory.

If	 path	 is	 None,	 the	 temporary	 directory	 is	 created	 using
tempfile.mkdtemp().	 If	quiet	 is	 False,	 the	 context	 manager
raises	 an	 exception	 on	 error.	 Otherwise,	 if	 path	 is	 specified	 and
cannot	be	created,	only	a	warning	is	issued.

test.support.change_cwd(path,	quiet=False)
A	 context	 manager	 that	 temporarily	 changes	 the	 current	 working
directory	to	path	and	yields	the	directory.

If	 quiet	 is	 False,	 the	 context	 manager	 raises	 an	 exception	 on
error.	Otherwise,	 it	 issues	 only	 a	 warning	 and	 keeps	 the	 current
working	directory	the	same.

test.support.temp_cwd(name='tempcwd',	quiet=False)
A	 context	 manager	 that	 temporarily	 creates	 a	 new	 directory	 and
changes	the	current	working	directory	(CWD).

The	context	manager	creates	a	 temporary	directory	 in	 the	current
directory	with	name	name	before	temporarily	changing	the	current
working	 directory.	 If	 name	 is	 None,	 the	 temporary	 directory	 is

created	using	tempfile.mkdtemp().

If	quiet	 is	 False	 and	 it	 is	 not	 possible	 to	 create	 or	 change	 the
CWD,	an	error	 is	 raised.	Otherwise,	only	a	warning	 is	 raised	and
the	original	CWD	is	used.

test.support.temp_umask(umask)
A	context	manager	that	temporarily	sets	the	process	umask.

test.support.can_symlink()
Return	True	if	the	OS	supports	symbolic	links,	False	otherwise.

@test.support.skip_unless_symlink

A	decorator	for	running	tests	that	require	support	for	symbolic	links.

@test.support.anticipate_failure(condition)
A	 decorator	 to	 conditionally	 mark	 tests	 with
unittest.expectedFailure().	 Any	 use	 of	 this	 decorator
should	 have	 an	 associated	 comment	 identifying	 the	 relevant
tracker	issue.

@test.support.run_with_locale(catstr,	*locales)
A	 decorator	 for	 running	 a	 function	 in	 a	 different	 locale,	 correctly
resetting	 it	 after	 it	 has	 finished.	catstr	 is	 the	 locale	 category	 as	 a
string	 (for	 example	 "LC_ALL").	 The	 locales	 passed	 will	 be	 tried
sequentially,	and	the	first	valid	locale	will	be	used.

test.support.make_bad_fd()
Create	 an	 invalid	 file	 descriptor	 by	 opening	 and	 closing	 a
temporary	file,	and	returning	its	descripor.

test.support.import_module(name,	deprecated=False)
This	 function	 imports	 and	 returns	 the	 named	 module.	 Unlike	 a

normal	 import,	 this	 function	 raises	 unittest.SkipTest	 if	 the
module	cannot	be	imported.

Module	 and	 package	 deprecation	 messages	 are	 suppressed
during	this	import	if	deprecated	is	True.

New	in	version	3.1.

test.support.import_fresh_module(name,	fresh=(),
blocked=(),	deprecated=False)

This	function	imports	and	returns	a	fresh	copy	of	the	named	Python
module	 by	 removing	 the	 named	 module	 from	 sys.modules
before	 doing	 the	 import.	 Note	 that	 unlike	 reload(),	 the	 original
module	is	not	affected	by	this	operation.

fresh	 is	 an	 iterable	 of	 additional	 module	 names	 that	 are	 also
removed	from	the	sys.modules	cache	before	doing	the	import.

blocked	 is	 an	 iterable	 of	 module	 names	 that	 are	 replaced	 with
None	 in	 the	 module	 cache	 during	 the	 import	 to	 ensure	 that
attempts	to	import	them	raise	ImportError.

The	 named	 module	 and	 any	 modules	 named	 in	 the	 fresh	 and
blocked	parameters	are	saved	before	starting	the	import	and	then
reinserted	into	sys.modules	when	the	fresh	import	is	complete.

Module	 and	 package	 deprecation	 messages	 are	 suppressed
during	this	import	if	deprecated	is	True.

This	function	will	raise	ImportError	if	the	named	module	cannot
be	imported.

Example	use:

#	Get	copies	of	the	warnings	module	for	testing	without	affecting	the

#	version	being	used	by	the	rest	of	the	test	suite.	One	copy	uses	the

#	C	implementation,	the	other	is	forced	to	use	the	pure	Python	fallback

#	implementation

py_warnings	=	import_fresh_module('warnings',	blocked

c_warnings	=	import_fresh_module('warnings',	fresh

New	in	version	3.1.

test.support.bind_port(sock,	host=HOST)
Bind	the	socket	to	a	free	port	and	return	the	port	number.	Relies	on
ephemeral	ports	in	order	to	ensure	we	are	using	an	unbound	port.
This	 is	 important	 as	 many	 tests	 may	 be	 running	 simultaneously,
especially	 in	 a	 buildbot	 environment.	 This	 method	 raises	 an
exception	 if	 the	 sock.family	 is	 AF_INET	 and	 sock.type	 is
SOCK_STREAM,	 and	 the	 socket	 has	 SO_REUSEADDR	 or
SO_REUSEPORT	 set	 on	 it.	 Tests	 should	 never	 set	 these	 socket
options	for	TCP/IP	sockets.	The	only	case	for	setting	these	options
is	testing	multicasting	via	multiple	UDP	sockets.

Additionally,	 if	 the	 SO_EXCLUSIVEADDRUSE	 socket	 option	 is
available	 (i.e.	 on	Windows),	 it	will	 be	 set	 on	 the	 socket.	 This	will
prevent	anyone	else	from	binding	to	our	host/port	 for	 the	duration
of	the	test.

test.support.find_unused_port(family=socket.AF_INET,
socktype=socket.SOCK_STREAM)

Returns	an	unused	port	that	should	be	suitable	for	binding.	This	 is
achieved	by	creating	a	temporary	socket	with	the	same	family	and
type	as	the	sock	parameter	(default	is	AF_INET,	SOCK_STREAM),
and	binding	it	to	the	specified	host	address	(defaults	to	0.0.0.0)
with	the	port	set	to	0,	eliciting	an	unused	ephemeral	port	from	the

OS.	 The	 temporary	 socket	 is	 then	 closed	 and	 deleted,	 and	 the
ephemeral	port	is	returned.

Either	this	method	or	bind_port()	should	be	used	for	any	tests
where	a	server	socket	needs	to	be	bound	to	a	particular	port	for	the
duration	 of	 the	 test.	 Which	 one	 to	 use	 depends	 on	 whether	 the
calling	code	is	creating	a	python	socket,	or	if	an	unused	port	needs
to	be	provided	 in	a	constructor	or	passed	 to	an	external	program
(i.e.	 the	-accept	argument	 to	openssl’s	s_server	mode).	Always
prefer	 bind_port()	 over	 find_unused_port()	 where
possible.	 Using	 a	 hard	 coded	 port	 is	 discouraged	 since	 it	 can
makes	 multiple	 instances	 of	 the	 test	 impossible	 to	 run
simultaneously,	which	is	a	problem	for	buildbots.

The	test.support	module	defines	the	following	classes:

class	test.support.TransientResource(exc,	**kwargs)
Instances	are	a	context	manager	 that	raises	ResourceDenied	 if
the	specified	exception	type	is	raised.	Any	keyword	arguments	are
treated	 as	 attribute/value	 pairs	 to	 be	 compared	 against	 any
exception	raised	within	the	with	statement.	Only	if	all	pairs	match
properly	against	attributes	on	 the	exception	 is	ResourceDenied
raised.

class	test.support.EnvironmentVarGuard
Class	 used	 to	 temporarily	 set	 or	 unset	 environment	 variables.
Instances	can	be	used	as	a	context	manager	and	have	a	complete
dictionary	 interface	 for	 querying/modifying	 the	 underlying
os.environ.	After	exit	 from	 the	context	manager	all	 changes	 to
environment	 variables	 done	 through	 this	 instance	 will	 be	 rolled
back.

Changed	in	version	3.1:	Added	dictionary	interface.

EnvironmentVarGuard.set(envvar,	value)
Temporarily	 set	 the	environment	 variable	 envvar	 to	 the	 value	of
value.

EnvironmentVarGuard.unset(envvar)
Temporarily	unset	the	environment	variable	envvar.

class	test.support.SuppressCrashReport
A	context	manager	used	 to	 try	 to	prevent	crash	dialog	popups	on
tests	that	are	expected	to	crash	a	subprocess.

On	Windows,	 it	 disables	Windows	 Error	 Reporting	 dialogs	 using
SetErrorMode.

On	 UNIX,	 resource.setrlimit()	 is	 used	 to	 set
resource.RLIMIT_CORE‘s	soft	limit	to	0	to	prevent	coredump	file
creation.

On	both	platforms,	the	old	value	is	restored	by	__exit__().

class	test.support.WarningsRecorder
Class	used	to	record	warnings	for	unit	tests.	See	documentation	of
check_warnings()	above	for	more	details.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	26.	Development	Tools	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://msdn.microsoft.com/en-us/library/windows/desktop/ms680621.aspx
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

27.	Debugging	and	Profiling
These	 libraries	 help	 you	 with	 Python	 development:	 the	 debugger
enables	 you	 to	 step	 through	 code,	 analyze	 stack	 frames	 and	 set
breakpoints	 etc.,	 and	 the	 profilers	 run	 code	 and	 give	 you	 a	 detailed
breakdown	of	execution	 times,	allowing	you	 to	 identify	bottlenecks	 in
your	programs.

27.1.	bdb	—	Debugger	framework
27.2.	faulthandler	—	Dump	the	Python	traceback

27.2.1.	Dump	the	traceback
27.2.2.	Fault	handler	state
27.2.3.	Dump	the	tracebacks	after	a	timeout
27.2.4.	Dump	the	traceback	on	a	user	signal
27.2.5.	File	descriptor	issue
27.2.6.	Example

27.3.	pdb	—	The	Python	Debugger
27.3.1.	Debugger	Commands

27.4.	The	Python	Profilers
27.4.1.	Introduction	to	the	profilers
27.4.2.	Instant	User’s	Manual
27.4.3.	profile	and	cProfile	Module	Reference
27.4.4.	The	Stats	Class
27.4.5.	What	Is	Deterministic	Profiling?
27.4.6.	Limitations
27.4.7.	Calibration
27.4.8.	Using	a	custom	timer

27.5.	timeit	—	Measure	execution	time	of	small	code	snippets
27.5.1.	Basic	Examples
27.5.2.	Python	Interface
27.5.3.	Command-Line	Interface
27.5.4.	Examples

27.6.	trace	—	Trace	or	track	Python	statement	execution
27.6.1.	Command-Line	Usage

27.6.1.1.	Main	options
27.6.1.2.	Modifiers
27.6.1.3.	Filters

27.6.2.	Programmatic	Interface
27.7.	tracemalloc	—	Trace	memory	allocations
27.8.	Examples

27.8.1.	Display	the	top	10
27.8.2.	Compute	differences
27.8.3.	Get	the	traceback	of	a	memory	block
27.8.4.	Pretty	top

27.9.	API
27.9.1.	Functions
27.9.2.	Filter
27.9.3.	Frame
27.9.4.	Snapshot
27.9.5.	Statistic
27.9.6.	StatisticDiff
27.9.7.	Trace
27.9.8.	Traceback

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

http://www.python.org/

27.1.	bdb	—	Debugger	framework

Source	code:	Lib/bdb.py

The	 bdb	 module	 handles	 basic	 debugger	 functions,	 like	 setting
breakpoints	or	managing	execution	via	the	debugger.

The	following	exception	is	defined:

exception	bdb.BdbQuit
Exception	raised	by	the	Bdb	class	for	quitting	the	debugger.

The	bdb	module	also	defines	two	classes:

class	bdb.Breakpoint(self,	file,	line,	temporary=0,	cond=None,
funcname=None)

This	 class	 implements	 temporary	 breakpoints,	 ignore	 counts,
disabling	and	(re-)enabling,	and	conditionals.

Breakpoints	 are	 indexed	 by	 number	 through	 a	 list	 called
bpbynumber	and	by	(file,	line)	pairs	through	bplist.	The
former	points	to	a	single	instance	of	class	Breakpoint.	The	latter
points	to	a	list	of	such	instances	since	there	may	be	more	than	one
breakpoint	per	line.

When	creating	a	breakpoint,	 its	 associated	 filename	should	be	 in
canonical	 form.	 If	 a	 funcname	 is	 defined,	 a	 breakpoint	 hit	 will	 be
counted	 when	 the	 first	 line	 of	 that	 function	 is	 executed.	 A
conditional	breakpoint	always	counts	a	hit.

Breakpoint	instances	have	the	following	methods:

http://hg.python.org/cpython/file/3.4/Lib/bdb.py

deleteMe()
Delete	the	breakpoint	from	the	list	associated	to	a	file/line.	If	it	is
the	 last	breakpoint	 in	 that	position,	 it	also	deletes	 the	entry	 for
the	file/line.

enable()
Mark	the	breakpoint	as	enabled.

disable()
Mark	the	breakpoint	as	disabled.

bpformat()
Return	 a	 string	 with	 all	 the	 information	 about	 the	 breakpoint,
nicely	formatted:

The	breakpoint	number.
If	it	is	temporary	or	not.
Its	file,line	position.
The	condition	that	causes	a	break.
If	it	must	be	ignored	the	next	N	times.
The	breakpoint	hit	count.

New	in	version	3.2.

bpprint(out=None)
Print	the	output	of	bpformat()	to	the	file	out,	or	if	it	is	None,
to	standard	output.

class	bdb.Bdb(skip=None)
The	Bdb	class	acts	as	a	generic	Python	debugger	base	class.

This	class	 takes	care	of	 the	details	of	 the	 trace	 facility;	a	derived
class	 should	 implement	 user	 interaction.	 The	 standard	 debugger
class	(pdb.Pdb)	is	an	example.

The	 skip	 argument,	 if	 given,	 must	 be	 an	 iterable	 of	 glob-style
module	name	patterns.	The	debugger	will	not	step	into	frames	that
originate	in	a	module	that	matches	one	of	these	patterns.	Whether
a	frame	is	considered	to	originate	in	a	certain	module	is	determined
by	the	__name__	in	the	frame	globals.

New	in	version	3.1:	The	skip	argument.

The	 following	 methods	 of	 Bdb	 normally	 don’t	 need	 to	 be
overridden.

canonic(filename)
Auxiliary	method	for	getting	a	filename	in	a	canonical	form,	that
is,	 as	 a	 case-normalized	 (on	 case-insensitive	 filesystems)
absolute	path,	stripped	of	surrounding	angle	brackets.

reset()
Set	 the	 botframe,	 stopframe,	 returnframe	 and
quitting	attributes	with	values	ready	to	start	debugging.

trace_dispatch(frame,	event,	arg)
This	 function	 is	 installed	 as	 the	 trace	 function	 of	 debugged
frames.	Its	return	value	is	the	new	trace	function	(in	most	cases,
that	is,	itself).

The	 default	 implementation	 decides	 how	 to	 dispatch	 a	 frame,
depending	 on	 the	 type	 of	 event	 (passed	 as	 a	 string)	 that	 is
about	to	be	executed.	event	can	be	one	of	the	following:

"line":	A	new	line	of	code	is	going	to	be	executed.
"call":	A	function	is	about	to	be	called,	or	another	code
block	entered.
"return":	 A	 function	 or	 other	 code	 block	 is	 about	 to

return.
"exception":	An	exception	has	occurred.
"c_call":	A	C	function	is	about	to	be	called.
"c_return":	A	C	function	has	returned.
"c_exception":	A	C	function	has	raised	an	exception.

For	 the	 Python	 events,	 specialized	 functions	 (see	 below)	 are
called.	For	the	C	events,	no	action	is	taken.

The	arg	parameter	depends	on	the	previous	event.

See	 the	 documentation	 for	 sys.settrace()	 for	 more
information	on	the	trace	function.	For	more	information	on	code
and	frame	objects,	refer	to	The	standard	type	hierarchy.

dispatch_line(frame)
If	 the	 debugger	 should	 stop	 on	 the	 current	 line,	 invoke	 the
user_line()	 method	 (which	 should	 be	 overridden	 in
subclasses).	 Raise	 a	 BdbQuit	 exception	 if	 the
Bdb.quitting	 flag	 is	 set	 (which	 can	 be	 set	 from
user_line()).	 Return	 a	 reference	 to	 the
trace_dispatch()	method	for	further	tracing	in	that	scope.

dispatch_call(frame,	arg)
If	 the	 debugger	 should	 stop	 on	 this	 function	 call,	 invoke	 the
user_call()	 method	 (which	 should	 be	 overridden	 in
subclasses).	 Raise	 a	 BdbQuit	 exception	 if	 the
Bdb.quitting	 flag	 is	 set	 (which	 can	 be	 set	 from
user_call()).	 Return	 a	 reference	 to	 the
trace_dispatch()	method	for	further	tracing	in	that	scope.

dispatch_return(frame,	arg)
If	 the	debugger	should	stop	on	 this	 function	 return,	 invoke	 the

user_return()	 method	 (which	 should	 be	 overridden	 in
subclasses).	 Raise	 a	 BdbQuit	 exception	 if	 the
Bdb.quitting	 flag	 is	 set	 (which	 can	 be	 set	 from
user_return()).	 Return	 a	 reference	 to	 the
trace_dispatch()	method	for	further	tracing	in	that	scope.

dispatch_exception(frame,	arg)
If	 the	 debugger	 should	 stop	 at	 this	 exception,	 invokes	 the
user_exception()	 method	 (which	 should	 be	 overridden	 in
subclasses).	 Raise	 a	 BdbQuit	 exception	 if	 the
Bdb.quitting	 flag	 is	 set	 (which	 can	 be	 set	 from
user_exception()).	 Return	 a	 reference	 to	 the
trace_dispatch()	method	for	further	tracing	in	that	scope.

Normally	derived	classes	don’t	override	the	following	methods,	but
they	 may	 if	 they	 want	 to	 redefine	 the	 definition	 of	 stopping	 and
breakpoints.

stop_here(frame)
This	 method	 checks	 if	 the	 frame	 is	 somewhere	 below
botframe	 in	 the	 call	 stack.	 botframe	 is	 the	 frame	 in	which
debugging	started.

break_here(frame)
This	method	checks	if	there	is	a	breakpoint	in	the	filename	and
line	belonging	to	frame	or,	at	least,	in	the	current	function.	If	the
breakpoint	is	a	temporary	one,	this	method	deletes	it.

break_anywhere(frame)
This	method	checks	 if	 there	 is	a	breakpoint	 in	 the	 filename	of
the	current	frame.

Derived	classes	should	override	these	methods	to	gain	control	over
debugger	operation.

user_call(frame,	argument_list)
This	method	 is	 called	 from	dispatch_call()	when	 there	 is
the	possibility	that	a	break	might	be	necessary	anywhere	inside
the	called	function.

user_line(frame)
This	 method	 is	 called	 from	 dispatch_line()	 when	 either
stop_here()	or	break_here()	yields	True.

user_return(frame,	return_value)
This	 method	 is	 called	 from	 dispatch_return()	 when
stop_here()	yields	True.

user_exception(frame,	exc_info)
This	 method	 is	 called	 from	 dispatch_exception()	 when
stop_here()	yields	True.

do_clear(arg)
Handle	 how	 a	 breakpoint	 must	 be	 removed	 when	 it	 is	 a
temporary	one.

This	method	must	be	implemented	by	derived	classes.

Derived	classes	and	clients	can	call	the	following	methods	to	affect
the	stepping	state.

set_step()
Stop	after	one	line	of	code.

set_next(frame)

Stop	on	the	next	line	in	or	below	the	given	frame.

set_return(frame)
Stop	when	returning	from	the	given	frame.

set_until(frame)
Stop	when	the	line	with	the	line	no	greater	than	the	current	one
is	reached	or	when	returning	from	current	frame

set_trace([frame])
Start	debugging	from	frame.	If	frame	is	not	specified,	debugging
starts	from	caller’s	frame.

set_continue()
Stop	 only	 at	 breakpoints	 or	 when	 finished.	 If	 there	 are	 no
breakpoints,	set	the	system	trace	function	to	None.

set_quit()
Set	 the	quitting	attribute	 to	True.	This	 raises	 BdbQuit	 in
the	next	call	to	one	of	the	dispatch_*()	methods.

Derived	 classes	 and	 clients	 can	 call	 the	 following	 methods	 to
manipulate	breakpoints.	These	methods	return	a	string	containing
an	error	message	if	something	went	wrong,	or	None	if	all	is	well.

set_break(filename,	lineno,	temporary=0,	cond,	funcname)
Set	 a	 new	 breakpoint.	 If	 the	 lineno	 line	 doesn’t	 exist	 for	 the
filename	 passed	 as	 argument,	 return	 an	 error	 message.	 The
filename	 should	 be	 in	 canonical	 form,	 as	 described	 in	 the
canonic()	method.

clear_break(filename,	lineno)

Delete	the	breakpoints	in	filename	and	lineno.	If	none	were	set,
an	error	message	is	returned.

clear_bpbynumber(arg)
Delete	 the	 breakpoint	 which	 has	 the	 index	 arg	 in	 the
Breakpoint.bpbynumber.	 If	 arg	 is	 not	 numeric	 or	 out	 of
range,	return	an	error	message.

clear_all_file_breaks(filename)
Delete	 all	 breakpoints	 in	 filename.	 If	 none	 were	 set,	 an	 error
message	is	returned.

clear_all_breaks()
Delete	all	existing	breakpoints.

get_bpbynumber(arg)
Return	a	breakpoint	specified	by	 the	given	number.	 If	arg	 is	 a
string,	it	will	be	converted	to	a	number.	If	arg	 is	a	non-numeric
string,	 if	 the	 given	 breakpoint	 never	 existed	 or	 has	 been
deleted,	a	ValueError	is	raised.

New	in	version	3.2.

get_break(filename,	lineno)
Check	if	there	is	a	breakpoint	for	lineno	of	filename.

get_breaks(filename,	lineno)
Return	all	breakpoints	for	 lineno	in	filename,	or	an	empty	list	 if
none	are	set.

get_file_breaks(filename)
Return	all	breakpoints	 in	 filename,	or	an	empty	 list	 if	none	are
set.

get_all_breaks()
Return	all	breakpoints	that	are	set.

Derived	classes	and	clients	can	call	the	following	methods	to	get	a
data	structure	representing	a	stack	trace.

get_stack(f,	t)
Get	 a	 list	 of	 records	 for	 a	 frame	 and	 all	 higher	 (calling)	 and
lower	frames,	and	the	size	of	the	higher	part.

format_stack_entry(frame_lineno,	lprefix=':	')
Return	a	 string	with	 information	about	 a	 stack	entry,	 identified
by	a	(frame,	lineno)	tuple:

The	 canonical	 form	 of	 the	 filename	 which	 contains	 the
frame.
The	function	name,	or	"<lambda>".
The	input	arguments.
The	return	value.
The	line	of	code	(if	it	exists).

The	 following	 two	 methods	 can	 be	 called	 by	 clients	 to	 use	 a
debugger	to	debug	a	statement,	given	as	a	string.

run(cmd,	globals=None,	locals=None)
Debug	a	statement	executed	via	 the	exec()	 function.	globals
defaults	to	__main__.__dict__,	locals	defaults	to	globals.

runeval(expr,	globals=None,	locals=None)
Debug	 an	 expression	 executed	 via	 the	 eval()	 function.
globals	and	locals	have	the	same	meaning	as	in	run().

runctx(cmd,	globals,	locals)

For	backwards	compatibility.	Calls	the	run()	method.

runcall(func,	*args,	**kwds)
Debug	a	single	function	call,	and	return	its	result.

Finally,	the	module	defines	the	following	functions:

bdb.checkfuncname(b,	frame)
Check	whether	we	should	break	here,	depending	on	 the	way	 the
breakpoint	b	was	set.

If	it	was	set	via	line	number,	it	checks	if	b.line	is	the	same	as	the
one	 in	 the	 frame	also	passed	as	argument.	 If	 the	breakpoint	was
set	via	function	name,	we	have	to	check	we	are	in	the	right	frame
(the	right	function)	and	if	we	are	in	its	first	executable	line.

bdb.effective(file,	line,	frame)
Determine	 if	 there	 is	an	effective	(active)	breakpoint	at	 this	 line	of
code.	Return	a	tuple	of	the	breakpoint	and	a	boolean	that	indicates
if	it	is	ok	to	delete	a	temporary	breakpoint.	Return	(None,	None)
if	there	is	no	matching	breakpoint.

bdb.set_trace()
Start	debugging	with	a	Bdb	instance	from	caller’s	frame.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

http://www.python.org/

27.2.	faulthandler	—	Dump	the
Python	traceback
This	module	contains	 functions	 to	dump	Python	 tracebacks	explicitly,
on	 a	 fault,	 after	 a	 timeout,	 or	 on	 a	 user	 signal.	 Call
faulthandler.enable()	to	install	fault	handlers	for	the	SIGSEGV,
SIGFPE,	 SIGABRT,	 SIGBUS,	 and	 SIGILL	 signals.	 You	 can	 also
enable	 them	 at	 startup	 by	 setting	 the	 PYTHONFAULTHANDLER
environment	 variable	 or	 by	 using	 -X	 faulthandler	 command	 line
option.

The	fault	handler	 is	compatible	with	system	fault	handlers	 like	Apport
or	the	Windows	fault	handler.	The	module	uses	an	alternative	stack	for
signal	 handlers	 if	 the	 sigaltstack()	 function	 is	 available.	 This
allows	it	to	dump	the	traceback	even	on	a	stack	overflow.

The	 fault	 handler	 is	 called	 on	 catastrophic	 cases	 and	 therefore	 can
only	use	signal-safe	 functions	 (e.g.	 it	 cannot	allocate	memory	on	 the
heap).	 Because	 of	 this	 limitation	 traceback	 dumping	 is	 minimal
compared	to	normal	Python	tracebacks:

Only	ASCII	is	supported.	The	backslashreplace	error	handler
is	used	on	encoding.
Each	string	is	limited	to	500	characters.
Only	 the	 filename,	 the	 function	 name	 and	 the	 line	 number	 are
displayed.	(no	source	code)
It	is	limited	to	100	frames	and	100	threads.
The	order	is	reversed:	the	most	recent	call	is	shown	first.

By	 default,	 the	 Python	 traceback	 is	 written	 to	 sys.stderr.	 To	 see
tracebacks,	 applications	 must	 be	 run	 in	 the	 terminal.	 A	 log	 file	 can

alternatively	be	passed	to	faulthandler.enable().

The	module	is	implemented	in	C,	so	tracebacks	can	be	dumped	on	a
crash	or	when	Python	is	deadlocked.

New	in	version	3.3.

27.2.1.	Dump	the	traceback

faulthandler.dump_traceback(file=sys.stderr,
all_threads=True)

Dump	 the	 tracebacks	 of	 all	 threads	 into	 file.	 If	 all_threads	 is
False,	dump	only	the	current	thread.

27.2.2.	Fault	handler	state

faulthandler.enable(file=sys.stderr,	all_threads=True)
Enable	 the	 fault	 handler:	 install	 handlers	 for	 the	 SIGSEGV,
SIGFPE,	 SIGABRT,	 SIGBUS	 and	 SIGILL	 signals	 to	 dump	 the
Python	 traceback.	 If	all_threads	 is	 True,	 produce	 tracebacks	 for
every	running	thread.	Otherwise,	dump	only	the	current	thread.

faulthandler.disable()
Disable	the	fault	handler:	uninstall	 the	signal	handlers	 installed	by
enable().

faulthandler.is_enabled()
Check	if	the	fault	handler	is	enabled.

27.2.3.	Dump	the	tracebacks	after	a
timeout

faulthandler.dump_traceback_later(timeout,
repeat=False,	file=sys.stderr,	exit=False)

Dump	 the	 tracebacks	 of	 all	 threads,	 after	 a	 timeout	 of	 timeout
seconds,	 or	 every	 timeout	 seconds	 if	 repeat	 is	 True.	 If	 exit	 is
True,	 call	_exit()	with	 status=1	after	dumping	 the	 tracebacks.
(Note	 _exit()	 exits	 the	 process	 immediately,	 which	 means	 it
doesn’t	do	any	cleanup	 like	 flushing	 file	buffers.)	 If	 the	 function	 is
called	twice,	the	new	call	replaces	previous	parameters	and	resets
the	timeout.	The	timer	has	a	sub-second	resolution.

This	 function	 is	 implemented	 using	 a	 watchdog	 thread	 and
therefore	 is	 not	 available	 if	 Python	 is	 compiled	 with	 threads
disabled.

faulthandler.cancel_dump_traceback_later()
Cancel	the	last	call	to	dump_traceback_later().

27.2.4.	Dump	the	traceback	on	a	user
signal

faulthandler.register(signum,	file=sys.stderr,
all_threads=True,	chain=False)

Register	 a	 user	 signal:	 install	 a	 handler	 for	 the	 signum	 signal	 to
dump	 the	 traceback	 of	 all	 threads,	 or	 of	 the	 current	 thread	 if
all_threads	is	False,	into	file.	Call	the	previous	handler	if	chain	is
True.

Not	available	on	Windows.

faulthandler.unregister(signum)
Unregister	a	user	signal:	uninstall	the	handler	of	the	signum	signal
installed	 by	 register().	 Return	 True	 if	 the	 signal	 was
registered,	False	otherwise.

Not	available	on	Windows.

27.2.5.	File	descriptor	issue

enable(),	dump_traceback_later()	and	register()	keep	the
file	 descriptor	 of	 their	 file	 argument.	 If	 the	 file	 is	 closed	 and	 its	 file
descriptor	is	reused	by	a	new	file,	or	if	os.dup2()	is	used	to	replace
the	file	descriptor,	the	traceback	will	be	written	into	a	different	file.	Call
these	functions	again	each	time	that	the	file	is	replaced.

27.2.6.	Example

Example	of	a	segmentation	fault	on	Linux:

$	python	-q	-X	faulthandler

>>>	import	ctypes

>>>	ctypes.string_at(0)

Fatal	Python	error:	Segmentation	fault

Current	thread	0x00007fb899f39700	(most	recent	call	first):

		File	"/home/python/cpython/Lib/ctypes/__init__.py",	line	486	in	string_at

		File	"<stdin>",	line	1	in	<module>

Segmentation	fault

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

http://www.python.org/

27.3.	pdb	—	The	Python
Debugger
The	 module	 pdb	 defines	 an	 interactive	 source	 code	 debugger	 for
Python	 programs.	 It	 supports	 setting	 (conditional)	 breakpoints	 and
single	 stepping	 at	 the	 source	 line	 level,	 inspection	 of	 stack	 frames,
source	 code	 listing,	 and	 evaluation	 of	 arbitrary	 Python	 code	 in	 the
context	 of	 any	 stack	 frame.	 It	 also	 supports	 post-mortem	 debugging
and	can	be	called	under	program	control.

The	debugger	 is	extensible	–	 it	 is	actually	defined	as	 the	class	Pdb.
This	 is	currently	undocumented	but	easily	understood	by	 reading	 the
source.	The	extension	interface	uses	the	modules	bdb	and	cmd.

The	 debugger’s	 prompt	 is	 (Pdb).	 Typical	 usage	 to	 run	 a	 program
under	control	of	the	debugger	is:

>>>	import	pdb

>>>	import	mymodule

>>>	pdb.run('mymodule.test()')

>	<string>(0)?()

(Pdb)	continue

>	<string>(1)?()

(Pdb)	continue

NameError:	'spam'

>	<string>(1)?()

(Pdb)

Changed	in	version	3.3:	Tab-completion	via	the	readline	module	is
available	 for	 commands	 and	 command	 arguments,	 e.g.	 the	 current
global	and	local	names	are	offered	as	arguments	of	the	p	command.

pdb.py	 can	also	 be	 invoked	as	 a	 script	 to	 debug	other	 scripts.	 For
example:

python3	-m	pdb	myscript.py

When	 invoked	 as	 a	 script,	 pdb	 will	 automatically	 enter	 post-mortem
debugging	if	the	program	being	debugged	exits	abnormally.	After	post-
mortem	 debugging	 (or	 after	 normal	 exit	 of	 the	 program),	 pdb	 will
restart	 the	program.	Automatic	 restarting	preserves	pdb’s	state	 (such
as	 breakpoints)	 and	 in	 most	 cases	 is	 more	 useful	 than	 quitting	 the
debugger	upon	program’s	exit.

New	 in	version	3.2:	pdb.py	now	accepts	a	-c	 option	 that	executes
commands	as	if	given	in	a	.pdbrc	file,	see	Debugger	Commands.

The	typical	usage	to	break	into	the	debugger	from	a	running	program
is	to	insert

import	pdb;	pdb.set_trace()

at	the	location	you	want	to	break	into	the	debugger.	You	can	then	step
through	 the	 code	 following	 this	 statement,	 and	 continue	 running
without	the	debugger	using	the	continue	command.

The	typical	usage	to	inspect	a	crashed	program	is:

>>>	import	pdb

>>>	import	mymodule

>>>	mymodule.test()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

		File	"./mymodule.py",	line	4,	in	test

				test2()

		File	"./mymodule.py",	line	3,	in	test2

				print(spam)

NameError:	spam

>>>	pdb.pm()

>	./mymodule.py(3)test2()

->	print(spam)

(Pdb)

The	module	defines	the	following	functions;	each	enters	the	debugger
in	a	slightly	different	way:

pdb.run(statement,	globals=None,	locals=None)
Execute	 the	statement	 (given	as	a	string	or	a	code	object)	under
debugger	control.	The	debugger	prompt	appears	before	any	code
is	executed;	you	can	set	breakpoints	and	type	continue,	or	you
can	 step	 through	 the	 statement	 using	 step	 or	 next	 (all	 these
commands	are	explained	below).	The	optional	globals	 and	 locals
arguments	specify	the	environment	in	which	the	code	is	executed;
by	 default	 the	 dictionary	 of	 the	module	 __main__	 is	 used.	 (See
the	explanation	of	the	built-in	exec()	or	eval()	functions.)

pdb.runeval(expression,	globals=None,	locals=None)
Evaluate	the	expression	(given	as	a	string	or	a	code	object)	under
debugger	control.	When	runeval()	returns,	it	returns	the	value	of
the	expression.	Otherwise	this	function	is	similar	to	run().

pdb.runcall(function,	*args,	**kwds)
Call	the	function	(a	function	or	method	object,	not	a	string)	with	the
given	 arguments.	When	 runcall()	 returns,	 it	 returns	 whatever
the	 function	call	 returned.	The	debugger	prompt	appears	as	soon
as	the	function	is	entered.

pdb.set_trace()
Enter	 the	 debugger	 at	 the	 calling	 stack	 frame.	 This	 is	 useful	 to

hard-code	a	breakpoint	at	a	given	point	 in	a	program,	even	 if	 the
code	 is	 not	 otherwise	 being	 debugged	 (e.g.	 when	 an	 assertion
fails).

pdb.post_mortem(traceback=None)
Enter	post-mortem	debugging	of	 the	given	 traceback	object.	 If	no
traceback	is	given,	it	uses	the	one	of	the	exception	that	is	currently
being	handled	(an	exception	must	be	being	handled	if	the	default	is
to	be	used).

pdb.pm()
Enter	 post-mortem	 debugging	 of	 the	 traceback	 found	 in
sys.last_traceback.

The	 run*	 functions	 and	 set_trace()	 are	 aliases	 for	 instantiating
the	Pdb	class	and	calling	the	method	of	the	same	name.	If	you	want	to
access	further	features,	you	have	to	do	this	yourself:

class	pdb.Pdb(completekey='tab',	stdin=None,	stdout=None,
skip=None,	nosigint=False)

Pdb	is	the	debugger	class.

The	completekey,	stdin	 and	 stdout	 arguments	 are	 passed	 to	 the
underlying	cmd.Cmd	class;	see	the	description	there.

The	 skip	 argument,	 if	 given,	 must	 be	 an	 iterable	 of	 glob-style
module	name	patterns.	The	debugger	will	not	step	into	frames	that
originate	in	a	module	that	matches	one	of	these	patterns.	[1]

By	default,	Pdb	sets	a	handler	for	the	SIGINT	signal	(which	is	sent
when	 the	 user	 presses	 Ctrl-C	 on	 the	 console)	 when	 you	 give	 a
continue	command.	This	allows	you	to	break	 into	 the	debugger
again	by	pressing	Ctrl-C.	If	you	want	Pdb	not	to	touch	the	SIGINT

handler,	set	nosigint	tot	true.

Example	call	to	enable	tracing	with	skip:

import	pdb;	pdb.Pdb(skip=['django.*']).set_trace()

New	in	version	3.1:	The	skip	argument.

New	 in	 version	3.2:	The	nosigint	 argument.	 Previously,	 a	SIGINT
handler	was	never	set	by	Pdb.

run(statement,	globals=None,	locals=None)
runeval(expression,	globals=None,	locals=None)
runcall(function,	*args,	**kwds)
set_trace()

See	the	documentation	for	the	functions	explained	above.

27.3.1.	Debugger	Commands

The	 commands	 recognized	 by	 the	 debugger	 are	 listed	 below.	 Most
commands	can	be	abbreviated	to	one	or	two	letters	as	indicated;	e.g.
h(elp)	means	 that	either	h	or	help	can	be	used	 to	enter	 the	help
command	(but	not	he	or	hel,	nor	H	or	Help	or	HELP).	Arguments	to
commands	 must	 be	 separated	 by	 whitespace	 (spaces	 or	 tabs).
Optional	 arguments	 are	 enclosed	 in	 square	 brackets	 ([])	 in	 the
command	syntax;	the	square	brackets	must	not	be	typed.	Alternatives
in	the	command	syntax	are	separated	by	a	vertical	bar	(|).

Entering	a	blank	line	repeats	the	last	command	entered.	Exception:	 if
the	last	command	was	a	list	command,	the	next	11	lines	are	listed.

Commands	 that	 the	 debugger	 doesn’t	 recognize	 are	 assumed	 to	 be
Python	 statements	 and	 are	 executed	 in	 the	 context	 of	 the	 program
being	 debugged.	 Python	 statements	 can	 also	 be	 prefixed	 with	 an
exclamation	point	 (!).	This	 is	a	powerful	way	 to	 inspect	 the	program
being	 debugged;	 it	 is	 even	 possible	 to	 change	 a	 variable	 or	 call	 a
function.	When	an	exception	occurs	in	such	a	statement,	the	exception
name	is	printed	but	the	debugger’s	state	is	not	changed.

The	 debugger	 supports	aliases.	 Aliases	 can	 have	 parameters	 which
allows	 one	 a	 certain	 level	 of	 adaptability	 to	 the	 context	 under
examination.

Multiple	commands	may	be	entered	on	a	single	line,	separated	by	;;.
(A	single	;	is	not	used	as	it	is	the	separator	for	multiple	commands	in
a	line	that	is	passed	to	the	Python	parser.)	No	intelligence	is	applied	to
separating	the	commands;	the	input	is	split	at	the	first	;;	pair,	even	if
it	is	in	the	middle	of	a	quoted	string.

If	a	 file	.pdbrc	 exists	 in	 the	user’s	home	directory	or	 in	 the	 current
directory,	 it	 is	 read	 in	 and	 executed	 as	 if	 it	 had	 been	 typed	 at	 the
debugger	 prompt.	 This	 is	 particularly	 useful	 for	 aliases.	 If	 both	 files
exist,	 the	one	 in	 the	home	directory	 is	 read	 first	 and	aliases	defined
there	can	be	overridden	by	the	local	file.

Changed	 in	 version	 3.2:	 .pdbrc	 can	 now	 contain	 commands	 that
continue	 debugging,	 such	 as	 continue	 or	 next.	 Previously,	 these
commands	had	no	effect.

h(elp)	[command]

Without	 argument,	 print	 the	 list	 of	 available	 commands.	 With	 a
command	as	argument,	print	help	about	that	command.	help	pdb
displays	the	full	documentation	(the	docstring	of	the	pdb	module).
Since	 the	command	 argument	must	be	an	 identifier,	 help	exec
must	be	entered	to	get	help	on	the	!	command.

w(here)

Print	a	stack	 trace,	with	 the	most	 recent	 frame	at	 the	bottom.	An
arrow	indicates	the	current	frame,	which	determines	the	context	of
most	commands.

d(own)	[count]

Move	the	current	frame	count	(default	one)	levels	down	in	the	stack
trace	(to	a	newer	frame).

u(p)	[count]

Move	 the	current	 frame	count	 (default	one)	 levels	up	 in	 the	stack
trace	(to	an	older	frame).

b(reak)	[([filename:]lineno	|	function)	[,

condition]]

With	a	lineno	argument,	set	a	break	there	in	the	current	file.	With	a

function	 argument,	 set	 a	 break	 at	 the	 first	 executable	 statement
within	 that	 function.	 The	 line	 number	 may	 be	 prefixed	 with	 a
filename	 and	 a	 colon,	 to	 specify	 a	 breakpoint	 in	 another	 file
(probably	one	that	hasn’t	been	loaded	yet).	The	file	is	searched	on
sys.path.	 Note	 that	 each	 breakpoint	 is	 assigned	 a	 number	 to
which	all	the	other	breakpoint	commands	refer.

If	 a	 second	 argument	 is	 present,	 it	 is	 an	 expression	 which	must
evaluate	to	true	before	the	breakpoint	is	honored.

Without	argument,	list	all	breaks,	including	for	each	breakpoint,	the
number	 of	 times	 that	 breakpoint	 has	 been	 hit,	 the	 current	 ignore
count,	and	the	associated	condition	if	any.

tbreak	[([filename:]lineno	|	function)	[,

condition]]

Temporary	 breakpoint,	 which	 is	 removed	 automatically	 when	 it	 is
first	hit.	The	arguments	are	the	same	as	for	break.

cl(ear)	[filename:lineno	|	bpnumber	[bpnumber

...]]

With	 a	 filename:lineno	 argument,	 clear	 all	 the	 breakpoints	 at	 this
line.	With	a	space	separated	list	of	breakpoint	numbers,	clear	those
breakpoints.	 Without	 argument,	 clear	 all	 breaks	 (but	 first	 ask
confirmation).

disable	[bpnumber	[bpnumber	...]]

Disable	 the	 breakpoints	 given	 as	 a	 space	 separated	 list	 of
breakpoint	numbers.	Disabling	a	breakpoint	means	it	cannot	cause
the	program	to	stop	execution,	but	unlike	clearing	a	breakpoint,	 it
remains	in	the	list	of	breakpoints	and	can	be	(re-)enabled.

enable	[bpnumber	[bpnumber	...]]

Enable	the	breakpoints	specified.

ignore	bpnumber	[count]

Set	 the	 ignore	 count	 for	 the	 given	 breakpoint	 number.	 If	 count	 is
omitted,	the	ignore	count	is	set	to	0.	A	breakpoint	becomes	active
when	 the	 ignore	 count	 is	 zero.	 When	 non-zero,	 the	 count	 is
decremented	 each	 time	 the	 breakpoint	 is	 reached	 and	 the
breakpoint	 is	not	disabled	and	any	associated	condition	evaluates
to	true.

condition	bpnumber	[condition]

Set	a	new	condition	 for	 the	breakpoint,	an	expression	which	must
evaluate	 to	 true	 before	 the	 breakpoint	 is	 honored.	 If	 condition	 is
absent,	 any	 existing	 condition	 is	 removed;	 i.e.,	 the	 breakpoint	 is
made	unconditional.

commands	[bpnumber]

Specify	a	list	of	commands	for	breakpoint	number	bpnumber.	The
commands	 themselves	appear	on	 the	 following	 lines.	Type	 a	 line
containing	just	end	to	terminate	the	commands.	An	example:

(Pdb)	commands	1

(com)	p	some_variable

(com)	end

(Pdb)

To	 remove	all	commands	 from	a	breakpoint,	 type	commands	and
follow	it	immediately	with	end;	that	is,	give	no	commands.

With	 no	 bpnumber	 argument,	 commands	 refers	 to	 the	 last
breakpoint	set.

You	can	use	breakpoint	commands	to	start	your	program	up	again.

Simply	use	the	continue	command,	or	step,	or	any	other	command
that	resumes	execution.

Specifying	 any	 command	 resuming	 execution	 (currently	 continue,
step,	next,	return,	jump,	quit	and	their	abbreviations)	terminates	the
command	 list	 (as	 if	 that	 command	 was	 immediately	 followed	 by
end).	This	is	because	any	time	you	resume	execution	(even	with	a
simple	next	or	step),	you	may	encounter	another	breakpoint–which
could	 have	 its	 own	 command	 list,	 leading	 to	 ambiguities	 about
which	list	to	execute.

If	 you	 use	 the	 ‘silent’	 command	 in	 the	 command	 list,	 the	 usual
message	about	stopping	at	a	breakpoint	is	not	printed.	This	may	be
desirable	 for	breakpoints	 that	are	 to	print	a	specific	message	and
then	continue.	 If	none	of	 the	other	commands	print	anything,	you
see	no	sign	that	the	breakpoint	was	reached.

s(tep)

Execute	the	current	 line,	stop	at	the	first	possible	occasion	(either
in	 a	 function	 that	 is	 called	 or	 on	 the	 next	 line	 in	 the	 current
function).

n(ext)

Continue	 execution	 until	 the	 next	 line	 in	 the	 current	 function	 is
reached	or	 it	 returns.	(The	difference	between	next	and	step	 is
that	 step	 stops	 inside	 a	 called	 function,	 while	 next	 executes
called	functions	at	(nearly)	full	speed,	only	stopping	at	the	next	line
in	the	current	function.)

unt(il)	[lineno]

Without	argument,	continue	execution	until	 the	 line	with	a	number
greater	than	the	current	one	is	reached.

With	a	 line	number,	continue	execution	until	a	 line	with	a	number
greater	or	equal	to	that	 is	reached.	In	both	cases,	also	stop	when
the	current	frame	returns.

Changed	in	version	3.2:	Allow	giving	an	explicit	line	number.

r(eturn)

Continue	execution	until	the	current	function	returns.

c(ont(inue))

Continue	execution,	only	stop	when	a	breakpoint	is	encountered.

j(ump)	lineno

Set	the	next	line	that	will	be	executed.	Only	available	in	the	bottom-
most	 frame.	This	 lets	 you	 jump	back	and	execute	 code	again,	or
jump	forward	to	skip	code	that	you	don’t	want	to	run.

It	should	be	noted	that	not	all	jumps	are	allowed	–	for	instance	it	is
not	 possible	 to	 jump	 into	 the	 middle	 of	 a	 for	 loop	 or	 out	 of	 a
finally	clause.

l(ist)	[first[,	last]]

List	source	code	for	the	current	file.	Without	arguments,	list	11	lines
around	 the	current	 line	or	continue	 the	previous	 listing.	With	.	as
argument,	list	11	lines	around	the	current	line.	With	one	argument,
list	11	 lines	around	at	 that	 line.	With	 two	arguments,	 list	 the	given
range;	if	the	second	argument	is	less	than	the	first,	it	is	interpreted
as	a	count.

The	 current	 line	 in	 the	 current	 frame	 is	 indicated	 by	 ->.	 If	 an
exception	 is	 being	 debugged,	 the	 line	 where	 the	 exception	 was
originally	raised	or	propagated	is	 indicated	by	>>,	 if	 it	differs	 from
the	current	line.

New	in	version	3.2:	The	>>	marker.

ll	|	longlist

List	 all	 source	 code	 for	 the	 current	 function	 or	 frame.	 Interesting
lines	are	marked	as	for	list.

New	in	version	3.2.

a(rgs)

Print	the	argument	list	of	the	current	function.

p	expression

Evaluate	the	expression	in	the	current	context	and	print	its	value.

Note: 	 print()	 can	 also	 be	 used,	 but	 is	 not	 a	 debugger
command	—	this	executes	the	Python	print()	function.

pp	expression

Like	the	p	command,	except	the	value	of	the	expression	is	pretty-
printed	using	the	pprint	module.

whatis	expression

Print	the	type	of	the	expression.

source	expression

Try	to	get	source	code	for	the	given	object	and	display	it.

New	in	version	3.2.

display	[expression]

Display	 the	 value	 of	 the	 expression	 if	 it	 changed,	 each	 time
execution	stops	in	the	current	frame.

Without	 expression,	 list	 all	 display	 expressions	 for	 the	 current
frame.

New	in	version	3.2.

undisplay	[expression]

Do	 not	 display	 the	 expression	 any	 more	 in	 the	 current	 frame.
Without	 expression,	 clear	 all	 display	 expressions	 for	 the	 current
frame.

New	in	version	3.2.

interact

Start	 an	 interative	 interpreter	 (using	 the	 code	 module)	 whose
global	namespace	contains	all	 the	(global	and	local)	names	found
in	the	current	scope.

New	in	version	3.2.

alias	[name	[command]]

Create	 an	 alias	 called	 name	 that	 executes	 command.	 The
command	 must	 not	 be	 enclosed	 in	 quotes.	 Replaceable
parameters	 can	 be	 indicated	 by	 %1,	 %2,	 and	 so	 on,	 while	 %*	 is
replaced	by	all	the	parameters.	If	no	command	is	given,	the	current
alias	for	name	is	shown.	If	no	arguments	are	given,	all	aliases	are
listed.

Aliases	may	be	nested	and	can	contain	anything	that	can	be	legally
typed	at	the	pdb	prompt.	Note	that	internal	pdb	commands	can	be
overridden	 by	 aliases.	 Such	 a	 command	 is	 then	 hidden	 until	 the
alias	is	removed.	Aliasing	is	recursively	applied	to	the	first	word	of
the	command	line;	all	other	words	in	the	line	are	left	alone.

As	 an	 example,	 here	 are	 two	 useful	 aliases	 (especially	 when

placed	in	the	.pdbrc	file):

#	Print	instance	variables	(usage	"pi	classInst")

alias	pi	for	k	in	%1.__dict__.keys():	print("%1.",

#	Print	instance	variables	in	self

alias	ps	pi	self

unalias	name

Delete	the	specified	alias.

!	statement

Execute	the	(one-line)	statement	in	the	context	of	the	current	stack
frame.	The	exclamation	point	can	be	omitted	unless	the	first	word
of	the	statement	resembles	a	debugger	command.	To	set	a	global
variable,	you	can	prefix	 the	assignment	command	with	a	global
statement	on	the	same	line,	e.g.:

(Pdb)	global	list_options;	list_options	=	['-l']

(Pdb)

run	[args	...]

restart	[args	...]

Restart	the	debugged	Python	program.	If	an	argument	is	supplied,
it	is	split	with	shlex	and	the	result	is	used	as	the	new	sys.argv.
History,	breakpoints,	actions	and	debugger	options	are	preserved.
restart	is	an	alias	for	run.

q(uit)

Quit	from	the	debugger.	The	program	being	executed	is	aborted.

Footnotes

[1] Whether	a	frame	is	considered	to	originate	in	a	certain	module
is	determined	by	the	__name__	in	the	frame	globals.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

http://www.python.org/

27.4.	The	Python	Profilers
Source	code:	Lib/profile.py	and	Lib/pstats.py

http://hg.python.org/cpython/file/3.4/Lib/profile.py
http://hg.python.org/cpython/file/3.4/Lib/pstats.py

27.4.1.	Introduction	to	the	profilers

cProfile	 and	 profile	 provide	 deterministic	 profiling	 of	 Python
programs.	A	profile	 is	a	set	of	statistics	 that	describes	how	often	and
for	how	 long	various	parts	of	 the	program	executed.	These	statistics
can	be	formatted	into	reports	via	the	pstats	module.

The	Python	standard	library	provides	two	different	implementations	of
the	same	profiling	interface:

1.	 cProfile	 is	 recommended	 for	 most	 users;	 it’s	 a	 C	 extension
with	reasonable	overhead	that	makes	it	suitable	for	profiling	long-
running	programs.	Based	on	lsprof,	contributed	by	Brett	Rosen
and	Ted	Czotter.

2.	 profile,	 a	 pure	Python	module	whose	 interface	 is	 imitated	by
cProfile,	 but	 which	 adds	 significant	 overhead	 to	 profiled
programs.	 If	you’re	 trying	 to	extend	 the	profiler	 in	some	way,	 the
task	might	be	easier	with	this	module.

Note: 	The	profiler	modules	are	designed	to	provide	an	execution
profile	for	a	given	program,	not	for	benchmarking	purposes	(for	that,
there	is	timeit	for	reasonably	accurate	results).	This	particularly
applies	to	benchmarking	Python	code	against	C	code:	the	profilers
introduce	overhead	for	Python	code,	but	not	for	C-level	functions,
and	so	the	C	code	would	seem	faster	than	any	Python	one.

27.4.2.	Instant	User’s	Manual

This	section	is	provided	for	users	that	“don’t	want	to	read	the	manual.”
It	provides	a	very	brief	overview,	and	allows	a	user	to	rapidly	perform
profiling	on	an	existing	application.

To	profile	a	function	that	takes	a	single	argument,	you	can	do:

import	cProfile

import	re

cProfile.run('re.compile("foo|bar")')

(Use	profile	 instead	 of	 cProfile	 if	 the	 latter	 is	 not	 available	 on
your	system.)

The	above	action	would	 run	re.compile()	and	print	profile	 results
like	the	following:

						197	function	calls	(192	primitive	calls)	in	0.002

Ordered	by:	standard	name

ncalls		tottime		percall		cumtime		percall	filename:

					1				0.000				0.000				0.001				0.001	<string>:

					1				0.000				0.000				0.001				0.001	re.py:212

					1				0.000				0.000				0.001				0.001	re.py:268

					1				0.000				0.000				0.000				0.000	sre_compile

					1				0.000				0.000				0.000				0.000	sre_compile

					4				0.000				0.000				0.000				0.000	sre_compile

			3/1				0.000				0.000				0.000				0.000	sre_compile

The	 first	 line	 indicates	 that	197	calls	were	monitored.	Of	 those	calls,
192	 were	 primitive,	 meaning	 that	 the	 call	 was	 not	 induced	 via

recursion.	The	next	 line:	Ordered	by:	standard	name,	 indicates
that	the	text	string	in	the	far	right	column	was	used	to	sort	the	output.
The	column	headings	include:

ncalls
for	the	number	of	calls,

tottime
for	 the	 total	 time	 spent	 in	 the	 given	 function	 (and	 excluding	 time
made	in	calls	to	sub-functions)

percall
is	the	quotient	of	tottime	divided	by	ncalls

cumtime
is	 the	 cumulative	 time	 spent	 in	 this	 and	 all	 subfunctions	 (from
invocation	 till	 exit).	 This	 figure	 is	 accurate	 even	 for	 recursive
functions.

percall
is	the	quotient	of	cumtime	divided	by	primitive	calls

filename:lineno(function)
provides	the	respective	data	of	each	function

When	there	are	two	numbers	in	the	first	column	(for	example	3/1),	 it
means	that	the	function	recursed.	The	second	value	is	the	number	of
primitive	 calls	 and	 the	 former	 is	 the	 total	 number	 of	 calls.	 Note	 that
when	 the	 function	does	not	 recurse,	 these	 two	values	are	 the	same,
and	only	the	single	figure	is	printed.

Instead	 of	 printing	 the	 output	 at	 the	 end	 of	 the	 profile	 run,	 you	 can
save	 the	 results	 to	 a	 file	 by	 specifying	 a	 filename	 to	 the	 run()
function:

import	cProfile

import	re

cProfile.run('re.compile("foo|bar")',	'restats')

The	pstats.Stats	class	reads	profile	results	from	a	file	and	formats
them	in	various	ways.

The	file	cProfile	can	also	be	 invoked	as	a	script	 to	profile	another
script.	For	example:

python	-m	cProfile	[-o	output_file]	[-s	sort_order]	

-o	writes	the	profile	results	to	a	file	instead	of	to	stdout

-s	specifies	one	of	the	sort_stats()	sort	values	to	sort	the	output
by.	This	only	applies	when	-o	is	not	supplied.

The	 pstats	 module’s	 Stats	 class	 has	 a	 variety	 of	 methods	 for
manipulating	and	printing	the	data	saved	into	a	profile	results	file:

import	pstats

p	=	pstats.Stats('restats')

p.strip_dirs().sort_stats(-1).print_stats()

The	 strip_dirs()	 method	 removed	 the	 extraneous	 path	 from	 all
the	module	names.	The	sort_stats()	method	sorted	all	the	entries
according	to	the	standard	module/line/name	string	that	is	printed.	The
print_stats()	method	 printed	 out	 all	 the	 statistics.	 You	might	 try
the	following	sort	calls:

p.sort_stats('name')

p.print_stats()

The	first	call	will	actually	sort	the	list	by	function	name,	and	the	second
call	will	print	out	the	statistics.	The	following	are	some	interesting	calls

to	experiment	with:

p.sort_stats('cumulative').print_stats(10)

This	sorts	 the	profile	by	cumulative	 time	 in	a	 function,	and	 then	only
prints	 the	 ten	most	 significant	 lines.	 If	 you	 want	 to	 understand	 what
algorithms	are	taking	time,	the	above	line	is	what	you	would	use.

If	you	were	looking	to	see	what	functions	were	looping	a	lot,	and	taking
a	lot	of	time,	you	would	do:

p.sort_stats('time').print_stats(10)

to	sort	according	to	time	spent	within	each	function,	and	then	print	the
statistics	for	the	top	ten	functions.

You	might	also	try:

p.sort_stats('file').print_stats('__init__')

This	will	sort	all	the	statistics	by	file	name,	and	then	print	out	statistics
for	only	the	class	init	methods	(since	they	are	spelled	with	__init__
in	them).	As	one	final	example,	you	could	try:

p.sort_stats('time',	'cum').print_stats(.5,	'init')

This	 line	sorts	statistics	with	a	primary	key	of	 time,	and	a	secondary
key	of	cumulative	 time,	and	 then	prints	out	some	of	 the	statistics.	To
be	specific,	 the	 list	 is	 first	 culled	down	 to	50%	(re:	.5)	of	 its	original
size,	 then	 only	 lines	 containing	 init	 are	maintained,	 and	 that	 sub-
sub-list	is	printed.

If	you	wondered	what	functions	called	the	above	functions,	you	could

now	(p	is	still	sorted	according	to	the	last	criteria)	do:

p.print_callers(.5,	'init')

and	you	would	get	a	list	of	callers	for	each	of	the	listed	functions.

If	you	want	more	functionality,	you’re	going	to	have	to	read	the	manual,
or	guess	what	the	following	functions	do:

p.print_callees()

p.add('restats')

Invoked	 as	 a	 script,	 the	 pstats	 module	 is	 a	 statistics	 browser	 for
reading	 and	 examining	 profile	 dumps.	 It	 has	 a	 simple	 line-oriented
interface	(implemented	using	cmd)	and	interactive	help.

27.4.3.	profile	and	cProfile	Module
Reference

Both	 the	 profile	 and	 cProfile	 modules	 provide	 the	 following
functions:

profile.run(command,	filename=None,	sort=-1)
This	 function	 takes	 a	 single	 argument	 that	 can	 be	 passed	 to	 the
exec()	 function,	 and	 an	 optional	 file	 name.	 In	 all	 cases	 this
routine	executes:

exec(command,	__main__.__dict__,	__main__.__dict__

and	gathers	profiling	statistics	from	the	execution.	If	no	file	name	is
present,	then	this	function	automatically	creates	a	Stats	instance
and	prints	a	simple	profiling	report.	If	the	sort	value	is	specified	it	is
passed	 to	 this	 Stats	 instance	 to	 control	 how	 the	 results	 are
sorted.

profile.runctx(command,	globals,	locals,	filename=None)
This	function	is	similar	to	run(),	with	added	arguments	to	supply
the	 globals	 and	 locals	 dictionaries	 for	 the	 command	 string.	 This
routine	executes:

exec(command,	globals,	locals)

and	gathers	profiling	statistics	as	in	the	run()	function	above.

class	profile.Profile(timer=None,	timeunit=0.0,	subcalls=True,
builtins=True)

This	 class	 is	 normally	 only	 used	 if	 more	 precise	 control	 over
profiling	 is	 needed	 than	 what	 the	 cProfile.run()	 function
provides.

A	custom	timer	can	be	supplied	for	measuring	how	long	code	takes
to	run	via	the	timer	argument.	This	must	be	a	function	that	returns
a	single	number	representing	the	current	time.	If	the	number	is	an
integer,	the	timeunit	specifies	a	multiplier	that	specifies	the	duration
of	 each	 unit	 of	 time.	 For	 example,	 if	 the	 timer	 returns	 times
measured	in	thousands	of	seconds,	the	time	unit	would	be	.001.

Directly	using	 the	Profile	 class	allows	 formatting	profile	 results
without	writing	the	profile	data	to	a	file:

import	cProfile,	pstats,	io

pr	=	cProfile.Profile()

pr.enable()

#	...	do	something	...

pr.disable()

s	=	io.StringIO()

sortby	=	'cumulative'

ps	=	pstats.Stats(pr,	stream=s).sort_stats(sortby)

ps.print_stats()

print(s.getvalue())

enable()
Start	collecting	profiling	data.

disable()
Stop	collecting	profiling	data.

create_stats()
Stop	collecting	profiling	data	and	record	the	results	internally	as

the	current	profile.

print_stats(sort=-1)
Create	 a	 Stats	 object	 based	 on	 the	 current	 profile	 and	 print
the	results	to	stdout.

dump_stats(filename)
Write	the	results	of	the	current	profile	to	filename.

run(cmd)
Profile	the	cmd	via	exec().

runctx(cmd,	globals,	locals)
Profile	the	cmd	via	exec()	with	the	specified	global	and	local
environment.

runcall(func,	*args,	**kwargs)
Profile	func(*args,	**kwargs)

27.4.4.	The	Stats	Class

Analysis	of	the	profiler	data	is	done	using	the	Stats	class.

class	pstats.Stats(*filenames	or	profile,	stream=sys.stdout)
This	 class	 constructor	 creates	 an	 instance	 of	 a	 “statistics	 object”
from	a	filename	(or	list	of	filenames)	or	from	a	Profile	instance.
Output	will	be	printed	to	the	stream	specified	by	stream.

The	file	selected	by	the	above	constructor	must	have	been	created
by	 the	 corresponding	 version	 of	 profile	 or	 cProfile.	 To	 be
specific,	 there	 is	 no	 file	 compatibility	 guaranteed	 with	 future
versions	 of	 this	 profiler,	 and	 there	 is	 no	 compatibility	 with	 files
produced	 by	 other	 profilers.	 If	 several	 files	 are	 provided,	 all	 the
statistics	for	identical	functions	will	be	coalesced,	so	that	an	overall
view	of	several	processes	can	be	considered	 in	a	single	report.	 If
additional	files	need	to	be	combined	with	data	in	an	existing	Stats
object,	the	add()	method	can	be	used.

Instead	 of	 reading	 the	 profile	 data	 from	 a	 file,	 a
cProfile.Profile	or	profile.Profile	 object	 can	 be	 used
as	the	profile	data	source.

Stats	objects	have	the	following	methods:

strip_dirs()
This	 method	 for	 the	 Stats	 class	 removes	 all	 leading	 path
information	from	file	names.	It	is	very	useful	in	reducing	the	size
of	 the	printout	 to	 fit	within	 (close	 to)	80	columns.	This	method
modifies	 the	 object,	 and	 the	 stripped	 information	 is	 lost.	 After
performing	a	strip	operation,	the	object	is	considered	to	have	its

entries	 in	 a	 “random”	 order,	 as	 it	 was	 just	 after	 object
initialization	 and	 loading.	 If	 strip_dirs()	 causes	 two
function	 names	 to	 be	 indistinguishable	 (they	 are	 on	 the	 same
line	of	 the	same	filename,	and	have	the	same	function	name),
then	the	statistics	for	these	two	entries	are	accumulated	into	a
single	entry.

add(*filenames)
This	 method	 of	 the	 Stats	 class	 accumulates	 additional
profiling	 information	 into	 the	 current	 profiling	 object.	 Its
arguments	 should	 refer	 to	 filenames	 created	 by	 the
corresponding	 version	 of	 profile.run()	 or
cProfile.run().	Statistics	for	identically	named	(re:	file,	line,
name)	 functions	 are	 automatically	 accumulated	 into	 single
function	statistics.

dump_stats(filename)
Save	 the	 data	 loaded	 into	 the	 Stats	 object	 to	 a	 file	 named
filename.	 The	 file	 is	 created	 if	 it	 does	 not	 exist,	 and	 is
overwritten	if	 it	already	exists.	This	is	equivalent	to	the	method
of	 the	 same	 name	 on	 the	 profile.Profile	 and
cProfile.Profile	classes.

sort_stats(*keys)
This	method	modifies	the	Stats	object	by	sorting	it	according
to	 the	 supplied	 criteria.	 The	 argument	 is	 typically	 a	 string
identifying	the	basis	of	a	sort	(example:	'time'	or	'name').

When	more	than	one	key	is	provided,	then	additional	keys	are
used	 as	 secondary	 criteria	 when	 there	 is	 equality	 in	 all	 keys
selected	 before	 them.	 For	 example,	 sort_stats('name',
'file')	 will	 sort	 all	 the	 entries	 according	 to	 their	 function

name,	and	resolve	all	ties	(identical	function	names)	by	sorting
by	file	name.

Abbreviations	can	be	used	 for	any	key	names,	as	 long	as	 the
abbreviation	 is	 unambiguous.	 The	 following	 are	 the	 keys
currently	defined:

Valid	Arg Meaning

'calls' call	count

'cumulative' cumulative	time

'cumtime' cumulative	time

'file' file	name

'filename' file	name

'module' file	name

'ncalls' call	count

'pcalls' primitive	call	count

'line' line	number

'name' function	name

'nfl' name/file/line

'stdname' standard	name

'time' internal	time

'tottime' internal	time

Note	that	all	sorts	on	statistics	are	in	descending	order	(placing
most	time	consuming	items	first),	where	as	name,	file,	and	line
number	 searches	 are	 in	 ascending	 order	 (alphabetical).	 The
subtle	distinction	between	 'nfl'	 and	 'stdname'	 is	 that	 the
standard	name	 is	a	sort	of	 the	name	as	printed,	which	means

that	the	embedded	line	numbers	get	compared	in	an	odd	way.
For	example,	 lines	3,	20,	and	40	would	(if	 the	file	names	were
the	same)	appear	 in	the	string	order	20,	3	and	40.	In	contrast,
'nfl'	 does	 a	 numeric	 compare	 of	 the	 line	 numbers.	 In	 fact,
sort_stats('nfl')	is	the	same	as	sort_stats('name',
'file',	'line').

For	 backward-compatibility	 reasons,	 the	 numeric	 arguments
-1,	 0,	 1,	 and	 2	 are	 permitted.	 They	 are	 interpreted	 as
'stdname',	 'calls',	 'time',	 and	 'cumulative'

respectively.	If	this	old	style	format	(numeric)	 is	used,	only	one
sort	 key	 (the	 numeric	 key)	 will	 be	 used,	 and	 additional
arguments	will	be	silently	ignored.

reverse_order()
This	method	 for	 the	Stats	 class	 reverses	 the	ordering	of	 the
basic	 list	 within	 the	 object.	 Note	 that	 by	 default	 ascending	 vs
descending	order	is	properly	selected	based	on	the	sort	key	of
choice.

print_stats(*restrictions)
This	 method	 for	 the	 Stats	 class	 prints	 out	 a	 report	 as
described	in	the	profile.run()	definition.

The	order	of	 the	printing	 is	based	on	 the	 last	sort_stats()
operation	done	on	the	object	(subject	to	caveats	in	add()	and
strip_dirs()).

The	 arguments	 provided	 (if	 any)	 can	 be	 used	 to	 limit	 the	 list
down	to	the	significant	entries.	Initially,	the	list	is	taken	to	be	the
complete	set	of	profiled	 functions.	Each	 restriction	 is	either	an
integer	 (to	 select	 a	 count	 of	 lines),	 or	 a	 decimal	 fraction

between	0.0	and	1.0	inclusive	(to	select	a	percentage	of	lines),
or	 a	 regular	 expression	 (to	 pattern	match	 the	 standard	 name
that	is	printed.	If	several	restrictions	are	provided,	then	they	are
applied	sequentially.	For	example:

print_stats(.1,	'foo:')

would	 first	 limit	 the	 printing	 to	 first	 10%	 of	 list,	 and	 then	 only
print	 functions	 that	were	part	of	 filename	.*foo:.	 In	 contrast,
the	command:

print_stats('foo:',	.1)

would	 limit	 the	 list	 to	 all	 functions	 having	 file	 names	 .*foo:,
and	then	proceed	to	only	print	the	first	10%	of	them.

print_callers(*restrictions)
This	method	for	the	Stats	class	prints	a	list	of	all	functions	that
called	 each	 function	 in	 the	 profiled	 database.	 The	 ordering	 is
identical	 to	 that	 provided	 by	 print_stats(),	 and	 the
definition	 of	 the	 restricting	 argument	 is	 also	 identical.	 Each
caller	 is	 reported	 on	 its	 own	 line.	 The	 format	 differs	 slightly
depending	on	the	profiler	that	produced	the	stats:

With	 profile,	 a	 number	 is	 shown	 in	 parentheses	 after
each	caller	 to	show	how	many	times	this	specific	call	was
made.	 For	 convenience,	 a	 second	 non-parenthesized
number	repeats	the	cumulative	time	spent	in	the	function	at
the	right.
With	 cProfile,	 each	 caller	 is	 preceded	 by	 three
numbers:	the	number	of	times	this	specific	call	was	made,
and	 the	 total	 and	 cumulative	 times	 spent	 in	 the	 current
function	while	it	was	invoked	by	this	specific	caller.

print_callees(*restrictions)
This	method	for	the	Stats	class	prints	a	list	of	all	function	that
were	called	by	the	indicated	function.	Aside	from	this	reversal	of
direction	 of	 calls	 (re:	 called	 vs	was	 called	 by),	 the	 arguments
and	ordering	are	identical	to	the	print_callers()	method.

27.4.5.	What	Is	Deterministic	Profiling?

Deterministic	profiling	 is	meant	to	reflect	the	fact	that	all	 function	call,
function	 return,	 and	 exception	 events	 are	 monitored,	 and	 precise
timings	are	made	for	the	intervals	between	these	events	(during	which
time	 the	 user’s	 code	 is	 executing).	 In	 contrast,	 statistical	 profiling
(which	 is	 not	 done	 by	 this	 module)	 randomly	 samples	 the	 effective
instruction	pointer,	and	deduces	where	time	is	being	spent.	The	 latter
technique	 traditionally	 involves	 less	 overhead	 (as	 the	 code	 does	 not
need	 to	 be	 instrumented),	 but	 provides	 only	 relative	 indications	 of
where	time	is	being	spent.

In	 Python,	 since	 there	 is	 an	 interpreter	 active	 during	 execution,	 the
presence	 of	 instrumented	 code	 is	 not	 required	 to	 do	 deterministic
profiling.	Python	automatically	provides	a	hook	 (optional	callback)	 for
each	event.	In	addition,	the	interpreted	nature	of	Python	tends	to	add
so	 much	 overhead	 to	 execution,	 that	 deterministic	 profiling	 tends	 to
only	add	small	processing	overhead	in	typical	applications.	The	result
is	 that	 deterministic	 profiling	 is	 not	 that	 expensive,	 yet	 provides
extensive	run	time	statistics	about	the	execution	of	a	Python	program.

Call	 count	 statistics	 can	be	used	 to	 identify	 bugs	 in	 code	 (surprising
counts),	 and	 to	 identify	 possible	 inline-expansion	 points	 (high	 call
counts).	Internal	time	statistics	can	be	used	to	identify	“hot	loops”	that
should	 be	 carefully	 optimized.	 Cumulative	 time	 statistics	 should	 be
used	 to	 identify	 high	 level	 errors	 in	 the	 selection	of	 algorithms.	Note
that	 the	 unusual	 handling	 of	 cumulative	 times	 in	 this	 profiler	 allows
statistics	 for	 recursive	 implementations	 of	 algorithms	 to	 be	 directly
compared	to	iterative	implementations.

27.4.6.	Limitations

One	limitation	has	to	do	with	accuracy	of	timing	information.	There	is	a
fundamental	 problem	 with	 deterministic	 profilers	 involving	 accuracy.
The	 most	 obvious	 restriction	 is	 that	 the	 underlying	 “clock”	 is	 only
ticking	 at	 a	 rate	 (typically)	 of	 about	 .001	 seconds.	 Hence	 no
measurements	 will	 be	 more	 accurate	 than	 the	 underlying	 clock.	 If
enough	measurements	are	taken,	then	the	“error”	will	tend	to	average
out.	Unfortunately,	removing	this	first	error	induces	a	second	source	of
error.

The	second	problem	 is	 that	 it	 “takes	a	while”	 from	when	an	event	 is
dispatched	until	the	profiler’s	call	to	get	the	time	actually	gets	the	state
of	 the	 clock.	Similarly,	 there	 is	a	 certain	 lag	when	exiting	 the	profiler
event	handler	 from	the	 time	that	 the	clock’s	value	was	obtained	(and
then	squirreled	away),	until	 the	user’s	code	 is	once	again	executing.
As	 a	 result,	 functions	 that	 are	 called	 many	 times,	 or	 call	 many
functions,	 will	 typically	 accumulate	 this	 error.	 The	 error	 that
accumulates	 in	 this	 fashion	 is	 typically	 less	 than	 the	accuracy	of	 the
clock	 (less	 than	 one	 clock	 tick),	 but	 it	 can	 accumulate	 and	 become
very	significant.

The	 problem	 is	 more	 important	 with	 profile	 than	 with	 the	 lower-
overhead	cProfile.	For	this	reason,	profile	provides	a	means	of
calibrating	 itself	 for	 a	 given	 platform	 so	 that	 this	 error	 can	 be
probabilistically	 (on	 the	 average)	 removed.	 After	 the	 profiler	 is
calibrated,	it	will	be	more	accurate	(in	a	least	square	sense),	but	it	will
sometimes	 produce	 negative	 numbers	 (when	 call	 counts	 are
exceptionally	low,	and	the	gods	of	probability	work	against	you	:-).)	Do
not	be	alarmed	by	negative	numbers	 in	 the	profile.	They	should	only
appear	if	you	have	calibrated	your	profiler,	and	the	results	are	actually

better	than	without	calibration.

27.4.7.	Calibration

The	profiler	 of	 the	 profile	module	 subtracts	 a	 constant	 from	each
event	handling	time	to	compensate	for	the	overhead	of	calling	the	time
function,	and	socking	away	 the	 results.	By	default,	 the	constant	 is	0.
The	following	procedure	can	be	used	to	obtain	a	better	constant	for	a
given	platform	(see	Limitations).

import	profile

pr	=	profile.Profile()

for	i	in	range(5):

				print(pr.calibrate(10000))

The	 method	 executes	 the	 number	 of	 Python	 calls	 given	 by	 the
argument,	directly	and	again	under	the	profiler,	measuring	the	time	for
both.	 It	 then	 computes	 the	 hidden	 overhead	 per	 profiler	 event,	 and
returns	that	as	a	float.	For	example,	on	a	1.8Ghz	Intel	Core	i5	running
Mac	OS	X,	and	using	Python’s	 time.clock()	as	 the	 timer,	 the	magical
number	is	about	4.04e-6.

The	object	 of	 this	 exercise	 is	 to	 get	 a	 fairly	 consistent	 result.	 If	 your
computer	 is	very	 fast,	or	your	 timer	 function	has	poor	 resolution,	you
might	 have	 to	 pass	 100000,	 or	 even	 1000000,	 to	 get	 consistent
results.

When	 you	 have	 a	 consistent	 answer,	 there	 are	 three	ways	 you	 can
use	it:

import	profile

#	1.	Apply	computed	bias	to	all	Profile	instances	created	hereafter.

profile.Profile.bias	=	your_computed_bias

#	2.	Apply	computed	bias	to	a	specific	Profile	instance.

pr	=	profile.Profile()

pr.bias	=	your_computed_bias

#	3.	Specify	computed	bias	in	instance	constructor.

pr	=	profile.Profile(bias=your_computed_bias)

If	you	have	a	choice,	you	are	better	off	choosing	a	smaller	constant,
and	 then	 your	 results	will	 “less	often”	 show	up	as	negative	 in	 profile
statistics.

27.4.8.	Using	a	custom	timer

If	you	want	to	change	how	current	time	is	determined	(for	example,	to
force	use	of	wall-clock	time	or	elapsed	process	time),	pass	the	timing
function	you	want	to	the	Profile	class	constructor:

pr	=	profile.Profile(your_time_func)

The	 resulting	profiler	will	 then	call	your_time_func.	Depending	on
whether	you	are	using	profile.Profile	or	cProfile.Profile,
your_time_func‘s	return	value	will	be	interpreted	differently:

profile.Profile

your_time_func	 should	 return	 a	 single	 number,	 or	 a	 list	 of
numbers	whose	 sum	 is	 the	 current	 time	 (like	what	 os.times()
returns).	 If	 the	 function	returns	a	single	 time	number,	or	 the	 list	of
returned	numbers	has	length	2,	then	you	will	get	an	especially	fast
version	of	the	dispatch	routine.

Be	warned	that	you	should	calibrate	the	profiler	class	for	the	timer
function	 that	 you	choose	 (see	Calibration).	For	most	machines,	 a
timer	that	returns	a	lone	integer	value	will	provide	the	best	results
in	 terms	of	 low	overhead	during	 profiling.	 (os.times()	 is	pretty
bad,	 as	 it	 returns	 a	 tuple	 of	 floating	 point	 values).	 If	 you	want	 to
substitute	a	better	timer	in	the	cleanest	fashion,	derive	a	class	and
hardwire	 a	 replacement	 dispatch	 method	 that	 best	 handles	 your
timer	call,	along	with	the	appropriate	calibration	constant.

cProfile.Profile

your_time_func	 should	 return	 a	 single	 number.	 If	 it	 returns
integers,	you	can	also	 invoke	 the	class	constructor	with	a	second
argument	 specifying	 the	 real	 duration	 of	 one	 unit	 of	 time.	 For

example,	 if	your_integer_time_func	 returns	 times	measured
in	 thousands	 of	 seconds,	 you	 would	 construct	 the	 Profile
instance	as	follows:

pr	=	cProfile.Profile(your_integer_time_func,	0.001

As	 the	 cProfile.Profile	 class	 cannot	 be	 calibrated,	 custom
timer	functions	should	be	used	with	care	and	should	be	as	fast	as
possible.	 For	 the	 best	 results	 with	 a	 custom	 timer,	 it	 might	 be
necessary	to	hard-code	it	in	the	C	source	of	the	internal	_lsprof
module.

Python	3.3	adds	several	new	 functions	 in	time	 that	 can	be	used	 to
make	 precise	 measurements	 of	 process	 or	 wall-clock	 time.	 For
example,	see	time.perf_counter().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

http://www.python.org/

27.5.	timeit	—	Measure
execution	time	of	small	code
snippets
Source	code:	Lib/timeit.py

This	module	provides	a	simple	way	to	time	small	bits	of	Python	code.
It	 has	 both	 a	Command-Line	 Interface	 as	 well	 as	 a	 callable	 one.	 It
avoids	a	number	of	common	traps	for	measuring	execution	times.	See
also	Tim	Peters’	introduction	to	the	“Algorithms”	chapter	in	the	Python
Cookbook,	published	by	O’Reilly.

http://hg.python.org/cpython/file/3.4/Lib/timeit.py

27.5.1.	Basic	Examples

The	 following	 example	 shows	 how	 the	Command-Line	 Interface	 can
be	used	to	compare	three	different	expressions:

$	python	-m	timeit	'"-".join(str(n)	for	n	in	range(100))'

10000	loops,	best	of	3:	40.3	usec	per	loop

$	python	-m	timeit	'"-".join([str(n)	for	n	in	range(100)])'

10000	loops,	best	of	3:	33.4	usec	per	loop

$	python	-m	timeit	'"-".join(map(str,	range(100)))'

10000	loops,	best	of	3:	25.2	usec	per	loop

This	can	be	achieved	from	the	Python	Interface	with:

>>>	import	timeit

>>>	timeit.timeit('"-".join(str(n)	for	n	in	range(100))'

0.8187260627746582

>>>	timeit.timeit('"-".join([str(n)	for	n	in	range(100)])'

0.7288308143615723

>>>	timeit.timeit('"-".join(map(str,	range(100)))',	

0.5858950614929199

Note	however	that	timeit	will	automatically	determine	the	number	of
repetitions	 only	 when	 the	 command-line	 interface	 is	 used.	 In	 the
Examples	section	you	can	find	more	advanced	examples.

27.5.2.	Python	Interface

The	module	defines	three	convenience	functions	and	a	public	class:

timeit.timeit(stmt='pass',	setup='pass',	timer=<default	timer>,
number=1000000)

Create	a	Timer	instance	with	the	given	statement,	setup	code	and
timer	 function	 and	 run	 its	 timeit()	 method	 with	 number
executions.

timeit.repeat(stmt='pass',	setup='pass',	timer=<default	timer>,
repeat=3,	number=1000000)

Create	a	Timer	instance	with	the	given	statement,	setup	code	and
timer	function	and	run	its	repeat()	method	with	the	given	repeat
count	and	number	executions.

timeit.default_timer()
The	default	timer,	which	is	always	time.perf_counter().

Changed	 in	 version	 3.3:	 time.perf_counter()	 is	 now	 the
default	timer.

class	timeit.Timer(stmt='pass',	setup='pass',	timer=<timer
function>)

Class	for	timing	execution	speed	of	small	code	snippets.

The	 constructor	 takes	 a	 statement	 to	 be	 timed,	 an	 additional
statement	 used	 for	 setup,	 and	 a	 timer	 function.	 Both	 statements
default	 to	 'pass';	 the	 timer	 function	 is	 platform-dependent	 (see
the	module	doc	string).	stmt	and	setup	may	also	 contain	multiple
statements	 separated	 by	 ;	 or	 newlines,	 as	 long	 as	 they	 don’t
contain	multi-line	string	literals.

To	 measure	 the	 execution	 time	 of	 the	 first	 statement,	 use	 the
timeit()	method.	 The	 repeat()	 method	 is	 a	 convenience	 to
call	timeit()	multiple	times	and	return	a	list	of	results.

The	 stmt	 and	 setup	 parameters	 can	 also	 take	 objects	 that	 are
callable	without	arguments.	This	will	embed	calls	to	them	in	a	timer
function	 that	 will	 then	 be	 executed	 by	 timeit().	 Note	 that	 the
timing	overhead	 is	a	 little	 larger	 in	 this	case	because	of	 the	extra
function	calls.

timeit(number=1000000)
Time	number	executions	of	 the	main	statement.	This	executes
the	setup	statement	once,	and	then	returns	the	time	it	takes	to
execute	 the	 main	 statement	 a	 number	 of	 times,	 measured	 in
seconds	 as	 a	 float.	 The	 argument	 is	 the	 number	 of	 times
through	the	loop,	defaulting	to	one	million.	The	main	statement,
the	 setup	 statement	 and	 the	 timer	 function	 to	 be	 used	 are
passed	to	the	constructor.

Note: 	 By	 default,	 timeit()	 temporarily	 turns	 off	 garbage
collection	during	the	timing.	The	advantage	of	this	approach	is
that	 it	 makes	 independent	 timings	 more	 comparable.	 This
disadvantage	 is	 that	GC	may	be	an	 important	component	of
the	 performance	 of	 the	 function	 being	 measured.	 If	 so,	 GC
can	be	 re-enabled	 as	 the	 first	 statement	 in	 the	setup	 string.
For	example:

timeit.Timer('for	i	in	range(10):	oct(i)',	'gc.enable()'

repeat(repeat=3,	number=1000000)

Call	timeit()	a	few	times.

This	 is	 a	 convenience	 function	 that	 calls	 the	 timeit()
repeatedly,	 returning	 a	 list	 of	 results.	 The	 first	 argument
specifies	 how	 many	 times	 to	 call	 timeit().	 The	 second
argument	specifies	the	number	argument	for	timeit().

Note: 	It’s	tempting	to	calculate	mean	and	standard	deviation
from	 the	 result	 vector	and	 report	 these.	However,	 this	 is	not
very	useful.	 In	a	 typical	case,	 the	 lowest	value	gives	a	 lower
bound	 for	 how	 fast	 your	 machine	 can	 run	 the	 given	 code
snippet;	 higher	 values	 in	 the	 result	 vector	 are	 typically	 not
caused	 by	 variability	 in	 Python’s	 speed,	 but	 by	 other
processes	 interfering	 with	 your	 timing	 accuracy.	 So	 the
min()	of	 the	 result	 is	probably	 the	only	number	you	should
be	interested	in.	After	that,	you	should	look	at	the	entire	vector
and	apply	common	sense	rather	than	statistics.

print_exc(file=None)
Helper	to	print	a	traceback	from	the	timed	code.

Typical	use:

t	=	Timer(...)							#	outside	the	try/except

try:

				t.timeit(...)				#	or	t.repeat(...)

except	Exception:

				t.print_exc()

The	advantage	over	the	standard	traceback	is	that	source	lines
in	 the	 compiled	 template	 will	 be	 displayed.	 The	 optional	 file
argument	 directs	 where	 the	 traceback	 is	 sent;	 it	 defaults	 to
sys.stderr.

27.5.3.	Command-Line	Interface

When	called	as	a	program	from	the	command	line,	the	following	form
is	used:

python	-m	timeit	[-n	N]	[-r	N]	[-s	S]	[-t]	[-c]	[-h]

Where	the	following	options	are	understood:

-n	N,	--number=N

how	many	times	to	execute	‘statement’

-r	N,	--repeat=N

how	many	times	to	repeat	the	timer	(default	3)

-s	S,	--setup=S

statement	to	be	executed	once	initially	(default	pass)

-p ,	--process

measure	 process	 time,	 not	 wallclock	 time,	 using
time.process_time()	 instead	 of	 time.perf_counter(),
which	is	the	default

New	in	version	3.3.

-t ,	--time

use	time.time()	(deprecated)

-c ,	--clock

use	time.clock()	(deprecated)

-v ,	--verbose

print	raw	timing	results;	repeat	for	more	digits	precision

-h ,	--help

print	a	short	usage	message	and	exit

A	 multi-line	 statement	 may	 be	 given	 by	 specifying	 each	 line	 as	 a
separate	statement	argument;	indented	lines	are	possible	by	enclosing
an	argument	 in	quotes	and	using	 leading	spaces.	Multiple	-s	 options
are	treated	similarly.

If	 -n	 is	 not	 given,	 a	 suitable	 number	 of	 loops	 is	 calculated	 by	 trying
successive	powers	of	10	until	the	total	time	is	at	least	0.2	seconds.

default_timer()	 measurements	 can	 be	 affected	 by	 other
programs	running	on	the	same	machine,	so	the	best	thing	to	do	when
accurate	 timing	 is	necessary	 is	 to	 repeat	 the	 timing	a	 few	 times	and
use	 the	 best	 time.	 The	 -r	 option	 is	 good	 for	 this;	 the	 default	 of	 3
repetitions	 is	 probably	 enough	 in	 most	 cases.	 You	 can	 use
time.process_time()	to	measure	CPU	time.

Note: 	There	is	a	certain	baseline	overhead	associated	with
executing	a	pass	statement.	The	code	here	doesn’t	try	to	hide	it,	but
you	should	be	aware	of	it.	The	baseline	overhead	can	be	measured
by	invoking	the	program	without	arguments,	and	it	might	differ
between	Python	versions.

27.5.4.	Examples

It	 is	possible	to	provide	a	setup	statement	that	 is	executed	only	once
at	the	beginning:

$	python	-m	timeit	-s	'text	=	"sample	string";	char	=	"g"'

10000000	loops,	best	of	3:	0.0877	usec	per	loop

$	python	-m	timeit	-s	'text	=	"sample	string";	char	=	"g"'

1000000	loops,	best	of	3:	0.342	usec	per	loop

>>>	import	timeit

>>>	timeit.timeit('char	in	text',	setup='text	=	"sample	string";	char	=	"g"'

0.41440500499993504

>>>	timeit.timeit('text.find(char)',	setup='text	=	"sample	string";	char	=	"g"'

1.7246671520006203

The	same	can	be	done	using	the	Timer	class	and	its	methods:

>>>	import	timeit

>>>	t	=	timeit.Timer('char	in	text',	setup='text	=	"sample	string";	char	=	"g"'

>>>	t.timeit()

0.3955516149999312

>>>	t.repeat()

[0.40193588800002544,	0.3960157959998014,	0.39594301399984033]

The	 following	 examples	 show	 how	 to	 time	 expressions	 that	 contain
multiple	 lines.	 Here	 we	 compare	 the	 cost	 of	 using	 hasattr()	 vs.
try/except	to	test	for	missing	and	present	object	attributes:

$	python	-m	timeit	'try:'	'		str.__bool__'	'except	AttributeError:'

100000	loops,	best	of	3:	15.7	usec	per	loop

$	python	-m	timeit	'if	hasattr(str,	"__bool__"):	pass'

100000	loops,	best	of	3:	4.26	usec	per	loop

$	python	-m	timeit	'try:'	'		int.__bool__'	'except	AttributeError:'

1000000	loops,	best	of	3:	1.43	usec	per	loop

$	python	-m	timeit	'if	hasattr(int,	"__bool__"):	pass'

100000	loops,	best	of	3:	2.23	usec	per	loop

>>>	import	timeit

>>>	#	attribute	is	missing

>>>	s	=	"""\

...	try:

...					str.__bool__

...	except	AttributeError:

...					pass

...	"""

>>>	timeit.timeit(stmt=s,	number=100000)

0.9138244460009446

>>>	s	=	"if	hasattr(str,	'__bool__'):	pass"

>>>	timeit.timeit(stmt=s,	number=100000)

0.5829014980008651

>>>

>>>	#	attribute	is	present

>>>	s	=	"""\

...	try:

...					int.__bool__

...	except	AttributeError:

...					pass

...	"""

>>>	timeit.timeit(stmt=s,	number=100000)

0.04215312199994514

>>>	s	=	"if	hasattr(int,	'__bool__'):	pass"

>>>	timeit.timeit(stmt=s,	number=100000)

0.08588060699912603

To	give	the	timeit	module	access	 to	 functions	you	define,	you	can
pass	a	setup	parameter	which	contains	an	import	statement:

def	test():

				"""Stupid	test	function"""

				L	=	[i	for	i	in	range(100)]

if	__name__	==	'__main__':

				import	timeit

				print(timeit.timeit("test()",	setup="from	__main__	import	test"

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

http://www.python.org/

27.6.	trace	—	Trace	or	track
Python	statement	execution
Source	code:	Lib/trace.py

The	trace	module	allows	you	 to	 trace	program	execution,	generate
annotated	statement	coverage	listings,	print	caller/callee	relationships
and	 list	 functions	 executed	 during	 a	 program	 run.	 It	 can	 be	 used	 in
another	program	or	from	the	command	line.

http://hg.python.org/cpython/file/3.4/Lib/trace.py

27.6.1.	Command-Line	Usage

The	trace	module	can	be	invoked	from	the	command	line.	It	can	be
as	simple	as

python	-m	trace	--count	-C	.	somefile.py	...

The	 above	 will	 execute	 somefile.py	 and	 generate	 annotated
listings	of	 all	Python	modules	 imported	during	 the	execution	 into	 the
current	directory.

--help

Display	usage	and	exit.

--version

Display	the	version	of	the	module	and	exit.

27.6.1.1.	Main	options

At	least	one	of	the	following	options	must	be	specified	when	invoking
trace.	The	--listfuncs	option	is	mutually	exclusive	with	the	--trace	and
--counts	 options.	When	 --listfuncs	 is	provided,	neither	 --counts	 nor	 --
trace	are	accepted,	and	vice	versa.

-c ,	--count

Produce	a	 set	 of	 annotated	 listing	 files	 upon	program	completion
that	 shows	 how	many	 times	 each	 statement	 was	 executed.	 See
also	--coverdir,	--file	and	--no-report	below.

-t ,	--trace

Display	lines	as	they	are	executed.

-l ,	--listfuncs

Display	the	functions	executed	by	running	the	program.

-r ,	--report

Produce	 an	 annotated	 list	 from	 an	 earlier	 program	 run	 that	 used
the	--count	and	--file	option.	This	does	not	execute	any	code.

-T ,	--trackcalls

Display	the	calling	relationships	exposed	by	running	the	program.

27.6.1.2.	Modifiers

-f ,	--file=<file>

Name	 of	 a	 file	 to	 accumulate	 counts	 over	 several	 tracing	 runs.
Should	be	used	with	the	--count	option.

-C ,	--coverdir=<dir>

Directory	 where	 the	 report	 files	 go.	 The	 coverage	 report	 for
package.module	 is	 written	 to	 file
dir/package/module.cover.

-m ,	--missing

When	 generating	 annotated	 listings,	 mark	 lines	 which	 were	 not
executed	with	>>>>>>.

-s ,	--summary

When	using	--count	or	--report,	write	a	brief	summary	to	stdout	for
each	file	processed.

-R ,	--no-report

Do	not	generate	annotated	 listings.	This	 is	useful	 if	 you	 intend	 to
make	several	 runs	with	 --count,	 and	 then	produce	a	single	set	of

annotated	listings	at	the	end.

-g ,	--timing

Prefix	each	line	with	the	time	since	the	program	started.	Only	used
while	tracing.

27.6.1.3.	Filters

These	options	may	be	repeated	multiple	times.

--ignore-module=<mod>

Ignore	each	of	the	given	module	names	and	its	submodules	(if	it	is
a	package).	The	argument	can	be	a	 list	of	names	separated	by	a
comma.

--ignore-dir=<dir>

Ignore	 all	 modules	 and	 packages	 in	 the	 named	 directory	 and
subdirectories.	The	argument	can	be	a	list	of	directories	separated
by	os.pathsep.

27.6.2.	Programmatic	Interface

class	trace.Trace(count=1,	trace=1,	countfuncs=0,
countcallers=0,	ignoremods=(),	ignoredirs=(),	infile=None,
outfile=None,	timing=False)

Create	 an	 object	 to	 trace	 execution	 of	 a	 single	 statement	 or
expression.	All	parameters	are	optional.	count	enables	counting	of
line	 numbers.	 trace	 enables	 line	 execution	 tracing.	 countfuncs
enables	 listing	of	 the	 functions	called	during	 the	 run.	countcallers
enables	call	 relationship	 tracking.	 ignoremods	 is	a	 list	of	modules
or	 packages	 to	 ignore.	 ignoredirs	 is	 a	 list	 of	 directories	 whose
modules	or	packages	should	be	 ignored.	 infile	 is	 the	name	of	 the
file	from	which	to	read	stored	count	information.	outfile	is	the	name
of	 the	 file	 in	 which	 to	 write	 updated	 count	 information.	 timing
enables	 a	 timestamp	 relative	 to	 when	 tracing	 was	 started	 to	 be
displayed.

run(cmd)
Execute	 the	 command	 and	 gather	 statistics	 from	 the
execution	with	the	current	tracing	parameters.	cmd	must	be
a	string	or	code	object,	suitable	for	passing	into	exec().

runctx(cmd,	globals=None,	locals=None)
Execute	 the	 command	 and	 gather	 statistics	 from	 the
execution	 with	 the	 current	 tracing	 parameters,	 in	 the
defined	 global	 and	 local	 environments.	 If	 not	 defined,
globals	and	locals	default	to	empty	dictionaries.

runfunc(func,	*args,	**kwds)
Call	 func	 with	 the	 given	 arguments	 under	 control	 of	 the
Trace	object	with	the	current	tracing	parameters.

results()
Return	 a	 CoverageResults	 object	 that	 contains	 the
cumulative	results	of	all	previous	calls	to	run,	runctx	and
runfunc	for	the	given	Trace	instance.	Does	not	reset	the
accumulated	trace	results.

class	trace.CoverageResults
A	container	 for	coverage	 results,	created	by	Trace.results().
Should	not	be	created	directly	by	the	user.

update(other)
Merge	in	data	from	another	CoverageResults	object.

write_results(show_missing=True,	 summary=False,
coverdir=None)

Write	 coverage	 results.	 Set	 show_missing	 to	 show	 lines
that	had	no	hits.	Set	summary	 to	 include	 in	 the	output	 the
coverage	 summary	 per	 module.	 coverdir	 specifies	 the
directory	into	which	the	coverage	result	files	will	be	output.
If	 None,	 the	 results	 for	 each	 source	 file	 are	 placed	 in	 its
directory.

A	 simple	 example	 demonstrating	 the	 use	 of	 the	 programmatic
interface:

import	sys

import	trace

#	create	a	Trace	object,	telling	it	what	to	ignore,	and	whether	to

#	do	tracing	or	line-counting	or	both.

tracer	=	trace.Trace(

				ignoredirs=[sys.prefix,	sys.exec_prefix],

				trace=0,

				count=1)

#	run	the	new	command	using	the	given	tracer

tracer.run('main()')

#	make	a	report,	placing	output	in	the	current	directory

r	=	tracer.results()

r.write_results(show_missing=True,	coverdir=".")

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

http://www.python.org/

27.7.	tracemalloc	—	Trace
memory	allocations
New	in	version	3.4.

The	 tracemalloc	 module	 is	 a	 debug	 tool	 to	 trace	 memory	 blocks
allocated	by	Python.	It	provides	the	following	information:

Traceback	where	an	object	was	allocated
Statistics	 on	 allocated	memory	 blocks	 per	 filename	and	 per	 line
number:	total	size,	number	and	average	size	of	allocated	memory
blocks
Compute	 the	 differences	 between	 two	 snapshots	 to	 detect
memory	leaks

To	trace	most	memory	blocks	allocated	by	Python,	the	module	should
be	started	as	early	as	possible	by	setting	 the	PYTHONTRACEMALLOC
environment	 variable	 to	 1,	 or	 by	 using	 -X	 tracemalloc	 command
line	 option.	 The	 tracemalloc.start()	 function	 can	 be	 called	 at
runtime	to	start	tracing	Python	memory	allocations.

By	default,	a	trace	of	an	allocated	memory	block	only	stores	the	most
recent	 frame	 (1	 frame).	 To	 store	 25	 frames	 at	 startup:	 set	 the
PYTHONTRACEMALLOC	 environment	 variable	 to	 25,	 or	 use	 the	 -X
tracemalloc=25	command	line	option.

27.8.	Examples

27.8.1.	Display	the	top	10

Display	the	10	files	allocating	the	most	memory:

import	tracemalloc

tracemalloc.start()

#	...	run	your	application	...

snapshot	=	tracemalloc.take_snapshot()

top_stats	=	snapshot.statistics('lineno')

print("[Top	10]")

for	stat	in	top_stats[:10]:

				print(stat)

Example	of	output	of	the	Python	test	suite:

[Top	10]

<frozen	importlib._bootstrap>:716:	size=4855	KiB,	count

<frozen	importlib._bootstrap>:284:	size=521	KiB,	count

/usr/lib/python3.4/collections/__init__.py:368:	size

/usr/lib/python3.4/unittest/case.py:381:	size=185	KiB

/usr/lib/python3.4/unittest/case.py:402:	size=154	KiB

/usr/lib/python3.4/abc.py:133:	size=88.7	KiB,	count=

<frozen	importlib._bootstrap>:1446:	size=70.4	KiB,	count

<frozen	importlib._bootstrap>:1454:	size=52.0	KiB,	count

<string>:5:	size=49.7	KiB,	count=148,	average=344	B

/usr/lib/python3.4/sysconfig.py:411:	size=48.0	KiB,	

We	 can	 see	 that	 Python	 loaded	 4.8	 MiB	 data	 (bytecode	 and
constants)	from	modules	and	that	the	collections	module	allocated
244	KiB	to	build	namedtuple	types.

See	Snapshot.statistics()	for	more	options.

27.8.2.	Compute	differences

Take	two	snapshots	and	display	the	differences:

import	tracemalloc

tracemalloc.start()

#	...	start	your	application	...

snapshot1	=	tracemalloc.take_snapshot()

#	...	call	the	function	leaking	memory	...

snapshot2	=	tracemalloc.take_snapshot()

top_stats	=	snapshot2.compare_to(snapshot1,	'lineno'

print("[Top	10	differences]")

for	stat	in	top_stats[:10]:

				print(stat)

Example	of	output	before/after	 running	some	tests	of	 the	Python	 test
suite:

[Top	10	differences]

<frozen	importlib._bootstrap>:716:	size=8173	KiB	(+4428

/usr/lib/python3.4/linecache.py:127:	size=940	KiB	(+

/usr/lib/python3.4/unittest/case.py:571:	size=298	KiB

<frozen	importlib._bootstrap>:284:	size=1005	KiB	(+166

/usr/lib/python3.4/mimetypes.py:217:	size=112	KiB	(+

/usr/lib/python3.4/http/server.py:848:	size=96.0	KiB

/usr/lib/python3.4/inspect.py:1465:	size=83.5	KiB	(+

/usr/lib/python3.4/unittest/mock.py:491:	size=77.7	KiB

/usr/lib/python3.4/urllib/parse.py:476:	size=71.8	KiB

/usr/lib/python3.4/contextlib.py:38:	size=67.2	KiB	(

We	 can	 see	 that	 Python	 has	 loaded	 8.2	 MiB	 of	 module	 data
(bytecode	 and	 constants),	 and	 that	 this	 is	 4.4	MiB	more	 than	 had
been	loaded	before	the	tests,	when	the	previous	snapshot	was	taken.
Similarly,	 the	 linecache	 module	 has	 cached	 940	 KiB	 of	 Python
source	code	to	format	tracebacks,	all	of	it	since	the	previous	snapshot.

If	the	system	has	little	free	memory,	snapshots	can	be	written	on	disk
using	the	Snapshot.dump()	method	to	analyze	the	snapshot	offline.
Then	use	the	Snapshot.load()	method	reload	the	snapshot.

27.8.3.	Get	the	traceback	of	a	memory
block

Code	to	display	the	traceback	of	the	biggest	memory	block:

import	tracemalloc

#	Store	25	frames

tracemalloc.start(25)

#	...	run	your	application	...

snapshot	=	tracemalloc.take_snapshot()

top_stats	=	snapshot.statistics('traceback')

#	pick	the	biggest	memory	block

stat	=	top_stats[0]

print("%s	memory	blocks:	%.1f	KiB"	%	(stat.count,	stat

for	line	in	stat.traceback.format():

				print(line)

Example	 of	 output	 of	 the	 Python	 test	 suite	 (traceback	 limited	 to	 25
frames):

903	memory	blocks:	870.1	KiB

		File	"<frozen	importlib._bootstrap>",	line	716

		File	"<frozen	importlib._bootstrap>",	line	1036

		File	"<frozen	importlib._bootstrap>",	line	934

		File	"<frozen	importlib._bootstrap>",	line	1068

		File	"<frozen	importlib._bootstrap>",	line	619

		File	"<frozen	importlib._bootstrap>",	line	1581

		File	"<frozen	importlib._bootstrap>",	line	1614

		File	"/usr/lib/python3.4/doctest.py",	line	101

				import	pdb

		File	"<frozen	importlib._bootstrap>",	line	284

		File	"<frozen	importlib._bootstrap>",	line	938

		File	"<frozen	importlib._bootstrap>",	line	1068

		File	"<frozen	importlib._bootstrap>",	line	619

		File	"<frozen	importlib._bootstrap>",	line	1581

		File	"<frozen	importlib._bootstrap>",	line	1614

		File	"/usr/lib/python3.4/test/support/__init__.py"

				import	doctest

		File	"/usr/lib/python3.4/test/test_pickletools.py"

				support.run_doctest(pickletools)

		File	"/usr/lib/python3.4/test/regrtest.py",	line	1276

				test_runner()

		File	"/usr/lib/python3.4/test/regrtest.py",	line	976

				display_failure=not	verbose)

		File	"/usr/lib/python3.4/test/regrtest.py",	line	761

				match_tests=ns.match_tests)

		File	"/usr/lib/python3.4/test/regrtest.py",	line	1563

				main()

		File	"/usr/lib/python3.4/test/__main__.py",	line	3

				regrtest.main_in_temp_cwd()

		File	"/usr/lib/python3.4/runpy.py",	line	73

				exec(code,	run_globals)

		File	"/usr/lib/python3.4/runpy.py",	line	160

				"__main__",	fname,	loader,	pkg_name)

We	can	see	 that	 the	most	memory	was	allocated	 in	 the	importlib
module	 to	 load	 data	 (bytecode	 and	 constants)	 from	 modules:	 870
KiB.	 The	 traceback	 is	 where	 the	 importlib	 loaded	 data	 most
recently:	 on	 the	 import	 pdb	 line	 of	 the	 doctest	 module.	 The
traceback	may	change	if	a	new	module	is	loaded.

27.8.4.	Pretty	top

Code	to	display	the	10	lines	allocating	the	most	memory	with	a	pretty
output,	 ignoring	 <frozen	 importlib._bootstrap>	 and
<unknown>	files:

import	linecache

import	os

import	tracemalloc

def	display_top(snapshot,	group_by='lineno',	limit=10

				snapshot	=	snapshot.filter_traces((

								tracemalloc.Filter(False,	"<frozen	importlib._bootstrap>"

								tracemalloc.Filter(False,	"<unknown>"),

))

				top_stats	=	snapshot.statistics(group_by)

				print("Top	%s	lines"	%	limit)

				for	index,	stat	in	enumerate(top_stats[:limit],	

								frame	=	stat.traceback[0]

								#	replace	"/path/to/module/file.py"	with	"module/file.py"

								filename	=	os.sep.join(frame.filename.split(

								print("#%s:	%s:%s:	%.1f	KiB"

														%	(index,	filename,	frame.lineno,	stat

								line	=	linecache.getline(frame.filename,	frame

								if	line:

												print('				%s'	%	line)

				other	=	top_stats[limit:]

				if	other:

								size	=	sum(stat.size	for	stat	in	other)

								print("%s	other:	%.1f	KiB"	%	(len(other),	size

				total	=	sum(stat.size	for	stat	in	top_stats)

				print("Total	allocated	size:	%.1f	KiB"	%	(total	

tracemalloc.start()

#	...	run	your	application	...

snapshot	=	tracemalloc.take_snapshot()

display_top(snapshot)

Example	of	output	of	the	Python	test	suite:

Top	10	lines

#1:	Lib/base64.py:414:	419.8	KiB

				_b85chars2	=	[(a	+	b)	for	a	in	_b85chars	for	b	in

#2:	Lib/base64.py:306:	419.8	KiB

				_a85chars2	=	[(a	+	b)	for	a	in	_a85chars	for	b	in

#3:	collections/__init__.py:368:	293.6	KiB

				exec(class_definition,	namespace)

#4:	Lib/abc.py:133:	115.2	KiB

				cls	=	super().__new__(mcls,	name,	bases,	namespace

#5:	unittest/case.py:574:	103.1	KiB

				testMethod()

#6:	Lib/linecache.py:127:	95.4	KiB

				lines	=	fp.readlines()

#7:	urllib/parse.py:476:	71.8	KiB

				for	a	in	_hexdig	for	b	in	_hexdig}

#8:	<string>:5:	62.0	KiB

#9:	Lib/_weakrefset.py:37:	60.0	KiB

				self.data	=	set()

#10:	Lib/base64.py:142:	59.8	KiB

				_b32tab2	=	[a	+	b	for	a	in	_b32tab	for	b	in	_b32tab

6220	other:	3602.8	KiB

Total	allocated	size:	5303.1	KiB

See	Snapshot.statistics()	for	more	options.

27.9.	API

27.9.1.	Functions

tracemalloc.clear_traces()
Clear	traces	of	memory	blocks	allocated	by	Python.

See	also	stop().

tracemalloc.get_object_traceback(obj)
Get	 the	 traceback	 where	 the	 Python	 object	 obj	 was	 allocated.
Return	 a	 Traceback	 instance,	 or	 None	 if	 the	 tracemalloc
module	 is	 not	 tracing	 memory	 allocations	 or	 did	 not	 trace	 the
allocation	of	the	object.

See	 also	 gc.get_referrers()	 and	 sys.getsizeof()

functions.

tracemalloc.get_traceback_limit()
Get	 the	maximum	number	of	 frames	stored	 in	 the	 traceback	of	a
trace.

The	tracemalloc	module	must	be	tracing	memory	allocations	to
get	the	limit,	otherwise	an	exception	is	raised.

The	limit	is	set	by	the	start()	function.

tracemalloc.get_traced_memory()
Get	the	current	size	and	peak	size	of	memory	blocks	traced	by	the
tracemalloc	 module	 as	 a	 tuple:	 (current:	 int,	 peak:

int).

tracemalloc.get_tracemalloc_memory()
Get	the	memory	usage	in	bytes	of	the	tracemalloc	module	used

to	store	traces	of	memory	blocks.	Return	an	int.

tracemalloc.is_tracing()
True	 if	 the	 tracemalloc	 module	 is	 tracing	 Python	 memory
allocations,	False	otherwise.

See	also	start()	and	stop()	functions.

tracemalloc.start(nframe:	int=1)
Start	 tracing	 Python	memory	 allocations:	 install	 hooks	 on	 Python
memory	allocators.	Collected	tracebacks	of	traces	will	be	limited	to
nframe	 frames.	By	default,	a	 trace	of	a	memory	block	only	stores
the	most	 recent	 frame:	 the	 limit	 is	 1.	nframe	 must	 be	 greater	 or
equal	to	1.

Storing	 more	 than	 1	 frame	 is	 only	 useful	 to	 compute	 statistics
grouped	by	'traceback'	or	to	compute	cumulative	statistics:	see
the	 Snapshot.compare_to()	 and	 Snapshot.statistics()
methods.

Storing	more	frames	increases	the	memory	and	CPU	overhead	of
the	 tracemalloc	 module.	 Use	 the
get_tracemalloc_memory()	 function	 to	 measure	 how	 much
memory	is	used	by	the	tracemalloc	module.

The	 PYTHONTRACEMALLOC	 environment	 variable
(PYTHONTRACEMALLOC=NFRAME)	 and	 the	 -X
tracemalloc=NFRAME	command	line	option	can	be	used	to	start
tracing	at	startup.

See	 also	 stop(),	 is_tracing()	 and
get_traceback_limit()	functions.

tracemalloc.stop()
Stop	tracing	Python	memory	allocations:	uninstall	hooks	on	Python
memory	 allocators.	 Also	 clears	 all	 previously	 collected	 traces	 of
memory	blocks	allocated	by	Python.

Call	 take_snapshot()	 function	 to	 take	 a	 snapshot	 of	 traces
before	clearing	them.

See	 also	 start(),	 is_tracing()	 and	 clear_traces()
functions.

tracemalloc.take_snapshot()
Take	a	snapshot	of	 traces	of	memory	blocks	allocated	by	Python.
Return	a	new	Snapshot	instance.

The	snapshot	does	not	include	memory	blocks	allocated	before	the
tracemalloc	module	started	to	trace	memory	allocations.

Tracebacks	 of	 traces	 are	 limited	 to	 get_traceback_limit()
frames.	 Use	 the	 nframe	 parameter	 of	 the	 start()	 function	 to
store	more	frames.

The	tracemalloc	module	must	be	tracing	memory	allocations	to
take	a	snapshot,	see	the	the	start()	function.

See	also	the	get_object_traceback()	function.

27.9.2.	Filter

class	tracemalloc.Filter(inclusive:	bool,	filename_pattern:	str,
lineno:	int=None,	all_frames:	bool=False)

Filter	on	traces	of	memory	blocks.

See	 the	 fnmatch.fnmatch()	 function	 for	 the	 syntax	 of
filename_pattern.	 The	 '.pyc'	 and	 '.pyo'	 file	 extensions	 are
replaced	with	'.py'.

Examples:

Filter(True,	 subprocess.__file__)	 only	 includes
traces	of	the	subprocess	module
Filter(False,	 tracemalloc.__file__)	 excludes
traces	of	the	tracemalloc	module
Filter(False,	 "<unknown>")	 excludes	 empty
tracebacks

inclusive

If	 inclusive	 is	 True	 (include),	 only	 trace	 memory	 blocks
allocated	 in	a	 file	with	a	name	matching	filename_pattern
at	line	number	lineno.

If	inclusive	is	False	(exclude),	ignore	memory	blocks	allocated
in	 a	 file	 with	 a	 name	 matching	 filename_pattern	 at	 line
number	lineno.

lineno

Line	 number	 (int)	 of	 the	 filter.	 If	 lineno	 is	 None,	 the	 filter
matches	any	line	number.

filename_pattern

Filename	pattern	of	the	filter	(str).

all_frames

If	all_frames	is	True,	all	 frames	of	the	traceback	are	checked.
If	all_frames	is	False,	only	the	most	recent	frame	is	checked.

This	attribute	has	no	effect	 if	 the	 traceback	 limit	 is	1.	See	 the
get_traceback_limit()	 function	 and
Snapshot.traceback_limit	attribute.

27.9.3.	Frame

class	tracemalloc.Frame
Frame	of	a	traceback.

The	Traceback	class	is	a	sequence	of	Frame	instances.

filename

Filename	(str).

lineno

Line	number	(int).

27.9.4.	Snapshot

class	tracemalloc.Snapshot
Snapshot	of	traces	of	memory	blocks	allocated	by	Python.

The	take_snapshot()	function	creates	a	snapshot	instance.

compare_to(old_snapshot:	 Snapshot,	 group_by:	 str,
cumulative:	bool=False)

Compute	the	differences	with	an	old	snapshot.	Get	statistics	as
a	 sorted	 list	 of	 StatisticDiff	 instances	 grouped	 by
group_by.

See	the	statistics()	method	 for	group_by	and	cumulative
parameters.

The	 result	 is	 sorted	 from	 the	 biggest	 to	 the	 smallest	 by:
absolute	 value	 of	 StatisticDiff.size_diff,
StatisticDiff.size,	 absolute	 value	 of
StatisticDiff.count_diff,	 Statistic.count	 and
then	by	StatisticDiff.traceback.

dump(filename)
Write	the	snapshot	into	a	file.

Use	load()	to	reload	the	snapshot.

filter_traces(filters)
Create	 a	 new	 Snapshot	 instance	 with	 a	 filtered	 traces
sequence,	 filters	 is	 a	 list	 of	 Filter	 instances.	 If	 filters	 is	 an
empty	list,	return	a	new	Snapshot	instance	with	a	copy	of	the
traces.

All	 inclusive	 filters	are	applied	at	once,	a	 trace	 is	 ignored	 if	no
inclusive	 filters	 match	 it.	 A	 trace	 is	 ignored	 if	 at	 least	 one
exclusive	filter	matchs	it.

classmethod	load(filename)
Load	a	snapshot	from	a	file.

See	also	dump().

statistics(group_by:	str,	cumulative:	bool=False)
Get	statistics	as	a	sorted	list	of	Statistic	instances	grouped
by	group_by:

group_by description

'filename' filename

'lineno'
filename	and	line
number

'traceback' traceback

If	 cumulative	 is	 True,	 cumulate	 size	 and	 count	 of	 memory
blocks	 of	 all	 frames	 of	 the	 traceback	 of	 a	 trace,	 not	 only	 the
most	recent	frame.	The	cumulative	mode	can	only	be	used	with
group_by	equals	to	'filename'	and	'lineno'.

The	 result	 is	 sorted	 from	 the	 biggest	 to	 the	 smallest	 by:
Statistic.size,	 Statistic.count	 and	 then	 by
Statistic.traceback.

traceback_limit

Maximum	number	of	frames	stored	in	the	traceback	of	traces:
result	 of	 the	 get_traceback_limit()	 when	 the	 snapshot
was	taken.

traces

Traces	of	all	memory	blocks	allocated	by	Python:	sequence	of
Trace	instances.

The	 sequence	 has	 an	 undefined	 order.	 Use	 the
Snapshot.statistics()	 method	 to	 get	 a	 sorted	 list	 of
statistics.

27.9.5.	Statistic

class	tracemalloc.Statistic
Statistic	on	memory	allocations.

Snapshot.statistics()	 returns	 a	 list	 of	 Statistic

instances.

See	also	the	StatisticDiff	class.

count

Number	of	memory	blocks	(int).

size

Total	size	of	memory	blocks	in	bytes	(int).

traceback

Traceback	where	the	memory	block	was	allocated,	Traceback
instance.

27.9.6.	StatisticDiff

class	tracemalloc.StatisticDiff
Statistic	 difference	 on	memory	 allocations	 between	 an	 old	 and	 a
new	Snapshot	instance.

Snapshot.compare_to()	 returns	 a	 list	 of	 StatisticDiff
instances.	See	also	the	Statistic	class.

count

Number	of	memory	blocks	in	the	new	snapshot	(int):	0	 if	 the
memory	blocks	have	been	released	in	the	new	snapshot.

count_diff

Difference	 of	 number	 of	 memory	 blocks	 between	 the	 old	 and
the	new	snapshots	 (int):	 0	 if	 the	memory	 blocks	 have	 been
allocated	in	the	new	snapshot.

size

Total	size	of	memory	blocks	in	bytes	in	the	new	snapshot	(int):
0	 if	 the	 memory	 blocks	 have	 been	 released	 in	 the	 new
snapshot.

size_diff

Difference	of	total	size	of	memory	blocks	in	bytes	between	the
old	and	the	new	snapshots	(int):	0	if	the	memory	blocks	have
been	allocated	in	the	new	snapshot.

traceback

Traceback	 where	 the	 memory	 blocks	 were	 allocated,
Traceback	instance.

27.9.7.	Trace

class	tracemalloc.Trace
Trace	of	a	memory	block.

The	 Snapshot.traces	 attribute	 is	 a	 sequence	 of	 Trace
instances.

size

Size	of	the	memory	block	in	bytes	(int).

traceback

Traceback	where	the	memory	block	was	allocated,	Traceback
instance.

27.9.8.	Traceback

class	tracemalloc.Traceback
Sequence	of	Frame	 instances	sorted	 from	the	most	 recent	 frame
to	the	oldest	frame.

A	 traceback	 contains	 at	 least	 1	 frame.	 If	 the	 tracemalloc
module	 failed	 to	 get	 a	 frame,	 the	 filename	 "<unknown>"	 at	 line
number	0	is	used.

When	 a	 snapshot	 is	 taken,	 tracebacks	 of	 traces	 are	 limited	 to
get_traceback_limit()	 frames.	See	the	take_snapshot()
function.

The	 Trace.traceback	 attribute	 is	 an	 instance	 of	 Traceback
instance.

format(limit=None)
Format	 the	 traceback	as	a	 list	 of	 lines	with	newlines.	Use	 the
linecache	module	 to	 retrieve	 lines	 from	 the	 source	 code.	 If
limit	is	set,	only	format	the	limit	most	recent	frames.

Similar	to	the	traceback.format_tb()	function,	except	that
format()	does	not	include	newlines.

Example:

print("Traceback	(most	recent	call	first):")

for	line	in	traceback:

				print(line)

Output:

Traceback	(most	recent	call	first):

		File	"test.py",	line	9

				obj	=	Object()

		File	"test.py",	line	12

				tb	=	tracemalloc.get_object_traceback(f())

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	27.	Debugging	and	Profiling	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

28.	Software	Packaging	and
Distribution
These	libraries	help	you	with	publishing	and	installing	Python	software.
While	 these	 modules	 are	 designed	 to	 work	 in	 conjunction	 with	 the
Python	 Package	 Index,	 they	 can	 also	 be	 used	 with	 a	 local	 index
server,	or	without	any	index	server	at	all.

28.1.	distutils	—	Building	and	installing	Python	modules
28.2.	ensurepip	—	Bootstrapping	the	pip	installer

28.2.1.	Command	line	interface
28.2.2.	Module	API

28.3.	venv	—	Creation	of	virtual	environments
28.3.1.	Creating	virtual	environments
28.3.2.	API
28.3.3.	An	example	of	extending	EnvBuilder

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

https://pypi.python.org
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	28.	Software	Packaging	and	Distribution	»

http://www.python.org/

28.1.	distutils	—	Building	and
installing	Python	modules
The	distutils	package	provides	support	 for	building	and	 installing
additional	modules	 into	a	Python	 installation.	The	 new	modules	may
be	either	100%-pure	Python,	or	may	be	extension	modules	written	 in
C,	or	may	be	collections	of	Python	packages	which	 include	modules
coded	in	both	Python	and	C.

Most	Python	users	will	not	want	to	use	this	module	directly,	but	instead
use	 the	 cross-version	 tools	 maintained	 by	 the	 Python	 Packaging
Authority.	 Refer	 to	 the	 Python	 Packaging	 User	 Guide	 for	 more
information.

For	the	benefits	of	packaging	tool	authors	and	users	seeking	a	deeper
understanding	of	 the	details	of	 the	current	packaging	and	distribution
system,	 the	 legacy	 distutils	 based	 user	 documentation	 and	 API
reference	remain	available:

Installing	Python	Modules	(Legacy	version)
Distributing	Python	Modules	(Legacy	version)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	28.	Software	Packaging	and	Distribution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://packaging.python.org
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	28.	Software	Packaging	and	Distribution	»

http://www.python.org/

28.2.	ensurepip	—
Bootstrapping	the	pip	installer

New	in	version	3.4.

The	ensurepip	package	provides	support	for	bootstrapping	the	pip
installer	into	an	existing	Python	installation	or	virtual	environment.	This
bootstrapping	 approach	 reflects	 the	 fact	 that	 pip	 is	 an	 independent
project	 with	 its	 own	 release	 cycle,	 and	 the	 latest	 available	 stable
version	 is	 bundled	 with	 maintenance	 and	 feature	 releases	 of	 the
CPython	reference	interpreter.

In	 most	 cases,	 end	 users	 of	 Python	 shouldn’t	 need	 to	 invoke	 this
module	directly	(as	pip	should	be	bootstrapped	by	default),	but	it	may
be	 needed	 if	 installing	 pip	 was	 skipped	 when	 installing	 Python	 (or
when	 creating	 a	 virtual	 environment)	 or	 after	 explicitly	 uninstalling
pip.

Note: 	This	module	does	not	access	the	internet.	All	of	the
components	needed	to	bootstrap	pip	are	included	as	internal	parts
of	the	package.

See	also:

Installing	Python	Modules
The	end	user	guide	for	installing	Python	packages

PEP	453:	Explicit	bootstrapping	of	pip	in	Python	installations
The	original	rationale	and	specification	for	this	module.

http://www.python.org/dev/peps/pep-0453

28.2.1.	Command	line	interface

The	 command	 line	 interface	 is	 invoked	 using	 the	 interpreter’s	 -m
switch.

The	simplest	possible	invocation	is:

python	-m	ensurepip

This	 invocation	 will	 install	 pip	 if	 it	 is	 not	 already	 installed,	 but
otherwise	does	nothing.	To	ensure	 the	 installed	 version	of	 pip	 is	 at
least	 as	 recent	 as	 the	 one	 bundled	 with	 ensurepip,	 pass	 the	 --
upgrade	option:

python	-m	ensurepip	--upgrade

By	default,	pip	is	installed	into	the	current	virtual	environment	(if	one
is	active)	or	into	the	system	site	packages	(if	there	is	no	active	virtual
environment).	The	 installation	 location	can	be	controlled	 through	 two
additional	command	line	options:

--root	<dir>:	 Installs	pip	 relative	 to	 the	given	 root	directory
rather	 than	 the	 root	of	 the	currently	active	virtual	environment	 (if
any)	or	the	default	root	for	the	current	Python	installation.
--user:	Installs	pip	into	the	user	site	packages	directory	rather
than	globally	 for	 the	current	Python	installation	(this	option	 is	not
permitted	inside	an	active	virtual	environment).

By	default,	the	scripts	pipX	and	pipX.Y	will	be	installed	(where	X.Y
stands	 for	 the	 version	 of	 Python	 used	 to	 invoke	 ensurepip).	 The
scripts	installed	can	be	controlled	through	two	additional	command	line
options:

--altinstall:	 if	 an	 alternate	 installation	 is	 requested,	 the
pipX	script	will	not	be	installed.

--default-pip:	if	a	“default	pip”	installation	is	requested,	the
pip	 script	 will	 be	 installed	 in	 addition	 to	 the	 two	 regular
scripts.

Providing	both	of	the	script	selection	options	will	trigger	an	exception.

28.2.2.	Module	API

ensurepip	exposes	two	functions	for	programmatic	use:

ensurepip.version()
Returns	a	string	specifying	 the	bundled	version	of	pip	 that	will	be
installed	when	bootstrapping	an	environment.

ensurepip.bootstrap(root=None,	upgrade=False,	user=False,
altinstall=False,	default_pip=False,	verbosity=0)

Bootstraps	pip	into	the	current	or	designated	environment.

root	 specifies	 an	 alternative	 root	 directory	 to	 install	 relative	 to.	 If
root	 is	None,	 then	 installation	 uses	 the	 default	 install	 location	 for
the	current	environment.

upgrade	indicates	whether	or	not	to	upgrade	an	existing	installation
of	an	earlier	version	of	pip	to	the	bundled	version.

user	 indicates	 whether	 to	 use	 the	 user	 scheme	 rather	 than
installing	globally.

By	default,	 the	scripts	pipX	and	pipX.Y	will	 be	 installed	 (where
X.Y	stands	for	the	current	version	of	Python).

If	altinstall	is	set,	then	pipX	will	not	be	installed.

If	default_pip	is	set,	then	pip	will	be	installed	in	addition	to	the	two
regular	scripts.

Setting	both	altinstall	and	default_pip	will	trigger	ValueError.

verbosity	 controls	 the	 level	 of	 output	 to	 sys.stdout	 from	 the

bootstrapping	operation.

Note: 	 The	 bootstrapping	 process	 has	 side	 effects	 on	 both
sys.path	 and	 os.environ.	 Invoking	 the	 command	 line
interface	in	a	subprocess	instead	allows	these	side	effects	to	be
avoided.

Note: 	The	bootstrapping	process	may	install	additional	modules
required	 by	 pip,	 but	 other	 software	 should	 not	 assume	 those
dependencies	 will	 always	 be	 present	 by	 default	 (as	 the
dependencies	may	be	removed	in	a	future	version	of	pip).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	28.	Software	Packaging	and	Distribution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	28.	Software	Packaging	and	Distribution	»

http://www.python.org/

28.3.	venv	—	Creation	of	virtual
environments
New	in	version	3.3.

Source	code:	Lib/venv

The	 venv	 module	 provides	 support	 for	 creating	 lightweight	 “virtual
environments”	with	 their	 own	site	directories,	optionally	 isolated	 from
system	site	directories.	Each	virtual	 environment	has	 its	own	Python
binary	 (allowing	 creation	 of	 environments	 with	 various	 Python
versions)	 and	 can	 have	 its	 own	 independent	 set	 of	 installed	 Python
packages	in	its	site	directories.

See	PEP	405	for	more	information	about	Python	virtual	environments.

http://hg.python.org/cpython/file/3.4/Lib/venv
http://www.python.org/dev/peps/pep-0405

28.3.1.	Creating	virtual	environments

Creation	 of	 virtual	 environments	 is	 done	 by	 executing	 the	 pyvenv
script:

pyvenv	/path/to/new/virtual/environment

Running	 this	 command	 creates	 the	 target	 directory	 (creating	 any
parent	directories	that	don’t	exist	already)	and	places	a	pyvenv.cfg
file	 in	 it	 with	 a	 home	 key	 pointing	 to	 the	 Python	 installation	 the
command	 was	 run	 from.	 It	 also	 creates	 a	 bin	 (or	 Scripts	 on
Windows)	 subdirectory	 containing	 a	 copy	 of	 the	 python	 binary	 (or
binaries,	 in	 the	case	of	Windows).	 It	 also	 creates	an	 (initially	 empty)
lib/pythonX.Y/site-packages	subdirectory	(on	Windows,	this	is
Lib\site-packages).

See	also: 	Python	Packaging	User	Guide:	Creating	and	using	virtual
environments

On	Windows,	you	may	have	to	invoke	the	pyvenv	script	as	follows,	if
you	don’t	have	the	relevant	PATH	and	PATHEXT	settings:

c:\Temp>c:\Python33\python	c:\Python33\Tools\Scripts\pyvenv.py	myenv

or	equivalently:

c:\Temp>c:\Python33\python	-m	venv	myenv

The	command,	if	run	with	-h,	will	show	the	available	options:

usage:	pyvenv	[-h]	[--system-site-packages]	[--symlinks]	[--clear]

http://packaging.python.org/en/latest/tutorial.html#creating-and-using-virtual-environments

														[--upgrade]	[--without-pip]	ENV_DIR	[ENV_DIR	...]

Creates	virtual	Python	environments	in	one	or	more	target	directories.

positional	arguments:

		ENV_DIR													A	directory	to	create	the	environment	in.

optional	arguments:

		-h,	--help													show	this	help	message	and	exit

		--system-site-packages	Give	access	to	the	global	site-packages	dir	to	the

																									virtual	environment.

		--symlinks													Try	to	use	symlinks	rather	than	copies,	when	symlinks

																									are	not	the	default	for	the	platform.

		--copies															Try	to	use	copies	rather	than	symlinks,	even	when

																									symlinks	are	the	default	for	the	platform.

		--clear																Delete	the	environment	directory	if	it	already	exists.

																									If	not	specified	and	the	directory	exists,	an	error	is

																									raised.

		--upgrade														Upgrade	the	environment	directory	to	use	this	version

																									of	Python,	assuming	Python	has	been	upgraded	in-place.

		--without-pip										Skips	installing	or	upgrading	pip	in	the	virtual

																									environment	(pip	is	bootstrapped	by	default)

Changed	 in	 version	 3.4:	 Installs	 pip	 by	 default,	 added	 the	 --
without-pip	and	--copies	options

If	the	target	directory	already	exists	an	error	will	be	raised,	unless	the
--clear	or	--upgrade	option	was	provided.

The	created	pyvenv.cfg	 file	 also	 includes	 the	 include-system-
site-packages	key,	set	to	true	if	venv	is	run	with	the	--system-
site-packages	option,	false	otherwise.

Unless	 the	 --without-pip	 option	 is	 given,	 ensurepip	 will	 be
invoked	to	bootstrap	pip	into	the	virtual	environment.

Multiple	 paths	 can	 be	 given	 to	 pyvenv,	 in	 which	 case	 an	 identical
virtualenv	 will	 be	 created,	 according	 to	 the	 given	 options,	 at	 each
provided	path.

Once	a	venv	has	been	created,	 it	can	be	“activated”	using	a	script	 in
the	 venv’s	 binary	 directory.	 The	 invocation	 of	 the	 script	 is	 platform-
specific:

Platform Shell Command	to	activate	virtual
environment

Posix bash/zsh $	source	<venv>/bin/activate

	 fish $.	<venv>/bin/activate.fish

	 csh/tcsh $	source	<venv>/bin/activate.csh

Windows cmd.exe C:>	<venv>/Scripts/activate.bat

	 PowerShell PS	C:>	<venv>/Scripts/Activate.ps1

You	don’t	specifically	need	 to	activate	an	environment;	activation	 just
prepends	 the	 venv’s	 binary	 directory	 to	 your	 path,	 so	 that	 “python”
invokes	the	venv’s	Python	interpreter	and	you	can	run	installed	scripts
without	having	to	use	their	full	path.	However,	all	scripts	installed	in	a
venv	should	be	runnable	without	activating	it,	and	run	with	the	venv’s
Python	automatically.

You	 can	 deactivate	 a	 venv	 by	 typing	 “deactivate”	 in	 your	 shell.	 The
exact	mechanism	is	platform-specific:	for	example,	the	Bash	activation
script	defines	a	“deactivate”	 function,	whereas	on	Windows	there	are
separate	 scripts	 called	 deactivate.bat	 and	 Deactivate.ps1
which	are	installed	when	the	venv	is	created.

New	in	version	3.4:	fish	and	csh	activation	scripts.

Note: 	A	virtual	environment	(also	called	a	venv)	is	a	Python
environment	such	that	the	Python	interpreter,	libraries	and	scripts
installed	into	it	are	isolated	from	those	installed	in	other	virtual
environments,	and	(by	default)	any	libraries	installed	in	a	“system”
Python,	i.e.	one	which	is	installed	as	part	of	your	operating	system.

A	venv	is	a	directory	tree	which	contains	Python	executable	files	and
other	files	which	indicate	that	it	is	a	venv.

Common	 installation	 tools	such	as	Distribute	and	pip	work	as
expected	with	venvs	-	i.e.	when	a	venv	is	active,	they	install	Python
packages	into	the	venv	without	needing	to	be	told	to	do	so	explicitly.
Of	course,	you	need	to	install	them	into	the	venv	first:	this	could	be
done	by	 running	distribute_setup.py	with	 the	venv	activated,
followed	 by	 running	 easy_install	pip.	 Alternatively,	 you	 could
download	 the	 source	 tarballs	 and	 run	 python	 setup.py

install	after	unpacking,	with	the	venv	activated.

When	a	venv	is	active	(i.e.	the	venv’s	Python	interpreter	is	running),
the	 attributes	 sys.prefix	 and	 sys.exec_prefix	 point	 to	 the
base	 directory	 of	 the	 venv,	 whereas	 sys.base_prefix	 and
sys.base_exec_prefix	point	to	the	non-venv	Python	installation
which	 was	 used	 to	 create	 the	 venv.	 If	 a	 venv	 is	 not	 active,	 then
sys.prefix	 is	 the	 same	 as	 sys.base_prefix	 and
sys.exec_prefix	 is	 the	 same	 as	 sys.base_exec_prefix
(they	all	point	to	a	non-venv	Python	installation).

When	a	venv	is	active,	any	options	that	change	the	installation	path
will	be	ignored	from	all	distutils	configuration	files	to	prevent	projects
being	inadvertently	installed	outside	of	the	virtual	environment.

When	working	in	a	command	shell,	users	can	make	a	venv	active	by

running	an	activate	script	in	the	venv’s	executables	directory	(the
precise	 filename	 is	 shell-dependent),	 which	 prepends	 the	 venv’s
directory	 for	 executables	 to	 the	 PATH	 environment	 variable	 for	 the
running	 shell.	 There	 should	 be	 no	 need	 in	 other	 circumstances	 to
activate	 a	 venv	 –	 scripts	 installed	 into	 venvs	 have	 a	 shebang	 line
which	 points	 to	 the	 venv’s	 Python	 interpreter.	 This	means	 that	 the
script	will	 run	with	 that	 interpreter	 regardless	of	 the	value	of	PATH.
On	Windows,	shebang	 line	processing	 is	supported	 if	you	have	the
Python	Launcher	for	Windows	installed	(this	was	added	to	Python	in
3.3	 -	 see	 PEP	 397	 for	 more	 details).	 Thus,	 double-clicking	 an
installed	script	 in	a	Windows	Explorer	window	should	run	 the	script
with	the	correct	interpreter	without	there	needing	to	be	any	reference
to	its	venv	in	PATH.

http://www.python.org/dev/peps/pep-0397

28.3.2.	API

The	 high-level	method	 described	 above	makes	 use	 of	 a	 simple	 API
which	 provides	 mechanisms	 for	 third-party	 virtual	 environment
creators	 to	customize	environment	creation	according	 to	 their	needs,
the	EnvBuilder	class.

class	venv.EnvBuilder(system_site_packages=False,
clear=False,	symlinks=False,	upgrade=False,	with_pip=False)

The	EnvBuilder	class	accepts	the	following	keyword	arguments
on	instantiation:

system_site_packages	 –	 a	 Boolean	 value	 indicating	 that
the	 system	 Python	 site-packages	 should	 be	 available	 to	 the
environment	(defaults	to	False).
clear	 –	 a	 Boolean	 value	 which,	 if	 true,	 will	 delete	 the
contents	 of	 any	 existing	 target	 directory,	 before	 creating	 the
environment.
symlinks	–	a	Boolean	value	indicating	whether	to	attempt	to
symlink	 the	Python	binary	 (and	any	necessary	DLLs	or	other
binaries,	e.g.	pythonw.exe),	rather	than	copying.	Defaults	to
True	on	Linux	and	Unix	systems,	but	False	on	Windows.
upgrade	 –	 a	 Boolean	 value	 which,	 if	 true,	 will	 upgrade	 an
existing	 environment	with	 the	 running	Python	 -	 for	 use	when
that	Python	has	been	upgraded	in-place	(defaults	to	False).
with_pip	 –	 a	 Boolean	 value	 which,	 if	 true,	 ensures	 pip	 is
installed	in	the	virtual	environment.	This	uses	ensurepip	with
the	--default-pip	option.

Changed	in	version	3.4:	Added	the	with_pip	parameter

Creators	of	third-party	virtual	environment	tools	will	be	free	to	use

the	provided	EnvBuilder	class	as	a	base	class.

The	 returned	 env-builder	 is	 an	 object	 which	 has	 a	 method,
create:

create(env_dir)
This	method	takes	as	required	argument	 the	path	(absolute	or
relative	to	the	current	directory)	of	the	target	directory	which	is
to	 contain	 the	 virtual	 environment.	 The	 create	 method	 will
either	create	the	environment	in	the	specified	directory,	or	raise
an	appropriate	exception.

The	create	method	of	 the	 EnvBuilder	 class	 illustrates	 the
hooks	available	for	subclass	customization:

def	create(self,	env_dir):

				"""

				Create	a	virtualized	Python	environment	in	a	directory.

				env_dir	is	the	target	directory	to	create	an	environment	in.

				"""

				env_dir	=	os.path.abspath(env_dir)

				context	=	self.ensure_directories(env_dir)

				self.create_configuration(context)

				self.setup_python(context)

				self.setup_scripts(context)

				self.post_setup(context)

Each	 of	 the	 methods	 ensure_directories(),
create_configuration(),	 setup_python(),
setup_scripts()	and	post_setup()	can	be	overridden.

ensure_directories(env_dir)
Creates	the	environment	directory	and	all	necessary	directories,

and	returns	a	context	object.	This	 is	 just	a	holder	for	attributes
(such	as	paths),	 for	use	by	 the	other	methods.	The	directories
are	 allowed	 to	 exist	 already,	 as	 long	 as	 either	 clear	 or
upgrade	 were	 specified	 to	 allow	 operating	 on	 an	 existing
environment	directory.

create_configuration(context)
Creates	the	pyvenv.cfg	configuration	file	in	the	environment.

setup_python(context)
Creates	a	copy	of	the	Python	executable	(and,	under	Windows,
DLLs)	 in	 the	 environment.	 On	 a	 POSIX	 system,	 if	 a	 specific
executable	 python3.x	 was	 used,	 symlinks	 to	 python	 and
python3	 will	 be	 created	 pointing	 to	 that	 executable,	 unless
files	with	those	names	already	exist.

setup_scripts(context)
Installs	 activation	 scripts	 appropriate	 to	 the	 platform	 into	 the
virtual	environment.

post_setup(context)
A	 placeholder	 method	 which	 can	 be	 overridden	 in	 third	 party
implementations	 to	 pre-install	 packages	 in	 the	 virtual
environment	or	perform	other	post-creation	steps.

In	addition,	EnvBuilder	 provides	 this	 utility	method	 that	 can	be
called	from	setup_scripts()	or	post_setup()	 in	subclasses
to	assist	in	installing	custom	scripts	into	the	virtual	environment.

install_scripts(context,	path)
path	is	the	path	to	a	directory	that	should	contain	subdirectories
“common”,	“posix”,	“nt”,	each	containing	scripts	destined	for	the

bin	directory	in	the	environment.	The	contents	of	“common”	and
the	directory	corresponding	to	os.name	are	copied	after	some
text	replacement	of	placeholders:

__VENV_DIR__	 is	 replaced	with	 the	absolute	path	of	 the
environment	directory.
__VENV_NAME__	 is	 replaced	with	 the	 environment	 name
(final	path	segment	of	environment	directory).
__VENV_PROMPT__	 is	 replaced	 with	 the	 prompt	 (the
environment	name	surrounded	by	parentheses	and	with	a
following	space)
__VENV_BIN_NAME__	is	replaced	with	the	name	of	the	bin
directory	(either	bin	or	Scripts).
__VENV_PYTHON__	 is	 replaced	with	 the	absolute	path	of
the	environment’s	executable.

The	 directories	 are	 allowed	 to	 exist	 (for	 when	 an	 existing
environment	is	being	upgraded).

There	is	also	a	module-level	convenience	function:

venv.create(env_dir,	system_site_packages=False,	clear=False,
symlinks=False,	with_pip=False)

Create	 an	 EnvBuilder	 with	 the	 given	 keyword	 arguments,	 and
call	its	create()	method	with	the	env_dir	argument.

Changed	in	version	3.4:	Added	the	with_pip	parameter

28.3.3.	An	example	of	extending
EnvBuilder

The	 following	 script	 shows	 how	 to	 extend	 EnvBuilder	 by
implementing	 a	 subclass	 which	 installs	 setuptools	 and	 pip	 into	 a
created	venv:

import	os

import	os.path

from	subprocess	import	Popen,	PIPE

import	sys

from	threading	import	Thread

from	urllib.parse	import	urlparse

from	urllib.request	import	urlretrieve

import	venv

class	ExtendedEnvBuilder(venv.EnvBuilder):

				"""

				This	builder	installs	setuptools	and	pip	so	that	you	can	pip	or

				easy_install	other	packages	into	the	created	environment.

				:param	nodist:	If	True,	setuptools	and	pip	are	not	installed	into	the

																			created	environment.

				:param	nopip:	If	True,	pip	is	not	installed	into	the	created

																		environment.

				:param	progress:	If	setuptools	or	pip	are	installed,	the	progress	of	the

																					installation	can	be	monitored	by	passing	a	progress

																					callable.	If	specified,	it	is	called	with	two

																					arguments:	a	string	indicating	some	progress,	and	a

																					context	indicating	where	the	string	is	coming	from.

																					The	context	argument	can	have	one	of	three	values:

																					'main',	indicating	that	it	is	called	from	virtualize()

																					itself,	and	'stdout'	and	'stderr',	which	are	obtained

																					by	reading	lines	from	the	output	streams	of	a	subprocess

																					which	is	used	to	install	the	app.

																					If	a	callable	is	not	specified,	default	progress

																					information	is	output	to	sys.stderr.

				"""

				def	__init__(self,	*args,	**kwargs):

								self.nodist	=	kwargs.pop('nodist',	False)

								self.nopip	=	kwargs.pop('nopip',	False)

								self.progress	=	kwargs.pop('progress',	None)

								self.verbose	=	kwargs.pop('verbose',	False)

								super().__init__(*args,	**kwargs)

				def	post_setup(self,	context):

								"""

								Set	up	any	packages	which	need	to	be	pre-installed	into	the

								environment	being	created.

								:param	context:	The	information	for	the	environment	creation	request

																								being	processed.

								"""

								os.environ['VIRTUAL_ENV']	=	context.env_dir

								if	not	self.nodist:

												self.install_setuptools(context)

								#	Can't	install	pip	without	setuptools

								if	not	self.nopip	and	not	self.nodist:

												self.install_pip(context)

				def	reader(self,	stream,	context):

								"""

								Read	lines	from	a	subprocess'	output	stream	and	either	pass	to	a	progress

								callable	(if	specified)	or	write	progress	information	to	sys.stderr.

								"""

								progress	=	self.progress

								while	True:

												s	=	stream.readline()

												if	not	s:

																break

												if	progress	is	not	None:

																progress(s,	context)

												else:

																if	not	self.verbose:

																				sys.stderr.write('.')

																else:

																				sys.stderr.write(s.decode('utf-8'))

																sys.stderr.flush()

								stream.close()

				def	install_script(self,	context,	name,	url):

								_,	_,	path,	_,	_,	_	=	urlparse(url)

								fn	=	os.path.split(path)[-1]

								binpath	=	context.bin_path

								distpath	=	os.path.join(binpath,	fn)

								#	Download	script	into	the	env's	binaries	folder

								urlretrieve(url,	distpath)

								progress	=	self.progress

								if	self.verbose:

												term	=	'\n'

								else:

												term	=	''

								if	progress	is	not	None:

												progress('Installing	%s	...%s'	%	(name,	term),	'main')

								else:

												sys.stderr.write('Installing	%s	...%s'	%	(name,	term))

												sys.stderr.flush()

								#	Install	in	the	env

								args	=	[context.env_exe,	fn]

								p	=	Popen(args,	stdout=PIPE,	stderr=PIPE,	cwd=binpath)

								t1	=	Thread(target=self.reader,	args=(p.stdout,	'stdout'))

								t1.start()

								t2	=	Thread(target=self.reader,	args=(p.stderr,	'stderr'))

								t2.start()

								p.wait()

								t1.join()

								t2.join()

								if	progress	is	not	None:

												progress('done.',	'main')

								else:

												sys.stderr.write('done.\n')

								#	Clean	up	-	no	longer	needed

								os.unlink(distpath)

				def	install_setuptools(self,	context):

								"""

								Install	setuptools	in	the	environment.

								:param	context:	The	information	for	the	environment	creation	request

																								being	processed.

								"""

								url	=	'https://bitbucket.org/pypa/setuptools/downloads/ez_setup.py'

								self.install_script(context,	'setuptools',	url)

								#	clear	up	the	setuptools	archive	which	gets	downloaded

								pred	=	lambda	o:	o.startswith('setuptools-')	and	o.endswith('.tar.gz')

								files	=	filter(pred,	os.listdir(context.bin_path))

								for	f	in	files:

												f	=	os.path.join(context.bin_path,	f)

												os.unlink(f)

				def	install_pip(self,	context):

								"""

								Install	pip	in	the	environment.

								:param	context:	The	information	for	the	environment	creation	request

																								being	processed.

								"""

								url	=	'https://raw.github.com/pypa/pip/master/contrib/get-pip.py'

								self.install_script(context,	'pip',	url)

def	main(args=None):

				compatible	=	True

				if	sys.version_info	<	(3,	3):

								compatible	=	False

				elif	not	hasattr(sys,	'base_prefix'):

								compatible	=	False

				if	not	compatible:

								raise	ValueError('This	script	is	only	for	use	with	'

																									'Python	3.3	or	later')

				else:

								import	argparse

								parser	=	argparse.ArgumentParser(prog=__name__,

																																									description='Creates	virtual	Python	'

																																																					'environments	in	one	or	'

																																																					'more	target	'

																																																					'directories.')

								parser.add_argument('dirs',	metavar='ENV_DIR',	nargs='+',

																												help='A	directory	to	create	the	environment	in.')

								parser.add_argument('--no-setuptools',	default=False,

																												action='store_true',	dest='nodist',

																												help="Don't	install	setuptools	or	pip	in	the	"

																																	"virtual	environment.")

								parser.add_argument('--no-pip',	default=False,

																												action='store_true',	dest='nopip',

																												help="Don't	install	pip	in	the	virtual	"

																																	"environment.")

								parser.add_argument('--system-site-packages',	default=False,

																												action='store_true',	dest='system_site',

																												help='Give	the	virtual	environment	access	to	the	'

																																	'system	site-packages	dir.')

								if	os.name	==	'nt':

												use_symlinks	=	False

								else:

												use_symlinks	=	True

								parser.add_argument('--symlinks',	default=use_symlinks,

																												action='store_true',	dest='symlinks',

																												help='Try	to	use	symlinks	rather	than	copies,	'

																																	'when	symlinks	are	not	the	default	for	'

																																	'the	platform.')

								parser.add_argument('--clear',	default=False,	action='store_true',

																												dest='clear',	help='Delete	the	contents	of	the	'

																																															'environment	directory	if	it	'

																																															'already	exists,	before	'

																																															'environment	creation.')

								parser.add_argument('--upgrade',	default=False,	action='store_true',

																												dest='upgrade',	help='Upgrade	the	environment	'

																																															'directory	to	use	this	version	'

																																															'of	Python,	assuming	Python	'

																																															'has	been	upgraded	in-place.')

								parser.add_argument('--verbose',	default=False,	action='store_true',

																												dest='verbose',	help='Display	the	output	'

																																															'from	the	scripts	which	'

																																															'install	setuptools	and	pip.')

								options	=	parser.parse_args(args)

								if	options.upgrade	and	options.clear:

												raise	ValueError('you	cannot	supply	--upgrade	and	--clear	together.')

								builder	=	ExtendedEnvBuilder(system_site_packages=options.system_site,

																																							clear=options.clear,

																																							symlinks=options.symlinks,

																																							upgrade=options.upgrade,

																																							nodist=options.nodist,

																																							nopip=options.nopip,

																																							verbose=options.verbose)

								for	d	in	options.dirs:

												builder.create(d)

if	__name__	==	'__main__':

				rc	=	1

				try:

								main()

								rc	=	0

				except	Exception	as	e:

								print('Error:	%s'	%	e,	file=sys.stderr)

				sys.exit(rc)

This	script	is	also	available	for	download	online.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	28.	Software	Packaging	and	Distribution	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

https://gist.github.com/4673395
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

29.	Python	Runtime	Services
The	 modules	 described	 in	 this	 chapter	 provide	 a	 wide	 range	 of
services	 related	 to	 the	 Python	 interpreter	 and	 its	 interaction	 with	 its
environment.	Here’s	an	overview:

29.1.	sys	—	System-specific	parameters	and	functions
29.2.	 sysconfig	 —	 Provide	 access	 to	 Python’s	 configuration
information

29.2.1.	Configuration	variables
29.2.2.	Installation	paths
29.2.3.	Other	functions
29.2.4.	Using	sysconfig	as	a	script

29.3.	builtins	—	Built-in	objects
29.4.	__main__	—	Top-level	script	environment
29.5.	warnings	—	Warning	control

29.5.1.	Warning	Categories
29.5.2.	The	Warnings	Filter

29.5.2.1.	Default	Warning	Filters
29.5.3.	Temporarily	Suppressing	Warnings
29.5.4.	Testing	Warnings
29.5.5.	Updating	Code	For	New	Versions	of	Python
29.5.6.	Available	Functions
29.5.7.	Available	Context	Managers

29.6.	contextlib	—	Utilities	for	with-statement	contexts
29.6.1.	Utilities
29.6.2.	Examples	and	Recipes

29.6.2.1.	 Supporting	 a	 variable	 number	 of	 context
managers
29.6.2.2.	 Simplifying	 support	 for	 single	 optional	 context
managers
29.6.2.3.	 Catching	 exceptions	 from	 __enter__

methods
29.6.2.4.	Cleaning	up	in	an	__enter__	implementation
29.6.2.5.	Replacing	any	use	of	 try-finally	and	 flag
variables
29.6.2.6.	 Using	 a	 context	 manager	 as	 a	 function
decorator

29.6.3.	Single	use,	reusable	and	reentrant	context	managers
29.6.3.1.	Reentrant	context	managers
29.6.3.2.	Reusable	context	managers

29.7.	abc	—	Abstract	Base	Classes
29.8.	atexit	—	Exit	handlers

29.8.1.	atexit	Example
29.9.	traceback	—	Print	or	retrieve	a	stack	traceback

29.9.1.	Traceback	Examples
29.10.	__future__	—	Future	statement	definitions
29.11.	gc	—	Garbage	Collector	interface
29.12.	inspect	—	Inspect	live	objects

29.12.1.	Types	and	members
29.12.2.	Retrieving	source	code
29.12.3.	Introspecting	callables	with	the	Signature	object
29.12.4.	Classes	and	functions
29.12.5.	The	interpreter	stack
29.12.6.	Fetching	attributes	statically
29.12.7.	Current	State	of	a	Generator
29.12.8.	Command	Line	Interface

29.13.	site	—	Site-specific	configuration	hook
29.13.1.	Readline	configuration
29.13.2.	Module	contents

29.14.	fpectl	—	Floating	point	exception	control
29.14.1.	Example
29.14.2.	Limitations	and	other	considerations

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.1.	sys	—	System-specific
parameters	and	functions
This	module	provides	access	to	some	variables	used	or	maintained	by
the	 interpreter	 and	 to	 functions	 that	 interact	 strongly	 with	 the
interpreter.	It	is	always	available.

sys.abiflags

On	 POSIX	 systems	 where	 Python	 is	 build	 with	 the	 standard
configure	script,	this	contains	the	ABI	flags	as	specified	by	PEP
3149.

New	in	version	3.2.

sys.argv

The	 list	 of	 command	 line	 arguments	 passed	 to	 a	 Python	 script.
argv[0]	 is	 the	 script	 name	 (it	 is	 operating	 system	 dependent
whether	 this	 is	 a	 full	 pathname	 or	 not).	 If	 the	 command	 was
executed	 using	 the	 -c	 command	 line	 option	 to	 the	 interpreter,
argv[0]	is	set	to	the	string	'-c'.	If	no	script	name	was	passed	to
the	Python	interpreter,	argv[0]	is	the	empty	string.

To	 loop	 over	 the	 standard	 input,	 or	 the	 list	 of	 files	 given	 on	 the
command	line,	see	the	fileinput	module.

sys.base_exec_prefix

Set	 during	 Python	 startup,	 before	 site.py	 is	 run,	 to	 the	 same
value	as	exec_prefix.	If	not	running	in	a	virtual	environment,	the
values	 will	 stay	 the	 same;	 if	 site.py	 finds	 that	 a	 virtual
environment	 is	 in	use,	 the	 values	of	 prefix	and	exec_prefix

http://www.python.org/dev/peps/pep-3149

will	 be	 changed	 to	 point	 to	 the	 virtual	 environment,	 whereas
base_prefix	 and	 base_exec_prefix	 will	 remain	 pointing	 to
the	base	Python	installation	(the	one	which	the	virtual	environment
was	created	from).

New	in	version	3.3.

sys.base_prefix

Set	 during	 Python	 startup,	 before	 site.py	 is	 run,	 to	 the	 same
value	as	prefix.	If	not	running	in	a	virtual	environment,	the	values
will	stay	the	same;	if	site.py	finds	that	a	virtual	environment	is	in
use,	the	values	of	prefix	and	exec_prefix	will	be	changed	to
point	 to	 the	 virtual	 environment,	 whereas	 base_prefix	 and
base_exec_prefix	 will	 remain	 pointing	 to	 the	 base	 Python
installation	 (the	 one	 which	 the	 virtual	 environment	 was	 created
from).

New	in	version	3.3.

sys.byteorder

An	 indicator	 of	 the	 native	 byte	 order.	 This	 will	 have	 the	 value
'big'	 on	 big-endian	 (most-significant	 byte	 first)	 platforms,	 and
'little'	on	little-endian	(least-significant	byte	first)	platforms.

sys.builtin_module_names

A	tuple	of	strings	giving	the	names	of	all	modules	that	are	compiled
into	this	Python	interpreter.	(This	information	is	not	available	in	any
other	way	—	modules.keys()	only	lists	the	imported	modules.)

sys.call_tracing(func,	args)
Call	func(*args),	while	 tracing	 is	enabled.	The	 tracing	state	 is
saved,	and	restored	afterwards.	This	is	intended	to	be	called	from

a	 debugger	 from	 a	 checkpoint,	 to	 recursively	 debug	 some	 other
code.

sys.copyright

A	 string	 containing	 the	 copyright	 pertaining	 to	 the	 Python
interpreter.

sys._clear_type_cache()
Clear	the	internal	type	cache.	The	type	cache	is	used	to	speed	up
attribute	 and	 method	 lookups.	 Use	 the	 function	 only	 to	 drop
unnecessary	references	during	reference	leak	debugging.

This	function	should	be	used	for	internal	and	specialized	purposes
only.

sys._current_frames()
Return	a	dictionary	mapping	each	thread’s	identifier	to	the	topmost
stack	frame	currently	active	in	that	thread	at	the	time	the	function	is
called.	Note	that	functions	in	the	traceback	module	can	build	the
call	stack	given	such	a	frame.

This	is	most	useful	for	debugging	deadlock:	this	function	does	not
require	the	deadlocked	threads’	cooperation,	and	such	threads’	call
stacks	 are	 frozen	 for	 as	 long	 as	 they	 remain	 deadlocked.	 The
frame	 returned	 for	 a	 non-deadlocked	 thread	 may	 bear	 no
relationship	to	that	thread’s	current	activity	by	the	time	calling	code
examines	the	frame.

This	function	should	be	used	for	internal	and	specialized	purposes
only.

sys._debugmallocstats()
Print	 low-level	 information	 to	 stderr	 about	 the	 state	 of	 CPython’s

memory	allocator.

If	 Python	 is	 configured	 –with-pydebug,	 it	 also	 performs	 some
expensive	internal	consistency	checks.

New	in	version	3.3.

CPython	 implementation	 detail:	 This	 function	 is	 specific	 to
CPython.	The	exact	output	 format	 is	not	defined	here,	and	may
change.

sys.dllhandle

Integer	 specifying	 the	 handle	 of	 the	 Python	 DLL.	 Availability:
Windows.

sys.displayhook(value)
If	 value	 is	 not	 None,	 this	 function	 prints	 repr(value)	 to
sys.stdout,	and	saves	value	in	builtins._.	If	repr(value)
is	 not	 encodable	 to	 sys.stdout.encoding	 with
sys.stdout.errors	 error	 handler	 (which	 is	 probably
'strict'),	 encode	 it	 to	 sys.stdout.encoding	 with
'backslashreplace'	error	handler.

sys.displayhook	 is	 called	 on	 the	 result	 of	 evaluating	 an
expression	entered	in	an	interactive	Python	session.	The	display	of
these	 values	 can	 be	 customized	 by	 assigning	 another	 one-
argument	function	to	sys.displayhook.

Pseudo-code:

def	displayhook(value):

				if	value	is	None:

								return

				#	Set	'_'	to	None	to	avoid	recursion

				builtins._	=	None

				text	=	repr(value)

				try:

								sys.stdout.write(text)

				except	UnicodeEncodeError:

								bytes	=	text.encode(sys.stdout.encoding,	'backslashreplace'

								if	hasattr(sys.stdout,	'buffer'):

												sys.stdout.buffer.write(bytes)

								else:

												text	=	bytes.decode(sys.stdout.encoding

												sys.stdout.write(text)

				sys.stdout.write("\n")

				builtins._	=	value

Changed	in	version	3.2:	Use	'backslashreplace'	error	handler
on	UnicodeEncodeError.

sys.dont_write_bytecode

If	 this	 is	 true,	Python	won’t	 try	 to	write	.pyc	or	.pyo	 files	on	the
import	 of	 source	 modules.	 This	 value	 is	 initially	 set	 to	 True	 or
False	 depending	 on	 the	 -B	 command	 line	 option	 and	 the
PYTHONDONTWRITEBYTECODE	environment	variable,	but	you	can
set	it	yourself	to	control	bytecode	file	generation.

sys.excepthook(type,	value,	traceback)
This	 function	 prints	 out	 a	 given	 traceback	 and	 exception	 to
sys.stderr.

When	 an	 exception	 is	 raised	 and	 uncaught,	 the	 interpreter	 calls
sys.excepthook	 with	 three	 arguments,	 the	 exception	 class,
exception	 instance,	 and	 a	 traceback	 object.	 In	 an	 interactive
session	this	happens	just	before	control	is	returned	to	the	prompt;

in	 a	 Python	 program	 this	 happens	 just	 before	 the	 program	 exits.
The	 handling	 of	 such	 top-level	 exceptions	 can	 be	 customized	 by
assigning	another	three-argument	function	to	sys.excepthook.

sys.__displayhook__

sys.__excepthook__

These	 objects	 contain	 the	 original	 values	 of	 displayhook	 and
excepthook	at	 the	start	of	 the	program.	They	are	saved	so	 that
displayhook	 and	 excepthook	 can	 be	 restored	 in	 case	 they
happen	to	get	replaced	with	broken	objects.

sys.exc_info()
This	 function	 returns	a	 tuple	of	 three	 values	 that	 give	 information
about	 the	 exception	 that	 is	 currently	 being	 handled.	 The
information	returned	is	specific	both	to	the	current	thread	and	to	the
current	 stack	 frame.	 If	 the	 current	 stack	 frame	 is	 not	 handling	an
exception,	the	information	is	taken	from	the	calling	stack	frame,	or
its	caller,	and	so	on	until	a	stack	frame	is	found	that	is	handling	an
exception.	Here,	 “handling	an	exception”	 is	 defined	as	 “executing
an	except	clause.”	For	any	stack	frame,	only	information	about	the
exception	being	currently	handled	is	accessible.

If	 no	 exception	 is	 being	 handled	 anywhere	 on	 the	 stack,	 a	 tuple
containing	 three	 None	 values	 is	 returned.	 Otherwise,	 the	 values
returned	 are	 (type,	 value,	 traceback).	 Their	 meaning	 is:
type	 gets	 the	 type	of	 the	exception	being	handled	 (a	 subclass	of
BaseException);	value	gets	the	exception	instance	(an	instance
of	the	exception	type);	 traceback	gets	a	traceback	object	(see	the
Reference	Manual)	which	encapsulates	 the	call	stack	at	 the	point
where	the	exception	originally	occurred.

sys.exec_prefix

A	string	giving	the	site-specific	directory	prefix	where	the	platform-
dependent	 Python	 files	 are	 installed;	 by	 default,	 this	 is	 also
'/usr/local'.	This	can	be	set	at	build	 time	with	 the	--exec-
prefix	 argument	 to	 the	 configure	 script.	 Specifically,	 all
configuration	files	(e.g.	the	pyconfig.h	header	 file)	are	 installed
in	 the	 directory	 exec_prefix/lib/pythonX.Y/config,	 and
shared	 library	 modules	 are	 installed	 in
exec_prefix/lib/pythonX.Y/lib-dynload,	 where	 X.Y	 is
the	version	number	of	Python,	for	example	3.2.

Note: 	 If	 a	 virtual	 environment	 is	 in	 effect,	 this	 value	 will	 be
changed	 in	 site.py	 to	 point	 to	 the	 virtual	 environment.	 The
value	 for	 the	 Python	 installation	 will	 still	 be	 available,	 via
base_exec_prefix.

sys.executable

A	string	 giving	 the	 absolute	 path	 of	 the	 executable	 binary	 for	 the
Python	interpreter,	on	systems	where	this	makes	sense.	If	Python
is	 unable	 to	 retrieve	 the	 real	 path	 to	 its	 executable,
sys.executable	will	be	an	empty	string	or	None.

sys.exit([arg])
Exit	from	Python.	This	is	implemented	by	raising	the	SystemExit
exception,	 so	 cleanup	 actions	 specified	 by	 finally	 clauses	 of	 try
statements	 are	 honored,	 and	 it	 is	 possible	 to	 intercept	 the	 exit
attempt	at	an	outer	level.

The	optional	argument	arg	can	be	an	integer	giving	the	exit	status
(defaulting	to	zero),	or	another	type	of	object.	If	it	is	an	integer,	zero
is	 considered	 “successful	 termination”	 and	 any	 nonzero	 value	 is
considered	 “abnormal	 termination”	 by	 shells	 and	 the	 like.	 Most

systems	require	it	to	be	in	the	range	0-127,	and	produce	undefined
results	otherwise.	Some	systems	have	a	convention	 for	assigning
specific	 meanings	 to	 specific	 exit	 codes,	 but	 these	 are	 generally
underdeveloped;	Unix	programs	generally	use	2	for	command	line
syntax	errors	and	1	 for	 all	 other	 kind	of	 errors.	 If	 another	 type	 of
object	is	passed,	None	is	equivalent	to	passing	zero,	and	any	other
object	 is	 printed	 to	 stderr	 and	 results	 in	 an	 exit	 code	 of	 1.	 In
particular,	sys.exit("some	error	message")	 is	a	quick	way
to	exit	a	program	when	an	error	occurs.

Since	exit()	ultimately	“only”	raises	an	exception,	it	will	only	exit
the	process	when	called	from	the	main	thread,	and	the	exception	is
not	intercepted.

sys.flags

The	 struct	 sequence	 flags	 exposes	 the	 status	 of	 command	 line
flags.	The	attributes	are	read	only.

attribute flag

debug -d

inspect -i

interactive -i

optimize -O	or	-OO

dont_write_bytecode -B

no_user_site -s

no_site -S

ignore_environment -E

verbose -v

bytes_warning -b

quiet -q

hash_randomization -R

Changed	in	version	3.2:	Added	quiet	attribute	for	the	new	-q	flag.

New	in	version	3.2.3:	The	hash_randomization	attribute.

Changed	 in	version	3.3:	Removed	obsolete	division_warning
attribute.

sys.float_info

A	 struct	 sequence	 holding	 information	 about	 the	 float	 type.	 It
contains	 low	 level	 information	 about	 the	 precision	 and	 internal
representation.	The	values	correspond	to	the	various	floating-point
constants	defined	 in	 the	standard	header	 file	float.h	 for	 the	 ‘C’
programming	language;	see	section	5.2.4.2.2	of	the	1999	ISO/IEC
C	standard	[C99],	‘Characteristics	of	floating	types’,	for	details.

attribute float.h	macro explanation

epsilon DBL_EPSILON

difference	between	1	and
the	least	value	greater
than	1	that	is
representable	as	a	float

dig DBL_DIG

maximum	number	of
decimal	digits	that	can	be
faithfully	represented	in	a
float;	see	below

mant_dig DBL_MANT_DIG

float	precision:	the
number	of	base-radix
digits	in	the	significand	of
a	float

max DBL_MAX maximum	representable
finite	float

max_exp DBL_MAX_EXP
maximum	integer	e	such
that	radix**(e-1)	is	a
representable	finite	float

max_10_exp DBL_MAX_10_EXP

maximum	integer	e	such
that	10**e	is	in	the	range
of	representable	finite
floats

min DBL_MIN minimum	positive
normalized	float

min_exp DBL_MIN_EXP
minimum	integer	e	such
that	radix**(e-1)	is	a
normalized	float

min_10_exp DBL_MIN_10_EXP
minimum	integer	e	such
that	10**e	is	a
normalized	float

radix FLT_RADIX radix	of	exponent
representation

rounds FLT_ROUNDS

integer	constant
representing	the	rounding
mode	used	for	arithmetic
operations.	This	reflects
the	value	of	the	system
FLT_ROUNDS	macro	at
interpreter	startup	time.
See	section	5.2.4.2.2	of
the	C99	standard	for	an
explanation	of	the
possible	values	and	their
meanings.

The	attribute	sys.float_info.dig	needs	further	explanation.	If
s	 is	 any	 string	 representing	 a	 decimal	 number	 with	 at	 most
sys.float_info.dig	 significant	 digits,	 then	 converting	 s	 to	 a
float	 and	 back	 again	 will	 recover	 a	 string	 representing	 the	 same

decimal	value:

>>>	import	sys

>>>	sys.float_info.dig

15

>>>	s	=	'3.14159265358979'				#	decimal	string	with	15	significant	digits

>>>	format(float(s),	'.15g')		#	convert	to	float	and	back	->	same	value

'3.14159265358979'

But	 for	strings	with	more	 than	sys.float_info.dig	 significant
digits,	this	isn’t	always	true:

>>>	s	=	'9876543211234567'				#	16	significant	digits	is	too	many!

>>>	format(float(s),	'.16g')		#	conversion	changes	value

'9876543211234568'

sys.float_repr_style

A	string	 indicating	how	 the	repr()	 function	behaves	 for	 floats.	 If
the	 string	 has	 value	 'short'	 then	 for	 a	 finite	 float	 x,	 repr(x)
aims	 to	 produce	 a	 short	 string	 with	 the	 property	 that
float(repr(x))	==	x.	 This	 is	 the	 usual	 behaviour	 in	 Python
3.1	 and	 later.	 Otherwise,	 float_repr_style	 has	 value
'legacy'	 and	 repr(x)	 behaves	 in	 the	 same	 way	 as	 it	 did	 in
versions	of	Python	prior	to	3.1.

New	in	version	3.1.

sys.getallocatedblocks()
Return	 the	 number	 of	 memory	 blocks	 currently	 allocated	 by	 the
interpreter,	 regardless	 of	 their	 size.	 This	 function	 is	mainly	 useful
for	 tracking	 and	 debugging	 memory	 leaks.	 Because	 of	 the
interpreter’s	 internal	 caches,	 the	 result	 can	 vary	 from	 call	 to	 call;

you	 may	 have	 to	 call	 _clear_type_cache()	 and
gc.collect()	to	get	more	predictable	results.

If	a	Python	build	or	implementation	cannot	reasonably	compute	this
information,	 getallocatedblocks()	 is	 allowed	 to	 return	 0
instead.

New	in	version	3.4.

sys.getcheckinterval()
Return	 the	 interpreter’s	 “check	 interval”;	 see
setcheckinterval().

Deprecated	 since	 version	 3.2:	 Use	 getswitchinterval()
instead.

sys.getdefaultencoding()
Return	the	name	of	the	current	default	string	encoding	used	by	the
Unicode	implementation.

sys.getdlopenflags()
Return	 the	current	value	of	 the	 flags	 that	are	used	 for	dlopen()
calls.	Symbolic	names	 for	 the	 flag	values	can	be	 found	 in	 the	os
module	 (RTLD_xxx	 constants,	 e.g.	 os.RTLD_LAZY).	 Availability:
Unix.

sys.getfilesystemencoding()
Return	 the	 name	 of	 the	 encoding	 used	 to	 convert	 Unicode
filenames	into	system	file	names.	The	result	value	depends	on	the
operating	system:

On	Mac	OS	X,	the	encoding	is	'utf-8'.

On	Unix,	 the	 encoding	 is	 the	 user’s	 preference	 according	 to
the	result	of	nl_langinfo(CODESET).
On	 Windows	 NT+,	 file	 names	 are	 Unicode	 natively,	 so	 no
conversion	 is	 performed.	 getfilesystemencoding()	 still
returns	 'mbcs',	 as	 this	 is	 the	 encoding	 that	 applications
should	 use	 when	 they	 explicitly	 want	 to	 convert	 Unicode
strings	 to	 byte	 strings	 that	 are	 equivalent	 when	 used	 as	 file
names.
On	Windows	9x,	the	encoding	is	'mbcs'.

Changed	 in	 version	 3.2:	 getfilesystemencoding()	 result
cannot	be	None	anymore.

sys.getrefcount(object)
Return	 the	 reference	 count	 of	 the	 object.	 The	 count	 returned	 is
generally	 one	 higher	 than	 you	might	 expect,	 because	 it	 includes
the	(temporary)	reference	as	an	argument	to	getrefcount().

sys.getrecursionlimit()
Return	the	current	value	of	the	recursion	limit,	the	maximum	depth
of	the	Python	interpreter	stack.	This	limit	prevents	infinite	recursion
from	 causing	 an	 overflow	 of	 the	C	 stack	 and	 crashing	 Python.	 It
can	be	set	by	setrecursionlimit().

sys.getsizeof(object[,	default])
Return	the	size	of	an	object	in	bytes.	The	object	can	be	any	type	of
object.	All	 built-in	 objects	will	 return	 correct	 results,	 but	 this	 does
not	 have	 to	 hold	 true	 for	 third-party	 extensions	 as	 it	 is
implementation	specific.

Only	 the	memory	 consumption	 directly	 attributed	 to	 the	 object	 is
accounted	for,	not	the	memory	consumption	of	objects	it	refers	to.

If	 given,	 default	 will	 be	 returned	 if	 the	 object	 does	 not	 provide
means	to	retrieve	the	size.	Otherwise	a	TypeError	will	be	raised.

getsizeof()	 calls	 the	 object’s	 __sizeof__	method	 and	 adds
an	additional	garbage	collector	overhead	 if	 the	object	 is	managed
by	the	garbage	collector.

See	recursive	sizeof	recipe	for	an	example	of	using	getsizeof()
recursively	to	find	the	size	of	containers	and	all	their	contents.

sys.getswitchinterval()
Return	 the	 interpreter’s	 “thread	 switch	 interval”;	 see
setswitchinterval().

New	in	version	3.2.

sys._getframe([depth])
Return	a	frame	object	from	the	call	stack.	If	optional	 integer	depth
is	given,	 return	 the	 frame	object	 that	many	calls	below	 the	 top	of
the	 stack.	 If	 that	 is	 deeper	 than	 the	 call	 stack,	 ValueError	 is
raised.	The	default	for	depth	is	zero,	returning	the	frame	at	the	top
of	the	call	stack.

CPython	 implementation	detail:	 This	 function	 should	 be	 used
for	internal	and	specialized	purposes	only.	It	is	not	guaranteed	to
exist	in	all	implementations	of	Python.

sys.getprofile()
Get	the	profiler	function	as	set	by	setprofile().

sys.gettrace()
Get	the	trace	function	as	set	by	settrace().

http://code.activestate.com/recipes/577504

CPython	 implementation	detail:	 The	 gettrace()	 function	 is
intended	 only	 for	 implementing	 debuggers,	 profilers,	 coverage
tools	 and	 the	 like.	 Its	 behavior	 is	 part	 of	 the	 implementation
platform,	rather	than	part	of	the	language	definition,	and	thus	may
not	be	available	in	all	Python	implementations.

sys.getwindowsversion()
Return	 a	 named	 tuple	 describing	 the	 Windows	 version	 currently
running.	 The	 named	 elements	 are	major,	minor,	 build,	 platform,
service_pack,	 service_pack_minor,	 service_pack_major,
suite_mask,	 and	 product_type.	 service_pack	 contains	 a	 string
while	 all	 other	 values	 are	 integers.	 The	 components	 can	 also	 be
accessed	 by	 name,	 so	 sys.getwindowsversion()[0]	 is
equivalent	 to	 sys.getwindowsversion().major.	 For
compatibility	 with	 prior	 versions,	 only	 the	 first	 5	 elements	 are
retrievable	by	indexing.

platform	may	be	one	of	the	following	values:

Constant Platform

0	(VER_PLATFORM_WIN32s)
Win32s	on	Windows
3.1

1

(VER_PLATFORM_WIN32_WINDOWS)
Windows	95/98/ME

2	(VER_PLATFORM_WIN32_NT)
Windows
NT/2000/XP/x64

3	(VER_PLATFORM_WIN32_CE) Windows	CE

product_type	may	be	one	of	the	following	values:

Constant Meaning

1	(VER_NT_WORKSTATION) The	system	is	a
workstation.

2

(VER_NT_DOMAIN_CONTROLLER)

The	system	is	a	domain
controller.

3	(VER_NT_SERVER)
The	system	is	a	server,	but
not	a	domain	controller.

This	function	wraps	the	Win32	GetVersionEx()	function;	see	the
Microsoft	 documentation	 on	 OSVERSIONINFOEX()	 for	 more
information	about	these	fields.

Availability:	Windows.

Changed	 in	 version	 3.2:	Changed	 to	 a	 named	 tuple	 and	 added
service_pack_minor,	 service_pack_major,	 suite_mask,	 and
product_type.

sys.hash_info

A	 struct	 sequence	 giving	 parameters	 of	 the	 numeric	 hash
implementation.	For	more	details	about	hashing	of	numeric	 types,
see	Hashing	of	numeric	types.

attribute explanation

width width	in	bits	used	for	hash	values

modulus
prime	modulus	P	used	for	numeric	hash
scheme

inf hash	value	returned	for	a	positive	infinity

nan hash	value	returned	for	a	nan

imag
multiplier	used	for	the	imaginary	part	of	a
complex	number

algorithm
name	of	the	algorithm	for	hashing	of	str,
bytes,	and	memoryview

hash_bits internal	output	size	of	the	hash	algorithm

seed_bits size	of	the	seed	key	of	the	hash	algorithm

New	in	version	3.2.

sys.hexversion

The	 version	 number	 encoded	 as	 a	 single	 integer.	 This	 is
guaranteed	to	increase	with	each	version,	including	proper	support
for	non-production	 releases.	For	 example,	 to	 test	 that	 the	Python
interpreter	is	at	least	version	1.5.2,	use:

if	sys.hexversion	>=	0x010502F0:

				#	use	some	advanced	feature

				...

else:

				#	use	an	alternative	implementation	or	warn	the	user

				...

This	 is	 called	 hexversion	 since	 it	 only	 really	 looks	 meaningful
when	 viewed	 as	 the	 result	 of	 passing	 it	 to	 the	 built-in	 hex()
function.	The	struct	sequence	sys.version_info	may	be	used
for	a	more	human-friendly	encoding	of	the	same	information.

More	 details	 of	 hexversion	 can	 be	 found	 at	 API	 and	 ABI
Versioning

sys.implementation

An	 object	 containing	 information	 about	 the	 implementation	 of	 the
currently	 running	 Python	 interpreter.	 The	 following	 attributes	 are
required	to	exist	in	all	Python	implementations.

name	 is	 the	 implementation’s	 identifier,	 e.g.	 'cpython'.	 The
actual	 string	 is	 defined	 by	 the	 Python	 implementation,	 but	 it	 is

guaranteed	to	be	lower	case.

version	 is	 a	 named	 tuple,	 in	 the	 same	 format	 as
sys.version_info.	 It	 represents	 the	 version	 of	 the	 Python
implementation.	 This	 has	 a	 distinct	 meaning	 from	 the	 specific
version	 of	 the	 Python	 language	 to	 which	 the	 currently	 running
interpreter	 conforms,	which	 sys.version_info	 represents.	 For
example,	 for	 PyPy	 1.8	 sys.implementation.version	 might
be	 sys.version_info(1,	 8,	 0,	 'final',	 0),	 whereas
sys.version_info	would	be	sys.version_info(2,	7,	2,
'final',	0).	For	CPython	 they	are	 the	same	value,	 since	 it	 is
the	reference	implementation.

hexversion	 is	 the	 implementation	 version	 in	 hexadecimal	 format,
like	sys.hexversion.

cache_tag	is	the	tag	used	by	the	import	machinery	in	the	filenames
of	cached	modules.	By	convention,	it	would	be	a	composite	of	the
implementation’s	 name	 and	 version,	 like	 'cpython-33'.
However,	 a	 Python	 implementation	may	 use	 some	 other	 value	 if
appropriate.	If	cache_tag	is	set	to	None,	it	indicates	that	module
caching	should	be	disabled.

sys.implementation	may	contain	additional	attributes	specific
to	the	Python	implementation.	These	non-standard	attributes	must
start	with	an	underscore,	and	are	not	described	here.	Regardless
of	 its	 contents,	 sys.implementation	 will	 not	 change	 during	 a
run	of	the	interpreter,	nor	between	implementation	versions.	(It	may
change	 between	 Python	 language	 versions,	 however.)	 See	PEP
421	for	more	information.

New	in	version	3.3.

sys.int_info

A	 struct	 sequence	 that	 holds	 information	 about	 Python’s	 internal
representation	of	integers.	The	attributes	are	read	only.

Attribute Explanation

bits_per_digit

number	of	bits	held	in	each	digit.	Python
integers	are	stored	internally	in	base
2**int_info.bits_per_digit

sizeof_digit
size	in	bytes	of	the	C	type	used	to
represent	a	digit

New	in	version	3.1.

sys.__interactivehook__

When	this	attribute	exists,	its	value	is	automatically	called	(with	no
arguments)	 when	 the	 interpreter	 is	 launched	 in	 interactive	mode.
This	is	done	after	the	PYTHONSTARTUP	file	is	read,	so	that	you	can
set	this	hook	there.	The	site	module	sets	this.

New	in	version	3.4.

sys.intern(string)
Enter	string	in	the	table	of	“interned”	strings	and	return	the	interned
string	–	which	is	string	itself	or	a	copy.	Interning	strings	is	useful	to
gain	 a	 little	 performance	 on	 dictionary	 lookup	 –	 if	 the	 keys	 in	 a
dictionary	 are	 interned,	 and	 the	 lookup	 key	 is	 interned,	 the	 key
comparisons	 (after	 hashing)	 can	 be	 done	 by	 a	 pointer	 compare
instead	of	a	string	compare.	Normally,	 the	names	used	 in	Python
programs	are	automatically	 interned,	and	 the	dictionaries	used	 to
hold	module,	class	or	instance	attributes	have	interned	keys.

Interned	strings	are	not	immortal;	you	must	keep	a	reference	to	the
return	value	of	intern()	around	to	benefit	from	it.

sys.last_type

sys.last_value

sys.last_traceback

These	three	variables	are	not	always	defined;	they	are	set	when	an
exception	 is	 not	 handled	 and	 the	 interpreter	 prints	 an	 error
message	and	a	stack	traceback.	Their	intended	use	is	to	allow	an
interactive	user	to	import	a	debugger	module	and	engage	in	post-
mortem	debugging	without	having	to	re-execute	the	command	that
caused	 the	 error.	 (Typical	 use	 is	 import	 pdb;	 pdb.pm()	 to
enter	 the	 post-mortem	 debugger;	 see	 pdb	 module	 for	 more
information.)

The	 meaning	 of	 the	 variables	 is	 the	 same	 as	 that	 of	 the	 return
values	from	exc_info()	above.

sys.maxsize

An	 integer	 giving	 the	 maximum	 value	 a	 variable	 of	 type
Py_ssize_t	 can	 take.	 It’s	 usually	 2**31	 -	 1	 on	 a	 32-bit
platform	and	2**63	-	1	on	a	64-bit	platform.

sys.maxunicode

An	 integer	giving	 the	value	of	 the	 largest	Unicode	code	point,	 i.e.
1114111	(0x10FFFF	in	hexadecimal).

Changed	in	version	3.3:	Before	PEP	393,	sys.maxunicode	used
to	be	either	0xFFFF	or	0x10FFFF,	depending	on	the	configuration
option	 that	 specified	 whether	 Unicode	 characters	 were	 stored	 as
UCS-2	or	UCS-4.

sys.meta_path

A	 list	 of	 finder	 objects	 that	 have	 their	 find_module()	 methods
called	 to	 see	 if	 one	 of	 the	 objects	 can	 find	 the	 module	 to	 be

http://www.python.org/dev/peps/pep-0393

imported.	The	find_module()	method	is	called	at	least	with	the
absolute	name	of	 the	module	being	 imported.	 If	 the	module	 to	be
imported	 is	 contained	 in	 package	 then	 the	 parent	 package’s
__path__	 attribute	 is	 passed	 in	 as	 a	 second	 argument.	 The
method	returns	None	if	the	module	cannot	be	found,	else	returns	a
loader.

sys.meta_path	is	searched	before	any	implicit	default	finders	or
sys.path.

See	PEP	302	for	the	original	specification.

sys.modules

This	 is	 a	 dictionary	 that	 maps	 module	 names	 to	 modules	 which
have	 already	 been	 loaded.	 This	 can	 be	 manipulated	 to	 force
reloading	 of	 modules	 and	 other	 tricks.	 However,	 replacing	 the
dictionary	 will	 not	 necessarily	 work	 as	 expected	 and	 deleting
essential	items	from	the	dictionary	may	cause	Python	to	fail.

sys.path

A	 list	 of	 strings	 that	 specifies	 the	 search	 path	 for	 modules.
Initialized	 from	 the	 environment	 variable	 PYTHONPATH,	 plus	 an
installation-dependent	default.

As	 initialized	 upon	 program	 startup,	 the	 first	 item	 of	 this	 list,
path[0],	 is	 the	 directory	 containing	 the	 script	 that	 was	 used	 to
invoke	the	Python	interpreter.	If	the	script	directory	is	not	available
(e.g.	if	the	interpreter	is	invoked	interactively	or	if	the	script	is	read
from	standard	 input),	 path[0]	 is	 the	 empty	 string,	which	directs
Python	to	search	modules	in	the	current	directory	first.	Notice	 that
the	script	directory	is	inserted	before	the	entries	inserted	as	a	result
of	PYTHONPATH.

http://www.python.org/dev/peps/pep-0302

A	 program	 is	 free	 to	 modify	 this	 list	 for	 its	 own	 purposes.	 Only
strings	 and	 bytes	 should	 be	 added	 to	 sys.path;	 all	 other	 data
types	are	ignored	during	import.

See	also: 	Module	site	This	describes	how	to	use	.pth	files	to
extend	sys.path.

sys.path_hooks

A	list	of	callables	that	take	a	path	argument	to	try	to	create	a	finder
for	 the	path.	 If	a	 finder	can	be	created,	 it	 is	 to	be	returned	by	 the
callable,	else	raise	ImportError.

Originally	specified	in	PEP	302.

sys.path_importer_cache

A	 dictionary	 acting	 as	 a	 cache	 for	 finder	 objects.	 The	 keys	 are
paths	that	have	been	passed	to	sys.path_hooks	and	the	values
are	the	finders	 that	are	 found.	 If	a	path	 is	a	valid	 file	system	path
but	no	finder	is	found	on	sys.path_hooks	then	None	is	stored.

Originally	specified	in	PEP	302.

Changed	 in	 version	 3.3:	 None	 is	 stored	 instead	 of
imp.NullImporter	when	no	finder	is	found.

sys.platform

This	string	contains	a	platform	identifier	that	can	be	used	to	append
platform-specific	components	to	sys.path,	for	instance.

For	 Unix	 systems,	 except	 on	 Linux,	 this	 is	 the	 lowercased	 OS
name	as	returned	by	uname	-s	with	the	first	part	of	the	version	as
returned	 by	 uname	 -r	 appended,	 e.g.	 'sunos5'	 or

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

'freebsd8',	at	the	time	when	Python	was	built.	Unless	you	want
to	test	for	a	specific	system	version,	it	is	therefore	recommended	to
use	the	following	idiom:

if	sys.platform.startswith('freebsd'):

				#	FreeBSD-specific	code	here...

elif	sys.platform.startswith('linux'):

				#	Linux-specific	code	here...

For	other	systems,	the	values	are:

System platform	value

Linux 'linux'

Windows 'win32'

Windows/Cygwin 'cygwin'

Mac	OS	X 'darwin'

Changed	in	version	3.3:	On	Linux,	sys.platform	doesn’t	contain
the	 major	 version	 anymore.	 It	 is	 always	 'linux',	 instead	 of
'linux2'	or	'linux3'.	Since	older	Python	versions	include	the
version	 number,	 it	 is	 recommended	 to	 always	 use	 the
startswith	idiom	presented	above.

See	 also: 	 os.name	 has	 a	 coarser	 granularity.	 os.uname()
gives	system-dependent	version	information.
The	platform	module	provides	detailed	checks	for	the	system’s
identity.

sys.prefix

A	string	giving	 the	site-specific	directory	prefix	where	 the	platform
independent	Python	files	are	installed;	by	default,	this	is	the	string

'/usr/local'.	This	can	be	set	at	build	time	with	the	--prefix
argument	 to	 the	 configure	 script.	 The	 main	 collection	 of	 Python
library	 modules	 is	 installed	 in	 the	 directory
prefix/lib/pythonX.Y	while	the	platform	independent	header
files	 (all	 except	 pyconfig.h)	 are	 stored	 in
prefix/include/pythonX.Y,	where	X.Y	is	the	version	number
of	Python,	for	example	3.2.

Note: 	 If	 a	 virtual	 environment	 is	 in	 effect,	 this	 value	 will	 be
changed	 in	 site.py	 to	 point	 to	 the	 virtual	 environment.	 The
value	 for	 the	 Python	 installation	 will	 still	 be	 available,	 via
base_prefix.

sys.ps1

sys.ps2

Strings	 specifying	 the	 primary	 and	 secondary	 prompt	 of	 the
interpreter.	These	are	only	defined	if	the	interpreter	is	in	interactive
mode.	Their	initial	values	in	this	case	are	'>>>	'	and	'...	'.	If
a	non-string	object	 is	assigned	 to	either	variable,	 its	str()	 is	 re-
evaluated	 each	 time	 the	 interpreter	 prepares	 to	 read	 a	 new
interactive	 command;	 this	 can	 be	 used	 to	 implement	 a	 dynamic
prompt.

sys.setcheckinterval(interval)
Set	the	interpreter’s	“check	interval”.	This	integer	value	determines
how	often	the	interpreter	checks	for	periodic	things	such	as	thread
switches	 and	 signal	 handlers.	 The	 default	 is	 100,	 meaning	 the
check	is	performed	every	100	Python	virtual	instructions.	Setting	it
to	 a	 larger	 value	 may	 increase	 performance	 for	 programs	 using
threads.	Setting	it	to	a	value	<=	0	checks	every	virtual	instruction,
maximizing	responsiveness	as	well	as	overhead.

Deprecated	 since	 version	 3.2:	 This	 function	 doesn’t	 have	 an
effect	 anymore,	 as	 the	 internal	 logic	 for	 thread	 switching	 and
asynchronous	 tasks	 has	 been	 rewritten.	 Use
setswitchinterval()	instead.

sys.setdlopenflags(n)
Set	the	flags	used	by	the	 interpreter	 for	dlopen()	calls,	such	as
when	the	interpreter	loads	extension	modules.	Among	other	things,
this	 will	 enable	 a	 lazy	 resolving	 of	 symbols	 when	 importing	 a
module,	 if	 called	 as	 sys.setdlopenflags(0).	 To	 share
symbols	 across	 extension	 modules,	 call	 as
sys.setdlopenflags(os.RTLD_GLOBAL).	 Symbolic	 names
for	 the	 flag	 values	 can	 be	 found	 in	 the	 os	 module	 (RTLD_xxx
constants,	e.g.	os.RTLD_LAZY).

Availability:	Unix.

sys.setprofile(profilefunc)
Set	the	system’s	profile	function,	which	allows	you	to	implement	a
Python	 source	 code	 profiler	 in	 Python.	 See	 chapter	 The	 Python
Profilers	for	more	information	on	the	Python	profiler.	The	system’s
profile	function	is	called	similarly	to	the	system’s	trace	function	(see
settrace()),	 but	 it	 isn’t	 called	 for	 each	 executed	 line	 of	 code
(only	on	call	and	return,	but	the	return	event	is	reported	even	when
an	 exception	 has	 been	 set).	 The	 function	 is	 thread-specific,	 but
there	 is	 no	 way	 for	 the	 profiler	 to	 know	 about	 context	 switches
between	 threads,	 so	 it	 does	 not	 make	 sense	 to	 use	 this	 in	 the
presence	of	multiple	threads.	Also,	its	return	value	is	not	used,	so	it
can	simply	return	None.

sys.setrecursionlimit(limit)

Set	the	maximum	depth	of	the	Python	interpreter	stack	to	limit.	This
limit	prevents	 infinite	 recursion	 from	causing	an	overflow	of	 the	C
stack	and	crashing	Python.

The	highest	possible	limit	is	platform-dependent.	A	user	may	need
to	set	the	limit	higher	when	they	have	a	program	that	requires	deep
recursion	and	a	platform	 that	 supports	a	higher	 limit.	This	 should
be	done	with	care,	because	a	too-high	limit	can	lead	to	a	crash.

sys.setswitchinterval(interval)
Set	 the	 interpreter’s	 thread	 switch	 interval	 (in	 seconds).	 This
floating-point	value	determines	the	ideal	duration	of	the	“timeslices”
allocated	to	concurrently	running	Python	threads.	Please	note	that
the	 actual	 value	 can	 be	 higher,	 especially	 if	 long-running	 internal
functions	 or	 methods	 are	 used.	 Also,	 which	 thread	 becomes
scheduled	 at	 the	 end	 of	 the	 interval	 is	 the	 operating	 system’s
decision.	The	interpreter	doesn’t	have	its	own	scheduler.

New	in	version	3.2.

sys.settrace(tracefunc)
Set	 the	system’s	 trace	 function,	which	allows	you	 to	 implement	a
Python	 source	 code	 debugger	 in	 Python.	 The	 function	 is	 thread-
specific;	 for	 a	 debugger	 to	 support	 multiple	 threads,	 it	 must	 be
registered	using	settrace()	for	each	thread	being	debugged.

Trace	 functions	 should	 have	 three	 arguments:	 frame,	 event,	 and
arg.	 frame	 is	 the	 current	 stack	 frame.	event	 is	 a	 string:	 'call',
'line',	 'return',	 'exception',	 'c_call',	 'c_return',
or	'c_exception'.	arg	depends	on	the	event	type.

The	trace	function	is	invoked	(with	event	set	to	'call')	whenever
a	new	local	scope	is	entered;	it	should	return	a	reference	to	a	local

trace	function	to	be	used	that	scope,	or	None	if	the	scope	shouldn’t
be	traced.

The	 local	 trace	 function	 should	 return	 a	 reference	 to	 itself	 (or	 to
another	 function	for	 further	 tracing	 in	 that	scope),	or	None	 to	 turn
off	tracing	in	that	scope.

The	events	have	the	following	meaning:

'call'

A	 function	 is	 called	 (or	 some	 other	 code	 block	 entered).	 The
global	 trace	 function	 is	 called;	 arg	 is	 None;	 the	 return	 value
specifies	the	local	trace	function.

'line'

The	 interpreter	 is	 about	 to	 execute	 a	 new	 line	 of	 code	 or	 re-
execute	 the	 condition	 of	 a	 loop.	 The	 local	 trace	 function	 is
called;	 arg	 is	 None;	 the	 return	 value	 specifies	 the	 new	 local
trace	 function.	 See	 Objects/lnotab_notes.txt	 for	 a
detailed	explanation	of	how	this	works.

'return'

A	 function	 (or	 other	 code	 block)	 is	 about	 to	 return.	 The	 local
trace	function	is	called;	arg	is	the	value	that	will	be	returned,	or
None	 if	the	event	is	caused	by	an	exception	being	raised.	The
trace	function’s	return	value	is	ignored.

'exception'

An	exception	 has	 occurred.	 The	 local	 trace	 function	 is	 called;
arg	 is	 a	 tuple	 (exception,	 value,	 traceback);	 the
return	value	specifies	the	new	local	trace	function.

'c_call'

A	C	 function	 is	 about	 to	 be	 called.	 This	may	 be	 an	 extension
function	or	a	built-in.	arg	is	the	C	function	object.

'c_return'

A	C	function	has	returned.	arg	is	the	C	function	object.

'c_exception'

A	 C	 function	 has	 raised	 an	 exception.	 arg	 is	 the	 C	 function
object.

Note	that	as	an	exception	is	propagated	down	the	chain	of	callers,
an	'exception'	event	is	generated	at	each	level.

For	 more	 information	 on	 code	 and	 frame	 objects,	 refer	 to	 The
standard	type	hierarchy.

CPython	 implementation	detail:	 The	 settrace()	 function	 is
intended	 only	 for	 implementing	 debuggers,	 profilers,	 coverage
tools	 and	 the	 like.	 Its	 behavior	 is	 part	 of	 the	 implementation
platform,	rather	than	part	of	the	language	definition,	and	thus	may
not	be	available	in	all	Python	implementations.

sys.settscdump(on_flag)
Activate	 dumping	 of	 VM	 measurements	 using	 the	 Pentium
timestamp	 counter,	 if	 on_flag	 is	 true.	 Deactivate	 these	 dumps	 if
on_flag	is	off.	The	function	is	available	only	if	Python	was	compiled
with	 --with-tsc.	 To	 understand	 the	 output	 of	 this	 dump,	 read
Python/ceval.c	in	the	Python	sources.

CPython	 implementation	 detail:	 This	 function	 is	 intimately
bound	to	CPython	implementation	details	and	thus	not	likely	to	be
implemented	elsewhere.

sys.stdin

sys.stdout

sys.stderr

File	objects	used	by	 the	 interpreter	 for	standard	 input,	output	and
errors:

stdin	 is	 used	 for	 all	 interactive	 input	 (including	 calls	 to
input());
stdout	 is	 used	 for	 the	 output	 of	 print()	 and	 expression
statements	and	for	the	prompts	of	input();
The	 interpreter’s	 own	 prompts	 and	 its	 error	messages	 go	 to
stderr.

By	default,	 these	streams	are	regular	 text	streams	as	returned	by
the	open()	function.	Their	parameters	are	chosen	as	follows:

The	 character	 encoding	 is	 platform-dependent.	 Under
Windows,	 if	 the	stream	is	 interactive	(that	 is,	 if	 its	isatty()
method	 returns	 True),	 the	 console	 codepage	 is	 used,
otherwise	 the	 ANSI	 code	 page.	 Under	 other	 platforms,	 the
locale	 encoding	 is	 used	 (see
locale.getpreferredencoding()).

Under	 all	 platforms	 though,	 you	 can	 override	 this	 value	 by
setting	the	PYTHONIOENCODING	environment	variable.

When	 interactive,	 standard	 streams	 are	 line-buffered.
Otherwise,	 they	 are	 block-buffered	 like	 regular	 text	 files.	 You
can	override	this	value	with	the	-u	command-line	option.

To	write	or	read	binary	data	from/to	the	standard	streams,	use	the
underlying	binary	buffer.	For	example,	to	write	bytes	to	stdout,
use	 sys.stdout.buffer.write(b'abc').	 Using
io.TextIOBase.detach(),	 streams	 can	 be	 made	 binary	 by
default.	This	function	sets	stdin	and	stdout	to	binary:

def	make_streams_binary():

				sys.stdin	=	sys.stdin.detach()

				sys.stdout	=	sys.stdout.detach()

Note	 that	 the	 streams	 may	 be	 replaced	 with	 objects	 (like
io.StringIO)	 that	 do	 not	 support	 the	 buffer	 attribute	 or	 the
detach()	 method	 and	 can	 raise	 AttributeError	 or
io.UnsupportedOperation.

sys.__stdin__

sys.__stdout__

sys.__stderr__

These	objects	contain	 the	original	values	of	stdin,	stderr	 and
stdout	 at	 the	 start	 of	 the	 program.	 They	 are	 used	 during
finalization,	 and	 could	 be	 useful	 to	 print	 to	 the	 actual	 standard
stream	no	matter	if	the	sys.std*	object	has	been	redirected.

It	can	also	be	used	to	restore	the	actual	files	to	known	working	file
objects	 in	 case	 they	 have	been	overwritten	with	 a	 broken	object.
However,	 the	 preferred	 way	 to	 do	 this	 is	 to	 explicitly	 save	 the
previous	stream	before	replacing	it,	and	restore	the	saved	object.

Note: 	Under	some	conditions	stdin,	stdout	and	stderr	as
well	 as	 the	 original	 values	 __stdin__,	 __stdout__	 and
__stderr__	 can	 be	None.	 It	 is	 usually	 the	 case	 for	Windows
GUI	 apps	 that	 aren’t	 connected	 to	 a	 console	 and	 Python	 apps
started	with	pythonw.

sys.thread_info

A	 struct	 sequence	 holding	 information	 about	 the	 thread
implementation.

Attribute Explanation

name

Name	of	the	thread	implementation:

'nt':	Windows	threads
'pthread':	POSIX	threads
'solaris':	Solaris	threads

lock

Name	of	the	lock	implementation:

'semaphore':	 a	 lock	 uses	 a
semaphore
'mutex+cond':	 a	 lock	 uses	 a	mutex
and	a	condition	variable
None	if	this	information	is	unknown

version

Name	and	version	of	the	thread	library.	It	is	a
string,	or	None	if	these	informations	are
unknown.

New	in	version	3.3.

sys.tracebacklimit

When	 this	 variable	 is	 set	 to	 an	 integer	 value,	 it	 determines	 the
maximum	number	of	 levels	of	 traceback	 information	printed	when
an	unhandled	exception	occurs.	The	default	is	1000.	When	set	 to
0	 or	 less,	 all	 traceback	 information	 is	 suppressed	 and	 only	 the
exception	type	and	value	are	printed.

sys.version

A	 string	 containing	 the	 version	 number	 of	 the	 Python	 interpreter
plus	additional	information	on	the	build	number	and	compiler	used.
This	string	 is	displayed	when	 the	 interactive	 interpreter	 is	started.
Do	 not	 extract	 version	 information	 out	 of	 it,	 rather,	 use

version_info	 and	 the	 functions	 provided	 by	 the	 platform
module.

sys.api_version

The	C	API	version	 for	 this	 interpreter.	Programmers	may	 find	 this
useful	 when	 debugging	 version	 conflicts	 between	 Python	 and
extension	modules.

sys.version_info

A	 tuple	 containing	 the	 five	 components	 of	 the	 version	 number:
major,	 minor,	 micro,	 releaselevel,	 and	 serial.	 All	 values	 except
releaselevel	are	 integers;	 the	 release	 level	 is	'alpha',	'beta',
'candidate',	 or	 'final'.	 The	 version_info	 value
corresponding	to	the	Python	version	2.0	is	(2,	0,	0,	'final',
0).	 The	 components	 can	 also	 be	 accessed	 by	 name,	 so
sys.version_info[0]	 is	 equivalent	 to
sys.version_info.major	and	so	on.

Changed	in	version	3.1:	Added	named	component	attributes.

sys.warnoptions

This	is	an	implementation	detail	of	the	warnings	framework;	do	not
modify	 this	 value.	 Refer	 to	 the	 warnings	 module	 for	 more
information	on	the	warnings	framework.

sys.winver

The	 version	 number	 used	 to	 form	 registry	 keys	 on	 Windows
platforms.	 This	 is	 stored	 as	 string	 resource	 1000	 in	 the	 Python
DLL.	The	value	is	normally	the	first	three	characters	of	version.	It
is	 provided	 in	 the	 sys	 module	 for	 informational	 purposes;
modifying	 this	 value	 has	 no	 effect	 on	 the	 registry	 keys	 used	 by
Python.	Availability:	Windows.

sys._xoptions

A	 dictionary	 of	 the	 various	 implementation-specific	 flags	 passed
through	 the	 -X	 command-line	 option.	 Option	 names	 are	 either
mapped	to	their	values,	if	given	explicitly,	or	to	True.	Example:

$./python	-Xa=b	-Xc

Python	3.2a3+	(py3k,	Oct	16	2010,	20:14:50)

[GCC	4.4.3]	on	linux2

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	sys

>>>	sys._xoptions

{'a':	'b',	'c':	True}

CPython	implementation	detail:	This	is	a	CPython-specific	way
of	accessing	options	passed	 through	 -X.	Other	 implementations
may	export	them	through	other	means,	or	not	at	all.

New	in	version	3.2.

Citations

[C99]
ISO/IEC	9899:1999.	“Programming	languages	–	C.”	A	public
draft	of	this	standard	is	available	at	http://www.open-
std.org/jtc1/sc22/wg14/www/docs/n1256.pdf.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1256.pdf
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.2.	sysconfig	—	Provide
access	to	Python’s	configuration
information
New	in	version	3.2.

Source	code:	Lib/sysconfig.py

The	 sysconfig	 module	 provides	 access	 to	 Python’s	 configuration
information	 like	 the	 list	 of	 installation	 paths	 and	 the	 configuration
variables	relevant	for	the	current	platform.

http://hg.python.org/cpython/file/3.4/Lib/sysconfig.py

29.2.1.	Configuration	variables

A	 Python	 distribution	 contains	 a	 Makefile	 and	 a	 pyconfig.h
header	file	that	are	necessary	to	build	both	the	Python	binary	itself	and
third-party	C	extensions	compiled	using	distutils.

sysconfig	puts	all	variables	found	in	 these	files	 in	a	dictionary	that
can	 be	 accessed	 using	 get_config_vars()	 or
get_config_var().

Notice	that	on	Windows,	it’s	a	much	smaller	set.

sysconfig.get_config_vars(*args)
With	no	arguments,	return	a	dictionary	of	all	configuration	variables
relevant	for	the	current	platform.

With	arguments,	 return	a	 list	of	values	 that	 result	 from	 looking	up
each	argument	in	the	configuration	variable	dictionary.

For	each	argument,	if	the	value	is	not	found,	return	None.

sysconfig.get_config_var(name)
Return	 the	 value	 of	 a	 single	 variable	 name.	 Equivalent	 to
get_config_vars().get(name).

If	name	is	not	found,	return	None.

Example	of	usage:

>>>	import	sysconfig

>>>	sysconfig.get_config_var('Py_ENABLE_SHARED')

0

>>>	sysconfig.get_config_var('LIBDIR')

'/usr/local/lib'

>>>	sysconfig.get_config_vars('AR',	'CXX')

['ar',	'g++']

29.2.2.	Installation	paths

Python	 uses	 an	 installation	 scheme	 that	 differs	 depending	 on	 the
platform	and	on	the	installation	options.	These	schemes	are	stored	in
sysconfig	under	unique	 identifiers	based	on	 the	value	 returned	by
os.name.

Every	 new	 component	 that	 is	 installed	 using	 distutils	 or	 a
Distutils-based	system	will	 follow	 the	same	scheme	 to	copy	 its	 file	 in
the	right	places.

Python	currently	supports	seven	schemes:

posix_prefix:	scheme	for	Posix	platforms	like	Linux	or	Mac	OS	X.
This	is	the	default	scheme	used	when	Python	or	a	component	 is
installed.
posix_home:	 scheme	 for	 Posix	 platforms	 used	 when	 a	 home
option	 is	 used	 upon	 installation.	 This	 scheme	 is	 used	 when	 a
component	 is	 installed	 through	 Distutils	 with	 a	 specific	 home
prefix.
posix_user:	scheme	for	Posix	platforms	used	when	a	component
is	 installed	 through	 Distutils	 and	 the	 user	 option	 is	 used.	 This
scheme	defines	paths	located	under	the	user	home	directory.
nt:	scheme	for	NT	platforms	like	Windows.
nt_user:	scheme	for	NT	platforms,	when	the	user	option	is	used.

Each	 scheme	 is	 itself	 composed	of	 a	 series	 of	 paths	 and	each	path
has	a	unique	identifier.	Python	currently	uses	eight	paths:

stdlib:	 directory	 containing	 the	 standard	 Python	 library	 files	 that
are	not	platform-specific.
platstdlib:	 directory	 containing	 the	 standard	 Python	 library	 files
that	are	platform-specific.

platlib:	directory	for	site-specific,	platform-specific	files.
purelib:	directory	for	site-specific,	non-platform-specific	files.
include:	directory	for	non-platform-specific	header	files.
platinclude:	directory	for	platform-specific	header	files.
scripts:	directory	for	script	files.
data:	directory	for	data	files.

sysconfig	provides	some	functions	to	determine	these	paths.

sysconfig.get_scheme_names()
Return	 a	 tuple	 containing	 all	 schemes	 currently	 supported	 in
sysconfig.

sysconfig.get_path_names()
Return	 a	 tuple	 containing	 all	 path	 names	 currently	 supported	 in
sysconfig.

sysconfig.get_path(name[,	scheme[,	vars[,	expand]]])
Return	an	 installation	path	 corresponding	 to	 the	path	name,	 from
the	install	scheme	named	scheme.

name	 has	 to	 be	 a	 value	 from	 the	 list	 returned	 by
get_path_names().

sysconfig	 stores	 installation	 paths	 corresponding	 to	 each	 path
name,	 for	 each	 platform,	 with	 variables	 to	 be	 expanded.	 For
instance	the	stdlib	path	for	the	nt	scheme	is:	{base}/Lib.

get_path()	 will	 use	 the	 variables	 returned	 by
get_config_vars()	 to	 expand	 the	 path.	 All	 variables	 have
default	values	for	each	platform	so	one	may	call	 this	 function	and
get	the	default	value.

If	scheme	 is	provided,	 it	must	be	a	value	from	the	 list	returned	by
get_scheme_names().	 Otherwise,	 the	 default	 scheme	 for	 the
current	platform	is	used.

If	 vars	 is	 provided,	 it	 must	 be	 a	 dictionary	 of	 variables	 that	 will
update	the	dictionary	return	by	get_config_vars().

If	expand	is	set	to	False,	the	path	will	not	be	expanded	using	the
variables.

If	name	is	not	found,	return	None.

sysconfig.get_paths([scheme[,	vars[,	expand]]])
Return	a	dictionary	 containing	all	 installation	paths	 corresponding
to	an	installation	scheme.	See	get_path()	for	more	information.

If	 scheme	 is	 not	 provided,	 will	 use	 the	 default	 scheme	 for	 the
current	platform.

If	 vars	 is	 provided,	 it	 must	 be	 a	 dictionary	 of	 variables	 that	 will
update	the	dictionary	used	to	expand	the	paths.

If	expand	is	set	to	False,	the	paths	will	not	be	expanded.

If	scheme	 is	 not	 an	 existing	 scheme,	 get_paths()	 will	 raise	 a
KeyError.

29.2.3.	Other	functions

sysconfig.get_python_version()
Return	 the	 MAJOR.MINOR	 Python	 version	 number	 as	 a	 string.
Similar	to	sys.version[:3].

sysconfig.get_platform()
Return	a	string	that	identifies	the	current	platform.

This	is	used	mainly	to	distinguish	platform-specific	build	directories
and	 platform-specific	 built	 distributions.	 Typically	 includes	 the	OS
name	 and	 version	 and	 the	 architecture	 (as	 supplied	 by
os.uname()),	 although	 the	 exact	 information	 included	 depends
on	the	OS;	e.g.	for	IRIX	the	architecture	isn’t	particularly	important
(IRIX	only	runs	on	SGI	hardware),	but	for	Linux	the	kernel	version
isn’t	particularly	important.

Examples	of	returned	values:

linux-i586
linux-alpha	(?)
solaris-2.6-sun4u
irix-5.3
irix64-6.2

Windows	will	return	one	of:

win-amd64	 (64bit	Windows	 on	 AMD64	 (aka	 x86_64,	 Intel64,
EM64T,	etc)
win-ia64	(64bit	Windows	on	Itanium)
win32	(all	others	-	specifically,	sys.platform	is	returned)

Mac	OS	X	can	return:

macosx-10.6-ppc
macosx-10.4-ppc64
macosx-10.3-i386
macosx-10.4-fat

For	 other	 non-POSIX	 platforms,	 currently	 just	 returns
sys.platform.

sysconfig.is_python_build()
Return	 True	 if	 the	 current	 Python	 installation	 was	 built	 from
source.

sysconfig.parse_config_h(fp[,	vars])
Parse	a	config.h-style	file.

fp	is	a	file-like	object	pointing	to	the	config.h-like	file.

A	dictionary	containing	name/value	pairs	is	returned.	If	an	optional
dictionary	is	passed	in	as	the	second	argument,	 it	 is	used	instead
of	a	new	dictionary,	and	updated	with	the	values	read	in	the	file.

sysconfig.get_config_h_filename()
Return	the	path	of	pyconfig.h.

sysconfig.get_makefile_filename()
Return	the	path	of	Makefile.

29.2.4.	Using	sysconfig	as	a	script

You	can	use	sysconfig	as	a	script	with	Python’s	-m	option:

$	python	-m	sysconfig

Platform:	"macosx-10.4-i386"

Python	version:	"3.2"

Current	installation	scheme:	"posix_prefix"

Paths:

								data	=	"/usr/local"

								include	=	"/Users/tarek/Dev/svn.python.org/py3k/Include"

								platinclude	=	"."

								platlib	=	"/usr/local/lib/python3.2/site-packages"

								platstdlib	=	"/usr/local/lib/python3.2"

								purelib	=	"/usr/local/lib/python3.2/site-packages"

								scripts	=	"/usr/local/bin"

								stdlib	=	"/usr/local/lib/python3.2"

Variables:

								AC_APPLE_UNIVERSAL_BUILD	=	"0"

								AIX_GENUINE_CPLUSPLUS	=	"0"

								AR	=	"ar"

								ARFLAGS	=	"rc"

								ASDLGEN	=	"./Parser/asdl_c.py"

								...

This	 call	will	 print	 in	 the	 standard	output	 the	 information	 returned	by
get_platform(),	 get_python_version(),	 get_path()	 and
get_config_vars().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.3.	builtins	—	Built-in	objects

This	module	provides	direct	access	to	all	‘built-in’	identifiers	of	Python;
for	example,	builtins.open	is	the	full	name	for	the	built-in	function
open().	 See	 Built-in	 Functions	 and	 Built-in	 Constants	 for
documentation.

This	module	 is	not	normally	accessed	explicitly	by	most	applications,
but	can	be	useful	in	modules	that	provide	objects	with	the	same	name
as	 a	 built-in	 value,	 but	 in	 which	 the	 built-in	 of	 that	 name	 is	 also
needed.	 For	 example,	 in	 a	 module	 that	 wants	 to	 implement	 an
open()	 function	 that	wraps	 the	built-in	open(),	 this	module	can	be
used	directly:

import	builtins

def	open(path):

				f	=	builtins.open(path,	'r')

				return	UpperCaser(f)

class	UpperCaser:

				'''Wrapper	around	a	file	that	converts	output	to	upper-case.'''

				def	__init__(self,	f):

								self._f	=	f

				def	read(self,	count=-1):

								return	self._f.read(count).upper()

				#	...

As	 an	 implementation	 detail,	 most	 modules	 have	 the	 name

__builtins__	made	available	as	part	of	their	globals.	The	value	of
__builtins__	 is	 normally	 either	 this	 module	 or	 the	 value	 of	 this
module’s	__dict__	attribute.	Since	this	is	an	implementation	detail,	it
may	not	be	used	by	alternate	implementations	of	Python.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.4.	__main__	—	Top-level	script
environment
This	module	represents	the	(otherwise	anonymous)	scope	in	which	the
interpreter’s	 main	 program	 executes	—	 commands	 read	 either	 from
standard	input,	from	a	script	file,	or	from	an	interactive	prompt.	It	is	this
environment	in	which	the	idiomatic	“conditional	script”	stanza	causes	a
script	to	run:

if	__name__	==	"__main__":

				main()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.5.	warnings	—	Warning
control
Source	code:	Lib/warnings.py

Warning	messages	are	typically	issued	in	situations	where	it	is	useful
to	alert	the	user	of	some	condition	in	a	program,	where	that	condition
(normally)	 doesn’t	 warrant	 raising	 an	 exception	 and	 terminating	 the
program.	 For	 example,	 one	 might	 want	 to	 issue	 a	 warning	 when	 a
program	uses	an	obsolete	module.

Python	 programmers	 issue	warnings	 by	 calling	 the	 warn()	 function
defined	 in	 this	module.	 (C	programmers	use	PyErr_WarnEx();	see
Exception	Handling	for	details).

Warning	 messages	 are	 normally	 written	 to	 sys.stderr,	 but	 their
disposition	 can	 be	 changed	 flexibly,	 from	 ignoring	 all	 warnings	 to
turning	 them	 into	 exceptions.	 The	 disposition	 of	 warnings	 can	 vary
based	 on	 the	warning	 category	 (see	 below),	 the	 text	 of	 the	warning
message,	and	the	source	location	where	it	 is	 issued.	Repetitions	of	a
particular	 warning	 for	 the	 same	 source	 location	 are	 typically
suppressed.

There	are	two	stages	 in	warning	control:	 first,	each	time	a	warning	 is
issued,	a	determination	is	made	whether	a	message	should	be	issued
or	not;	next,	 if	a	message	 is	 to	be	 issued,	 it	 is	 formatted	and	printed
using	a	user-settable	hook.

The	determination	whether	 to	 issue	a	warning	message	 is	controlled
by	 the	 warning	 filter,	 which	 is	 a	 sequence	 of	 matching	 rules	 and

http://hg.python.org/cpython/file/3.4/Lib/warnings.py

actions.	 Rules	 can	 be	 added	 to	 the	 filter	 by	 calling
filterwarnings()	 and	 reset	 to	 its	 default	 state	 by	 calling
resetwarnings().

The	 printing	 of	 warning	 messages	 is	 done	 by	 calling
showwarning(),	 which	 may	 be	 overridden;	 the	 default
implementation	 of	 this	 function	 formats	 the	 message	 by	 calling
formatwarning(),	 which	 is	 also	 available	 for	 use	 by	 custom
implementations.

See	also: 	logging.captureWarnings()	allows	you	to	handle
all	warnings	with	the	standard	logging	infrastructure.

29.5.1.	Warning	Categories

There	 are	 a	 number	 of	 built-in	 exceptions	 that	 represent	 warning
categories.	This	categorization	is	useful	to	be	able	to	filter	out	groups
of	 warnings.	 The	 following	 warnings	 category	 classes	 are	 currently
defined:

Class Description

Warning

This	is	the	base	class	of	all
warning	category	classes.	It	is
a	subclass	of	Exception.

UserWarning
The	default	category	for
warn().

DeprecationWarning

Base	category	for	warnings
about	deprecated	features
(ignored	by	default).

SyntaxWarning

Base	category	for	warnings
about	dubious	syntactic
features.

RuntimeWarning
Base	category	for	warnings
about	dubious	runtime	features.

FutureWarning

Base	category	for	warnings
about	constructs	that	will
change	semantically	in	the
future.

PendingDeprecationWarning

Base	category	for	warnings
about	features	that	will	be
deprecated	in	the	future
(ignored	by	default).

ImportWarning

Base	category	for	warnings
triggered	during	the	process	of
importing	a	module	(ignored	by

default).

UnicodeWarning
Base	category	for	warnings
related	to	Unicode.

BytesWarning

Base	category	for	warnings
related	to	bytes	and
bytearray.

ResourceWarning
Base	category	for	warnings
related	to	resource	usage.

While	 these	 are	 technically	 built-in	 exceptions,	 they	 are	 documented
here,	because	conceptually	they	belong	to	the	warnings	mechanism.

User	 code	 can	 define	 additional	 warning	 categories	 by	 subclassing
one	 of	 the	 standard	 warning	 categories.	 A	 warning	 category	 must
always	be	a	subclass	of	the	Warning	class.

29.5.2.	The	Warnings	Filter

The	warnings	 filter	controls	whether	warnings	are	 ignored,	displayed,
or	turned	into	errors	(raising	an	exception).

Conceptually,	 the	 warnings	 filter	 maintains	 an	 ordered	 list	 of	 filter
specifications;	 any	 specific	 warning	 is	 matched	 against	 each	 filter
specification	 in	 the	 list	 in	 turn	 until	 a	 match	 is	 found;	 the	 match
determines	 the	disposition	of	 the	match.	Each	entry	 is	a	 tuple	of	 the
form	(action,	message,	category,	module,	lineno),	where:

action	is	one	of	the	following	strings:

Value Disposition

"error" turn	matching	warnings	into	exceptions

"ignore" never	print	matching	warnings

"always" always	print	matching	warnings

"default"
print	the	first	occurrence	of	matching	warnings
for	each	location	where	the	warning	is	issued

"module"
print	the	first	occurrence	of	matching	warnings
for	each	module	where	the	warning	is	issued

"once"
print	only	the	first	occurrence	of	matching
warnings,	regardless	of	location

message	 is	 a	 string	 containing	 a	 regular	 expression	 that	 the
warning	message	must	match	 (the	match	 is	 compiled	 to	 always
be	case-insensitive).

category	is	a	class	(a	subclass	of	Warning)	of	which	the	warning
category	must	be	a	subclass	in	order	to	match.

module	is	a	string	containing	a	regular	expression	that	the	module
name	must	match	(the	match	is	compiled	to	be	case-sensitive).

lineno	 is	 an	 integer	 that	 the	 line	 number	 where	 the	 warning
occurred	must	match,	or	0	to	match	all	line	numbers.

Since	 the	 Warning	 class	 is	 derived	 from	 the	 built-in	 Exception
class,	 to	 turn	 a	 warning	 into	 an	 error	 we	 simply	 raise
category(message).

The	warnings	 filter	 is	 initialized	 by	 -W	 options	 passed	 to	 the	 Python
interpreter	command	line.	The	interpreter	saves	the	arguments	for	all	-
W	 options	 without	 interpretation	 in	 sys.warnoptions;	 the
warnings	 module	 parses	 these	 when	 it	 is	 first	 imported	 (invalid
options	are	ignored,	after	printing	a	message	to	sys.stderr).

29.5.2.1.	Default	Warning	Filters

By	 default,	 Python	 installs	 several	 warning	 filters,	 which	 can	 be
overridden	 by	 the	 command-line	 options	 passed	 to	 -W	 and	 calls	 to
filterwarnings().

DeprecationWarning	 and	 PendingDeprecationWarning,
and	ImportWarning	are	ignored.
BytesWarning	 is	 ignored	unless	 the	 -b	option	 is	given	once	or
twice;	in	this	case	this	warning	is	either	printed	(-b)	or	turned	into
an	exception	(-bb).
ResourceWarning	 is	 ignored	unless	Python	was	built	 in	debug
mode.

Changed	 in	 version	 3.2:	 DeprecationWarning	 is	 now	 ignored	 by
default	in	addition	to	PendingDeprecationWarning.

29.5.3.	Temporarily	Suppressing	Warnings

If	 you	are	 using	 code	 that	 you	 know	will	 raise	 a	warning,	 such	as	 a
deprecated	 function,	 but	 do	 not	 want	 to	 see	 the	 warning,	 then	 it	 is
possible	to	suppress	the	warning	using	the	catch_warnings	context
manager:

import	warnings

def	fxn():

				warnings.warn("deprecated",	DeprecationWarning)

with	warnings.catch_warnings():

				warnings.simplefilter("ignore")

				fxn()

While	within	the	context	manager	all	warnings	will	simply	be	 ignored.
This	allows	you	to	use	known-deprecated	code	without	having	to	see
the	 warning	 while	 not	 suppressing	 the	 warning	 for	 other	 code	 that
might	not	be	aware	of	its	use	of	deprecated	code.	Note:	this	can	only
be	guaranteed	in	a	single-threaded	application.	If	two	or	more	threads
use	 the	 catch_warnings	 context	 manager	 at	 the	 same	 time,	 the
behavior	is	undefined.

29.5.4.	Testing	Warnings

To	 test	warnings	 raised	by	code,	use	 the	 catch_warnings	 context
manager.	 With	 it	 you	 can	 temporarily	 mutate	 the	 warnings	 filter	 to
facilitate	 your	 testing.	 For	 instance,	 do	 the	 following	 to	 capture	 all
raised	warnings	to	check:

import	warnings

def	fxn():

				warnings.warn("deprecated",	DeprecationWarning)

with	warnings.catch_warnings(record=True)	as	w:

				#	Cause	all	warnings	to	always	be	triggered.

				warnings.simplefilter("always")

				#	Trigger	a	warning.

				fxn()

				#	Verify	some	things

				assert	len(w)	==	1

				assert	issubclass(w[-1].category,	DeprecationWarning

				assert	"deprecated"	in	str(w[-1].message)

One	 can	 also	 cause	 all	 warnings	 to	 be	 exceptions	 by	 using	 error
instead	of	always.	One	thing	to	be	aware	of	 is	that	 if	a	warning	has
already	been	raised	because	of	a	once/default	rule,	then	no	matter
what	 filters	 are	 set	 the	 warning	 will	 not	 be	 seen	 again	 unless	 the
warnings	registry	related	to	the	warning	has	been	cleared.

Once	 the	context	manager	exits,	 the	warnings	 filter	 is	 restored	 to	 its
state	when	the	context	was	entered.	This	prevents	tests	from	changing
the	warnings	 filter	 in	 unexpected	ways	between	 tests	 and	 leading	 to
indeterminate	 test	 results.	 The	 showwarning()	 function	 in	 the

module	 is	 also	 restored	 to	 its	 original	 value.	 Note:	 this	 can	 only	 be
guaranteed	 in	 a	 single-threaded	 application.	 If	 two	 or	 more	 threads
use	 the	 catch_warnings	 context	 manager	 at	 the	 same	 time,	 the
behavior	is	undefined.

When	testing	multiple	operations	that	raise	the	same	kind	of	warning,
it	is	important	to	test	them	in	a	manner	that	confirms	each	operation	is
raising	a	 new	warning	 (e.g.	 set	warnings	 to	 be	 raised	as	exceptions
and	check	the	operations	raise	exceptions,	check	that	the	length	of	the
warning	list	continues	to	increase	after	each	operation,	or	else	delete
the	previous	entries	from	the	warnings	list	before	each	new	operation).

29.5.5.	Updating	Code	For	New	Versions
of	Python

Warnings	 that	 are	 only	 of	 interest	 to	 the	 developer	 are	 ignored	 by
default.	As	such	you	should	make	sure	to	test	your	code	with	typically
ignored	warnings	made	visible.	You	can	do	this	from	the	command-line
by	 passing	 -Wd	 to	 the	 interpreter	 (this	 is	 shorthand	 for	 -W	default).
This	enables	default	handling	for	all	warnings,	including	those	that	are
ignored	 by	 default.	 To	 change	 what	 action	 is	 taken	 for	 encountered
warnings	you	simply	change	what	argument	is	passed	to	-W,	e.g.	-W
error.	See	the	-W	flag	for	more	details	on	what	is	possible.

To	programmatically	do	the	same	as	-Wd,	use:

warnings.simplefilter('default')

Make	sure	to	execute	this	code	as	soon	as	possible.	This	prevents	the
registering	 of	 what	 warnings	 have	 been	 raised	 from	 unexpectedly
influencing	how	future	warnings	are	treated.

Having	certain	warnings	 ignored	by	default	 is	done	to	prevent	a	user
from	seeing	warnings	that	are	only	of	interest	to	the	developer.	As	you
do	not	 necessarily	 have	 control	 over	what	 interpreter	 a	user	uses	 to
run	 their	 code,	 it	 is	 possible	 that	 a	 new	 version	 of	 Python	 will	 be
released	 between	 your	 release	 cycles.	 The	 new	 interpreter	 release
could	trigger	new	warnings	in	your	code	that	were	not	there	in	an	older
interpreter,	 e.g.	 DeprecationWarning	 for	 a	 module	 that	 you	 are
using.	While	you	as	a	developer	want	to	be	notified	that	your	code	is
using	 a	 deprecated	module,	 to	 a	 user	 this	 information	 is	 essentially
noise	and	provides	no	benefit	to	them.

The	unittest	module	has	been	also	updated	to	use	the	'default'
filter	while	running	tests.

29.5.6.	Available	Functions

warnings.warn(message,	category=None,	stacklevel=1)
Issue	 a	 warning,	 or	 maybe	 ignore	 it	 or	 raise	 an	 exception.	 The
category	argument,	if	given,	must	be	a	warning	category	class	(see
above);	it	defaults	to	UserWarning.	Alternatively	message	can	be
a	Warning	 instance,	 in	which	 case	category	will	 be	 ignored	 and
message.__class__	will	be	used.	In	this	case	the	message	text
will	 be	 str(message).	 This	 function	 raises	 an	 exception	 if	 the
particular	warning	issued	is	changed	into	an	error	by	the	warnings
filter	see	above.	The	stacklevel	argument	can	be	used	by	wrapper
functions	written	in	Python,	like	this:

def	deprecation(message):

				warnings.warn(message,	DeprecationWarning,	stacklevel

This	makes	 the	warning	 refer	 to	 deprecation()‘s	 caller,	 rather
than	to	the	source	of	deprecation()	itself	(since	the	latter	would
defeat	the	purpose	of	the	warning	message).

warnings.warn_explicit(message,	category,	filename,	lineno,
module=None,	registry=None,	module_globals=None)

This	is	a	low-level	interface	to	the	functionality	of	warn(),	passing
in	explicitly	the	message,	category,	filename	and	line	number,	and
optionally	 the	module	name	and	the	registry	(which	should	be	the
__warningregistry__	 dictionary	 of	 the	 module).	 The	 module
name	defaults	 to	 the	 filename	with	 .py	 stripped;	 if	 no	 registry	 is
passed,	 the	 warning	 is	 never	 suppressed.	 message	 must	 be	 a
string	and	category	a	subclass	of	Warning	or	message	may	be	a
Warning	instance,	in	which	case	category	will	be	ignored.

module_globals,	 if	 supplied,	 should	 be	 the	 global	 namespace	 in
use	by	the	code	for	which	the	warning	is	issued.	(This	argument	is
used	 to	support	displaying	source	 for	modules	 found	 in	zipfiles	or
other	non-filesystem	import	sources).

warnings.showwarning(message,	category,	filename,	lineno,
file=None,	line=None)

Write	 a	 warning	 to	 a	 file.	 The	 default	 implementation	 calls
formatwarning(message,	 category,	 filename,

lineno,	 line)	 and	 writes	 the	 resulting	 string	 to	 file,	 which
defaults	 to	sys.stderr.	 You	may	 replace	 this	 function	with	 any
callable	by	assigning	to	warnings.showwarning.	line	is	a	line	of
source	code	 to	be	 included	 in	 the	warning	message;	 if	 line	 is	not
supplied,	 showwarning()	 will	 try	 to	 read	 the	 line	 specified	 by
filename	and	lineno.

warnings.formatwarning(message,	category,	filename,	lineno,
line=None)

Format	 a	 warning	 the	 standard	 way.	 This	 returns	 a	 string	 which
may	contain	embedded	newlines	and	ends	 in	a	newline.	 line	 is	a
line	of	source	code	to	be	included	in	the	warning	message;	if	line	is
not	supplied,	formatwarning()	will	try	to	read	the	line	specified
by	filename	and	lineno.

warnings.filterwarnings(action,	message='',
category=Warning,	module='',	lineno=0,	append=False)

Insert	 an	 entry	 into	 the	 list	 of	 warnings	 filter	 specifications.	 The
entry	 is	 inserted	 at	 the	 front	 by	 default;	 if	 append	 is	 true,	 it	 is
inserted	 at	 the	 end.	 This	 checks	 the	 types	 of	 the	 arguments,
compiles	 the	 message	 and	 module	 regular	 expressions,	 and
inserts	them	as	a	tuple	in	the	list	of	warnings	filters.	Entries	closer
to	the	front	of	the	list	override	entries	later	in	the	list,	if	both	match	a

particular	 warning.	 Omitted	 arguments	 default	 to	 a	 value	 that
matches	everything.

warnings.simplefilter(action,	category=Warning,	lineno=0,
append=False)

Insert	 a	 simple	 entry	 into	 the	 list	 of	warnings	 filter	 specifications.
The	 meaning	 of	 the	 function	 parameters	 is	 as	 for
filterwarnings(),	but	 regular	expressions	are	not	needed	as
the	filter	 inserted	always	matches	any	message	in	any	module	as
long	as	the	category	and	line	number	match.

warnings.resetwarnings()
Reset	 the	 warnings	 filter.	 This	 discards	 the	 effect	 of	 all	 previous
calls	 to	 filterwarnings(),	 including	 that	 of	 the	 -W	 command
line	options	and	calls	to	simplefilter().

29.5.7.	Available	Context	Managers

class	warnings.catch_warnings(*,	record=False,
module=None)

A	 context	 manager	 that	 copies	 and,	 upon	 exit,	 restores	 the
warnings	 filter	 and	 the	 showwarning()	 function.	 If	 the	 record
argument	is	False	(the	default)	the	context	manager	returns	None
on	entry.	 If	 record	 is	True,	 a	 list	 is	 returned	 that	 is	 progressively
populated	 with	 objects	 as	 seen	 by	 a	 custom	 showwarning()
function	 (which	 also	 suppresses	 output	 to	 sys.stdout).	 Each
object	 in	 the	 list	 has	 attributes	 with	 the	 same	 names	 as	 the
arguments	to	showwarning().

The	module	argument	takes	a	module	that	will	be	used	instead	of
the	module	 returned	when	you	 import	warnings	whose	 filter	will
be	 protected.	 This	 argument	 exists	 primarily	 for	 testing	 the
warnings	module	itself.

Note: 	The	catch_warnings	manager	works	by	replacing	and
then	 later	 restoring	 the	module’s	showwarning()	 function	and
internal	 list	 of	 filter	 specifications.	 This	 means	 the	 context
manager	 is	 modifying	 global	 state	 and	 therefore	 is	 not	 thread-
safe.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.6.	contextlib	—	Utilities	for
with-statement	contexts

Source	code:	Lib/contextlib.py

This	 module	 provides	 utilities	 for	 common	 tasks	 involving	 the	 with
statement.	For	more	information	see	also	Context	Manager	Types	and
With	Statement	Context	Managers.

http://hg.python.org/cpython/file/3.4/Lib/contextlib.py

29.6.1.	Utilities

Functions	and	classes	provided:

@contextlib.contextmanager

This	 function	 is	 a	decorator	 that	 can	 be	 used	 to	 define	 a	 factory
function	for	with	statement	context	managers,	without	needing	to
create	 a	 class	 or	 separate	 __enter__()	 and	 __exit__()
methods.

A	 simple	 example	 (this	 is	 not	 recommended	 as	 a	 real	 way	 of
generating	HTML!):

from	contextlib	import	contextmanager

@contextmanager

def	tag(name):

				print("<%s>"	%	name)

				yield

				print("</%s>"	%	name)

>>>	with	tag("h1"):

...				print("foo")

...

<h1>

foo

</h1>

The	function	being	decorated	must	return	a	generator-iterator	when
called.	 This	 iterator	 must	 yield	 exactly	 one	 value,	 which	 will	 be
bound	to	the	targets	in	the	with	statement’s	as	clause,	if	any.

At	 the	 point	 where	 the	 generator	 yields,	 the	 block	 nested	 in	 the

with	statement	 is	executed.	The	generator	 is	then	resumed	after
the	block	is	exited.	If	an	unhandled	exception	occurs	in	the	block,	it
is	 reraised	 inside	 the	 generator	 at	 the	 point	 where	 the	 yield
occurred.	 Thus,	 you	 can	 use	 a	 try...except...finally
statement	 to	 trap	 the	 error	 (if	 any),	 or	 ensure	 that	 some	 cleanup
takes	place.	If	an	exception	is	trapped	merely	in	order	to	log	it	or	to
perform	 some	 action	 (rather	 than	 to	 suppress	 it	 entirely),	 the
generator	 must	 reraise	 that	 exception.	 Otherwise	 the	 generator
context	 manager	 will	 indicate	 to	 the	 with	 statement	 that	 the
exception	 has	 been	 handled,	 and	 execution	 will	 resume	with	 the
statement	immediately	following	the	with	statement.

contextmanager()	 uses	 ContextDecorator	 so	 the	 context
managers	it	creates	can	be	used	as	decorators	as	well	as	in	with
statements.	When	used	as	a	decorator,	a	new	generator	 instance
is	implicitly	created	on	each	function	call	(this	allows	the	otherwise
“one-shot”	 context	managers	 created	 by	 contextmanager()	 to
meet	 the	 requirement	 that	 context	 managers	 support	 multiple
invocations	in	order	to	be	used	as	decorators).

Changed	in	version	3.2:	Use	of	ContextDecorator.

contextlib.closing(thing)
Return	a	context	manager	that	closes	thing	upon	completion	of	the
block.	This	is	basically	equivalent	to:

from	contextlib	import	contextmanager

@contextmanager

def	closing(thing):

				try:

								yield	thing

				finally:

								thing.close()

And	lets	you	write	code	like	this:

from	contextlib	import	closing

from	urllib.request	import	urlopen

with	closing(urlopen('http://www.python.org'))	as	

				for	line	in	page:

								print(line)

without	needing	 to	explicitly	 close	page.	Even	 if	 an	 error	 occurs,
page.close()	will	be	called	when	the	with	block	is	exited.

contextlib.suppress(*exceptions)
Return	 a	 context	 manager	 that	 suppresses	 any	 of	 the	 specified
exceptions	 if	 they	occur	 in	 the	body	of	a	with	statement	and	 then
resumes	execution	with	the	first	statement	following	the	end	of	the
with	statement.

As	 with	 any	 other	 mechanism	 that	 completely	 suppresses
exceptions,	this	context	manager	should	be	used	only	to	cover	very
specific	errors	where	silently	continuing	with	program	execution	 is
known	to	be	the	right	thing	to	do.

For	example:

from	contextlib	import	suppress

with	suppress(FileNotFoundError):

				os.remove('somefile.tmp')

with	suppress(FileNotFoundError):

				os.remove('someotherfile.tmp')

This	code	is	equivalent	to:

try:

				os.remove('somefile.tmp')

except	FileNotFoundError:

				pass

try:

				os.remove('someotherfile.tmp')

except	FileNotFoundError:

				pass

This	context	manager	is	reentrant.

New	in	version	3.4.

contextlib.redirect_stdout(new_target)
Context	 manager	 for	 temporarily	 redirecting	 sys.stdout	 to
another	file	or	file-like	object.

This	 tool	 adds	 flexibility	 to	 existing	 functions	 or	 classes	 whose
output	is	hardwired	to	stdout.

For	example,	the	output	of	help()	normally	is	sent	to	sys.stdout.
You	can	capture	that	output	in	a	string	by	redirecting	the	output	to	a
io.StringIO	object:

f	=	io.StringIO()

with	redirect_stdout(f):

				help(pow)

s	=	f.getvalue()

To	send	the	output	of	help()	to	a	file	on	disk,	redirect	the	output
to	a	regular	file:

with	open('help.txt',	'w')	as	f:

				with	redirect_stdout(f):

								help(pow)

To	send	the	output	of	help()	to	sys.stderr:

with	redirect_stdout(sys.stderr):

				help(pow)

Note	 that	 the	 global	 side	 effect	 on	 sys.stdout	means	 that	 this
context	manager	 is	 not	 suitable	 for	 use	 in	 library	 code	 and	most
threaded	 applications.	 It	 also	 has	 no	 effect	 on	 the	 output	 of
subprocesses.	However,	it	is	still	a	useful	approach	for	many	utility
scripts.

This	context	manager	is	reusable	but	not	reentrant.

New	in	version	3.4.

class	contextlib.ContextDecorator
A	base	class	that	enables	a	context	manager	to	also	be	used	as	a
decorator.

Context	 managers	 inheriting	 from	 ContextDecorator	 have	 to
implement	 __enter__	 and	 __exit__	 as	 normal.	 __exit__
retains	 its	 optional	 exception	 handling	 even	 when	 used	 as	 a
decorator.

ContextDecorator	is	used	by	contextmanager(),	so	you	get
this	functionality	automatically.

Example	of	ContextDecorator:

from	contextlib	import	ContextDecorator

class	mycontext(ContextDecorator):

				def	__enter__(self):

								print('Starting')

								return	self

				def	__exit__(self,	*exc):

								print('Finishing')

								return	False

>>>	@mycontext()

...	def	function():

...					print('The	bit	in	the	middle')

...

>>>	function()

Starting

The	bit	in	the	middle

Finishing

>>>	with	mycontext():

...					print('The	bit	in	the	middle')

...

Starting

The	bit	in	the	middle

Finishing

This	 change	 is	 just	 syntactic	 sugar	 for	 any	 construct	 of	 the
following	form:

def	f():

				with	cm():

								#	Do	stuff

ContextDecorator	lets	you	instead	write:

@cm()

def	f():

				#	Do	stuff

It	makes	 it	 clear	 that	 the	cm	 applies	 to	 the	whole	 function,	 rather
than	just	a	piece	of	it	(and	saving	an	indentation	level	is	nice,	too).

Existing	context	managers	 that	already	have	a	base	class	can	be
extended	by	using	ContextDecorator	as	a	mixin	class:

from	contextlib	import	ContextDecorator

class	mycontext(ContextBaseClass,	ContextDecorator

				def	__enter__(self):

								return	self

				def	__exit__(self,	*exc):

								return	False

Note: 	 As	 the	 decorated	 function	 must	 be	 able	 to	 be	 called
multiple	times,	the	underlying	context	manager	must	support	use
in	 multiple	 with	 statements.	 If	 this	 is	 not	 the	 case,	 then	 the
original	 construct	 with	 the	 explicit	 with	 statement	 inside	 the
function	should	be	used.

New	in	version	3.2.

class	contextlib.ExitStack
A	 context	 manager	 that	 is	 designed	 to	 make	 it	 easy	 to
programmatically	 combine	 other	 context	 managers	 and	 cleanup
functions,	especially	those	that	are	optional	or	otherwise	driven	by
input	data.

For	example,	a	set	of	 files	may	easily	be	handled	 in	a	single	with

statement	as	follows:

with	ExitStack()	as	stack:

				files	=	[stack.enter_context(open(fname))	for	

				#	All	opened	files	will	automatically	be	closed	at	the	end	of

				#	the	with	statement,	even	if	attempts	to	open	files	later

				#	in	the	list	raise	an	exception

Each	 instance	maintains	 a	 stack	 of	 registered	 callbacks	 that	 are
called	in	reverse	order	when	the	instance	is	closed	(either	explicitly
or	 implicitly	at	 the	end	of	a	with	 statement).	Note	 that	callbacks
are	 not	 invoked	 implicitly	 when	 the	 context	 stack	 instance	 is
garbage	collected.

This	 stack	 model	 is	 used	 so	 that	 context	 managers	 that	 acquire
their	 resources	 in	 their	 __init__	 method	 (such	 as	 file	 objects)
can	be	handled	correctly.

Since	 registered	 callbacks	 are	 invoked	 in	 the	 reverse	 order	 of
registration,	 this	 ends	 up	 behaving	 as	 if	 multiple	 nested	 with
statements	had	been	used	with	the	registered	set	of	callbacks.	This
even	 extends	 to	 exception	 handling	 -	 if	 an	 inner	 callback
suppresses	or	 replaces	an	exception,	 then	outer	callbacks	will	be
passed	arguments	based	on	that	updated	state.

This	 is	 a	 relatively	 low	 level	 API	 that	 takes	 care	 of	 the	 details	 of
correctly	 unwinding	 the	 stack	 of	 exit	 callbacks.	 It	 provides	 a
suitable	 foundation	 for	 higher	 level	 context	 managers	 that
manipulate	the	exit	stack	in	application	specific	ways.

New	in	version	3.3.

enter_context(cm)

Enters	 a	 new	 context	 manager	 and	 adds	 its	 __exit__()
method	 to	 the	callback	stack.	The	 return	value	 is	 the	 result	of
the	context	manager’s	own	__enter__()	method.

These	context	managers	may	suppress	exceptions	just	as	they
normally	would	if	used	directly	as	part	of	a	with	statement.

push(exit)
Adds	a	context	manager’s	__exit__()	method	to	the	callback
stack.

As	 __enter__	 is	 not	 invoked,	 this	 method	 can	 be	 used	 to
cover	part	of	an	__enter__()	 implementation	with	a	context
manager’s	own	__exit__()	method.

If	passed	an	object	 that	 is	not	a	context	manager,	 this	method
assumes	 it	 is	a	callback	with	 the	same	signature	as	a	context
manager’s	 __exit__()	 method	 and	 adds	 it	 directly	 to	 the
callback	stack.

By	 returning	 true	 values,	 these	 callbacks	 can	 suppress
exceptions	 the	 same	 way	 context	 manager	 __exit__()
methods	can.

The	passed	in	object	is	returned	from	the	function,	allowing	this
method	to	be	used	as	a	function	decorator.

callback(callback,	*args,	**kwds)
Accepts	an	arbitrary	callback	function	and	arguments	and	adds
it	to	the	callback	stack.

Unlike	 the	 other	 methods,	 callbacks	 added	 this	 way	 cannot
suppress	exceptions	 (as	 they	are	never	 passed	 the	exception

details).

The	passed	 in	 callback	 is	 returned	 from	 the	 function,	 allowing
this	method	to	be	used	as	a	function	decorator.

pop_all()
Transfers	 the	 callback	 stack	 to	 a	 fresh	 ExitStack	 instance
and	 returns	 it.	 No	 callbacks	 are	 invoked	 by	 this	 operation	 -
instead,	they	will	now	be	invoked	when	the	new	stack	is	closed
(either	explicitly	or	implicitly	at	the	end	of	a	with	statement).

For	 example,	 a	 group	 of	 files	 can	 be	 opened	 as	 an	 “all	 or
nothing”	operation	as	follows:

with	ExitStack()	as	stack:

				files	=	[stack.enter_context(open(fname))	for

				#	Hold	onto	the	close	method,	but	don't	call	it	yet.

				close_files	=	stack.pop_all().close

				#	If	opening	any	file	fails,	all	previously	opened	files	will	be

				#	closed	automatically.	If	all	files	are	opened	successfully,

				#	they	will	remain	open	even	after	the	with	statement	ends.

				#	close_files()	can	then	be	invoked	explicitly	to	close	them	all.

close()
Immediately	 unwinds	 the	 callback	 stack,	 invoking	 callbacks	 in
the	reverse	order	of	registration.	For	any	context	managers	and
exit	callbacks	registered,	 the	arguments	passed	in	will	 indicate
that	no	exception	occurred.

29.6.2.	Examples	and	Recipes

This	 section	 describes	 some	 examples	 and	 recipes	 for	 making
effective	use	of	the	tools	provided	by	contextlib.

29.6.2.1.	Supporting	a	variable	number	of	context
managers

The	 primary	 use	 case	 for	 ExitStack	 is	 the	 one	 given	 in	 the	 class
documentation:	 supporting	 a	 variable	 number	 of	 context	 managers
and	 other	 cleanup	 operations	 in	 a	 single	 with	 statement.	 The
variability	 may	 come	 from	 the	 number	 of	 context	 managers	 needed
being	driven	by	user	input	(such	as	opening	a	user	specified	collection
of	files),	or	from	some	of	the	context	managers	being	optional:

with	ExitStack()	as	stack:

				for	resource	in	resources:

								stack.enter_context(resource)

				if	need_special	resource:

								special	=	acquire_special_resource()

								stack.callback(release_special_resource,	special

				#	Perform	operations	that	use	the	acquired	resources

As	 shown,	 ExitStack	 also	 makes	 it	 quite	 easy	 to	 use	 with
statements	 to	manage	arbitrary	 resources	 that	 don’t	 natively	 support
the	context	management	protocol.

29.6.2.2.	Simplifying	support	for	single	optional
context	managers

In	the	specific	case	of	a	single	optional	context	manager,	ExitStack
instances	can	be	used	as	a	“do	nothing”	context	manager,	allowing	a
context	 manager	 to	 easily	 be	 omitted	 without	 affecting	 the	 overall
structure	of	the	source	code:

def	debug_trace(details):

				if	__debug__:

								return	TraceContext(details)

				#	Don't	do	anything	special	with	the	context	in	release	mode

				return	ExitStack()

with	debug_trace():

				#	Suite	is	traced	in	debug	mode,	but	runs	normally	otherwise

29.6.2.3.	Catching	exceptions	from	__enter__
methods

It	 is	 occasionally	 desirable	 to	 catch	 exceptions	 from	 an	 __enter__
method	 implementation,	 without	 inadvertently	 catching	 exceptions
from	 the	with	 statement	 body	or	 the	 context	manager’s	 __exit__
method.	By	using	ExitStack	 the	steps	 in	 the	context	management
protocol	can	be	separated	slightly	in	order	to	allow	this:

stack	=	ExitStack()

try:

				x	=	stack.enter_context(cm)

except	Exception:

				#	handle	__enter__	exception

else:

				with	stack:

								#	Handle	normal	case

Actually	needing	to	do	this	is	likely	to	indicate	that	the	underlying	API

should	 be	 providing	 a	 direct	 resource	management	 interface	 for	 use
with	 try/except/finally	 statements,	 but	 not	 all	 APIs	 are	 well
designed	in	that	regard.	When	a	context	manager	is	the	only	resource
management	 API	 provided,	 then	 ExitStack	 can	 make	 it	 easier	 to
handle	 various	 situations	 that	 can’t	 be	 handled	 directly	 in	 a	 with
statement.

29.6.2.4.	Cleaning	up	in	an	__enter__
implementation

As	noted	 in	 the	documentation	of	ExitStack.push(),	 this	method
can	 be	 useful	 in	 cleaning	 up	 an	 already	 allocated	 resource	 if	 later
steps	in	the	__enter__()	implementation	fail.

Here’s	 an	 example	 of	 doing	 this	 for	 a	 context	manager	 that	 accepts
resource	 acquisition	 and	 release	 functions,	 along	 with	 an	 optional
validation	 function,	 and	 maps	 them	 to	 the	 context	 management
protocol:

from	contextlib	import	contextmanager,	ExitStack

class	ResourceManager:

				def	__init__(self,	acquire_resource,	release_resource

								self.acquire_resource	=	acquire_resource

								self.release_resource	=	release_resource

								if	check_resource_ok	is	None:

												def	check_resource_ok(resource):

																return	True

								self.check_resource_ok	=	check_resource_ok

				@contextmanager

				def	_cleanup_on_error(self):

								with	ExitStack()	as	stack:

												stack.push(self)

												yield

												#	The	validation	check	passed	and	didn't	raise	an	exception

												#	Accordingly,	we	want	to	keep	the	resource,	and	pass	it

												#	back	to	our	caller

												stack.pop_all()

				def	__enter__(self):

								resource	=	self.acquire_resource()

								with	self._cleanup_on_error():

												if	not	self.check_resource_ok(resource):

																msg	=	"Failed	validation	for	{!r}"

																raise	RuntimeError(msg.format(resource

								return	resource

				def	__exit__(self,	*exc_details):

								#	We	don't	need	to	duplicate	any	of	our	resource	release	logic

								self.release_resource()

29.6.2.5.	Replacing	any	use	of	try-finally
and	flag	variables

A	pattern	you	will	sometimes	see	is	a	try-finally	statement	with	a
flag	 variable	 to	 indicate	 whether	 or	 not	 the	 body	 of	 the	 finally
clause	should	be	executed.	In	its	simplest	form	(that	can’t	already	be
handled	 just	by	using	an	except	clause	 instead),	 it	 looks	something
like	this:

cleanup_needed	=	True

try:

				result	=	perform_operation()

				if	result:

								cleanup_needed	=	False

finally:

				if	cleanup_needed:

								cleanup_resources()

As	with	any	try	statement	based	code,	 this	can	cause	problems	for
development	 and	 review,	 because	 the	 setup	 code	 and	 the	 cleanup
code	can	end	up	being	separated	by	arbitrarily	long	sections	of	code.

ExitStack	 makes	 it	 possible	 to	 instead	 register	 a	 callback	 for
execution	 at	 the	 end	 of	 a	 with	 statement,	 and	 then	 later	 decide	 to
skip	executing	that	callback:

from	contextlib	import	ExitStack

with	ExitStack()	as	stack:

				stack.callback(cleanup_resources)

				result	=	perform_operation()

				if	result:

								stack.pop_all()

This	allows	the	intended	cleanup	up	behaviour	to	be	made	explicit	up
front,	rather	than	requiring	a	separate	flag	variable.

If	 a	 particular	 application	 uses	 this	 pattern	 a	 lot,	 it	 can	 be	 simplified
even	further	by	means	of	a	small	helper	class:

from	contextlib	import	ExitStack

class	Callback(ExitStack):

				def	__init__(self,	callback,	*args,	**kwds):

								super(Callback,	self).__init__()

								self.callback(callback,	*args,	**kwds)

				def	cancel(self):

								self.pop_all()

with	Callback(cleanup_resources)	as	cb:

				result	=	perform_operation()

				if	result:

								cb.cancel()

If	 the	resource	cleanup	isn’t	already	neatly	bundled	into	a	standalone
function,	 then	 it	 is	 still	 possible	 to	 use	 the	 decorator	 form	 of
ExitStack.callback()	 to	 declare	 the	 resource	 cleanup	 in
advance:

from	contextlib	import	ExitStack

with	ExitStack()	as	stack:

				@stack.callback

				def	cleanup_resources():

								...

				result	=	perform_operation()

				if	result:

								stack.pop_all()

Due	 to	 the	 way	 the	 decorator	 protocol	 works,	 a	 callback	 function
declared	this	way	cannot	take	any	parameters.	Instead,	any	resources
to	be	released	must	be	accessed	as	closure	variables

29.6.2.6.	Using	a	context	manager	as	a	function
decorator

ContextDecorator	makes	 it	possible	 to	use	a	context	manager	 in
both	an	ordinary	with	statement	and	also	as	a	function	decorator.

For	 example,	 it	 is	 sometimes	 useful	 to	 wrap	 functions	 or	 groups	 of
statements	with	a	 logger	 that	can	 track	 the	 time	of	entry	and	 time	of
exit.	 Rather	 than	 writing	 both	 a	 function	 decorator	 and	 a	 context

manager	 for	 the	 task,	 inheriting	 from	 ContextDecorator	 provides
both	capabilities	in	a	single	definition:

from	contextlib	import	ContextDecorator

import	logging

logging.basicConfig(level=logging.INFO)

class	track_entry_and_exit(ContextDecorator):

				def	__init__(self,	name):

								self.name	=	name

				def	__enter__(self):

								logging.info('Entering:	{}'.format(name))

				def	__exit__(self,	exc_type,	exc,	exc_tb):

								logging.info('Exiting:	{}'.format(name))

Instances	of	this	class	can	be	used	as	both	a	context	manager:

with	track_entry_and_exit('widget	loader'):

				print('Some	time	consuming	activity	goes	here')

				load_widget()

And	also	as	a	function	decorator:

@track_entry_and_exit('widget	loader')

def	activity():

				print('Some	time	consuming	activity	goes	here')

				load_widget()

Note	 that	 there	 is	 one	 additional	 limitation	 when	 using	 context
managers	as	function	decorators:	there’s	no	way	to	access	the	return
value	 of	 __enter__().	 If	 that	 value	 is	 needed,	 then	 it	 is	 still
necessary	to	use	an	explicit	with	statement.

See	also:

PEP	0343	-	The	“with”	statement
The	 specification,	 background,	 and	 examples	 for	 the	 Python
with	statement.

http://www.python.org/dev/peps/pep-0343

29.6.3.	Single	use,	reusable	and	reentrant
context	managers

Most	context	managers	are	written	in	a	way	that	means	they	can	only
be	 used	 effectively	 in	 a	 with	 statement	 once.	 These	 single	 use
context	 managers	 must	 be	 created	 afresh	 each	 time	 they’re	 used	 -
attempting	 to	 use	 them	 a	 second	 time	 will	 trigger	 an	 exception	 or
otherwise	not	work	correctly.

This	common	 limitation	means	 that	 it	 is	generally	advisable	 to	create
context	managers	directly	in	the	header	of	the	with	statement	where
they	are	used	(as	shown	in	all	of	the	usage	examples	above).

Files	are	an	example	of	effectively	single	use	context	managers,	since
the	 first	with	 statement	will	 close	 the	 file,	 preventing	any	 further	 IO
operations	using	that	file	object.

Context	managers	created	using	contextmanager()	are	also	single
use	 context	 managers,	 and	 will	 complain	 about	 the	 underlying
generator	 failing	 to	yield	 if	an	attempt	 is	made	to	use	them	a	second
time:

>>>	from	contextlib	import	contextmanager

>>>	@contextmanager

...	def	singleuse():

...					print("Before")

...					yield

...					print("After")

...

>>>	cm	=	singleuse()

>>>	with	cm:

...					pass

...

Before

After

>>>	with	cm:

...				pass

...

Traceback	(most	recent	call	last):

				...

RuntimeError:	generator	didn't	yield

29.6.3.1.	Reentrant	context	managers

More	 sophisticated	 context	 managers	 may	 be	 “reentrant”.	 These
context	managers	can	not	only	be	used	in	multiple	with	statements,
but	may	also	be	used	 inside	a	with	 statement	 that	 is	already	using
the	same	context	manager.

threading.RLock	is	an	example	of	a	reentrant	context	manager,	as
are	 suppress()	 and	 redirect_stdout().	 Here’s	 a	 very	 simple
example	of	reentrant	use:

>>>	from	contextlib	import	redirect_stdout

>>>	from	io	import	StringIO

>>>	stream	=	StringIO()

>>>	write_to_stream	=	redirect_stdout(stream)

>>>	with	write_to_stream:

...					print("This	is	written	to	the	stream	rather	than	stdout"

...					with	write_to_stream:

...									print("This	is	also	written	to	the	stream"

...

>>>	print("This	is	written	directly	to	stdout")

This	is	written	directly	to	stdout

>>>	print(stream.getvalue())

This	is	written	to	the	stream	rather	than	stdout

This	is	also	written	to	the	stream

Real	world	examples	of	reentrancy	are	more	likely	to	 involve	multiple
functions	calling	each	other	and	hence	be	far	more	complicated	than
this	example.

Note	also	 that	being	 reentrant	 is	not	 the	same	 thing	as	being	 thread
safe.	redirect_stdout(),	for	example,	is	definitely	not	thread	safe,
as	 it	 makes	 a	 global	 modification	 to	 the	 system	 state	 by	 binding
sys.stdout	to	a	different	stream.

29.6.3.2.	Reusable	context	managers

Distinct	 from	 both	 single	 use	 and	 reentrant	 context	 managers	 are
“reusable”	context	managers	 (or,	 to	be	completely	explicit,	 “reusable,
but	not	reentrant”	context	managers,	since	reentrant	context	managers
are	 also	 reusable).	 These	 context	 managers	 support	 being	 used
multiple	 times,	 but	 will	 fail	 (or	 otherwise	 not	 work	 correctly)	 if	 the
specific	 context	 manager	 instance	 has	 already	 been	 used	 in	 a
containing	with	statement.

threading.Lock	 is	 an	 example	 of	 a	 reusable,	 but	 not	 reentrant,
context	 manager	 (for	 a	 reentrant	 lock,	 it	 is	 necessary	 to	 use
threading.RLock	instead).

Another	example	of	a	reusable,	but	not	reentrant,	context	manager	is
ExitStack,	 as	 it	 invokes	 all	 currently	 registered	 callbacks	 when
leaving	any	with	statement,	regardless	of	where	those	callbacks	were
added:

>>>	from	contextlib	import	ExitStack

>>>	stack	=	ExitStack()

>>>	with	stack:

...					stack.callback(print,	"Callback:	from	first	context"

...					print("Leaving	first	context")

...

Leaving	first	context

Callback:	from	first	context

>>>	with	stack:

...					stack.callback(print,	"Callback:	from	second	context"

...					print("Leaving	second	context")

...

Leaving	second	context

Callback:	from	second	context

>>>	with	stack:

...					stack.callback(print,	"Callback:	from	outer	context"

...					with	stack:

...									stack.callback(print,	"Callback:	from	inner	context"

...									print("Leaving	inner	context")

...					print("Leaving	outer	context")

...

Leaving	inner	context

Callback:	from	inner	context

Callback:	from	outer	context

Leaving	outer	context

As	 the	output	 from	the	example	shows,	 reusing	a	single	stack	object
across	multiple	with	statements	works	correctly,	but	attempting	to	nest
them	will	 cause	 the	 stack	 to	 be	 cleared	 at	 the	 end	 of	 the	 innermost
with	statement,	which	is	unlikely	to	be	desirable	behaviour.

Using	 separate	 ExitStack	 instances	 instead	 of	 reusing	 a	 single
instance	avoids	that	problem:

>>>	from	contextlib	import	ExitStack

>>>	with	ExitStack()	as	outer_stack:

...					outer_stack.callback(print,	"Callback:	from	outer	context"

...					with	ExitStack()	as	inner_stack:

...									inner_stack.callback(print,	"Callback:	from	inner	context"

...									print("Leaving	inner	context")

...					print("Leaving	outer	context")

...

Leaving	inner	context

Callback:	from	inner	context

Leaving	outer	context

Callback:	from	outer	context

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.7.	abc	—	Abstract	Base
Classes
Source	code:	Lib/abc.py

This	 module	 provides	 the	 infrastructure	 for	 defining	 abstract	 base
classes	 (ABCs)	 in	Python,	as	outlined	 in	PEP	3119;	 see	 the	PEP	 for
why	this	was	added	to	Python.	(See	also	PEP	3141	and	the	numbers
module	regarding	a	type	hierarchy	for	numbers	based	on	ABCs.)

The	 collections	 module	 has	 some	 concrete	 classes	 that	 derive
from	ABCs;	 these	 can,	 of	 course,	 be	 further	 derived.	 In	 addition	 the
collections.abc	submodule	has	some	ABCs	that	can	be	used	to
test	 whether	 a	 class	 or	 instance	 provides	 a	 particular	 interface,	 for
example,	is	it	hashable	or	a	mapping.

This	module	provides	the	following	classes:

class	abc.ABCMeta
Metaclass	for	defining	Abstract	Base	Classes	(ABCs).

Use	this	metaclass	to	create	an	ABC.	An	ABC	can	be	subclassed
directly,	 and	 then	 acts	 as	 a	 mix-in	 class.	 You	 can	 also	 register
unrelated	 concrete	 classes	 (even	 built-in	 classes)	 and	 unrelated
ABCs	as	“virtual	subclasses”	–	these	and	their	descendants	will	be
considered	 subclasses	 of	 the	 registering	 ABC	 by	 the	 built-in
issubclass()	function,	but	the	registering	ABC	won’t	show	up	in
their	 MRO	 (Method	 Resolution	 Order)	 nor	 will	 method
implementations	 defined	 by	 the	 registering	 ABC	 be	 callable	 (not
even	via	super()).	[1]

http://hg.python.org/cpython/file/3.4/Lib/abc.py
http://www.python.org/dev/peps/pep-3119
http://www.python.org/dev/peps/pep-3141

Classes	created	with	a	metaclass	of	ABCMeta	have	 the	 following
method:

register(subclass)
Register	 subclass	 as	 a	 “virtual	 subclass”	 of	 this	 ABC.	 For
example:

from	abc	import	ABCMeta

class	MyABC(metaclass=ABCMeta):

				pass

MyABC.register(tuple)

assert	issubclass(tuple,	MyABC)

assert	isinstance((),	MyABC)

Changed	 in	 version	 3.3:	 Returns	 the	 registered	 subclass,	 to
allow	usage	as	a	class	decorator.

Changed	 in	 version	 3.4:	To	 detect	 calls	 to	 register(),	 you
can	use	the	get_cache_token()	function.

You	can	also	override	this	method	in	an	abstract	base	class:

__subclasshook__(subclass)
(Must	be	defined	as	a	class	method.)

Check	whether	subclass	 is	considered	a	subclass	of	this	ABC.
This	 means	 that	 you	 can	 customize	 the	 behavior	 of
issubclass	 further	without	the	need	to	call	register()	on
every	class	you	want	to	consider	a	subclass	of	the	ABC.	(This
class	 method	 is	 called	 from	 the	 __subclasscheck__()
method	of	the	ABC.)

This	method	should	return	True,	False	or	NotImplemented.
If	it	returns	True,	the	subclass	is	considered	a	subclass	of	this
ABC.	 If	 it	 returns	 False,	 the	 subclass	 is	 not	 considered	 a
subclass	 of	 this	 ABC,	 even	 if	 it	 would	 normally	 be	 one.	 If	 it
returns	 NotImplemented,	 the	 subclass	 check	 is	 continued
with	the	usual	mechanism.

For	a	demonstration	of	 these	concepts,	 look	at	 this	example	ABC
definition:

class	Foo:

				def	__getitem__(self,	index):

								...

				def	__len__(self):

								...

				def	get_iterator(self):

								return	iter(self)

class	MyIterable(metaclass=ABCMeta):

				@abstractmethod

				def	__iter__(self):

								while	False:

												yield	None

				def	get_iterator(self):

								return	self.__iter__()

				@classmethod

				def	__subclasshook__(cls,	C):

								if	cls	is	MyIterable:

												if	any("__iter__"	in	B.__dict__	for	B	

																return	True

								return	NotImplemented

MyIterable.register(Foo)

The	 ABC	 MyIterable	 defines	 the	 standard	 iterable	 method,
__iter__(),	 as	 an	 abstract	 method.	 The	 implementation	 given
here	 can	 still	 be	 called	 from	 subclasses.	 The	 get_iterator()
method	is	also	part	of	the	MyIterable	abstract	base	class,	but	it
does	not	have	to	be	overridden	in	non-abstract	derived	classes.

The	__subclasshook__()	class	method	defined	here	says	that
any	class	that	has	an	__iter__()	method	in	its	__dict__	(or	in
that	of	one	of	 its	base	classes,	accessed	via	 the	__mro__	 list)	 is
considered	a	MyIterable	too.

Finally,	the	last	line	makes	Foo	a	virtual	subclass	of	MyIterable,
even	 though	 it	 does	 not	 define	 an	 __iter__()	method	 (it	 uses
the	old-style	iterable	protocol,	defined	in	terms	of	__len__()	and
__getitem__()).	 Note	 that	 this	 will	 not	 make	 get_iterator
available	as	a	method	of	Foo,	so	it	is	provided	separately.

class	abc.ABC
A	helper	class	that	has	ABCMeta	as	its	metaclass.	With	this	class,
an	abstract	base	class	can	be	created	by	simply	deriving	from	ABC,
avoiding	sometimes	confusing	metaclass	usage.

Note	that	the	type	of	ABC	is	still	ABCMeta,	therefore	inheriting	from
ABC	requires	the	usual	precautions	regarding	metaclass	usage,	as
multiple	inheritance	may	lead	to	metaclass	conflicts.

New	in	version	3.4.

The	abc	module	also	provides	the	following	decorators:

@abc.abstractmethod

A	decorator	indicating	abstract	methods.

Using	 this	 decorator	 requires	 that	 the	 class’s	 metaclass	 is
ABCMeta	or	is	derived	from	it.	A	class	that	has	a	metaclass	derived
from	 ABCMeta	 cannot	 be	 instantiated	 unless	 all	 of	 its	 abstract
methods	and	properties	are	overridden.	The	abstract	methods	can
be	 called	 using	 any	 of	 the	 normal	 ‘super’	 call	 mechanisms.
abstractmethod()	may	be	used	to	declare	abstract	methods	for
properties	and	descriptors.

Dynamically	adding	abstract	methods	 to	a	 class,	 or	attempting	 to
modify	 the	 abstraction	 status	 of	 a	 method	 or	 class	 once	 it	 is
created,	are	not	supported.	The	abstractmethod()	only	affects
subclasses	 derived	 using	 regular	 inheritance;	 “virtual	 subclasses”
registered	with	the	ABC’s	register()	method	are	not	affected.

When	 abstractmethod()	 is	 applied	 in	 combination	 with	 other
method	 descriptors,	 it	 should	 be	 applied	 as	 the	 innermost
decorator,	as	shown	in	the	following	usage	examples:

class	C(metaclass=ABCMeta):

				@abstractmethod

				def	my_abstract_method(self,	...):

								...

				@classmethod

				@abstractmethod

				def	my_abstract_classmethod(cls,	...):

								...

				@staticmethod

				@abstractmethod

				def	my_abstract_staticmethod(...):

								...

				@property

				@abstractmethod

				def	my_abstract_property(self):

								...

				@my_abstract_property.setter

				@abstractmethod

				def	my_abstract_property(self,	val):

								...

				@abstractmethod

				def	_get_x(self):

								...

				@abstractmethod

				def	_set_x(self,	val):

								...

				x	=	property(_get_x,	_set_x)

In	 order	 to	 correctly	 interoperate	 with	 the	 abstract	 base	 class
machinery,	 the	 descriptor	 must	 identify	 itself	 as	 abstract	 using
__isabstractmethod__.	 In	 general,	 this	 attribute	 should	 be
True	 if	 any	 of	 the	methods	 used	 to	 compose	 the	 descriptor	 are
abstract.	 For	 example,	 Python’s	 built-in	 property	 does	 the
equivalent	of:

class	Descriptor:

				...

				@property

				def	__isabstractmethod__(self):

								return	any(getattr(f,	'__isabstractmethod__'

																			f	in	(self._fget,	self._fset,	self

Note: 	 Unlike	 Java	 abstract	 methods,	 these	 abstract	 methods
may	have	an	implementation.	This	implementation	can	be	called
via	the	super()	mechanism	from	the	class	that	overrides	it.	This

could	be	useful	as	an	end-point	 for	a	super-call	 in	a	 framework
that	uses	cooperative	multiple-inheritance.

@abc.abstractclassmethod

A	subclass	of	 the	built-in	classmethod(),	 indicating	an	abstract
classmethod.	Otherwise	it	is	similar	to	abstractmethod().

This	 special	 case	 is	 deprecated,	 as	 the	 classmethod()

decorator	is	now	correctly	identified	as	abstract	when	applied	to	an
abstract	method:

class	C(metaclass=ABCMeta):

				@classmethod

				@abstractmethod

				def	my_abstract_classmethod(cls,	...):

								...

New	in	version	3.2.

Deprecated	 since	 version	 3.3:	 It	 is	 now	 possible	 to	 use
classmethod	with	abstractmethod(),	making	this	decorator
redundant.

@abc.abstractstaticmethod

A	subclass	of	the	built-in	staticmethod(),	indicating	an	abstract
staticmethod.	Otherwise	it	is	similar	to	abstractmethod().

This	 special	 case	 is	 deprecated,	 as	 the	 staticmethod()
decorator	is	now	correctly	identified	as	abstract	when	applied	to	an
abstract	method:

class	C(metaclass=ABCMeta):

				@staticmethod

				@abstractmethod

				def	my_abstract_staticmethod(...):

								...

New	in	version	3.2.

Deprecated	 since	 version	 3.3:	 It	 is	 now	 possible	 to	 use
staticmethod	 with	 abstractmethod(),	 making	 this
decorator	redundant.

@abc.abstractproperty(fget=None,	fset=None,	fdel=None,
doc=None)

A	 subclass	 of	 the	 built-in	 property(),	 indicating	 an	 abstract
property.

Using	this	function	requires	that	the	class’s	metaclass	is	ABCMeta
or	 is	 derived	 from	 it.	 A	 class	 that	 has	 a	 metaclass	 derived	 from
ABCMeta	cannot	be	instantiated	unless	all	of	its	abstract	methods
and	 properties	 are	 overridden.	 The	 abstract	 properties	 can	 be
called	using	any	of	the	normal	‘super’	call	mechanisms.

This	special	case	is	deprecated,	as	the	property()	decorator	is
now	 correctly	 identified	 as	 abstract	 when	 applied	 to	 an	 abstract
method:

class	C(metaclass=ABCMeta):

				@property

				@abstractmethod

				def	my_abstract_property(self):

								...

The	 above	 example	 defines	 a	 read-only	 property;	 you	 can	 also
define	a	read-write	abstract	property	by	appropriately	marking	one

or	more	of	the	underlying	methods	as	abstract:

class	C(metaclass=ABCMeta):

				@property

				def	x(self):

								...

				@x.setter

				@abstractmethod

				def	x(self,	val):

								...

If	 only	 some	 components	 are	 abstract,	 only	 those	 components
need	to	be	updated	to	create	a	concrete	property	in	a	subclass:

class	D(C):

				@C.x.setter

				def	x(self,	val):

								...

Deprecated	 since	 version	 3.3:	 It	 is	 now	 possible	 to	 use
property,	property.getter(),	 property.setter()	 and
property.deleter()	with	abstractmethod(),	making	 this
decorator	redundant.

The	abc	module	also	provides	the	following	functions:

abc.get_cache_token()
Returns	the	current	abstract	base	class	cache	token.

The	 token	 is	 an	 opaque	 object	 (that	 supports	 equality	 testing)
identifying	the	current	version	of	the	abstract	base	class	cache	for
virtual	 subclasses.	 The	 token	 changes	 with	 every	 call	 to
ABCMeta.register()	on	any	ABC.

New	in	version	3.4.

Footnotes

[1] C++	programmers	should	note	that	Python’s	virtual	base	class
concept	is	not	the	same	as	C++’s.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.8.	atexit	—	Exit	handlers

The	 atexit	 module	 defines	 functions	 to	 register	 and	 unregister
cleanup	 functions.	 Functions	 thus	 registered	 are	 automatically
executed	 upon	 normal	 interpreter	 termination.	 atexit	 runs	 these
functions	 in	 the	 reverse	 order	 in	 which	 they	 were	 registered;	 if	 you
register	A,	B,	and	C,	at	interpreter	termination	time	they	will	be	run	in
the	order	C,	B,	A.

Note:	The	functions	registered	via	this	module	are	not	called	when	the
program	 is	 killed	by	a	signal	not	handled	by	Python,	when	a	Python
fatal	internal	error	is	detected,	or	when	os._exit()	is	called.

atexit.register(func,	*args,	**kargs)
Register	 func	 as	 a	 function	 to	 be	 executed	 at	 termination.	 Any
optional	arguments	that	are	to	be	passed	to	 func	must	be	passed
as	arguments	 to	register().	 It	 is	possible	 to	 register	 the	same
function	and	arguments	more	than	once.

At	 normal	 program	 termination	 (for	 instance,	 if	 sys.exit()	 is
called	 or	 the	 main	 module’s	 execution	 completes),	 all	 functions
registered	 are	 called	 in	 last	 in,	 first	 out	 order.	 The	 assumption	 is
that	 lower	 level	 modules	 will	 normally	 be	 imported	 before	 higher
level	modules	and	thus	must	be	cleaned	up	later.

If	 an	 exception	 is	 raised	 during	 execution	 of	 the	 exit	 handlers,	 a
traceback	 is	 printed	 (unless	 SystemExit	 is	 raised)	 and	 the
exception	 information	 is	saved.	After	all	exit	handlers	have	had	a
chance	to	run	the	last	exception	to	be	raised	is	re-raised.

This	 function	 returns	 func,	which	makes	 it	 possible	 to	use	 it	 as	a

decorator.

atexit.unregister(func)
Remove	 func	 from	 the	 list	 of	 functions	 to	 be	 run	 at	 interpreter
shutdown.	After	calling	unregister(),	func	 is	guaranteed	not	to
be	called	when	the	interpreter	shuts	down,	even	if	it	was	registered
more	than	once.	unregister()	silently	does	nothing	if	func	was
not	previously	registered.

See	also:

Module	readline
Useful	example	of	atexit	 to	read	and	write	readline	history
files.

29.8.1.	atexit	Example

The	 following	 simple	 example	 demonstrates	 how	 a	 module	 can
initialize	 a	 counter	 from	 a	 file	 when	 it	 is	 imported	 and	 save	 the
counter’s	 updated	 value	 automatically	 when	 the	 program	 terminates
without	 relying	 on	 the	 application	 making	 an	 explicit	 call	 into	 this
module	at	termination.

try:

				with	open("counterfile")	as	infile:

								_count	=	int(infile.read())

except	FileNotFoundError:

				_count	=	0

def	incrcounter(n):

				global	_count

				_count	=	_count	+	n

def	savecounter():

				with	open("counterfile",	"w")	as	outfile:

								outfile.write("%d"	%	_count)

import	atexit

atexit.register(savecounter)

Positional	 and	 keyword	 arguments	 may	 also	 be	 passed	 to
register()	to	be	passed	along	to	the	registered	function	when	it	is
called:

def	goodbye(name,	adjective):

				print('Goodbye,	%s,	it	was	%s	to	meet	you.'	%	(name

import	atexit

atexit.register(goodbye,	'Donny',	'nice')

#	or:

atexit.register(goodbye,	adjective='nice',	name='Donny'

Usage	as	a	decorator:

import	atexit

@atexit.register

def	goodbye():

				print("You	are	now	leaving	the	Python	sector.")

This	only	works	with	functions	that	can	be	called	without	arguments.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.9.	traceback	—	Print	or
retrieve	a	stack	traceback
This	module	provides	a	standard	interface	to	extract,	format	and	print
stack	traces	of	Python	programs.	It	exactly	mimics	the	behavior	of	the
Python	interpreter	when	it	prints	a	stack	trace.	This	is	useful	when	you
want	 to	 print	 stack	 traces	 under	 program	 control,	 such	 as	 in	 a
“wrapper”	around	the	interpreter.

The	module	 uses	 traceback	 objects	—	 this	 is	 the	 object	 type	 that	 is
stored	 in	 the	 sys.last_traceback	 variable	 and	 returned	 as	 the
third	item	from	sys.exc_info().

The	module	defines	the	following	functions:

traceback.print_tb(traceback,	limit=None,	file=None)
Print	up	to	limit	stack	trace	entries	from	traceback.	If	limit	is	omitted
or	None,	all	entries	are	printed.	If	file	is	omitted	or	None,	the	output
goes	 to	sys.stderr;	 otherwise	 it	 should	be	an	open	 file	or	 file-
like	object	to	receive	the	output.

traceback.print_exception(type,	value,	traceback,
limit=None,	file=None,	chain=True)

Print	exception	information	and	up	to	 limit	stack	trace	entries	from
traceback	 to	 file.	 This	 differs	 from	 print_tb()	 in	 the	 following
ways:

if	 traceback	 is	 not	 None,	 it	 prints	 a	 header	 Traceback
(most	recent	call	last):

it	prints	the	exception	type	and	value	after	the	stack	trace

if	type	is	SyntaxError	and	value	has	the	appropriate	format,
it	prints	 the	 line	where	 the	syntax	error	occurred	with	a	caret
indicating	the	approximate	position	of	the	error.

If	 chain	 is	 true	 (the	 default),	 then	 chained	 exceptions	 (the
__cause__	or	__context__	 attributes	of	 the	exception)	will	 be
printed	 as	 well,	 like	 the	 interpreter	 itself	 does	 when	 printing	 an
unhandled	exception.

traceback.print_exc(limit=None,	file=None,	chain=True)
This	is	a	shorthand	for	print_exception(*sys.exc_info()).

traceback.print_last(limit=None,	file=None,	chain=True)
This	 is	 a	 shorthand	 for	 print_exception(sys.last_type,
sys.last_value,	 sys.last_traceback,	 limit,	 file).
In	 general	 it	 will	 work	 only	 after	 an	 exception	 has	 reached	 an
interactive	prompt	(see	sys.last_type).

traceback.print_stack(f=None,	limit=None,	file=None)
This	 function	 prints	 a	 stack	 trace	 from	 its	 invocation	 point.	 The
optional	f	argument	can	be	used	to	specify	an	alternate	stack	frame
to	 start.	 The	 optional	 limit	 and	 file	 arguments	 have	 the	 same
meaning	as	for	print_exception().

traceback.extract_tb(traceback,	limit=None)
Return	 a	 list	 of	 up	 to	 limit	 “pre-processed”	 stack	 trace	 entries
extracted	 from	 the	 traceback	 object	 traceback.	 It	 is	 useful	 for
alternate	 formatting	of	stack	 traces.	 If	 limit	 is	omitted	or	None,	 all
entries	 are	 extracted.	 A	 “pre-processed”	 stack	 trace	 entry	 is	 a
quadruple	(filename,	line	number,	function	name,	text)	representing
the	information	that	is	usually	printed	for	a	stack	trace.	The	text	is	a
string	with	leading	and	trailing	whitespace	stripped;	if	the	source	is

not	available	it	is	None.

traceback.extract_stack(f=None,	limit=None)
Extract	the	raw	traceback	from	the	current	stack	frame.	The	return
value	has	the	same	format	as	 for	extract_tb().	The	optional	 f
and	 limit	 arguments	 have	 the	 same	 meaning	 as	 for
print_stack().

traceback.format_list(list)
Given	 a	 list	 of	 tuples	 as	 returned	 by	 extract_tb()	 or
extract_stack(),	return	a	list	of	strings	ready	for	printing.	Each
string	 in	 the	 resulting	 list	 corresponds	 to	 the	 item	with	 the	 same
index	 in	 the	 argument	 list.	 Each	 string	 ends	 in	 a	 newline;	 the
strings	 may	 contain	 internal	 newlines	 as	 well,	 for	 those	 items
whose	source	text	line	is	not	None.

traceback.format_exception_only(type,	value)
Format	 the	exception	part	of	a	 traceback.	The	arguments	are	 the
exception	type	and	value	such	as	given	by	sys.last_type	and
sys.last_value.	 The	 return	 value	 is	 a	 list	 of	 strings,	 each
ending	 in	 a	 newline.	 Normally,	 the	 list	 contains	 a	 single	 string;
however,	 for	 SyntaxError	 exceptions,	 it	 contains	 several	 lines
that	 (when	 printed)	 display	 detailed	 information	 about	 where	 the
syntax	 error	 occurred.	 The	 message	 indicating	 which	 exception
occurred	is	the	always	last	string	in	the	list.

traceback.format_exception(type,	value,	tb,	limit=None,
chain=True)

Format	a	stack	trace	and	the	exception	information.	The	arguments
have	 the	 same	 meaning	 as	 the	 corresponding	 arguments	 to
print_exception().	The	 return	 value	 is	 a	 list	 of	 strings,	 each
ending	 in	a	newline	and	some	containing	 internal	newlines.	When

these	lines	are	concatenated	and	printed,	exactly	the	same	text	is
printed	as	does	print_exception().

traceback.format_exc(limit=None,	chain=True)
This	 is	 like	 print_exc(limit)	 but	 returns	 a	 string	 instead	 of
printing	to	a	file.

traceback.format_tb(tb,	limit=None)
A	shorthand	for	format_list(extract_tb(tb,	limit)).

traceback.format_stack(f=None,	limit=None)
A	shorthand	for	format_list(extract_stack(f,	limit)).

traceback.clear_frames(tb)
Clears	the	local	variables	of	all	the	stack	frames	in	a	traceback	tb
by	calling	the	clear()	method	of	each	frame	object.

New	in	version	3.4.

29.9.1.	Traceback	Examples

This	simple	example	 implements	a	basic	 read-eval-print	 loop,	similar
to	 (but	 less	 useful	 than)	 the	 standard	 Python	 interactive	 interpreter
loop.	For	a	more	complete	implementation	of	the	interpreter	loop,	refer
to	the	code	module.

import	sys,	traceback

def	run_user_code(envdir):

				source	=	input(">>>	")

				try:

								exec(source,	envdir)

				except	Exception:

								print("Exception	in	user	code:")

								print("-"*60)

								traceback.print_exc(file=sys.stdout)

								print("-"*60)

envdir	=	{}

while	True:

				run_user_code(envdir)

The	 following	 example	 demonstrates	 the	 different	 ways	 to	 print	 and
format	the	exception	and	traceback:

import	sys,	traceback

def	lumberjack():

				bright_side_of_death()

def	bright_side_of_death():

				return	tuple()[0]

try:

				lumberjack()

except	IndexError:

				exc_type,	exc_value,	exc_traceback	=	sys.exc_info

				print("***	print_tb:")

				traceback.print_tb(exc_traceback,	limit=1,	file=

				print("***	print_exception:")

				traceback.print_exception(exc_type,	exc_value,	exc_traceback

																														limit=2,	file=sys.stdout

				print("***	print_exc:")

				traceback.print_exc()

				print("***	format_exc,	first	and	last	line:")

				formatted_lines	=	traceback.format_exc().splitlines

				print(formatted_lines[0])

				print(formatted_lines[-1])

				print("***	format_exception:")

				print(repr(traceback.format_exception(exc_type,	

																																										exc_traceback

				print("***	extract_tb:")

				print(repr(traceback.extract_tb(exc_traceback)))

				print("***	format_tb:")

				print(repr(traceback.format_tb(exc_traceback)))

				print("***	tb_lineno:",	exc_traceback.tb_lineno)

The	output	for	the	example	would	look	similar	to	this:

***	print_tb:

		File	"<doctest...>",	line	10,	in	<module>

				lumberjack()

***	print_exception:

Traceback	(most	recent	call	last):

		File	"<doctest...>",	line	10,	in	<module>

				lumberjack()

		File	"<doctest...>",	line	4,	in	lumberjack

				bright_side_of_death()

IndexError:	tuple	index	out	of	range

***	print_exc:

Traceback	(most	recent	call	last):

		File	"<doctest...>",	line	10,	in	<module>

				lumberjack()

		File	"<doctest...>",	line	4,	in	lumberjack

				bright_side_of_death()

IndexError:	tuple	index	out	of	range

***	format_exc,	first	and	last	line:

Traceback	(most	recent	call	last):

IndexError:	tuple	index	out	of	range

***	format_exception:

['Traceback	(most	recent	call	last):\n',

	'		File	"<doctest...>",	line	10,	in	<module>\n				lumberjack()\n',

	'		File	"<doctest...>",	line	4,	in	lumberjack\n				bright_side_of_death()\n',

	'		File	"<doctest...>",	line	7,	in	bright_side_of_death\n				return	tuple()[0]\n',

	'IndexError:	tuple	index	out	of	range\n']

***	extract_tb:

[('<doctest...>',	10,	'<module>',	'lumberjack()'),

	('<doctest...>',	4,	'lumberjack',	'bright_side_of_death()'),

	('<doctest...>',	7,	'bright_side_of_death',	'return	tuple()[0]')]

***	format_tb:

['		File	"<doctest...>",	line	10,	in	<module>\n				lumberjack()\n',

	'		File	"<doctest...>",	line	4,	in	lumberjack\n				bright_side_of_death()\n',

	'		File	"<doctest...>",	line	7,	in	bright_side_of_death\n				return	tuple()[0]\n']

***	tb_lineno:	10

The	following	example	shows	the	different	ways	to	print	and	format	the
stack:

>>>	import	traceback

>>>	def	another_function():

...					lumberstack()

...

>>>	def	lumberstack():

...					traceback.print_stack()

...					print(repr(traceback.extract_stack()))

...					print(repr(traceback.format_stack()))

...

>>>	another_function()

		File	"<doctest>",	line	10,	in	<module>

				another_function()

		File	"<doctest>",	line	3,	in	another_function

				lumberstack()

		File	"<doctest>",	line	6,	in	lumberstack

				traceback.print_stack()

[('<doctest>',	10,	'<module>',	'another_function()'),

	('<doctest>',	3,	'another_function',	'lumberstack()'),

	('<doctest>',	7,	'lumberstack',	'print(repr(traceback.extract_stack()))')]

['		File	"<doctest>",	line	10,	in	<module>\n				another_function()\n',

	'		File	"<doctest>",	line	3,	in	another_function\n				lumberstack()\n',

	'		File	"<doctest>",	line	8,	in	lumberstack\n				print(repr(traceback.format_stack()))\n']

This	last	example	demonstrates	the	final	few	formatting	functions:

>>>	import	traceback

>>>	traceback.format_list([('spam.py',	3,	'<module>'

...																								('eggs.py',	42,	'eggs',	'return	"bacon"'

['		File	"spam.py",	line	3,	in	<module>\n				spam.eggs()\n',

	'		File	"eggs.py",	line	42,	in	eggs\n				return	"bacon"\n']

>>>	an_error	=	IndexError('tuple	index	out	of	range'

>>>	traceback.format_exception_only(type(an_error),	

['IndexError:	tuple	index	out	of	range\n']

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.10.	__future__	—	Future
statement	definitions
Source	code:	Lib/__future__.py

__future__	is	a	real	module,	and	serves	three	purposes:

To	avoid	confusing	existing	 tools	 that	analyze	 import	 statements
and	expect	to	find	the	modules	they’re	importing.
To	ensure	that	future	statements	run	under	releases	prior	to	2.1	at
least	yield	runtime	exceptions	(the	import	of	__future__	will	fail,
because	there	was	no	module	of	that	name	prior	to	2.1).
To	 document	 when	 incompatible	 changes	 were	 introduced,	 and
when	they	will	be	—	or	were	—	made	mandatory.	This	is	a	form	of
executable	 documentation,	 and	 can	 be	 inspected
programmatically	 via	 importing	 __future__	 and	 examining	 its
contents.

Each	statement	in	__future__.py	is	of	the	form:

FeatureName	=	_Feature(OptionalRelease,	MandatoryRelease

																							CompilerFlag)

where,	normally,	OptionalRelease	is	less	than	MandatoryRelease,	and
both	are	5-tuples	of	the	same	form	as	sys.version_info:

(PY_MAJOR_VERSION,	#	the	2	in	2.1.0a3;	an	int

	PY_MINOR_VERSION,	#	the	1;	an	int

	PY_MICRO_VERSION,	#	the	0;	an	int

	PY_RELEASE_LEVEL,	#	"alpha",	"beta",	"candidate"	or	"final";	string

	PY_RELEASE_SERIAL	#	the	3;	an	int

http://hg.python.org/cpython/file/3.4/Lib/__future__.py

)

OptionalRelease	 records	 the	 first	 release	 in	 which	 the	 feature	 was
accepted.

In	 the	 case	 of	 a	 MandatoryRelease	 that	 has	 not	 yet	 occurred,
MandatoryRelease	 predicts	 the	 release	 in	 which	 the	 feature	 will
become	part	of	the	language.

Else	MandatoryRelease	records	when	the	feature	became	part	of	the
language;	in	releases	at	or	after	that,	modules	no	longer	need	a	future
statement	to	use	the	feature	in	question,	but	may	continue	to	use	such
imports.

MandatoryRelease	may	also	be	None,	meaning	that	a	planned	feature
got	dropped.

Instances	 of	 class	 _Feature	 have	 two	 corresponding	 methods,
getOptionalRelease()	and	getMandatoryRelease().

CompilerFlag	 is	 the	 (bitfield)	 flag	 that	should	be	passed	 in	 the	 fourth
argument	 to	 the	built-in	 function	compile()	 to	enable	 the	feature	 in
dynamically	compiled	code.	This	flag	is	stored	in	the	compiler_flag
attribute	on	_Feature	instances.

No	 feature	description	will	ever	be	deleted	 from	__future__.	Since
its	 introduction	 in	 Python	 2.1	 the	 following	 features	 have	 found	 their
way	into	the	language	using	this	mechanism:

feature optional
in

mandatory
in effect

nested_scopes 2.1.0b1 2.2 PEP	227:	Statically
Nested	Scopes

http://www.python.org/dev/peps/pep-0227

generators 2.2.0a1 2.3 PEP	255:	Simple
Generators

division 2.2.0a2 3.0 PEP	238:	Changing	the
Division	Operator

absolute_import 2.5.0a1 3.0
PEP	328:	Imports:	Multi-
Line	and
Absolute/Relative

with_statement 2.5.0a1 2.6 PEP	343:	The	“with”
Statement

print_function 2.6.0a2 3.0 PEP	3105:	Make	print	a
function

unicode_literals 2.6.0a2 3.0 PEP	3112:	Bytes	literals
in	Python	3000

See	also:

Future	statements
How	the	compiler	treats	future	imports.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-0255
http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-0328
http://www.python.org/dev/peps/pep-0343
http://www.python.org/dev/peps/pep-3105
http://www.python.org/dev/peps/pep-3112
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.11.	gc	—	Garbage	Collector
interface
This	module	provides	an	interface	to	the	optional	garbage	collector.	It
provides	 the	 ability	 to	 disable	 the	 collector,	 tune	 the	 collection
frequency,	 and	 set	 debugging	 options.	 It	 also	 provides	 access	 to
unreachable	objects	that	the	collector	found	but	cannot	free.	Since	the
collector	supplements	the	reference	counting	already	used	in	Python,
you	 can	 disable	 the	 collector	 if	 you	 are	 sure	 your	 program	does	 not
create	 reference	 cycles.	 Automatic	 collection	 can	 be	 disabled	 by
calling	 gc.disable().	 To	 debug	 a	 leaking	 program	 call
gc.set_debug(gc.DEBUG_LEAK).	 Notice	 that	 this	 includes
gc.DEBUG_SAVEALL,	causing	garbage-collected	objects	to	be	saved
in	gc.garbage	for	inspection.

The	gc	module	provides	the	following	functions:

gc.enable()
Enable	automatic	garbage	collection.

gc.disable()
Disable	automatic	garbage	collection.

gc.isenabled()
Returns	true	if	automatic	collection	is	enabled.

gc.collect(generations=2)
With	 no	 arguments,	 run	 a	 full	 collection.	 The	 optional	 argument
generation	may	be	an	integer	specifying	which	generation	to	collect
(from	0	to	2).	A	ValueError	is	raised	if	the	generation	number	is

invalid.	The	number	of	unreachable	objects	found	is	returned.

The	free	lists	maintained	for	a	number	of	built-in	types	are	cleared
whenever	a	full	collection	or	collection	of	the	highest	generation	(2)
is	 run.	 Not	 all	 items	 in	 some	 free	 lists	 may	 be	 freed	 due	 to	 the
particular	implementation,	in	particular	float.

gc.set_debug(flags)
Set	the	garbage	collection	debugging	flags.	Debugging	information
will	be	written	 to	sys.stderr.	See	below	 for	a	 list	of	debugging
flags	 which	 can	 be	 combined	 using	 bit	 operations	 to	 control
debugging.

gc.get_debug()
Return	the	debugging	flags	currently	set.

gc.get_objects()
Returns	a	 list	of	all	objects	 tracked	by	 the	collector,	excluding	 the
list	returned.

gc.get_stats()
Return	 a	 list	 of	 three	 per-generation	 dictionaries	 containing
collection	statistics	since	interpreter	start.	The	number	of	keys	may
change	 in	 the	 future,	but	currently	each	dictionary	will	contain	 the
following	items:

collections	 is	 the	 number	 of	 times	 this	 generation	 was
collected;
collected	is	the	total	number	of	objects	collected	inside	this
generation;
uncollectable	 is	 the	 total	 number	 of	 objects	 which	 were
found	 to	 be	 uncollectable	 (and	 were	 therefore	moved	 to	 the
garbage	list)	inside	this	generation.

New	in	version	3.4.

gc.set_threshold(threshold0[,	threshold1[,	threshold2]])
Set	 the	 garbage	 collection	 thresholds	 (the	 collection	 frequency).
Setting	threshold0	to	zero	disables	collection.

The	GC	classifies	objects	into	three	generations	depending	on	how
many	 collection	 sweeps	 they	 have	 survived.	 New	 objects	 are
placed	 in	 the	 youngest	 generation	 (generation	 0).	 If	 an	 object
survives	 a	 collection	 it	 is	 moved	 into	 the	 next	 older	 generation.
Since	 generation	 2	 is	 the	 oldest	 generation,	 objects	 in	 that
generation	remain	there	after	a	collection.	In	order	to	decide	when
to	 run,	 the	 collector	 keeps	 track	 of	 the	 number	 object	 allocations
and	 deallocations	 since	 the	 last	 collection.	 When	 the	 number	 of
allocations	minus	the	number	of	deallocations	exceeds	threshold0,
collection	 starts.	 Initially	 only	 generation	 0	 is	 examined.	 If
generation	0	has	been	examined	more	than	threshold1	times	since
generation	1	has	been	examined,	 then	generation	1	 is	examined
as	well.	Similarly,	 threshold2	controls	 the	number	of	collections	of
generation	1	before	collecting	generation	2.

gc.get_count()
Return	 the	 current	 collection	 counts	 as	 a	 tuple	 of	 (count0,
count1,	count2).

gc.get_threshold()
Return	 the	 current	 collection	 thresholds	 as	 a	 tuple	 of
(threshold0,	threshold1,	threshold2).

gc.get_referrers(*objs)
Return	 the	 list	 of	 objects	 that	 directly	 refer	 to	 any	 of	 objs.	 This
function	 will	 only	 locate	 those	 containers	 which	 support	 garbage

collection;	 extension	 types	which	do	 refer	 to	 other	 objects	 but	 do
not	support	garbage	collection	will	not	be	found.

Note	that	objects	which	have	already	been	dereferenced,	but	which
live	 in	 cycles	 and	 have	 not	 yet	 been	 collected	 by	 the	 garbage
collector	 can	 be	 listed	 among	 the	 resulting	 referrers.	 To	 get	 only
currently	 live	 objects,	 call	 collect()	 before	 calling
get_referrers().

Care	 must	 be	 taken	 when	 using	 objects	 returned	 by
get_referrers()	 because	 some	 of	 them	 could	 still	 be	 under
construction	and	hence	 in	a	 temporarily	 invalid	state.	Avoid	using
get_referrers()	for	any	purpose	other	than	debugging.

gc.get_referents(*objs)
Return	a	list	of	objects	directly	referred	to	by	any	of	the	arguments.
The	referents	returned	are	those	objects	visited	by	the	arguments’
C-level	tp_traverse	methods	(if	any),	and	may	not	be	all	objects
actually	directly	reachable.	tp_traverse	methods	are	supported
only	 by	 objects	 that	 support	 garbage	 collection,	 and	 are	 only
required	 to	 visit	 objects	 that	 may	 be	 involved	 in	 a	 cycle.	 So,	 for
example,	if	an	integer	is	directly	reachable	from	an	argument,	that
integer	object	may	or	may	not	appear	in	the	result	list.

gc.is_tracked(obj)
Returns	 True	 if	 the	 object	 is	 currently	 tracked	 by	 the	 garbage
collector,	False	otherwise.	As	a	general	rule,	 instances	of	atomic
types	aren’t	tracked	and	instances	of	non-atomic	types	(containers,
user-defined	 objects...)	 are.	 However,	 some	 type-specific
optimizations	 can	 be	 present	 in	 order	 to	 suppress	 the	 garbage
collector	 footprint	 of	 simple	 instances	 (e.g.	 dicts	 containing	 only
atomic	keys	and	values):

>>>	gc.is_tracked(0)

False

>>>	gc.is_tracked("a")

False

>>>	gc.is_tracked([])

True

>>>	gc.is_tracked({})

False

>>>	gc.is_tracked({"a":	1})

False

>>>	gc.is_tracked({"a":	[]})

True

New	in	version	3.1.

The	 following	 variables	 are	 provided	 for	 read-only	 access	 (you	 can
mutate	the	values	but	should	not	rebind	them):

gc.garbage

A	 list	 of	 objects	 which	 the	 collector	 found	 to	 be	 unreachable	 but
could	not	be	freed	(uncollectable	objects).	Starting	with	Python	3.4,
this	 list	 should	 be	 empty	 most	 of	 the	 time,	 except	 when	 using
instances	of	C	extension	types	with	a	non-NULL	tp_del	slot.

If	 DEBUG_SAVEALL	 is	 set,	 then	 all	 unreachable	 objects	 will	 be
added	to	this	list	rather	than	freed.

Changed	 in	 version	 3.2:	 If	 this	 list	 is	 non-empty	 at	 interpreter
shutdown,	 a	 ResourceWarning	 is	 emitted,	 which	 is	 silent	 by
default.	 If	 DEBUG_UNCOLLECTABLE	 is	 set,	 in	 addition	 all
uncollectable	objects	are	printed.

Changed	 in	 version	 3.4:	 Following	 PEP	 442,	 objects	 with	 a
__del__()	method	don’t	end	up	in	gc.garbage	anymore.

http://www.python.org/dev/peps/pep-0442

gc.callbacks

A	 list	 of	 callbacks	 that	 will	 be	 invoked	 by	 the	 garbage	 collector
before	 and	 after	 collection.	 The	 callbacks	 will	 be	 called	 with	 two
arguments,	phase	and	info.

phase	can	be	one	of	two	values:

“start”:	The	garbage	collection	is	about	to	start.

“stop”:	The	garbage	collection	has	finished.

info	 is	 a	 dict	 providing	 more	 information	 for	 the	 callback.	 The
following	keys	are	currently	defined:

“generation”:	The	oldest	generation	being	collected.

“collected”:	 When	 phase	 is	 “stop”,	 the	 number	 of	 objects
successfully	collected.

“uncollectable”:	When	phase	 is	 “stop”,	 the	number	 of	 objects
that	could	not	be	collected	and	were	put	in	garbage.

Applications	 can	 add	 their	 own	 callbacks	 to	 this	 list.	 The	 primary
use	cases	are:

Gathering	 statistics	 about	 garbage	 collection,	 such	 as	 how
often	 various	 generations	 are	 collected,	 and	 how	 long	 the
collection	takes.

Allowing	 applications	 to	 identify	 and	 clear	 their	 own
uncollectable	types	when	they	appear	in	garbage.

New	in	version	3.3.

The	following	constants	are	provided	for	use	with	set_debug():

gc.DEBUG_STATS

Print	 statistics	 during	 collection.	 This	 information	 can	 be	 useful
when	tuning	the	collection	frequency.

gc.DEBUG_COLLECTABLE

Print	information	on	collectable	objects	found.

gc.DEBUG_UNCOLLECTABLE

Print	 information	of	uncollectable	objects	found	(objects	which	are
not	reachable	but	cannot	be	freed	by	the	collector).	These	objects
will	be	added	to	the	garbage	list.

Changed	in	version	3.2:	Also	print	the	contents	of	the	garbage	list
at	interpreter	shutdown,	if	it	isn’t	empty.

gc.DEBUG_SAVEALL

When	 set,	 all	 unreachable	 objects	 found	 will	 be	 appended	 to
garbage	rather	than	being	freed.	This	can	be	useful	for	debugging
a	leaking	program.

gc.DEBUG_LEAK

The	debugging	flags	necessary	for	the	collector	to	print	information
about	 a	 leaking	 program	 (equal	 to	 DEBUG_COLLECTABLE	 |

DEBUG_UNCOLLECTABLE	|	DEBUG_SAVEALL).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.12.	inspect	—	Inspect	live
objects
Source	code:	Lib/inspect.py

The	 inspect	 module	 provides	 several	 useful	 functions	 to	 help	 get
information	 about	 live	 objects	 such	 as	 modules,	 classes,	 methods,
functions,	tracebacks,	frame	objects,	and	code	objects.	For	example,	it
can	help	you	examine	the	contents	of	a	class,	retrieve	the	source	code
of	a	method,	extract	and	format	the	argument	list	for	a	function,	or	get
all	the	information	you	need	to	display	a	detailed	traceback.

There	are	 four	main	 kinds	of	 services	provided	by	 this	module:	 type
checking,	getting	source	code,	 inspecting	classes	and	 functions,	and
examining	the	interpreter	stack.

http://hg.python.org/cpython/file/3.4/Lib/inspect.py

29.12.1.	Types	and	members

The	getmembers()	function	retrieves	the	members	of	an	object	such
as	a	class	or	module.	The	sixteen	functions	whose	names	begin	with
“is”	 are	 mainly	 provided	 as	 convenient	 choices	 for	 the	 second
argument	to	getmembers().	They	also	help	you	determine	when	you
can	expect	to	find	the	following	special	attributes:

Type Attribute Description

module __doc__ documentation	string

	 __file__ filename	(missing	for	built-in
modules)

class __doc__ documentation	string

	 __module__ name	of	module	in	which	this
class	was	defined

method __doc__ documentation	string

	 __name__ name	with	which	this	method
was	defined

	 __func__ function	object	containing
implementation	of	method

	 __self__ instance	to	which	this	method	is
bound,	or	None

function __doc__ documentation	string

	 __name__ name	with	which	this	function
was	defined

	 __code__ code	object	containing	compiled
function	bytecode

	 __defaults__
tuple	of	any	default	values	for
positional	or	keyword

parameters

	 __kwdefaults__ mapping	of	any	default	values
for	keyword-only	parameters

	 __globals__ global	namespace	in	which	this
function	was	defined

traceback tb_frame frame	object	at	this	level

	 tb_lasti index	of	last	attempted
instruction	in	bytecode

	 tb_lineno current	line	number	in	Python
source	code

	 tb_next next	inner	traceback	object
(called	by	this	level)

frame f_back next	outer	frame	object	(this
frame’s	caller)

	 f_builtins builtins	namespace	seen	by	this
frame

	 f_code code	object	being	executed	in
this	frame

	 f_globals global	namespace	seen	by	this
frame

	 f_lasti index	of	last	attempted
instruction	in	bytecode

	 f_lineno current	line	number	in	Python
source	code

	 f_locals local	namespace	seen	by	this
frame

	 f_restricted 0	or	1	if	frame	is	in	restricted
execution	mode

	 f_trace tracing	function	for	this	frame,
or	None

code co_argcount
number	of	arguments	(not
including	*	or	**	args)

	 co_code string	of	raw	compiled	bytecode

	 co_consts tuple	of	constants	used	in	the
bytecode

	 co_filename name	of	file	in	which	this	code
object	was	created

	 co_firstlineno number	of	first	line	in	Python
source	code

	 co_flags
bitmap:	1=optimized	|
2=newlocals	|	4=*arg	|
8=**arg

	 co_lnotab encoded	mapping	of	line
numbers	to	bytecode	indices

	 co_name name	with	which	this	code
object	was	defined

	 co_names tuple	of	names	of	local
variables

	 co_nlocals number	of	local	variables

	 co_stacksize virtual	machine	stack	space
required

	 co_varnames tuple	of	names	of	arguments
and	local	variables

builtin __doc__ documentation	string

	 __name__ original	name	of	this	function	or
method

	 __self__ instance	to	which	a	method	is
bound,	or	None

inspect.getmembers(object[,	predicate])

Return	all	the	members	of	an	object	in	a	list	of	(name,	value)	pairs
sorted	by	name.	If	the	optional	predicate	argument	is	supplied,	only
members	for	which	the	predicate	returns	a	true	value	are	included.

Note: 	getmembers()	will	only	return	class	attributes	defined	in
the	metaclass	when	the	argument	is	a	class	and	those	attributes
have	been	listed	in	the	metaclass’	custom	__dir__().

inspect.getmoduleinfo(path)
Returns	 a	 named	 tuple	 ModuleInfo(name,	 suffix,	 mode,
module_type)	 of	 values	 that	 describe	 how	Python	will	 interpret
the	file	identified	by	path	if	it	is	a	module,	or	None	if	it	would	not	be
identified	 as	 a	 module.	 In	 that	 tuple,	 name	 is	 the	 name	 of	 the
module	without	 the	 name	of	 any	 enclosing	 package,	suffix	 is	 the
trailing	 part	 of	 the	 file	 name	 (which	 may	 not	 be	 a	 dot-delimited
extension),	mode	is	the	open()	mode	that	would	be	used	('r'	or
'rb'),	 and	 module_type	 is	 an	 integer	 giving	 the	 type	 of	 the
module.	module_type	will	have	a	value	which	can	be	compared	to
the	constants	defined	 in	 the	imp	module;	 see	 the	documentation
for	that	module	for	more	information	on	module	types.

Deprecated	since	version	3.3:	You	may	check	the	file	path’s	suffix
against	the	supported	suffixes	listed	in	importlib.machinery
to	infer	the	same	information.

inspect.getmodulename(path)
Return	 the	 name	 of	 the	 module	 named	 by	 the	 file	 path,	 without
including	 the	 names	 of	 enclosing	 packages.	 The	 file	 extension	 is
checked	 against	 all	 of	 the	 entries	 in
importlib.machinery.all_suffixes().	 If	 it	 matches,	 the
final	 path	 component	 is	 returned	 with	 the	 extension	 removed.

Otherwise,	None	is	returned.

Note	 that	 this	 function	only	 returns	 a	meaningful	 name	 for	 actual
Python	modules	 -	 paths	 that	potentially	 refer	 to	Python	packages
will	still	return	None.

Changed	 in	 version	 3.3:	 This	 function	 is	 now	 based	 directly	 on
importlib	rather	than	the	deprecated	getmoduleinfo().

inspect.ismodule(object)
Return	true	if	the	object	is	a	module.

inspect.isclass(object)
Return	 true	 if	 the	 object	 is	 a	 class,	whether	 built-in	 or	 created	 in
Python	code.

inspect.ismethod(object)
Return	true	if	the	object	is	a	bound	method	written	in	Python.

inspect.isfunction(object)
Return	 true	 if	 the	 object	 is	 a	 Python	 function,	 which	 includes
functions	created	by	a	lambda	expression.

inspect.isgeneratorfunction(object)
Return	true	if	the	object	is	a	Python	generator	function.

inspect.isgenerator(object)
Return	true	if	the	object	is	a	generator.

inspect.istraceback(object)
Return	true	if	the	object	is	a	traceback.

inspect.isframe(object)

Return	true	if	the	object	is	a	frame.

inspect.iscode(object)
Return	true	if	the	object	is	a	code.

inspect.isbuiltin(object)
Return	 true	 if	 the	 object	 is	 a	 built-in	 function	 or	 a	 bound	 built-in
method.

inspect.isroutine(object)
Return	 true	 if	 the	 object	 is	 a	 user-defined	 or	 built-in	 function	 or
method.

inspect.isabstract(object)
Return	true	if	the	object	is	an	abstract	base	class.

inspect.ismethoddescriptor(object)
Return	 true	 if	 the	 object	 is	 a	 method	 descriptor,	 but	 not	 if
ismethod(),	 isclass(),	 isfunction()	 or	 isbuiltin()
are	true.

This,	for	example,	is	true	of	int.__add__.	An	object	passing	this
test	 has	 a	 __get__	 attribute	 but	 not	 a	 __set__	 attribute,	 but
beyond	 that	 the	 set	 of	 attributes	 varies.	 __name__	 is	 usually
sensible,	and	__doc__	often	is.

Methods	 implemented	 via	 descriptors	 that	 also	 pass	 one	 of	 the
other	 tests	 return	 false	 from	 the	 ismethoddescriptor()	 test,
simply	because	the	other	tests	promise	more	–	you	can,	e.g.,	count
on	 having	 the	 __func__	 attribute	 (etc)	 when	 an	 object	 passes
ismethod().

inspect.isdatadescriptor(object)

Return	true	if	the	object	is	a	data	descriptor.

Data	descriptors	have	both	a	__get__	and	a	__set__	attribute.
Examples	 are	 properties	 (defined	 in	 Python),	 getsets,	 and
members.	 The	 latter	 two	 are	 defined	 in	 C	 and	 there	 are	 more
specific	 tests	 available	 for	 those	 types,	 which	 is	 robust	 across
Python	 implementations.	Typically,	data	descriptors	will	 also	have
__name__	 and	 __doc__	 attributes	 (properties,	 getsets,	 and
members	have	both	of	these	attributes),	but	this	is	not	guaranteed.

inspect.isgetsetdescriptor(object)
Return	true	if	the	object	is	a	getset	descriptor.

CPython	 implementation	detail:	 getsets	 are	 attributes	 defined
in	extension	modules	 via	 PyGetSetDef	 structures.	For	Python
implementations	 without	 such	 types,	 this	 method	 will	 always
return	False.

inspect.ismemberdescriptor(object)
Return	true	if	the	object	is	a	member	descriptor.

CPython	 implementation	 detail:	 Member	 descriptors	 are
attributes	 defined	 in	 extension	 modules	 via	 PyMemberDef
structures.	For	Python	 implementations	without	 such	 types,	 this
method	will	always	return	False.

29.12.2.	Retrieving	source	code

inspect.getdoc(object)
Get	 the	 documentation	 string	 for	 an	 object,	 cleaned	 up	 with
cleandoc().

inspect.getcomments(object)
Return	 in	 a	 single	 string	 any	 lines	 of	 comments	 immediately
preceding	 the	 object’s	 source	 code	 (for	 a	 class,	 function,	 or
method),	or	at	 the	 top	of	 the	Python	source	 file	 (if	 the	object	 is	a
module).

inspect.getfile(object)
Return	the	name	of	the	(text	or	binary)	file	in	which	an	object	was
defined.	This	will	 fail	with	 a	 TypeError	 if	 the	 object	 is	 a	 built-in
module,	class,	or	function.

inspect.getmodule(object)
Try	to	guess	which	module	an	object	was	defined	in.

inspect.getsourcefile(object)
Return	the	name	of	the	Python	source	file	 in	which	an	object	was
defined.	This	will	 fail	with	 a	 TypeError	 if	 the	 object	 is	 a	 built-in
module,	class,	or	function.

inspect.getsourcelines(object)
Return	a	list	of	source	lines	and	starting	line	number	for	an	object.
The	 argument	 may	 be	 a	 module,	 class,	 method,	 function,
traceback,	frame,	or	code	object.	The	source	code	is	returned	as	a
list	 of	 the	 lines	 corresponding	 to	 the	 object	 and	 the	 line	 number
indicates	where	in	the	original	source	file	the	first	line	of	code	was

found.	 An	 OSError	 is	 raised	 if	 the	 source	 code	 cannot	 be
retrieved.

Changed	 in	version	3.3:	OSError	 is	 raised	 instead	of	 IOError,
now	an	alias	of	the	former.

inspect.getsource(object)
Return	the	text	of	the	source	code	for	an	object.	The	argument	may
be	 a	module,	 class,	 method,	 function,	 traceback,	 frame,	 or	 code
object.	The	source	code	is	returned	as	a	single	string.	An	OSError
is	raised	if	the	source	code	cannot	be	retrieved.

Changed	 in	version	3.3:	OSError	 is	 raised	 instead	of	 IOError,
now	an	alias	of	the	former.

inspect.cleandoc(doc)
Clean	up	 indentation	 from	docstrings	 that	 are	 indented	 to	 line	up
with	blocks	of	code.	Any	whitespace	that	can	be	uniformly	removed
from	 the	 second	 line	 onwards	 is	 removed.	 Also,	 all	 tabs	 are
expanded	to	spaces.

29.12.3.	Introspecting	callables	with	the
Signature	object

New	in	version	3.3.

The	Signature	object	represents	the	call	signature	of	a	callable	object
and	 its	 return	 annotation.	 To	 retrieve	 a	 Signature	 object,	 use	 the
signature()	function.

inspect.signature(callable)
Return	a	Signature	object	for	the	given	callable:

>>>	from	inspect	import	signature

>>>	def	foo(a,	*,	b:int,	**kwargs):

...					pass

>>>	sig	=	signature(foo)

>>>	str(sig)

'(a,	*,	b:int,	**kwargs)'

>>>	str(sig.parameters['b'])

'b:int'

>>>	sig.parameters['b'].annotation

<class	'int'>

Accepts	a	wide	range	of	python	callables,	from	plain	functions	and
classes	to	functools.partial()	objects.

Raises	 ValueError	 if	 no	 signature	 can	 be	 provided,	 and
TypeError	if	that	type	of	object	is	not	supported.

Note: 	 Some	 callables	 may	 not	 be	 introspectable	 in	 certain
implementations	of	Python.	For	example,	in	CPython,	some	built-
in	 functions	 defined	 in	 C	 provide	 no	 metadata	 about	 their
arguments.

class	inspect.Signature(parameters=None,	*,
return_annotation=Signature.empty)

A	Signature	object	 represents	 the	call	 signature	of	a	 function	and
its	return	annotation.	For	each	parameter	accepted	by	the	function
it	stores	a	Parameter	object	in	its	parameters	collection.

The	optional	parameters	 argument	 is	 a	 sequence	of	 Parameter
objects,	which	 is	 validated	 to	 check	 that	 there	are	no	parameters
with	 duplicate	 names,	 and	 that	 the	 parameters	 are	 in	 the	 right
order,	 i.e.	positional-only	first,	 then	positional-or-keyword,	and	that
parameters	with	defaults	follow	parameters	without	defaults.

The	 optional	 return_annotation	 argument,	 can	 be	 an	 arbitrary
Python	object,	is	the	“return”	annotation	of	the	callable.

Signature	objects	are	immutable.	Use	Signature.replace()	to
make	a	modified	copy.

empty

A	 special	 class-level	 marker	 to	 specify	 absence	 of	 a	 return
annotation.

parameters

An	 ordered	 mapping	 of	 parameters’	 names	 to	 the
corresponding	Parameter	objects.

return_annotation

The	 “return”	 annotation	 for	 the	 callable.	 If	 the	 callable	 has	 no
“return”	annotation,	this	attribute	is	set	to	Signature.empty.

bind(*args,	**kwargs)
Create	 a	 mapping	 from	 positional	 and	 keyword	 arguments	 to
parameters.	 Returns	 BoundArguments	 if	 *args	 and
**kwargs	match	the	signature,	or	raises	a	TypeError.

bind_partial(*args,	**kwargs)
Works	 the	same	way	as	Signature.bind(),	 but	 allows	 the
omission	 of	 some	 required	 arguments	 (mimics
functools.partial()	 behavior.)	 Returns
BoundArguments,	 or	 raises	 a	 TypeError	 if	 the	 passed
arguments	do	not	match	the	signature.

replace(*[,	parameters][,	return_annotation])
Create	a	new	Signature	instance	based	on	the	instance	replace
was	 invoked	 on.	 It	 is	 possible	 to	 pass	 different	 parameters
and/or	 return_annotation	 to	 override	 the	 corresponding
properties	of	 the	base	signature.	To	 remove	 return_annotation
from	the	copied	Signature,	pass	in	Signature.empty.

>>>	def	test(a,	b):

...					pass

>>>	sig	=	signature(test)

>>>	new_sig	=	sig.replace(return_annotation="new	return	anno"

>>>	str(new_sig)

"(a,	b)	->	'new	return	anno'"

class	inspect.Parameter(name,	kind,	*,
default=Parameter.empty,	annotation=Parameter.empty)

Parameter	 objects	 are	 immutable.	 Instead	 of	 modifying	 a

Parameter	object,	you	can	use	Parameter.replace()	to	create
a	modified	copy.

empty

A	 special	 class-level	 marker	 to	 specify	 absence	 of	 default
values	and	annotations.

name

The	name	of	 the	parameter	as	a	string.	The	name	must	be	a
valid	Python	identifier.

default

The	 default	 value	 for	 the	 parameter.	 If	 the	 parameter	 has	 no
default	value,	this	attribute	is	set	to	Parameter.empty.

annotation

The	 annotation	 for	 the	 parameter.	 If	 the	 parameter	 has	 no
annotation,	this	attribute	is	set	to	Parameter.empty.

kind

Describes	 how	 argument	 values	 are	 bound	 to	 the	 parameter.
Possible	 values	 (accessible	 via	 Parameter,	 like
Parameter.KEYWORD_ONLY):

Name Meaning

POSITIONAL_ONLY

Value	must	 be	 supplied	 as
a	positional	argument.

Python	 has	 no	 explicit
syntax	 for	 defining
positional-only	 parameters,
but	 many	 built-in	 and

extension	module	 functions
(especially	 those	 that
accept	 only	 one	 or	 two
parameters)	accept	them.

POSITIONAL_OR_KEYWORD

Value	may	be	supplied	as
either	a	keyword	or
positional	argument	(this	is
the	standard	binding
behaviour	for	functions
implemented	in	Python.)

VAR_POSITIONAL

A	tuple	of	positional
arguments	that	aren’t
bound	to	any	other
parameter.	This
corresponds	to	a	*args
parameter	in	a	Python
function	definition.

KEYWORD_ONLY

Value	must	be	supplied	as
a	keyword	argument.
Keyword	only	parameters
are	those	which	appear
after	a	*	or	*args	entry	in
a	Python	function	definition.

VAR_KEYWORD

A	dict	of	keyword
arguments	that	aren’t
bound	to	any	other
parameter.	This
corresponds	to	a
**kwargs	parameter	in	a
Python	function	definition.

Example:	 print	 all	 keyword-only	 arguments	 without	 default
values:

>>>	def	foo(a,	b,	*,	c,	d=10):

...					pass

>>>	sig	=	signature(foo)

>>>	for	param	in	sig.parameters.values():

...					if	(param.kind	==	param.KEYWORD_ONLY	and

...																								param.default	is	param

...									print('Parameter:',	param)

Parameter:	c

replace(*[,	name][,	kind][,	default][,	annotation])

Create	 a	 new	 Parameter	 instance	 based	 on	 the	 instance
replaced	 was	 invoked	 on.	 To	 override	 a	 Parameter
attribute,	 pass	 the	 corresponding	 argument.	 To	 remove	 a
default	value	or/and	an	annotation	from	a	Parameter,	pass
Parameter.empty.

>>>	from	inspect	import	Parameter

>>>	param	=	Parameter('foo',	Parameter.KEYWORD_ONLY

>>>	str(param)

'foo=42'

>>>	str(param.replace())	#	Will	create	a	shallow	copy	of	'param'

'foo=42'

>>>	str(param.replace(default=Parameter.empty

"foo:'spam'"

Changed	in	version	3.4:	In	Python	3.3	Parameter	objects	were
allowed	 to	 have	 name	 set	 to	 None	 if	 their	 kind	 was	 set	 to
POSITIONAL_ONLY.	This	is	no	longer	permitted.

class	inspect.BoundArguments

Result	 of	 a	 Signature.bind()	 or
Signature.bind_partial()	 call.	 Holds	 the	 mapping	 of
arguments	to	the	function’s	parameters.

arguments

An	ordered,	mutable	mapping	(collections.OrderedDict)
of	 parameters’	 names	 to	 arguments’	 values.	 Contains	 only
explicitly	bound	arguments.	Changes	in	arguments	will	reflect
in	args	and	kwargs.

Should	be	used	in	conjunction	with	Signature.parameters
for	any	argument	processing	purposes.

Note: 	 Arguments	 for	 which	 Signature.bind()	 or
Signature.bind_partial()	relied	on	a	default	value	are
skipped.	However,	if	needed,	it	is	easy	to	include	them.

>>>	def	foo(a,	b=10):

...					pass

>>>	sig	=	signature(foo)

>>>	ba	=	sig.bind(5)

>>>	ba.args,	ba.kwargs

((5,),	{})

>>>	for	param	in	sig.parameters.values():

...					if	param.name	not	in	ba.arguments:

...									ba.arguments[param.name]	=	param.default

>>>	ba.args,	ba.kwargs

((5,	10),	{})

args

A	 tuple	of	positional	arguments	values.	Dynamically	 computed
from	the	arguments	attribute.

kwargs

A	 dict	 of	 keyword	 arguments	 values.	 Dynamically	 computed
from	the	arguments	attribute.

The	args	and	kwargs	properties	can	be	used	to	invoke	functions:

def	test(a,	*,	b):

			...

sig	=	signature(test)

ba	=	sig.bind(10,	b=20)

test(*ba.args,	**ba.kwargs)

See	also:

PEP	362	-	Function	Signature	Object.
The	detailed	specification,	implementation	details	and	examples.

http://www.python.org/dev/peps/pep-0362

29.12.4.	Classes	and	functions

inspect.getclasstree(classes,	unique=False)
Arrange	 the	 given	 list	 of	 classes	 into	 a	 hierarchy	 of	 nested	 lists.
Where	a	nested	 list	appears,	 it	 contains	classes	derived	 from	 the
class	whose	entry	immediately	precedes	the	list.	Each	entry	is	a	2-
tuple	 containing	 a	 class	 and	 a	 tuple	 of	 its	 base	 classes.	 If	 the
unique	argument	is	true,	exactly	one	entry	appears	in	the	returned
structure	for	each	class	 in	the	given	list.	Otherwise,	classes	using
multiple	 inheritance	 and	 their	 descendants	 will	 appear	 multiple
times.

inspect.getargspec(func)
Get	 the	 names	 and	 default	 values	 of	 a	 Python	 function’s
arguments.	 A	 named	 tuple	 ArgSpec(args,	 varargs,

keywords,	defaults)	is	returned.	args	is	a	list	of	the	argument
names.	 varargs	 and	 keywords	 are	 the	 names	 of	 the	 *	 and	 **
arguments	or	None.	defaults	 is	a	tuple	of	default	argument	values
or	 None	 if	 there	 are	 no	 default	 arguments;	 if	 this	 tuple	 has	 n
elements,	they	correspond	to	the	last	n	elements	listed	in	args.

Deprecated	 since	 version	 3.0:	 Use	 getfullargspec()

instead,	 which	 provides	 information	 about	 keyword-only
arguments	and	annotations.

inspect.getfullargspec(func)
Get	 the	 names	 and	 default	 values	 of	 a	 Python	 function’s
arguments.	A	named	tuple	is	returned:

FullArgSpec(args,	 varargs,	 varkw,	 defaults,

kwonlyargs,	kwonlydefaults,	annotations)

args	 is	 a	 list	 of	 the	 argument	 names.	varargs	 and	varkw	 are	 the
names	of	the	*	and	**	arguments	or	None.	defaults	 is	an	n-tuple
of	the	default	values	of	the	last	n	arguments,	or	None	 if	 there	are
no	 default	 arguments.	 kwonlyargs	 is	 a	 list	 of	 keyword-only
argument	 names.	 kwonlydefaults	 is	 a	 dictionary	 mapping	 names
from	 kwonlyargs	 to	 defaults.	 annotations	 is	 a	 dictionary	mapping
argument	names	to	annotations.

The	first	four	items	in	the	tuple	correspond	to	getargspec().

Note: 	Consider	using	the	new	Signature	Object	interface,	which
provides	a	better	way	of	introspecting	functions.

Changed	 in	 version	 3.4:	 This	 function	 is	 now	 based	 on
signature(),	 but	 still	 ignores	 __wrapped__	 attributes	 and
includes	 the	already	bound	 first	parameter	 in	 the	signature	output
for	bound	methods.

inspect.getargvalues(frame)
Get	information	about	arguments	passed	into	a	particular	frame.	A
named	 tuple	 ArgInfo(args,	 varargs,	 keywords,

locals)	is	returned.	args	is	a	list	of	the	argument	names.	varargs
and	keywords	are	the	names	of	the	*	and	**	arguments	or	None.
locals	is	the	locals	dictionary	of	the	given	frame.

inspect.formatargspec(args[,	varargs,	varkw,	defaults,
kwonlyargs,	kwonlydefaults,	annotations[,	formatarg,	formatvarargs,
formatvarkw,	formatvalue,	formatreturns,	formatannotations]])

Format	 a	 pretty	 argument	 spec	 from	 the	 values	 returned	 by
getargspec()	or	getfullargspec().

The	 first	 seven	 arguments	 are	 (args,	 varargs,	 varkw,

defaults,	 kwonlyargs,	 kwonlydefaults,	 annotations).
The	other	five	arguments	are	the	corresponding	optional	formatting
functions	that	are	called	to	turn	names	and	values	into	strings.	The
last	 argument	 is	 an	 optional	 function	 to	 format	 the	 sequence	 of
arguments.	For	example:

>>>	from	inspect	import	formatargspec,	getfullargspec

>>>	def	f(a:	int,	b:	float):

...					pass

...

>>>	formatargspec(*getfullargspec(f))

'(a:	int,	b:	float)'

inspect.formatargvalues(args[,	varargs,	varkw,	locals,
formatarg,	formatvarargs,	formatvarkw,	formatvalue])

Format	 a	 pretty	 argument	 spec	 from	 the	 four	 values	 returned	 by
getargvalues().	The	format*	arguments	are	the	corresponding
optional	 formatting	 functions	 that	 are	 called	 to	 turn	 names	 and
values	into	strings.

inspect.getmro(cls)
Return	a	tuple	of	class	cls’s	base	classes,	including	cls,	in	method
resolution	 order.	 No	 class	 appears	more	 than	 once	 in	 this	 tuple.
Note	 that	 the	 method	 resolution	 order	 depends	 on	 cls’s	 type.
Unless	a	very	peculiar	user-defined	metatype	is	 in	use,	cls	will	be
the	first	element	of	the	tuple.

inspect.getcallargs(func,	*args,	**kwds)
Bind	 the	 args	 and	 kwds	 to	 the	 argument	 names	 of	 the	 Python
function	or	method	 func,	 as	 if	 it	was	called	with	 them.	For	bound
methods,	 bind	 also	 the	 first	 argument	 (typically	 named	 self)	 to
the	associated	instance.	A	dict	 is	returned,	mapping	the	argument

names	(including	the	names	of	the	*	and	**	arguments,	if	any)	to
their	 values	 from	 args	 and	 kwds.	 In	 case	 of	 invoking	 func
incorrectly,	i.e.	whenever	func(*args,	**kwds)	would	raise	an
exception	because	of	 incompatible	 signature,	an	exception	of	 the
same	 type	 and	 the	 same	 or	 similar	 message	 is	 raised.	 For
example:

>>>	from	inspect	import	getcallargs

>>>	def	f(a,	b=1,	*pos,	**named):

...					pass

>>>	getcallargs(f,	1,	2,	3)	==	{'a':	1,	'named':	{},

True

>>>	getcallargs(f,	a=2,	x=4)	==	{'a':	2,	'named':	

True

>>>	getcallargs(f)

Traceback	(most	recent	call	last):

...

TypeError:	f()	missing	1	required	positional	argument:	'a'

New	in	version	3.2.

Note: 	Consider	using	the	new	Signature.bind()	instead.

inspect.getclosurevars(func)
Get	the	mapping	of	external	name	references	in	a	Python	function
or	 method	 func	 to	 their	 current	 values.	 A	 named	 tuple
ClosureVars(nonlocals,	 globals,	 builtins,

unbound)	 is	 returned.	 nonlocals	 maps	 referenced	 names	 to
lexical	 closure	 variables,	globals	 to	 the	 function’s	module	 globals
and	builtins	to	the	builtins	visible	from	the	function	body.	unbound	is
the	 set	 of	 names	 referenced	 in	 the	 function	 that	 could	 not	 be
resolved	at	all	given	the	current	module	globals	and	builtins.

TypeError	is	raised	if	func	is	not	a	Python	function	or	method.

New	in	version	3.3.

inspect.unwrap(func,	*,	stop=None)
Get	 the	 object	 wrapped	 by	 func.	 It	 follows	 the	 chain	 of
__wrapped__	attributes	returning	the	last	object	in	the	chain.

stop	 is	 an	 optional	 callback	 accepting	 an	 object	 in	 the	 wrapper
chain	 as	 its	 sole	 argument	 that	 allows	 the	 unwrapping	 to	 be
terminated	early	if	the	callback	returns	a	true	value.	If	the	callback
never	 returns	a	 true	value,	 the	 last	object	 in	 the	chain	 is	 returned
as	 usual.	 For	 example,	 signature()	 uses	 this	 to	 stop
unwrapping	 if	 any	 object	 in	 the	 chain	 has	 a	 __signature__
attribute	defined.

ValueError	is	raised	if	a	cycle	is	encountered.

New	in	version	3.4.

29.12.5.	The	interpreter	stack

When	the	following	functions	return	“frame	records,”	each	record	is	a
tuple	of	 six	 items:	 the	 frame	object,	 the	 filename,	 the	 line	number	of
the	current	 line,	 the	 function	name,	a	 list	of	 lines	of	context	 from	 the
source	code,	and	the	index	of	the	current	line	within	that	list.

Note: 	Keeping	references	to	frame	objects,	as	found	in	the	first
element	of	the	frame	records	these	functions	return,	can	cause	your
program	to	create	reference	cycles.	Once	a	reference	cycle	has
been	created,	the	lifespan	of	all	objects	which	can	be	accessed	from
the	objects	which	form	the	cycle	can	become	much	longer	even	if
Python’s	optional	cycle	detector	is	enabled.	If	such	cycles	must	be
created,	it	is	important	to	ensure	they	are	explicitly	broken	to	avoid
the	delayed	destruction	of	objects	and	increased	memory
consumption	which	occurs.

Though	the	cycle	detector	will	catch	these,	destruction	of	the	frames
(and	 local	 variables)	 can	 be	 made	 deterministic	 by	 removing	 the
cycle	 in	 a	 finally	 clause.	 This	 is	 also	 important	 if	 the	 cycle
detector	 was	 disabled	 when	 Python	 was	 compiled	 or	 using
gc.disable().	For	example:

def	handle_stackframe_without_leak():

				frame	=	inspect.currentframe()

				try:

								#	do	something	with	the	frame

				finally:

								del	frame

If	 you	 want	 to	 keep	 the	 frame	 around	 (for	 example	 to	 print	 a
traceback	 later),	 you	 can	 also	 break	 reference	 cycles	 by	 using	 the

frame.clear()	method.

The	optional	context	 argument	 supported	by	most	 of	 these	 functions
specifies	the	number	of	 lines	of	context	to	return,	which	are	centered
around	the	current	line.

inspect.getframeinfo(frame,	context=1)
Get	information	about	a	frame	or	traceback	object.	A	named	tuple
Traceback(filename,	 lineno,	 function,

code_context,	index)	is	returned.

inspect.getouterframes(frame,	context=1)
Get	a	list	of	frame	records	for	a	frame	and	all	outer	frames.	These
frames	 represent	 the	calls	 that	 lead	 to	 the	creation	of	 frame.	 The
first	 entry	 in	 the	 returned	 list	 represents	 frame;	 the	 last	 entry
represents	the	outermost	call	on	frame‘s	stack.

inspect.getinnerframes(traceback,	context=1)
Get	 a	 list	 of	 frame	 records	 for	 a	 traceback’s	 frame	 and	 all	 inner
frames.	These	 frames	represent	calls	made	as	a	consequence	of
frame.	The	first	entry	in	the	list	represents	traceback;	the	last	entry
represents	where	the	exception	was	raised.

inspect.currentframe()
Return	the	frame	object	for	the	caller’s	stack	frame.

CPython	implementation	detail:	This	function	relies	on	Python
stack	 frame	support	 in	 the	 interpreter,	which	 isn’t	guaranteed	 to
exist	 in	 all	 implementations	 of	 Python.	 If	 running	 in	 an
implementation	without	Python	stack	 frame	support	 this	 function
returns	None.

inspect.stack(context=1)
Return	a	list	of	frame	records	for	the	caller’s	stack.	The	first	entry	in
the	returned	list	represents	the	caller;	the	last	entry	represents	the
outermost	call	on	the	stack.

inspect.trace(context=1)
Return	 a	 list	 of	 frame	 records	 for	 the	 stack	 between	 the	 current
frame	and	the	frame	in	which	an	exception	currently	being	handled
was	 raised	 in.	 The	 first	 entry	 in	 the	 list	 represents	 the	 caller;	 the
last	entry	represents	where	the	exception	was	raised.

29.12.6.	Fetching	attributes	statically

Both	getattr()	and	hasattr()	 can	 trigger	 code	execution	when
fetching	 or	 checking	 for	 the	 existence	 of	 attributes.	 Descriptors,	 like
properties,	 will	 be	 invoked	 and	 __getattr__()	 and
__getattribute__()	may	be	called.

For	 cases	where	 you	want	 passive	 introspection,	 like	documentation
tools,	 this	 can	 be	 inconvenient.	 getattr_static()	 has	 the	 same
signature	as	getattr()	 but	 avoids	 executing	 code	when	 it	 fetches
attributes.

inspect.getattr_static(obj,	attr,	default=None)
Retrieve	 attributes	 without	 triggering	 dynamic	 lookup	 via	 the
descriptor	protocol,	__getattr__()	or	__getattribute__().

Note:	 this	 function	 may	 not	 be	 able	 to	 retrieve	 all	 attributes	 that
getattr	can	fetch	(like	dynamically	created	attributes)	and	may	find
attributes	 that	 getattr	 can’t	 (like	 descriptors	 that	 raise
AttributeError).	 It	 can	 also	 return	 descriptors	 objects	 instead	 of
instance	members.

If	 the	 instance	 __dict__	 is	 shadowed	 by	 another	 member	 (for
example	 a	 property)	 then	 this	 function	 will	 be	 unable	 to	 find
instance	members.

New	in	version	3.2.

getattr_static()	 does	 not	 resolve	 descriptors,	 for	 example	 slot
descriptors	 or	 getset	 descriptors	 on	 objects	 implemented	 in	 C.	 The
descriptor	object	is	returned	instead	of	the	underlying	attribute.

You	 can	 handle	 these	 with	 code	 like	 the	 following.	 Note	 that	 for
arbitrary	getset	descriptors	invoking	these	may	trigger	code	execution:

#	example	code	for	resolving	the	builtin	descriptor	types

class	_foo:

				__slots__	=	['foo']

slot_descriptor	=	type(_foo.foo)

getset_descriptor	=	type(type(open(__file__)).name)

wrapper_descriptor	=	type(str.__dict__['__add__'])

descriptor_types	=	(slot_descriptor,	getset_descriptor

result	=	getattr_static(some_object,	'foo')

if	type(result)	in	descriptor_types:

				try:

								result	=	result.__get__()

				except	AttributeError:

								#	descriptors	can	raise	AttributeError	to

								#	indicate	there	is	no	underlying	value

								#	in	which	case	the	descriptor	itself	will

								#	have	to	do

								pass

29.12.7.	Current	State	of	a	Generator

When	implementing	coroutine	schedulers	and	for	other	advanced	uses
of	generators,	it	is	useful	to	determine	whether	a	generator	is	currently
executing,	 is	waiting	 to	 start	 or	 resume	or	 execution,	 or	 has	 already
terminated.	 getgeneratorstate()	 allows	 the	 current	 state	 of	 a
generator	to	be	determined	easily.

inspect.getgeneratorstate(generator)
Get	current	state	of	a	generator-iterator.

Possible	states	are:
GEN_CREATED:	Waiting	to	start	execution.
GEN_RUNNING:	 Currently	 being	 executed	 by	 the
interpreter.
GEN_SUSPENDED:	 Currently	 suspended	 at	 a	 yield
expression.
GEN_CLOSED:	Execution	has	completed.

New	in	version	3.2.

The	current	internal	state	of	the	generator	can	also	be	queried.	This	is
mostly	useful	for	testing	purposes,	to	ensure	that	internal	state	is	being
updated	as	expected:

inspect.getgeneratorlocals(generator)
Get	the	mapping	of	live	local	variables	in	generator	to	their	current
values.	A	dictionary	 is	 returned	 that	maps	 from	variable	names	 to
values.	This	 is	 the	equivalent	of	calling	locals()	 in	 the	body	of
the	generator,	and	all	the	same	caveats	apply.

If	generator	is	a	generator	with	no	currently	associated	frame,	then
an	empty	dictionary	is	returned.	TypeError	 is	raised	if	generator

is	not	a	Python	generator	object.

CPython	 implementation	 detail:	 This	 function	 relies	 on	 the
generator	exposing	a	Python	stack	frame	for	introspection,	which
isn’t	guaranteed	to	be	the	case	in	all	implementations	of	Python.
In	 such	 cases,	 this	 function	 will	 always	 return	 an	 empty
dictionary.

New	in	version	3.3.

29.12.8.	Command	Line	Interface

The	 inspect	 module	 also	 provides	 a	 basic	 introspection	 capability
from	the	command	line.

By	default,	accepts	the	name	of	a	module	and	prints	the	source	of	that
module.	A	class	or	 function	within	 the	module	can	be	printed	 instead
by	appended	a	colon	and	the	qualified	name	of	the	target	object.

--details

Print	 information	about	 the	specified	object	rather	than	the	source
code

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.13.	site	—	Site-specific
configuration	hook
Source	code:	Lib/site.py

This	module	 is	 automatically	 imported	 during	 initialization.	 The
automatic	import	can	be	suppressed	using	the	interpreter’s	-S	option.

Importing	 this	 module	 will	 append	 site-specific	 paths	 to	 the	 module
search	path	and	add	a	few	builtins,	unless	-S	was	used.	In	that	case,
this	module	can	be	safely	imported	with	no	automatic	modifications	to
the	module	search	path	or	additions	to	the	builtins.	To	explicitly	trigger
the	usual	site-specific	additions,	call	the	site.main()	function.

Changed	 in	 version	 3.3:	 Importing	 the	module	 used	 to	 trigger	 paths
manipulation	even	when	using	-S.

It	 starts	by	constructing	up	 to	 four	directories	 from	a	head	and	a	 tail
part.	 For	 the	 head	 part,	 it	 uses	 sys.prefix	 and
sys.exec_prefix;	 empty	 heads	 are	 skipped.	 For	 the	 tail	 part,	 it
uses	the	empty	string	and	then	lib/site-packages	(on	Windows)
or	lib/pythonX.Y/site-packages	and	then	lib/site-python
(on	 Unix	 and	 Macintosh).	 For	 each	 of	 the	 distinct	 head-tail
combinations,	it	sees	if	it	refers	to	an	existing	directory,	and	if	so,	adds
it	 to	 sys.path	 and	 also	 inspects	 the	 newly	 added	 path	 for
configuration	files.

Deprecated	since	version	3.4:	Support	for	the	“site-python”	directory
will	be	removed	in	3.5.

http://hg.python.org/cpython/file/3.4/Lib/site.py

If	a	file	named	“pyvenv.cfg”	exists	one	directory	above	sys.executable,
sys.prefix	 and	 sys.exec_prefix	 are	 set	 to	 that	 directory	 and	 it	 is	 also
checked	 for	 site-packages	 and	 site-python	 (sys.base_prefix	 and
sys.base_exec_prefix	will	always	be	 the	 “real”	prefixes	of	 the	Python
installation).	If	“pyvenv.cfg”	(a	bootstrap	configuration	file)	contains	the
key	 “include-system-site-packages”	 set	 to	 anything	 other	 than	 “false”
(case-insensitive),	the	system-level	prefixes	will	still	also	be	searched
for	site-packages;	otherwise	they	won’t.

A	path	configuration	file	is	a	file	whose	name	has	the	form	name.pth
and	exists	in	one	of	the	four	directories	mentioned	above;	its	contents
are	 additional	 items	 (one	 per	 line)	 to	 be	 added	 to	 sys.path.	 Non-
existing	 items	are	never	added	to	sys.path,	and	no	check	 is	made
that	the	item	refers	to	a	directory	rather	than	a	file.	No	item	is	added	to
sys.path	more	than	once.	Blank	lines	and	lines	beginning	with	#	are
skipped.	 Lines	 starting	 with	 import	 (followed	 by	 space	 or	 tab)	 are
executed.

For	example,	suppose	sys.prefix	and	sys.exec_prefix	are	set
to	 /usr/local.	 The	 Python	 X.Y	 library	 is	 then	 installed	 in
/usr/local/lib/pythonX.Y.	 Suppose	 this	 has	 a	 subdirectory
/usr/local/lib/pythonX.Y/site-packages	 with	 three
subsubdirectories,	 foo,	 bar	 and	 spam,	 and	 two	 path	 configuration
files,	 foo.pth	 and	 bar.pth.	 Assume	 foo.pth	 contains	 the
following:

#	foo	package	configuration

foo

bar

bletch

and	bar.pth	contains:

#	bar	package	configuration

bar

Then	 the	 following	 version-specific	 directories	 are	 added	 to
sys.path,	in	this	order:

/usr/local/lib/pythonX.Y/site-packages/bar

/usr/local/lib/pythonX.Y/site-packages/foo

Note	 that	 bletch	 is	 omitted	 because	 it	 doesn’t	 exist;	 the	 bar
directory	 precedes	 the	 foo	 directory	 because	 bar.pth	 comes
alphabetically	before	foo.pth;	and	spam	is	omitted	because	it	is	not
mentioned	in	either	path	configuration	file.

After	these	path	manipulations,	an	attempt	is	made	to	import	a	module
named	 sitecustomize,	 which	 can	 perform	 arbitrary	 site-specific
customizations.	It	is	typically	created	by	a	system	administrator	in	the
site-packages	 directory.	 If	 this	 import	 fails	 with	 an	 ImportError
exception,	it	is	silently	ignored.

After	 this,	 an	 attempt	 is	 made	 to	 import	 a	 module	 named
usercustomize,	 which	 can	 perform	 arbitrary	 user-specific
customizations,	if	ENABLE_USER_SITE	is	true.	This	file	is	intended	to
be	 created	 in	 the	 user	 site-packages	 directory	 (see	 below),	which	 is
part	 of	 sys.path	 unless	 disabled	 by	 -s.	 An	 ImportError	 will	 be
silently	ignored.

Note	 that	 for	 some	 non-Unix	 systems,	 sys.prefix	 and
sys.exec_prefix	 are	 empty,	 and	 the	 path	 manipulations	 are
skipped;	 however	 the	 import	 of	 sitecustomize	 and

usercustomize	is	still	attempted.

29.13.1.	Readline	configuration

On	systems	that	support	readline,	 this	module	will	also	 import	and
configure	the	rlcompleter	module,	if	Python	is	started	in	interactive
mode	 and	without	 the	 -S	 option.	The	default	 behavior	 is	 enable	 tab-
completion	and	to	use	~/.python_history	as	the	history	save	file.
To	 disable	 it,	 delete	 (or	 override)	 the	 sys.__interactivehook__
attribute	 in	 your	 sitecustomize	 or	 usercustomize	 module	 or
your	PYTHONSTARTUP	file.

Changed	 in	 version	 3.4:	 Activation	 of	 rlcompleter	 and	 history	 was
made	automatic.

29.13.2.	Module	contents

site.PREFIXES

A	list	of	prefixes	for	site-packages	directories.

site.ENABLE_USER_SITE

Flag	showing	the	status	of	the	user	site-packages	directory.	True
means	 that	 it	 is	 enabled	 and	 was	 added	 to	 sys.path.	 False
means	 that	 it	 was	 disabled	 by	 user	 request	 (with	 -s	 or
PYTHONNOUSERSITE).	 None	 means	 it	 was	 disabled	 for	 security
reasons	(mismatch	between	user	or	group	id	and	effective	id)	or	by
an	administrator.

site.USER_SITE

Path	 to	 the	 user	 site-packages	 for	 the	 running	 Python.	 Can	 be
None	 if	 getusersitepackages()	 hasn’t	 been	 called	 yet.
Default	 value	 is	 ~/.local/lib/pythonX.Y/site-packages
for	 UNIX	 and	 non-framework	 Mac	 OS	 X	 builds,
~/Library/Python/X.Y/lib/python/site-packages	 for
Mac	 framework	 builds,	 and
%APPDATA%\Python\PythonXY\site-packages	 on	Windows.
This	directory	 is	a	site	directory,	which	means	that	.pth	 files	 in	 it
will	be	processed.

site.USER_BASE

Path	to	the	base	directory	for	the	user	site-packages.	Can	be	None
if	 getuserbase()	 hasn’t	 been	 called	 yet.	 Default	 value	 is
~/.local	 for	 UNIX	 and	 Mac	 OS	 X	 non-framework	 builds,
~/Library/Python/X.Y	 for	 Mac	 framework	 builds,	 and
%APPDATA%\Python	for	Windows.	This	value	is	used	by	Distutils

to	compute	the	installation	directories	for	scripts,	data	files,	Python
modules,	 etc.	 for	 the	 user	 installation	 scheme.	 See	 also
PYTHONUSERBASE.

site.main()
Adds	all	the	standard	site-specific	directories	to	the	module	search
path.	 This	 function	 is	 called	 automatically	 when	 this	 module	 is
imported,	unless	the	Python	interpreter	was	started	with	the	-S	flag.

Changed	 in	 version	 3.3:	 This	 function	 used	 to	 be	 called
unconditionnally.

site.addsitedir(sitedir,	known_paths=None)
Add	 a	 directory	 to	 sys.path	 and	 process	 its	 .pth	 files.	 Typically
used	in	sitecustomize	or	usercustomize	(see	above).

site.getsitepackages()
Return	 a	 list	 containing	 all	 global	 site-packages	 directories	 (and
possibly	site-python).

New	in	version	3.2.

site.getuserbase()
Return	the	path	of	the	user	base	directory,	USER_BASE.	If	it	is	not
initialized	 yet,	 this	 function	 will	 also	 set	 it,	 respecting
PYTHONUSERBASE.

New	in	version	3.2.

site.getusersitepackages()
Return	 the	 path	 of	 the	 user-specific	 site-packages	 directory,
USER_SITE.	 If	 it	 is	not	 initialized	yet,	 this	 function	will	also	set	 it,
respecting	PYTHONNOUSERSITE	and	USER_BASE.

New	in	version	3.2.

The	site	module	also	provides	a	way	to	get	the	user	directories	from
the	command	line:

$	python3	-m	site	--user-site

/home/user/.local/lib/python3.3/site-packages

If	it	is	called	without	arguments,	it	will	print	the	contents	of	sys.path
on	 the	 standard	 output,	 followed	 by	 the	 value	 of	 USER_BASE	 and
whether	the	directory	exists,	then	the	same	thing	for	USER_SITE,	and
finally	the	value	of	ENABLE_USER_SITE.

--user-base

Print	the	path	to	the	user	base	directory.

--user-site

Print	the	path	to	the	user	site-packages	directory.

If	 both	 options	 are	 given,	 user	 base	 and	 user	 site	 will	 be	 printed
(always	in	this	order),	separated	by	os.pathsep.

If	any	option	is	given,	the	script	will	exit	with	one	of	these	values:	O	 if
the	user	site-packages	directory	is	enabled,	1	if	it	was	disabled	by	the
user,	2	if	it	is	disabled	for	security	reasons	or	by	an	administrator,	and
a	value	greater	than	2	if	there	is	an	error.

See	also: 	PEP	370	–	Per	user	site-packages	directory

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/dev/peps/pep-0370
http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

http://www.python.org/

29.14.	fpectl	—	Floating	point
exception	control
Note: 	The	fpectl	module	is	not	built	by	default,	and	its	usage	is
discouraged	and	may	be	dangerous	except	in	the	hands	of	experts.
See	also	the	section	Limitations	and	other	considerations	on
limitations	for	more	details.

Most	 computers	 carry	 out	 floating	 point	 operations	 in	 conformance
with	 the	 so-called	 IEEE-754	 standard.	 On	 any	 real	 computer,	 some
floating	point	operations	produce	results	that	cannot	be	expressed	as
a	normal	floating	point	value.	For	example,	try

>>>	import	math

>>>	math.exp(1000)

inf

>>>	math.exp(1000)	/	math.exp(1000)

nan

(The	example	above	will	work	on	many	platforms.	DEC	Alpha	may	be
one	exception.)	“Inf”	 is	a	special,	non-numeric	value	in	IEEE-754	that
stands	for	“infinity”,	and	“nan”	means	“not	a	number.”	Note	that,	other
than	 the	 non-numeric	 results,	 nothing	 special	 happened	 when	 you
asked	Python	to	carry	out	those	calculations.	That	is	in	fact	the	default
behaviour	prescribed	in	the	IEEE-754	standard,	and	if	it	works	for	you,
stop	reading	now.

In	 some	circumstances,	 it	would	be	better	 to	 raise	an	exception	and
stop	processing	at	the	point	where	the	faulty	operation	was	attempted.
The	fpectl	module	is	for	use	in	that	situation.	It	provides	control	over
floating	point	units	from	several	hardware	manufacturers,	allowing	the

user	to	turn	on	the	generation	of	SIGFPE	whenever	any	of	the	IEEE-
754	 exceptions	 Division	 by	 Zero,	 Overflow,	 or	 Invalid	 Operation
occurs.	In	tandem	with	a	pair	of	wrapper	macros	that	are	inserted	into
the	C	 code	 comprising	 your	 python	 system,	 SIGFPE	 is	 trapped	 and
converted	into	the	Python	FloatingPointError	exception.

The	fpectl	module	defines	the	following	functions	and	may	raise	the
given	exception:

fpectl.turnon_sigfpe()
Turn	 on	 the	 generation	 of	 SIGFPE,	 and	 set	 up	 an	 appropriate
signal	handler.

fpectl.turnoff_sigfpe()
Reset	default	handling	of	floating	point	exceptions.

exception	fpectl.FloatingPointError
After	 turnon_sigfpe()	 has	 been	 executed,	 a	 floating	 point
operation	 that	 raises	 one	of	 the	 IEEE-754	exceptions	Division	 by
Zero,	Overflow,	or	 Invalid	operation	will	 in	 turn	raise	 this	standard
Python	exception.

29.14.1.	Example

The	 following	 example	 demonstrates	 how	 to	 start	 up	 and	 test
operation	of	the	fpectl	module.

>>>	import	fpectl

>>>	import	fpetest

>>>	fpectl.turnon_sigfpe()

>>>	fpetest.test()

overflow								PASS

FloatingPointError:	Overflow

div	by	0								PASS

FloatingPointError:	Division	by	zero

		[more	output	from	test	elided]

>>>	import	math

>>>	math.exp(1000)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

FloatingPointError:	in	math_1

29.14.2.	Limitations	and	other
considerations

Setting	 up	 a	 given	 processor	 to	 trap	 IEEE-754	 floating	 point	 errors
currently	 requires	custom	code	on	a	per-architecture	basis.	You	may
have	to	modify	fpectl	to	control	your	particular	hardware.

Conversion	of	an	IEEE-754	exception	to	a	Python	exception	requires
that	 the	 wrapper	 macros	 PyFPE_START_PROTECT	 and
PyFPE_END_PROTECT	 be	 inserted	 into	 your	 code	 in	 an	 appropriate
fashion.	 Python	 itself	 has	 been	 modified	 to	 support	 the	 fpectl
module,	but	many	other	codes	of	 interest	 to	numerical	analysts	have
not.

The	fpectl	module	is	not	thread-safe.

See	also: 	Some	files	in	the	source	distribution	may	be	interesting	in
learning	more	about	how	this	module	operates.	The	include	file
Include/pyfpe.h	discusses	the	implementation	of	this	module	at
some	length.	Modules/fpetestmodule.c	gives	several
examples	of	use.	Many	additional	examples	can	be	found	in
Objects/floatobject.c.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	29.	Python	Runtime	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

30.	Custom	Python	Interpreters
The	modules	described	 in	 this	chapter	allow	writing	 interfaces	similar
to	Python’s	interactive	interpreter.	If	you	want	a	Python	interpreter	that
supports	some	special	feature	in	addition	to	the	Python	language,	you
should	look	at	the	code	module.	(The	codeop	module	is	lower-level,
used	 to	 support	 compiling	 a	 possibly-incomplete	 chunk	 of	 Python
code.)

The	full	list	of	modules	described	in	this	chapter	is:

30.1.	code	—	Interpreter	base	classes
30.1.1.	Interactive	Interpreter	Objects
30.1.2.	Interactive	Console	Objects

30.2.	codeop	—	Compile	Python	code

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	30.	Custom	Python	Interpreters	»

http://www.python.org/

30.1.	code	—	Interpreter	base
classes
The	 code	 module	 provides	 facilities	 to	 implement	 read-eval-print
loops	in	Python.	Two	classes	and	convenience	functions	are	included
which	can	be	used	 to	build	applications	which	provide	an	 interactive
interpreter	prompt.

class	code.InteractiveInterpreter(locals=None)
This	 class	 deals	 with	 parsing	 and	 interpreter	 state	 (the	 user’s
namespace);	 it	does	not	deal	with	 input	buffering	or	prompting	or
input	file	naming	(the	filename	is	always	passed	in	explicitly).	The
optional	locals	argument	specifies	the	dictionary	in	which	code	will
be	 executed;	 it	 defaults	 to	 a	 newly	 created	 dictionary	 with	 key
'__name__'	set	to	'__console__'	and	key	'__doc__'	set	to
None.

class	code.InteractiveConsole(locals=None,	filename="
<console>")

Closely	emulate	 the	behavior	of	 the	 interactive	Python	 interpreter.
This	 class	 builds	 on	 InteractiveInterpreter	 and	 adds
prompting	 using	 the	 familiar	 sys.ps1	 and	 sys.ps2,	 and	 input
buffering.

code.interact(banner=None,	readfunc=None,	local=None)
Convenience	function	to	run	a	read-eval-print	 loop.	This	creates	a
new	 instance	of	InteractiveConsole	and	sets	 readfunc	 to	be
used	 as	 the	 InteractiveConsole.raw_input()	 method,	 if
provided.	 If	 local	 is	 provided,	 it	 is	 passed	 to	 the

InteractiveConsole	 constructor	 for	 use	 as	 the	 default
namespace	 for	 the	 interpreter	 loop.	The	 interact()	method	 of
the	instance	is	then	run	with	banner	passed	as	the	banner	to	use,	if
provided.	The	console	object	is	discarded	after	use.

code.compile_command(source,	filename="<input>",
symbol="single")

This	function	is	useful	for	programs	that	want	to	emulate	Python’s
interpreter	 main	 loop	 (a.k.a.	 the	 read-eval-print	 loop).	 The	 tricky
part	 is	 to	 determine	 when	 the	 user	 has	 entered	 an	 incomplete
command	 that	 can	 be	 completed	 by	 entering	 more	 text	 (as
opposed	to	a	complete	command	or	a	syntax	error).	This	 function
almost	 always	 makes	 the	 same	 decision	 as	 the	 real	 interpreter
main	loop.

source	 is	 the	source	string;	 filename	 is	 the	optional	 filename	from
which	source	was	 read,	defaulting	 to	 '<input>';	and	symbol	 is
the	 optional	 grammar	 start	 symbol,	 which	 should	 be	 either
'single'	(the	default)	or	'eval'.

Returns	 a	 code	 object	 (the	 same	 as	 compile(source,

filename,	 symbol))	 if	 the	 command	 is	 complete	 and	 valid;
None	 if	 the	 command	 is	 incomplete;	 raises	 SyntaxError	 if	 the
command	 is	 complete	 and	 contains	 a	 syntax	 error,	 or	 raises
OverflowError	 or	 ValueError	 if	 the	 command	 contains	 an
invalid	literal.

30.1.1.	Interactive	Interpreter	Objects

InteractiveInterpreter.runsource(source,	filename="
<input>",	symbol="single")

Compile	and	run	some	source	in	the	interpreter.	Arguments	are	the
same	 as	 for	 compile_command();	 the	 default	 for	 filename	 is
'<input>',	and	for	symbol	is	'single'.	One	several	things	can
happen:

The	 input	 is	 incorrect;	 compile_command()	 raised	 an
exception	 (SyntaxError	 or	 OverflowError).	 A	 syntax
traceback	will	be	printed	by	calling	the	showsyntaxerror()
method.	runsource()	returns	False.
The	 input	 is	 incomplete,	 and	 more	 input	 is	 required;
compile_command()	returned	None.	runsource()	returns
True.
The	input	is	complete;	compile_command()	returned	a	code
object.	The	code	is	executed	by	calling	the	runcode()	(which
also	 handles	 run-time	 exceptions,	 except	 for	 SystemExit).
runsource()	returns	False.

The	return	value	can	be	used	to	decide	whether	 to	use	sys.ps1
or	sys.ps2	to	prompt	the	next	line.

InteractiveInterpreter.runcode(code)
Execute	 a	 code	 object.	 When	 an	 exception	 occurs,
showtraceback()	is	called	to	display	a	traceback.	All	exceptions
are	caught	except	SystemExit,	which	is	allowed	to	propagate.

A	 note	 about	 KeyboardInterrupt:	 this	 exception	 may	 occur
elsewhere	in	this	code,	and	may	not	always	be	caught.	The	caller
should	be	prepared	to	deal	with	it.

InteractiveInterpreter.showsyntaxerror(filename=None
Display	the	syntax	error	that	just	occurred.	This	does	not	display	a
stack	trace	because	there	isn’t	one	for	syntax	errors.	If	filename	 is
given,	it	is	stuffed	into	the	exception	instead	of	the	default	filename
provided	by	Python’s	parser,	because	it	always	uses	'<string>'
when	reading	from	a	string.	The	output	is	written	by	the	write()
method.

InteractiveInterpreter.showtraceback()
Display	the	exception	that	just	occurred.	We	remove	the	first	stack
item	because	it	is	within	the	interpreter	object	implementation.	The
output	is	written	by	the	write()	method.

InteractiveInterpreter.write(data)
Write	a	string	to	the	standard	error	stream	(sys.stderr).	Derived
classes	 should	 override	 this	 to	 provide	 the	 appropriate	 output
handling	as	needed.

30.1.2.	Interactive	Console	Objects

The	 InteractiveConsole	 class	 is	 a	 subclass	 of
InteractiveInterpreter,	 and	 so	 offers	 all	 the	 methods	 of	 the
interpreter	objects	as	well	as	the	following	additions.

InteractiveConsole.interact(banner=None)
Closely	 emulate	 the	 interactive	 Python	 console.	 The	 optional
banner	 argument	 specify	 the	 banner	 to	 print	 before	 the	 first
interaction;	by	default	it	prints	a	banner	similar	to	the	one	printed	by
the	standard	Python	interpreter,	followed	by	the	class	name	of	the
console	object	 in	parentheses	 (so	as	not	 to	 confuse	 this	with	 the
real	interpreter	–	since	it’s	so	close!).

Changed	in	version	3.4:	To	suppress	printing	any	banner,	pass	an
empty	string.

InteractiveConsole.push(line)
Push	 a	 line	 of	 source	 text	 to	 the	 interpreter.	 The	 line	 should	 not
have	a	 trailing	newline;	 it	may	have	 internal	newlines.	The	 line	 is
appended	to	a	buffer	and	the	 interpreter’s	runsource()	method
is	called	with	the	concatenated	contents	of	the	buffer	as	source.	If
this	indicates	that	the	command	was	executed	or	invalid,	the	buffer
is	 reset;	otherwise,	 the	command	 is	 incomplete,	and	 the	buffer	 is
left	as	it	was	after	the	line	was	appended.	The	return	value	is	True
if	more	input	is	required,	False	 if	 the	line	was	dealt	with	in	some
way	(this	is	the	same	as	runsource()).

InteractiveConsole.resetbuffer()
Remove	any	unhandled	source	text	from	the	input	buffer.

InteractiveConsole.raw_input(prompt="")
Write	a	prompt	and	read	a	line.	The	returned	line	does	not	include
the	trailing	newline.	When	the	user	enters	the	EOF	key	sequence,
EOFError	 is	 raised.	 The	 base	 implementation	 reads	 from
sys.stdin;	 a	 subclass	 may	 replace	 this	 with	 a	 different
implementation.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	30.	Custom	Python	Interpreters	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	30.	Custom	Python	Interpreters	»

http://www.python.org/

30.2.	codeop	—	Compile	Python
code
The	 codeop	 module	 provides	 utilities	 upon	 which	 the	 Python	 read-
eval-print	loop	can	be	emulated,	as	is	done	in	the	code	module.	As	a
result,	you	probably	don’t	want	to	use	the	module	directly;	if	you	want
to	 include	such	a	 loop	 in	your	program	you	probably	want	 to	use	the
code	module	instead.

There	are	two	parts	to	this	job:

1.	 Being	able	to	tell	if	a	line	of	input	completes	a	Python	statement:
in	short,	telling	whether	to	print	‘>>>‘	or	‘...‘	next.

2.	 Remembering	which	 future	 statements	 the	user	 has	entered,	 so
subsequent	input	can	be	compiled	with	these	in	effect.

The	 codeop	module	 provides	 a	way	 of	 doing	 each	 of	 these	 things,
and	a	way	of	doing	them	both.

To	do	just	the	former:

codeop.compile_command(source,	filename="<input>",
symbol="single")

Tries	 to	compile	source,	which	should	be	a	string	of	Python	code
and	 return	 a	 code	 object	 if	 source	 is	 valid	 Python	 code.	 In	 that
case,	 the	 filename	 attribute	 of	 the	 code	 object	 will	 be	 filename,
which	defaults	to	'<input>'.	Returns	None	if	source	is	not	valid
Python	code,	but	is	a	prefix	of	valid	Python	code.

If	 there	 is	 a	 problem	 with	 source,	 an	 exception	 will	 be	 raised.
SyntaxError	 is	 raised	 if	 there	 is	 invalid	 Python	 syntax,	 and

OverflowError	or	ValueError	if	there	is	an	invalid	literal.

The	symbol	argument	determines	whether	source	is	compiled	as	a
statement	('single',	the	default)	or	as	an	expression	('eval').
Any	other	value	will	cause	ValueError	to	be	raised.

Note: 	It	is	possible	(but	not	likely)	that	the	parser	stops	parsing
with	a	successful	outcome	before	reaching	the	end	of	the	source;
in	 this	case,	 trailing	symbols	may	be	 ignored	 instead	of	causing
an	error.	For	example,	a	backslash	followed	by	two	newlines	may
be	followed	by	arbitrary	garbage.	This	will	be	fixed	once	the	API
for	the	parser	is	better.

class	codeop.Compile
Instances	 of	 this	 class	 have	 __call__()	 methods	 identical	 in
signature	 to	 the	 built-in	 function	 compile(),	 but	 with	 the
difference	 that	 if	 the	 instance	 compiles	program	 text	 containing	a
__future__	 statement,	 the	 instance	 ‘remembers’	 and	 compiles
all	subsequent	program	texts	with	the	statement	in	force.

class	codeop.CommandCompiler
Instances	 of	 this	 class	 have	 __call__()	 methods	 identical	 in
signature	 to	 compile_command();	 the	 difference	 is	 that	 if	 the
instance	 compiles	 program	 text	 containing	 a	 __future__

statement,	 the	 instance	 ‘remembers’	and	compiles	all	 subsequent
program	texts	with	the	statement	in	force.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	30.	Custom	Python	Interpreters	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

31.	Importing	Modules
The	 modules	 described	 in	 this	 chapter	 provide	 new	 ways	 to	 import
other	Python	modules	and	hooks	for	customizing	the	import	process.

The	full	list	of	modules	described	in	this	chapter	is:

31.1.	imp	—	Access	the	import	internals
31.1.1.	Examples

31.2.	zipimport	—	Import	modules	from	Zip	archives
31.2.1.	zipimporter	Objects
31.2.2.	Examples

31.3.	pkgutil	—	Package	extension	utility
31.4.	modulefinder	—	Find	modules	used	by	a	script

31.4.1.	Example	usage	of	ModuleFinder
31.5.	runpy	—	Locating	and	executing	Python	modules
31.6.	importlib	–	The	implementation	of	import

31.6.1.	Introduction
31.6.2.	Functions
31.6.3.	importlib.abc	–	Abstract	base	classes	related	 to
import
31.6.4.	importlib.machinery	–	Importers	and	path	hooks
31.6.5.	importlib.util	–	Utility	code	for	importers

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

http://www.python.org/

31.1.	imp	—	Access	the	import
internals

Deprecated	 since	 version	 3.4:	 The	 imp	 package	 is	 pending
deprecation	in	favor	of	importlib.

This	 module	 provides	 an	 interface	 to	 the	 mechanisms	 used	 to
implement	 the	 import	 statement.	 It	 defines	 the	 following	 constants
and	functions:

imp.get_magic()
Return	 the	 magic	 string	 value	 used	 to	 recognize	 byte-compiled
code	 files	 (.pyc	 files).	 (This	 value	 may	 be	 different	 for	 each
Python	version.)

Deprecated	 since	 version	 3.4:	 Use
importlib.util.MAGIC_NUMBER	instead.

imp.get_suffixes()
Return	a	list	of	3-element	tuples,	each	describing	a	particular	type
of	 module.	 Each	 triple	 has	 the	 form	 (suffix,	 mode,	 type),
where	suffix	is	a	string	to	be	appended	to	the	module	name	to	form
the	filename	to	search	for,	mode	 is	the	mode	string	to	pass	to	the
built-in	open()	 function	 to	open	 the	 file	 (this	can	be	'r'	 for	 text
files	or	'rb'	 for	binary	 files),	and	 type	 is	 the	 file	 type,	which	has
one	of	the	values	PY_SOURCE,	PY_COMPILED,	or	C_EXTENSION,
described	below.

Deprecated	 since	 version	 3.3:	 Use	 the	 constants	 defined	 on

importlib.machinery	instead.

imp.find_module(name[,	path])
Try	to	find	the	module	name.	If	path	is	omitted	or	None,	the	list	of
directory	 names	 given	 by	 sys.path	 is	 searched,	 but	 first	 a	 few
special	 places	 are	 searched:	 the	 function	 tries	 to	 find	 a	 built-in
module	with	 the	given	name	(C_BUILTIN),	 then	a	 frozen	module
(PY_FROZEN),	 and	 on	 some	 systems	 some	 other	 places	 are
looked	 in	as	well	 (on	Windows,	 it	 looks	 in	 the	 registry	which	may
point	to	a	specific	file).

Otherwise,	path	must	be	a	list	of	directory	names;	each	directory	is
searched	 for	 files	 with	 any	 of	 the	 suffixes	 returned	 by
get_suffixes()	 above.	 Invalid	 names	 in	 the	 list	 are	 silently
ignored	(but	all	list	items	must	be	strings).

If	 search	 is	 successful,	 the	 return	 value	 is	 a	 3-element	 tuple
(file,	pathname,	description):

file	is	an	open	file	object	positioned	at	the	beginning,	pathname	 is
the	pathname	of	the	file	found,	and	description	is	a	3-element	tuple
as	contained	 in	 the	 list	 returned	by	get_suffixes()	describing
the	kind	of	module	found.

If	 the	 module	 does	 not	 live	 in	 a	 file,	 the	 returned	 file	 is	 None,
pathname	 is	 the	 empty	 string,	 and	 the	description	 tuple	 contains
empty	strings	for	its	suffix	and	mode;	the	module	type	is	indicated
as	 given	 in	 parentheses	 above.	 If	 the	 search	 is	 unsuccessful,
ImportError	 is	 raised.	Other	exceptions	 indicate	problems	with
the	arguments	or	environment.

If	the	module	is	a	package,	file	is	None,	pathname	 is	the	package

path	and	the	last	item	in	the	description	tuple	is	PKG_DIRECTORY.

This	 function	does	not	handle	hierarchical	module	names	(names
containing	 dots).	 In	 order	 to	 find	 P.M,	 that	 is,	 submodule	 M	 of
package	P,	 use	 find_module()	 and	 load_module()	 to	 find
and	load	package	P,	and	then	use	find_module()	with	the	path
argument	set	 to	P.__path__.	When	P	 itself	 has	a	dotted	name,
apply	this	recipe	recursively.

Deprecated	 since	 version	 3.3:	 Use
importlib.find_loader()	instead.

imp.load_module(name,	file,	pathname,	description)
Load	a	module	that	was	previously	found	by	find_module()	(or
by	 an	 otherwise	 conducted	 search	 yielding	 compatible	 results).
This	 function	does	more	than	 importing	 the	module:	 if	 the	module
was	 already	 imported,	 it	 will	 reload	 the	 module!	 The	 name
argument	 indicates	 the	 full	 module	 name	 (including	 the	 package
name,	if	this	is	a	submodule	of	a	package).	The	file	argument	is	an
open	file,	and	pathname	is	the	corresponding	file	name;	these	can
be	None	and	'',	 respectively,	when	 the	module	 is	a	package	or
not	being	 loaded	 from	a	 file.	The	description	argument	 is	a	 tuple,
as	would	be	returned	by	get_suffixes(),	describing	what	kind
of	module	must	be	loaded.

If	 the	 load	 is	 successful,	 the	 return	 value	 is	 the	 module	 object;
otherwise,	an	exception	(usually	ImportError)	is	raised.

Important:	the	caller	is	responsible	for	closing	the	file	argument,	if
it	 was	 not	 None,	 even	when	 an	 exception	 is	 raised.	 This	 is	 best
done	using	a	try	...	finally	statement.

Deprecated	 since	 version	 3.3:	 If	 previously	 used	 in	 conjunction
with	 imp.find_module()	 then	 call	 load_module()	 on	 the
returned	loader.	If	you	wish	to	load	a	module	from	a	specific	file,
then	 use	 one	 of	 the	 file-based	 loaders	 found	 in
importlib.machinery.

imp.new_module(name)
Return	a	new	empty	module	object	called	name.	This	object	is	not
inserted	in	sys.modules.

Deprecated	 since	 version	 3.4:	 Use	 types.ModuleType

instead.

imp.reload(module)
Reload	 a	 previously	 imported	module.	 The	 argument	 must	 be	 a
module	object,	so	it	must	have	been	successfully	imported	before.
This	 is	 useful	 if	 you	 have	 edited	 the	module	 source	 file	 using	 an
external	editor	and	want	to	try	out	the	new	version	without	leaving
the	Python	 interpreter.	The	 return	value	 is	 the	module	object	 (the
same	as	the	module	argument).

When	reload(module)	is	executed:

Python	 modules’	 code	 is	 recompiled	 and	 the	 module-level
code	 reexecuted,	 defining	 a	 new	 set	 of	 objects	 which	 are
bound	to	names	in	the	module’s	dictionary.	The	init	function
of	extension	modules	is	not	called	a	second	time.
As	 with	 all	 other	 objects	 in	 Python	 the	 old	 objects	 are	 only
reclaimed	after	their	reference	counts	drop	to	zero.
The	names	in	the	module	namespace	are	updated	to	point	to
any	new	or	changed	objects.
Other	references	to	the	old	objects	(such	as	names	external	to

the	module)	are	not	 rebound	 to	 refer	 to	 the	new	objects	and
must	be	updated	in	each	namespace	where	they	occur	if	that
is	desired.

There	are	a	number	of	other	caveats:

If	a	module	is	syntactically	correct	but	its	initialization	fails,	the	first
import	 statement	 for	 it	 does	not	 bind	 its	 name	 locally,	 but	 does
store	 a	 (partially	 initialized)	 module	 object	 in	 sys.modules.	 To
reload	the	module	you	must	first	import	it	again	(this	will	bind	the
name	 to	 the	 partially	 initialized	 module	 object)	 before	 you	 can
reload()	it.

When	a	module	is	reloaded,	its	dictionary	(containing	the	module’s
global	 variables)	 is	 retained.	 Redefinitions	 of	 names	 will	 override
the	 old	 definitions,	 so	 this	 is	 generally	 not	 a	 problem.	 If	 the	 new
version	of	a	module	does	not	define	a	name	 that	was	defined	by
the	old	version,	the	old	definition	remains.	This	feature	can	be	used
to	the	module’s	advantage	if	it	maintains	a	global	table	or	cache	of
objects	—	with	a	try	statement	it	can	test	for	the	table’s	presence
and	skip	its	initialization	if	desired:

try:

				cache

except	NameError:

				cache	=	{}

It	 is	 legal	 though	 generally	 not	 very	 useful	 to	 reload	 built-in	 or
dynamically	 loaded	 modules,	 except	 for	 sys,	 __main__	 and
builtins.	 In	many	 cases,	 however,	 extension	modules	 are	 not
designed	to	be	initialized	more	than	once,	and	may	fail	in	arbitrary
ways	when	reloaded.

If	 a	module	 imports	 objects	 from	 another	module	 using	 from	 ...

import	 ...,	 calling	 reload()	 for	 the	 other	 module	 does	 not
redefine	 the	objects	 imported	 from	 it	—	one	way	around	this	 is	 to
re-execute	 the	 from	 statement,	 another	 is	 to	 use	 import	 and
qualified	names	(module.*name*)	instead.

If	a	module	instantiates	instances	of	a	class,	reloading	the	module
that	defines	the	class	does	not	affect	the	method	definitions	of	the
instances	 —	 they	 continue	 to	 use	 the	 old	 class	 definition.	 The
same	is	true	for	derived	classes.

Changed	 in	 version	 3.3:	 Relies	 on	 both	 __name__	 and
__loader__	being	defined	on	the	module	being	reloaded	instead
of	just	__name__.

Deprecated	 since	 version	 3.4:	 Use	 importlib.reload()
instead.

The	following	functions	are	conveniences	for	handling	PEP	3147	byte-
compiled	file	paths.

New	in	version	3.2.

imp.cache_from_source(path,	debug_override=None)
Return	the	PEP	3147	path	to	the	byte-compiled	file	associated	with
the	 source	path.	 For	 example,	 if	path	 is	 /foo/bar/baz.py	 the
return	value	would	be	/foo/bar/__pycache__/baz.cpython-
32.pyc	 for	Python	3.2.	The	cpython-32	 string	comes	 from	 the
current	 magic	 tag	 (see	 get_tag();	 if
sys.implementation.cache_tag	 is	 not	 defined	 then
NotImplementedError	 will	 be	 raised).	 The	 returned	 path	 will
end	in	.pyc	when	__debug__	is	True	or	.pyo	for	an	optimized
Python	(i.e.	__debug__	is	False).	By	passing	in	True	or	False

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147

for	 debug_override	 you	 can	 override	 the	 system’s	 value	 for
__debug__	for	extension	selection.

path	need	not	exist.

Changed	in	version	3.3:	If	sys.implementation.cache_tag	is
None,	then	NotImplementedError	is	raised.

Deprecated	 since	 version	 3.4:	 Use
importlib.util.cache_from_source()	instead.

imp.source_from_cache(path)
Given	 the	 path	 to	 a	 PEP	 3147	 file	 name,	 return	 the	 associated
source	 code	 file	 path.	 For	 example,	 if	 path	 is
/foo/bar/__pycache__/baz.cpython-32.pyc	 the	 returned
path	would	be	/foo/bar/baz.py.	path	need	not	exist,	however	if
it	does	not	conform	to	PEP	3147	format,	a	ValueError	is	raised.
If	 sys.implementation.cache_tag	 is	 not	 defined,
NotImplementedError	is	raised.

Changed	 in	 version	 3.3:	 Raise	 NotImplementedError	 when
sys.implementation.cache_tag	is	not	defined.

Deprecated	 since	 version	 3.4:	 Use
importlib.util.source_from_cache()	instead.

imp.get_tag()
Return	 the	 PEP	 3147	 magic	 tag	 string	 matching	 this	 version	 of
Python’s	magic	number,	as	returned	by	get_magic().

Deprecated	 since	 version	 3.4:	 Use

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147

sys.implementation.cache_tag	 directly	 starting	 in	 Python
3.3.

The	following	functions	help	 interact	with	 the	 import	system’s	 internal
locking	 mechanism.	 Locking	 semantics	 of	 imports	 are	 an
implementation	 detail	 which	 may	 vary	 from	 release	 to	 release.
However,	 Python	 ensures	 that	 circular	 imports	 work	 without	 any
deadlocks.

imp.lock_held()
Return	True	if	the	global	import	lock	is	currently	held,	else	False.
On	platforms	without	threads,	always	return	False.

On	platforms	with	threads,	a	thread	executing	an	import	first	holds
a	global	import	lock,	then	sets	up	a	per-module	lock	for	the	rest	of
the	 import.	 This	 blocks	 other	 threads	 from	 importing	 the	 same
module	 until	 the	 original	 import	 completes,	 preventing	 other
threads	from	seeing	incomplete	module	objects	constructed	by	the
original	thread.	An	exception	is	made	for	circular	imports,	which	by
construction	have	to	expose	an	incomplete	module	object	at	some
point.

Changed	 in	 version	 3.3:	 The	 locking	 scheme	 has	 changed	 to	 per-
module	 locks	for	 the	most	part.	A	global	 import	 lock	 is	kept	 for	some
critical	tasks,	such	as	initializing	the	per-module	locks.

Deprecated	since	version	3.4.

imp.acquire_lock()
Acquire	 the	 interpreter’s	global	 import	 lock	 for	 the	 current	 thread.
This	 lock	should	be	used	by	import	hooks	to	ensure	thread-safety

when	importing	modules.

Once	a	thread	has	acquired	the	import	lock,	the	same	thread	may
acquire	 it	 again	without	 blocking;	 the	 thread	must	 release	 it	 once
for	each	time	it	has	acquired	it.

On	platforms	without	threads,	this	function	does	nothing.

Changed	 in	 version	 3.3:	 The	 locking	 scheme	 has	 changed	 to	 per-
module	 locks	for	 the	most	part.	A	global	 import	 lock	 is	kept	 for	some
critical	tasks,	such	as	initializing	the	per-module	locks.

Deprecated	since	version	3.4.

imp.release_lock()
Release	 the	 interpreter’s	 global	 import	 lock.	On	platforms	without
threads,	this	function	does	nothing.

Changed	 in	 version	 3.3:	 The	 locking	 scheme	 has	 changed	 to	 per-
module	 locks	for	 the	most	part.	A	global	 import	 lock	 is	kept	 for	some
critical	tasks,	such	as	initializing	the	per-module	locks.

Deprecated	since	version	3.4.

The	following	constants	with	integer	values,	defined	in	this	module,	are
used	to	indicate	the	search	result	of	find_module().

imp.PY_SOURCE

The	module	was	found	as	a	source	file.

Deprecated	since	version	3.3.

imp.PY_COMPILED

The	module	was	found	as	a	compiled	code	object	file.

Deprecated	since	version	3.3.

imp.C_EXTENSION

The	module	was	found	as	dynamically	loadable	shared	library.

Deprecated	since	version	3.3.

imp.PKG_DIRECTORY

The	module	was	found	as	a	package	directory.

Deprecated	since	version	3.3.

imp.C_BUILTIN

The	module	was	found	as	a	built-in	module.

Deprecated	since	version	3.3.

imp.PY_FROZEN

The	module	was	found	as	a	frozen	module.

Deprecated	since	version	3.3.

class	imp.NullImporter(path_string)
The	NullImporter	 type	 is	a	PEP	302	 import	hook	 that	handles
non-directory	 path	 strings	 by	 failing	 to	 find	 any	 modules.	 Calling
this	 type	 with	 an	 existing	 directory	 or	 empty	 string	 raises
ImportError.	Otherwise,	a	NullImporter	instance	is	returned.

http://www.python.org/dev/peps/pep-0302

Instances	have	only	one	method:

find_module(fullname[,	path])
This	method	always	returns	None,	indicating	that	the	requested
module	could	not	be	found.

Changed	 in	 version	 3.3:	 None	 is	 inserted	 into
sys.path_importer_cache	 instead	 of	 an	 instance	 of
NullImporter.

Deprecated	 since	 version	 3.4:	 Insert	 None	 into
sys.path_importer_cache	instead.

31.1.1.	Examples

The	 following	 function	 emulates	 what	 was	 the	 standard	 import
statement	 up	 to	 Python	 1.4	 (no	 hierarchical	 module	 names).	 (This
implementation	wouldn’t	work	in	that	version,	since	find_module()
has	been	extended	and	load_module()	has	been	added	in	1.4.)

import	imp

import	sys

def	__import__(name,	globals=None,	locals=None,	fromlist

				#	Fast	path:	see	if	the	module	has	already	been	imported.

				try:

								return	sys.modules[name]

				except	KeyError:

								pass

				#	If	any	of	the	following	calls	raises	an	exception,

				#	there's	a	problem	we	can't	handle	--	let	the	caller	handle	it.

				fp,	pathname,	description	=	imp.find_module(name

				try:

								return	imp.load_module(name,	fp,	pathname,	description

				finally:

								#	Since	we	may	exit	via	an	exception,	close	fp	explicitly.

								if	fp:

												fp.close()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

http://www.python.org/

31.2.	zipimport	—	Import
modules	from	Zip	archives
This	 module	 adds	 the	 ability	 to	 import	 Python	 modules	 (*.py,
*.py[co])	and	packages	 from	ZIP-format	archives.	 It	 is	usually	not
needed	 to	 use	 the	 zipimport	 module	 explicitly;	 it	 is	 automatically
used	by	the	built-in	import	mechanism	for	sys.path	items	that	are
paths	to	ZIP	archives.

Typically,	 sys.path	 is	 a	 list	 of	 directory	 names	 as	 strings.	 This
module	also	allows	an	item	of	sys.path	to	be	a	string	naming	a	ZIP
file	 archive.	 The	 ZIP	 archive	 can	 contain	 a	 subdirectory	 structure	 to
support	 package	 imports,	 and	 a	 path	 within	 the	 archive	 can	 be
specified	 to	 only	 import	 from	 a	 subdirectory.	 For	 example,	 the	 path
example.zip/lib/	 would	 only	 import	 from	 the	 lib/	 subdirectory
within	the	archive.

Any	 files	may	 be	 present	 in	 the	 ZIP	 archive,	 but	 only	 files	 .py	 and
.py[co]	 are	 available	 for	 import.	 ZIP	 import	 of	 dynamic	 modules
(.pyd,	.so)	 is	disallowed.	Note	 that	 if	an	archive	only	contains	.py
files,	 Python	 will	 not	 attempt	 to	 modify	 the	 archive	 by	 adding	 the
corresponding	 .pyc	 or	 .pyo	 file,	 meaning	 that	 if	 a	 ZIP	 archive
doesn’t	contain	.pyc	files,	importing	may	be	rather	slow.

ZIP	archives	with	an	archive	comment	are	currently	not	supported.

See	also:

PKZIP	Application	Note
Documentation	on	the	ZIP	file	format	by	Phil	Katz,	the	creator	of

http://www.pkware.com/documents/casestudies/APPNOTE.TXT

the	format	and	algorithms	used.

PEP	273	-	Import	Modules	from	Zip	Archives
Written	 by	 James	 C.	 Ahlstrom,	 who	 also	 provided	 an
implementation.	Python	2.3	follows	the	specification	in	PEP	273,
but	 uses	 an	 implementation	 written	 by	 Just	 van	 Rossum	 that
uses	the	import	hooks	described	in	PEP	302.

PEP	302	-	New	Import	Hooks
The	PEP	to	add	the	import	hooks	that	help	this	module	work.

This	module	defines	an	exception:

exception	zipimport.ZipImportError
Exception	 raised	 by	 zipimporter	 objects.	 It’s	 a	 subclass	 of
ImportError,	so	it	can	be	caught	as	ImportError,	too.

http://www.python.org/dev/peps/pep-0273
http://www.python.org/dev/peps/pep-0302

31.2.1.	zipimporter	Objects

zipimporter	is	the	class	for	importing	ZIP	files.

class	zipimport.zipimporter(archivepath)
Create	a	new	zipimporter	instance.	archivepath	must	be	a	path	to	a
ZIP	 file,	 or	 to	 a	 specific	 path	 within	 a	 ZIP	 file.	 For	 example,	 an
archivepath	 of	 foo/bar.zip/lib	 will	 look	 for	 modules	 in	 the
lib	 directory	 inside	 the	 ZIP	 file	 foo/bar.zip	 (provided	 that	 it
exists).

ZipImportError	 is	raised	if	archivepath	doesn’t	point	 to	a	valid
ZIP	archive.

find_module(fullname[,	path])
Search	 for	 a	module	 specified	 by	 fullname.	 fullname	 must	 be
the	 fully	 qualified	 (dotted)	 module	 name.	 It	 returns	 the
zipimporter	instance	itself	if	the	module	was	found,	or	None	if	it
wasn’t.	 The	 optional	 path	 argument	 is	 ignored—it’s	 there	 for
compatibility	with	the	importer	protocol.

get_code(fullname)
Return	 the	 code	 object	 for	 the	 specified	 module.	 Raise
ZipImportError	if	the	module	couldn’t	be	found.

get_data(pathname)
Return	 the	data	associated	with	pathname.	Raise	OSError	 if
the	file	wasn’t	found.

Changed	in	version	3.3:	IOError	used	to	be	raised	instead	of
OSError.

get_filename(fullname)
Return	 the	 value	 __file__	 would	 be	 set	 to	 if	 the	 specified
module	was	 imported.	Raise	ZipImportError	 if	 the	module
couldn’t	be	found.

New	in	version	3.1.

get_source(fullname)
Return	 the	 source	 code	 for	 the	 specified	 module.	 Raise
ZipImportError	 if	 the	 module	 couldn’t	 be	 found,	 return
None	if	the	archive	does	contain	the	module,	but	has	no	source
for	it.

is_package(fullname)
Return	True	if	the	module	specified	by	fullname	 is	a	package.
Raise	ZipImportError	if	the	module	couldn’t	be	found.

load_module(fullname)
Load	 the	module	 specified	 by	 fullname.	 fullname	must	 be	 the
fully	 qualified	 (dotted)	 module	 name.	 It	 returns	 the	 imported
module,	or	raises	ZipImportError	if	it	wasn’t	found.

archive

The	 file	 name	 of	 the	 importer’s	 associated	 ZIP	 file,	 without	 a
possible	subpath.

prefix

The	 subpath	within	 the	 ZIP	 file	where	modules	 are	 searched.
This	 is	 the	 empty	 string	 for	 zipimporter	 objects	which	 point	 to
the	root	of	the	ZIP	file.

The	 archive	 and	 prefix	 attributes,	 when	 combined	 with	 a

slash,	 equal	 the	 original	 archivepath	 argument	 given	 to	 the
zipimporter	constructor.

31.2.2.	Examples

Here	 is	an	example	 that	 imports	a	module	 from	a	ZIP	archive	 -	note
that	the	zipimport	module	is	not	explicitly	used.

$	unzip	-l	example.zip

Archive:		example.zip

		Length					Date			Time				Name

	--------				----			----				----

					8467		11-26-02	22:30			jwzthreading.py

	--------																			-------

					8467																			1	file

$./python

Python	2.3	(#1,	Aug	1	2003,	19:54:32)

>>>	import	sys

>>>	sys.path.insert(0,	'example.zip')		#	Add	.zip	file	to	front	of	path

>>>	import	jwzthreading

>>>	jwzthreading.__file__

'example.zip/jwzthreading.py'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

http://www.python.org/

31.3.	pkgutil	—	Package
extension	utility
Source	code:	Lib/pkgutil.py

This	 module	 provides	 utilities	 for	 the	 import	 system,	 in	 particular
package	support.

pkgutil.extend_path(path,	name)
Extend	the	search	path	for	the	modules	which	comprise	a	package.
Intended	 use	 is	 to	 place	 the	 following	 code	 in	 a	 package’s
__init__.py:

from	pkgutil	import	extend_path

__path__	=	extend_path(__path__,	__name__)

This	 will	 add	 to	 the	 package’s	 __path__	 all	 subdirectories	 of
directories	on	sys.path	named	after	the	package.	This	is	useful	if
one	wants	to	distribute	different	parts	of	a	single	logical	package	as
multiple	directories.

It	also	looks	for	*.pkg	files	beginning	where	*	matches	the	name
argument.	 This	 feature	 is	 similar	 to	 *.pth	 files	 (see	 the	 site
module	 for	more	 information),	 except	 that	 it	 doesn’t	 special-case
lines	starting	with	 import.	A	*.pkg	 file	 is	 trusted	 at	 face	 value:
apart	from	checking	for	duplicates,	all	entries	found	in	a	*.pkg	file
are	 added	 to	 the	 path,	 regardless	 of	 whether	 they	 exist	 on	 the
filesystem.	(This	is	a	feature.)

If	the	input	path	is	not	a	list	(as	is	the	case	for	frozen	packages)	it	is

http://hg.python.org/cpython/file/3.4/Lib/pkgutil.py

returned	unchanged.	The	 input	path	 is	not	modified;	an	extended
copy	is	returned.	Items	are	only	appended	to	the	copy	at	the	end.

It	 is	assumed	that	sys.path	 is	a	sequence.	 Items	of	sys.path
that	 are	 not	 strings	 referring	 to	 existing	 directories	 are	 ignored.
Unicode	 items	 on	 sys.path	 that	 cause	 errors	 when	 used	 as
filenames	may	cause	this	function	to	raise	an	exception	(in	line	with
os.path.isdir()	behavior).

class	pkgutil.ImpImporter(dirname=None)
PEP	302	Importer	that	wraps	Python’s	“classic”	import	algorithm.

If	dirname	is	a	string,	a	PEP	302	importer	is	created	that	searches
that	directory.	 If	dirname	 is	None,	a	PEP	302	 importer	 is	 created
that	 searches	 the	 current	 sys.path,	 plus	 any	modules	 that	 are
frozen	or	built-in.

Note	that	ImpImporter	does	not	currently	support	being	used	by
placement	on	sys.meta_path.

Deprecated	 since	 version	 3.3:	 This	 emulation	 is	 no	 longer
needed,	as	the	standard	import	mechanism	is	now	fully	PEP	302
compliant	and	available	in	importlib

class	pkgutil.ImpLoader(fullname,	file,	filename,	etc)
PEP	302	Loader	that	wraps	Python’s	“classic”	import	algorithm.

Deprecated	 since	 version	 3.3:	 This	 emulation	 is	 no	 longer
needed,	as	the	standard	import	mechanism	is	now	fully	PEP	302
compliant	and	available	in	importlib

pkgutil.find_loader(fullname)

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

Retrieve	a	PEP	302	module	loader	for	the	given	fullname.

This	 is	 a	 backwards	 compatibility	 wrapper	 around
importlib.util.find_spec()	 that	 converts	 most	 failures	 to
ImportError	 and	 only	 returns	 the	 loader	 rather	 than	 the	 full
ModuleSpec.

Changed	 in	 version	 3.3:	 Updated	 to	 be	 based	 directly	 on
importlib	 rather	 than	 relying	on	 the	package	 internal	PEP	302
import	emulation.

Changed	in	version	3.4:	Updated	to	be	based	on	PEP	451

pkgutil.get_importer(path_item)
Retrieve	a	PEP	302	importer	for	the	given	path_item.

The	returned	importer	is	cached	in	sys.path_importer_cache
if	it	was	newly	created	by	a	path	hook.

The	 cache	 (or	 part	 of	 it)	 can	 be	 cleared	manually	 if	 a	 rescan	 of
sys.path_hooks	is	necessary.

Changed	 in	 version	 3.3:	 Updated	 to	 be	 based	 directly	 on
importlib	 rather	 than	 relying	on	 the	package	 internal	PEP	302
import	emulation.

pkgutil.get_loader(module_or_name)
Get	a	PEP	302	“loader”	object	for	module_or_name.

If	 the	 module	 or	 package	 is	 accessible	 via	 the	 normal	 import
mechanism,	a	wrapper	around	the	relevant	part	of	 that	machinery
is	 returned.	 Returns	 None	 if	 the	 module	 cannot	 be	 found	 or
imported.	 If	 the	 named	 module	 is	 not	 already	 imported,	 its

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0451
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0302

containing	 package	 (if	 any)	 is	 imported,	 in	 order	 to	 establish	 the
package	__path__.

Changed	 in	 version	 3.3:	 Updated	 to	 be	 based	 directly	 on
importlib	 rather	 than	 relying	on	 the	package	 internal	PEP	302
import	emulation.

Changed	in	version	3.4:	Updated	to	be	based	on	PEP	451

pkgutil.iter_importers(fullname='')
Yield	PEP	302	importers	for	the	given	module	name.

If	 fullname	 contains	 a	 ‘.’,	 the	 importers	 will	 be	 for	 the	 package
containing	 fullname,	otherwise	 they	will	 be	all	 registered	 top	 level
importers	(i.e.	those	on	both	sys.meta_path	and	sys.path_hooks).

If	the	named	module	is	in	a	package,	that	package	is	imported	as	a
side	effect	of	invoking	this	function.

If	 no	 module	 name	 is	 specified,	 all	 top	 level	 importers	 are
produced.

Changed	 in	 version	 3.3:	 Updated	 to	 be	 based	 directly	 on
importlib	 rather	 than	 relying	on	 the	package	 internal	PEP	302
import	emulation.

pkgutil.iter_modules(path=None,	prefix='')
Yields	(module_finder,	name,	ispkg)	for	all	submodules	on
path,	or,	if	path	is	None,	all	top-level	modules	on	sys.path.

path	should	be	either	None	or	a	list	of	paths	to	look	for	modules	in.

prefix	 is	 a	 string	 to	output	on	 the	 front	 of	 every	module	name	on
output.

http://www.python.org/dev/peps/pep-0451
http://www.python.org/dev/peps/pep-0302

Note: 	 Only	 works	 for	 a	 finder	 which	 defines	 an
iter_modules()	 method.	 This	 interface	 is	 non-standard,	 so
the	 module	 also	 provides	 implementations	 for
importlib.machinery.FileFinder	 and
zipimport.zipimporter.

Changed	 in	 version	 3.3:	 Updated	 to	 be	 based	 directly	 on
importlib	 rather	 than	 relying	on	 the	package	 internal	PEP	302
import	emulation.

pkgutil.walk_packages(path=None,	prefix='',	onerror=None)
Yields	 (module_finder,	 name,	 ispkg)	 for	 all	 modules
recursively	on	path,	or,	if	path	is	None,	all	accessible	modules.

path	should	be	either	None	or	a	list	of	paths	to	look	for	modules	in.

prefix	 is	 a	 string	 to	output	on	 the	 front	 of	 every	module	name	on
output.

Note	that	this	function	must	 import	all	packages	(not	all	modules!)
on	 the	 given	path,	 in	 order	 to	 access	 the	 __path__	 attribute	 to
find	submodules.

onerror	 is	 a	 function	 which	 gets	 called	 with	 one	 argument	 (the
name	of	 the	package	which	was	being	 imported)	 if	any	exception
occurs	while	 trying	 to	 import	 a	 package.	 If	 no	onerror	 function	 is
supplied,	ImportErrors	are	 caught	 and	 ignored,	while	 all	 other
exceptions	are	propagated,	terminating	the	search.

Examples:

#	list	all	modules	python	can	access

walk_packages()

#	list	all	submodules	of	ctypes

walk_packages(ctypes.__path__,	ctypes.__name__	+	'.'

Note: 	 Only	 works	 for	 a	 finder	 which	 defines	 an
iter_modules()	 method.	 This	 interface	 is	 non-standard,	 so
the	 module	 also	 provides	 implementations	 for
importlib.machinery.FileFinder	 and
zipimport.zipimporter.

Changed	 in	 version	 3.3:	 Updated	 to	 be	 based	 directly	 on
importlib	 rather	 than	 relying	on	 the	package	 internal	PEP	302
import	emulation.

pkgutil.get_data(package,	resource)
Get	a	resource	from	a	package.

This	 is	a	wrapper	 for	 the	PEP	302	 loader	get_data()	API.	The
package	argument	should	be	the	name	of	a	package,	 in	standard
module	 format	 (foo.bar).	 The	 resource	 argument	 should	 be	 in
the	form	of	a	relative	filename,	using	/	as	the	path	separator.	The
parent	directory	name	..	is	not	allowed,	and	nor	is	a	rooted	name
(starting	with	a	/).

The	 function	 returns	 a	 binary	 string	 that	 is	 the	 contents	 of	 the
specified	resource.

For	packages	 located	 in	 the	 filesystem,	which	have	already	been
imported,	this	is	the	rough	equivalent	of:

d	=	os.path.dirname(sys.modules[package].__file__)

data	=	open(os.path.join(d,	resource),	'rb').read()

http://www.python.org/dev/peps/pep-0302

If	 the	package	cannot	be	 located	or	 loaded,	or	 it	uses	a	PEP	302
loader	 which	 does	 not	 support	 get_data(),	 then	 None	 is
returned.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-0302
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

http://www.python.org/

31.4.	modulefinder	—	Find
modules	used	by	a	script
Source	code:	Lib/modulefinder.py

This	 module	 provides	 a	 ModuleFinder	 class	 that	 can	 be	 used	 to
determine	 the	 set	 of	 modules	 imported	 by	 a	 script.
modulefinder.py	can	also	be	run	as	a	script,	giving	the	filename	of
a	Python	script	as	 its	argument,	after	which	a	 report	of	 the	 imported
modules	will	be	printed.

modulefinder.AddPackagePath(pkg_name,	path)
Record	 that	 the	 package	 named	 pkg_name	 can	 be	 found	 in	 the
specified	path.

modulefinder.ReplacePackage(oldname,	newname)
Allows	 specifying	 that	 the	 module	 named	 oldname	 is	 in	 fact	 the
package	named	newname.

class	modulefinder.ModuleFinder(path=None,	debug=0,
excludes=[],	replace_paths=[])

This	 class	 provides	 run_script()	 and	 report()	 methods	 to
determine	 the	set	of	modules	 imported	by	a	script.	path	can	be	a
list	of	directories	to	search	for	modules;	if	not	specified,	sys.path
is	used.	debug	 sets	 the	debugging	 level;	 higher	 values	make	 the
class	print	debugging	messages	about	what	it’s	doing.	excludes	 is
a	list	of	module	names	to	exclude	from	the	analysis.	replace_paths
is	a	 list	of	(oldpath,	newpath)	 tuples	 that	will	 be	 replaced	 in
module	paths.

http://hg.python.org/cpython/file/3.4/Lib/modulefinder.py

report()
Print	a	report	to	standard	output	that	lists	the	modules	imported
by	 the	 script	 and	 their	 paths,	 as	 well	 as	 modules	 that	 are
missing	or	seem	to	be	missing.

run_script(pathname)
Analyze	the	contents	of	 the	pathname	 file,	which	must	contain
Python	code.

modules

A	dictionary	mapping	module	names	to	modules.	See	Example
usage	of	ModuleFinder

31.4.1.	Example	usage	of	ModuleFinder

The	script	that	is	going	to	get	analyzed	later	on	(bacon.py):

import	re,	itertools

try:

				import	baconhameggs

except	ImportError:

				pass

try:

				import	guido.python.ham

except	ImportError:

				pass

The	script	that	will	output	the	report	of	bacon.py:

from	modulefinder	import	ModuleFinder

finder	=	ModuleFinder()

finder.run_script('bacon.py')

print('Loaded	modules:')

for	name,	mod	in	finder.modules.items():

				print('%s:	'	%	name,	end='')

				print(','.join(list(mod.globalnames.keys())[:3]))

print('-'*50)

print('Modules	not	imported:')

print('\n'.join(finder.badmodules.keys()))

Sample	output	(may	vary	depending	on	the	architecture):

Loaded	modules:

_types:

copyreg:		_inverted_registry,_slotnames,__all__

sre_compile:		isstring,_sre,_optimize_unicode

_sre:

sre_constants:		REPEAT_ONE,makedict,AT_END_LINE

sys:

re:		__module__,finditer,_expand

itertools:

__main__:		re,itertools,baconhameggs

sre_parse:		__getslice__,_PATTERNENDERS,SRE_FLAG_UNICODE

array:

types:		__module__,IntType,TypeType

Modules	not	imported:

guido.python.ham

baconhameggs

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

http://www.python.org/

31.5.	runpy	—	Locating	and
executing	Python	modules
Source	code:	Lib/runpy.py

The	runpy	module	is	used	to	locate	and	run	Python	modules	without
importing	them	first.	Its	main	use	is	to	implement	the	-m	command	line
switch	 that	 allows	 scripts	 to	 be	 located	 using	 the	 Python	 module
namespace	rather	than	the	filesystem.

Note	 that	 this	 is	not	 a	 sandbox	module	 -	 all	 code	 is	executed	 in	 the
current	process,	and	any	side	effects	(such	as	cached	imports	of	other
modules)	will	remain	in	place	after	the	functions	have	returned.

Furthermore,	any	functions	and	classes	defined	by	the	executed	code
are	 not	 guaranteed	 to	 work	 correctly	 after	 a	 runpy	 function	 has
returned.	 If	 that	 limitation	 is	 not	 acceptable	 for	 a	 given	 use	 case,
importlib	is	likely	to	be	a	more	suitable	choice	than	this	module.

The	runpy	module	provides	two	functions:

runpy.run_module(mod_name,	init_globals=None,
run_name=None,	alter_sys=False)

Execute	the	code	of	 the	specified	module	and	return	the	resulting
module	globals	dictionary.	The	module’s	code	is	first	located	using
the	standard	import	mechanism	(refer	to	PEP	302	 for	details)	and
then	executed	in	a	fresh	module	namespace.

If	 the	 supplied	 module	 name	 refers	 to	 a	 package	 rather	 than	 a
normal	module,	then	that	package	is	imported	and	the	__main__

http://hg.python.org/cpython/file/3.4/Lib/runpy.py
http://www.python.org/dev/peps/pep-0302

submodule	within	that	package	is	 then	executed	and	the	resulting
module	globals	dictionary	returned.

The	optional	dictionary	argument	 init_globals	may	be	used	to	pre-
populate	 the	 module’s	 globals	 dictionary	 before	 the	 code	 is
executed.	The	supplied	dictionary	will	not	be	modified.	If	any	of	the
special	 global	 variables	 below	 are	 defined	 in	 the	 supplied
dictionary,	those	definitions	are	overridden	by	run_module().

The	 special	 global	 variables	 __name__,	 __spec__,	 __file__,
__cached__,	 __loader__	 and	 __package__	 are	 set	 in	 the
globals	 dictionary	 before	 the	module	 code	 is	 executed	 (Note	 that
this	 is	 a	 minimal	 set	 of	 variables	 -	 other	 variables	 may	 be	 set
implicitly	as	an	interpreter	implementation	detail).

__name__	 is	 set	 to	 run_name	 if	 this	 optional	 argument	 is	 not
None,	 to	mod_name	+	'.__main__'	 if	 the	named	module	 is	a
package	and	to	the	mod_name	argument	otherwise.

__spec__	 will	 be	 set	 appropriately	 for	 the	 actually	 imported
module	 (that	 is,	 __spec__.name	 will	 always	 be	mod_name	 or
mod_name	+	'.__main__,	never	run_name).

__file__,	 __cached__,	 __loader__	 and	 __package__	 are
set	as	normal	based	on	the	module	spec.

If	the	argument	alter_sys	 is	supplied	and	evaluates	to	True,	 then
sys.argv[0]	 is	 updated	 with	 the	 value	 of	 __file__	 and
sys.modules[__name__]	 is	 updated	with	 a	 temporary	module
object	 for	 the	 module	 being	 executed.	 Both	 sys.argv[0]	 and
sys.modules[__name__]	 are	 restored	 to	 their	 original	 values
before	the	function	returns.

Note	that	this	manipulation	of	sys	is	not	thread-safe.	Other	threads
may	see	the	partially	initialised	module,	as	well	as	the	altered	list	of
arguments.	 It	 is	 recommended	 that	 the	sys	module	be	 left	alone
when	invoking	this	function	from	threaded	code.

Changed	 in	 version	 3.1:	 Added	 ability	 to	 execute	 packages	 by
looking	for	a	__main__	submodule.

Changed	in	version	3.2:	Added	__cached__	global	variable	(see
PEP	3147).

Changed	in	version	3.4:	Updated	to	take	advantage	of	the	module
spec	 feature	added	by	PEP	451.	This	allows	 __cached__	 to	 be
set	correctly	for	modules	run	this	way,	as	well	as	ensuring	the	real
module	name	is	always	accessible	as	__spec__.name.

runpy.run_path(file_path,	init_globals=None,	run_name=None)
Execute	 the	code	at	 the	named	filesystem	location	and	return	 the
resulting	module	globals	dictionary.	As	with	a	script	name	supplied
to	 the	 CPython	 command	 line,	 the	 supplied	 path	 may	 refer	 to	 a
Python	 source	 file,	 a	 compiled	 bytecode	 file	 or	 a	 valid	 sys.path
entry	 containing	 a	 __main__	 module	 (e.g.	 a	 zipfile	 containing	 a
top-level	__main__.py	file).

For	a	simple	script,	the	specified	code	is	simply	executed	in	a	fresh
module	namespace.	For	a	valid	sys.path	entry	(typically	a	zipfile	or
directory),	 the	entry	 is	 first	 added	 to	 the	beginning	of	sys.path.
The	 function	 then	 looks	 for	 and	 executes	 a	 __main__	 module
using	 the	 updated	 path.	 Note	 that	 there	 is	 no	 special	 protection
against	invoking	an	existing	__main__	entry	located	elsewhere	on
sys.path	if	there	is	no	such	module	at	the	specified	location.

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-0451

The	optional	dictionary	argument	 init_globals	may	be	used	to	pre-
populate	 the	 module’s	 globals	 dictionary	 before	 the	 code	 is
executed.	The	supplied	dictionary	will	not	be	modified.	If	any	of	the
special	 global	 variables	 below	 are	 defined	 in	 the	 supplied
dictionary,	those	definitions	are	overridden	by	run_path().

The	 special	 global	 variables	 __name__,	 __spec__,	 __file__,
__cached__,	 __loader__	 and	 __package__	 are	 set	 in	 the
globals	 dictionary	 before	 the	module	 code	 is	 executed	 (Note	 that
this	 is	 a	 minimal	 set	 of	 variables	 -	 other	 variables	 may	 be	 set
implicitly	as	an	interpreter	implementation	detail).

__name__	is	set	to	run_name	if	this	optional	argument	is	not	None
and	to	'<run_path>'	otherwise.

If	 the	 supplied	 path	 directly	 references	 a	 script	 file	 (whether	 as
source	or	as	precompiled	byte	code),	then	__file__	will	be	set	to
the	 supplied	 path,	 and	 __spec__,	 __cached__,	 __loader__
and	__package__	will	all	be	set	to	None.

__spec__	will	be	set	to	None	if	the	supplied	path	is	a	direct	path
to	a	script	(as	source	or	as	precompiled	bytecode).

If	 the	 supplied	 path	 is	 a	 reference	 to	 a	 valid	 sys.path	 entry,	 then
__spec__	 will	 be	 set	 appropriately	 for	 the	 imported	 __main__
module	 (that	 is,	 __spec__.name	 will	 always	 be	 __main__).
__file__,	 __cached__,	 __loader__	 and	 __package__	 will
be	set	as	normal	based	on	the	module	spec.

A	number	of	alterations	are	also	made	to	the	sys	module.	Firstly,
sys.path	may	be	altered	as	described	above.	sys.argv[0]	 is
updated	 with	 the	 value	 of	 file_path	 and

sys.modules[__name__]	 is	 updated	with	 a	 temporary	module
object	for	the	module	being	executed.	All	modifications	to	items	in
sys	are	reverted	before	the	function	returns.

Note	that,	unlike	run_module(),	the	alterations	made	to	sys	are
not	optional	 in	 this	 function	as	 these	adjustments	are	essential	 to
allowing	 the	 execution	 of	 sys.path	 entries.	 As	 the	 thread-safety
limitations	still	apply,	use	of	 this	 function	 in	 threaded	code	should
be	either	serialised	with	the	import	lock	or	delegated	to	a	separate
process.

New	in	version	3.2.

Changed	in	version	3.4:	Updated	to	take	advantage	of	the	module
spec	 feature	added	by	PEP	451.	This	allows	 __cached__	 to	 be
set	correctly	in	the	case	where	__main__	is	imported	from	a	valid
sys.path	entry	rather	than	being	executed	directly.

See	also:

PEP	338	-	Executing	modules	as	scripts
PEP	written	and	implemented	by	Nick	Coghlan.

PEP	366	-	Main	module	explicit	relative	imports
PEP	written	and	implemented	by	Nick	Coghlan.

PEP	451	-	A	ModuleSpec	Type	for	the	Import	System
PEP	written	and	implemented	by	Eric	Snow

Command	line	and	environment	-	CPython	command	line	details

The	importlib.import_module()	function

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/dev/peps/pep-0451
http://www.python.org/dev/peps/pep-0338
http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-0451
http://www.python.org/

Library	»	31.	Importing	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

http://www.python.org/

31.6.	importlib	–	The
implementation	of	import

New	in	version	3.1.

31.6.1.	Introduction

The	purpose	of	the	importlib	package	is	two-fold.	One	is	to	provide
the	implementation	of	the	import	statement	(and	thus,	by	extension,
the	__import__()	function)	in	Python	source	code.	This	provides	an
implementation	of	import	which	is	portable	to	any	Python	interpreter.
This	also	provides	an	 implementation	which	 is	easier	 to	comprehend
than	one	implemented	in	a	programming	language	other	than	Python.

Two,	 the	 components	 to	 implement	 import	 are	 exposed	 in	 this
package,	making	it	easier	for	users	to	create	their	own	custom	objects
(known	generically	as	an	importer)	to	participate	in	the	import	process.

See	also:

The	import	statement
The	language	reference	for	the	import	statement.

Packages	specification
Original	 specification	 of	 packages.	 Some	 semantics	 have
changed	 since	 the	 writing	 of	 this	 document	 (e.g.	 redirecting
based	on	None	in	sys.modules).

The	__import__()	function
The	import	statement	is	syntactic	sugar	for	this	function.

PEP	235
Import	on	Case-Insensitive	Platforms

PEP	263
Defining	Python	Source	Code	Encodings

PEP	302
New	Import	Hooks

PEP	328

http://www.python.org/doc/essays/packages.html
http://www.python.org/dev/peps/pep-0235
http://www.python.org/dev/peps/pep-0263
http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0328

Imports:	Multi-Line	and	Absolute/Relative

PEP	366
Main	module	explicit	relative	imports

PEP	451
A	ModuleSpec	Type	for	the	Import	System

PEP	3120
Using	UTF-8	as	the	Default	Source	Encoding

PEP	3147
PYC	Repository	Directories

http://www.python.org/dev/peps/pep-0366
http://www.python.org/dev/peps/pep-0451
http://www.python.org/dev/peps/pep-3120
http://www.python.org/dev/peps/pep-3147

31.6.2.	Functions

importlib.__import__(name,	globals=None,	locals=None,
fromlist=(),	level=0)

An	implementation	of	the	built-in	__import__()	function.

importlib.import_module(name,	package=None)
Import	 a	 module.	 The	 name	 argument	 specifies	 what	 module	 to
import	 in	 absolute	 or	 relative	 terms	 (e.g.	 either	 pkg.mod	 or
..mod).	If	the	name	is	specified	in	relative	terms,	then	the	package
argument	must	be	set	to	the	name	of	the	package	which	is	to	act
as	 the	 anchor	 for	 resolving	 the	 package	 name	 (e.g.
import_module('..mod',	 'pkg.subpkg')	 will	 import
pkg.mod).

The	 import_module()	 function	 acts	 as	 a	 simplifying	 wrapper
around	importlib.__import__().	This	means	all	semantics	of
the	 function	 are	 derived	 from	 importlib.__import__(),
including	 requiring	 the	package	 from	which	an	 import	 is	occurring
to	 have	 been	 previously	 imported	 (i.e.,	package	must	 already	 be
imported).	 The	 most	 important	 difference	 is	 that
import_module()	returns	the	specified	package	or	module	(e.g.
pkg.mod),	while	__import__()	returns	the	top-level	package	or
module	(e.g.	pkg).

Changed	 in	 version	 3.3:	 Parent	 packages	 are	 automatically
imported.

importlib.find_loader(name,	path=None)
Find	the	loader	for	a	module,	optionally	within	the	specified	path.	If
the	 module	 is	 in	 sys.modules,	 then

sys.modules[name].__loader__	 is	 returned	 (unless	 the
loader	would	be	None	or	is	not	set,	in	which	case	ValueError	is
raised).	Otherwise	a	search	using	sys.meta_path	is	done.	None
is	returned	if	no	loader	is	found.

A	dotted	name	does	not	have	its	parent’s	implicitly	imported	as	that
requires	 loading	 them	 and	 that	 may	 not	 be	 desired.	 To	 properly
import	a	submodule	you	will	need	to	import	all	parent	packages	of
the	submodule	and	use	the	correct	argument	to	path.

New	in	version	3.3.

Changed	 in	 version	 3.4:	 If	 __loader__	 is	 not	 set,	 raise
ValueError,	just	like	when	the	attribute	is	set	to	None.

Deprecated	 since	 version	 3.4:	 Use
importlib.util.find_spec()	instead.

importlib.invalidate_caches()
Invalidate	 the	 internal	 caches	 of	 finders	 stored	 at
sys.meta_path.	If	a	finder	implements	invalidate_caches()
then	 it	 will	 be	 called	 to	 perform	 the	 invalidation.	 This	 function
should	 be	 called	 if	 any	 modules	 are	 created/installed	 while	 your
program	 is	 running	 to	 guarantee	 all	 finders	 will	 notice	 the	 new
module’s	existence.

New	in	version	3.3.

importlib.reload(module)
Reload	 a	 previously	 imported	module.	 The	 argument	 must	 be	 a
module	object,	so	it	must	have	been	successfully	imported	before.
This	 is	 useful	 if	 you	 have	 edited	 the	module	 source	 file	 using	 an

external	editor	and	want	to	try	out	the	new	version	without	leaving
the	Python	interpreter.	The	return	value	is	the	module	object	(which
can	 be	 different	 if	 re-importing	 causes	 a	 different	 object	 to	 be
placed	in	sys.modules).

When	reload()	is	executed:

Python	 module’s	 code	 is	 recompiled	 and	 the	 module-level
code	 re-executed,	 defining	 a	 new	 set	 of	 objects	 which	 are
bound	 to	 names	 in	 the	 module’s	 dictionary	 by	 reusing	 the
loader	which	originally	loaded	the	module.	The	init	 function
of	extension	modules	is	not	called	a	second	time.
As	 with	 all	 other	 objects	 in	 Python	 the	 old	 objects	 are	 only
reclaimed	after	their	reference	counts	drop	to	zero.
The	names	in	the	module	namespace	are	updated	to	point	to
any	new	or	changed	objects.
Other	references	to	the	old	objects	(such	as	names	external	to
the	module)	are	not	 rebound	 to	 refer	 to	 the	new	objects	and
must	be	updated	in	each	namespace	where	they	occur	if	that
is	desired.

There	are	a	number	of	other	caveats:

If	a	module	is	syntactically	correct	but	its	initialization	fails,	the	first
import	 statement	 for	 it	 does	not	 bind	 its	 name	 locally,	 but	 does
store	 a	 (partially	 initialized)	 module	 object	 in	 sys.modules.	 To
reload	the	module	you	must	first	import	it	again	(this	will	bind	the
name	 to	 the	 partially	 initialized	 module	 object)	 before	 you	 can
reload()	it.

When	a	module	is	reloaded,	its	dictionary	(containing	the	module’s
global	 variables)	 is	 retained.	 Redefinitions	 of	 names	 will	 override
the	 old	 definitions,	 so	 this	 is	 generally	 not	 a	 problem.	 If	 the	 new
version	of	a	module	does	not	define	a	name	 that	was	defined	by

the	old	version,	the	old	definition	remains.	This	feature	can	be	used
to	the	module’s	advantage	if	it	maintains	a	global	table	or	cache	of
objects	—	with	a	try	statement	it	can	test	for	the	table’s	presence
and	skip	its	initialization	if	desired:

try:

				cache

except	NameError:

				cache	=	{}

It	 is	 legal	 though	 generally	 not	 very	 useful	 to	 reload	 built-in	 or
dynamically	 loaded	 modules	 (this	 is	 not	 true	 for	 e.g.	 sys,
__main__,	builtins	and	other	key	modules	where	reloading	is
frowned	 upon).	 In	 many	 cases,	 however,	 extension	 modules	 are
not	 designed	 to	 be	 initialized	 more	 than	 once,	 and	 may	 fail	 in
arbitrary	ways	when	reloaded.

If	 a	module	 imports	 objects	 from	 another	module	 using	 from	 ...
import	 ...,	 calling	 reload()	 for	 the	 other	 module	 does	 not
redefine	 the	objects	 imported	 from	 it	—	one	way	around	this	 is	 to
re-execute	 the	 from	 statement,	 another	 is	 to	 use	 import	 and
qualified	names	(module.name)	instead.

If	a	module	instantiates	instances	of	a	class,	reloading	the	module
that	defines	the	class	does	not	affect	the	method	definitions	of	the
instances	 —	 they	 continue	 to	 use	 the	 old	 class	 definition.	 The
same	is	true	for	derived	classes.

New	in	version	3.4.

31.6.3.	importlib.abc	–	Abstract	base
classes	related	to	import

The	importlib.abc	module	 contains	 all	 of	 the	 core	 abstract	 base
classes	used	by	import.	Some	subclasses	of	the	core	abstract	base
classes	are	also	provided	to	help	in	implementing	the	core	ABCs.

ABC	hierarchy:

object

	+--	Finder	(deprecated)

	|				+--	MetaPathFinder

	|				+--	PathEntryFinder

	+--	Loader

						+--	ResourceLoader	--------+

						+--	InspectLoader										|

											+--	ExecutionLoader	--+

																																	+--	FileLoader

																																	+--	SourceLoader

class	importlib.abc.Finder
An	abstract	base	class	representing	a	finder.

Deprecated	 since	 version	 3.3:	 Use	 MetaPathFinder	 or
PathEntryFinder	instead.

find_module(fullname,	path=None)
An	abstact	method	for	finding	a	loader	for	the	specified	module.
Originally	specified	in	PEP	302,	this	method	was	meant	for	use
in	sys.meta_path	and	in	the	path-based	import	subsystem.

Changed	 in	version	3.4:	Returns	None	when	called	 instead	of

http://www.python.org/dev/peps/pep-0302

raising	NotImplementedError.

class	importlib.abc.MetaPathFinder
An	 abstract	 base	 class	 representing	 a	 meta	 path	 finder.	 For
compatibility,	this	is	a	subclass	of	Finder.

New	in	version	3.3.

find_spec(fullname,	path,	target=None)
An	abstract	method	for	finding	a	spec	for	the	specified	module.
If	this	is	a	top-level	import,	path	will	be	None.	Otherwise,	this	is
a	search	for	a	subpackage	or	module	and	path	will	be	the	value
of	 __path__	 from	 the	 parent	 package.	 If	 a	 spec	 cannot	 be
found,	None	is	returned.	When	passed	in,	target	is	a	module
object	that	the	finder	may	use	to	make	a	more	educated	about
what	spec	to	return.

New	in	version	3.4.

find_module(fullname,	path)
A	legacy	method	for	finding	a	loader	for	the	specified	module.	If
this	is	a	top-level	import,	path	will	be	None.	Otherwise,	this	is	a
search	for	a	subpackage	or	module	and	path	will	be	 the	value
of	 __path__	 from	 the	 parent	 package.	 If	 a	 loader	 cannot	 be
found,	None	is	returned.

If	find_spec()	is	defined,	backwards-compatible	functionality
is	provided.

Changed	 in	version	3.4:	Returns	None	when	called	 instead	of
raising	 NotImplementedError.	 Can	 use	 find_spec()	 to
provide	functionality.

Deprecated	since	version	3.4:	Use	find_spec()	instead.

invalidate_caches()
An	optional	method	which,	when	called,	 should	 invalidate	any
internal	 cache	 used	 by	 the	 finder.	 Used	 by
importlib.invalidate_caches()	 when	 invalidating	 the
caches	of	all	finders	on	sys.meta_path.

Changed	 in	version	3.4:	Returns	None	when	called	 instead	of
NotImplemented.

class	importlib.abc.PathEntryFinder
An	abstract	base	class	representing	a	path	entry	finder.	Though	 it
bears	some	similarities	to	MetaPathFinder,	PathEntryFinder
is	 meant	 for	 use	 only	 within	 the	 path-based	 import	 subsystem
provided	by	PathFinder.	This	ABC	is	a	subclass	of	Finder	 for
compatibility	reasons	only.

New	in	version	3.3.

find_spec(fullname,	target=None)
An	abstract	method	for	finding	a	spec	for	the	specified	module.
The	finder	will	search	for	the	module	only	within	the	path	entry
to	 which	 it	 is	 assigned.	 If	 a	 spec	 cannot	 be	 found,	 None	 is
returned.	When	passed	in,	target	is	a	module	object	that	the
finder	may	use	 to	make	a	more	educated	about	what	 spec	 to
return.

New	in	version	3.4.

find_loader(fullname)
A	 legacy	method	 for	 finding	a	 loader	 for	 the	specified	module.

Returns	a	2-tuple	of	(loader,	portion)	where	portion	is
a	 sequence	 of	 file	 system	 locations	 contributing	 to	 part	 of	 a
namespace	package.	The	loader	may	be	None	while	specifying
portion	to	signify	the	contribution	of	the	file	system	locations
to	 a	 namespace	 package.	 An	 empty	 list	 can	 be	 used	 for
portion	 to	 signify	 the	 loader	 is	 not	 part	 of	 a	 namespace
package.	 If	 loader	 is	 None	 and	 portion	 is	 the	 empty	 list
then	no	loader	or	location	for	a	namespace	package	were	found
(i.e.	failure	to	find	anything	for	the	module).

If	 find_spec()	 is	 defined	 then	 backwards-compatible
functionality	is	provided.

Changed	 in	 version	 3.4:	 Returns	 (None,	 [])	 instead	 of
raising	 NotImplementedError.	 Uses	 find_spec()	 when
available	to	provide	functionality.

Deprecated	since	version	3.4:	Use	find_spec()	instead.

find_module(fullname)
A	concrete	implementation	of	Finder.find_module()	which
is	equivalent	to	self.find_loader(fullname)[0].

Deprecated	since	version	3.4:	Use	find_spec()	instead.

invalidate_caches()
An	optional	method	which,	when	called,	 should	 invalidate	any
internal	 cache	 used	 by	 the	 finder.	 Used	 by
PathFinder.invalidate_caches()	 when	 invalidating	 the
caches	of	all	cached	finders.

class	importlib.abc.Loader

An	 abstract	 base	 class	 for	 a	 loader.	 See	PEP	302	 for	 the	 exact
definition	for	a	loader.

create_module(spec)
An	optional	method	that	returns	the	module	object	to	use	when
importing	 a	 module.	 create_module()	 may	 also	 return	 None,
indicating	 that	 the	 default	 module	 creation	 should	 take	 place
instead.

New	in	version	3.4.

exec_module(module)
An	 abstract	 method	 that	 executes	 the	 module	 in	 its	 own
namespace	 when	 a	 module	 is	 imported	 or	 reloaded.	 The
module	 should	 already	 be	 initialized	 when	 exec_module()	 is
called.

New	in	version	3.4.

load_module(fullname)
A	legacy	method	for	loading	a	module.	If	the	module	cannot	be
loaded,	ImportError	 is	 raised,	otherwise	the	 loaded	module
is	returned.

If	 the	 requested	module	 already	exists	 in	 sys.modules,	 that
module	 should	 be	 used	 and	 reloaded.	 Otherwise	 the	 loader
should	 create	 a	 new	module	 and	 insert	 it	 into	 sys.modules
before	any	loading	begins,	to	prevent	recursion	from	the	import.
If	 the	 loader	 inserted	 a	module	 and	 the	 load	 fails,	 it	 must	 be
removed	by	the	loader	from	sys.modules;	modules	already	in
sys.modules	 before	 the	 loader	 began	 execution	 should	 be
left	alone	(see	importlib.util.module_for_loader()).

http://www.python.org/dev/peps/pep-0302

The	 loader	 should	 set	 several	 attributes	on	 the	module.	 (Note
that	 some	 of	 these	 attributes	 can	 change	 when	 a	 module	 is
reloaded):

__name__

The	name	of	the	module.

__file__

The	path	to	where	the	module	data	is	stored	(not	set	for
built-in	modules).

__cached__

The	 path	 to	 where	 a	 compiled	 version	 of	 the	 module
is/should	be	stored	(not	set	when	the	attribute	would	be
inappropriate).

__path__

A	 list	 of	 strings	 specifying	 the	 search	 path	 within	 a
package.	This	attribute	is	not	set	on	modules.

__package__

The	 parent	 package	 for	 the	 module/package.	 If	 the
module	 is	 top-level	 then	 it	 has	 a	 value	 of	 the	 empty
string.	 The
importlib.util.module_for_loader()

decorator	can	handle	the	details	for	__package__.

__loader__

The	 loader	 used	 to	 load	 the	 module.	 The
importlib.util.module_for_loader()

decorator	can	handle	the	details	for	__package__.

When	 exec_module()	 is	 available	 then	 backwards-

compatible	functionality	is	provided.

Changed	 in	 version	 3.4:	 Raise	 ImportError	 when	 called
instead	 of	 NotImplementedError.	 Functionality	 provided
when	exec_module()	is	available.

Deprecated	 since	 version	 3.4:	 The	 recommended	 API	 for
loading	 a	 module	 is	 exec_module()	 (and	 optionally
create_module()).	Loaders	should	implement	it	instead	of
load_module().	 The	 import	 machinery	 takes	 care	 of	 all	 the
other	responsibilities	of	load_module()	when	exec_module()	is
implemented.

module_repr(module)
A	 legacy	 method	 which	 when	 implemented	 calculates	 and
returns	the	given	module’s	repr,	as	a	string.	The	module	type’s
default	repr()	will	use	the	result	of	this	method	as	appropriate.

New	in	version	3.3.

Changed	 in	 version	 3.4:	 Made	 optional	 instead	 of	 an
abstractmethod.

Deprecated	 since	 version	 3.4:	 The	 import	 machinery	 now
takes	care	of	this	automatically.

class	importlib.abc.ResourceLoader
An	abstract	base	class	for	a	 loader	which	implements	the	optional
PEP	302	protocol	 for	 loading	arbitrary	resources	from	the	storage
back-end.

get_data(path)

http://www.python.org/dev/peps/pep-0302

An	abstract	method	 to	 return	 the	bytes	 for	 the	data	 located	at
path.	Loaders	that	have	a	file-like	storage	back-end	that	allows
storing	 arbitrary	 data	 can	 implement	 this	 abstract	 method	 to
give	direct	access	to	the	data	stored.	IOError	is	to	be	raised	if
the	 path	 cannot	 be	 found.	 The	 path	 is	 expected	 to	 be
constructed	 using	 a	 module’s	 __file__	 attribute	 or	 an	 item
from	a	package’s	__path__.

Changed	 in	 version	 3.4:	 Raises	 IOError	 instead	 of
NotImplementedError.

class	importlib.abc.InspectLoader
An	abstract	base	class	for	a	 loader	which	implements	the	optional
PEP	302	protocol	for	loaders	that	inspect	modules.

get_code(fullname)
Return	 the	 code	 object	 for	 a	 module,	 or	 None	 if	 the	 module
does	 not	 have	 a	 code	 object	 (as	 would	 be	 the	 case,	 for
example,	 for	 a	 built-in	 module).	 Raise	 an	 ImportError	 if
loader	cannot	find	the	requested	module.

Note: 	While	 the	method	has	 a	 default	 implementation,	 it	 is
suggested	that	it	be	overridden	if	possible	for	performance.

Changed	 in	 version	 3.4:	 No	 longer	 abstract	 and	 a	 concrete
implementation	is	provided.

get_source(fullname)
An	 abstract	 method	 to	 return	 the	 source	 of	 a	 module.	 It	 is
returned	as	a	text	string	using	universal	newlines,	translating	all
recognized	line	separators	into	'\n'	characters.	Returns	None
if	 no	 source	 is	 available	 (e.g.	 a	 built-in	 module).	 Raises

http://www.python.org/dev/peps/pep-0302

ImportError	if	the	loader	cannot	find	the	module	specified.

Changed	 in	 version	 3.4:	 Raises	 ImportError	 instead	 of
NotImplementedError.

is_package(fullname)
An	 abstract	 method	 to	 return	 a	 true	 value	 if	 the	 module	 is	 a
package,	a	false	value	otherwise.	ImportError	is	raised	if	the
loader	cannot	find	the	module.

Changed	 in	 version	 3.4:	 Raises	 ImportError	 instead	 of
NotImplementedError.

source_to_code(data,	path='<string>')
Create	a	code	object	from	Python	source.

The	data	 argument	 can	be	whatever	 the	 compile()	 function
supports	(i.e.	string	or	bytes).	The	path	argument	should	be	the
“path”	to	where	the	source	code	originated	from,	which	can	be
an	abstract	concept	(e.g.	location	in	a	zip	file).

New	in	version	3.4.

exec_module(module)
Implementation	of	Loader.exec_module().

New	in	version	3.4.

load_module(fullname)
Implementation	of	Loader.load_module().

Deprecated	since	version	3.4:	use	exec_module()	instead.

class	importlib.abc.ExecutionLoader
An	abstract	base	class	which	 inherits	from	InspectLoader	that,
when	implemented,	helps	a	module	to	be	executed	as	a	script.	The
ABC	represents	an	optional	PEP	302	protocol.

get_filename(fullname)
An	abstract	method	that	is	to	return	the	value	of	__file__	for
the	specified	module.	 If	no	path	 is	available,	ImportError	 is
raised.

If	 source	code	 is	available,	 then	 the	method	should	 return	 the
path	 to	 the	 source	 file,	 regardless	of	whether	a	bytecode	was
used	to	load	the	module.

Changed	 in	 version	 3.4:	 Raises	 ImportError	 instead	 of
NotImplementedError.

class	importlib.abc.FileLoader(fullname,	path)
An	abstract	base	class	which	inherits	from	ResourceLoader	and
ExecutionLoader,	 providing	 concrete	 implementations	 of
ResourceLoader.get_data()	 and
ExecutionLoader.get_filename().

The	fullname	argument	is	a	fully	resolved	name	of	the	module	the
loader	is	to	handle.	The	path	argument	is	the	path	to	the	file	for	the
module.

New	in	version	3.3.

name

The	name	of	the	module	the	loader	can	handle.

path

http://www.python.org/dev/peps/pep-0302

Path	to	the	file	of	the	module.

load_module(fullname)
Calls	super’s	load_module().

Deprecated	 since	 version	 3.4:	 Use
Loader.exec_module()	instead.

get_filename(fullname)
Returns	path.

get_data(path)
Reads	path	as	a	binary	file	and	returns	the	bytes	from	it.

class	importlib.abc.SourceLoader
An	 abstract	 base	 class	 for	 implementing	 source	 (and	 optionally
bytecode)	 file	 loading.	 The	 class	 inherits	 from	 both
ResourceLoader	 and	 ExecutionLoader,	 requiring	 the
implementation	of:

ResourceLoader.get_data()

ExecutionLoader.get_filename()

Should	 only	 return	 the	 path	 to	 the	 source	 file;	 sourceless
loading	is	not	supported.

The	 abstract	 methods	 defined	 by	 this	 class	 are	 to	 add	 optional
bytecode	file	support.	Not	implementing	these	optional	methods	(or
causing	them	to	raise	NotImplementedError)	causes	the	loader
to	 only	work	with	 source	 code.	 Implementing	 the	methods	 allows
the	loader	to	work	with	source	and	bytecode	files;	it	does	not	allow
for	sourceless	 loading	where	only	bytecode	 is	provided.	Bytecode
files	 are	 an	 optimization	 to	 speed	 up	 loading	 by	 removing	 the

parsing	step	of	Python’s	compiler,	and	so	no	bytecode-specific	API
is	exposed.

path_stats(path)
Optional	 abstract	 method	 which	 returns	 a	 dict	 containing
metadata	 about	 the	 specifed	 path.	 Supported	 dictionary	 keys
are:

'mtime'	(mandatory):	an	integer	or	floating-point	number
representing	the	modification	time	of	the	source	code;
'size'	(optional):	the	size	in	bytes	of	the	source	code.

Any	other	keys	in	the	dictionary	are	ignored,	to	allow	for	future
extensions.	If	the	path	cannot	be	handled,	IOError	is	raised.

New	in	version	3.3.

Changed	 in	 version	 3.4:	 Raise	 IOError	 instead	 of
NotImplementedError.

path_mtime(path)
Optional	abstract	method	which	returns	the	modification	time	for
the	specified	path.

Deprecated	 since	 version	3.3:	This	method	 is	 deprecated	 in
favour	of	path_stats().	You	don’t	have	to	implement	it,	but
it	 is	still	available	for	compatibility	purposes.	Raise	IOError
if	the	path	cannot	be	handled.
Changed	 in	 version	 3.4:	 Raise	 IOError	 instead	 of
NotImplementedError.

set_data(path,	data)
Optional	abstract	method	which	writes	 the	specified	bytes	 to	a

file	path.	Any	intermediate	directories	which	do	not	exist	are	to
be	created	automatically.

When	 writing	 to	 the	 path	 fails	 because	 the	 path	 is	 read-only
(errno.EACCES/PermissionError),	 do	 not	 propagate	 the
exception.

Changed	 in	 version	 3.4:	 No	 longer	 raises
NotImplementedError	when	called.

get_code(fullname)
Concrete	implementation	of	InspectLoader.get_code().

exec_module(module)

Concrete	implementation	of	Loader.exec_module().

New	in	version	3.4.

load_module(fullname)
Concrete	implementation	of	Loader.load_module().

Deprecated	since	version	3.4:	Use	exec_module()	instead.

get_source(fullname)
Concrete	 implementation	 of
InspectLoader.get_source().

is_package(fullname)
Concrete	 implementation	 of
InspectLoader.is_package().	A	module	is	determined	to
be	 a	 package	 if	 its	 file	 path	 (as	 provided	 by
ExecutionLoader.get_filename())	 is	 a	 file	 named

__init__	when	the	file	extension	is	removed	and	the	module
name	itself	does	not	end	in	__init__.

31.6.4.	importlib.machinery	–
Importers	and	path	hooks

This	module	contains	 the	various	objects	 that	help	 import	 find	and
load	modules.

importlib.machinery.SOURCE_SUFFIXES

A	list	of	strings	representing	the	recognized	file	suffixes	for	source
modules.

New	in	version	3.3.

importlib.machinery.DEBUG_BYTECODE_SUFFIXES

A	 list	 of	 strings	 representing	 the	 file	 suffixes	 for	 non-optimized
bytecode	modules.

New	in	version	3.3.

importlib.machinery.OPTIMIZED_BYTECODE_SUFFIXES

A	list	of	strings	representing	the	file	suffixes	for	optimized	bytecode
modules.

New	in	version	3.3.

importlib.machinery.BYTECODE_SUFFIXES

A	 list	 of	 strings	 representing	 the	 recognized	 file	 suffixes	 for
bytecode	modules.	Set	to	either	DEBUG_BYTECODE_SUFFIXES	or
OPTIMIZED_BYTECODE_SUFFIXES	 based	 on	 whether
__debug__	is	true.

New	in	version	3.3.

importlib.machinery.EXTENSION_SUFFIXES

A	 list	 of	 strings	 representing	 the	 recognized	 file	 suffixes	 for
extension	modules.

New	in	version	3.3.

importlib.machinery.all_suffixes()
Returns	a	combined	 list	of	 strings	 representing	all	 file	suffixes	 for
modules	 recognized	 by	 the	 standard	 import	machinery.	 This	 is	 a
helper	 for	 code	 which	 simply	 needs	 to	 know	 if	 a	 filesystem	 path
potentially	 refers	 to	 a	module	without	 needing	 any	 details	 on	 the
kind	of	module	(for	example,	inspect.getmodulename())

New	in	version	3.3.

class	importlib.machinery.BuiltinImporter
An	 importer	 for	 built-in	 modules.	 All	 known	 built-in	 modules	 are
listed	 in	 sys.builtin_module_names.	 This	 class	 implements
the	 importlib.abc.MetaPathFinder	 and
importlib.abc.InspectLoader	ABCs.

Only	class	methods	are	defined	by	this	class	to	alleviate	the	need
for	instantiation.

Note: 	Due	to	limitations	in	the	extension	module	C-API,	for	now
BuiltinImporter	does	not	implement	Loader.exec_module().

class	importlib.machinery.FrozenImporter
An	 importer	 for	 frozen	 modules.	 This	 class	 implements	 the
importlib.abc.MetaPathFinder	 and
importlib.abc.InspectLoader	ABCs.

Only	class	methods	are	defined	by	this	class	to	alleviate	the	need

for	instantiation.

class	importlib.machinery.WindowsRegistryFinder
Finder	 for	 modules	 declared	 in	 the	Windows	 registry.	 This	 class
implements	the	importlib.abc.Finder	ABC.

Only	class	methods	are	defined	by	this	class	to	alleviate	the	need
for	instantiation.

New	in	version	3.3.

class	importlib.machinery.PathFinder
A	Finder	 for	 sys.path	 and	 package	 __path__	 attributes.	 This
class	implements	the	importlib.abc.MetaPathFinder	ABC.

Only	class	methods	are	defined	by	this	class	to	alleviate	the	need
for	instantiation.

classmethod	find_spec(fullname,	path=None,	target=None)
Class	 method	 that	 attempts	 to	 find	 a	 spec	 for	 the	 module
specified	by	fullname	on	sys.path	or,	 if	defined,	on	path.	For
each	 path	 entry	 that	 is	 searched,
sys.path_importer_cache	is	checked.	If	a	non-false	object
is	 found	 then	 it	 is	used	as	 the	path	entry	 finder	 to	 look	 for	 the
module	 being	 searched	 for.	 If	 no	 entry	 is	 found	 in
sys.path_importer_cache,	 then	 sys.path_hooks	 is
searched	for	a	finder	for	the	path	entry	and,	if	found,	is	stored	in
sys.path_importer_cache	along	with	being	queried	about
the	module.	If	no	finder	is	ever	found	then	None	is	both	stored
in	the	cache	and	returned.

New	in	version	3.4.

classmethod	find_module(fullname,	path=None)
A	legacy	wrapper	around	find_spec().

Deprecated	since	version	3.4:	Use	find_spec()	instead.

classmethod	invalidate_caches()
Calls
importlib.abc.PathEntryFinder.invalidate_caches()

on	all	finders	stored	in	sys.path_importer_cache.

Changed	 in	 version	 3.4:	Calls	 objects	 in	 sys.path_hooks	 with
the	current	working	directory	for	''	(i.e.	the	empty	string).

class	importlib.machinery.FileFinder(path,
*loader_details)

A	 concrete	 implementation	 of
importlib.abc.PathEntryFinder	which	caches	 results	 from
the	file	system.

The	path	argument	is	the	directory	for	which	the	finder	is	in	charge
of	searching.

The	loader_details	argument	is	a	variable	number	of	2-item	tuples
each	containing	a	loader	and	a	sequence	of	file	suffixes	the	loader
recognizes.	The	loaders	are	expected	to	be	callables	which	accept
two	arguments	of	the	module’s	name	and	the	path	to	the	file	found.

The	 finder	will	cache	 the	directory	contents	as	necessary,	making
stat	 calls	 for	 each	 module	 search	 to	 verify	 the	 cache	 is	 not
outdated.	Because	 cache	 staleness	 relies	upon	 the	granularity	 of
the	operating	system’s	state	information	of	the	file	system,	there	is
a	potential	race	condition	of	searching	for	a	module,	creating	a	new

file,	and	 then	searching	 for	 the	module	 the	new	 file	 represents.	 If
the	 operations	 happen	 fast	 enough	 to	 fit	 within	 the	 granularity	 of
stat	 calls,	 then	 the	 module	 search	 will	 fail.	 To	 prevent	 this	 from
happening,	when	you	create	a	module	dynamically,	make	sure	 to
call	importlib.invalidate_caches().

New	in	version	3.3.

path

The	path	the	finder	will	search	in.

find_spec(fullname,	target=None)
Attempt	to	find	the	spec	to	handle	fullname	within	path.

New	in	version	3.4.

find_loader(fullname)
Attempt	to	find	the	loader	to	handle	fullname	within	path.

invalidate_caches()
Clear	out	the	internal	cache.

classmethod	path_hook(*loader_details)
A	 class	 method	 which	 returns	 a	 closure	 for	 use	 on
sys.path_hooks.	An	instance	of	FileFinder	is	returned	by
the	 closure	 using	 the	 path	 argument	 given	 to	 the	 closure
directly	and	loader_details	indirectly.

If	 the	 argument	 to	 the	 closure	 is	 not	 an	 existing	 directory,
ImportError	is	raised.

class	importlib.machinery.SourceFileLoader(fullname,
path)

A	 concrete	 implementation	 of	 importlib.abc.SourceLoader
by	 subclassing	 importlib.abc.FileLoader	 and	 providing
some	concrete	implementations	of	other	methods.

New	in	version	3.3.

name

The	name	of	the	module	that	this	loader	will	handle.

path

The	path	to	the	source	file.

is_package(fullname)
Return	true	if	path	appears	to	be	for	a	package.

path_stats(path)
Concrete	 implementation	 of
importlib.abc.SourceLoader.path_stats().

set_data(path,	data)
Concrete	 implementation	 of
importlib.abc.SourceLoader.set_data().

class
importlib.machinery.SourcelessFileLoader(fullname,
path)

A	 concrete	 implementation	 of	 importlib.abc.FileLoader
which	can	import	bytecode	files	(i.e.	no	source	code	files	exist).

Please	note	that	direct	use	of	bytecode	files	(and	thus	not	source
code	 files)	 inhibits	 your	modules	 from	being	usable	by	all	Python
implementations	 or	 new	 versions	 of	 Python	 which	 change	 the
bytecode	format.

New	in	version	3.3.

name

The	name	of	the	module	the	loader	will	handle.

path

The	path	to	the	bytecode	file.

is_package(fullname)
Determines	if	the	module	is	a	package	based	on	path.

get_code(fullname)
Returns	the	code	object	for	name	created	from	path.

get_source(fullname)
Returns	 None	 as	 bytecode	 files	 have	 no	 source	 when	 this
loader	is	used.

class
importlib.machinery.ExtensionFileLoader(fullname,
path)

A	 concrete	 implementation	 of
importlib.abc.ExecutionLoader	for	extension	modules.

The	 fullname	 argument	 specifies	 the	 name	 of	 the	 module	 the
loader	is	to	support.	The	path	argument	is	the	path	to	the	extension
module’s	file.

New	in	version	3.3.

name

Name	of	the	module	the	loader	supports.

path

Path	to	the	extension	module.

load_module(fullname)
Loads	the	extension	module	if	and	only	if	fullname	is	the	same
as	name	or	is	None.

Note: 	Due	 to	 limitations	 in	 the	extension	module	C-API,	 for
now	 ExtensionFileLoader	 does	 not	 implement
Loader.exec_module().

is_package(fullname)
Returns	True	 if	 the	 file	path	points	 to	a	package’s	__init__
module	based	on	EXTENSION_SUFFIXES.

get_code(fullname)
Returns	None	as	extension	modules	lack	a	code	object.

get_source(fullname)
Returns	None	as	extension	modules	do	not	have	source	code.

get_filename(fullname)
Returns	path.

New	in	version	3.4.

class	importlib.machinery.ModuleSpec(name,	loader,	*,
origin=None,	loader_state=None,	is_package=None)

A	specification	for	a	module’s	import-system-related	state.

New	in	version	3.4.

name

(__name__)

A	string	for	the	fully-qualified	name	of	the	module.

loader

(__loader__)

The	 loader	 to	 use	 for	 loading.	 For	 namespace	 packages	 this
should	be	set	to	None.

origin

(__file__)

Name	of	 the	place	 from	which	 the	module	 is	 loaded,	e.g.	 “builtin”
for	 built-in	 modules	 and	 the	 filename	 for	 modules	 loaded	 from
source.	Normally	 “origin”	 should	 be	 set,	 but	 it	may	 be	None	 (the
default)	which	indicates	it	is	unspecified.

submodule_search_locations

(__path__)

List	 of	 strings	 for	 where	 to	 find	 submodules,	 if	 a	 package	 (None
otherwise).

loader_state

Container	of	extra	module-specific	data	 for	use	during	 loading	 (or
None).

cached

(__cached__)

String	for	where	the	compiled	module	should	be	stored	(or	None).

parent

(__package__)

(Read-only)	 Fully-qualified	 name	 of	 the	 package	 to	 which	 the
module	belongs	as	a	submodule	(or	None).

has_location

Boolean	 indicating	 whether	 or	 not	 the	 module’s	 “origin”	 attribute
refers	to	a	loadable	location.

31.6.5.	importlib.util	–	Utility	code
for	importers

This	module	contains	the	various	objects	that	help	in	the	construction
of	an	importer.

importlib.util.MAGIC_NUMBER

The	 bytes	 which	 represent	 the	 bytecode	 version	 number.	 If	 you
need	 help	 with	 loading/writing	 bytecode	 then	 consider
importlib.abc.SourceLoader.

New	in	version	3.4.

importlib.util.cache_from_source(path,
debug_override=None)

Return	the	PEP	3147	path	to	the	byte-compiled	file	associated	with
the	 source	path.	 For	 example,	 if	path	 is	 /foo/bar/baz.py	 the
return	value	would	be	/foo/bar/__pycache__/baz.cpython-
32.pyc	 for	Python	3.2.	The	cpython-32	 string	comes	 from	 the
current	 magic	 tag	 (see	 get_tag();	 if
sys.implementation.cache_tag	 is	 not	 defined	 then
NotImplementedError	 will	 be	 raised).	 The	 returned	 path	 will
end	in	.pyc	when	__debug__	is	True	or	.pyo	for	an	optimized
Python	(i.e.	__debug__	is	False).	By	passing	in	True	or	False
for	 debug_override	 you	 can	 override	 the	 system’s	 value	 for
__debug__	for	extension	selection.

path	need	not	exist.

New	in	version	3.4.

http://www.python.org/dev/peps/pep-3147

importlib.util.source_from_cache(path)
Given	 the	 path	 to	 a	 PEP	 3147	 file	 name,	 return	 the	 associated
source	 code	 file	 path.	 For	 example,	 if	 path	 is
/foo/bar/__pycache__/baz.cpython-32.pyc	 the	 returned
path	would	be	/foo/bar/baz.py.	path	need	not	exist,	however	if
it	does	not	conform	to	PEP	3147	format,	a	ValueError	is	raised.
If	 sys.implementation.cache_tag	 is	 not	 defined,
NotImplementedError	is	raised.

New	in	version	3.4.

importlib.util.decode_source(source_bytes)
Decode	the	given	bytes	representing	source	code	and	return	it	as	a
string	 with	 universal	 newlines	 (as	 required	 by
importlib.abc.InspectLoader.get_source()).

New	in	version	3.4.

importlib.util.resolve_name(name,	package)
Resolve	a	relative	module	name	to	an	absolute	one.

If	name	 has	no	 leading	dots,	 then	name	 is	 simply	 returned.	This
allows	 for	 usage	 such	 as
importlib.util.resolve_name('sys',	 __package__)

without	doing	a	check	to	see	if	the	package	argument	is	needed.

ValueError	 is	 raised	 if	 name	 is	 a	 relative	 module	 name	 but
package	 is	 a	 false	 value	 (e.g.	 None	 or	 the	 empty	 string).
ValueError	 is	 also	 raised	 a	 relative	 name	 would	 escape	 its
containing	 package	 (e.g.	 requesting	 ..bacon	 from	 within	 the
spam	package).

http://www.python.org/dev/peps/pep-3147
http://www.python.org/dev/peps/pep-3147

New	in	version	3.3.

importlib.util.find_spec(name,	package=None)
Find	 the	 spec	 for	 a	 module,	 optionally	 relative	 to	 the	 specified
package	 name.	 If	 the	 module	 is	 in	 sys.modules,	 then
sys.modules[name].__spec__	 is	 returned	 (unless	 the	 spec
would	be	None	or	is	not	set,	in	which	case	ValueError	is	raised).
Otherwise	 a	 search	 using	 sys.meta_path	 is	 done.	 None	 is
returned	if	no	spec	is	found.

If	name	 is	 for	a	submodule	(contains	a	dot),	 the	parent	module	 is
automatically	imported.

name	and	package	work	the	same	as	for	import_module().

New	in	version	3.4.

@importlib.util.module_for_loader

A	 decorator	 for	 importlib.abc.Loader.load_module()	 to
handle	 selecting	 the	 proper	 module	 object	 to	 load	 with.	 The
decorated	method	 is	expected	 to	have	a	call	signature	 taking	 two
positional	 arguments	 (e.g.	 load_module(self,	 module))	 for
which	the	second	argument	will	be	 the	module	object	 to	be	used
by	 the	 loader.	 Note	 that	 the	 decorator	 will	 not	 work	 on	 static
methods	because	of	the	assumption	of	two	arguments.

The	decorated	method	will	 take	 in	 the	name	of	 the	module	 to	be
loaded	 as	 expected	 for	 a	 loader.	 If	 the	 module	 is	 not	 found	 in
sys.modules	 then	 a	 new	 one	 is	 constructed.	 Regardless	 of
where	 the	 module	 came	 from,	 __loader__	 set	 to	 self	 and
__package__	 is	 set	 based	 on	 what
importlib.abc.InspectLoader.is_package()	 returns	 (if

available).	 These	 attributes	 are	 set	 unconditionally	 to	 support
reloading.

If	 an	 exception	 is	 raised	 by	 the	 decorated	method	and	 a	module
was	added	to	sys.modules,	then	the	module	will	be	removed	to
prevent	 a	 partially	 initialized	 module	 from	 being	 in	 left	 in
sys.modules.	If	the	module	was	already	in	sys.modules	then	it
is	left	alone.

Changed	 in	 version	 3.3:	 __loader__	 and	 __package__	 are
automatically	set	(when	possible).

Changed	 in	 version	 3.4:	 Set	 __name__,	 __loader__

__package__	unconditionally	to	support	reloading.

Deprecated	since	version	3.4:	The	import	machinery	now	directly
performs	all	the	functionality	provided	by	this	function.

@importlib.util.set_loader

A	 decorator	 for	 importlib.abc.Loader.load_module()	 to
set	 the	 __loader__	 attribute	 on	 the	 returned	 module.	 If	 the
attribute	 is	 already	 set	 the	decorator	 does	nothing.	 It	 is	 assumed
that	the	first	positional	argument	to	the	wrapped	method	(i.e.	self)
is	what	__loader__	should	be	set	to.

Changed	in	version	3.4:	Set	__loader__	if	set	to	None,	as	if	the
attribute	does	not	exist.

Deprecated	since	version	3.4:	The	 import	machinery	 takes	care
of	this	automatically.

@importlib.util.set_package

A	 decorator	 for	 importlib.abc.Loader.load_module()	 to
set	 the	 __package__	 attribute	 on	 the	 returned	 module.	 If
__package__	is	set	and	has	a	value	other	than	None	it	will	not	be
changed.

Deprecated	since	version	3.4:	The	 import	machinery	 takes	care
of	this	automatically.

importlib.util.spec_from_loader(name,	loader,	*,
origin=None,	is_package=None)

A	factory	function	for	creating	a	ModuleSpec	instance	based	on	a
loader.	 The	 parameters	 have	 the	 same	 meaning	 as	 they	 do	 for
ModuleSpec.	 The	 function	 uses	 available	 loader	 APIs,	 such	 as
InspectLoader.is_package(),	 to	 fill	 in	 any	 missing
information	on	the	spec.

New	in	version	3.4.

importlib.util.spec_from_file_location(name,
location,	*,	loader=None,	submodule_search_locations=None)

A	 factory	 function	 for	 creating	a	 ModuleSpec	 instance	 based	 on
the	path	to	a	file.	Missing	information	will	be	filled	in	on	the	spec	by
making	use	of	 loader	APIs	and	by	the	implication	that	the	module
will	be	file-based.

New	in	version	3.4.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	31.	Importing	Modules	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

32.	Python	Language	Services
Python	 provides	 a	 number	 of	 modules	 to	 assist	 in	 working	 with	 the
Python	 language.	These	modules	support	 tokenizing,	parsing,	syntax
analysis,	bytecode	disassembly,	and	various	other	facilities.

These	modules	include:

32.1.	parser	—	Access	Python	parse	trees
32.1.1.	Creating	ST	Objects
32.1.2.	Converting	ST	Objects
32.1.3.	Queries	on	ST	Objects
32.1.4.	Exceptions	and	Error	Handling
32.1.5.	ST	Objects
32.1.6.	Example:	Emulation	of	compile()

32.2.	ast	—	Abstract	Syntax	Trees
32.2.1.	Node	classes
32.2.2.	Abstract	Grammar
32.2.3.	ast	Helpers

32.3.	symtable	—	Access	to	the	compiler’s	symbol	tables
32.3.1.	Generating	Symbol	Tables
32.3.2.	Examining	Symbol	Tables

32.4.	symbol	—	Constants	used	with	Python	parse	trees
32.5.	token	—	Constants	used	with	Python	parse	trees
32.6.	keyword	—	Testing	for	Python	keywords
32.7.	tokenize	—	Tokenizer	for	Python	source

32.7.1.	Tokenizing	Input
32.7.2.	Command-Line	Usage
32.7.3.	Examples

32.8.	tabnanny	—	Detection	of	ambiguous	indentation
32.9.	pyclbr	—	Python	class	browser	support

32.9.1.	Class	Objects

32.9.2.	Function	Objects
32.10.	py_compile	—	Compile	Python	source	files
32.11.	compileall	—	Byte-compile	Python	libraries

32.11.1.	Command-line	use
32.11.2.	Public	functions

32.12.	dis	—	Disassembler	for	Python	bytecode
32.12.1.	Bytecode	analysis
32.12.2.	Analysis	functions
32.12.3.	Python	Bytecode	Instructions
32.12.4.	Opcode	collections

32.13.	pickletools	—	Tools	for	pickle	developers
32.13.1.	Command	line	usage

32.13.1.1.	Command	line	options
32.13.2.	Programmatic	Interface

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.1.	parser	—	Access	Python
parse	trees
The	parser	module	provides	an	interface	to	Python’s	internal	parser
and	 byte-code	 compiler.	 The	 primary	 purpose	 for	 this	 interface	 is	 to
allow	Python	code	 to	edit	 the	parse	 tree	of	a	Python	expression	and
create	 executable	 code	 from	 this.	 This	 is	 better	 than	 trying	 to	 parse
and	 modify	 an	 arbitrary	 Python	 code	 fragment	 as	 a	 string	 because
parsing	 is	 performed	 in	 a	 manner	 identical	 to	 the	 code	 forming	 the
application.	It	is	also	faster.

Note: 	From	Python	2.5	onward,	it’s	much	more	convenient	to	cut	in
at	the	Abstract	Syntax	Tree	(AST)	generation	and	compilation	stage,
using	the	ast	module.

There	are	a	few	things	to	note	about	this	module	which	are	important
to	making	use	of	the	data	structures	created.	This	 is	not	a	 tutorial	on
editing	 the	parse	trees	for	Python	code,	but	some	examples	of	using
the	parser	module	are	presented.

Most	 importantly,	 a	 good	 understanding	 of	 the	 Python	 grammar
processed	by	the	internal	parser	is	required.	For	full	information	on	the
language	 syntax,	 refer	 to	 The	 Python	 Language	 Reference.	 The
parser	itself	is	created	from	a	grammar	specification	defined	in	the	file
Grammar/Grammar	 in	 the	 standard	 Python	 distribution.	 The	 parse
trees	 stored	 in	 the	ST	objects	 created	by	 this	module	are	 the	actual
output	 from	 the	 internal	 parser	 when	 created	 by	 the	 expr()	 or
suite()	 functions,	 described	 below.	 The	 ST	 objects	 created	 by
sequence2st()	 faithfully	 simulate	 those	 structures.	 Be	 aware	 that

the	values	of	 the	sequences	which	are	considered	 “correct”	will	 vary
from	one	version	of	Python	to	another	as	the	formal	grammar	for	 the
language	 is	 revised.	 However,	 transporting	 code	 from	 one	 Python
version	to	another	as	source	text	will	always	allow	correct	parse	trees
to	be	created	in	the	target	version,	with	the	only	restriction	being	that
migrating	 to	 an	older	 version	of	 the	 interpreter	will	 not	 support	more
recent	 language	 constructs.	 The	 parse	 trees	 are	 not	 typically
compatible	 from	 one	 version	 to	 another,	 whereas	 source	 code	 has
always	been	forward-compatible.

Each	 element	 of	 the	 sequences	 returned	 by	 st2list()	 or
st2tuple()	 has	 a	 simple	 form.	 Sequences	 representing	 non-
terminal	elements	 in	 the	grammar	always	have	a	 length	greater	 than
one.	The	first	element	is	an	integer	which	identifies	a	production	in	the
grammar.	These	 integers	are	given	symbolic	names	 in	 the	C	header
file	 Include/graminit.h	 and	 the	 Python	 module	 symbol.	 Each
additional	 element	 of	 the	 sequence	 represents	 a	 component	 of	 the
production	 as	 recognized	 in	 the	 input	 string:	 these	 are	 always
sequences	 which	 have	 the	 same	 form	 as	 the	 parent.	 An	 important
aspect	of	this	structure	which	should	be	noted	is	that	keywords	used	to
identify	the	parent	node	type,	such	as	the	keyword	if	in	an	if_stmt,
are	 included	 in	 the	 node	 tree	 without	 any	 special	 treatment.	 For
example,	 the	 if	 keyword	 is	 represented	 by	 the	 tuple	 (1,	 'if'),
where	 1	 is	 the	 numeric	 value	 associated	 with	 all	 NAME	 tokens,
including	 variable	 and	 function	 names	 defined	 by	 the	 user.	 In	 an
alternate	form	returned	when	line	number	information	is	requested,	the
same	token	might	be	represented	as	(1,	'if',	12),	where	the	12
represents	the	line	number	at	which	the	terminal	symbol	was	found.

Terminal	elements	are	represented	in	much	the	same	way,	but	without
any	 child	 elements	 and	 the	 addition	 of	 the	 source	 text	 which	 was
identified.	 The	 example	 of	 the	 if	 keyword	 above	 is	 representative.

The	various	types	of	terminal	symbols	are	defined	in	the	C	header	file
Include/token.h	and	the	Python	module	token.

The	 ST	 objects	 are	 not	 required	 to	 support	 the	 functionality	 of	 this
module,	but	are	provided	for	three	purposes:	to	allow	an	application	to
amortize	 the	 cost	 of	 processing	 complex	 parse	 trees,	 to	 provide	 a
parse	 tree	 representation	 which	 conserves	 memory	 space	 when
compared	 to	 the	Python	 list	 or	 tuple	 representation,	and	 to	ease	 the
creation	 of	 additional	modules	 in	C	which	manipulate	 parse	 trees.	A
simple	“wrapper”	class	may	be	created	in	Python	to	hide	the	use	of	ST
objects.

The	parser	module	defines	functions	for	a	few	distinct	purposes.	The
most	 important	purposes	are	 to	create	ST	objects	and	 to	convert	ST
objects	 to	 other	 representations	 such	 as	 parse	 trees	 and	 compiled
code	 objects,	 but	 there	 are	 also	 functions	 which	 serve	 to	 query	 the
type	of	parse	tree	represented	by	an	ST	object.

See	also:

Module	symbol
Useful	constants	representing	internal	nodes	of	the	parse	tree.

Module	token
Useful	 constants	 representing	 leaf	 nodes	 of	 the	 parse	 tree	 and
functions	for	testing	node	values.

32.1.1.	Creating	ST	Objects

ST	 objects	may	 be	 created	 from	 source	 code	 or	 from	 a	 parse	 tree.
When	creating	an	ST	object	from	source,	different	functions	are	used
to	create	the	'eval'	and	'exec'	forms.

parser.expr(source)
The	expr()	function	parses	the	parameter	source	as	if	it	were	an
input	to	compile(source,	'file.py',	'eval').	If	the	parse
succeeds,	 an	ST	object	 is	 created	 to	 hold	 the	 internal	 parse	 tree
representation,	otherwise	an	appropriate	exception	is	raised.

parser.suite(source)
The	suite()	 function	parses	 the	parameter	source	 as	 if	 it	were
an	 input	 to	 compile(source,	 'file.py',	 'exec').	 If	 the
parse	succeeds,	an	ST	object	is	created	to	hold	the	internal	parse
tree	representation,	otherwise	an	appropriate	exception	is	raised.

parser.sequence2st(sequence)
This	function	accepts	a	parse	tree	represented	as	a	sequence	and
builds	 an	 internal	 representation	 if	 possible.	 If	 it	 can	 validate	 that
the	 tree	conforms	 to	 the	Python	grammar	and	all	nodes	are	valid
node	types	 in	 the	host	version	of	Python,	an	ST	object	 is	created
from	the	internal	representation	and	returned	to	the	called.	If	 there
is	 a	 problem	 creating	 the	 internal	 representation,	 or	 if	 the	 tree
cannot	be	validated,	a	ParserError	exception	 is	 raised.	An	ST
object	 created	 this	 way	 should	 not	 be	 assumed	 to	 compile
correctly;	 normal	 exceptions	 raised	 by	 compilation	 may	 still	 be
initiated	when	the	ST	object	is	passed	to	compilest().	This	may
indicate	problems	not	related	to	syntax	(such	as	a	MemoryError
exception),	but	may	also	be	due	to	constructs	such	as	the	result	of

parsing	 del	 f(0),	 which	 escapes	 the	 Python	 parser	 but	 is
checked	by	the	bytecode	compiler.

Sequences	 representing	 terminal	 tokens	 may	 be	 represented	 as
either	 two-element	 lists	 of	 the	 form	 (1,	 'name')	 or	 as	 three-
element	 lists	of	the	form	(1,	'name',	56).	 If	 the	 third	element
is	present,	it	is	assumed	to	be	a	valid	line	number.	The	line	number
may	be	specified	for	any	subset	of	the	terminal	symbols	in	the	input
tree.

parser.tuple2st(sequence)
This	is	the	same	function	as	sequence2st().	This	entry	point	 is
maintained	for	backward	compatibility.

32.1.2.	Converting	ST	Objects

ST	 objects,	 regardless	 of	 the	 input	 used	 to	 create	 them,	 may	 be
converted	to	parse	trees	represented	as	list-	or	tuple-	trees,	or	may	be
compiled	into	executable	code	objects.	Parse	trees	may	be	extracted
with	or	without	line	numbering	information.

parser.st2list(st,	line_info=False,	col_info=False)
This	function	accepts	an	ST	object	from	the	caller	in	st	and	returns
a	Python	 list	 representing	the	equivalent	parse	tree.	The	resulting
list	 representation	can	be	used	 for	 inspection	or	 the	creation	of	a
new	parse	 tree	 in	 list	 form.	This	 function	does	not	 fail	 so	 long	as
memory	is	available	to	build	the	list	representation.	If	the	parse	tree
will	 only	 be	 used	 for	 inspection,	 st2tuple()	 should	 be	 used
instead	 to	 reduce	memory	consumption	and	 fragmentation.	When
the	list	representation	is	required,	this	function	is	significantly	faster
than	retrieving	a	tuple	representation	and	converting	that	to	nested
lists.

If	 line_info	 is	 true,	 line	number	 information	will	 be	 included	 for	 all
terminal	tokens	as	a	third	element	of	the	list	representing	the	token.
Note	that	the	line	number	provided	specifies	the	line	on	which	the
token	 ends.	 This	 information	 is	 omitted	 if	 the	 flag	 is	 false	 or
omitted.

parser.st2tuple(st,	line_info=False,	col_info=False)
This	function	accepts	an	ST	object	from	the	caller	in	st	and	returns
a	Python	 tuple	 representing	 the	equivalent	parse	 tree.	Other	 than
returning	 a	 tuple	 instead	 of	 a	 list,	 this	 function	 is	 identical	 to
st2list().

If	 line_info	 is	 true,	 line	number	 information	will	 be	 included	 for	 all

terminal	tokens	as	a	third	element	of	the	list	representing	the	token.
This	information	is	omitted	if	the	flag	is	false	or	omitted.

parser.compilest(st,	filename='<syntax-tree>')
The	 Python	 byte	 compiler	 can	 be	 invoked	 on	 an	 ST	 object	 to
produce	 code	 objects	which	 can	 be	 used	 as	 part	 of	 a	 call	 to	 the
built-in	 exec()	 or	 eval()	 functions.	 This	 function	 provides	 the
interface	to	the	compiler,	passing	the	internal	parse	tree	from	st	 to
the	 parser,	 using	 the	 source	 file	 name	 specified	 by	 the	 filename
parameter.	 The	 default	 value	 supplied	 for	 filename	 indicates	 that
the	source	was	an	ST	object.

Compiling	 an	 ST	 object	 may	 result	 in	 exceptions	 related	 to
compilation;	an	example	would	be	a	SyntaxError	caused	by	the
parse	tree	for	del	f(0):	this	statement	is	considered	legal	within
the	 formal	 grammar	 for	 Python	 but	 is	 not	 a	 legal	 language
construct.	 The	 SyntaxError	 raised	 for	 this	 condition	 is	 actually
generated	 by	 the	 Python	 byte-compiler	 normally,	 which	 is	 why	 it
can	be	raised	at	this	point	by	the	parser	module.	Most	causes	of
compilation	 failure	 can	 be	 diagnosed	 programmatically	 by
inspection	of	the	parse	tree.

32.1.3.	Queries	on	ST	Objects

Two	functions	are	provided	which	allow	an	application	to	determine	if
an	 ST	 was	 created	 as	 an	 expression	 or	 a	 suite.	 Neither	 of	 these
functions	can	be	used	to	determine	if	an	ST	was	created	from	source
code	 via	 expr()	 or	 suite()	 or	 from	 a	 parse	 tree	 via
sequence2st().

parser.isexpr(st)
When	 st	 represents	 an	 'eval'	 form,	 this	 function	 returns	 true,
otherwise	 it	 returns	 false.	 This	 is	 useful,	 since	 code	 objects
normally	cannot	be	queried	for	this	information	using	existing	built-
in	functions.	Note	that	the	code	objects	created	by	compilest()
cannot	be	queried	like	this	either,	and	are	identical	to	those	created
by	the	built-in	compile()	function.

parser.issuite(st)
This	 function	mirrors	 isexpr()	 in	 that	 it	 reports	 whether	 an	 ST
object	represents	an	'exec'	form,	commonly	known	as	a	“suite.”
It	 is	 not	 safe	 to	 assume	 that	 this	 function	 is	 equivalent	 to	 not
isexpr(st),	as	additional	syntactic	fragments	may	be	supported
in	the	future.

32.1.4.	Exceptions	and	Error	Handling

The	 parser	 module	 defines	 a	 single	 exception,	 but	 may	 also	 pass
other	 built-in	 exceptions	 from	 other	 portions	 of	 the	 Python	 runtime
environment.	See	each	function	for	information	about	the	exceptions	it
can	raise.

exception	parser.ParserError
Exception	 raised	when	a	 failure	occurs	within	 the	parser	module.
This	 is	 generally	 produced	 for	 validation	 failures	 rather	 than	 the
built-in	SyntaxError	raised	during	normal	parsing.	The	exception
argument	is	either	a	string	describing	the	reason	of	the	failure	or	a
tuple	containing	a	sequence	causing	 the	 failure	 from	a	parse	 tree
passed	 to	 sequence2st()	 and	 an	 explanatory	 string.	 Calls	 to
sequence2st()	 need	 to	 be	 able	 to	 handle	 either	 type	 of
exception,	 while	 calls	 to	 other	 functions	 in	 the	 module	 will	 only
need	to	be	aware	of	the	simple	string	values.

Note	 that	 the	 functions	 compilest(),	expr(),	 and	 suite()	may
raise	 exceptions	 which	 are	 normally	 raised	 by	 the	 parsing	 and
compilation	 process.	 These	 include	 the	 built	 in	 exceptions
MemoryError,	 OverflowError,	 SyntaxError,	 and
SystemError.	In	these	cases,	these	exceptions	carry	all	the	meaning
normally	 associated	 with	 them.	 Refer	 to	 the	 descriptions	 of	 each
function	for	detailed	information.

32.1.5.	ST	Objects

Ordered	and	equality	comparisons	are	supported	between	ST	objects.
Pickling	of	ST	objects	(using	the	pickle	module)	is	also	supported.

parser.STType

The	 type	 of	 the	 objects	 returned	 by	 expr(),	 suite()	 and
sequence2st().

ST	objects	have	the	following	methods:

ST.compile(filename='<syntax-tree>')
Same	as	compilest(st,	filename).

ST.isexpr()
Same	as	isexpr(st).

ST.issuite()
Same	as	issuite(st).

ST.tolist(line_info=False,	col_info=False)
Same	as	st2list(st,	line_info,	col_info).

ST.totuple(line_info=False,	col_info=False)
Same	as	st2tuple(st,	line_info,	col_info).

32.1.6.	Example:	Emulation	of
compile()

While	many	 useful	 operations	may	 take	 place	 between	 parsing	 and
bytecode	generation,	 the	simplest	operation	 is	 to	do	nothing.	For	 this
purpose,	using	 the	parser	module	 to	produce	an	 intermediate	data
structure	is	equivalent	to	the	code

>>>	code	=	compile('a	+	5',	'file.py',	'eval')

>>>	a	=	5

>>>	eval(code)

10

The	 equivalent	 operation	 using	 the	 parser	 module	 is	 somewhat
longer,	and	allows	 the	 intermediate	 internal	parse	 tree	 to	be	 retained
as	an	ST	object:

>>>	import	parser

>>>	st	=	parser.expr('a	+	5')

>>>	code	=	st.compile('file.py')

>>>	a	=	5

>>>	eval(code)

10

An	 application	which	 needs	 both	 ST	 and	 code	 objects	 can	 package
this	code	into	readily	available	functions:

import	parser

def	load_suite(source_string):

				st	=	parser.suite(source_string)

				return	st,	st.compile()

def	load_expression(source_string):

				st	=	parser.expr(source_string)

				return	st,	st.compile()

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.2.	ast	—	Abstract	Syntax
Trees
Source	code:	Lib/ast.py

The	 ast	 module	 helps	 Python	 applications	 to	 process	 trees	 of	 the
Python	 abstract	 syntax	 grammar.	 The	 abstract	 syntax	 itself	 might
change	 with	 each	 Python	 release;	 this	 module	 helps	 to	 find	 out
programmatically	what	the	current	grammar	looks	like.

An	 abstract	 syntax	 tree	 can	 be	 generated	 by	 passing
ast.PyCF_ONLY_AST	 as	a	 flag	 to	 the	 compile()	 built-in	 function,
or	using	the	parse()	helper	provided	 in	 this	module.	The	result	will
be	 a	 tree	 of	 objects	 whose	 classes	 all	 inherit	 from	 ast.AST.	 An
abstract	syntax	tree	can	be	compiled	into	a	Python	code	object	using
the	built-in	compile()	function.

http://hg.python.org/cpython/file/3.4/Lib/ast.py

32.2.1.	Node	classes

class	ast.AST
This	is	the	base	of	all	AST	node	classes.	The	actual	node	classes
are	 derived	 from	 the	 Parser/Python.asdl	 file,	 which	 is
reproduced	below.	They	are	defined	in	the	_ast	C	module	and	re-
exported	in	ast.

There	 is	 one	 class	 defined	 for	 each	 left-hand	 side	 symbol	 in	 the
abstract	 grammar	 (for	 example,	 ast.stmt	 or	 ast.expr).	 In
addition,	 there	 is	 one	 class	 defined	 for	 each	 constructor	 on	 the
right-hand	side;	 these	classes	 inherit	 from	the	classes	for	 the	 left-
hand	 side	 trees.	 For	 example,	 ast.BinOp	 inherits	 from
ast.expr.	For	production	rules	with	alternatives	(aka	“sums”),	the
left-hand	 side	 class	 is	 abstract:	 only	 instances	 of	 specific
constructor	nodes	are	ever	created.

_fields

Each	concrete	class	has	an	attribute	_fields	which	gives	the
names	of	all	child	nodes.

Each	 instance	 of	 a	 concrete	 class	 has	 one	 attribute	 for	 each
child	node,	of	the	type	as	defined	in	the	grammar.	For	example,
ast.BinOp	 instances	 have	 an	 attribute	 left	 of	 type
ast.expr.

If	these	attributes	are	marked	as	optional	in	the	grammar	(using
a	question	mark),	the	value	might	be	None.	If	the	attributes	can
have	zero-or-more	values	(marked	with	an	asterisk),	the	values
are	represented	as	Python	lists.	All	possible	attributes	must	be
present	 and	 have	 valid	 values	 when	 compiling	 an	 AST	 with

compile().

lineno

col_offset

Instances	 of	 ast.expr	 and	 ast.stmt	 subclasses	 have
lineno	and	col_offset	attributes.	The	 lineno	 is	 the	 line
number	of	source	text	(1-indexed	so	the	first	line	is	line	1)	and
the	col_offset	is	the	UTF-8	byte	offset	of	the	first	token	that
generated	the	node.	The	UTF-8	offset	is	recorded	because	the
parser	uses	UTF-8	internally.

The	constructor	of	a	class	ast.T	parses	its	arguments	as	follows:

If	 there	are	positional	 arguments,	 there	must	 be	as	many	as
there	 are	 items	 in	 T._fields;	 they	 will	 be	 assigned	 as
attributes	of	these	names.
If	 there	are	keyword	arguments,	 they	will	set	 the	attributes	of
the	same	names	to	the	given	values.

For	example,	to	create	and	populate	an	ast.UnaryOp	node,	you
could	use

node	=	ast.UnaryOp()

node.op	=	ast.USub()

node.operand	=	ast.Num()

node.operand.n	=	5

node.operand.lineno	=	0

node.operand.col_offset	=	0

node.lineno	=	0

node.col_offset	=	0

or	the	more	compact

node	=	ast.UnaryOp(ast.USub(),	ast.Num(5,	lineno=0

																			lineno=0,	col_offset=0)

32.2.2.	Abstract	Grammar

The	abstract	grammar	is	currently	defined	as	follows:

--	ASDL's	six	builtin	types	are	identifier,	int,	string,	bytes,	object,	singleton

module	Python

{

				mod	=	Module(stmt*	body)

								|	Interactive(stmt*	body)

								|	Expression(expr	body)

								--	not	really	an	actual	node	but	useful	in	Jython's	typesystem.

								|	Suite(stmt*	body)

				stmt	=	FunctionDef(identifier	name,	arguments	args,	

																											stmt*	body,	expr*	decorator_list,	expr?	returns)

										|	ClassDef(identifier	name,	

													expr*	bases,

													keyword*	keywords,

													expr?	starargs,

													expr?	kwargs,

													stmt*	body,

													expr*	decorator_list)

										|	Return(expr?	value)

										|	Delete(expr*	targets)

										|	Assign(expr*	targets,	expr	value)

										|	AugAssign(expr	target,	operator	op,	expr	value)

										--	use	'orelse'	because	else	is	a	keyword	in	target	languages

										|	For(expr	target,	expr	iter,	stmt*	body,	stmt*	orelse)

										|	While(expr	test,	stmt*	body,	stmt*	orelse)

										|	If(expr	test,	stmt*	body,	stmt*	orelse)

										|	With(withitem*	items,	stmt*	body)

										|	Raise(expr?	exc,	expr?	cause)

										|	Try(stmt*	body,	excepthandler*	handlers,	stmt*	orelse,	stmt*	finalbody)

										|	Assert(expr	test,	expr?	msg)

										|	Import(alias*	names)

										|	ImportFrom(identifier?	module,	alias*	names,	int?	level)

										|	Global(identifier*	names)

										|	Nonlocal(identifier*	names)

										|	Expr(expr	value)

										|	Pass	|	Break	|	Continue

										--	XXX	Jython	will	be	different

										--	col_offset	is	the	byte	offset	in	the	utf8	string	the	parser	uses

										attributes	(int	lineno,	int	col_offset)

										--	BoolOp()	can	use	left	&	right?

				expr	=	BoolOp(boolop	op,	expr*	values)

									|	BinOp(expr	left,	operator	op,	expr	right)

									|	UnaryOp(unaryop	op,	expr	operand)

									|	Lambda(arguments	args,	expr	body)

									|	IfExp(expr	test,	expr	body,	expr	orelse)

									|	Dict(expr*	keys,	expr*	values)

									|	Set(expr*	elts)

									|	ListComp(expr	elt,	comprehension*	generators)

									|	SetComp(expr	elt,	comprehension*	generators)

									|	DictComp(expr	key,	expr	value,	comprehension*	generators)

									|	GeneratorExp(expr	elt,	comprehension*	generators)

									--	the	grammar	constrains	where	yield	expressions	can	occur

									|	Yield(expr?	value)

									|	YieldFrom(expr	value)

									--	need	sequences	for	compare	to	distinguish	between

									--	x	<	4	<	3	and	(x	<	4)	<	3

									|	Compare(expr	left,	cmpop*	ops,	expr*	comparators)

									|	Call(expr	func,	expr*	args,	keyword*	keywords,

													expr?	starargs,	expr?	kwargs)

									|	Num(object	n)	--	a	number	as	a	PyObject.

									|	Str(string	s)	--	need	to	specify	raw,	unicode,	etc?

									|	Bytes(bytes	s)

									|	NameConstant(singleton	value)

									|	Ellipsis

									--	the	following	expression	can	appear	in	assignment	context

									|	Attribute(expr	value,	identifier	attr,	expr_context	ctx)

									|	Subscript(expr	value,	slice	slice,	expr_context	ctx)

									|	Starred(expr	value,	expr_context	ctx)

									|	Name(identifier	id,	expr_context	ctx)

									|	List(expr*	elts,	expr_context	ctx)	

									|	Tuple(expr*	elts,	expr_context	ctx)

										--	col_offset	is	the	byte	offset	in	the	utf8	string	the	parser	uses

										attributes	(int	lineno,	int	col_offset)

				expr_context	=	Load	|	Store	|	Del	|	AugLoad	|	AugStore	|	Param

				slice	=	Slice(expr?	lower,	expr?	upper,	expr?	step)	

										|	ExtSlice(slice*	dims)	

										|	Index(expr	value)	

				boolop	=	And	|	Or	

				operator	=	Add	|	Sub	|	Mult	|	Div	|	Mod	|	Pow	|	LShift	

																	|	RShift	|	BitOr	|	BitXor	|	BitAnd	|	FloorDiv

				unaryop	=	Invert	|	Not	|	UAdd	|	USub

				cmpop	=	Eq	|	NotEq	|	Lt	|	LtE	|	Gt	|	GtE	|	Is	|	IsNot	|	In	|	NotIn

				comprehension	=	(expr	target,	expr	iter,	expr*	ifs)

				excepthandler	=	ExceptHandler(expr?	type,	identifier?	name,	stmt*	body)

																				attributes	(int	lineno,	int	col_offset)

				arguments	=	(arg*	args,	arg?	vararg,	arg*	kwonlyargs,	expr*	kw_defaults,

																	arg?	kwarg,	expr*	defaults)

				arg	=	(identifier	arg,	expr?	annotation)

											attributes	(int	lineno,	int	col_offset)

				--	keyword	arguments	supplied	to	call

				keyword	=	(identifier	arg,	expr	value)

				--	import	name	with	optional	'as'	alias.

				alias	=	(identifier	name,	identifier?	asname)

				withitem	=	(expr	context_expr,	expr?	optional_vars)

}

32.2.3.	ast	Helpers

Apart	 from	 the	 node	 classes,	 ast	 module	 defines	 these	 utility
functions	and	classes	for	traversing	abstract	syntax	trees:

ast.parse(source,	filename='<unknown>',	mode='exec')
Parse	 the	 source	 into	 an	 AST	 node.	 Equivalent	 to
compile(source,	 filename,	 mode,

ast.PyCF_ONLY_AST).

ast.literal_eval(node_or_string)
Safely	evaluate	an	expression	node	or	a	string	containing	a	Python
expression.	 The	 string	 or	 node	 provided	may	 only	 consist	 of	 the
following	Python	 literal	structures:	strings,	bytes,	numbers,	 tuples,
lists,	dicts,	sets,	booleans,	and	None.

This	 can	 be	 used	 for	 safely	 evaluating	 strings	 containing	 Python
expressions	from	untrusted	sources	without	the	need	to	parse	the
values	oneself.

Changed	in	version	3.2:	Now	allows	bytes	and	set	literals.

ast.get_docstring(node,	clean=True)
Return	 the	 docstring	 of	 the	 given	 node	 (which	 must	 be	 a
FunctionDef,	ClassDef	or	Module	node),	or	None	if	it	has	no
docstring.	If	clean	is	true,	clean	up	the	docstring’s	indentation	with
inspect.cleandoc().

ast.fix_missing_locations(node)
When	 you	 compile	 a	 node	 tree	 with	 compile(),	 the	 compiler
expects	lineno	and	col_offset	 attributes	 for	 every	 node	 that

supports	them.	This	is	rather	tedious	to	fill	in	for	generated	nodes,
so	 this	helper	adds	 these	attributes	 recursively	where	not	already
set,	 by	 setting	 them	 to	 the	 values	 of	 the	 parent	 node.	 It	 works
recursively	starting	at	node.

ast.increment_lineno(node,	n=1)
Increment	the	line	number	of	each	node	in	the	tree	starting	at	node
by	n.	This	is	useful	to	“move	code”	to	a	different	location	in	a	file.

ast.copy_location(new_node,	old_node)
Copy	source	 location	 (lineno	and	col_offset)	 from	old_node
to	new_node	if	possible,	and	return	new_node.

ast.iter_fields(node)
Yield	 a	 tuple	 of	 (fieldname,	 value)	 for	 each	 field	 in
node._fields	that	is	present	on	node.

ast.iter_child_nodes(node)
Yield	all	direct	child	nodes	of	node,	that	is,	all	fields	that	are	nodes
and	all	items	of	fields	that	are	lists	of	nodes.

ast.walk(node)
Recursively	yield	all	descendant	nodes	in	the	tree	starting	at	node
(including	node	 itself),	 in	 no	 specified	 order.	 This	 is	 useful	 if	 you
only	 want	 to	 modify	 nodes	 in	 place	 and	 don’t	 care	 about	 the
context.

class	ast.NodeVisitor
A	node	visitor	base	class	 that	walks	 the	abstract	 syntax	 tree	and
calls	 a	 visitor	 function	 for	 every	 node	 found.	 This	 function	 may
return	a	value	which	is	forwarded	by	the	visit()	method.

This	 class	 is	 meant	 to	 be	 subclassed,	 with	 the	 subclass	 adding

visitor	methods.

visit(node)
Visit	a	node.	The	default	implementation	calls	the	method	called
self.visit_classname	 where	 classname	 is	 the	 name	 of
the	 node	 class,	 or	 generic_visit()	 if	 that	method	 doesn’t
exist.

generic_visit(node)
This	visitor	calls	visit()	on	all	children	of	the	node.

Note	 that	 child	 nodes	 of	 nodes	 that	 have	 a	 custom	 visitor
method	 won’t	 be	 visited	 unless	 the	 visitor	 calls
generic_visit()	or	visits	them	itself.

Don’t	 use	 the	 NodeVisitor	 if	 you	 want	 to	 apply	 changes	 to
nodes	 during	 traversal.	 For	 this	 a	 special	 visitor	 exists
(NodeTransformer)	that	allows	modifications.

class	ast.NodeTransformer
A	NodeVisitor	subclass	that	walks	the	abstract	syntax	tree	and
allows	modification	of	nodes.

The	 NodeTransformer	 will	 walk	 the	 AST	 and	 use	 the	 return
value	of	 the	visitor	methods	 to	 replace	or	 remove	 the	old	node.	 If
the	 return	 value	 of	 the	 visitor	 method	 is	 None,	 the	 node	 will	 be
removed	 from	 its	 location,	otherwise	 it	 is	 replaced	with	 the	 return
value.	The	return	value	may	be	the	original	node	in	which	case	no
replacement	takes	place.

Here	 is	 an	 example	 transformer	 that	 rewrites	 all	 occurrences	 of
name	lookups	(foo)	to	data['foo']:

class	RewriteName(NodeTransformer):

				def	visit_Name(self,	node):

								return	copy_location(Subscript(

												value=Name(id='data',	ctx=Load()),

												slice=Index(value=Str(s=node.id)),

												ctx=node.ctx

),	node)

Keep	in	mind	that	if	the	node	you’re	operating	on	has	child	nodes
you	 must	 either	 transform	 the	 child	 nodes	 yourself	 or	 call	 the
generic_visit()	method	for	the	node	first.

For	nodes	that	were	part	of	a	collection	of	statements	(that	applies
to	all	statement	nodes),	 the	visitor	may	also	return	a	 list	of	nodes
rather	than	just	a	single	node.

Usually	you	use	the	transformer	like	this:

node	=	YourTransformer().visit(node)

ast.dump(node,	annotate_fields=True,	include_attributes=False)
Return	a	formatted	dump	of	the	tree	in	node.	This	is	mainly	useful
for	debugging	purposes.	The	 returned	string	will	 show	 the	names
and	 the	 values	 for	 fields.	 This	 makes	 the	 code	 impossible	 to
evaluate,	so	if	evaluation	is	wanted	annotate_fields	must	be	set	to
False.	Attributes	such	as	line	numbers	and	column	offsets	are	not
dumped	by	default.	If	 this	 is	wanted,	 include_attributes	can	be	set
to	True.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.3.	symtable	—	Access	to	the
compiler’s	symbol	tables
Symbol	 tables	 are	 generated	 by	 the	 compiler	 from	 AST	 just	 before
bytecode	is	generated.	The	symbol	table	is	responsible	for	calculating
the	 scope	 of	 every	 identifier	 in	 the	 code.	 symtable	 provides	 an
interface	to	examine	these	tables.

32.3.1.	Generating	Symbol	Tables

symtable.symtable(code,	filename,	compile_type)
Return	 the	 toplevel	 SymbolTable	 for	 the	 Python	 source	 code.
filename	 is	the	name	of	the	file	containing	the	code.	compile_type
is	like	the	mode	argument	to	compile().

32.3.2.	Examining	Symbol	Tables

class	symtable.SymbolTable
A	namespace	table	for	a	block.	The	constructor	is	not	public.

get_type()
Return	 the	 type	 of	 the	 symbol	 table.	 Possible	 values	 are
'class',	'module',	and	'function'.

get_id()
Return	the	table’s	identifier.

get_name()
Return	 the	 table’s	 name.	 This	 is	 the	 name	 of	 the	 class	 if	 the
table	is	for	a	class,	the	name	of	the	function	if	the	table	is	for	a
function,	or	'top'	 if	 the	 table	 is	global	 (get_type()	 returns
'module').

get_lineno()
Return	 the	 number	 of	 the	 first	 line	 in	 the	 block	 this	 table
represents.

is_optimized()
Return	True	if	the	locals	in	this	table	can	be	optimized.

is_nested()
Return	True	if	the	block	is	a	nested	class	or	function.

has_children()
Return	 True	 if	 the	 block	 has	 nested	 namespaces	 within	 it.
These	can	be	obtained	with	get_children().

has_exec()
Return	True	if	the	block	uses	exec.

has_import_star()
Return	True	if	the	block	uses	a	starred	from-import.

get_identifiers()
Return	a	list	of	names	of	symbols	in	this	table.

lookup(name)
Lookup	name	in	the	table	and	return	a	Symbol	instance.

get_symbols()
Return	a	list	of	Symbol	instances	for	names	in	the	table.

get_children()
Return	a	list	of	the	nested	symbol	tables.

class	symtable.Function
A	 namespace	 for	 a	 function	 or	 method.	 This	 class	 inherits
SymbolTable.

get_parameters()
Return	a	tuple	containing	names	of	parameters	to	this	function.

get_locals()
Return	a	tuple	containing	names	of	locals	in	this	function.

get_globals()
Return	a	tuple	containing	names	of	globals	in	this	function.

get_frees()
Return	 a	 tuple	 containing	 names	 of	 free	 variables	 in	 this

function.

class	symtable.Class
A	namespace	of	a	class.	This	class	inherits	SymbolTable.

get_methods()
Return	a	tuple	containing	the	names	of	methods	declared	in	the
class.

class	symtable.Symbol
An	entry	 in	a	SymbolTable	 corresponding	 to	an	 identifier	 in	 the
source.	The	constructor	is	not	public.

get_name()
Return	the	symbol’s	name.

is_referenced()
Return	True	if	the	symbol	is	used	in	its	block.

is_imported()
Return	True	if	the	symbol	is	created	from	an	import	statement.

is_parameter()
Return	True	if	the	symbol	is	a	parameter.

is_global()
Return	True	if	the	symbol	is	global.

is_declared_global()
Return	 True	 if	 the	 symbol	 is	 declared	 global	 with	 a	 global
statement.

is_local()

Return	True	if	the	symbol	is	local	to	its	block.

is_free()
Return	 True	 if	 the	 symbol	 is	 referenced	 in	 its	 block,	 but	 not
assigned	to.

is_assigned()
Return	True	if	the	symbol	is	assigned	to	in	its	block.

is_namespace()
Return	True	if	name	binding	introduces	new	namespace.

If	 the	 name	 is	 used	 as	 the	 target	 of	 a	 function	 or	 class
statement,	this	will	be	true.

For	example:

>>>	table	=	symtable.symtable("def	some_func():	pass"

>>>	table.lookup("some_func").is_namespace()

True

Note	that	a	single	name	can	be	bound	to	multiple	objects.	If	the
result	 is	True,	 the	name	may	also	be	bound	 to	other	objects,
like	an	int	or	list,	that	does	not	introduce	a	new	namespace.

get_namespaces()
Return	a	list	of	namespaces	bound	to	this	name.

get_namespace()
Return	 the	 namespace	 bound	 to	 this	 name.	 If	more	 than	 one
namespace	is	bound,	a	ValueError	is	raised.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.4.	symbol	—	Constants	used
with	Python	parse	trees
Source	code:	Lib/symbol.py

This	module	provides	constants	which	represent	the	numeric	values	of
internal	nodes	of	the	parse	tree.	Unlike	most	Python	constants,	these
use	 lower-case	 names.	 Refer	 to	 the	 file	 Grammar/Grammar	 in	 the
Python	distribution	for	the	definitions	of	the	names	in	the	context	of	the
language	grammar.	The	specific	numeric	values	which	the	names	map
to	may	change	between	Python	versions.

This	module	also	provides	one	additional	data	object:

symbol.sym_name

Dictionary	mapping	the	numeric	values	of	the	constants	defined	in
this	module	back	 to	name	strings,	allowing	more	human-readable
representation	of	parse	trees	to	be	generated.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://hg.python.org/cpython/file/3.4/Lib/symbol.py
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.5.	token	—	Constants	used
with	Python	parse	trees
Source	code:	Lib/token.py

This	module	provides	constants	which	represent	the	numeric	values	of
leaf	 nodes	 of	 the	 parse	 tree	 (terminal	 tokens).	 Refer	 to	 the	 file
Grammar/Grammar	in	the	Python	distribution	for	the	definitions	of	the
names	in	the	context	of	 the	 language	grammar.	The	specific	numeric
values	 which	 the	 names	 map	 to	 may	 change	 between	 Python
versions.

The	module	 also	 provides	 a	mapping	 from	numeric	 codes	 to	 names
and	some	 functions.	The	 functions	mirror	 definitions	 in	 the	Python	C
header	files.

token.tok_name

Dictionary	mapping	the	numeric	values	of	the	constants	defined	in
this	module	back	 to	name	strings,	allowing	more	human-readable
representation	of	parse	trees	to	be	generated.

token.ISTERMINAL(x)
Return	true	for	terminal	token	values.

token.ISNONTERMINAL(x)
Return	true	for	non-terminal	token	values.

token.ISEOF(x)
Return	true	if	x	is	the	marker	indicating	the	end	of	input.

http://hg.python.org/cpython/file/3.4/Lib/token.py

The	token	constants	are:

token.ENDMARKER

token.NAME

token.NUMBER

token.STRING

token.NEWLINE

token.INDENT

token.DEDENT

token.LPAR

token.RPAR

token.LSQB

token.RSQB

token.COLON

token.COMMA

token.SEMI

token.PLUS

token.MINUS

token.STAR

token.SLASH

token.VBAR

token.AMPER

token.LESS

token.GREATER

token.EQUAL

token.DOT

token.PERCENT

token.LBRACE

token.RBRACE

token.EQEQUAL

token.NOTEQUAL

token.LESSEQUAL

token.GREATEREQUAL

token.TILDE

token.CIRCUMFLEX

token.LEFTSHIFT

token.RIGHTSHIFT

token.DOUBLESTAR

token.PLUSEQUAL

token.MINEQUAL

token.STAREQUAL

token.SLASHEQUAL

token.PERCENTEQUAL

token.AMPEREQUAL

token.VBAREQUAL

token.CIRCUMFLEXEQUAL

token.LEFTSHIFTEQUAL

token.RIGHTSHIFTEQUAL

token.DOUBLESTAREQUAL

token.DOUBLESLASH

token.DOUBLESLASHEQUAL

token.AT

token.RARROW

token.ELLIPSIS

token.OP

token.ERRORTOKEN

token.N_TOKENS

token.NT_OFFSET

See	also:

Module	parser
The	second	example	for	the	parser	module	shows	how	to	use
the	symbol	module.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.6.	keyword	—	Testing	for
Python	keywords
Source	code:	Lib/keyword.py

This	 module	 allows	 a	 Python	 program	 to	 determine	 if	 a	 string	 is	 a
keyword.

keyword.iskeyword(s)
Return	true	if	s	is	a	Python	keyword.

keyword.kwlist

Sequence	containing	all	the	keywords	defined	for	the	interpreter.	If
any	 keywords	 are	 defined	 to	 only	 be	 active	 when	 particular
__future__	 statements	 are	 in	 effect,	 these	 will	 be	 included	 as
well.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://hg.python.org/cpython/file/3.4/Lib/keyword.py
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.7.	tokenize	—	Tokenizer	for
Python	source
Source	code:	Lib/tokenize.py

The	tokenize	module	provides	a	 lexical	scanner	 for	Python	source
code,	 implemented	 in	 Python.	 The	 scanner	 in	 this	 module	 returns
comments	as	tokens	as	well,	making	it	useful	for	implementing	“pretty-
printers,”	including	colorizers	for	on-screen	displays.

To	simplify	token	stream	handling,	all	Operators	and	Delimiters	tokens
are	returned	using	the	generic	token.OP	token	type.	The	exact	 type
can	 be	 determined	 by	 checking	 the	 exact_type	 property	 on	 the
named	tuple	returned	from	tokenize.tokenize().

http://hg.python.org/cpython/file/3.4/Lib/tokenize.py

32.7.1.	Tokenizing	Input

The	primary	entry	point	is	a	generator:

tokenize.tokenize(readline)
The	 tokenize()	 generator	 requires	 one	 argument,	 readline,
which	must	be	a	callable	object	which	provides	the	same	interface
as	the	io.IOBase.readline()	method	of	file	objects.	Each	call
to	the	function	should	return	one	line	of	input	as	bytes.

The	 generator	 produces	 5-tuples	 with	 these	members:	 the	 token
type;	the	token	string;	a	2-tuple	(srow,	scol)	of	 ints	specifying
the	row	and	column	where	the	token	begins	in	the	source;	a	2-tuple
(erow,	ecol)	of	 ints	specifying	 the	 row	and	column	where	 the
token	 ends	 in	 the	 source;	 and	 the	 line	 on	 which	 the	 token	 was
found.	 The	 line	 passed	 (the	 last	 tuple	 item)	 is	 the	 logical	 line;
continuation	lines	are	included.	The	5	tuple	is	returned	as	a	named
tuple	with	the	field	names:	type	string	start	end	line.

The	 returned	 named	 tuple	 has	 a	 additional	 property	 named
exact_type	that	contains	the	exact	operator	type	for	token.OP
tokens.	For	all	other	 token	 types	exact_type	equals	 the	named
tuple	type	field.

Changed	in	version	3.1:	Added	support	for	named	tuples.

Changed	in	version	3.3:	Added	support	for	exact_type.

tokenize()	determines	the	source	encoding	of	the	file	by	looking
for	a	UTF-8	BOM	or	encoding	cookie,	according	to	PEP	263.

All	 constants	 from	 the	 token	 module	 are	 also	 exported	 from

http://www.python.org/dev/peps/pep-0263

tokenize,	as	are	three	additional	token	type	values:

tokenize.COMMENT

Token	value	used	to	indicate	a	comment.

tokenize.NL

Token	 value	 used	 to	 indicate	 a	 non-terminating	 newline.	 The
NEWLINE	token	indicates	the	end	of	a	logical	line	of	Python	code;
NL	 tokens	are	generated	when	a	 logical	 line	of	code	 is	continued
over	multiple	physical	lines.

tokenize.ENCODING

Token	value	that	indicates	the	encoding	used	to	decode	the	source
bytes	into	text.	The	first	token	returned	by	tokenize()	will	always
be	an	ENCODING	token.

Another	function	is	provided	to	reverse	the	tokenization	process.	This
is	 useful	 for	 creating	 tools	 that	 tokenize	 a	 script,	 modify	 the	 token
stream,	and	write	back	the	modified	script.

tokenize.untokenize(iterable)
Converts	 tokens	back	 into	Python	source	code.	The	 iterable	must
return	 sequences	with	 at	 least	 two	 elements,	 the	 token	 type	 and
the	token	string.	Any	additional	sequence	elements	are	ignored.

The	reconstructed	script	is	returned	as	a	single	string.	The	result	is
guaranteed	 to	 tokenize	 back	 to	 match	 the	 input	 so	 that	 the
conversion	is	lossless	and	round-trips	are	assured.	The	guarantee
applies	 only	 to	 the	 token	 type	 and	 token	 string	 as	 the	 spacing
between	tokens	(column	positions)	may	change.

It	returns	bytes,	encoded	using	the	ENCODING	token,	which	is	the
first	token	sequence	output	by	tokenize().

tokenize()	needs	to	detect	the	encoding	of	source	files	it	tokenizes.
The	function	it	uses	to	do	this	is	available:

tokenize.detect_encoding(readline)
The	detect_encoding()	function	is	used	to	detect	the	encoding
that	should	be	used	to	decode	a	Python	source	file.	It	requires	one
argument,	 readline,	 in	 the	 same	 way	 as	 the	 tokenize()
generator.

It	 will	 call	 readline	 a	maximum	 of	 twice,	 and	 return	 the	 encoding
used	(as	a	string)	and	a	list	of	any	lines	(not	decoded	from	bytes)	it
has	read	in.

It	detects	 the	encoding	 from	the	presence	of	a	UTF-8	BOM	or	an
encoding	 cookie	 as	 specified	 in	PEP	263.	 If	 both	 a	 BOM	 and	 a
cookie	are	present,	but	disagree,	a	SyntaxError	will	be	raised.	Note
that	 if	 the	 BOM	 is	 found,	 'utf-8-sig'	 will	 be	 returned	 as	 an
encoding.

If	 no	 encoding	 is	 specified,	 then	 the	 default	 of	 'utf-8'	 will	 be
returned.

Use	 open()	 to	 open	 Python	 source	 files:	 it	 uses
detect_encoding()	to	detect	the	file	encoding.

tokenize.open(filename)
Open	 a	 file	 in	 read	 only	 mode	 using	 the	 encoding	 detected	 by
detect_encoding().

New	in	version	3.2.

http://www.python.org/dev/peps/pep-0263

32.7.2.	Command-Line	Usage

New	in	version	3.3.

The	 tokenize	 module	 can	 be	 executed	 as	 a	 script	 from	 the
command	line.	It	is	as	simple	as:

python	-m	tokenize	[-e]	[filename.py]

The	following	options	are	accepted:

-h ,	--help

show	this	help	message	and	exit

-e ,	--exact

display	token	names	using	the	exact	type

If	 filename.py	 is	 specified	 its	 contents	 are	 tokenized	 to	 stdout.
Otherwise,	tokenization	is	performed	on	stdin.

32.7.3.	Examples

Example	of	a	script	 rewriter	 that	 transforms	 float	 literals	 into	Decimal
objects:

from	tokenize	import	tokenize,	untokenize,	NUMBER,	STRING

from	io	import	BytesIO

def	decistmt(s):

				"""Substitute	Decimals	for	floats	in	a	string	of	statements.

				>>>	from	decimal	import	Decimal

				>>>	s	=	'print(+21.3e-5*-.1234/81.7)'

				>>>	decistmt(s)

				"print	(+Decimal	('21.3e-5')*-Decimal	('.1234')/Decimal	('81.7'))"

				The	format	of	the	exponent	is	inherited	from	the	platform	C	library.

				Known	cases	are	"e-007"	(Windows)	and	"e-07"	(not	Windows).		Since

				we're	only	showing	12	digits,	and	the	13th	isn't	close	to	5,	the

				rest	of	the	output	should	be	platform-independent.

				>>>	exec(s)	#doctest:	+ELLIPSIS

				-3.21716034272e-0...7

				Output	from	calculations	with	Decimal	should	be	identical	across	all

				platforms.

				>>>	exec(decistmt(s))

				-3.217160342717258261933904529E-7

				"""

				result	=	[]

				g	=	tokenize(BytesIO(s.encode('utf-8')).readline

				for	toknum,	tokval,	_,	_,	_		in	g:

								if	toknum	==	NUMBER	and	'.'	in	tokval:		#	replace	NUMBER	tokens

												result.extend([

																(NAME,	'Decimal'),

																(OP,	'('),

																(STRING,	repr(tokval)),

																(OP,	')')

])

								else:

												result.append((toknum,	tokval))

				return	untokenize(result).decode('utf-8')

Example	of	tokenizing	from	the	command	line.	The	script:

def	say_hello():

				print("Hello,	World!")

say_hello()

will	be	 tokenized	 to	 the	 following	output	where	 the	 first	column	 is	 the
range	 of	 the	 line/column	 coordinates	 where	 the	 token	 is	 found,	 the
second	column	 is	 the	name	of	 the	 token,	and	 the	 final	column	 is	 the
value	of	the	token	(if	any)

$	python	-m	tokenize	hello.py

0,0-0,0:												ENCODING							'utf-8'

1,0-1,3:												NAME											'def'

1,4-1,13:											NAME											'say_hello'

1,13-1,14:										OP													'('

1,14-1,15:										OP													')'

1,15-1,16:										OP													':'

1,16-1,17:										NEWLINE								'\n'

2,0-2,4:												INDENT									'				'

2,4-2,9:												NAME											'print'

2,9-2,10:											OP													'('

2,10-2,25:										STRING									'"Hello,	World!"'

2,25-2,26:										OP													')'

2,26-2,27:										NEWLINE								'\n'

3,0-3,1:												NL													'\n'

4,0-4,0:												DEDENT									''

4,0-4,9:												NAME											'say_hello'

4,9-4,10:											OP													'('

4,10-4,11:										OP													')'

4,11-4,12:										NEWLINE								'\n'

5,0-5,0:												ENDMARKER						''

The	exact	token	type	names	can	be	displayed	using	the	-e	option:

$	python	-m	tokenize	-e	hello.py

0,0-0,0:												ENCODING							'utf-8'

1,0-1,3:												NAME											'def'

1,4-1,13:											NAME											'say_hello'

1,13-1,14:										LPAR											'('

1,14-1,15:										RPAR											')'

1,15-1,16:										COLON										':'

1,16-1,17:										NEWLINE								'\n'

2,0-2,4:												INDENT									'				'

2,4-2,9:												NAME											'print'

2,9-2,10:											LPAR											'('

2,10-2,25:										STRING									'"Hello,	World!"'

2,25-2,26:										RPAR											')'

2,26-2,27:										NEWLINE								'\n'

3,0-3,1:												NL													'\n'

4,0-4,0:												DEDENT									''

4,0-4,9:												NAME											'say_hello'

4,9-4,10:											LPAR											'('

4,10-4,11:										RPAR											')'

4,11-4,12:										NEWLINE								'\n'

5,0-5,0:												ENDMARKER						''

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.8.	tabnanny	—	Detection	of
ambiguous	indentation
Source	code:	Lib/tabnanny.py

For	 the	 time	 being	 this	module	 is	 intended	 to	 be	 called	 as	 a	 script.
However	 it	 is	 possible	 to	 import	 it	 into	 an	 IDE	 and	 use	 the	 function
check()	described	below.

Note: 	The	API	provided	by	this	module	is	likely	to	change	in	future
releases;	such	changes	may	not	be	backward	compatible.

tabnanny.check(file_or_dir)
If	file_or_dir	is	a	directory	and	not	a	symbolic	link,	then	recursively
descend	the	directory	 tree	named	by	 file_or_dir,	checking	all	.py
files	along	the	way.	If	file_or_dir	is	an	ordinary	Python	source	file,	it
is	 checked	 for	 whitespace	 related	 problems.	 The	 diagnostic
messages	 are	 written	 to	 standard	 output	 using	 the	 print()
function.

tabnanny.verbose

Flag	 indicating	 whether	 to	 print	 verbose	 messages.	 This	 is
incremented	by	the	-v	option	if	called	as	a	script.

tabnanny.filename_only

Flag	 indicating	 whether	 to	 print	 only	 the	 filenames	 of	 files
containing	whitespace	related	problems.	This	is	set	to	true	by	the	-
q	option	if	called	as	a	script.

http://hg.python.org/cpython/file/3.4/Lib/tabnanny.py

exception	tabnanny.NannyNag
Raised	 by	 tokeneater()	 if	 detecting	 an	 ambiguous	 indent.
Captured	and	handled	in	check().

tabnanny.tokeneater(type,	token,	start,	end,	line)
This	 function	 is	used	by	check()	as	a	callback	parameter	 to	 the
function	tokenize.tokenize().

See	also:

Module	tokenize
Lexical	scanner	for	Python	source	code.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.9.	pyclbr	—	Python	class
browser	support
Source	code:	Lib/pyclbr.py

The	 pyclbr	 module	 can	 be	 used	 to	 determine	 some	 limited
information	about	the	classes,	methods	and	top-level	functions	defined
in	 a	 module.	 The	 information	 provided	 is	 sufficient	 to	 implement	 a
traditional	three-pane	class	browser.	The	information	is	extracted	from
the	source	code	rather	than	by	importing	the	module,	so	this	module	is
safe	to	use	with	untrusted	code.	This	restriction	makes	it	impossible	to
use	this	module	with	modules	not	implemented	in	Python,	including	all
standard	and	optional	extension	modules.

pyclbr.readmodule(module,	path=None)
Read	 a	module	 and	 return	 a	 dictionary	mapping	 class	 names	 to
class	 descriptor	 objects.	 The	 parameter	 module	 should	 be	 the
name	 of	 a	module	 as	 a	 string;	 it	may	 be	 the	 name	 of	 a	module
within	a	package.	The	path	parameter	should	be	a	sequence,	and
is	used	to	augment	the	value	of	sys.path,	which	is	used	to	locate
module	source	code.

pyclbr.readmodule_ex(module,	path=None)
Like	 readmodule(),	 but	 the	 returned	 dictionary,	 in	 addition	 to
mapping	 class	names	 to	 class	descriptor	 objects,	 also	maps	 top-
level	function	names	to	function	descriptor	objects.	Moreover,	if	the
module	 being	 read	 is	 a	 package,	 the	 key	 '__path__'	 in	 the
returned	 dictionary	 has	 as	 its	 value	 a	 list	 which	 contains	 the
package	search	path.

http://hg.python.org/cpython/file/3.4/Lib/pyclbr.py

32.9.1.	Class	Objects

The	 Class	 objects	 used	 as	 values	 in	 the	 dictionary	 returned	 by
readmodule()	 and	 readmodule_ex()	 provide	 the	 following	 data
attributes:

Class.module

The	name	of	the	module	defining	the	class	described	by	the	class
descriptor.

Class.name

The	name	of	the	class.

Class.super

A	list	of	Class	objects	which	describe	the	immediate	base	classes
of	 the	 class	 being	 described.	 Classes	 which	 are	 named	 as
superclasses	 but	 which	 are	 not	 discoverable	 by	 readmodule()
are	 listed	 as	 a	 string	 with	 the	 class	 name	 instead	 of	 as	 Class
objects.

Class.methods

A	dictionary	mapping	method	names	to	line	numbers.

Class.file

Name	 of	 the	 file	 containing	 the	 class	 statement	 defining	 the
class.

Class.lineno

The	line	number	of	the	class	statement	within	the	file	named	by
file.

32.9.2.	Function	Objects

The	Function	 objects	 used	as	 values	 in	 the	 dictionary	 returned	by
readmodule_ex()	provide	the	following	attributes:

Function.module

The	 name	 of	 the	 module	 defining	 the	 function	 described	 by	 the
function	descriptor.

Function.name

The	name	of	the	function.

Function.file

Name	 of	 the	 file	 containing	 the	 def	 statement	 defining	 the
function.

Function.lineno

The	 line	 number	 of	 the	 def	 statement	 within	 the	 file	 named	 by
file.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.10.	py_compile	—	Compile
Python	source	files
Source	code:	Lib/py_compile.py

The	py_compile	module	provides	a	function	to	generate	a	byte-code
file	 from	 a	 source	 file,	 and	 another	 function	 used	 when	 the	 module
source	file	is	invoked	as	a	script.

Though	not	often	needed,	 this	 function	can	be	useful	when	 installing
modules	for	shared	use,	especially	if	some	of	the	users	may	not	have
permission	 to	 write	 the	 byte-code	 cache	 files	 in	 the	 directory
containing	the	source	code.

exception	py_compile.PyCompileError
Exception	raised	when	an	error	occurs	while	attempting	to	compile
the	file.

py_compile.compile(file,	cfile=None,	dfile=None,	doraise=False,
optimize=-1)

Compile	 a	 source	 file	 to	 byte-code	 and	 write	 out	 the	 byte-code
cache	file.	The	source	code	 is	 loaded	from	the	file	name	 file.	The
byte-code	 is	written	 to	cfile,	which	defaults	 to	 the	PEP	3147	path,
ending	 in	 .pyc	 (.pyo	 if	 optimization	 is	 enabled	 in	 the	 current
interpreter).	 For	 example,	 if	 file	 is	 /foo/bar/baz.py	 cfile	 will
default	 to	 /foo/bar/__pycache__/baz.cpython-32.pyc	 for
Python	3.2.	If	dfile	is	specified,	it	is	used	as	the	name	of	the	source
file	 in	 error	 messages	 when	 instead	 of	 file.	 If	 doraise	 is	 true,	 a
PyCompileError	 is	 raised	 when	 an	 error	 is	 encountered	 while

http://hg.python.org/cpython/file/3.4/Lib/py_compile.py
http://www.python.org/dev/peps/pep-3147

compiling	 file.	 If	 doraise	 is	 false	 (the	 default),	 an	 error	 string	 is
written	 to	sys.stderr,	 but	 no	exception	 is	 raised.	This	 function
returns	the	path	to	byte-compiled	file,	i.e.	whatever	cfile	value	was
used.

If	 the	 path	 that	 cfile	 becomes	 (either	 explicitly	 specified	 or
computed)	is	a	symlink	or	non-regular	file,	FileExistsError	will
be	 raised.	 This	 is	 to	 act	 as	 a	 warning	 that	 import	 will	 turn	 those
paths	into	regular	files	if	it	is	allowed	to	write	byte-compiled	files	to
those	paths.	This	 is	 a	 side-effect	 of	 import	 using	 file	 renaming	 to
place	 the	 final	 byte-compiled	 file	 into	 place	 to	 prevent	 concurrent
file	writing	issues.

optimize	controls	the	optimization	level	and	is	passed	to	the	built-in
compile()	 function.	 The	 default	 of	 -1	 selects	 the	 optimization
level	of	the	current	interpreter.

Changed	in	version	3.2:	Changed	default	value	of	cfile	 to	be	PEP
3147-compliant.	 Previous	 default	 was	 file	 +	 'c'	 ('o'	 if
optimization	was	enabled).	Also	added	the	optimize	parameter.

Changed	in	version	3.4:	Changed	code	to	use	importlib	for	the
byte-code	 cache	 file	 writing.	 This	 means	 file	 creation/writing
semantics	 now	 match	 what	 importlib	 does,	 e.g.	 permissions,
write-and-move	 semantics,	 etc.	 Also	 added	 the	 caveat	 that
FileExistsError	is	raised	if	cfile	is	a	symlink	or	non-regular	file.

py_compile.main(args=None)
Compile	 several	 source	 files.	 The	 files	 named	 in	args	 (or	 on	 the
command	 line,	 if	 args	 is	 None)	 are	 compiled	 and	 the	 resulting
bytecode	 is	cached	 in	 the	normal	manner.	This	 function	does	not
search	a	directory	structure	to	 locate	source	files;	 it	only	compiles

http://www.python.org/dev/peps/pep-3147

files	named	explicitly.	If	'-'	 is	 the	only	parameter	 in	args,	 the	 list
of	files	is	taken	from	standard	input.

Changed	in	version	3.2:	Added	support	for	'-'.

When	this	module	is	run	as	a	script,	the	main()	is	used	to	compile	all
the	files	named	on	the	command	line.	The	exit	status	is	nonzero	if	one
of	the	files	could	not	be	compiled.

See	also:

Module	compileall
Utilities	to	compile	all	Python	source	files	in	a	directory	tree.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.11.	compileall	—	Byte-
compile	Python	libraries
This	 module	 provides	 some	 utility	 functions	 to	 support	 installing
Python	 libraries.	 These	 functions	 compile	 Python	 source	 files	 in	 a
directory	 tree.	 This	module	 can	 be	 used	 to	 create	 the	 cached	 byte-
code	 files	at	 library	 installation	 time,	which	makes	 them	available	 for
use	 even	 by	 users	 who	 don’t	 have	 write	 permission	 to	 the	 library
directories.

32.11.1.	Command-line	use

This	 module	 can	 work	 as	 a	 script	 (using	python	 -m	 compileall)	 to
compile	Python	sources.

[directory|file]...

Positional	arguments	are	files	to	compile	or	directories	that	contain
source	files,	traversed	recursively.	If	no	argument	is	given,	behave
as	 if	 the	 command	 line	 was	 -l	 <directories	 from

sys.path>.

-l

Do	not	 recurse	 into	subdirectories,	only	compile	source	code	 files
directly	contained	in	the	named	or	implied	directories.

-f

Force	rebuild	even	if	timestamps	are	up-to-date.

-q

Do	not	print	the	list	of	files	compiled,	print	only	error	messages.

-d	destdir

Directory	prepended	 to	 the	path	 to	each	 file	being	compiled.	This
will	appear	in	compilation	time	tracebacks,	and	is	also	compiled	in
to	the	byte-code	file,	where	it	will	be	used	in	tracebacks	and	other
messages	in	cases	where	the	source	file	does	not	exist	at	the	time
the	byte-code	file	is	executed.

-x	regex

regex	 is	 used	 to	 search	 the	 full	 path	 to	 each	 file	 considered	 for
compilation,	and	if	the	regex	produces	a	match,	the	file	is	skipped.

-i	list

Read	the	file	list	and	add	each	line	that	it	contains	to	the	list	of
files	 and	 directories	 to	 compile.	 If	 list	 is	 -,	 read	 lines	 from
stdin.

-b

Write	the	byte-code	files	to	their	legacy	locations	and	names,	which
may	 overwrite	 byte-code	 files	 created	 by	 another	 version	 of
Python.	The	default	is	to	write	files	to	their	PEP	3147	locations	and
names,	 which	 allows	 byte-code	 files	 from	 multiple	 versions	 of
Python	to	coexist.

Changed	in	version	3.2:	Added	the	-i,	-b	and	-h	options.

There	is	no	command-line	option	to	control	the	optimization	level	used
by	 the	 compile()	 function,	 because	 the	 Python	 interpreter	 itself
already	provides	the	option:	python	-O	-m	compileall.

http://www.python.org/dev/peps/pep-3147

32.11.2.	Public	functions

compileall.compile_dir(dir,	maxlevels=10,	ddir=None,
force=False,	rx=None,	quiet=False,	legacy=False,	optimize=-1)

Recursively	descend	the	directory	tree	named	by	dir,	compiling	all
.py	files	along	the	way.

The	maxlevels	parameter	is	used	to	limit	the	depth	of	the	recursion;
it	defaults	to	10.

If	 ddir	 is	 given,	 it	 is	 prepended	 to	 the	 path	 to	 each	 file	 being
compiled	 for	 use	 in	 compilation	 time	 tracebacks,	 and	 is	 also
compiled	in	to	the	byte-code	file,	where	it	will	be	used	in	tracebacks
and	other	messages	in	cases	where	the	source	file	does	not	exist
at	the	time	the	byte-code	file	is	executed.

If	force	is	true,	modules	are	re-compiled	even	if	the	timestamps	are
up	to	date.

If	rx	 is	given,	 its	search	method	 is	called	on	 the	complete	path	 to
each	 file	considered	 for	compilation,	and	 if	 it	 returns	a	 true	value,
the	file	is	skipped.

If	 quiet	 is	 true,	 nothing	 is	 printed	 to	 the	 standard	 output	 unless
errors	occur.

If	legacy	is	true,	byte-code	files	are	written	to	their	legacy	locations
and	 names,	 which	 may	 overwrite	 byte-code	 files	 created	 by
another	version	of	Python.	The	default	is	to	write	files	to	their	PEP
3147	 locations	 and	 names,	 which	 allows	 byte-code	 files	 from
multiple	versions	of	Python	to	coexist.

optimize	 specifies	 the	 optimization	 level	 for	 the	 compiler.	 It	 is

http://www.python.org/dev/peps/pep-3147

passed	to	the	built-in	compile()	function.

Changed	in	version	3.2:	Added	the	legacy	and	optimize	parameter.

compileall.compile_file(fullname,	ddir=None,	force=False,
rx=None,	quiet=False,	legacy=False,	optimize=-1)

Compile	the	file	with	path	fullname.

If	ddir	is	given,	it	is	prepended	to	the	path	to	the	file	being	compiled
for	use	 in	compilation	 time	 tracebacks,	and	 is	also	compiled	 in	 to
the	 byte-code	 file,	 where	 it	 will	 be	 used	 in	 tracebacks	 and	 other
messages	in	cases	where	the	source	file	does	not	exist	at	the	time
the	byte-code	file	is	executed.

If	rx	is	given,	its	search	method	is	passed	the	full	path	name	to	the
file	 being	 compiled,	 and	 if	 it	 returns	 a	 true	 value,	 the	 file	 is	 not
compiled	and	True	is	returned.

If	 quiet	 is	 true,	 nothing	 is	 printed	 to	 the	 standard	 output	 unless
errors	occur.

If	legacy	is	true,	byte-code	files	are	written	to	their	legacy	locations
and	 names,	 which	 may	 overwrite	 byte-code	 files	 created	 by
another	version	of	Python.	The	default	is	to	write	files	to	their	PEP
3147	 locations	 and	 names,	 which	 allows	 byte-code	 files	 from
multiple	versions	of	Python	to	coexist.

optimize	 specifies	 the	 optimization	 level	 for	 the	 compiler.	 It	 is
passed	to	the	built-in	compile()	function.

New	in	version	3.2.

compileall.compile_path(skip_curdir=True,	maxlevels=0,
force=False,	legacy=False,	optimize=-1)

http://www.python.org/dev/peps/pep-3147

Byte-compile	 all	 the	 .py	 files	 found	 along	 sys.path.	 If
skip_curdir	is	true	(the	default),	the	current	directory	is	not	included
in	 the	 search.	 All	 other	 parameters	 are	 passed	 to	 the
compile_dir()	 function.	 Note	 that	 unlike	 the	 other	 compile
functions,	maxlevels	defaults	to	0.

Changed	in	version	3.2:	Added	the	legacy	and	optimize	parameter.

To	force	a	recompile	of	all	the	.py	files	in	the	Lib/	subdirectory	and
all	its	subdirectories:

import	compileall

compileall.compile_dir('Lib/',	force=True)

#	Perform	same	compilation,	excluding	files	in	.svn	directories.

import	re

compileall.compile_dir('Lib/',	rx=re.compile(r'[/\\][.]svn'

See	also:

Module	py_compile
Byte-compile	a	single	source	file.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.12.	dis	—	Disassembler	for
Python	bytecode
Source	code:	Lib/dis.py

The	 dis	 module	 supports	 the	 analysis	 of	 CPython	 bytecode	 by
disassembling	 it.	 The	CPython	bytecode	which	 this	module	 takes	as
an	 input	 is	 defined	 in	 the	 file	 Include/opcode.h	 and	 used	 by	 the
compiler	and	the	interpreter.

CPython	 implementation	 detail:	 Bytecode	 is	 an	 implementation
detail	 of	 the	 CPython	 interpreter.	 No	 guarantees	 are	 made	 that
bytecode	will	not	be	added,	removed,	or	changed	between	versions
of	 Python.	 Use	 of	 this	 module	 should	 not	 be	 considered	 to	 work
across	Python	VMs	or	Python	releases.

Example:	Given	the	function	myfunc():

def	myfunc(alist):

				return	len(alist)

the	 following	 command	 can	 be	 used	 to	 display	 the	 disassembly	 of
myfunc():

>>>	dis.dis(myfunc)

		2											0	LOAD_GLOBAL														0	(len)

														3	LOAD_FAST																0	(alist)

														6	CALL_FUNCTION												1

														9	RETURN_VALUE

http://hg.python.org/cpython/file/3.4/Lib/dis.py

(The	“2”	is	a	line	number).

32.12.1.	Bytecode	analysis

New	in	version	3.4.

The	 bytecode	 analysis	 API	 allows	 pieces	 of	 Python	 code	 to	 be
wrapped	in	a	Bytecode	object	that	provides	easy	access	to	details	of
the	compiled	code.

class	dis.Bytecode(x,	*,	first_line=None,	current_offset=None)
Analyse	 the	bytecode	corresponding	 to	a	 function,	method,	string
of	source	code,	or	a	code	object	(as	returned	by	compile()).

This	is	a	convenience	wrapper	around	many	of	the	functions	listed
below,	 most	 notably	 get_instructions(),	 as	 iterating	 over	 a
Bytecode	 instance	 yields	 the	 bytecode	 operations	 as
Instruction	instances.

If	first_line	 is	not	None,	it	 indicates	the	line	number	that	should	be
reported	 for	 the	 first	 source	 line	 in	 the	 disassembled	 code.
Otherwise,	the	source	line	information	(if	any)	is	taken	directly	from
the	disassembled	code	object.

If	current_offset	is	not	None,	it	refers	to	an	instruction	offset	in	the
disassembled	 code.	 Setting	 this	 means	 dis()	 will	 display	 a
“current	instruction”	marker	against	the	specified	opcode.

classmethod	from_traceback(tb)
Construct	 a	 Bytecode	 instance	 from	 the	 given	 traceback,
setting	 current_offset	 to	 the	 instruction	 responsible	 for	 the
exception.

codeobj

The	compiled	code	object.

first_line

The	first	source	line	of	the	code	object	(if	available)

dis()
Return	a	 formatted	view	of	 the	bytecode	operations	(the	same
as	printed	by	dis(),	but	returned	as	a	multi-line	string).

info()
Return	 a	 formatted	 multi-line	 string	 with	 detailed	 information
about	the	code	object,	like	code_info().

Example:

>>>	bytecode	=	dis.Bytecode(myfunc)

>>>	for	instr	in	bytecode:

...					print(instr.opname)

...

LOAD_GLOBAL

LOAD_FAST

CALL_FUNCTION

RETURN_VALUE

32.12.2.	Analysis	functions

The	 dis	 module	 also	 defines	 the	 following	 analysis	 functions	 that
convert	 the	 input	directly	 to	 the	desired	output.	They	can	be	useful	 if
only	 a	 single	 operation	 is	 being	 performed,	 so	 the	 intermediate
analysis	object	isn’t	useful:

dis.code_info(x)
Return	 a	 formatted	 multi-line	 string	 with	 detailed	 code	 object
information	for	the	supplied	function,	method,	source	code	string	or
code	object.

Note	 that	 the	 exact	 contents	 of	 code	 info	 strings	 are	 highly
implementation	dependent	and	they	may	change	arbitrarily	across
Python	VMs	or	Python	releases.

New	in	version	3.2.

dis.show_code(x,	*,	file=None)
Print	 detailed	 code	 object	 information	 for	 the	 supplied	 function,
method,	source	code	string	or	code	object	to	file	(or	sys.stdout
if	file	is	not	specified).

This	 is	 a	 convenient	 shorthand	 for	 print(code_info(x),
file=file),	intended	for	interactive	exploration	at	the	interpreter
prompt.

New	in	version	3.2.

Changed	in	version	3.4:	Added	file	parameter

dis.dis(x=None,	*,	file=None)

Disassemble	the	x	object.	x	can	denote	either	a	module,	a	class,	a
method,	a	function,	a	code	object,	a	string	of	source	code	or	a	byte
sequence	 of	 raw	 bytecode.	 For	 a	 module,	 it	 disassembles	 all
functions.	 For	 a	 class,	 it	 disassembles	 all	 methods.	 For	 a	 code
object	or	sequence	of	raw	bytecode,	it	prints	one	line	per	bytecode
instruction.	 Strings	 are	 first	 compiled	 to	 code	 objects	 with	 the
compile()	 built-in	 function	 before	 being	 disassembled.	 If	 no
object	is	provided,	this	function	disassembles	the	last	traceback.

The	disassembly	is	written	as	text	to	the	supplied	file	argument	if
provided	and	to	sys.stdout	otherwise.

Changed	in	version	3.4:	Added	file	parameter

dis.distb(tb=None,	*,	file=None)
Disassemble	the	top-of-stack	function	of	a	traceback,	using	the	last
traceback	 if	 none	 was	 passed.	 The	 instruction	 causing	 the
exception	is	indicated.

The	disassembly	is	written	as	text	to	the	supplied	file	argument	if
provided	and	to	sys.stdout	otherwise.

Changed	in	version	3.4:	Added	file	parameter

dis.disassemble(code,	lasti=-1,	*,	file=None)
dis.disco(code,	lasti=-1,	*,	file=None)

Disassemble	 a	 code	 object,	 indicating	 the	 last	 instruction	 if	 lasti
was	provided.	The	output	is	divided	in	the	following	columns:

1.	 the	line	number,	for	the	first	instruction	of	each	line
2.	 the	current	instruction,	indicated	as	-->,
3.	 a	labelled	instruction,	indicated	with	>>,
4.	 the	address	of	the	instruction,

5.	 the	operation	code	name,
6.	 operation	parameters,	and
7.	 interpretation	of	the	parameters	in	parentheses.

The	parameter	 interpretation	 recognizes	 local	 and	global	 variable
names,	constant	values,	branch	targets,	and	compare	operators.

The	disassembly	is	written	as	text	to	the	supplied	file	argument	if
provided	and	to	sys.stdout	otherwise.

Changed	in	version	3.4:	Added	file	parameter

dis.get_instructions(x,	*,	first_line=None)
Return	 an	 iterator	 over	 the	 instructions	 in	 the	 supplied	 function,
method,	source	code	string	or	code	object.

The	 iterator	 generates	 a	 series	 of	 Instruction	 named	 tuples
giving	the	details	of	each	operation	in	the	supplied	code.

If	first_line	 is	not	None,	it	 indicates	the	line	number	that	should	be
reported	 for	 the	 first	 source	 line	 in	 the	 disassembled	 code.
Otherwise,	the	source	line	information	(if	any)	is	taken	directly	from
the	disassembled	code	object.

New	in	version	3.4.

dis.findlinestarts(code)
This	 generator	 function	 uses	 the	 co_firstlineno	 and
co_lnotab	 attributes	 of	 the	 code	object	code	 to	 find	 the	offsets
which	are	starts	of	lines	in	the	source	code.	They	are	generated	as
(offset,	lineno)	pairs.

dis.findlabels(code)
Detect	all	offsets	 in	 the	code	object	code	which	are	 jump	 targets,

and	return	a	list	of	these	offsets.

dis.stack_effect(opcode[,	oparg])
Compute	the	stack	effect	of	opcode	with	argument	oparg.

New	in	version	3.4.

32.12.3.	Python	Bytecode	Instructions

The	 get_instructions()	 function	 and	 Bytecode	 class	 provide
details	of	bytecode	instructions	as	Instruction	instances:

class	dis.Instruction
Details	for	a	bytecode	operation

opcode

numeric	code	for	operation,	corresponding	to	the	opcode	values
listed	below	and	the	bytecode	values	in	the	Opcode	collections.

opname

human	readable	name	for	operation

arg

numeric	argument	to	operation	(if	any),	otherwise	None

argval

resolved	arg	value	(if	known),	otherwise	same	as	arg

argrepr

human	readable	description	of	operation	argument

offset

start	index	of	operation	within	bytecode	sequence

starts_line

line	started	by	this	opcode	(if	any),	otherwise	None

is_jump_target

True	if	other	code	jumps	to	here,	otherwise	False

New	in	version	3.4.

The	 Python	 compiler	 currently	 generates	 the	 following	 bytecode
instructions.

General	instructions

NOP

Do	nothing	code.	Used	as	a	placeholder	by	the	bytecode	optimizer.

POP_TOP

Removes	the	top-of-stack	(TOS)	item.

ROT_TWO

Swaps	the	two	top-most	stack	items.

ROT_THREE

Lifts	second	and	third	stack	item	one	position	up,	moves	top	down
to	position	three.

DUP_TOP

Duplicates	the	reference	on	top	of	the	stack.

DUP_TOP_TWO

Duplicates	the	two	references	on	top	of	the	stack,	leaving	them	in
the	same	order.

Unary	operations

Unary	operations	 take	 the	 top	of	 the	 stack,	 apply	 the	operation,	 and
push	the	result	back	on	the	stack.

UNARY_POSITIVE

Implements	TOS	=	+TOS.

UNARY_NEGATIVE

Implements	TOS	=	-TOS.

UNARY_NOT

Implements	TOS	=	not	TOS.

UNARY_INVERT

Implements	TOS	=	~TOS.

GET_ITER

Implements	TOS	=	iter(TOS).

Binary	operations

Binary	operations	remove	the	top	of	 the	stack	(TOS)	and	the	second
top-most	 stack	 item	 (TOS1)	 from	 the	 stack.	 They	 perform	 the
operation,	and	put	the	result	back	on	the	stack.

BINARY_POWER

Implements	TOS	=	TOS1	**	TOS.

BINARY_MULTIPLY

Implements	TOS	=	TOS1	*	TOS.

BINARY_FLOOR_DIVIDE

Implements	TOS	=	TOS1	//	TOS.

BINARY_TRUE_DIVIDE

Implements	TOS	=	TOS1	/	TOS.

BINARY_MODULO

Implements	TOS	=	TOS1	%	TOS.

BINARY_ADD

Implements	TOS	=	TOS1	+	TOS.

BINARY_SUBTRACT

Implements	TOS	=	TOS1	-	TOS.

BINARY_SUBSCR

Implements	TOS	=	TOS1[TOS].

BINARY_LSHIFT

Implements	TOS	=	TOS1	<<	TOS.

BINARY_RSHIFT

Implements	TOS	=	TOS1	>>	TOS.

BINARY_AND

Implements	TOS	=	TOS1	&	TOS.

BINARY_XOR

Implements	TOS	=	TOS1	^	TOS.

BINARY_OR

Implements	TOS	=	TOS1	|	TOS.

In-place	operations

In-place	operations	are	like	binary	operations,	in	that	they	remove	TOS
and	TOS1,	and	push	the	result	back	on	the	stack,	but	the	operation	is
done	in-place	when	TOS1	supports	 it,	and	the	resulting	TOS	may	be
(but	does	not	have	to	be)	the	original	TOS1.

INPLACE_POWER

Implements	in-place	TOS	=	TOS1	**	TOS.

INPLACE_MULTIPLY

Implements	in-place	TOS	=	TOS1	*	TOS.

INPLACE_FLOOR_DIVIDE

Implements	in-place	TOS	=	TOS1	//	TOS.

INPLACE_TRUE_DIVIDE

Implements	in-place	TOS	=	TOS1	/	TOS.

INPLACE_MODULO

Implements	in-place	TOS	=	TOS1	%	TOS.

INPLACE_ADD

Implements	in-place	TOS	=	TOS1	+	TOS.

INPLACE_SUBTRACT

Implements	in-place	TOS	=	TOS1	-	TOS.

INPLACE_LSHIFT

Implements	in-place	TOS	=	TOS1	<<	TOS.

INPLACE_RSHIFT

Implements	in-place	TOS	=	TOS1	>>	TOS.

INPLACE_AND

Implements	in-place	TOS	=	TOS1	&	TOS.

INPLACE_XOR

Implements	in-place	TOS	=	TOS1	^	TOS.

INPLACE_OR

Implements	in-place	TOS	=	TOS1	|	TOS.

STORE_SUBSCR

Implements	TOS1[TOS]	=	TOS2.

DELETE_SUBSCR

Implements	del	TOS1[TOS].

Miscellaneous	opcodes

PRINT_EXPR

Implements	 the	 expression	 statement	 for	 the	 interactive	 mode.
TOS	 is	 removed	 from	 the	 stack	 and	 printed.	 In	 non-interactive
mode,	an	expression	statement	is	terminated	with	POP_STACK.

BREAK_LOOP

Terminates	a	loop	due	to	a	break	statement.

CONTINUE_LOOP(target)
Continues	 a	 loop	 due	 to	 a	 continue	 statement.	 target	 is	 the
address	to	jump	to	(which	should	be	a	FOR_ITER	instruction).

SET_ADD(i)
Calls	 set.add(TOS1[-i],	 TOS).	 Used	 to	 implement	 set
comprehensions.

LIST_APPEND(i)
Calls	 list.append(TOS[-i],	 TOS).	 Used	 to	 implement	 list
comprehensions.

MAP_ADD(i)
Calls	 dict.setitem(TOS1[-i],	 TOS,	 TOS1).	 Used	 to
implement	dict	comprehensions.

For	all	of	 the	SET_ADD,	LIST_APPEND	and	MAP_ADD	instructions,
while	 the	 added	 value	 or	 key/value	 pair	 is	 popped	 off,	 the	 container

object	remains	on	the	stack	so	that	it	is	available	for	further	iterations
of	the	loop.

RETURN_VALUE

Returns	with	TOS	to	the	caller	of	the	function.

YIELD_VALUE

Pops	TOS	and	yields	it	from	a	generator.

YIELD_FROM

Pops	TOS	and	delegates	to	it	as	a	subiterator	from	a	generator.

New	in	version	3.3.

IMPORT_STAR

Loads	all	 symbols	 not	 starting	with	 '_'	 directly	 from	 the	module
TOS	to	 the	 local	namespace.	The	module	 is	popped	after	 loading
all	names.	This	opcode	implements	from	module	import	*.

POP_BLOCK

Removes	 one	 block	 from	 the	 block	 stack.	 Per	 frame,	 there	 is	 a
stack	of	blocks,	denoting	nested	loops,	try	statements,	and	such.

POP_EXCEPT

Removes	one	block	from	the	block	stack.	The	popped	block	must
be	an	exception	handler	block,	as	implicitly	created	when	entering
an	except	handler.	 In	addition	 to	popping	extraneous	values	 from
the	 frame	stack,	 the	 last	 three	popped	values	are	used	 to	 restore
the	exception	state.

END_FINALLY

Terminates	a	finally	clause.	The	interpreter	recalls	whether	the
exception	has	to	be	re-raised,	or	whether	the	function	returns,	and

continues	with	the	outer-next	block.

LOAD_BUILD_CLASS

Pushes	 builtins.__build_class__()	 onto	 the	 stack.	 It	 is
later	called	by	CALL_FUNCTION	to	construct	a	class.

SETUP_WITH(delta)
This	opcode	performs	several	operations	before	a	with	block	starts.
First,	it	loads	__exit__()	from	the	context	manager	and	pushes
it	 onto	 the	 stack	 for	 later	 use	 by	 WITH_CLEANUP.	 Then,
__enter__()	 is	 called,	 and	 a	 finally	 block	 pointing	 to	 delta	 is
pushed.	 Finally,	 the	 result	 of	 calling	 the	 enter	 method	 is	 pushed
onto	the	stack.	The	next	opcode	will	either	ignore	it	(POP_TOP),	or
store	 it	 in	 (a)	 variable(s)	 (STORE_FAST,	 STORE_NAME,	 or
UNPACK_SEQUENCE).

WITH_CLEANUP

Cleans	up	 the	stack	when	a	 with	 statement	 block	 exits.	 TOS	 is
the	 context	 manager’s	 __exit__()	 bound	method.	 Below	 TOS
are	1–3	values	indicating	how/why	the	finally	clause	was	entered:

SECOND	=	None
(SECOND,	THIRD)	=	(WHY_{RETURN,CONTINUE}),	retval
SECOND	=	WHY_*;	no	retval	below	it
(SECOND,	THIRD,	FOURTH)	=	exc_info()

In	 the	 last	 case,	 TOS(SECOND,	 THIRD,	 FOURTH)	 is	 called,
otherwise	 TOS(None,	 None,	 None).	 In	 addition,	 TOS	 is
removed	from	the	stack.

If	the	stack	represents	an	exception,	and	the	function	call	returns	a
‘true’	value,	this	information	is	“zapped”	and	replaced	with	a	single
WHY_SILENCED	 to	 prevent	 END_FINALLY	 from	 re-raising	 the

exception.	(But	non-local	gotos	will	still	be	resumed.)

All	 of	 the	 following	 opcodes	 expect	 arguments.	 An	 argument	 is	 two
bytes,	with	the	more	significant	byte	last.

STORE_NAME(namei)
Implements	 name	 =	 TOS.	 namei	 is	 the	 index	 of	 name	 in	 the
attribute	co_names	 of	 the	 code	object.	 The	 compiler	 tries	 to	 use
STORE_FAST	or	STORE_GLOBAL	if	possible.

DELETE_NAME(namei)
Implements	del	name,	where	namei	 is	 the	 index	 into	co_names
attribute	of	the	code	object.

UNPACK_SEQUENCE(count)
Unpacks	TOS	into	count	 individual	values,	which	are	put	onto	 the
stack	right-to-left.

UNPACK_EX(counts)
Implements	assignment	with	a	starred	target:	Unpacks	an	 iterable
in	TOS	into	individual	values,	where	the	total	number	of	values	can
be	smaller	 than	 the	number	of	 items	 in	 the	 iterable:	one	 the	new
values	will	be	a	list	of	all	leftover	items.

The	 low	 byte	 of	 counts	 is	 the	 number	 of	 values	 before	 the	 list
value,	 the	 high	 byte	 of	counts	 the	 number	 of	 values	 after	 it.	 The
resulting	values	are	put	onto	the	stack	right-to-left.

STORE_ATTR(namei)
Implements	 TOS.name	 =	 TOS1,	 where	 namei	 is	 the	 index	 of
name	in	co_names.

DELETE_ATTR(namei)

Implements	 del	 TOS.name,	 using	 namei	 as	 index	 into
co_names.

STORE_GLOBAL(namei)
Works	as	STORE_NAME,	but	stores	the	name	as	a	global.

DELETE_GLOBAL(namei)
Works	as	DELETE_NAME,	but	deletes	a	global	name.

LOAD_CONST(consti)
Pushes	co_consts[consti]	onto	the	stack.

LOAD_NAME(namei)
Pushes	 the	 value	 associated	 with	 co_names[namei]	 onto	 the
stack.

BUILD_TUPLE(count)
Creates	a	tuple	consuming	count	items	from	the	stack,	and	pushes
the	resulting	tuple	onto	the	stack.

BUILD_LIST(count)
Works	as	BUILD_TUPLE,	but	creates	a	list.

BUILD_SET(count)
Works	as	BUILD_TUPLE,	but	creates	a	set.

BUILD_MAP(count)
Pushes	 a	 new	 dictionary	 object	 onto	 the	 stack.	 The	 dictionary	 is
pre-sized	to	hold	count	entries.

LOAD_ATTR(namei)
Replaces	TOS	with	getattr(TOS,	co_names[namei]).

COMPARE_OP(opname)
Performs	a	Boolean	operation.	The	operation	name	can	be	 found
in	cmp_op[opname].

IMPORT_NAME(namei)
Imports	 the	 module	 co_names[namei].	 TOS	 and	 TOS1	 are
popped	 and	 provide	 the	 fromlist	 and	 level	 arguments	 of
__import__().	The	module	object	is	pushed	onto	the	stack.	The
current	namespace	is	not	affected:	for	a	proper	import	statement,	a
subsequent	STORE_FAST	instruction	modifies	the	namespace.

IMPORT_FROM(namei)
Loads	the	attribute	co_names[namei]	 from	the	module	 found	 in
TOS.	 The	 resulting	 object	 is	 pushed	 onto	 the	 stack,	 to	 be
subsequently	stored	by	a	STORE_FAST	instruction.

JUMP_FORWARD(delta)
Increments	bytecode	counter	by	delta.

POP_JUMP_IF_TRUE(target)
If	TOS	is	true,	sets	the	bytecode	counter	to	target.	TOS	is	popped.

POP_JUMP_IF_FALSE(target)
If	TOS	is	false,	sets	the	bytecode	counter	to	target.	TOS	is	popped.

JUMP_IF_TRUE_OR_POP(target)
If	TOS	is	true,	sets	the	bytecode	counter	to	target	and	leaves	TOS
on	the	stack.	Otherwise	(TOS	is	false),	TOS	is	popped.

JUMP_IF_FALSE_OR_POP(target)
If	TOS	is	false,	sets	the	bytecode	counter	to	target	and	leaves	TOS
on	the	stack.	Otherwise	(TOS	is	true),	TOS	is	popped.

JUMP_ABSOLUTE(target)
Set	bytecode	counter	to	target.

FOR_ITER(delta)
TOS	 is	 an	 iterator.	Call	 its	 __next__()	 method.	 If	 this	 yields	 a
new	value,	push	it	on	the	stack	(leaving	the	iterator	below	it).	If	the
iterator	indicates	it	is	exhausted	TOS	is	popped,	and	the	byte	code
counter	is	incremented	by	delta.

LOAD_GLOBAL(namei)
Loads	the	global	named	co_names[namei]	onto	the	stack.

SETUP_LOOP(delta)
Pushes	a	block	 for	 a	 loop	onto	 the	block	 stack.	The	block	spans
from	the	current	instruction	with	a	size	of	delta	bytes.

SETUP_EXCEPT(delta)
Pushes	a	 try	block	 from	a	 try-except	clause	onto	 the	block	stack.
delta	points	to	the	first	except	block.

SETUP_FINALLY(delta)
Pushes	a	 try	block	 from	a	 try-except	clause	onto	 the	block	stack.
delta	points	to	the	finally	block.

STORE_MAP

Store	a	key	and	value	pair	in	a	dictionary.	Pops	the	key	and	value
while	leaving	the	dictionary	on	the	stack.

LOAD_FAST(var_num)
Pushes	 a	 reference	 to	 the	 local	 co_varnames[var_num]	 onto
the	stack.

STORE_FAST(var_num)

Stores	TOS	into	the	local	co_varnames[var_num].

DELETE_FAST(var_num)
Deletes	local	co_varnames[var_num].

LOAD_CLOSURE(i)
Pushes	a	reference	to	the	cell	contained	in	slot	i	of	the	cell	and	free
variable	storage.	The	name	of	the	variable	is	co_cellvars[i]	if	i
is	 less	 than	 the	 length	 of	 co_cellvars.	 Otherwise	 it	 is
co_freevars[i	-	len(co_cellvars)].

LOAD_DEREF(i)
Loads	 the	 cell	 contained	 in	 slot	 i	 of	 the	 cell	 and	 free	 variable
storage.	Pushes	a	reference	to	the	object	the	cell	contains	on	the
stack.

LOAD_CLASSDEREF(i)
Much	like	LOAD_DEREF	but	first	checks	the	locals	dictionary	before
consulting	 the	cell.	This	 is	used	for	 loading	free	variables	 in	class
bodies.

STORE_DEREF(i)
Stores	 TOS	 into	 the	 cell	 contained	 in	 slot	 i	 of	 the	 cell	 and	 free
variable	storage.

DELETE_DEREF(i)
Empties	 the	 cell	 contained	 in	 slot	 i	 of	 the	 cell	 and	 free	 variable
storage.	Used	by	the	del	statement.

RAISE_VARARGS(argc)
Raises	an	exception.	argc	 indicates	 the	number	of	 parameters	 to
the	raise	statement,	 ranging	from	0	to	3.	The	handler	will	 find	 the

traceback	as	TOS2,	the	parameter	as	TOS1,	and	the	exception	as
TOS.

CALL_FUNCTION(argc)
Calls	 a	 function.	 The	 low	 byte	 of	 argc	 indicates	 the	 number	 of
positional	 parameters,	 the	 high	 byte	 the	 number	 of	 keyword
parameters.	 On	 the	 stack,	 the	 opcode	 finds	 the	 keyword
parameters	first.	For	each	keyword	argument,	the	value	is	on	top	of
the	key.	Below	the	keyword	parameters,	the	positional	parameters
are	on	the	stack,	with	 the	right-most	parameter	on	top.	Below	 the
parameters,	 the	 function	 object	 to	 call	 is	 on	 the	 stack.	 Pops	 all
function	 arguments,	 and	 the	 function	 itself	 off	 the	 stack,	 and
pushes	the	return	value.

MAKE_FUNCTION(argc)
Pushes	a	new	function	object	on	the	stack.	From	bottom	to	top,	the
consumed	stack	must	consist	of

argc	&	0xFF	default	argument	objects	in	positional	order
(argc	>>	8)	&	0xFF	pairs	of	name	and	default	argument,
with	the	name	just	below	the	object	on	the	stack,	for	keyword-
only	parameters
(argc	>>	16)	&	0x7FFF	parameter	annotation	objects
a	tuple	listing	the	parameter	names	for	the	annotations	(only	if
there	are	ony	annotation	objects)
the	code	associated	with	the	function	(at	TOS1)
the	qualified	name	of	the	function	(at	TOS)

MAKE_CLOSURE(argc)
Creates	 a	 new	 function	 object,	 sets	 its	 __closure__	 slot,	 and
pushes	 it	on	 the	stack.	TOS	is	 the	qualified	name	of	 the	 function,
TOS1	 is	 the	 code	 associated	with	 the	 function,	 and	 TOS2	 is	 the
tuple	containing	cells	 for	 the	closure’s	free	variables.	The	function

also	has	argc	default	parameters,	which	are	found	below	the	cells.

BUILD_SLICE(argc)
Pushes	a	slice	object	on	the	stack.	argc	must	be	2	or	3.	 If	 it	 is	2,
slice(TOS1,	TOS)	 is	pushed;	 if	 it	 is	3,	slice(TOS2,	TOS1,
TOS)	 is	 pushed.	 See	 the	 slice()	 built-in	 function	 for	 more
information.

EXTENDED_ARG(ext)
Prefixes	any	opcode	which	has	an	argument	too	big	to	fit	 into	the
default	 two	 bytes.	 ext	 holds	 two	 additional	 bytes	 which,	 taken
together	with	the	subsequent	opcode’s	argument,	comprise	a	four-
byte	argument,	ext	being	the	two	most-significant	bytes.

CALL_FUNCTION_VAR(argc)
Calls	 a	 function.	argc	 is	 interpreted	 as	 in	 CALL_FUNCTION.	 The
top	 element	 on	 the	 stack	 contains	 the	 variable	 argument	 list,
followed	by	keyword	and	positional	arguments.

CALL_FUNCTION_KW(argc)
Calls	 a	 function.	argc	 is	 interpreted	 as	 in	 CALL_FUNCTION.	 The
top	 element	 on	 the	 stack	 contains	 the	 keyword	 arguments
dictionary,	followed	by	explicit	keyword	and	positional	arguments.

CALL_FUNCTION_VAR_KW(argc)
Calls	 a	 function.	argc	 is	 interpreted	 as	 in	 CALL_FUNCTION.	 The
top	 element	 on	 the	 stack	 contains	 the	 keyword	 arguments
dictionary,	 followed	 by	 the	 variable-arguments	 tuple,	 followed	 by
explicit	keyword	and	positional	arguments.

HAVE_ARGUMENT

This	 is	not	really	an	opcode.	It	 identifies	 the	dividing	 line	between

opcodes	 which	 don’t	 take	 arguments	 <	 HAVE_ARGUMENT	 and
those	which	do	>=	HAVE_ARGUMENT.

32.12.4.	Opcode	collections

These	collections	are	provided	for	automatic	introspection	of	bytecode
instructions:

dis.opname

Sequence	of	operation	names,	indexable	using	the	bytecode.

dis.opmap

Dictionary	mapping	operation	names	to	bytecodes.

dis.cmp_op

Sequence	of	all	compare	operation	names.

dis.hasconst

Sequence	of	bytecodes	that	have	a	constant	parameter.

dis.hasfree

Sequence	of	bytecodes	that	access	a	free	variable	(note	that	‘free’
in	 this	 context	 refers	 to	 names	 in	 the	 current	 scope	 that	 are
referenced	 by	 inner	 scopes	 or	 names	 in	 outer	 scopes	 that	 are
referenced	from	this	scope.	It	does	not	include	references	to	global
or	builtin	scopes).

dis.hasname

Sequence	of	bytecodes	that	access	an	attribute	by	name.

dis.hasjrel

Sequence	of	bytecodes	that	have	a	relative	jump	target.

dis.hasjabs

Sequence	of	bytecodes	that	have	an	absolute	jump	target.

dis.haslocal

Sequence	of	bytecodes	that	access	a	local	variable.

dis.hascompare

Sequence	of	bytecodes	of	Boolean	operations.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	32.	Python	Language	Services	»

http://www.python.org/

32.13.	pickletools	—	Tools	for
pickle	developers
Source	code:	Lib/pickletools.py

This	module	contains	various	constants	relating	to	the	intimate	details
of	 the	 pickle	 module,	 some	 lengthy	 comments	 about	 the
implementation,	and	a	few	useful	functions	for	analyzing	pickled	data.
The	contents	of	this	module	are	useful	for	Python	core	developers	who
are	 working	 on	 the	 pickle;	 ordinary	 users	 of	 the	 pickle	 module
probably	won’t	find	the	pickletools	module	relevant.

http://hg.python.org/cpython/file/3.4/Lib/pickletools.py

32.13.1.	Command	line	usage

New	in	version	3.2.

When	 invoked	 from	 the	 command	 line,	 python	-m	pickletools
will	disassemble	 the	contents	of	one	or	more	pickle	 files.	Note	 that	 if
you	want	to	see	the	Python	object	stored	in	the	pickle	rather	than	the
details	 of	 pickle	 format,	 you	 may	 want	 to	 use	 -m	pickle	 instead.
However,	when	the	pickle	file	that	you	want	to	examine	comes	from	an
untrusted	source,	-m	pickletools	is	a	safer	option	because	it	does
not	execute	pickle	bytecode.

For	example,	with	a	tuple	(1,	2)	pickled	in	file	x.pickle:

$	python	-m	pickle	x.pickle

(1,	2)

$	python	-m	pickletools	x.pickle

				0:	\x80	PROTO						3

				2:	K				BININT1				1

				4:	K				BININT1				2

				6:	\x86	TUPLE2

				7:	q				BINPUT					0

				9:	.				STOP

highest	protocol	among	opcodes	=	2

32.13.1.1.	Command	line	options

-a ,	--annotate

Annotate	each	line	with	a	short	opcode	description.

-o ,	--output=<file>

Name	of	a	file	where	the	output	should	be	written.

-l ,	--indentlevel=<num>

The	number	of	blanks	by	which	to	indent	a	new	MARK	level.

-m ,	--memo

When	multiple	objects	are	disassembled,	preserve	memo	between
disassemblies.

-p ,	--preamble=<preamble>

When	more	than	one	pickle	file	are	specified,	print	given	preamble
before	each	disassembly.

32.13.2.	Programmatic	Interface

pickletools.dis(pickle,	out=None,	memo=None,	indentlevel=4,
annotate=0)

Outputs	 a	 symbolic	 disassembly	 of	 the	 pickle	 to	 the	 file-like
object	out,	defaulting	 to	sys.stdout.	pickle	 can	 be	 a	 string
or	a	file-like	object.	memo	can	be	a	Python	dictionary	that	will
be	 used	 as	 the	 pickle’s	 memo;	 it	 can	 be	 used	 to	 perform
disassemblies	 across	 multiple	 pickles	 created	 by	 the	 same
pickler.	Successive	 levels,	 indicated	by	MARK	 opcodes	 in	 the
stream,	are	indented	by	indentlevel	spaces.	If	a	nonzero	value
is	given	 to	annotate,	 each	opcode	 in	 the	output	 is	 annotated
with	 a	 short	 description.	 The	 value	 of	annotate	 is	 used	 as	 a
hint	for	the	column	where	annotation	should	start.

New	in	version	3.2:	The	annotate	argument.

pickletools.genops(pickle)
Provides	an	iterator	over	all	of	the	opcodes	in	a	pickle,	returning	a
sequence	of	(opcode,	arg,	pos)	triples.	opcode	is	an	instance
of	an	OpcodeInfo	 class;	arg	 is	 the	decoded	value,	as	a	Python
object,	of	 the	opcode’s	argument;	pos	 is	 the	position	at	which	this
opcode	is	located.	pickle	can	be	a	string	or	a	file-like	object.

pickletools.optimize(picklestring)
Returns	 a	 new	 equivalent	 pickle	 string	 after	 eliminating	 unused
PUT	 opcodes.	 The	 optimized	 pickle	 is	 shorter,	 takes	 less
transmission	time,	requires	less	storage	space,	and	unpickles	more
efficiently.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

http://www.python.org/

Library	»	32.	Python	Language	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

33.	Miscellaneous	Services
The	modules	described	in	this	chapter	provide	miscellaneous	services
that	are	available	in	all	Python	versions.	Here’s	an	overview:

33.1.	formatter	—	Generic	output	formatting
33.1.1.	The	Formatter	Interface
33.1.2.	Formatter	Implementations
33.1.3.	The	Writer	Interface
33.1.4.	Writer	Implementations

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	33.	Miscellaneous	Services	»

http://www.python.org/

33.1.	formatter	—	Generic
output	formatting

Deprecated	 since	 version	 3.4:	Due	 to	 lack	 of	 usage,	 the	 formatter
module	has	been	deprecated	and	is	slated	for	removal	in	Python	3.6.

This	 module	 supports	 two	 interface	 definitions,	 each	 with	 multiple
implementations:	 The	 formatter	 interface,	 and	 the	 writer	 interface
which	is	required	by	the	formatter	interface.

Formatter	objects	transform	an	abstract	flow	of	formatting	events	into
specific	 output	 events	 on	writer	 objects.	 Formatters	manage	 several
stack	 structures	 to	 allow	 various	 properties	 of	 a	 writer	 object	 to	 be
changed	 and	 restored;	 writers	 need	 not	 be	 able	 to	 handle	 relative
changes	 nor	 any	 sort	 of	 “change	 back”	 operation.	 Specific	 writer
properties	which	may	be	controlled	via	formatter	objects	are	horizontal
alignment,	font,	and	left	margin	indentations.	A	mechanism	is	provided
which	 supports	 providing	 arbitrary,	 non-exclusive	 style	 settings	 to	 a
writer	 as	well.	 Additional	 interfaces	 facilitate	 formatting	 events	which
are	not	reversible,	such	as	paragraph	separation.

Writer	 objects	 encapsulate	 device	 interfaces.	 Abstract	 devices,	 such
as	 file	 formats,	 are	 supported	 as	 well	 as	 physical	 devices.	 The
provided	implementations	all	work	with	abstract	devices.	The	interface
makes	available	mechanisms	for	setting	the	properties	which	formatter
objects	manage	and	inserting	data	into	the	output.

33.1.1.	The	Formatter	Interface

Interfaces	to	create	formatters	are	dependent	on	the	specific	formatter
class	 being	 instantiated.	 The	 interfaces	 described	 below	 are	 the
required	interfaces	which	all	formatters	must	support	once	initialized.

One	data	element	is	defined	at	the	module	level:

formatter.AS_IS

Value	 which	 can	 be	 used	 in	 the	 font	 specification	 passed	 to	 the
push_font()	 method	 described	 below,	 or	 as	 the	 new	 value	 to
any	other	push_property()	method.	Pushing	 the	AS_IS	value
allows	 the	corresponding	 pop_property()	method	 to	be	 called
without	having	to	track	whether	the	property	was	changed.

The	following	attributes	are	defined	for	formatter	instance	objects:

formatter.writer

The	writer	instance	with	which	the	formatter	interacts.

formatter.end_paragraph(blanklines)
Close	 any	 open	 paragraphs	 and	 insert	 at	 least	 blanklines	 before
the	next	paragraph.

formatter.add_line_break()
Add	a	hard	line	break	if	one	does	not	already	exist.	This	does	not
break	the	logical	paragraph.

formatter.add_hor_rule(*args,	**kw)
Insert	 a	 horizontal	 rule	 in	 the	 output.	 A	 hard	 break	 is	 inserted	 if
there	is	data	in	the	current	paragraph,	but	the	logical	paragraph	is
not	 broken.	 The	 arguments	 and	 keywords	 are	 passed	 on	 to	 the

writer’s	send_line_break()	method.

formatter.add_flowing_data(data)
Provide	data	which	should	be	formatted	with	collapsed	whitespace.
Whitespace	 from	 preceding	 and	 successive	 calls	 to
add_flowing_data()	 is	 considered	 as	 well	 when	 the
whitespace	collapse	is	performed.	The	data	which	is	passed	to	this
method	is	expected	to	be	word-wrapped	by	the	output	device.	Note
that	any	word-wrapping	still	must	be	performed	by	the	writer	object
due	to	the	need	to	rely	on	device	and	font	information.

formatter.add_literal_data(data)
Provide	 data	 which	 should	 be	 passed	 to	 the	 writer	 unchanged.
Whitespace,	 including	newline	and	tab	characters,	are	considered
legal	in	the	value	of	data.

formatter.add_label_data(format,	counter)
Insert	a	 label	which	should	be	placed	to	the	 left	of	 the	current	 left
margin.	This	should	be	used	for	constructing	bulleted	or	numbered
lists.	 If	 the	 format	 value	 is	 a	 string,	 it	 is	 interpreted	 as	 a	 format
specification	for	counter,	which	should	be	an	integer.	The	result	of
this	 formatting	 becomes	 the	 value	 of	 the	 label;	 if	 format	 is	 not	 a
string	 it	 is	 used	 as	 the	 label	 value	 directly.	 The	 label	 value	 is
passed	as	the	only	argument	to	the	writer’s	send_label_data()
method.	 Interpretation	 of	 non-string	 label	 values	 is	 dependent	 on
the	associated	writer.

Format	 specifications	 are	 strings	 which,	 in	 combination	 with	 a
counter	value,	are	used	to	compute	label	values.	Each	character	in
the	format	string	is	copied	to	the	label	value,	with	some	characters
recognized	 to	 indicate	 a	 transform	 on	 the	 counter	 value.
Specifically,	 the	 character	 '1'	 represents	 the	 counter	 value

formatter	 as	 an	 Arabic	 number,	 the	 characters	 'A'	 and	 'a'
represent	alphabetic	representations	of	the	counter	value	in	upper
and	 lower	 case,	 respectively,	 and	 'I'	 and	 'i'	 represent	 the
counter	value	 in	Roman	numerals,	 in	upper	and	 lower	case.	Note
that	 the	alphabetic	and	roman	transforms	require	 that	 the	counter
value	be	greater	than	zero.

formatter.flush_softspace()
Send	 any	 pending	 whitespace	 buffered	 from	 a	 previous	 call	 to
add_flowing_data()	 to	 the	 associated	 writer	 object.	 This
should	be	called	before	any	direct	manipulation	of	the	writer	object.

formatter.push_alignment(align)
Push	a	new	alignment	setting	onto	 the	alignment	stack.	This	may
be	 AS_IS	 if	 no	 change	 is	 desired.	 If	 the	 alignment	 value	 is
changed	 from	 the	 previous	 setting,	 the	 writer’s
new_alignment()	method	is	called	with	the	align	value.

formatter.pop_alignment()
Restore	the	previous	alignment.

formatter.push_font((size,	italic,	bold,	teletype))
Change	some	or	all	 font	properties	of	the	writer	object.	Properties
which	are	not	set	 to	AS_IS	are	set	 to	 the	values	passed	 in	while
others	 are	 maintained	 at	 their	 current	 settings.	 The	 writer’s
new_font()	 method	 is	 called	 with	 the	 fully	 resolved	 font
specification.

formatter.pop_font()
Restore	the	previous	font.

formatter.push_margin(margin)

Increase	the	number	of	left	margin	indentations	by	one,	associating
the	 logical	 tag	margin	with	 the	new	 indentation.	The	 initial	margin
level	is	0.	Changed	values	of	 the	 logical	 tag	must	be	true	values;
false	 values	 other	 than	 AS_IS	 are	 not	 sufficient	 to	 change	 the
margin.

formatter.pop_margin()
Restore	the	previous	margin.

formatter.push_style(*styles)
Push	 any	 number	 of	 arbitrary	 style	 specifications.	 All	 styles	 are
pushed	 onto	 the	 styles	 stack	 in	 order.	 A	 tuple	 representing	 the
entire	 stack,	 including	 AS_IS	 values,	 is	 passed	 to	 the	 writer’s
new_styles()	method.

formatter.pop_style(n=1)
Pop	 the	 last	 n	 style	 specifications	 passed	 to	 push_style().	 A
tuple	 representing	 the	 revised	 stack,	 including	 AS_IS	 values,	 is
passed	to	the	writer’s	new_styles()	method.

formatter.set_spacing(spacing)
Set	the	spacing	style	for	the	writer.

formatter.assert_line_data(flag=1)
Inform	 the	 formatter	 that	 data	 has	 been	 added	 to	 the	 current
paragraph	 out-of-band.	 This	 should	 be	 used	when	 the	writer	 has
been	manipulated	directly.	The	optional	flag	argument	can	be	set	to
false	 if	 the	writer	manipulations	produced	a	hard	 line	break	at	 the
end	of	the	output.

33.1.2.	Formatter	Implementations

Two	implementations	of	formatter	objects	are	provided	by	this	module.
Most	applications	may	use	one	of	 these	classes	without	modification
or	subclassing.

class	formatter.NullFormatter(writer=None)
A	formatter	which	does	nothing.	If	writer	is	omitted,	a	NullWriter
instance	 is	 created.	 No	 methods	 of	 the	 writer	 are	 called	 by
NullFormatter	 instances.	 Implementations	 should	 inherit	 from
this	class	if	implementing	a	writer	interface	but	don’t	need	to	inherit
any	implementation.

class	formatter.AbstractFormatter(writer)
The	 standard	 formatter.	 This	 implementation	 has	 demonstrated
wide	applicability	to	many	writers,	and	may	be	used	directly	in	most
circumstances.	It	has	been	used	to	implement	a	full-featured	World
Wide	Web	browser.

33.1.3.	The	Writer	Interface

Interfaces	to	create	writers	are	dependent	on	the	specific	writer	class
being	 instantiated.	 The	 interfaces	 described	 below	 are	 the	 required
interfaces	 which	 all	 writers	 must	 support	 once	 initialized.	 Note	 that
while	most	applications	can	use	the	AbstractFormatter	class	as	a
formatter,	the	writer	must	typically	be	provided	by	the	application.

writer.flush()
Flush	any	buffered	output	or	device	control	events.

writer.new_alignment(align)
Set	the	alignment	style.	The	align	value	can	be	any	object,	but	by
convention	 is	 a	 string	 or	 None,	 where	 None	 indicates	 that	 the
writer’s	 “preferred”	 alignment	 should	 be	 used.	 Conventional	align
values	are	'left',	'center',	'right',	and	'justify'.

writer.new_font(font)
Set	the	font	style.	The	value	of	font	will	be	None,	indicating	that	the
device’s	default	font	should	be	used,	or	a	tuple	of	the	form	(size,
italic,	bold,	teletype).	Size	will	be	a	string	indicating	the
size	 of	 font	 that	 should	 be	 used;	 specific	 strings	 and	 their
interpretation	must	 be	defined	by	 the	application.	The	 italic,	bold,
and	 teletype	values	are	Boolean	values	specifying	which	of	 those
font	attributes	should	be	used.

writer.new_margin(margin,	level)
Set	 the	 margin	 level	 to	 the	 integer	 level	 and	 the	 logical	 tag	 to
margin.	Interpretation	of	the	logical	tag	is	at	the	writer’s	discretion;
the	only	restriction	on	the	value	of	the	logical	tag	is	that	it	not	be	a
false	value	for	non-zero	values	of	level.

writer.new_spacing(spacing)
Set	the	spacing	style	to	spacing.

writer.new_styles(styles)
Set	additional	styles.	The	styles	value	is	a	tuple	of	arbitrary	values;
the	 value	 AS_IS	 should	 be	 ignored.	 The	 styles	 tuple	 may	 be
interpreted	 either	 as	 a	 set	 or	 as	 a	 stack	 depending	 on	 the
requirements	of	the	application	and	writer	implementation.

writer.send_line_break()
Break	the	current	line.

writer.send_paragraph(blankline)
Produce	a	paragraph	separation	of	at	least	blankline	blank	lines,	or
the	equivalent.	The	blankline	value	will	be	an	integer.	Note	that	the
implementation	will	receive	a	call	to	send_line_break()	before
this	 call	 if	 a	 line	break	 is	needed;	 this	method	should	not	 include
ending	 the	 last	 line	 of	 the	 paragraph.	 It	 is	 only	 responsible	 for
vertical	spacing	between	paragraphs.

writer.send_hor_rule(*args,	**kw)
Display	 a	 horizontal	 rule	 on	 the	 output	 device.	 The	 arguments	 to
this	method	are	entirely	application-	and	writer-specific,	and	should
be	interpreted	with	care.	The	method	implementation	may	assume
that	 a	 line	 break	 has	 already	 been	 issued	 via
send_line_break().

writer.send_flowing_data(data)
Output	character	data	which	may	be	word-wrapped	and	re-flowed
as	needed.	Within	any	sequence	of	calls	to	this	method,	the	writer
may	 assume	 that	 spans	 of	 multiple	 whitespace	 characters	 have
been	collapsed	to	single	space	characters.

writer.send_literal_data(data)
Output	 character	 data	 which	 has	 already	 been	 formatted	 for
display.	 Generally,	 this	 should	 be	 interpreted	 to	 mean	 that	 line
breaks	 indicated	 by	 newline	 characters	 should	 be	 preserved	 and
no	 new	 line	 breaks	 should	 be	 introduced.	 The	 data	 may	 contain
embedded	newline	and	tab	characters,	unlike	data	provided	to	the
send_formatted_data()	interface.

writer.send_label_data(data)
Set	data	to	the	left	of	the	current	left	margin,	if	possible.	The	value
of	data	 is	 not	 restricted;	 treatment	 of	 non-string	 values	 is	 entirely
application-	and	writer-dependent.	This	method	will	only	be	called
at	the	beginning	of	a	line.

33.1.4.	Writer	Implementations

Three	 implementations	 of	 the	writer	 object	 interface	 are	 provided	 as
examples	 by	 this	module.	Most	 applications	will	 need	 to	 derive	 new
writer	classes	from	the	NullWriter	class.

class	formatter.NullWriter
A	writer	which	only	provides	the	interface	definition;	no	actions	are
taken	on	any	methods.	This	should	be	the	base	class	for	all	writers
which	do	not	need	to	inherit	any	implementation	methods.

class	formatter.AbstractWriter
A	writer	which	can	be	used	in	debugging	formatters,	but	not	much
else.	Each	method	simply	announces	itself	by	printing	its	name	and
arguments	on	standard	output.

class	formatter.DumbWriter(file=None,	maxcol=72)
Simple	writer	class	which	writes	output	on	the	file	object	passed	in
as	file	or,	if	file	is	omitted,	on	standard	output.	The	output	is	simply
word-wrapped	to	the	number	of	columns	specified	by	maxcol.	This
class	is	suitable	for	reflowing	a	sequence	of	paragraphs.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	33.	Miscellaneous	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

34.	MS	Windows	Specific	Services
This	 chapter	 describes	 modules	 that	 are	 only	 available	 on	 MS
Windows	platforms.

34.1.	msilib	—	Read	and	write	Microsoft	Installer	files
34.1.1.	Database	Objects
34.1.2.	View	Objects
34.1.3.	Summary	Information	Objects
34.1.4.	Record	Objects
34.1.5.	Errors
34.1.6.	CAB	Objects
34.1.7.	Directory	Objects
34.1.8.	Features
34.1.9.	GUI	classes
34.1.10.	Precomputed	tables

34.2.	msvcrt	–	Useful	routines	from	the	MS	VC++	runtime
34.2.1.	File	Operations
34.2.2.	Console	I/O
34.2.3.	Other	Functions

34.3.	winreg	–	Windows	registry	access
34.3.1.	Functions
34.3.2.	Constants

34.3.2.1.	HKEY_*	Constants
34.3.2.2.	Access	Rights

34.3.2.2.1.	64-bit	Specific
34.3.2.3.	Value	Types

34.3.3.	Registry	Handle	Objects
34.4.	winsound	—	Sound-playing	interface	for	Windows

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

http://www.python.org/

34.1.	msilib	—	Read	and	write
Microsoft	Installer	files
The	msilib	supports	 the	creation	of	Microsoft	 Installer	 (.msi)	 files.
Because	these	files	often	contain	an	embedded	“cabinet”	file	(.cab),	it
also	 exposes	 an	API	 to	 create	CAB	 files.	 Support	 for	 reading	 .cab
files	is	currently	not	implemented;	read	support	for	the	.msi	database
is	possible.

This	package	aims	to	provide	complete	access	to	all	tables	in	an	.msi
file,	 therefore,	 it	 is	a	 fairly	 low-level	API.	Two	primary	applications	of
this	 package	 are	 the	 distutils	 command	 bdist_msi,	 and	 the
creation	of	Python	installer	package	itself	(although	that	currently	uses
a	different	version	of	msilib).

The	 package	 contents	 can	 be	 roughly	 split	 into	 four	 parts:	 low-level
CAB	 routines,	 low-level	MSI	 routines,	 higher-level	MSI	 routines,	 and
standard	table	structures.

msilib.FCICreate(cabname,	files)
Create	 a	 new	 CAB	 file	 named	 cabname.	 files	 must	 be	 a	 list	 of
tuples,	each	containing	the	name	of	the	file	on	disk,	and	the	name
of	the	file	inside	the	CAB	file.

The	files	are	added	to	the	CAB	file	in	the	order	they	appear	in	the
list.	 All	 files	 are	 added	 into	 a	 single	 CAB	 file,	 using	 the	 MSZIP
compression	algorithm.

Callbacks	 to	 Python	 for	 the	 various	 steps	 of	 MSI	 creation	 are
currently	not	exposed.

msilib.UuidCreate()
Return	 the	 string	 representation	 of	 a	 new	 unique	 identifier.	 This
wraps	 the	 Windows	 API	 functions	 UuidCreate()	 and
UuidToString().

msilib.OpenDatabase(path,	persist)
Return	a	new	database	object	by	calling	MsiOpenDatabase.	path	is
the	 file	name	of	 the	MSI	 file;	persist	 can	be	one	of	 the	 constants
MSIDBOPEN_CREATEDIRECT,	 MSIDBOPEN_CREATE,
MSIDBOPEN_DIRECT,	 MSIDBOPEN_READONLY,	 or
MSIDBOPEN_TRANSACT,	 and	 may	 include	 the	 flag
MSIDBOPEN_PATCHFILE.	See	the	Microsoft	documentation	for	the
meaning	 of	 these	 flags;	 depending	 on	 the	 flags,	 an	 existing
database	is	opened,	or	a	new	one	created.

msilib.CreateRecord(count)
Return	 a	 new	 record	 object	 by	 calling	 MSICreateRecord().
count	is	the	number	of	fields	of	the	record.

msilib.init_database(name,	schema,	ProductName,
ProductCode,	ProductVersion,	Manufacturer)

Create	and	return	a	new	database	name,	 initialize	it	with	schema,
and	 set	 the	 properties	 ProductName,	 ProductCode,
ProductVersion,	and	Manufacturer.

schema	 must	 be	 a	 module	 object	 containing	 tables	 and
_Validation_records	 attributes;	 typically,	 msilib.schema
should	be	used.

The	 database	 will	 contain	 just	 the	 schema	 and	 the	 validation
records	when	this	function	returns.

msilib.add_data(database,	table,	records)
Add	all	records	to	the	table	named	table	in	database.

The	 table	 argument	must	 be	 one	 of	 the	 predefined	 tables	 in	 the
MSI	 schema,	 e.g.	 'Feature',	 'File',	 'Component',
'Dialog',	'Control',	etc.

records	should	be	a	list	of	tuples,	each	one	containing	all	fields	of	a
record	 according	 to	 the	 schema	 of	 the	 table.	 For	 optional	 fields,
None	can	be	passed.

Field	values	can	be	ints,	strings,	or	instances	of	the	Binary	class.

class	msilib.Binary(filename)
Represents	 entries	 in	 the	 Binary	 table;	 inserting	 such	 an	 object
using	add_data()	reads	the	file	named	filename	into	the	table.

msilib.add_tables(database,	module)
Add	 all	 table	 content	 from	 module	 to	 database.	 module	 must
contain	an	attribute	tables	listing	all	tables	for	which	content	should
be	added,	and	one	attribute	per	table	that	has	the	actual	content.

This	is	typically	used	to	install	the	sequence	tables.

msilib.add_stream(database,	name,	path)
Add	 the	 file	 path	 into	 the	 _Stream	 table	 of	 database,	 with	 the
stream	name	name.

msilib.gen_uuid()
Return	a	new	UUID,	in	the	format	that	MSI	typically	requires	(i.e.	in
curly	braces,	and	with	all	hexdigits	in	upper-case).

See	also: 	FCICreateFile	UuidCreate	UuidToString

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/devnotes/winprog/fcicreate.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidcreate.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/rpc/rpc/uuidtostring.asp

34.1.1.	Database	Objects

Database.OpenView(sql)
Return	a	view	object,	by	calling	MSIDatabaseOpenView().	sql	is
the	SQL	statement	to	execute.

Database.Commit()
Commit	the	changes	pending	in	the	current	transaction,	by	calling
MSIDatabaseCommit().

Database.GetSummaryInformation(count)
Return	 a	 new	 summary	 information	 object,	 by	 calling
MsiGetSummaryInformation().	count	is	the	maximum	number
of	updated	values.

See	also: 	MSIDatabaseOpenView	MSIDatabaseCommit
MSIGetSummaryInformation

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabaseopenview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msidatabasecommit.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msigetsummaryinformation.asp

34.1.2.	View	Objects

View.Execute(params)
Execute	the	SQL	query	of	the	view,	through	MSIViewExecute().
If	params	is	not	None,	it	is	a	record	describing	actual	values	of	the
parameter	tokens	in	the	query.

View.GetColumnInfo(kind)
Return	a	record	describing	the	columns	of	the	view,	through	calling
MsiViewGetColumnInfo().	 kind	 can	 be	 either
MSICOLINFO_NAMES	or	MSICOLINFO_TYPES.

View.Fetch()
Return	 a	 result	 record	 of	 the	 query,	 through	 calling
MsiViewFetch().

View.Modify(kind,	data)
Modify	the	view,	by	calling	MsiViewModify().	kind	can	be	one	of
MSIMODIFY_SEEK,	 MSIMODIFY_REFRESH,
MSIMODIFY_INSERT,	 MSIMODIFY_UPDATE,
MSIMODIFY_ASSIGN,	 MSIMODIFY_REPLACE,
MSIMODIFY_MERGE,	 MSIMODIFY_DELETE,
MSIMODIFY_INSERT_TEMPORARY,	 MSIMODIFY_VALIDATE,
MSIMODIFY_VALIDATE_NEW,	MSIMODIFY_VALIDATE_FIELD,	or
MSIMODIFY_VALIDATE_DELETE.

data	must	be	a	record	describing	the	new	data.

View.Close()
Close	the	view,	through	MsiViewClose().

See	also: 	MsiViewExecute	MSIViewGetColumnInfo	MsiViewFetch
MsiViewModify	MsiViewClose

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewexecute.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewgetcolumninfo.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewfetch.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewmodify.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msiviewclose.asp

34.1.3.	Summary	Information	Objects

SummaryInformation.GetProperty(field)
Return	 a	 property	 of	 the	 summary,	 through
MsiSummaryInfoGetProperty().	 field	 is	 the	 name	 of	 the
property,	 and	 can	 be	 one	 of	 the	 constants	 PID_CODEPAGE,
PID_TITLE,	 PID_SUBJECT,	 PID_AUTHOR,	 PID_KEYWORDS,
PID_COMMENTS,	 PID_TEMPLATE,	 PID_LASTAUTHOR,
PID_REVNUMBER,	 PID_LASTPRINTED,	 PID_CREATE_DTM,
PID_LASTSAVE_DTM,	 PID_PAGECOUNT,	 PID_WORDCOUNT,
PID_CHARCOUNT,	PID_APPNAME,	or	PID_SECURITY.

SummaryInformation.GetPropertyCount()
Return	 the	 number	 of	 summary	 properties,	 through
MsiSummaryInfoGetPropertyCount().

SummaryInformation.SetProperty(field,	value)
Set	 a	 property	 through	 MsiSummaryInfoSetProperty().	 field
can	 have	 the	 same	 values	 as	 in	 GetProperty(),	 value	 is	 the
new	 value	 of	 the	 property.	 Possible	 value	 types	 are	 integer	 and
string.

SummaryInformation.Persist()
Write	 the	modified	properties	 to	 the	summary	 information	stream,
using	MsiSummaryInfoPersist().

See	also: 	MsiSummaryInfoGetProperty
MsiSummaryInfoGetPropertyCount	MsiSummaryInfoSetProperty
MsiSummaryInfoPersist

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetproperty.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfogetpropertycount.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfosetproperty.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msisummaryinfopersist.asp

34.1.4.	Record	Objects

Record.GetFieldCount()
Return	 the	 number	 of	 fields	 of	 the	 record,	 through
MsiRecordGetFieldCount().

Record.GetInteger(field)
Return	the	value	of	field	as	an	integer	where	possible.	field	must	be
an	integer.

Record.GetString(field)
Return	 the	value	of	 field	as	a	string	where	possible.	 field	must	be
an	integer.

Record.SetString(field,	value)
Set	field	to	value	through	MsiRecordSetString().	field	must	be
an	integer;	value	a	string.

Record.SetStream(field,	value)
Set	 field	 to	 the	 contents	 of	 the	 file	 named	 value,	 through
MsiRecordSetStream().	 field	 must	 be	 an	 integer;	 value	 a
string.

Record.SetInteger(field,	value)
Set	 field	 to	value	 through	 MsiRecordSetInteger().	 Both	 field
and	value	must	be	an	integer.

Record.ClearData()
Set	 all	 fields	 of	 the	 record	 to	 0,	 through
MsiRecordClearData().

See	also: 	MsiRecordGetFieldCount	MsiRecordSetString
MsiRecordSetStream	MsiRecordSetInteger	MsiRecordClear

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordgetfieldcount.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstring.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetstream.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordsetinteger.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/msirecordclear.asp

34.1.5.	Errors

All	wrappers	around	MSI	 functions	raise	MsiError;	 the	string	 inside
the	exception	will	contain	more	detail.

34.1.6.	CAB	Objects

class	msilib.CAB(name)
The	class	CAB	represents	a	CAB	file.	During	MSI	construction,	files
will	be	added	simultaneously	to	the	Files	table,	and	to	a	CAB	file.
Then,	when	all	files	have	been	added,	the	CAB	file	can	be	written,
then	added	to	the	MSI	file.

name	is	the	name	of	the	CAB	file	in	the	MSI	file.

append(full,	file,	logical)
Add	 the	 file	with	 the	 pathname	 full	 to	 the	CAB	 file,	 under	 the
name	logical.	If	there	is	already	a	file	named	 logical,	a	new	file
name	is	created.

Return	the	index	of	the	file	in	the	CAB	file,	and	the	new	name	of
the	file	inside	the	CAB	file.

commit(database)
Generate	a	CAB	 file,	add	 it	 as	a	stream	 to	 the	MSI	 file,	put	 it
into	 the	Media	 table,	 and	 remove	 the	 generated	 file	 from	 the
disk.

34.1.7.	Directory	Objects

class	msilib.Directory(database,	cab,	basedir,	physical,
logical,	default[,	componentflags])

Create	 a	 new	 directory	 in	 the	 Directory	 table.	 There	 is	 a	 current
component	 at	 each	 point	 in	 time	 for	 the	 directory,	which	 is	 either
explicitly	created	through	start_component(),	or	implicitly	when
files	 are	 added	 for	 the	 first	 time.	Files	 are	 added	 into	 the	 current
component,	 and	 into	 the	 cab	 file.	 To	 create	 a	 directory,	 a	 base
directory	object	needs	 to	be	specified	 (can	be	None),	 the	path	 to
the	 physical	 directory,	 and	 a	 logical	 directory	 name.	 default
specifies	 the	DefaultDir	slot	 in	 the	directory	 table.	componentflags
specifies	the	default	flags	that	new	components	get.

start_component(component=None,	 feature=None,
flags=None,	keyfile=None,	uuid=None)

Add	 an	 entry	 to	 the	 Component	 table,	 and	 make	 this
component	 the	 current	 component	 for	 this	 directory.	 If	 no
component	 name	 is	 given,	 the	 directory	 name	 is	 used.	 If	 no
feature	 is	 given,	 the	 current	 feature	 is	 used.	 If	 no	 flags	 are
given,	 the	 directory’s	 default	 flags	 are	 used.	 If	 no	 keyfile	 is
given,	the	KeyPath	is	left	null	in	the	Component	table.

add_file(file,	src=None,	version=None,	language=None)
Add	a	 file	 to	 the	current	component	of	 the	directory,	starting	a
new	 one	 if	 there	 is	 no	 current	 component.	 By	 default,	 the	 file
name	in	the	source	and	the	file	table	will	be	identical.	If	the	src
file	is	specified,	it	is	interpreted	relative	to	the	current	directory.
Optionally,	 a	version	 and	 a	 language	 can	 be	 specified	 for	 the
entry	in	the	File	table.

glob(pattern,	exclude=None)
Add	a	 list	of	 files	 to	 the	current	component	as	specified	 in	 the
glob	pattern.	Individual	files	can	be	excluded	in	the	exclude	list.

remove_pyc()
Remove	.pyc/.pyo	files	on	uninstall.

See	also: 	Directory	Table	File	Table	Component	Table
FeatureComponents	Table

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/directory_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/file_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/component_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/featurecomponents_table.asp

34.1.8.	Features

class	msilib.Feature(db,	id,	title,	desc,	display,	level=1,
parent=None,	directory=None,	attributes=0)

Add	 a	 new	 record	 to	 the	 Feature	 table,	 using	 the	 values	 id,
parent.id,	 title,	 desc,	 display,	 level,	 directory,	 and	 attributes.	 The
resulting	 feature	 object	 can	 be	 passed	 to	 the
start_component()	method	of	Directory.

set_current()
Make	 this	 feature	 the	 current	 feature	 of	 msilib.	 New
components	 are	 automatically	 added	 to	 the	 default	 feature,
unless	a	feature	is	explicitly	specified.

See	also: 	Feature	Table

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/feature_table.asp

34.1.9.	GUI	classes

msilib	provides	several	classes	that	wrap	the	GUI	tables	in	an	MSI
database.	 However,	 no	 standard	 user	 interface	 is	 provided;	 use
bdist_msi	 to	 create	 MSI	 files	 with	 a	 user-interface	 for	 installing
Python	packages.

class	msilib.Control(dlg,	name)
Base	class	of	the	dialog	controls.	dlg	is	the	dialog	object	the	control
belongs	to,	and	name	is	the	control’s	name.

event(event,	argument,	condition=1,	ordering=None)
Make	an	entry	into	the	ControlEvent	table	for	this	control.

mapping(event,	attribute)
Make	an	entry	into	the	EventMapping	table	for	this	control.

condition(action,	condition)
Make	 an	 entry	 into	 the	 ControlCondition	 table	 for	 this
control.

class	msilib.RadioButtonGroup(dlg,	name,	property)
Create	a	radio	button	control	named	name.	property	is	the	installer
property	that	gets	set	when	a	radio	button	is	selected.

add(name,	x,	y,	width,	height,	text,	value=None)
Add	 a	 radio	 button	 named	 name	 to	 the	 group,	 at	 the
coordinates	x,	y,	width,	height,	and	with	the	label	text.	If	value	is
None,	it	defaults	to	name.

class	msilib.Dialog(db,	name,	x,	y,	w,	h,	attr,	title,	first,	default,
cancel)

Return	 a	 new	 Dialog	 object.	 An	 entry	 in	 the	 Dialog	 table	 is
made,	with	 the	specified	coordinates,	dialog	attributes,	 title,	name
of	the	first,	default,	and	cancel	controls.

control(name,	 type,	 x,	 y,	 width,	 height,	 attributes,	 property,
text,	control_next,	help)

Return	a	new	Control	object.	An	entry	in	the	Control	 table
is	made	with	the	specified	parameters.

This	 is	 a	 generic	 method;	 for	 specific	 types,	 specialized
methods	are	provided.

text(name,	x,	y,	width,	height,	attributes,	text)
Add	and	return	a	Text	control.

bitmap(name,	x,	y,	width,	height,	text)
Add	and	return	a	Bitmap	control.

line(name,	x,	y,	width,	height)
Add	and	return	a	Line	control.

pushbutton(name,	 x,	 y,	 width,	 height,	 attributes,	 text,
next_control)

Add	and	return	a	PushButton	control.

radiogroup(name,	x,	y,	width,	height,	attributes,	property,	text,
next_control)

Add	and	return	a	RadioButtonGroup	control.

checkbox(name,	 x,	 y,	 width,	 height,	 attributes,	 property,	 text,
next_control)

Add	and	return	a	CheckBox	control.

See	also: 	Dialog	Table	Control	Table	Control	Types
ControlCondition	Table	ControlEvent	Table	EventMapping	Table
RadioButton	Table

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/dialog_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/control_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controls.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlcondition_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/controlevent_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/eventmapping_table.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/msi/setup/radiobutton_table.asp

34.1.10.	Precomputed	tables

msilib	 provides	 a	 few	 subpackages	 that	 contain	 only	 schema	 and
table	definitions.	Currently,	these	definitions	are	based	on	MSI	version
2.0.

msilib.schema

This	 is	 the	 standard	 MSI	 schema	 for	 MSI	 2.0,	 with	 the	 tables
variable	providing	a	list	of	table	definitions,	and	_Validation_records
providing	the	data	for	MSI	validation.

msilib.sequence

This	 module	 contains	 table	 contents	 for	 the	 standard	 sequence
tables:	 AdminExecuteSequence,	 AdminUISequence,
AdvtExecuteSequence,	 InstallExecuteSequence,	 and
InstallUISequence.

msilib.text

This	 module	 contains	 definitions	 for	 the	 UIText	 and	 ActionText
tables,	for	the	standard	installer	actions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

http://www.python.org/

34.2.	msvcrt	–	Useful	routines
from	the	MS	VC++	runtime
These	 functions	 provide	 access	 to	 some	 useful	 capabilities	 on
Windows	platforms.	Some	higher-level	modules	use	these	functions	to
build	the	Windows	implementations	of	their	services.	For	example,	the
getpass	module	uses	this	 in	 the	 implementation	of	 the	getpass()
function.

Further	documentation	on	these	functions	can	be	found	in	the	Platform
API	documentation.

The	module	implements	both	the	normal	and	wide	char	variants	of	the
console	I/O	api.	The	normal	API	deals	only	with	ASCII	characters	and
is	of	 limited	use	 for	 internationalized	applications.	The	wide	char	API
should	be	used	where	ever	possible

Changed	in	version	3.3:	Operations	in	this	module	now	raise	OSError
where	IOError	was	raised.

34.2.1.	File	Operations

msvcrt.locking(fd,	mode,	nbytes)
Lock	part	of	a	 file	based	on	 file	descriptor	 fd	 from	 the	C	 runtime.
Raises	OSError	on	 failure.	The	 locked	 region	of	 the	 file	extends
from	 the	 current	 file	 position	 for	nbytes	 bytes,	 and	may	 continue
beyond	 the	 end	 of	 the	 file.	 mode	 must	 be	 one	 of	 the	 LK_*
constants	 listed	below.	Multiple	 regions	 in	a	 file	may	be	 locked	at
the	 same	 time,	 but	 may	 not	 overlap.	 Adjacent	 regions	 are	 not
merged;	they	must	be	unlocked	individually.

msvcrt.LK_LOCK

msvcrt.LK_RLCK

Locks	 the	 specified	 bytes.	 If	 the	 bytes	 cannot	 be	 locked,	 the
program	 immediately	 tries	 again	 after	 1	 second.	 If,	 after	 10
attempts,	the	bytes	cannot	be	locked,	OSError	is	raised.

msvcrt.LK_NBLCK

msvcrt.LK_NBRLCK

Locks	the	specified	bytes.	If	the	bytes	cannot	be	locked,	OSError
is	raised.

msvcrt.LK_UNLCK

Unlocks	 the	 specified	 bytes,	 which	 must	 have	 been	 previously
locked.

msvcrt.setmode(fd,	flags)
Set	the	line-end	translation	mode	for	the	file	descriptor	fd.	To	set	it
to	text	mode,	flags	should	be	os.O_TEXT;	for	binary,	it	should	be
os.O_BINARY.

msvcrt.open_osfhandle(handle,	flags)
Create	a	C	runtime	file	descriptor	from	the	file	handle	handle.	The
flags	 parameter	 should	 be	 a	 bitwise	 OR	 of	 os.O_APPEND,
os.O_RDONLY,	and	os.O_TEXT.	The	returned	file	descriptor	may
be	used	as	a	parameter	to	os.fdopen()	to	create	a	file	object.

msvcrt.get_osfhandle(fd)
Return	the	file	handle	for	the	file	descriptor	fd.	Raises	OSError	 if
fd	is	not	recognized.

34.2.2.	Console	I/O

msvcrt.kbhit()
Return	true	if	a	keypress	is	waiting	to	be	read.

msvcrt.getch()
Read	 a	 keypress	 and	 return	 the	 resulting	 character	 as	 a	 byte
string.	 Nothing	 is	 echoed	 to	 the	 console.	 This	 call	 will	 block	 if	 a
keypress	is	not	already	available,	but	will	not	wait	for	Enter	to	be
pressed.	 If	 the	 pressed	 key	 was	 a	 special	 function	 key,	 this	 will
return	 '\000'	 or	 '\xe0';	 the	 next	 call	 will	 return	 the	 keycode.
The	Control-C	keypress	cannot	be	read	with	this	function.

msvcrt.getwch()
Wide	char	variant	of	getch(),	returning	a	Unicode	value.

msvcrt.getche()
Similar	to	getch(),	but	the	keypress	will	be	echoed	if	it	represents
a	printable	character.

msvcrt.getwche()
Wide	char	variant	of	getche(),	returning	a	Unicode	value.

msvcrt.putch(char)
Print	the	byte	string	char	to	the	console	without	buffering.

msvcrt.putwch(unicode_char)
Wide	char	variant	of	putch(),	accepting	a	Unicode	value.

msvcrt.ungetch(char)
Cause	 the	 byte	 string	char	 to	 be	 “pushed	 back”	 into	 the	 console

buffer;	it	will	be	the	next	character	read	by	getch()	or	getche().

msvcrt.ungetwch(unicode_char)
Wide	char	variant	of	ungetch(),	accepting	a	Unicode	value.

34.2.3.	Other	Functions

msvcrt.heapmin()
Force	 the	 malloc()	 heap	 to	 clean	 itself	 up	 and	 return	 unused
blocks	to	the	operating	system.	On	failure,	this	raises	OSError.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

http://www.python.org/

34.3.	winreg	–	Windows	registry
access
These	 functions	expose	 the	Windows	registry	API	 to	Python.	 Instead
of	using	an	 integer	as	 the	registry	handle,	a	handle	object	 is	used	 to
ensure	 that	 the	handles	are	closed	correctly,	even	 if	 the	programmer
neglects	to	explicitly	close	them.

Changed	in	version	3.3:	Several	functions	in	this	module	used	to	raise
a	WindowsError,	which	is	now	an	alias	of	OSError.

34.3.1.	Functions

This	module	offers	the	following	functions:

winreg.CloseKey(hkey)
Closes	 a	 previously	 opened	 registry	 key.	 The	 hkey	 argument
specifies	a	previously	opened	key.

Note: 	 If	 hkey	 is	 not	 closed	 using	 this	 method	 (or	 via
hkey.Close()),	 it	 is	closed	when	the	hkey	object	 is	destroyed
by	Python.

winreg.ConnectRegistry(computer_name,	key)
Establishes	 a	 connection	 to	 a	 predefined	 registry	 handle	 on
another	computer,	and	returns	a	handle	object.

computer_name	 is	 the	name	of	 the	 remote	computer,	of	 the	 form
r"\\computername".	If	None,	the	local	computer	is	used.

key	is	the	predefined	handle	to	connect	to.

The	 return	 value	 is	 the	 handle	 of	 the	 opened	 key.	 If	 the	 function
fails,	an	OSError	exception	is	raised.

Changed	in	version	3.3:	See	above.

winreg.CreateKey(key,	sub_key)
Creates	or	opens	the	specified	key,	returning	a	handle	object.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

sub_key	 is	 a	 string	 that	 names	 the	 key	 this	 method	 opens	 or
creates.

If	key	is	one	of	the	predefined	keys,	sub_key	may	be	None.	In	that
case,	the	handle	returned	is	the	same	key	handle	passed	in	to	the
function.

If	the	key	already	exists,	this	function	opens	the	existing	key.

The	 return	 value	 is	 the	 handle	 of	 the	 opened	 key.	 If	 the	 function
fails,	an	OSError	exception	is	raised.

Changed	in	version	3.3:	See	above.

winreg.CreateKeyEx(key,	sub_key,	reserved=0,
access=KEY_WRITE)

Creates	or	opens	the	specified	key,	returning	a	handle	object.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

sub_key	 is	 a	 string	 that	 names	 the	 key	 this	 method	 opens	 or
creates.

reserved	 is	 a	 reserved	 integer,	 and	must	 be	 zero.	 The	 default	 is
zero.

access	 is	an	integer	that	specifies	an	access	mask	that	describes
the	desired	security	access	for	the	key.	Default	is	KEY_WRITE.	See
Access	Rights	for	other	allowed	values.

If	key	is	one	of	the	predefined	keys,	sub_key	may	be	None.	In	that
case,	the	handle	returned	is	the	same	key	handle	passed	in	to	the
function.

If	the	key	already	exists,	this	function	opens	the	existing	key.

The	 return	 value	 is	 the	 handle	 of	 the	 opened	 key.	 If	 the	 function
fails,	an	OSError	exception	is	raised.

New	in	version	3.2.

Changed	in	version	3.3:	See	above.

winreg.DeleteKey(key,	sub_key)
Deletes	the	specified	key.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

sub_key	 is	a	string	that	must	be	a	subkey	of	 the	key	 identified	by
the	key	parameter.	This	value	must	not	be	None,	and	the	key	may
not	have	subkeys.

This	method	can	not	delete	keys	with	subkeys.

If	the	method	succeeds,	the	entire	key,	including	all	of	its	values,	is
removed.	If	the	method	fails,	an	OSError	exception	is	raised.

Changed	in	version	3.3:	See	above.

winreg.DeleteKeyEx(key,	sub_key,
access=KEY_WOW64_64KEY,	reserved=0)

Deletes	the	specified	key.

Note: 	 The	 DeleteKeyEx()	 function	 is	 implemented	 with	 the
RegDeleteKeyEx	Windows	API	 function,	which	 is	specific	 to	64-
bit	 versions	 of	 Windows.	 See	 the	 RegDeleteKeyEx
documentation.

http://msdn.microsoft.com/en-us/library/ms724847%28VS.85%29.aspx

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

sub_key	 is	a	string	that	must	be	a	subkey	of	 the	key	 identified	by
the	key	parameter.	This	value	must	not	be	None,	and	the	key	may
not	have	subkeys.

reserved	 is	 a	 reserved	 integer,	 and	must	 be	 zero.	 The	 default	 is
zero.

access	 is	an	integer	that	specifies	an	access	mask	that	describes
the	 desired	 security	 access	 for	 the	 key.	 Default	 is
KEY_WOW64_64KEY.	See	Access	Rights	for	other	allowed	values.

This	method	can	not	delete	keys	with	subkeys.

If	the	method	succeeds,	the	entire	key,	including	all	of	its	values,	is
removed.	If	the	method	fails,	an	OSError	exception	is	raised.

On	 unsupported	 Windows	 versions,	 NotImplementedError	 is
raised.

New	in	version	3.2.

Changed	in	version	3.3:	See	above.

winreg.DeleteValue(key,	value)
Removes	a	named	value	from	a	registry	key.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

value	is	a	string	that	identifies	the	value	to	remove.

winreg.EnumKey(key,	index)

Enumerates	subkeys	of	an	open	registry	key,	returning	a	string.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

index	is	an	integer	that	identifies	the	index	of	the	key	to	retrieve.

The	 function	 retrieves	 the	 name	 of	 one	 subkey	 each	 time	 it	 is
called.	It	 is	typically	called	repeatedly	until	an	OSError	exception
is	raised,	indicating,	no	more	values	are	available.

Changed	in	version	3.3:	See	above.

winreg.EnumValue(key,	index)
Enumerates	values	of	an	open	registry	key,	returning	a	tuple.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

index	is	an	integer	that	identifies	the	index	of	the	value	to	retrieve.

The	 function	 retrieves	 the	 name	 of	 one	 subkey	 each	 time	 it	 is
called.	It	is	typically	called	repeatedly,	until	an	OSError	exception
is	raised,	indicating	no	more	values.

The	result	is	a	tuple	of	3	items:

Index Meaning

0 A	string	that	identifies	the	value	name

1
An	object	that	holds	the	value	data,	and	whose	type
depends	on	the	underlying	registry	type

2
An	integer	that	identifies	the	type	of	the	value	data	(see
table	in	docs	for	SetValueEx())

Changed	in	version	3.3:	See	above.

winreg.ExpandEnvironmentStrings(str)
Expands	environment	variable	placeholders	%NAME%	in	strings	like
REG_EXPAND_SZ:

>>>	ExpandEnvironmentStrings('%windir%')

'C:\\Windows'

winreg.FlushKey(key)
Writes	all	the	attributes	of	a	key	to	the	registry.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

It	 is	not	necessary	to	call	FlushKey()	 to	change	a	key.	Registry
changes	are	 flushed	 to	 disk	 by	 the	 registry	 using	 its	 lazy	 flusher.
Registry	 changes	 are	 also	 flushed	 to	 disk	 at	 system	 shutdown.
Unlike	CloseKey(),	the	FlushKey()	method	returns	only	when
all	 the	data	has	been	written	to	the	registry.	An	application	should
only	call	FlushKey()	 if	 it	requires	absolute	certainty	that	registry
changes	are	on	disk.

Note: 	If	you	don’t	know	whether	a	FlushKey()	call	is	required,
it	probably	isn’t.

winreg.LoadKey(key,	sub_key,	file_name)
Creates	 a	 subkey	 under	 the	 specified	 key	 and	 stores	 registration
information	from	a	specified	file	into	that	subkey.

key	 is	 a	handle	 returned	by	 ConnectRegistry()	or	one	of	 the
constants	HKEY_USERS	or	HKEY_LOCAL_MACHINE.

sub_key	is	a	string	that	identifies	the	subkey	to	load.

file_name	is	the	name	of	the	file	to	load	registry	data	from.	This	file
must	have	been	created	with	the	SaveKey()	 function.	Under	 the
file	allocation	table	(FAT)	file	system,	the	filename	may	not	have	an
extension.

A	call	to	LoadKey()	fails	if	the	calling	process	does	not	have	the
SE_RESTORE_PRIVILEGE	 privilege.	 Note	 that	 privileges	 are
different	 from	permissions	 –	 see	 the	RegLoadKey	 documentation
for	more	details.

If	key	is	a	handle	returned	by	ConnectRegistry(),	then	the	path
specified	in	file_name	is	relative	to	the	remote	computer.

winreg.OpenKey(key,	sub_key,	reserved=0,	access=KEY_READ)
winreg.OpenKeyEx(key,	sub_key,	reserved=0,
access=KEY_READ)

Opens	the	specified	key,	returning	a	handle	object.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

sub_key	is	a	string	that	identifies	the	sub_key	to	open.

reserved	 is	 a	 reserved	 integer,	 and	must	 be	 zero.	 The	 default	 is
zero.

access	 is	an	integer	that	specifies	an	access	mask	that	describes
the	desired	security	access	for	the	key.	Default	is	KEY_READ.	See
Access	Rights	for	other	allowed	values.

The	result	is	a	new	handle	to	the	specified	key.

http://msdn.microsoft.com/en-us/library/ms724889%28v=VS.85%29.aspx

If	the	function	fails,	OSError	is	raised.

Changed	in	version	3.2:	Allow	the	use	of	named	arguments.

Changed	in	version	3.3:	See	above.

winreg.QueryInfoKey(key)
Returns	information	about	a	key,	as	a	tuple.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

The	result	is	a	tuple	of	3	items:

Index Meaning

0 An	integer	giving	the	number	of	sub	keys	this	key	has.

1 An	integer	giving	the	number	of	values	this	key	has.

2
An	integer	giving	when	the	key	was	last	modified	(if
available)	as	100’s	of	nanoseconds	since	Jan	1,	1600.

winreg.QueryValue(key,	sub_key)
Retrieves	the	unnamed	value	for	a	key,	as	a	string.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

sub_key	 is	a	string	 that	holds	 the	name	of	 the	subkey	with	which
the	 value	 is	 associated.	 If	 this	 parameter	 is	 None	 or	 empty,	 the
function	retrieves	the	value	set	by	the	SetValue()	method	for	the
key	identified	by	key.

Values	in	the	registry	have	name,	type,	and	data	components.	This
method	 retrieves	 the	data	 for	a	 key’s	 first	 value	 that	has	a	NULL

name.	 But	 the	 underlying	 API	 call	 doesn’t	 return	 the	 type,	 so
always	use	QueryValueEx()	if	possible.

winreg.QueryValueEx(key,	value_name)
Retrieves	the	type	and	data	for	a	specified	value	name	associated
with	an	open	registry	key.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

value_name	is	a	string	indicating	the	value	to	query.

The	result	is	a	tuple	of	2	items:

Index Meaning

0 The	value	of	the	registry	item.

1
An	integer	giving	the	registry	type	for	this	value	(see
table	in	docs	for	SetValueEx())

winreg.SaveKey(key,	file_name)
Saves	the	specified	key,	and	all	its	subkeys	to	the	specified	file.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

file_name	 is	 the	name	of	 the	file	 to	save	registry	data	 to.	This	 file
cannot	 already	 exist.	 If	 this	 filename	 includes	 an	 extension,	 it
cannot	 be	 used	 on	 file	 allocation	 table	 (FAT)	 file	 systems	 by	 the
LoadKey()	method.

If	key	represents	a	key	on	a	remote	computer,	 the	path	described
by	 file_name	 is	 relative	 to	 the	 remote	computer.	The	caller	of	 this
method	 must	 possess	 the	 SeBackupPrivilege	 security

privilege.	Note	that	privileges	are	different	 than	permissions	–	see
the	Conflicts	Between	User	Rights	and	Permissions	documentation
for	more	details.

This	function	passes	NULL	for	security_attributes	to	the	API.

winreg.SetValue(key,	sub_key,	type,	value)
Associates	a	value	with	a	specified	key.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

sub_key	 is	a	string	that	names	the	subkey	with	which	the	value	is
associated.

type	is	an	integer	that	specifies	the	type	of	the	data.	Currently	this
must	 be	 REG_SZ,	 meaning	 only	 strings	 are	 supported.	 Use	 the
SetValueEx()	function	for	support	for	other	data	types.

value	is	a	string	that	specifies	the	new	value.

If	 the	key	specified	by	 the	sub_key	parameter	does	not	exist,	 the
SetValue	function	creates	it.

Value	lengths	are	limited	by	available	memory.	Long	values	(more
than	 2048	 bytes)	 should	 be	 stored	 as	 files	 with	 the	 filenames
stored	in	the	configuration	registry.	This	helps	the	registry	perform
efficiently.

The	key	 identified	by	 the	key	 parameter	must	have	been	opened
with	KEY_SET_VALUE	access.

winreg.SetValueEx(key,	value_name,	reserved,	type,	value)
Stores	data	in	the	value	field	of	an	open	registry	key.

http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

value_name	is	a	string	that	names	the	subkey	with	which	the	value
is	associated.

reserved	can	be	anything	–	zero	is	always	passed	to	the	API.

type	 is	 an	 integer	 that	 specifies	 the	 type	 of	 the	 data.	 See	Value
Types	for	the	available	types.

value	is	a	string	that	specifies	the	new	value.

This	method	can	also	set	additional	value	and	type	information	for
the	 specified	 key.	 The	 key	 identified	 by	 the	 key	 parameter	 must
have	been	opened	with	KEY_SET_VALUE	access.

To	open	the	key,	use	the	CreateKey()	or	OpenKey()	methods.

Value	lengths	are	limited	by	available	memory.	Long	values	(more
than	 2048	 bytes)	 should	 be	 stored	 as	 files	 with	 the	 filenames
stored	in	the	configuration	registry.	This	helps	the	registry	perform
efficiently.

winreg.DisableReflectionKey(key)
Disables	registry	reflection	for	32-bit	processes	running	on	a	64-bit
operating	system.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

Will	 generally	 raise	 NotImplemented	 if	 executed	 on	 a	 32-bit
operating	system.

If	the	key	is	not	on	the	reflection	list,	the	function	succeeds	but	has
no	effect.	Disabling	reflection	for	a	key	does	not	affect	reflection	of
any	subkeys.

winreg.EnableReflectionKey(key)
Restores	registry	reflection	for	the	specified	disabled	key.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

Will	 generally	 raise	 NotImplemented	 if	 executed	 on	 a	 32-bit
operating	system.

Restoring	 reflection	 for	 a	 key	 does	 not	 affect	 reflection	 of	 any
subkeys.

winreg.QueryReflectionKey(key)
Determines	the	reflection	state	for	the	specified	key.

key	 is	 an	 already	 open	 key,	 or	 one	 of	 the	 predefined	 HKEY_*
constants.

Returns	True	if	reflection	is	disabled.

Will	 generally	 raise	 NotImplemented	 if	 executed	 on	 a	 32-bit
operating	system.

34.3.2.	Constants

The	 following	 constants	 are	 defined	 for	 use	 in	 many	 _winreg
functions.

34.3.2.1.	HKEY_*	Constants

winreg.HKEY_CLASSES_ROOT

Registry	entries	subordinate	to	this	key	define	types	(or	classes)	of
documents	 and	 the	 properties	 associated	with	 those	 types.	 Shell
and	COM	applications	use	the	information	stored	under	this	key.

winreg.HKEY_CURRENT_USER

Registry	 entries	 subordinate	 to	 this	 key	define	 the	preferences	of
the	 current	 user.	 These	 preferences	 include	 the	 settings	 of
environment	variables,	data	about	program	groups,	colors,	printers,
network	connections,	and	application	preferences.

winreg.HKEY_LOCAL_MACHINE

Registry	entries	subordinate	to	this	key	define	the	physical	state	of
the	computer,	 including	data	about	 the	bus	 type,	system	memory,
and	installed	hardware	and	software.

winreg.HKEY_USERS

Registry	 entries	 subordinate	 to	 this	 key	 define	 the	 default	 user
configuration	 for	 new	 users	 on	 the	 local	 computer	 and	 the	 user
configuration	for	the	current	user.

winreg.HKEY_PERFORMANCE_DATA

Registry	 entries	 subordinate	 to	 this	 key	 allow	 you	 to	 access
performance	 data.	 The	 data	 is	 not	 actually	 stored	 in	 the	 registry;

the	registry	functions	cause	the	system	to	collect	the	data	from	its
source.

winreg.HKEY_CURRENT_CONFIG

Contains	information	about	the	current	hardware	profile	of	the	local
computer	system.

winreg.HKEY_DYN_DATA

This	key	is	not	used	in	versions	of	Windows	after	98.

34.3.2.2.	Access	Rights

For	more	information,	see	Registry	Key	Security	and	Access.

winreg.KEY_ALL_ACCESS

Combines	 the	 STANDARD_RIGHTS_REQUIRED,
KEY_QUERY_VALUE,	 KEY_SET_VALUE,	 KEY_CREATE_SUB_KEY,
KEY_ENUMERATE_SUB_KEYS,	 KEY_NOTIFY,	 and
KEY_CREATE_LINK	access	rights.

winreg.KEY_WRITE

Combines	 the	 STANDARD_RIGHTS_WRITE,	 KEY_SET_VALUE,
and	KEY_CREATE_SUB_KEY	access	rights.

winreg.KEY_READ

Combines	the	STANDARD_RIGHTS_READ,	KEY_QUERY_VALUE,
KEY_ENUMERATE_SUB_KEYS,	and	KEY_NOTIFY	values.

winreg.KEY_EXECUTE

Equivalent	to	KEY_READ.

winreg.KEY_QUERY_VALUE

http://msdn.microsoft.com/en-us/library/ms724878%28v=VS.85%29.aspx

Required	to	query	the	values	of	a	registry	key.

winreg.KEY_SET_VALUE

Required	to	create,	delete,	or	set	a	registry	value.

winreg.KEY_CREATE_SUB_KEY

Required	to	create	a	subkey	of	a	registry	key.

winreg.KEY_ENUMERATE_SUB_KEYS

Required	to	enumerate	the	subkeys	of	a	registry	key.

winreg.KEY_NOTIFY

Required	 to	 request	 change	 notifications	 for	 a	 registry	 key	 or	 for
subkeys	of	a	registry	key.

winreg.KEY_CREATE_LINK

Reserved	for	system	use.

34.3.2.2.1.	64-bit	Specific

For	more	information,	see	Accessing	an	Alternate	Registry	View.

winreg.KEY_WOW64_64KEY

Indicates	that	an	application	on	64-bit	Windows	should	operate	on
the	64-bit	registry	view.

winreg.KEY_WOW64_32KEY

Indicates	that	an	application	on	64-bit	Windows	should	operate	on
the	32-bit	registry	view.

34.3.2.3.	Value	Types

For	more	information,	see	Registry	Value	Types.

http://msdn.microsoft.com/en-us/library/aa384129(v=VS.85).aspx
http://msdn.microsoft.com/en-us/library/ms724884%28v=VS.85%29.aspx

winreg.REG_BINARY

Binary	data	in	any	form.

winreg.REG_DWORD

32-bit	number.

winreg.REG_DWORD_LITTLE_ENDIAN

A	32-bit	number	in	little-endian	format.

winreg.REG_DWORD_BIG_ENDIAN

A	32-bit	number	in	big-endian	format.

winreg.REG_EXPAND_SZ

Null-terminated	 string	 containing	 references	 to	 environment
variables	(%PATH%).

winreg.REG_LINK

A	Unicode	symbolic	link.

winreg.REG_MULTI_SZ

A	 sequence	 of	 null-terminated	 strings,	 terminated	 by	 two	 null
characters.	(Python	handles	this	termination	automatically.)

winreg.REG_NONE

No	defined	value	type.

winreg.REG_RESOURCE_LIST

A	device-driver	resource	list.

winreg.REG_FULL_RESOURCE_DESCRIPTOR

A	hardware	setting.

winreg.REG_RESOURCE_REQUIREMENTS_LIST

A	hardware	resource	list.

winreg.REG_SZ

A	null-terminated	string.

34.3.3.	Registry	Handle	Objects

This	 object	 wraps	 a	 Windows	 HKEY	 object,	 automatically	 closing	 it
when	 the	 object	 is	 destroyed.	 To	 guarantee	 cleanup,	 you	 can	 call
either	 the	 Close()	 method	 on	 the	 object,	 or	 the	 CloseKey()
function.

All	registry	functions	in	this	module	return	one	of	these	objects.

All	registry	functions	in	this	module	which	accept	a	handle	object	also
accept	an	integer,	however,	use	of	the	handle	object	is	encouraged.

Handle	objects	provide	semantics	for	__bool__()	–	thus

if	handle:

				print("Yes")

will	print	Yes	 if	 the	handle	 is	currently	valid	 (has	not	been	closed	or
detached).

The	object	also	support	comparison	semantics,	so	handle	objects	will
compare	 true	 if	 they	 both	 reference	 the	 same	 underlying	 Windows
handle	value.

Handle	objects	can	be	converted	to	an	integer	(e.g.,	using	the	built-in
int()	function),	in	which	case	the	underlying	Windows	handle	value
is	 returned.	 You	 can	 also	 use	 the	 Detach()	 method	 to	 return	 the
integer	 handle,	 and	 also	 disconnect	 the	 Windows	 handle	 from	 the
handle	object.

PyHKEY.Close()
Closes	the	underlying	Windows	handle.

If	the	handle	is	already	closed,	no	error	is	raised.

PyHKEY.Detach()
Detaches	the	Windows	handle	from	the	handle	object.

The	result	is	an	integer	that	holds	the	value	of	the	handle	before	it
is	detached.	 If	 the	 handle	 is	 already	 detached	or	 closed,	 this	will
return	zero.

After	calling	 this	 function,	 the	handle	 is	effectively	 invalidated,	but
the	 handle	 is	 not	 closed.	 You	 would	 call	 this	 function	 when	 you
need	 the	underlying	Win32	handle	 to	 exist	 beyond	 the	 lifetime	of
the	handle	object.

PyHKEY.__enter__()
PyHKEY.__exit__(*exc_info)

The	 HKEY	 object	 implements	 __enter__()	 and	 __exit__()
and	thus	supports	the	context	protocol	for	the	with	statement:

with	OpenKey(HKEY_LOCAL_MACHINE,	"foo")	as	key:

				...		#	work	with	key

will	automatically	close	key	when	control	leaves	the	with	block.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

http://www.python.org/

34.4.	winsound	—	Sound-playing
interface	for	Windows
The	 winsound	 module	 provides	 access	 to	 the	 basic	 sound-playing
machinery	 provided	 by	Windows	 platforms.	 It	 includes	 functions	 and
several	constants.

winsound.Beep(frequency,	duration)
Beep	 the	 PC’s	 speaker.	 The	 frequency	 parameter	 specifies
frequency,	 in	 hertz,	 of	 the	 sound,	 and	 must	 be	 in	 the	 range	 37
through	 32,767.	 The	 duration	 parameter	 specifies	 the	 number	 of
milliseconds	 the	 sound	 should	 last.	 If	 the	 system	 is	 not	 able	 to
beep	the	speaker,	RuntimeError	is	raised.

winsound.PlaySound(sound,	flags)
Call	the	underlying	PlaySound()	function	from	the	Platform	API.
The	sound	parameter	may	be	a	filename,	audio	data	as	a	string,	or
None.	 Its	 interpretation	depends	on	 the	value	of	 flags,	which	can
be	a	bitwise	ORed	combination	of	the	constants	described	below.	If
the	 sound	 parameter	 is	 None,	 any	 currently	 playing	 waveform
sound	is	stopped.	If	the	system	indicates	an	error,	RuntimeError
is	raised.

winsound.MessageBeep(type=MB_OK)
Call	 the	 underlying	 MessageBeep()	 function	 from	 the	 Platform
API.	 This	 plays	 a	 sound	 as	 specified	 in	 the	 registry.	 The	 type
argument	 specifies	which	 sound	 to	 play;	 possible	 values	 are	 -1,
MB_ICONASTERISK,	 MB_ICONEXCLAMATION,	 MB_ICONHAND,
MB_ICONQUESTION,	 and	 MB_OK,	 all	 described	 below.	 The	 value

-1	 produces	 a	 “simple	 beep”;	 this	 is	 the	 final	 fallback	 if	 a	 sound
cannot	be	played	otherwise.

winsound.SND_FILENAME

The	sound	parameter	 is	 the	name	of	a	WAV	file.	Do	not	use	with
SND_ALIAS.

winsound.SND_ALIAS

The	 sound	 parameter	 is	 a	 sound	 association	 name	 from	 the
registry.	 If	 the	 registry	 contains	 no	 such	 name,	 play	 the	 system
default	 sound	 unless	 SND_NODEFAULT	 is	 also	 specified.	 If	 no
default	sound	is	registered,	raise	RuntimeError.	Do	not	use	with
SND_FILENAME.

All	 Win32	 systems	 support	 at	 least	 the	 following;	 most	 systems
support	many	more:

PlaySound()	name Corresponding	Control	Panel
Sound	name

'SystemAsterisk' Asterisk

'SystemExclamation' Exclamation

'SystemExit' Exit	Windows

'SystemHand' Critical	Stop

'SystemQuestion' Question

For	example:

import	winsound

#	Play	Windows	exit	sound.

winsound.PlaySound("SystemExit",	winsound.SND_ALIAS

#	Probably	play	Windows	default	sound,	if	any	is	registered	(because

#	"*"	probably	isn't	the	registered	name	of	any	sound).

winsound.PlaySound("*",	winsound.SND_ALIAS)

winsound.SND_LOOP

Play	 the	 sound	 repeatedly.	 The	 SND_ASYNC	 flag	 must	 also	 be
used	to	avoid	blocking.	Cannot	be	used	with	SND_MEMORY.

winsound.SND_MEMORY

The	sound	 parameter	 to	 PlaySound()	 is	 a	memory	 image	 of	 a
WAV	file,	as	a	string.

Note: 	 This	 module	 does	 not	 support	 playing	 from	 a	 memory
image	 asynchronously,	 so	 a	 combination	 of	 this	 flag	 and
SND_ASYNC	will	raise	RuntimeError.

winsound.SND_PURGE

Stop	playing	all	instances	of	the	specified	sound.

Note: 	This	flag	is	not	supported	on	modern	Windows	platforms.

winsound.SND_ASYNC

Return	immediately,	allowing	sounds	to	play	asynchronously.

winsound.SND_NODEFAULT

If	 the	 specified	 sound	 cannot	 be	 found,	 do	 not	 play	 the	 system
default	sound.

winsound.SND_NOSTOP

Do	not	interrupt	sounds	currently	playing.

winsound.SND_NOWAIT

Return	immediately	if	the	sound	driver	is	busy.

Note: 	This	flag	is	not	supported	on	modern	Windows	platforms.

winsound.MB_ICONASTERISK

Play	the	SystemDefault	sound.

winsound.MB_ICONEXCLAMATION

Play	the	SystemExclamation	sound.

winsound.MB_ICONHAND

Play	the	SystemHand	sound.

winsound.MB_ICONQUESTION

Play	the	SystemQuestion	sound.

winsound.MB_OK

Play	the	SystemDefault	sound.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	34.	MS	Windows	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

35.	Unix	Specific	Services
The	modules	described	 in	 this	 chapter	 provide	 interfaces	 to	 features
that	 are	 unique	 to	 the	 Unix	 operating	 system,	 or	 in	 some	 cases	 to
some	or	many	variants	of	it.	Here’s	an	overview:

35.1.	posix	—	The	most	common	POSIX	system	calls
35.1.1.	Large	File	Support
35.1.2.	Notable	Module	Contents

35.2.	pwd	—	The	password	database
35.3.	spwd	—	The	shadow	password	database
35.4.	grp	—	The	group	database
35.5.	crypt	—	Function	to	check	Unix	passwords

35.5.1.	Hashing	Methods
35.5.2.	Module	Attributes
35.5.3.	Module	Functions
35.5.4.	Examples

35.6.	termios	—	POSIX	style	tty	control
35.6.1.	Example

35.7.	tty	—	Terminal	control	functions
35.8.	pty	—	Pseudo-terminal	utilities

35.8.1.	Example
35.9.	fcntl	—	The	fcntl	and	ioctl	system	calls
35.10.	pipes	—	Interface	to	shell	pipelines

35.10.1.	Template	Objects
35.11.	resource	—	Resource	usage	information

35.11.1.	Resource	Limits
35.11.2.	Resource	Usage

35.12.	nis	—	Interface	to	Sun’s	NIS	(Yellow	Pages)
35.13.	syslog	—	Unix	syslog	library	routines

35.13.1.	Examples
35.13.1.1.	Simple	example

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.1.	posix	—	The	most	common
POSIX	system	calls
This	module	provides	access	to	operating	system	functionality	 that	 is
standardized	 by	 the	 C	 Standard	 and	 the	 POSIX	 standard	 (a	 thinly
disguised	Unix	interface).

Do	not	import	this	module	directly.	Instead,	 import	 the	module	os,
which	 provides	 a	portable	 version	 of	 this	 interface.	On	Unix,	 the	 os
module	 provides	 a	 superset	 of	 the	 posix	 interface.	 On	 non-Unix
operating	systems	the	posix	module	is	not	available,	but	a	subset	is
always	available	through	the	os	interface.	Once	os	is	imported,	there
is	no	performance	penalty	in	using	it	instead	of	posix.	In	addition,	os
provides	 some	 additional	 functionality,	 such	 as	 automatically	 calling
putenv()	when	an	entry	in	os.environ	is	changed.

Errors	are	reported	as	exceptions;	 the	usual	exceptions	are	given	for
type	errors,	while	errors	reported	by	the	system	calls	raise	OSError.

35.1.1.	Large	File	Support

Several	 operating	 systems	 (including	 AIX,	 HP-UX,	 Irix	 and	 Solaris)
provide	 support	 for	 files	 that	 are	 larger	 than	 2	 GiB	 from	 a	 C
programming	model	where	 int	and	long	 are	 32-bit	 values.	 This	 is
typically	accomplished	by	defining	the	relevant	size	and	offset	types	as
64-bit	values.	Such	files	are	sometimes	referred	to	as	large	files.

Large	file	support	is	enabled	in	Python	when	the	size	of	an	off_t	is
larger	 than	 a	 long	 and	 the	 long	long	 type	 is	 available	 and	 is	 at
least	 as	 large	 as	 an	 off_t.	 It	 may	 be	 necessary	 to	 configure	 and
compile	 Python	with	 certain	 compiler	 flags	 to	 enable	 this	mode.	 For
example,	 it	 is	enabled	by	default	with	recent	versions	of	 Irix,	but	with
Solaris	2.6	and	2.7	you	need	to	do	something	like:

CFLAGS="`getconf	LFS_CFLAGS`"	OPT="-g	-O2	$CFLAGS"	\

								./configure

On	large-file-capable	Linux	systems,	this	might	work:

CFLAGS='-D_LARGEFILE64_SOURCE	-D_FILE_OFFSET_BITS=64'

								./configure

35.1.2.	Notable	Module	Contents

In	 addition	 to	 many	 functions	 described	 in	 the	 os	 module
documentation,	posix	defines	the	following	data	item:

posix.environ

A	 dictionary	 representing	 the	 string	 environment	 at	 the	 time	 the
interpreter	was	started.	Keys	and	values	are	bytes	on	Unix	and	str
on	 Windows.	 For	 example,	 environ[b'HOME']

(environ['HOME']	on	Windows)	 is	 the	pathname	of	your	home
directory,	equivalent	to	getenv("HOME")	in	C.

Modifying	 this	 dictionary	 does	 not	 affect	 the	 string	 environment
passed	 on	 by	 execv(),	 popen()	 or	 system();	 if	 you	 need	 to
change	 the	 environment,	 pass	 environ	 to	 execve()	 or	 add
variable	assignments	and	export	statements	to	the	command	string
for	system()	or	popen().

Changed	in	version	3.2:	On	Unix,	keys	and	values	are	bytes.

Note: 	The	os	module	provides	an	alternate	 implementation	of
environ	which	updates	 the	environment	on	modification.	Note
also	 that	 updating	 os.environ	 will	 render	 this	 dictionary
obsolete.	Use	of	the	os	module	version	of	this	is	recommended
over	direct	access	to	the	posix	module.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.2.	pwd	—	The	password
database
This	module	provides	access	to	the	Unix	user	account	and	password
database.	It	is	available	on	all	Unix	versions.

Password	database	entries	are	reported	as	a	tuple-like	object,	whose
attributes	 correspond	 to	 the	 members	 of	 the	 passwd	 structure
(Attribute	field	below,	see	<pwd.h>):

Index Attribute Meaning

0 pw_name Login	name

1 pw_passwd Optional	encrypted	password

2 pw_uid Numerical	user	ID

3 pw_gid Numerical	group	ID

4 pw_gecos User	name	or	comment	field

5 pw_dir User	home	directory

6 pw_shell User	command	interpreter

The	uid	and	gid	items	are	integers,	all	others	are	strings.	KeyError	is
raised	if	the	entry	asked	for	cannot	be	found.

Note: 	In	traditional	Unix	the	field	pw_passwd	usually	contains	a
password	encrypted	with	a	DES	derived	algorithm	(see	module
crypt).	However	most	modern	unices	use	a	so-called	shadow
password	system.	On	those	unices	the	pw_passwd	field	only
contains	an	asterisk	('*')	or	the	letter	'x'	where	the	encrypted
password	is	stored	in	a	file	/etc/shadow	which	is	not	world

readable.	Whether	the	pw_passwd	field	contains	anything	useful	is
system-dependent.	If	available,	the	spwd	module	should	be	used
where	access	to	the	encrypted	password	is	required.

It	defines	the	following	items:

pwd.getpwuid(uid)
Return	the	password	database	entry	for	the	given	numeric	user	ID.

pwd.getpwnam(name)
Return	the	password	database	entry	for	the	given	user	name.

pwd.getpwall()
Return	a	list	of	all	available	password	database	entries,	in	arbitrary
order.

See	also:

Module	grp
An	interface	to	the	group	database,	similar	to	this.

Module	spwd
An	interface	to	the	shadow	password	database,	similar	to	this.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.3.	spwd	—	The	shadow
password	database
This	module	provides	access	to	the	Unix	shadow	password	database.
It	is	available	on	various	Unix	versions.

You	 must	 have	 enough	 privileges	 to	 access	 the	 shadow	 password
database	(this	usually	means	you	have	to	be	root).

Shadow	password	database	entries	are	reported	as	a	tuple-like	object,
whose	 attributes	 correspond	 to	 the	 members	 of	 the	 spwd	 structure
(Attribute	field	below,	see	<shadow.h>):

Index Attribute Meaning

0 sp_namp Login	name

1 sp_pwdp Encrypted	password

2 sp_lstchg Date	of	last	change

3 sp_min
Minimal	number	of	days	between
changes

4 sp_max
Maximum	number	of	days	between
changes

5 sp_warn
Number	of	days	before	password
expires	to	warn	user	about	it

6 sp_inact
Number	of	days	after	password	expires
until	account	is	disabled

7 sp_expire
Number	of	days	since	1970-01-01
when	account	expires

8 sp_flag Reserved

The	sp_namp	and	sp_pwdp	items	are	strings,	all	others	are	integers.
KeyError	is	raised	if	the	entry	asked	for	cannot	be	found.

The	following	functions	are	defined:

spwd.getspnam(name)
Return	 the	 shadow	 password	 database	 entry	 for	 the	 given	 user
name.

spwd.getspall()
Return	a	list	of	all	available	shadow	password	database	entries,	in
arbitrary	order.

See	also:

Module	grp
An	interface	to	the	group	database,	similar	to	this.

Module	pwd
An	interface	to	the	normal	password	database,	similar	to	this.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.4.	grp	—	The	group	database

This	 module	 provides	 access	 to	 the	 Unix	 group	 database.	 It	 is
available	on	all	Unix	versions.

Group	 database	 entries	 are	 reported	 as	 a	 tuple-like	 object,	 whose
attributes	correspond	to	the	members	of	the	group	structure	(Attribute
field	below,	see	<pwd.h>):

Index Attribute Meaning

0 gr_name the	name	of	the	group

1 gr_passwd the	(encrypted)	group	password;	often
empty

2 gr_gid the	numerical	group	ID

3 gr_mem all	the	group	member’s	user	names

The	 gid	 is	 an	 integer,	 name	 and	 password	 are	 strings,	 and	 the
member	list	is	a	list	of	strings.	(Note	that	most	users	are	not	explicitly
listed	as	members	of	the	group	they	are	in	according	to	the	password
database.	 Check	 both	 databases	 to	 get	 complete	 membership
information.	Also	note	that	a	gr_name	that	starts	with	a	+	or	-	is	likely
to	be	a	YP/NIS	reference	and	may	not	be	accessible	via	getgrnam()
or	getgrgid().)

It	defines	the	following	items:

grp.getgrgid(gid)
Return	 the	group	database	entry	 for	 the	given	numeric	 group	 ID.
KeyError	is	raised	if	the	entry	asked	for	cannot	be	found.

grp.getgrnam(name)
Return	 the	 group	 database	 entry	 for	 the	 given	 group	 name.
KeyError	is	raised	if	the	entry	asked	for	cannot	be	found.

grp.getgrall()
Return	a	list	of	all	available	group	entries,	in	arbitrary	order.

See	also:

Module	pwd
An	interface	to	the	user	database,	similar	to	this.

Module	spwd
An	interface	to	the	shadow	password	database,	similar	to	this.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.5.	crypt	—	Function	to	check
Unix	passwords
This	module	implements	an	interface	to	the	crypt(3)	routine,	which	is	a
one-way	hash	function	based	upon	a	modified	DES	algorithm;	see	the
Unix	 man	 page	 for	 further	 details.	 Possible	 uses	 include	 storing
hashed	 passwords	 so	 you	 can	 check	 passwords	without	 storing	 the
actual	 password,	 or	 attempting	 to	 crack	 Unix	 passwords	 with	 a
dictionary.

Notice	 that	 the	 behavior	 of	 this	 module	 depends	 on	 the	 actual
implementation	 of	 the	 crypt(3)	 routine	 in	 the	 running	 system.
Therefore,	any	extensions	available	on	the	current	implementation	will
also	be	available	on	this	module.

35.5.1.	Hashing	Methods

New	in	version	3.3.

The	 crypt	 module	 defines	 the	 list	 of	 hashing	 methods	 (not	 all
methods	are	available	on	all	platforms):

crypt.METHOD_SHA512

A	 Modular	 Crypt	 Format	 method	 with	 16	 character	 salt	 and	 86
character	hash.	This	is	the	strongest	method.

crypt.METHOD_SHA256

Another	Modular	Crypt	Format	method	with	16	character	salt	and
43	character	hash.

crypt.METHOD_MD5

Another	Modular	Crypt	Format	method	with	8	character	salt	and	22
character	hash.

crypt.METHOD_CRYPT

The	traditional	method	with	a	2	character	salt	and	13	characters	of
hash.	This	is	the	weakest	method.

35.5.2.	Module	Attributes

New	in	version	3.3.

crypt.methods

A	 list	 of	 available	 password	 hashing	 algorithms,	 as
crypt.METHOD_*	 objects.	 This	 list	 is	 sorted	 from	 strongest	 to
weakest,	 and	 is	 guaranteed	 to	 have	 at	 least
crypt.METHOD_CRYPT.

35.5.3.	Module	Functions

The	crypt	module	defines	the	following	functions:

crypt.crypt(word,	salt=None)
word	will	usually	be	a	user’s	password	as	typed	at	a	prompt	or	in	a
graphical	 interface.	The	optional	salt	 is	either	a	string	as	 returned
from	mksalt(),	one	of	the	crypt.METHOD_*	values	(though	not
all	may	be	available	on	all	platforms),	or	a	full	encrypted	password
including	salt,	 as	 returned	by	 this	 function.	 If	salt	 is	 not	 provided,
the	strongest	method	will	be	used	(as	returned	by	methods().

Checking	 a	 password	 is	 usually	 done	 by	 passing	 the	 plain-text
password	as	word	and	the	full	results	of	a	previous	crypt()	call,
which	should	be	the	same	as	the	results	of	this	call.

salt	(either	a	random	2	or	16	character	string,	possibly	prefixed	with
$digit$	to	indicate	the	method)	which	will	be	used	to	perturb	the
encryption	 algorithm.	 The	 characters	 in	 salt	 must	 be	 in	 the	 set
[./a-zA-Z0-9],	 with	 the	 exception	 of	 Modular	 Crypt	 Format
which	prefixes	a	$digit$.

Returns	the	hashed	password	as	a	string,	which	will	be	composed
of	characters	from	the	same	alphabet	as	the	salt.

Since	a	few	crypt(3)	extensions	allow	different	values,	with	different
sizes	 in	 the	 salt,	 it	 is	 recommended	 to	 use	 the	 full	 crypted
password	as	salt	when	checking	for	a	password.

Changed	 in	 version	 3.3:	 Accept	 crypt.METHOD_*	 values	 in
addition	to	strings	for	salt.

crypt.mksalt(method=None)
Return	 a	 randomly	 generated	 salt	 of	 the	 specified	 method.	 If	 no
method	 is	 given,	 the	 strongest	 method	 available	 as	 returned	 by
methods()	is	used.

The	 return	 value	 is	 a	 string	 either	 of	 2	 characters	 in	 length	 for
crypt.METHOD_CRYPT,	 or	 19	 characters	 starting	with	 $digit$
and	16	random	characters	from	the	set	[./a-zA-Z0-9],	suitable
for	passing	as	the	salt	argument	to	crypt().

New	in	version	3.3.

35.5.4.	Examples

A	simple	example	 illustrating	 typical	use	(a	constant-time	comparison
operation	 is	 needed	 to	 limit	 exposure	 to	 timing	 attacks.
hmac.compare_digest()	is	suitable	for	this	purpose):

import	pwd

import	crypt

import	getpass

from	hmac	import	compare_digest	as	compare_hash

def	login():

				username	=	input('Python	login:	')

				cryptedpasswd	=	pwd.getpwnam(username)[1]

				if	cryptedpasswd:

								if	cryptedpasswd	==	'x'	or	cryptedpasswd	==	

												raise	ValueError('no	support	for	shadow	passwords'

								cleartext	=	getpass.getpass()

								return	compare_hash(crypt.crypt(cleartext,	cryptedpasswd

				else:

								return	True

To	 generate	 a	 hash	 of	 a	 password	 using	 the	 strongest	 available
method	and	check	it	against	the	original:

import	crypt

from	hmac	import	compare_digest	as	compare_hash

hashed	=	crypt.crypt(plaintext)

if	not	compare_hash(hashed,	crypt.crypt(plaintext,	hashed

			raise	ValueError("hashed	version	doesn't	validate	against	original"

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.6.	termios	—	POSIX	style	tty
control
This	 module	 provides	 an	 interface	 to	 the	 POSIX	 calls	 for	 tty	 I/O
control.	For	 a	 complete	description	of	 these	 calls,	 see	 the	POSIX	or
Unix	manual	 pages.	 It	 is	 only	 available	 for	 those	 Unix	 versions	 that
support	POSIX	termios	style	tty	I/O	control	(and	then	only	if	configured
at	installation	time).

All	 functions	 in	 this	 module	 take	 a	 file	 descriptor	 fd	 as	 their	 first
argument.	This	can	be	an	 integer	 file	descriptor,	such	as	returned	by
sys.stdin.fileno(),	or	a	file	object,	such	as	sys.stdin	itself.

This	module	 also	 defines	 all	 the	 constants	 needed	 to	 work	 with	 the
functions	 provided	 here;	 these	 have	 the	 same	 name	 as	 their
counterparts	in	C.	Please	refer	to	your	system	documentation	for	more
information	on	using	these	terminal	control	interfaces.

The	module	defines	the	following	functions:

termios.tcgetattr(fd)
Return	 a	 list	 containing	 the	 tty	 attributes	 for	 file	 descriptor	 fd,	 as
follows:	 [iflag,	 oflag,	 cflag,	 lflag,	 ispeed,

ospeed,	cc]	where	cc	is	a	list	of	the	tty	special	characters	(each
a	 string	 of	 length	 1,	 except	 the	 items	 with	 indices	 VMIN	 and
VTIME,	 which	 are	 integers	 when	 these	 fields	 are	 defined).	 The
interpretation	of	the	flags	and	the	speeds	as	well	as	the	indexing	in
the	cc	array	must	be	done	using	the	symbolic	constants	defined	in
the	termios	module.

termios.tcsetattr(fd,	when,	attributes)
Set	the	tty	attributes	for	file	descriptor	fd	from	the	attributes,	which
is	 a	 list	 like	 the	 one	 returned	 by	 tcgetattr().	 The	 when
argument	determines	when	 the	attributes	are	 changed:	 TCSANOW
to	change	immediately,	TCSADRAIN	to	change	after	transmitting	all
queued	 output,	 or	 TCSAFLUSH	 to	 change	 after	 transmitting	 all
queued	output	and	discarding	all	queued	input.

termios.tcsendbreak(fd,	duration)
Send	a	break	on	 file	descriptor	 fd.	A	zero	duration	sends	a	break
for	0.25	–0.5	seconds;	a	nonzero	duration	has	a	system	dependent
meaning.

termios.tcdrain(fd)
Wait	 until	 all	 output	 written	 to	 file	 descriptor	 fd	 has	 been
transmitted.

termios.tcflush(fd,	queue)
Discard	 queued	 data	 on	 file	 descriptor	 fd.	 The	 queue	 selector
specifies	which	queue:	TCIFLUSH	for	the	input	queue,	TCOFLUSH
for	the	output	queue,	or	TCIOFLUSH	for	both	queues.

termios.tcflow(fd,	action)
Suspend	or	resume	input	or	output	on	file	descriptor	fd.	The	action
argument	 can	 be	 TCOOFF	 to	 suspend	 output,	 TCOON	 to	 restart
output,	TCIOFF	to	suspend	input,	or	TCION	to	restart	input.

See	also:

Module	tty
Convenience	functions	for	common	terminal	control	operations.

35.6.1.	Example

Here’s	a	function	that	prompts	for	a	password	with	echoing	turned	off.
Note	the	technique	using	a	separate	tcgetattr()	call	and	a	try	...
finally	 statement	 to	ensure	 that	 the	old	 tty	attributes	are	 restored
exactly	no	matter	what	happens:

def	getpass(prompt="Password:	"):

				import	termios,	sys

				fd	=	sys.stdin.fileno()

				old	=	termios.tcgetattr(fd)

				new	=	termios.tcgetattr(fd)

				new[3]	=	new[3]	&	~termios.ECHO										#	lflags

				try:

								termios.tcsetattr(fd,	termios.TCSADRAIN,	new

								passwd	=	input(prompt)

				finally:

								termios.tcsetattr(fd,	termios.TCSADRAIN,	old

				return	passwd

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.7.	tty	—	Terminal	control
functions
The	tty	module	defines	 functions	 for	putting	 the	 tty	 into	cbreak	and
raw	modes.

Because	it	requires	the	termios	module,	it	will	work	only	on	Unix.

The	tty	module	defines	the	following	functions:

tty.setraw(fd,	when=termios.TCSAFLUSH)
Change	the	mode	of	the	file	descriptor	fd	to	raw.	If	when	is	omitted,
it	 defaults	 to	 termios.TCSAFLUSH,	 and	 is	 passed	 to
termios.tcsetattr().

tty.setcbreak(fd,	when=termios.TCSAFLUSH)
Change	the	mode	of	file	descriptor	fd	to	cbreak.	If	when	is	omitted,
it	 defaults	 to	 termios.TCSAFLUSH,	 and	 is	 passed	 to
termios.tcsetattr().

See	also:

Module	termios
Low-level	terminal	control	interface.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.8.	pty	—	Pseudo-terminal
utilities
The	pty	module	defines	operations	for	handling	the	pseudo-terminal
concept:	starting	another	process	and	being	able	to	write	to	and	read
from	its	controlling	terminal	programmatically.

Because	pseudo-terminal	handling	is	highly	platform	dependent,	there
is	code	to	do	it	only	for	Linux.	(The	Linux	code	is	supposed	to	work	on
other	platforms,	but	hasn’t	been	tested	yet.)

The	pty	module	defines	the	following	functions:

pty.fork()
Fork.	Connect	the	child’s	controlling	terminal	to	a	pseudo-terminal.
Return	value	is	(pid,	fd).	Note	that	the	child	gets	pid	0,	and	the
fd	is	invalid.	The	parent’s	return	value	is	the	pid	of	the	child,	and	fd
is	a	file	descriptor	connected	to	the	child’s	controlling	terminal	(and
also	to	the	child’s	standard	input	and	output).

pty.openpty()
Open	 a	 new	 pseudo-terminal	 pair,	 using	 os.openpty()	 if
possible,	or	emulation	code	for	generic	Unix	systems.	Return	a	pair
of	 file	 descriptors	 (master,	 slave),	 for	 the	 master	 and	 the
slave	end,	respectively.

pty.spawn(argv[,	master_read[,	stdin_read]])
Spawn	 a	 process,	 and	 connect	 its	 controlling	 terminal	 with	 the
current	process’s	standard	io.	This	is	often	used	to	baffle	programs
which	insist	on	reading	from	the	controlling	terminal.

The	 functions	 master_read	 and	 stdin_read	 should	 be	 functions
which	 read	 from	 a	 file	 descriptor.	 The	 defaults	 try	 to	 read	 1024
bytes	each	time	they	are	called.

Changed	 in	 version	 3.4:	 spawn()	 now	 returns	 the	 status	 value
from	os.waitpid()	on	the	child	process.

35.8.1.	Example

The	 following	program	acts	 like	 the	Unix	command	script(1),	using	a
pseudo-terminal	to	record	all	input	and	output	of	a	terminal	session	in
a	“typescript”.

import	sys,	os,	time,	getopt

import	pty

mode	=	'wb'

shell	=	'sh'

filename	=	'typescript'

if	'SHELL'	in	os.environ:

				shell	=	os.environ['SHELL']

try:

				opts,	args	=	getopt.getopt(sys.argv[1:],	'ap')

except	getopt.error	as	msg:

				print('%s:	%s'	%	(sys.argv[0],	msg))

				sys.exit(2)

for	opt,	arg	in	opts:

				#	option	-a:	append	to	typescript	file

				if	opt	==	'-a':

								mode	=	'ab'

				#	option	-p:	use	a	Python	shell	as	the	terminal	command

				elif	opt	==	'-p':

								shell	=	sys.executable

if	args:

				filename	=	args[0]

script	=	open(filename,	mode)

def	read(fd):

				data	=	os.read(fd,	1024)

				script.write(data)

				return	data

sys.stdout.write('Script	started,	file	is	%s\n'	%	filename

script.write(('Script	started	on	%s\n'	%	time.asctime

pty.spawn(shell,	read)

script.write(('Script	done	on	%s\n'	%	time.asctime())

sys.stdout.write('Script	done,	file	is	%s\n'	%	filename

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.9.	fcntl	—	The	fcntl	and
ioctl	system	calls

This	module	performs	file	control	and	I/O	control	on	file	descriptors.	It
is	an	interface	to	the	fcntl()	and	ioctl()	Unix	routines.

All	 functions	 in	 this	 module	 take	 a	 file	 descriptor	 fd	 as	 their	 first
argument.	This	can	be	an	 integer	 file	descriptor,	such	as	returned	by
sys.stdin.fileno(),	 or	 a	 io.IOBase	 object,	 such	 as
sys.stdin	itself,	which	provides	a	fileno()	that	returns	a	genuine
file	descriptor.

Changed	 in	 version	 3.3:	Operations	 in	 this	 module	 used	 to	 raise	 a
IOError	where	they	now	raise	a	OSError.

The	module	defines	the	following	functions:

fcntl.fcntl(fd,	op[,	arg])
Perform	the	operation	op	on	file	descriptor	fd	(file	objects	providing
a	fileno()	method	are	accepted	as	well).	The	values	used	for	op
are	operating	system	dependent,	and	are	available	as	constants	in
the	fcntl	module,	using	the	same	names	as	used	in	the	relevant
C	header	 files.	The	argument	arg	 is	 optional,	 and	 defaults	 to	 the
integer	value	0.	When	present,	it	can	either	be	an	integer	value,	or
a	string.	With	the	argument	missing	or	an	integer	value,	the	return
value	of	this	function	is	the	integer	return	value	of	the	C	fcntl()
call.	When	the	argument	is	a	string	it	represents	a	binary	structure,
e.g.	 created	by	 struct.pack().	 The	binary	data	 is	 copied	 to	a
buffer	whose	address	is	passed	to	the	C	fcntl()	call.	The	return

value	after	a	successful	call	is	the	contents	of	the	buffer,	converted
to	a	string	object.	The	length	of	the	returned	string	will	be	the	same
as	the	length	of	the	arg	argument.	This	is	limited	to	1024	bytes.	If
the	 information	 returned	 in	 the	 buffer	 by	 the	 operating	 system	 is
larger	 than	 1024	 bytes,	 this	 is	 most	 likely	 to	 result	 in	 a
segmentation	violation	or	a	more	subtle	data	corruption.

If	the	fcntl()	fails,	an	OSError	is	raised.

fcntl.ioctl(fd,	op[,	arg[,	mutate_flag]])
This	function	is	 identical	 to	the	fcntl()	 function,	except	 that	 the
argument	handling	is	even	more	complicated.

The	 op	 parameter	 is	 limited	 to	 values	 that	 can	 fit	 in	 32-bits.
Additional	constants	of	interest	for	use	as	the	op	argument	can	be
found	in	the	termios	module,	under	the	same	names	as	used	in
the	relevant	C	header	files.

The	 parameter	 arg	 can	 be	 one	 of	 an	 integer,	 absent	 (treated
identically	 to	 the	 integer	 0),	 an	 object	 supporting	 the	 read-only
buffer	 interface	 (most	 likely	 a	 plain	 Python	 string)	 or	 an	 object
supporting	the	read-write	buffer	interface.

In	all	but	the	last	case,	behaviour	is	as	for	the	fcntl()	function.

If	a	mutable	buffer	is	passed,	then	the	behaviour	is	determined	by
the	value	of	the	mutate_flag	parameter.

If	it	is	false,	the	buffer’s	mutability	is	ignored	and	behaviour	is	as	for
a	read-only	buffer,	except	that	the	1024	byte	limit	mentioned	above
is	avoided	–	so	long	as	the	buffer	you	pass	is	as	least	as	long	as
what	the	operating	system	wants	to	put	there,	things	should	work.

If	mutate_flag	 is	 true	 (the	 default),	 then	 the	 buffer	 is	 (in	 effect)
passed	 to	 the	underlying	ioctl()	 system	call,	 the	 latter’s	 return
code	 is	 passed	 back	 to	 the	 calling	 Python,	 and	 the	 buffer’s	 new
contents	 reflect	 the	 action	 of	 the	 ioctl().	 This	 is	 a	 slight
simplification,	because	if	the	supplied	buffer	is	less	than	1024	bytes
long	 it	 is	 first	 copied	 into	a	static	buffer	1024	bytes	 long	which	 is
then	passed	to	ioctl()	and	copied	back	into	the	supplied	buffer.

An	example:

>>>	import	array,	fcntl,	struct,	termios,	os

>>>	os.getpgrp()

13341

>>>	struct.unpack('h',	fcntl.ioctl(0,	termios.TIOCGPGRP

13341

>>>	buf	=	array.array('h',	[0])

>>>	fcntl.ioctl(0,	termios.TIOCGPGRP,	buf,	1)

0

>>>	buf

array('h',	[13341])

fcntl.flock(fd,	op)
Perform	 the	 lock	 operation	 op	 on	 file	 descriptor	 fd	 (file	 objects
providing	a	fileno()	method	are	accepted	as	well).	See	the	Unix
manual	 flock(2)	 for	 details.	 (On	 some	 systems,	 this	 function	 is
emulated	using	fcntl().)

fcntl.lockf(fd,	operation[,	length[,	start[,	whence]]])
This	is	essentially	a	wrapper	around	the	fcntl()	locking	calls.	fd
is	 the	 file	descriptor	of	 the	 file	 to	 lock	or	unlock,	and	operation	 is
one	of	the	following	values:

LOCK_UN	–	unlock

LOCK_SH	–	acquire	a	shared	lock
LOCK_EX	–	acquire	an	exclusive	lock

When	operation	 is	 LOCK_SH	 or	 LOCK_EX,	 it	 can	 also	 be	 bitwise
ORed	 with	 LOCK_NB	 to	 avoid	 blocking	 on	 lock	 acquisition.	 If
LOCK_NB	 is	 used	and	 the	 lock	 cannot	be	acquired,	 an	 OSError
will	be	raised	and	the	exception	will	have	an	errno	attribute	set	 to
EACCES	 or	 EAGAIN	 (depending	 on	 the	 operating	 system;	 for
portability,	 check	 for	 both	 values).	 On	 at	 least	 some	 systems,
LOCK_EX	 can	 only	 be	 used	 if	 the	 file	 descriptor	 refers	 to	 a	 file
opened	for	writing.

length	 is	 the	 number	 of	 bytes	 to	 lock,	 start	 is	 the	 byte	 offset	 at
which	 the	 lock	 starts,	 relative	 to	whence,	 and	whence	 is	 as	 with
io.IOBase.seek(),	specifically:

0	–	relative	to	the	start	of	the	file	(os.SEEK_SET)
1	–	relative	to	the	current	buffer	position	(os.SEEK_CUR)
2	–	relative	to	the	end	of	the	file	(os.SEEK_END)

The	default	for	start	 is	0,	which	means	to	start	at	the	beginning	of
the	file.	The	default	for	 length	is	0	which	means	to	lock	to	the	end
of	the	file.	The	default	for	whence	is	also	0.

Examples	(all	on	a	SVR4	compliant	system):

import	struct,	fcntl,	os

f	=	open(...)

rv	=	fcntl.fcntl(f,	fcntl.F_SETFL,	os.O_NDELAY)

lockdata	=	struct.pack('hhllhh',	fcntl.F_WRLCK,	0,	0

rv	=	fcntl.fcntl(f,	fcntl.F_SETLKW,	lockdata)

Note	that	 in	 the	first	example	the	return	value	variable	rv	will	hold	an
integer	 value;	 in	 the	 second	 example	 it	 will	 hold	 a	 string	 value.	 The
structure	 lay-out	 for	 the	 lockdata	 variable	 is	 system	 dependent	 —
therefore	using	the	flock()	call	may	be	better.

See	also:

Module	os
If	the	locking	flags	O_SHLOCK	and	O_EXLOCK	are	present	in	the
os	module	(on	BSD	only),	the	os.open()	function	provides	an
alternative	to	the	lockf()	and	flock()	functions.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.10.	pipes	—	Interface	to	shell
pipelines
Source	code:	Lib/pipes.py

The	 pipes	 module	 defines	 a	 class	 to	 abstract	 the	 concept	 of	 a
pipeline	—	a	sequence	of	converters	from	one	file	to	another.

Because	 the	 module	 uses	 /bin/sh	 command	 lines,	 a	 POSIX	 or
compatible	shell	for	os.system()	and	os.popen()	is	required.

The	pipes	module	defines	the	following	class:

class	pipes.Template
An	abstraction	of	a	pipeline.

Example:

>>>	import	pipes

>>>	t	=	pipes.Template()

>>>	t.append('tr	a-z	A-Z',	'--')

>>>	f	=	t.open('pipefile',	'w')

>>>	f.write('hello	world')

>>>	f.close()

>>>	open('pipefile').read()

'HELLO	WORLD'

http://hg.python.org/cpython/file/3.4/Lib/pipes.py

35.10.1.	Template	Objects

Template	objects	following	methods:

Template.reset()
Restore	a	pipeline	template	to	its	initial	state.

Template.clone()
Return	a	new,	equivalent,	pipeline	template.

Template.debug(flag)
If	 flag	 is	 true,	 turn	 debugging	 on.	 Otherwise,	 turn	 debugging	 off.
When	debugging	is	on,	commands	to	be	executed	are	printed,	and
the	shell	is	given	set	-x	command	to	be	more	verbose.

Template.append(cmd,	kind)
Append	a	new	action	at	the	end.	The	cmd	variable	must	be	a	valid
bourne	shell	command.	The	kind	variable	consists	of	two	letters.

The	 first	 letter	 can	be	either	 of	 '-'	 (which	means	 the	 command
reads	its	standard	input),	'f'	(which	means	the	commands	reads
a	 given	 file	 on	 the	 command	 line)	 or	 '.'	 (which	 means	 the
commands	reads	no	input,	and	hence	must	be	first.)

Similarly,	the	second	letter	can	be	either	of	'-'	(which	means	the
command	 writes	 to	 standard	 output),	 'f'	 (which	 means	 the
command	writes	a	file	on	the	command	line)	or	'.'	(which	means
the	command	does	not	write	anything,	and	hence	must	be	last.)

Template.prepend(cmd,	kind)
Add	 a	 new	 action	 at	 the	 beginning.	 See	 append()	 for
explanations	of	the	arguments.

Template.open(file,	mode)
Return	a	file-like	object,	open	to	file,	but	read	from	or	written	to	by
the	pipeline.	Note	that	only	one	of	'r',	'w'	may	be	given.

Template.copy(infile,	outfile)
Copy	infile	to	outfile	through	the	pipe.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.11.	resource	—	Resource
usage	information
This	module	provides	basic	mechanisms	for	measuring	and	controlling
system	resources	utilized	by	a	program.

Symbolic	 constants	 are	 used	 to	 specify	 particular	 system	 resources
and	 to	 request	usage	 information	about	either	 the	current	process	or
its	children.

An	OSError	is	raised	on	syscall	failure.

exception	resource.error
A	deprecated	alias	of	OSError.

Changed	in	version	3.3:	Following	PEP	3151,	this	class	was	made
an	alias	of	OSError.

http://www.python.org/dev/peps/pep-3151

35.11.1.	Resource	Limits

Resources	 usage	 can	 be	 limited	 using	 the	 setrlimit()	 function
described	below.	Each	resource	is	controlled	by	a	pair	of	limits:	a	soft
limit	 and	 a	 hard	 limit.	 The	 soft	 limit	 is	 the	 current	 limit,	 and	may	 be
lowered	 or	 raised	 by	 a	 process	 over	 time.	 The	 soft	 limit	 can	 never
exceed	 the	 hard	 limit.	 The	 hard	 limit	 can	 be	 lowered	 to	 any	 value
greater	 than	 the	 soft	 limit,	 but	 not	 raised.	 (Only	 processes	 with	 the
effective	UID	of	the	super-user	can	raise	a	hard	limit.)

The	 specific	 resources	 that	 can	 be	 limited	 are	 system	 dependent.
They	are	described	in	the	getrlimit(2)	man	page.	The	resources	 listed
below	are	supported	when	 the	underlying	operating	system	supports
them;	 resources	 which	 cannot	 be	 checked	 or	 controlled	 by	 the
operating	system	are	not	defined	in	this	module	for	those	platforms.

resource.RLIM_INFINITY

Constant	used	to	represent	the	the	limit	for	an	unlimited	resource.

resource.getrlimit(resource)
Returns	 a	 tuple	 (soft,	 hard)	 with	 the	 current	 soft	 and	 hard
limits	 of	 resource.	 Raises	 ValueError	 if	 an	 invalid	 resource	 is
specified,	or	error	if	the	underlying	system	call	fails	unexpectedly.

resource.setrlimit(resource,	limits)
Sets	 new	 limits	 of	 consumption	 of	 resource.	 The	 limits	 argument
must	be	a	tuple	(soft,	hard)	of	two	integers	describing	the	new
limits.	A	value	of	RLIM_INFINITY	can	be	used	to	request	a	 limit
that	is	unlimited.

Raises	ValueError	 if	an	invalid	resource	is	specified,	 if	 the	new

soft	limit	exceeds	the	hard	limit,	or	if	a	process	tries	to	raise	its	hard
limit.	 Specifying	 a	 limit	 of	 RLIM_INFINITY	 when	 the	 hard	 or
system	 limit	 for	 that	 resource	 is	 not	 unlimited	 will	 result	 in	 a
ValueError.	A	process	with	 the	effective	UID	of	super-user	can
request	any	valid	limit	value,	including	unlimited,	but	ValueError
will	 still	 be	 raised	 if	 the	 requested	 limit	 exceeds	 the	 system
imposed	limit.

setrlimit	 may	 also	 raise	 error	 if	 the	 underlying	 system	 call
fails.

resource.prlimit(pid,	resource[,	limits])
Combines	setrlimit()	and	getrlimit()	 in	one	function	and
supports	to	get	and	set	the	resources	limits	of	an	arbitrary	process.
If	pid	is	0,	then	the	call	applies	to	the	current	process.	resource	and
limits	 have	 the	 same	 meaning	 as	 in	 setrlimit(),	 except	 that
limits	is	optional.

When	 limits	 is	 not	 given	 the	 function	 returns	 the	 resource	 limit	of
the	 process	 pid.	 When	 limits	 is	 given	 the	 resource	 limit	 of	 the
process	is	set	and	the	former	resource	limit	is	returned.

Raises	 ProcessLookupError	 when	 pid	 can’t	 be	 found	 and
PermissionError	 when	 the	 user	 doesn’t	 have
CAP_SYS_RESOURCE	for	the	process.

Availability:	Linux	2.6.36	or	later	with	glibc	2.13	or	later

New	in	version	3.4.

These	 symbols	 define	 resources	 whose	 consumption	 can	 be
controlled	 using	 the	 setrlimit()	 and	 getrlimit()	 functions
described	 below.	 The	 values	 of	 these	 symbols	 are	 exactly	 the

constants	used	by	C	programs.

The	Unix	man	page	for	getrlimit(2)	 lists	the	available	resources.	Note
that	not	all	systems	use	the	same	symbol	or	same	value	to	denote	the
same	 resource.	 This	 module	 does	 not	 attempt	 to	 mask	 platform
differences	—	symbols	not	defined	for	a	platform	will	not	be	available
from	this	module	on	that	platform.

resource.RLIMIT_CORE

The	maximum	size	(in	bytes)	of	a	core	file	that	the	current	process
can	create.	This	may	result	in	the	creation	of	a	partial	core	file	if	a
larger	core	would	be	required	to	contain	the	entire	process	image.

resource.RLIMIT_CPU

The	 maximum	 amount	 of	 processor	 time	 (in	 seconds)	 that	 a
process	can	use.	If	this	limit	is	exceeded,	a	SIGXCPU	signal	is	sent
to	 the	 process.	 (See	 the	 signal	 module	 documentation	 for
information	about	how	to	catch	this	signal	and	do	something	useful,
e.g.	flush	open	files	to	disk.)

resource.RLIMIT_FSIZE

The	maximum	 size	 of	 a	 file	 which	 the	 process	may	 create.	 This
only	 affects	 the	 stack	 of	 the	 main	 thread	 in	 a	 multi-threaded
process.

resource.RLIMIT_DATA

The	maximum	size	(in	bytes)	of	the	process’s	heap.

resource.RLIMIT_STACK

The	 maximum	 size	 (in	 bytes)	 of	 the	 call	 stack	 for	 the	 current
process.

resource.RLIMIT_RSS

The	maximum	 resident	 set	 size	 that	 should	be	made	available	 to
the	process.

resource.RLIMIT_NPROC

The	 maximum	 number	 of	 processes	 the	 current	 process	 may
create.

resource.RLIMIT_NOFILE

The	 maximum	 number	 of	 open	 file	 descriptors	 for	 the	 current
process.

resource.RLIMIT_OFILE

The	BSD	name	for	RLIMIT_NOFILE.

resource.RLIMIT_MEMLOCK

The	maximum	address	space	which	may	be	locked	in	memory.

resource.RLIMIT_VMEM

The	 largest	 area	 of	 mapped	 memory	 which	 the	 process	 may
occupy.

resource.RLIMIT_AS

The	 maximum	 area	 (in	 bytes)	 of	 address	 space	 which	 may	 be
taken	by	the	process.

resource.RLIMIT_MSGQUEUE

The	 number	 of	 bytes	 that	 can	 be	 allocated	 for	 POSIX	 message
queues.

Availability:	Linux	2.6.8	or	later.

New	in	version	3.4.

resource.RLIMIT_NICE

The	ceiling	for	the	process’s	nice	level	(calculated	as	20	-	rlim_cur).

Availability:	Linux	2.6.12	or	later.

New	in	version	3.4.

resource.RLIMIT_RTPRIO

The	ceiling	of	the	real-time	priority.

Availability:	Linux	2.6.12	or	later.

New	in	version	3.4.

resource.RLIMIT_RTTIME

The	 time	 limit	 (in	microseconds)	on	CPU	 time	 that	a	process	can
spend	 under	 real-time	 scheduling	 without	 making	 a	 blocking
syscall.

Availability:	Linux	2.6.25	or	later.

New	in	version	3.4.

resource.RLIMIT_SIGPENDING

The	number	of	signals	which	the	process	may	queue.

Availability:	Linux	2.6.8	or	later.

New	in	version	3.4.

resource.RLIMIT_SBSIZE

The	maximum	size	 (in	bytes)	of	socket	buffer	usage	 for	 this	user.
This	limits	the	amount	of	network	memory,	and	hence	the	amount
of	mbufs,	that	this	user	may	hold	at	any	time.

Availability:	FreeBSD	9	or	later.

New	in	version	3.4.

resource.RLIMIT_SWAP

The	 maximum	 size	 (in	 bytes)	 of	 the	 swap	 space	 that	 may	 be
reserved	 or	 used	 by	 all	 of	 this	 user	 id’s	 processes.	 This	 limit	 is
enforced	only	if	bit	1	of	the	vm.overcommit	sysctl	is	set.	Please	see
tuning(7)	for	a	complete	description	of	this	sysctl.

Availability:	FreeBSD	9	or	later.

New	in	version	3.4.

resource.RLIMIT_NPTS

The	maximum	number	of	pseudo-terminals	created	by	this	user	id.

Availability:	FreeBSD	9	or	later.

New	in	version	3.4.

35.11.2.	Resource	Usage

These	functions	are	used	to	retrieve	resource	usage	information:

resource.getrusage(who)
This	 function	 returns	 an	 object	 that	 describes	 the	 resources
consumed	by	either	the	current	process	or	its	children,	as	specified
by	 the	 who	 parameter.	 The	who	 parameter	 should	 be	 specified
using	one	of	the	RUSAGE_*	constants	described	below.

The	 fields	 of	 the	 return	 value	 each	 describe	 how	 a	 particular
system	resource	has	been	used,	e.g.	amount	of	time	spent	running
is	user	mode	or	number	of	times	the	process	was	swapped	out	of
main	 memory.	 Some	 values	 are	 dependent	 on	 the	 clock	 tick
internal,	e.g.	the	amount	of	memory	the	process	is	using.

For	backward	compatibility,	the	return	value	is	also	accessible	as	a
tuple	of	16	elements.

The	 fields	 ru_utime	 and	 ru_stime	 of	 the	 return	 value	 are
floating	 point	 values	 representing	 the	 amount	 of	 time	 spent
executing	in	user	mode	and	the	amount	of	time	spent	executing	in
system	 mode,	 respectively.	 The	 remaining	 values	 are	 integers.
Consult	 the	getrusage(2)	man	page	 for	detailed	 information	about
these	values.	A	brief	summary	is	presented	here:

Index Field Resource

0 ru_utime time	in	user	mode	(float)

1 ru_stime time	in	system	mode	(float)

2 ru_maxrss maximum	resident	set	size

3 ru_ixrss shared	memory	size

4 ru_idrss unshared	memory	size

5 ru_isrss unshared	stack	size

6 ru_minflt page	faults	not	requiring	I/O

7 ru_majflt page	faults	requiring	I/O

8 ru_nswap number	of	swap	outs

9 ru_inblock block	input	operations

10 ru_oublock block	output	operations

11 ru_msgsnd messages	sent

12 ru_msgrcv messages	received

13 ru_nsignals signals	received

14 ru_nvcsw voluntary	context	switches

15 ru_nivcsw involuntary	context	switches

This	function	will	raise	a	ValueError	if	an	invalid	who	parameter
is	 specified.	 It	 may	 also	 raise	 error	 exception	 in	 unusual
circumstances.

resource.getpagesize()
Returns	the	number	of	bytes	in	a	system	page.	(This	need	not	be
the	 same	 as	 the	 hardware	 page	 size.)	 This	 function	 is	 useful	 for
determining	 the	 number	 of	 bytes	 of	 memory	 a	 process	 is	 using.
The	 third	 element	 of	 the	 tuple	 returned	 by	 getrusage()
describes	 memory	 usage	 in	 pages;	 multiplying	 by	 page	 size
produces	number	of	bytes.

The	 following	 RUSAGE_*	 symbols	 are	 passed	 to	 the	 getrusage()
function	to	specify	which	processes	information	should	be	provided	for.

resource.RUSAGE_SELF

Pass	 to	 getrusage()	 to	 request	 resources	 consumed	 by	 the
calling	process,	which	is	the	sum	of	resources	used	by	all	threads
in	the	process.

resource.RUSAGE_CHILDREN

Pass	 to	 getrusage()	 to	 request	 resources	 consumed	 by	 child
processes	of	 the	calling	process	which	have	been	terminated	and
waited	for.

resource.RUSAGE_BOTH

Pass	 to	 getrusage()	 to	 request	 resources	 consumed	 by	 both
the	current	process	and	child	processes.	May	not	be	available	on
all	systems.

resource.RUSAGE_THREAD

Pass	 to	 getrusage()	 to	 request	 resources	 consumed	 by	 the
current	thread.	May	not	be	available	on	all	systems.

New	in	version	3.2.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.12.	nis	—	Interface	to	Sun’s
NIS	(Yellow	Pages)
The	nis	module	gives	a	thin	wrapper	around	the	NIS	library,	useful	for
central	administration	of	several	hosts.

Because	 NIS	 exists	 only	 on	 Unix	 systems,	 this	 module	 is	 only
available	for	Unix.

The	nis	module	defines	the	following	functions:

nis.match(key,	mapname,	domain=default_domain)
Return	 the	 match	 for	 key	 in	 map	 mapname,	 or	 raise	 an	 error
(nis.error)	 if	 there	is	none.	Both	should	be	strings,	key	 is	8-bit
clean.	 Return	 value	 is	 an	 arbitrary	 array	 of	 bytes	 (may	 contain
NULL	and	other	joys).

Note	that	mapname	is	first	checked	if	it	is	an	alias	to	another	name.

The	domain	argument	allows	to	override	the	NIS	domain	used	for
the	lookup.	If	unspecified,	lookup	is	in	the	default	NIS	domain.

nis.cat(mapname,	domain=default_domain)
Return	a	dictionary	mapping	key	 to	value	such	 that	match(key,
mapname)==value.	 Note	 that	 both	 keys	 and	 values	 of	 the
dictionary	are	arbitrary	arrays	of	bytes.

Note	that	mapname	is	first	checked	if	it	is	an	alias	to	another	name.

The	domain	argument	allows	to	override	the	NIS	domain	used	for
the	lookup.	If	unspecified,	lookup	is	in	the	default	NIS	domain.

nis.maps(domain=default_domain)
Return	a	list	of	all	valid	maps.

The	domain	argument	allows	to	override	the	NIS	domain	used	for
the	lookup.	If	unspecified,	lookup	is	in	the	default	NIS	domain.

nis.get_default_domain()
Return	the	system	default	NIS	domain.

The	nis	module	defines	the	following	exception:

exception	nis.error
An	error	raised	when	a	NIS	function	returns	an	error	code.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

http://www.python.org/

35.13.	syslog	—	Unix	syslog
library	routines
This	module	provides	an	interface	to	the	Unix	syslog	library	routines.
Refer	 to	 the	 Unix	 manual	 pages	 for	 a	 detailed	 description	 of	 the
syslog	facility.

This	 module	 wraps	 the	 system	 syslog	 family	 of	 routines.	 A	 pure
Python	 library	 that	 can	 speak	 to	 a	 syslog	 server	 is	 available	 in	 the
logging.handlers	module	as	SysLogHandler.

The	module	defines	the	following	functions:

syslog.syslog(message)
syslog.syslog(priority,	message)

Send	the	string	message	to	the	system	logger.	A	trailing	newline	is
added	 if	 necessary.	 Each	 message	 is	 tagged	 with	 a	 priority
composed	of	a	facility	and	a	 level.	The	optional	priority	argument,
which	 defaults	 to	 LOG_INFO,	 determines	 the	message	 priority.	 If
the	facility	is	not	encoded	in	priority	using	logical-or	(LOG_INFO	|
LOG_USER),	the	value	given	in	the	openlog()	call	is	used.

If	openlog()	has	not	been	called	prior	 to	 the	call	 to	syslog(),
openlog()	will	be	called	with	no	arguments.

syslog.openlog([ident[,	logoption[,	facility]]])
Logging	 options	 of	 subsequent	 syslog()	 calls	 can	 be	 set	 by
calling	 openlog().	 syslog()	 will	 call	 openlog()	 with	 no
arguments	if	the	log	is	not	currently	open.

The	 optional	 ident	 keyword	 argument	 is	 a	 string	 which	 is
prepended	to	every	message,	and	defaults	to	sys.argv[0]	with
leading	path	components	stripped.	The	optional	 logoption	keyword
argument	(default	is	0)	is	a	bit	field	–	see	below	for	possible	values
to	 combine.	 The	 optional	 facility	 keyword	 argument	 (default	 is
LOG_USER)	 sets	 the	 default	 facility	 for	 messages	 which	 do	 not
have	a	facility	explicitly	encoded.

Changed	 in	version	3.2:	 In	previous	versions,	keyword	arguments
were	not	allowed,	and	ident	was	required.	The	default	for	ident	was
dependent	on	the	system	libraries,	and	often	was	python	 instead
of	the	name	of	the	python	program	file.

syslog.closelog()
Reset	 the	 syslog	 module	 values	 and	 call	 the	 system	 library
closelog().

This	 causes	 the	 module	 to	 behave	 as	 it	 does	 when	 initially
imported.	 For	 example,	 openlog()	 will	 be	 called	 on	 the	 first
syslog()	 call	 (if	 openlog()	 hasn’t	 already	 been	 called),	 and
ident	and	other	openlog()	parameters	are	reset	to	defaults.

syslog.setlogmask(maskpri)
Set	 the	 priority	 mask	 to	maskpri	 and	 return	 the	 previous	 mask
value.	Calls	to	syslog()	with	a	priority	level	not	set	in	maskpri	are
ignored.	 The	 default	 is	 to	 log	 all	 priorities.	 The	 function
LOG_MASK(pri)	calculates	the	mask	for	the	individual	priority	pri.
The	function	LOG_UPTO(pri)	calculates	the	mask	for	all	priorities
up	to	and	including	pri.

The	module	defines	the	following	constants:

Priority	levels	(high	to	low):

LOG_EMERG,	LOG_ALERT,	LOG_CRIT,	LOG_ERR,	LOG_WARNING,
LOG_NOTICE,	LOG_INFO,	LOG_DEBUG.

Facilities:
LOG_KERN,	 LOG_USER,	 LOG_MAIL,	 LOG_DAEMON,	 LOG_AUTH,
LOG_LPR,	 LOG_NEWS,	 LOG_UUCP,	 LOG_CRON,	 LOG_SYSLOG,
LOG_LOCAL0	 to	 LOG_LOCAL7,	 and,	 if	 defined	 in	 <syslog.h>,
LOG_AUTHPRIV.

Log	options:
LOG_PID,	 LOG_CONS,	 LOG_NDELAY,	 and,	 if	 defined	 in
<syslog.h>,	LOG_ODELAY,	LOG_NOWAIT,	and	LOG_PERROR.

35.13.1.	Examples

35.13.1.1.	Simple	example

A	simple	set	of	examples:

import	syslog

syslog.syslog('Processing	started')

if	error:

				syslog.syslog(syslog.LOG_ERR,	'Processing	started'

An	 example	 of	 setting	 some	 log	 options,	 these	 would	 include	 the
process	 ID	 in	 logged	 messages,	 and	 write	 the	 messages	 to	 the
destination	facility	used	for	mail	logging:

syslog.openlog(logoption=syslog.LOG_PID,	facility=syslog

syslog.syslog('E-mail	processing	initiated...')

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»	35.	Unix	Specific	Services	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

http://www.python.org/

36.	Undocumented	Modules
Here’s	a	quick	listing	of	modules	that	are	currently	undocumented,	but
that	should	be	documented.	Feel	free	to	contribute	documentation	for
them!	(Send	via	email	to	docs@python.org.)

The	 idea	 and	 original	 contents	 for	 this	 chapter	 were	 taken	 from	 a
posting	 by	 Fredrik	 Lundh;	 the	 specific	 contents	 of	 this	 chapter	 have
been	substantially	revised.

mailto:docs%40python.org

36.1.	Platform	specific	modules

These	modules	are	used	to	implement	the	os.path	module,	and	are
not	documented	beyond	this	mention.	There’s	little	need	to	document
these.

ntpath

—	 Implementation	 of	 os.path	 on	 Win32,	 Win64,	 and	 WinCE
platforms.

posixpath

—	Implementation	of	os.path	on	POSIX.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	The	Python	Standard

Library	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

http://www.python.org/

1.	Extending	Python	with	C	or	C++
It	is	quite	easy	to	add	new	built-in	modules	to	Python,	if	you	know	how
to	program	in	C.	Such	extension	modules	can	do	two	things	that	can’t
be	 done	 directly	 in	 Python:	 they	 can	 implement	 new	 built-in	 object
types,	and	they	can	call	C	library	functions	and	system	calls.

To	 support	 extensions,	 the	 Python	 API	 (Application	 Programmers
Interface)	defines	a	set	of	functions,	macros	and	variables	that	provide
access	 to	most	 aspects	 of	 the	 Python	 run-time	 system.	 The	 Python
API	 is	 incorporated	 in	 a	 C	 source	 file	 by	 including	 the	 header
"Python.h".

The	compilation	of	an	extension	module	depends	on	its	 intended	use
as	well	as	on	your	system	setup;	details	are	given	in	later	chapters.

Do	note	 that	 if	 your	use	case	 is	calling	C	 library	 functions	or	system
calls,	 you	 should	 consider	 using	 the	 ctypes	 module	 rather	 than
writing	 custom	C	 code.	 Not	 only	 does	 ctypes	 let	 you	write	 Python
code	 to	 interface	 with	 C	 code,	 but	 it	 is	 more	 portable	 between
implementations	 of	 Python	 than	 writing	 and	 compiling	 an	 extension
module	which	typically	ties	you	to	CPython.

1.1.	A	Simple	Example

Let’s	 create	 an	 extension	 module	 called	 spam	 (the	 favorite	 food	 of
Monty	 Python	 fans...)	 and	 let’s	 say	 we	 want	 to	 create	 a	 Python
interface	to	the	C	library	function	system().	[1]	This	function	takes	a
null-terminated	 character	 string	 as	 argument	 and	 returns	 an	 integer.
We	want	this	function	to	be	callable	from	Python	as	follows:

>>>	import	spam

>>>	status	=	spam.system("ls	-l")

Begin	 by	 creating	 a	 file	 spammodule.c.	 (Historically,	 if	 a	module	 is
called	 spam,	 the	 C	 file	 containing	 its	 implementation	 is	 called
spammodule.c;	if	the	module	name	is	very	long,	like	spammify,	the
module	name	can	be	just	spammify.c.)

The	first	line	of	our	file	can	be:

#include	<Python.h>

which	pulls	in	the	Python	API	(you	can	add	a	comment	describing	the
purpose	of	the	module	and	a	copyright	notice	if	you	like).

Note: 	Since	Python	may	define	some	pre-processor	definitions
which	affect	the	standard	headers	on	some	systems,	you	must
include	Python.h	before	any	standard	headers	are	included.

All	user-visible	symbols	defined	by	Python.h	have	a	prefix	of	Py	or
PY,	 except	 those	 defined	 in	 standard	 header	 files.	 For	 convenience,
and	 since	 they	 are	 used	 extensively	 by	 the	 Python	 interpreter,
"Python.h"	 includes	 a	 few	 standard	 header	 files:	 <stdio.h>,

<string.h>,	<errno.h>,	and	<stdlib.h>.	If	the	latter	header	file
does	 not	 exist	 on	 your	 system,	 it	 declares	 the	 functions	 malloc(),
free()	and	realloc()	directly.

The	next	thing	we	add	to	our	module	file	is	the	C	function	that	will	be
called	 when	 the	 Python	 expression	 spam.system(string)	 is
evaluated	(we’ll	see	shortly	how	it	ends	up	being	called):

static	PyObject	*

spam_system(PyObject	*self,	PyObject	*args)

{

				const	char	*command;

				int	sts;

				if	(!PyArg_ParseTuple(args,	"s",	&command))

								return	NULL;

				sts	=	system(command);

				return	PyLong_FromLong(sts);

}

There	is	a	straightforward	translation	from	the	argument	list	in	Python
(for	 example,	 the	 single	 expression	 "ls	 -l")	 to	 the	 arguments
passed	to	 the	C	function.	The	C	function	always	has	two	arguments,
conventionally	named	self	and	args.

The	 self	 argument	 points	 to	 the	 module	 object	 for	 module-level
functions;	for	a	method	it	would	point	to	the	object	instance.

The	args	argument	will	be	a	pointer	to	a	Python	tuple	object	containing
the	arguments.	Each	item	of	the	tuple	corresponds	to	an	argument	in
the	call’s	argument	list.	The	arguments	are	Python	objects	—	in	order
to	do	anything	with	them	in	our	C	function	we	have	to	convert	them	to
C	 values.	 The	 function	 PyArg_ParseTuple()	 in	 the	 Python	 API
checks	the	argument	 types	and	converts	 them	to	C	values.	 It	uses	a

template	 string	 to	 determine	 the	 required	 types	 of	 the	 arguments	 as
well	as	the	types	of	 the	C	variables	 into	which	to	store	the	converted
values.	More	about	this	later.

PyArg_ParseTuple()	 returns	 true	 (nonzero)	 if	 all	 arguments	have
the	 right	 type	and	 its	 components	 have	been	 stored	 in	 the	 variables
whose	 addresses	 are	 passed.	 It	 returns	 false	 (zero)	 if	 an	 invalid
argument	 list	 was	 passed.	 In	 the	 latter	 case	 it	 also	 raises	 an
appropriate	 exception	 so	 the	 calling	 function	 can	 return	 NULL
immediately	(as	we	saw	in	the	example).

1.2.	Intermezzo:	Errors	and	Exceptions

An	 important	 convention	 throughout	 the	 Python	 interpreter	 is	 the
following:	 when	 a	 function	 fails,	 it	 should	 set	 an	 exception	 condition
and	 return	 an	 error	 value	 (usually	 a	NULL	 pointer).	 Exceptions	 are
stored	in	a	static	global	variable	inside	the	interpreter;	if	this	variable	is
NULL	no	exception	has	occurred.	A	second	global	variable	stores	the
“associated	value”	of	the	exception	(the	second	argument	to	raise).
A	 third	 variable	 contains	 the	 stack	 traceback	 in	 case	 the	 error
originated	in	Python	code.	These	three	variables	are	the	C	equivalents
of	 the	 result	 in	 Python	 of	 sys.exc_info()	 (see	 the	 section	 on
module	sys	 in	the	Python	Library	Reference).	It	 is	 important	to	know
about	them	to	understand	how	errors	are	passed	around.

The	Python	API	defines	a	number	of	functions	to	set	various	types	of
exceptions.

The	most	 common	one	 is	 PyErr_SetString().	 Its	 arguments	 are
an	exception	object	and	a	C	string.	The	exception	object	 is	usually	a
predefined	 object	 like	 PyExc_ZeroDivisionError.	 The	 C	 string
indicates	 the	 cause	 of	 the	 error	 and	 is	 converted	 to	 a	 Python	 string
object	and	stored	as	the	“associated	value”	of	the	exception.

Another	 useful	 function	 is	 PyErr_SetFromErrno(),	 which	 only
takes	an	exception	argument	and	constructs	 the	associated	value	by
inspection	of	the	global	variable	errno.	The	most	general	function	is
PyErr_SetObject(),	 which	 takes	 two	 object	 arguments,	 the
exception	and	its	associated	value.	You	don’t	need	to	Py_INCREF()
the	objects	passed	to	any	of	these	functions.

You	can	test	non-destructively	whether	an	exception	has	been	set	with

PyErr_Occurred().	 This	 returns	 the	 current	 exception	 object,	 or
NULL	 if	 no	 exception	 has	 occurred.	 You	 normally	 don’t	 need	 to	 call
PyErr_Occurred()	 to	 see	whether	an	error	occurred	 in	a	 function
call,	since	you	should	be	able	to	tell	from	the	return	value.

When	a	 function	 f	 that	calls	another	 function	g	detects	 that	 the	 latter
fails,	 f	 should	 itself	 return	 an	 error	 value	 (usually	 NULL	 or	 -1).	 It
should	not	 call	 one	of	 the	PyErr_*()	 functions	—	one	has	already
been	 called	 by	g.	 f‘s	 caller	 is	 then	 supposed	 to	 also	 return	 an	 error
indication	to	its	caller,	again	without	calling	PyErr_*(),	and	so	on	—
the	 most	 detailed	 cause	 of	 the	 error	 was	 already	 reported	 by	 the
function	 that	 first	 detected	 it.	 Once	 the	 error	 reaches	 the	 Python
interpreter’s	main	loop,	this	aborts	the	currently	executing	Python	code
and	 tries	 to	 find	 an	 exception	 handler	 specified	 by	 the	 Python
programmer.

(There	 are	 situations	 where	 a	 module	 can	 actually	 give	 a	 more
detailed	error	message	by	calling	another	PyErr_*()	function,	and	in
such	cases	 it	 is	 fine	 to	do	so.	As	a	general	 rule,	however,	 this	 is	not
necessary,	and	can	cause	information	about	the	cause	of	the	error	to
be	lost:	most	operations	can	fail	for	a	variety	of	reasons.)

To	ignore	an	exception	set	by	a	function	call	that	failed,	the	exception
condition	must	be	cleared	explicitly	by	calling	PyErr_Clear().	 The
only	time	C	code	should	call	PyErr_Clear()	 is	 if	 it	doesn’t	want	to
pass	the	error	on	to	the	interpreter	but	wants	to	handle	it	completely	by
itself	 (possibly	 by	 trying	 something	 else,	 or	 pretending	 nothing	 went
wrong).

Every	 failing	malloc()	call	must	be	 turned	 into	an	exception	—	the
direct	 caller	 of	 malloc()	 (or	 realloc())	 must	 call
PyErr_NoMemory()	 and	 return	 a	 failure	 indicator	 itself.	 All	 the

object-creating	 functions	 (for	 example,	 PyLong_FromLong())
already	 do	 this,	 so	 this	 note	 is	 only	 relevant	 to	 those	 who	 call
malloc()	directly.

Also	 note	 that,	 with	 the	 important	 exception	 of
PyArg_ParseTuple()	 and	 friends,	 functions	 that	 return	 an	 integer
status	usually	 return	a	positive	value	or	zero	 for	success	and	-1	 for
failure,	like	Unix	system	calls.

Finally,	be	careful	to	clean	up	garbage	(by	making	Py_XDECREF()	or
Py_DECREF()	calls	 for	objects	you	have	already	created)	when	you
return	an	error	indicator!

The	 choice	 of	 which	 exception	 to	 raise	 is	 entirely	 yours.	 There	 are
predeclared	C	objects	corresponding	to	all	built-in	Python	exceptions,
such	 as	 PyExc_ZeroDivisionError,	 which	 you	 can	 use	 directly.
Of	 course,	 you	 should	 choose	 exceptions	 wisely	 —	 don’t	 use
PyExc_TypeError	 to	 mean	 that	 a	 file	 couldn’t	 be	 opened	 (that
should	probably	be	PyExc_IOError).	 If	 something’s	wrong	with	 the
argument	 list,	 the	 PyArg_ParseTuple()	 function	 usually	 raises
PyExc_TypeError.	If	you	have	an	argument	whose	value	must	be	in
a	 particular	 range	 or	 must	 satisfy	 other	 conditions,
PyExc_ValueError	is	appropriate.

You	 can	also	 define	a	 new	exception	 that	 is	 unique	 to	 your	module.
For	this,	you	usually	declare	a	static	object	variable	at	the	beginning	of
your	file:

static	PyObject	*SpamError;

and	 initialize	 it	 in	 your	 module’s	 initialization	 function
(PyInit_spam())	 with	 an	 exception	 object	 (leaving	 out	 the	 error

checking	for	now):

PyMODINIT_FUNC

PyInit_spam(void)

{

				PyObject	*m;

				m	=	PyModule_Create(&spammodule);

				if	(m	==	NULL)

								return	NULL;

				SpamError	=	PyErr_NewException("spam.error",	NULL

				Py_INCREF(SpamError);

				PyModule_AddObject(m,	"error",	SpamError);

				return	m;

}

Note	 that	 the	Python	name	 for	 the	exception	object	 is	spam.error.
The	PyErr_NewException()	 function	may	create	a	 class	with	 the
base	 class	 being	 Exception	 (unless	 another	 class	 is	 passed	 in
instead	of	NULL),	described	in	Built-in	Exceptions.

Note	 also	 that	 the	 SpamError	 variable	 retains	 a	 reference	 to	 the
newly	created	exception	class;	this	 is	 intentional!	Since	the	exception
could	 be	 removed	 from	 the	 module	 by	 external	 code,	 an	 owned
reference	to	the	class	is	needed	to	ensure	that	it	will	not	be	discarded,
causing	SpamError	to	become	a	dangling	pointer.	Should	it	become
a	dangling	pointer,	C	code	which	 raises	 the	exception	could	cause	a
core	dump	or	other	unintended	side	effects.

We	 discuss	 the	 use	 of	 PyMODINIT_FUNC	 as	 a	 function	 return	 type
later	in	this	sample.

The	spam.error	exception	can	be	raised	 in	your	extension	module

using	a	call	to	PyErr_SetString()	as	shown	below:

static	PyObject	*

spam_system(PyObject	*self,	PyObject	*args)

{

				const	char	*command;

				int	sts;

				if	(!PyArg_ParseTuple(args,	"s",	&command))

								return	NULL;

				sts	=	system(command);

				if	(sts	<	0)	{

								PyErr_SetString(SpamError,	"System	command	failed"

								return	NULL;

				}

				return	PyLong_FromLong(sts);

}

1.3.	Back	to	the	Example

Going	 back	 to	 our	 example	 function,	 you	 should	 now	 be	 able	 to
understand	this	statement:

if	(!PyArg_ParseTuple(args,	"s",	&command))

				return	NULL;

It	 returns	 NULL	 (the	 error	 indicator	 for	 functions	 returning	 object
pointers)	 if	 an	 error	 is	 detected	 in	 the	 argument	 list,	 relying	 on	 the
exception	set	by	PyArg_ParseTuple().	Otherwise	 the	string	value
of	the	argument	has	been	copied	to	the	local	variable	command.	This
is	a	pointer	assignment	and	you	are	not	supposed	to	modify	the	string
to	 which	 it	 points	 (so	 in	 Standard	 C,	 the	 variable	 command	 should
properly	be	declared	as	const	char	*command).

The	next	statement	is	a	call	to	the	Unix	function	system(),	passing	it
the	string	we	just	got	from	PyArg_ParseTuple():

sts	=	system(command);

Our	 spam.system()	 function	 must	 return	 the	 value	 of	 sts	 as	 a
Python	object.	This	is	done	using	the	function	PyLong_FromLong().

return	PyLong_FromLong(sts);

In	 this	 case,	 it	 will	 return	 an	 integer	 object.	 (Yes,	 even	 integers	 are
objects	on	the	heap	in	Python!)

If	 you	have	a	C	 function	 that	 returns	no	useful	 argument	 (a	 function
returning	void),	the	corresponding	Python	function	must	return	None.
You	 need	 this	 idiom	 to	 do	 so	 (which	 is	 implemented	 by	 the

Py_RETURN_NONE	macro):

Py_INCREF(Py_None);

return	Py_None;

Py_None	 is	 the	C	 name	 for	 the	 special	 Python	 object	 None.	 It	 is	 a
genuine	 Python	 object	 rather	 than	 a	 NULL	 pointer,	 which	 means
“error”	in	most	contexts,	as	we	have	seen.

1.4.	The	Module’s	Method	Table	and
Initialization	Function

I	 promised	 to	 show	 how	 spam_system()	 is	 called	 from	 Python
programs.	 First,	 we	 need	 to	 list	 its	 name	 and	 address	 in	 a	 “method
table”:

static	PyMethodDef	SpamMethods[]	=	{

				...

				{"system",		spam_system,	METH_VARARGS,

					"Execute	a	shell	command."},

				...

				{NULL,	NULL,	0,	NULL}								/*	Sentinel	*/

};

Note	 the	 third	 entry	 (METH_VARARGS).	 This	 is	 a	 flag	 telling	 the
interpreter	 the	 calling	 convention	 to	 be	 used	 for	 the	 C	 function.	 It
should	 normally	 always	 be	 METH_VARARGS	 or	 METH_VARARGS	 |
METH_KEYWORDS;	 a	 value	 of	 0	 means	 that	 an	 obsolete	 variant	 of
PyArg_ParseTuple()	is	used.

When	 using	 only	 METH_VARARGS,	 the	 function	 should	 expect	 the
Python-level	 parameters	 to	 be	 passed	 in	 as	 a	 tuple	 acceptable	 for
parsing	via	PyArg_ParseTuple();	more	information	on	this	function
is	provided	below.

The	 METH_KEYWORDS	 bit	 may	 be	 set	 in	 the	 third	 field	 if	 keyword
arguments	 should	 be	 passed	 to	 the	 function.	 In	 this	 case,	 the	 C
function	should	accept	a	third	PyObject	*	parameter	which	will	be	a
dictionary	of	keywords.	Use	PyArg_ParseTupleAndKeywords()	to
parse	the	arguments	to	such	a	function.

The	 method	 table	 must	 be	 referenced	 in	 the	 module	 definition
structure:

static	struct	PyModuleDef	spammodule	=	{

			PyModuleDef_HEAD_INIT,

			"spam",			/*	name	of	module	*/

			spam_doc,	/*	module	documentation,	may	be	NULL	*/

			-1,							/*	size	of	per-interpreter	state	of	the	module,

																or	-1	if	the	module	keeps	state	in	global	variables.	*/

			SpamMethods

};

This	 structure,	 in	 turn,	 must	 be	 passed	 to	 the	 interpreter	 in	 the
module’s	 initialization	 function.	 The	 initialization	 function	 must	 be
named	PyInit_name(),	where	name	is	the	name	of	the	module,	and
should	be	the	only	non-static	item	defined	in	the	module	file:

PyMODINIT_FUNC

PyInit_spam(void)

{

				return	PyModule_Create(&spammodule);

}

Note	 that	PyMODINIT_FUNC	declares	 the	 function	as	PyObject	*
return	type,	declares	any	special	 linkage	declarations	required	by	the
platform,	and	for	C++	declares	the	function	as	extern	"C".

When	 the	 Python	 program	 imports	 module	 spam	 for	 the	 first	 time,
PyInit_spam()	 is	 called.	 (See	 below	 for	 comments	 about
embedding	 Python.)	 It	 calls	 PyModule_Create(),	 which	 returns	 a
module	 object,	 and	 inserts	 built-in	 function	 objects	 into	 the	 newly
created	 module	 based	 upon	 the	 table	 (an	 array	 of	 PyMethodDef
structures)	 found	 in	 the	 module	 definition.	 PyModule_Create()

returns	a	pointer	to	the	module	object	that	it	creates.	It	may	abort	with
a	fatal	error	for	certain	errors,	or	return	NULL	 if	the	module	could	not
be	 initialized	 satisfactorily.	 The	 init	 function	 must	 return	 the	 module
object	to	its	caller,	so	that	it	then	gets	inserted	into	sys.modules.

When	embedding	Python,	the	PyInit_spam()	function	is	not	called
automatically	 unless	 there’s	 an	 entry	 in	 the	 PyImport_Inittab
table.	 To	 add	 the	 module	 to	 the	 initialization	 table,	 use
PyImport_AppendInittab(),	 optionally	 followed	 by	 an	 import	 of
the	module:

int

main(int	argc,	char	*argv[])

{

				/*	Add	a	built-in	module,	before	Py_Initialize	*/

				PyImport_AppendInittab("spam",	PyInit_spam);

				/*	Pass	argv[0]	to	the	Python	interpreter	*/

				Py_SetProgramName(argv[0]);

				/*	Initialize	the	Python	interpreter.		Required.	*/

				Py_Initialize();

				/*	Optionally	import	the	module;	alternatively,

							import	can	be	deferred	until	the	embedded	script

							imports	it.	*/

				PyImport_ImportModule("spam");

				...

Note: 	Removing	entries	from	sys.modules	or	importing	compiled
modules	into	multiple	interpreters	within	a	process	(or	following	a
fork()	without	an	intervening	exec())	can	create	problems	for

some	extension	modules.	Extension	module	authors	should	exercise
caution	when	initializing	internal	data	structures.

A	more	substantial	example	module	 is	 included	 in	 the	Python	source
distribution	 as	 Modules/xxmodule.c.	 This	 file	 may	 be	 used	 as	 a
template	or	simply	read	as	an	example.

1.5.	Compilation	and	Linkage

There	 are	 two	 more	 things	 to	 do	 before	 you	 can	 use	 your	 new
extension:	compiling	and	linking	it	with	the	Python	system.	If	you	use
dynamic	 loading,	 the	 details	 may	 depend	 on	 the	 style	 of	 dynamic
loading	your	system	uses;	see	 the	chapters	about	building	extension
modules	 (chapter	Building	 C	 and	 C++	 Extensions	 with	 distutils)	 and
additional	 information	 that	 pertains	 only	 to	 building	 on	 Windows
(chapter	 Building	 C	 and	 C++	 Extensions	 on	 Windows)	 for	 more
information	about	this.

If	you	can’t	use	dynamic	loading,	or	if	you	want	to	make	your	module	a
permanent	part	of	the	Python	interpreter,	you	will	have	to	change	the
configuration	 setup	 and	 rebuild	 the	 interpreter.	 Luckily,	 this	 is	 very
simple	on	Unix:	 just	 place	 your	 file	 (spammodule.c	 for	 example)	 in
the	Modules/	directory	of	an	unpacked	source	distribution,	add	a	line
to	the	file	Modules/Setup.local	describing	your	file:

spam	spammodule.o

and	 rebuild	 the	 interpreter	by	 running	make	 in	 the	 toplevel	directory.
You	can	also	 run	make	 in	 the	 Modules/	 subdirectory,	 but	 then	 you
must	first	rebuild	Makefile	there	by	running	‘make	Makefile’.	(This	is
necessary	each	time	you	change	the	Setup	file.)

If	 your	module	 requires	additional	 libraries	 to	 link	with,	 these	 can	be
listed	on	the	line	in	the	configuration	file	as	well,	for	instance:

spam	spammodule.o	-lX11

1.6.	Calling	Python	Functions	from	C

So	 far	 we	 have	 concentrated	 on	 making	 C	 functions	 callable	 from
Python.	 The	 reverse	 is	 also	 useful:	 calling	 Python	 functions	 from	C.
This	is	especially	the	case	for	libraries	that	support	so-called	“callback”
functions.	 If	 a	 C	 interface	 makes	 use	 of	 callbacks,	 the	 equivalent
Python	 often	 needs	 to	 provide	 a	 callback	mechanism	 to	 the	 Python
programmer;	 the	 implementation	 will	 require	 calling	 the	 Python
callback	functions	from	a	C	callback.	Other	uses	are	also	imaginable.

Fortunately,	 the	 Python	 interpreter	 is	 easily	 called	 recursively,	 and
there	is	a	standard	interface	to	call	a	Python	function.	(I	won’t	dwell	on
how	 to	 call	 the	 Python	 parser	 with	 a	 particular	 string	 as	 input	—	 if
you’re	 interested,	 have	 a	 look	 at	 the	 implementation	 of	 the	 -c
command	 line	 option	 in	 Modules/main.c	 from	 the	 Python	 source
code.)

Calling	 a	 Python	 function	 is	 easy.	 First,	 the	 Python	 program	 must
somehow	pass	you	 the	Python	 function	object.	You	should	provide	a
function	 (or	 some	 other	 interface)	 to	 do	 this.	 When	 this	 function	 is
called,	 save	 a	 pointer	 to	 the	 Python	 function	 object	 (be	 careful	 to
Py_INCREF()	it!)	in	a	global	variable	—	or	wherever	you	see	fit.	For
example,	the	following	function	might	be	part	of	a	module	definition:

static	PyObject	*my_callback	=	NULL;

static	PyObject	*

my_set_callback(PyObject	*dummy,	PyObject	*args)

{

				PyObject	*result	=	NULL;

				PyObject	*temp;

				if	(PyArg_ParseTuple(args,	"O:set_callback",	&temp

								if	(!PyCallable_Check(temp))	{

												PyErr_SetString(PyExc_TypeError,	"parameter	must	be	callable"

												return	NULL;

								}

								Py_XINCREF(temp);									/*	Add	a	reference	to	new	callback	*/

								Py_XDECREF(my_callback);		/*	Dispose	of	previous	callback	*/

								my_callback	=	temp;							/*	Remember	new	callback	*/

								/*	Boilerplate	to	return	"None"	*/

								Py_INCREF(Py_None);

								result	=	Py_None;

				}

				return	result;

}

This	 function	 must	 be	 registered	 with	 the	 interpreter	 using	 the
METH_VARARGS	flag;	this	is	described	in	section	The	Module’s	Method
Table	and	Initialization	Function.	The	PyArg_ParseTuple()	function
and	its	arguments	are	documented	in	section	Extracting	Parameters	in
Extension	Functions.

The	 macros	 Py_XINCREF()	 and	 Py_XDECREF()

increment/decrement	the	reference	count	of	an	object	and	are	safe	in
the	presence	of	NULL	pointers	(but	note	that	temp	will	not	be	NULL	in
this	context).	More	info	on	them	in	section	Reference	Counts.

Later,	 when	 it	 is	 time	 to	 call	 the	 function,	 you	 call	 the	 C	 function
PyObject_CallObject().	 This	 function	 has	 two	 arguments,	 both
pointers	 to	 arbitrary	 Python	 objects:	 the	 Python	 function,	 and	 the
argument	list.	The	argument	list	must	always	be	a	tuple	object,	whose
length	is	the	number	of	arguments.	To	call	the	Python	function	with	no
arguments,	 pass	 in	 NULL,	 or	 an	 empty	 tuple;	 to	 call	 it	 with	 one
argument,	pass	a	singleton	tuple.	Py_BuildValue()	returns	a	tuple
when	its	format	string	consists	of	zero	or	more	format	codes	between

parentheses.	For	example:

int	arg;

PyObject	*arglist;

PyObject	*result;

...

arg	=	123;

...

/*	Time	to	call	the	callback	*/

arglist	=	Py_BuildValue("(i)",	arg);

result	=	PyObject_CallObject(my_callback,	arglist);

Py_DECREF(arglist);

PyObject_CallObject()	 returns	 a	 Python	 object	 pointer:	 this	 is
the	return	value	of	the	Python	function.	PyObject_CallObject()	is
“reference-count-neutral”	with	respect	to	its	arguments.	In	the	example
a	 new	 tuple	 was	 created	 to	 serve	 as	 the	 argument	 list,	 which	 is
Py_DECREF()-ed	 immediately	 after	 the	 PyObject_CallObject()
call.

The	return	value	of	PyObject_CallObject()	is	“new”:	either	it	is	a
brand	new	object,	or	it	is	an	existing	object	whose	reference	count	has
been	incremented.	So,	unless	you	want	to	save	it	in	a	global	variable,
you	 should	 somehow	 Py_DECREF()	 the	 result,	 even	 (especially!)	 if
you	are	not	interested	in	its	value.

Before	 you	 do	 this,	 however,	 it	 is	 important	 to	 check	 that	 the	 return
value	isn’t	NULL.	If	 it	 is,	 the	Python	function	terminated	by	raising	an
exception.	 If	 the	 C	 code	 that	 called	 PyObject_CallObject()	 is
called	 from	 Python,	 it	 should	 now	 return	 an	 error	 indication	 to	 its
Python	caller,	so	 the	 interpreter	can	print	a	stack	 trace,	or	 the	calling
Python	 code	 can	 handle	 the	 exception.	 If	 this	 is	 not	 possible	 or
desirable,	 the	 exception	 should	 be	 cleared	 by	 calling

PyErr_Clear().	For	example:

if	(result	==	NULL)

				return	NULL;	/*	Pass	error	back	*/

...use	result...

Py_DECREF(result);

Depending	 on	 the	 desired	 interface	 to	 the	 Python	 callback	 function,
you	 may	 also	 have	 to	 provide	 an	 argument	 list	 to
PyObject_CallObject().	 In	some	cases	the	argument	 list	 is	also
provided	 by	 the	 Python	 program,	 through	 the	 same	 interface	 that
specified	 the	callback	 function.	 It	can	 then	be	saved	and	used	 in	 the
same	manner	as	the	function	object.	In	other	cases,	you	may	have	to
construct	a	new	tuple	to	pass	as	the	argument	 list.	The	simplest	way
to	do	 this	 is	 to	call	Py_BuildValue().	For	example,	 if	 you	want	 to
pass	an	integral	event	code,	you	might	use	the	following	code:

PyObject	*arglist;

...

arglist	=	Py_BuildValue("(l)",	eventcode);

result	=	PyObject_CallObject(my_callback,	arglist);

Py_DECREF(arglist);

if	(result	==	NULL)

				return	NULL;	/*	Pass	error	back	*/

/*	Here	maybe	use	the	result	*/

Py_DECREF(result);

Note	 the	placement	of	Py_DECREF(arglist)	 immediately	after	 the
call,	before	the	error	check!	Also	note	that	strictly	speaking	this	code	is
not	 complete:	 Py_BuildValue()	may	 run	 out	 of	memory,	 and	 this
should	be	checked.

You	 may	 also	 call	 a	 function	 with	 keyword	 arguments	 by	 using
PyObject_Call(),	 which	 supports	 arguments	 and	 keyword

arguments.	As	 in	 the	above	example,	we	use	Py_BuildValue()	 to
construct	the	dictionary.

PyObject	*dict;

...

dict	=	Py_BuildValue("{s:i}",	"name",	val);

result	=	PyObject_Call(my_callback,	NULL,	dict);

Py_DECREF(dict);

if	(result	==	NULL)

				return	NULL;	/*	Pass	error	back	*/

/*	Here	maybe	use	the	result	*/

Py_DECREF(result);

1.7.	Extracting	Parameters	in	Extension
Functions

The	PyArg_ParseTuple()	function	is	declared	as	follows:

int	PyArg_ParseTuple(PyObject	*arg,	char	*format,	...);

The	arg	argument	must	be	a	 tuple	object	containing	an	argument	 list
passed	from	Python	to	a	C	function.	The	 format	argument	must	be	a
format	 string,	 whose	 syntax	 is	 explained	 in	 Parsing	 arguments	 and
building	values	in	the	Python/C	API	Reference	Manual.	The	remaining
arguments	must	be	addresses	of	variables	whose	type	 is	determined
by	the	format	string.

Note	 that	 while	 PyArg_ParseTuple()	 checks	 that	 the	 Python
arguments	have	the	required	types,	it	cannot	check	the	validity	of	the
addresses	 of	 C	 variables	 passed	 to	 the	 call:	 if	 you	 make	 mistakes
there,	your	code	will	probably	crash	or	at	least	overwrite	random	bits	in
memory.	So	be	careful!

Note	 that	 any	 Python	 object	 references	 which	 are	 provided	 to	 the
caller	 are	 borrowed	 references;	 do	 not	 decrement	 their	 reference
count!

Some	example	calls:

#define	PY_SSIZE_T_CLEAN		/*	Make	"s#"	use	Py_ssize_t	rather	than	int.	*/

#include	<Python.h>

int	ok;

int	i,	j;

long	k,	l;

const	char	*s;

Py_ssize_t	size;

ok	=	PyArg_ParseTuple(args,	"");	/*	No	arguments	*/

				/*	Python	call:	f()	*/

ok	=	PyArg_ParseTuple(args,	"s",	&s);	/*	A	string	*/

				/*	Possible	Python	call:	f('whoops!')	*/

ok	=	PyArg_ParseTuple(args,	"lls",	&k,	&l,	&s);	/*	Two	longs	and	a	string	*/

				/*	Possible	Python	call:	f(1,	2,	'three')	*/

ok	=	PyArg_ParseTuple(args,	"(ii)s#",	&i,	&j,	&s,	&size

				/*	A	pair	of	ints	and	a	string,	whose	size	is	also	returned	*/

				/*	Possible	Python	call:	f((1,	2),	'three')	*/

{

				const	char	*file;

				const	char	*mode	=	"r";

				int	bufsize	=	0;

				ok	=	PyArg_ParseTuple(args,	"s|si",	&file,	&mode

				/*	A	string,	and	optionally	another	string	and	an	integer	*/

				/*	Possible	Python	calls:

							f('spam')

							f('spam',	'w')

							f('spam',	'wb',	100000)	*/

}

{

				int	left,	top,	right,	bottom,	h,	v;

				ok	=	PyArg_ParseTuple(args,	"((ii)(ii))(ii)",

													&left,	&top,	&right,	&bottom,	&h,	&v);

				/*	A	rectangle	and	a	point	*/

				/*	Possible	Python	call:

							f(((0,	0),	(400,	300)),	(10,	10))	*/

}

{

				Py_complex	c;

				ok	=	PyArg_ParseTuple(args,	"D:myfunction",	&c);

				/*	a	complex,	also	providing	a	function	name	for	errors	*/

				/*	Possible	Python	call:	myfunction(1+2j)	*/

}

1.8.	Keyword	Parameters	for	Extension
Functions

The	 PyArg_ParseTupleAndKeywords()	 function	 is	 declared	 as
follows:

int	PyArg_ParseTupleAndKeywords(PyObject	*arg,	PyObject

																																char	*format,	char	*

The	 arg	 and	 format	 parameters	 are	 identical	 to	 those	 of	 the
PyArg_ParseTuple()	 function.	 The	 kwdict	 parameter	 is	 the
dictionary	 of	 keywords	 received	 as	 the	 third	 parameter	 from	 the
Python	 runtime.	 The	 kwlist	 parameter	 is	 a	 NULL-terminated	 list	 of
strings	which	identify	the	parameters;	the	names	are	matched	with	the
type	 information	 from	 format	 from	 left	 to	 right.	 On	 success,
PyArg_ParseTupleAndKeywords()	 returns	 true,	 otherwise	 it
returns	false	and	raises	an	appropriate	exception.

Note: 	Nested	tuples	cannot	be	parsed	when	using	keyword
arguments!	Keyword	parameters	passed	in	which	are	not	present	in
the	kwlist	will	cause	TypeError	to	be	raised.

Here	 is	 an	 example	 module	 which	 uses	 keywords,	 based	 on	 an
example	by	Geoff	Philbrick	(philbrick@hks.com):

#include	"Python.h"

static	PyObject	*

keywdarg_parrot(PyObject	*self,	PyObject	*args,	PyObject

{

				int	voltage;

mailto:philbrick%40hks.com

				char	*state	=	"a	stiff";

				char	*action	=	"voom";

				char	*type	=	"Norwegian	Blue";

				static	char	*kwlist[]	=	{"voltage",	"state",	"action"

				if	(!PyArg_ParseTupleAndKeywords(args,	keywds,	"i|sss"

																																					&voltage,	&state

								return	NULL;

				printf("--	This	parrot	wouldn't	%s	if	you	put	%i	Volts	through	it.

											action,	voltage);

				printf("--	Lovely	plumage,	the	%s	--	It's	%s!\n"

				Py_RETURN_NONE;

}

static	PyMethodDef	keywdarg_methods[]	=	{

				/*	The	cast	of	the	function	is	necessary	since	PyCFunction	values

					*	only	take	two	PyObject*	parameters,	and	keywdarg_parrot()	takes

					*	three.

					*/

				{"parrot",	(PyCFunction)keywdarg_parrot,	METH_VARARGS

					"Print	a	lovely	skit	to	standard	output."},

				{NULL,	NULL,	0,	NULL}			/*	sentinel	*/

};

static	struct	PyModuleDef	keywdargmodule	=	{

				PyModuleDef_HEAD_INIT,

				"keywdarg",

				NULL,

				-1,

				keywdarg_methods

};

PyMODINIT_FUNC

PyInit_keywdarg(void)

{

				return	PyModule_Create(&keywdargmodule);

}

1.9.	Building	Arbitrary	Values

This	 function	 is	 the	 counterpart	 to	 PyArg_ParseTuple().	 It	 is
declared	as	follows:

PyObject	*Py_BuildValue(char	*format,	...);

It	 recognizes	a	 set	 of	 format	 units	 similar	 to	 the	ones	 recognized	by
PyArg_ParseTuple(),	 but	 the	 arguments	 (which	 are	 input	 to	 the
function,	not	output)	must	not	be	pointers,	just	values.	It	returns	a	new
Python	 object,	 suitable	 for	 returning	 from	 a	 C	 function	 called	 from
Python.

One	difference	with	PyArg_ParseTuple():	while	 the	 latter	requires
its	first	argument	to	be	a	tuple	(since	Python	argument	lists	are	always
represented	 as	 tuples	 internally),	 Py_BuildValue()	 does	 not
always	build	a	 tuple.	 It	builds	a	 tuple	only	 if	 its	 format	string	contains
two	or	more	format	units.	If	the	format	string	is	empty,	it	returns	None;
if	 it	 contains	 exactly	 one	 format	 unit,	 it	 returns	 whatever	 object	 is
described	by	that	format	unit.	To	force	it	 to	return	a	tuple	of	size	0	or
one,	parenthesize	the	format	string.

Examples	(to	the	left	the	call,	to	the	right	the	resulting	Python	value):

Py_BuildValue("")																								None

Py_BuildValue("i",	123)																		123

Py_BuildValue("iii",	123,	456,	789)						(123,	456,	789)

Py_BuildValue("s",	"hello")														'hello'

Py_BuildValue("y",	"hello")														b'hello'

Py_BuildValue("ss",	"hello",	"world")				('hello',	'world')

Py_BuildValue("s#",	"hello",	4)										'hell'

Py_BuildValue("y#",	"hello",	4)										b'hell'

Py_BuildValue("()")																						()

Py_BuildValue("(i)",	123)																(123,)

Py_BuildValue("(ii)",	123,	456)										(123,	456)

Py_BuildValue("(i,i)",	123,	456)									(123,	456)

Py_BuildValue("[i,i]",	123,	456)									[123,	456]

Py_BuildValue("{s:i,s:i}",

														"abc",	123,	"def",	456)				{'abc':	123,	'def':	456}

Py_BuildValue("((ii)(ii))	(ii)",

														1,	2,	3,	4,	5,	6)										(((1,	2),	(3,	4)),	(5,	6))

1.10.	Reference	Counts

In	 languages	 like	 C	 or	 C++,	 the	 programmer	 is	 responsible	 for
dynamic	allocation	and	deallocation	of	memory	on	the	heap.	In	C,	this
is	 done	 using	 the	 functions	 malloc()	 and	 free().	 In	 C++,	 the
operators	 new	 and	 delete	 are	 used	 with	 essentially	 the	 same
meaning	and	we’ll	restrict	the	following	discussion	to	the	C	case.

Every	block	of	memory	allocated	with	malloc()	should	eventually	be
returned	 to	 the	 pool	 of	 available	 memory	 by	 exactly	 one	 call	 to
free().	 It	 is	 important	 to	 call	 free()	 at	 the	 right	 time.	 If	 a	 block’s
address	 is	 forgotten	 but	 free()	 is	 not	 called	 for	 it,	 the	 memory	 it
occupies	cannot	be	reused	until	the	program	terminates.	This	is	called
a	memory	 leak.	On	 the	other	 hand,	 if	 a	 program	calls	 free()	 for	 a
block	and	then	continues	to	use	the	block,	it	creates	a	conflict	with	re-
use	of	the	block	through	another	malloc()	call.	This	 is	called	using
freed	 memory.	 It	 has	 the	 same	 bad	 consequences	 as	 referencing
uninitialized	data	—	core	dumps,	wrong	results,	mysterious	crashes.

Common	 causes	 of	 memory	 leaks	 are	 unusual	 paths	 through	 the
code.	 For	 instance,	 a	 function	 may	 allocate	 a	 block	 of	 memory,	 do
some	calculation,	and	then	free	the	block	again.	Now	a	change	in	the
requirements	 for	 the	 function	may	 add	 a	 test	 to	 the	 calculation	 that
detects	 an	 error	 condition	 and	 can	 return	 prematurely	 from	 the
function.	 It’s	easy	 to	 forget	 to	 free	 the	allocated	memory	block	when
taking	 this	 premature	 exit,	 especially	 when	 it	 is	 added	 later	 to	 the
code.	 Such	 leaks,	 once	 introduced,	 often	 go	 undetected	 for	 a	 long
time:	the	error	exit	is	taken	only	in	a	small	fraction	of	all	calls,	and	most
modern	 machines	 have	 plenty	 of	 virtual	 memory,	 so	 the	 leak	 only
becomes	 apparent	 in	 a	 long-running	 process	 that	 uses	 the	 leaking
function	 frequently.	 Therefore,	 it’s	 important	 to	 prevent	 leaks	 from

happening	by	having	a	 coding	 convention	or	 strategy	 that	minimizes
this	kind	of	errors.

Since	Python	makes	heavy	use	of	malloc()	and	free(),	it	needs	a
strategy	 to	avoid	memory	 leaks	as	well	as	 the	use	of	 freed	memory.
The	 chosen	 method	 is	 called	 reference	 counting.	 The	 principle	 is
simple:	every	object	contains	a	counter,	which	is	incremented	when	a
reference	 to	 the	 object	 is	 stored	 somewhere,	 and	 which	 is
decremented	 when	 a	 reference	 to	 it	 is	 deleted.	 When	 the	 counter
reaches	 zero,	 the	 last	 reference	 to	 the	 object	 has	 been	deleted	 and
the	object	is	freed.

An	 alternative	 strategy	 is	 called	 automatic	 garbage	 collection.
(Sometimes,	 reference	 counting	 is	 also	 referred	 to	 as	 a	 garbage
collection	strategy,	hence	my	use	of	“automatic”	to	distinguish	the	two.)
The	 big	 advantage	 of	 automatic	 garbage	 collection	 is	 that	 the	 user
doesn’t	need	to	call	free()	explicitly.	(Another	claimed	advantage	is
an	 improvement	 in	 speed	 or	 memory	 usage	—	 this	 is	 no	 hard	 fact
however.)	 The	 disadvantage	 is	 that	 for	 C,	 there	 is	 no	 truly	 portable
automatic	 garbage	 collector,	 while	 reference	 counting	 can	 be
implemented	 portably	 (as	 long	 as	 the	 functions	 malloc()	 and
free()	 are	 available	—	which	 the	C	Standard	 guarantees).	Maybe
some	 day	 a	 sufficiently	 portable	 automatic	 garbage	 collector	 will	 be
available	for	C.	Until	then,	we’ll	have	to	live	with	reference	counts.

While	Python	uses	the	traditional	reference	counting	implementation,	it
also	offers	a	cycle	detector	that	works	to	detect	reference	cycles.	This
allows	 applications	 to	 not	 worry	 about	 creating	 direct	 or	 indirect
circular	 references;	 these	 are	 the	 weakness	 of	 garbage	 collection
implemented	using	only	reference	counting.	Reference	cycles	consist
of	objects	which	contain	 (possibly	 indirect)	 references	 to	 themselves,
so	 that	each	object	 in	 the	cycle	has	a	 reference	count	which	 is	non-

zero.	 Typical	 reference	 counting	 implementations	 are	 not	 able	 to
reclaim	the	memory	belonging	to	any	objects	 in	a	reference	cycle,	or
referenced	 from	 the	 objects	 in	 the	 cycle,	 even	 though	 there	 are	 no
further	references	to	the	cycle	itself.

The	cycle	detector	 is	 able	 to	detect	 garbage	cycles	and	 can	 reclaim
them	 so	 long	 as	 there	 are	 no	 finalizers	 implemented	 in	 Python
(__del__()	methods).	When	 there	are	 such	 finalizers,	 the	detector
exposes	the	cycles	through	the	gc	module	(specifically,	the	garbage
variable	in	that	module).	The	gc	module	also	exposes	a	way	to	run	the
detector	(the	collect()	function),	as	well	as	configuration	interfaces
and	the	ability	to	disable	the	detector	at	runtime.	The	cycle	detector	is
considered	an	optional	component;	 though	it	 is	 included	by	default,	 it
can	be	disabled	at	build	time	using	the	--without-cycle-gc	option	to	the
configure	script	on	Unix	platforms	(including	Mac	OS	X).	If	the	cycle
detector	is	disabled	in	this	way,	the	gc	module	will	not	be	available.

1.10.1.	Reference	Counting	in	Python

There	 are	 two	macros,	 Py_INCREF(x)	 and	 Py_DECREF(x),	which
handle	 the	 incrementing	 and	 decrementing	 of	 the	 reference	 count.
Py_DECREF()	also	frees	the	object	when	the	count	reaches	zero.	For
flexibility,	 it	 doesn’t	 call	 free()	 directly	 —	 rather,	 it	 makes	 a	 call
through	a	function	pointer	in	the	object’s	type	object.	For	this	purpose
(and	others),	every	object	also	contains	a	pointer	to	its	type	object.

The	 big	 question	 now	 remains:	 when	 to	 use	 Py_INCREF(x)	 and
Py_DECREF(x)?	Let’s	first	introduce	some	terms.	Nobody	“owns”	an
object;	 however,	 you	 can	 own	 a	 reference	 to	 an	 object.	 An	 object’s
reference	count	is	now	defined	as	the	number	of	owned	references	to
it.	The	owner	of	a	 reference	 is	 responsible	 for	calling	Py_DECREF()

when	the	reference	is	no	longer	needed.	Ownership	of	a	reference	can
be	 transferred.	 There	 are	 three	 ways	 to	 dispose	 of	 an	 owned
reference:	 pass	 it	 on,	 store	 it,	 or	 call	 Py_DECREF().	 Forgetting	 to
dispose	of	an	owned	reference	creates	a	memory	leak.

It	is	also	possible	to	borrow	[2]	a	reference	to	an	object.	The	borrower
of	a	reference	should	not	call	Py_DECREF().	The	borrower	must	not
hold	 on	 to	 the	 object	 longer	 than	 the	 owner	 from	 which	 it	 was
borrowed.	Using	a	borrowed	reference	after	the	owner	has	disposed	of
it	risks	using	freed	memory	and	should	be	avoided	completely.	[3]

The	advantage	of	borrowing	over	owning	a	reference	is	that	you	don’t
need	 to	 take	care	of	disposing	of	 the	 reference	on	all	possible	paths
through	 the	 code	—	 in	 other	 words,	 with	 a	 borrowed	 reference	 you
don’t	 run	 the	 risk	 of	 leaking	 when	 a	 premature	 exit	 is	 taken.	 The
disadvantage	of	borrowing	over	owning	 is	 that	 there	are	some	subtle
situations	where	in	seemingly	correct	code	a	borrowed	reference	can
be	 used	 after	 the	 owner	 from	 which	 it	 was	 borrowed	 has	 in	 fact
disposed	of	it.

A	 borrowed	 reference	 can	 be	 changed	 into	 an	 owned	 reference	 by
calling	 Py_INCREF().	 This	 does	 not	 affect	 the	 status	 of	 the	 owner
from	 which	 the	 reference	 was	 borrowed	—	 it	 creates	 a	 new	 owned
reference,	 and	gives	 full	 owner	 responsibilities	 (the	 new	owner	must
dispose	of	the	reference	properly,	as	well	as	the	previous	owner).

1.10.2.	Ownership	Rules

Whenever	an	object	reference	is	passed	into	or	out	of	a	function,	it	is
part	 of	 the	 function’s	 interface	 specification	 whether	 ownership	 is
transferred	with	the	reference	or	not.

Most	functions	that	return	a	reference	to	an	object	pass	on	ownership
with	 the	 reference.	 In	 particular,	 all	 functions	 whose	 function	 it	 is	 to
create	 a	 new	 object,	 such	 as	 PyLong_FromLong()	 and
Py_BuildValue(),	 pass	 ownership	 to	 the	 receiver.	 Even	 if	 the
object	 is	 not	 actually	 new,	 you	 still	 receive	 ownership	 of	 a	 new
reference	 to	 that	 object.	 For	 instance,	 PyLong_FromLong()

maintains	a	cache	of	popular	values	and	can	 return	a	 reference	 to	a
cached	item.

Many	 functions	 that	 extract	 objects	 from	 other	 objects	 also	 transfer
ownership	 with	 the	 reference,	 for	 instance
PyObject_GetAttrString().	 The	 picture	 is	 less	 clear,	 here,
however,	 since	 a	 few	 common	 routines	 are	 exceptions:
PyTuple_GetItem(),	PyList_GetItem(),	PyDict_GetItem(),
and	 PyDict_GetItemString()	 all	 return	 references	 that	 you
borrow	from	the	tuple,	list	or	dictionary.

The	 function	 PyImport_AddModule()	 also	 returns	 a	 borrowed
reference,	even	though	it	may	actually	create	the	object	it	returns:	this
is	 possible	 because	 an	 owned	 reference	 to	 the	 object	 is	 stored	 in
sys.modules.

When	you	pass	an	object	 reference	 into	another	 function,	 in	general,
the	function	borrows	the	reference	from	you	—	if	it	needs	to	store	it,	it
will	use	Py_INCREF()	 to	become	an	 independent	owner.	There	 are
exactly	 two	 important	 exceptions	 to	 this	 rule:	 PyTuple_SetItem()
and	PyList_SetItem().	These	functions	take	over	ownership	of	the
item	 passed	 to	 them	 —	 even	 if	 they	 fail!	 (Note	 that
PyDict_SetItem()	 and	 friends	 don’t	 take	 over	 ownership	—	 they
are	“normal.”)

When	a	C	 function	 is	called	 from	Python,	 it	borrows	references	 to	 its

arguments	 from	the	caller.	The	caller	owns	a	reference	 to	 the	object,
so	 the	 borrowed	 reference’s	 lifetime	 is	 guaranteed	 until	 the	 function
returns.	 Only	 when	 such	 a	 borrowed	 reference	 must	 be	 stored	 or
passed	 on,	 it	 must	 be	 turned	 into	 an	 owned	 reference	 by	 calling
Py_INCREF().

The	 object	 reference	 returned	 from	 a	 C	 function	 that	 is	 called	 from
Python	must	be	an	owned	reference	—	ownership	is	transferred	from
the	function	to	its	caller.

1.10.3.	Thin	Ice

There	 are	 a	 few	 situations	 where	 seemingly	 harmless	 use	 of	 a
borrowed	 reference	can	 lead	 to	problems.	These	all	 have	 to	do	with
implicit	invocations	of	the	interpreter,	which	can	cause	the	owner	of	a
reference	to	dispose	of	it.

The	 first	 and	 most	 important	 case	 to	 know	 about	 is	 using
Py_DECREF()	on	an	unrelated	object	while	borrowing	a	reference	to
a	list	item.	For	instance:

void

bug(PyObject	*list)

{

				PyObject	*item	=	PyList_GetItem(list,	0);

				PyList_SetItem(list,	1,	PyLong_FromLong(0L));

				PyObject_Print(item,	stdout,	0);	/*	BUG!	*/

}

This	 function	 first	 borrows	 a	 reference	 to	 list[0],	 then	 replaces
list[1]	with	the	value	0,	and	finally	prints	 the	borrowed	reference.
Looks	harmless,	right?	But	it’s	not!

Let’s	 follow	 the	control	 flow	 into	PyList_SetItem().	The	 list	owns
references	to	all	its	items,	so	when	item	1	is	replaced,	it	has	to	dispose
of	 the	 original	 item	1.	Now	 let’s	 suppose	 the	 original	 item	 1	was	 an
instance	 of	 a	 user-defined	 class,	 and	 let’s	 further	 suppose	 that	 the
class	 defined	 a	 __del__()	 method.	 If	 this	 class	 instance	 has	 a
reference	count	of	1,	disposing	of	it	will	call	its	__del__()	method.

Since	 it	 is	 written	 in	 Python,	 the	 __del__()	 method	 can	 execute
arbitrary	Python	code.	Could	it	perhaps	do	something	to	invalidate	the
reference	to	item	in	bug()?	You	bet!	Assuming	that	 the	 list	passed
into	bug()	is	accessible	to	the	__del__()	method,	it	could	execute
a	statement	to	the	effect	of	del	list[0],	and	assuming	this	was	the
last	reference	to	that	object,	it	would	free	the	memory	associated	with
it,	thereby	invalidating	item.

The	 solution,	 once	 you	 know	 the	 source	 of	 the	 problem,	 is	 easy:
temporarily	 increment	 the	reference	count.	The	correct	version	of	 the
function	reads:

void

no_bug(PyObject	*list)

{

				PyObject	*item	=	PyList_GetItem(list,	0);

				Py_INCREF(item);

				PyList_SetItem(list,	1,	PyLong_FromLong(0L));

				PyObject_Print(item,	stdout,	0);

				Py_DECREF(item);

}

This	 is	a	 true	story.	An	older	version	of	Python	contained	variants	of
this	 bug	 and	 someone	 spent	 a	 considerable	 amount	 of	 time	 in	 a	 C
debugger	to	figure	out	why	his	__del__()	methods	would	fail...

The	second	case	of	problems	with	a	borrowed	reference	 is	a	variant
involving	threads.	Normally,	multiple	 threads	 in	 the	Python	 interpreter
can’t	get	in	each	other’s	way,	because	there	is	a	global	lock	protecting
Python’s	 entire	 object	 space.	 However,	 it	 is	 possible	 to	 temporarily
release	 this	 lock	using	 the	macro	 Py_BEGIN_ALLOW_THREADS,	 and
to	 re-acquire	 it	 using	 Py_END_ALLOW_THREADS.	 This	 is	 common
around	blocking	I/O	calls,	to	let	other	threads	use	the	processor	while
waiting	 for	 the	 I/O	 to	 complete.	Obviously,	 the	 following	 function	has
the	same	problem	as	the	previous	one:

void

bug(PyObject	*list)

{

				PyObject	*item	=	PyList_GetItem(list,	0);

				Py_BEGIN_ALLOW_THREADS

				...some	blocking	I/O	call...

				Py_END_ALLOW_THREADS

				PyObject_Print(item,	stdout,	0);	/*	BUG!	*/

}

1.10.4.	NULL	Pointers

In	general,	functions	that	take	object	references	as	arguments	do	not
expect	you	to	pass	them	NULL	pointers,	and	will	dump	core	(or	cause
later	core	dumps)	if	you	do	so.	Functions	that	return	object	references
generally	return	NULL	only	to	indicate	that	an	exception	occurred.	The
reason	for	not	testing	for	NULL	arguments	is	that	functions	often	pass
the	objects	they	receive	on	to	other	function	—	if	each	function	were	to
test	 for	NULL,	 there	would	 be	a	 lot	 of	 redundant	 tests	 and	 the	 code
would	run	more	slowly.

It	 is	better	 to	 test	 for	NULL	only	at	 the	 “source:”	when	a	pointer	 that
may	 be	NULL	 is	 received,	 for	 example,	 from	 malloc()	 or	 from	 a

function	that	may	raise	an	exception.

The	 macros	 Py_INCREF()	 and	 Py_DECREF()	 do	 not	 check	 for
NULL	 pointers	 —	 however,	 their	 variants	 Py_XINCREF()	 and
Py_XDECREF()	do.

The	 macros	 for	 checking	 for	 a	 particular	 object	 type
(Pytype_Check())	don’t	check	for	NULL	pointers	—	again,	 there	 is
much	code	that	calls	several	of	these	in	a	row	to	test	an	object	against
various	 different	 expected	 types,	 and	 this	would	 generate	 redundant
tests.	There	are	no	variants	with	NULL	checking.

The	C	 function	 calling	mechanism	 guarantees	 that	 the	 argument	 list
passed	to	C	functions	(args	in	the	examples)	is	never	NULL	—	in	fact
it	guarantees	that	it	is	always	a	tuple.	[4]

It	 is	a	severe	error	to	ever	 let	a	NULL	pointer	“escape”	to	the	Python
user.

1.11.	Writing	Extensions	in	C++

It	 is	 possible	 to	 write	 extension	 modules	 in	 C++.	 Some	 restrictions
apply.	 If	 the	 main	 program	 (the	 Python	 interpreter)	 is	 compiled	 and
linked	 by	 the	 C	 compiler,	 global	 or	 static	 objects	 with	 constructors
cannot	be	used.	This	is	not	a	problem	if	the	main	program	is	linked	by
the	 C++	 compiler.	 Functions	 that	 will	 be	 called	 by	 the	 Python
interpreter	 (in	 particular,	 module	 initialization	 functions)	 have	 to	 be
declared	using	extern	"C".	It	is	unnecessary	to	enclose	the	Python
header	 files	 in	extern	"C"	{...}	—	 they	use	 this	 form	already	 if
the	symbol	__cplusplus	is	defined	(all	recent	C++	compilers	define
this	symbol).

1.12.	Providing	a	C	API	for	an	Extension
Module

Many	extension	modules	 just	 provide	new	 functions	and	 types	 to	be
used	 from	 Python,	 but	 sometimes	 the	 code	 in	 an	 extension	module
can	be	useful	for	other	extension	modules.	For	example,	an	extension
module	 could	 implement	 a	 type	 “collection”	 which	 works	 like	 lists
without	order.	Just	like	the	standard	Python	list	type	has	a	C	API	which
permits	 extension	 modules	 to	 create	 and	 manipulate	 lists,	 this	 new
collection	type	should	have	a	set	of	C	functions	for	direct	manipulation
from	other	extension	modules.

At	first	sight	this	seems	easy:	just	write	the	functions	(without	declaring
them	 static,	 of	 course),	 provide	 an	 appropriate	 header	 file,	 and
document	 the	 C	 API.	 And	 in	 fact	 this	 would	 work	 if	 all	 extension
modules	 were	 always	 linked	 statically	 with	 the	 Python	 interpreter.
When	 modules	 are	 used	 as	 shared	 libraries,	 however,	 the	 symbols
defined	 in	 one	 module	 may	 not	 be	 visible	 to	 another	 module.	 The
details	of	visibility	depend	on	the	operating	system;	some	systems	use
one	 global	 namespace	 for	 the	 Python	 interpreter	 and	 all	 extension
modules	 (Windows,	 for	 example),	 whereas	 others	 require	 an	 explicit
list	of	 imported	symbols	at	module	 link	 time	(AIX	 is	one	example),	or
offer	 a	 choice	 of	 different	 strategies	 (most	 Unices).	 And	 even	 if
symbols	are	globally	visible,	 the	module	whose	 functions	one	wishes
to	call	might	not	have	been	loaded	yet!

Portability	 therefore	 requires	 not	 to	 make	 any	 assumptions	 about
symbol	 visibility.	 This	 means	 that	 all	 symbols	 in	 extension	 modules
should	 be	 declared	 static,	 except	 for	 the	 module’s	 initialization
function,	in	order	to	avoid	name	clashes	with	other	extension	modules
(as	discussed	in	section	The	Module’s	Method	Table	and	Initialization

Function).	And	 it	means	 that	symbols	 that	should	be	accessible	 from
other	extension	modules	must	be	exported	in	a	different	way.

Python	 provides	 a	 special	 mechanism	 to	 pass	 C-level	 information
(pointers)	 from	 one	 extension	 module	 to	 another	 one:	 Capsules.	 A
Capsule	 is	 a	 Python	 data	 type	 which	 stores	 a	 pointer	 (void	 *).
Capsules	can	only	be	created	and	accessed	via	their	C	API,	but	they
can	be	passed	around	like	any	other	Python	object.	In	particular,	they
can	 be	 assigned	 to	 a	 name	 in	 an	 extension	 module’s	 namespace.
Other	 extension	 modules	 can	 then	 import	 this	 module,	 retrieve	 the
value	of	this	name,	and	then	retrieve	the	pointer	from	the	Capsule.

There	are	many	ways	in	which	Capsules	can	be	used	to	export	the	C
API	of	an	extension	module.	Each	function	could	get	its	own	Capsule,
or	 all	 C	 API	 pointers	 could	 be	 stored	 in	 an	 array	 whose	 address	 is
published	in	a	Capsule.	And	the	various	tasks	of	storing	and	retrieving
the	pointers	can	be	distributed	 in	different	ways	between	 the	module
providing	the	code	and	the	client	modules.

Whichever	method	you	choose,	 it’s	 important	to	name	your	Capsules
properly.	 The	 function	 PyCapsule_New()	 takes	 a	 name	 parameter
(const	char	*);	you’re	permitted	to	pass	 in	a	NULL	name,	but	we
strongly	encourage	you	to	specify	a	name.	Properly	named	Capsules
provide	a	degree	of	runtime	type-safety;	there	is	no	feasible	way	to	tell
one	unnamed	Capsule	from	another.

In	particular,	Capsules	used	to	expose	C	APIs	should	be	given	a	name
following	this	convention:

modulename.attributename

The	 convenience	 function	 PyCapsule_Import()	 makes	 it	 easy	 to
load	a	C	API	provided	via	a	Capsule,	but	only	 if	 the	Capsule’s	name

matches	 this	 convention.	 This	 behavior	 gives	 C	 API	 users	 a	 high
degree	of	certainty	 that	 the	Capsule	 they	 load	contains	 the	correct	C
API.

The	 following	 example	 demonstrates	 an	 approach	 that	 puts	most	 of
the	burden	on	the	writer	of	the	exporting	module,	which	is	appropriate
for	 commonly	used	 library	modules.	 It	 stores	all	C	API	pointers	 (just
one	in	the	example!)	in	an	array	of	void	pointers	which	becomes	the
value	 of	 a	 Capsule.	 The	 header	 file	 corresponding	 to	 the	 module
provides	 a	 macro	 that	 takes	 care	 of	 importing	 the	 module	 and
retrieving	 its	 C	 API	 pointers;	 client	 modules	 only	 have	 to	 call	 this
macro	before	accessing	the	C	API.

The	 exporting	 module	 is	 a	 modification	 of	 the	 spam	 module	 from
section	A	 Simple	 Example.	 The	 function	 spam.system()	 does	 not
call	 the	 C	 library	 function	 system()	 directly,	 but	 a	 function
PySpam_System(),	 which	 would	 of	 course	 do	 something	 more
complicated	 in	 reality	 (such	 as	 adding	 “spam”	 to	 every	 command).
This	function	PySpam_System()	 is	also	exported	to	other	extension
modules.

The	 function	 PySpam_System()	 is	 a	 plain	 C	 function,	 declared
static	like	everything	else:

static	int

PySpam_System(const	char	*command)

{

				return	system(command);

}

The	function	spam_system()	is	modified	in	a	trivial	way:

static	PyObject	*

spam_system(PyObject	*self,	PyObject	*args)

{

				const	char	*command;

				int	sts;

				if	(!PyArg_ParseTuple(args,	"s",	&command))

								return	NULL;

				sts	=	PySpam_System(command);

				return	PyLong_FromLong(sts);

}

In	the	beginning	of	the	module,	right	after	the	line

#include	"Python.h"

two	more	lines	must	be	added:

#define	SPAM_MODULE

#include	"spammodule.h"

The	#define	is	used	to	tell	the	header	file	that	it	is	being	included	in
the	 exporting	 module,	 not	 a	 client	 module.	 Finally,	 the	 module’s
initialization	 function	 must	 take	 care	 of	 initializing	 the	 C	 API	 pointer
array:

PyMODINIT_FUNC

PyInit_spam(void)

{

				PyObject	*m;

				static	void	*PySpam_API[PySpam_API_pointers];

				PyObject	*c_api_object;

				m	=	PyModule_Create(&spammodule);

				if	(m	==	NULL)

								return	NULL;

				/*	Initialize	the	C	API	pointer	array	*/

				PySpam_API[PySpam_System_NUM]	=	(void	*)PySpam_System

				/*	Create	a	Capsule	containing	the	API	pointer	array's	address	*/

				c_api_object	=	PyCapsule_New((void	*)PySpam_API,

				if	(c_api_object	!=	NULL)

								PyModule_AddObject(m,	"_C_API",	c_api_object

				return	m;

}

Note	 that	 PySpam_API	 is	 declared	 static;	 otherwise	 the	 pointer
array	would	disappear	when	PyInit_spam()	terminates!

The	bulk	of	the	work	is	in	the	header	file	spammodule.h,	which	looks
like	this:

#ifndef	Py_SPAMMODULE_H

#define	Py_SPAMMODULE_H

#ifdef	__cplusplus

extern	"C"	{

#endif

/*	Header	file	for	spammodule	*/

/*	C	API	functions	*/

#define	PySpam_System_NUM	0

#define	PySpam_System_RETURN	int

#define	PySpam_System_PROTO	(const	char	*command)

/*	Total	number	of	C	API	pointers	*/

#define	PySpam_API_pointers	1

#ifdef	SPAM_MODULE

/*	This	section	is	used	when	compiling	spammodule.c	*/

static	PySpam_System_RETURN	PySpam_System	PySpam_System_PROTO

#else

/*	This	section	is	used	in	modules	that	use	spammodule's	API	*/

static	void	**PySpam_API;

#define	PySpam_System	\

	(*(PySpam_System_RETURN	(*)PySpam_System_PROTO)	PySpam_API[PySpam_System_NUM])

/*	Return	-1	on	error,	0	on	success.

	*	PyCapsule_Import	will	set	an	exception	if	there's	an	error.

	*/

static	int

import_spam(void)

{

				PySpam_API	=	(void	**)PyCapsule_Import("spam._C_API"

				return	(PySpam_API	!=	NULL)	?	0	:	-1;

}

#endif

#ifdef	__cplusplus

}

#endif

#endif	/*	!defined(Py_SPAMMODULE_H)	*/

All	that	a	client	module	must	do	in	order	to	have	access	to	the	function
PySpam_System()	 is	 to	 call	 the	 function	 (or	 rather	 macro)
import_spam()	in	its	initialization	function:

PyMODINIT_FUNC

PyInit_client(void)

{

				PyObject	*m;

				m	=	PyModule_Create(&clientmodule);

				if	(m	==	NULL)

								return	NULL;

				if	(import_spam()	<	0)

								return	NULL;

				/*	additional	initialization	can	happen	here	*/

				return	m;

}

The	 main	 disadvantage	 of	 this	 approach	 is	 that	 the	 file
spammodule.h	is	rather	complicated.	However,	the	basic	structure	is
the	 same	 for	 each	 function	 that	 is	 exported,	 so	 it	 has	 to	 be	 learned
only	once.

Finally	 it	 should	 be	 mentioned	 that	 Capsules	 offer	 additional
functionality,	 which	 is	 especially	 useful	 for	 memory	 allocation	 and
deallocation	 of	 the	 pointer	 stored	 in	 a	 Capsule.	 The	 details	 are
described	 in	 the	 Python/C	 API	 Reference	 Manual	 in	 the	 section
Capsules	 and	 in	 the	 implementation	 of	 Capsules	 (files
Include/pycapsule.h	 and	 Objects/pycapsule.c	 in	 the
Python	source	code	distribution).

Footnotes

[1]
An	interface	for	this	function	already	exists	in	the	standard
module	os	—	it	was	chosen	as	a	simple	and	straightforward
example.

[2] The	metaphor	of	“borrowing”	a	reference	is	not	completely
correct:	the	owner	still	has	a	copy	of	the	reference.

[3]
Checking	that	the	reference	count	is	at	least	1	does	not	work
—	the	reference	count	itself	could	be	in	freed	memory	and	may
thus	be	reused	for	another	object!

[4] These	guarantees	don’t	hold	when	you	use	the	“old”	style
calling	convention	—	this	is	still	found	in	much	existing	code.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

http://www.python.org/

2.	Defining	New	Types
As	 mentioned	 in	 the	 last	 chapter,	 Python	 allows	 the	 writer	 of	 an
extension	module	 to	define	new	 types	 that	 can	be	manipulated	 from
Python	code,	much	like	strings	and	lists	in	core	Python.

This	is	not	hard;	the	code	for	all	extension	types	follows	a	pattern,	but
there	are	some	details	that	you	need	to	understand	before	you	can	get
started.

2.1.	The	Basics

The	 Python	 runtime	 sees	 all	 Python	 objects	 as	 variables	 of	 type
PyObject*,	 which	 serves	 as	 a	 “base	 type”	 for	 all	 Python	 objects.
PyObject	 itself	 only	 contains	 the	 refcount	 and	 a	 pointer	 to	 the
object’s	 “type	 object”.	 This	 is	 where	 the	 action	 is;	 the	 type	 object
determines	 which	 (C)	 functions	 get	 called	 when,	 for	 instance,	 an
attribute	 gets	 looked	 up	 on	 an	 object	 or	 it	 is	 multiplied	 by	 another
object.	These	C	functions	are	called	“type	methods”.

So,	if	you	want	to	define	a	new	object	type,	you	need	to	create	a	new
type	object.

This	 sort	 of	 thing	 can	 only	 be	 explained	 by	 example,	 so	 here’s	 a
minimal,	but	complete,	module	that	defines	a	new	type:

#include	<Python.h>

typedef	struct	{

				PyObject_HEAD

				/*	Type-specific	fields	go	here.	*/

}	noddy_NoddyObject;

static	PyTypeObject	noddy_NoddyType	=	{

				PyVarObject_HEAD_INIT(NULL,	0)

				"noddy.Noddy",													/*	tp_name	*/

				sizeof(noddy_NoddyObject),	/*	tp_basicsize	*/

				0,																									/*	tp_itemsize	*/

				0,																									/*	tp_dealloc	*/

				0,																									/*	tp_print	*/

				0,																									/*	tp_getattr	*/

				0,																									/*	tp_setattr	*/

				0,																									/*	tp_reserved	*/

				0,																									/*	tp_repr	*/

				0,																									/*	tp_as_number	*/

				0,																									/*	tp_as_sequence	*/

				0,																									/*	tp_as_mapping	*/

				0,																									/*	tp_hash		*/

				0,																									/*	tp_call	*/

				0,																									/*	tp_str	*/

				0,																									/*	tp_getattro	*/

				0,																									/*	tp_setattro	*/

				0,																									/*	tp_as_buffer	*/

				Py_TPFLAGS_DEFAULT,								/*	tp_flags	*/

				"Noddy	objects",											/*	tp_doc	*/

};

static	PyModuleDef	noddymodule	=	{

				PyModuleDef_HEAD_INIT,

				"noddy",

				"Example	module	that	creates	an	extension	type."

				-1,

				NULL,	NULL,	NULL,	NULL,	NULL

};

PyMODINIT_FUNC

PyInit_noddy(void)	

{

				PyObject*	m;

				noddy_NoddyType.tp_new	=	PyType_GenericNew;

				if	(PyType_Ready(&noddy_NoddyType)	<	0)

								return	NULL;

				m	=	PyModule_Create(&noddymodule);

				if	(m	==	NULL)

								return	NULL;

				Py_INCREF(&noddy_NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&noddy_NoddyType

				return	m;

}

Now	 that’s	quite	a	bit	 to	 take	 in	at	once,	but	hopefully	bits	will	 seem
familiar	from	the	last	chapter.

The	first	bit	that	will	be	new	is:

typedef	struct	{

				PyObject_HEAD

}	noddy_NoddyObject;

This	 is	what	a	Noddy	object	will	 contain—in	 this	 case,	 nothing	more
than	what	every	Python	object	contains—a	refcount	and	a	pointer	to	a
type	object.	These	are	 the	 fields	 the	 PyObject_HEAD	macro	brings
in.	The	reason	for	the	macro	is	to	standardize	the	layout	and	to	enable
special	 debugging	 fields	 in	 debug	 builds.	 Note	 that	 there	 is	 no
semicolon	 after	 the	 PyObject_HEAD	 macro;	 one	 is	 included	 in	 the
macro	definition.	Be	wary	 of	 adding	 one	 by	 accident;	 it’s	 easy	 to	 do
from	habit,	and	your	compiler	might	not	complain,	but	someone	else’s
probably	will!	 (On	Windows,	MSVC	is	known	to	call	 this	an	error	and
refuse	to	compile	the	code.)

For	 contrast,	 let’s	 take	 a	 look	 at	 the	 corresponding	 definition	 for
standard	Python	floats:

typedef	struct	{

				PyObject_HEAD

				double	ob_fval;

}	PyFloatObject;

Moving	on,	we	come	to	the	crunch	—	the	type	object.

static	PyTypeObject	noddy_NoddyType	=	{

				PyVarObject_HEAD_INIT(NULL,	0)

				"noddy.Noddy",													/*	tp_name	*/

				sizeof(noddy_NoddyObject),	/*	tp_basicsize	*/

				0,																									/*	tp_itemsize	*/

				0,																									/*	tp_dealloc	*/

				0,																									/*	tp_print	*/

				0,																									/*	tp_getattr	*/

				0,																									/*	tp_setattr	*/

				0,																									/*	tp_reserved	*/

				0,																									/*	tp_repr	*/

				0,																									/*	tp_as_number	*/

				0,																									/*	tp_as_sequence	*/

				0,																									/*	tp_as_mapping	*/

				0,																									/*	tp_hash		*/

				0,																									/*	tp_call	*/

				0,																									/*	tp_str	*/

				0,																									/*	tp_getattro	*/

				0,																									/*	tp_setattro	*/

				0,																									/*	tp_as_buffer	*/

				Py_TPFLAGS_DEFAULT,								/*	tp_flags	*/

				"Noddy	objects",											/*	tp_doc	*/

};

Now	 if	 you	 go	 and	 look	 up	 the	 definition	 of	 PyTypeObject	 in
object.h	 you’ll	 see	 that	 it	 has	many	more	 fields	 that	 the	definition
above.	The	remaining	fields	will	be	filled	with	zeros	by	the	C	compiler,
and	it’s	common	practice	to	not	specify	them	explicitly	unless	you	need
them.

This	 is	 so	 important	 that	 we’re	 going	 to	 pick	 the	 top	 of	 it	 apart	 still
further:

PyVarObject_HEAD_INIT(NULL,	0)

This	line	is	a	bit	of	a	wart;	what	we’d	like	to	write	is:

PyVarObject_HEAD_INIT(&PyType_Type,	0)

as	the	type	of	a	type	object	is	“type”,	but	this	isn’t	strictly	conforming	C
and	some	compilers	complain.	Fortunately,	this	member	will	be	filled	in
for	us	by	PyType_Ready().

"noddy.Noddy",														/*	tp_name	*/

The	 name	 of	 our	 type.	 This	 will	 appear	 in	 the	 default	 textual
representation	 of	 our	 objects	 and	 in	 some	 error	 messages,	 for
example:

>>>	""	+	noddy.new_noddy()

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

TypeError:	cannot	add	type	"noddy.Noddy"	to	string

Note	 that	 the	 name	 is	 a	 dotted	 name	 that	 includes	 both	 the	module
name	and	the	name	of	the	type	within	the	module.	The	module	in	this
case	 is	 noddy	 and	 the	 type	 is	 Noddy,	 so	we	 set	 the	 type	 name	 to
noddy.Noddy.

sizeof(noddy_NoddyObject),		/*	tp_basicsize	*/

This	is	so	that	Python	knows	how	much	memory	to	allocate	when	you
call	PyObject_New().

Note: 	If	you	want	your	type	to	be	subclassable	from	Python,	and
your	type	has	the	same	tp_basicsize	as	its	base	type,	you	may
have	problems	with	multiple	inheritance.	A	Python	subclass	of	your
type	will	have	to	list	your	type	first	in	its	__bases__,	or	else	it	will
not	be	able	to	call	your	type’s	__new__()	method	without	getting	an
error.	You	can	avoid	this	problem	by	ensuring	that	your	type	has	a

larger	value	for	tp_basicsize	than	its	base	type	does.	Most	of	the
time,	this	will	be	true	anyway,	because	either	your	base	type	will	be
object,	or	else	you	will	be	adding	data	members	to	your	base	type,
and	therefore	increasing	its	size.

0,																										/*	tp_itemsize	*/

This	has	to	do	with	variable	length	objects	like	lists	and	strings.	Ignore
this	for	now.

Skipping	a	number	of	type	methods	that	we	don’t	provide,	we	set	the
class	flags	to	Py_TPFLAGS_DEFAULT.

Py_TPFLAGS_DEFAULT,								/*	tp_flags	*/

All	types	should	include	this	constant	in	their	flags.	It	enables	all	of	the
members	 defined	 until	 at	 least	 Python	 3.3.	 If	 you	 need	 further
members,	you	will	need	to	OR	the	corresponding	flags.

We	provide	a	doc	string	for	the	type	in	tp_doc.

"Noddy	objects",											/*	tp_doc	*/

Now	we	get	into	the	type	methods,	the	things	that	make	your	objects
different	from	the	others.	We	aren’t	going	to	implement	any	of	these	in
this	 version	 of	 the	module.	We’ll	 expand	 this	 example	 later	 to	 have
more	interesting	behavior.

For	now,	all	we	want	to	be	able	to	do	is	to	create	new	Noddy	objects.
To	 enable	 object	 creation,	 we	 have	 to	 provide	 a	 tp_new

implementation.	 In	 this	 case,	 we	 can	 just	 use	 the	 default
implementation	 provided	 by	 the	 API	 function
PyType_GenericNew().	We’d	like	to	just	assign	this	to	the	tp_new

slot,	but	we	can’t,	for	portability	sake,	On	some	platforms	or	compilers,
we	can’t	statically	initialize	a	structure	member	with	a	function	defined
in	another	C	module,	so,	 instead,	we’ll	assign	the	tp_new	slot	 in	 the
module	initialization	function	just	before	calling	PyType_Ready():

noddy_NoddyType.tp_new	=	PyType_GenericNew;

if	(PyType_Ready(&noddy_NoddyType)	<	0)

				return;

All	 the	other	 type	methods	are	NULL,	 so	we’ll	 go	over	 them	 later	—
that’s	for	a	later	section!

Everything	else	in	the	file	should	be	familiar,	except	for	some	code	in
PyInit_noddy():

if	(PyType_Ready(&noddy_NoddyType)	<	0)

				return;

This	 initializes	 the	 Noddy	 type,	 filing	 in	 a	 number	 of	 members,
including	ob_type	that	we	initially	set	to	NULL.

PyModule_AddObject(m,	"Noddy",	(PyObject	*)&noddy_NoddyType

This	adds	 the	 type	 to	 the	module	dictionary.	This	allows	us	 to	create
Noddy	instances	by	calling	the	Noddy	class:

>>>	import	noddy

>>>	mynoddy	=	noddy.Noddy()

That’s	 it!	 All	 that	 remains	 is	 to	 build	 it;	 put	 the	 above	 code	 in	 a	 file
called	noddy.c	and

from	distutils.core	import	setup,	Extension

setup(name="noddy",	version="1.0",

						ext_modules=[Extension("noddy",	["noddy.c"])])

in	a	file	called	setup.py;	then	typing

$	python	setup.py	build

at	a	shell	should	produce	a	file	noddy.so	 in	a	subdirectory;	move	to
that	 directory	 and	 fire	 up	 Python	—	 you	 should	 be	 able	 to	 import
noddy	and	play	around	with	Noddy	objects.

That	wasn’t	so	hard,	was	it?

Of	 course,	 the	 current	 Noddy	 type	 is	 pretty	 uninteresting.	 It	 has	 no
data	and	doesn’t	do	anything.	It	can’t	even	be	subclassed.

2.1.1.	Adding	data	and	methods	to	the	Basic
example

Let’s	extend	the	basic	example	to	add	some	data	and	methods.	Let’s
also	make	the	type	usable	as	a	base	class.	We’ll	create	a	new	module,
noddy2	that	adds	these	capabilities:

#include	<Python.h>

#include	"structmember.h"

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;	/*	first	name	*/

				PyObject	*last;		/*	last	name	*/

				int	number;

}	Noddy;

static	void

Noddy_dealloc(Noddy*	self)

{

				Py_XDECREF(self->first);

				Py_XDECREF(self->last);

				Py_TYPE(self)->tp_free((PyObject*)self);

}

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyUnicode_FromString("");

								if	(self->first	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->last	=	PyUnicode_FromString("");

								if	(self->last	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number"

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|OOi"

																																						&first,	&last,

																																						&self->number))

								return	-1;

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_XDECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_XDECREF(tmp);

				}

				return	0;

}

static	PyMemberDef	Noddy_members[]	=	{

				{"first",	T_OBJECT_EX,	offsetof(Noddy,	first),	0

					"first	name"},

				{"last",	T_OBJECT_EX,	offsetof(Noddy,	last),	0,

					"last	name"},

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_name(Noddy*	self)

{

				if	(self->first	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"first"

								return	NULL;

				}

				if	(self->last	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"last"

								return	NULL;

				}

				return	PyUnicode_FromFormat("%S	%S",	self->first

}

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

static	PyTypeObject	NoddyType	=	{

				PyVarObject_HEAD_INIT(NULL,	0)

				"noddy.Noddy",													/*	tp_name	*/

				sizeof(Noddy),													/*	tp_basicsize	*/

				0,																									/*	tp_itemsize	*/

				(destructor)Noddy_dealloc,	/*	tp_dealloc	*/

				0,																									/*	tp_print	*/

				0,																									/*	tp_getattr	*/

				0,																									/*	tp_setattr	*/

				0,																									/*	tp_reserved	*/

				0,																									/*	tp_repr	*/

				0,																									/*	tp_as_number	*/

				0,																									/*	tp_as_sequence	*/

				0,																									/*	tp_as_mapping	*/

				0,																									/*	tp_hash		*/

				0,																									/*	tp_call	*/

				0,																									/*	tp_str	*/

				0,																									/*	tp_getattro	*/

				0,																									/*	tp_setattro	*/

				0,																									/*	tp_as_buffer	*/

				Py_TPFLAGS_DEFAULT	|

								Py_TPFLAGS_BASETYPE,			/*	tp_flags	*/

				"Noddy	objects",											/*	tp_doc	*/

				0,																									/*	tp_traverse	*/

				0,																									/*	tp_clear	*/

				0,																									/*	tp_richcompare	*/

				0,																									/*	tp_weaklistoffset	*/

				0,																									/*	tp_iter	*/

				0,																									/*	tp_iternext	*/

				Noddy_methods,													/*	tp_methods	*/

				Noddy_members,													/*	tp_members	*/

				0,																									/*	tp_getset	*/

				0,																									/*	tp_base	*/

				0,																									/*	tp_dict	*/

				0,																									/*	tp_descr_get	*/

				0,																									/*	tp_descr_set	*/

				0,																									/*	tp_dictoffset	*/

				(initproc)Noddy_init,						/*	tp_init	*/

				0,																									/*	tp_alloc	*/

				Noddy_new,																	/*	tp_new	*/

};

static	PyModuleDef	noddy2module	=	{

				PyModuleDef_HEAD_INIT,

				"noddy2",

				"Example	module	that	creates	an	extension	type."

				-1,

				NULL,	NULL,	NULL,	NULL,	NULL

};

PyMODINIT_FUNC

PyInit_noddy2(void)

{

				PyObject*	m;

				if	(PyType_Ready(&NoddyType)	<	0)

								return	NULL;

				m	=	PyModule_Create(&noddy2module);

				if	(m	==	NULL)

								return	NULL;

				Py_INCREF(&NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&NoddyType

				return	m;

}

This	version	of	the	module	has	a	number	of	changes.

We’ve	added	an	extra	include:

#include	<structmember.h>

This	include	provides	declarations	that	we	use	to	handle	attributes,	as
described	a	bit	later.

The	 name	 of	 the	 Noddy	 object	 structure	 has	 been	 shortened	 to
Noddy.	The	type	object	name	has	been	shortened	to	NoddyType.

The	Noddy	type	now	has	three	data	attributes,	first,	last,	and	number.
The	first	and	 last	variables	are	Python	strings	containing	first	and	last
names.	The	number	attribute	is	an	integer.

The	object	structure	is	updated	accordingly:

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;

				PyObject	*last;

				int	number;

}	Noddy;

Because	we	now	have	data	 to	manage,	we	have	 to	be	more	careful
about	 object	 allocation	 and	 deallocation.	 At	 a	 minimum,	 we	 need	 a
deallocation	method:

static	void

Noddy_dealloc(Noddy*	self)

{

				Py_XDECREF(self->first);

				Py_XDECREF(self->last);

				Py_TYPE(self)->tp_free((PyObject*)self);

}

which	is	assigned	to	the	tp_dealloc	member:

(destructor)Noddy_dealloc,	/*tp_dealloc*/

This	 method	 decrements	 the	 reference	 counts	 of	 the	 two	 Python
attributes.	 We	 use	 Py_XDECREF()	 here	 because	 the	 first	 and
last	members	could	be	NULL.	It	then	calls	the	tp_free	member	of
the	 object’s	 type	 to	 free	 the	 object’s	memory.	 Note	 that	 the	 object’s
type	 might	 not	 be	 NoddyType,	 because	 the	 object	 may	 be	 an
instance	of	a	subclass.

We	want	 to	make	sure	 that	 the	 first	and	 last	names	are	 initialized	 to
empty	strings,	so	we	provide	a	new	method:

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyUnicode_FromString("");

								if	(self->first	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->last	=	PyUnicode_FromString("");

								if	(self->last	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

and	install	it	in	the	tp_new	member:

Noddy_new,																	/*	tp_new	*/

The	new	member	is	responsible	for	creating	(as	opposed	to	initializing)
objects	 of	 the	 type.	 It	 is	 exposed	 in	 Python	 as	 the	 __new__()
method.	See	the	paper	titled	“Unifying	types	and	classes	in	Python”	for
a	 detailed	 discussion	 of	 the	 __new__()	 method.	 One	 reason	 to
implement	 a	 new	 method	 is	 to	 assure	 the	 initial	 values	 of	 instance
variables.	In	this	case,	we	use	the	new	method	to	make	sure	that	the
initial	 values	of	 the	members	first	and	last	 are	 not	NULL.	 If	we
didn’t	care	whether	the	initial	values	were	NULL,	we	could	have	used

PyType_GenericNew()	 as	 our	 new	 method,	 as	 we	 did	 before.
PyType_GenericNew()	 initializes	 all	 of	 the	 instance	 variable
members	to	NULL.

The	 new	 method	 is	 a	 static	 method	 that	 is	 passed	 the	 type	 being
instantiated	and	any	arguments	passed	when	the	type	was	called,	and
that	 returns	 the	 new	 object	 created.	 New	 methods	 always	 accept
positional	 and	 keyword	 arguments,	 but	 they	 often	 ignore	 the
arguments,	leaving	the	argument	handling	to	initializer	methods.	Note
that	if	the	type	supports	subclassing,	the	type	passed	may	not	be	the
type	 being	 defined.	 The	 new	 method	 calls	 the	 tp_alloc	 slot	 to
allocate	memory.	We	 don’t	 fill	 the	 tp_alloc	 slot	 ourselves.	 Rather
PyType_Ready()	 fills	 it	 for	 us	 by	 inheriting	 it	 from	 our	 base	 class,
which	is	object	by	default.	Most	types	use	the	default	allocation.

Note: 	If	you	are	creating	a	co-operative	tp_new	(one	that	calls	a
base	type’s	tp_new	or	__new__()),	you	must	not	try	to	determine
what	method	to	call	using	method	resolution	order	at	runtime.
Always	statically	determine	what	type	you	are	going	to	call,	and	call
its	tp_new	directly,	or	via	type->tp_base->tp_new.	If	you	do	not
do	this,	Python	subclasses	of	your	type	that	also	inherit	from	other
Python-defined	classes	may	not	work	correctly.	(Specifically,	you
may	not	be	able	to	create	instances	of	such	subclasses	without
getting	a	TypeError.)

We	provide	an	initialization	function:

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number"

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|OOi"

																																						&first,	&last,

																																						&self->number))

								return	-1;

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_XDECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_XDECREF(tmp);

				}

				return	0;

}

by	filling	the	tp_init	slot.

(initproc)Noddy_init,									/*	tp_init	*/

The	tp_init	slot	is	exposed	in	Python	as	the	__init__()	method.
It	 is	 used	 to	 initialize	 an	 object	 after	 it’s	 created.	 Unlike	 the	 new
method,	we	can’t	guarantee	that	the	initializer	is	called.	The	 initializer
isn’t	 called	 when	 unpickling	 objects	 and	 it	 can	 be	 overridden.	 Our
initializer	accepts	arguments	to	provide	 initial	values	for	our	 instance.
Initializers	always	accept	positional	and	keyword	arguments.

Initializers	 can	 be	 called	 multiple	 times.	 Anyone	 can	 call	 the
__init__()	method	on	our	objects.	For	this	reason,	we	have	to	be
extra	 careful	when	assigning	 the	new	values.	We	might	be	 tempted,
for	example	to	assign	the	first	member	like	this:

if	(first)	{

				Py_XDECREF(self->first);

				Py_INCREF(first);

				self->first	=	first;

}

But	this	would	be	risky.	Our	type	doesn’t	restrict	the	type	of	the	first
member,	so	 it	could	be	any	kind	of	object.	 It	could	have	a	destructor
that	 causes	 code	 to	 be	 executed	 that	 tries	 to	 access	 the	 first
member.	To	be	paranoid	and	protect	ourselves	against	this	possibility,
we	 almost	 always	 reassign	 members	 before	 decrementing	 their
reference	counts.	When	don’t	we	have	to	do	this?

when	we	absolutely	know	that	the	reference	count	is	greater	than
1
when	we	 know	 that	 deallocation	 of	 the	 object	 [1]	 will	 not	 cause
any	calls	back	into	our	type’s	code
when	decrementing	a	reference	count	in	a	tp_dealloc	handler
when	garbage-collections	is	not	supported	[2]

We	want	 to	expose	our	 instance	variables	as	attributes.	There	are	a
number	 of	 ways	 to	 do	 that.	 The	 simplest	 way	 is	 to	 define	 member
definitions:

static	PyMemberDef	Noddy_members[]	=	{

				{"first",	T_OBJECT_EX,	offsetof(Noddy,	first),	0

					"first	name"},

				{"last",	T_OBJECT_EX,	offsetof(Noddy,	last),	0,

					"last	name"},

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

and	put	the	definitions	in	the	tp_members	slot:

Noddy_members,													/*	tp_members	*/

Each	 member	 definition	 has	 a	 member	 name,	 type,	 offset,	 access
flags	 and	 documentation	 string.	 See	 the	 Generic	 Attribute
Management	section	below	for	details.

A	 disadvantage	 of	 this	 approach	 is	 that	 it	 doesn’t	 provide	 a	 way	 to
restrict	 the	 types	 of	 objects	 that	 can	 be	 assigned	 to	 the	 Python
attributes.	We	 expect	 the	 first	 and	 last	 names	 to	 be	 strings,	 but	 any
Python	objects	can	be	assigned.	Further,	the	attributes	can	be	deleted,
setting	 the	C	pointers	 to	NULL.	Even	 though	we	 can	make	 sure	 the
members	are	initialized	to	non-NULL	values,	the	members	can	be	set
to	NULL	if	the	attributes	are	deleted.

We	define	a	single	method,	name(),	that	outputs	the	objects	name	as
the	concatenation	of	the	first	and	last	names.

static	PyObject	*

Noddy_name(Noddy*	self)

{

				if	(self->first	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"first"

								return	NULL;

				}

				if	(self->last	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"last"

								return	NULL;

				}

				return	PyUnicode_FromFormat("%S	%S",	self->first

}

The	method	 is	 implemented	as	a	C	 function	 that	 takes	a	 Noddy	 (or
Noddy	subclass)	instance	as	the	first	argument.	Methods	always	take
an	 instance	as	 the	 first	 argument.	Methods	often	 take	positional	and
keyword	 arguments	 as	 well,	 but	 in	 this	 case	we	 don’t	 take	 any	 and
don’t	need	to	accept	a	positional	argument	tuple	or	keyword	argument
dictionary.	This	method	is	equivalent	to	the	Python	method:

def	name(self):

			return	"%s	%s"	%	(self.first,	self.last)

Note	 that	 we	 have	 to	 check	 for	 the	 possibility	 that	 our	 first	 and
last	members	 are	NULL.	 This	 is	 because	 they	 can	 be	 deleted,	 in
which	case	they	are	set	to	NULL.	It	would	be	better	to	prevent	deletion
of	 these	 attributes	 and	 to	 restrict	 the	 attribute	 values	 to	 be	 strings.
We’ll	see	how	to	do	that	in	the	next	section.

Now	 that	 we’ve	 defined	 the	method,	 we	 need	 to	 create	 an	 array	 of
method	definitions:

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

and	assign	them	to	the	tp_methods	slot:

Noddy_methods,													/*	tp_methods	*/

Note	that	we	used	the	METH_NOARGS	flag	to	indicate	that	the	method
is	passed	no	arguments.

Finally,	we’ll	make	our	type	usable	as	a	base	class.	We’ve	written	our
methods	 carefully	 so	 far	 so	 that	 they	 don’t	 make	 any	 assumptions
about	the	type	of	the	object	being	created	or	used,	so	all	we	need	to
do	is	to	add	the	Py_TPFLAGS_BASETYPE	to	our	class	flag	definition:

Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_BASETYPE,	/*tp_flags*/

We	 rename	 PyInit_noddy()	 to	 PyInit_noddy2()	 and	 update
the	module	name	in	the	PyModuleDef	struct.

Finally,	we	update	our	setup.py	file	to	build	the	new	module:

from	distutils.core	import	setup,	Extension

setup(name="noddy",	version="1.0",

						ext_modules=[

									Extension("noddy",	["noddy.c"]),

									Extension("noddy2",	["noddy2.c"]),

])

2.1.2.	Providing	finer	control	over	data	attributes

In	 this	 section,	 we’ll	 provide	 finer	 control	 over	 how	 the	 first	 and
last	attributes	are	set	in	the	Noddy	example.	In	the	previous	version
of	our	module,	the	instance	variables	first	and	last	could	be	set	to
non-string	values	or	even	deleted.	We	want	 to	make	sure	 that	 these
attributes	always	contain	strings.

#include	<Python.h>

#include	"structmember.h"

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;

				PyObject	*last;

				int	number;

}	Noddy;

static	void

Noddy_dealloc(Noddy*	self)

{

				Py_XDECREF(self->first);

				Py_XDECREF(self->last);

				Py_TYPE(self)->tp_free((PyObject*)self);

}

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyUnicode_FromString("");

								if	(self->first	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->last	=	PyUnicode_FromString("");

								if	(self->last	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number"

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|SSi"

																																						&first,	&last,

																																						&self->number))

								return	-1;

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_DECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_DECREF(tmp);

				}

				return	0;

}

static	PyMemberDef	Noddy_members[]	=	{

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_getfirst(Noddy	*self,	void	*closure)

{

				Py_INCREF(self->first);

				return	self->first;

}

static	int

Noddy_setfirst(Noddy	*self,	PyObject	*value,	void	*closure

{

				if	(value	==	NULL)	{

								PyErr_SetString(PyExc_TypeError,	"Cannot	delete	the	first	attribute"

								return	-1;

				}

				if	(!	PyUnicode_Check(value))	{

								PyErr_SetString(PyExc_TypeError,

																								"The	first	attribute	value	must	be	a	string"

								return	-1;

				}

				Py_DECREF(self->first);

				Py_INCREF(value);

				self->first	=	value;

				return	0;

}

static	PyObject	*

Noddy_getlast(Noddy	*self,	void	*closure)

{

				Py_INCREF(self->last);

				return	self->last;

}

static	int

Noddy_setlast(Noddy	*self,	PyObject	*value,	void	*closure

{

				if	(value	==	NULL)	{

								PyErr_SetString(PyExc_TypeError,	"Cannot	delete	the	last	attribute"

								return	-1;

				}

				if	(!	PyUnicode_Check(value))	{

								PyErr_SetString(PyExc_TypeError,

																								"The	last	attribute	value	must	be	a	string"

								return	-1;

				}

				Py_DECREF(self->last);

				Py_INCREF(value);

				self->last	=	value;

				return	0;

}

static	PyGetSetDef	Noddy_getseters[]	=	{

				{"first",

					(getter)Noddy_getfirst,	(setter)Noddy_setfirst,

					"first	name",

					NULL},

				{"last",

					(getter)Noddy_getlast,	(setter)Noddy_setlast,

					"last	name",

					NULL},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_name(Noddy*	self)

{

				return	PyUnicode_FromFormat("%S	%S",	self->first

}

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

static	PyTypeObject	NoddyType	=	{

				PyVarObject_HEAD_INIT(NULL,	0)

				"noddy.Noddy",													/*	tp_name	*/

				sizeof(Noddy),													/*	tp_basicsize	*/

				0,																									/*	tp_itemsize	*/

				(destructor)Noddy_dealloc,	/*	tp_dealloc	*/

				0,																									/*	tp_print	*/

				0,																									/*	tp_getattr	*/

				0,																									/*	tp_setattr	*/

				0,																									/*	tp_reserved	*/

				0,																									/*	tp_repr	*/

				0,																									/*	tp_as_number	*/

				0,																									/*	tp_as_sequence	*/

				0,																									/*	tp_as_mapping	*/

				0,																									/*	tp_hash		*/

				0,																									/*	tp_call	*/

				0,																									/*	tp_str	*/

				0,																									/*	tp_getattro	*/

				0,																									/*	tp_setattro	*/

				0,																									/*	tp_as_buffer	*/

				Py_TPFLAGS_DEFAULT	|

								Py_TPFLAGS_BASETYPE,			/*	tp_flags	*/

				"Noddy	objects",											/*	tp_doc	*/

				0,																									/*	tp_traverse	*/

				0,																									/*	tp_clear	*/

				0,																									/*	tp_richcompare	*/

				0,																									/*	tp_weaklistoffset	*/

				0,																									/*	tp_iter	*/

				0,																									/*	tp_iternext	*/

				Noddy_methods,													/*	tp_methods	*/

				Noddy_members,													/*	tp_members	*/

				Noddy_getseters,											/*	tp_getset	*/

				0,																									/*	tp_base	*/

				0,																									/*	tp_dict	*/

				0,																									/*	tp_descr_get	*/

				0,																									/*	tp_descr_set	*/

				0,																									/*	tp_dictoffset	*/

				(initproc)Noddy_init,						/*	tp_init	*/

				0,																									/*	tp_alloc	*/

				Noddy_new,																	/*	tp_new	*/

};

static	PyModuleDef	noddy3module	=	{

				PyModuleDef_HEAD_INIT,

				"noddy3",

				"Example	module	that	creates	an	extension	type."

				-1,

				NULL,	NULL,	NULL,	NULL,	NULL

};

PyMODINIT_FUNC

PyInit_noddy3(void)

{

				PyObject*	m;

				if	(PyType_Ready(&NoddyType)	<	0)

								return	NULL;

				m	=	PyModule_Create(&noddy3module);

				if	(m	==	NULL)

								return	NULL;

				Py_INCREF(&NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&NoddyType

				return	m;

}

To	provide	greater	control,	over	the	first	and	last	attributes,	we’ll
use	 custom	 getter	 and	 setter	 functions.	 Here	 are	 the	 functions	 for
getting	and	setting	the	first	attribute:

Noddy_getfirst(Noddy	*self,	void	*closure)

{

				Py_INCREF(self->first);

				return	self->first;

}

static	int

Noddy_setfirst(Noddy	*self,	PyObject	*value,	void	*closure

{

		if	(value	==	NULL)	{

				PyErr_SetString(PyExc_TypeError,	"Cannot	delete	the	first	attribute"

				return	-1;

		}

		if	(!	PyUnicode_Check(value))	{

				PyErr_SetString(PyExc_TypeError,

																				"The	first	attribute	value	must	be	a	str"

				return	-1;

		}

		Py_DECREF(self->first);

		Py_INCREF(value);

		self->first	=	value;

		return	0;

}

The	getter	function	is	passed	a	Noddy	object	and	a	“closure”,	which	is
void	pointer.	In	this	case,	the	closure	is	ignored.	(The	closure	supports
an	advanced	usage	in	which	definition	data	is	passed	to	the	getter	and
setter.	This	could,	for	example,	be	used	to	allow	a	single	set	of	getter
and	 setter	 functions	 that	 decide	 the	 attribute	 to	 get	 or	 set	 based	 on
data	in	the	closure.)

The	 setter	 function	 is	 passed	 the	 Noddy	 object,	 the	 new	 value,	 and
the	closure.	The	new	value	may	be	NULL,	in	which	case	the	attribute
is	 being	 deleted.	 In	 our	 setter,	 we	 raise	 an	 error	 if	 the	 attribute	 is
deleted	or	if	the	attribute	value	is	not	a	string.

We	create	an	array	of	PyGetSetDef	structures:

static	PyGetSetDef	Noddy_getseters[]	=	{

				{"first",

					(getter)Noddy_getfirst,	(setter)Noddy_setfirst,

					"first	name",

					NULL},

				{"last",

					(getter)Noddy_getlast,	(setter)Noddy_setlast,

					"last	name",

					NULL},

				{NULL}		/*	Sentinel	*/

};

and	register	it	in	the	tp_getset	slot:

Noddy_getseters,											/*	tp_getset	*/

to	register	our	attribute	getters	and	setters.

The	 last	 item	 in	 a	 PyGetSetDef	 structure	 is	 the	 closure	mentioned
above.	In	this	case,	we	aren’t	using	the	closure,	so	we	just	pass	NULL.

We	also	remove	the	member	definitions	for	these	attributes:

static	PyMemberDef	Noddy_members[]	=	{

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

We	also	need	to	update	the	tp_init	handler	to	only	allow	strings	[3]
to	be	passed:

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number"

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|SSi"

																																						&first,	&last,

																																						&self->number))

								return	-1;

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_DECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_DECREF(tmp);

				}

				return	0;

}

With	 these	 changes,	 we	 can	 assure	 that	 the	 first	 and	 last
members	are	never	NULL	so	we	can	remove	checks	for	NULL	values
in	almost	all	cases.	This	means	that	most	of	the	Py_XDECREF()	calls
can	 be	 converted	 to	 Py_DECREF()	 calls.	 The	 only	 place	 we	 can’t
change	these	calls	 is	 in	 the	deallocator,	where	there	 is	 the	possibility
that	the	initialization	of	these	members	failed	in	the	constructor.

We	also	rename	the	module	initialization	function	and	module	name	in
the	 initialization	 function,	 as	 we	 did	 before,	 and	 we	 add	 an	 extra
definition	to	the	setup.py	file.

2.1.3.	Supporting	cyclic	garbage	collection

Python	 has	 a	 cyclic-garbage	 collector	 that	 can	 identify	 unneeded
objects	 even	 when	 their	 reference	 counts	 are	 not	 zero.	 This	 can
happen	when	objects	are	involved	in	cycles.	For	example,	consider:

>>>	l	=	[]

>>>	l.append(l)

>>>	del	l

In	this	example,	we	create	a	list	that	contains	itself.	When	we	delete	it,
it	 still	 has	a	 reference	 from	 itself.	 Its	 reference	count	doesn’t	drop	 to
zero.	 Fortunately,	 Python’s	 cyclic-garbage	 collector	 will	 eventually
figure	out	that	the	list	is	garbage	and	free	it.

In	the	second	version	of	the	Noddy	example,	we	allowed	any	kind	of
object	 to	be	stored	 in	 the	first	or	last	attributes.	 [4]	This	means

that	Noddy	objects	can	participate	in	cycles:

>>>	import	noddy2

>>>	n	=	noddy2.Noddy()

>>>	l	=	[n]

>>>	n.first	=	l

This	 is	 pretty	 silly,	 but	 it	 gives	 us	 an	 excuse	 to	 add	 support	 for	 the
cyclic-garbage	 collector	 to	 the	 Noddy	 example.	 To	 support	 cyclic
garbage	collection,	types	need	to	fill	two	slots	and	set	a	class	flag	that
enables	these	slots:

#include	<Python.h>

#include	"structmember.h"

typedef	struct	{

				PyObject_HEAD

				PyObject	*first;

				PyObject	*last;

				int	number;

}	Noddy;

static	int

Noddy_traverse(Noddy	*self,	visitproc	visit,	void	*arg

{

				int	vret;

				if	(self->first)	{

								vret	=	visit(self->first,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				if	(self->last)	{

								vret	=	visit(self->last,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				return	0;

}

static	int

Noddy_clear(Noddy	*self)

{

				PyObject	*tmp;

				tmp	=	self->first;

				self->first	=	NULL;

				Py_XDECREF(tmp);

				tmp	=	self->last;

				self->last	=	NULL;

				Py_XDECREF(tmp);

				return	0;

}

static	void

Noddy_dealloc(Noddy*	self)

{

				Noddy_clear(self);

				Py_TYPE(self)->tp_free((PyObject*)self);

}

static	PyObject	*

Noddy_new(PyTypeObject	*type,	PyObject	*args,	PyObject

{

				Noddy	*self;

				self	=	(Noddy	*)type->tp_alloc(type,	0);

				if	(self	!=	NULL)	{

								self->first	=	PyUnicode_FromString("");

								if	(self->first	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->last	=	PyUnicode_FromString("");

								if	(self->last	==	NULL)	{

												Py_DECREF(self);

												return	NULL;

								}

								self->number	=	0;

				}

				return	(PyObject	*)self;

}

static	int

Noddy_init(Noddy	*self,	PyObject	*args,	PyObject	*kwds

{

				PyObject	*first=NULL,	*last=NULL,	*tmp;

				static	char	*kwlist[]	=	{"first",	"last",	"number"

				if	(!	PyArg_ParseTupleAndKeywords(args,	kwds,	"|OOi"

																																						&first,	&last,

																																						&self->number))

								return	-1;

				if	(first)	{

								tmp	=	self->first;

								Py_INCREF(first);

								self->first	=	first;

								Py_XDECREF(tmp);

				}

				if	(last)	{

								tmp	=	self->last;

								Py_INCREF(last);

								self->last	=	last;

								Py_XDECREF(tmp);

				}

				return	0;

}

static	PyMemberDef	Noddy_members[]	=	{

				{"first",	T_OBJECT_EX,	offsetof(Noddy,	first),	0

					"first	name"},

				{"last",	T_OBJECT_EX,	offsetof(Noddy,	last),	0,

					"last	name"},

				{"number",	T_INT,	offsetof(Noddy,	number),	0,

					"noddy	number"},

				{NULL}		/*	Sentinel	*/

};

static	PyObject	*

Noddy_name(Noddy*	self)

{

				if	(self->first	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"first"

								return	NULL;

				}

				if	(self->last	==	NULL)	{

								PyErr_SetString(PyExc_AttributeError,	"last"

								return	NULL;

				}

				return	PyUnicode_FromFormat("%S	%S",	self->first

}

static	PyMethodDef	Noddy_methods[]	=	{

				{"name",	(PyCFunction)Noddy_name,	METH_NOARGS,

					"Return	the	name,	combining	the	first	and	last	name"

				},

				{NULL}		/*	Sentinel	*/

};

static	PyTypeObject	NoddyType	=	{

				PyVarObject_HEAD_INIT(NULL,	0)

				"noddy.Noddy",													/*	tp_name	*/

				sizeof(Noddy),													/*	tp_basicsize	*/

				0,																									/*	tp_itemsize	*/

				(destructor)Noddy_dealloc,	/*	tp_dealloc	*/

				0,																									/*	tp_print	*/

				0,																									/*	tp_getattr	*/

				0,																									/*	tp_setattr	*/

				0,																									/*	tp_reserved	*/

				0,																									/*	tp_repr	*/

				0,																									/*	tp_as_number	*/

				0,																									/*	tp_as_sequence	*/

				0,																									/*	tp_as_mapping	*/

				0,																									/*	tp_hash		*/

				0,																									/*	tp_call	*/

				0,																									/*	tp_str	*/

				0,																									/*	tp_getattro	*/

				0,																									/*	tp_setattro	*/

				0,																									/*	tp_as_buffer	*/

				Py_TPFLAGS_DEFAULT	|

								Py_TPFLAGS_BASETYPE	|

								Py_TPFLAGS_HAVE_GC,				/*	tp_flags	*/

				"Noddy	objects",											/*	tp_doc	*/

				(traverseproc)Noddy_traverse,			/*	tp_traverse	*/

				(inquiry)Noddy_clear,											/*	tp_clear	*/

				0,																									/*	tp_richcompare	*/

				0,																									/*	tp_weaklistoffset	*/

				0,																									/*	tp_iter	*/

				0,																									/*	tp_iternext	*/

				Noddy_methods,													/*	tp_methods	*/

				Noddy_members,													/*	tp_members	*/

				0,																									/*	tp_getset	*/

				0,																									/*	tp_base	*/

				0,																									/*	tp_dict	*/

				0,																									/*	tp_descr_get	*/

				0,																									/*	tp_descr_set	*/

				0,																									/*	tp_dictoffset	*/

				(initproc)Noddy_init,						/*	tp_init	*/

				0,																									/*	tp_alloc	*/

				Noddy_new,																	/*	tp_new	*/

};

static	PyModuleDef	noddy4module	=	{

				PyModuleDef_HEAD_INIT,

				"noddy4",

				"Example	module	that	creates	an	extension	type."

				-1,

				NULL,	NULL,	NULL,	NULL,	NULL

};

PyMODINIT_FUNC

PyInit_noddy4(void)

{

				PyObject*	m;

				if	(PyType_Ready(&NoddyType)	<	0)

								return	NULL;

				m	=	PyModule_Create(&noddy4module);

				if	(m	==	NULL)

								return	NULL;

				Py_INCREF(&NoddyType);

				PyModule_AddObject(m,	"Noddy",	(PyObject	*)&NoddyType

				return	m;

}

The	 traversal	 method	 provides	 access	 to	 subobjects	 that	 could
participate	in	cycles:

static	int

Noddy_traverse(Noddy	*self,	visitproc	visit,	void	*arg

{

				int	vret;

				if	(self->first)	{

								vret	=	visit(self->first,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				if	(self->last)	{

								vret	=	visit(self->last,	arg);

								if	(vret	!=	0)

												return	vret;

				}

				return	0;

}

For	each	subobject	that	can	participate	in	cycles,	we	need	to	call	 the
visit()	 function,	 which	 is	 passed	 to	 the	 traversal	 method.	 The
visit()	 function	 takes	 as	 arguments	 the	 subobject	 and	 the	 extra
argument	 arg	 passed	 to	 the	 traversal	 method.	 It	 returns	 an	 integer
value	that	must	be	returned	if	it	is	non-zero.

Python	 provides	 a	 Py_VISIT()	 macro	 that	 automates	 calling	 visit
functions.	With	Py_VISIT(),	Noddy_traverse()	can	be	simplified:

static	int

Noddy_traverse(Noddy	*self,	visitproc	visit,	void	*arg

{

				Py_VISIT(self->first);

				Py_VISIT(self->last);

				return	0;

}

Note: 	Note	that	the	tp_traverse	implementation	must	name	its
arguments	exactly	visit	and	arg	in	order	to	use	Py_VISIT().	This	is
to	encourage	uniformity	across	these	boring	implementations.

We	also	need	to	provide	a	method	for	clearing	any	subobjects	that	can
participate	 in	cycles.	We	 implement	 the	method	and	 reimplement	 the
deallocator	to	use	it:

static	int

Noddy_clear(Noddy	*self)

{

				PyObject	*tmp;

				tmp	=	self->first;

				self->first	=	NULL;

				Py_XDECREF(tmp);

				tmp	=	self->last;

				self->last	=	NULL;

				Py_XDECREF(tmp);

				return	0;

}

static	void

Noddy_dealloc(Noddy*	self)

{

				Noddy_clear(self);

				Py_TYPE(self)->tp_free((PyObject*)self);

}

Notice	 the	use	of	a	 temporary	variable	 in	Noddy_clear().	We	use
the	 temporary	 variable	 so	 that	 we	 can	 set	 each	 member	 to	 NULL
before	decrementing	its	reference	count.	We	do	this	because,	as	was
discussed	earlier,	if	the	reference	count	drops	to	zero,	we	might	cause
code	to	run	that	calls	back	into	the	object.	In	addition,	because	we	now
support	 garbage	 collection,	we	also	have	 to	worry	 about	 code	being
run	 that	 triggers	 garbage	 collection.	 If	 garbage	 collection	 is	 run,	 our
tp_traverse	 handler	 could	 get	 called.	We	 can’t	 take	 a	 chance	 of
having	Noddy_traverse()	called	when	a	member’s	reference	count
has	dropped	to	zero	and	its	value	hasn’t	been	set	to	NULL.

Python	 provides	 a	 Py_CLEAR()	 that	 automates	 the	 careful
decrementing	 of	 reference	 counts.	 With	 Py_CLEAR(),	 the
Noddy_clear()	function	can	be	simplified:

static	int

Noddy_clear(Noddy	*self)

{

				Py_CLEAR(self->first);

				Py_CLEAR(self->last);

				return	0;

}

Finally,	we	add	the	Py_TPFLAGS_HAVE_GC	flag	to	the	class	flags:

Py_TPFLAGS_DEFAULT	|	Py_TPFLAGS_BASETYPE	|	Py_TPFLAGS_HAVE_GC

That’s	pretty	much	it.	If	we	had	written	custom	tp_alloc	or	tp_free
slots,	 we’d	 need	 to	 modify	 them	 for	 cyclic-garbage	 collection.	 Most
extensions	will	use	the	versions	automatically	provided.

2.1.4.	Subclassing	other	types

It	 is	 possible	 to	 create	 new	 extension	 types	 that	 are	 derived	 from
existing	 types.	 It	 is	easiest	 to	 inherit	 from	 the	built	 in	 types,	since	an
extension	 can	 easily	 use	 the	 PyTypeObject	 it	 needs.	 It	 can	 be
difficult	 to	share	these	PyTypeObject	structures	between	extension
modules.

In	 this	 example	we	will	 create	 a	 Shoddy	 type	 that	 inherits	 from	 the
built-in	 list	 type.	 The	 new	 type	will	 be	 completely	 compatible	with
regular	 lists,	 but	 will	 have	 an	 additional	 increment()	 method	 that
increases	an	internal	counter.

>>>	import	shoddy

>>>	s	=	shoddy.Shoddy(range(3))

>>>	s.extend(s)

>>>	print(len(s))

6

>>>	print(s.increment())

1

>>>	print(s.increment())

2

#include	<Python.h>

typedef	struct	{

				PyListObject	list;

				int	state;

}	Shoddy;

static	PyObject	*

Shoddy_increment(Shoddy	*self,	PyObject	*unused)

{

				self->state++;

				return	PyLong_FromLong(self->state);

}

static	PyMethodDef	Shoddy_methods[]	=	{

				{"increment",	(PyCFunction)Shoddy_increment,	METH_NOARGS

					PyDoc_STR("increment	state	counter")},

				{NULL,	 NULL},

};

static	int

Shoddy_init(Shoddy	*self,	PyObject	*args,	PyObject	*

{

				if	(PyList_Type.tp_init((PyObject	*)self,	args,	

								return	-1;

				self->state	=	0;

				return	0;

}

static	PyTypeObject	ShoddyType	=	{

				PyObject_HEAD_INIT(NULL)

				"shoddy.Shoddy",									/*	tp_name	*/

				sizeof(Shoddy),										/*	tp_basicsize	*/

				0,																							/*	tp_itemsize	*/

				0,																							/*	tp_dealloc	*/

				0,																							/*	tp_print	*/

				0,																							/*	tp_getattr	*/

				0,																							/*	tp_setattr	*/

				0,																							/*	tp_reserved	*/

				0,																							/*	tp_repr	*/

				0,																							/*	tp_as_number	*/

				0,																							/*	tp_as_sequence	*/

				0,																							/*	tp_as_mapping	*/

				0,																							/*	tp_hash	*/

				0,																							/*	tp_call	*/

				0,																							/*	tp_str	*/

				0,																							/*	tp_getattro	*/

				0,																							/*	tp_setattro	*/

				0,																							/*	tp_as_buffer	*/

				Py_TPFLAGS_DEFAULT	|

								Py_TPFLAGS_BASETYPE,	/*	tp_flags	*/

				0,																							/*	tp_doc	*/

				0,																							/*	tp_traverse	*/

				0,																							/*	tp_clear	*/

				0,																							/*	tp_richcompare	*/

				0,																							/*	tp_weaklistoffset	*/

				0,																							/*	tp_iter	*/

				0,																							/*	tp_iternext	*/

				Shoddy_methods,										/*	tp_methods	*/

				0,																							/*	tp_members	*/

				0,																							/*	tp_getset	*/

				0,																							/*	tp_base	*/

				0,																							/*	tp_dict	*/

				0,																							/*	tp_descr_get	*/

				0,																							/*	tp_descr_set	*/

				0,																							/*	tp_dictoffset	*/

				(initproc)Shoddy_init,			/*	tp_init	*/

				0,																							/*	tp_alloc	*/

				0,																							/*	tp_new	*/

};

static	PyModuleDef	shoddymodule	=	{

				PyModuleDef_HEAD_INIT,

				"shoddy",

				"Shoddy	module",

				-1,

				NULL,	NULL,	NULL,	NULL,	NULL

};

PyMODINIT_FUNC

PyInit_shoddy(void)

{

				PyObject	*m;

				ShoddyType.tp_base	=	&PyList_Type;

				if	(PyType_Ready(&ShoddyType)	<	0)

								return	NULL;

				m	=	PyModule_Create(&shoddymodule);

				if	(m	==	NULL)

								return	NULL;

				Py_INCREF(&ShoddyType);

				PyModule_AddObject(m,	"Shoddy",	(PyObject	*)	&ShoddyType

				return	m;

}

As	 you	 can	 see,	 the	 source	 code	 closely	 resembles	 the	 Noddy
examples	 in	 previous	 sections.	 We	 will	 break	 down	 the	 main
differences	between	them.

typedef	struct	{

				PyListObject	list;

				int	state;

}	Shoddy;

The	primary	difference	for	derived	type	objects	is	that	the	base	type’s
object	 structure	 must	 be	 the	 first	 value.	 The	 base	 type	 will	 already
include	the	PyObject_HEAD()	at	the	beginning	of	its	structure.

When	a	Python	object	is	a	Shoddy	instance,	its	PyObject*	pointer	can
be	safely	cast	to	both	PyListObject*	and	Shoddy*.

static	int

Shoddy_init(Shoddy	*self,	PyObject	*args,	PyObject	*

{

				if	(PyList_Type.tp_init((PyObject	*)self,	args,	

							return	-1;

				self->state	=	0;

				return	0;

}

In	the	__init__	method	for	our	type,	we	can	see	how	to	call	through
to	the	__init__	method	of	the	base	type.

This	 pattern	 is	 important	 when	 writing	 a	 type	 with	 custom	 new	 and
dealloc	methods.	 The	 new	 method	 should	 not	 actually	 create	 the
memory	 for	 the	 object	 with	 tp_alloc,	 that	 will	 be	 handled	 by	 the
base	class	when	calling	its	tp_new.

When	filling	out	the	PyTypeObject()	for	the	Shoddy	type,	you	see
a	 slot	 for	 tp_base().	 Due	 to	 cross	 platform	 compiler	 issues,	 you
can’t	 fill	 that	 field	 directly	with	 the	 PyList_Type();	 it	 can	 be	 done
later	in	the	module’s	init()	function.

PyMODINIT_FUNC

PyInit_shoddy(void)

{

				PyObject	*m;

				ShoddyType.tp_base	=	&PyList_Type;

				if	(PyType_Ready(&ShoddyType)	<	0)

								return	NULL;

				m	=	PyModule_Create(&shoddymodule);

				if	(m	==	NULL)

								return	NULL;

				Py_INCREF(&ShoddyType);

				PyModule_AddObject(m,	"Shoddy",	(PyObject	*)	&ShoddyType

				return	m;

}

Before	 calling	 PyType_Ready(),	 the	 type	 structure	 must	 have	 the
tp_base	 slot	 filled	 in.	 When	 we	 are	 deriving	 a	 new	 type,	 it	 is	 not
necessary	to	fill	out	the	tp_alloc	slot	with	PyType_GenericNew()
–	the	allocate	function	from	the	base	type	will	be	inherited.

After	that,	calling	PyType_Ready()	and	adding	the	type	object	to	the
module	is	the	same	as	with	the	basic	Noddy	examples.

2.2.	Type	Methods

This	section	aims	 to	give	a	quick	 fly-by	on	 the	various	 type	methods
you	can	implement	and	what	they	do.

Here	is	the	definition	of	PyTypeObject,	with	some	fields	only	used	in
debug	builds	omitted:

typedef	struct	_typeobject	{

				PyObject_VAR_HEAD

				char	*tp_name;	/*	For	printing,	in	format	"<module>.<name>"	*/

				int	tp_basicsize,	tp_itemsize;	/*	For	allocation	*/

				/*	Methods	to	implement	standard	operations	*/

				destructor	tp_dealloc;

				printfunc	tp_print;

				getattrfunc	tp_getattr;

				setattrfunc	tp_setattr;

				void	*tp_reserved;

				reprfunc	tp_repr;

				/*	Method	suites	for	standard	classes	*/

				PyNumberMethods	*tp_as_number;

				PySequenceMethods	*tp_as_sequence;

				PyMappingMethods	*tp_as_mapping;

				/*	More	standard	operations	(here	for	binary	compatibility)	*/

				hashfunc	tp_hash;

				ternaryfunc	tp_call;

				reprfunc	tp_str;

				getattrofunc	tp_getattro;

				setattrofunc	tp_setattro;

				/*	Functions	to	access	object	as	input/output	buffer	*/

				PyBufferProcs	*tp_as_buffer;

				/*	Flags	to	define	presence	of	optional/expanded	features	*/

				long	tp_flags;

				char	*tp_doc;	/*	Documentation	string	*/

				/*	call	function	for	all	accessible	objects	*/

				traverseproc	tp_traverse;

				/*	delete	references	to	contained	objects	*/

				inquiry	tp_clear;

				/*	rich	comparisons	*/

				richcmpfunc	tp_richcompare;

				/*	weak	reference	enabler	*/

				long	tp_weaklistoffset;

				/*	Iterators	*/

				getiterfunc	tp_iter;

				iternextfunc	tp_iternext;

				/*	Attribute	descriptor	and	subclassing	stuff	*/

				struct	PyMethodDef	*tp_methods;

				struct	PyMemberDef	*tp_members;

				struct	PyGetSetDef	*tp_getset;

				struct	_typeobject	*tp_base;

				PyObject	*tp_dict;

				descrgetfunc	tp_descr_get;

				descrsetfunc	tp_descr_set;

				long	tp_dictoffset;

				initproc	tp_init;

				allocfunc	tp_alloc;

				newfunc	tp_new;

				freefunc	tp_free;	/*	Low-level	free-memory	routine	*/

				inquiry	tp_is_gc;	/*	For	PyObject_IS_GC	*/

				PyObject	*tp_bases;

				PyObject	*tp_mro;	/*	method	resolution	order	*/

				PyObject	*tp_cache;

				PyObject	*tp_subclasses;

				PyObject	*tp_weaklist;

				destructor	tp_del;

				/*	Type	attribute	cache	version	tag.	Added	in	version	2.6	*/

				unsigned	int	tp_version_tag;

				destructor	tp_finalize;

}	PyTypeObject;

Now	that’s	a	lot	of	methods.	Don’t	worry	too	much	though	-	if	you	have
a	type	you	want	to	define,	the	chances	are	very	good	that	you	will	only
implement	a	handful	of	these.

As	you	probably	expect	by	now,	we’re	going	to	go	over	 this	and	give
more	information	about	the	various	handlers.	We	won’t	go	in	the	order
they	 are	 defined	 in	 the	 structure,	 because	 there	 is	 a	 lot	 of	 historical
baggage	 that	 impacts	 the	 ordering	 of	 the	 fields;	 be	 sure	 your	 type
initialization	keeps	the	fields	in	the	right	order!	It’s	often	easiest	to	find
an	 example	 that	 includes	 all	 the	 fields	 you	 need	 (even	 if	 they’re
initialized	to	0)	and	then	change	the	values	to	suit	your	new	type.

char	*tp_name;	/*	For	printing	*/

The	 name	 of	 the	 type	 -	 as	 mentioned	 in	 the	 last	 section,	 this	 will
appear	 in	various	places,	almost	entirely	 for	diagnostic	purposes.	Try
to	choose	something	that	will	be	helpful	in	such	a	situation!

int	tp_basicsize,	tp_itemsize;	/*	For	allocation	*/

These	fields	tell	the	runtime	how	much	memory	to	allocate	when	new
objects	of	 this	 type	are	created.	Python	has	some	built-in	support	 for
variable	 length	 structures	 (think:	 strings,	 lists)	 which	 is	 where	 the
tp_itemsize	field	comes	in.	This	will	be	dealt	with	later.

char	*tp_doc;

Here	you	can	put	a	string	(or	its	address)	that	you	want	returned	when
the	Python	script	references	obj.__doc__	to	retrieve	the	doc	string.

Now	we	 come	 to	 the	 basic	 type	methods—the	 ones	most	 extension
types	will	implement.

2.2.1.	Finalization	and	De-allocation

destructor	tp_dealloc;

This	function	is	called	when	the	reference	count	of	the	instance	of	your
type	is	reduced	to	zero	and	the	Python	interpreter	wants	to	reclaim	it.
If	your	type	has	memory	to	free	or	other	clean-up	to	perform,	you	can
put	it	here.	The	object	itself	needs	to	be	freed	here	as	well.	Here	is	an
example	of	this	function:

static	void

newdatatype_dealloc(newdatatypeobject	*	obj)

{

				free(obj->obj_UnderlyingDatatypePtr);

				Py_TYPE(obj)->tp_free(obj);

}

One	important	requirement	of	the	deallocator	function	is	that	it	leaves

any	pending	exceptions	alone.	This	is	important	since	deallocators	are
frequently	 called	 as	 the	 interpreter	 unwinds	 the	 Python	 stack;	 when
the	stack	is	unwound	due	to	an	exception	(rather	than	normal	returns),
nothing	 is	 done	 to	 protect	 the	 deallocators	 from	 seeing	 that	 an
exception	 has	 already	 been	 set.	 Any	 actions	 which	 a	 deallocator
performs	which	may	cause	additional	Python	code	to	be	executed	may
detect	 that	 an	 exception	 has	 been	 set.	 This	 can	 lead	 to	 misleading
errors	from	the	interpreter.	The	proper	way	to	protect	against	this	is	to
save	 a	 pending	 exception	 before	 performing	 the	 unsafe	 action,	 and
restoring	it	when	done.	This	can	be	done	using	the	PyErr_Fetch()
and	PyErr_Restore()	functions:

static	void

my_dealloc(PyObject	*obj)

{

				MyObject	*self	=	(MyObject	*)	obj;

				PyObject	*cbresult;

				if	(self->my_callback	!=	NULL)	{

								PyObject	*err_type,	*err_value,	*err_traceback

								/*	This	saves	the	current	exception	state	*/

								PyErr_Fetch(&err_type,	&err_value,	&err_traceback

								cbresult	=	PyObject_CallObject(self->my_callback

								if	(cbresult	==	NULL)

												PyErr_WriteUnraisable(self->my_callback);

								else

												Py_DECREF(cbresult);

								/*	This	restores	the	saved	exception	state	*/

								PyErr_Restore(err_type,	err_value,	err_traceback

								Py_DECREF(self->my_callback);

				}

				Py_TYPE(obj)->tp_free((PyObject*)self);

}

Note: 	There	are	limitations	to	what	you	can	safely	do	in	a
deallocator	function.	First,	if	your	type	supports	garbage	collection
(using	tp_traverse	and/or	tp_clear),	some	of	the	object’s
members	can	have	been	cleared	or	finalized	by	the	time
tp_dealloc	is	called.	Second,	in	tp_dealloc,	your	object	is	in
an	unstable	state:	its	reference	count	is	equal	to	zero.	Any	call	to	a
non-trivial	object	or	API	(as	in	the	example	above)	might	end	up
calling	tp_dealloc	again,	causing	a	double	free	and	a	crash.

Starting	with	Python	3.4,	it	 is	recommended	not	to	put	any	complex
finalization	 code	 in	 tp_dealloc,	 and	 instead	 use	 the	 new
tp_finalize	type	method.

See	also: 	PEP	442	explains	the	new	finalization	scheme.

2.2.2.	Object	Presentation

In	Python,	there	are	two	ways	to	generate	a	textual	representation	of
an	 object:	 the	 repr()	 function,	 and	 the	 str()	 function.	 (The
print()	 function	 just	 calls	 str().)	 These	 handlers	 are	 both
optional.

reprfunc	tp_repr;

reprfunc	tp_str;

The	 tp_repr	 handler	 should	 return	 a	 string	 object	 containing	 a
representation	of	 the	 instance	 for	which	 it	 is	called.	Here	 is	a	simple
example:

http://www.python.org/dev/peps/pep-0442

static	PyObject	*

newdatatype_repr(newdatatypeobject	*	obj)

{

				return	PyUnicode_FromFormat("Repr-ified_newdatatype{{size:\%d}}"

																																obj->obj_UnderlyingDatatypePtr

}

If	 no	 tp_repr	 handler	 is	 specified,	 the	 interpreter	 will	 supply	 a
representation	 that	 uses	 the	 type’s	 tp_name	 and	 a	 uniquely-
identifying	value	for	the	object.

The	 tp_str	 handler	 is	 to	 str()	 what	 the	 tp_repr	 handler
described	above	 is	 to	repr();	 that	 is,	 it	 is	called	when	Python	code
calls	str()	on	an	instance	of	your	object.	 Its	 implementation	 is	very
similar	to	the	tp_repr	function,	but	the	resulting	string	is	intended	for
human	consumption.	If	tp_str	is	not	specified,	the	tp_repr	handler
is	used	instead.

Here	is	a	simple	example:

static	PyObject	*

newdatatype_str(newdatatypeobject	*	obj)

{

				return	PyUnicode_FromFormat("Stringified_newdatatype{{size:\%d}}"

																																obj->obj_UnderlyingDatatypePtr

}

2.2.3.	Attribute	Management

For	every	object	which	can	support	attributes,	the	corresponding	type
must	provide	the	functions	that	control	how	the	attributes	are	resolved.
There	needs	to	be	a	function	which	can	retrieve	attributes	(if	any	are

defined),	and	another	to	set	attributes	(if	setting	attributes	is	allowed).
Removing	 an	 attribute	 is	 a	 special	 case,	 for	 which	 the	 new	 value
passed	to	the	handler	is	NULL.

Python	supports	 two	pairs	of	 attribute	handlers;	 a	 type	 that	 supports
attributes	 only	 needs	 to	 implement	 the	 functions	 for	 one	 pair.	 The
difference	is	that	one	pair	takes	the	name	of	the	attribute	as	a	char*,
while	the	other	accepts	a	PyObject*.	Each	type	can	use	whichever
pair	makes	more	sense	for	the	implementation’s	convenience.

getattrfunc		tp_getattr;								/*	char	*	version	*/

setattrfunc		tp_setattr;

/*	...	*/

getattrofunc	tp_getattro;							/*	PyObject	*	version	*/

setattrofunc	tp_setattro;

If	accessing	attributes	of	an	object	 is	always	a	simple	operation	 (this
will	be	explained	shortly),	there	are	generic	implementations	which	can
be	 used	 to	 provide	 the	 PyObject*	 version	 of	 the	 attribute
management	 functions.	 The	 actual	 need	 for	 type-specific	 attribute
handlers	 almost	 completely	 disappeared	 starting	 with	 Python	 2.2,
though	there	are	many	examples	which	have	not	been	updated	to	use
some	of	the	new	generic	mechanism	that	is	available.

2.2.3.1.	Generic	Attribute	Management

Most	extension	types	only	use	simple	attributes.	So,	what	makes	the
attributes	simple?	There	are	only	a	couple	of	conditions	that	must	be
met:

1.	 The	 name	 of	 the	 attributes	 must	 be	 known	 when
PyType_Ready()	is	called.

2.	 No	 special	 processing	 is	 needed	 to	 record	 that	 an	attribute	was

looked	up	or	set,	nor	do	actions	need	 to	be	 taken	based	on	 the
value.

Note	that	this	 list	does	not	place	any	restrictions	on	the	values	of	the
attributes,	 when	 the	 values	 are	 computed,	 or	 how	 relevant	 data	 is
stored.

When	PyType_Ready()	 is	called,	it	uses	three	tables	referenced	by
the	type	object	to	create	descriptors	which	are	placed	in	the	dictionary
of	the	type	object.	Each	descriptor	controls	access	to	one	attribute	of
the	 instance	 object.	 Each	 of	 the	 tables	 is	 optional;	 if	 all	 three	 are
NULL,	instances	of	the	type	will	only	have	attributes	that	are	inherited
from	 their	 base	 type,	 and	 should	 leave	 the	 tp_getattro	 and
tp_setattro	 fields	NULL	as	well,	allowing	the	base	type	to	handle
attributes.

The	tables	are	declared	as	three	fields	of	the	type	object:

struct	PyMethodDef	*tp_methods;

struct	PyMemberDef	*tp_members;

struct	PyGetSetDef	*tp_getset;

If	 tp_methods	 is	 not	 NULL,	 it	 must	 refer	 to	 an	 array	 of
PyMethodDef	structures.	Each	entry	in	the	table	is	an	instance	of	this
structure:

typedef	struct	PyMethodDef	{

				char								*ml_name;							/*	method	name	*/

				PyCFunction		ml_meth;							/*	implementation	function	*/

				int										ml_flags;						/*	flags	*/

				char								*ml_doc;								/*	docstring	*/

}	PyMethodDef;

One	entry	should	be	defined	for	each	method	provided	by	the	type;	no
entries	 are	 needed	 for	 methods	 inherited	 from	 a	 base	 type.	 One
additional	entry	is	needed	at	the	end;	it	is	a	sentinel	that	marks	the	end
of	the	array.	The	ml_name	field	of	the	sentinel	must	be	NULL.

The	 second	 table	 is	 used	 to	 define	 attributes	 which	 map	 directly	 to
data	 stored	 in	 the	 instance.	 A	 variety	 of	 primitive	 C	 types	 are
supported,	and	access	may	be	read-only	or	read-write.	The	structures
in	the	table	are	defined	as:

typedef	struct	PyMemberDef	{

				char	*name;

				int			type;

				int			offset;

				int			flags;

				char	*doc;

}	PyMemberDef;

For	each	entry	in	the	table,	a	descriptor	will	be	constructed	and	added
to	 the	 type	 which	 will	 be	 able	 to	 extract	 a	 value	 from	 the	 instance
structure.	The	type	field	should	contain	one	of	the	type	codes	defined
in	the	structmember.h	header;	the	value	will	be	used	to	determine
how	to	convert	Python	values	to	and	from	C	values.	The	flags	 field
is	used	to	store	flags	which	control	how	the	attribute	can	be	accessed.

The	 following	 flag	 constants	 are	 defined	 in	 structmember.h;	 they
may	be	combined	using	bitwise-OR.

Constant Meaning

READONLY Never	writable.

READ_RESTRICTED Not	readable	in	restricted	mode.

WRITE_RESTRICTED Not	writable	in	restricted	mode.

RESTRICTED Not	readable	or	writable	in	restricted
mode.

An	 interesting	 advantage	 of	 using	 the	 tp_members	 table	 to	 build
descriptors	 that	are	used	at	 runtime	 is	 that	any	attribute	defined	 this
way	can	have	an	associated	doc	string	simply	by	providing	the	text	in
the	table.	An	application	can	use	the	introspection	API	to	retrieve	the
descriptor	 from	 the	 class	 object,	 and	 get	 the	 doc	 string	 using	 its
__doc__	attribute.

As	with	the	tp_methods	table,	a	sentinel	entry	with	a	name	value	of
NULL	is	required.

2.2.3.2.	Type-specific	Attribute	Management

For	simplicity,	only	the	char*	version	will	be	demonstrated	here;	 the
type	of	the	name	parameter	is	the	only	difference	between	the	char*
and	PyObject*	flavors	of	the	interface.	This	example	effectively	does
the	same	 thing	as	 the	generic	example	above,	but	does	not	use	 the
generic	 support	 added	 in	 Python	 2.2.	 It	 explains	 how	 the	 handler
functions	are	called,	so	that	if	you	do	need	to	extend	their	functionality,
you’ll	understand	what	needs	to	be	done.

The	 tp_getattr	 handler	 is	 called	 when	 the	 object	 requires	 an
attribute	 look-up.	 It	 is	 called	 in	 the	 same	 situations	 where	 the
__getattr__()	method	of	a	class	would	be	called.

Here	is	an	example:

static	PyObject	*

newdatatype_getattr(newdatatypeobject	*obj,	char	*name

{

				if	(strcmp(name,	"data")	==	0)

				{

								return	PyInt_FromLong(obj->data);

				}

				PyErr_Format(PyExc_AttributeError,

																	"'%.50s'	object	has	no	attribute	'%.400s'"

																	tp->tp_name,	name);

				return	NULL;

}

The	 tp_setattr	 handler	 is	 called	 when	 the	 __setattr__()	 or
__delattr__()	method	of	a	class	 instance	would	be	called.	When
an	attribute	should	be	deleted,	the	third	parameter	will	be	NULL.	Here
is	an	example	that	simply	raises	an	exception;	if	this	were	really	all	you
wanted,	the	tp_setattr	handler	should	be	set	to	NULL.

static	int

newdatatype_setattr(newdatatypeobject	*obj,	char	*name

{

				(void)PyErr_Format(PyExc_RuntimeError,	"Read-only	attribute:	\%s"

				return	-1;

}

2.2.4.	Object	Comparison

richcmpfunc	tp_richcompare;

The	 tp_richcompare	 handler	 is	 called	 when	 comparisons	 are
needed.	 It	 is	 analogous	 to	 the	 rich	 comparison	 methods,	 like
__lt__(),	 and	 also	 called	 by	 PyObject_RichCompare()	 and
PyObject_RichCompareBool().

This	 function	 is	 called	 with	 two	 Python	 objects	 and	 the	 operator	 as
arguments,	 where	 the	 operator	 is	 one	 of	 Py_EQ,	 Py_NE,	 Py_LE,
Py_GT,	 Py_LT	 or	 Py_GT.	 It	 should	 compare	 the	 two	 objects	 with
respect	to	the	specified	operator	and	return	Py_True	or	Py_False	if
the	comparison	 is	successful,	Py_NotImplemented	 to	 indicate	 that
comparison	 is	 not	 implemented	 and	 the	 other	 object’s	 comparison
method	should	be	tried,	or	NULL	if	an	exception	was	set.

Here	 is	 a	 sample	 implementation,	 for	 a	 datatype	 that	 is	 considered
equal	if	the	size	of	an	internal	pointer	is	equal:

static	PyObject	*

newdatatype_richcmp(PyObject	*obj1,	PyObject	*obj2,	

{

				PyObject	*result;

				int	c,	size1,	size2;

				/*	code	to	make	sure	that	both	arguments	are	of	type

							newdatatype	omitted	*/

				size1	=	obj1->obj_UnderlyingDatatypePtr->size;

				size2	=	obj2->obj_UnderlyingDatatypePtr->size;

				switch	(op)	{

				case	Py_LT:	c	=	size1	<		size2;	break;

				case	Py_LE:	c	=	size1	<=	size2;	break;

				case	Py_EQ:	c	=	size1	==	size2;	break;

				case	Py_NE:	c	=	size1	!=	size2;	break;

				case	Py_GT:	c	=	size1	>		size2;	break;

				case	Py_GE:	c	=	size1	>=	size2;	break;

				}

				result	=	c	?	Py_True	:	Py_False;

				Py_INCREF(result);

				return	result;

	}

2.2.5.	Abstract	Protocol	Support

Python	supports	a	variety	of	abstract	‘protocols;’	the	specific	interfaces
provided	 to	use	 these	 interfaces	are	documented	 in	Abstract	Objects
Layer.

A	 number	 of	 these	 abstract	 interfaces	 were	 defined	 early	 in	 the
development	of	 the	Python	 implementation.	 In	particular,	 the	number,
mapping,	and	sequence	protocols	have	been	part	of	Python	since	the
beginning.	Other	protocols	have	been	added	over	time.	For	protocols
which	 depend	 on	 several	 handler	 routines	 from	 the	 type
implementation,	 the	 older	 protocols	 have	 been	 defined	 as	 optional
blocks	of	handlers	referenced	by	the	type	object.	For	newer	protocols
there	are	additional	slots	in	the	main	type	object,	with	a	flag	bit	being
set	to	indicate	that	the	slots	are	present	and	should	be	checked	by	the
interpreter.	(The	flag	bit	does	not	indicate	that	the	slot	values	are	non-
NULL.	The	flag	may	be	set	to	indicate	the	presence	of	a	slot,	but	a	slot
may	still	be	unfilled.)

PyNumberMethods			*tp_as_number;

PySequenceMethods	*tp_as_sequence;

PyMappingMethods		*tp_as_mapping;

If	you	wish	your	object	to	be	able	to	act	like	a	number,	a	sequence,	or
a	 mapping	 object,	 then	 you	 place	 the	 address	 of	 a	 structure	 that
implements	 the	C	 type	 PyNumberMethods,	 PySequenceMethods,
or	 PyMappingMethods,	 respectively.	 It	 is	 up	 to	 you	 to	 fill	 in	 this
structure	with	appropriate	values.	You	can	find	examples	of	the	use	of
each	 of	 these	 in	 the	 Objects	 directory	 of	 the	 Python	 source
distribution.

hashfunc	tp_hash;

This	function,	if	you	choose	to	provide	it,	should	return	a	hash	number
for	 an	 instance	 of	 your	 data	 type.	 Here	 is	 a	 moderately	 pointless
example:

static	long

newdatatype_hash(newdatatypeobject	*obj)

{

				long	result;

				result	=	obj->obj_UnderlyingDatatypePtr->size;

				result	=	result	*	3;

				return	result;

}

ternaryfunc	tp_call;

This	function	 is	called	when	an	 instance	of	your	data	type	 is	“called”,
for	example,	 if	obj1	 is	an	instance	of	your	data	type	and	the	Python
script	contains	obj1('hello'),	the	tp_call	handler	is	invoked.

This	function	takes	three	arguments:

1.	 arg1	 is	 the	 instance	of	 the	data	 type	which	 is	 the	 subject	 of	 the
call.	If	the	call	is	obj1('hello'),	then	arg1	is	obj1.

2.	 arg2	 is	a	tuple	containing	the	arguments	to	the	call.	You	can	use
PyArg_ParseTuple()	to	extract	the	arguments.

3.	 arg3	 is	 a	 dictionary	 of	 keyword	 arguments	 that	 were	 passed.	 If
this	 is	 non-NULL	 and	 you	 support	 keyword	 arguments,	 use
PyArg_ParseTupleAndKeywords()	 to	extract	 the	arguments.
If	you	do	not	want	to	support	keyword	arguments	and	this	is	non-
NULL,	 raise	a	TypeError	with	a	message	saying	 that	keyword
arguments	are	not	supported.

Here	is	a	desultory	example	of	the	implementation	of	the	call	function.

/*	Implement	the	call	function.

	*				obj1	is	the	instance	receiving	the	call.

	*				obj2	is	a	tuple	containing	the	arguments	to	the	call,	in	this

	*									case	3	strings.

	*/

static	PyObject	*

newdatatype_call(newdatatypeobject	*obj,	PyObject	*args

{

				PyObject	*result;

				char	*arg1;

				char	*arg2;

				char	*arg3;

				if	(!PyArg_ParseTuple(args,	"sss:call",	&arg1,	&

								return	NULL;

				}

				result	=	PyUnicode_FromFormat(

								"Returning	--	value:	[\%d]	arg1:	[\%s]	arg2:	[\%s]	arg3:	[\%s]

								obj->obj_UnderlyingDatatypePtr->size,

								arg1,	arg2,	arg3);

				return	result;

}

/*	Iterators	*/

getiterfunc	tp_iter;

iternextfunc	tp_iternext;

These	 functions	 provide	 support	 for	 the	 iterator	 protocol.	 Any	 object
which	 wishes	 to	 support	 iteration	 over	 its	 contents	 (which	 may	 be
generated	 during	 iteration)	 must	 implement	 the	 tp_iter	 handler.
Objects	 which	 are	 returned	 by	 a	 tp_iter	 handler	 must	 implement
both	 the	tp_iter	 and	 tp_iternext	 handlers.	 Both	 handlers	 take

exactly	 one	 parameter,	 the	 instance	 for	which	 they	 are	 being	 called,
and	return	a	new	reference.	In	the	case	of	an	error,	they	should	set	an
exception	and	return	NULL.

For	 an	 object	 which	 represents	 an	 iterable	 collection,	 the	 tp_iter
handler	 must	 return	 an	 iterator	 object.	 The	 iterator	 object	 is
responsible	 for	 maintaining	 the	 state	 of	 the	 iteration.	 For	 collections
which	can	support	multiple	 iterators	which	do	not	 interfere	with	each
other	 (as	 lists	 and	 tuples	 do),	 a	 new	 iterator	 should	 be	 created	 and
returned.	Objects	which	can	only	be	iterated	over	once	(usually	due	to
side	effects	of	 iteration)	should	 implement	 this	handler	by	returning	a
new	 reference	 to	 themselves,	 and	 should	 also	 implement	 the
tp_iternext	 handler.	 File	 objects	 are	 an	 example	 of	 such	 an
iterator.

Iterator	 objects	 should	 implement	 both	 handlers.	 The	 tp_iter
handler	should	return	a	new	reference	to	the	iterator	(this	is	the	same
as	 the	tp_iter	 handler	 for	 objects	which	can	only	be	 iterated	over
destructively).	 The	 tp_iternext	 handler	 should	 return	 a	 new
reference	 to	 the	 next	 object	 in	 the	 iteration	 if	 there	 is	 one.	 If	 the
iteration	has	 reached	 the	end,	 it	may	 return	NULL	without	 setting	an
exception	or	it	may	set	StopIteration;	avoiding	the	exception	can
yield	slightly	better	performance.	If	an	actual	error	occurs,	it	should	set
an	exception	and	return	NULL.

2.2.6.	Weak	Reference	Support

One	 of	 the	 goals	 of	 Python’s	 weak-reference	 implementation	 is	 to
allow	any	type	to	participate	in	the	weak	reference	mechanism	without
incurring	the	overhead	on	those	objects	which	do	not	benefit	by	weak
referencing	(such	as	numbers).

For	an	object	to	be	weakly	referencable,	the	extension	must	include	a
PyObject*	 field	 in	 the	 instance	 structure	 for	 the	 use	 of	 the	 weak
reference	mechanism;	 it	 must	 be	 initialized	 to	NULL	 by	 the	 object’s
constructor.	 It	 must	 also	 set	 the	 tp_weaklistoffset	 field	 of	 the
corresponding	 type	object	 to	 the	offset	of	 the	 field.	For	example,	 the
instance	type	is	defined	with	the	following	structure:

typedef	struct	{

				PyObject_HEAD

				PyClassObject	*in_class;							/*	The	class	object	*/

				PyObject						*in_dict;								/*	A	dictionary	*/

				PyObject						*in_weakreflist;	/*	List	of	weak	references	*/

}	PyInstanceObject;

The	statically-declared	type	object	for	instances	is	defined	this	way:

PyTypeObject	PyInstance_Type	=	{

				PyVarObject_HEAD_INIT(&PyType_Type,	0)

				0,

				"module.instance",

				/*	Lots	of	stuff	omitted	for	brevity...	*/

				Py_TPFLAGS_DEFAULT,																									/*	tp_flags	*/

				0,																																										/*	tp_doc	*/

				0,																																										/*	tp_traverse	*/

				0,																																										/*	tp_clear	*/

				0,																																										/*	tp_richcompare	*/

				offsetof(PyInstanceObject,	in_weakreflist),	/*	tp_weaklistoffset	*/

};

The	type	constructor	 is	 responsible	 for	 initializing	 the	weak	reference
list	to	NULL:

static	PyObject	*

instance_new()	{

				/*	Other	initialization	stuff	omitted	for	brevity	*/

				self->in_weakreflist	=	NULL;

				return	(PyObject	*)	self;

}

The	only	further	addition	is	that	the	destructor	needs	to	call	the	weak
reference	manager	to	clear	any	weak	references.	This	is	only	required
if	the	weak	reference	list	is	non-NULL:

static	void

instance_dealloc(PyInstanceObject	*inst)

{

				/*	Allocate	temporaries	if	needed,	but	do	not	begin

							destruction	just	yet.

					*/

				if	(inst->in_weakreflist	!=	NULL)

								PyObject_ClearWeakRefs((PyObject	*)	inst);

				/*	Proceed	with	object	destruction	normally.	*/

}

2.2.7.	More	Suggestions

Remember	 that	you	can	omit	most	of	 these	 functions,	 in	which	case
you	provide	0	 as	a	 value.	There	 are	 type	definitions	 for	 each	of	 the
functions	 you	 must	 provide.	 They	 are	 in	 object.h	 in	 the	 Python
include	directory	that	comes	with	the	source	distribution	of	Python.

In	order	 to	 learn	how	to	 implement	any	specific	method	 for	your	new
data	type,	do	the	following:	Download	and	unpack	the	Python	source
distribution.	Go	 to	 the	 Objects	 directory,	 then	 search	 the	C	 source
files	 for	 tp_	 plus	 the	 function	 you	 want	 (for	 example,
tp_richcompare).	You	will	find	examples	of	the	function	you	want	to
implement.

When	you	need	to	verify	that	an	object	is	an	instance	of	the	type	you
are	 implementing,	 use	 the	 PyObject_TypeCheck()	 function.	 A
sample	of	its	use	might	be	something	like	the	following:

if	(!	PyObject_TypeCheck(some_object,	&MyType))	{

				PyErr_SetString(PyExc_TypeError,	"arg	#1	not	a	mything"

				return	NULL;

}

Footnotes

[1] This	is	true	when	we	know	that	the	object	is	a	basic	type,	like	a
string	or	a	float.

[2]

We	relied	on	this	in	the	tp_dealloc	handler	in	this	example,
because	our	type	doesn’t	support	garbage	collection.	Even	if	a
type	supports	garbage	collection,	there	are	calls	that	can	be
made	to	“untrack”	the	object	from	garbage	collection,	however,
these	calls	are	advanced	and	not	covered	here.

[3]

We	now	know	that	the	first	and	last	members	are	strings,	so
perhaps	we	could	be	less	careful	about	decrementing	their
reference	counts,	however,	we	accept	instances	of	string
subclasses.	Even	though	deallocating	normal	strings	won’t	call
back	into	our	objects,	we	can’t	guarantee	that	deallocating	an
instance	of	a	string	subclass	won’t	call	back	into	our	objects.

Even	in	the	third	version,	we	aren’t	guaranteed	to	avoid	cycles.

[4] Instances	of	string	subclasses	are	allowed	and	string
subclasses	could	allow	cycles	even	if	normal	strings	don’t.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

http://www.python.org/

3.	Building	C	and	C++	Extensions
with	distutils
Starting	 in	Python	1.4,	Python	provides,	on	Unix,	a	special	make	 file
for	building	make	 files	 for	building	dynamically-linked	extensions	and
custom	interpreters.	Starting	with	Python	2.0,	this	mechanism	(known
as	related	 to	Makefile.pre.in,	and	Setup	 files)	 is	no	 longer	supported.
Building	custom	interpreters	was	rarely	used,	and	extension	modules
can	be	built	using	distutils.

Building	 an	 extension	module	 using	 distutils	 requires	 that	 distutils	 is
installed	 on	 the	 build	 machine,	 which	 is	 included	 in	 Python	 2.x	 and
available	 separately	 for	 Python	 1.5.	 Since	 distutils	 also	 supports
creation	of	binary	packages,	users	don’t	necessarily	need	a	compiler
and	distutils	to	install	the	extension.

A	distutils	package	contains	a	driver	script,	setup.py.	This	is	a	plain
Python	file,	which,	in	the	most	simple	case,	could	look	like	this:

from	distutils.core	import	setup,	Extension

module1	=	Extension('demo',

																				sources	=	['demo.c'])

setup	(name	=	'PackageName',

							version	=	'1.0',

							description	=	'This	is	a	demo	package',

							ext_modules	=	[module1])

With	this	setup.py,	and	a	file	demo.c,	running

python	setup.py	build

will	compile	demo.c,	and	produce	an	extension	module	named	demo
in	the	build	directory.	Depending	on	the	system,	the	module	file	will
end	up	in	a	subdirectory	build/lib.system,	and	may	have	a	name
like	demo.so	or	demo.pyd.

In	 the	 setup.py,	 all	 execution	 is	 performed	 by	 calling	 the	 setup
function.	This	takes	a	variable	number	of	keyword	arguments,	of	which
the	 example	 above	 uses	 only	 a	 subset.	 Specifically,	 the	 example
specifies	 meta-information	 to	 build	 packages,	 and	 it	 specifies	 the
contents	of	 the	package.	Normally,	a	package	will	contain	of	addition
modules,	 like	Python	 source	modules,	 documentation,	 subpackages,
etc.	Please	 refer	 to	 the	distutils	documentation	 in	Distributing	Python
Modules	(Legacy	version)	to	learn	more	about	the	features	of	distutils;
this	section	explains	building	extension	modules	only.

It	 is	 common	 to	 pre-compute	 arguments	 to	 setup(),	 to	 better
structure	 the	 driver	 script.	 In	 the	 example	 above,	 theext_modules
argument	to	setup()	is	a	list	of	extension	modules,	each	of	which	is
an	 instance	of	 the	Extension.	 In	 the	example,	 the	 instance	defines
an	extension	named	demo	which	is	build	by	compiling	a	single	source
file,	demo.c.

In	 many	 cases,	 building	 an	 extension	 is	 more	 complex,	 since
additional	preprocessor	defines	and	 libraries	may	be	needed.	This	 is
demonstrated	in	the	example	below.

from	distutils.core	import	setup,	Extension

module1	=	Extension('demo',

																				define_macros	=	[('MAJOR_VERSION',	'1'),

																																					('MINOR_VERSION',	'0')],

																				include_dirs	=	['/usr/local/include'],

																				libraries	=	['tcl83'],

																				library_dirs	=	['/usr/local/lib'],

																				sources	=	['demo.c'])

setup	(name	=	'PackageName',

							version	=	'1.0',

							description	=	'This	is	a	demo	package',

							author	=	'Martin	v.	Loewis',

							author_email	=	'martin@v.loewis.de',

							url	=	'http://docs.python.org/extending/building',

							long_description	=	'''

This	is	really	just	a	demo	package.

''',

							ext_modules	=	[module1])

In	 this	example,	 setup()	 is	 called	with	 additional	meta-information,
which	 is	 recommended	when	 distribution	 packages	 have	 to	 be	 built.
For	 the	 extension	 itself,	 it	 specifies	 preprocessor	 defines,	 include
directories,	 library	 directories,	 and	 libraries.	 Depending	 on	 the
compiler,	 distutils	 passes	 this	 information	 in	 different	 ways	 to	 the
compiler.	 For	 example,	 on	 Unix,	 this	 may	 result	 in	 the	 compilation
commands

gcc	-DNDEBUG	-g	-O3	-Wall	-Wstrict-prototypes	-fPIC	

gcc	-shared	build/temp.linux-i686-2.2/demo.o	-L/usr/

These	lines	are	for	demonstration	purposes	only;	distutils	users	should
trust	that	distutils	gets	the	invocations	right.

3.1.	Distributing	your	extension	modules

When	an	extension	has	been	successfully	build,	there	are	three	ways
to	use	it.

End-users	 will	 typically	 want	 to	 install	 the	 module,	 they	 do	 so	 by
running

python	setup.py	install

Module	maintainers	should	produce	source	packages;	 to	do	so,	 they
run

python	setup.py	sdist

In	 some	 cases,	 additional	 files	 need	 to	 be	 included	 in	 a	 source
distribution;	this	is	done	through	a	MANIFEST.in	file;	see	the	distutils
documentation	for	details.

If	the	source	distribution	has	been	build	successfully,	maintainers	can
also	create	binary	distributions.	Depending	on	the	platform,	one	of	the
following	commands	can	be	used	to	do	so.

python	setup.py	bdist_wininst

python	setup.py	bdist_rpm

python	setup.py	bdist_dumb

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

http://www.python.org/

4.	Building	C	and	C++	Extensions
on	Windows
This	 chapter	 briefly	 explains	 how	 to	 create	 a	 Windows	 extension
module	for	Python	using	Microsoft	Visual	C++,	and	follows	with	more
detailed	 background	 information	 on	 how	 it	 works.	 The	 explanatory
material	 is	useful	 for	both	 the	Windows	programmer	 learning	 to	build
Python	extensions	and	 the	Unix	programmer	 interested	 in	 producing
software	which	can	be	successfully	built	on	both	Unix	and	Windows.

Module	 authors	 are	 encouraged	 to	 use	 the	 distutils	 approach	 for
building	 extension	 modules,	 instead	 of	 the	 one	 described	 in	 this
section.	 You	 will	 still	 need	 the	 C	 compiler	 that	 was	 used	 to	 build
Python;	typically	Microsoft	Visual	C++.

Note: 	This	chapter	mentions	a	number	of	filenames	that	include	an
encoded	Python	version	number.	These	filenames	are	represented
with	the	version	number	shown	as	XY;	in	practice,	'X'	will	be	the
major	version	number	and	'Y'	will	be	the	minor	version	number	of
the	Python	release	you’re	working	with.	For	example,	if	you	are
using	Python	2.2.1,	XY	will	actually	be	22.

4.1.	A	Cookbook	Approach

There	are	two	approaches	to	building	extension	modules	on	Windows,
just	as	there	are	on	Unix:	use	the	distutils	package	to	control	the
build	process,	or	do	things	manually.	The	distutils	approach	works	well
for	most	extensions;	documentation	on	using	distutils	to	build	and
package	 extension	 modules	 is	 available	 in	 Distributing	 Python
Modules	 (Legacy	 version).	 This	 section	 describes	 the	 manual
approach	to	building	Python	extensions	written	in	C	or	C++.

To	build	extensions	using	these	instructions,	you	need	to	have	a	copy
of	 the	Python	sources	of	 the	same	version	as	your	 installed	Python.
You	will	need	Microsoft	Visual	C++	“Developer	Studio”;	project	files	are
supplied	 for	 VC++	 version	 7.1,	 but	 you	 can	 use	 older	 versions	 of
VC++.	Notice	that	you	should	use	the	same	version	of	VC++that	was
used	 to	 build	 Python	 itself.	 The	 example	 files	 described	 here	 are
distributed	 with	 the	 Python	 sources	 in	 the	 PC\example_nt\

directory.

1.	 Copy	 the	 example	 files	 —	 The	 example_nt	 directory	 is	 a
subdirectory	 of	 the	 PC	 directory,	 in	 order	 to	 keep	 all	 the	 PC-
specific	 files	under	 the	same	directory	 in	 the	source	distribution.
However,	 the	example_nt	directory	can’t	actually	be	used	from
this	location.	You	first	need	to	copy	or	move	it	up	one	level,	so	that
example_nt	is	a	sibling	of	the	PC	and	Include	directories.	Do
all	your	work	from	within	this	new	location.

2.	 Open	 the	project	—	From	VC++,	use	 the	File	‣	Open	Solution
dialog	 (not	 File	 ‣	 Open!).	 Navigate	 to	 and	 select	 the	 file
example.sln,	 in	 the	 copy	 of	 the	 example_nt	 directory	 you
made	above.	Click	Open.

3.	 Build	the	example	DLL	—	In	order	to	check	that	everything	is	set
up	right,	try	building:

4.	 Select	 a	 configuration.	 This	 step	 is	 optional.	 Choose	 Build	 ‣
Configuration	Manager	‣	Active	Solution	Configuration	and	select
either	Release	or	Debug.	 If	you	skip	 this	step,	VC++	will	use	the
Debug	configuration	by	default.

5.	 Build	 the	 DLL.	 Choose	Build	 ‣	 Build	 Solution.	 This	 creates	 all
intermediate	and	result	files	in	a	subdirectory	called	either	Debug
or	 Release,	 depending	 on	 which	 configuration	 you	 selected	 in
the	preceding	step.

6.	 Testing	 the	 debug-mode	 DLL	 —	 Once	 the	 Debug	 build	 has
succeeded,	 bring	 up	 a	 DOS	 box,	 and	 change	 to	 the
example_nt\Debug	directory.	You	should	now	be	able	to	repeat
the	following	session	(C>	 is	 the	DOS	prompt,	>>>	 is	 the	Python
prompt;	note	that	build	information	and	various	debug	output	from
Python	may	not	match	this	screen	dump	exactly):

C>..\..\PCbuild\python_d

Adding	parser	accelerators	...

Done.

Python	2.2	(#28,	Dec	19	2001,	23:26:37)	[MSC	32	bit	(Intel)]	on	win32

Type	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	example

[4897	refs]

>>>	example.foo()

Hello,	world

[4903	refs]

>>>

Congratulations!	 You’ve	 successfully	 built	 your	 first	 Python

extension	module.

7.	 Creating	 your	 own	 project	 —	 Choose	 a	 name	 and	 create	 a
directory	for	it.	Copy	your	C	sources	into	it.	Note	that	the	module
source	file	name	does	not	necessarily	have	to	match	the	module
name,	but	the	name	of	the	initialization	function	should	match	the
module	 name	 —	 you	 can	 only	 import	 a	 module	 spam	 if	 its
initialization	 function	 is	 called	 initspam(),	 and	 it	 should	 call
Py_InitModule()	with	the	string	"spam"	as	 its	 first	argument
(use	 the	 minimal	 example.c	 in	 this	 directory	 as	 a	 guide).	 By
convention,	 it	 lives	 in	 a	 file	 called	 spam.c	 or	 spammodule.c.
The	output	file	should	be	called	spam.pyd	(in	Release	mode)	or
spam_d.pyd	(in	Debug	mode).	The	extension	.pyd	was	chosen
to	avoid	confusion	with	a	system	library	spam.dll	to	which	your
module	could	be	a	Python	interface.

Now	your	options	are:

8.	 Copy	 example.sln	 and	 example.vcproj,	 rename	 them	 to
spam.*,	and	edit	them	by	hand,	or

9.	 Create	a	brand	new	project;	instructions	are	below.

In	 either	 case,	 copy	 example_nt\example.def	 to
spam\spam.def,	and	edit	the	new	spam.def	so	its	second	line
contains	 the	 string	 ‘initspam‘.	 If	 you	 created	 a	 new	 project
yourself,	 add	 the	 file	 spam.def	 to	 the	 project	 now.	 (This	 is	 an
annoying	little	file	with	only	two	lines.	An	alternative	approach	is	to
forget	 about	 the	 .def	 file,	 and	 add	 the	 option	 /export:initspam
somewhere	to	the	Link	settings,	by	manually	editing	the	setting	in
Project	Properties	dialog).

10.	 Creating	a	brand	new	project	—	Use	the	File	‣	New	‣	Project
dialog	 to	 create	 a	 new	 Project	 Workspace.	 Select	 Visual	 C++
Projects/Win32/	Win32	Project,	enter	the	name	(spam),	and	make
sure	the	Location	is	set	to	parent	of	the	spam	directory	you	have
created	(which	should	be	a	direct	subdirectory	of	the	Python	build
tree,	a	sibling	of	Include	and	PC).	Select	Win32	as	the	platform
(in	my	version,	this	is	the	only	choice).	Make	sure	the	Create	new
workspace	radio	button	is	selected.	Click	OK.

You	 should	 now	 create	 the	 file	 spam.def	 as	 instructed	 in	 the
previous	section.	Add	the	source	files	to	the	project,	using	Project
‣	 Add	 Existing	 Item.	 Set	 the	 pattern	 to	 *.*	 and	 select	 both
spam.c	and	spam.def	and	click	OK.	(Inserting	them	one	by	one
is	fine	too.)

Now	open	the	Project	‣	spam	properties	dialog.	You	only	need	to
change	a	 few	settings.	Make	 sure	All	Configurations	 is	 selected
from	the	Settings	for:	dropdown	list.	Select	the	C/C++	tab.	Choose
the	 General	 category	 in	 the	 popup	 menu	 at	 the	 top.	 Type	 the
following	 text	 in	 the	 entry	 box	 labeled	 Additional	 Include
Directories:

..\Include,..\PC

Then,	choose	the	General	category	in	the	Linker	tab,	and	enter

..\PCbuild

in	the	text	box	labelled	Additional	library	Directories.

Now	you	need	to	add	some	mode-specific	settings:

Select	Release	 in	 the	Configuration	 dropdown	 list.	 Choose	 the

Link	tab,	choose	the	Input	category,	and	append	pythonXY.lib
to	the	list	in	the	Additional	Dependencies	box.

Select	 Debug	 in	 the	 Configuration	 dropdown	 list,	 and	 append
pythonXY_d.lib	to	the	list	in	the	Additional	Dependencies	box.
Then	 click	 the	 C/C++	 tab,	 select	 Code	 Generation,	 and	 select
Multi-threaded	Debug	DLL	from	the	Runtime	library	dropdown	list.

Select	Release	again	from	the	Configuration	dropdown	list.	Select
Multi-threaded	DLL	from	the	Runtime	library	dropdown	list.

If	your	module	creates	a	new	type,	you	may	have	trouble	with	this	line:

PyVarObject_HEAD_INIT(&PyType_Type,	0)

Static	type	object	initializers	in	extension	modules	may	cause	compiles
to	fail	with	an	error	message	like	“initializer	not	a	constant”.	This	shows
up	when	building	DLL	under	MSVC.	Change	it	to:

PyVarObject_HEAD_INIT(NULL,	0)

and	add	the	following	to	the	module	initialization	function:

if	(PyType_Ready(&MyObject_Type)	<	0)

					return	NULL;

4.2.	Differences	Between	Unix	and
Windows

Unix	 and	 Windows	 use	 completely	 different	 paradigms	 for	 run-time
loading	 of	 code.	 Before	 you	 try	 to	 build	 a	 module	 that	 can	 be
dynamically	loaded,	be	aware	of	how	your	system	works.

In	Unix,	 a	 shared	 object	 (.so)	 file	 contains	 code	 to	 be	 used	 by	 the
program,	and	also	the	names	of	 functions	and	data	 that	 it	expects	 to
find	 in	 the	 program.	 When	 the	 file	 is	 joined	 to	 the	 program,	 all
references	to	those	functions	and	data	 in	 the	file’s	code	are	changed
to	point	to	the	actual	locations	in	the	program	where	the	functions	and
data	are	placed	in	memory.	This	is	basically	a	link	operation.

In	 Windows,	 a	 dynamic-link	 library	 (.dll)	 file	 has	 no	 dangling
references.	 Instead,	 an	 access	 to	 functions	 or	 data	 goes	 through	 a
lookup	table.	So	the	DLL	code	does	not	have	to	be	fixed	up	at	runtime
to	refer	to	the	program’s	memory;	 instead,	the	code	already	uses	the
DLL’s	lookup	table,	and	the	lookup	table	is	modified	at	runtime	to	point
to	the	functions	and	data.

In	Unix,	there	is	only	one	type	of	library	file	(.a)	which	contains	code
from	several	object	files	(.o).	During	the	 link	step	to	create	a	shared
object	 file	 (.so),	 the	 linker	 may	 find	 that	 it	 doesn’t	 know	 where	 an
identifier	 is	defined.	The	 linker	will	 look	 for	 it	 in	 the	object	 files	 in	 the
libraries;	if	it	finds	it,	it	will	include	all	the	code	from	that	object	file.

In	 Windows,	 there	 are	 two	 types	 of	 library,	 a	 static	 library	 and	 an
import	library	(both	called	.lib).	A	static	library	is	like	a	Unix	.a	file;	it
contains	 code	 to	 be	 included	 as	 necessary.	 An	 import	 library	 is
basically	 used	 only	 to	 reassure	 the	 linker	 that	 a	 certain	 identifier	 is

legal,	and	will	be	present	in	the	program	when	the	DLL	is	loaded.	So
the	 linker	 uses	 the	 information	 from	 the	 import	 library	 to	 build	 the
lookup	 table	 for	 using	 identifiers	 that	 are	 not	 included	 in	 the	 DLL.
When	 an	 application	 or	 a	 DLL	 is	 linked,	 an	 import	 library	 may	 be
generated,	which	will	need	to	be	used	for	all	future	DLLs	that	depend
on	the	symbols	in	the	application	or	DLL.

Suppose	you	are	building	two	dynamic-load	modules,	B	and	C,	which
should	share	another	block	of	code	A.	On	Unix,	 you	would	not	 pass
A.a	 to	 the	 linker	 for	 B.so	 and	 C.so;	 that	 would	 cause	 it	 to	 be
included	 twice,	 so	 that	B	and	C	would	each	have	 their	 own	copy.	 In
Windows,	building	A.dll	will	also	build	A.lib.	You	do	pass	A.lib
to	the	linker	for	B	and	C.	A.lib	does	not	contain	code;	it	just	contains
information	which	will	be	used	at	runtime	to	access	A’s	code.

In	Windows,	using	an	import	library	is	sort	of	like	using	import	spam;
it	gives	you	access	to	spam’s	names,	but	does	not	create	a	separate
copy.	On	Unix,	linking	with	a	library	is	more	like	from	spam	import
*;	it	does	create	a	separate	copy.

4.3.	Using	DLLs	in	Practice

Windows	Python	is	built	in	Microsoft	Visual	C++;	using	other	compilers
may	 or	 may	 not	 work	 (though	 Borland	 seems	 to).	 The	 rest	 of	 this
section	is	MSVC++	specific.

When	creating	DLLs	 in	Windows,	you	must	pass	pythonXY.lib	 to
the	 linker.	 To	 build	 two	DLLs,	 spam	 and	 ni	 (which	 uses	C	 functions
found	in	spam),	you	could	use	these	commands:

cl	/LD	/I/python/include	spam.c	../libs/pythonXY.lib

cl	/LD	/I/python/include	ni.c	spam.lib	../libs/pythonXY

The	 first	 command	 created	 three	 files:	 spam.obj,	 spam.dll	 and
spam.lib.	Spam.dll	 does	not	 contain	any	Python	 functions	 (such
as	PyArg_ParseTuple()),	but	it	does	know	how	to	find	the	Python
code	thanks	to	pythonXY.lib.

The	second	command	created	ni.dll	(and	.obj	and	.lib),	which
knows	how	to	find	the	necessary	functions	from	spam,	and	also	from
the	Python	executable.

Not	 every	 identifier	 is	 exported	 to	 the	 lookup	 table.	 If	 you	want	 any
other	modules	(including	Python)	to	be	able	to	see	your	identifiers,	you
have	 to	 say	 _declspec(dllexport),	 as	 in	 void

_declspec(dllexport)	 initspam(void)	 or	 PyObject

_declspec(dllexport)	*NiGetSpamData(void).

Developer	Studio	will	 throw	in	a	 lot	of	 import	 libraries	that	you	do	not
really	need,	adding	about	100K	to	your	executable.	To	get	rid	of	them,
use	 the	 Project	 Settings	 dialog,	 Link	 tab,	 to	 specify	 ignore	 default

libraries.	Add	the	correct	msvcrtxx.lib	to	the	list	of	libraries.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

http://www.python.org/

1.	Embedding	Python	in	Another
Application
The	previous	chapters	discussed	how	to	extend	Python,	that	is,	how	to
extend	the	functionality	of	Python	by	attaching	a	library	of	C	functions
to	 it.	 It	 is	 also	 possible	 to	 do	 it	 the	 other	 way	 around:	 enrich	 your
C/C++	 application	 by	 embedding	 Python	 in	 it.	 Embedding	 provides
your	application	with	the	ability	to	implement	some	of	the	functionality
of	your	application	in	Python	rather	than	C	or	C++.	This	can	be	used
for	many	purposes;	one	example	would	be	to	allow	users	to	tailor	the
application	 to	 their	needs	by	writing	some	scripts	 in	Python.	You	can
also	use	it	yourself	if	some	of	the	functionality	can	be	written	in	Python
more	easily.

Embedding	 Python	 is	 similar	 to	 extending	 it,	 but	 not	 quite.	 The
difference	 is	 that	when	 you	 extend	Python,	 the	main	 program	of	 the
application	 is	 still	 the	Python	 interpreter,	while	 if	 you	 embed	Python,
the	 main	 program	 may	 have	 nothing	 to	 do	 with	 Python	—	 instead,
some	parts	of	the	application	occasionally	call	the	Python	interpreter	to
run	some	Python	code.

So	 if	 you	 are	 embedding	 Python,	 you	 are	 providing	 your	 own	main
program.	One	of	the	things	this	main	program	has	to	do	is	initialize	the
Python	 interpreter.	 At	 the	 very	 least,	 you	 have	 to	 call	 the	 function
Py_Initialize().	 There	 are	 optional	 calls	 to	 pass	 command	 line
arguments	to	Python.	Then	later	you	can	call	the	interpreter	from	any
part	of	the	application.

There	are	several	different	ways	to	call	the	interpreter:	you	can	pass	a
string	containing	Python	statements	to	PyRun_SimpleString(),	or

you	can	pass	a	stdio	 file	pointer	and	a	 file	name	(for	 identification	 in
error	 messages	 only)	 to	 PyRun_SimpleFile().	 You	 can	 also	 call
the	 lower-level	 operations	 described	 in	 the	 previous	 chapters	 to
construct	and	use	Python	objects.

See	also:

Python/C	API	Reference	Manual
The	 details	 of	 Python’s	C	 interface	 are	 given	 in	 this	manual.	 A
great	deal	of	necessary	information	can	be	found	here.

1.1.	Very	High	Level	Embedding

The	 simplest	 form	 of	 embedding	 Python	 is	 the	 use	 of	 the	 very	 high
level	 interface.	 This	 interface	 is	 intended	 to	 execute	 a	 Python	 script
without	 needing	 to	 interact	 with	 the	 application	 directly.	 This	 can	 for
example	be	used	to	perform	some	operation	on	a	file.

#include	<Python.h>

int

main(int	argc,	char	*argv[])

{

		Py_SetProgramName(argv[0]);		/*	optional	but	recommended	*/

		Py_Initialize();

		PyRun_SimpleString("from	time	import	time,ctime\n"

																					"print('Today	is',	ctime(time()))

		Py_Finalize();

		return	0;

}

The	 Py_SetProgramName()	 function	 should	 be	 called	 before
Py_Initialize()	 to	 inform	 the	 interpreter	 about	 paths	 to	 Python
run-time	 libraries.	 Next,	 the	 Python	 interpreter	 is	 initialized	 with
Py_Initialize(),	 followed	 by	 the	 execution	 of	 a	 hard-coded
Python	 script	 that	 prints	 the	 date	 and	 time.	 Afterwards,	 the
Py_Finalize()	call	shuts	the	interpreter	down,	followed	by	the	end
of	 the	 program.	 In	 a	 real	 program,	 you	may	want	 to	 get	 the	 Python
script	 from	 another	 source,	 perhaps	 a	 text-editor	 routine,	 a	 file,	 or	 a
database.	Getting	 the	Python	code	 from	a	 file	can	better	be	done	by
using	 the	 PyRun_SimpleFile()	 function,	 which	 saves	 you	 the
trouble	of	allocating	memory	space	and	loading	the	file	contents.

1.2.	Beyond	Very	High	Level	Embedding:
An	overview

The	 high	 level	 interface	 gives	 you	 the	 ability	 to	 execute	 arbitrary
pieces	 of	 Python	 code	 from	 your	 application,	 but	 exchanging	 data
values	 is	 quite	 cumbersome	 to	 say	 the	 least.	 If	 you	 want	 that,	 you
should	 use	 lower	 level	 calls.	 At	 the	 cost	 of	 having	 to	 write	 more	 C
code,	you	can	achieve	almost	anything.

It	 should	 be	 noted	 that	 extending	 Python	 and	 embedding	 Python	 is
quite	 the	 same	 activity,	 despite	 the	 different	 intent.	 Most	 topics
discussed	 in	 the	 previous	 chapters	 are	 still	 valid.	 To	 show	 this,
consider	what	the	extension	code	from	Python	to	C	really	does:

1.	 Convert	data	values	from	Python	to	C,
2.	 Perform	a	function	call	to	a	C	routine	using	the	converted	values,

and
3.	 Convert	the	data	values	from	the	call	from	C	to	Python.

When	embedding	Python,	the	interface	code	does:

1.	 Convert	data	values	from	C	to	Python,
2.	 Perform	 a	 function	 call	 to	 a	 Python	 interface	 routine	 using	 the

converted	values,	and
3.	 Convert	the	data	values	from	the	call	from	Python	to	C.

As	 you	 can	 see,	 the	 data	 conversion	 steps	 are	 simply	 swapped	 to
accommodate	 the	 different	 direction	 of	 the	 cross-language	 transfer.
The	 only	 difference	 is	 the	 routine	 that	 you	 call	 between	 both	 data
conversions.	When	extending,	you	call	a	C	routine,	when	embedding,
you	call	a	Python	routine.

This	chapter	will	not	discuss	how	to	convert	data	from	Python	to	C	and

vice	versa.	Also,	proper	use	of	 references	and	dealing	with	errors	 is
assumed	 to	 be	 understood.	 Since	 these	 aspects	 do	 not	 differ	 from
extending	 the	 interpreter,	 you	 can	 refer	 to	 earlier	 chapters	 for	 the
required	information.

1.3.	Pure	Embedding

The	first	program	aims	to	execute	a	function	in	a	Python	script.	Like	in
the	section	about	 the	very	high	 level	 interface,	 the	Python	 interpreter
does	not	directly	 interact	with	 the	application	 (but	 that	will	 change	 in
the	next	section).

The	code	to	run	a	function	defined	in	a	Python	script	is:

#include	<Python.h>

int

main(int	argc,	char	*argv[])

{

				PyObject	*pName,	*pModule,	*pDict,	*pFunc;

				PyObject	*pArgs,	*pValue;

				int	i;

				if	(argc	<	3)	{

								fprintf(stderr,"Usage:	call	pythonfile	funcname	[args]

								return	1;

				}

				Py_Initialize();

				pName	=	PyUnicode_FromString(argv[1]);

				/*	Error	checking	of	pName	left	out	*/

				pModule	=	PyImport_Import(pName);

				Py_DECREF(pName);

				if	(pModule	!=	NULL)	{

								pFunc	=	PyObject_GetAttrString(pModule,	argv

								/*	pFunc	is	a	new	reference	*/

								if	(pFunc	&&	PyCallable_Check(pFunc))	{

												pArgs	=	PyTuple_New(argc	-	3);

												for	(i	=	0;	i	<	argc	-	3;	++i)	{

																pValue	=	PyLong_FromLong(atoi(argv[i

																if	(!pValue)	{

																				Py_DECREF(pArgs);

																				Py_DECREF(pModule);

																				fprintf(stderr,	"Cannot	convert	argument

																				return	1;

																}

																/*	pValue	reference	stolen	here:	*/

																PyTuple_SetItem(pArgs,	i,	pValue);

												}

												pValue	=	PyObject_CallObject(pFunc,	pArgs

												Py_DECREF(pArgs);

												if	(pValue	!=	NULL)	{

																printf("Result	of	call:	%ld\n",	PyLong_AsLong

																Py_DECREF(pValue);

												}

												else	{

																Py_DECREF(pFunc);

																Py_DECREF(pModule);

																PyErr_Print();

																fprintf(stderr,"Call	failed\n");

																return	1;

												}

								}

								else	{

												if	(PyErr_Occurred())

																PyErr_Print();

												fprintf(stderr,	"Cannot	find	function	\"

								}

								Py_XDECREF(pFunc);

								Py_DECREF(pModule);

				}

				else	{

								PyErr_Print();

								fprintf(stderr,	"Failed	to	load	\"%s\"\n",	argv

								return	1;

				}

				Py_Finalize();

				return	0;

}

This	code	loads	a	Python	script	using	argv[1],	and	calls	the	function
named	in	argv[2].	Its	integer	arguments	are	the	other	values	of	the
argv	array.	If	you	compile	and	link	this	program	(let’s	call	the	finished
executable	call),	and	use	it	to	execute	a	Python	script,	such	as:

def	multiply(a,b):

				print("Will	compute",	a,	"times",	b)

				c	=	0

				for	i	in	range(0,	a):

								c	=	c	+	b

				return	c

then	the	result	should	be:

$	call	multiply	multiply	3	2

Will	compute	3	times	2

Result	of	call:	6

Although	 the	 program	 is	 quite	 large	 for	 its	 functionality,	 most	 of	 the
code	 is	 for	 data	 conversion	 between	 Python	 and	 C,	 and	 for	 error
reporting.	The	interesting	part	with	respect	to	embedding	Python	starts
with

Py_Initialize();

pName	=	PyUnicode_FromString(argv[1]);

/*	Error	checking	of	pName	left	out	*/

pModule	=	PyImport_Import(pName);

After	 initializing	 the	 interpreter,	 the	 script	 is	 loaded	 using
PyImport_Import().	 This	 routine	 needs	 a	 Python	 string	 as	 its
argument,	 which	 is	 constructed	 using	 the
PyUnicode_FromString()	data	conversion	routine.

pFunc	=	PyObject_GetAttrString(pModule,	argv[2]);

/*	pFunc	is	a	new	reference	*/

if	(pFunc	&&	PyCallable_Check(pFunc))	{

				...

}

Py_XDECREF(pFunc);

Once	the	script	is	loaded,	the	name	we’re	looking	for	is	retrieved	using
PyObject_GetAttrString().	 If	 the	 name	 exists,	 and	 the	 object
returned	 is	 callable,	 you	can	safely	assume	 that	 it	 is	a	 function.	The
program	 then	 proceeds	 by	 constructing	 a	 tuple	 of	 arguments	 as
normal.	The	call	to	the	Python	function	is	then	made	with:

pValue	=	PyObject_CallObject(pFunc,	pArgs);

Upon	 return	 of	 the	 function,	 pValue	 is	 either	NULL	 or	 it	 contains	 a
reference	 to	 the	 return	 value	 of	 the	 function.	Be	 sure	 to	 release	 the
reference	after	examining	the	value.

1.4.	Extending	Embedded	Python

Until	 now,	 the	 embedded	 Python	 interpreter	 had	 no	 access	 to
functionality	from	the	application	itself.	The	Python	API	allows	this	by
extending	the	embedded	interpreter.	That	is,	the	embedded	interpreter
gets	 extended	 with	 routines	 provided	 by	 the	 application.	 While	 it
sounds	 complex,	 it	 is	 not	 so	 bad.	 Simply	 forget	 for	 a	 while	 that	 the
application	 starts	 the	 Python	 interpreter.	 Instead,	 consider	 the
application	to	be	a	set	of	subroutines,	and	write	some	glue	code	that
gives	 Python	 access	 to	 those	 routines,	 just	 like	 you	 would	 write	 a
normal	Python	extension.	For	example:

static	int	numargs=0;

/*	Return	the	number	of	arguments	of	the	application	command	line	*/

static	PyObject*

emb_numargs(PyObject	*self,	PyObject	*args)

{

				if(!PyArg_ParseTuple(args,	":numargs"))

								return	NULL;

				return	PyLong_FromLong(numargs);

}

static	PyMethodDef	EmbMethods[]	=	{

				{"numargs",	emb_numargs,	METH_VARARGS,

					"Return	the	number	of	arguments	received	by	the	process."

				{NULL,	NULL,	0,	NULL}

};

static	PyModuleDef	EmbModule	=	{

				PyModuleDef_HEAD_INIT,	"emb",	NULL,	-1,	EmbMethods

				NULL,	NULL,	NULL,	NULL

};

static	PyObject*

PyInit_emb(void)

{

				return	PyModule_Create(&EmbModule);

}

Insert	the	above	code	just	above	the	main()	function.	Also,	insert	the
following	two	statements	before	the	call	to	Py_Initialize():

numargs	=	argc;

PyImport_AppendInittab("emb",	&PyInit_emb);

These	 two	 lines	 initialize	 the	 numargs	 variable,	 and	 make	 the
emb.numargs()	 function	 accessible	 to	 the	 embedded	 Python
interpreter.	With	these	extensions,	the	Python	script	can	do	things	like

import	emb

print("Number	of	arguments",	emb.numargs())

In	a	real	application,	the	methods	will	expose	an	API	of	the	application
to	Python.

1.5.	Embedding	Python	in	C++

It	 is	also	possible	 to	embed	Python	 in	a	C++	program;	precisely	how
this	 is	 done	 will	 depend	 on	 the	 details	 of	 the	 C++	 system	 used;	 in
general	you	will	need	to	write	 the	main	program	in	C++,	and	use	the
C++	compiler	 to	compile	and	 link	your	program.	There	 is	no	need	 to
recompile	Python	itself	using	C++.

1.6.	Compiling	and	Linking	under	Unix-like
systems

It	is	not	necessarily	trivial	to	find	the	right	flags	to	pass	to	your	compiler
(and	 linker)	 in	 order	 to	 embed	 the	 Python	 interpreter	 into	 your
application,	particularly	because	Python	needs	to	load	library	modules
implemented	as	C	dynamic	extensions	(.so	files)	linked	against	it.

To	find	out	the	required	compiler	and	linker	flags,	you	can	execute	the
pythonX.Y-config	 script	 which	 is	 generated	 as	 part	 of	 the
installation	 process	 (a	 python3-config	 script	 may	 also	 be
available).	This	 script	 has	several	 options,	of	which	 the	 following	will
be	directly	useful	to	you:

pythonX.Y-config	--cflags	will	give	you	the	recommended
flags	when	compiling:

$	/opt/bin/python3.4-config	--cflags

-I/opt/include/python3.4m	-I/opt/include/python3.4m	-DNDEBUG	-g	-fwrapv	-O3	-Wall	-Wstrict-prototypes

pythonX.Y-config	 --ldflags	 will	 give	 you	 the
recommended	flags	when	linking:

$	/opt/bin/python3.4-config	--ldflags

-L/opt/lib/python3.4/config-3.4m	-lpthread	-ldl	-lutil	-lm	-lpython3.4m	-Xlinker	-export-dynamic

Note: 	To	avoid	confusion	between	several	Python	installations	(and
especially	between	the	system	Python	and	your	own	compiled
Python),	it	is	recommended	that	you	use	the	absolute	path	to
pythonX.Y-config,	as	in	the	above	example.

If	this	procedure	doesn’t	work	for	you	(it	is	not	guaranteed	to	work	for
all	 Unix-like	 platforms;	 however,	 we	 welcome	 bug	 reports)	 you	 will
have	 to	 read	 your	 system’s	 documentation	 about	 dynamic	 linking
and/or	 examine	 Python’s	 Makefile	 (use
sysconfig.get_makefile_filename()	 to	 find	 its	 location)	 and
compilation	options.	 In	 this	case,	 the	sysconfig	module	 is	a	useful
tool	 to	programmatically	extract	 the	configuration	values	 that	you	will
want	to	combine	together.	For	example:

>>>	import	sysconfig

>>>	sysconfig.get_config_var('LIBS')

'-lpthread	-ldl		-lutil'

>>>	sysconfig.get_config_var('LINKFORSHARED')

'-Xlinker	-export-dynamic'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Extending	and

Embedding	the	Python	Interpreter	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Introduction
The	Application	 Programmer’s	 Interface	 to	 Python	 gives	C	 and	C++
programmers	 access	 to	 the	Python	 interpreter	 at	 a	 variety	 of	 levels.
The	 API	 is	 equally	 usable	 from	 C++,	 but	 for	 brevity	 it	 is	 generally
referred	to	as	the	Python/C	API.	There	are	two	fundamentally	different
reasons	 for	 using	 the	 Python/C	 API.	 The	 first	 reason	 is	 to	 write
extension	 modules	 for	 specific	 purposes;	 these	 are	 C	 modules	 that
extend	the	Python	interpreter.	This	is	probably	the	most	common	use.
The	 second	 reason	 is	 to	 use	 Python	 as	 a	 component	 in	 a	 larger
application;	 this	 technique	 is	 generally	 referred	 to	 as	 embedding
Python	in	an	application.

Writing	 an	 extension	module	 is	 a	 relatively	well-understood	 process,
where	a	“cookbook”	approach	works	well.	There	are	several	tools	that
automate	 the	process	 to	some	extent.	While	people	have	embedded
Python	 in	other	applications	 since	 its	early	existence,	 the	process	of
embedding	Python	is	less	straightforward	than	writing	an	extension.

Many	 API	 functions	 are	 useful	 independent	 of	 whether	 you’re
embedding	 or	 extending	 Python;	 moreover,	 most	 applications	 that
embed	Python	will	need	to	provide	a	custom	extension	as	well,	so	it’s
probably	 a	 good	 idea	 to	 become	 familiar	 with	 writing	 an	 extension
before	attempting	to	embed	Python	in	a	real	application.

Include	Files

All	 function,	 type	 and	macro	 definitions	 needed	 to	 use	 the	Python/C
API	are	included	in	your	code	by	the	following	line:

#include	"Python.h"

This	implies	inclusion	of	the	following	standard	headers:	<stdio.h>,
<string.h>,	 <errno.h>,	 <limits.h>,	 <assert.h>	 and
<stdlib.h>	(if	available).

Note: 	Since	Python	may	define	some	pre-processor	definitions
which	affect	the	standard	headers	on	some	systems,	you	must
include	Python.h	before	any	standard	headers	are	included.

All	 user	 visible	names	defined	by	Python.h	 (except	 those	defined	by
the	 included	standard	headers)	have	one	of	 the	prefixes	Py	or	_Py.
Names	 beginning	 with	 _Py	 are	 for	 internal	 use	 by	 the	 Python
implementation	and	should	not	be	used	by	extension	writers.	Structure
member	names	do	not	have	a	reserved	prefix.

Important:	user	code	should	never	define	names	 that	begin	with	Py
or	_Py.	This	confuses	the	reader,	and	jeopardizes	the	portability	of	the
user	 code	 to	 future	 Python	 versions,	 which	 may	 define	 additional
names	beginning	with	one	of	these	prefixes.

The	header	files	are	typically	installed	with	Python.	On	Unix,	these	are
located	 in	 the	 directories	 prefix/include/pythonversion/	 and
exec_prefix/include/pythonversion/,	 where	 prefix	 and
exec_prefix	 are	 defined	 by	 the	 corresponding	 parameters	 to
Python’s	 configure	 script	 and	 version	 is	 sys.version[:3].	 On

Windows,	 the	 headers	 are	 installed	 in	 prefix/include,	 where
prefix	is	the	installation	directory	specified	to	the	installer.

To	 include	 the	 headers,	 place	 both	 directories	 (if	 different)	 on	 your
compiler’s	search	path	for	includes.	Do	not	place	the	parent	directories
on	 the	 search	 path	 and	 then	 use	 #include

<pythonX.Y/Python.h>;	 this	 will	 break	 on	 multi-platform	 builds
since	 the	 platform	 independent	 headers	 under	 prefix	 include	 the
platform	specific	headers	from	exec_prefix.

C++	users	should	note	that	though	the	API	is	defined	entirely	using	C,
the	 header	 files	 do	 properly	 declare	 the	 entry	 points	 to	 be	 extern
"C",	so	 there	 is	no	need	 to	do	anything	special	 to	use	 the	API	 from
C++.

Objects,	Types	and	Reference	Counts

Most	Python/C	API	functions	have	one	or	more	arguments	as	well	as
a	return	value	of	type	PyObject*.	This	type	is	a	pointer	to	an	opaque
data	 type	 representing	 an	 arbitrary	 Python	 object.	 Since	 all	 Python
object	types	are	treated	the	same	way	by	the	Python	language	in	most
situations	(e.g.,	assignments,	scope	rules,	and	argument	passing),	it	is
only	fitting	that	they	should	be	represented	by	a	single	C	type.	Almost
all	Python	objects	live	on	the	heap:	you	never	declare	an	automatic	or
static	 variable	 of	 type	 PyObject,	 only	 pointer	 variables	 of	 type
PyObject*	can	be	declared.	The	sole	exception	are	the	type	objects;
since	 these	 must	 never	 be	 deallocated,	 they	 are	 typically	 static
PyTypeObject	objects.

All	Python	objects	(even	Python	integers)	have	a	type	and	a	reference
count.	An	 object’s	 type	 determines	what	 kind	 of	 object	 it	 is	 (e.g.,	 an
integer,	 a	 list,	 or	 a	 user-defined	 function;	 there	 are	 many	 more	 as
explained	in	The	standard	type	hierarchy).	For	each	of	the	well-known
types	there	 is	a	macro	to	check	whether	an	object	 is	of	 that	 type;	 for
instance,	PyList_Check(a)	is	true	if	(and	only	if)	the	object	pointed
to	by	a	is	a	Python	list.

Reference	Counts

The	 reference	count	 is	 important	because	 today’s	 computers	have	a
finite	 (and	 often	 severely	 limited)	 memory	 size;	 it	 counts	 how	many
different	places	 there	are	 that	have	a	 reference	 to	an	object.	Such	a
place	could	be	another	object,	or	a	global	 (or	static)	C	variable,	or	a
local	 variable	 in	 some	C	 function.	When	 an	 object’s	 reference	 count
becomes	 zero,	 the	 object	 is	 deallocated.	 If	 it	 contains	 references	 to
other	 objects,	 their	 reference	 count	 is	 decremented.	 Those	 other

objects	 may	 be	 deallocated	 in	 turn,	 if	 this	 decrement	 makes	 their
reference	count	become	zero,	and	so	on.	(There’s	an	obvious	problem
with	 objects	 that	 reference	 each	 other	 here;	 for	 now,	 the	 solution	 is
“don’t	do	that.”)

Reference	counts	are	always	manipulated	explicitly.	The	normal	way	is
to	 use	 the	macro	 Py_INCREF()	 to	 increment	 an	 object’s	 reference
count	 by	 one,	 and	 Py_DECREF()	 to	 decrement	 it	 by	 one.	 The
Py_DECREF()	 macro	 is	 considerably	 more	 complex	 than	 the	 incref
one,	 since	 it	must	 check	whether	 the	 reference	count	becomes	zero
and	then	cause	the	object’s	deallocator	to	be	called.	The	deallocator	is
a	 function	 pointer	 contained	 in	 the	 object’s	 type	 structure.	 The	 type-
specific	deallocator	 takes	care	of	decrementing	 the	 reference	counts
for	other	objects	contained	 in	 the	object	 if	 this	 is	a	compound	object
type,	 such	 as	 a	 list,	 as	well	 as	 performing	 any	 additional	 finalization
that’s	 needed.	 There’s	 no	 chance	 that	 the	 reference	 count	 can
overflow;	at	least	as	many	bits	are	used	to	hold	the	reference	count	as
there	 are	 distinct	 memory	 locations	 in	 virtual	 memory	 (assuming
sizeof(Py_ssize_t)	>=	sizeof(void*)).	 Thus,	 the	 reference
count	increment	is	a	simple	operation.

It	 is	not	necessary	to	 increment	an	object’s	reference	count	 for	every
local	 variable	 that	 contains	 a	 pointer	 to	 an	 object.	 In	 theory,	 the
object’s	reference	count	goes	up	by	one	when	the	variable	is	made	to
point	 to	 it	 and	 it	 goes	 down	 by	 one	 when	 the	 variable	 goes	 out	 of
scope.	However,	 these	 two	cancel	each	other	out,	 so	at	 the	end	 the
reference	 count	 hasn’t	 changed.	 The	 only	 real	 reason	 to	 use	 the
reference	count	is	to	prevent	the	object	from	being	deallocated	as	long
as	our	variable	 is	pointing	 to	 it.	 If	we	know	 that	 there	 is	at	 least	 one
other	reference	to	the	object	that	lives	at	least	as	long	as	our	variable,
there	 is	 no	 need	 to	 increment	 the	 reference	 count	 temporarily.	 An
important	situation	where	 this	arises	 is	 in	objects	 that	are	passed	as

arguments	to	C	functions	in	an	extension	module	that	are	called	from
Python;	 the	call	mechanism	guarantees	 to	hold	a	 reference	 to	 every
argument	for	the	duration	of	the	call.

However,	a	common	pitfall	 is	to	extract	an	object	from	a	list	and	hold
on	 to	 it	 for	 a	 while	 without	 incrementing	 its	 reference	 count.	 Some
other	 operation	 might	 conceivably	 remove	 the	 object	 from	 the	 list,
decrementing	its	reference	count	and	possible	deallocating	it.	The	real
danger	is	that	innocent-looking	operations	may	invoke	arbitrary	Python
code	which	could	do	this;	there	is	a	code	path	which	allows	control	to
flow	back	to	the	user	from	a	Py_DECREF(),	so	almost	any	operation
is	potentially	dangerous.

A	 safe	 approach	 is	 to	 always	 use	 the	 generic	 operations	 (functions
whose	name	begins	with	PyObject_,	PyNumber_,	PySequence_	or
PyMapping_).	 These	 operations	 always	 increment	 the	 reference
count	 of	 the	 object	 they	 return.	 This	 leaves	 the	 caller	 with	 the
responsibility	 to	 call	 Py_DECREF()	 when	 they	 are	 done	 with	 the
result;	this	soon	becomes	second	nature.

Reference	Count	Details

The	reference	count	behavior	of	functions	in	the	Python/C	API	is	best
explained	in	terms	of	ownership	of	 references.	Ownership	pertains	 to
references,	never	 to	objects	 (objects	are	not	owned:	 they	are	always
shared).	 “Owning	 a	 reference”	 means	 being	 responsible	 for	 calling
Py_DECREF	on	it	when	the	reference	is	no	longer	needed.	Ownership
can	 also	 be	 transferred,	 meaning	 that	 the	 code	 that	 receives
ownership	 of	 the	 reference	 then	 becomes	 responsible	 for	 eventually
decref’ing	it	by	calling	Py_DECREF()	or	Py_XDECREF()	when	it’s	no
longer	needed—or	passing	on	this	responsibility	(usually	to	its	caller).
When	a	function	passes	ownership	of	a	reference	on	to	its	caller,	the

caller	 is	 said	 to	 receive	 a	 new	 reference.	 When	 no	 ownership	 is
transferred,	the	caller	is	said	to	borrow	the	reference.	Nothing	needs	to
be	done	for	a	borrowed	reference.

Conversely,	when	a	calling	function	passes	in	a	reference	to	an	object,
there	are	two	possibilities:	the	function	steals	a	reference	to	the	object,
or	 it	 does	 not.	 Stealing	 a	 reference	 means	 that	 when	 you	 pass	 a
reference	 to	 a	 function,	 that	 function	 assumes	 that	 it	 now	 owns	 that
reference,	and	you	are	not	responsible	for	it	any	longer.

Few	 functions	 steal	 references;	 the	 two	 notable	 exceptions	 are
PyList_SetItem()	 and	 PyTuple_SetItem(),	 which	 steal	 a
reference	to	the	item	(but	not	to	the	tuple	or	list	into	which	the	item	is
put!).	These	functions	were	designed	to	steal	a	reference	because	of	a
common	idiom	for	populating	a	tuple	or	list	with	newly	created	objects;
for	example,	 the	code	 to	create	 the	 tuple	(1,	2,	"three")	 could
look	like	this	(forgetting	about	error	handling	for	the	moment;	a	better
way	to	code	this	is	shown	below):

PyObject	*t;

t	=	PyTuple_New(3);

PyTuple_SetItem(t,	0,	PyLong_FromLong(1L));

PyTuple_SetItem(t,	1,	PyLong_FromLong(2L));

PyTuple_SetItem(t,	2,	PyUnicode_FromString("three"));

Here,	 PyLong_FromLong()	 returns	 a	 new	 reference	 which	 is
immediately	stolen	by	PyTuple_SetItem().	When	you	want	to	keep
using	 an	 object	 although	 the	 reference	 to	 it	 will	 be	 stolen,	 use
Py_INCREF()	to	grab	another	reference	before	calling	the	reference-
stealing	function.

Incidentally,	PyTuple_SetItem()	is	the	only	way	to	set	tuple	items;

PySequence_SetItem()	and	PyObject_SetItem()	 refuse	to	do
this	 since	 tuples	 are	 an	 immutable	 data	 type.	 You	 should	 only	 use
PyTuple_SetItem()	for	tuples	that	you	are	creating	yourself.

Equivalent	 code	 for	 populating	 a	 list	 can	 be	 written	 using
PyList_New()	and	PyList_SetItem().

However,	 in	 practice,	 you	will	 rarely	 use	 these	ways	 of	 creating	 and
populating	 a	 tuple	 or	 list.	 There’s	 a	 generic	 function,
Py_BuildValue(),	 that	 can	 create	 most	 common	 objects	 from	 C
values,	directed	by	a	format	string.	For	example,	the	above	two	blocks
of	code	could	be	 replaced	by	 the	 following	 (which	also	 takes	care	of
the	error	checking):

PyObject	*tuple,	*list;

tuple	=	Py_BuildValue("(iis)",	1,	2,	"three");

list	=	Py_BuildValue("[iis]",	1,	2,	"three");

It	 is	much	more	common	to	use	PyObject_SetItem()	and	friends
with	 items	whose	 references	 you	are	only	 borrowing,	 like	arguments
that	were	passed	in	to	the	function	you	are	writing.	In	that	case,	their
behaviour	 regarding	 reference	counts	 is	much	saner,	since	you	don’t
have	to	increment	a	reference	count	so	you	can	give	a	reference	away
(“have	it	be	stolen”).	For	example,	 this	 function	sets	all	 items	of	a	 list
(actually,	any	mutable	sequence)	to	a	given	item:

int

set_all(PyObject	*target,	PyObject	*item)

{

				Py_ssize_t	i,	n;

				n	=	PyObject_Length(target);

				if	(n	<	0)

								return	-1;

				for	(i	=	0;	i	<	n;	i++)	{

								PyObject	*index	=	PyLong_FromSsize_t(i);

								if	(!index)

												return	-1;

								if	(PyObject_SetItem(target,	index,	item)	<	

												Py_DECREF(index);

												return	-1;

								}

								Py_DECREF(index);

				}

				return	0;

}

The	 situation	 is	 slightly	 different	 for	 function	 return	 values.	 While
passing	 a	 reference	 to	 most	 functions	 does	 not	 change	 your
ownership	 responsibilities	 for	 that	 reference,	 many	 functions	 that
return	a	 reference	 to	an	object	 give	 you	ownership	of	 the	 reference.
The	reason	is	simple:	in	many	cases,	the	returned	object	is	created	on
the	 fly,	and	 the	 reference	you	get	 is	 the	only	 reference	 to	 the	object.
Therefore,	 the	 generic	 functions	 that	 return	 object	 references,	 like
PyObject_GetItem()	 and	 PySequence_GetItem(),	 always
return	 a	 new	 reference	 (the	 caller	 becomes	 the	 owner	 of	 the
reference).

It	is	important	to	realize	that	whether	you	own	a	reference	returned	by
a	function	depends	on	which	function	you	call	only	—	the	plumage	(the
type	of	the	object	passed	as	an	argument	to	the	function)	doesn’t	enter
into	 it!	 Thus,	 if	 you	 extract	 an	 item	 from	 a	 list	 using
PyList_GetItem(),	you	don’t	own	the	reference	—	but	if	you	obtain
the	 same	 item	 from	 the	 same	 list	 using	 PySequence_GetItem()
(which	happens	 to	 take	exactly	 the	same	arguments),	 you	do	own	a
reference	to	the	returned	object.

Here	 is	an	example	of	how	you	could	write	a	 function	 that	computes
the	 sum	 of	 the	 items	 in	 a	 list	 of	 integers;	 once	 using
PyList_GetItem(),	and	once	using	PySequence_GetItem().

long

sum_list(PyObject	*list)

{

				Py_ssize_t	i,	n;

				long	total	=	0,	value;

				PyObject	*item;

				n	=	PyList_Size(list);

				if	(n	<	0)

								return	-1;	/*	Not	a	list	*/

				for	(i	=	0;	i	<	n;	i++)	{

								item	=	PyList_GetItem(list,	i);	/*	Can't	fail	*/

								if	(!PyLong_Check(item))	continue;	/*	Skip	non-integers	*/

								value	=	PyLong_AsLong(item);

								if	(value	==	-1	&&	PyErr_Occurred())

												/*	Integer	too	big	to	fit	in	a	C	long,	bail	out	*/

												return	-1;

								total	+=	value;

				}

				return	total;

}

long

sum_sequence(PyObject	*sequence)

{

				Py_ssize_t	i,	n;

				long	total	=	0,	value;

				PyObject	*item;

				n	=	PySequence_Length(sequence);

				if	(n	<	0)

								return	-1;	/*	Has	no	length	*/

				for	(i	=	0;	i	<	n;	i++)	{

								item	=	PySequence_GetItem(sequence,	i);

								if	(item	==	NULL)

												return	-1;	/*	Not	a	sequence,	or	other	failure	*/

								if	(PyLong_Check(item))	{

												value	=	PyLong_AsLong(item);

												Py_DECREF(item);

												if	(value	==	-1	&&	PyErr_Occurred())

																/*	Integer	too	big	to	fit	in	a	C	long,	bail	out	*/

																return	-1;

												total	+=	value;

								}

								else	{

												Py_DECREF(item);	/*	Discard	reference	ownership	*/

								}

				}

				return	total;

}

Types

There	 are	 few	 other	 data	 types	 that	 play	 a	 significant	 role	 in	 the
Python/C	API;	most	are	simple	C	types	such	as	int,	long,	double
and	char*.	A	 few	structure	 types	are	 used	 to	 describe	 static	 tables
used	to	list	the	functions	exported	by	a	module	or	the	data	attributes	of
a	 new	 object	 type,	 and	 another	 is	 used	 to	 describe	 the	 value	 of	 a
complex	number.	These	will	be	discussed	together	with	 the	functions
that	use	them.

Exceptions

The	Python	programmer	only	needs	to	deal	with	exceptions	if	specific
error	 handling	 is	 required;	 unhandled	 exceptions	 are	 automatically
propagated	to	the	caller,	then	to	the	caller’s	caller,	and	so	on,	until	they
reach	 the	 top-level	 interpreter,	 where	 they	 are	 reported	 to	 the	 user
accompanied	by	a	stack	traceback.

For	C	programmers,	however,	error	checking	always	has	to	be	explicit.
All	 functions	 in	 the	 Python/C	 API	 can	 raise	 exceptions,	 unless	 an
explicit	 claim	 is	 made	 otherwise	 in	 a	 function’s	 documentation.	 In
general,	 when	 a	 function	 encounters	 an	 error,	 it	 sets	 an	 exception,
discards	 any	 object	 references	 that	 it	 owns,	 and	 returns	 an	 error
indicator.	If	not	documented	otherwise,	this	indicator	is	either	NULL	or
-1,	depending	on	 the	 function’s	 return	 type.	A	 few	 functions	 return	a
Boolean	 true/false	 result,	 with	 false	 indicating	 an	 error.	 Very	 few
functions	return	no	explicit	error	indicator	or	have	an	ambiguous	return
value,	and	require	explicit	testing	for	errors	with	PyErr_Occurred().
These	exceptions	are	always	explicitly	documented.

Exception	state	is	maintained	in	per-thread	storage	(this	is	equivalent
to	using	global	storage	in	an	unthreaded	application).	A	thread	can	be
in	one	of	 two	states:	an	exception	has	occurred,	or	not.	The	 function
PyErr_Occurred()	 can	 be	 used	 to	 check	 for	 this:	 it	 returns	 a
borrowed	 reference	 to	 the	 exception	 type	 object	 when	 an	 exception
has	occurred,	and	NULL	otherwise.	There	are	a	number	of	functions	to
set	 the	 exception	 state:	 PyErr_SetString()	 is	 the	most	 common
(though	not	the	most	general)	function	to	set	the	exception	state,	and
PyErr_Clear()	clears	the	exception	state.

The	full	exception	state	consists	of	 three	objects	(all	of	which	can	be

NULL):	the	exception	type,	the	corresponding	exception	value,	and	the
traceback.	 These	 have	 the	 same	 meanings	 as	 the	 Python	 result	 of
sys.exc_info();	 however,	 they	 are	 not	 the	 same:	 the	 Python
objects	represent	the	last	exception	being	handled	by	a	Python	try	...
except	statement,	while	the	C	level	exception	state	only	exists	while
an	exception	is	being	passed	on	between	C	functions	until	 it	reaches
the	 Python	 bytecode	 interpreter’s	 main	 loop,	 which	 takes	 care	 of
transferring	it	to	sys.exc_info()	and	friends.

Note	 that	 starting	with	Python	 1.5,	 the	 preferred,	 thread-safe	way	 to
access	 the	 exception	 state	 from	 Python	 code	 is	 to	 call	 the	 function
sys.exc_info(),	 which	 returns	 the	 per-thread	 exception	 state	 for
Python	 code.	 Also,	 the	 semantics	 of	 both	 ways	 to	 access	 the
exception	 state	 have	 changed	 so	 that	 a	 function	 which	 catches	 an
exception	will	 save	 and	 restore	 its	 thread’s	 exception	 state	 so	 as	 to
preserve	the	exception	state	of	its	caller.	This	prevents	common	bugs
in	 exception	 handling	 code	 caused	 by	 an	 innocent-looking	 function
overwriting	 the	 exception	 being	 handled;	 it	 also	 reduces	 the	 often
unwanted	 lifetime	 extension	 for	 objects	 that	 are	 referenced	 by	 the
stack	frames	in	the	traceback.

As	a	general	principle,	a	function	that	calls	another	function	to	perform
some	 task	 should	 check	 whether	 the	 called	 function	 raised	 an
exception,	and	if	so,	pass	the	exception	state	on	to	its	caller.	It	should
discard	 any	 object	 references	 that	 it	 owns,	 and	 return	 an	 error
indicator,	 but	 it	 should	 not	 set	 another	 exception	 —	 that	 would
overwrite	 the	 exception	 that	 was	 just	 raised,	 and	 lose	 important
information	about	the	exact	cause	of	the	error.

A	 simple	 example	 of	 detecting	 exceptions	 and	 passing	 them	 on	 is
shown	 in	 the	 sum_sequence()	 example	 above.	 It	 so	 happens	 that
this	example	doesn’t	need	to	clean	up	any	owned	references	when	it

detects	 an	 error.	 The	 following	 example	 function	 shows	 some	 error
cleanup.	 First,	 to	 remind	 you	 why	 you	 like	 Python,	 we	 show	 the
equivalent	Python	code:

def	incr_item(dict,	key):

				try:

								item	=	dict[key]

				except	KeyError:

								item	=	0

				dict[key]	=	item	+	1

Here	is	the	corresponding	C	code,	in	all	its	glory:

int

incr_item(PyObject	*dict,	PyObject	*key)

{

				/*	Objects	all	initialized	to	NULL	for	Py_XDECREF	*/

				PyObject	*item	=	NULL,	*const_one	=	NULL,	*incremented_item

				int	rv	=	-1;	/*	Return	value	initialized	to	-1	(failure)	*/

				item	=	PyObject_GetItem(dict,	key);

				if	(item	==	NULL)	{

								/*	Handle	KeyError	only:	*/

								if	(!PyErr_ExceptionMatches(PyExc_KeyError))

												goto	error;

								/*	Clear	the	error	and	use	zero:	*/

								PyErr_Clear();

								item	=	PyLong_FromLong(0L);

								if	(item	==	NULL)

												goto	error;

				}

				const_one	=	PyLong_FromLong(1L);

				if	(const_one	==	NULL)

								goto	error;

				incremented_item	=	PyNumber_Add(item,	const_one);

				if	(incremented_item	==	NULL)

								goto	error;

				if	(PyObject_SetItem(dict,	key,	incremented_item

								goto	error;

				rv	=	0;	/*	Success	*/

				/*	Continue	with	cleanup	code	*/

	error:

				/*	Cleanup	code,	shared	by	success	and	failure	path	*/

				/*	Use	Py_XDECREF()	to	ignore	NULL	references	*/

				Py_XDECREF(item);

				Py_XDECREF(const_one);

				Py_XDECREF(incremented_item);

				return	rv;	/*	-1	for	error,	0	for	success	*/

}

This	example	represents	an	endorsed	use	of	the	goto	statement	in	C!
It	 illustrates	 the	 use	 of	 PyErr_ExceptionMatches()	 and
PyErr_Clear()	 to	 handle	 specific	 exceptions,	 and	 the	 use	 of
Py_XDECREF()	 to	 dispose	 of	 owned	 references	 that	may	 be	NULL
(note	 the	 'X'	 in	 the	 name;	 Py_DECREF()	 would	 crash	 when
confronted	with	 a	NULL	 reference).	 It	 is	 important	 that	 the	 variables
used	to	hold	owned	references	are	initialized	to	NULL	for	this	to	work;
likewise,	the	proposed	return	value	is	initialized	to	-1	(failure)	and	only
set	to	success	after	the	final	call	made	is	successful.

Embedding	Python

The	one	important	task	that	only	embedders	(as	opposed	to	extension
writers)	 of	 the	 Python	 interpreter	 have	 to	 worry	 about	 is	 the
initialization,	 and	 possibly	 the	 finalization,	 of	 the	 Python	 interpreter.
Most	 functionality	 of	 the	 interpreter	 can	 only	 be	 used	 after	 the
interpreter	has	been	initialized.

The	basic	initialization	function	is	Py_Initialize().	This	 initializes
the	 table	 of	 loaded	 modules,	 and	 creates	 the	 fundamental	 modules
builtins,	__main__,	and	sys.	It	also	initializes	the	module	search
path	(sys.path).

Py_Initialize()	 does	 not	 set	 the	 “script	 argument	 list”
(sys.argv).	 If	 this	 variable	 is	 needed	 by	 Python	 code	 that	 will	 be
executed	 later,	 it	 must	 be	 set	 explicitly	 with	 a	 call	 to
PySys_SetArgvEx(argc,	argv,	updatepath)	 after	 the	 call	 to
Py_Initialize().

On	most	 systems	 (in	 particular,	 on	Unix	 and	Windows,	 although	 the
details	 are	 slightly	 different),	 Py_Initialize()	 calculates	 the
module	search	path	based	upon	its	best	guess	for	the	location	of	the
standard	 Python	 interpreter	 executable,	 assuming	 that	 the	 Python
library	 is	 found	 in	 a	 fixed	 location	 relative	 to	 the	 Python	 interpreter
executable.	 In	 particular,	 it	 looks	 for	 a	 directory	 named
lib/pythonX.Y	relative	to	the	parent	directory	where	the	executable
named	 python	 is	 found	 on	 the	 shell	 command	 search	 path	 (the
environment	variable	PATH).

For	 instance,	 if	 the	 Python	 executable	 is	 found	 in
/usr/local/bin/python,	 it	 will	 assume	 that	 the	 libraries	 are	 in

/usr/local/lib/pythonX.Y.	 (In	 fact,	 this	 particular	 path	 is	 also
the	“fallback”	location,	used	when	no	executable	file	named	python	is
found	along	PATH.)	The	user	can	override	this	behavior	by	setting	the
environment	variable	PYTHONHOME,	 or	 insert	 additional	 directories	 in
front	of	the	standard	path	by	setting	PYTHONPATH.

The	 embedding	 application	 can	 steer	 the	 search	 by	 calling
Py_SetProgramName(file)	 before	 calling	 Py_Initialize().
Note	 that	 PYTHONHOME	 still	 overrides	 this	 and	 PYTHONPATH	 is	 still
inserted	in	front	of	the	standard	path.	An	application	that	requires	total
control	 has	 to	 provide	 its	 own	 implementation	 of	 Py_GetPath(),
Py_GetPrefix(),	 Py_GetExecPrefix(),	 and
Py_GetProgramFullPath()	 (all	 defined	 in
Modules/getpath.c).

Sometimes,	 it	 is	 desirable	 to	 “uninitialize”	 Python.	 For	 instance,	 the
application	 may	 want	 to	 start	 over	 (make	 another	 call	 to
Py_Initialize())	or	 the	application	 is	simply	done	with	 its	use	of
Python	and	wants	 to	 free	memory	 allocated	 by	Python.	 This	 can	 be
accomplished	 by	 calling	 Py_Finalize().	 The	 function
Py_IsInitialized()	 returns	 true	 if	 Python	 is	 currently	 in	 the
initialized	state.	More	 information	about	 these	 functions	 is	 given	 in	 a
later	chapter.	Notice	 that	Py_Finalize()	does	not	 free	all	memory
allocated	 by	 the	 Python	 interpreter,	 e.g.	 memory	 allocated	 by
extension	modules	currently	cannot	be	released.

Debugging	Builds

Python	can	be	built	with	several	macros	to	enable	extra	checks	of	the
interpreter	and	extension	modules.	These	checks	tend	to	add	a	 large
amount	of	overhead	to	the	runtime	so	they	are	not	enabled	by	default.

A	 full	 list	 of	 the	 various	 types	 of	 debugging	 builds	 is	 in	 the	 file
Misc/SpecialBuilds.txt	in	the	Python	source	distribution.	Builds
are	available	 that	support	 tracing	of	 reference	counts,	debugging	 the
memory	 allocator,	 or	 low-level	 profiling	 of	 the	 main	 interpreter	 loop.
Only	 the	 most	 frequently-used	 builds	 will	 be	 described	 in	 the
remainder	of	this	section.

Compiling	the	interpreter	with	the	Py_DEBUG	macro	defined	produces
what	 is	 generally	meant	 by	 “a	 debug	build”	 of	Python.	 Py_DEBUG	 is
enabled	 in	 the	 Unix	 build	 by	 adding	 --with-pydebug	 to	 the
./configure	command.	It	is	also	implied	by	the	presence	of	the	not-
Python-specific	 _DEBUG	 macro.	 When	 Py_DEBUG	 is	 enabled	 in	 the
Unix	build,	compiler	optimization	is	disabled.

In	 addition	 to	 the	 reference	 count	 debugging	 described	 below,	 the
following	extra	checks	are	performed:

Extra	checks	are	added	to	the	object	allocator.
Extra	checks	are	added	to	the	parser	and	compiler.
Downcasts	from	wide	types	to	narrow	types	are	checked	for	loss
of	information.
A	 number	 of	 assertions	 are	 added	 to	 the	 dictionary	 and	 set
implementations.	 In	 addition,	 the	 set	 object	 acquires	 a
test_c_api()	method.
Sanity	checks	of	the	input	arguments	are	added	to	frame	creation.
The	 storage	 for	 ints	 is	 initialized	with	 a	 known	 invalid	 pattern	 to

catch	reference	to	uninitialized	digits.
Low-level	 tracing	and	extra	exception	checking	are	added	 to	 the
runtime	virtual	machine.
Extra	checks	are	added	to	the	memory	arena	implementation.
Extra	debugging	is	added	to	the	thread	module.

There	may	be	additional	checks	not	mentioned	here.

Defining	Py_TRACE_REFS	enables	reference	tracing.	When	defined,	a
circular	doubly	linked	list	of	active	objects	is	maintained	by	adding	two
extra	fields	to	every	PyObject.	Total	allocations	are	 tracked	as	well.
Upon	exit,	all	existing	references	are	printed.	(In	interactive	mode	this
happens	 after	 every	 statement	 run	 by	 the	 interpreter.)	 Implied	 by
Py_DEBUG.

Please	 refer	 to	 Misc/SpecialBuilds.txt	 in	 the	 Python	 source
distribution	for	more	detailed	information.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Stable	Application	Binary	Interface
Traditionally,	the	C	API	of	Python	will	change	with	every	release.	Most
changes	will	be	source-compatible,	typically	by	only	adding	API,	rather
than	changing	existing	API	or	removing	API	(although	some	interfaces
do	get	removed	after	being	deprecated	first).

Unfortunately,	 the	 API	 compatibility	 does	 not	 extend	 to	 binary
compatibility	 (the	ABI).	The	 reason	 is	primarily	 the	evolution	of	struct
definitions,	 where	 addition	 of	 a	 new	 field,	 or	 changing	 the	 type	 of	 a
field,	 might	 not	 break	 the	 API,	 but	 can	 break	 the	 ABI.	 As	 a
consequence,	 extension	 modules	 need	 to	 be	 recompiled	 for	 every
Python	release	(although	an	exception	is	possible	on	Unix	when	none
of	 the	 affected	 interfaces	 are	 used).	 In	 addition,	 on	 Windows,
extension	 modules	 link	 with	 a	 specific	 pythonXY.dll	 and	 need	 to	 be
recompiled	to	link	with	a	newer	one.

Since	Python	3.2,	a	subset	of	the	API	has	been	declared	to	guarantee
a	 stable	 ABI.	 Extension	 modules	 wishing	 to	 use	 this	 API	 (called
“limited	 API”)	 need	 to	 define	 Py_LIMITED_API.	 A	 number	 of
interpreter	details	 then	become	hidden	from	the	extension	module;	 in
return,	a	module	is	built	 that	works	on	any	3.x	version	(x>=2)	without
recompilation.

In	 some	 cases,	 the	 stable	 ABI	 needs	 to	 be	 extended	 with	 new
functions.	Extension	modules	wishing	to	use	these	new	APIs	need	to
set	Py_LIMITED_API	 to	 the	PY_VERSION_HEX	value	 (see	API	and
ABI	Versioning)	of	 the	minimum	Python	version	 they	want	 to	support
(e.g.	 0x03030000	 for	 Python	 3.3).	 Such	 modules	 will	 work	 on	 all
subsequent	 Python	 releases,	 but	 fail	 to	 load	 (because	 of	 missing
symbols)	on	the	older	releases.

As	 of	Python	 3.2,	 the	 set	 of	 functions	 available	 to	 the	 limited	API	 is
documented	 in	PEP	384.	 In	 the	C	API	documentation,	API	elements
that	 are	 not	 part	 of	 the	 limited	 API	 are	 marked	 as	 “Not	 part	 of	 the
limited	API.”

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

The	Very	High	Level	Layer
The	functions	in	this	chapter	will	 let	you	execute	Python	source	code
given	 in	a	 file	or	a	buffer,	but	 they	will	 not	 let	 you	 interact	 in	a	more
detailed	way	with	the	interpreter.

Several	of	these	functions	accept	a	start	symbol	from	the	grammar	as
a	 parameter.	 The	 available	 start	 symbols	 are	 Py_eval_input,
Py_file_input,	 and	 Py_single_input.	 These	 are	 described
following	the	functions	which	accept	them	as	parameters.

Note	also	that	several	of	these	functions	take	FILE*	parameters.	One
particular	 issue	which	needs	to	be	handled	carefully	 is	that	the	FILE
structure	 for	 different	 C	 libraries	 can	 be	 different	 and	 incompatible.
Under	 Windows	 (at	 least),	 it	 is	 possible	 for	 dynamically	 linked
extensions	 to	actually	use	different	 libraries,	so	care	should	be	 taken
that	 FILE*	 parameters	 are	 only	 passed	 to	 these	 functions	 if	 it	 is
certain	 that	 they	 were	 created	 by	 the	 same	 library	 that	 the	 Python
runtime	is	using.

int	Py_Main(int	argc,	wchar_t	**argv)
The	 main	 program	 for	 the	 standard	 interpreter.	 This	 is	 made
available	 for	 programs	 which	 embed	 Python.	 The	 argc	 and	 argv
parameters	should	be	prepared	exactly	as	those	which	are	passed
to	a	C	program’s	main()	function	(converted	to	wchar_t	according
to	 the	user’s	 locale).	 It	 is	 important	 to	 note	 that	 the	argument	 list
may	be	modified	(but	the	contents	of	the	strings	pointed	to	by	the
argument	 list	are	not).	The	return	value	will	be	0	 if	 the	 interpreter
exits	normally	(i.e.,	without	an	exception),	1	 if	 the	interpreter	exits
due	to	an	exception,	or	2	if	the	parameter	list	does	not	represent	a

valid	Python	command	line.

Note	 that	 if	 an	 otherwise	 unhandled	 SystemExit	 is	 raised,	 this
function	 will	 not	 return	 1,	 but	 exit	 the	 process,	 as	 long	 as
Py_InspectFlag	is	not	set.

int	PyRun_AnyFile(FILE	*fp,	const	char	*filename)
This	 is	 a	 simplified	 interface	 to	 PyRun_AnyFileExFlags()
below,	leaving	closeit	set	to	0	and	flags	set	to	NULL.

int	PyRun_AnyFileFlags(FILE	*fp,	const	char	*filename,
PyCompilerFlags	*flags)

This	 is	 a	 simplified	 interface	 to	 PyRun_AnyFileExFlags()
below,	leaving	the	closeit	argument	set	to	0.

int	PyRun_AnyFileEx(FILE	*fp,	const	char	*filename,	int	closeit)
This	 is	 a	 simplified	 interface	 to	 PyRun_AnyFileExFlags()
below,	leaving	the	flags	argument	set	to	NULL.

int	PyRun_AnyFileExFlags(FILE	*fp,	const	char	*filename,
int	closeit,	PyCompilerFlags	*flags)

If	fp	refers	to	a	file	associated	with	an	interactive	device	(console	or
terminal	 input	 or	 Unix	 pseudo-terminal),	 return	 the	 value	 of
PyRun_InteractiveLoop(),	 otherwise	 return	 the	 result	 of
PyRun_SimpleFile().	 filename	 is	decoded	 from	 the	 filesystem
encoding	 (sys.getfilesystemencoding()).	 If	 filename	 is
NULL,	this	function	uses	"???"	as	the	filename.

int	PyRun_SimpleString(const	char	*command)
This	 is	 a	 simplified	 interface	 to	 PyRun_SimpleStringFlags()
below,	leaving	the	PyCompilerFlags*	argument	set	to	NULL.

int	PyRun_SimpleStringFlags(const	char	*command,
PyCompilerFlags	*flags)

Executes	the	Python	source	code	from	command	in	the	__main__
module	 according	 to	 the	 flags	 argument.	 If	 __main__	 does	 not
already	 exist,	 it	 is	 created.	 Returns	 0	 on	 success	 or	 -1	 if	 an
exception	was	raised.	If	there	was	an	error,	there	is	no	way	to	get
the	exception	information.	For	the	meaning	of	flags,	see	below.

Note	 that	 if	 an	 otherwise	 unhandled	 SystemExit	 is	 raised,	 this
function	 will	 not	 return	 -1,	 but	 exit	 the	 process,	 as	 long	 as
Py_InspectFlag	is	not	set.

int	PyRun_SimpleFile(FILE	*fp,	const	char	*filename)
This	 is	 a	 simplified	 interface	 to	 PyRun_SimpleFileExFlags()
below,	leaving	closeit	set	to	0	and	flags	set	to	NULL.

int	PyRun_SimpleFileEx(FILE	*fp,	const	char	*filename,
int	closeit)

This	 is	 a	 simplified	 interface	 to	 PyRun_SimpleFileExFlags()
below,	leaving	flags	set	to	NULL.

int	PyRun_SimpleFileExFlags(FILE	*fp,	const	char	*filename,
int	closeit,	PyCompilerFlags	*flags)

Similar	 to	 PyRun_SimpleStringFlags(),	 but	 the	 Python
source	 code	 is	 read	 from	 fp	 instead	 of	 an	 in-memory	 string.
filename	 should	 be	 the	 name	 of	 the	 file,	 it	 is	 decoded	 from	 the
filesystem	 encoding	 (sys.getfilesystemencoding()).	 If
closeit	 is	 true,	 the	 file	 is	 closed	before	PyRun_SimpleFileExFlags
returns.

int	PyRun_InteractiveOne(FILE	*fp,	const	char	*filename)
This	 is	 a	 simplified	 interface	 to

PyRun_InteractiveOneFlags()	 below,	 leaving	 flags	 set	 to
NULL.

int	PyRun_InteractiveOneFlags(FILE	*fp,	const
char	*filename,	PyCompilerFlags	*flags)

Read	and	execute	a	single	statement	from	a	file	associated	with	an
interactive	device	according	to	the	flags	argument.	The	user	will	be
prompted	using	sys.ps1	and	sys.ps2.	filename	is	decoded	from
the	filesystem	encoding	(sys.getfilesystemencoding()).

Returns	0	when	 the	 input	was	executed	 successfully,	 -1	 if	 there
was	an	exception,	or	an	error	code	 from	 the	errcode.h	 include
file	distributed	as	part	of	Python	 if	 there	was	a	parse	error.	 (Note
that	 errcode.h	 is	 not	 included	 by	 Python.h,	 so	 must	 be
included	specifically	if	needed.)

int	PyRun_InteractiveLoop(FILE	*fp,	const	char	*filename)
This	 is	 a	 simplified	 interface	 to
PyRun_InteractiveLoopFlags()	 below,	 leaving	 flags	 set	 to
NULL.

int	PyRun_InteractiveLoopFlags(FILE	*fp,	const
char	*filename,	PyCompilerFlags	*flags)

Read	 and	 execute	 statements	 from	 a	 file	 associated	 with	 an
interactive	device	until	EOF	is	reached.	The	user	will	be	prompted
using	 sys.ps1	 and	 sys.ps2.	 filename	 is	 decoded	 from	 the
filesystem	 encoding	 (sys.getfilesystemencoding()).
Returns	0	at	EOF.

int	(*PyOS_InputHook)(void)
Can	 be	 set	 to	 point	 to	 a	 function	 with	 the	 prototype	 int
func(void).	The	function	will	be	called	when	Python’s	interpreter

prompt	 is	 about	 to	 become	 idle	 and	 wait	 for	 user	 input	 from	 the
terminal.	The	return	value	 is	 ignored.	Overriding	this	hook	can	be
used	to	integrate	the	interpreter’s	prompt	with	other	event	loops,	as
done	in	the	Modules/_tkinter.c	in	the	Python	source	code.

char*	(*PyOS_ReadlineFunctionPointer)(FILE	*,	FILE	*,
const	char	*)

Can	 be	 set	 to	 point	 to	 a	 function	 with	 the	 prototype	 char
*func(FILE	 *stdin,	 FILE	 *stdout,	 char	 *prompt),
overriding	the	default	function	used	to	read	a	single	line	of	input	at
the	 interpreter’s	 prompt.	 The	 function	 is	 expected	 to	 output	 the
string	prompt	if	it’s	not	NULL,	and	then	read	a	line	of	input	from	the
provided	 standard	 input	 file,	 returning	 the	 resulting	 string.	 For
example,	 The	 readline	 module	 sets	 this	 hook	 to	 provide	 line-
editing	and	tab-completion	features.

The	result	must	be	a	string	allocated	by	PyMem_RawMalloc()	or
PyMem_RawRealloc(),	or	NULL	if	an	error	occurred.

Changed	 in	 version	 3.4:	 The	 result	 must	 be	 allocated	 by
PyMem_RawMalloc()	 or	 PyMem_RawRealloc(),	 instead	 of
being	allocated	by	PyMem_Malloc()	or	PyMem_Realloc().

struct	_node*	PyParser_SimpleParseString(const	char	*str,
int	start)

This	 is	 a	 simplified	 interface	 to
PyParser_SimpleParseStringFlagsFilename()	 below,
leaving	filename	set	to	NULL	and	flags	set	to	0.

struct	_node*	PyParser_SimpleParseStringFlags(const
char	*str,	int	start,	int	flags)

This	 is	 a	 simplified	 interface	 to

PyParser_SimpleParseStringFlagsFilename()	 below,
leaving	filename	set	to	NULL.

struct	_node*
PyParser_SimpleParseStringFlagsFilename(const
char	*str,	const	char	*filename,	int	start,	int	flags)

Parse	 Python	 source	 code	 from	 str	 using	 the	 start	 token	 start
according	to	the	flags	argument.	The	result	can	be	used	to	create	a
code	object	which	 can	 be	 evaluated	 efficiently.	 This	 is	 useful	 if	 a
code	fragment	must	be	evaluated	many	times.	filename	is	decoded
from	 the	 filesystem	 encoding
(sys.getfilesystemencoding()).

struct	_node*	PyParser_SimpleParseFile(FILE	*fp,	const
char	*filename,	int	start)

This	 is	 a	 simplified	 interface	 to
PyParser_SimpleParseFileFlags()	 below,	 leaving	 flags	 set
to	0

struct	_node*	PyParser_SimpleParseFileFlags(FILE	*fp,
const	char	*filename,	int	start,	int	flags)

Similar	 to	 PyParser_SimpleParseStringFlagsFilename(),
but	 the	 Python	 source	 code	 is	 read	 from	 fp	 instead	 of	 an	 in-
memory	string.

PyObject*	PyRun_String(const	char	*str,	int	start,
PyObject	*globals,	PyObject	*locals)

Return	value:	New	reference.
This	 is	 a	 simplified	 interface	 to	 PyRun_StringFlags()	 below,
leaving	flags	set	to	NULL.

PyObject*	PyRun_StringFlags(const	char	*str,	int	start,

PyObject	*globals,	PyObject	*locals,	PyCompilerFlags	*flags)
Return	value:	New	reference.
Execute	 Python	 source	 code	 from	 str	 in	 the	 context	 specified	 by
the	dictionaries	globals	and	locals	with	the	compiler	flags	specified
by	 flags.	The	parameter	start	specifies	 the	start	 token	 that	should
be	used	to	parse	the	source	code.

Returns	 the	 result	 of	 executing	 the	 code	 as	 a	 Python	 object,	 or
NULL	if	an	exception	was	raised.

PyObject*	PyRun_File(FILE	*fp,	const	char	*filename,	int	start,
PyObject	*globals,	PyObject	*locals)

Return	value:	New	reference.
This	 is	 a	 simplified	 interface	 to	 PyRun_FileExFlags()	 below,
leaving	closeit	set	to	0	and	flags	set	to	NULL.

PyObject*	PyRun_FileEx(FILE	*fp,	const	char	*filename,	int	start,
PyObject	*globals,	PyObject	*locals,	int	closeit)

Return	value:	New	reference.
This	 is	 a	 simplified	 interface	 to	 PyRun_FileExFlags()	 below,
leaving	flags	set	to	NULL.

PyObject*	PyRun_FileFlags(FILE	*fp,	const	char	*filename,
int	start,	PyObject	*globals,	PyObject	*locals,	PyCompilerFlags	*flags)

Return	value:	New	reference.
This	 is	 a	 simplified	 interface	 to	 PyRun_FileExFlags()	 below,
leaving	closeit	set	to	0.

PyObject*	PyRun_FileExFlags(FILE	*fp,	const	char	*filename,
int	start,	PyObject	*globals,	PyObject	*locals,	int	closeit,
PyCompilerFlags	*flags)

Return	value:	New	reference.
Similar	to	PyRun_StringFlags(),	but	the	Python	source	code	is

read	from	fp	instead	of	an	in-memory	string.	filename	should	be	the
name	 of	 the	 file,	 it	 is	 decoded	 from	 the	 filesystem	 encoding
(sys.getfilesystemencoding()).	 If	closeit	 is	 true,	 the	 file	 is
closed	before	PyRun_FileExFlags()	returns.

PyObject*	Py_CompileString(const	char	*str,	const
char	*filename,	int	start)

Return	value:	New	reference.
This	 is	 a	 simplified	 interface	 to	 Py_CompileStringFlags()
below,	leaving	flags	set	to	NULL.

PyObject*	Py_CompileStringFlags(const	char	*str,	const
char	*filename,	int	start,	PyCompilerFlags	*flags)

Return	value:	New	reference.
This	 is	 a	 simplified	 interface	 to	 Py_CompileStringExFlags()
below,	with	optimize	set	to	-1.

PyObject*	Py_CompileStringObject(const	char	*str,
PyObject	*filename,	int	start,	PyCompilerFlags	*flags,	int	optimize)

Parse	 and	 compile	 the	 Python	 source	 code	 in	 str,	 returning	 the
resulting	code	object.	The	start	token	is	given	by	start;	this	can	be
used	to	constrain	 the	code	which	can	be	compiled	and	should	be
Py_eval_input,	Py_file_input,	or	Py_single_input.	The
filename	specified	by	filename	is	used	to	construct	the	code	object
and	 may	 appear	 in	 tracebacks	 or	 SyntaxError	 exception
messages.	 This	 returns	 NULL	 if	 the	 code	 cannot	 be	 parsed	 or
compiled.

The	 integer	 optimize	 specifies	 the	 optimization	 level	 of	 the
compiler;	 a	 value	 of	 -1	 selects	 the	 optimization	 level	 of	 the
interpreter	 as	 given	 by	 -O	 options.	 Explicit	 levels	 are	 0	 (no
optimization;	 __debug__	 is	 true),	 1	 (asserts	 are	 removed,

__debug__	is	false)	or	2	(docstrings	are	removed	too).

New	in	version	3.4.

PyObject*	Py_CompileStringExFlags(const	char	*str,	const
char	*filename,	int	start,	PyCompilerFlags	*flags,	int	optimize)

Like	 Py_CompileStringExFlags(),	 but	 filename	 is	 a	 byte
string	decoded	from	the	filesystem	encoding	(os.fsdecode()).

New	in	version	3.2.

PyObject*	PyEval_EvalCode(PyObject	*co,	PyObject	*globals,
PyObject	*locals)

Return	value:	New	reference.
This	is	a	simplified	interface	to	PyEval_EvalCodeEx(),	with	just
the	code	object,	and	the	dictionaries	of	global	and	local	variables.
The	other	arguments	are	set	to	NULL.

PyObject*	PyEval_EvalCodeEx(PyObject	*co,
PyObject	*globals,	PyObject	*locals,	PyObject	**args,	int	argcount,
PyObject	**kws,	int	kwcount,	PyObject	**defs,	int	defcount,
PyObject	*closure)

Evaluate	a	precompiled	code	object,	given	a	particular	environment
for	 its	 evaluation.	 This	 environment	 consists	 of	 dictionaries	 of
global	 and	 local	 variables,	 arrays	 of	 arguments,	 keywords	 and
defaults,	and	a	closure	tuple	of	cells.

PyObject*	PyEval_EvalFrame(PyFrameObject	*f)
Evaluate	 an	 execution	 frame.	 This	 is	 a	 simplified	 interface	 to
PyEval_EvalFrameEx,	for	backward	compatibility.

PyObject*	PyEval_EvalFrameEx(PyFrameObject	*f,
int	throwflag)

This	is	the	main,	unvarnished	function	of	Python	interpretation.	It	is
literally	 2000	 lines	 long.	 The	 code	 object	 associated	 with	 the
execution	frame	f	is	executed,	interpreting	bytecode	and	executing
calls	as	needed.	The	additional	throwflag	parameter	can	mostly	be
ignored	 -	 if	 true,	 then	 it	 causes	 an	 exception	 to	 immediately	 be
thrown;	this	is	used	for	the	throw()	methods	of	generator	objects.

Changed	 in	 version	 3.4:	 This	 function	 now	 includes	 a	 debug
assertion	 to	help	ensure	 that	 it	does	not	silently	discard	an	active
exception.

int	PyEval_MergeCompilerFlags(PyCompilerFlags	*cf)
This	 function	 changes	 the	 flags	 of	 the	 current	 evaluation	 frame,
and	returns	true	on	success,	false	on	failure.

int	Py_eval_input
The	 start	 symbol	 from	 the	 Python	 grammar	 for	 isolated
expressions;	for	use	with	Py_CompileString().

int	Py_file_input
The	 start	 symbol	 from	 the	 Python	 grammar	 for	 sequences	 of
statements	 as	 read	 from	 a	 file	 or	 other	 source;	 for	 use	 with
Py_CompileString().	This	is	the	symbol	to	use	when	compiling
arbitrarily	long	Python	source	code.

int	Py_single_input
The	start	symbol	from	the	Python	grammar	for	a	single	statement;
for	use	with	Py_CompileString().	This	 is	 the	symbol	used	 for
the	interactive	interpreter	loop.

struct	PyCompilerFlags
This	 is	 the	 structure	 used	 to	 hold	 compiler	 flags.	 In	 cases	where
code	 is	only	being	compiled,	 it	 is	passed	as	int	flags,	 and	 in

cases	 where	 code	 is	 being	 executed,	 it	 is	 passed	 as
PyCompilerFlags	 *flags.	 In	 this	 case,	 from	 __future__
import	can	modify	flags.

Whenever	 PyCompilerFlags	 *flags	 is	 NULL,	 cf_flags	 is
treated	 as	 equal	 to	 0,	 and	 any	 modification	 due	 to	 from
__future__	import	is	discarded.

struct	PyCompilerFlags	{

				int	cf_flags;

}

int	CO_FUTURE_DIVISION
This	 bit	 can	 be	 set	 in	 flags	 to	 cause	 division	 operator	 /	 to	 be
interpreted	as	“true	division”	according	to	PEP	238.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-0238
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Reference	Counting
The	macros	in	this	section	are	used	for	managing	reference	counts	of
Python	objects.

void	Py_INCREF(PyObject	*o)
Increment	the	reference	count	for	object	o.	The	object	must	not	be
NULL;	if	you	aren’t	sure	that	it	isn’t	NULL,	use	Py_XINCREF().

void	Py_XINCREF(PyObject	*o)
Increment	 the	 reference	 count	 for	 object	 o.	 The	 object	 may	 be
NULL,	in	which	case	the	macro	has	no	effect.

void	Py_DECREF(PyObject	*o)
Decrement	the	reference	count	for	object	o.	The	object	must	not	be
NULL;	if	you	aren’t	sure	that	it	isn’t	NULL,	use	Py_XDECREF().	If
the	 reference	count	 reaches	zero,	 the	object’s	 type’s	deallocation
function	(which	must	not	be	NULL)	is	invoked.

Warning: 	The	deallocation	function	can	cause	arbitrary	Python
code	 to	 be	 invoked	 (e.g.	 when	 a	 class	 instance	 with	 a
__del__()	 method	 is	 deallocated).	 While	 exceptions	 in	 such
code	are	not	propagated,	 the	executed	code	has	free	access	to
all	 Python	 global	 variables.	 This	 means	 that	 any	 object	 that	 is
reachable	 from	a	global	variable	should	be	 in	a	consistent	state
before	Py_DECREF()	is	invoked.	For	example,	code	to	delete	an
object	from	a	list	should	copy	a	reference	to	the	deleted	object	in
a	temporary	variable,	update	the	list	data	structure,	and	then	call
Py_DECREF()	for	the	temporary	variable.

void	Py_XDECREF(PyObject	*o)
Decrement	 the	 reference	 count	 for	 object	 o.	 The	 object	 may	 be
NULL,	in	which	case	the	macro	has	no	effect;	otherwise	the	effect
is	the	same	as	for	Py_DECREF(),	and	the	same	warning	applies.

void	Py_CLEAR(PyObject	*o)
Decrement	 the	 reference	 count	 for	 object	 o.	 The	 object	 may	 be
NULL,	in	which	case	the	macro	has	no	effect;	otherwise	the	effect
is	the	same	as	for	Py_DECREF(),	except	that	the	argument	is	also
set	 to	NULL.	The	warning	 for	Py_DECREF()	 does	not	 apply	with
respect	 to	 the	object	passed	because	 the	macro	carefully	uses	a
temporary	 variable	 and	 sets	 the	 argument	 to	 NULL	 before
decrementing	its	reference	count.

It	 is	 a	 good	 idea	 to	 use	 this	 macro	 whenever	 decrementing	 the
value	 of	 a	 variable	 that	 might	 be	 traversed	 during	 garbage
collection.

The	following	functions	are	for	runtime	dynamic	embedding	of	Python:
Py_IncRef(PyObject	 *o),	 Py_DecRef(PyObject	 *o).	 They
are	 simply	 exported	 function	 versions	 of	 Py_XINCREF()	 and
Py_XDECREF(),	respectively.

The	 following	 functions	 or	 macros	 are	 only	 for	 use	 within	 the
interpreter	 core:	 _Py_Dealloc(),	 _Py_ForgetReference(),
_Py_NewReference(),	 as	 well	 as	 the	 global	 variable
_Py_RefTotal.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Exception	Handling
The	 functions	 described	 in	 this	 chapter	will	 let	 you	 handle	 and	 raise
Python	exceptions.	It	is	important	to	understand	some	of	the	basics	of
Python	 exception	 handling.	 It	 works	 somewhat	 like	 the	 Unix	 errno
variable:	 there	 is	 a	 global	 indicator	 (per	 thread)	 of	 the	 last	 error	 that
occurred.	Most	 functions	don’t	clear	 this	on	success,	but	will	set	 it	 to
indicate	the	cause	of	the	error	on	failure.	Most	functions	also	return	an
error	indicator,	usually	NULL	 if	 they	are	supposed	to	return	a	pointer,
or	-1	 if	 they	 return	 an	 integer	 (exception:	 the	 PyArg_*()	 functions
return	1	for	success	and	0	for	failure).

When	 a	 function	 must	 fail	 because	 some	 function	 it	 called	 failed,	 it
generally	doesn’t	set	 the	error	 indicator;	 the	 function	 it	called	already
set	 it.	 It	 is	 responsible	 for	 either	 handling	 the	 error	 and	 clearing	 the
exception	or	 returning	after	cleaning	up	any	 resources	 it	holds	 (such
as	 object	 references	 or	 memory	 allocations);	 it	 should	 not	 continue
normally	if	it	is	not	prepared	to	handle	the	error.	If	returning	due	to	an
error,	it	is	important	to	indicate	to	the	caller	that	an	error	has	been	set.
If	the	error	is	not	handled	or	carefully	propagated,	additional	calls	into
the	 Python/C	 API	 may	 not	 behave	 as	 intended	 and	 may	 fail	 in
mysterious	ways.

The	error	 indicator	consists	of	 three	Python	objects	corresponding	 to
the	result	of	sys.exc_info().	API	functions	exist	to	interact	with	the
error	indicator	in	various	ways.	There	is	a	separate	error	 indicator	for
each	thread.

void	PyErr_PrintEx(int	set_sys_last_vars)
Print	 a	 standard	 traceback	 to	 sys.stderr	 and	 clear	 the	 error
indicator.	 Call	 this	 function	 only	 when	 the	 error	 indicator	 is	 set.

(Otherwise	it	will	cause	a	fatal	error!)

If	 set_sys_last_vars	 is	 nonzero,	 the	 variables	 sys.last_type,
sys.last_value	and	sys.last_traceback	will	be	set	 to	 the
type,	value	and	traceback	of	the	printed	exception,	respectively.

void	PyErr_Print()
Alias	for	PyErr_PrintEx(1).

PyObject*	PyErr_Occurred()
Return	value:	Borrowed	reference.
Test	whether	 the	error	 indicator	 is	set.	 If	 set,	 return	 the	exception
type	(the	first	argument	to	the	last	call	to	one	of	the	PyErr_Set*
()	 functions	 or	 to	 PyErr_Restore()).	 If	 not	 set,	 return	NULL.
You	do	not	own	a	reference	to	the	return	value,	so	you	do	not	need
to	Py_DECREF()	it.

Note: 	Do	not	compare	the	return	value	to	a	specific	exception;
use	PyErr_ExceptionMatches()	instead,	shown	below.	(The
comparison	 could	 easily	 fail	 since	 the	 exception	 may	 be	 an
instance	instead	of	a	class,	in	the	case	of	a	class	exception,	or	it
may	the	a	subclass	of	the	expected	exception.)

int	PyErr_ExceptionMatches(PyObject	*exc)
Equivalent	 to
PyErr_GivenExceptionMatches(PyErr_Occurred(),

exc).	This	should	only	be	called	when	an	exception	is	actually	set;
a	 memory	 access	 violation	 will	 occur	 if	 no	 exception	 has	 been
raised.

int	PyErr_GivenExceptionMatches(PyObject	*given,
PyObject	*exc)

Return	true	if	the	given	exception	matches	the	exception	in	exc.	 If
exc	 is	 a	 class	 object,	 this	 also	 returns	 true	 when	 given	 is	 an
instance	of	a	subclass.	If	exc	is	a	tuple,	all	exceptions	in	the	tuple
(and	recursively	in	subtuples)	are	searched	for	a	match.

void	PyErr_NormalizeException(PyObject**exc,
PyObject**val,	PyObject**tb)

Under	 certain	 circumstances,	 the	 values	 returned	 by
PyErr_Fetch()	 below	 can	 be	 “unnormalized”,	 meaning	 that
*exc	 is	 a	 class	 object	 but	 *val	 is	 not	 an	 instance	 of	 the	 same
class.	 This	 function	 can	 be	 used	 to	 instantiate	 the	 class	 in	 that
case.	 If	 the	values	are	already	normalized,	nothing	happens.	The
delayed	normalization	is	implemented	to	improve	performance.

Note: 	This	function	does	not	implicitly	set	the	__traceback__
attribute	 on	 the	 exception	 value.	 If	 setting	 the	 traceback
appropriately	 is	 desired,	 the	 following	 additional	 snippet	 is
needed:

if	(tb	!=	NULL)	{

		PyException_SetTraceback(val,	tb);

}

void	PyErr_Clear()
Clear	the	error	indicator.	If	the	error	indicator	is	not	set,	there	is	no
effect.

void	PyErr_Fetch(PyObject	**ptype,	PyObject	**pvalue,
PyObject	**ptraceback)

Retrieve	 the	 error	 indicator	 into	 three	 variables	whose	 addresses
are	passed.	If	the	error	indicator	is	not	set,	set	all	three	variables	to
NULL.	If	it	is	set,	it	will	be	cleared	and	you	own	a	reference	to	each

object	 retrieved.	 The	 value	 and	 traceback	 object	 may	 be	 NULL
even	when	the	type	object	is	not.

Note: 	This	function	is	normally	only	used	by	code	that	needs	to
handle	exceptions	or	by	code	that	needs	to	save	and	restore	the
error	indicator	temporarily.

void	PyErr_Restore(PyObject	*type,	PyObject	*value,
PyObject	*traceback)

Set	the	error	indicator	from	the	three	objects.	If	the	error	indicator	is
already	 set,	 it	 is	 cleared	 first.	 If	 the	 objects	 are	NULL,	 the	 error
indicator	is	cleared.	Do	not	pass	a	NULL	type	and	non-NULL	value
or	traceback.	The	exception	type	should	be	a	class.	Do	not	pass	an
invalid	 exception	 type	 or	 value.	 (Violating	 these	 rules	 will	 cause
subtle	 problems	 later.)	 This	 call	 takes	 away	 a	 reference	 to	 each
object:	you	must	own	a	reference	to	each	object	before	the	call	and
after	 the	 call	 you	 no	 longer	 own	 these	 references.	 (If	 you	 don’t
understand	this,	don’t	use	this	function.	I	warned	you.)

Note: 	This	function	is	normally	only	used	by	code	that	needs	to
save	 and	 restore	 the	 error	 indicator	 temporarily;	 use
PyErr_Fetch()	to	save	the	current	exception	state.

void	PyErr_GetExcInfo(PyObject	**ptype,	PyObject	**pvalue,
PyObject	**ptraceback)

Retrieve	 the	 exception	 info,	 as	 known	 from	 sys.exc_info().
This	 refers	 to	 an	 exception	 that	 was	 already	 caught,	 not	 to	 an
exception	 that	was	 freshly	 raised.	Returns	new	references	 for	 the
three	 objects,	 any	 of	 which	 may	 be	NULL.	Does	 not	 modify	 the
exception	info	state.

Note: 	This	 function	 is	not	normally	used	by	code	that	wants	 to
handle	 exceptions.	Rather,	 it	 can	 be	 used	when	 code	needs	 to
save	 and	 restore	 the	 exception	 state	 temporarily.	 Use
PyErr_SetExcInfo()	to	restore	or	clear	the	exception	state.

New	in	version	3.3.

void	PyErr_SetExcInfo(PyObject	*type,	PyObject	*value,
PyObject	*traceback)

Set	 the	 exception	 info,	 as	 known	 from	 sys.exc_info().	 This
refers	to	an	exception	that	was	already	caught,	not	to	an	exception
that	was	 freshly	 raised.	This	 function	 steals	 the	 references	of	 the
arguments.	 To	 clear	 the	 exception	 state,	 pass	NULL	 for	 all	 three
arguments.	 For	 general	 rules	 about	 the	 three	 arguments,	 see
PyErr_Restore().

Note: 	This	 function	 is	not	normally	used	by	code	that	wants	 to
handle	 exceptions.	Rather,	 it	 can	 be	 used	when	 code	needs	 to
save	 and	 restore	 the	 exception	 state	 temporarily.	 Use
PyErr_GetExcInfo()	to	read	the	exception	state.

New	in	version	3.3.

void	PyErr_SetString(PyObject	*type,	const	char	*message)
This	 is	 the	most	 common	way	 to	 set	 the	error	 indicator.	 The	 first
argument	 specifies	 the	 exception	 type;	 it	 is	 normally	 one	 of	 the
standard	 exceptions,	 e.g.	 PyExc_RuntimeError.	 You	 need	 not
increment	 its	 reference	 count.	 The	 second	 argument	 is	 an	 error
message;	it	is	decoded	from	'utf-8‘.

void	PyErr_SetObject(PyObject	*type,	PyObject	*value)
This	 function	 is	 similar	 to	 PyErr_SetString()	 but	 lets	 you

specify	an	arbitrary	Python	object	for	the	“value”	of	the	exception.

PyObject*	PyErr_Format(PyObject	*exception,	const
char	*format,	...)

Return	value:	Always	NULL.
This	 function	sets	 the	error	 indicator	and	returns	NULL.	exception
should	 be	 a	Python	 exception	 class.	 The	 format	 and	 subsequent
parameters	 help	 format	 the	 error	 message;	 they	 have	 the	 same
meaning	and	values	as	in	PyUnicode_FromFormat().	format	 is
an	ASCII-encoded	string.

void	PyErr_SetNone(PyObject	*type)
This	is	a	shorthand	for	PyErr_SetObject(type,	Py_None).

int	PyErr_BadArgument()
This	is	a	shorthand	for	PyErr_SetString(PyExc_TypeError,
message),	where	message	indicates	that	a	built-in	operation	was
invoked	with	an	illegal	argument.	It	is	mostly	for	internal	use.

PyObject*	PyErr_NoMemory()
Return	value:	Always	NULL.
This	is	a	shorthand	for	PyErr_SetNone(PyExc_MemoryError);
it	returns	NULL	so	an	object	allocation	function	can	write	return
PyErr_NoMemory();	when	it	runs	out	of	memory.

PyObject*	PyErr_SetFromErrno(PyObject	*type)
Return	value:	Always	NULL.
This	 is	 a	 convenience	 function	 to	 raise	 an	 exception	 when	 a	 C
library	 function	 has	 returned	 an	 error	 and	 set	 the	 C	 variable
errno.	 It	 constructs	a	 tuple	object	whose	 first	 item	 is	 the	 integer
errno	 value	 and	 whose	 second	 item	 is	 the	 corresponding	 error
message	 (gotten	 from	 strerror()),	 and	 then	 calls

PyErr_SetObject(type,	object).	On	Unix,	when	the	errno
value	 is	 EINTR,	 indicating	 an	 interrupted	 system	 call,	 this	 calls
PyErr_CheckSignals(),	 and	 if	 that	 set	 the	 error	 indicator,
leaves	 it	 set	 to	 that.	 The	 function	 always	 returns	 NULL,	 so	 a
wrapper	 function	 around	 a	 system	 call	 can	 write	 return

PyErr_SetFromErrno(type);	when	the	system	call	returns	an
error.

PyObject*
PyErr_SetFromErrnoWithFilenameObject(PyObject	*type
PyObject	*filenameObject)

Similar	 to	PyErr_SetFromErrno(),	with	 the	additional	behavior
that	if	filenameObject	is	not	NULL,	it	is	passed	to	the	constructor	of
type	 as	 a	 third	 parameter.	 In	 the	 case	 of	 exceptions	 such	 as
IOError	 and	 OSError,	 this	 is	 used	 to	 define	 the	 filename
attribute	of	the	exception	instance.

PyObject*
PyErr_SetFromErrnoWithFilenameObjects(PyObject	*type
PyObject	*filenameObject,	PyObject	*filenameObject2)

Similar	 to	 PyErr_SetFromErrnoWithFilenameObject(),	 but
takes	a	second	filename	object,	 for	raising	errors	when	a	function
that	takes	two	filenames	fails.

New	in	version	3.4.

PyObject*
PyErr_SetFromErrnoWithFilename(PyObject	*type,	const
char	*filename)

Return	value:	Always	NULL.
Similar	 to	 PyErr_SetFromErrnoWithFilenameObject(),	 but
the	 filename	 is	given	as	a	C	string.	 filename	 is	decoded	 from	 the

filesystem	encoding	(os.fsdecode()).

PyObject*	PyErr_SetFromWindowsErr(int	ierr)
Return	value:	Always	NULL.
This	 is	 a	 convenience	 function	 to	 raise	 WindowsError.	 If	 called
with	 ierr	 of	 0,	 the	 error	 code	 returned	 by	 a	 call	 to
GetLastError()	 is	 used	 instead.	 It	 calls	 the	 Win32	 function
FormatMessage()	 to	 retrieve	 the	Windows	 description	 of	 error
code	given	by	ierr	or	GetLastError(),	then	it	constructs	a	tuple
object	whose	first	 item	is	the	 ierr	value	and	whose	second	item	is
the	 corresponding	 error	 message	 (gotten	 from
FormatMessage()),	 and	 then	 calls
PyErr_SetObject(PyExc_WindowsError,	 object).	 This
function	always	returns	NULL.	Availability:	Windows.

PyObject*	PyErr_SetExcFromWindowsErr(PyObject	*type,
int	ierr)

Return	value:	Always	NULL.
Similar	 to	 PyErr_SetFromWindowsErr(),	 with	 an	 additional
parameter	 specifying	 the	exception	 type	 to	be	 raised.	Availability:
Windows.

PyObject*
PyErr_SetFromWindowsErrWithFilename(int	ierr,	const
char	*filename)

Return	value:	Always	NULL.
Similar	 to
PyErr_SetFromWindowsErrWithFilenameObject(),	but	 the
filename	 is	 given	 as	 a	 C	 string.	 filename	 is	 decoded	 from	 the
filesystem	encoding	(os.fsdecode()).	Availability:	Windows.

PyObject*

PyErr_SetExcFromWindowsErrWithFilenameObject(PyObject
int	ierr,	PyObject	*filename)

Similar	 to
PyErr_SetFromWindowsErrWithFilenameObject(),	with	an
additional	 parameter	 specifying	 the	 exception	 type	 to	 be	 raised.
Availability:	Windows.

PyObject*
PyErr_SetExcFromWindowsErrWithFilenameObjects(
int	ierr,	PyObject	*filename,	PyObject	*filename2)

Similar	 to
PyErr_SetExcFromWindowsErrWithFilenameObject(),	 but
accepts	a	second	filename	object.	Availability:	Windows.

New	in	version	3.4.

PyObject*
PyErr_SetExcFromWindowsErrWithFilename(PyObject	*type
int	ierr,	const	char	*filename)

Return	value:	Always	NULL.
Similar	 to	 PyErr_SetFromWindowsErrWithFilename(),	 with
an	additional	parameter	specifying	the	exception	type	to	be	raised.
Availability:	Windows.

PyObject*	PyErr_SetImportError(PyObject	*msg,
PyObject	*name,	PyObject	*path)

This	is	a	convenience	function	to	raise	ImportError.	msg	will	be
set	 as	 the	 exception’s	 message	 string.	 name	 and	 path,	 both	 of
which	can	be	NULL,	will	be	set	as	the	ImportError‘s	 respective
name	and	path	attributes.

New	in	version	3.3.

void	PyErr_SyntaxLocationObject(PyObject	*filename,
int	lineno,	int	col_offset)

Set	file,	line,	and	offset	information	for	the	current	exception.	If	the
current	 exception	 is	 not	 a	 SyntaxError,	 then	 it	 sets	 additional
attributes,	which	make	 the	exception	printing	subsystem	 think	 the
exception	is	a	SyntaxError.

New	in	version	3.4.

void	PyErr_SyntaxLocationEx(char	*filename,	int	lineno,
int	col_offset)

Like	PyErr_SyntaxLocationObject(),	but	 filename	 is	 a	byte
string	decoded	from	the	filesystem	encoding	(os.fsdecode()).

New	in	version	3.2.

void	PyErr_SyntaxLocation(char	*filename,	int	lineno)
Like	PyErr_SyntaxLocationEx(),	but	the	col_offset	parameter
is	omitted.

void	PyErr_BadInternalCall()
This	 is	 a	 shorthand	 for
PyErr_SetString(PyExc_SystemError,	 message),	 where
message	 indicates	that	an	internal	operation	(e.g.	a	Python/C	API
function)	 was	 invoked	 with	 an	 illegal	 argument.	 It	 is	 mostly	 for
internal	use.

int	PyErr_WarnEx(PyObject	*category,	char	*message,
int	stack_level)

Issue	 a	 warning	 message.	 The	 category	 argument	 is	 a	 warning
category	(see	below)	or	NULL;	the	message	argument	is	an	UTF-8
encoded	string.	stack_level	is	a	positive	number	giving	a	number	of

stack	 frames;	 the	 warning	 will	 be	 issued	 from	 the	 currently
executing	line	of	code	in	that	stack	frame.	A	stack_level	of	1	is	the
function	 calling	 PyErr_WarnEx(),	 2	 is	 the	 function	 above	 that,
and	so	forth.

This	 function	 normally	 prints	 a	 warning	 message	 to	 sys.stderr;
however,	 it	 is	 also	 possible	 that	 the	 user	 has	 specified	 that
warnings	are	to	be	turned	into	errors,	and	in	that	case	this	will	raise
an	 exception.	 It	 is	 also	 possible	 that	 the	 function	 raises	 an
exception	because	of	 a	 problem	with	 the	warning	machinery	 (the
implementation	 imports	 the	 warnings	 module	 to	 do	 the	 heavy
lifting).	The	return	value	 is	0	 if	no	exception	 is	raised,	or	-1	 if	an
exception	 is	 raised.	 (It	 is	 not	 possible	 to	 determine	 whether	 a
warning	message	is	actually	printed,	nor	what	the	reason	is	for	the
exception;	 this	 is	 intentional.)	 If	 an	 exception	 is	 raised,	 the	 caller
should	 do	 its	 normal	 exception	 handling	 (for	 example,
Py_DECREF()	owned	references	and	return	an	error	value).

Warning	 categories	must	 be	 subclasses	 of	 Warning;	 the	 default
warning	 category	 is	 RuntimeWarning.	 The	 standard	 Python
warning	categories	are	available	as	global	variables	whose	names
are	PyExc_	 followed	by	the	Python	exception	name.	These	have
the	type	PyObject*;	 they	are	all	 class	objects.	Their	names	are
PyExc_Warning,	 PyExc_UserWarning,
PyExc_UnicodeWarning,	 PyExc_DeprecationWarning,
PyExc_SyntaxWarning,	 PyExc_RuntimeWarning,	 and
PyExc_FutureWarning.	 PyExc_Warning	 is	 a	 subclass	 of
PyExc_Exception;	 the	other	warning	categories	are	subclasses
of	PyExc_Warning.

For	 information	 about	warning	 control,	 see	 the	 documentation	 for

the	 warnings	 module	 and	 the	 -W	 option	 in	 the	 command	 line
documentation.	There	is	no	C	API	for	warning	control.

int	PyErr_WarnExplicitObject(PyObject	*category,
PyObject	*message,	PyObject	*filename,	int	lineno,	PyObject	*module,
PyObject	*registry)

Issue	 a	 warning	 message	 with	 explicit	 control	 over	 all	 warning
attributes.	 This	 is	 a	 straightforward	 wrapper	 around	 the	 Python
function	 warnings.warn_explicit(),	 see	 there	 for	 more
information.	 The	module	 and	 registry	 arguments	 may	 be	 set	 to
NULL	to	get	the	default	effect	described	there.

New	in	version	3.4.

int	PyErr_WarnExplicit(PyObject	*category,	const
char	*message,	const	char	*filename,	int	lineno,	const	char	*module,
PyObject	*registry)

Similar	to	PyErr_WarnExplicitObject()	except	that	message
and	module	are	UTF-8	encoded	strings,	and	 filename	 is	decoded
from	the	filesystem	encoding	(os.fsdecode()).

int	PyErr_WarnFormat(PyObject	*category,
Py_ssize_t	stack_level,	const	char	*format,	...)

Function	 similar	 to	 PyErr_WarnEx(),	 but	 use
PyUnicode_FromFormat()	 to	 format	 the	 warning	 message.
format	is	an	ASCII-encoded	string.

New	in	version	3.2.

int	PyErr_CheckSignals()
This	 function	 interacts	 with	 Python’s	 signal	 handling.	 It	 checks
whether	a	signal	has	been	sent	to	the	processes	and	if	so,	invokes
the	 corresponding	 signal	 handler.	 If	 the	 signal	 module	 is

supported,	this	can	invoke	a	signal	handler	written	in	Python.	In	all
cases,	 the	 default	 effect	 for	 SIGINT	 is	 to	 raise	 the
KeyboardInterrupt	 exception.	 If	 an	 exception	 is	 raised	 the
error	 indicator	 is	 set	 and	 the	 function	 returns	 -1;	 otherwise	 the
function	returns	0.	The	error	indicator	may	or	may	not	be	cleared	if
it	was	previously	set.

void	PyErr_SetInterrupt()
This	 function	 simulates	 the	 effect	 of	 a	 SIGINT	 signal	 arriving	—
the	 next	 time	 PyErr_CheckSignals()	 is	 called,
KeyboardInterrupt	 will	 be	 raised.	 It	 may	 be	 called	 without
holding	the	interpreter	lock.

int	PySignal_SetWakeupFd(int	fd)
This	utility	function	specifies	a	file	descriptor	to	which	a	'\0'	byte
will	be	written	whenever	a	signal	is	received.	It	returns	the	previous
such	file	descriptor.	The	value	-1	disables	 the	 feature;	 this	 is	 the
initial	 state.	 This	 is	 equivalent	 to	 signal.set_wakeup_fd()	 in
Python,	 but	 without	 any	 error	 checking.	 fd	 should	 be	 a	 valid	 file
descriptor.	The	function	should	only	be	called	from	the	main	thread.

PyObject*	PyErr_NewException(char	*name,	PyObject	*base,
PyObject	*dict)

Return	value:	New	reference.
This	utility	function	creates	and	returns	a	new	exception	class.	The
name	argument	must	be	the	name	of	the	new	exception,	a	C	string
of	 the	 form	 module.classname.	 The	 base	 and	 dict	 arguments
are	 normally	 NULL.	 This	 creates	 a	 class	 object	 derived	 from
Exception	(accessible	in	C	as	PyExc_Exception).

The	__module__	attribute	of	 the	new	class	 is	set	 to	the	first	part
(up	 to	 the	 last	dot)	of	 the	name	argument,	and	 the	class	name	 is

set	 to	the	 last	part	(after	 the	 last	dot).	The	base	argument	can	be
used	 to	 specify	 alternate	 base	 classes;	 it	 can	 either	 be	 only	 one
class	 or	 a	 tuple	 of	 classes.	 The	 dict	 argument	 can	 be	 used	 to
specify	a	dictionary	of	class	variables	and	methods.

PyObject*	PyErr_NewExceptionWithDoc(char	*name,
char	*doc,	PyObject	*base,	PyObject	*dict)

Return	value:	New	reference.
Same	 as	 PyErr_NewException(),	 except	 that	 the	 new
exception	 class	 can	 easily	 be	 given	 a	 docstring:	 If	 doc	 is	 non-
NULL,	it	will	be	used	as	the	docstring	for	the	exception	class.

New	in	version	3.2.

void	PyErr_WriteUnraisable(PyObject	*obj)
This	 utility	 function	 prints	 a	 warning	 message	 to	 sys.stderr
when	 an	 exception	 has	 been	 set	 but	 it	 is	 impossible	 for	 the
interpreter	 to	actually	 raise	 the	exception.	 It	 is	used,	 for	example,
when	an	exception	occurs	in	an	__del__()	method.

The	function	is	called	with	a	single	argument	obj	that	identifies	the
context	in	which	the	unraisable	exception	occurred.	The	repr	of	obj
will	be	printed	in	the	warning	message.

Exception	Objects

PyObject*	PyException_GetTraceback(PyObject	*ex)
Return	value:	New	reference.
Return	 the	 traceback	 associated	 with	 the	 exception	 as	 a	 new
reference,	as	accessible	from	Python	through	__traceback__.	If
there	is	no	traceback	associated,	this	returns	NULL.

int	PyException_SetTraceback(PyObject	*ex,	PyObject	*tb)
Set	 the	 traceback	 associated	 with	 the	 exception	 to	 tb.	 Use
Py_None	to	clear	it.

PyObject*	PyException_GetContext(PyObject	*ex)
Return	 the	 context	 (another	 exception	 instance	 during	 whose
handling	ex	 was	 raised)	 associated	 with	 the	 exception	 as	 a	 new
reference,	 as	 accessible	 from	 Python	 through	 __context__.	 If
there	is	no	context	associated,	this	returns	NULL.

void	PyException_SetContext(PyObject	*ex,	PyObject	*ctx)
Set	the	context	associated	with	the	exception	to	ctx.	Use	NULL	 to
clear	 it.	 There	 is	 no	 type	 check	 to	 make	 sure	 that	 ctx	 is	 an
exception	instance.	This	steals	a	reference	to	ctx.

PyObject*	PyException_GetCause(PyObject	*ex)
Return	 the	 cause	 (either	 an	 exception	 instance,	 or	 None,	 set	 by
raise	...	from	...)	associated	with	 the	exception	as	a	new
reference,	as	accessible	from	Python	through	__cause__.

void	PyException_SetCause(PyObject	*ex,	PyObject	*cause)
Set	the	cause	associated	with	the	exception	to	cause.	Use	NULL	to
clear	it.	There	is	no	type	check	to	make	sure	that	cause	is	either	an

exception	instance	or	None.	This	steals	a	reference	to	cause.

__suppress_context__	 is	 implicitly	 set	 to	 True	 by	 this
function.

Unicode	Exception	Objects

The	 following	 functions	 are	 used	 to	 create	 and	 modify	 Unicode
exceptions	from	C.

PyObject*	PyUnicodeDecodeError_Create(const
char	*encoding,	const	char	*object,	Py_ssize_t	length,
Py_ssize_t	start,	Py_ssize_t	end,	const	char	*reason)

Create	 a	 UnicodeDecodeError	 object	 with	 the	 attributes
encoding,	 object,	 length,	 start,	 end	 and	 reason.	 encoding	 and
reason	are	UTF-8	encoded	strings.

PyObject*	PyUnicodeEncodeError_Create(const
char	*encoding,	const	Py_UNICODE	*object,	Py_ssize_t	length,
Py_ssize_t	start,	Py_ssize_t	end,	const	char	*reason)

Create	 a	 UnicodeEncodeError	 object	 with	 the	 attributes
encoding,	 object,	 length,	 start,	 end	 and	 reason.	 encoding	 and
reason	are	UTF-8	encoded	strings.

PyObject*	PyUnicodeTranslateError_Create(const
Py_UNICODE	*object,	Py_ssize_t	length,	Py_ssize_t	start,
Py_ssize_t	end,	const	char	*reason)

Create	 a	 UnicodeTranslateError	 object	 with	 the	 attributes
object,	length,	start,	end	and	reason.	reason	is	an	UTF-8	encoded
string.

PyObject*
PyUnicodeDecodeError_GetEncoding(PyObject	*exc)
PyObject*
PyUnicodeEncodeError_GetEncoding(PyObject	*exc)

Return	the	encoding	attribute	of	the	given	exception	object.

PyObject*

PyUnicodeDecodeError_GetObject(PyObject	*exc)
PyObject*
PyUnicodeEncodeError_GetObject(PyObject	*exc)
PyObject*
PyUnicodeTranslateError_GetObject(PyObject	*exc)

Return	the	object	attribute	of	the	given	exception	object.

int	PyUnicodeDecodeError_GetStart(PyObject	*exc,
Py_ssize_t	*start)
int	PyUnicodeEncodeError_GetStart(PyObject	*exc,
Py_ssize_t	*start)
int	PyUnicodeTranslateError_GetStart(PyObject	*exc,
Py_ssize_t	*start)

Get	the	start	attribute	of	the	given	exception	object	and	place	it	into
*start.	start	must	not	be	NULL.	Return	0	on	success,	-1	on	failure.

int	PyUnicodeDecodeError_SetStart(PyObject	*exc,
Py_ssize_t	start)
int	PyUnicodeEncodeError_SetStart(PyObject	*exc,
Py_ssize_t	start)
int	PyUnicodeTranslateError_SetStart(PyObject	*exc,
Py_ssize_t	start)

Set	the	start	attribute	of	the	given	exception	object	to	start.	Return
0	on	success,	-1	on	failure.

int	PyUnicodeDecodeError_GetEnd(PyObject	*exc,
Py_ssize_t	*end)
int	PyUnicodeEncodeError_GetEnd(PyObject	*exc,
Py_ssize_t	*end)
int	PyUnicodeTranslateError_GetEnd(PyObject	*exc,
Py_ssize_t	*end)

Get	the	end	attribute	of	the	given	exception	object	and	place	it	into

*end.	end	must	not	be	NULL.	Return	0	on	success,	-1	on	failure.

int	PyUnicodeDecodeError_SetEnd(PyObject	*exc,
Py_ssize_t	end)
int	PyUnicodeEncodeError_SetEnd(PyObject	*exc,
Py_ssize_t	end)
int	PyUnicodeTranslateError_SetEnd(PyObject	*exc,
Py_ssize_t	end)

Set	the	end	attribute	of	the	given	exception	object	to	end.	Return	0
on	success,	-1	on	failure.

PyObject*
PyUnicodeDecodeError_GetReason(PyObject	*exc)
PyObject*
PyUnicodeEncodeError_GetReason(PyObject	*exc)
PyObject*
PyUnicodeTranslateError_GetReason(PyObject	*exc)

Return	the	reason	attribute	of	the	given	exception	object.

int	PyUnicodeDecodeError_SetReason(PyObject	*exc,
const	char	*reason)
int	PyUnicodeEncodeError_SetReason(PyObject	*exc,
const	char	*reason)
int	PyUnicodeTranslateError_SetReason(PyObject	*exc,
const	char	*reason)

Set	 the	 reason	 attribute	 of	 the	 given	 exception	 object	 to	 reason.
Return	0	on	success,	-1	on	failure.

Recursion	Control

These	 two	 functions	provide	a	way	 to	perform	safe	 recursive	calls	at
the	 C	 level,	 both	 in	 the	 core	 and	 in	 extension	 modules.	 They	 are
needed	if	the	recursive	code	does	not	necessarily	invoke	Python	code
(which	tracks	its	recursion	depth	automatically).

int	Py_EnterRecursiveCall(char	*where)
Marks	 a	 point	 where	 a	 recursive	 C-level	 call	 is	 about	 to	 be
performed.

If	 USE_STACKCHECK	 is	 defined,	 this	 function	 checks	 if	 the	 OS
stack	overflowed	using	PyOS_CheckStack().	In	this	is	the	case,
it	sets	a	MemoryError	and	returns	a	nonzero	value.

The	function	then	checks	if	the	recursion	limit	 is	reached.	If	this	is
the	case,	a	RuntimeError	is	set	and	a	nonzero	value	is	returned.
Otherwise,	zero	is	returned.

where	should	be	a	string	such	as	"	in	instance	check"	to	be
concatenated	 to	 the	 RuntimeError	 message	 caused	 by	 the
recursion	depth	limit.

void	Py_LeaveRecursiveCall()
Ends	 a	 Py_EnterRecursiveCall().	 Must	 be	 called	 once	 for
each	successful	invocation	of	Py_EnterRecursiveCall().

Properly	 implementing	tp_repr	 for	 container	 types	 requires	 special
recursion	handling.	 In	addition	 to	protecting	 the	stack,	tp_repr	also
needs	 to	 track	objects	 to	prevent	cycles.	The	 following	 two	 functions
facilitate	 this	 functionality.	 Effectively,	 these	 are	 the	 C	 equivalent	 to

reprlib.recursive_repr().

int	Py_ReprEnter(PyObject	*object)
Called	at	 the	beginning	of	 the	tp_repr	 implementation	 to	detect
cycles.

If	 the	 object	 has	 already	 been	 processed,	 the	 function	 returns	 a
positive	 integer.	 In	 that	case	 the	tp_repr	 implementation	should
return	a	string	object	indicating	a	cycle.	As	examples,	dict	objects
return	{...}	and	list	objects	return	[...].

The	 function	will	 return	 a	 negative	 integer	 if	 the	 recursion	 limit	 is
reached.	In	that	case	the	tp_repr	implementation	should	typically
return	NULL.

Otherwise,	 the	 function	 returns	 zero	 and	 the	 tp_repr

implementation	can	continue	normally.

void	Py_ReprLeave(PyObject	*object)
Ends	 a	 Py_ReprEnter().	 Must	 be	 called	 once	 for	 each
invocation	of	Py_ReprEnter()	that	returns	zero.

Standard	Exceptions

All	 standard	 Python	 exceptions	 are	 available	 as	 global	 variables
whose	 names	 are	 PyExc_	 followed	 by	 the	 Python	 exception	 name.
These	 have	 the	 type	 PyObject*;	 they	 are	 all	 class	 objects.	 For
completeness,	here	are	all	the	variables:

C	Name Python	Name

PyExc_BaseException BaseException

PyExc_Exception Exception

PyExc_ArithmeticError ArithmeticError

PyExc_LookupError LookupError

PyExc_AssertionError AssertionError

PyExc_AttributeError AttributeError

PyExc_BlockingIOError BlockingIOError

PyExc_BrokenPipeError BrokenPipeError

PyExc_ChildProcessError ChildProcessError

PyExc_ConnectionError ConnectionError

PyExc_ConnectionAbortedError ConnectionAbortedError

PyExc_ConnectionRefusedError ConnectionRefusedError

PyExc_ConnectionResetError ConnectionResetError

PyExc_FileExistsError FileExistsError

PyExc_FileNotFoundError FileNotFoundError

PyExc_EOFError EOFError

PyExc_FloatingPointError FloatingPointError

PyExc_ImportError ImportError

PyExc_IndexError IndexError

PyExc_InterruptedError InterruptedError

PyExc_IsADirectoryError IsADirectoryError

PyExc_KeyError KeyError

PyExc_KeyboardInterrupt KeyboardInterrupt

PyExc_MemoryError MemoryError

PyExc_NameError NameError

PyExc_NotADirectoryError NotADirectoryError

PyExc_NotImplementedError NotImplementedError

PyExc_OSError OSError

PyExc_OverflowError OverflowError

PyExc_PermissionError PermissionError

PyExc_ProcessLookupError ProcessLookupError

PyExc_ReferenceError ReferenceError

PyExc_RuntimeError RuntimeError

PyExc_SyntaxError SyntaxError

PyExc_SystemError SystemError

PyExc_TimeoutError TimeoutError

PyExc_SystemExit SystemExit

PyExc_TypeError TypeError

PyExc_ValueError ValueError

PyExc_ZeroDivisionError ZeroDivisionError

New	 in	 version	 3.3:	 PyExc_BlockingIOError,
PyExc_BrokenPipeError,	 PyExc_ChildProcessError,

PyExc_ConnectionError,	 PyExc_ConnectionAbortedError,
PyExc_ConnectionRefusedError,
PyExc_ConnectionResetError,	 PyExc_FileExistsError,
PyExc_FileNotFoundError,	 PyExc_InterruptedError,
PyExc_IsADirectoryError,	 PyExc_NotADirectoryError,
PyExc_PermissionError,	 PyExc_ProcessLookupError	 and
PyExc_TimeoutError	were	introduced	following	PEP	3151.

These	are	compatibility	aliases	to	PyExc_OSError:

C	Name Notes

PyExc_EnvironmentError 	

PyExc_IOError 	

PyExc_WindowsError (3)

Changed	in	version	3.3:	These	aliases	used	to	be	separate	exception
types.

Notes:

1.	 This	is	a	base	class	for	other	standard	exceptions.
2.	 This	is	the	same	as	weakref.ReferenceError.
3.	 Only	defined	on	Windows;	protect	code	 that	uses	 this	by	 testing

that	the	preprocessor	macro	MS_WINDOWS	is	defined.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-3151
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Utilities
The	functions	in	this	chapter	perform	various	utility	tasks,	ranging	from
helping	 C	 code	 be	 more	 portable	 across	 platforms,	 using	 Python
modules	 from	 C,	 and	 parsing	 function	 arguments	 and	 constructing
Python	values	from	C	values.

Operating	System	Utilities
System	Functions
Process	Control
Importing	Modules
Data	marshalling	support
Parsing	arguments	and	building	values

Parsing	arguments
Strings	and	buffers
Numbers
Other	objects
API	Functions

Building	values
String	conversion	and	formatting
Reflection
Codec	registry	and	support	functions

Codec	lookup	API
Registry	API	for	Unicode	encoding	error	handlers

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

http://www.python.org/

Operating	System	Utilities
int	Py_FdIsInteractive(FILE	*fp,	const	char	*filename)

Return	true	(nonzero)	if	the	standard	I/O	file	fp	with	name	filename
is	 deemed	 interactive.	 This	 is	 the	 case	 for	 files	 for	 which
isatty(fileno(fp))	 is	 true.	 If	 the	 global	 flag
Py_InteractiveFlag	is	true,	this	function	also	returns	true	if	the
filename	 pointer	 is	NULL	 or	 if	 the	 name	 is	 equal	 to	 one	 of	 the
strings	'<stdin>'	or	'???'.

void	PyOS_AfterFork()
Function	 to	 update	 some	 internal	 state	 after	 a	 process	 fork;	 this
should	 be	 called	 in	 the	 new	process	 if	 the	Python	 interpreter	will
continue	 to	 be	 used.	 If	 a	 new	 executable	 is	 loaded	 into	 the	 new
process,	this	function	does	not	need	to	be	called.

int	PyOS_CheckStack()
Return	true	when	the	interpreter	runs	out	of	stack	space.	This	is	a
reliable	 check,	 but	 is	 only	 available	 when	 USE_STACKCHECK	 is
defined	 (currently	 on	 Windows	 using	 the	 Microsoft	 Visual	 C++
compiler).	 USE_STACKCHECK	 will	 be	 defined	 automatically;	 you
should	never	change	the	definition	in	your	own	code.

PyOS_sighandler_t	PyOS_getsig(int	i)
Return	the	current	signal	handler	for	signal	i.	This	is	a	thin	wrapper
around	 either	 sigaction()	 or	 signal().	 Do	 not	 call	 those
functions	 directly!	 PyOS_sighandler_t	 is	 a	 typedef	 alias	 for
void	(*)(int).

PyOS_sighandler_t	PyOS_setsig(int	i,	PyOS_sighandler_t	h)

Set	 the	 signal	 handler	 for	 signal	 i	 to	 be	 h;	 return	 the	 old	 signal
handler.	 This	 is	 a	 thin	 wrapper	 around	 either	 sigaction()	 or
signal().	 Do	 not	 call	 those	 functions	 directly!
PyOS_sighandler_t	is	a	typedef	alias	for	void	(*)(int).

System	Functions
These	are	utility	functions	that	make	functionality	from	the	sys	module
accessible	 to	 C	 code.	 They	 all	 work	 with	 the	 current	 interpreter
thread’s	sys	module’s	 dict,	which	 is	 contained	 in	 the	 internal	 thread
state	structure.

PyObject	*PySys_GetObject(char	*name)
Return	value:	Borrowed	reference.
Return	the	object	name	from	the	sys	module	or	NULL	if	it	does	not
exist,	without	setting	an	exception.

int	PySys_SetObject(char	*name,	PyObject	*v)
Set	name	in	the	sys	module	to	v	unless	v	is	NULL,	 in	which	case
name	 is	deleted	 from	 the	sys	module.	Returns	0	on	success,	-1
on	error.

void	PySys_ResetWarnOptions()
Reset	sys.warnoptions	to	an	empty	list.

void	PySys_AddWarnOption(wchar_t	*s)
Append	s	to	sys.warnoptions.

void	PySys_AddWarnOptionUnicode(PyObject	*unicode)
Append	unicode	to	sys.warnoptions.

void	PySys_SetPath(wchar_t	*path)
Set	sys.path	to	a	list	object	of	paths	found	in	path	which	should
be	 a	 list	 of	 paths	 separated	 with	 the	 platform’s	 search	 path
delimiter	(:	on	Unix,	;	on	Windows).

void	PySys_WriteStdout(const	char	*format,	...)
Write	 the	 output	 string	 described	 by	 format	 to	 sys.stdout.	 No
exceptions	are	raised,	even	if	truncation	occurs	(see	below).

format	 should	 limit	 the	 total	 size	 of	 the	 formatted	 output	 string	 to
1000	 bytes	 or	 less	 –	 after	 1000	 bytes,	 the	 output	 string	 is
truncated.	 In	 particular,	 this	 means	 that	 no	 unrestricted	 “%s”
formats	 should	 occur;	 these	 should	 be	 limited	 using	 “%.<N>s”
where	 <N>	 is	 a	 decimal	 number	 calculated	 so	 that	 <N>	 plus	 the
maximum	size	of	other	formatted	text	does	not	exceed	1000	bytes.
Also	watch	out	for	“%f”,	which	can	print	hundreds	of	digits	for	very
large	numbers.

If	 a	 problem	 occurs,	 or	 sys.stdout	 is	 unset,	 the	 formatted
message	is	written	to	the	real	(C	level)	stdout.

void	PySys_WriteStderr(const	char	*format,	...)
As	PySys_WriteStdout(),	 but	write	 to	 sys.stderr	 or	stderr
instead.

void	PySys_FormatStdout(const	char	*format,	...)
Function	 similar	 to	 PySys_WriteStdout()	 but	 format	 the	 message
using	 PyUnicode_FromFormatV()	 and	 don’t	 truncate	 the
message	to	an	arbitrary	length.

New	in	version	3.2.

void	PySys_FormatStderr(const	char	*format,	...)
As	PySys_FormatStdout(),	but	write	to	sys.stderr	or	stderr
instead.

New	in	version	3.2.

void	PySys_AddXOption(const	wchar_t	*s)
Parse	s	as	a	set	of	-X	options	and	add	them	to	the	current	options
mapping	as	returned	by	PySys_GetXOptions().

New	in	version	3.2.

PyObject	*PySys_GetXOptions()
Return	value:	Borrowed	reference.
Return	 the	 current	 dictionary	 of	 -X	 options,	 similarly	 to
sys._xoptions.	On	error,	NULL	is	returned	and	an	exception	is
set.

New	in	version	3.2.

Process	Control
void	Py_FatalError(const	char	*message)

Print	 a	 fatal	 error	 message	 and	 kill	 the	 process.	 No	 cleanup	 is
performed.	This	function	should	only	be	invoked	when	a	condition
is	 detected	 that	 would	 make	 it	 dangerous	 to	 continue	 using	 the
Python	interpreter;	e.g.,	when	the	object	administration	appears	to
be	corrupted.	On	Unix,	the	standard	C	library	function	abort()	is
called	which	will	attempt	to	produce	a	core	file.

void	Py_Exit(int	status)
Exit	 the	 current	 process.	 This	 calls	 Py_Finalize()	 and	 then
calls	the	standard	C	library	function	exit(status).

int	Py_AtExit(void	(*func)	())
Register	a	cleanup	function	to	be	called	by	Py_Finalize().	The
cleanup	function	will	be	called	with	no	arguments	and	should	return
no	value.	At	most	 32	 cleanup	 functions	 can	 be	 registered.	When
the	registration	is	successful,	Py_AtExit()	returns	0;	on	 failure,
it	 returns	 -1.	 The	 cleanup	 function	 registered	 last	 is	 called	 first.
Each	cleanup	function	will	be	called	at	most	once.	Since	Python’s
internal	 finalization	 will	 have	 completed	 before	 the	 cleanup
function,	no	Python	APIs	should	be	called	by	func.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

http://www.python.org/

Importing	Modules
PyObject*	PyImport_ImportModule(const	char	*name)

Return	value:	New	reference.
This	 is	 a	 simplified	 interface	 to	 PyImport_ImportModuleEx()
below,	 leaving	the	globals	and	 locals	arguments	set	 to	NULL	and
level	 set	 to	 0.	When	 the	name	 argument	 contains	 a	 dot	 (when	 it
specifies	a	submodule	of	a	package),	 the	 fromlist	argument	 is	set
to	 the	 list	 ['*']	 so	 that	 the	 return	 value	 is	 the	 named	 module
rather	than	the	top-level	package	containing	it	as	would	otherwise
be	the	case.	(Unfortunately,	this	has	an	additional	side	effect	when
name	 in	 fact	specifies	a	subpackage	 instead	of	a	submodule:	 the
submodules	 specified	 in	 the	 package’s	 __all__	 variable	 are
loaded.)	Return	a	new	reference	to	the	imported	module,	or	NULL
with	 an	 exception	 set	 on	 failure.	 A	 failing	 import	 of	 a	 module
doesn’t	leave	the	module	in	sys.modules.

This	function	always	uses	absolute	imports.

PyObject*	PyImport_ImportModuleNoBlock(const
char	*name)

This	 function	 is	 a	 deprecated	 alias	 of
PyImport_ImportModule().

Changed	 in	 version	 3.3:	 This	 function	 used	 to	 fail	 immediately
when	 the	 import	 lock	 was	 held	 by	 another	 thread.	 In	 Python	 3.3
though,	the	locking	scheme	switched	to	per-module	locks	for	most
purposes,	 so	 this	 function’s	 special	 behaviour	 isn’t	 needed
anymore.

PyObject*	PyImport_ImportModuleEx(char	*name,

PyObject	*globals,	PyObject	*locals,	PyObject	*fromlist)
Return	value:	New	reference.
Import	a	module.	This	 is	best	described	by	referring	to	the	built-in
Python	function	__import__().

The	return	value	is	a	new	reference	to	the	imported	module	or	top-
level	 package,	or	NULL	with	 an	 exception	 set	 on	 failure.	 Like	 for
__import__(),	the	return	value	when	a	submodule	of	a	package
was	 requested	 is	 normally	 the	 top-level	 package,	 unless	 a	 non-
empty	fromlist	was	given.

Failing	 imports	 remove	 incomplete	 module	 objects,	 like	 with
PyImport_ImportModule().

PyObject*
PyImport_ImportModuleLevelObject(PyObject	*name,
PyObject	*globals,	PyObject	*locals,	PyObject	*fromlist,	int	level)

Import	a	module.	This	 is	best	described	by	referring	to	the	built-in
Python	function	__import__(),	as	the	standard	__import__()
function	calls	this	function	directly.

The	return	value	is	a	new	reference	to	the	imported	module	or	top-
level	 package,	or	NULL	with	 an	 exception	 set	 on	 failure.	 Like	 for
__import__(),	the	return	value	when	a	submodule	of	a	package
was	 requested	 is	 normally	 the	 top-level	 package,	 unless	 a	 non-
empty	fromlist	was	given.

New	in	version	3.3.

PyObject*	PyImport_ImportModuleLevel(char	*name,
PyObject	*globals,	PyObject	*locals,	PyObject	*fromlist,	int	level)

Return	value:	New	reference.
Similar	 to	 PyImport_ImportModuleLevelObject(),	 but	 the

name	is	an	UTF-8	encoded	string	instead	of	a	Unicode	object.

Changed	 in	 version	 3.3:	Negative	 values	 for	 level	 are	 no	 longer
accepted.

PyObject*	PyImport_Import(PyObject	*name)
Return	value:	New	reference.
This	 is	 a	 higher-level	 interface	 that	 calls	 the	 current	 “import	 hook
function”	 (with	 an	 explicit	 level	 of	 0,	meaning	 absolute	 import).	 It
invokes	the	__import__()	 function	 from	 the	__builtins__	of
the	 current	 globals.	 This	 means	 that	 the	 import	 is	 done	 using
whatever	import	hooks	are	installed	in	the	current	environment.

This	function	always	uses	absolute	imports.

PyObject*	PyImport_ReloadModule(PyObject	*m)
Return	value:	New	reference.
Reload	a	module.	Return	a	new	reference	to	the	reloaded	module,
or	NULL	with	an	exception	set	on	failure	(the	module	still	exists	in
this	case).

PyObject*	PyImport_AddModuleObject(PyObject	*name)
Return	 the	module	 object	 corresponding	 to	 a	module	 name.	 The
name	argument	may	be	of	the	form	package.module.	First	check
the	modules	dictionary	if	there’s	one	there,	and	if	not,	create	a	new
one	and	 insert	 it	 in	 the	modules	 dictionary.	Return	NULL	with	 an
exception	set	on	failure.

Note: 	This	 function	 does	 not	 load	 or	 import	 the	module;	 if	 the
module	 wasn’t	 already	 loaded,	 you	 will	 get	 an	 empty	 module
object.	Use	PyImport_ImportModule()	or	one	of	its	variants
to	import	a	module.	Package	structures	implied	by	a	dotted	name
for	name	are	not	created	if	not	already	present.

New	in	version	3.3.

PyObject*	PyImport_AddModule(const	char	*name)
Return	value:	Borrowed	reference.
Similar	 to	 PyImport_AddModuleObject(),	 but	 the	 name	 is	 a
UTF-8	encoded	string	instead	of	a	Unicode	object.

PyObject*	PyImport_ExecCodeModule(const	char	*name,
PyObject	*co)

Return	value:	New	reference.
Given	 a	 module	 name	 (possibly	 of	 the	 form	 package.module)
and	 a	 code	 object	 read	 from	 a	 Python	 bytecode	 file	 or	 obtained
from	 the	built-in	 function	 compile(),	 load	 the	module.	Return	 a
new	reference	to	the	module	object,	or	NULL	with	an	exception	set
if	an	error	occurred.	name	is	removed	from	sys.modules	in	error
cases,	 even	 if	 name	 was	 already	 in	 sys.modules	 on	 entry	 to
PyImport_ExecCodeModule().	Leaving	 incompletely	 initialized
modules	 in	 sys.modules	 is	 dangerous,	 as	 imports	 of	 such
modules	 have	 no	 way	 to	 know	 that	 the	 module	 object	 is	 an
unknown	 (and	 probably	 damaged	 with	 respect	 to	 the	 module
author’s	intents)	state.

The	module’s	__file__	attribute	will	 be	set	 to	 the	code	object’s
co_filename.

This	function	will	reload	the	module	if	it	was	already	imported.	See
PyImport_ReloadModule()	 for	 the	 intended	 way	 to	 reload	 a
module.

If	name	 points	 to	 a	 dotted	 name	 of	 the	 form	 package.module,
any	package	structures	not	already	created	will	still	not	be	created.

See	 also	 PyImport_ExecCodeModuleEx()	 and
PyImport_ExecCodeModuleWithPathnames().

PyObject*	PyImport_ExecCodeModuleEx(const	char	*name,
PyObject	*co,	const	char	*pathname)

Return	value:	New	reference.
Like	 PyImport_ExecCodeModule(),	 but	 the	 __file__

attribute	of	the	module	object	is	set	to	pathname	if	it	is	non-NULL.

See	also	PyImport_ExecCodeModuleWithPathnames().

PyObject*
PyImport_ExecCodeModuleObject(PyObject	*name,
PyObject	*co,	PyObject	*pathname,	PyObject	*cpathname)

Like	 PyImport_ExecCodeModuleEx(),	 but	 the	 __cached__
attribute	of	the	module	object	is	set	to	cpathname	if	it	is	non-NULL.
Of	the	three	functions,	this	is	the	preferred	one	to	use.

New	in	version	3.3.

PyObject*
PyImport_ExecCodeModuleWithPathnames(const
char	*name,	PyObject	*co,	const	char	*pathname,	const
char	*cpathname)

Like	 PyImport_ExecCodeModuleObject(),	 but	 name,
pathname	 and	 cpathname	 are	 UTF-8	 encoded	 strings.	 Attempts
are	also	made	to	figure	out	what	the	value	for	pathname	should	be
from	cpathname	if	the	former	is	set	to	NULL.

New	in	version	3.2.

Changed	 in	 version	 3.3:	 Uses	 imp.source_from_cache()	 in
calculating	the	source	path	if	only	the	bytecode	path	is	provided.

long	PyImport_GetMagicNumber()
Return	 the	magic	 number	 for	 Python	 bytecode	 files	 (a.k.a.	 .pyc
and	.pyo	 files).	The	magic	number	should	be	present	 in	 the	 first
four	bytes	of	the	bytecode	file,	in	little-endian	byte	order.	Returns	-1
on	error.

Changed	in	version	3.3:	Return	value	of	-1	upon	failure.

const	char	*	PyImport_GetMagicTag()
Return	the	magic	tag	string	for	PEP	3147	format	Python	bytecode
file	 names.	 Keep	 in	 mind	 that	 the	 value	 at
sys.implementation.cache_tag	 is	 authoritative	 and	 should
be	used	instead	of	this	function.

New	in	version	3.2.

PyObject*	PyImport_GetModuleDict()
Return	value:	Borrowed	reference.
Return	 the	 dictionary	 used	 for	 the	 module	 administration	 (a.k.a.
sys.modules).	Note	that	this	is	a	per-interpreter	variable.

PyObject*	PyImport_GetImporter(PyObject	*path)
Return	 an	 importer	 object	 for	 a	 sys.path/pkg.__path__	 item
path,	 possibly	 by	 fetching	 it	 from	 the
sys.path_importer_cache	 dict.	 If	 it	 wasn’t	 yet	 cached,
traverse	sys.path_hooks	until	 a	hook	 is	 found	 that	can	handle
the	path	item.	Return	None	 if	no	hook	could;	this	tells	our	caller	 it
should	fall	back	to	the	built-in	import	mechanism.	Cache	the	result
in	 sys.path_importer_cache.	Return	 a	 new	 reference	 to	 the
importer	object.

void	_PyImport_Init()

http://www.python.org/dev/peps/pep-3147

Initialize	the	import	mechanism.	For	internal	use	only.

void	PyImport_Cleanup()
Empty	the	module	table.	For	internal	use	only.

void	_PyImport_Fini()
Finalize	the	import	mechanism.	For	internal	use	only.

PyObject*	_PyImport_FindExtension(char	*,	char	*)
For	internal	use	only.

PyObject*	_PyImport_FixupExtension(char	*,	char	*)
For	internal	use	only.

int
PyImport_ImportFrozenModuleObject(PyObject	*name)

Load	a	frozen	module	named	name.	Return	1	for	success,	0	if	the
module	 is	 not	 found,	 and	 -1	 with	 an	 exception	 set	 if	 the
initialization	failed.	To	access	the	imported	module	on	a	successful
load,	 use	 PyImport_ImportModule().	 (Note	 the	misnomer	—
this	function	would	reload	the	module	if	it	was	already	imported.)

New	in	version	3.3.

int	PyImport_ImportFrozenModule(const	char	*name)
Similar	 to	 PyImport_ImportFrozenModuleObject(),	 but	 the
name	is	a	UTF-8	encoded	string	instead	of	a	Unicode	object.

struct	_frozen
This	 is	 the	structure	 type	definition	 for	 frozen	module	descriptors,
as	 generated	 by	 the	 freeze	 utility	 (see	 Tools/freeze/	 in	 the
Python	 source	 distribution).	 Its	 definition,	 found	 in
Include/import.h,	is:

struct	_frozen	{

				char	*name;

				unsigned	char	*code;

				int	size;

};

struct	_frozen*	PyImport_FrozenModules
This	pointer	is	initialized	to	point	to	an	array	of	struct	_frozen
records,	terminated	by	one	whose	members	are	all	NULL	or	zero.
When	 a	 frozen	 module	 is	 imported,	 it	 is	 searched	 in	 this	 table.
Third-party	code	could	play	tricks	with	this	to	provide	a	dynamically
created	collection	of	frozen	modules.

int	PyImport_AppendInittab(const	char	*name,
PyObject*	(*initfunc)(void))

Add	a	single	module	to	the	existing	table	of	built-in	modules.	This	is
a	 convenience	 wrapper	 around	 PyImport_ExtendInittab(),
returning	-1	 if	 the	 table	could	not	be	extended.	The	new	module
can	be	imported	by	the	name	name,	and	uses	the	function	initfunc
as	 the	 initialization	 function	 called	 on	 the	 first	 attempted	 import.
This	should	be	called	before	Py_Initialize().

struct	_inittab
Structure	 describing	 a	 single	 entry	 in	 the	 list	 of	 built-in	 modules.
Each	of	these	structures	gives	the	name	and	initialization	function
for	 a	 module	 built	 into	 the	 interpreter.	 The	 name	 is	 an	 ASCII
encoded	string.	Programs	which	embed	Python	may	use	an	array
of	 these	 structures	 in	 conjunction	 with
PyImport_ExtendInittab()	 to	 provide	 additional	 built-in
modules.	The	structure	is	defined	in	Include/import.h	as:

struct	_inittab	{

				char	*name;																	/*	ASCII	encoded	string	*/

				PyObject*	(*initfunc)(void);

};

int	PyImport_ExtendInittab(struct	_inittab	*newtab)
Add	 a	 collection	 of	modules	 to	 the	 table	 of	 built-in	modules.	 The
newtab	array	must	end	with	a	sentinel	entry	which	contains	NULL
for	the	name	field;	failure	to	provide	the	sentinel	value	can	result	in
a	memory	fault.	Returns	0	on	success	or	-1	if	insufficient	memory
could	 be	 allocated	 to	 extend	 the	 internal	 table.	 In	 the	 event	 of
failure,	no	modules	are	added	to	the	internal	table.	This	should	be
called	before	Py_Initialize().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

http://www.python.org/

Data	marshalling	support
These	routines	allow	C	code	to	work	with	serialized	objects	using	the
same	 data	 format	 as	 the	 marshal	 module.	 There	 are	 functions	 to
write	 data	 into	 the	 serialization	 format,	 and	 additional	 functions	 that
can	be	used	to	read	the	data	back.	Files	used	to	store	marshalled	data
must	be	opened	in	binary	mode.

Numeric	values	are	stored	with	the	least	significant	byte	first.

The	module	supports	two	versions	of	the	data	format:	version	0	is	the
historical	 version,	 version	 1	 shares	 interned	 strings	 in	 the	 file,	 and
upon	unmarshalling.	Version	2	uses	a	binary	 format	 for	 floating	point
numbers.	Py_MARSHAL_VERSION	 indicates	 the	 current	 file	 format
(currently	2).

void	PyMarshal_WriteLongToFile(long	value,	FILE	*file,
int	version)

Marshal	a	long	integer,	value,	to	file.	This	will	only	write	the	least-
significant	 32	 bits	 of	 value;	 regardless	 of	 the	 size	 of	 the	 native
long	type.	version	indicates	the	file	format.

void	PyMarshal_WriteObjectToFile(PyObject	*value,
FILE	*file,	int	version)

Marshal	 a	 Python	 object,	 value,	 to	 file.	 version	 indicates	 the	 file
format.

PyObject*
PyMarshal_WriteObjectToString(PyObject	*value,
int	version)

Return	value:	New	reference.
Return	a	string	object	containing	 the	marshalled	representation	of

value.	version	indicates	the	file	format.

The	following	functions	allow	marshalled	values	to	be	read	back	in.

XXX	What	about	error	detection?	It	appears	that	reading	past	the	end
of	the	file	will	always	result	 in	a	negative	numeric	value	(where	that’s
relevant),	 but	 it’s	 not	 clear	 that	 negative	 values	 won’t	 be	 handled
properly	 when	 there’s	 no	 error.	What’s	 the	 right	 way	 to	 tell?	 Should
only	non-negative	values	be	written	using	these	routines?

long	PyMarshal_ReadLongFromFile(FILE	*file)
Return	 a	 C	 long	 from	 the	 data	 stream	 in	 a	 FILE*	 opened	 for
reading.	 Only	 a	 32-bit	 value	 can	 be	 read	 in	 using	 this	 function,
regardless	of	the	native	size	of	long.

int	PyMarshal_ReadShortFromFile(FILE	*file)
Return	a	C	 short	 from	 the	 data	 stream	 in	 a	 FILE*	 opened	 for
reading.	 Only	 a	 16-bit	 value	 can	 be	 read	 in	 using	 this	 function,
regardless	of	the	native	size	of	short.

PyObject*	PyMarshal_ReadObjectFromFile(FILE	*file)
Return	value:	New	reference.
Return	a	Python	object	 from	 the	data	stream	 in	a	FILE*	opened
for	reading.	On	error,	sets	the	appropriate	exception	(EOFError	or
TypeError)	and	returns	NULL.

PyObject*
PyMarshal_ReadLastObjectFromFile(FILE	*file)

Return	value:	New	reference.
Return	a	Python	object	 from	 the	data	stream	 in	a	FILE*	opened
for	 reading.	 Unlike	 PyMarshal_ReadObjectFromFile(),	 this
function	assumes	that	no	further	objects	will	be	read	from	the	file,

allowing	it	to	aggressively	load	file	data	into	memory	so	that	the	de-
serialization	can	operate	from	data	in	memory	rather	than	reading
a	 byte	 at	 a	 time	 from	 the	 file.	 Only	 use	 these	 variant	 if	 you	 are
certain	 that	 you	won’t	 be	 reading	 anything	 else	 from	 the	 file.	 On
error,	 sets	 the	appropriate	 exception	 (EOFError	 or	 TypeError)
and	returns	NULL.

PyObject*	PyMarshal_ReadObjectFromString(char	*string,
Py_ssize_t	len)

Return	value:	New	reference.
Return	a	Python	object	from	the	data	stream	in	a	character	buffer
containing	 len	 bytes	 pointed	 to	 by	 string.	 On	 error,	 sets	 the
appropriate	 exception	 (EOFError	 or	 TypeError)	 and	 returns
NULL.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

http://www.python.org/

Parsing	arguments	and	building
values
These	 functions	 are	 useful	 when	 creating	 your	 own	 extensions
functions	 and	 methods.	 Additional	 information	 and	 examples	 are
available	in	Extending	and	Embedding	the	Python	Interpreter.

The	first	 three	of	 these	functions	described,	PyArg_ParseTuple(),
PyArg_ParseTupleAndKeywords(),	 and	 PyArg_Parse(),	 all
use	 format	 strings	 which	 are	 used	 to	 tell	 the	 function	 about	 the
expected	arguments.	The	format	strings	use	the	same	syntax	for	each
of	these	functions.

Parsing	arguments

A	 format	 string	consists	of	 zero	or	more	 “format	units.”	A	 format	unit
describes	 one	 Python	 object;	 it	 is	 usually	 a	 single	 character	 or	 a
parenthesized	 sequence	 of	 format	 units.	 With	 a	 few	 exceptions,	 a
format	unit	that	is	not	a	parenthesized	sequence	normally	corresponds
to	 a	 single	 address	 argument	 to	 these	 functions.	 In	 the	 following
description,	 the	 quoted	 form	 is	 the	 format	 unit;	 the	 entry	 in	 (round)
parentheses	 is	 the	 Python	 object	 type	 that	matches	 the	 format	 unit;
and	 the	 entry	 in	 [square]	 brackets	 is	 the	 type	 of	 the	 C	 variable(s)
whose	address	should	be	passed.

Strings	and	buffers

These	 formats	 allow	 to	 access	 an	 object	 as	 a	 contiguous	 chunk	 of
memory.	 You	 don’t	 have	 to	 provide	 raw	 storage	 for	 the	 returned
unicode	or	 bytes	area.	Also,	 you	won’t	 have	 to	 release	any	memory
yourself,	except	with	the	es,	es#,	et	and	et#	formats.

However,	 when	 a	 Py_buffer	 structure	 gets	 filled,	 the	 underlying
buffer	is	locked	so	that	the	caller	can	subsequently	use	the	buffer	even
inside	 a	 Py_BEGIN_ALLOW_THREADS	 block	 without	 the	 risk	 of
mutable	data	being	resized	or	destroyed.	As	a	result,	you	have	to	call
PyBuffer_Release()	 after	 you	 have	 finished	 processing	 the	 data
(or	in	any	early	abort	case).

Unless	otherwise	stated,	buffers	are	not	NUL-terminated.

Note: 	For	all	#	variants	of	formats	(s#,	y#,	etc.),	the	type	of	the
length	argument	(int	or	Py_ssize_t)	is	controlled	by	defining	the
macro	PY_SSIZE_T_CLEAN	before	including	Python.h.	If	the

macro	was	defined,	length	is	a	Py_ssize_t	rather	than	an	int.
This	behavior	will	change	in	a	future	Python	version	to	only	support
Py_ssize_t	and	drop	int	support.	It	is	best	to	always	define
PY_SSIZE_T_CLEAN.

s	(str)	[const	char	*]
Convert	 a	Unicode	 object	 to	 a	C	 pointer	 to	 a	 character	 string.	 A
pointer	 to	 an	 existing	 string	 is	 stored	 in	 the	 character	 pointer
variable	whose	address	you	pass.	The	C	string	is	NUL-terminated.
The	 Python	 string	 must	 not	 contain	 embedded	 NUL	 bytes;	 if	 it
does,	 a	 TypeError	 exception	 is	 raised.	 Unicode	 objects	 are
converted	to	C	strings	using	'utf-8'	encoding.	If	this	conversion
fails,	a	UnicodeError	is	raised.

Note: 	This	format	does	not	accept	bytes-like	objects.	If	you	want
to	 accept	 filesystem	 paths	 and	 convert	 them	 to	 C	 character
strings,	 it	 is	 preferable	 to	 use	 the	 O&	 format	 with
PyUnicode_FSConverter()	as	converter.

s*	(str,	bytes,	bytearray	or	buffer	compatible	object)	[Py_buffer]
This	format	accepts	Unicode	objects	as	well	as	bytes-like	objects.
It	 fills	a	Py_buffer	 structure	provided	by	 the	caller.	 In	 this	 case
the	resulting	C	string	may	contain	embedded	NUL	bytes.	Unicode
objects	are	converted	to	C	strings	using	'utf-8'	encoding.

s#	(str,	bytes	or	read-only	buffer	compatible	object)	[const	char	*,
int	or	Py_ssize_t]

Like	 s*,	 except	 that	 it	 doesn’t	 accept	mutable	 buffer-like	 objects
such	as	bytearray.	The	result	is	stored	into	two	C	variables,	the
first	 one	 a	 pointer	 to	 a	 C	 string,	 the	 second	 one	 its	 length.	 The
string	 may	 contain	 embedded	 null	 bytes.	 Unicode	 objects	 are
converted	to	C	strings	using	'utf-8'	encoding.

z	(str	or	None)	[const	char	*]
Like	s,	but	the	Python	object	may	also	be	None,	in	which	case	the
C	pointer	is	set	to	NULL.

z*	(str,	bytes,	bytearray,	buffer	compatible	object	or	None)
[Py_buffer]

Like	s*,	but	 the	Python	object	may	also	be	None,	 in	which	case
the	buf	member	of	the	Py_buffer	structure	is	set	to	NULL.

z#	(str,	bytes,	read-only	buffer	compatible	object	or	None)	[const
char	*,	int]

Like	s#,	but	 the	Python	object	may	also	be	None,	 in	which	case
the	C	pointer	is	set	to	NULL.

y	(bytes)	[const	char	*]
This	 format	 converts	 a	 bytes-like	 object	 to	 a	 C	 pointer	 to	 a
character	 string;	 it	 does	 not	 accept	 Unicode	 objects.	 The	 bytes
buffer	 must	 not	 contain	 embedded	 NUL	 bytes;	 if	 it	 does,	 a
TypeError	exception	is	raised.

y*	(bytes,	bytearray	or	bytes-like	object)	[Py_buffer]
This	variant	on	s*	doesn’t	accept	Unicode	objects,	only	bytes-like
objects.	This	is	the	recommended	way	to	accept	binary	data.

y#	(bytes)	[const	char	*,	int]
This	variant	on	s#	doesn’t	accept	Unicode	objects,	only	bytes-like
objects.

S	(bytes)	[PyBytesObject	*]
Requires	 that	 the	 Python	 object	 is	 a	 bytes	 object,	 without
attempting	any	conversion.	Raises	TypeError	 if	 the	object	 is	not
a	 bytes	 object.	 The	 C	 variable	 may	 also	 be	 declared	 as
PyObject*.

Y	(bytearray)	[PyByteArrayObject	*]
Requires	 that	 the	 Python	 object	 is	 a	 bytearray	 object,	 without
attempting	any	conversion.	Raises	TypeError	 if	 the	object	 is	not

a	 bytearray	 object.	 The	 C	 variable	 may	 also	 be	 declared	 as
PyObject*.

u	(str)	[Py_UNICODE	*]
Convert	 a	 Python	 Unicode	 object	 to	 a	 C	 pointer	 to	 a	 NUL-
terminated	 buffer	 of	 Unicode	 characters.	 You	 must	 pass	 the
address	of	a	Py_UNICODE	pointer	variable,	which	will	be	filled	with
the	pointer	to	an	existing	Unicode	buffer.	Please	note	that	the	width
of	a	Py_UNICODE	character	depends	on	compilation	options	(it	 is
either	16	or	32	bits).	The	Python	string	must	not	contain	embedded
NUL	characters;	if	it	does,	a	TypeError	exception	is	raised.

Note: 	 Since	 u	 doesn’t	 give	 you	 back	 the	 length	 of	 the	 string,
and	 it	 may	 contain	 embedded	 NUL	 characters,	 it	 is
recommended	to	use	u#	or	U	instead.

u#	(str)	[Py_UNICODE	*,	int]
This	variant	on	u	stores	into	two	C	variables,	the	first	one	a	pointer
to	a	Unicode	data	buffer,	the	second	one	its	length.

Z	(str	or	None)	[Py_UNICODE	*]
Like	u,	but	the	Python	object	may	also	be	None,	in	which	case	the
Py_UNICODE	pointer	is	set	to	NULL.

Z#	(str	or	None)	[Py_UNICODE	*,	int]
Like	u#,	but	 the	Python	object	may	also	be	None,	 in	which	case
the	Py_UNICODE	pointer	is	set	to	NULL.

U	(str)	[PyObject	*]
Requires	 that	 the	 Python	 object	 is	 a	 Unicode	 object,	 without
attempting	any	conversion.	Raises	TypeError	 if	 the	object	 is	not
a	 Unicode	 object.	 The	 C	 variable	 may	 also	 be	 declared	 as
PyObject*.

w*	(bytearray	or	read-write	byte-oriented	buffer)	[Py_buffer]

This	 format	 accepts	 any	 object	 which	 implements	 the	 read-write
buffer	 interface.	 It	 fills	 a	 Py_buffer	 structure	 provided	 by	 the
caller.	 The	 buffer	 may	 contain	 embedded	 null	 bytes.	 The	 caller
have	 to	 call	 PyBuffer_Release()	 when	 it	 is	 done	 with	 the
buffer.

es	(str)	[const	char	*encoding,	char	**buffer]
This	 variant	 on	 s	 is	 used	 for	 encoding	 Unicode	 into	 a	 character
buffer.	 It	 only	 works	 for	 encoded	 data	 without	 embedded	 NUL
bytes.

This	format	requires	two	arguments.	The	first	is	only	used	as	input,
and	 must	 be	 a	 const	 char*	 which	 points	 to	 the	 name	 of	 an
encoding	 as	 a	 NUL-terminated	 string,	 or	 NULL,	 in	 which	 case
'utf-8'	 encoding	 is	 used.	 An	 exception	 is	 raised	 if	 the	 named
encoding	is	not	known	to	Python.	The	second	argument	must	be	a
char**;	the	value	of	the	pointer	it	references	will	be	set	to	a	buffer
with	the	contents	of	the	argument	text.	The	text	will	be	encoded	in
the	encoding	specified	by	the	first	argument.

PyArg_ParseTuple()	will	 allocate	 a	 buffer	 of	 the	 needed	 size,
copy	 the	 encoded	 data	 into	 this	 buffer	 and	 adjust	 *buffer	 to
reference	the	newly	allocated	storage.	The	caller	is	responsible	for
calling	PyMem_Free()	to	free	the	allocated	buffer	after	use.

et	(str,	bytes	or	bytearray)	[const	char	*encoding,	char	**buffer]
Same	 as	 es	 except	 that	 byte	 string	 objects	 are	 passed	 through
without	 recoding	 them.	 Instead,	 the	 implementation	assumes	 that
the	byte	string	object	uses	the	encoding	passed	in	as	parameter.

es#	(str)	[const	char	*encoding,	char	**buffer,	int	*buffer_length]
This	variant	on	s#	 is	used	 for	encoding	Unicode	 into	a	character
buffer.	 Unlike	 the	 es	 format,	 this	 variant	 allows	 input	 data	 which
contains	NUL	characters.

It	 requires	 three	 arguments.	 The	 first	 is	 only	 used	 as	 input,	 and
must	be	a	const	char*	which	points	to	the	name	of	an	encoding
as	 a	 NUL-terminated	 string,	 or	 NULL,	 in	 which	 case	 'utf-8'
encoding	is	used.	An	exception	is	raised	if	the	named	encoding	is
not	 known	 to	Python.	 The	 second	 argument	must	 be	 a	 char**;
the	value	of	the	pointer	it	references	will	be	set	to	a	buffer	with	the
contents	 of	 the	 argument	 text.	 The	 text	 will	 be	 encoded	 in	 the
encoding	specified	by	the	first	argument.	The	third	argument	must
be	a	pointer	to	an	integer;	the	referenced	integer	will	be	set	to	the
number	of	bytes	in	the	output	buffer.

There	are	two	modes	of	operation:

If	*buffer	points	a	NULL	pointer,	the	function	will	allocate	a	buffer	of
the	 needed	 size,	 copy	 the	 encoded	 data	 into	 this	 buffer	 and	 set
*buffer	 to	 reference	 the	 newly	 allocated	 storage.	 The	 caller	 is
responsible	for	calling	PyMem_Free()	to	free	the	allocated	buffer
after	usage.

If	*buffer	points	to	a	non-NULL	pointer	(an	already	allocated	buffer),
PyArg_ParseTuple()	 will	 use	 this	 location	 as	 the	 buffer	 and
interpret	the	initial	value	of	*buffer_length	as	the	buffer	size.	It	will
then	copy	the	encoded	data	into	the	buffer	and	NUL-terminate	it.	If
the	buffer	is	not	large	enough,	a	ValueError	will	be	set.

In	 both	 cases,	 *buffer_length	 is	 set	 to	 the	 length	 of	 the	 encoded
data	without	the	trailing	NUL	byte.

et#	(str,	bytes	or	bytearray)	[const	char	*encoding,	char
**buffer,	int	*buffer_length]

Same	as	es#	 except	 that	byte	string	objects	are	passed	 through
without	 recoding	 them.	 Instead,	 the	 implementation	assumes	 that
the	byte	string	object	uses	the	encoding	passed	in	as	parameter.

Numbers

b	(int)	[unsigned	char]
Convert	 a	 nonnegative	 Python	 integer	 to	 an	 unsigned	 tiny	 int,
stored	in	a	C	unsigned	char.

B	(int)	[unsigned	char]
Convert	 a	 Python	 integer	 to	 a	 tiny	 int	 without	 overflow	 checking,
stored	in	a	C	unsigned	char.

h	(int)	[short	int]
Convert	a	Python	integer	to	a	C	short	int.

H	(int)	[unsigned	short	int]
Convert	a	Python	integer	to	a	C	unsigned	short	int,	without
overflow	checking.

i	(int)	[int]
Convert	a	Python	integer	to	a	plain	C	int.

I	(int)	[unsigned	int]
Convert	a	Python	integer	to	a	C	unsigned	int,	without	overflow
checking.

l	(int)	[long	int]
Convert	a	Python	integer	to	a	C	long	int.

k	(int)	[unsigned	long]
Convert	a	Python	integer	to	a	C	unsigned	long	without	overflow
checking.

L	(int)	[PY_LONG_LONG]
Convert	a	Python	 integer	 to	a	C	long	long.	This	 format	 is	only
available	 on	 platforms	 that	 support	 long	 long	 (or	 _int64	 on
Windows).

K	(int)	[unsigned	PY_LONG_LONG]
Convert	a	Python	 integer	 to	a	C	unsigned	long	long	without

overflow	checking.	This	 format	 is	 only	 available	 on	platforms	 that
support	 unsigned	 long	 long	 (or	 unsigned	 _int64	 on
Windows).

n	(int)	[Py_ssize_t]
Convert	a	Python	integer	to	a	C	Py_ssize_t.

c	(bytes	or	bytearray	of	length	1)	[char]
Convert	 a	 Python	 byte,	 represented	 as	 a	 bytes	 or	 bytearray
object	of	length	1,	to	a	C	char.

Changed	in	version	3.3:	Allow	bytearray	objects.

C	(str	of	length	1)	[int]
Convert	a	Python	character,	represented	as	a	str	object	of	length
1,	to	a	C	int.

f	(float)	[float]
Convert	a	Python	floating	point	number	to	a	C	float.

d	(float)	[double]
Convert	a	Python	floating	point	number	to	a	C	double.

D	(complex)	[Py_complex]
Convert	a	Python	complex	number	to	a	C	Py_complex	structure.

Other	objects

O	(object)	[PyObject	*]
Store	 a	 Python	 object	 (without	 any	 conversion)	 in	 a	 C	 object
pointer.	 The	 C	 program	 thus	 receives	 the	 actual	 object	 that	 was
passed.	The	object’s	reference	count	is	not	increased.	The	pointer
stored	is	not	NULL.

O!	(object)	[typeobject,	PyObject	*]
Store	a	Python	object	in	a	C	object	pointer.	This	is	similar	to	O,	but
takes	 two	C	arguments:	 the	 first	 is	 the	 address	 of	 a	Python	 type

object,	 the	 second	 is	 the	 address	 of	 the	 C	 variable	 (of	 type
PyObject*)	 into	which	 the	object	pointer	 is	stored.	 If	 the	Python
object	does	not	have	the	required	type,	TypeError	is	raised.

O&	(object)	[converter,	anything]
Convert	 a	 Python	 object	 to	 a	 C	 variable	 through	 a	 converter
function.	 This	 takes	 two	 arguments:	 the	 first	 is	 a	 function,	 the
second	is	the	address	of	a	C	variable	(of	arbitrary	type),	converted
to	void	*.	The	converter	function	in	turn	is	called	as	follows:

status	=	converter(object,	address);

where	object	 is	 the	Python	object	 to	be	converted	and	address	 is
the	 void*	 argument	 that	 was	 passed	 to	 the	 PyArg_Parse*()
function.	 The	 returned	 status	 should	 be	 1	 for	 a	 successful
conversion	and	0	if	the	conversion	has	failed.	When	the	conversion
fails,	 the	 converter	 function	 should	 raise	 an	 exception	 and	 leave
the	content	of	address	unmodified.

If	 the	 converter	 returns	 Py_CLEANUP_SUPPORTED,	 it	 may	 get
called	a	second	time	if	the	argument	parsing	eventually	fails,	giving
the	converter	a	chance	to	release	any	memory	that	 it	had	already
allocated.	 In	 this	 second	 call,	 the	object	 parameter	will	 be	NULL;
address	will	have	the	same	value	as	in	the	original	call.

Changed	in	version	3.1:	Py_CLEANUP_SUPPORTED	was	added.

p	(bool)	[int]
Tests	 the	 value	 passed	 in	 for	 truth	 (a	 boolean	 predicate)	 and
converts	the	result	to	its	equivalent	C	true/false	integer	value.	Sets
the	 int	 to	 1	 if	 the	 expression	was	 true	 and	 0	 if	 it	 was	 false.	 This
accepts	any	valid	Python	value.	See	Truth	Value	Testing	 for	more
information	about	how	Python	tests	values	for	truth.

New	in	version	3.3.

(items)	(tuple)	[matching-items]
The	 object	 must	 be	 a	 Python	 sequence	 whose	 length	 is	 the
number	of	format	units	in	items.	The	C	arguments	must	correspond
to	the	individual	 format	units	 in	 items.	Format	units	 for	sequences
may	be	nested.

It	 is	 possible	 to	 pass	 “long”	 integers	 (integers	whose	 value	 exceeds
the	platform’s	LONG_MAX)	however	no	proper	range	checking	is	done
—	 the	most	 significant	 bits	 are	 silently	 truncated	when	 the	 receiving
field	 is	 too	 small	 to	 receive	 the	 value	 (actually,	 the	 semantics	 are
inherited	from	downcasts	in	C	—	your	mileage	may	vary).

A	few	other	characters	have	a	meaning	in	a	format	string.	These	may
not	occur	inside	nested	parentheses.	They	are:

|

Indicates	that	the	remaining	arguments	in	the	Python	argument	list
are	optional.	The	C	variables	corresponding	to	optional	arguments
should	 be	 initialized	 to	 their	 default	 value	 —	 when	 an	 optional
argument	is	not	specified,	PyArg_ParseTuple()	does	not	touch
the	contents	of	the	corresponding	C	variable(s).

$

PyArg_ParseTupleAndKeywords()	 only:	 Indicates	 that	 the
remaining	arguments	in	the	Python	argument	list	are	keyword-only.
Currently,	 all	 keyword-only	 arguments	 must	 also	 be	 optional
arguments,	so	|	must	always	be	specified	before	$	 in	 the	format
string.

New	in	version	3.3.

:

The	list	of	format	units	ends	here;	the	string	after	the	colon	is	used

as	the	function	name	in	error	messages	(the	“associated	value”	of
the	exception	that	PyArg_ParseTuple()	raises).

;

The	list	of	format	units	ends	here;	the	string	after	the	semicolon	is
used	as	the	error	message	instead	of	the	default	error	message.	:
and	;	mutually	exclude	each	other.

Note	 that	 any	 Python	 object	 references	 which	 are	 provided	 to	 the
caller	 are	 borrowed	 references;	 do	 not	 decrement	 their	 reference
count!

Additional	arguments	passed	to	these	functions	must	be	addresses	of
variables	 whose	 type	 is	 determined	 by	 the	 format	 string;	 these	 are
used	 to	store	values	 from	 the	 input	 tuple.	There	are	a	 few	cases,	as
described	in	the	list	of	format	units	above,	where	these	parameters	are
used	 as	 input	 values;	 they	 should	 match	 what	 is	 specified	 for	 the
corresponding	format	unit	in	that	case.

For	the	conversion	to	succeed,	the	arg	object	must	match	the	format
and	the	format	must	be	exhausted.	On	success,	 the	PyArg_Parse*
()	 functions	 return	 true,	 otherwise	 they	 return	 false	 and	 raise	 an
appropriate	exception.	When	the	PyArg_Parse*()	functions	fail	due
to	 conversion	 failure	 in	 one	 of	 the	 format	 units,	 the	 variables	 at	 the
addresses	corresponding	to	that	and	the	following	format	units	are	left
untouched.

API	Functions

int	PyArg_ParseTuple(PyObject	*args,	const	char	*format,	...)
Parse	 the	 parameters	 of	 a	 function	 that	 takes	 only	 positional
parameters	 into	 local	 variables.	 Returns	 true	 on	 success;	 on
failure,	it	returns	false	and	raises	the	appropriate	exception.

int	PyArg_VaParse(PyObject	*args,	const	char	*format,
va_list	vargs)

Identical	 to	 PyArg_ParseTuple(),	 except	 that	 it	 accepts	 a
va_list	rather	than	a	variable	number	of	arguments.

int	PyArg_ParseTupleAndKeywords(PyObject	*args,
PyObject	*kw,	const	char	*format,	char	*keywords[],	...)

Parse	 the	parameters	of	a	 function	 that	 takes	both	positional	and
keyword	parameters	into	local	variables.	Returns	true	on	success;
on	failure,	it	returns	false	and	raises	the	appropriate	exception.

int	PyArg_VaParseTupleAndKeywords(PyObject	*args,
PyObject	*kw,	const	char	*format,	char	*keywords[],	va_list	vargs)

Identical	 to	 PyArg_ParseTupleAndKeywords(),	 except	 that	 it
accepts	a	va_list	rather	than	a	variable	number	of	arguments.

int	PyArg_ValidateKeywordArguments(PyObject	*)
Ensure	 that	 the	 keys	 in	 the	 keywords	 argument	 dictionary	 are
strings.	 This	 is	 only	 needed	 if
PyArg_ParseTupleAndKeywords()	is	not	used,	since	the	latter
already	does	this	check.

New	in	version	3.2.

int	PyArg_Parse(PyObject	*args,	const	char	*format,	...)
Function	 used	 to	 deconstruct	 the	 argument	 lists	 of	 “old-style”
functions	 —	 these	 are	 functions	 which	 use	 the	 METH_OLDARGS
parameter	 parsing	 method.	 This	 is	 not	 recommended	 for	 use	 in
parameter	 parsing	 in	 new	 code,	 and	 most	 code	 in	 the	 standard
interpreter	 has	 been	 modified	 to	 no	 longer	 use	 this	 for	 that
purpose.	 It	 does	 remain	 a	 convenient	 way	 to	 decompose	 other
tuples,	however,	and	may	continue	to	be	used	for	that	purpose.

int	PyArg_UnpackTuple(PyObject	*args,	const	char	*name,
Py_ssize_t	min,	Py_ssize_t	max,	...)

A	simpler	form	of	parameter	retrieval	which	does	not	use	a	format
string	 to	specify	 the	 types	of	 the	arguments.	Functions	which	use
this	 method	 to	 retrieve	 their	 parameters	 should	 be	 declared	 as
METH_VARARGS	in	function	or	method	tables.	The	tuple	containing
the	actual	parameters	should	be	passed	as	args;	 it	must	actually
be	 a	 tuple.	 The	 length	 of	 the	 tuple	must	 be	 at	 least	min	 and	 no
more	than	max;	min	and	max	may	be	equal.	Additional	arguments
must	be	passed	to	the	function,	each	of	which	should	be	a	pointer
to	 a	 PyObject*	 variable;	 these	 will	 be	 filled	 in	 with	 the	 values
from	 args;	 they	 will	 contain	 borrowed	 references.	 The	 variables
which	correspond	to	optional	parameters	not	given	by	args	will	not
be	 filled	 in;	 these	should	be	 initialized	by	 the	caller.	This	 function
returns	true	on	success	and	false	if	args	is	not	a	tuple	or	contains
the	wrong	number	of	elements;	an	exception	will	be	set	if	there	was
a	failure.

This	 is	 an	 example	 of	 the	 use	 of	 this	 function,	 taken	 from	 the
sources	for	the	_weakref	helper	module	for	weak	references:

static	PyObject	*

weakref_ref(PyObject	*self,	PyObject	*args)

{

				PyObject	*object;

				PyObject	*callback	=	NULL;

				PyObject	*result	=	NULL;

				if	(PyArg_UnpackTuple(args,	"ref",	1,	2,	&object

								result	=	PyWeakref_NewRef(object,	callback

				}

				return	result;

}

The	 call	 to	 PyArg_UnpackTuple()	 in	 this	 example	 is	 entirely
equivalent	to	this	call	to	PyArg_ParseTuple():

PyArg_ParseTuple(args,	"O|O:ref",	&object,	&callback

Building	values

PyObject*	Py_BuildValue(const	char	*format,	...)
Return	value:	New	reference.
Create	 a	 new	 value	 based	 on	 a	 format	 string	 similar	 to	 those
accepted	 by	 the	 PyArg_Parse*()	 family	 of	 functions	 and	 a
sequence	of	values.	Returns	the	value	or	NULL	 in	 the	case	of	an
error;	an	exception	will	be	raised	if	NULL	is	returned.

Py_BuildValue()	does	not	always	build	a	tuple.	It	builds	a	tuple
only	 if	 its	 format	 string	 contains	 two	 or	 more	 format	 units.	 If	 the
format	 string	 is	 empty,	 it	 returns	 None;	 if	 it	 contains	 exactly	 one
format	unit,	 it	 returns	whatever	object	 is	 described	by	 that	 format
unit.	To	force	it	to	return	a	tuple	of	size	0	or	one,	parenthesize	the
format	string.

When	memory	buffers	are	passed	as	parameters	to	supply	data	to
build	 objects,	 as	 for	 the	 s	 and	 s#	 formats,	 the	 required	 data	 is
copied.	Buffers	provided	by	the	caller	are	never	referenced	by	the
objects	 created	 by	 Py_BuildValue().	 In	 other	 words,	 if	 your
code	 invokes	 malloc()	 and	 passes	 the	 allocated	 memory	 to
Py_BuildValue(),	your	code	 is	 responsible	 for	calling	free()
for	that	memory	once	Py_BuildValue()	returns.

In	the	following	description,	the	quoted	form	is	the	format	unit;	the
entry	 in	 (round)	 parentheses	 is	 the	 Python	 object	 type	 that	 the
format	unit	will	return;	and	the	entry	in	[square]	brackets	is	the	type
of	the	C	value(s)	to	be	passed.

The	characters	space,	tab,	colon	and	comma	are	ignored	in	format
strings	(but	not	within	format	units	such	as	s#).	This	can	be	used

to	make	long	format	strings	a	tad	more	readable.

s	(str	or	None)	[char	*]
Convert	a	null-terminated	C	string	to	a	Python	str	object	using
'utf-8'	 encoding.	 If	 the	 C	 string	 pointer	 is	NULL,	 None	 is
used.

s#	(str	or	None)	[char	*,	int]
Convert	a	C	string	and	its	length	to	a	Python	str	object	using
'utf-8'	encoding.	If	the	C	string	pointer	is	NULL,	the	length	is
ignored	and	None	is	returned.

y	(bytes)	[char	*]
This	 converts	 a	 C	 string	 to	 a	 Python	 bytes	 object.	 If	 the	 C
string	pointer	is	NULL,	None	is	returned.

y#	(bytes)	[char	*,	int]
This	converts	a	C	string	and	its	lengths	to	a	Python	object.	If	the
C	string	pointer	is	NULL,	None	is	returned.

z	(str	or	None)	[char	*]
Same	as	s.

z#	(str	or	None)	[char	*,	int]
Same	as	s#.

u	(str)	[Py_UNICODE	*]
Convert	a	null-terminated	buffer	of	Unicode	(UCS-2	or	UCS-4)
data	to	a	Python	Unicode	object.	If	the	Unicode	buffer	pointer	is
NULL,	None	is	returned.

u#	(str)	[Py_UNICODE	*,	int]
Convert	a	Unicode	(UCS-2	or	UCS-4)	data	buffer	and	its	length
to	 a	 Python	 Unicode	 object.	 If	 the	 Unicode	 buffer	 pointer	 is
NULL,	the	length	is	ignored	and	None	is	returned.

U	(str	or	None)	[char	*]

Same	as	s.

U#	(str	or	None)	[char	*,	int]
Same	as	s#.

i	(int)	[int]
Convert	a	plain	C	int	to	a	Python	integer	object.

b	(int)	[char]
Convert	a	plain	C	char	to	a	Python	integer	object.

h	(int)	[short	int]
Convert	a	plain	C	short	int	to	a	Python	integer	object.

l	(int)	[long	int]
Convert	a	C	long	int	to	a	Python	integer	object.

B	(int)	[unsigned	char]
Convert	a	C	unsigned	char	to	a	Python	integer	object.

H	(int)	[unsigned	short	int]
Convert	 a	 C	 unsigned	 short	 int	 to	 a	 Python	 integer
object.

I	(int)	[unsigned	int]
Convert	a	C	unsigned	int	to	a	Python	integer	object.

k	(int)	[unsigned	long]
Convert	a	C	unsigned	long	to	a	Python	integer	object.

L	(int)	[PY_LONG_LONG]
Convert	 a	 C	 long	 long	 to	 a	 Python	 integer	 object.	 Only
available	on	platforms	that	support	long	long	(or	_int64	on
Windows).

K	(int)	[unsigned	PY_LONG_LONG]
Convert	 a	 C	 unsigned	 long	 long	 to	 a	 Python	 integer
object.	 Only	 available	 on	 platforms	 that	 support	 unsigned

long	long	(or	unsigned	_int64	on	Windows).

n	(int)	[Py_ssize_t]
Convert	a	C	Py_ssize_t	to	a	Python	integer.

c	(bytes	of	length	1)	[char]
Convert	a	C	int	representing	a	byte	to	a	Python	bytes	object
of	length	1.

C	(str	of	length	1)	[int]
Convert	a	C	int	representing	a	character	to	Python	str	object
of	length	1.

d	(float)	[double]
Convert	a	C	double	to	a	Python	floating	point	number.

f	(float)	[float]
Convert	a	C	float	to	a	Python	floating	point	number.

D	(complex)	[Py_complex	*]
Convert	 a	 C	 Py_complex	 structure	 to	 a	 Python	 complex
number.

O	(object)	[PyObject	*]
Pass	a	Python	object	untouched	(except	for	its	reference	count,
which	is	incremented	by	one).	If	the	object	passed	in	is	a	NULL
pointer,	 it	 is	 assumed	 that	 this	 was	 caused	 because	 the	 call
producing	 the	 argument	 found	 an	 error	 and	 set	 an	 exception.
Therefore,	Py_BuildValue()	will	return	NULL	but	won’t	raise
an	 exception.	 If	 no	 exception	 has	 been	 raised	 yet,
SystemError	is	set.

S	(object)	[PyObject	*]
Same	as	O.

N	(object)	[PyObject	*]
Same	as	O,	except	it	doesn’t	increment	the	reference	count	on

the	 object.	 Useful	 when	 the	 object	 is	 created	 by	 a	 call	 to	 an
object	constructor	in	the	argument	list.

O&	(object)	[converter,	anything]
Convert	 anything	 to	 a	 Python	 object	 through	 a	 converter
function.	The	 function	 is	called	with	anything	 (which	should	be
compatible	with	void	*)	as	 its	argument	and	should	 return	a
“new”	Python	object,	or	NULL	if	an	error	occurred.

(items)	(tuple)	[matching-items]
Convert	 a	 sequence	 of	 C	 values	 to	 a	 Python	 tuple	 with	 the
same	number	of	items.

[items]	(list)	[matching-items]
Convert	a	sequence	of	C	values	to	a	Python	list	with	the	same
number	of	items.

{items}	(dict)	[matching-items]
Convert	 a	 sequence	of	C	 values	 to	 a	Python	dictionary.	Each
pair	 of	 consecutive	 C	 values	 adds	 one	 item	 to	 the	 dictionary,
serving	as	key	and	value,	respectively.

If	 there	 is	 an	 error	 in	 the	 format	 string,	 the	 SystemError
exception	is	set	and	NULL	returned.

PyObject*	Py_VaBuildValue(const	char	*format,	va_list	vargs)
Identical	 to	 Py_BuildValue(),	 except	 that	 it	 accepts	 a	 va_list
rather	than	a	variable	number	of	arguments.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

http://www.python.org/

String	conversion	and	formatting
Functions	for	number	conversion	and	formatted	string	output.

int	PyOS_snprintf(char	*str,	size_t	size,	const	char	*format,	...)
Output	 not	 more	 than	 size	 bytes	 to	 str	 according	 to	 the	 format
string	 format	 and	 the	 extra	 arguments.	 See	 the	 Unix	 man	 page
snprintf(2).

int	PyOS_vsnprintf(char	*str,	size_t	size,	const	char	*format,
va_list	va)

Output	 not	 more	 than	 size	 bytes	 to	 str	 according	 to	 the	 format
string	 format	 and	 the	 variable	 argument	 list	 va.	 Unix	 man	 page
vsnprintf(2).

PyOS_snprintf()	and	PyOS_vsnprintf()	wrap	 the	Standard	C
library	functions	snprintf()	and	vsnprintf().	Their	purpose	is	to
guarantee	consistent	behavior	in	corner	cases,	which	the	Standard	C
functions	do	not.

The	 wrappers	 ensure	 that	 str*[*size-1]	 is	 always	 '\0'	 upon	 return.
They	 never	 write	 more	 than	 size	 bytes	 (including	 the	 trailing	 '\0')
into	 str.	Both	 functions	 require	 that	 str	!=	NULL,	 size	>	0	 and
format	!=	NULL.

If	the	platform	doesn’t	have	vsnprintf()	and	the	buffer	size	needed
to	 avoid	 truncation	 exceeds	 size	 by	 more	 than	 512	 bytes,	 Python
aborts	with	a	Py_FatalError.

The	 return	 value	 (rv)	 for	 these	 functions	 should	 be	 interpreted	 as
follows:

When	0	<=	rv	<	size,	 the	output	conversion	was	successful
and	rv	characters	were	written	to	str	 (excluding	the	trailing	'\0'
byte	at	str*[*rv]).
When	rv	>=	size,	 the	output	conversion	was	truncated	and	a
buffer	with	rv	+	1	bytes	would	have	been	needed	 to	succeed.
str*[*size-1]	is	'\0'	in	this	case.
When	rv	<	0,	 “something	bad	happened.”	str*[*size-1]	 is	'\0'
in	this	case	too,	but	the	rest	of	str	 is	undefined.	The	exact	cause
of	the	error	depends	on	the	underlying	platform.

The	 following	 functions	 provide	 locale-independent	 string	 to	 number
conversions.

double	PyOS_string_to_double(const	char	*s,	char	**endptr,
PyObject	*overflow_exception)

Convert	 a	 string	 s	 to	 a	 double,	 raising	 a	 Python	 exception	 on
failure.	The	set	of	accepted	strings	corresponds	to	the	set	of	strings
accepted	by	Python’s	float()	constructor,	except	that	s	must	not
have	leading	or	trailing	whitespace.	The	conversion	is	independent
of	the	current	locale.

If	endptr	is	NULL,	convert	the	whole	string.	Raise	ValueError	and
return	-1.0	 if	the	string	is	not	a	valid	representation	of	a	floating-
point	number.

If	endptr	is	not	NULL,	convert	as	much	of	the	string	as	possible	and
set	*endptr	to	point	to	the	first	unconverted	character.	If	no	initial
segment	of	the	string	is	the	valid	representation	of	a	floating-point
number,	set	*endptr	to	point	to	the	beginning	of	the	string,	raise
ValueError,	and	return	-1.0.

If	 s	 represents	 a	 value	 that	 is	 too	 large	 to	 store	 in	 a	 float	 (for

example,	 "1e500"	 is	 such	 a	 string	 on	 many	 platforms)	 then	 if
overflow_exception	 is	 NULL	 return	 Py_HUGE_VAL	 (with	 an
appropriate	 sign)	 and	 don’t	 set	 any	 exception.	 Otherwise,
overflow_exception	must	point	 to	a	Python	exception	object;
raise	that	exception	and	return	-1.0.	In	both	cases,	set	*endptr
to	point	to	the	first	character	after	the	converted	value.

If	any	other	error	occurs	during	the	conversion	(for	example	an	out-
of-memory	error),	set	the	appropriate	Python	exception	and	return
-1.0.

New	in	version	3.1.

char*	PyOS_double_to_string(double	val,	char	format_code,
int	precision,	int	flags,	int	*ptype)

Convert	 a	 double	 val	 to	 a	 string	 using	 supplied	 format_code,
precision,	and	flags.

format_code	must	 be	 one	 of	 'e',	 'E',	 'f',	 'F',	 'g',	 'G'	 or
'r'.	 For	 'r',	 the	 supplied	 precision	 must	 be	 0	 and	 is	 ignored.
The	'r'	format	code	specifies	the	standard	repr()	format.

flags	 can	 be	 zero	 or	 more	 of	 the	 values	 Py_DTSF_SIGN,
Py_DTSF_ADD_DOT_0,	or	Py_DTSF_ALT,	or-ed	together:

Py_DTSF_SIGN	means	to	always	precede	the	returned	string
with	a	sign	character,	even	if	val	is	non-negative.
Py_DTSF_ADD_DOT_0	 means	 to	 ensure	 that	 the	 returned
string	will	not	look	like	an	integer.
Py_DTSF_ALT	 means	 to	 apply	 “alternate”	 formatting	 rules.
See	 the	 documentation	 for	 the	 PyOS_snprintf()	 '#'
specifier	for	details.

If	ptype	is	non-NULL,	then	the	value	it	points	to	will	be	set	to	one	of

Py_DTST_FINITE,	 Py_DTST_INFINITE,	 or	 Py_DTST_NAN,
signifying	 that	val	 is	 a	 finite	 number,	 an	 infinite	 number,	 or	 not	 a
number,	respectively.

The	return	value	 is	a	pointer	to	buffer	with	 the	converted	string	or
NULL	 if	 the	conversion	failed.	The	caller	 is	responsible	for	freeing
the	returned	string	by	calling	PyMem_Free().

New	in	version	3.1.

int	PyOS_stricmp(char	*s1,	char	*s2)
Case	insensitive	comparison	of	strings.	The	function	works	almost
identically	to	strcmp()	except	that	it	ignores	the	case.

int	PyOS_strnicmp(char	*s1,	char	*s2,	Py_ssize_t		size)
Case	insensitive	comparison	of	strings.	The	function	works	almost
identically	to	strncmp()	except	that	it	ignores	the	case.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

http://www.python.org/

Reflection
PyObject*	PyEval_GetBuiltins()

Return	value:	Borrowed	reference.
Return	a	dictionary	of	the	builtins	in	the	current	execution	frame,	or
the	interpreter	of	the	thread	state	if	no	frame	is	currently	executing.

PyObject*	PyEval_GetLocals()
Return	value:	Borrowed	reference.
Return	a	dictionary	of	 the	 local	 variables	 in	 the	 current	 execution
frame,	or	NULL	if	no	frame	is	currently	executing.

PyObject*	PyEval_GetGlobals()
Return	value:	Borrowed	reference.
Return	a	dictionary	of	the	global	variables	in	the	current	execution
frame,	or	NULL	if	no	frame	is	currently	executing.

PyFrameObject*	PyEval_GetFrame()
Return	value:	Borrowed	reference.
Return	the	current	thread	state’s	frame,	which	is	NULL	if	no	frame
is	currently	executing.

int	PyFrame_GetLineNumber(PyFrameObject	*frame)
Return	the	line	number	that	frame	is	currently	executing.

const	char*	PyEval_GetFuncName(PyObject	*func)
Return	the	name	of	func	if	it	is	a	function,	class	or	instance	object,
else	the	name	of	funcs	type.

const	char*	PyEval_GetFuncDesc(PyObject	*func)
Return	a	description	string,	depending	on	the	type	of	func.	Return

values	 include	 “()”	 for	 functions	 and	 methods,	 ”	 constructor”,	 ”
instance”,	 and	 ”	 object”.	 Concatenated	 with	 the	 result	 of
PyEval_GetFuncName(),	the	result	will	be	a	description	of	func.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

http://www.python.org/

Codec	registry	and	support
functions
int	PyCodec_Register(PyObject	*search_function)

Register	a	new	codec	search	function.

As	side	effect,	this	tries	to	load	the	encodings	package,	if	not	yet
done,	 to	 make	 sure	 that	 it	 is	 always	 first	 in	 the	 list	 of	 search
functions.

int	PyCodec_KnownEncoding(const	char	*encoding)
Return	1	or	0	depending	on	whether	there	is	a	registered	codec	for
the	given	encoding.

PyObject*	PyCodec_Encode(PyObject	*object,	const
char	*encoding,	const	char	*errors)

Generic	codec	based	encoding	API.

object	 is	passed	 through	 the	encoder	 function	 found	 for	 the	given
encoding	using	the	error	handling	method	defined	by	errors.	errors
may	 be	NULL	 to	 use	 the	 default	 method	 defined	 for	 the	 codec.
Raises	a	LookupError	if	no	encoder	can	be	found.

PyObject*	PyCodec_Decode(PyObject	*object,	const
char	*encoding,	const	char	*errors)

Generic	codec	based	decoding	API.

object	 is	passed	 through	 the	decoder	 function	 found	 for	 the	given
encoding	using	the	error	handling	method	defined	by	errors.	errors
may	 be	NULL	 to	 use	 the	 default	 method	 defined	 for	 the	 codec.
Raises	a	LookupError	if	no	encoder	can	be	found.

Codec	lookup	API

In	 the	following	functions,	 the	encoding	string	 is	 looked	up	converted
to	 all	 lower-case	 characters,	 which	 makes	 encodings	 looked	 up
through	 this	 mechanism	 effectively	 case-insensitive.	 If	 no	 codec	 is
found,	a	KeyError	is	set	and	NULL	returned.

PyObject*	PyCodec_Encoder(const	char	*encoding)
Get	an	encoder	function	for	the	given	encoding.

PyObject*	PyCodec_Decoder(const	char	*encoding)
Get	a	decoder	function	for	the	given	encoding.

PyObject*	PyCodec_IncrementalEncoder(const
char	*encoding,	const	char	*errors)

Get	an	IncrementalEncoder	object	for	the	given	encoding.

PyObject*	PyCodec_IncrementalDecoder(const
char	*encoding,	const	char	*errors)

Get	an	IncrementalDecoder	object	for	the	given	encoding.

PyObject*	PyCodec_StreamReader(const	char	*encoding,
PyObject	*stream,	const	char	*errors)

Get	a	StreamReader	factory	function	for	the	given	encoding.

PyObject*	PyCodec_StreamWriter(const	char	*encoding,
PyObject	*stream,	const	char	*errors)

Get	a	StreamWriter	factory	function	for	the	given	encoding.

Registry	API	for	Unicode	encoding	error
handlers

int	PyCodec_RegisterError(const	char	*name,
PyObject	*error)

Register	the	error	handling	callback	function	error	under	the	given
name.	 This	 callback	 function	 will	 be	 called	 by	 a	 codec	 when	 it
encounters	unencodable	characters/undecodable	bytes	and	name
is	specified	as	the	error	parameter	in	the	call	to	the	encode/decode
function.

The	 callback	 gets	 a	 single	 argument,	 an	 instance	 of
UnicodeEncodeError,	 UnicodeDecodeError	 or
UnicodeTranslateError	 that	 holds	 information	 about	 the
problematic	sequence	of	characters	or	bytes	and	their	offset	in	the
original	 string	 (see	 Unicode	 Exception	 Objects	 for	 functions	 to
extract	 this	 information).	The	 callback	must	 either	 raise	 the	given
exception,	or	return	a	two-item	tuple	containing	the	replacement	for
the	problematic	 sequence,	 and	an	 integer	 giving	 the	offset	 in	 the
original	string	at	which	encoding/decoding	should	be	resumed.

Return	0	on	success,	-1	on	error.

PyObject*	PyCodec_LookupError(const	char	*name)
Lookup	the	error	handling	callback	function	registered	under	name.
As	 a	 special	 case	NULL	 can	 be	 passed,	 in	which	 case	 the	 error
handling	callback	for	“strict”	will	be	returned.

PyObject*	PyCodec_StrictErrors(PyObject	*exc)
Raise	exc	as	an	exception.

PyObject*	PyCodec_IgnoreErrors(PyObject	*exc)
Ignore	the	unicode	error,	skipping	the	faulty	input.

PyObject*	PyCodec_ReplaceErrors(PyObject	*exc)
Replace	the	unicode	encode	error	with	?	or	U+FFFD.

PyObject*
PyCodec_XMLCharRefReplaceErrors(PyObject	*exc)

Replace	the	unicode	encode	error	with	XML	character	references.

PyObject*
PyCodec_BackslashReplaceErrors(PyObject	*exc)

Replace	the	unicode	encode	error	with	backslash	escapes	(\x,	\u
and	\U).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Utilities	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Abstract	Objects	Layer
The	functions	in	this	chapter	interact	with	Python	objects	regardless	of
their	 type,	 or	 with	 wide	 classes	 of	 object	 types	 (e.g.	 all	 numerical
types,	 or	 all	 sequence	 types).	When	 used	 on	 object	 types	 for	which
they	do	not	apply,	they	will	raise	a	Python	exception.

It	is	not	possible	to	use	these	functions	on	objects	that	are	not	properly
initialized,	 such	 as	 a	 list	 object	 that	 has	 been	 created	 by
PyList_New(),	 but	 whose	 items	 have	 not	 been	 set	 to	 some	 non-
NULL	value	yet.

Object	Protocol
Number	Protocol
Sequence	Protocol
Mapping	Protocol
Iterator	Protocol
Buffer	Protocol

Buffer	structure
Buffer	request	types

request-independent	fields
readonly,	format
shape,	strides,	suboffsets
contiguity	requests
compound	requests

Complex	arrays
NumPy-style:	shape	and	strides
PIL-style:	shape,	strides	and	suboffsets

Buffer-related	functions
Old	Buffer	Protocol

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

http://www.python.org/

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

http://www.python.org/

Object	Protocol
PyObject*	Py_NotImplemented

The	NotImplemented	singleton,	used	to	signal	that	an	operation
is	not	implemented	for	the	given	type	combination.

Py_RETURN_NOTIMPLEMENTED

Properly	 handle	 returning	 Py_NotImplemented	 from	within	 a	C
function	(that	is,	increment	the	reference	count	of	NotImplemented
and	return	it).

int	PyObject_Print(PyObject	*o,	FILE	*fp,	int	flags)
Print	 an	 object	 o,	 on	 file	 fp.	 Returns	 -1	 on	 error.	 The	 flags
argument	is	used	to	enable	certain	printing	options.	The	only	option
currently	supported	is	Py_PRINT_RAW;	 if	given,	 the	str()	of	 the
object	is	written	instead	of	the	repr().

int	PyObject_HasAttr(PyObject	*o,	PyObject	*attr_name)
Returns	1	if	o	has	the	attribute	attr_name,	and	0	otherwise.	This	is
equivalent	 to	 the	Python	expression	hasattr(o,	attr_name).
This	function	always	succeeds.

int	PyObject_HasAttrString(PyObject	*o,	const
char	*attr_name)

Returns	1	if	o	has	the	attribute	attr_name,	and	0	otherwise.	This	is
equivalent	 to	 the	Python	expression	hasattr(o,	attr_name).
This	function	always	succeeds.

PyObject*	PyObject_GetAttr(PyObject	*o,
PyObject	*attr_name)

Return	value:	New	reference.

Retrieve	an	attribute	named	attr_name	 from	object	o.	Returns	the
attribute	 value	 on	 success,	 or	 NULL	 on	 failure.	 This	 is	 the
equivalent	of	the	Python	expression	o.attr_name.

PyObject*	PyObject_GetAttrString(PyObject	*o,	const
char	*attr_name)

Return	value:	New	reference.
Retrieve	an	attribute	named	attr_name	 from	object	o.	Returns	the
attribute	 value	 on	 success,	 or	 NULL	 on	 failure.	 This	 is	 the
equivalent	of	the	Python	expression	o.attr_name.

PyObject*	PyObject_GenericGetAttr(PyObject	*o,
PyObject	*name)

Generic	attribute	getter	function	that	is	meant	to	be	put	into	a	type
object’s	 tp_getattro	 slot.	 It	 looks	 for	 a	 descriptor	 in	 the
dictionary	of	classes	in	the	object’s	MRO	as	well	as	an	attribute	in
the	 object’s	 __dict__	 (if	 present).	 As	 outlined	 in	 Implementing
Descriptors,	 data	 descriptors	 take	 preference	 over	 instance
attributes,	 while	 non-data	 descriptors	 don’t.	 Otherwise,	 an
AttributeError	is	raised.

int	PyObject_SetAttr(PyObject	*o,	PyObject	*attr_name,
PyObject	*v)

Set	the	value	of	the	attribute	named	attr_name,	for	object	o,	to	the
value	v.	Returns	-1	on	failure.	This	is	the	equivalent	of	the	Python
statement	o.attr_name	=	v.

int	PyObject_SetAttrString(PyObject	*o,	const
char	*attr_name,	PyObject	*v)

Set	the	value	of	the	attribute	named	attr_name,	for	object	o,	to	the
value	v.	Returns	-1	on	failure.	This	is	the	equivalent	of	the	Python
statement	o.attr_name	=	v.

int	PyObject_GenericSetAttr(PyObject	*o,	PyObject	*name,
PyObject	*value)

Generic	attribute	setter	function	that	is	meant	to	be	put	into	a	type
object’s	 tp_setattro	 slot.	 It	 looks	 for	 a	 data	 descriptor	 in	 the
dictionary	 of	 classes	 in	 the	 object’s	 MRO,	 and	 if	 found	 it	 takes
preference	 over	 setting	 the	 attribute	 in	 the	 instance	 dictionary.
Otherwise,	 the	 attribute	 is	 set	 in	 the	 object’s	 __dict__	 (if
present).	 Otherwise,	 an	 AttributeError	 is	 raised	 and	 -1	 is
returned.

int	PyObject_DelAttr(PyObject	*o,	PyObject	*attr_name)
Delete	 attribute	 named	 attr_name,	 for	 object	 o.	 Returns	 -1	 on
failure.	 This	 is	 the	 equivalent	 of	 the	 Python	 statement	 del
o.attr_name.

int	PyObject_DelAttrString(PyObject	*o,	const
char	*attr_name)

Delete	 attribute	 named	 attr_name,	 for	 object	 o.	 Returns	 -1	 on
failure.	 This	 is	 the	 equivalent	 of	 the	 Python	 statement	 del
o.attr_name.

PyObject*	PyType_GenericGetDict(PyObject	*o,
void	*context)

A	generic	implementation	for	the	getter	of	a	__dict__	descriptor.
It	creates	the	dictionary	if	necessary.

New	in	version	3.3.

int	PyType_GenericSetDict(PyObject	*o,	void	*context)
A	generic	implementation	for	the	setter	of	a	__dict__	descriptor.
This	implementation	does	not	allow	the	dictionary	to	be	deleted.

New	in	version	3.3.

PyObject*	PyObject_RichCompare(PyObject	*o1,
PyObject	*o2,	int	opid)

Return	value:	New	reference.
Compare	the	values	of	o1	and	o2	using	the	operation	specified	by
opid,	 which	 must	 be	 one	 of	 Py_LT,	 Py_LE,	 Py_EQ,	 Py_NE,
Py_GT,	 or	 Py_GE,	 corresponding	 to	 <,	 <=,	 ==,	 !=,	 >,	 or	 >=
respectively.	This	is	the	equivalent	of	the	Python	expression	o1	op
o2,	where	op	 is	 the	 operator	 corresponding	 to	opid.	Returns	 the
value	of	the	comparison	on	success,	or	NULL	on	failure.

int	PyObject_RichCompareBool(PyObject	*o1,	PyObject	*o2,
int	opid)

Compare	the	values	of	o1	and	o2	using	the	operation	specified	by
opid,	 which	 must	 be	 one	 of	 Py_LT,	 Py_LE,	 Py_EQ,	 Py_NE,
Py_GT,	 or	 Py_GE,	 corresponding	 to	 <,	 <=,	 ==,	 !=,	 >,	 or	 >=
respectively.	 Returns	 -1	 on	 error,	 0	 if	 the	 result	 is	 false,	 1
otherwise.	This	 is	 the	equivalent	of	 the	Python	expression	o1	op
o2,	where	op	is	the	operator	corresponding	to	opid.

Note: 	If	o1	and	o2	are	the	same	object,
PyObject_RichCompareBool()	will	always	return	1	for	Py_EQ
and	0	for	Py_NE.

PyObject*	PyObject_Repr(PyObject	*o)
Return	value:	New	reference.
Compute	 a	 string	 representation	 of	 object	 o.	 Returns	 the	 string
representation	on	success,	NULL	on	failure.	This	is	the	equivalent
of	the	Python	expression	repr(o).	Called	by	the	repr()	built-in
function.

Changed	 in	 version	 3.4:	 This	 function	 now	 includes	 a	 debug
assertion	 to	help	ensure	 that	 it	does	not	silently	discard	an	active
exception.

PyObject*	PyObject_ASCII(PyObject	*o)
As	PyObject_Repr(),	compute	a	string	representation	of	object
o,	 but	 escape	 the	 non-ASCII	 characters	 in	 the	 string	 returned	 by
PyObject_Repr()	with	\x,	\u	or	\U	escapes.	This	generates	a
string	similar	to	that	returned	by	PyObject_Repr()	 in	Python	2.
Called	by	the	ascii()	built-in	function.

PyObject*	PyObject_Str(PyObject	*o)
Return	value:	New	reference.
Compute	 a	 string	 representation	 of	 object	 o.	 Returns	 the	 string
representation	on	success,	NULL	on	failure.	This	is	the	equivalent
of	 the	 Python	 expression	 str(o).	 Called	 by	 the	 str()	 built-in
function	and,	therefore,	by	the	print()	function.

Changed	 in	 version	 3.4:	 This	 function	 now	 includes	 a	 debug
assertion	 to	help	ensure	 that	 it	does	not	silently	discard	an	active
exception.

PyObject*	PyObject_Bytes(PyObject	*o)
Compute	a	bytes	 representation	of	object	o.	NULL	 is	 returned	on
failure	 and	 a	 bytes	 object	 on	 success.	 This	 is	 equivalent	 to	 the
Python	 expression	 bytes(o),	 when	 o	 is	 not	 an	 integer.	 Unlike
bytes(o),	a	TypeError	is	raised	when	o	is	an	integer	instead	of	a
zero-initialized	bytes	object.

int	PyObject_IsInstance(PyObject	*inst,	PyObject	*cls)
Returns	1	if	inst	is	an	instance	of	the	class	cls	or	a	subclass	of	cls,
or	0	 if	not.	On	error,	 returns	-1	and	sets	an	exception.	 If	cls	 is	a

type	object	rather	than	a	class	object,	PyObject_IsInstance()
returns	1	if	inst	is	of	type	cls.	If	cls	is	a	tuple,	the	check	will	be	done
against	every	entry	in	cls.	The	result	will	be	1	when	at	least	one	of
the	checks	 returns	 1,	 otherwise	 it	will	 be	 0.	 If	 inst	 is	 not	 a	 class
instance	and	cls	 is	neither	a	type	object,	nor	a	class	object,	nor	a
tuple,	 inst	 must	 have	 a	 __class__	 attribute	 —	 the	 class
relationship	 of	 the	 value	 of	 that	 attribute	 with	 cls	 will	 be	 used	 to
determine	the	result	of	this	function.

Subclass	 determination	 is	 done	 in	 a	 fairly	 straightforward	 way,	 but
includes	a	wrinkle	that	implementors	of	extensions	to	the	class	system
may	want	to	be	aware	of.	If	A	and	B	are	class	objects,	B	is	a	subclass
of	 A	 if	 it	 inherits	 from	 A	 either	 directly	 or	 indirectly.	 If	 either	 is	 not	 a
class	 object,	 a	 more	 general	 mechanism	 is	 used	 to	 determine	 the
class	relationship	of	the	two	objects.	When	testing	if	B	is	a	subclass	of
A,	 if	A	 is	B,	PyObject_IsSubclass()	 returns	 true.	 If	A	and	B	 are
different	objects,	B‘s	__bases__	attribute	is	searched	in	a	depth-first
fashion	 for	 A	 —	 the	 presence	 of	 the	 __bases__	 attribute	 is
considered	sufficient	for	this	determination.

int	PyObject_IsSubclass(PyObject	*derived,	PyObject	*cls)
Returns	 1	 if	 the	 class	derived	 is	 identical	 to	 or	 derived	 from	 the
class	cls,	otherwise	returns	0.	In	case	of	an	error,	returns	-1.	If	cls
is	 a	 tuple,	 the	 check	will	 be	 done	against	 every	 entry	 in	cls.	 The
result	 will	 be	 1	 when	 at	 least	 one	 of	 the	 checks	 returns	 1,
otherwise	it	will	be	0.	If	either	derived	or	cls	 is	not	an	actual	class
object	(or	tuple),	this	function	uses	the	generic	algorithm	described
above.

int	PyCallable_Check(PyObject	*o)
Determine	 if	 the	 object	 o	 is	 callable.	 Return	 1	 if	 the	 object	 is

callable	and	0	otherwise.	This	function	always	succeeds.

PyObject*	PyObject_Call(PyObject	*callable_object,
PyObject	*args,	PyObject	*kw)

Return	value:	New	reference.
Call	a	callable	Python	object	callable_object,	with	arguments	given
by	 the	 tuple	args,	 and	 named	 arguments	 given	 by	 the	 dictionary
kw.	 If	 no	 named	 arguments	 are	 needed,	 kw	may	 be	NULL.	 args
must	 not	 be	 NULL,	 use	 an	 empty	 tuple	 if	 no	 arguments	 are
needed.	 Returns	 the	 result	 of	 the	 call	 on	 success,	 or	 NULL	 on
failure.	 This	 is	 the	 equivalent	 of	 the	 Python	 expression
callable_object(*args,	**kw).

PyObject*	PyObject_CallObject(PyObject	*callable_object,
PyObject	*args)

Return	value:	New	reference.
Call	a	callable	Python	object	callable_object,	with	arguments	given
by	the	tuple	args.	 If	no	arguments	are	needed,	 then	args	may	be
NULL.	Returns	the	result	of	the	call	on	success,	or	NULL	on	failure.
This	 is	 the	 equivalent	 of	 the	 Python	 expression
callable_object(*args).

PyObject*	PyObject_CallFunction(PyObject	*callable,	const
char	*format,	...)

Return	value:	New	reference.
Call	a	callable	Python	object	callable,	with	a	variable	number	of	C
arguments.	 The	 C	 arguments	 are	 described	 using	 a
Py_BuildValue()	style	format	string.	The	format	may	be	NULL,
indicating	that	no	arguments	are	provided.	Returns	the	result	of	the
call	on	success,	or	NULL	 on	 failure.	This	 is	 the	equivalent	 of	 the
Python	expression	callable(*args).	Note	that	if	you	only	pass
PyObject	*	 args,	 PyObject_CallFunctionObjArgs()	 is	 a

faster	alternative.

Changed	 in	 version	 3.4:	 The	 type	 of	 format	 was	 changed	 from
char	*.

PyObject*	PyObject_CallMethod(PyObject	*o,	const
char	*method,	const	char	*format,	...)

Return	value:	New	reference.
Call	the	method	named	method	of	object	o	with	a	variable	number
of	 C	 arguments.	 The	 C	 arguments	 are	 described	 by	 a
Py_BuildValue()	format	string	that	should	produce	a	tuple.	The
format	may	 be	NULL,	 indicating	 that	 no	 arguments	 are	 provided.
Returns	the	result	of	the	call	on	success,	or	NULL	on	failure.	This
is	 the	 equivalent	 of	 the	 Python	 expression	 o.method(args).
Note	 that	 if	 you	 only	 pass	 PyObject	 *	 args,
PyObject_CallMethodObjArgs()	is	a	faster	alternative.

Changed	 in	 version	 3.4:	 The	 types	 of	method	 and	 format	 were
changed	from	char	*.

PyObject*
PyObject_CallFunctionObjArgs(PyObject	*callable,	...,
NULL)

Return	value:	New	reference.
Call	 a	 callable	 Python	 object	 callable,	 with	 a	 variable	 number	 of
PyObject*	arguments.	The	arguments	are	provided	as	a	variable
number	of	parameters	followed	by	NULL.	Returns	the	result	of	the
call	on	success,	or	NULL	on	failure.

PyObject*	PyObject_CallMethodObjArgs(PyObject	*o,
PyObject	*name,	...,	NULL)

Return	value:	New	reference.
Calls	a	method	of	 the	object	o,	where	 the	name	of	 the	method	 is

given	as	a	Python	string	object	in	name.	It	is	called	with	a	variable
number	of	PyObject*	arguments.	The	arguments	are	provided	as
a	 variable	 number	 of	 parameters	 followed	 by	NULL.	 Returns	 the
result	of	the	call	on	success,	or	NULL	on	failure.

Py_hash_t	PyObject_Hash(PyObject	*o)
Compute	 and	 return	 the	 hash	 value	 of	 an	 object	 o.	 On	 failure,
return	 -1.	 This	 is	 the	 equivalent	 of	 the	 Python	 expression
hash(o).

Changed	in	version	3.2:	The	return	type	is	now	Py_hash_t.	This	is
a	signed	integer	the	same	size	as	Py_ssize_t.

Py_hash_t	PyObject_HashNotImplemented(PyObject	*o)
Set	 a	 TypeError	 indicating	 that	 type(o)	 is	 not	 hashable	 and
return	-1.	This	function	receives	special	treatment	when	stored	in
a	 tp_hash	 slot,	 allowing	 a	 type	 to	 explicitly	 indicate	 to	 the
interpreter	that	it	is	not	hashable.

int	PyObject_IsTrue(PyObject	*o)
Returns	1	if	the	object	o	is	considered	to	be	true,	and	0	otherwise.
This	 is	 equivalent	 to	 the	 Python	 expression	 not	 not	 o.	 On
failure,	return	-1.

int	PyObject_Not(PyObject	*o)
Returns	0	if	the	object	o	is	considered	to	be	true,	and	1	otherwise.
This	 is	 equivalent	 to	 the	 Python	 expression	 not	 o.	 On	 failure,
return	-1.

PyObject*	PyObject_Type(PyObject	*o)
Return	value:	New	reference.
When	o	 is	 non-NULL,	 returns	 a	 type	 object	 corresponding	 to	 the

object	 type	 of	 object	 o.	 On	 failure,	 raises	 SystemError	 and
returns	 NULL.	 This	 is	 equivalent	 to	 the	 Python	 expression
type(o).	 This	 function	 increments	 the	 reference	 count	 of	 the
return	value.	There’s	really	no	reason	to	use	this	function	instead	of
the	common	expression	o->ob_type,	which	 returns	a	pointer	of
type	 PyTypeObject*,	 except	 when	 the	 incremented	 reference
count	is	needed.

int	PyObject_TypeCheck(PyObject	*o,	PyTypeObject	*type)
Return	true	if	the	object	o	is	of	type	type	or	a	subtype	of	type.	Both
parameters	must	be	non-NULL.

Py_ssize_t	PyObject_Length(PyObject	*o)
Py_ssize_t	PyObject_Size(PyObject	*o)

Return	 the	 length	 of	 object	 o.	 If	 the	 object	 o	 provides	 either	 the
sequence	and	mapping	protocols,	the	sequence	length	is	returned.
On	 error,	 -1	 is	 returned.	 This	 is	 the	 equivalent	 to	 the	 Python
expression	len(o).

Py_ssize_t	PyObject_LengthHint(PyObject	*o,
Py_ssize_t	default)

Return	 an	estimated	 length	 for	 the	 object	o.	 First	 try	 to	 return	 its
actual	 length,	 then	an	estimate	using	__length_hint__(),	and
finally	 return	 the	 default	 value.	 On	 error	 return	 -1.	 This	 is	 the
equivalent	 to	 the	 Python	 expression
operator.length_hint(o,	default).

New	in	version	3.4.

PyObject*	PyObject_GetItem(PyObject	*o,	PyObject	*key)
Return	value:	New	reference.
Return	element	of	o	 corresponding	 to	 the	object	key	or	NULL	 on

failure.	This	is	the	equivalent	of	the	Python	expression	o[key].

int	PyObject_SetItem(PyObject	*o,	PyObject	*key,	PyObject	*v)
Map	the	object	key	to	the	value	v.	Returns	-1	on	failure.	This	is	the
equivalent	of	the	Python	statement	o[key]	=	v.

int	PyObject_DelItem(PyObject	*o,	PyObject	*key)
Delete	 the	mapping	for	key	 from	o.	Returns	-1	on	 failure.	This	 is
the	equivalent	of	the	Python	statement	del	o[key].

PyObject*	PyObject_Dir(PyObject	*o)
Return	value:	New	reference.
This	 is	 equivalent	 to	 the	 Python	 expression	 dir(o),	 returning	 a
(possibly	empty)	list	of	strings	appropriate	for	the	object	argument,
or	NULL	if	there	was	an	error.	If	the	argument	is	NULL,	this	is	like
the	Python	dir(),	returning	the	names	of	the	current	locals;	in	this
case,	 if	 no	 execution	 frame	 is	 active	 then	NULL	 is	 returned	 but
PyErr_Occurred()	will	return	false.

PyObject*	PyObject_GetIter(PyObject	*o)
Return	value:	New	reference.
This	is	equivalent	to	the	Python	expression	iter(o).	 It	 returns	a
new	iterator	for	the	object	argument,	or	the	object	itself	if	the	object
is	already	an	iterator.	Raises	TypeError	and	returns	NULL	 if	 the
object	cannot	be	iterated.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

http://www.python.org/

Number	Protocol
int	PyNumber_Check(PyObject	*o)

Returns	 1	 if	 the	 object	 o	 provides	 numeric	 protocols,	 and	 false
otherwise.	This	function	always	succeeds.

PyObject*	PyNumber_Add(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	adding	o1	and	o2,	or	NULL	on	failure.	This	 is
the	equivalent	of	the	Python	expression	o1	+	o2.

PyObject*	PyNumber_Subtract(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 result	 of	 subtracting	o2	 from	o1,	 or	NULL	 on	 failure.
This	is	the	equivalent	of	the	Python	expression	o1	-	o2.

PyObject*	PyNumber_Multiply(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 result	 of	 multiplying	 o1	 and	 o2,	 or	NULL	 on	 failure.
This	is	the	equivalent	of	the	Python	expression	o1	*	o2.

PyObject*	PyNumber_FloorDivide(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Return	 the	 floor	 of	o1	 divided	 by	o2,	 or	NULL	 on	 failure.	 This	 is
equivalent	to	the	“classic”	division	of	integers.

PyObject*	PyNumber_TrueDivide(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Return	a	 reasonable	approximation	 for	 the	mathematical	 value	of
o1	 divided	 by	 o2,	 or	 NULL	 on	 failure.	 The	 return	 value	 is

“approximate”	 because	 binary	 floating	 point	 numbers	 are
approximate;	it	is	not	possible	to	represent	all	real	numbers	in	base
two.	 This	 function	 can	 return	 a	 floating	 point	 value	when	 passed
two	integers.

PyObject*	PyNumber_Remainder(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 remainder	 of	 dividing	 o1	 by	 o2,	 or	NULL	 on	 failure.
This	is	the	equivalent	of	the	Python	expression	o1	%	o2.

PyObject*	PyNumber_Divmod(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
See	the	built-in	function	divmod().	Returns	NULL	on	failure.	This
is	the	equivalent	of	the	Python	expression	divmod(o1,	o2).

PyObject*	PyNumber_Power(PyObject	*o1,	PyObject	*o2,
PyObject	*o3)

Return	value:	New	reference.
See	 the	built-in	 function	pow().	Returns	NULL	on	 failure.	This	 is
the	 equivalent	 of	 the	 Python	 expression	 pow(o1,	 o2,	 o3),
where	o3	 is	optional.	 If	o3	 is	 to	 be	 ignored,	 pass	 Py_None	 in	 its
place	 (passing	 NULL	 for	 o3	 would	 cause	 an	 illegal	 memory
access).

PyObject*	PyNumber_Negative(PyObject	*o)
Return	value:	New	reference.
Returns	the	negation	of	o	on	success,	or	NULL	on	 failure.	This	 is
the	equivalent	of	the	Python	expression	-o.

PyObject*	PyNumber_Positive(PyObject	*o)
Return	value:	New	reference.
Returns	o	on	success,	or	NULL	on	failure.	This	is	the	equivalent	of

the	Python	expression	+o.

PyObject*	PyNumber_Absolute(PyObject	*o)
Return	value:	New	reference.
Returns	 the	 absolute	 value	 of	 o,	 or	NULL	 on	 failure.	 This	 is	 the
equivalent	of	the	Python	expression	abs(o).

PyObject*	PyNumber_Invert(PyObject	*o)
Return	value:	New	reference.
Returns	the	bitwise	negation	of	o	on	success,	or	NULL	on	 failure.
This	is	the	equivalent	of	the	Python	expression	~o.

PyObject*	PyNumber_Lshift(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	left	shifting	o1	by	o2	on	success,	or	NULL	on
failure.	This	is	the	equivalent	of	the	Python	expression	o1	<<	o2.

PyObject*	PyNumber_Rshift(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	result	of	right	shifting	o1	by	o2	on	success,	or	NULL	on
failure.	This	is	the	equivalent	of	the	Python	expression	o1	>>	o2.

PyObject*	PyNumber_And(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 “bitwise	and”	of	o1	and	o2	on	success	and	NULL	 on
failure.	This	is	the	equivalent	of	the	Python	expression	o1	&	o2.

PyObject*	PyNumber_Xor(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	“bitwise	exclusive	or”	of	o1	by	o2	on	success,	or	NULL
on	 failure.	 This	 is	 the	 equivalent	 of	 the	Python	 expression	 o1	 ^
o2.

PyObject*	PyNumber_Or(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 “bitwise	 or”	 of	 o1	 and	 o2	 on	 success,	 or	 NULL	 on
failure.	This	is	the	equivalent	of	the	Python	expression	o1	|	o2.

PyObject*	PyNumber_InPlaceAdd(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 result	 of	 adding	o1	 and	o2,	 or	NULL	 on	 failure.	 The
operation	 is	 done	 in-place	 when	 o1	 supports	 it.	 This	 is	 the
equivalent	of	the	Python	statement	o1	+=	o2.

PyObject*	PyNumber_InPlaceSubtract(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Returns	 the	 result	 of	 subtracting	o2	 from	o1,	 or	NULL	 on	 failure.
The	 operation	 is	 done	 in-place	 when	 o1	 supports	 it.	 This	 is	 the
equivalent	of	the	Python	statement	o1	-=	o2.

PyObject*	PyNumber_InPlaceMultiply(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Returns	the	result	of	multiplying	o1	and	o2,	or	NULL	on	failure.	The
operation	 is	 done	 in-place	 when	 o1	 supports	 it.	 This	 is	 the
equivalent	of	the	Python	statement	o1	*=	o2.

PyObject*	PyNumber_InPlaceFloorDivide(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Returns	 the	mathematical	 floor	 of	 dividing	o1	 by	o2,	 or	NULL	 on
failure.	The	operation	is	done	in-place	when	o1	supports	it.	This	 is
the	equivalent	of	the	Python	statement	o1	//=	o2.

PyObject*	PyNumber_InPlaceTrueDivide(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Return	a	 reasonable	approximation	 for	 the	mathematical	 value	of
o1	 divided	 by	 o2,	 or	 NULL	 on	 failure.	 The	 return	 value	 is
“approximate”	 because	 binary	 floating	 point	 numbers	 are
approximate;	it	is	not	possible	to	represent	all	real	numbers	in	base
two.	 This	 function	 can	 return	 a	 floating	 point	 value	when	 passed
two	integers.	The	operation	is	done	in-place	when	o1	supports	it.

PyObject*	PyNumber_InPlaceRemainder(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Returns	the	remainder	of	dividing	o1	by	o2,	or	NULL	on	failure.	The
operation	 is	 done	 in-place	 when	 o1	 supports	 it.	 This	 is	 the
equivalent	of	the	Python	statement	o1	%=	o2.

PyObject*	PyNumber_InPlacePower(PyObject	*o1,
PyObject	*o2,	PyObject	*o3)

Return	value:	New	reference.
See	 the	 built-in	 function	 pow().	 Returns	 NULL	 on	 failure.	 The
operation	 is	 done	 in-place	 when	 o1	 supports	 it.	 This	 is	 the
equivalent	 of	 the	 Python	 statement	 o1	 **=	 o2	 when	 o3	 is
Py_None,	or	an	in-place	variant	of	pow(o1,	o2,	o3)	otherwise.
If	o3	is	to	be	ignored,	pass	Py_None	in	its	place	(passing	NULL	for
o3	would	cause	an	illegal	memory	access).

PyObject*	PyNumber_InPlaceLshift(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Returns	the	result	of	left	shifting	o1	by	o2	on	success,	or	NULL	on
failure.	The	operation	is	done	in-place	when	o1	supports	it.	This	 is

the	equivalent	of	the	Python	statement	o1	<<=	o2.

PyObject*	PyNumber_InPlaceRshift(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Returns	the	result	of	right	shifting	o1	by	o2	on	success,	or	NULL	on
failure.	The	operation	is	done	in-place	when	o1	supports	it.	This	 is
the	equivalent	of	the	Python	statement	o1	>>=	o2.

PyObject*	PyNumber_InPlaceAnd(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 “bitwise	and”	of	o1	and	o2	on	success	and	NULL	 on
failure.	The	operation	is	done	in-place	when	o1	supports	it.	This	 is
the	equivalent	of	the	Python	statement	o1	&=	o2.

PyObject*	PyNumber_InPlaceXor(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	the	“bitwise	exclusive	or”	of	o1	by	o2	on	success,	or	NULL
on	failure.	The	operation	is	done	in-place	when	o1	supports	it.	This
is	the	equivalent	of	the	Python	statement	o1	^=	o2.

PyObject*	PyNumber_InPlaceOr(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Returns	 the	 “bitwise	 or”	 of	 o1	 and	 o2	 on	 success,	 or	 NULL	 on
failure.	The	operation	is	done	in-place	when	o1	supports	it.	This	 is
the	equivalent	of	the	Python	statement	o1	|=	o2.

PyObject*	PyNumber_Long(PyObject	*o)
Return	value:	New	reference.
Returns	the	o	converted	to	an	integer	object	on	success,	or	NULL
on	failure.	This	is	the	equivalent	of	the	Python	expression	int(o).

PyObject*	PyNumber_Float(PyObject	*o)

Return	value:	New	reference.
Returns	the	o	converted	to	a	float	object	on	success,	or	NULL	on
failure.	This	is	the	equivalent	of	the	Python	expression	float(o).

PyObject*	PyNumber_Index(PyObject	*o)
Returns	the	o	converted	to	a	Python	int	on	success	or	NULL	with	a
TypeError	exception	raised	on	failure.

PyObject*	PyNumber_ToBase(PyObject	*n,	int	base)
Returns	the	integer	n	converted	to	base	base	as	a	string.	The	base
argument	must	be	one	of	2,	8,	10,	or	16.	For	base	2,	8,	or	16,	the
returned	string	 is	prefixed	with	a	base	marker	of	'0b',	'0o',	 or
'0x',	 respectively.	 If	 n	 is	 not	 a	 Python	 int,	 it	 is	 converted	 with
PyNumber_Index()	first.

Py_ssize_t	PyNumber_AsSsize_t(PyObject	*o,	PyObject	*exc)
Returns	o	converted	to	a	Py_ssize_t	value	 if	o	can	be	 interpreted
as	 an	 integer.	 If	 the	 call	 fails,	 an	 exception	 is	 raised	 and	 -1	 is
returned.

If	o	can	be	converted	to	a	Python	int	but	the	attempt	to	convert	to	a
Py_ssize_t	 value	 would	 raise	 an	 OverflowError,	 then	 the	 exc
argument	 is	 the	 type	 of	 exception	 that	 will	 be	 raised	 (usually
IndexError	 or	 OverflowError).	 If	 exc	 is	 NULL,	 then	 the
exception	is	cleared	and	the	value	is	clipped	to	PY_SSIZE_T_MIN
for	a	negative	integer	or	PY_SSIZE_T_MAX	for	a	positive	integer.

int	PyIndex_Check(PyObject	*o)
Returns	True	if	o	 is	an	index	integer	(has	the	nb_index	slot	of	 the
tp_as_number	structure	filled	in).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

http://www.python.org/

Manual	»	Abstract	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

http://www.python.org/

Sequence	Protocol
int	PySequence_Check(PyObject	*o)

Return	 1	 if	 the	 object	 provides	 sequence	 protocol,	 and	 0
otherwise.	This	function	always	succeeds.

Py_ssize_t	PySequence_Size(PyObject	*o)
Py_ssize_t	PySequence_Length(PyObject	*o)

Returns	the	number	of	objects	in	sequence	o	on	success,	and	-1
on	failure.	For	objects	that	do	not	provide	sequence	protocol,	this	is
equivalent	to	the	Python	expression	len(o).

PyObject*	PySequence_Concat(PyObject	*o1,	PyObject	*o2)
Return	value:	New	reference.
Return	the	concatenation	of	o1	and	o2	on	success,	and	NULL	on
failure.	This	is	the	equivalent	of	the	Python	expression	o1	+	o2.

PyObject*	PySequence_Repeat(PyObject	*o,	Py_ssize_t	count)
Return	value:	New	reference.
Return	 the	 result	 of	 repeating	 sequence	 object	o	count	 times,	 or
NULL	on	failure.	This	is	the	equivalent	of	the	Python	expression	o
*	count.

PyObject*	PySequence_InPlaceConcat(PyObject	*o1,
PyObject	*o2)

Return	value:	New	reference.
Return	the	concatenation	of	o1	and	o2	on	success,	and	NULL	on
failure.	The	operation	is	done	in-place	when	o1	supports	it.	This	 is
the	equivalent	of	the	Python	expression	o1	+=	o2.

PyObject*	PySequence_InPlaceRepeat(PyObject	*o,

Py_ssize_t	count)
Return	value:	New	reference.
Return	 the	 result	 of	 repeating	 sequence	 object	o	count	 times,	 or
NULL	on	failure.	The	operation	is	done	in-place	when	o	supports	it.
This	is	the	equivalent	of	the	Python	expression	o	*=	count.

PyObject*	PySequence_GetItem(PyObject	*o,	Py_ssize_t	i)
Return	value:	New	reference.
Return	 the	 ith	 element	 of	 o,	 or	 NULL	 on	 failure.	 This	 is	 the
equivalent	of	the	Python	expression	o[i].

PyObject*	PySequence_GetSlice(PyObject	*o,	Py_ssize_t	i1,
Py_ssize_t	i2)

Return	value:	New	reference.
Return	the	slice	of	sequence	object	o	between	 i1	and	 i2,	or	NULL
on	 failure.	 This	 is	 the	 equivalent	 of	 the	 Python	 expression
o[i1:i2].

int	PySequence_SetItem(PyObject	*o,	Py_ssize_t	i,
PyObject	*v)

Assign	object	v	to	the	ith	element	of	o.	Returns	-1	on	failure.	This
is	the	equivalent	of	the	Python	statement	o[i]	=	v.	This	function
does	not	steal	a	reference	to	v.

int	PySequence_DelItem(PyObject	*o,	Py_ssize_t	i)
Delete	the	ith	element	of	object	o.	Returns	-1	on	failure.	This	is	the
equivalent	of	the	Python	statement	del	o[i].

int	PySequence_SetSlice(PyObject	*o,	Py_ssize_t	i1,
Py_ssize_t	i2,	PyObject	*v)

Assign	the	sequence	object	v	to	the	slice	in	sequence	object	o	from
i1	to	 i2.	This	 is	 the	equivalent	of	 the	Python	statement	o[i1:i2]

=	v.

int	PySequence_DelSlice(PyObject	*o,	Py_ssize_t	i1,
Py_ssize_t	i2)

Delete	the	slice	in	sequence	object	o	from	 i1	to	 i2.	Returns	-1	on
failure.	 This	 is	 the	 equivalent	 of	 the	 Python	 statement	 del
o[i1:i2].

Py_ssize_t	PySequence_Count(PyObject	*o,	PyObject	*value)
Return	the	number	of	occurrences	of	value	in	o,	that	is,	return	the
number	of	keys	 for	which	o[key]	==	value.	On	 failure,	 return
-1.	 This	 is	 equivalent	 to	 the	 Python	 expression
o.count(value).

int	PySequence_Contains(PyObject	*o,	PyObject	*value)
Determine	 if	 o	 contains	 value.	 If	 an	 item	 in	 o	 is	 equal	 to	 value,
return	1,	otherwise	return	0.	On	error,	return	-1.	This	is	equivalent
to	the	Python	expression	value	in	o.

Py_ssize_t	PySequence_Index(PyObject	*o,	PyObject	*value)
Return	the	first	index	i	for	which	o[i]	==	value.	On	error,	return
-1.	 This	 is	 equivalent	 to	 the	 Python	 expression
o.index(value).

PyObject*	PySequence_List(PyObject	*o)
Return	value:	New	reference.
Return	 a	 list	 object	 with	 the	 same	 contents	 as	 the	 arbitrary
sequence	o.	The	returned	list	is	guaranteed	to	be	new.

PyObject*	PySequence_Tuple(PyObject	*o)
Return	value:	New	reference.
Return	 a	 tuple	 object	 with	 the	 same	 contents	 as	 the	 arbitrary

sequence	o	or	NULL	on	failure.	If	o	is	a	tuple,	a	new	reference	will
be	 returned,	 otherwise	 a	 tuple	 will	 be	 constructed	 with	 the
appropriate	contents.	This	 is	 equivalent	 to	 the	Python	expression
tuple(o).

PyObject*	PySequence_Fast(PyObject	*o,	const	char	*m)
Return	value:	New	reference.
Returns	the	sequence	o	as	a	 tuple,	unless	 it	 is	already	a	 tuple	or
list,	 in	 which	 case	 o	 is	 returned.	 Use
PySequence_Fast_GET_ITEM()	 to	access	 the	members	of	 the
result.	Returns	NULL	 on	 failure.	 If	 the	 object	 is	 not	 a	 sequence,
raises	TypeError	with	m	as	the	message	text.

PyObject*	PySequence_Fast_GET_ITEM(PyObject	*o,
Py_ssize_t	i)

Return	value:	Borrowed	reference.
Return	 the	 ith	 element	 of	 o,	 assuming	 that	 o	 was	 returned	 by
PySequence_Fast(),	o	is	not	NULL,	and	that	i	is	within	bounds.

PyObject**	PySequence_Fast_ITEMS(PyObject	*o)
Return	 the	underlying	array	of	PyObject	pointers.	Assumes	that	o
was	returned	by	PySequence_Fast()	and	o	is	not	NULL.

Note,	 if	a	list	gets	resized,	the	reallocation	may	relocate	the	items
array.	So,	only	use	 the	underlying	array	pointer	 in	contexts	where
the	sequence	cannot	change.

PyObject*	PySequence_ITEM(PyObject	*o,	Py_ssize_t	i)
Return	value:	New	reference.
Return	 the	 ith	 element	 of	 o	 or	 NULL	 on	 failure.	 Macro	 form	 of
PySequence_GetItem()	 but	 without	 checking	 that
PySequence_Check()	 on	 o	 is	 true	 and	 without	 adjustment	 for

negative	indices.

Py_ssize_t	PySequence_Fast_GET_SIZE(PyObject	*o)
Returns	 the	 length	 of	 o,	 assuming	 that	 o	 was	 returned	 by
PySequence_Fast()	and	that	o	 is	not	NULL.	The	size	can	also
be	 gotten	 by	 calling	 PySequence_Size()	 on	 o,	 but
PySequence_Fast_GET_SIZE()	 is	 faster	 because	 it	 can
assume	o	is	a	list	or	tuple.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

http://www.python.org/

Mapping	Protocol
int	PyMapping_Check(PyObject	*o)

Return	1	if	the	object	provides	mapping	protocol,	and	0	otherwise.
This	function	always	succeeds.

Py_ssize_t	PyMapping_Size(PyObject	*o)
Py_ssize_t	PyMapping_Length(PyObject	*o)

Returns	 the	 number	 of	 keys	 in	 object	 o	 on	 success,	 and	 -1	 on
failure.	 For	 objects	 that	 do	 not	 provide	 mapping	 protocol,	 this	 is
equivalent	to	the	Python	expression	len(o).

int	PyMapping_DelItemString(PyObject	*o,	const	char	*key)
Remove	 the	mapping	 for	object	key	 from	 the	object	o.	Return	-1
on	 failure.	 This	 is	 equivalent	 to	 the	 Python	 statement	 del
o[key].

int	PyMapping_DelItem(PyObject	*o,	PyObject	*key)
Remove	 the	mapping	 for	object	key	 from	 the	object	o.	Return	-1
on	 failure.	 This	 is	 equivalent	 to	 the	 Python	 statement	 del
o[key].

int	PyMapping_HasKeyString(PyObject	*o,	char	*key)
On	success,	return	1	if	the	mapping	object	has	the	key	key	and	0
otherwise.	This	is	equivalent	to	the	Python	expression	key	in	o.
This	function	always	succeeds.

int	PyMapping_HasKey(PyObject	*o,	PyObject	*key)
Return	1	 if	 the	mapping	object	has	 the	key	key	and	0	 otherwise.
This	 is	 equivalent	 to	 the	 Python	 expression	 key	 in	 o.	 This

function	always	succeeds.

PyObject*	PyMapping_Keys(PyObject	*o)
Return	value:	New	reference.
On	success,	return	a	list	of	the	keys	in	object	o.	On	failure,	 return
NULL.	 This	 is	 equivalent	 to	 the	 Python	 expression
list(o.keys()).

PyObject*	PyMapping_Values(PyObject	*o)
Return	value:	New	reference.
On	success,	return	a	list	of	the	values	in	object	o.	On	failure,	return
NULL.	 This	 is	 equivalent	 to	 the	 Python	 expression
list(o.values()).

PyObject*	PyMapping_Items(PyObject	*o)
Return	value:	New	reference.
On	success,	return	a	list	of	the	items	in	object	o,	where	each	item
is	a	tuple	containing	a	key-value	pair.	On	failure,	return	NULL.	This
is	equivalent	to	the	Python	expression	list(o.items()).

PyObject*	PyMapping_GetItemString(PyObject	*o,	const
char	*key)

Return	value:	New	reference.
Return	element	of	o	 corresponding	 to	 the	object	key	or	NULL	 on
failure.	This	is	the	equivalent	of	the	Python	expression	o[key].

int	PyMapping_SetItemString(PyObject	*o,	const	char	*key,
PyObject	*v)

Map	the	object	key	to	the	value	v	in	object	o.	Returns	-1	on	failure.
This	is	the	equivalent	of	the	Python	statement	o[key]	=	v.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

http://www.python.org/

Manual	»	Abstract	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

http://www.python.org/

Iterator	Protocol
There	are	two	functions	specifically	for	working	with	iterators.

int	PyIter_Check(PyObject	*o)
Return	true	if	the	object	o	supports	the	iterator	protocol.

PyObject*	PyIter_Next(PyObject	*o)
Return	value:	New	reference.
Return	 the	next	value	from	the	 iteration	o.	The	object	must	be	an
iterator	(it	is	up	to	the	caller	to	check	this).	If	there	are	no	remaining
values,	returns	NULL	with	no	exception	set.	If	an	error	occurs	while
retrieving	the	item,	returns	NULL	and	passes	along	the	exception.

To	write	a	loop	which	iterates	over	an	iterator,	the	C	code	should	look
something	like	this:

PyObject	*iterator	=	PyObject_GetIter(obj);

PyObject	*item;

if	(iterator	==	NULL)	{

				/*	propagate	error	*/

}

while	(item	=	PyIter_Next(iterator))	{

				/*	do	something	with	item	*/

				...

				/*	release	reference	when	done	*/

				Py_DECREF(item);

}

Py_DECREF(iterator);

if	(PyErr_Occurred())	{

				/*	propagate	error	*/

}

else	{

				/*	continue	doing	useful	work	*/

}

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

http://www.python.org/

Buffer	Protocol
Certain	 objects	 available	 in	 Python	 wrap	 access	 to	 an	 underlying
memory	array	or	buffer.	Such	objects	 include	 the	built-in	bytes	 and
bytearray,	 and	 some	 extension	 types	 like	 array.array.	 Third-
party	 libraries	may	define	 their	own	 types	 for	special	purposes,	such
as	image	processing	or	numeric	analysis.

While	each	of	 these	 types	have	 their	own	semantics,	 they	share	 the
common	 characteristic	 of	 being	 backed	 by	 a	 possibly	 large	memory
buffer.	 It	 is	 then	 desirable,	 in	 some	 situations,	 to	 access	 that	 buffer
directly	and	without	intermediate	copying.

Python	provides	such	a	facility	at	the	C	level	in	the	form	of	the	buffer
protocol.	This	protocol	has	two	sides:

on	the	producer	side,	a	type	can	export	a	“buffer	interface”	which
allows	 objects	 of	 that	 type	 to	 expose	 information	 about	 their
underlying	buffer.	This	interface	is	described	in	the	section	Buffer
Object	Structures;
on	 the	 consumer	 side,	 several	 means	 are	 available	 to	 obtain	 a
pointer	 to	 the	 raw	 underlying	 data	 of	 an	 object	 (for	 example	 a
method	parameter).

Simple	 objects	 such	 as	 bytes	 and	 bytearray	 expose	 their
underlying	buffer	 in	byte-oriented	 form.	Other	 forms	are	possible;	 for
example,	the	elements	exposed	by	a	array.array	can	be	multi-byte
values.

An	example	consumer	of	the	buffer	interface	is	the	write()	method
of	file	objects:	any	object	that	can	export	a	series	of	bytes	through	the
buffer	 interface	 can	 be	 written	 to	 a	 file.	While	 write()	 only	 needs

read-only	 access	 to	 the	 internal	 contents	 of	 the	 object	 passed	 to	 it,
other	 methods	 such	 as	 readinto()	 need	 write	 access	 to	 the
contents	 of	 their	 argument.	 The	 buffer	 interface	 allows	 objects	 to
selectively	allow	or	reject	exporting	of	read-write	and	read-only	buffers.

There	are	two	ways	for	a	consumer	of	the	buffer	interface	to	acquire	a
buffer	over	a	target	object:

call	PyObject_GetBuffer()	with	the	right	parameters;
call	PyArg_ParseTuple()	(or	one	of	its	siblings)	with	one	of	the
y*,	w*	or	s*	format	codes.

In	both	cases,	PyBuffer_Release()	must	be	called	when	the	buffer
isn’t	 needed	 anymore.	 Failure	 to	 do	 so	 could	 lead	 to	 various	 issues
such	as	resource	leaks.

Buffer	structure

Buffer	 structures	 (or	 simply	 “buffers”)	 are	 useful	 as	 a	way	 to	 expose
the	binary	data	 from	another	object	 to	 the	Python	programmer.	They
can	also	be	used	as	a	zero-copy	slicing	mechanism.	Using	their	ability
to	reference	a	block	of	memory,	it	is	possible	to	expose	any	data	to	the
Python	 programmer	 quite	 easily.	 The	 memory	 could	 be	 a	 large,
constant	array	in	a	C	extension,	it	could	be	a	raw	block	of	memory	for
manipulation	before	passing	to	an	operating	system	library,	or	it	could
be	 used	 to	 pass	 around	 structured	 data	 in	 its	 native,	 in-memory
format.

Contrary	to	most	data	types	exposed	by	the	Python	interpreter,	buffers
are	not	PyObject	pointers	but	rather	simple	C	structures.	This	allows
them	to	be	created	and	copied	very	simply.	When	a	generic	wrapper
around	a	buffer	is	needed,	a	memoryview	object	can	be	created.

For	 short	 instructions	 how	 to	 write	 an	 exporting	 object,	 see	 Buffer
Object	 Structures.	 For	 obtaining	 a	 buffer,	 see
PyObject_GetBuffer().

Py_buffer

void	*obj
A	 new	 reference	 to	 the	 exporting	 object.	 The	 reference	 is
owned	 by	 the	 consumer	 and	 automatically	 decremented	 and
set	 to	 NULL	 by	 PyBuffer_Release().	 The	 field	 is	 the
equivalent	of	the	return	value	of	any	standard	C-API	function.

As	 a	 special	 case,	 for	 temporary	 buffers	 that	 are	wrapped	 by
PyMemoryView_FromBuffer()	or	PyBuffer_FillInfo()
this	field	is	NULL.	In	general,	exporting	objects	MUST	NOT	use
this	scheme.

void	*buf
A	pointer	 to	 the	 start	 of	 the	 logical	 structure	 described	 by	 the
buffer	 fields.	 This	 can	 be	 any	 location	 within	 the	 underlying
physical	 memory	 block	 of	 the	 exporter.	 For	 example,	 with
negative	 strides	 the	 value	 may	 point	 to	 the	 end	 of	 the
memory	block.

For	contiguous	arrays,	the	value	points	to	the	beginning	of	the
memory	block.

Py_ssize_t	len
product(shape)	*	itemsize.	 For	 contiguous	 arrays,	 this
is	 the	 length	 of	 the	 underlying	 memory	 block.	 For	 non-
contiguous	 arrays,	 it	 is	 the	 length	 that	 the	 logical	 structure
would	have	if	it	were	copied	to	a	contiguous	representation.

Accessing	 ((char	 *)buf)[0]	 up	 to	 ((char	 *)buf)
[len-1]	 is	 only	 valid	 if	 the	 buffer	 has	 been	 obtained	 by	 a
request	 that	 guarantees	 contiguity.	 In	 most	 cases	 such	 a
request	will	be	PyBUF_SIMPLE	or	PyBUF_WRITABLE.

int	readonly
An	 indicator	 of	 whether	 the	 buffer	 is	 read-only.	 This	 field	 is
controlled	by	the	PyBUF_WRITABLE	flag.

Py_ssize_t	itemsize
Item	 size	 in	 bytes	 of	 a	 single	 element.	 Same	 as	 the	 value	 of
struct.calcsize()	called	on	non-NULL	format	values.

Important	exception:	If	a	consumer	requests	a	buffer	without	the
PyBUF_FORMAT	 flag,	 format	 will	 be	 set	 to	 NULL,	 but
itemsize	still	has	the	value	for	the	original	format.

If	 shape	 is	 present,	 the	 equality	 product(shape)	 *

itemsize	 ==	 len	 still	 holds	 and	 the	 consumer	 can	 use
itemsize	to	navigate	the	buffer.

If	 shape	 is	 NULL	 as	 a	 result	 of	 a	 PyBUF_SIMPLE	 or	 a
PyBUF_WRITABLE	 request,	 the	 consumer	 must	 disregard
itemsize	and	assume	itemsize	==	1.

const	char	*format
A	 NUL	 terminated	 string	 in	 struct	 module	 style	 syntax
describing	 the	 contents	 of	 a	 single	 item.	 If	 this	 is	NULL,	 "B"
(unsigned	bytes)	is	assumed.

This	field	is	controlled	by	the	PyBUF_FORMAT	flag.

int	ndim
The	 number	 of	 dimensions	 the	 memory	 represents	 as	 an	 n-
dimensional	 array.	 If	 it	 is	 0,	 buf	 points	 to	 a	 single	 item
representing	 a	 scalar.	 In	 this	 case,	 shape,	 strides	 and
suboffsets	MUST	be	NULL.

The	macro	 PyBUF_MAX_NDIM	 limits	 the	maximum	 number	 of
dimensions	 to	 64.	 Exporters	 MUST	 respect	 this	 limit,
consumers	 of	 multi-dimensional	 buffers	 SHOULD	 be	 able	 to
handle	up	to	PyBUF_MAX_NDIM	dimensions.

Py_ssize_t	*shape
An	array	of	Py_ssize_t	of	 length	ndim	 indicating	 the	shape
of	the	memory	as	an	n-dimensional	array.	Note	that	shape[0]
*	...	*	shape[ndim-1]	*	itemsize	MUST	be	equal	 to
len.

Shape	 values	 are	 restricted	 to	 shape[n]	 >=	 0.	 The	 case
shape[n]	 ==	 0	 requires	 special	 attention.	 See	 complex
arrays	for	further	information.

The	shape	array	is	read-only	for	the	consumer.

Py_ssize_t	*strides
An	array	of	Py_ssize_t	of	 length	ndim	giving	the	number	of
bytes	to	skip	to	get	to	a	new	element	in	each	dimension.

Stride	values	can	be	any	integer.	For	regular	arrays,	strides	are
usually	positive,	 but	 a	 consumer	MUST	be	able	 to	handle	 the
case	 strides[n]	 <=	 0.	 See	 complex	 arrays	 for	 further
information.

The	strides	array	is	read-only	for	the	consumer.

Py_ssize_t	*suboffsets
An	array	of	Py_ssize_t	of	 length	ndim.	 If	suboffsets[n]
>=	0,	 the	values	stored	along	 the	nth	dimension	are	pointers
and	the	suboffset	value	dictates	how	many	bytes	to	add	to	each
pointer	 after	 de-referencing.	A	 suboffset	 value	 that	 is	 negative
indicates	 that	 no	 de-referencing	 should	 occur	 (striding	 in	 a
contiguous	memory	block).

This	type	of	array	representation	is	used	by	the	Python	Imaging
Library	(PIL).	See	complex	arrays	for	further	information	how	to
access	elements	of	such	an	array.

The	suboffsets	array	is	read-only	for	the	consumer.

void	*internal
This	 is	 for	use	 internally	by	 the	exporting	object.	For	example,

this	might	be	re-cast	as	an	integer	by	the	exporter	and	used	to
store	 flags	 about	 whether	 or	 not	 the	 shape,	 strides,	 and
suboffsets	 arrays	 must	 be	 freed	 when	 the	 buffer	 is	 released.
The	consumer	MUST	NOT	alter	this	value.

Buffer	request	types

Buffers	 are	 usually	 obtained	 by	 sending	 a	 buffer	 request	 to	 an
exporting	object	via	PyObject_GetBuffer().	Since	the	complexity
of	 the	 logical	 structure	 of	 the	 memory	 can	 vary	 drastically,	 the
consumer	uses	 the	 flags	argument	 to	specify	 the	exact	buffer	 type	 it
can	handle.

All	Py_buffer	fields	are	unambiguously	defined	by	the	request	type.

request-independent	fields

The	 following	 fields	 are	 not	 influenced	 by	 flags	 and	must	 always	 be
filled	in	with	the	correct	values:	obj,	buf,	len,	itemsize,	ndim.

readonly,	format

PyBUF_WRITABLE

Controls	 the	 readonly	 field.	 If	 set,	 the	 exporter	 MUST
provide	a	writable	buffer	or	else	 report	 failure.	Otherwise,	 the
exporter	MAY	provide	either	a	read-only	or	writable	buffer,	but
the	choice	MUST	be	consistent	for	all	consumers.

PyBUF_FORMAT

Controls	 the	format	 field.	 If	 set,	 this	 field	MUST	be	 filled	 in
correctly.	Otherwise,	this	field	MUST	be	NULL.

PyBUF_WRITABLE	can	be	 |’d	 to	any	of	 the	 flags	 in	 the	next	section.
Since	 PyBUF_SIMPLE	 is	 defined	 as	 0,	 PyBUF_WRITABLE	 can	 be
used	as	a	stand-alone	flag	to	request	a	simple	writable	buffer.

PyBUF_FORMAT	can	be	|’d	to	any	of	the	flags	except	PyBUF_SIMPLE.
The	latter	already	implies	format	B	(unsigned	bytes).

shape,	strides,	suboffsets

The	flags	that	control	the	logical	structure	of	the	memory	are	listed	in
decreasing	order	of	complexity.	Note	that	each	flag	contains	all	bits	of
the	flags	below	it.

Request shape strides suboffsets

PyBUF_INDIRECT yes yes if	needed

PyBUF_STRIDES yes yes NULL

PyBUF_ND yes NULL NULL

PyBUF_SIMPLE NULL NULL NULL

contiguity	requests

C	 or	 Fortran	 contiguity	 can	 be	 explicitly	 requested,	 with	 and	without
stride	 information.	 Without	 stride	 information,	 the	 buffer	 must	 be	 C-
contiguous.

Request shape strides suboffsets contig

PyBUF_C_CONTIGUOUS yes yes NULL C

PyBUF_F_CONTIGUOUS yes yes NULL F

PyBUF_ANY_CONTIGUOUS yes yes NULL C	or	F

PyBUF_ND yes NULL NULL C

compound	requests

All	 possible	 requests	 are	 fully	 defined	 by	 some	 combination	 of	 the
flags	 in	 the	 previous	 section.	 For	 convenience,	 the	 buffer	 protocol
provides	frequently	used	combinations	as	single	flags.

In	the	following	table	U	stands	for	undefined	contiguity.	The	consumer
would	 have	 to	 call	 PyBuffer_IsContiguous()	 to	 determine
contiguity.

Request shape strides suboffsets contig readonly

PyBUF_FULL yes yes if	needed U 0

PyBUF_FULL_RO yes yes if	needed U 1	or	0

PyBUF_RECORDS yes yes NULL U 0

PyBUF_RECORDS_RO yes yes NULL U 1	or	0

PyBUF_STRIDED yes yes NULL U 0

PyBUF_STRIDED_RO yes yes NULL U 1	or	0

PyBUF_CONTIG yes NULL NULL C 0

PyBUF_CONTIG_RO yes NULL NULL C 1	or	0

Complex	arrays

NumPy-style:	shape	and	strides

The	logical	structure	of	NumPy-style	arrays	 is	defined	by	itemsize,
ndim,	shape	and	strides.

If	ndim	==	0,	 the	memory	 location	pointed	to	by	buf	 is	 interpreted
as	a	scalar	of	size	itemsize.	In	that	case,	both	shape	and	strides
are	NULL.

If	 strides	 is	 NULL,	 the	 array	 is	 interpreted	 as	 a	 standard	 n-
dimensional	 C-array.	 Otherwise,	 the	 consumer	 must	 access	 an	 n-
dimensional	array	as	follows:

ptr	=	(char	*)buf	+	indices[0]	*	strides[0]	+

...	+	indices[n-1]	*	strides[n-1]	item	=	*
((typeof(item)	*)ptr);

As	 noted	 above,	 buf	 can	 point	 to	 any	 location	 within	 the	 actual
memory	block.	An	exporter	can	check	the	validity	of	a	buffer	with	this
function:

def	verify_structure(memlen,	itemsize,	ndim,	shape,	

				"""Verify	that	the	parameters	represent	a	valid	array	within

							the	bounds	of	the	allocated	memory:

											char	*mem:	start	of	the	physical	memory	block

											memlen:	length	of	the	physical	memory	block

											offset:	(char	*)buf	-	mem

				"""

				if	offset	%	itemsize:

								return	False

				if	offset	<	0	or	offset+itemsize	>	memlen:

								return	False

				if	any(v	%	itemsize	for	v	in	strides):

								return	False

				if	ndim	<=	0:

								return	ndim	==	0	and	not	shape	and	not	strides

				if	0	in	shape:

								return	True

				imin	=	sum(strides[j]*(shape[j]-1)	for	j	in	range

															if	strides[j]	<=	0)

				imax	=	sum(strides[j]*(shape[j]-1)	for	j	in	range

															if	strides[j]	>	0)

				return	0	<=	offset+imin	and	offset+imax+itemsize

PIL-style:	shape,	strides	and	suboffsets

In	addition	 to	 the	 regular	 items,	PIL-style	arrays	can	contain	pointers
that	 must	 be	 followed	 in	 order	 to	 get	 to	 the	 next	 element	 in	 a
dimension.	For	example,	 the	regular	 three-dimensional	C-array	char
v[2][2][3]	can	also	be	viewed	as	an	array	of	2	pointers	 to	2	 two-
dimensional	 arrays:	 char	 (*v[2])[2][3].	 In	 suboffsets
representation,	 those	 two	 pointers	 can	 be	 embedded	 at	 the	 start	 of
buf,	 pointing	 to	 two	 char	 x[2][3]	 arrays	 that	 can	 be	 located
anywhere	in	memory.

Here	is	a	function	that	returns	a	pointer	to	the	element	in	an	N-D	array
pointed	to	by	an	N-dimensional	 index	when	there	are	both	non-NULL
strides	and	suboffsets:

void	*get_item_pointer(int	ndim,	void	*buf,	Py_ssize_t

																							Py_ssize_t	*suboffsets,	Py_ssize_t

				char	*pointer	=	(char*)buf;

				int	i;

				for	(i	=	0;	i	<	ndim;	i++)	{

								pointer	+=	strides[i]	*	indices[i];

								if	(suboffsets[i]	>=0)	{

												pointer	=	*((char**)pointer)	+	suboffsets

								}

				}

				return	(void*)pointer;

}

Buffer-related	functions

int	PyObject_CheckBuffer(PyObject	*obj)
Return	1	if	obj	supports	the	buffer	interface	otherwise	0.	When	1	is
returned,	 it	doesn’t	guarantee	 that	PyObject_GetBuffer()	will
succeed.

int	PyObject_GetBuffer(PyObject	*exporter,	Py_buffer	*view,
int	flags)

Send	a	request	to	exporter	to	fill	in	view	as	specified	by	flags.	If	the
exporter	 cannot	provide	a	buffer	of	 the	exact	 type,	 it	MUST	 raise
PyExc_BufferError,	set	view->obj	to	NULL	and	return	-1.

On	 success,	 fill	 in	 view,	 set	 view->obj	 to	 a	 new	 reference	 to
exporter	and	return	0.	In	the	case	of	chained	buffer	providers	that
redirect	requests	to	a	single	object,	view->obj	MAY	refer	to	this
object	instead	of	exporter	(See	Buffer	Object	Structures).

Successful	calls	to	PyObject_GetBuffer()	must	be	paired	with
calls	 to	 PyBuffer_Release(),	 similar	 to	 malloc()	 and
free().	 Thus,	 after	 the	 consumer	 is	 done	 with	 the	 buffer,
PyBuffer_Release()	must	be	called	exactly	once.

void	PyBuffer_Release(Py_buffer	*view)
Release	 the	 buffer	 view	 and	 decrement	 the	 reference	 count	 for
view->obj.	This	 function	MUST	be	called	when	 the	buffer	 is	no
longer	being	used,	otherwise	reference	leaks	may	occur.

It	 is	an	error	to	call	this	function	on	a	buffer	that	was	not	obtained
via	PyObject_GetBuffer().

Py_ssize_t	PyBuffer_SizeFromFormat(const	char	*)
Return	 the	 implied	 itemsize	 from	 format.	 This	 function	 is	 not
yet	implemented.

int	PyBuffer_IsContiguous(Py_buffer	*view,	char	order)
Return	 1	 if	 the	 memory	 defined	 by	 the	 view	 is	 C-style	 (order	 is
'C')	or	Fortran-style	(order	is	'F')	contiguous	or	either	one	(order
is	'A').	Return	0	otherwise.

void	PyBuffer_FillContiguousStrides(int	ndim,
Py_ssize_t	*shape,	Py_ssize_t	*strides,	Py_ssize_t	itemsize,
char	order)

Fill	 the	 strides	 array	 with	 byte-strides	 of	 a	 contiguous	 (C-style	 if
order	 is	 'C'	 or	 Fortran-style	 if	 order	 is	 'F')	 array	 of	 the	 given
shape	with	the	given	number	of	bytes	per	element.

int	PyBuffer_FillInfo(Py_buffer	*view,	PyObject	*exporter,
void	*buf,	Py_ssize_t	len,	int	readonly,	int	flags)

Handle	buffer	requests	for	an	exporter	that	wants	to	expose	buf	of
size	len	with	writability	set	according	to	readonly.	buf	is	interpreted
as	a	sequence	of	unsigned	bytes.

The	 flags	 argument	 indicates	 the	 request	 type.	 This	 function
always	 fills	 in	 view	 as	 specified	 by	 flags,	 unless	 buf	 has	 been
designated	as	read-only	and	PyBUF_WRITABLE	is	set	in	flags.

On	success,	 set	 view->obj	 to	a	new	 reference	 to	exporter	 and
return	0.	Otherwise,	raise	PyExc_BufferError,	set	view->obj
to	NULL	and	return	-1;

If	this	function	is	used	as	part	of	a	getbufferproc,	exporter	MUST	be
set	to	the	exporting	object.	Otherwise,	exporter	MUST	be	NULL.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

http://www.python.org/

Old	Buffer	Protocol

Deprecated	since	version	3.0.

These	functions	were	part	of	the	“old	buffer	protocol”	API	in	Python	2.
In	Python	3,	this	protocol	doesn’t	exist	anymore	but	the	functions	are
still	 exposed	 to	 ease	 porting	 2.x	 code.	 They	 act	 as	 a	 compatibility
wrapper	around	the	new	buffer	protocol,	but	they	don’t	give	you	control
over	the	lifetime	of	the	resources	acquired	when	a	buffer	is	exported.

Therefore,	it	is	recommended	that	you	call	PyObject_GetBuffer()
(or	the	y*	or	w*	format	codes	with	the	PyArg_ParseTuple()	family
of	 functions)	 to	 get	 a	 buffer	 view	 over	 an	 object,	 and
PyBuffer_Release()	when	the	buffer	view	can	be	released.

int	PyObject_AsCharBuffer(PyObject	*obj,	const
char	**buffer,	Py_ssize_t	*buffer_len)

Returns	 a	 pointer	 to	 a	 read-only	 memory	 location	 usable	 as
character-based	 input.	The	obj	argument	must	support	 the	single-
segment	 character	 buffer	 interface.	 On	 success,	 returns	 0,	 sets
buffer	 to	 the	memory	 location	and	buffer_len	 to	 the	buffer	 length.
Returns	-1	and	sets	a	TypeError	on	error.

int	PyObject_AsReadBuffer(PyObject	*obj,	const	void	**buffer,
Py_ssize_t	*buffer_len)

Returns	 a	 pointer	 to	 a	 read-only	 memory	 location	 containing
arbitrary	data.	The	obj	argument	must	support	 the	single-segment
readable	buffer	interface.	On	success,	returns	0,	sets	buffer	to	the
memory	 location	 and	buffer_len	 to	 the	 buffer	 length.	 Returns	 -1
and	sets	a	TypeError	on	error.

int	PyObject_CheckReadBuffer(PyObject	*o)
Returns	 1	 if	 o	 supports	 the	 single-segment	 readable	 buffer
interface.	Otherwise	returns	0.

int	PyObject_AsWriteBuffer(PyObject	*obj,	void	**buffer,
Py_ssize_t	*buffer_len)

Returns	a	pointer	to	a	writable	memory	location.	The	obj	argument
must	 support	 the	 single-segment,	 character	 buffer	 interface.	 On
success,	 returns	 0,	 sets	 buffer	 to	 the	 memory	 location	 and
buffer_len	to	the	buffer	length.	Returns	-1	and	sets	a	TypeError
on	error.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Abstract	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Concrete	Objects	Layer
The	 functions	 in	 this	 chapter	 are	 specific	 to	 certain	 Python	 object
types.	Passing	them	an	object	of	the	wrong	type	is	not	a	good	idea;	if
you	 receive	 an	 object	 from	 a	Python	 program	 and	 you	 are	 not	 sure
that	 it	 has	 the	 right	 type,	 you	 must	 perform	 a	 type	 check	 first;	 for
example,	 to	 check	 that	 an	 object	 is	 a	 dictionary,	 use
PyDict_Check().	The	chapter	 is	structured	 like	 the	 “family	 tree”	of
Python	object	types.

Warning: 	While	the	functions	described	in	this	chapter	carefully
check	the	type	of	the	objects	which	are	passed	in,	many	of	them	do
not	check	for	NULL	being	passed	instead	of	a	valid	object.	Allowing
NULL	to	be	passed	in	can	cause	memory	access	violations	and
immediate	termination	of	the	interpreter.

Fundamental	Objects

This	 section	 describes	 Python	 type	 objects	 and	 the	 singleton	 object
None.

Type	Objects
The	None	Object

Numeric	Objects

Integer	Objects
Boolean	Objects
Floating	Point	Objects
Complex	Number	Objects

Complex	Numbers	as	C	Structures
Complex	Numbers	as	Python	Objects

Sequence	Objects

Generic	 operations	 on	 sequence	 objects	 were	 discussed	 in	 the
previous	chapter;	this	section	deals	with	the	specific	kinds	of	sequence
objects	that	are	intrinsic	to	the	Python	language.

Bytes	Objects
Byte	Array	Objects

Type	check	macros
Direct	API	functions
Macros

Unicode	Objects	and	Codecs
Unicode	Objects

Unicode	Type
Unicode	Character	Properties
Creating	and	accessing	Unicode	strings
Deprecated	Py_UNICODE	APIs
Locale	Encoding
File	System	Encoding
wchar_t	Support
UCS4	Support

Built-in	Codecs
Generic	Codecs
UTF-8	Codecs
UTF-32	Codecs
UTF-16	Codecs
UTF-7	Codecs
Unicode-Escape	Codecs
Raw-Unicode-Escape	Codecs
Latin-1	Codecs
ASCII	Codecs
Character	Map	Codecs
MBCS	codecs	for	Windows

Methods	&	Slots
Methods	and	Slot	Functions

Tuple	Objects
Struct	Sequence	Objects
List	Objects

Container	Objects

Dictionary	Objects
Set	Objects

Function	Objects

Function	Objects
Instance	Method	Objects
Method	Objects
Cell	Objects
Code	Objects

Other	Objects

File	Objects
Module	Objects

Initializing	C	modules
Iterator	Objects
Descriptor	Objects
Slice	Objects
MemoryView	objects
Weak	Reference	Objects
Capsules
Generator	Objects
DateTime	Objects

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Type	Objects
PyTypeObject

The	C	structure	of	the	objects	used	to	describe	built-in	types.

PyObject*	PyType_Type
This	 is	 the	 type	 object	 for	 type	 objects;	 it	 is	 the	 same	 object	 as
type	in	the	Python	layer.

int	PyType_Check(PyObject	*o)
Return	 true	 if	 the	object	o	 is	a	 type	object,	 including	 instances	of
types	 derived	 from	 the	 standard	 type	 object.	 Return	 false	 in	 all
other	cases.

int	PyType_CheckExact(PyObject	*o)
Return	true	if	the	object	o	is	a	type	object,	but	not	a	subtype	of	the
standard	type	object.	Return	false	in	all	other	cases.

unsigned	int	PyType_ClearCache()
Clear	the	internal	lookup	cache.	Return	the	current	version	tag.

long	PyType_GetFlags(PyTypeObject*	type)
Return	 the	 tp_flags	member	 of	 type.	 This	 function	 is	 primarily
meant	 for	 use	 with	Py_LIMITED_API;	 the	 individual	 flag	 bits	 are
guaranteed	 to	 be	 stable	 across	 Python	 releases,	 but	 access	 to
tp_flags	itself	is	not	part	of	the	limited	API.

New	in	version	3.2.

void	PyType_Modified(PyTypeObject	*type)
Invalidate	 the	 internal	 lookup	 cache	 for	 the	 type	 and	 all	 of	 its

subtypes.	 This	 function	 must	 be	 called	 after	 any	 manual
modification	of	the	attributes	or	base	classes	of	the	type.

int	PyType_HasFeature(PyTypeObject	*o,	int	feature)
Return	 true	 if	 the	 type	 object	 o	 sets	 the	 feature	 feature.	 Type
features	are	denoted	by	single	bit	flags.

int	PyType_IS_GC(PyTypeObject	*o)
Return	 true	 if	 the	 type	 object	 includes	 support	 for	 the	 cycle
detector;	this	tests	the	type	flag	Py_TPFLAGS_HAVE_GC.

int	PyType_IsSubtype(PyTypeObject	*a,	PyTypeObject	*b)
Return	true	if	a	is	a	subtype	of	b.

PyObject*	PyType_GenericAlloc(PyTypeObject	*type,
Py_ssize_t	nitems)

Return	value:	New	reference.
Generic	 handler	 for	 the	 tp_alloc	 slot	 of	 a	 type	 object.	 Use
Python’s	 default	memory	 allocation	mechanism	 to	 allocate	 a	 new
instance	and	initialize	all	its	contents	to	NULL.

PyObject*	PyType_GenericNew(PyTypeObject	*type,
PyObject	*args,	PyObject	*kwds)

Return	value:	New	reference.
Generic	handler	for	the	tp_new	slot	of	a	type	object.	Create	a	new
instance	using	the	type’s	tp_alloc	slot.

int	PyType_Ready(PyTypeObject	*type)
Finalize	a	type	object.	This	should	be	called	on	all	 type	objects	to
finish	 their	 initialization.	 This	 function	 is	 responsible	 for	 adding
inherited	slots	 from	a	 type’s	base	class.	Return	0	 on	 success,	 or
return	-1	and	sets	an	exception	on	error.

PyObject*	PyType_FromSpec(PyType_Spec	*spec)
Creates	 and	 returns	 a	 heap	 type	 object	 from	 the	spec	passed	 to
the	function.

PyObject*	PyType_FromSpecWithBases(PyType_Spec	*spec,
PyObject	*bases)

Creates	and	returns	a	heap	type	object	from	the	spec.	 In	addition
to	 that,	 the	created	heap	 type	contains	all	 types	contained	by	 the
bases	tuple	as	base	types.	This	allows	the	caller	to	reference	other
heap	types	as	base	types.

New	in	version	3.3.

void*	PyType_GetSlot(PyTypeObject	*type,	int	slot)
Return	 the	 function	pointer	stored	 in	 the	given	slot.	 If	 the	result	 is
NULL,	this	indicates	that	either	the	slot	is	NULL,	or	that	the	function
was	 called	 with	 invalid	 parameters.	 Callers	 will	 typically	 cast	 the
result	pointer	into	the	appropriate	function	type.

New	in	version	3.4.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

The	None	Object
Note	that	the	PyTypeObject	for	None	 is	not	directly	exposed	in	the
Python/C	 API.	 Since	 None	 is	 a	 singleton,	 testing	 for	 object	 identity
(using	==	 in	C)	 is	 sufficient.	There	 is	no	 PyNone_Check()	 function
for	the	same	reason.

PyObject*	Py_None
The	Python	None	object,	denoting	lack	of	value.	This	object	has	no
methods.	 It	 needs	 to	 be	 treated	 just	 like	 any	 other	 object	 with
respect	to	reference	counts.

Py_RETURN_NONE

Properly	handle	returning	Py_None	 from	within	a	C	 function	 (that
is,	increment	the	reference	count	of	None	and	return	it.)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Integer	Objects
All	integers	are	implemented	as	“long”	integer	objects	of	arbitrary	size.

PyLongObject

This	subtype	of	PyObject	represents	a	Python	integer	object.

PyTypeObject	PyLong_Type
This	 instance	 of	 PyTypeObject	 represents	 the	 Python	 integer
type.	This	is	the	same	object	as	int	in	the	Python	layer.

int	PyLong_Check(PyObject	*p)
Return	 true	 if	 its	 argument	 is	 a	 PyLongObject	 or	 a	 subtype	 of
PyLongObject.

int	PyLong_CheckExact(PyObject	*p)
Return	true	if	its	argument	is	a	PyLongObject,	but	not	a	subtype
of	PyLongObject.

PyObject*	PyLong_FromLong(long	v)
Return	value:	New	reference.
Return	a	new	PyLongObject	object	from	v,	or	NULL	on	failure.

The	current	implementation	keeps	an	array	of	integer	objects	for	all
integers	between	-5	and	256,	when	you	create	an	int	in	that	range
you	actually	 just	get	back	a	 reference	 to	 the	existing	object.	So	 it
should	 be	 possible	 to	 change	 the	 value	 of	 1.	 I	 suspect	 the
behaviour	of	Python	in	this	case	is	undefined.	:-)

PyObject*	PyLong_FromUnsignedLong(unsigned	long	v)
Return	value:	New	reference.

Return	a	new	PyLongObject	object	from	a	C	unsigned	long,
or	NULL	on	failure.

PyObject*	PyLong_FromSsize_t(Py_ssize_t	v)
Return	 a	 new	 PyLongObject	 object	 from	 a	C	 Py_ssize_t,	 or
NULL	on	failure.

PyObject*	PyLong_FromSize_t(size_t	v)
Return	a	new	PyLongObject	object	 from	a	C	size_t,	or	NULL
on	failure.

PyObject*	PyLong_FromLongLong(PY_LONG_LONG	v)
Return	value:	New	reference.
Return	 a	 new	 PyLongObject	 object	 from	 a	 C	 long	 long,	 or
NULL	on	failure.

PyObject*	PyLong_FromUnsignedLongLong(unsigned
PY_LONG_LONG	v)

Return	value:	New	reference.
Return	a	new	PyLongObject	object	 from	a	C	unsigned	long
long,	or	NULL	on	failure.

PyObject*	PyLong_FromDouble(double	v)
Return	value:	New	reference.
Return	a	new	PyLongObject	object	from	the	integer	part	of	v,	or
NULL	on	failure.

PyObject*	PyLong_FromString(const	char	*str,	char	**pend,
int	base)

Return	value:	New	reference.
Return	 a	 new	 PyLongObject	 based	 on	 the	 string	 value	 in	 str,
which	is	interpreted	according	to	the	radix	in	base.	If	pend	 is	non-

NULL,	*pend	will	point	to	the	first	character	in	str	which	follows	the
representation	 of	 the	 number.	 If	 base	 is	 0,	 the	 radix	 will	 be
determined	based	on	the	leading	characters	of	str:	if	str	starts	with
'0x'	 or	 '0X',	 radix	 16	 will	 be	 used;	 if	 str	 starts	 with	 '0o'	 or
'0O',	radix	8	will	be	used;	if	str	starts	with	'0b'	or	'0B',	radix	2
will	 be	 used;	 otherwise	 radix	 10	will	 be	 used.	 If	base	 is	 not	 0,	 it
must	be	between	2	and	36,	inclusive.	Leading	spaces	are	ignored.
If	there	are	no	digits,	ValueError	will	be	raised.

PyObject*	PyLong_FromUnicode(Py_UNICODE	*u,
Py_ssize_t	length,	int	base)

Return	value:	New	reference.
Convert	 a	 sequence	 of	Unicode	 digits	 to	 a	Python	 integer	 value.
The	 Unicode	 string	 is	 first	 encoded	 to	 a	 byte	 string	 using
PyUnicode_EncodeDecimal()	 and	 then	 converted	 using
PyLong_FromString().

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyLong_FromUnicodeObject().

PyObject*	PyLong_FromUnicodeObject(PyObject	*u,
int	base)

Convert	a	sequence	of	Unicode	digits	 in	 the	string	u	 to	a	Python
integer	value.	The	Unicode	string	 is	 first	encoded	 to	a	byte	string
using	PyUnicode_EncodeDecimal()	and	then	converted	using
PyLong_FromString().

New	in	version	3.3.

PyObject*	PyLong_FromVoidPtr(void	*p)

Return	value:	New	reference.
Create	a	Python	integer	from	the	pointer	p.	The	pointer	value	can
be	 retrieved	 from	 the	 resulting	 value	 using
PyLong_AsVoidPtr().

long	PyLong_AsLong(PyObject	*obj)
Return	a	C	long	representation	of	obj.	If	obj	 is	not	an	instance	of
PyLongObject,	 first	 call	 its	 __int__()	 method	 (if	 present)	 to
convert	it	to	a	PyLongObject.

Raise	 OverflowError	 if	 the	 value	 of	 obj	 is	 out	 of	 range	 for	 a
long.

long	PyLong_AsLongAndOverflow(PyObject	*obj,
int	*overflow)

Return	a	C	long	representation	of	obj.	If	obj	 is	not	an	instance	of
PyLongObject,	 first	 call	 its	 __int__()	 method	 (if	 present)	 to
convert	it	to	a	PyLongObject.

If	 the	 value	 of	 obj	 is	 greater	 than	 LONG_MAX	 or	 less	 than
LONG_MIN,	set	*overflow	 to	1	or	-1,	 respectively,	and	 return	-1;
otherwise,	 set	 *overflow	 to	 0.	 If	 any	 other	 exception	 occurs	 set
*overflow	to	0	and	return	-1	as	usual.

PY_LONG_LONG	PyLong_AsLongLong(PyObject	*obj)
Return	 a	 C	 long	 long	 representation	 of	 obj.	 If	 obj	 is	 not	 an
instance	 of	 PyLongObject,	 first	 call	 its	 __int__()	 method	 (if
present)	to	convert	it	to	a	PyLongObject.

Raise	 OverflowError	 if	 the	 value	 of	 obj	 is	 out	 of	 range	 for	 a
long.

PY_LONG_LONG
PyLong_AsLongLongAndOverflow(PyObject	*obj,
int	*overflow)

Return	 a	 C	 long	 long	 representation	 of	 obj.	 If	 obj	 is	 not	 an
instance	 of	 PyLongObject,	 first	 call	 its	 __int__()	 method	 (if
present)	to	convert	it	to	a	PyLongObject.

If	 the	 value	 of	 obj	 is	 greater	 than	 PY_LLONG_MAX	 or	 less	 than
PY_LLONG_MIN,	set	*overflow	to	1	or	-1,	respectively,	and	return
-1;	otherwise,	set	*overflow	to	0.	If	any	other	exception	occurs	set
*overflow	to	0	and	return	-1	as	usual.

New	in	version	3.2.

Py_ssize_t	PyLong_AsSsize_t(PyObject	*pylong)
Return	a	C	Py_ssize_t	representation	of	pylong.	pylong	must	be
an	instance	of	PyLongObject.

Raise	OverflowError	if	the	value	of	pylong	is	out	of	range	for	a
Py_ssize_t.

unsigned	long	PyLong_AsUnsignedLong(PyObject	*pylong)
Return	 a	 C	 unsigned	 long	 representation	 of	 pylong.	 pylong
must	be	an	instance	of	PyLongObject.

Raise	OverflowError	if	the	value	of	pylong	is	out	of	range	for	a
unsigned	long.

size_t	PyLong_AsSize_t(PyObject	*pylong)
Return	a	C	size_t	 representation	of	pylong.	pylong	must	 be	 an
instance	of	PyLongObject.

Raise	OverflowError	if	the	value	of	pylong	is	out	of	range	for	a
size_t.

unsigned	PY_LONG_LONG
PyLong_AsUnsignedLongLong(PyObject	*pylong)

Return	a	C	unsigned	PY_LONG_LONG	 representation	of	pylong.
pylong	must	be	an	instance	of	PyLongObject.

Raise	OverflowError	if	the	value	of	pylong	is	out	of	range	for	an
unsigned	PY_LONG_LONG.

Changed	 in	 version	 3.1:	 A	 negative	 pylong	 now	 raises
OverflowError,	not	TypeError.

unsigned	long	PyLong_AsUnsignedLongMask(PyObject	*obj)
Return	a	C	unsigned	long	representation	of	obj.	If	obj	is	not	an
instance	 of	 PyLongObject,	 first	 call	 its	 __int__()	 method	 (if
present)	to	convert	it	to	a	PyLongObject.

If	 the	value	of	obj	 is	out	of	 range	 for	an	unsigned	long,	 return
the	reduction	of	that	value	modulo	ULONG_MAX	+	1.

unsigned	PY_LONG_LONG
PyLong_AsUnsignedLongLongMask(PyObject	*obj)

Return	a	C	unsigned	long	long	representation	of	obj.	If	obj	 is
not	 an	 instance	 of	 PyLongObject,	 first	 call	 its	 __int__()
method	(if	present)	to	convert	it	to	a	PyLongObject.

If	 the	value	of	obj	 is	out	of	 range	for	an	unsigned	long	long,
return	the	reduction	of	that	value	modulo	PY_ULLONG_MAX	+	1.

double	PyLong_AsDouble(PyObject	*pylong)

Return	a	C	double	 representation	of	pylong.	pylong	must	 be	 an
instance	of	PyLongObject.

Raise	OverflowError	if	the	value	of	pylong	is	out	of	range	for	a
double.

void*	PyLong_AsVoidPtr(PyObject	*pylong)
Convert	 a	 Python	 integer	 pylong	 to	 a	 C	 void	 pointer.	 If	 pylong
cannot	 be	 converted,	 an	 OverflowError	will	 be	 raised.	 This	 is
only	assured	to	produce	a	usable	void	pointer	for	values	created
with	PyLong_FromVoidPtr().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Boolean	Objects
Booleans	in	Python	are	implemented	as	a	subclass	of	integers.	There
are	only	two	booleans,	Py_False	and	Py_True.	As	such,	the	normal
creation	and	deletion	functions	don’t	apply	to	booleans.	The	following
macros	are	available,	however.

int	PyBool_Check(PyObject	*o)
Return	true	if	o	is	of	type	PyBool_Type.

PyObject*	Py_False
The	Python	False	object.	This	object	has	no	methods.	It	needs	to
be	 treated	 just	 like	 any	 other	 object	 with	 respect	 to	 reference
counts.

PyObject*	Py_True
The	Python	True	object.	This	object	has	no	methods.	It	needs	to
be	 treated	 just	 like	 any	 other	 object	 with	 respect	 to	 reference
counts.

Py_RETURN_FALSE

Return	 Py_False	 from	 a	 function,	 properly	 incrementing	 its
reference	count.

Py_RETURN_TRUE

Return	 Py_True	 from	 a	 function,	 properly	 incrementing	 its
reference	count.

PyObject*	PyBool_FromLong(long	v)
Return	value:	New	reference.
Return	a	new	reference	 to	Py_True	or	Py_False	depending	on

the	truth	value	of	v.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Floating	Point	Objects
PyFloatObject

This	 subtype	 of	 PyObject	 represents	 a	 Python	 floating	 point
object.

PyTypeObject	PyFloat_Type
This	 instance	 of	 PyTypeObject	 represents	 the	 Python	 floating
point	type.	This	is	the	same	object	as	float	in	the	Python	layer.

int	PyFloat_Check(PyObject	*p)
Return	 true	 if	 its	argument	 is	a	PyFloatObject	or	a	subtype	of
PyFloatObject.

int	PyFloat_CheckExact(PyObject	*p)
Return	true	if	its	argument	is	a	PyFloatObject,	but	not	a	subtype
of	PyFloatObject.

PyObject*	PyFloat_FromString(PyObject	*str)
Return	value:	New	reference.
Create	a	PyFloatObject	object	based	on	the	string	value	in	str,
or	NULL	on	failure.

PyObject*	PyFloat_FromDouble(double	v)
Return	value:	New	reference.
Create	a	PyFloatObject	object	from	v,	or	NULL	on	failure.

double	PyFloat_AsDouble(PyObject	*pyfloat)
Return	 a	 C	 double	 representation	 of	 the	 contents	 of	 pyfloat.	 If
pyfloat	 is	 not	 a	 Python	 floating	 point	 object	 but	 has	 a
__float__()	method,	 this	method	will	 first	 be	 called	 to	 convert

pyfloat	into	a	float.	This	method	returns	-1.0	upon	failure,	so	one
should	call	PyErr_Occurred()	to	check	for	errors.

double	PyFloat_AS_DOUBLE(PyObject	*pyfloat)
Return	a	C	double	 representation	of	 the	contents	of	pyfloat,	but
without	error	checking.

PyObject*	PyFloat_GetInfo(void)
Return	a	 structseq	 instance	which	 contains	 information	about	 the
precision,	 minimum	 and	 maximum	 values	 of	 a	 float.	 It’s	 a	 thin
wrapper	around	the	header	file	float.h.

double	PyFloat_GetMax()
Return	 the	 maximum	 representable	 finite	 float	 DBL_MAX	 as	 C
double.

double	PyFloat_GetMin()
Return	 the	 minimum	 normalized	 positive	 float	 DBL_MIN	 as	 C
double.

int	PyFloat_ClearFreeList()
Clear	the	float	 free	 list.	Return	the	number	of	 items	that	could	not
be	freed.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Complex	Number	Objects
Python’s	 complex	 number	 objects	 are	 implemented	 as	 two	 distinct
types	when	viewed	from	the	C	API:	one	is	the	Python	object	exposed
to	Python	programs,	and	 the	other	 is	a	C	structure	which	 represents
the	 actual	 complex	 number	 value.	 The	 API	 provides	 functions	 for
working	with	both.

Complex	Numbers	as	C	Structures

Note	 that	 the	 functions	which	accept	 these	structures	as	parameters
and	 return	 them	as	 results	do	so	by	value	 rather	 than	 dereferencing
them	through	pointers.	This	is	consistent	throughout	the	API.

Py_complex

The	C	structure	which	corresponds	to	the	value	portion	of	a	Python
complex	 number	 object.	 Most	 of	 the	 functions	 for	 dealing	 with
complex	 number	 objects	 use	 structures	 of	 this	 type	 as	 input	 or
output	values,	as	appropriate.	It	is	defined	as:

typedef	struct	{

			double	real;

			double	imag;

}	Py_complex;

Py_complex	_Py_c_sum(Py_complex	left,	Py_complex	right)
Return	 the	 sum	 of	 two	 complex	 numbers,	 using	 the	 C
Py_complex	representation.

Py_complex	_Py_c_diff(Py_complex	left,	Py_complex	right)
Return	the	difference	between	two	complex	numbers,	using	the	C
Py_complex	representation.

Py_complex	_Py_c_neg(Py_complex	complex)
Return	the	negation	of	 the	complex	number	complex,	using	the	C
Py_complex	representation.

Py_complex	_Py_c_prod(Py_complex	left,	Py_complex	right)
Return	 the	 product	 of	 two	 complex	 numbers,	 using	 the	 C
Py_complex	representation.

Py_complex	_Py_c_quot(Py_complex	dividend,
Py_complex	divisor)

Return	 the	 quotient	 of	 two	 complex	 numbers,	 using	 the	 C
Py_complex	representation.

If	divisor	is	null,	this	method	returns	zero	and	sets	errno	to	EDOM.

Py_complex	_Py_c_pow(Py_complex	num,	Py_complex	exp)
Return	 the	 exponentiation	 of	 num	 by	 exp,	 using	 the	 C
Py_complex	representation.

If	num	 is	 null	 and	exp	 is	 not	 a	 positive	 real	 number,	 this	method
returns	zero	and	sets	errno	to	EDOM.

Complex	Numbers	as	Python	Objects

PyComplexObject

This	subtype	of	PyObject	 represents	a	Python	complex	number
object.

PyTypeObject	PyComplex_Type
This	 instance	 of	 PyTypeObject	 represents	 the	 Python	 complex
number	type.	It	is	the	same	object	as	complex	in	the	Python	layer.

int	PyComplex_Check(PyObject	*p)
Return	true	if	its	argument	is	a	PyComplexObject	or	a	subtype	of
PyComplexObject.

int	PyComplex_CheckExact(PyObject	*p)
Return	 true	 if	 its	 argument	 is	 a	 PyComplexObject,	 but	 not	 a
subtype	of	PyComplexObject.

PyObject*	PyComplex_FromCComplex(Py_complex	v)
Return	value:	New	reference.
Create	 a	 new	 Python	 complex	 number	 object	 from	 a	 C
Py_complex	value.

PyObject*	PyComplex_FromDoubles(double	real,	double	imag)
Return	value:	New	reference.
Return	a	new	PyComplexObject	object	from	real	and	imag.

double	PyComplex_RealAsDouble(PyObject	*op)
Return	the	real	part	of	op	as	a	C	double.

double	PyComplex_ImagAsDouble(PyObject	*op)

Return	the	imaginary	part	of	op	as	a	C	double.

Py_complex	PyComplex_AsCComplex(PyObject	*op)
Return	the	Py_complex	value	of	the	complex	number	op.

If	 op	 is	 not	 a	 Python	 complex	 number	 object	 but	 has	 a
__complex__()	method,	this	method	will	first	be	called	to	convert
op	 to	a	Python	complex	number	object.	Upon	 failure,	 this	method
returns	-1.0	as	a	real	value.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Bytes	Objects
These	functions	raise	TypeError	when	expecting	a	bytes	parameter
and	are	called	with	a	non-bytes	parameter.

PyBytesObject

This	subtype	of	PyObject	represents	a	Python	bytes	object.

PyTypeObject	PyBytes_Type
This	instance	of	PyTypeObject	represents	the	Python	bytes	type;
it	is	the	same	object	as	bytes	in	the	Python	layer.

int	PyBytes_Check(PyObject	*o)
Return	 true	 if	 the	 object	 o	 is	 a	 bytes	 object	 or	 an	 instance	 of	 a
subtype	of	the	bytes	type.

int	PyBytes_CheckExact(PyObject	*o)
Return	true	if	the	object	o	is	a	bytes	object,	but	not	an	instance	of	a
subtype	of	the	bytes	type.

PyObject*	PyBytes_FromString(const	char	*v)
Return	a	new	bytes	object	with	a	copy	of	the	string	v	as	value	on
success,	and	NULL	on	failure.	The	parameter	v	must	not	be	NULL;
it	will	not	be	checked.

PyObject*	PyBytes_FromStringAndSize(const	char	*v,
Py_ssize_t	len)

Return	a	new	bytes	object	with	a	copy	of	the	string	v	as	value	and
length	 len	 on	 success,	 and	 NULL	 on	 failure.	 If	 v	 is	 NULL,	 the
contents	of	the	bytes	object	are	uninitialized.

PyObject*	PyBytes_FromFormat(const	char	*format,	...)
Take	a	C	printf()-style	 format	string	and	a	variable	number	of
arguments,	calculate	 the	size	of	 the	 resulting	Python	bytes	object
and	 return	 a	 bytes	 object	 with	 the	 values	 formatted	 into	 it.	 The
variable	arguments	must	be	C	types	and	must	correspond	exactly
to	 the	 format	characters	 in	 the	 format	 string.	The	 following	 format
characters	are	allowed:

Format
Characters Type Comment

%% n/a The	literal	%	character.

%c int A	single	character,
represented	as	an	C	int.

%d int Exactly	equivalent	to
printf("%d").

%u unsigned	int Exactly	equivalent	to
printf("%u").

%ld long Exactly	equivalent	to
printf("%ld").

%lu
unsigned
long

Exactly	equivalent	to
printf("%lu").

%zd Py_ssize_t Exactly	equivalent	to
printf("%zd").

%zu size_t Exactly	equivalent	to
printf("%zu").

%i int Exactly	equivalent	to
printf("%i").

%x int Exactly	equivalent	to
printf("%x").

%s char* A	null-terminated	C	character

array.

%p void*

The	hex	representation	of	a
C	pointer.	Mostly	equivalent
to	printf("%p")	except
that	it	is	guaranteed	to	start
with	the	literal	0x	regardless
of	what	the	platform’s
printf	yields.

An	unrecognized	format	character	causes	all	the	rest	of	the	format
string	 to	 be	 copied	 as-is	 to	 the	 result	 string,	 and	 any	 extra
arguments	discarded.

PyObject*	PyBytes_FromFormatV(const	char	*format,
va_list	vargs)

Identical	to	PyBytes_FromFormat()	except	that	it	takes	exactly
two	arguments.

PyObject*	PyBytes_FromObject(PyObject	*o)
Return	 the	 bytes	 representation	 of	 object	 o	 that	 implements	 the
buffer	protocol.

Py_ssize_t	PyBytes_Size(PyObject	*o)
Return	the	length	of	the	bytes	in	bytes	object	o.

Py_ssize_t	PyBytes_GET_SIZE(PyObject	*o)
Macro	form	of	PyBytes_Size()	but	without	error	checking.

char*	PyBytes_AsString(PyObject	*o)
Return	a	NUL-terminated	representation	of	 the	contents	of	o.	The
pointer	refers	to	the	internal	buffer	of	o,	not	a	copy.	The	data	must
not	be	modified	in	any	way,	unless	the	string	was	just	created	using
PyBytes_FromStringAndSize(NULL,	size).	 It	 must	 not	 be

deallocated.	 If	 o	 is	 not	 a	 string	 object	 at	 all,
PyBytes_AsString()	returns	NULL	and	raises	TypeError.

char*	PyBytes_AS_STRING(PyObject	*string)
Macro	form	of	PyBytes_AsString()	but	without	error	checking.

int	PyBytes_AsStringAndSize(PyObject	*obj,	char	**buffer,
Py_ssize_t	*length)

Return	 a	 NUL-terminated	 representation	 of	 the	 contents	 of	 the
object	obj	through	the	output	variables	buffer	and	length.

If	 length	 is	 NULL,	 the	 resulting	 buffer	 may	 not	 contain	 NUL
characters;	if	it	does,	the	function	returns	-1	and	a	TypeError	is
raised.

The	buffer	refers	to	an	internal	string	buffer	of	obj,	not	a	copy.	The
data	must	 not	 be	modified	 in	 any	way,	 unless	 the	 string	was	 just
created	using	PyBytes_FromStringAndSize(NULL,	size).	It
must	 not	 be	 deallocated.	 If	 string	 is	 not	 a	 string	 object	 at	 all,
PyBytes_AsStringAndSize()	 returns	 -1	 and	 raises
TypeError.

void	PyBytes_Concat(PyObject	**bytes,	PyObject	*newpart)
Create	 a	 new	 bytes	 object	 in	 *bytes	 containing	 the	 contents	 of
newpart	appended	to	bytes;	 the	caller	will	own	the	new	reference.
The	 reference	 to	 the	 old	 value	 of	bytes	will	 be	 stolen.	 If	 the	 new
string	 cannot	 be	 created,	 the	 old	 reference	 to	 bytes	 will	 still	 be
discarded	 and	 the	 value	 of	 *bytes	 will	 be	 set	 to	 NULL;	 the
appropriate	exception	will	be	set.

void	PyBytes_ConcatAndDel(PyObject	**bytes,
PyObject	*newpart)

Create	 a	 new	 string	 object	 in	 *bytes	 containing	 the	 contents	 of
newpart	appended	to	bytes.	This	version	decrements	the	reference
count	of	newpart.

int	_PyBytes_Resize(PyObject	**bytes,	Py_ssize_t	newsize)
A	way	to	resize	a	bytes	object	even	though	it	is	“immutable”.	Only
use	this	to	build	up	a	brand	new	bytes	object;	don’t	use	this	if	 the
bytes	may	 already	 be	 known	 in	 other	 parts	 of	 the	 code.	 It	 is	 an
error	to	call	this	function	if	the	refcount	on	the	input	bytes	object	is
not	one.	Pass	the	address	of	an	existing	bytes	object	as	an	lvalue
(it	 may	 be	 written	 into),	 and	 the	 new	 size	 desired.	 On	 success,
*bytes	 holds	 the	 resized	 bytes	 object	 and	 0	 is	 returned;	 the
address	in	*bytes	may	differ	from	its	input	value.	If	the	reallocation
fails,	the	original	bytes	object	at	*bytes	is	deallocated,	*bytes	is	set
to	NULL,	a	memory	exception	is	set,	and	-1	is	returned.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Byte	Array	Objects
PyByteArrayObject

This	subtype	of	PyObject	represents	a	Python	bytearray	object.

PyTypeObject	PyByteArray_Type
This	 instance	of	PyTypeObject	 represents	 the	Python	bytearray
type;	it	is	the	same	object	as	bytearray	in	the	Python	layer.

Type	check	macros

int	PyByteArray_Check(PyObject	*o)
Return	true	if	the	object	o	is	a	bytearray	object	or	an	instance	of	a
subtype	of	the	bytearray	type.

int	PyByteArray_CheckExact(PyObject	*o)
Return	true	if	the	object	o	is	a	bytearray	object,	but	not	an	instance
of	a	subtype	of	the	bytearray	type.

Direct	API	functions

PyObject*	PyByteArray_FromObject(PyObject	*o)
Return	a	new	bytearray	object	from	any	object,	o,	that	implements
the	buffer	protocol.

PyObject*	PyByteArray_FromStringAndSize(const
char	*string,	Py_ssize_t	len)

Create	a	new	bytearray	object	 from	string	and	 its	 length,	 len.	On
failure,	NULL	is	returned.

PyObject*	PyByteArray_Concat(PyObject	*a,	PyObject	*b)
Concat	 bytearrays	 a	 and	 b	 and	 return	 a	 new	 bytearray	 with	 the
result.

Py_ssize_t	PyByteArray_Size(PyObject	*bytearray)
Return	the	size	of	bytearray	after	checking	for	a	NULL	pointer.

char*	PyByteArray_AsString(PyObject	*bytearray)
Return	the	contents	of	bytearray	as	a	char	array	after	checking	for
a	NULL	pointer.

int	PyByteArray_Resize(PyObject	*bytearray,	Py_ssize_t	len)
Resize	the	internal	buffer	of	bytearray	to	len.

Macros

These	macros	trade	safety	for	speed	and	they	don’t	check	pointers.

char*	PyByteArray_AS_STRING(PyObject	*bytearray)
Macro	version	of	PyByteArray_AsString().

Py_ssize_t	PyByteArray_GET_SIZE(PyObject	*bytearray)
Macro	version	of	PyByteArray_Size().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Unicode	Objects	and	Codecs

Unicode	Objects

Since	the	 implementation	of	PEP	393	 in	Python	3.3,	Unicode	objects
internally	 use	a	 variety	 of	 representations,	 in	 order	 to	 allow	handling
the	 complete	 range	 of	 Unicode	 characters	 while	 staying	 memory
efficient.	There	are	special	cases	for	strings	where	all	code	points	are
below	 128,	 256,	 or	 65536;	 otherwise,	 code	 points	 must	 be	 below
1114112	(which	is	the	full	Unicode	range).

Py_UNICODE*	 and	 UTF-8	 representations	 are	 created	 on	 demand
and	cached	in	the	Unicode	object.	The	Py_UNICODE*	 representation
is	deprecated	and	 inefficient;	 it	should	be	avoided	 in	performance-	or
memory-sensitive	situations.

Due	to	the	transition	between	the	old	APIs	and	the	new	APIs,	unicode
objects	 can	 internally	 be	 in	 two	 states	 depending	 on	 how	 they	were
created:

“canonical”	 unicode	 objects	 are	 all	 objects	 created	 by	 a	 non-
deprecated	 unicode	 API.	 They	 use	 the	 most	 efficient
representation	allowed	by	the	implementation.
“legacy”	 unicode	 objects	 have	 been	 created	 through	 one	 of	 the
deprecated	 APIs	 (typically	 PyUnicode_FromUnicode())	 and
only	bear	the	Py_UNICODE*	representation;	you	will	have	to	call
PyUnicode_READY()	on	them	before	calling	any	other	API.

Unicode	Type

These	 are	 the	 basic	 Unicode	 object	 types	 used	 for	 the	 Unicode
implementation	in	Python:

Py_UCS4

http://www.python.org/dev/peps/pep-0393

Py_UCS2

Py_UCS1

These	types	are	typedefs	for	unsigned	integer	types	wide	enough
to	 contain	 characters	 of	 32	 bits,	 16	 bits	 and	 8	 bits,	 respectively.
When	dealing	with	single	Unicode	characters,	use	Py_UCS4.

New	in	version	3.3.

Py_UNICODE

This	is	a	typedef	of	wchar_t,	which	is	a	16-bit	type	or	32-bit	type
depending	on	the	platform.

Changed	in	version	3.3:	In	previous	versions,	this	was	a	16-bit	type
or	a	32-bit	 type	depending	on	whether	you	selected	a	“narrow”	or
“wide”	Unicode	version	of	Python	at	build	time.

PyASCIIObject

PyCompactUnicodeObject

PyUnicodeObject

These	subtypes	of	PyObject	represent	a	Python	Unicode	object.
In	 almost	 all	 cases,	 they	 shouldn’t	 be	 used	 directly,	 since	 all	 API
functions	that	deal	with	Unicode	objects	take	and	return	PyObject
pointers.

New	in	version	3.3.

PyTypeObject	PyUnicode_Type
This	 instance	 of	 PyTypeObject	 represents	 the	 Python	 Unicode
type.	It	is	exposed	to	Python	code	as	str.

The	 following	APIs	 are	 really	C	macros	 and	 can	 be	 used	 to	 do	 fast
checks	and	to	access	internal	read-only	data	of	Unicode	objects:

int	PyUnicode_Check(PyObject	*o)
Return	true	if	 the	object	o	 is	a	Unicode	object	or	an	 instance	of	a
Unicode	subtype.

int	PyUnicode_CheckExact(PyObject	*o)
Return	true	if	the	object	o	is	a	Unicode	object,	but	not	an	instance
of	a	subtype.

int	PyUnicode_READY(PyObject	*o)
Ensure	the	string	object	o	is	in	the	“canonical”	representation.	This
is	required	before	using	any	of	the	access	macros	described	below.

Returns	 0	 on	 success	 and	 -1	 with	 an	 exception	 set	 on	 failure,
which	in	particular	happens	if	memory	allocation	fails.

New	in	version	3.3.

Py_ssize_t	PyUnicode_GET_LENGTH(PyObject	*o)
Return	the	length	of	the	Unicode	string,	in	code	points.	o	has	to	be
a	Unicode	object	in	the	“canonical”	representation	(not	checked).

New	in	version	3.3.

Py_UCS1*	PyUnicode_1BYTE_DATA(PyObject	*o)
Py_UCS2*	PyUnicode_2BYTE_DATA(PyObject	*o)
Py_UCS4*	PyUnicode_4BYTE_DATA(PyObject	*o)

Return	 a	 pointer	 to	 the	 canonical	 representation	 cast	 to	 UCS1,
UCS2	 or	 UCS4	 integer	 types	 for	 direct	 character	 access.	 No
checks	 are	 performed	 if	 the	 canonical	 representation	 has	 the
correct	character	size;	use	PyUnicode_KIND()	to	select	the	right
macro.	Make	sure	PyUnicode_READY()	has	been	called	before
accessing	this.

New	in	version	3.3.

PyUnicode_WCHAR_KIND

PyUnicode_1BYTE_KIND

PyUnicode_2BYTE_KIND

PyUnicode_4BYTE_KIND

Return	values	of	the	PyUnicode_KIND()	macro.

New	in	version	3.3.

int	PyUnicode_KIND(PyObject	*o)
Return	 one	 of	 the	 PyUnicode	 kind	 constants	 (see	 above)	 that
indicate	how	many	bytes	per	character	this	Unicode	object	uses	to
store	 its	 data.	 o	 has	 to	 be	 a	 Unicode	 object	 in	 the	 “canonical”
representation	(not	checked).

New	in	version	3.3.

void*	PyUnicode_DATA(PyObject	*o)
Return	 a	 void	 pointer	 to	 the	 raw	 unicode	 buffer.	 o	 has	 to	 be	 a
Unicode	object	in	the	“canonical”	representation	(not	checked).

New	in	version	3.3.

void	PyUnicode_WRITE(int	kind,	void	*data,	Py_ssize_t	index,
Py_UCS4	value)

Write	 into	 a	 canonical	 representation	 data	 (as	 obtained	 with
PyUnicode_DATA()).	This	macro	does	not	do	any	sanity	checks
and	 is	 intended	 for	 usage	 in	 loops.	 The	 caller	 should	 cache	 the
kind	 value	 and	 data	 pointer	 as	 obtained	 from	 other	 macro	 calls.
index	 is	 the	 index	 in	 the	 string	 (starts	 at	 0)	 and	value	 is	 the	new
code	point	value	which	should	be	written	to	that	location.

New	in	version	3.3.

Py_UCS4	PyUnicode_READ(int	kind,	void	*data,
Py_ssize_t	index)

Read	 a	 code	 point	 from	 a	 canonical	 representation	 data	 (as
obtained	with	PyUnicode_DATA()).	No	checks	or	ready	calls	are
performed.

New	in	version	3.3.

Py_UCS4	PyUnicode_READ_CHAR(PyObject	*o,
Py_ssize_t	index)

Read	a	 character	 from	a	Unicode	object	o,	which	must	be	 in	 the
“canonical”	 representation.	 This	 is	 less	 efficient	 than
PyUnicode_READ()	if	you	do	multiple	consecutive	reads.

New	in	version	3.3.

PyUnicode_MAX_CHAR_VALUE(PyObject	*o)
Return	the	maximum	code	point	that	is	suitable	for	creating	another
string	based	on	o,	which	must	be	in	the	“canonical”	representation.
This	 is	 always	 an	 approximation	 but	 more	 efficient	 than	 iterating
over	the	string.

New	in	version	3.3.

int	PyUnicode_ClearFreeList()
Clear	the	free	list.	Return	the	total	number	of	freed	items.

Py_ssize_t	PyUnicode_GET_SIZE(PyObject	*o)
Return	the	size	of	the	deprecated	Py_UNICODE	 representation,	 in
code	units	(this	includes	surrogate	pairs	as	2	units).	o	has	to	be	a
Unicode	object	(not	checked).

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	 old-style	 Unicode	 API,	 please	 migrate	 to	 using
PyUnicode_GET_LENGTH().

Py_ssize_t	PyUnicode_GET_DATA_SIZE(PyObject	*o)
Return	 the	size	of	 the	deprecated	Py_UNICODE	 representation	 in
bytes.	o	has	to	be	a	Unicode	object	(not	checked).

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	 old-style	 Unicode	 API,	 please	 migrate	 to	 using
PyUnicode_GET_LENGTH().

Py_UNICODE*	PyUnicode_AS_UNICODE(PyObject	*o)
const	char*	PyUnicode_AS_DATA(PyObject	*o)

Return	 a	 pointer	 to	 a	 Py_UNICODE	 representation	 of	 the	 object.
The	AS_DATA	form	casts	the	pointer	to	const	char	*.	o	has	to
be	a	Unicode	object	(not	checked).

Changed	in	version	3.3:	This	macro	is	now	inefficient	–	because	in
many	 cases	 the	 Py_UNICODE	 representation	 does	 not	 exist	 and
needs	to	be	created	–	and	can	fail	(return	NULL	with	an	exception
set).	 Try	 to	 port	 the	 code	 to	 use	 the	 new
PyUnicode_nBYTE_DATA()	 macros	 or	 use
PyUnicode_WRITE()	or	PyUnicode_READ().

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	 old-style	 Unicode	 API,	 please	 migrate	 to	 using	 the
PyUnicode_nBYTE_DATA()	family	of	macros.

Unicode	Character	Properties

Unicode	provides	many	different	character	properties.	The	most	often
needed	ones	are	available	through	these	macros	which	are	mapped	to
C	functions	depending	on	the	Python	configuration.

int	Py_UNICODE_ISSPACE(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	a	whitespace	character.

int	Py_UNICODE_ISLOWER(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	a	lowercase	character.

int	Py_UNICODE_ISUPPER(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	an	uppercase	character.

int	Py_UNICODE_ISTITLE(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	a	titlecase	character.

int	Py_UNICODE_ISLINEBREAK(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	a	linebreak	character.

int	Py_UNICODE_ISDECIMAL(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	a	decimal	character.

int	Py_UNICODE_ISDIGIT(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	a	digit	character.

int	Py_UNICODE_ISNUMERIC(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	a	numeric	character.

int	Py_UNICODE_ISALPHA(Py_UNICODE	ch)
Return	1	or	0	depending	on	whether	ch	is	an	alphabetic	character.

int	Py_UNICODE_ISALNUM(Py_UNICODE	ch)
Return	 1	 or	 0	 depending	 on	 whether	 ch	 is	 an	 alphanumeric

character.

int	Py_UNICODE_ISPRINTABLE(Py_UNICODE	ch)
Return	 1	 or	 0	 depending	 on	whether	 ch	 is	 a	 printable	 character.
Nonprintable	 characters	 are	 those	 characters	 defined	 in	 the
Unicode	 character	 database	 as	 “Other”	 or	 “Separator”,	 excepting
the	ASCII	 space	 (0x20)	which	 is	 considered	 printable.	 (Note	 that
printable	characters	 in	 this	context	are	 those	which	should	not	be
escaped	when	repr()	is	invoked	on	a	string.	It	has	no	bearing	on
the	handling	of	strings	written	to	sys.stdout	or	sys.stderr.)

These	APIs	can	be	used	for	fast	direct	character	conversions:

Py_UNICODE	Py_UNICODE_TOLOWER(Py_UNICODE	ch)
Return	the	character	ch	converted	to	lower	case.

Deprecated	 since	 version	 3.3:	 This	 function	 uses	 simple	 case
mappings.

Py_UNICODE	Py_UNICODE_TOUPPER(Py_UNICODE	ch)
Return	the	character	ch	converted	to	upper	case.

Deprecated	 since	 version	 3.3:	 This	 function	 uses	 simple	 case
mappings.

Py_UNICODE	Py_UNICODE_TOTITLE(Py_UNICODE	ch)
Return	the	character	ch	converted	to	title	case.

Deprecated	 since	 version	 3.3:	 This	 function	 uses	 simple	 case
mappings.

int	Py_UNICODE_TODECIMAL(Py_UNICODE	ch)

Return	 the	 character	 ch	 converted	 to	 a	 decimal	 positive	 integer.
Return	 -1	 if	 this	 is	 not	 possible.	 This	 macro	 does	 not	 raise
exceptions.

int	Py_UNICODE_TODIGIT(Py_UNICODE	ch)
Return	the	character	ch	converted	to	a	single	digit	 integer.	Return
-1	if	this	is	not	possible.	This	macro	does	not	raise	exceptions.

double	Py_UNICODE_TONUMERIC(Py_UNICODE	ch)
Return	the	character	ch	converted	to	a	double.	Return	-1.0	if	this
is	not	possible.	This	macro	does	not	raise	exceptions.

These	APIs	can	be	used	to	work	with	surrogates:

Py_UNICODE_IS_SURROGATE(ch)
Check	if	ch	is	a	surrogate	(0xD800	<=	ch	<=	0xDFFF).

Py_UNICODE_IS_HIGH_SURROGATE(ch)
Check	if	ch	is	an	high	surrogate	(0xD800	<=	ch	<=	0xDBFF).

Py_UNICODE_IS_LOW_SURROGATE(ch)
Check	if	ch	is	a	low	surrogate	(0xDC00	<=	ch	<=	0xDFFF).

Py_UNICODE_JOIN_SURROGATES(high,	low)
Join	two	surrogate	characters	and	return	a	single	Py_UCS4	value.
high	and	low	are	respectively	the	leading	and	trailing	surrogates	in
a	surrogate	pair.

Creating	and	accessing	Unicode	strings

To	create	Unicode	objects	and	access	their	basic	sequence	properties,
use	these	APIs:

PyObject*	PyUnicode_New(Py_ssize_t	size,	Py_UCS4	maxchar)
Create	 a	 new	 Unicode	 object.	 maxchar	 should	 be	 the	 true
maximum	 code	 point	 to	 be	 placed	 in	 the	 string.	 As	 an
approximation,	 it	 can	 be	 rounded	 up	 to	 the	 nearest	 value	 in	 the
sequence	127,	255,	65535,	1114111.

This	 is	 the	 recommended	way	 to	 allocate	 a	 new	Unicode	 object.
Objects	created	using	this	function	are	not	resizable.

New	in	version	3.3.

PyObject*	PyUnicode_FromKindAndData(int	kind,	const
void	*buffer,	Py_ssize_t	size)

Create	a	new	Unicode	object	with	 the	given	kind	 (possible	values
are	 PyUnicode_1BYTE_KIND	 etc.,	 as	 returned	 by
PyUnicode_KIND()).	 The	buffer	 must	 point	 to	 an	 array	 of	 size
units	of	1,	2	or	4	bytes	per	character,	as	given	by	the	kind.

New	in	version	3.3.

PyObject*	PyUnicode_FromStringAndSize(const	char	*u,
Py_ssize_t	size)

Create	a	Unicode	object	 from	the	char	buffer	u.	The	bytes	will	be
interpreted	as	being	UTF-8	encoded.	The	buffer	 is	copied	into	the
new	object.	 If	 the	buffer	 is	not	NULL,	 the	 return	value	might	be	a
shared	object,	i.e.	modification	of	the	data	is	not	allowed.

If	 u	 is	 NULL,	 this	 function	 behaves	 like
PyUnicode_FromUnicode()	 with	 the	 buffer	 set	 to	NULL.	 This
usage	is	deprecated	in	favor	of	PyUnicode_New().

PyObject	*PyUnicode_FromString(const	char	*u)
Create	 a	Unicode	 object	 from	 an	UTF-8	 encoded	 null-terminated

char	buffer	u.

PyObject*	PyUnicode_FromFormat(const	char	*format,	...)
Take	a	C	printf()-style	 format	string	and	a	variable	number	of
arguments,	calculate	the	size	of	the	resulting	Python	unicode	string
and	 return	 a	 string	with	 the	 values	 formatted	 into	 it.	 The	variable
arguments	must	 be	 C	 types	 and	must	 correspond	 exactly	 to	 the
format	 characters	 in	 the	 format	 ASCII-encoded	 string.	 The
following	format	characters	are	allowed:

Format
Characters Type Comment

%% n/a The	literal	%	character.

%c int A	single	character,
represented	as	an	C	int.

%d int Exactly	equivalent	to
printf("%d").

%u unsigned	int Exactly	equivalent	to
printf("%u").

%ld long Exactly	equivalent	to
printf("%ld").

%li long Exactly	equivalent	to
printf("%li").

%lu unsigned	long Exactly	equivalent	to
printf("%lu").

%lld long	long Exactly	equivalent	to
printf("%lld").

%lli long	long Exactly	equivalent	to
printf("%lli").

%llu
unsigned	long
long

Exactly	equivalent	to
printf("%llu").

%zd Py_ssize_t Exactly	equivalent	to
printf("%zd").

%zi Py_ssize_t Exactly	equivalent	to
printf("%zi").

%zu size_t Exactly	equivalent	to
printf("%zu").

%i int Exactly	equivalent	to
printf("%i").

%x int Exactly	equivalent	to
printf("%x").

%s char* A	null-terminated	C
character	array.

%p void*

The	hex	representation	of
a	C	pointer.	Mostly
equivalent	to
printf("%p")	except
that	it	is	guaranteed	to	start
with	the	literal	0x
regardless	of	what	the
platform’s	printf	yields.

%A PyObject* The	result	of	calling
ascii().

%U PyObject* A	unicode	object.

%V PyObject*,	char	*

A	unicode	object	(which
may	be	NULL)	and	a	null-
terminated	C	character
array	as	a	second
parameter	(which	will	be
used,	if	the	first	parameter
is	NULL).

%S PyObject* The	result	of	calling
PyObject_Str().

%R PyObject* The	result	of	calling
PyObject_Repr().

An	unrecognized	format	character	causes	all	the	rest	of	the	format
string	 to	 be	 copied	 as-is	 to	 the	 result	 string,	 and	 any	 extra
arguments	discarded.

Note: 	The	“%lld”	and	“%llu”	format	specifiers	are	only	available
when	HAVE_LONG_LONG	is	defined.

Note: 	 The	 width	 formatter	 unit	 is	 number	 of	 characters	 rather
than	 bytes.	 The	 precision	 formatter	 unit	 is	 number	 of	 bytes	 for
"%s"	 and	 "%V"	 (if	 the	 PyObject*	 argument	 is	NULL),	 and	 a
number	of	characters	for	"%A",	"%U",	"%S",	"%R"	and	"%V"	(if
the	PyObject*	argument	is	not	NULL).

Changed	in	version	3.2:	Support	for	"%lld"	and	"%llu"	added.

Changed	 in	version	3.3:	Support	 for	"%li",	"%lli"	and	"%zi"
added.

Changed	 in	version	3.4:	Support	width	and	precision	formatter	 for
"%s",	"%A",	"%U",	"%V",	"%S",	"%R"	added.

PyObject*	PyUnicode_FromFormatV(const	char	*format,
va_list	vargs)

Identical	 to	 PyUnicode_FromFormat()	 except	 that	 it	 takes
exactly	two	arguments.

PyObject*	PyUnicode_FromEncodedObject(PyObject	*obj,
const	char	*encoding,	const	char	*errors)

Return	value:	New	reference.
Coerce	an	encoded	object	obj	 to	an	Unicode	object	 and	 return	a

reference	with	incremented	refcount.

bytes,	bytearray	and	other	char	buffer	compatible	objects	are
decoded	 according	 to	 the	 given	 encoding	 and	 using	 the	 error
handling	defined	by	errors.	Both	can	be	NULL	to	have	the	interface
use	the	default	values	(see	the	next	section	for	details).

All	other	objects,	 including	Unicode	objects,	cause	a	TypeError
to	be	set.

The	 API	 returns	 NULL	 if	 there	 was	 an	 error.	 The	 caller	 is
responsible	for	decref’ing	the	returned	objects.

Py_ssize_t	PyUnicode_GetLength(PyObject	*unicode)
Return	the	length	of	the	Unicode	object,	in	code	points.

New	in	version	3.3.

int	PyUnicode_CopyCharacters(PyObject	*to,
Py_ssize_t	to_start,	PyObject	*from,	Py_ssize_t	from_start,
Py_ssize_t	how_many)

Copy	 characters	 from	 one	 Unicode	 object	 into	 another.	 This
function	 performs	 character	 conversion	when	necessary	 and	 falls
back	to	memcpy()	 if	possible.	Returns	-1	and	sets	an	exception
on	error,	otherwise	returns	0.

New	in	version	3.3.

Py_ssize_t	PyUnicode_Fill(PyObject	*unicode,
Py_ssize_t	start,	Py_ssize_t	length,	Py_UCS4	fill_char)

Fill	 a	 string	 with	 a	 character:	 write	 fill_char	 into
unicode[start:start+length].

Fail	if	fill_char	is	bigger	than	the	string	maximum	character,	or	if	the

string	has	more	than	1	reference.

Return	the	number	of	written	character,	or	return	-1	and	raise	an
exception	on	error.

New	in	version	3.3.

int	PyUnicode_WriteChar(PyObject	*unicode,
Py_ssize_t	index,	Py_UCS4	character)

Write	a	 character	 to	a	 string.	The	 string	must	 have	 been	 created
through	PyUnicode_New().	Since	Unicode	strings	are	supposed
to	 be	 immutable,	 the	 string	 must	 not	 be	 shared,	 or	 have	 been
hashed	yet.

This	 function	 checks	 that	 unicode	 is	 a	 Unicode	 object,	 that	 the
index	 is	 not	 out	 of	 bounds,	 and	 that	 the	 object	 can	 be	 modified
safely	 (i.e.	 that	 it	 its	 reference	 count	 is	 one),	 in	 contrast	 to	 the
macro	version	PyUnicode_WRITE_CHAR().

New	in	version	3.3.

Py_UCS4	PyUnicode_ReadChar(PyObject	*unicode,
Py_ssize_t	index)

Read	a	character	from	a	string.	This	 function	checks	that	unicode
is	a	Unicode	object	and	the	index	is	not	out	of	bounds,	in	contrast
to	the	macro	version	PyUnicode_READ_CHAR().

New	in	version	3.3.

PyObject*	PyUnicode_Substring(PyObject	*str,
Py_ssize_t	start,	Py_ssize_t	end)

Return	a	 substring	of	str,	 from	 character	 index	start	 (included)	 to
character	 index	 end	 (excluded).	 Negative	 indices	 are	 not

supported.

New	in	version	3.3.

Py_UCS4*	PyUnicode_AsUCS4(PyObject	*u,	Py_UCS4	*buffer,
Py_ssize_t	buflen,	int	copy_null)

Copy	the	string	u	 into	a	UCS4	buffer,	 including	a	null	character,	 if
copy_null	 is	set.	Returns	NULL	and	sets	an	exception	on	error	(in
particular,	a	ValueError	if	buflen	is	smaller	than	the	length	of	u).
buffer	is	returned	on	success.

New	in	version	3.3.

Py_UCS4*	PyUnicode_AsUCS4Copy(PyObject	*u)
Copy	 the	string	u	 into	 a	 new	UCS4	buffer	 that	 is	 allocated	 using
PyMem_Malloc().	 If	 this	 fails,	 NULL	 is	 returned	 with	 a
MemoryError	set.

New	in	version	3.3.

Deprecated	Py_UNICODE	APIs

Deprecated	since	version	3.3,	will	be	removed	in	version	4.0.

These	API	 functions	are	deprecated	with	 the	 implementation	of	PEP
393.	Extension	modules	can	continue	using	them,	as	they	will	not	be
removed	 in	Python	3.x,	but	need	 to	be	aware	 that	 their	use	can	now
cause	performance	and	memory	hits.

PyObject*	PyUnicode_FromUnicode(const	Py_UNICODE	*u,
Py_ssize_t	size)

Return	value:	New	reference.

http://www.python.org/dev/peps/pep-0393

Create	 a	 Unicode	 object	 from	 the	 Py_UNICODE	 buffer	 u	 of	 the
given	 size.	 u	 may	 be	 NULL	 which	 causes	 the	 contents	 to	 be
undefined.	 It	 is	 the	user’s	 responsibility	 to	 fill	 in	 the	needed	data.
The	buffer	is	copied	into	the	new	object.

If	the	buffer	is	not	NULL,	the	return	value	might	be	a	shared	object.
Therefore,	 modification	 of	 the	 resulting	 Unicode	 object	 is	 only
allowed	when	u	is	NULL.

If	 the	buffer	 is	NULL,	PyUnicode_READY()	must	be	called	once
the	 string	 content	 has	been	 filled	 before	using	any	of	 the	access
macros	such	as	PyUnicode_KIND().

Please	 migrate	 to	 using	 PyUnicode_FromKindAndData()	 or
PyUnicode_New().

Py_UNICODE*	PyUnicode_AsUnicode(PyObject	*unicode)
Return	 a	 read-only	 pointer	 to	 the	 Unicode	 object’s	 internal
Py_UNICODE	 buffer,	 or	 NULL	 on	 error.	 This	 will	 create	 the
Py_UNICODE*	representation	of	the	object	if	it	is	not	yet	available.
Note	that	the	resulting	Py_UNICODE	string	may	contain	embedded
null	characters,	which	would	cause	the	string	to	be	truncated	when
used	in	most	C	functions.

Please	 migrate	 to	 using	 PyUnicode_AsUCS4(),
PyUnicode_Substring(),	PyUnicode_ReadChar()	or	similar
new	APIs.

PyObject*
PyUnicode_TransformDecimalToASCII(Py_UNICODE	*s,
Py_ssize_t	size)

Create	 a	 Unicode	 object	 by	 replacing	 all	 decimal	 digits	 in
Py_UNICODE	buffer	of	the	given	size	by	ASCII	digits	0–9	according

to	their	decimal	value.	Return	NULL	if	an	exception	occurs.

Py_UNICODE*
PyUnicode_AsUnicodeAndSize(PyObject	*unicode,
Py_ssize_t	*size)

Like	 PyUnicode_AsUnicode(),	 but	 also	 saves	 the
Py_UNICODE()	 array	 length	 in	 size.	 Note	 that	 the	 resulting
Py_UNICODE*	 string	 may	 contain	 embedded	 null	 characters,
which	would	cause	the	string	to	be	truncated	when	used	in	most	C
functions.

New	in	version	3.3.

Py_UNICODE*
PyUnicode_AsUnicodeCopy(PyObject	*unicode)

Create	 a	 copy	 of	 a	 Unicode	 string	 ending	 with	 a	 nul	 character.
Return	NULL	 and	 raise	 a	 MemoryError	 exception	 on	 memory
allocation	 failure,	 otherwise	 return	 a	 new	 allocated	 buffer	 (use
PyMem_Free()	 to	 free	 the	 buffer).	 Note	 that	 the	 resulting
Py_UNICODE*	 string	 may	 contain	 embedded	 null	 characters,
which	would	cause	the	string	to	be	truncated	when	used	in	most	C
functions.

New	in	version	3.2.

Please	 migrate	 to	 using	 PyUnicode_AsUCS4Copy()	 or	 similar
new	APIs.

Py_ssize_t	PyUnicode_GetSize(PyObject	*unicode)
Return	the	size	of	the	deprecated	Py_UNICODE	 representation,	 in
code	units	(this	includes	surrogate	pairs	as	2	units).

Please	migrate	to	using	PyUnicode_GetLength().

PyObject*	PyUnicode_FromObject(PyObject	*obj)
Return	value:	New	reference.
Shortcut	 for	 PyUnicode_FromEncodedObject(obj,	 NULL,

"strict")	 which	 is	 used	 throughout	 the	 interpreter	 whenever
coercion	to	Unicode	is	needed.

Locale	Encoding

The	 current	 locale	 encoding	 can	 be	 used	 to	 decode	 text	 from	 the
operating	system.

PyObject*	PyUnicode_DecodeLocaleAndSize(const
char	*str,	Py_ssize_t	len,	const	char	*errors)

Decode	a	 string	 from	 the	 current	 locale	encoding.	The	 supported
error	 handlers	 are	 "strict"	 and	 "surrogateescape"	 (PEP
383).	The	decoder	uses	"strict"	error	handler	if	errors	is	NULL.
str	 must	 end	 with	 a	 null	 character	 but	 cannot	 contain	 embedded
null	characters.

See	also: 	Use	PyUnicode_DecodeFSDefaultAndSize()	to
decode	a	 string	 from	 Py_FileSystemDefaultEncoding	 (the
locale	encoding	read	at	Python	startup).

New	in	version	3.3.

PyObject*	PyUnicode_DecodeLocale(const	char	*str,	const
char	*errors)

Similar	 to	 PyUnicode_DecodeLocaleAndSize(),	 but	 compute
the	string	length	using	strlen().

New	in	version	3.3.

http://www.python.org/dev/peps/pep-0383

PyObject*	PyUnicode_EncodeLocale(PyObject	*unicode,
const	char	*errors)

Encode	 a	 Unicode	 object	 to	 the	 current	 locale	 encoding.	 The
supported	 error	 handlers	 are	 "strict"	 and
"surrogateescape"	 (PEP	383).	 The	 encoder	 uses	 "strict"
error	handler	if	errors	is	NULL.	Return	a	bytes	object.	str	cannot
contain	embedded	null	characters.

See	 also: 	Use	 PyUnicode_EncodeFSDefault()	 to	 encode
a	 string	 to	 Py_FileSystemDefaultEncoding	 (the	 locale
encoding	read	at	Python	startup).

New	in	version	3.3.

File	System	Encoding

To	 encode	 and	 decode	 file	 names	 and	 other	 environment	 strings,
Py_FileSystemEncoding	 should	 be	 used	 as	 the	 encoding,	 and
"surrogateescape"	 should	 be	 used	 as	 the	 error	 handler	 (PEP
383).	 To	 encode	 file	 names	 during	 argument	 parsing,	 the	 "O&"
converter	should	be	used,	passing	PyUnicode_FSConverter()	as
the	conversion	function:

int	PyUnicode_FSConverter(PyObject*	obj,	void*	result)
ParseTuple	 converter:	 encode	 str	 objects	 to	 bytes	 using
PyUnicode_EncodeFSDefault();	 bytes	 objects	 are	 output
as-is.	result	must	be	a	PyBytesObject*	which	must	be	released
when	it	is	no	longer	used.

New	in	version	3.1.

http://www.python.org/dev/peps/pep-0383
http://www.python.org/dev/peps/pep-0383

To	 decode	 file	 names	 during	 argument	 parsing,	 the	 "O&"	 converter
should	 be	 used,	 passing	 PyUnicode_FSDecoder()	 as	 the
conversion	function:

int	PyUnicode_FSDecoder(PyObject*	obj,	void*	result)
ParseTuple	 converter:	 decode	 bytes	 objects	 to	 str	 using
PyUnicode_DecodeFSDefaultAndSize();	 str	 objects	 are
output	as-is.	result	must	be	a	PyUnicodeObject*	which	must	be
released	when	it	is	no	longer	used.

New	in	version	3.2.

PyObject*	PyUnicode_DecodeFSDefaultAndSize(const
char	*s,	Py_ssize_t	size)

Decode	 a	 string	 using	 Py_FileSystemDefaultEncoding	 and
the	 "surrogateescape"	 error	 handler,	 or	 "strict"	 on
Windows.

If	Py_FileSystemDefaultEncoding	 is	not	set,	 fall	back	to	 the
locale	encoding.

See	also: 	Py_FileSystemDefaultEncoding	 is	 initialized	at
startup	from	the	locale	encoding	and	cannot	be	modified	later.	If
you	 need	 to	 decode	 a	 string	 from	 the	 current	 locale	 encoding,
use	PyUnicode_DecodeLocaleAndSize().

Changed	in	version	3.2:	Use	"strict"	error	handler	on	Windows.

PyObject*	PyUnicode_DecodeFSDefault(const	char	*s)
Decode	 a	 null-terminated	 string	 using
Py_FileSystemDefaultEncoding	 and	 the
"surrogateescape"	error	handler,	or	"strict"	on	Windows.

If	Py_FileSystemDefaultEncoding	 is	not	set,	 fall	back	to	 the
locale	encoding.

Use	PyUnicode_DecodeFSDefaultAndSize()	if	you	know	the
string	length.

Changed	in	version	3.2:	Use	"strict"	error	handler	on	Windows.

PyObject*	PyUnicode_EncodeFSDefault(PyObject	*unicode)
Encode	a	Unicode	object	to	Py_FileSystemDefaultEncoding
with	 the	 "surrogateescape"	 error	 handler,	 or	 "strict"	 on
Windows,	and	return	bytes.	Note	that	the	resulting	bytes	object
may	contain	null	bytes.

If	Py_FileSystemDefaultEncoding	 is	not	set,	 fall	back	to	 the
locale	encoding.

See	also: 	Py_FileSystemDefaultEncoding	 is	 initialized	at
startup	from	the	locale	encoding	and	cannot	be	modified	later.	If
you	need	to	encode	a	string	 to	 the	current	 locale	encoding,	use
PyUnicode_EncodeLocale().

New	in	version	3.2.

wchar_t	Support

wchar_t	support	for	platforms	which	support	it:

PyObject*	PyUnicode_FromWideChar(const	wchar_t	*w,
Py_ssize_t	size)

Return	value:	New	reference.
Create	a	Unicode	object	 from	 the	wchar_t	buffer	w	 of	 the	given

size.	Passing	 -1	as	 the	size	 indicates	 that	 the	 function	must	 itself
compute	the	length,	using	wcslen.	Return	NULL	on	failure.

Py_ssize_t
PyUnicode_AsWideChar(PyUnicodeObject	*unicode,
wchar_t	*w,	Py_ssize_t	size)

Copy	 the	Unicode	object	 contents	 into	 the	 wchar_t	 buffer	w.	 At
most	size	 wchar_t	 characters	 are	 copied	 (excluding	 a	 possibly
trailing	 0-termination	 character).	 Return	 the	 number	 of	 wchar_t
characters	copied	or	-1	in	case	of	an	error.	Note	that	the	resulting
wchar_t*	 string	 may	 or	 may	 not	 be	 0-terminated.	 It	 is	 the
responsibility	of	the	caller	to	make	sure	that	the	wchar_t*	string	is
0-terminated	in	case	this	 is	required	by	the	application.	Also,	note
that	 the	 wchar_t*	 string	 might	 contain	 null	 characters,	 which
would	 cause	 the	 string	 to	 be	 truncated	 when	 used	 with	 most	 C
functions.

wchar_t*	PyUnicode_AsWideCharString(PyObject	*unicode,
Py_ssize_t	*size)

Convert	 the	Unicode	object	 to	a	wide	character	string.	The	output
string	always	ends	with	a	nul	character.	 If	size	 is	not	NULL,	write
the	number	of	wide	characters	(excluding	the	trailing	0-termination
character)	into	*size.

Returns	 a	 buffer	 allocated	 by	 PyMem_Alloc()	 (use
PyMem_Free()	 to	 free	 it)	 on	 success.	 On	 error,	 returns	 NULL,
*size	 is	 undefined	 and	 raises	 a	 MemoryError.	 Note	 that	 the
resulting	 wchar_t	 string	 might	 contain	 null	 characters,	 which
would	 cause	 the	 string	 to	 be	 truncated	 when	 used	 with	 most	 C
functions.

New	in	version	3.2.

UCS4	Support

New	in	version	3.3.

size_t	Py_UCS4_strlen(const	Py_UCS4	*u)
Py_UCS4*	Py_UCS4_strcpy(Py_UCS4	*s1,	const	Py_UCS4	*s2)
Py_UCS4*	Py_UCS4_strncpy(Py_UCS4	*s1,	const
Py_UCS4	*s2,	size_t	n)
Py_UCS4*	Py_UCS4_strcat(Py_UCS4	*s1,	const	Py_UCS4	*s2)
int	Py_UCS4_strcmp(const	Py_UCS4	*s1,	const	Py_UCS4	*s2)
int	Py_UCS4_strncmp(const	Py_UCS4	*s1,	const	Py_UCS4	*s2,
size_t	n)
Py_UCS4*	Py_UCS4_strchr(const	Py_UCS4	*s,	Py_UCS4	c)
Py_UCS4*	Py_UCS4_strrchr(const	Py_UCS4	*s,	Py_UCS4	c)

These	utility	functions	work	on	strings	of	Py_UCS4	characters	and
otherwise	 behave	 like	 the	 C	 standard	 library	 functions	 with	 the
same	name.

Built-in	Codecs

Python	 provides	 a	 set	 of	 built-in	 codecs	 which	 are	 written	 in	 C	 for
speed.	 All	 of	 these	 codecs	 are	 directly	 usable	 via	 the	 following
functions.

Many	of	 the	 following	APIs	 take	 two	arguments	encoding	and	errors,
and	they	have	the	same	semantics	as	the	ones	of	the	built-in	str()
string	object	constructor.

Setting	 encoding	 to	NULL	 causes	 the	 default	 encoding	 to	 be	 used
which	 is	 ASCII.	 The	 file	 system	 calls	 should	 use
PyUnicode_FSConverter()	for	encoding	file	names.	This	uses	the
variable	Py_FileSystemDefaultEncoding	internally.	This	variable
should	be	treated	as	read-only:	on	some	systems,	it	will	be	a	pointer	to
a	static	string,	on	others,	it	will	change	at	run-time	(such	as	when	the
application	invokes	setlocale).

Error	handling	is	set	by	errors	which	may	also	be	set	to	NULL	meaning
to	 use	 the	 default	 handling	 defined	 for	 the	 codec.	 Default	 error
handling	for	all	built-in	codecs	is	“strict”	(ValueError	is	raised).

The	 codecs	 all	 use	 a	 similar	 interface.	 Only	 deviation	 from	 the
following	generic	ones	are	documented	for	simplicity.

Generic	Codecs

These	are	the	generic	codec	APIs:

PyObject*	PyUnicode_Decode(const	char	*s,	Py_ssize_t	size,
const	char	*encoding,	const	char	*errors)

Return	value:	New	reference.

Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 encoded
string	 s.	 encoding	 and	 errors	 have	 the	 same	 meaning	 as	 the
parameters	of	 the	same	name	 in	 the	str()	built-in	 function.	The
codec	 to	 be	 used	 is	 looked	 up	 using	 the	 Python	 codec	 registry.
Return	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_AsEncodedString(PyObject	*unicode,
const	char	*encoding,	const	char	*errors)

Return	value:	New	reference.
Encode	 a	 Unicode	 object	 and	 return	 the	 result	 as	 Python	 bytes
object.	 encoding	 and	 errors	 have	 the	 same	 meaning	 as	 the
parameters	of	the	same	name	in	the	Unicode	encode()	method.
The	codec	to	be	used	is	looked	up	using	the	Python	codec	registry.
Return	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_Encode(const	Py_UNICODE	*s,
Py_ssize_t	size,	const	char	*encoding,	const	char	*errors)

Return	value:	New	reference.
Encode	 the	Py_UNICODE	 buffer	s	 of	 the	 given	size	 and	 return	 a
Python	bytes	object.	encoding	and	errors	have	the	same	meaning
as	 the	 parameters	 of	 the	 same	 name	 in	 the	Unicode	 encode()
method.	The	codec	to	be	used	is	looked	up	using	the	Python	codec
registry.	Return	NULL	if	an	exception	was	raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsEncodedString().

UTF-8	Codecs

These	are	the	UTF-8	codec	APIs:

PyObject*	PyUnicode_DecodeUTF8(const	char	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 UTF-8
encoded	string	s.	Return	NULL	 if	 an	exception	was	 raised	by	 the
codec.

PyObject*	PyUnicode_DecodeUTF8Stateful(const	char	*s,
Py_ssize_t	size,	const	char	*errors,	Py_ssize_t	*consumed)

Return	value:	New	reference.
If	consumed	is	NULL,	behave	like	PyUnicode_DecodeUTF8().	If
consumed	 is	not	NULL,	 trailing	incomplete	UTF-8	byte	sequences
will	not	be	treated	as	an	error.	Those	bytes	will	not	be	decoded	and
the	 number	 of	 bytes	 that	 have	 been	 decoded	 will	 be	 stored	 in
consumed.

PyObject*	PyUnicode_AsUTF8String(PyObject	*unicode)
Return	value:	New	reference.
Encode	 a	 Unicode	 object	 using	 UTF-8	 and	 return	 the	 result	 as
Python	 bytes	 object.	 Error	 handling	 is	 “strict”.	 Return	NULL	 if	 an
exception	was	raised	by	the	codec.

char*	PyUnicode_AsUTF8AndSize(PyObject	*unicode,
Py_ssize_t	*size)

Return	 a	 pointer	 to	 the	 default	 encoding	 (UTF-8)	 of	 the	 Unicode
object,	and	store	the	size	of	the	encoded	representation	(in	bytes)
in	size.	size	can	be	NULL,	in	this	case	no	size	will	be	stored.

In	the	case	of	an	error,	NULL	is	returned	with	an	exception	set	and
no	size	is	stored.

This	caches	the	UTF-8	representation	of	the	string	in	the	Unicode
object,	 and	 subsequent	 calls	 will	 return	 a	 pointer	 to	 the	 same

buffer.	The	caller	is	not	responsible	for	deallocating	the	buffer.

New	in	version	3.3.

char*	PyUnicode_AsUTF8(PyObject	*unicode)
As	PyUnicode_AsUTF8AndSize(),	but	does	not	store	the	size.

New	in	version	3.3.

PyObject*	PyUnicode_EncodeUTF8(const	Py_UNICODE	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Encode	 the	 Py_UNICODE	 buffer	s	 of	 the	 given	size	 using	UTF-8
and	return	a	Python	bytes	object.	Return	NULL	if	an	exception	was
raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsUTF8String()	 or
PyUnicode_AsUTF8AndSize().

UTF-32	Codecs

These	are	the	UTF-32	codec	APIs:

PyObject*	PyUnicode_DecodeUTF32(const	char	*s,
Py_ssize_t	size,	const	char	*errors,	int	*byteorder)

Decode	size	bytes	from	a	UTF-32	encoded	buffer	string	and	return
the	corresponding	Unicode	object.	errors	(if	non-NULL)	defines	the
error	handling.	It	defaults	to	“strict”.

If	byteorder	 is	 non-NULL,	 the	 decoder	 starts	 decoding	 using	 the

given	byte	order:

*byteorder	==	-1:	little	endian

*byteorder	==	0:		native	order

*byteorder	==	1:		big	endian

If	*byteorder	is	zero,	and	the	first	four	bytes	of	the	input	data	are
a	byte	order	mark	(BOM),	 the	decoder	switches	to	this	byte	order
and	 the	 BOM	 is	 not	 copied	 into	 the	 resulting	 Unicode	 string.	 If
*byteorder	 is	 -1	 or	 1,	 any	 byte	 order	 mark	 is	 copied	 to	 the
output.

After	completion,	*byteorder	 is	set	 to	 the	current	byte	order	at	 the
end	of	input	data.

If	byteorder	is	NULL,	the	codec	starts	in	native	order	mode.

Return	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_DecodeUTF32Stateful(const	char	*s,
Py_ssize_t	size,	const	char	*errors,	int	*byteorder,
Py_ssize_t	*consumed)

If	consumed	is	NULL,	behave	like	PyUnicode_DecodeUTF32().
If	 consumed	 is	 not	 NULL,
PyUnicode_DecodeUTF32Stateful()	 will	 not	 treat	 trailing
incomplete	UTF-32	byte	sequences	(such	as	a	number	of	bytes	not
divisible	by	four)	as	an	error.	Those	bytes	will	not	be	decoded	and
the	 number	 of	 bytes	 that	 have	 been	 decoded	 will	 be	 stored	 in
consumed.

PyObject*	PyUnicode_AsUTF32String(PyObject	*unicode)
Return	a	Python	byte	 string	using	 the	UTF-32	encoding	 in	native
byte	 order.	 The	 string	 always	 starts	 with	 a	 BOM	 mark.	 Error

handling	is	“strict”.	Return	NULL	 if	an	exception	was	raised	by	the
codec.

PyObject*	PyUnicode_EncodeUTF32(const	Py_UNICODE	*s,
Py_ssize_t	size,	const	char	*errors,	int	byteorder)

Return	a	Python	bytes	object	holding	the	UTF-32	encoded	value	of
the	Unicode	data	in	s.	Output	 is	written	according	to	 the	following
byte	order:

byteorder	==	-1:	little	endian

byteorder	==	0:		native	byte	order	(writes	a	BOM	mark

byteorder	==	1:		big	endian

If	byteorder	is	0,	the	output	string	will	always	start	with	the	Unicode
BOM	mark	 (U+FEFF).	 In	 the	 other	 two	modes,	 no	 BOM	mark	 is
prepended.

If	 Py_UNICODE_WIDE	 is	 not	 defined,	 surrogate	 pairs	 will	 be
output	as	a	single	codepoint.

Return	NULL	if	an	exception	was	raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsUTF32String().

UTF-16	Codecs

These	are	the	UTF-16	codec	APIs:

PyObject*	PyUnicode_DecodeUTF16(const	char	*s,
Py_ssize_t	size,	const	char	*errors,	int	*byteorder)

Return	value:	New	reference.
Decode	size	bytes	from	a	UTF-16	encoded	buffer	string	and	return
the	corresponding	Unicode	object.	errors	(if	non-NULL)	defines	the
error	handling.	It	defaults	to	“strict”.

If	byteorder	 is	 non-NULL,	 the	 decoder	 starts	 decoding	 using	 the
given	byte	order:

*byteorder	==	-1:	little	endian

*byteorder	==	0:		native	order

*byteorder	==	1:		big	endian

If	*byteorder	is	zero,	and	the	first	two	bytes	of	the	input	data	are
a	byte	order	mark	(BOM),	 the	decoder	switches	to	this	byte	order
and	 the	 BOM	 is	 not	 copied	 into	 the	 resulting	 Unicode	 string.	 If
*byteorder	 is	 -1	 or	 1,	 any	 byte	 order	 mark	 is	 copied	 to	 the
output	 (where	 it	 will	 result	 in	 either	 a	 \ufeff	 or	 a	 \ufffe
character).

After	completion,	*byteorder	 is	set	 to	 the	current	byte	order	at	 the
end	of	input	data.

If	byteorder	is	NULL,	the	codec	starts	in	native	order	mode.

Return	NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_DecodeUTF16Stateful(const	char	*s,
Py_ssize_t	size,	const	char	*errors,	int	*byteorder,
Py_ssize_t	*consumed)

Return	value:	New	reference.
If	consumed	is	NULL,	behave	like	PyUnicode_DecodeUTF16().
If	 consumed	 is	 not	 NULL,
PyUnicode_DecodeUTF16Stateful()	 will	 not	 treat	 trailing
incomplete	 UTF-16	 byte	 sequences	 (such	 as	 an	 odd	 number	 of

bytes	or	a	split	surrogate	pair)	as	an	error.	Those	bytes	will	not	be
decoded	and	the	number	of	bytes	that	have	been	decoded	will	be
stored	in	consumed.

PyObject*	PyUnicode_AsUTF16String(PyObject	*unicode)
Return	value:	New	reference.
Return	a	Python	byte	 string	using	 the	UTF-16	encoding	 in	native
byte	 order.	 The	 string	 always	 starts	 with	 a	 BOM	 mark.	 Error
handling	is	“strict”.	Return	NULL	 if	an	exception	was	raised	by	the
codec.

PyObject*	PyUnicode_EncodeUTF16(const	Py_UNICODE	*s,
Py_ssize_t	size,	const	char	*errors,	int	byteorder)

Return	value:	New	reference.
Return	a	Python	bytes	object	holding	the	UTF-16	encoded	value	of
the	Unicode	data	in	s.	Output	 is	written	according	to	 the	following
byte	order:

byteorder	==	-1:	little	endian

byteorder	==	0:		native	byte	order	(writes	a	BOM	mark

byteorder	==	1:		big	endian

If	byteorder	is	0,	the	output	string	will	always	start	with	the	Unicode
BOM	mark	 (U+FEFF).	 In	 the	 other	 two	modes,	 no	 BOM	mark	 is
prepended.

If	 Py_UNICODE_WIDE	 is	 defined,	 a	 single	 Py_UNICODE	 value
may	get	 represented	as	a	surrogate	pair.	 If	 it	 is	not	defined,	each
Py_UNICODE	values	is	interpreted	as	an	UCS-2	character.

Return	NULL	if	an	exception	was	raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsUTF16String().

UTF-7	Codecs

These	are	the	UTF-7	codec	APIs:

PyObject*	PyUnicode_DecodeUTF7(const	char	*s,
Py_ssize_t	size,	const	char	*errors)

Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 UTF-7
encoded	string	s.	Return	NULL	 if	 an	exception	was	 raised	by	 the
codec.

PyObject*	PyUnicode_DecodeUTF7Stateful(const	char	*s,
Py_ssize_t	size,	const	char	*errors,	Py_ssize_t	*consumed)

If	consumed	is	NULL,	behave	like	PyUnicode_DecodeUTF7().	If
consumed	is	not	NULL,	trailing	incomplete	UTF-7	base-64	sections
will	not	be	treated	as	an	error.	Those	bytes	will	not	be	decoded	and
the	 number	 of	 bytes	 that	 have	 been	 decoded	 will	 be	 stored	 in
consumed.

PyObject*	PyUnicode_EncodeUTF7(const	Py_UNICODE	*s,
Py_ssize_t	size,	int	base64SetO,	int	base64WhiteSpace,	const
char	*errors)

Encode	the	Py_UNICODE	buffer	of	the	given	size	using	UTF-7	and
return	 a	 Python	 bytes	 object.	 Return	NULL	 if	 an	 exception	 was
raised	by	the	codec.

If	 base64SetO	 is	 nonzero,	 “Set	 O”	 (punctuation	 that	 has	 no
otherwise	 special	 meaning)	 will	 be	 encoded	 in	 base-64.	 If
base64WhiteSpace	 is	 nonzero,	 whitespace	 will	 be	 encoded	 in

base-64.	Both	are	set	to	zero	for	the	Python	“utf-7”	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	of	the	old-style	Py_UNICODE	API.

Unicode-Escape	Codecs

These	are	the	“Unicode	Escape”	codec	APIs:

PyObject*	PyUnicode_DecodeUnicodeEscape(const	char	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Create	 a	Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	Unicode-
Escape	encoded	string	s.	Return	NULL	 if	an	exception	was	raised
by	the	codec.

PyObject*
PyUnicode_AsUnicodeEscapeString(PyObject	*unicode)

Return	value:	New	reference.
Encode	 a	 Unicode	 object	 using	 Unicode-Escape	 and	 return	 the
result	 as	 Python	 string	 object.	 Error	 handling	 is	 “strict”.	 Return
NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeUnicodeEscape(const
Py_UNICODE	*s,	Py_ssize_t	size)

Return	value:	New	reference.
Encode	the	Py_UNICODE	 buffer	of	 the	given	size	using	Unicode-
Escape	 and	 return	 a	 Python	 string	 object.	 Return	 NULL	 if	 an
exception	was	raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using

PyUnicode_AsUnicodeEscapeString().

Raw-Unicode-Escape	Codecs

These	are	the	“Raw	Unicode	Escape”	codec	APIs:

PyObject*	PyUnicode_DecodeRawUnicodeEscape(const
char	*s,	Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 Raw-
Unicode-Escape	 encoded	 string	 s.	 Return	NULL	 if	 an	 exception
was	raised	by	the	codec.

PyObject*
PyUnicode_AsRawUnicodeEscapeString(PyObject	*unicode

Return	value:	New	reference.
Encode	 a	 Unicode	 object	 using	 Raw-Unicode-Escape	 and	 return
the	result	as	Python	string	object.	Error	handling	is	“strict”.	Return
NULL	if	an	exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeRawUnicodeEscape(const
Py_UNICODE	*s,	Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Encode	 the	 Py_UNICODE	 buffer	 of	 the	 given	 size	 using	 Raw-
Unicode-Escape	and	return	a	Python	string	object.	Return	NULL	if
an	exception	was	raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsRawUnicodeEscapeString().

Latin-1	Codecs

These	are	the	Latin-1	codec	APIs:	Latin-1	corresponds	to	the	first	256
Unicode	 ordinals	 and	 only	 these	 are	 accepted	 by	 the	 codecs	 during
encoding.

PyObject*	PyUnicode_DecodeLatin1(const	char	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 Latin-1
encoded	string	s.	Return	NULL	 if	 an	exception	was	 raised	by	 the
codec.

PyObject*	PyUnicode_AsLatin1String(PyObject	*unicode)
Return	value:	New	reference.
Encode	 a	 Unicode	 object	 using	 Latin-1	 and	 return	 the	 result	 as
Python	 bytes	 object.	 Error	 handling	 is	 “strict”.	 Return	NULL	 if	 an
exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeLatin1(const	Py_UNICODE	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Encode	the	Py_UNICODE	buffer	of	the	given	size	using	Latin-1	and
return	 a	 Python	 bytes	 object.	 Return	NULL	 if	 an	 exception	 was
raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsLatin1String().

ASCII	Codecs

These	are	 the	ASCII	codec	APIs.	Only	7-bit	ASCII	data	 is	accepted.

All	other	codes	generate	errors.

PyObject*	PyUnicode_DecodeASCII(const	char	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 ASCII
encoded	string	s.	Return	NULL	 if	 an	exception	was	 raised	by	 the
codec.

PyObject*	PyUnicode_AsASCIIString(PyObject	*unicode)
Return	value:	New	reference.
Encode	 a	 Unicode	 object	 using	 ASCII	 and	 return	 the	 result	 as
Python	 bytes	 object.	 Error	 handling	 is	 “strict”.	 Return	NULL	 if	 an
exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeASCII(const	Py_UNICODE	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Encode	the	Py_UNICODE	buffer	of	the	given	size	using	ASCII	and
return	 a	 Python	 bytes	 object.	 Return	NULL	 if	 an	 exception	 was
raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsASCIIString().

Character	Map	Codecs

This	codec	is	special	in	that	it	can	be	used	to	implement	many	different
codecs	 (and	 this	 is	 in	 fact	 what	 was	 done	 to	 obtain	 most	 of	 the
standard	 codecs	 included	 in	 the	 encodings	 package).	 The	 codec
uses	mapping	to	encode	and	decode	characters.

Decoding	 mappings	 must	 map	 single	 string	 characters	 to	 single
Unicode	 characters,	 integers	 (which	are	 then	 interpreted	as	Unicode
ordinals)	 or	 None	 (meaning	 “undefined	 mapping”	 and	 causing	 an
error).

Encoding	 mappings	 must	 map	 single	 Unicode	 characters	 to	 single
string	 characters,	 integers	 (which	 are	 then	 interpreted	 as	 Latin-1
ordinals)	 or	 None	 (meaning	 “undefined	 mapping”	 and	 causing	 an
error).

The	 mapping	 objects	 provided	 must	 only	 support	 the	 __getitem__
mapping	interface.

If	a	character	 lookup	fails	with	a	LookupError,	the	character	 is	copied
as-is	meaning	 that	 its	ordinal	value	will	be	 interpreted	as	Unicode	or
Latin-1	ordinal	 resp.	Because	of	 this,	mappings	only	need	 to	contain
those	mappings	which	map	characters	to	different	code	points.

These	are	the	mapping	codec	APIs:

PyObject*	PyUnicode_DecodeCharmap(const	char	*s,
Py_ssize_t	size,	PyObject	*mapping,	const	char	*errors)

Return	value:	New	reference.
Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 encoded
string	 s	 using	 the	 given	 mapping	 object.	 Return	 NULL	 if	 an
exception	 was	 raised	 by	 the	 codec.	 If	mapping	 is	 NULL	 latin-1
decoding	will	be	done.	Else	it	can	be	a	dictionary	mapping	byte	or
a	 unicode	 string,	which	 is	 treated	 as	 a	 lookup	 table.	 Byte	 values
greater	 that	 the	 length	of	 the	string	and	U+FFFE	“characters”	are
treated	as	“undefined	mapping”.

PyObject*	PyUnicode_AsCharmapString(PyObject	*unicode,
PyObject	*mapping)

Return	value:	New	reference.
Encode	 a	 Unicode	 object	 using	 the	 given	 mapping	 object	 and
return	 the	 result	as	Python	string	object.	Error	handling	 is	 “strict”.
Return	NULL	if	an	exception	was	raised	by	the	codec.

The	following	codec	API	is	special	in	that	maps	Unicode	to	Unicode.

PyObject*	PyUnicode_TranslateCharmap(const
Py_UNICODE	*s,	Py_ssize_t	size,	PyObject	*table,	const	char	*errors)

Return	value:	New	reference.
Translate	 a	 Py_UNICODE	 buffer	 of	 the	 given	 size	 by	 applying	 a
character	 mapping	 table	 to	 it	 and	 return	 the	 resulting	 Unicode
object.	Return	NULL	when	an	exception	was	raised	by	the	codec.

The	mapping	 table	must	map	Unicode	ordinal	 integers	to	Unicode
ordinal	integers	or	None	(causing	deletion	of	the	character).

Mapping	tables	need	only	provide	the	__getitem__()	 interface;
dictionaries	 and	 sequences	 work	 well.	 Unmapped	 character
ordinals	 (ones	which	 cause	 a	 LookupError)	 are	 left	 untouched
and	are	copied	as-is.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	of	the	old-style	Py_UNICODE	API.

PyObject*	PyUnicode_EncodeCharmap(const
Py_UNICODE	*s,	Py_ssize_t	size,	PyObject	*mapping,	const
char	*errors)

Return	value:	New	reference.
Encode	the	Py_UNICODE	buffer	of	 the	given	size	using	 the	given
mapping	object	and	return	a	Python	string	object.	Return	NULL	 if
an	exception	was	raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsCharmapString().

MBCS	codecs	for	Windows

These	are	the	MBCS	codec	APIs.	They	are	currently	only	available	on
Windows	 and	 use	 the	 Win32	 MBCS	 converters	 to	 implement	 the
conversions.	Note	that	MBCS	(or	DBCS)	 is	a	class	of	encodings,	not
just	 one.	 The	 target	 encoding	 is	 defined	 by	 the	 user	 settings	 on	 the
machine	running	the	codec.

PyObject*	PyUnicode_DecodeMBCS(const	char	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Create	 a	 Unicode	 object	 by	 decoding	 size	 bytes	 of	 the	 MBCS
encoded	string	s.	Return	NULL	 if	 an	exception	was	 raised	by	 the
codec.

PyObject*	PyUnicode_DecodeMBCSStateful(const	char	*s,
int	size,	const	char	*errors,	int	*consumed)

If	consumed	is	NULL,	behave	like	PyUnicode_DecodeMBCS().	If
consumed	 is	 not	 NULL,	 PyUnicode_DecodeMBCSStateful()
will	not	decode	trailing	lead	byte	and	the	number	of	bytes	that	have
been	decoded	will	be	stored	in	consumed.

PyObject*	PyUnicode_AsMBCSString(PyObject	*unicode)
Return	value:	New	reference.
Encode	 a	 Unicode	 object	 using	 MBCS	 and	 return	 the	 result	 as
Python	 bytes	 object.	 Error	 handling	 is	 “strict”.	 Return	NULL	 if	 an
exception	was	raised	by	the	codec.

PyObject*	PyUnicode_EncodeCodePage(int	code_page,
PyObject	*unicode,	const	char	*errors)

Encode	 the	 Unicode	 object	 using	 the	 specified	 code	 page	 and
return	 a	 Python	 bytes	 object.	 Return	NULL	 if	 an	 exception	 was
raised	 by	 the	 codec.	 Use	 CP_ACP	 code	 page	 to	 get	 the	 MBCS
encoder.

New	in	version	3.3.

PyObject*	PyUnicode_EncodeMBCS(const	Py_UNICODE	*s,
Py_ssize_t	size,	const	char	*errors)

Return	value:	New	reference.
Encode	the	Py_UNICODE	buffer	of	the	given	size	using	MBCS	and
return	 a	 Python	 bytes	 object.	 Return	NULL	 if	 an	 exception	 was
raised	by	the	codec.

Deprecated	 since	 version	 3.3,	 will	 be	 removed	 in	 version	 4.0:
Part	 of	 the	old-style	 Py_UNICODE	API;	please	migrate	 to	using
PyUnicode_AsMBCSString()	 or
PyUnicode_EncodeCodePage().

Methods	&	Slots

Methods	and	Slot	Functions

The	 following	 APIs	 are	 capable	 of	 handling	 Unicode	 objects	 and
strings	on	 input	 (we	 refer	 to	 them	as	strings	 in	 the	descriptions)	and
return	Unicode	objects	or	integers	as	appropriate.

They	all	return	NULL	or	-1	if	an	exception	occurs.

PyObject*	PyUnicode_Concat(PyObject	*left,	PyObject	*right)
Return	value:	New	reference.
Concat	two	strings	giving	a	new	Unicode	string.

PyObject*	PyUnicode_Split(PyObject	*s,	PyObject	*sep,
Py_ssize_t	maxsplit)

Return	value:	New	reference.
Split	a	string	giving	a	list	of	Unicode	strings.	If	sep	is	NULL,	splitting
will	be	done	at	all	whitespace	substrings.	Otherwise,	splits	occur	at
the	 given	 separator.	 At	 most	 maxsplit	 splits	 will	 be	 done.	 If
negative,	no	limit	is	set.	Separators	are	not	included	in	the	resulting
list.

PyObject*	PyUnicode_Splitlines(PyObject	*s,	int	keepend)
Return	value:	New	reference.
Split	 a	 Unicode	 string	 at	 line	 breaks,	 returning	 a	 list	 of	 Unicode
strings.	CRLF	is	considered	to	be	one	line	break.	 If	keepend	 is	0,
the	Line	break	characters	are	not	included	in	the	resulting	strings.

PyObject*	PyUnicode_Translate(PyObject	*str,
PyObject	*table,	const	char	*errors)

Return	value:	New	reference.
Translate	a	string	by	applying	a	character	mapping	table	 to	 it	and
return	the	resulting	Unicode	object.

The	mapping	table	must	map	Unicode	ordinal	 integers	to	Unicode
ordinal	integers	or	None	(causing	deletion	of	the	character).

Mapping	tables	need	only	provide	the	__getitem__()	 interface;
dictionaries	 and	 sequences	 work	 well.	 Unmapped	 character
ordinals	 (ones	which	 cause	 a	 LookupError)	 are	 left	 untouched
and	are	copied	as-is.

errors	 has	 the	 usual	meaning	 for	 codecs.	 It	may	 be	NULL	which
indicates	to	use	the	default	error	handling.

PyObject*	PyUnicode_Join(PyObject	*separator,	PyObject	*seq)
Return	value:	New	reference.
Join	a	sequence	of	strings	using	the	given	separator	and	return	the
resulting	Unicode	string.

int	PyUnicode_Tailmatch(PyObject	*str,	PyObject	*substr,
Py_ssize_t	start,	Py_ssize_t	end,	int	direction)

Return	1	if	substr	matches	str[start:end]	at	the	given	tail	end
(direction	==	-1	means	to	do	a	prefix	match,	direction	==	1	a	suffix
match),	0	otherwise.	Return	-1	if	an	error	occurred.

Py_ssize_t	PyUnicode_Find(PyObject	*str,	PyObject	*substr,
Py_ssize_t	start,	Py_ssize_t	end,	int	direction)

Return	 the	 first	 position	of	substr	 in	 str[start:end]	 using	 the
given	 direction	 (direction	 ==	 1	 means	 to	 do	 a	 forward	 search,
direction	==	-1	a	backward	search).	The	return	value	is	the	index	of
the	 first	match;	a	value	of	-1	 indicates	 that	no	match	was	 found,
and	-2	indicates	that	an	error	occurred	and	an	exception	has	been
set.

Py_ssize_t	PyUnicode_FindChar(PyObject	*str,	Py_UCS4	ch,
Py_ssize_t	start,	Py_ssize_t	end,	int	direction)

Return	 the	 first	position	of	 the	character	ch	 in	str[start:end]
using	 the	 given	 direction	 (direction	 ==	 1	 means	 to	 do	 a	 forward
search,	direction	==	-1	a	backward	search).	The	return	value	is	the
index	of	the	first	match;	a	value	of	-1	indicates	that	no	match	was
found,	 and	 -2	 indicates	 that	 an	 error	 occurred	 and	 an	 exception
has	been	set.

New	in	version	3.3.

Py_ssize_t	PyUnicode_Count(PyObject	*str,	PyObject	*substr,
Py_ssize_t	start,	Py_ssize_t	end)

Return	 the	 number	 of	 non-overlapping	 occurrences	 of	 substr	 in
str[start:end].	Return	-1	if	an	error	occurred.

PyObject*	PyUnicode_Replace(PyObject	*str,	PyObject	*substr,
PyObject	*replstr,	Py_ssize_t	maxcount)

Return	value:	New	reference.
Replace	at	most	maxcount	occurrences	of	substr	in	str	with	replstr
and	 return	 the	 resulting	 Unicode	 object.	maxcount	 ==	 -1	 means
replace	all	occurrences.

int	PyUnicode_Compare(PyObject	*left,	PyObject	*right)
Compare	 two	strings	and	 return	 -1,	0,	1	 for	 less	 than,	equal,	and
greater	than,	respectively.

int	PyUnicode_CompareWithASCIIString(PyObject	*uni,
char	*string)

Compare	a	unicode	object,	uni,	with	string	and	 return	 -1,	0,	1	 for
less	 than,	equal,	and	greater	 than,	 respectively.	 It	 is	best	 to	pass
only	 ASCII-encoded	 strings,	 but	 the	 function	 interprets	 the	 input
string	as	ISO-8859-1	if	it	contains	non-ASCII	characters”.

PyObject*	PyUnicode_RichCompare(PyObject	*left,

PyObject	*right,	int	op)
Rich	compare	two	unicode	strings	and	return	one	of	the	following:

NULL	in	case	an	exception	was	raised
Py_True	or	Py_False	for	successful	comparisons
Py_NotImplemented	 in	 case	 the	 type	 combination	 is
unknown

Note	 that	 Py_EQ	 and	 Py_NE	 comparisons	 can	 cause	 a
UnicodeWarning	 in	 case	 the	 conversion	 of	 the	 arguments	 to
Unicode	fails	with	a	UnicodeDecodeError.

Possible	values	for	op	are	Py_GT,	Py_GE,	Py_EQ,	Py_NE,	Py_LT,
and	Py_LE.

PyObject*	PyUnicode_Format(PyObject	*format,
PyObject	*args)

Return	value:	New	reference.
Return	a	new	string	object	from	format	and	args;	this	is	analogous
to	format	%	args.	The	args	argument	must	be	a	tuple.

int	PyUnicode_Contains(PyObject	*container,
PyObject	*element)

Check	whether	element	is	contained	in	container	and	return	true	or
false	accordingly.

element	 has	 to	 coerce	 to	 a	 one	 element	 Unicode	 string.	 -1	 is
returned	if	there	was	an	error.

void	PyUnicode_InternInPlace(PyObject	**string)
Intern	 the	 argument	 *string	 in	 place.	 The	 argument	 must	 be	 the
address	 of	 a	 pointer	 variable	 pointing	 to	 a	Python	 unicode	 string
object.	 If	 there	 is	 an	 existing	 interned	 string	 that	 is	 the	 same	 as

*string,	it	sets	*string	to	it	(decrementing	the	reference	count	of	the
old	 string	 object	 and	 incrementing	 the	 reference	 count	 of	 the
interned	string	object),	otherwise	it	leaves	*string	alone	and	interns
it	 (incrementing	 its	 reference	 count).	 (Clarification:	 even	 though
there	is	a	lot	of	talk	about	reference	counts,	think	of	this	function	as
reference-count-neutral;	 you	 own	 the	 object	 after	 the	 call	 if	 and
only	if	you	owned	it	before	the	call.)

PyObject*	PyUnicode_InternFromString(const	char	*v)
A	 combination	 of	 PyUnicode_FromString()	 and
PyUnicode_InternInPlace(),	 returning	either	 a	 new	unicode
string	object	that	has	been	interned,	or	a	new	(“owned”)	reference
to	an	earlier	interned	string	object	with	the	same	value.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Tuple	Objects
PyTupleObject

This	subtype	of	PyObject	represents	a	Python	tuple	object.

PyTypeObject	PyTuple_Type
This	instance	of	PyTypeObject	represents	the	Python	tuple	type;
it	is	the	same	object	as	tuple	in	the	Python	layer.

int	PyTuple_Check(PyObject	*p)
Return	true	if	p	is	a	tuple	object	or	an	instance	of	a	subtype	of	the
tuple	type.

int	PyTuple_CheckExact(PyObject	*p)
Return	true	if	p	is	a	tuple	object,	but	not	an	instance	of	a	subtype	of
the	tuple	type.

PyObject*	PyTuple_New(Py_ssize_t	len)
Return	value:	New	reference.
Return	a	new	tuple	object	of	size	len,	or	NULL	on	failure.

PyObject*	PyTuple_Pack(Py_ssize_t	n,	...)
Return	value:	New	reference.
Return	a	new	tuple	object	of	size	n,	or	NULL	on	failure.	The	tuple
values	are	initialized	to	the	subsequent	n	C	arguments	pointing	to
Python	 objects.	 PyTuple_Pack(2,	 a,	 b)	 is	 equivalent	 to
Py_BuildValue("(OO)",	a,	b).

Py_ssize_t	PyTuple_Size(PyObject	*p)
Take	a	pointer	to	a	tuple	object,	and	return	the	size	of	that	tuple.

Py_ssize_t	PyTuple_GET_SIZE(PyObject	*p)
Return	the	size	of	the	tuple	p,	which	must	be	non-NULL	and	point
to	a	tuple;	no	error	checking	is	performed.

PyObject*	PyTuple_GetItem(PyObject	*p,	Py_ssize_t	pos)
Return	value:	Borrowed	reference.
Return	the	object	at	position	pos	in	the	tuple	pointed	to	by	p.	If	pos
is	out	of	bounds,	return	NULL	and	sets	an	IndexError	exception.

PyObject*	PyTuple_GET_ITEM(PyObject	*p,	Py_ssize_t	pos)
Return	value:	Borrowed	reference.
Like	 PyTuple_GetItem(),	 but	 does	 no	 checking	 of	 its
arguments.

PyObject*	PyTuple_GetSlice(PyObject	*p,	Py_ssize_t	low,
Py_ssize_t	high)

Return	value:	New	reference.
Take	a	slice	of	the	tuple	pointed	to	by	p	from	low	to	high	and	return
it	as	a	new	tuple.

int	PyTuple_SetItem(PyObject	*p,	Py_ssize_t	pos,	PyObject	*o)
Insert	a	reference	to	object	o	at	position	pos	of	the	tuple	pointed	to
by	p.	Return	0	on	success.

Note: 	This	function	“steals”	a	reference	to	o.

void	PyTuple_SET_ITEM(PyObject	*p,	Py_ssize_t	pos,
PyObject	*o)

Like	 PyTuple_SetItem(),	 but	 does	 no	 error	 checking,	 and
should	only	be	used	to	fill	in	brand	new	tuples.

Note: 	This	function	“steals”	a	reference	to	o.

int	_PyTuple_Resize(PyObject	**p,	Py_ssize_t	newsize)
Can	be	used	to	resize	a	tuple.	newsize	will	be	the	new	length	of	the
tuple.	Because	 tuples	are	supposed	 to	 be	 immutable,	 this	 should
only	be	used	if	there	is	only	one	reference	to	the	object.	Do	not	use
this	 if	 the	 tuple	may	 already	 be	 known	 to	 some	other	 part	 of	 the
code.	The	tuple	will	always	grow	or	shrink	at	the	end.	Think	of	this
as	 destroying	 the	 old	 tuple	 and	 creating	 a	 new	 one,	 only	 more
efficiently.	Returns	0	on	success.	Client	code	should	never	assume
that	the	resulting	value	of	*p	will	be	the	same	as	before	calling	this
function.	If	the	object	referenced	by	*p	is	replaced,	the	original	*p
is	 destroyed.	 On	 failure,	 returns	 -1	 and	 sets	 *p	 to	 NULL,	 and
raises	MemoryError	or	SystemError.

int	PyTuple_ClearFreeList()
Clear	the	free	list.	Return	the	total	number	of	freed	items.

Struct	Sequence	Objects
Struct	 sequence	 objects	 are	 the	 C	 equivalent	 of	 namedtuple()
objects,	 i.e.	 a	 sequence	whose	 items	 can	also	be	accessed	 through
attributes.	 To	 create	 a	 struct	 sequence,	 you	 first	 have	 to	 create	 a
specific	struct	sequence	type.

PyTypeObject*
PyStructSequence_NewType(PyStructSequence_Desc	*desc)

Create	 a	 new	 struct	 sequence	 type	 from	 the	 data	 in	 desc,
described	 below.	 Instances	 of	 the	 resulting	 type	 can	 be	 created
with	PyStructSequence_New().

void	PyStructSequence_InitType(PyTypeObject	*type,
PyStructSequence_Desc	*desc)

Initializes	a	struct	sequence	type	type	from	desc	in	place.

int	PyStructSequence_InitType2(PyTypeObject	*type,
PyStructSequence_Desc	*desc)

The	same	as	 PyStructSequence_InitType,	 but	 returns	 0	 on
success	and	-1	on	failure.

New	in	version	3.4.

PyStructSequence_Desc

Contains	the	meta	information	of	a	struct	sequence	type	to	create.

Field C	Type Meaning

name char	*

name	of	the
struct
sequence
type

doc char	*

pointer	to
docstring
for	the	type
or	NULL	to
omit

fields
PyStructSequence_Field

*

pointer	to
NULL-
terminated
array	with
field	names
of	the	new
type

n_in_sequence int

number	of
fields	visible
to	the
Python	side
(if	used	as
tuple)

PyStructSequence_Field

Describes	 a	 field	 of	 a	 struct	 sequence.	 As	 a	 struct	 sequence	 is
modeled	as	a	tuple,	all	fields	are	typed	as	PyObject*.	The	 index
in	 the	 fields	 array	 of	 the	 PyStructSequence_Desc

determines	which	field	of	the	struct	sequence	is	described.

Field C	Type Meaning

name char	*

name	for	the	field	or	NULL	to	end	the
list	of	named	fields,	set	to
PyStructSequence_UnnamedField	to
leave	unnamed

doc char	* field	docstring	or	NULL	to	omit

char*	PyStructSequence_UnnamedField
Special	value	for	a	field	name	to	leave	it	unnamed.

PyObject*	PyStructSequence_New(PyTypeObject	*type)
Creates	an	 instance	of	 type,	which	must	 have	 been	 created	with
PyStructSequence_NewType().

PyObject*	PyStructSequence_GetItem(PyObject	*p,
Py_ssize_t	pos)

Return	the	object	at	position	pos	in	the	struct	sequence	pointed	to
by	p.	No	bounds	checking	is	performed.

PyObject*	PyStructSequence_GET_ITEM(PyObject	*p,
Py_ssize_t	pos)

Macro	equivalent	of	PyStructSequence_GetItem().

void	PyStructSequence_SetItem(PyObject	*p,
Py_ssize_t	pos,	PyObject	*o)

Sets	the	field	at	index	pos	of	the	struct	sequence	p	to	value	o.	Like
PyTuple_SET_ITEM(),	 this	 should	 only	 be	 used	 to	 fill	 in	 brand
new	instances.

Note: 	This	function	“steals”	a	reference	to	o.

PyObject*	PyStructSequence_SET_ITEM(PyObject	*p,
Py_ssize_t	*pos,	PyObject	*o)

Macro	equivalent	of	PyStructSequence_SetItem().

Note: 	This	function	“steals”	a	reference	to	o.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

List	Objects
PyListObject

This	subtype	of	PyObject	represents	a	Python	list	object.

PyTypeObject	PyList_Type
This	 instance	 of	 PyTypeObject	 represents	 the	Python	 list	 type.
This	is	the	same	object	as	list	in	the	Python	layer.

int	PyList_Check(PyObject	*p)
Return	true	if	p	is	a	list	object	or	an	instance	of	a	subtype	of	the	list
type.

int	PyList_CheckExact(PyObject	*p)
Return	true	if	p	is	a	list	object,	but	not	an	instance	of	a	subtype	of
the	list	type.

PyObject*	PyList_New(Py_ssize_t	len)
Return	value:	New	reference.
Return	a	new	list	of	length	len	on	success,	or	NULL	on	failure.

Note: 	If	len	 is	greater	than	zero,	the	returned	list	object’s	items
are	 set	 to	 NULL.	 Thus	 you	 cannot	 use	 abstract	 API	 functions
such	 as	 PySequence_SetItem()	 or	 expose	 the	 object	 to
Python	 code	 before	 setting	 all	 items	 to	 a	 real	 object	 with
PyList_SetItem().

Py_ssize_t	PyList_Size(PyObject	*list)
Return	 the	 length	 of	 the	 list	 object	 in	 list;	 this	 is	 equivalent	 to
len(list)	on	a	list	object.

Py_ssize_t	PyList_GET_SIZE(PyObject	*list)
Macro	form	of	PyList_Size()	without	error	checking.

PyObject*	PyList_GetItem(PyObject	*list,	Py_ssize_t	index)
Return	value:	Borrowed	reference.
Return	the	object	at	position	index	in	the	list	pointed	to	by	list.	The
position	must	 be	 positive,	 indexing	 from	 the	 end	 of	 the	 list	 is	 not
supported.	 If	 index	 is	 out	 of	 bounds,	 return	 NULL	 and	 set	 an
IndexError	exception.

PyObject*	PyList_GET_ITEM(PyObject	*list,	Py_ssize_t	i)
Return	value:	Borrowed	reference.
Macro	form	of	PyList_GetItem()	without	error	checking.

int	PyList_SetItem(PyObject	*list,	Py_ssize_t	index,
PyObject	*item)

Set	the	item	at	index	 index	 in	 list	to	 item.	Return	0	on	success	or
-1	on	failure.

Note: 	This	 function	“steals”	a	reference	to	 item	and	discards	a
reference	to	an	item	already	in	the	list	at	the	affected	position.

void	PyList_SET_ITEM(PyObject	*list,	Py_ssize_t	i,	PyObject	*o)
Macro	form	of	PyList_SetItem()	without	error	checking.	This	is
normally	 only	 used	 to	 fill	 in	 new	 lists	 where	 there	 is	 no	 previous
content.

Note: 	 This	 macro	 “steals”	 a	 reference	 to	 item,	 and,	 unlike
PyList_SetItem(),	does	not	discard	a	 reference	 to	any	 item
that	 is	 being	 replaced;	 any	 reference	 in	 list	 at	 position	 i	 will	 be
leaked.

int	PyList_Insert(PyObject	*list,	Py_ssize_t	index,
PyObject	*item)

Insert	the	item	 item	 into	list	 list	 in	 front	of	 index	 index.	Return	0	 if
successful;	 return	 -1	 and	 set	 an	 exception	 if	 unsuccessful.
Analogous	to	list.insert(index,	item).

int	PyList_Append(PyObject	*list,	PyObject	*item)
Append	the	object	item	at	the	end	of	list	list.	Return	0	if	successful;
return	 -1	 and	 set	 an	 exception	 if	 unsuccessful.	 Analogous	 to
list.append(item).

PyObject*	PyList_GetSlice(PyObject	*list,	Py_ssize_t	low,
Py_ssize_t	high)

Return	value:	New	reference.
Return	 a	 list	 of	 the	 objects	 in	 list	 containing	 the	 objects	between
low	and	high.	Return	NULL	 and	set	an	exception	 if	 unsuccessful.
Analogous	 to	 list[low:high].	 Negative	 indices,	 as	 when
slicing	from	Python,	are	not	supported.

int	PyList_SetSlice(PyObject	*list,	Py_ssize_t	low,
Py_ssize_t	high,	PyObject	*itemlist)

Set	the	slice	of	list	between	low	and	high	to	the	contents	of	itemlist.
Analogous	to	list[low:high]	=	itemlist.	The	 itemlist	may
be	NULL,	indicating	the	assignment	of	an	empty	list	(slice	deletion).
Return	 0	 on	 success,	 -1	 on	 failure.	 Negative	 indices,	 as	 when
slicing	from	Python,	are	not	supported.

int	PyList_Sort(PyObject	*list)
Sort	the	items	of	 list	in	place.	Return	0	on	success,	-1	on	failure.
This	is	equivalent	to	list.sort().

int	PyList_Reverse(PyObject	*list)

Reverse	 the	 items	 of	 list	 in	 place.	 Return	 0	 on	 success,	 -1	 on
failure.	This	is	the	equivalent	of	list.reverse().

PyObject*	PyList_AsTuple(PyObject	*list)
Return	value:	New	reference.
Return	a	new	tuple	object	containing	the	contents	of	list;	equivalent
to	tuple(list).

int	PyList_ClearFreeList()
Clear	the	free	list.	Return	the	total	number	of	freed	items.

New	in	version	3.3.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Dictionary	Objects
PyDictObject

This	subtype	of	PyObject	represents	a	Python	dictionary	object.

PyTypeObject	PyDict_Type
This	instance	of	PyTypeObject	represents	the	Python	dictionary
type.	This	is	the	same	object	as	dict	in	the	Python	layer.

int	PyDict_Check(PyObject	*p)
Return	 true	 if	p	 is	a	dict	object	or	an	 instance	of	a	subtype	of	 the
dict	type.

int	PyDict_CheckExact(PyObject	*p)
Return	true	if	p	is	a	dict	object,	but	not	an	instance	of	a	subtype	of
the	dict	type.

PyObject*	PyDict_New()
Return	value:	New	reference.
Return	a	new	empty	dictionary,	or	NULL	on	failure.

PyObject*	PyDictProxy_New(PyObject	*mapping)
Return	value:	New	reference.
Return	a	types.MappingProxyType	object	for	a	mapping	which
enforces	read-only	behavior.	This	is	normally	used	to	create	a	view
to	 prevent	 modification	 of	 the	 dictionary	 for	 non-dynamic	 class
types.

void	PyDict_Clear(PyObject	*p)
Empty	an	existing	dictionary	of	all	key-value	pairs.

int	PyDict_Contains(PyObject	*p,	PyObject	*key)
Determine	 if	dictionary	p	 contains	key.	 If	 an	 item	 in	p	 is	matches
key,	 return	 1,	 otherwise	 return	 0.	 On	 error,	 return	 -1.	 This	 is
equivalent	to	the	Python	expression	key	in	p.

PyObject*	PyDict_Copy(PyObject	*p)
Return	value:	New	reference.
Return	a	new	dictionary	that	contains	the	same	key-value	pairs	as
p.

int	PyDict_SetItem(PyObject	*p,	PyObject	*key,	PyObject	*val)
Insert	value	 into	 the	 dictionary	p	 with	 a	 key	 of	 key.	key	 must	 be
hashable;	 if	 it	 isn’t,	 TypeError	 will	 be	 raised.	 Return	 0	 on
success	or	-1	on	failure.

int	PyDict_SetItemString(PyObject	*p,	const	char	*key,
PyObject	*val)

Insert	value	into	the	dictionary	p	using	key	as	a	key.	key	should	be
a	 char*.	 The	 key	 object	 is	 created	 using
PyUnicode_FromString(key).	Return	0	on	success	or	-1	 on
failure.

int	PyDict_DelItem(PyObject	*p,	PyObject	*key)
Remove	 the	 entry	 in	 dictionary	 p	 with	 key	 key.	 key	 must	 be
hashable;	if	it	 isn’t,	TypeError	is	raised.	Return	0	on	success	or
-1	on	failure.

int	PyDict_DelItemString(PyObject	*p,	const	char	*key)
Remove	the	entry	in	dictionary	p	which	has	a	key	specified	by	the
string	key.	Return	0	on	success	or	-1	on	failure.

PyObject*	PyDict_GetItem(PyObject	*p,	PyObject	*key)

Return	value:	Borrowed	reference.
Return	 the	 object	 from	dictionary	p	 which	 has	 a	 key	 key.	 Return
NULL	if	the	key	key	is	not	present,	but	without	setting	an	exception.

PyObject*	PyDict_GetItemWithError(PyObject	*p,
PyObject	*key)

Variant	 of	 PyDict_GetItem()	 that	 does	 not	 suppress
exceptions.	 Return	 NULL	with	 an	 exception	 set	 if	 an	 exception
occurred.	Return	NULL	without	an	exception	set	 if	 the	key	wasn’t
present.

PyObject*	PyDict_GetItemString(PyObject	*p,	const
char	*key)

Return	value:	Borrowed	reference.
This	is	the	same	as	PyDict_GetItem(),	but	key	is	specified	as	a
char*,	rather	than	a	PyObject*.

PyObject*	PyDict_SetDefault(PyObject	*p,	PyObject	*key,
PyObject	*default)

Return	value:	Borrowed	reference.
This	 is	 the	 same	 as	 the	 Python-level	 dict.setdefault().	 If
present,	 it	 returns	 the	 value	 corresponding	 to	 key	 from	 the
dictionary	p.	 If	 the	 key	 is	 not	 in	 the	 dict,	 it	 is	 inserted	with	 value
defaultobj	 and	 defaultobj	 is	 returned.	 This	 function	 evaluates	 the
hash	 function	 of	 key	 only	 once,	 instead	 of	 evaluating	 it
independently	for	the	lookup	and	the	insertion.

PyObject*	PyDict_Items(PyObject	*p)
Return	value:	New	reference.
Return	 a	 PyListObject	 containing	 all	 the	 items	 from	 the
dictionary.

PyObject*	PyDict_Keys(PyObject	*p)

Return	value:	New	reference.
Return	 a	 PyListObject	 containing	 all	 the	 keys	 from	 the
dictionary.

PyObject*	PyDict_Values(PyObject	*p)
Return	value:	New	reference.
Return	 a	 PyListObject	 containing	 all	 the	 values	 from	 the
dictionary	p.

Py_ssize_t	PyDict_Size(PyObject	*p)
Return	 the	number	of	 items	 in	 the	dictionary.	This	 is	equivalent	 to
len(p)	on	a	dictionary.

int	PyDict_Next(PyObject	*p,	Py_ssize_t	*ppos,	PyObject	**pkey,
PyObject	**pvalue)

Iterate	 over	 all	 key-value	 pairs	 in	 the	 dictionary	 p.	 The
Py_ssize_t	 referred	 to	by	ppos	must	be	 initialized	 to	0	prior	 to
the	first	call	to	this	function	to	start	the	iteration;	the	function	returns
true	 for	 each	 pair	 in	 the	 dictionary,	 and	 false	 once	 all	 pairs	 have
been	 reported.	 The	 parameters	 pkey	 and	 pvalue	 should	 either
point	 to	 PyObject*	 variables	 that	 will	 be	 filled	 in	with	 each	 key
and	value,	respectively,	or	may	be	NULL.	Any	references	returned
through	 them	 are	 borrowed.	 ppos	 should	 not	 be	 altered	 during
iteration.	 Its	 value	 represents	 offsets	within	 the	 internal	 dictionary
structure,	 and	 since	 the	 structure	 is	 sparse,	 the	 offsets	 are	 not
consecutive.

For	example:

PyObject	*key,	*value;

Py_ssize_t	pos	=	0;

while	(PyDict_Next(self->dict,	&pos,	&key,	&value))

				/*	do	something	interesting	with	the	values...	*/

				...

}

The	dictionary	p	should	not	be	mutated	during	iteration.	It	is	safe	to
modify	the	values	of	the	keys	as	you	iterate	over	the	dictionary,	but
only	so	long	as	the	set	of	keys	does	not	change.	For	example:

PyObject	*key,	*value;

Py_ssize_t	pos	=	0;

while	(PyDict_Next(self->dict,	&pos,	&key,	&value))

				long	i	=	PyLong_AsLong(value);

				if	(i	==	-1	&&	PyErr_Occurred())	{

								return	-1;

				}

				PyObject	*o	=	PyLong_FromLong(i	+	1);

				if	(o	==	NULL)

								return	-1;

				if	(PyDict_SetItem(self->dict,	key,	o)	<	0)	{

								Py_DECREF(o);

								return	-1;

				}

				Py_DECREF(o);

}

int	PyDict_Merge(PyObject	*a,	PyObject	*b,	int	override)
Iterate	over	mapping	object	b	adding	key-value	pairs	 to	dictionary
a.	 b	 may	 be	 a	 dictionary,	 or	 any	 object	 supporting
PyMapping_Keys()	 and	 PyObject_GetItem().	 If	 override	 is
true,	existing	pairs	in	a	will	be	replaced	if	a	matching	key	is	found	in
b,	otherwise	pairs	will	only	be	added	if	there	is	not	a	matching	key
in	a.	Return	0	on	success	or	-1	if	an	exception	was	raised.

int	PyDict_Update(PyObject	*a,	PyObject	*b)
This	 is	 the	 same	 as	 PyDict_Merge(a,	 b,	 1)	 in	 C,	 or
a.update(b)	 in	 Python.	 Return	 0	 on	 success	 or	 -1	 if	 an
exception	was	raised.

int	PyDict_MergeFromSeq2(PyObject	*a,	PyObject	*seq2,
int	override)

Update	or	merge	into	dictionary	a,	from	the	key-value	pairs	in	seq2.
seq2	must	be	an	iterable	object	producing	iterable	objects	of	length
2,	 viewed	 as	 key-value	 pairs.	 In	 case	 of	 duplicate	 keys,	 the	 last
wins	if	override	is	true,	else	the	first	wins.	Return	0	on	success	or
-1	 if	 an	 exception	was	 raised.	Equivalent	Python	 (except	 for	 the
return	value):

def	PyDict_MergeFromSeq2(a,	seq2,	override):

				for	key,	value	in	seq2:

								if	override	or	key	not	in	a:

												a[key]	=	value

int	PyDict_ClearFreeList()
Clear	the	free	list.	Return	the	total	number	of	freed	items.

New	in	version	3.3.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Set	Objects
This	section	details	 the	public	API	 for	set	and	frozenset	 objects.
Any	functionality	not	listed	below	is	best	accessed	using	the	either	the
abstract	 object	 protocol	 (including	 PyObject_CallMethod(),
PyObject_RichCompareBool(),	 PyObject_Hash(),
PyObject_Repr(),	 PyObject_IsTrue(),	 PyObject_Print(),
and	 PyObject_GetIter())	 or	 the	 abstract	 number	 protocol
(including	 PyNumber_And(),	 PyNumber_Subtract(),
PyNumber_Or(),	 PyNumber_Xor(),	 PyNumber_InPlaceAnd(),
PyNumber_InPlaceSubtract(),	 PyNumber_InPlaceOr(),	 and
PyNumber_InPlaceXor()).

PySetObject

This	subtype	of	PyObject	is	used	to	hold	the	internal	data	for	both
set	and	frozenset	objects.	It	is	like	a	PyDictObject	in	that	it
is	a	fixed	size	for	small	sets	(much	like	tuple	storage)	and	will	point
to	 a	 separate,	 variable	 sized	 block	 of	 memory	 for	 medium	 and
large	sized	sets	 (much	 like	 list	storage).	None	of	 the	 fields	of	 this
structure	 should	be	considered	public	and	are	 subject	 to	 change.
All	access	should	be	done	through	the	documented	API	rather	than
by	manipulating	the	values	in	the	structure.

PyTypeObject	PySet_Type
This	 is	 an	 instance	 of	 PyTypeObject	 representing	 the	 Python
set	type.

PyTypeObject	PyFrozenSet_Type
This	 is	 an	 instance	 of	 PyTypeObject	 representing	 the	 Python
frozenset	type.

The	 following	 type	 check	 macros	 work	 on	 pointers	 to	 any	 Python
object.	 Likewise,	 the	 constructor	 functions	 work	 with	 any	 iterable
Python	object.

int	PySet_Check(PyObject	*p)
Return	true	if	p	is	a	set	object	or	an	instance	of	a	subtype.

int	PyFrozenSet_Check(PyObject	*p)
Return	true	if	p	is	a	frozenset	object	or	an	instance	of	a	subtype.

int	PyAnySet_Check(PyObject	*p)
Return	 true	 if	 p	 is	 a	 set	 object,	 a	 frozenset	 object,	 or	 an
instance	of	a	subtype.

int	PyAnySet_CheckExact(PyObject	*p)
Return	true	if	p	is	a	set	object	or	a	frozenset	object	but	not	an
instance	of	a	subtype.

int	PyFrozenSet_CheckExact(PyObject	*p)
Return	 true	 if	p	 is	 a	 frozenset	 object	 but	 not	 an	 instance	 of	 a
subtype.

PyObject*	PySet_New(PyObject	*iterable)
Return	value:	New	reference.
Return	a	new	set	containing	objects	returned	by	the	iterable.	The
iterable	may	be	NULL	 to	create	a	new	empty	set.	Return	the	new
set	on	success	or	NULL	on	failure.	Raise	TypeError	if	iterable	is
not	actually	iterable.	The	constructor	is	also	useful	for	copying	a	set
(c=set(s)).

PyObject*	PyFrozenSet_New(PyObject	*iterable)
Return	value:	New	reference.

Return	 a	 new	 frozenset	 containing	 objects	 returned	 by	 the
iterable.	 The	 iterable	 may	 be	 NULL	 to	 create	 a	 new	 empty
frozenset.	 Return	 the	 new	 set	 on	 success	 or	 NULL	 on	 failure.
Raise	TypeError	if	iterable	is	not	actually	iterable.

The	following	functions	and	macros	are	available	for	instances	of	set
or	frozenset	or	instances	of	their	subtypes.

Py_ssize_t	PySet_Size(PyObject	*anyset)
Return	 the	 length	 of	 a	 set	 or	 frozenset	 object.	 Equivalent	 to
len(anyset).	Raises	a	PyExc_SystemError	if	anyset	is	not	a
set,	frozenset,	or	an	instance	of	a	subtype.

Py_ssize_t	PySet_GET_SIZE(PyObject	*anyset)
Macro	form	of	PySet_Size()	without	error	checking.

int	PySet_Contains(PyObject	*anyset,	PyObject	*key)
Return	1	if	found,	0	if	not	found,	and	-1	if	an	error	is	encountered.
Unlike	 the	 Python	 __contains__()	 method,	 this	 function	 does
not	 automatically	 convert	 unhashable	 sets	 into	 temporary
frozensets.	Raise	 a	 TypeError	 if	 the	 key	 is	 unhashable.	 Raise
PyExc_SystemError	 if	anyset	 is	not	a	set,	frozenset,	or	an
instance	of	a	subtype.

int	PySet_Add(PyObject	*set,	PyObject	*key)
Add	key	to	a	set	instance.	Also	works	with	frozenset	instances
(like	 PyTuple_SetItem()	 it	 can	 be	 used	 to	 fill-in	 the	 values	 of
brand	 new	 frozensets	 before	 they	 are	 exposed	 to	 other	 code).
Return	 0	 on	 success	 or	 -1	 on	 failure.	Raise	 a	 TypeError	 if	 the
key	 is	unhashable.	Raise	a	MemoryError	 if	 there	 is	 no	 room	 to
grow.	Raise	a	SystemError	if	set	is	an	not	an	instance	of	set	or

its	subtype.

The	 following	 functions	 are	 available	 for	 instances	 of	 set	 or	 its
subtypes	but	not	for	instances	of	frozenset	or	its	subtypes.

int	PySet_Discard(PyObject	*set,	PyObject	*key)
Return	1	if	found	and	removed,	0	if	not	found	(no	action	taken),	and
-1	if	an	error	is	encountered.	Does	not	raise	KeyError	for	missing
keys.	 Raise	 a	 TypeError	 if	 the	 key	 is	 unhashable.	 Unlike	 the
Python	 discard()	 method,	 this	 function	 does	 not	 automatically
convert	 unhashable	 sets	 into	 temporary	 frozensets.	 Raise
PyExc_SystemError	 if	 set	 is	 an	 not	 an	 instance	 of	 set	 or	 its
subtype.

PyObject*	PySet_Pop(PyObject	*set)
Return	value:	New	reference.
Return	 a	 new	 reference	 to	 an	 arbitrary	 object	 in	 the	 set,	 and
removes	 the	 object	 from	 the	 set.	Return	NULL	 on	 failure.	 Raise
KeyError	 if	 the	set	 is	empty.	Raise	a	SystemError	 if	set	 is	an
not	an	instance	of	set	or	its	subtype.

int	PySet_Clear(PyObject	*set)
Empty	an	existing	set	of	all	elements.

int	PySet_ClearFreeList()
Clear	the	free	list.	Return	the	total	number	of	freed	items.

New	in	version	3.3.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Function	Objects
There	are	a	few	functions	specific	to	Python	functions.

PyFunctionObject

The	C	structure	used	for	functions.

PyTypeObject	PyFunction_Type
This	 is	an	instance	of	PyTypeObject	and	represents	the	Python
function	 type.	 It	 is	 exposed	 to	 Python	 programmers	 as
types.FunctionType.

int	PyFunction_Check(PyObject	*o)
Return	true	if	o	is	a	function	object	(has	type	PyFunction_Type).
The	parameter	must	not	be	NULL.

PyObject*	PyFunction_New(PyObject	*code,	PyObject	*globals)
Return	value:	New	reference.
Return	a	new	function	object	associated	with	the	code	object	code.
globals	must	be	a	dictionary	with	the	global	variables	accessible	to
the	function.

The	function’s	docstring,	name	and	__module__	are	retrieved	from
the	 code	 object,	 the	 argument	 defaults	 and	 closure	 are	 set	 to
NULL.

PyObject*	PyFunction_NewWithQualName(PyObject	*code,
PyObject	*globals,	PyObject	*qualname)

Return	value:	New	reference.
As	 PyFunction_New(),	 but	 also	 allows	 to	 set	 the	 function
object’s	__qualname__	attribute.	qualname	 should	be	a	unicode

object	or	NULL;	if	NULL,	the	__qualname__	attribute	is	set	to	the
same	value	as	its	__name__	attribute.

New	in	version	3.3.

PyObject*	PyFunction_GetCode(PyObject	*op)
Return	value:	Borrowed	reference.
Return	the	code	object	associated	with	the	function	object	op.

PyObject*	PyFunction_GetGlobals(PyObject	*op)
Return	value:	Borrowed	reference.
Return	 the	 globals	 dictionary	 associated	 with	 the	 function	 object
op.

PyObject*	PyFunction_GetModule(PyObject	*op)
Return	value:	Borrowed	reference.
Return	 the	__module__	attribute	of	 the	 function	object	op.	This	 is
normally	 a	 string	 containing	 the	module	 name,	 but	 can	 be	 set	 to
any	other	object	by	Python	code.

PyObject*	PyFunction_GetDefaults(PyObject	*op)
Return	value:	Borrowed	reference.
Return	the	argument	default	values	of	the	function	object	op.	This
can	be	a	tuple	of	arguments	or	NULL.

int	PyFunction_SetDefaults(PyObject	*op,
PyObject	*defaults)

Set	the	argument	default	values	for	the	function	object	op.	defaults
must	be	Py_None	or	a	tuple.

Raises	SystemError	and	returns	-1	on	failure.

PyObject*	PyFunction_GetClosure(PyObject	*op)

Return	value:	Borrowed	reference.
Return	the	closure	associated	with	the	function	object	op.	This	can
be	NULL	or	a	tuple	of	cell	objects.

int	PyFunction_SetClosure(PyObject	*op,	PyObject	*closure)
Set	the	closure	associated	with	the	function	object	op.	closure	must
be	Py_None	or	a	tuple	of	cell	objects.

Raises	SystemError	and	returns	-1	on	failure.

PyObject	*PyFunction_GetAnnotations(PyObject	*op)
Return	 the	 annotations	 of	 the	 function	 object	 op.	 This	 can	 be	 a
mutable	dictionary	or	NULL.

int	PyFunction_SetAnnotations(PyObject	*op,
PyObject	*annotations)

Set	the	annotations	for	the	function	object	op.	annotations	must	be
a	dictionary	or	Py_None.

Raises	SystemError	and	returns	-1	on	failure.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Instance	Method	Objects
An	 instance	method	 is	 a	wrapper	 for	 a	 PyCFunction	 and	 the	 new
way	to	bind	a	PyCFunction	 to	a	class	object.	It	replaces	the	former
call	PyMethod_New(func,	NULL,	class).

PyTypeObject	PyInstanceMethod_Type
This	 instance	 of	 PyTypeObject	 represents	 the	 Python	 instance
method	type.	It	is	not	exposed	to	Python	programs.

int	PyInstanceMethod_Check(PyObject	*o)
Return	 true	 if	 o	 is	 an	 instance	 method	 object	 (has	 type
PyInstanceMethod_Type).	The	parameter	must	not	be	NULL.

PyObject*	PyInstanceMethod_New(PyObject	*func)
Return	a	new	instance	method	object,	with	func	being	any	callable
object	 func	 is	 the	 function	 that	 will	 be	 called	 when	 the	 instance
method	is	called.

PyObject*	PyInstanceMethod_Function(PyObject	*im)
Return	the	function	object	associated	with	the	instance	method	im.

PyObject*
PyInstanceMethod_GET_FUNCTION(PyObject	*im)

Macro	 version	 of	 PyInstanceMethod_Function()	 which
avoids	error	checking.

Method	Objects
Methods	are	bound	function	objects.	Methods	are	always	bound	to	an
instance	of	an	user-defined	class.	Unbound	methods	(methods	bound
to	a	class	object)	are	no	longer	available.

PyTypeObject	PyMethod_Type
This	 instance	 of	 PyTypeObject	 represents	 the	 Python	 method
type.	 This	 is	 exposed	 to	 Python	 programs	 as
types.MethodType.

int	PyMethod_Check(PyObject	*o)
Return	 true	 if	o	 is	 a	method	 object	 (has	 type	 PyMethod_Type).
The	parameter	must	not	be	NULL.

PyObject*	PyMethod_New(PyObject	*func,	PyObject	*self)
Return	value:	New	reference.
Return	 a	 new	method	 object,	 with	 func	 being	 any	 callable	 object
and	 self	 the	 instance	 the	 method	 should	 be	 bound.	 func	 is	 the
function	that	will	be	called	when	the	method	is	called.	self	must	not
be	NULL.

PyObject*	PyMethod_Function(PyObject	*meth)
Return	value:	Borrowed	reference.
Return	the	function	object	associated	with	the	method	meth.

PyObject*	PyMethod_GET_FUNCTION(PyObject	*meth)
Return	value:	Borrowed	reference.
Macro	 version	 of	 PyMethod_Function()	 which	 avoids	 error
checking.

PyObject*	PyMethod_Self(PyObject	*meth)
Return	value:	Borrowed	reference.
Return	the	instance	associated	with	the	method	meth.

PyObject*	PyMethod_GET_SELF(PyObject	*meth)
Return	value:	Borrowed	reference.
Macro	version	of	PyMethod_Self()	which	avoids	error	checking.

int	PyMethod_ClearFreeList()
Clear	the	free	list.	Return	the	total	number	of	freed	items.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Cell	Objects
“Cell”	objects	are	used	to	 implement	variables	referenced	by	multiple
scopes.	 For	 each	 such	 variable,	 a	 cell	 object	 is	 created	 to	 store	 the
value;	the	local	variables	of	each	stack	frame	that	references	the	value
contains	a	reference	to	the	cells	from	outer	scopes	which	also	use	that
variable.	When	the	value	is	accessed,	the	value	contained	in	the	cell	is
used	 instead	 of	 the	 cell	 object	 itself.	 This	 de-referencing	 of	 the	 cell
object	 requires	 support	 from	 the	 generated	 byte-code;	 these	 are	 not
automatically	de-referenced	when	accessed.	Cell	objects	are	not	likely
to	be	useful	elsewhere.

PyCellObject

The	C	structure	used	for	cell	objects.

PyTypeObject	PyCell_Type
The	type	object	corresponding	to	cell	objects.

int	PyCell_Check(ob)
Return	true	if	ob	is	a	cell	object;	ob	must	not	be	NULL.

PyObject*	PyCell_New(PyObject	*ob)
Return	value:	New	reference.
Create	and	 return	a	new	cell	 object	 containing	 the	value	ob.	 The
parameter	may	be	NULL.

PyObject*	PyCell_Get(PyObject	*cell)
Return	value:	New	reference.
Return	the	contents	of	the	cell	cell.

PyObject*	PyCell_GET(PyObject	*cell)
Return	value:	Borrowed	reference.

Return	the	contents	of	the	cell	cell,	but	without	checking	that	cell	is
non-NULL	and	a	cell	object.

int	PyCell_Set(PyObject	*cell,	PyObject	*value)
Set	 the	contents	of	 the	cell	object	cell	 to	value.	This	 releases	 the
reference	 to	any	current	 content	of	 the	cell.	value	may	be	NULL.
cell	must	be	non-NULL;	if	it	is	not	a	cell	object,	-1	will	be	returned.
On	success,	0	will	be	returned.

void	PyCell_SET(PyObject	*cell,	PyObject	*value)
Sets	the	value	of	the	cell	object	cell	to	value.	No	reference	counts
are	adjusted,	and	no	checks	are	made	for	safety;	cell	must	be	non-
NULL	and	must	be	a	cell	object.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Code	Objects
Code	 objects	 are	 a	 low-level	 detail	 of	 the	 CPython	 implementation.
Each	one	represents	a	chunk	of	executable	code	that	hasn’t	yet	been
bound	into	a	function.

PyCodeObject

The	C	structure	of	the	objects	used	to	describe	code	objects.	The
fields	of	this	type	are	subject	to	change	at	any	time.

PyTypeObject	PyCode_Type
This	 is	 an	 instance	 of	 PyTypeObject	 representing	 the	 Python
code	type.

int	PyCode_Check(PyObject	*co)
Return	true	if	co	is	a	code	object

int	PyCode_GetNumFree(PyCodeObject	*co)
Return	the	number	of	free	variables	in	co.

PyCodeObject*	PyCode_New(int	argcount,	int	kwonlyargcount,
int	nlocals,	int	stacksize,	int	flags,	PyObject	*code,	PyObject	*consts,
PyObject	*names,	PyObject	*varnames,	PyObject	*freevars,
PyObject	*cellvars,	PyObject	*filename,	PyObject	*name,
int	firstlineno,	PyObject	*lnotab)

Return	 a	 new	 code	 object.	 If	 you	 need	 a	 dummy	 code	 object	 to
create	 a	 frame,	 use	 PyCode_NewEmpty()	 instead.	 Calling
PyCode_New()	directly	can	bind	you	to	a	precise	Python	version
since	the	definition	of	the	bytecode	changes	often.

PyCodeObject*	PyCode_NewEmpty(const	char	*filename,	const
char	*funcname,	int	firstlineno)

Return	 a	 new	 empty	 code	 object	 with	 the	 specified	 filename,
function	 name,	 and	 first	 line	 number.	 It	 is	 illegal	 to	 exec()	 or
eval()	the	resulting	code	object.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

File	Objects
These	APIs	are	a	minimal	emulation	of	the	Python	2	C	API	for	built-in
file	 objects,	 which	 used	 to	 rely	 on	 the	 buffered	 I/O	 (FILE*)	 support
from	the	C	standard	library.	In	Python	3,	files	and	streams	use	the	new
io	module,	which	defines	several	layers	over	the	low-level	unbuffered
I/O	 of	 the	 operating	 system.	 The	 functions	 described	 below	 are
convenience	C	wrappers	over	 these	new	APIs,	and	meant	mostly	 for
internal	error	reporting	in	the	interpreter;	third-party	code	is	advised	to
access	the	io	APIs	instead.

PyFile_FromFd(int	fd,	const	char	*name,	const	char	*mode,
int	buffering,	const	char	*encoding,	const	char	*errors,	const
char	*newline,	int	closefd)

Create	 a	 Python	 file	 object	 from	 the	 file	 descriptor	 of	 an	 already
opened	file	fd.	The	arguments	name,	encoding,	errors	and	newline
can	 be	NULL	 to	 use	 the	 defaults;	buffering	 can	 be	 -1	 to	 use	 the
default.	 name	 is	 ignored	 and	 kept	 for	 backward	 compatibility.
Return	NULL	on	 failure.	For	a	more	comprehensive	description	of
the	 arguments,	 please	 refer	 to	 the	 io.open()	 function
documentation.

Warning: 	Since	Python	streams	have	their	own	buffering	layer,
mixing	 them	 with	 OS-level	 file	 descriptors	 can	 produce	 various
issues	(such	as	unexpected	ordering	of	data).

Changed	in	version	3.2:	Ignore	name	attribute.

int	PyObject_AsFileDescriptor(PyObject	*p)
Return	the	file	descriptor	associated	with	p	as	an	int.	If	the	object
is	 an	 integer,	 its	 value	 is	 returned.	 If	 not,	 the	 object’s	 fileno()

method	 is	 called	 if	 it	 exists;	 the	 method	 must	 return	 an	 integer,
which	 is	 returned	 as	 the	 file	 descriptor	 value.	 Sets	 an	 exception
and	returns	-1	on	failure.

PyObject*	PyFile_GetLine(PyObject	*p,	int	n)
Return	value:	New	reference.
Equivalent	 to	 p.readline([n]),	 this	 function	 reads	 one	 line
from	 the	 object	 p.	 p	 may	 be	 a	 file	 object	 or	 any	 object	 with	 a
readline()	method.	If	n	is	0,	exactly	one	line	is	read,	regardless
of	the	length	of	the	line.	If	n	is	greater	than	0,	no	more	than	n	bytes
will	 be	 read	 from	 the	 file;	 a	 partial	 line	 can	 be	 returned.	 In	 both
cases,	an	empty	string	 is	returned	if	 the	end	of	 the	file	 is	reached
immediately.	 If	 n	 is	 less	 than	 0,	 however,	 one	 line	 is	 read
regardless	of	length,	but	EOFError	is	raised	if	the	end	of	the	file	is
reached	immediately.

int	PyFile_WriteObject(PyObject	*obj,	PyObject	*p,	int	flags)
Write	object	obj	to	file	object	p.	The	only	supported	flag	for	flags	is
Py_PRINT_RAW;	if	given,	the	str()	of	the	object	is	written	instead
of	 the	 repr().	 Return	 0	 on	 success	 or	 -1	 on	 failure;	 the
appropriate	exception	will	be	set.

int	PyFile_WriteString(const	char	*s,	PyObject	*p)
Write	string	s	to	file	object	p.	Return	0	on	success	or	-1	on	failure;
the	appropriate	exception	will	be	set.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Module	Objects
There	are	only	a	few	functions	special	to	module	objects.

PyTypeObject	PyModule_Type
This	 instance	 of	 PyTypeObject	 represents	 the	 Python	 module
type.	 This	 is	 exposed	 to	 Python	 programs	 as
types.ModuleType.

int	PyModule_Check(PyObject	*p)
Return	true	if	p	is	a	module	object,	or	a	subtype	of	a	module	object.

int	PyModule_CheckExact(PyObject	*p)
Return	 true	 if	 p	 is	 a	 module	 object,	 but	 not	 a	 subtype	 of
PyModule_Type.

PyObject*	PyModule_NewObject(PyObject	*name)
Return	 a	 new	module	 object	 with	 the	 __name__	 attribute	 set	 to
name.	 The	 module’s	 __name__,	 __doc__,	 __package__,	 and
__loader__	 attributes	are	 filled	 in	 (all	 but	__name__	 are	 set	 to
None);	the	caller	is	responsible	for	providing	a	__file__	attribute.

New	in	version	3.3.

Changed	in	version	3.4:	__package__	and	__loader__	are	set
to	None.

PyObject*	PyModule_New(const	char	*name)
Return	value:	New	reference.
Similar	 to	 PyImport_NewObject(),	 but	 the	 name	 is	 an	 UTF-8
encoded	string	instead	of	a	Unicode	object.

PyObject*	PyModule_GetDict(PyObject	*module)
Return	value:	Borrowed	reference.
Return	the	dictionary	object	that	implements	module‘s	namespace;
this	object	 is	 the	 same	as	 the	 __dict__	 attribute	of	 the	module
object.	This	function	never	fails.	It	is	recommended	extensions	use
other	 PyModule_*()	 and	 PyObject_*()	 functions	 rather	 than
directly	manipulate	a	module’s	__dict__.

PyObject*	PyModule_GetNameObject(PyObject	*module)
Return	module‘s	__name__	value.	If	the	module	does	not	provide
one,	 or	 if	 it	 is	 not	 a	 string,	 SystemError	 is	 raised	and	NULL	 is
returned.

New	in	version	3.3.

char*	PyModule_GetName(PyObject	*module)
Similar	 to	 PyModule_GetNameObject()	 but	 return	 the	 name
encoded	to	'utf-8'.

PyObject*
PyModule_GetFilenameObject(PyObject	*module)

Return	 the	name	of	 the	 file	 from	which	module	was	 loaded	using
module‘s	__file__	attribute.	If	this	is	not	defined,	or	 if	 it	 is	not	a
unicode	 string,	 raise	 SystemError	 and	 return	NULL;	 otherwise
return	a	reference	to	a	Unicode	object.

New	in	version	3.2.

char*	PyModule_GetFilename(PyObject	*module)
Similar	 to	 PyModule_GetFilenameObject()	 but	 return	 the
filename	encoded	to	‘utf-8’.

Deprecated	 since	 version	 3.2:	 PyModule_GetFilename()
raises	 UnicodeEncodeError	 on	 unencodable	 filenames,	 use
PyModule_GetFilenameObject()	instead.

void*	PyModule_GetState(PyObject	*module)
Return	 the	 “state”	of	 the	module,	 that	 is,	a	pointer	 to	 the	block	of
memory	 allocated	 at	 module	 creation	 time,	 or	 NULL.	 See
PyModuleDef.m_size.

PyModuleDef*	PyModule_GetDef(PyObject	*module)
Return	 a	 pointer	 to	 the	 PyModuleDef	 struct	 from	 which	 the
module	 was	 created,	 or	NULL	 if	 the	 module	 wasn’t	 created	 with
PyModule_Create().

PyObject*	PyState_FindModule(PyModuleDef	*def)
Returns	the	module	object	that	was	created	from	def	for	the	current
interpreter.	This	method	requires	that	 the	module	object	has	been
attached	 to	 the	 interpreter	 state	 with	 PyState_AddModule()
beforehand.	In	case	the	corresponding	module	object	is	not	found
or	 has	 not	 been	 attached	 to	 the	 interpreter	 state	 yet,	 it	 returns
NULL.

int	PyState_AddModule(PyObject	*module,	PyModuleDef	*def)
Attaches	the	module	object	passed	to	the	function	to	the	interpreter
state.	 This	 allows	 the	 module	 object	 to	 be	 accessible	 via
PyState_FindModule().

New	in	version	3.3.

int	PyState_RemoveModule(PyModuleDef	*def)
Removes	 the	module	object	created	 from	def	 from	 the	 interpreter
state.

New	in	version	3.3.

Initializing	C	modules

These	functions	are	usually	used	in	the	module	initialization	function.

PyObject*	PyModule_Create(PyModuleDef	*module)
Create	a	new	module	object,	 given	 the	definition	 in	module.	 This
behaves	like	PyModule_Create2()	with	module_api_version	set
to	PYTHON_API_VERSION.

PyObject*	PyModule_Create2(PyModuleDef	*module,
int	module_api_version)

Create	 a	 new	 module	 object,	 given	 the	 definition	 in	 module,
assuming	the	API	version	module_api_version.	If	that	version	does
not	 match	 the	 version	 of	 the	 running	 interpreter,	 a
RuntimeWarning	is	emitted.

Note: 	 Most	 uses	 of	 this	 function	 should	 be	 using
PyModule_Create()	instead;	only	use	this	if	you	are	sure	you
need	it.

PyModuleDef

This	struct	holds	all	 information	that	is	needed	to	create	a	module
object.	There	is	usually	only	one	static	variable	of	that	type	for	each
module,	 which	 is	 statically	 initialized	 and	 then	 passed	 to
PyModule_Create()	in	the	module	initialization	function.

PyModuleDef_Base	m_base
Always	initialize	this	member	to	PyModuleDef_HEAD_INIT.

char*	m_name
Name	for	the	new	module.

char*	m_doc
Docstring	 for	 the	module;	 usually	 a	 docstring	 variable	 created
with	PyDoc_STRVAR()	is	used.

Py_ssize_t	m_size
Some	 modules	 allow	 re-initialization	 (calling	 their	 PyInit_*
function	 more	 than	 once).	 These	 modules	 should	 keep	 their
state	 in	a	per-module	memory	area	 that	 can	be	 retrieved	with
PyModule_GetState().

This	memory	should	be	used,	rather	than	static	globals,	to	hold
per-module	state,	 since	 it	 is	 then	safe	 for	use	 in	multiple	sub-
interpreters.	 It	 is	 freed	when	 the	module	object	 is	deallocated,
after	the	m_free	function	has	been	called,	if	present.

Setting	m_size	 to	 -1	means	 that	 the	module	 can	 not	 be	 re-
initialized	 because	 it	 has	 global	 state.	 Setting	 it	 to	 a	 non-
negative	value	means	that	the	module	can	be	re-initialized	and
specifies	 the	 additional	 amount	 of	 memory	 it	 requires	 for	 its
state.

See	PEP	3121	for	more	details.

PyMethodDef*	m_methods
A	 pointer	 to	 a	 table	 of	 module-level	 functions,	 described	 by
PyMethodDef	 values.	 Can	 be	 NULL	 if	 no	 functions	 are
present.

inquiry	m_reload
Currently	unused,	should	be	NULL.

traverseproc	m_traverse
A	 traversal	 function	 to	 call	 during	GC	 traversal	 of	 the	module

http://www.python.org/dev/peps/pep-3121

object,	or	NULL	if	not	needed.

inquiry	m_clear
A	clear	function	to	call	during	GC	clearing	of	the	module	object,
or	NULL	if	not	needed.

freefunc	m_free
A	 function	 to	 call	 during	 deallocation	 of	 the	module	 object,	 or
NULL	if	not	needed.

int	PyModule_AddObject(PyObject	*module,	const	char	*name,
PyObject	*value)

Add	an	object	to	module	as	name.	This	 is	a	convenience	function
which	 can	 be	 used	 from	 the	module’s	 initialization	 function.	 This
steals	a	reference	to	value.	Return	-1	on	error,	0	on	success.

int	PyModule_AddIntConstant(PyObject	*module,	const
char	*name,	long	value)

Add	 an	 integer	 constant	 to	module	 as	 name.	 This	 convenience
function	 can	 be	 used	 from	 the	 module’s	 initialization	 function.
Return	-1	on	error,	0	on	success.

int	PyModule_AddStringConstant(PyObject	*module,	const
char	*name,	const	char	*value)

Add	 a	 string	 constant	 to	 module	 as	 name.	 This	 convenience
function	can	be	used	from	the	module’s	 initialization	function.	The
string	 value	 must	 be	 null-terminated.	 Return	 -1	 on	 error,	 0	 on
success.

int	PyModule_AddIntMacro(PyObject	*module,	macro)
Add	an	int	constant	to	module.	The	name	and	the	value	are	taken
from	 macro.	 For	 example	 PyModule_AddIntMacro(module,

AF_INET)	 adds	 the	 int	 constant	 AF_INET	 with	 the	 value	 of
AF_INET	to	module.	Return	-1	on	error,	0	on	success.

int	PyModule_AddStringMacro(PyObject	*module,	macro)
Add	a	string	constant	to	module.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Iterator	Objects
Python	 provides	 two	 general-purpose	 iterator	 objects.	 The	 first,	 a
sequence	 iterator,	 works	 with	 an	 arbitrary	 sequence	 supporting	 the
__getitem__()	 method.	 The	 second	 works	 with	 a	 callable	 object
and	a	sentinel	value,	calling	the	callable	for	each	item	in	the	sequence,
and	ending	the	iteration	when	the	sentinel	value	is	returned.

PyTypeObject	PySeqIter_Type
Type	 object	 for	 iterator	 objects	 returned	 by	 PySeqIter_New()
and	the	one-argument	form	of	the	iter()	built-in	function	for	built-
in	sequence	types.

int	PySeqIter_Check(op)
Return	true	if	the	type	of	op	is	PySeqIter_Type.

PyObject*	PySeqIter_New(PyObject	*seq)
Return	value:	New	reference.
Return	an	iterator	that	works	with	a	general	sequence	object,	seq.
The	iteration	ends	when	the	sequence	raises	IndexError	for	the
subscripting	operation.

PyTypeObject	PyCallIter_Type
Type	 object	 for	 iterator	 objects	 returned	 by	 PyCallIter_New()
and	the	two-argument	form	of	the	iter()	built-in	function.

int	PyCallIter_Check(op)
Return	true	if	the	type	of	op	is	PyCallIter_Type.

PyObject*	PyCallIter_New(PyObject	*callable,
PyObject	*sentinel)

Return	value:	New	reference.
Return	 a	 new	 iterator.	 The	 first	 parameter,	 callable,	 can	 be	 any
Python	callable	object	that	can	be	called	with	no	parameters;	each
call	to	it	should	return	the	next	item	in	the	iteration.	When	callable
returns	a	value	equal	to	sentinel,	the	iteration	will	be	terminated.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Descriptor	Objects
“Descriptors”	 are	 objects	 that	 describe	 some	 attribute	 of	 an	 object.
They	are	found	in	the	dictionary	of	type	objects.

PyTypeObject	PyProperty_Type
The	type	object	for	the	built-in	descriptor	types.

PyObject*	PyDescr_NewGetSet(PyTypeObject	*type,	struct
PyGetSetDef	*getset)

Return	value:	New	reference.

PyObject*	PyDescr_NewMember(PyTypeObject	*type,	struct
PyMemberDef	*meth)

Return	value:	New	reference.

PyObject*	PyDescr_NewMethod(PyTypeObject	*type,	struct
PyMethodDef	*meth)

Return	value:	New	reference.

PyObject*	PyDescr_NewWrapper(PyTypeObject	*type,	struct
wrapperbase	*wrapper,	void	*wrapped)

Return	value:	New	reference.

PyObject*	PyDescr_NewClassMethod(PyTypeObject	*type,
PyMethodDef	*method)

Return	value:	New	reference.

int	PyDescr_IsData(PyObject	*descr)
Return	 true	 if	 the	 descriptor	 objects	 descr	 describes	 a	 data
attribute,	 or	 false	 if	 it	 describes	 a	 method.	 descr	 must	 be	 a
descriptor	object;	there	is	no	error	checking.

PyObject*	PyWrapper_New(PyObject	*,	PyObject	*)
Return	value:	New	reference.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Slice	Objects
PyTypeObject	PySlice_Type

The	type	object	for	slice	objects.	This	is	the	same	as	slice	in	the
Python	layer.

int	PySlice_Check(PyObject	*ob)
Return	true	if	ob	is	a	slice	object;	ob	must	not	be	NULL.

PyObject*	PySlice_New(PyObject	*start,	PyObject	*stop,
PyObject	*step)

Return	value:	New	reference.
Return	 a	 new	 slice	 object	 with	 the	 given	 values.	 The	start,	 stop,
and	 step	 parameters	 are	 used	 as	 the	 values	 of	 the	 slice	 object
attributes	of	the	same	names.	Any	of	the	values	may	be	NULL,	 in
which	case	the	None	will	be	used	for	 the	corresponding	attribute.
Return	NULL	if	the	new	object	could	not	be	allocated.

int	PySlice_GetIndices(PyObject	*slice,	Py_ssize_t	length,
Py_ssize_t	*start,	Py_ssize_t	*stop,	Py_ssize_t	*step)

Retrieve	the	start,	stop	and	step	indices	from	the	slice	object	slice,
assuming	a	sequence	of	length	length.	Treats	indices	greater	than
length	as	errors.

Returns	0	on	success	and	-1	on	error	with	no	exception	set	(unless
one	of	the	 indices	was	not	None	and	failed	to	be	converted	to	an
integer,	in	which	case	-1	is	returned	with	an	exception	set).

You	probably	do	not	want	to	use	this	function.

Changed	in	version	3.2:	The	parameter	type	for	the	slice	parameter

was	PySliceObject*	before.

int	PySlice_GetIndicesEx(PyObject	*slice,	Py_ssize_t	length,
Py_ssize_t	*start,	Py_ssize_t	*stop,	Py_ssize_t	*step,
Py_ssize_t	*slicelength)

Usable	 replacement	 for	 PySlice_GetIndices().	 Retrieve	 the
start,	stop,	and	step	indices	from	the	slice	object	slice	assuming	a
sequence	 of	 length	 length,	 and	 store	 the	 length	 of	 the	 slice	 in
slicelength.	 Out	 of	 bounds	 indices	 are	 clipped	 in	 a	 manner
consistent	with	the	handling	of	normal	slices.

Returns	0	on	success	and	-1	on	error	with	exception	set.

Changed	in	version	3.2:	The	parameter	type	for	the	slice	parameter
was	PySliceObject*	before.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

MemoryView	objects
A	 memoryview	 object	 exposes	 the	 C	 level	 buffer	 interface	 as	 a
Python	object	which	can	then	be	passed	around	like	any	other	object.

PyObject	*PyMemoryView_FromObject(PyObject	*obj)
Create	a	memoryview	object	from	an	object	that	provides	the	buffer
interface.	 If	obj	 supports	writable	 buffer	 exports,	 the	memoryview
object	 will	 be	 read/write,	 otherwise	 it	 may	 be	 either	 read-only	 or
read/write	at	the	discretion	of	the	exporter.

PyObject	*PyMemoryView_FromMemory(char	*mem,
Py_ssize_t	size,	int	flags)

Create	a	memoryview	object	using	mem	as	 the	underlying	buffer.
flags	can	be	one	of	PyBUF_READ	or	PyBUF_WRITE.

New	in	version	3.3.

PyObject	*PyMemoryView_FromBuffer(Py_buffer	*view)
Create	 a	 memoryview	 object	 wrapping	 the	 given	 buffer	 structure
view.	For	simple	byte	buffers,	PyMemoryView_FromMemory()	 is
the	preferred	function.

PyObject	*PyMemoryView_GetContiguous(PyObject	*obj,
int	buffertype,	char	order)

Create	a	memoryview	object	to	a	contiguous	chunk	of	memory	(in
either	 ‘C’	or	 ‘F’ortran	order)	 from	an	object	 that	defines	 the	buffer
interface.	If	memory	is	contiguous,	the	memoryview	object	points	to
the	 original	 memory.	 Otherwise,	 a	 copy	 is	 made	 and	 the
memoryview	points	to	a	new	bytes	object.

int	PyMemoryView_Check(PyObject	*obj)
Return	 true	 if	 the	 object	 obj	 is	 a	 memoryview	 object.	 It	 is	 not
currently	allowed	to	create	subclasses	of	memoryview.

Py_buffer	*PyMemoryView_GET_BUFFER(PyObject	*mview)
Return	a	pointer	to	the	memoryview’s	private	copy	of	the	exporter’s
buffer.	mview	must	be	a	memoryview	instance;	this	macro	doesn’t
check	its	type,	you	must	do	it	yourself	or	you	will	risk	crashes.

Py_buffer	*PyMemoryView_GET_BASE(PyObject	*mview)
Return	either	a	pointer	to	the	exporting	object	that	the	memoryview
is	based	on	or	NULL	 if	 the	memoryview	has	been	created	by	one
of	 the	 functions	 PyMemoryView_FromMemory()	 or
PyMemoryView_FromBuffer().	mview	must	be	a	memoryview
instance.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Weak	Reference	Objects
Python	supports	weak	references	as	first-class	objects.	There	are	two
specific	 object	 types	which	 directly	 implement	 weak	 references.	 The
first	 is	a	simple	 reference	object,	and	 the	second	acts	as	a	proxy	 for
the	original	object	as	much	as	it	can.

int	PyWeakref_Check(ob)
Return	true	if	ob	is	either	a	reference	or	proxy	object.

int	PyWeakref_CheckRef(ob)
Return	true	if	ob	is	a	reference	object.

int	PyWeakref_CheckProxy(ob)
Return	true	if	ob	is	a	proxy	object.

PyObject*	PyWeakref_NewRef(PyObject	*ob,
PyObject	*callback)

Return	value:	New	reference.
Return	a	weak	reference	object	 for	 the	object	ob.	This	will	always
return	 a	 new	 reference,	 but	 is	 not	 guaranteed	 to	 create	 a	 new
object;	an	existing	 reference	object	may	be	 returned.	The	second
parameter,	 callback,	 can	 be	 a	 callable	 object	 that	 receives
notification	when	ob	is	garbage	collected;	it	should	accept	a	single
parameter,	which	will	be	 the	weak	reference	object	 itself.	callback
may	 also	 be	 None	 or	NULL.	 If	 ob	 is	 not	 a	 weakly-referencable
object,	or	if	callback	is	not	callable,	None,	or	NULL,	this	will	return
NULL	and	raise	TypeError.

PyObject*	PyWeakref_NewProxy(PyObject	*ob,
PyObject	*callback)

Return	value:	New	reference.
Return	 a	weak	 reference	 proxy	 object	 for	 the	 object	ob.	 This	will
always	 return	a	new	 reference,	but	 is	not	guaranteed	 to	 create	a
new	object;	an	existing	proxy	object	may	be	returned.	The	second
parameter,	 callback,	 can	 be	 a	 callable	 object	 that	 receives
notification	when	ob	is	garbage	collected;	it	should	accept	a	single
parameter,	which	will	be	 the	weak	reference	object	 itself.	callback
may	 also	 be	 None	 or	NULL.	 If	 ob	 is	 not	 a	 weakly-referencable
object,	or	if	callback	is	not	callable,	None,	or	NULL,	this	will	return
NULL	and	raise	TypeError.

PyObject*	PyWeakref_GetObject(PyObject	*ref)
Return	value:	Borrowed	reference.
Return	 the	 referenced	 object	 from	 a	 weak	 reference,	 ref.	 If	 the
referent	is	no	longer	live,	returns	Py_None.

Note: 	 This	 function	 returns	 a	 borrowed	 reference	 to	 the
referenced	 object.	 This	 means	 that	 you	 should	 always	 call
Py_INCREF()	on	the	object	except	if	you	know	that	it	cannot	be
destroyed	while	you	are	still	using	it.

PyObject*	PyWeakref_GET_OBJECT(PyObject	*ref)
Return	value:	Borrowed	reference.
Similar	 to	 PyWeakref_GetObject(),	 but	 implemented	 as	 a
macro	that	does	no	error	checking.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Capsules
Refer	 to	 Providing	 a	 C	 API	 for	 an	 Extension	 Module	 for	 more
information	on	using	these	objects.

PyCapsule

This	subtype	of	PyObject	represents	an	opaque	value,	useful	for
C	 extension	 modules	 who	 need	 to	 pass	 an	 opaque	 value	 (as	 a
void*	 pointer)	 through	Python	 code	 to	 other	C	 code.	 It	 is	 often
used	to	make	a	C	function	pointer	defined	in	one	module	available
to	other	modules,	so	the	regular	import	mechanism	can	be	used	to
access	C	APIs	defined	in	dynamically	loaded	modules.

PyCapsule_Destructor

The	type	of	a	destructor	callback	for	a	capsule.	Defined	as:

typedef	void	(*PyCapsule_Destructor)(PyObject	*);

See	 PyCapsule_New()	 for	 the	 semantics	 of
PyCapsule_Destructor	callbacks.

int	PyCapsule_CheckExact(PyObject	*p)
Return	true	if	its	argument	is	a	PyCapsule.

PyObject*	PyCapsule_New(void	*pointer,	const	char	*name,
PyCapsule_Destructor	destructor)

Return	value:	New	reference.
Create	 a	 PyCapsule	 encapsulating	 the	 pointer.	 The	 pointer
argument	may	not	be	NULL.

On	failure,	set	an	exception	and	return	NULL.

The	 name	 string	 may	 either	 be	NULL	 or	 a	 pointer	 to	 a	 valid	 C
string.	If	non-NULL,	this	string	must	outlive	the	capsule.	(Though	it
is	permitted	to	free	it	inside	the	destructor.)

If	 the	 destructor	 argument	 is	 not	NULL,	 it	 will	 be	 called	 with	 the
capsule	as	its	argument	when	it	is	destroyed.

If	this	capsule	will	be	stored	as	an	attribute	of	a	module,	the	name
should	 be	 specified	 as	 modulename.attributename.	 This	 will
enable	 other	 modules	 to	 import	 the	 capsule	 using
PyCapsule_Import().

void*	PyCapsule_GetPointer(PyObject	*capsule,	const
char	*name)

Retrieve	 the	 pointer	 stored	 in	 the	 capsule.	 On	 failure,	 set	 an
exception	and	return	NULL.

The	name	parameter	must	compare	exactly	to	the	name	stored	in
the	capsule.	If	 the	name	stored	in	the	capsule	is	NULL,	the	name
passed	 in	 must	 also	 be	 NULL.	 Python	 uses	 the	 C	 function
strcmp()	to	compare	capsule	names.

PyCapsule_Destructor
PyCapsule_GetDestructor(PyObject	*capsule)

Return	the	current	destructor	stored	in	the	capsule.	On	failure,	set
an	exception	and	return	NULL.

It	 is	 legal	 for	a	capsule	 to	have	a	NULL	destructor.	This	makes	a
NULL	 return	 code	 somewhat	 ambiguous;	 use
PyCapsule_IsValid()	 or	 PyErr_Occurred()	 to
disambiguate.

void*	PyCapsule_GetContext(PyObject	*capsule)

Return	the	current	context	stored	in	the	capsule.	On	failure,	set	an
exception	and	return	NULL.

It	 is	 legal	 for	 a	 capsule	 to	 have	 a	NULL	 context.	 This	 makes	 a
NULL	 return	 code	 somewhat	 ambiguous;	 use
PyCapsule_IsValid()	 or	 PyErr_Occurred()	 to
disambiguate.

const	char*	PyCapsule_GetName(PyObject	*capsule)
Return	 the	current	name	stored	 in	 the	capsule.	On	 failure,	set	an
exception	and	return	NULL.

It	is	legal	for	a	capsule	to	have	a	NULL	name.	This	makes	a	NULL
return	 code	 somewhat	 ambiguous;	 use	 PyCapsule_IsValid()
or	PyErr_Occurred()	to	disambiguate.

void*	PyCapsule_Import(const	char	*name,	int	no_block)
Import	a	pointer	to	a	C	object	from	a	capsule	attribute	in	a	module.
The	name	parameter	should	specify	 the	full	name	to	the	attribute,
as	in	module.attribute.	The	name	stored	in	the	capsule	must
match	 this	 string	 exactly.	 If	 no_block	 is	 true,	 import	 the	 module
without	 blocking	 (using	 PyImport_ImportModuleNoBlock()).
If	 no_block	 is	 false,	 import	 the	 module	 conventionally	 (using
PyImport_ImportModule()).

Return	the	capsule’s	internal	pointer	on	success.	On	failure,	set	an
exception	 and	 return	NULL.	 However,	 if	 PyCapsule_Import()
failed	to	import	the	module,	and	no_block	was	true,	no	exception	is
set.

int	PyCapsule_IsValid(PyObject	*capsule,	const	char	*name)
Determines	 whether	 or	 not	 capsule	 is	 a	 valid	 capsule.	 A	 valid

capsule	is	non-NULL,	passes	PyCapsule_CheckExact(),	has	a
non-NULL	 pointer	 stored	 in	 it,	 and	 its	 internal	 name	matches	 the
name	 parameter.	 (See	 PyCapsule_GetPointer()	 for
information	on	how	capsule	names	are	compared.)

In	 other	 words,	 if	 PyCapsule_IsValid()	 returns	 a	 true	 value,
calls	 to	 any	 of	 the	 accessors	 (any	 function	 starting	 with
PyCapsule_Get())	are	guaranteed	to	succeed.

Return	a	nonzero	value	if	the	object	is	valid	and	matches	the	name
passed	in.	Return	0	otherwise.	This	function	will	not	fail.

int	PyCapsule_SetContext(PyObject	*capsule,	void	*context)
Set	the	context	pointer	inside	capsule	to	context.

Return	 0	 on	 success.	 Return	 nonzero	 and	 set	 an	 exception	 on
failure.

int	PyCapsule_SetDestructor(PyObject	*capsule,
PyCapsule_Destructor	destructor)

Set	the	destructor	inside	capsule	to	destructor.

Return	 0	 on	 success.	 Return	 nonzero	 and	 set	 an	 exception	 on
failure.

int	PyCapsule_SetName(PyObject	*capsule,	const	char	*name)
Set	the	name	inside	capsule	to	name.	If	non-NULL,	the	name	must
outlive	the	capsule.	If	the	previous	name	stored	in	the	capsule	was
not	NULL,	no	attempt	is	made	to	free	it.

Return	 0	 on	 success.	 Return	 nonzero	 and	 set	 an	 exception	 on
failure.

int	PyCapsule_SetPointer(PyObject	*capsule,	void	*pointer)

Set	the	void	pointer	inside	capsule	to	pointer.	The	pointer	may	not
be	NULL.

Return	 0	 on	 success.	 Return	 nonzero	 and	 set	 an	 exception	 on
failure.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

Generator	Objects
Generator	 objects	 are	 what	 Python	 uses	 to	 implement	 generator
iterators.	 They	 are	 normally	 created	 by	 iterating	 over	 a	 function	 that
yields	values,	rather	than	explicitly	calling	PyGen_New().

PyGenObject

The	C	structure	used	for	generator	objects.

PyTypeObject	PyGen_Type
The	type	object	corresponding	to	generator	objects

int	PyGen_Check(ob)
Return	true	if	ob	is	a	generator	object;	ob	must	not	be	NULL.

int	PyGen_CheckExact(ob)
Return	 true	 if	ob‘s	 type	 is	PyGen_Type	 is	 a	 generator	 object;	ob
must	not	be	NULL.

PyObject*	PyGen_New(PyFrameObject	*frame)
Return	value:	New	reference.
Create	 and	 return	 a	 new	 generator	 object	 based	 on	 the	 frame
object.	 A	 reference	 to	 frame	 is	 stolen	 by	 this	 function.	 The
parameter	must	not	be	NULL.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

http://www.python.org/

DateTime	Objects
Various	date	and	time	objects	are	supplied	by	the	datetime	module.
Before	 using	 any	 of	 these	 functions,	 the	 header	 file	 datetime.h
must	 be	 included	 in	 your	 source	 (note	 that	 this	 is	 not	 included	 by
Python.h),	and	the	macro	PyDateTime_IMPORT	must	be	 invoked,
usually	as	part	of	the	module	initialisation	function.	The	macro	puts	a
pointer	to	a	C	structure	into	a	static	variable,	PyDateTimeAPI,	that	is
used	by	the	following	macros.

Type-check	macros:

int	PyDate_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DateType	or	a	subtype
of	PyDateTime_DateType.	ob	must	not	be	NULL.

int	PyDate_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DateType.	ob	must	not
be	NULL.

int	PyDateTime_Check(PyObject	*ob)
Return	 true	 if	 ob	 is	 of	 type	 PyDateTime_DateTimeType	 or	 a
subtype	of	PyDateTime_DateTimeType.	ob	must	not	be	NULL.

int	PyDateTime_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DateTimeType.	ob	must
not	be	NULL.

int	PyTime_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_TimeType	or	a	subtype
of	PyDateTime_TimeType.	ob	must	not	be	NULL.

int	PyTime_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_TimeType.	ob	must	not
be	NULL.

int	PyDelta_Check(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DeltaType	or	a	subtype
of	PyDateTime_DeltaType.	ob	must	not	be	NULL.

int	PyDelta_CheckExact(PyObject	*ob)
Return	true	if	ob	is	of	type	PyDateTime_DeltaType.	ob	must	not
be	NULL.

int	PyTZInfo_Check(PyObject	*ob)
Return	 true	 if	 ob	 is	 of	 type	 PyDateTime_TZInfoType	 or	 a
subtype	of	PyDateTime_TZInfoType.	ob	must	not	be	NULL.

int	PyTZInfo_CheckExact(PyObject	*ob)
Return	 true	 if	ob	 is	 of	 type	 PyDateTime_TZInfoType.	ob	must
not	be	NULL.

Macros	to	create	objects:

PyObject*	PyDate_FromDate(int	year,	int	month,	int	day)
Return	value:	New	reference.
Return	 a	 datetime.date	 object	 with	 the	 specified	 year,	 month
and	day.

PyObject*	PyDateTime_FromDateAndTime(int	year,
int	month,	int	day,	int	hour,	int	minute,	int	second,	int	usecond)

Return	value:	New	reference.
Return	 a	 datetime.datetime	 object	 with	 the	 specified	 year,

month,	day,	hour,	minute,	second	and	microsecond.

PyObject*	PyTime_FromTime(int	hour,	int	minute,	int	second,
int	usecond)

Return	value:	New	reference.
Return	a	datetime.time	object	with	 the	specified	hour,	minute,
second	and	microsecond.

PyObject*	PyDelta_FromDSU(int	days,	int	seconds,	int	useconds)
Return	value:	New	reference.
Return	 a	 datetime.timedelta	 object	 representing	 the	 given
number	 of	 days,	 seconds	 and	 microseconds.	 Normalization	 is
performed	 so	 that	 the	 resulting	 number	 of	 microseconds	 and
seconds	lie	in	the	ranges	documented	for	datetime.timedelta
objects.

Macros	to	extract	 fields	from	date	objects.	The	argument	must	be	an
instance	 of	 PyDateTime_Date,	 including	 subclasses	 (such	 as
PyDateTime_DateTime).	The	argument	must	not	be	NULL,	and	the
type	is	not	checked:

int	PyDateTime_GET_YEAR(PyDateTime_Date	*o)
Return	the	year,	as	a	positive	int.

int	PyDateTime_GET_MONTH(PyDateTime_Date	*o)
Return	the	month,	as	an	int	from	1	through	12.

int	PyDateTime_GET_DAY(PyDateTime_Date	*o)
Return	the	day,	as	an	int	from	1	through	31.

Macros	to	extract	fields	from	datetime	objects.	The	argument	must	be
an	 instance	 of	 PyDateTime_DateTime,	 including	 subclasses.	 The
argument	must	not	be	NULL,	and	the	type	is	not	checked:

int	PyDateTime_DATE_GET_HOUR(PyDateTime_DateTime	*o)
Return	the	hour,	as	an	int	from	0	through	23.

int
PyDateTime_DATE_GET_MINUTE(PyDateTime_DateTime	*o)

Return	the	minute,	as	an	int	from	0	through	59.

int
PyDateTime_DATE_GET_SECOND(PyDateTime_DateTime	*o)

Return	the	second,	as	an	int	from	0	through	59.

int
PyDateTime_DATE_GET_MICROSECOND(PyDateTime_DateTime

Return	the	microsecond,	as	an	int	from	0	through	999999.

Macros	to	extract	 fields	 from	time	objects.	The	argument	must	be	an
instance	of	PyDateTime_Time,	 including	subclasses.	The	argument
must	not	be	NULL,	and	the	type	is	not	checked:

int	PyDateTime_TIME_GET_HOUR(PyDateTime_Time	*o)
Return	the	hour,	as	an	int	from	0	through	23.

int	PyDateTime_TIME_GET_MINUTE(PyDateTime_Time	*o)
Return	the	minute,	as	an	int	from	0	through	59.

int	PyDateTime_TIME_GET_SECOND(PyDateTime_Time	*o)
Return	the	second,	as	an	int	from	0	through	59.

int
PyDateTime_TIME_GET_MICROSECOND(PyDateTime_Time	*o)

Return	the	microsecond,	as	an	int	from	0	through	999999.

Macros	to	extract	fields	from	time	delta	objects.	The	argument	must	be
an	 instance	 of	 PyDateTime_Delta,	 including	 subclasses.	 The

argument	must	not	be	NULL,	and	the	type	is	not	checked:

int	PyDateTime_DELTA_GET_DAYS(PyDateTime_Delta	*o)
Return	 the	 number	 of	 days,	 as	 an	 int	 from	 -999999999	 to
999999999.

New	in	version	3.3.

int	PyDateTime_DELTA_GET_SECONDS(PyDateTime_Delta	*o)
Return	the	number	of	seconds,	as	an	int	from	0	through	86399.

New	in	version	3.3.

int
PyDateTime_DELTA_GET_MICROSECOND(PyDateTime_Delta	*o

Return	 the	 number	 of	 microseconds,	 as	 an	 int	 from	 0	 through
999999.

New	in	version	3.3.

Macros	for	the	convenience	of	modules	implementing	the	DB	API:

PyObject*	PyDateTime_FromTimestamp(PyObject	*args)
Return	value:	New	reference.
Create	 and	 return	 a	 new	 datetime.datetime	 object	 given	 an
argument	 tuple	 suitable	 for	 passing	 to
datetime.datetime.fromtimestamp().

PyObject*	PyDate_FromTimestamp(PyObject	*args)
Return	value:	New	reference.
Create	 and	 return	 a	 new	 datetime.date	 object	 given	 an
argument	 tuple	 suitable	 for	 passing	 to
datetime.date.fromtimestamp().

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Concrete	Objects	Layer	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Initialization,	Finalization,	and
Threads

Initializing	and	finalizing	the	interpreter

void	Py_Initialize()
Initialize	 the	 Python	 interpreter.	 In	 an	 application	 embedding
Python,	this	should	be	called	before	using	any	other	Python/C	API
functions;	 with	 the	 exception	 of	 Py_SetProgramName(),
Py_SetPythonHome()	 and	 Py_SetPath().	 This	 initializes	 the
table	 of	 loaded	 modules	 (sys.modules),	 and	 creates	 the
fundamental	 modules	 builtins,	 __main__	 and	 sys.	 It	 also
initializes	 the	 module	 search	 path	 (sys.path).	 It	 does	 not	 set
sys.argv;	 use	 PySys_SetArgvEx()	 for	 that.	 This	 is	 a	 no-op
when	 called	 for	 a	 second	 time	 (without	 calling	 Py_Finalize()
first).	There	 is	no	return	value;	 it	 is	a	 fatal	error	 if	 the	 initialization
fails.

void	Py_InitializeEx(int	initsigs)
This	 function	 works	 like	 Py_Initialize()	 if	 initsigs	 is	 1.	 If
initsigs	 is	 0,	 it	 skips	 initialization	 registration	 of	 signal	 handlers,
which	might	be	useful	when	Python	is	embedded.

int	Py_IsInitialized()
Return	 true	 (nonzero)	 when	 the	 Python	 interpreter	 has	 been
initialized,	false	(zero)	 if	not.	After	Py_Finalize()	 is	called,	 this
returns	false	until	Py_Initialize()	is	called	again.

void	Py_Finalize()
Undo	 all	 initializations	 made	 by	 Py_Initialize()	 and
subsequent	 use	 of	 Python/C	 API	 functions,	 and	 destroy	 all	 sub-
interpreters	 (see	 Py_NewInterpreter()	 below)	 that	 were
created	 and	 not	 yet	 destroyed	 since	 the	 last	 call	 to

Py_Initialize().	Ideally,	this	frees	all	memory	allocated	by	the
Python	 interpreter.	This	 is	a	no-op	when	called	 for	a	second	 time
(without	calling	Py_Initialize()	again	first).	There	is	no	return
value;	errors	during	finalization	are	ignored.

This	 function	 is	provided	 for	a	number	of	 reasons.	An	embedding
application	might	want	 to	 restart	 Python	without	 having	 to	 restart
the	 application	 itself.	 An	 application	 that	 has	 loaded	 the	 Python
interpreter	from	a	dynamically	loadable	library	(or	DLL)	might	want
to	 free	all	memory	allocated	by	Python	before	unloading	the	DLL.
During	a	hunt	for	memory	leaks	in	an	application	a	developer	might
want	to	free	all	memory	allocated	by	Python	before	exiting	from	the
application.

Bugs	 and	 caveats:	 The	 destruction	 of	 modules	 and	 objects	 in
modules	 is	 done	 in	 random	 order;	 this	 may	 cause	 destructors
(__del__()	methods)	 to	 fail	when	 they	depend	on	other	objects
(even	 functions)	 or	 modules.	 Dynamically	 loaded	 extension
modules	 loaded	 by	 Python	 are	 not	 unloaded.	 Small	 amounts	 of
memory	 allocated	 by	 the	 Python	 interpreter	 may	 not	 be	 freed	 (if
you	 find	 a	 leak,	 please	 report	 it).	 Memory	 tied	 up	 in	 circular
references	between	objects	 is	not	 freed.	Some	memory	allocated
by	extension	modules	may	not	be	freed.	Some	extensions	may	not
work	properly	if	their	initialization	routine	is	called	more	than	once;
this	 can	 happen	 if	 an	 application	 calls	 Py_Initialize()	 and
Py_Finalize()	more	than	once.

Process-wide	parameters

int	Py_SetStandardStreamEncoding(char	*encoding,
char	*errors)

This	 function	 should	 be	 called	before	 Py_Initialize(),	 if	 it	 is
called	at	all.	 It	specifies	which	encoding	and	error	handling	to	use
with	standard	IO,	with	the	same	meanings	as	in	str.encode().

It	 overrides	 PYTHONIOENCODING	 values,	 and	 allows	 embedding
code	 to	 control	 IO	encoding	when	 the	environment	 variable	does
not	work.

encoding	 and/or	 errors	 may	 be	 NULL	 to	 use
PYTHONIOENCODING	 and/or	 default	 values	 (depending	 on	 other
settings).

Note	 that	sys.stderr	 always	uses	 the	 “backslashreplace”	error
handler,	regardless	of	this	(or	any	other)	setting.

If	 Py_Finalize()	 is	 called,	 this	 function	 will	 need	 to	 be	 called
again	in	order	to	affect	subsequent	calls	to	Py_Initialize().

Returns	0	if	successful,	a	nonzero	value	on	error	(e.g.	calling	after
the	interpreter	has	already	been	initialized).

New	in	version	3.4.

void	Py_SetProgramName(wchar_t	*name)
This	function	should	be	called	before	Py_Initialize()	is	called
for	the	first	time,	if	it	is	called	at	all.	It	tells	the	interpreter	the	value
of	the	argv[0]	argument	to	the	main()	 function	of	 the	program
(converted	 to	 wide	 characters).	 This	 is	 used	 by	 Py_GetPath()

and	 some	 other	 functions	 below	 to	 find	 the	 Python	 run-time
libraries	relative	to	the	interpreter	executable.	The	default	value	 is
'python'.	The	argument	should	point	 to	a	zero-terminated	wide
character	string	in	static	storage	whose	contents	will	not	change	for
the	 duration	 of	 the	 program’s	 execution.	 No	 code	 in	 the	 Python
interpreter	will	change	the	contents	of	this	storage.

wchar*	Py_GetProgramName()
Return	 the	 program	 name	 set	 with	 Py_SetProgramName(),	 or
the	default.	The	returned	string	points	into	static	storage;	the	caller
should	not	modify	its	value.

wchar_t*	Py_GetPrefix()
Return	 the	 prefix	 for	 installed	 platform-independent	 files.	 This	 is
derived	 through	a	number	of	 complicated	 rules	 from	 the	program
name	 set	 with	 Py_SetProgramName()	 and	 some	 environment
variables;	 for	 example,	 if	 the	 program	 name	 is
'/usr/local/bin/python',	the	prefix	is	'/usr/local'.	The
returned	 string	 points	 into	 static	 storage;	 the	 caller	 should	 not
modify	its	value.	This	corresponds	to	the	prefix	variable	in	the	top-
level	 Makefile	 and	 the	 --prefix	 argument	 to	 the	 configure
script	 at	 build	 time.	 The	 value	 is	 available	 to	 Python	 code	 as
sys.prefix.	It	is	only	useful	on	Unix.	See	also	the	next	function.

wchar_t*	Py_GetExecPrefix()
Return	the	exec-prefix	for	installed	platform-dependent	files.	This	is
derived	 through	a	number	of	 complicated	 rules	 from	 the	program
name	 set	 with	 Py_SetProgramName()	 and	 some	 environment
variables;	 for	 example,	 if	 the	 program	 name	 is
'/usr/local/bin/python',	 the	 exec-prefix	 is
'/usr/local'.	The	returned	string	points	into	static	storage;	the

caller	 should	 not	 modify	 its	 value.	 This	 corresponds	 to	 the
exec_prefix	variable	in	the	top-level	Makefile	and	the	--exec-
prefix	argument	to	the	configure	script	at	build	time.	The	value
is	available	to	Python	code	as	sys.exec_prefix.	It	is	only	useful
on	Unix.

Background:	The	exec-prefix	differs	 from	the	prefix	when	platform
dependent	 files	 (such	 as	 executables	 and	 shared	 libraries)	 are
installed	 in	 a	 different	 directory	 tree.	 In	 a	 typical	 installation,
platform	 dependent	 files	 may	 be	 installed	 in	 the
/usr/local/plat	 subtree	 while	 platform	 independent	 may	 be
installed	in	/usr/local.

Generally	 speaking,	 a	 platform	 is	 a	 combination	of	 hardware	and
software	 families,	 e.g.	 Sparc	 machines	 running	 the	 Solaris	 2.x
operating	 system	 are	 considered	 the	 same	 platform,	 but	 Intel
machines	 running	 Solaris	 2.x	 are	 another	 platform,	 and	 Intel
machines	 running	 Linux	 are	 yet	 another	 platform.	Different	major
revisions	 of	 the	 same	 operating	 system	 generally	 also	 form
different	 platforms.	 Non-Unix	 operating	 systems	 are	 a	 different
story;	 the	 installation	strategies	on	 those	systems	are	so	different
that	 the	 prefix	 and	 exec-prefix	 are	 meaningless,	 and	 set	 to	 the
empty	string.	Note	that	compiled	Python	bytecode	files	are	platform
independent	 (but	 not	 independent	 from	 the	 Python	 version	 by
which	they	were	compiled!).

System	 administrators	 will	 know	 how	 to	 configure	 the	mount	 or
automount	 programs	 to	 share	 /usr/local	 between	 platforms
while	having	/usr/local/plat	be	a	different	filesystem	for	each
platform.

wchar_t*	Py_GetProgramFullPath()

Return	 the	 full	 program	 name	 of	 the	 Python	 executable;	 this	 is
computed	 as	 a	 side-effect	 of	 deriving	 the	 default	 module	 search
path	 from	 the	 program	 name	 (set	 by	 Py_SetProgramName()
above).	 The	 returned	 string	 points	 into	 static	 storage;	 the	 caller
should	not	modify	its	value.	The	value	is	available	to	Python	code
as	sys.executable.

wchar_t*	Py_GetPath()
Return	 the	default	module	search	path;	 this	 is	computed	 from	the
program	name	(set	by	Py_SetProgramName()	above)	and	some
environment	variables.	The	 returned	string	consists	of	a	series	of
directory	 names	 separated	 by	 a	 platform	 dependent	 delimiter
character.	The	delimiter	character	 is	':'	on	Unix	and	Mac	OS	X,
';'	on	Windows.	The	returned	string	points	into	static	storage;	the
caller	should	not	modify	 its	value.	The	 list	sys.path	 is	 initialized
with	 this	 value	 on	 interpreter	 startup;	 it	 can	 be	 (and	 usually	 is)
modified	later	to	change	the	search	path	for	loading	modules.

void	Py_SetPath(const	wchar_t	*)
Set	the	default	module	search	path.	If	this	function	is	called	before
Py_Initialize(),	 then	 Py_GetPath()	 won’t	 attempt	 to
compute	a	default	search	path	but	uses	the	one	provided	instead.
This	is	useful	if	Python	is	embedded	by	an	application	that	has	full
knowledge	 of	 the	 location	 of	 all	 modules.	 The	 path	 components
should	be	separated	by	semicolons.

This	 also	 causes	 sys.executable	 to	 be	 set	 only	 to	 the	 raw
program	 name	 (see	 Py_SetProgramName())	 and	 for
sys.prefix	and	sys.exec_prefix	to	be	empty.	It	is	up	to	the
caller	to	modify	these	if	required	after	calling	Py_Initialize().

const	char*	Py_GetVersion()

Return	 the	 version	 of	 this	Python	 interpreter.	 This	 is	 a	 string	 that
looks	something	like

"3.0a5+	(py3k:63103M,	May	12	2008,	00:53:55)	\n[GCC	4.2.3]"

The	first	word	(up	to	the	first	space	character)	is	the	current	Python
version;	the	first	three	characters	are	the	major	and	minor	version
separated	 by	 a	 period.	 The	 returned	 string	 points	 into	 static
storage;	 the	 caller	 should	 not	 modify	 its	 value.	 The	 value	 is
available	to	Python	code	as	sys.version.

const	char*	Py_GetPlatform()
Return	the	platform	identifier	for	the	current	platform.	On	Unix,	this
is	 formed	 from	 the	 “official”	 name	 of	 the	 operating	 system,
converted	 to	 lower	 case,	 followed	 by	 the	major	 revision	 number;
e.g.,	for	Solaris	2.x,	which	is	also	known	as	SunOS	5.x,	the	value	is
'sunos5'.	 On	 Mac	 OS	 X,	 it	 is	 'darwin'.	 On	 Windows,	 it	 is
'win'.	 The	 returned	 string	 points	 into	 static	 storage;	 the	 caller
should	not	modify	its	value.	The	value	is	available	to	Python	code
as	sys.platform.

const	char*	Py_GetCopyright()
Return	 the	 official	 copyright	 string	 for	 the	 current	Python	 version,
for	example

'Copyright	 1991-1995	 Stichting	 Mathematisch

Centrum,	Amsterdam'

The	returned	string	points	into	static	storage;	the	caller	should	not
modify	 its	 value.	 The	 value	 is	 available	 to	 Python	 code	 as
sys.copyright.

const	char*	Py_GetCompiler()
Return	 an	 indication	 of	 the	 compiler	 used	 to	 build	 the	 current
Python	version,	in	square	brackets,	for	example:

"[GCC	2.7.2.2]"

The	returned	string	points	into	static	storage;	the	caller	should	not
modify	 its	value.	The	value	 is	available	 to	Python	code	as	part	of
the	variable	sys.version.

const	char*	Py_GetBuildInfo()
Return	information	about	the	sequence	number	and	build	date	and
time	of	the	current	Python	interpreter	instance,	for	example

"#67,	Aug		1	1997,	22:34:28"

The	returned	string	points	into	static	storage;	the	caller	should	not
modify	 its	value.	The	value	 is	available	 to	Python	code	as	part	of
the	variable	sys.version.

void	PySys_SetArgvEx(int	argc,	wchar_t	**argv,	int	updatepath)
Set	 sys.argv	 based	 on	 argc	 and	 argv.	 These	 parameters	 are
similar	to	those	passed	to	the	program’s	main()	function	with	the
difference	 that	 the	 first	 entry	 should	 refer	 to	 the	 script	 file	 to	 be
executed	rather	than	the	executable	hosting	the	Python	interpreter.
If	there	isn’t	a	script	that	will	be	run,	the	first	entry	in	argv	can	be	an
empty	 string.	 If	 this	 function	 fails	 to	 initialize	 sys.argv,	 a	 fatal
condition	is	signalled	using	Py_FatalError().

If	updatepath	 is	zero,	 this	 is	all	 the	function	does.	 If	updatepath	 is
non-zero,	 the	 function	 also	modifies	 sys.path	 according	 to	 the
following	algorithm:

If	 the	 name	 of	 an	 existing	 script	 is	 passed	 in	 argv[0],	 the
absolute	 path	 of	 the	 directory	 where	 the	 script	 is	 located	 is
prepended	to	sys.path.
Otherwise	(that	is,	if	argc	is	0	or	argv[0]	doesn’t	point	to	an
existing	 file	 name),	 an	 empty	 string	 is	 prepended	 to
sys.path,	 which	 is	 the	 same	 as	 prepending	 the	 current
working	directory	(".").

Note: 	 It	 is	 recommended	 that	 applications	 embedding	 the
Python	 interpreter	 for	 purposes	 other	 than	 executing	 a	 single
script	pass	0	as	updatepath,	and	update	sys.path	 themselves
if	desired.	See	CVE-2008-5983.
On	 versions	 before	 3.1.3,	 you	 can	 achieve	 the	 same	 effect	 by
manually	popping	the	first	sys.path	element	after	having	called
PySys_SetArgv(),	for	example	using:

PyRun_SimpleString("import	sys;	sys.path.pop(0)\n

New	in	version	3.1.3.

void	PySys_SetArgv(int	argc,	wchar_t	**argv)
This	 function	 works	 like	 PySys_SetArgvEx()	 with	 updatepath
set	to	1	unless	the	python	interpreter	was	started	with	the	-I.

Changed	in	version	3.4:	The	updatepath	value	depends	on	-I.

void	Py_SetPythonHome(wchar_t	*home)
Set	the	default	“home”	directory,	that	is,	the	location	of	the	standard
Python	 libraries.	 See	 PYTHONHOME	 for	 the	 meaning	 of	 the
argument	string.

The	argument	should	point	to	a	zero-terminated	character	string	in

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2008-5983

static	 storage	whose	 contents	will	 not	 change	 for	 the	 duration	 of
the	 program’s	 execution.	 No	 code	 in	 the	 Python	 interpreter	 will
change	the	contents	of	this	storage.

w_char*	Py_GetPythonHome()
Return	the	default	“home”,	that	is,	the	value	set	by	a	previous	call
to	 Py_SetPythonHome(),	 or	 the	 value	 of	 the	 PYTHONHOME
environment	variable	if	it	is	set.

Thread	State	and	the	Global	Interpreter
Lock

The	 Python	 interpreter	 is	 not	 fully	 thread-safe.	 In	 order	 to	 support
multi-threaded	 Python	 programs,	 there’s	 a	 global	 lock,	 called	 the
global	interpreter	lock	or	GIL,	that	must	be	held	by	the	current	thread
before	it	can	safely	access	Python	objects.	Without	the	lock,	even	the
simplest	 operations	 could	 cause	 problems	 in	 a	 multi-threaded
program:	for	example,	when	two	threads	simultaneously	increment	the
reference	count	of	the	same	object,	the	reference	count	could	end	up
being	incremented	only	once	instead	of	twice.

Therefore,	 the	 rule	 exists	 that	 only	 the	 thread	 that	 has	 acquired	 the
GIL	may	operate	on	Python	objects	or	call	Python/C	API	functions.	In
order	 to	 emulate	 concurrency	 of	 execution,	 the	 interpreter	 regularly
tries	to	switch	threads	(see	sys.setswitchinterval()).	The	 lock
is	also	released	around	potentially	blocking	I/O	operations	like	reading
or	writing	a	file,	so	that	other	Python	threads	can	run	in	the	meantime.

The	 Python	 interpreter	 keeps	 some	 thread-specific	 bookkeeping
information	 inside	 a	 data	 structure	 called	 PyThreadState.	 There’s
also	 one	 global	 variable	 pointing	 to	 the	 current	 PyThreadState:	 it
can	be	retrieved	using	PyThreadState_Get().

Releasing	the	GIL	from	extension	code

Most	 extension	 code	 manipulating	 the	GIL	 has	 the	 following	 simple
structure:

Save	the	thread	state	in	a	local	variable.

Release	the	global	interpreter	lock.

...	Do	some	blocking	I/O	operation	...

Reacquire	the	global	interpreter	lock.

Restore	the	thread	state	from	the	local	variable.

This	is	so	common	that	a	pair	of	macros	exists	to	simplify	it:

Py_BEGIN_ALLOW_THREADS

...	Do	some	blocking	I/O	operation	...

Py_END_ALLOW_THREADS

The	 Py_BEGIN_ALLOW_THREADS	 macro	 opens	 a	 new	 block	 and
declares	 a	 hidden	 local	 variable;	 the	 Py_END_ALLOW_THREADS
macro	 closes	 the	 block.	 These	 two	 macros	 are	 still	 available	 when
Python	is	compiled	without	thread	support	(they	simply	have	an	empty
expansion).

When	 thread	 support	 is	 enabled,	 the	 block	 above	 expands	 to	 the
following	code:

PyThreadState	*_save;

_save	=	PyEval_SaveThread();

...Do	some	blocking	I/O	operation...

PyEval_RestoreThread(_save);

Here	is	how	these	functions	work:	the	global	interpreter	lock	is	used	to
protect	the	pointer	to	the	current	thread	state.	When	releasing	the	lock
and	saving	 the	 thread	state,	 the	current	 thread	state	pointer	must	be
retrieved	 before	 the	 lock	 is	 released	 (since	 another	 thread	 could
immediately	 acquire	 the	 lock	 and	 store	 its	 own	 thread	 state	 in	 the
global	variable).	Conversely,	when	acquiring	the	lock	and	restoring	the
thread	state,	the	lock	must	be	acquired	before	storing	the	thread	state
pointer.

Note: 	Calling	system	I/O	functions	is	the	most	common	use	case
for	releasing	the	GIL,	but	it	can	also	be	useful	before	calling	long-
running	computations	which	don’t	need	access	to	Python	objects,
such	as	compression	or	cryptographic	functions	operating	over
memory	buffers.	For	example,	the	standard	zlib	and	hashlib
modules	release	the	GIL	when	compressing	or	hashing	data.

Non-Python	created	threads

When	threads	are	created	using	the	dedicated	Python	APIs	(such	as
the	threading	module),	a	thread	state	is	automatically	associated	to
them	and	the	code	showed	above	is	therefore	correct.	However,	when
threads	are	created	from	C	(for	example	by	a	third-party	library	with	its
own	 thread	 management),	 they	 don’t	 hold	 the	 GIL,	 nor	 is	 there	 a
thread	state	structure	for	them.

If	you	need	to	call	Python	code	from	these	threads	(often	this	will	be
part	 of	 a	 callback	 API	 provided	 by	 the	 aforementioned	 third-party
library),	 you	 must	 first	 register	 these	 threads	 with	 the	 interpreter	 by
creating	 a	 thread	 state	 data	 structure,	 then	 acquiring	 the	 GIL,	 and
finally	storing	their	thread	state	pointer,	before	you	can	start	using	the
Python/C	API.	When	you	are	done,	you	should	reset	the	thread	state
pointer,	 release	 the	 GIL,	 and	 finally	 free	 the	 thread	 state	 data
structure.

The	 PyGILState_Ensure()	 and	 PyGILState_Release()

functions	do	all	of	the	above	automatically.	The	typical	idiom	for	calling
into	Python	from	a	C	thread	is:

PyGILState_STATE	gstate;

gstate	=	PyGILState_Ensure();

/*	Perform	Python	actions	here.	*/

result	=	CallSomeFunction();

/*	evaluate	result	or	handle	exception	*/

/*	Release	the	thread.	No	Python	API	allowed	beyond	this	point.	*/

PyGILState_Release(gstate);

Note	 that	 the	PyGILState_*()	 functions	assume	 there	 is	only	one
global	 interpreter	 (created	 automatically	 by	 Py_Initialize()).
Python	 supports	 the	 creation	 of	 additional	 interpreters	 (using
Py_NewInterpreter()),	 but	 mixing	 multiple	 interpreters	 and	 the
PyGILState_*()	API	is	unsupported.

Another	important	thing	to	note	about	threads	is	their	behaviour	in	the
face	 of	 the	 C	 fork()	 call.	 On	most	 systems	 with	 fork(),	 after	 a
process	forks	only	the	thread	that	 issued	the	fork	will	exist.	That	also
means	any	locks	held	by	other	threads	will	never	be	released.	Python
solves	 this	 for	 os.fork()	 by	 acquiring	 the	 locks	 it	 uses	 internally
before	 the	 fork,	 and	 releasing	 them	 afterwards.	 In	 addition,	 it	 resets
any	Lock	Objects	 in	the	child.	When	extending	or	embedding	Python,
there	is	no	way	to	inform	Python	of	additional	(non-Python)	locks	that
need	to	be	acquired	before	or	reset	after	a	fork.	OS	facilities	such	as
pthread_atfork()	would	need	to	be	used	to	accomplish	the	same
thing.	 Additionally,	 when	 extending	 or	 embedding	 Python,	 calling
fork()	directly	rather	than	through	os.fork()	(and	returning	to	or
calling	 into	 Python)	 may	 result	 in	 a	 deadlock	 by	 one	 of	 Python’s
internal	 locks	 being	 held	 by	 a	 thread	 that	 is	 defunct	 after	 the	 fork.
PyOS_AfterFork()	 tries	 to	 reset	 the	 necessary	 locks,	 but	 is	 not
always	able	to.

High-level	API

These	are	the	most	commonly	used	types	and	functions	when	writing
C	extension	code,	or	when	embedding	the	Python	interpreter:

PyInterpreterState

This	 data	 structure	 represents	 the	 state	 shared	 by	 a	 number	 of
cooperating	 threads.	 Threads	 belonging	 to	 the	 same	 interpreter
share	 their	module	 administration	 and	 a	 few	 other	 internal	 items.
There	are	no	public	members	in	this	structure.

Threads	 belonging	 to	 different	 interpreters	 initially	 share	 nothing,
except	 process	 state	 like	 available	memory,	 open	 file	 descriptors
and	such.	The	global	interpreter	lock	is	also	shared	by	all	threads,
regardless	of	to	which	interpreter	they	belong.

PyThreadState

This	data	structure	represents	the	state	of	a	single	thread.	The	only
public	 data	member	 is	 PyInterpreterState	*interp,	which
points	to	this	thread’s	interpreter	state.

void	PyEval_InitThreads()
Initialize	and	acquire	the	global	interpreter	lock.	It	should	be	called
in	the	main	thread	before	creating	a	second	thread	or	engaging	in
any	 other	 thread	 operations	 such	 as
PyEval_ReleaseThread(tstate).	 It	 is	 not	 needed	 before
calling	PyEval_SaveThread()	or	PyEval_RestoreThread().

This	is	a	no-op	when	called	for	a	second	time.

Changed	 in	 version	 3.2:	 This	 function	 cannot	 be	 called	 before
Py_Initialize()	anymore.

Note: 	When	only	the	main	thread	exists,	no	GIL	operations	are
needed.	This	 is	a	 common	situation	 (most	Python	programs	do

not	 use	 threads),	 and	 the	 lock	 operations	 slow	 the	 interpreter
down	 a	 bit.	 Therefore,	 the	 lock	 is	 not	 created	 initially.	 This
situation	is	equivalent	to	having	acquired	the	lock:	when	there	is
only	 a	 single	 thread,	 all	 object	 accesses	 are	 safe.	 Therefore,
when	 this	 function	 initializes	 the	 global	 interpreter	 lock,	 it	 also
acquires	 it.	Before	 the	Python	 _thread	module	 creates	 a	 new
thread,	knowing	that	either	it	has	the	lock	or	the	lock	hasn’t	been
created	 yet,	 it	 calls	 PyEval_InitThreads().	 When	 this	 call
returns,	 it	 is	guaranteed	that	the	lock	has	been	created	and	that
the	calling	thread	has	acquired	it.
It	is	not	safe	to	call	this	function	when	it	is	unknown	which	thread
(if	any)	currently	has	the	global	interpreter	lock.

This	function	 is	not	available	when	thread	support	 is	disabled	at
compile	time.

int	PyEval_ThreadsInitialized()
Returns	a	non-zero	 value	 if	 PyEval_InitThreads()	 has	 been
called.	 This	 function	 can	 be	 called	 without	 holding	 the	 GIL,	 and
therefore	 can	 be	 used	 to	 avoid	 calls	 to	 the	 locking	 API	 when
running	single-threaded.	This	function	is	not	available	when	thread
support	is	disabled	at	compile	time.

PyThreadState*	PyEval_SaveThread()
Release	 the	 global	 interpreter	 lock	 (if	 it	 has	 been	 created	 and
thread	 support	 is	 enabled)	 and	 reset	 the	 thread	 state	 to	 NULL,
returning	the	previous	thread	state	(which	is	not	NULL).	If	the	lock
has	been	created,	 the	current	 thread	must	have	acquired	 it.	 (This
function	 is	 available	 even	 when	 thread	 support	 is	 disabled	 at
compile	time.)

void	PyEval_RestoreThread(PyThreadState	*tstate)

Acquire	 the	 global	 interpreter	 lock	 (if	 it	 has	 been	 created	 and
thread	support	is	enabled)	and	set	the	thread	state	to	tstate,	which
must	not	be	NULL.	If	the	lock	has	been	created,	the	current	thread
must	 not	 have	 acquired	 it,	 otherwise	 deadlock	 ensues.	 (This
function	 is	 available	 even	 when	 thread	 support	 is	 disabled	 at
compile	time.)

PyThreadState*	PyThreadState_Get()
Return	the	current	thread	state.	The	global	interpreter	lock	must	be
held.	When	 the	 current	 thread	 state	 is	NULL,	 this	 issues	 a	 fatal
error	(so	that	the	caller	needn’t	check	for	NULL).

PyThreadState*	PyThreadState_Swap(PyThreadState	*tstate)
Swap	 the	 current	 thread	 state	with	 the	 thread	 state	 given	 by	 the
argument	 tstate,	which	may	be	NULL.	 The	 global	 interpreter	 lock
must	be	held	and	is	not	released.

void	PyEval_ReInitThreads()
This	 function	 is	 called	 from	 PyOS_AfterFork()	 to	 ensure	 that
newly	created	child	processes	don’t	hold	locks	referring	to	threads
which	are	not	running	in	the	child	process.

The	 following	 functions	 use	 thread-local	 storage,	 and	 are	 not
compatible	with	sub-interpreters:

PyGILState_STATE	PyGILState_Ensure()
Ensure	 that	 the	 current	 thread	 is	 ready	 to	 call	 the	 Python	C	API
regardless	of	the	current	state	of	Python,	or	of	the	global	interpreter
lock.	This	may	be	called	as	many	times	as	desired	by	a	thread	as
long	 as	 each	 call	 is	 matched	 with	 a	 call	 to
PyGILState_Release().	 In	 general,	 other	 thread-related	 APIs
may	 be	 used	 between	 PyGILState_Ensure()	 and

PyGILState_Release()	 calls	 as	 long	 as	 the	 thread	 state	 is
restored	 to	 its	 previous	 state	 before	 the	Release().	 For	 example,
normal	 usage	 of	 the	 Py_BEGIN_ALLOW_THREADS	 and
Py_END_ALLOW_THREADS	macros	is	acceptable.

The	 return	 value	 is	 an	opaque	 “handle”	 to	 the	 thread	 state	when
PyGILState_Ensure()	 was	 called,	 and	 must	 be	 passed	 to
PyGILState_Release()	 to	 ensure	 Python	 is	 left	 in	 the	 same
state.	 Even	 though	 recursive	 calls	 are	 allowed,	 these	 handles
cannot	 be	shared	 -	each	unique	call	 to	 PyGILState_Ensure()
must	save	the	handle	for	its	call	to	PyGILState_Release().

When	the	function	returns,	the	current	thread	will	hold	the	GIL	and
be	able	to	call	arbitrary	Python	code.	Failure	is	a	fatal	error.

void	PyGILState_Release(PyGILState_STATE)
Release	any	resources	previously	acquired.	After	this	call,	Python’s
state	 will	 be	 the	 same	 as	 it	 was	 prior	 to	 the	 corresponding
PyGILState_Ensure()	 call	 (but	 generally	 this	 state	 will	 be
unknown	to	the	caller,	hence	the	use	of	the	GILState	API).

Every	call	to	PyGILState_Ensure()	must	be	matched	by	a	call
to	PyGILState_Release()	on	the	same	thread.

PyThreadState*	PyGILState_GetThisThreadState()
Get	the	current	thread	state	for	this	thread.	May	return	NULL	if	no
GILState	API	has	been	used	on	 the	current	 thread.	Note	 that	 the
main	 thread	 always	 has	 such	 a	 thread-state,	 even	 if	 no	 auto-
thread-state	call	has	been	made	on	the	main	thread.	This	is	mainly
a	helper/diagnostic	function.

int	PyGILState_Check()

Return	1	 if	 the	current	 thread	 is	holding	 the	GIL	and	0	otherwise.
This	 function	can	be	called	 from	any	 thread	at	any	 time.	Only	 if	 it
has	had	 its	Python	 thread	state	 initialized	and	currently	 is	holding
the	GIL	will	it	return	1.	This	is	mainly	a	helper/diagnostic	function.	It
can	 be	 useful	 for	 example	 in	 callback	 contexts	 or	 memory
allocation	functions	when	knowing	that	the	GIL	is	locked	can	allow
the	 caller	 to	 perform	 sensitive	 actions	 or	 otherwise	 behave
differently.

New	in	version	3.4.

The	 following	macros	are	normally	used	without	a	 trailing	semicolon;
look	for	example	usage	in	the	Python	source	distribution.

Py_BEGIN_ALLOW_THREADS

This	macro	expands	to	{	PyThreadState	*_save;	_save	=
PyEval_SaveThread();.	Note	that	it	contains	an	opening	brace;
it	 must	 be	 matched	 with	 a	 following	 Py_END_ALLOW_THREADS
macro.	See	above	for	further	discussion	of	this	macro.	It	is	a	no-op
when	thread	support	is	disabled	at	compile	time.

Py_END_ALLOW_THREADS

This	 macro	 expands	 to	 PyEval_RestoreThread(_save);	 }.
Note	 that	 it	 contains	a	closing	brace;	 it	must	be	matched	with	an
earlier	Py_BEGIN_ALLOW_THREADS	macro.	See	above	for	further
discussion	 of	 this	 macro.	 It	 is	 a	 no-op	 when	 thread	 support	 is
disabled	at	compile	time.

Py_BLOCK_THREADS

This	macro	expands	to	PyEval_RestoreThread(_save);:	it	 is
equivalent	to	Py_END_ALLOW_THREADS	without	the	closing	brace.
It	is	a	no-op	when	thread	support	is	disabled	at	compile	time.

Py_UNBLOCK_THREADS

This	macro	expands	to	_save	=	PyEval_SaveThread();:	it	 is
equivalent	 to	 Py_BEGIN_ALLOW_THREADS	 without	 the	 opening
brace	and	variable	declaration.	It	is	a	no-op	when	thread	support	is
disabled	at	compile	time.

Low-level	API

All	of	the	following	functions	are	only	available	when	thread	support	is
enabled	 at	 compile	 time,	 and	 must	 be	 called	 only	 when	 the	 global
interpreter	lock	has	been	created.

PyInterpreterState*	PyInterpreterState_New()
Create	 a	 new	 interpreter	 state	 object.	 The	 global	 interpreter	 lock
need	 not	 be	 held,	 but	may	 be	 held	 if	 it	 is	 necessary	 to	 serialize
calls	to	this	function.

void	PyInterpreterState_Clear(PyInterpreterState	*interp)
Reset	 all	 information	 in	 an	 interpreter	 state	 object.	 The	 global
interpreter	lock	must	be	held.

void
PyInterpreterState_Delete(PyInterpreterState	*interp)

Destroy	an	interpreter	state	object.	The	global	interpreter	lock	need
not	 be	 held.	 The	 interpreter	 state	 must	 have	 been	 reset	 with	 a
previous	call	to	PyInterpreterState_Clear().

PyThreadState*	PyThreadState_New(PyInterpreterState	*interp)
Create	a	new	thread	state	object	belonging	to	the	given	interpreter
object.	 The	 global	 interpreter	 lock	 need	 not	 be	 held,	 but	may	 be
held	if	it	is	necessary	to	serialize	calls	to	this	function.

void	PyThreadState_Clear(PyThreadState	*tstate)
Reset	all	information	in	a	thread	state	object.	The	global	interpreter
lock	must	be	held.

void	PyThreadState_Delete(PyThreadState	*tstate)
Destroy	a	thread	state	object.	The	global	interpreter	lock	need	not
be	held.	The	thread	state	must	have	been	reset	with	a	previous	call
to	PyThreadState_Clear().

PyObject*	PyThreadState_GetDict()
Return	value:	Borrowed	reference.
Return	 a	 dictionary	 in	 which	 extensions	 can	 store	 thread-specific
state	information.	Each	extension	should	use	a	unique	key	to	use
to	store	state	in	the	dictionary.	It	 is	okay	to	call	 this	function	when
no	current	 thread	state	 is	available.	 If	 this	 function	 returns	NULL,
no	 exception	 has	 been	 raised	 and	 the	 caller	 should	 assume	 no
current	thread	state	is	available.

int	PyThreadState_SetAsyncExc(long	id,	PyObject	*exc)
Asynchronously	raise	an	exception	in	a	thread.	The	id	argument	is
the	thread	id	of	the	target	thread;	exc	is	the	exception	object	to	be
raised.	 This	 function	 does	 not	 steal	 any	 references	 to	 exc.	 To
prevent	naive	misuse,	you	must	write	your	own	C	extension	to	call
this.	 Must	 be	 called	 with	 the	 GIL	 held.	 Returns	 the	 number	 of
thread	states	modified;	 this	 is	normally	one,	but	will	be	zero	 if	 the
thread	id	isn’t	found.	If	exc	is	NULL,	the	pending	exception	(if	any)
for	the	thread	is	cleared.	This	raises	no	exceptions.

void	PyEval_AcquireThread(PyThreadState	*tstate)
Acquire	the	global	interpreter	lock	and	set	the	current	thread	state
to	 tstate,	 which	 should	 not	 be	NULL.	 The	 lock	 must	 have	 been
created	 earlier.	 If	 this	 thread	 already	 has	 the	 lock,	 deadlock

ensues.

PyEval_RestoreThread()	 is	 a	 higher-level	 function	 which	 is
always	available	(even	when	thread	support	isn’t	enabled	or	when
threads	have	not	been	initialized).

void	PyEval_ReleaseThread(PyThreadState	*tstate)
Reset	 the	 current	 thread	 state	 to	 NULL	 and	 release	 the	 global
interpreter	lock.	The	lock	must	have	been	created	earlier	and	must
be	held	by	the	current	thread.	The	tstate	argument,	which	must	not
be	NULL,	is	only	used	to	check	that	it	represents	the	current	thread
state	—	if	it	isn’t,	a	fatal	error	is	reported.

PyEval_SaveThread()	is	a	higher-level	function	which	is	always
available	(even	when	thread	support	isn’t	enabled	or	when	threads
have	not	been	initialized).

void	PyEval_AcquireLock()
Acquire	 the	 global	 interpreter	 lock.	 The	 lock	 must	 have	 been
created	 earlier.	 If	 this	 thread	 already	 has	 the	 lock,	 a	 deadlock
ensues.

Deprecated	since	version	3.2:	This	function	does	not	update	the
current	thread	state.	Please	use	PyEval_RestoreThread()	or
PyEval_AcquireThread()	instead.

void	PyEval_ReleaseLock()
Release	 the	 global	 interpreter	 lock.	 The	 lock	 must	 have	 been
created	earlier.

Deprecated	since	version	3.2:	This	function	does	not	update	the
current	 thread	 state.	 Please	 use	 PyEval_SaveThread()	 or

PyEval_ReleaseThread()	instead.

Sub-interpreter	support

While	 in	most	uses,	 you	will	 only	embed	a	single	Python	 interpreter,
there	 are	 cases	 where	 you	 need	 to	 create	 several	 independent
interpreters	 in	 the	 same	 process	 and	 perhaps	 even	 in	 the	 same
thread.	Sub-interpreters	allow	you	to	do	that.	You	can	switch	between
sub-interpreters	 using	 the	 PyThreadState_Swap()	 function.	 You
can	create	and	destroy	them	using	the	following	functions:

PyThreadState*	Py_NewInterpreter()
Create	 a	 new	 sub-interpreter.	 This	 is	 an	 (almost)	 totally	 separate
environment	 for	 the	 execution	 of	 Python	 code.	 In	 particular,	 the
new	interpreter	has	separate,	independent	versions	of	all	imported
modules,	 including	 the	 fundamental	 modules	 builtins,
__main__	 and	 sys.	 The	 table	 of	 loaded	 modules
(sys.modules)	and	the	module	search	path	(sys.path)	are	also
separate.	The	new	environment	has	no	sys.argv	variable.	It	has
new	 standard	 I/O	 stream	 file	 objects	 sys.stdin,	 sys.stdout
and	sys.stderr	(however	these	refer	to	the	same	underlying	file
descriptors).

The	return	value	points	to	the	first	thread	state	created	in	the	new
sub-interpreter.	 This	 thread	 state	 is	 made	 in	 the	 current	 thread
state.	Note	that	no	actual	 thread	 is	created;	see	the	discussion	of
thread	 states	 below.	 If	 creation	 of	 the	 new	 interpreter	 is
unsuccessful,	 NULL	 is	 returned;	 no	 exception	 is	 set	 since	 the
exception	state	is	stored	in	the	current	thread	state	and	there	may
not	 be	 a	 current	 thread	 state.	 (Like	 all	 other	 Python/C	 API
functions,	 the	 global	 interpreter	 lock	 must	 be	 held	 before	 calling
this	function	and	is	still	held	when	it	returns;	however,	unlike	most
other	 Python/C	 API	 functions,	 there	 needn’t	 be	 a	 current	 thread

state	on	entry.)

Extension	 modules	 are	 shared	 between	 (sub-)interpreters	 as
follows:	 the	 first	 time	 a	 particular	 extension	 is	 imported,	 it	 is
initialized	normally,	and	a	(shallow)	copy	of	its	module’s	dictionary
is	 squirreled	 away.	 When	 the	 same	 extension	 is	 imported	 by
another	(sub-)interpreter,	a	new	module	is	initialized	and	filled	with
the	 contents	 of	 this	 copy;	 the	 extension’s	 init	 function	 is	 not
called.	 Note	 that	 this	 is	 different	 from	 what	 happens	 when	 an
extension	is	imported	after	the	interpreter	has	been	completely	re-
initialized	by	calling	Py_Finalize()	and	Py_Initialize();	 in
that	case,	the	extension’s	initmodule	function	is	called	again.

void	Py_EndInterpreter(PyThreadState	*tstate)
Destroy	the	(sub-)interpreter	represented	by	the	given	thread	state.
The	given	 thread	state	must	be	 the	current	 thread	state.	See	 the
discussion	 of	 thread	 states	 below.	 When	 the	 call	 returns,	 the
current	thread	state	is	NULL.	All	thread	states	associated	with	this
interpreter	are	destroyed.	(The	global	interpreter	lock	must	be	held
before	 calling	 this	 function	 and	 is	 still	 held	 when	 it	 returns.)
Py_Finalize()	will	destroy	all	sub-interpreters	that	haven’t	been
explicitly	destroyed	at	that	point.

Bugs	and	caveats

Because	 sub-interpreters	 (and	 the	 main	 interpreter)	 are	 part	 of	 the
same	 process,	 the	 insulation	 between	 them	 isn’t	 perfect	 —	 for
example,	 using	 low-level	 file	 operations	 like	 os.close()	 they	 can
(accidentally	or	maliciously)	affect	each	other’s	open	files.	Because	of
the	 way	 extensions	 are	 shared	 between	 (sub-)interpreters,	 some
extensions	may	 not	 work	 properly;	 this	 is	 especially	 likely	 when	 the
extension	 makes	 use	 of	 (static)	 global	 variables,	 or	 when	 the

extension	manipulates	its	module’s	dictionary	after	its	initialization.	It	is
possible	 to	 insert	 objects	 created	 in	 one	 sub-interpreter	 into	 a
namespace	of	another	sub-interpreter;	this	should	be	done	with	great
care	 to	 avoid	 sharing	 user-defined	 functions,	 methods,	 instances	 or
classes	between	sub-interpreters,	since	import	operations	executed	by
such	 objects	 may	 affect	 the	 wrong	 (sub-)interpreter’s	 dictionary	 of
loaded	modules.

Also	 note	 that	 combining	 this	 functionality	 with	 PyGILState_*()
APIs	 is	 delicate,	 because	 these	 APIs	 assume	 a	 bijection	 between
Python	thread	states	and	OS-level	threads,	an	assumption	broken	by
the	 presence	 of	 sub-interpreters.	 It	 is	 highly	 recommended	 that	 you
don’t	 switch	 sub-interpreters	 between	 a	 pair	 of	 matching
PyGILState_Ensure()	 and	 PyGILState_Release()	 calls.
Furthermore,	extensions	(such	as	ctypes)	using	these	APIs	to	allow
calling	of	Python	code	from	non-Python	created	threads	will	probably
be	broken	when	using	sub-interpreters.

Asynchronous	Notifications

A	mechanism	 is	 provided	 to	make	 asynchronous	 notifications	 to	 the
main	interpreter	thread.	These	notifications	take	the	form	of	a	function
pointer	and	a	void	pointer	argument.

int	Py_AddPendingCall(int	(*func)(void	*),	void	*arg)
Schedule	a	 function	to	be	called	 from	the	main	 interpreter	 thread.
On	success,	0	 is	 returned	and	 func	 is	 queued	 for	being	called	 in
the	 main	 thread.	 On	 failure,	 -1	 is	 returned	 without	 setting	 any
exception.

When	successfully	queued,	func	will	be	eventually	called	 from	the
main	 interpreter	 thread	 with	 the	 argument	 arg.	 It	 will	 be	 called
asynchronously	with	respect	to	normally	running	Python	code,	but
with	both	these	conditions	met:

on	a	bytecode	boundary;
with	 the	main	 thread	holding	 the	global	 interpreter	 lock	 (func
can	therefore	use	the	full	C	API).

func	must	 return	0	on	success,	or	 -1	on	 failure	with	an	exception
set.	 func	 won’t	 be	 interrupted	 to	 perform	 another	 asynchronous
notification	 recursively,	 but	 it	 can	 still	 be	 interrupted	 to	 switch
threads	if	the	global	interpreter	lock	is	released.

This	 function	 doesn’t	 need	 a	 current	 thread	 state	 to	 run,	 and	 it
doesn’t	need	the	global	interpreter	lock.

Warning: 	 This	 is	 a	 low-level	 function,	 only	 useful	 for	 very
special	cases.	There	 is	no	guarantee	 that	 func	will	be	called	as
quick	as	possible.	If	the	main	thread	is	busy	executing	a	system
call,	 func	 won’t	 be	 called	 before	 the	 system	 call	 returns.	 This

function	 is	 generally	 not	 suitable	 for	 calling	 Python	 code	 from
arbitrary	C	threads.	Instead,	use	the	PyGILState	API.

New	in	version	3.1.

Profiling	and	Tracing

The	Python	 interpreter	provides	some	 low-level	 support	 for	attaching
profiling	and	execution	 tracing	 facilities.	These	are	used	 for	 profiling,
debugging,	and	coverage	analysis	tools.

This	 C	 interface	 allows	 the	 profiling	 or	 tracing	 code	 to	 avoid	 the
overhead	 of	 calling	 through	 Python-level	 callable	 objects,	 making	 a
direct	 C	 function	 call	 instead.	 The	 essential	 attributes	 of	 the	 facility
have	not	changed;	 the	 interface	allows	trace	functions	to	be	 installed
per-thread,	and	the	basic	events	reported	to	the	trace	function	are	the
same	 as	 had	 been	 reported	 to	 the	 Python-level	 trace	 functions	 in
previous	versions.

int	(*Py_tracefunc)(PyObject	*obj,	PyFrameObject	*frame,
int	what,	PyObject	*arg)

The	 type	 of	 the	 trace	 function	 registered	 using
PyEval_SetProfile()	 and	 PyEval_SetTrace().	 The	 first
parameter	 is	 the	object	passed	 to	 the	 registration	 function	as	obj,
frame	 is	the	frame	object	to	which	the	event	pertains,	what	is	one
of	 the	 constants	 PyTrace_CALL,	 PyTrace_EXCEPTION,
PyTrace_LINE,	 PyTrace_RETURN,	 PyTrace_C_CALL,
PyTrace_C_EXCEPTION,	 or	 PyTrace_C_RETURN,	 and	 arg
depends	on	the	value	of	what:

Value	of	what Meaning	of	arg

PyTrace_CALL Always	NULL.

PyTrace_EXCEPTION
Exception	information	as	returned
by	sys.exc_info().

PyTrace_LINE Always	NULL.

PyTrace_RETURN Value	being	returned	to	the	caller,
or	NULL	if	caused	by	an	exception.

PyTrace_C_CALL Function	object	being	called.

PyTrace_C_EXCEPTION Function	object	being	called.

PyTrace_C_RETURN Function	object	being	called.

int	PyTrace_CALL
The	 value	 of	 the	 what	 parameter	 to	 a	 Py_tracefunc	 function
when	a	new	call	to	a	function	or	method	is	being	reported,	or	a	new
entry	 into	 a	 generator.	Note	 that	 the	 creation	 of	 the	 iterator	 for	 a
generator	function	is	not	reported	as	there	is	no	control	transfer	to
the	Python	bytecode	in	the	corresponding	frame.

int	PyTrace_EXCEPTION
The	 value	 of	 the	 what	 parameter	 to	 a	 Py_tracefunc	 function
when	an	exception	has	been	raised.	The	callback	function	is	called
with	this	value	for	what	when	after	any	bytecode	is	processed	after
which	the	exception	becomes	set	within	the	frame	being	executed.
The	 effect	 of	 this	 is	 that	 as	 exception	 propagation	 causes	 the
Python	stack	to	unwind,	the	callback	is	called	upon	return	to	each
frame	as	 the	exception	propagates.	Only	 trace	 functions	 receives
these	events;	they	are	not	needed	by	the	profiler.

int	PyTrace_LINE
The	value	passed	as	 the	what	 parameter	 to	a	 trace	 function	 (but
not	 a	 profiling	 function)	 when	 a	 line-number	 event	 is	 being
reported.

int	PyTrace_RETURN
The	 value	 for	 the	 what	 parameter	 to	 Py_tracefunc	 functions
when	a	call	is	returning	without	propagating	an	exception.

int	PyTrace_C_CALL
The	 value	 for	 the	 what	 parameter	 to	 Py_tracefunc	 functions
when	a	C	function	is	about	to	be	called.

int	PyTrace_C_EXCEPTION
The	 value	 for	 the	 what	 parameter	 to	 Py_tracefunc	 functions
when	a	C	function	has	raised	an	exception.

int	PyTrace_C_RETURN
The	 value	 for	 the	 what	 parameter	 to	 Py_tracefunc	 functions
when	a	C	function	has	returned.

void	PyEval_SetProfile(Py_tracefunc	func,	PyObject	*obj)
Set	the	profiler	function	to	func.	The	obj	parameter	is	passed	to	the
function	as	 its	 first	 parameter,	 and	may	be	any	Python	object,	 or
NULL.	 If	 the	 profile	 function	 needs	 to	 maintain	 state,	 using	 a
different	 value	 for	obj	 for	 each	 thread	 provides	 a	 convenient	 and
thread-safe	 place	 to	 store	 it.	 The	 profile	 function	 is	 called	 for	 all
monitored	events	except	the	line-number	events.

void	PyEval_SetTrace(Py_tracefunc	func,	PyObject	*obj)
Set	 the	 tracing	 function	 to	 func.	 This	 is	 similar	 to
PyEval_SetProfile(),	except	the	tracing	function	does	receive
line-number	events.

PyObject*	PyEval_GetCallStats(PyObject	*self)
Return	a	tuple	of	function	call	counts.	There	are	constants	defined
for	the	positions	within	the	tuple:

Name Value

PCALL_ALL 0

PCALL_FUNCTION 1

PCALL_FAST_FUNCTION 2

PCALL_FASTER_FUNCTION 3

PCALL_METHOD 4

PCALL_BOUND_METHOD 5

PCALL_CFUNCTION 6

PCALL_TYPE 7

PCALL_GENERATOR 8

PCALL_OTHER 9

PCALL_POP 10

PCALL_FAST_FUNCTION	means	 no	 argument	 tuple	 needs	 to	 be
created.	 PCALL_FASTER_FUNCTION	 means	 that	 the	 fast-path
frame	setup	code	is	used.

If	 there	 is	 a	 method	 call	 where	 the	 call	 can	 be	 optimized	 by
changing	the	argument	tuple	and	calling	the	function	directly,	it	gets
recorded	twice.

This	 function	 is	 only	 present	 if	 Python	 is	 compiled	 with
CALL_PROFILE	defined.

Advanced	Debugger	Support

These	functions	are	only	intended	to	be	used	by	advanced	debugging
tools.

PyInterpreterState*	PyInterpreterState_Head()
Return	the	interpreter	state	object	at	the	head	of	the	list	of	all	such
objects.

PyInterpreterState*
PyInterpreterState_Next(PyInterpreterState	*interp)

Return	 the	next	 interpreter	state	object	after	 interp	 from	 the	 list	of
all	such	objects.

PyThreadState	*
PyInterpreterState_ThreadHead(PyInterpreterState	*interp

Return	the	a	pointer	to	the	first	PyThreadState	object	 in	the	list
of	threads	associated	with	the	interpreter	interp.

PyThreadState*	PyThreadState_Next(PyThreadState	*tstate)
Return	 the	next	 thread	state	object	 after	 tstate	 from	 the	 list	 of	 all
such	 objects	 belonging	 to	 the	 same	 PyInterpreterState
object.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Memory	Management

Overview

Memory	management	in	Python	involves	a	private	heap	containing	all
Python	objects	 and	data	 structures.	 The	management	 of	 this	 private
heap	 is	 ensured	 internally	 by	 the	 Python	 memory	 manager.	 The
Python	 memory	 manager	 has	 different	 components	 which	 deal	 with
various	 dynamic	 storage	 management	 aspects,	 like	 sharing,
segmentation,	preallocation	or	caching.

At	 the	 lowest	 level,	 a	 raw	 memory	 allocator	 ensures	 that	 there	 is
enough	room	in	the	private	heap	for	storing	all	Python-related	data	by
interacting	with	the	memory	manager	of	the	operating	system.	On	top
of	the	raw	memory	allocator,	several	object-specific	allocators	operate
on	 the	 same	 heap	 and	 implement	 distinct	 memory	 management
policies	adapted	to	the	peculiarities	of	every	object	type.	For	example,
integer	 objects	 are	managed	differently	within	 the	 heap	 than	 strings,
tuples	 or	 dictionaries	 because	 integers	 imply	 different	 storage
requirements	 and	 speed/space	 tradeoffs.	 The	 Python	 memory
manager	 thus	 delegates	 some	 of	 the	 work	 to	 the	 object-specific
allocators,	but	ensures	that	the	latter	operate	within	the	bounds	of	the
private	heap.

It	is	important	to	understand	that	the	management	of	the	Python	heap
is	performed	by	 the	 interpreter	 itself	and	 that	 the	user	has	no	control
over	 it,	 even	 if	 she	 regularly	manipulates	 object	 pointers	 to	memory
blocks	 inside	 that	 heap.	 The	 allocation	 of	 heap	 space	 for	 Python
objects	 and	 other	 internal	 buffers	 is	 performed	 on	 demand	 by	 the
Python	memory	manager	through	the	Python/C	API	functions	listed	in
this	document.

To	 avoid	 memory	 corruption,	 extension	 writers	 should	 never	 try	 to
operate	on	Python	objects	with	the	functions	exported	by	the	C	library:

malloc(),	calloc(),	realloc()	and	free().	 This	will	 result	 in
mixed	calls	between	the	C	allocator	and	the	Python	memory	manager
with	fatal	consequences,	because	they	implement	different	algorithms
and	operate	on	different	heaps.	However,	one	may	safely	allocate	and
release	 memory	 blocks	 with	 the	 C	 library	 allocator	 for	 individual
purposes,	as	shown	in	the	following	example:

PyObject	*res;

char	*buf	=	(char	*)	malloc(BUFSIZ);	/*	for	I/O	*/

if	(buf	==	NULL)

				return	PyErr_NoMemory();

...Do	some	I/O	operation	involving	buf...

res	=	PyBytes_FromString(buf);

free(buf);	/*	malloc'ed	*/

return	res;

In	 this	example,	 the	memory	 request	 for	 the	 I/O	buffer	 is	handled	by
the	C	library	allocator.	The	Python	memory	manager	is	involved	only	in
the	allocation	of	the	string	object	returned	as	a	result.

In	 most	 situations,	 however,	 it	 is	 recommended	 to	 allocate	 memory
from	the	Python	heap	specifically	because	the	latter	is	under	control	of
the	Python	memory	manager.	For	example,	 this	 is	required	when	the
interpreter	 is	 extended	 with	 new	 object	 types	 written	 in	 C.	 Another
reason	 for	 using	 the	Python	heap	 is	 the	desire	 to	 inform	 the	Python
memory	manager	about	 the	memory	needs	of	 the	extension	module.
Even	 when	 the	 requested	 memory	 is	 used	 exclusively	 for	 internal,
highly-specific	purposes,	delegating	all	memory	requests	to	the	Python
memory	 manager	 causes	 the	 interpreter	 to	 have	 a	 more	 accurate
image	of	its	memory	footprint	as	a	whole.	Consequently,	under	certain
circumstances,	 the	Python	memory	manager	may	or	may	not	 trigger
appropriate	 actions,	 like	 garbage	 collection,	 memory	 compaction	 or

other	preventive	procedures.	Note	that	by	using	the	C	library	allocator
as	shown	 in	 the	previous	example,	 the	allocated	memory	 for	 the	 I/O
buffer	escapes	completely	the	Python	memory	manager.

Raw	Memory	Interface

The	 following	 function	 sets	 are	 wrappers	 to	 the	 system	 allocator.
These	functions	are	thread-safe,	the	GIL	does	not	need	to	be	held.

The	default	 raw	memory	block	allocator	uses	 the	 following	 functions:
malloc(),	 realloc()	 and	 free();	 call	 malloc(1)	 when
requesting	zero	bytes.

New	in	version	3.4.

void*	PyMem_RawMalloc(size_t	n)
Allocates	 n	 bytes	 and	 returns	 a	 pointer	 of	 type	 void*	 to	 the
allocated	memory,	 or	NULL	 if	 the	 request	 fails.	 Requesting	 zero
bytes	 returns	 a	 distinct	 non-NULL	 pointer	 if	 possible,	 as	 if
PyMem_RawMalloc(1)	had	been	called	instead.	The	memory	will
not	have	been	initialized	in	any	way.

void*	PyMem_RawRealloc(void	*p,	size_t	n)
Resizes	the	memory	block	pointed	to	by	p	to	n	bytes.	The	contents
will	be	unchanged	to	the	minimum	of	the	old	and	the	new	sizes.	If	p
is	NULL,	the	call	is	equivalent	to	PyMem_RawMalloc(n);	else	if	n
is	equal	to	zero,	the	memory	block	is	resized	but	is	not	freed,	and
the	returned	pointer	 is	non-NULL.	Unless	p	 is	NULL,	 it	must	have
been	 returned	 by	 a	 previous	 call	 to	 PyMem_RawMalloc()	 or
PyMem_RawRealloc().	 If	 the	 request	 fails,
PyMem_RawRealloc()	 returns	 NULL	 and	 p	 remains	 a	 valid
pointer	to	the	previous	memory	area.

void	PyMem_RawFree(void	*p)
Frees	 the	memory	 block	 pointed	 to	 by	p,	 which	must	 have	 been

returned	 by	 a	 previous	 call	 to	 PyMem_RawMalloc()	 or
PyMem_RawRealloc().	 Otherwise,	 or	 if	 PyMem_Free(p)	 has
been	 called	 before,	 undefined	 behavior	 occurs.	 If	 p	 is	NULL,	 no
operation	is	performed.

Memory	Interface

The	 following	 function	 sets,	modeled	 after	 the	ANSI	C	 standard,	 but
specifying	 behavior	 when	 requesting	 zero	 bytes,	 are	 available	 for
allocating	and	releasing	memory	from	the	Python	heap.

The	 default	 memory	 block	 allocator	 uses	 the	 following	 functions:
malloc(),	 realloc()	 and	 free();	 call	 malloc(1)	 when
requesting	zero	bytes.

Warning: 	The	GIL	must	be	held	when	using	these	functions.

void*	PyMem_Malloc(size_t	n)
Allocates	 n	 bytes	 and	 returns	 a	 pointer	 of	 type	 void*	 to	 the
allocated	memory,	 or	NULL	 if	 the	 request	 fails.	 Requesting	 zero
bytes	 returns	 a	 distinct	 non-NULL	 pointer	 if	 possible,	 as	 if
PyMem_Malloc(1)	had	been	called	instead.	The	memory	will	not
have	been	initialized	in	any	way.

void*	PyMem_Realloc(void	*p,	size_t	n)
Resizes	the	memory	block	pointed	to	by	p	to	n	bytes.	The	contents
will	be	unchanged	to	the	minimum	of	the	old	and	the	new	sizes.	If	p
is	NULL,	 the	call	 is	equivalent	 to	PyMem_Malloc(n);	else	 if	n	 is
equal	to	zero,	the	memory	block	is	resized	but	is	not	freed,	and	the
returned	pointer	is	non-NULL.	Unless	p	is	NULL,	it	must	have	been
returned	 by	 a	 previous	 call	 to	 PyMem_Malloc()	 or
PyMem_Realloc().	 If	 the	 request	 fails,	 PyMem_Realloc()
returns	NULL	and	p	remains	a	valid	pointer	to	the	previous	memory
area.

void	PyMem_Free(void	*p)

Frees	 the	memory	 block	 pointed	 to	 by	p,	 which	must	 have	 been
returned	 by	 a	 previous	 call	 to	 PyMem_Malloc()	 or
PyMem_Realloc().	Otherwise,	 or	 if	 PyMem_Free(p)	 has	 been
called	 before,	 undefined	 behavior	 occurs.	 If	 p	 is	 NULL,	 no
operation	is	performed.

The	 following	 type-oriented	 macros	 are	 provided	 for	 convenience.
Note	that	TYPE	refers	to	any	C	type.

TYPE*	PyMem_New(TYPE,	size_t	n)
Same	 as	 PyMem_Malloc(),	 but	 allocates	 (n	 *

sizeof(TYPE))	 bytes	 of	 memory.	 Returns	 a	 pointer	 cast	 to
TYPE*.	The	memory	will	not	have	been	initialized	in	any	way.

TYPE*	PyMem_Resize(void	*p,	TYPE,	size_t	n)
Same	as	PyMem_Realloc(),	but	the	memory	block	is	resized	to
(n	*	sizeof(TYPE))	bytes.	Returns	a	pointer	 cast	 to	TYPE*.
On	return,	p	will	be	a	pointer	to	the	new	memory	area,	or	NULL	in
the	event	 of	 failure.	This	 is	 a	C	preprocessor	macro;	 p	 is	 always
reassigned.	Save	 the	 original	 value	 of	 p	 to	 avoid	 losing	memory
when	handling	errors.

void	PyMem_Del(void	*p)
Same	as	PyMem_Free().

In	 addition,	 the	 following	 macro	 sets	 are	 provided	 for	 calling	 the
Python	memory	allocator	directly,	without	involving	the	C	API	functions
listed	 above.	 However,	 note	 that	 their	 use	 does	 not	 preserve	 binary
compatibility	 across	 Python	 versions	 and	 is	 therefore	 deprecated	 in
extension	modules.

PyMem_MALLOC(),	PyMem_REALLOC(),	PyMem_FREE().

PyMem_NEW(),	PyMem_RESIZE(),	PyMem_DEL().

Customize	Memory	Allocators

New	in	version	3.4.

PyMemAllocator

Structure	used	to	describe	a	memory	block	allocator.	The	structure
has	four	fields:

Field Meaning

void	*ctx
user	context	passed	as
first	argument

void*	malloc(void	*ctx,

size_t	size)
allocate	a	memory	block

void*	realloc(void	*ctx,

void	*ptr,	size_t	new_size)

allocate	or	resize	a
memory	block

void	free(void	*ctx,	void

*ptr)
free	a	memory	block

PyMemAllocatorDomain

Enum	used	to	identify	an	allocator	domain.	Domains:

PYMEM_DOMAIN_RAW:	 functions	 PyMem_RawMalloc(),
PyMem_RawRealloc()	and	PyMem_RawFree()
PYMEM_DOMAIN_MEM:	 functions	 PyMem_Malloc(),
PyMem_Realloc()	and	PyMem_Free()
PYMEM_DOMAIN_OBJ:	 functions	 PyObject_Malloc(),
PyObject_Realloc()	and	PyObject_Free()

void	PyMem_GetAllocator(PyMemAllocatorDomain	domain,
PyMemAllocator	*allocator)

Get	the	memory	block	allocator	of	the	specified	domain.

void	PyMem_SetAllocator(PyMemAllocatorDomain	domain,
PyMemAllocator	*allocator)

Set	the	memory	block	allocator	of	the	specified	domain.

The	 new	 allocator	must	 return	 a	 distinct	 non-NULL	 pointer	 when
requesting	zero	bytes.

For	 the	 PYMEM_DOMAIN_RAW	 domain,	 the	 allocator	 must	 be
thread-safe:	the	GIL	is	not	held	when	the	allocator	is	called.

If	 the	 new	 allocator	 is	 not	 a	 hook	 (does	 not	 call	 the	 previous
allocator),	 the	 PyMem_SetupDebugHooks()	 function	 must	 be
called	to	reinstall	the	debug	hooks	on	top	on	the	new	allocator.

void	PyMem_SetupDebugHooks(void)
Setup	 hooks	 to	 detect	 bugs	 in	 the	 following	 Python	 memory
allocator	functions:

PyMem_RawMalloc(),	 PyMem_RawRealloc(),
PyMem_RawFree()

PyMem_Malloc(),	PyMem_Realloc(),	PyMem_Free()
PyObject_Malloc(),	 PyObject_Realloc(),
PyObject_Free()

Newly	allocated	memory	is	filled	with	the	byte	0xCB,	freed	memory
is	filled	with	the	byte	0xDB.	Additionnal	checks:

detect	 API	 violations,	 ex:	 PyObject_Free()	 called	 on	 a
buffer	allocated	by	PyMem_Malloc()
detect	write	before	the	start	of	the	buffer	(buffer	underflow)
detect	write	after	the	end	of	the	buffer	(buffer	overflow)

The	function	does	nothing	if	Python	is	not	compiled	is	debug	mode.

Customize	PyObject	Arena	Allocator

Python	has	a	pymalloc	allocator	for	allocations	smaller	than	512	bytes.
This	 allocator	 is	 optimized	 for	 small	 objects	 with	 a	 short	 lifetime.	 It
uses	memory	mappings	called	“arenas”	with	a	fixed	size	of	256	KB.	It
falls	back	 to	 PyMem_RawMalloc()	 and	 PyMem_RawRealloc()	 for
allocations	 larger	 than	 512	 bytes.	 pymalloc	 is	 the	 default	 allocator
used	by	PyObject_Malloc().

The	default	arena	allocator	uses	the	following	functions:

VirtualAlloc()	and	VirtualFree()	on	Windows,
mmap()	and	munmap()	if	available,
malloc()	and	free()	otherwise.

New	in	version	3.4.

PyObjectArenaAllocator

Structure	 used	 to	 describe	 an	 arena	 allocator.	 The	 structure	 has
three	fields:

Field Meaning

void	*ctx
user	context	passed	as
first	argument

void*	alloc(void	*ctx,

size_t	size)

allocate	an	arena	of	size
bytes

void	free(void	*ctx,

size_t	size,	void	*ptr)
free	an	arena

PyObject_GetArenaAllocator(PyObjectArenaAllocator	*allocator
Get	the	arena	allocator.

PyObject_SetArenaAllocator(PyObjectArenaAllocator	*allocator
Set	the	arena	allocator.

Examples

Here	 is	 the	example	 from	section	Overview,	 rewritten	so	 that	 the	 I/O
buffer	is	allocated	from	the	Python	heap	by	using	the	first	function	set:

PyObject	*res;

char	*buf	=	(char	*)	PyMem_Malloc(BUFSIZ);	/*	for	I/O	*/

if	(buf	==	NULL)

				return	PyErr_NoMemory();

/*	...Do	some	I/O	operation	involving	buf...	*/

res	=	PyBytes_FromString(buf);

PyMem_Free(buf);	/*	allocated	with	PyMem_Malloc	*/

return	res;

The	same	code	using	the	type-oriented	function	set:

PyObject	*res;

char	*buf	=	PyMem_New(char,	BUFSIZ);	/*	for	I/O	*/

if	(buf	==	NULL)

				return	PyErr_NoMemory();

/*	...Do	some	I/O	operation	involving	buf...	*/

res	=	PyBytes_FromString(buf);

PyMem_Del(buf);	/*	allocated	with	PyMem_New	*/

return	res;

Note	that	in	the	two	examples	above,	the	buffer	is	always	manipulated
via	 functions	belonging	 to	 the	same	set.	 Indeed,	 it	 is	 required	 to	use
the	same	memory	API	family	for	a	given	memory	block,	so	that	the	risk
of	mixing	different	allocators	 is	 reduced	 to	a	minimum.	The	 following
code	 sequence	 contains	 two	errors,	 one	 of	which	 is	 labeled	 as	 fatal
because	it	mixes	two	different	allocators	operating	on	different	heaps.

char	*buf1	=	PyMem_New(char,	BUFSIZ);

char	*buf2	=	(char	*)	malloc(BUFSIZ);

char	*buf3	=	(char	*)	PyMem_Malloc(BUFSIZ);

...

PyMem_Del(buf3);		/*	Wrong	--	should	be	PyMem_Free()	*/

free(buf2);							/*	Right	--	allocated	via	malloc()	*/

free(buf1);							/*	Fatal	--	should	be	PyMem_Del()		*/

In	addition	to	the	functions	aimed	at	handling	raw	memory	blocks	from
the	 Python	 heap,	 objects	 in	 Python	 are	 allocated	 and	 released	 with
PyObject_New(),	PyObject_NewVar()	and	PyObject_Del().

These	 will	 be	 explained	 in	 the	 next	 chapter	 on	 defining	 and
implementing	new	object	types	in	C.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

Object	Implementation	Support
This	 chapter	 describes	 the	 functions,	 types,	 and	macros	 used	when
defining	new	object	types.

Allocating	Objects	on	the	Heap
Common	Object	Structures
Type	Objects
Number	Object	Structures
Mapping	Object	Structures
Sequence	Object	Structures
Buffer	Object	Structures
Supporting	Cyclic	Garbage	Collection

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Object	Implementation	Support	»

http://www.python.org/

Allocating	Objects	on	the	Heap
PyObject*	_PyObject_New(PyTypeObject	*type)

Return	value:	New	reference.

PyVarObject*	_PyObject_NewVar(PyTypeObject	*type,
Py_ssize_t	size)

Return	value:	New	reference.

PyObject*	PyObject_Init(PyObject	*op,	PyTypeObject	*type)
Return	value:	Borrowed	reference.
Initialize	 a	 newly-allocated	 object	 op	 with	 its	 type	 and	 initial
reference.	Returns	 the	 initialized	 object.	 If	 type	 indicates	 that	 the
object	participates	in	the	cyclic	garbage	detector,	it	is	added	to	the
detector’s	set	of	observed	objects.	Other	fields	of	the	object	are	not
affected.

PyVarObject*	PyObject_InitVar(PyVarObject	*op,
PyTypeObject	*type,	Py_ssize_t	size)

Return	value:	Borrowed	reference.
This	does	everything	PyObject_Init()	does,	and	also	initializes
the	length	information	for	a	variable-size	object.

TYPE*	PyObject_New(TYPE,	PyTypeObject	*type)
Return	value:	New	reference.
Allocate	a	new	Python	object	using	the	C	structure	type	TYPE	and
the	 Python	 type	 object	 type.	 Fields	 not	 defined	 by	 the	 Python
object	header	are	not	initialized;	the	object’s	reference	count	will	be
one.	 The	 size	 of	 the	 memory	 allocation	 is	 determined	 from	 the
tp_basicsize	field	of	the	type	object.

TYPE*	PyObject_NewVar(TYPE,	PyTypeObject	*type,
Py_ssize_t	size)

Return	value:	New	reference.
Allocate	a	new	Python	object	using	the	C	structure	type	TYPE	and
the	 Python	 type	 object	 type.	 Fields	 not	 defined	 by	 the	 Python
object	header	are	not	 initialized.	The	allocated	memory	allows	 for
the	 TYPE	 structure	 plus	 size	 fields	 of	 the	 size	 given	 by	 the
tp_itemsize	field	of	type.	This	is	useful	for	implementing	objects
like	 tuples,	which	 are	 able	 to	 determine	 their	 size	 at	 construction
time.	 Embedding	 the	 array	 of	 fields	 into	 the	 same	 allocation
decreases	 the	 number	 of	 allocations,	 improving	 the	 memory
management	efficiency.

void	PyObject_Del(PyObject	*op)
Releases	memory	allocated	to	an	object	using	PyObject_New()
or	 PyObject_NewVar().	 This	 is	 normally	 called	 from	 the
tp_dealloc	 handler	 specified	 in	 the	 object’s	 type.	The	 fields	 of
the	object	should	not	be	accessed	after	this	call	as	the	memory	is
no	longer	a	valid	Python	object.

PyObject	_Py_NoneStruct
Object	 which	 is	 visible	 in	 Python	 as	 None.	 This	 should	 only	 be
accessed	using	the	Py_None	macro,	which	evaluates	to	a	pointer
to	this	object.

See	also:

PyModule_Create()

To	allocate	and	create	extension	modules.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

http://www.python.org/

Manual	»	Object	Implementation	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Object	Implementation	Support	»

http://www.python.org/

Common	Object	Structures
There	are	a	large	number	of	structures	which	are	used	in	the	definition
of	object	types	for	Python.	This	section	describes	these	structures	and
how	they	are	used.

All	 Python	 objects	 ultimately	 share	 a	 small	 number	 of	 fields	 at	 the
beginning	 of	 the	 object’s	 representation	 in	 memory.	 These	 are
represented	 by	 the	 PyObject	 and	 PyVarObject	 types,	 which	 are
defined,	in	turn,	by	the	expansions	of	some	macros	also	used,	whether
directly	or	indirectly,	in	the	definition	of	all	other	Python	objects.

PyObject

All	 object	 types	 are	 extensions	 of	 this	 type.	 This	 is	 a	 type	which
contains	 the	 information	 Python	 needs	 to	 treat	 a	 pointer	 to	 an
object	as	an	object.	In	a	normal	“release”	build,	it	contains	only	the
object’s	 reference	 count	 and	 a	 pointer	 to	 the	 corresponding	 type
object.	It	corresponds	to	the	fields	defined	by	the	expansion	of	the
PyObject_HEAD	macro.

PyVarObject

This	 is	 an	 extension	 of	 PyObject	 that	 adds	 the	 ob_size	 field.
This	is	only	used	for	objects	that	have	some	notion	of	length.	This
type	does	not	often	appear	in	the	Python/C	API.	It	corresponds	to
the	 fields	defined	by	 the	expansion	of	 the	 PyObject_VAR_HEAD
macro.

These	 macros	 are	 used	 in	 the	 definition	 of	 PyObject	 and
PyVarObject:

PyObject_HEAD

This	 is	a	macro	which	expands	to	 the	declarations	of	 the	fields	of
the	 PyObject	 type;	 it	 is	 used	 when	 declaring	 new	 types	 which
represent	 objects	 without	 a	 varying	 length.	 The	 specific	 fields	 it
expands	 to	 depend	 on	 the	 definition	 of	 Py_TRACE_REFS.	 By
default,	 that	macro	 is	not	defined,	and	PyObject_HEAD	 expands
to:

Py_ssize_t	ob_refcnt;

PyTypeObject	*ob_type;

When	Py_TRACE_REFS	is	defined,	it	expands	to:

PyObject	*_ob_next,	*_ob_prev;

Py_ssize_t	ob_refcnt;

PyTypeObject	*ob_type;

PyObject_VAR_HEAD

This	 is	a	macro	which	expands	to	 the	declarations	of	 the	fields	of
the	PyVarObject	type;	it	is	used	when	declaring	new	types	which
represent	 objects	 with	 a	 length	 that	 varies	 from	 instance	 to
instance.	This	macro	always	expands	to:

PyObject_HEAD

Py_ssize_t	ob_size;

Note	 that	 PyObject_HEAD	 is	 part	 of	 the	 expansion,	 and	 that	 its
own	 expansion	 varies	 depending	 on	 the	 definition	 of
Py_TRACE_REFS.

PyObject_HEAD_INIT(type)
This	 is	 a	 macro	 which	 expands	 to	 initialization	 values	 for	 a	 new
PyObject	type.	This	macro	expands	to:

_PyObject_EXTRA_INIT

1,	type,

PyVarObject_HEAD_INIT(type,	size)
This	 is	 a	 macro	 which	 expands	 to	 initialization	 values	 for	 a	 new
PyVarObject	 type,	 including	 the	 ob_size	 field.	 This	 macro
expands	to:

_PyObject_EXTRA_INIT

1,	type,	size,

PyCFunction

Type	of	 the	 functions	used	 to	 implement	most	Python	callables	 in
C.	 Functions	 of	 this	 type	 take	 two	 PyObject*	 parameters	 and
return	 one	 such	 value.	 If	 the	 return	 value	 is	NULL,	 an	 exception
shall	have	been	set.	If	not	NULL,	the	return	value	is	interpreted	as
the	return	value	of	the	function	as	exposed	in	Python.	The	function
must	return	a	new	reference.

PyCFunctionWithKeywords

Type	of	the	functions	used	to	implement	Python	callables	in	C	that
take	keyword	arguments:	 they	take	three	PyObject*	parameters
and	 return	 one	 such	 value.	 See	 PyCFunction	 above	 for	 the
meaning	of	the	return	value.

PyMethodDef

Structure	 used	 to	 describe	 a	 method	 of	 an	 extension	 type.	 This
structure	has	four	fields:

Field C	Type Meaning

ml_name char	* name	of	the	method

ml_meth PyCFunction pointer	to	the	C

implementation

ml_flags int flag	bits	indicating	how	the
call	should	be	constructed

ml_doc char	* points	to	the	contents	of	the
docstring

The	ml_meth	is	a	C	function	pointer.	The	functions	may	be	of	different
types,	but	they	always	return	PyObject*.	If	the	function	is	not	of	the
PyCFunction,	 the	 compiler	will	 require	 a	 cast	 in	 the	method	 table.
Even	 though	 PyCFunction	 defines	 the	 first	 parameter	 as
PyObject*,	it	is	common	that	the	method	implementation	uses	a	the
specific	C	type	of	the	self	object.

The	ml_flags	field	is	a	bitfield	which	can	include	the	following	flags.
The	 individual	 flags	 indicate	 either	 a	 calling	 convention	 or	 a	 binding
convention.	Of	the	calling	convention	flags,	only	METH_VARARGS	and
METH_KEYWORDS	 can	 be	 combined	 (but	 note	 that	 METH_KEYWORDS
alone	 is	equivalent	 to	METH_VARARGS	|	METH_KEYWORDS).	 Any	 of
the	calling	convention	flags	can	be	combined	with	a	binding	flag.

METH_VARARGS

This	is	the	typical	calling	convention,	where	the	methods	have	the
type	PyCFunction.	The	function	expects	two	PyObject*	values.
The	first	one	is	the	self	object	for	methods;	for	module	functions,	it
is	the	module	object.	The	second	parameter	(often	called	args)	is	a
tuple	object	representing	all	arguments.	This	parameter	is	typically
processed	 using	 PyArg_ParseTuple()	 or
PyArg_UnpackTuple().

METH_KEYWORDS

Methods	 with	 these	 flags	 must	 be	 of	 type

PyCFunctionWithKeywords.	 The	 function	 expects	 three
parameters:	 self,	 args,	 and	 a	 dictionary	 of	 all	 the	 keyword
arguments.	 The	 flag	 is	 typically	 combined	 with	 METH_VARARGS,
and	 the	 parameters	 are	 typically	 processed	 using
PyArg_ParseTupleAndKeywords().

METH_NOARGS

Methods	 without	 parameters	 don’t	 need	 to	 check	 whether
arguments	are	given	if	they	are	listed	with	the	METH_NOARGS	flag.
They	 need	 to	 be	 of	 type	 PyCFunction.	 The	 first	 parameter	 is
typically	 named	 self	 and	 will	 hold	 a	 reference	 to	 the	 module	 or
object	instance.	In	all	cases	the	second	parameter	will	be	NULL.

METH_O

Methods	 with	 a	 single	 object	 argument	 can	 be	 listed	 with	 the
METH_O	 flag,	 instead	 of	 invoking	 PyArg_ParseTuple()	 with	 a
"O"	 argument.	 They	 have	 the	 type	 PyCFunction,	 with	 the	 self
parameter,	 and	 a	 PyObject*	 parameter	 representing	 the	 single
argument.

These	 two	 constants	 are	 not	 used	 to	 indicate	 the	 calling	 convention
but	the	binding	when	use	with	methods	of	classes.	These	may	not	be
used	for	functions	defined	for	modules.	At	most	one	of	these	flags	may
be	set	for	any	given	method.

METH_CLASS

The	method	will	 be	passed	 the	 type	object	as	 the	 first	parameter
rather	 than	 an	 instance	 of	 the	 type.	 This	 is	 used	 to	 create	 class
methods,	 similar	 to	 what	 is	 created	 when	 using	 the
classmethod()	built-in	function.

METH_STATIC

The	method	will	be	passed	NULL	as	the	first	parameter	rather	than
an	 instance	 of	 the	 type.	 This	 is	 used	 to	 create	 static	 methods,
similar	to	what	is	created	when	using	the	staticmethod()	built-
in	function.

One	other	 constant	 controls	whether	 a	method	 is	 loaded	 in	 place	 of
another	definition	with	the	same	method	name.

METH_COEXIST

The	method	will	be	loaded	in	place	of	existing	definitions.	Without
METH_COEXIST,	the	default	is	to	skip	repeated	definitions.	Since
slot	wrappers	are	loaded	before	the	method	table,	the	existence	of
a	sq_contains	slot,	for	example,	would	generate	a	wrapped	method
named	 __contains__()	 and	 preclude	 the	 loading	 of	 a
corresponding	 PyCFunction	 with	 the	 same	 name.	 With	 the	 flag
defined,	 the	 PyCFunction	 will	 be	 loaded	 in	 place	 of	 the	 wrapper
object	and	will	co-exist	with	the	slot.	This	is	helpful	because	calls	to
PyCFunctions	are	optimized	more	than	wrapper	object	calls.

PyMemberDef

Structure	which	describes	an	attribute	of	a	type	which	corresponds
to	a	C	struct	member.	Its	fields	are:

Field C	Type Meaning

name char	* name	of	the	member

type int the	type	of	the	member	in	the
C	struct

offset Py_ssize_t
the	offset	in	bytes	that	the
member	is	located	on	the
type’s	object	struct

flags int flag	bits	indicating	if	the	field
should	be	read-only	or	writable

doc char	* points	to	the	contents	of	the
docstring

type	can	be	one	of	many	T_	macros	corresponding	to	various	C
types.	 When	 the	 member	 is	 accessed	 in	 Python,	 it	 will	 be
converted	to	the	equivalent	Python	type.

Macro	name C	type

T_SHORT short

T_INT int

T_LONG long

T_FLOAT float

T_DOUBLE double

T_STRING char	*

T_OBJECT PyObject	*

T_OBJECT_EX PyObject	*

T_CHAR char

T_BYTE char

T_UBYTE unsigned	char

T_UINT unsigned	int

T_USHORT unsigned	short

T_ULONG unsigned	long

T_BOOL char

T_LONGLONG long	long

T_ULONGLONG unsigned	long	long

T_PYSSIZET Py_ssize_t

T_OBJECT	 and	 T_OBJECT_EX	 differ	 in	 that	 T_OBJECT	 returns

None	 if	 the	 member	 is	 NULL	 and	 T_OBJECT_EX	 raises	 an
AttributeError.	 Try	 to	 use	 T_OBJECT_EX	 over	 T_OBJECT
because	T_OBJECT_EX	handles	use	of	the	del	statement	on	that
attribute	more	correctly	than	T_OBJECT.

flags	can	be	0	for	write	and	read	access	or	READONLY	for	read-
only	access.	Using	T_STRING	 for	type	 implies	READONLY.	Only
T_OBJECT	 and	 T_OBJECT_EX	 members	 can	 be	 deleted.	 (They
are	set	to	NULL).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Object	Implementation	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Object	Implementation	Support	»

http://www.python.org/

Type	Objects
Perhaps	 one	 of	 the	 most	 important	 structures	 of	 the	 Python	 object
system	 is	 the	structure	 that	defines	a	new	 type:	 the	PyTypeObject
structure.	Type	objects	can	be	handled	using	any	of	the	PyObject_*
()	or	PyType_*()	functions,	but	do	not	offer	much	that’s	interesting
to	most	 Python	 applications.	 These	 objects	 are	 fundamental	 to	 how
objects	behave,	so	they	are	very	important	to	the	interpreter	itself	and
to	any	extension	module	that	implements	new	types.

Type	objects	are	fairly	large	compared	to	most	of	the	standard	types.
The	reason	for	the	size	is	that	each	type	object	stores	a	large	number
of	 values,	 mostly	 C	 function	 pointers,	 each	 of	 which	 implements	 a
small	part	of	 the	 type’s	 functionality.	The	 fields	of	 the	 type	object	are
examined	 in	detail	 in	 this	 section.	The	 fields	will	 be	 described	 in	 the
order	in	which	they	occur	in	the	structure.

Typedefs:	 unaryfunc,	 binaryfunc,	 ternaryfunc,	 inquiry,	 intargfunc,
intintargfunc,	intobjargproc,	intintobjargproc,	objobjargproc,	destructor,
freefunc,	 printfunc,	 getattrfunc,	 getattrofunc,	 setattrfunc,	 setattrofunc,
reprfunc,	hashfunc

The	 structure	 definition	 for	 PyTypeObject	 can	 be	 found	 in
Include/object.h.	For	convenience	of	 reference,	 this	repeats	 the
definition	found	there:

typedef	struct	_typeobject	{

				PyObject_VAR_HEAD

				char	*tp_name;	/*	For	printing,	in	format	"<module>.<name>"	*/

				int	tp_basicsize,	tp_itemsize;	/*	For	allocation	*/

				/*	Methods	to	implement	standard	operations	*/

				destructor	tp_dealloc;

				printfunc	tp_print;

				getattrfunc	tp_getattr;

				setattrfunc	tp_setattr;

				void	*tp_reserved;

				reprfunc	tp_repr;

				/*	Method	suites	for	standard	classes	*/

				PyNumberMethods	*tp_as_number;

				PySequenceMethods	*tp_as_sequence;

				PyMappingMethods	*tp_as_mapping;

				/*	More	standard	operations	(here	for	binary	compatibility)	*/

				hashfunc	tp_hash;

				ternaryfunc	tp_call;

				reprfunc	tp_str;

				getattrofunc	tp_getattro;

				setattrofunc	tp_setattro;

				/*	Functions	to	access	object	as	input/output	buffer	*/

				PyBufferProcs	*tp_as_buffer;

				/*	Flags	to	define	presence	of	optional/expanded	features	*/

				long	tp_flags;

				char	*tp_doc;	/*	Documentation	string	*/

				/*	call	function	for	all	accessible	objects	*/

				traverseproc	tp_traverse;

				/*	delete	references	to	contained	objects	*/

				inquiry	tp_clear;

				/*	rich	comparisons	*/

				richcmpfunc	tp_richcompare;

				/*	weak	reference	enabler	*/

				long	tp_weaklistoffset;

				/*	Iterators	*/

				getiterfunc	tp_iter;

				iternextfunc	tp_iternext;

				/*	Attribute	descriptor	and	subclassing	stuff	*/

				struct	PyMethodDef	*tp_methods;

				struct	PyMemberDef	*tp_members;

				struct	PyGetSetDef	*tp_getset;

				struct	_typeobject	*tp_base;

				PyObject	*tp_dict;

				descrgetfunc	tp_descr_get;

				descrsetfunc	tp_descr_set;

				long	tp_dictoffset;

				initproc	tp_init;

				allocfunc	tp_alloc;

				newfunc	tp_new;

				freefunc	tp_free;	/*	Low-level	free-memory	routine	*/

				inquiry	tp_is_gc;	/*	For	PyObject_IS_GC	*/

				PyObject	*tp_bases;

				PyObject	*tp_mro;	/*	method	resolution	order	*/

				PyObject	*tp_cache;

				PyObject	*tp_subclasses;

				PyObject	*tp_weaklist;

				destructor	tp_del;

				/*	Type	attribute	cache	version	tag.	Added	in	version	2.6	*/

				unsigned	int	tp_version_tag;

				destructor	tp_finalize;

}	PyTypeObject;

The	 type	 object	 structure	 extends	 the	 PyVarObject	 structure.	 The
ob_size	 field	 is	 used	 for	 dynamic	 types	 (created	 by	 type_new(),
usually	called	 from	a	class	statement).	Note	 that	PyType_Type	 (the
metatype)	 initializes	 tp_itemsize,	 which	 means	 that	 its	 instances
(i.e.	type	objects)	must	have	the	ob_size	field.

PyObject*	PyObject._ob_next
PyObject*	PyObject._ob_prev

These	fields	are	only	present	when	the	macro	Py_TRACE_REFS	is
defined.	 Their	 initialization	 to	 NULL	 is	 taken	 care	 of	 by	 the
PyObject_HEAD_INIT	 macro.	 For	 statically	 allocated	 objects,
these	 fields	 always	 remain	 NULL.	 For	 dynamically	 allocated
objects,	 these	 two	 fields	are	used	 to	 link	 the	object	 into	a	doubly-
linked	 list	 of	all	 live	 objects	 on	 the	 heap.	 This	 could	 be	 used	 for
various	debugging	purposes;	currently	 the	only	use	 is	 to	print	 the
objects	that	are	still	alive	at	the	end	of	a	run	when	the	environment
variable	PYTHONDUMPREFS	is	set.

These	fields	are	not	inherited	by	subtypes.

Py_ssize_t	PyObject.ob_refcnt
This	 is	 the	 type	 object’s	 reference	 count,	 initialized	 to	 1	 by	 the
PyObject_HEAD_INIT	 macro.	 Note	 that	 for	 statically	 allocated
type	objects,	the	type’s	instances	(objects	whose	ob_type	points
back	 to	 the	 type)	do	not	 count	as	 references.	But	 for	dynamically
allocated	type	objects,	the	instances	do	count	as	references.

This	field	is	not	inherited	by	subtypes.

PyTypeObject*	PyObject.ob_type
This	 is	 the	type’s	 type,	 in	other	words	 its	metatype.	 It	 is	 initialized

by	 the	 argument	 to	 the	 PyObject_HEAD_INIT	 macro,	 and	 its
value	 should	 normally	 be	 &PyType_Type.	 However,	 for
dynamically	 loadable	 extension	 modules	 that	 must	 be	 usable	 on
Windows	(at	 least),	 the	compiler	complains	 that	 this	 is	not	a	valid
initializer.	 Therefore,	 the	 convention	 is	 to	 pass	 NULL	 to	 the
PyObject_HEAD_INIT	macro	and	 to	 initialize	 this	 field	explicitly
at	 the	 start	 of	 the	 module’s	 initialization	 function,	 before	 doing
anything	else.	This	is	typically	done	like	this:

Foo_Type.ob_type	=	&PyType_Type;

This	should	be	done	before	any	instances	of	the	type	are	created.
PyType_Ready()	 checks	 if	 ob_type	 is	 NULL,	 and	 if	 so,
initializes	 it	 to	 the	 ob_type	 field	 of	 the	 base	 class.
PyType_Ready()	will	not	change	this	field	if	it	is	non-zero.

This	field	is	inherited	by	subtypes.

Py_ssize_t	PyVarObject.ob_size
For	 statically	 allocated	 type	 objects,	 this	 should	 be	 initialized	 to
zero.	For	dynamically	allocated	type	objects,	this	field	has	a	special
internal	meaning.

This	field	is	not	inherited	by	subtypes.

char*	PyTypeObject.tp_name
Pointer	to	a	NUL-terminated	string	containing	the	name	of	the	type.
For	types	that	are	accessible	as	module	globals,	the	string	should
be	 the	 full	module	 name,	 followed	by	a	 dot,	 followed	by	 the	 type
name;	 for	 built-in	 types,	 it	 should	 be	 just	 the	 type	 name.	 If	 the
module	is	a	submodule	of	a	package,	the	full	package	name	is	part
of	the	full	module	name.	For	example,	a	type	named	T	defined	 in

module	 M	 in	 subpackage	 Q	 in	 package	 P	 should	 have	 the
tp_name	initializer	"P.Q.M.T".

For	dynamically	allocated	type	objects,	this	should	just	be	the	type
name,	and	the	module	name	explicitly	stored	in	the	type	dict	as	the
value	for	key	'__module__'.

For	 statically	 allocated	 type	 objects,	 the	 tp_name	 field	 should
contain	a	dot.	Everything	before	the	last	dot	is	made	accessible	as
the	 __module__	 attribute,	 and	 everything	 after	 the	 last	 dot	 is
made	accessible	as	the	__name__	attribute.

If	no	dot	is	present,	the	entire	tp_name	field	is	made	accessible	as
the	 __name__	 attribute,	 and	 the	 __module__	 attribute	 is
undefined	 (unless	 explicitly	 set	 in	 the	 dictionary,	 as	 explained
above).	This	means	your	type	will	be	impossible	to	pickle.

This	field	is	not	inherited	by	subtypes.

Py_ssize_t	PyTypeObject.tp_basicsize
Py_ssize_t	PyTypeObject.tp_itemsize

These	fields	allow	calculating	the	size	 in	bytes	of	 instances	of	the
type.

There	 are	 two	 kinds	 of	 types:	 types	 with	 fixed-length	 instances
have	 a	 zero	 tp_itemsize	 field,	 types	 with	 variable-length
instances	 have	 a	 non-zero	 tp_itemsize	 field.	 For	 a	 type	 with
fixed-length	 instances,	all	 instances	have	 the	same	size,	given	 in
tp_basicsize.

For	a	type	with	variable-length	instances,	the	instances	must	have
an	ob_size	field,	and	the	instance	size	is	tp_basicsize	plus	N
times	 tp_itemsize,	 where	 N	 is	 the	 “length”	 of	 the	 object.	 The

value	of	N	is	typically	stored	in	the	instance’s	ob_size	field.	There
are	 exceptions:	 for	 example,	 ints	 use	 a	 negative	 ob_size	 to
indicate	a	negative	number,	and	N	is	abs(ob_size)	there.	Also,
the	 presence	 of	 an	 ob_size	 field	 in	 the	 instance	 layout	 doesn’t
mean	 that	 the	 instance	 structure	 is	 variable-length	 (for	 example,
the	structure	 for	 the	 list	 type	has	fixed-length	 instances,	yet	 those
instances	have	a	meaningful	ob_size	field).

The	basic	size	 includes	 the	 fields	 in	 the	 instance	declared	by	 the
macro	 PyObject_HEAD	 or	 PyObject_VAR_HEAD	 (whichever	 is
used	 to	 declare	 the	 instance	 struct)	 and	 this	 in	 turn	 includes	 the
_ob_prev	and	_ob_next	 fields	 if	 they	are	present.	This	means
that	 the	 only	 correct	 way	 to	 get	 an	 initializer	 for	 the
tp_basicsize	is	to	use	the	sizeof	operator	on	the	struct	used
to	declare	the	instance	layout.	The	basic	size	does	not	include	the
GC	header	size.

These	fields	are	inherited	separately	by	subtypes.	If	the	base	type
has	 a	 non-zero	 tp_itemsize,	 it	 is	 generally	 not	 safe	 to	 set
tp_itemsize	 to	a	different	non-zero	value	 in	a	subtype	 (though
this	depends	on	the	implementation	of	the	base	type).

A	 note	 about	 alignment:	 if	 the	 variable	 items	 require	 a	 particular
alignment,	 this	 should	 be	 taken	 care	 of	 by	 the	 value	 of
tp_basicsize.	Example:	suppose	a	type	implements	an	array	of
double.	 tp_itemsize	 is	 sizeof(double).	 It	 is	 the
programmer’s	 responsibility	 that	 tp_basicsize	 is	 a	 multiple	 of
sizeof(double)	(assuming	this	is	the	alignment	requirement	for
double).

destructor	PyTypeObject.tp_dealloc
A	pointer	to	the	instance	destructor	function.	This	function	must	be

defined	unless	the	type	guarantees	that	its	instances	will	never	be
deallocated	 (as	 is	 the	 case	 for	 the	 singletons	 None	 and
Ellipsis).

The	 destructor	 function	 is	 called	 by	 the	 Py_DECREF()	 and
Py_XDECREF()	macros	when	the	new	reference	count	is	zero.	At
this	 point,	 the	 instance	 is	 still	 in	 existence,	 but	 there	 are	 no
references	to	 it.	The	destructor	 function	should	 free	all	 references
which	 the	 instance	 owns,	 free	 all	 memory	 buffers	 owned	 by	 the
instance	(using	the	freeing	function	corresponding	to	the	allocation
function	used	to	allocate	 the	buffer),	and	finally	(as	 its	 last	action)
call	 the	 type’s	 tp_free	 function.	 If	 the	 type	 is	 not	 subtypable
(doesn’t	 have	 the	 Py_TPFLAGS_BASETYPE	 flag	 bit	 set),	 it	 is
permissible	 to	 call	 the	 object	 deallocator	 directly	 instead	 of	 via
tp_free.	 The	 object	 deallocator	 should	 be	 the	 one	 used	 to
allocate	 the	 instance;	 this	 is	 normally	 PyObject_Del()	 if	 the
instance	 was	 allocated	 using	 PyObject_New()	 or
PyObject_VarNew(),	 or	 PyObject_GC_Del()	 if	 the	 instance
was	 allocated	 using	 PyObject_GC_New()	 or
PyObject_GC_NewVar().

This	field	is	inherited	by	subtypes.

printfunc	PyTypeObject.tp_print
An	optional	pointer	to	the	instance	print	function.

The	print	 function	 is	only	called	when	 the	 instance	 is	printed	 to	a
real	 file;	when	 it	 is	 printed	 to	a	pseudo-file	 (like	a	 io.StringIO
instance),	the	instance’s	tp_repr	or	tp_str	function	is	called	to
convert	 it	 to	 a	 string.	 These	 are	 also	 called	 when	 the	 type’s
tp_print	 field	 is	 NULL.	 A	 type	 should	 never	 implement
tp_print	 in	a	way	that	produces	different	output	 than	tp_repr

or	tp_str	would.

The	 print	 function	 is	 called	 with	 the	 same	 signature	 as
PyObject_Print():	 int	 tp_print(PyObject	 *self,

FILE	*file,	int	flags).	The	self	argument	is	the	instance	to
be	 printed.	 The	 file	 argument	 is	 the	 stdio	 file	 to	which	 it	 is	 to	 be
printed.	The	flags	argument	is	composed	of	flag	bits.	The	only	flag
bit	currently	defined	is	Py_PRINT_RAW.	When	the	Py_PRINT_RAW
flag	 bit	 is	 set,	 the	 instance	 should	 be	 printed	 the	 same	 way	 as
tp_str	would	format	it;	when	the	Py_PRINT_RAW	flag	bit	is	clear,
the	 instance	should	be	printed	 the	same	way	as	tp_repr	would
format	it.	It	should	return	-1	and	set	an	exception	condition	when
an	error	occurs.

It	 is	 possible	 that	 the	 tp_print	 field	 will	 be	 deprecated.	 In	 any
case,	 it	 is	 recommended	not	 to	 define	 tp_print,	 but	 instead	 to
rely	on	tp_repr	and	tp_str	for	printing.

This	field	is	inherited	by	subtypes.

getattrfunc	PyTypeObject.tp_getattr
An	optional	pointer	to	the	get-attribute-string	function.

This	 field	 is	 deprecated.	When	 it	 is	 defined,	 it	 should	 point	 to	 a
function	 that	 acts	 the	 same	 as	 the	 tp_getattro	 function,	 but
taking	 a	 C	 string	 instead	 of	 a	 Python	 string	 object	 to	 give	 the
attribute	 name.	 The	 signature	 is	 the	 same	 as	 for
PyObject_GetAttrString().

This	 field	 is	 inherited	by	subtypes	 together	with	tp_getattro:	 a
subtype	 inherits	 both	 tp_getattr	 and	 tp_getattro	 from	 its
base	 type	 when	 the	 subtype’s	 tp_getattr	 and	 tp_getattro

are	both	NULL.

setattrfunc	PyTypeObject.tp_setattr
An	optional	pointer	to	the	set-attribute-string	function.

This	 field	 is	 deprecated.	When	 it	 is	 defined,	 it	 should	 point	 to	 a
function	 that	 acts	 the	 same	 as	 the	 tp_setattro	 function,	 but
taking	 a	 C	 string	 instead	 of	 a	 Python	 string	 object	 to	 give	 the
attribute	 name.	 The	 signature	 is	 the	 same	 as	 for
PyObject_SetAttrString().

This	 field	 is	 inherited	by	subtypes	 together	with	tp_setattro:	 a
subtype	 inherits	 both	 tp_setattr	 and	 tp_setattro	 from	 its
base	 type	 when	 the	 subtype’s	 tp_setattr	 and	 tp_setattro
are	both	NULL.

void*	PyTypeObject.tp_reserved
Reserved	slot,	formerly	known	as	tp_compare.

reprfunc	PyTypeObject.tp_repr
An	 optional	 pointer	 to	 a	 function	 that	 implements	 the	 built-in
function	repr().

The	 signature	 is	 the	 same	 as	 for	 PyObject_Repr();	 it	 must
return	 a	 string	 or	 a	 Unicode	 object.	 Ideally,	 this	 function	 should
return	 a	 string	 that,	 when	 passed	 to	 eval(),	 given	 a	 suitable
environment,	 returns	 an	 object	with	 the	 same	 value.	 If	 this	 is	not
feasible,	it	should	return	a	string	starting	with	'<'	and	ending	with
'>'	 from	which	both	 the	 type	and	 the	value	of	 the	object	can	be
deduced.

When	 this	 field	 is	 not	 set,	 a	 string	 of	 the	 form	 <%s	object	at
%p>	 is	 returned,	where	%s	 is	 replaced	by	 the	 type	name,	and	%p

by	the	object’s	memory	address.

This	field	is	inherited	by	subtypes.

PyNumberMethods*	tp_as_number
Pointer	 to	an	additional	structure	 that	contains	 fields	relevant	only
to	objects	which	 implement	 the	number	protocol.	These	fields	are
documented	in	Number	Object	Structures.

The	tp_as_number	 field	 is	not	 inherited,	but	the	contained	fields
are	inherited	individually.

PySequenceMethods*	tp_as_sequence
Pointer	 to	an	additional	structure	 that	contains	 fields	relevant	only
to	objects	which	implement	the	sequence	protocol.	These	fields	are
documented	in	Sequence	Object	Structures.

The	 tp_as_sequence	 field	 is	 not	 inherited,	 but	 the	 contained
fields	are	inherited	individually.

PyMappingMethods*	tp_as_mapping
Pointer	 to	an	additional	structure	 that	contains	 fields	relevant	only
to	objects	which	implement	the	mapping	protocol.	These	fields	are
documented	in	Mapping	Object	Structures.

The	tp_as_mapping	field	is	not	inherited,	but	the	contained	fields
are	inherited	individually.

hashfunc	PyTypeObject.tp_hash
An	 optional	 pointer	 to	 a	 function	 that	 implements	 the	 built-in
function	hash().

The	 signature	 is	 the	 same	 as	 for	 PyObject_Hash();	 it	 must
return	a	value	of	the	type	Py_hash_t.	The	value	-1	should	not	be

returned	as	a	normal	return	value;	when	an	error	occurs	during	the
computation	 of	 the	 hash	 value,	 the	 function	 should	 set	 an
exception	and	return	-1.

This	 field	 can	 be	 set	 explicitly	 to
PyObject_HashNotImplemented()	 to	block	 inheritance	of	 the
hash	 method	 from	 a	 parent	 type.	 This	 is	 interpreted	 as	 the
equivalent	 of	 __hash__	 =	 None	 at	 the	 Python	 level,	 causing
isinstance(o,	collections.Hashable)	 to	 correctly	 return
False.	Note	that	the	converse	is	also	true	-	setting	__hash__	=
None	on	a	class	at	the	Python	level	will	result	in	the	tp_hash	slot
being	set	to	PyObject_HashNotImplemented().

When	this	field	is	not	set,	an	attempt	to	take	the	hash	of	the	object
raises	TypeError.

This	field	is	inherited	by	subtypes	together	with	tp_richcompare:
a	subtype	inherits	both	of	tp_richcompare	and	tp_hash,	when
the	subtype’s	tp_richcompare	and	tp_hash	are	both	NULL.

ternaryfunc	PyTypeObject.tp_call
An	optional	pointer	to	a	function	that	implements	calling	the	object.
This	should	be	NULL	 if	 the	object	 is	not	callable.	The	signature	is
the	same	as	for	PyObject_Call().

This	field	is	inherited	by	subtypes.

reprfunc	PyTypeObject.tp_str
An	 optional	 pointer	 to	 a	 function	 that	 implements	 the	 built-in
operation	str().	 (Note	 that	str	 is	a	 type	now,	and	str()	 calls
the	 constructor	 for	 that	 type.	 This	 constructor	 calls
PyObject_Str()	 to	do	 the	actual	work,	and	PyObject_Str()

will	call	this	handler.)

The	signature	is	the	same	as	for	PyObject_Str();	it	must	return
a	string	or	a	Unicode	object.	This	function	should	return	a	“friendly”
string	representation	of	the	object,	as	this	is	the	representation	that
will	be	used,	among	other	things,	by	the	print()	function.

When	this	field	is	not	set,	PyObject_Repr()	is	called	to	return	a
string	representation.

This	field	is	inherited	by	subtypes.

getattrofunc	PyTypeObject.tp_getattro
An	optional	pointer	to	the	get-attribute	function.

The	 signature	 is	 the	 same	 as	 for	 PyObject_GetAttr().	 It	 is
usually	 convenient	 to	 set	 this	 field	 to
PyObject_GenericGetAttr(),	 which	 implements	 the	 normal
way	of	looking	for	object	attributes.

This	 field	 is	 inherited	 by	 subtypes	 together	 with	 tp_getattr:	 a
subtype	 inherits	 both	 tp_getattr	 and	 tp_getattro	 from	 its
base	 type	 when	 the	 subtype’s	 tp_getattr	 and	 tp_getattro
are	both	NULL.

setattrofunc	PyTypeObject.tp_setattro
An	optional	pointer	to	the	set-attribute	function.

The	 signature	 is	 the	 same	 as	 for	 PyObject_SetAttr().	 It	 is
usually	 convenient	 to	 set	 this	 field	 to
PyObject_GenericSetAttr(),	 which	 implements	 the	 normal
way	of	setting	object	attributes.

This	 field	 is	 inherited	 by	 subtypes	 together	 with	 tp_setattr:	 a
subtype	 inherits	 both	 tp_setattr	 and	 tp_setattro	 from	 its
base	 type	 when	 the	 subtype’s	 tp_setattr	 and	 tp_setattro
are	both	NULL.

PyBufferProcs*	PyTypeObject.tp_as_buffer
Pointer	 to	an	additional	structure	 that	contains	 fields	relevant	only
to	 objects	 which	 implement	 the	 buffer	 interface.	 These	 fields	 are
documented	in	Buffer	Object	Structures.

The	tp_as_buffer	 field	 is	not	 inherited,	but	the	contained	fields
are	inherited	individually.

long	PyTypeObject.tp_flags
This	field	is	a	bit	mask	of	various	flags.	Some	flags	indicate	variant
semantics	 for	 certain	 situations;	 others	 are	 used	 to	 indicate	 that
certain	 fields	 in	 the	 type	 object	 (or	 in	 the	 extension	 structures
referenced	 via	 tp_as_number,	 tp_as_sequence,
tp_as_mapping,	and	tp_as_buffer)	 that	were	historically	not
always	present	are	valid;	if	such	a	flag	bit	is	clear,	the	type	fields	it
guards	must	not	be	accessed	and	must	be	considered	 to	have	a
zero	or	NULL	value	instead.

Inheritance	of	this	field	 is	complicated.	Most	flag	bits	are	inherited
individually,	 i.e.	 if	 the	 base	 type	 has	 a	 flag	 bit	 set,	 the	 subtype
inherits	 this	 flag	 bit.	 The	 flag	 bits	 that	 pertain	 to	 extension
structures	 are	 strictly	 inherited	 if	 the	 extension	 structure	 is
inherited,	i.e.	the	base	type’s	value	of	the	flag	bit	is	copied	into	the
subtype	 together	 with	 a	 pointer	 to	 the	 extension	 structure.	 The
Py_TPFLAGS_HAVE_GC	 flag	 bit	 is	 inherited	 together	 with	 the
tp_traverse	 and	 tp_clear	 fields,	 i.e.	 if	 the
Py_TPFLAGS_HAVE_GC	 flag	 bit	 is	 clear	 in	 the	 subtype	 and	 the

tp_traverse	and	tp_clear	fields	in	the	subtype	exist	and	have
NULL	values.

The	following	bit	masks	are	currently	defined;	these	can	be	ORed
together	using	the	|	operator	 to	 form	the	value	of	 the	tp_flags
field.	The	macro	PyType_HasFeature()	takes	a	type	and	a	flags
value,	tp	and	f,	and	checks	whether	tp->tp_flags	&	f	 is	non-
zero.

Py_TPFLAGS_HEAPTYPE

This	 bit	 is	 set	 when	 the	 type	 object	 itself	 is	 allocated	 on	 the
heap.	 In	 this	 case,	 the	 ob_type	 field	 of	 its	 instances	 is
considered	 a	 reference	 to	 the	 type,	 and	 the	 type	 object	 is
INCREF’ed	when	a	new	 instance	 is	 created,	and	DECREF’ed
when	an	instance	is	destroyed	(this	does	not	apply	to	instances
of	subtypes;	only	the	type	referenced	by	the	instance’s	ob_type
gets	INCREF’ed	or	DECREF’ed).

Py_TPFLAGS_BASETYPE

This	bit	 is	set	when	 the	 type	can	be	used	as	 the	base	 type	of
another	 type.	 If	 this	 bit	 is	 clear,	 the	 type	 cannot	 be	 subtyped
(similar	to	a	“final”	class	in	Java).

Py_TPFLAGS_READY

This	bit	is	set	when	the	type	object	has	been	fully	initialized	by
PyType_Ready().

Py_TPFLAGS_READYING

This	 bit	 is	 set	 while	 PyType_Ready()	 is	 in	 the	 process	 of
initializing	the	type	object.

Py_TPFLAGS_HAVE_GC

This	 bit	 is	 set	when	 the	 object	 supports	 garbage	 collection.	 If

this	 bit	 is	 set,	 instances	 must	 be	 created	 using
PyObject_GC_New()	 and	 destroyed	 using
PyObject_GC_Del().	More	information	in	section	Supporting
Cyclic	 Garbage	 Collection.	 This	 bit	 also	 implies	 that	 the	 GC-
related	fields	tp_traverse	and	tp_clear	are	present	in	the
type	object.

Py_TPFLAGS_DEFAULT

This	 is	a	bitmask	of	all	 the	bits	 that	pertain	 to	 the	existence	of
certain	 fields	 in	 the	 type	 object	 and	 its	 extension	 structures.
Currently,	 it	 includes	 the	 following	 bits:
Py_TPFLAGS_HAVE_STACKLESS_EXTENSION,
Py_TPFLAGS_HAVE_VERSION_TAG.

Py_TPFLAGS_HAVE_FINALIZE

This	 bit	 is	 set	 when	 the	 tp_finalize	 slot	 is	 present	 in	 the
type	structure.

New	in	version	3.4.

char*	PyTypeObject.tp_doc
An	 optional	 pointer	 to	 a	 NUL-terminated	 C	 string	 giving	 the
docstring	 for	 this	 type	 object.	 This	 is	 exposed	 as	 the	 __doc__
attribute	on	the	type	and	instances	of	the	type.

This	field	is	not	inherited	by	subtypes.

traverseproc	PyTypeObject.tp_traverse
An	optional	pointer	to	a	traversal	function	for	the	garbage	collector.
This	is	only	used	if	the	Py_TPFLAGS_HAVE_GC	flag	bit	is	set.	More
information	 about	 Python’s	 garbage	 collection	 scheme	 can	 be
found	in	section	Supporting	Cyclic	Garbage	Collection.

The	 tp_traverse	 pointer	 is	 used	 by	 the	 garbage	 collector	 to
detect	 reference	 cycles.	 A	 typical	 implementation	 of	 a
tp_traverse	 function	simply	calls	Py_VISIT()	on	each	of	 the
instance’s	members	 that	are	Python	objects.	For	example,	 this	 is
function	 local_traverse()	 from	 the	 _thread	 extension
module:

static	int

local_traverse(localobject	*self,	visitproc	visit,

{

				Py_VISIT(self->args);

				Py_VISIT(self->kw);

				Py_VISIT(self->dict);

				return	0;

}

Note	that	Py_VISIT()	 is	called	only	on	those	members	 that	can
participate	 in	 reference	 cycles.	 Although	 there	 is	 also	 a	 self-
>key	 member,	 it	 can	 only	 be	 NULL	 or	 a	 Python	 string	 and
therefore	cannot	be	part	of	a	reference	cycle.

On	the	other	hand,	even	if	you	know	a	member	can	never	be	part
of	a	cycle,	as	a	debugging	aid	you	may	want	to	visit	it	anyway	just
so	the	gc	module’s	get_referents()	function	will	include	it.

Note	 that	 Py_VISIT()	 requires	 the	 visit	 and	 arg	 parameters	 to
local_traverse()	 to	 have	 these	 specific	 names;	 don’t	 name
them	just	anything.

This	field	is	inherited	by	subtypes	together	with	tp_clear	and	the
Py_TPFLAGS_HAVE_GC	 flag	 bit:	 the	 flag	 bit,	 tp_traverse,	 and
tp_clear	are	all	inherited	from	the	base	type	if	they	are	all	zero	in

the	subtype.

inquiry	PyTypeObject.tp_clear
An	 optional	 pointer	 to	 a	 clear	 function	 for	 the	 garbage	 collector.
This	is	only	used	if	the	Py_TPFLAGS_HAVE_GC	flag	bit	is	set.

The	tp_clear	member	function	is	used	to	break	reference	cycles
in	 cyclic	 garbage	 detected	 by	 the	 garbage	 collector.	 Taken
together,	 all	 tp_clear	 functions	 in	 the	 system	must	 combine	 to
break	all	reference	cycles.	This	is	subtle,	and	if	in	any	doubt	supply
a	 tp_clear	 function.	 For	 example,	 the	 tuple	 type	 does	 not
implement	 a	 tp_clear	 function,	 because	 it’s	 possible	 to	 prove
that	 no	 reference	 cycle	 can	 be	 composed	 entirely	 of	 tuples.
Therefore	 the	 tp_clear	 functions	 of	 other	 types	 must	 be
sufficient	 to	 break	 any	 cycle	 containing	 a	 tuple.	 This	 isn’t
immediately	 obvious,	 and	 there’s	 rarely	 a	 good	 reason	 to	 avoid
implementing	tp_clear.

Implementations	 of	 tp_clear	 should	 drop	 the	 instance’s
references	 to	 those	 of	 its	 members	 that	 may	 be	 Python	 objects,
and	set	its	pointers	to	those	members	to	NULL,	as	in	the	following
example:

static	int

local_clear(localobject	*self)

{

				Py_CLEAR(self->key);

				Py_CLEAR(self->args);

				Py_CLEAR(self->kw);

				Py_CLEAR(self->dict);

				return	0;

}

The	 Py_CLEAR()	 macro	 should	 be	 used,	 because	 clearing
references	 is	delicate:	 the	 reference	 to	 the	contained	object	must
not	be	decremented	until	after	the	pointer	to	the	contained	object	is
set	 to	NULL.	 This	 is	 because	 decrementing	 the	 reference	 count
may	cause	the	contained	object	to	become	trash,	triggering	a	chain
of	 reclamation	 activity	 that	may	 include	 invoking	 arbitrary	 Python
code	 (due	 to	 finalizers,	 or	weakref	 callbacks,	 associated	with	 the
contained	 object).	 If	 it’s	 possible	 for	 such	 code	 to	 reference	 self
again,	 it’s	 important	 that	 the	 pointer	 to	 the	 contained	 object	 be
NULL	at	that	time,	so	that	self	knows	the	contained	object	can	no
longer	be	used.	The	Py_CLEAR()	macro	performs	the	operations
in	a	safe	order.

Because	 the	 goal	 of	 tp_clear	 functions	 is	 to	 break	 reference
cycles,	 it’s	 not	 necessary	 to	 clear	 contained	 objects	 like	 Python
strings	 or	 Python	 integers,	 which	 can’t	 participate	 in	 reference
cycles.	 On	 the	 other	 hand,	 it	 may	 be	 convenient	 to	 clear	 all
contained	 Python	 objects,	 and	 write	 the	 type’s	 tp_dealloc
function	to	invoke	tp_clear.

More	 information	 about	 Python’s	 garbage	 collection	 scheme	 can
be	found	in	section	Supporting	Cyclic	Garbage	Collection.

This	field	is	inherited	by	subtypes	together	with	tp_traverse	and
the	 Py_TPFLAGS_HAVE_GC	 flag	 bit:	 the	 flag	 bit,	 tp_traverse,
and	tp_clear	are	all	 inherited	 from	 the	base	 type	 if	 they	are	all
zero	in	the	subtype.

richcmpfunc	PyTypeObject.tp_richcompare
An	 optional	 pointer	 to	 the	 rich	 comparison	 function,	 whose
signature	 is	 PyObject	 *tp_richcompare(PyObject	 *a,

PyObject	*b,	int	op).

The	 function	 should	 return	 the	 result	 of	 the	 comparison	 (usually
Py_True	 or	 Py_False).	 If	 the	 comparison	 is	 undefined,	 it	must
return	 Py_NotImplemented,	 if	 another	 error	 occurred	 it	 must
return	NULL	and	set	an	exception	condition.

Note: 	 If	 you	want	 to	 implement	a	 type	 for	which	only	a	 limited
set	of	comparisons	makes	sense	(e.g.	==	and	!=,	but	not	<	and
friends),	 directly	 raise	 TypeError	 in	 the	 rich	 comparison
function.

This	 field	 is	 inherited	 by	 subtypes	 together	 with	 tp_hash:	 a
subtype	 inherits	 tp_richcompare	 and	 tp_hash	 when	 the
subtype’s	tp_richcompare	and	tp_hash	are	both	NULL.

The	 following	 constants	 are	 defined	 to	 be	 used	 as	 the	 third
argument	 for	 tp_richcompare	 and	 for
PyObject_RichCompare():

Constant Comparison

Py_LT <

Py_LE <=

Py_EQ ==

Py_NE !=

Py_GT >

Py_GE >=

long	PyTypeObject.tp_weaklistoffset
If	 the	 instances	of	 this	 type	are	weakly	 referenceable,	 this	 field	 is
greater	 than	zero	and	contains	 the	offset	 in	 the	 instance	structure
of	 the	 weak	 reference	 list	 head	 (ignoring	 the	 GC	 header,	 if

present);	 this	 offset	 is	 used	 by	 PyObject_ClearWeakRefs()
and	the	PyWeakref_*()	functions.	The	instance	structure	needs
to	include	a	field	of	type	PyObject*	which	is	initialized	to	NULL.

Do	not	confuse	 this	 field	with	tp_weaklist;	 that	 is	 the	 list	head
for	weak	references	to	the	type	object	itself.

This	field	is	inherited	by	subtypes,	but	see	the	rules	listed	below.	A
subtype	may	override	this	offset;	this	means	that	the	subtype	uses
a	different	weak	reference	 list	head	than	the	base	type.	Since	the
list	 head	 is	 always	 found	 via	 tp_weaklistoffset,	 this	 should
not	be	a	problem.

When	 a	 type	 defined	 by	 a	 class	 statement	 has	 no	 __slots__
declaration,	and	none	of	 its	base	 types	are	weakly	 referenceable,
the	type	is	made	weakly	referenceable	by	adding	a	weak	reference
list	 head	 slot	 to	 the	 instance	 layout	 and	 setting	 the
tp_weaklistoffset	of	that	slot’s	offset.

When	 a	 type’s	 __slots__	 declaration	 contains	 a	 slot	 named
__weakref__,	that	slot	becomes	the	weak	reference	list	head	for
instances	 of	 the	 type,	 and	 the	 slot’s	 offset	 is	 stored	 in	 the	 type’s
tp_weaklistoffset.

When	 a	 type’s	 __slots__	 declaration	 does	 not	 contain	 a	 slot
named	__weakref__,	the	type	inherits	its	tp_weaklistoffset
from	its	base	type.

getiterfunc	PyTypeObject.tp_iter
An	 optional	 pointer	 to	 a	 function	 that	 returns	 an	 iterator	 for	 the
object.	Its	presence	normally	signals	that	the	instances	of	this	type
are	 iterable	 (although	 sequences	 may	 be	 iterable	 without	 this

function).

This	function	has	the	same	signature	as	PyObject_GetIter().

This	field	is	inherited	by	subtypes.

iternextfunc	PyTypeObject.tp_iternext
An	 optional	 pointer	 to	 a	 function	 that	 returns	 the	 next	 item	 in	 an
iterator.	 When	 the	 iterator	 is	 exhausted,	 it	 must	 return	 NULL;	 a
StopIteration	exception	may	or	may	not	be	set.	When	another
error	occurs,	it	must	return	NULL	too.	Its	presence	signals	that	the
instances	of	this	type	are	iterators.

Iterator	 types	 should	 also	 define	 the	 tp_iter	 function,	 and	 that
function	should	return	the	iterator	instance	itself	(not	a	new	iterator
instance).

This	function	has	the	same	signature	as	PyIter_Next().

This	field	is	inherited	by	subtypes.

struct	PyMethodDef*	PyTypeObject.tp_methods
An	 optional	 pointer	 to	 a	 static	 NULL-terminated	 array	 of
PyMethodDef	structures,	declaring	regular	methods	of	this	type.

For	 each	 entry	 in	 the	 array,	 an	 entry	 is	 added	 to	 the	 type’s
dictionary	(see	tp_dict	below)	containing	a	method	descriptor.

This	 field	 is	 not	 inherited	 by	 subtypes	 (methods	 are	 inherited
through	a	different	mechanism).

struct	PyMemberDef*	PyTypeObject.tp_members
An	 optional	 pointer	 to	 a	 static	 NULL-terminated	 array	 of
PyMemberDef	 structures,	declaring	 regular	data	members	 (fields

or	slots)	of	instances	of	this	type.

For	 each	 entry	 in	 the	 array,	 an	 entry	 is	 added	 to	 the	 type’s
dictionary	(see	tp_dict	below)	containing	a	member	descriptor.

This	 field	 is	 not	 inherited	 by	 subtypes	 (members	 are	 inherited
through	a	different	mechanism).

struct	PyGetSetDef*	PyTypeObject.tp_getset
An	 optional	 pointer	 to	 a	 static	 NULL-terminated	 array	 of
PyGetSetDef	 structures,	 declaring	 computed	 attributes	 of
instances	of	this	type.

For	 each	 entry	 in	 the	 array,	 an	 entry	 is	 added	 to	 the	 type’s
dictionary	(see	tp_dict	below)	containing	a	getset	descriptor.

This	 field	 is	 not	 inherited	 by	 subtypes	 (computed	 attributes	 are
inherited	through	a	different	mechanism).

Docs	for	PyGetSetDef:

typedef	PyObject	*(*getter)(PyObject	*,	void	*);

typedef	int	(*setter)(PyObject	*,	PyObject	*,	void

typedef	struct	PyGetSetDef	{

				char	*name;				/*	attribute	name	*/

				getter	get;				/*	C	function	to	get	the	attribute	*/

				setter	set;				/*	C	function	to	set	the	attribute	*/

				char	*doc;					/*	optional	doc	string	*/

				void	*closure;	/*	optional	additional	data	for	getter	and	setter	*/

}	PyGetSetDef;

PyTypeObject*	PyTypeObject.tp_base
An	optional	pointer	 to	a	base	 type	 from	which	 type	properties	are

inherited.	At	this	level,	only	single	inheritance	is	supported;	multiple
inheritance	require	dynamically	creating	a	type	object	by	calling	the
metatype.

This	field	is	not	inherited	by	subtypes	(obviously),	but	it	defaults	to
&PyBaseObject_Type	 (which	 to	Python	programmers	 is	 known
as	the	type	object).

PyObject*	PyTypeObject.tp_dict
The	type’s	dictionary	is	stored	here	by	PyType_Ready().

This	 field	 should	 normally	 be	 initialized	 to	 NULL	 before
PyType_Ready	 is	 called;	 it	may	 also	 be	 initialized	 to	 a	 dictionary
containing	 initial	 attributes	 for	 the	 type.	 Once	 PyType_Ready()
has	initialized	the	type,	extra	attributes	for	the	type	may	be	added
to	 this	 dictionary	 only	 if	 they	 don’t	 correspond	 to	 overloaded
operations	(like	__add__()).

This	field	is	not	inherited	by	subtypes	(though	the	attributes	defined
in	here	are	inherited	through	a	different	mechanism).

Warning: 	 It	 is	 not	 safe	 to	 use	 PyDict_SetItem()	 on	 or
otherwise	modify	tp_dict	with	the	dictionary	C-API.

descrgetfunc	PyTypeObject.tp_descr_get
An	optional	pointer	to	a	“descriptor	get”	function.

The	function	signature	is

PyObject	*	tp_descr_get(PyObject	*self,	PyObject	*

This	field	is	inherited	by	subtypes.

descrsetfunc	PyTypeObject.tp_descr_set
An	optional	pointer	to	a	“descriptor	set”	function.

The	function	signature	is

int	tp_descr_set(PyObject	*self,	PyObject	*obj,	PyObject

This	field	is	inherited	by	subtypes.

long	PyTypeObject.tp_dictoffset
If	 the	 instances	of	 this	 type	have	a	dictionary	containing	 instance
variables,	 this	 field	 is	 non-zero	 and	 contains	 the	 offset	 in	 the
instances	of	the	type	of	the	instance	variable	dictionary;	this	offset
is	used	by	PyObject_GenericGetAttr().

Do	not	 confuse	 this	 field	with	 tp_dict;	 that	 is	 the	 dictionary	 for
attributes	of	the	type	object	itself.

If	 the	value	of	 this	 field	 is	greater	 than	zero,	 it	specifies	 the	offset
from	 the	 start	 of	 the	 instance	 structure.	 If	 the	 value	 is	 less	 than
zero,	it	specifies	the	offset	from	the	end	of	the	instance	structure.	A
negative	offset	is	more	expensive	to	use,	and	should	only	be	used
when	the	instance	structure	contains	a	variable-length	part.	This	is
used	 for	 example	 to	 add	 an	 instance	 variable	 dictionary	 to
subtypes	 of	 str	 or	 tuple.	 Note	 that	 the	 tp_basicsize	 field
should	 account	 for	 the	 dictionary	 added	 to	 the	 end	 in	 that	 case,
even	 though	 the	 dictionary	 is	 not	 included	 in	 the	 basic	 object
layout.	 On	 a	 system	 with	 a	 pointer	 size	 of	 4	 bytes,
tp_dictoffset	should	be	set	to	-4	to	indicate	that	the	dictionary
is	at	the	very	end	of	the	structure.

The	 real	dictionary	offset	 in	an	 instance	can	be	computed	 from	a

negative	tp_dictoffset	as	follows:

dictoffset	=	tp_basicsize	+	abs(ob_size)*tp_itemsize

if	dictoffset	is	not	aligned	on	sizeof(void*):

				round	up	to	sizeof(void*)

where	tp_basicsize,	tp_itemsize	and	tp_dictoffset	are
taken	 from	 the	 type	 object,	 and	 ob_size	 is	 taken	 from	 the
instance.	The	absolute	value	is	taken	because	ints	use	the	sign	of
ob_size	to	store	the	sign	of	the	number.	(There’s	never	a	need	to
do	 this	 calculation	 yourself;	 it	 is	 done	 for	 you	 by
_PyObject_GetDictPtr().)

This	field	is	inherited	by	subtypes,	but	see	the	rules	listed	below.	A
subtype	 may	 override	 this	 offset;	 this	 means	 that	 the	 subtype
instances	store	 the	dictionary	at	a	difference	offset	 than	 the	base
type.	Since	 the	 dictionary	 is	 always	 found	 via	 tp_dictoffset,
this	should	not	be	a	problem.

When	 a	 type	 defined	 by	 a	 class	 statement	 has	 no	 __slots__
declaration,	 and	 none	 of	 its	 base	 types	 has	 an	 instance	 variable
dictionary,	a	dictionary	slot	is	added	to	the	instance	layout	and	the
tp_dictoffset	is	set	to	that	slot’s	offset.

When	 a	 type	 defined	 by	 a	 class	 statement	 has	 a	 __slots__
declaration,	 the	 type	 inherits	 its	 tp_dictoffset	 from	 its	 base
type.

(Adding	 a	 slot	 named	 __dict__	 to	 the	 __slots__	 declaration
does	not	have	the	expected	effect,	it	just	causes	confusion.	Maybe
this	should	be	added	as	a	feature	just	like	__weakref__	though.)

initproc	PyTypeObject.tp_init
An	optional	pointer	to	an	instance	initialization	function.

This	function	corresponds	to	the	__init__()	method	of	classes.
Like	 __init__(),	 it	 is	 possible	 to	 create	 an	 instance	 without
calling	__init__(),	and	it	is	possible	to	reinitialize	an	instance	by
calling	its	__init__()	method	again.

The	function	signature	is

int	tp_init(PyObject	*self,	PyObject	*args,	PyObject

The	 self	 argument	 is	 the	 instance	 to	 be	 initialized;	 the	 args	 and
kwds	 arguments	 represent	 positional	 and	 keyword	 arguments	 of
the	call	to	__init__().

The	tp_init	 function,	 if	not	NULL,	 is	called	when	an	instance	is
created	 normally	 by	 calling	 its	 type,	 after	 the	 type’s	 tp_new
function	 has	 returned	 an	 instance	 of	 the	 type.	 If	 the	 tp_new
function	 returns	 an	 instance	 of	 some	 other	 type	 that	 is	 not	 a
subtype	 of	 the	 original	 type,	 no	 tp_init	 function	 is	 called;	 if
tp_new	 returns	an	 instance	of	a	subtype	of	 the	original	 type,	 the
subtype’s	tp_init	is	called.

This	field	is	inherited	by	subtypes.

allocfunc	PyTypeObject.tp_alloc
An	optional	pointer	to	an	instance	allocation	function.

The	function	signature	is

PyObject	*tp_alloc(PyTypeObject	*self,	Py_ssize_t	

The	purpose	of	this	function	is	to	separate	memory	allocation	from
memory	 initialization.	 It	 should	 return	 a	 pointer	 to	 a	 block	 of
memory	of	adequate	 length	for	 the	 instance,	suitably	aligned,	and
initialized	to	zeros,	but	with	ob_refcnt	set	to	1	and	ob_type	set
to	the	type	argument.	If	the	type’s	tp_itemsize	 is	non-zero,	 the
object’s	 ob_size	 field	 should	 be	 initialized	 to	 nitems	 and	 the
length	of	the	allocated	memory	block	should	be	tp_basicsize	+
nitems*tp_itemsize,	 rounded	 up	 to	 a	 multiple	 of
sizeof(void*);	otherwise,	nitems	 is	not	used	and	the	length	of
the	block	should	be	tp_basicsize.

Do	not	use	this	function	to	do	any	other	 instance	initialization,	not
even	 to	 allocate	 additional	 memory;	 that	 should	 be	 done	 by
tp_new.

This	 field	 is	 inherited	 by	 static	 subtypes,	 but	 not	 by	 dynamic
subtypes	(subtypes	created	by	a	class	statement);	in	the	latter,	this
field	 is	 always	 set	 to	 PyType_GenericAlloc(),	 to	 force	 a
standard	 heap	allocation	 strategy.	 That	 is	 also	 the	 recommended
value	for	statically	defined	types.

newfunc	PyTypeObject.tp_new
An	optional	pointer	to	an	instance	creation	function.

If	 this	 function	 is	NULL	 for	 a	 particular	 type,	 that	 type	 cannot	 be
called	 to	 create	 new	 instances;	 presumably	 there	 is	 some	 other
way	to	create	instances,	like	a	factory	function.

The	function	signature	is

PyObject	*tp_new(PyTypeObject	*subtype,	PyObject	*

The	subtype	argument	is	the	type	of	the	object	being	created;	the
args	 and	 kwds	 arguments	 represent	 positional	 and	 keyword
arguments	of	the	call	to	the	type.	Note	that	subtype	doesn’t	have	to
equal	 the	 type	 whose	 tp_new	 function	 is	 called;	 it	 may	 be	 a
subtype	of	that	type	(but	not	an	unrelated	type).

The	 tp_new	 function	 should	 call	 subtype-

>tp_alloc(subtype,	nitems)	to	allocate	space	for	the	object,
and	 then	 do	 only	 as	 much	 further	 initialization	 as	 is	 absolutely
necessary.	 Initialization	 that	 can	 safely	 be	 ignored	 or	 repeated
should	be	placed	in	the	tp_init	handler.	A	good	rule	of	thumb	is
that	 for	 immutable	 types,	 all	 initialization	 should	 take	 place	 in
tp_new,	 while	 for	 mutable	 types,	 most	 initialization	 should	 be
deferred	to	tp_init.

This	field	is	inherited	by	subtypes,	except	it	is	not	inherited	by	static
types	whose	tp_base	is	NULL	or	&PyBaseObject_Type.

destructor	PyTypeObject.tp_free
An	 optional	 pointer	 to	 an	 instance	 deallocation	 function.	 Its
signature	is	freefunc:

void	tp_free(void	*)

An	 initializer	 that	 is	 compatible	 with	 this	 signature	 is
PyObject_Free().

This	 field	 is	 inherited	 by	 static	 subtypes,	 but	 not	 by	 dynamic
subtypes	(subtypes	created	by	a	class	statement);	in	the	latter,	this
field	 is	 set	 to	 a	 deallocator	 suitable	 to	 match
PyType_GenericAlloc()	 and	 the	 value	 of	 the
Py_TPFLAGS_HAVE_GC	flag	bit.

inquiry	PyTypeObject.tp_is_gc
An	optional	pointer	to	a	function	called	by	the	garbage	collector.

The	garbage	collector	needs	to	know	whether	a	particular	object	is
collectible	 or	 not.	 Normally,	 it	 is	 sufficient	 to	 look	 at	 the	 object’s
type’s	tp_flags	field,	and	check	the	Py_TPFLAGS_HAVE_GC	flag
bit.	 But	 some	 types	 have	 a	 mixture	 of	 statically	 and	 dynamically
allocated	 instances,	 and	 the	 statically	 allocated	 instances	are	not
collectible.	Such	types	should	define	this	 function;	 it	should	return
1	 for	 a	 collectible	 instance,	 and	 0	 for	 a	 non-collectible	 instance.
The	signature	is

int	tp_is_gc(PyObject	*self)

(The	 only	 example	 of	 this	 are	 types	 themselves.	 The	 metatype,
PyType_Type,	 defines	 this	 function	 to	 distinguish	 between
statically	and	dynamically	allocated	types.)

This	field	is	inherited	by	subtypes.

PyObject*	PyTypeObject.tp_bases
Tuple	of	base	types.

This	 is	 set	 for	 types	 created	 by	 a	 class	 statement.	 It	 should	 be
NULL	for	statically	defined	types.

This	field	is	not	inherited.

PyObject*	PyTypeObject.tp_mro
Tuple	containing	the	expanded	set	of	base	types,	starting	with	the
type	itself	and	ending	with	object,	in	Method	Resolution	Order.

This	 field	 is	 not	 inherited;	 it	 is	 calculated	 fresh	 by

PyType_Ready().

destructor	PyTypeObject.tp_finalize
An	optional	pointer	to	an	instance	finalization	function.	Its	signature
is	destructor:

void	tp_finalize(PyObject	*)

If	tp_finalize	is	set,	the	interpreter	calls	it	once	when	finalizing
an	 instance.	 It	 is	 called	 either	 from	 the	 garbage	 collector	 (if	 the
instance	 is	 part	 of	 an	 isolated	 reference	 cycle)	 or	 just	 before	 the
object	 is	 deallocated.	 Either	 way,	 it	 is	 guaranteed	 to	 be	 called
before	attempting	 to	break	 reference	cycles,	ensuring	 that	 it	 finds
the	object	in	a	sane	state.

tp_finalize	 should	 not	 mutate	 the	 current	 exception	 status;
therefore,	a	recommended	way	to	write	a	non-trivial	finalizer	is:

static	void

local_finalize(PyObject	*self)

{

				PyObject	*error_type,	*error_value,	*error_traceback

				/*	Save	the	current	exception,	if	any.	*/

				PyErr_Fetch(&error_type,	&error_value,	&error_traceback

				/*	...	*/

				/*	Restore	the	saved	exception.	*/

				PyErr_Restore(error_type,	error_value,	error_traceback

}

For	 this	 field	 to	be	 taken	 into	account	 (even	 through	 inheritance),
you	must	also	set	the	Py_TPFLAGS_HAVE_FINALIZE	flags	bit.

This	field	is	inherited	by	subtypes.

New	in	version	3.4.

See	also: 	“Safe	object	finalization”	(PEP	442)

PyObject*	PyTypeObject.tp_cache
Unused.	Not	inherited.	Internal	use	only.

PyObject*	PyTypeObject.tp_subclasses
List	 of	weak	 references	 to	 subclasses.	Not	 inherited.	 Internal	 use
only.

PyObject*	PyTypeObject.tp_weaklist
Weak	reference	 list	head,	 for	weak	references	 to	 this	 type	object.
Not	inherited.	Internal	use	only.

The	 remaining	 fields	 are	 only	 defined	 if	 the	 feature	 test	 macro
COUNT_ALLOCS	 is	 defined,	 and	 are	 for	 internal	 use	 only.	 They	 are
documented	here	for	completeness.	None	of	these	fields	are	inherited
by	subtypes.

Py_ssize_t	PyTypeObject.tp_allocs
Number	of	allocations.

Py_ssize_t	PyTypeObject.tp_frees
Number	of	frees.

Py_ssize_t	PyTypeObject.tp_maxalloc
Maximum	simultaneously	allocated	objects.

PyTypeObject*	PyTypeObject.tp_next
Pointer	to	the	next	type	object	with	a	non-zero	tp_allocs	field.

http://www.python.org/dev/peps/pep-0442

Also,	 note	 that,	 in	 a	 garbage	 collected	 Python,	 tp_dealloc	 may	 be
called	 from	any	Python	 thread,	not	 just	 the	 thread	which	created	 the
object	(if	the	object	becomes	part	of	a	refcount	cycle,	that	cycle	might
be	 collected	 by	 a	 garbage	 collection	 on	 any	 thread).	 This	 is	 not	 a
problem	for	Python	API	calls,	since	the	thread	on	which	tp_dealloc	is
called	will	own	the	Global	Interpreter	Lock	(GIL).	However,	if	the	object
being	 destroyed	 in	 turn	 destroys	 objects	 from	 some	 other	C	 or	C++
library,	care	should	be	taken	to	ensure	that	destroying	those	objects	on
the	thread	which	called	tp_dealloc	will	not	violate	any	assumptions	of
the	library.

Number	Object	Structures
PyNumberMethods

This	structure	holds	pointers	to	the	functions	which	an	object	uses
to	 implement	 the	 number	 protocol.	 Each	 function	 is	 used	 by	 the
function	 of	 similar	 name	 documented	 in	 the	 Number	 Protocol
section.

Here	is	the	structure	definition:

typedef	struct	{

					binaryfunc	nb_add;

					binaryfunc	nb_subtract;

					binaryfunc	nb_multiply;

					binaryfunc	nb_remainder;

					binaryfunc	nb_divmod;

					ternaryfunc	nb_power;

					unaryfunc	nb_negative;

					unaryfunc	nb_positive;

					unaryfunc	nb_absolute;

					inquiry	nb_bool;

					unaryfunc	nb_invert;

					binaryfunc	nb_lshift;

					binaryfunc	nb_rshift;

					binaryfunc	nb_and;

					binaryfunc	nb_xor;

					binaryfunc	nb_or;

					unaryfunc	nb_int;

					void	*nb_reserved;

					unaryfunc	nb_float;

					binaryfunc	nb_inplace_add;

					binaryfunc	nb_inplace_subtract;

					binaryfunc	nb_inplace_multiply;

					binaryfunc	nb_inplace_remainder;

					ternaryfunc	nb_inplace_power;

					binaryfunc	nb_inplace_lshift;

					binaryfunc	nb_inplace_rshift;

					binaryfunc	nb_inplace_and;

					binaryfunc	nb_inplace_xor;

					binaryfunc	nb_inplace_or;

					binaryfunc	nb_floor_divide;

					binaryfunc	nb_true_divide;

					binaryfunc	nb_inplace_floor_divide;

					binaryfunc	nb_inplace_true_divide;

					unaryfunc	nb_index;

}	PyNumberMethods;

Note: 	 Binary	 and	 ternary	 functions	must	 check	 the	 type	 of	 all
their	 operands,	 and	 implement	 the	 necessary	 conversions	 (at
least	one	of	 the	operands	 is	an	 instance	of	 the	defined	 type).	 If
the	 operation	 is	 not	 defined	 for	 the	 given	 operands,	 binary	 and
ternary	 functions	must	 return	 Py_NotImplemented,	 if	 another
error	occurred	they	must	return	NULL	and	set	an	exception.

Note: 	The	nb_reserved	 field	should	always	be	NULL.	 It	was
previously	called	nb_long,	and	was	renamed	in	Python	3.0.1.

Mapping	Object	Structures
PyMappingMethods

This	structure	holds	pointers	to	the	functions	which	an	object	uses
to	implement	the	mapping	protocol.	It	has	three	members:

lenfunc	PyMappingMethods.mp_length
This	 function	 is	 used	 by	 PyMapping_Length()	 and
PyObject_Size(),	 and	 has	 the	 same	 signature.	 This	 slot	 may
be	set	to	NULL	if	the	object	has	no	defined	length.

binaryfunc	PyMappingMethods.mp_subscript
This	 function	 is	 used	 by	 PyObject_GetItem()	 and	 has	 the
same	 signature.	 This	 slot	 must	 be	 filled	 for	 the
PyMapping_Check()	 function	 to	 return	 1,	 it	 can	 be	 NULL
otherwise.

objobjargproc	PyMappingMethods.mp_ass_subscript
This	 function	 is	 used	 by	 PyObject_SetItem()	 and	 has	 the
same	 signature.	 If	 this	 slot	 is	NULL,	 the	 object	 does	 not	 support
item	assignment.

Sequence	Object	Structures
PySequenceMethods

This	structure	holds	pointers	to	the	functions	which	an	object	uses
to	implement	the	sequence	protocol.

lenfunc	PySequenceMethods.sq_length
This	 function	 is	 used	 by	 PySequence_Size()	 and
PyObject_Size(),	and	has	the	same	signature.

binaryfunc	PySequenceMethods.sq_concat
This	 function	 is	 used	 by	 PySequence_Concat()	 and	 has	 the
same	signature.	 It	 is	also	used	by	 the	+	operator,	after	 trying	 the
numeric	addition	via	the	nb_add	slot.

ssizeargfunc	PySequenceMethods.sq_repeat
This	 function	 is	 used	 by	 PySequence_Repeat()	 and	 has	 the
same	 signature.	 It	 is	 also	 used	 by	 the	 *	 operator,	 after	 trying
numeric	multiplication	via	the	nb_mul	slot.

ssizeargfunc	PySequenceMethods.sq_item
This	 function	 is	 used	 by	 PySequence_GetItem()	 and	 has	 the
same	 signature.	 This	 slot	 must	 be	 filled	 for	 the
PySequence_Check()	 function	 to	 return	 1,	 it	 can	 be	 NULL
otherwise.

Negative	indexes	are	handled	as	follows:	if	the	sq_length	slot	is
filled,	 it	 is	 called	 and	 the	 sequence	 length	 is	 used	 to	 compute	 a
positive	 index	 which	 is	 passed	 to	 sq_item.	 If	 sq_length	 is
NULL,	the	index	is	passed	as	is	to	the	function.

ssizeobjargproc	PySequenceMethods.sq_ass_item
This	 function	 is	 used	 by	 PySequence_SetItem()	 and	 has	 the
same	signature.	This	slot	may	be	left	to	NULL	if	the	object	does	not
support	item	assignment.

objobjproc	PySequenceMethods.sq_contains
This	 function	 may	 be	 used	 by	 PySequence_Contains()	 and
has	the	same	signature.	This	slot	may	be	left	to	NULL,	in	this	case
PySequence_Contains()	simply	traverses	the	sequence	until	it
finds	a	match.

binaryfunc	PySequenceMethods.sq_inplace_concat
This	 function	 is	 used	 by	 PySequence_InPlaceConcat()	 and
has	 the	 same	 signature.	 It	 should	 modify	 its	 first	 operand,	 and
return	it.

ssizeargfunc	PySequenceMethods.sq_inplace_repeat
This	 function	 is	 used	 by	 PySequence_InPlaceRepeat()	 and
has	 the	 same	 signature.	 It	 should	 modify	 its	 first	 operand,	 and
return	it.

Buffer	Object	Structures
PyBufferProcs

This	structure	holds	pointers	to	the	functions	required	by	the	Buffer
protocol.	The	protocol	defines	how	an	exporter	object	can	expose
its	internal	data	to	consumer	objects.

getbufferproc	PyBufferProcs.bf_getbuffer
The	signature	of	this	function	is:

int	(PyObject	*exporter,	Py_buffer	*view,	int	flags

Handle	 a	 request	 to	exporter	 to	 fill	 in	 view	 as	 specified	 by	 flags.
Except	for	point	(3),	an	implementation	of	this	function	MUST	take
these	steps:

1.	 Check	 if	 the	 request	 can	 be	 met.	 If	 not,	 raise
PyExc_BufferError,	 set	 view->obj	 to	NULL	 and	 return
-1.

2.	 Fill	in	the	requested	fields.
3.	 Increment	an	internal	counter	for	the	number	of	exports.
4.	 Set	view->obj	to	exporter	and	increment	view->obj.
5.	 Return	0.

If	exporter	 is	part	of	a	chain	or	 tree	of	buffer	providers,	 two	main
schemes	can	be	used:

Re-export:	 Each	 member	 of	 the	 tree	 acts	 as	 the	 exporting
object	and	sets	view->obj	to	a	new	reference	to	itself.
Redirect:	The	buffer	request	is	redirected	to	the	root	object	of
the	tree.	Here,	view->obj	will	be	a	new	reference	to	the	root
object.

The	 individual	 fields	 of	 view	 are	 described	 in	 section	 Buffer
structure,	the	rules	how	an	exporter	must	react	to	specific	requests
are	in	section	Buffer	request	types.

All	memory	pointed	to	 in	the	Py_buffer	structure	belongs	to	the
exporter	and	must	 remain	valid	until	 there	are	no	consumers	 left.
format,	 shape,	 strides,	 suboffsets	 and	 internal	 are
read-only	for	the	consumer.

PyBuffer_FillInfo()	 provides	 an	 easy	 way	 of	 exposing	 a
simple	bytes	buffer	while	dealing	correctly	with	all	request	types.

PyObject_GetBuffer()	 is	 the	 interface	 for	 the	 consumer	 that
wraps	this	function.

releasebufferproc	PyBufferProcs.bf_releasebuffer
The	signature	of	this	function	is:

void	(PyObject	*exporter,	Py_buffer	*view);

Handle	 a	 request	 to	 release	 the	 resources	 of	 the	 buffer.	 If	 no
resources	 need	 to	 be	 released,
PyBufferProcs.bf_releasebuffer	 may	 be	 NULL.
Otherwise,	 a	 standard	 implementation	 of	 this	 function	 will	 take
these	optional	steps:

1.	 Decrement	an	internal	counter	for	the	number	of	exports.
2.	 If	the	counter	is	0,	free	all	memory	associated	with	view.

The	 exporter	 MUST	 use	 the	 internal	 field	 to	 keep	 track	 of
buffer-specific	 resources.	 This	 field	 is	 guaranteed	 to	 remain
constant,	while	a	consumer	MAY	pass	a	copy	of	the	original	buffer
as	the	view	argument.

This	 function	 MUST	 NOT	 decrement	 view->obj,	 since	 that	 is
done	 automatically	 in	 PyBuffer_Release()	 (this	 scheme	 is
useful	for	breaking	reference	cycles).

PyBuffer_Release()	 is	 the	 interface	 for	 the	 consumer	 that
wraps	this	function.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Object	Implementation	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Object	Implementation	Support	»

http://www.python.org/

Supporting	Cyclic	Garbage
Collection
Python’s	 support	 for	detecting	and	collecting	garbage	which	 involves
circular	 references	 requires	 support	 from	 object	 types	 which	 are
“containers”	 for	 other	 objects	 which	 may	 also	 be	 containers.	 Types
which	 do	 not	 store	 references	 to	 other	 objects,	 or	 which	 only	 store
references	to	atomic	types	(such	as	numbers	or	strings),	do	not	need
to	provide	any	explicit	support	for	garbage	collection.

To	create	a	container	type,	the	tp_flags	field	of	the	type	object	must
include	the	Py_TPFLAGS_HAVE_GC	and	provide	an	implementation	of
the	 tp_traverse	 handler.	 If	 instances	 of	 the	 type	 are	 mutable,	 a
tp_clear	implementation	must	also	be	provided.

Py_TPFLAGS_HAVE_GC

Objects	with	a	 type	with	 this	 flag	set	must	conform	with	 the	 rules
documented	here.	For	 convenience	 these	objects	will	 be	 referred
to	as	container	objects.

Constructors	for	container	types	must	conform	to	two	rules:

1.	 The	 memory	 for	 the	 object	 must	 be	 allocated	 using
PyObject_GC_New()	or	PyObject_GC_NewVar().

2.	 Once	 all	 the	 fields	 which	 may	 contain	 references	 to	 other
containers	are	initialized,	it	must	call	PyObject_GC_Track().

TYPE*	PyObject_GC_New(TYPE,	PyTypeObject	*type)
Analogous	to	PyObject_New()	but	for	container	objects	with	the
Py_TPFLAGS_HAVE_GC	flag	set.

TYPE*	PyObject_GC_NewVar(TYPE,	PyTypeObject	*type,
Py_ssize_t	size)

Analogous	to	PyObject_NewVar()	but	for	container	objects	with
the	Py_TPFLAGS_HAVE_GC	flag	set.

TYPE*	PyObject_GC_Resize(TYPE,	PyVarObject	*op,
Py_ssize_t	newsize)

Resize	an	object	allocated	by	PyObject_NewVar().	Returns	the
resized	object	or	NULL	on	failure.

void	PyObject_GC_Track(PyObject	*op)
Adds	 the	object	op	 to	 the	set	of	 container	objects	 tracked	by	 the
collector.	 The	 collector	 can	 run	 at	 unexpected	 times	 so	 objects
must	be	valid	while	being	 tracked.	This	 should	be	called	once	all
the	 fields	 followed	 by	 the	 tp_traverse	 handler	 become	 valid,
usually	near	the	end	of	the	constructor.

void	_PyObject_GC_TRACK(PyObject	*op)
A	 macro	 version	 of	 PyObject_GC_Track().	 It	 should	 not	 be
used	for	extension	modules.

Similarly,	 the	deallocator	 for	 the	object	must	conform	to	a	similar	pair
of	rules:

1.	 Before	 fields	 which	 refer	 to	 other	 containers	 are	 invalidated,
PyObject_GC_UnTrack()	must	be	called.

2.	 The	 object’s	 memory	 must	 be	 deallocated	 using
PyObject_GC_Del().

void	PyObject_GC_Del(void	*op)
Releases	 memory	 allocated	 to	 an	 object	 using
PyObject_GC_New()	or	PyObject_GC_NewVar().

void	PyObject_GC_UnTrack(void	*op)
Remove	the	object	op	from	the	set	of	container	objects	tracked	by
the	 collector.	 Note	 that	 PyObject_GC_Track()	 can	 be	 called
again	on	this	object	to	add	it	back	to	the	set	of	tracked	objects.	The
deallocator	 (tp_dealloc	 handler)	 should	 call	 this	 for	 the	 object
before	 any	 of	 the	 fields	 used	 by	 the	 tp_traverse	 handler
become	invalid.

void	_PyObject_GC_UNTRACK(PyObject	*op)
A	macro	 version	of	 PyObject_GC_UnTrack().	 It	 should	 not	 be
used	for	extension	modules.

The	tp_traverse	handler	accepts	a	function	parameter	of	this	type:

int	(*visitproc)(PyObject	*object,	void	*arg)
Type	of	 the	visitor	 function	passed	 to	 the	tp_traverse	 handler.
The	function	should	be	called	with	an	object	 to	 traverse	as	object
and	the	third	parameter	to	the	tp_traverse	handler	as	arg.	The
Python	 core	 uses	 several	 visitor	 functions	 to	 implement	 cyclic
garbage	 detection;	 it’s	 not	 expected	 that	 users	 will	 need	 to	 write
their	own	visitor	functions.

The	tp_traverse	handler	must	have	the	following	type:

int	(*traverseproc)(PyObject	*self,	visitproc	visit,	void	*arg)
Traversal	function	for	a	container	object.	Implementations	must	call
the	visit	function	for	each	object	directly	contained	by	self,	with	the
parameters	 to	visit	 being	 the	 contained	 object	 and	 the	 arg	 value
passed	to	the	handler.	The	visit	function	must	not	be	called	with	a
NULL	object	argument.	If	visit	 returns	a	non-zero	value	that	value
should	be	returned	immediately.

To	simplify	writing	tp_traverse	handlers,	a	Py_VISIT()	macro	 is
provided.	 In	 order	 to	 use	 this	 macro,	 the	 tp_traverse

implementation	must	name	its	arguments	exactly	visit	and	arg:

void	Py_VISIT(PyObject	*o)
Call	 the	visit	callback,	with	arguments	o	and	arg.	 If	visit	 returns	a
non-zero	 value,	 then	 return	 it.	 Using	 this	 macro,	 tp_traverse
handlers	look	like:

static	int

my_traverse(Noddy	*self,	visitproc	visit,	void	*arg

{

				Py_VISIT(self->foo);

				Py_VISIT(self->bar);

				return	0;

}

The	tp_clear	handler	must	be	of	the	inquiry	type,	or	NULL	if	the
object	is	immutable.

int	(*inquiry)(PyObject	*self)
Drop	 references	 that	 may	 have	 created	 reference	 cycles.
Immutable	 objects	 do	 not	 have	 to	 define	 this	 method	 since	 they
can	 never	 directly	 create	 reference	 cycles.	 Note	 that	 the	 object
must	 still	 be	 valid	 after	 calling	 this	 method	 (don’t	 just	 call
Py_DECREF()	on	a	reference).	The	collector	will	call	this	method	if
it	detects	that	this	object	is	involved	in	a	reference	cycle.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»	Object	Implementation	Support	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://www.python.org/

API	and	ABI	Versioning
PY_VERSION_HEX	is	the	Python	version	number	encoded	in	a	single
integer.

For	 example	 if	 the	 PY_VERSION_HEX	 is	 set	 to	 0x030401a2,	 the
underlying	version	 information	can	be	 found	by	 treating	 it	as	a	32	bit
number	in	the	following	manner:

Bytes Bits	(big	endian
order) Meaning

1 1-8
PY_MAJOR_VERSION	(the	3	in
3.4.1a2)

2 9-16
PY_MINOR_VERSION	(the	4	in
3.4.1a2)

3 17-24
PY_MICRO_VERSION	(the	1	in
3.4.1a2)

4 25-28

PY_RELEASE_LEVEL	(0xA	for
alpha,	0xB	for	beta,	0xC	for
release	candidate	and	0xF	for
final),	in	this	case	it	is	alpha.

	 29-32
PY_RELEASE_SERIAL	(the	2	in
3.4.1a2,	zero	for	final	releases)

Thus	3.4.1a2	is	hexversion	0x030401a2.

All	the	given	macros	are	defined	in	Include/patchlevel.h.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python/C	API	Reference

Manual	»

http://hg.python.org/cpython/file/3.4/Include/patchlevel.h
http://www.python.org/

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Porting	Python	2	Code	to	Python	3
author: Brett	Cannon

Abstract

With	Python	 3	 being	 the	 future	 of	 Python	while	 Python	 2	 is	 still	 in
active	 use,	 it	 is	 good	 to	 have	 your	 project	 available	 for	 both	major
releases	of	Python.	This	guide	 is	meant	 to	help	you	 figure	out	how
best	to	support	both	Python	2	&	3	simultaneously.

If	you	are	looking	to	port	an	extension	module	instead	of	pure	Python
code,	please	see	Porting	Extension	Modules	to	Python	3.

If	you	would	 like	 to	 read	one	core	Python	developer’s	 take	on	why
Python	3	came	into	existence,	you	can	read	Nick	Coghlan’s	Python
3	Q	&	A.

If	you	prefer	 to	read	a	(free)	book	on	porting	a	project	 to	Python	3,
consider	 reading	 Porting	 to	 Python	 3	 by	 Lennart	 Regebro	 which
should	cover	much	of	what	is	discussed	in	this	HOWTO.

For	 help	with	 porting,	 you	 can	email	 the	 python-porting	mailing	 list
with	questions.

http://ncoghlan-devs-python-notes.readthedocs.org/en/latest/python3/questions_and_answers.html
http://python3porting.com/
http://mail.python.org/mailman/listinfo/python-porting

The	Short	Version

Decide	what’s	the	oldest	version	of	Python	2	you	want	to	support
(if	at	all)
Make	 sure	 you	 have	 a	 thorough	 test	 suite	 and	 use	 continuous
integration	 testing	 to	 make	 sure	 you	 stay	 compatible	 with	 the
versions	of	Python	you	care	about
If	 you	 have	 dependencies,	 check	 their	 Python	 3	 status	 using
caniusepython3	(command-line	tool,	web	app)

With	that	done,	your	options	are:

If	you	are	dropping	Python	2	support,	use	2to3	to	port	to	Python	3
If	you	are	keeping	Python	2	support,	then	start	writing	Python	2/3-
compatible	code	starting	TODAY

If	 you	have	dependencies	 that	have	not	been	ported,	 reach
out	 to	 them	 to	port	 their	project	while	working	 to	make	your
code	 compatible	 with	 Python	 3	 so	 you’re	 ready	 when	 your
dependencies	are	all	ported
If	 all	 your	 dependencies	 have	 been	 ported	 (or	 you	 have
none),	go	ahead	and	port	to	Python	3

If	 you	 are	 creating	 a	 new	 project	 that	 wants	 to	 have	 2/3
compatibility,	code	in	Python	3	and	then	backport	to	Python	2

https://pypi.python.org/pypi/caniusepython3
https://caniusepython3.com/
http://docs.python.org/2/library/2to3.html

Before	You	Begin

If	your	project	is	on	the	Cheeseshop/PyPI,	make	sure	it	has	the	proper
trove	 classifiers	 to	 signify	 what	 versions	 of	 Python	 it	 currently
supports.	 At	 minimum	 you	 should	 specify	 the	 major	 version(s),	 e.g.
Programming	 Language	 ::	 Python	 ::	 2	 if	 your	 project
currently	 only	 supports	 Python	 2.	 It	 is	 preferrable	 that	 you	 be	 as
specific	as	possible	by	listing	every	major/minor	version	of	Python	that
you	support,	e.g.	if	your	project	supports	Python	2.6	and	2.7,	then	you
want	the	classifiers	of:

Programming	Language	::	Python	::	2

Programming	Language	::	Python	::	2.6

Programming	Language	::	Python	::	2.7

Once	your	project	supports	Python	3	you	will	want	to	go	back	and	add
the	 appropriate	 classifiers	 for	 Python	 3	 as	well.	 This	 is	 important	 as
setting	 the	Programming	Language	::	Python	::	3	 classifier
will	 lead	 to	 your	 project	 being	 listed	 under	 the	 Python	 3	 Packages
section	of	PyPI.

Make	 sure	 you	 have	 a	 robust	 test	 suite.	 You	 need	 to	 make	 sure
everything	 continues	 to	 work,	 just	 like	 when	 you	 support	 a	 new
minor/feature	 release	 of	 Python.	 This	 means	 making	 sure	 your	 test
suite	 is	 thorough	 and	 is	 ported	 properly	 between	 Python	 2	 &	 3
(consider	 using	 coverage	 to	 measure	 that	 you	 have	 effective	 test
coverage).	You	will	also	most	 likely	want	to	use	something	like	tox	 to
automate	 testing	 between	 all	 of	 your	 supported	 versions	 of	 Python.
You	will	also	want	to	port	your	tests	first	so	that	you	can	make	sure
that	 you	detect	 breakage	during	 the	 transition.	Tests	also	 tend	 to	be
simpler	than	the	code	they	are	testing	so	it	gives	you	an	idea	of	how
easy	it	can	be	to	port	code.

http://pypi.python.org/
http://pypi.python.org/
https://pypi.python.org/pypi?%3Aaction=list_classifiers
https://pypi.python.org/pypi?:action=browse&c=533&show=all
https://pypi.python.org/pypi/coverage
https://pypi.python.org/pypi/tox

Drop	 support	 for	 older	 Python	 versions	 if	 possible.	 Python	 2.5
introduced	 a	 lot	 of	 useful	 syntax	 and	 libraries	 which	 have	 become
idiomatic	 in	Python	3.	Python	2.6	 introduced	 future	statements	which
makes	compatibility	much	easier	if	you	are	going	from	Python	2	to	3.
Python	 2.7	 continues	 the	 trend	 in	 the	 stdlib.	 Choose	 the	 newest
version	 of	 Python	 which	 you	 believe	 can	 be	 your	 minimum	 support
version	and	work	from	there.

Target	 the	newest	version	of	Python	3	 that	you	can.	Beyond	 just	 the
usual	 bugfixes,	 compatibility	 has	 continued	 to	 improve	 between
Python	2	and	3	as	time	has	passed.	E.g.	Python	3.3	added	back	the	u
prefix	 for	 strings,	 making	 source-compatible	 Python	 code	 easier	 to
write.

http://www.python.org/2.5.x
http://www.python.org/2.6.x
http://www.python.org/2.7.x

Writing	Source-Compatible	Python	2/3
Code

Over	the	years	the	Python	community	has	discovered	that	the	easiest
way	to	support	both	Python	2	and	3	in	parallel	is	to	write	Python	code
that	works	in	either	version.	While	this	might	sound	counter-intuitive	at
first,	it	actually	is	not	difficult	and	typically	only	requires	following	some
select	 (non-idiomatic)	 practices	 and	using	 some	 key	 projects	 to	 help
make	bridging	between	Python	2	and	3	easier.

Projects	to	Consider

The	lowest	level	library	for	supporting	Python	2	&	3	simultaneously	is
six.	Reading	through	its	documentation	will	give	you	an	idea	of	where
exactly	 the	 Python	 language	 changed	 between	 versions	 2	 &	 3	 and
thus	what	you	will	want	the	library	to	help	you	continue	to	support.

To	 help	 automate	 porting	 your	 code	 over	 to	 using	 six,	 you	 can	 use
modernize.	 This	 project	 will	 attempt	 to	 rewrite	 your	 code	 to	 be	 as
modern	 as	 possible	 while	 using	 six	 to	 smooth	 out	 any	 differences
between	Python	2	&	3.

If	 you	want	 to	write	your	compatible	code	 to	 feel	more	 like	Python	3
there	is	the	future	project.	It	tries	to	provide	backports	of	objects	from
Python	3	 so	 that	 you	 can	use	 them	 from	Python	2-compatible	 code,
e.g.	replacing	the	bytes	type	from	Python	2	with	the	one	from	Python
3.	 It	 also	 provides	 a	 translation	 script	 like	 modernize	 (its	 translation
code	is	actually	partially	based	on	it)	to	help	start	working	with	a	pre-
existing	 code	 base.	 It	 is	 also	 unique	 in	 that	 its	 translation	 script	 will
also	port	Python	3	code	backwards	as	well	as	Python	2	code	forwards.

https://pypi.python.org/pypi/six
https://github.com/mitsuhiko/python-modernize
http://python-future.org/

Tips	&	Tricks

To	help	with	writing	source-compatible	code	using	one	of	the	projects
mentioned	 in	 Projects	 to	 Consider,	 consider	 following	 the	 below
suggestions.	Some	of	them	are	handled	by	the	suggested	projects,	so
if	 you	do	use	one	of	 them	 then	 read	 their	documentation	 first	 to	see
which	suggestions	below	will	taken	care	of	for	you.

Support	Python	2.7

As	a	first	step,	make	sure	that	your	project	is	compatible	with	Python
2.7.	This	is	just	good	to	do	as	Python	2.7	is	the	last	release	of	Python
2	and	thus	will	be	used	for	a	rather	long	time.	It	also	allows	for	use	of
the	 -3	 flag	 to	 Python	 to	 help	 discover	 places	 in	 your	 code	 where
compatibility	might	be	an	issue	(the	-3	flag	is	in	Python	2.6	but	Python
2.7	adds	more	warnings).

Try	to	Support	Python	2.6	and	Newer	Only

While	not	possible	 for	all	projects,	 if	you	can	support	Python	2.6	and
newer	only,	 your	 life	will	 be	much	easier.	Various	 future	 statements,
stdlib	 additions,	 etc.	 exist	 only	 in	 Python	 2.6	 and	 later	which	 greatly
assist	in	supporting	Python	3.	But	if	you	project	must	keep	support	for
Python	2.5	then	it	is	still	possible	to	simultaneously	support	Python	3.

Below	are	the	benefits	you	gain	if	you	only	have	to	support	Python	2.6
and	 newer.	 Some	 of	 these	 options	 are	 personal	 choice	while	 others
are	 strongly	 recommended	 (the	 ones	 that	 are	 more	 for	 personal
choice	are	labeled	as	such).	If	you	continue	to	support	older	versions
of	Python	then	you	at	least	need	to	watch	out	for	situations	that	these
solutions	 fix	 and	 handle	 them	 appropriately	 (which	 is	 where	 library
help	from	e.g.	six	comes	in	handy).

http://www.python.org/2.7.x
http://www.python.org/2.6.x
http://www.python.org/2.6.x
http://www.python.org/2.5.x
https://pypi.python.org/pypi/six

from	__future__	import	print_function

It	will	not	only	get	you	used	to	typing	print()	as	a	function	instead	of
a	statement,	but	 it	will	also	give	you	the	various	benefits	 the	function
has	over	the	Python	2	statement	(six	provides	a	function	if	you	support
Python	2.5	or	older).

from	__future__	import	unicode_literals

If	 you	 choose	 to	 use	 this	 future	 statement	 then	 all	 string	 literals	 in
Python	 2	 will	 be	 assumed	 to	 be	 Unicode	 (as	 is	 already	 the	 case	 in
Python	 3).	 If	 you	 choose	 not	 to	 use	 this	 future	 statement	 then	 you
should	mark	 all	 of	 your	 text	 strings	with	 a	 u	 prefix	 and	only	 support
Python	3.3	or	newer.	But	you	are	strongly	advised	 to	do	one	or	 the
other	(six	provides	a	function	in	case	you	don’t	want	to	use	the	future
statement	and	you	want	to	support	Python	3.2	or	older).

Bytes/string	literals

This	is	a	very	important	one.	Prefix	Python	2	strings	that	are	meant	to
contain	bytes	with	a	b	prefix	to	very	clearly	delineate	what	is	and	is	not
a	Python	3	 text	 string	 (six	 provides	 a	 function	 to	 use	 for	Python	 2.5
compatibility).

This	point	cannot	be	stressed	enough:	make	sure	you	know	what	all	of
your	string	literals	in	Python	2	are	meant	to	be	in	Python	3.	Any	string
literal	 that	 should	be	 treated	as	bytes	 should	have	 the	 b	 prefix.	 Any
string	literal	that	should	be	Unicode/text	in	Python	2	should	either	have
the	u	 literal	 (supported,	 but	 ignored,	 in	Python	 3.3	 and	 later)	 or	 you
should	 have	 from	__future__	import	 unicode_literals	 at
the	top	of	the	file.	But	the	key	point	is	you	should	know	how	Python	3
will	 treat	 every	 one	 one	 of	 your	 string	 literals	 and	 you	 should	 mark

https://pypi.python.org/pypi/six
https://pypi.python.org/pypi/six
https://pypi.python.org/pypi/six

them	as	appropriate.

There	 are	 some	 differences	 between	 byte	 literals	 in	 Python	 2	 and
those	in	Python	3	thanks	to	the	bytes	type	just	being	an	alias	to	str	in
Python	 2.	 See	 the	 Handle	 Common	 “Gotchas”	 section	 for	 what	 to
watch	out	for.

from	__future__	import	absolute_import

Discussed	 in	 more	 detail	 below,	 but	 you	 should	 use	 this	 future
statement	 to	 prevent	 yourself	 from	accidentally	 using	 implicit	 relative
imports.

Supporting	Python	2.5	and	Newer	Only

If	 you	 are	 supporting	 Python	 2.5	 and	 newer	 there	 are	 still	 some
features	of	Python	that	you	can	utilize.

from	__future__	import	absolute_import

Implicit	 relative	 imports	 (e.g.,	 importing	 spam.bacon	 from	 within
spam.eggs	 with	 the	 statement	 import	 bacon)	 do	 not	 work	 in
Python	3.	This	future	statement	moves	away	from	that	and	allows	the
use	of	explicit	relative	imports	(e.g.,	from	.	import	bacon).

In	Python	 2.5	 you	must	 use	 the	 __future__	 statement	 to	 get	 to	 use
explicit	relative	imports	and	prevent	implicit	ones.	In	Python	2.6	explicit
relative	imports	are	available	without	the	statement,	but	you	still	want
the	__future__	statement	to	prevent	implicit	relative	imports.	In	Python
2.7	the	__future__	statement	is	not	needed.	In	other	words,	unless	you
are	 only	 supporting	Python	 2.7	 or	 a	 version	 earlier	 than	Python	 2.5,
use	this	__future__	statement.

http://www.python.org/2.5.x
http://www.python.org/2.5.x
http://www.python.org/2.5.x
http://www.python.org/2.6.x
http://www.python.org/2.7.x

Mark	all	Unicode	strings	with	a	u	prefix

While	 Python	 2.6	 has	 a	 __future__	 statement	 to	 automatically
cause	Python	2	to	treat	all	string	literals	as	Unicode,	Python	2.5	does
not	have	that	shortcut.	This	means	you	should	go	through	and	mark	all
string	 literals	 with	 a	 u	 prefix	 to	 turn	 them	 explicitly	 into	 text	 strings
where	 appropriate	 and	 only	 support	 Python	 3.3	 or	 newer.	Otherwise
use	a	project	 like	six	which	provides	a	 function	 to	pass	all	 text	string
literals	through.

Capturing	the	Currently	Raised	Exception

In	Python	2.5	and	earlier	the	syntax	to	access	the	current	exception	is:

try:

		raise	Exception()

except	Exception,	exc:

		#	Current	exception	is	'exc'.

		pass

This	syntax	changed	 in	Python	3	 (and	backported	 to	Python	2.6	 and
later)	to:

try:

		raise	Exception()

except	Exception	as	exc:

		#	Current	exception	is	'exc'.

		#	In	Python	3,	'exc'	is	restricted	to	the	block;	in	Python	2.6/2.7	it	will	"leak".

		pass

Because	of	this	syntax	change	you	must	change	how	you	capture	the
current	exception	in	Python	2.5	and	earlier	to:

https://pypi.python.org/pypi/six
http://www.python.org/2.6.x

try:

		raise	Exception()

except	Exception:

		import	sys

		exc	=	sys.exc_info()[1]

		#	Current	exception	is	'exc'.

		pass

You	 can	 get	 more	 information	 about	 the	 raised	 exception	 from
sys.exc_info()	than	simply	the	current	exception	instance,	but	you
most	likely	don’t	need	it.

Note: 	In	Python	3,	the	traceback	is	attached	to	the	exception
instance	through	the	__traceback__	attribute.	If	the	instance	is
saved	in	a	local	variable	that	persists	outside	of	the	except	block,
the	traceback	will	create	a	reference	cycle	with	the	current	frame	and
its	dictionary	of	local	variables.	This	will	delay	reclaiming	dead
resources	until	the	next	cyclic	garbage	collection	pass.

In	Python	2,	this	problem	only	occurs	if	you	save	the	traceback	itself
(e.g.	the	third	element	of	the	tuple	returned	by	sys.exc_info())	in
a	variable.

Handle	Common	“Gotchas”

These	are	things	to	watch	out	for	no	matter	what	version	of	Python	2
you	are	supporting	which	are	not	syntactic	considerations.

from	__future__	import	division

While	 the	 exact	 same	 outcome	 can	 be	 had	 by	 using	 the	 -Qnew
argument	 to	Python,	 using	 this	 future	 statement	 lifts	 the	 requirement
that	your	users	use	the	flag	to	get	the	expected	behavior	of	division	in

Python	3	(e.g.,	1/2	==	0.5;	1//2	==	0).

Specify	when	opening	a	file	as	binary

Unless	 you	 have	 been	 working	 on	Windows,	 there	 is	 a	 chance	 you
have	not	always	bothered	to	add	the	b	mode	when	opening	a	binary
file	(e.g.,	rb	for	binary	reading).	Under	Python	3,	binary	files	and	text
files	are	clearly	distinct	and	mutually	incompatible;	see	the	io	module
for	details.	Therefore,	you	must	make	a	decision	of	whether	a	file	will
be	used	for	binary	access	(allowing	to	read	and/or	write	bytes	data)	or
text	access	(allowing	to	read	and/or	write	unicode	data).

Text	files

Text	 files	 created	 using	 open()	 under	 Python	 2	 return	 byte	 strings,
while	under	Python	3	they	return	unicode	strings.	Depending	on	your
porting	strategy,	this	can	be	an	issue.

If	 you	want	 text	 files	 to	 return	unicode	strings	 in	Python	2,	 you	have
two	possibilities:

Under	 Python	 2.6	 and	 higher,	 use	 io.open().	 Since
io.open()	is	essentially	the	same	function	in	both	Python	2	and
Python	3,	it	will	help	iron	out	any	issues	that	might	arise.
If	 pre-2.6	 compatibility	 is	 needed,	 then	 you	 should	 use
codecs.open()	 instead.	This	will	make	sure	 that	you	get	back
unicode	strings	in	Python	2.

Subclass	object

New-style	 classes	have	been	around	 since	Python	 2.2.	 You	 need	 to
make	sure	you	are	subclassing	from	object	to	avoid	odd	edge	cases

http://www.python.org/2.2.x

involving	method	resolution	order,	etc.	This	continues	to	be	totally	valid
in	 Python	 3	 (although	 unneeded	 as	 all	 classes	 implicitly	 inherit	 from
object).

Deal	With	the	Bytes/String	Dichotomy

One	of	the	biggest	issues	people	have	when	porting	code	to	Python	3
is	handling	the	bytes/string	dichotomy.	Because	Python	2	allowed	the
str	type	to	hold	textual	data,	people	have	over	the	years	been	rather
loose	in	their	delineation	of	what	str	instances	held	text	compared	to
bytes.	 In	Python	3	you	cannot	be	so	care-free	anymore	and	need	 to
properly	 handle	 the	 difference.	 The	 key	 to	 handling	 this	 issue	 is	 to
make	 sure	 that	 every	 string	 literal	 in	 your	 Python	 2	 code	 is	 either
syntactically	or	 functionally	marked	as	either	bytes	or	 text	data.	After
this	 is	 done	 you	 then	need	 to	make	 sure	 your	APIs	are	designed	 to
either	handle	a	specific	type	or	made	to	be	properly	polymorphic.

Mark	Up	Python	2	String	Literals

First	thing	you	must	do	is	designate	every	single	string	literal	in	Python
2	as	either	textual	or	bytes	data.	If	you	are	only	supporting	Python	2.6
or	newer,	this	can	be	accomplished	by	marking	bytes	literals	with	a	b
prefix	 and	 then	designating	 textual	 data	with	 a	 u	 prefix	 or	 using	 the
unicode_literals	future	statement.

If	 your	 project	 supports	 versions	 of	 Python	 predating	 2.6,	 then	 you
should	use	the	six	project	and	its	b()	function	to	denote	bytes	literals.
For	text	literals	you	can	either	use	six’s	u()	function	or	use	a	u	prefix.

Decide	what	APIs	Will	Accept

In	 Python	 2	 it	 was	 very	 easy	 to	 accidentally	 create	 an	 API	 that

https://pypi.python.org/pypi/six

accepted	both	bytes	and	 textual	data.	But	 in	Python	3,	 thanks	 to	 the
more	strict	handling	of	disparate	types,	this	loose	usage	of	bytes	and
text	together	tends	to	fail.

Take	the	dict	{b'a':	'bytes',	u'a':	'text'}	in	Python	2.6.	It
creates	 the	 dict	 {u'a':	 'text'}	 since	 b'a'	 ==	 u'a'.	 But	 in
Python	 3	 the	 equivalent	 dict	 creates	 {b'a':	 'bytes',	 'a':

'text'},	 i.e.,	 no	 lost	 data.	 Similar	 issues	 can	 crop	 up	 when
transitioning	Python	2	code	to	Python	3.

This	means	you	need	 to	choose	what	an	API	 is	going	 to	accept	and
create	and	consistently	stick	to	that	API	in	both	Python	2	and	3.

Bytes	/	Unicode	Comparison

In	Python	3,	mixing	bytes	and	unicode	is	forbidden	in	most	situations;
it	will	 raise	a	TypeError	where	Python	2	would	have	attempted	an
implicit	coercion	between	types.	However,	 there	 is	one	case	where	 it
doesn’t	and	it	can	be	very	misleading:

>>>	b""	==	""

False

This	is	because	an	equality	comparison	is	required	by	the	language	to
always	succeed	(and	return	False	 for	 incompatible	types).	However,
this	also	means	 that	 code	 incorrectly	ported	 to	Python	3	can	display
buggy	behaviour	 if	such	comparisons	are	silently	executed.	To	detect
such	situations,	Python	3	has	a	-b	flag	that	will	display	a	warning:

$	python3	-b

>>>	b""	==	""

__main__:1:	BytesWarning:	Comparison	between	bytes	and	string

False

To	turn	the	warning	into	an	exception,	use	the	-bb	flag	instead:

$	python3	-bb

>>>	b""	==	""

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

BytesWarning:	Comparison	between	bytes	and	string

Indexing	bytes	objects

Another	 potentially	 surprising	 change	 is	 the	 indexing	 behaviour	 of
bytes	objects	in	Python	3:

>>>	b"xyz"[0]

120

Indeed,	Python	3	bytes	objects	 (as	well	 as	 bytearray	 objects)	 are
sequences	 of	 integers.	 But	 code	 converted	 from	 Python	 2	 will	 often
assume	that	indexing	a	bytestring	produces	another	bytestring,	not	an
integer.	To	reconcile	both	behaviours,	use	slicing:

>>>	b"xyz"[0:1]

b'x'

>>>	n	=	1

>>>	b"xyz"[n:n+1]

b'y'

The	 only	 remaining	 gotcha	 is	 that	 an	 out-of-bounds	 slice	 returns	 an
empty	bytes	object	instead	of	raising	IndexError:

>>>	b"xyz"[3]

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	<module>

IndexError:	index	out	of	range

>>>	b"xyz"[3:4]

b''

__str__()/__unicode__()

In	 Python	 2,	 objects	 can	 specify	 both	 a	 string	 and	 unicode
representation	 of	 themselves.	 In	 Python	 3,	 though,	 there	 is	 only	 a
string	 representation.	 This	 becomes	 an	 issue	 as	 people	 can
inadvertently	 do	 things	 in	 their	 __str__()	 methods	 which	 have
unpredictable	results	(e.g.,	 infinite	recursion	 if	you	happen	to	use	the
unicode(self).encode('utf8')	 idiom	 as	 the	 body	 of	 your
__str__()	method).

You	can	use	a	mixin	class	to	work	around	this.	This	allows	you	to	only
define	 a	 __unicode__()	 method	 for	 your	 class	 and	 let	 the	 mixin
derive	 __str__()	 for	 you	 (code	 from
http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/):

import	sys

class	UnicodeMixin(object):

		"""Mixin	class	to	handle	defining	the	proper	__str__/__unicode__

		methods	in	Python	2	or	3."""

		if	sys.version_info[0]	>=	3:	#	Python	3

						def	__str__(self):

										return	self.__unicode__()

		else:		#	Python	2

						def	__str__(self):

										return	self.__unicode__().encode('utf8')

http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/

class	Spam(UnicodeMixin):

		def	__unicode__(self):

						return	u'spam-spam-bacon-spam'		#	2to3	will	remove	the	'u'	prefix

Don’t	Index	on	Exceptions

In	Python	2,	the	following	worked:

>>>	exc	=	Exception(1,	2,	3)

>>>	exc.args[1]

2

>>>	exc[1]		#	Python	2	only!

2

But	in	Python	3,	indexing	directly	on	an	exception	is	an	error.	You	need
to	make	 sure	 to	 only	 index	 on	 the	 BaseException.args	 attribute
which	 is	 a	 sequence	 containing	 all	 arguments	 passed	 to	 the
__init__()	method.

Even	 better	 is	 to	 use	 the	 documented	 attributes	 the	 exception
provides.

Don’t	use	__getslice__	&	Friends

Been	 deprecated	 for	 a	 while,	 but	 Python	 3	 finally	 drops	 support	 for
__getslice__(),	 etc.	 Move	 completely	 over	 to	 __getitem__()
and	friends.

Updating	doctests

Don’t	forget	to	make	them	Python	2/3	compatible	as	well.	If	you	wrote
a	monolithic	set	of	doctests	 (e.g.,	a	single	docstring	containing	all	 of

your	doctests),	you	should	at	 least	consider	breaking	the	doctests	up
into	 smaller	 pieces	 to	make	 it	more	manageable	 to	 fix.	 Otherwise	 it
might	 very	 well	 be	 worth	 your	 time	 and	 effort	 to	 port	 your	 tests	 to
unittest.

Update	map	for	imbalanced	input	sequences

With	Python	2,	when	map	was	given	more	than	one	input	sequence	it
would	 pad	 the	 shorter	 sequences	 with	 None	 values,	 returning	 a
sequence	as	long	as	the	longest	input	sequence.

With	Python	3,	 if	 the	 input	 sequences	 to	 map	are	of	unequal	 length,
map	will	stop	at	the	termination	of	the	shortest	of	the	sequences.	For
full	 compatibility	 with	 map	 from	 Python	 2.x,	 wrap	 the	 sequence
arguments	 in	 itertools.zip_longest(),	 e.g.	 map(func,

*sequences)	 becomes	 list(map(func,

itertools.zip_longest(*sequences))).

Eliminate	-3	Warnings

When	 you	 run	 your	 application’s	 test	 suite,	 run	 it	 using	 the	 -3	 flag
passed	to	Python.	This	will	cause	various	warnings	to	be	raised	during
execution	about	 things	 that	are	semantic	changes	between	Python	2
and	3.	Try	to	eliminate	those	warnings	to	make	your	code	even	more
portable	to	Python	3.

Alternative	Approaches

While	supporting	Python	2	&	3	simultaneously	is	typically	the	preferred
choice	by	people	so	that	they	can	continue	to	improve	code	and	have
it	work	 for	 the	most	 number	 of	 users,	 your	 life	may	 be	 easier	 if	 you
only	have	to	support	one	major	version	of	Python	going	forward.

Supporting	Only	Python	3	Going	Forward	From
Python	2	Code

If	you	have	Python	2	code	but	going	forward	only	want	to	improve	it	as
Python	3	code,	then	you	can	use	2to3	to	translate	your	Python	2	code
to	Python	3	code.	This	 is	only	 recommended,	 though,	 if	 your	current
version	of	your	project	is	going	into	maintenance	mode	and	you	want
all	new	features	to	be	exclusive	to	Python	3.

Backporting	Python	3	code	to	Python	2

If	you	have	Python	3	code	and	have	little	interest	in	supporting	Python
2	you	can	use	3to2	to	translate	from	Python	3	code	to	Python	2	code.
This	is	only	recommended	if	you	don’t	plan	to	heavily	support	Python	2
users.	Otherwise	write	your	code	for	Python	3	and	then	backport	as	far
back	as	you	want.	This	is	typically	easier	than	going	from	Python	2	to
3	as	 you	will	 have	worked	out	 any	difficulties	with	 e.g.	 bytes/strings,
etc.

http://docs.python.org/2/library/2to3.html
https://pypi.python.org/pypi/3to2

Other	Resources

The	 authors	 of	 the	 following	 blog	 posts,	 wiki	 pages,	 and	 books
deserve	special	thanks	for	making	public	their	tips	for	porting	Python	2
code	 to	 Python	 3	 (and	 thus	 helping	 provide	 information	 for	 this
document	and	its	various	revisions	over	the	years):

http://wiki.python.org/moin/PortingPythonToPy3k
http://python3porting.com/
http://docs.pythonsprints.com/python3_porting/py-porting.html
http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-python-
3-porting/
http://dabeaz.blogspot.com/2011/01/porting-py65-and-my-
superboard-to.html
http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/
http://lucumr.pocoo.org/2010/2/11/porting-to-python-3-a-guide/
https://wiki.ubuntu.com/Python/3

If	you	feel	there	is	something	missing	from	this	document	that	should
be	added,	please	email	the	python-porting	mailing	list.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://wiki.python.org/moin/PortingPythonToPy3k
http://python3porting.com/
http://docs.pythonsprints.com/python3_porting/py-porting.html
http://techspot.zzzeek.org/2011/01/24/zzzeek-s-guide-to-python-3-porting/
http://dabeaz.blogspot.com/2011/01/porting-py65-and-my-superboard-to.html
http://lucumr.pocoo.org/2011/1/22/forwards-compatible-python/
http://lucumr.pocoo.org/2010/2/11/porting-to-python-3-a-guide/
https://wiki.ubuntu.com/Python/3
http://mail.python.org/mailman/listinfo/python-porting
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Porting	Extension	Modules	to
Python	3
author: Benjamin	Peterson

Abstract

Although	changing	the	C-API	was	not	one	of	Python	3’s	objectives,
the	many	Python-level	changes	made	leaving	Python	2’s	API	 intact
impossible.	 In	 fact,	 some	 changes	 such	 as	 int()	 and	 long()
unification	 are	 more	 obvious	 on	 the	 C	 level.	 This	 document
endeavors	 to	 document	 incompatibilities	 and	 how	 they	 can	 be
worked	around.

Conditional	compilation

The	easiest	way	to	compile	only	some	code	for	Python	3	is	to	check	if
PY_MAJOR_VERSION	is	greater	than	or	equal	to	3.

#if	PY_MAJOR_VERSION	>=	3

#define	IS_PY3K

#endif

API	functions	that	are	not	present	can	be	aliased	to	their	equivalents
within	conditional	blocks.

Changes	to	Object	APIs

Python	 3	 merged	 together	 some	 types	 with	 similar	 functions	 while
cleanly	separating	others.

str/unicode	Unification

Python	3’s	str()	(PyString_*	functions	in	C)	type	is	equivalent	to
Python	2’s	unicode()	(PyUnicode_*).	The	old	8-bit	string	type	has
become	 bytes().	 Python	 2.6	 and	 later	 provide	 a	 compatibility
header,	 bytesobject.h,	 mapping	 PyBytes	 names	 to	 PyString
ones.	 For	 best	 compatibility	 with	 Python	 3,	 PyUnicode	 should	 be
used	for	textual	data	and	PyBytes	for	binary	data.	It’s	also	important
to	 remember	 that	 PyBytes	 and	 PyUnicode	 in	 Python	 3	 are	 not
interchangeable	like	PyString	and	PyUnicode	are	in	Python	2.	The
following	example	shows	best	practices	with	 regards	 to	PyUnicode,
PyString,	and	PyBytes.

#include	"stdlib.h"

#include	"Python.h"

#include	"bytesobject.h"

/*	text	example	*/

static	PyObject	*

say_hello(PyObject	*self,	PyObject	*args)	{

				PyObject	*name,	*result;

				if	(!PyArg_ParseTuple(args,	"U:say_hello",	&name

								return	NULL;

				result	=	PyUnicode_FromFormat("Hello,	%S!",	name

				return	result;

}

/*	just	a	forward	*/

static	char	*	do_encode(PyObject	*);

/*	bytes	example	*/

static	PyObject	*

encode_object(PyObject	*self,	PyObject	*args)	{

				char	*encoded;

				PyObject	*result,	*myobj;

				if	(!PyArg_ParseTuple(args,	"O:encode_object",	&

								return	NULL;

				encoded	=	do_encode(myobj);

				if	(encoded	==	NULL)

								return	NULL;

				result	=	PyBytes_FromString(encoded);

				free(encoded);

				return	result;

}

long/int	Unification

Python	 3	 has	 only	 one	 integer	 type,	 int().	 But	 it	 actually
corresponds	 to	 Python	 2’s	 long()	 type–the	 int()	 type	 used	 in
Python	2	was	removed.	In	the	C-API,	PyInt_*	functions	are	replaced
by	their	PyLong_*	equivalents.

Module	initialization	and	state

Python	3	has	a	revamped	extension	module	initialization	system.	(See
PEP	3121.)	Instead	of	storing	module	state	in	globals,	they	should	be
stored	 in	 an	 interpreter	 specific	 structure.	 Creating	modules	 that	 act
correctly	in	both	Python	2	and	Python	3	is	tricky.	The	following	simple
example	demonstrates	how.

#include	"Python.h"

struct	module_state	{

				PyObject	*error;

};

#if	PY_MAJOR_VERSION	>=	3

#define	GETSTATE(m)	((struct	module_state*)PyModule_GetState(m))

#else

#define	GETSTATE(m)	(&_state)

static	struct	module_state	_state;

#endif

static	PyObject	*

error_out(PyObject	*m)	{

				struct	module_state	*st	=	GETSTATE(m);

				PyErr_SetString(st->error,	"something	bad	happened"

				return	NULL;

}

static	PyMethodDef	myextension_methods[]	=	{

				{"error_out",	(PyCFunction)error_out,	METH_NOARGS

				{NULL,	NULL}

};

#if	PY_MAJOR_VERSION	>=	3

http://www.python.org/dev/peps/pep-3121

static	int	myextension_traverse(PyObject	*m,	visitproc

				Py_VISIT(GETSTATE(m)->error);

				return	0;

}

static	int	myextension_clear(PyObject	*m)	{

				Py_CLEAR(GETSTATE(m)->error);

				return	0;

}

static	struct	PyModuleDef	moduledef	=	{

								PyModuleDef_HEAD_INIT,

								"myextension",

								NULL,

								sizeof(struct	module_state),

								myextension_methods,

								NULL,

								myextension_traverse,

								myextension_clear,

								NULL

};

#define	INITERROR	return	NULL

PyObject	*

PyInit_myextension(void)

#else

#define	INITERROR	return

void

initmyextension(void)

#endif

{

#if	PY_MAJOR_VERSION	>=	3

				PyObject	*module	=	PyModule_Create(&moduledef);

#else

				PyObject	*module	=	Py_InitModule("myextension",	

#endif

				if	(module	==	NULL)

								INITERROR;

				struct	module_state	*st	=	GETSTATE(module);

				st->error	=	PyErr_NewException("myextension.Error"

				if	(st->error	==	NULL)	{

								Py_DECREF(module);

								INITERROR;

				}

#if	PY_MAJOR_VERSION	>=	3

				return	module;

#endif

}

CObject	replaced	with	Capsule

The	Capsule	object	was	introduced	in	Python	3.1	and	2.7	to	replace
CObject.	 CObjects	 were	 useful,	 but	 the	 CObject	 API	 was
problematic:	 it	 didn’t	 permit	 distinguishing	 between	 valid	 CObjects,
which	 allowed	 mismatched	 CObjects	 to	 crash	 the	 interpreter,	 and
some	 of	 its	 APIs	 relied	 on	 undefined	 behavior	 in	 C.	 (For	 further
reading	on	the	rationale	behind	Capsules,	please	see	issue	5630.)

If	you’re	currently	using	CObjects,	and	you	want	 to	migrate	 to	3.1	or
newer,	you’ll	need	to	switch	to	Capsules.	CObject	was	deprecated	in
3.1	and	2.7	and	completely	removed	in	Python	3.2.	If	you	only	support
2.7,	or	3.1	and	above,	you	can	simply	switch	to	Capsule.	If	you	need
to	 support	 Python	 3.0,	 or	 versions	 of	 Python	 earlier	 than	 2.7,	 you’ll
have	to	support	both	CObjects	and	Capsules.	(Note	that	Python	3.0	is
no	longer	supported,	and	it	is	not	recommended	for	production	use.)

The	 following	 example	 header	 file	 capsulethunk.h	may	 solve	 the
problem	for	you.	Simply	write	your	code	against	the	Capsule	API	and
include	 this	header	 file	after	Python.h.	Your	 code	will	 automatically
use	 Capsules	 in	 versions	 of	 Python	 with	 Capsules,	 and	 switch	 to
CObjects	when	Capsules	are	unavailable.

capsulethunk.h	 simulates	 Capsules	 using	 CObjects.	 However,
CObject	provides	no	place	to	store	the	capsule’s	“name”.	As	a	result
the	simulated	Capsule	objects	created	by	capsulethunk.h	behave
slightly	differently	from	real	Capsules.	Specifically:

The	 name	 parameter	 passed	 in	 to	 PyCapsule_New()	 is
ignored.
The	name	parameter	passed	in	to	PyCapsule_IsValid()

http://bugs.python.org/issue5630

and	 PyCapsule_GetPointer()	 is	 ignored,	 and	 no	 error
checking	of	the	name	is	performed.
PyCapsule_GetName()	always	returns	NULL.
PyCapsule_SetName()	 always	 raises	 an	 exception	 and
returns	 failure.	 (Since	 there’s	 no	 way	 to	 store	 a	 name	 in	 a
CObject,	 noisy	 failure	 of	 PyCapsule_SetName()	 was
deemed	 preferable	 to	 silent	 failure	 here.	 If	 this	 is
inconvenient,	 feel	 free	 to	modify	your	 local	copy	as	you	see
fit.)

You	can	 find	 capsulethunk.h	 in	 the	Python	source	distribution	as
Doc/includes/capsulethunk.h.	 We	 also	 include	 it	 here	 for	 your
convenience:

#ifndef	__CAPSULETHUNK_H

#define	__CAPSULETHUNK_H

#if	((PY_VERSION_HEX	<		0x02070000)	\

					||	((PY_VERSION_HEX	>=	0x03000000)	\

						&&	(PY_VERSION_HEX	<		0x03010000)))

#define	__PyCapsule_GetField(capsule,	field,	default_value)	\

				(PyCapsule_CheckExact(capsule)	\

								?	(((PyCObject	*)capsule)->field)	\

								:	(default_value)	\

)	\

#define	__PyCapsule_SetField(capsule,	field,	value)	\

				(PyCapsule_CheckExact(capsule)	\

								?	(((PyCObject	*)capsule)->field	=	value),	1	\

								:	0	\

)	\

#define	PyCapsule_Type	PyCObject_Type

http://hg.python.org/cpython/file/3.4/Doc/includes/capsulethunk.h

#define	PyCapsule_CheckExact(capsule)	(PyCObject_Check(capsule))

#define	PyCapsule_IsValid(capsule,	name)	(PyCObject_Check(capsule))

#define	PyCapsule_New(pointer,	name,	destructor)	\

				(PyCObject_FromVoidPtr(pointer,	destructor))

#define	PyCapsule_GetPointer(capsule,	name)	\

				(PyCObject_AsVoidPtr(capsule))

/*	Don't	call	PyCObject_SetPointer	here,	it	fails	if	there's	a	destructor	*/

#define	PyCapsule_SetPointer(capsule,	pointer)	\

				__PyCapsule_SetField(capsule,	cobject,	pointer)

#define	PyCapsule_GetDestructor(capsule)	\

				__PyCapsule_GetField(capsule,	destructor)

#define	PyCapsule_SetDestructor(capsule,	dtor)	\

				__PyCapsule_SetField(capsule,	destructor,	dtor)

/*

	*	Sorry,	there's	simply	no	place

	*	to	store	a	Capsule	"name"	in	a	CObject.

	*/

#define	PyCapsule_GetName(capsule)	NULL

static	int

PyCapsule_SetName(PyObject	*capsule,	const	char	*unused

{

				unused	=	unused;

				PyErr_SetString(PyExc_NotImplementedError,

								"can't	use	PyCapsule_SetName	with	CObjects");

				return	1;

}

#define	PyCapsule_GetContext(capsule)	\

				__PyCapsule_GetField(capsule,	descr)

#define	PyCapsule_SetContext(capsule,	context)	\

				__PyCapsule_SetField(capsule,	descr,	context)

static	void	*

PyCapsule_Import(const	char	*name,	int	no_block)

{

				PyObject	*object	=	NULL;

				void	*return_value	=	NULL;

				char	*trace;

				size_t	name_length	=	(strlen(name)	+	1)	*	sizeof

				char	*name_dup	=	(char	*)PyMem_MALLOC(name_length

				if	(!name_dup)	{

								return	NULL;

				}

				memcpy(name_dup,	name,	name_length);

				trace	=	name_dup;

				while	(trace)	{

								char	*dot	=	strchr(trace,	'.');

								if	(dot)	{

												*dot++	=	'\0';

								}

								if	(object	==	NULL)	{

												if	(no_block)	{

																object	=	PyImport_ImportModuleNoBlock

												}	else	{

																object	=	PyImport_ImportModule(trace

																if	(!object)	{

																				PyErr_Format(PyExc_ImportError,

																								"PyCapsule_Import	could	not	"

																								"import	module	\"%s\"",	trace

																}

												}

								}	else	{

												PyObject	*object2	=	PyObject_GetAttrString

												Py_DECREF(object);

												object	=	object2;

								}

								if	(!object)	{

												goto	EXIT;

								}

								trace	=	dot;

				}

				if	(PyCObject_Check(object))	{

								PyCObject	*cobject	=	(PyCObject	*)object;

								return_value	=	cobject->cobject;

				}	else	{

								PyErr_Format(PyExc_AttributeError,

												"PyCapsule_Import	\"%s\"	is	not	valid",

												name);

				}

EXIT:

				Py_XDECREF(object);

				if	(name_dup)	{

								PyMem_FREE(name_dup);

				}

				return	return_value;

}

#endif	/*	#if	PY_VERSION_HEX	<	0x02070000	*/

#endif	/*	__CAPSULETHUNK_H	*/

Other	options

If	you	are	writing	a	new	extension	module,	you	might	consider	Cython.
It	 translates	 a	 Python-like	 language	 to	 C.	 The	 extension	 modules	 it
creates	are	compatible	with	Python	3	and	Python	2.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.cython.org
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Curses	Programming	with	Python
Author: A.M.	Kuchling,	Eric	S.	Raymond

Release: 2.04

Abstract

This	document	describes	how	to	use	the	curses	extension	module
to	control	text-mode	displays.

What	is	curses?

The	 curses	 library	 supplies	 a	 terminal-independent	 screen-painting
and	keyboard-handling	facility	for	text-based	terminals;	such	terminals
include	 VT100s,	 the	 Linux	 console,	 and	 the	 simulated	 terminal
provided	 by	 various	 programs.	 Display	 terminals	 support	 various
control	 codes	 to	 perform	 common	 operations	 such	 as	 moving	 the
cursor,	scrolling	the	screen,	and	erasing	areas.	Different	terminals	use
widely	differing	codes,	and	often	have	their	own	minor	quirks.

In	a	world	of	graphical	displays,	one	might	ask	“why	bother”?	It’s	true
that	 character-cell	 display	 terminals	 are	 an	 obsolete	 technology,	 but
there	are	niches	in	which	being	able	to	do	fancy	things	with	them	are
still	valuable.	One	niche	is	on	small-footprint	or	embedded	Unixes	that
don’t	run	an	X	server.	Another	is	tools	such	as	OS	installers	and	kernel
configurators	 that	 may	 have	 to	 run	 before	 any	 graphical	 support	 is
available.

The	 curses	 library	 provides	 fairly	 basic	 functionality,	 providing	 the
programmer	with	an	abstraction	of	a	display	containing	multiple	non-
overlapping	 windows	 of	 text.	 The	 contents	 of	 a	 window	 can	 be
changed	 in	 various	 ways—adding	 text,	 erasing	 it,	 changing	 its
appearance—and	the	curses	library	will	 figure	out	what	control	codes
need	 to	 be	 sent	 to	 the	 terminal	 to	 produce	 the	 right	 output.	 curses
doesn’t	 provide	 many	 user-interface	 concepts	 such	 as	 buttons,
checkboxes,	 or	 dialogs;	 if	 you	 need	 such	 features,	 consider	 a	 user
interface	library	such	as	Urwid.

The	curses	library	was	originally	written	for	BSD	Unix;	the	later	System
V	 versions	 of	Unix	 from	AT&T	 added	many	 enhancements	 and	 new
functions.	BSD	curses	is	no	longer	maintained,	having	been	replaced
by	 ncurses,	 which	 is	 an	 open-source	 implementation	 of	 the	 AT&T

https://pypi.python.org/pypi/urwid/

interface.	 If	 you’re	 using	 an	 open-source	 Unix	 such	 as	 Linux	 or
FreeBSD,	 your	 system	 almost	 certainly	 uses	 ncurses.	 Since	 most
current	commercial	Unix	versions	are	based	on	System	V	code,	all	the
functions	described	here	will	probably	be	available.	The	older	versions
of	 curses	 carried	 by	 some	 proprietary	 Unixes	 may	 not	 support
everything,	though.

The	Windows	version	of	Python	doesn’t	 include	the	curses	module.
A	ported	version	called	UniCurses	is	available.	You	could	also	try	the
Console	module	written	by	Fredrik	Lundh,	which	doesn’t	use	the	same
API	 as	 curses	 but	 provides	 cursor-addressable	 text	 output	 and	 full
support	for	mouse	and	keyboard	input.

The	Python	curses	module

Thy	 Python	 module	 is	 a	 fairly	 simple	 wrapper	 over	 the	 C	 functions
provided	by	curses;	if	you’re	already	familiar	with	curses	programming
in	C,	it’s	really	easy	to	transfer	that	knowledge	to	Python.	The	biggest
difference	 is	 that	 the	 Python	 interface	 makes	 things	 simpler	 by
merging	different	C	functions	such	as	addstr(),	mvaddstr(),	and
mvwaddstr()	 into	 a	 single	 addstr()	 method.	 You’ll	 see	 this
covered	in	more	detail	later.

This	 HOWTO	 is	 an	 introduction	 to	 writing	 text-mode	 programs	 with
curses	and	Python.	 It	 doesn’t	 attempt	 to	be	a	 complete	guide	 to	 the
curses	API;	for	that,	see	the	Python	library	guide’s	section	on	ncurses,
and	 the	 C	manual	 pages	 for	 ncurses.	 It	 will,	 however,	 give	 you	 the
basic	ideas.

https://pypi.python.org/pypi/UniCurses
http://effbot.org/zone/console-index.htm

Starting	and	ending	a	curses	application

Before	 doing	 anything,	 curses	 must	 be	 initialized.	 This	 is	 done	 by
calling	 the	 initscr()	 function,	 which	 will	 determine	 the	 terminal
type,	 send	 any	 required	 setup	 codes	 to	 the	 terminal,	 and	 create
various	 internal	 data	 structures.	 If	 successful,	 initscr()	 returns	 a
window	 object	 representing	 the	 entire	 screen;	 this	 is	 usually	 called
stdscr	after	the	name	of	the	corresponding	C	variable.

import	curses

stdscr	=	curses.initscr()

Usually	curses	applications	 turn	off	automatic	echoing	of	 keys	 to	 the
screen,	 in	order	to	be	able	to	read	keys	and	only	display	them	under
certain	circumstances.	This	requires	calling	the	noecho()	function.

curses.noecho()

Applications	will	also	commonly	need	to	react	to	keys	instantly,	without
requiring	 the	Enter	key	 to	be	pressed;	 this	 is	called	cbreak	mode,	as
opposed	to	the	usual	buffered	input	mode.

curses.cbreak()

Terminals	 usually	 return	 special	 keys,	 such	 as	 the	 cursor	 keys	 or
navigation	keys	such	as	Page	Up	and	Home,	as	a	multibyte	escape
sequence.	 While	 you	 could	 write	 your	 application	 to	 expect	 such
sequences	 and	 process	 them	 accordingly,	 curses	 can	 do	 it	 for	 you,
returning	a	special	value	such	as	curses.KEY_LEFT.	To	get	curses
to	do	the	job,	you’ll	have	to	enable	keypad	mode.

stdscr.keypad(True)

Terminating	 a	 curses	 application	 is	 much	 easier	 than	 starting	 one.
You’ll	need	to	call:

curses.nocbreak()

stdscr.keypad(False)

curses.echo()

to	 reverse	 the	 curses-friendly	 terminal	 settings.	 Then	 call	 the
endwin()	 function	 to	 restore	 the	 terminal	 to	 its	 original	 operating
mode.

curses.endwin()

A	 common	 problem	 when	 debugging	 a	 curses	 application	 is	 to	 get
your	 terminal	messed	up	when	 the	application	dies	without	 restoring
the	 terminal	 to	 its	 previous	 state.	 In	 Python	 this	 commonly	 happens
when	your	code	is	buggy	and	raises	an	uncaught	exception.	Keys	are
no	 longer	 echoed	 to	 the	 screen	 when	 you	 type	 them,	 for	 example,
which	makes	using	the	shell	difficult.

In	 Python	 you	 can	 avoid	 these	 complications	 and	 make	 debugging
much	easier	by	importing	the	curses.wrapper()	function	and	using
it	like	this:

from	curses	import	wrapper

def	main(stdscr):

				#	Clear	screen

				stdscr.clear()

				#	This	raises	ZeroDivisionError	when	i	==	10.

				for	i	in	range(0,	11):

								v	=	i-10

								stdscr.addstr(i,	0,	'10	divided	by	{}	is	{}'

				stdscr.refresh()

				stdscr.getkey()

wrapper(main)

The	 wrapper()	 function	 takes	 a	 callable	 object	 and	 does	 the
initializations	described	above,	also	initializing	colors	if	color	support	is
present.	 wrapper()	 then	 runs	 your	 provided	 callable.	 Once	 the
callable	 returns,	 wrapper()	 will	 restore	 the	 original	 state	 of	 the
terminal.	 The	 callable	 is	 called	 inside	 a	 try...except	 that	 catches
exceptions,	 restores	 the	 state	of	 the	 terminal,	 and	 then	 re-raises	 the
exception.	 Therefore	 your	 terminal	 won’t	 be	 left	 in	 a	 funny	 state	 on
exception	 and	 you’ll	 be	 able	 to	 read	 the	 exception’s	 message	 and
traceback.

Windows	and	Pads

Windows	 are	 the	 basic	 abstraction	 in	 curses.	 A	 window	 object
represents	a	rectangular	area	of	the	screen,	and	supports	methods	to
display	text,	erase	it,	allow	the	user	to	input	strings,	and	so	forth.

The	stdscr	object	returned	by	the	initscr()	function	is	a	window
object	 that	 covers	 the	entire	 screen.	Many	 programs	may	 need	 only
this	single	window,	but	you	might	wish	to	divide	the	screen	into	smaller
windows,	in	order	to	redraw	or	clear	them	separately.	The	newwin()
function	 creates	 a	 new	 window	 of	 a	 given	 size,	 returning	 the	 new
window	object.

begin_x	=	20;	begin_y	=	7

height	=	5;	width	=	40

win	=	curses.newwin(height,	width,	begin_y,	begin_x)

Note	 that	 the	 coordinate	 system	 used	 in	 curses	 is	 unusual.
Coordinates	are	always	passed	in	the	order	y,x,	and	the	top-left	corner
of	a	window	is	coordinate	(0,0).	This	breaks	the	normal	convention	for
handling	 coordinates	 where	 the	 x	 coordinate	 comes	 first.	 This	 is	 an
unfortunate	difference	 from	most	other	computer	applications,	but	 it’s
been	part	of	curses	since	it	was	first	written,	and	it’s	too	late	to	change
things	now.

Your	 application	 can	 determine	 the	 size	 of	 the	 screen	 by	 using	 the
curses.LINES	 and	 curses.COLS	 variables	 to	 obtain	 the	 y	 and	 x
sizes.	 Legal	 coordinates	 will	 then	 extend	 from	 (0,0)	 to
(curses.LINES	-	1,	curses.COLS	-	1).

When	 you	 call	 a	method	 to	 display	 or	 erase	 text,	 the	 effect	 doesn’t

immediately	 show	 up	 on	 the	 display.	 Instead	 you	 must	 call	 the
refresh()	method	of	window	objects	to	update	the	screen.

This	 is	 because	 curses	 was	 originally	 written	 with	 slow	 300-baud
terminal	connections	in	mind;	with	these	terminals,	minimizing	the	time
required	 to	 redraw	 the	 screen	 was	 very	 important.	 Instead	 curses
accumulates	 changes	 to	 the	 screen	 and	 displays	 them	 in	 the	 most
efficient	 manner	 when	 you	 call	 refresh().	 For	 example,	 if	 your
program	displays	some	text	 in	a	window	and	then	clears	the	window,
there’s	no	need	to	send	the	original	text	because	they’re	never	visible.

In	practice,	explicitly	 telling	curses	 to	 redraw	a	window	doesn’t	 really
complicate	programming	with	curses	much.	Most	programs	go	 into	a
flurry	of	activity,	and	then	pause	waiting	for	a	keypress	or	some	other
action	on	the	part	of	the	user.	All	you	have	to	do	is	to	be	sure	that	the
screen	has	been	redrawn	before	pausing	to	wait	for	user	input,	by	first
calling	 stdscr.refresh()	 or	 the	 refresh()	 method	 of	 some
other	relevant	window.

A	pad	 is	a	special	case	of	a	window;	 it	can	be	 larger	 than	 the	actual
display	 screen,	 and	 only	 a	 portion	 of	 the	 pad	 displayed	 at	 a	 time.
Creating	a	pad	requires	the	pad’s	height	and	width,	while	refreshing	a
pad	 requires	 giving	 the	 coordinates	 of	 the	 on-screen	 area	 where	 a
subsection	of	the	pad	will	be	displayed.

pad	=	curses.newpad(100,	100)

#	These	loops	fill	the	pad	with	letters;	addch()	is

#	explained	in	the	next	section

for	y	in	range(0,	99):

				for	x	in	range(0,	99):

								pad.addch(y,x,	ord('a')	+	(x*x+y*y)	%	26)

#	Displays	a	section	of	the	pad	in	the	middle	of	the	screen.

#	(0,0)	:	coordinate	of	upper-left	corner	of	pad	area	to	display.

#	(5,5)	:	coordinate	of	upper-left	corner	of	window	area	to	be	filled

#									with	pad	content.

#	(20,	75)	:	coordinate	of	lower-right	corner	of	window	area	to	be

#										:	filled	with	pad	content.

pad.refresh(0,0,	5,5,	20,75)

The	 refresh()	 call	 displays	 a	 section	 of	 the	 pad	 in	 the	 rectangle
extending	 from	 coordinate	 (5,5)	 to	 coordinate	 (20,75)	 on	 the	 screen;
the	upper	left	corner	of	the	displayed	section	is	coordinate	(0,0)	on	the
pad.	Beyond	 that	 difference,	 pads	 are	 exactly	 like	 ordinary	windows
and	support	the	same	methods.

If	 you	 have	 multiple	 windows	 and	 pads	 on	 screen	 there	 is	 a	 more
efficient	way	to	update	the	screen	and	prevent	annoying	screen	flicker
as	 each	 part	 of	 the	 screen	 gets	 updated.	 refresh()	 actually	 does
two	things:

1.	 Calls	the	noutrefresh()	method	of	each	window	to	update	an
underlying	 data	 structure	 representing	 the	 desired	 state	 of	 the
screen.

2.	 Calls	 the	 function	 doupdate()	 function	 to	 change	 the	 physical
screen	to	match	the	desired	state	recorded	in	the	data	structure.

Instead	 you	 can	 call	 noutrefresh()	 on	 a	 number	 of	 windows	 to
update	 the	 data	 structure,	 and	 then	 call	 doupdate()	 to	 update	 the
screen.

Displaying	Text

From	a	C	programmer’s	point	of	view,	curses	may	sometimes	look	like
a	 twisty	 maze	 of	 functions,	 all	 subtly	 different.	 For	 example,
addstr()	 displays	 a	 string	 at	 the	 current	 cursor	 location	 in	 the
stdscr	window,	while	mvaddstr()	moves	to	a	given	y,x	coordinate
first	 before	 displaying	 the	 string.	 waddstr()	 is	 just	 like	 addstr(),
but	 allows	 specifying	 a	 window	 to	 use	 instead	 of	 using	 stdscr	 by
default.	 mvwaddstr()	 allows	 specifying	 both	 a	 window	 and	 a
coordinate.

Fortunately	 the	Python	 interface	hides	all	 these	details.	stdscr	 is	a
window	object	like	any	other,	and	methods	such	as	addstr()	accept
multiple	argument	forms.	Usually	there	are	four	different	forms.

Form Description

str	or	ch Display	the	string	str	or	character	ch	at
the	current	position

str	or	ch,	attr
Display	the	string	str	or	character	ch,
using	attribute	attr	at	the	current
position

y,	x,	str	or	ch Move	to	position	y,x	within	the	window,
and	display	str	or	ch

y,	x,	str	or	ch,	attr
Move	to	position	y,x	within	the	window,
and	display	str	or	ch,	using	attribute
attr

Attributes	allow	displaying	text	 in	highlighted	forms	such	as	boldface,
underline,	reverse	code,	or	in	color.	They’ll	be	explained	in	more	detail
in	the	next	subsection.

The	 addstr()	 method	 takes	 a	 Python	 string	 or	 bytestring	 as	 the
value	 to	 be	 displayed.	 The	 contents	 of	 bytestrings	 are	 sent	 to	 the
terminal	 as-is.	 Strings	 are	 encoded	 to	 bytes	 using	 the	 value	 of	 the
window’s	 encoding	 attribute;	 this	 defaults	 to	 the	 default	 system
encoding	as	returned	by	locale.getpreferredencoding().

The	addch()	methods	take	a	character,	which	can	be	either	a	string
of	length	1,	a	bytestring	of	length	1,	or	an	integer.

Constants	are	provided	for	extension	characters;	 these	constants	are
integers	 greater	 than	 255.	 For	 example,	 ACS_PLMINUS	 is	 a	 +/-
symbol,	and	ACS_ULCORNER	 is	the	upper	 left	corner	of	a	box	(handy
for	 drawing	 borders).	 You	 can	 also	 use	 the	 appropriate	 Unicode
character.

Windows	remember	where	the	cursor	was	left	after	the	last	operation,
so	 if	you	 leave	out	 the	y,x	coordinates,	 the	string	or	character	will	be
displayed	wherever	 the	 last	operation	 left	off.	You	can	also	move	the
cursor	with	the	move(y,x)	method.	Because	some	terminals	always
display	 a	 flashing	 cursor,	 you	may	want	 to	 ensure	 that	 the	 cursor	 is
positioned	 in	 some	 location	 where	 it	 won’t	 be	 distracting;	 it	 can	 be
confusing	 to	 have	 the	 cursor	 blinking	 at	 some	 apparently	 random
location.

If	 your	 application	doesn’t	 need	a	 blinking	 cursor	 at	 all,	 you	 can	 call
curs_set(False)	 to	make	 it	 invisible.	 For	 compatibility	 with	 older
curses	versions,	there’s	a	leaveok(bool)	function	that’s	a	synonym
for	curs_set().	When	bool	 is	true,	the	curses	library	will	attempt	to
suppress	 the	 flashing	 cursor,	 and	 you	 won’t	 need	 to	 worry	 about
leaving	it	in	odd	locations.

Attributes	and	Color

Characters	can	be	displayed	 in	different	ways.	Status	 lines	 in	a	 text-
based	 application	 are	 commonly	 shown	 in	 reverse	 video,	 or	 a	 text
viewer	may	 need	 to	 highlight	 certain	 words.	 curses	 supports	 this	 by
allowing	you	to	specify	an	attribute	for	each	cell	on	the	screen.

An	 attribute	 is	 an	 integer,	 each	 bit	 representing	 a	 different	 attribute.
You	can	 try	 to	display	 text	with	multiple	attribute	bits	 set,	 but	 curses
doesn’t	guarantee	that	all	 the	possible	combinations	are	available,	or
that	 they’re	 all	 visually	 distinct.	 That	 depends	 on	 the	 ability	 of	 the
terminal	 being	 used,	 so	 it’s	 safest	 to	 stick	 to	 the	 most	 commonly
available	attributes,	listed	here.

Attribute Description

A_BLINK Blinking	text

A_BOLD Extra	bright	or	bold	text

A_DIM Half	bright	text

A_REVERSE Reverse-video	text

A_STANDOUT
The	best	highlighting	mode
available

A_UNDERLINE Underlined	text

So,	to	display	a	reverse-video	status	line	on	the	top	line	of	the	screen,
you	could	code:

stdscr.addstr(0,	0,	"Current	mode:	Typing	mode",

														curses.A_REVERSE)

stdscr.refresh()

The	curses	library	also	supports	color	on	those	terminals	that	provide
it.	 The	 most	 common	 such	 terminal	 is	 probably	 the	 Linux	 console,
followed	by	color	xterms.

To	use	color,	 you	must	call	 the	start_color()	 function	soon	after
calling	 initscr(),	 to	 initialize	 the	 default	 color	 set	 (the
curses.wrapper()	 function	 does	 this	 automatically).	 Once	 that’s
done,	the	has_colors()	function	returns	TRUE	if	the	terminal	in	use
can	 actually	 display	 color.	 (Note:	 curses	 uses	 the	 American	 spelling
‘color’,	 instead	of	the	Canadian/British	spelling	‘colour’.	 If	you’re	used
to	the	British	spelling,	you’ll	have	to	resign	yourself	to	misspelling	it	for
the	sake	of	these	functions.)

The	curses	library	maintains	a	finite	number	of	color	pairs,	containing
a	 foreground	(or	 text)	color	and	a	background	color.	You	can	get	 the
attribute	value	corresponding	to	a	color	pair	with	the	color_pair()
function;	 this	 can	 be	 bitwise-OR’ed	 with	 other	 attributes	 such	 as
A_REVERSE,	but	again,	such	combinations	are	not	guaranteed	to	work
on	all	terminals.

An	example,	which	displays	a	line	of	text	using	color	pair	1:

stdscr.addstr("Pretty	text",	curses.color_pair(1))

stdscr.refresh()

As	I	said	before,	a	color	pair	consists	of	a	foreground	and	background
color.	The	init_pair(n,	f,	b)	 function	changes	the	definition	of
color	pair	n,	to	foreground	color	f	and	background	color	b.	Color	pair	0
is	hard-wired	to	white	on	black,	and	cannot	be	changed.

Colors	are	numbered,	and	start_color()	 initializes	8	basic	colors
when	 it	 activates	 color	 mode.	 They	 are:	 0:black,	 1:red,	 2:green,
3:yellow,	4:blue,	5:magenta,	6:cyan,	and	7:white.	The	curses	module
defines	 named	 constants	 for	 each	 of	 these	 colors:
curses.COLOR_BLACK,	curses.COLOR_RED,	and	so	forth.

Let’s	 put	 all	 this	 together.	 To	 change	 color	 1	 to	 red	 text	 on	 a	 white

background,	you	would	call:

curses.init_pair(1,	curses.COLOR_RED,	curses.COLOR_WHITE

When	you	change	a	color	pair,	any	 text	already	displayed	using	 that
color	pair	will	change	to	the	new	colors.	You	can	also	display	new	text
in	this	color	with:

stdscr.addstr(0,0,	"RED	ALERT!",	curses.color_pair(1

Very	fancy	terminals	can	change	the	definitions	of	the	actual	colors	to
a	given	RGB	value.	This	lets	you	change	color	1,	which	is	usually	red,
to	purple	or	blue	or	any	other	color	you	 like.	Unfortunately,	 the	Linux
console	 doesn’t	 support	 this,	 so	 I’m	 unable	 to	 try	 it	 out,	 and	 can’t
provide	any	examples.	You	can	check	 if	your	 terminal	can	do	 this	by
calling	can_change_color(),	which	returns	True	if	the	capability	is
there.	If	you’re	lucky	enough	to	have	such	a	talented	terminal,	consult
your	system’s	man	pages	for	more	information.

User	Input

The	 C	 curses	 library	 offers	 only	 very	 simple	 input	 mechanisms.
Python’s	 curses	 module	 adds	 a	 basic	 text-input	 widget.	 (Other
libraries	such	as	Urwid	have	more	extensive	collections	of	widgets.)

There	are	two	methods	for	getting	input	from	a	window:

getch()	refreshes	the	screen	and	then	waits	for	the	user	to	hit	a
key,	displaying	the	key	if	echo()	has	been	called	earlier.	You	can
optionally	 specify	 a	 coordinate	 to	 which	 the	 cursor	 should	 be
moved	before	pausing.
getkey()	 does	 the	 same	 thing	 but	 converts	 the	 integer	 to	 a
string.	 Individual	 characters	 are	 returned	 as	 1-character	 strings,
and	 special	 keys	 such	 as	 function	 keys	 return	 longer	 strings
containing	a	key	name	such	as	KEY_UP	or	^G.

It’s	 possible	 to	 not	 wait	 for	 the	 user	 using	 the	 nodelay()	 window
method.	 After	 nodelay(True),	 getch()	 and	 getkey()	 for	 the
window	 become	 non-blocking.	 To	 signal	 that	 no	 input	 is	 ready,
getch()	returns	curses.ERR	(a	value	of	-1)	and	getkey()	 raises
an	 exception.	 There’s	 also	 a	 halfdelay()	 function,	 which	 can	 be
used	to	(in	effect)	set	a	timer	on	each	getch();	if	no	input	becomes
available	within	 a	 specified	 delay	 (measured	 in	 tenths	 of	 a	 second),
curses	raises	an	exception.

The	getch()	method	returns	an	integer;	if	 it’s	between	0	and	255,	it
represents	the	ASCII	code	of	the	key	pressed.	Values	greater	than	255
are	special	keys	such	as	Page	Up,	Home,	or	the	cursor	keys.	You	can
compare	 the	 value	 returned	 to	 constants	 such	 as
curses.KEY_PPAGE,	 curses.KEY_HOME,	 or	 curses.KEY_LEFT.
The	main	loop	of	your	program	may	look	something	like	this:

https://pypi.python.org/pypi/urwid/

while	True:

				c	=	stdscr.getch()

				if	c	==	ord('p'):

								PrintDocument()

				elif	c	==	ord('q'):

								break		#	Exit	the	while	loop

				elif	c	==	curses.KEY_HOME:

								x	=	y	=	0

The	 curses.ascii	 module	 supplies	 ASCII	 class	 membership
functions	 that	 take	 either	 integer	 or	 1-character	 string	 arguments;
these	may	be	useful	 in	writing	more	 readable	 tests	 for	such	 loops.	 It
also	 supplies	 conversion	 functions	 that	 take	 either	 integer	 or	 1-
character-string	 arguments	 and	 return	 the	 same	 type.	 For	 example,
curses.ascii.ctrl()	returns	the	control	character	corresponding
to	its	argument.

There’s	also	a	method	 to	 retrieve	an	entire	string,	getstr().	 It	 isn’t
used	 very	 often,	 because	 its	 functionality	 is	 quite	 limited;	 the	 only
editing	keys	available	are	the	backspace	key	and	the	Enter	key,	which
terminates	the	string.	It	can	optionally	be	limited	to	a	fixed	number	of
characters.

curses.echo()												#	Enable	echoing	of	characters

#	Get	a	15-character	string,	with	the	cursor	on	the	top	line

s	=	stdscr.getstr(0,0,	15)

The	curses.textpad	module	 supplies	 a	 text	 box	 that	 supports	 an
Emacs-like	set	of	keybindings.	Various	methods	of	the	Textbox	class
support	 editing	 with	 input	 validation	 and	 gathering	 the	 edit	 results
either	with	or	without	trailing	spaces.	Here’s	an	example:

import	curses

from	curses.textpad	import	Textbox,	rectangle

def	main(stdscr):

				stdscr.addstr(0,	0,	"Enter	IM	message:	(hit	Ctrl-G	to	send)"

				editwin	=	curses.newwin(5,30,	2,1)

				rectangle(stdscr,	1,0,	1+5+1,	1+30+1)

				stdscr.refresh()

				box	=	Textbox(editwin)

				#	Let	the	user	edit	until	Ctrl-G	is	struck.

				box.edit()

				#	Get	resulting	contents

				message	=	box.gather()

See	the	library	documentation	on	curses.textpad	for	more	details.

For	More	Information

This	HOWTO	doesn’t	 cover	 some	advanced	 topics,	 such	as	 reading
the	contents	of	 the	screen	or	capturing	mouse	events	 from	an	xterm
instance,	but	 the	Python	 library	page	 for	 the	curses	module	 is	now
reasonably	complete.	You	should	browse	it	next.

If	you’re	 in	doubt	about	the	detailed	behavior	of	 the	curses	functions,
consult	the	manual	pages	for	your	curses	implementation,	whether	it’s
ncurses	 or	 a	 proprietary	 Unix	 vendor’s.	 The	 manual	 pages	 will
document	any	quirks,	 and	provide	 complete	 lists	of	 all	 the	 functions,
attributes,	and	ACS_*	characters	available	to	you.

Because	the	curses	API	 is	so	 large,	some	functions	aren’t	supported
in	 the	 Python	 interface.	 Often	 this	 isn’t	 because	 they’re	 difficult	 to
implement,	 but	 because	 no	 one	 has	 needed	 them	 yet.	 Also,	Python
doesn’t	yet	support	the	menu	library	associated	with	ncurses.	Patches
adding	 support	 for	 these	 would	 be	 welcome;	 see	 the	 Python
Developer’s	Guide	to	learn	more	about	submitting	patches	to	Python.

Writing	 Programs	 with	 NCURSES:	 a	 lengthy	 tutorial	 for	 C
programmers.
The	ncurses	man	page
The	ncurses	FAQ
“Use	 curses...	 don’t	 swear”:	 video	 of	 a	 PyCon	 2013	 talk	 on
controlling	terminals	using	curses	or	Urwid.
“Console	Applications	with	Urwid”:	video	of	a	PyCon	CA	2012	talk
demonstrating	some	applications	written	using	Urwid.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://docs.python.org/devguide/
http://invisible-island.net/ncurses/ncurses-intro.html
http://www.linuxmanpages.com/man3/ncurses.3x.php
http://invisible-island.net/ncurses/ncurses.faq.html
http://www.youtube.com/watch?v=eN1eZtjLEnU
http://www.pyvideo.org/video/1568/console-applications-with-urwid
http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Descriptor	HowTo	Guide
Author: Raymond	Hettinger

Contact: <python	at	rcn	dot	com>

Contents

Descriptor	HowTo	Guide
Abstract
Definition	and	Introduction
Descriptor	Protocol
Invoking	Descriptors
Descriptor	Example
Properties
Functions	and	Methods
Static	Methods	and	Class	Methods

Abstract

Defines	 descriptors,	 summarizes	 the	 protocol,	 and	 shows	 how
descriptors	 are	 called.	 Examines	 a	 custom	 descriptor	 and	 several
built-in	 python	 descriptors	 including	 functions,	 properties,	 static
methods,	and	class	methods.	Shows	how	each	works	by	giving	a	pure
Python	equivalent	and	a	sample	application.

Learning	 about	 descriptors	 not	 only	 provides	 access	 to	 a	 larger
toolset,	it	creates	a	deeper	understanding	of	how	Python	works	and	an
appreciation	for	the	elegance	of	its	design.

Definition	and	Introduction

In	general,	a	descriptor	 is	an	object	attribute	with	 “binding	behavior”,
one	whose	 attribute	 access	 has	 been	 overridden	 by	methods	 in	 the
descriptor	 protocol.	 Those	 methods	 are	 __get__(),	 __set__(),
and	 __delete__().	 If	 any	 of	 those	 methods	 are	 defined	 for	 an
object,	it	is	said	to	be	a	descriptor.

The	default	 behavior	 for	 attribute	 access	 is	 to	 get,	 set,	 or	 delete	 the
attribute	 from	an	object’s	 dictionary.	For	 instance,	 a.x	 has	 a	 lookup
chain	 starting	 with	 a.__dict__['x'],	 then
type(a).__dict__['x'],	and	continuing	through	the	base	classes
of	type(a)	excluding	metaclasses.	If	the	looked-up	value	is	an	object
defining	one	of	the	descriptor	methods,	then	Python	may	override	the
default	behavior	and	invoke	the	descriptor	method	instead.	Where	this
occurs	in	the	precedence	chain	depends	on	which	descriptor	methods
were	defined.

Descriptors	 are	 a	 powerful,	 general	 purpose	 protocol.	 They	 are	 the
mechanism	 behind	 properties,	 methods,	 static	 methods,	 class
methods,	 and	 super().	 They	 are	 used	 throughout	 Python	 itself	 to
implement	the	new	style	classes	introduced	in	version	2.2.	Descriptors
simplify	the	underlying	C-code	and	offer	a	flexible	set	of	new	tools	for
everyday	Python	programs.

Descriptor	Protocol

descr.__get__(self,	obj,	type=None)	-->	value

descr.__set__(self,	obj,	value)	-->	None

descr.__delete__(self,	obj)	-->	None

That	is	all	there	is	to	it.	Define	any	of	these	methods	and	an	object	is
considered	a	descriptor	and	can	override	default	behavior	upon	being
looked	up	as	an	attribute.

If	 an	 object	 defines	 both	 __get__()	 and	 __set__(),	 it	 is
considered	a	data	descriptor.	Descriptors	that	only	define	__get__()
are	 called	 non-data	 descriptors	 (they	 are	 typically	 used	 for	methods
but	other	uses	are	possible).

Data	 and	non-data	 descriptors	 differ	 in	 how	overrides	 are	 calculated
with	 respect	 to	 entries	 in	 an	 instance’s	 dictionary.	 If	 an	 instance’s
dictionary	has	an	entry	with	the	same	name	as	a	data	descriptor,	the
data	 descriptor	 takes	 precedence.	 If	 an	 instance’s	 dictionary	 has	 an
entry	 with	 the	 same	 name	 as	 a	 non-data	 descriptor,	 the	 dictionary
entry	takes	precedence.

To	 make	 a	 read-only	 data	 descriptor,	 define	 both	 __get__()	 and
__set__()	with	the	__set__()	raising	an	AttributeError	when
called.	 Defining	 the	 __set__()	 method	 with	 an	 exception	 raising
placeholder	is	enough	to	make	it	a	data	descriptor.

Invoking	Descriptors

A	descriptor	can	be	called	directly	by	its	method	name.	For	example,
d.__get__(obj).

Alternatively,	 it	 is	 more	 common	 for	 a	 descriptor	 to	 be	 invoked
automatically	upon	attribute	access.	For	example,	obj.d	 looks	up	d
in	 the	 dictionary	 of	 obj.	 If	 d	 defines	 the	method	 __get__(),	 then
d.__get__(obj)	is	invoked	according	to	the	precedence	rules	listed
below.

The	 details	 of	 invocation	 depend	 on	 whether	 obj	 is	 an	 object	 or	 a
class.

For	 objects,	 the	 machinery	 is	 in	 object.__getattribute__()
which	transforms	b.x	into	type(b).__dict__['x'].__get__(b,
type(b)).	 The	 implementation	 works	 through	 a	 precedence	 chain
that	 gives	 data	 descriptors	 priority	 over	 instance	 variables,	 instance
variables	priority	over	non-data	descriptors,	and	assigns	lowest	priority
to	 __getattr__()	 if	 provided.	 The	 full	 C	 implementation	 can	 be
found	in	PyObject_GenericGetAttr()	in	Objects/object.c.

For	classes,	the	machinery	is	in	type.__getattribute__()	which
transforms	 B.x	 into	 B.__dict__['x'].__get__(None,	 B).	 In
pure	Python,	it	looks	like:

def	__getattribute__(self,	key):

				"Emulate	type_getattro()	in	Objects/typeobject.c"

				v	=	object.__getattribute__(self,	key)

				if	hasattr(v,	'__get__'):

							return	v.__get__(None,	self)

				return	v

http://svn.python.org/view/python/trunk/Objects/object.c?view=markup

The	important	points	to	remember	are:

descriptors	are	invoked	by	the	__getattribute__()	method
overriding	__getattribute__()	prevents	automatic	descriptor
calls
object.__getattribute__()	 and
type.__getattribute__()	 make	 different	 calls	 to
__get__().
data	descriptors	always	override	instance	dictionaries.
non-data	descriptors	may	be	overridden	by	instance	dictionaries.

The	 object	 returned	 by	 super()	 also	 has	 a	 custom
__getattribute__()	 method	 for	 invoking	 descriptors.	 The	 call
super(B,	obj).m()	searches	obj.__class__.__mro__	 for	 the
base	 class	 A	 immediately	 following	 B	 and	 then	 returns
A.__dict__['m'].__get__(obj,	 B).	 If	 not	 a	 descriptor,	 m	 is
returned	 unchanged.	 If	 not	 in	 the	 dictionary,	 m	 reverts	 to	 a	 search
using	object.__getattribute__().

The	 implementation	 details	 are	 in	 super_getattro()	 in
Objects/typeobject.c	 and	 a	 pure	 Python	 equivalent	 can	 be	 found	 in
Guido’s	Tutorial.

The	 details	 above	 show	 that	 the	 mechanism	 for	 descriptors	 is
embedded	 in	 the	 __getattribute__()	 methods	 for	 object,
type,	and	super().	Classes	inherit	this	machinery	when	they	derive
from	 object	 or	 if	 they	 have	 a	 meta-class	 providing	 similar
functionality.	 Likewise,	 classes	 can	 turn-off	 descriptor	 invocation	 by
overriding	__getattribute__().

http://svn.python.org/view/python/trunk/Objects/typeobject.c?view=markup
http://www.python.org/2.2.3/descrintro.html#cooperation

Descriptor	Example

The	following	code	creates	a	class	whose	objects	are	data	descriptors
which	 print	 a	 message	 for	 each	 get	 or	 set.	 Overriding
__getattribute__()	 is	 alternate	 approach	 that	 could	 do	 this	 for
every	attribute.	However,	this	descriptor	is	useful	for	monitoring	just	a
few	chosen	attributes:

class	RevealAccess(object):

				"""A	data	descriptor	that	sets	and	returns	values

							normally	and	prints	a	message	logging	their	access.

				"""

				def	__init__(self,	initval=None,	name='var'):

								self.val	=	initval

								self.name	=	name

				def	__get__(self,	obj,	objtype):

								print('Retrieving',	self.name)

								return	self.val

				def	__set__(self,	obj,	val):

								print('Updating',	self.name)

								self.val	=	val

>>>	class	MyClass(object):

				x	=	RevealAccess(10,	'var	"x"')

				y	=	5

>>>	m	=	MyClass()

>>>	m.x

Retrieving	var	"x"

10

>>>	m.x	=	20

Updating	var	"x"

>>>	m.x

Retrieving	var	"x"

20

>>>	m.y

5

The	 protocol	 is	 simple	 and	 offers	 exciting	 possibilities.	 Several	 use
cases	 are	 so	 common	 that	 they	 have	 been	 packaged	 into	 individual
function	 calls.	 Properties,	 bound	 and	 unbound	 methods,	 static
methods,	and	class	methods	are	all	based	on	the	descriptor	protocol.

Properties

Calling	 property()	 is	 a	 succinct	way	 of	 building	 a	 data	 descriptor
that	triggers	function	calls	upon	access	to	an	attribute.	Its	signature	is:

property(fget=None,	fset=None,	fdel=None,	doc=None)	

The	documentation	shows	a	typical	use	to	define	a	managed	attribute
x:

class	C(object):

				def	getx(self):	return	self.__x

				def	setx(self,	value):	self.__x	=	value

				def	delx(self):	del	self.__x

				x	=	property(getx,	setx,	delx,	"I'm	the	'x'	property."

To	 see	 how	 property()	 is	 implemented	 in	 terms	 of	 the	 descriptor
protocol,	here	is	a	pure	Python	equivalent:

class	Property(object):

				"Emulate	PyProperty_Type()	in	Objects/descrobject.c"

				def	__init__(self,	fget=None,	fset=None,	fdel=None

								self.fget	=	fget

								self.fset	=	fset

								self.fdel	=	fdel

								if	doc	is	None	and	fget	is	not	None:

												doc	=	fget.__doc__

								self.__doc__	=	doc

				def	__get__(self,	obj,	objtype=None):

								if	obj	is	None:

												return	self

								if	self.fget	is	None:

												raise	AttributeError("unreadable	attribute"

								return	self.fget(obj)

				def	__set__(self,	obj,	value):

								if	self.fset	is	None:

												raise	AttributeError("can't	set	attribute"

								self.fset(obj,	value)

				def	__delete__(self,	obj):

								if	self.fdel	is	None:

												raise	AttributeError("can't	delete	attribute"

								self.fdel(obj)

				def	getter(self,	fget):

								return	type(self)(fget,	self.fset,	self.fdel

				def	setter(self,	fset):

								return	type(self)(self.fget,	fset,	self.fdel

				def	deleter(self,	fdel):

								return	type(self)(self.fget,	self.fset,	fdel

The	property()	builtin	helps	whenever	a	user	interface	has	granted
attribute	access	and	then	subsequent	changes	require	the	intervention
of	a	method.

For	 instance,	 a	 spreadsheet	 class	may	 grant	 access	 to	 a	 cell	 value
through	 Cell('b10').value.	 Subsequent	 improvements	 to	 the
program	require	the	cell	to	be	recalculated	on	every	access;	however,
the	programmer	does	not	want	to	affect	existing	client	code	accessing
the	 attribute	 directly.	 The	 solution	 is	 to	 wrap	 access	 to	 the	 value
attribute	in	a	property	data	descriptor:

class	Cell(object):

				.	.	.

				def	getvalue(self,	obj):

								"Recalculate	cell	before	returning	value"

								self.recalc()

								return	obj._value

				value	=	property(getvalue)

Functions	and	Methods

Python’s	 object	 oriented	 features	 are	 built	 upon	 a	 function	 based
environment.	 Using	 non-data	 descriptors,	 the	 two	 are	 merged
seamlessly.

Class	 dictionaries	 store	 methods	 as	 functions.	 In	 a	 class	 definition,
methods	 are	 written	 using	 def	 and	 lambda,	 the	 usual	 tools	 for
creating	 functions.	 The	 only	 difference	 from	 regular	 functions	 is	 that
the	 first	 argument	 is	 reserved	 for	 the	 object	 instance.	 By	 Python
convention,	the	instance	reference	is	called	self	but	may	be	called	this
or	any	other	variable	name.

To	support	method	calls,	functions	include	the	__get__()	method	for
binding	methods	during	attribute	access.	This	means	that	all	functions
are	 non-data	 descriptors	 which	 return	 bound	 or	 unbound	 methods
depending	whether	they	are	invoked	from	an	object	or	a	class.	In	pure
python,	it	works	like	this:

class	Function(object):

				.	.	.

				def	__get__(self,	obj,	objtype=None):

								"Simulate	func_descr_get()	in	Objects/funcobject.c"

								return	types.MethodType(self,	obj,	objtype)

Running	 the	 interpreter	 shows	 how	 the	 function	 descriptor	 works	 in
practice:

>>>	class	D(object):

					def	f(self,	x):

										return	x

>>>	d	=	D()

>>>	D.__dict__['f']	#	Stored	internally	as	a	function

<function	f	at	0x00C45070>

>>>	D.f													#	Get	from	a	class	becomes	an	unbound	method

<unbound	method	D.f>

>>>	d.f													#	Get	from	an	instance	becomes	a	bound	method

<bound	method	D.f	of	<__main__.D	object	at	0x00B18C90>>

The	 output	 suggests	 that	 bound	 and	 unbound	 methods	 are	 two
different	types.	While	they	could	have	been	implemented	that	way,	the
actual	C	implementation	of	PyMethod_Type	 in	Objects/classobject.c
is	 a	 single	 object	 with	 two	 different	 representations	 depending	 on
whether	 the	 im_self	 field	 is	 set	 or	 is	 NULL	 (the	 C	 equivalent	 of
None).

Likewise,	 the	 effects	 of	 calling	 a	 method	 object	 depend	 on	 the
im_self	field.	If	set	(meaning	bound),	the	original	function	(stored	in
the	im_func	field)	is	called	as	expected	with	the	first	argument	set	to
the	instance.	If	unbound,	all	of	the	arguments	are	passed	unchanged
to	 the	 original	 function.	 The	 actual	 C	 implementation	 of
instancemethod_call()	 is	 only	 slightly	 more	 complex	 in	 that	 it
includes	some	type	checking.

http://svn.python.org/view/python/trunk/Objects/classobject.c?view=markup

Static	Methods	and	Class	Methods

Non-data	descriptors	provide	a	simple	mechanism	for	variations	on	the
usual	patterns	of	binding	functions	into	methods.

To	 recap,	 functions	have	a	__get__()	method	 so	 that	 they	 can	be
converted	 to	 a	 method	 when	 accessed	 as	 attributes.	 The	 non-data
descriptor	 transforms	 a	 obj.f(*args)	 call	 into	 f(obj,	 *args).
Calling	klass.f(*args)	becomes	f(*args).

This	chart	summarizes	the	binding	and	its	two	most	useful	variants:

Transformation Called	from	an	Object Called	from	a
Class

function f(obj,	*args) f(*args)

staticmethod f(*args) f(*args)

classmethod f(type(obj),	*args) f(klass,	*args)

Static	methods	return	the	underlying	function	without	changes.	Calling
either	 c.f	 or	 C.f	 is	 the	 equivalent	 of	 a	 direct	 lookup	 into
object.__getattribute__(c,	 "f")	 or
object.__getattribute__(C,	 "f").	 As	 a	 result,	 the	 function
becomes	identically	accessible	from	either	an	object	or	a	class.

Good	candidates	for	static	methods	are	methods	that	do	not	reference
the	self	variable.

For	 instance,	 a	 statistics	 package	may	 include	 a	 container	 class	 for
experimental	data.	The	class	provides	normal	methods	for	computing
the	 average,	 mean,	 median,	 and	 other	 descriptive	 statistics	 that
depend	on	the	data.	However,	there	may	be	useful	functions	which	are

conceptually	 related	 but	 do	 not	 depend	 on	 the	 data.	 For	 instance,
erf(x)	is	handy	conversion	routine	that	comes	up	in	statistical	work
but	does	not	directly	depend	on	a	particular	dataset.	 It	can	be	called
either	 from	 an	 object	 or	 the	 class:	 s.erf(1.5)	 -->	 .9332	 or
Sample.erf(1.5)	-->	.9332.

Since	 staticmethods	 return	 the	 underlying	 function	 with	 no	 changes,
the	example	calls	are	unexciting:

>>>	class	E(object):

					def	f(x):

										print(x)

					f	=	staticmethod(f)

>>>	print(E.f(3))

3

>>>	print(E().f(3))

3

Using	 the	 non-data	 descriptor	 protocol,	 a	 pure	 Python	 version	 of
staticmethod()	would	look	like	this:

class	StaticMethod(object):

	"Emulate	PyStaticMethod_Type()	in	Objects/funcobject.c"

	def	__init__(self,	f):

						self.f	=	f

	def	__get__(self,	obj,	objtype=None):

						return	self.f

Unlike	static	methods,	class	methods	prepend	 the	class	 reference	 to
the	argument	 list	before	calling	 the	 function.	This	 format	 is	 the	same
for	whether	the	caller	is	an	object	or	a	class:

>>>	class	E(object):

					def	f(klass,	x):

										return	klass.__name__,	x

					f	=	classmethod(f)

>>>	print(E.f(3))

('E',	3)

>>>	print(E().f(3))

('E',	3)

This	 behavior	 is	 useful	 whenever	 the	 function	 only	 needs	 to	 have	 a
class	reference	and	does	not	care	about	any	underlying	data.	One	use
for	 classmethods	 is	 to	 create	 alternate	 class	 constructors.	 In	Python
2.3,	 the	 classmethod	 dict.fromkeys()	 creates	 a	 new	 dictionary
from	a	list	of	keys.	The	pure	Python	equivalent	is:

class	Dict(object):

				.	.	.

				def	fromkeys(klass,	iterable,	value=None):

								"Emulate	dict_fromkeys()	in	Objects/dictobject.c"

								d	=	klass()

								for	key	in	iterable:

												d[key]	=	value

								return	d

				fromkeys	=	classmethod(fromkeys)

Now	a	new	dictionary	of	unique	keys	can	be	constructed	like	this:

>>>	Dict.fromkeys('abracadabra')

{'a':	None,	'r':	None,	'b':	None,	'c':	None,	'd':	None}

Using	 the	 non-data	 descriptor	 protocol,	 a	 pure	 Python	 version	 of
classmethod()	would	look	like	this:

class	ClassMethod(object):

					"Emulate	PyClassMethod_Type()	in	Objects/funcobject.c"

					def	__init__(self,	f):

										self.f	=	f

					def	__get__(self,	obj,	klass=None):

										if	klass	is	None:

															klass	=	type(obj)

										def	newfunc(*args):

															return	self.f(klass,	*args)

										return	newfunc

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Functional	Programming	HOWTO
Author: A.	M.	Kuchling

Release: 0.32

In	 this	 document,	 we’ll	 take	 a	 tour	 of	 Python’s	 features	 suitable	 for
implementing	 programs	 in	 a	 functional	 style.	 After	 an	 introduction	 to
the	 concepts	 of	 functional	 programming,	 we’ll	 look	 at	 language
features	such	as	iterators	and	generators	and	relevant	library	modules
such	as	itertools	and	functools.

Introduction

This	section	explains	 the	basic	concept	of	 functional	programming;	 if
you’re	just	interested	in	learning	about	Python	language	features,	skip
to	the	next	section	on	Iterators.

Programming	 languages	 support	 decomposing	 problems	 in	 several
different	ways:

Most	programming	languages	are	procedural:	programs	are	lists
of	instructions	that	tell	the	computer	what	to	do	with	the	program’s
input.	C,	Pascal,	and	even	Unix	shells	are	procedural	languages.
In	declarative	languages,	you	write	a	specification	that	describes
the	 problem	 to	 be	 solved,	 and	 the	 language	 implementation
figures	out	how	to	perform	the	computation	efficiently.	SQL	is	the
declarative	language	you’re	most	likely	to	be	familiar	with;	a	SQL
query	 describes	 the	data	 set	 you	want	 to	 retrieve,	 and	 the	SQL
engine	 decides	 whether	 to	 scan	 tables	 or	 use	 indexes,	 which
subclauses	should	be	performed	first,	etc.
Object-oriented	 programs	 manipulate	 collections	 of	 objects.
Objects	 have	 internal	 state	 and	 support	 methods	 that	 query	 or
modify	 this	 internal	 state	 in	 some	 way.	 Smalltalk	 and	 Java	 are
object-oriented	 languages.	 C++	 and	 Python	 are	 languages	 that
support	 object-oriented	 programming,	 but	 don’t	 force	 the	 use	 of
object-oriented	features.
Functional	 programming	 decomposes	 a	 problem	 into	 a	 set	 of
functions.	Ideally,	functions	only	take	inputs	and	produce	outputs,
and	don’t	have	any	internal	state	that	affects	the	output	produced
for	a	given	input.	Well-known	functional	languages	include	the	ML
family	(Standard	ML,	OCaml,	and	other	variants)	and	Haskell.

The	designers	of	some	computer	languages	choose	to	emphasize	one
particular	 approach	 to	 programming.	 This	 often	 makes	 it	 difficult	 to

write	 programs	 that	 use	 a	 different	 approach.	 Other	 languages	 are
multi-paradigm	 languages	 that	 support	 several	 different	 approaches.
Lisp,	C++,	and	Python	are	multi-paradigm;	you	can	write	programs	or
libraries	that	are	largely	procedural,	object-oriented,	or	functional	in	all
of	 these	 languages.	 In	 a	 large	 program,	 different	 sections	 might	 be
written	 using	 different	 approaches;	 the	GUI	might	 be	 object-oriented
while	the	processing	logic	is	procedural	or	functional,	for	example.

In	a	 functional	program,	 input	 flows	 through	a	set	of	 functions.	Each
function	operates	on	 its	 input	 and	produces	 some	output.	 Functional
style	discourages	functions	with	side	effects	that	modify	internal	state
or	make	other	changes	that	aren’t	visible	in	the	function’s	return	value.
Functions	that	have	no	side	effects	at	all	are	called	purely	functional.
Avoiding	side	effects	means	not	using	data	structures	that	get	updated
as	 a	 program	 runs;	 every	 function’s	 output	must	 only	 depend	 on	 its
input.

Some	 languages	 are	 very	 strict	 about	 purity	 and	 don’t	 even	 have
assignment	statements	such	as	a=3	or	c	=	a	+	b,	but	it’s	difficult	to
avoid	all	side	effects.	Printing	to	the	screen	or	writing	to	a	disk	file	are
side	 effects,	 for	 example.	 For	 example,	 in	 Python	 a	 call	 to	 the
print()	 or	 time.sleep()	 function	 both	 return	 no	 useful	 value;
they’re	 only	 called	 for	 their	 side	 effects	 of	 sending	 some	 text	 to	 the
screen	or	pausing	execution	for	a	second.

Python	 programs	 written	 in	 functional	 style	 usually	 won’t	 go	 to	 the
extreme	of	avoiding	all	I/O	or	all	assignments;	instead,	they’ll	provide	a
functional-appearing	 interface	 but	 will	 use	 non-functional	 features
internally.	For	example,	 the	 implementation	of	a	 function	will	 still	 use
assignments	 to	 local	 variables,	 but	 won’t	 modify	 global	 variables	 or
have	other	side	effects.

Functional	 programming	 can	 be	 considered	 the	 opposite	 of	 object-

oriented	 programming.	 Objects	 are	 little	 capsules	 containing	 some
internal	state	along	with	a	collection	of	method	calls	that	let	you	modify
this	 state,	 and	 programs	 consist	 of	 making	 the	 right	 set	 of	 state
changes.	 Functional	 programming	 wants	 to	 avoid	 state	 changes	 as
much	as	possible	and	works	with	data	 flowing	between	 functions.	 In
Python	 you	 might	 combine	 the	 two	 approaches	 by	 writing	 functions
that	take	and	return	instances	representing	objects	in	your	application
(e-mail	messages,	transactions,	etc.).

Functional	design	may	seem	like	an	odd	constraint	to	work	under.	Why
should	you	avoid	objects	and	side	effects?	There	are	 theoretical	and
practical	advantages	to	the	functional	style:

Formal	provability.
Modularity.
Composability.
Ease	of	debugging	and	testing.

Formal	provability

A	theoretical	benefit	is	that	it’s	easier	to	construct	a	mathematical	proof
that	a	functional	program	is	correct.

For	a	 long	 time	 researchers	have	been	 interested	 in	 finding	ways	 to
mathematically	prove	programs	correct.	This	is	different	from	testing	a
program	on	numerous	inputs	and	concluding	that	 its	output	 is	usually
correct,	 or	 reading	a	program’s	source	code	and	concluding	 that	 the
code	 looks	 right;	 the	goal	 is	 instead	a	 rigorous	proof	 that	 a	program
produces	the	right	result	for	all	possible	inputs.

The	 technique	 used	 to	 prove	 programs	 correct	 is	 to	 write	 down
invariants,	properties	of	the	input	data	and	of	the	program’s	variables
that	 are	 always	 true.	 For	 each	 line	 of	 code,	 you	 then	 show	 that	 if

invariants	 X	 and	 Y	 are	 true	before	 the	 line	 is	 executed,	 the	 slightly
different	 invariants	X’	and	Y’	are	 true	after	 the	 line	 is	executed.	This
continues	until	 you	 reach	 the	end	of	 the	program,	at	which	point	 the
invariants	 should	 match	 the	 desired	 conditions	 on	 the	 program’s
output.

Functional	 programming’s	 avoidance	 of	 assignments	 arose	 because
assignments	 are	 difficult	 to	 handle	 with	 this	 technique;	 assignments
can	 break	 invariants	 that	 were	 true	 before	 the	 assignment	 without
producing	any	new	invariants	that	can	be	propagated	onward.

Unfortunately,	proving	programs	correct	 is	 largely	 impractical	and	not
relevant	 to	Python	software.	Even	trivial	programs	require	proofs	that
are	 several	 pages	 long;	 the	 proof	 of	 correctness	 for	 a	 moderately
complicated	 program	 would	 be	 enormous,	 and	 few	 or	 none	 of	 the
programs	you	use	daily	(the	Python	interpreter,	your	XML	parser,	your
web	 browser)	 could	 be	 proven	 correct.	 Even	 if	 you	 wrote	 down	 or
generated	a	 proof,	 there	would	 then	be	 the	question	of	 verifying	 the
proof;	 maybe	 there’s	 an	 error	 in	 it,	 and	 you	 wrongly	 believe	 you’ve
proved	the	program	correct.

Modularity

A	more	practical	benefit	of	functional	programming	is	that	it	forces	you
to	 break	 apart	 your	 problem	 into	 small	 pieces.	 Programs	 are	 more
modular	as	a	result.	It’s	easier	to	specify	and	write	a	small	function	that
does	 one	 thing	 than	 a	 large	 function	 that	 performs	 a	 complicated
transformation.	Small	 functions	 are	 also	 easier	 to	 read	and	 to	 check
for	errors.

Ease	of	debugging	and	testing

Testing	and	debugging	a	functional-style	program	is	easier.

Debugging	 is	 simplified	 because	 functions	 are	 generally	 small	 and
clearly	specified.	When	a	 program	doesn’t	work,	 each	 function	 is	 an
interface	point	where	you	can	check	that	the	data	are	correct.	You	can
look	 at	 the	 intermediate	 inputs	 and	 outputs	 to	 quickly	 isolate	 the
function	that’s	responsible	for	a	bug.

Testing	is	easier	because	each	function	is	a	potential	subject	for	a	unit
test.	 Functions	 don’t	 depend	 on	 system	 state	 that	 needs	 to	 be
replicated	before	 running	a	 test;	 instead	you	only	have	 to	synthesize
the	right	input	and	then	check	that	the	output	matches	expectations.

Composability

As	 you	work	 on	 a	 functional-style	 program,	 you’ll	 write	 a	 number	 of
functions	with	varying	inputs	and	outputs.	Some	of	these	functions	will
be	 unavoidably	 specialized	 to	 a	 particular	 application,	 but	 others	will
be	useful	 in	a	wide	variety	of	programs.	For	example,	a	 function	 that
takes	a	directory	path	and	returns	all	the	XML	files	in	the	directory,	or	a
function	that	takes	a	filename	and	returns	its	contents,	can	be	applied
to	many	different	situations.

Over	 time	 you’ll	 form	 a	 personal	 library	 of	 utilities.	 Often	 you’ll
assemble	 new	 programs	 by	 arranging	 existing	 functions	 in	 a	 new
configuration	 and	 writing	 a	 few	 functions	 specialized	 for	 the	 current
task.

Iterators

I’ll	 start	 by	 looking	 at	 a	 Python	 language	 feature	 that’s	 an	 important
foundation	for	writing	functional-style	programs:	iterators.

An	 iterator	 is	 an	 object	 representing	 a	 stream	 of	 data;	 this	 object
returns	the	data	one	element	at	a	time.	A	Python	iterator	must	support
a	method	 called	 __next__()	 that	 takes	 no	 arguments	 and	 always
returns	the	next	element	of	the	stream.	If	there	are	no	more	elements
in	 the	 stream,	 __next__()	 must	 raise	 the	 StopIteration

exception.	 Iterators	 don’t	 have	 to	 be	 finite,	 though;	 it’s	 perfectly
reasonable	to	write	an	iterator	that	produces	an	infinite	stream	of	data.

The	 built-in	 iter()	 function	 takes	 an	 arbitrary	 object	 and	 tries	 to
return	 an	 iterator	 that	 will	 return	 the	 object’s	 contents	 or	 elements,
raising	TypeError	 if	 the	object	 doesn’t	 support	 iteration.	Several	 of
Python’s	built-in	data	types	support	iteration,	the	most	common	being
lists	 and	 dictionaries.	 An	 object	 is	 called	 iterable	 if	 you	 can	 get	 an
iterator	for	it.

You	can	experiment	with	the	iteration	interface	manually:

>>>	L	=	[1,2,3]

>>>	it	=	iter(L)

>>>	it		

<...iterator	object	at	...>

>>>	it.__next__()		#	same	as	next(it)

1

>>>	next(it)

2

>>>	next(it)

3

>>>	next(it)

Traceback	(most	recent	call	last):

		File	"<stdin>",	line	1,	in	?

StopIteration

>>>

Python	expects	iterable	objects	in	several	different	contexts,	the	most
important	being	the	for	statement.	In	the	statement	for	X	in	Y,	Y
must	be	an	 iterator	or	 some	object	 for	which	iter()	 can	create	an
iterator.	These	two	statements	are	equivalent:

for	i	in	iter(obj):

				print(i)

for	i	in	obj:

				print(i)

Iterators	can	be	materialized	as	lists	or	tuples	by	using	the	list()	or
tuple()	constructor	functions:

>>>	L	=	[1,2,3]

>>>	iterator	=	iter(L)

>>>	t	=	tuple(iterator)

>>>	t

(1,	2,	3)

Sequence	 unpacking	 also	 supports	 iterators:	 if	 you	 know	 an	 iterator
will	return	N	elements,	you	can	unpack	them	into	an	N-tuple:

>>>	L	=	[1,2,3]

>>>	iterator	=	iter(L)

>>>	a,b,c	=	iterator

>>>	a,b,c

(1,	2,	3)

Built-in	functions	such	as	max()	and	min()	can	take	a	single	iterator

argument	 and	will	 return	 the	 largest	 or	 smallest	 element.	 The	 "in"
and	"not	in"	operators	also	support	 iterators:	X	in	iterator	 is
true	if	X	is	found	in	the	stream	returned	by	the	iterator.	You’ll	run	into
obvious	 problems	 if	 the	 iterator	 is	 infinite;	 max(),	 min()	 will	 never
return,	 and	 if	 the	 element	X	 never	 appears	 in	 the	 stream,	 the	 "in"
and	"not	in"	operators	won’t	return	either.

Note	that	you	can	only	go	forward	in	an	iterator;	there’s	no	way	to	get
the	previous	element,	 reset	 the	 iterator,	or	make	a	copy	of	 it.	 Iterator
objects	 can	 optionally	 provide	 these	 additional	 capabilities,	 but	 the
iterator	 protocol	 only	 specifies	 the	 __next__()	 method.	 Functions
may	therefore	consume	all	of	the	iterator’s	output,	and	if	you	need	to
do	something	different	with	 the	same	stream,	you’ll	have	 to	create	a
new	iterator.

Data	Types	That	Support	Iterators

We’ve	already	seen	how	lists	and	tuples	support	iterators.	In	fact,	any
Python	 sequence	 type,	 such	 as	 strings,	 will	 automatically	 support
creation	of	an	iterator.

Calling	iter()	on	a	dictionary	 returns	an	 iterator	 that	will	 loop	over
the	dictionary’s	keys:

>>>	m	=	{'Jan':	1,	'Feb':	2,	'Mar':	3,	'Apr':	4,	'May'

...						'Jul':	7,	'Aug':	8,	'Sep':	9,	'Oct':	10,	'Nov'

>>>	for	key	in	m:		

...					print(key,	m[key])

Mar	3

Feb	2

Aug	8

Sep	9

Apr	4

Jun	6

Jul	7

Jan	1

May	5

Nov	11

Dec	12

Oct	10

Note	 that	 the	order	 is	 essentially	 random,	because	 it’s	 based	on	 the
hash	ordering	of	the	objects	in	the	dictionary.

Applying	 iter()	 to	 a	 dictionary	 always	 loops	 over	 the	 keys,	 but
dictionaries	 have	 methods	 that	 return	 other	 iterators.	 If	 you	 want	 to
iterate	 over	 values	 or	 key/value	 pairs,	 you	 can	 explicitly	 call	 the
values()	or	items()	methods	to	get	an	appropriate	iterator.

The	 dict()	 constructor	 can	 accept	 an	 iterator	 that	 returns	 a	 finite
stream	of	(key,	value)	tuples:

>>>	L	=	[('Italy',	'Rome'),	('France',	'Paris'),	('US'

>>>	dict(iter(L))		

{'Italy':	'Rome',	'US':	'Washington	DC',	'France':	'Paris'}

Files	 also	 support	 iteration	 by	 calling	 the	 readline()	method	 until
there	are	no	more	lines	in	the	file.	This	means	you	can	read	each	line
of	a	file	like	this:

for	line	in	file:

				#	do	something	for	each	line

				...

Sets	can	 take	 their	contents	 from	an	 iterable	and	 let	you	 iterate	over
the	set’s	elements:

S	=	{2,	3,	5,	7,	11,	13}

for	i	in	S:

				print(i)

Generator	expressions	and	list
comprehensions

Two	 common	 operations	 on	 an	 iterator’s	 output	 are	 1)	 performing
some	operation	 for	every	element,	2)	selecting	a	subset	of	elements
that	 meet	 some	 condition.	 For	 example,	 given	 a	 list	 of	 strings,	 you
might	want	to	strip	off	 trailing	whitespace	from	each	line	or	extract	all
the	strings	containing	a	given	substring.

List	 comprehensions	 and	 generator	 expressions	 (short	 form:
“listcomps”	and	“genexps”)	are	a	concise	notation	for	such	operations,
borrowed	 from	 the	 functional	 programming	 language	 Haskell
(http://www.haskell.org/).	 You	 can	 strip	 all	 the	 whitespace	 from	 a
stream	of	strings	with	the	following	code:

line_list	=	['		line	1\n',	'line	2		\n',	...]

#	Generator	expression	--	returns	iterator

stripped_iter	=	(line.strip()	for	line	in	line_list)

#	List	comprehension	--	returns	list

stripped_list	=	[line.strip()	for	line	in	line_list]

You	can	select	only	certain	elements	by	adding	an	"if"	condition:

stripped_list	=	[line.strip()	for	line	in	line_list

																	if	line	!=	""]

With	 a	 list	 comprehension,	 you	 get	 back	 a	 Python	 list;
stripped_list	is	a	list	containing	the	resulting	lines,	not	an	iterator.
Generator	expressions	return	an	iterator	that	computes	the	values	as
necessary,	 not	 needing	 to	 materialize	 all	 the	 values	 at	 once.	 This

http://www.haskell.org/

means	 that	 list	 comprehensions	 aren’t	 useful	 if	 you’re	 working	 with
iterators	that	return	an	infinite	stream	or	a	very	large	amount	of	data.
Generator	expressions	are	preferable	in	these	situations.

Generator	 expressions	 are	 surrounded	 by	 parentheses	 (“()”)	 and	 list
comprehensions	are	 surrounded	by	 square	brackets	 (“[]”).	Generator
expressions	have	the	form:

(expression	for	expr	in	sequence1

													if	condition1

													for	expr2	in	sequence2

													if	condition2

													for	expr3	in	sequence3	...

													if	condition3

													for	exprN	in	sequenceN

													if	conditionN)

Again,	for	a	list	comprehension	only	the	outside	brackets	are	different
(square	brackets	instead	of	parentheses).

The	elements	of	the	generated	output	will	be	the	successive	values	of
expression.	 The	 if	 clauses	 are	 all	 optional;	 if	 present,
expression	 is	 only	 evaluated	 and	 added	 to	 the	 result	 when
condition	is	true.

Generator	expressions	always	have	to	be	written	 inside	parentheses,
but	the	parentheses	signalling	a	function	call	also	count.	If	you	want	to
create	an	iterator	that	will	be	immediately	passed	to	a	function	you	can
write:

obj_total	=	sum(obj.count	for	obj	in	list_all_objects

The	 for...in	 clauses	 contain	 the	 sequences	 to	 be	 iterated	 over.

The	sequences	do	not	have	to	be	the	same	length,	because	they	are
iterated	 over	 from	 left	 to	 right,	 not	 in	 parallel.	 For	 each	 element	 in
sequence1,	 sequence2	 is	 looped	 over	 from	 the	 beginning.
sequence3	 is	 then	 looped	 over	 for	 each	 resulting	 pair	 of	 elements
from	sequence1	and	sequence2.

To	put	it	another	way,	a	list	comprehension	or	generator	expression	is
equivalent	to	the	following	Python	code:

for	expr1	in	sequence1:

				if	not	(condition1):

								continue			#	Skip	this	element

				for	expr2	in	sequence2:

								if	not	(condition2):

												continue				#	Skip	this	element

								...

								for	exprN	in	sequenceN:

													if	not	(conditionN):

																	continue			#	Skip	this	element

													#	Output	the	value	of

													#	the	expression.

This	means	that	when	there	are	multiple	for...in	clauses	but	no	if
clauses,	the	length	of	the	resulting	output	will	be	equal	to	the	product
of	 the	 lengths	of	all	 the	sequences.	 If	 you	have	 two	 lists	of	 length	3,
the	output	list	is	9	elements	long:

>>>	seq1	=	'abc'

>>>	seq2	=	(1,2,3)

>>>	[(x,	y)	for	x	in	seq1	for	y	in	seq2]		

[('a',	1),	('a',	2),	('a',	3),

	('b',	1),	('b',	2),	('b',	3),

	('c',	1),	('c',	2),	('c',	3)]

To	 avoid	 introducing	 an	 ambiguity	 into	 Python’s	 grammar,	 if
expression	 is	 creating	 a	 tuple,	 it	 must	 be	 surrounded	 with
parentheses.	 The	 first	 list	 comprehension	 below	 is	 a	 syntax	 error,
while	the	second	one	is	correct:

#	Syntax	error

[x,	y	for	x	in	seq1	for	y	in	seq2]

#	Correct

[(x,	y)	for	x	in	seq1	for	y	in	seq2]

Generators

Generators	 are	 a	 special	 class	 of	 functions	 that	 simplify	 the	 task	 of
writing	 iterators.	Regular	 functions	compute	a	value	and	return	 it,	but
generators	return	an	iterator	that	returns	a	stream	of	values.

You’re	doubtless	familiar	with	how	regular	function	calls	work	in	Python
or	C.	When	you	call	a	function,	it	gets	a	private	namespace	where	its
local	 variables	 are	 created.	 When	 the	 function	 reaches	 a	 return
statement,	the	local	variables	are	destroyed	and	the	value	is	returned
to	 the	 caller.	 A	 later	 call	 to	 the	 same	 function	 creates	 a	 new	private
namespace	 and	 a	 fresh	 set	 of	 local	 variables.	 But,	 what	 if	 the	 local
variables	weren’t	thrown	away	on	exiting	a	function?	What	if	you	could
later	 resume	 the	 function	 where	 it	 left	 off?	 This	 is	 what	 generators
provide;	they	can	be	thought	of	as	resumable	functions.

Here’s	the	simplest	example	of	a	generator	function:

>>>	def	generate_ints(N):

...				for	i	in	range(N):

...								yield	i

Any	function	containing	a	yield	keyword	is	a	generator	function;	this
is	detected	by	Python’s	bytecode	compiler	which	compiles	the	function
specially	as	a	result.

When	 you	 call	 a	 generator	 function,	 it	 doesn’t	 return	 a	 single	 value;
instead	it	returns	a	generator	object	that	supports	the	iterator	protocol.
On	executing	the	yield	expression,	 the	generator	outputs	 the	value
of	 i,	 similar	 to	 a	 return	 statement.	 The	 big	 difference	 between
yield	 and	 a	 return	 statement	 is	 that	 on	 reaching	 a	 yield	 the
generator’s	 state	 of	 execution	 is	 suspended	 and	 local	 variables	 are

preserved.	On	 the	next	call	 to	 the	generator’s	__next__()	method,
the	function	will	resume	executing.

Here’s	a	sample	usage	of	the	generate_ints()	generator:

>>>	gen	=	generate_ints(3)

>>>	gen		

<generator	object	generate_ints	at	...>

>>>	next(gen)

0

>>>	next(gen)

1

>>>	next(gen)

2

>>>	next(gen)

Traceback	(most	recent	call	last):

		File	"stdin",	line	1,	in	?

		File	"stdin",	line	2,	in	generate_ints

StopIteration

You	could	equally	write	for	i	in	generate_ints(5),	or	a,b,c
=	generate_ints(3).

Inside	a	generator	function,	return	value	is	semantically	equivalent
to	 raise	StopIteration(value).	 If	 no	 value	 is	 returned	 or	 the
bottom	of	 the	function	 is	reached,	 the	procession	of	values	ends	and
the	generator	cannot	return	any	further	values.

You	 could	 achieve	 the	 effect	 of	 generators	manually	 by	 writing	 your
own	 class	 and	 storing	 all	 the	 local	 variables	 of	 the	 generator	 as
instance	variables.	For	 example,	 returning	a	 list	 of	 integers	 could	be
done	 by	 setting	 self.count	 to	 0,	 and	 having	 the	 __next__()
method	 increment	 self.count	 and	 return	 it.	 However,	 for	 a
moderately	complicated	generator,	writing	a	corresponding	class	can

be	much	messier.

The	 test	 suite	 included	 with	 Python’s	 library,
Lib/test/test_generators.py,	 contains	 a	 number	 of	 more	 interesting
examples.	Here’s	one	generator	that	implements	an	in-order	traversal
of	a	tree	using	generators	recursively.

#	A	recursive	generator	that	generates	Tree	leaves	in	in-order.

def	inorder(t):

				if	t:

								for	x	in	inorder(t.left):

												yield	x

								yield	t.label

								for	x	in	inorder(t.right):

												yield	x

Two	other	examples	in	test_generators.py	produce	solutions	for
the	N-Queens	problem	(placing	N	queens	on	an	NxN	chess	board	so
that	no	queen	threatens	another)	and	the	Knight’s	Tour	(finding	a	route
that	 takes	 a	 knight	 to	 every	 square	 of	 an	 NxN	 chessboard	 without
visiting	any	square	twice).

Passing	values	into	a	generator

In	 Python	 2.4	 and	 earlier,	 generators	 only	 produced	 output.	 Once	 a
generator’s	code	was	invoked	to	create	an	iterator,	there	was	no	way
to	 pass	 any	 new	 information	 into	 the	 function	 when	 its	 execution	 is
resumed.	You	could	hack	together	this	ability	by	making	the	generator
look	 at	 a	 global	 variable	 or	 by	 passing	 in	 some	mutable	 object	 that
callers	then	modify,	but	these	approaches	are	messy.

http://hg.python.org/cpython/file/3.4/Lib/test/test_generators.py

In	 Python	 2.5	 there’s	 a	 simple	way	 to	 pass	 values	 into	 a	 generator.
yield	became	an	expression,	returning	a	value	that	can	be	assigned
to	a	variable	or	otherwise	operated	on:

val	=	(yield	i)

I	 recommend	 that	 you	 always	 put	 parentheses	 around	 a	 yield
expression	when	you’re	doing	something	with	the	returned	value,	as	in
the	above	example.	The	parentheses	aren’t	always	necessary,	but	it’s
easier	 to	 always	 add	 them	 instead	 of	 having	 to	 remember	 when
they’re	needed.

(PEP	342	explains	the	exact	rules,	which	are	that	a	yield-expression
must	always	be	parenthesized	except	when	 it	occurs	at	 the	 top-level
expression	on	the	right-hand	side	of	an	assignment.	This	means	you
can	write	val	=	yield	i	but	have	to	use	parentheses	when	there’s
an	operation,	as	in	val	=	(yield	i)	+	12.)

Values	are	sent	into	a	generator	by	calling	its	send(value)	method.
This	method	resumes	the	generator’s	code	and	the	yield	expression
returns	 the	 specified	 value.	 If	 the	 regular	 __next__()	 method	 is
called,	the	yield	returns	None.

Here’s	a	simple	counter	that	increments	by	1	and	allows	changing	the
value	of	the	internal	counter.

def	counter(maximum):

				i	=	0

				while	i	<	maximum:

								val	=	(yield	i)

								#	If	value	provided,	change	counter

								if	val	is	not	None:

												i	=	val

http://www.python.org/dev/peps/pep-0342

								else:

												i	+=	1

And	here’s	an	example	of	changing	the	counter:

>>>	it	=	counter(10)		

>>>	next(it)		

0

>>>	next(it)		

1

>>>	it.send(8)		

8

>>>	next(it)		

9

>>>	next(it)		

Traceback	(most	recent	call	last):

		File	"t.py",	line	15,	in	?

				it.next()

StopIteration

Because	 yield	 will	 often	 be	 returning	 None,	 you	 should	 always
check	 for	 this	 case.	 Don’t	 just	 use	 its	 value	 in	 expressions	 unless
you’re	 sure	 that	 the	 send()	 method	 will	 be	 the	 only	 method	 used
resume	your	generator	function.

In	addition	to	send(),	there	are	two	other	methods	on	generators:

throw(type,	 value=None,	 traceback=None)	 is	 used	 to
raise	an	exception	inside	the	generator;	the	exception	is	raised	by
the	yield	expression	where	the	generator’s	execution	is	paused.

close()	 raises	 a	 GeneratorExit	 exception	 inside	 the
generator	 to	 terminate	 the	 iteration.	On	 receiving	 this	 exception,
the	 generator’s	 code	 must	 either	 raise	 GeneratorExit	 or

StopIteration;	catching	the	exception	and	doing	anything	else
is	illegal	and	will	trigger	a	RuntimeError.	close()	will	also	be
called	 by	 Python’s	 garbage	 collector	 when	 the	 generator	 is
garbage-collected.

If	you	need	to	run	cleanup	code	when	a	GeneratorExit	occurs,
I	suggest	using	a	try:	...	finally:	suite	instead	of	catching
GeneratorExit.

The	cumulative	effect	of	these	changes	is	to	turn	generators	from	one-
way	producers	of	information	into	both	producers	and	consumers.

Generators	 also	 become	 coroutines,	 a	 more	 generalized	 form	 of
subroutines.	 Subroutines	 are	 entered	 at	 one	 point	 and	 exited	 at
another	point	 (the	 top	of	 the	 function,	and	a	return	 statement),	but
coroutines	 can	 be	 entered,	 exited,	 and	 resumed	 at	 many	 different
points	(the	yield	statements).

Built-in	functions

Let’s	look	in	more	detail	at	built-in	functions	often	used	with	iterators.

Two	of	Python’s	built-in	functions,	map()	and	filter()	duplicate	the
features	of	generator	expressions:

map(f,	iterA,	iterB,	...)	returns	an	iterator	over	the
sequence

f(iterA[0],	 iterB[0]),	 f(iterA[1],	 iterB[1]),

f(iterA[2],	iterB[2]),

>>>	def	upper(s):

...					return	s.upper()

>>>	list(map(upper,	['sentence',	'fragment']))

['SENTENCE',	'FRAGMENT']

>>>	[upper(s)	for	s	in	['sentence',	'fragment']]

['SENTENCE',	'FRAGMENT']

You	can	of	course	achieve	the	same	effect	with	a	list	comprehension.

filter(predicate,	 iter)	 returns	 an	 iterator	 over	 all	 the
sequence	 elements	 that	 meet	 a	 certain	 condition,	 and	 is	 similarly
duplicated	 by	 list	 comprehensions.	 A	 predicate	 is	 a	 function	 that
returns	the	truth	value	of	some	condition;	for	use	with	filter(),	the
predicate	must	take	a	single	value.

>>>	def	is_even(x):

...					return	(x	%	2)	==	0

>>>	list(filter(is_even,	range(10)))

[0,	2,	4,	6,	8]

This	can	also	be	written	as	a	list	comprehension:

>>>	list(x	for	x	in	range(10)	if	is_even(x))

[0,	2,	4,	6,	8]

enumerate(iter)	counts	off	 the	elements	 in	 the	 iterable,	 returning
2-tuples	containing	the	count	and	each	element.

>>>	for	item	in	enumerate(['subject',	'verb',	'object'

...					print(item)

(0,	'subject')

(1,	'verb')

(2,	'object')

enumerate()	is	often	used	when	looping	through	a	list	and	recording
the	indexes	at	which	certain	conditions	are	met:

f	=	open('data.txt',	'r')

for	i,	line	in	enumerate(f):

				if	line.strip()	==	'':

								print('Blank	line	at	line	#%i'	%	i)

sorted(iterable,	key=None,	reverse=False)	collects	all	the
elements	of	the	iterable	into	a	list,	sorts	the	list,	and	returns	the	sorted
result.	 The	 key	 and	 reverse	 arguments	 are	 passed	 through	 to	 the
constructed	list’s	sort()	method.

>>>	import	random

>>>	#	Generate	8	random	numbers	between	[0,	10000)

>>>	rand_list	=	random.sample(range(10000),	8)

>>>	rand_list		

[769,	7953,	9828,	6431,	8442,	9878,	6213,	2207]

>>>	sorted(rand_list)		

[769,	2207,	6213,	6431,	7953,	8442,	9828,	9878]

>>>	sorted(rand_list,	reverse=True)		

[9878,	9828,	8442,	7953,	6431,	6213,	2207,	769]

(For	a	more	detailed	discussion	of	sorting,	see	the	Sorting	HOW	TO.)

The	any(iter)	and	all(iter)	built-ins	 look	at	 the	truth	values	of
an	 iterable’s	 contents.	 any()	 returns	 True	 if	 any	 element	 in	 the
iterable	is	a	true	value,	and	all()	returns	True	if	all	of	the	elements
are	true	values:

>>>	any([0,1,0])

True

>>>	any([0,0,0])

False

>>>	any([1,1,1])

True

>>>	all([0,1,0])

False

>>>	all([0,0,0])

False

>>>	all([1,1,1])

True

zip(iterA,	iterB,	...)	 takes	 one	 element	 from	 each	 iterable
and	returns	them	in	a	tuple:

zip(['a',	'b',	'c'],	(1,	2,	3))	=>

		('a',	1),	('b',	2),	('c',	3)

It	doesn’t	construct	an	in-memory	list	and	exhaust	all	the	input	iterators
before	 returning;	 instead	 tuples	 are	 constructed	 and	 returned	 only	 if
they’re	 requested.	 (The	 technical	 term	 for	 this	 behaviour	 is	 lazy
evaluation.)

This	 iterator	 is	 intended	 to	 be	 used	with	 iterables	 that	 are	 all	 of	 the

http://en.wikipedia.org/wiki/Lazy_evaluation

same	 length.	 If	 the	 iterables	 are	 of	 different	 lengths,	 the	 resulting
stream	will	be	the	same	length	as	the	shortest	iterable.

zip(['a',	'b'],	(1,	2,	3))	=>

		('a',	1),	('b',	2)

You	 should	 avoid	 doing	 this,	 though,	 because	 an	 element	 may	 be
taken	from	the	longer	iterators	and	discarded.	This	means	you	can’t	go
on	 to	use	 the	 iterators	 further	because	you	 risk	skipping	a	discarded
element.

The	itertools	module

The	 itertools	 module	 contains	 a	 number	 of	 commonly-used
iterators	 as	 well	 as	 functions	 for	 combining	 several	 iterators.	 This
section	 will	 introduce	 the	 module’s	 contents	 by	 showing	 small
examples.

The	module’s	functions	fall	into	a	few	broad	classes:

Functions	that	create	a	new	iterator	based	on	an	existing	iterator.
Functions	 for	 treating	 an	 iterator’s	 elements	 as	 function
arguments.
Functions	for	selecting	portions	of	an	iterator’s	output.
A	function	for	grouping	an	iterator’s	output.

Creating	new	iterators

itertools.count(n)	 returns	 an	 infinite	 stream	 of	 integers,
increasing	 by	 1	 each	 time.	 You	 can	 optionally	 supply	 the	 starting
number,	which	defaults	to	0:

itertools.count()	=>

		0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	...

itertools.count(10)	=>

		10,	11,	12,	13,	14,	15,	16,	17,	18,	19,	...

itertools.cycle(iter)	 saves	 a	 copy	 of	 the	 contents	 of	 a
provided	 iterable	and	 returns	a	new	 iterator	 that	 returns	 its	elements
from	first	to	last.	The	new	iterator	will	repeat	these	elements	infinitely.

itertools.cycle([1,2,3,4,5])	=>

		1,	2,	3,	4,	5,	1,	2,	3,	4,	5,	...

itertools.repeat(elem,	[n])	 returns	 the	 provided	 element	 n
times,	or	returns	the	element	endlessly	if	n	is	not	provided.

itertools.repeat('abc')	=>

		abc,	abc,	abc,	abc,	abc,	abc,	abc,	abc,	abc,	abc,	

itertools.repeat('abc',	5)	=>

		abc,	abc,	abc,	abc,	abc

itertools.chain(iterA,	 iterB,	 ...)	 takes	 an	 arbitrary
number	of	 iterables	as	 input,	and	 returns	all	 the	elements	of	 the	 first
iterator,	then	all	the	elements	of	the	second,	and	so	on,	until	all	of	the
iterables	have	been	exhausted.

itertools.chain(['a',	'b',	'c'],	(1,	2,	3))	=>

		a,	b,	c,	1,	2,	3

itertools.islice(iter,	 [start],	 stop,	 [step])	 returns
a	stream	 that’s	a	slice	of	 the	 iterator.	With	a	single	stop	argument,	 it
will	return	the	first	stop	elements.	If	you	supply	a	starting	index,	you’ll
get	stop-start	elements,	and	 if	 you	supply	a	value	 for	step,	 elements
will	be	skipped	accordingly.	Unlike	Python’s	string	and	list	slicing,	you
can’t	use	negative	values	for	start,	stop,	or	step.

itertools.islice(range(10),	8)	=>

		0,	1,	2,	3,	4,	5,	6,	7

itertools.islice(range(10),	2,	8)	=>

		2,	3,	4,	5,	6,	7

itertools.islice(range(10),	2,	8,	2)	=>

		2,	4,	6

itertools.tee(iter,	 [n])	 replicates	 an	 iterator;	 it	 returns	 n
independent	 iterators	 that	 will	 all	 return	 the	 contents	 of	 the	 source
iterator.	 If	you	don’t	supply	a	value	for	n,	 the	default	 is	2.	Replicating

iterators	requires	saving	some	of	the	contents	of	the	source	iterator,	so
this	can	consume	significant	memory	if	the	iterator	is	large	and	one	of
the	new	iterators	is	consumed	more	than	the	others.

itertools.tee(itertools.count())	=>

			iterA,	iterB

where	iterA	->

			0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	...

and			iterB	->

			0,	1,	2,	3,	4,	5,	6,	7,	8,	9,	...

Calling	functions	on	elements

The	operator	module	 contains	 a	 set	 of	 functions	 corresponding	 to
Python’s	 operators.	 Some	 examples	 are	 operator.add(a,	 b)

(adds	 two	 values),	 operator.ne(a,	b)	 (same	 as	 a	!=	b),	 and
operator.attrgetter('id')	 (returns	a	 callable	 that	 fetches	 the
.id	attribute).

itertools.starmap(func,	iter)	assumes	 that	 the	 iterable	will
return	 a	 stream	 of	 tuples,	 and	 calls	 func	 using	 these	 tuples	 as	 the
arguments:

itertools.starmap(os.path.join,

																		[('/bin',	'python'),	('/usr',	'bin'

																			('/usr',	'bin',	'perl'),	('/usr',

=>

		/bin/python,	/usr/bin/java,	/usr/bin/perl,	/usr/bin

Selecting	elements

Another	group	of	functions	chooses	a	subset	of	an	iterator’s	elements
based	on	a	predicate.

itertools.filterfalse(predicate,	iter)	 is	 the	opposite	of
filter(),	 returning	 all	 elements	 for	 which	 the	 predicate	 returns
false:

itertools.filterfalse(is_even,	itertools.count())	=>

		1,	3,	5,	7,	9,	11,	13,	15,	...

itertools.takewhile(predicate,	iter)	 returns	elements	 for
as	long	as	the	predicate	returns	true.	Once	the	predicate	returns	false,
the	iterator	will	signal	the	end	of	its	results.

def	less_than_10(x):

				return	x	<	10

itertools.takewhile(less_than_10,	itertools.count())

		0,	1,	2,	3,	4,	5,	6,	7,	8,	9

itertools.takewhile(is_even,	itertools.count())	=>

		0

itertools.dropwhile(predicate,	 iter)	 discards	 elements
while	 the	 predicate	 returns	 true,	 and	 then	 returns	 the	 rest	 of	 the
iterable’s	results.

itertools.dropwhile(less_than_10,	itertools.count())

		10,	11,	12,	13,	14,	15,	16,	17,	18,	19,	...

itertools.dropwhile(is_even,	itertools.count())	=>

		1,	2,	3,	4,	5,	6,	7,	8,	9,	10,	...

itertools.compress(data,	 selectors)	 takes	 two	 iterators
and	 returns	only	 those	elements	of	data	 for	which	 the	corresponding
element	 of	 selectors	 is	 true,	 stopping	 whenever	 either	 one	 is
exhausted:

itertools.compress([1,2,3,4,5],	[True,	True,	False,	

			1,	2,	5

Combinatoric	functions

The	itertools.combinations(iterable,	r)	returns	an	iterator
giving	 all	 possible	 r-tuple	 combinations	 of	 the	 elements	 contained	 in
iterable.

itertools.combinations([1,	2,	3,	4,	5],	2)	=>

		(1,	2),	(1,	3),	(1,	4),	(1,	5),

		(2,	3),	(2,	4),	(2,	5),

		(3,	4),	(3,	5),

		(4,	5)

itertools.combinations([1,	2,	3,	4,	5],	3)	=>

		(1,	2,	3),	(1,	2,	4),	(1,	2,	5),	(1,	3,	4),	(1,	3,

		(2,	3,	4),	(2,	3,	5),	(2,	4,	5),

		(3,	4,	5)

The	elements	within	each	 tuple	 remain	 in	 the	same	order	as	 iterable
returned	them.	For	example,	the	number	1	is	always	before	2,	3,	4,	or
5	 in	 the	 examples	 above.	 A	 similar	 function,
itertools.permutations(iterable,	 r=None),	 removes	 this
constraint	on	the	order,	returning	all	possible	arrangements	of	length	r:

itertools.permutations([1,	2,	3,	4,	5],	2)	=>

		(1,	2),	(1,	3),	(1,	4),	(1,	5),

		(2,	1),	(2,	3),	(2,	4),	(2,	5),

		(3,	1),	(3,	2),	(3,	4),	(3,	5),

		(4,	1),	(4,	2),	(4,	3),	(4,	5),

		(5,	1),	(5,	2),	(5,	3),	(5,	4)

itertools.permutations([1,	2,	3,	4,	5])	=>

		(1,	2,	3,	4,	5),	(1,	2,	3,	5,	4),	(1,	2,	4,	3,	5),

		...

		(5,	4,	3,	2,	1)

If	 you	 don’t	 supply	 a	 value	 for	 r	 the	 length	 of	 the	 iterable	 is	 used,
meaning	that	all	the	elements	are	permuted.

Note	that	these	functions	produce	all	of	the	possible	combinations	by
position	and	don’t	require	that	the	contents	of	iterable	are	unique:

itertools.permutations('aba',	3)	=>

		('a',	'b',	'a'),	('a',	'a',	'b'),	('b',	'a',	'a'),

		('b',	'a',	'a'),	('a',	'a',	'b'),	('a',	'b',	'a')

The	 identical	 tuple	('a',	'a',	'b')	occurs	 twice,	but	 the	 two	 ‘a’
strings	came	from	different	positions.

The
itertools.combinations_with_replacement(iterable,	r)

function	relaxes	a	different	constraint:	elements	can	be	repeated	within
a	single	tuple.	Conceptually	an	element	is	selected	for	the	first	position
of	 each	 tuple	 and	 then	 is	 replaced	 before	 the	 second	 element	 is
selected.

itertools.combinations_with_replacement([1,	2,	3,	4,

		(1,	1),	(1,	2),	(1,	3),	(1,	4),	(1,	5),

		(2,	2),	(2,	3),	(2,	4),	(2,	5),

		(3,	3),	(3,	4),	(3,	5),

		(4,	4),	(4,	5),

		(5,	5)

Grouping	elements

The	 last	 function	 I’ll	 discuss,	 itertools.groupby(iter,

key_func=None),	 is	 the	most	 complicated.	key_func(elem)	 is	 a
function	 that	 can	compute	a	 key	value	 for	each	element	 returned	by
the	iterable.	If	you	don’t	supply	a	key	function,	the	key	is	simply	each
element	itself.

groupby()	collects	all	the	consecutive	elements	from	the	underlying
iterable	that	have	the	same	key	value,	and	returns	a	stream	of	2-tuples
containing	a	key	value	and	an	iterator	for	the	elements	with	that	key.

city_list	=	[('Decatur',	'AL'),	('Huntsville',	'AL'),

													('Anchorage',	'AK'),	('Nome',	'AK'),

													('Flagstaff',	'AZ'),	('Phoenix',	'AZ'),

													...

]

def	get_state(city_state):

				return	city_state[1]

itertools.groupby(city_list,	get_state)	=>

		('AL',	iterator-1),

		('AK',	iterator-2),

		('AZ',	iterator-3),	...

where

iterator-1	=>

		('Decatur',	'AL'),	('Huntsville',	'AL'),	('Selma',

iterator-2	=>

		('Anchorage',	'AK'),	('Nome',	'AK')

iterator-3	=>

		('Flagstaff',	'AZ'),	('Phoenix',	'AZ'),	('Tucson',

groupby()	 assumes	 that	 the	 underlying	 iterable’s	 contents	 will
already	be	 sorted	 based	on	 the	 key.	Note	 that	 the	 returned	 iterators
also	use	the	underlying	iterable,	so	you	have	to	consume	the	results	of
iterator-1	before	requesting	iterator-2	and	its	corresponding	key.

The	functools	module

The	 functools	 module	 in	 Python	 2.5	 contains	 some	 higher-order
functions.	 A	higher-order	 function	 takes	 one	 or	 more	 functions	 as
input	and	returns	a	new	function.	The	most	useful	tool	in	this	module	is
the	functools.partial()	function.

For	 programs	 written	 in	 a	 functional	 style,	 you’ll	 sometimes	 want	 to
construct	 variants	 of	 existing	 functions	 that	 have	 some	 of	 the
parameters	 filled	 in.	 Consider	 a	 Python	 function	 f(a,	b,	 c);	 you
may	wish	to	create	a	new	function	g(b,	c)	that’s	equivalent	to	f(1,
b,	c);	 you’re	 filling	 in	a	 value	 for	one	of	 f()‘s	parameters.	This	 is
called	“partial	function	application”.

The	 constructor	 for	 partial()	 takes	 the	 arguments	 (function,
arg1,	 arg2,	 ...,	 kwarg1=value1,	 kwarg2=value2).	 The
resulting	object	is	callable,	so	you	can	just	call	it	to	invoke	function
with	the	filled-in	arguments.

Here’s	a	small	but	realistic	example:

import	functools

def	log(message,	subsystem):

				"""Write	the	contents	of	'message'	to	the	specified	subsystem."""

				print('%s:	%s'	%	(subsystem,	message))

				...

server_log	=	functools.partial(log,	subsystem='server'

server_log('Unable	to	open	socket')

functools.reduce(func,	 iter,	 [initial_value])

cumulatively	performs	an	operation	on	all	the	iterable’s	elements	and,
therefore,	can’t	be	applied	to	infinite	iterables.	func	must	be	a	function
that	 takes	 two	 elements	 and	 returns	 a	 single	 value.
functools.reduce()	takes	the	first	two	elements	A	and	B	returned
by	the	iterator	and	calculates	func(A,	B).	It	 then	requests	the	third
element,	C,	calculates	func(func(A,	B),	C),	combines	this	result
with	 the	 fourth	 element	 returned,	 and	 continues	 until	 the	 iterable	 is
exhausted.	 If	 the	 iterable	 returns	 no	 values	 at	 all,	 a	 TypeError
exception	is	raised.	If	the	initial	value	is	supplied,	it’s	used	as	a	starting
point	and	func(initial_value,	A)	is	the	first	calculation.

>>>	import	operator,	functools

>>>	functools.reduce(operator.concat,	['A',	'BB',	'C'

'ABBC'

>>>	functools.reduce(operator.concat,	[])

Traceback	(most	recent	call	last):

		...

TypeError:	reduce()	of	empty	sequence	with	no	initial	value

>>>	functools.reduce(operator.mul,	[1,2,3],	1)

6

>>>	functools.reduce(operator.mul,	[],	1)

1

If	you	use	operator.add()	with	functools.reduce(),	you’ll	add
up	all	the	elements	of	the	iterable.	This	case	is	so	common	that	there’s
a	special	built-in	called	sum()	to	compute	it:

>>>	import	functools

>>>	functools.reduce(operator.add,	[1,2,3,4],	0)

10

>>>	sum([1,2,3,4])

10

>>>	sum([])

0

For	many	uses	of	functools.reduce(),	though,	it	can	be	clearer	to
just	write	the	obvious	for	loop:

import	functools

#	Instead	of:

product	=	functools.reduce(operator.mul,	[1,2,3],	1)

#	You	can	write:

product	=	1

for	i	in	[1,2,3]:

				product	*=	i

A	 related	 function	 is	 itertools.accumulate(iterable,	 func=operator.add)
<itertools.accumulate.	It	performs	the	same	calculation,	but	instead	of
returning	only	the	final	result,	accumulate()	returns	an	iterator	that
also	yields	each	partial	result:

itertools.accumulate([1,2,3,4,5])	=>

		1,	3,	6,	10,	15

itertools.accumulate([1,2,3,4,5],	operator.mul)	=>

		1,	2,	6,	24,	120

The	operator	module

The	 operator	 module	 was	 mentioned	 earlier.	 It	 contains	 a	 set	 of
functions	 corresponding	 to	 Python’s	 operators.	 These	 functions	 are
often	 useful	 in	 functional-style	 code	 because	 they	 save	 you	 from
writing	trivial	functions	that	perform	a	single	operation.

Some	of	the	functions	in	this	module	are:

Math	operations:	add(),	sub(),	mul(),	floordiv(),	abs(),
...
Logical	operations:	not_(),	truth().
Bitwise	operations:	and_(),	or_(),	invert().
Comparisons:	eq(),	ne(),	lt(),	le(),	gt(),	and	ge().
Object	identity:	is_(),	is_not().

Consult	the	operator	module’s	documentation	for	a	complete	list.

Small	functions	and	the	lambda
expression

When	 writing	 functional-style	 programs,	 you’ll	 often	 need	 little
functions	that	act	as	predicates	or	that	combine	elements	in	some	way.

If	 there’s	 a	 Python	 built-in	 or	 a	 module	 function	 that’s	 suitable,	 you
don’t	need	to	define	a	new	function	at	all:

stripped_lines	=	[line.strip()	for	line	in	lines]

existing_files	=	filter(os.path.exists,	file_list)

If	the	function	you	need	doesn’t	exist,	you	need	to	write	it.	One	way	to
write	small	functions	is	to	use	the	lambda	statement.	lambda	takes	a
number	 of	 parameters	 and	 an	 expression	 combining	 these
parameters,	and	creates	an	anonymous	function	that	returns	the	value
of	the	expression:

adder	=	lambda	x,	y:	x+y

print_assign	=	lambda	name,	value:	name	+	'='	+	str(

An	alternative	is	to	just	use	the	def	statement	and	define	a	function	in
the	usual	way:

def	adder(x,	y):

				return	x	+	y

def	print_assign(name,	value):

				return	name	+	'='	+	str(value)

Which	 alternative	 is	 preferable?	 That’s	 a	 style	 question;	 my	 usual

course	is	to	avoid	using	lambda.

One	 reason	 for	my	preference	 is	 that	 lambda	 is	 quite	 limited	 in	 the
functions	 it	 can	define.	The	 result	 has	 to	 be	 computable	 as	 a	 single
expression,	which	means	you	can’t	have	multiway	if...	elif...
else	 comparisons	 or	 try...	except	 statements.	 If	 you	 try	 to	 do
too	 much	 in	 a	 lambda	 statement,	 you’ll	 end	 up	 with	 an	 overly
complicated	expression	that’s	hard	to	read.	Quick,	what’s	the	following
code	doing?

import	functools

total	=	functools.reduce(lambda	a,	b:	(0,	a[1]	+	b[1

You	can	figure	it	out,	but	it	takes	time	to	disentangle	the	expression	to
figure	 out	 what’s	 going	 on.	 Using	 a	 short	 nested	 def	 statements
makes	things	a	little	bit	better:

import	functools

def	combine(a,	b):

				return	0,	a[1]	+	b[1]

total	=	functools.reduce(combine,	items)[1]

But	it	would	be	best	of	all	if	I	had	simply	used	a	for	loop:

total	=	0

for	a,	b	in	items:

				total	+=	b

Or	the	sum()	built-in	and	a	generator	expression:

total	=	sum(b	for	a,b	in	items)

Many	 uses	 of	 functools.reduce()	 are	 clearer	 when	 written	 as
for	loops.

Fredrik	Lundh	once	suggested	the	following	set	of	rules	for	refactoring
uses	of	lambda:

1.	 Write	a	lambda	function.
2.	 Write	a	comment	explaining	what	the	heck	that	lambda	does.
3.	 Study	the	comment	for	a	while,	and	think	of	a	name	that	captures

the	essence	of	the	comment.
4.	 Convert	the	lambda	to	a	def	statement,	using	that	name.
5.	 Remove	the	comment.

I	really	like	these	rules,	but	you’re	free	to	disagree	about	whether	this
lambda-free	style	is	better.

Revision	History	and	Acknowledgements

The	 author	 would	 like	 to	 thank	 the	 following	 people	 for	 offering
suggestions,	 corrections	 and	 assistance	 with	 various	 drafts	 of	 this
article:	Ian	Bicking,	Nick	Coghlan,	Nick	Efford,	Raymond	Hettinger,	Jim
Jewett,	 Mike	 Krell,	 Leandro	 Lameiro,	 Jussi	 Salmela,	 Collin	 Winter,
Blake	Winton.

Version	0.1:	posted	June	30	2006.

Version	0.11:	posted	July	1	2006.	Typo	fixes.

Version	 0.2:	 posted	 July	 10	 2006.	 Merged	 genexp	 and	 listcomp
sections	into	one.	Typo	fixes.

Version	0.21:	Added	more	 references	suggested	on	 the	 tutor	mailing
list.

Version	0.30:	Adds	a	section	on	 the	functional	module	written	by
Collin	Winter;	adds	short	section	on	the	operator	module;	a	few	other
edits.

References

General

Structure	 and	 Interpretation	 of	 Computer	 Programs,	 by	 Harold
Abelson	 and	 Gerald	 Jay	 Sussman	 with	 Julie	 Sussman.	 Full	 text	 at
http://mitpress.mit.edu/sicp/.	 In	 this	 classic	 textbook	 of	 computer
science,	chapters	2	and	3	discuss	the	use	of	sequences	and	streams
to	organize	the	data	flow	inside	a	program.	The	book	uses	Scheme	for
its	examples,	but	many	of	 the	design	approaches	described	 in	 these
chapters	are	applicable	to	functional-style	Python	code.

http://www.defmacro.org/ramblings/fp.html:	 A	 general	 introduction	 to
functional	 programming	 that	 uses	 Java	 examples	 and	 has	 a	 lengthy
historical	introduction.

http://en.wikipedia.org/wiki/Functional_programming:	 General
Wikipedia	entry	describing	functional	programming.

http://en.wikipedia.org/wiki/Coroutine:	Entry	for	coroutines.

http://en.wikipedia.org/wiki/Currying:	Entry	for	the	concept	of	currying.

Python-specific

http://gnosis.cx/TPiP/:	 The	 first	 chapter	 of	 David	 Mertz’s	 book	 Text
Processing	 in	 Python	 discusses	 functional	 programming	 for	 text
processing,	 in	 the	 section	 titled	 “Utilizing	 Higher-Order	 Functions	 in
Text	Processing”.

Mertz	also	wrote	a	3-part	series	of	articles	on	functional	programming
for	IBM’s	DeveloperWorks	site;	see	part	1,	part	2,	and	part	3,

http://mitpress.mit.edu/sicp/
http://www.defmacro.org/ramblings/fp.html
http://en.wikipedia.org/wiki/Functional_programming
http://en.wikipedia.org/wiki/Coroutine
http://en.wikipedia.org/wiki/Currying
http://gnosis.cx/TPiP/
http://www.ibm.com/developerworks/linux/library/l-prog/index.html
http://www.ibm.com/developerworks/linux/library/l-prog2/index.html
http://www.ibm.com/developerworks/linux/library/l-prog3/index.html

Python	documentation

Documentation	for	the	itertools	module.

Documentation	for	the	operator	module.

PEP	289:	“Generator	Expressions”

PEP	342:	 “Coroutines	 via	 Enhanced	Generators”	 describes	 the	 new
generator	features	in	Python	2.5.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-0289
http://www.python.org/dev/peps/pep-0342
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Logging	HOWTO
Author: Vinay	Sajip	<vinay_sajip	at	red-dove	dot	com>

Basic	Logging	Tutorial

Logging	 is	 a	 means	 of	 tracking	 events	 that	 happen	 when	 some
software	 runs.	 The	 software’s	 developer	 adds	 logging	 calls	 to	 their
code	 to	 indicate	 that	 certain	 events	 have	 occurred.	 An	 event	 is
described	 by	 a	 descriptive	 message	 which	 can	 optionally	 contain
variable	data	(i.e.	data	that	is	potentially	different	for	each	occurrence
of	 the	 event).	 Events	 also	 have	 an	 importance	 which	 the	 developer
ascribes	 to	 the	event;	 the	 importance	can	also	be	called	 the	 level	or
severity.

When	to	use	logging

Logging	 provides	 a	 set	 of	 convenience	 functions	 for	 simple	 logging
usage.	 These	 are	 debug(),	 info(),	 warning(),	 error()	 and
critical().	To	determine	when	to	use	logging,	see	the	table	below,
which	states,	for	each	of	a	set	of	common	tasks,	the	best	tool	to	use
for	it.

Task	you	want	to	perform The	best	tool	for	the	task

Display	console	output	for
ordinary	usage	of	a	command
line	script	or	program

print()

Report	events	that	occur	during
normal	operation	of	a	program
(e.g.	for	status	monitoring	or
fault	investigation)

logging.info()	(or
logging.debug()	for	very
detailed	output	for	diagnostic
purposes)

warnings.warn()	 in	 library
code	if	the	issue	is	avoidable	and
the	 client	 application	 should	 be

Issue	a	warning	regarding	a
particular	runtime	event

modified	to	eliminate	the	warning

logging.warning()	if	there	is
nothing	the	client	application	can
do	 about	 the	 situation,	 but	 the
event	should	still	be	noted

Report	an	error	regarding	a
particular	runtime	event Raise	an	exception

Report	suppression	of	an	error
without	raising	an	exception
(e.g.	error	handler	in	a	long-
running	server	process)

logging.error(),
logging.exception()	or
logging.critical()	as
appropriate	for	the	specific	error
and	application	domain

The	 logging	 functions	 are	 named	 after	 the	 level	 or	 severity	 of	 the
events	 they	 are	 used	 to	 track.	 The	 standard	 levels	 and	 their
applicability	are	described	below	(in	increasing	order	of	severity):

Level When	it’s	used

DEBUG
Detailed	information,	typically	of	interest	only	when
diagnosing	problems.

INFO Confirmation	that	things	are	working	as	expected.

WARNING

An	indication	that	something	unexpected
happened,	or	indicative	of	some	problem	in	the
near	future	(e.g.	‘disk	space	low’).	The	software	is
still	working	as	expected.

ERROR
Due	to	a	more	serious	problem,	the	software	has
not	been	able	to	perform	some	function.

CRITICAL
A	serious	error,	indicating	that	the	program	itself
may	be	unable	to	continue	running.

The	 default	 level	 is	 WARNING,	 which	means	 that	 only	 events	 of	 this

level	 and	 above	 will	 be	 tracked,	 unless	 the	 logging	 package	 is
configured	to	do	otherwise.

Events	that	are	tracked	can	be	handled	in	different	ways.	The	simplest
way	of	handling	tracked	events	is	to	print	them	to	the	console.	Another
common	way	is	to	write	them	to	a	disk	file.

A	simple	example

A	very	simple	example	is:

import	logging

logging.warning('Watch	out!')	#	will	print	a	message	to	the	console

logging.info('I	told	you	so')	#	will	not	print	anything

If	you	type	these	lines	into	a	script	and	run	it,	you’ll	see:

WARNING:root:Watch	out!

printed	 out	 on	 the	 console.	 The	 INFO	 message	 doesn’t	 appear
because	the	default	 level	is	WARNING.	The	printed	message	includes
the	indication	of	the	level	and	the	description	of	the	event	provided	in
the	 logging	call,	 i.e.	 ‘Watch	out!’.	Don’t	worry	about	 the	 ‘root’	part	 for
now:	it	will	be	explained	later.	The	actual	output	can	be	formatted	quite
flexibly	if	you	need	that;	formatting	options	will	also	be	explained	later.

Logging	to	a	file

A	very	common	situation	is	that	of	recording	logging	events	in	a	file,	so
let’s	 look	at	 that	 next.	Be	sure	 to	 try	 the	 following	 in	a	newly-started
Python	interpreter,	and	don’t	just	continue	from	the	session	described
above:

import	logging

logging.basicConfig(filename='example.log',level=logging

logging.debug('This	message	should	go	to	the	log	file'

logging.info('So	should	this')

logging.warning('And	this,	too')

And	now	if	we	open	the	file	and	look	at	what	we	have,	we	should	find
the	log	messages:

DEBUG:root:This	message	should	go	to	the	log	file

INFO:root:So	should	this

WARNING:root:And	this,	too

This	example	also	shows	how	you	can	set	the	logging	level	which	acts
as	 the	 threshold	 for	 tracking.	 In	 this	 case,	 because	 we	 set	 the
threshold	to	DEBUG,	all	of	the	messages	were	printed.

If	you	want	 to	set	 the	 logging	 level	 from	a	command-line	option	such
as:

--log=INFO

and	you	have	 the	value	of	 the	parameter	passed	 for	--log	 in	some
variable	loglevel,	you	can	use:

getattr(logging,	loglevel.upper())

to	 get	 the	 value	 which	 you’ll	 pass	 to	 basicConfig()	 via	 the	 level
argument.	You	may	want	to	error	check	any	user	input	value,	perhaps
as	in	the	following	example:

#	assuming	loglevel	is	bound	to	the	string	value	obtained	from	the

#	command	line	argument.	Convert	to	upper	case	to	allow	the	user	to

#	specify	--log=DEBUG	or	--log=debug

numeric_level	=	getattr(logging,	loglevel.upper(),	None

if	not	isinstance(numeric_level,	int):

				raise	ValueError('Invalid	log	level:	%s'	%	loglevel

logging.basicConfig(level=numeric_level,	...)

The	 call	 to	 basicConfig()	 should	 come	 before	 any	 calls	 to
debug(),	 info()	 etc.	 As	 it’s	 intended	 as	 a	 one-off	 simple
configuration	 facility,	 only	 the	 first	 call	 will	 actually	 do	 anything:
subsequent	calls	are	effectively	no-ops.

If	 you	 run	 the	 above	 script	 several	 times,	 the	 messages	 from
successive	 runs	 are	 appended	 to	 the	 file	 example.log.	 If	 you	 want
each	run	 to	start	afresh,	not	 remembering	 the	messages	 from	earlier
runs,	you	can	specify	 the	 filemode	argument,	by	changing	 the	call	 in
the	above	example	to:

logging.basicConfig(filename='example.log',	filemode

The	 output	 will	 be	 the	 same	 as	 before,	 but	 the	 log	 file	 is	 no	 longer
appended	to,	so	the	messages	from	earlier	runs	are	lost.

Logging	from	multiple	modules

If	 your	 program	 consists	 of	 multiple	 modules,	 here’s	 an	 example	 of
how	you	could	organize	logging	in	it:

#	myapp.py

import	logging

import	mylib

def	main():

				logging.basicConfig(filename='myapp.log',	level=

				logging.info('Started')

				mylib.do_something()

				logging.info('Finished')

if	__name__	==	'__main__':

				main()

#	mylib.py

import	logging

def	do_something():

				logging.info('Doing	something')

If	you	run	myapp.py,	you	should	see	this	in	myapp.log:

INFO:root:Started

INFO:root:Doing	something

INFO:root:Finished

which	is	hopefully	what	you	were	expecting	to	see.	You	can	generalize
this	 to	multiple	modules,	 using	 the	 pattern	 in	mylib.py.	 Note	 that	 for
this	 simple	usage	pattern,	 you	won’t	 know,	by	 looking	 in	 the	 log	 file,
where	 in	 your	 application	 your	 messages	 came	 from,	 apart	 from
looking	 at	 the	 event	 description.	 If	 you	 want	 to	 track	 the	 location	 of
your	messages,	you’ll	need	to	refer	to	the	documentation	beyond	the
tutorial	level	–	see	Advanced	Logging	Tutorial.

Logging	variable	data

To	 log	 variable	 data,	 use	 a	 format	 string	 for	 the	 event	 description
message	and	append	the	variable	data	as	arguments.	For	example:

import	logging

logging.warning('%s	before	you	%s',	'Look',	'leap!')

will	display:

WARNING:root:Look	before	you	leap!

As	 you	 can	 see,	merging	 of	 variable	 data	 into	 the	 event	 description
message	 uses	 the	 old,	 %-style	 of	 string	 formatting.	 This	 is	 for
backwards	 compatibility:	 the	 logging	 package	 pre-dates	 newer
formatting	options	such	as	str.format()	and	string.Template.
These	newer	 formatting	options	are	 supported,	but	exploring	 them	 is
outside	the	scope	of	this	tutorial:	see	Using	particular	formatting	styles
throughout	your	application	for	more	information.

Changing	the	format	of	displayed	messages

To	change	the	format	which	is	used	to	display	messages,	you	need	to
specify	the	format	you	want	to	use:

import	logging

logging.basicConfig(format='%(levelname)s:%(message)s'

logging.debug('This	message	should	appear	on	the	console'

logging.info('So	should	this')

logging.warning('And	this,	too')

which	would	print:

DEBUG:This	message	should	appear	on	the	console

INFO:So	should	this

WARNING:And	this,	too

Notice	 that	 the	 ‘root’	 which	 appeared	 in	 earlier	 examples	 has
disappeared.	For	a	full	set	of	things	that	can	appear	in	format	strings,
you	 can	 refer	 to	 the	 documentation	 for	LogRecord	 attributes,	 but	 for
simple	usage,	you	just	need	the	levelname	(severity),	message	(event
description,	 including	variable	data)	and	perhaps	 to	display	when	 the
event	occurred.	This	is	described	in	the	next	section.

Displaying	the	date/time	in	messages

To	 display	 the	 date	 and	 time	 of	 an	 event,	 you	 would	 place	 ‘%
(asctime)s’	in	your	format	string:

import	logging

logging.basicConfig(format='%(asctime)s	%(message)s'

logging.warning('is	when	this	event	was	logged.')

which	should	print	something	like	this:

2010-12-12	11:41:42,612	is	when	this	event	was	logged

The	default	format	for	date/time	display	(shown	above)	is	ISO8601.	If
you	need	more	control	over	the	formatting	of	the	date/time,	provide	a
datefmt	argument	to	basicConfig,	as	in	this	example:

import	logging

logging.basicConfig(format='%(asctime)s	%(message)s'

logging.warning('is	when	this	event	was	logged.')

which	would	display	something	like	this:

12/12/2010	11:46:36	AM	is	when	this	event	was	logged

The	 format	 of	 the	 datefmt	 argument	 is	 the	 same	 as	 supported	 by
time.strftime().

Next	Steps

That	 concludes	 the	basic	 tutorial.	 It	 should	be	enough	 to	get	 you	up
and	running	with	logging.	There’s	a	lot	more	that	the	logging	package
offers,	but	to	get	the	best	out	of	it,	you’ll	need	to	invest	a	little	more	of
your	 time	 in	 reading	 the	 following	 sections.	 If	 you’re	 ready	 for	 that,
grab	some	of	your	favourite	beverage	and	carry	on.

If	 your	 logging	 needs	 are	 simple,	 then	 use	 the	 above	 examples	 to
incorporate	logging	into	your	own	scripts,	and	if	you	run	into	problems
or	 don’t	 understand	 something,	 please	 post	 a	 question	 on	 the
comp.lang.python	 Usenet	 group	 (available	 at
http://groups.google.com/group/comp.lang.python)	 and	 you	 should
receive	help	before	too	long.

Still	 here?	 You	 can	 carry	 on	 reading	 the	 next	 few	 sections,	 which
provide	a	slightly	more	advanced/in-depth	 tutorial	 than	 the	basic	one
above.	After	that,	you	can	take	a	look	at	the	Logging	Cookbook.

http://groups.google.com/group/comp.lang.python

Advanced	Logging	Tutorial

The	 logging	 library	 takes	 a	 modular	 approach	 and	 offers	 several
categories	of	components:	loggers,	handlers,	filters,	and	formatters.

Loggers	expose	the	interface	that	application	code	directly	uses.
Handlers	 send	 the	 log	 records	 (created	 by	 loggers)	 to	 the
appropriate	destination.
Filters	 provide	 a	 finer	 grained	 facility	 for	 determining	 which	 log
records	to	output.
Formatters	specify	the	layout	of	log	records	in	the	final	output.

Log	event	information	is	passed	between	loggers,	handlers,	filters	and
formatters	in	a	LogRecord	instance.

Logging	is	performed	by	calling	methods	on	instances	of	the	Logger
class	(hereafter	called	 loggers).	Each	instance	has	a	name,	and	they
are	 conceptually	 arranged	 in	 a	 namespace	 hierarchy	 using	 dots
(periods)	 as	 separators.	 For	 example,	 a	 logger	 named	 ‘scan’	 is	 the
parent	of	loggers	‘scan.text’,	‘scan.html’	and	‘scan.pdf’.	Logger	names
can	be	anything	you	want,	and	 indicate	 the	area	of	an	application	 in
which	a	logged	message	originates.

A	good	convention	 to	use	when	naming	 loggers	 is	 to	use	a	module-
level	logger,	in	each	module	which	uses	logging,	named	as	follows:

logger	=	logging.getLogger(__name__)

This	 means	 that	 logger	 names	 track	 the	 package/module	 hierarchy,
and	it’s	intuitively	obvious	where	events	are	logged	just	from	the	logger
name.

The	root	of	the	hierarchy	of	loggers	is	called	the	root	logger.	That’s	the

logger	 used	 by	 the	 functions	 debug(),	 info(),	 warning(),
error()	and	critical(),	which	just	call	the	same-named	method
of	 the	 root	 logger.	 The	 functions	 and	 the	 methods	 have	 the	 same
signatures.	 The	 root	 logger’s	 name	 is	 printed	 as	 ‘root’	 in	 the	 logged
output.

It	 is,	 of	 course,	 possible	 to	 log	 messages	 to	 different	 destinations.
Support	 is	 included	 in	 the	package	 for	writing	 log	messages	 to	 files,
HTTP	GET/POST	locations,	email	via	SMTP,	generic	sockets,	queues,
or	OS-specific	logging	mechanisms	such	as	syslog	or	the	Windows	NT
event	log.	Destinations	are	served	by	handler	classes.	You	can	create
your	 own	 log	 destination	 class	 if	 you	 have	 special	 requirements	 not
met	by	any	of	the	built-in	handler	classes.

By	 default,	 no	 destination	 is	 set	 for	 any	 logging	messages.	You	 can
specify	 a	 destination	 (such	 as	 console	 or	 file)	 by	 using
basicConfig()	as	in	the	tutorial	examples.	If	you	call	the	functions
debug(),	 info(),	 warning(),	 error()	 and	 critical(),	 they
will	check	to	see	if	no	destination	is	set;	and	if	one	is	not	set,	they	will
set	a	destination	of	 the	console	 (sys.stderr)	 and	a	default	 format
for	 the	displayed	message	before	delegating	 to	 the	 root	 logger	 to	do
the	actual	message	output.

The	default	format	set	by	basicConfig()	for	messages	is:

severity:logger	name:message

You	can	change	 this	by	passing	a	 format	 string	 to	basicConfig()
with	 the	 format	 keyword	 argument.	 For	 all	 options	 regarding	 how	 a
format	string	is	constructed,	see	Formatter	Objects.

Logging	Flow

The	flow	of	log	event	information	in	loggers	and	handlers	is	illustrated
in	the	following	diagram.

Loggers

Logger	 objects	 have	 a	 threefold	 job.	 First,	 they	 expose	 several
methods	to	application	code	so	that	applications	can	log	messages	at
runtime.	Second,	logger	objects	determine	which	log	messages	to	act
upon	based	upon	severity	(the	default	filtering	facility)	or	filter	objects.
Third,	 logger	 objects	 pass	 along	 relevant	 log	 messages	 to	 all
interested	log	handlers.

The	 most	 widely	 used	 methods	 on	 logger	 objects	 fall	 into	 two
categories:	configuration	and	message	sending.

These	are	the	most	common	configuration	methods:

Logger.setLevel()	specifies	the	lowest-severity	log	message
a	 logger	 will	 handle,	 where	 debug	 is	 the	 lowest	 built-in	 severity
level	and	critical	is	the	highest	built-in	severity.	For	example,	if	the
severity	 level	 is	 INFO,	 the	 logger	 will	 handle	 only	 INFO,
WARNING,	 ERROR,	 and	 CRITICAL	 messages	 and	 will	 ignore
DEBUG	messages.
Logger.addHandler()	and	Logger.removeHandler()	add
and	remove	handler	objects	from	the	logger	object.	Handlers	are
covered	in	more	detail	in	Handlers.
Logger.addFilter()	 and	 Logger.removeFilter()	 add
and	 remove	 filter	 objects	 from	 the	 logger	 object.	 Filters	 are
covered	in	more	detail	in	Filter	Objects.

You	 don’t	 need	 to	 always	 call	 these	 methods	 on	 every	 logger	 you
create.	See	the	last	two	paragraphs	in	this	section.

With	 the	 logger	 object	 configured,	 the	 following	 methods	 create	 log
messages:

Logger.debug(),	 Logger.info(),	 Logger.warning(),
Logger.error(),	 and	 Logger.critical()	 all	 create	 log
records	 with	 a	 message	 and	 a	 level	 that	 corresponds	 to	 their
respective	 method	 names.	 The	 message	 is	 actually	 a	 format
string,	which	may	contain	 the	standard	string	substitution	syntax
of	%s,	%d,	%f,	and	so	on.	The	rest	of	 their	arguments	 is	a	 list	of
objects	 that	 correspond	 with	 the	 substitution	 fields	 in	 the
message.	With	 regard	 to	 **kwargs,	 the	 logging	 methods	 care
only	 about	 a	 keyword	 of	 exc_info	 and	 use	 it	 to	 determine
whether	to	log	exception	information.
Logger.exception()	 creates	 a	 log	 message	 similar	 to
Logger.error().	 The	 difference	 is	 that
Logger.exception()	 dumps	 a	 stack	 trace	 along	with	 it.	 Call

this	method	only	from	an	exception	handler.
Logger.log()	takes	a	log	level	as	an	explicit	argument.	This	is
a	little	more	verbose	for	logging	messages	than	using	the	log	level
convenience	 methods	 listed	 above,	 but	 this	 is	 how	 to	 log	 at
custom	log	levels.

getLogger()	 returns	 a	 reference	 to	 a	 logger	 instance	 with	 the
specified	name	if	it	is	provided,	or	root	if	not.	The	names	are	period-
separated	hierarchical	structures.	Multiple	calls	to	getLogger()	with
the	 same	 name	 will	 return	 a	 reference	 to	 the	 same	 logger	 object.
Loggers	 that	 are	 further	 down	 in	 the	 hierarchical	 list	 are	 children	 of
loggers	higher	up	in	the	list.	For	example,	given	a	logger	with	a	name
of	 foo,	 loggers	 with	 names	 of	 foo.bar,	 foo.bar.baz,	 and
foo.bam	are	all	descendants	of	foo.

Loggers	have	a	concept	of	effective	level.	If	a	level	is	not	explicitly	set
on	a	logger,	the	level	of	its	parent	is	used	instead	as	its	effective	level.
If	the	parent	has	no	explicit	level	set,	its	parent	is	examined,	and	so	on
-	all	ancestors	are	searched	until	an	explicitly	set	 level	 is	 found.	The
root	 logger	 always	 has	 an	 explicit	 level	 set	 (WARNING	 by	 default).
When	deciding	whether	to	process	an	event,	the	effective	level	of	the
logger	 is	 used	 to	 determine	 whether	 the	 event	 is	 passed	 to	 the
logger’s	handlers.

Child	loggers	propagate	messages	up	to	the	handlers	associated	with
their	ancestor	loggers.	Because	of	this,	it	is	unnecessary	to	define	and
configure	handlers	for	all	the	loggers	an	application	uses.	It	is	sufficient
to	configure	handlers	for	a	top-level	logger	and	create	child	loggers	as
needed.	 (You	 can,	 however,	 turn	 off	 propagation	 by	 setting	 the
propagate	attribute	of	a	logger	to	False.)

Handlers

Handler	 objects	are	 responsible	 for	dispatching	 the	appropriate	 log
messages	 (based	 on	 the	 log	 messages’	 severity)	 to	 the	 handler’s
specified	destination.	Logger	 objects	can	add	zero	or	more	handler
objects	 to	 themselves	 with	 an	 addHandler()	 method.	 As	 an
example	scenario,	an	application	may	want	to	send	all	 log	messages
to	 a	 log	 file,	 all	 log	 messages	 of	 error	 or	 higher	 to	 stdout,	 and	 all
messages	of	critical	to	an	email	address.	This	scenario	requires	three
individual	 handlers	 where	 each	 handler	 is	 responsible	 for	 sending
messages	of	a	specific	severity	to	a	specific	location.

The	 standard	 library	 includes	 quite	 a	 few	 handler	 types	 (see	Useful
Handlers);	 the	 tutorials	 use	 mainly	 StreamHandler	 and
FileHandler	in	its	examples.

There	are	very	few	methods	in	a	handler	for	application	developers	to
concern	 themselves	 with.	 The	 only	 handler	 methods	 that	 seem
relevant	 for	application	developers	who	are	using	 the	built-in	handler
objects	 (that	 is,	 not	 creating	 custom	 handlers)	 are	 the	 following
configuration	methods:

The	setLevel()	method,	just	as	in	logger	objects,	specifies	the
lowest	 severity	 that	 will	 be	 dispatched	 to	 the	 appropriate
destination.	Why	are	there	two	setLevel()	methods?	The	level
set	 in	 the	 logger	 determines	 which	 severity	 of	 messages	 it	 will
pass	 to	 its	 handlers.	 The	 level	 set	 in	 each	 handler	 determines
which	messages	that	handler	will	send	on.
setFormatter()	 selects	a	Formatter	object	 for	 this	handler	 to
use.
addFilter()	 and	 removeFilter()	 respectively	 configure
and	deconfigure	filter	objects	on	handlers.

Application	 code	 should	 not	 directly	 instantiate	 and	 use	 instances	 of
Handler.	Instead,	the	Handler	class	is	a	base	class	that	defines	the

interface	 that	 all	 handlers	 should	have	and	establishes	 some	default
behavior	that	child	classes	can	use	(or	override).

Formatters

Formatter	objects	configure	 the	 final	order,	structure,	and	contents	of
the	 log	 message.	 Unlike	 the	 base	 logging.Handler	 class,
application	code	may	instantiate	formatter	classes,	although	you	could
likely	subclass	the	formatter	if	your	application	needs	special	behavior.
The	 constructor	 takes	 three	optional	 arguments	–	a	message	 format
string,	a	date	format	string	and	a	style	indicator.

logging.Formatter.__init__(fmt=None,	datefmt=None,
style='%')

If	 there	 is	 no	 message	 format	 string,	 the	 default	 is	 to	 use	 the	 raw
message.	If	there	is	no	date	format	string,	the	default	date	format	is:

%Y-%m-%d	%H:%M:%S

with	the	milliseconds	tacked	on	at	the	end.	The	style	is	one	of	%,	‘{‘
or	‘$’.	If	one	of	these	is	not	specified,	then	‘%’	will	be	used.

If	the	style	is	‘%’,	the	message	format	string	uses	%(<dictionary
key>)s	 styled	string	substitution;	 the	possible	keys	are	documented
in	LogRecord	attributes.	If	the	style	is	‘{‘,	the	message	format	string	is
assumed	 to	 be	 compatible	 with	 str.format()	 (using	 keyword
arguments),	 while	 if	 the	 style	 is	 ‘$’	 then	 the	 message	 format	 string
should	 conform	 to	 what	 is	 expected	 by
string.Template.substitute().

Changed	in	version	3.2:	Added	the	style	parameter.

The	 following	 message	 format	 string	 will	 log	 the	 time	 in	 a	 human-
readable	format,	the	severity	of	the	message,	and	the	contents	of	the
message,	in	that	order:

'%(asctime)s	-	%(levelname)s	-	%(message)s'

Formatters	 use	 a	 user-configurable	 function	 to	 convert	 the	 creation
time	of	a	record	to	a	tuple.	By	default,	time.localtime()	 is	used;
to	change	this	for	a	particular	formatter	instance,	set	the	converter
attribute	 of	 the	 instance	 to	 a	 function	 with	 the	 same	 signature	 as
time.localtime()	 or	 time.gmtime().	 To	 change	 it	 for	 all
formatters,	 for	 example	 if	 you	want	 all	 logging	 times	 to	 be	 shown	 in
GMT,	 set	 the	 converter	 attribute	 in	 the	 Formatter	 class	 (to
time.gmtime	for	GMT	display).

Configuring	Logging

Programmers	can	configure	logging	in	three	ways:

1.	 Creating	loggers,	handlers,	and	formatters	explicitly	using	Python
code	that	calls	the	configuration	methods	listed	above.

2.	 Creating	 a	 logging	 config	 file	 and	 reading	 it	 using	 the
fileConfig()	function.

3.	 Creating	a	dictionary	of	configuration	information	and	passing	it	to
the	dictConfig()	function.

For	 the	 reference	 documentation	 on	 the	 last	 two	 options,	 see
Configuration	 functions.	 The	 following	 example	 configures	 a	 very
simple	logger,	a	console	handler,	and	a	simple	formatter	using	Python
code:

import	logging

#	create	logger

logger	=	logging.getLogger('simple_example')

logger.setLevel(logging.DEBUG)

#	create	console	handler	and	set	level	to	debug

ch	=	logging.StreamHandler()

ch.setLevel(logging.DEBUG)

#	create	formatter

formatter	=	logging.Formatter('%(asctime)s	-	%(name)s	-	%(levelname)s	-	%(message)s'

#	add	formatter	to	ch

ch.setFormatter(formatter)

#	add	ch	to	logger

logger.addHandler(ch)

#	'application'	code

logger.debug('debug	message')

logger.info('info	message')

logger.warn('warn	message')

logger.error('error	message')

logger.critical('critical	message')

Running	 this	module	 from	 the	 command	 line	 produces	 the	 following
output:

$	python	simple_logging_module.py

2005-03-19	15:10:26,618	-	simple_example	-	DEBUG	-	debug	message

2005-03-19	15:10:26,620	-	simple_example	-	INFO	-	info	message

2005-03-19	15:10:26,695	-	simple_example	-	WARNING	-	warn	message

2005-03-19	15:10:26,697	-	simple_example	-	ERROR	-	error	message

2005-03-19	15:10:26,773	-	simple_example	-	CRITICAL	-	critical	message

The	following	Python	module	creates	a	logger,	handler,	and	formatter

nearly	 identical	 to	 those	 in	 the	 example	 listed	 above,	 with	 the	 only
difference	being	the	names	of	the	objects:

import	logging

import	logging.config

logging.config.fileConfig('logging.conf')

#	create	logger

logger	=	logging.getLogger('simpleExample')

#	'application'	code

logger.debug('debug	message')

logger.info('info	message')

logger.warn('warn	message')

logger.error('error	message')

logger.critical('critical	message')

Here	is	the	logging.conf	file:

[loggers]

keys=root,simpleExample

[handlers]

keys=consoleHandler

[formatters]

keys=simpleFormatter

[logger_root]

level=DEBUG

handlers=consoleHandler

[logger_simpleExample]

level=DEBUG

handlers=consoleHandler

qualname=simpleExample

propagate=0

[handler_consoleHandler]

class=StreamHandler

level=DEBUG

formatter=simpleFormatter

args=(sys.stdout,)

[formatter_simpleFormatter]

format=%(asctime)s	-	%(name)s	-	%(levelname)s	-	%(message

datefmt=

The	 output	 is	 nearly	 identical	 to	 that	 of	 the	 non-config-file-based
example:

$	python	simple_logging_config.py

2005-03-19	15:38:55,977	-	simpleExample	-	DEBUG	-	debug	message

2005-03-19	15:38:55,979	-	simpleExample	-	INFO	-	info	message

2005-03-19	15:38:56,054	-	simpleExample	-	WARNING	-	warn	message

2005-03-19	15:38:56,055	-	simpleExample	-	ERROR	-	error	message

2005-03-19	15:38:56,130	-	simpleExample	-	CRITICAL	-	critical	message

You	can	see	that	the	config	file	approach	has	a	few	advantages	over
the	 Python	 code	 approach,	 mainly	 separation	 of	 configuration	 and
code	 and	 the	 ability	 of	 noncoders	 to	 easily	 modify	 the	 logging
properties.

Warning: 	The	fileConfig()	function	takes	a	default	parameter,
disable_existing_loggers,	which	defaults	to	True	for
reasons	of	backward	compatibility.	This	may	or	may	not	be	what	you
want,	since	it	will	cause	any	loggers	existing	before	the
fileConfig()	call	to	be	disabled	unless	they	(or	an	ancestor)	are

explicitly	named	in	the	configuration.	Please	refer	to	the	reference
documentation	for	more	information,	and	specify	False	for	this
parameter	if	you	wish.

The	 dictionary	 passed	 to	 dictConfig()	 can	 also	 specify	 a
Boolean	 value	 with	 key	 disable_existing_loggers,	 which	 if
not	 specified	 explicitly	 in	 the	 dictionary	 also	 defaults	 to	 being
interpreted	 as	 True.	 This	 leads	 to	 the	 logger-disabling	 behaviour
described	above,	which	may	not	be	what	you	want	-	 in	which	case,
provide	the	key	explicitly	with	a	value	of	False.

Note	that	the	class	names	referenced	in	config	files	need	to	be	either
relative	 to	 the	 logging	 module,	 or	 absolute	 values	 which	 can	 be
resolved	using	normal	import	mechanisms.	Thus,	you	could	use	either
WatchedFileHandler	 (relative	 to	 the	 logging	 module)	 or
mypackage.mymodule.MyHandler	(for	a	class	defined	in	package
mypackage	and	module	mymodule,	where	mypackage	 is	available
on	the	Python	import	path).

In	 Python	 3.2,	 a	 new	 means	 of	 configuring	 logging	 has	 been
introduced,	 using	 dictionaries	 to	 hold	 configuration	 information.	 This
provides	 a	 superset	 of	 the	 functionality	 of	 the	 config-file-based
approach	 outlined	 above,	 and	 is	 the	 recommended	 configuration
method	 for	 new	 applications	 and	 deployments.	 Because	 a	 Python
dictionary	is	used	to	hold	configuration	information,	and	since	you	can
populate	that	dictionary	using	different	means,	you	have	more	options
for	 configuration.	 For	 example,	 you	 can	 use	 a	 configuration	 file	 in
JSON	format,	or,	if	you	have	access	to	YAML	processing	functionality,
a	 file	 in	YAML	 format,	 to	populate	 the	configuration	dictionary.	Or,	of
course,	you	can	construct	 the	dictionary	 in	Python	code,	 receive	 it	 in
pickled	 form	over	 a	 socket,	 or	 use	whatever	 approach	makes	 sense

for	your	application.

Here’s	 an	 example	 of	 the	 same	 configuration	 as	 above,	 in	 YAML
format	for	the	new	dictionary-based	approach:

version:	1

formatters:

		simple:

				format:	'%(asctime)s	-	%(name)s	-	%(levelname)s	-	%(message)s'

handlers:

		console:

				class:	logging.StreamHandler

				level:	DEBUG

				formatter:	simple

				stream:	ext://sys.stdout

loggers:

		simpleExample:

				level:	DEBUG

				handlers:	[console]

				propagate:	no

root:

		level:	DEBUG

		handlers:	[console]

For	 more	 information	 about	 logging	 using	 a	 dictionary,	 see
Configuration	functions.

What	happens	if	no	configuration	is	provided

If	no	logging	configuration	is	provided,	it	is	possible	to	have	a	situation
where	 a	 logging	 event	 needs	 to	 be	 output,	 but	 no	 handlers	 can	 be
found	 to	 output	 the	 event.	 The	 behaviour	 of	 the	 logging	 package	 in
these	circumstances	is	dependent	on	the	Python	version.

For	versions	of	Python	prior	to	3.2,	the	behaviour	is	as	follows:

If	logging.raiseExceptions	is	False	(production	mode),	the	event	is
silently	dropped.
If	 logging.raiseExceptions	 is	 True	 (development	 mode),	 a
message	‘No	handlers	could	be	found	for	 logger	X.Y.Z’	 is	printed
once.

In	Python	3.2	and	later,	the	behaviour	is	as	follows:

The	 event	 is	 output	 using	 a	 ‘handler	 of	 last	 resort’,	 stored	 in
logging.lastResort.	 This	 internal	 handler	 is	 not	 associated
with	any	logger,	and	acts	like	a	StreamHandler	which	writes	the
event	 description	message	 to	 the	 current	 value	of	 sys.stderr
(therefore	respecting	any	redirections	which	may	be	in	effect).	No
formatting	 is	 done	 on	 the	 message	 -	 just	 the	 bare	 event
description	 message	 is	 printed.	 The	 handler’s	 level	 is	 set	 to
WARNING,	 so	 all	 events	 at	 this	 and	 greater	 severities	 will	 be
output.

To	obtain	the	pre-3.2	behaviour,	logging.lastResort	can	be	set	to
None.

Configuring	Logging	for	a	Library

When	developing	a	library	which	uses	logging,	you	should	take	care	to
document	 how	 the	 library	 uses	 logging	 -	 for	 example,	 the	 names	 of
loggers	used.	Some	consideration	also	needs	to	be	given	to	its	logging
configuration.	If	the	using	application	does	not	use	logging,	and	library
code	makes	logging	calls,	then	(as	described	in	the	previous	section)
events	 of	 severity	 WARNING	 and	 greater	 will	 be	 printed	 to
sys.stderr.	This	is	regarded	as	the	best	default	behaviour.

If	 for	 some	 reason	 you	 don’t	 want	 these	 messages	 printed	 in	 the
absence	 of	 any	 logging	 configuration,	 you	 can	 attach	 a	 do-nothing
handler	 to	 the	 top-level	 logger	 for	 your	 library.	 This	 avoids	 the
message	being	printed,	since	a	handler	will	be	always	be	found	for	the
library’s	events:	 it	 just	doesn’t	produce	any	output.	 If	 the	 library	user
configures	 logging	 for	 application	 use,	 presumably	 that	 configuration
will	 add	 some	 handlers,	 and	 if	 levels	 are	 suitably	 configured	 then
logging	calls	made	 in	 library	code	will	send	output	 to	 those	handlers,
as	normal.

A	 do-nothing	 handler	 is	 included	 in	 the	 logging	 package:
NullHandler	 (since	Python	3.1).	An	 instance	of	 this	 handler	 could
be	added	to	the	top-level	logger	of	the	logging	namespace	used	by	the
library	(if	you	want	to	prevent	your	library’s	logged	events	being	output
to	sys.stderr	in	the	absence	of	logging	configuration).	If	all	logging
by	 a	 library	 foo	 is	 done	 using	 loggers	 with	 names	 matching	 ‘foo.x’,
‘foo.x.y’,	etc.	then	the	code:

import	logging

logging.getLogger('foo').addHandler(logging.NullHandler

should	have	the	desired	effect.	If	an	organisation	produces	a	number
of	libraries,	then	the	logger	name	specified	can	be	‘orgname.foo’	rather
than	just	‘foo’.

Note: 	It	is	strongly	advised	that	you	do	not	add	any	handlers	other
than	NullHandler	to	your	library’s	loggers.	This	is	because	the
configuration	of	handlers	is	the	prerogative	of	the	application
developer	who	uses	your	library.	The	application	developer	knows
their	target	audience	and	what	handlers	are	most	appropriate	for
their	application:	if	you	add	handlers	‘under	the	hood’,	you	might	well
interfere	with	their	ability	to	carry	out	unit	tests	and	deliver	logs	which

suit	their	requirements.

Logging	Levels

The	numeric	values	of	 logging	 levels	are	given	 in	 the	 following	 table.
These	are	primarily	of	 interest	 if	 you	want	 to	define	your	own	 levels,
and	 need	 them	 to	 have	 specific	 values	 relative	 to	 the	 predefined
levels.	If	you	define	a	level	with	the	same	numeric	value,	it	overwrites
the	predefined	value;	the	predefined	name	is	lost.

Level Numeric
value

CRITICAL 50

ERROR 40

WARNING 30

INFO 20

DEBUG 10

NOTSET 0

Levels	 can	 also	 be	 associated	 with	 loggers,	 being	 set	 either	 by	 the
developer	 or	 through	 loading	 a	 saved	 logging	 configuration.	When	a
logging	 method	 is	 called	 on	 a	 logger,	 the	 logger	 compares	 its	 own
level	with	the	level	associated	with	the	method	call.	If	the	logger’s	level
is	 higher	 than	 the	 method	 call’s,	 no	 logging	 message	 is	 actually
generated.	 This	 is	 the	 basic	 mechanism	 controlling	 the	 verbosity	 of
logging	output.

Logging	 messages	 are	 encoded	 as	 instances	 of	 the	 LogRecord
class.	When	a	logger	decides	to	actually	log	an	event,	a	LogRecord
instance	is	created	from	the	logging	message.

Logging	 messages	 are	 subjected	 to	 a	 dispatch	 mechanism	 through

the	 use	 of	 handlers,	 which	 are	 instances	 of	 subclasses	 of	 the
Handler	 class.	Handlers	are	 responsible	 for	ensuring	 that	a	 logged
message	(in	the	form	of	a	LogRecord)	ends	up	in	a	particular	location
(or	 set	 of	 locations)	 which	 is	 useful	 for	 the	 target	 audience	 for	 that
message	 (such	 as	 end	 users,	 support	 desk	 staff,	 system
administrators,	 developers).	 Handlers	 are	 passed	 LogRecord

instances	 intended	 for	 particular	 destinations.	 Each	 logger	 can	 have
zero,	one	or	more	handlers	associated	with	it	(via	the	addHandler()
method	 of	 Logger).	 In	 addition	 to	 any	 handlers	 directly	 associated
with	a	 logger,	all	handlers	associated	with	all	ancestors	of	 the	 logger
are	 called	 to	 dispatch	 the	message	 (unless	 the	propagate	 flag	 for	 a
logger	 is	set	 to	a	 false	value,	at	which	point	 the	passing	 to	ancestor
handlers	stops).

Just	as	for	loggers,	handlers	can	have	levels	associated	with	them.	A
handler’s	 level	 acts	 as	 a	 filter	 in	 the	 same	 way	 as	 a	 logger’s	 level
does.	 If	a	handler	decides	to	actually	dispatch	an	event,	 the	emit()
method	 is	 used	 to	 send	 the	 message	 to	 its	 destination.	 Most	 user-
defined	subclasses	of	Handler	will	need	to	override	this	emit().

Custom	Levels

Defining	your	own	levels	is	possible,	but	should	not	be	necessary,	as
the	 existing	 levels	 have	 been	 chosen	 on	 the	 basis	 of	 practical
experience.	 However,	 if	 you	 are	 convinced	 that	 you	 need	 custom
levels,	 great	 care	 should	 be	 exercised	 when	 doing	 this,	 and	 it	 is
possibly	a	very	bad	idea	to	define	custom	levels	if	you	are	developing
a	library.	That’s	because	if	multiple	library	authors	all	define	their	own
custom	 levels,	 there	 is	 a	 chance	 that	 the	 logging	 output	 from	 such
multiple	libraries	used	together	will	be	difficult	for	the	using	developer
to	control	and/or	interpret,	because	a	given	numeric	value	might	mean

different	things	for	different	libraries.

Useful	Handlers

In	 addition	 to	 the	base	 Handler	 class,	many	 useful	 subclasses	 are
provided:

1.	 StreamHandler	 instances	 send	messages	 to	 streams	 (file-like
objects).

2.	 FileHandler	instances	send	messages	to	disk	files.
3.	 BaseRotatingHandler	 is	 the	 base	 class	 for	 handlers	 that

rotate	log	files	at	a	certain	point.	It	is	not	meant	to	be	instantiated
directly.	 Instead,	 use	 RotatingFileHandler	 or
TimedRotatingFileHandler.

4.	 RotatingFileHandler	 instances	send	messages	to	disk	files,
with	support	for	maximum	log	file	sizes	and	log	file	rotation.

5.	 TimedRotatingFileHandler	 instances	 send	 messages	 to
disk	files,	rotating	the	log	file	at	certain	timed	intervals.

6.	 SocketHandler	 instances	 send	messages	 to	 TCP/IP	 sockets.
Since	3.4,	Unix	domain	sockets	are	also	supported.

7.	 DatagramHandler	 instances	 send	messages	 to	UDP	 sockets.
Since	3.4,	Unix	domain	sockets	are	also	supported.

8.	 SMTPHandler	 instances	 send	messages	 to	 a	 designated	 email
address.

9.	 SysLogHandler	 instances	 send	 messages	 to	 a	 Unix	 syslog
daemon,	possibly	on	a	remote	machine.

10.	 NTEventLogHandler	 instances	 send	messages	 to	 a	Windows
NT/2000/XP	event	log.

11.	 MemoryHandler	 instances	 send	 messages	 to	 a	 buffer	 in
memory,	which	is	flushed	whenever	specific	criteria	are	met.

12.	 HTTPHandler	 instances	 send	 messages	 to	 an	 HTTP	 server
using	either	GET	or	POST	semantics.

13.	 WatchedFileHandler	instances	watch	the	file	they	are	logging
to.	 If	 the	 file	 changes,	 it	 is	 closed	 and	 reopened	 using	 the	 file

name.	This	handler	is	only	useful	on	Unix-like	systems;	Windows
does	not	support	the	underlying	mechanism	used.

14.	 QueueHandler	 instances	 send	messages	 to	 a	 queue,	 such	 as
those	 implemented	 in	 the	 queue	 or	 multiprocessing

modules.
15.	 NullHandler	 instances	 do	 nothing	with	 error	messages.	 They

are	used	by	library	developers	who	want	to	use	logging,	but	want
to	avoid	the	‘No	handlers	could	be	found	for	logger	XXX’	message
which	 can	 be	 displayed	 if	 the	 library	 user	 has	 not	 configured
logging.	 See	 Configuring	 Logging	 for	 a	 Library	 for	 more
information.

New	in	version	3.1:	The	NullHandler	class.

New	in	version	3.2:	The	QueueHandler	class.

The	 NullHandler,	 StreamHandler	 and	 FileHandler	 classes
are	 defined	 in	 the	 core	 logging	 package.	 The	 other	 handlers	 are
defined	 in	 a	 sub-	 module,	 logging.handlers.	 (There	 is	 also
another	 sub-module,	 logging.config,	 for	 configuration
functionality.)

Logged	messages	are	formatted	for	presentation	through	instances	of
the	Formatter	class.	They	are	initialized	with	a	format	string	suitable
for	use	with	the	%	operator	and	a	dictionary.

For	 formatting	 multiple	 messages	 in	 a	 batch,	 instances	 of
BufferingFormatter	can	be	used.	 In	addition	 to	 the	format	string
(which	is	applied	to	each	message	in	the	batch),	there	is	provision	for
header	and	trailer	format	strings.

When	 filtering	 based	 on	 logger	 level	 and/or	 handler	 level	 is	 not
enough,	 instances	 of	 Filter	 can	 be	 added	 to	 both	 Logger	 and

Handler	 instances	 (through	 their	 addFilter()	 method).	 Before
deciding	 to	 process	 a	 message	 further,	 both	 loggers	 and	 handlers
consult	all	their	filters	for	permission.	If	any	filter	returns	a	false	value,
the	message	is	not	processed	further.

The	 basic	 Filter	 functionality	 allows	 filtering	 by	 specific	 logger
name.	If	this	feature	is	used,	messages	sent	to	the	named	logger	and
its	children	are	allowed	through	the	filter,	and	all	others	dropped.

Exceptions	raised	during	logging

The	 logging	package	 is	designed	 to	 swallow	exceptions	which	occur
while	 logging	 in	 production.	 This	 is	 so	 that	 errors	 which	 occur	 while
handling	logging	events	-	such	as	logging	misconfiguration,	network	or
other	 similar	 errors	 -	 do	 not	 cause	 the	 application	 using	 logging	 to
terminate	prematurely.

SystemExit	 and	 KeyboardInterrupt	 exceptions	 are	 never
swallowed.	Other	exceptions	which	occur	during	the	emit()	method
of	a	Handler	subclass	are	passed	to	its	handleError()	method.

The	default	 implementation	of	handleError()	 in	Handler	 checks
to	see	if	a	module-level	variable,	raiseExceptions,	 is	set.	If	set,	a
traceback	 is	 printed	 to	 sys.stderr.	 If	 not	 set,	 the	 exception	 is
swallowed.

Note: 	The	default	value	of	raiseExceptions	is	True.	This	is
because	during	development,	you	typically	want	to	be	notified	of	any
exceptions	that	occur.	It’s	advised	that	you	set	raiseExceptions
to	False	for	production	usage.

Using	arbitrary	objects	as	messages

In	the	preceding	sections	and	examples,	it	has	been	assumed	that	the
message	passed	when	logging	the	event	 is	a	string.	However,	 this	 is
not	the	only	possibility.	You	can	pass	an	arbitrary	object	as	a	message,
and	 its	 __str__()	 method	 will	 be	 called	 when	 the	 logging	 system
needs	 to	 convert	 it	 to	 a	 string	 representation.	 In	 fact,	 if	 you	want	 to,
you	 can	 avoid	 computing	 a	 string	 representation	 altogether	 -	 for
example,	 the	 SocketHandler	 emits	 an	 event	 by	 pickling	 it	 and
sending	it	over	the	wire.

Optimization

Formatting	 of	 message	 arguments	 is	 deferred	 until	 it	 cannot	 be
avoided.	 However,	 computing	 the	 arguments	 passed	 to	 the	 logging
method	can	also	be	expensive,	and	you	may	want	to	avoid	doing	it	 if
the	 logger	will	 just	 throw	away	your	event.	To	decide	what	to	do,	you
can	call	the	isEnabledFor()	method	which	takes	a	level	argument
and	returns	 true	 if	 the	event	would	be	created	by	 the	Logger	 for	 that
level	of	call.	You	can	write	code	like	this:

if	logger.isEnabledFor(logging.DEBUG):

				logger.debug('Message	with	%s,	%s',	expensive_func1

																																								expensive_func2

so	 that	 if	 the	 logger’s	 threshold	 is	 set	 above	 DEBUG,	 the	 calls	 to
expensive_func1()	and	expensive_func2()	are	never	made.

There	 are	 other	 optimizations	 which	 can	 be	 made	 for	 specific
applications	 which	 need	 more	 precise	 control	 over	 what	 logging
information	 is	 collected.	 Here’s	 a	 list	 of	 things	 you	 can	 do	 to	 avoid
processing	during	logging	which	you	don’t	need:

What	you	don’t	want	to	collect How	to	avoid	collecting	it

Information	about	where	calls	were
made	from.

Set	logging._srcfile	to
None.

Threading	information. Set	logging.logThreads
to	0.

Process	information.
Set
logging.logProcesses	to
0.

Also	 note	 that	 the	 core	 logging	 module	 only	 includes	 the	 basic
handlers.	 If	 you	 don’t	 import	 logging.handlers	 and
logging.config,	they	won’t	take	up	any	memory.

See	also:

Module	logging
API	reference	for	the	logging	module.

Module	logging.config
Configuration	API	for	the	logging	module.

Module	logging.handlers
Useful	handlers	included	with	the	logging	module.

A	logging	cookbook

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Logging	Cookbook
Author: Vinay	Sajip	<vinay_sajip	at	red-dove	dot	com>

This	page	contains	a	number	of	recipes	related	to	logging,	which	have
been	found	useful	in	the	past.

Using	logging	in	multiple	modules

Multiple	 calls	 to	 logging.getLogger('someLogger')	 return	 a
reference	 to	 the	 same	 logger	 object.	 This	 is	 true	 not	 only	within	 the
same	module,	 but	 also	 across	modules	 as	 long	 as	 it	 is	 in	 the	 same
Python	interpreter	process.	It	is	true	for	references	to	the	same	object;
additionally,	application	code	can	define	and	configure	a	parent	logger
in	 one	 module	 and	 create	 (but	 not	 configure)	 a	 child	 logger	 in	 a
separate	module,	and	all	 logger	 calls	 to	 the	child	will	 pass	up	 to	 the
parent.	Here	is	a	main	module:

import	logging

import	auxiliary_module

#	create	logger	with	'spam_application'

logger	=	logging.getLogger('spam_application')

logger.setLevel(logging.DEBUG)

#	create	file	handler	which	logs	even	debug	messages

fh	=	logging.FileHandler('spam.log')

fh.setLevel(logging.DEBUG)

#	create	console	handler	with	a	higher	log	level

ch	=	logging.StreamHandler()

ch.setLevel(logging.ERROR)

#	create	formatter	and	add	it	to	the	handlers

formatter	=	logging.Formatter('%(asctime)s	-	%(name)s	-	%(levelname)s	-	%(message)s'

fh.setFormatter(formatter)

ch.setFormatter(formatter)

#	add	the	handlers	to	the	logger

logger.addHandler(fh)

logger.addHandler(ch)

logger.info('creating	an	instance	of	auxiliary_module.Auxiliary'

a	=	auxiliary_module.Auxiliary()

logger.info('created	an	instance	of	auxiliary_module.Auxiliary'

logger.info('calling	auxiliary_module.Auxiliary.do_something'

a.do_something()

logger.info('finished	auxiliary_module.Auxiliary.do_something'

logger.info('calling	auxiliary_module.some_function()'

auxiliary_module.some_function()

logger.info('done	with	auxiliary_module.some_function()'

Here	is	the	auxiliary	module:

import	logging

#	create	logger

module_logger	=	logging.getLogger('spam_application.auxiliary'

class	Auxiliary:

				def	__init__(self):

								self.logger	=	logging.getLogger('spam_application.auxiliary.Auxiliary'

								self.logger.info('creating	an	instance	of	Auxiliary'

				def	do_something(self):

								self.logger.info('doing	something')

								a	=	1	+	1

								self.logger.info('done	doing	something')

def	some_function():

				module_logger.info('received	a	call	to	"some_function"'

The	output	looks	like	this:

2005-03-23	23:47:11,663	-	spam_application	-	INFO	-

			creating	an	instance	of	auxiliary_module.Auxiliary

2005-03-23	23:47:11,665	-	spam_application.auxiliary

			creating	an	instance	of	Auxiliary

2005-03-23	23:47:11,665	-	spam_application	-	INFO	-

			created	an	instance	of	auxiliary_module.Auxiliary

2005-03-23	23:47:11,668	-	spam_application	-	INFO	-

			calling	auxiliary_module.Auxiliary.do_something

2005-03-23	23:47:11,668	-	spam_application.auxiliary

			doing	something

2005-03-23	23:47:11,669	-	spam_application.auxiliary

			done	doing	something

2005-03-23	23:47:11,670	-	spam_application	-	INFO	-

			finished	auxiliary_module.Auxiliary.do_something

2005-03-23	23:47:11,671	-	spam_application	-	INFO	-

			calling	auxiliary_module.some_function()

2005-03-23	23:47:11,672	-	spam_application.auxiliary

			received	a	call	to	'some_function'

2005-03-23	23:47:11,673	-	spam_application	-	INFO	-

			done	with	auxiliary_module.some_function()

Multiple	handlers	and	formatters

Loggers	are	plain	Python	objects.	The	addHandler()	method	has	no
minimum	or	maximum	quota	for	the	number	of	handlers	you	may	add.
Sometimes	it	will	be	beneficial	for	an	application	to	log	all	messages	of
all	severities	to	a	text	file	while	simultaneously	logging	errors	or	above
to	 the	 console.	 To	 set	 this	 up,	 simply	 configure	 the	 appropriate
handlers.	 The	 logging	 calls	 in	 the	 application	 code	 will	 remain
unchanged.	 Here	 is	 a	 slight	 modification	 to	 the	 previous	 simple
module-based	configuration	example:

import	logging

logger	=	logging.getLogger('simple_example')

logger.setLevel(logging.DEBUG)

#	create	file	handler	which	logs	even	debug	messages

fh	=	logging.FileHandler('spam.log')

fh.setLevel(logging.DEBUG)

#	create	console	handler	with	a	higher	log	level

ch	=	logging.StreamHandler()

ch.setLevel(logging.ERROR)

#	create	formatter	and	add	it	to	the	handlers

formatter	=	logging.Formatter('%(asctime)s	-	%(name)s	-	%(levelname)s	-	%(message)s'

ch.setFormatter(formatter)

fh.setFormatter(formatter)

#	add	the	handlers	to	logger

logger.addHandler(ch)

logger.addHandler(fh)

#	'application'	code

logger.debug('debug	message')

logger.info('info	message')

logger.warn('warn	message')

logger.error('error	message')

logger.critical('critical	message')

Notice	 that	 the	 ‘application’	 code	 does	 not	 care	 about	 multiple
handlers.	All	that	changed	was	the	addition	and	configuration	of	a	new
handler	named	fh.

The	ability	to	create	new	handlers	with	higher-	or	lower-severity	filters
can	be	very	helpful	when	writing	and	testing	an	application.	Instead	of
using	many	 print	 statements	 for	 debugging,	 use	 logger.debug:
Unlike	the	print	statements,	which	you	will	have	to	delete	or	comment
out	later,	the	logger.debug	statements	can	remain	intact	in	the	source
code	and	remain	dormant	until	you	need	them	again.	At	that	time,	the
only	change	that	needs	to	happen	is	to	modify	the	severity	level	of	the
logger	and/or	handler	to	debug.

Logging	to	multiple	destinations

Let’s	 say	 you	want	 to	 log	 to	 console	 and	 file	with	 different	message
formats	and	in	differing	circumstances.	Say	you	want	to	log	messages
with	levels	of	DEBUG	and	higher	to	file,	and	those	messages	at	level
INFO	and	higher	to	the	console.	Let’s	also	assume	that	the	file	should
contain	timestamps,	but	the	console	messages	should	not.	Here’s	how
you	can	achieve	this:

import	logging

#	set	up	logging	to	file	-	see	previous	section	for	more	details

logging.basicConfig(level=logging.DEBUG,

																				format='%(asctime)s	%(name)-12s	%(levelname)-8s	%(message)s'

																				datefmt='%m-%d	%H:%M',

																				filename='/temp/myapp.log',

																				filemode='w')

#	define	a	Handler	which	writes	INFO	messages	or	higher	to	the	sys.stderr

console	=	logging.StreamHandler()

console.setLevel(logging.INFO)

#	set	a	format	which	is	simpler	for	console	use

formatter	=	logging.Formatter('%(name)-12s:	%(levelname)-8s	%(message)s'

#	tell	the	handler	to	use	this	format

console.setFormatter(formatter)

#	add	the	handler	to	the	root	logger

logging.getLogger('').addHandler(console)

#	Now,	we	can	log	to	the	root	logger,	or	any	other	logger.	First	the	root...

logging.info('Jackdaws	love	my	big	sphinx	of	quartz.'

#	Now,	define	a	couple	of	other	loggers	which	might	represent	areas	in	your

#	application:

logger1	=	logging.getLogger('myapp.area1')

logger2	=	logging.getLogger('myapp.area2')

logger1.debug('Quick	zephyrs	blow,	vexing	daft	Jim.'

logger1.info('How	quickly	daft	jumping	zebras	vex.')

logger2.warning('Jail	zesty	vixen	who	grabbed	pay	from	quack.'

logger2.error('The	five	boxing	wizards	jump	quickly.'

When	you	run	this,	on	the	console	you	will	see

root								:	INFO					Jackdaws	love	my	big	sphinx	of

myapp.area1	:	INFO					How	quickly	daft	jumping	zebras

myapp.area2	:	WARNING		Jail	zesty	vixen	who	grabbed	

myapp.area2	:	ERROR				The	five	boxing	wizards	jump	

and	in	the	file	you	will	see	something	like

10-22	22:19	root									INFO					Jackdaws	love	my	big

10-22	22:19	myapp.area1		DEBUG				Quick	zephyrs	blow

10-22	22:19	myapp.area1		INFO					How	quickly	daft	jumping

10-22	22:19	myapp.area2		WARNING		Jail	zesty	vixen	who

10-22	22:19	myapp.area2		ERROR				The	five	boxing	wizards

As	you	can	see,	the	DEBUG	message	only	shows	up	in	the	file.	The
other	messages	are	sent	to	both	destinations.

This	 example	 uses	 console	 and	 file	 handlers,	 but	 you	 can	 use	 any
number	and	combination	of	handlers	you	choose.

Configuration	server	example

Here	is	an	example	of	a	module	using	the	logging	configuration	server:

import	logging

import	logging.config

import	time

import	os

#	read	initial	config	file

logging.config.fileConfig('logging.conf')

#	create	and	start	listener	on	port	9999

t	=	logging.config.listen(9999)

t.start()

logger	=	logging.getLogger('simpleExample')

try:

				#	loop	through	logging	calls	to	see	the	difference

				#	new	configurations	make,	until	Ctrl+C	is	pressed

				while	True:

								logger.debug('debug	message')

								logger.info('info	message')

								logger.warn('warn	message')

								logger.error('error	message')

								logger.critical('critical	message')

								time.sleep(5)

except	KeyboardInterrupt:

				#	cleanup

				logging.config.stopListening()

				t.join()

And	here	 is	 a	 script	 that	 takes	 a	 filename	and	 sends	 that	 file	 to	 the

server,	properly	preceded	with	the	binary-encoded	length,	as	the	new
logging	configuration:

#!/usr/bin/env	python

import	socket,	sys,	struct

with	open(sys.argv[1],	'rb')	as	f:

				data_to_send	=	f.read()

HOST	=	'localhost'

PORT	=	9999

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

print('connecting...')

s.connect((HOST,	PORT))

print('sending	config...')

s.send(struct.pack('>L',	len(data_to_send)))

s.send(data_to_send)

s.close()

print('complete')

Dealing	with	handlers	that	block

Sometimes	 you	 have	 to	 get	 your	 logging	 handlers	 to	 do	 their	 work
without	 blocking	 the	 thread	 you’re	 logging	 from.	 This	 is	 common	 in
Web	applications,	though	of	course	it	also	occurs	in	other	scenarios.

A	 common	 culprit	 which	 demonstrates	 sluggish	 behaviour	 is	 the
SMTPHandler:	sending	emails	can	take	a	long	time,	for	a	number	of
reasons	 outside	 the	 developer’s	 control	 (for	 example,	 a	 poorly
performing	 mail	 or	 network	 infrastructure).	 But	 almost	 any	 network-
based	handler	can	block:	Even	a	SocketHandler	operation	may	do
a	DNS	query	under	the	hood	which	is	too	slow	(and	this	query	can	be
deep	 in	 the	socket	 library	code,	below	 the	Python	 layer,	and	outside
your	control).

One	solution	 is	 to	 use	a	 two-part	 approach.	For	 the	 first	 part,	 attach
only	 a	 QueueHandler	 to	 those	 loggers	 which	 are	 accessed	 from
performance-critical	 threads.	 They	 simply	write	 to	 their	 queue,	which
can	 be	 sized	 to	 a	 large	 enough	 capacity	 or	 initialized	with	 no	 upper
bound	 to	 their	size.	The	write	 to	 the	queue	will	 typically	be	accepted
quickly,	 though	 you	 will	 probably	 need	 to	 catch	 the	 queue.Full
exception	as	a	precaution	in	your	code.	If	you	are	a	library	developer
who	 has	 performance-critical	 threads	 in	 their	 code,	 be	 sure	 to
document	 this	 (together	 with	 a	 suggestion	 to	 attach	 only
QueueHandlers	 to	your	 loggers)	 for	 the	benefit	of	other	developers
who	will	use	your	code.

The	second	part	of	the	solution	is	QueueListener,	which	has	been
designed	as	 the	counterpart	 to	QueueHandler.	A	 QueueListener
is	very	simple:	it’s	passed	a	queue	and	some	handlers,	and	it	fires	up
an	internal	thread	which	listens	to	its	queue	for	LogRecords	sent	from

QueueHandlers	 (or	 any	 other	 source	 of	 LogRecords,	 for	 that
matter).	The	LogRecords	are	removed	from	the	queue	and	passed	to
the	handlers	for	processing.

The	 advantage	 of	 having	 a	 separate	 QueueListener	 class	 is	 that
you	can	use	the	same	instance	to	service	multiple	QueueHandlers.
This	 is	more	 resource-friendly	 than,	say,	having	 threaded	versions	of
the	 existing	 handler	 classes,	 which	 would	 eat	 up	 one	 thread	 per
handler	for	no	particular	benefit.

An	example	of	using	these	two	classes	follows	(imports	omitted):

que	=	queue.Queue(-1)	#	no	limit	on	size

queue_handler	=	QueueHandler(que)

handler	=	logging.StreamHandler()

listener	=	QueueListener(que,	handler)

root	=	logging.getLogger()

root.addHandler(queue_handler)

formatter	=	logging.Formatter('%(threadName)s:	%(message)s'

handler.setFormatter(formatter)

listener.start()

#	The	log	output	will	display	the	thread	which	generated

#	the	event	(the	main	thread)	rather	than	the	internal

#	thread	which	monitors	the	internal	queue.	This	is	what

#	you	want	to	happen.

root.warning('Look	out!')

listener.stop()

which,	when	run,	will	produce:

MainThread:	Look	out!

Sending	and	receiving	logging	events
across	a	network

Let’s	 say	 you	 want	 to	 send	 logging	 events	 across	 a	 network,	 and
handle	 them	 at	 the	 receiving	 end.	 A	 simple	 way	 of	 doing	 this	 is
attaching	 a	 SocketHandler	 instance	 to	 the	 root	 logger	 at	 the
sending	end:

import	logging,	logging.handlers

rootLogger	=	logging.getLogger('')

rootLogger.setLevel(logging.DEBUG)

socketHandler	=	logging.handlers.SocketHandler('localhost'

																				logging.handlers.DEFAULT_TCP_LOGGING_PORT

#	don't	bother	with	a	formatter,	since	a	socket	handler	sends	the	event	as

#	an	unformatted	pickle

rootLogger.addHandler(socketHandler)

#	Now,	we	can	log	to	the	root	logger,	or	any	other	logger.	First	the	root...

logging.info('Jackdaws	love	my	big	sphinx	of	quartz.'

#	Now,	define	a	couple	of	other	loggers	which	might	represent	areas	in	your

#	application:

logger1	=	logging.getLogger('myapp.area1')

logger2	=	logging.getLogger('myapp.area2')

logger1.debug('Quick	zephyrs	blow,	vexing	daft	Jim.'

logger1.info('How	quickly	daft	jumping	zebras	vex.')

logger2.warning('Jail	zesty	vixen	who	grabbed	pay	from	quack.'

logger2.error('The	five	boxing	wizards	jump	quickly.'

At	 the	 receiving	 end,	 you	 can	 set	 up	 a	 receiver	 using	 the

socketserver	module.	Here	is	a	basic	working	example:

import	pickle

import	logging

import	logging.handlers

import	socketserver

import	struct

class	LogRecordStreamHandler(socketserver.StreamRequestHandler

				"""Handler	for	a	streaming	logging	request.

				This	basically	logs	the	record	using	whatever	logging	policy	is

				configured	locally.

				"""

				def	handle(self):

								"""

								Handle	multiple	requests	-	each	expected	to	be	a	4-byte	length,

								followed	by	the	LogRecord	in	pickle	format.	Logs	the	record

								according	to	whatever	policy	is	configured	locally.

								"""

								while	True:

												chunk	=	self.connection.recv(4)

												if	len(chunk)	<	4:

																break

												slen	=	struct.unpack('>L',	chunk)[0]

												chunk	=	self.connection.recv(slen)

												while	len(chunk)	<	slen:

																chunk	=	chunk	+	self.connection.recv

												obj	=	self.unPickle(chunk)

												record	=	logging.makeLogRecord(obj)

												self.handleLogRecord(record)

				def	unPickle(self,	data):

								return	pickle.loads(data)

				def	handleLogRecord(self,	record):

								#	if	a	name	is	specified,	we	use	the	named	logger	rather	than	the	one

								#	implied	by	the	record.

								if	self.server.logname	is	not	None:

												name	=	self.server.logname

								else:

												name	=	record.name

								logger	=	logging.getLogger(name)

								#	N.B.	EVERY	record	gets	logged.	This	is	because	Logger.handle

								#	is	normally	called	AFTER	logger-level	filtering.	If	you	want

								#	to	do	filtering,	do	it	at	the	client	end	to	save	wasting

								#	cycles	and	network	bandwidth!

								logger.handle(record)

class	LogRecordSocketReceiver(socketserver.ThreadingTCPServer

				"""

				Simple	TCP	socket-based	logging	receiver	suitable	for	testing.

				"""

				allow_reuse_address	=	1

				def	__init__(self,	host='localhost',

																	port=logging.handlers.DEFAULT_TCP_LOGGING_PORT

																	handler=LogRecordStreamHandler):

								socketserver.ThreadingTCPServer.__init__(self

								self.abort	=	0

								self.timeout	=	1

								self.logname	=	None

				def	serve_until_stopped(self):

								import	select

								abort	=	0

								while	not	abort:

												rd,	wr,	ex	=	select.select([self.socket.

																																							[],	[],

																																							self.timeout)

												if	rd:

																self.handle_request()

												abort	=	self.abort

def	main():

				logging.basicConfig(

								format='%(relativeCreated)5d	%(name)-15s	%(levelname)-8s	%(message)s'

				tcpserver	=	LogRecordSocketReceiver()

				print('About	to	start	TCP	server...')

				tcpserver.serve_until_stopped()

if	__name__	==	'__main__':

				main()

First	run	the	server,	and	then	the	client.	On	the	client	side,	nothing	is
printed	on	the	console;	on	the	server	side,	you	should	see	something
like:

About	to	start	TCP	server...

			59	root												INFO					Jackdaws	love	my	big	

			59	myapp.area1					DEBUG				Quick	zephyrs	blow,	vexing

			69	myapp.area1					INFO					How	quickly	daft	jumping

			69	myapp.area2					WARNING		Jail	zesty	vixen	who	

			69	myapp.area2					ERROR				The	five	boxing	wizards

Note	 that	 there	 are	 some	 security	 issues	 with	 pickle	 in	 some
scenarios.	If	these	affect	you,	you	can	use	an	alternative	serialization
scheme	by	overriding	 the	makePickle()	method	and	 implementing
your	alternative	there,	as	well	as	adapting	the	above	script	to	use	your
alternative	serialization.

Adding	contextual	information	to	your
logging	output

Sometimes	you	want	 logging	output	 to	contain	contextual	 information
in	addition	to	the	parameters	passed	to	the	logging	call.	For	example,
in	 a	 networked	 application,	 it	 may	 be	 desirable	 to	 log	 client-specific
information	 in	 the	 log	 (e.g.	 remote	client’s	username,	or	 IP	address).
Although	 you	 could	 use	 the	extra	 parameter	 to	 achieve	 this,	 it’s	 not
always	convenient	 to	pass	 the	 information	 in	 this	way.	While	 it	might
be	 tempting	 to	 create	 Logger	 instances	 on	 a	 per-connection	 basis,
this	 is	 not	 a	 good	 idea	 because	 these	 instances	 are	 not	 garbage
collected.	While	this	is	not	a	problem	in	practice,	when	the	number	of
Logger	instances	is	dependent	on	the	level	of	granularity	you	want	to
use	in	logging	an	application,	it	could	be	hard	to	manage	if	the	number
of	Logger	instances	becomes	effectively	unbounded.

Using	LoggerAdapters	to	impart	contextual
information

An	 easy	 way	 in	 which	 you	 can	 pass	 contextual	 information	 to	 be
output	 along	 with	 logging	 event	 information	 is	 to	 use	 the
LoggerAdapter	class.	This	class	is	designed	to	look	like	a	Logger,
so	 that	 you	 can	 call	 debug(),	 info(),	 warning(),	 error(),
exception(),	 critical()	 and	 log().	 These	methods	 have	 the
same	signatures	as	their	counterparts	in	Logger,	so	you	can	use	the
two	types	of	instances	interchangeably.

When	 you	 create	 an	 instance	 of	 LoggerAdapter,	 you	 pass	 it	 a
Logger	instance	and	a	dict-like	object	which	contains	your	contextual
information.	When	you	call	one	of	the	logging	methods	on	an	instance

of	LoggerAdapter,	it	delegates	the	call	to	the	underlying	instance	of
Logger	passed	to	its	constructor,	and	arranges	to	pass	the	contextual
information	 in	 the	 delegated	 call.	 Here’s	 a	 snippet	 from	 the	 code	 of
LoggerAdapter:

def	debug(self,	msg,	*args,	**kwargs):

				"""

				Delegate	a	debug	call	to	the	underlying	logger,	after	adding

				contextual	information	from	this	adapter	instance.

				"""

				msg,	kwargs	=	self.process(msg,	kwargs)

				self.logger.debug(msg,	*args,	**kwargs)

The	process()	method	of	LoggerAdapter	is	where	the	contextual
information	 is	 added	 to	 the	 logging	 output.	 It’s	 passed	 the	message
and	 keyword	 arguments	 of	 the	 logging	 call,	 and	 it	 passes	 back
(potentially)	 modified	 versions	 of	 these	 to	 use	 in	 the	 call	 to	 the
underlying	 logger.	 The	 default	 implementation	 of	 this	method	 leaves
the	message	alone,	but	inserts	an	‘extra’	key	in	the	keyword	argument
whose	 value	 is	 the	 dict-like	 object	 passed	 to	 the	 constructor.	 Of
course,	 if	 you	had	passed	an	 ‘extra’	 keyword	argument	 in	 the	call	 to
the	adapter,	it	will	be	silently	overwritten.

The	advantage	of	using	‘extra’	is	that	the	values	in	the	dict-like	object
are	merged	 into	 the	LogRecord	 instance’s	__dict__,	allowing	you	to
use	 customized	 strings	with	 your	 Formatter	 instances	which	know
about	 the	keys	of	 the	dict-like	object.	 If	you	need	a	different	method,
e.g.	if	you	want	to	prepend	or	append	the	contextual	information	to	the
message	 string,	 you	 just	 need	 to	 subclass	 LoggerAdapter	 and
override	process()	to	do	what	you	need.	Here	is	a	simple	example:

class	CustomAdapter(logging.LoggerAdapter):

				"""

				This	example	adapter	expects	the	passed	in	dict-like	object	to	have	a

				'connid'	key,	whose	value	in	brackets	is	prepended	to	the	log	message.

				"""

				def	process(self,	msg,	kwargs):

								return	'[%s]	%s'	%	(self.extra['connid'],	msg

which	you	can	use	like	this:

logger	=	logging.getLogger(__name__)

adapter	=	CustomAdapter(logger,	{'connid':	some_conn_id

Then	 any	 events	 that	 you	 log	 to	 the	 adapter	 will	 have	 the	 value	 of
some_conn_id	prepended	to	the	log	messages.

Using	objects	other	than	dicts	to	pass	contextual	information

You	 don’t	 need	 to	 pass	 an	 actual	 dict	 to	 a	 LoggerAdapter	 -	 you
could	 pass	 an	 instance	 of	 a	 class	which	 implements	 __getitem__
and	 __iter__	 so	 that	 it	 looks	 like	 a	 dict	 to	 logging.	 This	would	 be
useful	if	you	want	to	generate	values	dynamically	(whereas	the	values
in	a	dict	would	be	constant).

Using	Filters	to	impart	contextual	information

You	 can	 also	 add	 contextual	 information	 to	 log	 output	 using	 a	 user-
defined	 Filter.	 Filter	 instances	 are	 allowed	 to	 modify	 the
LogRecords	 passed	 to	 them,	 including	 adding	 additional	 attributes
which	can	then	be	output	using	a	suitable	format	string,	or	if	needed	a
custom	Formatter.

For	example	in	a	web	application,	the	request	being	processed	(or	at

least,	 the	 interesting	 parts	 of	 it)	 can	 be	 stored	 in	 a	 threadlocal
(threading.local)	variable,	and	then	accessed	from	a	Filter	 to
add,	 say,	 information	 from	 the	 request	 -	 say,	 the	 remote	 IP	 address
and	remote	user’s	username	-	to	the	LogRecord,	using	the	attribute
names	 ‘ip’	 and	 ‘user’	 as	 in	 the	 LoggerAdapter	 example	 above.	 In
that	case,	the	same	format	string	can	be	used	to	get	similar	output	to
that	shown	above.	Here’s	an	example	script:

import	logging

from	random	import	choice

class	ContextFilter(logging.Filter):

				"""

				This	is	a	filter	which	injects	contextual	information	into	the	log.

				Rather	than	use	actual	contextual	information,	we	just	use	random

				data	in	this	demo.

				"""

				USERS	=	['jim',	'fred',	'sheila']

				IPS	=	['123.231.231.123',	'127.0.0.1',	'192.168.0.1'

				def	filter(self,	record):

								record.ip	=	choice(ContextFilter.IPS)

								record.user	=	choice(ContextFilter.USERS)

								return	True

if	__name__	==	'__main__':

			levels	=	(logging.DEBUG,	logging.INFO,	logging.WARNING

			logging.basicConfig(level=logging.DEBUG,

																							format='%(asctime)-15s	%(name)-5s	%(levelname)-8s	IP:	%(ip)-15s	User:	%(user)-8s	%(message)s'

			a1	=	logging.getLogger('a.b.c')

			a2	=	logging.getLogger('d.e.f')

			f	=	ContextFilter()

			a1.addFilter(f)

			a2.addFilter(f)

			a1.debug('A	debug	message')

			a1.info('An	info	message	with	%s',	'some	parameters'

			for	x	in	range(10):

							lvl	=	choice(levels)

							lvlname	=	logging.getLevelName(lvl)

							a2.log(lvl,	'A	message	at	%s	level	with	%d	%s'

which,	when	run,	produces	something	like:

2010-09-06	22:38:15,292	a.b.c	DEBUG				IP:	123.231.231.123

2010-09-06	22:38:15,300	a.b.c	INFO					IP:	192.168.0.1

2010-09-06	22:38:15,300	d.e.f	CRITICAL	IP:	127.0.0.1

2010-09-06	22:38:15,300	d.e.f	ERROR				IP:	127.0.0.1

2010-09-06	22:38:15,300	d.e.f	DEBUG				IP:	127.0.0.1

2010-09-06	22:38:15,300	d.e.f	ERROR				IP:	123.231.231.123

2010-09-06	22:38:15,300	d.e.f	CRITICAL	IP:	192.168.0.1

2010-09-06	22:38:15,300	d.e.f	CRITICAL	IP:	127.0.0.1

2010-09-06	22:38:15,300	d.e.f	DEBUG				IP:	192.168.0.1

2010-09-06	22:38:15,301	d.e.f	ERROR				IP:	127.0.0.1

2010-09-06	22:38:15,301	d.e.f	DEBUG				IP:	123.231.231.123

2010-09-06	22:38:15,301	d.e.f	INFO					IP:	123.231.231.123

Logging	to	a	single	file	from	multiple
processes

Although	 logging	 is	 thread-safe,	 and	 logging	 to	 a	 single	 file	 from
multiple	 threads	 in	a	single	process	 is	 supported,	 logging	 to	a	single
file	 from	multiple	 processes	 is	 not	 supported,	 because	 there	 is	 no
standard	 way	 to	 serialize	 access	 to	 a	 single	 file	 across	 multiple
processes	 in	Python.	 If	 you	need	 to	 log	 to	a	single	 file	 from	multiple
processes,	one	way	of	doing	this	is	to	have	all	the	processes	log	to	a
SocketHandler,	and	have	a	separate	process	which	 implements	a
socket	 server	 which	 reads	 from	 the	 socket	 and	 logs	 to	 file.	 (If	 you
prefer,	you	can	dedicate	one	thread	in	one	of	the	existing	processes	to
perform	this	 function.)	This	section	documents	 this	approach	 in	more
detail	and	includes	a	working	socket	receiver	which	can	be	used	as	a
starting	point	for	you	to	adapt	in	your	own	applications.

If	 you	 are	 using	 a	 recent	 version	 of	 Python	 which	 includes	 the
multiprocessing	module,	you	could	write	your	own	handler	which
uses	 the	Lock	 class	 from	 this	module	 to	 serialize	 access	 to	 the	 file
from	your	processes.	The	existing	FileHandler	and	subclasses	do
not	make	use	of	multiprocessing	at	present,	though	they	may	do
so	in	the	future.	Note	that	at	present,	the	multiprocessing	module
does	 not	 provide	 working	 lock	 functionality	 on	 all	 platforms	 (see
http://bugs.python.org/issue3770).

Alternatively,	you	can	use	a	Queue	and	a	QueueHandler	to	send	all
logging	 events	 to	 one	 of	 the	 processes	 in	 your	 multi-process
application.	The	 following	example	 script	 demonstrates	how	you	 can
do	 this;	 in	 the	example	a	separate	 listener	process	 listens	 for	events
sent	 by	other	processes	and	 logs	 them	according	 to	 its	 own	 logging
configuration.	 Although	 the	 example	 only	 demonstrates	 one	 way	 of

http://bugs.python.org/issue3770

doing	 it	 (for	 example,	 you	may	 want	 to	 use	 a	 listener	 thread	 rather
than	 a	 separate	 listener	 process	 –	 the	 implementation	 would	 be
analogous)	it	does	allow	for	completely	different	logging	configurations
for	the	listener	and	the	other	processes	in	your	application,	and	can	be
used	as	the	basis	for	code	meeting	your	own	specific	requirements:

#	You'll	need	these	imports	in	your	own	code

import	logging

import	logging.handlers

import	multiprocessing

#	Next	two	import	lines	for	this	demo	only

from	random	import	choice,	random

import	time

#

#	Because	you'll	want	to	define	the	logging	configurations	for	listener	and	workers,	the

#	listener	and	worker	process	functions	take	a	configurer	parameter	which	is	a	callable

#	for	configuring	logging	for	that	process.	These	functions	are	also	passed	the	queue,

#	which	they	use	for	communication.

#

#	In	practice,	you	can	configure	the	listener	however	you	want,	but	note	that	in	this

#	simple	example,	the	listener	does	not	apply	level	or	filter	logic	to	received	records.

#	In	practice,	you	would	probably	want	to	do	this	logic	in	the	worker	processes,	to	avoid

#	sending	events	which	would	be	filtered	out	between	processes.

#

#	The	size	of	the	rotated	files	is	made	small	so	you	can	see	the	results	easily.

def	listener_configurer():

				root	=	logging.getLogger()

				h	=	logging.handlers.RotatingFileHandler('mptest.log'

				f	=	logging.Formatter('%(asctime)s	%(processName)-10s	%(name)s	%(levelname)-8s	%(message)s'

				h.setFormatter(f)

				root.addHandler(h)

#	This	is	the	listener	process	top-level	loop:	wait	for	logging	events

#	(LogRecords)on	the	queue	and	handle	them,	quit	when	you	get	a	None	for	a

#	LogRecord.

def	listener_process(queue,	configurer):

				configurer()

				while	True:

								try:

												record	=	queue.get()

												if	record	is	None:	#	We	send	this	as	a	sentinel	to	tell	the	listener	to	quit.

																break

												logger	=	logging.getLogger(record.name)

												logger.handle(record)	#	No	level	or	filter	logic	applied	-	just	do	it!

								except	Exception:

												import	sys,	traceback

												print('Whoops!	Problem:',	file=sys.stderr

												traceback.print_exc(file=sys.stderr)

#	Arrays	used	for	random	selections	in	this	demo

LEVELS	=	[logging.DEBUG,	logging.INFO,	logging.WARNING

										logging.ERROR,	logging.CRITICAL]

LOGGERS	=	['a.b.c',	'd.e.f']

MESSAGES	=	[

				'Random	message	#1',

				'Random	message	#2',

				'Random	message	#3',

]

#	The	worker	configuration	is	done	at	the	start	of	the	worker	process	run.

#	Note	that	on	Windows	you	can't	rely	on	fork	semantics,	so	each	process

#	will	run	the	logging	configuration	code	when	it	starts.

def	worker_configurer(queue):

				h	=	logging.handlers.QueueHandler(queue)	#	Just	the	one	handler	needed

				root	=	logging.getLogger()

				root.addHandler(h)

				root.setLevel(logging.DEBUG)	#	send	all	messages,	for	demo;	no	other	level	or	filter	logic	applied.

#	This	is	the	worker	process	top-level	loop,	which	just	logs	ten	events	with

#	random	intervening	delays	before	terminating.

#	The	print	messages	are	just	so	you	know	it's	doing	something!

def	worker_process(queue,	configurer):

				configurer(queue)

				name	=	multiprocessing.current_process().name

				print('Worker	started:	%s'	%	name)

				for	i	in	range(10):

								time.sleep(random())

								logger	=	logging.getLogger(choice(LOGGERS))

								level	=	choice(LEVELS)

								message	=	choice(MESSAGES)

								logger.log(level,	message)

				print('Worker	finished:	%s'	%	name)

#	Here's	where	the	demo	gets	orchestrated.	Create	the	queue,	create	and	start

#	the	listener,	create	ten	workers	and	start	them,	wait	for	them	to	finish,

#	then	send	a	None	to	the	queue	to	tell	the	listener	to	finish.

def	main():

				queue	=	multiprocessing.Queue(-1)

				listener	=	multiprocessing.Process(target=listener_process

																																							args=(queue,	

				listener.start()

				workers	=	[]

				for	i	in	range(10):

								worker	=	multiprocessing.Process(target=worker_process

																																							args=(queue,	

								workers.append(worker)

								worker.start()

				for	w	in	workers:

								w.join()

				queue.put_nowait(None)

				listener.join()

if	__name__	==	'__main__':

				main()

A	variant	of	the	above	script	keeps	the	logging	in	the	main	process,	in
a	separate	thread:

import	logging

import	logging.config

import	logging.handlers

from	multiprocessing	import	Process,	Queue

import	random

import	threading

import	time

def	logger_thread(q):

				while	True:

								record	=	q.get()

								if	record	is	None:

												break

								logger	=	logging.getLogger(record.name)

								logger.handle(record)

def	worker_process(q):

				qh	=	logging.handlers.QueueHandler(q)

				root	=	logging.getLogger()

				root.setLevel(logging.DEBUG)

				root.addHandler(qh)

				levels	=	[logging.DEBUG,	logging.INFO,	logging.WARNING

														logging.CRITICAL]

				loggers	=	['foo',	'foo.bar',	'foo.bar.baz',

															'spam',	'spam.ham',	'spam.ham.eggs']

				for	i	in	range(100):

								lvl	=	random.choice(levels)

								logger	=	logging.getLogger(random.choice(loggers

								logger.log(lvl,	'Message	no.	%d',	i)

if	__name__	==	'__main__':

				q	=	Queue()

				d	=	{

								'version':	1,

								'formatters':	{

												'detailed':	{

																'class':	'logging.Formatter',

																'format':	'%(asctime)s	%(name)-15s	%(levelname)-8s	%(processName)-10s	%(message)s'

												}

								},

								'handlers':	{

												'console':	{

																'class':	'logging.StreamHandler',

																'level':	'INFO',

												},

												'file':	{

																'class':	'logging.FileHandler',

																'filename':	'mplog.log',

																'mode':	'w',

																'formatter':	'detailed',

												},

												'foofile':	{

																'class':	'logging.FileHandler',

																'filename':	'mplog-foo.log',

																'mode':	'w',

																'formatter':	'detailed',

												},

												'errors':	{

																'class':	'logging.FileHandler',

																'filename':	'mplog-errors.log',

																'mode':	'w',

																'level':	'ERROR',

																'formatter':	'detailed',

												},

								},

								'loggers':	{

												'foo':	{

																'handlers':	['foofile']

												}

								},

								'root':	{

												'level':	'DEBUG',

												'handlers':	['console',	'file',	'errors'

								},

				}

				workers	=	[]

				for	i	in	range(5):

								wp	=	Process(target=worker_process,	name='worker	%d'

								workers.append(wp)

								wp.start()

				logging.config.dictConfig(d)

				lp	=	threading.Thread(target=logger_thread,	args

				lp.start()

				#	At	this	point,	the	main	process	could	do	some	useful	work	of	its	own

				#	Once	it's	done	that,	it	can	wait	for	the	workers	to	terminate...

				for	wp	in	workers:

								wp.join()

				#	And	now	tell	the	logging	thread	to	finish	up,	too

				q.put(None)

				lp.join()

This	variant	shows	how	you	can	e.g.	apply	configuration	for	particular
loggers	 -	 e.g.	 the	 foo	 logger	 has	 a	 special	 handler	which	 stores	 all
events	 in	 the	foo	subsystem	 in	a	 file	mplog-foo.log.	This	will	be
used	by	the	logging	machinery	 in	the	main	process	(even	though	the
logging	 events	 are	 generated	 in	 the	 worker	 processes)	 to	 direct	 the
messages	to	the	appropriate	destinations.

Using	file	rotation

Sometimes	you	want	to	let	a	log	file	grow	to	a	certain	size,	then	open	a
new	 file	 and	 log	 to	 that.	You	may	want	 to	 keep	 a	 certain	 number	 of
these	 files,	 and	when	 that	many	 files	 have	 been	 created,	 rotate	 the
files	so	 that	 the	number	of	 files	and	 the	size	of	 the	 files	both	 remain
bounded.	 For	 this	 usage	 pattern,	 the	 logging	 package	 provides	 a
RotatingFileHandler:

import	glob

import	logging

import	logging.handlers

LOG_FILENAME	=	'logging_rotatingfile_example.out'

#	Set	up	a	specific	logger	with	our	desired	output	level

my_logger	=	logging.getLogger('MyLogger')

my_logger.setLevel(logging.DEBUG)

#	Add	the	log	message	handler	to	the	logger

handler	=	logging.handlers.RotatingFileHandler(

														LOG_FILENAME,	maxBytes=20,	backupCount

my_logger.addHandler(handler)

#	Log	some	messages

for	i	in	range(20):

				my_logger.debug('i	=	%d'	%	i)

#	See	what	files	are	created

logfiles	=	glob.glob('%s*'	%	LOG_FILENAME)

for	filename	in	logfiles:

				print(filename)

The	result	should	be	6	separate	files,	each	with	part	of	the	log	history
for	the	application:

logging_rotatingfile_example.out

logging_rotatingfile_example.out.1

logging_rotatingfile_example.out.2

logging_rotatingfile_example.out.3

logging_rotatingfile_example.out.4

logging_rotatingfile_example.out.5

The	 most	 current	 file	 is	 always
logging_rotatingfile_example.out,	and	each	 time	 it	 reaches
the	 size	 limit	 it	 is	 renamed	 with	 the	 suffix	 .1.	 Each	 of	 the	 existing
backup	files	is	renamed	to	increment	the	suffix	(.1	becomes	.2,	etc.)
and	the	.6	file	is	erased.

Obviously	 this	 example	 sets	 the	 log	 length	 much	 too	 small	 as	 an
extreme	example.	You	would	want	to	set	maxBytes	 to	an	appropriate
value.

Use	of	alternative	formatting	styles

When	logging	was	added	to	the	Python	standard	library,	the	only	way
of	 formatting	 messages	 with	 variable	 content	 was	 to	 use	 the	 %-
formatting	method.	Since	then,	Python	has	gained	two	new	formatting
approaches:	 string.Template	 (added	 in	 Python	 2.4)	 and
str.format()	(added	in	Python	2.6).

Logging	(as	of	3.2)	provides	improved	support	for	these	two	additional
formatting	 styles.	 The	 Formatter	 class	 been	 enhanced	 to	 take	 an
additional,	optional	keyword	parameter	named	style.	This	defaults	to
'%',	but	other	possible	values	are	'{'	and	'$',	which	correspond	to
the	other	two	formatting	styles.	Backwards	compatibility	is	maintained
by	 default	 (as	 you	would	 expect),	 but	 by	 explicitly	 specifying	 a	 style
parameter,	you	get	the	ability	to	specify	format	strings	which	work	with
str.format()	or	string.Template.	Here’s	 an	 example	 console
session	to	show	the	possibilities:

>>>	import	logging

>>>	root	=	logging.getLogger()

>>>	root.setLevel(logging.DEBUG)

>>>	handler	=	logging.StreamHandler()

>>>	bf	=	logging.Formatter('{asctime}	{name}	{levelname:8s}	{message}'

...																								style='{')

>>>	handler.setFormatter(bf)

>>>	root.addHandler(handler)

>>>	logger	=	logging.getLogger('foo.bar')

>>>	logger.debug('This	is	a	DEBUG	message')

2010-10-28	15:11:55,341	foo.bar	DEBUG				This	is	a	DEBUG	message

>>>	logger.critical('This	is	a	CRITICAL	message')

2010-10-28	15:12:11,526	foo.bar	CRITICAL	This	is	a	CRITICAL	message

>>>	df	=	logging.Formatter('$asctime	$name	${levelname}	$message'

...																								style='$')

>>>	handler.setFormatter(df)

>>>	logger.debug('This	is	a	DEBUG	message')

2010-10-28	15:13:06,924	foo.bar	DEBUG	This	is	a	DEBUG	message

>>>	logger.critical('This	is	a	CRITICAL	message')

2010-10-28	15:13:11,494	foo.bar	CRITICAL	This	is	a	CRITICAL	message

>>>

Note	that	the	formatting	of	logging	messages	for	final	output	to	logs	is
completely	 independent	 of	 how	 an	 individual	 logging	 message	 is
constructed.	That	can	still	use	%-formatting,	as	shown	here:

>>>	logger.error('This	is	an%s	%s	%s',	'other,',	'ERROR,'

2010-10-28	15:19:29,833	foo.bar	ERROR	This	is	another,	ERROR,	message

>>>

Logging	 calls	 (logger.debug(),	 logger.info()	 etc.)	 only	 take
positional	 parameters	 for	 the	 actual	 logging	 message	 itself,	 with
keyword	 parameters	 used	 only	 for	 determining	 options	 for	 how	 to
handle	the	actual	logging	call	(e.g.	the	exc_info	keyword	parameter
to	indicate	that	traceback	information	should	be	logged,	or	the	extra
keyword	parameter	 to	 indicate	additional	contextual	 information	to	be
added	 to	 the	 log).	 So	 you	 cannot	 directly	 make	 logging	 calls	 using
str.format()	or	string.Template	syntax,	because	internally	the
logging	package	uses	%-formatting	to	merge	the	format	string	and	the
variable	 arguments.	 There	 would	 no	 changing	 this	 while	 preserving
backward	 compatibility,	 since	 all	 logging	 calls	which	 are	 out	 there	 in
existing	code	will	be	using	%-format	strings.

There	 is,	 however,	 a	 way	 that	 you	 can	 use	 {}-	 and	 $-	 formatting	 to
construct	your	individual	log	messages.	Recall	that	for	a	message	you
can	use	an	arbitrary	object	as	a	message	 format	string,	and	 that	 the
logging	package	will	call	str()	on	that	object	to	get	the	actual	format

string.	Consider	the	following	two	classes:

class	BraceMessage:

				def	__init__(self,	fmt,	*args,	**kwargs):

								self.fmt	=	fmt

								self.args	=	args

								self.kwargs	=	kwargs

				def	__str__(self):

								return	self.fmt.format(*self.args,	**self.kwargs

class	DollarMessage:

				def	__init__(self,	fmt,	**kwargs):

								self.fmt	=	fmt

								self.kwargs	=	kwargs

				def	__str__(self):

								from	string	import	Template

								return	Template(self.fmt).substitute(**self.

Either	of	these	can	be	used	in	place	of	a	format	string,	to	allow	{}-	or	$-
formatting	to	be	used	to	build	the	actual	“message”	part	which	appears
in	the	formatted	 log	output	 in	place	of	“%(message)s”	or	“{message}”
or	“$message”.	It’s	a	little	unwieldy	to	use	the	class	names	whenever
you	want	to	 log	something,	but	 it’s	quite	palatable	 if	you	use	an	alias
such	as	__	(double	underscore	–	not	to	be	confused	with	_,	the	single
underscore	used	as	a	synonym/alias	for	gettext.gettext()	or	its
brethren).

The	 above	 classes	 are	 not	 included	 in	 Python,	 though	 they’re	 easy
enough	to	copy	and	paste	 into	your	own	code.	They	can	be	used	as
follows	 (assuming	 that	 they’re	 declared	 in	 a	 module	 called
wherever):

>>>	from	wherever	import	BraceMessage	as	__

>>>	print(__('Message	with	{0}	{name}',	2,	name='placeholders'

Message	with	2	placeholders

>>>	class	Point:	pass

...

>>>	p	=	Point()

>>>	p.x	=	0.5

>>>	p.y	=	0.5

>>>	print(__('Message	with	coordinates:	({point.x:.2f},	{point.y:.2f})'

...							point=p))

Message	with	coordinates:	(0.50,	0.50)

>>>	from	wherever	import	DollarMessage	as	__

>>>	print(__('Message	with	$num	$what',	num=2,	what=

Message	with	2	placeholders

>>>

While	the	above	examples	use	print()	 to	show	how	the	formatting
works,	 you	 would	 of	 course	 use	 logger.debug()	 or	 similar	 to
actually	log	using	this	approach.

One	 thing	 to	note	 is	 that	 you	pay	no	significant	performance	penalty
with	this	approach:	the	actual	formatting	happens	not	when	you	make
the	 logging	 call,	 but	 when	 (and	 if)	 the	 logged	 message	 is	 actually
about	to	be	output	to	a	 log	by	a	handler.	So	the	only	slightly	unusual
thing	which	might	 trip	 you	 up	 is	 that	 the	 parentheses	 go	 around	 the
format	 string	 and	 the	 arguments,	 not	 just	 the	 format	 string.	 That’s
because	 the	__	notation	 is	 just	syntax	sugar	 for	a	constructor	call	 to
one	of	the	XXXMessage	classes.

If	 you	 prefer,	 you	 can	 use	 a	 LoggerAdapter	 to	 achieve	 a	 similar
effect	to	the	above,	as	in	the	following	example:

import	logging

class	Message(object):

				def	__init__(self,	fmt,	args):

								self.fmt	=	fmt

								self.args	=	args

				def	__str__(self):

								return	self.fmt.format(*self.args)

class	StyleAdapter(logging.LoggerAdapter):

				def	__init__(self,	logger,	extra=None):

								super(StyleAdapter,	self).__init__(logger,	extra

				def	log(self,	level,	msg,	*args,	**kwargs):

								if	self.isEnabledFor(level):

												msg,	kwargs	=	self.process(msg,	kwargs)

												self.logger._log(level,	Message(msg,	args

logger	=	StyleAdapter(logging.getLogger(__name__))

def	main():

				logger.debug('Hello,	{}',	'world!')

if	__name__	==	'__main__':

				logging.basicConfig(level=logging.DEBUG)

				main()

The	above	script	should	log	the	message	Hello,	world!	when	run
with	Python	3.2	or	later.

Customizing	LogRecord

Every	logging	event	 is	represented	by	a	LogRecord	 instance.	When
an	 event	 is	 logged	 and	 not	 filtered	 out	 by	 a	 logger’s	 level,	 a
LogRecord	 is	 created,	 populated	 with	 information	 about	 the	 event
and	then	passed	to	the	handlers	for	that	logger	(and	its	ancestors,	up
to	and	including	the	logger	where	further	propagation	up	the	hierarchy
is	disabled).	Before	Python	3.2,	there	were	only	two	places	where	this
creation	was	done:

Logger.makeRecord(),	which	 is	 called	 in	 the	normal	 process
of	 logging	an	event.	 This	 invoked	 LogRecord	 directly	 to	 create
an	instance.
makeLogRecord(),	which	 is	 called	with	a	dictionary	containing
attributes	to	be	added	to	the	LogRecord.	This	is	typically	invoked
when	 a	 suitable	 dictionary	 has	 been	 received	 over	 the	 network
(e.g.	 in	pickle	 form	via	a	SocketHandler,	or	 in	JSON	 form	via
an	HTTPHandler).

This	has	usually	meant	that	 if	you	need	to	do	anything	special	with	a
LogRecord,	you’ve	had	to	do	one	of	the	following.

Create	 your	 own	 Logger	 subclass,	 which	 overrides
Logger.makeRecord(),	and	set	 it	using	setLoggerClass()
before	any	loggers	that	you	care	about	are	instantiated.
Add	a	Filter	to	a	logger	or	handler,	which	does	the	necessary
special	 manipulation	 you	 need	 when	 its	 filter()	 method	 is
called.

The	 first	 approach	 would	 be	 a	 little	 unwieldy	 in	 the	 scenario	 where
(say)	 several	 different	 libraries	 wanted	 to	 do	 different	 things.	 Each
would	attempt	to	set	its	own	Logger	subclass,	and	the	one	which	did

this	last	would	win.

The	second	approach	works	reasonably	well	for	many	cases,	but	does
not	 allow	 you	 to	 e.g.	 use	 a	 specialized	 subclass	 of	 LogRecord.
Library	 developers	 can	 set	 a	 suitable	 filter	 on	 their	 loggers,	 but	 they
would	have	to	remember	to	do	this	every	time	they	introduced	a	new
logger	 (which	 they	 would	 do	 simply	 by	 adding	 new	 packages	 or
modules	and	doing

logger	=	logging.getLogger(__name__)

at	 module	 level).	 It’s	 probably	 one	 too	 many	 things	 to	 think	 about.
Developers	 could	 also	 add	 the	 filter	 to	 a	 NullHandler	 attached	 to
their	 top-level	 logger,	 but	 this	would	 not	 be	 invoked	 if	 an	 application
developer	attached	a	handler	to	a	lower-level	library	logger	–	so	output
from	 that	 handler	 would	 not	 reflect	 the	 intentions	 of	 the	 library
developer.

In	 Python	 3.2	 and	 later,	 LogRecord	 creation	 is	 done	 through	 a
factory,	which	you	can	specify.	The	 factory	 is	 just	a	callable	you	can
set	 with	 setLogRecordFactory(),	 and	 interrogate	 with
getLogRecordFactory().	 The	 factory	 is	 invoked	 with	 the	 same
signature	 as	 the	 LogRecord	 constructor,	 as	 LogRecord	 is	 the
default	setting	for	the	factory.

This	 approach	 allows	 a	 custom	 factory	 to	 control	 all	 aspects	 of
LogRecord	creation.	For	example,	you	could	return	a	subclass,	or	just
add	 some	 additional	 attributes	 to	 the	 record	 once	 created,	 using	 a
pattern	similar	to	this:

old_factory	=	logging.getLogRecordFactory()

def	record_factory(*args,	**kwargs):

				record	=	old_factory(*args,	**kwargs)

				record.custom_attribute	=	0xdecafbad

				return	record

logging.setLogRecordFactory(record_factory)

This	pattern	allows	different	libraries	to	chain	factories	together,	and	as
long	as	 they	don’t	overwrite	each	other’s	attributes	or	unintentionally
overwrite	 the	 attributes	 provided	 as	 standard,	 there	 should	 be	 no
surprises.	However,	 it	 should	 be	 borne	 in	mind	 that	 each	 link	 in	 the
chain	 adds	 run-time	 overhead	 to	 all	 logging	 operations,	 and	 the
technique	should	only	be	used	when	 the	use	of	a	Filter	 does	 not
provide	the	desired	result.

Subclassing	QueueHandler	-	a	ZeroMQ
example

You	can	use	a	QueueHandler	 subclass	 to	send	messages	 to	other
kinds	 of	 queues,	 for	 example	 a	 ZeroMQ	 ‘publish’	 socket.	 In	 the
example	 below,the	 socket	 is	 created	 separately	 and	 passed	 to	 the
handler	(as	its	‘queue’):

import	zmq	#	using	pyzmq,	the	Python	binding	for	ZeroMQ

import	json	#	for	serializing	records	portably

ctx	=	zmq.Context()

sock	=	zmq.Socket(ctx,	zmq.PUB)	#	or	zmq.PUSH,	or	other	suitable	value

sock.bind('tcp://*:5556')	#	or	wherever

class	ZeroMQSocketHandler(QueueHandler):

				def	enqueue(self,	record):

								data	=	json.dumps(record.__dict__)

								self.queue.send(data)

handler	=	ZeroMQSocketHandler(sock)

Of	course	there	are	other	ways	of	organizing	this,	for	example	passing
in	the	data	needed	by	the	handler	to	create	the	socket:

class	ZeroMQSocketHandler(QueueHandler):

				def	__init__(self,	uri,	socktype=zmq.PUB,	ctx=None

								self.ctx	=	ctx	or	zmq.Context()

								socket	=	zmq.Socket(self.ctx,	socktype)

								socket.bind(uri)

								QueueHandler.__init__(self,	socket)

				def	enqueue(self,	record):

								data	=	json.dumps(record.__dict__)

								self.queue.send(data)

				def	close(self):

								self.queue.close()

Subclassing	QueueListener	-	a	ZeroMQ
example

You	can	also	subclass	QueueListener	 to	get	messages	from	other
kinds	of	queues,	for	example	a	ZeroMQ	‘subscribe’	socket.	Here’s	an
example:

class	ZeroMQSocketListener(QueueListener):

				def	__init__(self,	uri,	*handlers,	**kwargs):

								self.ctx	=	kwargs.get('ctx')	or	zmq.Context()

								socket	=	zmq.Socket(self.ctx,	zmq.SUB)

								socket.setsockopt(zmq.SUBSCRIBE,	'')	#	subscribe	to	everything

								socket.connect(uri)

				def	dequeue(self):

								msg	=	self.queue.recv()

								return	logging.makeLogRecord(json.loads(msg))

See	also:

Module	logging
API	reference	for	the	logging	module.

Module	logging.config
Configuration	API	for	the	logging	module.

Module	logging.handlers
Useful	handlers	included	with	the	logging	module.

A	basic	logging	tutorial

A	more	advanced	logging	tutorial

An	example	dictionary-based	configuration

Below	 is	an	example	of	a	 logging	configuration	dictionary	 -	 it’s	 taken
from	 the	 documentation	 on	 the	 Django	 project.	 This	 dictionary	 is
passed	to	dictConfig()	to	put	the	configuration	into	effect:

LOGGING	=	{

				'version':	1,

				'disable_existing_loggers':	True,

				'formatters':	{

								'verbose':	{

												'format':	'%(levelname)s	%(asctime)s	%(module)s	%(process)d	%(thread)d	%(message)s'

								},

								'simple':	{

												'format':	'%(levelname)s	%(message)s'

								},

				},

				'filters':	{

								'special':	{

												'()':	'project.logging.SpecialFilter',

												'foo':	'bar',

								}

				},

				'handlers':	{

								'null':	{

												'level':'DEBUG',

												'class':'django.utils.log.NullHandler',

								},

								'console':{

												'level':'DEBUG',

												'class':'logging.StreamHandler',

												'formatter':	'simple'

								},

								'mail_admins':	{

												'level':	'ERROR',

https://docs.djangoproject.com/en/1.3/topics/logging/#configuring-logging

												'class':	'django.utils.log.AdminEmailHandler'

												'filters':	['special']

								}

				},

				'loggers':	{

								'django':	{

												'handlers':['null'],

												'propagate':	True,

												'level':'INFO',

								},

								'django.request':	{

												'handlers':	['mail_admins'],

												'level':	'ERROR',

												'propagate':	False,

								},

								'myproject.custom':	{

												'handlers':	['console',	'mail_admins'],

												'level':	'INFO',

												'filters':	['special']

								}

				}

}

For	 more	 information	 about	 this	 configuration,	 you	 can	 see	 the
relevant	section	of	the	Django	documentation.

https://docs.djangoproject.com/en/1.3/topics/logging/#configuring-logging

Using	a	rotator	and	namer	to	customize
log	rotation	processing

An	example	of	how	you	can	define	a	namer	and	rotator	is	given	in	the
following	snippet,	which	shows	zlib-based	compression	of	the	log	file:

def	namer(name):

				return	name	+	".gz"

def	rotator(source,	dest):

				with	open(source,	"rb")	as	sf:

								data	=	sf.read()

								compressed	=	zlib.compress(data,	9)

								with	open(dest,	"wb")	as	df:

												df.write(compressed)

				os.remove(source)

rh	=	logging.handlers.RotatingFileHandler(...)

rh.rotator	=	rotator

rh.namer	=	namer

These	are	not	“true”	.gz	files,	as	they	are	bare	compressed	data,	with
no	“container”	such	as	you’d	find	in	an	actual	gzip	file.	This	snippet	is
just	for	illustration	purposes.

A	more	elaborate	multiprocessing	example

The	 following	working	example	shows	how	 logging	can	be	used	with
multiprocessing	using	configuration	 files.	The	configurations	are	 fairly
simple,	 but	 serve	 to	 illustrate	 how	 more	 complex	 ones	 could	 be
implemented	in	a	real	multiprocessing	scenario.

In	the	example,	the	main	process	spawns	a	listener	process	and	some
worker	 processes.	 Each	 of	 the	 main	 process,	 the	 listener	 and	 the
workers	have	three	separate	configurations	(the	workers	all	share	the
same	configuration).	We	can	see	logging	in	the	main	process,	how	the
workers	 log	 to	 a	 QueueHandler	 and	 how	 the	 listener	 implements	 a
QueueListener	 and	 a	 more	 complex	 logging	 configuration,	 and
arranges	 to	 dispatch	 events	 received	 via	 the	 queue	 to	 the	 handlers
specified	in	the	configuration.	Note	that	these	configurations	are	purely
illustrative,	but	you	should	be	able	to	adapt	this	example	to	your	own
scenario.

Here’s	the	script	-	the	docstrings	and	the	comments	hopefully	explain
how	it	works:

import	logging

import	logging.config

import	logging.handlers

from	multiprocessing	import	Process,	Queue,	Event,	current_process

import	os

import	random

import	time

class	MyHandler:

				"""

				A	simple	handler	for	logging	events.	It	runs	in	the	listener	process	and

				dispatches	events	to	loggers	based	on	the	name	in	the	received	record,

				which	then	get	dispatched,	by	the	logging	system,	to	the	handlers

				configured	for	those	loggers.

				"""

				def	handle(self,	record):

								logger	=	logging.getLogger(record.name)

								#	The	process	name	is	transformed	just	to	show	that	it's	the	listener

								#	doing	the	logging	to	files	and	console

								record.processName	=	'%s	(for	%s)'	%	(current_process

								logger.handle(record)

def	listener_process(q,	stop_event,	config):

				"""

				This	could	be	done	in	the	main	process,	but	is	just	done	in	a	separate

				process	for	illustrative	purposes.

				This	initialises	logging	according	to	the	specified	configuration,

				starts	the	listener	and	waits	for	the	main	process	to	signal	completion

				via	the	event.	The	listener	is	then	stopped,	and	the	process	exits.

				"""

				logging.config.dictConfig(config)

				listener	=	logging.handlers.QueueListener(q,	MyHandler

				listener.start()

				if	os.name	==	'posix':

								#	On	POSIX,	the	setup	logger	will	have	been	configured	in	the

								#	parent	process,	but	should	have	been	disabled	following	the

								#	dictConfig	call.

								#	On	Windows,	since	fork	isn't	used,	the	setup	logger	won't

								#	exist	in	the	child,	so	it	would	be	created	and	the	message

								#	would	appear	-	hence	the	"if	posix"	clause.

								logger	=	logging.getLogger('setup')

								logger.critical('Should	not	appear,	because	of	disabled	logger	...'

				stop_event.wait()

				listener.stop()

def	worker_process(config):

				"""

				A	number	of	these	are	spawned	for	the	purpose	of	illustration.	In

				practice,	they	could	be	a	heterogenous	bunch	of	processes	rather	than

				ones	which	are	identical	to	each	other.

				This	initialises	logging	according	to	the	specified	configuration,

				and	logs	a	hundred	messages	with	random	levels	to	randomly	selected

				loggers.

				A	small	sleep	is	added	to	allow	other	processes	a	chance	to	run.	This

				is	not	strictly	needed,	but	it	mixes	the	output	from	the	different

				processes	a	bit	more	than	if	it's	left	out.

				"""

				logging.config.dictConfig(config)

				levels	=	[logging.DEBUG,	logging.INFO,	logging.WARNING

														logging.CRITICAL]

				loggers	=	['foo',	'foo.bar',	'foo.bar.baz',

															'spam',	'spam.ham',	'spam.ham.eggs']

				if	os.name	==	'posix':

								#	On	POSIX,	the	setup	logger	will	have	been	configured	in	the

								#	parent	process,	but	should	have	been	disabled	following	the

								#	dictConfig	call.

								#	On	Windows,	since	fork	isn't	used,	the	setup	logger	won't

								#	exist	in	the	child,	so	it	would	be	created	and	the	message

								#	would	appear	-	hence	the	"if	posix"	clause.

								logger	=	logging.getLogger('setup')

								logger.critical('Should	not	appear,	because	of	disabled	logger	...'

				for	i	in	range(100):

								lvl	=	random.choice(levels)

								logger	=	logging.getLogger(random.choice(loggers

								logger.log(lvl,	'Message	no.	%d',	i)

								time.sleep(0.01)

def	main():

				q	=	Queue()

				#	The	main	process	gets	a	simple	configuration	which	prints	to	the	console.

				config_initial	=	{

								'version':	1,

								'formatters':	{

												'detailed':	{

																'class':	'logging.Formatter',

																'format':	'%(asctime)s	%(name)-15s	%(levelname)-8s	%(processName)-10s	%(message)s'

												}

								},

								'handlers':	{

												'console':	{

																'class':	'logging.StreamHandler',

																'level':	'INFO',

												},

								},

								'root':	{

												'level':	'DEBUG',

												'handlers':	['console']

								},

				}

				#	The	worker	process	configuration	is	just	a	QueueHandler	attached	to	the

				#	root	logger,	which	allows	all	messages	to	be	sent	to	the	queue.

				#	We	disable	existing	loggers	to	disable	the	"setup"	logger	used	in	the

				#	parent	process.	This	is	needed	on	POSIX	because	the	logger	will

				#	be	there	in	the	child	following	a	fork().

				config_worker	=	{

								'version':	1,

								'disable_existing_loggers':	True,

								'handlers':	{

												'queue':	{

																'class':	'logging.handlers.QueueHandler'

																'queue':	q,

												},

								},

								'root':	{

												'level':	'DEBUG',

												'handlers':	['queue']

								},

				}

				#	The	listener	process	configuration	shows	that	the	full	flexibility	of

				#	logging	configuration	is	available	to	dispatch	events	to	handlers	however

				#	you	want.

				#	We	disable	existing	loggers	to	disable	the	"setup"	logger	used	in	the

				#	parent	process.	This	is	needed	on	POSIX	because	the	logger	will

				#	be	there	in	the	child	following	a	fork().

				config_listener	=	{

								'version':	1,

								'disable_existing_loggers':	True,

								'formatters':	{

												'detailed':	{

																'class':	'logging.Formatter',

																'format':	'%(asctime)s	%(name)-15s	%(levelname)-8s	%(processName)-10s	%(message)s'

												},

												'simple':	{

																'class':	'logging.Formatter',

																'format':	'%(name)-15s	%(levelname)-8s	%(processName)-10s	%(message)s'

												}

								},

								'handlers':	{

												'console':	{

																'class':	'logging.StreamHandler',

																'level':	'INFO',

																'formatter':	'simple',

												},

												'file':	{

																'class':	'logging.FileHandler',

																'filename':	'mplog.log',

																'mode':	'w',

																'formatter':	'detailed',

												},

												'foofile':	{

																'class':	'logging.FileHandler',

																'filename':	'mplog-foo.log',

																'mode':	'w',

																'formatter':	'detailed',

												},

												'errors':	{

																'class':	'logging.FileHandler',

																'filename':	'mplog-errors.log',

																'mode':	'w',

																'level':	'ERROR',

																'formatter':	'detailed',

												},

								},

								'loggers':	{

												'foo':	{

																'handlers':	['foofile']

												}

								},

								'root':	{

												'level':	'DEBUG',

												'handlers':	['console',	'file',	'errors'

								},

				}

				#	Log	some	initial	events,	just	to	show	that	logging	in	the	parent	works

				#	normally.

				logging.config.dictConfig(config_initial)

				logger	=	logging.getLogger('setup')

				logger.info('About	to	create	workers	...')

				workers	=	[]

				for	i	in	range(5):

								wp	=	Process(target=worker_process,	name='worker	%d'

																					args=(config_worker,))

								workers.append(wp)

								wp.start()

								logger.info('Started	worker:	%s',	wp.name)

				logger.info('About	to	create	listener	...')

				stop_event	=	Event()

				lp	=	Process(target=listener_process,	name='listener'

																	args=(q,	stop_event,	config_listener

				lp.start()

				logger.info('Started	listener')

				#	We	now	hang	around	for	the	workers	to	finish	their	work.

				for	wp	in	workers:

								wp.join()

				#	Workers	all	done,	listening	can	now	stop.

				#	Logging	in	the	parent	still	works	normally.

				logger.info('Telling	listener	to	stop	...')

				stop_event.set()

				lp.join()

				logger.info('All	done.')

if	__name__	==	'__main__':

				main()

Inserting	a	BOM	into	messages	sent	to	a
SysLogHandler

RFC	 5424	 requires	 that	 a	 Unicode	 message	 be	 sent	 to	 a	 syslog
daemon	 as	 a	 set	 of	 bytes	 which	 have	 the	 following	 structure:	 an
optional	pure-ASCII	component,	followed	by	a	UTF-8	Byte	Order	Mark
(BOM),	followed	by	Unicode	encoded	using	UTF-8.	(See	the	relevant
section	of	the	specification.)

In	Python	3.1,	code	was	added	to	SysLogHandler	 to	 insert	a	BOM
into	 the	 message,	 but	 unfortunately,	 it	 was	 implemented	 incorrectly,
with	 the	BOM	appearing	at	 the	beginning	of	 the	message	and	hence
not	allowing	any	pure-ASCII	component	to	appear	before	it.

As	this	behaviour	is	broken,	the	incorrect	BOM	insertion	code	is	being
removed	 from	 Python	 3.2.4	 and	 later.	 However,	 it	 is	 not	 being
replaced,	and	 if	you	want	 to	produce	RFC	5424-compliant	messages
which	include	a	BOM,	an	optional	pure-ASCII	sequence	before	it	and
arbitrary	Unicode	after	 it,	encoded	using	UTF-8,	 then	you	need	to	do
the	following:

1.	 Attach	a	Formatter	instance	to	your	SysLogHandler	instance,
with	a	format	string	such	as:

'ASCII	section\ufeffUnicode	section'

The	Unicode	code	point	U+FEFF,	when	encoded	using	UTF-8,	will
be	 encoded	 as	 a	 UTF-8	 BOM	 –	 the	 byte-string
b'\xef\xbb\xbf'.

2.	 Replace	 the	 ASCII	 section	 with	 whatever	 placeholders	 you	 like,
but	make	sure	that	the	data	that	appears	in	there	after	substitution

http://tools.ietf.org/html/rfc5424
http://tools.ietf.org/html/rfc5424#section-6

is	 always	ASCII	 (that	way,	 it	will	 remain	unchanged	after	UTF-8
encoding).

3.	 Replace	the	Unicode	section	with	whatever	placeholders	you	like;
if	 the	 data	 which	 appears	 there	 after	 substitution	 contains
characters	outside	the	ASCII	range,	that’s	fine	–	it	will	be	encoded
using	UTF-8.

The	 formatted	 message	 will	 be	 encoded	 using	 UTF-8	 encoding	 by
SysLogHandler.	If	you	follow	the	above	rules,	you	should	be	able	to
produce	RFC	5424-compliant	messages.	If	you	don’t,	logging	may	not
complain,	 but	 your	 messages	 will	 not	 be	 RFC	 5424-compliant,	 and
your	syslog	daemon	may	complain.

Implementing	structured	logging

Although	most	logging	messages	are	intended	for	reading	by	humans,
and	thus	not	readily	machine-parseable,	there	might	be	cirumstances
where	 you	want	 to	 output	messages	 in	 a	 structured	 format	which	 is
capable	 of	 being	 parsed	 by	 a	 program	 (without	 needing	 complex
regular	expressions	to	parse	the	log	message).	This	is	straightforward
to	achieve	using	the	logging	package.	There	are	a	number	of	ways	in
which	 this	could	be	achieved,	but	 the	 following	 is	a	simple	approach
which	 uses	 JSON	 to	 serialise	 the	 event	 in	 a	 machine-parseable
manner:

import	json

import	logging

class	StructuredMessage(object):

				def	__init__(self,	message,	**kwargs):

								self.message	=	message

								self.kwargs	=	kwargs

				def	__str__(self):

								return	'%s	>>>	%s'	%	(self.message,	json.dumps

_	=	StructuredMessage			#	optional,	to	improve	readability

logging.basicConfig(level=logging.INFO,	format='%(message)s'

logging.info(_('message	1',	foo='bar',	bar='baz',	num

If	the	above	script	is	run,	it	prints:

message	1	>>>	{"fnum":	123.456,	"num":	123,	"bar":	"baz"

Note	that	the	order	of	items	might	be	different	according	to	the	version
of	Python	used.

If	you	need	more	specialised	processing,	you	can	use	a	custom	JSON
encoder,	as	in	the	following	complete	example:

from	__future__	import	unicode_literals

import	json

import	logging

#	This	next	bit	is	to	ensure	the	script	runs	unchanged	on	2.x	and	3.x

try:

				unicode

except	NameError:

				unicode	=	str

class	Encoder(json.JSONEncoder):

				def	default(self,	o):

								if	isinstance(o,	set):

												return	tuple(o)

								elif	isinstance(o,	unicode):

												return	o.encode('unicode_escape').decode

								return	super(Encoder,	self).default(o)

class	StructuredMessage(object):

				def	__init__(self,	message,	**kwargs):

								self.message	=	message

								self.kwargs	=	kwargs

				def	__str__(self):

								s	=	Encoder().encode(self.kwargs)

								return	'%s	>>>	%s'	%	(self.message,	s)

_	=	StructuredMessage			#	optional,	to	improve	readability

def	main():

				logging.basicConfig(level=logging.INFO,	format='%(message)s'

				logging.info(_('message	1',	set_value=set([1,	2,

if	__name__	==	'__main__':

				main()

When	the	above	script	is	run,	it	prints:

message	1	>>>	{"snowman":	"\u2603",	"set_value":	[1,

Note	that	the	order	of	items	might	be	different	according	to	the	version
of	Python	used.

Customizing	handlers	with
dictConfig()

There	 are	 times	 when	 you	 want	 to	 customize	 logging	 handlers	 in
particular	ways,	and	if	you	use	dictConfig()	you	may	be	able	to	do
this	without	subclassing.	As	an	example,	consider	that	you	may	want
to	set	the	ownership	of	a	log	file.	On	POSIX,	this	is	easily	done	using
shutil.chown(),	but	the	file	handlers	in	the	stdlib	don’t	offer	built-in
support.	 You	 can	 customize	 handler	 creation	 using	 a	 plain	 function
such	as:

def	owned_file_handler(filename,	mode='a',	encoding=

				if	owner:

								if	not	os.path.exists(filename):

												open(filename,	'a').close()

								shutil.chown(filename,	*owner)

				return	logging.FileHandler(filename,	mode,	encoding

You	 can	 then	 specify,	 in	 a	 logging	 configuration	 passed	 to
dictConfig(),	 that	 a	 logging	 handler	 be	 created	 by	 calling	 this
function:

LOGGING	=	{

				'version':	1,

				'disable_existing_loggers':	False,

				'formatters':	{

								'default':	{

												'format':	'%(asctime)s	%(levelname)s	%(name)s	%(message)s'

								},

				},

				'handlers':	{

								'file':{

												#	The	values	below	are	popped	from	this	dictionary	and

												#	used	to	create	the	handler,	set	the	handler's	level	and

												#	its	formatter.

												'()':	owned_file_handler,

												'level':'DEBUG',

												'formatter':	'default',

												#	The	values	below	are	passed	to	the	handler	creator	callable

												#	as	keyword	arguments.

												'owner':	['pulse',	'pulse'],

												'filename':	'chowntest.log',

												'mode':	'w',

												'encoding':	'utf-8',

								},

				},

				'root':	{

								'handlers':	['file'],

								'level':	'DEBUG',

				},

}

In	this	example	I	am	setting	the	ownership	using	the	pulse	user	and
group,	 just	 for	 the	 purposes	 of	 illustration.	 Putting	 it	 together	 into	 a
working	script,	chowntest.py:

import	logging,	logging.config,	os,	shutil

def	owned_file_handler(filename,	mode='a',	encoding=

				if	owner:

								if	not	os.path.exists(filename):

												open(filename,	'a').close()

								shutil.chown(filename,	*owner)

				return	logging.FileHandler(filename,	mode,	encoding

LOGGING	=	{

				'version':	1,

				'disable_existing_loggers':	False,

				'formatters':	{

								'default':	{

												'format':	'%(asctime)s	%(levelname)s	%(name)s	%(message)s'

								},

				},

				'handlers':	{

								'file':{

												#	The	values	below	are	popped	from	this	dictionary	and

												#	used	to	create	the	handler,	set	the	handler's	level	and

												#	its	formatter.

												'()':	owned_file_handler,

												'level':'DEBUG',

												'formatter':	'default',

												#	The	values	below	are	passed	to	the	handler	creator	callable

												#	as	keyword	arguments.

												'owner':	['pulse',	'pulse'],

												'filename':	'chowntest.log',

												'mode':	'w',

												'encoding':	'utf-8',

								},

				},

				'root':	{

								'handlers':	['file'],

								'level':	'DEBUG',

				},

}

logging.config.dictConfig(LOGGING)

logger	=	logging.getLogger('mylogger')

logger.debug('A	debug	message')

To	run	this,	you	will	probably	need	to	run	as	root:

$	sudo	python3.3	chowntest.py

$	cat	chowntest.log

2013-11-05	09:34:51,128	DEBUG	mylogger	A	debug	message

$	ls	-l	chowntest.log

-rw-r--r--	1	pulse	pulse	55	2013-11-05	09:34	chowntest.log

Note	 that	 this	 example	 uses	 Python	 3.3	 because	 that’s	 where
shutil.chown()	makes	an	appearance.	This	approach	should	work
with	 any	 Python	 version	 that	 supports	 dictConfig()	 -	 namely,
Python	 2.7,	 3.2	 or	 later.	 With	 pre-3.3	 versions,	 you	 would	 need	 to
implement	the	actual	ownership	change	using	e.g.	os.chown().

In	 practice,	 the	 handler-creating	 function	 may	 be	 in	 a	 utility	 module
somewhere	in	your	project.	Instead	of	the	line	in	the	configuration:

'()':	owned_file_handler,

you	could	use	e.g.:

'()':	'ext://project.util.owned_file_handler',

where	project.util	 can	 be	 replaced	with	 the	 actual	 name	of	 the
package	where	the	function	resides.	In	the	above	working	script,	using
'ext://__main__.owned_file_handler'	 should	 work.	 Here,
the	 actual	 callable	 is	 resolved	 by	 dictConfig()	 from	 the	 ext://
specification.

This	 example	 hopefully	 also	 points	 the	 way	 to	 how	 you	 could
implement	 other	 types	 of	 file	 change	 -	 e.g.	 setting	 specific	 POSIX
permission	bits	-	in	the	same	way,	using	os.chmod().

Of	 course,	 the	approach	 could	also	be	extended	 to	 types	of	 handler
other	 than	 a	 FileHandler	 -	 for	 example,	 one	 of	 the	 rotating	 file
handlers,	or	a	different	type	of	handler	altogether.

Using	particular	formatting	styles
throughout	your	application

In	Python	 3.2,	 the	 Formatter	 gained	 a	 style	 keyword	 parameter
which,	 while	 defaulting	 to	 %	 for	 backward	 compatibility,	 allowed	 the
specification	of	{	or	$	to	support	the	formatting	approaches	supported
by	 str.format()	 and	 string.Template.	Note	 that	 this	 governs
the	 formatting	 of	 logging	 messages	 for	 final	 output	 to	 logs,	 and	 is
completely	 orthogonal	 to	 how	 an	 individual	 logging	 message	 is
constructed.

Logging	 calls	 (debug(),	 info()	 etc.)	 only	 take	 positional
parameters	 for	 the	 actual	 logging	 message	 itself,	 with	 keyword
parameters	 used	 only	 for	 determining	 options	 for	 how	 to	 handle	 the
logging	 call	 (e.g.	 the	 exc_info	 keyword	 parameter	 to	 indicate	 that
traceback	 information	 should	 be	 logged,	 or	 the	 extra	 keyword
parameter	to	indicate	additional	contextual	information	to	be	added	to
the	 log).	 So	 you	 cannot	 directly	 make	 logging	 calls	 using
str.format()	or	string.Template	syntax,	because	internally	the
logging	package	uses	%-formatting	to	merge	the	format	string	and	the
variable	 arguments.	 There	 would	 no	 changing	 this	 while	 preserving
backward	 compatibility,	 since	 all	 logging	 calls	which	 are	 out	 there	 in
existing	code	will	be	using	%-format	strings.

There	have	been	suggestions	to	associate	 format	styles	with	specific
loggers,	 but	 that	 approach	 also	 runs	 into	 backward	 compatibility
problems	 because	 any	 existing	 code	 could	 be	 using	 a	 given	 logger
name	and	using	%-formatting.

For	logging	to	work	interoperably	between	any	third-party	libraries	and
your	code,	decisions	about	formatting	need	to	be	made	at	the	level	of

the	 individual	 logging	 call.	 This	 opens	 up	 a	 couple	 of	ways	 in	which
alternative	formatting	styles	can	be	accommodated.

Using	LogRecord	factories

In	Python	3.2,	along	with	the	Formatter	changes	mentioned	above,
the	logging	package	gained	the	ability	 to	allow	users	to	set	their	own
LogRecord	 subclasses,	 using	 the	 setLogRecordFactory()

function.	You	 can	use	 this	 to	 set	 your	 own	 subclass	of	 LogRecord,
which	does	the	Right	Thing	by	overriding	the	getMessage()	method.
The	 base	 class	 implementation	 of	 this	 method	 is	 where	 the	 msg	%
args	formatting	happens,	and	where	you	can	substitute	your	alternate
formatting;	 however,	 you	 should	 be	 careful	 to	 support	 all	 formatting
styles	and	allow	%-formatting	as	the	default,	to	ensure	interoperability
with	other	code.	Care	should	also	be	taken	to	call	str(self.msg),
just	as	the	base	implementation	does.

Refer	to	the	reference	documentation	on	setLogRecordFactory()
and	LogRecord	for	more	information.

Using	custom	message	objects

There	 is	 another,	 perhaps	 simpler	 way	 that	 you	 can	 use	 {}-	 and	 $-
formatting	 to	 construct	 your	 individual	 log	messages.	You	may	 recall
(from	Using	arbitrary	objects	as	messages)	that	when	logging	you	can
use	 an	 arbitrary	 object	 as	 a	 message	 format	 string,	 and	 that	 the
logging	package	will	call	str()	on	that	object	to	get	the	actual	format
string.	Consider	the	following	two	classes:

class	BraceMessage(object):

				def	__init__(self,	fmt,	*args,	**kwargs):

								self.fmt	=	fmt

								self.args	=	args

								self.kwargs	=	kwargs

				def	__str__(self):

								return	self.fmt.format(*self.args,	**self.kwargs

class	DollarMessage(object):

				def	__init__(self,	fmt,	**kwargs):

								self.fmt	=	fmt

								self.kwargs	=	kwargs

				def	__str__(self):

								from	string	import	Template

								return	Template(self.fmt).substitute(**self.

Either	of	these	can	be	used	in	place	of	a	format	string,	to	allow	{}-	or	$-
formatting	to	be	used	to	build	the	actual	“message”	part	which	appears
in	the	formatted	 log	output	 in	place	of	“%(message)s”	or	“{message}”
or	 “$message”.	 If	 you	 find	 it	a	 little	unwieldy	 to	use	 the	class	names
whenever	you	want	to	log	something,	you	can	make	it	more	palatable
if	you	use	an	alias	such	as	M	or	_	for	the	message	(or	perhaps	__,	 if
you	are	using	_	for	localization).

Examples	 of	 this	 approach	 are	 given	 below.	 Firstly,	 formatting	 with
str.format():

>>>	__	=	BraceMessage

>>>	print(__('Message	with	{0}	{1}',	2,	'placeholders'

Message	with	2	placeholders

>>>	class	Point:	pass

...

>>>	p	=	Point()

>>>	p.x	=	0.5

>>>	p.y	=	0.5

>>>	print(__('Message	with	coordinates:	({point.x:.2f},	{point.y:.2f})'

Message	with	coordinates:	(0.50,	0.50)

Secondly,	formatting	with	string.Template:

>>>	__	=	DollarMessage

>>>	print(__('Message	with	$num	$what',	num=2,	what=

Message	with	2	placeholders

>>>

One	 thing	 to	note	 is	 that	 you	pay	no	significant	performance	penalty
with	this	approach:	the	actual	formatting	happens	not	when	you	make
the	 logging	 call,	 but	 when	 (and	 if)	 the	 logged	 message	 is	 actually
about	to	be	output	to	a	 log	by	a	handler.	So	the	only	slightly	unusual
thing	which	might	 trip	 you	 up	 is	 that	 the	 parentheses	 go	 around	 the
format	 string	 and	 the	 arguments,	 not	 just	 the	 format	 string.	 That’s
because	 the	__	notation	 is	 just	syntax	sugar	 for	a	constructor	call	 to
one	of	the	XXXMessage	classes	shown	above.

Configuring	filters	with	dictConfig()

You	can	configure	filters	using	dictConfig(),	though	it	might	not	be
obvious	at	first	glance	how	to	do	it	(hence	this	recipe).	Since	Filter
is	the	only	filter	class	included	in	the	standard	library,	and	it	is	unlikely
to	cater	to	many	requirements	(it’s	only	there	as	a	base	class),	you	will
typically	need	to	define	your	own	Filter	subclass	with	an	overridden
filter()	method.	To	do	this,	specify	the	()	key	in	the	configuration
dictionary	 for	 the	 filter,	 specifying	 a	 callable	 which	 will	 be	 used	 to
create	the	filter	(a	class	is	the	most	obvious,	but	you	can	provide	any
callable	 which	 returns	 a	 Filter	 instance).	 Here	 is	 a	 complete
example:

import	logging

import	logging.config

import	sys

class	MyFilter(logging.Filter):

				def	__init__(self,	param=None):

								self.param	=	param

				def	filter(self,	record):

								if	self.param	is	None:

												allow	=	True

								else:

												allow	=	self.param	not	in	record.msg

								if	allow:

												record.msg	=	'changed:	'	+	record.msg

								return	allow

LOGGING	=	{

				'version':	1,

				'filters':	{

								'myfilter':	{

												'()':	MyFilter,

												'param':	'noshow',

								}

				},

				'handlers':	{

								'console':	{

												'class':	'logging.StreamHandler',

												'filters':	['myfilter']

								}

				},

				'root':	{

								'level':	'DEBUG',

								'handlers':	['console']

				},

}

if	__name__	==	'__main__':

				logging.config.dictConfig(LOGGING)

				logging.debug('hello')

				logging.debug('hello	-	noshow')

This	 example	 shows	 how	 you	 can	 pass	 configuration	 data	 to	 the
callable	 which	 constructs	 the	 instance,	 in	 the	 form	 of	 keyword
parameters.	When	run,	the	above	script	will	print:

changed:	hello

which	shows	that	the	filter	is	working	as	configured.

A	couple	of	extra	points	to	note:

If	you	can’t	refer	to	the	callable	directly	in	the	configuration	(e.g.	if
it	lives	in	a	different	module,	and	you	can’t	import	it	directly	where
the	configuration	dictionary	is),	you	can	use	the	form	ext://...
as	 described	 in	 Access	 to	 external	 objects.	 For	 example,	 you

could	 have	 used	 the	 text	 'ext://__main__.MyFilter'

instead	of	MyFilter	in	the	above	example.
As	well	as	for	filters,	this	technique	can	also	be	used	to	configure
custom	 handlers	 and	 formatters.	 See	 User-defined	 objects	 for
more	 information	 on	 how	 logging	 supports	 using	 user-defined
objects	 in	 its	 configuration,	 and	 see	 the	 other	 cookbook	 recipe
Customizing	handlers	with	dictConfig()	above.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Regular	Expression	HOWTO
Author: A.M.	Kuchling	<amk@amk.ca>

Abstract

This	document	is	an	introductory	tutorial	to	using	regular	expressions
in	Python	with	the	re	module.	It	provides	a	gentler	introduction	than
the	corresponding	section	in	the	Library	Reference.

mailto:amk%40amk.ca

Introduction

Regular	 expressions	 (called	REs,	 or	 regexes,	 or	 regex	 patterns)	 are
essentially	a	tiny,	highly	specialized	programming	language	embedded
inside	Python	and	made	available	through	the	re	module.	Using	this
little	language,	you	specify	the	rules	for	the	set	of	possible	strings	that
you	want	to	match;	this	set	might	contain	English	sentences,	or	e-mail
addresses,	or	TeX	commands,	or	anything	you	like.	You	can	then	ask
questions	such	as	“Does	this	string	match	the	pattern?”,	or	“Is	there	a
match	for	the	pattern	anywhere	in	this	string?”.	You	can	also	use	REs
to	modify	a	string	or	to	split	it	apart	in	various	ways.

Regular	expression	patterns	are	 compiled	 into	a	 series	of	 bytecodes
which	 are	 then	 executed	 by	 a	 matching	 engine	 written	 in	 C.	 For
advanced	use,	it	may	be	necessary	to	pay	careful	attention	to	how	the
engine	will	execute	a	given	RE,	and	write	 the	RE	 in	a	certain	way	 in
order	to	produce	bytecode	that	runs	faster.	Optimization	isn’t	covered
in	 this	 document,	 because	 it	 requires	 that	 you	 have	 a	 good
understanding	of	the	matching	engine’s	internals.

The	regular	expression	 language	 is	relatively	small	and	restricted,	so
not	 all	 possible	 string	 processing	 tasks	 can	 be	 done	 using	 regular
expressions.	 There	 are	 also	 tasks	 that	 can	 be	 done	 with	 regular
expressions,	 but	 the	expressions	 turn	 out	 to	 be	 very	 complicated.	 In
these	 cases,	 you	 may	 be	 better	 off	 writing	 Python	 code	 to	 do	 the
processing;	while	Python	code	will	be	slower	than	an	elaborate	regular
expression,	it	will	also	probably	be	more	understandable.

Simple	Patterns

We’ll	start	by	learning	about	the	simplest	possible	regular	expressions.
Since	regular	expressions	are	used	to	operate	on	strings,	we’ll	begin
with	the	most	common	task:	matching	characters.

For	a	detailed	explanation	of	the	computer	science	underlying	regular
expressions	(deterministic	and	non-deterministic	finite	automata),	you
can	refer	to	almost	any	textbook	on	writing	compilers.

Matching	Characters

Most	 letters	 and	 characters	 will	 simply	 match	 themselves.	 For
example,	 the	 regular	 expression	 test	 will	 match	 the	 string	 test
exactly.	 (You	 can	 enable	 a	 case-insensitive	mode	 that	would	 let	 this
RE	match	Test	or	TEST	as	well;	more	about	this	later.)

There	 are	 exceptions	 to	 this	 rule;	 some	 characters	 are	 special
metacharacters,	and	don’t	match	themselves.	Instead,	they	signal	that
some	out-of-the-ordinary	thing	should	be	matched,	or	they	affect	other
portions	of	the	RE	by	repeating	them	or	changing	their	meaning.	Much
of	this	document	is	devoted	to	discussing	various	metacharacters	and
what	they	do.

Here’s	 a	 complete	 list	 of	 the	metacharacters;	 their	meanings	will	 be
discussed	in	the	rest	of	this	HOWTO.

.	^	$	*	+	?	{	}	[]	\	|	()

The	 first	metacharacters	we’ll	 look	at	 are	 [and].	 They’re	 used	 for
specifying	a	character	class,	which	is	a	set	of	characters	that	you	wish
to	 match.	 Characters	 can	 be	 listed	 individually,	 or	 a	 range	 of

characters	 can	be	 indicated	by	giving	 two	characters	and	separating
them	by	a	'-'.	For	example,	[abc]	will	match	any	of	the	characters
a,	b,	or	c;	this	is	the	same	as	[a-c],	which	uses	a	range	to	express
the	 same	 set	 of	 characters.	 If	 you	 wanted	 to	 match	 only	 lowercase
letters,	your	RE	would	be	[a-z].

Metacharacters	 are	 not	 active	 inside	 classes.	 For	 example,	 [akm$]
will	 match	 any	 of	 the	 characters	 'a',	 'k',	 'm',	 or	 '$';	 '$'	 is
usually	a	metacharacter,	but	inside	a	character	class	it’s	stripped	of	its
special	nature.

You	 can	 match	 the	 characters	 not	 listed	 within	 the	 class	 by
complementing	the	set.	This	is	indicated	by	including	a	'^'	as	the	first
character	of	the	class;	'^'	outside	a	character	class	will	simply	match
the	 '^'	 character.	 For	 example,	 [^5]	 will	 match	 any	 character
except	'5'.

Perhaps	the	most	 important	metacharacter	 is	 the	backslash,	\.	As	 in
Python	 string	 literals,	 the	 backslash	 can	 be	 followed	 by	 various
characters	 to	 signal	 various	 special	 sequences.	 It’s	 also	 used	 to
escape	all	the	metacharacters	so	you	can	still	match	them	in	patterns;
for	example,	if	you	need	to	match	a	[or	\,	you	can	precede	them	with
a	backslash	to	remove	their	special	meaning:	\[or	\\.

Some	 of	 the	 special	 sequences	 beginning	 with	 '\'	 represent
predefined	sets	of	characters	that	are	often	useful,	such	as	the	set	of
digits,	the	set	of	letters,	or	the	set	of	anything	that	isn’t	whitespace.

Let’s	take	an	example:	\w	matches	any	alphanumeric	character.	If	the
regex	pattern	is	expressed	in	bytes,	this	is	equivalent	to	the	class	[a-
zA-Z0-9_].	 If	 the	 regex	 pattern	 is	 a	 string,	 \w	 will	 match	 all	 the
characters	marked	as	letters	in	the	Unicode	database	provided	by	the

unicodedata	module.	You	can	use	 the	more	 restricted	definition	of
\w	in	a	string	pattern	by	supplying	the	re.ASCII	flag	when	compiling
the	regular	expression.

The	following	list	of	special	sequences	isn’t	complete.	For	a	complete
list	 of	 sequences	 and	 expanded	 class	 definitions	 for	 Unicode	 string
patterns,	 see	 the	 last	 part	 of	 Regular	 Expression	 Syntax	 in	 the
Standard	 Library	 reference.	 In	 general,	 the	 Unicode	 versions	 match
any	 character	 that’s	 in	 the	 appropriate	 category	 in	 the	 Unicode
database.

\d

Matches	any	decimal	digit;	this	is	equivalent	to	the	class	[0-9].

\D

Matches	 any	 non-digit	 character;	 this	 is	 equivalent	 to	 the	 class
[^0-9].

\s

Matches	any	whitespace	character;	this	is	equivalent	to	the	class	[
\t\n\r\f\v].

\S

Matches	 any	 non-whitespace	 character;	 this	 is	 equivalent	 to	 the
class	[^	\t\n\r\f\v].

\w

Matches	any	alphanumeric	character;	this	is	equivalent	to	the	class
[a-zA-Z0-9_].

\W

Matches	any	non-alphanumeric	character;	this	 is	equivalent	to	the
class	[^a-zA-Z0-9_].

These	 sequences	 can	 be	 included	 inside	 a	 character	 class.	 For
example,	[\s,.]	is	a	character	class	that	will	match	any	whitespace

character,	or	','	or	'.'.

The	final	metacharacter	in	this	section	is	..	It	matches	anything	except
a	 newline	 character,	 and	 there’s	 an	 alternate	 mode	 (re.DOTALL)
where	it	will	match	even	a	newline.	'.'	is	often	used	where	you	want
to	match	“any	character”.

Repeating	Things

Being	able	to	match	varying	sets	of	characters	is	the	first	thing	regular
expressions	 can	 do	 that	 isn’t	 already	 possible	 with	 the	 methods
available	on	strings.	However,	if	that	was	the	only	additional	capability
of	regexes,	they	wouldn’t	be	much	of	an	advance.	Another	capability	is
that	you	can	specify	that	portions	of	the	RE	must	be	repeated	a	certain
number	of	times.

The	 first	metacharacter	 for	 repeating	 things	 that	we’ll	 look	at	 is	 *.	*
doesn’t	 match	 the	 literal	 character	 *;	 instead,	 it	 specifies	 that	 the
previous	 character	 can	 be	 matched	 zero	 or	 more	 times,	 instead	 of
exactly	once.

For	example,	ca*t	will	match	ct	(0	a	characters),	cat	(1	a),	caaat
(3	 a	 characters),	 and	 so	 forth.	 The	 RE	 engine	 has	 various	 internal
limitations	stemming	from	the	size	of	C’s	int	 type	that	will	prevent	 it
from	 matching	 over	 2	 billion	 a	 characters;	 patterns	 are	 usually	 not
written	to	match	that	much	data.

Repetitions	such	as	*	are	greedy;	when	repeating	a	RE,	the	matching
engine	will	try	to	repeat	it	as	many	times	as	possible.	If	 later	portions
of	the	pattern	don’t	match,	the	matching	engine	will	then	back	up	and
try	again	with	few	repetitions.

A	step-by-step	example	will	make	this	more	obvious.	Let’s	consider	the
expression	 a[bcd]*b.	 This	 matches	 the	 letter	 'a',	 zero	 or	 more
letters	 from	 the	 class	 [bcd],	 and	 finally	 ends	 with	 a	 'b'.	 Now
imagine	matching	this	RE	against	the	string	abcbd.

Step Matched Explanation

1 a The	a	in	the	RE	matches.

2 abcbd
The	engine	matches	[bcd]*,	going	as	far
as	it	can,	which	is	to	the	end	of	the	string.

3 Failure The	engine	tries	to	match	b,	but	the	current
position	is	at	the	end	of	the	string,	so	it	fails.

4 abcb
Back	up,	so	that	[bcd]*	matches	one	less
character.

5 Failure Try	b	again,	but	the	current	position	is	at
the	last	character,	which	is	a	'd'.

6 abc
Back	up	again,	so	that	[bcd]*	is	only
matching	bc.

6 abcb
Try	b	again.	This	time	the	character	at	the
current	position	is	'b',	so	it	succeeds.

The	end	of	the	RE	has	now	been	reached,	and	it	has	matched	abcb.
This	demonstrates	how	 the	matching	engine	goes	as	 far	as	 it	can	at
first,	 and	 if	 no	match	 is	 found	 it	will	 then	 progressively	 back	 up	 and
retry	the	rest	of	the	RE	again	and	again.	It	will	back	up	until	it	has	tried
zero	matches	 for	 [bcd]*,	 and	 if	 that	 subsequently	 fails,	 the	 engine
will	conclude	that	the	string	doesn’t	match	the	RE	at	all.

Another	 repeating	 metacharacter	 is	 +,	 which	 matches	 one	 or	 more
times.	 Pay	 careful	 attention	 to	 the	 difference	 between	 *	 and	 +;	 *
matches	zero	or	more	times,	so	whatever’s	being	repeated	may	not	be

present	 at	 all,	 while	 +	 requires	 at	 least	 one	 occurrence.	 To	 use	 a
similar	example,	ca+t	will	match	cat	(1	a),	caaat	(3	a‘s),	but	won’t
match	ct.

There	are	two	more	repeating	qualifiers.	The	question	mark	character,
?,	matches	either	once	or	zero	 times;	you	can	 think	of	 it	as	marking
something	 as	 being	 optional.	 For	 example,	 home-?brew	 matches
either	homebrew	or	home-brew.

The	most	complicated	repeated	qualifier	is	{m,n},	where	m	and	n	are
decimal	 integers.	 This	 qualifier	 means	 there	 must	 be	 at	 least	 m
repetitions,	 and	at	most	n.	For	 example,	 a/{1,3}b	will	match	 a/b,
a//b,	 and	 a///b.	 It	 won’t	 match	 ab,	 which	 has	 no	 slashes,	 or
a////b,	which	has	four.

You	 can	 omit	 either	 m	 or	 n;	 in	 that	 case,	 a	 reasonable	 value	 is
assumed	 for	 the	missing	value.	Omitting	m	 is	 interpreted	 as	 a	 lower
limit	 of	 0,	 while	 omitting	 n	 results	 in	 an	 upper	 bound	 of	 infinity	 —
actually,	 the	 upper	 bound	 is	 the	 2-billion	 limit	 mentioned	 earlier,	 but
that	might	as	well	be	infinity.

Readers	 of	 a	 reductionist	 bent	 may	 notice	 that	 the	 three	 other
qualifiers	can	all	be	expressed	using	this	notation.	{0,}	 is	 the	same
as	*,	{1,}	is	equivalent	to	+,	and	{0,1}	is	the	same	as	?.	It’s	better
to	use	*,	+,	or	?	when	you	can,	simply	because	 they’re	shorter	and
easier	to	read.

Using	Regular	Expressions

Now	 that	we’ve	 looked	 at	 some	 simple	 regular	 expressions,	 how	do
we	actually	use	them	in	Python?	The	re	module	provides	an	interface
to	 the	 regular	 expression	 engine,	 allowing	 you	 to	 compile	 REs	 into
objects	and	then	perform	matches	with	them.

Compiling	Regular	Expressions

Regular	 expressions	 are	 compiled	 into	 pattern	 objects,	 which	 have
methods	for	various	operations	such	as	searching	for	pattern	matches
or	performing	string	substitutions.

>>>	import	re

>>>	p	=	re.compile('ab*')

>>>	p

re.compile('ab*')

re.compile()	 also	 accepts	 an	 optional	 flags	 argument,	 used	 to
enable	 various	 special	 features	 and	 syntax	 variations.	We’ll	 go	 over
the	available	settings	later,	but	for	now	a	single	example	will	do:

>>>	p	=	re.compile('ab*',	re.IGNORECASE)

The	RE	is	passed	to	re.compile()	as	a	string.	REs	are	handled	as
strings	 because	 regular	 expressions	 aren’t	 part	 of	 the	 core	 Python
language,	 and	 no	 special	 syntax	 was	 created	 for	 expressing	 them.
(There	are	applications	that	don’t	need	REs	at	all,	so	there’s	no	need
to	bloat	the	language	specification	by	including	them.)	Instead,	the	re
module	is	simply	a	C	extension	module	included	with	Python,	just	like
the	socket	or	zlib	modules.

Putting	REs	in	strings	keeps	the	Python	language	simpler,	but	has	one
disadvantage	which	is	the	topic	of	the	next	section.

The	Backslash	Plague

As	 stated	 earlier,	 regular	 expressions	 use	 the	 backslash	 character
('\')	 to	 indicate	 special	 forms	 or	 to	 allow	 special	 characters	 to	 be
used	 without	 invoking	 their	 special	 meaning.	 This	 conflicts	 with
Python’s	usage	of	 the	same	character	 for	 the	same	purpose	 in	string
literals.

Let’s	say	you	want	 to	write	a	RE	that	matches	 the	string	\section,
which	might	be	found	in	a	LaTeX	file.	To	figure	out	what	to	write	in	the
program	code,	start	with	 the	desired	string	 to	be	matched.	Next,	 you
must	escape	any	backslashes	and	other	metacharacters	by	preceding
them	 with	 a	 backslash,	 resulting	 in	 the	 string	 \\section.	 The
resulting	 string	 that	 must	 be	 passed	 to	 re.compile()	 must	 be
\\section.	However,	 to	express	this	as	a	Python	string	 literal,	both
backslashes	must	be	escaped	again.

Characters Stage

\section Text	string	to	be	matched

\\section Escaped	backslash	for	re.compile()

"\\\\section" Escaped	backslashes	for	a	string	literal

In	short,	to	match	a	literal	backslash,	one	has	to	write	'\\\\'	as	the
RE	 string,	 because	 the	 regular	 expression	 must	 be	 \\,	 and	 each
backslash	 must	 be	 expressed	 as	 \\	 inside	 a	 regular	 Python	 string
literal.	In	REs	that	feature	backslashes	repeatedly,	this	leads	to	lots	of
repeated	 backslashes	 and	 makes	 the	 resulting	 strings	 difficult	 to
understand.

The	 solution	 is	 to	 use	 Python’s	 raw	 string	 notation	 for	 regular
expressions;	 backslashes	 are	 not	 handled	 in	 any	 special	 way	 in	 a
string	 literal	 prefixed	 with	 'r',	 so	 r"\n"	 is	 a	 two-character	 string
containing	 '\'	 and	 'n',	 while	 "\n"	 is	 a	 one-character	 string
containing	 a	 newline.	 Regular	 expressions	 will	 often	 be	 written	 in
Python	code	using	this	raw	string	notation.

Regular	String Raw	string

"ab*" r"ab*"

"\\\\section" r"\\section"

"\\w+\\s+\\1" r"\w+\s+\1"

Performing	Matches

Once	you	have	an	object	representing	a	compiled	regular	expression,
what	 do	 you	 do	 with	 it?	 Pattern	 objects	 have	 several	 methods	 and
attributes.	Only	the	most	significant	ones	will	be	covered	here;	consult
the	re	docs	for	a	complete	listing.

Method/Attribute Purpose

match()
Determine	if	the	RE	matches	at	the	beginning
of	the	string.

search()
Scan	through	a	string,	looking	for	any	location
where	this	RE	matches.

findall()
Find	all	substrings	where	the	RE	matches,	and
returns	them	as	a	list.

finditer()
Find	all	substrings	where	the	RE	matches,	and
returns	them	as	an	iterator.

match()	 and	 search()	 return	 None	 if	 no	match	 can	 be	 found.	 If

they’re	 successful,	 a	 match	 object	 instance	 is	 returned,	 containing
information	about	the	match:	where	it	starts	and	ends,	the	substring	it
matched,	and	more.

You	 can	 learn	 about	 this	 by	 interactively	 experimenting	 with	 the	 re
module.	If	you	have	tkinter	available,	you	may	also	want	to	look	at
Tools/demo/redemo.py,	 a	 demonstration	 program	 included	 with	 the
Python	 distribution.	 It	 allows	 you	 to	 enter	 REs	 and	 strings,	 and
displays	whether	 the	RE	matches	or	 fails.	 redemo.py	 can	 be	 quite
useful	when	trying	to	debug	a	complicated	RE.	Phil	Schwartz’s	Kodos
is	also	an	interactive	tool	for	developing	and	testing	RE	patterns.

This	HOWTO	uses	 the	 standard	Python	 interpreter	 for	 its	 examples.
First,	run	the	Python	interpreter,	import	the	re	module,	and	compile	a
RE:

>>>	import	re

>>>	p	=	re.compile('[a-z]+')

>>>	p

re.compile('[a-z]+')

Now,	you	can	try	matching	various	strings	against	the	RE	[a-z]+.	An
empty	 string	 shouldn’t	 match	 at	 all,	 since	 +	 means	 ‘one	 or	 more
repetitions’.	 match()	 should	 return	 None	 in	 this	 case,	 which	 will
cause	 the	 interpreter	 to	 print	 no	 output.	 You	 can	 explicitly	 print	 the
result	of	match()	to	make	this	clear.

>>>	p.match("")

>>>	print(p.match(""))

None

Now,	let’s	try	it	on	a	string	that	it	should	match,	such	as	tempo.	In	this
case,	 match()	 will	 return	 a	match	 object,	 so	 you	 should	 store	 the

http://hg.python.org/cpython/file/3.4/Tools/demo/redemo.py
http://kodos.sourceforge.net/

result	in	a	variable	for	later	use.

>>>	m	=	p.match('tempo')

>>>	m		

<_sre.SRE_Match	object;	span=(0,	5),	match='tempo'>

Now	 you	 can	 query	 the	 match	 object	 for	 information	 about	 the
matching	 string.	match	 object	 instances	 also	 have	 several	 methods
and	attributes;	the	most	important	ones	are:

Method/Attribute Purpose

group() Return	the	string	matched	by	the	RE

start() Return	the	starting	position	of	the	match

end() Return	the	ending	position	of	the	match

span()
Return	a	tuple	containing	the	(start,	end)
positions	of	the	match

Trying	these	methods	will	soon	clarify	their	meaning:

>>>	m.group()

'tempo'

>>>	m.start(),	m.end()

(0,	5)

>>>	m.span()

(0,	5)

group()	 returns	 the	 substring	 that	 was	 matched	 by	 the	 RE.
start()	 and	 end()	 return	 the	 starting	 and	 ending	 index	 of	 the
match.	span()	 returns	both	start	and	end	 indexes	 in	a	single	 tuple.
Since	the	match()	method	only	checks	if	the	RE	matches	at	the	start
of	 a	 string,	 start()	 will	 always	 be	 zero.	 However,	 the	 search()
method	 of	 patterns	 scans	 through	 the	 string,	 so	 the	match	may	 not

start	at	zero	in	that	case.

>>>	print(p.match(':::	message'))

None

>>>	m	=	p.search(':::	message');	print(m)		

<_sre.SRE_Match	object;	span=(4,	11),	match='message'>

>>>	m.group()

'message'

>>>	m.span()

(4,	11)

In	 actual	 programs,	 the	 most	 common	 style	 is	 to	 store	 the	 match
object	in	a	variable,	and	then	check	if	it	was	None.	This	usually	looks
like:

p	=	re.compile(...)

m	=	p.match('string	goes	here')

if	m:

				print('Match	found:	',	m.group())

else:

				print('No	match')

Two	 pattern	 methods	 return	 all	 of	 the	 matches	 for	 a	 pattern.
findall()	returns	a	list	of	matching	strings:

>>>	p	=	re.compile('\d+')

>>>	p.findall('12	drummers	drumming,	11	pipers	piping,	10	lords	a-leaping'

['12',	'11',	'10']

findall()	has	 to	create	 the	entire	 list	before	 it	can	be	returned	as
the	 result.	 The	 finditer()	 method	 returns	 a	 sequence	 of	match
object	instances	as	an	iterator:

>>>	iterator	=	p.finditer('12	drummers	drumming,	11	...	10	...'

>>>	iterator		

<callable_iterator	object	at	0x...>

>>>	for	match	in	iterator:

...					print(match.span())

...

(0,	2)

(22,	24)

(29,	31)

Module-Level	Functions

You	don’t	have	to	create	a	pattern	object	and	call	its	methods;	the	re
module	also	provides	top-level	functions	called	match(),	search(),
findall(),	 sub(),	 and	 so	 forth.	 These	 functions	 take	 the	 same
arguments	 as	 the	 corresponding	 pattern	 method	 with	 the	 RE	 string
added	as	 the	 first	 argument,	 and	 still	 return	 either	 None	 or	 a	match
object	instance.

>>>	print(re.match(r'From\s+',	'Fromage	amk'))

None

>>>	re.match(r'From\s+',	'From	amk	Thu	May	14	19:12:10	1998'

<_sre.SRE_Match	object;	span=(0,	5),	match='From	'>

Under	the	hood,	these	functions	simply	create	a	pattern	object	for	you
and	 call	 the	 appropriate	method	 on	 it.	 They	 also	 store	 the	 compiled
object	 in	 a	 cache,	 so	 future	 calls	 using	 the	 same	RE	won’t	 need	 to
parse	the	pattern	again	and	again.

Should	 you	 use	 these	module-level	 functions,	 or	 should	 you	 get	 the
pattern	 and	 call	 its	 methods	 yourself?	 If	 you’re	 accessing	 a	 regex
within	a	loop,	pre-compiling	it	will	save	a	few	function	calls.	Outside	of

loops,	there’s	not	much	difference	thanks	to	the	internal	cache.

Compilation	Flags

Compilation	 flags	 let	 you	 modify	 some	 aspects	 of	 how	 regular
expressions	 work.	 Flags	 are	 available	 in	 the	 re	 module	 under	 two
names,	 a	 long	 name	 such	 as	 IGNORECASE	 and	 a	 short,	 one-letter
form	 such	 as	 I.	 (If	 you’re	 familiar	 with	 Perl’s	 pattern	 modifiers,	 the
one-letter	forms	use	the	same	letters;	the	short	form	of	re.VERBOSE
is	re.X,	 for	example.)	Multiple	flags	can	be	specified	by	bitwise	OR-
ing	them;	re.I	|	re.M	sets	both	the	I	and	M	flags,	for	example.

Here’s	 a	 table	 of	 the	 available	 flags,	 followed	 by	 a	 more	 detailed
explanation	of	each	one.

Flag Meaning

ASCII,	A

Makes	several	escapes	like	\w,	\b,
\s	and	\d	match	only	on	ASCII
characters	with	the	respective
property.

DOTALL,	S Make	.	match	any	character,
including	newlines

IGNORECASE,	I Do	case-insensitive	matches

LOCALE,	L Do	a	locale-aware	match

MULTILINE,	M Multi-line	matching,	affecting	^	and	$

VERBOSE,	X	(for
‘extended’)

Enable	verbose	REs,	which	can	be
organized	more	cleanly	and
understandably.

I

IGNORECASE

Perform	 case-insensitive	 matching;	 character	 class	 and	 literal
strings	will	match	letters	by	ignoring	case.	For	example,	[A-Z]	will
match	lowercase	letters,	too,	and	Spam	will	match	Spam,	spam,	or
spAM.	 This	 lowercasing	 doesn’t	 take	 the	 current	 locale	 into
account;	it	will	if	you	also	set	the	LOCALE	flag.

L

LOCALE

Make	\w,	\W,	\b,	and	\B,	dependent	on	the	current	locale	instead
of	the	Unicode	database.

Locales	 are	 a	 feature	 of	 the	 C	 library	 intended	 to	 help	 in	 writing
programs	that	take	account	of	language	differences.	For	example,
if	you’re	processing	French	text,	you’d	want	to	be	able	to	write	\w+
to	match	words,	but	\w	only	matches	the	character	class	[A-Za-
z];	 it	 won’t	 match	 'é'	 or	 'ç'.	 If	 your	 system	 is	 configured
properly	and	a	French	locale	is	selected,	certain	C	functions	will	tell
the	program	 that	 'é'	 should	 also	 be	 considered	 a	 letter.	 Setting
the	 LOCALE	 flag	when	 compiling	 a	 regular	 expression	will	 cause
the	resulting	compiled	object	to	use	these	C	functions	for	\w;	this	is
slower,	 but	 also	 enables	 \w+	 to	 match	 French	 words	 as	 you’d
expect.

M

MULTILINE

(^	 and	 $	 haven’t	 been	 explained	 yet;	 they’ll	 be	 introduced	 in
section	More	Metacharacters.)

Usually	 ^	 matches	 only	 at	 the	 beginning	 of	 the	 string,	 and	 $
matches	only	at	 the	end	of	 the	string	and	 immediately	before	 the
newline	(if	any)	at	the	end	of	the	string.	When	this	flag	is	specified,
^	matches	at	 the	beginning	of	 the	 string	and	at	 the	beginning	of

each	 line	 within	 the	 string,	 immediately	 following	 each	 newline.
Similarly,	 the	 $	 metacharacter	 matches	 either	 at	 the	 end	 of	 the
string	 and	 at	 the	 end	 of	 each	 line	 (immediately	 preceding	 each
newline).

S

DOTALL

Makes	 the	 '.'	 special	 character	 match	 any	 character	 at	 all,
including	 a	 newline;	 without	 this	 flag,	 '.'	 will	 match	 anything
except	a	newline.

A

ASCII

Make	 \w,	 \W,	 \b,	 \B,	 \s	 and	 \S	 perform	 ASCII-only	 matching
instead	 of	 full	 Unicode	 matching.	 This	 is	 only	 meaningful	 for
Unicode	patterns,	and	is	ignored	for	byte	patterns.

X

VERBOSE

This	 flag	 allows	 you	 to	 write	 regular	 expressions	 that	 are	 more
readable	 by	 granting	 you	 more	 flexibility	 in	 how	 you	 can	 format
them.	When	this	flag	has	been	specified,	whitespace	within	the	RE
string	 is	 ignored,	 except	 when	 the	 whitespace	 is	 in	 a	 character
class	 or	 preceded	 by	 an	 unescaped	 backslash;	 this	 lets	 you
organize	and	indent	the	RE	more	clearly.	This	flag	also	lets	you	put
comments	 within	 a	 RE	 that	 will	 be	 ignored	 by	 the	 engine;
comments	are	marked	by	a	'#'	that’s	neither	in	a	character	class
or	preceded	by	an	unescaped	backslash.

For	example,	here’s	a	RE	that	uses	re.VERBOSE;	see	how	much
easier	it	is	to	read?

charref	=	re.compile(r"""

	&[#]																#	Start	of	a	numeric	entity	reference

	(

					0[0-7]+									#	Octal	form

			|	[0-9]+										#	Decimal	form

			|	x[0-9a-fA-F]+			#	Hexadecimal	form

)

	;																			#	Trailing	semicolon

""",	re.VERBOSE)

Without	the	verbose	setting,	the	RE	would	look	like	this:

charref	=	re.compile("&#(0[0-7]+"

																					"|[0-9]+"

																					"|x[0-9a-fA-F]+);")

In	 the	above	example,	Python’s	automatic	concatenation	of	string
literals	has	been	used	to	break	up	the	RE	into	smaller	pieces,	but
it’s	 still	 more	 difficult	 to	 understand	 than	 the	 version	 using
re.VERBOSE.

More	Pattern	Power

So	 far	 we’ve	 only	 covered	 a	 part	 of	 the	 features	 of	 regular
expressions.	 In	 this	 section,	 we’ll	 cover	 some	 new	 metacharacters,
and	 how	 to	 use	 groups	 to	 retrieve	 portions	 of	 the	 text	 that	 was
matched.

More	Metacharacters

There	are	some	metacharacters	that	we	haven’t	covered	yet.	Most	of
them	will	be	covered	in	this	section.

Some	of	the	remaining	metacharacters	to	be	discussed	are	zero-width
assertions.	They	don’t	cause	the	engine	to	advance	through	the	string;
instead,	they	consume	no	characters	at	all,	and	simply	succeed	or	fail.
For	example,	\b	is	an	assertion	that	the	current	position	is	located	at	a
word	boundary;	the	position	isn’t	changed	by	the	\b	at	all.	This	means
that	zero-width	assertions	should	never	be	 repeated,	because	 if	 they
match	 once	 at	 a	 given	 location,	 they	 can	 obviously	 be	 matched	 an
infinite	number	of	times.

|

Alternation,	or	the	“or”	operator.	If	A	and	B	are	regular	expressions,
A|B	will	match	any	string	 that	matches	either	A	or	B.	|	has	very
low	precedence	 in	order	 to	make	 it	work	 reasonably	when	you’re
alternating	multi-character	 strings.	 Crow|Servo	will	match	 either
Crow	or	Servo,	not	Cro,	a	'w'	or	an	'S',	and	ervo.

To	match	 a	 literal	 '|',	 use	 \|,	 or	 enclose	 it	 inside	 a	 character
class,	as	in	[|].

^

Matches	at	the	beginning	of	lines.	Unless	the	MULTILINE	flag	has
been	 set,	 this	 will	 only	 match	 at	 the	 beginning	 of	 the	 string.	 In
MULTILINE	 mode,	 this	 also	 matches	 immediately	 after	 each
newline	within	the	string.

For	 example,	 if	 you	 wish	 to	 match	 the	 word	 From	 only	 at	 the
beginning	of	a	line,	the	RE	to	use	is	^From.

>>>	print(re.search('^From',	'From	Here	to	Eternity'

<_sre.SRE_Match	object;	span=(0,	4),	match='From'>

>>>	print(re.search('^From',	'Reciting	From	Memory'

None

$

Matches	at	the	end	of	a	line,	which	is	defined	as	either	the	end	of
the	string,	or	any	location	followed	by	a	newline	character.

>>>	print(re.search('}$',	'{block}'))		

<_sre.SRE_Match	object;	span=(6,	7),	match='}'>

>>>	print(re.search('}$',	'{block}	'))

None

>>>	print(re.search('}$',	'{block}\n'))		

<_sre.SRE_Match	object;	span=(6,	7),	match='}'>

To	 match	 a	 literal	 '$',	 use	 \$	 or	 enclose	 it	 inside	 a	 character
class,	as	in	[$].

\A

Matches	 only	 at	 the	 start	 of	 the	 string.	When	 not	 in	 MULTILINE
mode,	\A	 and	 ^	 are	 effectively	 the	 same.	 In	 MULTILINE	mode,
they’re	different:	\A	still	matches	only	at	the	beginning	of	the	string,
but	 ^	 may	match	 at	 any	 location	 inside	 the	 string	 that	 follows	 a
newline	character.

\Z

Matches	only	at	the	end	of	the	string.

\b

Word	boundary.	This	is	a	zero-width	assertion	that	matches	only	at
the	beginning	or	end	of	a	word.	A	word	is	defined	as	a	sequence	of
alphanumeric	 characters,	 so	 the	 end	 of	 a	 word	 is	 indicated	 by
whitespace	or	a	non-alphanumeric	character.

The	following	example	matches	class	only	when	 it’s	a	complete
word;	it	won’t	match	when	it’s	contained	inside	another	word.

>>>	p	=	re.compile(r'\bclass\b')

>>>	print(p.search('no	class	at	all'))		

<_sre.SRE_Match	object;	span=(3,	8),	match='class'>

>>>	print(p.search('the	declassified	algorithm'))

None

>>>	print(p.search('one	subclass	is'))

None

There	 are	 two	 subtleties	 you	 should	 remember	 when	 using	 this
special	sequence.	First,	this	is	the	worst	collision	between	Python’s
string	literals	and	regular	expression	sequences.	In	Python’s	string
literals,	\b	is	the	backspace	character,	ASCII	value	8.	If	you’re	not
using	raw	strings,	then	Python	will	convert	the	\b	to	a	backspace,
and	 your	 RE	 won’t	 match	 as	 you	 expect	 it	 to.	 The	 following
example	looks	the	same	as	our	previous	RE,	but	omits	the	'r'	in
front	of	the	RE	string.

>>>	p	=	re.compile('\bclass\b')

>>>	print(p.search('no	class	at	all'))

None

>>>	print(p.search('\b'	+	'class'	+	'\b'))		

<_sre.SRE_Match	object;	span=(0,	7),	match='\x08class\x08'>

Second,	 inside	 a	 character	 class,	 where	 there’s	 no	 use	 for	 this
assertion,	\b	represents	the	backspace	character,	for	compatibility
with	Python’s	string	literals.

\B

Another	 zero-width	 assertion,	 this	 is	 the	 opposite	 of	 \b,	 only
matching	when	the	current	position	is	not	at	a	word	boundary.

Grouping

Frequently	you	need	to	obtain	more	information	than	just	whether	the
RE	 matched	 or	 not.	 Regular	 expressions	 are	 often	 used	 to	 dissect
strings	 by	 writing	 a	 RE	 divided	 into	 several	 subgroups	 which	match
different	components	of	interest.	For	example,	an	RFC-822	header	line
is	divided	 into	a	header	name	and	a	value,	separated	by	a	':',	 like
this:

From:	author@example.com

User-Agent:	Thunderbird	1.5.0.9	(X11/20061227)

MIME-Version:	1.0

To:	editor@example.com

This	can	be	handled	by	writing	a	regular	expression	which	matches	an
entire	 header	 line,	 and	 has	 one	 group	 which	 matches	 the	 header
name,	and	another	group	which	matches	the	header’s	value.

Groups	are	marked	by	 the	'(',	')'	metacharacters.	'('	 and	 ')'
have	 much	 the	 same	 meaning	 as	 they	 do	 in	 mathematical
expressions;	 they	 group	 together	 the	 expressions	 contained	 inside
them,	 and	 you	 can	 repeat	 the	 contents	 of	 a	 group	 with	 a	 repeating
qualifier,	such	as	*,	+,	?,	or	{m,n}.	For	example,	(ab)*	will	match
zero	or	more	repetitions	of	ab.

>>>	p	=	re.compile('(ab)*')

>>>	print(p.match('ababababab').span())

(0,	10)

Groups	indicated	with	'(',	')'	also	capture	 the	starting	and	ending
index	of	the	text	that	they	match;	this	can	be	retrieved	by	passing	an
argument	 to	group(),	start(),	 end(),	 and	 span().	Groups	 are
numbered	starting	with	0.	Group	0	is	always	present;	it’s	the	whole	RE,
so	match	object	methods	all	have	group	0	as	 their	default	argument.
Later	we’ll	see	how	 to	express	groups	 that	don’t	capture	 the	span	of
text	that	they	match.

>>>	p	=	re.compile('(a)b')

>>>	m	=	p.match('ab')

>>>	m.group()

'ab'

>>>	m.group(0)

'ab'

Subgroups	are	numbered	from	left	to	right,	from	1	upward.	Groups	can
be	 nested;	 to	 determine	 the	 number,	 just	 count	 the	 opening
parenthesis	characters,	going	from	left	to	right.

>>>	p	=	re.compile('(a(b)c)d')

>>>	m	=	p.match('abcd')

>>>	m.group(0)

'abcd'

>>>	m.group(1)

'abc'

>>>	m.group(2)

'b'

group()	can	be	passed	multiple	group	numbers	at	a	 time,	 in	which
case	it	will	return	a	tuple	containing	the	corresponding	values	for	those

groups.

>>>	m.group(2,1,2)

('b',	'abc',	'b')

The	groups()	method	returns	a	tuple	containing	the	strings	for	all	the
subgroups,	from	1	up	to	however	many	there	are.

>>>	m.groups()

('abc',	'b')

Backreferences	 in	a	pattern	allow	you	 to	specify	 that	 the	contents	of
an	earlier	capturing	group	must	also	be	found	at	the	current	location	in
the	string.	For	example,	\1	will	succeed	if	the	exact	contents	of	group
1	can	be	found	at	the	current	position,	and	fails	otherwise.	Remember
that	Python’s	string	literals	also	use	a	backslash	followed	by	numbers
to	allow	including	arbitrary	characters	 in	a	string,	so	be	sure	to	use	a
raw	string	when	incorporating	backreferences	in	a	RE.

For	example,	the	following	RE	detects	doubled	words	in	a	string.

>>>	p	=	re.compile(r'(\b\w+)\s+\1')

>>>	p.search('Paris	in	the	the	spring').group()

'the	the'

Backreferences	like	this	aren’t	often	useful	for	just	searching	through	a
string	—	 there	are	 few	 text	 formats	which	 repeat	data	 in	 this	way	—
but	you’ll	soon	find	out	that	they’re	very	useful	when	performing	string
substitutions.

Non-capturing	and	Named	Groups

Elaborate	REs	may	 use	many	 groups,	 both	 to	 capture	 substrings	 of

interest,	and	 to	group	and	structure	 the	RE	 itself.	 In	complex	REs,	 it
becomes	difficult	 to	keep	 track	of	 the	group	numbers.	There	are	 two
features	which	 help	 with	 this	 problem.	 Both	 of	 them	 use	 a	 common
syntax	for	regular	expression	extensions,	so	we’ll	look	at	that	first.

Perl	 5	 is	 well-known	 for	 its	 powerful	 additions	 to	 standard	 regular
expressions.	 For	 these	 new	 features	 the	 Perl	 developers	 couldn’t
choose	 new	 single-keystroke	 metacharacters	 or	 new	 special
sequences	beginning	with	\	without	making	Perl’s	regular	expressions
confusingly	 different	 from	 standard	 REs.	 If	 they	 chose	 &	 as	 a	 new
metacharacter,	 for	example,	old	expressions	would	be	assuming	 that
&	was	a	regular	character	and	wouldn’t	have	escaped	it	by	writing	\&
or	[&].

The	solution	chosen	by	the	Perl	developers	was	to	use	(?...)	as	the
extension	syntax.	?	immediately	after	a	parenthesis	was	a	syntax	error
because	the	?	would	have	nothing	 to	 repeat,	so	 this	didn’t	 introduce
any	 compatibility	 problems.	 The	 characters	 immediately	 after	 the	 ?
indicate	 what	 extension	 is	 being	 used,	 so	 (?=foo)	 is	 one	 thing	 (a
positive	lookahead	assertion)	and	(?:foo)	is	something	else	(a	non-
capturing	group	containing	the	subexpression	foo).

Python	 supports	 several	 of	Perl’s	 extensions	 and	adds	 an	 extension
syntax	 to	 Perl’s	 extension	 syntax.	 If	 the	 first	 character	 after	 the
question	mark	is	a	P,	you	know	that	it’s	an	extension	that’s	specific	to
Python.

Now	that	we’ve	looked	at	the	general	extension	syntax,	we	can	return
to	the	features	that	simplify	working	with	groups	in	complex	REs.

Sometimes	 you’ll	 want	 to	 use	 a	 group	 to	 denote	 a	 part	 of	 a	 regular
expression,	but	aren’t	interested	in	retrieving	the	group’s	contents.	You

can	make	this	fact	explicit	by	using	a	non-capturing	group:	(?:...),
where	you	can	replace	the	...	with	any	other	regular	expression.

>>>	m	=	re.match("([abc])+",	"abc")

>>>	m.groups()

('c',)

>>>	m	=	re.match("(?:[abc])+",	"abc")

>>>	m.groups()

()

Except	 for	 the	 fact	 that	 you	 can’t	 retrieve	 the	 contents	 of	 what	 the
group	matched,	a	non-capturing	group	behaves	exactly	the	same	as	a
capturing	 group;	 you	 can	 put	 anything	 inside	 it,	 repeat	 it	 with	 a
repetition	 metacharacter	 such	 as	 *,	 and	 nest	 it	 within	 other	 groups
(capturing	 or	 non-capturing).	 (?:...)	 is	 particularly	 useful	 when
modifying	an	existing	pattern,	since	you	can	add	new	groups	without
changing	 how	 all	 the	 other	 groups	 are	 numbered.	 It	 should	 be
mentioned	 that	 there’s	 no	 performance	 difference	 in	 searching
between	 capturing	 and	 non-capturing	 groups;	 neither	 form	 is	 any
faster	than	the	other.

A	 more	 significant	 feature	 is	 named	 groups:	 instead	 of	 referring	 to
them	by	numbers,	groups	can	be	referenced	by	a	name.

The	 syntax	 for	 a	 named	 group	 is	 one	 of	 the	 Python-specific
extensions:	 (?P<name>...).	 name	 is,	 obviously,	 the	 name	 of	 the
group.	 Named	 groups	 behave	 exactly	 like	 capturing	 groups,	 and
additionally	associate	a	name	with	a	group.	The	match	object	methods
that	deal	with	capturing	groups	all	accept	either	 integers	 that	 refer	 to
the	group	by	number	or	strings	that	contain	the	desired	group’s	name.
Named	groups	are	still	given	numbers,	so	you	can	retrieve	information
about	a	group	in	two	ways:

>>>	p	=	re.compile(r'(?P<word>\b\w+\b)')

>>>	m	=	p.search('((((Lots	of	punctuation)))')

>>>	m.group('word')

'Lots'

>>>	m.group(1)

'Lots'

Named	 groups	 are	 handy	 because	 they	 let	 you	 use	 easily-
remembered	names,	 instead	of	having	to	remember	numbers.	Here’s
an	example	RE	from	the	imaplib	module:

InternalDate	=	re.compile(r'INTERNALDATE	"'

								r'(?P<day>[123][0-9])-(?P<mon>[A-Z][a-z][a-z])-'

								r'(?P<year>[0-9][0-9][0-9][0-9])'

								r'	(?P<hour>[0-9][0-9]):(?P<min>[0-9][0-9]):(?P<sec>[0-9][0-9])'

								r'	(?P<zonen>[-+])(?P<zoneh>[0-9][0-9])(?P<zonem>[0-9][0-9])'

								r'"')

It’s	obviously	much	easier	to	retrieve	m.group('zonem'),	instead	of
having	to	remember	to	retrieve	group	9.

The	 syntax	 for	 backreferences	 in	 an	 expression	 such	 as	 (...)\1
refers	to	the	number	of	the	group.	There’s	naturally	a	variant	that	uses
the	 group	 name	 instead	 of	 the	 number.	 This	 is	 another	 Python
extension:	(?P=name)	indicates	that	the	contents	of	the	group	called
name	 should	 again	 be	 matched	 at	 the	 current	 point.	 The	 regular
expression	 for	 finding	 doubled	 words,	 (\b\w+)\s+\1	 can	 also	 be
written	as	(?P<word>\b\w+)\s+(?P=word):

>>>	p	=	re.compile(r'(?P<word>\b\w+)\s+(?P=word)')

>>>	p.search('Paris	in	the	the	spring').group()

'the	the'

Lookahead	Assertions

Another	 zero-width	 assertion	 is	 the	 lookahead	 assertion.	 Lookahead
assertions	are	available	 in	both	positive	and	negative	 form,	and	 look
like	this:

(?=...)

Positive	 lookahead	 assertion.	 This	 succeeds	 if	 the	 contained
regular	 expression,	 represented	 here	 by	 ...,	 successfully
matches	at	the	current	 location,	and	fails	otherwise.	But,	once	the
contained	expression	has	been	tried,	the	matching	engine	doesn’t
advance	 at	 all;	 the	 rest	 of	 the	 pattern	 is	 tried	 right	 where	 the
assertion	started.

(?!...)

Negative	 lookahead	assertion.	This	 is	 the	opposite	of	 the	positive
assertion;	it	succeeds	if	the	contained	expression	doesn’t	match	at
the	current	position	in	the	string.

To	 make	 this	 concrete,	 let’s	 look	 at	 a	 case	 where	 a	 lookahead	 is
useful.	Consider	a	simple	pattern	to	match	a	filename	and	split	it	apart
into	a	base	name	and	an	extension,	separated	by	a	..	For	example,	in
news.rc,	news	is	the	base	name,	and	rc	is	the	filename’s	extension.

The	pattern	to	match	this	is	quite	simple:

.*[.].*$

Notice	 that	 the	 .	 needs	 to	 be	 treated	 specially	 because	 it’s	 a
metacharacter,	 so	 it’s	 inside	 a	 character	 class	 to	 only	 match	 that
specific	 character.	 Also	 notice	 the	 trailing	 $;	 this	 is	 added	 to	 ensure
that	all	 the	 rest	of	 the	string	must	be	 included	 in	 the	extension.	This
regular	 expression	 matches	 foo.bar	 and	 autoexec.bat	 and
sendmail.cf	and	printers.conf.

Now,	 consider	 complicating	 the	 problem	 a	 bit;	 what	 if	 you	 want	 to
match	 filenames	 where	 the	 extension	 is	 not	 bat?	 Some	 incorrect
attempts:

.*[.][^b].*$	 The	 first	 attempt	 above	 tries	 to	 exclude	 bat	 by
requiring	 that	 the	 first	 character	 of	 the	 extension	 is	 not	 a	 b.	 This	 is
wrong,	because	the	pattern	also	doesn’t	match	foo.bar.

.*[.]([^b]..|.[^a].|..[^t])$

The	expression	gets	messier	when	you	try	to	patch	up	the	first	solution
by	requiring	one	of	the	following	cases	to	match:	the	first	character	of
the	 extension	 isn’t	 b;	 the	 second	 character	 isn’t	 a;	 or	 the	 third
character	isn’t	t.	This	accepts	foo.bar	and	rejects	autoexec.bat,
but	it	requires	a	three-letter	extension	and	won’t	accept	a	filename	with
a	 two-letter	 extension	 such	 as	 sendmail.cf.	 We’ll	 complicate	 the
pattern	again	in	an	effort	to	fix	it.

.*[.]([^b].?.?|.[^a]?.?|..?[^t]?)$

In	the	third	attempt,	the	second	and	third	letters	are	all	made	optional
in	 order	 to	 allow	matching	 extensions	 shorter	 than	 three	 characters,
such	as	sendmail.cf.

The	pattern’s	getting	 really	 complicated	now,	which	makes	 it	 hard	 to
read	and	understand.	Worse,	if	the	problem	changes	and	you	want	to
exclude	both	bat	and	exe	as	extensions,	the	pattern	would	get	even
more	complicated	and	confusing.

A	negative	lookahead	cuts	through	all	this	confusion:

.*[.](?!bat$).*$	 The	 negative	 lookahead	 means:	 if	 the

expression	bat	doesn’t	match	at	this	point,	try	the	rest	of	the	pattern;
if	 bat$	 does	 match,	 the	 whole	 pattern	 will	 fail.	 The	 trailing	 $	 is
required	 to	 ensure	 that	 something	 like	 sample.batch,	 where	 the
extension	only	starts	with	bat,	will	be	allowed.

Excluding	another	filename	extension	is	now	easy;	simply	add	it	as	an
alternative	 inside	 the	 assertion.	 The	 following	 pattern	 excludes
filenames	that	end	in	either	bat	or	exe:

.*[.](?!bat$|exe$).*$

Modifying	Strings

Up	 to	 this	 point,	 we’ve	 simply	 performed	 searches	 against	 a	 static
string.	Regular	expressions	are	also	commonly	used	to	modify	strings
in	various	ways,	using	the	following	pattern	methods:

Method/Attribute Purpose

split()
Split	the	string	into	a	list,	splitting	it	wherever
the	RE	matches

sub()
Find	all	substrings	where	the	RE	matches,	and
replace	them	with	a	different	string

subn()
Does	the	same	thing	as	sub(),	but	returns	the
new	string	and	the	number	of	replacements

Splitting	Strings

The	split()	method	of	a	pattern	splits	a	string	apart	wherever	 the
RE	matches,	returning	a	list	of	the	pieces.	It’s	similar	to	the	split()
method	of	strings	but	provides	much	more	generality	in	the	delimiters
that	 you	 can	 split	 by;	 string	 split()	 only	 supports	 splitting	 by
whitespace	 or	 by	 a	 fixed	 string.	 As	 you’d	 expect,	 there’s	 a	 module-
level	re.split()	function,	too.

.split(string[,	maxsplit=0])
Split	string	 by	 the	matches	of	 the	 regular	expression.	 If	 capturing
parentheses	 are	 used	 in	 the	RE,	 then	 their	 contents	 will	 also	 be
returned	as	part	of	the	resulting	list.	If	maxsplit	is	nonzero,	at	most
maxsplit	splits	are	performed.

You	 can	 limit	 the	 number	 of	 splits	 made,	 by	 passing	 a	 value	 for
maxsplit.	 When	maxsplit	 is	 nonzero,	 at	 most	maxsplit	 splits	 will	 be

made,	and	the	remainder	of	the	string	is	returned	as	the	final	element
of	 the	 list.	 In	 the	 following	example,	 the	delimiter	 is	any	sequence	of
non-alphanumeric	characters.

>>>	p	=	re.compile(r'\W+')

>>>	p.split('This	is	a	test,	short	and	sweet,	of	split().'

['This',	'is',	'a',	'test',	'short',	'and',	'sweet',	'of',	'split',	'']

>>>	p.split('This	is	a	test,	short	and	sweet,	of	split().'

['This',	'is',	'a',	'test,	short	and	sweet,	of	split().']

Sometimes	 you’re	 not	 only	 interested	 in	 what	 the	 text	 between
delimiters	is,	but	also	need	to	know	what	the	delimiter	was.	If	capturing
parentheses	are	used	in	the	RE,	then	their	values	are	also	returned	as
part	of	the	list.	Compare	the	following	calls:

>>>	p	=	re.compile(r'\W+')

>>>	p2	=	re.compile(r'(\W+)')

>>>	p.split('This...	is	a	test.')

['This',	'is',	'a',	'test',	'']

>>>	p2.split('This...	is	a	test.')

['This',	'...	',	'is',	'	',	'a',	'	',	'test',	'.',	'']

The	module-level	 function	 re.split()	 adds	 the	RE	 to	 be	used	as
the	first	argument,	but	is	otherwise	the	same.

>>>	re.split('[\W]+',	'Words,	words,	words.')

['Words',	'words',	'words',	'']

>>>	re.split('([\W]+)',	'Words,	words,	words.')

['Words',	',	',	'words',	',	',	'words',	'.',	'']

>>>	re.split('[\W]+',	'Words,	words,	words.',	1)

['Words',	'words,	words.']

Search	and	Replace

Another	 common	 task	 is	 to	 find	 all	 the	 matches	 for	 a	 pattern,	 and
replace	 them	 with	 a	 different	 string.	 The	 sub()	 method	 takes	 a
replacement	value,	which	can	be	either	a	string	or	a	function,	and	the
string	to	be	processed.

.sub(replacement,	string[,	count=0])
Returns	 the	 string	 obtained	 by	 replacing	 the	 leftmost	 non-
overlapping	 occurrences	 of	 the	 RE	 in	 string	 by	 the	 replacement
replacement.	 If	 the	 pattern	 isn’t	 found,	 string	 is	 returned
unchanged.

The	 optional	 argument	 count	 is	 the	 maximum	 number	 of	 pattern
occurrences	to	be	replaced;	count	must	be	a	non-negative	integer.
The	default	value	of	0	means	to	replace	all	occurrences.

Here’s	 a	 simple	 example	 of	 using	 the	 sub()	 method.	 It	 replaces
colour	names	with	the	word	colour:

>>>	p	=	re.compile('(blue|white|red)')

>>>	p.sub('colour',	'blue	socks	and	red	shoes')

'colour	socks	and	colour	shoes'

>>>	p.sub('colour',	'blue	socks	and	red	shoes',	count

'colour	socks	and	red	shoes'

The	 subn()	 method	 does	 the	 same	 work,	 but	 returns	 a	 2-tuple
containing	the	new	string	value	and	the	number	of	replacements	that
were	performed:

>>>	p	=	re.compile('(blue|white|red)')

>>>	p.subn('colour',	'blue	socks	and	red	shoes')

('colour	socks	and	colour	shoes',	2)

>>>	p.subn('colour',	'no	colours	at	all')

('no	colours	at	all',	0)

Empty	 matches	 are	 replaced	 only	 when	 they’re	 not	 adjacent	 to	 a
previous	match.

>>>	p	=	re.compile('x*')

>>>	p.sub('-',	'abxd')

'-a-b-d-'

If	replacement	is	a	string,	any	backslash	escapes	in	it	are	processed.
That	is,	\n	is	converted	to	a	single	newline	character,	\r	is	converted
to	a	carriage	return,	and	so	 forth.	Unknown	escapes	such	as	\j	are
left	alone.	Backreferences,	such	as	\6,	are	replaced	with	the	substring
matched	 by	 the	 corresponding	 group	 in	 the	 RE.	 This	 lets	 you
incorporate	 portions	 of	 the	 original	 text	 in	 the	 resulting	 replacement
string.

This	 example	 matches	 the	 word	 section	 followed	 by	 a	 string
enclosed	in	{,	},	and	changes	section	to	subsection:

>>>	p	=	re.compile('section{	([^}]*)	}',	re.VERBOSE

>>>	p.sub(r'subsection{\1}','section{First}	section{second}'

'subsection{First}	subsection{second}'

There’s	also	a	syntax	for	referring	to	named	groups	as	defined	by	the
(?P<name>...)	 syntax.	 \g<name>	 will	 use	 the	 substring	matched
by	the	group	named	name,	and	\g<number>	uses	the	corresponding
group	 number.	 \g<2>	 is	 therefore	 equivalent	 to	 \2,	 but	 isn’t
ambiguous	 in	a	 replacement	string	such	as	\g<2>0.	 (\20	would	 be
interpreted	 as	 a	 reference	 to	 group	 20,	 not	 a	 reference	 to	 group	 2
followed	by	 the	 literal	character	'0'.)	The	 following	substitutions	are
all	equivalent,	but	use	all	three	variations	of	the	replacement	string.

>>>	p	=	re.compile('section{	(?P<name>	[^}]*)	}',	re

>>>	p.sub(r'subsection{\1}','section{First}')

'subsection{First}'

>>>	p.sub(r'subsection{\g<1>}','section{First}')

'subsection{First}'

>>>	p.sub(r'subsection{\g<name>}','section{First}')

'subsection{First}'

replacement	 can	 also	 be	 a	 function,	 which	 gives	 you	 even	 more
control.	 If	 replacement	 is	 a	 function,	 the	 function	 is	 called	 for	 every
non-overlapping	 occurrence	 of	pattern.	On	 each	 call,	 the	 function	 is
passed	 a	 match	 object	 argument	 for	 the	 match	 and	 can	 use	 this
information	to	compute	the	desired	replacement	string	and	return	it.

In	the	following	example,	the	replacement	function	translates	decimals
into	hexadecimal:

>>>	def	hexrepl(match):

...					"Return	the	hex	string	for	a	decimal	number"

...					value	=	int(match.group())

...					return	hex(value)

...

>>>	p	=	re.compile(r'\d+')

>>>	p.sub(hexrepl,	'Call	65490	for	printing,	49152	for	user	code.'

'Call	0xffd2	for	printing,	0xc000	for	user	code.'

When	 using	 the	 module-level	 re.sub()	 function,	 the	 pattern	 is
passed	 as	 the	 first	 argument.	 The	 pattern	 may	 be	 provided	 as	 an
object	or	as	a	string;	 if	 you	need	 to	specify	 regular	expression	 flags,
you	 must	 either	 use	 a	 pattern	 object	 as	 the	 first	 parameter,	 or	 use
embedded	modifiers	in	the	pattern	string,	e.g.	sub("(?i)b+",	"x",
"bbbb	BBBB")	returns	'x	x'.

Common	Problems

Regular	expressions	are	a	powerful	 tool	 for	some	applications,	but	 in
some	 ways	 their	 behaviour	 isn’t	 intuitive	 and	 at	 times	 they	 don’t
behave	 the	way	 you	may	expect	 them	 to.	 This	 section	will	 point	 out
some	of	the	most	common	pitfalls.

Use	String	Methods

Sometimes	 using	 the	 re	 module	 is	 a	mistake.	 If	 you’re	 matching	 a
fixed	string,	or	a	single	character	class,	and	you’re	not	using	any	re
features	such	as	the	IGNORECASE	flag,	then	the	full	power	of	regular
expressions	may	 not	 be	 required.	 Strings	 have	 several	 methods	 for
performing	 operations	 with	 fixed	 strings	 and	 they’re	 usually	 much
faster,	because	the	implementation	is	a	single	small	C	loop	that’s	been
optimized	 for	 the	 purpose,	 instead	 of	 the	 large,	 more	 generalized
regular	expression	engine.

One	example	might	be	replacing	a	single	fixed	string	with	another	one;
for	 example,	 you	might	 replace	 word	with	 deed.	 re.sub()	 seems
like	the	function	to	use	for	this,	but	consider	the	replace()	method.
Note	 that	 replace()	 will	 also	 replace	 word	 inside	 words,	 turning
swordfish	 into	 sdeedfish,	 but	 the	 naive	 RE	 word	 would	 have
done	that,	too.	(To	avoid	performing	the	substitution	on	parts	of	words,
the	pattern	would	have	to	be	\bword\b,	in	order	to	require	that	word
have	 a	 word	 boundary	 on	 either	 side.	 This	 takes	 the	 job	 beyond
replace()‘s	abilities.)

Another	 common	 task	 is	 deleting	 every	 occurrence	 of	 a	 single
character	 from	 a	 string	 or	 replacing	 it	 with	 another	 single	 character.

You	might	do	this	with	something	like	re.sub('\n',	'	',	S),	but
translate()	 is	capable	of	doing	both	 tasks	and	will	be	 faster	 than
any	regular	expression	operation	can	be.

In	 short,	 before	 turning	 to	 the	 re	 module,	 consider	 whether	 your
problem	can	be	solved	with	a	faster	and	simpler	string	method.

match()	versus	search()

The	match()	function	only	checks	if	the	RE	matches	at	the	beginning
of	the	string	while	search()	will	scan	forward	through	the	string	for	a
match.	 It’s	 important	 to	 keep	 this	 distinction	 in	 mind.	 Remember,
match()	will	only	report	a	successful	match	which	will	start	at	0;	if	the
match	wouldn’t	start	at	zero,	match()	will	not	report	it.

>>>	print(re.match('super',	'superstition').span())

(0,	5)

>>>	print(re.match('super',	'insuperable'))

None

On	 the	 other	 hand,	 search()	 will	 scan	 forward	 through	 the	 string,
reporting	the	first	match	it	finds.

>>>	print(re.search('super',	'superstition').span())

(0,	5)

>>>	print(re.search('super',	'insuperable').span())

(2,	7)

Sometimes	 you’ll	 be	 tempted	 to	 keep	 using	 re.match(),	 and	 just
add	 .*	 to	 the	 front	 of	 your	 RE.	 Resist	 this	 temptation	 and	 use
re.search()	 instead.	 The	 regular	 expression	 compiler	 does	 some
analysis	 of	 REs	 in	 order	 to	 speed	 up	 the	 process	 of	 looking	 for	 a

match.	 One	 such	 analysis	 figures	 out	 what	 the	 first	 character	 of	 a
match	must	be;	for	example,	a	pattern	starting	with	Crow	must	match
starting	with	a	'C'.	The	analysis	lets	the	engine	quickly	scan	through
the	string	looking	for	the	starting	character,	only	trying	the	full	match	if
a	'C'	is	found.

Adding	.*	defeats	 this	optimization,	 requiring	scanning	 to	 the	end	of
the	string	and	then	backtracking	to	find	a	match	for	the	rest	of	the	RE.
Use	re.search()	instead.

Greedy	versus	Non-Greedy

When	repeating	a	regular	expression,	as	in	a*,	the	resulting	action	is
to	consume	as	much	of	 the	pattern	as	possible.	This	 fact	often	bites
you	when	you’re	trying	to	match	a	pair	of	balanced	delimiters,	such	as
the	 angle	 brackets	 surrounding	 an	 HTML	 tag.	 The	 naive	 pattern	 for
matching	 a	 single	 HTML	 tag	 doesn’t	 work	 because	 of	 the	 greedy
nature	of	.*.

>>>	s	=	'<html><head><title>Title</title>'

>>>	len(s)

32

>>>	print(re.match('<.*>',	s).span())

(0,	32)

>>>	print(re.match('<.*>',	s).group())

<html><head><title>Title</title>

The	RE	matches	the	'<'	in	<html>,	and	the	.*	consumes	the	rest
of	the	string.	There’s	still	more	left	 in	the	RE,	though,	and	the	>	can’t
match	at	the	end	of	the	string,	so	the	regular	expression	engine	has	to
backtrack	character	by	character	until	 it	 finds	a	match	 for	 the	>.	The
final	match	extends	from	the	'<'	in	<html>	to	the	'>'	in	</title>,

which	isn’t	what	you	want.

In	 this	 case,	 the	solution	 is	 to	use	 the	non-greedy	qualifiers	 *?,	 +?,
??,	 or	 {m,n}?,	which	match	 as	 little	 text	 as	 possible.	 In	 the	 above
example,	the	'>'	is	tried	immediately	after	the	first	'<'	matches,	and
when	 it	 fails,	 the	engine	advances	a	character	at	a	 time,	 retrying	 the
'>'	at	every	step.	This	produces	just	the	right	result:

>>>	print(re.match('<.*?>',	s).group())

<html>

(Note	 that	 parsing	HTML	or	XML	with	 regular	 expressions	 is	 painful.
Quick-and-dirty	 patterns	 will	 handle	 common	 cases,	 but	 HTML	 and
XML	have	special	cases	that	will	break	the	obvious	regular	expression;
by	the	time	you’ve	written	a	regular	expression	that	handles	all	of	the
possible	cases,	the	patterns	will	be	very	complicated.	Use	an	HTML	or
XML	parser	module	for	such	tasks.)

Using	re.VERBOSE

By	 now	 you’ve	 probably	 noticed	 that	 regular	 expressions	 are	 a	 very
compact	 notation,	 but	 they’re	 not	 terribly	 readable.	REs	 of	moderate
complexity	 can	 become	 lengthy	 collections	 of	 backslashes,
parentheses,	 and	metacharacters,	 making	 them	 difficult	 to	 read	 and
understand.

For	 such	REs,	 specifying	 the	 re.VERBOSE	 flag	when	 compiling	 the
regular	expression	can	be	helpful,	because	it	allows	you	to	format	the
regular	expression	more	clearly.

The	re.VERBOSE	 flag	has	several	effects.	Whitespace	 in	 the	regular
expression	 that	 isn’t	 inside	 a	 character	 class	 is	 ignored.	This	means

that	 an	 expression	 such	 as	 dog	 |	 cat	 is	 equivalent	 to	 the	 less
readable	 dog|cat,	 but	 [a	 b]	 will	 still	 match	 the	 characters	 'a',
'b',	or	a	space.	In	addition,	you	can	also	put	comments	inside	a	RE;
comments	extend	from	a	#	character	to	the	next	newline.	When	used
with	 triple-quoted	 strings,	 this	 enables	 REs	 to	 be	 formatted	 more
neatly:

pat	=	re.compile(r"""

	\s*																	#	Skip	leading	whitespace

	(?P<header>[^:]+)			#	Header	name

	\s*	:															#	Whitespace,	and	a	colon

	(?P<value>.*?)						#	The	header's	value	--	*?	used	to

																					#	lose	the	following	trailing	whitespace

	\s*$																#	Trailing	whitespace	to	end-of-line

""",	re.VERBOSE)

This	is	far	more	readable	than:

pat	=	re.compile(r"\s*(?P<header>[^:]+)\s*:(?P<value>.*?)\s*$"

Feedback

Regular	expressions	are	a	complicated	topic.	Did	 this	document	help
you	 understand	 them?	 Were	 there	 parts	 that	 were	 unclear,	 or
Problems	 you	 encountered	 that	 weren’t	 covered	 here?	 If	 so,	 please
send	suggestions	for	improvements	to	the	author.

The	 most	 complete	 book	 on	 regular	 expressions	 is	 almost	 certainly
Jeffrey	Friedl’s	Mastering	Regular	Expressions,	published	by	O’Reilly.
Unfortunately,	 it	exclusively	concentrates	on	Perl	and	Java’s	 flavours
of	regular	expressions,	and	doesn’t	contain	any	Python	material	at	all,
so	 it	won’t	be	useful	as	a	reference	for	programming	 in	Python.	(The
first	 edition	 covered	 Python’s	 now-removed	 regex	 module,	 which
won’t	help	you	much.)	Consider	checking	it	out	from	your	library.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Socket	Programming	HOWTO
Author: Gordon	McMillan

Abstract

Sockets	 are	 used	 nearly	 everywhere,	 but	 are	 one	 of	 the	 most
severely	misunderstood	 technologies	around.	This	 is	 a	10,000	 foot
overview	of	sockets.	It’s	not	really	a	tutorial	-	you’ll	still	have	work	to
do	in	getting	things	operational.	It	doesn’t	cover	the	fine	points	(and
there	 are	 a	 lot	 of	 them),	 but	 I	 hope	 it	 will	 give	 you	 enough
background	to	begin	using	them	decently.

Sockets

I’m	only	going	to	talk	about	INET	(i.e.	IPv4)	sockets,	but	they	account
for	at	least	99%	of	the	sockets	in	use.	And	I’ll	only	talk	about	STREAM
(i.e.	TCP)	sockets	-	unless	you	really	know	what	you’re	doing	(in	which
case	 this	 HOWTO	 isn’t	 for	 you!),	 you’ll	 get	 better	 behavior	 and
performance	 from	a	STREAM	socket	 than	anything	else.	 I	will	 try	 to
clear	up	the	mystery	of	what	a	socket	is,	as	well	as	some	hints	on	how
to	work	with	blocking	and	non-blocking	sockets.	But	I’ll	start	by	talking
about	 blocking	 sockets.	 You’ll	 need	 to	 know	 how	 they	 work	 before
dealing	with	non-blocking	sockets.

Part	of	the	trouble	with	understanding	these	things	is	that	“socket”	can
mean	 a	 number	 of	 subtly	 different	 things,	 depending	 on	 context.	 So
first,	let’s	make	a	distinction	between	a	“client”	socket	-	an	endpoint	of
a	 conversation,	 and	 a	 “server”	 socket,	 which	 is	 more	 like	 a
switchboard	 operator.	 The	 client	 application	 (your	 browser,	 for
example)	uses	 “client”	sockets	exclusively;	 the	web	server	 it’s	 talking
to	uses	both	“server”	sockets	and	“client”	sockets.

History

Of	the	various	forms	of	IPC,	sockets	are	by	 far	 the	most	popular.	On
any	given	platform,	 there	are	 likely	 to	be	other	 forms	of	 IPC	 that	are
faster,	 but	 for	 cross-platform	 communication,	 sockets	 are	 about	 the
only	game	in	town.

They	were	invented	in	Berkeley	as	part	of	the	BSD	flavor	of	Unix.	They
spread	 like	 wildfire	 with	 the	 Internet.	 With	 good	 reason	 —	 the
combination	of	sockets	with	INET	makes	talking	to	arbitrary	machines
around	 the	 world	 unbelievably	 easy	 (at	 least	 compared	 to	 other

schemes).

Creating	a	Socket

Roughly	 speaking,	 when	 you	 clicked	 on	 the	 link	 that	 brought	 you	 to
this	page,	your	browser	did	something	like	the	following:

#	create	an	INET,	STREAMing	socket

s	=	socket.socket(socket.AF_INET,	socket.SOCK_STREAM

#	now	connect	to	the	web	server	on	port	80	-	the	normal	http	port

s.connect(("www.python.org",	80))

When	the	connect	completes,	the	socket	s	can	be	used	to	send	in	a
request	 for	 the	text	of	 the	page.	The	same	socket	will	 read	the	reply,
and	 then	 be	 destroyed.	 That’s	 right,	 destroyed.	 Client	 sockets	 are
normally	 only	 used	 for	 one	 exchange	 (or	 a	 small	 set	 of	 sequential
exchanges).

What	happens	in	the	web	server	is	a	bit	more	complex.	First,	the	web
server	creates	a	“server	socket”:

#	create	an	INET,	STREAMing	socket

serversocket	=	socket.socket(socket.AF_INET,	socket.

#	bind	the	socket	to	a	public	host,	and	a	well-known	port

serversocket.bind((socket.gethostname(),	80))

#	become	a	server	socket

serversocket.listen(5)

A	couple	things	to	notice:	we	used	socket.gethostname()	so	that
the	 socket	 would	 be	 visible	 to	 the	 outside	 world.	 If	 we	 had	 used
s.bind(('localhost',	 80))	 or	 s.bind(('127.0.0.1',

80))	 we	 would	 still	 have	 a	 “server”	 socket,	 but	 one	 that	 was	 only
visible	within	 the	same	machine.	s.bind(('',	80))	specifies	 that

the	socket	is	reachable	by	any	address	the	machine	happens	to	have.

A	second	thing	to	note:	low	number	ports	are	usually	reserved	for	“well
known”	 services	 (HTTP,	 SNMP	 etc).	 If	 you’re	 playing	 around,	 use	 a
nice	high	number	(4	digits).

Finally,	the	argument	to	listen	tells	the	socket	library	that	we	want	it
to	queue	up	as	many	as	5	connect	requests	(the	normal	max)	before
refusing	outside	connections.	If	the	rest	of	the	code	is	written	properly,
that	should	be	plenty.

Now	that	we	have	a	“server”	socket,	listening	on	port	80,	we	can	enter
the	mainloop	of	the	web	server:

while	True:

				#	accept	connections	from	outside

				(clientsocket,	address)	=	serversocket.accept()

				#	now	do	something	with	the	clientsocket

				#	in	this	case,	we'll	pretend	this	is	a	threaded	server

				ct	=	client_thread(clientsocket)

				ct.run()

There’s	 actually	 3	 general	 ways	 in	 which	 this	 loop	 could	 work	 -
dispatching	a	thread	to	handle	clientsocket,	create	a	new	process
to	handle	clientsocket,	or	restructure	this	app	to	use	non-blocking
sockets,	 and	 mulitplex	 between	 our	 “server”	 socket	 and	 any	 active
clientsockets	using	select.	More	about	that	later.	The	important
thing	 to	 understand	 now	 is	 this:	 this	 is	all	 a	 “server”	 socket	 does.	 It
doesn’t	 send	 any	 data.	 It	 doesn’t	 receive	 any	 data.	 It	 just	 produces
“client”	sockets.	Each	clientsocket	is	created	in	response	to	some
other	 “client”	 socket	 doing	 a	 connect()	 to	 the	 host	 and	 port	 we’re
bound	to.	As	soon	as	we’ve	created	that	clientsocket,	we	go	back
to	 listening	 for	more	connections.	The	 two	“clients”	are	 free	 to	chat	 it

up	 -	 they	 are	 using	 some	 dynamically	 allocated	 port	 which	 will	 be
recycled	when	the	conversation	ends.

IPC

If	 you	 need	 fast	 IPC	 between	 two	 processes	 on	 one	 machine,	 you
should	 look	 into	 pipes	 or	 shared	 memory.	 If	 you	 do	 decide	 to	 use
AF_INET	sockets,	bind	the	“server”	socket	to	'localhost'.	On	most
platforms,	this	will	take	a	shortcut	around	a	couple	of	layers	of	network
code	and	be	quite	a	bit	faster.

See	also: 	The	multiprocessing	integrates	cross-platform	IPC
into	a	higher-level	API.

Using	a	Socket

The	first	thing	to	note,	is	that	the	web	browser’s	“client”	socket	and	the
web	server’s	“client”	socket	are	identical	beasts.	That	is,	this	is	a	“peer
to	peer”	 conversation.	Or	 to	put	 it	 another	way,	as	 the	designer,	 you
will	have	to	decide	what	 the	rules	of	etiquette	are	 for	a	conversation.
Normally,	the	connecting	socket	starts	the	conversation,	by	sending
in	a	request,	or	perhaps	a	signon.	But	that’s	a	design	decision	-	it’s	not
a	rule	of	sockets.

Now	 there	are	 two	 sets	of	 verbs	 to	use	 for	 communication.	You	 can
use	send	 and	 recv,	 or	 you	 can	 transform	 your	 client	 socket	 into	 a
file-like	beast	 and	use	 read	and	write.	 The	 latter	 is	 the	way	 Java
presents	its	sockets.	I’m	not	going	to	talk	about	it	here,	except	to	warn
you	 that	 you	 need	 to	 use	 flush	 on	 sockets.	 These	 are	 buffered
“files”,	and	a	common	mistake	is	to	write	something,	and	then	read
for	 a	 reply.	Without	 a	 flush	 in	 there,	 you	may	 wait	 forever	 for	 the
reply,	because	the	request	may	still	be	in	your	output	buffer.

Now	 we	 come	 to	 the	major	 stumbling	 block	 of	 sockets	 -	 send	 and
recv	operate	on	the	network	buffers.	They	do	not	necessarily	handle
all	 the	 bytes	 you	 hand	 them	 (or	 expect	 from	 them),	 because	 their
major	 focus	 is	 handling	 the	 network	 buffers.	 In	 general,	 they	 return
when	 the	 associated	 network	 buffers	 have	 been	 filled	 (send)	 or
emptied	(recv).	They	then	tell	you	how	many	bytes	they	handled.	It	is
your	 responsibility	 to	 call	 them	 again	 until	 your	 message	 has	 been
completely	dealt	with.

When	a	recv	returns	0	bytes,	it	means	the	other	side	has	closed	(or
is	 in	 the	process	of	 closing)	 the	connection.	You	will	 not	 receive	any
more	 data	 on	 this	 connection.	 Ever.	 You	may	 be	 able	 to	 send	 data

successfully;	I’ll	talk	more	about	this	later.

A	 protocol	 like	HTTP	uses	 a	 socket	 for	 only	 one	 transfer.	 The	 client
sends	a	request,	then	reads	a	reply.	That’s	it.	The	socket	is	discarded.
This	means	that	a	client	can	detect	the	end	of	the	reply	by	receiving	0
bytes.

But	 if	you	plan	to	reuse	your	socket	for	further	transfers,	you	need	to
realize	that	there	is	no	EOT	on	a	socket.	I	repeat:	if	a	socket	send	or
recv	returns	after	handling	0	bytes,	the	connection	has	been	broken.
If	 the	 connection	 has	 not	 been	 broken,	 you	 may	 wait	 on	 a	 recv
forever,	because	the	socket	will	not	 tell	you	that	there’s	nothing	more
to	 read	 (for	 now).	 Now	 if	 you	 think	 about	 that	 a	 bit,	 you’ll	 come	 to
realize	a	fundamental	truth	of	sockets:	messages	must	either	be	fixed
length	 (yuck),	or	 be	 delimited	 (shrug),	or	 indicate	 how	 long	 they	 are
(much	better),	or	end	by	shutting	down	the	connection.	The	choice	is
entirely	yours,	(but	some	ways	are	righter	than	others).

Assuming	you	don’t	want	to	end	the	connection,	the	simplest	solution
is	a	fixed	length	message:

class	mysocket:

				"""demonstration	class	only

						-	coded	for	clarity,	not	efficiency

				"""

				def	__init__(self,	sock=None):

								if	sock	is	None:

												self.sock	=	socket.socket(

																												socket.AF_INET,	socket.SOCK_STREAM

												else:

																self.sock	=	sock

				def	connect(self,	host,	port):

								self.sock.connect((host,	port))

				def	mysend(self,	msg):

								totalsent	=	0

								while	totalsent	<	MSGLEN:

												sent	=	self.sock.send(msg[totalsent:])

												if	sent	==	0:

																raise	RuntimeError("socket	connection	broken"

												totalsent	=	totalsent	+	sent

				def	myreceive(self):

								msg	=	b''

								while	len(msg)	<	MSGLEN:

												chunk	=	self.sock.recv(MSGLEN-len(msg))

												if	chunk	==	b'':

																raise	RuntimeError("socket	connection	broken"

												msg	=	msg	+	chunk

								return	msg

The	sending	code	here	is	usable	for	almost	any	messaging	scheme	-
in	Python	you	send	strings,	and	you	can	use	len()	 to	determine	 its
length	 (even	 if	 it	 has	 embedded	 \0	 characters).	 It’s	 mostly	 the
receiving	code	that	gets	more	complex.	(And	in	C,	it’s	not	much	worse,
except	you	can’t	use	strlen	if	the	message	has	embedded	\0s.)

The	 easiest	 enhancement	 is	 to	 make	 the	 first	 character	 of	 the
message	an	 indicator	of	message	type,	and	have	the	type	determine
the	 length.	Now	you	have	 two	 recvs	 -	 the	 first	 to	get	 (at	 least)	 that
first	character	so	you	can	look	up	the	length,	and	the	second	in	a	loop
to	 get	 the	 rest.	 If	 you	 decide	 to	 go	 the	 delimited	 route,	 you’ll	 be
receiving	 in	some	arbitrary	chunk	size,	 (4096	or	8192	 is	 frequently	a
good	 match	 for	 network	 buffer	 sizes),	 and	 scanning	 what	 you’ve
received	for	a	delimiter.

One	complication	to	be	aware	of:	if	your	conversational	protocol	allows
multiple	 messages	 to	 be	 sent	 back	 to	 back	 (without	 some	 kind	 of
reply),	and	you	pass	recv	an	arbitrary	chunk	size,	you	may	end	up
reading	the	start	of	a	following	message.	You’ll	need	to	put	that	aside
and	hold	onto	it,	until	it’s	needed.

Prefixing	 the	message	with	 it’s	 length	 (say,	as	5	numeric	characters)
gets	more	complex,	because	(believe	it	or	not),	you	may	not	get	all	5
characters	in	one	recv.	In	playing	around,	you’ll	get	away	with	it;	but
in	high	network	loads,	your	code	will	very	quickly	break	unless	you	use
two	recv	 loops	-	 the	 first	 to	determine	 the	 length,	 the	second	 to	get
the	data	part	of	the	message.	Nasty.	This	is	also	when	you’ll	discover
that	 send	 does	 not	 always	 manage	 to	 get	 rid	 of	 everything	 in	 one
pass.	And	despite	having	read	this,	you	will	eventually	get	bit	by	it!

In	the	 interests	of	space,	building	your	character,	(and	preserving	my
competitive	position),	 these	enhancements	are	 left	as	an	exercise	for
the	reader.	Lets	move	on	to	cleaning	up.

Binary	Data

It	 is	 perfectly	 possible	 to	 send	binary	 data	 over	 a	 socket.	 The	major
problem	is	that	not	all	machines	use	the	same	formats	for	binary	data.
For	example,	a	Motorola	chip	will	 represent	a	16	bit	 integer	with	 the
value	1	as	the	two	hex	bytes	00	01.	Intel	and	DEC,	however,	are	byte-
reversed	 -	 that	 same	 1	 is	 01	 00.	 Socket	 libraries	 have	 calls	 for
converting	16	and	32	bit	integers	-	ntohl,	htonl,	ntohs,	htons
where	“n”	means	network	and	“h”	means	host,	“s”	means	short	and	“l”
means	long.	Where	network	order	is	host	order,	these	do	nothing,	but
where	 the	 machine	 is	 byte-reversed,	 these	 swap	 the	 bytes	 around
appropriately.

In	 these	 days	 of	 32	 bit	 machines,	 the	 ascii	 representation	 of	 binary
data	 is	 frequently	 smaller	 than	 the	 binary	 representation.	 That’s
because	 a	 surprising	 amount	 of	 the	 time,	 all	 those	 longs	 have	 the
value	0,	or	maybe	1.	The	string	“0”	would	be	two	bytes,	while	binary	is
four.	 Of	 course,	 this	 doesn’t	 fit	 well	 with	 fixed-length	 messages.
Decisions,	decisions.

Disconnecting

Strictly	 speaking,	 you’re	 supposed	 to	 use	 shutdown	 on	 a	 socket
before	you	close	 it.	The	shutdown	 is	an	advisory	 to	 the	socket	at
the	other	 end.	Depending	on	 the	argument	 you	pass	 it,	 it	 can	mean
“I’m	not	going	to	send	anymore,	but	I’ll	still	listen”,	or	“I’m	not	listening,
good	 riddance!”.	 Most	 socket	 libraries,	 however,	 are	 so	 used	 to
programmers	neglecting	to	use	this	piece	of	etiquette	that	normally	a
close	 is	 the	 same	 as	 shutdown();	 close().	 So	 in	 most
situations,	an	explicit	shutdown	is	not	needed.

One	way	 to	use	 shutdown	 effectively	 is	 in	 an	HTTP-like	 exchange.
The	client	sends	a	request	and	then	does	a	shutdown(1).	This	tells
the	 server	 “This	 client	 is	 done	 sending,	 but	 can	 still	 receive.”	 The
server	can	detect	“EOF”	by	a	receive	of	0	bytes.	It	can	assume	it	has
the	complete	request.	The	server	sends	a	reply.	If	the	send	completes
successfully	then,	indeed,	the	client	was	still	receiving.

Python	 takes	 the	 automatic	 shutdown	 a	 step	 further,	 and	 says	 that
when	a	socket	is	garbage	collected,	it	will	automatically	do	a	close	if
it’s	needed.	But	relying	on	this	 is	a	very	bad	habit.	 If	your	socket	 just
disappears	without	doing	a	close,	 the	 socket	 at	 the	other	end	may
hang	 indefinitely,	 thinking	you’re	 just	being	slow.	Please	close	 your
sockets	when	you’re	done.

When	Sockets	Die

Probably	the	worst	thing	about	using	blocking	sockets	is	what	happens
when	the	other	side	comes	down	hard	(without	doing	a	close).	Your
socket	 is	 likely	 to	 hang.	 TCP	 is	 a	 reliable	 protocol,	 and	 it	will	wait	 a

long,	 long	 time	 before	 giving	 up	 on	 a	 connection.	 If	 you’re	 using
threads,	 the	 entire	 thread	 is	 essentially	 dead.	 There’s	 not	much	 you
can	 do	 about	 it.	 As	 long	 as	 you	 aren’t	 doing	 something	 dumb,	 like
holding	 a	 lock	 while	 doing	 a	 blocking	 read,	 the	 thread	 isn’t	 really
consuming	much	in	the	way	of	resources.	Do	not	try	to	kill	the	thread	-
part	 of	 the	 reason	 that	 threads	 are	more	 efficient	 than	 processes	 is
that	 they	avoid	 the	overhead	associated	with	 the	automatic	 recycling
of	resources.	In	other	words,	if	you	do	manage	to	kill	the	thread,	your
whole	process	is	likely	to	be	screwed	up.

Non-blocking	Sockets

If	 you’ve	 understood	 the	 preceding,	 you	 already	 know	most	 of	 what
you	need	to	know	about	the	mechanics	of	using	sockets.	You’ll	still	use
the	same	calls,	in	much	the	same	ways.	It’s	just	that,	if	you	do	it	right,
your	app	will	be	almost	inside-out.

In	 Python,	 you	 use	 socket.setblocking(0)	 to	 make	 it	 non-
blocking.	In	C,	it’s	more	complex,	(for	one	thing,	you’ll	need	to	choose
between	 the	 BSD	 flavor	 O_NONBLOCK	 and	 the	 almost
indistinguishable	Posix	flavor	O_NDELAY,	which	is	completely	different
from	TCP_NODELAY),	 but	 it’s	 the	 exact	 same	 idea.	You	 do	 this	 after
creating	 the	 socket,	 but	 before	 using	 it.	 (Actually,	 if	 you’re	 nuts,	 you
can	switch	back	and	forth.)

The	major	mechanical	 difference	 is	 that	 send,	 recv,	 connect	 and
accept	 can	 return	 without	 having	 done	 anything.	 You	 have	 (of
course)	 a	 number	 of	 choices.	 You	 can	 check	 return	 code	 and	 error
codes	and	generally	drive	yourself	crazy.	If	you	don’t	believe	me,	try	it
sometime.	Your	app	will	grow	large,	buggy	and	suck	CPU.	So	let’s	skip
the	brain-dead	solutions	and	do	it	right.

Use	select.

In	C,	coding	select	is	fairly	complex.	In	Python,	it’s	a	piece	of	cake,
but	it’s	close	enough	to	the	C	version	that	if	you	understand	select	in
Python,	you’ll	have	little	trouble	with	it	in	C:

ready_to_read,	ready_to_write,	in_error	=	\

															select.select(

																		potential_readers,

																		potential_writers,

																		potential_errs,

																		timeout)

You	 pass	 select	 three	 lists:	 the	 first	 contains	 all	 sockets	 that	 you
might	want	to	try	reading;	the	second	all	the	sockets	you	might	want	to
try	writing	to,	and	the	last	(normally	left	empty)	those	that	you	want	to
check	for	errors.	You	should	note	that	a	socket	can	go	into	more	than
one	 list.	The	 select	 call	 is	 blocking,	 but	 you	 can	 give	 it	 a	 timeout.
This	is	generally	a	sensible	thing	to	do	-	give	it	a	nice	long	timeout	(say
a	minute)	unless	you	have	good	reason	to	do	otherwise.

In	 return,	 you	 will	 get	 three	 lists.	 They	 contain	 the	 sockets	 that	 are
actually	readable,	writable	and	in	error.	Each	of	these	lists	is	a	subset
(possibly	empty)	of	the	corresponding	list	you	passed	in.

If	a	socket	is	in	the	output	readable	list,	you	can	be	as-close-to-certain-
as-we-ever-get-in-this-business	that	a	recv	on	 that	socket	will	 return
something.	 Same	 idea	 for	 the	 writable	 list.	 You’ll	 be	 able	 to	 send
something.	 Maybe	 not	 all	 you	 want	 to,	 but	 something	 is	 better	 than
nothing.	(Actually,	any	reasonably	healthy	socket	will	return	as	writable
-	it	just	means	outbound	network	buffer	space	is	available.)

If	 you	have	a	 “server”	 socket,	 put	 it	 in	 the	 potential_readers	 list.	 If	 it
comes	 out	 in	 the	 readable	 list,	 your	 accept	 will	 (almost	 certainly)
work.	If	you	have	created	a	new	socket	to	connect	to	someone	else,
put	it	in	the	potential_writers	list.	If	it	shows	up	in	the	writable	list,	you
have	a	decent	chance	that	it	has	connected.

Actually,	select	 can	 be	 handy	 even	with	 blocking	 sockets.	 It’s	 one
way	 of	 determining	 whether	 you	 will	 block	 -	 the	 socket	 returns	 as
readable	 when	 there’s	 something	 in	 the	 buffers.	 However,	 this	 still
doesn’t	help	with	the	problem	of	determining	whether	the	other	end	is
done,	or	just	busy	with	something	else.

Portability	alert:	On	Unix,	select	works	both	with	 the	sockets	and
files.	 Don’t	 try	 this	 on	 Windows.	 On	 Windows,	 select	 works	 with
sockets	only.	Also	note	that	 in	C,	many	of	the	more	advanced	socket
options	are	done	differently	on	Windows.	In	fact,	on	Windows	I	usually
use	threads	(which	work	very,	very	well)	with	my	sockets.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Sorting	HOW	TO
Author: Andrew	Dalke	and	Raymond	Hettinger

Release: 0.1

Python	lists	have	a	built-in	list.sort()	method	that	modifies	the	list
in-place.	There	is	also	a	sorted()	built-in	function	that	builds	a	new
sorted	list	from	an	iterable.

In	 this	document,	we	explore	 the	 various	 techniques	 for	 sorting	data
using	Python.

Sorting	Basics

A	simple	ascending	sort	is	very	easy:	just	call	the	sorted()	function.
It	returns	a	new	sorted	list:

>>>	sorted([5,	2,	3,	1,	4])

[1,	2,	3,	4,	5]

You	 can	 also	 use	 the	 list.sort()	method.	 It	modifies	 the	 list	 in-
place	 (and	 returns	 None	 to	 avoid	 confusion).	 Usually	 it’s	 less
convenient	than	sorted()	-	but	if	you	don’t	need	the	original	list,	it’s
slightly	more	efficient.

>>>	a	=	[5,	2,	3,	1,	4]

>>>	a.sort()

>>>	a

[1,	2,	3,	4,	5]

Another	 difference	 is	 that	 the	 list.sort()	method	 is	 only	 defined
for	lists.	In	contrast,	the	sorted()	function	accepts	any	iterable.

>>>	sorted({1:	'D',	2:	'B',	3:	'B',	4:	'E',	5:	'A'})

[1,	2,	3,	4,	5]

Key	Functions

Both	list.sort()	and	sorted()	have	a	key	parameter	to	specify
a	 function	 to	 be	 called	 on	 each	 list	 element	 prior	 to	 making
comparisons.

For	example,	here’s	a	case-insensitive	string	comparison:

>>>	sorted("This	is	a	test	string	from	Andrew".split

['a',	'Andrew',	'from',	'is',	'string',	'test',	'This']

The	 value	 of	 the	 key	 parameter	 should	 be	 a	 function	 that	 takes	 a
single	 argument	 and	 returns	 a	 key	 to	 use	 for	 sorting	 purposes.	 This
technique	 is	 fast	 because	 the	 key	 function	 is	 called	exactly	 once	 for
each	input	record.

A	 common	 pattern	 is	 to	 sort	 complex	 objects	 using	 some	 of	 the
object’s	indices	as	keys.	For	example:

>>>	student_tuples	=	[

				('john',	'A',	15),

				('jane',	'B',	12),

				('dave',	'B',	10),

]

>>>	sorted(student_tuples,	key=lambda	student:	student

[('dave',	'B',	10),	('jane',	'B',	12),	('john',	'A',	15)]

The	 same	 technique	 works	 for	 objects	 with	 named	 attributes.	 For
example:

>>>	class	Student:

								def	__init__(self,	name,	grade,	age):

												self.name	=	name

												self.grade	=	grade

												self.age	=	age

								def	__repr__(self):

												return	repr((self.name,	self.grade,	self.age))

>>>	student_objects	=	[

				Student('john',	'A',	15),

				Student('jane',	'B',	12),

				Student('dave',	'B',	10),

]

>>>	sorted(student_objects,	key=lambda	student:	student

[('dave',	'B',	10),	('jane',	'B',	12),	('john',	'A',	15)]

Operator	Module	Functions

The	key-function	patterns	shown	above	are	very	common,	so	Python
provides	convenience	functions	to	make	accessor	functions	easier	and
faster.	The	operator	module	has	itemgetter(),	attrgetter(),
and	a	methodcaller()	function.

Using	 those	 functions,	 the	 above	 examples	 become	 simpler	 and
faster:

>>>	from	operator	import	itemgetter,	attrgetter

>>>	sorted(student_tuples,	key=itemgetter(2))

[('dave',	'B',	10),	('jane',	'B',	12),	('john',	'A',	15)]

>>>	sorted(student_objects,	key=attrgetter('age'))

[('dave',	'B',	10),	('jane',	'B',	12),	('john',	'A',	15)]

The	 operator	 module	 functions	 allow	 multiple	 levels	 of	 sorting.	 For
example,	to	sort	by	grade	then	by	age:

>>>	sorted(student_tuples,	key=itemgetter(1,2))

[('john',	'A',	15),	('dave',	'B',	10),	('jane',	'B',	12)]

>>>	sorted(student_objects,	key=attrgetter('grade',	

[('john',	'A',	15),	('dave',	'B',	10),	('jane',	'B',	12)]

Ascending	and	Descending

Both	list.sort()	and	sorted()	accept	a	reverse	parameter	with
a	boolean	value.	This	is	used	to	flag	descending	sorts.	For	example,	to
get	the	student	data	in	reverse	age	order:

>>>	sorted(student_tuples,	key=itemgetter(2),	reverse

[('john',	'A',	15),	('jane',	'B',	12),	('dave',	'B',	10)]

>>>	sorted(student_objects,	key=attrgetter('age'),	reverse

[('john',	'A',	15),	('jane',	'B',	12),	('dave',	'B',	10)]

Sort	Stability	and	Complex	Sorts

Sorts	 are	 guaranteed	 to	 be	 stable.	 That	 means	 that	 when	 multiple
records	have	the	same	key,	their	original	order	is	preserved.

>>>	data	=	[('red',	1),	('blue',	1),	('red',	2),	('blue'

>>>	sorted(data,	key=itemgetter(0))

[('blue',	1),	('blue',	2),	('red',	1),	('red',	2)]

Notice	how	the	two	records	for	blue	 retain	 their	original	order	so	 that
('blue',	1)	is	guaranteed	to	precede	('blue',	2).

This	 wonderful	 property	 lets	 you	 build	 complex	 sorts	 in	 a	 series	 of
sorting	 steps.	 For	 example,	 to	 sort	 the	 student	 data	 by	 descending
grade	 and	 then	 ascending	 age,	 do	 the	 age	 sort	 first	 and	 then	 sort
again	using	grade:

>>>	s	=	sorted(student_objects,	key=attrgetter('age'

>>>	sorted(s,	key=attrgetter('grade'),	reverse=True)

[('dave',	'B',	10),	('jane',	'B',	12),	('john',	'A',	15)]

The	Timsort	 algorithm	 used	 in	 Python	 does	 multiple	 sorts	 efficiently
because	 it	 can	 take	 advantage	 of	 any	 ordering	 already	 present	 in	 a
dataset.

http://en.wikipedia.org/wiki/Sorting_algorithm#Stability
http://en.wikipedia.org/wiki/Timsort

The	Old	Way	Using	Decorate-Sort-
Undecorate

This	idiom	is	called	Decorate-Sort-Undecorate	after	its	three	steps:

First,	 the	 initial	 list	 is	decorated	with	new	values	 that	 control	 the
sort	order.
Second,	the	decorated	list	is	sorted.
Finally,	the	decorations	are	removed,	creating	a	list	 that	contains
only	the	initial	values	in	the	new	order.

For	 example,	 to	 sort	 the	 student	 data	 by	 grade	 using	 the	 DSU
approach:

>>>	decorated	=	[(student.grade,	i,	student)	for	i,	

>>>	decorated.sort()

>>>	[student	for	grade,	i,	student	in	decorated]															

[('john',	'A',	15),	('jane',	'B',	12),	('dave',	'B',	10)]

This	 idiom	works	because	 tuples	are	compared	 lexicographically;	 the
first	 items	are	compared;	 if	 they	are	 the	same	then	the	second	 items
are	compared,	and	so	on.

It	 is	 not	 strictly	 necessary	 in	 all	 cases	 to	 include	 the	 index	 i	 in	 the
decorated	list,	but	including	it	gives	two	benefits:

The	sort	is	stable	–	if	two	items	have	the	same	key,	their	order	will
be	preserved	in	the	sorted	list.
The	 original	 items	 do	 not	 have	 to	 be	 comparable	 because	 the
ordering	of	the	decorated	tuples	will	be	determined	by	at	most	the
first	 two	 items.	 So	 for	 example	 the	 original	 list	 could	 contain
complex	numbers	which	cannot	be	sorted	directly.

Another	name	for	this	idiom	is	Schwartzian	transform,	after	Randal	L.
Schwartz,	who	popularized	it	among	Perl	programmers.

Now	 that	Python	sorting	provides	key-functions,	 this	 technique	 is	not
often	needed.

http://en.wikipedia.org/wiki/Schwartzian_transform

The	Old	Way	Using	the	cmp	Parameter

Many	 constructs	 given	 in	 this	 HOWTO	 assume	 Python	 2.4	 or	 later.
Before	 that,	 there	was	no	sorted()	builtin	and	list.sort()	 took
no	keyword	arguments.	Instead,	all	of	the	Py2.x	versions	supported	a
cmp	parameter	to	handle	user	specified	comparison	functions.

In	Py3.0,	the	cmp	parameter	was	removed	entirely	(as	part	of	a	larger
effort	 to	 simplify	 and	 unify	 the	 language,	 eliminating	 the	 conflict
between	rich	comparisons	and	the	__cmp__()	magic	method).

In	 Py2.x,	 sort	 allowed	 an	 optional	 function	 which	 can	 be	 called	 for
doing	the	comparisons.	That	function	should	take	two	arguments	to	be
compared	and	then	return	a	negative	value	for	less-than,	return	zero	if
they	 are	 equal,	 or	 return	 a	 positive	 value	 for	 greater-than.	 For
example,	we	can	do:

>>>	def	numeric_compare(x,	y):

								return	x	-	y

>>>	sorted([5,	2,	4,	1,	3],	cmp=numeric_compare)

[1,	2,	3,	4,	5]

Or	you	can	reverse	the	order	of	comparison	with:

>>>	def	reverse_numeric(x,	y):

								return	y	-	x

>>>	sorted([5,	2,	4,	1,	3],	cmp=reverse_numeric)

[5,	4,	3,	2,	1]

When	 porting	 code	 from	 Python	 2.x	 to	 3.x,	 the	 situation	 can	 arise
when	 you	 have	 the	 user	 supplying	 a	 comparison	 function	 and	 you
need	 to	convert	 that	 to	a	key	 function.	The	 following	wrapper	makes
that	easy	to	do:

def	cmp_to_key(mycmp):

				'Convert	a	cmp=	function	into	a	key=	function'

				class	K:

								def	__init__(self,	obj,	*args):

												self.obj	=	obj

								def	__lt__(self,	other):

												return	mycmp(self.obj,	other.obj)	<	0

								def	__gt__(self,	other):

												return	mycmp(self.obj,	other.obj)	>	0

								def	__eq__(self,	other):

												return	mycmp(self.obj,	other.obj)	==	0

								def	__le__(self,	other):

												return	mycmp(self.obj,	other.obj)	<=	0

								def	__ge__(self,	other):

												return	mycmp(self.obj,	other.obj)	>=	0

								def	__ne__(self,	other):

												return	mycmp(self.obj,	other.obj)	!=	0

				return	K

To	convert	to	a	key	function,	just	wrap	the	old	comparison	function:

>>>	sorted([5,	2,	4,	1,	3],	key=cmp_to_key(reverse_numeric

[5,	4,	3,	2,	1]

In	Python	3.2,	 the	 functools.cmp_to_key()	 function	was	 added
to	the	functools	module	in	the	standard	library.

Odd	and	Ends

For	 locale	 aware	 sorting,	 use	 locale.strxfrm()	 for	 a	 key
function	or	locale.strcoll()	for	a	comparison	function.

The	reverse	parameter	still	maintains	sort	stability	(so	that	records
with	equal	keys	retain	the	original	order).	Interestingly,	that	effect
can	 be	 simulated	 without	 the	 parameter	 by	 using	 the	 builtin
reversed()	function	twice:

>>>	data	=	[('red',	1),	('blue',	1),	('red',	2),	

>>>	assert	sorted(data,	reverse=True)	==	list(reversed

The	sort	routines	are	guaranteed	to	use	__lt__()	when	making
comparisons	between	two	objects.	So,	it	is	easy	to	add	a	standard
sort	order	to	a	class	by	defining	an	__lt__()	method:

>>>	Student.__lt__	=	lambda	self,	other:	self.age

>>>	sorted(student_objects)

[('dave',	'B',	10),	('jane',	'B',	12),	('john',	'A',	15)]

Key	 functions	 need	 not	 depend	 directly	 on	 the	 objects	 being
sorted.	 A	 key	 function	 can	 also	 access	 external	 resources.	 For
instance,	if	the	student	grades	are	stored	in	a	dictionary,	they	can
be	used	to	sort	a	separate	list	of	student	names:

>>>	students	=	['dave',	'john',	'jane']

>>>	newgrades	=	{'john':	'F',	'jane':'A',	'dave':

>>>	sorted(students,	key=newgrades.__getitem__)

['jane',	'dave',	'john']

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Unicode	HOWTO
Release: 1.12

This	 HOWTO	 discusses	 Python	 support	 for	 Unicode,	 and	 explains
various	problems	that	people	commonly	encounter	when	trying	to	work
with	Unicode.

Introduction	to	Unicode

History	of	Character	Codes

In	 1968,	 the	 American	 Standard	 Code	 for	 Information	 Interchange,
better	known	by	 its	acronym	ASCII,	was	standardized.	ASCII	defined
numeric	codes	for	various	characters,	with	the	numeric	values	running
from	0	to	127.	For	example,	the	lowercase	letter	‘a’	is	assigned	97	as
its	code	value.

ASCII	 was	 an	 American-developed	 standard,	 so	 it	 only	 defined
unaccented	characters.	There	was	an	‘e’,	but	no	‘é’	or	 ‘Í’.	This	meant
that	 languages	 which	 required	 accented	 characters	 couldn’t	 be
faithfully	represented	in	ASCII.	(Actually	the	missing	accents	matter	for
English,	 too,	 which	 contains	 words	 such	 as	 ‘naïve’	 and	 ‘café’,	 and
some	publications	have	house	styles	which	require	spellings	such	as
‘coöperate’.)

For	a	while	people	just	wrote	programs	that	didn’t	display	accents.	In
the	mid-1980s	an	Apple	II	BASIC	program	written	by	a	French	speaker
might	have	lines	like	these:

PRINT	"FICHIER	EST	COMPLETE."

PRINT	"CARACTERE	NON	ACCEPTE."

Those	 messages	 should	 contain	 accents	 (completé,	 caractère,
accepté),	and	they	just	look	wrong	to	someone	who	can	read	French.

In	the	1980s,	almost	all	personal	computers	were	8-bit,	meaning	that
bytes	could	hold	values	ranging	from	0	to	255.	ASCII	codes	only	went
up	to	127,	so	some	machines	assigned	values	between	128	and	255
to	 accented	 characters.	 Different	 machines	 had	 different	 codes,

however,	which	 led	 to	 problems	 exchanging	 files.	 Eventually	 various
commonly	used	sets	of	values	for	the	128–255	range	emerged.	Some
were	 true	 standards,	 defined	 by	 the	 International	 Standards
Organization,	and	some	were	de	facto	conventions	that	were	invented
by	one	company	or	another	and	managed	to	catch	on.

255	characters	aren’t	 very	many.	For	 example,	 you	 can’t	 fit	 both	 the
accented	characters	used	in	Western	Europe	and	the	Cyrillic	alphabet
used	for	Russian	into	the	128–255	range	because	there	are	more	than
127	such	characters.

You	could	write	 files	using	different	codes	 (all	your	Russian	 files	 in	a
coding	system	called	KOI8,	all	your	French	 files	 in	a	different	coding
system	 called	 Latin1),	 but	 what	 if	 you	 wanted	 to	 write	 a	 French
document	that	quotes	some	Russian	text?	In	the	1980s	people	began
to	want	 to	solve	 this	problem,	and	 the	Unicode	standardization	effort
began.

Unicode	started	out	using	16-bit	characters	instead	of	8-bit	characters.
16	 bits	 means	 you	 have	 2^16	 =	 65,536	 distinct	 values	 available,
making	 it	 possible	 to	 represent	many	different	 characters	 from	many
different	 alphabets;	 an	 initial	 goal	 was	 to	 have	 Unicode	 contain	 the
alphabets	 for	every	single	human	 language.	 It	 turns	out	 that	even	16
bits	 isn’t	 enough	 to	 meet	 that	 goal,	 and	 the	 modern	 Unicode
specification	 uses	 a	 wider	 range	 of	 codes,	 0	 through	 1,114,111	 (
0x10FFFF	in	base	16).

There’s	a	 related	 ISO	standard,	 ISO	10646.	Unicode	and	 ISO	10646
were	 originally	 separate	 efforts,	 but	 the	 specifications	 were	 merged
with	the	1.1	revision	of	Unicode.

(This	discussion	of	Unicode’s	history	 is	highly	simplified.	The	 precise
historical	 details	 aren’t	 necessary	 for	 understanding	 how	 to	 use

Unicode	 effectively,	 but	 if	 you’re	 curious,	 consult	 the	 Unicode
consortium	 site	 listed	 in	 the	 References	 or	 the	 Wikipedia	 entry	 for
Unicode	for	more	information.)

Definitions

A	character	 is	the	smallest	possible	component	of	a	text.	 ‘A’,	 ‘B’,	 ‘C’,
etc.,	 are	 all	 different	 characters.	 So	 are	 ‘È’	 and	 ‘Í’.	 Characters	 are
abstractions,	 and	 vary	 depending	 on	 the	 language	 or	 context	 you’re
talking	about.	For	example,	the	symbol	for	ohms	(Ω)	is	usually	drawn
much	like	the	capital	letter	omega	(Ω)	in	the	Greek	alphabet	(they	may
even	 be	 the	 same	 in	 some	 fonts),	 but	 these	 are	 two	 different
characters	that	have	different	meanings.

The	Unicode	 standard	 describes	 how	 characters	 are	 represented	 by
code	points.	A	code	point	is	an	integer	value,	usually	denoted	in	base
16.	In	the	standard,	a	code	point	is	written	using	the	notation	U+12CA
to	 mean	 the	 character	 with	 value	 0x12ca	 (4,810	 decimal).	 The
Unicode	standard	contains	a	 lot	of	 tables	 listing	characters	and	 their
corresponding	code	points:

0061				'a';	LATIN	SMALL	LETTER	A

0062				'b';	LATIN	SMALL	LETTER	B

0063				'c';	LATIN	SMALL	LETTER	C

...

007B				'{';	LEFT	CURLY	BRACKET

Strictly,	 these	 definitions	 imply	 that	 it’s	 meaningless	 to	 say	 ‘this	 is
character	U+12CA‘.	U+12CA	 is	a	code	point,	which	 represents	some
particular	 character;	 in	 this	 case,	 it	 represents	 the	 character
‘ETHIOPIC	 SYLLABLE	 WI’.	 In	 informal	 contexts,	 this	 distinction
between	code	points	and	characters	will	sometimes	be	forgotten.

http://en.wikipedia.org/wiki/Unicode#History

A	 character	 is	 represented	 on	 a	 screen	 or	 on	 paper	 by	 a	 set	 of
graphical	elements	that’s	called	a	glyph.	The	glyph	for	an	uppercase
A,	for	example,	is	two	diagonal	strokes	and	a	horizontal	stroke,	though
the	exact	details	will	depend	on	the	font	being	used.	Most	Python	code
doesn’t	 need	 to	worry	about	 glyphs;	 figuring	out	 the	 correct	 glyph	 to
display	 is	 generally	 the	 job	 of	 a	 GUI	 toolkit	 or	 a	 terminal’s	 font
renderer.

Encodings

To	summarize	the	previous	section:	a	Unicode	string	is	a	sequence	of
code	points,	which	are	numbers	from	0	through	0x10FFFF	(1,114,111
decimal).	 This	 sequence	 needs	 to	 be	 represented	 as	 a	 set	 of	 bytes
(meaning,	 values	 from	 0	 through	 255)	 in	 memory.	 The	 rules	 for
translating	 a	 Unicode	 string	 into	 a	 sequence	 of	 bytes	 are	 called	 an
encoding.

The	first	encoding	you	might	think	of	 is	an	array	of	32-bit	 integers.	 In
this	representation,	the	string	“Python”	would	look	like	this:

			P											y											t											h											o											n

0x50	00	00	00	79	00	00	00	74	00	00	00	68	00	00	00	6f	00	00	00	6e	00	00	00

			0		1		2		3		4		5		6		7		8		9	10	11	12	13	14	15	16	17	18	19	20	21	22	23

This	representation	is	straightforward	but	using	it	presents	a	number	of
problems.

1.	 It’s	not	portable;	different	processors	order	the	bytes	differently.
2.	 It’s	very	wasteful	of	space.	In	most	texts,	the	majority	of	the	code

points	 are	 less	 than	 127,	 or	 less	 than	 255,	 so	 a	 lot	 of	 space	 is
occupied	 by	 0x00	 bytes.	 The	 above	 string	 takes	 24	 bytes
compared	 to	 the	 6	 bytes	 needed	 for	 an	 ASCII	 representation.

Increased	 RAM	 usage	 doesn’t	 matter	 too	 much	 (desktop
computers	have	gigabytes	of	RAM,	and	strings	aren’t	usually	that
large),	but	expanding	our	usage	of	disk	and	network	bandwidth	by
a	factor	of	4	is	intolerable.

3.	 It’s	not	compatible	with	existing	C	 functions	such	as	strlen(),
so	a	new	family	of	wide	string	functions	would	need	to	be	used.

4.	 Many	Internet	standards	are	defined	in	terms	of	textual	data,	and
can’t	handle	content	with	embedded	zero	bytes.

Generally	 people	 don’t	 use	 this	 encoding,	 instead	 choosing	 other
encodings	 that	 are	more	efficient	 and	convenient.	UTF-8	 is	 probably
the	most	commonly	supported	encoding;	it	will	be	discussed	below.

Encodings	don’t	have	to	handle	every	possible	Unicode	character,	and
most	encodings	don’t.	The	 rules	 for	 converting	 a	Unicode	 string	 into
the	ASCII	encoding,	for	example,	are	simple;	for	each	code	point:

1.	 If	 the	code	point	 is	<	128,	each	byte	is	the	same	as	the	value	of
the	code	point.

2.	 If	 the	 code	 point	 is	 128	 or	 greater,	 the	 Unicode	 string	 can’t	 be
represented	 in	 this	 encoding.	 (Python	 raises	 a
UnicodeEncodeError	exception	in	this	case.)

Latin-1,	 also	 known	 as	 ISO-8859-1,	 is	 a	 similar	 encoding.	 Unicode
code	points	0–255	are	identical	to	the	Latin-1	values,	so	converting	to
this	encoding	simply	requires	converting	code	points	to	byte	values;	if
a	 code	 point	 larger	 than	 255	 is	 encountered,	 the	 string	 can’t	 be
encoded	into	Latin-1.

Encodings	don’t	have	 to	be	simple	one-to-one	mappings	 like	Latin-1.
Consider	IBM’s	EBCDIC,	which	was	used	on	IBM	mainframes.	Letter
values	weren’t	in	one	block:	‘a’	through	‘i’	had	values	from	129	to	137,
but	‘j’	through	‘r’	were	145	through	153.	If	you	wanted	to	use	EBCDIC
as	 an	 encoding,	 you’d	 probably	 use	 some	 sort	 of	 lookup	 table	 to

perform	the	conversion,	but	this	is	largely	an	internal	detail.

UTF-8	 is	one	of	 the	most	commonly	used	encodings.	UTF	stands	for
“Unicode	 Transformation	 Format”,	 and	 the	 ‘8’	 means	 that	 8-bit
numbers	 are	 used	 in	 the	 encoding.	 (There	 are	 also	 a	 UTF-16	 and
UTF-32	 encodings,	 but	 they	 are	 less	 frequently	 used	 than	 UTF-8.)
UTF-8	uses	the	following	rules:

1.	 If	 the	code	point	 is	<	128,	 it’s	 represented	by	 the	corresponding
byte	value.

2.	 If	 the	 code	 point	 is	 >=	 128,	 it’s	 turned	 into	 a	 sequence	 of	 two,
three,	or	four	bytes,	where	each	byte	of	the	sequence	is	between
128	and	255.

UTF-8	has	several	convenient	properties:

1.	 It	can	handle	any	Unicode	code	point.
2.	 A	 Unicode	 string	 is	 turned	 into	 a	 string	 of	 bytes	 containing	 no

embedded	 zero	 bytes.	 This	 avoids	 byte-ordering	 issues,	 and
means	UTF-8	 strings	 can	 be	 processed	by	C	 functions	 such	 as
strcpy()	 and	 sent	 through	 protocols	 that	 can’t	 handle	 zero
bytes.

3.	 A	string	of	ASCII	text	is	also	valid	UTF-8	text.
4.	 UTF-8	 is	 fairly	 compact;	 the	 majority	 of	 commonly	 used

characters	can	be	represented	with	one	or	two	bytes.
5.	 If	bytes	are	corrupted	or	lost,	it’s	possible	to	determine	the	start	of

the	 next	UTF-8-encoded	 code	 point	 and	 resynchronize.	 It’s	 also
unlikely	that	random	8-bit	data	will	look	like	valid	UTF-8.

References

The	 Unicode	 Consortium	 site	 has	 character	 charts,	 a	 glossary,	 and
PDF	 versions	 of	 the	 Unicode	 specification.	 Be	 prepared	 for	 some
difficult	 reading.	 A	 chronology	 of	 the	 origin	 and	 development	 of

http://www.unicode.org
http://www.unicode.org/history/

Unicode	is	also	available	on	the	site.

To	 help	 understand	 the	 standard,	 Jukka	 Korpela	 has	 written	 an
introductory	guide	to	reading	the	Unicode	character	tables.

Another	 good	 introductory	 article	was	written	 by	 Joel	 Spolsky.	 If	 this
introduction	didn’t	make	things	clear	to	you,	you	should	try	reading	this
alternate	article	before	continuing.

Wikipedia	 entries	 are	 often	 helpful;	 see	 the	 entries	 for	 “character
encoding”	and	UTF-8,	for	example.

http://www.cs.tut.fi/~jkorpela/unicode/guide.html
http://www.joelonsoftware.com/articles/Unicode.html
http://en.wikipedia.org/wiki/Character_encoding
http://en.wikipedia.org/wiki/UTF-8

Python’s	Unicode	Support

Now	 that	 you’ve	 learned	 the	 rudiments	 of	 Unicode,	 we	 can	 look	 at
Python’s	Unicode	features.

The	String	Type

Since	 Python	 3.0,	 the	 language	 features	 a	 str	 type	 that	 contain
Unicode	 characters,	 meaning	 any	 string	 created	 using	 "unicode
rocks!",	'unicode	rocks!',	or	 the	 triple-quoted	string	syntax	 is
stored	as	Unicode.

The	 default	 encoding	 for	 Python	 source	 code	 is	 UTF-8,	 so	 you	 can
simply	include	a	Unicode	character	in	a	string	literal:

try:

				with	open('/tmp/input.txt',	'r')	as	f:

								...

except	IOError:

				#	'File	not	found'	error	message.

				print("Fichier	non	trouvé")

You	can	use	a	different	 encoding	 from	UTF-8	by	putting	a	 specially-
formatted	comment	as	the	first	or	second	line	of	the	source	code:

#	-*-	coding:	<encoding	name>	-*-

Side	 note:	 Python	 3	 also	 supports	 using	 Unicode	 characters	 in
identifiers:

répertoire	=	"/tmp/records.log"

with	open(répertoire,	"w")	as	f:

				f.write("test\n")

If	you	can’t	enter	a	particular	character	in	your	editor	or	want	to	keep
the	source	code	ASCII-only	for	some	reason,	you	can	also	use	escape
sequences	in	string	literals.	(Depending	on	your	system,	you	may	see
the	actual	capital-delta	glyph	instead	of	a	u	escape.)

>>>	"\N{GREEK	CAPITAL	LETTER	DELTA}"		#	Using	the	character	name

'\u0394'

>>>	"\u0394"																										#	Using	a	16-bit	hex	value

'\u0394'

>>>	"\U00000394"																						#	Using	a	32-bit	hex	value

'\u0394'

In	 addition,	 one	 can	 create	 a	 string	 using	 the	 decode()	method	 of
bytes.	 This	method	 takes	 an	 encoding	 argument,	 such	 as	 UTF-8,
and	optionally	an	errors	argument.

The	errors	argument	specifies	the	response	when	the	input	string	can’t
be	converted	according	 to	 the	encoding’s	 rules.	Legal	values	 for	 this
argument	are	'strict'	(raise	a	UnicodeDecodeError	exception),
'replace'	 (use	 U+FFFD,	 REPLACEMENT	 CHARACTER),	 or
'ignore'	 (just	 leave	 the	 character	 out	 of	 the	 Unicode	 result).	 The
following	examples	show	the	differences:

>>>	b'\x80abc'.decode("utf-8",	"strict")		

Traceback	(most	recent	call	last):

				...

UnicodeDecodeError:	'utf-8'	codec	can't	decode	byte	0x80	in	position	0:

		invalid	start	byte

>>>	b'\x80abc'.decode("utf-8",	"replace")

'\ufffdabc'

>>>	b'\x80abc'.decode("utf-8",	"ignore")

'abc'

(In	 this	 code	example,	 the	Unicode	 replacement	 character	 has	 been
replaced	by	a	question	mark	because	it	may	not	be	displayed	on	some
systems.)

Encodings	 are	 specified	 as	 strings	 containing	 the	 encoding’s	 name.
Python	 3.2	 comes	 with	 roughly	 100	 different	 encodings;	 see	 the
Python	 Library	 Reference	 at	 Standard	 Encodings	 for	 a	 list.	 Some
encodings	 have	 multiple	 names;	 for	 example,	 'latin-1',
'iso_8859_1'	and	'8859‘	are	all	synonyms	for	the	same	encoding.

One-character	 Unicode	 strings	 can	 also	 be	 created	 with	 the	 chr()
built-in	 function,	which	takes	 integers	and	returns	a	Unicode	string	of
length	 1	 that	 contains	 the	 corresponding	 code	 point.	 The	 reverse
operation	 is	 the	 built-in	 ord()	 function	 that	 takes	 a	 one-character
Unicode	string	and	returns	the	code	point	value:

>>>	chr(57344)

'\ue000'

>>>	ord('\ue000')

57344

Converting	to	Bytes

The	opposite	method	of	bytes.decode()	is	str.encode(),	which
returns	a	bytes	representation	of	the	Unicode	string,	encoded	in	the
requested	encoding.

The	errors	parameter	is	the	same	as	the	parameter	of	the	decode()
method	 but	 supports	 a	 few	 more	 possible	 handlers.	 As	 well	 as
'strict',	'ignore',	and	'replace'	(which	in	this	case	inserts	a
question	 mark	 instead	 of	 the	 unencodable	 character),	 there	 is	 also

'xmlcharrefreplace'	 (inserts	 an	 XML	 character	 reference)	 and
backslashreplace	(inserts	a	\uNNNN	escape	sequence).

The	following	example	shows	the	different	results:

>>>	u	=	chr(40960)	+	'abcd'	+	chr(1972)

>>>	u.encode('utf-8')

b'\xea\x80\x80abcd\xde\xb4'

>>>	u.encode('ascii')		

Traceback	(most	recent	call	last):

				...

UnicodeEncodeError:	'ascii'	codec	can't	encode	character	'\ua000'	in

		position	0:	ordinal	not	in	range(128)

>>>	u.encode('ascii',	'ignore')

b'abcd'

>>>	u.encode('ascii',	'replace')

b'?abcd?'

>>>	u.encode('ascii',	'xmlcharrefreplace')

b'ꀀabcd޴'

>>>	u.encode('ascii',	'backslashreplace')

b'\\ua000abcd\\u07b4'

The	 low-level	 routines	 for	 registering	 and	 accessing	 the	 available
encodings	 are	 found	 in	 the	 codecs	 module.	 Implementing	 new
encodings	also	requires	understanding	the	codecs	module.	However,
the	 encoding	 and	 decoding	 functions	 returned	 by	 this	 module	 are
usually	more	low-level	than	is	comfortable,	and	writing	new	encodings
is	a	specialized	task,	so	the	module	won’t	be	covered	in	this	HOWTO.

Unicode	Literals	in	Python	Source	Code

In	 Python	 source	 code,	 specific	 Unicode	 code	 points	 can	 be	written
using	 the	 \u	 escape	 sequence,	which	 is	 followed	 by	 four	 hex	 digits

giving	the	code	point.	The	\U	escape	sequence	is	similar,	but	expects
eight	hex	digits,	not	four:

>>>	s	=	"a\xac\u1234\u20ac\U00008000"

...	#					^^^^	two-digit	hex	escape

...	#									^^^^^^	four-digit	Unicode	escape

...	#																					^^^^^^^^^^	eight-digit	Unicode	escape

>>>	[ord(c)	for	c	in	s]

[97,	172,	4660,	8364,	32768]

Using	 escape	 sequences	 for	 code	 points	 greater	 than	 127	 is	 fine	 in
small	 doses,	 but	 becomes	 an	 annoyance	 if	 you’re	 using	 many
accented	 characters,	 as	 you	 would	 in	 a	 program	 with	 messages	 in
French	or	some	other	accent-using	language.	You	can	also	assemble
strings	using	the	chr()	built-in	function,	but	this	is	even	more	tedious.

Ideally,	you’d	want	to	be	able	to	write	literals	in	your	language’s	natural
encoding.	You	could	 then	edit	Python	source	code	with	your	 favorite
editor	which	would	display	the	accented	characters	naturally,	and	have
the	right	characters	used	at	runtime.

Python	supports	writing	source	code	in	UTF-8	by	default,	but	you	can
use	almost	any	encoding	if	you	declare	the	encoding	being	used.	This
is	done	by	 including	a	special	 comment	as	either	 the	 first	or	 second
line	of	the	source	file:

#!/usr/bin/env	python

#	-*-	coding:	latin-1	-*-

u	=	'abcdé'

print(ord(u[-1]))

The	 syntax	 is	 inspired	 by	 Emacs’s	 notation	 for	 specifying	 variables

local	 to	 a	 file.	 Emacs	 supports	 many	 different	 variables,	 but	 Python
only	 supports	 ‘coding’.	 The	 -*-	 symbols	 indicate	 to	Emacs	 that	 the
comment	 is	 special;	 they	 have	 no	 significance	 to	 Python	 but	 are	 a
convention.	Python	looks	for	coding:	name	or	coding=name	in	the
comment.

If	you	don’t	include	such	a	comment,	the	default	encoding	used	will	be
UTF-8	as	already	mentioned.	See	also	PEP	263	for	more	information.

Unicode	Properties

The	 Unicode	 specification	 includes	 a	 database	 of	 information	 about
code	points.	For	each	defined	code	point,	the	information	includes	the
character’s	 name,	 its	 category,	 the	 numeric	 value	 if	 applicable
(Unicode	 has	 characters	 representing	 the	 Roman	 numerals	 and
fractions	such	as	one-third	and	 four-fifths).	There	are	also	properties
related	 to	 the	code	point’s	use	 in	bidirectional	 text	and	other	display-
related	properties.

The	 following	 program	 displays	 some	 information	 about	 several
characters,	and	prints	the	numeric	value	of	one	particular	character:

import	unicodedata

u	=	chr(233)	+	chr(0x0bf2)	+	chr(3972)	+	chr(6000)	+

for	i,	c	in	enumerate(u):

				print(i,	'%04x'	%	ord(c),	unicodedata.category(c

				print(unicodedata.name(c))

#	Get	numeric	value	of	second	character

print(unicodedata.numeric(u[1]))

http://www.python.org/dev/peps/pep-0263

When	run,	this	prints:

0	00e9	Ll	LATIN	SMALL	LETTER	E	WITH	ACUTE

1	0bf2	No	TAMIL	NUMBER	ONE	THOUSAND

2	0f84	Mn	TIBETAN	MARK	HALANTA

3	1770	Lo	TAGBANWA	LETTER	SA

4	33af	So	SQUARE	RAD	OVER	S	SQUARED

1000.0

The	 category	 codes	 are	 abbreviations	 describing	 the	 nature	 of	 the
character.	 These	 are	 grouped	 into	 categories	 such	 as	 “Letter”,
“Number”,	“Punctuation”,	or	“Symbol”,	which	in	turn	are	broken	up	into
subcategories.	To	take	the	codes	from	the	above	output,	'Ll'	means
‘Letter,	 lowercase’,	 'No'	 means	 “Number,	 other”,	 'Mn'	 is	 “Mark,
nonspacing”,	and	'So'	is	“Symbol,	other”.	See	the	General	Category
Values	section	of	the	Unicode	Character	Database	documentation	for
a	list	of	category	codes.

Unicode	Regular	Expressions

The	regular	expressions	supported	by	the	re	module	can	be	provided
either	 as	 bytes	 or	 strings.	Some	of	 the	 special	 character	 sequences
such	as	\d	and	\w	have	different	meanings	depending	on	whether	the
pattern	is	supplied	as	bytes	or	a	string.	For	example,	\d	will	match	the
characters	 [0-9]	 in	 bytes	 but	 in	 strings	 will	 match	 any	 character
that’s	in	the	'Nd'	category.

The	string	in	this	example	has	the	number	57	written	in	both	Thai	and
Arabic	numerals:

import	re

p	=	re.compile('\d+')

http://www.unicode.org/reports/tr44/#General_Category_Values

s	=	"Over	\u0e55\u0e57	57	flavours"

m	=	p.search(s)

print(repr(m.group()))

When	executed,	\d+	will	match	the	Thai	numerals	and	print	them	out.
If	you	supply	 the	re.ASCII	 flag	 to	compile(),	\d+	will	match	 the
substring	“57”	instead.

Similarly,	 \w	matches	 a	wide	 variety	 of	Unicode	 characters	 but	 only
[a-zA-Z0-9_]	 in	 bytes	 or	 if	 re.ASCII	 is	 supplied,	 and	 \s	 will
match	either	Unicode	whitespace	characters	or	[\t\n\r\f\v].

References

Some	good	alternative	discussions	of	Python’s	Unicode	support	are:

Processing	Text	Files	in	Python	3,	by	Nick	Coghlan.
Pragmatic	 Unicode,	 a	 PyCon	 2012	 presentation	 by	 Ned
Batchelder.

The	 str	 type	 is	 described	 in	 the	 Python	 library	 reference	 at	 Text
Sequence	Type	—	str.

The	documentation	for	the	unicodedata	module.

The	documentation	for	the	codecs	module.

Marc-André	Lemburg	gave	a	presentation	titled	“Python	and	Unicode”
(PDF	slides)	at	EuroPython	2002.	The	slides	are	an	excellent	overview
of	the	design	of	Python	2’s	Unicode	features	(where	the	Unicode	string
type	is	called	unicode	and	literals	start	with	u).

http://python-notes.curiousefficiency.org/en/latest/python3/text_file_processing.html
http://nedbatchelder.com/text/unipain.html
http://downloads.egenix.com/python/Unicode-EPC2002-Talk.pdf

Reading	and	Writing	Unicode	Data

Once	you’ve	written	some	code	that	works	with	Unicode	data,	the	next
problem	 is	 input/output.	 How	 do	 you	 get	 Unicode	 strings	 into	 your
program,	 and	 how	 do	 you	 convert	 Unicode	 into	 a	 form	 suitable	 for
storage	or	transmission?

It’s	possible	that	you	may	not	need	to	do	anything	depending	on	your
input	sources	and	output	destinations;	you	should	check	whether	 the
libraries	 used	 in	 your	 application	 support	 Unicode	 natively.	 XML
parsers	 often	 return	 Unicode	 data,	 for	 example.	 Many	 relational
databases	 also	 support	 Unicode-valued	 columns	 and	 can	 return
Unicode	values	from	an	SQL	query.

Unicode	 data	 is	 usually	 converted	 to	 a	 particular	 encoding	 before	 it
gets	written	 to	 disk	 or	 sent	 over	 a	 socket.	 It’s	 possible	 to	 do	 all	 the
work	 yourself:	 open	 a	 file,	 read	 an	 8-bit	 bytes	 object	 from	 it,	 and
convert	 the	 bytes	 with	 bytes.decode(encoding).	 However,	 the
manual	approach	is	not	recommended.

One	 problem	 is	 the	 multi-byte	 nature	 of	 encodings;	 one	 Unicode
character	can	be	represented	by	several	bytes.	If	you	want	to	read	the
file	 in	 arbitrary-sized	 chunks	 (say,	 1024	 or	 4096	bytes),	 you	 need	 to
write	 error-handling	 code	 to	 catch	 the	 case	 where	 only	 part	 of	 the
bytes	 encoding	 a	 single	Unicode	 character	 are	 read	 at	 the	 end	 of	 a
chunk.	One	solution	would	be	to	read	the	entire	file	 into	memory	and
then	 perform	 the	 decoding,	 but	 that	 prevents	 you	 from	working	 with
files	that	are	extremely	large;	if	you	need	to	read	a	2	GiB	file,	you	need
2	GiB	of	RAM.	(More,	really,	since	for	at	least	a	moment	you’d	need	to
have	both	the	encoded	string	and	its	Unicode	version	in	memory.)

The	solution	would	be	to	use	the	low-level	decoding	interface	to	catch

the	case	of	partial	 coding	sequences.	The	work	of	 implementing	 this
has	already	been	done	for	you:	the	built-in	open()	function	can	return
a	 file-like	 object	 that	 assumes	 the	 file’s	 contents	 are	 in	 a	 specified
encoding	 and	 accepts	 Unicode	 parameters	 for	 methods	 such	 as
read()	and	write().	This	works	 through	 open()‘s	encoding	 and
errors	 parameters	 which	 are	 interpreted	 just	 like	 those	 in
str.encode()	and	bytes.decode().

Reading	Unicode	from	a	file	is	therefore	simple:

with	open('unicode.txt',	encoding='utf-8')	as	f:

				for	line	in	f:

								print(repr(line))

It’s	also	possible	 to	open	 files	 in	update	mode,	allowing	both	reading
and	writing:

with	open('test',	encoding='utf-8',	mode='w+')	as	f:

				f.write('\u4500	blah	blah	blah\n')

				f.seek(0)

				print(repr(f.readline()[:1]))

The	Unicode	character	U+FEFF	 is	used	as	a	byte-order	mark	(BOM),
and	is	often	written	as	the	first	character	of	a	file	in	order	to	assist	with
autodetection	 of	 the	 file’s	 byte	 ordering.	 Some	 encodings,	 such	 as
UTF-16,	expect	a	BOM	to	be	present	at	the	start	of	a	file;	when	such
an	encoding	is	used,	the	BOM	will	be	automatically	written	as	the	first
character	and	will	be	silently	dropped	when	the	file	is	read.	There	are
variants	of	these	encodings,	such	as	‘utf-16-le’	and	‘utf-16-be’	for	little-
endian	 and	 big-endian	 encodings,	 that	 specify	 one	 particular	 byte
ordering	and	don’t	skip	the	BOM.

In	 some	 areas,	 it	 is	 also	 convention	 to	 use	 a	 “BOM”	 at	 the	 start	 of

UTF-8	encoded	files;	the	name	is	misleading	since	UTF-8	is	not	byte-
order	dependent.	The	mark	simply	announces	that	the	file	is	encoded
in	 UTF-8.	 Use	 the	 ‘utf-8-sig’	 codec	 to	 automatically	 skip	 the	mark	 if
present	for	reading	such	files.

Unicode	filenames

Most	of	the	operating	systems	in	common	use	today	support	filenames
that	contain	arbitrary	Unicode	characters.	Usually	this	is	implemented
by	 converting	 the	 Unicode	 string	 into	 some	 encoding	 that	 varies
depending	on	the	system.	For	example,	Mac	OS	X	uses	UTF-8	while
Windows	uses	a	configurable	encoding;	on	Windows,	Python	uses	the
name	“mbcs”	to	refer	to	whatever	the	currently	configured	encoding	is.
On	Unix	systems,	there	will	only	be	a	filesystem	encoding	if	you’ve	set
the	 LANG	 or	 LC_CTYPE	 environment	 variables;	 if	 you	 haven’t,	 the
default	encoding	is	UTF-8.

The	 sys.getfilesystemencoding()	 function	 returns	 the
encoding	 to	use	on	your	current	system,	 in	case	you	want	 to	do	 the
encoding	 manually,	 but	 there’s	 not	 much	 reason	 to	 bother.	 When
opening	a	 file	 for	 reading	or	writing,	you	can	usually	 just	provide	 the
Unicode	string	as	 the	filename,	and	 it	will	be	automatically	converted
to	the	right	encoding	for	you:

filename	=	'filename\u4500abc'

with	open(filename,	'w')	as	f:

				f.write('blah\n')

Functions	 in	 the	 os	 module	 such	 as	 os.stat()	 will	 also	 accept
Unicode	filenames.

The	os.listdir()	 function	 returns	 filenames	and	 raises	 an	 issue:

should	 it	 return	 the	Unicode	 version	of	 filenames,	 or	 should	 it	 return
bytes	containing	the	encoded	versions?	os.listdir()	will	do	both,
depending	on	whether	you	provided	 the	directory	path	as	bytes	or	a
Unicode	string.	If	you	pass	a	Unicode	string	as	the	path,	filenames	will
be	 decoded	 using	 the	 filesystem’s	 encoding	 and	 a	 list	 of	 Unicode
strings	 will	 be	 returned,	 while	 passing	 a	 byte	 path	 will	 return	 the
filenames	 as	 bytes.	 For	 example,	 assuming	 the	 default	 filesystem
encoding	is	UTF-8,	running	the	following	program:

fn	=	'filename\u4500abc'

f	=	open(fn,	'w')

f.close()

import	os

print(os.listdir(b'.'))

print(os.listdir('.'))

will	produce	the	following	output:

amk:~$	python	t.py

[b'filename\xe4\x94\x80abc',	...]

['filename\u4500abc',	...]

The	 first	 list	 contains	UTF-8-encoded	 filenames,	 and	 the	 second	 list
contains	the	Unicode	versions.

Note	that	on	most	occasions,	 the	Unicode	APIs	should	be	used.	The
bytes	APIs	 should	 only	 be	 used	on	 systems	where	 undecodable	 file
names	can	be	present,	i.e.	Unix	systems.

Tips	for	Writing	Unicode-aware	Programs

This	section	provides	some	suggestions	on	writing	software	that	deals

with	Unicode.

The	most	important	tip	is:

Software	should	only	work	with	Unicode	strings	internally,
decoding	the	input	data	as	soon	as	possible	and	encoding	the
output	only	at	the	end.

If	you	attempt	 to	write	processing	functions	that	accept	both	Unicode
and	 byte	 strings,	 you	 will	 find	 your	 program	 vulnerable	 to	 bugs
wherever	you	combine	 the	 two	different	kinds	of	strings.	There	 is	no
automatic	 encoding	 or	 decoding:	 if	 you	 do	 e.g.	 str	 +	 bytes,	 a
TypeError	will	be	raised.

When	using	data	coming	from	a	web	browser	or	some	other	untrusted
source,	 a	 common	 technique	 is	 to	 check	 for	 illegal	 characters	 in	 a
string	before	using	the	string	in	a	generated	command	line	or	storing	it
in	 a	 database.	 If	 you’re	 doing	 this,	 be	 careful	 to	 check	 the	 decoded
string,	 not	 the	 encoded	 bytes	 data;	 some	 encodings	 may	 have
interesting	 properties,	 such	 as	 not	 being	 bijective	 or	 not	 being	 fully
ASCII-compatible.	This	is	especially	true	if	the	input	data	also	specifies
the	encoding,	since	the	attacker	can	then	choose	a	clever	way	to	hide
malicious	text	in	the	encoded	bytestream.

Converting	Between	File	Encodings

The	 StreamRecoder	 class	 can	 transparently	 convert	 between
encodings,	 taking	 a	 stream	 that	 returns	 data	 in	 encoding	 #1	 and
behaving	like	a	stream	returning	data	in	encoding	#2.

For	example,	if	you	have	an	input	file	f	that’s	in	Latin-1,	you	can	wrap	it
with	a	StreamRecoder	to	return	bytes	encoded	in	UTF-8:

new_f	=	codecs.StreamRecoder(f,

				#	en/decoder:	used	by	read()	to	encode	its	results	and

				#	by	write()	to	decode	its	input.

				codecs.getencoder('utf-8'),	codecs.getdecoder('utf-8'

				#	reader/writer:	used	to	read	and	write	to	the	stream.

				codecs.getreader('latin-1'),	codecs.getwriter('latin-1'

Files	in	an	Unknown	Encoding

What	 can	 you	 do	 if	 you	 need	 to	make	 a	 change	 to	 a	 file,	 but	 don’t
know	 the	 file’s	 encoding?	 If	 you	 know	 the	 encoding	 is	 ASCII-
compatible	and	only	want	 to	examine	or	modify	 the	ASCII	parts,	you
can	open	the	file	with	the	surrogateescape	error	handler:

with	open(fname,	'r',	encoding="ascii",	errors="surrogateescape"

				data	=	f.read()

#	make	changes	to	the	string	'data'

with	open(fname	+	'.new',	'w',

											encoding="ascii",	errors="surrogateescape"

				f.write(data)

The	 surrogateescape	 error	 handler	 will	 decode	 any	 non-ASCII
bytes	 as	 code	 points	 in	 the	Unicode	 Private	Use	 Area	 ranging	 from
U+DC80	 to	 U+DCFF.	 These	 private	 code	 points	 will	 then	 be	 turned
back	into	the	same	bytes	when	the	surrogateescape	error	handler
is	used	when	encoding	the	data	and	writing	it	back	out.

References

One	section	of	Mastering	Python	3	Input/Output,	a	PyCon	2010	talk	by

http://pyvideo.org/video/289/pycon-2010--mastering-python-3-i-o

David	Beazley,	discusses	text	processing	and	binary	data	handling.

The	 PDF	 slides	 for	 Marc-André	 Lemburg’s	 presentation	 “Writing
Unicode-aware	Applications	in	Python”	discuss	questions	of	character
encodings	 as	 well	 as	 how	 to	 internationalize	 and	 localize	 an
application.	These	slides	cover	Python	2.x	only.

The	 Guts	 of	 Unicode	 in	 Python	 is	 a	 PyCon	 2013	 talk	 by	 Benjamin
Peterson	that	discusses	the	internal	Unicode	representation	in	Python
3.3.

http://downloads.egenix.com/python/LSM2005-Developing-Unicode-aware-applications-in-Python.pdf
http://pyvideo.org/video/1768/the-guts-of-unicode-in-python

Acknowledgements

The	 initial	 draft	 of	 this	 document	was	written	 by	Andrew	Kuchling.	 It
has	since	been	revised	further	by	Alexander	Belopolsky,	Georg	Brandl,
Andrew	Kuchling,	and	Ezio	Melotti.

Thanks	 to	 the	 following	 people	 who	 have	 noted	 errors	 or	 offered
suggestions	on	this	article:	Éric	Araujo,	Nicholas	Bastin,	Nick	Coghlan,
Marius	Gedminas,	Kent	Johnson,	Ken	Krugler,	Marc-André	Lemburg,
Martin	von	Löwis,	Terry	J.	Reedy,	Chad	Whitacre.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

HOWTO	Fetch	Internet	Resources
Using	The	urllib	Package
Author: Michael	Foord

Note: 	There	is	a	French	translation	of	an	earlier	revision	of	this
HOWTO,	available	at	urllib2	-	Le	Manuel	manquant.

http://www.voidspace.org.uk/python/index.shtml
http://www.voidspace.org.uk/python/articles/urllib2_francais.shtml

Related	Articles

You	may	also	find	useful	the
following	 article	 on	 fetching
web	resources	with	Python:

Basic	Authentication

A	 tutorial	 on	Basic
Authentication,
with	 examples	 in
Python.

Introduction

urllib.request	is	a	Python	module	 for
fetching	 URLs	 (Uniform	 Resource
Locators).	 It	 offers	 a	 very	 simple
interface,	 in	 the	 form	 of	 the	 urlopen
function.	 This	 is	 capable	 of	 fetching
URLs	 using	 a	 variety	 of	 different
protocols.	It	also	offers	a	slightly	more
complex	 interface	 for	 handling
common	 situations	 -	 like	 basic
authentication,	 cookies,	 proxies	 and
so	on.	These	are	provided	by	objects
called	handlers	and	openers.

urllib.request	 supports	 fetching	 URLs	 for	 many	 “URL	 schemes”
(identified	by	the	string	before	the	”:”	in	URL	-	for	example	“ftp”	is	the
URL	 scheme	 of	 “ftp://python.org/”)	 using	 their	 associated	 network
protocols	(e.g.	FTP,	HTTP).	This	tutorial	focuses	on	the	most	common
case,	HTTP.

For	straightforward	situations	urlopen	is	very	easy	to	use.	But	as	soon
as	 you	 encounter	 errors	 or	 non-trivial	 cases	 when	 opening	 HTTP
URLs,	 you	 will	 need	 some	 understanding	 of	 the	 HyperText	 Transfer
Protocol.	 The	 most	 comprehensive	 and	 authoritative	 reference	 to
HTTP	is	RFC	2616.	This	is	a	technical	document	and	not	intended	to
be	 easy	 to	 read.	 This	 HOWTO	 aims	 to	 illustrate	 using	 urllib,	 with
enough	 detail	 about	HTTP	 to	 help	 you	 through.	 It	 is	 not	 intended	 to
replace	the	urllib.request	docs,	but	is	supplementary	to	them.

http://www.voidspace.org.uk/python/articles/authentication.shtml
http://www.python.org
ftp://python.org/
http://tools.ietf.org/html/rfc2616.html

Fetching	URLs

The	simplest	way	to	use	urllib.request	is	as	follows:

import	urllib.request

response	=	urllib.request.urlopen('http://python.org/'

html	=	response.read()

If	you	wish	to	retrieve	a	resource	via	URL	and	store	it	 in	a	temporary
location,	you	can	do	so	via	the	urlretrieve()	function:

import	urllib.request

local_filename,	headers	=	urllib.request.urlretrieve

html	=	open(local_filename)

Many	uses	of	urllib	will	 be	 that	 simple	 (note	 that	 instead	of	an	 ‘http:’
URL	 we	 could	 have	 used	 an	 URL	 starting	 with	 ‘ftp:’,	 ‘file:’,	 etc.).
However,	 it’s	 the	 purpose	 of	 this	 tutorial	 to	 explain	 the	 more
complicated	cases,	concentrating	on	HTTP.

HTTP	is	based	on	requests	and	responses	-	the	client	makes	requests
and	 servers	 send	 responses.	 urllib.request	 mirrors	 this	 with	 a
Request	object	which	represents	the	HTTP	request	you	are	making.
In	its	simplest	form	you	create	a	Request	object	that	specifies	the	URL
you	want	to	fetch.	Calling	urlopen	with	this	Request	object	returns	a
response	 object	 for	 the	 URL	 requested.	 This	 response	 is	 a	 file-like
object,	 which	 means	 you	 can	 for	 example	 call	 .read()	 on	 the
response:

import	urllib.request

req	=	urllib.request.Request('http://www.voidspace.org.uk'

response	=	urllib.request.urlopen(req)

the_page	=	response.read()

Note	 that	 urllib.request	makes	use	of	 the	 same	Request	 interface	 to
handle	all	URL	schemes.	For	example,	you	can	make	an	FTP	request
like	so:

req	=	urllib.request.Request('ftp://example.com/')

In	 the	case	of	HTTP,	 there	are	 two	extra	 things	 that	Request	objects
allow	 you	 to	 do:	 First,	 you	 can	 pass	 data	 to	 be	 sent	 to	 the	 server.
Second,	you	can	pass	extra	information	(“metadata”)	about	the	data	or
the	about	request	itself,	to	the	server	-	this	information	is	sent	as	HTTP
“headers”.	Let’s	look	at	each	of	these	in	turn.

Data

Sometimes	you	want	to	send	data	to	a	URL	(often	the	URL	will	refer	to
a	 CGI	 (Common	 Gateway	 Interface)	 script	 [1]	 or	 other	 web
application).	With	HTTP,	 this	 is	 often	 done	 using	what’s	 known	 as	 a
POST	request.	This	is	often	what	your	browser	does	when	you	submit
a	HTML	form	that	you	filled	in	on	the	web.	Not	all	POSTs	have	to	come
from	forms:	you	can	use	a	POST	to	transmit	arbitrary	data	to	your	own
application.	In	the	common	case	of	HTML	forms,	the	data	needs	to	be
encoded	in	a	standard	way,	and	then	passed	to	the	Request	object	as
the	data	argument.	The	encoding	 is	done	using	a	 function	 from	 the
urllib.parse	library.

import	urllib.parse

import	urllib.request

url	=	'http://www.someserver.com/cgi-bin/register.cgi'

values	=	{'name'	:	'Michael	Foord',

										'location'	:	'Northampton',

										'language'	:	'Python'	}

data	=	urllib.parse.urlencode(values)

data	=	data.encode('utf-8')	#	data	should	be	bytes

req	=	urllib.request.Request(url,	data)

response	=	urllib.request.urlopen(req)

the_page	=	response.read()

Note	that	other	encodings	are	sometimes	required	(e.g.	for	file	upload
from	 HTML	 forms	 -	 see	 HTML	 Specification,	 Form	 Submission	 for
more	details).

If	you	do	not	pass	the	data	argument,	urllib	uses	a	GET	request.	One
way	 in	which	GET	 and	POST	 requests	 differ	 is	 that	 POST	 requests
often	have	“side-effects”:	they	change	the	state	of	the	system	in	some
way	 (for	 example	 by	 placing	 an	 order	 with	 the	 website	 for	 a
hundredweight	of	 tinned	spam	 to	be	delivered	 to	your	door).	Though
the	HTTP	standard	makes	it	clear	that	POSTs	are	intended	to	always
cause	 side-effects,	 and	 GET	 requests	 never	 to	 cause	 side-effects,
nothing	prevents	a	GET	request	from	having	side-effects,	nor	a	POST
requests	 from	having	no	side-effects.	Data	can	also	be	passed	 in	an
HTTP	GET	request	by	encoding	it	in	the	URL	itself.

This	is	done	as	follows:

>>>	import	urllib.request

>>>	import	urllib.parse

>>>	data	=	{}

>>>	data['name']	=	'Somebody	Here'

>>>	data['location']	=	'Northampton'

>>>	data['language']	=	'Python'

http://www.w3.org/TR/REC-html40/interact/forms.html#h-17.13

>>>	url_values	=	urllib.parse.urlencode(data)

>>>	print(url_values)		#	The	order	may	differ	from	below.		

name=Somebody+Here&language=Python&location=Northampton

>>>	url	=	'http://www.example.com/example.cgi'

>>>	full_url	=	url	+	'?'	+	url_values

>>>	data	=	urllib.request.urlopen(full_url)

Notice	that	the	full	URL	is	created	by	adding	a	?	to	the	URL,	followed
by	the	encoded	values.

Headers

We’ll	discuss	here	one	particular	HTTP	header,	to	illustrate	how	to	add
headers	to	your	HTTP	request.

Some	 websites	 [2]	 dislike	 being	 browsed	 by	 programs,	 or	 send
different	 versions	 to	 different	 browsers	 [3].	 By	 default	 urllib	 identifies
itself	 as	 Python-urllib/x.y	 (where	 x	 and	 y	 are	 the	 major	 and
minor	 version	 numbers	 of	 the	 Python	 release,	 e.g.	 Python-

urllib/2.5),	which	may	confuse	the	site,	or	just	plain	not	work.	The
way	a	browser	identifies	itself	is	through	the	User-Agent	header	[4].
When	 you	 create	 a	 Request	 object	 you	 can	 pass	 a	 dictionary	 of
headers	in.	The	following	example	makes	the	same	request	as	above,
but	identifies	itself	as	a	version	of	Internet	Explorer	[5].

import	urllib.parse

import	urllib.request

url	=	'http://www.someserver.com/cgi-bin/register.cgi'

user_agent	=	'Mozilla/4.0	(compatible;	MSIE	5.5;	Windows	NT)'

values	=	{'name'	:	'Michael	Foord',

										'location'	:	'Northampton',

										'language'	:	'Python'	}

headers	=	{	'User-Agent'	:	user_agent	}

data		=	urllib.parse.urlencode(values)

data	=	data.encode('utf-8')

req	=	urllib.request.Request(url,	data,	headers)

response	=	urllib.request.urlopen(req)

the_page	=	response.read()

The	 response	also	has	 two	useful	methods.	See	 the	 section	on	 info
and	geturl	which	comes	after	we	have	a	 look	at	what	happens	when
things	go	wrong.

Handling	Exceptions

urlopen	 raises	URLError	when	 it	cannot	handle	a	 response	(though
as	usual	with	Python	APIs,	built-in	exceptions	such	as	ValueError,
TypeError	etc.	may	also	be	raised).

HTTPError	 is	the	subclass	of	URLError	 raised	 in	 the	specific	case
of	HTTP	URLs.

The	exception	classes	are	exported	from	the	urllib.error	module.

URLError

Often,	URLError	is	raised	because	there	is	no	network	connection	(no
route	to	the	specified	server),	or	the	specified	server	doesn’t	exist.	 In
this	case,	the	exception	raised	will	have	a	‘reason’	attribute,	which	is	a
tuple	containing	an	error	code	and	a	text	error	message.

e.g.

>>>	req	=	urllib.request.Request('http://www.pretend_server.org'

>>>	try:	urllib.request.urlopen(req)

...	except	urllib.error.URLError	as	e:

...				print(e.reason)						

...

(4,	'getaddrinfo	failed')

HTTPError

Every	 HTTP	 response	 from	 the	 server	 contains	 a	 numeric	 “status
code”.	Sometimes	the	status	code	 indicates	 that	 the	server	 is	unable

to	 fulfil	 the	 request.	 The	 default	 handlers	 will	 handle	 some	 of	 these
responses	for	you	(for	example,	 if	 the	response	is	a	“redirection”	that
requests	the	client	fetch	the	document	from	a	different	URL,	urllib	will
handle	 that	 for	 you).	 For	 those	 it	 can’t	 handle,	 urlopen	 will	 raise	 an
HTTPError.	 Typical	 errors	 include	 ‘404’	 (page	 not	 found),	 ‘403’
(request	forbidden),	and	‘401’	(authentication	required).

See	 section	 10	 of	 RFC	 2616	 for	 a	 reference	 on	 all	 the	 HTTP	 error
codes.

The	HTTPError	 instance	raised	will	have	an	 integer	 ‘code’	attribute,
which	corresponds	to	the	error	sent	by	the	server.

Error	Codes

Because	 the	 default	 handlers	 handle	 redirects	 (codes	 in	 the	 300
range),	 and	 codes	 in	 the	 100-299	 range	 indicate	 success,	 you	 will
usually	only	see	error	codes	in	the	400-599	range.

http.server.BaseHTTPRequestHandler.responses	is	a	useful
dictionary	 of	 response	 codes	 in	 that	 shows	 all	 the	 response	 codes
used	by	RFC	2616.	The	dictionary	is	reproduced	here	for	convenience

#	Table	mapping	response	codes	to	messages;	entries	have	the

#	form	{code:	(shortmessage,	longmessage)}.

responses	=	{

				100:	('Continue',	'Request	received,	please	continue'

				101:	('Switching	Protocols',

										'Switching	to	new	protocol;	obey	Upgrade	header'

				200:	('OK',	'Request	fulfilled,	document	follows'

				201:	('Created',	'Document	created,	URL	follows'

				202:	('Accepted',

										'Request	accepted,	processing	continues	off-line'

				203:	('Non-Authoritative	Information',	'Request	fulfilled	from	cache'

				204:	('No	Content',	'Request	fulfilled,	nothing	follows'

				205:	('Reset	Content',	'Clear	input	form	for	further	input.'

				206:	('Partial	Content',	'Partial	content	follows.'

				300:	('Multiple	Choices',

										'Object	has	several	resources	--	see	URI	list'

				301:	('Moved	Permanently',	'Object	moved	permanently	--	see	URI	list'

				302:	('Found',	'Object	moved	temporarily	--	see	URI	list'

				303:	('See	Other',	'Object	moved	--	see	Method	and	URL	list'

				304:	('Not	Modified',

										'Document	has	not	changed	since	given	time'

				305:	('Use	Proxy',

										'You	must	use	proxy	specified	in	Location	to	access	this	'

										'resource.'),

				307:	('Temporary	Redirect',

										'Object	moved	temporarily	--	see	URI	list'

				400:	('Bad	Request',

										'Bad	request	syntax	or	unsupported	method'

				401:	('Unauthorized',

										'No	permission	--	see	authorization	schemes'

				402:	('Payment	Required',

										'No	payment	--	see	charging	schemes'),

				403:	('Forbidden',

										'Request	forbidden	--	authorization	will	not	help'

				404:	('Not	Found',	'Nothing	matches	the	given	URI'

				405:	('Method	Not	Allowed',

										'Specified	method	is	invalid	for	this	server.'

				406:	('Not	Acceptable',	'URI	not	available	in	preferred	format.'

				407:	('Proxy	Authentication	Required',	'You	must	authenticate	with	'

										'this	proxy	before	proceeding.'),

				408:	('Request	Timeout',	'Request	timed	out;	try	again	later.'

				409:	('Conflict',	'Request	conflict.'),

				410:	('Gone',

										'URI	no	longer	exists	and	has	been	permanently	removed.'

				411:	('Length	Required',	'Client	must	specify	Content-Length.'

				412:	('Precondition	Failed',	'Precondition	in	headers	is	false.'

				413:	('Request	Entity	Too	Large',	'Entity	is	too	large.'

				414:	('Request-URI	Too	Long',	'URI	is	too	long.'

				415:	('Unsupported	Media	Type',	'Entity	body	in	unsupported	format.'

				416:	('Requested	Range	Not	Satisfiable',

										'Cannot	satisfy	request	range.'),

				417:	('Expectation	Failed',

										'Expect	condition	could	not	be	satisfied.'

				500:	('Internal	Server	Error',	'Server	got	itself	in	trouble'

				501:	('Not	Implemented',

										'Server	does	not	support	this	operation'),

				502:	('Bad	Gateway',	'Invalid	responses	from	another	server/proxy.'

				503:	('Service	Unavailable',

										'The	server	cannot	process	the	request	due	to	a	high	load'

				504:	('Gateway	Timeout',

										'The	gateway	server	did	not	receive	a	timely	response'

				505:	('HTTP	Version	Not	Supported',	'Cannot	fulfill	request.'

				}

When	 an	 error	 is	 raised	 the	 server	 responds	 by	 returning	 an	 HTTP
error	code	and	an	error	page.	You	can	use	the	HTTPError	 instance
as	a	 response	on	 the	page	returned.	This	means	 that	as	well	as	 the
code	attribute,	 it	also	has	read,	geturl,	and	info,	methods	as	returned
by	the	urllib.response	module:

>>>	req	=	urllib.request.Request('http://www.python.org/fish.html'

>>>	try:

...					urllib.request.urlopen(req)

...	except	urllib.error.HTTPError	as	e:

...					print(e.code)

...					print(e.read())		

...

404

b'<!DOCTYPE	html	PUBLIC	"-//W3C//DTD	XHTML	1.0	Transitional//EN"

		"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">\n\n\n<html

		...

		<title>Page	Not	Found</title>\n

		...

Wrapping	it	Up

So	if	you	want	to	be	prepared	for	HTTPError	or	URLError	there	are
two	basic	approaches.	I	prefer	the	second	approach.

Number	1

from	urllib.request	import	Request,	urlopen

from	urllib.error	import	URLError,	HTTPError

req	=	Request(someurl)

try:

				response	=	urlopen(req)

except	HTTPError	as	e:

				print('The	server	couldn\'t	fulfill	the	request.'

				print('Error	code:	',	e.code)

except	URLError	as	e:

				print('We	failed	to	reach	a	server.')

				print('Reason:	',	e.reason)

else:

				#	everything	is	fine

Note: 	The	except	HTTPError	must	come	first,	otherwise
except	URLError	will	also	catch	an	HTTPError.

Number	2

from	urllib.request	import	Request,	urlopen

from	urllib.error	import		URLError

req	=	Request(someurl)

try:

				response	=	urlopen(req)

except	URLError	as	e:

				if	hasattr(e,	'reason'):

								print('We	failed	to	reach	a	server.')

								print('Reason:	',	e.reason)

				elif	hasattr(e,	'code'):

								print('The	server	couldn\'t	fulfill	the	request.'

								print('Error	code:	',	e.code)

else:

				#	everything	is	fine

info	and	geturl

The	response	 returned	by	urlopen	 (or	 the	HTTPError	 instance)	has
two	 useful	 methods	 info()	 and	 geturl()	 and	 is	 defined	 in	 the
module	urllib.response..

geturl	 -	 this	 returns	 the	 real	URL	of	 the	page	 fetched.	This	 is	useful
because	urlopen	 (or	 the	opener	object	used)	may	have	 followed	a
redirect.	 The	URL	 of	 the	 page	 fetched	may	 not	 be	 the	 same	 as	 the
URL	requested.

info	 -	 this	 returns	 a	 dictionary-like	 object	 that	 describes	 the	 page
fetched,	particularly	 the	headers	sent	by	 the	server.	 It	 is	currently	an
http.client.HTTPMessage	instance.

Typical	 headers	 include	 ‘Content-length’,	 ‘Content-type’,	 and	 so	 on.
See	the	Quick	Reference	to	HTTP	Headers	for	a	useful	listing	of	HTTP
headers	with	brief	explanations	of	their	meaning	and	use.

http://www.cs.tut.fi/~jkorpela/http.html

Openers	and	Handlers

When	you	fetch	a	URL	you	use	an	opener	(an	instance	of	the	perhaps
confusingly-named	 urllib.request.OpenerDirector).	Normally
we	have	been	using	the	default	opener	-	via	urlopen	 -	but	you	can
create	custom	openers.	Openers	use	handlers.	All	the	“heavy	lifting”	is
done	by	 the	handlers.	Each	handler	 knows	how	 to	open	URLs	 for	a
particular	URL	scheme	(http,	ftp,	etc.),	or	how	to	handle	an	aspect	of
URL	opening,	for	example	HTTP	redirections	or	HTTP	cookies.

You	will	want	to	create	openers	if	you	want	to	fetch	URLs	with	specific
handlers	installed,	for	example	to	get	an	opener	that	handles	cookies,
or	to	get	an	opener	that	does	not	handle	redirections.

To	create	an	opener,	 instantiate	an	OpenerDirector,	and	then	call
.add_handler(some_handler_instance)	repeatedly.

Alternatively,	 you	 can	 use	 build_opener,	 which	 is	 a	 convenience
function	 for	 creating	 opener	 objects	 with	 a	 single	 function	 call.
build_opener	 adds	 several	 handlers	 by	 default,	 but	 provides	 a
quick	way	to	add	more	and/or	override	the	default	handlers.

Other	 sorts	 of	 handlers	 you	 might	 want	 to	 can	 handle	 proxies,
authentication,	and	other	common	but	slightly	specialised	situations.

install_opener	 can	 be	 used	 to	 make	 an	 opener	 object	 the
(global)	default	opener.	This	means	that	calls	to	urlopen	will	use	the
opener	you	have	installed.

Opener	objects	have	an	open	method,	which	can	be	called	directly	to
fetch	urls	in	the	same	way	as	the	urlopen	function:	there’s	no	need
to	call	install_opener,	except	as	a	convenience.

Basic	Authentication

To	 illustrate	 creating	 and	 installing	 a	 handler	 we	 will	 use	 the
HTTPBasicAuthHandler.	 For	 a	 more	 detailed	 discussion	 of	 this
subject	–	including	an	explanation	of	how	Basic	Authentication	works	-
see	the	Basic	Authentication	Tutorial.

When	authentication	is	required,	the	server	sends	a	header	(as	well	as
the	 401	 error	 code)	 requesting	 authentication.	 This	 specifies	 the
authentication	 scheme	 and	 a	 ‘realm’.	 The	 header	 looks	 like:	 WWW-
Authenticate:	SCHEME	realm="REALM".

e.g.

WWW-Authenticate:	Basic	realm="cPanel	Users"

The	client	should	then	retry	the	request	with	the	appropriate	name	and
password	 for	 the	 realm	 included	 as	 a	 header	 in	 the	 request.	 This	 is
‘basic	authentication’.	 In	order	 to	simplify	 this	process	we	can	create
an	 instance	of	HTTPBasicAuthHandler	 and	an	opener	 to	use	 this
handler.

The	 HTTPBasicAuthHandler	 uses	 an	 object	 called	 a	 password
manager	 to	 handle	 the	 mapping	 of	 URLs	 and	 realms	 to	 passwords
and	usernames.	If	you	know	what	the	realm	is	(from	the	authentication
header	sent	by	the	server),	 then	you	can	use	a	HTTPPasswordMgr.
Frequently	 one	 doesn’t	 care	 what	 the	 realm	 is.	 In	 that	 case,	 it	 is
convenient	 to	 use	 HTTPPasswordMgrWithDefaultRealm.	 This
allows	 you	 to	 specify	 a	 default	 username	 and	 password	 for	 a	 URL.
This	 will	 be	 supplied	 in	 the	 absence	 of	 you	 providing	 an	 alternative
combination	 for	a	specific	 realm.	We	 indicate	 this	by	providing	None

http://www.voidspace.org.uk/python/articles/authentication.shtml

as	the	realm	argument	to	the	add_password	method.

The	 top-level	URL	 is	 the	 first	URL	 that	 requires	authentication.	URLs
“deeper”	than	the	URL	you	pass	to	.add_password()	will	also	match.

#	create	a	password	manager

password_mgr	=	urllib.request.HTTPPasswordMgrWithDefaultRealm

#	Add	the	username	and	password.

#	If	we	knew	the	realm,	we	could	use	it	instead	of	None.

top_level_url	=	"http://example.com/foo/"

password_mgr.add_password(None,	top_level_url,	username

handler	=	urllib.request.HTTPBasicAuthHandler(password_mgr

#	create	"opener"	(OpenerDirector	instance)

opener	=	urllib.request.build_opener(handler)

#	use	the	opener	to	fetch	a	URL

opener.open(a_url)

#	Install	the	opener.

#	Now	all	calls	to	urllib.request.urlopen	use	our	opener.

urllib.request.install_opener(opener)

Note: 	In	the	above	example	we	only	supplied	our
HTTPBasicAuthHandler	to	build_opener.	By	default	openers
have	the	handlers	for	normal	situations	–	ProxyHandler	(if	a	proxy
setting	such	as	an	http_proxy	environment	variable	is	set),
UnknownHandler,	HTTPHandler,	HTTPDefaultErrorHandler,
HTTPRedirectHandler,	FTPHandler,	FileHandler,
DataHandler,	HTTPErrorProcessor.

top_level_url	 is	 in	 fact	 either	 a	 full	 URL	 (including	 the	 ‘http:’
scheme	component	and	the	hostname	and	optionally	the	port	number)
e.g.	 “http://example.com/”	 or	 an	 “authority”	 (i.e.	 the	 hostname,
optionally	 including	 the	 port	 number)	 e.g.	 “example.com”	 or
“example.com:8080”	(the	latter	example	includes	a	port	number).	The
authority,	 if	present,	must	NOT	contain	the	“userinfo”	component	-	for
example	“joe@password:example.com”	is	not	correct.

http://example.com/

Proxies

urllib	 will	 auto-detect	 your	 proxy	 settings	 and	 use	 those.	 This	 is
through	the	ProxyHandler,	which	is	part	of	the	normal	handler	chain
when	 a	 proxy	 setting	 is	 detected.	 Normally	 that’s	 a	 good	 thing,	 but
there	are	occasions	when	it	may	not	be	helpful	[6].	One	way	to	do	this
is	 to	setup	our	own	ProxyHandler,	with	no	proxies	defined.	This	 is
done	using	similar	steps	to	setting	up	a	Basic	Authentication	handler:

>>>	proxy_support	=	urllib.request.ProxyHandler({})

>>>	opener	=	urllib.request.build_opener(proxy_support

>>>	urllib.request.install_opener(opener)

Note: 	Currently	urllib.request	does	not	support	fetching	of
https	locations	through	a	proxy.	However,	this	can	be	enabled	by
extending	urllib.request	as	shown	in	the	recipe	[7].

http://www.voidspace.org.uk/python/articles/authentication.shtml

Sockets	and	Layers

The	 Python	 support	 for	 fetching	 resources	 from	 the	 web	 is	 layered.
urllib	 uses	 the	 http.client	 library,	 which	 in	 turn	 uses	 the	 socket
library.

As	of	Python	2.3	you	can	specify	how	long	a	socket	should	wait	for	a
response	before	 timing	out.	This	 can	be	useful	 in	applications	which
have	to	fetch	web	pages.	By	default	the	socket	module	has	no	timeout
and	 can	 hang.	 Currently,	 the	 socket	 timeout	 is	 not	 exposed	 at	 the
http.client	 or	 urllib.request	 levels.	 However,	 you	 can	 set	 the	 default
timeout	globally	for	all	sockets	using

import	socket

import	urllib.request

#	timeout	in	seconds

timeout	=	10

socket.setdefaulttimeout(timeout)

#	this	call	to	urllib.request.urlopen	now	uses	the	default	timeout

#	we	have	set	in	the	socket	module

req	=	urllib.request.Request('http://www.voidspace.org.uk'

response	=	urllib.request.urlopen(req)

Footnotes

This	document	was	reviewed	and	revised	by	John	Lee.

[1] For	an	introduction	to	the	CGI	protocol	see	Writing	Web
Applications	in	Python.

[2]
Like	Google	for	example.	The	proper	way	to	use	google	from	a
program	is	to	use	PyGoogle	of	course.	See	Voidspace	Google
for	some	examples	of	using	the	Google	API.

[3]

Browser	sniffing	is	a	very	bad	practise	for	website	design	-
building	sites	using	web	standards	is	much	more	sensible.
Unfortunately	a	lot	of	sites	still	send	different	versions	to
different	browsers.

[4] The	user	agent	for	MSIE	6	is	‘Mozilla/4.0	(compatible;	MSIE
6.0;	Windows	NT	5.1;	SV1;	.NET	CLR	1.1.4322)’

[5] For	details	of	more	HTTP	request	headers,	see	Quick
Reference	to	HTTP	Headers.

[6]

In	my	case	I	have	to	use	a	proxy	to	access	the	internet	at	work.
If	you	attempt	to	fetch	localhost	URLs	through	this	proxy	it
blocks	them.	IE	is	set	to	use	the	proxy,	which	urllib	picks	up	on.
In	order	to	test	scripts	with	a	localhost	server,	I	have	to	prevent
urllib	from	using	the	proxy.

[7] urllib	opener	for	SSL	proxy	(CONNECT	method):	ASPN
Cookbook	Recipe.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.pyzine.com/Issue008/Section_Articles/article_CGIOne.html
http://pygoogle.sourceforge.net
http://www.voidspace.org.uk/python/recipebook.shtml#google
http://www.cs.tut.fi/~jkorpela/http.html
http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/456195
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

HOWTO	Use	Python	in	the	web
Author: Marek	Kubica

Abstract

This	document	shows	how	Python	fits	into	the	web.	It	presents	some
ways	 to	 integrate	Python	with	 a	web	 server,	 and	 general	 practices
useful	for	developing	web	sites.

Programming	 for	 the	Web	 has	 become	 a	 hot	 topic	 since	 the	 rise	 of
“Web	2.0”,	which	 focuses	on	user-generated	content	on	web	sites.	 It
has	always	been	possible	to	use	Python	for	creating	web	sites,	but	 it
was	 a	 rather	 tedious	 task.	 Therefore,	 many	 frameworks	 and	 helper
tools	 have	 been	 created	 to	 assist	 developers	 in	 creating	 faster	 and
more	robust	sites.	This	HOWTO	describes	some	of	the	methods	used
to	combine	Python	with	a	web	server	 to	create	dynamic	content.	 It	 is
not	meant	as	a	complete	introduction,	as	this	topic	is	far	too	broad	to
be	covered	in	one	single	document.	However,	a	short	overview	of	the
most	popular	libraries	is	provided.

See	also: 	While	this	HOWTO	tries	to	give	an	overview	of	Python	in
the	web,	it	cannot	always	be	as	up	to	date	as	desired.	Web
development	in	Python	is	rapidly	moving	forward,	so	the	wiki	page
on	Web	Programming	may	be	more	in	sync	with	recent
development.

http://wiki.python.org/moin/WebProgramming

The	Low-Level	View

When	a	user	enters	a	web	site,	 their	browser	makes	a	connection	to
the	site’s	web	server	(this	 is	called	 the	request).	The	server	 looks	up
the	 file	 in	 the	 file	 system	 and	 sends	 it	 back	 to	 the	 user’s	 browser,
which	 displays	 it	 (this	 is	 the	 response).	 This	 is	 roughly	 how	 the
underlying	protocol,	HTTP,	works.

Dynamic	web	sites	are	not	based	on	files	in	the	file	system,	but	rather
on	programs	which	are	run	by	the	web	server	when	a	request	comes
in,	and	which	generate	 the	content	 that	 is	 returned	 to	 the	user.	They
can	do	all	sorts	of	useful	things,	like	display	the	postings	of	a	bulletin
board,	show	your	email,	configure	software,	or	just	display	the	current
time.	 These	 programs	 can	 be	 written	 in	 any	 programming	 language
the	server	supports.	Since	most	servers	support	Python,	 it	 is	easy	to
use	Python	to	create	dynamic	web	sites.

Most	HTTP	servers	are	written	 in	C	or	C++,	 so	 they	cannot	execute
Python	code	directly	–	a	bridge	is	needed	between	the	server	and	the
program.	 These	 bridges,	 or	 rather	 interfaces,	 define	 how	 programs
interact	with	the	server.	There	have	been	numerous	attempts	to	create
the	best	possible	interface,	but	there	are	only	a	few	worth	mentioning.

Not	every	web	server	supports	every	interface.	Many	web	servers	only
support	 old,	 now-obsolete	 interfaces;	 however,	 they	 can	 often	 be
extended	using	third-party	modules	to	support	newer	ones.

Common	Gateway	Interface

This	interface,	most	commonly	referred	to	as	“CGI”,	is	the	oldest,	and
is	 supported	 by	 nearly	 every	 web	 server	 out	 of	 the	 box.	 Programs

using	CGI	to	communicate	with	their	web	server	need	to	be	started	by
the	 server	 for	 every	 request.	So,	 every	 request	 starts	 a	 new	Python
interpreter	 –	 which	 takes	 some	 time	 to	 start	 up	 –	 thus	 making	 the
whole	interface	only	usable	for	low	load	situations.

The	upside	of	CGI	is	that	it	is	simple	–	writing	a	Python	program	which
uses	 CGI	 is	 a	 matter	 of	 about	 three	 lines	 of	 code.	 This	 simplicity
comes	at	a	price:	it	does	very	few	things	to	help	the	developer.

Writing	CGI	programs,	while	still	possible,	is	no	longer	recommended.
With	WSGI,	 a	 topic	 covered	 later	 in	 this	 document,	 it	 is	 possible	 to
write	 programs	 that	 emulate	 CGI,	 so	 they	 can	 be	 run	 as	 CGI	 if	 no
better	option	is	available.

See	also: 	The	Python	standard	library	includes	some	modules	that
are	helpful	for	creating	plain	CGI	programs:

cgi	–	Handling	of	user	input	in	CGI	scripts
cgitb	–	Displays	nice	 tracebacks	when	errors	happen	 in	CGI
applications,	instead	of	presenting	a	“500	Internal	Server	Error”
message

The	Python	wiki	features	a	page	on	CGI	scripts	with	some	additional
information	about	CGI	in	Python.

Simple	script	for	testing	CGI

To	 test	 whether	 your	 web	 server	 works	 with	 CGI,	 you	 can	 use	 this
short	and	simple	CGI	program:

#!/usr/bin/env	python

#	-*-	coding:	UTF-8	-*-

#	enable	debugging

http://wiki.python.org/moin/CgiScripts

import	cgitb

cgitb.enable()

print("Content-Type:	text/plain;charset=utf-8")

print()

print("Hello	World!")

Depending	on	your	web	server	 configuration,	 you	may	need	 to	 save
this	code	with	a	.py	or	.cgi	extension.	Additionally,	this	file	may	also
need	to	be	in	a	cgi-bin	folder,	for	security	reasons.

You	might	 wonder	what	 the	 cgitb	 line	 is	 about.	 This	 line	makes	 it
possible	 to	 display	 a	 nice	 traceback	 instead	 of	 just	 crashing	 and
displaying	 an	 “Internal	 Server	 Error”	 in	 the	 user’s	 browser.	 This	 is
useful	for	debugging,	but	it	might	risk	exposing	some	confidential	data
to	 the	 user.	 You	 should	 not	 use	 cgitb	 in	 production	 code	 for	 this
reason.	You	should	always	catch	exceptions,	and	display	proper	error
pages	 –	 end-users	 don’t	 like	 to	 see	 nondescript	 “Internal	 Server
Errors”	in	their	browsers.

Setting	up	CGI	on	your	own	server

If	you	don’t	have	your	own	web	server,	this	does	not	apply	to	you.	You
can	check	whether	it	works	as-is,	and	if	not	you	will	need	to	talk	to	the
administrator	of	your	web	server.	If	it	is	a	big	host,	you	can	try	filing	a
ticket	asking	for	Python	support.

If	 you	 are	 your	 own	 administrator	 or	 want	 to	 set	 up	 CGI	 for	 testing
purposes	on	your	own	computers,	you	have	to	configure	it	by	yourself.
There	 is	 no	 single	 way	 to	 configure	 CGI,	 as	 there	 are	 many	 web
servers	with	different	configuration	options.	Currently	 the	most	widely
used	free	web	server	is	Apache	HTTPd,	or	Apache	for	short.	Apache

http://httpd.apache.org/

can	 be	 easily	 installed	 on	 nearly	 every	 system	 using	 the	 system’s
package	management	tool.	lighttpd	is	another	alternative	and	is	said	to
have	 better	 performance.	On	many	 systems	 this	 server	 can	 also	 be
installed	using	 the	package	management	 tool,	so	manually	compiling
the	web	server	may	not	be	needed.

On	Apache	you	can	take	a	look	at	the	Dynamic	Content	with	CGI
tutorial,	 where	 everything	 is	 described.	 Most	 of	 the	 time	 it	 is
enough	 just	 to	 set	 +ExecCGI.	 The	 tutorial	 also	 describes	 the
most	common	gotchas	that	might	arise.
On	 lighttpd	 you	 need	 to	 use	 the	 CGI	 module,	 which	 can	 be
configured	 in	 a	 straightforward	 way.	 It	 boils	 down	 to	 setting
cgi.assign	properly.

Common	problems	with	CGI	scripts

Using	CGI	 sometimes	 leads	 to	 small	 annoyances	while	 trying	 to	 get
these	 scripts	 to	 run.	Sometimes	 a	 seemingly	 correct	 script	 does	 not
work	as	expected,	the	cause	being	some	small	hidden	problem	that’s
difficult	to	spot.

Some	of	these	potential	problems	are:

The	Python	script	is	not	marked	as	executable.	When	CGI	scripts
are	not	executable	most	web	servers	will	let	the	user	download	it,
instead	of	running	it	and	sending	the	output	to	the	user.	For	CGI
scripts	to	run	properly	on	Unix-like	operating	systems,	the	+x	bit
needs	 to	 be	 set.	 Using	 chmod	 a+x	 your_script.py	 may
solve	this	problem.
On	a	Unix-like	system,	The	line	endings	in	the	program	file	must
be	 Unix	 style	 line	 endings.	 This	 is	 important	 because	 the	 web
server	checks	the	first	line	of	the	script	(called	shebang)	and	tries
to	 run	 the	 program	 specified	 there.	 It	 gets	 easily	 confused	 by
Windows	 line	endings	(Carriage	Return	&	Line	Feed,	also	called

http://www.lighttpd.net
http://httpd.apache.org/docs/2.2/howto/cgi.html
http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModCGI

CRLF),	so	you	have	to	convert	the	file	to	Unix	line	endings	(only
Line	Feed,	LF).	This	can	be	done	automatically	by	uploading	the
file	via	FTP	in	text	mode	instead	of	binary	mode,	but	the	preferred
way	 is	 just	 telling	 your	 editor	 to	 save	 the	 files	 with	 Unix	 line
endings.	Most	editors	support	this.
Your	web	server	must	be	able	 to	 read	 the	 file,	 and	you	need	 to
make	sure	the	permissions	are	correct.	On	unix-like	systems,	the
server	 often	 runs	 as	 user	 and	 group	 www-data,	 so	 it	 might	 be
worth	a	try	to	change	the	file	ownership,	or	making	the	file	world
readable	by	using	chmod	a+r	your_script.py.
The	web	server	must	know	that	the	file	you’re	trying	to	access	is	a
CGI	script.	Check	the	configuration	of	your	web	server,	as	it	may
be	configured	to	expect	a	specific	file	extension	for	CGI	scripts.
On	Unix-like	systems,	 the	path	 to	 the	 interpreter	 in	 the	shebang
(#!/usr/bin/env	 python)	 must	 be	 correct.	 This	 line	 calls
/usr/bin/env	 to	 find	 Python,	 but	 it	 will	 fail	 if	 there	 is	 no
/usr/bin/env,	 or	 if	 Python	 is	 not	 in	 the	web	 server’s	 path.	 If
you	 know	where	 your	Python	 is	 installed,	 you	 can	also	use	 that
full	 path.	 The	 commands	 whereis	 python	 and	 type	 -p

python	could	help	you	find	where	it	 is	installed.	Once	you	know
the	 path,	 you	 can	 change	 the	 shebang	 accordingly:
#!/usr/bin/python.
The	file	must	not	contain	a	BOM	(Byte	Order	Mark).	The	BOM	is
meant	 for	 determining	 the	 byte	 order	 of	 UTF-16	 and	 UTF-32
encodings,	but	some	editors	write	 this	also	 into	UTF-8	 files.	The
BOM	interferes	with	the	shebang	line,	so	be	sure	to	tell	your	editor
not	to	write	the	BOM.
If	 the	 web	 server	 is	 using	mod_python,	 mod_python	 may	 be
having	problems.	mod_python	 is	 able	 to	handle	CGI	 scripts	by
itself,	but	it	can	also	be	a	source	of	issues.

mod_python

People	coming	from	PHP	often	find	it	hard	to	grasp	how	to	use	Python
in	 the	 web.	 Their	 first	 thought	 is	 mostly	 mod_python,	 because	 they
think	that	this	 is	the	equivalent	to	mod_php.	Actually,	 there	are	many
differences.	What	mod_python	does	is	embed	the	interpreter	into	the
Apache	process,	 thus	speeding	up	 requests	by	not	having	 to	 start	 a
Python	 interpreter	 for	 each	 request.	 On	 the	 other	 hand,	 it	 is	 not
“Python	intermixed	with	HTML”	in	the	way	that	PHP	is	often	intermixed
with	 HTML.	 The	 Python	 equivalent	 of	 that	 is	 a	 template	 engine.
mod_python	itself	is	much	more	powerful	and	provides	more	access
to	 Apache	 internals.	 It	 can	 emulate	 CGI,	 work	 in	 a	 “Python	 Server
Pages”	 mode	 (similar	 to	 JSP)	 which	 is	 “HTML	 intermingled	 with
Python”,	and	 it	has	a	 “Publisher”	which	designates	one	 file	 to	accept
all	requests	and	decide	what	to	do	with	them.

mod_python	does	have	some	problems.	Unlike	 the	PHP	interpreter,
the	Python	interpreter	uses	caching	when	executing	files,	so	changes
to	a	file	will	require	the	web	server	to	be	restarted.	Another	problem	is
the	 basic	 concept	 –	 Apache	 starts	 child	 processes	 to	 handle	 the
requests,	 and	 unfortunately	 every	 child	 process	 needs	 to	 load	 the
whole	 Python	 interpreter	 even	 if	 it	 does	 not	 use	 it.	 This	 makes	 the
whole	 web	 server	 slower.	 Another	 problem	 is	 that,	 because
mod_python	 is	 linked	against	a	specific	version	of	libpython,	 it	 is
not	possible	to	switch	from	an	older	version	to	a	newer	(e.g.	2.4	to	2.5)
without	recompiling	mod_python.	mod_python	 is	also	bound	to	 the
Apache	 web	 server,	 so	 programs	 written	 for	 mod_python	 cannot
easily	run	on	other	web	servers.

These	 are	 the	 reasons	 why	 mod_python	 should	 be	 avoided	 when
writing	new	programs.	In	some	circumstances	 it	still	might	be	a	good
idea	to	use	mod_python	for	deployment,	but	WSGI	makes	it	possible
to	run	WSGI	programs	under	mod_python	as	well.

http://www.modpython.org/

FastCGI	and	SCGI

FastCGI	 and	 SCGI	 try	 to	 solve	 the	 performance	 problem	 of	 CGI	 in
another	way.	Instead	of	embedding	the	interpreter	into	the	web	server,
they	 create	 long-running	 background	 processes.	 There	 is	 still	 a
module	in	the	web	server	which	makes	it	possible	for	the	web	server
to	“speak”	with	the	background	process.	As	the	background	process	is
independent	of	the	server,	it	can	be	written	in	any	language,	including
Python.	The	language	just	needs	to	have	a	 library	which	handles	the
communication	with	the	webserver.

The	difference	between	FastCGI	and	SCGI	 is	very	small,	as	SCGI	 is
essentially	 just	 a	 “simpler	 FastCGI”.	 As	 the	 web	 server	 support	 for
SCGI	 is	 limited,	most	 people	 use	 FastCGI	 instead,	 which	works	 the
same	 way.	 Almost	 everything	 that	 applies	 to	 SCGI	 also	 applies	 to
FastCGI	as	well,	so	we’ll	only	cover	the	latter.

These	days,	FastCGI	is	never	used	directly.	Just	like	mod_python,	it
is	only	used	for	the	deployment	of	WSGI	applications.

See	also:

FastCGI,	 SCGI,	 and	 Apache:	 Background	 and	 Future	 is	 a
discussion	on	why	 the	concept	of	FastCGI	and	SCGI	 is	better
than	that	of	mod_python.

Setting	up	FastCGI

Each	web	server	requires	a	specific	module.

Apache	 has	 both	mod_fastcgi	 and	mod_fcgid.	 mod_fastcgi	 is
the	original	one,	but	it	has	some	licensing	issues,	which	is	why	it
is	 sometimes	 considered	 non-free.	 mod_fcgid	 is	 a	 smaller,

http://www.vmunix.com/mark/blog/archives/2006/01/02/fastcgi-scgi-and-apache-background-and-future/
http://www.fastcgi.com/drupal/
http://httpd.apache.org/mod_fcgid/

compatible	alternative.	One	of	these	modules	needs	to	be	loaded
by	Apache.
lighttpd	 ships	 its	 own	 FastCGI	 module	 as	 well	 as	 an	 SCGI
module.
nginx	also	supports	FastCGI.

Once	 you	 have	 installed	 and	 configured	 the	module,	 you	 can	 test	 it
with	the	following	WSGI-application:

#!/usr/bin/env	python

#	-*-	coding:	UTF-8	-*-

import	sys,	os

from	html	import	escape

from	flup.server.fcgi	import	WSGIServer

def	app(environ,	start_response):

				start_response('200	OK',	[('Content-Type',	'text/html'

				yield	'<h1>FastCGI	Environment</h1>'

				yield	'<table>'

				for	k,	v	in	sorted(environ.items()):

									yield	'<tr><th>{0}</th><td>{1}</td></tr>'.format

													escape(k),	escape(v))

				yield	'</table>'

WSGIServer(app).run()

This	is	a	simple	WSGI	application,	but	you	need	to	install	flup	first,	as
flup	handles	the	low	level	FastCGI	access.

See	also: 	There	is	some	documentation	on	setting	up	Django	with
FastCGI,	most	of	which	can	be	reused	for	other	WSGI-compliant
frameworks	and	libraries.	Only	the	manage.py	part	has	to	be

http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModFastCGI
http://redmine.lighttpd.net/wiki/lighttpd/Docs:ModSCGI
http://nginx.org/
http://wiki.nginx.org/NginxSimplePythonFCGI
http://pypi.python.org/pypi/flup/1.0
http://docs.djangoproject.com/en/dev/howto/deployment/fastcgi/

changed,	the	example	used	here	can	be	used	instead.	Django	does
more	or	less	the	exact	same	thing.

mod_wsgi

mod_wsgi	is	an	attempt	to	get	rid	of	the	low	level	gateways.	Given	that
FastCGI,	 SCGI,	 and	 mod_python	 are	 mostly	 used	 to	 deploy	 WSGI
applications,	 mod_wsgi	 was	 started	 to	 directly	 embed	 WSGI
applications	 into	 the	 Apache	 web	 server.	 mod_wsgi	 is	 specifically
designed	 to	 host	 WSGI	 applications.	 It	 makes	 the	 deployment	 of
WSGI	applications	much	easier	than	deployment	using	other	low	level
methods,	 which	 need	 glue	 code.	 The	 downside	 is	 that	 mod_wsgi	 is
limited	to	the	Apache	web	server;	other	servers	would	need	their	own
implementations	of	mod_wsgi.

mod_wsgi	 supports	 two	 modes:	 embedded	 mode,	 in	 which	 it
integrates	with	the	Apache	process,	and	daemon	mode,	which	is	more
FastCGI-like.	 Unlike	 FastCGI,	 mod_wsgi	 handles	 the	 worker-
processes	by	itself,	which	makes	administration	easier.

http://code.google.com/p/modwsgi/

Step	back:	WSGI

WSGI	 has	 already	 been	 mentioned	 several	 times,	 so	 it	 has	 to	 be
something	important.	In	fact	it	really	is,	and	now	it	is	time	to	explain	it.

The	Web	Server	Gateway	 Interface,	or	WSGI	 for	 short,	 is	 defined	 in
PEP	333	and	is	currently	the	best	way	to	do	Python	web	programming.
While	 it	 is	 great	 for	 programmers	writing	 frameworks,	 a	 normal	 web
developer	 does	 not	 need	 to	 get	 in	 direct	 contact	 with	 it.	 When
choosing	a	framework	for	web	development	it	is	a	good	idea	to	choose
one	which	supports	WSGI.

The	 big	 benefit	 of	 WSGI	 is	 the	 unification	 of	 the	 application
programming	 interface.	When	your	program	is	compatible	with	WSGI
–	which	at	the	outer	level	means	that	the	framework	you	are	using	has
support	for	WSGI	–	your	program	can	be	deployed	via	any	web	server
interface	for	which	there	are	WSGI	wrappers.	You	do	not	need	to	care
about	 whether	 the	 application	 user	 uses	mod_python	 or	 FastCGI	 or
mod_wsgi	 –	 with	 WSGI	 your	 application	 will	 work	 on	 any	 gateway
interface.	The	Python	standard	 library	contains	 its	own	WSGI	server,
wsgiref,	which	is	a	small	web	server	that	can	be	used	for	testing.

A	 really	 great	 WSGI	 feature	 is	 middleware.	 Middleware	 is	 a	 layer
around	your	program	which	can	add	various	functionality	to	it.	There	is
quite	 a	 bit	 of	middleware	 already	 available.	 For	 example,	 instead	 of
writing	your	own	session	management	(HTTP	is	a	stateless	protocol,
so	 to	 associate	 multiple	 HTTP	 requests	 with	 a	 single	 user	 your
application	must	 create	 and	manage	 such	 state	 via	 a	 session),	 you
can	just	download	middleware	which	does	that,	plug	it	 in,	and	get	on
with	coding	the	unique	parts	of	your	application.	The	same	thing	with
compression	 –	 there	 is	 existing	 middleware	 which	 handles
compressing	 your	 HTML	 using	 gzip	 to	 save	 on	 your	 server’s

http://www.python.org/dev/peps/pep-0333
http://www.wsgi.org/en/latest/libraries.html

bandwidth.	 Authentication	 is	 another	 a	 problem	 easily	 solved	 using
existing	middleware.

Although	WSGI	may	seem	complex,	 the	 initial	phase	of	 learning	can
be	 very	 rewarding	 because	 WSGI	 and	 the	 associated	 middleware
already	 have	 solutions	 to	 many	 problems	 that	 might	 arise	 while
developing	web	sites.

WSGI	Servers

The	 code	 that	 is	 used	 to	 connect	 to	 various	 low	 level	 gateways	 like
CGI	or	mod_python	is	called	a	WSGI	server.	One	of	 these	servers	 is
flup,	which	 supports	FastCGI	 and	SCGI,	 as	well	 as	AJP.	Some	of
these	servers	are	written	 in	Python,	as	flup	 is,	 but	 there	also	exist
others	 which	 are	 written	 in	 C	 and	 can	 be	 used	 as	 drop-in
replacements.

There	 are	 many	 servers	 already	 available,	 so	 a	 Python	 web
application	 can	 be	 deployed	 nearly	 anywhere.	 This	 is	 one	 big
advantage	that	Python	has	compared	with	other	web	technologies.

See	also: 	A	good	overview	of	WSGI-related	code	can	be	found	in
the	WSGI	homepage,	which	contains	an	extensive	list	of	WSGI
servers	which	can	be	used	by	any	application	supporting	WSGI.

You	might	be	interested	in	some	WSGI-supporting	modules	already
contained	in	the	standard	library,	namely:

wsgiref	–	some	tiny	utilities	and	servers	for	WSGI

Case	study:	MoinMoin

http://en.wikipedia.org/wiki/Apache_JServ_Protocol
http://www.wsgi.org/en/latest/index.html
http://www.wsgi.org/en/latest/servers.html

What	 does	WSGI	 give	 the	 web	 application	 developer?	 Let’s	 take	 a
look	at	an	application	that’s	been	around	for	a	while,	which	was	written
in	Python	without	using	WSGI.

One	of	 the	most	widely	used	wiki	 software	packages	 is	MoinMoin.	 It
was	created	in	2000,	so	it	predates	WSGI	by	about	three	years.	Older
versions	needed	separate	code	to	run	on	CGI,	mod_python,	FastCGI
and	standalone.

It	now	includes	support	for	WSGI.	Using	WSGI,	it	is	possible	to	deploy
MoinMoin	on	any	WSGI	compliant	server,	with	no	additional	glue	code.
Unlike	 the	 pre-WSGI	 versions,	 this	 could	 include	WSGI	 servers	 that
the	authors	of	MoinMoin	know	nothing	about.

http://moinmo.in/

Model-View-Controller

The	term	MVC	is	often	encountered	in	statements	such	as	“framework
foo	 supports	 MVC”.	 MVC	 is	 more	 about	 the	 overall	 organization	 of
code,	 rather	 than	any	particular	API.	Many	web	 frameworks	use	 this
model	 to	 help	 the	 developer	 bring	 structure	 to	 their	 program.	Bigger
web	applications	can	have	lots	of	code,	so	it	is	a	good	idea	to	have	an
effective	 structure	 right	 from	 the	 beginning.	 That	way,	 even	 users	 of
other	frameworks	(or	even	other	languages,	since	MVC	is	not	Python-
specific)	can	easily	understand	 the	code,	given	 that	 they	are	already
familiar	with	the	MVC	structure.

MVC	stands	for	three	components:

The	model.	This	is	the	data	that	will	be	displayed	and	modified.	In
Python	 frameworks,	 this	 component	 is	 often	 represented	 by	 the
classes	used	by	an	object-relational	mapper.
The	view.	This	component’s	job	is	to	display	the	data	of	the	model
to	 the	 user.	 Typically	 this	 component	 is	 implemented	 via
templates.
The	controller.	This	is	the	layer	between	the	user	and	the	model.
The	controller	 reacts	 to	user	actions	 (like	opening	some	specific
URL),	tells	the	model	to	modify	the	data	if	necessary,	and	tells	the
view	code	what	to	display,

While	one	might	think	that	MVC	is	a	complex	design	pattern,	in	fact	it
is	not.	 It	 is	used	 in	Python	because	 it	has	turned	out	 to	be	useful	 for
creating	clean,	maintainable	web	sites.

Note: 	While	not	all	Python	frameworks	explicitly	support	MVC,	it	is
often	trivial	to	create	a	web	site	which	uses	the	MVC	pattern	by
separating	the	data	logic	(the	model)	from	the	user	interaction	logic

(the	controller)	and	the	templates	(the	view).	That’s	why	it	is
important	not	to	write	unnecessary	Python	code	in	the	templates	–	it
works	against	the	MVC	model	and	creates	chaos	in	the	code	base,
making	it	harder	to	understand	and	modify.

See	also: 	The	English	Wikipedia	has	an	article	about	the	Model-
View-Controller	pattern.	It	includes	a	long	list	of	web	frameworks	for
various	programming	languages.

http://en.wikipedia.org/wiki/Model-view-controller

Ingredients	for	Websites

Websites	are	complex	constructs,	so	tools	have	been	created	to	help
web	 developers	 make	 their	 code	 easier	 to	 write	 and	 more
maintainable.	 Tools	 like	 these	 exist	 for	 all	 web	 frameworks	 in	 all
languages.	Developers	 are	 not	 forced	 to	 use	 these	 tools,	 and	 often
there	 is	 no	 “best”	 tool.	 It	 is	 worth	 learning	 about	 the	 available	 tools
because	 they	 can	 greatly	 simplify	 the	 process	 of	 developing	 a	 web
site.

See	also: 	There	are	far	more	components	than	can	be	presented
here.	The	Python	wiki	has	a	page	about	these	components,	called
Web	Components.

Templates

Mixing	of	HTML	and	Python	code	is	made	possible	by	a	few	libraries.
While	 convenient	 at	 first,	 it	 leads	 to	 horribly	 unmaintainable	 code.
That’s	why	 templates	exist.	Templates	are,	 in	 the	simplest	 case,	 just
HTML	files	with	placeholders.	The	HTML	is	sent	to	the	user’s	browser
after	filling	in	the	placeholders.

Python	already	includes	a	way	to	build	simple	templates:

#	a	simple	template

template	=	"<html><body><h1>Hello	{who}!</h1></body></html>"

print(template.format(who="Reader"))

To	 generate	 complex	 HTML	 based	 on	 non-trivial	 model	 data,
conditional	and	looping	constructs	like	Python’s	for	and	if	are	generally
needed.	Template	engines	support	templates	of	this	complexity.

http://wiki.python.org/moin/WebComponents

There	are	a	lot	of	template	engines	available	for	Python	which	can	be
used	with	or	without	a	 framework.	Some	of	 these	 define	 a	 plain-text
programming	 language	 which	 is	 easy	 to	 learn,	 partly	 because	 it	 is
limited	 in	 scope.	 Others	 use	 XML,	 and	 the	 template	 output	 is
guaranteed	 to	 be	 always	 be	 valid	 XML.	 There	 are	 many	 other
variations.

Some	frameworks	ship	their	own	template	engine	or	recommend	one
in	 particular.	 In	 the	 absence	 of	 a	 reason	 to	 use	 a	 different	 template
engine,	using	the	one	provided	by	or	recommended	by	the	framework
is	a	good	idea.

Popular	template	engines	include:

Mako
Genshi
Jinja

See	also: 	There	are	many	template	engines	competing	for
attention,	because	it	is	pretty	easy	to	create	them	in	Python.	The
page	Templating	in	the	wiki	lists	a	big,	ever-growing	number	of
these.	The	three	listed	above	are	considered	“second	generation”
template	engines	and	are	a	good	place	to	start.

Data	persistence

Data	 persistence,	 while	 sounding	 very	 complicated,	 is	 just	 about
storing	data.	This	data	might	be	 the	 text	of	blog	entries,	 the	postings
on	a	bulletin	board	or	the	text	of	a	wiki	page.	There	are,	of	course,	a
number	of	different	ways	to	store	information	on	a	web	server.

Often,	 relational	 database	 engines	 like	 MySQL	 or	 PostgreSQL	 are
used	 because	 of	 their	 good	 performance	 when	 handling	 very	 large

http://www.makotemplates.org/
http://genshi.edgewall.org/
http://jinja.pocoo.org/2/
http://wiki.python.org/moin/Templating
http://www.mysql.com/
http://www.postgresql.org/

databases	 consisting	 of	 millions	 of	 entries.	 There	 is	 also	 a	 small
database	 engine	 called	SQLite,	which	 is	 bundled	with	 Python	 in	 the
sqlite3	 module,	 and	 which	 uses	 only	 one	 file.	 It	 has	 no	 other
dependencies.	For	smaller	sites	SQLite	is	just	enough.

Relational	 databases	 are	 queried	 using	 a	 language	 called	 SQL.
Python	 programmers	 in	 general	 do	 not	 like	 SQL	 too	 much,	 as	 they
prefer	to	work	with	objects.	It	is	possible	to	save	Python	objects	into	a
database	using	a	technology	called	ORM	(Object	Relational	Mapping).
ORM	 translates	 all	 object-oriented	 access	 into	 SQL	 code	 under	 the
hood,	 so	 the	 developer	 does	 not	 need	 to	 think	 about	 it.	 Most
frameworks	use	ORMs,	and	it	works	quite	well.

A	 second	 possibility	 is	 storing	 data	 in	 normal,	 plain	 text	 files	 (some
times	called	“flat	files”).	This	 is	very	easy	for	simple	sites,	but	can	be
difficult	 to	get	 right	 if	 the	web	site	 is	performing	many	updates	 to	 the
stored	data.

A	 third	 possibility	 are	 object	 oriented	 databases	 (also	 called	 “object
databases”).	 These	 databases	 store	 the	 object	 data	 in	 a	 form	 that
closely	parallels	 the	way	the	objects	are	structured	 in	memory	during
program	execution.	(By	contrast,	ORMs	store	the	object	data	as	rows
of	 data	 in	 tables	 and	 relations	 between	 those	 rows.)	 Storing	 the
objects	directly	has	the	advantage	that	nearly	all	objects	can	be	saved
in	 a	 straightforward	 way,	 unlike	 in	 relational	 databases	 where	 some
objects	are	very	hard	to	represent.

Frameworks	often	give	hints	on	which	data	storage	method	to	choose.
It	is	usually	a	good	idea	to	stick	to	the	data	store	recommended	by	the
framework	 unless	 the	 application	 has	 special	 requirements	 better
satisfied	by	an	alternate	storage	mechanism.

See	also:

http://www.sqlite.org/
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Object-relational_mapping

Persistence	Tools	 lists	possibilities	on	how	 to	 save	data	 in	 the
file	 system.	 Some	 of	 these	 modules	 are	 part	 of	 the	 standard
library
Database	 Programming	 helps	 with	 choosing	 a	 method	 for
saving	data
SQLAlchemy,	 the	 most	 powerful	 OR-Mapper	 for	 Python,	 and
Elixir,	which	makes	SQLAlchemy	easier	to	use
SQLObject,	another	popular	OR-Mapper
ZODB	and	Durus,	two	object	oriented	databases

http://wiki.python.org/moin/PersistenceTools
http://wiki.python.org/moin/DatabaseProgramming
http://www.sqlalchemy.org/
http://elixir.ematia.de/
http://www.sqlobject.org/
https://launchpad.net/zodb
http://www.mems-exchange.org/software/durus/

Frameworks

The	process	of	creating	code	to	run	web	sites	involves	writing	code	to
provide	various	services.	The	code	to	provide	a	particular	service	often
works	 the	 same	way	 regardless	 of	 the	 complexity	 or	 purpose	 of	 the
web	 site	 in	 question.	 Abstracting	 these	 common	 solutions	 into
reusable	 code	 produces	 what	 are	 called	 “frameworks”	 for	 web
development.	 Perhaps	 the	 most	 well-known	 framework	 for	 web
development	 is	 Ruby	 on	 Rails,	 but	 Python	 has	 its	 own	 frameworks.
Some	of	 these	were	partly	 inspired	by	Rails,	or	borrowed	 ideas	 from
Rails,	but	many	existed	a	long	time	before	Rails.

Originally	 Python	 web	 frameworks	 tended	 to	 incorporate	 all	 of	 the
services	 needed	 to	 develop	 web	 sites	 as	 a	 giant,	 integrated	 set	 of
tools.	 No	 two	 web	 frameworks	 were	 interoperable:	 a	 program
developed	 for	 one	 could	 not	 be	 deployed	 on	 a	 different	 one	without
considerable	 re-engineering	 work.	 This	 led	 to	 the	 development	 of
“minimalist”	 web	 frameworks	 that	 provided	 just	 the	 tools	 to
communicate	between	the	Python	code	and	the	http	protocol,	with	all
other	services	to	be	added	on	top	via	separate	components.	Some	ad
hoc	standards	were	developed	that	allowed	for	 limited	interoperability
between	 frameworks,	 such	 as	 a	 standard	 that	 allowed	 different
template	engines	to	be	used	interchangeably.

Since	the	advent	of	WSGI,	the	Python	web	framework	world	has	been
evolving	 toward	 interoperability	 based	 on	 the	 WSGI	 standard.	 Now
many	web	frameworks,	whether	“full	stack”	(providing	all	the	tools	one
needs	 to	 deploy	 the	 most	 complex	 web	 sites)	 or	 minimalist,	 or
anything	in	between,	are	built	from	collections	of	reusable	components
that	can	be	used	with	more	than	one	framework.

The	 majority	 of	 users	 will	 probably	 want	 to	 select	 a	 “full	 stack”

framework	that	has	an	active	community.	These	frameworks	tend	to	be
well	 documented,	 and	 provide	 the	 easiest	 path	 to	 producing	 a	 fully
functional	web	site	in	minimal	time.

Some	notable	frameworks

There	are	an	 incredible	number	of	 frameworks,	so	they	cannot	all	be
covered	 here.	 Instead	 we	 will	 briefly	 touch	 on	 some	 of	 the	 most
popular.

Django

Django	 is	a	 framework	consisting	of	several	 tightly	coupled	elements
which	 were	 written	 from	 scratch	 and	 work	 together	 very	 well.	 It
includes	an	ORM	which	 is	 quite	 powerful	while	 being	 simple	 to	 use,
and	has	a	great	online	administration	interface	which	makes	it	possible
to	edit	the	data	in	the	database	with	a	browser.	The	template	engine	is
text-based	 and	 is	 designed	 to	 be	 usable	 for	 page	 designers	 who
cannot	write	Python.	It	supports	template	inheritance	and	filters	(which
work	like	Unix	pipes).	Django	has	many	handy	features	bundled,	such
as	creation	of	RSS	feeds	or	generic	views,	which	make	it	possible	to
create	web	sites	almost	without	writing	any	Python	code.

It	 has	 a	 big,	 international	 community,	 the	 members	 of	 which	 have
created	many	web	sites.	There	are	also	a	lot	of	add-on	projects	which
extend	 Django’s	 normal	 functionality.	 This	 is	 partly	 due	 to	 Django’s
well	written	online	documentation	and	the	Django	book.

Note: 	Although	Django	is	an	MVC-style	framework,	it	names	the
elements	differently,	which	is	described	in	the	Django	FAQ.

TurboGears

http://www.djangoproject.com/
http://docs.djangoproject.com/
http://www.djangobook.com/
http://docs.djangoproject.com/en/dev/faq/general/#django-appears-to-be-a-mvc-framework-but-you-call-the-controller-the-view-and-the-view-the-template-how-come-you-don-t-use-the-standard-names

Another	 popular	 web	 framework	 for	 Python	 is	 TurboGears.
TurboGears	takes	the	approach	of	using	already	existing	components
and	combining	them	with	glue	code	to	create	a	seamless	experience.
TurboGears	 gives	 the	 user	 flexibility	 in	 choosing	 components.	 For
example	 the	 ORM	 and	 template	 engine	 can	 be	 changed	 to	 use
packages	different	from	those	used	by	default.

The	documentation	can	be	found	in	the	TurboGears	wiki,	where	 links
to	 screencasts	 can	 be	 found.	 TurboGears	 has	 also	 an	 active	 user
community	which	can	respond	to	most	related	questions.	There	is	also
a	TurboGears	book	published,	which	is	a	good	starting	point.

The	newest	version	of	TurboGears,	version	2.0,	moves	even	further	in
direction	 of	 WSGI	 support	 and	 a	 component-based	 architecture.
TurboGears	 2	 is	 based	 on	 the	 WSGI	 stack	 of	 another	 popular
component-based	web	framework,	Pylons.

Zope

The	Zope	framework	is	one	of	the	“old	original”	frameworks.	Its	current
incarnation	in	Zope2	is	a	tightly	integrated	full-stack	framework.	One	of
its	most	interesting	feature	is	its	tight	integration	with	a	powerful	object
database	 called	 the	 ZODB	 (Zope	 Object	 Database).	 Because	 of	 its
highly	 integrated	 nature,	 Zope	 wound	 up	 in	 a	 somewhat	 isolated
ecosystem:	code	written	for	Zope	wasn’t	very	usable	outside	of	Zope,
and	vice-versa.	To	 solve	 this	 problem	 the	Zope	 3	 effort	was	 started.
Zope	 3	 re-engineers	 Zope	 as	 a	 set	 of	 more	 cleanly	 isolated
components.	 This	 effort	 was	 started	 before	 the	 advent	 of	 the	WSGI
standard,	 but	 there	 is	 WSGI	 support	 for	 Zope	 3	 from	 the	 Repoze
project.	Zope	components	have	many	years	of	production	use	behind
them,	and	the	Zope	3	project	gives	access	to	these	components	to	the
wider	Python	community.	There	 is	even	a	separate	 framework	based

http://www.turbogears.org/
http://docs.turbogears.org/
http://turbogearsbook.com/
http://pylonshq.com/
https://launchpad.net/zodb
http://repoze.org/

on	the	Zope	components:	Grok.

Zope	is	also	the	infrastructure	used	by	the	Plone	content	management
system,	 one	 of	 the	most	 powerful	 and	 popular	 content	management
systems	available.

Other	notable	frameworks

Of	course	these	are	not	the	only	frameworks	that	are	available.	There
are	many	other	frameworks	worth	mentioning.

Another	framework	that’s	already	been	mentioned	is	Pylons.	Pylons	is
much	 like	 TurboGears,	 but	 with	 an	 even	 stronger	 emphasis	 on
flexibility,	which	comes	at	the	cost	of	being	more	difficult	to	use.	Nearly
every	component	can	be	exchanged,	which	makes	it	necessary	to	use
the	 documentation	 of	 every	 single	 component,	 of	 which	 there	 are
many.	Pylons	builds	upon	Paste,	an	extensive	set	of	 tools	which	are
handy	for	WSGI.

And	 that’s	 still	 not	 everything.	 The	 most	 up-to-date	 information	 can
always	be	found	in	the	Python	wiki.

See	also: 	The	Python	wiki	contains	an	extensive	list	of	web
frameworks.

Most	frameworks	also	have	their	own	mailing	lists	and	IRC	channels,
look	out	for	these	on	the	projects’	web	sites.	There	is	also	a	general
“Python	in	the	Web”	IRC	channel	on	freenode	called	#python.web.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://grok.zope.org/
http://plone.org/
http://pylonshq.com/
http://pythonpaste.org/
http://wiki.python.org/moin/WebFrameworks
http://wiki.python.org/moin/PoundPythonWeb
http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Argparse	Tutorial
author: Tshepang	Lekhonkhobe

This	tutorial	 is	 intended	to	be	a	gentle	 introduction	to	argparse,	 the
recommended	command-line	parsing	module	 in	 the	Python	standard
library.

Note: 	There	are	two	other	modules	that	fulfill	the	same	task,
namely	getopt	(an	equivalent	for	getopt()	from	the	C	language)
and	the	deprecated	optparse.	Note	also	that	argparse	is	based
on	optparse,	and	therefore	very	similar	in	terms	of	usage.

Concepts

Let’s	show	the	sort	of	functionality	that	we	are	going	to	explore	in	this
introductory	tutorial	by	making	use	of	the	ls	command:

$	ls

cpython		devguide		prog.py		pypy		rm-unused-function.patch

$	ls	pypy

ctypes_configure		demo		dotviewer		include		lib_pypy		lib-python	...

$	ls	-l

total	20

drwxr-xr-x	19	wena	wena	4096	Feb	18	18:51	cpython

drwxr-xr-x		4	wena	wena	4096	Feb		8	12:04	devguide

-rwxr-xr-x		1	wena	wena		535	Feb	19	00:05	prog.py

drwxr-xr-x	14	wena	wena	4096	Feb		7	00:59	pypy

-rw-r--r--		1	wena	wena		741	Feb	18	01:01	rm-unused-function.patch

$	ls	--help

Usage:	ls	[OPTION]...	[FILE]...

List	information	about	the	FILEs	(the	current	directory	by	default

Sort	entries	alphabetically	if	none	of	-cftuvSUX	nor	--sort	is	specified.

...

A	few	concepts	we	can	learn	from	the	four	commands:

The	ls	command	 is	useful	when	run	without	any	options	at	all.	 It
defaults	to	displaying	the	contents	of	the	current	directory.
If	we	want	beyond	what	it	provides	by	default,	we	tell	it	a	bit	more.
In	this	case,	we	want	it	to	display	a	different	directory,	pypy.	What
we	 did	 is	 specify	 what	 is	 known	 as	 a	 positional	 argument.	 It’s
named	so	because	the	program	should	know	what	to	do	with	the
value,	 solely	 based	 on	 where	 it	 appears	 on	 the	 command	 line.
This	concept	is	more	relevant	to	a	command	like	cp,	whose	most
basic	usage	is	cp	SRC	DEST.	The	first	position	is	what	you	want
copied,	and	the	second	position	is	where	you	want	it	copied	to.

Now,	 say	 we	 want	 to	 change	 behaviour	 of	 the	 program.	 In	 our
example,	we	display	more	info	for	each	file	instead	of	just	showing
the	 file	 names.	 The	 -l	 in	 that	 case	 is	 known	 as	 an	 optional
argument.
That’s	a	 snippet	of	 the	help	 text.	 It’s	 very	useful	 in	 that	 you	can
come	 across	 a	 program	 you	 have	 never	 used	 before,	 and	 can
figure	out	how	it	works	simply	by	reading	its	help	text.

The	basics

Let	us	start	with	a	very	simple	example	which	does	(almost)	nothing:

import	argparse

parser	=	argparse.ArgumentParser()

parser.parse_args()

Following	is	a	result	of	running	the	code:

$	python3	prog.py

$	python3	prog.py	--help

usage:	prog.py	[-h]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

$	python3	prog.py	--verbose

usage:	prog.py	[-h]

prog.py:	error:	unrecognized	arguments:	--verbose

$	python3	prog.py	foo

usage:	prog.py	[-h]

prog.py:	error:	unrecognized	arguments:	foo

Here	is	what	is	happening:

Running	the	script	without	any	options	results	in	nothing	displayed
to	stdout.	Not	so	useful.
The	second	one	starts	to	display	the	usefulness	of	the	argparse
module.	We	have	done	almost	nothing,	but	already	we	get	a	nice
help	message.
The	 --help	 option,	which	 can	 also	 be	 shortened	 to	 -h,	 is	 the
only	option	we	get	 for	 free	(i.e.	no	need	to	specify	 it).	Specifying
anything	else	results	in	an	error.	But	even	then,	we	do	get	a	useful
usage	message,	also	for	free.

Introducing	Positional	arguments

An	example:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("echo")

args	=	parser.parse_args()

print(args.echo)

And	running	the	code:

$	python3	prog.py

usage:	prog.py	[-h]	echo

prog.py:	error:	the	following	arguments	are	required:	

$	python3	prog.py	--help

usage:	prog.py	[-h]	echo

positional	arguments:

		echo

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

$	python3	prog.py	foo

foo

Here	is	what’s	happening:

We’ve	 added	 the	 add_argument()	 method,	 which	 is	 what	 we
use	to	specify	which	command-line	options	the	program	is	willing
to	accept.	In	this	case,	I’ve	named	it	echo	so	that	it’s	in	line	with
its	function.
Calling	our	program	now	requires	us	to	specify	an	option.
The	parse_args()	method	actually	returns	some	data	from	the

options	specified,	in	this	case,	echo.
The	variable	is	some	form	of	‘magic’	that	argparse	performs	for
free	(i.e.	no	need	to	specify	which	variable	that	value	is	stored	in).
You	 will	 also	 notice	 that	 its	 name	 matches	 the	 string	 argument
given	to	the	method,	echo.

Note	 however	 that,	 although	 the	 help	 display	 looks	 nice	 and	 all,	 it
currently	is	not	as	helpful	as	it	can	be.	For	example	we	see	that	we	got
echo	as	a	positional	argument,	but	we	don’t	know	what	it	does,	other
than	by	guessing	or	by	reading	the	source	code.	So,	let’s	make	it	a	bit
more	useful:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("echo",	help="echo	the	string	you	use	here"

args	=	parser.parse_args()

print(args.echo)

And	we	get:

$	python3	prog.py	-h

usage:	prog.py	[-h]	echo

positional	arguments:

		echo								echo	the	string	you	use	here

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

Now,	how	about	doing	something	even	more	useful:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	help="display	a	square	of	a	given	number"

args	=	parser.parse_args()

print(args.square**2)

Following	is	a	result	of	running	the	code:

$	python3	prog.py	4

Traceback	(most	recent	call	last):

		File	"prog.py",	line	5,	in	<module>

				print(args.square**2)

TypeError:	unsupported	operand	type(s)	for	**	or	pow

That	 didn’t	 go	 so	well.	 That’s	 because	 argparse	 treats	 the	 options
we	 give	 it	 as	 strings,	 unless	 we	 tell	 it	 otherwise.	 So,	 let’s	 tell
argparse	to	treat	that	input	as	an	integer:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	help="display	a	square	of	a	given	number"

																				type=int)

args	=	parser.parse_args()

print(args.square**2)

Following	is	a	result	of	running	the	code:

$	python3	prog.py	4

16

$	python3	prog.py	four

usage:	prog.py	[-h]	square

prog.py:	error:	argument	square:	invalid	int	value:	

That	went	well.	 The	program	now	even	helpfully	 quits	 on	bad	 illegal
input	before	proceeding.

Introducing	Optional	arguments

So	far	we,	have	been	playing	with	positional	arguments.	Let	us	have	a
look	on	how	to	add	optional	ones:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("--verbosity",	help="increase	output	verbosity"

args	=	parser.parse_args()

if	args.verbosity:

				print("verbosity	turned	on")

And	the	output:

$	python3	prog.py	--verbosity	1

verbosity	turned	on

$	python3	prog.py

$	python3	prog.py	--help

usage:	prog.py	[-h]	[--verbosity	VERBOSITY]

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		--verbosity	VERBOSITY

																								increase	output	verbosity

$	python3	prog.py	--verbosity

usage:	prog.py	[-h]	[--verbosity	VERBOSITY]

prog.py:	error:	argument	--verbosity:	expected	one	argument

Here	is	what	is	happening:

The	 program	 is	 written	 so	 as	 to	 display	 something	 when	 --
verbosity	is	specified	and	display	nothing	when	not.
To	show	that	the	option	is	actually	optional,	there	is	no	error	when

running	the	program	without	it.	Note	that	by	default,	if	an	optional
argument	 isn’t	 used,	 the	 relevant	 variable,	 in	 this	 case
args.verbosity,	is	given	None	as	a	value,	which	is	the	reason
it	fails	the	truth	test	of	the	if	statement.
The	help	message	is	a	bit	different.
When	 using	 the	 --verbosity	 option,	 one	 must	 also	 specify
some	value,	any	value.

The	 above	 example	 accepts	 arbitrary	 integer	 values	 for	 --

verbosity,	but	for	our	simple	program,	only	two	values	are	actually
useful,	True	or	False.	Let’s	modify	the	code	accordingly:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("--verbose",	help="increase	output	verbosity"

																				action="store_true")

args	=	parser.parse_args()

if	args.verbose:

				print("verbosity	turned	on")

And	the	output:

$	python3	prog.py	--verbose

verbosity	turned	on

$	python3	prog.py	--verbose	1

usage:	prog.py	[-h]	[--verbose]

prog.py:	error:	unrecognized	arguments:	1

$	python3	prog.py	--help

usage:	prog.py	[-h]	[--verbose]

optional	arguments:

		-h,	--help		show	this	help	message	and	exit

		--verbose			increase	output	verbosity

Here	is	what	is	happening:

The	option	 is	now	more	of	a	 flag	 than	something	 that	 requires	a
value.	We	 even	 changed	 the	 name	 of	 the	 option	 to	 match	 that
idea.	Note	that	we	now	specify	a	new	keyword,	action,	and	give
it	 the	 value	 "store_true".	 This	 means	 that,	 if	 the	 option	 is
specified,	 assign	 the	 value	 True	 to	 args.verbose.	 Not
specifying	it	implies	False.
It	complains	when	you	specify	a	value,	in	true	spirit	of	what	flags
actually	are.
Notice	the	different	help	text.

Short	options

If	 you	 are	 familiar	 with	 command	 line	 usage,	 you	 will	 notice	 that	 I
haven’t	 yet	 touched	on	 the	 topic	of	 short	 versions	of	 the	options.	 It’s
quite	simple:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("-v",	"--verbose",	help="increase	output	verbosity"

																				action="store_true")

args	=	parser.parse_args()

if	args.verbose:

				print("verbosity	turned	on")

And	here	goes:

$	python3	prog.py	-v

verbosity	turned	on

$	python3	prog.py	--help

usage:	prog.py	[-h]	[-v]

optional	arguments:

		-h,	--help					show	this	help	message	and	exit

		-v,	--verbose		increase	output	verbosity

Note	that	the	new	ability	is	also	reflected	in	the	help	text.

Combining	Positional	and	Optional
arguments

Our	program	keeps	growing	in	complexity:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	type=int,

																				help="display	a	square	of	a	given	number"

parser.add_argument("-v",	"--verbose",	action="store_true"

																				help="increase	output	verbosity"

args	=	parser.parse_args()

answer	=	args.square**2

if	args.verbose:

				print("the	square	of	{}	equals	{}".format(args.square

else:

				print(answer)

And	now	the	output:

$	python3	prog.py

usage:	prog.py	[-h]	[-v]	square

prog.py:	error:	the	following	arguments	are	required:	square

$	python3	prog.py	4

16

$	python3	prog.py	4	--verbose

the	square	of	4	equals	16

$	python3	prog.py	--verbose	4

the	square	of	4	equals	16

We’ve	brought	back	a	positional	argument,	hence	the	complaint.
Note	that	the	order	does	not	matter.

How	 about	 we	 give	 this	 program	 of	 ours	 back	 the	 ability	 to	 have
multiple	verbosity	values,	and	actually	get	to	use	them:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	type=int,

																				help="display	a	square	of	a	given	number"

parser.add_argument("-v",	"--verbosity",	type=int,

																				help="increase	output	verbosity"

args	=	parser.parse_args()

answer	=	args.square**2

if	args.verbosity	==	2:

				print("the	square	of	{}	equals	{}".format(args.square

elif	args.verbosity	==	1:

				print("{}^2	==	{}".format(args.square,	answer))

else:

				print(answer)

And	the	output:

$	python3	prog.py	4

16

$	python3	prog.py	4	-v

usage:	prog.py	[-h]	[-v	VERBOSITY]	square

prog.py:	error:	argument	-v/--verbosity:	expected	one	argument

$	python3	prog.py	4	-v	1

4^2	==	16

$	python3	prog.py	4	-v	2

the	square	of	4	equals	16

$	python3	prog.py	4	-v	3

16

These	all	 look	good	except	 the	 last	one,	which	exposes	a	bug	 in	our
program.	Let’s	fix	it	by	restricting	the	values	the	--verbosity	option

can	accept:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	type=int,

																				help="display	a	square	of	a	given	number"

parser.add_argument("-v",	"--verbosity",	type=int,	choices

																				help="increase	output	verbosity"

args	=	parser.parse_args()

answer	=	args.square**2

if	args.verbosity	==	2:

				print("the	square	of	{}	equals	{}".format(args.square

elif	args.verbosity	==	1:

				print("{}^2	==	{}".format(args.square,	answer))

else:

				print(answer)

And	the	output:

$	python3	prog.py	4	-v	3

usage:	prog.py	[-h]	[-v	{0,1,2}]	square

prog.py:	error:	argument	-v/--verbosity:	invalid	choice:	3	

$	python3	prog.py	4	-h

usage:	prog.py	[-h]	[-v	{0,1,2}]	square

positional	arguments:

		square																display	a	square	of	a	given	number

optional	arguments:

		-h,	--help												show	this	help	message	and	exit

		-v	{0,1,2},	--verbosity	{0,1,2}

																								increase	output	verbosity

Note	that	the	change	also	reflects	both	in	the	error	message	as	well	as
the	help	string.

Now,	 let’s	use	a	different	approach	of	playing	with	verbosity,	which	 is
pretty	 common.	 It	 also	 matches	 the	 way	 the	 CPython	 executable
handles	its	own	verbosity	argument	(check	the	output	of	python	--
help):

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	type=int,

																				help="display	the	square	of	a	given	number"

parser.add_argument("-v",	"--verbosity",	action="count"

																				help="increase	output	verbosity"

args	=	parser.parse_args()

answer	=	args.square**2

if	args.verbosity	==	2:

				print("the	square	of	{}	equals	{}".format(args.square

elif	args.verbosity	==	1:

				print("{}^2	==	{}".format(args.square,	answer))

else:

				print(answer)

We	have	 introduced	 another	 action,	 “count”,	 to	 count	 the	 number	 of
occurrences	of	a	specific	optional	arguments:

$	python3	prog.py	4

16

$	python3	prog.py	4	-v

4^2	==	16

$	python3	prog.py	4	-vv

the	square	of	4	equals	16

$	python3	prog.py	4	--verbosity	--verbosity

the	square	of	4	equals	16

$	python3	prog.py	4	-v	1

usage:	prog.py	[-h]	[-v]	square

prog.py:	error:	unrecognized	arguments:	1

$	python3	prog.py	4	-h

usage:	prog.py	[-h]	[-v]	square

positional	arguments:

		square											display	a	square	of	a	given	number

optional	arguments:

		-h,	--help							show	this	help	message	and	exit

		-v,	--verbosity		increase	output	verbosity

$	python3	prog.py	4	-vvv

16

Yes,	it’s	now	more	of	a	flag	(similar	to	action="store_true")
in	 the	 previous	 version	 of	 our	 script.	 That	 should	 explain	 the
complaint.
It	also	behaves	similar	to	“store_true”	action.
Now	 here’s	 a	 demonstration	 of	 what	 the	 “count”	 action	 gives.
You’ve	probably	seen	this	sort	of	usage	before.
And,	 just	 like	 the	 “store_true”	 action,	 if	 you	don’t	 specify	 the	 -v
flag,	that	flag	is	considered	to	have	None	value.
As	 should	 be	expected,	 specifying	 the	 long	 form	of	 the	 flag,	we
should	get	the	same	output.
Sadly,	our	help	output	isn’t	very	informative	on	the	new	ability	our
script	has	acquired,	but	that	can	always	be	fixed	by	improving	the
documentation	 for	 out	 script	 (e.g.	 via	 the	 help	 keyword
argument).
That	last	output	exposes	a	bug	in	our	program.

Let’s	fix:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	type=int,

																				help="display	a	square	of	a	given	number"

parser.add_argument("-v",	"--verbosity",	action="count"

																				help="increase	output	verbosity"

args	=	parser.parse_args()

answer	=	args.square**2

#	bugfix:	replace	==	with	>=

if	args.verbosity	>=	2:

				print("the	square	of	{}	equals	{}".format(args.square

elif	args.verbosity	>=	1:

				print("{}^2	==	{}".format(args.square,	answer))

else:

				print(answer)

And	this	is	what	it	gives:

$	python3	prog.py	4	-vvv

the	square	of	4	equals	16

$	python3	prog.py	4	-vvvv

the	square	of	4	equals	16

$	python3	prog.py	4

Traceback	(most	recent	call	last):

		File	"prog.py",	line	11,	in	<module>

				if	args.verbosity	>=	2:

TypeError:	unorderable	types:	NoneType()	>=	int()

First	output	went	well,	and	 fixes	 the	bug	we	had	before.	That	 is,
we	want	any	value	>=	2	to	be	as	verbose	as	possible.
Third	output	not	so	good.

Let’s	fix	that	bug:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("square",	type=int,

																				help="display	a	square	of	a	given	number"

parser.add_argument("-v",	"--verbosity",	action="count"

																				help="increase	output	verbosity"

args	=	parser.parse_args()

answer	=	args.square**2

if	args.verbosity	>=	2:

				print("the	square	of	{}	equals	{}".format(args.square

elif	args.verbosity	>=	1:

				print("{}^2	==	{}".format(args.square,	answer))

else:

				print(answer)

We’ve	just	introduced	yet	another	keyword,	default.	We’ve	set	 it	 to
0	 in	order	 to	make	 it	 comparable	 to	 the	other	 int	 values.	Remember
that	by	default,	if	an	optional	argument	isn’t	specified,	it	gets	the	None
value,	 and	 that	 cannot	 be	 compared	 to	 an	 int	 value	 (hence	 the
TypeError	exception).

And:

$	python3	prog.py	4

16

You	can	go	quite	far	just	with	what	we’ve	learned	so	far,	and	we	have
only	scratched	 the	surface.	The	argparse	module	 is	very	powerful,
and	we’ll	explore	a	bit	more	of	it	before	we	end	this	tutorial.

Getting	a	little	more	advanced

What	 if	 we	 wanted	 to	 expand	 our	 tiny	 program	 to	 perform	 other
powers,	not	just	squares:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("x",	type=int,	help="the	base")

parser.add_argument("y",	type=int,	help="the	exponent"

parser.add_argument("-v",	"--verbosity",	action="count"

args	=	parser.parse_args()

answer	=	args.x**args.y

if	args.verbosity	>=	2:

				print("{}	to	the	power	{}	equals	{}".format(args

elif	args.verbosity	>=	1:

				print("{}^{}	==	{}".format(args.x,	args.y,	answer

else:

				print(answer)

Output:

$	python3	prog.py

usage:	prog.py	[-h]	[-v]	x	y

prog.py:	error:	the	following	arguments	are	required:	x,	y

$	python3	prog.py	-h

usage:	prog.py	[-h]	[-v]	x	y

positional	arguments:

		x																the	base

		y																the	exponent

optional	arguments:

		-h,	--help							show	this	help	message	and	exit

		-v,	--verbosity

$	python3	prog.py	4	2	-v

4^2	==	16

Notice	that	so	far	we’ve	been	using	verbosity	level	to	change	the	text
that	 gets	 displayed.	 The	 following	 example	 instead	 uses	 verbosity
level	to	display	more	text	instead:

import	argparse

parser	=	argparse.ArgumentParser()

parser.add_argument("x",	type=int,	help="the	base")

parser.add_argument("y",	type=int,	help="the	exponent"

parser.add_argument("-v",	"--verbosity",	action="count"

args	=	parser.parse_args()

answer	=	args.x**args.y

if	args.verbosity	>=	2:

				print("Running	'{}'".format(__file__))

if	args.verbosity	>=	1:

				print("{}^{}	==	".format(args.x,	args.y),	end=""

print(answer)

Output:

$	python3	prog.py	4	2

16

$	python3	prog.py	4	2	-v

4^2	==	16

$	python3	prog.py	4	2	-vv

Running	'prog.py'

4^2	==	16

Conflicting	options

So	 far,	 we	 have	 been	 working	 with	 two	 methods	 of	 an

argparse.ArgumentParser	 instance.	 Let’s	 introduce	 a	 third	 one,
add_mutually_exclusive_group().	 It	 allows	 for	 us	 to	 specify
options	that	conflict	with	each	other.	Let’s	also	change	the	rest	of	the
program	 so	 that	 the	 new	 functionality	 makes	 more	 sense:	 we’ll
introduce	 the	 --quiet	 option,	 which	will	 be	 the	 opposite	 of	 the	 --
verbose	one:

import	argparse

parser	=	argparse.ArgumentParser()

group	=	parser.add_mutually_exclusive_group()

group.add_argument("-v",	"--verbose",	action="store_true"

group.add_argument("-q",	"--quiet",	action="store_true"

parser.add_argument("x",	type=int,	help="the	base")

parser.add_argument("y",	type=int,	help="the	exponent"

args	=	parser.parse_args()

answer	=	args.x**args.y

if	args.quiet:

				print(answer)

elif	args.verbose:

				print("{}	to	the	power	{}	equals	{}".format(args

else:

				print("{}^{}	==	{}".format(args.x,	args.y,	answer

Our	program	is	now	simpler,	and	we’ve	lost	some	functionality	for	the
sake	of	demonstration.	Anyways,	here’s	the	output:

$	python3	prog.py	4	2

4^2	==	16

$	python3	prog.py	4	2	-q

16

$	python3	prog.py	4	2	-v

4	to	the	power	2	equals	16

$	python3	prog.py	4	2	-vq

usage:	prog.py	[-h]	[-v	|	-q]	x	y

prog.py:	error:	argument	-q/--quiet:	not	allowed	with	argument	-v/--verbose

$	python3	prog.py	4	2	-v	--quiet

usage:	prog.py	[-h]	[-v	|	-q]	x	y

prog.py:	error:	argument	-q/--quiet:	not	allowed	with	argument	-v/--verbose

That	should	be	easy	to	 follow.	 I’ve	added	that	 last	output	so	you	can
see	 the	 sort	 of	 flexibility	 you	 get,	 i.e.	 mixing	 long	 form	 options	 with
short	form	ones.

Before	 we	 conclude,	 you	 probably	 want	 to	 tell	 your	 users	 the	 main
purpose	of	your	program,	just	in	case	they	don’t	know:

import	argparse

parser	=	argparse.ArgumentParser(description="calculate	X	to	the	power	of	Y"

group	=	parser.add_mutually_exclusive_group()

group.add_argument("-v",	"--verbose",	action="store_true"

group.add_argument("-q",	"--quiet",	action="store_true"

parser.add_argument("x",	type=int,	help="the	base")

parser.add_argument("y",	type=int,	help="the	exponent"

args	=	parser.parse_args()

answer	=	args.x**args.y

if	args.quiet:

				print(answer)

elif	args.verbose:

				print("{}	to	the	power	{}	equals	{}".format(args

else:

				print("{}^{}	==	{}".format(args.x,	args.y,	answer

Note	 that	 slight	 difference	 in	 the	 usage	 text.	 Note	 the	 [-v	|	-q],
which	 tells	 us	 that	we	 can	 either	 use	 -v	 or	 -q,	 but	 not	 both	 at	 the

same	time:

$	python3	prog.py	--help

usage:	prog.py	[-h]	[-v	|	-q]	x	y

calculate	X	to	the	power	of	Y

positional	arguments:

		x														the	base

		y														the	exponent

optional	arguments:

		-h,	--help					show	this	help	message	and	exit

		-v,	--verbose

		-q,	--quiet

Conclusion

The	 argparse	module	 offers	 a	 lot	more	 than	 shown	 here.	 Its	 docs
are	 quite	 detailed	 and	 thorough,	 and	 full	 of	 examples.	 Having	 gone
through	 this	 tutorial,	 you	 should	 easily	 digest	 them	 without	 feeling
overwhelmed.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

An	introduction	to	the	ipaddress
module
author: Peter	Moody

author: Nick	Coghlan

Overview

This	 document	 aims	 to	 provide	 a	 gentle	 introduction	 to	 the
ipaddress	module.	It	is	aimed	primarily	at	users	that	aren’t	already
familiar	 with	 IP	 networking	 terminology,	 but	 may	 also	 be	 useful	 to
network	 engineers	 wanting	 an	 overview	 of	 how	 ipaddress

represents	IP	network	addressing	concepts.

Creating	Address/Network/Interface
objects

Since	 ipaddress	 is	 a	 module	 for	 inspecting	 and	 manipulating	 IP
addresses,	the	first	thing	you’ll	want	to	do	is	create	some	objects.	You
can	use	ipaddress	to	create	objects	from	strings	and	integers.

A	Note	on	IP	Versions

For	 readers	 that	 aren’t	 particularly	 familiar	 with	 IP	 addressing,	 it’s
important	to	know	that	the	Internet	Protocol	is	currently	in	the	process
of	moving	from	version	4	of	the	protocol	to	version	6.	This	transition	is
occurring	 largely	 because	 version	 4	 of	 the	 protocol	 doesn’t	 provide
enough	addresses	to	handle	the	needs	of	the	whole	world,	especially
given	the	increasing	number	of	devices	with	direct	connections	to	the
internet.

Explaining	 the	details	of	 the	differences	between	 the	 two	versions	of
the	protocol	is	beyond	the	scope	of	this	introduction,	but	readers	need
to	 at	 least	 be	 aware	 that	 these	 two	 versions	 exist,	 and	 it	 will
sometimes	be	necessary	to	force	the	use	of	one	version	or	the	other.

IP	Host	Addresses

Addresses,	 often	 referred	 to	 as	 “host	 addresses”	 are	 the	most	 basic
unit	 when	 working	 with	 IP	 addressing.	 The	 simplest	 way	 to	 create
addresses	is	to	use	the	ipaddress.ip_address()	factory	function,
which	 automatically	 determines	 whether	 to	 create	 an	 IPv4	 or	 IPv6
address	based	on	the	passed	in	value:

>>>	ipaddress.ip_address('192.0.2.1')

IPv4Address('192.0.2.1')

>>>	ipaddress.ip_address('2001:DB8::1')

IPv6Address('2001:db8::1')

Addresses	can	also	be	created	directly	from	integers.	Values	that	will
fit	within	32	bits	are	assumed	to	be	IPv4	addresses:

>>>	ipaddress.ip_address(3221225985)

IPv4Address('192.0.2.1')

>>>	ipaddress.ip_address(42540766411282592856903984951653826561

IPv6Address('2001:db8::1')

To	force	the	use	of	 IPv4	or	 IPv6	addresses,	 the	relevant	classes	can
be	invoked	directly.	This	is	particularly	useful	to	force	creation	of	IPv6
addresses	for	small	integers:

>>>	ipaddress.ip_address(1)

IPv4Address('0.0.0.1')

>>>	ipaddress.IPv4Address(1)

IPv4Address('0.0.0.1')

>>>	ipaddress.IPv6Address(1)

IPv6Address('::1')

Defining	Networks

Host	 addresses	 are	 usually	 grouped	 together	 into	 IP	 networks,	 so
ipaddress	provides	a	way	to	create,	inspect	and	manipulate	network
definitions.	IP	network	objects	are	constructed	from	strings	that	define
the	range	of	host	addresses	that	are	part	of	that	network.	The	simplest
form	 for	 that	 information	 is	 a	 “network	 address/network	 prefix”	 pair,
where	the	prefix	defines	the	number	of	leading	bits	that	are	compared
to	determine	whether	or	not	an	address	is	part	of	the	network	and	the

network	address	defines	the	expected	value	of	those	bits.

As	 for	 addresses,	 a	 factory	 function	 is	 provided	 that	 determines	 the
correct	IP	version	automatically:

>>>	ipaddress.ip_network('192.0.2.0/24')

IPv4Network('192.0.2.0/24')

>>>	ipaddress.ip_network('2001:db8::0/96')

IPv6Network('2001:db8::/96')

Network	objects	cannot	have	any	host	bits	set.	The	practical	effect	of
this	 is	 that	 192.0.2.1/24	 does	 not	 describe	 a	 network.	 Such
definitions	 are	 referred	 to	 as	 interface	 objects	 since	 the	 ip-on-a-
network	notation	is	commonly	used	to	describe	network	interfaces	of	a
computer	 on	 a	 given	 network	 and	 are	 described	 further	 in	 the	 next
section.

By	default,	attempting	to	create	a	network	object	with	host	bits	set	will
result	in	ValueError	being	raised.	To	request	that	the	additional	bits
instead	be	coerced	to	zero,	the	flag	strict=False	can	be	passed	to
the	constructor:

>>>	ipaddress.ip_network('192.0.2.1/24')

Traceback	(most	recent	call	last):

			...

ValueError:	192.0.2.1/24	has	host	bits	set

>>>	ipaddress.ip_network('192.0.2.1/24',	strict=False

IPv4Network('192.0.2.0/24')

While	 the	string	 form	offers	significantly	more	 flexibility,	networks	can
also	be	defined	with	integers,	just	like	host	addresses.	In	this	case,	the
network	is	considered	to	contain	only	the	single	address	identified	by
the	integer,	so	the	network	prefix	includes	the	entire	network	address:

>>>	ipaddress.ip_network(3221225984)

IPv4Network('192.0.2.0/32')

>>>	ipaddress.ip_network(42540766411282592856903984951653826560

IPv6Network('2001:db8::/128')

As	 with	 addresses,	 creation	 of	 a	 particular	 kind	 of	 network	 can	 be
forced	 by	 calling	 the	 class	 constructor	 directly	 instead	 of	 using	 the
factory	function.

Host	Interfaces

As	 mentioned	 just	 above,	 if	 you	 need	 to	 describe	 an	 address	 on	 a
particular	 network,	 neither	 the	 address	 nor	 the	 network	 classes	 are
sufficient.	Notation	like	192.0.2.1/24	is	commonly	used	by	network
engineers	and	 the	people	who	write	 tools	 for	 firewalls	and	routers	as
shorthand	for	“the	host	192.0.2.1	on	the	network	192.0.2.0/24”,
Accordingly,	 ipaddress	 provides	 a	 set	 of	 hybrid	 classes	 that
associate	 an	 address	 with	 a	 particular	 network.	 The	 interface	 for
creation	is	identical	to	that	for	defining	network	objects,	except	that	the
address	portion	isn’t	constrained	to	being	a	network	address.

>>>	ipaddress.ip_interface('192.0.2.1/24')

IPv4Interface('192.0.2.1/24')

>>>	ipaddress.ip_interface('2001:db8::1/96')

IPv6Interface('2001:db8::1/96')

Integer	inputs	are	accepted	(as	with	networks),	and	use	of	a	particular
IP	version	can	be	forced	by	calling	the	relevant	constructor	directly.

Inspecting	Address/Network/Interface
Objects

You’ve	 gone	 to	 the	 trouble	 of	 creating	 an	 IPv(4|6)
(Address|Network|Interface)	 object,	 so	 you	 probably	 want	 to	 get
information	 about	 it.	 ipaddress	 tries	 to	 make	 doing	 this	 easy	 and
intuitive.

Extracting	the	IP	version:

>>>	addr4	=	ipaddress.ip_address('192.0.2.1')

>>>	addr6	=	ipaddress.ip_address('2001:db8::1')

>>>	addr6.version

6

>>>	addr4.version

4

Obtaining	the	network	from	an	interface:

>>>	host4	=	ipaddress.ip_interface('192.0.2.1/24')

>>>	host4.network

IPv4Network('192.0.2.0/24')

>>>	host6	=	ipaddress.ip_interface('2001:db8::1/96')

>>>	host6.network

IPv6Network('2001:db8::/96')

Finding	out	how	many	individual	addresses	are	in	a	network:

>>>	net4	=	ipaddress.ip_network('192.0.2.0/24')

>>>	net4.num_addresses

256

>>>	net6	=	ipaddress.ip_network('2001:db8::0/96')

>>>	net6.num_addresses

4294967296

Iterating	through	the	“usable”	addresses	on	a	network:

>>>	net4	=	ipaddress.ip_network('192.0.2.0/24')

>>>	for	x	in	net4.hosts():

...					print(x)		

192.0.2.1

192.0.2.2

192.0.2.3

192.0.2.4

...

192.0.2.252

192.0.2.253

192.0.2.254

Obtaining	 the	 netmask	 (i.e.	 set	 bits	 corresponding	 to	 the	 network
prefix)	or	the	hostmask	(any	bits	that	are	not	part	of	the	netmask):

>>>	net4	=	ipaddress.ip_network('192.0.2.0/24')

>>>	net4.netmask

IPv4Address('255.255.255.0')

>>>	net4.hostmask

IPv4Address('0.0.0.255')

>>>	net6	=	ipaddress.ip_network('2001:db8::0/96')

>>>	net6.netmask

IPv6Address('ffff:ffff:ffff:ffff:ffff:ffff::')

>>>	net6.hostmask

IPv6Address('::ffff:ffff')

Exploding	or	compressing	the	address:

>>>	addr6.exploded

'2001:0db8:0000:0000:0000:0000:0000:0001'

>>>	addr6.compressed

'2001:db8::1'

>>>	net6.exploded

'2001:0db8:0000:0000:0000:0000:0000:0000/96'

>>>	net6.compressed

'2001:db8::/96'

While	 IPv4	doesn’t	support	explosion	or	compression,	 the	associated
objects	still	provide	the	relevant	properties	so	that	version	neutral	code
can	easily	ensure	the	most	concise	or	most	verbose	form	is	used	for
IPv6	addresses	while	still	correctly	handling	IPv4	addresses.

Networks	as	lists	of	Addresses

It’s	 sometimes	 useful	 to	 treat	 networks	 as	 lists.	 This	 means	 it	 is
possible	to	index	them	like	this:

>>>	net4[1]

IPv4Address('192.0.2.1')

>>>	net4[-1]

IPv4Address('192.0.2.255')

>>>	net6[1]

IPv6Address('2001:db8::1')

>>>	net6[-1]

IPv6Address('2001:db8::ffff:ffff')

It	 also	means	 that	 network	 objects	 lend	 themselves	 to	 using	 the	 list
membership	test	syntax	like	this:

if	address	in	network:

				#	do	something

Containment	testing	is	done	efficiently	based	on	the	network	prefix:

>>>	addr4	=	ipaddress.ip_address('192.0.2.1')

>>>	addr4	in	ipaddress.ip_network('192.0.2.0/24')

True

>>>	addr4	in	ipaddress.ip_network('192.0.3.0/24')

False

Comparisons

ipaddress	 provides	 some	 simple,	 hopefully	 intuitive	 ways	 to
compare	objects,	where	it	makes	sense:

>>>	ipaddress.ip_address('192.0.2.1')	<	ipaddress.ip_address

True

A	 TypeError	 exception	 is	 raised	 if	 you	 try	 to	 compare	 objects	 of
different	versions	or	different	types.

Using	IP	Addresses	with	other	modules

Other	modules	that	use	IP	addresses	(such	as	socket)	usually	won’t
accept	 objects	 from	 this	 module	 directly.	 Instead,	 they	 must	 be
coerced	to	an	integer	or	string	that	the	other	module	will	accept:

>>>	addr4	=	ipaddress.ip_address('192.0.2.1')

>>>	str(addr4)

'192.0.2.1'

>>>	int(addr4)

3221225985

Getting	more	detail	when	instance	creation
fails

When	 creating	 address/network/interface	 objects	 using	 the	 version-
agnostic	factory	functions,	any	errors	will	be	reported	as	ValueError
with	a	generic	error	message	that	simply	says	the	passed	in	value	was
not	recognized	as	an	object	of	that	type.	The	lack	of	a	specific	error	is
because	 it’s	necessary	 to	know	whether	 the	value	 is	supposed	 to	be
IPv4	 or	 IPv6	 in	 order	 to	 provide	 more	 detail	 on	 why	 it	 has	 been
rejected.

To	 support	 use	 cases	 where	 it	 is	 useful	 to	 have	 access	 to	 this
additional	 detail,	 the	 individual	 class	 constructors	 actually	 raise	 the
ValueError	 subclasses	 ipaddress.AddressValueError	 and
ipaddress.NetmaskValueError	 to	 indicate	exactly	which	part	 of
the	definition	failed	to	parse	correctly.

The	 error	 messages	 are	 significantly	 more	 detailed	 when	 using	 the
class	constructors	directly.	For	example:

>>>	ipaddress.ip_address("192.168.0.256")

Traceback	(most	recent	call	last):

		...

ValueError:	'192.168.0.256'	does	not	appear	to	be	an	IPv4	or	IPv6	address

>>>	ipaddress.IPv4Address("192.168.0.256")

Traceback	(most	recent	call	last):

		...

ipaddress.AddressValueError:	Octet	256	(>	255)	not	permitted	in	'192.168.0.256'

>>>	ipaddress.ip_network("192.168.0.1/64")

Traceback	(most	recent	call	last):

		...

ValueError:	'192.168.0.1/64'	does	not	appear	to	be	an	IPv4	or	IPv6	network

>>>	ipaddress.IPv4Network("192.168.0.1/64")

Traceback	(most	recent	call	last):

		...

ipaddress.NetmaskValueError:	'64'	is	not	a	valid	netmask

However,	 both	of	 the	module	 specific	 exceptions	have	 ValueError
as	their	parent	class,	so	if	you’re	not	concerned	with	the	particular	type
of	error,	you	can	still	write	code	like	the	following:

try:

				network	=	ipaddress.IPv4Network(address)

except	ValueError:

				print('address/netmask	is	invalid	for	IPv4:',	address

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

http://www.python.org/

Argument	Clinic	How-To
author: Larry	Hastings

Abstract

Argument	Clinic	is	a	preprocessor	for	CPython	C	files.	Its	purpose	is
to	automate	all	the	boilerplate	involved	with	writing	argument	parsing
code	 for	 “builtins”.	 This	 document	 shows	 you	 how	 to	 convert	 your
first	 C	 function	 to	 work	 with	 Argument	 Clinic,	 and	 then	 introduces
some	advanced	topics	on	Argument	Clinic	usage.

Currently	Argument	Clinic	is	considered	internal-only	for	CPython.	Its
use	 is	 not	 supported	 for	 files	 outside	CPython,	 and	 no	 guarantees
are	made	 regarding	 backwards	 compatibility	 for	 future	 versions.	 In
other	 words:	 if	 you	maintain	 an	 external	 C	 extension	 for	 CPython,
you’re	 welcome	 to	 experiment	 with	 Argument	 Clinic	 in	 your	 own
code.	But	the	version	of	Argument	Clinic	that	ships	with	CPython	3.5
could	be	totally	incompatible	and	break	all	your	code.

The	Goals	Of	Argument	Clinic

Argument	 Clinic’s	 primary	 goal	 is	 to	 take	 over	 responsibility	 for	 all
argument	 parsing	 code	 inside	 CPython.	 This	means	 that,	 when	 you
convert	a	 function	 to	work	with	Argument	Clinic,	 that	 function	should
no	longer	do	any	of	its	own	argument	parsing–the	code	generated	by
Argument	Clinic	should	be	a	“black	box”	to	you,	where	CPython	calls
in	at	the	top,	and	your	code	gets	called	at	the	bottom,	with	PyObject
*args	 (and	maybe	 PyObject	 *kwargs)	 magically	 converted	 into
the	C	variables	and	types	you	need.

In	order	for	Argument	Clinic	to	accomplish	its	primary	goal,	it	must	be
easy	 to	 use.	 Currently,	 working	 with	 CPython’s	 argument	 parsing
library	 is	 a	 chore,	 requiring	 maintaining	 redundant	 information	 in	 a
surprising	number	of	places.	When	you	use	Argument	Clinic,	you	don’t
have	to	repeat	yourself.

Obviously,	 no	 one	 would	 want	 to	 use	 Argument	 Clinic	 unless	 it’s
solving	 their	 problem–and	without	 creating	 new	problems	of	 its	 own.
So	 it’s	paramount	 that	Argument	Clinic	generate	correct	code.	 It’d	be
nice	 if	 the	 code	 was	 faster,	 too,	 but	 at	 the	 very	 least	 it	 should	 not
introduce	 a	 major	 speed	 regression.	 (Eventually	 Argument	 Clinic
should	 make	 a	 major	 speedup	 possible–we	 could	 rewrite	 its	 code
generator	 to	produce	 tailor-made	argument	parsing	code,	 rather	 than
calling	 the	 general-purpose	 CPython	 argument	 parsing	 library.	 That
would	make	for	the	fastest	argument	parsing	possible!)

Additionally,	Argument	Clinic	must	be	flexible	enough	to	work	with	any
approach	to	argument	parsing.	Python	has	some	functions	with	some
very	strange	parsing	behaviors;	Argument	Clinic’s	goal	is	to	support	all
of	them.

Finally,	 the	 original	 motivation	 for	 Argument	 Clinic	 was	 to	 provide
introspection	 “signatures”	 for	 CPython	 builtins.	 It	 used	 to	 be,	 the
introspection	query	functions	would	throw	an	exception	 if	you	passed
in	a	builtin.	With	Argument	Clinic,	that’s	a	thing	of	the	past!

One	idea	you	should	keep	in	mind,	as	you	work	with	Argument	Clinic:
the	 more	 information	 you	 give	 it,	 the	 better	 job	 it’ll	 be	 able	 to	 do.
Argument	 Clinic	 is	 admittedly	 relatively	 simple	 right	 now.	 But	 as	 it
evolves	it	will	get	more	sophisticated,	and	it	should	be	able	to	do	many
interesting	and	smart	things	with	all	the	information	you	give	it.

Basic	Concepts	And	Usage

Argument	 Clinic	 ships	 with	 CPython;	 you’ll	 find	 it	 in
Tools/clinic/clinic.py.	If	you	run	that	script,	specifying	a	C	file
as	an	argument:

%	python3	Tools/clinic/clinic.py	foo.c

Argument	Clinic	will	scan	over	the	file	looking	for	lines	that	look	exactly
like	this:

/*[clinic	input]

When	 it	 finds	one,	 it	 reads	everything	up	 to	a	 line	 that	 looks	exactly
like	this:

[clinic	start	generated	code]*/

Everything	in	between	these	two	lines	is	input	for	Argument	Clinic.	All
of	these	lines,	including	the	beginning	and	ending	comment	lines,	are
collectively	called	an	Argument	Clinic	“block”.

When	Argument	Clinic	parses	one	of	these	blocks,	it	generates	output.
This	 output	 is	 rewritten	 into	 the	 C	 file	 immediately	 after	 the	 block,
followed	by	a	comment	containing	a	checksum.	The	Argument	Clinic
block	now	looks	like	this:

/*[clinic	input]

...	clinic	input	goes	here	...

[clinic	start	generated	code]*/

...	clinic	output	goes	here	...

/*[clinic	end	generated	code:	checksum=...]*/

If	you	run	Argument	Clinic	on	the	same	file	a	second	time,	Argument
Clinic	will	 discard	 the	old	output	and	write	out	 the	new	output	with	a
fresh	checksum	line.	However,	 if	 the	input	hasn’t	changed,	the	output
won’t	change	either.

You	 should	 never	 modify	 the	 output	 portion	 of	 an	 Argument	 Clinic
block.	Instead,	change	the	input	until	it	produces	the	output	you	want.
(That’s	 the	 purpose	 of	 the	 checksum–to	 detect	 if	 someone	 changed
the	output,	as	these	edits	would	be	lost	the	next	time	Argument	Clinic
writes	out	fresh	output.)

For	the	sake	of	clarity,	here’s	the	terminology	we’ll	use	with	Argument
Clinic:

The	 first	 line	of	 the	comment	 (/*[clinic	input])	 is	 the	start
line.
The	 last	 line	 of	 the	 initial	 comment	 ([clinic	 start

generated	code]*/)	is	the	end	line.
The	 last	 line	 (/*[clinic	 end	 generated	 code:

checksum=...]*/)	is	the	checksum	line.
In	between	the	start	line	and	the	end	line	is	the	input.
In	between	the	end	line	and	the	checksum	line	is	the	output.
All	 the	 text	 collectively,	 from	 the	 start	 line	 to	 the	 checksum	 line
inclusively,	 is	 the	 block.	 (A	 block	 that	 hasn’t	 been	 successfully
processed	 by	 Argument	 Clinic	 yet	 doesn’t	 have	 output	 or	 a
checksum	line,	but	it’s	still	considered	a	block.)

Converting	Your	First	Function

The	 best	 way	 to	 get	 a	 sense	 of	 how	 Argument	 Clinic	 works	 is	 to
convert	a	 function	 to	work	with	 it.	Here,	 then,	are	 the	bare	minimum
steps	you’d	need	to	follow	to	convert	a	function	to	work	with	Argument
Clinic.	Note	that	 for	code	you	plan	to	check	 in	to	CPython,	you	really
should	 take	 the	 conversion	 farther,	 using	 some	 of	 the	 advanced
concepts	you’ll	 see	 later	on	 in	 the	document	 (like	 “return	converters”
and	“self	converters”).	But	we’ll	keep	it	simple	for	this	walkthrough	so
you	can	learn.

Let’s	dive	in!

0.	 Make	sure	you’re	working	with	a	freshly	updated	checkout	of	the
CPython	trunk.

1.	 Find	a	Python	builtin	 that	calls	either	PyArg_ParseTuple()	 or
PyArg_ParseTupleAndKeywords(),	 and	 hasn’t	 been
converted	 to	work	with	Argument	Clinic	yet.	For	my	example	 I’m
using	_pickle.Pickler.dump().

2.	 If	the	call	to	the	PyArg_Parse	function	uses	any	of	the	following
format	units:

O&

O!

es

es#

et

et#

or	 if	 it	 has	multiple	 calls	 to	 PyArg_ParseTuple(),	 you	 should
choose	 a	 different	 function.	 Argument	 Clinic	 does	 support	 all	 of

these	 scenarios.	 But	 these	 are	 advanced	 topics–let’s	 do
something	simpler	for	your	first	function.

Also,	if	the	function	has	multiple	calls	to	PyArg_ParseTuple()
or	 PyArg_ParseTupleAndKeywords()	 where	 it	 supports
different	 types	 for	 the	 same	 argument,	 or	 if	 the	 function	 uses
something	besides	PyArg_Parse	functions	to	parse	its	arguments,
it	 probably	 isn’t	 suitable	 for	 conversion	 to	 Argument	 Clinic.
Argument	Clinic	doesn’t	support	generic	functions	or	polymorphic
parameters.

3.	 Add	 the	 following	 boilerplate	 above	 the	 function,	 creating	 our
block:

/*[clinic	input]

[clinic	start	generated	code]*/

4.	 Cut	 the	 docstring	 and	 paste	 it	 in	 between	 the	 [clinic]	 lines,
removing	 all	 the	 junk	 that	 makes	 it	 a	 properly	 quoted	 C	 string.
When	you’re	done	you	should	have	just	the	text,	based	at	the	left
margin,	 with	 no	 line	 wider	 than	 80	 characters.	 (Argument	 Clinic
will	preserve	indents	inside	the	docstring.)

If	 the	 old	 docstring	 had	 a	 first	 line	 that	 looked	 like	 a	 function
signature,	 throw	 that	 line	 away.	 (The	 docstring	 doesn’t	 need	 it
anymore–when	you	use	help()	on	your	builtin	in	the	future,	the
first	 line	 will	 be	 built	 automatically	 based	 on	 the	 function’s
signature.)

Sample:

/*[clinic	input]

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

5.	 If	your	docstring	doesn’t	have	a	“summary”	 line,	Argument	Clinic
will	complain.	So	 let’s	make	sure	 it	has	one.	The	“summary”	 line
should	be	a	paragraph	consisting	of	a	single	80-column	line	at	the
beginning	of	the	docstring.

(Our	example	docstring	consists	solely	of	a	summary	line,	so	the
sample	code	doesn’t	have	to	change	for	this	step.)

6.	 Above	the	docstring,	enter	the	name	of	the	function,	followed	by	a
blank	 line.	This	should	be	 the	Python	name	of	 the	 function,	and
should	be	 the	 full	dotted	path	 to	 the	 function–it	 should	start	with
the	 name	 of	 the	 module,	 include	 any	 sub-modules,	 and	 if	 the
function	is	a	method	on	a	class	 it	should	 include	the	class	name
too.

Sample:

/*[clinic	input]

_pickle.Pickler.dump

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

7.	 If	 this	 is	 the	 first	 time	 that	module	 or	 class	 has	 been	 used	with
Argument	Clinic	in	this	C	file,	you	must	declare	the	module	and/or
class.	Proper	Argument	Clinic	hygiene	prefers	declaring	these	in	a
separate	block	somewhere	near	the	top	of	the	C	file,	in	the	same
way	 that	 include	 files	 and	 statics	 go	 at	 the	 top.	 (In	 our	 sample
code	we’ll	just	show	the	two	blocks	next	to	each	other.)

The	name	of	the	class	and	module	should	be	the	same	as	the	one

seen	by	Python.	Check	the	name	defined	in	the	PyModuleDef	or
PyTypeObject	as	appropriate.

When	you	declare	a	class,	you	must	also	specify	 two	aspects	of
its	 type	 in	C:	 the	 type	 declaration	 you’d	 use	 for	 a	 pointer	 to	 an
instance	of	this	class,	and	a	pointer	to	the	PyTypeObject	for	this
class.

Sample:

/*[clinic	input]

module	_pickle

class	_pickle.Pickler	"PicklerObject	*"	"&Pickler_Type"

[clinic	start	generated	code]*/

/*[clinic	input]

_pickle.Pickler.dump

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

8.	 Declare	each	of	 the	parameters	 to	 the	 function.	Each	parameter
should	get	its	own	line.	All	the	parameter	lines	should	be	indented
from	the	function	name	and	the	docstring.

The	general	form	of	these	parameter	lines	is	as	follows:

name_of_parameter:	converter

If	the	parameter	has	a	default	value,	add	that	after	the	converter:

name_of_parameter:	converter	=	default_value

Argument	 Clinic’s	 support	 for	 “default	 values”	 is	 quite

sophisticated;	please	see	the	section	below	on	default	values	 for
more	information.

Add	a	blank	line	below	the	parameters.

What’s	a	“converter”?	 It	establishes	both	 the	 type	of	 the	variable
used	 in	C,	and	 the	method	 to	convert	 the	Python	value	 into	a	C
value	 at	 runtime.	 For	 now	 you’re	 going	 to	 use	 what’s	 called	 a
“legacy	 converter”–a	 convenience	 syntax	 intended	 to	 make
porting	old	code	into	Argument	Clinic	easier.

For	each	parameter,	copy	the	“format	unit”	for	that	parameter	from
the	 PyArg_Parse()	 format	 argument	 and	 specify	 that	 as	 its
converter,	as	a	quoted	string.	(“format	unit”	is	the	formal	name	for
the	 one-to-three	 character	 substring	 of	 the	 format	 parameter
that	 tells	 the	 argument	 parsing	 function	 what	 the	 type	 of	 the
variable	is	and	how	to	convert	it.	For	more	on	format	units	please
see	Parsing	arguments	and	building	values.)

For	multicharacter	format	units	like	z#,	use	the	entire	two-or-three
character	string.

Sample:

	/*[clinic	input]

	module	_pickle

	class	_pickle.Pickler	"PicklerObject	*"	"&Pickler_Type"

	[clinic	start	generated	code]*/

	/*[clinic	input]

	_pickle.Pickler.dump

				obj:	'O'

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

9.	 If	 your	 function	 has	 |	 in	 the	 format	 string,	 meaning	 some
parameters	 have	 default	 values,	 you	 can	 ignore	 it.	 Argument
Clinic	 infers	which	parameters	are	optional	based	on	whether	or
not	they	have	default	values.

If	 your	 function	 has	 $	 in	 the	 format	 string,	 meaning	 it	 takes
keyword-only	arguments,	specify	*	 on	a	 line	by	 itself	 before	 the
first	keyword-only	argument,	indented	the	same	as	the	parameter
lines.

(_pickle.Pickler.dump	 has	 neither,	 so	 our	 sample	 is
unchanged.)

10.	 If	 the	 existing	 C	 function	 calls	 PyArg_ParseTuple()	 (as
opposed	 to	 PyArg_ParseTupleAndKeywords()),	 then	 all	 its
arguments	are	positional-only.

To	mark	all	parameters	as	positional-only	in	Argument	Clinic,	add
a	/	on	a	line	by	itself	after	the	last	parameter,	indented	the	same
as	the	parameter	lines.

Currently	this	is	all-or-nothing;	either	all	parameters	are	positional-
only,	or	none	of	them	are.	(In	the	future	Argument	Clinic	may	relax
this	restriction.)

Sample:

/*[clinic	input]

module	_pickle

class	_pickle.Pickler	"PicklerObject	*"	"&Pickler_Type"

[clinic	start	generated	code]*/

/*[clinic	input]

_pickle.Pickler.dump

				obj:	'O'

				/

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

11.	 It’s	helpful	to	write	a	per-parameter	docstring	for	each	parameter.
But	per-parameter	docstrings	are	optional;	you	can	skip	this	step
if	you	prefer.

Here’s	how	to	add	a	per-parameter	docstring.	The	first	line	of	the
per-parameter	 docstring	 must	 be	 indented	 further	 than	 the
parameter	definition.	The	 left	margin	 of	 this	 first	 line	 establishes
the	left	margin	for	the	whole	per-parameter	docstring;	all	 the	text
you	write	will	be	outdented	by	this	amount.	You	can	write	as	much
text	as	you	like,	across	multiple	lines	if	you	wish.

Sample:

/*[clinic	input]

module	_pickle

class	_pickle.Pickler	"PicklerObject	*"	"&Pickler_Type"

[clinic	start	generated	code]*/

/*[clinic	input]

_pickle.Pickler.dump

				obj:	'O'

								The	object	to	be	pickled.

				/

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

12.	 Save	and	close	the	file,	then	run	Tools/clinic/clinic.py	on
it.	With	 luck	 everything	 worked	 and	 your	 block	 now	 has	 output!
Reopen	the	file	in	your	text	editor	to	see:

/*[clinic	input]

module	_pickle

class	_pickle.Pickler	"PicklerObject	*"	"&Pickler_Type"

[clinic	start	generated	code]*/

/*[clinic	end	generated	code:	checksum=da39a3ee5e6b4b0d3255bfef95601890afd80709

/*[clinic	input]

_pickle.Pickler.dump

				obj:	'O'

								The	object	to	be	pickled.

				/

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

PyDoc_STRVAR(_pickle_Pickler_dump__doc__,

"Write	a	pickled	representation	of	obj	to	the	open	file.

"\n"

...

static	PyObject	*

_pickle_Pickler_dump_impl(PicklerObject	*self,	PyObject

/*[clinic	end	generated	code:	checksum=3bd30745bf206a48f8b576a1da3d90f55a0a4187

Obviously,	 if	 Argument	 Clinic	 didn’t	 produce	 any	 output,	 it’s
because	 it	 found	 an	 error	 in	 your	 input.	 Keep	 fixing	 your	 errors
and	 retrying	 until	 Argument	 Clinic	 processes	 your	 file	 without

complaint.

13.	 Double-check	 that	 the	 argument-parsing	 code	 Argument	 Clinic
generated	looks	basically	the	same	as	the	existing	code.

First,	 ensure	 both	 places	 use	 the	 same	 argument-parsing
function.	 The	 existing	 code	 must	 call	 either
PyArg_ParseTuple()	 or
PyArg_ParseTupleAndKeywords();	 ensure	 that	 the	 code
generated	by	Argument	Clinic	calls	the	exact	same	function.

Second,	the	format	string	passed	in	to	PyArg_ParseTuple()	or
PyArg_ParseTupleAndKeywords()	 should	 be	 exactly	 the
same	as	 the	hand-written	one	 in	 the	existing	 function,	 up	 to	 the
colon	or	semi-colon.

(Argument	 Clinic	 always	 generates	 its	 format	 strings	 with	 a	 :
followed	by	the	name	of	the	function.	If	the	existing	code’s	format
string	 ends	 with	 ;,	 to	 provide	 usage	 help,	 this	 change	 is
harmless–don’t	worry	about	it.)

Third,	 for	parameters	whose	 format	units	 require	 two	arguments
(like	 a	 length	 variable,	 or	 an	 encoding	 string,	 or	 a	 pointer	 to	 a
conversion	function),	ensure	that	 the	second	argument	 is	exactly
the	same	between	the	two	invocations.

Fourth,	 inside	 the	 output	 portion	 of	 the	 block	 you’ll	 find	 a
preprocessor	macro	defining	the	appropriate	static	PyMethodDef
structure	for	this	builtin:

#define	__PICKLE_PICKLER_DUMP_METHODDEF				\

{"dump",	(PyCFunction)__pickle_Pickler_dump,	METH_O

This	 static	 structure	 should	 be	exactly	 the	 same	 as	 the	 existing
static	PyMethodDef	structure	for	this	builtin.

If	any	of	these	items	differ	in	any	way,	adjust	your	Argument	Clinic
function	 specification	 and	 rerun	 Tools/clinic/clinic.py
until	they	are	the	same.

14.	 Notice	 that	 the	 last	 line	 of	 its	 output	 is	 the	 declaration	 of	 your
“impl”	 function.	 This	 is	 where	 the	 builtin’s	 implementation	 goes.
Delete	the	existing	prototype	of	the	function	you’re	modifying,	but
leave	 the	 opening	 curly	 brace.	Now	delete	 its	 argument	 parsing
code	 and	 the	 declarations	 of	 all	 the	 variables	 it	 dumps	 the
arguments	 into.	 Notice	 how	 the	 Python	 arguments	 are	 now
arguments	 to	 this	 impl	 function;	 if	 the	 implementation	 used
different	names	for	these	variables,	fix	it.

Let’s	 reiterate,	 just	 because	 it’s	 kind	 of	weird.	Your	 code	 should
now	look	like	this:

static	return_type

your_function_impl(...)

/*[clinic	end	generated	code:	checksum=...]*/

{

...

Argument	 Clinic	 generated	 the	 checksum	 line	 and	 the	 function
prototype	just	above	it.	You	should	write	the	opening	(and	closing)
curly	braces	for	the	function,	and	the	implementation	inside.

Sample:

/*[clinic	input]

module	_pickle

class	_pickle.Pickler	"PicklerObject	*"	"&Pickler_Type"

[clinic	start	generated	code]*/

/*[clinic	end	generated	code:	checksum=da39a3ee5e6b4b0d3255bfef95601890afd80709

/*[clinic	input]

_pickle.Pickler.dump

				obj:	'O'

								The	object	to	be	pickled.

				/

Write	a	pickled	representation	of	obj	to	the	open

[clinic	start	generated	code]*/

PyDoc_STRVAR(__pickle_Pickler_dump__doc__,

"Write	a	pickled	representation	of	obj	to	the	open	file.

"\n"

...

static	PyObject	*

_pickle_Pickler_dump_impl(PicklerObject	*self,	PyObject

/*[clinic	end	generated	code:	checksum=3bd30745bf206a48f8b576a1da3d90f55a0a4187

{

				/*	Check	whether	the	Pickler	was	initialized	

							Developers	often	forget	to	call	__init__()

							would	trigger	a	segfault	without	this	check

				if	(self->write	==	NULL)	{

								PyErr_Format(PicklingError,

																					"Pickler.__init__()	was	not	called	by	%s.__init__()"

																					Py_TYPE(self)->tp_name);

								return	NULL;

				}

				if	(_Pickler_ClearBuffer(self)	<	0)

								return	NULL;

				...

15.	 Remember	 the	macro	 with	 the	 PyMethodDef	 structure	 for	 this
function?	 Find	 the	 existing	 PyMethodDef	 structure	 for	 this
function	and	replace	it	with	a	reference	to	the	macro.	(If	the	builtin
is	at	module	scope,	this	will	probably	be	very	near	the	end	of	the
file;	if	the	builtin	is	a	class	method,	this	will	probably	be	below	but
relatively	near	to	the	implementation.)

Note	 that	 the	 body	 of	 the	macro	 contains	 a	 trailing	 comma.	 So
when	you	replace	the	existing	static	PyMethodDef	structure	with
the	macro,	don’t	add	a	comma	to	the	end.

Sample:

static	struct	PyMethodDef	Pickler_methods[]	=	{

				__PICKLE_PICKLER_DUMP_METHODDEF

				__PICKLE_PICKLER_CLEAR_MEMO_METHODDEF

				{NULL,	NULL}																/*	sentinel	*/

};

16.	 Compile,	 then	 run	 the	 relevant	 portions	 of	 the	 regression-test
suite.	 This	 change	 should	 not	 introduce	 any	 new	 compile-time
warnings	 or	 errors,	 and	 there	 should	 be	 no	 externally-visible
change	to	Python’s	behavior.

Well,	except	for	one	difference:	inspect.signature()	 run	on
your	function	should	now	provide	a	valid	signature!

Congratulations,	 you’ve	 ported	 your	 first	 function	 to	 work	 with
Argument	Clinic!

Advanced	Topics

Now	that	you’ve	had	some	experience	working	with	Argument	Clinic,
it’s	time	for	some	advanced	topics.

Symbolic	default	values

The	default	 value	you	provide	 for	a	parameter	 can’t	 be	any	arbitrary
expression.	Currently	the	following	are	explicitly	supported:

Numeric	constants	(integer	and	float)
String	constants
True,	False,	and	None
Simple	 symbolic	 constants	 like	 sys.maxsize,	which	must	 start
with	the	name	of	the	module

In	 case	 you’re	 curious,	 this	 is	 implemented	 in	 from_builtin()	 in
Lib/inspect.py.

(In	the	future,	this	may	need	to	get	even	more	elaborate,	to	allow	full
expressions	like	CONSTANT	-	1.)

Renaming	the	C	functions	and	variables
generated	by	Argument	Clinic

Argument	 Clinic	 automatically	 names	 the	 functions	 it	 generates	 for
you.	Occasionally	 this	may	 cause	 a	 problem,	 if	 the	 generated	 name
collides	 with	 the	 name	 of	 an	 existing	 C	 function.	 There’s	 an	 easy
solution:	 override	 the	 names	 used	 for	 the	 C	 functions.	 Just	 add	 the
keyword	 "as"	 to	 your	 function	 declaration	 line,	 followed	 by	 the
function	name	you	wish	to	use.	Argument	Clinic	will	use	that	function

name	for	the	base	(generated)	function,	then	add	"_impl"	to	the	end
and	use	that	for	the	name	of	the	impl	function.

For	example,	if	we	wanted	to	rename	the	C	function	names	generated
for	pickle.Pickler.dump,	it’d	look	like	this:

/*[clinic	input]

pickle.Pickler.dump	as	pickler_dumper

...

The	 base	 function	 would	 now	 be	 named	 pickler_dumper(),	 and
the	impl	function	would	now	be	named	pickler_dumper_impl().

Similarly,	 you	 may	 have	 a	 problem	 where	 you	 want	 to	 give	 a
parameter	a	specific	Python	name,	but	that	name	may	be	inconvenient
in	C.	Argument	Clinic	allows	you	to	give	a	parameter	different	names
in	Python	and	in	C,	using	the	same	"as"	syntax:

/*[clinic	input]

pickle.Pickler.dump

				obj:	object

				file	as	file_obj:	object

				protocol:	object	=	NULL

				*

				fix_imports:	bool	=	True

Here,	 the	name	used	 in	Python	 (in	 the	signature	and	 the	keywords
array)	would	be	file,	but	the	C	variable	would	be	named	file_obj.

You	can	use	this	to	rename	the	self	parameter	too!

Converting	functions	using	PyArg_UnpackTuple

To	 convert	 a	 function	 parsing	 its	 arguments	 with
PyArg_UnpackTuple(),	 simply	 write	 out	 all	 the	 arguments,
specifying	each	as	an	object.	You	may	specify	 the	type	argument
to	 cast	 the	 type	 as	 appropriate.	 All	 arguments	 should	 be	 marked
positional-only	(add	a	/	on	a	line	by	itself	after	the	last	argument).

Currently	 the	 generated	 code	 will	 use	 PyArg_ParseTuple(),	 but
this	will	change	soon.

Optional	Groups

Some	 legacy	 functions	 have	 a	 tricky	 approach	 to	 parsing	 their
arguments:	they	count	the	number	of	positional	arguments,	then	use	a
switch	 statement	 to	 call	 one	 of	 several	 different
PyArg_ParseTuple()	 calls	 depending	 on	 how	 many	 positional
arguments	 there	 are.	 (These	 functions	 cannot	 accept	 keyword-only
arguments.)	This	approach	was	used	 to	simulate	optional	arguments
back	before	PyArg_ParseTupleAndKeywords()	was	created.

While	 functions	 using	 this	 approach	 can	 often	 be	 converted	 to	 use
PyArg_ParseTupleAndKeywords(),	 optional	 arguments,	 and
default	values,	it’s	not	always	possible.	Some	of	these	legacy	functions
have	 behaviors	 PyArg_ParseTupleAndKeywords()	 doesn’t
directly	 support.	 The	 most	 obvious	 example	 is	 the	 builtin	 function
range(),	 which	 has	 an	 optional	 argument	 on	 the	 left	 side	 of	 its
required	 argument!	 Another	 example	 is	 curses.window.addch(),
which	 has	 a	 group	 of	 two	 arguments	 that	must	 always	 be	 specified
together.	 (The	arguments	are	called	x	and	y;	 if	 you	call	 the	 function
passing	in	x,	you	must	also	pass	in	y–and	if	you	don’t	pass	in	x	you
may	not	pass	in	y	either.)

In	 any	 case,	 the	 goal	 of	 Argument	 Clinic	 is	 to	 support	 argument
parsing	 for	 all	 existing	 CPython	 builtins	 without	 changing	 their
semantics.	Therefore	Argument	Clinic	supports	this	alternate	approach
to	parsing,	using	what	are	called	optional	groups.	Optional	groups	are
groups	of	arguments	that	must	all	be	passed	in	together.	They	can	be
to	 the	 left	 or	 the	 right	 of	 the	 required	 arguments.	 They	 can	 only	 be
used	with	positional-only	parameters.

Note: 	Optional	groups	are	only	intended	for	use	when	converting
functions	that	make	multiple	calls	to	PyArg_ParseTuple()!
Functions	that	use	any	other	approach	for	parsing	arguments	should
almost	never	be	converted	to	Argument	Clinic	using	optional	groups.
Functions	using	optional	groups	currently	cannot	have	accurate
sigantures	in	Python,	because	Python	just	doesn’t	understand	the
concept.	Please	avoid	using	optional	groups	wherever	possible.

To	 specify	 an	 optional	 group,	 add	 a	 [on	 a	 line	 by	 itself	 before	 the
parameters	you	wish	to	group	together,	and	a]	on	a	line	by	itself	after
these	 parameters.	 As	 an	 example,	 here’s	 how
curses.window.addch	 uses	optional	groups	 to	make	 the	 first	 two
parameters	and	the	last	parameter	optional:

/*[clinic	input]

curses.window.addch

				[

				x:	int

						X-coordinate.

				y:	int

						Y-coordinate.

]

				ch:	object

						Character	to	add.

				[

				attr:	long

						Attributes	for	the	character.

]

				/

...

Notes:

For	every	optional	group,	one	additional	parameter	will	be	passed
into	 the	 impl	 function	 representing	 the	group.	The	parameter	will
be	 an	 int	 named	 group_{direction}_{number},	 where
{direction}	 is	 either	 right	 or	 left	 depending	 on	whether
the	 group	 is	 before	 or	 after	 the	 required	 parameters,	 and
{number}	 is	 a	 monotonically	 increasing	 number	 (starting	 at	 1)
indicating	 how	 far	 away	 the	 group	 is	 from	 the	 required
parameters.	When	the	impl	is	called,	this	parameter	will	be	set	to
zero	 if	 this	 group	was	unused,	 and	 set	 to	 non-zero	 if	 this	 group
was	 used.	 (By	 used	 or	 unused,	 I	 mean	 whether	 or	 not	 the
parameters	received	arguments	in	this	invocation.)
If	 there	 are	 no	 required	 arguments,	 the	 optional	 groups	 will
behave	as	if	they’re	to	the	right	of	the	required	arguments.
In	 the	 case	 of	 ambiguity,	 the	 argument	 parsing	 code	 favors
parameters	on	the	left	(before	the	required	parameters).
Optional	groups	can	only	contain	positional-only	parameters.
Optional	groups	are	only	intended	for	legacy	code.	Please	do	not
use	optional	groups	for	new	code.

Using	real	Argument	Clinic	converters,	instead	of
“legacy	converters”

To	save	time,	and	to	minimize	how	much	you	need	to	learn	to	achieve
your	 first	port	 to	Argument	Clinic,	 the	walkthrough	above	 tells	you	 to
use	 “legacy	 converters”.	 “Legacy	 converters”	 are	 a	 convenience,
designed	 explicitly	 to	make	 porting	 existing	 code	 to	 Argument	Clinic
easier.	And	to	be	clear,	their	use	is	acceptable	when	porting	code	for
Python	3.4.

However,	 in	 the	 long	 term	 we	 probably	 want	 all	 our	 blocks	 to	 use
Argument	Clinic’s	real	syntax	for	converters.	Why?	A	couple	reasons:

The	proper	converters	are	 far	easier	 to	 read	and	clearer	 in	 their
intent.
There	 are	 some	 format	 units	 that	 are	 unsupported	 as	 “legacy
converters”,	 because	 they	 require	 arguments,	 and	 the	 legacy
converter	syntax	doesn’t	support	specifying	arguments.
In	 the	 future	 we	may	 have	 a	 new	 argument	 parsing	 library	 that
isn’t	 restricted	 to	 what	 PyArg_ParseTuple()	 supports;	 this
flexibility	 won’t	 be	 available	 to	 parameters	 using	 legacy
converters.

Therefore,	if	you	don’t	mind	a	little	extra	effort,	please	use	the	normal
converters	instead	of	legacy	converters.

In	 a	nutshell,	 the	 syntax	 for	Argument	Clinic	 (non-legacy)	 converters
looks	 like	 a	 Python	 function	 call.	 However,	 if	 there	 are	 no	 explicit
arguments	to	the	function	(all	functions	take	their	default	values),	you
may	 omit	 the	 parentheses.	 Thus	 bool	 and	 bool()	 are	 exactly	 the
same	converters.

All	 arguments	 to	 Argument	 Clinic	 converters	 are	 keyword-only.	 All
Argument	Clinic	converters	accept	the	following	arguments:

c_default

The	 default	 value	 for	 this	 parameter	 when	 defined	 in	 C.

Specifically,	 this	will	be	the	 initializer	 for	 the	variable	declared
in	 the	 “parse	 function”.	See	 the	 section	 on	 default	 values	 for
how	to	use	this.	Specified	as	a	string.

annotation

The	 annotation	 value	 for	 this	 parameter.	 Not	 currently
supported,	 because	PEP	 8	mandates	 that	 the	Python	 library
may	not	use	annotations.

In	 addition,	 some	 converters	 accept	 additional	 arguments.	 Here	 is	 a
list	of	these	arguments,	along	with	their	meanings:

bitwise

Only	supported	for	unsigned	integers.	The	native	integer	value
of	 this	 Python	 argument	 will	 be	 written	 to	 the	 parameter
without	any	range	checking,	even	for	negative	values.

converter

Only	supported	by	the	object	converter.	Specifies	the	name
of	 a	C	 “converter	 function”	 to	 use	 to	 convert	 this	 object	 to	 a
native	type.

encoding

Only	supported	for	strings.	Specifies	the	encoding	to	use	when
converting	this	string	from	a	Python	str	(Unicode)	value	into	a
C	char	*	value.

length

Only	supported	 for	strings.	 If	 true,	 requests	 that	 the	 length	of
the	string	be	passed	in	to	the	impl	function,	just	after	the	string
parameter,	 in	 a	 parameter	 named
<parameter_name>_length.

nullable

Only	supported	for	strings.	If	true,	this	parameter	may	also	be
set	 to	 None,	 in	 which	 case	 the	 C	 parameter	 will	 be	 set	 to
NULL.

subclass_of

Only	 supported	 for	 the	 object	 converter.	 Requires	 that	 the
Python	value	be	a	subclass	of	a	Python	type,	as	expressed	in
C.

types

Only	 supported	 for	 the	 object	 (and	 self)	 converter.
Specifies	the	C	type	that	will	be	used	to	declare	the	variable.
Default	value	is	"PyObject	*".

types

A	string	containing	a	list	of	Python	types	(and	possibly	pseudo-
types);	 this	 restricts	 the	allowable	Python	argument	 to	values
of	these	types.	(This	is	not	a	general-purpose	facility;	as	a	rule
it	only	supports	specific	 lists	of	 types	as	shown	 in	 the	 legacy
converter	table.)

zeroes

Only	 supported	 for	 strings.	 If	 true,	 embedded	 NUL	 bytes
('\\0')	are	permitted	inside	the	value.

Please	note,	 not	 every	 possible	 combination	 of	 arguments	will	work.
Often	 these	 arguments	 are	 implemented	 internally	 by	 specific
PyArg_ParseTuple	 format	 units,	 with	 specific	 behavior.	 For
example,	 currently	 you	 cannot	 call	 str	 and	 pass	 in	 zeroes=True
without	 also	 specifying	 an	 encoding;	 although	 it’s	 perfectly
reasonable	to	think	this	would	work,	these	semantics	don’t	map	to	any
existing	 format	 unit.	 So	 Argument	 Clinic	 doesn’t	 support	 it.	 (Or,	 at
least,	not	yet.)

Below	 is	 a	 table	 showing	 the	mapping	of	 legacy	 converters	 into	 real
Argument	Clinic	converters.	On	the	left	is	the	legacy	converter,	on	the
right	is	the	text	you’d	replace	it	with.

'B' unsigned_char(bitwise=True)

'b' unsigned_char

'c' char

'C' int(types='str')

'd' double

'D' Py_complex

'es#'
str(encoding='name_of_encoding',

length=True,	zeroes=True)

'es' str(encoding='name_of_encoding')

'et#'
str(encoding='name_of_encoding',

types='bytes	bytearray	str',	length=True)

'et'
str(encoding='name_of_encoding',

types='bytes	bytearray	str')

'f' float

'h' short

'H' unsigned_short(bitwise=True)

'i' int

'I' unsigned_int(bitwise=True)

'k' unsigned_long(bitwise=True)

'K' unsigned_PY_LONG_LONG(bitwise=True)

'L' PY_LONG_LONG

'n' Py_ssize_t

'O!' object(subclass_of='&PySomething_Type')

'O&' object(converter='name_of_c_function')

'O' object

'p' bool

's#' str(length=True)

'S' PyBytesObject

's' str

's*'
Py_buffer(types='str	bytes	bytearray

buffer')

'u#' Py_UNICODE(length=True)

'u' Py_UNICODE

'U' unicode

'w*' Py_buffer(types='bytearray	rwbuffer')

'y#' str(types='bytes',	length=True)

'Y' PyByteArrayObject

'y' str(types='bytes')

'y*' Py_buffer

'Z#' Py_UNICODE(nullable=True,	length=True)

'z#' str(nullable=True,	length=True)

'Z' Py_UNICODE(nullable=True)

'z' str(nullable=True)

'z*'
Py_buffer(types='str	bytes	bytearray

buffer',	nullable=True)

As	an	example,	here’s	our	sample	pickle.Pickler.dump	using	the
proper	converter:

/*[clinic	input]

pickle.Pickler.dump

				obj:	object

								The	object	to	be	pickled.

				/

Write	a	pickled	representation	of	obj	to	the	open	file

[clinic	start	generated	code]*/

Argument	Clinic	will	show	you	all	 the	converters	 it	has	available.	For
each	converter	it’ll	show	you	all	the	parameters	it	accepts,	along	with
the	 default	 value	 for	 each	 parameter.	 Just	 run
Tools/clinic/clinic.py	--converters	to	see	the	full	list.

Py_buffer

When	using	the	Py_buffer	converter	(or	the	's*',	'w*',	'*y',	or
'z*'	 legacy	 converters),	 you	must	 not	 call	 PyBuffer_Release()
on	the	provided	buffer.	Argument	Clinic	generates	code	that	does	it	for
you	(in	the	parsing	function).

Advanced	converters

Remeber	 those	 format	 units	 you	 skipped	 for	 your	 first	 time	 because
they	were	advanced?	Here’s	how	to	handle	those	too.

The	 trick	 is,	 all	 those	 format	 units	 take	 arguments–either	 conversion
functions,	 or	 types,	 or	 strings	 specifying	 an	 encoding.	 (But	 “legacy
converters”	don’t	support	arguments.	That’s	why	we	skipped	them	for
your	 first	 function.)	 The	 argument	 you	 specified	 to	 the	 format	 unit	 is
now	an	argument	to	the	converter;	this	argument	is	either	converter
(for	O&),	subclass_of	(for	O!),	or	encoding	(for	all	the	format	units
that	start	with	e).

When	 using	 subclass_of,	 you	 may	 also	 want	 to	 use	 the	 other
custom	argument	 for	 object():	 type,	 which	 lets	 you	 set	 the	 type
actually	 used	 for	 the	 parameter.	 For	 example,	 if	 you	want	 to	 ensure

that	the	object	is	a	subclass	of	PyUnicode_Type,	you	probably	want
to	 use	 the	 converter	 object(type='PyUnicodeObject	 *',

subclass_of='&PyUnicode_Type').

One	possible	problem	with	using	Argument	Clinic:	it	takes	away	some
possible	 flexibility	 for	 the	 format	units	starting	with	e.	When	writing	a
PyArg_Parse	call	by	hand,	you	could	theoretically	decide	at	runtime
what	encoding	string	 to	pass	 in	 to	PyArg_ParseTuple().	But	 now
this	string	must	be	hard-coded	at	Argument-Clinic-preprocessing-time.
This	 limitation	 is	deliberate;	 it	made	supporting	 this	 format	unit	much
easier,	and	may	allow	for	future	optimizations.	This	restriction	doesn’t
seem	unreasonable;	CPython	itself	always	passes	in	static	hard-coded
encoding	strings	for	parameters	whose	format	units	start	with	e.

Parameter	default	values

Default	 values	 for	parameters	 can	be	any	of	 a	number	of	 values.	At
their	simplest,	they	can	be	string,	int,	or	float	literals:

foo:	str	=	"abc"

bar:	int	=	123

bat:	float	=	45.6

They	can	also	use	any	of	Python’s	built-in	constants:

yep:		bool	=	True

nope:	bool	=	False

nada:	object	=	None

There’s	 also	 special	 support	 for	 a	 default	 value	 of	 NULL,	 and	 for
simple	expressions,	documented	in	the	following	sections.

The	NULL	default	value

For	 string	 and	 object	 parameters,	 you	 can	 set	 them	 to	 None	 to
indicate	 that	 there’s	 no	 default.	 However,	 that	means	 the	C	 variable
will	 be	 initialized	 to	 Py_None.	 For	 convenience’s	 sakes,	 there’s	 a
special	 value	 called	 NULL	 for	 just	 this	 reason:	 from	 Python’s
perspective	it	behaves	like	a	default	value	of	None,	but	the	C	variable
is	initialized	with	NULL.

Expressions	specified	as	default	values

The	default	value	for	a	parameter	can	be	more	than	just	a	literal	value.
It	 can	be	an	entire	expression,	using	math	operators	and	 looking	up
attributes	 on	 objects.	 However,	 this	 support	 isn’t	 exactly	 simple,
because	of	some	non-obvious	semantics.

Consider	the	following	example:

foo:	Py_ssize_t	=	sys.maxsize	-	1

sys.maxsize	 can	 have	 different	 values	 on	 different	 platforms.
Therefore	 Argument	 Clinic	 can’t	 simply	 evaluate	 that	 expression
locally	and	hard-code	it	in	C.	So	it	stores	the	default	in	such	a	way	that
it	will	get	evaluated	at	 runtime,	when	 the	user	asks	 for	 the	 function’s
signature.

What	namespace	 is	available	when	 the	expression	 is	evaluated?	 It’s
evaluated	 in	 the	 context	 of	 the	module	 the	 builtin	 came	 from.	 So,	 if
your	module	has	an	attribute	called	“max_widgets”,	you	may	simply
use	it:

foo:	Py_ssize_t	=	max_widgets

If	the	symbol	isn’t	found	in	the	current	module,	it	fails	over	to	looking	in
sys.modules.	 That’s	 how	 it	 can	 find	 sys.maxsize	 for	 example.
(Since	you	don’t	know	in	advance	what	modules	the	user	will	load	into
their	 interpreter,	 it’s	 best	 to	 restrict	 yourself	 to	 modules	 that	 are
preloaded	by	Python	itself.)

Evaluating	default	values	only	at	runtime	means	Argument	Clinic	can’t
compute	the	correct	equivalent	C	default	value.	So	you	need	to	tell	 it
explicitly.	 When	 you	 use	 an	 expression,	 you	 must	 also	 specify	 the
equivalent	 expression	 in	 C,	 using	 the	 c_default	 parameter	 to	 the
converter:

foo:	Py_ssize_t(c_default="PY_SSIZE_T_MAX	-	1")	=	sys

Another	complication:	Argument	Clinic	can’t	know	in	advance	whether
or	not	 the	expression	you	supply	 is	valid.	 It	parses	 it	 to	make	sure	 it
looks	legal,	but	it	can’t	actually	know.	You	must	be	very	careful	when
using	expressions	to	specify	values	that	are	guaranteed	to	be	valid	at
runtime!

Finally,	 because	 expressions	 must	 be	 representable	 as	 static	 C
values,	there	are	many	restrictions	on	legal	expressions.	Here’s	a	list
of	Python	features	you’re	not	permitted	to	use:

Function	calls.
Inline	if	statements	(3	if	foo	else	5).
Automatic	sequence	unpacking	(*[1,	2,	3]).
List/set/dict	comprehensions	and	generator	expressions.
Tuple/list/set/dict	literals.

Using	a	return	converter

By	default	the	impl	function	Argument	Clinic	generates	for	you	returns
PyObject	*.	But	your	C	function	often	computes	some	C	type,	then
converts	it	into	the	PyObject	*	at	the	last	moment.	Argument	Clinic
handles	converting	your	inputs	from	Python	types	into	native	C	types–
why	not	have	 it	convert	your	return	value	from	a	native	C	type	 into	a
Python	type	too?

That’s	what	a	“return	converter”	does.	It	changes	your	impl	function	to
return	 some	 C	 type,	 then	 adds	 code	 to	 the	 generated	 (non-impl)
function	 to	 handle	 converting	 that	 value	 into	 the	 appropriate
PyObject	*.

The	 syntax	 for	 return	 converters	 is	 similar	 to	 that	 of	 parameter
converters.	 You	 specify	 the	 return	 converter	 like	 it	 was	 a	 return
annotation	on	 the	 function	 itself.	Return	converters	behave	much	 the
same	as	 parameter	 converters;	 they	 take	 arguments,	 the	 arguments
are	 all	 keyword-only,	 and	 if	 you’re	 not	 changing	 any	 of	 the	 default
arguments	you	can	omit	the	parentheses.

(If	 you	 use	 both	 "as"	and	 a	 return	 converter	 for	 your	 function,	 the
"as"	should	come	before	the	return	converter.)

There’s	one	additional	complication	when	using	return	converters:	how
do	you	 indicate	an	error	has	occured?	Normally,	a	 function	 returns	a
valid	(non-NULL)	pointer	for	success,	and	NULL	for	failure.	But	 if	you
use	 an	 integer	 return	 converter,	 all	 integers	 are	 valid.	 How	 can
Argument	 Clinic	 detect	 an	 error?	 Its	 solution:	 each	 return	 converter
implicitly	looks	for	a	special	value	that	indicates	an	error.	If	you	return
that	value,	and	an	error	has	been	set	(PyErr_Occurred()	returns	a
true	 value),	 then	 the	 generated	 code	 will	 propogate	 the	 error.

Otherwise	it	will	encode	the	value	you	return	like	normal.

Currently	Argument	Clinic	supports	only	a	few	return	converters:

bool

int

unsigned	int

long

unsigned	int

size_t

Py_ssize_t

float

double

DecodeFSDefault

None	of	these	take	parameters.	For	the	first	three,	return	-1	to	indicate
error.	 For	 DecodeFSDefault,	 the	 return	 type	 is	 char	*;	 return	 a
NULL	pointer	to	indicate	an	error.

(There’s	 also	 an	 experimental	 NoneType	 converter,	 which	 lets	 you
return	 Py_None	 on	 success	 or	 NULL	 on	 failure,	 without	 having	 to
increment	 the	 reference	 count	 on	 Py_None.	 I’m	 not	 sure	 it	 adds
enough	clarity	to	be	worth	using.)

To	see	all	 the	return	converters	Argument	Clinic	supports,	along	with
their	 parameters	 (if	 any),	 just	 run	 Tools/clinic/clinic.py	 --
converters	for	the	full	list.

Cloning	existing	functions

If	you	have	a	number	of	functions	that	look	similar,	you	may	be	able	to
use	Clinic’s	“clone”	feature.	When	you	clone	an	existing	function,	you
reuse:

its	parameters,	including
their	names,
their	converters,	with	all	parameters,
their	default	values,
their	per-parameter	docstrings,
their	 kind	 (whether	 they’re	 positional	 only,	 positional	 or
keyword,	or	keyword	only),	and

its	return	converter.

The	only	thing	not	copied	from	the	original	function	is	its	docstring;	the
syntax	allows	you	to	specify	a	new	docstring.

Here’s	the	syntax	for	cloning	a	function:

/*[clinic	input]

module.class.new_function	[as	c_basename]	=	module.class

Docstring	for	new_function	goes	here.

[clinic	start	generated	code]*/

(The	 functions	 can	 be	 in	 different	 modules	 or	 classes.	 I	 wrote
module.class	 in	the	sample	just	to	 illustrate	that	you	must	use	the
full	path	to	both	functions.)

Sorry,	 there’s	 no	 syntax	 for	 partially-cloning	 a	 function,	 or	 cloning	 a
function	then	modifying	it.	Cloning	is	an	all-or	nothing	proposition.

Also,	 the	 function	 you	 are	 cloning	 from	 must	 have	 been	 previously
defined	in	the	current	file.

Calling	Python	code

The	 rest	 of	 the	 advanced	 topics	 require	 you	 to	 write	 Python	 code

which	 lives	 inside	your	C	 file	and	modifies	Argument	Clinic’s	 runtime
state.	This	is	simple:	you	simply	define	a	Python	block.

A	Python	block	uses	different	delimiter	 lines	 than	an	Argument	Clinic
function	block.	It	looks	like	this:

/*[python	input]

#	python	code	goes	here

[python	start	generated	code]*/

All	the	code	inside	the	Python	block	is	executed	at	the	time	it’s	parsed.
All	text	written	to	stdout	inside	the	block	is	redirected	into	the	“output”
after	the	block.

As	 an	 example,	 here’s	 a	 Python	 block	 that	 adds	 a	 static	 integer
variable	to	the	C	code:

/*[python	input]

print('static	int	__ignored_unused_variable__	=	0;')

[python	start	generated	code]*/

static	int	__ignored_unused_variable__	=	0;

/*[python	checksum:...]*/

Using	a	“self	converter”

Argument	Clinic	automatically	adds	a	“self”	parameter	for	you	using	a
default	 converter.	 It	automatically	sets	 the	type	of	 this	parameter	 to
the	“pointer	to	an	instance”	you	specified	when	you	declared	the	type.
However,	 you	 can	 override	 Argument	 Clinic’s	 converter	 and	 specify
one	 yourself.	 Just	 add	 your	 own	 self	 parameter	 as	 the	 first
parameter	 in	a	block,	and	ensure	 that	 its	converter	 is	an	 instance	of
self_converter	or	a	subclass	thereof.

What’s	the	point?	This	lets	you	override	the	type	of	self,	or	give	it	a
different	default	name.

How	do	you	specify	the	custom	type	you	want	to	cast	self	to?	If	you
only	have	one	or	two	functions	with	the	same	type	for	self,	you	can
directly	use	Argument	Clinic’s	existing	self	converter,	passing	in	the
type	you	want	to	use	as	the	type	parameter:

/*[clinic	input]

_pickle.Pickler.dump

		self:	self(type="PicklerObject	*")

		obj:	object

		/

Write	a	pickled	representation	of	the	given	object	to

[clinic	start	generated	code]*/

On	the	other	hand,	if	you	have	a	lot	of	functions	that	will	use	the	same
type	 for	 self,	 it’s	 best	 to	 create	 your	 own	 converter,	 subclassing
self_converter	but	overwriting	the	type	member:

/*[python	input]

class	PicklerObject_converter(self_converter):

				type	=	"PicklerObject	*"

[python	start	generated	code]*/

/*[clinic	input]

_pickle.Pickler.dump

		self:	PicklerObject

		obj:	object

		/

Write	a	pickled	representation	of	the	given	object	to

[clinic	start	generated	code]*/

Writing	a	custom	converter

As	 we	 hinted	 at	 in	 the	 previous	 section...	 you	 can	 write	 your	 own
converters!	 A	 converter	 is	 simply	 a	 Python	 class	 that	 inherits	 from
CConverter.	The	main	purpose	of	a	custom	converter	is	if	you	have
a	parameter	 using	 the	 O&	 format	unit–parsing	 this	parameter	means
calling	a	PyArg_ParseTuple()	“converter	function”.

Your	converter	class	should	be	named	*something*_converter.	If
the	 name	 follows	 this	 convention,	 then	 your	 converter	 class	 will	 be
automatically	 registered	 with	 Argument	 Clinic;	 its	 name	 will	 be	 the
name	of	your	class	with	 the	_converter	suffix	stripped	off.	 (This	 is
accomplished	with	a	metaclass.)

You	shouldn’t	subclass	CConverter.__init__.	Instead,	you	should
write	 a	 converter_init()	 function.	 converter_init()	 always
accepts	a	self	parameter;	after	 that,	all	additional	parameters	must
be	 keyword-only.	 Any	 arguments	 passed	 in	 to	 the	 converter	 in
Argument	Clinic	will	be	passed	along	to	your	converter_init().

There	are	some	additional	members	of	CConverter	you	may	wish	to
specify	in	your	subclass.	Here’s	the	current	list:

type

The	C	type	to	use	for	this	variable.	type	should	be	a	Python	string
specifying	the	type,	e.g.	int.	If	this	is	a	pointer	type,	the	type	string
should	end	with	'	*'.

default

The	Python	default	value	for	this	parameter,	as	a	Python	value.	Or
the	magic	value	unspecified	if	there	is	no	default.

py_default

default	as	it	should	appear	in	Python	code,	as	a	string.	Or	None
if	there	is	no	default.

c_default

default	 as	 it	 should	 appear	 in	C	 code,	 as	 a	 string.	Or	 None	 if
there	is	no	default.

c_ignored_default

The	default	value	used	to	initialize	the	C	variable	when	there	is	no
default,	but	not	specifying	a	default	may	 result	 in	an	 “uninitialized
variable”	 warning.	 This	 can	 easily	 happen	 when	 using	 option
groups–although	properly-written	code	will	 never	actually	use	 this
value,	 the	 variable	 does	 get	 passed	 in	 to	 the	 impl,	 and	 the	 C
compiler	 will	 complain	 about	 the	 “use”	 of	 the	 uninitialized	 value.
This	value	should	always	be	a	non-empty	string.

converter

The	name	of	the	C	converter	function,	as	a	string.

impl_by_reference

A	boolean	value.	If	true,	Argument	Clinic	will	add	a	&	in	front	of	the
name	of	the	variable	when	passing	it	into	the	impl	function.

parse_by_reference

A	boolean	value.	If	true,	Argument	Clinic	will	add	a	&	in	front	of	the
name	of	the	variable	when	passing	it	into	PyArg_ParseTuple().

Here’s	 the	 simplest	 example	 of	 a	 custom	 converter,	 from
Modules/zlibmodule.c:

/*[python	input]

class	uint_converter(CConverter):

				type	=	'unsigned	int'

				converter	=	'uint_converter'

[python	start	generated	code]*/

/*[python	end	generated	code:	checksum=da39a3ee5e6b4b0d3255bfef95601890afd80709

This	 block	 adds	 a	 converter	 to	 Argument	 Clinic	 named	 uint.
Parameters	 declared	 as	 uint	 will	 be	 declared	 as	 type	 unsigned
int,	 and	will	 be	parsed	by	 the	 'O&'	 format	 unit,	which	will	 call	 the
uint_converter	 converter	 function.	 uint	 variables	 automatically
support	default	values.

More	 sophisticated	 custom	 converters	 can	 insert	 custom	 C	 code	 to
handle	 initialization	 and	 cleanup.	 You	 can	 see	 more	 examples	 of
custom	converters	in	the	CPython	source	tree;	grep	the	C	files	for	the
string	CConverter.

Writing	a	custom	return	converter

Writing	 a	 custom	 return	 converter	 is	 much	 like	 writing	 a	 custom
converter.	 Except	 it’s	 somewhat	 simpler,	 because	 return	 converters
are	themselves	much	simpler.

Return	converters	must	subclass	CReturnConverter.	There	are	no
examples	yet	of	custom	return	converters,	because	they	are	not	widely
used	yet.	 If	you	wish	 to	write	your	own	 return	converter,	please	 read
Tools/clinic/clinic.py,	 specifically	 the	 implementation	 of
CReturnConverter	and	all	its	subclasses.

METH_O	and	METH_NOARGS

To	convert	a	 function	using	METH_O,	make	sure	 the	 function’s	single
argument	is	using	the	object	converter,	and	mark	the	arguments	as
positional-only:

/*[clinic	input]

meth_o_sample

					argument:	object

					/

[clinic	start	generated	code]*/

To	 convert	 a	 function	 using	 METH_NOARGS,	 just	 don’t	 specify	 any
arguments.

You	 can	 still	 use	 a	 self	 converter,	 a	 return	 converter,	 and	 specify	 a
type	argument	to	the	object	converter	for	METH_O.

tp_new	and	tp_init	functions

You	 can	 convert	 tp_new	 and	 tp_init	 functions.	 Just	 name	 them
__new__	or	__init__	as	appropriate.	Notes:

The	 function	 name	 generated	 for	 __new__	 doesn’t	 end	 in
__new__	 like	 it	would	by	default.	 It’s	 just	 the	name	of	 the	class,
converted	into	a	valid	C	identifier.
No	PyMethodDef	#define	is	generated	for	these	functions.
__init__	functions	return	int,	not	PyObject	*.
Use	the	docstring	as	the	class	docstring.
Although	__new__	and	__init__	functions	must	always	accept
both	 the	 args	 and	 kwargs	 objects,	 when	 converting	 you	 may
specify	 any	 signature	 for	 these	 functions	 that	 you	 like.	 (If	 your
function	doesn’t	support	keywords,	the	parsing	function	generated
will	throw	an	exception	if	it	receives	any.)

Changing	and	redirecting	Clinic’s	output

It	 can	 be	 inconvenient	 to	 have	Clinic’s	 output	 interspersed	with	 your
conventional	 hand-edited	C	 code.	 Luckily,	 Clinic	 is	 configurable:	 you
can	buffer	up	its	output	for	printing	later	(or	earlier!),	or	write	its	output
to	a	separate	 file.	You	can	also	add	a	prefix	or	suffix	 to	every	 line	of
Clinic’s	generated	output.

While	 changing	 Clinic’s	 output	 in	 this	 manner	 can	 be	 a	 boon	 to
readability,	 it	 may	 result	 in	 Clinic	 code	 using	 types	 before	 they	 are
defined,	or	your	code	attempting	to	use	Clinic-generated	code	befire	it
is	 defined.	 These	 problems	 can	 be	 easily	 solved	 by	 rearranging	 the
declarations	 in	 your	 file,	 or	 moving	 where	 Clinic’s	 generated	 code
goes.	(This	is	why	the	default	behavior	of	Clinic	is	to	output	everything
into	 the	 current	 block;	 while	 many	 people	 consider	 this	 hampers
readability,	 it	will	never	require	rearranging	your	code	to	fix	definition-
before-use	problems.)

Let’s	start	with	defining	some	terminology:

field
A	 field,	 in	 this	 context,	 is	 a	 subsection	 of	 Clinic’s	 output.	 For
example,	 the	#define	 for	 the	PyMethodDef	structure	 is	a	 field,
called	methoddef_define.	Clinic	has	seven	different	fields	it	can
output	per	function	definition:

docstring_prototype

docstring_definition

methoddef_define

impl_prototype

parser_prototype

parser_definition

impl_definition

All	 the	 names	 are	 of	 the	 form	 "<a>_",	 where	 "<a>"	 is	 the
semantic	 object	 represented	 (the	 parsing	 function,	 the	 impl
function,	 the	 docstring,	 or	 the	 methoddef	 structure)	 and	 ""
represents	what	kind	of	statement	the	field	is.	Field	names	that	end
in	 "_prototype"	 represent	 forward	 declarations	 of	 that	 thing,
without	 the	actual	 body/data	of	 the	 thing;	 field	names	 that	 end	 in
"_definition"	 represent	 the	actual	definition	of	 the	 thing,	with
the	body/data	of	 the	thing.	("methoddef"	 is	special,	 it’s	 the	only
one	 that	 ends	 with	 "_define",	 representing	 that	 it’s	 a
preprocessor	#define.)

destination
A	destination	 is	 a	 place	Clinic	 can	write	 output	 to.	 There	 are	 five
built-in	destinations:

block

The	 default	 destination:	 printed	 in	 the	 output	 section	 of	 the
current	Clinic	block.

buffer

A	text	buffer	where	you	can	save	text	for	later.	Text	sent	here	is
appended	 to	 the	end	of	any	exsiting	 text.	 It’s	an	error	 to	have
any	text	left	in	the	buffer	when	Clinic	finishes	processing	a	file.

file

A	 separate	 “clinic	 file”	 that	 will	 be	 created	 automatically	 by
Clinic.	 The	 filename	 chosen	 for	 the	 file	 is
{basename}.clinic{extension},	 where	 basename	 and
extension	 were	 assigned	 the	 output	 from
os.path.splitext()	 run	on	 the	current	 file.	 (Example:	 the
file	 destination	 for	 _pickle.c	 would	 be	 written	 to
_pickle.clinic.c.)

Important:	When	using	a	file	destination,	you	must	check
in	the	generated	file!

two-pass

A	buffer	 like	buffer.	However,	a	 two-pass	buffer	can	only	be
written	 once,	 and	 it	 prints	 out	 all	 text	 sent	 to	 it	 during	 all	 of
processing,	even	from	Clinic	blocks	after	the

suppress

The	text	is	suppressed–thrown	away.

Clinic	defines	five	new	directives	that	let	you	reconfigure	its	output.

The	first	new	directive	is	dump:

dump	<destination>

This	 dumps	 the	 current	 contents	 of	 the	 named	 destination	 into	 the
output	 of	 the	 current	 block,	 and	 empties	 it.	 This	 only	 works	 with
buffer	and	two-pass	destinations.

The	second	new	directive	is	output.	The	most	basic	form	of	output
is	like	this:

output	<field>	<destination>

This	tells	Clinic	to	output	field	to	destination.	output	also	supports	a
special	 meta-destination,	 called	 everything,	 which	 tells	 Clinic	 to
output	all	fields	to	that	destination.

output	has	a	number	of	other	functions:

output	push

output	pop

output	preset	<preset>

output	 push	 and	 output	 pop	 allow	 you	 to	 push	 and	 pop
configurations	 on	 an	 internal	 configuration	 stack,	 so	 that	 you	 can
temporarily	 modify	 the	 output	 configuration,	 then	 easily	 restore	 the
previous	 configuration.	Simply	 push	 before	 your	 change	 to	 save	 the
current	configuration,	then	pop	when	you	wish	to	restore	the	previous
configuration.

output	preset	sets	Clinic’s	output	to	one	of	several	built-in	preset
configurations,	as	follows:

block

Clinic’s	 original	 starting	 configuration.	 Writes	 everything
immediately	after	the	input	block.

Suppress	 the	 parser_prototype	 and
docstring_prototype,	write	everything	else	to	block.

file

Designed	to	write	everything	to	the	“clinic	file”	that	it	can.	You
then	 #include	 this	 file	 near	 the	 top	 of	 your	 file.	 You	 may
need	to	rearrange	your	 file	 to	make	this	work,	 though	usually
this	 just	 means	 creating	 forward	 declarations	 for	 various
typedef	and	PyTypeObject	definitions.

Suppress	 the	 parser_prototype	 and
docstring_prototype,	 write	 the	 impl_definition	 to
block,	and	write	everything	else	to	file.

The	 default	 filename	 is	 "

{dirname}/clinic/{basename}.h".

buffer

Save	up	all	most	 of	 the	output	 from	Clinic,	 to	 be	written	 into
your	file	near	the	end.	For	Python	files	implementing	modules
or	builtin	types,	it’s	recommended	that	you	dump	the	buffer	just
above	 the	 static	 structures	 for	 your	 module	 or	 builtin	 type;
these	 are	 normally	 very	 near	 the	 end.	 Using	 buffer	 may
require	 even	 more	 editing	 than	 file,	 if	 your	 file	 has	 static
PyMethodDef	arrays	defined	in	the	middle	of	the	file.

Suppress	 the	 parser_prototype,	 impl_prototype,	 and
docstring_prototype,	 write	 the	 impl_definition	 to
block,	and	write	everything	else	to	file.

two-pass

Similar	 to	 the	buffer	preset,	but	writes	 forward	declarations
to	the	two-pass	buffer,	and	definitions	to	the	buffer.	This	is
similar	to	the	buffer	preset,	but	may	require	less	editing	than
buffer.	Dump	the	two-pass	buffer	near	the	top	of	your	file,
and	dump	the	buffer	near	the	end	just	like	you	would	when
using	the	buffer	preset.

Suppresses	 the	 impl_prototype,	 write	 the
impl_definition	 to	 block,	 write
docstring_prototype,	 methoddef_define,	 and
parser_prototype	 to	 two-pass,	 write	 everything	 else	 to
buffer.

partial-buffer

Similar	 to	 the	 buffer	 preset,	 but	 writes	 more	 things	 to
block,	only	writing	the	really	big	chunks	of	generated	code	to
buffer.	 This	 avoids	 the	 definition-before-use	 problem	 of
buffer	 completely,	at	 the	small	 cost	of	having	slightly	more

stuff	 in	 the	 block’s	 output.	 Dump	 the	 buffer	 near	 the	 end,
just	like	you	would	when	using	the	buffer	preset.

Suppresses	 the	 impl_prototype,	 write	 the
docstring_definition	 and	 parser_defintion	 to
buffer,	write	everything	else	to	block.

The	third	new	directive	is	destination:

destination	<name>	<command>	[...]

This	performs	an	operation	on	the	destination	named	name.

There	are	two	defined	subcommands:	new	and	clear.

The	new	subcommand	works	like	this:

destination	<name>	new	<type>

This	creates	a	new	destination	with	name	<name>	and	type	<type>.

There	are	five	destination	types:

suppress

Throws	the	text	away.

block

Writes	 the	 text	 to	 the	 current	 block.	 This	 is	 what	 Clinic
originally	did.

buffer

A	simple	text	buffer,	like	the	“buffer”	builtin	destination	above.

file

A	 text	 file.	 The	 file	 destination	 takes	 an	 extra	 argument,	 a
template	to	use	for	building	the	filename,	like	so:

destination	<name>	new	<type>	<file_template>

The	 template	 can	 use	 three	 strings	 internally	 that	 will	 be
replaced	by	bits	of	the	filename:

{path}
The	 full	 path	 to	 the	 file,	 including	 directory	 and	 full
filename.

{dirname}
The	name	of	the	directory	the	file	is	in.

{basename}
Just	the	name	of	the	file,	not	including	the	directory.

{basename_root}
Basename	 with	 the	 extension	 clipped	 off	 (everything
up	to	but	not	including	the	last	‘.’).

{basename_extension}
The	 last	 ‘.’	 and	 everything	 after	 it.	 If	 the	 basename
does	not	contain	a	period,	this	will	be	the	empty	string.

If	 there	 are	 no	 periods	 in	 the	 filename,	 {basename}	 and
{filename}	 are	 the	 same,	 and	 {extension}	 is	 empty.
“{basename}{extension}”	 is	 always	 exactly	 the	 same	 as
“{filename}”.”

two-pass

A	two-pass	buffer,	like	the	“two-pass”	builtin	destination	above.

The	clear	subcommand	works	like	this:

destination	<name>	clear

It	removes	all	the	accumulated	text	up	to	this	point	in	the	destination.	(I

don’t	know	what	you’d	need	this	for,	but	I	thought	maybe	it’d	be	useful
while	someone’s	experimenting.)

The	fourth	new	directive	is	set:

set	line_prefix	"string"

set	line_suffix	"string"

set	 lets	 you	 set	 two	 internal	 variables	 in	Clinic.	 line_prefix	 is	a
string	 that	 will	 be	 prepended	 to	 every	 line	 of	 Clinic’s	 output;
line_suffix	is	a	string	that	will	be	appended	to	every	line	of	Clinic’s
output.

Both	of	these	suport	two	format	strings:

{block	comment	start}

Turns	into	the	string	/*,	 the	start-comment	 text	sequence	for
C	files.

{block	comment	end}

Turns	into	the	string	*/,	the	end-comment	text	sequence	for	C
files.

The	final	new	directive	is	one	you	shouldn’t	need	to	use	directly,	called
preserve:

preserve

This	tells	Clinic	that	the	current	contents	of	the	output	should	be	kept,
unmodifed.	This	is	used	internally	by	Clinic	when	dumping	output	into
file	 files;	 wrapping	 it	 in	 a	 Clinic	 block	 lets	 Clinic	 use	 its	 existing
checksum	 functionality	 to	 ensure	 the	 file	 was	 not	 modified	 by	 hand
before	it	gets	overwritten.

The	#ifdef	trick

If	 you’re	 converting	 a	 function	 that	 isn’t	 available	 on	 all	 platforms,
there’s	a	trick	you	can	use	to	make	life	a	little	easier.	The	existing	code
probably	looks	like	this:

#ifdef	HAVE_FUNCTIONNAME

static	module_functionname(...)

{

...

}

#endif	/*	HAVE_FUNCTIONNAME	*/

And	 then	 in	 the	 PyMethodDef	 structure	 at	 the	 bottom	 the	 existing
code	will	have:

#ifdef	HAVE_FUNCTIONNAME

{'functionname',	...	},

#endif	/*	HAVE_FUNCTIONNAME	*/

In	 this	 scenario,	 you	 should	 enclose	 the	 body	 of	 your	 impl	 function
inside	the	#ifdef,	like	so:

#ifdef	HAVE_FUNCTIONNAME

/*[clinic	input]

module.functionname

...

[clinic	start	generated	code]*/

static	module_functionname(...)

{

...

}

#endif	/*	HAVE_FUNCTIONNAME	*/

Then,	 remove	 those	 three	 lines	 from	 the	 PyMethodDef	 structure,
replacing	them	with	the	macro	Argument	Clinic	generated:

MODULE_FUNCTIONNAME_METHODDEF

(You	can	find	the	real	name	for	this	macro	inside	the	generated	code.
Or	 you	 can	 calculate	 it	 yourself:	 it’s	 the	 name	 of	 your	 function	 as
defined	 on	 the	 first	 line	 of	 your	 block,	 but	 with	 periods	 changed	 to
underscores,	uppercased,	and	"_METHODDEF"	added	to	the	end.)

Perhaps	 you’re	 wondering:	 what	 if	 HAVE_FUNCTIONNAME	 isn’t
defined?	The	MODULE_FUNCTIONNAME_METHODDEF	macro	won’t	be
defined	either!

Here’s	where	Argument	Clinic	gets	very	clever.	It	actually	detects	that
the	Argument	Clinic	block	might	be	deactivated	by	the	#ifdef.	When
that	happens,	it	generates	a	little	extra	code	that	looks	like	this:

#ifndef	MODULE_FUNCTIONNAME_METHODDEF

				#define	MODULE_FUNCTIONNAME_METHODDEF

#endif	/*	!defined(MODULE_FUNCTIONNAME_METHODDEF)	*/

That	means	 the	macro	 always	works.	 If	 the	 function	 is	 defined,	 this
turns	 into	 the	 correct	 structure,	 including	 the	 trailing	 comma.	 If	 the
function	is	undefined,	this	turns	into	nothing.

However,	 this	 causes	 one	 ticklish	 problem:	 where	 should	 Argument
Clinic	put	this	extra	code	when	using	the	“block”	output	preset?	It	can’t
go	 in	 the	 output	 block,	 because	 that	 could	 be	 decativated	 by	 the
#ifdef.	(That’s	the	whole	point!)

In	 this	situation,	Argument	Clinic	writes	 the	extra	code	 to	 the	 “buffer”
destination.	This	may	mean	 that	 you	get	a	 complaint	 from	Argument

Clinic:

Warning	in	file	"Modules/posixmodule.c"	on	line	12357

Destination	buffer	'buffer'	not	empty	at	end	of	file

When	this	happens,	just	open	your	file,	find	the	dump	buffer	block
that	Argument	Clinic	added	to	your	file	(it’ll	be	at	the	very	bottom),	then
move	it	above	the	PyMethodDef	structure	where	that	macro	is	used.

Using	Argument	Clinic	in	Python	files

It’s	actually	possible	to	use	Argument	Clinic	to	preprocess	Python	files.
There’s	 no	 point	 to	 using	 Argument	 Clinic	 blocks,	 of	 course,	 as	 the
output	wouldn’t	make	any	sense	 to	 the	Python	 interpreter.	But	 using
Argument	Clinic	to	run	Python	blocks	lets	you	use	Python	as	a	Python
preprocessor!

Since	 Python	 comments	 are	 different	 from	 C	 comments,	 Argument
Clinic	blocks	embedded	in	Python	files	look	slightly	different.	They	look
like	this:

#/*[python	input]

#print("def	foo():	pass")

#[python	start	generated	code]*/

def	foo():	pass

#/*[python	checksum:...]*/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	HOWTOs	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

General	Python	FAQ

Contents

General	Python	FAQ
General	Information

What	is	Python?
What	is	the	Python	Software	Foundation?
Are	there	copyright	restrictions	on	the	use	of	Python?
Why	was	Python	created	in	the	first	place?
What	is	Python	good	for?
How	 does	 the	 Python	 version	 numbering	 scheme
work?
How	do	I	obtain	a	copy	of	the	Python	source?
How	do	I	get	documentation	on	Python?
I’ve	 never	 programmed	 before.	 Is	 there	 a	 Python
tutorial?
Is	there	a	newsgroup	or	mailing	list	devoted	to	Python?
How	do	I	get	a	beta	test	version	of	Python?
How	do	I	submit	bug	reports	and	patches	for	Python?
Are	 there	 any	 published	 articles	 about	 Python	 that	 I
can	reference?
Are	there	any	books	on	Python?
Where	in	the	world	is	www.python.org	located?
Why	is	it	called	Python?
Do	I	have	to	like	“Monty	Python’s	Flying	Circus”?

Python	in	the	real	world
How	stable	is	Python?
How	many	people	are	using	Python?
Have	any	significant	projects	been	done	in	Python?
What	 new	 developments	 are	 expected	 for	 Python	 in
the	future?

Is	 it	 reasonable	 to	 propose	 incompatible	 changes	 to
Python?
Is	Python	Y2K	(Year	2000)	Compliant?
Is	 Python	 a	 good	 language	 for	 beginning
programmers?

General	Information

What	is	Python?

Python	 is	 an	 interpreted,	 interactive,	 object-oriented	 programming
language.	 It	 incorporates	 modules,	 exceptions,	 dynamic	 typing,	 very
high	 level	 dynamic	 data	 types,	 and	 classes.	 Python	 combines
remarkable	 power	 with	 very	 clear	 syntax.	 It	 has	 interfaces	 to	 many
system	calls	and	libraries,	as	well	as	to	various	window	systems,	and
is	extensible	 in	C	or	C++.	 It	 is	also	usable	as	an	extension	 language
for	applications	that	need	a	programmable	interface.	Finally,	Python	is
portable:	it	runs	on	many	Unix	variants,	on	the	Mac,	and	on	Windows
2000	and	later.

To	find	out	more,	start	with	The	Python	Tutorial.	The	Beginner’s	Guide
to	 Python	 links	 to	 other	 introductory	 tutorials	 and	 resources	 for
learning	Python.

What	is	the	Python	Software	Foundation?

The	 Python	 Software	 Foundation	 is	 an	 independent	 non-profit
organization	 that	 holds	 the	 copyright	 on	 Python	 versions	 2.1	 and
newer.	 The	 PSF’s	 mission	 is	 to	 advance	 open	 source	 technology
related	to	the	Python	programming	language	and	to	publicize	the	use
of	Python.	The	PSF’s	home	page	is	at	http://www.python.org/psf/.

Donations	to	the	PSF	are	tax-exempt	in	the	US.	If	you	use	Python	and
find	it	helpful,	please	contribute	via	the	PSF	donation	page.

Are	there	copyright	restrictions	on	the	use	of
Python?

http://wiki.python.org/moin/BeginnersGuide
http://www.python.org/psf/
http://www.python.org/psf/donations/

You	can	do	anything	you	want	with	 the	source,	as	 long	as	you	 leave
the	 copyrights	 in	 and	 display	 those	 copyrights	 in	 any	 documentation
about	Python	 that	 you	 produce.	 If	 you	 honor	 the	 copyright	 rules,	 it’s
OK	 to	 use	 Python	 for	 commercial	 use,	 to	 sell	 copies	 of	 Python	 in
source	or	binary	form	(modified	or	unmodified),	or	to	sell	products	that
incorporate	Python	in	some	form.	We	would	still	like	to	know	about	all
commercial	use	of	Python,	of	course.

See	the	PSF	license	page	to	find	further	explanations	and	a	link	to	the
full	text	of	the	license.

The	Python	 logo	 is	 trademarked,	 and	 in	 certain	 cases	 permission	 is
required	 to	 use	 it.	 Consult	 the	 Trademark	 Usage	 Policy	 for	 more
information.

Why	was	Python	created	in	the	first	place?

Here’s	a	very	brief	summary	of	what	started	it	all,	written	by	Guido	van
Rossum:

I	 had	 extensive	 experience	 with	 implementing	 an	 interpreted
language	 in	 the	 ABC	 group	 at	 CWI,	 and	 from	working	 with	 this
group	I	had	learned	a	lot	about	language	design.	This	is	the	origin
of	 many	 Python	 features,	 including	 the	 use	 of	 indentation	 for
statement	grouping	and	the	inclusion	of	very-high-level	data	types
(although	the	details	are	all	different	in	Python).

I	had	a	number	of	gripes	about	the	ABC	language,	but	also	liked
many	 of	 its	 features.	 It	 was	 impossible	 to	 extend	 the	 ABC
language	 (or	 its	 implementation)	 to	 remedy	 my	 complaints	 –	 in
fact	its	lack	of	extensibility	was	one	of	its	biggest	problems.	I	had
some	 experience	 with	 using	 Modula-2+	 and	 talked	 with	 the
designers	of	Modula-3	and	read	the	Modula-3	report.	Modula-3	is

http://python.org/psf/license/
http://www.python.org/psf/trademarks/

the	origin	of	 the	 syntax	and	semantics	used	 for	 exceptions,	 and
some	other	Python	features.

I	was	working	 in	 the	Amoeba	distributed	operating	system	group
at	CWI.	We	needed	a	better	way	to	do	system	administration	than
by	 writing	 either	 C	 programs	 or	 Bourne	 shell	 scripts,	 since
Amoeba	 had	 its	 own	 system	 call	 interface	 which	 wasn’t	 easily
accessible	 from	 the	 Bourne	 shell.	 My	 experience	 with	 error
handling	in	Amoeba	made	me	acutely	aware	of	the	importance	of
exceptions	as	a	programming	language	feature.

It	occurred	to	me	that	a	scripting	language	with	a	syntax	like	ABC
but	with	access	to	the	Amoeba	system	calls	would	fill	the	need.	I
realized	 that	 it	 would	 be	 foolish	 to	 write	 an	 Amoeba-specific
language,	 so	 I	 decided	 that	 I	 needed	 a	 language	 that	 was
generally	extensible.

During	 the	 1989	 Christmas	 holidays,	 I	 had	 a	 lot	 of	 time	 on	 my
hand,	so	I	decided	to	give	it	a	try.	During	the	next	year,	while	still
mostly	 working	 on	 it	 in	 my	 own	 time,	 Python	 was	 used	 in	 the
Amoeba	project	with	 increasing	success,	and	 the	 feedback	 from
colleagues	made	me	add	many	early	improvements.

In	February	1991,	after	just	over	a	year	of	development,	I	decided
to	post	to	USENET.	The	rest	is	in	the	Misc/HISTORY	file.

What	is	Python	good	for?

Python	 is	 a	 high-level	 general-purpose	 programming	 language	 that
can	be	applied	to	many	different	classes	of	problems.

The	 language	 comes	with	 a	 large	 standard	 library	 that	 covers	 areas
such	 as	 string	 processing	 (regular	 expressions,	 Unicode,	 calculating

differences	between	files),	Internet	protocols	(HTTP,	FTP,	SMTP,	XML-
RPC,	 POP,	 IMAP,	 CGI	 programming),	 software	 engineering	 (unit
testing,	logging,	profiling,	parsing	Python	code),	and	operating	system
interfaces	 (system	 calls,	 filesystems,	 TCP/IP	 sockets).	 Look	 at	 the
table	 of	 contents	 for	The	 Python	 Standard	 Library	 to	 get	 an	 idea	 of
what’s	 available.	 A	 wide	 variety	 of	 third-party	 extensions	 are	 also
available.	 Consult	 the	 Python	 Package	 Index	 to	 find	 packages	 of
interest	to	you.

How	does	the	Python	version	numbering	scheme
work?

Python	 versions	 are	 numbered	A.B.C	 or	A.B.	A	 is	 the	major	 version
number	 –	 it	 is	 only	 incremented	 for	 really	 major	 changes	 in	 the
language.	B	 is	 the	minor	version	number,	 incremented	for	 less	earth-
shattering	changes.	C	 is	 the	micro-level	 –	 it	 is	 incremented	 for	 each
bugfix	release.	See	PEP	6	for	more	information	about	bugfix	releases.

Not	 all	 releases	 are	 bugfix	 releases.	 In	 the	 run-up	 to	 a	 new	 major
release,	 a	 series	 of	 development	 releases	 are	 made,	 denoted	 as
alpha,	beta,	or	release	candidate.	Alphas	are	early	releases	 in	which
interfaces	aren’t	 yet	 finalized;	 it’s	not	unexpected	 to	see	an	 interface
change	 between	 two	 alpha	 releases.	 Betas	 are	 more	 stable,
preserving	existing	 interfaces	but	 possibly	 adding	new	modules,	 and
release	candidates	are	frozen,	making	no	changes	except	as	needed
to	fix	critical	bugs.

Alpha,	beta	and	release	candidate	versions	have	an	additional	suffix.
The	suffix	 for	an	alpha	version	 is	“aN”	 for	some	small	number	N,	 the
suffix	 for	 a	 beta	 version	 is	 “bN”	 for	 some	 small	 number	 N,	 and	 the
suffix	for	a	release	candidate	version	is	“cN”	for	some	small	number	N.
In	 other	 words,	 all	 versions	 labeled	 2.0aN	 precede	 the	 versions

http://pypi.python.org/pypi
http://www.python.org/dev/peps/pep-0006

labeled	 2.0bN,	 which	 precede	 versions	 labeled	 2.0cN,	 and	 those
precede	2.0.

You	may	also	find	version	numbers	with	a	“+”	suffix,	e.g.	“2.2+”.	These
are	 unreleased	 versions,	 built	 directly	 from	 the	 Subversion	 trunk.	 In
practice,	after	a	 final	minor	 release	 is	made,	 the	Subversion	 trunk	 is
incremented	 to	 the	 next	 minor	 version,	 which	 becomes	 the	 “a0”
version,	e.g.	“2.4a0”.

See	 also	 the	 documentation	 for	 sys.version,	 sys.hexversion,
and	sys.version_info.

How	do	I	obtain	a	copy	of	the	Python	source?

The	 latest	 Python	 source	 distribution	 is	 always	 available	 from
python.org,	 at	 http://www.python.org/download/.	 The	 latest
development	 sources	 can	 be	 obtained	 via	 anonymous	 Mercurial
access	at	http://hg.python.org/cpython.

The	source	distribution	is	a	gzipped	tar	file	containing	the	complete	C
source,	 Sphinx-formatted	 documentation,	 Python	 library	 modules,
example	 programs,	 and	 several	 useful	 pieces	 of	 freely	 distributable
software.	The	source	will	compile	and	run	out	of	the	box	on	most	UNIX
platforms.

Consult	the	Developer	FAQ	for	more	information	on	getting	the	source
code	and	compiling	it.

How	do	I	get	documentation	on	Python?

The	standard	documentation	for	the	current	stable	version	of	Python	is
available	at	http://docs.python.org/.	PDF,	plain	text,	and	downloadable

http://www.python.org/download/
http://hg.python.org/cpython
http://docs.python.org/devguide/faq
http://docs.python.org/

HTML	 versions	 are	 also	 available	 at
http://docs.python.org/download.html.

The	documentation	is	written	in	reStructuredText	and	processed	by	the
Sphinx	 documentation	 tool.	 The	 reStructuredText	 source	 for	 the
documentation	is	part	of	the	Python	source	distribution.

I’ve	never	programmed	before.	Is	there	a	Python
tutorial?

There	 are	 numerous	 tutorials	 and	 books	 available.	 The	 standard
documentation	includes	The	Python	Tutorial.

Consult	the	Beginner’s	Guide	to	find	information	for	beginning	Python
programmers,	including	lists	of	tutorials.

Is	there	a	newsgroup	or	mailing	list	devoted	to
Python?

There	 is	 a	 newsgroup,	comp.lang.python,	 and	 a	mailing	 list,	 python-
list.	The	newsgroup	and	mailing	list	are	gatewayed	into	each	other	–	if
you	 can	 read	 news	 it’s	 unnecessary	 to	 subscribe	 to	 the	mailing	 list.
comp.lang.python	 is	high-traffic,	receiving	hundreds	of	postings	every
day,	and	Usenet	readers	are	often	more	able	to	cope	with	this	volume.

Announcements	of	new	software	releases	and	events	can	be	found	in
comp.lang.python.announce,	a	 low-traffic	moderated	 list	 that	receives
about	 five	 postings	 per	 day.	 It’s	 available	 as	 the	 python-announce
mailing	list.

More	 info	 about	 other	mailing	 lists	 and	newsgroups	 can	be	 found	at
http://www.python.org/community/lists/.

http://docs.python.org/download.html
http://sphinx-doc.org/
http://wiki.python.org/moin/BeginnersGuide
http://mail.python.org/mailman/listinfo/python-list
http://mail.python.org/mailman/listinfo/python-announce-list
http://www.python.org/community/lists/

How	do	I	get	a	beta	test	version	of	Python?

Alpha	 and	 beta	 releases	 are	 available	 from
http://www.python.org/download/.	 All	 releases	 are	 announced	 on	 the
comp.lang.python	 and	 comp.lang.python.announce	 newsgroups	 and
on	 the	Python	home	page	at	http://www.python.org/;	an	RSS	 feed	of
news	is	available.

You	 can	 also	 access	 the	 development	 version	 of	 Python	 through
Subversion.	See	http://docs.python.org/devguide/faq	for	details.

How	do	I	submit	bug	reports	and	patches	for
Python?

To	report	a	bug	or	submit	a	patch,	please	use	the	Roundup	installation
at	http://bugs.python.org/.

You	 must	 have	 a	 Roundup	 account	 to	 report	 bugs;	 this	 makes	 it
possible	 for	 us	 to	 contact	 you	 if	 we	 have	 follow-up	 questions.	 It	will
also	enable	Roundup	 to	send	you	updates	as	we	act	on	your	bug.	 If
you	had	previously	used	SourceForge	 to	 report	 bugs	 to	Python,	 you
can	 obtain	 your	 Roundup	 password	 through	 Roundup’s	 password
reset	procedure.

For	more	information	on	how	Python	is	developed,	consult	the	Python
Developer’s	Guide.

Are	there	any	published	articles	about	Python	that
I	can	reference?

It’s	probably	best	to	cite	your	favorite	book	about	Python.

http://www.python.org/download/
http://www.python.org/
http://docs.python.org/devguide/faq
http://bugs.python.org/
http://bugs.python.org/user?@template=forgotten
http://docs.python.org/devguide/

The	very	first	article	about	Python	was	written	in	1991	and	is	now	quite
outdated.

Guido	van	Rossum	and	Jelke	de	Boer,	“Interactively	Testing
Remote	Servers	Using	the	Python	Programming	Language”,	CWI
Quarterly,	Volume	4,	Issue	4	(December	1991),	Amsterdam,	pp
283-303.

Are	there	any	books	on	Python?

Yes,	 there	 are	 many,	 and	 more	 are	 being	 published.	 See	 the
python.org	wiki	at	http://wiki.python.org/moin/PythonBooks	for	a	list.

You	can	also	search	online	bookstores	 for	 “Python”	and	 filter	out	 the
Monty	 Python	 references;	 or	 perhaps	 search	 for	 “Python”	 and
“language”.

Where	in	the	world	is	www.python.org	located?

The	 Python	 project’s	 infrastructure	 is	 located	 all	 over	 the	 world.
www.python.org	 is	 currently	 in	 Amsterdam,	 graciously	 hosted	 by
XS4ALL.	Upfront	Systems	hosts	bugs.python.org.	Most	 other	Python
services	 like	 PyPI	 and	 hg.python.org	 are	 hosted	 by	 Oregon	 State
University	Open	Source	Lab.

Why	is	it	called	Python?

When	 he	 began	 implementing	Python,	Guido	 van	Rossum	was	 also
reading	 the	 published	 scripts	 from	 “Monty	Python’s	 Flying	Circus”,	 a
BBC	comedy	series	from	the	1970s.	Van	Rossum	thought	he	needed
a	name	that	was	short,	unique,	and	slightly	mysterious,	so	he	decided
to	call	the	language	Python.

http://wiki.python.org/moin/PythonBooks
http://www.python.org
http://www.xs4all.nl
http://www.upfrontsystems.co.za
http://bugs.python.org
https://pypi.python.org
https://osuosl.org
http://pythonline.com/

Do	I	have	to	like	“Monty	Python’s	Flying	Circus”?

No,	but	it	helps.	:)

Python	in	the	real	world

How	stable	is	Python?

Very	stable.	New,	stable	releases	have	been	coming	out	roughly	every
6	to	18	months	since	1991,	and	this	seems	likely	to	continue.	Currently
there	are	usually	around	18	months	between	major	releases.

The	 developers	 issue	 “bugfix”	 releases	 of	 older	 versions,	 so	 the
stability	 of	 existing	 releases	 gradually	 improves.	 Bugfix	 releases,
indicated	 by	 a	 third	 component	 of	 the	 version	 number	 (e.g.	 2.5.3,
2.6.2),	 are	managed	 for	 stability;	 only	 fixes	 for	 known	 problems	 are
included	 in	 a	 bugfix	 release,	 and	 it’s	 guaranteed	 that	 interfaces	 will
remain	the	same	throughout	a	series	of	bugfix	releases.

The	 latest	 stable	 releases	 can	 always	 be	 found	 on	 the	 Python
download	 page.	 There	 are	 two	 recommended	 production-ready
versions	 at	 this	 point	 in	 time,	 because	 at	 the	moment	 there	 are	 two
branches	 of	 stable	 releases:	 2.x	 and	 3.x.	 Python	 3.x	 may	 be	 less
useful	 than	 2.x,	 since	 currently	 there	 is	 more	 third	 party	 software
available	for	Python	2	than	for	Python	3.	Python	2	code	will	generally
not	run	unchanged	in	Python	3.

How	many	people	are	using	Python?

There	are	probably	 tens	of	 thousands	of	users,	 though	 it’s	difficult	 to
obtain	an	exact	count.

Python	 is	 available	 for	 free	download,	 so	 there	are	no	 sales	 figures,
and	 it’s	 available	 from	many	different	 sites	 and	packaged	with	many
Linux	 distributions,	 so	 download	 statistics	 don’t	 tell	 the	 whole	 story
either.

http://python.org/download/

The	 comp.lang.python	 newsgroup	 is	 very	 active,	 but	 not	 all	 Python
users	post	to	the	group	or	even	read	it.

Have	any	significant	projects	been	done	in
Python?

See	 http://python.org/about/success	 for	 a	 list	 of	 projects	 that	 use
Python.	Consulting	 the	proceedings	 for	 past	Python	conferences	will
reveal	contributions	from	many	different	companies	and	organizations.

High-profile	Python	projects	include	the	Mailman	mailing	list	manager
and	 the	 Zope	 application	 server.	 Several	 Linux	 distributions,	 most
notably	Red	Hat,	have	written	part	or	all	of	 their	 installer	and	system
administration	 software	 in	 Python.	 Companies	 that	 use	 Python
internally	include	Google,	Yahoo,	and	Lucasfilm	Ltd.

What	new	developments	are	expected	for	Python
in	the	future?

See	 http://www.python.org/dev/peps/	 for	 the	 Python	 Enhancement
Proposals	 (PEPs).	 PEPs	 are	 design	 documents	 describing	 a
suggested	 new	 feature	 for	 Python,	 providing	 a	 concise	 technical
specification	 and	 a	 rationale.	 Look	 for	 a	 PEP	 titled	 “Python	 X.Y
Release	Schedule”,	where	X.Y	 is	a	 version	 that	 hasn’t	 been	publicly
released	yet.

New	development	is	discussed	on	the	python-dev	mailing	list.

Is	it	reasonable	to	propose	incompatible	changes
to	Python?

http://python.org/about/success
http://python.org/community/workshops/
http://www.list.org
http://www.zope.org
http://www.redhat.com
http://www.python.org/dev/peps/
http://mail.python.org/mailman/listinfo/python-dev/

In	 general,	 no.	 There	 are	 already	 millions	 of	 lines	 of	 Python	 code
around	the	world,	so	any	change	in	the	language	that	invalidates	more
than	 a	 very	 small	 fraction	 of	 existing	 programs	 has	 to	 be	 frowned
upon.	Even	 if	you	can	provide	a	conversion	program,	 there’s	still	 the
problem	of	updating	all	documentation;	many	books	have	been	written
about	 Python,	 and	 we	 don’t	 want	 to	 invalidate	 them	 all	 at	 a	 single
stroke.

Providing	a	gradual	upgrade	path	 is	necessary	 if	a	 feature	has	 to	be
changed.	 PEP	 5	 describes	 the	 procedure	 followed	 for	 introducing
backward-incompatible	changes	while	minimizing	disruption	for	users.

Is	Python	Y2K	(Year	2000)	Compliant?

As	of	August,	2003	no	major	problems	have	been	 reported	and	Y2K
compliance	seems	to	be	a	non-issue.

Python	does	very	few	date	calculations	and	for	those	it	does	perform
relies	 on	 the	 C	 library	 functions.	 Python	 generally	 represents	 times
either	as	seconds	since	1970	or	as	a	(year,	month,	day,	...)
tuple	where	 the	year	 is	expressed	with	 four	digits,	which	makes	Y2K
bugs	unlikely.	So	as	long	as	your	C	library	 is	okay,	Python	should	be
okay.	 Of	 course,	 it’s	 possible	 that	 a	 particular	 application	 written	 in
Python	makes	assumptions	about	2-digit	years.

Because	 Python	 is	 available	 free	 of	 charge,	 there	 are	 no	 absolute
guarantees.	 If	 there	 are	 unforeseen	 problems,	 liability	 is	 the	 user’s
problem	rather	than	the	developers’,	and	there	is	nobody	you	can	sue
for	 damages.	 The	 Python	 copyright	 notice	 contains	 the	 following
disclaimer:

4.	PSF	is	making	Python	2.3	available	to	Licensee	on	an	“AS	IS”
basis.	PSF	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,

http://www.python.org/dev/peps/pep-0005

EXPRESS	 OR	 IMPLIED.	 BY	 WAY	 OF	 EXAMPLE,	 BUT	 NOT
LIMITATION,	 PSF	 MAKES	 NO	 AND	 DISCLAIMS	 ANY
REPRESENTATION	 OR	 WARRANTY	 OF	 MERCHANTABILITY
OR	FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE
USE	OF	PYTHON	2.3	WILL	NOT	INFRINGE	ANY	THIRD	PARTY
RIGHTS.

5.	PSF	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	OF	PYTHON	2.3	FOR	ANY	INCIDENTAL,	SPECIAL,	OR
CONSEQUENTIAL	 DAMAGES	 OR	 LOSS	 AS	 A	 RESULT	 OF
MODIFYING,	 DISTRIBUTING,	 OR	 OTHERWISE	 USING
PYTHON	 2.3,	 OR	 ANY	 DERIVATIVE	 THEREOF,	 EVEN	 IF
ADVISED	OF	THE	POSSIBILITY	THEREOF.

The	 good	 news	 is	 that	 if	 you	 encounter	 a	 problem,	 you	 have	 full
source	available	to	track	it	down	and	fix	it.	This	is	one	advantage	of	an
open	source	programming	environment.

Is	Python	a	good	language	for	beginning
programmers?

Yes.

It	 is	 still	 common	 to	 start	 students	 with	 a	 procedural	 and	 statically
typed	 language	 such	 as	 Pascal,	 C,	 or	 a	 subset	 of	 C++	 or	 Java.
Students	 may	 be	 better	 served	 by	 learning	 Python	 as	 their	 first
language.	Python	has	a	very	simple	and	consistent	syntax	and	a	large
standard	 library	 and,	 most	 importantly,	 using	 Python	 in	 a	 beginning
programming	 course	 lets	 students	 concentrate	 on	 important
programming	 skills	 such	 as	 problem	 decomposition	 and	 data	 type
design.	 With	 Python,	 students	 can	 be	 quickly	 introduced	 to	 basic
concepts	such	as	loops	and	procedures.	They	can	probably	even	work

with	user-defined	objects	in	their	very	first	course.

For	 a	 student	 who	 has	 never	 programmed	 before,	 using	 a	 statically
typed	language	seems	unnatural.	It	presents	additional	complexity	that
the	 student	 must	 master	 and	 slows	 the	 pace	 of	 the	 course.	 The
students	 are	 trying	 to	 learn	 to	 think	 like	 a	 computer,	 decompose
problems,	 design	 consistent	 interfaces,	 and	 encapsulate	 data.	While
learning	 to	 use	 a	 statically	 typed	 language	 is	 important	 in	 the	 long
term,	it	is	not	necessarily	the	best	topic	to	address	in	the	students’	first
programming	course.

Many	 other	 aspects	 of	 Python	 make	 it	 a	 good	 first	 language.	 Like
Java,	 Python	 has	 a	 large	 standard	 library	 so	 that	 students	 can	 be
assigned	 programming	 projects	 very	 early	 in	 the	 course	 that	 do
something.	Assignments	aren’t	restricted	to	the	standard	four-function
calculator	 and	 check	 balancing	 programs.	 By	 using	 the	 standard
library,	 students	 can	 gain	 the	 satisfaction	 of	 working	 on	 realistic
applications	as	they	learn	the	fundamentals	of	programming.	Using	the
standard	 library	also	 teaches	students	about	 code	 reuse.	Third-party
modules	such	as	PyGame	are	also	helpful	 in	extending	the	students’
reach.

Python’s	 interactive	 interpreter	 enables	 students	 to	 test	 language
features	while	they’re	programming.	They	can	keep	a	window	with	the
interpreter	running	while	 they	enter	 their	program’s	source	 in	another
window.	 If	 they	 can’t	 remember	 the	 methods	 for	 a	 list,	 they	 can	 do
something	like	this:

>>>	L	=	[]

>>>	dir(L)

['append',	'count',	'extend',	'index',	'insert',	'pop',	'remove',

'reverse',	'sort']

>>>	help(L.append)

Help	on	built-in	function	append:

append(...)

				L.append(object)	--	append	object	to	end

>>>	L.append(1)

>>>	L

[1]

With	 the	 interpreter,	 documentation	 is	 never	 far	 from	 the	 student	 as
he’s	programming.

There	are	also	good	IDEs	for	Python.	IDLE	is	a	cross-platform	IDE	for
Python	 that	 is	 written	 in	 Python	 using	 Tkinter.	 PythonWin	 is	 a
Windows-specific	IDE.	Emacs	users	will	be	happy	to	know	that	there	is
a	 very	 good	 Python	 mode	 for	 Emacs.	 All	 of	 these	 programming
environments	provide	syntax	highlighting,	auto-indenting,	and	access
to	the	interactive	interpreter	while	coding.	Consult	the	Python	wiki	for	a
full	list	of	Python	editing	environments.

If	 you	 want	 to	 discuss	 Python’s	 use	 in	 education,	 you	 may	 be
interested	in	joining	the	edu-sig	mailing	list.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

https://wiki.python.org/moin/PythonEditors
http://python.org/community/sigs/current/edu-sig
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

Programming	FAQ

Contents

Programming	FAQ
General	Questions

Is	there	a	source	code	level	debugger	with	breakpoints,
single-stepping,	etc.?
Is	 there	 a	 tool	 to	 help	 find	 bugs	 or	 perform	 static
analysis?
How	can	 I	 create	a	stand-alone	binary	 from	a	Python
script?
Are	there	coding	standards	or	a	style	guide	for	Python
programs?

Core	Language
Why	 am	 I	 getting	 an	 UnboundLocalError	 when	 the
variable	has	a	value?
What	 are	 the	 rules	 for	 local	 and	 global	 variables	 in
Python?
Why	do	lambdas	defined	in	a	loop	with	different	values
all	return	the	same	result?
How	do	I	share	global	variables	across	modules?
What	 are	 the	 “best	 practices”	 for	 using	 import	 in	 a
module?
How	can	 I	 pass	optional	 or	 keyword	parameters	 from
one	function	to	another?
What	 is	 the	 difference	 between	 arguments	 and
parameters?
How	do	 I	write	a	 function	with	output	parameters	 (call
by	reference)?
How	do	you	make	a	higher	order	function	in	Python?
How	do	I	copy	an	object	in	Python?

How	can	I	find	the	methods	or	attributes	of	an	object?
How	can	my	code	discover	the	name	of	an	object?
What’s	up	with	the	comma	operator’s	precedence?
Is	there	an	equivalent	of	C’s	”?:”	ternary	operator?
Is	it	possible	to	write	obfuscated	one-liners	in	Python?

Numbers	and	strings
How	do	I	specify	hexadecimal	and	octal	integers?
Why	does	-22	//	10	return	-3?
How	do	I	convert	a	string	to	a	number?
How	do	I	convert	a	number	to	a	string?
How	do	I	modify	a	string	in	place?
How	do	I	use	strings	to	call	functions/methods?
Is	 there	 an	 equivalent	 to	 Perl’s	 chomp()	 for	 removing
trailing	newlines	from	strings?
Is	there	a	scanf()	or	sscanf()	equivalent?
What	 does	 ‘UnicodeDecodeError’	 or
‘UnicodeEncodeError’	error	mean?

Performance
My	program	is	too	slow.	How	do	I	speed	it	up?
What	 is	 the	 most	 efficient	 way	 to	 concatenate	 many
strings	together?

Sequences	(Tuples/Lists)
How	do	I	convert	between	tuples	and	lists?
What’s	a	negative	index?
How	do	I	iterate	over	a	sequence	in	reverse	order?
How	do	you	remove	duplicates	from	a	list?
How	do	you	make	an	array	in	Python?
How	do	I	create	a	multidimensional	list?
How	do	I	apply	a	method	to	a	sequence	of	objects?
Why	does	a_tuple[i]	+=	[‘item’]	raise	an	exception	when
the	addition	works?

Dictionaries
How	can	I	get	a	dictionary	to	store	and	display	its	keys
in	a	consistent	order?

I	 want	 to	 do	 a	 complicated	 sort:	 can	 you	 do	 a
Schwartzian	Transform	in	Python?
How	can	I	sort	one	list	by	values	from	another	list?

Objects
What	is	a	class?
What	is	a	method?
What	is	self?
How	do	 I	 check	 if	 an	object	 is	an	 instance	of	a	given
class	or	of	a	subclass	of	it?
What	is	delegation?
How	do	I	call	a	method	defined	in	a	base	class	from	a
derived	class	that	overrides	it?
How	 can	 I	 organize	 my	 code	 to	 make	 it	 easier	 to
change	the	base	class?
How	 do	 I	 create	 static	 class	 data	 and	 static	 class
methods?
How	 can	 I	 overload	 constructors	 (or	 methods)	 in
Python?
I	 try	 to	 use	 __spam	 and	 I	 get	 an	 error	 about
_SomeClassName__spam.
My	 class	 defines	 __del__	 but	 it	 is	 not	 called	 when	 I
delete	the	object.
How	do	I	get	a	list	of	all	instances	of	a	given	class?
Why	does	the	result	of	id()	appear	to	be	not	unique?

Modules
How	do	I	create	a	.pyc	file?
How	do	I	find	the	current	module	name?
How	 can	 I	 have	 modules	 that	 mutually	 import	 each
other?
__import__(‘x.y.z’)	 returns	 <module	 ‘x’>;	 how	do	 I	 get
z?
When	 I	 edit	 an	 imported	 module	 and	 reimport	 it,	 the
changes	don’t	show	up.	Why	does	this	happen?

General	Questions

Is	there	a	source	code	level	debugger	with
breakpoints,	single-stepping,	etc.?

Yes.

The	pdb	module	is	a	simple	but	adequate	console-mode	debugger	for
Python.	 It	 is	part	of	 the	standard	Python	 library,	and	 is	documented
in	 the	 Library	 Reference	 Manual.	 You	 can	 also	 write	 your
own	debugger	by	using	the	code	for	pdb	as	an	example.

The	 IDLE	 interactive	 development	 environment,	 which	 is	 part	 of	 the
standard	Python	distribution	 (normally	available	as	Tools/scripts/idle),
includes	 a	 graphical	 debugger.	 There	 is	 documentation	 for	 the	 IDLE
debugger	at	http://www.python.org/idle/doc/idle2.html#Debugger.

PythonWin	 is	 a	Python	 IDE	 that	 includes	 a	GUI	 debugger	 based	 on
pdb.	The	Pythonwin	debugger	colors	breakpoints	and	has	quite	a	few
cool	features	such	as	debugging	non-Pythonwin	programs.	Pythonwin
is	available	as	part	of	the	Python	for	Windows	Extensions	project	and
as	 a	 part	 of	 the	 ActivePython	 distribution	 (see
http://www.activestate.com/Products/ActivePython/index.html).

Boa	Constructor	 is	 an	 IDE	 and	GUI	 builder	 that	 uses	 wxWidgets.	 It
offers	 visual	 frame	 creation	 and	 manipulation,	 an	 object	 inspector,
many	 views	 on	 the	 source	 like	 object	 browsers,	 inheritance
hierarchies,	 doc	 string	 generated	 html	 documentation,	 an	 advanced
debugger,	integrated	help,	and	Zope	support.

Eric	is	an	IDE	built	on	PyQt	and	the	Scintilla	editing	component.

http://www.python.org/idle/doc/idle2.html#Debugger
http://sourceforge.net/projects/pywin32/
http://www.activestate.com/Products/ActivePython/index.html
http://boa-constructor.sourceforge.net/
http://www.die-offenbachs.de/eric/index.html

Pydb	 is	a	version	of	 the	standard	Python	debugger	pdb,	modified	 for
use	with	DDD	(Data	Display	Debugger),	a	popular	graphical	debugger
front	 end.	 Pydb	 can	 be	 found	 at	 http://bashdb.sourceforge.net/pydb/
and	DDD	can	be	found	at	http://www.gnu.org/software/ddd.

There	are	a	number	of	commercial	Python	IDEs	that	include	graphical
debuggers.	They	include:

Wing	IDE	(http://wingware.com/)
Komodo	IDE	(http://www.activestate.com/Products/Komodo)

Is	there	a	tool	to	help	find	bugs	or	perform	static
analysis?

Yes.

PyChecker	 is	 a	 static	 analysis	 tool	 that	 finds	 bugs	 in	 Python	 source
code	 and	 warns	 about	 code	 complexity	 and	 style.	 You	 can	 get
PyChecker	from	http://pychecker.sf.net.

Pylint	 is	 another	 tool	 that	 checks	 if	 a	 module	 satisfies	 a	 coding
standard,	and	also	makes	it	possible	to	write	plug-ins	to	add	a	custom
feature.	 In	 addition	 to	 the	 bug	 checking	 that	 PyChecker	 performs,
Pylint	 offers	 some	 additional	 features	 such	 as	 checking	 line	 length,
whether	 variable	 names	 are	 well-formed	 according	 to	 your	 coding
standard,	 whether	 declared	 interfaces	 are	 fully	 implemented,	 and
more.	 http://www.logilab.org/card/pylint_manual	 provides	 a	 full	 list	 of
Pylint’s	features.

How	can	I	create	a	stand-alone	binary	from	a
Python	script?

http://bashdb.sourceforge.net/pydb/
http://www.gnu.org/software/ddd
http://wingware.com/
http://www.activestate.com/Products/Komodo
http://pychecker.sf.net
http://www.logilab.org/projects/pylint
http://www.logilab.org/card/pylint_manual

You	don’t	need	the	ability	to	compile	Python	to	C	code	if	all	you	want	is
a	 stand-alone	 program	 that	 users	 can	 download	 and	 run	 without
having	 to	 install	 the	 Python	 distribution	 first.	 There	 are	 a	 number	 of
tools	 that	 determine	 the	 set	 of	 modules	 required	 by	 a	 program	 and
bind	these	modules	together	with	a	Python	binary	to	produce	a	single
executable.

One	 is	 to	use	the	freeze	tool,	which	 is	 included	 in	 the	Python	source
tree	as	Tools/freeze.	It	converts	Python	byte	code	to	C	arrays;	a	C
compiler	you	can	embed	all	your	modules	into	a	new	program,	which
is	then	linked	with	the	standard	Python	modules.

It	works	by	scanning	your	source	recursively	for	import	statements	(in
both	 forms)	and	 looking	 for	 the	modules	 in	 the	standard	Python	path
as	well	 as	 in	 the	source	directory	 (for	built-in	modules).	 It	 then	 turns
the	 bytecode	 for	 modules	 written	 in	 Python	 into	 C	 code	 (array
initializers	 that	 can	 be	 turned	 into	 code	 objects	 using	 the	 marshal
module)	 and	 creates	 a	 custom-made	 config	 file	 that	 only	 contains
those	built-in	modules	which	are	actually	used	in	the	program.	It	 then
compiles	the	generated	C	code	and	links	it	with	the	rest	of	the	Python
interpreter	to	form	a	self-contained	binary	which	acts	exactly	like	your
script.

Obviously,	 freeze	 requires	 a	 C	 compiler.	 There	 are	 several	 other
utilities	which	don’t.	One	is	Thomas	Heller’s	py2exe	(Windows	only)	at

http://www.py2exe.org/

Another	 is	 Christian	 Tismer’s	 SQFREEZE	 which	 appends	 the	 byte
code	to	a	specially-prepared	Python	 interpreter	 that	can	find	the	byte
code	in	the	executable.

Other	 tools	 include	Fredrik	Lundh’s	Squeeze	and	Anthony	Tuininga’s

http://www.py2exe.org/
http://starship.python.net/crew/pirx
http://www.pythonware.com/products/python/squeeze

cx_Freeze.

Are	there	coding	standards	or	a	style	guide	for
Python	programs?

Yes.	 The	 coding	 style	 required	 for	 standard	 library	 modules	 is
documented	as	PEP	8.

http://starship.python.net/crew/atuining/cx_Freeze/index.html
http://www.python.org/dev/peps/pep-0008

Core	Language

Why	am	I	getting	an	UnboundLocalError	when	the
variable	has	a	value?

It	 can	 be	 a	 surprise	 to	 get	 the	 UnboundLocalError	 in	 previously
working	code	when	it	 is	modified	by	adding	an	assignment	statement
somewhere	in	the	body	of	a	function.

This	code:

>>>	x	=	10

>>>	def	bar():

...					print(x)

>>>	bar()

10

works,	but	this	code:

>>>	x	=	10

>>>	def	foo():

...					print(x)

...					x	+=	1

results	in	an	UnboundLocalError:

>>>	foo()

Traceback	(most	recent	call	last):

		...

UnboundLocalError:	local	variable	'x'	referenced	before	assignment

This	 is	 because	 when	 you	 make	 an	 assignment	 to	 a	 variable	 in	 a
scope,	 that	 variable	 becomes	 local	 to	 that	 scope	 and	 shadows	 any

similarly	named	variable	in	the	outer	scope.	Since	the	last	statement	in
foo	 assigns	 a	 new	 value	 to	 x,	 the	 compiler	 recognizes	 it	 as	 a	 local
variable.	Consequently	when	 the	earlier	 print(x)	 attempts	 to	 print
the	uninitialized	local	variable	and	an	error	results.

In	 the	 example	 above	 you	 can	 access	 the	 outer	 scope	 variable	 by
declaring	it	global:

>>>	x	=	10

>>>	def	foobar():

...					global	x

...					print(x)

...					x	+=	1

>>>	foobar()

10

This	explicit	declaration	is	required	in	order	to	remind	you	that	(unlike
the	superficially	analogous	situation	with	class	and	instance	variables)
you	are	actually	modifying	the	value	of	the	variable	in	the	outer	scope:

>>>	print(x)

11

You	 can	 do	 a	 similar	 thing	 in	 a	 nested	 scope	 using	 the	 nonlocal
keyword:

>>>	def	foo():

...				x	=	10

...				def	bar():

...								nonlocal	x

...								print(x)

...								x	+=	1

...				bar()

...				print(x)

>>>	foo()

10

11

What	are	the	rules	for	local	and	global	variables	in
Python?

In	 Python,	 variables	 that	 are	 only	 referenced	 inside	 a	 function	 are
implicitly	global.	If	a	variable	is	assigned	a	new	value	anywhere	within
the	 function’s	 body,	 it’s	 assumed	 to	 be	 a	 local.	 If	 a	 variable	 is	 ever
assigned	 a	 new	 value	 inside	 the	 function,	 the	 variable	 is	 implicitly
local,	and	you	need	to	explicitly	declare	it	as	‘global’.

Though	a	bit	surprising	at	first,	a	moment’s	consideration	explains	this.
On	one	hand,	requiring	global	for	assigned	variables	provides	a	bar
against	 unintended	 side-effects.	 On	 the	 other	 hand,	 if	 global	 was
required	for	all	global	references,	you’d	be	using	global	all	the	time.
You’d	have	to	declare	as	global	every	reference	to	a	built-in	function	or
to	a	component	of	an	 imported	module.	This	clutter	would	defeat	 the
usefulness	of	the	global	declaration	for	identifying	side-effects.

Why	do	lambdas	defined	in	a	loop	with	different
values	all	return	the	same	result?

Assume	you	use	a	for	loop	to	define	a	few	different	lambdas	(or	even
plain	functions),	e.g.:

>>>	squares	=	[]

>>>	for	x	in	range(5):

...				squares.append(lambda:	x**2)

This	gives	you	a	list	that	contains	5	lambdas	that	calculate	x**2.	You

might	expect	 that,	when	called,	 they	would	return,	 respectively,	0,	 1,
4,	9,	and	16.	However,	when	you	actually	try	you	will	see	that	they	all
return	16:

>>>	squares[2]()

16

>>>	squares[4]()

16

This	happens	because	x	is	not	local	to	the	lambdas,	but	is	defined	in
the	outer	scope,	and	it	 is	accessed	when	the	lambda	is	called	—	not
when	it	is	defined.	At	the	end	of	the	loop,	the	value	of	x	is	4,	so	all	the
functions	 now	 return	 4**2,	 i.e.	 16.	 You	 can	 also	 verify	 this	 by
changing	 the	 value	 of	 x	 and	 see	 how	 the	 results	 of	 the	 lambdas
change:

>>>	x	=	8

>>>	squares[2]()

64

In	order	to	avoid	this,	you	need	to	save	the	values	in	variables	local	to
the	lambdas,	so	that	they	don’t	rely	on	the	value	of	the	global	x:

>>>	squares	=	[]

>>>	for	x	in	range(5):

...				squares.append(lambda	n=x:	n**2)

Here,	n=x	creates	a	new	variable	n	local	to	the	lambda	and	computed
when	the	lambda	is	defined	so	that	it	has	the	same	value	that	x	had	at
that	point	 in	the	loop.	This	means	that	the	value	of	n	will	be	0	 in	 the
first	lambda,	1	in	the	second,	2	in	the	third,	and	so	on.	Therefore	each
lambda	will	now	return	the	correct	result:

>>>	squares[2]()

4

>>>	squares[4]()

16

Note	 that	 this	 behaviour	 is	 not	 peculiar	 to	 lambdas,	 but	 applies	 to
regular	functions	too.

How	do	I	share	global	variables	across	modules?

The	canonical	way	to	share	information	across	modules	within	a	single
program	is	to	create	a	special	module	(often	called	config	or	cfg).	Just
import	the	config	module	in	all	modules	of	your	application;	the	module
then	becomes	available	as	a	global	name.	Because	there	is	only	one
instance	of	each	module,	any	changes	made	to	the	module	object	get
reflected	everywhere.	For	example:

config.py:

x	=	0			#	Default	value	of	the	'x'	configuration	setting

mod.py:

import	config

config.x	=	1

main.py:

import	config

import	mod

print(config.x)

Note	 that	 using	 a	 module	 is	 also	 the	 basis	 for	 implementing	 the

Singleton	design	pattern,	for	the	same	reason.

What	are	the	“best	practices”	for	using	import	in	a
module?

In	 general,	 don’t	 use	 from	 modulename	 import	 *.	 Doing	 so
clutters	the	importer’s	namespace.	Some	people	avoid	this	idiom	even
with	 the	 few	 modules	 that	 were	 designed	 to	 be	 imported	 in	 this
manner.	 Modules	 designed	 in	 this	 manner	 include	 tkinter,	 and
threading.

Import	modules	at	the	top	of	a	file.	Doing	so	makes	it	clear	what	other
modules	 your	 code	 requires	 and	 avoids	 questions	 of	 whether	 the
module	name	is	in	scope.	Using	one	import	per	line	makes	it	easy	to
add	 and	 delete	 module	 imports,	 but	 using	 multiple	 imports	 per	 line
uses	less	screen	space.

It’s	good	practice	if	you	import	modules	in	the	following	order:

1.	 standard	library	modules	–	e.g.	sys,	os,	getopt,	re
2.	 third-party	 library	 modules	 (anything	 installed	 in	 Python’s	 site-

packages	directory)	–	e.g.	mx.DateTime,	ZODB,	PIL.Image,	etc.
3.	 locally-developed	modules

Never	use	relative	package	imports.	If	you’re	writing	code	that’s	in	the
package.sub.m1	module	and	want	to	import	package.sub.m2,	do
not	just	write	from	.	import	m2,	even	though	it’s	legal.	Write	from
package.sub	import	m2	instead.	See	PEP	328	for	details.

It	 is	 sometimes	 necessary	 to	move	 imports	 to	 a	 function	 or	 class	 to
avoid	problems	with	circular	imports.	Gordon	McMillan	says:

Circular	imports	are	fine	where	both	modules	use	the	“import

http://www.python.org/dev/peps/pep-0328

<module>”	form	of	import.	They	fail	when	the	2nd	module	wants
to	grab	a	name	out	of	the	first	(“from	module	import	name”)	and
the	import	is	at	the	top	level.	That’s	because	names	in	the	1st	are
not	yet	available,	because	the	first	module	is	busy	importing	the
2nd.

In	 this	case,	 if	 the	second	module	 is	only	used	 in	one	 function,	 then
the	 import	 can	 easily	 be	 moved	 into	 that	 function.	 By	 the	 time	 the
import	is	called,	the	first	module	will	have	finished	initializing,	and	the
second	module	can	do	its	import.

It	may	also	be	necessary	to	move	imports	out	of	the	top	level	of	code	if
some	 of	 the	 modules	 are	 platform-specific.	 In	 that	 case,	 it	 may	 not
even	be	possible	to	 import	all	of	 the	modules	at	the	top	of	the	file.	 In
this	case,	importing	the	correct	modules	in	the	corresponding	platform-
specific	code	is	a	good	option.

Only	 move	 imports	 into	 a	 local	 scope,	 such	 as	 inside	 a	 function
definition,	 if	 it’s	 necessary	 to	 solve	 a	 problem	 such	 as	 avoiding	 a
circular	 import	 or	 are	 trying	 to	 reduce	 the	 initialization	 time	 of	 a
module.	This	technique	is	especially	helpful	if	many	of	the	imports	are
unnecessary	depending	on	how	the	program	executes.	You	may	also
want	to	move	imports	into	a	function	if	the	modules	are	only	ever	used
in	 that	 function.	 Note	 that	 loading	 a	 module	 the	 first	 time	 may	 be
expensive	 because	 of	 the	 one	 time	 initialization	 of	 the	 module,	 but
loading	a	module	multiple	times	is	virtually	free,	costing	only	a	couple
of	dictionary	lookups.	Even	if	the	module	name	has	gone	out	of	scope,
the	module	is	probably	available	in	sys.modules.

If	only	instances	of	a	specific	class	use	a	module,	then	it	is	reasonable
to	import	the	module	in	the	class’s	__init__	method	and	then	assign
the	 module	 to	 an	 instance	 variable	 so	 that	 the	 module	 is	 always
available	(via	that	instance	variable)	during	the	life	of	the	object.	Note
that	 to	delay	an	 import	until	 the	class	 is	 instantiated,	 the	 import	must

be	inside	a	method.	Putting	the	import	 inside	the	class	but	outside	of
any	 method	 still	 causes	 the	 import	 to	 occur	 when	 the	 module	 is
initialized.

How	can	I	pass	optional	or	keyword	parameters
from	one	function	to	another?

Collect	the	arguments	using	the	*	and	**	specifiers	 in	 the	function’s
parameter	list;	this	gives	you	the	positional	arguments	as	a	tuple	and
the	 keyword	 arguments	 as	 a	 dictionary.	 You	 can	 then	 pass	 these
arguments	when	calling	another	function	by	using	*	and	**:

def	f(x,	*args,	**kwargs):

				...

				kwargs['width']	=	'14.3c'

				...

				g(x,	*args,	**kwargs)

What	is	the	difference	between	arguments	and
parameters?

Parameters	 are	 defined	 by	 the	 names	 that	 appear	 in	 a	 function
definition,	 whereas	 arguments	 are	 the	 values	 actually	 passed	 to	 a
function	when	calling	it.	Parameters	define	what	types	of	arguments	a
function	can	accept.	For	example,	given	the	function	definition:

def	func(foo,	bar=None,	**kwargs):

				pass

foo,	bar	and	kwargs	are	parameters	of	func.	However,	when	calling
func,	for	example:

func(42,	bar=314,	extra=somevar)

the	values	42,	314,	and	somevar	are	arguments.

How	do	I	write	a	function	with	output	parameters
(call	by	reference)?

Remember	 that	 arguments	 are	 passed	 by	 assignment	 in	 Python.
Since	assignment	 just	 creates	 references	 to	objects,	 there’s	no	alias
between	an	argument	name	in	the	caller	and	callee,	and	so	no	call-by-
reference	per	se.	You	can	achieve	 the	desired	effect	 in	a	number	of
ways.

1.	 By	returning	a	tuple	of	the	results:

def	func2(a,	b):

				a	=	'new-value'								#	a	and	b	are	local	names

				b	=	b	+	1														#	assigned	to	new	objects

				return	a,	b												#	return	new	values

x,	y	=	'old-value',	99

x,	y	=	func2(x,	y)

print(x,	y)																#	output:	new-value	100

This	is	almost	always	the	clearest	solution.

2.	 By	 using	 global	 variables.	 This	 isn’t	 thread-safe,	 and	 is	 not
recommended.

3.	 By	passing	a	mutable	(changeable	in-place)	object:

def	func1(a):

				a[0]	=	'new-value'					#	'a'	references	a	mutable	list

				a[1]	=	a[1]	+	1								#	changes	a	shared	object

args	=	['old-value',	99]

func1(args)

print(args[0],	args[1])				#	output:	new-value	100

4.	 By	passing	in	a	dictionary	that	gets	mutated:

def	func3(args):

				args['a']	=	'new-value'					#	args	is	a	mutable	dictionary

				args['b']	=	args['b']	+	1			#	change	it	in-place

args	=	{'a':'	old-value',	'b':	99}

func3(args)

print(args['a'],	args['b'])

5.	 Or	bundle	up	values	in	a	class	instance:

class	callByRef:

				def	__init__(self,	**args):

								for	(key,	value)	in	args.items():

												setattr(self,	key,	value)

def	func4(args):

				args.a	=	'new-value'								#	args	is	a	mutable	callByRef

				args.b	=	args.b	+	1									#	change	object	in-place

args	=	callByRef(a='old-value',	b=99)

func4(args)

print(args.a,	args.b)

There’s	almost	never	a	good	reason	to	get	this	complicated.

Your	best	choice	is	to	return	a	tuple	containing	the	multiple	results.

How	do	you	make	a	higher	order	function	in
Python?

You	 have	 two	 choices:	 you	 can	 use	 nested	 scopes	 or	 you	 can	 use
callable	 objects.	 For	 example,	 suppose	 you	 wanted	 to	 define
linear(a,b)	which	returns	a	function	f(x)	that	computes	the	value
a*x+b.	Using	nested	scopes:

def	linear(a,	b):

				def	result(x):

								return	a	*	x	+	b

				return	result

Or	using	a	callable	object:

class	linear:

				def	__init__(self,	a,	b):

								self.a,	self.b	=	a,	b

				def	__call__(self,	x):

								return	self.a	*	x	+	self.b

In	both	cases,

taxes	=	linear(0.3,	2)

gives	a	callable	object	where	taxes(10e6)	==	0.3	*	10e6	+	2.

The	 callable	 object	 approach	 has	 the	 disadvantage	 that	 it	 is	 a	 bit
slower	 and	 results	 in	 slightly	 longer	 code.	 However,	 note	 that	 a
collection	of	callables	can	share	their	signature	via	inheritance:

class	exponential(linear):

				#	__init__	inherited

				def	__call__(self,	x):

								return	self.a	*	(x	**	self.b)

Object	can	encapsulate	state	for	several	methods:

class	counter:

				value	=	0

				def	set(self,	x):

								self.value	=	x

				def	up(self):

								self.value	=	self.value	+	1

				def	down(self):

								self.value	=	self.value	-	1

count	=	counter()

inc,	dec,	reset	=	count.up,	count.down,	count.set

Here	inc(),	dec()	and	reset()	act	like	functions	which	share	the
same	counting	variable.

How	do	I	copy	an	object	in	Python?

In	general,	 try	copy.copy()	or	copy.deepcopy()	 for	 the	general
case.	Not	all	objects	can	be	copied,	but	most	can.

Some	objects	can	be	copied	more	easily.	Dictionaries	have	a	copy()
method:

newdict	=	olddict.copy()

Sequences	can	be	copied	by	slicing:

new_l	=	l[:]

How	can	I	find	the	methods	or	attributes	of	an
object?

For	 an	 instance	 x	 of	 a	 user-defined	 class,	 dir(x)	 returns	 an
alphabetized	 list	 of	 the	names	containing	 the	 instance	attributes	and
methods	and	attributes	defined	by	its	class.

How	can	my	code	discover	the	name	of	an
object?

Generally	speaking,	it	can’t,	because	objects	don’t	really	have	names.
Essentially,	assignment	always	binds	a	name	to	a	value;	The	same	is
true	 of	 def	 and	 class	 statements,	 but	 in	 that	 case	 the	 value	 is	 a
callable.	Consider	the	following	code:

class	A:

				pass

B	=	A

a	=	B()

b	=	a

print(b)

<__main__.A	object	at	0x16D07CC>

print(a)

<__main__.A	object	at	0x16D07CC>

Arguably	the	class	has	a	name:	even	though	it	is	bound	to	two	names
and	invoked	through	the	name	B	the	created	instance	is	still	reported
as	an	instance	of	class	A.	However,	it	is	impossible	to	say	whether	the
instance’s	name	 is	a	or	b,	since	both	names	are	bound	 to	 the	same
value.

Generally	speaking	it	should	not	be	necessary	for	your	code	to	“know
the	 names”	 of	 particular	 values.	 Unless	 you	 are	 deliberately	 writing
introspective	programs,	 this	 is	 usually	 an	 indication	 that	 a	 change	of
approach	might	be	beneficial.

In	comp.lang.python,	Fredrik	Lundh	once	gave	an	excellent	analogy	in
answer	to	this	question:

The	same	way	as	you	get	the	name	of	that	cat	you	found	on	your
porch:	the	cat	(object)	itself	cannot	tell	you	its	name,	and	it	doesn’t
really	care	–	so	the	only	way	to	find	out	what	it’s	called	is	to	ask	all
your	neighbours	(namespaces)	if	it’s	their	cat	(object)...

....and	 don’t	 be	 surprised	 if	 you’ll	 find	 that	 it’s	 known	 by	 many
names,	or	no	name	at	all!

What’s	up	with	the	comma	operator’s
precedence?

Comma	is	not	an	operator	in	Python.	Consider	this	session:

>>>	"a"	in	"b",	"a"

(False,	'a')

Since	 the	 comma	 is	 not	 an	 operator,	 but	 a	 separator	 between
expressions	the	above	is	evaluated	as	if	you	had	entered:

("a"	in	"b"),	"a"

not:

"a"	in	("b",	"a")

The	 same	 is	 true	 of	 the	 various	 assignment	 operators	 (=,	 +=	 etc).
They	 are	 not	 truly	 operators	 but	 syntactic	 delimiters	 in	 assignment
statements.

Is	there	an	equivalent	of	C’s	”?:”	ternary	operator?

Yes,	there	is.	The	syntax	is	as	follows:

[on_true]	if	[expression]	else	[on_false]

x,	y	=	50,	25

small	=	x	if	x	<	y	else	y

Before	this	syntax	was	introduced	in	Python	2.5,	a	common	idiom	was
to	use	logical	operators:

[expression]	and	[on_true]	or	[on_false]

However,	 this	 idiom	 is	 unsafe,	 as	 it	 can	 give	 wrong	 results	 when
on_true	has	a	false	boolean	value.	Therefore,	it	is	always	better	to	use
the	...	if	...	else	...	form.

Is	it	possible	to	write	obfuscated	one-liners	in
Python?

Yes.	Usually	this	is	done	by	nesting	lambda	within	lambda.	See	the

following	three	examples,	due	to	Ulf	Bartelt:

from	functools	import	reduce

#	Primes	<	1000

print(list(filter(None,map(lambda	y:y*reduce(lambda	

map(lambda	x,y=y:y%x,range(2,int(pow(y,0.5)+1))),1),

#	First	10	Fibonacci	numbers

print(list(map(lambda	x,f=lambda	x,f:(f(x-1,f)+f(x-2

f(x,f),	range(10))))

#	Mandelbrot	set

print((lambda	Ru,Ro,Iu,Io,IM,Sx,Sy:reduce(lambda	x,y

Iu=Iu,Io=Io,Ru=Ru,Ro=Ro,Sy=Sy,L=lambda	yc,Iu=Iu,Io=Io

Sx=Sx,Sy=Sy:reduce(lambda	x,y:x+y,map(lambda	x,xc=Ru

i=i,Sx=Sx,F=lambda	xc,yc,x,y,k,f=lambda	xc,yc,x,y,k,

>=4.0)	or	1+f(xc,yc,x*x-y*y+xc,2.0*x*y+yc,k-1,f):f(xc

64+F(Ru+x*(Ro-Ru)/Sx,yc,0,0,i)),range(Sx))):L(Iu+y*(

))))(-2.1,	0.7,	-1.2,	1.2,	30,	80,	24))

#				___	___/		___	___/		|			|			|__	lines	on	screen

#								V										V						|			|______	columns	on	screen

#								|										|						|__________	maximum	of	"iterations"

#								|										|_________________	range	on	y	axis

#								|____________________________	range	on	x	axis

Don’t	try	this	at	home,	kids!

Numbers	and	strings

How	do	I	specify	hexadecimal	and	octal	integers?

To	specify	an	octal	digit,	precede	the	octal	value	with	a	zero,	and	then
a	 lower	or	uppercase	 “o”.	For	example,	 to	 set	 the	variable	 “a”	 to	 the
octal	value	“10”	(8	in	decimal),	type:

>>>	a	=	0o10

>>>	a

8

Hexadecimal	is	just	as	easy.	Simply	precede	the	hexadecimal	number
with	a	zero,	and	then	a	lower	or	uppercase	“x”.	Hexadecimal	digits	can
be	 specified	 in	 lower	 or	 uppercase.	 For	 example,	 in	 the	 Python
interpreter:

>>>	a	=	0xa5

>>>	a

165

>>>	b	=	0XB2

>>>	b

178

Why	does	-22	//	10	return	-3?

It’s	primarily	driven	by	the	desire	that	i	%	j	have	the	same	sign	as	j.
If	you	want	that,	and	also	want:

i	==	(i	//	j)	*	j	+	(i	%	j)

then	integer	division	has	to	return	the	floor.	C	also	requires	that	identity

to	hold,	and	then	compilers	that	truncate	i	//	j	need	to	make	i	%
j	have	the	same	sign	as	i.

There	are	few	real	use	cases	for	i	%	j	when	j	is	negative.	When	j
is	positive,	there	are	many,	and	in	virtually	all	of	them	it’s	more	useful
for	i	%	j	to	be	>=	0.	If	 the	clock	says	10	now,	what	did	 it	say	200
hours	ago?	-190	%	12	==	2	 is	useful;	-190	%	12	==	-10	 is	a
bug	waiting	to	bite.

How	do	I	convert	a	string	to	a	number?

For	 integers,	 use	 the	 built-in	 int()	 type	 constructor,	 e.g.
int('144')	==	144.	Similarly,	float()	converts	to	floating-point,
e.g.	float('144')	==	144.0.

By	 default,	 these	 interpret	 the	 number	 as	 decimal,	 so	 that
int('0144')	 ==	 144	 and	 int('0x144')	 raises	 ValueError.
int(string,	base)	 takes	 the	 base	 to	 convert	 from	 as	 a	 second
optional	argument,	so	int('0x144',	16)	==	324.	 If	 the	 base	 is
specified	 as	 0,	 the	 number	 is	 interpreted	 using	 Python’s	 rules:	 a
leading	‘0’	indicates	octal,	and	‘0x’	indicates	a	hex	number.

Do	not	use	 the	built-in	 function	eval()	 if	 all	 you	need	 is	 to	 convert
strings	to	numbers.	eval()	will	be	significantly	slower	and	it	presents
a	 security	 risk:	 someone	 could	 pass	 you	 a	 Python	 expression	 that
might	have	unwanted	side	effects.	For	example,	someone	could	pass
__import__('os').system("rm	 -rf	 $HOME")	 which	 would
erase	your	home	directory.

eval()	 also	 has	 the	 effect	 of	 interpreting	 numbers	 as	 Python
expressions,	so	 that	e.g.	eval('09')	gives	a	syntax	error	because

Python	does	not	allow	leading	‘0’	in	a	decimal	number	(except	‘0’).

How	do	I	convert	a	number	to	a	string?

To	 convert,	 e.g.,	 the	 number	 144	 to	 the	 string	 ‘144’,	 use	 the	 built-in
type	 constructor	 str().	 If	 you	 want	 a	 hexadecimal	 or	 octal
representation,	use	the	built-in	 functions	hex()	or	oct().	For	 fancy
formatting,	 see	 the	 String	 Formatting	 section,	 e.g.	 "

{:04d}".format(144)	 yields	 '0144'	 and	 "

{:.3f}".format(1/3)	yields	'0.333'.

How	do	I	modify	a	string	in	place?

You	 can’t,	 because	 strings	 are	 immutable.	 In	 most	 situations,	 you
should	simply	construct	a	new	string	from	the	various	parts	you	want
to	assemble	it	from.	However,	if	you	need	an	object	with	the	ability	to
modify	in-place	unicode	data,	try	using	a	io.StringIO	object	or	the
array	module:

>>>	import	io

>>>	s	=	"Hello,	world"

>>>	sio	=	io.StringIO(s)

>>>	sio.getvalue()

'Hello,	world'

>>>	sio.seek(7)

7

>>>	sio.write("there!")

6

>>>	sio.getvalue()

'Hello,	there!'

>>>	import	array

>>>	a	=	array.array('u',	s)

>>>	print(a)

array('u',	'Hello,	world')

>>>	a[0]	=	'y'

>>>	print(a)

array('u',	'yello,	world')

>>>	a.tounicode()

'yello,	world'

How	do	I	use	strings	to	call	functions/methods?

There	are	various	techniques.

The	best	is	to	use	a	dictionary	that	maps	strings	to	functions.	The
primary	advantage	of	this	technique	is	that	the	strings	do	not	need
to	 match	 the	 names	 of	 the	 functions.	 This	 is	 also	 the	 primary
technique	used	to	emulate	a	case	construct:

def	a():

				pass

def	b():

				pass

dispatch	=	{'go':	a,	'stop':	b}		#	Note	lack	of	parens	for	funcs

dispatch[get_input()]()		#	Note	trailing	parens	to	call	function

Use	the	built-in	function	getattr():

import	foo

getattr(foo,	'bar')()

Note	 that	 getattr()	 works	 on	 any	 object,	 including	 classes,
class	instances,	modules,	and	so	on.

This	is	used	in	several	places	in	the	standard	library,	like	this:

class	Foo:

				def	do_foo(self):

								...

				def	do_bar(self):

								...

f	=	getattr(foo_instance,	'do_'	+	opname)

f()

Use	locals()	or	eval()	to	resolve	the	function	name:

def	myFunc():

				print("hello")

fname	=	"myFunc"

f	=	locals()[fname]

f()

f	=	eval(fname)

f()

Note:	 Using	 eval()	 is	 slow	 and	 dangerous.	 If	 you	 don’t	 have
absolute	 control	 over	 the	 contents	 of	 the	 string,	 someone	 could
pass	a	string	that	resulted	in	an	arbitrary	function	being	executed.

Is	there	an	equivalent	to	Perl’s	chomp()	for
removing	trailing	newlines	from	strings?

You	can	use	S.rstrip("\r\n")	 to	 remove	all	occurrences	of	any
line	 terminator	 from	 the	 end	 of	 the	 string	 S	 without	 removing	 other

trailing	whitespace.	If	the	string	S	represents	more	than	one	line,	with
several	 empty	 lines	 at	 the	 end,	 the	 line	 terminators	 for	 all	 the	 blank
lines	will	be	removed:

>>>	lines	=	("line	1	\r\n"

...										"\r\n"

...										"\r\n")

>>>	lines.rstrip("\n\r")

'line	1	'

Since	this	is	typically	only	desired	when	reading	text	one	line	at	a	time,
using	S.rstrip()	this	way	works	well.

Is	there	a	scanf()	or	sscanf()	equivalent?

Not	as	such.

For	 simple	 input	 parsing,	 the	easiest	 approach	 is	 usually	 to	 split	 the
line	 into	 whitespace-delimited	 words	 using	 the	 split()	 method	 of
string	 objects	 and	 then	 convert	 decimal	 strings	 to	 numeric	 values
using	 int()	 or	 float().	 split()	 supports	 an	 optional	 “sep”
parameter	 which	 is	 useful	 if	 the	 line	 uses	 something	 other	 than
whitespace	as	a	separator.

For	 more	 complicated	 input	 parsing,	 regular	 expressions	 are	 more
powerful	than	C’s	sscanf()	and	better	suited	for	the	task.

What	does	‘UnicodeDecodeError’	or
‘UnicodeEncodeError’	error	mean?

See	the	Unicode	HOWTO.

Performance

My	program	is	too	slow.	How	do	I	speed	it	up?

That’s	 a	 tough	 one,	 in	 general.	 First,	 here	 are	 a	 list	 of	 things	 to
remember	before	diving	further:

Performance	characteristics	vary	across	Python	implementations.
This	FAQ	focusses	on	CPython.
Behaviour	 can	 vary	 across	 operating	 systems,	 especially	 when
talking	about	I/O	or	multi-threading.
You	 should	 always	 find	 the	 hot	 spots	 in	 your	 program	 before
attempting	to	optimize	any	code	(see	the	profile	module).
Writing	 benchmark	 scripts	 will	 allow	 you	 to	 iterate	 quickly	 when
searching	for	improvements	(see	the	timeit	module).
It	 is	 highly	 recommended	 to	 have	good	 code	 coverage	 (through
unit	 testing	or	any	other	 technique)	before	potentially	 introducing
regressions	hidden	in	sophisticated	optimizations.

That	being	said,	there	are	many	tricks	to	speed	up	Python	code.	Here
are	 some	 general	 principles	 which	 go	 a	 long	 way	 towards	 reaching
acceptable	performance	levels:

Making	 your	 algorithms	 faster	 (or	 changing	 to	 faster	 ones)	 can
yield	 much	 larger	 benefits	 than	 trying	 to	 sprinkle	 micro-
optimization	tricks	all	over	your	code.
Use	the	right	data	structures.	Study	documentation	for	the	Built-in
Types	and	the	collections	module.
When	 the	 standard	 library	 provides	 a	 primitive	 for	 doing
something,	 it	 is	 likely	(although	not	guaranteed)	to	be	faster	than
any	 alternative	 you	 may	 come	 up	 with.	 This	 is	 doubly	 true	 for
primitives	written	in	C,	such	as	builtins	and	some	extension	types.
For	 example,	 be	 sure	 to	 use	 either	 the	 list.sort()	 built-in

method	or	the	related	sorted()	 function	to	do	sorting	(and	see
the	 sorting	 mini-HOWTO	 for	 examples	 of	 moderately	 advanced
usage).
Abstractions	tend	to	create	indirections	and	force	the	interpreter	to
work	 more.	 If	 the	 levels	 of	 indirection	 outweigh	 the	 amount	 of
useful	work	done,	your	program	will	be	slower.	You	should	avoid
excessive	abstraction,	especially	under	 the	form	of	 tiny	 functions
or	methods	(which	are	also	often	detrimental	to	readability).

If	you	have	reached	the	limit	of	what	pure	Python	can	allow,	there	are
tools	 to	 take	 you	 further	 away.	 For	 example,	 Cython	 can	 compile	 a
slightly	modified	version	of	Python	code	 into	a	C	extension,	and	can
be	 used	 on	many	 different	 platforms.	Cython	 can	 take	 advantage	 of
compilation	 (and	 optional	 type	 annotations)	 to	 make	 your	 code
significantly	faster	than	when	interpreted.	If	you	are	confident	in	your	C
programming	skills,	you	can	also	write	a	C	extension	module	yourself.

See	also: 	The	wiki	page	devoted	to	performance	tips.

What	is	the	most	efficient	way	to	concatenate
many	strings	together?

str	and	bytes	objects	are	immutable,	therefore	concatenating	many
strings	 together	 is	 inefficient	 as	 each	 concatenation	 creates	 a	 new
object.	 In	 the	general	 case,	 the	 total	 runtime	 cost	 is	 quadratic	 in	 the
total	string	length.

To	accumulate	many	str	objects,	the	recommended	idiom	is	to	place
them	into	a	list	and	call	str.join()	at	the	end:

chunks	=	[]

for	s	in	my_strings:

				chunks.append(s)

http://wiki.python.org/moin/HowTo/Sorting
http://cython.org
http://wiki.python.org/moin/PythonSpeed/PerformanceTips

result	=	''.join(chunks)

(another	reasonably	efficient	idiom	is	to	use	io.StringIO)

To	 accumulate	 many	 bytes	 objects,	 the	 recommended	 idiom	 is	 to
extend	 a	 bytearray	 object	 using	 in-place	 concatenation	 (the	 +=
operator):

result	=	bytearray()

for	b	in	my_bytes_objects:

				result	+=	b

Sequences	(Tuples/Lists)

How	do	I	convert	between	tuples	and	lists?

The	 type	 constructor	 tuple(seq)	 converts	 any	 sequence	 (actually,
any	iterable)	into	a	tuple	with	the	same	items	in	the	same	order.

For	 example,	 tuple([1,	 2,	 3])	 yields	 (1,	 2,	 3)	 and
tuple('abc')	 yields	 ('a',	 'b',	 'c').	 If	 the	 argument	 is	 a
tuple,	 it	 does	 not	make	 a	 copy	 but	 returns	 the	 same	 object,	 so	 it	 is
cheap	to	call	tuple()	when	you	aren’t	sure	that	an	object	is	already
a	tuple.

The	 type	constructor	 list(seq)	 converts	 any	 sequence	or	 iterable
into	 a	 list	 with	 the	 same	 items	 in	 the	 same	 order.	 For	 example,
list((1,	 2,	 3))	 yields	 [1,	 2,	 3]	 and	 list('abc')	 yields
['a',	'b',	'c'].	If	the	argument	is	a	list,	it	makes	a	copy	just	like
seq[:]	would.

What’s	a	negative	index?

Python	 sequences	 are	 indexed	 with	 positive	 numbers	 and	 negative
numbers.	 For	 positive	 numbers	 0	 is	 the	 first	 index	 1	 is	 the	 second
index	and	so	forth.	For	negative	 indices	-1	 is	 the	 last	 index	and	-2	 is
the	penultimate	(next	to	last)	index	and	so	forth.	Think	of	seq[-n]	as
the	same	as	seq[len(seq)-n].

Using	negative	indices	can	be	very	convenient.	For	example	S[:-1]
is	 all	 of	 the	 string	 except	 for	 its	 last	 character,	 which	 is	 useful	 for
removing	the	trailing	newline	from	a	string.

How	do	I	iterate	over	a	sequence	in	reverse
order?

Use	the	reversed()	built-in	function,	which	is	new	in	Python	2.4:

for	x	in	reversed(sequence):

				...	#	do	something	with	x...

This	 won’t	 touch	 your	 original	 sequence,	 but	 build	 a	 new	 copy	 with
reversed	order	to	iterate	over.

With	Python	2.3,	you	can	use	an	extended	slice	syntax:

for	x	in	sequence[::-1]:

				...	#	do	something	with	x...

How	do	you	remove	duplicates	from	a	list?

See	 the	Python	Cookbook	 for	a	 long	discussion	of	many	ways	 to	do
this:

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52560

If	you	don’t	mind	reordering	the	list,	sort	it	and	then	scan	from	the	end
of	the	list,	deleting	duplicates	as	you	go:

if	mylist:

				mylist.sort()

				last	=	mylist[-1]

				for	i	in	range(len(mylist)-2,	-1,	-1):

								if	last	==	mylist[i]:

												del	mylist[i]

								else:

												last	=	mylist[i]

http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/52560

If	 all	 elements	 of	 the	 list	may	 be	 used	 as	 set	 keys	 (i.e.	 they	 are	 all
hashable)	this	is	often	faster

mylist	=	list(set(mylist))

This	converts	the	list	into	a	set,	thereby	removing	duplicates,	and	then
back	into	a	list.

How	do	you	make	an	array	in	Python?

Use	a	list:

["this",	1,	"is",	"an",	"array"]

Lists	are	equivalent	to	C	or	Pascal	arrays	in	their	time	complexity;	the
primary	 difference	 is	 that	 a	 Python	 list	 can	 contain	 objects	 of	 many
different	types.

The	array	module	also	provides	methods	for	creating	arrays	of	fixed
types	with	compact	representations,	but	they	are	slower	to	index	than
lists.	Also	note	 that	 the	Numeric	extensions	and	others	define	array-
like	structures	with	various	characteristics	as	well.

To	get	Lisp-style	linked	lists,	you	can	emulate	cons	cells	using	tuples:

lisp_list	=	("like",		("this",		("example",	None))	

If	mutability	 is	desired,	you	could	use	lists	 instead	of	tuples.	Here	the
analogue	 of	 lisp	 car	 is	 lisp_list[0]	 and	 the	 analogue	 of	 cdr	 is
lisp_list[1].	 Only	 do	 this	 if	 you’re	 sure	 you	 really	 need	 to,
because	it’s	usually	a	lot	slower	than	using	Python	lists.

How	do	I	create	a	multidimensional	list?

You	probably	tried	to	make	a	multidimensional	array	like	this:

>>>	A	=	[[None]	*	2]	*	3

This	looks	correct	if	you	print	it:

>>>	A

[[None,	None],	[None,	None],	[None,	None]]

But	when	you	assign	a	value,	it	shows	up	in	multiple	places:

>>>	A[0][0]	=	5

>>>	A

[[5,	None],	[5,	None],	[5,	None]]

The	reason	is	that	replicating	a	list	with	*	doesn’t	create	copies,	it	only
creates	 references	 to	 the	 existing	 objects.	 The	 *3	 creates	 a	 list
containing	3	references	to	the	same	list	of	length	two.	Changes	to	one
row	will	show	in	all	rows,	which	is	almost	certainly	not	what	you	want.

The	suggested	approach	 is	 to	create	a	 list	of	 the	desired	 length	 first
and	then	fill	in	each	element	with	a	newly	created	list:

A	=	[None]	*	3

for	i	in	range(3):

				A[i]	=	[None]	*	2

This	generates	a	list	containing	3	different	lists	of	length	two.	You	can
also	use	a	list	comprehension:

w,	h	=	2,	3

A	=	[[None]	*	w	for	i	in	range(h)]

Or,	you	can	use	an	extension	that	provides	a	matrix	datatype;	Numeric
Python	is	the	best	known.

How	do	I	apply	a	method	to	a	sequence	of
objects?

Use	a	list	comprehension:

result	=	[obj.method()	for	obj	in	mylist]

Why	does	a_tuple[i]	+=	[‘item’]	raise	an	exception
when	the	addition	works?

This	 is	 because	 of	 a	 combination	 of	 the	 fact	 that	 augmented
assignment	 operators	 are	 assignment	 operators,	 and	 the	 difference
between	mutable	and	immutable	objects	in	Python.

This	 discussion	 applies	 in	 general	 when	 augmented	 assignment
operators	 are	 applied	 to	 elements	 of	 a	 tuple	 that	 point	 to	 mutable
objects,	but	we’ll	use	a	list	and	+=	as	our	exemplar.

If	you	wrote:

>>>	a_tuple	=	(1,	2)

>>>	a_tuple[0]	+=	1

Traceback	(most	recent	call	last):

			...

TypeError:	'tuple'	object	does	not	support	item	assignment

The	reason	for	the	exception	should	be	immediately	clear:	1	is	added
to	 the	object	a_tuple[0]	points	 to	 (1),	producing	 the	 result	object,

http://www.numpy.org/

2,	but	when	we	attempt	to	assign	the	result	of	the	computation,	2,	 to
element	0	of	the	tuple,	we	get	an	error	because	we	can’t	change	what
an	element	of	a	tuple	points	to.

Under	the	covers,	what	this	augmented	assignment	statement	is	doing
is	approximately	this:

>>>	result	=	a_tuple[0]	+	1

>>>	a_tuple[0]	=	result

Traceback	(most	recent	call	last):

		...

TypeError:	'tuple'	object	does	not	support	item	assignment

It	is	the	assignment	part	of	the	operation	that	produces	the	error,	since
a	tuple	is	immutable.

When	you	write	something	like:

>>>	a_tuple	=	(['foo'],	'bar')

>>>	a_tuple[0]	+=	['item']

Traceback	(most	recent	call	last):

		...

TypeError:	'tuple'	object	does	not	support	item	assignment

The	exception	is	a	bit	more	surprising,	and	even	more	surprising	is	the
fact	that	even	though	there	was	an	error,	the	append	worked:

>>>	a_tuple[0]

['foo',	'item']

To	 see	 why	 this	 happens,	 you	 need	 to	 know	 that	 (a)	 if	 an	 object
implements	an	__iadd__	magic	method,	 it	gets	called	when	 the	+=
augmented	assignment	 is	executed,	and	 its	return	value	 is	what	gets

used	 in	 the	 assignment	 statement;	 and	 (b)	 for	 lists,	 __iadd__	 is
equivalent	 to	calling	extend	 on	 the	 list	 and	 returning	 the	 list.	That’s
why	we	say	that	for	lists,	+=	is	a	“shorthand”	for	list.extend:

>>>	a_list	=	[]

>>>	a_list	+=	[1]

>>>	a_list

[1]

This	is	equivalent	to:

>>>	result	=	a_list.__iadd__([1])

>>>	a_list	=	result

The	object	pointed	 to	by	a_list	has	been	mutated,	and	 the	pointer	 to
the	mutated	object	is	assigned	back	to	a_list.	The	end	result	of	the
assignment	 is	 a	 no-op,	 since	 it	 is	 a	 pointer	 to	 the	 same	 object	 that
a_list	was	previously	pointing	to,	but	the	assignment	still	happens.

Thus,	in	our	tuple	example	what	is	happening	is	equivalent	to:

>>>	result	=	a_tuple[0].__iadd__(['item'])

>>>	a_tuple[0]	=	result

Traceback	(most	recent	call	last):

		...

TypeError:	'tuple'	object	does	not	support	item	assignment

The	 __iadd__	 succeeds,	 and	 thus	 the	 list	 is	 extended,	 but	 even
though	result	points	 to	 the	same	object	 that	a_tuple[0]	 already
points	to,	that	final	assignment	still	results	in	an	error,	because	tuples
are	immutable.

Dictionaries

How	can	I	get	a	dictionary	to	store	and	display	its
keys	in	a	consistent	order?

Use	collections.OrderedDict.

I	want	to	do	a	complicated	sort:	can	you	do	a
Schwartzian	Transform	in	Python?

The	 technique,	attributed	 to	Randal	Schwartz	of	 the	Perl	 community,
sorts	the	elements	of	a	list	by	a	metric	which	maps	each	element	to	its
“sort	 value”.	 In	 Python,	 just	 use	 the	 key	 argument	 for	 the	 sort()
method:

Isorted	=	L[:]

Isorted.sort(key=lambda	s:	int(s[10:15]))

The	key	argument	is	new	in	Python	2.4,	for	older	versions	this	kind	of
sorting	is	quite	simple	to	do	with	list	comprehensions.	To	sort	a	list	of
strings	by	their	uppercase	values:

tmp1	=	[(x.upper(),	x)	for	x	in	L]		#	Schwartzian	transform

tmp1.sort()

Usorted	=	[x[1]	for	x	in	tmp1]

To	sort	by	the	integer	value	of	a	subfield	extending	from	positions	10-
15	in	each	string:

tmp2	=	[(int(s[10:15]),	s)	for	s	in	L]		#	Schwartzian	transform

tmp2.sort()

Isorted	=	[x[1]	for	x	in	tmp2]

For	versions	prior	to	3.0,	Isorted	may	also	be	computed	by

def	intfield(s):

				return	int(s[10:15])

def	Icmp(s1,	s2):

				return	cmp(intfield(s1),	intfield(s2))

Isorted	=	L[:]

Isorted.sort(Icmp)

but	since	this	method	calls	intfield()	many	times	for	each	element
of	L,	it	is	slower	than	the	Schwartzian	Transform.

How	can	I	sort	one	list	by	values	from	another	list?

Merge	 them	 into	an	 iterator	of	 tuples,	sort	 the	 resulting	 list,	and	 then
pick	out	the	element	you	want.

>>>	list1	=	["what",	"I'm",	"sorting",	"by"]

>>>	list2	=	["something",	"else",	"to",	"sort"]

>>>	pairs	=	zip(list1,	list2)

>>>	pairs	=	sorted(pairs)

>>>	pairs

[("I'm",	'else'),	('by',	'sort'),	('sorting',	'to'),	('what',	'something')]

>>>	result	=	[x[1]	for	x	in	pairs]

>>>	result

['else',	'sort',	'to',	'something']

An	alternative	for	the	last	step	is:

>>>	result	=	[]

>>>	for	p	in	pairs:	result.append(p[1])

If	you	find	this	more	legible,	you	might	prefer	to	use	this	instead	of	the
final	 list	comprehension.	However,	 it	 is	almost	 twice	as	slow	 for	 long
lists.	Why?	First,	 the	append()	operation	has	 to	 reallocate	memory,
and	while	it	uses	some	tricks	to	avoid	doing	that	each	time,	it	still	has
to	do	it	occasionally,	and	that	costs	quite	a	bit.	Second,	the	expression
“result.append”	requires	an	extra	attribute	 lookup,	and	third,	 there’s	a
speed	reduction	from	having	to	make	all	those	function	calls.

Objects

What	is	a	class?

A	 class	 is	 the	 particular	 object	 type	 created	 by	 executing	 a	 class
statement.	 Class	 objects	 are	 used	 as	 templates	 to	 create	 instance
objects,	which	embody	both	the	data	(attributes)	and	code	(methods)
specific	to	a	datatype.

A	class	 can	be	based	on	one	or	more	other	 classes,	 called	 its	 base
class(es).	 It	 then	 inherits	 the	 attributes	 and	 methods	 of	 its	 base
classes.	 This	 allows	 an	 object	 model	 to	 be	 successively	 refined	 by
inheritance.	You	might	 have	 a	 generic	 Mailbox	 class	 that	 provides
basic	 accessor	 methods	 for	 a	 mailbox,	 and	 subclasses	 such	 as
MboxMailbox,	 MaildirMailbox,	 OutlookMailbox	 that	 handle
various	specific	mailbox	formats.

What	is	a	method?

A	method	 is	 a	 function	 on	 some	 object	 x	 that	 you	 normally	 call	 as
x.name(arguments...).	Methods	 are	 defined	 as	 functions	 inside
the	class	definition:

class	C:

				def	meth	(self,	arg):

								return	arg	*	2	+	self.attribute

What	is	self?

Self	is	merely	a	conventional	name	for	the	first	argument	of	a	method.
A	method	defined	as	 meth(self,	a,	b,	c)	 should	 be	 called	 as

x.meth(a,	b,	c)	 for	 some	 instance	 x	 of	 the	 class	 in	 which	 the
definition	occurs;	 the	called	method	will	 think	 it	 is	called	as	meth(x,
a,	b,	c).

See	also	Why	must	 ‘self’	be	used	explicitly	 in	method	definitions	and
calls?.

How	do	I	check	if	an	object	is	an	instance	of	a
given	class	or	of	a	subclass	of	it?

Use	the	built-in	function	isinstance(obj,	cls).	You	can	check	if
an	object	is	an	instance	of	any	of	a	number	of	classes	by	providing	a
tuple	 instead	 of	 a	 single	 class,	 e.g.	 isinstance(obj,	 (class1,
class2,	...)),	 and	 can	 also	 check	 whether	 an	 object	 is	 one	 of
Python’s	 built-in	 types,	 e.g.	 isinstance(obj,	 str)	 or
isinstance(obj,	(int,	float,	complex)).

Note	that	most	programs	do	not	use	isinstance()	on	user-defined
classes	very	often.	If	you	are	developing	the	classes	yourself,	a	more
proper	object-oriented	 style	 is	 to	define	methods	on	 the	 classes	 that
encapsulate	 a	 particular	 behaviour,	 instead	 of	 checking	 the	 object’s
class	 and	 doing	 a	 different	 thing	 based	 on	 what	 class	 it	 is.	 For
example,	if	you	have	a	function	that	does	something:

def	search(obj):

				if	isinstance(obj,	Mailbox):

								#	...	code	to	search	a	mailbox

				elif	isinstance(obj,	Document):

								#	...	code	to	search	a	document

				elif	...

A	better	approach	is	to	define	a	search()	method	on	all	the	classes

and	just	call	it:

class	Mailbox:

				def	search(self):

								#	...	code	to	search	a	mailbox

class	Document:

				def	search(self):

								#	...	code	to	search	a	document

obj.search()

What	is	delegation?

Delegation	 is	 an	 object	 oriented	 technique	 (also	 called	 a	 design
pattern).	 Let’s	 say	 you	 have	 an	 object	 x	 and	 want	 to	 change	 the
behaviour	of	just	one	of	its	methods.	You	can	create	a	new	class	that
provides	 a	 new	 implementation	 of	 the	 method	 you’re	 interested	 in
changing	 and	 delegates	 all	 other	 methods	 to	 the	 corresponding
method	of	x.

Python	 programmers	 can	 easily	 implement	 delegation.	 For	 example,
the	 following	 class	 implements	 a	 class	 that	 behaves	 like	 a	 file	 but
converts	all	written	data	to	uppercase:

class	UpperOut:

				def	__init__(self,	outfile):

								self._outfile	=	outfile

				def	write(self,	s):

								self._outfile.write(s.upper())

				def	__getattr__(self,	name):

								return	getattr(self._outfile,	name)

Here	the	UpperOut	class	redefines	the	write()	method	to	convert
the	 argument	 string	 to	 uppercase	 before	 calling	 the	 underlying
self.__outfile.write()	 method.	 All	 other	 methods	 are
delegated	to	the	underlying	self.__outfile	object.	The	delegation
is	accomplished	via	the	__getattr__	method;	consult	the	 language
reference	for	more	information	about	controlling	attribute	access.

Note	 that	 for	 more	 general	 cases	 delegation	 can	 get	 trickier.	 When
attributes	must	 be	 set	 as	 well	 as	 retrieved,	 the	 class	must	 define	 a
__setattr__()	method	 too,	and	 it	must	do	so	carefully.	The	 basic
implementation	 of	 __setattr__()	 is	 roughly	 equivalent	 to	 the
following:

class	X:

				...

				def	__setattr__(self,	name,	value):

								self.__dict__[name]	=	value

				...

Most	 __setattr__()	 implementations	 must	 modify
self.__dict__	to	store	local	state	for	self	without	causing	an	infinite
recursion.

How	do	I	call	a	method	defined	in	a	base	class
from	a	derived	class	that	overrides	it?

Use	the	built-in	super()	function:

class	Derived(Base):

				def	meth	(self):

								super(Derived,	self).meth()

For	version	prior	to	3.0,	you	may	be	using	classic	classes:	For	a	class
definition	 such	 as	 class	 Derived(Base):	 ...	 you	 can	 call
method	meth()	defined	in	Base	(or	one	of	Base‘s	base	classes)	as
Base.meth(self,	 arguments...).	 Here,	 Base.meth	 is	 an
unbound	method,	so	you	need	to	provide	the	self	argument.

How	can	I	organize	my	code	to	make	it	easier	to
change	the	base	class?

You	could	define	an	alias	for	the	base	class,	assign	the	real	base	class
to	 it	 before	 your	 class	 definition,	 and	 use	 the	 alias	 throughout	 your
class.	Then	all	you	have	to	change	is	the	value	assigned	to	the	alias.
Incidentally,	 this	 trick	 is	also	handy	 if	you	want	 to	decide	dynamically
(e.g.	depending	on	availability	of	resources)	which	base	class	to	use.
Example:

BaseAlias	=	<real	base	class>

class	Derived(BaseAlias):

				def	meth(self):

								BaseAlias.meth(self)

								...

How	do	I	create	static	class	data	and	static	class
methods?

Both	static	data	and	static	methods	(in	the	sense	of	C++	or	Java)	are
supported	in	Python.

For	static	data,	simply	define	a	class	attribute.	To	assign	a	new	value

to	 the	 attribute,	 you	 have	 to	 explicitly	 use	 the	 class	 name	 in	 the
assignment:

class	C:

				count	=	0			#	number	of	times	C.__init__	called

				def	__init__(self):

								C.count	=	C.count	+	1

				def	getcount(self):

								return	C.count		#	or	return	self.count

c.count	 also	 refers	 to	 C.count	 for	 any	 c	 such	 that
isinstance(c,	C)	holds,	unless	overridden	by	c	itself	or	by	some
class	on	the	base-class	search	path	from	c.__class__	back	to	C.

Caution:	 within	 a	 method	 of	 C,	 an	 assignment	 like	 self.count	=
42	 creates	 a	 new	 and	 unrelated	 instance	 named	 “count”	 in	 self‘s
own	dict.	Rebinding	of	a	class-static	data	name	must	always	specify
the	class	whether	inside	a	method	or	not:

C.count	=	314

Static	methods	are	possible:

class	C:

				@staticmethod

				def	static(arg1,	arg2,	arg3):

								#	No	'self'	parameter!

								...

However,	 a	 far	more	 straightforward	way	 to	get	 the	effect	 of	 a	 static
method	is	via	a	simple	module-level	function:

def	getcount():

				return	C.count

If	your	code	 is	structured	so	as	 to	define	one	class	(or	 tightly	 related
class	hierarchy)	per	module,	this	supplies	the	desired	encapsulation.

How	can	I	overload	constructors	(or	methods)	in
Python?

This	answer	actually	applies	 to	all	methods,	but	 the	question	usually
comes	up	first	in	the	context	of	constructors.

In	C++	you’d	write

class	C	{

				C()	{	cout	<<	"No	arguments\n";	}

				C(int	i)	{	cout	<<	"Argument	is	"	<<	i	<<	"\n";	

}

In	Python	you	have	to	write	a	single	constructor	that	catches	all	cases
using	default	arguments.	For	example:

class	C:

				def	__init__(self,	i=None):

								if	i	is	None:

												print("No	arguments")

								else:

												print("Argument	is",	i)

This	is	not	entirely	equivalent,	but	close	enough	in	practice.

You	could	also	try	a	variable-length	argument	list,	e.g.

def	__init__(self,	*args):

				...

The	same	approach	works	for	all	method	definitions.

I	try	to	use	__spam	and	I	get	an	error	about
_SomeClassName__spam.

Variable	 names	 with	 double	 leading	 underscores	 are	 “mangled”	 to
provide	 a	 simple	 but	 effective	 way	 to	 define	 class	 private	 variables.
Any	identifier	of	the	form	__spam	(at	least	two	leading	underscores,	at
most	 one	 trailing	 underscore)	 is	 textually	 replaced	 with
_classname__spam,	where	 classname	 is	 the	 current	 class	 name
with	any	leading	underscores	stripped.

This	 doesn’t	 guarantee	 privacy:	 an	 outside	 user	 can	 still	 deliberately
access	 the	 “_classname__spam”	 attribute,	 and	 private	 values	 are
visible	 in	 the	 object’s	 __dict__.	 Many	 Python	 programmers	 never
bother	to	use	private	variable	names	at	all.

My	class	defines	__del__	but	it	is	not	called	when
I	delete	the	object.

There	are	several	possible	reasons	for	this.

The	 del	 statement	 does	 not	 necessarily	 call	 __del__()	 –	 it	 simply
decrements	 the	 object’s	 reference	 count,	 and	 if	 this	 reaches	 zero
__del__()	is	called.

If	 your	 data	 structures	 contain	 circular	 links	 (e.g.	 a	 tree	where	 each
child	has	a	parent	reference	and	each	parent	has	a	list	of	children)	the
reference	counts	will	 never	go	back	 to	zero.	Once	 in	a	while	Python

runs	 an	 algorithm	 to	 detect	 such	 cycles,	 but	 the	 garbage	 collector
might	 run	 some	 time	 after	 the	 last	 reference	 to	 your	 data	 structure
vanishes,	 so	 your	 __del__()	 method	 may	 be	 called	 at	 an
inconvenient	and	random	time.	This	 is	 inconvenient	 if	you’re	trying	to
reproduce	a	problem.	Worse,	the	order	in	which	object’s	__del__()
methods	 are	 executed	 is	 arbitrary.	 You	 can	 run	 gc.collect()	 to
force	a	collection,	but	there	are	pathological	cases	where	objects	will
never	be	collected.

Despite	 the	 cycle	 collector,	 it’s	 still	 a	 good	 idea	 to	 define	 an	 explicit
close()	method	on	objects	 to	be	called	whenever	you’re	done	with
them.	The	close()	method	can	 then	 remove	attributes	 that	 refer	 to
subobjecs.	Don’t	 call	 __del__()	 directly	 –	 __del__()	 should	 call
close()	and	close()	should	make	sure	that	it	can	be	called	more
than	once	for	the	same	object.

Another	 way	 to	 avoid	 cyclical	 references	 is	 to	 use	 the	 weakref
module,	which	allows	you	to	point	to	objects	without	incrementing	their
reference	count.	Tree	data	structures,	 for	 instance,	 should	use	weak
references	for	their	parent	and	sibling	references	(if	they	need	them!).

Finally,	 if	 your	 __del__()	 method	 raises	 an	 exception,	 a	 warning
message	is	printed	to	sys.stderr.

How	do	I	get	a	list	of	all	instances	of	a	given
class?

Python	does	not	keep	track	of	all	 instances	of	a	class	(or	of	a	built-in
type).	 You	 can	 program	 the	 class’s	 constructor	 to	 keep	 track	 of	 all
instances	by	keeping	a	list	of	weak	references	to	each	instance.

Why	does	the	result	of	id()	appear	to	be	not
unique?

The	 id()	 builtin	 returns	 an	 integer	 that	 is	 guaranteed	 to	 be	 unique
during	the	lifetime	of	the	object.	Since	in	CPython,	this	 is	the	object’s
memory	address,	 it	happens	frequently	that	after	an	object	 is	deleted
from	memory,	the	next	freshly	created	object	is	allocated	at	the	same
position	in	memory.	This	is	illustrated	by	this	example:

>>>	id(1000)

13901272

>>>	id(2000)

13901272

The	two	ids	belong	to	different	integer	objects	that	are	created	before,
and	deleted	immediately	after	execution	of	 the	id()	call.	To	be	sure
that	 objects	 whose	 id	 you	 want	 to	 examine	 are	 still	 alive,	 create
another	reference	to	the	object:

>>>	a	=	1000;	b	=	2000

>>>	id(a)

13901272

>>>	id(b)

13891296

Modules

How	do	I	create	a	.pyc	file?

When	a	module	 is	 imported	for	 the	first	 time	(or	when	the	source	file
has	changed	since	the	current	compiled	file	was	created)	a	.pyc	 file
containing	 the	 compiled	 code	 should	be	 created	 in	 a	 __pycache__
subdirectory	of	the	directory	containing	the	.py	file.	The	.pyc	file	will
have	a	 filename	that	starts	with	 the	same	name	as	 the	.py	 file,	and
ends	 with	 .pyc,	 with	 a	 middle	 component	 that	 depends	 on	 the
particular	python	binary	that	created	it.	(See	PEP	3147	for	details.)

One	 reason	 that	 a	 .pyc	 file	 may	 not	 be	 created	 is	 a	 permissions
problem	with	the	directory	containing	the	source	file,	meaning	that	the
__pycache__	subdirectory	cannot	be	created.	This	can	happen,	 for
example,	if	you	develop	as	one	user	but	run	as	another,	such	as	if	you
are	testing	with	a	web	server.

Unless	 the	 PYTHONDONTWRITEBYTECODE	 environment	 variable	 is
set,	creation	of	a	.pyc	file	is	automatic	if	you’re	importing	a	module	and
Python	 has	 the	 ability	 (permissions,	 free	 space,	 etc...)	 to	 create	 a
__pycache__	 subdirectory	 and	 write	 the	 compiled	 module	 to	 that
subdirectory.

Running	Python	on	a	top	level	script	 is	not	considered	an	import	and
no	.pyc	will	be	created.	For	example,	if	you	have	a	top-level	module
foo.py	that	imports	another	module	xyz.py,	when	you	run	foo	(by
typing	python	foo.py	as	a	shell	command),	a	.pyc	will	be	created
for	xyz	because	xyz	is	imported,	but	no	.pyc	file	will	be	created	for
foo	since	foo.py	isn’t	being	imported.

http://www.python.org/dev/peps/pep-3147

If	you	need	to	create	a	.pyc	file	for	foo	–	that	is,	to	create	a	.pyc	file
for	a	module	 that	 is	not	 imported	–	you	can,	using	 the	py_compile
and	compileall	modules.

The	 py_compile	 module	 can	 manually	 compile	 any	 module.	 One
way	is	to	use	the	compile()	function	in	that	module	interactively:

>>>	import	py_compile

>>>	py_compile.compile('foo.py')																	

This	will	write	the	.pyc	to	a	__pycache__	subdirectory	in	the	same
location	 as	 foo.py	 (or	 you	 can	 override	 that	 with	 the	 optional
parameter	cfile).

You	can	also	automatically	compile	all	files	in	a	directory	or	directories
using	the	compileall	module.	You	can	do	it	from	the	shell	prompt	by
running	 compileall.py	 and	 providing	 the	 path	 of	 a	 directory
containing	Python	files	to	compile:

python	-m	compileall	.

How	do	I	find	the	current	module	name?

A	 module	 can	 find	 out	 its	 own	 module	 name	 by	 looking	 at	 the
predefined	 global	 variable	 __name__.	 If	 this	 has	 the	 value
'__main__',	the	program	is	running	as	a	script.	Many	modules	that
are	 usually	 used	 by	 importing	 them	 also	 provide	 a	 command-line
interface	 or	 a	 self-test,	 and	 only	 execute	 this	 code	 after	 checking
__name__:

def	main():

				print('Running	test...')

				...

if	__name__	==	'__main__':

				main()

How	can	I	have	modules	that	mutually	import
each	other?

Suppose	you	have	the	following	modules:

foo.py:

from	bar	import	bar_var

foo_var	=	1

bar.py:

from	foo	import	foo_var

bar_var	=	2

The	problem	is	that	the	interpreter	will	perform	the	following	steps:

main	imports	foo
Empty	globals	for	foo	are	created
foo	is	compiled	and	starts	executing
foo	imports	bar
Empty	globals	for	bar	are	created
bar	is	compiled	and	starts	executing
bar	imports	foo	(which	is	a	no-op	since	there	already	is	a	module
named	foo)
bar.foo_var	=	foo.foo_var

The	last	step	fails,	because	Python	isn’t	done	with	interpreting	foo	yet
and	the	global	symbol	dictionary	for	foo	is	still	empty.

The	same	thing	happens	when	you	use	import	foo,	and	then	try	to
access	foo.foo_var	in	global	code.

There	are	(at	least)	three	possible	workarounds	for	this	problem.

Guido	 van	 Rossum	 recommends	 avoiding	 all	 uses	 of	 from

<module>	 import	 ...,	 and	 placing	 all	 code	 inside	 functions.
Initializations	 of	 global	 variables	 and	 class	 variables	 should	 use
constants	 or	 built-in	 functions	 only.	 This	 means	 everything	 from	 an
imported	module	is	referenced	as	<module>.<name>.

Jim	Roskind	suggests	performing	steps	in	the	following	order	in	each
module:

exports	(globals,	 functions,	and	classes	that	don’t	need	 imported
base	classes)
import	statements
active	 code	 (including	 globals	 that	 are	 initialized	 from	 imported
values).

van	 Rossum	 doesn’t	 like	 this	 approach	 much	 because	 the	 imports
appear	in	a	strange	place,	but	it	does	work.

Matthias	 Urlichs	 recommends	 restructuring	 your	 code	 so	 that	 the
recursive	import	is	not	necessary	in	the	first	place.

These	solutions	are	not	mutually	exclusive.

__import__(‘x.y.z’)	returns	<module	‘x’>;	how	do	I
get	z?

Try:

__import__('x.y.z').y.z

For	more	realistic	situations,	you	may	have	to	do	something	like

m	=	__import__(s)

for	i	in	s.split(".")[1:]:

				m	=	getattr(m,	i)

See	 importlib	 for	 a	 convenience	 function	 called
import_module().

When	I	edit	an	imported	module	and	reimport	it,
the	changes	don’t	show	up.	Why	does	this
happen?

For	reasons	of	efficiency	as	well	as	consistency,	Python	only	reads	the
module	 file	 on	 the	 first	 time	 a	 module	 is	 imported.	 If	 it	 didn’t,	 in	 a
program	 consisting	 of	 many	 modules	 where	 each	 one	 imports	 the
same	basic	module,	the	basic	module	would	be	parsed	and	re-parsed
many	times.	To	force	re-reading	of	a	changed	module,	do	this:

import	importlib

import	modname

importlib.reload(modname)

Warning:	this	technique	is	not	100%	fool-proof.	 In	particular,	modules
containing	statements	like

from	modname	import	some_objects

will	continue	to	work	with	the	old	version	of	the	imported	objects.	If	the
module	contains	class	definitions,	existing	class	 instances	will	not	be

updated	to	use	the	new	class	definition.	This	can	result	in	the	following
paradoxical	behaviour:

>>>	import	importlib

>>>	import	cls

>>>	c	=	cls.C()																#	Create	an	instance	of	C

>>>	importlib.reload(cls)

<module	'cls'	from	'cls.py'>

>>>	isinstance(c,	cls.C)							#	isinstance	is	false?!?

False

The	nature	of	the	problem	is	made	clear	if	you	print	out	the	“identity”	of
the	class	objects:

>>>	hex(id(c.__class__))

'0x7352a0'

>>>	hex(id(cls.C))

'0x4198d0'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

Design	and	History	FAQ

Why	does	Python	use	indentation	for
grouping	of	statements?

Guido	 van	 Rossum	 believes	 that	 using	 indentation	 for	 grouping	 is
extremely	 elegant	 and	 contributes	 a	 lot	 to	 the	 clarity	 of	 the	 average
Python	program.	Most	people	learn	to	love	this	feature	after	a	while.

Since	there	are	no	begin/end	brackets	there	cannot	be	a	disagreement
between	 grouping	 perceived	 by	 the	 parser	 and	 the	 human	 reader.
Occasionally	 C	 programmers	 will	 encounter	 a	 fragment	 of	 code	 like
this:

if	(x	<=	y)

								x++;

								y--;

z++;

Only	 the	 x++	 statement	 is	 executed	 if	 the	 condition	 is	 true,	 but	 the
indentation	 leads	 you	 to	 believe	 otherwise.	 Even	 experienced	 C
programmers	will	sometimes	stare	at	it	a	long	time	wondering	why	y	is
being	decremented	even	for	x	>	y.

Because	there	are	no	begin/end	brackets,	Python	is	much	less	prone
to	coding-style	conflicts.	 In	C	 there	are	many	different	ways	 to	place
the	braces.	 If	 you’re	used	 to	 reading	and	writing	code	 that	uses	one
style,	 you	 will	 feel	 at	 least	 slightly	 uneasy	 when	 reading	 (or	 being
required	to	write)	another	style.

Many	coding	styles	place	begin/end	brackets	on	a	line	by	themselves.
This	makes	programs	considerably	longer	and	wastes	valuable	screen
space,	making	it	harder	to	get	a	good	overview	of	a	program.	Ideally,	a
function	should	fit	on	one	screen	(say,	20-30	lines).	20	lines	of	Python

can	do	a	lot	more	work	than	20	lines	of	C.	This	is	not	solely	due	to	the
lack	of	begin/end	brackets	–	the	lack	of	declarations	and	the	high-level
data	 types	 are	 also	 responsible	 –	 but	 the	 indentation-based	 syntax
certainly	helps.

Why	am	I	getting	strange	results	with
simple	arithmetic	operations?

See	the	next	question.

Why	are	floating-point	calculations	so
inaccurate?

Users	are	often	surprised	by	results	like	this:

>>>	1.2	-	1.0

0.199999999999999996

and	think	it	is	a	bug	in	Python.	It’s	not.	This	has	little	to	do	with	Python,
and	 much	 more	 to	 do	 with	 how	 the	 underlying	 platform	 handles
floating-point	numbers.

The	float	 type	in	CPython	uses	a	C	double	for	storage.	A	float
object’s	 value	 is	 stored	 in	 binary	 floating-point	 with	 a	 fixed	 precision
(typically	53	bits)	and	Python	uses	C	operations,	which	in	turn	rely	on
the	 hardware	 implementation	 in	 the	 processor,	 to	 perform	 floating-
point	 operations.	 This	means	 that	 as	 far	 as	 floating-point	 operations
are	 concerned,	 Python	 behaves	 like	 many	 popular	 languages
including	C	and	Java.

Many	numbers	that	can	be	written	easily	in	decimal	notation	cannot	be
expressed	exactly	in	binary	floating-point.	For	example,	after:

>>>	x	=	1.2

the	value	stored	 for	x	 is	a	 (very	good)	approximation	 to	 the	decimal
value	 1.2,	 but	 is	 not	 exactly	 equal	 to	 it.	 On	 a	 typical	 machine,	 the
actual	stored	value	is:

1.0011001100110011001100110011001100110011001100110011

which	is	exactly:

1.1999999999999999555910790149937383830547332763671875

The	 typical	 precision	 of	 53	 bits	 provides	 Python	 floats	 with	 15-16
decimal	digits	of	accuracy.

For	 a	 fuller	 explanation,	 please	 see	 the	 floating	 point	 arithmetic
chapter	in	the	Python	tutorial.

Why	are	Python	strings	immutable?

There	are	several	advantages.

One	is	performance:	knowing	that	a	string	is	immutable	means	we	can
allocate	space	for	it	at	creation	time,	and	the	storage	requirements	are
fixed	 and	 unchanging.	 This	 is	 also	 one	 of	 the	 reasons	 for	 the
distinction	between	tuples	and	lists.

Another	 advantage	 is	 that	 strings	 in	 Python	 are	 considered	 as
“elemental”	as	numbers.	No	amount	of	activity	will	change	the	value	8
to	anything	else,	and	in	Python,	no	amount	of	activity	will	change	the
string	“eight”	to	anything	else.

Why	must	‘self’	be	used	explicitly	in
method	definitions	and	calls?

The	idea	was	borrowed	from	Modula-3.	It	turns	out	to	be	very	useful,
for	a	variety	of	reasons.

First,	 it’s	 more	 obvious	 that	 you	 are	 using	 a	 method	 or	 instance
attribute	 instead	 of	 a	 local	 variable.	 Reading	 self.x	 or
self.meth()	makes	 it	absolutely	clear	 that	an	 instance	variable	or
method	is	used	even	if	you	don’t	know	the	class	definition	by	heart.	In
C++,	 you	 can	 sort	 of	 tell	 by	 the	 lack	 of	 a	 local	 variable	 declaration
(assuming	 globals	 are	 rare	 or	 easily	 recognizable)	 –	 but	 in	 Python,
there	are	no	local	variable	declarations,	so	you’d	have	to	 look	up	the
class	definition	to	be	sure.	Some	C++	and	Java	coding	standards	call
for	instance	attributes	to	have	an	m_	prefix,	so	this	explicitness	is	still
useful	in	those	languages,	too.

Second,	 it	means	 that	 no	 special	 syntax	 is	 necessary	 if	 you	want	 to
explicitly	reference	or	call	the	method	from	a	particular	class.	In	C++,	if
you	want	to	use	a	method	from	a	base	class	which	is	overridden	in	a
derived	class,	you	have	 to	use	 the	::	operator	–	 in	Python	you	can
write	baseclass.methodname(self,	<argument	list>).	 This
is	 particularly	 useful	 for	 __init__()	 methods,	 and	 in	 general	 in
cases	where	a	derived	class	method	wants	 to	extend	 the	base	class
method	of	the	same	name	and	thus	has	to	call	the	base	class	method
somehow.

Finally,	 for	 instance	 variables	 it	 solves	 a	 syntactic	 problem	 with
assignment:	 since	 local	 variables	 in	Python	are	 (by	definition!)	 those
variables	 to	 which	 a	 value	 is	 assigned	 in	 a	 function	 body	 (and	 that
aren’t	explicitly	declared	global),	there	has	to	be	some	way	to	tell	the

interpreter	 that	 an	 assignment	 was	 meant	 to	 assign	 to	 an	 instance
variable	 instead	 of	 to	 a	 local	 variable,	 and	 it	 should	 preferably	 be
syntactic	(for	efficiency	reasons).	C++	does	this	through	declarations,
but	Python	doesn’t	have	declarations	and	it	would	be	a	pity	having	to
introduce	 them	 just	 for	 this	 purpose.	 Using	 the	 explicit	 self.var
solves	 this	 nicely.	 Similarly,	 for	 using	 instance	 variables,	 having	 to
write	self.var	means	that	references	to	unqualified	names	inside	a
method	 don’t	 have	 to	 search	 the	 instance’s	 directories.	 To	 put	 it
another	way,	local	variables	and	instance	variables	live	in	two	different
namespaces,	and	you	need	to	tell	Python	which	namespace	to	use.

Why	can’t	I	use	an	assignment	in	an
expression?

Many	people	used	to	C	or	Perl	complain	that	they	want	to	use	this	C
idiom:

while	(line	=	readline(f))	{

				//	do	something	with	line

}

where	in	Python	you’re	forced	to	write	this:

while	True:

				line	=	f.readline()

				if	not	line:

								break

				...	#	do	something	with	line

The	 reason	 for	 not	 allowing	 assignment	 in	 Python	 expressions	 is	 a
common,	 hard-to-find	 bug	 in	 those	 other	 languages,	 caused	 by	 this
construct:

if	(x	=	0)	{

				//	error	handling

}

else	{

				//	code	that	only	works	for	nonzero	x

}

The	error	is	a	simple	typo:	x	=	0,	which	assigns	0	to	the	variable	x,
was	 written	 while	 the	 comparison	 x	 ==	 0	 is	 certainly	 what	 was
intended.

Many	 alternatives	 have	 been	 proposed.	 Most	 are	 hacks	 that	 save
some	 typing	but	use	arbitrary	or	 cryptic	 syntax	or	 keywords,	and	 fail
the	simple	criterion	for	language	change	proposals:	it	should	intuitively
suggest	the	proper	meaning	to	a	human	reader	who	has	not	yet	been
introduced	to	the	construct.

An	 interesting	 phenomenon	 is	 that	 most	 experienced	 Python
programmers	recognize	the	while	True	idiom	and	don’t	seem	to	be
missing	 the	 assignment	 in	 expression	 construct	 much;	 it’s	 only
newcomers	who	express	a	strong	desire	to	add	this	to	the	language.

There’s	an	alternative	way	of	spelling	this	that	seems	attractive	but	is
generally	less	robust	than	the	“while	True”	solution:

line	=	f.readline()

while	line:

				...	#	do	something	with	line...

				line	=	f.readline()

The	 problem	with	 this	 is	 that	 if	 you	 change	 your	mind	 about	 exactly
how	 you	 get	 the	 next	 line	 (e.g.	 you	 want	 to	 change	 it	 into
sys.stdin.readline())	 you	 have	 to	 remember	 to	 change	 two
places	 in	 your	 program	 –	 the	 second	 occurrence	 is	 hidden	 at	 the
bottom	of	the	loop.

The	 best	 approach	 is	 to	 use	 iterators,	 making	 it	 possible	 to	 loop
through	 objects	 using	 the	 for	 statement.	 For	 example,	 file	 objects
support	the	iterator	protocol,	so	you	can	write	simply:

for	line	in	f:

				...	#	do	something	with	line...

Why	does	Python	use	methods	for	some
functionality	(e.g.	list.index())	but	functions
for	other	(e.g.	len(list))?

The	major	reason	is	history.	Functions	were	used	for	those	operations
that	 were	 generic	 for	 a	 group	 of	 types	 and	 which	 were	 intended	 to
work	even	for	objects	that	didn’t	have	methods	at	all	(e.g.	tuples).	It	is
also	 convenient	 to	 have	 a	 function	 that	 can	 readily	 be	 applied	 to	 an
amorphous	collection	of	objects	when	you	use	the	functional	features
of	Python	(map(),	zip()	et	al).

In	 fact,	 implementing	len(),	max(),	min()	 as	a	built-in	 function	 is
actually	less	code	than	implementing	them	as	methods	for	each	type.
One	can	quibble	about	 individual	cases	but	 it’s	a	part	of	Python,	and
it’s	 too	 late	 to	 make	 such	 fundamental	 changes	 now.	 The	 functions
have	to	remain	to	avoid	massive	code	breakage.

Note: 	For	string	operations,	Python	has	moved	from	external
functions	(the	string	module)	to	methods.	However,	len()	is	still
a	function.

Why	is	join()	a	string	method	instead	of	a
list	or	tuple	method?

Strings	 became	 much	 more	 like	 other	 standard	 types	 starting	 in
Python	 1.6,	 when	 methods	 were	 added	 which	 give	 the	 same
functionality	that	has	always	been	available	using	the	functions	of	the
string	 module.	 Most	 of	 these	 new	 methods	 have	 been	 widely
accepted,	but	the	one	which	appears	to	make	some	programmers	feel
uncomfortable	is:

",	".join(['1',	'2',	'4',	'8',	'16'])

which	gives	the	result:

"1,	2,	4,	8,	16"

There	are	two	common	arguments	against	this	usage.

The	first	runs	along	the	lines	of:	“It	looks	really	ugly	using	a	method	of
a	string	 literal	 (string	constant)”,	 to	which	 the	answer	 is	 that	 it	might,
but	a	string	literal	is	just	a	fixed	value.	If	the	methods	are	to	be	allowed
on	 names	 bound	 to	 strings	 there	 is	 no	 logical	 reason	 to	make	 them
unavailable	on	literals.

The	 second	 objection	 is	 typically	 cast	 as:	 “I	 am	 really	 telling	 a
sequence	 to	 join	 its	members	 together	with	a	string	constant”.	Sadly,
you	 aren’t.	 For	 some	 reason	 there	 seems	 to	 be	much	 less	 difficulty
with	having	split()	as	a	string	method,	since	in	that	case	it	is	easy
to	see	that

"1,	2,	4,	8,	16".split(",	")

is	an	instruction	to	a	string	literal	to	return	the	substrings	delimited	by
the	given	separator	(or,	by	default,	arbitrary	runs	of	white	space).

join()	 is	 a	 string	 method	 because	 in	 using	 it	 you	 are	 telling	 the
separator	string	 to	 iterate	over	a	sequence	of	strings	and	 insert	 itself
between	 adjacent	 elements.	 This	 method	 can	 be	 used	 with	 any
argument	which	 obeys	 the	 rules	 for	 sequence	objects,	 including	 any
new	classes	you	might	define	yourself.	Similar	methods	exist	for	bytes
and	bytearray	objects.

How	fast	are	exceptions?

A	 try/except	 block	 is	 extremely	 efficient	 if	 no	 exceptions	 are	 raised.
Actually	 catching	 an	 exception	 is	 expensive.	 In	 versions	 of	 Python
prior	to	2.0	it	was	common	to	use	this	idiom:

try:

				value	=	mydict[key]

except	KeyError:

				mydict[key]	=	getvalue(key)

				value	=	mydict[key]

This	 only	made	 sense	 when	 you	 expected	 the	 dict	 to	 have	 the	 key
almost	all	the	time.	If	that	wasn’t	the	case,	you	coded	it	like	this:

if	key	in	mydict:

				value	=	mydict[key]

else:

				value	=	mydict[key]	=	getvalue(key)

For	 this	 specific	 case,	 you	 could	 also	 use	 value	 =

dict.setdefault(key,	 getvalue(key)),	 but	 only	 if	 the
getvalue()	 call	 is	 cheap	 enough	 because	 it	 is	 evaluated	 in	 all
cases.

Why	isn’t	there	a	switch	or	case	statement
in	Python?

You	can	do	 this	easily	enough	with	a	sequence	of	if...	elif...
elif...	 else.	 There	 have	 been	 some	 proposals	 for	 switch
statement	syntax,	but	there	is	no	consensus	(yet)	on	whether	and	how
to	do	 range	 tests.	See	PEP	275	 for	complete	details	and	 the	current
status.

For	 cases	 where	 you	 need	 to	 choose	 from	 a	 very	 large	 number	 of
possibilities,	 you	 can	 create	 a	 dictionary	 mapping	 case	 values	 to
functions	to	call.	For	example:

def	function_1(...):

				...

functions	=	{'a':	function_1,

													'b':	function_2,

													'c':	self.method_1,	...}

func	=	functions[value]

func()

For	calling	methods	on	objects,	you	can	simplify	yet	 further	by	using
the	getattr()	built-in	to	retrieve	methods	with	a	particular	name:

def	visit_a(self,	...):

				...

...

def	dispatch(self,	value):

				method_name	=	'visit_'	+	str(value)

				method	=	getattr(self,	method_name)

http://www.python.org/dev/peps/pep-0275

				method()

It’s	 suggested	 that	 you	 use	 a	 prefix	 for	 the	method	 names,	 such	 as
visit_	 in	 this	example.	Without	such	a	prefix,	 if	 values	are	coming
from	 an	 untrusted	 source,	 an	 attacker	 would	 be	 able	 to	 call	 any
method	on	your	object.

Can’t	you	emulate	threads	in	the
interpreter	instead	of	relying	on	an	OS-
specific	thread	implementation?

Answer	1:	Unfortunately,	 the	 interpreter	 pushes	at	 least	 one	C	stack
frame	for	each	Python	stack	frame.	Also,	extensions	can	call	back	into
Python	 at	 almost	 random	 moments.	 Therefore,	 a	 complete	 threads
implementation	requires	thread	support	for	C.

Answer	 2:	 Fortunately,	 there	 is	 Stackless	 Python,	 which	 has	 a
completely	redesigned	interpreter	loop	that	avoids	the	C	stack.

http://www.stackless.com

Why	can’t	lambda	expressions	contain
statements?

Python	 lambda	 expressions	 cannot	 contain	 statements	 because
Python’s	 syntactic	 framework	 can’t	 handle	 statements	 nested	 inside
expressions.	However,	in	Python,	this	is	not	a	serious	problem.	Unlike
lambda	forms	in	other	languages,	where	they	add	functionality,	Python
lambdas	 are	 only	 a	 shorthand	 notation	 if	 you’re	 too	 lazy	 to	 define	 a
function.

Functions	 are	 already	 first	 class	 objects	 in	 Python,	 and	 can	 be
declared	 in	 a	 local	 scope.	 Therefore	 the	 only	 advantage	 of	 using	 a
lambda	 instead	of	a	 locally-defined	 function	 is	 that	you	don’t	need	 to
invent	a	name	for	the	function	–	but	that’s	just	a	local	variable	to	which
the	 function	 object	 (which	 is	 exactly	 the	 same	 type	 of	 object	 that	 a
lambda	expression	yields)	is	assigned!

Can	Python	be	compiled	to	machine	code,
C	or	some	other	language?

Practical	answer:

Cython	and	Pyrex	compile	a	modified	version	of	Python	with	optional
annotations	 into	 C	 extensions.	 Weave	 makes	 it	 easy	 to	 intermingle
Python	and	C	code	in	various	ways	to	increase	performance.	Nuitka	is
an	 up-and-coming	 compiler	 of	 Python	 into	 C++	 code,	 aiming	 to
support	the	full	Python	language.

Theoretical	answer:

Not	trivially.	Python’s	high	 level	data	 types,	dynamic	 typing	of	objects
and	run-time	invocation	of	 the	 interpreter	(using	eval()	or	exec())
together	 mean	 that	 a	 naïvely	 “compiled”	 Python	 program	 would
probably	consist	mostly	of	calls	into	the	Python	run-time	system,	even
for	seemingly	simple	operations	like	x+1.

Several	projects	described	in	the	Python	newsgroup	or	at	past	Python
conferences	have	 shown	 that	 this	 approach	 is	 feasible,	 although	 the
speedups	 reached	so	 far	are	only	modest	 (e.g.	2x).	 Jython	uses	 the
same	 strategy	 for	 compiling	 to	 Java	 bytecode.	 (Jim	 Hugunin	 has
demonstrated	 that	 in	 combination	 with	 whole-program	 analysis,
speedups	 of	 1000x	 are	 feasible	 for	 small	 demo	 programs.	 See	 the
proceedings	from	the	1997	Python	conference	for	more	information.)

http://cython.org/
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://www.scipy.org/Weave
http://www.nuitka.net/
http://python.org/community/workshops/
http://python.org/workshops/1997-10/proceedings/

How	does	Python	manage	memory?

The	 details	 of	 Python	 memory	 management	 depend	 on	 the
implementation.	 The	 standard	 implementation	 of	 Python,	 CPython,
uses	 reference	 counting	 to	 detect	 inaccessible	 objects,	 and	 another
mechanism	 to	collect	 reference	cycles,	periodically	executing	a	cycle
detection	algorithm	which	looks	for	inaccessible	cycles	and	deletes	the
objects	 involved.	 The	 gc	 module	 provides	 functions	 to	 perform	 a
garbage	collection,	obtain	debugging	statistics,	and	tune	the	collector’s
parameters.

Other	implementations	(such	as	Jython	or	PyPy),	however,	can	rely	on
a	 different	 mechanism	 such	 as	 a	 full-blown	 garbage	 collector.	 This
difference	 can	 cause	 some	 subtle	 porting	 problems	 if	 your	 Python
code	 depends	 on	 the	 behavior	 of	 the	 reference	 counting
implementation.

In	some	Python	 implementations,	 the	 following	code	 (which	 is	 fine	 in
CPython)	will	probably	run	out	of	file	descriptors:

for	file	in	very_long_list_of_files:

				f	=	open(file)

				c	=	f.read(1)

Indeed,	 using	 CPython’s	 reference	 counting	 and	 destructor	 scheme,
each	new	assignment	 to	 f	 closes	 the	previous	 file.	With	 a	 traditional
GC,	however,	those	file	objects	will	only	get	collected	(and	closed)	at
varying	and	possibly	long	intervals.

If	 you	 want	 to	 write	 code	 that	 will	 work	 with	 any	 Python
implementation,	 you	 should	 explicitly	 close	 the	 file	 or	 use	 the	 with
statement;	this	will	work	regardless	of	memory	management	scheme:

http://www.jython.org
http://www.pypy.org

for	file	in	very_long_list_of_files:

				with	open(file)	as	f:

								c	=	f.read(1)

Why	doesn’t	CPython	use	a	more
traditional	garbage	collection	scheme?

For	 one	 thing,	 this	 is	 not	 a	 C	 standard	 feature	 and	 hence	 it’s	 not
portable.	 (Yes,	 we	 know	 about	 the	 Boehm	GC	 library.	 It	 has	 bits	 of
assembler	code	 for	most	 common	platforms,	not	 for	all	of	 them,	and
although	 it	 is	 mostly	 transparent,	 it	 isn’t	 completely	 transparent;
patches	are	required	to	get	Python	to	work	with	it.)

Traditional	 GC	 also	 becomes	 a	 problem	 when	 Python	 is	 embedded
into	other	applications.	While	in	a	standalone	Python	it’s	fine	to	replace
the	 standard	 malloc()	 and	 free()	 with	 versions	 provided	 by	 the	 GC
library,	 an	 application	 embedding	 Python	may	 want	 to	 have	 its	 own
substitute	 for	malloc()	 and	 free(),	 and	may	 not	 want	 Python’s.	 Right
now,	CPython	works	with	anything	that	implements	malloc()	and	free()
properly.

Why	isn’t	all	memory	freed	when	CPython
exits?

Objects	 referenced	 from	 the	 global	 namespaces	 of	 Python	modules
are	 not	 always	 deallocated	 when	 Python	 exits.	 This	 may	 happen	 if
there	 are	 circular	 references.	 There	 are	 also	 certain	 bits	 of	 memory
that	are	allocated	by	 the	C	 library	 that	 are	 impossible	 to	 free	 (e.g.	 a
tool	 like	 Purify	 will	 complain	 about	 these).	 Python	 is,	 however,
aggressive	about	cleaning	up	memory	on	exit	and	does	try	to	destroy
every	single	object.

If	you	want	to	force	Python	to	delete	certain	things	on	deallocation	use
the	atexit	module	to	run	a	function	that	will	force	those	deletions.

Why	are	there	separate	tuple	and	list	data
types?

Lists	and	tuples,	while	similar	in	many	respects,	are	generally	used	in
fundamentally	 different	 ways.	 Tuples	 can	 be	 thought	 of	 as	 being
similar	 to	 Pascal	 records	 or	 C	 structs;	 they’re	 small	 collections	 of
related	data	which	may	be	of	different	types	which	are	operated	on	as
a	 group.	 For	 example,	 a	 Cartesian	 coordinate	 is	 appropriately
represented	as	a	tuple	of	two	or	three	numbers.

Lists,	on	the	other	hand,	are	more	like	arrays	in	other	languages.	They
tend	 to	hold	a	varying	number	of	objects	all	of	which	have	 the	same
type	 and	 which	 are	 operated	 on	 one-by-one.	 For	 example,
os.listdir('.')	 returns	 a	 list	 of	 strings	 representing	 the	 files	 in
the	 current	 directory.	 Functions	 which	 operate	 on	 this	 output	 would
generally	not	break	if	you	added	another	file	or	two	to	the	directory.

Tuples	are	 immutable,	meaning	 that	 once	a	 tuple	 has	been	 created,
you	 can’t	 replace	 any	 of	 its	 elements	 with	 a	 new	 value.	 Lists	 are
mutable,	meaning	that	you	can	always	change	a	list’s	elements.	Only
immutable	elements	can	be	used	as	dictionary	keys,	and	hence	only
tuples	and	not	lists	can	be	used	as	keys.

How	are	lists	implemented?

Python’s	 lists	 are	 really	 variable-length	 arrays,	 not	 Lisp-style	 linked
lists.	 The	 implementation	 uses	 a	 contiguous	 array	 of	 references	 to
other	objects,	and	keeps	a	pointer	to	this	array	and	the	array’s	length
in	a	list	head	structure.

This	 makes	 indexing	 a	 list	 a[i]	 an	 operation	 whose	 cost	 is
independent	of	the	size	of	the	list	or	the	value	of	the	index.

When	 items	 are	 appended	 or	 inserted,	 the	 array	 of	 references	 is
resized.	Some	 cleverness	 is	 applied	 to	 improve	 the	 performance	 of
appending	 items	 repeatedly;	 when	 the	 array	 must	 be	 grown,	 some
extra	space	is	allocated	so	the	next	few	times	don’t	require	an	actual
resize.

How	are	dictionaries	implemented?

Python’s	 dictionaries	 are	 implemented	 as	 resizable	 hash	 tables.
Compared	 to	 B-trees,	 this	 gives	 better	 performance	 for	 lookup	 (the
most	 common	 operation	 by	 far)	 under	most	 circumstances,	 and	 the
implementation	is	simpler.

Dictionaries	work	by	computing	a	hash	code	for	each	key	stored	in	the
dictionary	 using	 the	 hash()	 built-in	 function.	 The	 hash	 code	 varies
widely	 depending	 on	 the	 key	 and	 a	 per-process	 seed;	 for	 example,
“Python”	could	hash	to	-539294296	while	“python”,	a	string	that	differs
by	a	single	bit,	could	hash	to	1142331976.	The	hash	code	is	then	used
to	 calculate	 a	 location	 in	 an	 internal	 array	 where	 the	 value	 will	 be
stored.	Assuming	 that	you’re	storing	keys	 that	all	have	different	hash
values,	 this	 means	 that	 dictionaries	 take	 constant	 time	 –	 O(1),	 in
computer	 science	notation	–	 to	 retrieve	a	 key.	 It	 also	means	 that	 no
sorted	order	of	the	keys	is	maintained,	and	traversing	the	array	as	the
.keys()	 and	 .items()	 do	 will	 output	 the	 dictionary’s	 content	 in
some	arbitrary	jumbled	order	that	can	change	with	every	invocation	of
a	program.

Why	must	dictionary	keys	be	immutable?

The	 hash	 table	 implementation	 of	 dictionaries	 uses	 a	 hash	 value
calculated	from	the	key	value	to	find	the	key.	If	the	key	were	a	mutable
object,	 its	 value	could	change,	and	 thus	 its	hash	could	also	change.
But	since	whoever	changes	the	key	object	can’t	 tell	 that	 it	was	being
used	 as	 a	 dictionary	 key,	 it	 can’t	 move	 the	 entry	 around	 in	 the
dictionary.	 Then,	 when	 you	 try	 to	 look	 up	 the	 same	 object	 in	 the
dictionary	 it	won’t	be	found	because	 its	hash	value	 is	different.	 If	you
tried	to	 look	up	the	old	value	 it	wouldn’t	be	found	either,	because	the
value	of	the	object	found	in	that	hash	bin	would	be	different.

If	you	want	a	dictionary	indexed	with	a	list,	simply	convert	the	list	to	a
tuple	 first;	 the	 function	 tuple(L)	 creates	 a	 tuple	 with	 the	 same
entries	as	the	list	L.	Tuples	are	immutable	and	can	therefore	be	used
as	dictionary	keys.

Some	unacceptable	solutions	that	have	been	proposed:

Hash	lists	by	their	address	(object	ID).	This	doesn’t	work	because
if	you	construct	a	new	list	with	the	same	value	it	won’t	be	found;
e.g.:

mydict	=	{[1,	2]:	'12'}

print(mydict[[1,	2]])

would	raise	a	KeyError	exception	because	the	 id	of	 the	[1,	2]
used	 in	 the	second	 line	differs	 from	 that	 in	 the	 first	 line.	 In	 other
words,	 dictionary	 keys	 should	 be	 compared	using	 ==,	not	using
is.

Make	 a	 copy	 when	 using	 a	 list	 as	 a	 key.	 This	 doesn’t	 work

because	 the	 list,	 being	 a	 mutable	 object,	 could	 contain	 a
reference	 to	 itself,	 and	 then	 the	copying	code	would	 run	 into	an
infinite	loop.

Allow	lists	as	keys	but	tell	the	user	not	to	modify	them.	This	would
allow	a	class	of	hard-to-track	bugs	in	programs	when	you	forgot	or
modified	 a	 list	 by	 accident.	 It	 also	 invalidates	 an	 important
invariant	of	dictionaries:	every	value	in	d.keys()	 is	usable	as	a
key	of	the	dictionary.

Mark	 lists	 as	 read-only	 once	 they	 are	 used	 as	 a	 dictionary	 key.
The	 problem	 is	 that	 it’s	 not	 just	 the	 top-level	 object	 that	 could
change	its	value;	you	could	use	a	tuple	containing	a	list	as	a	key.
Entering	anything	as	a	key	into	a	dictionary	would	require	marking
all	 objects	 reachable	 from	 there	 as	 read-only	 –	 and	 again,	 self-
referential	objects	could	cause	an	infinite	loop.

There	is	a	trick	to	get	around	this	if	you	need	to,	but	use	it	at	your	own
risk:	You	can	wrap	a	mutable	structure	 inside	a	class	 instance	which
has	 both	 a	 __eq__()	 and	 a	 __hash__()	 method.	 You	must	 then
make	sure	that	the	hash	value	for	all	such	wrapper	objects	that	reside
in	a	dictionary	(or	other	hash	based	structure),	remain	fixed	while	the
object	is	in	the	dictionary	(or	other	structure).

class	ListWrapper:

				def	__init__(self,	the_list):

								self.the_list	=	the_list

				def	__eq__(self,	other):

								return	self.the_list	==	other.the_list

				def	__hash__(self):

								l	=	self.the_list

								result	=	98767	-	len(l)*555

								for	i,	el	in	enumerate(l):

												try:

																result	=	result	+	(hash(el)	%	9999999

												except	Exception:

																result	=	(result	%	7777777)	+	i	*	333

								return	result

Note	 that	 the	hash	computation	 is	complicated	by	 the	possibility	 that
some	 members	 of	 the	 list	 may	 be	 unhashable	 and	 also	 by	 the
possibility	of	arithmetic	overflow.

Furthermore	 it	 must	 always	 be	 the	 case	 that	 if	 o1	 ==	 o2	 (ie
o1.__eq__(o2)	 is	 True)	 then	 hash(o1)	 ==	 hash(o2)	 (ie,
o1.__hash__()	==	o2.__hash__()),	 regardless	 of	 whether	 the
object	 is	 in	 a	 dictionary	 or	 not.	 If	 you	 fail	 to	 meet	 these	 restrictions
dictionaries	and	other	hash	based	structures	will	misbehave.

In	 the	 case	 of	 ListWrapper,	 whenever	 the	 wrapper	 object	 is	 in	 a
dictionary	the	wrapped	list	must	not	change	to	avoid	anomalies.	Don’t
do	this	unless	you	are	prepared	to	think	hard	about	the	requirements
and	 the	 consequences	 of	 not	 meeting	 them	 correctly.	 Consider
yourself	warned.

Why	doesn’t	list.sort()	return	the	sorted
list?

In	situations	where	performance	matters,	making	a	copy	of	the	list	just
to	sort	it	would	be	wasteful.	Therefore,	list.sort()	sorts	the	list	in
place.	In	order	to	remind	you	of	that	fact,	it	does	not	return	the	sorted
list.	 This	way,	 you	won’t	 be	 fooled	 into	 accidentally	 overwriting	 a	 list
when	 you	 need	 a	 sorted	 copy	 but	 also	 need	 to	 keep	 the	 unsorted
version	around.

If	 you	want	 to	 return	 a	 new	 list,	 use	 the	 built-in	 sorted()	 function
instead.	This	function	creates	a	new	list	from	a	provided	iterable,	sorts
it	and	returns	it.	For	example,	here’s	how	to	iterate	over	the	keys	of	a
dictionary	in	sorted	order:

for	key	in	sorted(mydict):

				...	#	do	whatever	with	mydict[key]...

How	do	you	specify	and	enforce	an
interface	spec	in	Python?

An	interface	specification	for	a	module	as	provided	by	languages	such
as	 C++	 and	 Java	 describes	 the	 prototypes	 for	 the	 methods	 and
functions	of	 the	module.	Many	 feel	 that	 compile-time	enforcement	 of
interface	specifications	helps	in	the	construction	of	large	programs.

Python	 2.6	 adds	 an	 abc	module	 that	 lets	 you	 define	 Abstract	 Base
Classes	 (ABCs).	 You	 can	 then	 use	 isinstance()	 and
issubclass()	to	check	whether	an	instance	or	a	class	implements	a
particular	 ABC.	 The	 collections.abc	 module	 defines	 a	 set	 of
useful	 ABCs	 such	 as	 Iterable,	 Container,	 and
MutableMapping.

For	Python,	many	of	the	advantages	of	interface	specifications	can	be
obtained	 by	 an	 appropriate	 test	 discipline	 for	 components.	 There	 is
also	 a	 tool,	 PyChecker,	 which	 can	 be	 used	 to	 find	 problems	 due	 to
subclassing.

A	good	test	suite	for	a	module	can	both	provide	a	regression	test	and
serve	as	a	module	interface	specification	and	a	set	of	examples.	Many
Python	modules	can	be	run	as	a	script	to	provide	a	simple	“self	test.”
Even	 modules	 which	 use	 complex	 external	 interfaces	 can	 often	 be
tested	 in	 isolation	 using	 trivial	 “stub”	 emulations	 of	 the	 external
interface.	 The	 doctest	 and	 unittest	 modules	 or	 third-party	 test
frameworks	 can	 be	 used	 to	 construct	 exhaustive	 test	 suites	 that
exercise	every	line	of	code	in	a	module.

An	 appropriate	 testing	 discipline	 can	 help	 build	 large	 complex
applications	in	Python	as	well	as	having	interface	specifications	would.

In	fact,	 it	can	be	better	because	an	interface	specification	cannot	test
certain	properties	of	a	program.	For	example,	 the	append()	method
is	expected	 to	add	new	elements	 to	 the	end	of	some	 internal	 list;	an
interface	specification	cannot	test	that	your	append()	implementation
will	actually	do	 this	correctly,	but	 it’s	 trivial	 to	check	 this	property	 in	a
test	suite.

Writing	 test	suites	 is	very	helpful,	and	you	might	want	 to	design	your
code	with	an	eye	to	making	it	easily	tested.	One	increasingly	popular
technique,	test-directed	development,	calls	for	writing	parts	of	the	test
suite	 first,	before	you	write	any	of	 the	actual	code.	Of	course	Python
allows	you	to	be	sloppy	and	not	write	test	cases	at	all.

Why	are	default	values	shared	between
objects?

This	 type	 of	 bug	 commonly	 bites	 neophyte	 programmers.	 Consider
this	function:

def	foo(mydict={}):		#	Danger:	shared	reference	to	one	dict	for	all	calls

				...	compute	something	...

				mydict[key]	=	value

				return	mydict

The	 first	 time	 you	 call	 this	 function,	 mydict	 contains	 a	 single	 item.
The	second	 time,	mydict	contains	 two	 items	because	when	foo()
begins	executing,	mydict	starts	out	with	an	item	already	in	it.

It	is	often	expected	that	a	function	call	creates	new	objects	for	default
values.	This	 is	not	what	happens.	Default	values	are	created	exactly
once,	when	 the	 function	 is	defined.	 If	 that	object	 is	changed,	 like	 the
dictionary	in	this	example,	subsequent	calls	to	the	function	will	refer	to
this	changed	object.

By	definition,	immutable	objects	such	as	numbers,	strings,	tuples,	and
None,	 are	 safe	 from	 change.	 Changes	 to	 mutable	 objects	 such	 as
dictionaries,	lists,	and	class	instances	can	lead	to	confusion.

Because	 of	 this	 feature,	 it	 is	 good	 programming	 practice	 to	 not	 use
mutable	 objects	 as	default	 values.	 Instead,	 use	 None	 as	 the	 default
value	 and	 inside	 the	 function,	 check	 if	 the	 parameter	 is	 None	 and
create	a	new	list/dictionary/whatever	if	it	is.	For	example,	don’t	write:

def	foo(mydict={}):

				...

but:

def	foo(mydict=None):

				if	mydict	is	None:

								mydict	=	{}		#	create	a	new	dict	for	local	namespace

This	 feature	 can	 be	 useful.	 When	 you	 have	 a	 function	 that’s	 time-
consuming	 to	 compute,	 a	 common	 technique	 is	 to	 cache	 the
parameters	 and	 the	 resulting	 value	 of	 each	 call	 to	 the	 function,	 and
return	the	cached	value	 if	 the	same	value	 is	requested	again.	This	is
called	“memoizing”,	and	can	be	implemented	like	this:

#	Callers	will	never	provide	a	third	parameter	for	this	function.

def	expensive(arg1,	arg2,	_cache={}):

				if	(arg1,	arg2)	in	_cache:

								return	_cache[(arg1,	arg2)]

				#	Calculate	the	value

				result	=	...	expensive	computation	...

				_cache[(arg1,	arg2)]	=	result											#	Store	result	in	the	cache

				return	result

You	could	use	a	global	variable	containing	a	dictionary	 instead	of	the
default	value;	it’s	a	matter	of	taste.

Why	is	there	no	goto?

You	can	use	exceptions	to	provide	a	“structured	goto”	that	even	works
across	 function	 calls.	 Many	 feel	 that	 exceptions	 can	 conveniently
emulate	 all	 reasonable	 uses	 of	 the	 “go”	 or	 “goto”	 constructs	 of	 C,
Fortran,	and	other	languages.	For	example:

class	label(Exception):	pass		#	declare	a	label

try:

					...

					if	condition:	raise	label()		#	goto	label

					...

except	label:		#	where	to	goto

					pass

...

This	 doesn’t	 allow	 you	 to	 jump	 into	 the	 middle	 of	 a	 loop,	 but	 that’s
usually	considered	an	abuse	of	goto	anyway.	Use	sparingly.

Why	can’t	raw	strings	(r-strings)	end	with	a
backslash?

More	precisely,	they	can’t	end	with	an	odd	number	of	backslashes:	the
unpaired	 backslash	 at	 the	 end	 escapes	 the	 closing	 quote	 character,
leaving	an	unterminated	string.

Raw	 strings	 were	 designed	 to	 ease	 creating	 input	 for	 processors
(chiefly	 regular	 expression	 engines)	 that	 want	 to	 do	 their	 own
backslash	 escape	 processing.	 Such	 processors	 consider	 an
unmatched	 trailing	 backslash	 to	 be	 an	 error	 anyway,	 so	 raw	 strings
disallow	 that.	 In	 return,	 they	 allow	 you	 to	 pass	 on	 the	 string	 quote
character	by	escaping	it	with	a	backslash.	These	rules	work	well	when
r-strings	are	used	for	their	intended	purpose.

If	 you’re	 trying	 to	 build	Windows	 pathnames,	 note	 that	 all	 Windows
system	calls	accept	forward	slashes	too:

f	=	open("/mydir/file.txt")		#	works	fine!

If	you’re	trying	to	build	a	pathname	for	a	DOS	command,	try	e.g.	one
of

dir	=	r"\this\is\my\dos\dir"	"\\"

dir	=	r"\this\is\my\dos\dir\	"[:-1]

dir	=	"\\this\\is\\my\\dos\\dir\\"

Why	doesn’t	Python	have	a	“with”
statement	for	attribute	assignments?

Python	 has	 a	 ‘with’	 statement	 that	 wraps	 the	 execution	 of	 a	 block,
calling	code	on	the	entrance	and	exit	from	the	block.	Some	language
have	a	construct	that	looks	like	this:

with	obj:

				a	=	1															#	equivalent	to	obj.a	=	1

				total	=	total	+	1			#	obj.total	=	obj.total	+	1

In	Python,	such	a	construct	would	be	ambiguous.

Other	 languages,	such	as	Object	Pascal,	Delphi,	and	C++,	use	static
types,	so	it’s	possible	to	know,	in	an	unambiguous	way,	what	member
is	 being	 assigned	 to.	 This	 is	 the	 main	 point	 of	 static	 typing	 –	 the
compiler	always	knows	the	scope	of	every	variable	at	compile	time.

Python	uses	dynamic	types.	It	is	impossible	to	know	in	advance	which
attribute	 will	 be	 referenced	 at	 runtime.	 Member	 attributes	 may	 be
added	or	removed	from	objects	on	the	fly.	This	makes	it	impossible	to
know,	from	a	simple	reading,	what	attribute	is	being	referenced:	a	local
one,	a	global	one,	or	a	member	attribute?

For	instance,	take	the	following	incomplete	snippet:

def	foo(a):

				with	a:

								print(x)

The	snippet	assumes	that	“a”	must	have	a	member	attribute	called	“x”.
However,	there	is	nothing	in	Python	that	tells	the	interpreter	this.	What

should	 happen	 if	 “a”	 is,	 let	 us	 say,	 an	 integer?	 If	 there	 is	 a	 global
variable	named	“x”,	will	 it	be	used	inside	the	with	block?	As	you	see,
the	dynamic	nature	of	Python	makes	such	choices	much	harder.

The	primary	benefit	of	“with”	and	similar	language	features	(reduction
of	 code	 volume)	 can,	 however,	 easily	 be	 achieved	 in	 Python	 by
assignment.	Instead	of:

function(args).mydict[index][index].a	=	21

function(args).mydict[index][index].b	=	42

function(args).mydict[index][index].c	=	63

write	this:

ref	=	function(args).mydict[index][index]

ref.a	=	21

ref.b	=	42

ref.c	=	63

This	 also	 has	 the	 side-effect	 of	 increasing	 execution	 speed	because
name	 bindings	 are	 resolved	 at	 run-time	 in	 Python,	 and	 the	 second
version	only	needs	to	perform	the	resolution	once.

Why	are	colons	required	for	the
if/while/def/class	statements?

The	 colon	 is	 required	 primarily	 to	 enhance	 readability	 (one	 of	 the
results	of	the	experimental	ABC	language).	Consider	this:

if	a	==	b

				print(a)

versus

if	a	==	b:

				print(a)

Notice	 how	 the	 second	 one	 is	 slightly	 easier	 to	 read.	 Notice	 further
how	a	colon	sets	off	 the	example	 in	 this	FAQ	answer;	 it’s	a	standard
usage	in	English.

Another	minor	reason	is	that	the	colon	makes	it	easier	for	editors	with
syntax	 highlighting;	 they	 can	 look	 for	 colons	 to	 decide	 when
indentation	 needs	 to	 be	 increased	 instead	 of	 having	 to	 do	 a	 more
elaborate	parsing	of	the	program	text.

Why	does	Python	allow	commas	at	the
end	of	lists	and	tuples?

Python	 lets	you	add	a	 trailing	comma	at	 the	end	of	 lists,	 tuples,	and
dictionaries:

[1,	2,	3,]

('a',	'b',	'c',)

d	=	{

				"A":	[1,	5],

				"B":	[6,	7],		#	last	trailing	comma	is	optional	but	good	style

}

There	are	several	reasons	to	allow	this.

When	 you	 have	 a	 literal	 value	 for	 a	 list,	 tuple,	 or	 dictionary	 spread
across	multiple	 lines,	 it’s	 easier	 to	 add	more	 elements	 because	 you
don’t	have	to	remember	to	add	a	comma	to	the	previous	line.	The	lines
can	also	be	reordered	without	creating	a	syntax	error.

Accidentally	 omitting	 the	 comma	 can	 lead	 to	 errors	 that	 are	 hard	 to
diagnose.	For	example:

x	=	[

		"fee",

		"fie"

		"foo",

		"fum"

]

This	 list	 looks	 like	 it	has	 four	elements,	but	 it	actually	contains	 three:
“fee”,	“fiefoo”	and	“fum”.	Always	adding	the	comma	avoids	this	source

of	error.

Allowing	 the	 trailing	 comma	 may	 also	 make	 programmatic	 code
generation	easier.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

Library	and	Extension	FAQ

Contents

Library	and	Extension	FAQ
General	Library	Questions

How	do	 I	 find	a	module	or	application	 to	perform	 task
X?
Where	is	the	math.py	(socket.py,	regex.py,	etc.)	source
file?
How	do	I	make	a	Python	script	executable	on	Unix?
Is	there	a	curses/termcap	package	for	Python?
Is	there	an	equivalent	to	C’s	onexit()	in	Python?
Why	don’t	my	signal	handlers	work?

Common	tasks
How	do	I	test	a	Python	program	or	component?
How	do	I	create	documentation	from	doc	strings?
How	do	I	get	a	single	keypress	at	a	time?

Threads
How	do	I	program	using	threads?
None	of	my	threads	seem	to	run:	why?
How	 do	 I	 parcel	 out	 work	 among	 a	 bunch	 of	 worker
threads?
What	kinds	of	global	value	mutation	are	thread-safe?
Can’t	we	get	rid	of	the	Global	Interpreter	Lock?

Input	and	Output
How	do	I	delete	a	file?	(And	other	file	questions...)
How	do	I	copy	a	file?
How	do	I	read	(or	write)	binary	data?
I	 can’t	 seem	 to	 use	 os.read()	 on	 a	 pipe	 created	 with
os.popen();	why?
How	do	I	access	the	serial	(RS232)	port?

Why	 doesn’t	 closing	 sys.stdout	 (stdin,	 stderr)	 really
close	it?

Network/Internet	Programming
What	WWW	tools	are	there	for	Python?
How	 can	 I	 mimic	 CGI	 form	 submission
(METHOD=POST)?
What	 module	 should	 I	 use	 to	 help	 with	 generating
HTML?
How	do	I	send	mail	from	a	Python	script?
How	do	 I	avoid	blocking	 in	 the	connect()	method	of	a
socket?

Databases
Are	 there	 any	 interfaces	 to	 database	 packages	 in
Python?
How	do	you	implement	persistent	objects	in	Python?

Mathematics	and	Numerics
How	do	I	generate	random	numbers	in	Python?

General	Library	Questions

How	do	I	find	a	module	or	application	to	perform
task	X?

Check	 the	 Library	 Reference	 to	 see	 if	 there’s	 a	 relevant	 standard
library	module.	 (Eventually	 you’ll	 learn	 what’s	 in	 the	 standard	 library
and	will	be	able	to	skip	this	step.)

For	 third-party	 packages,	 search	 the	 Python	 Package	 Index	 or	 try
Google	or	another	Web	search	engine.	Searching	for	“Python”	plus	a
keyword	 or	 two	 for	 your	 topic	 of	 interest	 will	 usually	 find	 something
helpful.

Where	is	the	math.py	(socket.py,	regex.py,	etc.)
source	file?

If	 you	 can’t	 find	 a	 source	 file	 for	 a	 module	 it	 may	 be	 a	 built-in	 or
dynamically	loaded	module	implemented	in	C,	C++	or	other	compiled
language.	 In	 this	case	you	may	not	have	the	source	file	or	 it	may	be
something	 like	 mathmodule.c,	 somewhere	 in	 a	 C	 source	 directory
(not	on	the	Python	Path).

There	are	(at	least)	three	kinds	of	modules	in	Python:

1.	 modules	written	in	Python	(.py);

2.	 modules	written	 in	C	 and	dynamically	 loaded	 (.dll,	 .pyd,	 .so,	 .sl,
etc);

3.	 modules	written	in	C	and	linked	with	the	interpreter;	to	get	a	list	of
these,	type:

http://pypi.python.org/pypi
http://www.google.com

import	sys

print(sys.builtin_module_names)

How	do	I	make	a	Python	script	executable	on
Unix?

You	need	to	do	 two	 things:	 the	script	 file’s	mode	must	be	executable
and	the	first	line	must	begin	with	#!	followed	by	the	path	of	the	Python
interpreter.

The	 first	 is	 done	by	executing	 chmod	+x	scriptfile	 or	 perhaps
chmod	755	scriptfile.

The	 second	 can	 be	 done	 in	 a	 number	 of	 ways.	 The	 most
straightforward	way	is	to	write

#!/usr/local/bin/python

as	 the	 very	 first	 line	 of	 your	 file,	 using	 the	 pathname	 for	 where	 the
Python	interpreter	is	installed	on	your	platform.

If	 you	 would	 like	 the	 script	 to	 be	 independent	 of	 where	 the	 Python
interpreter	 lives,	 you	 can	 use	 the	 env	 program.	 Almost	 all	 Unix
variants	support	the	following,	assuming	the	Python	interpreter	is	in	a
directory	on	the	user’s	PATH:

#!/usr/bin/env	python

Don’t	do	this	for	CGI	scripts.	The	PATH	variable	for	CGI	scripts	is	often
very	minimal,	so	you	need	to	use	the	actual	absolute	pathname	of	the
interpreter.

Occasionally,	 a	 user’s	 environment	 is	 so	 full	 that	 the	 /usr/bin/env
program	fails;	or	there’s	no	env	program	at	all.	In	that	case,	you	can	try
the	following	hack	(due	to	Alex	Rezinsky):

#!	/bin/sh

""":"

exec	python	$0	${1+"$@"}

"""

The	minor	disadvantage	is	that	this	defines	the	script’s	__doc__	string.
However,	you	can	fix	that	by	adding

__doc__	=	"""...Whatever..."""

Is	there	a	curses/termcap	package	for	Python?

For	Unix	variants:	The	standard	Python	source	distribution	comes	with
a	curses	module	in	the	Modules	subdirectory,	though	it’s	not	compiled
by	default.	(Note	that	this	is	not	available	in	the	Windows	distribution	–
there	is	no	curses	module	for	Windows.)

The	curses	module	supports	basic	curses	features	as	well	as	many
additional	 functions	 from	 ncurses	 and	 SYSV	 curses	 such	 as	 colour,
alternative	 character	 set	 support,	 pads,	 and	 mouse	 support.	 This
means	 the	module	 isn’t	 compatible	with	 operating	 systems	 that	 only
have	BSD	curses,	but	there	don’t	seem	to	be	any	currently	maintained
OSes	that	fall	into	this	category.

For	Windows:	use	the	consolelib	module.

Is	there	an	equivalent	to	C’s	onexit()	in	Python?

http://hg.python.org/cpython/file/3.4/Modules
http://effbot.org/zone/console-index.htm

The	atexit	module	provides	a	register	function	that	is	similar	to	C’s
onexit().

Why	don’t	my	signal	handlers	work?

The	most	common	problem	is	that	the	signal	handler	is	declared	with
the	wrong	argument	list.	It	is	called	as

handler(signum,	frame)

so	it	should	be	declared	with	two	arguments:

def	handler(signum,	frame):

				...

Common	tasks

How	do	I	test	a	Python	program	or	component?

Python	 comes	 with	 two	 testing	 frameworks.	 The	 doctest	 module
finds	 examples	 in	 the	 docstrings	 for	 a	 module	 and	 runs	 them,
comparing	the	output	with	the	expected	output	given	in	the	docstring.

The	 unittest	 module	 is	 a	 fancier	 testing	 framework	 modelled	 on
Java	and	Smalltalk	testing	frameworks.

To	make	 testing	easier,	you	should	use	good	modular	design	 in	your
program.	 Your	 program	 should	 have	 almost	 all	 functionality
encapsulated	 in	 either	 functions	 or	 class	 methods	 –	 and	 this
sometimes	 has	 the	 surprising	 and	 delightful	 effect	 of	 making	 the
program	 run	 faster	 (because	 local	 variable	 accesses	 are	 faster	 than
global	 accesses).	 Furthermore	 the	 program	 should	 avoid	 depending
on	 mutating	 global	 variables,	 since	 this	 makes	 testing	 much	 more
difficult	to	do.

The	“global	main	logic”	of	your	program	may	be	as	simple	as

if	__name__	==	"__main__":

				main_logic()

at	the	bottom	of	the	main	module	of	your	program.

Once	your	program	is	organized	as	a	tractable	collection	of	functions
and	class	behaviours	you	should	write	test	functions	that	exercise	the
behaviours.	 A	 test	 suite	 that	 automates	 a	 sequence	 of	 tests	 can	 be
associated	with	each	module.	This	sounds	like	a	lot	of	work,	but	since
Python	 is	 so	 terse	 and	 flexible	 it’s	 surprisingly	 easy.	 You	 can	 make

coding	much	more	pleasant	and	 fun	by	writing	your	 test	 functions	 in
parallel	 with	 the	 “production	 code”,	 since	 this	 makes	 it	 easy	 to	 find
bugs	and	even	design	flaws	earlier.

“Support	modules”	 that	are	not	 intended	 to	be	 the	main	module	of	a
program	may	include	a	self-test	of	the	module.

if	__name__	==	"__main__":

				self_test()

Even	programs	that	 interact	with	complex	external	 interfaces	may	be
tested	 when	 the	 external	 interfaces	 are	 unavailable	 by	 using	 “fake”
interfaces	implemented	in	Python.

How	do	I	create	documentation	from	doc	strings?

The	 pydoc	 module	 can	 create	 HTML	 from	 the	 doc	 strings	 in	 your
Python	 source	 code.	 An	 alternative	 for	 creating	 API	 documentation
purely	 from	 docstrings	 is	 epydoc.	Sphinx	 can	 also	 include	 docstring
content.

How	do	I	get	a	single	keypress	at	a	time?

For	Unix	variants	there	are	several	solutions.	It’s	straightforward	to	do
this	using	curses,	but	curses	is	a	fairly	large	module	to	learn.

http://epydoc.sf.net/
http://sphinx.pocoo.org

Threads

How	do	I	program	using	threads?

Be	sure	to	use	the	threading	module	and	not	the	_thread	module.
The	threading	module	builds	convenient	abstractions	on	top	of	the
low-level	primitives	provided	by	the	_thread	module.

Aahz	has	a	set	of	slides	from	his	threading	tutorial	that	are	helpful;	see
http://www.pythoncraft.com/OSCON2001/.

None	of	my	threads	seem	to	run:	why?

As	 soon	 as	 the	 main	 thread	 exits,	 all	 threads	 are	 killed.	 Your	 main
thread	 is	 running	 too	 quickly,	 giving	 the	 threads	 no	 time	 to	 do	 any
work.

A	 simple	 fix	 is	 to	 add	 a	 sleep	 to	 the	 end	 of	 the	 program	 that’s	 long
enough	for	all	the	threads	to	finish:

import	threading,	time

def	thread_task(name,	n):

				for	i	in	range(n):	print(name,	i)

for	i	in	range(10):

				T	=	threading.Thread(target=thread_task,	args=(str

				T.start()

time.sleep(10)		#	<---------------------------!

But	 now	 (on	 many	 platforms)	 the	 threads	 don’t	 run	 in	 parallel,	 but

http://www.pythoncraft.com/OSCON2001/

appear	 to	 run	sequentially,	one	at	a	 time!	The	 reason	 is	 that	 the	OS
thread	scheduler	doesn’t	start	a	new	thread	until	the	previous	thread	is
blocked.

A	simple	fix	is	to	add	a	tiny	sleep	to	the	start	of	the	run	function:

def	thread_task(name,	n):

				time.sleep(0.001)		#	<--------------------!

				for	i	in	range(n):	print(name,	i)

for	i	in	range(10):

				T	=	threading.Thread(target=thread_task,	args=(str

				T.start()

time.sleep(10)

Instead	of	trying	to	guess	a	good	delay	value	for	time.sleep(),	it’s
better	to	use	some	kind	of	semaphore	mechanism.	One	idea	is	to	use
the	queue	module	to	create	a	queue	object,	let	each	thread	append	a
token	 to	 the	queue	when	 it	 finishes,	and	 let	 the	main	 thread	 read	as
many	tokens	from	the	queue	as	there	are	threads.

How	do	I	parcel	out	work	among	a	bunch	of
worker	threads?

The	easiest	way	 is	 to	 use	 the	 new	 concurrent.futures	module,
especially	the	ThreadPoolExecutor	class.

Or,	 if	 you	 want	 fine	 control	 over	 the	 dispatching	 algorithm,	 you	 can
write	 your	 own	 logic	 manually.	 Use	 the	 queue	 module	 to	 create	 a
queue	 containing	 a	 list	 of	 jobs.	 The	 Queue	 class	maintains	 a	 list	 of
objects	and	has	a	.put(obj)	method	 that	adds	 items	 to	 the	queue

and	a	.get()	method	to	return	them.	The	class	will	 take	care	of	the
locking	necessary	to	ensure	that	each	job	is	handed	out	exactly	once.

Here’s	a	trivial	example:

import	threading,	queue,	time

#	The	worker	thread	gets	jobs	off	the	queue.		When	the	queue	is	empty,	it

#	assumes	there	will	be	no	more	work	and	exits.

#	(Realistically	workers	will	run	until	terminated.)

def	worker():

				print('Running	worker')

				time.sleep(0.1)

				while	True:

								try:

												arg	=	q.get(block=False)

								except	queue.Empty:

												print('Worker',	threading.currentThread(),

												print('queue	empty')

												break

								else:

												print('Worker',	threading.currentThread(),

												print('running	with	argument',	arg)

												time.sleep(0.5)

#	Create	queue

q	=	queue.Queue()

#	Start	a	pool	of	5	workers

for	i	in	range(5):

				t	=	threading.Thread(target=worker,	name='worker	%i'

				t.start()

#	Begin	adding	work	to	the	queue

for	i	in	range(50):

				q.put(i)

#	Give	threads	time	to	run

print('Main	thread	sleeping')

time.sleep(5)

When	run,	this	will	produce	the	following	output:

Running	worker

Running	worker

Running	worker

Running	worker

Running	worker

Main	thread	sleeping

Worker	<Thread(worker	1,	started	130283832797456)>	running	with	argument	0

Worker	<Thread(worker	2,	started	130283824404752)>	running	with	argument	1

Worker	<Thread(worker	3,	started	130283816012048)>	running	with	argument	2

Worker	<Thread(worker	4,	started	130283807619344)>	running	with	argument	3

Worker	<Thread(worker	5,	started	130283799226640)>	running	with	argument	4

Worker	<Thread(worker	1,	started	130283832797456)>	running	with	argument	5

...

Consult	the	module’s	documentation	for	more	details;	the	Queue	class
provides	a	featureful	interface.

What	kinds	of	global	value	mutation	are	thread-
safe?

A	global	interpreter	lock	(GIL)	is	used	internally	to	ensure	that	only	one
thread	 runs	 in	 the	Python	VM	at	a	 time.	 In	 general,	Python	offers	 to
switch	 among	 threads	 only	 between	 bytecode	 instructions;	 how
frequently	 it	 switches	 can	 be	 set	 via	 sys.setswitchinterval().
Each	bytecode	instruction	and	therefore	all	the	C	implementation	code
reached	 from	 each	 instruction	 is	 therefore	 atomic	 from	 the	 point	 of

view	of	a	Python	program.

In	 theory,	 this	 means	 an	 exact	 accounting	 requires	 an	 exact
understanding	 of	 the	 PVM	 bytecode	 implementation.	 In	 practice,	 it
means	that	operations	on	shared	variables	of	built-in	data	types	(ints,
lists,	dicts,	etc)	that	“look	atomic”	really	are.

For	 example,	 the	 following	 operations	 are	 all	 atomic	 (L,	 L1,	 L2	 are
lists,	D,	D1,	D2	are	dicts,	x,	y	are	objects,	i,	j	are	ints):

L.append(x)

L1.extend(L2)

x	=	L[i]

x	=	L.pop()

L1[i:j]	=	L2

L.sort()

x	=	y

x.field	=	y

D[x]	=	y

D1.update(D2)

D.keys()

These	aren’t:

i	=	i+1

L.append(L[-1])

L[i]	=	L[j]

D[x]	=	D[x]	+	1

Operations	that	replace	other	objects	may	invoke	those	other	objects’
__del__()	 method	 when	 their	 reference	 count	 reaches	 zero,	 and
that	can	affect	 things.	This	 is	especially	 true	 for	 the	mass	updates	 to
dictionaries	and	lists.	When	in	doubt,	use	a	mutex!

Can’t	we	get	rid	of	the	Global	Interpreter	Lock?

The	 global	 interpreter	 lock	 (GIL)	 is	 often	 seen	 as	 a	 hindrance	 to
Python’s	 deployment	 on	 high-end	 multiprocessor	 server	 machines,
because	 a	multi-threaded	 Python	 program	 effectively	 only	 uses	 one
CPU,	due	to	the	insistence	that	(almost)	all	Python	code	can	only	run
while	the	GIL	is	held.

Back	 in	 the	 days	 of	 Python	 1.5,	 Greg	 Stein	 actually	 implemented	 a
comprehensive	patch	set	 (the	“free	 threading”	patches)	 that	 removed
the	GIL	and	replaced	it	with	fine-grained	locking.	Adam	Olsen	recently
did	 a	 similar	 experiment	 in	 his	 python-safethread	 project.
Unfortunately,	 both	 experiments	 exhibited	 a	 sharp	 drop	 in	 single-
thread	performance	(at	 least	30%	slower),	due	to	the	amount	of	fine-
grained	locking	necessary	to	compensate	for	the	removal	of	the	GIL.

This	doesn’t	mean	that	you	can’t	make	good	use	of	Python	on	multi-
CPU	machines!	You	just	have	to	be	creative	with	dividing	the	work	up
between	 multiple	 processes	 rather	 than	 multiple	 threads.	 The
ProcessPoolExecutor	 class	 in	 the	 new	 concurrent.futures
module	 provides	 an	 easy	 way	 of	 doing	 so;	 the	 multiprocessing
module	provides	a	lower-level	API	in	case	you	want	more	control	over
dispatching	of	tasks.

Judicious	use	of	C	extensions	will	also	help;	if	you	use	a	C	extension
to	perform	a	time-consuming	task,	 the	extension	can	release	the	GIL
while	the	thread	of	execution	is	in	the	C	code	and	allow	other	threads
to	get	some	work	done.	Some	standard	library	modules	such	as	zlib
and	hashlib	already	do	this.

It	 has	 been	 suggested	 that	 the	GIL	 should	 be	 a	 per-interpreter-state
lock	rather	than	truly	global;	interpreters	then	wouldn’t	be	able	to	share

http://code.google.com/p/python-safethread/

objects.	Unfortunately,	 this	 isn’t	 likely	 to	happen	either.	 It	would	be	a
tremendous	 amount	 of	 work,	 because	 many	 object	 implementations
currently	 have	 global	 state.	 For	 example,	 small	 integers	 and	 short
strings	 are	 cached;	 these	 caches	 would	 have	 to	 be	 moved	 to	 the
interpreter	state.	Other	object	types	have	their	own	free	list;	these	free
lists	would	have	to	be	moved	to	the	interpreter	state.	And	so	on.

And	I	doubt	that	it	can	even	be	done	in	finite	time,	because	the	same
problem	 exists	 for	 3rd	 party	 extensions.	 It	 is	 likely	 that	 3rd	 party
extensions	are	being	written	at	a	faster	rate	than	you	can	convert	them
to	store	all	their	global	state	in	the	interpreter	state.

And	finally,	once	you	have	multiple	interpreters	not	sharing	any	state,
what	 have	 you	 gained	 over	 running	 each	 interpreter	 in	 a	 separate
process?

Input	and	Output

How	do	I	delete	a	file?	(And	other	file	questions...)

Use	 os.remove(filename)	 or	 os.unlink(filename);	 for
documentation,	 see	 the	 os	module.	 The	 two	 functions	 are	 identical;
unlink()	is	simply	the	name	of	the	Unix	system	call	for	this	function.

To	remove	a	directory,	use	os.rmdir();	use	os.mkdir()	to	create
one.	os.makedirs(path)	will	create	any	intermediate	directories	in
path	 that	 don’t	 exist.	 os.removedirs(path)	 will	 remove
intermediate	directories	as	long	as	they’re	empty;	if	you	want	to	delete
an	entire	directory	tree	and	its	contents,	use	shutil.rmtree().

To	rename	a	file,	use	os.rename(old_path,	new_path).

To	truncate	a	file,	open	it	using	f	=	open(filename,	"rb+"),	and
use	 f.truncate(offset);	 offset	 defaults	 to	 the	 current	 seek
position.	 There’s	 also	 os.ftruncate(fd,	 offset)	 for	 files
opened	 with	 os.open(),	 where	 fd	 is	 the	 file	 descriptor	 (a	 small
integer).

The	shutil	module	also	contains	a	number	of	 functions	 to	work	on
files	including	copyfile(),	copytree(),	and	rmtree().

How	do	I	copy	a	file?

The	shutil	module	contains	a	copyfile()	 function.	Note	 that	on
MacOS	9	it	doesn’t	copy	the	resource	fork	and	Finder	info.

How	do	I	read	(or	write)	binary	data?

To	 read	 or	 write	 complex	 binary	 data	 formats,	 it’s	 best	 to	 use	 the
struct	module.	 It	allows	you	to	 take	a	string	containing	binary	data
(usually	numbers)	and	convert	it	to	Python	objects;	and	vice	versa.

For	example,	the	following	code	reads	two	2-byte	integers	and	one	4-
byte	integer	in	big-endian	format	from	a	file:

import	struct

with	open(filename,	"rb")	as	f:

			s	=	f.read(8)

			x,	y,	z	=	struct.unpack(">hhl",	s)

The	‘>’	 in	the	format	string	forces	big-endian	data;	 the	letter	 ‘h’	reads
one	“short	integer”	(2	bytes),	and	‘l’	reads	one	“long	integer”	(4	bytes)
from	the	string.

For	data	that	is	more	regular	(e.g.	a	homogeneous	list	of	ints	or	floats),
you	can	also	use	the	array	module.

Note: 	To	read	and	write	binary	data,	it	is	mandatory	to	open	the	file
in	binary	mode	(here,	passing	"rb"	to	open()).	If	you	use	"r"
instead	(the	default),	the	file	will	be	open	in	text	mode	and
f.read()	will	return	str	objects	rather	than	bytes	objects.

I	can’t	seem	to	use	os.read()	on	a	pipe	created
with	os.popen();	why?

os.read()	 is	 a	 low-level	 function	 which	 takes	 a	 file	 descriptor,	 a
small	 integer	 representing	 the	 opened	 file.	 os.popen()	 creates	 a
high-level	 file	 object,	 the	 same	 type	 returned	 by	 the	 built-in	 open()

function.	 Thus,	 to	 read	 n	 bytes	 from	 a	 pipe	 p	 created	 with
os.popen(),	you	need	to	use	p.read(n).

How	do	I	access	the	serial	(RS232)	port?

For	Win32,	POSIX	(Linux,	BSD,	etc.),	Jython:

http://pyserial.sourceforge.net

For	Unix,	see	a	Usenet	post	by	Mitch	Chapman:

http://groups.google.com/groups?
selm=34A04430.CF9@ohioee.com

Why	doesn’t	closing	sys.stdout	(stdin,	stderr)
really	close	it?

Python	file	objects	are	a	high-level	layer	of	abstraction	on	low-level	C
file	descriptors.

For	 most	 file	 objects	 you	 create	 in	 Python	 via	 the	 built-in	 open()
function,	 f.close()	 marks	 the	 Python	 file	 object	 as	 being	 closed
from	Python’s	point	of	view,	and	also	arranges	to	close	the	underlying
C	 file	 descriptor.	 This	 also	 happens	 automatically	 in	 f‘s	 destructor,
when	f	becomes	garbage.

But	stdin,	stdout	and	stderr	are	 treated	specially	by	Python,	because
of	 the	 special	 status	 also	 given	 to	 them	 by	 C.	 Running
sys.stdout.close()	 marks	 the	 Python-level	 file	 object	 as	 being
closed,	but	does	not	close	the	associated	C	file	descriptor.

To	 close	 the	 underlying	C	 file	 descriptor	 for	 one	 of	 these	 three,	 you
should	 first	 be	 sure	 that’s	what	 you	 really	want	 to	do	 (e.g.,	 you	may

http://pyserial.sourceforge.net
http://groups.google.com/groups?selm=34A04430.CF9@ohioee.com

confuse	extension	modules	trying	to	do	I/O).	If	it	is,	use	os.close():

os.close(stdin.fileno())

os.close(stdout.fileno())

os.close(stderr.fileno())

Or	you	can	use	the	numeric	constants	0,	1	and	2,	respectively.

Network/Internet	Programming

What	WWW	tools	are	there	for	Python?

See	 the	 chapters	 titled	 Internet	 Protocols	 and	 Support	 and	 Internet
Data	 Handling	 in	 the	 Library	 Reference	 Manual.	 Python	 has	 many
modules	 that	 will	 help	 you	 build	 server-side	 and	 client-side	 web
systems.

A	summary	of	available	 frameworks	 is	maintained	by	Paul	Boddie	at
http://wiki.python.org/moin/WebProgramming.

Cameron	 Laird	 maintains	 a	 useful	 set	 of	 pages	 about	 Python	 web
technologies	at	http://phaseit.net/claird/comp.lang.python/web_python.

How	can	I	mimic	CGI	form	submission
(METHOD=POST)?

I	 would	 like	 to	 retrieve	 web	 pages	 that	 are	 the	 result	 of	 POSTing	 a
form.	Is	there	existing	code	that	would	let	me	do	this	easily?

Yes.	Here’s	a	simple	example	that	uses	urllib.request:

#!/usr/local/bin/python

import	urllib.request

###	build	the	query	string

qs	=	"First=Josephine&MI=Q&Last=Public"

###	connect	and	send	the	server	a	path

req	=	urllib.request.urlopen('http://www.some-server.out-there'

																													'/cgi-bin/some-cgi-script'

http://wiki.python.org/moin/WebProgramming
http://phaseit.net/claird/comp.lang.python/web_python

msg,	hdrs	=	req.read(),	req.info()

Note	 that	 in	 general	 for	 percent-encoded	 POST	 operations,	 query
strings	 must	 be	 quoted	 using	 urllib.parse.urlencode().	 For
example,	to	send	name=Guy	Steele,	Jr.:

>>>	import	urllib.parse

>>>	urllib.parse.urlencode({'name':	'Guy	Steele,	Jr.'

'name=Guy+Steele%2C+Jr.'

See	also: 	HOWTO	Fetch	Internet	Resources	Using	The	urllib
Package	for	extensive	examples.

What	module	should	I	use	to	help	with	generating
HTML?

You	can	find	a	collection	of	useful	links	on	the	Web	Programming	wiki
page.

How	do	I	send	mail	from	a	Python	script?

Use	the	standard	library	module	smtplib.

Here’s	a	very	simple	interactive	mail	sender	that	uses	it.	This	method
will	work	on	any	host	that	supports	an	SMTP	listener.

import	sys,	smtplib

fromaddr	=	input("From:	")

toaddrs		=	input("To:	").split(',')

print("Enter	message,	end	with	^D:")

http://wiki.python.org/moin/WebProgramming

msg	=	''

while	True:

				line	=	sys.stdin.readline()

				if	not	line:

								break

				msg	+=	line

#	The	actual	mail	send

server	=	smtplib.SMTP('localhost')

server.sendmail(fromaddr,	toaddrs,	msg)

server.quit()

A	Unix-only	 alternative	 uses	 sendmail.	 The	 location	 of	 the	 sendmail
program	 varies	 between	 systems;	 sometimes	 it	 is
/usr/lib/sendmail,	 sometimes	 /usr/sbin/sendmail.	 The
sendmail	manual	page	will	help	you	out.	Here’s	some	sample	code:

SENDMAIL	=	"/usr/sbin/sendmail"		#	sendmail	location

import	os

p	=	os.popen("%s	-t	-i"	%	SENDMAIL,	"w")

p.write("To:	receiver@example.com\n")

p.write("Subject:	test\n")

p.write("\n")		#	blank	line	separating	headers	from	body

p.write("Some	text\n")

p.write("some	more	text\n")

sts	=	p.close()

if	sts	!=	0:

				print("Sendmail	exit	status",	sts)

How	do	I	avoid	blocking	in	the	connect()	method
of	a	socket?

The	select	module	is	commonly	used	to	help	with	asynchronous	I/O
on	sockets.

To	prevent	the	TCP	connect	from	blocking,	you	can	set	the	socket	to
non-blocking	mode.	Then	when	you	do	the	connect(),	you	will	either
connect	 immediately	 (unlikely)	 or	 get	 an	 exception	 that	 contains	 the
error	 number	 as	 .errno.	 errno.EINPROGRESS	 indicates	 that	 the
connection	 is	 in	progress,	but	hasn’t	 finished	yet.	Different	OSes	will
return	 different	 values,	 so	 you’re	 going	 to	 have	 to	 check	 what’s
returned	on	your	system.

You	 can	 use	 the	 connect_ex()	 method	 to	 avoid	 creating	 an
exception.	 It	 will	 just	 return	 the	 errno	 value.	 To	 poll,	 you	 can	 call
connect_ex()	 again	 later	 –	 0	 or	 errno.EISCONN	 indicate	 that
you’re	connected	–	or	you	can	pass	this	socket	to	select	to	check	if	it’s
writable.

Note: 	The	asyncore	module	presents	a	framework-like	approach
to	the	problem	of	writing	non-blocking	networking	code.	The	third-
party	Twisted	library	is	a	popular	and	feature-rich	alternative.

http://twistedmatrix.com/

Databases

Are	there	any	interfaces	to	database	packages	in
Python?

Yes.

Interfaces	 to	 disk-based	 hashes	 such	 as	 DBM	 and	 GDBM	 are	 also
included	 with	 standard	 Python.	 There	 is	 also	 the	 sqlite3	 module,
which	provides	a	lightweight	disk-based	relational	database.

Support	 for	 most	 relational	 databases	 is	 available.	 See	 the
DatabaseProgramming	wiki	page	for	details.

How	do	you	implement	persistent	objects	in
Python?

The	pickle	library	module	solves	this	in	a	very	general	way	(though
you	still	can’t	store	things	like	open	files,	sockets	or	windows),	and	the
shelve	 library	 module	 uses	 pickle	 and	 (g)dbm	 to	 create	 persistent
mappings	containing	arbitrary	Python	objects.

http://wiki.python.org/moin/DatabaseProgramming

Mathematics	and	Numerics

How	do	I	generate	random	numbers	in	Python?

The	 standard	 module	 random	 implements	 a	 random	 number
generator.	Usage	is	simple:

import	random

random.random()

This	returns	a	random	floating	point	number	in	the	range	[0,	1).

There	are	also	many	other	specialized	generators	in	this	module,	such
as:

randrange(a,	b)	chooses	an	integer	in	the	range	[a,	b).
uniform(a,	b)	chooses	a	floating	point	number	in	the	range	[a,
b).
normalvariate(mean,	sdev)	samples	the	normal	(Gaussian)
distribution.

Some	higher-level	functions	operate	on	sequences	directly,	such	as:

choice(S)	chooses	random	element	from	a	given	sequence
shuffle(L)	shuffles	a	list	in-place,	i.e.	permutes	it	randomly

There’s	 also	 a	 Random	 class	 you	 can	 instantiate	 to	 create
independent	multiple	random	number	generators.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

http://www.python.org/
http://www.python.org/psf/donations/

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

Extending/Embedding	FAQ

Contents

Extending/Embedding	FAQ
Can	I	create	my	own	functions	in	C?
Can	I	create	my	own	functions	in	C++?
Writing	C	is	hard;	are	there	any	alternatives?
How	can	I	execute	arbitrary	Python	statements	from	C?
How	can	I	evaluate	an	arbitrary	Python	expression	from	C?
How	do	I	extract	C	values	from	a	Python	object?
How	do	I	use	Py_BuildValue()	to	create	a	tuple	of	arbitrary
length?
How	do	I	call	an	object’s	method	from	C?
How	do	 I	 catch	 the	output	 from	PyErr_Print()	 (or	 anything
that	prints	to	stdout/stderr)?
How	do	I	access	a	module	written	in	Python	from	C?
How	do	I	interface	to	C++	objects	from	Python?
I	added	a	module	using	 the	Setup	 file	and	 the	make	 fails;
why?
How	do	I	debug	an	extension?
I	want	to	compile	a	Python	module	on	my	Linux	system,	but
some	files	are	missing.	Why?
What	 does	 “SystemError:	 _PyImport_FixupExtension:
module	yourmodule	not	loaded”	mean?
How	do	I	tell	“incomplete	input”	from	“invalid	input”?
How	 do	 I	 find	 undefined	 g++	 symbols	 __builtin_new	 or
__pure_virtual?
Can	 I	 create	 an	 object	 class	 with	 some	 methods
implemented	 in	 C	 and	 others	 in	 Python	 (e.g.	 through
inheritance)?

Can	I	create	my	own	functions	in	C?

Yes,	 you	 can	 create	 built-in	modules	 containing	 functions,	 variables,
exceptions	 and	 even	 new	 types	 in	 C.	 This	 is	 explained	 in	 the
document	Extending	and	Embedding	the	Python	Interpreter.

Most	intermediate	or	advanced	Python	books	will	also	cover	this	topic.

Can	I	create	my	own	functions	in	C++?

Yes,	 using	 the	C	 compatibility	 features	 found	 in	C++.	Place	 extern
"C"	{	...	}	around	the	Python	include	files	and	put	extern	"C"
before	 each	 function	 that	 is	 going	 to	 be	 called	 by	 the	 Python
interpreter.	Global	or	static	C++	objects	with	constructors	are	probably
not	a	good	idea.

Writing	C	is	hard;	are	there	any
alternatives?

There	are	a	number	of	alternatives	to	writing	your	own	C	extensions,
depending	on	what	you’re	trying	to	do.

Cython	 and	 its	 relative	 Pyrex	 are	 compilers	 that	 accept	 a	 slightly
modified	 form	 of	 Python	 and	 generate	 the	 corresponding	 C	 code.
Cython	 and	 Pyrex	 make	 it	 possible	 to	 write	 an	 extension	 without
having	to	learn	Python’s	C	API.

If	you	need	to	interface	to	some	C	or	C++	library	for	which	no	Python
extension	currently	exists,	you	can	try	wrapping	the	library’s	data	types
and	 functions	with	a	 tool	such	as	SWIG.	SIP,	CXX	Boost,	 or	Weave
are	also	alternatives	for	wrapping	C++	libraries.

http://cython.org
http://www.cosc.canterbury.ac.nz/~greg/python/Pyrex/
http://www.swig.org
http://www.riverbankcomputing.co.uk/software/sip/
http://cxx.sourceforge.net/
http://www.boost.org/libs/python/doc/index.html
http://www.scipy.org/Weave

How	can	I	execute	arbitrary	Python
statements	from	C?

The	 highest-level	 function	 to	 do	 this	 is	 PyRun_SimpleString()
which	takes	a	single	string	argument	to	be	executed	in	the	context	of
the	 module	 __main__	 and	 returns	 0	 for	 success	 and	 -1	 when	 an
exception	 occurred	 (including	 SyntaxError).	 If	 you	 want	 more
control,	 use	 PyRun_String();	 see	 the	 source	 for
PyRun_SimpleString()	in	Python/pythonrun.c.

How	can	I	evaluate	an	arbitrary	Python
expression	from	C?

Call	 the	 function	 PyRun_String()	 from	 the	 previous	 question	with
the	start	symbol	Py_eval_input;	it	parses	an	expression,	evaluates
it	and	returns	its	value.

How	do	I	extract	C	values	from	a	Python
object?

That	depends	on	 the	object’s	 type.	 If	 it’s	 a	 tuple,	 PyTuple_Size()
returns	 its	 length	 and	 PyTuple_GetItem()	 returns	 the	 item	 at	 a
specified	 index.	 Lists	 have	 similar	 functions,	 PyListSize()	 and
PyList_GetItem().

For	 bytes,	 PyBytes_Size()	 returns	 its	 length	 and
PyBytes_AsStringAndSize()	 provides	a	pointer	 to	 its	 value	and
its	length.	Note	that	Python	bytes	objects	may	contain	null	bytes	so	C’s
strlen()	should	not	be	used.

To	 test	 the	 type	of	 an	object,	 first	make	sure	 it	 isn’t	NULL,	and	 then
use	 PyBytes_Check(),	 PyTuple_Check(),	 PyList_Check(),
etc.

There	is	also	a	high-level	API	to	Python	objects	which	is	provided	by
the	 so-called	 ‘abstract’	 interface	 –	 read	 Include/abstract.h	 for
further	details.	 It	allows	 interfacing	with	any	kind	of	Python	sequence
using	calls	like	PySequence_Length(),	PySequence_GetItem(),
etc.)	 as	 well	 as	 many	 other	 useful	 protocols	 such	 as	 numbers
(PyNumber_Index()	et.	al.)	and	mappings	in	the	PyMapping	APIs.

How	do	I	use	Py_BuildValue()	to	create	a
tuple	of	arbitrary	length?

You	can’t.	Use	PyTuple_Pack()	instead.

How	do	I	call	an	object’s	method	from	C?

The	 PyObject_CallMethod()	 function	 can	 be	 used	 to	 call	 an
arbitrary	 method	 of	 an	 object.	 The	 parameters	 are	 the	 object,	 the
name	 of	 the	 method	 to	 call,	 a	 format	 string	 like	 that	 used	 with
Py_BuildValue(),	and	the	argument	values:

PyObject	*

PyObject_CallMethod(PyObject	*object,	char	*method_name

																				char	*arg_format,	...);

This	works	for	any	object	that	has	methods	–	whether	built-in	or	user-
defined.	 You	 are	 responsible	 for	 eventually	 Py_DECREF()‘ing	 the
return	value.

To	 call,	 e.g.,	 a	 file	 object’s	 “seek”	 method	 with	 arguments	 10,	 0
(assuming	the	file	object	pointer	is	“f”):

res	=	PyObject_CallMethod(f,	"seek",	"(ii)",	10,	0);

if	(res	==	NULL)	{

								...	an	exception	occurred	...

}

else	{

								Py_DECREF(res);

}

Note	that	since	PyObject_CallObject()	always	wants	a	 tuple	 for
the	argument	list,	to	call	a	function	without	arguments,	pass	“()”	for	the
format,	 and	 to	 call	 a	 function	 with	 one	 argument,	 surround	 the
argument	in	parentheses,	e.g.	“(i)”.

How	do	I	catch	the	output	from
PyErr_Print()	(or	anything	that	prints	to
stdout/stderr)?

In	Python	code,	define	an	object	that	supports	the	write()	method.
Assign	this	object	to	sys.stdout	and	sys.stderr.	Call	print_error,
or	 just	 allow	 the	 standard	 traceback	 mechanism	 to	 work.	 Then,	 the
output	will	go	wherever	your	write()	method	sends	it.

The	easiest	way	to	do	this	is	to	use	the	io.StringIO	class:

>>>	import	io,	sys

>>>	sys.stdout	=	io.StringIO()

>>>	print('foo')

>>>	print('hello	world!')

>>>	sys.stderr.write(sys.stdout.getvalue())

foo

hello	world!

A	custom	object	to	do	the	same	would	look	like	this:

>>>	import	io,	sys

>>>	class	StdoutCatcher(io.TextIOBase):

...					def	__init__(self):

...									self.data	=	[]

...					def	write(self,	stuff):

...									self.data.append(stuff)

...

>>>	import	sys

>>>	sys.stdout	=	StdoutCatcher()

>>>	print('foo')

>>>	print('hello	world!')

>>>	sys.stderr.write(''.join(sys.stdout.data))

foo

hello	world!

How	do	I	access	a	module	written	in
Python	from	C?

You	can	get	a	pointer	to	the	module	object	as	follows:

module	=	PyImport_ImportModule("<modulename>");

If	 the	 module	 hasn’t	 been	 imported	 yet	 (i.e.	 it	 is	 not	 yet	 present	 in
sys.modules),	this	initializes	the	module;	otherwise	it	simply	returns
the	value	of	sys.modules["<modulename>"].	Note	 that	 it	doesn’t
enter	 the	module	 into	 any	 namespace	 –	 it	 only	 ensures	 it	 has	 been
initialized	and	is	stored	in	sys.modules.

You	can	then	access	the	module’s	attributes	(i.e.	any	name	defined	in
the	module)	as	follows:

attr	=	PyObject_GetAttrString(module,	"<attrname>");

Calling	 PyObject_SetAttrString()	 to	 assign	 to	 variables	 in	 the
module	also	works.

How	do	I	interface	to	C++	objects	from
Python?

Depending	on	your	 requirements,	 there	are	many	approaches.	To	do
this	 manually,	 begin	 by	 reading	 the	 “Extending	 and	 Embedding”
document.	Realize	 that	 for	 the	Python	 run-time	 system,	 there	 isn’t	 a
whole	 lot	 of	 difference	 between	 C	 and	 C++	 –	 so	 the	 strategy	 of
building	a	new	Python	type	around	a	C	structure	(pointer)	type	will	also
work	for	C++	objects.

For	C++	libraries,	see	Writing	C	is	hard;	are	there	any	alternatives?.

I	added	a	module	using	the	Setup	file	and
the	make	fails;	why?

Setup	must	 end	 in	 a	 newline,	 if	 there	 is	 no	 newline	 there,	 the	 build
process	fails.	(Fixing	this	requires	some	ugly	shell	script	hackery,	and
this	bug	is	so	minor	that	it	doesn’t	seem	worth	the	effort.)

How	do	I	debug	an	extension?

When	using	GDB	with	dynamically	loaded	extensions,	you	can’t	set	a
breakpoint	in	your	extension	until	your	extension	is	loaded.

In	your	.gdbinit	file	(or	interactively),	add	the	command:

br	_PyImport_LoadDynamicModule

Then,	when	you	run	GDB:

$	gdb	/local/bin/python

gdb)	run	myscript.py

gdb)	continue	#	repeat	until	your	extension	is	loaded

gdb)	finish			#	so	that	your	extension	is	loaded

gdb)	br	myfunction.c:50

gdb)	continue

I	want	to	compile	a	Python	module	on	my
Linux	system,	but	some	files	are	missing.
Why?

Most	 packaged	 versions	 of	 Python	 don’t	 include	 the
/usr/lib/python2.x/config/	 directory,	 which	 contains	 various
files	required	for	compiling	Python	extensions.

For	Red	Hat,	install	the	python-devel	RPM	to	get	the	necessary	files.

For	Debian,	run	apt-get	install	python-dev.

What	does	“SystemError:
_PyImport_FixupExtension:	module
yourmodule	not	loaded”	mean?

This	 means	 that	 you	 have	 created	 an	 extension	 module	 named
“yourmodule”,	but	your	module	init	function	does	not	initialize	with	that
name.

Every	module	init	function	will	have	a	line	similar	to:

module	=	Py_InitModule("yourmodule",	yourmodule_functions

If	 the	 string	 passed	 to	 this	 function	 is	 not	 the	 same	 name	 as	 your
extension	module,	the	SystemError	exception	will	be	raised.

How	do	I	tell	“incomplete	input”	from
“invalid	input”?

Sometimes	 you	 want	 to	 emulate	 the	 Python	 interactive	 interpreter’s
behavior,	where	 it	gives	you	a	continuation	prompt	when	 the	 input	 is
incomplete	 (e.g.	you	 typed	 the	start	of	an	 “if”	statement	or	you	didn’t
close	 your	 parentheses	 or	 triple	 string	 quotes),	 but	 it	 gives	 you	 a
syntax	error	message	immediately	when	the	input	is	invalid.

In	Python	you	can	use	 the	codeop	module,	which	approximates	 the
parser’s	behavior	sufficiently.	IDLE	uses	this,	for	example.

The	easiest	way	to	do	it	in	C	is	to	call	PyRun_InteractiveLoop()
(perhaps	 in	 a	 separate	 thread)	 and	 let	 the	Python	 interpreter	 handle
the	 input	 for	 you.	 You	 can	 also	 set	 the
PyOS_ReadlineFunctionPointer()	to	point	at	your	custom	input
function.	See	Modules/readline.c	 and	 Parser/myreadline.c
for	more	hints.

However	sometimes	you	have	to	run	the	embedded	Python	interpreter
in	 the	 same	 thread	 as	 your	 rest	 application	 and	 you	 can’t	 allow	 the
PyRun_InteractiveLoop()	 to	 stop	 while	 waiting	 for	 user	 input.
The	one	solution	then	is	to	call	PyParser_ParseString()	and	test
for	e.error	equal	 to	E_EOF,	which	means	 the	 input	 is	 incomplete).
Here’s	a	sample	code	fragment,	untested,	inspired	by	code	from	Alex
Farber:

#include	<Python.h>

#include	<node.h>

#include	<errcode.h>

#include	<grammar.h>

#include	<parsetok.h>

#include	<compile.h>

int	testcomplete(char	*code)

		/*	code	should	end	in	\n	*/

		/*	return	-1	for	error,	0	for	incomplete,	1	for	complete	*/

{

		node	*n;

		perrdetail	e;

		n	=	PyParser_ParseString(code,	&_PyParser_Grammar,

																											Py_file_input,	&e);

		if	(n	==	NULL)	{

				if	(e.error	==	E_EOF)

						return	0;

				return	-1;

		}

		PyNode_Free(n);

		return	1;

}

Another	 solution	 is	 trying	 to	 compile	 the	 received	 string	 with
Py_CompileString().	 If	 it	 compiles	 without	 errors,	 try	 to	 execute
the	returned	code	object	by	calling	PyEval_EvalCode().	Otherwise
save	the	input	for	later.	If	the	compilation	fails,	find	out	if	it’s	an	error	or
just	more	input	is	required	-	by	extracting	the	message	string	from	the
exception	tuple	and	comparing	it	to	the	string	“unexpected	EOF	while
parsing”.	Here	 is	a	complete	example	using	 the	GNU	readline	 library
(you	may	want	to	ignore	SIGINT	while	calling	readline()):

#include	<stdio.h>

#include	<readline.h>

#include	<Python.h>

#include	<object.h>

#include	<compile.h>

#include	<eval.h>

int	main	(int	argc,	char*	argv[])

{

		int	i,	j,	done	=	0;																										/*	lengths	of	line,	code	*/

		char	ps1[]	=	">>>	";

		char	ps2[]	=	"...	";

		char	*prompt	=	ps1;

		char	*msg,	*line,	*code	=	NULL;

		PyObject	*src,	*glb,	*loc;

		PyObject	*exc,	*val,	*trb,	*obj,	*dum;

		Py_Initialize	();

		loc	=	PyDict_New	();

		glb	=	PyDict_New	();

		PyDict_SetItemString	(glb,	"__builtins__",	PyEval_GetBuiltins

		while	(!done)

		{

				line	=	readline	(prompt);

				if	(NULL	==	line)																										/*	CTRL-D	pressed	*/

				{

						done	=	1;

				}

				else

				{

						i	=	strlen	(line);

						if	(i	>	0)

								add_history	(line);																				/*	save	non-empty	lines	*/

						if	(NULL	==	code)																								/*	nothing	in	code	yet	*/

								j	=	0;

						else

								j	=	strlen	(code);

						code	=	realloc	(code,	i	+	j	+	2);

						if	(NULL	==	code)																								/*	out	of	memory	*/

								exit	(1);

						if	(0	==	j)																														/*	code	was	empty,	so	*/

								code[0]	=	'\0';																								/*	keep	strncat	happy	*/

						strncat	(code,	line,	i);																	/*	append	line	to	code	*/

						code[i	+	j]	=	'\n';																						/*	append	'\n'	to	code	*/

						code[i	+	j	+	1]	=	'\0';

						src	=	Py_CompileString	(code,	"<stdin>",	Py_single_input

						if	(NULL	!=	src)																									/*	compiled	just	fine	-	*/

						{

								if	(ps1		==	prompt	||																		/*	">>>	"	or	*/

												'\n'	==	code[i	+	j	-	1])											/*	"...	"	and	double	'\n'	*/

								{																																															

										dum	=	PyEval_EvalCode	(src,	glb,	loc);

										Py_XDECREF	(dum);

										Py_XDECREF	(src);

										free	(code);

										code	=	NULL;

										if	(PyErr_Occurred	())

												PyErr_Print	();

										prompt	=	ps1;

								}

						}																																								/*	syntax	error	or	E_EOF?	*/

						else	if	(PyErr_ExceptionMatches	(PyExc_SyntaxError

						{

								PyErr_Fetch	(&exc,	&val,	&trb);								/*	clears	exception!	*/

								if	(PyArg_ParseTuple	(val,	"sO",	&msg,	&obj)

												!strcmp	(msg,	"unexpected	EOF	while	parsing"

								{

										Py_XDECREF	(exc);

										Py_XDECREF	(val);

										Py_XDECREF	(trb);

										prompt	=	ps2;

								}

								else																																			/*	some	other	syntax	error	*/

								{

										PyErr_Restore	(exc,	val,	trb);

										PyErr_Print	();

										free	(code);

										code	=	NULL;

										prompt	=	ps1;

								}

						}

						else																																					/*	some	non-syntax	error	*/

						{

								PyErr_Print	();

								free	(code);

								code	=	NULL;

								prompt	=	ps1;

						}

						free	(line);

				}

		}

		Py_XDECREF(glb);

		Py_XDECREF(loc);

		Py_Finalize();

		exit(0);

}

How	do	I	find	undefined	g++	symbols
__builtin_new	or	__pure_virtual?

To	 dynamically	 load	 g++	 extension	 modules,	 you	 must	 recompile
Python,	 relink	 it	 using	 g++	 (change	 LINKCC	 in	 the	 Python	Modules
Makefile),	 and	 link	 your	 extension	 module	 using	 g++	 (e.g.,	 g++	 -
shared	-o	mymodule.so	mymodule.o).

Can	I	create	an	object	class	with	some
methods	implemented	in	C	and	others	in
Python	(e.g.	through	inheritance)?

In	Python	2.2,	you	can	inherit	from	built-in	classes	such	as	int,	list,
dict,	etc.

The	 Boost	 Python	 Library	 (BPL,
http://www.boost.org/libs/python/doc/index.html)	 provides	 a	 way	 of
doing	 this	 from	 C++	 (i.e.	 you	 can	 inherit	 from	 an	 extension	 class
written	in	C++	using	the	BPL).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.boost.org/libs/python/doc/index.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

Python	on	Windows	FAQ

Contents

Python	on	Windows	FAQ
How	do	I	run	a	Python	program	under	Windows?
How	do	I	make	Python	scripts	executable?
Why	does	Python	sometimes	take	so	long	to	start?
How	do	I	make	an	executable	from	a	Python	script?
Is	a	*.pyd	file	the	same	as	a	DLL?
How	can	I	embed	Python	into	a	Windows	application?
How	do	 I	 keep	 editors	 from	 inserting	 tabs	 into	my	Python
source?
How	do	I	check	for	a	keypress	without	blocking?
How	do	I	emulate	os.kill()	in	Windows?
How	 do	 I	 extract	 the	 downloaded	 documentation	 on
Windows?

Python	Development	on	XP

This	 series	 of	 screencasts
aims	 to	 get	 you	 up	 and
running	 with	 Python	 on
Windows	 XP.	 The
knowledge	 is	 distilled	 into
1.5	 hours	 and	 will	 get	 you
up	 and	 running	 with	 the
right	 Python	 distribution,
coding	 in	 your	 choice	 of
IDE,	 and	 debugging	 and
writing	 solid	 code	with	unit-
tests.

How	do	I	run	a	Python	program	under
Windows?

This	 is	 not	 necessarily	 a	 straightforward	question.	 If	 you	are	already
familiar	with	running	programs	from	the	Windows	command	 line	 then
everything	will	seem	obvious;	otherwise,	you	might	need	a	little	more
guidance.

Unless	 you	 use	 some	 sort	 of
integrated	 development	 environment,
you	 will	 end	 up	 typing	 Windows
commands	 into	 what	 is	 variously
referred	 to	 as	 a	 “DOS	 window”	 or
“Command	 prompt	 window”.	 Usually
you	 can	 create	 such	 a	 window	 from
your	 Start	 menu;	 under	 Windows	 7
the	 menu	 selection	 is	 Start	 ‣
Programs	‣	Accessories	‣	Command
Prompt.	 You	 should	 be	 able	 to
recognize	 when	 you	 have	 started
such	a	window	because	you	will	see	a
Windows	 “command	 prompt”,	 which
usually	looks	like	this:

C:\>

The	letter	may	be	different,	and	there
might	 be	 other	 things	 after	 it,	 so	 you	 might	 just	 as	 easily	 see
something	like:

D:\YourName\Projects\Python>

http://www.showmedo.com/videos/series?name=pythonOzsvaldPyNewbieSeries
http://www.showmedo.com/videos/series?name=pythonOzsvaldPyNewbieSeries

depending	on	how	your	computer	has	been	set	up	and	what	else	you
have	recently	done	with	it.	Once	you	have	started	such	a	window,	you
are	well	on	the	way	to	running	Python	programs.

You	need	to	realize	that	your	Python	scripts	have	to	be	processed	by
another	 program	 called	 the	Python	 interpreter.	 The	 interpreter	 reads
your	 script,	 compiles	 it	 into	 bytecodes,	 and	 then	 executes	 the
bytecodes	 to	 run	 your	 program.	 So,	 how	 do	 you	 arrange	 for	 the
interpreter	to	handle	your	Python?

First,	you	need	 to	make	sure	 that	your	command	window	recognises
the	word	“python”	as	an	instruction	to	start	the	interpreter.	If	you	have
opened	 a	 command	 window,	 you	 should	 try	 entering	 the	 command
python	and	hitting	return.:

C:\Users\YourName>	python

You	should	then	see	something	like:

Python	3.3.0	(v3.3.0:bd8afb90ebf2,	Sep	29	2012,	10:55

Type	"help",	"copyright",	"credits"	or	"license"	for

>>>

You	have	started	the	interpreter	in	“interactive	mode”.	That	means	you
can	 enter	 Python	 statements	 or	 expressions	 interactively	 and	 have
them	 executed	 or	 evaluated	 while	 you	 wait.	 This	 is	 one	 of	 Python’s
strongest	 features.	 Check	 it	 by	 entering	 a	 few	 expressions	 of	 your
choice	and	seeing	the	results:

>>>	print("Hello")

Hello

>>>	"Hello"	*	3

HelloHelloHello

Adding	Python	to	DOS	Path

Python	 is	 not	 added	 to	 the
DOS	 path	 by	 default.	 This
screencast	 will	 walk	 you
through	the	steps	to	add	the
correct	 entry	 to	 the	System
Path,	allowing	Python	to	be
executed	 from	 the
command-line	by	all	users.

Many	 people	 use	 the	 interactive	 mode	 as	 a	 convenient	 yet	 highly
programmable	 calculator.	 When	 you	 want	 to	 end	 your	 interactive
Python	session,	hold	 the	Ctrl	key	down	while	you	enter	a	Z,	 then	hit
the	“Enter”	key	to	get	back	to	your	Windows	command	prompt.

You	may	also	 find	 that	you	have	a	Start-menu	entry	such	as	Start	‣
Programs	‣	Python	3.3	‣	Python	 (command	 line)	 that	 results	 in	 you
seeing	 the	 >>>	 prompt	 in	 a	 new	 window.	 If	 so,	 the	 window	 will
disappear	after	you	enter	 the	Ctrl-Z	character;	Windows	 is	 running	a
single	 “python”	 command	 in	 the	 window,	 and	 closes	 it	 when	 you
terminate	the	interpreter.

If	 the	python	command,	 instead	of	displaying	the	 interpreter	prompt
>>>,	gives	you	a	message	like:

'python'	is	not	recognized	as	an	internal	or	external

or:

Bad	command	or	filename

then	you	need	to	make	sure	that	your
computer	 knows	 where	 to	 find	 the
Python	 interpreter.	To	do	 this	you	will
have	to	modify	a	setting	called	PATH,
which	 is	 a	 list	 of	 directories	 where
Windows	will	look	for	programs.

You	 should	 arrange	 for	 Python’s
installation	 directory	 to	 be	 added	 to
the	PATH	of	every	command	window
as	 it	 starts.	 If	 you	 installed	 Python

http://showmedo.com/videos/video?name=960000&fromSeriesID=96
http://showmedo.com/videos/video?name=960000&fromSeriesID=96

fairly	recently	then	the	command

dir	C:\py*

will	 probably	 tell	 you	 where	 it	 is	 installed;	 the	 usual	 location	 is
something	 like	 C:\Python33.	 Otherwise	 you	 will	 be	 reduced	 to	 a
search	of	your	whole	disk	...	use	Tools	‣	Find	or	hit	the	Search	button
and	 look	 for	 “python.exe”.	 Supposing	 you	 discover	 that	 Python	 is
installed	 in	 the	 C:\Python33	 directory	 (the	 default	 at	 the	 time	 of
writing),	you	should	make	sure	that	entering	the	command

c:\Python33\python

starts	 up	 the	 interpreter	 as	 above	 (and	 don’t	 forget	 you’ll	 need	 a
“CTRL-Z”	and	an	“Enter”	 to	get	out	of	 it).	Once	you	have	verified	 the
directory,	you	can	add	 it	 to	 the	system	path	to	make	 it	easier	 to	start
Python	 by	 just	 running	 the	 python	 command.	 This	 is	 currently	 an
option	in	the	installer	as	of	CPython	3.3.

More	 information	 about	 environment	 variables	 can	 be	 found	 on	 the
Using	Python	on	Windows	page.

How	do	I	make	Python	scripts	executable?

On	Windows,	the	standard	Python	installer	already	associates	the	.py
extension	with	a	file	type	(Python.File)	and	gives	that	file	type	an	open
command	 that	 runs	 the	 interpreter	 (D:\Program
Files\Python\python.exe	 "%1"	 %*).	 This	 is	 enough	 to	 make
scripts	 executable	 from	 the	 command	 prompt	 as	 ‘foo.py’.	 If	 you’d
rather	 be	 able	 to	 execute	 the	 script	 by	 simple	 typing	 ‘foo’	 with	 no
extension	you	need	to	add	.py	to	the	PATHEXT	environment	variable.

Why	does	Python	sometimes	take	so	long
to	start?

Usually	Python	starts	very	quickly	on	Windows,	but	occasionally	there
are	 bug	 reports	 that	 Python	 suddenly	 begins	 to	 take	 a	 long	 time	 to
start	up.	This	 is	made	even	more	puzzling	because	Python	will	work
fine	 on	 other	 Windows	 systems	 which	 appear	 to	 be	 configured
identically.

The	problem	may	be	caused	by	a	misconfiguration	of	virus	checking
software	 on	 the	 problem	machine.	 Some	 virus	 scanners	 have	 been
known	to	introduce	startup	overhead	of	two	orders	of	magnitude	when
the	scanner	is	configured	to	monitor	all	reads	from	the	filesystem.	Try
checking	the	configuration	of	virus	scanning	software	on	your	systems
to	 ensure	 that	 they	 are	 indeed	 configured	 identically.	 McAfee,	 when
configured	to	scan	all	file	system	read	activity,	is	a	particular	offender.

How	do	I	make	an	executable	from	a
Python	script?

See	 http://cx-freeze.sourceforge.net/	 for	 a	 distutils	 extension	 that
allows	you	to	create	console	and	GUI	executables	from	Python	code.
py2exe,	 the	 most	 popular	 extension	 for	 building	 Python	 2.x-based
executables,	does	not	yet	support	Python	3	but	a	version	that	does	is
in	development.

http://cx-freeze.sourceforge.net/
http://www.py2exe.org/

Is	a	*.pyd	file	the	same	as	a	DLL?

Yes,	.pyd	files	are	dll’s,	but	there	are	a	few	differences.	If	you	have	a
DLL	named	foo.pyd,	 then	 it	must	have	a	 function	PyInit_foo().
You	 can	 then	 write	 Python	 “import	 foo”,	 and	 Python	 will	 search	 for
foo.pyd	(as	well	as	foo.py,	foo.pyc)	and	if	it	finds	it,	will	attempt	to	call
PyInit_foo()	to	initialize	it.	You	do	not	link	your	.exe	with	foo.lib,	as
that	would	cause	Windows	to	require	the	DLL	to	be	present.

Note	that	the	search	path	for	foo.pyd	is	PYTHONPATH,	not	the	same
as	the	path	that	Windows	uses	to	search	for	foo.dll.	Also,	foo.pyd	need
not	 be	 present	 to	 run	 your	 program,	 whereas	 if	 you	 linked	 your
program	with	a	dll,	the	dll	is	required.	Of	course,	foo.pyd	is	required	if
you	want	 to	 say	 import	foo.	 In	 a	 DLL,	 linkage	 is	 declared	 in	 the
source	 code	 with	 __declspec(dllexport).	 In	 a	 .pyd,	 linkage	 is
defined	in	a	list	of	available	functions.

How	can	I	embed	Python	into	a	Windows
application?

Embedding	 the	 Python	 interpreter	 in	 a	 Windows	 app	 can	 be
summarized	as	follows:

1.	 Do	 _not_	 build	 Python	 into	 your	 .exe	 file	 directly.	 On	Windows,
Python	 must	 be	 a	 DLL	 to	 handle	 importing	 modules	 that	 are
themselves	 DLL’s.	 (This	 is	 the	 first	 key	 undocumented	 fact.)
Instead,	 link	 to	 pythonNN.dll;	 it	 is	 typically	 installed	 in
C:\Windows\System.	NN	is	the	Python	version,	a	number	such
as	“33”	for	Python	3.3.

You	 can	 link	 to	 Python	 in	 two	 different	 ways.	 Load-time	 linking
means	 linking	 against	 pythonNN.lib,	 while	 run-time	 linking
means	 linking	 against	 pythonNN.dll.	 (General	 note:
pythonNN.lib	 is	 the	 so-called	 “import	 lib”	 corresponding	 to
pythonNN.dll.	It	merely	defines	symbols	for	the	linker.)

Run-time	 linking	 greatly	 simplifies	 link	 options;	 everything
happens	at	run	time.	Your	code	must	load	pythonNN.dll	using
the	 Windows	 LoadLibraryEx()	 routine.	 The	 code	 must	 also
use	access	routines	and	data	in	pythonNN.dll	(that	is,	Python’s
C	 API’s)	 using	 pointers	 obtained	 by	 the	 Windows
GetProcAddress()	 routine.	 Macros	 can	 make	 using	 these
pointers	transparent	to	any	C	code	that	calls	routines	in	Python’s
C	API.

Borland	 note:	 convert	 pythonNN.lib	 to	 OMF	 format	 using
Coff2Omf.exe	first.

2.	 If	you	use	SWIG,	it	is	easy	to	create	a	Python	“extension	module”
that	 will	make	 the	 app’s	 data	 and	methods	 available	 to	 Python.
SWIG	 will	 handle	 just	 about	 all	 the	 grungy	 details	 for	 you.	 The
result	 is	C	code	 that	you	 link	 into	your	 .exe	 file	 (!)	You	do	_not_
have	to	create	a	DLL	file,	and	this	also	simplifies	linking.

3.	 SWIG	 will	 create	 an	 init	 function	 (a	 C	 function)	 whose	 name
depends	 on	 the	 name	 of	 the	 extension	module.	 For	 example,	 if
the	 name	 of	 the	 module	 is	 leo,	 the	 init	 function	 will	 be	 called
initleo().	If	you	use	SWIG	shadow	classes,	as	you	should,	the	init
function	 will	 be	 called	 initleoc().	 This	 initializes	 a	 mostly	 hidden
helper	class	used	by	the	shadow	class.

The	reason	you	can	link	the	C	code	in	step	2	into	your	.exe	file	is
that	calling	the	initialization	function	is	equivalent	to	importing	the
module	into	Python!	(This	is	the	second	key	undocumented	fact.)

4.	 In	 short,	 you	 can	 use	 the	 following	 code	 to	 initialize	 the	 Python
interpreter	with	your	extension	module.

#include	"python.h"

...

Py_Initialize();		//	Initialize	Python.

initmyAppc();		//	Initialize	(import)	the	helper	class.

PyRun_SimpleString("import	myApp");		//	Import	the	shadow	class.

5.	 There	are	 two	problems	with	Python’s	C	API	which	will	 become
apparent	 if	 you	 use	 a	 compiler	 other	 than	 MSVC,	 the	 compiler
used	to	build	pythonNN.dll.

Problem	 1:	 The	 so-called	 “Very	 High	 Level”	 functions	 that	 take
FILE	 *	 arguments	 will	 not	 work	 in	 a	 multi-compiler	 environment
because	each	compiler’s	notion	of	a	struct	FILE	will	be	different.

From	 an	 implementation	 standpoint	 these	 are	 very	 _low_	 level
functions.

Problem	2:	SWIG	generates	 the	 following	code	when	generating
wrappers	to	void	functions:

Py_INCREF(Py_None);

_resultobj	=	Py_None;

return	_resultobj;

Alas,	 Py_None	 is	 a	 macro	 that	 expands	 to	 a	 reference	 to	 a
complex	 data	 structure	 called	 _Py_NoneStruct	 inside
pythonNN.dll.	 Again,	 this	 code	 will	 fail	 in	 a	 mult-compiler
environment.	Replace	such	code	by:

return	Py_BuildValue("");

It	may	be	possible	to	use	SWIG’s	%typemap	command	to	make
the	change	automatically,	though	I	have	not	been	able	to	get	this
to	work	(I’m	a	complete	SWIG	newbie).

6.	 Using	a	Python	shell	script	to	put	up	a	Python	interpreter	window
from	 inside	 your	Windows	 app	 is	 not	 a	 good	 idea;	 the	 resulting
window	 will	 be	 independent	 of	 your	 app’s	 windowing	 system.
Rather,	 you	 (or	 the	 wxPythonWindow	 class)	 should	 create	 a
“native”	 interpreter	window.	 It	 is	 easy	 to	 connect	 that	window	 to
the	 Python	 interpreter.	 You	 can	 redirect	 Python’s	 i/o	 to	 _any_
object	 that	supports	 read	and	write,	so	all	 you	need	 is	a	Python
object	(defined	in	your	extension	module)	that	contains	read()	and
write()	methods.

How	do	I	keep	editors	from	inserting	tabs
into	my	Python	source?

The	FAQ	does	not	recommend	using	tabs,	and	the	Python	style	guide,
PEP	8,	recommends	4	spaces	for	distributed	Python	code;	this	is	also
the	Emacs	python-mode	default.

Under	any	editor,	mixing	tabs	and	spaces	is	a	bad	idea.	MSVC	is	no
different	 in	 this	 respect,	and	 is	easily	configured	 to	use	spaces:	Take
Tools	‣	Options	‣	Tabs,	and	 for	 file	 type	 “Default”	set	 “Tab	size”	and
“Indent	size”	to	4,	and	select	the	“Insert	spaces”	radio	button.

If	you	suspect	mixed	tabs	and	spaces	are	causing	problems	in	leading
whitespace,	 run	 Python	 with	 the	 -t	 switch	 or	 run
Tools/Scripts/tabnanny.py	 to	 check	 a	 directory	 tree	 in	 batch
mode.

http://www.python.org/dev/peps/pep-0008

How	do	I	check	for	a	keypress	without
blocking?

Use	the	msvcrt	module.	This	is	a	standard	Windows-specific	extension
module.	 It	 defines	 a	 function	 kbhit()	 which	 checks	 whether	 a
keyboard	 hit	 is	 present,	 and	 getch()	 which	 gets	 one	 character
without	echoing	it.

How	do	I	emulate	os.kill()	in	Windows?

Prior	 to	 Python	 2.7	 and	 3.2,	 to	 terminate	 a	 process,	 you	 can	 use
ctypes:

import	ctypes

def	kill(pid):

				"""kill	function	for	Win32"""

				kernel32	=	ctypes.windll.kernel32

				handle	=	kernel32.OpenProcess(1,	0,	pid)

				return	(0	!=	kernel32.TerminateProcess(handle,	0

In	 2.7	 and	 3.2,	 os.kill()	 is	 implemented	 similar	 to	 the	 above
function,	with	the	additional	feature	of	being	able	to	send	CTRL+C	and
CTRL+BREAK	to	console	subprocesses	which	are	designed	to	handle
those	signals.	See	os.kill()	for	further	details.

How	do	I	extract	the	downloaded
documentation	on	Windows?

Sometimes,	 when	 you	 download	 the	 documentation	 package	 to	 a
Windows	machine	using	a	web	browser,	the	file	extension	of	the	saved
file	 ends	 up	 being	 .EXE.	 This	 is	 a	mistake;	 the	 extension	 should	 be
.TGZ.

Simply	 rename	 the	downloaded	 file	 to	have	 the	 .TGZ	extension,	and
WinZip	will	be	able	to	handle	it.	(If	your	copy	of	WinZip	doesn’t,	get	a
newer	one	from	http://www.winzip.com.)

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.winzip.com
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

Graphic	User	Interface	FAQ

Contents

Graphic	User	Interface	FAQ
General	GUI	Questions
What	platform-independent	GUI	toolkits	exist	for	Python?

Tkinter
wxWidgets
Qt
Gtk+
FLTK
FOX
OpenGL

What	platform-specific	GUI	toolkits	exist	for	Python?
Tkinter	questions

How	do	I	freeze	Tkinter	applications?
Can	I	have	Tk	events	handled	while	waiting	for	I/O?
I	can’t	get	key	bindings	to	work	in	Tkinter:	why?

General	GUI	Questions

What	platform-independent	GUI	toolkits
exist	for	Python?

Depending	on	what	platform(s)	 you	are	aiming	at,	 there	are	 several.
Some	of	 them	haven’t	 been	 ported	 to	Python	 3	 yet.	 At	 least	 Tkinter
and	Qt	are	known	to	be	Python	3-compatible.

Tkinter

Standard	builds	of	Python	 include	an	object-oriented	 interface	 to	 the
Tcl/Tk	widget	set,	called	 tkinter.	This	 is	probably	 the	easiest	 to	 install
(since	it	comes	included	with	most	binary	distributions	of	Python)	and
use.	For	more	info	about	Tk,	including	pointers	to	the	source,	see	the
Tcl/Tk	home	page.	Tcl/Tk	is	fully	portable	to	the	MacOS,	Windows,	and
Unix	platforms.

wxWidgets

wxWidgets	 (http://www.wxwidgets.org)	 is	 a	 free,	 portable	 GUI	 class
library	written	in	C++	that	provides	a	native	look	and	feel	on	a	number
of	platforms,	with	Windows,	MacOS	X,	GTK,	X11,	all	listed	as	current
stable	 targets.	 Language	 bindings	 are	 available	 for	 a	 number	 of
languages	including	Python,	Perl,	Ruby,	etc.

wxPython	 (http://www.wxpython.org)	 is	 the	 Python	 binding	 for
wxwidgets.	While	 it	 often	 lags	 slightly	 behind	 the	 official	 wxWidgets
releases,	 it	 also	 offers	 a	 number	 of	 features	 via	 pure	 Python
extensions	that	are	not	available	in	other	language	bindings.	There	 is
an	active	wxPython	user	and	developer	community.

Both	wxWidgets	 and	wxPython	 are	 free,	 open	 source,	 software	with

http://www.python.org/download/
http://www.tcl.tk
http://www.wxwidgets.org
http://www.wxpython.org

permissive	licences	that	allow	their	use	in	commercial	products	as	well
as	in	freeware	or	shareware.

Qt

There	 are	 bindings	 available	 for	 the	 Qt	 toolkit	 (using	 either	 PyQt	 or
PySide)	 and	 for	 KDE	 (PyKDE).	 PyQt	 is	 currently	 more	 mature	 than
PySide,	but	you	must	buy	a	PyQt	license	from	Riverbank	Computing	if
you	 want	 to	 write	 proprietary	 applications.	 PySide	 is	 free	 for	 all
applications.

Qt	4.5	upwards	is	 licensed	under	the	LGPL	license;	also,	commercial
licenses	are	available	from	Nokia.

Gtk+

The	GObject	introspection	bindings	for	Python	allow	you	to	write	GTK+
3	applications.	There	is	also	a	Python	GTK+	3	Tutorial.

The	 older	 PyGtk	 bindings	 for	 the	 Gtk+	 2	 toolkit	 have	 been
implemented	by	James	Henstridge;	see	<http://www.pygtk.org>.

FLTK

Python	bindings	for	the	FLTK	toolkit,	a	simple	yet	powerful	and	mature
cross-platform	 windowing	 system,	 are	 available	 from	 the	 PyFLTK
project.

FOX

A	wrapper	for	the	FOX	toolkit	called	FXpy	 is	available.	FOX	supports

http://www.riverbankcomputing.co.uk/software/pyqt/
http://www.pyside.org/
http://www.riverbankcomputing.co.uk/software/pykde/intro
http://www.riverbankcomputing.co.uk/software/pyqt/license
http://qt.nokia.com/
https://live.gnome.org/PyGObject
http://python-gtk-3-tutorial.readthedocs.org/en/latest/
http://www.gtk.org
http://www.pygtk.org
http://www.fltk.org
http://pyfltk.sourceforge.net
http://www.fox-toolkit.org/
http://fxpy.sourceforge.net/

both	Unix	variants	and	Windows.

OpenGL

For	OpenGL	bindings,	see	PyOpenGL.

http://pyopengl.sourceforge.net

What	platform-specific	GUI	toolkits	exist
for	Python?

The	 Mac	 port	 by	 Jack	 Jansen	 has	 a	 rich	 and	 ever-growing	 set	 of
modules	 that	support	 the	native	Mac	toolbox	calls.	The	port	supports
MacOS	X’s	Carbon	libraries.

By	installing	the	PyObjc	Objective-C	bridge,	Python	programs	can	use
MacOS	X’s	Cocoa	 libraries.	See	 the	 documentation	 that	 comes	with
the	Mac	port.

Pythonwin	 by	Mark	Hammond	 includes	 an	 interface	 to	 the	Microsoft
Foundation	 Classes	 and	 a	 Python	 programming	 environment	 that’s
written	mostly	in	Python	using	the	MFC	classes.

http://python.org/download/mac
http://pyobjc.sourceforge.net

Tkinter	questions

How	do	I	freeze	Tkinter	applications?

Freeze	 is	 a	 tool	 to	 create	 stand-alone	 applications.	 When	 freezing
Tkinter	applications,	 the	applications	will	 not	be	 truly	 stand-alone,	as
the	application	will	still	need	the	Tcl	and	Tk	libraries.

One	solution	is	to	ship	the	application	with	the	Tcl	and	Tk	libraries,	and
point	 to	them	at	run-time	using	the	TCL_LIBRARY	and	TK_LIBRARY
environment	variables.

To	 get	 truly	 stand-alone	 applications,	 the	 Tcl	 scripts	 that	 form	 the
library	 have	 to	 be	 integrated	 into	 the	 application	 as	 well.	 One	 tool
supporting	that	is	SAM	(stand-alone	modules),	which	is	part	of	the	Tix
distribution	(http://tix.sourceforge.net/).

Build	 Tix	 with	 SAM	 enabled,	 perform	 the	 appropriate	 call	 to
Tclsam_init(),	etc.	inside	Python’s	Modules/tkappinit.c,	and
link	with	libtclsam	and	libtksam	(you	might	 include	the	Tix	libraries	as
well).

Can	I	have	Tk	events	handled	while	waiting	for
I/O?

Yes,	and	you	don’t	even	need	 threads!	But	you’ll	 have	 to	 restructure
your	I/O	code	a	bit.	Tk	has	the	equivalent	of	Xt’s	XtAddInput()	call,
which	 allows	 you	 to	 register	 a	 callback	 function	which	will	 be	 called
from	the	Tk	mainloop	when	I/O	is	possible	on	a	file	descriptor.	Here’s
what	you	need:

from	Tkinter	import	tkinter

http://tix.sourceforge.net/

tkinter.createfilehandler(file,	mask,	callback)

The	file	may	be	a	Python	file	or	socket	object	(actually,	anything	with	a
fileno()	method),	or	an	 integer	 file	descriptor.	The	mask	 is	one	of	 the
constants	 tkinter.READABLE	 or	 tkinter.WRITABLE.	 The	 callback	 is
called	as	follows:

callback(file,	mask)

You	must	unregister	the	callback	when	you’re	done,	using

tkinter.deletefilehandler(file)

Note:	since	you	don’t	know	how	many	bytes	are	available	for	reading,
you	can’t	use	the	Python	file	object’s	read	or	readline	methods,	since
these	will	insist	on	reading	a	predefined	number	of	bytes.	For	sockets,
the	 recv()	 or	 recvfrom()	 methods	 will	 work	 fine;	 for	 other	 files,
use	os.read(file.fileno(),	maxbytecount).

I	can’t	get	key	bindings	to	work	in	Tkinter:	why?

An	often-heard	complaint	 is	that	event	handlers	bound	to	events	with
the	bind()	method	don’t	get	handled	even	when	the	appropriate	key
is	pressed.

The	 most	 common	 cause	 is	 that	 the	 widget	 to	 which	 the	 binding
applies	 doesn’t	 have	 “keyboard	 focus”.	 Check	 out	 the	 Tk
documentation	 for	 the	 focus	command.	Usually	a	widget	 is	given	 the
keyboard	 focus	by	clicking	 in	 it	 (but	not	 for	 labels;	see	 the	 takefocus
option).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

http://www.python.org/

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

http://www.python.org/

“Why	is	Python	Installed	on	my
Computer?”	FAQ

What	is	Python?

Python	 is	 a	 programming	 language.	 It’s	 used	 for	 many	 different
applications.	 It’s	 used	 in	 some	 high	 schools	 and	 colleges	 as	 an
introductory	programming	 language	because	Python	 is	easy	to	 learn,
but	 it’s	also	used	by	professional	software	developers	at	places	such
as	Google,	NASA,	and	Lucasfilm	Ltd.

If	you	wish	to	learn	more	about	Python,	start	with	the	Beginner’s	Guide
to	Python.

http://wiki.python.org/moin/BeginnersGuide

Why	is	Python	installed	on	my	machine?

If	 you	 find	 Python	 installed	 on	 your	 system	 but	 don’t	 remember
installing	it,	there	are	several	possible	ways	it	could	have	gotten	there.

Perhaps	 another	 user	 on	 the	 computer	 wanted	 to	 learn
programming	and	installed	it;	you’ll	have	to	figure	out	who’s	been
using	the	machine	and	might	have	installed	it.
A	third-party	application	installed	on	the	machine	might	have	been
written	 in	 Python	 and	 included	 a	 Python	 installation.	 There	 are
many	 such	 applications,	 from	GUI	 programs	 to	 network	 servers
and	administrative	scripts.
Some	 Windows	 machines	 also	 have	 Python	 installed.	 At	 this
writing	 we’re	 aware	 of	 computers	 from	 Hewlett-Packard	 and
Compaq	 that	 include	 Python.	 Apparently	 some	 of	 HP/Compaq’s
administrative	tools	are	written	in	Python.
Many	Unix-compatible	operating	systems,	such	as	Mac	OS	X	and
some	 Linux	 distributions,	 have	 Python	 installed	 by	 default;	 it’s
included	in	the	base	installation.

Can	I	delete	Python?

That	depends	on	where	Python	came	from.

If	someone	 installed	 it	deliberately,	you	can	remove	 it	without	hurting
anything.	 On	 Windows,	 use	 the	 Add/Remove	 Programs	 icon	 in	 the
Control	Panel.

If	 Python	 was	 installed	 by	 a	 third-party	 application,	 you	 can	 also
remove	it,	but	that	application	will	no	longer	work.	You	should	use	that
application’s	uninstaller	rather	than	removing	Python	directly.

If	 Python	 came	 with	 your	 operating	 system,	 removing	 it	 is	 not
recommended.	If	you	remove	it,	whatever	tools	were	written	in	Python
will	 no	 longer	 run,	 and	 some	 of	 them	 might	 be	 important	 to	 you.
Reinstalling	 the	 whole	 system	 would	 then	 be	 required	 to	 fix	 things
again.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Python	Frequently	Asked

Questions	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Glossary
>>>

The	default	Python	prompt	of	 the	 interactive	shell.	Often	seen	 for
code	 examples	 which	 can	 be	 executed	 interactively	 in	 the
interpreter.

...

The	 default	 Python	 prompt	 of	 the	 interactive	 shell	 when	 entering
code	 for	 an	 indented	 code	 block	 or	within	 a	 pair	 of	matching	 left
and	right	delimiters	(parentheses,	square	brackets	or	curly	braces).

2to3
A	tool	 that	 tries	to	convert	Python	2.x	code	to	Python	3.x	code	by
handling	 most	 of	 the	 incompatibilities	 which	 can	 be	 detected	 by
parsing	the	source	and	traversing	the	parse	tree.

2to3	is	available	in	the	standard	library	as	lib2to3;	a	standalone
entry	 point	 is	 provided	 as	 Tools/scripts/2to3.	 See	 2to3	 -
Automated	Python	2	to	3	code	translation.

abstract	base	class
Abstract	base	classes	complement	duck-typing	by	providing	a	way
to	define	interfaces	when	other	techniques	like	hasattr()	would
be	 clumsy	 or	 subtly	 wrong	 (for	 example	 with	 magic	 methods).
ABCs	 introduce	 virtual	 subclasses,	 which	 are	 classes	 that	 don’t
inherit	from	a	class	but	are	still	recognized	by	isinstance()	and
issubclass();	 see	 the	 abc	 module	 documentation.	 Python
comes	 with	 many	 built-in	 ABCs	 for	 data	 structures	 (in	 the
collections.abc	module),	numbers	(in	the	numbers	module),
streams	 (in	 the	 io	 module),	 import	 finders	 and	 loaders	 (in	 the
importlib.abc	 module).	 You	 can	 create	 your	 own	 ABCs	 with
the	abc	module.

argument
A	value	passed	to	a	function	(or	method)	when	calling	the	function.
There	are	two	kinds	of	argument:

keyword	 argument:	 an	 argument	 preceded	 by	 an	 identifier
(e.g.	 name=)	 in	 a	 function	 call	 or	 passed	 as	 a	 value	 in	 a
dictionary	 preceded	 by	 **.	 For	 example,	 3	 and	 5	 are	 both
keyword	arguments	in	the	following	calls	to	complex():

complex(real=3,	imag=5)

complex(**{'real':	3,	'imag':	5})

positional	 argument:	 an	 argument	 that	 is	 not	 a	 keyword
argument.	Positional	 arguments	 can	appear	 at	 the	 beginning
of	 an	 argument	 list	 and/or	 be	 passed	 as	 elements	 of	 an
iterable	 preceded	 by	 *.	 For	 example,	 3	 and	 5	 are	 both
positional	arguments	in	the	following	calls:

complex(3,	5)

complex(*(3,	5))

Arguments	are	assigned	to	the	named	local	variables	in	a	function
body.	See	the	Calls	section	for	the	rules	governing	this	assignment.
Syntactically,	 any	 expression	 can	 be	 used	 to	 represent	 an
argument;	the	evaluated	value	is	assigned	to	the	local	variable.

See	 also	 the	parameter	 glossary	 entry,	 the	 FAQ	 question	 on	 the
difference	between	arguments	and	parameters,	and	PEP	362.

attribute
A	 value	 associated	 with	 an	 object	 which	 is	 referenced	 by	 name
using	 dotted	 expressions.	 For	 example,	 if	 an	 object	 o	 has	 an
attribute	a	it	would	be	referenced	as	o.a.

http://www.python.org/dev/peps/pep-0362

BDFL
Benevolent	Dictator	 For	 Life,	 a.k.a.	Guido	 van	 Rossum,	Python’s
creator.

binary	file
A	file	object	able	to	read	and	write	bytes-like	objects.

See	also: 	A	text	file	reads	and	writes	str	objects.

bytes-like	object
An	 object	 that	 supports	 the	 Buffer	 Protocol,	 like	 bytes,
bytearray	 or	 memoryview.	 Bytes-like	 objects	 can	 be	 used	 for
various	operations	 that	expect	binary	data,	 such	as	compression,
saving	to	a	binary	 file	or	sending	over	a	socket.	Some	operations
need	the	binary	data	to	be	mutable,	in	which	case	not	all	bytes-like
objects	can	apply.

bytecode
Python	 source	 code	 is	 compiled	 into	 bytecode,	 the	 internal
representation	of	a	Python	program	in	the	CPython	interpreter.	The
bytecode	is	also	cached	in	.pyc	and	.pyo	files	so	that	executing
the	same	file	 is	faster	the	second	time	(recompilation	from	source
to	bytecode	can	be	avoided).	This	“intermediate	 language”	 is	said
to	 run	 on	 a	 virtual	 machine	 that	 executes	 the	 machine	 code
corresponding	 to	 each	 bytecode.	Do	 note	 that	 bytecodes	 are	 not
expected	to	work	between	different	Python	virtual	machines,	nor	to
be	stable	between	Python	releases.

A	 list	of	bytecode	 instructions	can	be	 found	 in	 the	documentation
for	the	dis	module.

class
A	 template	 for	 creating	 user-defined	 objects.	 Class	 definitions
normally	contain	method	definitions	which	operate	on	instances	of

http://www.python.org/~guido/

the	class.

coercion
The	implicit	conversion	of	an	instance	of	one	type	to	another	during
an	operation	which	 involves	two	arguments	of	 the	same	type.	For
example,	 int(3.15)	 converts	 the	 floating	 point	 number	 to	 the
integer	3,	but	in	3+4.5,	each	argument	is	of	a	different	type	(one
int,	one	float),	and	both	must	be	converted	to	the	same	type	before
they	can	be	added	or	it	will	raise	a	TypeError.	Without	coercion,
all	 arguments	 of	 even	 compatible	 types	 would	 have	 to	 be
normalized	 to	 the	 same	 value	 by	 the	 programmer,	 e.g.,
float(3)+4.5	rather	than	just	3+4.5.

complex	number
An	 extension	 of	 the	 familiar	 real	 number	 system	 in	 which	 all
numbers	are	expressed	as	a	sum	of	a	real	part	and	an	imaginary
part.	 Imaginary	 numbers	 are	 real	 multiples	 of	 the	 imaginary	 unit
(the	 square	 root	 of	 -1),	 often	 written	 i	 in	 mathematics	 or	 j	 in
engineering.	 Python	 has	 built-in	 support	 for	 complex	 numbers,
which	 are	 written	 with	 this	 latter	 notation;	 the	 imaginary	 part	 is
written	 with	 a	 j	 suffix,	 e.g.,	 3+1j.	 To	 get	 access	 to	 complex
equivalents	 of	 the	 math	 module,	 use	 cmath.	 Use	 of	 complex
numbers	 is	 a	 fairly	 advanced	mathematical	 feature.	 If	 you’re	 not
aware	of	a	need	for	them,	it’s	almost	certain	you	can	safely	ignore
them.

context	manager
An	 object	 which	 controls	 the	 environment	 seen	 in	 a	 with
statement	by	defining	__enter__()	and	__exit__()	methods.
See	PEP	343.

CPython
The	 canonical	 implementation	 of	 the	 Python	 programming
language,	as	distributed	on	python.org.	The	term	“CPython”	is	used
when	 necessary	 to	 distinguish	 this	 implementation	 from	 others

http://www.python.org/dev/peps/pep-0343
http://python.org

such	as	Jython	or	IronPython.

decorator
A	function	returning	another	function,	usually	applied	as	a	function
transformation	using	the	@wrapper	syntax.	Common	examples	for
decorators	are	classmethod()	and	staticmethod().

The	decorator	 syntax	 is	merely	 syntactic	 sugar,	 the	 following	 two
function	definitions	are	semantically	equivalent:

def	f(...):

				...

f	=	staticmethod(f)

@staticmethod

def	f(...):

				...

The	 same	concept	 exists	 for	 classes,	 but	 is	 less	 commonly	 used
there.	 See	 the	 documentation	 for	 function	 definitions	 and	 class
definitions	for	more	about	decorators.

descriptor
Any	object	which	defines	 the	methods	__get__(),	 __set__(),
or	 __delete__().	 When	 a	 class	 attribute	 is	 a	 descriptor,	 its
special	 binding	 behavior	 is	 triggered	 upon	 attribute	 lookup.
Normally,	using	a.b	 to	get,	 set	or	delete	an	attribute	 looks	up	 the
object	named	b	in	the	class	dictionary	for	a,	but	if	b	is	a	descriptor,
the	 respective	 descriptor	 method	 gets	 called.	 Understanding
descriptors	 is	 a	 key	 to	 a	 deep	 understanding	 of	 Python	 because
they	are	the	basis	for	many	features	including	functions,	methods,
properties,	class	methods,	static	methods,	and	reference	to	super
classes.

For	 more	 information	 about	 descriptors’	 methods,	 see
Implementing	Descriptors.

dictionary
An	associative	array,	where	arbitrary	keys	are	mapped	 to	values.
The	 keys	 can	 be	 any	 object	 with	 __hash__()	 and	 __eq__()
methods.	Called	a	hash	in	Perl.

docstring
A	 string	 literal	 which	 appears	 as	 the	 first	 expression	 in	 a	 class,
function	or	module.	While	ignored	when	the	suite	is	executed,	it	is
recognized	by	 the	compiler	and	put	 into	 the	__doc__	attribute	of
the	 enclosing	 class,	 function	 or	 module.	 Since	 it	 is	 available	 via
introspection,	 it	 is	 the	 canonical	 place	 for	 documentation	 of	 the
object.

duck-typing
A	 programming	 style	 which	 does	 not	 look	 at	 an	 object’s	 type	 to
determine	 if	 it	 has	 the	 right	 interface;	 instead,	 the	 method	 or
attribute	is	simply	called	or	used	(“If	it	looks	like	a	duck	and	quacks
like	a	duck,	 it	must	be	a	duck.”)	By	emphasizing	 interfaces	 rather
than	 specific	 types,	 well-designed	 code	 improves	 its	 flexibility	 by
allowing	 polymorphic	 substitution.	 Duck-typing	 avoids	 tests	 using
type()	or	isinstance().	(Note,	however,	that	duck-typing	can
be	complemented	with	abstract	base	classes.)	 Instead,	 it	 typically
employs	hasattr()	tests	or	EAFP	programming.

EAFP
Easier	 to	 ask	 for	 forgiveness	 than	 permission.	 This	 common
Python	 coding	 style	 assumes	 the	 existence	 of	 valid	 keys	 or
attributes	 and	 catches	 exceptions	 if	 the	 assumption	 proves	 false.
This	clean	and	fast	style	is	characterized	by	the	presence	of	many
try	 and	 except	 statements.	 The	 technique	 contrasts	 with	 the
LBYL	style	common	to	many	other	languages	such	as	C.

expression

A	piece	of	syntax	which	can	be	evaluated	to	some	value.	In	other
words,	 an	 expression	 is	 an	 accumulation	 of	 expression	 elements
like	 literals,	 names,	 attribute	 access,	 operators	 or	 function	 calls
which	all	 return	a	value.	 In	contrast	 to	many	other	 languages,	not
all	language	constructs	are	expressions.	There	are	also	statements
which	 cannot	 be	 used	as	 expressions,	 such	as	 if.	 Assignments
are	also	statements,	not	expressions.

extension	module
A	module	written	in	C	or	C++,	using	Python’s	C	API	to	interact	with
the	core	and	with	user	code.

file	object
An	 object	 exposing	 a	 file-oriented	 API	 (with	 methods	 such	 as
read()	or	write())	to	an	underlying	resource.	Depending	on	the
way	 it	was	created,	a	file	object	can	mediate	access	to	a	real	on-
disk	file	or	to	another	type	of	storage	or	communication	device	(for
example	standard	 input/output,	 in-memory	buffers,	sockets,	pipes,
etc.).	File	objects	are	also	called	file-like	objects	or	streams.

There	are	actually	three	categories	of	file	objects:	raw	binary	 files,
buffered	binary	 files	 and	 text	 files.	 Their	 interfaces	 are	 defined	 in
the	 io	 module.	 The	 canonical	 way	 to	 create	 a	 file	 object	 is	 by
using	the	open()	function.

file-like	object
A	synonym	for	file	object.

finder
An	 object	 that	 tries	 to	 find	 the	 loader	 for	 a	 module.	 It	 must
implement	either	a	method	named	find_loader()	or	a	method
named	find_module().	See	PEP	302	 and	PEP	420	 for	 details
and	importlib.abc.Finder	for	an	abstract	base	class.

floor	division

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0420

Mathematical	 division	 that	 rounds	 down	 to	 nearest	 integer.	 The
floor	division	operator	 is	//.	For	example,	 the	expression	11	//
4	 evaluates	 to	 2	 in	 contrast	 to	 the	 2.75	 returned	 by	 float	 true
division.	 Note	 that	 (-11)	 //	 4	 is	 -3	 because	 that	 is	 -2.75
rounded	downward.	See	PEP	238.

function
A	series	of	statements	which	returns	some	value	to	a	caller.	It	can
also	be	passed	zero	or	more	arguments	which	may	be	used	in	the
execution	 of	 the	 body.	 See	 also	 parameter,	 method,	 and	 the
Function	definitions	section.

function	annotation
An	arbitrary	metadata	value	associated	with	a	 function	parameter
or	 return	 value.	 Its	 syntax	 is	 explained	 in	 section	 Function
definitions.	 Annotations	 may	 be	 accessed	 via	 the
__annotations__	special	attribute	of	a	function	object.

Python	 itself	 does	 not	 assign	 any	 particular	 meaning	 to	 function
annotations.	 They	 are	 intended	 to	 be	 interpreted	 by	 third-party
libraries	 or	 tools.	 See	PEP	 3107,	 which	 describes	 some	 of	 their
potential	uses.

__future__
A	 pseudo-module	 which	 programmers	 can	 use	 to	 enable	 new
language	 features	 which	 are	 not	 compatible	 with	 the	 current
interpreter.

By	importing	the	__future__	module	and	evaluating	its	variables,
you	can	see	when	a	new	feature	was	 first	added	to	 the	 language
and	when	it	becomes	the	default:

>>>	import	__future__

>>>	__future__.division

http://www.python.org/dev/peps/pep-0238
http://www.python.org/dev/peps/pep-3107

_Feature((2,	2,	0,	'alpha',	2),	(3,	0,	0,	'alpha',	0),	8192)

garbage	collection
The	 process	 of	 freeing	 memory	 when	 it	 is	 not	 used	 anymore.
Python	 performs	 garbage	 collection	 via	 reference	 counting	 and	 a
cyclic	garbage	collector	 that	 is	able	to	detect	and	break	reference
cycles.

generator
A	function	which	returns	an	iterator.	 It	 looks	like	a	normal	function
except	that	 it	contains	yield	statements	for	producing	a	series	a
values	usable	 in	a	 for-loop	or	 that	can	be	 retrieved	one	at	a	 time
with	 the	 next()	 function.	 Each	 yield	 temporarily	 suspends
processing,	 remembering	 the	 location	 execution	 state	 (including
local	 variables	 and	 pending	 try-statements).	 When	 the	 generator
resumes,	it	picks-up	where	it	left-off	(in	contrast	to	functions	which
start	fresh	on	every	invocation).

generator	expression
An	 expression	 that	 returns	 an	 iterator.	 It	 looks	 like	 a	 normal
expression	followed	by	a	for	expression	defining	a	loop	variable,
range,	 and	an	optional	 if	 expression.	 The	 combined	 expression
generates	values	for	an	enclosing	function:

>>>	sum(i*i	for	i	in	range(10))									#	sum	of	squares	0,	1,	4,	...	81

285

generic	function
A	function	composed	of	multiple	 functions	 implementing	the	same
operation	for	different	types.	Which	implementation	should	be	used
during	a	call	is	determined	by	the	dispatch	algorithm.

See	 also	 the	 single	 dispatch	 glossary	 entry,	 the

functools.singledispatch()	decorator,	and	PEP	443.

GIL
See	global	interpreter	lock.

global	interpreter	lock
The	 mechanism	 used	 by	 the	 CPython	 interpreter	 to	 assure	 that
only	 one	 thread	 executes	 Python	 bytecode	 at	 a	 time.	 This
simplifies	the	CPython	implementation	by	making	the	object	model
(including	 critical	 built-in	 types	 such	 as	 dict)	 implicitly	 safe
against	concurrent	access.	Locking	 the	entire	 interpreter	makes	 it
easier	 for	 the	 interpreter	 to	 be	multi-threaded,	 at	 the	 expense	 of
much	of	the	parallelism	afforded	by	multi-processor	machines.

However,	 some	extension	modules,	either	 standard	or	 third-party,
are	designed	so	as	to	release	the	GIL	when	doing	computationally-
intensive	 tasks	such	as	compression	or	hashing.	Also,	 the	GIL	 is
always	released	when	doing	I/O.

Past	efforts	to	create	a	“free-threaded”	interpreter	(one	which	locks
shared	data	at	a	much	finer	granularity)	have	not	been	successful
because	 performance	 suffered	 in	 the	 common	 single-processor
case.	 It	 is	believed	 that	overcoming	 this	performance	 issue	would
make	 the	 implementation	 much	 more	 complicated	 and	 therefore
costlier	to	maintain.

hashable
An	object	 is	hashable	 if	 it	has	a	hash	value	which	never	changes
during	 its	 lifetime	 (it	 needs	 a	 __hash__()	method),	 and	 can	 be
compared	 to	 other	 objects	 (it	 needs	 an	 __eq__()	 method).
Hashable	objects	which	compare	equal	must	have	the	same	hash
value.

http://www.python.org/dev/peps/pep-0443

Hashability	makes	an	object	usable	as	a	dictionary	key	and	a	set
member,	 because	 these	 data	 structures	 use	 the	 hash	 value
internally.

All	 of	 Python’s	 immutable	 built-in	 objects	 are	 hashable,	 while	 no
mutable	 containers	 (such	 as	 lists	 or	 dictionaries)	 are.	 Objects
which	 are	 instances	 of	 user-defined	 classes	 are	 hashable	 by
default;	 they	 all	 compare	 unequal	 (except	 with	 themselves),	 and
their	hash	value	is	their	id().

IDLE
An	 Integrated	 Development	 Environment	 for	 Python.	 IDLE	 is	 a
basic	 editor	 and	 interpreter	 environment	 which	 ships	 with	 the
standard	distribution	of	Python.

immutable
An	object	with	a	 fixed	value.	 Immutable	objects	 include	numbers,
strings	and	tuples.	Such	an	object	cannot	be	altered.	A	new	object
has	to	be	created	if	a	different	value	has	to	be	stored.	They	play	an
important	role	in	places	where	a	constant	hash	value	is	needed,	for
example	as	a	key	in	a	dictionary.

import	path
A	 list	 of	 locations	 (or	path	 entries)	 that	 are	 searched	 by	 the	path
based	 finder	 for	 modules	 to	 import.	 During	 import,	 this	 list	 of
locations	 usually	 comes	 from	 sys.path,	 but	 for	 subpackages	 it
may	also	come	from	the	parent	package’s	__path__	attribute.

importing
The	 process	 by	 which	 Python	 code	 in	 one	 module	 is	 made
available	to	Python	code	in	another	module.

importer
An	 object	 that	 both	 finds	 and	 loads	 a	module;	 both	 a	 finder	 and
loader	object.

interactive
Python	has	 an	 interactive	 interpreter	which	means	 you	 can	enter
statements	and	expressions	at	the	interpreter	prompt,	immediately
execute	 them	and	 see	 their	 results.	 Just	 launch	 python	with	 no
arguments	 (possibly	 by	 selecting	 it	 from	 your	 computer’s	 main
menu).	 It	 is	a	 very	powerful	way	 to	 test	out	new	 ideas	or	 inspect
modules	and	packages	(remember	help(x)).

interpreted
Python	is	an	interpreted	language,	as	opposed	to	a	compiled	one,
though	the	distinction	can	be	blurry	because	of	the	presence	of	the
bytecode	compiler.	This	means	that	source	files	can	be	run	directly
without	 explicitly	 creating	 an	 executable	 which	 is	 then	 run.
Interpreted	languages	typically	have	a	shorter	development/debug
cycle	than	compiled	ones,	though	their	programs	generally	also	run
more	slowly.	See	also	interactive.

iterable
An	 object	 capable	 of	 returning	 its	 members	 one	 at	 a	 time.
Examples	of	 iterables	 include	all	 sequence	 types	 (such	as	list,
str,	 and	 tuple)	 and	 some	 non-sequence	 types	 like	 dict,	 file
objects,	 and	 objects	 of	 any	 classes	 you	 define	 with	 an
__iter__()	or	__getitem__()	method.	Iterables	can	be	used
in	 a	 for	 loop	 and	 in	 many	 other	 places	 where	 a	 sequence	 is
needed	(zip(),	map(),	...).	When	an	iterable	object	is	passed	as
an	argument	 to	 the	built-in	 function	iter(),	 it	 returns	an	 iterator
for	 the	 object.	 This	 iterator	 is	 good	 for	 one	 pass	 over	 the	 set	 of
values.	 When	 using	 iterables,	 it	 is	 usually	 not	 necessary	 to	 call
iter()	or	deal	with	 iterator	objects	yourself.	The	for	statement
does	 that	 automatically	 for	 you,	 creating	 a	 temporary	 unnamed
variable	 to	hold	 the	 iterator	 for	 the	duration	of	 the	 loop.	See	also
iterator,	sequence,	and	generator.

iterator
An	 object	 representing	 a	 stream	 of	 data.	 Repeated	 calls	 to	 the

iterator’s	__next__()	method	(or	passing	it	to	the	built-in	function
next())	 return	 successive	 items	 in	 the	 stream.	 When	 no	 more
data	are	available	a	StopIteration	exception	is	raised	instead.
At	this	point,	the	iterator	object	is	exhausted	and	any	further	calls	to
its	 __next__()	 method	 just	 raise	 StopIteration	 again.
Iterators	are	required	to	have	an	__iter__()	method	that	returns
the	iterator	object	itself	so	every	iterator	is	also	iterable	and	may	be
used	 in	 most	 places	 where	 other	 iterables	 are	 accepted.	 One
notable	exception	is	code	which	attempts	multiple	iteration	passes.
A	container	object	(such	as	a	list)	produces	a	fresh	new	iterator
each	 time	you	pass	 it	 to	 the	 iter()	 function	 or	 use	 it	 in	 a	 for
loop.	 Attempting	 this	 with	 an	 iterator	 will	 just	 return	 the	 same
exhausted	 iterator	 object	 used	 in	 the	 previous	 iteration	 pass,
making	it	appear	like	an	empty	container.

More	information	can	be	found	in	Iterator	Types.

key	function
A	key	function	or	collation	function	is	a	callable	that	returns	a	value
used	for	sorting	or	ordering.	For	example,	locale.strxfrm()	is
used	 to	 produce	 a	 sort	 key	 that	 is	 aware	 of	 locale	 specific	 sort
conventions.

A	 number	 of	 tools	 in	 Python	 accept	 key	 functions	 to	 control	 how
elements	 are	 ordered	 or	 grouped.	 They	 include	 min(),	 max(),
sorted(),	 list.sort(),	 heapq.nsmallest(),
heapq.nlargest(),	and	itertools.groupby().

There	are	several	ways	to	create	a	key	function.	For	example.	the
str.lower()	 method	 can	 serve	 as	 a	 key	 function	 for	 case
insensitive	sorts.	Alternatively,	an	ad-hoc	key	function	can	be	built
from	a	lambda	expression	such	as	lambda	r:	(r[0],	r[2]).

Also,	 the	 operator	 module	 provides	 three	 key	 function
constructors:	 attrgetter(),	 itemgetter(),	 and
methodcaller().	See	the	Sorting	HOW	TO	for	examples	of	how
to	create	and	use	key	functions.

keyword	argument
See	argument.

lambda
An	 anonymous	 inline	 function	 consisting	 of	 a	 single	 expression
which	is	evaluated	when	the	function	is	called.	The	syntax	to	create
a	lambda	function	is	lambda	[arguments]:	expression

LBYL
Look	 before	 you	 leap.	 This	 coding	 style	 explicitly	 tests	 for	 pre-
conditions	before	making	calls	or	lookups.	This	style	contrasts	with
the	EAFP	approach	and	is	characterized	by	the	presence	of	many
if	statements.

In	 a	 multi-threaded	 environment,	 the	 LBYL	 approach	 can	 risk
introducing	 a	 race	 condition	 between	 “the	 looking”	 and	 “the
leaping”.	For	example,	the	code,	if	key	in	mapping:	return
mapping[key]	 can	 fail	 if	 another	 thread	 removes	 key	 from
mapping	 after	 the	 test,	 but	 before	 the	 lookup.	 This	 issue	 can	 be
solved	with	locks	or	by	using	the	EAFP	approach.

list
A	built-in	Python	sequence.	Despite	its	name	it	 is	more	akin	to	an
array	 in	 other	 languages	 than	 to	 a	 linked	 list	 since	 access	 to
elements	are	O(1).

list	comprehension
A	compact	way	to	process	all	or	part	of	the	elements	in	a	sequence
and	 return	 a	 list	 with	 the	 results.	 result	 =

['{:#04x}'.format(x)	for	x	in	range(256)	if	x	%	2

==	 0]	 generates	 a	 list	 of	 strings	 containing	 even	 hex	 numbers
(0x..)	 in	 the	 range	 from	 0	 to	 255.	 The	 if	 clause	 is	 optional.	 If
omitted,	all	elements	in	range(256)	are	processed.

loader
An	 object	 that	 loads	 a	 module.	 It	 must	 define	 a	 method	 named
load_module().	 A	 loader	 is	 typically	 returned	 by	 a	 finder.	 See
PEP	302	for	details	and	importlib.abc.Loader	for	an	abstract
base	class.

mapping
A	 container	 object	 that	 supports	 arbitrary	 key	 lookups	 and
implements	 the	 methods	 specified	 in	 the	 Mapping	 or
MutableMapping	 abstract	 base	 classes.	 Examples	 include
dict,	 collections.defaultdict,
collections.OrderedDict	and	collections.Counter.

meta	path	finder
A	 finder	 returned	 by	 a	 search	 of	 sys.meta_path.	 Meta	 path
finders	are	related	to,	but	different	from	path	entry	finders.

metaclass
The	class	of	a	class.	Class	definitions	create	a	class	name,	a	class
dictionary,	and	a	list	of	base	classes.	The	metaclass	is	responsible
for	 taking	 those	 three	 arguments	 and	 creating	 the	 class.	 Most
object	 oriented	 programming	 languages	 provide	 a	 default
implementation.	What	makes	Python	special	is	that	it	is	possible	to
create	 custom	metaclasses.	Most	 users	 never	 need	 this	 tool,	 but
when	 the	need	arises,	metaclasses	can	provide	powerful,	elegant
solutions.	 They	 have	 been	 used	 for	 logging	 attribute	 access,
adding	 thread-safety,	 tracking	 object	 creation,	 implementing
singletons,	and	many	other	tasks.

More	information	can	be	found	in	Customizing	class	creation.

http://www.python.org/dev/peps/pep-0302

method
A	 function	 which	 is	 defined	 inside	 a	 class	 body.	 If	 called	 as	 an
attribute	 of	 an	 instance	 of	 that	 class,	 the	 method	 will	 get	 the
instance	object	as	its	first	argument	(which	is	usually	called	self).
See	function	and	nested	scope.

method	resolution	order
Method	Resolution	Order	 is	 the	 order	 in	 which	 base	 classes	 are
searched	for	a	member	during	lookup.	See	The	Python	2.3	Method
Resolution	Order.

module
An	 object	 that	 serves	 as	 an	 organizational	 unit	 of	 Python	 code.
Modules	 have	 a	 namespace	 containing	 arbitrary	 Python	 objects.
Modules	are	loaded	into	Python	by	the	process	of	importing.

See	also	package.

module	spec
A	 namespace	 containing	 the	 import-related	 information	 used	 to
load	a	module.

MRO
See	method	resolution	order.

mutable
Mutable	objects	can	change	their	value	but	keep	their	id().	See
also	immutable.

named	tuple
Any	tuple-like	class	whose	indexable	elements	are	also	accessible
using	named	attributes	(for	example,	time.localtime()	returns
a	tuple-like	object	where	the	year	is	accessible	either	with	an	index
such	as	t[0]	or	with	a	named	attribute	like	t.tm_year).

A	 named	 tuple	 can	 be	 a	 built-in	 type	 such	 as

http://www.python.org/download/releases/2.3/mro/

time.struct_time,	 or	 it	 can	 be	 created	 with	 a	 regular	 class
definition.	A	full	featured	named	tuple	can	also	be	created	with	the
factory	 function	 collections.namedtuple().	 The	 latter
approach	 automatically	 provides	 extra	 features	 such	 as	 a	 self-
documenting	 representation	 like	 Employee(name='jones',

title='programmer').

namespace
The	 place	 where	 a	 variable	 is	 stored.	 Namespaces	 are
implemented	as	dictionaries.	There	are	the	local,	global	and	built-in
namespaces	 as	 well	 as	 nested	 namespaces	 in	 objects	 (in
methods).	Namespaces	 support	modularity	 by	 preventing	 naming
conflicts.	 For	 instance,	 the	 functions	 builtins.open	 and
os.open()	are	distinguished	by	their	namespaces.	Namespaces
also	 aid	 readability	 and	 maintainability	 by	 making	 it	 clear	 which
module	 implements	 a	 function.	 For	 instance,	 writing
random.seed()	 or	 itertools.islice()	 makes	 it	 clear	 that
those	functions	are	implemented	by	the	random	and	itertools
modules,	respectively.

namespace	package
A	 PEP	 420	 package	 which	 serves	 only	 as	 a	 container	 for
subpackages.	 Namespace	 packages	 may	 have	 no	 physical
representation,	 and	 specifically	 are	 not	 like	 a	 regular	 package
because	they	have	no	__init__.py	file.

See	also	module.

nested	scope
The	 ability	 to	 refer	 to	 a	 variable	 in	 an	 enclosing	 definition.	 For
instance,	 a	 function	 defined	 inside	 another	 function	 can	 refer	 to
variables	in	the	outer	function.	Note	that	nested	scopes	by	default
work	 only	 for	 reference	 and	 not	 for	 assignment.	 Local	 variables

http://www.python.org/dev/peps/pep-0420

both	 read	 and	 write	 in	 the	 innermost	 scope.	 Likewise,	 global
variables	read	and	write	to	the	global	namespace.	The	nonlocal
allows	writing	to	outer	scopes.

new-style	class
Old	name	for	the	flavor	of	classes	now	used	for	all	class	objects.	In
earlier	Python	versions,	only	new-style	classes	could	use	Python’s
newer,	versatile	 features	 like	__slots__,	descriptors,	properties,
__getattribute__(),	class	methods,	and	static	methods.

object
Any	 data	 with	 state	 (attributes	 or	 value)	 and	 defined	 behavior
(methods).	Also	the	ultimate	base	class	of	any	new-style	class.

package
A	 Python	module	 which	 can	 contain	 submodules	 or	 recursively,
subpackages.	Technically,	 a	package	 is	a	Python	module	with	an
__path__	attribute.

See	also	regular	package	and	namespace	package.

parameter
A	named	entity	in	a	function	(or	method)	definition	that	specifies	an
argument	 (or	 in	 some	 cases,	 arguments)	 that	 the	 function	 can
accept.	There	are	five	kinds	of	parameter:

positional-or-keyword:	 specifies	 an	 argument	 that	 can	 be
passed	either	positionally	 or	 as	 a	keyword	 argument.	 This	 is
the	default	kind	of	parameter,	 for	example	 foo	and	bar	 in	 the
following:

def	func(foo,	bar=None):	...

positional-only:	 specifies	 an	 argument	 that	 can	 be	 supplied
only	by	position.	Python	has	no	syntax	for	defining	positional-

only	 parameters.	 However,	 some	 built-in	 functions	 have
positional-only	parameters	(e.g.	abs()).

keyword-only:	specifies	an	argument	that	can	be	supplied	only
by	 keyword.	 Keyword-only	 parameters	 can	 be	 defined	 by
including	 a	 single	 var-positional	 parameter	 or	 bare	 *	 in	 the
parameter	 list	 of	 the	 function	 definition	 before	 them,	 for
example	kw_only1	and	kw_only2	in	the	following:

def	func(arg,	*,	kw_only1,	kw_only2):	...

var-positional:	 specifies	 that	 an	 arbitrary	 sequence	 of
positional	 arguments	 can	 be	 provided	 (in	 addition	 to	 any
positional	 arguments	 already	accepted	by	other	 parameters).
Such	 a	 parameter	 can	 be	 defined	 by	 prepending	 the
parameter	name	with	*,	for	example	args	in	the	following:

def	func(*args,	**kwargs):	...

var-keyword:	 specifies	 that	 arbitrarily	 many	 keyword
arguments	 can	 be	 provided	 (in	 addition	 to	 any	 keyword
arguments	 already	 accepted	 by	 other	 parameters).	 Such	 a
parameter	can	be	defined	by	prepending	the	parameter	name
with	**,	for	example	kwargs	in	the	example	above.

Parameters	can	specify	both	optional	and	required	arguments,	as
well	as	default	values	for	some	optional	arguments.

See	 also	 the	 argument	 glossary	 entry,	 the	 FAQ	 question	 on	 the
difference	 between	 arguments	 and	 parameters,	 the
inspect.Parameter	class,	the	Function	definitions	section,	and
PEP	362.

http://www.python.org/dev/peps/pep-0362

path	entry
A	 single	 location	 on	 the	 import	 path	 which	 the	path	 based	 finder
consults	to	find	modules	for	importing.

path	entry	finder
A	 finder	 returned	by	 a	 callable	 on	 sys.path_hooks	 (i.e.	 a	path
entry	hook)	which	knows	how	to	locate	modules	given	a	path	entry.

path	entry	hook
A	callable	on	the	sys.path_hook	 list	which	returns	a	path	entry
finder	if	it	knows	how	to	find	modules	on	a	specific	path	entry.

path	based	finder
One	of	the	default	meta	path	finders	which	searches	an	import	path
for	modules.

portion
A	set	of	files	in	a	single	directory	(possibly	stored	in	a	zip	file)	that
contribute	to	a	namespace	package,	as	defined	in	PEP	420.

positional	argument
See	argument.

provisional	API
A	provisional	API	is	one	which	has	been	deliberately	excluded	from
the	 standard	 library’s	 backwards	 compatibility	 guarantees.	 While
major	changes	to	such	interfaces	are	not	expected,	as	long	as	they
are	 marked	 provisional,	 backwards	 incompatible	 changes	 (up	 to
and	 including	 removal	 of	 the	 interface)	 may	 occur	 if	 deemed
necessary	 by	 core	 developers.	 Such	 changes	 will	 not	 be	 made
gratuitously	–	they	will	occur	only	if	serious	fundamental	flaws	are
uncovered	that	were	missed	prior	to	the	inclusion	of	the	API.

Even	 for	 provisional	 APIs,	 backwards	 incompatible	 changes	 are
seen	as	a	“solution	of	last	resort”	-	every	attempt	will	still	be	made
to	 find	 a	 backwards	 compatible	 resolution	 to	 any	 identified

http://www.python.org/dev/peps/pep-0420

problems.

This	process	allows	the	standard	library	to	continue	to	evolve	over
time,	 without	 locking	 in	 problematic	 design	 errors	 for	 extended
periods	of	time.	See	PEP	411	for	more	details.

provisional	package
See	provisional	API.

Python	3000
Nickname	 for	 the	Python	 3.x	 release	 line	 (coined	 long	 ago	when
the	release	of	version	3	was	something	in	the	distant	future.)	This
is	also	abbreviated	“Py3k”.

Pythonic
An	 idea	or	piece	of	code	which	closely	 follows	 the	most	common
idioms	 of	 the	 Python	 language,	 rather	 than	 implementing	 code
using	 concepts	 common	 to	 other	 languages.	 For	 example,	 a
common	idiom	in	Python	is	to	loop	over	all	elements	of	an	iterable
using	a	for	statement.	Many	other	languages	don’t	have	this	type
of	 construct,	 so	 people	 unfamiliar	 with	 Python	 sometimes	 use	 a
numerical	counter	instead:

for	i	in	range(len(food)):

				print(food[i])

As	opposed	to	the	cleaner,	Pythonic	method:

for	piece	in	food:

				print(piece)

qualified	name
A	dotted	name	showing	the	“path”	from	a	module’s	global	scope	to
a	 class,	 function	or	method	defined	 in	 that	module,	 as	defined	 in

http://www.python.org/dev/peps/pep-0411

PEP	3155.	For	top-level	functions	and	classes,	the	qualified	name
is	the	same	as	the	object’s	name:

>>>	class	C:

...					class	D:

...									def	meth(self):

...													pass

...

>>>	C.__qualname__

'C'

>>>	C.D.__qualname__

'C.D'

>>>	C.D.meth.__qualname__

'C.D.meth'

When	used	to	refer	to	modules,	the	fully	qualified	name	means	the
entire	 dotted	 path	 to	 the	module,	 including	 any	 parent	 packages,
e.g.	email.mime.text:

>>>	import	email.mime.text

>>>	email.mime.text.__name__

'email.mime.text'

reference	count
The	number	of	references	to	an	object.	When	the	reference	count
of	an	object	drops	to	zero,	it	 is	deallocated.	Reference	counting	is
generally	not	visible	to	Python	code,	but	it	 is	a	key	element	of	the
CPython	 implementation.	 The	 sys	 module	 defines	 a
getrefcount()	function	that	programmers	can	call	to	return	the
reference	count	for	a	particular	object.

regular	package
A	 traditional	 package,	 such	 as	 a	 directory	 containing	 an
__init__.py	file.

http://www.python.org/dev/peps/pep-3155

See	also	namespace	package.

__slots__
A	 declaration	 inside	 a	 class	 that	 saves	memory	 by	 pre-declaring
space	for	 instance	attributes	and	eliminating	 instance	dictionaries.
Though	popular,	 the	technique	is	somewhat	tricky	to	get	right	and
is	best	 reserved	 for	 rare	cases	where	 there	are	 large	numbers	of
instances	in	a	memory-critical	application.

sequence
An	 iterable	which	 supports	 efficient	 element	 access	 using	 integer
indices	 via	 the	 __getitem__()	 special	 method	 and	 defines	 a
__len__()	method	that	returns	the	length	of	the	sequence.	Some
built-in	sequence	types	are	list,	str,	tuple,	and	bytes.	Note
that	dict	also	supports	__getitem__()	and	__len__(),	but	is
considered	 a	 mapping	 rather	 than	 a	 sequence	 because	 the
lookups	use	arbitrary	immutable	keys	rather	than	integers.

The	collections.abc.Sequence	abstract	base	class	defines	a
much	richer	interface	that	goes	beyond	just	__getitem__()	and
__len__(),	adding	count(),	index(),	__contains__(),	and
__reversed__().	Types	that	 implement	 this	expanded	 interface
can	be	registered	explicitly	using	register().

single	dispatch
A	 form	 of	 generic	 function	 dispatch	 where	 the	 implementation	 is
chosen	based	on	the	type	of	a	single	argument.

slice
An	 object	 usually	 containing	 a	 portion	 of	 a	 sequence.	 A	 slice	 is
created	 using	 the	 subscript	 notation,	 []	 with	 colons	 between
numbers	 when	 several	 are	 given,	 such	 as	 in
variable_name[1:3:5].	The	 bracket	 (subscript)	 notation	 uses
slice	objects	internally.

special	method
A	method	 that	 is	 called	 implicitly	 by	 Python	 to	 execute	 a	 certain
operation	on	a	type,	such	as	addition.	Such	methods	have	names
starting	and	ending	with	double	underscores.	Special	methods	are
documented	in	Special	method	names.

statement
A	 statement	 is	 part	 of	 a	 suite	 (a	 “block”	 of	 code).	 A	 statement	 is
either	an	expression	or	one	of	several	constructs	with	a	keyword,
such	as	if,	while	or	for.

struct	sequence
A	 tuple	 with	 named	 elements.	 Struct	 sequences	 expose	 an
interface	 similar	 to	 named	 tuple	 in	 that	 elements	 can	 either	 be
accessed	either	by	 index	or	as	an	attribute.	However,	 they	do	not
have	 any	 of	 the	 named	 tuple	 methods	 like	 _make()	 or
_asdict().	 Examples	 of	 struct	 sequences	 include
sys.float_info	and	the	return	value	of	os.stat().

text	file
A	 file	object	able	 to	 read	and	write	str	 objects.	Often,	a	 text	 file
actually	accesses	a	byte-oriented	datastream	and	handles	the	text
encoding	automatically.

See	also: 	A	binary	file	reads	and	write	bytes	objects.

triple-quoted	string
A	 string	 which	 is	 bound	 by	 three	 instances	 of	 either	 a	 quotation
mark	 (”)	 or	 an	 apostrophe	 (‘).	 While	 they	 don’t	 provide	 any
functionality	 not	 available	 with	 single-quoted	 strings,	 they	 are
useful	 for	 a	 number	 of	 reasons.	 They	 allow	 you	 to	 include
unescaped	single	and	double	quotes	within	a	string	and	 they	can
span	multiple	 lines	without	 the	 use	 of	 the	 continuation	 character,
making	them	especially	useful	when	writing	docstrings.

type
The	 type	 of	 a	Python	 object	 determines	what	 kind	 of	 object	 it	 is;
every	 object	 has	 a	 type.	 An	 object’s	 type	 is	 accessible	 as	 its
__class__	attribute	or	can	be	retrieved	with	type(obj).

universal	newlines
A	manner	of	 interpreting	 text	streams	 in	which	all	of	 the	 following
are	 recognized	 as	 ending	 a	 line:	 the	 Unix	 end-of-line	 convention
'\n',	 the	 Windows	 convention	 '\r\n',	 and	 the	 old	 Macintosh
convention	 '\r'.	 See	 PEP	 278	 and	 PEP	 3116,	 as	 well	 as
str.splitlines()	for	an	additional	use.

view
The	objects	 returned	 from	dict.keys(),	dict.values(),	 and
dict.items()	 are	 called	 dictionary	 views.	 They	 are	 lazy
sequences	 that	 will	 see	 changes	 in	 the	 underlying	 dictionary.	 To
force	 the	 dictionary	 view	 to	 become	 a	 full	 list	 use
list(dictview).	See	Dictionary	view	objects.

virtual	machine
A	 computer	 defined	 entirely	 in	 software.	Python’s	 virtual	machine
executes	the	bytecode	emitted	by	the	bytecode	compiler.

Zen	of	Python
Listing	of	Python	design	principles	and	philosophies	that	are	helpful
in	understanding	and	using	the	language.	The	listing	can	be	found
by	typing	“import	this”	at	the	interactive	prompt.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/dev/peps/pep-0278
http://www.python.org/dev/peps/pep-3116
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

About	these	documents
These	 documents	 are	 generated	 from	 reStructuredText	 sources	 by
Sphinx,	 a	 document	 processor	 specifically	 written	 for	 the	 Python
documentation.

Development	 of	 the	 documentation	 and	 its	 toolchain	 is	 an	 entirely
volunteer	effort,	just	like	Python	itself.	If	you	want	to	contribute,	please
take	a	 look	at	 the	Reporting	Bugs	page	 for	 information	on	how	to	do
so.	New	volunteers	are	always	welcome!

Many	thanks	go	to:

Fred	 L.	 Drake,	 Jr.,	 the	 creator	 of	 the	 original	 Python
documentation	toolset	and	writer	of	much	of	the	content;
the	Docutils	project	for	creating	reStructuredText	and	the	Docutils
suite;
Fredrik	 Lundh	 for	 his	 Alternative	Python	Reference	 project	 from
which	Sphinx	got	many	good	ideas.

http://docutils.sf.net/rst.html
http://sphinx-doc.org/
http://docutils.sf.net/
http://effbot.org/zone/pyref.htm

Contributors	to	the	Python	Documentation

Many	 people	 have	 contributed	 to	 the	 Python	 language,	 the	 Python
standard	library,	and	the	Python	documentation.	See	Misc/ACKS	in	the
Python	source	distribution	for	a	partial	list	of	contributors.

It	is	only	with	the	input	and	contributions	of	the	Python	community	that
Python	has	such	wonderful	documentation	–	Thank	You!

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://hg.python.org/cpython/file/3.4/Misc/ACKS
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Reporting	Bugs
Python	 is	 a	mature	 programming	 language	which	 has	 established	 a
reputation	 for	 stability.	 In	 order	 to	 maintain	 this	 reputation,	 the
developers	would	like	to	know	of	any	deficiencies	you	find	in	Python.

Documentation	bugs

If	 you	 find	 a	 bug	 in	 this	 documentation	 or	 would	 like	 to	 propose	 an
improvement,	please	submit	a	bug	report	on	the	tracker.	If	you	have	a
suggestion	how	to	fix	it,	include	that	as	well.

If	 you’re	 short	 on	 time,	 you	 can	 also	 email	 your	 bug	 report	 to
docs@python.org.	 ‘docs@’	 is	 a	 mailing	 list	 run	 by	 volunteers;	 your
request	will	be	noticed,	though	it	may	take	a	while	to	be	processed.

See	also: 	Documentation	bugs	on	the	Python	issue	tracker

mailto:docs%40python.org
http://bugs.python.org/issue?@filter=status&@filter=components&components=4&status=1&@columns=id,activity,title,status&@sort=-activity

Using	the	Python	issue	tracker

Bug	reports	 for	Python	 itself	should	be	submitted	via	the	Python	Bug
Tracker	 (http://bugs.python.org/).	 The	 bug	 tracker	 offers	 a	Web	 form
which	allows	pertinent	information	to	be	entered	and	submitted	to	the
developers.

The	first	step	in	filing	a	report	is	to	determine	whether	the	problem	has
already	been	reported.	The	advantage	in	doing	so,	aside	from	saving
the	developers	 time,	 is	 that	you	 learn	what	has	been	done	to	 fix	 it;	 it
may	be	that	the	problem	has	already	been	fixed	for	the	next	release,
or	additional	information	is	needed	(in	which	case	you	are	welcome	to
provide	 it	 if	you	can!).	To	do	 this,	search	 the	bug	database	using	 the
search	box	on	the	top	of	the	page.

If	 the	 problem	 you’re	 reporting	 is	 not	 already	 in	 the	 bug	 tracker,	 go
back	to	the	Python	Bug	Tracker	and	log	in.	If	you	don’t	already	have	a
tracker	account,	select	the	“Register”	link	or,	if	you	use	OpenID,	one	of
the	OpenID	provider	logos	in	the	sidebar.	It	is	not	possible	to	submit	a
bug	report	anonymously.

Being	now	logged	in,	you	can	submit	a	bug.	Select	the	“Create	New”
link	in	the	sidebar	to	open	the	bug	reporting	form.

The	submission	form	has	a	number	of	fields.	For	the	“Title”	field,	enter
a	very	short	description	of	the	problem;	less	than	ten	words	is	good.	In
the	 “Type”	 field,	 select	 the	 type	 of	 your	 problem;	 also	 select	 the
“Component”	and	“Versions”	to	which	the	bug	relates.

In	the	“Comment”	field,	describe	the	problem	in	detail,	 including	what
you	 expected	 to	 happen	 and	 what	 did	 happen.	 Be	 sure	 to	 include
whether	 any	 extension	 modules	 were	 involved,	 and	 what	 hardware

http://bugs.python.org/

and	software	platform	you	were	using	(including	version	information	as
appropriate).

Each	 bug	 report	 will	 be	 assigned	 to	 a	 developer	who	will	 determine
what	 needs	 to	 be	 done	 to	 correct	 the	 problem.	 You	 will	 receive	 an
update	each	time	action	is	taken	on	the	bug.

See	also:

How	to	Report	Bugs	Effectively
Article	which	goes	into	some	detail	about	how	to	create	a	useful
bug	report.	This	describes	what	kind	of	information	is	useful	and
why	it	is	useful.

Bug	Writing	Guidelines
Information	 about	 writing	 a	 good	 bug	 report.	 Some	 of	 this	 is
specific	 to	 the	 Mozilla	 project,	 but	 describes	 general	 good
practices.

http://www.chiark.greenend.org.uk/~sgtatham/bugs.html
http://developer.mozilla.org/en/docs/Bug_writing_guidelines

Getting	started	contributing	to	Python
yourself

Beyond	 just	 reporting	 bugs	 that	 you	 find,	 you	 are	 also	 welcome	 to
submit	patches	to	 fix	 them.	You	can	 find	more	 information	on	how	to
get	 started	 patching	Python	 in	 the	Python	Developer’s	Guide.	 If	 you
have	questions,	 the	core-mentorship	mailing	 list	 is	a	 friendly	place	 to
get	answers	to	any	and	all	questions	pertaining	to	the	process	of	fixing
issues	in	Python.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://docs.python.org/devguide/
https://mail.python.org/mailman/listinfo/core-mentorship/
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Copyright
Python	and	this	documentation	is:

Copyright	 ©	 2001-2014	 Python	 Software	 Foundation.	 All	 rights
reserved.

Copyright	©	2000	BeOpen.com.	All	rights	reserved.

Copyright	©	1995-2000	Corporation	 for	National	Research	 Initiatives.
All	rights	reserved.

Copyright	 ©	 1991-1995	 Stichting	 Mathematisch	 Centrum.	 All	 rights
reserved.

See	 History	 and	 License	 for	 complete	 license	 and	 permissions
information.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

History	and	License

History	of	the	software

Python	 was	 created	 in	 the	 early	 1990s	 by	 Guido	 van	 Rossum	 at
Stichting	Mathematisch	Centrum	 (CWI,	 see	 http://www.cwi.nl/)	 in	 the
Netherlands	as	a	successor	of	a	language	called	ABC.	Guido	remains
Python’s	principal	author,	although	it	includes	many	contributions	from
others.

In	 1995,	Guido	 continued	 his	work	 on	Python	 at	 the	Corporation	 for
National	Research	Initiatives	(CNRI,	see	http://www.cnri.reston.va.us/)
in	Reston,	Virginia	where	he	released	several	versions	of	the	software.

In	May	2000,	Guido	and	the	Python	core	development	team	moved	to
BeOpen.com	to	form	the	BeOpen	PythonLabs	team.	In	October	of	the
same	 year,	 the	 PythonLabs	 team	 moved	 to	 Digital	 Creations	 (now
Zope	 Corporation;	 see	 http://www.zope.com/).	 In	 2001,	 the	 Python
Software	 Foundation	 (PSF,	 see	 http://www.python.org/psf/)	 was
formed,	 a	 non-profit	 organization	 created	 specifically	 to	 own	Python-
related	 Intellectual	 Property.	 Zope	 Corporation	 is	 a	 sponsoring
member	of	the	PSF.

All	Python	releases	are	Open	Source	(see	http://www.opensource.org/
for	the	Open	Source	Definition).	Historically,	most,	but	not	all,	Python
releases	have	also	been	GPL-compatible;	the	table	below	summarizes
the	various	releases.

Release Derived
from Year Owner GPL

compatible?

0.9.0	thru
1.2 n/a 1991-

1995 CWI yes

1.3	thru
1.5.2 1.2 1995-

1999 CNRI yes

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no

2.1 2.0+1.6.1 2001 PSF no

2.0.1 2.0+1.6.1 2001 PSF yes

2.1.1 2.1+2.0.1 2001 PSF yes

2.1.2 2.1.1 2002 PSF yes

2.1.3 2.1.2 2002 PSF yes

2.2	and
above 2.1.1 2001-

now PSF yes

Note: 	GPL-compatible	doesn’t	mean	that	we’re	distributing	Python
under	the	GPL.	All	Python	licenses,	unlike	the	GPL,	let	you	distribute
a	modified	version	without	making	your	changes	open	source.	The
GPL-compatible	licenses	make	it	possible	to	combine	Python	with
other	software	that	is	released	under	the	GPL;	the	others	don’t.

Thanks	 to	 the	 many	 outside	 volunteers	 who	 have	 worked	 under
Guido’s	direction	to	make	these	releases	possible.

Terms	and	conditions	for	accessing	or
otherwise	using	Python

PSF	LICENSE	AGREEMENT	FOR	PYTHON	3.4.0

1.	 This	 LICENSE	 AGREEMENT	 is	 between	 the	 Python	 Software
Foundation	 (“PSF”),	 and	 the	 Individual	 or	 Organization
(“Licensee”)	accessing	and	otherwise	using	Python	3.4.0	software
in	source	or	binary	form	and	its	associated	documentation.

2.	 Subject	 to	 the	 terms	 and	 conditions	 of	 this	 License	 Agreement,
PSF	hereby	grants	Licensee	a	nonexclusive,	 royalty-free,	world-
wide	 license	 to	 reproduce,	 analyze,	 test,	 perform	 and/or	 display
publicly,	 prepare	 derivative	 works,	 distribute,	 and	 otherwise	 use
Python	 3.4.0	 alone	 or	 in	 any	 derivative	 version,	 provided,
however,	 that	 PSF’s	 License	 Agreement	 and	 PSF’s	 notice	 of
copyright,	 i.e.,	 “Copyright	 ©	 2001-2014	 Python	 Software
Foundation;	 All	 Rights	 Reserved”	 are	 retained	 in	 Python	 3.4.0
alone	or	in	any	derivative	version	prepared	by	Licensee.

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on
or	 incorporates	 Python	 3.4.0	 or	 any	 part	 thereof,	 and	 wants	 to
make	 the	derivative	work	available	 to	others	as	provided	herein,
then	Licensee	hereby	agrees	to	 include	 in	any	such	work	a	brief
summary	of	the	changes	made	to	Python	3.4.0.

4.	 PSF	is	making	Python	3.4.0	available	to	Licensee	on	an	“AS	IS”
basis.	PSF	MAKES	NO	REPRESENTATIONS	OR	WARRANTIES,
EXPRESS	 OR	 IMPLIED.	 BY	 WAY	 OF	 EXAMPLE,	 BUT	 NOT
LIMITATION,	 PSF	 MAKES	 NO	 AND	 DISCLAIMS	 ANY
REPRESENTATION	 OR	 WARRANTY	 OF	 MERCHANTABILITY
OR	FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE
USE	 OF	 PYTHON	 3.4.0	 WILL	 NOT	 INFRINGE	 ANY	 THIRD
PARTY	RIGHTS.

5.	 PSF	 SHALL	NOT	 BE	 LIABLE	 TO	 LICENSEE	OR	ANY	OTHER
USERS	 OF	 PYTHON	 3.4.0	 FOR	 ANY	 INCIDENTAL,	 SPECIAL,

OR	CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	 DISTRIBUTING,	 OR	 OTHERWISE	 USING
PYTHON	 3.4.0,	 OR	 ANY	 DERIVATIVE	 THEREOF,	 EVEN	 IF
ADVISED	OF	THE	POSSIBILITY	THEREOF.

6.	 This	 License	 Agreement	 will	 automatically	 terminate	 upon	 a
material	breach	of	its	terms	and	conditions.

7.	 Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	PSF
and	Licensee.	This	License	Agreement	does	not	grant	permission
to	 use	 PSF	 trademarks	 or	 trade	 name	 in	 a	 trademark	 sense	 to
endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	 copying,	 installing	or	 otherwise	using	Python	3.4.0,	 Licensee
agrees	 to	be	bound	by	 the	 terms	and	conditions	of	 this	 License
Agreement.

BEOPEN.COM	LICENSE	AGREEMENT	FOR	PYTHON	2.0

BEOPEN	PYTHON	OPEN	SOURCE	LICENSE	AGREEMENT
VERSION	1

1.	 This	 LICENSE	 AGREEMENT	 is	 between	 BeOpen.com
(“BeOpen”),	 having	 an	 office	 at	 160	 Saratoga	 Avenue,	 Santa
Clara,	CA	95051,	and	 the	 Individual	or	Organization	(“Licensee”)
accessing	 and	otherwise	 using	 this	 software	 in	 source	 or	 binary
form	and	its	associated	documentation	(“the	Software”).

2.	 Subject	 to	 the	 terms	 and	 conditions	 of	 this	 BeOpen	 Python
License	 Agreement,	 BeOpen	 hereby	 grants	 Licensee	 a	 non-
exclusive,	 royalty-free,	world-wide	 license	 to	 reproduce,	analyze,
test,	 perform	 and/or	 display	 publicly,	 prepare	 derivative	 works,
distribute,	 and	 otherwise	 use	 the	 Software	 alone	 or	 in	 any
derivative	 version,	 provided,	 however,	 that	 the	 BeOpen	 Python
License	 is	 retained	 in	 the	 Software,	 alone	 or	 in	 any	 derivative
version	prepared	by	Licensee.

3.	 BeOpen	is	making	the	Software	available	to	Licensee	on	an	“AS
IS”	 basis.	 BEOPEN	 MAKES	 NO	 REPRESENTATIONS	 OR
WARRANTIES,	EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,
BUT	NOT	LIMITATION,	BEOPEN	MAKES	NO	AND	DISCLAIMS
ANY	 REPRESENTATION	 OR	 WARRANTY	 OF
MERCHANTABILITY	 OR	 FITNESS	 FOR	 ANY	 PARTICULAR
PURPOSE	OR	THAT	THE	USE	OF	THE	SOFTWARE	WILL	NOT
INFRINGE	ANY	THIRD	PARTY	RIGHTS.

4.	 BEOPEN	 SHALL	 NOT	 BE	 LIABLE	 TO	 LICENSEE	 OR	 ANY
OTHER	USERS	OF	THE	SOFTWARE	FOR	ANY	 INCIDENTAL,
SPECIAL,	 OR	 CONSEQUENTIAL	 DAMAGES	 OR	 LOSS	 AS	 A
RESULT	 OF	 USING,	 MODIFYING	 OR	 DISTRIBUTING	 THE
SOFTWARE,	 OR	 ANY	 DERIVATIVE	 THEREOF,	 EVEN	 IF
ADVISED	OF	THE	POSSIBILITY	THEREOF.

5.	 This	 License	 Agreement	 will	 automatically	 terminate	 upon	 a
material	breach	of	its	terms	and	conditions.

6.	 This	License	Agreement	shall	be	governed	by	and	 interpreted	 in
all	respects	by	the	law	of	the	State	of	California,	excluding	conflict
of	 law	 provisions.	 Nothing	 in	 this	 License	 Agreement	 shall	 be
deemed	to	create	any	relationship	of	agency,	partnership,	or	joint
venture	between	BeOpen	and	Licensee.	This	License	Agreement
does	 not	 grant	 permission	 to	 use	 BeOpen	 trademarks	 or	 trade
names	 in	a	 trademark	sense	 to	endorse	or	promote	products	or
services	 of	 Licensee,	 or	 any	 third	 party.	 As	 an	 exception,	 the
“BeOpen	 Python”	 logos	 available	 at
http://www.pythonlabs.com/logos.html	may	 be	 used	 according	 to
the	permissions	granted	on	that	web	page.

7.	 By	 copying,	 installing	 or	 otherwise	 using	 the	 software,	 Licensee
agrees	 to	be	bound	by	 the	 terms	and	conditions	of	 this	 License
Agreement.

CNRI	LICENSE	AGREEMENT	FOR	PYTHON	1.6.1

1.	 This	 LICENSE	 AGREEMENT	 is	 between	 the	 Corporation	 for

http://www.pythonlabs.com/logos.html

National	 Research	 Initiatives,	 having	 an	 office	 at	 1895	 Preston
White	 Drive,	 Reston,	 VA	 20191	 (“CNRI”),	 and	 the	 Individual	 or
Organization	 (“Licensee”)	accessing	and	otherwise	using	Python
1.6.1	 software	 in	 source	 or	 binary	 form	 and	 its	 associated
documentation.

2.	 Subject	 to	 the	 terms	 and	 conditions	 of	 this	 License	 Agreement,
CNRI	hereby	grants	Licensee	a	nonexclusive,	royalty-free,	world-
wide	 license	 to	 reproduce,	 analyze,	 test,	 perform	 and/or	 display
publicly,	 prepare	 derivative	 works,	 distribute,	 and	 otherwise	 use
Python	 1.6.1	 alone	 or	 in	 any	 derivative	 version,	 provided,
however,	 that	 CNRI’s	 License	 Agreement	 and	 CNRI’s	 notice	 of
copyright,	 i.e.,	 “Copyright	 ©	 1995-2001	 Corporation	 for	 National
Research	 Initiatives;	All	Rights	Reserved”	are	retained	 in	Python
1.6.1	 alone	 or	 in	 any	 derivative	 version	 prepared	 by	 Licensee.
Alternately,	 in	 lieu	 of	 CNRI’s	 License	 Agreement,	 Licensee	may
substitute	the	following	text	(omitting	the	quotes):	“Python	1.6.1	is
made	 available	 subject	 to	 the	 terms	 and	 conditions	 in	 CNRI’s
License	Agreement.	 This	 Agreement	 together	 with	 Python	 1.6.1
may	 be	 located	 on	 the	 Internet	 using	 the	 following	 unique,
persistent	 identifier	 (known	 as	 a	 handle):	 1895.22/1013.	 This
Agreement	 may	 also	 be	 obtained	 from	 a	 proxy	 server	 on	 the
Internet	 using	 the	 following	 URL:
http://hdl.handle.net/1895.22/1013.”

3.	 In	the	event	Licensee	prepares	a	derivative	work	that	is	based	on
or	 incorporates	 Python	 1.6.1	 or	 any	 part	 thereof,	 and	 wants	 to
make	 the	derivative	work	available	 to	others	as	provided	herein,
then	Licensee	hereby	agrees	to	 include	 in	any	such	work	a	brief
summary	of	the	changes	made	to	Python	1.6.1.

4.	 CNRI	is	making	Python	1.6.1	available	to	Licensee	on	an	“AS	IS”
basis.	 CNRI	 MAKES	 NO	 REPRESENTATIONS	 OR
WARRANTIES,	EXPRESS	OR	IMPLIED.	BY	WAY	OF	EXAMPLE,
BUT	NOT	LIMITATION,	CNRI	MAKES	NO	AND	DISCLAIMS	ANY
REPRESENTATION	 OR	 WARRANTY	 OF	 MERCHANTABILITY
OR	FITNESS	FOR	ANY	PARTICULAR	PURPOSE	OR	THAT	THE

http://hdl.handle.net/1895.22/1013

USE	 OF	 PYTHON	 1.6.1	 WILL	 NOT	 INFRINGE	 ANY	 THIRD
PARTY	RIGHTS.

5.	 CNRI	SHALL	NOT	BE	LIABLE	TO	LICENSEE	OR	ANY	OTHER
USERS	 OF	 PYTHON	 1.6.1	 FOR	 ANY	 INCIDENTAL,	 SPECIAL,
OR	CONSEQUENTIAL	DAMAGES	OR	LOSS	AS	A	RESULT	OF
MODIFYING,	 DISTRIBUTING,	 OR	 OTHERWISE	 USING
PYTHON	 1.6.1,	 OR	 ANY	 DERIVATIVE	 THEREOF,	 EVEN	 IF
ADVISED	OF	THE	POSSIBILITY	THEREOF.

6.	 This	 License	 Agreement	 will	 automatically	 terminate	 upon	 a
material	breach	of	its	terms	and	conditions.

7.	 This	 License	 Agreement	 shall	 be	 governed	 by	 the	 federal
intellectual	 property	 law	 of	 the	 United	 States,	 including	 without
limitation	 the	 federal	 copyright	 law,	 and,	 to	 the	extent	 such	U.S.
federal	 law	does	 not	 apply,	 by	 the	 law	of	 the	Commonwealth	 of
Virginia,	 excluding	 Virginia’s	 conflict	 of	 law	 provisions.
Notwithstanding	 the	 foregoing,	 with	 regard	 to	 derivative	 works
based	 on	 Python	 1.6.1	 that	 incorporate	 non-separable	 material
that	 was	 previously	 distributed	 under	 the	 GNU	 General	 Public
License	 (GPL),	 the	 law	 of	 the	 Commonwealth	 of	 Virginia	 shall
govern	this	License	Agreement	only	as	to	issues	arising	under	or
with	respect	to	Paragraphs	4,	5,	and	7	of	this	License	Agreement.
Nothing	in	this	License	Agreement	shall	be	deemed	to	create	any
relationship	of	agency,	partnership,	or	joint	venture	between	CNRI
and	Licensee.	This	License	Agreement	does	not	grant	permission
to	use	CNRI	 trademarks	or	 trade	name	 in	a	 trademark	sense	 to
endorse	or	promote	products	or	services	of	Licensee,	or	any	third
party.

8.	 By	 clicking	 on	 the	 “ACCEPT”	 button	 where	 indicated,	 or	 by
copying,	 installing	 or	 otherwise	 using	 Python	 1.6.1,	 Licensee
agrees	 to	be	bound	by	 the	 terms	and	conditions	of	 this	 License
Agreement.

ACCEPT

CWI	LICENSE	AGREEMENT	FOR	PYTHON	0.9.0	THROUGH	1.2

Copyright	 ©	 1991	 -	 1995,	 Stichting	 Mathematisch	 Centrum
Amsterdam,	The	Netherlands.	All	rights	reserved.

Permission	 to	 use,	 copy,	modify,	 and	 distribute	 this	 software	 and	 its
documentation	 for	 any	 purpose	 and	 without	 fee	 is	 hereby	 granted,
provided	that	the	above	copyright	notice	appear	in	all	copies	and	that
both	 that	 copyright	 notice	 and	 this	 permission	 notice	 appear	 in
supporting	 documentation,	 and	 that	 the	 name	 of	 Stichting
Mathematisch	Centrum	or	CWI	not	be	used	in	advertising	or	publicity
pertaining	 to	distribution	of	 the	software	without	specific,	written	prior
permission.

STICHTING	 MATHEMATISCH	 CENTRUM	 DISCLAIMS	 ALL
WARRANTIES	WITH	 REGARD	 TO	 THIS	 SOFTWARE,	 INCLUDING
ALL	 IMPLIED	 WARRANTIES	 OF	 MERCHANTABILITY	 AND
FITNESS,	 IN	 NO	 EVENT	 SHALL	 STICHTING	 MATHEMATISCH
CENTRUM	 BE	 LIABLE	 FOR	 ANY	 SPECIAL,	 INDIRECT	 OR
CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER
RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER
IN	 AN	 ACTION	 OF	 CONTRACT,	 NEGLIGENCE	 OR	 OTHER
TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH
THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Licenses	and	Acknowledgements	for
Incorporated	Software

This	 section	 is	 an	 incomplete,	 but	 growing	 list	 of	 licenses	 and
acknowledgements	for	third-party	software	incorporated	in	the	Python
distribution.

Mersenne	Twister

The	 _random	 module	 includes	 code	 based	 on	 a	 download	 from
http://www.math.sci.hiroshima-u.ac.jp/~m-
mat/MT/MT2002/emt19937ar.html.	 The	 following	 are	 the	 verbatim
comments	from	the	original	code:

A	C-program	for	MT19937,	with	initialization	improved	2002/1/26.

Coded	by	Takuji	Nishimura	and	Makoto	Matsumoto.

Before	using,	initialize	the	state	by	using	init_genrand(seed)

or	init_by_array(init_key,	key_length).

Copyright	(C)	1997	-	2002,	Makoto	Matsumoto	and	Takuji	Nishimura,

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				documentation	and/or	other	materials	provided	with	the	distribution.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html

	3.	The	names	of	its	contributors	may	not	be	used	to	endorse	or	promote

				products	derived	from	this	software	without	specific	prior	written

				permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR

A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	COPYRIGHT	OWNER	OR

CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,

EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,

PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR

PROFITS;	OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF

LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,	OR	TORT	(INCLUDING

NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS

SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

Any	feedback	is	very	welcome.

http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/emt.html

email:	m-mat	@	math.sci.hiroshima-u.ac.jp	(remove	space)

Sockets

The	 socket	 module	 uses	 the	 functions,	 getaddrinfo(),	 and
getnameinfo(),	which	are	coded	 in	separate	source	 files	 from	 the
WIDE	Project,	http://www.wide.ad.jp/.

Copyright	(C)	1995,	1996,	1997,	and	1998	WIDE	Project.

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

http://www.wide.ad.jp/

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

3.	Neither	the	name	of	the	project	nor	the	names	of	its	contributors

			may	be	used	to	endorse	or	promote	products	derived	from	this	software

			without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	PROJECT	AND	CONTRIBUTORS	``AS	IS''	AND

GAI_ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	PROJECT	OR	CONTRIBUTORS	BE	LIABLE

FOR	GAI_ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	GAI_ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	GAI_ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

Floating	point	exception	control

The	source	for	the	fpectl	module	includes	the	following	notice:

	/																							Copyright	(c)	1996.																											\

|										The	Regents	of	the	University	of	California.																	|

|																								All	rights	reserved.																											|

|																																																																							|

|			Permission	to	use,	copy,	modify,	and	distribute	this	software	for			|

|			any	purpose	without	fee	is	hereby	granted,	provided	that	this	en-			|

|			tire	notice	is	included	in	all	copies	of	any	software	which	is	or			|

|			includes		a		copy		or		modification		of		this	software	and	in	all			|

|			copies	of	the	supporting	documentation	for	such	software.											|

|																																																																							|

|			This		work	was	produced	at	the	University	of	California,	Lawrence			|

|			Livermore	National	Laboratory	under		contract		no.		W-7405-ENG-48			|

|			between		the		U.S.		Department		of		Energy	and	The	Regents	of	the			|

|			University	of	California	for	the	operation	of	UC	LLNL.														|

|																																																																							|

|																														DISCLAIMER																															|

|																																																																							|

|			This		software	was	prepared	as	an	account	of	work	sponsored	by	an			|

|			agency	of	the	United	States	Government.	Neither	the	United	States			|

|			Government		nor	the	University	of	California	nor	any	of	their	em-			|

|			ployees,	makes	any	warranty,	express	or	implied,	or		assumes		any			|

|			liability		or		responsibility		for	the	accuracy,	completeness,	or			|

|			usefulness	of	any	information,		apparatus,		product,		or		process			|

|			disclosed,			or		represents		that		its		use		would		not		infringe			|

|			privately-owned	rights.	Reference	herein	to	any	specific		commer-			|

|			cial		products,		process,		or		service		by	trade	name,	trademark,			|

|			manufacturer,	or	otherwise,	does	not		necessarily		constitute		or			|

|			imply		its	endorsement,	recommendation,	or	favoring	by	the	United			|

|			States	Government	or	the	University	of	California.	The	views		and			|

|			opinions		of	authors	expressed	herein	do	not	necessarily	state	or			|

|			reflect	those	of	the	United	States	Government	or		the		University			|

|			of		California,		and	shall	not	be	used	for	advertising	or	product			|

	\		endorsement	purposes.																																														/

Asynchronous	socket	services

The	asynchat	and	asyncore	modules	contain	the	following	notice:

Copyright	1996	by	Sam	Rushing

																								All	Rights	Reserved

Permission	to	use,	copy,	modify,	and	distribute	this	software	and

its	documentation	for	any	purpose	and	without	fee	is	hereby

granted,	provided	that	the	above	copyright	notice	appear	in	all

copies	and	that	both	that	copyright	notice	and	this	permission

notice	appear	in	supporting	documentation,	and	that	the	name	of	Sam

Rushing	not	be	used	in	advertising	or	publicity	pertaining	to

distribution	of	the	software	without	specific,	written	prior

permission.

SAM	RUSHING	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS	SOFTWARE,

INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS,	IN

NO	EVENT	SHALL	SAM	RUSHING	BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR

CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS

OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT	OF	OR	IN

CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Cookie	management

The	http.cookies	module	contains	the	following	notice:

Copyright	2000	by	Timothy	O'Malley	<timo@alum.mit.edu>

															All	Rights	Reserved

Permission	to	use,	copy,	modify,	and	distribute	this	software

and	its	documentation	for	any	purpose	and	without	fee	is	hereby

granted,	provided	that	the	above	copyright	notice	appear	in	all

copies	and	that	both	that	copyright	notice	and	this	permission

notice	appear	in	supporting	documentation,	and	that	the	name	of

Timothy	O'Malley		not	be	used	in	advertising	or	publicity

pertaining	to	distribution	of	the	software	without	specific,	written

prior	permission.

Timothy	O'Malley	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO	THIS

SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY

AND	FITNESS,	IN	NO	EVENT	SHALL	Timothy	O'Malley	BE	LIABLE	FOR

ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR

PERFORMANCE	OF	THIS	SOFTWARE.

Execution	tracing

The	trace	module	contains	the	following	notice:

portions	copyright	2001,	Autonomous	Zones	Industries,	Inc.,	all	rights...

err...		reserved	and	offered	to	the	public	under	the	terms	of	the

Python	2.2	license.

Author:	Zooko	O'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright	2000,	Mojam	Media,	Inc.,	all	rights	reserved.

Author:	Skip	Montanaro

Copyright	1999,	Bioreason,	Inc.,	all	rights	reserved.

Author:	Andrew	Dalke

Copyright	1995-1997,	Automatrix,	Inc.,	all	rights	reserved.

Author:	Skip	Montanaro

Copyright	1991-1995,	Stichting	Mathematisch	Centrum,	all	rights	reserved.

Permission	to	use,	copy,	modify,	and	distribute	this	Python	software	and

its	associated	documentation	for	any	purpose	without	fee	is	hereby

granted,	provided	that	the	above	copyright	notice	appears	in	all	copies,

and	that	both	that	copyright	notice	and	this	permission	notice	appear	in

supporting	documentation,	and	that	the	name	of	neither	Automatrix,

Bioreason	or	Mojam	Media	be	used	in	advertising	or	publicity	pertaining	to

distribution	of	the	software	without	specific,	written	prior	permission.

UUencode	and	UUdecode	functions

The	uu	module	contains	the	following	notice:

Copyright	1994	by	Lance	Ellinghouse

Cathedral	City,	California	Republic,	United	States	of	America.

																							All	Rights	Reserved

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its

documentation	for	any	purpose	and	without	fee	is	hereby	granted,

provided	that	the	above	copyright	notice	appear	in	all	copies	and	that

both	that	copyright	notice	and	this	permission	notice	appear	in

supporting	documentation,	and	that	the	name	of	Lance	Ellinghouse

not	be	used	in	advertising	or	publicity	pertaining	to	distribution

of	the	software	without	specific,	written	prior	permission.

LANCE	ELLINGHOUSE	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD	TO

THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND

FITNESS,	IN	NO	EVENT	SHALL	LANCE	ELLINGHOUSE	CENTRUM	BE	LIABLE

FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY	DAMAGES

WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,	WHETHER	IN	AN

ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS	ACTION,	ARISING	OUT

OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE	OF	THIS	SOFTWARE.

Modified	by	Jack	Jansen,	CWI,	July	1995:

-	Use	binascii	module	to	do	the	actual	line-by-line	conversion

		between	ascii	and	binary.	This	results	in	a	1000-fold	speedup.	The	C

		version	is	still	5	times	faster,	though.

-	Arguments	more	compliant	with	Python	standard

XML	Remote	Procedure	Calls

The	xmlrpc.client	module	contains	the	following	notice:

				The	XML-RPC	client	interface	is

Copyright	(c)	1999-2002	by	Secret	Labs	AB

Copyright	(c)	1999-2002	by	Fredrik	Lundh

By	obtaining,	using,	and/or	copying	this	software	and/or	its

associated	documentation,	you	agree	that	you	have	read,	understood,

and	will	comply	with	the	following	terms	and	conditions:

Permission	to	use,	copy,	modify,	and	distribute	this	software	and

its	associated	documentation	for	any	purpose	and	without	fee	is

hereby	granted,	provided	that	the	above	copyright	notice	appears	in

all	copies,	and	that	both	that	copyright	notice	and	this	permission

notice	appear	in	supporting	documentation,	and	that	the	name	of

Secret	Labs	AB	or	the	author	not	be	used	in	advertising	or	publicity

pertaining	to	distribution	of	the	software	without	specific,	written

prior	permission.

SECRET	LABS	AB	AND	THE	AUTHOR	DISCLAIMS	ALL	WARRANTIES	WITH	REGARD

TO	THIS	SOFTWARE,	INCLUDING	ALL	IMPLIED	WARRANTIES	OF	MERCHANT-

ABILITY	AND	FITNESS.		IN	NO	EVENT	SHALL	SECRET	LABS	AB	OR	THE	AUTHOR

BE	LIABLE	FOR	ANY	SPECIAL,	INDIRECT	OR	CONSEQUENTIAL	DAMAGES	OR	ANY

DAMAGES	WHATSOEVER	RESULTING	FROM	LOSS	OF	USE,	DATA	OR	PROFITS,

WHETHER	IN	AN	ACTION	OF	CONTRACT,	NEGLIGENCE	OR	OTHER	TORTIOUS

ACTION,	ARISING	OUT	OF	OR	IN	CONNECTION	WITH	THE	USE	OR	PERFORMANCE

OF	THIS	SOFTWARE.

test_epoll

The	test_epoll	contains	the	following	notice:

Copyright	(c)	2001-2006	Twisted	Matrix	Laboratories.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining

a	copy	of	this	software	and	associated	documentation	files	(the

"Software"),	to	deal	in	the	Software	without	restriction,	including

without	limitation	the	rights	to	use,	copy,	modify,	merge,	publish,

distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to

permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to

the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be

included	in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,

EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF

MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND

NONINFRINGEMENT.	IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE

LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION

OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION

WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

Select	kqueue

The	 select	 and	 contains	 the	 following	 notice	 for	 the	 kqueue
interface:

Copyright	(c)	2000	Doug	White,	2006	James	Knight,	2007	Christian	Heimes

All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND	CONTRIBUTORS	``AS	IS''	AND

ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	AUTHOR	OR	CONTRIBUTORS	BE	LIABLE

FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

SipHash24

The	 file	 Python/pyhash.c	 contains	 Marek	 Majkowski’
implementation	of	Dan	Bernstein’s	SipHash24	algorithm.	The	contains
the	following	note:

<MIT	License>

Copyright	(c)	2013		Marek	Majkowski	<marek@popcount.org>

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy

of	this	software	and	associated	documentation	files	(the	"Software"),	to	deal

in	the	Software	without	restriction,	including	without	limitation	the	rights

to	use,	copy,	modify,	merge,	publish,	distribute,	sublicense,	and/or	sell

copies	of	the	Software,	and	to	permit	persons	to	whom	the	Software	is

furnished	to	do	so,	subject	to	the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included	in

all	copies	or	substantial	portions	of	the	Software.

</MIT	License>

Original	location:

			https://github.com/majek/csiphash/

Solution	inspired	by	code	from:

			Samuel	Neves	(supercop/crypto_auth/siphash24/little)

			djb	(supercop/crypto_auth/siphash24/little2)

			Jean-Philippe	Aumasson	(https://131002.net/siphash/siphash24.c)

strtod	and	dtoa

The	file	Python/dtoa.c,	which	supplies	C	functions	dtoa	and	strtod
for	conversion	of	C	doubles	to	and	from	strings,	is	derived	from	the	file
of	 the	 same	 name	 by	 David	 M.	 Gay,	 currently	 available	 from
http://www.netlib.org/fp/.	 The	 original	 file,	 as	 retrieved	 on	 March	 16,
2009,	contains	the	following	copyright	and	licensing	notice:

/**

	*

	*	The	author	of	this	software	is	David	M.	Gay.

	*

	*	Copyright	(c)	1991,	2000,	2001	by	Lucent	Technologies.

	*

	*	Permission	to	use,	copy,	modify,	and	distribute	this	software	for	any

	*	purpose	without	fee	is	hereby	granted,	provided	that	this	entire	notice

	*	is	included	in	all	copies	of	any	software	which	is	or	includes	a	copy

	*	or	modification	of	this	software	and	in	all	copies	of	the	supporting

	*	documentation	for	such	software.

	*

	*	THIS	SOFTWARE	IS	BEING	PROVIDED	"AS	IS",	WITHOUT	ANY	EXPRESS	OR	IMPLIED

	*	WARRANTY.		IN	PARTICULAR,	NEITHER	THE	AUTHOR	NOR	LUCENT	MAKES	ANY

	*	REPRESENTATION	OR	WARRANTY	OF	ANY	KIND	CONCERNING	THE	MERCHANTABILITY

	*	OF	THIS	SOFTWARE	OR	ITS	FITNESS	FOR	ANY	PARTICULAR	PURPOSE.

	*

	***/

OpenSSL

http://www.netlib.org/fp/

The	modules	hashlib,	posix,	ssl,	crypt	use	the	OpenSSL	library
for	 added	 performance	 if	 made	 available	 by	 the	 operating	 system.
Additionally,	 the	Windows	 installers	 for	Python	 include	 a	 copy	 of	 the
OpenSSL	libraries,	so	we	include	a	copy	of	the	OpenSSL	license	here:

	LICENSE	ISSUES

	==============

	The	OpenSSL	toolkit	stays	under	a	dual	license,	i.e.	both	the	conditions	of

	the	OpenSSL	License	and	the	original	SSLeay	license	apply	to	the	toolkit.

	See	below	for	the	actual	license	texts.	Actually	both	licenses	are	BSD-style

	Open	Source	licenses.	In	case	of	any	license	issues	related	to	OpenSSL

	please	contact	openssl-core@openssl.org.

	OpenSSL	License

			/*	==

				*	Copyright	(c)	1998-2008	The	OpenSSL	Project.		All	rights	reserved.

				*

				*	Redistribution	and	use	in	source	and	binary	forms,	with	or	without

				*	modification,	are	permitted	provided	that	the	following	conditions

				*	are	met:

				*

				*	1.	Redistributions	of	source	code	must	retain	the	above	copyright

				*				notice,	this	list	of	conditions	and	the	following	disclaimer.

				*

				*	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				*				notice,	this	list	of	conditions	and	the	following	disclaimer	in

				*				the	documentation	and/or	other	materials	provided	with	the

				*				distribution.

				*

				*	3.	All	advertising	materials	mentioning	features	or	use	of	this

				*				software	must	display	the	following	acknowledgment:

				*				"This	product	includes	software	developed	by	the	OpenSSL	Project

				*				for	use	in	the	OpenSSL	Toolkit.	(http://www.openssl.org/)"

				*

				*	4.	The	names	"OpenSSL	Toolkit"	and	"OpenSSL	Project"	must	not	be	used	to

				*				endorse	or	promote	products	derived	from	this	software	without

				*				prior	written	permission.	For	written	permission,	please	contact

				*				openssl-core@openssl.org.

				*

				*	5.	Products	derived	from	this	software	may	not	be	called	"OpenSSL"

				*				nor	may	"OpenSSL"	appear	in	their	names	without	prior	written

				*				permission	of	the	OpenSSL	Project.

				*

				*	6.	Redistributions	of	any	form	whatsoever	must	retain	the	following

				*				acknowledgment:

				*				"This	product	includes	software	developed	by	the	OpenSSL	Project

				*				for	use	in	the	OpenSSL	Toolkit	(http://www.openssl.org/)"

				*

				*	THIS	SOFTWARE	IS	PROVIDED	BY	THE	OpenSSL	PROJECT	``AS	IS''	AND	ANY

				*	EXPRESSED	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

				*	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR

				*	PURPOSE	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	OpenSSL	PROJECT	OR

				*	ITS	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,

				*	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES	(INCLUDING,	BUT

				*	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR	SERVICES;

				*	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

				*	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,

				*	STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)

				*	ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED

				*	OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

				*	==

				*

				*	This	product	includes	cryptographic	software	written	by	Eric	Young

				*	(eay@cryptsoft.com).		This	product	includes	software	written	by	Tim

				*	Hudson	(tjh@cryptsoft.com).

				*

				*/

Original	SSLeay	License

			/*	Copyright	(C)	1995-1998	Eric	Young	(eay@cryptsoft.com)

				*	All	rights	reserved.

				*

				*	This	package	is	an	SSL	implementation	written

				*	by	Eric	Young	(eay@cryptsoft.com).

				*	The	implementation	was	written	so	as	to	conform	with	Netscapes	SSL.

				*

				*	This	library	is	free	for	commercial	and	non-commercial	use	as	long	as

				*	the	following	conditions	are	aheared	to.		The	following	conditions

				*	apply	to	all	code	found	in	this	distribution,	be	it	the	RC4,	RSA,

				*	lhash,	DES,	etc.,	code;	not	just	the	SSL	code.		The	SSL	documentation

				*	included	with	this	distribution	is	covered	by	the	same	copyright	terms

				*	except	that	the	holder	is	Tim	Hudson	(tjh@cryptsoft.com).

				*

				*	Copyright	remains	Eric	Young's,	and	as	such	any	Copyright	notices	in

				*	the	code	are	not	to	be	removed.

				*	If	this	package	is	used	in	a	product,	Eric	Young	should	be	given	attribution

				*	as	the	author	of	the	parts	of	the	library	used.

				*	This	can	be	in	the	form	of	a	textual	message	at	program	startup	or

				*	in	documentation	(online	or	textual)	provided	with	the	package.

				*

				*	Redistribution	and	use	in	source	and	binary	forms,	with	or	without

				*	modification,	are	permitted	provided	that	the	following	conditions

				*	are	met:

				*	1.	Redistributions	of	source	code	must	retain	the	copyright

				*				notice,	this	list	of	conditions	and	the	following	disclaimer.

				*	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

				*				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

				*				documentation	and/or	other	materials	provided	with	the	distribution.

				*	3.	All	advertising	materials	mentioning	features	or	use	of	this	software

				*				must	display	the	following	acknowledgement:

				*				"This	product	includes	cryptographic	software	written	by

				*					Eric	Young	(eay@cryptsoft.com)"

				*				The	word	'cryptographic'	can	be	left	out	if	the	rouines	from	the	library

				*				being	used	are	not	cryptographic	related	:-).

				*	4.	If	you	include	any	Windows	specific	code	(or	a	derivative	thereof)	from

				*				the	apps	directory	(application	code)	you	must	include	an	acknowledgement:

				*				"This	product	includes	software	written	by	Tim	Hudson	(tjh@cryptsoft.com)"

				*

				*	THIS	SOFTWARE	IS	PROVIDED	BY	ERIC	YOUNG	``AS	IS''	AND

				*	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

				*	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

				*	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	AUTHOR	OR	CONTRIBUTORS	BE	LIABLE

				*	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

				*	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

				*	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

				*	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

				*	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

				*	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

				*	SUCH	DAMAGE.

				*

				*	The	licence	and	distribution	terms	for	any	publically	available	version	or

				*	derivative	of	this	code	cannot	be	changed.		i.e.	this	code	cannot	simply	be

				*	copied	and	put	under	another	distribution	licence

				*	[including	the	GNU	Public	Licence.]

				*/

expat

The	pyexpat	 extension	 is	built	 using	an	 included	copy	of	 the	expat
sources	unless	the	build	is	configured	--with-system-expat:

Copyright	(c)	1998,	1999,	2000	Thai	Open	Source	Software	Center	Ltd

																															and	Clark	Cooper

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining

a	copy	of	this	software	and	associated	documentation	files	(the

"Software"),	to	deal	in	the	Software	without	restriction,	including

without	limitation	the	rights	to	use,	copy,	modify,	merge,	publish,

distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to

permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to

the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included

in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	"AS	IS",	WITHOUT	WARRANTY	OF	ANY	KIND,

EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF

MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.

IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE	FOR	ANY

CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN	ACTION	OF	CONTRACT,

TORT	OR	OTHERWISE,	ARISING	FROM,	OUT	OF	OR	IN	CONNECTION	WITH	THE

SOFTWARE	OR	THE	USE	OR	OTHER	DEALINGS	IN	THE	SOFTWARE.

libffi

The	 _ctypes	 extension	 is	 built	 using	 an	 included	 copy	 of	 the	 libffi
sources	unless	the	build	is	configured	--with-system-libffi:

Copyright	(c)	1996-2008		Red	Hat,	Inc	and	others.

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining

a	copy	of	this	software	and	associated	documentation	files	(the

``Software''),	to	deal	in	the	Software	without	restriction,	including

without	limitation	the	rights	to	use,	copy,	modify,	merge,	publish,

distribute,	sublicense,	and/or	sell	copies	of	the	Software,	and	to

permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to

the	following	conditions:

The	above	copyright	notice	and	this	permission	notice	shall	be	included

in	all	copies	or	substantial	portions	of	the	Software.

THE	SOFTWARE	IS	PROVIDED	``AS	IS'',	WITHOUT	WARRANTY	OF	ANY	KIND,

EXPRESS	OR	IMPLIED,	INCLUDING	BUT	NOT	LIMITED	TO	THE	WARRANTIES	OF

MERCHANTABILITY,	FITNESS	FOR	A	PARTICULAR	PURPOSE	AND

NONINFRINGEMENT.		IN	NO	EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT

HOLDERS	BE	LIABLE	FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,

WHETHER	IN	AN	ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,

OUT	OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR	OTHER

DEALINGS	IN	THE	SOFTWARE.

zlib

The	zlib	extension	is	built	using	an	included	copy	of	the	zlib	sources
if	 the	 zlib	 version	 found	 on	 the	 system	 is	 too	 old	 to	 be	 used	 for	 the
build:

Copyright	(C)	1995-2011	Jean-loup	Gailly	and	Mark	Adler

This	software	is	provided	'as-is',	without	any	express	or	implied

warranty.		In	no	event	will	the	authors	be	held	liable	for	any	damages

arising	from	the	use	of	this	software.

Permission	is	granted	to	anyone	to	use	this	software	for	any	purpose,

including	commercial	applications,	and	to	alter	it	and	redistribute	it

freely,	subject	to	the	following	restrictions:

1.	The	origin	of	this	software	must	not	be	misrepresented;	you	must	not

			claim	that	you	wrote	the	original	software.	If	you	use	this	software

			in	a	product,	an	acknowledgment	in	the	product	documentation	would	be

			appreciated	but	is	not	required.

2.	Altered	source	versions	must	be	plainly	marked	as	such,	and	must	not	be

			misrepresented	as	being	the	original	software.

3.	This	notice	may	not	be	removed	or	altered	from	any	source	distribution.

Jean-loup	Gailly								Mark	Adler

jloup@gzip.org										madler@alumni.caltech.edu

cfuhash

The	 implementation	 of	 the	 hash	 table	 used	by	 the	 tracemalloc	 is
based	on	the	cfuhash	project:

Copyright	(c)	2005	Don	Owens

All	rights	reserved.

This	code	is	released	under	the	BSD	license:

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

		*	Redistributions	of	source	code	must	retain	the	above	copyright

				notice,	this	list	of	conditions	and	the	following	disclaimer.

		*	Redistributions	in	binary	form	must	reproduce	the	above

				copyright	notice,	this	list	of	conditions	and	the	following

				disclaimer	in	the	documentation	and/or	other	materials	provided

				with	the	distribution.

		*	Neither	the	name	of	the	author	nor	the	names	of	its

				contributors	may	be	used	to	endorse	or	promote	products	derived

				from	this	software	without	specific	prior	written	permission.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	COPYRIGHT	HOLDERS	AND	CONTRIBUTORS

"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT

LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS

FOR	A	PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE

COPYRIGHT	OWNER	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,

INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL	DAMAGES

(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS	OR

SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,

STRICT	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)

ARISING	IN	ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED

OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

libmpdec

The	_decimal	Module	is	built	using	an	included	copy	of	the	libmpdec
library	unless	the	build	is	configured	--with-system-libmpdec:

Copyright	(c)	2008-2016	Stefan	Krah.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without

modification,	are	permitted	provided	that	the	following	conditions

are	met:

1.	Redistributions	of	source	code	must	retain	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer.

2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

			notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

			documentation	and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND	CONTRIBUTORS	"AS	IS"	AND

ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	AUTHOR	OR	CONTRIBUTORS	BE	LIABLE

FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

SUCH	DAMAGE.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index
Index	pages	by	letter:

Symbols	|	_	|	A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q
|	R	|	S	|	T	|	U	|	V	|	W	|	X	|	Y	|	Z

Full	index	on	one	page	(can	be	huge)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

What’s	New	in	Python
The	“What’s	New	in	Python”	series	of	essays	takes	tours	through	the
most	 important	changes	between	major	Python	versions.	They	are	a
“must	read”	for	anyone	wishing	to	stay	up-to-date	after	a	new	release.

What’s	New	In	Python	3.4
Summary	–	Release	Highlights
New	Features
New	Modules
Improved	Modules
CPython	Implementation	Changes
Deprecated
Removed
Porting	to	Python	3.4

What’s	New	In	Python	3.3
Summary	–	Release	highlights
PEP	405:	Virtual	Environments
PEP	420:	Implicit	Namespace	Packages
PEP	 3118:	 New	 memoryview	 implementation	 and	 buffer
protocol	documentation
PEP	393:	Flexible	String	Representation
PEP	397:	Python	Launcher	for	Windows
PEP	3151:	Reworking	the	OS	and	IO	exception	hierarchy
PEP	380:	Syntax	for	Delegating	to	a	Subgenerator
PEP	409:	Suppressing	exception	context
PEP	414:	Explicit	Unicode	literals
PEP	3155:	Qualified	name	for	classes	and	functions
PEP	412:	Key-Sharing	Dictionary
PEP	362:	Function	Signature	Object
PEP	421:	Adding	sys.implementation
Using	importlib	as	the	Implementation	of	Import
Other	Language	Changes

A	Finer-Grained	Import	Lock
Builtin	functions	and	types
New	Modules
Improved	Modules
Optimizations
Build	and	C	API	Changes
Deprecated
Porting	to	Python	3.3

What’s	New	In	Python	3.2
PEP	384:	Defining	a	Stable	ABI
PEP	389:	Argparse	Command	Line	Parsing	Module
PEP	391:	Dictionary	Based	Configuration	for	Logging
PEP	3148:	The	concurrent.futures	module
PEP	3147:	PYC	Repository	Directories
PEP	3149:	ABI	Version	Tagged	.so	Files
PEP	3333:	Python	Web	Server	Gateway	Interface	v1.0.1
Other	Language	Changes
New,	Improved,	and	Deprecated	Modules
Multi-threading
Optimizations
Unicode
Codecs
Documentation
IDLE
Code	Repository
Build	and	C	API	Changes
Porting	to	Python	3.2

What’s	New	In	Python	3.1
PEP	372:	Ordered	Dictionaries
PEP	378:	Format	Specifier	for	Thousands	Separator
Other	Language	Changes
New,	Improved,	and	Deprecated	Modules
Optimizations
IDLE

Build	and	C	API	Changes
Porting	to	Python	3.1

What’s	New	In	Python	3.0
Common	Stumbling	Blocks
Overview	Of	Syntax	Changes
Changes	Already	Present	In	Python	2.6
Library	Changes
PEP	3101:	A	New	Approach	To	String	Formatting
Changes	To	Exceptions
Miscellaneous	Other	Changes
Build	and	C	API	Changes
Performance
Porting	To	Python	3.0

What’s	New	in	Python	2.7
The	Future	for	Python	2.x
Python	3.1	Features
PEP	372:	Adding	an	Ordered	Dictionary	to	collections
PEP	378:	Format	Specifier	for	Thousands	Separator
PEP	389:	The	argparse	Module	for	Parsing	Command	Lines
PEP	391:	Dictionary-Based	Configuration	For	Logging
PEP	3106:	Dictionary	Views
PEP	3137:	The	memoryview	Object
Other	Language	Changes
New	and	Improved	Modules
Build	and	C	API	Changes
Other	Changes	and	Fixes
Porting	to	Python	2.7
Acknowledgements

What’s	New	in	Python	2.6
Python	3.0
Changes	to	the	Development	Process
PEP	343:	The	‘with’	statement
PEP	366:	Explicit	Relative	Imports	From	a	Main	Module
PEP	370:	Per-user	site-packages	Directory

PEP	371:	The	multiprocessing	Package
PEP	3101:	Advanced	String	Formatting
PEP	3105:	print	As	a	Function
PEP	3110:	Exception-Handling	Changes
PEP	3112:	Byte	Literals
PEP	3116:	New	I/O	Library
PEP	3118:	Revised	Buffer	Protocol
PEP	3119:	Abstract	Base	Classes
PEP	3127:	Integer	Literal	Support	and	Syntax
PEP	3129:	Class	Decorators
PEP	3141:	A	Type	Hierarchy	for	Numbers
Other	Language	Changes
New	and	Improved	Modules
Deprecations	and	Removals
Build	and	C	API	Changes
Porting	to	Python	2.6
Acknowledgements

What’s	New	in	Python	2.5
PEP	308:	Conditional	Expressions
PEP	309:	Partial	Function	Application
PEP	314:	Metadata	for	Python	Software	Packages	v1.1
PEP	328:	Absolute	and	Relative	Imports
PEP	338:	Executing	Modules	as	Scripts
PEP	341:	Unified	try/except/finally
PEP	342:	New	Generator	Features
PEP	343:	The	‘with’	statement
PEP	352:	Exceptions	as	New-Style	Classes
PEP	353:	Using	ssize_t	as	the	index	type
PEP	357:	The	‘__index__’	method
Other	Language	Changes
New,	Improved,	and	Removed	Modules
Build	and	C	API	Changes
Porting	to	Python	2.5
Acknowledgements

What’s	New	in	Python	2.4
PEP	218:	Built-In	Set	Objects
PEP	237:	Unifying	Long	Integers	and	Integers
PEP	289:	Generator	Expressions
PEP	292:	Simpler	String	Substitutions
PEP	318:	Decorators	for	Functions	and	Methods
PEP	322:	Reverse	Iteration
PEP	324:	New	subprocess	Module
PEP	327:	Decimal	Data	Type
PEP	328:	Multi-line	Imports
PEP	331:	Locale-Independent	Float/String	Conversions
Other	Language	Changes
New,	Improved,	and	Deprecated	Modules
Build	and	C	API	Changes
Porting	to	Python	2.4
Acknowledgements

What’s	New	in	Python	2.3
PEP	218:	A	Standard	Set	Datatype
PEP	255:	Simple	Generators
PEP	263:	Source	Code	Encodings
PEP	273:	Importing	Modules	from	ZIP	Archives
PEP	277:	Unicode	file	name	support	for	Windows	NT
PEP	278:	Universal	Newline	Support
PEP	279:	enumerate()
PEP	282:	The	logging	Package
PEP	285:	A	Boolean	Type
PEP	293:	Codec	Error	Handling	Callbacks
PEP	301:	Package	Index	and	Metadata	for	Distutils
PEP	302:	New	Import	Hooks
PEP	305:	Comma-separated	Files
PEP	307:	Pickle	Enhancements
Extended	Slices
Other	Language	Changes
New,	Improved,	and	Deprecated	Modules

Pymalloc:	A	Specialized	Object	Allocator
Build	and	C	API	Changes
Other	Changes	and	Fixes
Porting	to	Python	2.3
Acknowledgements

What’s	New	in	Python	2.2
Introduction
PEPs	252	and	253:	Type	and	Class	Changes
PEP	234:	Iterators
PEP	255:	Simple	Generators
PEP	237:	Unifying	Long	Integers	and	Integers
PEP	238:	Changing	the	Division	Operator
Unicode	Changes
PEP	227:	Nested	Scopes
New	and	Improved	Modules
Interpreter	Changes	and	Fixes
Other	Changes	and	Fixes
Acknowledgements

What’s	New	in	Python	2.1
Introduction
PEP	227:	Nested	Scopes
PEP	236:	__future__	Directives
PEP	207:	Rich	Comparisons
PEP	230:	Warning	Framework
PEP	229:	New	Build	System
PEP	205:	Weak	References
PEP	232:	Function	Attributes
PEP	235:	Importing	Modules	on	Case-Insensitive	Platforms
PEP	217:	Interactive	Display	Hook
PEP	208:	New	Coercion	Model
PEP	241:	Metadata	in	Python	Packages
New	and	Improved	Modules
Other	Changes	and	Fixes
Acknowledgements

What’s	New	in	Python	2.0
Introduction
What	About	Python	1.6?
New	Development	Process
Unicode
List	Comprehensions
Augmented	Assignment
String	Methods
Garbage	Collection	of	Cycles
Other	Core	Changes
Porting	to	2.0
Extending/Embedding	Changes
Distutils:	Making	Modules	Easy	to	Install
XML	Modules
Module	changes
New	modules
IDLE	Improvements
Deleted	and	Deprecated	Modules
Acknowledgements

The	 “Changelog”	 is	 a	 HTML	 version	 of	 the	 file	 Misc/NEWS	 which
contains	all	nontrivial	changes	to	Python	for	the	current	version.

Changelog
Python	3.4.0?
Python	3.4.0	release	candidate	3?
Python	3.4.0	release	candidate	2?
Python	3.4.0	release	candidate	1?
Python	3.4.0	Beta	3?
Python	3.4.0	Beta	2?
Python	3.4.0	Beta	1?
Python	3.4.0	Alpha	4?
Python	3.4.0	Alpha	3?
Python	3.4.0	Alpha	2?

http://hg.python.org/cpython/file/3.4/Misc/NEWS

Python	3.4.0	Alpha	1?
Python	3.3.0?
Python	3.3.0	Release	Candidate	3?
Python	3.3.0	Release	Candidate	2?
Python	3.3.0	Release	Candidate	1?
Python	3.3.0	Beta	2?
Python	3.3.0	Beta	1?
Python	3.3.0	Alpha	4?
Python	3.3.0	Alpha	3?
Python	3.3.0	Alpha	2?
Python	3.3.0	Alpha	1?

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

The	Python	Tutorial
Python	 is	 an	 easy	 to	 learn,	 powerful	 programming	 language.	 It	 has
efficient	high-level	data	structures	and	a	simple	but	effective	approach
to	object-oriented	programming.	Python’s	elegant	syntax	and	dynamic
typing,	 together	with	 its	 interpreted	nature,	make	it	an	 ideal	 language
for	scripting	and	rapid	application	development	in	many	areas	on	most
platforms.

The	 Python	 interpreter	 and	 the	 extensive	 standard	 library	 are	 freely
available	 in	 source	 or	 binary	 form	 for	 all	 major	 platforms	 from	 the
Python	 Web	 site,	 http://www.python.org/,	 and	 may	 be	 freely
distributed.	The	same	site	also	contains	distributions	of	and	pointers	to
many	 free	 third	 party	 Python	 modules,	 programs	 and	 tools,	 and
additional	documentation.

The	Python	interpreter	is	easily	extended	with	new	functions	and	data
types	implemented	in	C	or	C++	(or	other	 languages	callable	from	C).
Python	 is	 also	 suitable	 as	 an	 extension	 language	 for	 customizable
applications.

This	tutorial	introduces	the	reader	informally	to	the	basic	concepts	and
features	of	the	Python	language	and	system.	It	helps	to	have	a	Python
interpreter	handy	 for	hands-on	experience,	but	all	examples	are	self-
contained,	so	the	tutorial	can	be	read	off-line	as	well.

For	 a	 description	 of	 standard	 objects	 and	modules,	 see	The	Python
Standard	 Library.	 The	 Python	 Language	 Reference	 gives	 a	 more
formal	definition	of	the	language.	To	write	extensions	in	C	or	C++,	read
Extending	 and	 Embedding	 the	 Python	 Interpreter	 and	Python/C	 API
Reference	Manual.	 There	are	also	 several	 books	 covering	Python	 in
depth.

http://www.python.org/

This	 tutorial	 does	 not	 attempt	 to	 be	 comprehensive	 and	 cover	 every
single	 feature,	 or	 even	 every	 commonly	 used	 feature.	 Instead,	 it
introduces	many	of	Python’s	most	 noteworthy	 features,	 and	will	 give
you	a	good	idea	of	the	language’s	flavor	and	style.	After	reading	it,	you
will	be	able	to	read	and	write	Python	modules	and	programs,	and	you
will	be	 ready	 to	 learn	more	about	 the	various	Python	 library	modules
described	in	The	Python	Standard	Library.

The	Glossary	is	also	worth	going	through.

1.	Whetting	Your	Appetite
2.	Using	the	Python	Interpreter

2.1.	Invoking	the	Interpreter
2.1.1.	Argument	Passing
2.1.2.	Interactive	Mode

2.2.	The	Interpreter	and	Its	Environment
2.2.1.	Error	Handling
2.2.2.	Executable	Python	Scripts
2.2.3.	Source	Code	Encoding
2.2.4.	The	Interactive	Startup	File
2.2.5.	The	Customization	Modules

3.	An	Informal	Introduction	to	Python
3.1.	Using	Python	as	a	Calculator

3.1.1.	Numbers
3.1.2.	Strings
3.1.3.	Lists

3.2.	First	Steps	Towards	Programming
4.	More	Control	Flow	Tools

4.1.	if	Statements
4.2.	for	Statements
4.3.	The	range()	Function
4.4.	break	and	continue	Statements,	 and	 else	Clauses
on	Loops

4.5.	pass	Statements
4.6.	Defining	Functions
4.7.	More	on	Defining	Functions

4.7.1.	Default	Argument	Values
4.7.2.	Keyword	Arguments
4.7.3.	Arbitrary	Argument	Lists
4.7.4.	Unpacking	Argument	Lists
4.7.5.	Lambda	Expressions
4.7.6.	Documentation	Strings
4.7.7.	Function	Annotations

4.8.	Intermezzo:	Coding	Style
5.	Data	Structures

5.1.	More	on	Lists
5.1.1.	Using	Lists	as	Stacks
5.1.2.	Using	Lists	as	Queues
5.1.3.	List	Comprehensions
5.1.4.	Nested	List	Comprehensions

5.2.	The	del	statement
5.3.	Tuples	and	Sequences
5.4.	Sets
5.5.	Dictionaries
5.6.	Looping	Techniques
5.7.	More	on	Conditions
5.8.	Comparing	Sequences	and	Other	Types

6.	Modules
6.1.	More	on	Modules

6.1.1.	Executing	modules	as	scripts
6.1.2.	The	Module	Search	Path
6.1.3.	“Compiled”	Python	files

6.2.	Standard	Modules
6.3.	The	dir()	Function
6.4.	Packages

6.4.1.	Importing	*	From	a	Package
6.4.2.	Intra-package	References

6.4.3.	Packages	in	Multiple	Directories
7.	Input	and	Output

7.1.	Fancier	Output	Formatting
7.1.1.	Old	string	formatting

7.2.	Reading	and	Writing	Files
7.2.1.	Methods	of	File	Objects
7.2.2.	Saving	structured	data	with	json

8.	Errors	and	Exceptions
8.1.	Syntax	Errors
8.2.	Exceptions
8.3.	Handling	Exceptions
8.4.	Raising	Exceptions
8.5.	User-defined	Exceptions
8.6.	Defining	Clean-up	Actions
8.7.	Predefined	Clean-up	Actions

9.	Classes
9.1.	A	Word	About	Names	and	Objects
9.2.	Python	Scopes	and	Namespaces

9.2.1.	Scopes	and	Namespaces	Example
9.3.	A	First	Look	at	Classes

9.3.1.	Class	Definition	Syntax
9.3.2.	Class	Objects
9.3.3.	Instance	Objects
9.3.4.	Method	Objects

9.4.	Random	Remarks
9.5.	Inheritance

9.5.1.	Multiple	Inheritance
9.6.	Private	Variables
9.7.	Odds	and	Ends
9.8.	Exceptions	Are	Classes	Too
9.9.	Iterators
9.10.	Generators
9.11.	Generator	Expressions

10.	Brief	Tour	of	the	Standard	Library

10.1.	Operating	System	Interface
10.2.	File	Wildcards
10.3.	Command	Line	Arguments
10.4.	Error	Output	Redirection	and	Program	Termination
10.5.	String	Pattern	Matching
10.6.	Mathematics
10.7.	Internet	Access
10.8.	Dates	and	Times
10.9.	Data	Compression
10.10.	Performance	Measurement
10.11.	Quality	Control
10.12.	Batteries	Included

11.	Brief	Tour	of	the	Standard	Library	–	Part	II
11.1.	Output	Formatting
11.2.	Templating
11.3.	Working	with	Binary	Data	Record	Layouts
11.4.	Multi-threading
11.5.	Logging
11.6.	Weak	References
11.7.	Tools	for	Working	with	Lists
11.8.	Decimal	Floating	Point	Arithmetic

12.	What	Now?
13.	Interactive	Input	Editing	and	History	Substitution

13.1.	Tab	Completion	and	History	Editing
13.2.	Alternatives	to	the	Interactive	Interpreter

14.	Floating	Point	Arithmetic:	Issues	and	Limitations
14.1.	Representation	Error

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

The	Python	Standard	Library
While	 The	 Python	 Language	 Reference	 describes	 the	 exact	 syntax
and	semantics	of	 the	Python	 language,	 this	 library	 reference	manual
describes	 the	 standard	 library	 that	 is	 distributed	 with	 Python.	 It	 also
describes	 some	 of	 the	 optional	 components	 that	 are	 commonly
included	in	Python	distributions.

Python’s	 standard	 library	 is	 very	 extensive,	 offering	 a	wide	 range	 of
facilities	 as	 indicated	 by	 the	 long	 table	 of	 contents	 listed	 below.	 The
library	 contains	built-in	modules	 (written	 in	C)	 that	 provide	access	 to
system	 functionality	 such	 as	 file	 I/O	 that	 would	 otherwise	 be
inaccessible	 to	 Python	 programmers,	 as	 well	 as	 modules	 written	 in
Python	 that	 provide	 standardized	 solutions	 for	 many	 problems	 that
occur	in	everyday	programming.	Some	of	these	modules	are	explicitly
designed	 to	 encourage	 and	 enhance	 the	 portability	 of	 Python
programs	by	abstracting	away	platform-specifics	 into	platform-neutral
APIs.

The	 Python	 installers	 for	 the	Windows	 platform	 usually	 includes	 the
entire	 standard	 library	 and	 often	 also	 include	 many	 additional
components.	 For	 Unix-like	 operating	 systems	 Python	 is	 normally
provided	as	a	collection	of	packages,	so	 it	may	be	necessary	 to	use
the	packaging	tools	provided	with	the	operating	system	to	obtain	some
or	all	of	the	optional	components.

In	 addition	 to	 the	 standard	 library,	 there	 is	 a	 growing	 collection	 of
several	thousand	components	(from	individual	programs	and	modules
to	 packages	 and	 entire	 application	 development	 frameworks),
available	from	the	Python	Package	Index.

1.	Introduction

http://pypi.python.org/pypi

2.	Built-in	Functions
3.	Built-in	Constants

3.1.	Constants	added	by	the	site	module
4.	Built-in	Types

4.1.	Truth	Value	Testing
4.2.	Boolean	Operations	—	and,	or,	not
4.3.	Comparisons
4.4.	Numeric	Types	—	int,	float,	complex
4.5.	Iterator	Types
4.6.	Sequence	Types	—	list,	tuple,	range
4.7.	Text	Sequence	Type	—	str
4.8.	 Binary	 Sequence	 Types	 —	 bytes,	 bytearray,
memoryview

4.9.	Set	Types	—	set,	frozenset
4.10.	Mapping	Types	—	dict
4.11.	Context	Manager	Types
4.12.	Other	Built-in	Types
4.13.	Special	Attributes

5.	Built-in	Exceptions
5.1.	Base	classes
5.2.	Concrete	exceptions
5.3.	Warnings
5.4.	Exception	hierarchy

6.	Text	Processing	Services
6.1.	string	—	Common	string	operations
6.2.	re	—	Regular	expression	operations
6.3.	difflib	—	Helpers	for	computing	deltas
6.4.	textwrap	—	Text	wrapping	and	filling
6.5.	unicodedata	—	Unicode	Database
6.6.	stringprep	—	Internet	String	Preparation
6.7.	readline	—	GNU	readline	interface
6.8.	rlcompleter	—	Completion	function	for	GNU	readline

7.	Binary	Data	Services

7.1.	struct	—	Interpret	bytes	as	packed	binary	data
7.2.	codecs	—	Codec	registry	and	base	classes

8.	Data	Types
8.1.	datetime	—	Basic	date	and	time	types
8.2.	calendar	—	General	calendar-related	functions
8.3.	collections	—	Container	datatypes
8.4.	 collections.abc	 —	 Abstract	 Base	 Classes	 for
Containers
8.5.	heapq	—	Heap	queue	algorithm
8.6.	bisect	—	Array	bisection	algorithm
8.7.	array	—	Efficient	arrays	of	numeric	values
8.8.	weakref	—	Weak	references
8.9.	types	—	Dynamic	 type	creation	and	names	for	built-in
types
8.10.	copy	—	Shallow	and	deep	copy	operations
8.11.	pprint	—	Data	pretty	printer
8.12.	reprlib	—	Alternate	repr()	implementation
8.13.	enum	—	Support	for	enumerations

9.	Numeric	and	Mathematical	Modules
9.1.	numbers	—	Numeric	abstract	base	classes
9.2.	math	—	Mathematical	functions
9.3.	cmath	—	Mathematical	functions	for	complex	numbers
9.4.	 decimal	 —	 Decimal	 fixed	 point	 and	 floating	 point
arithmetic
9.5.	fractions	—	Rational	numbers
9.6.	random	—	Generate	pseudo-random	numbers
9.7.	statistics	—	Mathematical	statistics	functions

10.	Functional	Programming	Modules
10.1.	itertools	—	Functions	creating	iterators	for	efficient
looping
10.2.	 functools	—	Higher-order	 functions	 and	 operations
on	callable	objects

10.3.	operator	—	Standard	operators	as	functions
11.	File	and	Directory	Access

11.1.	pathlib	—	Object-oriented	filesystem	paths
11.2.	os.path	—	Common	pathname	manipulations
11.3.	 fileinput	 —	 Iterate	 over	 lines	 from	 multiple	 input
streams
11.4.	stat	—	Interpreting	stat()	results
11.5.	filecmp	—	File	and	Directory	Comparisons
11.6.	tempfile	—	Generate	temporary	files	and	directories
11.7.	glob	—	Unix	style	pathname	pattern	expansion
11.8.	fnmatch	—	Unix	filename	pattern	matching
11.9.	linecache	—	Random	access	to	text	lines
11.10.	shutil	—	High-level	file	operations
11.11.	macpath	—	Mac	OS	9	path	manipulation	functions

12.	Data	Persistence
12.1.	pickle	—	Python	object	serialization
12.2.	copyreg	—	Register	pickle	support	functions
12.3.	shelve	—	Python	object	persistence
12.4.	marshal	—	Internal	Python	object	serialization
12.5.	dbm	—	Interfaces	to	Unix	“databases”
12.6.	sqlite3	—	DB-API	2.0	interface	for	SQLite	databases

13.	Data	Compression	and	Archiving
13.1.	zlib	—	Compression	compatible	with	gzip
13.2.	gzip	—	Support	for	gzip	files
13.3.	bz2	—	Support	for	bzip2	compression
13.4.	lzma	—	Compression	using	the	LZMA	algorithm
13.5.	zipfile	—	Work	with	ZIP	archives
13.6.	tarfile	—	Read	and	write	tar	archive	files

14.	File	Formats
14.1.	csv	—	CSV	File	Reading	and	Writing
14.2.	configparser	—	Configuration	file	parser
14.3.	netrc	—	netrc	file	processing

14.4.	xdrlib	—	Encode	and	decode	XDR	data
14.5.	plistlib	—	Generate	and	parse	Mac	OS	X	.plist
files

15.	Cryptographic	Services
15.1.	hashlib	—	Secure	hashes	and	message	digests
15.2.	hmac	—	Keyed-Hashing	for	Message	Authentication

16.	Generic	Operating	System	Services
16.1.	os	—	Miscellaneous	operating	system	interfaces
16.2.	io	—	Core	tools	for	working	with	streams
16.3.	time	—	Time	access	and	conversions
16.4.	 argparse	 —	 Parser	 for	 command-line	 options,
arguments	and	sub-commands
16.5.	optparse	—	Parser	for	command	line	options
16.6.	getopt	—	C-style	parser	for	command	line	options
16.7.	logging	—	Logging	facility	for	Python
16.8.	logging.config	—	Logging	configuration
16.9.	logging.handlers	—	Logging	handlers
16.10.	getpass	—	Portable	password	input
16.11.	 curses	 —	 Terminal	 handling	 for	 character-cell
displays
16.12.	 curses.textpad	 —	 Text	 input	 widget	 for	 curses
programs
16.13.	curses.ascii	—	Utilities	for	ASCII	characters
16.14.	curses.panel	—	A	panel	stack	extension	for	curses
16.15.	 platform	 —	 Access	 to	 underlying	 platform’s
identifying	data
16.16.	errno	—	Standard	errno	system	symbols
16.17.	ctypes	—	A	foreign	function	library	for	Python

17.	Concurrent	Execution
17.1.	threading	—	Thread-based	parallelism
17.2.	multiprocessing	—	Process-based	parallelism
17.3.	The	concurrent	package

17.4.	concurrent.futures	—	Launching	parallel	tasks
17.5.	subprocess	—	Subprocess	management
17.6.	sched	—	Event	scheduler
17.7.	queue	—	A	synchronized	queue	class
17.8.	 dummy_threading	 —	 Drop-in	 replacement	 for	 the
threading	module
17.9.	_thread	—	Low-level	threading	API
17.10.	 _dummy_thread	 —	 Drop-in	 replacement	 for	 the
_thread	module

18.	Interprocess	Communication	and	Networking
18.1.	socket	—	Low-level	networking	interface
18.2.	ssl	—	TLS/SSL	wrapper	for	socket	objects
18.3.	select	—	Waiting	for	I/O	completion
18.4.	selectors	–	High-level	I/O	multiplexing
18.5.	 asyncio	 –	 Asynchronous	 I/O,	 event	 loop,	 coroutines
and	tasks
18.6.	asyncore	—	Asynchronous	socket	handler
18.7.	 asynchat	 —	 Asynchronous	 socket
command/response	handler
18.8.	signal	—	Set	handlers	for	asynchronous	events
18.9.	mmap	—	Memory-mapped	file	support

19.	Internet	Data	Handling
19.1.	email	—	An	email	and	MIME	handling	package
19.2.	json	—	JSON	encoder	and	decoder
19.3.	mailcap	—	Mailcap	file	handling
19.4.	mailbox	—	Manipulate	mailboxes	in	various	formats
19.5.	mimetypes	—	Map	filenames	to	MIME	types
19.6.	 base64	 —	 Base16,	 Base32,	 Base64,	 Base85	 Data
Encodings
19.7.	binhex	—	Encode	and	decode	binhex4	files
19.8.	binascii	—	Convert	between	binary	and	ASCII
19.9.	quopri	—	Encode	and	decode	MIME	quoted-printable

data
19.10.	uu	—	Encode	and	decode	uuencode	files

20.	Structured	Markup	Processing	Tools
20.1.	html	—	HyperText	Markup	Language	support
20.2.	html.parser	—	Simple	HTML	and	XHTML	parser
20.3.	 html.entities	 —	 Definitions	 of	 HTML	 general
entities
20.4.	XML	Processing	Modules
20.5.	xml.etree.ElementTree	—	The	ElementTree	XML
API
20.6.	xml.dom	—	The	Document	Object	Model	API
20.7.	xml.dom.minidom	—	Minimal	DOM	implementation
20.8.	 xml.dom.pulldom	 —	 Support	 for	 building	 partial
DOM	trees
20.9.	xml.sax	—	Support	for	SAX2	parsers
20.10.	 xml.sax.handler	 —	 Base	 classes	 for	 SAX
handlers
20.11.	xml.sax.saxutils	—	SAX	Utilities
20.12.	xml.sax.xmlreader	—	Interface	for	XML	parsers
20.13.	 xml.parsers.expat	 —	 Fast	 XML	 parsing	 using
Expat

21.	Internet	Protocols	and	Support
21.1.	webbrowser	—	Convenient	Web-browser	controller
21.2.	cgi	—	Common	Gateway	Interface	support
21.3.	cgitb	—	Traceback	manager	for	CGI	scripts
21.4.	 wsgiref	 —	 WSGI	 Utilities	 and	 Reference
Implementation
21.5.	urllib	—	URL	handling	modules
21.6.	 urllib.request	 —	 Extensible	 library	 for	 opening
URLs
21.7.	 urllib.response	 —	 Response	 classes	 used	 by
urllib
21.8.	urllib.parse	—	Parse	URLs	into	components

21.9.	 urllib.error	 —	 Exception	 classes	 raised	 by
urllib.request
21.10.	urllib.robotparser	—	Parser	for	robots.txt
21.11.	http	—	HTTP	modules
21.12.	http.client	—	HTTP	protocol	client
21.13.	ftplib	—	FTP	protocol	client
21.14.	poplib	—	POP3	protocol	client
21.15.	imaplib	—	IMAP4	protocol	client
21.16.	nntplib	—	NNTP	protocol	client
21.17.	smtplib	—	SMTP	protocol	client
21.18.	smtpd	—	SMTP	Server
21.19.	telnetlib	—	Telnet	client
21.20.	uuid	—	UUID	objects	according	to	RFC	4122
21.21.	socketserver	—	A	framework	for	network	servers
21.22.	http.server	—	HTTP	servers
21.23.	http.cookies	—	HTTP	state	management
21.24.	 http.cookiejar	 —	 Cookie	 handling	 for	 HTTP
clients
21.25.	xmlrpc	—	XMLRPC	server	and	client	modules
21.26.	xmlrpc.client	—	XML-RPC	client	access
21.27.	xmlrpc.server	—	Basic	XML-RPC	servers
21.28.	ipaddress	—	IPv4/IPv6	manipulation	library

22.	Multimedia	Services
22.1.	audioop	—	Manipulate	raw	audio	data
22.2.	aifc	—	Read	and	write	AIFF	and	AIFC	files
22.3.	sunau	—	Read	and	write	Sun	AU	files
22.4.	wave	—	Read	and	write	WAV	files
22.5.	chunk	—	Read	IFF	chunked	data
22.6.	colorsys	—	Conversions	between	color	systems
22.7.	imghdr	—	Determine	the	type	of	an	image
22.8.	sndhdr	—	Determine	type	of	sound	file
22.9.	 ossaudiodev	 —	 Access	 to	 OSS-compatible	 audio

devices
23.	Internationalization

23.1.	gettext	—	Multilingual	internationalization	services
23.2.	locale	—	Internationalization	services

24.	Program	Frameworks
24.1.	turtle	—	Turtle	graphics
24.2.	cmd	—	Support	for	line-oriented	command	interpreters
24.3.	shlex	—	Simple	lexical	analysis

25.	Graphical	User	Interfaces	with	Tk
25.1.	tkinter	—	Python	interface	to	Tcl/Tk
25.2.	tkinter.ttk	—	Tk	themed	widgets
25.3.	tkinter.tix	—	Extension	widgets	for	Tk
25.4.	tkinter.scrolledtext	—	Scrolled	Text	Widget
25.5.	IDLE
25.6.	Other	Graphical	User	Interface	Packages

26.	Development	Tools
26.1.	 pydoc	 —	 Documentation	 generator	 and	 online	 help
system
26.2.	doctest	—	Test	interactive	Python	examples
26.3.	unittest	—	Unit	testing	framework
26.4.	unittest.mock	—	mock	object	library
26.5.	unittest.mock	—	getting	started
26.6.	2to3	-	Automated	Python	2	to	3	code	translation
26.7.	test	—	Regression	tests	package	for	Python
26.8.	test.support	—	Utilities	for	the	Python	test	suite

27.	Debugging	and	Profiling
27.1.	bdb	—	Debugger	framework
27.2.	faulthandler	—	Dump	the	Python	traceback
27.3.	pdb	—	The	Python	Debugger
27.4.	The	Python	Profilers
27.5.	 timeit	 —	 Measure	 execution	 time	 of	 small	 code
snippets
27.6.	trace	—	Trace	or	track	Python	statement	execution

27.7.	tracemalloc	—	Trace	memory	allocations
27.8.	Examples
27.9.	API

28.	Software	Packaging	and	Distribution
28.1.	distutils	—	Building	and	installing	Python	modules
28.2.	ensurepip	—	Bootstrapping	the	pip	installer
28.3.	venv	—	Creation	of	virtual	environments

29.	Python	Runtime	Services
29.1.	sys	—	System-specific	parameters	and	functions
29.2.	 sysconfig	 —	 Provide	 access	 to	 Python’s
configuration	information
29.3.	builtins	—	Built-in	objects
29.4.	__main__	—	Top-level	script	environment
29.5.	warnings	—	Warning	control
29.6.	contextlib	—	Utilities	for	with-statement	contexts
29.7.	abc	—	Abstract	Base	Classes
29.8.	atexit	—	Exit	handlers
29.9.	traceback	—	Print	or	retrieve	a	stack	traceback
29.10.	__future__	—	Future	statement	definitions
29.11.	gc	—	Garbage	Collector	interface
29.12.	inspect	—	Inspect	live	objects
29.13.	site	—	Site-specific	configuration	hook
29.14.	fpectl	—	Floating	point	exception	control

30.	Custom	Python	Interpreters
30.1.	code	—	Interpreter	base	classes
30.2.	codeop	—	Compile	Python	code

31.	Importing	Modules
31.1.	imp	—	Access	the	import	internals
31.2.	zipimport	—	Import	modules	from	Zip	archives
31.3.	pkgutil	—	Package	extension	utility
31.4.	modulefinder	—	Find	modules	used	by	a	script
31.5.	runpy	—	Locating	and	executing	Python	modules

31.6.	importlib	–	The	implementation	of	import
32.	Python	Language	Services

32.1.	parser	—	Access	Python	parse	trees
32.2.	ast	—	Abstract	Syntax	Trees
32.3.	symtable	—	Access	to	the	compiler’s	symbol	tables
32.4.	symbol	—	Constants	used	with	Python	parse	trees
32.5.	token	—	Constants	used	with	Python	parse	trees
32.6.	keyword	—	Testing	for	Python	keywords
32.7.	tokenize	—	Tokenizer	for	Python	source
32.8.	tabnanny	—	Detection	of	ambiguous	indentation
32.9.	pyclbr	—	Python	class	browser	support
32.10.	py_compile	—	Compile	Python	source	files
32.11.	compileall	—	Byte-compile	Python	libraries
32.12.	dis	—	Disassembler	for	Python	bytecode
32.13.	pickletools	—	Tools	for	pickle	developers

33.	Miscellaneous	Services
33.1.	formatter	—	Generic	output	formatting

34.	MS	Windows	Specific	Services
34.1.	msilib	—	Read	and	write	Microsoft	Installer	files
34.2.	msvcrt	–	Useful	routines	from	the	MS	VC++	runtime
34.3.	winreg	–	Windows	registry	access
34.4.	winsound	—	Sound-playing	interface	for	Windows

35.	Unix	Specific	Services
35.1.	posix	—	The	most	common	POSIX	system	calls
35.2.	pwd	—	The	password	database
35.3.	spwd	—	The	shadow	password	database
35.4.	grp	—	The	group	database
35.5.	crypt	—	Function	to	check	Unix	passwords
35.6.	termios	—	POSIX	style	tty	control
35.7.	tty	—	Terminal	control	functions
35.8.	pty	—	Pseudo-terminal	utilities
35.9.	fcntl	—	The	fcntl	and	ioctl	system	calls

35.10.	pipes	—	Interface	to	shell	pipelines
35.11.	resource	—	Resource	usage	information
35.12.	nis	—	Interface	to	Sun’s	NIS	(Yellow	Pages)
35.13.	syslog	—	Unix	syslog	library	routines

36.	Undocumented	Modules
36.1.	Platform	specific	modules

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

The	Python	Language	Reference
This	 reference	manual	 describes	 the	 syntax	and	 “core	 semantics”	 of
the	 language.	 It	 is	 terse,	but	attempts	to	be	exact	and	complete.	The
semantics	 of	 non-essential	 built-in	 object	 types	 and	 of	 the	 built-in
functions	and	modules	are	described	in	The	Python	Standard	Library.
For	an	informal	introduction	to	the	language,	see	The	Python	Tutorial.
For	C	or	C++	programmers,	 two	additional	manuals	exist:	Extending
and	Embedding	the	Python	Interpreter	describes	the	high-level	picture
of	 how	 to	 write	 a	 Python	 extension	 module,	 and	 the	 Python/C	 API
Reference	 Manual	 describes	 the	 interfaces	 available	 to	 C/C++
programmers	in	detail.

1.	Introduction
1.1.	Alternate	Implementations
1.2.	Notation

2.	Lexical	analysis
2.1.	Line	structure
2.2.	Other	tokens
2.3.	Identifiers	and	keywords
2.4.	Literals
2.5.	Operators
2.6.	Delimiters

3.	Data	model
3.1.	Objects,	values	and	types
3.2.	The	standard	type	hierarchy
3.3.	Special	method	names

4.	Execution	model
4.1.	Naming	and	binding
4.2.	Exceptions

5.	The	import	system
5.1.	importlib

5.2.	Packages
5.3.	Searching
5.4.	Loading
5.5.	The	Path	Based	Finder
5.6.	Replacing	the	standard	import	system
5.7.	Open	issues
5.8.	References

6.	Expressions
6.1.	Arithmetic	conversions
6.2.	Atoms
6.3.	Primaries
6.4.	The	power	operator
6.5.	Unary	arithmetic	and	bitwise	operations
6.6.	Binary	arithmetic	operations
6.7.	Shifting	operations
6.8.	Binary	bitwise	operations
6.9.	Comparisons
6.10.	Boolean	operations
6.11.	Conditional	expressions
6.12.	Lambdas
6.13.	Expression	lists
6.14.	Evaluation	order
6.15.	Operator	precedence

7.	Simple	statements
7.1.	Expression	statements
7.2.	Assignment	statements
7.3.	The	assert	statement
7.4.	The	pass	statement
7.5.	The	del	statement
7.6.	The	return	statement
7.7.	The	yield	statement
7.8.	The	raise	statement
7.9.	The	break	statement
7.10.	The	continue	statement

7.11.	The	import	statement
7.12.	The	global	statement
7.13.	The	nonlocal	statement

8.	Compound	statements
8.1.	The	if	statement
8.2.	The	while	statement
8.3.	The	for	statement
8.4.	The	try	statement
8.5.	The	with	statement
8.6.	Function	definitions
8.7.	Class	definitions

9.	Top-level	components
9.1.	Complete	Python	programs
9.2.	File	input
9.3.	Interactive	input
9.4.	Expression	input

10.	Full	Grammar	specification

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Python	Setup	and	Usage
This	 part	 of	 the	 documentation	 is	 devoted	 to	 general	 information	 on
the	 setup	 of	 the	 Python	 environment	 on	 different	 platform,	 the
invocation	of	the	interpreter	and	things	that	make	working	with	Python
easier.

1.	Command	line	and	environment
1.1.	Command	line

1.1.1.	Interface	options
1.1.2.	Generic	options
1.1.3.	Miscellaneous	options
1.1.4.	Options	you	shouldn’t	use

1.2.	Environment	variables
1.2.1.	Debug-mode	variables

2.	Using	Python	on	Unix	platforms
2.1.	Getting	and	installing	the	latest	version	of	Python

2.1.1.	On	Linux
2.1.2.	On	FreeBSD	and	OpenBSD
2.1.3.	On	OpenSolaris

2.2.	Building	Python
2.3.	Python-related	paths	and	files
2.4.	Miscellaneous
2.5.	Editors

3.	Using	Python	on	Windows
3.1.	Installing	Python
3.2.	Alternative	bundles
3.3.	Configuring	Python

3.3.1.	Excursus:	Setting	environment	variables
3.3.2.	Finding	the	Python	executable
3.3.3.	Finding	modules
3.3.4.	Executing	scripts
3.3.5.	Executing	scripts	without	the	Python	launcher

3.4.	Python	Launcher	for	Windows
3.4.1.	Getting	started

3.4.1.1.	From	the	command-line
3.4.1.2.	From	a	script
3.4.1.3.	From	file	associations

3.4.2.	Shebang	Lines
3.4.3.	Arguments	in	shebang	lines
3.4.4.	Customization

3.4.4.1.	Customization	via	INI	files
3.4.4.2.	Customizing	default	Python	versions

3.4.5.	Diagnostics
3.5.	Additional	modules

3.5.1.	PyWin32
3.5.2.	cx_Freeze
3.5.3.	WConio

3.6.	Compiling	Python	on	Windows
3.7.	Other	resources

4.	Using	Python	on	a	Macintosh
4.1.	Getting	and	Installing	MacPython

4.1.1.	How	to	run	a	Python	script
4.1.2.	Running	scripts	with	a	GUI
4.1.3.	Configuration

4.2.	The	IDE
4.3.	Installing	Additional	Python	Packages
4.4.	GUI	Programming	on	the	Mac
4.5.	Distributing	Python	Applications	on	the	Mac
4.6.	Other	Resources

5.	Additional	Tools	and	Scripts
5.1.	pyvenv	-	Creating	virtual	environments

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	

http://www.python.org/
http://www.python.org/psf/donations/

Created	using	Sphinx	1.2.

http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Python	HOWTOs
Python	 HOWTOs	 are	 documents	 that	 cover	 a	 single,	 specific	 topic,
and	 attempt	 to	 cover	 it	 fairly	 completely.	 Modelled	 on	 the	 Linux
Documentation	Project’s	HOWTO	collection,	this	collection	is	an	effort
to	 foster	 documentation	 that’s	more	detailed	 than	 the	Python	Library
Reference.

Currently,	the	HOWTOs	are:

Porting	Python	2	Code	to	Python	3
Porting	Extension	Modules	to	Python	3
Curses	Programming	with	Python
Descriptor	HowTo	Guide
Functional	Programming	HOWTO
Logging	HOWTO
Logging	Cookbook
Regular	Expression	HOWTO
Socket	Programming	HOWTO
Sorting	HOW	TO
Unicode	HOWTO
HOWTO	Fetch	Internet	Resources	Using	The	urllib	Package
HOWTO	Use	Python	in	the	web
Argparse	Tutorial
An	introduction	to	the	ipaddress	module
Argument	Clinic	How-To

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Installing	Python	Modules
Email: distutils-sig@python.org

As	a	popular	open	source	development	project,	Python	has	an	active
supporting	 community	 of	 contributors	 and	users	 that	 also	make	 their
software	 available	 for	 other	 Python	 developers	 to	 use	 under	 open
source	license	terms.

This	 allows	 Python	 users	 to	 share	 and	 collaborate	 effectively,
benefiting	 from	the	solutions	others	have	already	created	to	common
(and	 sometimes	 even	 rare!)	 problems,	 as	 well	 as	 potentially
contributing	their	own	solutions	to	the	common	pool.

This	guide	covers	 the	 installation	part	of	 the	process.	For	a	guide	 to
creating	and	sharing	your	own	Python	projects,	refer	to	the	distribution
guide.

Note: 	For	corporate	and	other	institutional	users,	be	aware	that
many	organisations	have	their	own	policies	around	using	and
contributing	to	open	source	software.	Please	take	such	policies	into
account	when	making	use	of	the	distribution	and	installation	tools
provided	with	Python.

mailto:distutils-sig%40python.org

Key	terms

pip	is	the	preferred	installer	program.	Starting	with	Python	3.4,	it
is	included	by	default	with	the	Python	binary	installers.
a	virtual	environment	 is	a	semi-isolated	Python	environment	 that
allows	packages	to	be	installed	for	use	by	a	particular	application,
rather	than	being	installed	system	wide
pyvenv	is	the	standard	tool	for	creating	virtual	environments,	and
has	 been	 part	 of	 Python	 since	Python	 3.3.	 Starting	with	 Python
3.4,	 it	 defaults	 to	 installing	 pip	 into	 all	 created	 virtual
environments
the	Python	Package	 Index	 is	 a	 public	 repository	 of	 open	 source
licensed	packages	made	available	for	use	by	other	Python	users
the	Python	Packaging	Authority	are	 the	group	of	developers	and
documentation	 authors	 responsible	 for	 the	 maintenance	 and
evolution	 of	 the	 standard	 packaging	 tools	 and	 the	 associated
metadata	 and	 file	 format	 standards.	 They	 maintain	 a	 variety	 of
tools,	 documentation	 and	 issue	 trackers	 on	 both	 GitHub	 and
BitBucket.
distutils	 is	 the	 original	 build	 and	 distribution	 system	 first
added	to	the	Python	standard	library	in	1998.	While	direct	use	of
distutils	is	being	phased	out,	it	still	laid	the	foundation	for	the
current	 packaging	 and	 distribution	 infrastructure,	 and	 it	 not	 only
remains	part	of	the	standard	library,	but	its	name	lives	on	in	other
ways	 (such	 as	 the	 name	 of	 the	 mailing	 list	 used	 to	 coordinate
Python	packaging	standards	development).

https://pypi.python.org/pypi
http://packaging.python.org/en/latest/future.html
https://github.com/pypa
https://bitbucket.org/pypa/

Basic	usage

The	 standard	 packaging	 tools	 are	 all	 designed	 to	 be	 used	 from	 the
command	line.	For	Windows	users,	 the	examples	below	assume	that
the	 option	 to	 adjust	 the	 system	 PATH	 environment	 variable	 was
selected	 when	 installing	 Python.	 For	 Linux	 users,	 the	 command	 to
install	 into	the	system	version	of	Python	3	 is	 likely	 to	be	pip3	 rather
than	pip.

The	following	command	will	 install	 the	latest	version	of	a	module	and
its	dependencies	from	the	Python	Package	Index:

pip	install	SomePackage

It’s	 also	 possible	 to	 specify	 an	 exact	 or	minimum	version	 directly	 on
the	command	line:

pip	install	SomePackage==1.0.4				#	specific	version

pip	install	'SomePackage>=1.0.4'		#	minimum	version

Normally,	if	a	suitable	module	is	already	installed,	attempting	to	install
it	 again	 will	 have	 no	 effect.	 Upgrading	 existing	 modules	 must	 be
requested	explicitly:

pip	install	--upgrade	SomePackage

More	information	and	resources	regarding	pip	and	its	capabilities	can
be	found	in	the	Python	Packaging	User	Guide.

pyvenv	 has	 its	 own	 documentation	 at	 pyvenv	 -	 Creating	 virtual
environments.	 Installing	 into	 an	 active	 virtual	 environment	 uses	 the
commands	shown	above.

http://packaging.python.org

See	also: 	Python	Packaging	User	Guide:	Installing	Python
packages

http://packaging.python.org/en/latest/tutorial.html#installing-python-packages

How	do	I	...?

These	are	quick	answers	or	links	for	some	common	tasks.

...	install	pip	in	versions	of	Python	prior	to	Python
3.4?

Python	only	started	bundling	pip	with	Python	3.4.	For	earlier	versions,
pip	needs	to	be	“bootstrapped”	as	described	in	the	Python	Packaging
User	Guide.

See	also: 	Python	Packaging	User	Guide:	Installing	the	Tools

...	install	packages	just	for	the	current	user?

Passing	 the	 --user	 option	 to	 pip	install	 will	 install	 a	 package
just	for	the	current	user,	rather	than	for	all	users	of	the	system.

...	install	scientific	Python	packages?

A	 number	 of	 scientific	 Python	 packages	 have	 complex	 binary
dependencies,	and	aren’t	 currently	easy	 to	 install	using	pip	 directly.
At	 this	 point	 in	 time,	 it	 will	 often	 be	 easier	 for	 users	 to	 install	 these
packages	by	other	means	 rather	 than	attempting	 to	 install	 them	with
pip.

See	also: 	Python	Packaging	User	Guide:	Installing	Scientific
Packages

...	work	with	multiple	versions	of	Python	installed

http://packaging.python.org/en/latest/tutorial.html#installing-the-tools
http://packaging.python.org/en/latest/platforms.html#installing-scientific-packages
http://packaging.python.org/en/latest/platforms.html#installing-scientific-packages

in	parallel?

On	 Linux,	 Mac	OS	 X	 and	 other	 POSIX	 systems,	 use	 the	 versioned
Python	 commands	 in	 combination	 with	 the	 -m	 switch	 to	 run	 the
appropriate	copy	of	pip:

python2			-m	pip	install	SomePackage		#	default	Python	2

python2.7	-m	pip	install	SomePackage		#	specifically	Python	2.7

python3			-m	pip	install	SomePackage		#	default	Python	3

python3.4	-m	pip	install	SomePackage		#	specifically	Python	3.4

(appropriately	versioned	pip	commands	may	also	be	available)

On	Windows,	use	the	py	Python	launcher	in	combination	with	the	-m
switch:

py	-2			-m	pip	install	SomePackage		#	default	Python	2

py	-2.7	-m	pip	install	SomePackage		#	specifically	Python	2.7

py	-3			-m	pip	install	SomePackage		#	default	Python	3

py	-3.4	-m	pip	install	SomePackage		#	specifically	Python	3.4

Common	installation	issues

Installing	into	the	system	Python	on	Linux

On	 Linux	 systems,	 a	 Python	 installation	will	 typically	 be	 included	 as
part	 of	 the	distribution.	 Installing	 into	 this	Python	 installation	 requires
root	access	to	the	system,	and	may	interfere	with	the	operation	of	the
system	 package	manager	 and	 other	 components	 of	 the	 system	 if	 a
component	is	unexpectedly	upgraded	using	pip.

On	such	systems,	 it	 is	often	better	 to	use	a	virtual	environment	or	a
per-user	installation	when	installing	packages	with	pip.

Installing	binary	extensions

Python	has	 typically	 relied	heavily	 on	 source	based	distribution,	with
end	users	being	expected	to	compile	extension	modules	from	source
as	part	of	the	installation	process.

With	the	introduction	of	support	for	the	binary	wheel	format,	and	the
ability	to	publish	wheels	for	at	 least	Windows	and	Mac	OS	X	through
the	Python	Package	Index,	 this	problem	is	expected	to	diminish	over
time,	 as	 users	 are	more	 regularly	 able	 to	 install	 pre-built	 extensions
rather	than	needing	to	build	them	themselves.

Some	of	 the	 solutions	 for	 installing	 scientific	 software	 that	 is	 not	 yet
available	as	pre-built	wheel	 files	may	also	help	with	obtaining	other
binary	extensions	without	needing	to	build	them	locally.

See	also: 	Python	Packaging	User	Guide:	Binary	Extensions

http://packaging.python.org/en/latest/platforms.html#installing-scientific-packages
http://packaging.python.org/en/latest/extensions.html

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Distributing	Python	Modules
Email: distutils-sig@python.org

As	a	popular	open	source	development	project,	Python	has	an	active
supporting	 community	 of	 contributors	 and	users	 that	 also	make	 their
software	 available	 for	 other	 Python	 developers	 to	 use	 under	 open
source	license	terms.

This	 allows	 Python	 users	 to	 share	 and	 collaborate	 effectively,
benefiting	 from	the	solutions	others	have	already	created	to	common
(and	 sometimes	 even	 rare!)	 problems,	 as	 well	 as	 potentially
contributing	their	own	solutions	to	the	common	pool.

This	guide	covers	 the	distribution	part	of	 the	process.	For	a	guide	 to
installing	other	Python	projects,	refer	to	the	installation	guide.

Note: 	For	corporate	and	other	institutional	users,	be	aware	that
many	organisations	have	their	own	policies	around	using	and
contributing	to	open	source	software.	Please	take	such	policies	into
account	when	making	use	of	the	distribution	and	installation	tools
provided	with	Python.

mailto:distutils-sig%40python.org

Key	terms

the	Python	Package	 Index	 is	 a	 public	 repository	 of	 open	 source
licensed	packages	made	available	for	use	by	other	Python	users
the	Python	Packaging	Authority	are	 the	group	of	developers	and
documentation	 authors	 responsible	 for	 the	 maintenance	 and
evolution	 of	 the	 standard	 packaging	 tools	 and	 the	 associated
metadata	 and	 file	 format	 standards.	 They	 maintain	 a	 variety	 of
tools,	 documentation	 and	 issue	 trackers	 on	 both	 GitHub	 and
BitBucket.
distutils	 is	 the	 original	 build	 and	 distribution	 system	 first
added	to	the	Python	standard	library	in	1998.	While	direct	use	of
distutils	is	being	phased	out,	it	still	laid	the	foundation	for	the
current	 packaging	 and	 distribution	 infrastructure,	 and	 it	 not	 only
remains	part	of	the	standard	library,	but	its	name	lives	on	in	other
ways	 (such	 as	 the	 name	 of	 the	 mailing	 list	 used	 to	 coordinate
Python	packaging	standards	development).

https://pypi.python.org/pypi
http://packaging.python.org/en/latest/future.html
https://github.com/pypa
https://bitbucket.org/pypa/

Open	source	licensing	and	collaboration

In	 most	 parts	 of	 the	 world,	 software	 is	 automatically	 covered	 by
copyright.	This	means	that	other	developers	require	explicit	permission
to	copy,	use,	modify	and	redistribute	the	software.

Open	source	 licensing	 is	a	way	of	explicitly	granting	such	permission
in	 a	 relatively	 consistent	 way,	 allowing	 developers	 to	 share	 and
collaborate	 efficiently	 by	 making	 common	 solutions	 to	 various
problems	freely	available.	This	leaves	many	developers	free	to	spend
more	time	focusing	on	the	problems	that	are	relatively	unique	to	their
specific	situation.

The	 distribution	 tools	 provided	 with	 Python	 are	 designed	 to	 make	 it
reasonably	 straightforward	 for	 developers	 to	 make	 their	 own
contributions	back	 to	 that	common	pool	of	software	 if	 they	choose	 to
do	so.

The	 same	 distribution	 tools	 can	 also	 be	 used	 to	 distribute	 software
within	 an	 organisation,	 regardless	 of	 whether	 that	 software	 is
published	as	open	source	software	or	not.

Installing	the	tools

The	standard	library	does	not	 include	build	tools	that	support	modern
Python	packaging	standards,	as	the	core	development	team	has	found
that	it	is	important	to	have	standard	tools	that	work	consistently,	even
on	older	versions	of	Python.

The	 currently	 recommended	 build	 and	 distribution	 tools	 can	 be
installed	using	pip:

pip	install	setuptools	wheel	twine

Reading	the	guide

The	Python	Packaging	User	Guide	covers	 the	various	key	steps	and
elements	involved	in	creating	a	project

Project	structure
Building	and	packaging	the	project
Uploading	the	project	to	the	Python	Package	Index

http://packaging.python.org/en/latest/tutorial.html#creating-your-own-project
http://packaging.python.org/en/latest/tutorial.html#building-packaging-your-project
http://packaging.python.org/en/latest/tutorial.html#uploading-your-project-to-pypi

How	do	I...?

These	are	quick	answers	or	links	for	some	common	tasks.

...	choose	a	name	for	my	project?

This	isn’t	an	easy	topic,	but	here	are	a	few	tips:

check	the	Python	Package	Index	to	see	if	the	name	is	already	in
use
check	 popular	 hosting	 sites	 like	GitHub,	 BitBucket,	 etc	 to	 see	 if
there	is	already	a	project	with	that	name
check	 what	 comes	 up	 in	 a	 web	 search	 for	 the	 name	 you’re
considering
avoid	 particularly	 common	 words,	 especially	 ones	 with	 multiple
meanings,	 as	 they	 can	 make	 it	 difficult	 for	 users	 to	 find	 your
software	when	searching	for	it

...	create	and	distribute	binary	extensions?

This	 is	 actually	 quite	 a	 complex	 topic,	 with	 a	 variety	 of	 alternatives
available	depending	on	exactly	what	you’re	aiming	to	achieve.	See	the
Python	 Packaging	 User	 Guide	 for	 more	 information	 and
recommendations.

See	also: 	Python	Packaging	User	Guide:	Binary	Extensions

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://packaging.python.org/en/latest/extensions.html
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Extending	and	Embedding	the
Python	Interpreter
This	document	describes	how	to	write	modules	in	C	or	C++	to	extend
the	Python	interpreter	with	new	modules.	Those	modules	can	not	only
define	new	functions	but	also	new	object	types	and	their	methods.	The
document	 also	 describes	 how	 to	 embed	 the	 Python	 interpreter	 in
another	application,	for	use	as	an	extension	language.	Finally,	it	shows
how	to	compile	and	link	extension	modules	so	that	they	can	be	loaded
dynamically	(at	run	time)	into	the	interpreter,	if	the	underlying	operating
system	supports	this	feature.

This	 document	 assumes	 basic	 knowledge	 about	 Python.	 For	 an
informal	 introduction	 to	 the	 language,	 see	 The	 Python	 Tutorial.	 The
Python	 Language	 Reference	 gives	 a	 more	 formal	 definition	 of	 the
language.	The	Python	Standard	Library	documents	the	existing	object
types,	functions	and	modules	(both	built-in	and	written	in	Python)	that
give	the	language	its	wide	application	range.

For	a	detailed	description	of	the	whole	Python/C	API,	see	the	separate
Python/C	API	Reference	Manual.

Recommended	third	party	tools

This	guide	only	covers	the	basic	tools	for	creating	extensions	provided
as	part	of	this	version	of	CPython.	Third	party	tools	like	Cython,	cffi,
SWIG	 and	 Numba	 offer	 both	 simpler	 and	 more	 sophisticated
approaches	to	creating	C	and	C++	extensions	for	Python.

See	also:

Python	Packaging	User	Guide:	Binary	Extensions
The	 Python	 Packaging	 User	 Guide	 not	 only	 covers	 several
available	tools	that	simplify	the	creation	of	binary	extensions,	but
also	 discusses	 the	 various	 reasons	 why	 creating	 an	 extension
module	may	be	desirable	in	the	first	place.

https://packaging.python.org/en/latest/extensions.html

Creating	extensions	without	third	party
tools

This	 section	 of	 the	 guide	 covers	 creating	 C	 and	 C++	 extensions
without	 assistance	 from	 third	 party	 tools.	 It	 is	 intended	 primarily	 for
creators	 of	 those	 tools,	 rather	 than	 being	 a	 recommended	 way	 to
create	your	own	C	extensions.

1.	Extending	Python	with	C	or	C++
1.1.	A	Simple	Example
1.2.	Intermezzo:	Errors	and	Exceptions
1.3.	Back	to	the	Example
1.4.	The	Module’s	Method	Table	and	Initialization	Function
1.5.	Compilation	and	Linkage
1.6.	Calling	Python	Functions	from	C
1.7.	Extracting	Parameters	in	Extension	Functions
1.8.	Keyword	Parameters	for	Extension	Functions
1.9.	Building	Arbitrary	Values
1.10.	Reference	Counts
1.11.	Writing	Extensions	in	C++
1.12.	Providing	a	C	API	for	an	Extension	Module

2.	Defining	New	Types
2.1.	The	Basics
2.2.	Type	Methods

3.	Building	C	and	C++	Extensions	with	distutils
3.1.	Distributing	your	extension	modules

4.	Building	C	and	C++	Extensions	on	Windows
4.1.	A	Cookbook	Approach
4.2.	Differences	Between	Unix	and	Windows
4.3.	Using	DLLs	in	Practice

Embedding	the	CPython	runtime	in	a
larger	application

Sometimes,	 rather	 than	 creating	 an	 extension	 that	 runs	 inside	 the
Python	 interpreter	 as	 the	 main	 application,	 it	 is	 desirable	 to	 instead
embed	 the	CPython	 runtime	 inside	 a	 larger	 application.	 This	 section
covers	some	of	the	details	involved	in	doing	that	successfully.

1.	Embedding	Python	in	Another	Application
1.1.	Very	High	Level	Embedding
1.2.	Beyond	Very	High	Level	Embedding:	An	overview
1.3.	Pure	Embedding
1.4.	Extending	Embedded	Python
1.5.	Embedding	Python	in	C++
1.6.	Compiling	and	Linking	under	Unix-like	systems

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Python/C	API	Reference	Manual
This	 manual	 documents	 the	 API	 used	 by	 C	 and	 C++	 programmers
who	 want	 to	 write	 extension	 modules	 or	 embed	 Python.	 It	 is	 a
companion	to	Extending	and	Embedding	the	Python	Interpreter,	which
describes	 the	 general	 principles	 of	 extension	 writing	 but	 does	 not
document	the	API	functions	in	detail.

Introduction
Include	Files
Objects,	Types	and	Reference	Counts
Exceptions
Embedding	Python
Debugging	Builds

Stable	Application	Binary	Interface
The	Very	High	Level	Layer
Reference	Counting
Exception	Handling

Exception	Objects
Unicode	Exception	Objects
Recursion	Control
Standard	Exceptions

Utilities
Operating	System	Utilities
System	Functions
Process	Control
Importing	Modules
Data	marshalling	support
Parsing	arguments	and	building	values
String	conversion	and	formatting
Reflection
Codec	registry	and	support	functions

Abstract	Objects	Layer
Object	Protocol
Number	Protocol
Sequence	Protocol
Mapping	Protocol
Iterator	Protocol
Buffer	Protocol
Old	Buffer	Protocol

Concrete	Objects	Layer
Fundamental	Objects
Numeric	Objects
Sequence	Objects
Container	Objects
Function	Objects
Other	Objects

Initialization,	Finalization,	and	Threads
Initializing	and	finalizing	the	interpreter
Process-wide	parameters
Thread	State	and	the	Global	Interpreter	Lock
Sub-interpreter	support
Asynchronous	Notifications
Profiling	and	Tracing
Advanced	Debugger	Support

Memory	Management
Overview
Raw	Memory	Interface
Memory	Interface
Customize	Memory	Allocators
Customize	PyObject	Arena	Allocator
Examples

Object	Implementation	Support
Allocating	Objects	on	the	Heap
Common	Object	Structures
Type	Objects

Number	Object	Structures
Mapping	Object	Structures
Sequence	Object	Structures
Buffer	Object	Structures
Supporting	Cyclic	Garbage	Collection

API	and	ABI	Versioning

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Python	Frequently	Asked
Questions

General	Python	FAQ
Programming	FAQ
Design	and	History	FAQ
Library	and	Extension	FAQ
Extending/Embedding	FAQ
Python	on	Windows	FAQ
Graphic	User	Interface	FAQ
“Why	is	Python	Installed	on	my	Computer?”	FAQ

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Python	Documentation	contents
What’s	New	in	Python

What’s	New	In	Python	3.4
Summary	–	Release	Highlights
New	Features

PEP	 453:	 Explicit	 Bootstrapping	 of	 PIP	 in	 Python
Installations

Bootstrapping	pip	By	Default
Documentation	Changes

PEP	446:	Newly	Created	File	Descriptors	Are	Non-
Inheritable
Improvements	to	Codec	Handling
PEP	451:	A	ModuleSpec	Type	for	the	Import	System
Other	Language	Changes

New	Modules
asyncio
ensurepip
enum
pathlib
selectors
statistics
tracemalloc

Improved	Modules
abc
aifc
argparse
audioop
base64
collections
colorsys
contextlib
dbm

dis
doctest
email
filecmp
functools
gc
glob
hashlib
hmac
html
http
importlib
inspect
ipaddress
logging
marshal
mmap
multiprocessing
operator
os
pdb
pickle
plistlib
poplib
pprint
pty
pydoc
re
resource
select
shelve
shutil
smtpd
smtplib

socket
sqlite3
ssl
stat
struct
subprocess
sunau
sys
tarfile
textwrap
threading
traceback
types
urllib
unittest
venv
wave
weakref
xml.etree
zipfile

CPython	Implementation	Changes
PEP	 445:	 Customization	 of	 CPython	 Memory
Allocators
PEP	442:	Safe	Object	Finalization
PEP	 456:	 Secure	 and	 Interchangeable	 Hash
Algorithm
PEP	436:	Argument	Clinic
Other	Build	and	C	API	Changes
Other	Improvements
Significant	Optimizations

Deprecated
Deprecations	in	the	Python	API
Deprecated	Features

Removed

Operating	Systems	No	Longer	Supported
API	and	Feature	Removals
Code	Cleanups

Porting	to	Python	3.4
Changes	in	‘python’	Command	Behavior
Changes	in	the	Python	API
Changes	in	the	C	API

What’s	New	In	Python	3.3
Summary	–	Release	highlights
PEP	405:	Virtual	Environments
PEP	420:	Implicit	Namespace	Packages
PEP	3118:	New	memoryview	 implementation	and	buffer
protocol	documentation

Features
API	changes

PEP	393:	Flexible	String	Representation
Functionality
Performance	and	resource	usage

PEP	397:	Python	Launcher	for	Windows
PEP	 3151:	 Reworking	 the	 OS	 and	 IO	 exception
hierarchy
PEP	380:	Syntax	for	Delegating	to	a	Subgenerator
PEP	409:	Suppressing	exception	context
PEP	414:	Explicit	Unicode	literals
PEP	3155:	Qualified	name	for	classes	and	functions
PEP	412:	Key-Sharing	Dictionary
PEP	362:	Function	Signature	Object
PEP	421:	Adding	sys.implementation

SimpleNamespace
Using	importlib	as	the	Implementation	of	Import

New	APIs
Visible	Changes

Other	Language	Changes
A	Finer-Grained	Import	Lock

Builtin	functions	and	types
New	Modules

faulthandler
ipaddress
lzma

Improved	Modules
abc
array
base64
binascii
bz2
codecs
collections
contextlib
crypt
curses
datetime
decimal

Features
API	changes

email
Policy	Framework
Provisional	Policy	with	New	Header	API
Other	API	Changes

ftplib
functools
gc
hmac
http
html
imaplib
inspect
io
itertools

logging
math
mmap
multiprocessing
nntplib
os
pdb
pickle
pydoc
re
sched
select
shlex
shutil
signal
smtpd
smtplib
socket
socketserver
sqlite3
ssl
stat
struct
subprocess
sys
tarfile
tempfile
textwrap
threading
time
types
unittest
urllib
webbrowser

xml.etree.ElementTree
zlib

Optimizations
Build	and	C	API	Changes
Deprecated

Unsupported	Operating	Systems
Deprecated	Python	modules,	functions	and	methods
Deprecated	functions	and	types	of	the	C	API
Deprecated	features

Porting	to	Python	3.3
Porting	Python	code
Porting	C	code
Building	C	extensions
Command	Line	Switch	Changes

What’s	New	In	Python	3.2
PEP	384:	Defining	a	Stable	ABI
PEP	389:	Argparse	Command	Line	Parsing	Module
PEP	391:	Dictionary	Based	Configuration	for	Logging
PEP	3148:	The	concurrent.futures	module
PEP	3147:	PYC	Repository	Directories
PEP	3149:	ABI	Version	Tagged	.so	Files
PEP	3333:	Python	Web	Server	Gateway	Interface	v1.0.1
Other	Language	Changes
New,	Improved,	and	Deprecated	Modules

email
elementtree
functools
itertools
collections
threading
datetime	and	time
math
abc
io

reprlib
logging
csv
contextlib
decimal	and	fractions
ftp
popen
select
gzip	and	zipfile
tarfile
hashlib
ast
os
shutil
sqlite3
html
socket
ssl
nntp
certificates
imaplib
http.client
unittest
random
poplib
asyncore
tempfile
inspect
pydoc
dis
dbm
ctypes
site
sysconfig

pdb
configparser
urllib.parse
mailbox
turtledemo

Multi-threading
Optimizations
Unicode
Codecs
Documentation
IDLE
Code	Repository
Build	and	C	API	Changes
Porting	to	Python	3.2

What’s	New	In	Python	3.1
PEP	372:	Ordered	Dictionaries
PEP	378:	Format	Specifier	for	Thousands	Separator
Other	Language	Changes
New,	Improved,	and	Deprecated	Modules
Optimizations
IDLE
Build	and	C	API	Changes
Porting	to	Python	3.1

What’s	New	In	Python	3.0
Common	Stumbling	Blocks

Print	Is	A	Function
Views	And	Iterators	Instead	Of	Lists
Ordering	Comparisons
Integers
Text	Vs.	Data	Instead	Of	Unicode	Vs.	8-bit

Overview	Of	Syntax	Changes
New	Syntax
Changed	Syntax
Removed	Syntax

Changes	Already	Present	In	Python	2.6
Library	Changes
PEP	3101:	A	New	Approach	To	String	Formatting
Changes	To	Exceptions
Miscellaneous	Other	Changes

Operators	And	Special	Methods
Builtins

Build	and	C	API	Changes
Performance
Porting	To	Python	3.0

What’s	New	in	Python	2.7
The	Future	for	Python	2.x
Python	3.1	Features
PEP	372:	Adding	an	Ordered	Dictionary	to	collections
PEP	378:	Format	Specifier	for	Thousands	Separator
PEP	 389:	 The	 argparse	 Module	 for	 Parsing	 Command
Lines
PEP	391:	Dictionary-Based	Configuration	For	Logging
PEP	3106:	Dictionary	Views
PEP	3137:	The	memoryview	Object
Other	Language	Changes

Interpreter	Changes
Optimizations

New	and	Improved	Modules
New	module:	importlib
New	module:	sysconfig
ttk:	Themed	Widgets	for	Tk
Updated	module:	unittest
Updated	module:	ElementTree	1.3

Build	and	C	API	Changes
Capsules
Port-Specific	Changes:	Windows
Port-Specific	Changes:	Mac	OS	X
Port-Specific	Changes:	FreeBSD

Other	Changes	and	Fixes
Porting	to	Python	2.7
Acknowledgements

What’s	New	in	Python	2.6
Python	3.0
Changes	to	the	Development	Process

New	Issue	Tracker:	Roundup
New	Documentation	Format:	reStructuredText	Using
Sphinx

PEP	343:	The	‘with’	statement
Writing	Context	Managers
The	contextlib	module

PEP	366:	Explicit	Relative	Imports	From	a	Main	Module
PEP	370:	Per-user	site-packages	Directory
PEP	371:	The	multiprocessing	Package
PEP	3101:	Advanced	String	Formatting
PEP	3105:	print	As	a	Function
PEP	3110:	Exception-Handling	Changes
PEP	3112:	Byte	Literals
PEP	3116:	New	I/O	Library
PEP	3118:	Revised	Buffer	Protocol
PEP	3119:	Abstract	Base	Classes
PEP	3127:	Integer	Literal	Support	and	Syntax
PEP	3129:	Class	Decorators
PEP	3141:	A	Type	Hierarchy	for	Numbers

The	fractions	Module
Other	Language	Changes

Optimizations
Interpreter	Changes

New	and	Improved	Modules
The	ast	module
The	future_builtins	module
The	json	module:	JavaScript	Object	Notation
The	plistlib	module:	A	Property-List	Parser

ctypes	Enhancements
Improved	SSL	Support

Deprecations	and	Removals
Build	and	C	API	Changes

Port-Specific	Changes:	Windows
Port-Specific	Changes:	Mac	OS	X
Port-Specific	Changes:	IRIX

Porting	to	Python	2.6
Acknowledgements

What’s	New	in	Python	2.5
PEP	308:	Conditional	Expressions
PEP	309:	Partial	Function	Application
PEP	314:	Metadata	for	Python	Software	Packages	v1.1
PEP	328:	Absolute	and	Relative	Imports
PEP	338:	Executing	Modules	as	Scripts
PEP	341:	Unified	try/except/finally
PEP	342:	New	Generator	Features
PEP	343:	The	‘with’	statement

Writing	Context	Managers
The	contextlib	module

PEP	352:	Exceptions	as	New-Style	Classes
PEP	353:	Using	ssize_t	as	the	index	type
PEP	357:	The	‘__index__’	method
Other	Language	Changes

Interactive	Interpreter	Changes
Optimizations

New,	Improved,	and	Removed	Modules
The	ctypes	package
The	ElementTree	package
The	hashlib	package
The	sqlite3	package
The	wsgiref	package

Build	and	C	API	Changes
Port-Specific	Changes

Porting	to	Python	2.5
Acknowledgements

What’s	New	in	Python	2.4
PEP	218:	Built-In	Set	Objects
PEP	237:	Unifying	Long	Integers	and	Integers
PEP	289:	Generator	Expressions
PEP	292:	Simpler	String	Substitutions
PEP	318:	Decorators	for	Functions	and	Methods
PEP	322:	Reverse	Iteration
PEP	324:	New	subprocess	Module
PEP	327:	Decimal	Data	Type

Why	is	Decimal	needed?
The	Decimal	type
The	Context	type

PEP	328:	Multi-line	Imports
PEP	331:	Locale-Independent	Float/String	Conversions
Other	Language	Changes

Optimizations
New,	Improved,	and	Deprecated	Modules

cookielib
doctest

Build	and	C	API	Changes
Port-Specific	Changes

Porting	to	Python	2.4
Acknowledgements

What’s	New	in	Python	2.3
PEP	218:	A	Standard	Set	Datatype
PEP	255:	Simple	Generators
PEP	263:	Source	Code	Encodings
PEP	273:	Importing	Modules	from	ZIP	Archives
PEP	277:	Unicode	file	name	support	for	Windows	NT
PEP	278:	Universal	Newline	Support
PEP	279:	enumerate()
PEP	282:	The	logging	Package

PEP	285:	A	Boolean	Type
PEP	293:	Codec	Error	Handling	Callbacks
PEP	301:	Package	Index	and	Metadata	for	Distutils
PEP	302:	New	Import	Hooks
PEP	305:	Comma-separated	Files
PEP	307:	Pickle	Enhancements
Extended	Slices
Other	Language	Changes

String	Changes
Optimizations

New,	Improved,	and	Deprecated	Modules
Date/Time	Type
The	optparse	Module

Pymalloc:	A	Specialized	Object	Allocator
Build	and	C	API	Changes

Port-Specific	Changes
Other	Changes	and	Fixes
Porting	to	Python	2.3
Acknowledgements

What’s	New	in	Python	2.2
Introduction
PEPs	252	and	253:	Type	and	Class	Changes

Old	and	New	Classes
Descriptors
Multiple	Inheritance:	The	Diamond	Rule
Attribute	Access
Related	Links

PEP	234:	Iterators
PEP	255:	Simple	Generators
PEP	237:	Unifying	Long	Integers	and	Integers
PEP	238:	Changing	the	Division	Operator
Unicode	Changes
PEP	227:	Nested	Scopes
New	and	Improved	Modules

Interpreter	Changes	and	Fixes
Other	Changes	and	Fixes
Acknowledgements

What’s	New	in	Python	2.1
Introduction
PEP	227:	Nested	Scopes
PEP	236:	__future__	Directives
PEP	207:	Rich	Comparisons
PEP	230:	Warning	Framework
PEP	229:	New	Build	System
PEP	205:	Weak	References
PEP	232:	Function	Attributes
PEP	 235:	 Importing	 Modules	 on	 Case-Insensitive
Platforms
PEP	217:	Interactive	Display	Hook
PEP	208:	New	Coercion	Model
PEP	241:	Metadata	in	Python	Packages
New	and	Improved	Modules
Other	Changes	and	Fixes
Acknowledgements

What’s	New	in	Python	2.0
Introduction
What	About	Python	1.6?
New	Development	Process
Unicode
List	Comprehensions
Augmented	Assignment
String	Methods
Garbage	Collection	of	Cycles
Other	Core	Changes

Minor	Language	Changes
Changes	to	Built-in	Functions

Porting	to	2.0
Extending/Embedding	Changes

Distutils:	Making	Modules	Easy	to	Install
XML	Modules

SAX2	Support
DOM	Support
Relationship	to	PyXML

Module	changes
New	modules
IDLE	Improvements
Deleted	and	Deprecated	Modules
Acknowledgements

Changelog
Python	3.4.0?

Library
Documentation

Python	3.4.0	release	candidate	3?
Core	and	Builtins
Library
Build

Python	3.4.0	release	candidate	2?
Core	and	Builtins
Library
Build

Python	3.4.0	release	candidate	1?
Core	and	Builtins
Library
IDLE
Tests
Tools/Demos
Build
C-API
Documentation

Python	3.4.0	Beta	3?
Core	and	Builtins
Library

IDLE
Tests
Tools/Demos
Build

Python	3.4.0	Beta	2?
Core	and	Builtins
Library
IDLE
Tests
Build
Documentation
Tools/Demos

Python	3.4.0	Beta	1?
Core	and	Builtins
Library
Tests
Documentation
Build
Tools/Demos

Python	3.4.0	Alpha	4?
Core	and	Builtins
Library
C	API
Tests
Documentation
Build

Python	3.4.0	Alpha	3?
Core	and	Builtins
Library
Tests
IDLE
Documentation
Build
Tools/Demos

Python	3.4.0	Alpha	2?
Core	and	Builtins
Library
Tests
IDLE
Documentation
Build
Tools/Demos

Python	3.4.0	Alpha	1?
Core	and	Builtins
Library
IDLE
Tests
Build
C-API
Documentation
Tools/Demos
Windows

Python	3.3.0?
Core	and	Builtins
Extension	Modules

Python	3.3.0	Release	Candidate	3?
Core	and	Builtins
Library
Extension	Modules

Python	3.3.0	Release	Candidate	2?
Core	and	Builtins
Library
Build
Documentation

Python	3.3.0	Release	Candidate	1?
Core	and	Builtins
Library
IDLE

Documentation
Tests
Build

Python	3.3.0	Beta	2?
Core	and	Builtins
Library
C	API
Extension	Modules
IDLE
Tools/Demos
Documentation
Tests
Build

Python	3.3.0	Beta	1?
Core	and	Builtins
Library
C-API
Extension	Modules
IDLE
Documentation
Tests
Build

Python	3.3.0	Alpha	4?
Core	and	Builtins
Library
IDLE
Tools/Demos
Build
C-API
Documentation

Python	3.3.0	Alpha	3?
Core	and	Builtins
Library
Build

Tests
IDLE
Tools	/	Demos
C-API

Python	3.3.0	Alpha	2?
Core	and	Builtins
Library
Build
Documentation
Extension	Modules
Tests

Python	3.3.0	Alpha	1?
Core	and	Builtins
Library
Build
IDLE
Tools/Demos
Extension	Modules
Tests
C-API
Documentation

The	Python	Tutorial
1.	Whetting	Your	Appetite
2.	Using	the	Python	Interpreter

2.1.	Invoking	the	Interpreter
2.1.1.	Argument	Passing
2.1.2.	Interactive	Mode

2.2.	The	Interpreter	and	Its	Environment
2.2.1.	Error	Handling
2.2.2.	Executable	Python	Scripts
2.2.3.	Source	Code	Encoding
2.2.4.	The	Interactive	Startup	File
2.2.5.	The	Customization	Modules

3.	An	Informal	Introduction	to	Python

3.1.	Using	Python	as	a	Calculator
3.1.1.	Numbers
3.1.2.	Strings
3.1.3.	Lists

3.2.	First	Steps	Towards	Programming
4.	More	Control	Flow	Tools

4.1.	if	Statements
4.2.	for	Statements
4.3.	The	range()	Function
4.4.	 break	 and	 continue	 Statements,	 and	 else
Clauses	on	Loops
4.5.	pass	Statements
4.6.	Defining	Functions
4.7.	More	on	Defining	Functions

4.7.1.	Default	Argument	Values
4.7.2.	Keyword	Arguments
4.7.3.	Arbitrary	Argument	Lists
4.7.4.	Unpacking	Argument	Lists
4.7.5.	Lambda	Expressions
4.7.6.	Documentation	Strings
4.7.7.	Function	Annotations

4.8.	Intermezzo:	Coding	Style
5.	Data	Structures

5.1.	More	on	Lists
5.1.1.	Using	Lists	as	Stacks
5.1.2.	Using	Lists	as	Queues
5.1.3.	List	Comprehensions
5.1.4.	Nested	List	Comprehensions

5.2.	The	del	statement
5.3.	Tuples	and	Sequences
5.4.	Sets
5.5.	Dictionaries
5.6.	Looping	Techniques
5.7.	More	on	Conditions

5.8.	Comparing	Sequences	and	Other	Types
6.	Modules

6.1.	More	on	Modules
6.1.1.	Executing	modules	as	scripts
6.1.2.	The	Module	Search	Path
6.1.3.	“Compiled”	Python	files

6.2.	Standard	Modules
6.3.	The	dir()	Function
6.4.	Packages

6.4.1.	Importing	*	From	a	Package
6.4.2.	Intra-package	References
6.4.3.	Packages	in	Multiple	Directories

7.	Input	and	Output
7.1.	Fancier	Output	Formatting

7.1.1.	Old	string	formatting
7.2.	Reading	and	Writing	Files

7.2.1.	Methods	of	File	Objects
7.2.2.	Saving	structured	data	with	json

8.	Errors	and	Exceptions
8.1.	Syntax	Errors
8.2.	Exceptions
8.3.	Handling	Exceptions
8.4.	Raising	Exceptions
8.5.	User-defined	Exceptions
8.6.	Defining	Clean-up	Actions
8.7.	Predefined	Clean-up	Actions

9.	Classes
9.1.	A	Word	About	Names	and	Objects
9.2.	Python	Scopes	and	Namespaces

9.2.1.	Scopes	and	Namespaces	Example
9.3.	A	First	Look	at	Classes

9.3.1.	Class	Definition	Syntax
9.3.2.	Class	Objects
9.3.3.	Instance	Objects

9.3.4.	Method	Objects
9.4.	Random	Remarks
9.5.	Inheritance

9.5.1.	Multiple	Inheritance
9.6.	Private	Variables
9.7.	Odds	and	Ends
9.8.	Exceptions	Are	Classes	Too
9.9.	Iterators
9.10.	Generators
9.11.	Generator	Expressions

10.	Brief	Tour	of	the	Standard	Library
10.1.	Operating	System	Interface
10.2.	File	Wildcards
10.3.	Command	Line	Arguments
10.4.	Error	Output	Redirection	and	Program	Termination
10.5.	String	Pattern	Matching
10.6.	Mathematics
10.7.	Internet	Access
10.8.	Dates	and	Times
10.9.	Data	Compression
10.10.	Performance	Measurement
10.11.	Quality	Control
10.12.	Batteries	Included

11.	Brief	Tour	of	the	Standard	Library	–	Part	II
11.1.	Output	Formatting
11.2.	Templating
11.3.	Working	with	Binary	Data	Record	Layouts
11.4.	Multi-threading
11.5.	Logging
11.6.	Weak	References
11.7.	Tools	for	Working	with	Lists
11.8.	Decimal	Floating	Point	Arithmetic

12.	What	Now?
13.	Interactive	Input	Editing	and	History	Substitution

13.1.	Tab	Completion	and	History	Editing
13.2.	Alternatives	to	the	Interactive	Interpreter

14.	Floating	Point	Arithmetic:	Issues	and	Limitations
14.1.	Representation	Error

Python	Setup	and	Usage
1.	Command	line	and	environment

1.1.	Command	line
1.1.1.	Interface	options
1.1.2.	Generic	options
1.1.3.	Miscellaneous	options
1.1.4.	Options	you	shouldn’t	use

1.2.	Environment	variables
1.2.1.	Debug-mode	variables

2.	Using	Python	on	Unix	platforms
2.1.	Getting	and	installing	the	latest	version	of	Python

2.1.1.	On	Linux
2.1.2.	On	FreeBSD	and	OpenBSD
2.1.3.	On	OpenSolaris

2.2.	Building	Python
2.3.	Python-related	paths	and	files
2.4.	Miscellaneous
2.5.	Editors

3.	Using	Python	on	Windows
3.1.	Installing	Python
3.2.	Alternative	bundles
3.3.	Configuring	Python

3.3.1.	Excursus:	Setting	environment	variables
3.3.2.	Finding	the	Python	executable
3.3.3.	Finding	modules
3.3.4.	Executing	scripts
3.3.5.	Executing	scripts	without	the	Python	launcher

3.4.	Python	Launcher	for	Windows
3.4.1.	Getting	started

3.4.1.1.	From	the	command-line

3.4.1.2.	From	a	script
3.4.1.3.	From	file	associations

3.4.2.	Shebang	Lines
3.4.3.	Arguments	in	shebang	lines
3.4.4.	Customization

3.4.4.1.	Customization	via	INI	files
3.4.4.2.	Customizing	default	Python	versions

3.4.5.	Diagnostics
3.5.	Additional	modules

3.5.1.	PyWin32
3.5.2.	cx_Freeze
3.5.3.	WConio

3.6.	Compiling	Python	on	Windows
3.7.	Other	resources

4.	Using	Python	on	a	Macintosh
4.1.	Getting	and	Installing	MacPython

4.1.1.	How	to	run	a	Python	script
4.1.2.	Running	scripts	with	a	GUI
4.1.3.	Configuration

4.2.	The	IDE
4.3.	Installing	Additional	Python	Packages
4.4.	GUI	Programming	on	the	Mac
4.5.	Distributing	Python	Applications	on	the	Mac
4.6.	Other	Resources

5.	Additional	Tools	and	Scripts
5.1.	pyvenv	-	Creating	virtual	environments

The	Python	Language	Reference
1.	Introduction

1.1.	Alternate	Implementations
1.2.	Notation

2.	Lexical	analysis
2.1.	Line	structure

2.1.1.	Logical	lines
2.1.2.	Physical	lines

2.1.3.	Comments
2.1.4.	Encoding	declarations
2.1.5.	Explicit	line	joining
2.1.6.	Implicit	line	joining
2.1.7.	Blank	lines
2.1.8.	Indentation
2.1.9.	Whitespace	between	tokens

2.2.	Other	tokens
2.3.	Identifiers	and	keywords

2.3.1.	Keywords
2.3.2.	Reserved	classes	of	identifiers

2.4.	Literals
2.4.1.	String	and	Bytes	literals
2.4.2.	String	literal	concatenation
2.4.3.	Numeric	literals
2.4.4.	Integer	literals
2.4.5.	Floating	point	literals
2.4.6.	Imaginary	literals

2.5.	Operators
2.6.	Delimiters

3.	Data	model
3.1.	Objects,	values	and	types
3.2.	The	standard	type	hierarchy
3.3.	Special	method	names

3.3.1.	Basic	customization
3.3.2.	Customizing	attribute	access

3.3.2.1.	Implementing	Descriptors
3.3.2.2.	Invoking	Descriptors
3.3.2.3.	__slots__

3.3.2.3.1.	Notes	on	using	__slots__
3.3.3.	Customizing	class	creation

3.3.3.1.	Determining	the	appropriate	metaclass
3.3.3.2.	Preparing	the	class	namespace
3.3.3.3.	Executing	the	class	body

3.3.3.4.	Creating	the	class	object
3.3.3.5.	Metaclass	example

3.3.4.	Customizing	instance	and	subclass	checks
3.3.5.	Emulating	callable	objects
3.3.6.	Emulating	container	types
3.3.7.	Emulating	numeric	types
3.3.8.	With	Statement	Context	Managers
3.3.9.	Special	method	lookup

4.	Execution	model
4.1.	Naming	and	binding

4.1.1.	Interaction	with	dynamic	features
4.2.	Exceptions

5.	The	import	system
5.1.	importlib
5.2.	Packages

5.2.1.	Regular	packages
5.2.2.	Namespace	packages

5.3.	Searching
5.3.1.	The	module	cache
5.3.2.	Finders	and	loaders
5.3.3.	Import	hooks
5.3.4.	The	meta	path

5.4.	Loading
5.4.1.	Loaders
5.4.2.	Module	spec
5.4.3.	Import-related	module	attributes
5.4.4.	module.__path__
5.4.5.	Module	reprs

5.5.	The	Path	Based	Finder
5.5.1.	Path	entry	finders
5.5.2.	Path	entry	finder	protocol

5.6.	Replacing	the	standard	import	system
5.7.	Open	issues
5.8.	References

6.	Expressions
6.1.	Arithmetic	conversions
6.2.	Atoms

6.2.1.	Identifiers	(Names)
6.2.2.	Literals
6.2.3.	Parenthesized	forms
6.2.4.	Displays	for	lists,	sets	and	dictionaries
6.2.5.	List	displays
6.2.6.	Set	displays
6.2.7.	Dictionary	displays
6.2.8.	Generator	expressions
6.2.9.	Yield	expressions

6.2.9.1.	Generator-iterator	methods
6.2.9.2.	Examples

6.3.	Primaries
6.3.1.	Attribute	references
6.3.2.	Subscriptions
6.3.3.	Slicings
6.3.4.	Calls

6.4.	The	power	operator
6.5.	Unary	arithmetic	and	bitwise	operations
6.6.	Binary	arithmetic	operations
6.7.	Shifting	operations
6.8.	Binary	bitwise	operations
6.9.	Comparisons
6.10.	Boolean	operations
6.11.	Conditional	expressions
6.12.	Lambdas
6.13.	Expression	lists
6.14.	Evaluation	order
6.15.	Operator	precedence

7.	Simple	statements
7.1.	Expression	statements
7.2.	Assignment	statements

7.2.1.	Augmented	assignment	statements
7.3.	The	assert	statement
7.4.	The	pass	statement
7.5.	The	del	statement
7.6.	The	return	statement
7.7.	The	yield	statement
7.8.	The	raise	statement
7.9.	The	break	statement
7.10.	The	continue	statement
7.11.	The	import	statement

7.11.1.	Future	statements
7.12.	The	global	statement
7.13.	The	nonlocal	statement

8.	Compound	statements
8.1.	The	if	statement
8.2.	The	while	statement
8.3.	The	for	statement
8.4.	The	try	statement
8.5.	The	with	statement
8.6.	Function	definitions
8.7.	Class	definitions

9.	Top-level	components
9.1.	Complete	Python	programs
9.2.	File	input
9.3.	Interactive	input
9.4.	Expression	input

10.	Full	Grammar	specification
The	Python	Standard	Library

1.	Introduction
2.	Built-in	Functions
3.	Built-in	Constants

3.1.	Constants	added	by	the	site	module
4.	Built-in	Types

4.1.	Truth	Value	Testing
4.2.	Boolean	Operations	—	and,	or,	not
4.3.	Comparisons
4.4.	Numeric	Types	—	int,	float,	complex

4.4.1.	Bitwise	Operations	on	Integer	Types
4.4.2.	Additional	Methods	on	Integer	Types
4.4.3.	Additional	Methods	on	Float
4.4.4.	Hashing	of	numeric	types

4.5.	Iterator	Types
4.5.1.	Generator	Types

4.6.	Sequence	Types	—	list,	tuple,	range
4.6.1.	Common	Sequence	Operations
4.6.2.	Immutable	Sequence	Types
4.6.3.	Mutable	Sequence	Types
4.6.4.	Lists
4.6.5.	Tuples
4.6.6.	Ranges

4.7.	Text	Sequence	Type	—	str
4.7.1.	String	Methods
4.7.2.	printf-style	String	Formatting

4.8.	 Binary	 Sequence	 Types	 —	 bytes,	 bytearray,
memoryview

4.8.1.	Bytes
4.8.2.	Bytearray	Objects
4.8.3.	Bytes	and	Bytearray	Operations
4.8.4.	Memory	Views

4.9.	Set	Types	—	set,	frozenset
4.10.	Mapping	Types	—	dict

4.10.1.	Dictionary	view	objects
4.11.	Context	Manager	Types
4.12.	Other	Built-in	Types

4.12.1.	Modules
4.12.2.	Classes	and	Class	Instances
4.12.3.	Functions

4.12.4.	Methods
4.12.5.	Code	Objects
4.12.6.	Type	Objects
4.12.7.	The	Null	Object
4.12.8.	The	Ellipsis	Object
4.12.9.	The	NotImplemented	Object
4.12.10.	Boolean	Values
4.12.11.	Internal	Objects

4.13.	Special	Attributes
5.	Built-in	Exceptions

5.1.	Base	classes
5.2.	Concrete	exceptions

5.2.1.	OS	exceptions
5.3.	Warnings
5.4.	Exception	hierarchy

6.	Text	Processing	Services
6.1.	string	—	Common	string	operations

6.1.1.	String	constants
6.1.2.	String	Formatting
6.1.3.	Format	String	Syntax

6.1.3.1.	Format	Specification	Mini-Language
6.1.3.2.	Format	examples

6.1.4.	Template	strings
6.1.5.	Helper	functions

6.2.	re	—	Regular	expression	operations
6.2.1.	Regular	Expression	Syntax
6.2.2.	Module	Contents
6.2.3.	Regular	Expression	Objects
6.2.4.	Match	Objects
6.2.5.	Regular	Expression	Examples

6.2.5.1.	Checking	for	a	Pair
6.2.5.2.	Simulating	scanf()
6.2.5.3.	search()	vs.	match()
6.2.5.4.	Making	a	Phonebook

6.2.5.5.	Text	Munging
6.2.5.6.	Finding	all	Adverbs
6.2.5.7.	Finding	all	Adverbs	and	their	Positions
6.2.5.8.	Raw	String	Notation
6.2.5.9.	Writing	a	Tokenizer

6.3.	difflib	—	Helpers	for	computing	deltas
6.3.1.	SequenceMatcher	Objects
6.3.2.	SequenceMatcher	Examples
6.3.3.	Differ	Objects
6.3.4.	Differ	Example
6.3.5.	A	command-line	interface	to	difflib

6.4.	textwrap	—	Text	wrapping	and	filling
6.5.	unicodedata	—	Unicode	Database
6.6.	stringprep	—	Internet	String	Preparation
6.7.	readline	—	GNU	readline	interface

6.7.1.	Example
6.8.	 rlcompleter	 —	 Completion	 function	 for	 GNU
readline

6.8.1.	Completer	Objects
7.	Binary	Data	Services

7.1.	struct	—	Interpret	bytes	as	packed	binary	data
7.1.1.	Functions	and	Exceptions
7.1.2.	Format	Strings

7.1.2.1.	Byte	Order,	Size,	and	Alignment
7.1.2.2.	Format	Characters
7.1.2.3.	Examples

7.1.3.	Classes
7.2.	codecs	—	Codec	registry	and	base	classes

7.2.1.	Codec	Base	Classes
7.2.1.1.	Codec	Objects
7.2.1.2.	IncrementalEncoder	Objects
7.2.1.3.	IncrementalDecoder	Objects
7.2.1.4.	StreamWriter	Objects
7.2.1.5.	StreamReader	Objects

7.2.1.6.	StreamReaderWriter	Objects
7.2.1.7.	StreamRecoder	Objects

7.2.2.	Encodings	and	Unicode
7.2.3.	Standard	Encodings
7.2.4.	Python	Specific	Encodings

7.2.4.1.	Text	Encodings
7.2.4.2.	Binary	Transforms
7.2.4.3.	Text	Transforms

7.2.5.	 encodings.idna	 —	 Internationalized
Domain	Names	in	Applications
7.2.6.	 encodings.mbcs	 —	 Windows	 ANSI
codepage
7.2.7.	 encodings.utf_8_sig	 —	 UTF-8	 codec
with	BOM	signature

8.	Data	Types
8.1.	datetime	—	Basic	date	and	time	types

8.1.1.	Available	Types
8.1.2.	timedelta	Objects
8.1.3.	date	Objects
8.1.4.	datetime	Objects
8.1.5.	time	Objects
8.1.6.	tzinfo	Objects
8.1.7.	timezone	Objects
8.1.8.	strftime()	and	strptime()	Behavior

8.2.	calendar	—	General	calendar-related	functions
8.3.	collections	—	Container	datatypes

8.3.1.	ChainMap	objects
8.3.1.1.	ChainMap	Examples	and	Recipes

8.3.2.	Counter	objects
8.3.3.	deque	objects

8.3.3.1.	deque	Recipes
8.3.4.	defaultdict	objects

8.3.4.1.	defaultdict	Examples

8.3.5.	 namedtuple()	 Factory	 Function	 for	 Tuples
with	Named	Fields
8.3.6.	OrderedDict	objects

8.3.6.1.	OrderedDict	Examples	and	Recipes
8.3.7.	UserDict	objects
8.3.8.	UserList	objects
8.3.9.	UserString	objects

8.4.	 collections.abc	 —	 Abstract	 Base	 Classes	 for
Containers

8.4.1.	Collections	Abstract	Base	Classes
8.5.	heapq	—	Heap	queue	algorithm

8.5.1.	Basic	Examples
8.5.2.	Priority	Queue	Implementation	Notes
8.5.3.	Theory

8.6.	bisect	—	Array	bisection	algorithm
8.6.1.	Searching	Sorted	Lists
8.6.2.	Other	Examples

8.7.	array	—	Efficient	arrays	of	numeric	values
8.8.	weakref	—	Weak	references

8.8.1.	Weak	Reference	Objects
8.8.2.	Example
8.8.3.	Finalizer	Objects
8.8.4.	 Comparing	 finalizers	 with	 __del__()

methods
8.9.	 types	 —	 Dynamic	 type	 creation	 and	 names	 for
built-in	types

8.9.1.	Dynamic	Type	Creation
8.9.2.	Standard	Interpreter	Types
8.9.3.	Additional	Utility	Classes	and	Functions

8.10.	copy	—	Shallow	and	deep	copy	operations
8.11.	pprint	—	Data	pretty	printer

8.11.1.	PrettyPrinter	Objects
8.11.2.	Example

8.12.	reprlib	—	Alternate	repr()	implementation
8.12.1.	Repr	Objects
8.12.2.	Subclassing	Repr	Objects

8.13.	enum	—	Support	for	enumerations
8.13.1.	Module	Contents
8.13.2.	Creating	an	Enum
8.13.3.	 Programmatic	 access	 to	 enumeration
members	and	their	attributes
8.13.4.	Duplicating	enum	members	and	values
8.13.5.	Ensuring	unique	enumeration	values
8.13.6.	Iteration
8.13.7.	Comparisons
8.13.8.	 Allowed	 members	 and	 attributes	 of
enumerations
8.13.9.	Restricted	subclassing	of	enumerations
8.13.10.	Pickling
8.13.11.	Functional	API
8.13.12.	Derived	Enumerations

8.13.12.1.	IntEnum
8.13.12.2.	Others

8.13.13.	Interesting	examples
8.13.13.1.	AutoNumber
8.13.13.2.	OrderedEnum
8.13.13.3.	DuplicateFreeEnum
8.13.13.4.	Planet

8.13.14.	How	are	Enums	different?
8.13.14.1.	Enum	Classes
8.13.14.2.	Enum	Members	(aka	instances)
8.13.14.3.	Finer	Points

9.	Numeric	and	Mathematical	Modules
9.1.	numbers	—	Numeric	abstract	base	classes

9.1.1.	The	numeric	tower
9.1.2.	Notes	for	type	implementors

9.1.2.1.	Adding	More	Numeric	ABCs

9.1.2.2.	Implementing	the	arithmetic	operations
9.2.	math	—	Mathematical	functions

9.2.1.	 Number-theoretic	 and	 representation
functions
9.2.2.	Power	and	logarithmic	functions
9.2.3.	Trigonometric	functions
9.2.4.	Angular	conversion
9.2.5.	Hyperbolic	functions
9.2.6.	Special	functions
9.2.7.	Constants

9.3.	 cmath	 —	 Mathematical	 functions	 for	 complex
numbers

9.3.1.	Conversions	to	and	from	polar	coordinates
9.3.2.	Power	and	logarithmic	functions
9.3.3.	Trigonometric	functions
9.3.4.	Hyperbolic	functions
9.3.5.	Classification	functions
9.3.6.	Constants

9.4.	decimal	—	Decimal	 fixed	 point	 and	 floating	 point
arithmetic

9.4.1.	Quick-start	Tutorial
9.4.2.	Decimal	objects

9.4.2.1.	Logical	operands
9.4.3.	Context	objects
9.4.4.	Constants
9.4.5.	Rounding	modes
9.4.6.	Signals
9.4.7.	Floating	Point	Notes

9.4.7.1.	Mitigating	round-off	error	with	increased
precision
9.4.7.2.	Special	values

9.4.8.	Working	with	threads
9.4.9.	Recipes
9.4.10.	Decimal	FAQ

9.5.	fractions	—	Rational	numbers
9.6.	random	—	Generate	pseudo-random	numbers

9.6.1.	Notes	on	Reproducibility
9.6.2.	Examples	and	Recipes

9.7.	statistics	—	Mathematical	statistics	functions
9.7.1.	Averages	and	measures	of	central	location
9.7.2.	Measures	of	spread
9.7.3.	Function	details
9.7.4.	Exceptions

10.	Functional	Programming	Modules
10.1.	 itertools	 —	 Functions	 creating	 iterators	 for
efficient	looping

10.1.1.	Itertool	functions
10.1.2.	Itertools	Recipes

10.2.	 functools	 —	 Higher-order	 functions	 and
operations	on	callable	objects

10.2.1.	partial	Objects
10.3.	operator	—	Standard	operators	as	functions

10.3.1.	Mapping	Operators	to	Functions
10.3.2.	Inplace	Operators

11.	File	and	Directory	Access
11.1.	pathlib	—	Object-oriented	filesystem	paths

11.1.1.	Basic	use
11.1.2.	Pure	paths

11.1.2.1.	General	properties
11.1.2.2.	Operators
11.1.2.3.	Accessing	individual	parts
11.1.2.4.	Methods	and	properties

11.1.3.	Concrete	paths
11.1.3.1.	Methods

11.2.	os.path	—	Common	pathname	manipulations
11.3.	 fileinput	 —	 Iterate	 over	 lines	 from	 multiple
input	streams

11.4.	stat	—	Interpreting	stat()	results
11.5.	filecmp	—	File	and	Directory	Comparisons

11.5.1.	The	dircmp	class
11.6.	 tempfile	 —	 Generate	 temporary	 files	 and
directories

11.6.1.	Examples
11.7.	glob	—	Unix	style	pathname	pattern	expansion
11.8.	fnmatch	—	Unix	filename	pattern	matching
11.9.	linecache	—	Random	access	to	text	lines
11.10.	shutil	—	High-level	file	operations

11.10.1.	Directory	and	files	operations
11.10.1.1.	copytree	example

11.10.2.	Archiving	operations
11.10.2.1.	Archiving	example

11.10.3.	Querying	the	size	of	the	output	terminal
11.11.	 macpath	 —	 Mac	 OS	 9	 path	 manipulation
functions

12.	Data	Persistence
12.1.	pickle	—	Python	object	serialization

12.1.1.	Relationship	to	other	Python	modules
12.1.1.1.	Comparison	with	marshal
12.1.1.2.	Comparison	with	json

12.1.2.	Data	stream	format
12.1.3.	Module	Interface
12.1.4.	What	can	be	pickled	and	unpickled?
12.1.5.	Pickling	Class	Instances

12.1.5.1.	Persistence	of	External	Objects
12.1.5.2.	Dispatch	Tables
12.1.5.3.	Handling	Stateful	Objects

12.1.6.	Restricting	Globals
12.1.7.	Performance
12.1.8.	Examples

12.2.	copyreg	—	Register	pickle	support	functions

12.2.1.	Example
12.3.	shelve	—	Python	object	persistence

12.3.1.	Restrictions
12.3.2.	Example

12.4.	marshal	—	Internal	Python	object	serialization
12.5.	dbm	—	Interfaces	to	Unix	“databases”

12.5.1.	dbm.gnu	—	GNU’s	reinterpretation	of	dbm
12.5.2.	dbm.ndbm	—	Interface	based	on	ndbm
12.5.3.	dbm.dumb	—	Portable	DBM	implementation

12.6.	 sqlite3	 —	 DB-API	 2.0	 interface	 for	 SQLite
databases

12.6.1.	Module	functions	and	constants
12.6.2.	Connection	Objects
12.6.3.	Cursor	Objects
12.6.4.	Row	Objects
12.6.5.	SQLite	and	Python	types

12.6.5.1.	Introduction
12.6.5.2.	 Using	 adapters	 to	 store	 additional
Python	types	in	SQLite	databases

12.6.5.2.1.	Letting	your	object	adapt	itself
12.6.5.2.2.	Registering	an	adapter	callable

12.6.5.3.	 Converting	 SQLite	 values	 to	 custom
Python	types
12.6.5.4.	Default	adapters	and	converters

12.6.6.	Controlling	Transactions
12.6.7.	Using	sqlite3	efficiently

12.6.7.1.	Using	shortcut	methods
12.6.7.2.	 Accessing	 columns	 by	 name	 instead
of	by	index
12.6.7.3.	 Using	 the	 connection	 as	 a	 context
manager

12.6.8.	Common	issues
12.6.8.1.	Multithreading

13.	Data	Compression	and	Archiving

13.1.	zlib	—	Compression	compatible	with	gzip
13.2.	gzip	—	Support	for	gzip	files

13.2.1.	Examples	of	usage
13.3.	bz2	—	Support	for	bzip2	compression

13.3.1.	(De)compression	of	files
13.3.2.	Incremental	(de)compression
13.3.3.	One-shot	(de)compression

13.4.	lzma	—	Compression	using	the	LZMA	algorithm
13.4.1.	Reading	and	writing	compressed	files
13.4.2.	 Compressing	 and	 decompressing	 data	 in
memory
13.4.3.	Miscellaneous
13.4.4.	Specifying	custom	filter	chains
13.4.5.	Examples

13.5.	zipfile	—	Work	with	ZIP	archives
13.5.1.	ZipFile	Objects
13.5.2.	PyZipFile	Objects
13.5.3.	ZipInfo	Objects

13.6.	tarfile	—	Read	and	write	tar	archive	files
13.6.1.	TarFile	Objects
13.6.2.	TarInfo	Objects
13.6.3.	Command	Line	Interface

13.6.3.1.	Command	line	options
13.6.4.	Examples
13.6.5.	Supported	tar	formats
13.6.6.	Unicode	issues

14.	File	Formats
14.1.	csv	—	CSV	File	Reading	and	Writing

14.1.1.	Module	Contents
14.1.2.	Dialects	and	Formatting	Parameters
14.1.3.	Reader	Objects
14.1.4.	Writer	Objects
14.1.5.	Examples

14.2.	configparser	—	Configuration	file	parser

14.2.1.	Quick	Start
14.2.2.	Supported	Datatypes
14.2.3.	Fallback	Values
14.2.4.	Supported	INI	File	Structure
14.2.5.	Interpolation	of	values
14.2.6.	Mapping	Protocol	Access
14.2.7.	Customizing	Parser	Behaviour
14.2.8.	Legacy	API	Examples
14.2.9.	ConfigParser	Objects
14.2.10.	RawConfigParser	Objects
14.2.11.	Exceptions

14.3.	netrc	—	netrc	file	processing
14.3.1.	netrc	Objects

14.4.	xdrlib	—	Encode	and	decode	XDR	data
14.4.1.	Packer	Objects
14.4.2.	Unpacker	Objects
14.4.3.	Exceptions

14.5.	 plistlib	 —	 Generate	 and	 parse	 Mac	 OS	 X
.plist	files

14.5.1.	Examples
15.	Cryptographic	Services

15.1.	hashlib	—	Secure	hashes	and	message	digests
15.1.1.	Hash	algorithms
15.1.2.	Key	Derivation	Function

15.2.	 hmac	 —	 Keyed-Hashing	 for	 Message
Authentication

16.	Generic	Operating	System	Services
16.1.	os	—	Miscellaneous	operating	system	interfaces

16.1.1.	File	Names,	Command	Line	Arguments,	and
Environment	Variables
16.1.2.	Process	Parameters
16.1.3.	File	Object	Creation
16.1.4.	File	Descriptor	Operations

16.1.4.1.	Querying	the	size	of	a	terminal

16.1.4.2.	Inheritance	of	File	Descriptors
16.1.5.	Files	and	Directories

16.1.5.1.	Linux	extended	attributes
16.1.6.	Process	Management
16.1.7.	Interface	to	the	scheduler
16.1.8.	Miscellaneous	System	Information
16.1.9.	Miscellaneous	Functions

16.2.	io	—	Core	tools	for	working	with	streams
16.2.1.	Overview

16.2.1.1.	Text	I/O
16.2.1.2.	Binary	I/O
16.2.1.3.	Raw	I/O

16.2.2.	High-level	Module	Interface
16.2.2.1.	In-memory	streams

16.2.3.	Class	hierarchy
16.2.3.1.	I/O	Base	Classes
16.2.3.2.	Raw	File	I/O
16.2.3.3.	Buffered	Streams
16.2.3.4.	Text	I/O

16.2.4.	Performance
16.2.4.1.	Binary	I/O
16.2.4.2.	Text	I/O
16.2.4.3.	Multi-threading
16.2.4.4.	Reentrancy

16.3.	time	—	Time	access	and	conversions
16.4.	 argparse	 —	 Parser	 for	 command-line	 options,
arguments	and	sub-commands

16.4.1.	Example
16.4.1.1.	Creating	a	parser
16.4.1.2.	Adding	arguments
16.4.1.3.	Parsing	arguments

16.4.2.	ArgumentParser	objects
16.4.2.1.	prog
16.4.2.2.	usage

16.4.2.3.	description
16.4.2.4.	epilog
16.4.2.5.	parents
16.4.2.6.	formatter_class
16.4.2.7.	prefix_chars
16.4.2.8.	fromfile_prefix_chars
16.4.2.9.	argument_default
16.4.2.10.	conflict_handler
16.4.2.11.	add_help

16.4.3.	The	add_argument()	method
16.4.3.1.	name	or	flags
16.4.3.2.	action
16.4.3.3.	nargs
16.4.3.4.	const
16.4.3.5.	default
16.4.3.6.	type
16.4.3.7.	choices
16.4.3.8.	required
16.4.3.9.	help
16.4.3.10.	metavar
16.4.3.11.	dest

16.4.4.	The	parse_args()	method
16.4.4.1.	Option	value	syntax
16.4.4.2.	Invalid	arguments
16.4.4.3.	Arguments	containing	-
16.4.4.4.	 Argument	 abbreviations	 (prefix
matching)
16.4.4.5.	Beyond	sys.argv
16.4.4.6.	The	Namespace	object

16.4.5.	Other	utilities
16.4.5.1.	Sub-commands
16.4.5.2.	FileType	objects
16.4.5.3.	Argument	groups
16.4.5.4.	Mutual	exclusion

16.4.5.5.	Parser	defaults
16.4.5.6.	Printing	help
16.4.5.7.	Partial	parsing
16.4.5.8.	Customizing	file	parsing
16.4.5.9.	Exiting	methods

16.4.6.	Upgrading	optparse	code
16.5.	optparse	—	Parser	for	command	line	options

16.5.1.	Background
16.5.1.1.	Terminology
16.5.1.2.	What	are	options	for?
16.5.1.3.	What	are	positional	arguments	for?

16.5.2.	Tutorial
16.5.2.1.	Understanding	option	actions
16.5.2.2.	The	store	action
16.5.2.3.	Handling	boolean	(flag)	options
16.5.2.4.	Other	actions
16.5.2.5.	Default	values
16.5.2.6.	Generating	help

16.5.2.6.1.	Grouping	Options
16.5.2.7.	Printing	a	version	string
16.5.2.8.	How	optparse	handles	errors
16.5.2.9.	Putting	it	all	together

16.5.3.	Reference	Guide
16.5.3.1.	Creating	the	parser
16.5.3.2.	Populating	the	parser
16.5.3.3.	Defining	options
16.5.3.4.	Option	attributes
16.5.3.5.	Standard	option	actions
16.5.3.6.	Standard	option	types
16.5.3.7.	Parsing	arguments
16.5.3.8.	 Querying	 and	 manipulating	 your
option	parser
16.5.3.9.	Conflicts	between	options
16.5.3.10.	Cleanup

16.5.3.11.	Other	methods
16.5.4.	Option	Callbacks

16.5.4.1.	Defining	a	callback	option
16.5.4.2.	How	callbacks	are	called
16.5.4.3.	Raising	errors	in	a	callback
16.5.4.4.	Callback	example	1:	trivial	callback
16.5.4.5.	 Callback	 example	 2:	 check	 option
order
16.5.4.6.	 Callback	 example	 3:	 check	 option
order	(generalized)
16.5.4.7.	 Callback	 example	 4:	 check	 arbitrary
condition
16.5.4.8.	Callback	example	5:	fixed	arguments
16.5.4.9.	 Callback	 example	 6:	 variable
arguments

16.5.5.	Extending	optparse
16.5.5.1.	Adding	new	types
16.5.5.2.	Adding	new	actions

16.6.	 getopt	 —	 C-style	 parser	 for	 command	 line
options
16.7.	logging	—	Logging	facility	for	Python

16.7.1.	Logger	Objects
16.7.2.	Logging	Levels
16.7.3.	Handler	Objects
16.7.4.	Formatter	Objects
16.7.5.	Filter	Objects
16.7.6.	LogRecord	Objects
16.7.7.	LogRecord	attributes
16.7.8.	LoggerAdapter	Objects
16.7.9.	Thread	Safety
16.7.10.	Module-Level	Functions
16.7.11.	Module-Level	Attributes
16.7.12.	Integration	with	the	warnings	module

16.8.	logging.config	—	Logging	configuration

16.8.1.	Configuration	functions
16.8.2.	Configuration	dictionary	schema

16.8.2.1.	Dictionary	Schema	Details
16.8.2.2.	Incremental	Configuration
16.8.2.3.	Object	connections
16.8.2.4.	User-defined	objects
16.8.2.5.	Access	to	external	objects
16.8.2.6.	Access	to	internal	objects
16.8.2.7.	 Import	 resolution	 and	 custom
importers

16.8.3.	Configuration	file	format
16.9.	logging.handlers	—	Logging	handlers

16.9.1.	StreamHandler
16.9.2.	FileHandler
16.9.3.	NullHandler
16.9.4.	WatchedFileHandler
16.9.5.	BaseRotatingHandler
16.9.6.	RotatingFileHandler
16.9.7.	TimedRotatingFileHandler
16.9.8.	SocketHandler
16.9.9.	DatagramHandler
16.9.10.	SysLogHandler
16.9.11.	NTEventLogHandler
16.9.12.	SMTPHandler
16.9.13.	MemoryHandler
16.9.14.	HTTPHandler
16.9.15.	QueueHandler
16.9.16.	QueueListener

16.10.	getpass	—	Portable	password	input
16.11.	 curses	 —	 Terminal	 handling	 for	 character-cell
displays

16.11.1.	Functions
16.11.2.	Window	Objects
16.11.3.	Constants

16.12.	curses.textpad	—	Text	input	widget	for	curses
programs

16.12.1.	Textbox	objects
16.13.	curses.ascii	—	Utilities	for	ASCII	characters
16.14.	 curses.panel	 —	 A	 panel	 stack	 extension	 for
curses

16.14.1.	Functions
16.14.2.	Panel	Objects

16.15.	 platform	 —	 Access	 to	 underlying	 platform’s
identifying	data

16.15.1.	Cross	Platform
16.15.2.	Java	Platform
16.15.3.	Windows	Platform

16.15.3.1.	Win95/98	specific
16.15.4.	Mac	OS	Platform
16.15.5.	Unix	Platforms

16.16.	errno	—	Standard	errno	system	symbols
16.17.	ctypes	—	A	foreign	function	library	for	Python

16.17.1.	ctypes	tutorial
16.17.1.1.	Loading	dynamic	link	libraries
16.17.1.2.	Accessing	functions	from	loaded	dlls
16.17.1.3.	Calling	functions
16.17.1.4.	Fundamental	data	types
16.17.1.5.	Calling	functions,	continued
16.17.1.6.	 Calling	 functions	 with	 your	 own
custom	data	types
16.17.1.7.	 Specifying	 the	 required	 argument
types	(function	prototypes)
16.17.1.8.	Return	types
16.17.1.9.	 Passing	 pointers	 (or:	 passing
parameters	by	reference)
16.17.1.10.	Structures	and	unions
16.17.1.11.	Structure/union	 alignment	 and	 byte
order

16.17.1.12.	Bit	fields	in	structures	and	unions
16.17.1.13.	Arrays
16.17.1.14.	Pointers
16.17.1.15.	Type	conversions
16.17.1.16.	Incomplete	Types
16.17.1.17.	Callback	functions
16.17.1.18.	Accessing	values	exported	from	dlls
16.17.1.19.	Surprises
16.17.1.20.	Variable-sized	data	types

16.17.2.	ctypes	reference
16.17.2.1.	Finding	shared	libraries
16.17.2.2.	Loading	shared	libraries
16.17.2.3.	Foreign	functions
16.17.2.4.	Function	prototypes
16.17.2.5.	Utility	functions
16.17.2.6.	Data	types
16.17.2.7.	Fundamental	data	types
16.17.2.8.	Structured	data	types
16.17.2.9.	Arrays	and	pointers

17.	Concurrent	Execution
17.1.	threading	—	Thread-based	parallelism

17.1.1.	Thread-Local	Data
17.1.2.	Thread	Objects
17.1.3.	Lock	Objects
17.1.4.	RLock	Objects
17.1.5.	Condition	Objects
17.1.6.	Semaphore	Objects

17.1.6.1.	Semaphore	Example
17.1.7.	Event	Objects
17.1.8.	Timer	Objects
17.1.9.	Barrier	Objects
17.1.10.	Using	locks,	conditions,	and	semaphores	in
the	with	statement

17.2.	multiprocessing	—	Process-based	parallelism

17.2.1.	Introduction
17.2.1.1.	The	Process	class
17.2.1.2.	Contexts	and	start	methods
17.2.1.3.	 Exchanging	 objects	 between
processes
17.2.1.4.	Synchronization	between	processes
17.2.1.5.	Sharing	state	between	processes
17.2.1.6.	Using	a	pool	of	workers

17.2.2.	Reference
17.2.2.1.	Process	and	exceptions
17.2.2.2.	Pipes	and	Queues
17.2.2.3.	Miscellaneous
17.2.2.4.	Connection	Objects
17.2.2.5.	Synchronization	primitives
17.2.2.6.	Shared	ctypes	Objects

17.2.2.6.1.	 The
multiprocessing.sharedctypes

module
17.2.2.7.	Managers

17.2.2.7.1.	Namespace	objects
17.2.2.7.2.	Customized	managers
17.2.2.7.3.	Using	a	remote	manager

17.2.2.8.	Proxy	Objects
17.2.2.8.1.	Cleanup

17.2.2.9.	Process	Pools
17.2.2.10.	Listeners	and	Clients

17.2.2.10.1.	Address	Formats
17.2.2.11.	Authentication	keys
17.2.2.12.	Logging
17.2.2.13.	 The	 multiprocessing.dummy

module
17.2.3.	Programming	guidelines

17.2.3.1.	All	start	methods
17.2.3.2.	 The	 spawn	 and	 forkserver	 start

methods
17.2.4.	Examples

17.3.	The	concurrent	package
17.4.	 concurrent.futures	 —	 Launching	 parallel
tasks

17.4.1.	Executor	Objects
17.4.2.	ThreadPoolExecutor

17.4.2.1.	ThreadPoolExecutor	Example
17.4.3.	ProcessPoolExecutor

17.4.3.1.	ProcessPoolExecutor	Example
17.4.4.	Future	Objects
17.4.5.	Module	Functions
17.4.6.	Exception	classes

17.5.	subprocess	—	Subprocess	management
17.5.1.	Using	the	subprocess	Module

17.5.1.1.	Frequently	Used	Arguments
17.5.1.2.	Popen	Constructor
17.5.1.3.	Exceptions
17.5.1.4.	Security

17.5.2.	Popen	Objects
17.5.3.	Windows	Popen	Helpers

17.5.3.1.	Constants
17.5.4.	 Replacing	 Older	 Functions	 with	 the
subprocess	Module

17.5.4.1.	Replacing	/bin/sh	shell	backquote
17.5.4.2.	Replacing	shell	pipeline
17.5.4.3.	Replacing	os.system()
17.5.4.4.	Replacing	the	os.spawn	family
17.5.4.5.	 Replacing	 os.popen(),
os.popen2(),	os.popen3()
17.5.4.6.	Replacing	functions	from	the	popen2
module

17.5.5.	Legacy	Shell	Invocation	Functions

17.5.6.	Notes
17.5.6.1.	Converting	an	argument	 sequence	 to
a	string	on	Windows

17.6.	sched	—	Event	scheduler
17.6.1.	Scheduler	Objects

17.7.	queue	—	A	synchronized	queue	class
17.7.1.	Queue	Objects

17.8.	 dummy_threading	 —	 Drop-in	 replacement	 for
the	threading	module
17.9.	_thread	—	Low-level	threading	API
17.10.	_dummy_thread	—	Drop-in	replacement	 for	 the
_thread	module

18.	Interprocess	Communication	and	Networking
18.1.	socket	—	Low-level	networking	interface

18.1.1.	Socket	families
18.1.2.	Module	contents

18.1.2.1.	Exceptions
18.1.2.2.	Constants
18.1.2.3.	Functions

18.1.2.3.1.	Creating	sockets
18.1.2.3.2.	Other	functions

18.1.3.	Socket	Objects
18.1.4.	Notes	on	socket	timeouts

18.1.4.1.	Timeouts	and	the	connect	method
18.1.4.2.	Timeouts	and	the	accept	method

18.1.5.	Example
18.2.	ssl	—	TLS/SSL	wrapper	for	socket	objects

18.2.1.	Functions,	Constants,	and	Exceptions
18.2.1.1.	Socket	creation
18.2.1.2.	Context	creation
18.2.1.3.	Random	generation
18.2.1.4.	Certificate	handling
18.2.1.5.	Constants

18.2.2.	SSL	Sockets
18.2.3.	SSL	Contexts
18.2.4.	Certificates

18.2.4.1.	Certificate	chains
18.2.4.2.	CA	certificates
18.2.4.3.	Combined	key	and	certificate
18.2.4.4.	Self-signed	certificates

18.2.5.	Examples
18.2.5.1.	Testing	for	SSL	support
18.2.5.2.	Client-side	operation
18.2.5.3.	Server-side	operation

18.2.6.	Notes	on	non-blocking	sockets
18.2.7.	Security	considerations

18.2.7.1.	Verifying	certificates
18.2.7.2.	Protocol	versions
18.2.7.3.	Cipher	selection
18.2.7.4.	Multi-processing

18.3.	select	—	Waiting	for	I/O	completion
18.3.1.	/dev/poll	Polling	Objects
18.3.2.	 Edge	 and	 Level	 Trigger	 Polling	 (epoll)
Objects
18.3.3.	Polling	Objects
18.3.4.	Kqueue	Objects
18.3.5.	Kevent	Objects

18.4.	selectors	–	High-level	I/O	multiplexing
18.4.1.	Introduction
18.4.2.	Classes
18.4.3.	Examples

18.5.	 asyncio	 –	 Asynchronous	 I/O,	 event	 loop,
coroutines	and	tasks

18.5.1.	Event	loops
18.5.1.1.	 Event	 loop	 policies	 and	 the	 default
policy
18.5.1.2.	Event	loop	functions

18.5.1.3.	Event	loop	policy	interface
18.5.1.4.	Access	to	the	global	loop	policy
18.5.1.5.	Run	an	event	loop
18.5.1.6.	Calls
18.5.1.7.	Delayed	calls
18.5.1.8.	Creating	connections
18.5.1.9.	Creating	listening	connections
18.5.1.10.	Watch	file	descriptors
18.5.1.11.	Low-level	socket	operations
18.5.1.12.	Resolve	host	name
18.5.1.13.	Running	subprocesses
18.5.1.14.	UNIX	signals
18.5.1.15.	Executor
18.5.1.16.	Error	Handling	API
18.5.1.17.	Debug	mode
18.5.1.18.	Server
18.5.1.19.	Handle
18.5.1.20.	Example:	Hello	World	(callback)
18.5.1.21.	 Example:	 Set	 signal	 handlers	 for
SIGINT	and	SIGTERM

18.5.2.	Tasks	and	coroutines
18.5.2.1.	Coroutines

18.5.2.1.1.	 Example:	 “Hello	 World”
coroutine
18.5.2.1.2.	Example:	Chain	coroutines

18.5.2.2.	InvalidStateError
18.5.2.3.	Future

18.5.2.3.1.	 Example:	 Future	 with
run_until_complete()
18.5.2.3.2.	 Example:	 Future	 with
run_forever()

18.5.2.4.	Task
18.5.2.4.1.	 Example:	 Parallel	 execution	 of
tasks

18.5.2.5.	Task	functions
18.5.3.	Transports	and	protocols	(low-level	API)

18.5.3.1.	Transports
18.5.3.1.1.	BaseTransport
18.5.3.1.2.	ReadTransport
18.5.3.1.3.	WriteTransport
18.5.3.1.4.	DatagramTransport
18.5.3.1.5.	BaseSubprocessTransport

18.5.3.2.	Protocols
18.5.3.2.1.	Protocol	classes
18.5.3.2.2.	Connection	callbacks
18.5.3.2.3.	Streaming	protocols
18.5.3.2.4.	Datagram	protocols
18.5.3.2.5.	Flow	control	callbacks
18.5.3.2.6.	Coroutines	and	protocols

18.5.3.3.	 Protocol	 example:	 TCP	 echo	 server
and	client

18.5.3.3.1.	Echo	client
18.5.3.3.2.	Echo	server

18.5.4.	Streams	(high-level	API)
18.5.4.1.	Stream	functions
18.5.4.2.	StreamReader
18.5.4.3.	StreamWriter
18.5.4.4.	StreamReaderProtocol
18.5.4.5.	IncompleteReadError
18.5.4.6.	Example

18.5.5.	Subprocess
18.5.5.1.	Create	a	subprocess
18.5.5.2.	Constants
18.5.5.3.	Process
18.5.5.4.	Example

18.5.6.	Synchronization	primitives
18.5.6.1.	Locks

18.5.6.1.1.	Lock

18.5.6.1.2.	Event
18.5.6.1.3.	Condition

18.5.6.2.	Semaphores
18.5.6.2.1.	Semaphore
18.5.6.2.2.	BoundedSemaphore

18.5.6.3.	Queues
18.5.6.3.1.	Queue
18.5.6.3.2.	PriorityQueue
18.5.6.3.3.	LifoQueue
18.5.6.3.4.	JoinableQueue
18.5.6.3.5.	Exceptions

18.5.7.	Develop	with	asyncio
18.5.7.1.	Concurrency	and	multithreading
18.5.7.2.	Handle	blocking	functions	correctly
18.5.7.3.	Logging
18.5.7.4.	 Detect	 coroutine	 objects	 never
scheduled
18.5.7.5.	Detect	exceptions	not	consumed
18.5.7.6.	Chain	coroutines	correctly

18.6.	asyncore	—	Asynchronous	socket	handler
18.6.1.	asyncore	Example	basic	HTTP	client
18.6.2.	asyncore	Example	basic	echo	server

18.7.	 asynchat	 —	 Asynchronous	 socket
command/response	handler

18.7.1.	asynchat	-	Auxiliary	Classes
18.7.2.	asynchat	Example

18.8.	signal	—	Set	handlers	for	asynchronous	events
18.8.1.	General	rules

18.8.1.1.	Execution	of	Python	signal	handlers
18.8.1.2.	Signals	and	threads

18.8.2.	Module	contents
18.8.3.	Example

18.9.	mmap	—	Memory-mapped	file	support
19.	Internet	Data	Handling

19.1.	email	—	An	email	and	MIME	handling	package
19.1.1.	 email.message:	 Representing	 an	 email
message
19.1.2.	email.parser:	Parsing	email	messages

19.1.2.1.	FeedParser	API
19.1.2.2.	Parser	class	API
19.1.2.3.	Additional	notes

19.1.3.	 email.generator:	 Generating	 MIME
documents
19.1.4.	email.policy:	Policy	Objects
19.1.5.	email.headerregistry:	Custom	Header
Objects
19.1.6.	email.contentmanager:	Managing	MIME
Content

19.1.6.1.	Content	Manager	Instances
19.1.7.	 email.mime:	 Creating	 email	 and	 MIME
objects	from	scratch
19.1.8.	email.header:	Internationalized	headers
19.1.9.	 email.charset:	 Representing	 character
sets
19.1.10.	email.encoders:	Encoders
19.1.11.	 email.errors:	 Exception	 and	 Defect
classes
19.1.12.	email.utils:	Miscellaneous	utilities
19.1.13.	email.iterators:	Iterators
19.1.14.	email:	Examples

19.1.14.1.	Examples	using	the	Provisional	API
19.1.15.	Package	History
19.1.16.	Differences	from	mimelib

19.2.	json	—	JSON	encoder	and	decoder
19.2.1.	Basic	Usage
19.2.2.	Encoders	and	Decoders
19.2.3.	Standard	Compliance

19.2.3.1.	Character	Encodings
19.2.3.2.	 Top-level	 Non-Object,	 Non-Array
Values
19.2.3.3.	Infinite	and	NaN	Number	Values
19.2.3.4.	Repeated	Names	Within	an	Object

19.3.	mailcap	—	Mailcap	file	handling
19.4.	 mailbox	 —	 Manipulate	 mailboxes	 in	 various
formats

19.4.1.	Mailbox	objects
19.4.1.1.	Maildir
19.4.1.2.	mbox
19.4.1.3.	MH
19.4.1.4.	Babyl
19.4.1.5.	MMDF

19.4.2.	Message	objects
19.4.2.1.	MaildirMessage
19.4.2.2.	mboxMessage
19.4.2.3.	MHMessage
19.4.2.4.	BabylMessage
19.4.2.5.	MMDFMessage

19.4.3.	Exceptions
19.4.4.	Examples

19.5.	mimetypes	—	Map	filenames	to	MIME	types
19.5.1.	MimeTypes	Objects

19.6.	 base64	 —	 Base16,	 Base32,	 Base64,	 Base85
Data	Encodings
19.7.	binhex	—	Encode	and	decode	binhex4	files

19.7.1.	Notes
19.8.	binascii	—	Convert	between	binary	and	ASCII
19.9.	 quopri	 —	 Encode	 and	 decode	 MIME	 quoted-
printable	data
19.10.	uu	—	Encode	and	decode	uuencode	files

20.	Structured	Markup	Processing	Tools

20.1.	html	—	HyperText	Markup	Language	support
20.2.	 html.parser	 —	 Simple	 HTML	 and	 XHTML
parser

20.2.1.	Example	HTML	Parser	Application
20.2.2.	HTMLParser	Methods
20.2.3.	Examples

20.3.	 html.entities	—	Definitions	 of	 HTML	 general
entities
20.4.	XML	Processing	Modules

20.4.1.	XML	vulnerabilities
20.4.2.	 The	 defusedxml	 and	 defusedexpat

Packages
20.5.	 xml.etree.ElementTree	 —	 The	 ElementTree
XML	API

20.5.1.	Tutorial
20.5.1.1.	XML	tree	and	elements
20.5.1.2.	Parsing	XML
20.5.1.3.	Pull	API	for	non-blocking	parsing
20.5.1.4.	Finding	interesting	elements
20.5.1.5.	Modifying	an	XML	File
20.5.1.6.	Building	XML	documents
20.5.1.7.	Additional	resources

20.5.2.	XPath	support
20.5.2.1.	Example
20.5.2.2.	Supported	XPath	syntax

20.5.3.	Reference
20.5.3.1.	Functions
20.5.3.2.	Element	Objects
20.5.3.3.	ElementTree	Objects
20.5.3.4.	QName	Objects
20.5.3.5.	TreeBuilder	Objects
20.5.3.6.	XMLParser	Objects
20.5.3.7.	XMLPullParser	Objects
20.5.3.8.	Exceptions

20.6.	xml.dom	—	The	Document	Object	Model	API
20.6.1.	Module	Contents
20.6.2.	Objects	in	the	DOM

20.6.2.1.	DOMImplementation	Objects
20.6.2.2.	Node	Objects
20.6.2.3.	NodeList	Objects
20.6.2.4.	DocumentType	Objects
20.6.2.5.	Document	Objects
20.6.2.6.	Element	Objects
20.6.2.7.	Attr	Objects
20.6.2.8.	NamedNodeMap	Objects
20.6.2.9.	Comment	Objects
20.6.2.10.	Text	and	CDATASection	Objects
20.6.2.11.	ProcessingInstruction	Objects
20.6.2.12.	Exceptions

20.6.3.	Conformance
20.6.3.1.	Type	Mapping
20.6.3.2.	Accessor	Methods

20.7.	 xml.dom.minidom	 —	 Minimal	 DOM
implementation

20.7.1.	DOM	Objects
20.7.2.	DOM	Example
20.7.3.	minidom	and	the	DOM	standard

20.8.	xml.dom.pulldom	—	Support	for	building	partial
DOM	trees

20.8.1.	DOMEventStream	Objects
20.9.	xml.sax	—	Support	for	SAX2	parsers

20.9.1.	SAXException	Objects
20.10.	 xml.sax.handler	 —	 Base	 classes	 for	 SAX
handlers

20.10.1.	ContentHandler	Objects
20.10.2.	DTDHandler	Objects
20.10.3.	EntityResolver	Objects
20.10.4.	ErrorHandler	Objects

20.11.	xml.sax.saxutils	—	SAX	Utilities
20.12.	 xml.sax.xmlreader	 —	 Interface	 for	 XML
parsers

20.12.1.	XMLReader	Objects
20.12.2.	IncrementalParser	Objects
20.12.3.	Locator	Objects
20.12.4.	InputSource	Objects
20.12.5.	The	Attributes	Interface
20.12.6.	The	AttributesNS	Interface

20.13.	 xml.parsers.expat	 —	 Fast	 XML	 parsing
using	Expat

20.13.1.	XMLParser	Objects
20.13.2.	ExpatError	Exceptions
20.13.3.	Example
20.13.4.	Content	Model	Descriptions
20.13.5.	Expat	error	constants

21.	Internet	Protocols	and	Support
21.1.	 webbrowser	 —	 Convenient	 Web-browser
controller

21.1.1.	Browser	Controller	Objects
21.2.	cgi	—	Common	Gateway	Interface	support

21.2.1.	Introduction
21.2.2.	Using	the	cgi	module
21.2.3.	Higher	Level	Interface
21.2.4.	Functions
21.2.5.	Caring	about	security
21.2.6.	Installing	your	CGI	script	on	a	Unix	system
21.2.7.	Testing	your	CGI	script
21.2.8.	Debugging	CGI	scripts
21.2.9.	Common	problems	and	solutions

21.3.	cgitb	—	Traceback	manager	for	CGI	scripts
21.4.	 wsgiref	 —	 WSGI	 Utilities	 and	 Reference
Implementation

21.4.1.	 wsgiref.util	 –	 WSGI	 environment
utilities
21.4.2.	 wsgiref.headers	 –	 WSGI	 response
header	tools
21.4.3.	 wsgiref.simple_server	 –	 a	 simple
WSGI	HTTP	server
21.4.4.	 wsgiref.validate	 —	 WSGI
conformance	checker
21.4.5.	 wsgiref.handlers	 –	 server/gateway
base	classes
21.4.6.	Examples

21.5.	urllib	—	URL	handling	modules
21.6.	 urllib.request	 —	 Extensible	 library	 for
opening	URLs

21.6.1.	Request	Objects
21.6.2.	OpenerDirector	Objects
21.6.3.	BaseHandler	Objects
21.6.4.	HTTPRedirectHandler	Objects
21.6.5.	HTTPCookieProcessor	Objects
21.6.6.	ProxyHandler	Objects
21.6.7.	HTTPPasswordMgr	Objects
21.6.8.	AbstractBasicAuthHandler	Objects
21.6.9.	HTTPBasicAuthHandler	Objects
21.6.10.	ProxyBasicAuthHandler	Objects
21.6.11.	AbstractDigestAuthHandler	Objects
21.6.12.	HTTPDigestAuthHandler	Objects
21.6.13.	ProxyDigestAuthHandler	Objects
21.6.14.	HTTPHandler	Objects
21.6.15.	HTTPSHandler	Objects
21.6.16.	FileHandler	Objects
21.6.17.	DataHandler	Objects
21.6.18.	FTPHandler	Objects
21.6.19.	CacheFTPHandler	Objects
21.6.20.	UnknownHandler	Objects

21.6.21.	HTTPErrorProcessor	Objects
21.6.22.	Examples
21.6.23.	Legacy	interface
21.6.24.	urllib.request	Restrictions

21.7.	urllib.response	—	Response	classes	used	by
urllib
21.8.	urllib.parse	—	Parse	URLs	into	components

21.8.1.	URL	Parsing
21.8.2.	Parsing	ASCII	Encoded	Bytes
21.8.3.	Structured	Parse	Results
21.8.4.	URL	Quoting

21.9.	 urllib.error	 —	 Exception	 classes	 raised	 by
urllib.request
21.10.	urllib.robotparser	—	Parser	for	robots.txt
21.11.	http	—	HTTP	modules
21.12.	http.client	—	HTTP	protocol	client

21.12.1.	HTTPConnection	Objects
21.12.2.	HTTPResponse	Objects
21.12.3.	Examples
21.12.4.	HTTPMessage	Objects

21.13.	ftplib	—	FTP	protocol	client
21.13.1.	FTP	Objects
21.13.2.	FTP_TLS	Objects

21.14.	poplib	—	POP3	protocol	client
21.14.1.	POP3	Objects
21.14.2.	POP3	Example

21.15.	imaplib	—	IMAP4	protocol	client
21.15.1.	IMAP4	Objects
21.15.2.	IMAP4	Example

21.16.	nntplib	—	NNTP	protocol	client
21.16.1.	NNTP	Objects

21.16.1.1.	Attributes
21.16.1.2.	Methods

21.16.2.	Utility	functions
21.17.	smtplib	—	SMTP	protocol	client

21.17.1.	SMTP	Objects
21.17.2.	SMTP	Example

21.18.	smtpd	—	SMTP	Server
21.18.1.	SMTPServer	Objects
21.18.2.	DebuggingServer	Objects
21.18.3.	PureProxy	Objects
21.18.4.	MailmanProxy	Objects
21.18.5.	SMTPChannel	Objects

21.19.	telnetlib	—	Telnet	client
21.19.1.	Telnet	Objects
21.19.2.	Telnet	Example

21.20.	uuid	—	UUID	objects	according	to	RFC	4122
21.20.1.	Example

21.21.	 socketserver	 —	 A	 framework	 for	 network
servers

21.21.1.	Server	Creation	Notes
21.21.2.	Server	Objects
21.21.3.	RequestHandler	Objects
21.21.4.	Examples

21.21.4.1.	 socketserver.TCPServer

Example
21.21.4.2.	 socketserver.UDPServer

Example
21.21.4.3.	Asynchronous	Mixins

21.22.	http.server	—	HTTP	servers
21.23.	http.cookies	—	HTTP	state	management

21.23.1.	Cookie	Objects
21.23.2.	Morsel	Objects
21.23.3.	Example

21.24.	http.cookiejar	—	Cookie	handling	 for	HTTP
clients

21.24.1.	CookieJar	and	FileCookieJar	Objects
21.24.2.	FileCookieJar	subclasses	and	co-operation
with	web	browsers
21.24.3.	CookiePolicy	Objects
21.24.4.	DefaultCookiePolicy	Objects
21.24.5.	Cookie	Objects
21.24.6.	Examples

21.25.	xmlrpc	—	XMLRPC	server	and	client	modules
21.26.	xmlrpc.client	—	XML-RPC	client	access

21.26.1.	ServerProxy	Objects
21.26.2.	DateTime	Objects
21.26.3.	Binary	Objects
21.26.4.	Fault	Objects
21.26.5.	ProtocolError	Objects
21.26.6.	MultiCall	Objects
21.26.7.	Convenience	Functions
21.26.8.	Example	of	Client	Usage
21.26.9.	Example	of	Client	and	Server	Usage

21.27.	xmlrpc.server	—	Basic	XML-RPC	servers
21.27.1.	SimpleXMLRPCServer	Objects

21.27.1.1.	SimpleXMLRPCServer	Example
21.27.2.	CGIXMLRPCRequestHandler
21.27.3.	Documenting	XMLRPC	server
21.27.4.	DocXMLRPCServer	Objects
21.27.5.	DocCGIXMLRPCRequestHandler

21.28.	ipaddress	—	IPv4/IPv6	manipulation	library
21.28.1.	Convenience	factory	functions
21.28.2.	IP	Addresses

21.28.2.1.	Address	objects
21.28.2.2.	Conversion	to	Strings	and	Integers
21.28.2.3.	Operators

21.28.2.3.1.	Comparison	operators
21.28.2.3.2.	Arithmetic	operators

21.28.3.	IP	Network	definitions

21.28.3.1.	Prefix,	net	mask	and	host	mask
21.28.3.2.	Network	objects
21.28.3.3.	Operators

21.28.3.3.1.	Logical	operators
21.28.3.3.2.	Iteration
21.28.3.3.3.	 Networks	 as	 containers	 of
addresses

21.28.4.	Interface	objects
21.28.5.	Other	Module	Level	Functions
21.28.6.	Custom	Exceptions

22.	Multimedia	Services
22.1.	audioop	—	Manipulate	raw	audio	data
22.2.	aifc	—	Read	and	write	AIFF	and	AIFC	files
22.3.	sunau	—	Read	and	write	Sun	AU	files

22.3.1.	AU_read	Objects
22.3.2.	AU_write	Objects

22.4.	wave	—	Read	and	write	WAV	files
22.4.1.	Wave_read	Objects
22.4.2.	Wave_write	Objects

22.5.	chunk	—	Read	IFF	chunked	data
22.6.	colorsys	—	Conversions	between	color	systems
22.7.	imghdr	—	Determine	the	type	of	an	image
22.8.	sndhdr	—	Determine	type	of	sound	file
22.9.	 ossaudiodev	 —	 Access	 to	 OSS-compatible
audio	devices

22.9.1.	Audio	Device	Objects
22.9.2.	Mixer	Device	Objects

23.	Internationalization
23.1.	 gettext	 —	 Multilingual	 internationalization
services

23.1.1.	GNU	gettext	API
23.1.2.	Class-based	API

23.1.2.1.	The	NullTranslations	class

23.1.2.2.	The	GNUTranslations	class
23.1.2.3.	Solaris	message	catalog	support
23.1.2.4.	The	Catalog	constructor

23.1.3.	 Internationalizing	 your	 programs	 and
modules

23.1.3.1.	Localizing	your	module
23.1.3.2.	Localizing	your	application
23.1.3.3.	Changing	languages	on	the	fly
23.1.3.4.	Deferred	translations

23.1.4.	Acknowledgements
23.2.	locale	—	Internationalization	services

23.2.1.	Background,	details,	hints,	tips	and	caveats
23.2.2.	 For	 extension	 writers	 and	 programs	 that
embed	Python
23.2.3.	Access	to	message	catalogs

24.	Program	Frameworks
24.1.	turtle	—	Turtle	graphics

24.1.1.	Introduction
24.1.2.	 Overview	 of	 available	 Turtle	 and	 Screen
methods

24.1.2.1.	Turtle	methods
24.1.2.2.	Methods	of	TurtleScreen/Screen

24.1.3.	 Methods	 of	 RawTurtle/Turtle	 and
corresponding	functions

24.1.3.1.	Turtle	motion
24.1.3.2.	Tell	Turtle’s	state
24.1.3.3.	Settings	for	measurement
24.1.3.4.	Pen	control

24.1.3.4.1.	Drawing	state
24.1.3.4.2.	Color	control
24.1.3.4.3.	Filling
24.1.3.4.4.	More	drawing	control

24.1.3.5.	Turtle	state
24.1.3.5.1.	Visibility

24.1.3.5.2.	Appearance
24.1.3.6.	Using	events
24.1.3.7.	Special	Turtle	methods
24.1.3.8.	Compound	shapes

24.1.4.	 Methods	 of	 TurtleScreen/Screen	 and
corresponding	functions

24.1.4.1.	Window	control
24.1.4.2.	Animation	control
24.1.4.3.	Using	screen	events
24.1.4.4.	Input	methods
24.1.4.5.	Settings	and	special	methods
24.1.4.6.	 Methods	 specific	 to	 Screen,	 not
inherited	from	TurtleScreen

24.1.5.	Public	classes
24.1.6.	Help	and	configuration

24.1.6.1.	How	to	use	help
24.1.6.2.	Translation	of	docstrings	 into	different
languages
24.1.6.3.	How	to	configure	Screen	and	Turtles

24.1.7.	Demo	scripts
24.1.8.	Changes	since	Python	2.6
24.1.9.	Changes	since	Python	3.0

24.2.	 cmd	 —	 Support	 for	 line-oriented	 command
interpreters

24.2.1.	Cmd	Objects
24.2.2.	Cmd	Example

24.3.	shlex	—	Simple	lexical	analysis
24.3.1.	shlex	Objects
24.3.2.	Parsing	Rules

25.	Graphical	User	Interfaces	with	Tk
25.1.	tkinter	—	Python	interface	to	Tcl/Tk

25.1.1.	Tkinter	Modules
25.1.2.	Tkinter	Life	Preserver

25.1.2.1.	How	To	Use	This	Section

25.1.2.2.	A	Simple	Hello	World	Program
25.1.3.	A	(Very)	Quick	Look	at	Tcl/Tk
25.1.4.	Mapping	Basic	Tk	into	Tkinter
25.1.5.	How	Tk	and	Tkinter	are	Related
25.1.6.	Handy	Reference

25.1.6.1.	Setting	Options
25.1.6.2.	The	Packer
25.1.6.3.	Packer	Options
25.1.6.4.	Coupling	Widget	Variables
25.1.6.5.	The	Window	Manager
25.1.6.6.	Tk	Option	Data	Types
25.1.6.7.	Bindings	and	Events
25.1.6.8.	The	index	Parameter
25.1.6.9.	Images

25.2.	tkinter.ttk	—	Tk	themed	widgets
25.2.1.	Using	Ttk
25.2.2.	Ttk	Widgets
25.2.3.	Widget

25.2.3.1.	Standard	Options
25.2.3.2.	Scrollable	Widget	Options
25.2.3.3.	Label	Options
25.2.3.4.	Compatibility	Options
25.2.3.5.	Widget	States
25.2.3.6.	ttk.Widget

25.2.4.	Combobox
25.2.4.1.	Options
25.2.4.2.	Virtual	events
25.2.4.3.	ttk.Combobox

25.2.5.	Notebook
25.2.5.1.	Options
25.2.5.2.	Tab	Options
25.2.5.3.	Tab	Identifiers
25.2.5.4.	Virtual	Events
25.2.5.5.	ttk.Notebook

25.2.6.	Progressbar
25.2.6.1.	Options
25.2.6.2.	ttk.Progressbar

25.2.7.	Separator
25.2.7.1.	Options

25.2.8.	Sizegrip
25.2.8.1.	Platform-specific	notes
25.2.8.2.	Bugs

25.2.9.	Treeview
25.2.9.1.	Options
25.2.9.2.	Item	Options
25.2.9.3.	Tag	Options
25.2.9.4.	Column	Identifiers
25.2.9.5.	Virtual	Events
25.2.9.6.	ttk.Treeview

25.2.10.	Ttk	Styling
25.2.10.1.	Layouts

25.3.	tkinter.tix	—	Extension	widgets	for	Tk
25.3.1.	Using	Tix
25.3.2.	Tix	Widgets

25.3.2.1.	Basic	Widgets
25.3.2.2.	File	Selectors
25.3.2.3.	Hierarchical	ListBox
25.3.2.4.	Tabular	ListBox
25.3.2.5.	Manager	Widgets
25.3.2.6.	Image	Types
25.3.2.7.	Miscellaneous	Widgets
25.3.2.8.	Form	Geometry	Manager

25.3.3.	Tix	Commands
25.4.	tkinter.scrolledtext	—	Scrolled	Text	Widget
25.5.	IDLE

25.5.1.	Menus
25.5.1.1.	File	menu	(Shell	and	Editor)
25.5.1.2.	Edit	menu	(Shell	and	Editor)

25.5.1.3.	Format	menu	(Editor	window	only)
25.5.1.4.	Run	menu	(Editor	window	only)
25.5.1.5.	Shell	menu	(Shell	window	only)
25.5.1.6.	Debug	menu	(Shell	window	only)
25.5.1.7.	Options	menu	(Shell	and	Editor)
25.5.1.8.	Windows	menu	(Shell	and	Editor)
25.5.1.9.	Help	menu	(Shell	and	Editor)
25.5.1.10.	Editor	Window	context	menu
25.5.1.11.	Shell	Window	context	menu

25.5.2.	Editing	and	navigation
25.5.2.1.	Automatic	indentation
25.5.2.2.	Completions
25.5.2.3.	Python	Shell	window

25.5.3.	Syntax	colors
25.5.4.	Startup

25.5.4.1.	Command	line	usage
25.5.5.	Additional	help	sources
25.5.6.	Other	preferences
25.5.7.	Extensions

25.6.	Other	Graphical	User	Interface	Packages
26.	Development	Tools

26.1.	 pydoc	 —	 Documentation	 generator	 and	 online
help	system
26.2.	doctest	—	Test	interactive	Python	examples

26.2.1.	 Simple	 Usage:	 Checking	 Examples	 in
Docstrings
26.2.2.	Simple	Usage:	Checking	Examples	in	a	Text
File
26.2.3.	How	It	Works

26.2.3.1.	Which	Docstrings	Are	Examined?
26.2.3.2.	 How	 are	 Docstring	 Examples
Recognized?
26.2.3.3.	What’s	the	Execution	Context?
26.2.3.4.	What	About	Exceptions?

26.2.3.5.	Option	Flags
26.2.3.6.	Directives
26.2.3.7.	Warnings

26.2.4.	Basic	API
26.2.5.	Unittest	API
26.2.6.	Advanced	API

26.2.6.1.	DocTest	Objects
26.2.6.2.	Example	Objects
26.2.6.3.	DocTestFinder	objects
26.2.6.4.	DocTestParser	objects
26.2.6.5.	DocTestRunner	objects
26.2.6.6.	OutputChecker	objects

26.2.7.	Debugging
26.2.8.	Soapbox

26.3.	unittest	—	Unit	testing	framework
26.3.1.	Basic	example
26.3.2.	Command-Line	Interface

26.3.2.1.	Command-line	options
26.3.3.	Test	Discovery
26.3.4.	Organizing	test	code
26.3.5.	Re-using	old	test	code
26.3.6.	Skipping	tests	and	expected	failures
26.3.7.	Distinguishing	test	iterations	using	subtests
26.3.8.	Classes	and	functions

26.3.8.1.	Test	cases
26.3.8.1.1.	Deprecated	aliases

26.3.8.2.	Grouping	tests
26.3.8.3.	Loading	and	running	tests

26.3.8.3.1.	load_tests	Protocol
26.3.9.	Class	and	Module	Fixtures

26.3.9.1.	setUpClass	and	tearDownClass
26.3.9.2.	setUpModule	and	tearDownModule

26.3.10.	Signal	Handling
26.4.	unittest.mock	—	mock	object	library

26.4.1.	Quick	Guide
26.4.2.	The	Mock	Class

26.4.2.1.	Calling
26.4.2.2.	Deleting	Attributes
26.4.2.3.	Mock	names	and	the	name	attribute
26.4.2.4.	Attaching	Mocks	as	Attributes

26.4.3.	The	patchers
26.4.3.1.	patch
26.4.3.2.	patch.object
26.4.3.3.	patch.dict
26.4.3.4.	patch.multiple
26.4.3.5.	patch	methods:	start	and	stop
26.4.3.6.	TEST_PREFIX
26.4.3.7.	Nesting	Patch	Decorators
26.4.3.8.	Where	to	patch
26.4.3.9.	 Patching	 Descriptors	 and	 Proxy
Objects

26.4.4.	MagicMock	and	magic	method	support
26.4.4.1.	Mocking	Magic	Methods
26.4.4.2.	Magic	Mock

26.4.5.	Helpers
26.4.5.1.	sentinel
26.4.5.2.	DEFAULT
26.4.5.3.	call
26.4.5.4.	create_autospec
26.4.5.5.	ANY
26.4.5.6.	FILTER_DIR
26.4.5.7.	mock_open
26.4.5.8.	Autospeccing

26.5.	unittest.mock	—	getting	started
26.5.1.	Using	Mock

26.5.1.1.	Mock	Patching	Methods
26.5.1.2.	Mock	for	Method	Calls	on	an	Object
26.5.1.3.	Mocking	Classes

26.5.1.4.	Naming	your	mocks
26.5.1.5.	Tracking	all	Calls
26.5.1.6.	Setting	Return	Values	and	Attributes
26.5.1.7.	Raising	exceptions	with	mocks
26.5.1.8.	Side	effect	functions	and	iterables
26.5.1.9.	 Creating	 a	 Mock	 from	 an	 Existing
Object

26.5.2.	Patch	Decorators
26.5.3.	Further	Examples

26.5.3.1.	Mocking	chained	calls
26.5.3.2.	Partial	mocking
26.5.3.3.	Mocking	a	Generator	Method
26.5.3.4.	Applying	the	same	patch	to	every	test
method
26.5.3.5.	Mocking	Unbound	Methods
26.5.3.6.	Checking	multiple	calls	with	mock
26.5.3.7.	Coping	with	mutable	arguments
26.5.3.8.	Nesting	Patches
26.5.3.9.	Mocking	a	dictionary	with	MagicMock
26.5.3.10.	Mock	subclasses	and	their	attributes
26.5.3.11.	Mocking	imports	with	patch.dict
26.5.3.12.	 Tracking	 order	 of	 calls	 and	 less
verbose	call	assertions
26.5.3.13.	More	complex	argument	matching

26.6.	2to3	-	Automated	Python	2	to	3	code	translation
26.6.1.	Using	2to3
26.6.2.	Fixers
26.6.3.	lib2to3	-	2to3’s	library

26.7.	test	—	Regression	tests	package	for	Python
26.7.1.	Writing	Unit	Tests	for	the	test	package
26.7.2.	 Running	 tests	 using	 the	 command-line
interface

26.8.	 test.support	 —	 Utilities	 for	 the	 Python	 test
suite

27.	Debugging	and	Profiling
27.1.	bdb	—	Debugger	framework
27.2.	faulthandler	—	Dump	the	Python	traceback

27.2.1.	Dump	the	traceback
27.2.2.	Fault	handler	state
27.2.3.	Dump	the	tracebacks	after	a	timeout
27.2.4.	Dump	the	traceback	on	a	user	signal
27.2.5.	File	descriptor	issue
27.2.6.	Example

27.3.	pdb	—	The	Python	Debugger
27.3.1.	Debugger	Commands

27.4.	The	Python	Profilers
27.4.1.	Introduction	to	the	profilers
27.4.2.	Instant	User’s	Manual
27.4.3.	profile	and	cProfile	Module	Reference
27.4.4.	The	Stats	Class
27.4.5.	What	Is	Deterministic	Profiling?
27.4.6.	Limitations
27.4.7.	Calibration
27.4.8.	Using	a	custom	timer

27.5.	timeit	—	Measure	execution	time	of	small	code
snippets

27.5.1.	Basic	Examples
27.5.2.	Python	Interface
27.5.3.	Command-Line	Interface
27.5.4.	Examples

27.6.	 trace	 —	 Trace	 or	 track	 Python	 statement
execution

27.6.1.	Command-Line	Usage
27.6.1.1.	Main	options
27.6.1.2.	Modifiers
27.6.1.3.	Filters

27.6.2.	Programmatic	Interface
27.7.	tracemalloc	—	Trace	memory	allocations

27.8.	Examples
27.8.1.	Display	the	top	10
27.8.2.	Compute	differences
27.8.3.	Get	the	traceback	of	a	memory	block
27.8.4.	Pretty	top

27.9.	API
27.9.1.	Functions
27.9.2.	Filter
27.9.3.	Frame
27.9.4.	Snapshot
27.9.5.	Statistic
27.9.6.	StatisticDiff
27.9.7.	Trace
27.9.8.	Traceback

28.	Software	Packaging	and	Distribution
28.1.	 distutils	 —	 Building	 and	 installing	 Python
modules
28.2.	ensurepip	—	Bootstrapping	the	pip	installer

28.2.1.	Command	line	interface
28.2.2.	Module	API

28.3.	venv	—	Creation	of	virtual	environments
28.3.1.	Creating	virtual	environments
28.3.2.	API
28.3.3.	An	example	of	extending	EnvBuilder

29.	Python	Runtime	Services
29.1.	sys	—	System-specific	parameters	and	functions
29.2.	 sysconfig	 —	 Provide	 access	 to	 Python’s
configuration	information

29.2.1.	Configuration	variables
29.2.2.	Installation	paths
29.2.3.	Other	functions
29.2.4.	Using	sysconfig	as	a	script

29.3.	builtins	—	Built-in	objects

29.4.	__main__	—	Top-level	script	environment
29.5.	warnings	—	Warning	control

29.5.1.	Warning	Categories
29.5.2.	The	Warnings	Filter

29.5.2.1.	Default	Warning	Filters
29.5.3.	Temporarily	Suppressing	Warnings
29.5.4.	Testing	Warnings
29.5.5.	Updating	Code	For	New	Versions	of	Python
29.5.6.	Available	Functions
29.5.7.	Available	Context	Managers

29.6.	 contextlib	 —	 Utilities	 for	 with-statement
contexts

29.6.1.	Utilities
29.6.2.	Examples	and	Recipes

29.6.2.1.	 Supporting	 a	 variable	 number	 of
context	managers
29.6.2.2.	Simplifying	support	 for	single	optional
context	managers
29.6.2.3.	Catching	exceptions	from	__enter__
methods
29.6.2.4.	 Cleaning	 up	 in	 an	 __enter__

implementation
29.6.2.5.	 Replacing	 any	 use	 of	 try-finally
and	flag	variables
29.6.2.6.	Using	a	context	manager	as	a	function
decorator

29.6.3.	 Single	 use,	 reusable	 and	 reentrant	 context
managers

29.6.3.1.	Reentrant	context	managers
29.6.3.2.	Reusable	context	managers

29.7.	abc	—	Abstract	Base	Classes
29.8.	atexit	—	Exit	handlers

29.8.1.	atexit	Example

29.9.	traceback	—	Print	or	retrieve	a	stack	traceback
29.9.1.	Traceback	Examples

29.10.	__future__	—	Future	statement	definitions
29.11.	gc	—	Garbage	Collector	interface
29.12.	inspect	—	Inspect	live	objects

29.12.1.	Types	and	members
29.12.2.	Retrieving	source	code
29.12.3.	 Introspecting	 callables	 with	 the	 Signature
object
29.12.4.	Classes	and	functions
29.12.5.	The	interpreter	stack
29.12.6.	Fetching	attributes	statically
29.12.7.	Current	State	of	a	Generator
29.12.8.	Command	Line	Interface

29.13.	site	—	Site-specific	configuration	hook
29.13.1.	Readline	configuration
29.13.2.	Module	contents

29.14.	fpectl	—	Floating	point	exception	control
29.14.1.	Example
29.14.2.	Limitations	and	other	considerations

30.	Custom	Python	Interpreters
30.1.	code	—	Interpreter	base	classes

30.1.1.	Interactive	Interpreter	Objects
30.1.2.	Interactive	Console	Objects

30.2.	codeop	—	Compile	Python	code
31.	Importing	Modules

31.1.	imp	—	Access	the	import	internals
31.1.1.	Examples

31.2.	zipimport	—	Import	modules	from	Zip	archives
31.2.1.	zipimporter	Objects
31.2.2.	Examples

31.3.	pkgutil	—	Package	extension	utility
31.4.	modulefinder	—	Find	modules	used	by	a	script

31.4.1.	Example	usage	of	ModuleFinder
31.5.	runpy	—	Locating	and	executing	Python	modules
31.6.	importlib	–	The	implementation	of	import

31.6.1.	Introduction
31.6.2.	Functions
31.6.3.	 importlib.abc	 –	 Abstract	 base	 classes
related	to	import
31.6.4.	 importlib.machinery	 –	 Importers	 and
path	hooks
31.6.5.	 importlib.util	 –	 Utility	 code	 for
importers

32.	Python	Language	Services
32.1.	parser	—	Access	Python	parse	trees

32.1.1.	Creating	ST	Objects
32.1.2.	Converting	ST	Objects
32.1.3.	Queries	on	ST	Objects
32.1.4.	Exceptions	and	Error	Handling
32.1.5.	ST	Objects
32.1.6.	Example:	Emulation	of	compile()

32.2.	ast	—	Abstract	Syntax	Trees
32.2.1.	Node	classes
32.2.2.	Abstract	Grammar
32.2.3.	ast	Helpers

32.3.	 symtable	 —	 Access	 to	 the	 compiler’s	 symbol
tables

32.3.1.	Generating	Symbol	Tables
32.3.2.	Examining	Symbol	Tables

32.4.	 symbol	 —	 Constants	 used	 with	 Python	 parse
trees
32.5.	token	—	Constants	used	with	Python	parse	trees
32.6.	keyword	—	Testing	for	Python	keywords
32.7.	tokenize	—	Tokenizer	for	Python	source

32.7.1.	Tokenizing	Input

32.7.2.	Command-Line	Usage
32.7.3.	Examples

32.8.	tabnanny	—	Detection	of	ambiguous	indentation
32.9.	pyclbr	—	Python	class	browser	support

32.9.1.	Class	Objects
32.9.2.	Function	Objects

32.10.	py_compile	—	Compile	Python	source	files
32.11.	compileall	—	Byte-compile	Python	libraries

32.11.1.	Command-line	use
32.11.2.	Public	functions

32.12.	dis	—	Disassembler	for	Python	bytecode
32.12.1.	Bytecode	analysis
32.12.2.	Analysis	functions
32.12.3.	Python	Bytecode	Instructions
32.12.4.	Opcode	collections

32.13.	pickletools	—	Tools	for	pickle	developers
32.13.1.	Command	line	usage

32.13.1.1.	Command	line	options
32.13.2.	Programmatic	Interface

33.	Miscellaneous	Services
33.1.	formatter	—	Generic	output	formatting

33.1.1.	The	Formatter	Interface
33.1.2.	Formatter	Implementations
33.1.3.	The	Writer	Interface
33.1.4.	Writer	Implementations

34.	MS	Windows	Specific	Services
34.1.	msilib	—	Read	and	write	Microsoft	Installer	files

34.1.1.	Database	Objects
34.1.2.	View	Objects
34.1.3.	Summary	Information	Objects
34.1.4.	Record	Objects
34.1.5.	Errors
34.1.6.	CAB	Objects
34.1.7.	Directory	Objects

34.1.8.	Features
34.1.9.	GUI	classes
34.1.10.	Precomputed	tables

34.2.	 msvcrt	 –	 Useful	 routines	 from	 the	 MS	 VC++
runtime

34.2.1.	File	Operations
34.2.2.	Console	I/O
34.2.3.	Other	Functions

34.3.	winreg	–	Windows	registry	access
34.3.1.	Functions
34.3.2.	Constants

34.3.2.1.	HKEY_*	Constants
34.3.2.2.	Access	Rights

34.3.2.2.1.	64-bit	Specific
34.3.2.3.	Value	Types

34.3.3.	Registry	Handle	Objects
34.4.	winsound	—	Sound-playing	interface	for	Windows

35.	Unix	Specific	Services
35.1.	posix	—	The	most	common	POSIX	system	calls

35.1.1.	Large	File	Support
35.1.2.	Notable	Module	Contents

35.2.	pwd	—	The	password	database
35.3.	spwd	—	The	shadow	password	database
35.4.	grp	—	The	group	database
35.5.	crypt	—	Function	to	check	Unix	passwords

35.5.1.	Hashing	Methods
35.5.2.	Module	Attributes
35.5.3.	Module	Functions
35.5.4.	Examples

35.6.	termios	—	POSIX	style	tty	control
35.6.1.	Example

35.7.	tty	—	Terminal	control	functions
35.8.	pty	—	Pseudo-terminal	utilities

35.8.1.	Example
35.9.	fcntl	—	The	fcntl	and	ioctl	system	calls
35.10.	pipes	—	Interface	to	shell	pipelines

35.10.1.	Template	Objects
35.11.	resource	—	Resource	usage	information

35.11.1.	Resource	Limits
35.11.2.	Resource	Usage

35.12.	nis	—	Interface	to	Sun’s	NIS	(Yellow	Pages)
35.13.	syslog	—	Unix	syslog	library	routines

35.13.1.	Examples
35.13.1.1.	Simple	example

36.	Undocumented	Modules
36.1.	Platform	specific	modules

Extending	and	Embedding	the	Python	Interpreter
Recommended	third	party	tools
Creating	extensions	without	third	party	tools

1.	Extending	Python	with	C	or	C++
1.1.	A	Simple	Example
1.2.	Intermezzo:	Errors	and	Exceptions
1.3.	Back	to	the	Example
1.4.	 The	 Module’s	 Method	 Table	 and	 Initialization
Function
1.5.	Compilation	and	Linkage
1.6.	Calling	Python	Functions	from	C
1.7.	Extracting	Parameters	in	Extension	Functions
1.8.	Keyword	Parameters	for	Extension	Functions
1.9.	Building	Arbitrary	Values
1.10.	Reference	Counts

1.10.1.	Reference	Counting	in	Python
1.10.2.	Ownership	Rules
1.10.3.	Thin	Ice
1.10.4.	NULL	Pointers

1.11.	Writing	Extensions	in	C++
1.12.	Providing	a	C	API	for	an	Extension	Module

2.	Defining	New	Types
2.1.	The	Basics

2.1.1.	 Adding	 data	 and	 methods	 to	 the	 Basic
example
2.1.2.	Providing	finer	control	over	data	attributes
2.1.3.	Supporting	cyclic	garbage	collection
2.1.4.	Subclassing	other	types

2.2.	Type	Methods
2.2.1.	Finalization	and	De-allocation
2.2.2.	Object	Presentation
2.2.3.	Attribute	Management

2.2.3.1.	Generic	Attribute	Management
2.2.3.2.	 Type-specific	 Attribute
Management

2.2.4.	Object	Comparison
2.2.5.	Abstract	Protocol	Support
2.2.6.	Weak	Reference	Support
2.2.7.	More	Suggestions

3.	Building	C	and	C++	Extensions	with	distutils
3.1.	Distributing	your	extension	modules

4.	Building	C	and	C++	Extensions	on	Windows
4.1.	A	Cookbook	Approach
4.2.	Differences	Between	Unix	and	Windows
4.3.	Using	DLLs	in	Practice

Embedding	the	CPython	runtime	in	a	larger	application
1.	Embedding	Python	in	Another	Application

1.1.	Very	High	Level	Embedding
1.2.	 Beyond	 Very	 High	 Level	 Embedding:	 An
overview
1.3.	Pure	Embedding
1.4.	Extending	Embedded	Python
1.5.	Embedding	Python	in	C++
1.6.	Compiling	and	Linking	under	Unix-like	systems

Python/C	API	Reference	Manual

Introduction
Include	Files
Objects,	Types	and	Reference	Counts

Reference	Counts
Reference	Count	Details

Types
Exceptions
Embedding	Python
Debugging	Builds

Stable	Application	Binary	Interface
The	Very	High	Level	Layer
Reference	Counting
Exception	Handling

Exception	Objects
Unicode	Exception	Objects
Recursion	Control
Standard	Exceptions

Utilities
Operating	System	Utilities
System	Functions
Process	Control
Importing	Modules
Data	marshalling	support
Parsing	arguments	and	building	values

Parsing	arguments
Strings	and	buffers
Numbers
Other	objects
API	Functions

Building	values
String	conversion	and	formatting
Reflection
Codec	registry	and	support	functions

Codec	lookup	API

Registry	API	for	Unicode	encoding	error	handlers
Abstract	Objects	Layer

Object	Protocol
Number	Protocol
Sequence	Protocol
Mapping	Protocol
Iterator	Protocol
Buffer	Protocol

Buffer	structure
Buffer	request	types

request-independent	fields
readonly,	format
shape,	strides,	suboffsets
contiguity	requests
compound	requests

Complex	arrays
NumPy-style:	shape	and	strides
PIL-style:	shape,	strides	and	suboffsets

Buffer-related	functions
Old	Buffer	Protocol

Concrete	Objects	Layer
Fundamental	Objects

Type	Objects
The	None	Object

Numeric	Objects
Integer	Objects
Boolean	Objects
Floating	Point	Objects
Complex	Number	Objects

Complex	Numbers	as	C	Structures
Complex	Numbers	as	Python	Objects

Sequence	Objects
Bytes	Objects
Byte	Array	Objects

Type	check	macros
Direct	API	functions
Macros

Unicode	Objects	and	Codecs
Unicode	Objects

Unicode	Type
Unicode	Character	Properties
Creating	and	accessing	Unicode	strings
Deprecated	Py_UNICODE	APIs
Locale	Encoding
File	System	Encoding
wchar_t	Support
UCS4	Support

Built-in	Codecs
Generic	Codecs
UTF-8	Codecs
UTF-32	Codecs
UTF-16	Codecs
UTF-7	Codecs
Unicode-Escape	Codecs
Raw-Unicode-Escape	Codecs
Latin-1	Codecs
ASCII	Codecs
Character	Map	Codecs
MBCS	codecs	for	Windows
Methods	&	Slots

Methods	and	Slot	Functions
Tuple	Objects
Struct	Sequence	Objects
List	Objects

Container	Objects
Dictionary	Objects
Set	Objects

Function	Objects

Function	Objects
Instance	Method	Objects
Method	Objects
Cell	Objects
Code	Objects

Other	Objects
File	Objects
Module	Objects

Initializing	C	modules
Iterator	Objects
Descriptor	Objects
Slice	Objects
MemoryView	objects
Weak	Reference	Objects
Capsules
Generator	Objects
DateTime	Objects

Initialization,	Finalization,	and	Threads
Initializing	and	finalizing	the	interpreter
Process-wide	parameters
Thread	State	and	the	Global	Interpreter	Lock

Releasing	the	GIL	from	extension	code
Non-Python	created	threads
High-level	API
Low-level	API

Sub-interpreter	support
Bugs	and	caveats

Asynchronous	Notifications
Profiling	and	Tracing
Advanced	Debugger	Support

Memory	Management
Overview
Raw	Memory	Interface
Memory	Interface

Customize	Memory	Allocators
Customize	PyObject	Arena	Allocator
Examples

Object	Implementation	Support
Allocating	Objects	on	the	Heap
Common	Object	Structures
Type	Objects
Number	Object	Structures
Mapping	Object	Structures
Sequence	Object	Structures
Buffer	Object	Structures
Supporting	Cyclic	Garbage	Collection

API	and	ABI	Versioning
Distributing	Python	Modules

Key	terms
Open	source	licensing	and	collaboration
Installing	the	tools
Reading	the	guide
How	do	I...?

...	choose	a	name	for	my	project?

...	create	and	distribute	binary	extensions?
Installing	Python	Modules

Key	terms
Basic	usage
How	do	I	...?

...	install	pip	in	versions	of	Python	prior	to	Python	3.4?

...	install	packages	just	for	the	current	user?

...	install	scientific	Python	packages?

...	 work	 with	 multiple	 versions	 of	 Python	 installed	 in
parallel?

Common	installation	issues
Installing	into	the	system	Python	on	Linux
Installing	binary	extensions

Python	HOWTOs

Porting	Python	2	Code	to	Python	3
The	Short	Version
Before	You	Begin
Writing	Source-Compatible	Python	2/3	Code

Projects	to	Consider
Tips	&	Tricks

Support	Python	2.7
Try	to	Support	Python	2.6	and	Newer	Only

from	 __future__	 import

print_function

from	 __future__	 import

unicode_literals

Bytes/string	literals
from	 __future__	 import

absolute_import

Supporting	Python	2.5	and	Newer	Only
from	 __future__	 import

absolute_import

Mark	all	Unicode	strings	with	a	u	prefix
Capturing	the	Currently	Raised	Exception

Handle	Common	“Gotchas”
from	__future__	import	division

Specify	when	opening	a	file	as	binary
Text	files
Subclass	object
Deal	With	the	Bytes/String	Dichotomy

Mark	Up	Python	2	String	Literals
Decide	what	APIs	Will	Accept
Bytes	/	Unicode	Comparison

Indexing	bytes	objects
__str__()/__unicode__()
Don’t	Index	on	Exceptions
Don’t	use	__getslice__	&	Friends

Updating	doctests
Update	 map	 for	 imbalanced	 input
sequences

Eliminate	-3	Warnings
Alternative	Approaches

Supporting	 Only	 Python	 3	 Going	 Forward	 From
Python	2	Code
Backporting	Python	3	code	to	Python	2

Other	Resources
Porting	Extension	Modules	to	Python	3

Conditional	compilation
Changes	to	Object	APIs

str/unicode	Unification
long/int	Unification

Module	initialization	and	state
CObject	replaced	with	Capsule
Other	options

Curses	Programming	with	Python
What	is	curses?

The	Python	curses	module
Starting	and	ending	a	curses	application
Windows	and	Pads
Displaying	Text

Attributes	and	Color
User	Input
For	More	Information

Descriptor	HowTo	Guide
Abstract
Definition	and	Introduction
Descriptor	Protocol
Invoking	Descriptors
Descriptor	Example
Properties
Functions	and	Methods

Static	Methods	and	Class	Methods
Functional	Programming	HOWTO

Introduction
Formal	provability
Modularity
Ease	of	debugging	and	testing
Composability

Iterators
Data	Types	That	Support	Iterators

Generator	expressions	and	list	comprehensions
Generators

Passing	values	into	a	generator
Built-in	functions
The	itertools	module

Creating	new	iterators
Calling	functions	on	elements
Selecting	elements
Combinatoric	functions
Grouping	elements

The	functools	module
The	operator	module

Small	functions	and	the	lambda	expression
Revision	History	and	Acknowledgements
References

General
Python-specific
Python	documentation

Logging	HOWTO
Basic	Logging	Tutorial

When	to	use	logging
A	simple	example
Logging	to	a	file
Logging	from	multiple	modules
Logging	variable	data

Changing	the	format	of	displayed	messages
Displaying	the	date/time	in	messages
Next	Steps

Advanced	Logging	Tutorial
Logging	Flow
Loggers
Handlers
Formatters
Configuring	Logging
What	happens	if	no	configuration	is	provided
Configuring	Logging	for	a	Library

Logging	Levels
Custom	Levels

Useful	Handlers
Exceptions	raised	during	logging
Using	arbitrary	objects	as	messages
Optimization

Logging	Cookbook
Using	logging	in	multiple	modules
Multiple	handlers	and	formatters
Logging	to	multiple	destinations
Configuration	server	example
Dealing	with	handlers	that	block
Sending	and	receiving	logging	events	across	a	network
Adding	contextual	information	to	your	logging	output

Using	 LoggerAdapters	 to	 impart	 contextual
information

Using	 objects	 other	 than	 dicts	 to	 pass
contextual	information

Using	Filters	to	impart	contextual	information
Logging	to	a	single	file	from	multiple	processes
Using	file	rotation
Use	of	alternative	formatting	styles
Customizing	LogRecord

Subclassing	QueueHandler	-	a	ZeroMQ	example
Subclassing	QueueListener	-	a	ZeroMQ	example
An	example	dictionary-based	configuration
Using	 a	 rotator	 and	 namer	 to	 customize	 log	 rotation
processing
A	more	elaborate	multiprocessing	example
Inserting	a	BOM	into	messages	sent	to	a	SysLogHandler
Implementing	structured	logging
Customizing	handlers	with	dictConfig()
Using	 particular	 formatting	 styles	 throughout	 your
application

Using	LogRecord	factories
Using	custom	message	objects

Configuring	filters	with	dictConfig()
Regular	Expression	HOWTO

Introduction
Simple	Patterns

Matching	Characters
Repeating	Things

Using	Regular	Expressions
Compiling	Regular	Expressions
The	Backslash	Plague
Performing	Matches
Module-Level	Functions
Compilation	Flags

More	Pattern	Power
More	Metacharacters
Grouping
Non-capturing	and	Named	Groups
Lookahead	Assertions

Modifying	Strings
Splitting	Strings
Search	and	Replace

Common	Problems

Use	String	Methods
match()	versus	search()
Greedy	versus	Non-Greedy
Using	re.VERBOSE

Feedback
Socket	Programming	HOWTO

Sockets
History

Creating	a	Socket
IPC

Using	a	Socket
Binary	Data

Disconnecting
When	Sockets	Die

Non-blocking	Sockets
Sorting	HOW	TO

Sorting	Basics
Key	Functions
Operator	Module	Functions
Ascending	and	Descending
Sort	Stability	and	Complex	Sorts
The	Old	Way	Using	Decorate-Sort-Undecorate
The	Old	Way	Using	the	cmp	Parameter
Odd	and	Ends

Unicode	HOWTO
Introduction	to	Unicode

History	of	Character	Codes
Definitions
Encodings
References

Python’s	Unicode	Support
The	String	Type
Converting	to	Bytes
Unicode	Literals	in	Python	Source	Code

Unicode	Properties
Unicode	Regular	Expressions
References

Reading	and	Writing	Unicode	Data
Unicode	filenames
Tips	for	Writing	Unicode-aware	Programs

Converting	Between	File	Encodings
Files	in	an	Unknown	Encoding

References
Acknowledgements

HOWTO	Fetch	Internet	Resources	Using	The	urllib	Package
Introduction
Fetching	URLs

Data
Headers

Handling	Exceptions
URLError
HTTPError

Error	Codes
Wrapping	it	Up

Number	1
Number	2

info	and	geturl
Openers	and	Handlers
Basic	Authentication
Proxies
Sockets	and	Layers
Footnotes

HOWTO	Use	Python	in	the	web
The	Low-Level	View

Common	Gateway	Interface
Simple	script	for	testing	CGI
Setting	up	CGI	on	your	own	server
Common	problems	with	CGI	scripts

mod_python
FastCGI	and	SCGI

Setting	up	FastCGI
mod_wsgi

Step	back:	WSGI
WSGI	Servers
Case	study:	MoinMoin

Model-View-Controller
Ingredients	for	Websites

Templates
Data	persistence

Frameworks
Some	notable	frameworks

Django
TurboGears
Zope
Other	notable	frameworks

Argparse	Tutorial
Concepts
The	basics
Introducing	Positional	arguments
Introducing	Optional	arguments

Short	options
Combining	Positional	and	Optional	arguments
Getting	a	little	more	advanced

Conflicting	options
Conclusion

An	introduction	to	the	ipaddress	module
Creating	Address/Network/Interface	objects

A	Note	on	IP	Versions
IP	Host	Addresses
Defining	Networks
Host	Interfaces

Inspecting	Address/Network/Interface	Objects

Networks	as	lists	of	Addresses
Comparisons
Using	IP	Addresses	with	other	modules
Getting	more	detail	when	instance	creation	fails

Argument	Clinic	How-To
The	Goals	Of	Argument	Clinic
Basic	Concepts	And	Usage
Converting	Your	First	Function
Advanced	Topics

Symbolic	default	values
Renaming	 the	C	 functions	and	variables	generated
by	Argument	Clinic
Converting	functions	using	PyArg_UnpackTuple
Optional	Groups
Using	 real	 Argument	 Clinic	 converters,	 instead	 of
“legacy	converters”
Py_buffer
Advanced	converters
Parameter	default	values
The	NULL	default	value
Expressions	specified	as	default	values
Using	a	return	converter
Cloning	existing	functions
Calling	Python	code
Using	a	“self	converter”
Writing	a	custom	converter
Writing	a	custom	return	converter
METH_O	and	METH_NOARGS
tp_new	and	tp_init	functions
Changing	and	redirecting	Clinic’s	output
The	#ifdef	trick
Using	Argument	Clinic	in	Python	files

Python	Frequently	Asked	Questions
General	Python	FAQ

General	Information
Python	in	the	real	world

Programming	FAQ
General	Questions
Core	Language
Numbers	and	strings
Performance
Sequences	(Tuples/Lists)
Dictionaries
Objects
Modules

Design	and	History	FAQ
Why	 does	 Python	 use	 indentation	 for	 grouping	 of
statements?
Why	am	 I	 getting	 strange	 results	with	 simple	arithmetic
operations?
Why	are	floating-point	calculations	so	inaccurate?
Why	are	Python	strings	immutable?
Why	must	 ‘self’	 be	 used	 explicitly	 in	method	 definitions
and	calls?
Why	can’t	I	use	an	assignment	in	an	expression?
Why	 does	 Python	 use	 methods	 for	 some	 functionality
(e.g.	list.index())	but	functions	for	other	(e.g.	len(list))?
Why	 is	 join()	 a	 string	 method	 instead	 of	 a	 list	 or	 tuple
method?
How	fast	are	exceptions?
Why	isn’t	there	a	switch	or	case	statement	in	Python?
Can’t	 you	 emulate	 threads	 in	 the	 interpreter	 instead	 of
relying	on	an	OS-specific	thread	implementation?
Why	can’t	lambda	expressions	contain	statements?
Can	 Python	 be	 compiled	 to	machine	 code,	 C	 or	 some
other	language?
How	does	Python	manage	memory?
Why	 doesn’t	 CPython	 use	 a	 more	 traditional	 garbage

collection	scheme?
Why	isn’t	all	memory	freed	when	CPython	exits?
Why	are	there	separate	tuple	and	list	data	types?
How	are	lists	implemented?
How	are	dictionaries	implemented?
Why	must	dictionary	keys	be	immutable?
Why	doesn’t	list.sort()	return	the	sorted	list?
How	 do	 you	 specify	 and	 enforce	 an	 interface	 spec	 in
Python?
Why	are	default	values	shared	between	objects?
Why	is	there	no	goto?
Why	can’t	raw	strings	(r-strings)	end	with	a	backslash?
Why	doesn’t	Python	have	a	“with”	statement	for	attribute
assignments?
Why	 are	 colons	 required	 for	 the	 if/while/def/class
statements?
Why	does	Python	allow	commas	at	 the	end	of	 lists	and
tuples?

Library	and	Extension	FAQ
General	Library	Questions
Common	tasks
Threads
Input	and	Output
Network/Internet	Programming
Databases
Mathematics	and	Numerics

Extending/Embedding	FAQ
Can	I	create	my	own	functions	in	C?
Can	I	create	my	own	functions	in	C++?
Writing	C	is	hard;	are	there	any	alternatives?
How	can	I	execute	arbitrary	Python	statements	from	C?
How	can	I	evaluate	an	arbitrary	Python	expression	from
C?
How	do	I	extract	C	values	from	a	Python	object?

How	 do	 I	 use	 Py_BuildValue()	 to	 create	 a	 tuple	 of
arbitrary	length?
How	do	I	call	an	object’s	method	from	C?
How	do	I	catch	the	output	from	PyErr_Print()	(or	anything
that	prints	to	stdout/stderr)?
How	do	I	access	a	module	written	in	Python	from	C?
How	do	I	interface	to	C++	objects	from	Python?
I	added	a	module	using	the	Setup	file	and	the	make	fails;
why?
How	do	I	debug	an	extension?
I	want	to	compile	a	Python	module	on	my	Linux	system,
but	some	files	are	missing.	Why?
What	 does	 “SystemError:	 _PyImport_FixupExtension:
module	yourmodule	not	loaded”	mean?
How	do	I	tell	“incomplete	input”	from	“invalid	input”?
How	 do	 I	 find	 undefined	 g++	 symbols	 __builtin_new	 or
__pure_virtual?
Can	 I	 create	 an	 object	 class	 with	 some	 methods
implemented	 in	 C	 and	 others	 in	 Python	 (e.g.	 through
inheritance)?

Python	on	Windows	FAQ
How	do	I	run	a	Python	program	under	Windows?
How	do	I	make	Python	scripts	executable?
Why	does	Python	sometimes	take	so	long	to	start?
How	do	I	make	an	executable	from	a	Python	script?
Is	a	*.pyd	file	the	same	as	a	DLL?
How	can	I	embed	Python	into	a	Windows	application?
How	do	I	keep	editors	from	inserting	tabs	into	my	Python
source?
How	do	I	check	for	a	keypress	without	blocking?
How	do	I	emulate	os.kill()	in	Windows?
How	 do	 I	 extract	 the	 downloaded	 documentation	 on
Windows?

Graphic	User	Interface	FAQ

General	GUI	Questions
What	platform-independent	GUI	toolkits	exist	for	Python?
What	platform-specific	GUI	toolkits	exist	for	Python?
Tkinter	questions

“Why	is	Python	Installed	on	my	Computer?”	FAQ
What	is	Python?
Why	is	Python	installed	on	my	machine?
Can	I	delete	Python?

Glossary
About	these	documents

Contributors	to	the	Python	Documentation
Reporting	Bugs

Documentation	bugs
Using	the	Python	issue	tracker
Getting	started	contributing	to	Python	yourself

Copyright
History	and	License

History	of	the	software
Terms	 and	 conditions	 for	 accessing	 or	 otherwise	 using
Python
Licenses	and	Acknowledgements	for	Incorporated	Software

Mersenne	Twister
Sockets
Floating	point	exception	control
Asynchronous	socket	services
Cookie	management
Execution	tracing
UUencode	and	UUdecode	functions
XML	Remote	Procedure	Calls
test_epoll
Select	kqueue
SipHash24
strtod	and	dtoa
OpenSSL

expat
libffi
zlib
cfuhash
libmpdec

indexmodules	|next	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

10.	API	Reference

10.1.	distutils.core	—	Core	Distutils
functionality

The	distutils.core	module	 is	 the	 only	module	 that	 needs	 to	 be
installed	to	use	the	Distutils.	It	provides	the	setup()	(which	is	called
from	 the	 setup	 script).	 Indirectly	 provides	 the
distutils.dist.Distribution	and	distutils.cmd.Command
class.

distutils.core.setup(arguments)
The	 basic	 do-everything	 function	 that	 does	 most	 everything	 you
could	ever	ask	for	from	a	Distutils	method.

The	setup	function	takes	a	large	number	of	arguments.	These	are
laid	out	in	the	following	table.

argument	name value type

name The	name	of	the
package a	string

version
The	version	number	of
the	package;	see
distutils.version

a	string

description A	single	line	describing
the	package a	string

long_description Longer	description	of
the	package a	string

author The	name	of	the
package	author a	string

author_email The	email	address	of
the	package	author a	string

maintainer

The	name	of	the
current	maintainer,	if
different	from	the
author.	Note	that	if	the
maintainer	is	provided,
distutils	will	use	it	as
the	author	in	PKG-
INFO

a	string

maintainer_email

The	email	address	of
the	current	maintainer,
if	different	from	the
author

a	string

url A	URL	for	the	package
(homepage) a	string

download_url A	URL	to	download	the
package a	string

packages
A	list	of	Python
packages	that	distutils
will	manipulate

a	list	of	strings

py_modules
A	list	of	Python
modules	that	distutils
will	manipulate

a	list	of	strings

scripts
A	list	of	standalone
script	files	to	be	built
and	installed

a	list	of	strings

ext_modules A	list	of	Python
extensions	to	be	built

a	list	of	instances	of
distutils.core.Extension

classifiers A	list	of	categories	for
the	package

a	list	of	strings;	valid	classifiers	are
listed	on	PyPI.

distclass the	Distribution
class	to	use

a	subclass	of
distutils.core.Distribution

The	name	of	the
setup.py	script	-

http://pypi.python.org/pypi?:action=list_classifiers

script_name defaults	to
sys.argv[0]

a	string

script_args Arguments	to	supply	to
the	setup	script a	list	of	strings

options default	options	for	the
setup	script a	dictionary

license The	license	for	the
package a	string

keywords Descriptive	meta-data,
see	PEP	314

a	list	of	strings	or	a	comma-
separated	string

platforms 	 a	list	of	strings	or	a	comma-
separated	string

cmdclass
A	mapping	of
command	names	to
Command	subclasses

a	dictionary

data_files A	list	of	data	files	to
install a	list

package_dir A	mapping	of	package
to	directory	names a	dictionary

distutils.core.run_setup(script_name[,	script_args=None,
stop_after='run'])

Run	 a	 setup	 script	 in	 a	 somewhat	 controlled	 environment,	 and
return	the	distutils.dist.Distribution	instance	that	drives
things.	This	 is	useful	 if	you	need	 to	 find	out	 the	distribution	meta-
data	 (passed	 as	 keyword	 args	 from	 script	 to	 setup()),	 or	 the
contents	of	the	config	files	or	command-line.

script_name	 is	 a	 file	 that	 will	 be	 read	 and	 run	 with	 exec().
sys.argv[0]	will	 be	 replaced	with	script	 for	 the	duration	of	 the

http://www.python.org/dev/peps/pep-0314

call.	script_args	is	a	list	of	strings;	if	supplied,	sys.argv[1:]	will
be	replaced	by	script_args	for	the	duration	of	the	call.

stop_after	tells	setup()	when	to	stop	processing;	possible	values:

value description

init
Stop	after	the	Distribution	instance	has
been	created	and	populated	with	the	keyword
arguments	to	setup()

config
Stop	after	config	files	have	been	parsed	(and
their	data	stored	in	the	Distribution
instance)

commandline
Stop	after	the	command-line	(sys.argv[1:]
or	script_args)	have	been	parsed	(and	the	data
stored	in	the	Distribution	instance.)

run
Stop	after	all	commands	have	been	run	(the
same	as	if	setup()	had	been	called	in	the
usual	way).	This	is	the	default	value.

In	 addition,	 the	 distutils.core	 module	 exposed	 a	 number	 of
classes	that	live	elsewhere.

Extension	from	distutils.extension
Command	from	distutils.cmd
Distribution	from	distutils.dist

A	 short	 description	 of	 each	 of	 these	 follows,	 but	 see	 the	 relevant
module	for	the	full	reference.

class	distutils.core.Extension
The	Extension	class	describes	a	single	C	or	C++extension	module
in	a	setup	script.	It	accepts	the	following	keyword	arguments	in	its
constructor:

argument	name value type

name

the	full	name	of	the
extension,	including
any	packages	—	ie.
not	a	filename	or
pathname,	but	Python
dotted	name

a	string

sources

list	of	source
filenames,	relative	to
the	distribution	root
(where	the	setup	script
lives),	in	Unix	form
(slash-	separated)	for
portability.	Source	files
may	be	C,	C++,	SWIG
(.i),	platform-specific
resource	files,	or
whatever	else	is
recognized	by	the
build_ext	command
as	source	for	a	Python
extension.

a	list	of	strings

include_dirs

list	of	directories	to
search	for	C/C++
header	files	(in	Unix
form	for	portability)

a	list	of	strings

define_macros

list	of	macros	to	define;
each	macro	is	defined
using	a	2-tuple
(name,	value),
where	value	is	either
the	string	to	define	it	to
or	None	to	define	it
without	a	particular
value	(equivalent	of
#define	FOO	in

a	list	of	tuples

source	or	-DFOO	on
Unix	C	compiler
command	line)

undef_macros list	of	macros	to
undefine	explicitly a	list	of	strings

library_dirs
list	of	directories	to
search	for	C/C++
libraries	at	link	time

a	list	of	strings

libraries
list	of	library	names
(not	filenames	or
paths)	to	link	against

a	list	of	strings

runtime_library_dirs

list	of	directories	to
search	for	C/C++
libraries	at	run	time	(for
shared	extensions,	this
is	when	the	extension
is	loaded)

a	list	of	strings

extra_objects

list	of	extra	files	to	link
with	(eg.	object	files
not	implied	by
‘sources’,	static	library
that	must	be	explicitly
specified,	binary
resource	files,	etc.)

a	list	of	strings

extra_compile_args

any	extra	platform-	and
compiler-specific
information	to	use
when	compiling	the
source	files	in
‘sources’.	For
platforms	and
compilers	where	a
command	line	makes
sense,	this	is	typically
a	list	of	command-line

a	list	of	strings

arguments,	but	for
other	platforms	it	could
be	anything.

extra_link_args

any	extra	platform-	and
compiler-specific
information	to	use
when	linking	object
files	together	to	create
the	extension	(or	to
create	a	new	static
Python	interpreter).
Similar	interpretation
as	for
‘extra_compile_args’.

a	list	of	strings

export_symbols

list	of	symbols	to	be
exported	from	a
shared	extension.	Not
used	on	all	platforms,
and	not	generally
necessary	for	Python
extensions,	which
typically	export	exactly
one	symbol:	init	+
extension_name.

a	list	of	strings

depends list	of	files	that	the
extension	depends	on a	list	of	strings

language

extension	language
(i.e.	'c',	'c++',
'objc').	Will	be
detected	from	the
source	extensions	if
not	provided.

a	string

optional

specifies	that	a	build
failure	in	the	extension
should	not	abort	the
build	process,	but a	boolean

simply	skip	the
extension.

class	distutils.core.Distribution
A	Distribution	describes	how	to	build,	install	and	package	up	a
Python	software	package.

See	 the	 setup()	 function	 for	 a	 list	 of	 keyword	 arguments
accepted	 by	 the	 Distribution	 constructor.	 setup()	 creates	 a
Distribution	instance.

class	distutils.core.Command
A	Command	class	(or	rather,	an	 instance	of	one	of	 its	subclasses)
implement	a	single	distutils	command.

10.2.	distutils.ccompiler	—
CCompiler	base	class

This	 module	 provides	 the	 abstract	 base	 class	 for	 the	 CCompiler
classes.	A	CCompiler	 instance	can	be	used	 for	all	 the	compile	and
link	steps	needed	to	build	a	single	project.	Methods	are	provided	to	set
options	 for	 the	compiler	—	macro	definitions,	 include	directories,	 link
path,	libraries	and	the	like.

This	module	provides	the	following	functions.

distutils.ccompiler.gen_lib_options(compiler,
library_dirs,	runtime_library_dirs,	libraries)

Generate	linker	options	for	searching	library	directories	and	linking
with	 specific	 libraries.	 libraries	 and	 library_dirs	 are,	 respectively,
lists	 of	 library	 names	 (not	 filenames!)	 and	 search	 directories.
Returns	a	 list	of	command-line	options	suitable	for	use	with	some
compiler	(depending	on	the	two	format	strings	passed	in).

distutils.ccompiler.gen_preprocess_options(macros,
include_dirs)

Generate	C	pre-processor	options	 (-D,	-U,	-I)	as	used	by	at	 least
two	 types	of	compilers:	 the	 typical	Unix	compiler	and	Visual	C++.
macros	 is	the	usual	thing,	a	list	of	1-	or	2-tuples,	where	(name,)
means	undefine	 (-U)	macro	name,	 and	 (name,	value)	means
define	 (-D)	 macro	 name	 to	 value.	 include_dirs	 is	 just	 a	 list	 of
directory	 names	 to	 be	 added	 to	 the	 header	 file	 search	 path	 (-I).
Returns	 a	 list	 of	 command-line	 options	 suitable	 for	 either	 Unix
compilers	or	Visual	C++.

distutils.ccompiler.get_default_compiler(osname,

platform)
Determine	the	default	compiler	to	use	for	the	given	platform.

osname	should	be	one	of	the	standard	Python	OS	names	(i.e.	the
ones	 returned	 by	 os.name)	 and	 platform	 the	 common	 value
returned	by	sys.platform	for	the	platform	in	question.

The	default	values	are	os.name	and	sys.platform	 in	case	the
parameters	are	not	given.

distutils.ccompiler.new_compiler(plat=None,
compiler=None,	verbose=0,	dry_run=0,	force=0)

Factory	 function	 to	 generate	 an	 instance	 of	 some	 CCompiler
subclass	 for	 the	 supplied	 platform/compiler	 combination.	 plat
defaults	to	os.name	(eg.	'posix',	'nt'),	and	compiler	defaults
to	 the	 default	 compiler	 for	 that	 platform.	Currently	 only	 'posix'
and	'nt'	are	supported,	and	the	default	compilers	are	“traditional
Unix	 interface”	 (UnixCCompiler	 class)	 and	 Visual	 C++
(MSVCCompiler	class).	Note	that	 it’s	perfectly	possible	to	ask	for
a	Unix	 compiler	 object	 under	Windows,	 and	 a	Microsoft	 compiler
object	 under	 Unix—if	 you	 supply	 a	 value	 for	 compiler,	 plat	 is
ignored.

distutils.ccompiler.show_compilers()
Print	list	of	available	compilers	(used	by	the	--help-compiler	options
to	build,	build_ext,	build_clib).

class	distutils.ccompiler.CCompiler([verbose=0,
dry_run=0,	force=0])

The	 abstract	 base	 class	 CCompiler	 defines	 the	 interface	 that
must	be	implemented	by	real	compiler	classes.	The	class	also	has
some	utility	methods	used	by	several	compiler	classes.

The	 basic	 idea	 behind	 a	 compiler	 abstraction	 class	 is	 that	 each
instance	 can	 be	 used	 for	 all	 the	 compile/link	 steps	 in	 building	 a
single	project.	Thus,	attributes	common	to	all	of	those	compile	and
link	steps	—	 include	directories,	macros	 to	define,	 libraries	 to	 link
against,	etc.	—	are	attributes	of	the	compiler	instance.	To	allow	for
variability	 in	 how	 individual	 files	 are	 treated,	 most	 of	 those
attributes	may	be	varied	on	a	per-compilation	or	per-link	basis.

The	 constructor	 for	 each	 subclass	 creates	 an	 instance	 of	 the
Compiler	object.	Flags	are	verbose	(show	verbose	output),	dry_run
(don’t	 actually	 execute	 the	 steps)	 and	 force	 (rebuild	 everything,
regardless	 of	 dependencies).	 All	 of	 these	 flags	 default	 to	 0	 (off).
Note	that	you	probably	don’t	want	to	instantiate	CCompiler	or	one
of	 its	 subclasses	 directly	 -	 use	 the
distutils.CCompiler.new_compiler()	 factory	 function
instead.

The	following	methods	allow	you	to	manually	alter	compiler	options
for	the	instance	of	the	Compiler	class.

add_include_dir(dir)
Add	dir	to	the	list	of	directories	that	will	be	searched	for	header
files.	 The	 compiler	 is	 instructed	 to	 search	 directories	 in	 the
order	 in	 which	 they	 are	 supplied	 by	 successive	 calls	 to
add_include_dir().

set_include_dirs(dirs)
Set	 the	 list	of	directories	 that	will	be	searched	 to	dirs	 (a	 list	of
strings).	 Overrides	 any	 preceding	 calls	 to
add_include_dir();	 subsequent	 calls	 to
add_include_dir()	 add	 to	 the	 list	 passed	 to
set_include_dirs().	 This	 does	 not	 affect	 any	 list	 of

standard	 include	 directories	 that	 the	 compiler	 may	 search	 by
default.

add_library(libname)
Add	 libname	 to	 the	 list	 of	 libraries	 that	 will	 be	 included	 in	 all
links	 driven	 by	 this	 compiler	 object.	 Note	 that	 libname	 should
not	be	the	name	of	a	file	containing	a	library,	but	the	name	of
the	library	itself:	the	actual	filename	will	be	inferred	by	the	linker,
the	compiler,	or	the	compiler	class	(depending	on	the	platform).

The	linker	will	be	instructed	to	link	against	libraries	in	the	order
they	 were	 supplied	 to	 add_library()	 and/or
set_libraries().	 It	 is	 perfectly	 valid	 to	 duplicate	 library
names;	 the	 linker	will	 be	 instructed	 to	 link	 against	 libraries	 as
many	times	as	they	are	mentioned.

set_libraries(libnames)
Set	 the	 list	of	 libraries	 to	be	 included	 in	all	 links	driven	by	 this
compiler	 object	 to	 libnames	 (a	 list	 of	 strings).	 This	 does	 not
affect	any	standard	system	libraries	that	the	linker	may	include
by	default.

add_library_dir(dir)
Add	dir	to	the	list	of	directories	that	will	be	searched	for	libraries
specified	 to	 add_library()	 and	 set_libraries().	 The
linker	will	be	 instructed	 to	search	 for	 libraries	 in	 the	order	 they
are	 supplied	 to	 add_library_dir()	 and/or
set_library_dirs().

set_library_dirs(dirs)
Set	the	list	of	library	search	directories	to	dirs	(a	list	of	strings).
This	 does	not	 affect	 any	 standard	 library	 search	path	 that	 the

linker	may	search	by	default.

add_runtime_library_dir(dir)
Add	dir	to	the	list	of	directories	that	will	be	searched	for	shared
libraries	at	runtime.

set_runtime_library_dirs(dirs)
Set	 the	 list	 of	 directories	 to	 search	 for	 shared	 libraries	 at
runtime	 to	 dirs	 (a	 list	 of	 strings).	 This	 does	 not	 affect	 any
standard	 search	 path	 that	 the	 runtime	 linker	 may	 search	 by
default.

define_macro(name[,	value=None])
Define	a	preprocessor	macro	for	all	compilations	driven	by	this
compiler	 object.	 The	 optional	 parameter	 value	 should	 be	 a
string;	if	it	is	not	supplied,	then	the	macro	will	be	defined	without
an	 explicit	 value	 and	 the	 exact	 outcome	 depends	 on	 the
compiler	used.

undefine_macro(name)
Undefine	 a	 preprocessor	macro	 for	 all	 compilations	 driven	 by
this	 compiler	 object.	 If	 the	 same	 macro	 is	 defined	 by
define_macro()	and	undefined	by	undefine_macro()	the
last	 call	 takes	 precedence	 (including	 multiple	 redefinitions	 or
undefinitions).	 If	 the	 macro	 is	 redefined/undefined	 on	 a	 per-
compilation	basis	(ie.	in	the	call	to	compile()),	then	that	takes
precedence.

add_link_object(object)
Add	 object	 to	 the	 list	 of	 object	 files	 (or	 analogues,	 such	 as
explicitly	 named	 library	 files	 or	 the	 output	 of	 “resource
compilers”)	 to	be	 included	 in	every	 link	driven	by	 this	compiler

object.

set_link_objects(objects)
Set	the	list	of	object	files	(or	analogues)	to	be	included	in	every
link	to	objects.	This	does	not	affect	any	standard	object	files	that
the	linker	may	include	by	default	(such	as	system	libraries).

The	 following	 methods	 implement	 methods	 for	 autodetection	 of
compiler	 options,	 providing	 some	 functionality	 similar	 to	 GNU
autoconf.

detect_language(sources)
Detect	 the	 language	 of	 a	 given	 file,	 or	 list	 of	 files.	 Uses	 the
instance	 attributes	 language_map	 (a	 dictionary),	 and
language_order	(a	list)	to	do	the	job.

find_library_file(dirs,	lib[,	debug=0])
Search	 the	 specified	 list	 of	 directories	 for	 a	 static	 or	 shared
library	file	lib	and	return	the	full	path	to	that	file.	If	debug	is	true,
look	for	a	debugging	version	(if	that	makes	sense	on	the	current
platform).	Return	None	if	lib	wasn’t	found	in	any	of	the	specified
directories.

has_function(funcname[,	 includes=None,

include_dirs=None,	libraries=None,	library_dirs=None])
Return	a	boolean	indicating	whether	funcname	is	supported	on
the	 current	 platform.	 The	 optional	 arguments	 can	 be	 used	 to
augment	 the	 compilation	 environment	 by	 providing	 additional
include	files	and	paths	and	libraries	and	paths.

library_dir_option(dir)
Return	 the	 compiler	 option	 to	 add	dir	 to	 the	 list	 of	 directories

searched	for	libraries.

library_option(lib)
Return	the	compiler	option	to	add	dir	to	the	list	of	libraries	linked
into	the	shared	library	or	executable.

runtime_library_dir_option(dir)
Return	 the	 compiler	 option	 to	 add	dir	 to	 the	 list	 of	 directories
searched	for	runtime	libraries.

set_executables(**args)
Define	the	executables	(and	options	for	them)	that	will	be	run	to
perform	 the	 various	 stages	 of	 compilation.	 The	 exact	 set	 of
executables	 that	 may	 be	 specified	 here	 depends	 on	 the
compiler	 class	 (via	 the	 ‘executables’	 class	 attribute),	 but	most
will	have:

attribute description

compiler the	C/C++	compiler

linker_so linker	used	to	create	shared	objects	and
libraries

linker_exe linker	used	to	create	binary	executables

archiver static	library	creator

On	platforms	with	a	command-line	(Unix,	DOS/Windows),	each
of	 these	 is	a	string	 that	will	be	split	 into	executable	name	and
(optional)	list	of	arguments.	(Splitting	the	string	is	done	similarly
to	how	Unix	shells	operate:	words	are	delimited	by	spaces,	but
quotes	 and	 backslashes	 can	 override	 this.	 See
distutils.util.split_quoted().)

The	following	methods	invoke	stages	in	the	build	process.

compile(sources[,	 output_dir=None,	 macros=None,
include_dirs=None,	 debug=0,	 extra_preargs=None,
extra_postargs=None,	depends=None])

Compile	one	or	more	source	 files.	Generates	object	 files	 (e.g.
transforms	a	.c	file	to	a	.o	file.)

sources	must	be	a	list	of	filenames,	most	likely	C/C++	files,	but
in	reality	anything	that	can	be	handled	by	a	particular	compiler
and	 compiler	 class	 (eg.	 MSVCCompiler	 can	 handle	 resource
files	 in	 sources).	 Return	 a	 list	 of	 object	 filenames,	 one	 per
source	filename	in	sources.	Depending	on	the	 implementation,
not	 all	 source	 files	 will	 necessarily	 be	 compiled,	 but	 all
corresponding	object	filenames	will	be	returned.

If	 output_dir	 is	 given,	 object	 files	 will	 be	 put	 under	 it,	 while
retaining	 their	 original	 path	 component.	 That	 is,	 foo/bar.c
normally	compiles	to	foo/bar.o	(for	a	Unix	implementation);	if
output_dir	 is	 build,	 then	 it	 would	 compile	 to
build/foo/bar.o.

macros,	 if	 given,	must	 be	 a	 list	 of	macro	 definitions.	 A	macro
definition	is	either	a	(name,	value)	2-tuple	or	a	(name,)	1-
tuple.	 The	 former	 defines	 a	 macro;	 if	 the	 value	 is	 None,	 the
macro	 is	 defined	 without	 an	 explicit	 value.	 The	 1-tuple	 case
undefines	 a	 macro.	 Later	 definitions/redefinitions/undefinitions
take	precedence.

include_dirs,	if	given,	must	be	a	list	of	strings,	the	directories	to
add	 to	 the	 default	 include	 file	 search	 path	 for	 this	 compilation
only.

debug	 is	 a	 boolean;	 if	 true,	 the	 compiler	 will	 be	 instructed	 to

output	debug	symbols	in	(or	alongside)	the	object	file(s).

extra_preargs	 and	 extra_postargs	 are	 implementation-
dependent.	On	platforms	 that	 have	 the	 notion	 of	 a	 command-
line	 (e.g.	 Unix,	 DOS/Windows),	 they	 are	 most	 likely	 lists	 of
strings:	 extra	 command-line	 arguments	 to	 prepend/append	 to
the	 compiler	 command	 line.	 On	 other	 platforms,	 consult	 the
implementation	 class	 documentation.	 In	 any	 event,	 they	 are
intended	 as	 an	 escape	 hatch	 for	 those	 occasions	 when	 the
abstract	compiler	framework	doesn’t	cut	the	mustard.

depends,	 if	given,	 is	a	 list	of	 filenames	 that	all	 targets	depend
on.	 If	 a	 source	 file	 is	 older	 than	 any	 file	 in	 depends,	 then	 the
source	 file	 will	 be	 recompiled.	 This	 supports	 dependency
tracking,	but	only	at	a	coarse	granularity.

Raises	CompileError	on	failure.

create_static_lib(objects,	 output_libname[,
output_dir=None,	debug=0,	target_lang=None])

Link	a	bunch	of	stuff	together	to	create	a	static	library	file.	The
“bunch	 of	 stuff”	 consists	 of	 the	 list	 of	 object	 files	 supplied	 as
objects,	the	extra	object	files	supplied	to	add_link_object()
and/or	 set_link_objects(),	 the	 libraries	 supplied	 to
add_library()	and/or	set_libraries(),	and	the	libraries
supplied	as	libraries	(if	any).

output_libname	 should	 be	 a	 library	 name,	 not	 a	 filename;	 the
filename	will	be	inferred	from	the	library	name.	output_dir	is	the
directory	where	the	library	file	will	be	put.

debug	 is	 a	 boolean;	 if	 true,	 debugging	 information	 will	 be
included	 in	 the	 library	 (note	 that	 on	 most	 platforms,	 it	 is	 the

compile	step	where	this	matters:	the	debug	flag	is	included	here
just	for	consistency).

target_lang	 is	 the	 target	 language	 for	which	 the	 given	 objects
are	being	compiled.	This	allows	specific	linkage	time	treatment
of	certain	languages.

Raises	LibError	on	failure.

link(target_desc,	 objects,	 output_filename[,	 output_dir=None,
libraries=None,	 library_dirs=None,	 runtime_library_dirs=None,
export_symbols=None,	 debug=0,	 extra_preargs=None,
extra_postargs=None,	build_temp=None,	target_lang=None])

Link	a	bunch	of	stuff	together	to	create	an	executable	or	shared
library	file.

The	“bunch	of	stuff”	consists	of	the	list	of	object	files	supplied	as
objects.	output_filename	 should	be	a	 filename.	 If	output_dir	 is
supplied,	output_filename	 is	 relative	 to	 it	 (i.e.	 output_filename
can	provide	directory	components	if	needed).

libraries	 is	 a	 list	 of	 libraries	 to	 link	 against.	 These	 are	 library
names,	not	filenames,	since	they’re	translated	into	filenames	in
a	 platform-specific	 way	 (eg.	 foo	 becomes	 libfoo.a	 on	 Unix
and	foo.lib	on	DOS/Windows).	However,	they	can	include	a
directory	 component,	 which	 means	 the	 linker	 will	 look	 in	 that
specific	directory	rather	than	searching	all	the	normal	locations.

library_dirs,	if	supplied,	should	be	a	list	of	directories	to	search
for	 libraries	 that	 were	 specified	 as	 bare	 library	 names	 (ie.	 no
directory	component).	These	 are	 on	 top	 of	 the	 system	default
and	 those	 supplied	 to	 add_library_dir()	 and/or
set_library_dirs().	 runtime_library_dirs	 is	 a	 list	 of

directories	 that	 will	 be	 embedded	 into	 the	 shared	 library	 and
used	to	search	for	other	shared	libraries	that	*it*	depends	on	at
run-time.	(This	may	only	be	relevant	on	Unix.)

export_symbols	 is	a	 list	 of	 symbols	 that	 the	shared	 library	will
export.	(This	appears	to	be	relevant	only	on	Windows.)

debug	 is	 as	 for	 compile()	 and	 create_static_lib(),
with	 the	 slight	 distinction	 that	 it	 actually	 matters	 on	 most
platforms	 (as	 opposed	 to	 create_static_lib(),	 which
includes	a	debug	flag	mostly	for	form’s	sake).

extra_preargs	 and	 extra_postargs	 are	 as	 for	 compile()
(except	of	course	that	they	supply	command-line	arguments	for
the	particular	linker	being	used).

target_lang	 is	 the	 target	 language	 for	which	 the	 given	 objects
are	being	compiled.	This	allows	specific	linkage	time	treatment
of	certain	languages.

Raises	LinkError	on	failure.

link_executable(objects,	 output_progname[,
output_dir=None,	 libraries=None,	 library_dirs=None,
runtime_library_dirs=None,	 debug=0,	 extra_preargs=None,
extra_postargs=None,	target_lang=None])

Link	 an	 executable.	 output_progname	 is	 the	 name	 of	 the	 file
executable,	while	objects	are	a	list	of	object	filenames	to	link	in.
Other	arguments	are	as	for	the	link()	method.

link_shared_lib(objects,	 output_libname[,
output_dir=None,	 libraries=None,	 library_dirs=None,
runtime_library_dirs=None,	 export_symbols=None,	 debug=0,

extra_preargs=None,	 extra_postargs=None,	 build_temp=None,
target_lang=None])

Link	a	shared	library.	output_libname	is	the	name	of	the	output
library,	while	objects	is	a	list	of	object	filenames	to	link	in.	Other
arguments	are	as	for	the	link()	method.

link_shared_object(objects,	 output_filename[,
output_dir=None,	 libraries=None,	 library_dirs=None,
runtime_library_dirs=None,	 export_symbols=None,	 debug=0,
extra_preargs=None,	 extra_postargs=None,	 build_temp=None,
target_lang=None])

Link	a	shared	object.	output_filename	is	the	name	of	the	shared
object	 that	 will	 be	 created,	 while	 objects	 is	 a	 list	 of	 object
filenames	 to	 link	 in.	 Other	 arguments	 are	 as	 for	 the	 link()
method.

preprocess(source[,	 output_file=None,	 macros=None,

include_dirs=None,	extra_preargs=None,	extra_postargs=None])
Preprocess	a	single	C/C++	source	file,	named	in	source.	Output
will	 be	written	 to	 file	named	output_file,	or	stdout	 if	output_file
not	 supplied.	 macros	 is	 a	 list	 of	 macro	 definitions	 as	 for
compile(),	 which	 will	 augment	 the	 macros	 set	 with
define_macro()	and	undefine_macro().	include_dirs	is	a
list	 of	 directory	names	 that	will	 be	added	 to	 the	default	 list,	 in
the	same	way	as	add_include_dir().

Raises	PreprocessError	on	failure.

The	following	utility	methods	are	defined	by	the	CCompiler	class,
for	use	by	the	various	concrete	subclasses.

executable_filename(basename[,	 strip_dir=0,

output_dir=''])
Returns	the	filename	of	the	executable	for	the	given	basename.
Typically	 for	 non-Windows	 platforms	 this	 is	 the	 same	 as	 the
basename,	while	Windows	will	get	a	.exe	added.

library_filename(libname[,	 lib_type='static',	 strip_dir=0,

output_dir=''])
Returns	 the	 filename	for	 the	given	 library	name	on	 the	current
platform.	 On	 Unix	 a	 library	 with	 lib_type	 of	 'static'	 will
typically	 be	 of	 the	 form	 liblibname.a,	 while	 a	 lib_type	 of
'dynamic'	will	be	of	the	form	liblibname.so.

object_filenames(source_filenames[,	 strip_dir=0,

output_dir=''])
Returns	 the	name	of	 the	object	 files	 for	 the	given	source	 files.
source_filenames	should	be	a	list	of	filenames.

shared_object_filename(basename[,	 strip_dir=0,

output_dir=''])
Returns	the	name	of	a	shared	object	file	for	the	given	file	name
basename.

execute(func,	args[,	msg=None,	level=1])
Invokes	distutils.util.execute().	This	method	 invokes
a	 Python	 function	 func	 with	 the	 given	 arguments	 args,	 after
logging	and	taking	into	account	the	dry_run	flag.

spawn(cmd)
Invokes	 distutils.util.spawn().	 This	 invokes	 an

external	process	to	run	the	given	command.

mkpath(name[,	mode=511])
Invokes	 distutils.dir_util.mkpath().	 This	 creates	 a
directory	and	any	missing	ancestor	directories.

move_file(src,	dst)
Invokes	 distutils.file_util.move_file().	 Renames
src	to	dst.

announce(msg[,	level=1])
Write	a	message	using	distutils.log.debug().

warn(msg)
Write	a	warning	message	msg	to	standard	error.

debug_print(msg)
If	the	debug	flag	is	set	on	this	CCompiler	 instance,	print	msg
to	standard	output,	otherwise	do	nothing.

10.3.	distutils.unixccompiler	—
Unix	C	Compiler

This	 module	 provides	 the	 UnixCCompiler	 class,	 a	 subclass	 of
CCompiler	 that	 handles	 the	 typical	 Unix-style	 command-line	 C
compiler:

macros	defined	with	-Dname[=value]
macros	undefined	with	-Uname
include	search	directories	specified	with	-Idir
libraries	specified	with	-llib
library	search	directories	specified	with	-Ldir
compile	 handled	 by	 cc	 (or	 similar)	 executable	 with	 -c	 option:
compiles	.c	to	.o
link	static	library	handled	by	ar	command	(possibly	with	ranlib)
link	shared	library	handled	by	cc	-shared

10.4.	distutils.msvccompiler	—
Microsoft	Compiler

This	 module	 provides	 MSVCCompiler,	 an	 implementation	 of	 the
abstract	 CCompiler	 class	 for	 Microsoft	 Visual	 Studio.	 Typically,
extension	modules	need	 to	be	compiled	with	 the	same	compiler	 that
was	used	to	compile	Python.	For	Python	2.3	and	earlier,	the	compiler
was	Visual	 Studio	 6.	 For	 Python	 2.4	 and	 2.5,	 the	 compiler	 is	 Visual
Studio	.NET	2003.	The	AMD64	and	Itanium	binaries	are	created	using
the	Platform	SDK.

MSVCCompiler	will	normally	choose	the	right	compiler,	linker	etc.	on
its	 own.	 To	 override	 this	 choice,	 the	 environment	 variables
DISTUTILS_USE_SDK	 and	 MSSdk	 must	 be	 both	 set.	 MSSdk
indicates	 that	 the	 current	 environment	 has	been	 setup	by	 the	SDK’s
SetEnv.Cmd	 script,	 or	 that	 the	 environment	 variables	 had	 been
registered	 when	 the	 SDK	 was	 installed;	 DISTUTILS_USE_SDK
indicates	that	the	distutils	user	has	made	an	explicit	choice	to	override
the	compiler	selection	by	MSVCCompiler.

10.5.	distutils.bcppcompiler	—
Borland	Compiler

This	 module	 provides	 BorlandCCompiler,	 an	 subclass	 of	 the
abstract	CCompiler	class	for	the	Borland	C++	compiler.

10.6.	distutils.cygwincompiler	—
Cygwin	Compiler

This	 module	 provides	 the	 CygwinCCompiler	 class,	 a	 subclass	 of
UnixCCompiler	that	handles	the	Cygwin	port	of	the	GNU	C	compiler
to	 Windows.	 It	 also	 contains	 the	 Mingw32CCompiler	 class	 which
handles	 the	 mingw32	 port	 of	 GCC	 (same	 as	 cygwin	 in	 no-cygwin
mode).

10.7.	distutils.archive_util	—
Archiving	utilities

This	module	provides	a	few	functions	for	creating	archive	files,	such	as
tarballs	or	zipfiles.

distutils.archive_util.make_archive(base_name,
format[,	root_dir=None,	base_dir=None,	verbose=0,	dry_run=0])

Create	an	archive	file	(eg.	zip	or	tar).	base_name	is	the	name	of
the	file	to	create,	minus	any	format-specific	extension;	format	is	the
archive	 format:	 one	 of	 zip,	 tar,	 ztar,	 or	 gztar.	 root_dir	 is	 a
directory	 that	 will	 be	 the	 root	 directory	 of	 the	 archive;	 ie.	 we
typically	chdir	 into	root_dir	before	creating	the	archive.	base_dir
is	 the	directory	where	we	start	archiving	from;	 ie.	base_dir	will	 be
the	common	prefix	of	all	files	and	directories	in	the	archive.	root_dir
and	 base_dir	 both	 default	 to	 the	 current	 directory.	 Returns	 the
name	of	the	archive	file.

distutils.archive_util.make_tarball(base_name,
base_dir[,	compress='gzip',	verbose=0,	dry_run=0])

‘Create	an	(optional	compressed)	archive	as	a	tar	file	from	all	files
in	 and	 under	base_dir.	compress	must	 be	 'gzip'	 (the	 default),
'compress',	'bzip2',	or	None.	Both	tar	 and	 the	compression
utility	named	by	compress	must	be	on	the	default	program	search
path,	 so	 this	 is	 probably	 Unix-specific.	 The	 output	 tar	 file	 will	 be
named	 base_dir.tar,	 possibly	 plus	 the	 appropriate
compression	 extension	 (.gz,	 .bz2	 or	 .Z).	 Return	 the	 output
filename.

distutils.archive_util.make_zipfile(base_name,

base_dir[,	verbose=0,	dry_run=0])
Create	a	zip	file	from	all	files	in	and	under	base_dir.	The	output	zip
file	will	be	named	base_name	+	.zip.	Uses	either	 the	 zipfile
Python	module	 (if	 available)	 or	 the	 InfoZIP	 zip	utility	 (if	 installed
and	 found	on	 the	default	 search	path).	 If	neither	 tool	 is	available,
raises	DistutilsExecError.	Returns	the	name	of	the	output	zip
file.

10.8.	distutils.dep_util	—
Dependency	checking

This	 module	 provides	 functions	 for	 performing	 simple,	 timestamp-
based	dependency	of	 files	and	groups	of	 files;	also,	 functions	based
entirely	on	such	timestamp	dependency	analysis.

distutils.dep_util.newer(source,	target)
Return	 true	 if	 source	 exists	 and	 is	 more	 recently	 modified	 than
target,	 or	 if	source	 exists	 and	 target	 doesn’t.	 Return	 false	 if	 both
exist	 and	 target	 is	 the	 same	 age	 or	 newer	 than	 source.	 Raise
DistutilsFileError	if	source	does	not	exist.

distutils.dep_util.newer_pairwise(sources,	targets)
Walk	 two	 filename	 lists	 in	parallel,	 testing	 if	each	source	 is	newer
than	 its	 corresponding	 target.	 Return	 a	 pair	 of	 lists	 (sources,
targets)	 where	 source	 is	 newer	 than	 target,	 according	 to	 the
semantics	of	newer()

distutils.dep_util.newer_group(sources,	target[,
missing='error'])

Return	 true	 if	 target	 is	out-of-date	with	 respect	 to	any	 file	 listed	 in
sources	In	other	words,	if	target	exists	and	is	newer	than	every	file
in	 sources,	 return	 false;	 otherwise	 return	 true.	 missing	 controls
what	we	do	when	a	source	file	is	missing;	the	default	('error')	is
to	 blow	 up	 with	 an	 OSError	 from	 inside	 os.stat();	 if	 it	 is
'ignore',	 we	 silently	 drop	 any	 missing	 source	 files;	 if	 it	 is
'newer',	any	missing	source	files	make	us	assume	that	target	is
out-of-date	(this	is	handy	in	“dry-run”	mode:	it’ll	make	you	pretend
to	 carry	 out	 commands	 that	 wouldn’t	 work	 because	 inputs	 are

missing,	but	that	doesn’t	matter	because	you’re	not	actually	going
to	run	the	commands).

10.9.	distutils.dir_util	—	Directory
tree	operations

This	module	provides	functions	for	operating	on	directories	and	trees
of	directories.

distutils.dir_util.mkpath(name[,	mode=0o777,	verbose=0,
dry_run=0])

Create	 a	 directory	 and	 any	 missing	 ancestor	 directories.	 If	 the
directory	 already	 exists	 (or	 if	 name	 is	 the	 empty	 string,	 which
means	 the	 current	 directory,	 which	 of	 course	 exists),	 then	 do
nothing.	Raise	 DistutilsFileError	 if	 unable	 to	 create	 some
directory	 along	 the	 way	 (eg.	 some	 sub-path	 exists,	 but	 is	 a	 file
rather	than	a	directory).	If	verbose	is	true,	print	a	one-line	summary
of	 each	 mkdir	 to	 stdout.	 Return	 the	 list	 of	 directories	 actually
created.

distutils.dir_util.create_tree(base_dir,	files[,
mode=0o777,	verbose=0,	dry_run=0])

Create	all	the	empty	directories	under	base_dir	needed	to	put	files
there.	 base_dir	 is	 just	 the	 a	 name	 of	 a	 directory	 which	 doesn’t
necessarily	 exist	 yet;	 files	 is	 a	 list	 of	 filenames	 to	 be	 interpreted
relative	to	base_dir.	base_dir	+	the	directory	portion	of	every	file	in
files	will	be	created	 if	 it	doesn’t	already	exist.	mode,	verbose	 and
dry_run	flags	are	as	for	mkpath().

distutils.dir_util.copy_tree(src,	dst[,	preserve_mode=1,
preserve_times=1,	preserve_symlinks=0,	update=0,	verbose=0,
dry_run=0])

Copy	an	entire	directory	tree	src	to	a	new	location	dst.	Both	src	and

dst	 must	 be	 directory	 names.	 If	 src	 is	 not	 a	 directory,	 raise
DistutilsFileError.	 If	 dst	 does	 not	 exist,	 it	 is	 created	 with
mkpath().	The	 end	 result	 of	 the	 copy	 is	 that	 every	 file	 in	src	 is
copied	 to	dst,	 and	 directories	 under	src	 are	 recursively	 copied	 to
dst.	 Return	 the	 list	 of	 files	 that	 were	 copied	 or	 might	 have	 been
copied,	using	their	output	name.	The	return	value	is	unaffected	by
update	or	dry_run:	it	is	simply	the	list	of	all	files	under	src,	with	the
names	changed	to	be	under	dst.

preserve_mode	 and	 preserve_times	 are	 the	 same	 as	 for
distutils.file_util.copy_file();	 note	 that	 they	 only
apply	 to	 regular	 files,	 not	 to	 directories.	 If	 preserve_symlinks	 is
true,	symlinks	will	be	copied	as	symlinks	(on	platforms	that	support
them!);	otherwise	(the	default),	the	destination	of	the	symlink	will	be
copied.	update	and	verbose	are	the	same	as	for	copy_file().

Files	in	src	that	begin	with	.nfs	are	skipped	(more	information	on
these	files	is	available	in	answer	D2	of	the	NFS	FAQ	page.

Changed	in	version	3.3.1:	NFS	files	are	ignored.

distutils.dir_util.remove_tree(directory[,	verbose=0,
dry_run=0])

Recursively	 remove	 directory	 and	 all	 files	 and	 directories
underneath	it.	Any	errors	are	ignored	(apart	from	being	reported	to
sys.stdout	if	verbose	is	true).

http://nfs.sourceforge.net/#section_d

10.10.	distutils.file_util	—	Single
file	operations

This	module	contains	some	utility	functions	for	operating	on	individual
files.

distutils.file_util.copy_file(src,	dst[,
preserve_mode=1,	preserve_times=1,	update=0,	link=None,
verbose=0,	dry_run=0])

Copy	file	src	to	dst.	If	dst	is	a	directory,	then	src	is	copied	there	with
the	same	name;	otherwise,	it	must	be	a	filename.	(If	the	file	exists,
it	 will	 be	 ruthlessly	 clobbered.)	 If	 preserve_mode	 is	 true	 (the
default),	 the	 file’s	mode	 (type	and	permission	bits,	or	whatever	 is
analogous	on	 the	current	platform)	 is	copied.	 If	preserve_times	 is
true	 (the	 default),	 the	 last-modified	 and	 last-access	 times	 are
copied	as	well.	If	update	is	true,	src	will	only	be	copied	if	dst	does
not	exist,	or	if	dst	does	exist	but	is	older	than	src.

link	allows	you	to	make	hard	links	(using	os.link())	or	symbolic
links	(using	os.symlink())	 instead	of	copying:	set	 it	 to	'hard'
or	'sym';	if	it	is	None	(the	default),	files	are	copied.	Don’t	set	link
on	 systems	 that	 don’t	 support	 it:	 copy_file()	 doesn’t	 check	 if
hard	 or	 symbolic	 linking	 is	 available.	 It	 uses
_copy_file_contents()	to	copy	file	contents.

Return	a	tuple	(dest_name,	copied):	dest_name	 is	 the	actual
name	of	the	output	file,	and	copied	is	true	if	the	file	was	copied	(or
would	have	been	copied,	if	dry_run	true).

distutils.file_util.move_file(src,	dst[,	verbose,	dry_run])

Move	file	src	to	dst.	If	dst	is	a	directory,	the	file	will	be	moved	into	it
with	the	same	name;	otherwise,	src	is	just	renamed	to	dst.	Returns
the	new	full	name	of	the	file.

Warning: 	 Handles	 cross-device	 moves	 on	 Unix	 using
copy_file().	What	about	other	systems?

distutils.file_util.write_file(filename,	contents)
Create	 a	 file	 called	 filename	 and	 write	 contents	 (a	 sequence	 of
strings	without	line	terminators)	to	it.

10.11.	distutils.util	—
Miscellaneous	other	utility	functions

This	module	contains	other	assorted	bits	and	pieces	that	don’t	fit	 into
any	other	utility	module.

distutils.util.get_platform()
Return	 a	 string	 that	 identifies	 the	 current	 platform.	 This	 is	 used
mainly	 to	 distinguish	 platform-specific	 build	 directories	 and
platform-specific	built	distributions.	Typically	includes	the	OS	name
and	 version	 and	 the	 architecture	 (as	 supplied	 by	 ‘os.uname()’),
although	the	exact	information	included	depends	on	the	OS;	eg.	for
IRIX	the	architecture	isn’t	particularly	 important	(IRIX	only	runs	on
SGI	 hardware),	 but	 for	 Linux	 the	 kernel	 version	 isn’t	 particularly
important.

Examples	of	returned	values:

linux-i586

linux-alpha

solaris-2.6-sun4u

irix-5.3

irix64-6.2

For	non-POSIX	platforms,	currently	just	returns	sys.platform.

For	Mac	OS	X	systems	the	OS	version	reflects	the	minimal	version
on	 which	 binaries	 will	 run	 (that	 is,	 the	 value	 of
MACOSX_DEPLOYMENT_TARGET	 during	 the	 build	 of	 Python),	 not
the	OS	version	of	the	current	system.

For	 universal	 binary	 builds	 on	 Mac	 OS	 X	 the	 architecture	 value

reflects	the	univeral	binary	status	instead	of	the	architecture	of	the
current	processor.	For	32-bit	universal	binaries	 the	architecture	 is
fat,	for	64-bit	universal	binaries	the	architecture	is	fat64,	and	for
4-way	 universal	 binaries	 the	 architecture	 is	 universal.	 Starting
from	Python	2.7	and	Python	3.2	the	architecture	fat3	is	used	for	a
3-way	universal	build	(ppc,	i386,	x86_64)	and	intel	is	used	for	a
univeral	build	with	the	i386	and	x86_64	architectures

Examples	of	returned	values	on	Mac	OS	X:

macosx-10.3-ppc

macosx-10.3-fat

macosx-10.5-universal

macosx-10.6-intel

distutils.util.convert_path(pathname)
Return	 ‘pathname’	 as	 a	 name	 that	 will	 work	 on	 the	 native
filesystem,	i.e.	split	it	on	‘/’	and	put	it	back	together	again	using	the
current	directory	separator.	Needed	because	filenames	in	the	setup
script	are	always	supplied	in	Unix	style,	and	have	to	be	converted
to	 the	 local	 convention	 before	 we	 can	 actually	 use	 them	 in	 the
filesystem.	 Raises	 ValueError	 on	 non-Unix-ish	 systems	 if
pathname	either	starts	or	ends	with	a	slash.

distutils.util.change_root(new_root,	pathname)
Return	 pathname	 with	 new_root	 prepended.	 If	 pathname	 is
relative,	 this	 is	 equivalent	 to
os.path.join(new_root,pathname)	 Otherwise,	 it	 requires
making	pathname	relative	and	then	joining	the	two,	which	is	tricky
on	DOS/Windows.

distutils.util.check_environ()

Ensure	 that	 ‘os.environ’	 has	 all	 the	 environment	 variables	 we
guarantee	that	users	can	use	in	config	files,	command-line	options,
etc.	Currently	this	includes:

HOME	-	user’s	home	directory	(Unix	only)
PLAT	-	description	of	the	current	platform,	including	hardware
and	OS	(see	get_platform())

distutils.util.subst_vars(s,	local_vars)
Perform	 shell/Perl-style	 variable	 substitution	 on	 s.	 Every
occurrence	of	$	followed	by	a	name	is	considered	a	variable,	and
variable	 is	 substituted	 by	 the	 value	 found	 in	 the	 local_vars
dictionary,	or	in	os.environ	 if	 it’s	not	in	 local_vars.	os.environ	 is
first	 checked/augmented	 to	 guarantee	 that	 it	 contains	 certain
values:	 see	 check_environ().	 Raise	 ValueError	 for	 any
variables	not	found	in	either	local_vars	or	os.environ.

Note	 that	 this	 is	not	a	 fully-fledged	string	 interpolation	 function.	A
valid	$variable	can	consist	only	of	upper	and	lower	case	letters,
numbers	and	an	underscore.	No	{	}	or	()	style	quoting	is	available.

distutils.util.split_quoted(s)
Split	 a	 string	 up	 according	 to	Unix	 shell-like	 rules	 for	 quotes	 and
backslashes.	 In	 short:	words	are	delimited	by	spaces,	as	 long	as
those	spaces	are	not	escaped	by	a	backslash,	or	 inside	a	quoted
string.	 Single	 and	 double	 quotes	 are	 equivalent,	 and	 the	 quote
characters	 can	 be	 backslash-escaped.	 The	 backslash	 is	 stripped
from	 any	 two-character	 escape	 sequence,	 leaving	 only	 the
escaped	 character.	 The	 quote	 characters	 are	 stripped	 from	 any
quoted	string.	Returns	a	list	of	words.

distutils.util.execute(func,	args[,	msg=None,	verbose=0,

dry_run=0])
Perform	 some	 action	 that	 affects	 the	 outside	 world	 (for	 instance,
writing	 to	 the	 filesystem).	 Such	 actions	 are	 special	 because	 they
are	disabled	by	the	dry_run	flag.	This	method	takes	care	of	all	that
bureaucracy	for	you;	all	you	have	to	do	is	supply	the	function	to	call
and	an	argument	tuple	for	it	(to	embody	the	“external	action”	being
performed),	and	an	optional	message	to	print.

distutils.util.strtobool(val)
Convert	a	string	representation	of	truth	to	true	(1)	or	false	(0).

True	values	are	y,	yes,	t,	true,	on	and	1;	 false	 values	 are	 n,
no,	f,	false,	off	and	0.	Raises	ValueError	 if	val	 is	anything
else.

distutils.util.byte_compile(py_files[,	optimize=0,	force=0,
prefix=None,	base_dir=None,	verbose=1,	dry_run=0,	direct=None])

Byte-compile	a	collection	of	Python	source	 files	 to	either	.pyc	or
.pyo	 files	 in	 a	 __pycache__	 subdirectory	 (see	 PEP	 3147).
py_files	 is	a	 list	of	 files	to	compile;	any	files	that	don’t	end	in	.py
are	silently	skipped.	optimize	must	be	one	of	the	following:

0	-	don’t	optimize	(generate	.pyc)
1	-	normal	optimization	(like	python	-O)
2	-	extra	optimization	(like	python	-OO)

If	force	is	true,	all	files	are	recompiled	regardless	of	timestamps.

The	source	filename	encoded	in	each	bytecode	file	defaults	to	the
filenames	 listed	 in	py_files;	 you	 can	modify	 these	with	prefix	 and
basedir.	prefix	 is	 a	 string	 that	 will	 be	 stripped	 off	 of	 each	 source
filename,	and	base_dir	 is	a	directory	name	that	will	be	prepended

http://www.python.org/dev/peps/pep-3147

(after	prefix	 is	stripped).	You	can	supply	either	or	both	(or	neither)
of	prefix	and	base_dir,	as	you	wish.

If	dry_run	is	true,	doesn’t	actually	do	anything	that	would	affect	the
filesystem.

Byte-compilation	 is	 either	 done	 directly	 in	 this	 interpreter	 process
with	 the	standard	 py_compile	module,	 or	 indirectly	 by	writing	 a
temporary	 script	 and	 executing	 it.	 Normally,	 you	 should	 let
byte_compile()	figure	out	to	use	direct	compilation	or	not	(see
the	 source	 for	 details).	 The	 direct	 flag	 is	 used	 by	 the	 script
generated	 in	 indirect	 mode;	 unless	 you	 know	 what	 you’re	 doing,
leave	it	set	to	None.

Changed	 in	 version	 3.2.3:	 Create	 .pyc	 or	 .pyo	 files	 with	 an
import	 magic	 tag	 in	 their	 name,	 in	 a	 __pycache__

subdirectory	instead	of	files	without	tag	in	the	current	directory.

distutils.util.rfc822_escape(header)
Return	a	 version	of	header	 escaped	 for	 inclusion	 in	 an	RFC	822
header,	by	ensuring	there	are	8	spaces	space	after	each	newline.
Note	that	it	does	no	other	modification	of	the	string.

http://tools.ietf.org/html/rfc822.html

10.12.	distutils.dist	—	The
Distribution	class

This	module	provides	the	Distribution	class,	which	represents	the
module	distribution	being	built/installed/distributed.

10.13.	distutils.extension	—	The
Extension	class

This	module	provides	the	Extension	class,	used	to	describe	C/C++
extension	modules	in	setup	scripts.

10.14.	distutils.debug	—	Distutils
debug	mode

This	module	provides	the	DEBUG	flag.

10.15.	distutils.errors	—	Distutils
exceptions

Provides	exceptions	used	by	the	Distutils	modules.	Note	 that	Distutils
modules	may	 raise	 standard	 exceptions;	 in	 particular,	 SystemExit	 is
usually	raised	for	errors	that	are	obviously	the	end-user’s	fault	(eg.	bad
command-line	arguments).

This	module	 is	 safe	 to	 use	 in	 from	...	import	*	 mode;	 it	 only
exports	 symbols	 whose	 names	 start	 with	 Distutils	 and	 end	 with
Error.

10.16.	distutils.fancy_getopt	—
Wrapper	around	the	standard	getopt
module

This	module	provides	a	wrapper	around	the	standard	getopt	module
that	provides	the	following	additional	features:

short	and	long	options	are	tied	together
options	have	help	strings,	so	fancy_getopt()	could	potentially
create	a	complete	usage	summary
options	set	attributes	of	a	passed-in	object
boolean	options	can	have	“negative	aliases”	—	eg.	if	--quiet	is	the
“negative	 alias”	 of	 --verbose,	 then	 --quiet	 on	 the	 command	 line
sets	verbose	to	false.

distutils.fancy_getopt.fancy_getopt(options,
negative_opt,	object,	args)

Wrapper	 function.	 options	 is	 a	 list	 of	 (long_option,

short_option,	 help_string)	 3-tuples	 as	 described	 in	 the
constructor	for	FancyGetopt.	negative_opt	should	be	a	dictionary
mapping	 option	 names	 to	 option	 names,	 both	 the	 key	 and	 value
should	be	in	the	options	list.	object	is	an	object	which	will	be	used
to	store	values	(see	the	getopt()	method	of	 the	FancyGetopt
class).	args	 is	 the	 argument	 list.	Will	 use	 sys.argv[1:]	 if	 you
pass	None	as	args.

distutils.fancy_getopt.wrap_text(text,	width)
Wraps	text	to	less	than	width	wide.

class
distutils.fancy_getopt.FancyGetopt([option_table=None])

The	 option_table	 is	 a	 list	 of	 3-tuples:	 (long_option,

short_option,	help_string)

If	 an	 option	 takes	 an	argument,	 its	 long_option	 should	 have	 '='
appended;	short_option	should	 just	be	a	single	character,	no	':'
in	any	case.	short_option	should	be	None	 if	a	 long_option	doesn’t
have	 a	 corresponding	 short_option.	 All	 option	 tuples	 must	 have
long	options.

The	FancyGetopt	class	provides	the	following	methods:

FancyGetopt.getopt([args=None,	object=None])
Parse	command-line	options	in	args.	Store	as	attributes	on	object.

If	args	 is	None	or	not	supplied,	uses	sys.argv[1:].	 If	object	 is
None	 or	 not	 supplied,	 creates	 a	 new	 OptionDummy	 instance,
stores	option	values	there,	and	returns	a	tuple	(args,	object).
If	 object	 is	 supplied,	 it	 is	 modified	 in	 place	 and	 getopt()	 just
returns	args;	in	both	cases,	the	returned	args	is	a	modified	copy	of
the	passed-in	args	list,	which	is	left	untouched.

FancyGetopt.get_option_order()
Returns	 the	 list	 of	 (option,	 value)	 tuples	 processed	 by	 the
previous	 run	 of	 getopt()	Raises	 RuntimeError	 if	 getopt()
hasn’t	been	called	yet.

FancyGetopt.generate_help([header=None])
Generate	 help	 text	 (a	 list	 of	 strings,	 one	 per	 suggested	 line	 of
output)	from	the	option	table	for	this	FancyGetopt	object.

If	supplied,	prints	the	supplied	header	at	the	top	of	the	help.

10.17.	distutils.filelist	—	The
FileList	class

This	module	provides	the	FileList	class,	used	for	poking	about	the
filesystem	and	building	lists	of	files.

10.18.	distutils.log	—	Simple	PEP
282-style	logging

10.19.	distutils.spawn	—	Spawn	a
sub-process

This	 module	 provides	 the	 spawn()	 function,	 a	 front-end	 to	 various
platform-specific	 functions	 for	 launching	 another	 program	 in	 a	 sub-
process.	Also	provides	find_executable()	to	search	the	path	for	a
given	executable	name.

10.20.	distutils.sysconfig	—
System	configuration	information

The	 distutils.sysconfig	 module	 provides	 access	 to	 Python’s
low-level	configuration	information.	The	specific	configuration	variables
available	 depend	 heavily	 on	 the	 platform	 and	 configuration.	 The
specific	variables	depend	on	the	build	process	for	the	specific	version
of	Python	being	 run;	 the	variables	are	 those	 found	 in	 the	Makefile
and	 configuration	 header	 that	 are	 installed	 with	 Python	 on	 Unix
systems.	The	configuration	header	 is	called	pyconfig.h	 for	Python
versions	 starting	 with	 2.2,	 and	 config.h	 for	 earlier	 versions	 of
Python.

Some	 additional	 functions	 are	 provided	 which	 perform	 some	 useful
manipulations	for	other	parts	of	the	distutils	package.

distutils.sysconfig.PREFIX

The	result	of	os.path.normpath(sys.prefix).

distutils.sysconfig.EXEC_PREFIX

The	result	of	os.path.normpath(sys.exec_prefix).

distutils.sysconfig.get_config_var(name)
Return	 the	 value	 of	 a	 single	 variable.	 This	 is	 equivalent	 to
get_config_vars().get(name).

distutils.sysconfig.get_config_vars(...)
Return	a	set	of	variable	definitions.	If	there	are	no	arguments,	this
returns	 a	 dictionary	mapping	 names	 of	 configuration	 variables	 to
values.	If	arguments	are	provided,	they	should	be	strings,	and	the
return	value	will	be	a	sequence	giving	 the	associated	values.	 If	a

given	 name	 does	 not	 have	 a	 corresponding	 value,	 None	 will	 be
included	for	that	variable.

distutils.sysconfig.get_config_h_filename()
Return	the	full	path	name	of	the	configuration	header.	For	Unix,	this
will	 be	 the	 header	 generated	 by	 the	 configure	 script;	 for	 other
platforms	the	header	will	have	been	supplied	directly	by	the	Python
source	distribution.	The	file	is	a	platform-specific	text	file.

distutils.sysconfig.get_makefile_filename()
Return	the	full	path	name	of	 the	Makefile	used	to	build	Python.
For	Unix,	 this	will	be	a	 file	generated	by	 the	configure	script;	 the
meaning	for	other	platforms	will	vary.	The	file	is	a	platform-specific
text	file,	if	it	exists.	This	function	is	only	useful	on	POSIX	platforms.

distutils.sysconfig.get_python_inc([plat_specific[,
prefix]])

Return	the	directory	for	either	the	general	or	platform-dependent	C
include	files.	If	plat_specific	is	true,	the	platform-dependent	include
directory	 is	 returned;	 if	 false	 or	 omitted,	 the	 platform-independent
directory	is	returned.	If	prefix	is	given,	it	is	used	as	either	the	prefix
instead	of	PREFIX,	or	as	the	exec-prefix	instead	of	EXEC_PREFIX
if	plat_specific	is	true.

distutils.sysconfig.get_python_lib([plat_specific[,
standard_lib[,	prefix]]])

Return	 the	 directory	 for	 either	 the	 general	 or	 platform-dependent
library	 installation.	 If	plat_specific	 is	 true,	 the	 platform-dependent
include	 directory	 is	 returned;	 if	 false	 or	 omitted,	 the	 platform-
independent	 directory	 is	 returned.	 If	prefix	 is	 given,	 it	 is	 used	 as
either	the	prefix	instead	of	PREFIX,	or	as	the	exec-prefix	instead	of

EXEC_PREFIX	 if	 plat_specific	 is	 true.	 If	 standard_lib	 is	 true,	 the
directory	 for	 the	 standard	 library	 is	 returned	 rather	 than	 the
directory	for	the	installation	of	third-party	extensions.

The	following	function	is	only	intended	for	use	within	the	distutils
package.

distutils.sysconfig.customize_compiler(compiler)
Do	 any	 platform-specific	 customization	 of	 a
distutils.ccompiler.CCompiler	instance.

This	 function	 is	 only	 needed	 on	 Unix	 at	 this	 time,	 but	 should	 be
called	 consistently	 to	 support	 forward-compatibility.	 It	 inserts	 the
information	that	varies	across	Unix	flavors	and	is	stored	in	Python’s
Makefile.	 This	 information	 includes	 the	 selected	 compiler,
compiler	 and	 linker	options,	 and	 the	extension	used	by	 the	 linker
for	shared	objects.

This	function	is	even	more	special-purpose,	and	should	only	be	used
from	Python’s	own	build	procedures.

distutils.sysconfig.set_python_build()
Inform	 the	distutils.sysconfig	module	 that	 it	 is	 being	used
as	 part	 of	 the	 build	 process	 for	 Python.	 This	 changes	 a	 lot	 of
relative	 locations	for	 files,	allowing	them	to	be	 located	 in	the	build
area	rather	than	in	an	installed	Python.

10.21.	distutils.text_file	—	The
TextFile	class

This	module	provides	the	TextFile	class,	which	gives	an	interface	to
text	 files	 that	 (optionally)	 takes	 care	 of	 stripping	 comments,	 ignoring
blank	lines,	and	joining	lines	with	backslashes.

class	distutils.text_file.TextFile([filename=None,
file=None,	**options])

This	class	provides	a	file-like	object	that	takes	care	of	all	the	things
you	 commonly	 want	 to	 do	 when	 processing	 a	 text	 file	 that	 has
some	 line-by-line	 syntax:	 strip	 comments	 (as	 long	 as	 #	 is	 your
comment	 character),	 skip	 blank	 lines,	 join	 adjacent	 lines	 by
escaping	 the	 newline	 (ie.	 backslash	 at	 end	 of	 line),	 strip	 leading
and/or	 trailing	 whitespace.	 All	 of	 these	 are	 optional	 and
independently	controllable.

The	 class	 provides	 a	 warn()	 method	 so	 you	 can	 generate
warning	 messages	 that	 report	 physical	 line	 number,	 even	 if	 the
logical	line	in	question	spans	multiple	physical	lines.	Also	provides
unreadline()	for	implementing	line-at-a-time	lookahead.

TextFile	 instances	are	create	with	either	 filename,	 file,	or	both.
RuntimeError	 is	 raised	 if	both	are	None.	 filename	 should	be	a
string,	 and	 file	 a	 file	 object	 (or	 something	 that	 provides
readline()	and	close()	methods).	It	is	recommended	that	you
supply	 at	 least	 filename,	 so	 that	 TextFile	 can	 include	 it	 in
warning	 messages.	 If	 file	 is	 not	 supplied,	 TextFile	 creates	 its
own	using	the	open()	built-in	function.

The	 options	 are	 all	 boolean,	 and	 affect	 the	 values	 returned	 by
readline()

option	name description default

strip_comments

strip	from	'#'	to	end-of-	line,	as
well	as	any	whitespace	leading
up	to	the	'#'—unless	it	is
escaped	by	a	backslash

true

lstrip_ws strip	leading	whitespace	from
each	line	before	returning	it false

rstrip_ws
strip	trailing	whitespace	(including
line	terminator!)	from	each	line
before	returning	it.

true

skip_blanks

skip	lines	that	are	empty	*after*
stripping	comments	and
whitespace.	(If	both	lstrip_ws	and
rstrip_ws	are	false,	then	some
lines	may	consist	of	solely
whitespace:	these	will	*not*	be
skipped,	even	if	skip_blanks	is
true.)

true

join_lines

if	a	backslash	is	the	last	non-
newline	character	on	a	line	after
stripping	comments	and
whitespace,	join	the	following	line
to	it	to	form	one	logical	line;	if	N
consecutive	lines	end	with	a
backslash,	then	N+1	physical
lines	will	be	joined	to	form	one
logical	line.

false

collapse_join

strip	leading	whitespace	from
lines	that	are	joined	to	their
predecessor;	only	matters	if
(join_lines	and	not

lstrip_ws)

false

Note	 that	 since	 rstrip_ws	 can	 strip	 the	 trailing	 newline,	 the
semantics	of	readline()	must	differ	from	those	of	the	built-in	file
object’s	readline()	method!	 In	particular,	readline()	 returns
None	for	end-of-file:	an	empty	string	might	just	be	a	blank	line	(or
an	all-whitespace	line),	if	rstrip_ws	is	true	but	skip_blanks	is	not.

open(filename)
Open	 a	 new	 file	 filename.	 This	 overrides	 any	 file	 or	 filename
constructor	arguments.

close()
Close	 the	 current	 file	 and	 forget	 everything	 we	 know	 about	 it
(including	the	filename	and	the	current	line	number).

warn(msg[,	line=None])
Print	 (to	 stderr)	 a	warning	message	 tied	 to	 the	 current	 logical
line	in	the	current	file.	If	the	current	logical	line	in	the	file	spans
multiple	 physical	 lines,	 the	warning	 refers	 to	 the	whole	 range,
such	 as	 "lines	 3-5".	 If	 line	 is	 supplied,	 it	 overrides	 the
current	line	number;	it	may	be	a	list	or	tuple	to	indicate	a	range
of	physical	lines,	or	an	integer	for	a	single	physical	line.

readline()
Read	 and	 return	 a	 single	 logical	 line	 from	 the	 current	 file	 (or
from	 an	 internal	 buffer	 if	 lines	 have	 previously	 been	 “unread”
with	unreadline()).	 If	 the	 join_lines	option	 is	 true,	 this	may
involve	 reading	 multiple	 physical	 lines	 concatenated	 into	 a
single	 string.	 Updates	 the	 current	 line	 number,	 so	 calling
warn()	after	readline()	emits	a	warning	about	the	physical
line(s)	 just	 read.	Returns	None	on	end-of-file,	since	 the	empty
string	can	occur	if	rstrip_ws	is	true	but	strip_blanks	is	not.

readlines()
Read	 and	 return	 the	 list	 of	 all	 logical	 lines	 remaining	 in	 the
current	file.	This	updates	the	current	line	number	to	the	last	line
of	the	file.

unreadline(line)
Push	line	 (a	string)	onto	an	 internal	buffer	 that	will	be	checked
by	future	readline()	calls.	Handy	for	 implementing	a	parser
with	 line-at-a-time	 lookahead.	Note	 that	 lines	 that	are	“unread”
with	 unreadline()	 are	 not	 subsequently	 re-cleansed
(whitespace	 stripped,	 or	 whatever)	 when	 read	 with
readline().	 If	 multiple	 calls	 are	 made	 to	 unreadline()
before	a	call	to	readline(),	the	lines	will	be	returned	most	in
most	recent	first	order.

10.22.	distutils.version	—	Version
number	classes

10.23.	distutils.cmd	—	Abstract	base
class	for	Distutils	commands

This	module	supplies	the	abstract	base	class	Command.

class	distutils.cmd.Command(dist)
Abstract	 base	 class	 for	 defining	 command	 classes,	 the	 “worker
bees”	of	the	Distutils.	A	useful	analogy	for	command	classes	is	to
think	 of	 them	 as	 subroutines	 with	 local	 variables	 called	 options.
The	 options	 are	 declared	 in	 initialize_options()	 and
defined	 (given	 their	 final	 values)	 in	 finalize_options(),	 both
of	which	must	be	defined	by	every	command	class.	The	distinction
between	 the	 two	 is	necessary	because	option	values	might	come
from	 the	 outside	 world	 (command	 line,	 config	 file,	 ...),	 and	 any
options	dependent	on	other	options	must	be	computed	after	these
outside	 influences	 have	 been	 processed	 —	 hence
finalize_options().	 The	 body	 of	 the	 subroutine,	 where	 it
does	all	 its	work	based	on	the	values	of	 its	options,	 is	 the	run()
method,	 which	 must	 also	 be	 implemented	 by	 every	 command
class.

The	 class	 constructor	 takes	 a	 single	 argument	 dist,	 a
Distribution	instance.

10.24.	Creating	a	new	Distutils	command

This	section	outlines	the	steps	to	create	a	new	Distutils	command.

A	 new	 command	 lives	 in	 a	 module	 in	 the	 distutils.command
package.	 There	 is	 a	 sample	 template	 in	 that	 directory	 called
command_template.	Copy	 this	 file	 to	a	new	module	with	 the	same
name	as	the	new	command	you’re	implementing.	This	module	should
implement	 a	 class	 with	 the	 same	 name	 as	 the	 module	 (and	 the
command).	 So,	 for	 instance,	 to	 create	 the	 command	 peel_banana
(so	 that	 users	 can	 run	 setup.py	 peel_banana),	 you’d	 copy
command_template	 to	 distutils/command/peel_banana.py,
then	 edit	 it	 so	 that	 it’s	 implementing	 the	 class	 peel_banana,	 a
subclass	of	distutils.cmd.Command.

Subclasses	of	Command	must	define	the	following	methods.

Command.initialize_options()
Set	default	values	 for	all	 the	options	 that	 this	command	supports.
Note	that	these	defaults	may	be	overridden	by	other	commands,	by
the	setup	script,	by	config	files,	or	by	the	command-line.	Thus,	this
is	not	the	place	to	code	dependencies	between	options;	generally,
initialize_options()	 implementations	 are	 just	 a	 bunch	 of
self.foo	=	None	assignments.

Command.finalize_options()
Set	final	values	for	all	the	options	that	this	command	supports.	This
is	 always	 called	 as	 late	 as	 possible,	 ie.	 after	 any	 option
assignments	from	the	command-line	or	from	other	commands	have
been	done.	Thus,	this	is	the	place	to	code	option	dependencies:	if
foo	depends	on	bar,	 then	 it	 is	safe	 to	set	 foo	 from	bar	as	 long	as

foo	 still	 has	 the	 same	 value	 it	 was	 assigned	 in
initialize_options().

Command.run()
A	command’s	raison	d’etre:	carry	out	the	action	it	exists	to	perform,
controlled	by	 the	options	 initialized	 in	 initialize_options(),
customized	 by	 other	 commands,	 the	 setup	 script,	 the	 command-
line,	and	config	 files,	and	 finalized	 in	finalize_options().	 All
terminal	 output	 and	 filesystem	 interaction	 should	 be	 done	 by
run().

Command.sub_commands

sub_commands	 formalizes	 the	 notion	 of	 a	 “family”	 of	 commands,
e.g.	install	 as	 the	 parent	with	 sub-commands	 install_lib,
install_headers,	 etc.	 The	 parent	 of	 a	 family	 of	 commands
defines	sub_commands	 as	 a	 class	 attribute;	 it’s	 a	 list	 of	 2-tuples
(command_name,	 predicate),	 with	 command_name	 a	 string
and	predicate	a	function,	a	string	or	None.	predicate	is	a	method	of
the	 parent	 command	 that	 determines	 whether	 the	 corresponding
command	 is	 applicable	 in	 the	 current	 situation.	 (E.g.
install_headers	 is	 only	 applicable	 if	 we	 have	 any	 C	 header
files	 to	 install.)	 If	 predicate	 is	 None,	 that	 command	 is	 always
applicable.

sub_commands	 is	usually	defined	at	 the	end	of	a	class,	because
predicates	can	be	methods	of	the	class,	so	they	must	already	have
been	defined.	The	canonical	example	is	the	install	command.

10.25.	distutils.command	—
Individual	Distutils	commands

10.26.	distutils.command.bdist	—
Build	a	binary	installer

10.27.
distutils.command.bdist_packager

—	Abstract	base	class	for	packagers

10.28.
distutils.command.bdist_dumb	—
Build	a	“dumb”	installer

10.29.
distutils.command.bdist_msi	—
Build	a	Microsoft	Installer	binary	package

class	distutils.command.bdist_msi.bdist_msi
Builds	a	Windows	Installer	(.msi)	binary	package.

In	most	cases,	the	bdist_msi	installer	is	a	better	choice	than	the
bdist_wininst	 installer,	 because	 it	 provides	 better	 support	 for
Win64	 platforms,	 allows	 administrators	 to	 perform	 non-interactive
installations,	and	allows	installation	through	group	policies.

http://msdn.microsoft.com/en-us/library/cc185688(VS.85).aspx

10.30.
distutils.command.bdist_rpm	—
Build	a	binary	distribution	as	a	Redhat
RPM	and	SRPM

10.31.
distutils.command.bdist_wininst

—	Build	a	Windows	installer

10.32.	distutils.command.sdist	—
Build	a	source	distribution

10.33.	distutils.command.build	—
Build	all	files	of	a	package

10.34.
distutils.command.build_clib	—
Build	any	C	libraries	in	a	package

10.35.
distutils.command.build_ext	—
Build	any	extensions	in	a	package

10.36.	distutils.command.build_py
—	Build	the	.py/.pyc	files	of	a	package

class	distutils.command.build_py.build_py

class	distutils.command.build_py.build_py_2to3
Alternative	 implementation	 of	 build_py	 which	 also	 runs	 the	 2to3
conversion	 library	on	each	 .py	 file	 that	 is	going	 to	be	 installed.	To
use	this	 in	a	setup.py	 file	 for	a	distribution	 that	 is	designed	to	run
with	both	Python	2.x	and	3.x,	add:

try:

			from	distutils.command.build_py	import	build_py_2to3

except	ImportError:

			from	distutils.command.build_py	import	build_py

to	your	setup.py,	and	later:

cmdclass	=	{'build_py':	build_py}

to	the	invocation	of	setup().

10.37.
distutils.command.build_scripts

—	Build	the	scripts	of	a	package

10.38.	distutils.command.clean	—
Clean	a	package	build	area

This	 command	 removes	 the	 temporary	 files	 created	by	build	and	 its
subcommands,	like	intermediary	compiled	object	files.	With	the	--all
option,	the	complete	build	directory	will	be	removed.

Extension	modules	built	in	place	will	not	be	cleaned,	as	they	are	not	in
the	build	directory.

10.39.	distutils.command.config	—
Perform	package	configuration

10.40.	distutils.command.install
—	Install	a	package

10.41.
distutils.command.install_data

—	Install	data	files	from	a	package

10.42.
distutils.command.install_headers

—	Install	C/C++	header	files	from	a
package

10.43.
distutils.command.install_lib	—
Install	library	files	from	a	package

10.44.
distutils.command.install_scripts

—	Install	script	files	from	a	package

10.45.	distutils.command.register
—	Register	a	module	with	the	Python
Package	Index

The	 register	 command	 registers	 the	 package	 with	 the	 Python
Package	Index.	This	is	described	in	more	detail	in	PEP	301.

http://www.python.org/dev/peps/pep-0301

10.46.	distutils.command.check	—
Check	the	meta-data	of	a	package

The	 check	 command	 performs	 some	 tests	 on	 the	 meta-data	 of	 a
package.	 For	 example,	 it	 verifies	 that	 all	 required	 meta-data	 are
provided	as	the	arguments	passed	to	the	setup()	function.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Installing	Python	Modules	(Legacy
version)
Author: Greg	Ward

This	 document	 describes	 the	 Python	 Distribution	 Utilities	 (“Distutils”)
from	 the	 end-user’s	 point-of-view,	 describing	 how	 to	 extend	 the
capabilities	of	a	standard	Python	installation	by	building	and	installing
third-party	Python	modules	and	extensions.

Note: 	This	guide	only	covers	the	basic	tools	for	installing
extensions	that	are	provided	as	part	of	this	version	of	Python.	Third
party	tools	offer	easier	to	use	and	more	secure	alternatives.	Refer	to
the	quick	recommendations	section	in	the	Python	Packaging	User
Guide	for	more	information.

https://python-packaging-user-guide.readthedocs.org/en/latest/current.html

Introduction

Although	 Python’s	 extensive	 standard	 library	 covers	 many
programming	needs,	there	often	comes	a	time	when	you	need	to	add
some	new	functionality	to	your	Python	installation	in	the	form	of	third-
party	 modules.	 This	 might	 be	 necessary	 to	 support	 your	 own
programming,	 or	 to	 support	 an	 application	 that	 you	want	 to	 use	 and
that	happens	to	be	written	in	Python.

In	the	past,	there	has	been	little	support	for	adding	third-party	modules
to	an	existing	Python	 installation.	With	 the	 introduction	of	 the	Python
Distribution	Utilities	(Distutils	for	short)	in	Python	2.0,	this	changed.

This	 document	 is	 aimed	 primarily	 at	 the	 people	 who	 need	 to	 install
third-party	Python	modules:	end-users	and	system	administrators	who
just	need	to	get	some	Python	application	running,	and	existing	Python
programmers	who	want	to	add	some	new	goodies	to	their	toolbox.	You
don’t	need	to	know	Python	to	read	this	document;	there	will	be	some
brief	 forays	 into	 using	 Python’s	 interactive	 mode	 to	 explore	 your
installation,	 but	 that’s	 it.	 If	 you’re	 looking	 for	 information	 on	 how	 to
distribute	your	own	Python	modules	so	that	others	may	use	them,	see
the	Distributing	Python	Modules	(Legacy	version)	manual.	Debugging
the	setup	script	may	also	be	of	interest.

Best	case:	trivial	installation

In	the	best	case,	someone	will	have	prepared	a	special	version	of	the
module	 distribution	 you	want	 to	 install	 that	 is	 targeted	 specifically	 at
your	 platform	 and	 is	 installed	 just	 like	 any	 other	 software	 on	 your
platform.	 For	 example,	 the	 module	 developer	 might	 make	 an
executable	installer	available	for	Windows	users,	an	RPM	package	for

users	of	RPM-based	Linux	systems	(Red	Hat,	SuSE,	Mandrake,	and
many	 others),	 a	 Debian	 package	 for	 users	 of	 Debian-based	 Linux
systems,	and	so	forth.

In	 that	 case,	 you	 would	 download	 the	 installer	 appropriate	 to	 your
platform	 and	 do	 the	 obvious	 thing	with	 it:	 run	 it	 if	 it’s	 an	 executable
installer,	rpm	--install	it	if	it’s	an	RPM,	etc.	You	don’t	need	to	run
Python	 or	 a	 setup	 script,	 you	 don’t	 need	 to	 compile	 anything—you
might	 not	 even	need	 to	 read	any	 instructions	 (although	 it’s	 always	a
good	idea	to	do	so	anyway).

Of	course,	things	will	not	always	be	that	easy.	You	might	be	interested
in	a	module	distribution	 that	doesn’t	have	an	easy-to-use	 installer	 for
your	 platform.	 In	 that	 case,	 you’ll	 have	 to	 start	 with	 the	 source
distribution	released	by	the	module’s	author/maintainer.	Installing	from
a	 source	 distribution	 is	 not	 too	 hard,	 as	 long	 as	 the	 modules	 are
packaged	 in	 the	 standard	 way.	 The	 bulk	 of	 this	 document	 is	 about
building	and	installing	modules	from	standard	source	distributions.

The	new	standard:	Distutils

If	 you	 download	 a	 module	 source	 distribution,	 you	 can	 tell	 pretty
quickly	 if	 it	 was	 packaged	 and	 distributed	 in	 the	 standard	 way,	 i.e.
using	 the	Distutils.	 First,	 the	 distribution’s	 name	and	 version	 number
will	 be	 featured	prominently	 in	 the	name	of	 the	downloaded	archive,
e.g.	 foo-1.0.tar.gz	 or	 widget-0.9.7.zip.	 Next,	 the	 archive
will	 unpack	 into	 a	 similarly-named	 directory:	 foo-1.0	 or	 widget-
0.9.7.	 Additionally,	 the	 distribution	 will	 contain	 a	 setup	 script
setup.py,	and	a	 file	named	README.txt	or	possibly	 just	README,
which	 should	 explain	 that	 building	 and	 installing	 the	 module
distribution	 is	 a	 simple	 matter	 of	 running	 one	 command	 from	 a
terminal:

python	setup.py	install

For	Windows,	 this	command	should	be	 run	 from	a	command	prompt
window	(Start	‣	Accessories):

setup.py	install

If	 all	 these	 things	 are	 true,	 then	 you	 already	 know	how	 to	 build	 and
install	the	modules	you’ve	just	downloaded:	Run	the	command	above.
Unless	you	need	to	install	things	in	a	non-standard	way	or	customize
the	 build	 process,	 you	 don’t	 really	 need	 this	 manual.	 Or	 rather,	 the
above	command	is	everything	you	need	to	get	out	of	this	manual.

Standard	Build	and	Install

As	 described	 in	 section	 The	 new	 standard:	 Distutils,	 building	 and
installing	a	module	distribution	using	the	Distutils	is	usually	one	simple
command	to	run	from	a	terminal:

python	setup.py	install

Platform	variations

You	should	always	 run	 the	setup	command	 from	 the	distribution	 root
directory,	 i.e.	 the	 top-level	 subdirectory	 that	 the	 module	 source
distribution	 unpacks	 into.	 For	 example,	 if	 you’ve	 just	 downloaded	 a
module	source	distribution	foo-1.0.tar.gz	onto	a	Unix	system,	the
normal	thing	to	do	is:

gunzip	-c	foo-1.0.tar.gz	|	tar	xf	-				#	unpacks	into	directory	foo-1.0

cd	foo-1.0

python	setup.py	install

On	 Windows,	 you’d	 probably	 download	 foo-1.0.zip.	 If	 you
downloaded	 the	 archive	 file	 to	 C:\Temp,	 then	 it	 would	 unpack	 into
C:\Temp\foo-1.0;	you	can	use	either	a	archive	manipulator	with	a
graphical	 user	 interface	 (such	 as	 WinZip)	 or	 a	 command-line	 tool
(such	 as	 unzip	 or	 pkunzip)	 to	 unpack	 the	 archive.	 Then,	 open	 a
command	prompt	window	and	run:

cd	c:\Temp\foo-1.0

python	setup.py	install

Splitting	the	job	up

Running	setup.py	install	 builds	and	 installs	all	modules	 in	one
run.	If	you	prefer	 to	work	 incrementally—especially	useful	 if	you	want
to	customize	the	build	process,	or	if	things	are	going	wrong—you	can
use	 the	 setup	 script	 to	 do	 one	 thing	 at	 a	 time.	 This	 is	 particularly
helpful	when	 the	build	and	 install	will	be	done	by	different	users—for
example,	you	might	want	to	build	a	module	distribution	and	hand	it	off
to	a	system	administrator	for	installation	(or	do	it	yourself,	with	super-
user	privileges).

For	 example,	 you	 can	 build	 everything	 in	 one	 step,	 and	 then	 install
everything	in	a	second	step,	by	invoking	the	setup	script	twice:

python	setup.py	build

python	setup.py	install

If	 you	 do	 this,	 you	will	 notice	 that	 running	 the	 install	 command	 first
runs	the	build	command,	which—in	 this	case—quickly	notices	 that	 it
has	 nothing	 to	 do,	 since	 everything	 in	 the	 build	 directory	 is	 up-to-
date.

You	may	not	need	this	ability	to	break	things	down	often	if	all	you	do	is
install	modules	downloaded	off	 the	 ‘net,	 but	 it’s	 very	handy	 for	more
advanced	tasks.	If	you	get	 into	distributing	your	own	Python	modules
and	extensions,	you’ll	run	lots	of	individual	Distutils	commands	on	their
own.

How	building	works

As	 implied	 above,	 the	build	 command	 is	 responsible	 for	 putting	 the
files	to	install	into	a	build	directory.	By	default,	this	is	build	under	the

distribution	root;	if	you’re	excessively	concerned	with	speed,	or	want	to
keep	the	source	tree	pristine,	you	can	change	the	build	directory	with
the	--build-base	option.	For	example:

python	setup.py	build	--build-base=/path/to/pybuild/foo-1.0

(Or	you	could	do	 this	permanently	with	a	directive	 in	your	system	or
personal	Distutils	configuration	file;	see	section	Distutils	Configuration
Files.)	Normally,	this	isn’t	necessary.

The	default	layout	for	the	build	tree	is	as	follows:

---	build/	---	lib/

or

---	build/	---	lib.<plat>/

															temp.<plat>/

where	 <plat>	 expands	 to	 a	 brief	 description	 of	 the	 current
OS/hardware	platform	and	Python	version.	The	 first	 form,	with	 just	a
lib	directory,	is	used	for	“pure	module	distributions”—that	is,	module
distributions	 that	 include	 only	 pure	 Python	 modules.	 If	 a	 module
distribution	contains	any	extensions	(modules	written	 in	C/C++),	 then
the	second	 form,	with	 two	<plat>	directories,	 is	used.	 In	 that	case,
the	 temp.plat	 directory	 holds	 temporary	 files	 generated	 by	 the
compile/link	process	that	don’t	actually	get	installed.	In	either	case,	the
lib	 (or	 lib.plat)	 directory	 contains	 all	 Python	 modules	 (pure
Python	and	extensions)	that	will	be	installed.

In	the	future,	more	directories	will	be	added	to	handle	Python	scripts,
documentation,	 binary	 executables,	 and	 whatever	 else	 is	 needed	 to
handle	the	job	of	installing	Python	modules	and	applications.

How	installation	works

After	 the	 build	 command	 runs	 (whether	 you	 run	 it	 explicitly,	 or	 the
install	command	does	it	for	you),	the	work	of	the	install	command	is
relatively	simple:	all	it	has	to	do	is	copy	everything	under	build/lib
(or	build/lib.plat)	to	your	chosen	installation	directory.

If	 you	 don’t	 choose	 an	 installation	 directory—i.e.,	 if	 you	 just	 run
setup.py	 install—then	 the	 install	 command	 installs	 to	 the
standard	 location	 for	 third-party	Python	modules.	This	 location	varies
by	platform	and	by	how	you	built/installed	Python	itself.	On	Unix	(and
Mac	OS	X,	which	is	also	Unix-based),	it	also	depends	on	whether	the
module	 distribution	 being	 installed	 is	 pure	 Python	 or	 contains
extensions	(“non-pure”):

Platform Standard	installation	location Default	value

Unix
(pure)

prefix/lib/pythonX.Y/site-

packages

/usr/local/lib/python

packages

Unix
(non-
pure)

exec-

prefix/lib/pythonX.Y/site-

packages

/usr/local/lib/python

packages

Windows prefix\Lib\site-packages C:\PythonXY\Lib\site-packages

Notes:

1.	 Most	Linux	distributions	include	Python	as	a	standard	part	of	the
system,	so	prefix	and	exec-prefix	are	usually	both	/usr	on
Linux.	 If	 you	 build	 Python	 yourself	 on	 Linux	 (or	 any	 Unix-like
system),	 the	 default	 prefix	 and	 exec-prefix	 are
/usr/local.

2.	 The	 default	 installation	 directory	 on	Windows	was	 C:\Program
Files\Python	under	Python	1.6a1,	1.5.2,	and	earlier.

prefix	 and	 exec-prefix	 stand	 for	 the	 directories	 that	 Python	 is
installed	to,	and	where	it	finds	its	libraries	at	run-time.	They	are	always
the	 same	 under	Windows,	 and	 very	 often	 the	 same	 under	Unix	 and
Mac	 OS	 X.	 You	 can	 find	 out	 what	 your	 Python	 installation	 uses	 for
prefix	 and	 exec-prefix	 by	 running	 Python	 in	 interactive	 mode
and	typing	a	few	simple	commands.	Under	Unix,	just	type	python	at
the	shell	prompt.	Under	Windows,	choose	Start	‣	Programs	‣	Python
X.Y	‣	Python	(command	line).	Once	the	interpreter	is	started,	you	type
Python	code	at	the	prompt.	For	example,	on	my	Linux	system,	I	type
the	 three	 Python	 statements	 shown	 below,	 and	 get	 the	 output	 as
shown,	to	find	out	my	prefix	and	exec-prefix:

Python	2.4	(#26,	Aug		7	2004,	17:19:02)

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	sys

>>>	sys.prefix

'/usr'

>>>	sys.exec_prefix

'/usr'

A	 few	other	placeholders	are	used	 in	 this	document:	 X.Y	 stands	 for
the	version	of	Python,	for	example	3.2;	abiflags	will	be	replaced	by
the	value	of	 sys.abiflags	 or	 the	empty	string	 for	platforms	which
don’t	define	ABI	flags;	distname	will	be	replaced	by	the	name	of	the
module	 distribution	 being	 installed.	 Dots	 and	 capitalization	 are
important	in	the	paths;	for	example,	a	value	that	uses	python3.2	on
UNIX	will	typically	use	Python32	on	Windows.

If	you	don’t	want	 to	 install	modules	to	the	standard	 location,	or	 if	you
don’t	 have	 permission	 to	 write	 there,	 then	 you	 need	 to	 read	 about
alternate	 installations	 in	 section	Alternate	 Installation.	 If	 you	 want	 to
customize	 your	 installation	 directories	 more	 heavily,	 see	 section

Custom	Installation	on	custom	installations.

Alternate	Installation

Often,	it	is	necessary	or	desirable	to	install	modules	to	a	location	other
than	 the	 standard	 location	 for	 third-party	 Python	 modules.	 For
example,	on	a	Unix	system	you	might	not	have	permission	to	write	to
the	standard	third-party	module	directory.	Or	you	might	wish	to	try	out
a	 module	 before	 making	 it	 a	 standard	 part	 of	 your	 local	 Python
installation.	 This	 is	 especially	 true	 when	 upgrading	 a	 distribution
already	present:	you	want	 to	make	sure	your	existing	base	of	scripts
still	works	with	the	new	version	before	actually	upgrading.

The	Distutils	 install	 command	 is	designed	 to	make	 installing	module
distributions	 to	 an	 alternate	 location	 simple	 and	 painless.	 The	 basic
idea	 is	 that	 you	 supply	 a	 base	 directory	 for	 the	 installation,	 and	 the
install	 command	 picks	 a	 set	 of	 directories	 (called	 an	 installation
scheme)	under	this	base	directory	in	which	to	install	files.	The	details
differ	 across	 platforms,	 so	 read	 whichever	 of	 the	 following	 sections
applies	to	you.

Note	 that	 the	 various	 alternate	 installation	 schemes	 are	 mutually
exclusive:	you	can	pass	--user,	or	--home,	or	--prefix	and	--
exec-prefix,	 or	 --install-base	 and	 --install-platbase,
but	you	can’t	mix	from	these	groups.

Alternate	installation:	the	user	scheme

This	scheme	is	designed	to	be	the	most	convenient	solution	for	users
that	don’t	have	write	permission	 to	 the	global	site-packages	directory
or	don’t	want	to	install	into	it.	It	is	enabled	with	a	simple	option:

python	setup.py	install	--user

Files	will	be	installed	into	subdirectories	of	site.USER_BASE	(written
as	userbase	 hereafter).	 This	 scheme	 installs	 pure	Python	modules
and	 extension	 modules	 in	 the	 same	 location	 (also	 known	 as
site.USER_SITE).	Here	are	the	values	for	UNIX,	including	Mac	OS
X:

Type	of
file Installation	directory

modules userbase/lib/pythonX.Y/site-packages

scripts userbase/bin

data userbase

C
headers

userbase/include/pythonX.Yabiflags/distname

And	here	are	the	values	used	on	Windows:

Type	of	file Installation	directory

modules userbase\PythonXY\site-packages

scripts userbase\Scripts

data userbase

C	headers userbase\PythonXY\Include\distname

The	 advantage	 of	 using	 this	 scheme	 compared	 to	 the	 other	 ones
described	 below	 is	 that	 the	 user	 site-packages	 directory	 is	 under
normal	conditions	always	 included	 in	sys.path	 (see	site	 for	more
information),	which	means	 that	 there	 is	no	additional	step	 to	perform
after	running	the	setup.py	script	to	finalize	the	installation.

The	 build_ext	 command	 also	 has	 a	 --user	 option	 to	 add
userbase/include	to	the	compiler	search	path	for	header	files	and

userbase/lib	to	the	compiler	search	path	for	libraries	as	well	as	to
the	runtime	search	path	for	shared	C	libraries	(rpath).

Alternate	installation:	the	home	scheme

The	 idea	behind	the	“home	scheme”	 is	 that	you	build	and	maintain	a
personal	 stash	 of	 Python	 modules.	 This	 scheme’s	 name	 is	 derived
from	the	idea	of	a	“home”	directory	on	Unix,	since	it’s	not	unusual	for	a
Unix	user	to	make	their	home	directory	have	a	layout	similar	to	/usr/
or	/usr/local/.	This	scheme	can	be	used	by	anyone,	regardless	of
the	operating	system	they	are	installing	for.

Installing	a	new	module	distribution	is	as	simple	as

python	setup.py	install	--home=<dir>

where	you	can	supply	any	directory	you	like	for	the	--home	option.	On
Unix,	 lazy	 typists	 can	 just	 type	 a	 tilde	 (~);	 the	 install	 command	 will
expand	this	to	your	home	directory:

python	setup.py	install	--home=~

To	make	Python	 find	 the	distributions	 installed	with	 this	scheme,	you
may	 have	 to	modify	 Python’s	 search	 path	 or	 edit	 sitecustomize
(see	site)	to	call	site.addsitedir()	or	edit	sys.path.

The	 --home	 option	 defines	 the	 installation	 base	 directory.	 Files	 are
installed	 to	 the	 following	 directories	 under	 the	 installation	 base	 as
follows:

Type	of	file Installation	directory

modules home/lib/python

scripts home/bin

data home

C	headers home/include/python/distname

(Mentally	replace	slashes	with	backslashes	if	you’re	on	Windows.)

Alternate	installation:	Unix	(the	prefix	scheme)

The	 “prefix	 scheme”	 is	 useful	 when	 you	 wish	 to	 use	 one	 Python
installation	to	perform	the	build/install	(i.e.,	to	run	the	setup	script),	but
install	 modules	 into	 the	 third-party	 module	 directory	 of	 a	 different
Python	 installation	 (or	 something	 that	 looks	 like	 a	 different	 Python
installation).	 If	 this	 sounds	 a	 trifle	 unusual,	 it	 is—that’s	why	 the	 user
and	 home	 schemes	 come	 before.	 However,	 there	 are	 at	 least	 two
known	cases	where	the	prefix	scheme	will	be	useful.

First,	consider	that	many	Linux	distributions	put	Python	in	/usr,	rather
than	 the	 more	 traditional	 /usr/local.	 This	 is	 entirely	 appropriate,
since	in	those	cases	Python	is	part	of	“the	system”	rather	than	a	local
add-on.	 However,	 if	 you	 are	 installing	 Python	modules	 from	 source,
you	 probably	 want	 them	 to	 go	 in	 /usr/local/lib/python2.X
rather	than	/usr/lib/python2.X.	This	can	be	done	with

/usr/bin/python	setup.py	install	--prefix=/usr/local

Another	 possibility	 is	 a	 network	 filesystem	 where	 the	 name	 used	 to
write	 to	a	remote	directory	 is	different	 from	the	name	used	to	read	 it:
for	 example,	 the	 Python	 interpreter	 accessed	 as
/usr/local/bin/python	 might	 search	 for	 modules	 in
/usr/local/lib/python2.X,	but	those	modules	would	have	to	be

installed	 to,	 say,	 /mnt/@server/export/lib/python2.X.	 This
could	be	done	with

/usr/local/bin/python	setup.py	install	--prefix=/mnt/@server/export

In	either	case,	the	--prefix	option	defines	the	installation	base,	and	the
--exec-prefix	 option	 defines	 the	 platform-specific	 installation	 base,
which	 is	 used	 for	 platform-specific	 files.	 (Currently,	 this	 just	 means
non-pure	module	 distributions,	 but	 could	 be	 expanded	 to	C	 libraries,
binary	executables,	etc.)	If	--exec-prefix	is	not	supplied,	it	defaults	to	--
prefix.	Files	are	installed	as	follows:

Type	of
file Installation	directory

Python
modules

prefix/lib/pythonX.Y/site-packages

extension
modules

exec-prefix/lib/pythonX.Y/site-packages

scripts prefix/bin

data prefix

C
headers

prefix/include/pythonX.Yabiflags/distname

There	 is	no	 requirement	 that	 --prefix	or	--exec-prefix	 actually	point	 to
an	alternate	Python	 installation;	 if	 the	directories	 listed	above	do	not
already	exist,	they	are	created	at	installation	time.

Incidentally,	 the	 real	 reason	 the	prefix	 scheme	 is	 important	 is	 simply
that	 a	 standard	 Unix	 installation	 uses	 the	 prefix	 scheme,	 but	 with	 --
prefix	and	--exec-prefix	supplied	by	Python	itself	as	sys.prefix	and
sys.exec_prefix.	Thus,	you	might	think	you’ll	never	use	the	prefix

scheme,	 but	 every	 time	 you	 run	 python	 setup.py	 install

without	any	other	options,	you’re	using	it.

Note	 that	 installing	extensions	 to	an	alternate	Python	 installation	has
no	effect	on	how	 those	extensions	are	built:	 in	particular,	 the	Python
header	 files	 (Python.h	 and	 friends)	 installed	 with	 the	 Python
interpreter	 used	 to	 run	 the	 setup	 script	 will	 be	 used	 in	 compiling
extensions.	It	 is	your	responsibility	to	ensure	that	the	interpreter	used
to	run	extensions	installed	in	this	way	is	compatible	with	the	interpreter
used	to	build	them.	The	best	way	to	do	this	 is	 to	ensure	that	 the	two
interpreters	are	the	same	version	of	Python	(possibly	different	builds,
or	possibly	copies	of	the	same	build).	(Of	course,	if	your	--prefix	and	--
exec-prefix	don’t	even	point	to	an	alternate	Python	installation,	this	 is
immaterial.)

Alternate	installation:	Windows	(the	prefix
scheme)

Windows	 has	 no	 concept	 of	 a	 user’s	 home	 directory,	 and	 since	 the
standard	 Python	 installation	 under	 Windows	 is	 simpler	 than	 under
Unix,	the	--prefix	option	has	traditionally	been	used	to	install	additional
packages	in	separate	locations	on	Windows.

python	setup.py	install	--prefix="\Temp\Python"

to	 install	 modules	 to	 the	 \Temp\Python	 directory	 on	 the	 current
drive.

The	installation	base	is	defined	by	the	--prefix	option;	the	--exec-prefix
option	is	not	supported	under	Windows,	which	means	that	pure	Python
modules	and	extension	modules	are	 installed	 into	 the	same	 location.
Files	are	installed	as	follows:

Type	of	file Installation	directory

modules prefix\Lib\site-packages

scripts prefix\Scripts

data prefix

C	headers prefix\Include\distname

Custom	Installation

Sometimes,	 the	 alternate	 installation	 schemes	 described	 in	 section
Alternate	 Installation	 just	 don’t	 do	what	 you	want.	You	might	want	 to
tweak	 just	one	or	 two	directories	while	 keeping	everything	under	 the
same	 base	 directory,	 or	 you	 might	 want	 to	 completely	 redefine	 the
installation	 scheme.	 In	 either	 case,	 you’re	 creating	 a	 custom
installation	scheme.

To	 create	 a	 custom	 installation	 scheme,	 you	 start	 with	 one	 of	 the
alternate	 schemes	 and	 override	 some	 of	 the	 installation	 directories
used	for	the	various	types	of	files,	using	these	options:

Type	of	file Override	option

Python	modules --install-

purelib

extension	modules --install-

platlib

all	modules --install-lib

scripts --install-

scripts

data --install-data

C	headers --install-

headers

These	override	options	can	be	relative,	absolute,	or	explicitly	defined
in	 terms	 of	 one	 of	 the	 installation	 base	 directories.	 (There	 are	 two
installation	 base	 directories,	 and	 they	 are	 normally	 the	 same—	 they
only	differ	when	you	use	the	Unix	“prefix	scheme”	and	supply	different
--prefix	 and	 --exec-prefix	 options;	 using	 --install-lib

will	override	values	computed	or	given	for	--install-purelib	and
--install-platlib,	 and	 is	 recommended	 for	 schemes	 that	 don’t
make	a	difference	between	Python	and	extension	modules.)

For	example,	say	you’re	installing	a	module	distribution	to	your	home
directory	under	Unix—but	you	want	scripts	to	go	in	~/scripts	rather
than	~/bin.	As	you	might	expect,	you	can	override	this	directory	with
the	--install-scripts	option;	in	this	case,	it	makes	most	sense	to	supply
a	relative	path,	which	will	be	interpreted	relative	to	the	installation	base
directory	(your	home	directory,	in	this	case):

python	setup.py	install	--home=~	--install-scripts=scripts

Another	Unix	example:	suppose	your	Python	installation	was	built	and
installed	with	a	prefix	of	/usr/local/python,	so	under	a	standard
installation	scripts	will	wind	up	 in	/usr/local/python/bin.	 If	 you
want	 them	 in	 /usr/local/bin	 instead,	 you	 would	 supply	 this
absolute	directory	for	the	--install-scripts	option:

python	setup.py	install	--install-scripts=/usr/local/bin

(This	 performs	 an	 installation	 using	 the	 “prefix	 scheme,”	 where	 the
prefix	 is	 whatever	 your	 Python	 interpreter	 was	 installed	 with—
/usr/local/python	in	this	case.)

If	 you	 maintain	 Python	 on	 Windows,	 you	 might	 want	 third-party
modules	 to	 live	 in	 a	 subdirectory	 of	 prefix,	 rather	 than	 right	 in
prefix	 itself.	 This	 is	 almost	 as	 easy	 as	 customizing	 the	 script
installation	directory	—you	 just	have	 to	 remember	 that	 there	are	 two
types	 of	 modules	 to	 worry	 about,	 Python	 and	 extension	 modules,
which	can	conveniently	be	both	controlled	by	one	option:

python	setup.py	install	--install-lib=Site

The	 specified	 installation	 directory	 is	 relative	 to	 prefix.	Of	 course,
you	 also	 have	 to	 ensure	 that	 this	 directory	 is	 in	 Python’s	 module
search	 path,	 such	 as	 by	 putting	 a	 .pth	 file	 in	 a	 site	 directory	 (see
site).	See	section	Modifying	Python’s	Search	Path	to	find	out	how	to
modify	Python’s	search	path.

If	 you	want	 to	 define	 an	 entire	 installation	 scheme,	 you	 just	 have	 to
supply	all	of	the	installation	directory	options.	The	recommended	way
to	 do	 this	 is	 to	 supply	 relative	 paths;	 for	 example,	 if	 you	 want	 to
maintain	all	Python	module-related	 files	under	python	 in	your	home
directory,	and	you	want	a	separate	directory	for	each	platform	that	you
use	 your	 home	 directory	 from,	 you	 might	 define	 the	 following
installation	scheme:

python	setup.py	install	--home=~	\

																								--install-purelib=python/lib	\

																								--install-platlib=python/lib.$PLAT	\

																								--install-scripts=python/scripts

																								--install-data=python/data

or,	equivalently,

python	setup.py	install	--home=~/python	\

																								--install-purelib=lib	\

																								--install-platlib='lib.$PLAT'	\

																								--install-scripts=scripts

																								--install-data=data

$PLAT	 is	 not	 (necessarily)	 an	 environment	 variable—it	 will	 be
expanded	by	the	Distutils	as	it	parses	your	command	line	options,	just

as	it	does	when	parsing	your	configuration	file(s).

Obviously,	 specifying	 the	 entire	 installation	 scheme	 every	 time	 you
install	a	new	module	distribution	would	be	very	tedious.	Thus,	you	can
put	 these	 options	 into	 your	 Distutils	 config	 file	 (see	 section	Distutils
Configuration	Files):

[install]

install-base=$HOME

install-purelib=python/lib

install-platlib=python/lib.$PLAT

install-scripts=python/scripts

install-data=python/data

or,	equivalently,

[install]

install-base=$HOME/python

install-purelib=lib

install-platlib=lib.$PLAT

install-scripts=scripts

install-data=data

Note	 that	 these	 two	 are	 not	 equivalent	 if	 you	 supply	 a	 different
installation	base	directory	when	you	run	the	setup	script.	For	example,

python	setup.py	install	--install-base=/tmp

would	 install	 pure	 modules	 to	 /tmp/python/lib	 in	 the	 first	 case,
and	 to	 /tmp/lib	 in	 the	 second	 case.	 (For	 the	 second	 case,	 you
probably	want	to	supply	an	installation	base	of	/tmp/python.)

You	 probably	 noticed	 the	 use	 of	 $HOME	 and	 $PLAT	 in	 the	 sample
configuration	 file	 input.	 These	 are	 Distutils	 configuration	 variables,

which	 bear	 a	 strong	 resemblance	 to	 environment	 variables.	 In	 fact,
you	 can	 use	 environment	 variables	 in	 config	 files	 on	 platforms	 that
have	 such	 a	 notion	 but	 the	 Distutils	 additionally	 define	 a	 few	 extra
variables	that	may	not	be	 in	your	environment,	such	as	$PLAT.	(And
of	course,	on	systems	that	don’t	have	environment	variables,	such	as
Mac	OS	9,	the	configuration	variables	supplied	by	the	Distutils	are	the
only	ones	 you	can	use.)	See	section	Distutils	Configuration	Files	 for
details.

Note: 	When	a	virtual	environment	is	activated,	any	options	that
change	the	installation	path	will	be	ignored	from	all	distutils
configuration	files	to	prevent	inadvertently	installing	projects	outside
of	the	virtual	environment.

Modifying	Python’s	Search	Path

When	 the	 Python	 interpreter	 executes	 an	 import	 statement,	 it
searches	for	both	Python	code	and	extension	modules	along	a	search
path.	A	default	value	for	the	path	is	configured	into	the	Python	binary
when	the	interpreter	is	built.	You	can	determine	the	path	by	importing
the	sys	module	and	printing	the	value	of	sys.path.

$	python

Python	2.2	(#11,	Oct		3	2002,	13:31:27)

[GCC	2.96	20000731	(Red	Hat	Linux	7.3	2.96-112)]	on	linux2

Type	"help",	"copyright",	"credits"	or	"license"	for	more	information.

>>>	import	sys

>>>	sys.path

['',	'/usr/local/lib/python2.3',	'/usr/local/lib/python2.3/plat-linux2',

	'/usr/local/lib/python2.3/lib-tk',	'/usr/local/lib/python2.3/lib-dynload',

	'/usr/local/lib/python2.3/site-packages']

>>>

The	null	string	in	sys.path	represents	the	current	working	directory.

The	expected	convention	for	 locally	 installed	packages	is	to	put	them
in	 the	.../site-packages/	 directory,	 but	 you	may	want	 to	 install
Python	modules	 into	some	arbitrary	directory.	For	example,	 your	 site
may	 have	 a	 convention	 of	 keeping	 all	 software	 related	 to	 the	 web
server	 under	 /www.	 Add-on	 Python	 modules	 might	 then	 belong	 in
/www/python,	 and	 in	 order	 to	 import	 them,	 this	 directory	 must	 be
added	 to	 sys.path.	 There	 are	 several	 different	 ways	 to	 add	 the
directory.

The	 most	 convenient	 way	 is	 to	 add	 a	 path	 configuration	 file	 to	 a
directory	 that’s	 already	 on	Python’s	 path,	 usually	 to	 the	 .../site-
packages/	 directory.	 Path	 configuration	 files	 have	 an	 extension	 of
.pth,	and	each	line	must	contain	a	single	path	that	will	be	appended
to	sys.path.	 (Because	 the	new	paths	are	appended	 to	sys.path,
modules	 in	 the	added	directories	will	not	override	standard	modules.
This	means	you	can’t	use	this	mechanism	for	installing	fixed	versions
of	standard	modules.)

Paths	can	be	absolute	or	relative,	in	which	case	they’re	relative	to	the
directory	containing	the	.pth	file.	See	the	documentation	of	the	site
module	for	more	information.

A	slightly	 less	convenient	way	 is	 to	edit	 the	site.py	 file	 in	Python’s
standard	 library,	 and	 modify	 sys.path.	 site.py	 is	 automatically
imported	when	the	Python	interpreter	is	executed,	unless	the	-S	switch
is	 supplied	 to	 suppress	 this	 behaviour.	 So	 you	 could	 simply	 edit
site.py	and	add	two	lines	to	it:

import	sys

sys.path.append('/www/python/')

However,	 if	 you	 reinstall	 the	 same	major	 version	of	Python	 (perhaps
when	 upgrading	 from	 2.2	 to	 2.2.2,	 for	 example)	 site.py	 will	 be
overwritten	by	 the	stock	version.	You’d	have	to	remember	 that	 it	was
modified	and	save	a	copy	before	doing	the	installation.

There	 are	 two	 environment	 variables	 that	 can	 modify	 sys.path.
PYTHONHOME	 sets	 an	 alternate	 value	 for	 the	 prefix	 of	 the	 Python
installation.	For	example,	if	PYTHONHOME	is	set	to	/www/python,	the
search	 path	 will	 be	 set	 to	 ['',

'/www/python/lib/pythonX.Y/',

'/www/python/lib/pythonX.Y/plat-linux2',	...].

The	 PYTHONPATH	 variable	 can	 be	 set	 to	 a	 list	 of	 paths	 that	 will	 be
added	to	the	beginning	of	sys.path.	For	example,	if	PYTHONPATH	is
set	 to	 /www/python:/opt/py,	 the	 search	 path	 will	 begin	 with
['/www/python',	'/opt/py'].	 (Note	 that	 directories	must	 exist
in	order	to	be	added	to	sys.path;	the	site	module	removes	paths
that	don’t	exist.)

Finally,	 sys.path	 is	 just	 a	 regular	 Python	 list,	 so	 any	 Python
application	can	modify	it	by	adding	or	removing	entries.

Distutils	Configuration	Files

As	mentioned	above,	you	can	use	Distutils	configuration	files	to	record
personal	 or	 site	 preferences	 for	 any	 Distutils	 options.	 That	 is,	 any
option	 to	 any	 command	 can	 be	 stored	 in	 one	 of	 two	 or	 three
(depending	 on	 your	 platform)	 configuration	 files,	 which	 will	 be
consulted	 before	 the	 command-line	 is	 parsed.	 This	 means	 that
configuration	 files	will	 override	default	 values,	and	 the	command-line
will	 in	 turn	 override	 configuration	 files.	 Furthermore,	 if	 multiple
configuration	 files	 apply,	 values	 from	 “earlier”	 files	 are	 overridden	 by
“later”	files.

Location	and	names	of	config	files

The	names	and	locations	of	the	configuration	files	vary	slightly	across
platforms.	On	Unix	and	Mac	OS	X,	the	three	configuration	files	(in	the
order	they	are	processed)	are:

Type	of
file Location	and	filename

system prefix/lib/pythonver/distutils/distutils.cfg

personal $HOME/.pydistutils.cfg

local setup.cfg

And	on	Windows,	the	configuration	files	are:

Type	of
file Location	and	filename Notes

system prefix\Lib\distutils\distutils.cfg (4)

personal %HOME%\pydistutils.cfg (5)

local setup.cfg (3)

On	 all	 platforms,	 the	 “personal”	 file	 can	 be	 temporarily	 disabled	 by
passing	the	–no-user-cfg	option.

Notes:

1.	 Strictly	 speaking,	 the	 system-wide	 configuration	 file	 lives	 in	 the
directory	where	 the	Distutils	 are	 installed;	 under	Python	1.6	and
later	on	Unix,	this	is	as	shown.	For	Python	1.5.2,	the	Distutils	will
normally	 be	 installed	 to	 prefix/lib/python1.5/site-

packages/distutils,	 so	 the	 system	 configuration	 file	 should
be	put	there	under	Python	1.5.2.

2.	 On	 Unix,	 if	 the	 HOME	 environment	 variable	 is	 not	 defined,	 the
user’s	 home	 directory	will	 be	 determined	with	 the	 getpwuid()
function	 from	 the	 standard	 pwd	 module.	 This	 is	 done	 by	 the
os.path.expanduser()	function	used	by	Distutils.

3.	 I.e.,	 in	 the	 current	 directory	 (usually	 the	 location	 of	 the	 setup
script).

4.	 (See	also	note	(1).)	Under	Python	1.6	and	later,	Python’s	default
“installation	prefix”	is	C:\Python,	so	the	system	configuration	file
is	 normally	 C:\Python\Lib\distutils\distutils.cfg.
Under	 Python	 1.5.2,	 the	 default	 prefix	 was	 C:\Program

Files\Python,	 and	 the	Distutils	were	 not	 part	 of	 the	 standard
library—so	 the	 system	 configuration	 file	 would	 be	 C:\Program
Files\Python\distutils\distutils.cfg	 in	 a	 standard
Python	1.5.2	installation	under	Windows.

5.	 On	 Windows,	 if	 the	 HOME	 environment	 variable	 is	 not	 defined,
USERPROFILE	 then	 HOMEDRIVE	 and	 HOMEPATH	 will	 be	 tried.
This	 is	done	by	 the	os.path.expanduser()	 function	used	by
Distutils.

Syntax	of	config	files

The	Distutils	configuration	 files	all	have	 the	same	syntax.	The	 config
files	are	grouped	into	sections.	There	is	one	section	for	each	Distutils
command,	plus	a	global	section	for	global	options	that	affect	every
command.	Each	section	 consists	of	 one	option	per	 line,	 specified	as
option=value.

For	example,	the	following	is	a	complete	config	file	that	just	forces	all
commands	to	run	quietly	by	default:

[global]

verbose=0

If	this	is	installed	as	the	system	config	file,	it	will	affect	all	processing	of
any	Python	module	distribution	by	any	user	on	the	current	system.	If	it
is	installed	as	your	personal	config	file	(on	systems	that	support	them),
it	 will	 affect	 only	module	 distributions	 processed	 by	 you.	 And	 if	 it	 is
used	as	the	setup.cfg	for	a	particular	module	distribution,	it	affects
only	that	distribution.

You	 could	 override	 the	 default	 “build	 base”	 directory	 and	 make	 the
build*	commands	always	forcibly	rebuild	all	files	with	the	following:

[build]

build-base=blib

force=1

which	corresponds	to	the	command-line	arguments

python	setup.py	build	--build-base=blib	--force

except	that	including	the	build	command	on	the	command-line	means
that	 command	will	 be	 run.	 Including	 a	 particular	 command	 in	 config
files	has	no	such	implication;	it	only	means	that	if	the	command	is	run,

the	 options	 in	 the	 config	 file	 will	 apply.	 (Or	 if	 other	 commands	 that
derive	values	from	it	are	run,	they	will	use	the	values	in	the	config	file.)

You	can	 find	out	 the	complete	 list	of	options	 for	any	command	using
the	--help	option,	e.g.:

python	setup.py	build	--help

and	you	can	find	out	the	complete	list	of	global	options	by	using	--help
without	a	command:

python	setup.py	--help

See	also	the	“Reference”	section	of	the	“Distributing	Python	Modules”
manual.

Building	Extensions:	Tips	and	Tricks

Whenever	 possible,	 the	 Distutils	 try	 to	 use	 the	 configuration
information	made	available	by	 the	Python	 interpreter	used	 to	 run	 the
setup.py	 script.	 For	 example,	 the	 same	 compiler	 and	 linker	 flags
used	 to	 compile	 Python	 will	 also	 be	 used	 for	 compiling	 extensions.
Usually	 this	will	work	well,	but	 in	complicated	situations	this	might	be
inappropriate.	 This	 section	 discusses	 how	 to	 override	 the	 usual
Distutils	behaviour.

Tweaking	compiler/linker	flags

Compiling	 a	 Python	 extension	 written	 in	 C	 or	 C++	 will	 sometimes
require	specifying	custom	flags	for	the	compiler	and	linker	 in	order	to
use	a	particular	library	or	produce	a	special	kind	of	object	code.	This	is
especially	true	if	the	extension	hasn’t	been	tested	on	your	platform,	or
if	you’re	trying	to	cross-compile	Python.

In	 the	most	 general	 case,	 the	extension	author	might	 have	 foreseen
that	 compiling	 the	 extensions	would	 be	 complicated,	 and	 provided	 a
Setup	 file	 for	you	 to	edit.	This	will	 likely	only	be	done	 if	 the	module
distribution	contains	many	separate	extension	modules,	or	if	they	often
require	elaborate	sets	of	compiler	flags	in	order	to	work.

A	Setup	file,	if	present,	is	parsed	in	order	to	get	a	list	of	extensions	to
build.	Each	line	in	a	Setup	describes	a	single	module.	Lines	have	the
following	structure:

module	...	[sourcefile	...]	[cpparg	...]	[library	...]

Let’s	examine	each	of	the	fields	in	turn.

module	 is	 the	 name	 of	 the	 extension	 module	 to	 be	 built,	 and
should	be	a	 valid	Python	 identifier.	You	 can’t	 just	 change	 this	 in
order	to	rename	a	module	(edits	to	the	source	code	would	also	be
needed),	so	this	should	be	left	alone.
sourcefile	is	anything	that’s	likely	to	be	a	source	code	file,	at	least
judging	by	the	filename.	Filenames	ending	in	.c	are	assumed	to
be	 written	 in	 C,	 filenames	 ending	 in	 .C,	 .cc,	 and	 .c++	 are
assumed	 to	 be	 C++,	 and	 filenames	 ending	 in	 .m	 or	 .mm	 are
assumed	to	be	in	Objective	C.
cpparg	 is	 an	 argument	 for	 the	 C	 preprocessor,	 and	 is	 anything
starting	with	-I,	-D,	-U	or	-C.
library	is	anything	ending	in	.a	or	beginning	with	-l	or	-L.

If	a	particular	platform	requires	a	special	library	on	your	platform,	you
can	add	it	by	editing	the	Setup	 file	and	running	python	setup.py
build.	For	example,	if	the	module	defined	by	the	line

foo	foomodule.c

must	be	linked	with	the	math	library	libm.a	on	your	platform,	simply
add	-lm	to	the	line:

foo	foomodule.c	-lm

Arbitrary	 switches	 intended	 for	 the	 compiler	 or	 the	 linker	 can	 be
supplied	with	the	-Xcompiler	arg	and	-Xlinker	arg	options:

foo	foomodule.c	-Xcompiler	-o32	-Xlinker	-shared	-lm

The	next	option	after	-Xcompiler	and	-Xlinker	will	be	appended	to	the
proper	 command	 line,	 so	 in	 the	 above	 example	 the	 compiler	 will	 be
passed	 the	 -o32	 option,	 and	 the	 linker	 will	 be	 passed	 -shared.	 If	 a
compiler	option	requires	an	argument,	you’ll	have	to	supply	multiple	-

Xcompiler	options;	for	example,	to	pass	-x	c++	the	Setup	file	would
have	to	contain	-Xcompiler	-x	-Xcompiler	c++.

Compiler	 flags	 can	 also	 be	 supplied	 through	 setting	 the	 CFLAGS
environment	variable.	If	set,	 the	contents	of	CFLAGS	will	be	added	to
the	compiler	flags	specified	in	the	Setup	file.

Using	non-Microsoft	compilers	on	Windows
Borland/CodeGear	C++

This	subsection	describes	the	necessary	steps	to	use	Distutils	with	the
Borland	 C++	 compiler	 version	 5.5.	 First	 you	 have	 to	 know	 that
Borland’s	object	file	format	(OMF)	is	different	from	the	format	used	by
the	Python	version	you	can	download	from	the	Python	or	ActiveState
Web	site.	(Python	is	built	with	Microsoft	Visual	C++,	which	uses	COFF
as	the	object	file	format.)	For	this	reason	you	have	to	convert	Python’s
library	 python25.lib	 into	 the	 Borland	 format.	 You	 can	 do	 this	 as
follows:

coff2omf	python25.lib	python25_bcpp.lib

The	 coff2omf	 program	 comes	 with	 the	 Borland	 compiler.	 The	 file
python25.lib	is	in	the	Libs	directory	of	your	Python	installation.	If
your	extension	uses	other	libraries	(zlib,	...)	you	have	to	convert	them
too.

The	 converted	 files	 have	 to	 reside	 in	 the	 same	 directories	 as	 the
normal	libraries.

How	does	Distutils	manage	 to	use	 these	 libraries	with	 their	 changed
names?	If	the	extension	needs	a	library	(eg.	foo)	Distutils	checks	first

if	 it	 finds	 a	 library	with	 suffix	 _bcpp	 (eg.	 foo_bcpp.lib)	 and	 then
uses	this	library.	In	the	case	it	doesn’t	find	such	a	special	library	it	uses
the	default	name	(foo.lib.)	[1]

To	let	Distutils	compile	your	extension	with	Borland	C++	you	now	have
to	type:

python	setup.py	build	--compiler=bcpp

If	you	want	to	use	the	Borland	C++	compiler	as	the	default,	you	could
specify	 this	 in	 your	 personal	 or	 system-wide	 configuration	 file	 for
Distutils	(see	section	Distutils	Configuration	Files.)

See	also:

C++Builder	Compiler
Information	about	 the	free	C++	compiler	 from	Borland,	 including
links	to	the	download	pages.

Creating	Python	Extensions	Using	Borland’s	Free	Compiler
Document	 describing	 how	 to	 use	 Borland’s	 free	 command-line
C++	compiler	to	build	Python.

GNU	C	/	Cygwin	/	MinGW

This	 section	 describes	 the	 necessary	 steps	 to	 use	 Distutils	 with	 the
GNU	 C/C++	 compilers	 in	 their	 Cygwin	 and	 MinGW	 distributions.	 [2]
For	a	Python	interpreter	that	was	built	with	Cygwin,	everything	should
work	without	any	of	these	following	steps.

Not	all	extensions	can	be	built	with	MinGW	or	Cygwin,	but	many	can.
Extensions	most	 likely	to	not	work	are	those	that	use	C++	or	depend
on	Microsoft	Visual	C	extensions.

http://www.codegear.com/downloads/free/cppbuilder
http://www.cyberus.ca/~g_will/pyExtenDL.shtml

To	let	Distutils	compile	your	extension	with	Cygwin	you	have	to	type:

python	setup.py	build	--compiler=cygwin

and	for	Cygwin	in	no-cygwin	mode	[3]	or	for	MinGW	type:

python	setup.py	build	--compiler=mingw32

If	 you	 want	 to	 use	 any	 of	 these	 options/compilers	 as	 default,	 you
should	 consider	 writing	 it	 in	 your	 personal	 or	 system-wide
configuration	file	for	Distutils	(see	section	Distutils	Configuration	Files.)

Older	Versions	of	Python	and	MinGW

The	following	instructions	only	apply	if	you’re	using	a	version	of	Python
inferior	 to	 2.4.1	with	 a	MinGW	 inferior	 to	 3.0.0	 (with	 binutils-2.13.90-
20030111-1).

These	 compilers	 require	 some	 special	 libraries.	 This	 task	 is	 more
complex	 than	 for	 Borland’s	 C++,	 because	 there	 is	 no	 program	 to
convert	the	library.	First	you	have	to	create	a	list	of	symbols	which	the
Python	 DLL	 exports.	 (You	 can	 find	 a	 good	 program	 for	 this	 task	 at
http://sourceforge.net/projects/mingw/files/MinGW/Extension/pexports/).

pexports	python25.dll	>python25.def

The	 location	 of	 an	 installed	 python25.dll	 will	 depend	 on	 the
installation	 options	 and	 the	 version	 and	 language	 of	 Windows.	 In	 a
“just	 for	 me”	 installation,	 it	 will	 appear	 in	 the	 root	 of	 the	 installation
directory.	 In	 a	 shared	 installation,	 it	 will	 be	 located	 in	 the	 system
directory.

Then	you	can	create	from	these	information	an	import	library	for	gcc.

http://sourceforge.net/projects/mingw/files/MinGW/Extension/pexports/

/cygwin/bin/dlltool	--dllname	python25.dll	--def	python25.def	--output-lib	libpython25.a

The	 resulting	 library	 has	 to	 be	 placed	 in	 the	 same	 directory	 as
python25.lib.	 (Should	 be	 the	 libs	 directory	 under	 your	 Python
installation	directory.)

If	 your	 extension	 uses	 other	 libraries	 (zlib,...)	 you	 might	 have	 to
convert	 them	 too.	 The	 converted	 files	 have	 to	 reside	 in	 the	 same
directories	as	the	normal	libraries	do.

See	also:

Building	Python	modules	on	MS	Windows	platform	with	MinGW
Information	 about	 building	 the	 required	 libraries	 for	 the	MinGW
environment.

Footnotes

[1] This	also	means	you	could	replace	all	existing	COFF-libraries
with	OMF-libraries	of	the	same	name.

[2] Check	http://sources.redhat.com/cygwin/	and
http://www.mingw.org/	for	more	information

[3] Then	you	have	no	POSIX	emulation	available,	but	you	also
don’t	need	cygwin1.dll.

indexmodules	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.zope.org/Members/als/tips/win32_mingw_modules
http://sources.redhat.com/cygwin/
http://www.mingw.org/
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Distributing	Python	Modules
(Legacy	version)
Authors: Greg	Ward,	Anthony	Baxter

Email: distutils-sig@python.org

This	 document	 describes	 the	 Python	 Distribution	 Utilities	 (“Distutils”)
from	the	module	developer’s	point	of	view,	describing	how	to	use	the
Distutils	to	make	Python	modules	and	extensions	easily	available	to	a
wider	 audience	 with	 very	 little	 overhead	 for	 build/release/install
mechanics.

Note: 	This	guide	only	covers	the	basic	tools	for	building	and
distributing	extensions	that	are	provided	as	part	of	this	version	of
Python.	Third	party	tools	offer	easier	to	use	and	more	secure
alternatives.	Refer	to	the	quick	recommendations	section	in	the
Python	Packaging	User	Guide	for	more	information.

1.	An	Introduction	to	Distutils
1.1.	Concepts	&	Terminology
1.2.	A	Simple	Example
1.3.	General	Python	terminology
1.4.	Distutils-specific	terminology

2.	Writing	the	Setup	Script
2.1.	Listing	whole	packages
2.2.	Listing	individual	modules
2.3.	Describing	extension	modules
2.4.	Relationships	between	Distributions	and	Packages
2.5.	Installing	Scripts
2.6.	Installing	Package	Data
2.7.	Installing	Additional	Files

mailto:distutils-sig%40python.org
https://python-packaging-user-guide.readthedocs.org/en/latest/current.html

2.8.	Additional	meta-data
2.9.	Debugging	the	setup	script

3.	Writing	the	Setup	Configuration	File
4.	Creating	a	Source	Distribution

4.1.	Specifying	the	files	to	distribute
4.2.	Manifest-related	options

5.	Creating	Built	Distributions
5.1.	Creating	RPM	packages
5.2.	Creating	Windows	Installers
5.3.	Cross-compiling	on	Windows
5.4.	Vista	User	Access	Control	(UAC)

6.	The	Python	Package	Index	(PyPI)
6.1.	Registering	Packages
6.2.	Uploading	Packages
6.3.	The	.pypirc	file
6.4.	PyPI	package	display

7.	Examples
7.1.	Pure	Python	distribution	(by	module)
7.2.	Pure	Python	distribution	(by	package)
7.3.	Single	extension	module
7.4.	Checking	a	package
7.5.	Reading	the	metadata

8.	Extending	Distutils
8.1.	Integrating	new	commands
8.2.	Adding	new	distribution	types

9.	Command	Reference
9.1.	Installing	modules:	the	install	command	family
9.2.	Creating	a	source	distribution:	the	sdist	command

10.	API	Reference
10.1.	distutils.core	—	Core	Distutils	functionality
10.2.	distutils.ccompiler	—	CCompiler	base	class
10.3.	distutils.unixccompiler	—	Unix	C	Compiler
10.4.	distutils.msvccompiler	—	Microsoft	Compiler
10.5.	distutils.bcppcompiler	—	Borland	Compiler

10.6.	distutils.cygwincompiler	—	Cygwin	Compiler
10.7.	distutils.archive_util	—	Archiving	utilities
10.8.	distutils.dep_util	—	Dependency	checking
10.9.	distutils.dir_util	—	Directory	tree	operations
10.10.	distutils.file_util	—	Single	file	operations
10.11.	 distutils.util	 —	 Miscellaneous	 other	 utility
functions
10.12.	distutils.dist	—	The	Distribution	class
10.13.	distutils.extension	—	The	Extension	class
10.14.	distutils.debug	—	Distutils	debug	mode
10.15.	distutils.errors	—	Distutils	exceptions
10.16.	distutils.fancy_getopt	—	Wrapper	around	the
standard	getopt	module
10.17.	distutils.filelist	—	The	FileList	class
10.18.	distutils.log	—	Simple	PEP	282-style	logging
10.19.	distutils.spawn	—	Spawn	a	sub-process
10.20.	 distutils.sysconfig	 —	 System	 configuration
information
10.21.	distutils.text_file	—	The	TextFile	class
10.22.	distutils.version	—	Version	number	classes
10.23.	distutils.cmd	—	Abstract	 base	class	 for	Distutils
commands
10.24.	Creating	a	new	Distutils	command
10.25.	 distutils.command	 —	 Individual	 Distutils
commands
10.26.	 distutils.command.bdist	 —	 Build	 a	 binary
installer
10.27.	 distutils.command.bdist_packager	 —
Abstract	base	class	for	packagers
10.28.	 distutils.command.bdist_dumb	 —	 Build	 a
“dumb”	installer
10.29.	 distutils.command.bdist_msi	 —	 Build	 a

Microsoft	Installer	binary	package
10.30.	distutils.command.bdist_rpm	—	Build	a	binary
distribution	as	a	Redhat	RPM	and	SRPM
10.31.	 distutils.command.bdist_wininst	 —	 Build	 a
Windows	installer
10.32.	 distutils.command.sdist	 —	 Build	 a	 source
distribution
10.33.	 distutils.command.build	—	 Build	 all	 files	 of	 a
package
10.34.	distutils.command.build_clib	—	Build	 any	C
libraries	in	a	package
10.35.	 distutils.command.build_ext	 —	 Build	 any
extensions	in	a	package
10.36.	 distutils.command.build_py	 —	 Build	 the
.py/.pyc	files	of	a	package
10.37.	distutils.command.build_scripts	—	Build	the
scripts	of	a	package
10.38.	 distutils.command.clean	 —	 Clean	 a	 package
build	area
10.39.	distutils.command.config	—	Perform	package
configuration
10.40.	distutils.command.install	—	Install	a	package
10.41.	 distutils.command.install_data	 —	 Install
data	files	from	a	package
10.42.	distutils.command.install_headers	—	Install
C/C++	header	files	from	a	package
10.43.	 distutils.command.install_lib	 —	 Install
library	files	from	a	package
10.44.	distutils.command.install_scripts	—	Install
script	files	from	a	package
10.45.	 distutils.command.register	 —	 Register	 a
module	with	the	Python	Package	Index
10.46.	 distutils.command.check	 —	 Check	 the	 meta-

data	of	a	package

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

8.	Extending	Distutils
Distutils	 can	be	extended	 in	 various	ways.	Most	 extensions	 take	 the
form	of	new	commands	or	replacements	for	existing	commands.	New
commands	may	 be	written	 to	 support	 new	 types	 of	 platform-specific
packaging,	 for	 example,	 while	 replacements	 for	 existing	 commands
may	 be	made	 to	modify	 details	 of	 how	 the	 command	 operates	 on	 a
package.

Most	extensions	of	the	distutils	are	made	within	setup.py	scripts	that
want	 to	 modify	 existing	 commands;	 many	 simply	 add	 a	 few	 file
extensions	that	should	be	copied	into	packages	in	addition	to	.py	files
as	a	convenience.

Most	 distutils	 command	 implementations	 are	 subclasses	 of	 the
distutils.cmd.Command	 class.	 New	 commands	 may	 directly
inherit	from	Command,	while	replacements	often	derive	from	Command
indirectly,	 directly	 subclassing	 the	 command	 they	 are	 replacing.
Commands	are	required	to	derive	from	Command.

8.1.	Integrating	new	commands

There	are	different	ways	 to	 integrate	new	command	 implementations
into	distutils.	The	most	difficult	 is	to	lobby	for	the	inclusion	of	the	new
features	in	distutils	itself,	and	wait	for	(and	require)	a	version	of	Python
that	provides	that	support.	This	is	really	hard	for	many	reasons.

The	most	common,	and	possibly	the	most	reasonable	for	most	needs,
is	to	include	the	new	implementations	with	your	setup.py	script,	and
cause	the	distutils.core.setup()	function	use	them:

from	distutils.command.build_py	import	build_py	as	_build_py

from	distutils.core	import	setup

class	build_py(_build_py):

				"""Specialized	Python	source	builder."""

				#	implement	whatever	needs	to	be	different...

setup(cmdclass={'build_py':	build_py},

						...)

This	 approach	 is	most	 valuable	 if	 the	 new	 implementations	must	 be
used	 to	 use	 a	 particular	 package,	 as	 everyone	 interested	 in	 the
package	will	need	to	have	the	new	command	implementation.

Beginning	with	Python	2.4,	a	third	option	is	available,	intended	to	allow
new	 commands	 to	 be	 added	 which	 can	 support	 existing	 setup.py
scripts	without	requiring	modifications	to	the	Python	installation.	This	is
expected	 to	 allow	 third-party	 extensions	 to	 provide	 support	 for
additional	 packaging	 systems,	 but	 the	 commands	 can	 be	 used	 for
anything	 distutils	 commands	 can	 be	 used	 for.	 A	 new	 configuration

option,	 command_packages	 (command-line	 option	 --command-
packages),	can	be	used	to	specify	additional	packages	to	be	searched
for	 modules	 implementing	 commands.	 Like	 all	 distutils	 options,	 this
can	be	specified	on	 the	command	 line	or	 in	a	configuration	 file.	This
option	can	only	be	set	in	the	[global]	section	of	a	configuration	file,
or	before	any	commands	on	the	command	line.	If	set	in	a	configuration
file,	it	can	be	overridden	from	the	command	line;	setting	it	to	an	empty
string	on	the	command	line	causes	the	default	to	be	used.	This	should
never	be	set	in	a	configuration	file	provided	with	a	package.

This	new	option	can	be	used	to	add	any	number	of	packages	to	the	list
of	 packages	 searched	 for	 command	 implementations;	 multiple
package	names	should	be	separated	by	commas.	When	not	specified,
the	search	 is	only	performed	 in	 the	distutils.command	 package.
When	 setup.py	 is	 run	 with	 the	 option	 --command-packages
distcmds,buildcmds,	 however,	 the	 packages	 distutils.command,
distcmds,	 and	 buildcmds	 will	 be	 searched	 in	 that	 order.	 New
commands	are	expected	 to	be	 implemented	 in	modules	of	 the	same
name	as	the	command	by	classes	sharing	the	same	name.	Given	the
example	 command	 line	 option	 above,	 the	 command	bdist_openpkg
could	 be	 implemented	 by	 the	 class
distcmds.bdist_openpkg.bdist_openpkg	 or
buildcmds.bdist_openpkg.bdist_openpkg.

8.2.	Adding	new	distribution	types

Commands	that	create	distributions	(files	in	the	dist/	directory)	need
to	 add	 (command,	 filename)	 pairs	 to
self.distribution.dist_files	so	that	upload	can	upload	it	to
PyPI.	The	 filename	 in	 the	pair	contains	no	path	 information,	only	 the
name	of	 the	file	 itself.	 In	dry-run	mode,	pairs	should	still	be	added	to
represent	what	would	have	been	created.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	Symbols
!	(pdb	command)
!=

operator
%

operator
%	formatting
%	interpolation
%PATH%,	[1],	[2]
&

operator
*

in	function	calls
operator
statement,	[1]

**
in	function	calls
operator
statement,	[1]

+
operator

-
operator

--create	<tarfile>	<source1>
<sourceN>

command	line	option
--details

inspect	command	line	option
--extract	<tarfile>	[<output_dir>]

command	line	option
--help

command	line	option
trace	command	line	option

--ignore-dir=<dir>

-m	<module-name>
command	line	option

-m,	--memo
pickletools	 command	 line
option

-m,	--missing
trace	command	line	option

-n	N,	--number=N
timeit	command	line	option

-O
command	line	option

-o,	--output=<file>
pickletools	 command	 line
option

-OO
command	line	option

-p,	--pattern	pattern
unittest-discover	command	line
option

-p,	--preamble=<preamble>
pickletools	 command	 line
option

-p,	--process
timeit	command	line	option

-q
command	line	option
compileall	 command	 line
option

-R
command	line	option

-r	N,	--repeat=N
timeit	command	line	option

-R,	--no-report

trace	command	line	option
--ignore-module=<mod>

trace	command	line	option
--list	<tarfile>

command	line	option
--test	<tarfile>

command	line	option
--user-base

site	command	line	option
--user-site

site	command	line	option
--version

command	line	option
trace	command	line	option

->	(return	annotation	assignment)
-a,	--annotate

pickletools	 command	 line
option

-B
command	line	option

-b
command	line	option
compileall	 command	 line
option

-b,	--buffer
unittest	command	line	option

-c	<command>
command	line	option

-c	<tarfile>	<source1>	<sourceN>
command	line	option

-c,	--catch
unittest	command	line	option

-c,	--clock
timeit	command	line	option

-c,	--count
trace	command	line	option

trace	command	line	option
-r,	--report

trace	command	line	option
-S

command	line	option
-s

command	line	option
-s	S,	--setup=S

timeit	command	line	option
-s,	--start-directory	directory

unittest-discover	command	line
option

-s,	--summary
trace	command	line	option

-t	<tarfile>
command	line	option

-t,	--time
timeit	command	line	option

-t,	--top-level-directory	directory
unittest-discover	command	line
option

-t,	--trace
trace	command	line	option

-T,	--trackcalls
trace	command	line	option

-u
command	line	option

-V
command	line	option

-v
command	line	option

-v,	--verbose
command	line	option
timeit	command	line	option
unittest-discover	command	line
option

-C,	--coverdir=<dir>
trace	command	line	option

-d
command	line	option

-d	destdir
compileall	 command	 line
option

-E
command	line	option

-e	<tarfile>	[<output_dir>]
command	line	option

-e,	--exact
tokenize	command	line	option

-f
compileall	 command	 line
option

-f,	--failfast
unittest	command	line	option

-f,	--file=<file>
trace	command	line	option

-g,	--timing
trace	command	line	option

-h
command	line	option

-h,	--help
timeit	command	line	option
tokenize	command	line	option

-I
command	line	option

-i
command	line	option

-i	list
compileall	 command	 line
option

-J
command	line	option

-W	arg
command	line	option

-X
command	line	option

-x
command	line	option

-x	regex
compileall	 command	 line
option

...

.ini
file

.pdbrc
file

.pypirc	file
/

operator
//

operator
2to3
:	package

namespace
portion

<
operator

<<
operator

<=
operator

<protocol>_proxy
==

operator
>

operator
>=

operator

-l
compileall	 command	 line
option

-l	<tarfile>
command	line	option

-l,	--indentlevel=<num>
pickletools	 command	 line
option

-l,	--listfuncs
trace	command	line	option

>>
operator

>>>
@

statement
^

operator

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	_
__abs__()	(in	module	operator)

(object	method)
__add__()	(in	module	operator)

(object	method)
__all__

(optional	module	attribute)
(package	variable)

__and__()	(in	module	operator)
(object	method)

__annotations__	(function	attribute)
__bases__	(class	attribute),	[1]
__bool__()	(object	method),	[1]
__bytes__()
(email.message.Message	method)

(object	method)
__cached__
__call__()
(email.headerregistry.HeaderRegistry
method)

(object	method),	[1]
(weakref.finalize	method)

__callback__	(weakref.ref	attribute)
__cause__	(exception	attribute)
__ceil__()	(fractions.Fraction
method)
__class__	(instance	attribute),	[1]

(unittest.mock.Mock	attribute)
__closure__	(function	attribute)
__code__	(function	attribute)

(function	object	attribute)
__complex__()	(object	method)
__concat__()	(in	module	operator)
__contains__()
(email.message.Message	method)

__not__()	(in	module	operator)
__or__()	(in	module	operator)

(object	method)
__package__

(module	attribute)
(types.ModuleType	attribute)

__path__
__pos__()	(in	module	operator)

(object	method)
__pow__()	(in	module	operator)

(object	method)
__qualname__	(class	attribute)
__radd__()	(object	method)
__rand__()	(object	method)
__rdivmod__()	(object	method)
__reduce__()	(object	method)
__reduce_ex__()	(object	method)
__repr__()
(multiprocessing.managers.BaseProxy
method)

(netrc.netrc	method)
(object	method)

__reversed__()	(object	method)
__rfloordiv__()	(object	method)
__rlshift__()	(object	method)
__rmod__()	(object	method)
__rmul__()	(object	method)
__ror__()	(object	method)
__round__()	(fractions.Fraction	method)

(object	method)
__rpow__()	(object	method)
__rrshift__()	(object	method)
__rshift__()	(in	module	operator)

(object	method)

(in	module	operator)
(mailbox.Mailbox	method)
(object	method)

__context__	(exception	attribute)
__copy__()	(copy	protocol)
__debug__

(built-in	variable)
__deepcopy__()	(copy	protocol)
__defaults__	(function	attribute)
__del__()	(object	method)
__delattr__()	(object	method)
__delete__()	(object	method)
__delitem__()
(email.message.Message	method)

(in	module	operator)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(object	method)

__dict__	(class	attribute)
(function	attribute)
(instance	attribute)
(module	attribute),	[1]
(object	attribute)

__dir__()	(object	method)
(unittest.mock.Mock	method)

__displayhook__	(in	module	sys)
__divmod__()	(object	method)
__doc__	(class	attribute)

(function	attribute)
(method	attribute)
(module	attribute),	[1]
(types.ModuleType	attribute)

__enter__()	(contextmanager
method)

(object	method)
(winreg.PyHKEY	method)

__rsub__()	(object	method)
__rtruediv__()	(object	method)
__rxor__()	(object	method)
__self__	(method	attribute)
__set__()	(object	method)
__setattr__()	(object	method)
__setitem__()	(email.message.Message
method)

(in	module	operator)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(object	method)

__setstate__()	(copy	protocol)
(object	method)

__slots__
__spec__
__stderr__	(in	module	sys)
__stdin__	(in	module	sys)
__stdout__	(in	module	sys)
__str__()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)
(email.charset.Charset	method)
(email.header.Header	method)
(email.headerregistry.Address
method)
(email.headerregistry.Group	method)
(email.message.Message	method)
(multiprocessing.managers.BaseProxy
method)
(object	method)

__sub__()	(in	module	operator)
(object	method)

__subclasscheck__()	(class	method)
__subclasses__()	(class	method)
__subclasshook__()	(abc.ABCMeta

__eq__()	(email.charset.Charset
method)

(email.header.Header	method)
(in	module	operator)
(instance	method)
(memoryview	method)
(object	method)

__excepthook__	(in	module	sys)
__exit__()	(contextmanager	method)

(object	method)
(winreg.PyHKEY	method)

__file__
(module	attribute),	[1],	[2]

__float__()	(object	method)
__floor__()	(fractions.Fraction
method)
__floordiv__()	(in	module	operator)

(object	method)
__format__
__format__()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)
(object	method)

__func__	(method	attribute)
__future__

(module)
__ge__()	(in	module	operator)

(instance	method)
(object	method)

__get__()	(object	method)
__getattr__()	(object	method)
__getattribute__()	(object	method)
__getitem__()
(email.headerregistry.HeaderRegistry
method)

(email.message.Message

method)
__traceback__	(exception	attribute)
__truediv__()	(in	module	operator)

(object	method)
__xor__()	(in	module	operator)

(object	method)
anonymous	(ctypes.Structure	attribute)
_asdict()	(collections.somenamedtuple
method)
_b_base_	(ctypes._CData	attribute)
_b_needsfree_	(ctypes._CData	attribute)
_callmethod()
(multiprocessing.managers.BaseProxy
method)
_CData	(class	in	ctypes)
_clear_type_cache()	(in	module	sys)
_current_frames()	(in	module	sys)
_debugmallocstats()	(in	module	sys)
_dummy_thread	(module)
_exit()	(in	module	os)
_fields	(ast.AST	attribute)

(collections.somenamedtuple
attribute)

fields	(ctypes.Structure	attribute)
_flush()	(wsgiref.handlers.BaseHandler
method)
_frozen	(C	type)
_FuncPtr	(class	in	ctypes)
_get_child_mock()	(unittest.mock.Mock
method)
_getframe()	(in	module	sys)
_getvalue()
(multiprocessing.managers.BaseProxy
method)
_handle	(ctypes.PyDLL	attribute)
_inittab	(C	type)
_locale

module

method)
(in	module	operator)
(mailbox.Mailbox	method)
(mapping	object	method)
(object	method)

__getnewargs__()	(object	method)
__getnewargs_ex__()	(object
method)
__getstate__()	(copy	protocol)

(object	method)
__globals__	(function	attribute)
__gt__()	(in	module	operator)

(instance	method)
(object	method)

__hash__()	(object	method)
__iadd__()	(in	module	operator)

(object	method)
__iand__()	(in	module	operator)

(object	method)
__iconcat__()	(in	module	operator)
__ifloordiv__()	(in	module	operator)

(object	method)
__ilshift__()	(in	module	operator)

(object	method)
__imod__()	(in	module	operator)

(object	method)
__import__

built-in	function
__import__()	(built-in	function)

(in	module	importlib)
__imul__()	(in	module	operator)

(object	method)
__index__()	(in	module	operator)

(object	method)
__init__()	(difflib.HtmlDiff	method)

(logging.Handler	method)

_make()	(collections.somenamedtuple
class	method)
_makeResult()	(unittest.TextTestRunner
method)
_name	(ctypes.PyDLL	attribute)
_objects	(ctypes._CData	attribute)
pack	(ctypes.Structure	attribute)
_parse()	(gettext.NullTranslations
method)
_Py_c_diff	(C	function)
_Py_c_neg	(C	function)
_Py_c_pow	(C	function)
_Py_c_prod	(C	function)
_Py_c_quot	(C	function)
_Py_c_sum	(C	function)
_Py_NoneStruct	(C	variable)
_PyBytes_Resize	(C	function)
_PyImport_FindExtension	(C	function)
_PyImport_Fini	(C	function)
_PyImport_FixupExtension	(C	function)
_PyImport_Init	(C	function)
_PyObject_GC_TRACK	(C	function)
_PyObject_GC_UNTRACK	(C	function)
_PyObject_New	(C	function)
_PyObject_NewVar	(C	function)
_PyTuple_Resize	(C	function)
_replace()	(collections.somenamedtuple
method)
_setroot()
(xml.etree.ElementTree.ElementTree
method)
_SimpleCData	(class	in	ctypes)
_source	(collections.somenamedtuple
attribute)
_structure()	(in	module	email.iterators)
_thread

module
_thread	(module)
_write()	(wsgiref.handlers.BaseHandler

(logging.logging.Formatter
method)
(object	method)

__instancecheck__()	(class	method)
__int__()	(object	method)
__interactivehook__	(in	module	sys)
__inv__()	(in	module	operator)
__invert__()	(in	module	operator)

(object	method)
__ior__()	(in	module	operator)

(object	method)
__ipow__()	(in	module	operator)

(object	method)
__irshift__()	(in	module	operator)

(object	method)
__isub__()	(in	module	operator)

(object	method)
__iter__()	(container	method)

(iterator	method)
(mailbox.Mailbox	method)
(object	method)
(unittest.TestSuite	method)

__itruediv__()	(in	module	operator)
(object	method)

__ixor__()	(in	module	operator)
(object	method)

__kwdefaults__	(function	attribute)
__le__()	(in	module	operator)

(instance	method)
(object	method)

__len__()	(email.message.Message
method)

(mailbox.Mailbox	method)
(mapping	object	method)
(object	method)

__length_hint__()	(object	method)

method)
_xoptions	(in	module	sys)

__loader__
(module	attribute)
(types.ModuleType	attribute)

__lshift__()	(in	module	operator)
(object	method)

__lt__()	(in	module	operator)
(instance	method)
(object	method)

__main__
module,	[1],	[2],	[3],	[4],	[5]

__main__	(module)
__missing__()	(collections.defaultdict
method)
__mod__()	(in	module	operator)

(object	method)
__module__	(class	attribute)

(function	attribute)
(method	attribute)

__mro__	(class	attribute)
__mul__()	(in	module	operator)

(object	method)
__name__

(class	attribute),	[1]
(function	attribute)
(method	attribute)
(module	attribute),	[1],	[2]
(types.ModuleType	attribute)

__ne__()	(email.charset.Charset
method)

(email.header.Header	method)
(in	module	operator)
(instance	method)
(object	method)

__neg__()	(in	module	operator)
(object	method)

__new__()	(object	method)

__next__()	(csv.csvreader	method)
(generator	method)
(iterator	method)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	A
A	(in	module	re)
a-LAW
A-LAW,	[1]
a2b_base64()	(in	module	binascii)
a2b_hex()	(in	module	binascii)
a2b_hqx()	(in	module	binascii)
a2b_qp()	(in	module	binascii)
a2b_uu()	(in	module	binascii)
a85decode()	(in	module	base64)
a85encode()	(in	module	base64)
ABC	(class	in	abc)
abc	(module)
ABCMeta	(class	in	abc)
abiflags	(in	module	sys)
abort()

(asyncio.DatagramTransport	method)
(asyncio.WriteTransport	method)
(ftplib.FTP	method)
(in	module	os)
(threading.Barrier	method)

above()	(curses.panel.Panel	method)
abs

built-in	function,	[1]
abs()	(built-in	function)

(decimal.Context	method)
(in	module	operator)

abspath()	(in	module	os.path)
abstract	base	class
AbstractBasicAuthHandler	(class	in	urllib.request)
abstractclassmethod()	(in	module	abc)
AbstractDigestAuthHandler	(class	in
urllib.request)
AbstractEventLoopPolicy	(class	in	asyncio)
AbstractFormatter	(class	in	formatter)

AMPER	(in	module	token)
AMPEREQUAL	(in	module	token)
and

bitwise
operator,	[1],	[2]

and_()	(in	module	operator)
annotation	(inspect.Parameter	attribute)
annotations

function,	[1]
announce()	(distutils.ccompiler.CCompiler
method)
anonymous

function
answer_challenge()	(in	module
multiprocessing.connection)
anticipate_failure()	(in	module	test.support)
ANY	(in	module	unittest.mock)
any()	(built-in	function)
api_version	(in	module	sys)
apop()	(poplib.POP3	method)
APPDATA
append()	(array.array	method)

(collections.deque	method)
(email.header.Header	method)
(imaplib.IMAP4	method)
(msilib.CAB	method)
(pipes.Template	method)
(sequence	method)
(xml.etree.ElementTree.Element	 method)

appendChild()	(xml.dom.Node	method)
appendleft()	(collections.deque	method)
application_uri()	(in	module	wsgiref.util)
apply	(2to3	fixer)
apply()	(multiprocessing.pool.Pool	method)

abstractmethod()	(in	module	abc)
abstractproperty()	(in	module	abc)
AbstractServer	(class	in	asyncio)
abstractstaticmethod()	(in	module	abc)
AbstractWriter	(class	in	formatter)
accept()	(asyncore.dispatcher	method)

(multiprocessing.connection.Listener	method)
(socket.socket	method)

access()	(in	module	os)
accumulate()	(in	module	itertools)
acos()	(in	module	cmath)

(in	module	math)
acosh()	(in	module	cmath)

(in	module	math)
acquire()	(_thread.lock	method)

(asyncio.Condition	method)
(asyncio.Lock	method)
(asyncio.Semaphore	method)
(logging.Handler	method)
(threading.Condition	method)
(threading.Lock	method)
(threading.RLock	method)
(threading.Semaphore	method)

acquire_lock()	(in	module	imp)
action	(optparse.Option	attribute)
ACTIONS	(optparse.Option	attribute)
active_children()	(in	module	multiprocessing)
active_count()	(in	module	threading)
add()	(decimal.Context	method)

(in	module	audioop)
(in	module	operator)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(msilib.RadioButtonGroup	method)
(pstats.Stats	method)
(set	method)

apply_async()	(multiprocessing.pool.Pool
method)
architecture()	(in	module	platform)
archive	(zipimport.zipimporter	attribute)
aRepr	(in	module	reprlib)
argparse	(module)
args	(BaseException	attribute)

(functools.partial	attribute)
(inspect.BoundArguments	attribute)
(pdb	command)

argtypes	(ctypes._FuncPtr	attribute)
argument

call	semantics
difference	from	parameter
function
function	definition

ArgumentDefaultsHelpFormatter	(class	in
argparse)
ArgumentError
ArgumentParser	(class	in	argparse)
arguments	(inspect.BoundArguments
attribute)
argv	(in	module	sys)
arithmetic

conversion
operation,	binary
operation,	unary

ArithmeticError
array

module,	[1]
array	(class	in	array)

(module)
Array()	(in	module	multiprocessing)

(in	module	multiprocessing.sharedctypes)
(multiprocessing.managers.SyncManager
method)

arrays

(tarfile.TarFile	method)
(tkinter.ttk.Notebook	method)

add_alias()	(in	module	email.charset)
add_alternative()	(email.message.EmailMessage
method)
add_argument()	(argparse.ArgumentParser
method)
add_argument_group()
(argparse.ArgumentParser	method)
add_attachment()	(email.message.EmailMessage
method)
add_cgi_vars()	(wsgiref.handlers.BaseHandler
method)
add_charset()	(in	module	email.charset)
add_codec()	(in	module	email.charset)
add_cookie_header()	(http.cookiejar.CookieJar
method)
add_data()	(in	module	msilib)
add_done_callback()	(asyncio.Future	method)

(concurrent.futures.Future	method)
add_fallback()	(gettext.NullTranslations	method)
add_file()	(msilib.Directory	method)
add_flag()	(mailbox.MaildirMessage	method)

(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

add_flowing_data()	(formatter.formatter	method)
add_folder()	(mailbox.Maildir	method)

(mailbox.MH	method)
add_get_handler()
(email.contentmanager.ContentManager	method)
add_handler()	(urllib.request.OpenerDirector
method)
add_header()	(email.message.Message	method)

(urllib.request.Request	method)
(wsgiref.headers.Headers	method)

add_history()	(in	module	readline)
add_hor_rule()	(formatter.formatter	method)
add_include_dir()	(distutils.ccompiler.CCompiler

article()	(nntplib.NNTP	method)
as_bytes()	(email.message.Message
method)
as_completed()	(in	module	asyncio)

(in	module	concurrent.futures)
as_integer_ratio()	(float	method)
AS_IS	(in	module	formatter)
as_posix()	(pathlib.PurePath	method)
as_string()	(email.message.Message
method)
as_tuple()	(decimal.Decimal	method)
as_uri()	(pathlib.PurePath	method)
ascii

built-in	function
ASCII,	[1]

(in	module	re)
ascii()	(built-in	function)

(in	module	curses.ascii)
ascii_letters	(in	module	string)
ascii_lowercase	(in	module	string)
ascii_uppercase	(in	module	string)
asctime()	(in	module	time)
asin()	(in	module	cmath)

(in	module	math)
asinh()	(in	module	cmath)

(in	module	math)
assert

statement,	[1]
assert_any_call()	(unittest.mock.Mock
method)
assert_called_once_with()
(unittest.mock.Mock	method)
assert_called_with()	(unittest.mock.Mock
method)
assert_has_calls()	(unittest.mock.Mock
method)
assert_line_data()	(formatter.formatter
method)

method)
add_label()	(mailbox.BabylMessage	method)
add_label_data()	(formatter.formatter	method)
add_library()	(distutils.ccompiler.CCompiler
method)
add_library_dir()	(distutils.ccompiler.CCompiler
method)
add_line_break()	(formatter.formatter	method)
add_link_object()	(distutils.ccompiler.CCompiler
method)
add_literal_data()	(formatter.formatter	method)
add_mutually_exclusive_group()
(argparse.ArgumentParser	method)
add_option()	(optparse.OptionParser	method)
add_parent()	(urllib.request.BaseHandler	method)
add_password()
(urllib.request.HTTPPasswordMgr	method)
add_reader()	(asyncio.BaseEventLoop	method)
add_related()	(email.message.EmailMessage
method)
add_runtime_library_dir()
(distutils.ccompiler.CCompiler	method)
add_section()	(configparser.ConfigParser
method)

(configparser.RawConfigParser	method)
add_sequence()	(mailbox.MHMessage	method)
add_set_handler()
(email.contentmanager.ContentManager	method)
add_signal_handler()	(asyncio.BaseEventLoop
method)
add_stream()	(in	module	msilib)
add_subparsers()	(argparse.ArgumentParser
method)
add_tables()	(in	module	msilib)
add_type()	(in	module	mimetypes)
add_unredirected_header()
(urllib.request.Request	method)
add_writer()	(asyncio.BaseEventLoop	method)
addch()	(curses.window	method)

assertAlmostEqual()	(unittest.TestCase
method)
assertCountEqual()	(unittest.TestCase
method)
assertDictEqual()	(unittest.TestCase	method)
assertEqual()	(unittest.TestCase	method)
assertFalse()	(unittest.TestCase	method)
assertGreater()	(unittest.TestCase	method)
assertGreaterEqual()	(unittest.TestCase
method)
assertIn()	(unittest.TestCase	method)
AssertionError

exception
assertions

debugging
assertIs()	(unittest.TestCase	method)
assertIsInstance()	(unittest.TestCase
method)
assertIsNone()	(unittest.TestCase	method)
assertIsNot()	(unittest.TestCase	method)
assertIsNotNone()	(unittest.TestCase
method)
assertLess()	(unittest.TestCase	method)
assertLessEqual()	(unittest.TestCase
method)
assertListEqual()	(unittest.TestCase	method)
assertLogs()	(unittest.TestCase	method)
assertMultiLineEqual()	(unittest.TestCase
method)
assertNotAlmostEqual()	(unittest.TestCase
method)
assertNotEqual()	(unittest.TestCase	method)
assertNotIn()	(unittest.TestCase	method)
assertNotIsInstance()	(unittest.TestCase
method)
assertNotRegex()	(unittest.TestCase	method)
assertRaises()	(unittest.TestCase	method)
assertRaisesRegex()	(unittest.TestCase

addCleanup()	(unittest.TestCase	method)
addcomponent()	(turtle.Shape	method)
addError()	(unittest.TestResult	method)
addExpectedFailure()	(unittest.TestResult
method)
addFailure()	(unittest.TestResult	method)
addfile()	(tarfile.TarFile	method)
addFilter()	(logging.Handler	method)

(logging.Logger	method)
addHandler()	(logging.Logger	method)
addition
addLevelName()	(in	module	logging)
addnstr()	(curses.window	method)
AddPackagePath()	(in	module	modulefinder)
addr	(smtpd.SMTPChannel	attribute)
addr_spec	(email.headerregistry.Address
attribute)
Address	(class	in	email.headerregistry)
address
(email.headerregistry.SingleAddressHeader
attribute)

(multiprocessing.connection.Listener	 attribute)
(multiprocessing.managers.BaseManager
attribute)

address_exclude()	(ipaddress.IPv4Network
method)

(ipaddress.IPv6Network	method)
address_family	(socketserver.BaseServer
attribute)
address_string()
(http.server.BaseHTTPRequestHandler	method)
addresses	(email.headerregistry.AddressHeader
attribute)

(email.headerregistry.Group	attribute)
AddressHeader	(class	in	email.headerregistry)
addressof()	(in	module	ctypes)
AddressValueError
addshape()	(in	module	turtle)

method)
assertRegex()	(unittest.TestCase	method)
asserts	(2to3	fixer)
assertSequenceEqual()	(unittest.TestCase
method)
assertSetEqual()	(unittest.TestCase	method)
assertTrue()	(unittest.TestCase	method)
assertTupleEqual()	(unittest.TestCase
method)
assertWarns()	(unittest.TestCase	method)
assertWarnsRegex()	(unittest.TestCase
method)
assignment

attribute,	[1]
augmented
class	attribute
class	instance	attribute
slice
slicing
statement,	[1]
subscript
subscription
target	list

AST	(class	in	ast)
ast	(module)
astimezone()	(datetime.datetime	method)
async()	(in	module	asyncio)
async_chat	(class	in	asynchat)
async_chat.ac_in_buffer_size	(in	module
asynchat)
async_chat.ac_out_buffer_size	(in	module
asynchat)
asynchat	(module)
asyncio	(module)
asyncio.subprocess.DEVNULL	(in	module
asyncio)
asyncio.subprocess.PIPE	(in	module

addsitedir()	(in	module	site)
addSkip()	(unittest.TestResult	method)
addstr()	(curses.window	method)
addSubTest()	(unittest.TestResult	method)
addSuccess()	(unittest.TestResult	method)
addTest()	(unittest.TestSuite	method)
addTests()	(unittest.TestSuite	method)
addTypeEqualityFunc()	(unittest.TestCase
method)
addUnexpectedSuccess()	(unittest.TestResult
method)
adjusted()	(decimal.Decimal	method)
adler32()	(in	module	zlib)
ADPCM,	Intel/DVI
adpcm2lin()	(in	module	audioop)
AES

algorithm
AF_CAN	(in	module	socket)
AF_INET	(in	module	socket)
AF_INET6	(in	module	socket)
AF_LINK	(in	module	socket)
AF_RDS	(in	module	socket)
AF_UNIX	(in	module	socket)
aifc	(module)
aifc()	(aifc.aifc	method)
AIFF,	[1]
aiff()	(aifc.aifc	method)
AIFF-C,	[1]
alarm()	(in	module	signal)
alaw2lin()	(in	module	audioop)
ALERT_DESCRIPTION_HANDSHAKE_FAILURE
(in	module	ssl)
ALERT_DESCRIPTION_INTERNAL_ERROR	(in
module	ssl)
algorithm

AES
algorithms_available	(in	module	hashlib)
algorithms_guaranteed	(in	module	hashlib)

asyncio)
asyncio.subprocess.Process	(class	in
asyncio)
asyncio.subprocess.STDOUT	(in	module
asyncio)
asyncore	(module)
AsyncResult	(class	in	multiprocessing.pool)
AT	(in	module	token)
at_eof()	(asyncio.StreamReader	method)
atan()	(in	module	cmath)

(in	module	math)
atan2()	(in	module	math)
atanh()	(in	module	cmath)

(in	module	math)
atexit	(module)

(weakref.finalize	attribute)
atof()	(in	module	locale)
atoi()	(in	module	locale)
atom
attach()	(email.message.Message	method)
attach_mock()	(unittest.mock.Mock	method)
AttlistDeclHandler()
(xml.parsers.expat.xmlparser	method)
attrgetter()	(in	module	operator)
attrib	(xml.etree.ElementTree.Element
attribute)
attribute,	[1]

assignment,	[1]
assignment,	class
assignment,	class	instance
class
class	instance
deletion
generic	special
reference
special

AttributeError

alias	(pdb	command)
alignment()	(in	module	ctypes)
alive	(weakref.finalize	attribute)
all()	(built-in	function)
all_errors	(in	module	ftplib)
all_features	(in	module	xml.sax.handler)
all_frames	(tracemalloc.Filter	attribute)
all_properties	(in	module	xml.sax.handler)
all_suffixes()	(in	module	importlib.machinery)
all_tasks()	(asyncio.Task	class	method)
allocate_lock()	(in	module	_thread)
allow_reuse_address	(socketserver.BaseServer
attribute)
allowed_domains()
(http.cookiejar.DefaultCookiePolicy	method)
alt()	(in	module	curses.ascii)
ALT_DIGITS	(in	module	locale)
altsep	(in	module	os)
altzone	(in	module	time)
ALWAYS_TYPED_ACTIONS	(optparse.Option
attribute)

exception
attributes	(xml.dom.Node	attribute)
AttributesImpl	(class	in	xml.sax.xmlreader)
AttributesNSImpl	(class	in
xml.sax.xmlreader)
attroff()	(curses.window	method)
attron()	(curses.window	method)
attrset()	(curses.window	method)
Audio	Interchange	File	Format
AUDIO_FILE_ENCODING_ADPCM_G721
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G722
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G723_3
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G723_5
(in	module	sunau)
AUDIO_FILE_ENCODING_ALAW_8	(in
module	sunau)
AUDIO_FILE_ENCODING_DOUBLE	(in
module	sunau)
AUDIO_FILE_ENCODING_FLOAT	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_16	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_24	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_32	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_8	(in
module	sunau)
AUDIO_FILE_ENCODING_MULAW_8	(in
module	sunau)
AUDIO_FILE_MAGIC	(in	module	sunau)
AUDIODEV
audioop	(module)
augmented

assignment

auth()	(ftplib.FTP_TLS	method)
authenticate()	(imaplib.IMAP4	method)
AuthenticationError
authenticators()	(netrc.netrc	method)
authkey	(multiprocessing.Process	attribute)
avg()	(in	module	audioop)
avgpp()	(in	module	audioop)
avoids_symlink_attacks	(shutil.rmtree
attribute)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	B
b16decode()	(in	module	base64)
b16encode()	(in	module	base64)
b2a_base64()	(in	module	binascii)
b2a_hex()	(in	module	binascii)
b2a_hqx()	(in	module	binascii)
b2a_qp()	(in	module	binascii)
b2a_uu()	(in	module	binascii)
b32decode()	(in	module	base64)
b32encode()	(in	module	base64)
b64decode()	(in	module	base64)
b64encode()	(in	module	base64)
b85decode()	(in	module	base64)
b85encode()	(in	module	base64)
Babyl	(class	in	mailbox)
BabylMessage	(class	in	mailbox)
back()	(in	module	turtle)
backslash	character
backslashreplace_errors()	(in	module
codecs)
backward()	(in	module	turtle)
BadStatusLine
BadZipfile
BadZipFile
Balloon	(class	in	tkinter.tix)
Barrier	(class	in	multiprocessing)

(class	in	threading)
Barrier()
(multiprocessing.managers.SyncManager
method)
base64

encoding
module

base64	(module)
base_exec_prefix	(in	module	sys)
base_prefix	(in	module	sys)

blocked_domains()
(http.cookiejar.DefaultCookiePolicy
method)
BlockingIOError,	[1]
BNF,	[1]
body()	(nntplib.NNTP	method)
body_encode()	(email.charset.Charset
method)
body_encoding	(email.charset.Charset
attribute)
body_line_iterator()	(in	module
email.iterators)
BOM	(in	module	codecs)
BOM_BE	(in	module	codecs)
BOM_LE	(in	module	codecs)
BOM_UTF16	(in	module	codecs)
BOM_UTF16_BE	(in	module	codecs)
BOM_UTF16_LE	(in	module	codecs)
BOM_UTF32	(in	module	codecs)
BOM_UTF32_BE	(in	module	codecs)
BOM_UTF32_LE	(in	module	codecs)
BOM_UTF8	(in	module	codecs)
bool()	(built-in	function)
Boolean

object,	[1]
operation
operations,	[1]
type
values

BOOLEAN_STATES	(in	module
configparser)
bootstrap()	(in	module	ensurepip)
border()	(curses.window	method)
bottom()	(curses.panel.Panel	method)
bottom_panel()	(in	module	curses.panel)

BaseCGIHandler	(class	in
wsgiref.handlers)
BaseCookie	(class	in	http.cookies)
BaseException
BaseHandler	(class	in	urllib.request)

(class	in	wsgiref.handlers)
BaseHeader	(class	in
email.headerregistry)
BaseHTTPRequestHandler	(class	in
http.server)
BaseManager	(class	in
multiprocessing.managers)
basename()	(in	module	os.path)
BaseProxy	(class	in
multiprocessing.managers)
BaseRotatingHandler	(class	in
logging.handlers)
BaseSelector	(class	in	selectors)
BaseServer	(class	in	socketserver)
basestring	(2to3	fixer)
BaseSubprocessTransport	(class	in
asyncio)
BaseTransport	(class	in	asyncio)
basicConfig()	(in	module	logging)
BasicContext	(class	in	decimal)
BasicInterpolation	(class	in	configparser)
baudrate()	(in	module	curses)
bbox()	(tkinter.ttk.Treeview	method)
bdb

module
Bdb	(class	in	bdb)
bdb	(module)
BdbQuit
BDFL
bdist_msi	(class	in
distutils.command.bdist_msi)
beep()	(in	module	curses)
Beep()	(in	module	winsound)

BoundArguments	(class	in	inspect)
BoundaryError
BoundedSemaphore	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

BoundedSemaphore()
(multiprocessing.managers.SyncManager
method)
box()	(curses.window	method)
bpformat()	(bdb.Breakpoint	method)
bpprint()	(bdb.Breakpoint	method)
break

statement,	[1],	[2],	[3],	[4]
break	(pdb	command)
break_anywhere()	(bdb.Bdb	method)
break_here()	(bdb.Bdb	method)
break_long_words
(textwrap.TextWrapper	attribute)
BREAK_LOOP	(opcode)
break_on_hyphens
(textwrap.TextWrapper	attribute)
Breakpoint	(class	in	bdb)
breakpoints
broadcast_address
(ipaddress.IPv4Network	attribute)

(ipaddress.IPv6Network	attribute)
broken	(threading.Barrier	attribute)
BrokenBarrierError
BrokenPipeError
BrokenProcessPool
BROWSER,	[1]
BsdDbShelf	(class	in	shelve)
buffer	(2to3	fixer)

(io.TextIOBase	attribute)
(unittest.TestResult	attribute)

buffer	interface
(see	buffer	protocol)

buffer	object

begin_fill()	(in	module	turtle)
begin_poly()	(in	module	turtle)
below()	(curses.panel.Panel	method)
benchmarking
Benchmarking
betavariate()	(in	module	random)
bgcolor()	(in	module	turtle)
bgpic()	(in	module	turtle)
bias()	(in	module	audioop)
bidirectional()	(in	module	unicodedata)
BigEndianStructure	(class	in	ctypes)
bin()	(built-in	function)
binary

arithmetic	operation
bitwise	operation
data,	packing
literals

Binary	(class	in	msilib)
binary	file
binary	literal
binary	mode
binary	semaphores
BINARY_ADD	(opcode)
BINARY_AND	(opcode)
BINARY_FLOOR_DIVIDE	(opcode)
BINARY_LSHIFT	(opcode)
BINARY_MODULO	(opcode)
BINARY_MULTIPLY	(opcode)
BINARY_OR	(opcode)
BINARY_POWER	(opcode)
BINARY_RSHIFT	(opcode)
BINARY_SUBSCR	(opcode)
BINARY_SUBTRACT	(opcode)
BINARY_TRUE_DIVIDE	(opcode)
BINARY_XOR	(opcode)
binascii	(module)
bind	(widgets)
bind()	(asyncore.dispatcher	method)

(see	buffer	protocol)
buffer	protocol

binary	sequence	types
str	(built-in	class)

buffer	size,	I/O
buffer_info()	(array.array	method)
buffer_size	(xml.parsers.expat.xmlparser
attribute)
buffer_text	(xml.parsers.expat.xmlparser
attribute)
buffer_used	(xml.parsers.expat.xmlparser
attribute)
BufferedIOBase	(class	in	io)
BufferedRandom	(class	in	io)
BufferedReader	(class	in	io)
BufferedRWPair	(class	in	io)
BufferedWriter	(class	in	io)
BufferError
BufferingHandler	(class	in
logging.handlers)
BufferTooShort
bufsize()	(ossaudiodev.oss_audio_device
method)
BUILD_LIST	(opcode)
BUILD_MAP	(opcode)
build_opener()	(in	module	urllib.request)
build_py	(class	in
distutils.command.build_py)
build_py_2to3	(class	in
distutils.command.build_py)
BUILD_SET	(opcode)
BUILD_SLICE	(opcode)
BUILD_TUPLE	(opcode)
built-in

method
types

built-in	function
__import__

(inspect.Signature	method)
(socket.socket	method)

bind_partial()	(inspect.Signature	method)
bind_port()	(in	module	test.support)
bind_textdomain_codeset()	(in	module
gettext)
binding

global	name
name,	[1],	[2],	[3],	[4],	[5],	[6]

bindtextdomain()	(in	module	gettext)
binhex

module
binhex	(module)
binhex()	(in	module	binhex)
bisect	(module)
bisect()	(in	module	bisect)
bisect_left()	(in	module	bisect)
bisect_right()	(in	module	bisect)
bit_length()	(int	method)
bitmap()	(msilib.Dialog	method)
bitwise

and
operation,	binary
operation,	unary
operations
or
xor

bk()	(in	module	turtle)
bkgd()	(curses.window	method)
bkgdset()	(curses.window	method)
blank	line
block

code
block_size	(hmac.HMAC	attribute)

abs,	[1]
ascii
bytes,	[1]
call
chr
classmethod
compile,	[1],	[2],	[3],	[4]
complex,	[1]
divmod,	[1],	[2]
eval,	[1],	[2],	[3],	[4],	[5]
exec,	[1],	[2]
float,	[1],	[2]
hash,	[1],	[2],	[3]
help
id
int,	[1],	[2]
len,	[1],	[2],	[3],	[4],	[5],	[6]
[10],	[11]
max
min
object,	[1]
open,	[1]
ord
pow,	[1],	[2],	[3],	[4],	[5]
print
range
repr,	[1],	[2],	[3]
round
slice,	[1]
staticmethod
tuple,	[1]
type,	[1],	[2]

built-in	method
call

object,	[1]
builtin_module_names	(in	module	sys)
BuiltinFunctionType	(in	module	types)
BuiltinImporter	(class	in
importlib.machinery)
BuiltinMethodType	(in	module	types)
builtins

module,	[1],	[2],	[3],	[4]
builtins	(module)
ButtonBox	(class	in	tkinter.tix)
bye()	(in	module	turtle)
byref()	(in	module	ctypes)
byte
byte-code

file,	[1]
byte_compile()	(in	module	distutils.util)
bytearray

methods
object,	[1],	[2],	[3]

bytearray()	(built-in	function)
bytecode,	[1]
Bytecode	(class	in	dis)
Bytecode.codeobj	(in	module	dis)
Bytecode.first_line	(in	module	dis)
BYTECODE_SUFFIXES	(in	module
importlib.machinery)
byteorder	(in	module	sys)
bytes

built-in	function,	[1]
methods
object,	[1],	[2]
str	(built-in	class)

bytes	(uuid.UUID	attribute)
bytes	literal
bytes()	(built-in	function)
bytes-like	object
bytes_le	(uuid.UUID	attribute)

BytesFeedParser	(class	in	email.parser)
BytesGenerator	(class	in
email.generator)
BytesIO	(class	in	io)
BytesParser	(class	in	email.parser)
byteswap()	(array.array	method)

(in	module	audioop)
BytesWarning
bz2	(module)
BZ2Compressor	(class	in	bz2)
BZ2Decompressor	(class	in	bz2)
BZ2File	(class	in	bz2)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	C
C

language,	[1],	[2],	[3],	[4],	[5]
structures

c_bool	(class	in	ctypes)
C_BUILTIN	(in	module	imp)
c_byte	(class	in	ctypes)
c_char	(class	in	ctypes)
c_char_p	(class	in	ctypes)
c_contiguous	(memoryview	attribute)
c_double	(class	in	ctypes)
C_EXTENSION	(in	module	imp)
c_float	(class	in	ctypes)
c_int	(class	in	ctypes)
c_int16	(class	in	ctypes)
c_int32	(class	in	ctypes)
c_int64	(class	in	ctypes)
c_int8	(class	in	ctypes)
c_long	(class	in	ctypes)
c_longdouble	(class	in	ctypes)
c_longlong	(class	in	ctypes)
c_short	(class	in	ctypes)
c_size_t	(class	in	ctypes)
c_ssize_t	(class	in	ctypes)
c_ubyte	(class	in	ctypes)
c_uint	(class	in	ctypes)
c_uint16	(class	in	ctypes)
c_uint32	(class	in	ctypes)
c_uint64	(class	in	ctypes)
c_uint8	(class	in	ctypes)
c_ulong	(class	in	ctypes)
c_ulonglong	(class	in	ctypes)
c_ushort	(class	in	ctypes)
c_void_p	(class	in	ctypes)
c_wchar	(class	in	ctypes)
c_wchar_p	(class	in	ctypes)

color_pair()	(in	module	curses)
colormode()	(in	module	turtle)
colorsys	(module)
column()	(tkinter.ttk.Treeview	method)
COLUMNS,	[1]
columns	(os.terminal_size	attribute)
combinations()	(in	module	itertools)
combinations_with_replacement()	(in	module
itertools)
combine()	(datetime.datetime	class	method)
combining()	(in	module	unicodedata)
ComboBox	(class	in	tkinter.tix)
Combobox	(class	in	tkinter.ttk)
comma

trailing
COMMA	(in	module	token)
Command	(class	in	distutils.cmd)

(class	in	distutils.core)
command
(http.server.BaseHTTPRequestHandler
attribute)
command	line
command	line	option

--create	<tarfile>	<source1>	<sourceN>
--extract	<tarfile>	[<output_dir>]
--help
--list	<tarfile>
--test	<tarfile>
--version
-B
-E
-I
-J
-O

CAB	(class	in	msilib)
cache_from_source()	(in	module	imp)

(in	module	importlib.util)
cached	(importlib.machinery.ModuleSpec
attribute)
CacheFTPHandler	(class	in	urllib.request)
calcsize()	(in	module	struct)
Calendar	(class	in	calendar)
calendar	(module)
calendar()	(in	module	calendar)
call

built-in	function
built-in	method
class	instance
class	object,	[1],	[2]
function,	[1],	[2]
instance,	[1]
method
procedure
user-defined	function

call()	(in	module	subprocess)
(in	module	unittest.mock)

call_args	(unittest.mock.Mock	attribute)
call_args_list	(unittest.mock.Mock
attribute)
call_at()	(asyncio.BaseEventLoop	method)
call_count	(unittest.mock.Mock	attribute)
call_exception_handler()
(asyncio.BaseEventLoop	method)
CALL_FUNCTION	(opcode)
CALL_FUNCTION_KW	(opcode)
CALL_FUNCTION_VAR	(opcode)
CALL_FUNCTION_VAR_KW	(opcode)
call_later()	(asyncio.BaseEventLoop
method)
call_list()	(unittest.mock.call	method)
call_soon()	(asyncio.BaseEventLoop

-OO
-R
-S
-V
-W	arg
-X
-b
-c	<command>
-c	<tarfile>	<source1>	<sourceN>
-d
-e	<tarfile>	[<output_dir>]
-h
-i
-l	<tarfile>
-m	<module-name>
-q
-s
-t	<tarfile>
-u
-v
-v,	--verbose
-x

CommandCompiler	(class	in	codeop)
commands	(pdb	command)
comment

(http.cookiejar.Cookie	attribute)
COMMENT	(in	module	tokenize)
comment	(zipfile.ZipFile	attribute)

(zipfile.ZipInfo	attribute)
Comment()	(in	module	xml.etree.ElementTree)
comment_url	(http.cookiejar.Cookie	attribute)
commenters	(shlex.shlex	attribute)
CommentHandler()
(xml.parsers.expat.xmlparser	method)
commit()	(msilib.CAB	method)
Commit()	(msilib.Database	method)

method)
call_soon_threadsafe()
(asyncio.BaseEventLoop	method)
call_tracing()	(in	module	sys)
callable

object,	[1]
callable	(2to3	fixer)
Callable	(class	in	collections.abc)
callable()	(built-in	function)
CallableProxyType	(in	module	weakref)
callback	(optparse.Option	attribute)
callback()	(contextlib.ExitStack	method)
callback_args	(optparse.Option	attribute)
callback_kwargs	(optparse.Option
attribute)
callbacks	(in	module	gc)
called	(unittest.mock.Mock	attribute)
CalledProcessError
calloc()
CAN_BCM	(in	module	socket)
can_change_color()	(in	module	curses)
can_fetch()
(urllib.robotparser.RobotFileParser
method)
can_symlink()	(in	module	test.support)
can_write_eof()	(asyncio.StreamWriter
method)

(asyncio.WriteTransport	method)
cancel()	(asyncio.Future	method)

(asyncio.Handle	method)
(concurrent.futures.Future	method)
(sched.scheduler	method)
(threading.Timer	method)

cancel_dump_traceback_later()	(in
module	faulthandler)
cancel_join_thread()
(multiprocessing.Queue	method)
cancelled()	(asyncio.Future	method)

commit()	(sqlite3.Connection	method)
common	(filecmp.dircmp	attribute)
Common	Gateway	Interface
common_dirs	(filecmp.dircmp	attribute)
common_files	(filecmp.dircmp	attribute)
common_funny	(filecmp.dircmp	attribute)
common_types	(in	module	mimetypes)
commonprefix()	(in	module	os.path)
communicate()
(asyncio.asyncio.subprocess.Process	method)

(subprocess.Popen	method)
compare()	(decimal.Context	method)

(decimal.Decimal	method)
(difflib.Differ	method)

compare_digest()	(in	module	hmac)
compare_networks()	(ipaddress.IPv4Network
method)

(ipaddress.IPv6Network	method)
COMPARE_OP	(opcode)
compare_signal()	(decimal.Context	method)

(decimal.Decimal	method)
compare_to()	(tracemalloc.Snapshot	method)
compare_total()	(decimal.Context	method)

(decimal.Decimal	method)
compare_total_mag()	(decimal.Context
method)

(decimal.Decimal	method)
comparing

objects
comparison

operator
COMPARISON_FLAGS	(in	module	doctest)
comparisons

chaining,	[1]
Compat32	(class	in	email.policy)
compile

built-in	function,	[1],	[2],	

(concurrent.futures.Future	method)
CannotSendHeader
CannotSendRequest
canonic()	(bdb.Bdb	method)
canonical()	(decimal.Context	method)

(decimal.Decimal	method)
capa()	(poplib.POP3	method)
capitalize()	(str	method)
Capsule

object
captured_stderr()	(in	module	test.support)
captured_stdin()	(in	module	test.support)
captured_stdout()	(in	module	test.support)
captureWarnings()	(in	module	logging)
capwords()	(in	module	string)
casefold()	(str	method)
cast()	(in	module	ctypes)

(memoryview	method)
cat()	(in	module	nis)
catch_warnings	(class	in	warnings)
category()	(in	module	unicodedata)
cbreak()	(in	module	curses)
CC
ccc()	(ftplib.FTP_TLS	method)
CCompiler	(class	in	distutils.ccompiler)
CDLL	(class	in	ctypes)
ceil()	(in	module	math),	[1]
center()	(str	method)
CERT_NONE	(in	module	ssl)
CERT_OPTIONAL	(in	module	ssl)
CERT_REQUIRED	(in	module	ssl)
cert_store_stats()	(ssl.SSLContext
method)
cert_time_to_seconds()	(in	module	ssl)
CertificateError
certificates
CFLAGS,	[1],	[2]
CFUNCTYPE()	(in	module	ctypes)

Compile	(class	in	codeop)
compile()	(built-in	function)

(distutils.ccompiler.CCompiler	method)
(in	module	py_compile)
(in	module	re)
(parser.ST	method)

compile_command()	(in	module	code)
(in	module	codeop)

compile_dir()	(in	module	compileall)
compile_file()	(in	module	compileall)
compile_path()	(in	module	compileall)
compileall	(module)
compileall	command	line	option

-b
-d	destdir
-f
-i	list
-l
-q
-x	regex

compilest()	(in	module	parser)
complete()	(rlcompleter.Completer	method)
complete_statement()	(in	module	sqlite3)
completedefault()	(cmd.Cmd	method)
complex

built-in	function,	[1]
number
object

Complex	(class	in	numbers)
complex	literal
complex	number

literals
object,	[1]

complex()	(built-in	function)
compound

statement

CGI
debugging
exceptions
protocol
security
tracebacks

cgi	(module)
cgi_directories
(http.server.CGIHTTPRequestHandler
attribute)
CGIHandler	(class	in	wsgiref.handlers)
CGIHTTPRequestHandler	(class	in
http.server)
cgitb	(module)
CGIXMLRPCRequestHandler	(class	in
xmlrpc.server)
chain()	(in	module	itertools)
chaining

comparisons,	[1]
exception

ChainMap	(class	in	collections)
change_cwd()	(in	module	test.support)
change_root()	(in	module	distutils.util)
CHANNEL_BINDING_TYPES	(in	module
ssl)
channel_class	(smtpd.SMTPServer
attribute)
channels()
(ossaudiodev.oss_audio_device	method)
CHAR_MAX	(in	module	locale)
character,	[1],	[2]
CharacterDataHandler()
(xml.parsers.expat.xmlparser	method)
characters()
(xml.sax.handler.ContentHandler	method)
characters_written	(BlockingIOError
attribute)
Charset	(class	in	email.charset)

comprehensions
list

compress()	(bz2.BZ2Compressor	method)
(in	module	bz2)
(in	module	gzip)
(in	module	itertools)
(in	module	lzma)
(in	module	zlib)
(lzma.LZMACompressor	method)
(zlib.Compress	method)

compress_size	(zipfile.ZipInfo	attribute)
compress_type	(zipfile.ZipInfo	attribute)
compressed	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

compression()	(ssl.SSLSocket	method)
CompressionError
compressobj()	(in	module	zlib)
COMSPEC,	[1]
concat()	(in	module	operator)
concatenation

operation
concurrent.futures	(module)
Condition	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

condition	(pdb	command)
condition()	(msilib.Control	method)
Condition()
(multiprocessing.managers.SyncManager
method)
conditional

expression
Conditional

expression
ConfigParser	(class	in	configparser)

charset()	(gettext.NullTranslations
method)
chdir()	(in	module	os)
check	(lzma.LZMADecompressor
attribute)
check()	(imaplib.IMAP4	method)

(in	module	tabnanny)
check_call()	(in	module	subprocess)
check_environ()	(in	module	distutils.util)
check_hostname	(ssl.SSLContext
attribute)
check_output()	(doctest.OutputChecker
method)

(in	module	subprocess)
check_unused_args()	(string.Formatter
method)
check_warnings()	(in	module	test.support)
checkbox()	(msilib.Dialog	method)
checkcache()	(in	module	linecache)
checkfuncname()	(in	module	bdb)
CheckList	(class	in	tkinter.tix)
checksum

Cyclic	Redundancy	Check
chflags()	(in	module	os)
chgat()	(curses.window	method)
childNodes	(xml.dom.Node	attribute)
ChildProcessError
chmod()	(in	module	os)

(pathlib.Path	method)
choice()	(in	module	random)
choices	(optparse.Option	attribute)
chown()	(in	module	os)

(in	module	shutil)
chr

built-in	function
chr()	(built-in	function)
chroot()	(in	module	os)
Chunk	(class	in	chunk)

configparser	(module)
configuration

file
file,	debugger
file,	path

configuration	information
configure()	(tkinter.ttk.Style	method)
configure_mock()	(unittest.mock.Mock	method)
confstr()	(in	module	os)
confstr_names	(in	module	os)
conjugate()	(complex	number	method)

(decimal.Decimal	method)
(numbers.Complex	method)

conn	(smtpd.SMTPChannel	attribute)
connect()	(asyncore.dispatcher	method)

(ftplib.FTP	method)
(http.client.HTTPConnection	method)
(in	module	sqlite3)
(multiprocessing.managers.BaseManager
method)
(smtplib.SMTP	method)
(socket.socket	method)

connect_ex()	(socket.socket	method)
connect_read_pipe()	(asyncio.BaseEventLoop
method)
connect_write_pipe()	(asyncio.BaseEventLoop
method)
Connection	(class	in	multiprocessing)

(class	in	sqlite3)
connection_lost()	(asyncio.BaseProtocol
method)
connection_made()	(asyncio.BaseProtocol
method)
ConnectionAbortedError
ConnectionError
ConnectionRefusedError
ConnectionResetError

chunk	(module)
cipher

DES
cipher()	(ssl.SSLSocket	method)
circle()	(in	module	turtle)
CIRCUMFLEX	(in	module	token)
CIRCUMFLEXEQUAL	(in	module	token)
Clamped	(class	in	decimal)
class

attribute
attribute	assignment
constructor
definition,	[1]
instance
name
object,	[1],	[2]
statement

Class	(class	in	symtable)
Class	browser
class	instance

attribute
attribute	assignment
call
object,	[1],	[2]

class	object
call,	[1],	[2]

classmethod
built-in	function

classmethod()	(built-in	function)
clause
CLD_CONTINUED	(in	module	os)
CLD_DUMPED	(in	module	os)
CLD_EXITED	(in	module	os)
CLD_TRAPPED	(in	module	os)
clean()	(mailbox.Maildir	method)
cleandoc()	(in	module	inspect)
cleanup	functions

ConnectRegistry()	(in	module	winreg)
const	(optparse.Option	attribute)
constant
constructor

class
constructor()	(in	module	copyreg)
container,	[1]

iteration	over
Container	(class	in	collections.abc)
contains()	(in	module	operator)
content	type

MIME
content_manager	(email.policy.EmailPolicy
attribute)
content_type
(email.headerregistry.ContentTypeHeader
attribute)
ContentDispositionHeader	(class	in
email.headerregistry)
ContentHandler	(class	in	xml.sax.handler)
ContentManager	(class	in
email.contentmanager)
ContentTooShortError
ContentTransferEncoding	(class	in
email.headerregistry)
ContentTypeHeader	(class	in
email.headerregistry)
Context	(class	in	decimal)
context	(ssl.SSLSocket	attribute)
context	management	protocol
context	manager,	[1],	[2]
context_diff()	(in	module	difflib)
ContextDecorator	(class	in	contextlib)
contextlib	(module)
contextmanager()	(in	module	contextlib)
contiguous	(memoryview	attribute)
continue

statement,	[1],	[2],	[3],	[4]

clear	(pdb	command)
Clear	Breakpoint
clear()	(asyncio.Event	method)

(collections.deque	method)
(curses.window	method)
(dict	method)
(email.message.EmailMessage
method)
(frame	method)
(http.cookiejar.CookieJar	method)
(in	module	turtle),	[1]
(mailbox.Mailbox	method)
(sequence	method)
(set	method)
(threading.Event	method)
(xml.etree.ElementTree.Element
method)

clear_all_breaks()	(bdb.Bdb	method)
clear_all_file_breaks()	(bdb.Bdb	method)
clear_bpbynumber()	(bdb.Bdb	method)
clear_break()	(bdb.Bdb	method)
clear_cache()	(in	module	filecmp)
clear_content()
(email.message.EmailMessage	method)
clear_flags()	(decimal.Context	method)
clear_frames()	(in	module	traceback)
clear_history()	(in	module	readline)
clear_session_cookies()
(http.cookiejar.CookieJar	method)
clear_traces()	(in	module	tracemalloc)
clear_traps()	(decimal.Context	method)
clearcache()	(in	module	linecache)
ClearData()	(msilib.Record	method)
clearok()	(curses.window	method)
clearscreen()	(in	module	turtle)
clearstamp()	(in	module	turtle)
clearstamps()	(in	module	turtle)

continue	(pdb	command)
CONTINUE_LOOP	(opcode)
Control	(class	in	msilib)

(class	in	tkinter.tix)
control()	(msilib.Dialog	method)

(select.kqueue	method)
controlnames	(in	module	curses.ascii)
controls()	(ossaudiodev.oss_mixer_device
method)
conversion

arithmetic
string,	[1]

ConversionError
conversions

numeric
convert_arg_line_to_args()
(argparse.ArgumentParser	method)
convert_field()	(string.Formatter	method)
convert_path()	(in	module	distutils.util)
Cookie	(class	in	http.cookiejar)
CookieError
CookieJar	(class	in	http.cookiejar)
cookiejar	(urllib.request.HTTPCookieProcessor
attribute)
CookiePolicy	(class	in	http.cookiejar)
Coordinated	Universal	Time
Copy
copy

module
protocol

copy	(module)
copy()	(decimal.Context	method)

(dict	method)
(hashlib.hash	method)
(hmac.HMAC	method)
(imaplib.IMAP4	method)
(in	module	copy)

Client()	(in	module
multiprocessing.connection)
client_address
(http.server.BaseHTTPRequestHandler
attribute)
clock()	(in	module	time)
clock_getres()	(in	module	time)
clock_gettime()	(in	module	time)
CLOCK_HIGHRES	(in	module	time)
CLOCK_MONOTONIC	(in	module	time)
CLOCK_MONOTONIC_RAW	(in	module
time)
CLOCK_PROCESS_CPUTIME_ID	(in
module	time)
CLOCK_REALTIME	(in	module	time)
clock_settime()	(in	module	time)
CLOCK_THREAD_CPUTIME_ID	(in
module	time)
clone()	(email.generator.BytesGenerator
method)

(email.generator.Generator	method)
(email.policy.Policy	method)
(in	module	turtle)
(pipes.Template	method)

cloneNode()	(xml.dom.Node	method)
close()	(aifc.aifc	method),	[1]

(asyncio.AbstractServer	method)
(asyncio.BaseEventLoop	method)
(asyncio.BaseTransport	method)
(asyncio.StreamWriter	method)
(asyncore.dispatcher	method)
(chunk.Chunk	method)
(contextlib.ExitStack	method)
(distutils.text_file.TextFile	method)
(email.parser.FeedParser	method)
(ftplib.FTP	method)
(generator	method)

(in	module	multiprocessing.sharedctypes)
(in	module	shutil)
(pipes.Template	method)
(sequence	method)
(set	method)
(types.MappingProxyType	method)
(zlib.Compress	method)
(zlib.Decompress	method)

copy2()	(in	module	shutil)
copy_abs()	(decimal.Context	method)

(decimal.Decimal	method)
copy_decimal()	(decimal.Context	method)
copy_file()	(in	module	distutils.file_util)
copy_location()	(in	module	ast)
copy_negate()	(decimal.Context	method)

(decimal.Decimal	method)
copy_sign()	(decimal.Context	method)

(decimal.Decimal	method)
copy_tree()	(in	module	distutils.dir_util)
copyfile()	(in	module	shutil)
copyfileobj()	(in	module	shutil)
copying	files
copymode()	(in	module	shutil)
copyreg	(module)
copyright	(built-in	variable)

(in	module	sys),	[1]
copysign()	(in	module	math)
copystat()	(in	module	shutil)
copytree()	(in	module	shutil)
coroutine
coroutine()	(in	module	asyncio)
cos()	(in	module	cmath)

(in	module	math)
cosh()	(in	module	cmath)

(in	module	math)
count	(tracemalloc.Statistic	attribute)

(tracemalloc.StatisticDiff	attribute)

(html.parser.HTMLParser	method)
(http.client.HTTPConnection	method)
(imaplib.IMAP4	method)
(in	module	fileinput)
(in	module	mmap)
(in	module	os),	[1]
(io.IOBase	method)
(logging.FileHandler	method)
(logging.Handler	method)
(logging.handlers.MemoryHandler
method)
(logging.handlers.NTEventLogHandler
method)
(logging.handlers.SocketHandler
method)
(logging.handlers.SysLogHandler
method)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)

Close()	(msilib.View	method)
close()	(multiprocessing.Connection
method)

(multiprocessing.Queue	method)
(multiprocessing.connection.Listener
method)
(multiprocessing.pool.Pool	method)
(ossaudiodev.oss_audio_device
method)
(ossaudiodev.oss_mixer_device
method)
(select.devpoll	method)
(select.epoll	method)
(select.kqueue	method)

count()	(array.array	method)
(collections.deque	method)
(in	module	itertools)
(sequence	method)
(str	method)

count_diff	(tracemalloc.StatisticDiff	attribute)
Counter	(class	in	collections)
countOf()	(in	module	operator)
countTestCases()	(unittest.TestCase	method)

(unittest.TestSuite	method)
CoverageResults	(class	in	trace)
CPP
CPPFLAGS
cProfile	(module)
CPU	time
cpu_count()	(in	module	multiprocessing)

(in	module	os)
CPython
CRC	(zipfile.ZipInfo	attribute)
crc32()	(in	module	binascii)

(in	module	zlib)
crc_hqx()	(in	module	binascii)
create()	(imaplib.IMAP4	method)

(in	module	venv)
(venv.EnvBuilder	method)

create_aggregate()	(sqlite3.Connection
method)
create_autospec()	(in	module	unittest.mock)
create_collation()	(sqlite3.Connection	method)
create_configuration()	(venv.EnvBuilder
method)
create_connection()	(asyncio.BaseEventLoop
method)

(in	module	socket)
create_datagram_endpoint()
(asyncio.BaseEventLoop	method)
create_decimal()	(decimal.Context	method)

(selectors.BaseSelector	method)
(shelve.Shelf	method)
(socket.socket	method)
(sqlite3.Connection	method)
(sunau.AU_read	method)
(sunau.AU_write	method)
(tarfile.TarFile	method)
(telnetlib.Telnet	method)
(urllib.request.BaseHandler	method)
(wave.Wave_read	method)
(wave.Wave_write	method)

Close()	(winreg.PyHKEY	method)
close()
(xml.etree.ElementTree.TreeBuilder
method)

(xml.etree.ElementTree.XMLParser
method)
(xml.etree.ElementTree.XMLPullParser
method)
(xml.sax.xmlreader.IncrementalParser
method)
(zipfile.ZipFile	method)

close_when_done()	(asynchat.async_chat
method)
closed	(http.client.HTTPResponse
attribute)

(in	module	mmap)
(io.IOBase	attribute)
(ossaudiodev.oss_audio_device
attribute)
(select.devpoll	attribute)
(select.epoll	attribute)
(select.kqueue	attribute)

CloseKey()	(in	module	winreg)
closelog()	(in	module	syslog)

create_decimal_from_float()	(decimal.Context
method)
create_default_context()	(in	module	ssl)
create_function()	(sqlite3.Connection	method)
create_module()	(importlib.abc.Loader	method)
CREATE_NEW_CONSOLE	(in	module
subprocess)
CREATE_NEW_PROCESS_GROUP	(in
module	subprocess)
create_server()	(asyncio.BaseEventLoop
method)
create_shortcut()	(built-in	function)
create_socket()	(asyncore.dispatcher	method)
create_static_lib()
(distutils.ccompiler.CCompiler	method)
create_stats()	(profile.Profile	method)
create_string_buffer()	(in	module	ctypes)
create_subprocess_exec()	(in	module	asyncio)
create_subprocess_shell()	(in	module	asyncio)
create_system	(zipfile.ZipInfo	attribute)
create_tree()	(in	module	distutils.dir_util)
create_unicode_buffer()	(in	module	ctypes)
create_unix_connection()
(asyncio.BaseEventLoop	method)
create_unix_server()	(asyncio.BaseEventLoop
method)
create_version	(zipfile.ZipInfo	attribute)
createAttribute()	(xml.dom.Document	method)
createAttributeNS()	(xml.dom.Document
method)
createComment()	(xml.dom.Document	method)
createDocument()
(xml.dom.DOMImplementation	method)
createDocumentType()
(xml.dom.DOMImplementation	method)
createElement()	(xml.dom.Document	method)
createElementNS()	(xml.dom.Document
method)
CreateKey()	(in	module	winreg)

closerange()	(in	module	os)
closing()	(in	module	contextlib)
clrtobot()	(curses.window	method)
clrtoeol()	(curses.window	method)
cmath	(module)
cmd

module
Cmd	(class	in	cmd)
cmd	(module)

(subprocess.CalledProcessError
attribute)
(subprocess.TimeoutExpired	attribute)

cmdloop()	(cmd.Cmd	method)
cmp()	(in	module	filecmp)
cmp_op	(in	module	dis)
cmp_to_key()	(in	module	functools)
cmpfiles()	(in	module	filecmp)
CMSG_LEN()	(in	module	socket)
CMSG_SPACE()	(in	module	socket)
co_argcount	(code	object	attribute)
co_cellvars	(code	object	attribute)
co_code	(code	object	attribute)
co_consts	(code	object	attribute)
co_filename	(code	object	attribute)
co_firstlineno	(code	object	attribute)
co_flags	(code	object	attribute)
co_freevars	(code	object	attribute)
CO_FUTURE_DIVISION	(C	variable)
co_lnotab	(code	object	attribute)
co_name	(code	object	attribute)
co_names	(code	object	attribute)
co_nlocals	(code	object	attribute)
co_stacksize	(code	object	attribute)
co_varnames	(code	object	attribute)
code

block
object,	[1],	[2],	[3]

code	(module)

CreateKeyEx()	(in	module	winreg)
createLock()	(logging.Handler	method)

(logging.NullHandler	method)
createProcessingInstruction()
(xml.dom.Document	method)
CreateRecord()	(in	module	msilib)
createSocket()
(logging.handlers.SocketHandler	method)
createTextNode()	(xml.dom.Document	method)
credits	(built-in	variable)
critical()	(in	module	logging)

(logging.Logger	method)
CRNCYSTR	(in	module	locale)
cross()	(in	module	audioop)
crypt

module
crypt	(module)
crypt()	(in	module	crypt)
crypt(3),	[1],	[2]
cryptography,	[1]
csv

(module)
cte
(email.headerregistry.ContentTransferEncoding
attribute)
cte_type	(email.policy.Policy	attribute)
ctermid()	(in	module	os)
ctime()	(datetime.date	method)

(datetime.datetime	method)
(in	module	time)

ctrl()	(in	module	curses.ascii)
CTRL_BREAK_EVENT	(in	module	signal)
CTRL_C_EVENT	(in	module	signal)
ctypes	(module)
curdir	(in	module	os)
currency()	(in	module	locale)
current()	(tkinter.ttk.Combobox	method)
current_process()	(in	module	multiprocessing)

(urllib.error.HTTPError	attribute)
(xml.etree.ElementTree.ParseError
attribute)
(xml.parsers.expat.ExpatError
attribute)

code_info()	(in	module	dis)
Codecs

decode
encode

codecs	(module)
coded_value	(http.cookies.Morsel
attribute)
codeop	(module)
codepoint2name	(in	module	html.entities)
codes	(in	module
xml.parsers.expat.errors)
CODESET	(in	module	locale)
CodeType	(in	module	types)
coding

style
coercion
col_offset	(ast.AST	attribute)
collapse_addresses()	(in	module
ipaddress)
collapse_rfc2231_value()	(in	module
email.utils)
collect()	(in	module	gc)
collect_incoming_data()
(asynchat.async_chat	method)
collections	(module)
collections.abc	(module)
COLON	(in	module	token)
color()	(in	module	turtle)
color_content()	(in	module	curses)

current_task()	(asyncio.Task	class	method)
current_thread()	(in	module	threading)
CurrentByteIndex	(xml.parsers.expat.xmlparser
attribute)
CurrentColumnNumber
(xml.parsers.expat.xmlparser	attribute)
currentframe()	(in	module	inspect)
CurrentLineNumber
(xml.parsers.expat.xmlparser	attribute)
curs_set()	(in	module	curses)
curses	(module)
curses.ascii	(module)
curses.panel	(module)
curses.textpad	(module)
Cursor	(class	in	sqlite3)
cursor()	(sqlite3.Connection	method)
cursyncup()	(curses.window	method)
customize_compiler()	(in	module
distutils.sysconfig)
Cut
cwd()	(ftplib.FTP	method)

(pathlib.Path	class	method)
cycle()	(in	module	itertools)
Cyclic	Redundancy	Check

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	

http://www.python.org/

The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	
Last	updated	on	Mar	16,	2014.	Found	a	bug?	

Created	using	Sphinx	1.2.

http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	D
D_FMT	(in	module	locale)
D_T_FMT	(in	module	locale)
daemon	(multiprocessing.Process
attribute)

(threading.Thread	attribute)
dangling

else
data

packing	binary
tabular
type
type,	immutable

Data	(class	in	plistlib)
data	(collections.UserDict	attribute)

(collections.UserList	attribute)
(select.kevent	attribute)
(selectors.SelectorKey	attribute)
(urllib.request.Request	attribute)
(xml.dom.Comment	attribute)
(xml.dom.ProcessingInstruction
attribute)
(xml.dom.Text	attribute)
(xmlrpc.client.Binary	attribute)

data()
(xml.etree.ElementTree.TreeBuilder
method)
data_open()	(urllib.request.DataHandler
method)
data_received()	(asyncio.Protocol
method)
database

Unicode
databases

digest_size	(hmac.HMAC	attribute)
digit()	(in	module	unicodedata)
digits	(in	module	string)
dir()	(built-in	function)

(ftplib.FTP	method)
dircmp	(class	in	filecmp)
directory

changing
creating
deleting,	[1]
site-packages
site-python
traversal,	[1]
walking,	[1]

Directory	(class	in	msilib)
directory_created()	(built-in	function)
DirList	(class	in	tkinter.tix)
dirname()	(in	module	os.path)
DirSelectBox	(class	in	tkinter.tix)
DirSelectDialog	(class	in	tkinter.tix)
DirTree	(class	in	tkinter.tix)
dis	(module)
dis()	(dis.Bytecode	method)

(in	module	dis)
(in	module	pickletools)

disable	(pdb	command)
disable()	(bdb.Breakpoint	method)

(in	module	faulthandler)
(in	module	gc)
(in	module	logging)
(profile.Profile	method)

disable_interspersed_args()
(optparse.OptionParser	method)
DisableReflectionKey()	(in	module	winreg)

datagram_received()
(asyncio.DatagramProtocol	method)
DatagramHandler	(class	in
logging.handlers)
DatagramProtocol	(class	in	asyncio)
DataHandler	(class	in	urllib.request)
date	(class	in	datetime)
date()	(datetime.datetime	method)

(nntplib.NNTP	method)
date_time	(zipfile.ZipInfo	attribute)
date_time_string()
(http.server.BaseHTTPRequestHandler
method)
DateHeader	(class	in
email.headerregistry)
datetime	(class	in	datetime)

(email.headerregistry.DateHeader
attribute)
(module)

datum
day	(datetime.date	attribute)

(datetime.datetime	attribute)
day_abbr	(in	module	calendar)
day_name	(in	module	calendar)
daylight	(in	module	time)
Daylight	Saving	Time
DbfilenameShelf	(class	in	shelve)
dbm	(module)
dbm.dumb	(module)
dbm.gnu

module,	[1]
dbm.gnu	(module)
dbm.ndbm

module,	[1]
dbm.ndbm	(module)
deallocation,	object
debug	(imaplib.IMAP4	attribute)
DEBUG	(in	module	re)

disassemble()	(in	module	dis)
discard	(http.cookiejar.Cookie	attribute)
discard()	(mailbox.Mailbox	method)

(mailbox.MH	method)
(set	method)

discard_buffers()	(asynchat.async_chat
method)
disco()	(in	module	dis)
discover()	(unittest.TestLoader	method)
disk_usage()	(in	module	shutil)
dispatch_call()	(bdb.Bdb	method)
dispatch_exception()	(bdb.Bdb	method)
dispatch_line()	(bdb.Bdb	method)
dispatch_return()	(bdb.Bdb	method)
dispatch_table	(pickle.Pickler	attribute)
dispatcher	(class	in	asyncore)
dispatcher_with_send	(class	in	asyncore)
display

dictionary
list
set
tuple

display	(pdb	command)
display_name	(email.headerregistry.Address
attribute)

(email.headerregistry.Group	attribute)
displayhook()	(in	module	sys)
dist()	(in	module	platform)
distance()	(in	module	turtle)
distb()	(in	module	dis)
Distribution	(class	in	distutils.core)
distutils	(module)
distutils.archive_util	(module)
distutils.bcppcompiler	(module)
distutils.ccompiler	(module)
distutils.cmd	(module)
distutils.command	(module)
distutils.command.bdist	(module)

debug	(shlex.shlex	attribute)
(zipfile.ZipFile	attribute)

debug()	(in	module	doctest)
(in	module	logging)
(logging.Logger	method)
(pipes.Template	method)
(unittest.TestCase	method)
(unittest.TestSuite	method)

DEBUG_BYTECODE_SUFFIXES	(in
module	importlib.machinery)
DEBUG_COLLECTABLE	(in	module	gc)
DEBUG_LEAK	(in	module	gc)
debug_print()
(distutils.ccompiler.CCompiler	method)
DEBUG_SAVEALL	(in	module	gc)
debug_src()	(in	module	doctest)
DEBUG_STATS	(in	module	gc)
DEBUG_UNCOLLECTABLE	(in	module
gc)
debugger,	[1],	[2]

configuration	file
debugging

CGI
assertions

DebuggingServer	(class	in	smtpd)
debuglevel	(http.client.HTTPResponse
attribute)
DebugRunner	(class	in	doctest)
Decimal	(class	in	decimal)
decimal	(module)
decimal	literal
decimal()	(in	module	unicodedata)
DecimalException	(class	in	decimal)
decode

Codecs
decode()	(bytearray	method)

(bytes	method)

distutils.command.bdist_dumb	(module)
distutils.command.bdist_msi	(module)
distutils.command.bdist_packager	(module)
distutils.command.bdist_rpm	(module)
distutils.command.bdist_wininst	(module)
distutils.command.build	(module)
distutils.command.build_clib	(module)
distutils.command.build_ext	(module)
distutils.command.build_py	(module)
distutils.command.build_scripts	(module)
distutils.command.check	(module)
distutils.command.clean	(module)
distutils.command.config	(module)
distutils.command.install	(module)
distutils.command.install_data	(module)
distutils.command.install_headers	(module)
distutils.command.install_lib	(module)
distutils.command.install_scripts	(module)
distutils.command.register	(module)
distutils.command.sdist	(module)
distutils.core	(module)
distutils.cygwinccompiler	(module)
distutils.debug	(module)
distutils.dep_util	(module)
distutils.dir_util	(module)
distutils.dist	(module)
distutils.errors	(module)
distutils.extension	(module)
distutils.fancy_getopt	(module)
distutils.file_util	(module)
distutils.filelist	(module)
distutils.log	(module)
distutils.msvccompiler	(module)
distutils.spawn	(module)
distutils.sysconfig	(module)
distutils.text_file	(module)
distutils.unixccompiler	(module)
distutils.util	(module)
distutils.version	(module)

(codecs.Codec	method)
(codecs.IncrementalDecoder	 method)
(in	module	base64)
(in	module	codecs)
(in	module	quopri)
(in	module	uu)
(json.JSONDecoder	method)
(xmlrpc.client.Binary	method)
(xmlrpc.client.DateTime	method)

decode_header()	(in	module
email.header)

(in	module	nntplib)
decode_params()	(in	module	email.utils)
decode_rfc2231()	(in	module	email.utils)
decode_source()	(in	module	importlib.util)
decodebytes()	(in	module	base64)
DecodedGenerator	(class	in
email.generator)
decodestring()	(in	module	base64)

(in	module	quopri)
decomposition()	(in	module	unicodedata)
decompress()	(bz2.BZ2Decompressor
method)

(in	module	bz2)
(in	module	gzip)
(in	module	lzma)
(in	module	zlib)
(lzma.LZMADecompressor	method)
(zlib.Decompress	method)

decompressobj()	(in	module	zlib)
decorator
DEDENT	(in	module	token)
DEDENT	token,	[1]
dedent()	(in	module	textwrap)
deepcopy()	(in	module	copy)
def

DISTUTILS_DEBUG
divide()	(decimal.Context	method)
divide_int()	(decimal.Context	method)
division
DivisionByZero	(class	in	decimal)
divmod

built-in	function,	[1],	[2]
divmod()	(built-in	function)

(decimal.Context	method)
DllCanUnloadNow()	(in	module	ctypes)
DllGetClassObject()	(in	module	ctypes)
dllhandle	(in	module	sys)
dngettext()	(in	module	gettext)
do_clear()	(bdb.Bdb	method)
do_command()	(curses.textpad.Textbox
method)
do_GET()
(http.server.SimpleHTTPRequestHandler
method)
do_handshake()	(ssl.SSLSocket	method)
do_HEAD()
(http.server.SimpleHTTPRequestHandler
method)
do_POST()
(http.server.CGIHTTPRequestHandler	method)
doc_header	(cmd.Cmd	attribute)
DocCGIXMLRPCRequestHandler	(class	in
xmlrpc.server)
DocFileSuite()	(in	module	doctest)
doCleanups()	(unittest.TestCase	method)
docmd()	(smtplib.SMTP	method)
docstring,	[1]

(doctest.DocTest	attribute)
docstrings,	[1]
DocTest	(class	in	doctest)
doctest	(module)
DocTestFailure
DocTestFinder	(class	in	doctest)

statement
def_prog_mode()	(in	module	curses)
def_shell_mode()	(in	module	curses)
default

parameter	value
default	(in	module	email.policy)
DEFAULT	(in	module	unittest.mock)
default	(inspect.Parameter	attribute)

(optparse.Option	attribute)
default()	(cmd.Cmd	method)

(json.JSONEncoder	method)
DEFAULT_BUFFER_SIZE	(in	module	io)
default_bufsize	(in	module
xml.dom.pulldom)
default_exception_handler()
(asyncio.BaseEventLoop	method)
default_factory	(collections.defaultdict
attribute)
DEFAULT_FORMAT	(in	module	tarfile)
DEFAULT_IGNORES	(in	module	filecmp)
default_open()
(urllib.request.BaseHandler	method)
DEFAULT_PROTOCOL	(in	module
pickle)
default_timer()	(in	module	timeit)
DefaultContext	(class	in	decimal)
DefaultCookiePolicy	(class	in
http.cookiejar)
defaultdict	(class	in	collections)
DefaultHandler()
(xml.parsers.expat.xmlparser	method)
DefaultHandlerExpand()
(xml.parsers.expat.xmlparser	method)
defaults()	(configparser.ConfigParser
method)
DefaultSelector	(class	in	selectors)
defaultTestLoader	(in	module	unittest)
defaultTestResult()	(unittest.TestCase

DocTestParser	(class	in	doctest)
DocTestRunner	(class	in	doctest)
DocTestSuite()	(in	module	doctest)
doctype()	(xml.etree.ElementTree.TreeBuilder
method)

(xml.etree.ElementTree.XMLParser
method)

documentation
generation
online

documentation	string
documentation	strings,	[1]
documentElement	(xml.dom.Document
attribute)
DocXMLRPCRequestHandler	(class	in
xmlrpc.server)
DocXMLRPCServer	(class	in	xmlrpc.server)
domain	(email.headerregistry.Address	attribute)
domain_initial_dot	(http.cookiejar.Cookie
attribute)
domain_return_ok()
(http.cookiejar.CookiePolicy	method)
domain_specified	(http.cookiejar.Cookie
attribute)
DomainLiberal
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainRFC2965Match
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainStrict
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainStrictNoDots
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainStrictNonDomain
(http.cookiejar.DefaultCookiePolicy	attribute)
DOMEventStream	(class	in	xml.dom.pulldom)
DOMException
DomstringSizeErr
done()	(asyncio.Future	method)

method)
defects
(email.headerregistry.BaseHeader
attribute)

(email.message.Message	attribute)
define_macro()
(distutils.ccompiler.CCompiler	method)
definition

class,	[1]
function,	[1]

defpath	(in	module	os)
DefragResult	(class	in	urllib.parse)
DefragResultBytes	(class	in	urllib.parse)
degrees()	(in	module	math)

(in	module	turtle)
del

statement,	[1],	[2],	[3],	[4]
del_param()	(email.message.Message
method)
delattr()	(built-in	function)
delay()	(in	module	turtle)
delay_output()	(in	module	curses)
delayload	(http.cookiejar.FileCookieJar
attribute)
delch()	(curses.window	method)
dele()	(poplib.POP3	method)
delete
delete()	(ftplib.FTP	method)

(imaplib.IMAP4	method)
(tkinter.ttk.Treeview	method)

DELETE_ATTR	(opcode)
DELETE_DEREF	(opcode)
DELETE_FAST	(opcode)
DELETE_GLOBAL	(opcode)
DELETE_NAME	(opcode)
DELETE_SUBSCR	(opcode)
deleteacl()	(imaplib.IMAP4	method)
DeleteKey()	(in	module	winreg)

(concurrent.futures.Future	method)
(in	module	turtle)
(xdrlib.Unpacker	method)

DONT_ACCEPT_BLANKLINE	(in	module
doctest)
DONT_ACCEPT_TRUE_FOR_1	(in	module
doctest)
dont_write_bytecode	(in	module	sys)
doRollover()
(logging.handlers.RotatingFileHandler	method)

(logging.handlers.TimedRotatingFileHandler
method)

DOT	(in	module	token)
dot()	(in	module	turtle)
DOTALL	(in	module	re)
doublequote	(csv.Dialect	attribute)
DOUBLESLASH	(in	module	token)
DOUBLESLASHEQUAL	(in	module	token)
DOUBLESTAR	(in	module	token)
DOUBLESTAREQUAL	(in	module	token)
doupdate()	(in	module	curses)
down	(pdb	command)
down()	(in	module	turtle)
drain()	(asyncio.StreamWriter	method)
drop_whitespace	(textwrap.TextWrapper
attribute)
dropwhile()	(in	module	itertools)
dst()	(datetime.datetime	method)

(datetime.time	method)
(datetime.timezone	method)
(datetime.tzinfo	method)

DTDHandler	(class	in	xml.sax.handler)
duck-typing
DumbWriter	(class	in	formatter)
dummy_threading	(module)
dump()	(in	module	ast)

(in	module	json)

DeleteKeyEx()	(in	module	winreg)
deleteln()	(curses.window	method)
deleteMe()	(bdb.Breakpoint	method)
DeleteValue()	(in	module	winreg)
deletion

attribute
target
target	list

delimiter	(csv.Dialect	attribute)
delimiters
delitem()	(in	module	operator)
deliver_challenge()	(in	module
multiprocessing.connection)
demo_app()	(in	module
wsgiref.simple_server)
denominator	(fractions.Fraction	attribute)

(numbers.Rational	attribute)
DeprecationWarning
deque	(class	in	collections)
dequeue()
(logging.handlers.QueueListener	method)
DER_cert_to_PEM_cert()	(in	module	ssl)
derwin()	(curses.window	method)
DES

cipher
description	(sqlite3.Cursor	attribute)
description()	(nntplib.NNTP	method)
descriptions()	(nntplib.NNTP	method)
descriptor
dest	(optparse.Option	attribute)
destructor,	[1]
detach()	(io.BufferedIOBase	method)

(io.TextIOBase	method)
(socket.socket	method)
(tkinter.ttk.Treeview	method)
(weakref.finalize	method)

Detach()	(winreg.PyHKEY	method)

(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(in	module	xml.etree.ElementTree)
(pickle.Pickler	method)
(tracemalloc.Snapshot	method)

dump_stats()	(profile.Profile	method)
(pstats.Stats	method)

dump_traceback()	(in	module	faulthandler)
dump_traceback_later()	(in	module
faulthandler)
dumps()	(in	module	json)

(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(in	module	xmlrpc.client)

dup()	(in	module	os)
(socket.socket	method)

dup2()	(in	module	os)
DUP_TOP	(opcode)
DUP_TOP_TWO	(opcode)
DuplicateOptionError
DuplicateSectionError
dwFlags	(subprocess.STARTUPINFO	attribute)
DynamicClassAttribute()	(in	module	types)

detect_encoding()	(in	module	tokenize)
detect_language()
(distutils.ccompiler.CCompiler	method)
deterministic	profiling
device_encoding()	(in	module	os)
devnull	(in	module	os)
DEVNULL	(in	module	subprocess)
devpoll()	(in	module	select)
dgettext()	(in	module	gettext)
Dialect	(class	in	csv)
dialect	(csv.csvreader	attribute)

(csv.csvwriter	attribute)
Dialog	(class	in	msilib)
dict	(2to3	fixer)

(built-in	class)
dict()
(multiprocessing.managers.SyncManager
method)
dictConfig()	(in	module	logging.config)
dictionary

display
object,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
type,	operations	on

DictReader	(class	in	csv)
DictWriter	(class	in	csv)
diff_files	(filecmp.dircmp	attribute)
Differ	(class	in	difflib),	[1]
difference()	(set	method)
difference_update()	(set	method)
difflib	(module)
digest()	(hashlib.hash	method)

(hmac.HMAC	method)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	E
e	(in	module	cmath)

(in	module	math)
E2BIG	(in	module	errno)
EACCES	(in	module	errno)
EADDRINUSE	(in	module	errno)
EADDRNOTAVAIL	(in	module	errno)
EADV	(in	module	errno)
EAFNOSUPPORT	(in	module	errno)
EAFP
EAGAIN	(in	module	errno)
EALREADY	(in	module	errno)
east_asian_width()	(in	module	unicodedata)
EBADE	(in	module	errno)
EBADF	(in	module	errno)
EBADFD	(in	module	errno)
EBADMSG	(in	module	errno)
EBADR	(in	module	errno)
EBADRQC	(in	module	errno)
EBADSLT	(in	module	errno)
EBFONT	(in	module	errno)
EBUSY	(in	module	errno)
ECHILD	(in	module	errno)
echo()	(in	module	curses)
echochar()	(curses.window	method)
ECHRNG	(in	module	errno)
ECOMM	(in	module	errno)
ECONNABORTED	(in	module	errno)
ECONNREFUSED	(in	module	errno)
ECONNRESET	(in	module	errno)
EDEADLK	(in	module	errno)
EDEADLOCK	(in	module	errno)
EDESTADDRREQ	(in	module	errno)
edit()	(curses.textpad.Textbox	method)
EDOM	(in	module	errno)
EDOTDOT	(in	module	errno)

eof_received()	(asyncio.Protocol	method)
EOFError

(built-in	exception)
EOPNOTSUPP	(in	module	errno)
EOVERFLOW	(in	module	errno)
EPERM	(in	module	errno)
EPFNOSUPPORT	(in	module	errno)
epilogue	(email.message.Message
attribute)
EPIPE	(in	module	errno)
epoch
epoll()	(in	module	select)
EpollSelector	(class	in	selectors)
EPROTO	(in	module	errno)
EPROTONOSUPPORT	(in	module	errno)
EPROTOTYPE	(in	module	errno)
eq()	(in	module	operator)
EQEQUAL	(in	module	token)
EQUAL	(in	module	token)
ERA	(in	module	locale)
ERA_D_FMT	(in	module	locale)
ERA_D_T_FMT	(in	module	locale)
ERA_T_FMT	(in	module	locale)
ERANGE	(in	module	errno)
erase()	(curses.window	method)
erasechar()	(in	module	curses)
EREMCHG	(in	module	errno)
EREMOTE	(in	module	errno)
EREMOTEIO	(in	module	errno)
ERESTART	(in	module	errno)
erf()	(in	module	math)
erfc()	(in	module	math)
EROFS	(in	module	errno)
ERR	(in	module	curses)
errcheck	(ctypes._FuncPtr	attribute)

EDQUOT	(in	module	errno)
EEXIST	(in	module	errno)
EFAULT	(in	module	errno)
EFBIG	(in	module	errno)
effective()	(in	module	bdb)
ehlo()	(smtplib.SMTP	method)
ehlo_or_helo_if_needed()	(smtplib.SMTP
method)
EHOSTDOWN	(in	module	errno)
EHOSTUNREACH	(in	module	errno)
EIDRM	(in	module	errno)
EILSEQ	(in	module	errno)
EINPROGRESS	(in	module	errno)
EINTR	(in	module	errno)
EINVAL	(in	module	errno)
EIO	(in	module	errno)
EISCONN	(in	module	errno)
EISDIR	(in	module	errno)
EISNAM	(in	module	errno)
EL2HLT	(in	module	errno)
EL2NSYNC	(in	module	errno)
EL3HLT	(in	module	errno)
EL3RST	(in	module	errno)
Element	(class	in	xml.etree.ElementTree)
element_create()	(tkinter.ttk.Style	method)
element_names()	(tkinter.ttk.Style	method)
element_options()	(tkinter.ttk.Style	method)
ElementDeclHandler()
(xml.parsers.expat.xmlparser	method)
elements()	(collections.Counter	method)
ElementTree	(class	in	xml.etree.ElementTree)
ELIBACC	(in	module	errno)
ELIBBAD	(in	module	errno)
ELIBEXEC	(in	module	errno)
ELIBMAX	(in	module	errno)
ELIBSCN	(in	module	errno)
elif

keyword,	[1]
Ellinghouse,	Lance

errcode	(xmlrpc.client.ProtocolError
attribute)
errmsg	(xmlrpc.client.ProtocolError
attribute)
errno

module
errno	(module)
error,	[1],	[2],	[3],	[4],	[5]
[10],	[11],	[12],	[13],	[14]
Error,	[1],	[2],	[3],	[4],	[5]
[10],	[11]
error	handling
error()	(argparse.ArgumentParser
method)

(in	module	logging)
(logging.Logger	method)
(urllib.request.OpenerDirector
method)
(xml.sax.handler.ErrorHandler
method)

error_body
(wsgiref.handlers.BaseHandler	attribute)
error_content_type
(http.server.BaseHTTPRequestHandler
attribute)
error_headers
(wsgiref.handlers.BaseHandler	attribute)
error_leader()	(shlex.shlex	method)
error_message_format
(http.server.BaseHTTPRequestHandler
attribute)
error_output()
(wsgiref.handlers.BaseHandler	method)
error_perm
error_proto,	[1]
error_received()
(asyncio.DatagramProtocol	method)
error_reply

Ellipsis
object

Ellipsis	(built-in	variable)
ELLIPSIS	(in	module	doctest)

(in	module	token)
ELNRNG	(in	module	errno)
ELOOP	(in	module	errno)
else

dangling
keyword,	[1],	[2],	[3],	[4],	[5],	[6],	[7]

email	(module)
email.charset	(module)
email.contentmanager	(module)
email.encoders	(module)
email.errors	(module)
email.generator	(module)
email.header	(module)
email.headerregistry	(module)
email.iterators	(module)
email.message	(module)
email.mime	(module)
email.parser	(module)
email.policy	(module)
email.utils	(module)
EmailMessage	(class	in	email.message)
EmailPolicy	(class	in	email.policy)
EMFILE	(in	module	errno)
emit()	(logging.FileHandler	method)

(logging.Handler	method)
(logging.NullHandler	method)
(logging.StreamHandler	method)
(logging.handlers.BufferingHandler	method)
(logging.handlers.DatagramHandler
method)
(logging.handlers.HTTPHandler	method)
(logging.handlers.NTEventLogHandler
method)

error_status
(wsgiref.handlers.BaseHandler	attribute)
error_temp
ErrorByteIndex
(xml.parsers.expat.xmlparser	attribute)
errorcode	(in	module	errno)
ErrorCode	(xml.parsers.expat.xmlparser
attribute)
ErrorColumnNumber
(xml.parsers.expat.xmlparser	attribute)
ErrorHandler	(class	in	xml.sax.handler)
ErrorLineNumber
(xml.parsers.expat.xmlparser	attribute)
errors
Errors

(io.TextIOBase	attribute)
(unittest.TestResult	attribute)
logging

ErrorString()	(in	module
xml.parsers.expat)
ERRORTOKEN	(in	module	token)
escape	(shlex.shlex	attribute)
escape	sequence
escape()	(in	module	cgi)

(in	module	glob)
(in	module	html)
(in	module	re)
(in	module	xml.sax.saxutils)

escapechar	(csv.Dialect	attribute)
escapedquotes	(shlex.shlex	attribute)
ESHUTDOWN	(in	module	errno)
ESOCKTNOSUPPORT	(in	module	errno)
ESPIPE	(in	module	errno)
ESRCH	(in	module	errno)
ESRMNT	(in	module	errno)
ESTALE	(in	module	errno)
ESTRPIPE	(in	module	errno)
ETIME	(in	module	errno)

(logging.handlers.QueueHandler	method)
(logging.handlers.RotatingFileHandler
method)
(logging.handlers.SMTPHandler	method)
(logging.handlers.SocketHandler	method)
(logging.handlers.SysLogHandler	method)
(logging.handlers.TimedRotatingFileHandler
method)
(logging.handlers.WatchedFileHandler
method)

EMLINK	(in	module	errno)
empty

list
tuple,	[1]

Empty
empty	(inspect.Parameter	attribute)

(inspect.Signature	attribute)
empty()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(multiprocessing.SimpleQueue	method)
(queue.Queue	method)
(sched.scheduler	method)

EMPTY_NAMESPACE	(in	module	xml.dom)
emptyline()	(cmd.Cmd	method)
EMSGSIZE	(in	module	errno)
EMULTIHOP	(in	module	errno)
enable	(pdb	command)
enable()	(bdb.Breakpoint	method)

(in	module	cgitb)
(in	module	faulthandler)
(in	module	gc)
(profile.Profile	method)

enable_callback_tracebacks()	(in	module
sqlite3)
enable_interspersed_args()
(optparse.OptionParser	method)

ETIMEDOUT	(in	module	errno)
Etiny()	(decimal.Context	method)
ETOOMANYREFS	(in	module	errno)
Etop()	(decimal.Context	method)
ETXTBSY	(in	module	errno)
EUCLEAN	(in	module	errno)
EUNATCH	(in	module	errno)
EUSERS	(in	module	errno)
eval

built-in	function,	[1],	
eval()	(built-in	function)
evaluation

order
Event	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

event	scheduling
event()	(msilib.Control	method)
Event()
(multiprocessing.managers.SyncManager
method)
events	(selectors.SelectorKey	attribute)

(widgets)
EWOULDBLOCK	(in	module	errno)
EX_CANTCREAT	(in	module	os)
EX_CONFIG	(in	module	os)
EX_DATAERR	(in	module	os)
EX_IOERR	(in	module	os)
EX_NOHOST	(in	module	os)
EX_NOINPUT	(in	module	os)
EX_NOPERM	(in	module	os)
EX_NOTFOUND	(in	module	os)
EX_NOUSER	(in	module	os)
EX_OK	(in	module	os)
EX_OSERR	(in	module	os)
EX_OSFILE	(in	module	os)
EX_PROTOCOL	(in	module	os)
EX_SOFTWARE	(in	module	os)

enable_load_extension()	(sqlite3.Connection
method)
enable_traversal()	(tkinter.ttk.Notebook
method)
ENABLE_USER_SITE	(in	module	site)
EnableReflectionKey()	(in	module	winreg)
ENAMETOOLONG	(in	module	errno)
ENAVAIL	(in	module	errno)
enclose()	(curses.window	method)
encode

Codecs
encode()	(codecs.Codec	method)

(codecs.IncrementalEncoder	method)
(email.header.Header	method)
(in	module	base64)
(in	module	codecs)
(in	module	quopri)
(in	module	uu)
(json.JSONEncoder	method)
(str	method)
(xmlrpc.client.Binary	method)
(xmlrpc.client.DateTime	method)

encode_7or8bit()	(in	module	email.encoders)
encode_base64()	(in	module	email.encoders)
encode_noop()	(in	module	email.encoders)
encode_quopri()	(in	module	email.encoders)
encode_rfc2231()	(in	module	email.utils)
encodebytes()	(in	module	base64)
EncodedFile()	(in	module	codecs)
encodePriority()
(logging.handlers.SysLogHandler	method)
encodestring()	(in	module	base64)

(in	module	quopri)
encoding

base64
quoted-printable

encoding	(curses.window	attribute)

EX_TEMPFAIL	(in	module	os)
EX_UNAVAILABLE	(in	module	os)
EX_USAGE	(in	module	os)
Example	(class	in	doctest)
example	(doctest.DocTestFailure
attribute)

(doctest.UnexpectedException
attribute)

examples	(doctest.DocTest	attribute)
exc_info	(doctest.UnexpectedException
attribute)

(in	module	sys)
exc_info()	(in	module	sys)
exc_msg	(doctest.Example	attribute)
excel	(class	in	csv)
excel_tab	(class	in	csv)
except

keyword,	[1]
statement

except	(2to3	fixer)
excepthook()	(in	module	sys)
Exception
exception,	[1]

AssertionError
AttributeError
GeneratorExit
ImportError
NameError
StopIteration,	[1]
TypeError
ValueError
ZeroDivisionError
chaining
handler
raising

exception	handler

ENCODING	(in	module	tarfile)
(in	module	tokenize)

encoding	(io.TextIOBase	attribute)
(UnicodeError	attribute)

encodings
encodings.idna	(module)
encodings.mbcs	(module)
encodings.utf_8_sig	(module)
encodings_map	(in	module	mimetypes)

(mimetypes.MimeTypes	attribute)
end	(UnicodeError	attribute)
end()	(re.match	method)

(xml.etree.ElementTree.TreeBuilder
method)

end_fill()	(in	module	turtle)
END_FINALLY	(opcode)
end_headers()
(http.server.BaseHTTPRequestHandler
method)
end_paragraph()	(formatter.formatter	method)
end_poly()	(in	module	turtle)
EndCdataSectionHandler()
(xml.parsers.expat.xmlparser	method)
EndDoctypeDeclHandler()
(xml.parsers.expat.xmlparser	method)
endDocument()
(xml.sax.handler.ContentHandler	method)
endElement()	(xml.sax.handler.ContentHandler
method)
EndElementHandler()
(xml.parsers.expat.xmlparser	method)
endElementNS()
(xml.sax.handler.ContentHandler	method)
endheaders()	(http.client.HTTPConnection
method)
ENDMARKER	(in	module	token)
EndNamespaceDeclHandler()
(xml.parsers.expat.xmlparser	method)

exception()	(asyncio.Future	method)
(asyncio.StreamReader	method)
(concurrent.futures.Future	method)
(in	module	logging)
(logging.Logger	method)

exceptions
in	CGI	scripts

exclusive
or

EXDEV	(in	module	errno)
exec

built-in	function,	[1],	
exec	(2to3	fixer)
exec()	(built-in	function)
exec_module()
(importlib.abc.InspectLoader	method)

(importlib.abc.Loader	method)
(importlib.abc.SourceLoader	method)

exec_prefix,	[1],	[2]
EXEC_PREFIX	(in	module
distutils.sysconfig)
exec_prefix	(in	module	sys)
execfile	(2to3	fixer)
execl()	(in	module	os)
execle()	(in	module	os)
execlp()	(in	module	os)
execlpe()	(in	module	os)
executable	(in	module	sys)
executable_filename()
(distutils.ccompiler.CCompiler	method)
execute()	(distutils.ccompiler.CCompiler
method)

(in	module	distutils.util)
Execute()	(msilib.View	method)
execute()	(sqlite3.Connection	method)

(sqlite3.Cursor	method)
executemany()	(sqlite3.Connection

endpos	(re.match	attribute)
endPrefixMapping()
(xml.sax.handler.ContentHandler	method)
endswith()	(str	method)
endwin()	(in	module	curses)
ENETDOWN	(in	module	errno)
ENETRESET	(in	module	errno)
ENETUNREACH	(in	module	errno)
ENFILE	(in	module	errno)
ENOANO	(in	module	errno)
ENOBUFS	(in	module	errno)
ENOCSI	(in	module	errno)
ENODATA	(in	module	errno)
ENODEV	(in	module	errno)
ENOENT	(in	module	errno)
ENOEXEC	(in	module	errno)
ENOLCK	(in	module	errno)
ENOLINK	(in	module	errno)
ENOMEM	(in	module	errno)
ENOMSG	(in	module	errno)
ENONET	(in	module	errno)
ENOPKG	(in	module	errno)
ENOPROTOOPT	(in	module	errno)
ENOSPC	(in	module	errno)
ENOSR	(in	module	errno)
ENOSTR	(in	module	errno)
ENOSYS	(in	module	errno)
ENOTBLK	(in	module	errno)
ENOTCONN	(in	module	errno)
ENOTDIR	(in	module	errno)
ENOTEMPTY	(in	module	errno)
ENOTNAM	(in	module	errno)
ENOTSOCK	(in	module	errno)
ENOTTY	(in	module	errno)
ENOTUNIQ	(in	module	errno)
enqueue()	(logging.handlers.QueueHandler
method)
enqueue_sentinel()
(logging.handlers.QueueListener	method)

method)
(sqlite3.Cursor	method)

executescript()	(sqlite3.Connection
method)

(sqlite3.Cursor	method)
execution

frame,	[1]
restricted
stack

execution	model
ExecutionLoader	(class	in	importlib.abc)
Executor	(class	in	concurrent.futures)
execv()	(in	module	os)
execve()	(in	module	os)
execvp()	(in	module	os)
execvpe()	(in	module	os)
ExFileSelectBox	(class	in	tkinter.tix)
EXFULL	(in	module	errno)
exists()	(in	module	os.path)

(pathlib.Path	method)
(tkinter.ttk.Treeview	method)

exit	(built-in	variable)
exit()

(argparse.ArgumentParser	method)
(in	module	_thread)
(in	module	sys)

exitcode	(multiprocessing.Process
attribute)
exitfunc	(2to3	fixer)
exitonclick()	(in	module	turtle)
ExitStack	(class	in	contextlib)
exp()	(decimal.Context	method)

(decimal.Decimal	method)
(in	module	cmath)
(in	module	math)

expand()	(re.match	method)
expand_tabs	(textwrap.TextWrapper

ensure_directories()	(venv.EnvBuilder	method)
ensurepip	(module)
enter()	(sched.scheduler	method)
enter_context()	(contextlib.ExitStack	method)
enterabs()	(sched.scheduler	method)
entities	(xml.dom.DocumentType	attribute)
EntityDeclHandler()
(xml.parsers.expat.xmlparser	method)
entitydefs	(in	module	html.entities)
EntityResolver	(class	in	xml.sax.handler)
Enum	(class	in	enum)
enum	(module)
enum_certificates()	(in	module	ssl)
enum_crls()	(in	module	ssl)
enumerate()	(built-in	function)

(in	module	threading)
EnumKey()	(in	module	winreg)
EnumValue()	(in	module	winreg)
EnvBuilder	(class	in	venv)
environ	(in	module	os)

(in	module	posix)
environb	(in	module	os)
environment
environment	variable

%PATH%,	[1],	[2]
<protocol>_proxy
APPDATA
AUDIODEV
BROWSER,	[1]
CC
CFLAGS,	[1],	[2]
COLUMNS,	[1]
COMSPEC,	[1]
CPP
CPPFLAGS
DISTUTILS_DEBUG
HOME,	[1],	[2],	[3],	[4]

attribute)
ExpandEnvironmentStrings()	(in	module
winreg)
expandNode()
(xml.dom.pulldom.DOMEventStream
method)
expandtabs()	(str	method)
expanduser()	(in	module	os.path)
expandvars()	(in	module	os.path)
Expat
ExpatError
expect()	(telnetlib.Telnet	method)
expected	(asyncio.IncompleteReadError
attribute)
expectedFailure()	(in	module	unittest)
expectedFailures	(unittest.TestResult
attribute)
expires	(http.cookiejar.Cookie	attribute)
exploded	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

expm1()	(in	module	math)
expovariate()	(in	module	random)
expr()	(in	module	parser)
expression,	[1]

Conditional
conditional
generator
lambda,	[1]
list,	[1],	[2]
statement
yield

expunge()	(imaplib.IMAP4	method)
extend()	(array.array	method)

(collections.deque	method)

HOMEDRIVE,	[1]
HOMEPATH,	[1]
IDLESTARTUP
KDEDIR
LANG,	[1],	[2],	[3],	[4]
LANGUAGE,	[1]
LC_ALL,	[1]
LC_MESSAGES,	[1]
LDCXXSHARED
LDFLAGS
LINES,	[1],	[2]
LNAME
LOGNAME,	[1]
MIXERDEV
PATH,	 [1],	 [2],	 [3],	 [4],	 [5],	 [6],	 [7],	 [8],	 [9],
[10],	 [11],	 [12],	 [13],	 [14],	 [15],	 [16],	 [17],
[18],	[19],	[20],	[21]
PATHEXT
PLAT
POSIXLY_CORRECT
PYTHON*,	[1],	[2]
PYTHONASYNCIODEBUG,	[1]
PYTHONCASEOK,	[1]
PYTHONDEBUG,	[1]
PYTHONDOCS
PYTHONDONTWRITEBYTECODE,	 [1],	 [2],
[3],	[4],	[5],	[6]
PYTHONDUMPREFS,	[1]
PYTHONEXECUTABLE
PYTHONFAULTHANDLER,	[1],	[2],	[3]
PYTHONHASHSEED,	[1],	[2],	[3],	[4],	[5]
PYTHONHOME,	[1],	[2],	[3],	[4],	[5],	 [6],	 [7],
[8],	[9],	[10],	[11]
PYTHONINSPECT,	[1],	[2]

(sequence	method)
(xml.etree.ElementTree.Element
method)

extend_path()	(in	module	pkgutil)
EXTENDED_ARG	(opcode)
ExtendedContext	(class	in	decimal)
ExtendedInterpolation	(class	in
configparser)
extendleft()	(collections.deque	method)
extension

module
Extension	(class	in	distutils.core)
extension	module
EXTENSION_SUFFIXES	(in	module
importlib.machinery)
ExtensionFileLoader	(class	in
importlib.machinery)
extensions_map
(http.server.SimpleHTTPRequestHandler
attribute)
External	Data	Representation
external_attr	(zipfile.ZipInfo	attribute)
ExternalClashError
ExternalEntityParserCreate()
(xml.parsers.expat.xmlparser	method)
ExternalEntityRefHandler()
(xml.parsers.expat.xmlparser	method)
extra	(zipfile.ZipInfo	attribute)
extract()	(tarfile.TarFile	method)

(zipfile.ZipFile	method)
extract_cookies()
(http.cookiejar.CookieJar	method)
extract_stack()	(in	module	traceback)
extract_tb()	(in	module	traceback)
extract_version	(zipfile.ZipInfo	attribute)
extractall()	(tarfile.TarFile	method)

(zipfile.ZipFile	method)
ExtractError

PYTHONIOENCODING,	[1],	[2],	[3],	[4],	[5]
PYTHONMALLOCSTATS
PYTHONNOUSERSITE,	[1],	[2],	[3]
PYTHONOPTIMIZE,	[1]
PYTHONPATH,	 [1],	 [2],	 [3],	 [4],	 [5],	 [6],	 [7],
[8],	 [9],	 [10],	 [11],	 [12],	 [13],	 [14],	 [15],	 [16],
[17],	[18],	[19]
PYTHONSTARTUP,	[1],	[2],	 [3],	 [4],	 [5],	 [6],
[7],	[8]
PYTHONTHREADDEBUG
PYTHONTRACEMALLOC,	[1],	[2],	[3]
PYTHONUNBUFFERED,	[1]
PYTHONUSERBASE,	[1],	[2],	[3]
PYTHONVERBOSE,	[1]
PYTHONWARNINGS,	[1],	[2],	[3],	[4]
PYTHONY2K
PYTHON_DOM
SystemRoot
TCL_LIBRARY
TEMP
TERM,	[1]
TIX_LIBRARY
TK_LIBRARY
TMP
TMPDIR
TZ,	[1],	[2],	[3],	[4]
USER
USERNAME,	[1]
USERPROFILE,	[1]
USER_BASE
exec_prefix,	[1],	[2]
http_proxy,	[1],	[2]
prefix,	[1],	[2],	[3]

environment	variables

extractfile()	(tarfile.TarFile	method)
extsep	(in	module	os)

deleting
setting

EnvironmentError
Environments

virtual
EnvironmentVarGuard	(class	in	test.support)
ENXIO	(in	module	errno)
eof	(bz2.BZ2Decompressor	attribute)

(lzma.LZMADecompressor	attribute)
(shlex.shlex	attribute)
(zlib.Decompress	attribute)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	F
f_back	(frame	attribute)
f_builtins	(frame	attribute)
f_code	(frame	attribute)
f_contiguous	(memoryview	attribute)
f_globals	(frame	attribute)
f_lasti	(frame	attribute)
f_lineno	(frame	attribute)
f_locals	(frame	attribute)
F_LOCK	(in	module	os)
F_OK	(in	module	os)
F_TEST	(in	module	os)
F_TLOCK	(in	module	os)
f_trace	(frame	attribute)
F_ULOCK	(in	module	os)
fabs()	(in	module	math)
factorial()	(in	module	math)
fail()	(unittest.TestCase	method)
FAIL_FAST	(in	module	doctest)
failfast	(unittest.TestResult	attribute)
failureException	(unittest.TestCase
attribute)
failures	(unittest.TestResult	attribute)
false
False,	[1],	[2]

(Built-in	object)
(built-in	variable)

family	(socket.socket	attribute)
fancy_getopt()	(in	module
distutils.fancy_getopt)
FancyGetopt	(class	in
distutils.fancy_getopt)
FancyURLopener	(class	in	urllib.request)
fast	(pickle.Pickler	attribute)
fatalError()	(xml.sax.handler.ErrorHandler
method)

flags	(in	module	sys)
(re.regex	attribute)
(select.kevent	attribute)

flash()	(in	module	curses)
flatten()
(email.generator.BytesGenerator
method)

(email.generator.Generator
method)

flattening
objects

float
built-in	function,	[1],	[2]

float()	(built-in	function)
float_info	(in	module	sys)
float_repr_style	(in	module	sys)
floating	point

literals
number
object,	[1],	[2]

floating	point	literal
FloatingPointError,	[1]
FloatOperation	(class	in	decimal)
flock()	(in	module	fcntl)
floor	division
floor()	(in	module	math),	[1]
floordiv()	(in	module	operator)
flush()	(bz2.BZ2Compressor	method)

(formatter.writer	method)
(in	module	mmap)
(io.BufferedWriter	method)
(io.IOBase	method)
(logging.Handler	method)

faultCode	(xmlrpc.client.Fault	attribute)
faulthandler	(module)
faultString	(xmlrpc.client.Fault	attribute)
fchdir()	(in	module	os)
fchmod()	(in	module	os)
fchown()	(in	module	os)
FCICreate()	(in	module	msilib)
fcntl	(module)
fcntl()	(in	module	fcntl)
fd	(selectors.SelectorKey	attribute)
fd()	(in	module	turtle)
fdatasync()	(in	module	os)
fdopen()	(in	module	os)
Feature	(class	in	msilib)
feature_external_ges	(in	module
xml.sax.handler)
feature_external_pes	(in	module
xml.sax.handler)
feature_namespace_prefixes	(in	module
xml.sax.handler)
feature_namespaces	(in	module
xml.sax.handler)
feature_string_interning	(in	module
xml.sax.handler)
feature_validation	(in	module
xml.sax.handler)
feed()	(email.parser.FeedParser	method)

(html.parser.HTMLParser	method)
(xml.etree.ElementTree.XMLParser
method)
(xml.etree.ElementTree.XMLPullParser
method)
(xml.sax.xmlreader.IncrementalParser
method)

feed_data()	(asyncio.StreamReader
method)
feed_eof()	(asyncio.StreamReader
method)

(logging.StreamHandler	method)
(logging.handlers.BufferingHandler
method)
(logging.handlers.MemoryHandler
method)
(lzma.LZMACompressor	method)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(zlib.Compress	method)
(zlib.Decompress	method)

flush_headers()
(http.server.BaseHTTPRequestHandler
method)
flush_softspace()	(formatter.formatter
method)
flushinp()	(in	module	curses)
FlushKey()	(in	module	winreg)
fma()	(decimal.Context	method)

(decimal.Decimal	method)
fmod()	(in	module	math)
FMT_BINARY	(in	module	plistlib)
FMT_XML	(in	module	plistlib)
fnmatch	(module)
fnmatch()	(in	module	fnmatch)
fnmatchcase()	(in	module	fnmatch)
focus()	(tkinter.ttk.Treeview	method)
fold()
(email.headerregistry.BaseHeader
method)

(email.policy.Compat32	method)
(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

fold_binary()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)

FeedParser	(class	in	email.parser)
fetch()	(imaplib.IMAP4	method)
Fetch()	(msilib.View	method)
fetchall()	(sqlite3.Cursor	method)
fetchmany()	(sqlite3.Cursor	method)
fetchone()	(sqlite3.Cursor	method)
fflags	(select.kevent	attribute)
field_size_limit()	(in	module	csv)
fieldnames	(csv.csvreader	attribute)
fields	(uuid.UUID	attribute)
fifo	(class	in	asynchat)
file

.ini

.pdbrc
byte-code,	[1]
configuration
copying
debugger	configuration
large	files
mime.types
object,	[1],	[2]
path	configuration
plist
temporary

file	(pyclbr.Class	attribute)
(pyclbr.Function	attribute)

file	control
UNIX

file	name
temporary

file	object
io	module
open()	built-in	function

file-like	object
file_created()	(built-in	function)
file_dispatcher	(class	in	asyncore)

(email.policy.Policy	method)
for

statement,	[1],	[2],	[3]
FOR_ITER	(opcode)
forget()	(in	module	test.support)

(tkinter.ttk.Notebook	method)
fork()	(in	module	os)

(in	module	pty)
forkpty()	(in	module	os)
form

lambda
Form	(class	in	tkinter.tix)
format	(memoryview	attribute)

(struct.Struct	attribute)
format()	(built-in	function)

__str__()	(object	method)
format()	(in	module	locale)

(logging.Formatter	method)
(logging.Handler	method)
(pprint.PrettyPrinter	method)
(str	method)
(string.Formatter	method)
(tracemalloc.Traceback	method)

format_datetime()	(in	module
email.utils)
format_exc()	(in	module	traceback)
format_exception()	(in	module
traceback)
format_exception_only()	(in	module
traceback)
format_field()	(string.Formatter
method)
format_help()
(argparse.ArgumentParser	method)
format_list()	(in	module	traceback)
format_map()	(str	method)
format_stack()	(in	module	traceback)

file_open()	(urllib.request.FileHandler
method)
file_size	(zipfile.ZipInfo	attribute)
file_wrapper	(class	in	asyncore)
filecmp	(module)
fileConfig()	(in	module	logging.config)
FileCookieJar	(class	in	http.cookiejar)
FileEntry	(class	in	tkinter.tix)
FileExistsError
FileFinder	(class	in	importlib.machinery)
FileHandler	(class	in	logging)

(class	in	urllib.request)
FileInput	(class	in	fileinput)
fileinput	(module)
FileIO	(class	in	io)
filelineno()	(in	module	fileinput)
FileLoader	(class	in	importlib.abc)
filemode()	(in	module	stat)
filename	(doctest.DocTest	attribute)

(http.cookiejar.FileCookieJar	attribute)
(tracemalloc.Frame	attribute)
(zipfile.ZipInfo	attribute)

filename()	(in	module	fileinput)
filename_only	(in	module	tabnanny)
filename_pattern	(tracemalloc.Filter
attribute)
filenames

pathname	expansion
wildcard	expansion

fileno()	(http.client.HTTPResponse
method)

(in	module	fileinput)
(io.IOBase	method)
(multiprocessing.Connection	method)
(ossaudiodev.oss_audio_device
method)
(ossaudiodev.oss_mixer_device

format_stack_entry()	(bdb.Bdb
method)
format_string()	(in	module	locale)
format_tb()	(in	module	traceback)
format_usage()
(argparse.ArgumentParser	method)
formataddr()	(in	module	email.utils)
formatargspec()	(in	module	inspect)
formatargvalues()	(in	module	inspect)
formatdate()	(in	module	email.utils)
FormatError
FormatError()	(in	module	ctypes)
formatException()	(logging.Formatter
method)
formatmonth()
(calendar.HTMLCalendar	method)

(calendar.TextCalendar	method)
formatStack()	(logging.Formatter
method)
Formatter	(class	in	logging)

(class	in	string)
formatter	(module)
formatTime()	(logging.Formatter
method)
formatting,	string	(%)
formatwarning()	(in	module	warnings)
formatyear()	(calendar.HTMLCalendar
method)

(calendar.TextCalendar	method)
formatyearpage()
(calendar.HTMLCalendar	method)
forward()	(in	module	turtle)
found_terminator()
(asynchat.async_chat	method)
fpathconf()	(in	module	os)
fpectl	(module)
fqdn	(smtpd.SMTPChannel	attribute)
Fraction	(class	in	fractions)

method)
(select.devpoll	method)
(select.epoll	method)
(select.kqueue	method)
(selectors.EpollSelector	method)
(selectors.KqueueSelector	method)
(socket.socket	method)
(socketserver.BaseServer	method)
(telnetlib.Telnet	method)

FileNotFoundError
fileobj	(selectors.SelectorKey	attribute)
FileSelectBox	(class	in	tkinter.tix)
FileType	(class	in	argparse)
FileWrapper	(class	in	wsgiref.util)
fill()	(in	module	textwrap)

(textwrap.TextWrapper	method)
fillcolor()	(in	module	turtle)
filling()	(in	module	turtle)
filter	(2to3	fixer)
Filter	(class	in	logging)

(class	in	tracemalloc)
filter	(select.kevent	attribute)
filter()	(built-in	function)

(in	module	curses)
(in	module	fnmatch)
(logging.Filter	method)
(logging.Handler	method)
(logging.Logger	method)

FILTER_DIR	(in	module	unittest.mock)
filter_traces()	(tracemalloc.Snapshot
method)
filterfalse()	(in	module	itertools)
filterwarnings()	(in	module	warnings)
finalization,	of	objects
finalize	(class	in	weakref)
finalize_options()	(distutils.cmd.Command
method)

fractions	(module)
frame

execution,	[1]
object

Frame	(class	in	tracemalloc)
frame	(tkinter.scrolledtext.ScrolledText
attribute)
FrameType	(in	module	types)
free

variable
free()
freeze	utility
freeze_support()	(in	module
multiprocessing)
frexp()	(in	module	math)
from

keyword,	[1]
statement

from_address()	(ctypes._CData
method)
from_buffer()	(ctypes._CData	method)
from_buffer_copy()	(ctypes._CData
method)
from_bytes()	(int	class	method)
from_decimal()	(fractions.Fraction
method)
from_float()	(decimal.Decimal	method)

(fractions.Fraction	method)
from_iterable()	(itertools.chain	class
method)
from_param()	(ctypes._CData	method)
from_traceback()	(dis.Bytecode	class
method)
frombuf()	(tarfile.TarInfo	method)
frombytes()	(array.array	method)
fromfd()	(in	module	socket)

(select.epoll	method)
(select.kqueue	method)

finally
keyword,	[1],	[2],	[3],	[4]

find()	(doctest.DocTestFinder	method)
(in	module	gettext)
(in	module	mmap)
(str	method)
(xml.etree.ElementTree.Element
method)
(xml.etree.ElementTree.ElementTree
method)

find_class()	(pickle	protocol)
(pickle.Unpickler	method)

find_library()	(in	module	ctypes.util)
find_library_file()
(distutils.ccompiler.CCompiler	method)
find_loader()
(importlib.abc.PathEntryFinder	method)

(importlib.machinery.FileFinder
method)
(in	module	importlib)
(in	module	pkgutil)

find_longest_match()
(difflib.SequenceMatcher	method)
find_module()	(imp.NullImporter	method)

(importlib.abc.Finder	method)
(importlib.abc.MetaPathFinder	method)
(importlib.abc.PathEntryFinder
method)
(importlib.machinery.PathFinder	 class
method)
(in	module	imp)
(zipimport.zipimporter	method)

find_msvcrt()	(in	module	ctypes.util)
find_spec

finder
find_spec()	(importlib.abc.MetaPathFinder

fromfile()	(array.array	method)
fromhex()	(bytearray	class	method)

(bytes	class	method)
(float	class	method)

fromkeys()	(collections.Counter
method)

(dict	class	method)
fromlist()	(array.array	method)
fromordinal()	(datetime.date	class
method)

(datetime.datetime	class	method)
fromshare()	(in	module	socket)
fromstring()	(array.array	method)

(in	module	xml.etree.ElementTree)
fromstringlist()	(in	module
xml.etree.ElementTree)
fromtarfile()	(tarfile.TarInfo	method)
fromtimestamp()	(datetime.date	class
method)

(datetime.datetime	class	method)
fromunicode()	(array.array	method)
fromutc()	(datetime.timezone	method)

(datetime.tzinfo	method)
FrozenImporter	(class	in
importlib.machinery)
frozenset

object,	[1]
frozenset	(built-in	class)
fsdecode()	(in	module	os)
fsencode()	(in	module	os)
fstat()	(in	module	os)
fstatvfs()	(in	module	os)
fsum()	(in	module	math)
fsync()	(in	module	os)
FTP

ftplib	(standard	module)
protocol,	[1]

method)
(importlib.abc.PathEntryFinder
method)
(importlib.machinery.FileFinder
method)
(importlib.machinery.PathFinder	 class
method)
(in	module	importlib.util)

find_unused_port()	(in	module
test.support)
find_user_password()
(urllib.request.HTTPPasswordMgr
method)
findall()	(in	module	re)

(re.regex	method)
(xml.etree.ElementTree.Element
method)
(xml.etree.ElementTree.ElementTree
method)

findCaller()	(logging.Logger	method)
finder,	[1]

find_spec
Finder	(class	in	importlib.abc)
findfactor()	(in	module	audioop)
findfile()	(in	module	test.support)
findfit()	(in	module	audioop)
finditer()	(in	module	re)

(re.regex	method)
findlabels()	(in	module	dis)
findlinestarts()	(in	module	dis)
findmatch()	(in	module	mailcap)
findmax()	(in	module	audioop)
findtext()	(xml.etree.ElementTree.Element
method)

(xml.etree.ElementTree.ElementTree
method)

finish()	(socketserver.RequestHandler

FTP	(class	in	ftplib)
ftp_open()	(urllib.request.FTPHandler
method)
FTP_TLS	(class	in	ftplib)
FTPHandler	(class	in	urllib.request)
ftplib	(module)
ftpmirror.py
ftruncate()	(in	module	os)
Full
full()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(queue.Queue	method)

full_url	(urllib.request.Request
attribute)
fullmatch()	(in	module	re)

(re.regex	method)
func	(functools.partial	attribute)
funcattrs	(2to3	fixer)
function

annotations,	[1]
anonymous
argument
call,	[1],	[2]
call,	user-defined
definition,	[1]
generator,	[1]
name,	[1]
object,	[1],	[2],	[3],	[4],	[5]
user-defined

Function	(class	in	symtable)
function	annotation
FunctionTestCase	(class	in	unittest)
FunctionType	(in	module	types)
functools	(module)
funny_files	(filecmp.dircmp	attribute)
future

statement

method)
finish_request()	(socketserver.BaseServer
method)
first()	(asynchat.fifo	method)
firstChild	(xml.dom.Node	attribute)
firstkey()	(dbm.gnu.gdbm	method)
firstweekday()	(in	module	calendar)
fix_missing_locations()	(in	module	ast)
fix_sentence_endings
(textwrap.TextWrapper	attribute)
flag_bits	(zipfile.ZipInfo	attribute)

future	(2to3	fixer)
Future	(class	in	asyncio)

(class	in	concurrent.futures)
FutureWarning
fwalk()	(in	module	os)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	G
G.722
gaierror
gamma()	(in	module	math)
gammavariate()	(in	module	random)
garbage	(in	module	gc)
garbage	collection,	[1]
gather()	(curses.textpad.Textbox	method)

(in	module	asyncio)
gauss()	(in	module	random)
gc	(module)
gcd()	(in	module	fractions)
ge()	(in	module	operator)
gen_lib_options()	(in	module	distutils.ccompiler)
gen_preprocess_options()	(in	module
distutils.ccompiler)
gen_uuid()	(in	module	msilib)
generate_help()
(distutils.fancy_getopt.FancyGetopt	method)
generator,	[1]

expression
function,	[1],	[2]
iterator,	[1]
object,	[1],	[2]

generator	(built-in	class)
Generator	(class	in	email.generator)
generator	expression,	[1]
GeneratorExit

exception
GeneratorType	(in	module	types)
generic

special	attribute
generic	function
generic_visit()	(ast.NodeVisitor	method)
genops()	(in	module	pickletools)

getdecoder()	(in	module	codecs)
getdefaultencoding()	(in	module	sys)
getdefaultlocale()	(in	module	locale)
getdefaulttimeout()	(in	module	socket)
getdlopenflags()	(in	module	sys)
getdoc()	(in	module	inspect)
getDOMImplementation()	(in	module
xml.dom)
getDTDHandler()
(xml.sax.xmlreader.XMLReader
method)
getEffectiveLevel()	(logging.Logger
method)
getegid()	(in	module	os)
getElementsByTagName()
(xml.dom.Document	method)

(xml.dom.Element	method)
getElementsByTagNameNS()
(xml.dom.Document	method)

(xml.dom.Element	method)
getencoder()	(in	module	codecs)
getEncoding()
(xml.sax.xmlreader.InputSource
method)
getEntityResolver()
(xml.sax.xmlreader.XMLReader
method)
getenv()	(in	module	os)
getenvb()	(in	module	os)
getErrorHandler()
(xml.sax.xmlreader.XMLReader
method)
geteuid()	(in	module	os)
getEvent()
(xml.dom.pulldom.DOMEventStream

get()	(asyncio.Queue	method)
(configparser.ConfigParser	method)
(dict	method)
(email.message.Message	method)
(in	module	webbrowser)
(mailbox.Mailbox	method)
(multiprocessing.Queue	method)
(multiprocessing.SimpleQueue	method)
(multiprocessing.pool.AsyncResult	method)
(ossaudiodev.oss_mixer_device	method)
(queue.Queue	method)
(tkinter.ttk.Combobox	method)
(types.MappingProxyType	method)
(xml.etree.ElementTree.Element	method)

get_all()	(email.message.Message	method)
(wsgiref.headers.Headers	method)

get_all_breaks()	(bdb.Bdb	method)
get_all_start_methods()	(in	module
multiprocessing)
get_app()	(wsgiref.simple_server.WSGIServer
method)
get_archive_formats()	(in	module	shutil)
get_begidx()	(in	module	readline)
get_body()	(email.message.EmailMessage
method)
get_body_encoding()	(email.charset.Charset
method)
get_boundary()	(email.message.Message
method)
get_bpbynumber()	(bdb.Bdb	method)
get_break()	(bdb.Bdb	method)
get_breaks()	(bdb.Bdb	method)
get_buffer()	(xdrlib.Packer	method)

(xdrlib.Unpacker	method)
get_bytes()	(mailbox.Mailbox	method)
get_ca_certs()	(ssl.SSLContext	method),	[1]
get_cache_token()	(in	module	abc)

method)
getEventCategory()
(logging.handlers.NTEventLogHandler
method)
getEventType()
(logging.handlers.NTEventLogHandler
method)
getException()	(xml.sax.SAXException
method)
getFeature()
(xml.sax.xmlreader.XMLReader
method)
GetFieldCount()	(msilib.Record	method)
getfile()	(in	module	inspect)
getfilesystemencoding()	(in	module	sys)
getfirst()	(cgi.FieldStorage	method)
getfloat()	(configparser.ConfigParser
method)
getfmts()
(ossaudiodev.oss_audio_device
method)
getfqdn()	(in	module	socket)
getframeinfo()	(in	module	inspect)
getframerate()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getfullargspec()	(in	module	inspect)
getgeneratorlocals()	(in	module	inspect)
getgeneratorstate()	(in	module	inspect)
getgid()	(in	module	os)
getgrall()	(in	module	grp)
getgrgid()	(in	module	grp)
getgrnam()	(in	module	grp)
getgrouplist()	(in	module	os)
getgroups()	(in	module	os)
getheader()	(http.client.HTTPResponse
method)
getheaders()

get_channel_binding()	(ssl.SSLSocket	method)
get_charset()	(email.message.Message	method)
get_charsets()	(email.message.Message
method)
get_children()	(symtable.SymbolTable	method)

(tkinter.ttk.Treeview	method)
get_clock_info()	(in	module	time)
get_close_matches()	(in	module	difflib)
get_code()	(importlib.abc.InspectLoader	method)

(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(importlib.machinery.SourcelessFileLoader
method)
(zipimport.zipimporter	method)

get_completer()	(in	module	readline)
get_completer_delims()	(in	module	readline)
get_completion_type()	(in	module	readline)
get_config_h_filename()	(in	module
distutils.sysconfig)

(in	module	sysconfig)
get_config_var()	(in	module	distutils.sysconfig)

(in	module	sysconfig)
get_config_vars()	(in	module	distutils.sysconfig)

(in	module	sysconfig)
get_content()
(email.contentmanager.ContentManager
method)

(email.message.EmailMessage	method)
(in	module	email.contentmanager)

get_content_charset()	(email.message.Message
method)
get_content_maintype()
(email.message.Message	method)
get_content_subtype()	(email.message.Message
method)
get_content_type()	(email.message.Message

(http.client.HTTPResponse	method)
gethostbyaddr()	(in	module	socket)
gethostbyname()	(in	module	socket)
gethostbyname_ex()	(in	module	socket)
gethostname()	(in	module	socket)
getincrementaldecoder()	(in	module
codecs)
getincrementalencoder()	(in	module
codecs)
getinfo()	(zipfile.ZipFile	method)
getinnerframes()	(in	module	inspect)
GetInputContext()
(xml.parsers.expat.xmlparser	method)
getint()	(configparser.ConfigParser
method)
GetInteger()	(msilib.Record	method)
getitem()	(in	module	operator)
getiterator()
(xml.etree.ElementTree.Element
method)

(xml.etree.ElementTree.ElementTree
method)

getitimer()	(in	module	signal)
getkey()	(curses.window	method)
GetLastError()	(in	module	ctypes)
getLength()
(xml.sax.xmlreader.Attributes	method)
getLevelName()	(in	module	logging)
getline()	(in	module	linecache)
getLineNumber()
(xml.sax.xmlreader.Locator	method)
getlist()	(cgi.FieldStorage	method)
getloadavg()	(in	module	os)
getlocale()	(in	module	locale)
getLogger()	(in	module	logging)
getLoggerClass()	(in	module	logging)
getlogin()	(in	module	os)
getLogRecordFactory()	(in	module

method)
get_context()	(in	module	multiprocessing)
get_count()	(in	module	gc)
get_current_history_length()	(in	module	readline)
get_data()	(importlib.abc.FileLoader	method)

(importlib.abc.ResourceLoader	method)
(in	module	pkgutil)
(zipimport.zipimporter	method)

get_date()	(mailbox.MaildirMessage	method)
get_debug()	(asyncio.BaseEventLoop	method)

(in	module	gc)
get_default()	(argparse.ArgumentParser
method)
get_default_compiler()	(in	module
distutils.ccompiler)
get_default_domain()	(in	module	nis)
get_default_type()	(email.message.Message
method)
get_default_verify_paths()	(in	module	ssl)
get_dialect()	(in	module	csv)
get_docstring()	(in	module	ast)
get_doctest()	(doctest.DocTestParser	method)
get_endidx()	(in	module	readline)
get_environ()
(wsgiref.simple_server.WSGIRequestHandler
method)
get_errno()	(in	module	ctypes)
get_event_loop()
(asyncio.AbstractEventLoopPolicy	method)

(in	module	asyncio)
get_event_loop_policy()	(in	module	asyncio)
get_examples()	(doctest.DocTestParser	method)
get_exec_path()	(in	module	os)
get_extra_info()	(asyncio.BaseTransport
method)

(asyncio.StreamWriter	method)
get_field()	(string.Formatter	method)
get_file()	(mailbox.Babyl	method)

logging)
getmark()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getmarkers()	(aifc.aifc	method)
(sunau.AU_read	method)
(wave.Wave_read	method)

getmaxyx()	(curses.window	method)
getmember()	(tarfile.TarFile	method)
getmembers()	(in	module	inspect)

(tarfile.TarFile	method)
getMessage()	(logging.LogRecord
method)

(xml.sax.SAXException	method)
getMessageID()
(logging.handlers.NTEventLogHandler
method)
getmodule()	(in	module	inspect)
getmoduleinfo()	(in	module	inspect)
getmodulename()	(in	module	inspect)
getmouse()	(in	module	curses)
getmro()	(in	module	inspect)
getmtime()	(in	module	os.path)
getname()	(chunk.Chunk	method)
getName()	(threading.Thread	method)
getNameByQName()
(xml.sax.xmlreader.AttributesNS
method)
getnameinfo()	(asyncio.BaseEventLoop
method)

(in	module	socket)
getnames()	(tarfile.TarFile	method)
getNames()
(xml.sax.xmlreader.Attributes	method)
getnchannels()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

(mailbox.MH	method)
(mailbox.MMDF	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(mailbox.mbox	method)

get_file_breaks()	(bdb.Bdb	method)
get_filename()	(email.message.Message
method)

(importlib.abc.ExecutionLoader	method)
(importlib.abc.FileLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(zipimport.zipimporter	method)

get_flags()	(mailbox.MaildirMessage	method)
(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

get_folder()	(mailbox.Maildir	method)
(mailbox.MH	method)

get_frees()	(symtable.Function	method)
get_from()	(mailbox.mboxMessage	method)

(mailbox.MMDFMessage	method)
get_full_url()	(urllib.request.Request	method)
get_globals()	(symtable.Function	method)
get_grouped_opcodes()
(difflib.SequenceMatcher	method)
get_handle_inheritable()	(in	module	os)
get_header()	(urllib.request.Request	method)
get_history_item()	(in	module	readline)
get_history_length()	(in	module	readline)
get_id()	(symtable.SymbolTable	method)
get_ident()	(in	module	_thread)

(in	module	threading)
get_identifiers()	(symtable.SymbolTable	method)
get_importer()	(in	module	pkgutil)
get_info()	(mailbox.MaildirMessage	method)
get_inheritable()	(in	module	os)

(socket.socket	method)

getnframes()	(aifc.aifc	method)
(sunau.AU_read	method)
(wave.Wave_read	method)

getnode
getnode()	(in	module	uuid)
getopt	(module)
getopt()
(distutils.fancy_getopt.FancyGetopt
method)

(in	module	getopt)
GetoptError
getouterframes()	(in	module	inspect)
getoutput()	(in	module	subprocess)
getpagesize()	(in	module	resource)
getparams()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getparyx()	(curses.window	method)
getpass	(module)
getpass()	(in	module	getpass)
GetPassWarning
getpeercert()	(ssl.SSLSocket	method)
getpeername()	(socket.socket	method)
getpen()	(in	module	turtle)
getpgid()	(in	module	os)
getpgrp()	(in	module	os)
getpid()	(in	module	os)
getpos()	(html.parser.HTMLParser
method)
getppid()	(in	module	os)
getpreferredencoding()	(in	module
locale)
getpriority()	(in	module	os)
getprofile()	(in	module	sys)
GetProperty()
(msilib.SummaryInformation	method)
getProperty()
(xml.sax.xmlreader.XMLReader

get_instructions()	(in	module	dis)
GET_ITER	(opcode)
get_key()	(selectors.BaseSelector	method)
get_labels()	(mailbox.Babyl	method)

(mailbox.BabylMessage	method)
get_last_error()	(in	module	ctypes)
get_line_buffer()	(in	module	readline)
get_lineno()	(symtable.SymbolTable	method)
get_loader()	(in	module	pkgutil)
get_locals()	(symtable.Function	method)
get_logger()	(in	module	multiprocessing)
get_magic()	(in	module	imp)
get_makefile_filename()	(in	module
distutils.sysconfig)

(in	module	sysconfig)
get_map()	(selectors.BaseSelector	method)
get_matching_blocks()	(difflib.SequenceMatcher
method)
get_message()	(mailbox.Mailbox	method)
get_method()	(urllib.request.Request	method)
get_methods()	(symtable.Class	method)
get_mixed_type_key()	(in	module	ipaddress)
get_name()	(symtable.Symbol	method)

(symtable.SymbolTable	method)
get_namespace()	(symtable.Symbol	method)
get_namespaces()	(symtable.Symbol	method)
get_nonstandard_attr()	(http.cookiejar.Cookie
method)
get_nowait()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(queue.Queue	method)

get_object_traceback()	(in	module	tracemalloc)
get_objects()	(in	module	gc)
get_opcodes()	(difflib.SequenceMatcher	method)
get_option()	(optparse.OptionParser	method)
get_option_group()	(optparse.OptionParser
method)
get_option_order()

method)
GetPropertyCount()
(msilib.SummaryInformation	method)
getprotobyname()	(in	module	socket)
getproxies()	(in	module	urllib.request)
getPublicId()
(xml.sax.xmlreader.InputSource
method)

(xml.sax.xmlreader.Locator	method)
getpwall()	(in	module	pwd)
getpwnam()	(in	module	pwd)
getpwuid()	(in	module	pwd)
getQNameByName()
(xml.sax.xmlreader.AttributesNS
method)
getQNames()
(xml.sax.xmlreader.AttributesNS
method)
getquota()	(imaplib.IMAP4	method)
getquotaroot()	(imaplib.IMAP4	method)
getrandbits()	(in	module	random)
getreader()	(in	module	codecs)
getrecursionlimit()	(in	module	sys)
getrefcount()	(in	module	sys)
getresgid()	(in	module	os)
getresponse()
(http.client.HTTPConnection	method)
getresuid()	(in	module	os)
getrlimit()	(in	module	resource)
getroot()
(xml.etree.ElementTree.ElementTree
method)
getrusage()	(in	module	resource)
getsample()	(in	module	audioop)
getsampwidth()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getscreen()	(in	module	turtle)

(distutils.fancy_getopt.FancyGetopt	method)
get_osfhandle()	(in	module	msvcrt)
get_output_charset()	(email.charset.Charset
method)
get_param()	(email.message.Message	method)
get_parameters()	(symtable.Function	method)
get_params()	(email.message.Message	method)
get_path()	(in	module	sysconfig)
get_path_names()	(in	module	sysconfig)
get_paths()	(in	module	sysconfig)
get_payload()	(email.message.Message
method)
get_pid()	(asyncio.BaseSubprocessTransport
method)
get_pipe_transport()
(asyncio.BaseSubprocessTransport	method)
get_platform()	(in	module	distutils.util)

(in	module	sysconfig)
get_poly()	(in	module	turtle)
get_position()	(xdrlib.Unpacker	method)
get_python_inc()	(in	module	distutils.sysconfig)
get_python_lib()	(in	module	distutils.sysconfig)
get_python_version()	(in	module	sysconfig)
get_recsrc()	(ossaudiodev.oss_mixer_device
method)
get_referents()	(in	module	gc)
get_referrers()	(in	module	gc)
get_request()	(socketserver.BaseServer	method)
get_returncode()
(asyncio.BaseSubprocessTransport	method)
get_scheme()	(wsgiref.handlers.BaseHandler
method)
get_scheme_names()	(in	module	sysconfig)
get_sequences()	(mailbox.MH	method)

(mailbox.MHMessage	method)
get_server()
(multiprocessing.managers.BaseManager
method)

getservbyname()	(in	module	socket)
getservbyport()	(in	module	socket)
GetSetDescriptorType	(in	module	types)
getshapes()	(in	module	turtle)
getsid()	(in	module	os)
getsignal()	(in	module	signal)
getsitepackages()	(in	module	site)
getsize()	(chunk.Chunk	method)

(in	module	os.path)
getsizeof()	(in	module	sys)
getsockname()	(socket.socket	method)
getsockopt()	(socket.socket	method)
getsource()	(in	module	inspect)
getsourcefile()	(in	module	inspect)
getsourcelines()	(in	module	inspect)
getspall()	(in	module	spwd)
getspnam()	(in	module	spwd)
getstate()	(codecs.IncrementalDecoder
method)

(codecs.IncrementalEncoder
method)
(in	module	random)

getstatusoutput()	(in	module
subprocess)
getstr()	(curses.window	method)
GetString()	(msilib.Record	method)
getSubject()
(logging.handlers.SMTPHandler
method)
GetSummaryInformation()
(msilib.Database	method)
getswitchinterval()	(in	module	sys)
getSystemId()
(xml.sax.xmlreader.InputSource
method)

(xml.sax.xmlreader.Locator	method)
getsyx()	(in	module	curses)
gettarinfo()	(tarfile.TarFile	method)

get_server_certificate()	(in	module	ssl)
get_shapepoly()	(in	module	turtle)
get_socket()	(telnetlib.Telnet	method)
get_source()	(importlib.abc.InspectLoader
method)

(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(importlib.machinery.SourcelessFileLoader
method)
(zipimport.zipimporter	method)

get_special_folder_path()	(built-in	function)
get_stack()	(asyncio.Task	method)

(bdb.Bdb	method)
get_start_method()	(in	module	multiprocessing)
get_starttag_text()	(html.parser.HTMLParser
method)
get_stats()	(in	module	gc)
get_stderr()	(wsgiref.handlers.BaseHandler
method)

(wsgiref.simple_server.WSGIRequestHandler
method)

get_stdin()	(wsgiref.handlers.BaseHandler
method)
get_string()	(mailbox.Mailbox	method)
get_subdir()	(mailbox.MaildirMessage	method)
get_suffixes()	(in	module	imp)
get_symbols()	(symtable.SymbolTable	method)
get_tag()	(in	module	imp)
get_terminal_size()	(in	module	os)

(in	module	shutil)
get_terminator()	(asynchat.async_chat	method)
get_threshold()	(in	module	gc)
get_token()	(shlex.shlex	method)
get_traceback_limit()	(in	module	tracemalloc)
get_traced_memory()	(in	module	tracemalloc)
get_tracemalloc_memory()	(in	module

gettempdir()	(in	module	tempfile)
gettempprefix()	(in	module	tempfile)
getTestCaseNames()
(unittest.TestLoader	method)
gettext	(module)
gettext()	(gettext.GNUTranslations
method)

(gettext.NullTranslations	method)
(in	module	gettext)

gettimeout()	(socket.socket	method)
gettrace()	(in	module	sys)
getturtle()	(in	module	turtle)
getType()	(xml.sax.xmlreader.Attributes
method)
getuid()	(in	module	os)
geturl()
(urllib.parse.urllib.parse.SplitResult
method)
getuser()	(in	module	getpass)
getuserbase()	(in	module	site)
getusersitepackages()	(in	module	site)
getvalue()	(io.BytesIO	method)

(io.StringIO	method)
getValue()	(xml.sax.xmlreader.Attributes
method)
getValueByQName()
(xml.sax.xmlreader.AttributesNS
method)
getwch()	(in	module	msvcrt)
getwche()	(in	module	msvcrt)
getweakrefcount()	(in	module	weakref)
getweakrefs()	(in	module	weakref)
getwelcome()	(ftplib.FTP	method)

(nntplib.NNTP	method)
(poplib.POP3	method)

getwin()	(in	module	curses)
getwindowsversion()	(in	module	sys)
getwriter()	(in	module	codecs)

tracemalloc)
get_type()	(symtable.SymbolTable	method)
get_unixfrom()	(email.message.Message
method)
get_unpack_formats()	(in	module	shutil)
get_usage()	(optparse.OptionParser	method)
get_value()	(string.Formatter	method)
get_version()	(optparse.OptionParser	method)
get_visible()	(mailbox.BabylMessage	method)
get_wch()	(curses.window	method)
get_write_buffer_size()	(asyncio.WriteTransport
method)
getacl()	(imaplib.IMAP4	method)
getaddresses()	(in	module	email.utils)
getaddrinfo()	(asyncio.BaseEventLoop	method)

(in	module	socket)
getallocatedblocks()	(in	module	sys)
getannotation()	(imaplib.IMAP4	method)
getargspec()	(in	module	inspect)
getargvalues()	(in	module	inspect)
getatime()	(in	module	os.path)
getattr()	(built-in	function)
getattr_static()	(in	module	inspect)
getAttribute()	(xml.dom.Element	method)
getAttributeNode()	(xml.dom.Element	method)
getAttributeNodeNS()	(xml.dom.Element
method)
getAttributeNS()	(xml.dom.Element	method)
GetBase()	(xml.parsers.expat.xmlparser
method)
getbegyx()	(curses.window	method)
getbkgd()	(curses.window	method)
getboolean()	(configparser.ConfigParser
method)
getbuffer()	(io.BytesIO	method)
getByteStream()	(xml.sax.xmlreader.InputSource
method)
getcallargs()	(in	module	inspect)
getcanvas()	(in	module	turtle)

getxattr()	(in	module	os)
getyx()	(curses.window	method)
gid	(tarfile.TarInfo	attribute)
GIL
glob

module
glob	(module)
glob()	(in	module	glob)

(msilib.Directory	method)
(pathlib.Path	method)

global
name	binding
namespace
statement,	[1]

global	interpreter	lock
globals()	(built-in	function)
globs	(doctest.DocTest	attribute)
gmtime()	(in	module	time)
gname	(tarfile.TarInfo	attribute)
GNOME
GNU_FORMAT	(in	module	tarfile)
gnu_getopt()	(in	module	getopt)
got	(doctest.DocTestFailure	attribute)
goto()	(in	module	turtle)
grammar
Graphical	User	Interface
GREATER	(in	module	token)
GREATEREQUAL	(in	module	token)
Greenwich	Mean	Time
Group	(class	in	email.headerregistry)
group()	(nntplib.NNTP	method)

(pathlib.Path	method)
(re.match	method)

groupby()	(in	module	itertools)
groupdict()	(re.match	method)
groupindex	(re.regex	attribute)
grouping
groups

getcapabilities()	(nntplib.NNTP	method)
getcaps()	(in	module	mailcap)
getch()	(curses.window	method)

(in	module	msvcrt)
getCharacterStream()
(xml.sax.xmlreader.InputSource	method)
getche()	(in	module	msvcrt)
getcheckinterval()	(in	module	sys)
getChild()	(logging.Logger	method)
getchildren()	(xml.etree.ElementTree.Element
method)
getclasstree()	(in	module	inspect)
getclosurevars()	(in	module	inspect)
GetColumnInfo()	(msilib.View	method)
getColumnNumber()	(xml.sax.xmlreader.Locator
method)
getcomments()	(in	module	inspect)
getcompname()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getcomptype()	(aifc.aifc	method)
(sunau.AU_read	method)
(wave.Wave_read	method)

getContentHandler()
(xml.sax.xmlreader.XMLReader	method)
getcontext()	(in	module	decimal)
getctime()	(in	module	os.path)
getcwd()	(in	module	os)
getcwdb()	(in	module	os)
getcwdu	(2to3	fixer)

(email.headerregistry.AddressHeader
attribute)

(re.regex	attribute)
groups()	(re.match	method)
grp	(module)
gt()	(in	module	operator)
guess_all_extensions()	(in	module
mimetypes)

(mimetypes.MimeTypes	method)
guess_extension()	(in	module
mimetypes)

(mimetypes.MimeTypes	method)
guess_scheme()	(in	module	wsgiref.util)
guess_type()	(in	module	mimetypes)

(mimetypes.MimeTypes	method)
GUI
gzip	(module)
GzipFile	(class	in	gzip)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	H
halfdelay()	(in	module	curses)
Handle	(class	in	asyncio)
handle	an	exception
handle()	(http.server.BaseHTTPRequestHandler
method)

(logging.Handler	method)
(logging.Logger	method)
(logging.NullHandler	method)
(logging.handlers.QueueListener	method)
(socketserver.RequestHandler	method)
(wsgiref.simple_server.WSGIRequestHandler
method)

handle_accept()	(asyncore.dispatcher	method)
handle_accepted()	(asyncore.dispatcher
method)
handle_charref()	(html.parser.HTMLParser
method)
handle_close()	(asyncore.dispatcher	method)
handle_comment()	(html.parser.HTMLParser
method)
handle_connect()	(asyncore.dispatcher	method)
handle_data()	(html.parser.HTMLParser	method)
handle_decl()	(html.parser.HTMLParser	method)
handle_defect()	(email.policy.Policy	method)
handle_endtag()	(html.parser.HTMLParser
method)
handle_entityref()	(html.parser.HTMLParser
method)
handle_error()	(asyncore.dispatcher	method)

(socketserver.BaseServer	method)
handle_expect_100()
(http.server.BaseHTTPRequestHandler	method)
handle_expt()	(asyncore.dispatcher	method)
handle_one_request()

help	(optparse.Option	attribute)
(pdb	command)

help()	(built-in	function)
(nntplib.NNTP	method)

herror
hex	(uuid.UUID	attribute)
hex()	(built-in	function)

(float	method)
hexadecimal

literals
hexadecimal	literal
hexbin()	(in	module	binhex)
hexdigest()	(hashlib.hash	method)

(hmac.HMAC	method)
hexdigits	(in	module	string)
hexlify()	(in	module	binascii)
hexversion	(in	module	sys)
hidden()	(curses.panel.Panel	method)
hide()	(curses.panel.Panel	method)

(tkinter.ttk.Notebook	method)
hide_cookie2	(http.cookiejar.CookiePolicy
attribute)
hideturtle()	(in	module	turtle)
hierarchy

type
HierarchyRequestErr
HIGHEST_PROTOCOL	(in	module	pickle)
HKEY_CLASSES_ROOT	(in	module	winreg)
HKEY_CURRENT_CONFIG	(in	module
winreg)
HKEY_CURRENT_USER	(in	module
winreg)
HKEY_DYN_DATA	(in	module	winreg)
HKEY_LOCAL_MACHINE	(in	module

(http.server.BaseHTTPRequestHandler	method)
handle_pi()	(html.parser.HTMLParser	method)
handle_read()	(asyncore.dispatcher	method)
handle_request()	(socketserver.BaseServer
method)

(xmlrpc.server.CGIXMLRPCRequestHandler
method)

handle_startendtag()	(html.parser.HTMLParser
method)
handle_starttag()	(html.parser.HTMLParser
method)
handle_timeout()	(socketserver.BaseServer
method)
handle_write()	(asyncore.dispatcher	method)
handleError()	(logging.Handler	method)

(logging.handlers.SocketHandler	method)
handler

exception
handler()	(in	module	cgitb)
has_children()	(symtable.SymbolTable	method)
has_colors()	(in	module	curses)
HAS_ECDH	(in	module	ssl)
has_exec()	(symtable.SymbolTable	method)
has_extn()	(smtplib.SMTP	method)
has_function()	(distutils.ccompiler.CCompiler
method)
has_header()	(csv.Sniffer	method)

(urllib.request.Request	method)
has_ic()	(in	module	curses)
has_il()	(in	module	curses)
has_import_star()	(symtable.SymbolTable
method)
has_ipv6	(in	module	socket)
has_key	(2to3	fixer)
has_key()	(in	module	curses)
has_location	(importlib.machinery.ModuleSpec
attribute)
has_nonstandard_attr()	(http.cookiejar.Cookie

winreg)
HKEY_PERFORMANCE_DATA	(in	module
winreg)
HKEY_USERS	(in	module	winreg)
hline()	(curses.window	method)
HList	(class	in	tkinter.tix)
hls_to_rgb()	(in	module	colorsys)
hmac	(module)
HOME,	[1],	[2],	[3],	[4]
home()	(in	module	turtle)
HOMEDRIVE,	[1]
HOMEPATH,	[1]
hook_compressed()	(in	module	fileinput)
hook_encoded()	(in	module	fileinput)
hooks

import
meta
path

host	(urllib.request.Request	attribute)
hostmask	(ipaddress.IPv4Network	attribute)

(ipaddress.IPv6Network	attribute)
hosts	(netrc.netrc	attribute)
hosts()	(ipaddress.IPv4Network	method)

(ipaddress.IPv6Network	method)
hour	(datetime.datetime	attribute)

(datetime.time	attribute)
HRESULT	(class	in	ctypes)
hStdError	(subprocess.STARTUPINFO
attribute)
hStdInput	(subprocess.STARTUPINFO
attribute)
hStdOutput	(subprocess.STARTUPINFO
attribute)
hsv_to_rgb()	(in	module	colorsys)
ht()	(in	module	turtle)
HTML,	[1]
html	(module)
html.entities	(module)

method)
HAS_NPN	(in	module	ssl)
has_option()	(configparser.ConfigParser
method)

(optparse.OptionParser	method)
has_section()	(configparser.ConfigParser
method)
HAS_SNI	(in	module	ssl)
hasattr()	(built-in	function)
hasAttribute()	(xml.dom.Element	method)
hasAttributeNS()	(xml.dom.Element	method)
hasAttributes()	(xml.dom.Node	method)
hasChildNodes()	(xml.dom.Node	method)
hascompare	(in	module	dis)
hasconst	(in	module	dis)
hasFeature()	(xml.dom.DOMImplementation
method)
hasfree	(in	module	dis)
hash

built-in	function,	[1],	[2],	[3]
hash	character
hash()	(built-in	function)
hash.block_size	(in	module	hashlib)
hash.digest_size	(in	module	hashlib)
hash_info	(in	module	sys)
hashable,	[1]
Hashable	(class	in	collections.abc)
hasHandlers()	(logging.Logger	method)
hashlib	(module)
hasjabs	(in	module	dis)
hasjrel	(in	module	dis)
haslocal	(in	module	dis)
hasname	(in	module	dis)
HAVE_ARGUMENT	(opcode)
HAVE_THREADS	(in	module	decimal)
head()	(nntplib.NNTP	method)
Header	(class	in	email.header)
header_encode()	(email.charset.Charset

html.parser	(module)
html5	(in	module	html.entities)
HTMLCalendar	(class	in	calendar)
HtmlDiff	(class	in	difflib)
HTMLParseError
HTMLParser	(class	in	html.parser)
htonl()	(in	module	socket)
htons()	(in	module	socket)
HTTP

http.client	(standard	module)
protocol,	[1],	[2],	[3]

HTTP	(in	module	email.policy)
http.client	(module)
http.cookiejar	(module)
http.cookies	(module)
http.server	(module)
http_error_301()
(urllib.request.HTTPRedirectHandler
method)
http_error_302()
(urllib.request.HTTPRedirectHandler
method)
http_error_303()
(urllib.request.HTTPRedirectHandler
method)
http_error_307()
(urllib.request.HTTPRedirectHandler
method)
http_error_401()
(urllib.request.HTTPBasicAuthHandler
method)

(urllib.request.HTTPDigestAuthHandler
method)

http_error_407()
(urllib.request.ProxyBasicAuthHandler
method)

(urllib.request.ProxyDigestAuthHandler
method)

method)
header_encode_lines()	(email.charset.Charset
method)
header_encoding	(email.charset.Charset
attribute)
header_factory	(email.policy.EmailPolicy
attribute)
header_fetch_parse()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

header_items()	(urllib.request.Request	method)
header_max_count()	(email.policy.EmailPolicy
method)

(email.policy.Policy	method)
header_offset	(zipfile.ZipInfo	attribute)
header_source_parse()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

header_store_parse()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

HeaderError
HeaderParseError
HeaderRegistry	(class	in	email.headerregistry)
headers

MIME,	[1]
Headers	(class	in	wsgiref.headers)
headers	(http.server.BaseHTTPRequestHandler
attribute)

(urllib.error.HTTPError	attribute)
(xmlrpc.client.ProtocolError	attribute)

heading()	(in	module	turtle)
(tkinter.ttk.Treeview	method)

heapify()	(in	module	heapq)

http_error_auth_reqed()
(urllib.request.AbstractBasicAuthHandler
method)

(urllib.request.AbstractDigestAuthHandler
method)

http_error_default()
(urllib.request.BaseHandler	method)
http_error_nnn()	(urllib.request.BaseHandler
method)
http_open()	(urllib.request.HTTPHandler
method)
HTTP_PORT	(in	module	http.client)
http_proxy,	[1],	[2]
http_response()
(urllib.request.HTTPErrorProcessor	method)
http_version	(wsgiref.handlers.BaseHandler
attribute)
HTTPBasicAuthHandler	(class	in
urllib.request)
HTTPConnection	(class	in	http.client)
HTTPCookieProcessor	(class	in
urllib.request)
httpd
HTTPDefaultErrorHandler	(class	in
urllib.request)
HTTPDigestAuthHandler	(class	in
urllib.request)
HTTPError
HTTPErrorProcessor	(class	in	urllib.request)
HTTPException
HTTPHandler	(class	in	logging.handlers)

(class	in	urllib.request)
HTTPPasswordMgr	(class	in	urllib.request)
HTTPPasswordMgrWithDefaultRealm	(class
in	urllib.request)
HTTPRedirectHandler	(class	in
urllib.request)
HTTPResponse	(class	in	http.client)

heapmin()	(in	module	msvcrt)
heappop()	(in	module	heapq)
heappush()	(in	module	heapq)
heappushpop()	(in	module	heapq)
heapq	(module)
heapreplace()	(in	module	heapq)
helo()	(smtplib.SMTP	method)
help

built-in	function
online

https_open()	(urllib.request.HTTPSHandler
method)
HTTPS_PORT	(in	module	http.client)
https_response()
(urllib.request.HTTPErrorProcessor	method)
HTTPSConnection	(class	in	http.client)
HTTPServer	(class	in	http.server)
HTTPSHandler	(class	in	urllib.request)
hypot()	(in	module	math)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	I
I	(in	module	re)
I/O	control

POSIX
UNIX
buffering,	[1]
tty

iadd()	(in	module	operator)
iand()	(in	module	operator)
iconcat()	(in	module	operator)
id

built-in	function
id()	(built-in	function)

(unittest.TestCase	method)
idcok()	(curses.window	method)
ident	(select.kevent	attribute)

(threading.Thread	attribute)
identchars	(cmd.Cmd	attribute)
identifier,	[1]
identify()	(tkinter.ttk.Notebook
method)

(tkinter.ttk.Treeview	method)
(tkinter.ttk.Widget	method)

identify_column()
(tkinter.ttk.Treeview	method)
identify_element()
(tkinter.ttk.Treeview	method)
identify_region()
(tkinter.ttk.Treeview	method)
identify_row()	(tkinter.ttk.Treeview
method)
identity

test
identity	of	an	object
idioms	(2to3	fixer)

interrupt_main()	(in	module	_thread)
InterruptedError
intersection()	(set	method)
intersection_update()	(set	method)
intro	(cmd.Cmd	attribute)
InuseAttributeErr
inv()	(in	module	operator)
InvalidAccessErr
invalidate_caches()
(importlib.abc.MetaPathFinder	method)

(importlib.abc.PathEntryFinder	method)
(importlib.machinery.FileFinder	method)
(importlib.machinery.PathFinder	 class
method)
(in	module	importlib)

InvalidCharacterErr
InvalidModificationErr
InvalidOperation	(class	in	decimal)
InvalidStateErr
InvalidStateError
InvalidURL
inversion
invert()	(in	module	operator)
invocation
io

module
io	(module)
io.StringIO

object
IOBase	(class	in	io)
ioctl()	(in	module	fcntl)

(socket.socket	method)
IOError
ior()	(in	module	operator)

IDLE,	[1]
IDLESTARTUP
idlok()	(curses.window	method)
IEEE-754
if

statement,	[1]
if_indextoname()	(in	module
socket)
if_nameindex()	(in	module	socket)
if_nametoindex()	(in	module
socket)
ifloordiv()	(in	module	operator)
iglob()	(in	module	glob)
ignorableWhitespace()
(xml.sax.handler.ContentHandler
method)
ignore	(pdb	command)
ignore_errors()	(in	module	codecs)
IGNORE_EXCEPTION_DETAIL	(in
module	doctest)
ignore_patterns()	(in	module	shutil)
IGNORECASE	(in	module	re)
ihave()	(nntplib.NNTP	method)
IISCGIHandler	(class	in
wsgiref.handlers)
ilshift()	(in	module	operator)
imag	(numbers.Complex	attribute)
imaginary	literal
imap()	(multiprocessing.pool.Pool
method)
IMAP4

protocol
IMAP4	(class	in	imaplib)
IMAP4.abort
IMAP4.error
IMAP4.readonly
IMAP4_SSL

protocol

ip	(ipaddress.IPv4Interface	attribute)
(ipaddress.IPv6Interface	attribute)

ip_address()	(in	module	ipaddress)
ip_interface()	(in	module	ipaddress)
ip_network()	(in	module	ipaddress)
ipaddress	(module)
ipow()	(in	module	operator)
ipv4_mapped	(ipaddress.IPv6Address
attribute)
IPv4Address	(class	in	ipaddress)
IPv4Interface	(class	in	ipaddress)
IPv4Network	(class	in	ipaddress)
IPv6Address	(class	in	ipaddress)
IPv6Interface	(class	in	ipaddress)
IPv6Network	(class	in	ipaddress)
irshift()	(in	module	operator)
is

operator,	[1]
is	not

operator,	[1]
is_()	(in	module	operator)
is_absolute()	(pathlib.PurePath	method)
is_alive()	(multiprocessing.Process	method)

(threading.Thread	method)
is_assigned()	(symtable.Symbol	method)
is_attachment	(email.message.EmailMessage
attribute)
is_block_device()	(pathlib.Path	method)
is_blocked()
(http.cookiejar.DefaultCookiePolicy	method)
is_canonical()	(decimal.Context	method)

(decimal.Decimal	method)
is_char_device()	(pathlib.Path	method)
IS_CHARACTER_JUNK()	(in	module	difflib)
is_check_supported()	(in	module	lzma)
is_declared_global()	(symtable.Symbol
method)
is_dir()	(pathlib.Path	method)

IMAP4_SSL	(class	in	imaplib)
IMAP4_stream

protocol
IMAP4_stream	(class	in	imaplib)
imap_unordered()
(multiprocessing.pool.Pool	method)
imaplib	(module)
imghdr	(module)
immedok()	(curses.window	method)
immutable

data	type
object,	[1],	[2]
sequence	types

immutable	object
immutable	sequence

object
immutable	types

subclassing
imod()	(in	module	operator)
imp

module
imp	(module)
ImpImporter	(class	in	pkgutil)
implementation	(in	module	sys)
ImpLoader	(class	in	pkgutil)
import

hooks
statement,	[1],	[2],	[3]

import	(2to3	fixer)
import	hooks
import	machinery
Import	module
import	path
import_fresh_module()	(in	module
test.support)
IMPORT_FROM	(opcode)
import_module()	(in	module

is_empty()	(asynchat.fifo	method)
is_enabled()	(in	module	faulthandler)
is_expired()	(http.cookiejar.Cookie	method)
is_fifo()	(pathlib.Path	method)
is_file()	(pathlib.Path	method)
is_finite()	(decimal.Context	method)

(decimal.Decimal	method)
is_free()	(symtable.Symbol	method)
is_global	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv6Address	attribute)
is_global()	(symtable.Symbol	method)
is_hop_by_hop()	(in	module	wsgiref.util)
is_imported()	(symtable.Symbol	method)
is_infinite()	(decimal.Context	method)

(decimal.Decimal	method)
is_integer()	(float	method)
is_jython	(in	module	test.support)
IS_LINE_JUNK()	(in	module	difflib)
is_linetouched()	(curses.window	method)
is_link_local	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_local()	(symtable.Symbol	method)
is_loopback	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_multicast	(ipaddress.IPv4Address	attribute)
(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_multipart()	(email.message.Message
method)
is_namespace()	(symtable.Symbol	method)
is_nan()	(decimal.Context	method)

importlib)
(in	module	test.support)

IMPORT_NAME	(opcode)
IMPORT_STAR	(opcode)
importer
ImportError

exception
importing
importlib	(module)
importlib.abc	(module)
importlib.machinery	(module)
importlib.util	(module)
imports	(2to3	fixer)
imports2	(2to3	fixer)
ImportWarning
ImproperConnectionState
imul()	(in	module	operator)
in

keyword,	[1]
operator,	[1],	[2]

in_dll()	(ctypes._CData	method)
in_table_a1()	(in	module	stringprep)
in_table_b1()	(in	module	stringprep)
in_table_c11()	(in	module
stringprep)
in_table_c11_c12()	(in	module
stringprep)
in_table_c12()	(in	module
stringprep)
in_table_c21()	(in	module
stringprep)
in_table_c21_c22()	(in	module
stringprep)
in_table_c22()	(in	module
stringprep)
in_table_c3()	(in	module	stringprep)
in_table_c4()	(in	module	stringprep)
in_table_c5()	(in	module	stringprep)

(decimal.Decimal	method)
is_nested()	(symtable.SymbolTable	method)
is_normal()	(decimal.Context	method)

(decimal.Decimal	method)
is_not()	(in	module	operator)
is_not_allowed()
(http.cookiejar.DefaultCookiePolicy	method)
is_optimized()	(symtable.SymbolTable
method)
is_package()	(importlib.abc.InspectLoader
method)

(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(importlib.machinery.SourceFileLoader
method)
(importlib.machinery.SourcelessFileLoader
method)
(zipimport.zipimporter	method)

is_parameter()	(symtable.Symbol	method)
is_private	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_python_build()	(in	module	sysconfig)
is_qnan()	(decimal.Context	method)

(decimal.Decimal	method)
is_referenced()	(symtable.Symbol	method)
is_reserved	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_reserved()	(pathlib.PurePath	method)
is_resource_enabled()	(in	module
test.support)
is_running()	(asyncio.BaseEventLoop

in_table_c6()	(in	module	stringprep)
in_table_c7()	(in	module	stringprep)
in_table_c8()	(in	module	stringprep)
in_table_c9()	(in	module	stringprep)
in_table_d1()	(in	module	stringprep)
in_table_d2()	(in	module	stringprep)
in_transaction	(sqlite3.Connection
attribute)
inch()	(curses.window	method)
inclusive

or
inclusive	(tracemalloc.Filter
attribute)
Incomplete
IncompleteRead
IncompleteReadError
incr_item(),	[1]
increment_lineno()	(in	module	ast)
IncrementalDecoder	(class	in
codecs)
IncrementalEncoder	(class	in
codecs)
IncrementalNewlineDecoder	(class
in	io)
IncrementalParser	(class	in
xml.sax.xmlreader)
indent	(doctest.Example	attribute)
INDENT	(in	module	token)
INDENT	token
indent()	(in	module	textwrap)
indentation
IndentationError
index	operation
index()	(array.array	method)

(in	module	operator)
(sequence	method)
(str	method)
(tkinter.ttk.Notebook	method)

method)
is_set()	(asyncio.Event	method)

(threading.Event	method)
is_signed()	(decimal.Context	method)

(decimal.Decimal	method)
is_site_local	(ipaddress.IPv6Address
attribute)

(ipaddress.IPv6Network	attribute)
is_snan()	(decimal.Context	method)

(decimal.Decimal	method)
is_socket()	(pathlib.Path	method)
is_subnormal()	(decimal.Context	method)

(decimal.Decimal	method)
is_symlink()	(pathlib.Path	method)
is_tarfile()	(in	module	tarfile)
is_term_resized()	(in	module	curses)
is_tracing()	(in	module	tracemalloc)
is_tracked()	(in	module	gc)
is_unspecified	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_wintouched()	(curses.window	method)
is_zero()	(decimal.Context	method)

(decimal.Decimal	method)
is_zipfile()	(in	module	zipfile)
isabs()	(in	module	os.path)
isabstract()	(in	module	inspect)
IsADirectoryError
isalnum()	(in	module	curses.ascii)

(str	method)
isalpha()	(in	module	curses.ascii)

(str	method)
isascii()	(in	module	curses.ascii)
isatty()	(chunk.Chunk	method)

(in	module	os)

(tkinter.ttk.Treeview	method)
IndexError
indexOf()	(in	module	operator)
IndexSizeErr
indices()	(slice	method)
inet_aton()	(in	module	socket)
inet_ntoa()	(in	module	socket)
inet_ntop()	(in	module	socket)
inet_pton()	(in	module	socket)
Inexact	(class	in	decimal)
infile	(shlex.shlex	attribute)
Infinity
info()	(dis.Bytecode	method)

(gettext.NullTranslations
method)
(in	module	logging)
(logging.Logger	method)

infolist()	(zipfile.ZipFile	method)
inheritance
ini	file
init()	(in	module	mimetypes)
init_color()	(in	module	curses)
init_database()	(in	module	msilib)
init_pair()	(in	module	curses)
inited	(in	module	mimetypes)
initgroups()	(in	module	os)
initial_indent
(textwrap.TextWrapper	attribute)
initialize_options()
(distutils.cmd.Command	method)
initscr()	(in	module	curses)
INPLACE_ADD	(opcode)
INPLACE_AND	(opcode)
INPLACE_FLOOR_DIVIDE
(opcode)
INPLACE_LSHIFT	(opcode)
INPLACE_MODULO	(opcode)
INPLACE_MULTIPLY	(opcode)

(io.IOBase	method)
isblank()	(in	module	curses.ascii)
isblk()	(tarfile.TarInfo	method)
isbuiltin()	(in	module	inspect)
ischr()	(tarfile.TarInfo	method)
isclass()	(in	module	inspect)
iscntrl()	(in	module	curses.ascii)
iscode()	(in	module	inspect)
iscoroutine()	(in	module	asyncio)
iscoroutinefunction()	(in	module	asyncio)
isctrl()	(in	module	curses.ascii)
isDaemon()	(threading.Thread	method)
isdatadescriptor()	(in	module	inspect)
isdecimal()	(str	method)
isdev()	(tarfile.TarInfo	method)
isdigit()	(in	module	curses.ascii)

(str	method)
isdir()	(in	module	os.path)

(tarfile.TarInfo	method)
isdisjoint()	(set	method)
isdown()	(in	module	turtle)
iselement()	(in	module
xml.etree.ElementTree)
isenabled()	(in	module	gc)
isEnabledFor()	(logging.Logger	method)
isendwin()	(in	module	curses)
ISEOF()	(in	module	token)
isexpr()	(in	module	parser)

(parser.ST	method)
isfifo()	(tarfile.TarInfo	method)
isfile()	(in	module	os.path)

(tarfile.TarInfo	method)
isfinite()	(in	module	cmath)

(in	module	math)
isfirstline()	(in	module	fileinput)
isframe()	(in	module	inspect)
isfunction()	(in	module	inspect)
isgenerator()	(in	module	inspect)

INPLACE_OR	(opcode)
INPLACE_POWER	(opcode)
INPLACE_RSHIFT	(opcode)
INPLACE_SUBTRACT	(opcode)
INPLACE_TRUE_DIVIDE	(opcode)
INPLACE_XOR	(opcode)
input

raw
input	(2to3	fixer)
input()	(built-in	function)

(in	module	fileinput)
input_charset
(email.charset.Charset	attribute)
input_codec	(email.charset.Charset
attribute)
InputOnly	(class	in	tkinter.tix)
InputSource	(class	in
xml.sax.xmlreader)
inquiry	(C	type)
insch()	(curses.window	method)
insdelln()	(curses.window	method)
insert()	(array.array	method)

(sequence	method)
(tkinter.ttk.Notebook	method)
(tkinter.ttk.Treeview	method)
(xml.etree.ElementTree.Element
method)

insert_text()	(in	module	readline)
insertBefore()	(xml.dom.Node
method)
insertln()	(curses.window	method)
insnstr()	(curses.window	method)
insort()	(in	module	bisect)
insort_left()	(in	module	bisect)
insort_right()	(in	module	bisect)
inspect	(module)
inspect	command	line	option

--details

isgeneratorfunction()	(in	module	inspect)
isgetsetdescriptor()	(in	module	inspect)
isgraph()	(in	module	curses.ascii)
isidentifier()	(str	method)
isinf()	(in	module	cmath)

(in	module	math)
isinstance	(2to3	fixer)
isinstance()	(built-in	function)
iskeyword()	(in	module	keyword)
isleap()	(in	module	calendar)
islice()	(in	module	itertools)
islink()	(in	module	os.path)
islnk()	(tarfile.TarInfo	method)
islower()	(in	module	curses.ascii)

(str	method)
ismemberdescriptor()	(in	module	inspect)
ismeta()	(in	module	curses.ascii)
ismethod()	(in	module	inspect)
ismethoddescriptor()	(in	module	inspect)
ismodule()	(in	module	inspect)
ismount()	(in	module	os.path)
isnan()	(in	module	cmath)

(in	module	math)
ISNONTERMINAL()	(in	module	token)
isnumeric()	(str	method)
isocalendar()	(datetime.date	method)

(datetime.datetime	method)
isoformat()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)

isolation_level	(sqlite3.Connection	attribute)
isoweekday()	(datetime.date	method)

(datetime.datetime	method)
isprint()	(in	module	curses.ascii)
isprintable()	(str	method)
ispunct()	(in	module	curses.ascii)
isreadable()	(in	module	pprint)

(pprint.PrettyPrinter	method)

InspectLoader	(class	in
importlib.abc)
insstr()	(curses.window	method)
install()	(gettext.NullTranslations
method)

(in	module	gettext)
install_opener()	(in	module
urllib.request)
install_scripts()	(venv.EnvBuilder
method)
installHandler()	(in	module	unittest)
instance

call,	[1]
class
object,	[1],	[2]

instancemethod
object

instate()	(tkinter.ttk.Widget	method)
instr()	(curses.window	method)
instream	(shlex.shlex	attribute)
Instruction	(class	in	dis)
Instruction.arg	(in	module	dis)
Instruction.argrepr	(in	module	dis)
Instruction.argval	(in	module	dis)
Instruction.is_jump_target	(in
module	dis)
Instruction.offset	(in	module	dis)
Instruction.opcode	(in	module	dis)
Instruction.opname	(in	module	dis)
Instruction.starts_line	(in	module
dis)
int

built-in	function,	[1],	[2]
int	(uuid.UUID	attribute)
int()	(built-in	function)
Int2AP()	(in	module	imaplib)
int_info	(in	module	sys)
integer

isrecursive()	(in	module	pprint)
(pprint.PrettyPrinter	method)

isreg()	(tarfile.TarInfo	method)
isReservedKey()	(http.cookies.Morsel
method)
isroutine()	(in	module	inspect)
isSameNode()	(xml.dom.Node	method)
isspace()	(in	module	curses.ascii)

(str	method)
isstdin()	(in	module	fileinput)
issubclass()	(built-in	function)
issubset()	(set	method)
issuite()	(in	module	parser)

(parser.ST	method)
issuperset()	(set	method)
issym()	(tarfile.TarInfo	method)
ISTERMINAL()	(in	module	token)
istitle()	(str	method)
istraceback()	(in	module	inspect)
isub()	(in	module	operator)
isupper()	(in	module	curses.ascii)

(str	method)
isvisible()	(in	module	turtle)
isxdigit()	(in	module	curses.ascii)
item

sequence
string

item	selection
item()	(tkinter.ttk.Treeview	method)

(xml.dom.NamedNodeMap	method)
(xml.dom.NodeList	method)

itemgetter()	(in	module	operator)
items()	(configparser.ConfigParser	method)

(dict	method)
(email.message.Message	method)
(mailbox.Mailbox	method)
(types.MappingProxyType	method)

literals
object,	[1],	[2]
representation
types,	operations	on

integer	literal
Integral	(class	in	numbers)
Integrated	Development
Environment
Intel/DVI	ADPCM
IntEnum	(class	in	enum)
interact	(pdb	command)
interact()	(code.InteractiveConsole
method)

(in	module	code)
(telnetlib.Telnet	method)

interactive
interactive	mode
InteractiveConsole	(class	in	code)
InteractiveInterpreter	(class	in
code)
intern	(2to3	fixer)
intern()	(in	module	sys)
internal	type
internal_attr	(zipfile.ZipInfo
attribute)
Internaldate2tuple()	(in	module
imaplib)
internalSubset
(xml.dom.DocumentType	attribute)
Internet
interpolation,	string	(%)
InterpolationDepthError
InterpolationError
InterpolationMissingOptionError
InterpolationSyntaxError
interpreted
interpreter
interpreter	lock

(xml.etree.ElementTree.Element	method)
itemsize	(array.array	attribute)

(memoryview	attribute)
ItemsView	(class	in	collections.abc)
iter()	(built-in	function)

(xml.etree.ElementTree.Element	method)
(xml.etree.ElementTree.ElementTree
method)

iter_attachments()
(email.message.EmailMessage	method)
iter_child_nodes()	(in	module	ast)
iter_fields()	(in	module	ast)
iter_importers()	(in	module	pkgutil)
iter_modules()	(in	module	pkgutil)
iter_parts()	(email.message.EmailMessage
method)
iter_unpack()	(in	module	struct)

(struct.Struct	method)
iterable
Iterable	(class	in	collections.abc)
iterator
Iterator	(class	in	collections.abc)
iterator	protocol
iterdecode()	(in	module	codecs)
iterdir()	(pathlib.Path	method)
iterdump	(sqlite3.Connection	attribute)
iterencode()	(in	module	codecs)

(json.JSONEncoder	method)
iterfind()	(xml.etree.ElementTree.Element
method)

(xml.etree.ElementTree.ElementTree
method)

iteritems()	(mailbox.Mailbox	method)
iterkeys()	(mailbox.Mailbox	method)
itermonthdates()	(calendar.Calendar	method)
itermonthdays()	(calendar.Calendar	method)
itermonthdays2()	(calendar.Calendar	method)

interpreter	prompts
interrupt()	(sqlite3.Connection
method)

iterparse()	(in	module	xml.etree.ElementTree)
itertext()	(xml.etree.ElementTree.Element
method)
itertools	(2to3	fixer)

(module)
itertools_imports	(2to3	fixer)
itervalues()	(mailbox.Mailbox	method)
iterweekdays()	(calendar.Calendar	method)
ITIMER_PROF	(in	module	signal)
ITIMER_REAL	(in	module	signal)
ITIMER_VIRTUAL	(in	module	signal)
ItimerError
itruediv()	(in	module	operator)
ixor()	(in	module	operator)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	J
Jansen,	Jack
Java

language
java_ver()	(in	module	platform)
join()	(asyncio.JoinableQueue
method)

(in	module	os.path)
(multiprocessing.JoinableQueue
method)
(multiprocessing.Process	method)
(multiprocessing.pool.Pool
method)
(queue.Queue	method)
(str	method)
(threading.Thread	method)

join_thread()	(multiprocessing.Queue
method)
JoinableQueue	(class	in	asyncio)

(class	in	multiprocessing)
joinpath()	(pathlib.PurePath	method)
js_output()	(http.cookies.BaseCookie
method)

(http.cookies.Morsel	method)
json

module

json	(module)
JSONDecoder	(class	in	json)
JSONEncoder	(class	in	json)
jump	(pdb	command)
JUMP_ABSOLUTE	(opcode)
JUMP_FORWARD	(opcode)
JUMP_IF_FALSE_OR_POP
(opcode)
JUMP_IF_TRUE_OR_POP
(opcode)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	K
kbhit()	(in	module	msvcrt)
KDEDIR
kevent()	(in	module	select)
key

(http.cookies.Morsel
attribute)

key	function
key/datum	pair
KEY_ALL_ACCESS	(in	module
winreg)
KEY_CREATE_LINK	(in	module
winreg)
KEY_CREATE_SUB_KEY	(in
module	winreg)
KEY_ENUMERATE_SUB_KEYS
(in	module	winreg)
KEY_EXECUTE	(in	module
winreg)
KEY_NOTIFY	(in	module
winreg)
KEY_QUERY_VALUE	(in
module	winreg)
KEY_READ	(in	module	winreg)
KEY_SET_VALUE	(in	module
winreg)
KEY_WOW64_32KEY	(in
module	winreg)
KEY_WOW64_64KEY	(in
module	winreg)
KEY_WRITE	(in	module	winreg)
KeyboardInterrupt

(built-in	exception),	[1]
KeyError

keyname()	(in	module	curses)
keypad()	(curses.window	method)
keyrefs()	(weakref.WeakKeyDictionary
method)
keys()	(dict	method)

(email.message.Message	method)
(mailbox.Mailbox	method)
(sqlite3.Row	method)
(types.MappingProxyType	method)
(xml.etree.ElementTree.Element
method)

KeysView	(class	in	collections.abc)
keyword

elif,	[1]
else,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
except,	[1]
finally,	[1],	[2],	[3],	[4]
from,	[1]
in,	[1]
yield

keyword	(module)
keyword	argument
keywords	(functools.partial	attribute)
kill()
(asyncio.asyncio.subprocess.Process
method)

(asyncio.BaseSubprocessTransport
method)
(in	module	os)
(subprocess.Popen	method)

killchar()	(in	module	curses)
killpg()	(in	module	os)
kind	(inspect.Parameter	attribute)

knownfiles	(in	module	mimetypes)
kqueue()	(in	module	select)
KqueueSelector	(class	in	selectors)
Kuchling,	Andrew
kwargs	(inspect.BoundArguments
attribute)
kwlist	(in	module	keyword)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	L
L	(in	module	re)
LabelEntry	(class	in	tkinter.tix)
LabelFrame	(class	in	tkinter.tix)
lambda

expression,	[1]
form

LambdaType	(in	module	types)
LANG,	[1],	[2],	[3],	[4]
language

C,	[1],	[2],	[3],	[4],	[5]
Java

LANGUAGE,	[1]
large	files
LargeZipFile
last()	(nntplib.NNTP	method)
last_accepted
(multiprocessing.connection.Listener
attribute)
last_traceback	(in	module	sys),	[1]
last_type	(in	module	sys)
last_value	(in	module	sys)
lastChild	(xml.dom.Node	attribute)
lastcmd	(cmd.Cmd	attribute)
lastgroup	(re.match	attribute)
lastindex	(re.match	attribute)
lastResort	(in	module	logging)
lastrowid	(sqlite3.Cursor	attribute)
layout()	(tkinter.ttk.Style	method)
LBRACE	(in	module	token)
LBYL
LC_ALL,	[1]

(in	module	locale)
LC_COLLATE	(in	module	locale)
LC_CTYPE	(in	module	locale)
LC_MESSAGES,	[1]

LK_LOCK	(in	module	msvcrt)
LK_NBLCK	(in	module	msvcrt)
LK_NBRLCK	(in	module	msvcrt)
LK_RLCK	(in	module	msvcrt)
LK_UNLCK	(in	module	msvcrt)
ll	(pdb	command)
LMTP	(class	in	smtplib)
ln()	(decimal.Context	method)

(decimal.Decimal	method)
LNAME
lngettext()	(gettext.GNUTranslations
method)

(gettext.NullTranslations	method)
(in	module	gettext)

load()	(http.cookiejar.FileCookieJar	method)
(http.cookies.BaseCookie	method)
(in	module	json)
(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(pickle.Unpickler	method)
(tracemalloc.Snapshot	class	method)

LOAD_ATTR	(opcode)
LOAD_BUILD_CLASS	(opcode)
load_cert_chain()	(ssl.SSLContext	method)
LOAD_CLASSDEREF	(opcode)
LOAD_CLOSURE	(opcode)
LOAD_CONST	(opcode)
load_default_certs()	(ssl.SSLContext
method)
LOAD_DEREF	(opcode)
load_dh_params()	(ssl.SSLContext	method)
load_extension()	(sqlite3.Connection
method)

(in	module	locale)
LC_MONETARY	(in	module	locale)
LC_NUMERIC	(in	module	locale)
LC_TIME	(in	module	locale)
lchflags()	(in	module	os)
lchmod()	(in	module	os)

(pathlib.Path	method)
lchown()	(in	module	os)
LDCXXSHARED
ldexp()	(in	module	math)
LDFLAGS
ldgettext()	(in	module	gettext)
ldngettext()	(in	module	gettext)
le()	(in	module	operator)
leading	whitespace
leapdays()	(in	module	calendar)
leaveok()	(curses.window	method)
left	(filecmp.dircmp	attribute)
left()	(in	module	turtle)
left_list	(filecmp.dircmp	attribute)
left_only	(filecmp.dircmp	attribute)
LEFTSHIFT	(in	module	token)
LEFTSHIFTEQUAL	(in	module	token)
len

built-in	 function,	 [1],	 [2],	 [3],	 [4],	 [5],	 [6],
[7],	[8],	[9],	[10],	[11]

len()	(built-in	function)
length	(xml.dom.NamedNodeMap	attribute)

(xml.dom.NodeList	attribute)
length_hint()	(in	module	operator)
LESS	(in	module	token)
LESSEQUAL	(in	module	token)
lexical	analysis
lexical	definitions
lexists()	(in	module	os.path)
lgamma()	(in	module	math)
lgettext()	(gettext.GNUTranslations	method)

(gettext.NullTranslations	method)

LOAD_FAST	(opcode)
LOAD_GLOBAL	(opcode)
load_module()	(importlib.abc.FileLoader
method)

(importlib.abc.InspectLoader	method)
(importlib.abc.Loader	method)
(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(in	module	imp)
(zipimport.zipimporter	method)

LOAD_NAME	(opcode)
load_verify_locations()	(ssl.SSLContext
method)
loader,	[1]
Loader	(class	in	importlib.abc)
loader	(importlib.machinery.ModuleSpec
attribute)
loader_state
(importlib.machinery.ModuleSpec	attribute)
LoadError
LoadKey()	(in	module	winreg)
LoadLibrary()	(ctypes.LibraryLoader	method)
loads()	(in	module	json)

(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(in	module	xmlrpc.client)

loadTestsFromModule()	(unittest.TestLoader
method)
loadTestsFromName()	(unittest.TestLoader
method)
loadTestsFromNames()	(unittest.TestLoader
method)
loadTestsFromTestCase()
(unittest.TestLoader	method)
local	(class	in	threading)

(in	module	gettext)
lib2to3	(module)
libc_ver()	(in	module	platform)
library	(in	module	dbm.ndbm)

(ssl.SSLError	attribute)
library_dir_option()
(distutils.ccompiler.CCompiler	method)
library_filename()
(distutils.ccompiler.CCompiler	method)
library_option()
(distutils.ccompiler.CCompiler	method)
LibraryLoader	(class	in	ctypes)
license	(built-in	variable)
LifoQueue	(class	in	asyncio)

(class	in	queue)
light-weight	processes
limit_denominator()	(fractions.Fraction
method)
lin2adpcm()	(in	module	audioop)
lin2alaw()	(in	module	audioop)
lin2lin()	(in	module	audioop)
lin2ulaw()	(in	module	audioop)
line	continuation
line	joining,	[1]
line	structure
line()	(msilib.Dialog	method)
line-buffered	I/O
line_buffering	(io.TextIOWrapper	attribute)
line_num	(csv.csvreader	attribute)
linecache	(module)
lineno	(ast.AST	attribute)

(doctest.DocTest	attribute)
(doctest.Example	attribute)
(pyclbr.Class	attribute)
(pyclbr.Function	attribute)
(shlex.shlex	attribute)
(tracemalloc.Filter	attribute)

localcontext()	(in	module	decimal)
LOCALE	(in	module	re)
locale	(module)
localeconv()	(in	module	locale)
LocaleHTMLCalendar	(class	in	calendar)
LocaleTextCalendar	(class	in	calendar)
localName	(xml.dom.Attr	attribute)

(xml.dom.Node	attribute)
locals()	(built-in	function)
localtime()	(in	module	email.utils)

(in	module	time)
Locator	(class	in	xml.sax.xmlreader)
Lock	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

lock()	(mailbox.Babyl	method)
(mailbox.MH	method)
(mailbox.MMDF	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(mailbox.mbox	method)

Lock()
(multiprocessing.managers.SyncManager
method)
lock,	interpreter
lock_held()	(in	module	imp)
locked()	(_thread.lock	method)

(asyncio.Condition	method)
(asyncio.Lock	method)
(asyncio.Semaphore	method)

lockf()	(in	module	fcntl)
(in	module	os)

locking()	(in	module	msvcrt)
LockType	(in	module	_thread)
log()	(in	module	cmath)

(in	module	logging)
(in	module	math)

(tracemalloc.Frame	attribute)
(xml.parsers.expat.ExpatError	attribute)

lineno()	(in	module	fileinput)
LINES,	[1],	[2]
lines	(os.terminal_size	attribute)
linesep	(email.policy.Policy	attribute)

(in	module	os)
lineterminator	(csv.Dialect	attribute)
link()	(distutils.ccompiler.CCompiler	method)

(in	module	os)
link_executable()
(distutils.ccompiler.CCompiler	method)
link_shared_lib()
(distutils.ccompiler.CCompiler	method)
link_shared_object()
(distutils.ccompiler.CCompiler	method)
linkname	(tarfile.TarInfo	attribute)
linux_distribution()	(in	module	platform)
list

assignment,	target
comprehensions
deletion	target
display
empty
expression,	[1],	[2]
object,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8]
target,	[1],	[2]
type,	operations	on

list	(built-in	class)
(pdb	command)

list	comprehension
list()	(imaplib.IMAP4	method)

(multiprocessing.managers.SyncManager
method)
(nntplib.NNTP	method)
(poplib.POP3	method)

(logging.Logger	method)
log10()	(decimal.Context	method)

(decimal.Decimal	method)
(in	module	cmath)
(in	module	math)

log1p()	(in	module	math)
log2()	(in	module	math)
log_date_time_string()
(http.server.BaseHTTPRequestHandler
method)
log_error()
(http.server.BaseHTTPRequestHandler
method)
log_exception()
(wsgiref.handlers.BaseHandler	method)
log_message()
(http.server.BaseHTTPRequestHandler
method)
log_request()
(http.server.BaseHTTPRequestHandler
method)
log_to_stderr()	(in	module	multiprocessing)
logb()	(decimal.Context	method)

(decimal.Decimal	method)
Logger	(class	in	logging)
LoggerAdapter	(class	in	logging)
logging

Errors
logging	(module)
logging.config	(module)
logging.handlers	(module)
logical	line
logical_and()	(decimal.Context	method)

(decimal.Decimal	method)
logical_invert()	(decimal.Context	method)

(decimal.Decimal	method)
logical_or()	(decimal.Context	method)

(tarfile.TarFile	method)
LIST_APPEND	(opcode)
list_dialects()	(in	module	csv)
list_folders()	(mailbox.Maildir	method)

(mailbox.MH	method)
listdir()	(in	module	os)
listen()	(asyncore.dispatcher	method)

(in	module	logging.config)
(in	module	turtle)
(socket.socket	method)

Listener	(class	in
multiprocessing.connection)
listMethods()
(xmlrpc.client.ServerProxy.system	method)
ListNoteBook	(class	in	tkinter.tix)
listxattr()	(in	module	os)
literal,	[1]
literal_eval()	(in	module	ast)
literals

binary
complex	number
floating	point
hexadecimal
integer
numeric
octal

LittleEndianStructure	(class	in	ctypes)
ljust()	(str	method)

(decimal.Decimal	method)
logical_xor()	(decimal.Context	method)

(decimal.Decimal	method)
login()	(ftplib.FTP	method)

(imaplib.IMAP4	method)
(nntplib.NNTP	method)
(smtplib.SMTP	method)

login_cram_md5()	(imaplib.IMAP4	method)
LOGNAME,	[1]
lognormvariate()	(in	module	random)
logout()	(imaplib.IMAP4	method)
LogRecord	(class	in	logging)
long	(2to3	fixer)
long	integer

object
LONG_MAX
longMessage	(unittest.TestCase	attribute)
longname()	(in	module	curses)
lookup()	(in	module	codecs)

(in	module	unicodedata)
(symtable.SymbolTable	method)
(tkinter.ttk.Style	method)

lookup_error()	(in	module	codecs)
LookupError
loop

over	mutable	sequence
statement,	[1],	[2],	[3]

loop	control
target

loop()	(in	module	asyncore)
lower()	(str	method)
LPAR	(in	module	token)
lru_cache()	(in	module	functools)
lseek()	(in	module	os)
lshift()	(in	module	operator)
LSQB	(in	module	token)
lstat()	(in	module	os)

(pathlib.Path	method)
lstrip()	(str	method)
lsub()	(imaplib.IMAP4	method)
lt()	(in	module	operator)

(in	module	turtle)
LWPCookieJar	(class	in	http.cookiejar)
lzma	(module)
LZMACompressor	(class	in	lzma)
LZMADecompressor	(class	in	lzma)
LZMAError
LZMAFile	(class	in	lzma)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	M
M	(in	module	re)
mac_ver()	(in	module	platform)
machine()	(in	module	platform)
macpath	(module)
macros	(netrc.netrc	attribute)
MAGIC_NUMBER	(in	module
importlib.util)
MagicMock	(class	in	unittest.mock)
Mailbox	(class	in	mailbox)
mailbox	(module)
mailcap	(module)
Maildir	(class	in	mailbox)
MaildirMessage	(class	in	mailbox)
mailfrom	(smtpd.SMTPChannel	attribute)
MailmanProxy	(class	in	smtpd)
main(),	[1],	[2]

(in	module	py_compile)
(in	module	site)
(in	module	unittest)

main_thread()	(in	module	threading)
mainloop()	(in	module	turtle)
maintype
(email.headerregistry.ContentTypeHeader
attribute)
major
(email.headerregistry.MIMEVersionHeader
attribute)
major()	(in	module	os)
make_alternative()
(email.message.EmailMessage	method)
make_archive()	(in	module
distutils.archive_util)

(in	module	shutil)
make_bad_fd()	(in	module	test.support)
MAKE_CLOSURE	(opcode)

METH_NOARGS	(built-in	variable)
METH_O	(built-in	variable)
METH_STATIC	(built-in	variable)
METH_VARARGS	(built-in	variable)
method

built-in
call
object,	[1],	[2],	[3],	[4],	[5]
user-defined

method	(urllib.request.Request	attribute)
method	resolution	order
method_calls	(unittest.mock.Mock
attribute)
METHOD_CRYPT	(in	module	crypt)
METHOD_MD5	(in	module	crypt)
METHOD_SHA256	(in	module	crypt)
METHOD_SHA512	(in	module	crypt)
methodattrs	(2to3	fixer)
methodcaller()	(in	module	operator)
methodHelp()
(xmlrpc.client.ServerProxy.system
method)
methods

bytearray
bytes
string

methods	(in	module	crypt)
(pyclbr.Class	attribute)

methodSignature()
(xmlrpc.client.ServerProxy.system
method)
MethodType	(in	module	types)
MH	(class	in	mailbox)
MHMessage	(class	in	mailbox)

make_cookies()	(http.cookiejar.CookieJar
method)
make_file()	(difflib.HtmlDiff	method)
MAKE_FUNCTION	(opcode)
make_header()	(in	module	email.header)
make_mixed()
(email.message.EmailMessage	method)
make_msgid()	(in	module	email.utils)
make_parser()	(in	module	xml.sax)
make_related()
(email.message.EmailMessage	method)
make_server()	(in	module
wsgiref.simple_server)
make_table()	(difflib.HtmlDiff	method)
make_tarball()	(in	module
distutils.archive_util)
make_zipfile()	(in	module
distutils.archive_util)
makedev()	(in	module	os)
makedirs()	(in	module	os)
makeelement()
(xml.etree.ElementTree.Element	method)
makefile()	(socket	method)

(socket.socket	method)
makeLogRecord()	(in	module	logging)
makePickle()
(logging.handlers.SocketHandler	method)
makeRecord()	(logging.Logger	method)
makeSocket()
(logging.handlers.DatagramHandler
method)

(logging.handlers.SocketHandler
method)

maketrans()	(bytearray	static	method)
(bytes	static	method)
(str	static	method)

malloc()
mangling

microsecond	(datetime.datetime	attribute)
(datetime.time	attribute)

MIME
base64	encoding
content	type
headers,	[1]
quoted-printable	encoding

MIMEApplication	(class	in
email.mime.application)
MIMEAudio	(class	in	email.mime.audio)
MIMEBase	(class	in	email.mime.base)
MIMEImage	(class	in	email.mime.image)
MIMEMessage	(class	in
email.mime.message)
MIMEMultipart	(class	in
email.mime.multipart)
MIMENonMultipart	(class	in
email.mime.nonmultipart)
MIMEPart	(class	in	email.message)
MIMEText	(class	in	email.mime.text)
MimeTypes	(class	in	mimetypes)
mimetypes	(module)
MIMEVersionHeader	(class	in
email.headerregistry)
min

built-in	function
min	(datetime.date	attribute)

(datetime.datetime	attribute)
(datetime.time	attribute)
(datetime.timedelta	attribute)

min()	(built-in	function)
(decimal.Context	method)
(decimal.Decimal	method)

MIN_EMIN	(in	module	decimal)
MIN_ETINY	(in	module	decimal)
min_mag()	(decimal.Context	method)

(decimal.Decimal	method)

name
map	(2to3	fixer)
map()	(built-in	function)

(concurrent.futures.Executor	method)
(multiprocessing.pool.Pool	method)
(tkinter.ttk.Style	method)

MAP_ADD	(opcode)
map_async()	(multiprocessing.pool.Pool
method)
map_table_b2()	(in	module	stringprep)
map_table_b3()	(in	module	stringprep)
map_to_type()
(email.headerregistry.HeaderRegistry
method)
mapping

object,	[1],	[2],	[3],	[4],	[5]
types,	operations	on

Mapping	(class	in	collections.abc)
mapping()	(msilib.Control	method)
MappingProxyType	(class	in	types)
MappingView	(class	in	collections.abc)
mapPriority()
(logging.handlers.SysLogHandler	method)
maps	(collections.ChainMap	attribute)
maps()	(in	module	nis)
marshal	(module)
marshalling

objects
masking

operations
match()	(in	module	nis)

(in	module	re)
(pathlib.PurePath	method)
(re.regex	method)

match_hostname()	(in	module	ssl)
math

module,	[1]

MINEQUAL	(in	module	token)
minmax()	(in	module	audioop)
minor
(email.headerregistry.MIMEVersionHeader
attribute)
minor()	(in	module	os)
minus
MINUS	(in	module	token)
minus()	(decimal.Context	method)
minute	(datetime.datetime	attribute)

(datetime.time	attribute)
MINYEAR	(in	module	datetime)
mirrored()	(in	module	unicodedata)
misc_header	(cmd.Cmd	attribute)
MissingSectionHeaderError
MIXERDEV
mkd()	(ftplib.FTP	method)
mkdir()	(in	module	os)

(pathlib.Path	method)
mkdtemp()	(in	module	tempfile)
mkfifo()	(in	module	os)
mknod()	(in	module	os)
mkpath()	(distutils.ccompiler.CCompiler
method)

(in	module	distutils.dir_util)
mksalt()	(in	module	crypt)
mkstemp()	(in	module	tempfile)
mktemp()	(in	module	tempfile)
mktime()	(in	module	time)
mktime_tz()	(in	module	email.utils)
mlsd()	(ftplib.FTP	method)
mmap	(class	in	mmap)

(module)
MMDF	(class	in	mailbox)
MMDFMessage	(class	in	mailbox)
Mock	(class	in	unittest.mock)
mock_add_spec()	(unittest.mock.Mock
method)

math	(module)
max

built-in	function
max	(datetime.date	attribute)

(datetime.datetime	attribute)
(datetime.time	attribute)
(datetime.timedelta	attribute)

max()	(built-in	function)
(decimal.Context	method)
(decimal.Decimal	method)
(in	module	audioop)

max_count
(email.headerregistry.BaseHeader
attribute)
MAX_EMAX	(in	module	decimal)
MAX_INTERPOLATION_DEPTH	(in
module	configparser)
max_line_length	(email.policy.Policy
attribute)
max_lines	(textwrap.TextWrapper
attribute)
max_mag()	(decimal.Context	method)

(decimal.Decimal	method)
MAX_PREC	(in	module	decimal)
max_prefixlen	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

maxarray	(reprlib.Repr	attribute)
maxdeque	(reprlib.Repr	attribute)
maxdict	(reprlib.Repr	attribute)
maxDiff	(unittest.TestCase	attribute)
maxfrozenset	(reprlib.Repr	attribute)
maxlen	(collections.deque	attribute)
maxlevel	(reprlib.Repr	attribute)
maxlist	(reprlib.Repr	attribute)

mock_calls	(unittest.mock.Mock	attribute)
mock_open()	(in	module	unittest.mock)
mod()	(in	module	operator)
mode	(io.FileIO	attribute)

(ossaudiodev.oss_audio_device
attribute)
(tarfile.TarInfo	attribute)

mode()	(in	module	statistics)
(in	module	turtle)

modf()	(in	module	math)
modified()
(urllib.robotparser.RobotFileParser
method)
Modify()	(msilib.View	method)
modify()	(select.devpoll	method)

(select.epoll	method)
(select.poll	method)
(selectors.BaseSelector	method)

module
__main__,	[1],	[2],	[3],	[4]
_locale
_thread
array,	[1]
base64
bdb
binhex
builtins,	[1],	[2],	[3],	[4]
cmd
copy
crypt
dbm.gnu,	[1]
dbm.ndbm,	[1]
errno
extension
glob
imp

maxlong	(reprlib.Repr	attribute)
maxother	(reprlib.Repr	attribute)
maxpp()	(in	module	audioop)
maxset	(reprlib.Repr	attribute)
maxsize	(asyncio.Queue	attribute)

(in	module	sys)
maxstring	(reprlib.Repr	attribute)
maxtuple	(reprlib.Repr	attribute)
maxunicode	(in	module	sys)
MAXYEAR	(in	module	datetime)
MB_ICONASTERISK	(in	module
winsound)
MB_ICONEXCLAMATION	(in	module
winsound)
MB_ICONHAND	(in	module	winsound)
MB_ICONQUESTION	(in	module
winsound)
MB_OK	(in	module	winsound)
mbox	(class	in	mailbox)
mboxMessage	(class	in	mailbox)
mean()	(in	module	statistics)
median()	(in	module	statistics)
median_grouped()	(in	module	statistics)
median_high()	(in	module	statistics)
median_low()	(in	module	statistics)
MemberDescriptorType	(in	module	types)
membership

test
memmove()	(in	module	ctypes)
MemoryError
MemoryHandler	(class	in
logging.handlers)
memoryview

object,	[1]
memoryview	(built-in	class)
memset()	(in	module	ctypes)
merge()	(in	module	heapq)
Message	(class	in	email.message)

importing
io
json
math,	[1]
namespace
object,	[1],	[2]
os
pickle,	[1],	[2],	[3]
pty
pwd
pyexpat
re,	[1]
search	path,	[1],	[2],	[3],	
shelve
signal,	[1]
sitecustomize
socket
stat
string
struct
sys,	[1],	[2],	[3],	[4],	[5],	[6]
types
urllib.request
usercustomize
uu

module	(pyclbr.Class	attribute)
(pyclbr.Function	attribute)

module	spec,	[1]
module_for_loader()	(in	module
importlib.util)
module_repr()	(importlib.abc.Loader
method)
ModuleFinder	(class	in	modulefinder)
modulefinder	(module)
modules	(in	module	sys),	[1]

(class	in	mailbox)
message	digest,	MD5
message_from_binary_file()	(in	module
email)
message_from_bytes()	(in	module	email)
message_from_file()	(in	module	email)
message_from_string()	(in	module	email)
MessageBeep()	(in	module	winsound)
MessageClass
(http.server.BaseHTTPRequestHandler
attribute)
MessageError
MessageParseError
messages	(in	module
xml.parsers.expat.errors)
meta

hooks
meta	hooks
meta	path	finder
meta()	(in	module	curses)
meta_path	(in	module	sys)
metaclass

(2to3	fixer)
MetaPathFinder	(class	in	importlib.abc)
metavar	(optparse.Option	attribute)
MetavarTypeHelpFormatter	(class	in
argparse)
Meter	(class	in	tkinter.tix)
METH_CLASS	(built-in	variable)
METH_COEXIST	(built-in	variable)
METH_KEYWORDS	(built-in	variable)

(modulefinder.ModuleFinder	attribute)
ModuleSpec	(class	in	importlib.machinery)
ModuleType	(class	in	types)

(in	module	types)
modulo
monotonic()	(in	module	time)
month	(datetime.date	attribute)

(datetime.datetime	attribute)
month()	(in	module	calendar)
month_abbr	(in	module	calendar)
month_name	(in	module	calendar)
monthcalendar()	(in	module	calendar)
monthdatescalendar()	(calendar.Calendar
method)
monthdays2calendar()	(calendar.Calendar
method)
monthdayscalendar()	(calendar.Calendar
method)
monthrange()	(in	module	calendar)
Morsel	(class	in	http.cookies)
most_common()	(collections.Counter
method)
mouseinterval()	(in	module	curses)
mousemask()	(in	module	curses)
move()	(curses.panel.Panel	method)

(curses.window	method)
(in	module	mmap)
(in	module	shutil)
(tkinter.ttk.Treeview	method)

move_file()	(distutils.ccompiler.CCompiler
method)

(in	module	distutils.file_util)
move_to_end()	(collections.OrderedDict
method)
MozillaCookieJar	(class	in	http.cookiejar)
MRO
mro()	(class	method)
msg	(http.client.HTTPResponse	attribute)

msg()	(telnetlib.Telnet	method)
msi
msilib	(module)
msvcrt	(module)
mt_interact()	(telnetlib.Telnet	method)
mtime	(tarfile.TarInfo	attribute)
mtime()
(urllib.robotparser.RobotFileParser
method)
mul()	(in	module	audioop)

(in	module	operator)
MultiCall	(class	in	xmlrpc.client)
MULTILINE	(in	module	re)
MultipartConversionError
multiplication
multiply()	(decimal.Context	method)
multiprocessing	(module)
multiprocessing.connection	(module)
multiprocessing.dummy	(module)
multiprocessing.Manager()	(in	module
multiprocessing.sharedctypes)
multiprocessing.managers	(module)
multiprocessing.pool	(module)
multiprocessing.sharedctypes	(module)
mutable

object,	[1],	[2]
sequence	types

mutable	object
mutable	sequence

loop	over
object

MutableMapping	(class	in	collections.abc)
MutableSequence	(class	in
collections.abc)
MutableSet	(class	in	collections.abc)
mvderwin()	(curses.window	method)
mvwin()	(curses.window	method)
myrights()	(imaplib.IMAP4	method)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	N
N_TOKENS	(in	module	token)
n_waiting	(threading.Barrier	attribute)
name,	[1],	[2]

binding,	[1],	[2],	[3],	[4],	[5],	[6]
binding,	global
class
function,	[1]
mangling
rebinding
unbinding

name	(doctest.DocTest	attribute)
(email.headerregistry.BaseHeader
attribute)
(hashlib.hash	attribute)
(hmac.HMAC	attribute)
(http.cookiejar.Cookie	attribute)
(importlib.abc.FileLoader	attribute)
(importlib.machinery.ExtensionFileLoader
attribute)
(importlib.machinery.ModuleSpec
attribute)
(importlib.machinery.SourceFileLoader
attribute)
(importlib.machinery.SourcelessFileLoader
attribute)
(in	module	os)

NAME	(in	module	token)
name	(inspect.Parameter	attribute)

(io.FileIO	attribute)
(multiprocessing.Process	attribute)
(ossaudiodev.oss_audio_device	attribute)
(pyclbr.Class	attribute)

nntp_version	(nntplib.NNTP
attribute)
NNTPDataError
NNTPError
nntplib	(module)
NNTPPermanentError
NNTPProtocolError
NNTPReplyError
NNTPTemporaryError
nocbreak()	(in	module	curses)
NoDataAllowedErr
node()	(in	module	platform)
nodelay()	(curses.window
method)
nodeName	(xml.dom.Node
attribute)
NodeTransformer	(class	in	ast)
nodeType	(xml.dom.Node
attribute)
nodeValue	(xml.dom.Node
attribute)
NodeVisitor	(class	in	ast)
noecho()	(in	module	curses)
NOEXPR	(in	module	locale)
NoModificationAllowedErr
nonblock()
(ossaudiodev.oss_audio_device
method)
NonCallableMagicMock	(class
in	unittest.mock)
NonCallableMock	(class	in
unittest.mock)
None

object,	[1],	[2]
None	(Built-in	object)

(pyclbr.Function	attribute)
(tarfile.TarInfo	attribute)
(threading.Thread	attribute)
(xml.dom.Attr	attribute)
(xml.dom.DocumentType	attribute)

name()	(in	module	unicodedata)
name2codepoint	(in	module	html.entities)
named	tuple
NamedTemporaryFile()	(in	module	tempfile)
namedtuple()	(in	module	collections)
NameError

exception
NameError	(built-in	exception)
namelist()	(zipfile.ZipFile	method)
nameprep()	(in	module	encodings.idna)
namer
(logging.handlers.BaseRotatingHandler
attribute)
names

private
namespace,	[1]

:	package
global
module

Namespace	(class	in	argparse)
namespace	package
namespace()	(imaplib.IMAP4	method)
Namespace()
(multiprocessing.managers.SyncManager
method)
NAMESPACE_DNS	(in	module	uuid)
NAMESPACE_OID	(in	module	uuid)
NAMESPACE_URL	(in	module	uuid)
NAMESPACE_X500	(in	module	uuid)
NamespaceErr
namespaceURI	(xml.dom.Node	attribute)
NaN

(built-in	variable)
nonl()	(in	module	curses)
nonlocal

statement
nonzero	(2to3	fixer)
noop()	(imaplib.IMAP4	method)

(poplib.POP3	method)
NoOptionError
NOP	(opcode)
noqiflush()	(in	module	curses)
noraw()	(in	module	curses)
normalize()	(decimal.Context
method)

(decimal.Decimal	method)
(in	module	locale)
(in	module	unicodedata)
(xml.dom.Node	method)

NORMALIZE_WHITESPACE
(in	module	doctest)
normalvariate()	(in	module
random)
normcase()	(in	module	os.path)
normpath()	(in	module	os.path)
NoSectionError
NoSuchMailboxError
not

operator,	[1]
not	in

operator,	[1],	[2]
not_()	(in	module	operator)
NotADirectoryError
notation
notationDecl()
(xml.sax.handler.DTDHandler
method)
NotationDeclHandler()
(xml.parsers.expat.xmlparser

NannyNag
napms()	(in	module	curses)
nargs	(optparse.Option	attribute)
nbytes	(memoryview	attribute)
ndiff()	(in	module	difflib)
ndim	(memoryview	attribute)
ne	(2to3	fixer)
ne()	(in	module	operator)
neg()	(in	module	operator)
negation
nested	scope
NetmaskValueError
netrc	(class	in	netrc)

(module)
NetrcParseError
netscape	(http.cookiejar.CookiePolicy
attribute)
network	(ipaddress.IPv4Interface	attribute)

(ipaddress.IPv6Interface	attribute)
Network	News	Transfer	Protocol
network_address	(ipaddress.IPv4Network
attribute)

(ipaddress.IPv6Network	attribute)
new()	(in	module	hashlib)

(in	module	hmac)
new-style	class
new_alignment()	(formatter.writer	method)
new_child()	(collections.ChainMap	method)
new_class()	(in	module	types)
new_compiler()	(in	module	distutils.ccompiler)
new_event_loop()
(asyncio.AbstractEventLoopPolicy	method)

(in	module	asyncio)
new_font()	(formatter.writer	method)
new_margin()	(formatter.writer	method)
new_module()	(in	module	imp)
new_panel()	(in	module	curses.panel)
new_spacing()	(formatter.writer	method)

method)
notations
(xml.dom.DocumentType
attribute)
NotConnected
NoteBook	(class	in	tkinter.tix)
Notebook	(class	in	tkinter.ttk)
NotEmptyError
NOTEQUAL	(in	module	token)
NotFoundErr
notify()	(asyncio.Condition
method)

(threading.Condition
method)

notify_all()	(asyncio.Condition
method)

(threading.Condition
method)

notimeout()	(curses.window
method)
NotImplemented

object
NotImplemented	(built-in
variable)
NotImplementedError
NotStandaloneHandler()
(xml.parsers.expat.xmlparser
method)
NotSupportedErr
noutrefresh()	(curses.window
method)
now()	(datetime.datetime	class
method)
NSIG	(in	module	signal)
nsmallest()	(in	module	heapq)
NT_OFFSET	(in	module	token)
NTEventLogHandler	(class	in
logging.handlers)

new_styles()	(formatter.writer	method)
newer()	(in	module	distutils.dep_util)
newer_group()	(in	module	distutils.dep_util)
newer_pairwise()	(in	module	distutils.dep_util)
newgroups()	(nntplib.NNTP	method)
NEWLINE	(in	module	token)
NEWLINE	token,	[1]
newlines	(io.TextIOBase	attribute)
newnews()	(nntplib.NNTP	method)
newpad()	(in	module	curses)
newwin()	(in	module	curses)
next	(2to3	fixer)

(pdb	command)
next()	(built-in	function)

(nntplib.NNTP	method)
(tarfile.TarFile	method)
(tkinter.ttk.Treeview	method)

next_minus()	(decimal.Context	method)
(decimal.Decimal	method)

next_plus()	(decimal.Context	method)
(decimal.Decimal	method)

next_toward()	(decimal.Context	method)
(decimal.Decimal	method)

nextfile()	(in	module	fileinput)
nextkey()	(dbm.gnu.gdbm	method)
nextSibling	(xml.dom.Node	attribute)
ngettext()	(gettext.GNUTranslations	method)

(gettext.NullTranslations	method)
(in	module	gettext)

nice()	(in	module	os)
nis	(module)
NL	(in	module	tokenize)
nl()	(in	module	curses)
nl_langinfo()	(in	module	locale)
nlargest()	(in	module	heapq)
nlst()	(ftplib.FTP	method)
NNTP

ntohl()	(in	module	socket)
ntohs()	(in	module	socket)
ntransfercmd()	(ftplib.FTP
method)
null

operation,	[1]
NullFormatter	(class	in
formatter)
NullHandler	(class	in	logging)
NullImporter	(class	in	imp)
NullTranslations	(class	in
gettext)
NullWriter	(class	in	formatter)
num_addresses
(ipaddress.IPv4Network
attribute)

(ipaddress.IPv6Network
attribute)

number
complex
floating	point

Number	(class	in	numbers)
NUMBER	(in	module	token)
number_class()
(decimal.Context	method)

(decimal.Decimal	method)
numbers	(module)
numerator	(fractions.Fraction
attribute)

(numbers.Rational	 attribute)
numeric

conversions
literals
object,	[1],	[2],	[3],	[4]
types,	operations	on

numeric	literal
numeric()	(in	module

protocol
NNTP	(class	in	nntplib)
nntp_implementation	(nntplib.NNTP	attribute)
NNTP_SSL	(class	in	nntplib)

unicodedata)
Numerical	Python
numinput()	(in	module	turtle)
numliterals	(2to3	fixer)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	O
O_APPEND	(in	module	os)
O_ASYNC	(in	module	os)
O_BINARY	(in	module	os)
O_CLOEXEC	(in	module	os)
O_CREAT	(in	module	os)
O_DIRECT	(in	module	os)
O_DIRECTORY	(in	module	os)
O_DSYNC	(in	module	os)
O_EXCL	(in	module	os)
O_EXLOCK	(in	module	os)
O_NDELAY	(in	module	os)
O_NOATIME	(in	module	os)
O_NOCTTY	(in	module	os)
O_NOFOLLOW	(in	module	os)
O_NOINHERIT	(in	module	os)
O_NONBLOCK	(in	module	os)
O_PATH	(in	module	os)
O_RANDOM	(in	module	os)
O_RDONLY	(in	module	os)
O_RDWR	(in	module	os)
O_RSYNC	(in	module	os)
O_SEQUENTIAL	(in	module	os)
O_SHLOCK	(in	module	os)
O_SHORT_LIVED	(in	module	os)
O_SYNC	(in	module	os)
O_TEMPORARY	(in	module	os)
O_TEXT	(in	module	os)
O_TMPFILE	(in	module	os)
O_TRUNC	(in	module	os)
O_WRONLY	(in	module	os)
obj	(memoryview	attribute)
object,	[1]

Boolean,	[1]
Capsule
Ellipsis

open_new()	(in	module	webbrowser)
(webbrowser.controller	method)

open_new_tab()	(in	module
webbrowser)

(webbrowser.controller	method)
open_osfhandle()	(in	module	msvcrt)
open_unix_connection()	(in	module
asyncio)
open_unknown()
(urllib.request.URLopener	method)
OpenDatabase()	(in	module	msilib)
OpenerDirector	(class	in
urllib.request)
openfp()	(in	module	sunau)

(in	module	wave)
OpenKey()	(in	module	winreg)
OpenKeyEx()	(in	module	winreg)
openlog()	(in	module	syslog)
openmixer()	(in	module	ossaudiodev)
openpty()	(in	module	os)

(in	module	pty)
OpenSSL

(use	in	module	hashlib)
(use	in	module	ssl)

OPENSSL_VERSION	(in	module	ssl)
OPENSSL_VERSION_INFO	(in
module	ssl)
OPENSSL_VERSION_NUMBER	(in
module	ssl)
OpenView()	(msilib.Database	method)
operation

Boolean
binary	arithmetic
binary	bitwise

None,	[1],	[2]
NotImplemented
built-in	function,	[1]
built-in	method,	[1]
bytearray,	[1],	[2],	[3]
bytes,	[1],	[2]
callable,	[1]
class,	[1],	[2]
class	instance,	[1],	[2]
code,	[1],	[2],	[3]
complex
complex	number,	[1]
deallocation
dictionary,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
file,	[1],	[2]
finalization
floating	point,	[1],	[2]
frame
frozenset,	[1]
function,	[1],	[2],	[3],	[4],	[5]
generator,	[1],	[2]
immutable,	[1],	[2]
immutable	sequence
instance,	[1],	[2]
instancemethod
integer,	[1],	[2]
io.StringIO
list,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8]
long	integer
mapping,	[1],	[2],	[3],	[4],	[5]
memoryview,	[1]
method,	[1],	[2],	[3],	[4],	[5]
module,	[1],	[2]
mutable,	[1],	[2]

concatenation
null,	[1]
repetition
shifting
slice
subscript
unary	arithmetic
unary	bitwise

operations
Boolean,	[1]
bitwise
masking
shifting

operations	on
dictionary	type
integer	types
list	type
mapping	types
numeric	types
sequence	types,	[1]

operator
!=
%
&
*
**
+
-
/
//
<
<<
<=
==

mutable	sequence
numeric,	[1],	[2],	[3],	[4]
range
sequence,	[1],	[2],	[3],	[4],	[5],	[6],	[7],
[8]
set,	[1],	[2],	[3]
set	type
slice
socket
string,	[1],	[2]
traceback,	[1],	[2],	[3],	[4]
tuple,	[1],	[2],	[3],	[4],	[5],	[6]
type,	[1],	[2]
user-defined	function,	[1],	[2]
user-defined	method

object	(UnicodeError	attribute)
object()	(built-in	function)
object.__slots__	(built-in	variable)
object_filenames()
(distutils.ccompiler.CCompiler	method)
objects

comparing
flattening
marshalling
persistent
pickling
serializing

obufcount()
(ossaudiodev.oss_audio_device
method)
obuffree()
(ossaudiodev.oss_audio_device
method)
oct()	(built-in	function)
octal

literals

>
>=
>>
^
and,	[1],	[2]
comparison
in,	[1],	[2]
is,	[1]
is	not,	[1]
not,	[1]
not	in,	[1],	[2]
or,	[1],	[2]
overloading
precedence
ternary

operator	(2to3	fixer)
(module)

operators
opmap	(in	module	dis)
opname	(in	module	dis)
optimize()	(in	module	pickletools)
OPTIMIZED_BYTECODE_SUFFIXES
(in	module	importlib.machinery)
OptionGroup	(class	in	optparse)
OptionMenu	(class	in	tkinter.tix)
OptionParser	(class	in	optparse)
options	(doctest.Example	attribute)

(ssl.SSLContext	attribute)
options()	(configparser.ConfigParser
method)
optionxform()
(configparser.ConfigParser	method)

(in	module	configparser)
optparse	(module)
or

bitwise

octal	literal
octdigits	(in	module	string)
offset	(xml.parsers.expat.ExpatError
attribute)
OK	(in	module	curses)
OleDLL	(class	in	ctypes)
onclick()	(in	module	turtle),	[1]
ondrag()	(in	module	turtle)
onecmd()	(cmd.Cmd	method)
onkey()	(in	module	turtle)
onkeypress()	(in	module	turtle)
onkeyrelease()	(in	module	turtle)
onrelease()	(in	module	turtle)
onscreenclick()	(in	module	turtle)
ontimer()	(in	module	turtle)
OP	(in	module	token)
OP_ALL	(in	module	ssl)
OP_CIPHER_SERVER_PREFERENCE
(in	module	ssl)
OP_NO_COMPRESSION	(in	module
ssl)
OP_NO_SSLv2	(in	module	ssl)
OP_NO_SSLv3	(in	module	ssl)
OP_NO_TLSv1	(in	module	ssl)
OP_NO_TLSv1_1	(in	module	ssl)
OP_NO_TLSv1_2	(in	module	ssl)
OP_SINGLE_DH_USE	(in	module	ssl)
OP_SINGLE_ECDH_USE	(in	module
ssl)
open

built-in	function,	[1]
open()	(built-in	function)

(distutils.text_file.TextFile	method)
(imaplib.IMAP4	method)
(in	module	aifc)
(in	module	bz2)
(in	module	codecs)
(in	module	dbm)

exclusive
inclusive
operator,	[1],	[2]

or_()	(in	module	operator)
ord

built-in	function
ord()	(built-in	function)
order

evaluation
ordered_attributes
(xml.parsers.expat.xmlparser
attribute)
OrderedDict	(class	in	collections)
origin
(importlib.machinery.ModuleSpec
attribute)
origin_req_host
(urllib.request.Request	attribute)
origin_server
(wsgiref.handlers.BaseHandler
attribute)
os

module
os	(module)
os.path	(module)
os_environ
(wsgiref.handlers.BaseHandler
attribute)
OSError
ossaudiodev	(module)
OSSAudioError
output

standard
output
(subprocess.CalledProcessError
attribute)

(subprocess.TimeoutExpired

(in	module	dbm.dumb)
(in	module	dbm.gnu)
(in	module	dbm.ndbm)
(in	module	gzip)
(in	module	io)
(in	module	lzma)
(in	module	os)
(in	module	ossaudiodev)
(in	module	shelve)
(in	module	sunau)
(in	module	tarfile)
(in	module	tokenize)
(in	module	wave)
(in	module	webbrowser)
(pathlib.Path	method)
(pipes.Template	method)
(tarfile.TarFile	method)
(telnetlib.Telnet	method)
(urllib.request.OpenerDirector
method)
(urllib.request.URLopener	method)
(webbrowser.controller	method)
(zipfile.ZipFile	method)

open_connection()	(in	module	asyncio)

attribute)
(unittest.TestCase	attribute)

output()	(http.cookies.BaseCookie
method)

(http.cookies.Morsel	method)
output_charset	(email.charset.Charset
attribute)
output_charset()
(gettext.NullTranslations	method)
output_codec	(email.charset.Charset
attribute)
output_difference()
(doctest.OutputChecker	method)
OutputChecker	(class	in	doctest)
OutputString()	(http.cookies.Morsel
method)
over()	(nntplib.NNTP	method)
Overflow	(class	in	decimal)
OverflowError

(built-in	exception),	[1],	[2],	
overlaps()	(ipaddress.IPv4Network
method)

(ipaddress.IPv6Network	method)
overlay()	(curses.window	method)
overloading

operator
overwrite()	(curses.window	method)
owner()	(pathlib.Path	method)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	P
p	(pdb	command)
P_ALL	(in	module	os)
P_DETACH	(in	module	os)
P_NOWAIT	(in	module	os)
P_NOWAITO	(in	module	os)
P_OVERLAY	(in	module	os)
P_PGID	(in	module	os)
P_PID	(in	module	os)
P_WAIT	(in	module	os)
pack()	(in	module	struct)

(mailbox.MH	method)
(struct.Struct	method)

pack_array()	(xdrlib.Packer	method)
pack_bytes()	(xdrlib.Packer	method)
pack_double()	(xdrlib.Packer	method)
pack_farray()	(xdrlib.Packer	method)
pack_float()	(xdrlib.Packer	method)
pack_fopaque()	(xdrlib.Packer	method)
pack_fstring()	(xdrlib.Packer	method)
pack_into()	(in	module	struct)

(struct.Struct	method)
pack_list()	(xdrlib.Packer	method)
pack_opaque()	(xdrlib.Packer	method)
pack_string()	(xdrlib.Packer	method)
package,	[1],	[2]

regular
package	variable

__all__
packed	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv6Address	attribute)
Packer	(class	in	xdrlib)
packing

binary	data
packing	(widgets)

PyEval_MergeCompilerFlags	(C	function)
PyEval_ReInitThreads	(C	function)
PyEval_ReleaseLock	(C	function)
PyEval_ReleaseThread	(C	function)
PyEval_ReleaseThread()
PyEval_RestoreThread	(C	function)
PyEval_RestoreThread()
PyEval_SaveThread	(C	function)
PyEval_SaveThread()
PyEval_SetProfile	(C	function)
PyEval_SetTrace	(C	function)
PyEval_ThreadsInitialized	(C	function)
PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_BaseException
PyExc_BlockingIOError
PyExc_BrokenPipeError
PyExc_ConnectionAbortedError
PyExc_ConnectionError
PyExc_ConnectionRefusedError
PyExc_ConnectionResetError
PyExc_EnvironmentError
PyExc_EOFError
PyExc_Exception
PyExc_FileExistsError
PyExc_FileNotFoundError
PyExc_FloatingPointError
PyExc_ImportError
PyExc_IndexError
PyExc_InterruptedError
PyExc_IOError
PyExc_IsADirectoryError
PyExc_KeyboardInterrupt
PyExc_KeyError

pair_content()	(in	module	curses)
pair_number()	(in	module	curses)
PanedWindow	(class	in	tkinter.tix)
parameter

call	semantics
difference	from	argument
function	definition
value,	default

Parameter	(class	in	inspect)
ParameterizedMIMEHeader	(class	in
email.headerregistry)
parameters	(inspect.Signature	attribute)
params
(email.headerregistry.ParameterizedMIMEHeader
attribute)
pardir	(in	module	os)
paren	(2to3	fixer)
parent	(importlib.machinery.ModuleSpec	attribute)

(urllib.request.BaseHandler	attribute)
parent()	(tkinter.ttk.Treeview	method)
parenthesized	form
parentNode	(xml.dom.Node	attribute)
parents	(collections.ChainMap	attribute)
paretovariate()	(in	module	random)
parse()	(doctest.DocTestParser	method)

(email.parser.BytesParser	method)
(email.parser.Parser	method)
(in	module	ast)
(in	module	cgi)
(in	module	xml.dom.minidom)
(in	module	xml.dom.pulldom)
(in	module	xml.etree.ElementTree)
(in	module	xml.sax)
(string.Formatter	method)
(urllib.robotparser.RobotFileParser	method)
(xml.etree.ElementTree.ElementTree	method)

Parse()	(xml.parsers.expat.xmlparser	method)

PyExc_LookupError
PyExc_MemoryError
PyExc_NameError
PyExc_NotADirectoryError
PyExc_NotImplementedError
PyExc_OSError
PyExc_OverflowError
PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_ReferenceError
PyExc_RuntimeError
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TimeoutError
PyExc_TypeError
PyExc_ValueError
PyExc_WindowsError
PyExc_ZeroDivisionError
PyException_GetCause	(C	function)
PyException_GetContext	(C	function)
PyException_GetTraceback	(C	function)
PyException_SetCause	(C	function)
PyException_SetContext	(C	function)
PyException_SetTraceback	(C	function)
pyexpat

module
PyFile_FromFd	(C	function)
PyFile_GetLine	(C	function)
PyFile_WriteObject	(C	function)
PyFile_WriteString	(C	function)
PyFloat_AS_DOUBLE	(C	function)
PyFloat_AsDouble	(C	function)
PyFloat_Check	(C	function)
PyFloat_CheckExact	(C	function)
PyFloat_ClearFreeList	(C	function)
PyFloat_FromDouble	(C	function)
PyFloat_FromString	(C	function)
PyFloat_GetInfo	(C	function)

parse()	(xml.sax.xmlreader.XMLReader	method)
parse_and_bind()	(in	module	readline)
parse_args()	(argparse.ArgumentParser	method)
PARSE_COLNAMES	(in	module	sqlite3)
parse_config_h()	(in	module	sysconfig)
PARSE_DECLTYPES	(in	module	sqlite3)
parse_header()	(in	module	cgi)
parse_known_args()	(argparse.ArgumentParser
method)
parse_multipart()	(in	module	cgi)
parse_qs()	(in	module	cgi)

(in	module	urllib.parse)
parse_qsl()	(in	module	cgi)

(in	module	urllib.parse)
parseaddr()	(in	module	email.utils)
parsebytes()	(email.parser.BytesParser	method)
parsedate()	(in	module	email.utils)
parsedate_to_datetime()	(in	module	email.utils)
parsedate_tz()	(in	module	email.utils)
ParseError	(class	in	xml.etree.ElementTree)
ParseFile()	(xml.parsers.expat.xmlparser	method)
ParseFlags()	(in	module	imaplib)
parser
Parser	(class	in	email.parser)
parser	(module)
ParserCreate()	(in	module	xml.parsers.expat)
ParserError
ParseResult	(class	in	urllib.parse)
ParseResultBytes	(class	in	urllib.parse)
parsestr()	(email.parser.Parser	method)
parseString()	(in	module	xml.dom.minidom)

(in	module	xml.dom.pulldom)
(in	module	xml.sax)

parsing
Python	source	code
URL

ParsingError
partial	(asyncio.IncompleteReadError	attribute)

PyFloat_GetMax	(C	function)
PyFloat_GetMin	(C	function)
PyFloat_Type	(C	variable)
PyFloatObject	(C	type)
PyFrame_GetLineNumber	(C	function)
PyFrozenSet_Check	(C	function)
PyFrozenSet_CheckExact	(C	function)
PyFrozenSet_New	(C	function)
PyFrozenSet_Type	(C	variable)
PyFunction_Check	(C	function)
PyFunction_GetAnnotations	(C	function)
PyFunction_GetClosure	(C	function)
PyFunction_GetCode	(C	function)
PyFunction_GetDefaults	(C	function)
PyFunction_GetGlobals	(C	function)
PyFunction_GetModule	(C	function)
PyFunction_New	(C	function)
PyFunction_NewWithQualName	(C
function)
PyFunction_SetAnnotations	(C	function)
PyFunction_SetClosure	(C	function)
PyFunction_SetDefaults	(C	function)
PyFunction_Type	(C	variable)
PyFunctionObject	(C	type)
PYFUNCTYPE()	(in	module	ctypes)
PyGen_Check	(C	function)
PyGen_CheckExact	(C	function)
PyGen_New	(C	function)
PyGen_Type	(C	variable)
PyGenObject	(C	type)
PyGILState_Check	(C	function)
PyGILState_Ensure	(C	function)
PyGILState_GetThisThreadState	(C
function)
PyGILState_Release	(C	function)
PyImport_AddModule	(C	function)
PyImport_AddModuleObject	(C	function)
PyImport_AppendInittab	(C	function)
PyImport_Cleanup	(C	function)

partial()	(imaplib.IMAP4	method)
(in	module	functools)

partialmethod	(class	in	functools)
parties	(threading.Barrier	attribute)
partition()	(str	method)
pass

statement
pass_()	(poplib.POP3	method)
Paste
patch()	(in	module	unittest.mock)
patch.dict()	(in	module	unittest.mock)
patch.multiple()	(in	module	unittest.mock)
patch.object()	(in	module	unittest.mock)
patch.stopall()	(in	module	unittest.mock)
PATH,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8],	[9],	[10],	[11],
[12],	[13],	[14],	[15],	[16],	[17],	[18],	[19],	[20],	[21]
path

configuration	file
hooks
module	search,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
operations,	[1]

Path	(class	in	pathlib)
path	(http.cookiejar.Cookie	attribute)

(http.server.BaseHTTPRequestHandler	attribute)
(importlib.abc.FileLoader	attribute)
(importlib.machinery.ExtensionFileLoader
attribute)
(importlib.machinery.FileFinder	attribute)
(importlib.machinery.SourceFileLoader	attribute)
(importlib.machinery.SourcelessFileLoader
attribute)
(in	module	sys),	[1],	[2],	[3],	[4]

path	based	finder,	[1]
Path	browser
path	entry
path	entry	finder
path	entry	hook

PyImport_ExecCodeModule	(C	function)
PyImport_ExecCodeModuleEx	(C	function)
PyImport_ExecCodeModuleObject	(C
function)
PyImport_ExecCodeModuleWithPathnames
(C	function)
PyImport_ExtendInittab	(C	function)
PyImport_FrozenModules	(C	variable)
PyImport_GetImporter	(C	function)
PyImport_GetMagicNumber	(C	function)
PyImport_GetMagicTag	(C	function)
PyImport_GetModuleDict	(C	function)
PyImport_Import	(C	function)
PyImport_ImportFrozenModule	(C	function)
PyImport_ImportFrozenModuleObject	(C
function)
PyImport_ImportModule	(C	function)
PyImport_ImportModuleEx	(C	function)
PyImport_ImportModuleLevel	(C	function)
PyImport_ImportModuleLevelObject	(C
function)
PyImport_ImportModuleNoBlock	(C
function)
PyImport_ReloadModule	(C	function)
PyIndex_Check	(C	function)
PyInstanceMethod_Check	(C	function)
PyInstanceMethod_Function	(C	function)
PyInstanceMethod_GET_FUNCTION	(C
function)
PyInstanceMethod_New	(C	function)
PyInstanceMethod_Type	(C	variable)
PyInterpreterState	(C	type)
PyInterpreterState_Clear	(C	function)
PyInterpreterState_Delete	(C	function)
PyInterpreterState_Head	(C	function)
PyInterpreterState_New	(C	function)
PyInterpreterState_Next	(C	function)
PyInterpreterState_ThreadHead	(C
function)

path	hooks
path_hook()	(importlib.machinery.FileFinder	class
method)
path_hooks	(in	module	sys)
path_importer_cache	(in	module	sys)
path_mtime()	(importlib.abc.SourceLoader	method)
path_return_ok()	(http.cookiejar.CookiePolicy
method)
path_stats()	(importlib.abc.SourceLoader	method)

(importlib.machinery.SourceFileLoader	method)
pathconf()	(in	module	os)
pathconf_names	(in	module	os)
PathEntryFinder	(class	in	importlib.abc)
PATHEXT
PathFinder	(class	in	importlib.machinery)
pathlib	(module)
pathname2url()	(in	module	urllib.request)
pathsep	(in	module	os)
pattern	(re.regex	attribute)
pause()	(in	module	signal)
pause_reading()	(asyncio.ReadTransport	method)
pause_writing()	(asyncio.BaseProtocol	method)
PAX_FORMAT	(in	module	tarfile)
pax_headers	(tarfile.TarFile	attribute)

(tarfile.TarInfo	attribute)
pbkdf2_hmac()	(in	module	hashlib)
pd()	(in	module	turtle)
Pdb	(class	in	pdb),	[1]
pdb	(module)
peek()	(bz2.BZ2File	method)

(gzip.GzipFile	method)
(io.BufferedReader	method)
(lzma.LZMAFile	method)
(weakref.finalize	method)

peer	(smtpd.SMTPChannel	attribute)
PEM_cert_to_DER_cert()	(in	module	ssl)
pen()	(in	module	turtle)
pencolor()	(in	module	turtle)

PyIter_Check	(C	function)
PyIter_Next	(C	function)
PyList_Append	(C	function)
PyList_AsTuple	(C	function)
PyList_Check	(C	function)
PyList_CheckExact	(C	function)
PyList_ClearFreeList	(C	function)
PyList_GET_ITEM	(C	function)
PyList_GET_SIZE	(C	function)
PyList_GetItem	(C	function)
PyList_GetItem()
PyList_GetSlice	(C	function)
PyList_Insert	(C	function)
PyList_New	(C	function)
PyList_Reverse	(C	function)
PyList_SET_ITEM	(C	function)
PyList_SetItem	(C	function)
PyList_SetItem()
PyList_SetSlice	(C	function)
PyList_Size	(C	function)
PyList_Sort	(C	function)
PyList_Type	(C	variable)
PyListObject	(C	type)
PyLong_AsDouble	(C	function)
PyLong_AsLong	(C	function)
PyLong_AsLongAndOverflow	(C	function)
PyLong_AsLongLong	(C	function)
PyLong_AsLongLongAndOverflow	(C
function)
PyLong_AsSize_t	(C	function)
PyLong_AsSsize_t	(C	function)
PyLong_AsUnsignedLong	(C	function)
PyLong_AsUnsignedLongLong	(C	function)
PyLong_AsUnsignedLongLongMask	(C
function)
PyLong_AsUnsignedLongMask	(C	function)
PyLong_AsVoidPtr	(C	function)
PyLong_Check	(C	function)
PyLong_CheckExact	(C	function)

PendingDeprecationWarning
pendown()	(in	module	turtle)
pensize()	(in	module	turtle)
penup()	(in	module	turtle)
PERCENT	(in	module	token)
PERCENTEQUAL	(in	module	token)
perf_counter()	(in	module	time)
Performance
PermissionError
permutations()	(in	module	itertools)
Persist()	(msilib.SummaryInformation	method)
persistence
persistent

objects
persistent_id	(pickle	protocol)
persistent_id()	(pickle.Pickler	method)
persistent_load	(pickle	protocol)
persistent_load()	(pickle.Unpickler	method)
PF_CAN	(in	module	socket)
PF_RDS	(in	module	socket)
pformat()	(in	module	pprint)

(pprint.PrettyPrinter	method)
phase()	(in	module	cmath)
Philbrick,	Geoff
physical	line,	[1],	[2]
pi	(in	module	cmath)

(in	module	math)
pickle

module,	[1],	[2],	[3]
pickle	(module)
pickle()	(in	module	copyreg)
PickleError
Pickler	(class	in	pickle)
pickletools	(module)
pickletools	command	line	option

-a,	--annotate
-l,	--indentlevel=<num>
-m,	--memo

PyLong_FromDouble	(C	function)
PyLong_FromLong	(C	function)
PyLong_FromLongLong	(C	function)
PyLong_FromSize_t	(C	function)
PyLong_FromSsize_t	(C	function)
PyLong_FromString	(C	function)
PyLong_FromUnicode	(C	function)
PyLong_FromUnicodeObject	(C	function)
PyLong_FromUnsignedLong	(C	function)
PyLong_FromUnsignedLongLong	(C
function)
PyLong_FromVoidPtr	(C	function)
PyLong_Type	(C	variable)
PyLongObject	(C	type)
PyMapping_Check	(C	function)
PyMapping_DelItem	(C	function)
PyMapping_DelItemString	(C	function)
PyMapping_GetItemString	(C	function)
PyMapping_HasKey	(C	function)
PyMapping_HasKeyString	(C	function)
PyMapping_Items	(C	function)
PyMapping_Keys	(C	function)
PyMapping_Length	(C	function)
PyMapping_SetItemString	(C	function)
PyMapping_Size	(C	function)
PyMapping_Values	(C	function)
PyMappingMethods	(C	type)
PyMappingMethods.mp_ass_subscript	(C
member)
PyMappingMethods.mp_length	(C	member)
PyMappingMethods.mp_subscript	(C
member)
PyMarshal_ReadLastObjectFromFile	(C
function)
PyMarshal_ReadLongFromFile	(C	function)
PyMarshal_ReadObjectFromFile	(C
function)
PyMarshal_ReadObjectFromString	(C
function)

-o,	--output=<file>
-p,	--preamble=<preamble>

pickling
objects

PicklingError
pid	(asyncio.asyncio.subprocess.Process	attribute)

(multiprocessing.Process	attribute)
(subprocess.Popen	attribute)

PIPE	(in	module	subprocess)
Pipe()	(in	module	multiprocessing)
pipe()	(in	module	os)
pipe2()	(in	module	os)
PIPE_BUF	(in	module	select)
pipe_connection_lost()	(asyncio.SubprocessProtocol
method)
pipe_data_received()	(asyncio.SubprocessProtocol
method)
pipes	(module)
PKG_DIRECTORY	(in	module	imp)
pkgutil	(module)
placeholder	(textwrap.TextWrapper	attribute)
PLAT
platform	(in	module	sys),	[1]

(module)
platform()	(in	module	platform)
PlaySound()	(in	module	winsound)
plist

file
plistlib	(module)
plock()	(in	module	os)
plus
PLUS	(in	module	token)
plus()	(decimal.Context	method)
PLUSEQUAL	(in	module	token)
pm()	(in	module	pdb)
pointer()	(in	module	ctypes)
POINTER()	(in	module	ctypes)
polar()	(in	module	cmath)

PyMarshal_ReadShortFromFile	(C	function)
PyMarshal_WriteLongToFile	(C	function)
PyMarshal_WriteObjectToFile	(C	function)
PyMarshal_WriteObjectToString	(C
function)
PyMem_Del	(C	function)
PyMem_Free	(C	function)
PyMem_GetAllocator	(C	function)
PyMem_Malloc	(C	function)
PyMem_New	(C	function)
PyMem_RawFree	(C	function)
PyMem_RawMalloc	(C	function)
PyMem_RawRealloc	(C	function)
PyMem_Realloc	(C	function)
PyMem_Resize	(C	function)
PyMem_SetAllocator	(C	function)
PyMem_SetupDebugHooks	(C	function)
PyMemAllocator	(C	type)
PyMemAllocatorDomain	(C	type)
PyMemberDef	(C	type)
PyMemoryView_Check	(C	function)
PyMemoryView_FromBuffer	(C	function)
PyMemoryView_FromMemory	(C	function)
PyMemoryView_FromObject	(C	function)
PyMemoryView_GET_BASE	(C	function)
PyMemoryView_GET_BUFFER	(C
function)
PyMemoryView_GetContiguous	(C
function)
PyMethod_Check	(C	function)
PyMethod_ClearFreeList	(C	function)
PyMethod_Function	(C	function)
PyMethod_GET_FUNCTION	(C	function)
PyMethod_GET_SELF	(C	function)
PyMethod_New	(C	function)
PyMethod_Self	(C	function)
PyMethod_Type	(C	variable)
PyMethodDef	(C	type)
PyModule_AddIntConstant	(C	function)

Policy	(class	in	email.policy)
poll()	(in	module	select)

(multiprocessing.Connection	method)
(select.devpoll	method)
(select.epoll	method)
(select.poll	method)
(subprocess.Popen	method)

PollSelector	(class	in	selectors)
Pool	(class	in	multiprocessing.pool)
pop()	(array.array	method)

(asynchat.fifo	method)
(collections.deque	method)
(dict	method)
(mailbox.Mailbox	method)
(sequence	method)
(set	method)

POP3
protocol

POP3	(class	in	poplib)
POP3_SSL	(class	in	poplib)
pop_alignment()	(formatter.formatter	method)
pop_all()	(contextlib.ExitStack	method)
POP_BLOCK	(opcode)
POP_EXCEPT	(opcode)
pop_font()	(formatter.formatter	method)
POP_JUMP_IF_FALSE	(opcode)
POP_JUMP_IF_TRUE	(opcode)
pop_margin()	(formatter.formatter	method)
pop_source()	(shlex.shlex	method)
pop_style()	(formatter.formatter	method)
POP_TOP	(opcode)
Popen	(class	in	subprocess)
popen()	(in	module	os),	[1],	[2]

(in	module	platform)
popitem()	(collections.OrderedDict	method)

(dict	method)
(mailbox.Mailbox	method)

PyModule_AddIntMacro	(C	function)
PyModule_AddObject	(C	function)
PyModule_AddStringConstant	(C	function)
PyModule_AddStringMacro	(C	function)
PyModule_Check	(C	function)
PyModule_CheckExact	(C	function)
PyModule_Create	(C	function)
PyModule_Create2	(C	function)
PyModule_GetDef	(C	function)
PyModule_GetDict	(C	function)
PyModule_GetFilename	(C	function)
PyModule_GetFilenameObject	(C	function)
PyModule_GetName	(C	function)
PyModule_GetNameObject	(C	function)
PyModule_GetState	(C	function)
PyModule_New	(C	function)
PyModule_NewObject	(C	function)
PyModule_Type	(C	variable)
PyModuleDef	(C	type)
PyModuleDef.m_base	(C	member)
PyModuleDef.m_clear	(C	member)
PyModuleDef.m_doc	(C	member)
PyModuleDef.m_free	(C	member)
PyModuleDef.m_methods	(C	member)
PyModuleDef.m_name	(C	member)
PyModuleDef.m_reload	(C	member)
PyModuleDef.m_size	(C	member)
PyModuleDef.m_traverse	(C	member)
PyNumber_Absolute	(C	function)
PyNumber_Add	(C	function)
PyNumber_And	(C	function)
PyNumber_AsSsize_t	(C	function)
PyNumber_Check	(C	function)
PyNumber_Divmod	(C	function)
PyNumber_Float	(C	function)
PyNumber_FloorDivide	(C	function)
PyNumber_Index	(C	function)
PyNumber_InPlaceAdd	(C	function)
PyNumber_InPlaceAnd	(C	function)

popleft()	(collections.deque	method)
poplib	(module)
PopupMenu	(class	in	tkinter.tix)
port	(http.cookiejar.Cookie	attribute)
port_specified	(http.cookiejar.Cookie	attribute)
portion

:	package
pos	(re.match	attribute)
pos()	(in	module	operator)

(in	module	turtle)
position	(xml.etree.ElementTree.ParseError	attribute)
position()	(in	module	turtle)
positional	argument
POSIX

I/O	control
threads

posix	(module)
POSIX_FADV_DONTNEED	(in	module	os)
POSIX_FADV_NOREUSE	(in	module	os)
POSIX_FADV_NORMAL	(in	module	os)
POSIX_FADV_RANDOM	(in	module	os)
POSIX_FADV_SEQUENTIAL	(in	module	os)
POSIX_FADV_WILLNEED	(in	module	os)
posix_fadvise()	(in	module	os)
posix_fallocate()	(in	module	os)
POSIXLY_CORRECT
PosixPath	(class	in	pathlib)
post()	(nntplib.NNTP	method)

(ossaudiodev.oss_audio_device	method)
post_mortem()	(in	module	pdb)
post_setup()	(venv.EnvBuilder	method)
postcmd()	(cmd.Cmd	method)
postloop()	(cmd.Cmd	method)
pow

built-in	function,	[1],	[2],	[3],	[4],	[5]
pow()	(built-in	function)

(in	module	math)
(in	module	operator)

PyNumber_InPlaceFloorDivide	(C	function)
PyNumber_InPlaceLshift	(C	function)
PyNumber_InPlaceMultiply	(C	function)
PyNumber_InPlaceOr	(C	function)
PyNumber_InPlacePower	(C	function)
PyNumber_InPlaceRemainder	(C	function)
PyNumber_InPlaceRshift	(C	function)
PyNumber_InPlaceSubtract	(C	function)
PyNumber_InPlaceTrueDivide	(C	function)
PyNumber_InPlaceXor	(C	function)
PyNumber_Invert	(C	function)
PyNumber_Long	(C	function)
PyNumber_Lshift	(C	function)
PyNumber_Multiply	(C	function)
PyNumber_Negative	(C	function)
PyNumber_Or	(C	function)
PyNumber_Positive	(C	function)
PyNumber_Power	(C	function)
PyNumber_Remainder	(C	function)
PyNumber_Rshift	(C	function)
PyNumber_Subtract	(C	function)
PyNumber_ToBase	(C	function)
PyNumber_TrueDivide	(C	function)
PyNumber_Xor	(C	function)
PyNumberMethods	(C	type)
PyObject	(C	type)
PyObject._ob_next	(C	member)
PyObject._ob_prev	(C	member)
PyObject.ob_refcnt	(C	member)
PyObject.ob_type	(C	member)
PyObject_AsCharBuffer	(C	function)
PyObject_ASCII	(C	function)
PyObject_AsFileDescriptor	(C	function)
PyObject_AsReadBuffer	(C	function)
PyObject_AsWriteBuffer	(C	function)
PyObject_Bytes	(C	function)
PyObject_Call	(C	function)
PyObject_CallFunction	(C	function)
PyObject_CallFunctionObjArgs	(C	function)

power()	(decimal.Context	method)
pp	(pdb	command)
pprint	(module)
pprint()	(in	module	pprint)

(pprint.PrettyPrinter	method)
prcal()	(in	module	calendar)
pread()	(in	module	os)
preamble	(email.message.Message	attribute)
precedence

operator
precmd()	(cmd.Cmd	method)
prefix,	[1],	[2],	[3]
PREFIX	(in	module	distutils.sysconfig)
prefix	(in	module	sys)

(xml.dom.Attr	attribute)
(xml.dom.Node	attribute)
(zipimport.zipimporter	attribute)

PREFIXES	(in	module	site)
prefixlen	(ipaddress.IPv4Network	attribute)

(ipaddress.IPv6Network	attribute)
preloop()	(cmd.Cmd	method)
prepare()	(logging.handlers.QueueHandler	method)

(logging.handlers.QueueListener	method)
prepare_class()	(in	module	types)
prepare_input_source()	(in	module	xml.sax.saxutils)
prepend()	(pipes.Template	method)
preprocess()	(distutils.ccompiler.CCompiler	method)
PrettyPrinter	(class	in	pprint)
prev()	(tkinter.ttk.Treeview	method)
previousSibling	(xml.dom.Node	attribute)
primary
print

built-in	function
print	(2to3	fixer)
print()	(built-in	function)

__str__()	(object	method)
print_callees()	(pstats.Stats	method)

PyObject_CallMethod	(C	function)
PyObject_CallMethodObjArgs	(C	function)
PyObject_CallObject	(C	function)
PyObject_CallObject()
PyObject_CheckBuffer	(C	function)
PyObject_CheckReadBuffer	(C	function)
PyObject_Del	(C	function)
PyObject_DelAttr	(C	function)
PyObject_DelAttrString	(C	function)
PyObject_DelItem	(C	function)
PyObject_Dir	(C	function)
PyObject_GC_Del	(C	function)
PyObject_GC_New	(C	function)
PyObject_GC_NewVar	(C	function)
PyObject_GC_Resize	(C	function)
PyObject_GC_Track	(C	function)
PyObject_GC_UnTrack	(C	function)
PyObject_GenericGetAttr	(C	function)
PyObject_GenericSetAttr	(C	function)
PyObject_GetArenaAllocator	(C	function)
PyObject_GetAttr	(C	function)
PyObject_GetAttrString	(C	function)
PyObject_GetBuffer	(C	function)
PyObject_GetItem	(C	function)
PyObject_GetIter	(C	function)
PyObject_HasAttr	(C	function)
PyObject_HasAttrString	(C	function)
PyObject_Hash	(C	function)
PyObject_HashNotImplemented	(C
function)
PyObject_HEAD	(C	macro)
PyObject_HEAD_INIT	(C	macro)
PyObject_Init	(C	function)
PyObject_InitVar	(C	function)
PyObject_IsInstance	(C	function)
PyObject_IsSubclass	(C	function)
PyObject_IsTrue	(C	function)
PyObject_Length	(C	function)
PyObject_LengthHint	(C	function)

print_callers()	(pstats.Stats	method)
print_directory()	(in	module	cgi)
print_environ()	(in	module	cgi)
print_environ_usage()	(in	module	cgi)
print_exc()	(in	module	traceback)

(timeit.Timer	method)
print_exception()	(in	module	traceback)
PRINT_EXPR	(opcode)
print_form()	(in	module	cgi)
print_help()	(argparse.ArgumentParser	method)
print_last()	(in	module	traceback)
print_stack()	(asyncio.Task	method)

(in	module	traceback)
print_stats()	(profile.Profile	method)

(pstats.Stats	method)
print_tb()	(in	module	traceback)
print_usage()	(argparse.ArgumentParser	method)

(optparse.OptionParser	method)
print_version()	(optparse.OptionParser	method)
printable	(in	module	string)
printdir()	(zipfile.ZipFile	method)
printf-style	formatting
PRIO_PGRP	(in	module	os)
PRIO_PROCESS	(in	module	os)
PRIO_USER	(in	module	os)
PriorityQueue	(class	in	asyncio)

(class	in	queue)
private

names
prlimit()	(in	module	resource)
prmonth()	(calendar.TextCalendar	method)

(in	module	calendar)
procedure

call
process

group,	[1]
id

PyObject_New	(C	function)
PyObject_NewVar	(C	function)
PyObject_Not	(C	function)
PyObject_Print	(C	function)
PyObject_Repr	(C	function)
PyObject_RichCompare	(C	function)
PyObject_RichCompareBool	(C	function)
PyObject_SetArenaAllocator	(C	function)
PyObject_SetAttr	(C	function)
PyObject_SetAttrString	(C	function)
PyObject_SetItem	(C	function)
PyObject_Size	(C	function)
PyObject_Str	(C	function)
PyObject_Type	(C	function)
PyObject_TypeCheck	(C	function)
PyObject_VAR_HEAD	(C	macro)
PyObjectArenaAllocator	(C	type)
PyOS_AfterFork	(C	function)
PyOS_CheckStack	(C	function)
PyOS_double_to_string	(C	function)
PyOS_getsig	(C	function)
PyOS_InputHook	(C	variable)
PyOS_ReadlineFunctionPointer	(C
variable)
PyOS_setsig	(C	function)
PyOS_snprintf	(C	function)
PyOS_stricmp	(C	function)
PyOS_string_to_double	(C	function)
PyOS_strnicmp	(C	function)
PyOS_vsnprintf	(C	function)
PyParser_SimpleParseFile	(C	function)
PyParser_SimpleParseFileFlags	(C
function)
PyParser_SimpleParseString	(C	function)
PyParser_SimpleParseStringFlags	(C
function)
PyParser_SimpleParseStringFlagsFilename
(C	function)
PyPI

id	of	parent
killing,	[1]
scheduling	priority,	[1]
signalling,	[1]

Process	(class	in	multiprocessing)
process()	(logging.LoggerAdapter	method)
process_exited()	(asyncio.SubprocessProtocol
method)
process_message()	(smtpd.SMTPServer	method)
process_request()	(socketserver.BaseServer
method)
process_time()	(in	module	time)
ProcessError
processes,	light-weight
ProcessingInstruction()	(in	module
xml.etree.ElementTree)
processingInstruction()
(xml.sax.handler.ContentHandler	method)
ProcessingInstructionHandler()
(xml.parsers.expat.xmlparser	method)
ProcessLookupError
processor	time
processor()	(in	module	platform)
ProcessPoolExecutor	(class	in	concurrent.futures)
product()	(in	module	itertools)
Profile	(class	in	profile)
profile	(module)
profile	function,	[1],	[2]
profiler,	[1]
profiling,	deterministic
program
Progressbar	(class	in	tkinter.ttk)
prompt	(cmd.Cmd	attribute)
prompt_user_passwd()
(urllib.request.FancyURLopener	method)
prompts,	interpreter
propagate	(logging.Logger	attribute)
property	list

(see	Python	Package	Index	(PyPI))
PyProperty_Type	(C	variable)
PyRun_AnyFile	(C	function)
PyRun_AnyFileEx	(C	function)
PyRun_AnyFileExFlags	(C	function)
PyRun_AnyFileFlags	(C	function)
PyRun_File	(C	function)
PyRun_FileEx	(C	function)
PyRun_FileExFlags	(C	function)
PyRun_FileFlags	(C	function)
PyRun_InteractiveLoop	(C	function)
PyRun_InteractiveLoopFlags	(C	function)
PyRun_InteractiveOne	(C	function)
PyRun_InteractiveOneFlags	(C	function)
PyRun_SimpleFile	(C	function)
PyRun_SimpleFileEx	(C	function)
PyRun_SimpleFileExFlags	(C	function)
PyRun_SimpleString	(C	function)
PyRun_SimpleStringFlags	(C	function)
PyRun_String	(C	function)
PyRun_StringFlags	(C	function)
PySeqIter_Check	(C	function)
PySeqIter_New	(C	function)
PySeqIter_Type	(C	variable)
PySequence_Check	(C	function)
PySequence_Concat	(C	function)
PySequence_Contains	(C	function)
PySequence_Count	(C	function)
PySequence_DelItem	(C	function)
PySequence_DelSlice	(C	function)
PySequence_Fast	(C	function)
PySequence_Fast_GET_ITEM	(C	function)
PySequence_Fast_GET_SIZE	(C	function)
PySequence_Fast_ITEMS	(C	function)
PySequence_GetItem	(C	function)
PySequence_GetItem()
PySequence_GetSlice	(C	function)
PySequence_Index	(C	function)
PySequence_InPlaceConcat	(C	function)

property()	(built-in	function)
property_declaration_handler	(in	module
xml.sax.handler)
property_dom_node	(in	module	xml.sax.handler)
property_lexical_handler	(in	module	xml.sax.handler)
property_xml_string	(in	module	xml.sax.handler)
PropertyMock	(class	in	unittest.mock)
prot_c()	(ftplib.FTP_TLS	method)
prot_p()	(ftplib.FTP_TLS	method)
proto	(socket.socket	attribute)
protocol

CGI
FTP,	[1]
HTTP,	[1],	[2],	[3],	[4]
IMAP4
IMAP4_SSL
IMAP4_stream
NNTP
POP3
SMTP
Telnet
context	management
copy
iterator

Protocol	(class	in	asyncio)
protocol	(ssl.SSLContext	attribute)
PROTOCOL_SSLv2	(in	module	ssl)
PROTOCOL_SSLv23	(in	module	ssl)
PROTOCOL_SSLv3	(in	module	ssl)
PROTOCOL_TLSv1	(in	module	ssl)
PROTOCOL_TLSv1_1	(in	module	ssl)
PROTOCOL_TLSv1_2	(in	module	ssl)
protocol_version
(http.server.BaseHTTPRequestHandler	attribute)
PROTOCOL_VERSION	(imaplib.IMAP4	attribute)
provisional	API
provisional	package

PySequence_InPlaceRepeat	(C	function)
PySequence_ITEM	(C	function)
PySequence_Length	(C	function)
PySequence_List	(C	function)
PySequence_Repeat	(C	function)
PySequence_SetItem	(C	function)
PySequence_SetSlice	(C	function)
PySequence_Size	(C	function)
PySequence_Tuple	(C	function)
PySequenceMethods	(C	type)
PySequenceMethods.sq_ass_item	(C
member)
PySequenceMethods.sq_concat	(C
member)
PySequenceMethods.sq_contains	(C
member)
PySequenceMethods.sq_inplace_concat	(C
member)
PySequenceMethods.sq_inplace_repeat	(C
member)
PySequenceMethods.sq_item	(C	member)
PySequenceMethods.sq_length	(C
member)
PySequenceMethods.sq_repeat	(C
member)
PySet_Add	(C	function)
PySet_Check	(C	function)
PySet_Clear	(C	function)
PySet_ClearFreeList	(C	function)
PySet_Contains	(C	function)
PySet_Discard	(C	function)
PySet_GET_SIZE	(C	function)
PySet_New	(C	function)
PySet_Pop	(C	function)
PySet_Size	(C	function)
PySet_Type	(C	variable)
PySetObject	(C	type)
PySignal_SetWakeupFd	(C	function)
PySlice_Check	(C	function)

proxy()	(in	module	weakref)
proxyauth()	(imaplib.IMAP4	method)
ProxyBasicAuthHandler	(class	in	urllib.request)
ProxyDigestAuthHandler	(class	in	urllib.request)
ProxyHandler	(class	in	urllib.request)
ProxyType	(in	module	weakref)
ProxyTypes	(in	module	weakref)
pryear()	(calendar.TextCalendar	method)
ps1	(in	module	sys)
ps2	(in	module	sys)
pstats	(module)
pstdev()	(in	module	statistics)
pthread_kill()	(in	module	signal)
pthread_sigmask()	(in	module	signal)
pthreads
pty

module
pty	(module)
pu()	(in	module	turtle)
publicId	(xml.dom.DocumentType	attribute)
PullDom	(class	in	xml.dom.pulldom)
punctuation	(in	module	string)
PurePath	(class	in	pathlib)
PurePath.anchor	(in	module	pathlib)
PurePath.drive	(in	module	pathlib)
PurePath.name	(in	module	pathlib)
PurePath.parent	(in	module	pathlib)
PurePath.parents	(in	module	pathlib)
PurePath.parts	(in	module	pathlib)
PurePath.root	(in	module	pathlib)
PurePath.stem	(in	module	pathlib)
PurePath.suffix	(in	module	pathlib)
PurePath.suffixes	(in	module	pathlib)
PurePosixPath	(class	in	pathlib)
PureProxy	(class	in	smtpd)
PureWindowsPath	(class	in	pathlib)
purge()	(in	module	re)
Purpose.CLIENT_AUTH	(in	module	ssl)
Purpose.SERVER_AUTH	(in	module	ssl)

PySlice_GetIndices	(C	function)
PySlice_GetIndicesEx	(C	function)
PySlice_New	(C	function)
PySlice_Type	(C	variable)
PyState_AddModule	(C	function)
PyState_FindModule	(C	function)
PyState_RemoveModule	(C	function)
PyStructSequence_Desc	(C	type)
PyStructSequence_Field	(C	type)
PyStructSequence_GET_ITEM	(C	function)
PyStructSequence_GetItem	(C	function)
PyStructSequence_InitType	(C	function)
PyStructSequence_InitType2	(C	function)
PyStructSequence_New	(C	function)
PyStructSequence_NewType	(C	function)
PyStructSequence_SET_ITEM	(C	function)
PyStructSequence_SetItem	(C	function)
PyStructSequence_UnnamedField	(C
variable)
PySys_AddWarnOption	(C	function)
PySys_AddWarnOptionUnicode	(C
function)
PySys_AddXOption	(C	function)
PySys_FormatStderr	(C	function)
PySys_FormatStdout	(C	function)
PySys_GetObject	(C	function)
PySys_GetXOptions	(C	function)
PySys_ResetWarnOptions	(C	function)
PySys_SetArgv	(C	function)
PySys_SetArgv()
PySys_SetArgvEx	(C	function)
PySys_SetArgvEx()
PySys_SetObject	(C	function)
PySys_SetPath	(C	function)
PySys_WriteStderr	(C	function)
PySys_WriteStdout	(C	function)
Python	3000
Python	Editor
Python	Enhancement	Proposals

push()	(asynchat.async_chat	method)
(asynchat.fifo	method)
(code.InteractiveConsole	method)
(contextlib.ExitStack	method)

push_alignment()	(formatter.formatter	method)
push_font()	(formatter.formatter	method)
push_margin()	(formatter.formatter	method)
push_source()	(shlex.shlex	method)
push_style()	(formatter.formatter	method)
push_token()	(shlex.shlex	method)
push_with_producer()	(asynchat.async_chat
method)
pushbutton()	(msilib.Dialog	method)
put()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(multiprocessing.SimpleQueue	method)
(queue.Queue	method)

put_nowait()	(asyncio.Queue	method)
(multiprocessing.Queue	method)
(queue.Queue	method)

putch()	(in	module	msvcrt)
putenv()	(in	module	os)
putheader()	(http.client.HTTPConnection	method)
putp()	(in	module	curses)
putrequest()	(http.client.HTTPConnection	method)
putwch()	(in	module	msvcrt)
putwin()	(curses.window	method)
pvariance()	(in	module	statistics)
pwd

module
pwd	(module)
pwd()	(ftplib.FTP	method)
pwrite()	(in	module	os)
Py_AddPendingCall	(C	function)
Py_AddPendingCall()
Py_AtExit	(C	function)
Py_BEGIN_ALLOW_THREADS

PEP	0004
PEP	0008
PEP	0011
PEP	0205
PEP	0237
PEP	0238
PEP	0255
PEP	0274
PEP	0328
PEP	0342
PEP	0343,	[1]
PEP	0352
PEP	0380
PEP	100
PEP	11
PEP	205
PEP	207
PEP	208
PEP	217
PEP	218,	[1],	
PEP	227,	[1],	
PEP	229
PEP	230,	[1]
PEP	232
PEP	234
PEP	235
PEP	236,	[1],	
PEP	237,	[1],	
PEP	238,	[1],	
PEP	241
PEP	243
PEP	246
PEP	247
PEP	249,	[1],	

(C	macro)
Py_BLOCK_THREADS	(C	macro)
Py_buffer	(C	type)
Py_buffer.buf	(C	member)
Py_buffer.format	(C	member)
Py_buffer.internal	(C	member)
Py_buffer.itemsize	(C	member)
Py_buffer.len	(C	member)
Py_buffer.ndim	(C	member)
Py_buffer.obj	(C	member)
Py_buffer.readonly	(C	member)
Py_buffer.shape	(C	member)
Py_buffer.strides	(C	member)
Py_buffer.suboffsets	(C	member)
Py_BuildValue	(C	function)
Py_CLEAR	(C	function)
py_compile	(module)
PY_COMPILED	(in	module	imp)
Py_CompileString	(C	function)
Py_CompileString(),	[1],	[2]
Py_CompileStringExFlags	(C	function)
Py_CompileStringFlags	(C	function)
Py_CompileStringObject	(C	function)
Py_complex	(C	type)
Py_DECREF	(C	function)
Py_DECREF()
Py_END_ALLOW_THREADS

(C	macro)
Py_EndInterpreter	(C	function)
Py_EnterRecursiveCall	(C	function)
Py_eval_input	(C	variable)
Py_Exit	(C	function)
Py_False	(C	variable)
Py_FatalError	(C	function)
Py_FatalError()
Py_FdIsInteractive	(C	function)
Py_file_input	(C	variable)
Py_Finalize	(C	function)

PEP	252,	[1]
PEP	253,	[1],	
PEP	255,	[1],	
PEP	261,	[1]
PEP	263,	[1],	
PEP	264
PEP	273,	[1],	
PEP	275
PEP	277
PEP	278,	[1]
PEP	279
PEP	282,	[1],	
PEP	285,	[1]
PEP	288
PEP	289,	[1],	
PEP	292,	[1]
PEP	293
PEP	3000
PEP	301,	[1]
PEP	302,	[1],	
[9],	 [10],	 [11],	
[17],	[18],	[19]
[25],	[26],	[27]
[33],	[34]
PEP	305,	[1]
PEP	307,	[1],	
PEP	308,	[1],	
PEP	309
PEP	3100
PEP	3101,	[1]
PEP	3102
PEP	3104,	[1]
PEP	3105,	[1]
PEP	3106

Py_Finalize(),	[1],	[2],	[3],	[4]
PY_FROZEN	(in	module	imp)
Py_GetBuildInfo	(C	function)
Py_GetCompiler	(C	function)
Py_GetCopyright	(C	function)
Py_GetExecPrefix	(C	function)
Py_GetExecPrefix()
Py_GetPath	(C	function)
Py_GetPath(),	[1],	[2]
Py_GetPlatform	(C	function)
Py_GetPrefix	(C	function)
Py_GetPrefix()
Py_GetProgramFullPath	(C	function)
Py_GetProgramFullPath()
Py_GetProgramName	(C	function)
Py_GetPythonHome	(C	function)
Py_GetVersion	(C	function)
Py_INCREF	(C	function)
Py_INCREF()
Py_Initialize	(C	function)
Py_Initialize(),	[1],	[2],	[3]
Py_InitializeEx	(C	function)
Py_IsInitialized	(C	function)
Py_IsInitialized()
Py_LeaveRecursiveCall	(C	function)
Py_Main	(C	function)
Py_NewInterpreter	(C	function)
Py_None	(C	variable)
Py_NotImplemented	(C	variable)
py_object	(class	in	ctypes)
Py_PRINT_RAW
Py_ReprEnter	(C	function)
Py_ReprLeave	(C	function)
Py_RETURN_FALSE	(C	macro)
Py_RETURN_NONE	(C	macro)
Py_RETURN_NOTIMPLEMENTED	(C	macro)
Py_RETURN_TRUE	(C	macro)
Py_SetPath	(C	function)
Py_SetPath()

PEP	3107,	[1]
PEP	3108,	[1]
PEP	3109,	[1]
PEP	3110,	[1]
PEP	3111
PEP	3112,	[1]
PEP	3113
PEP	3114
PEP	3115,	[1]
PEP	3116,	[1]
PEP	3118,	[1]
PEP	3119,	[1]
PEP	3120,	[1]
PEP	3121,	[1]
PEP	3123
PEP	3127
PEP	3129,	[1]
PEP	3131,	[1]
PEP	3132,	[1]
PEP	3134,	[1]
PEP	3135,	[1]
PEP	3137
PEP	3138
PEP	314,	[1]
PEP	3141,	[1]
PEP	3144
PEP	3147,	 [1]
[8],	 [9],	 [10],	
[16],	[17],	[18]
PEP	3148,	[1]
PEP	3149,	[1]
PEP	3151,	[1]
PEP	3153
PEP	3154,	[1]

Py_SetProgramName	(C	function)
Py_SetProgramName(),	[1],	[2],	[3]
Py_SetPythonHome	(C	function)
Py_SetStandardStreamEncoding	(C	function)
Py_single_input	(C	variable)
PY_SOURCE	(in	module	imp)
PY_SSIZE_T_MAX
Py_TPFLAGS_BASETYPE	(built-in	variable)
Py_TPFLAGS_DEFAULT	(built-in	variable)
Py_TPFLAGS_HAVE_FINALIZE	(built-in	variable)
Py_TPFLAGS_HAVE_GC	(built-in	variable)
Py_TPFLAGS_HEAPTYPE	(built-in	variable)
Py_TPFLAGS_READY	(built-in	variable)
Py_TPFLAGS_READYING	(built-in	variable)
Py_tracefunc	(C	type)
Py_True	(C	variable)
Py_UCS1	(C	type)
Py_UCS2	(C	type)
Py_UCS4	(C	type)
Py_UCS4_strcat	(C	function)
Py_UCS4_strchr	(C	function)
Py_UCS4_strcmp	(C	function)
Py_UCS4_strcpy	(C	function)
Py_UCS4_strlen	(C	function)
Py_UCS4_strncmp	(C	function)
Py_UCS4_strncpy	(C	function)
Py_UCS4_strrchr	(C	function)
Py_UNBLOCK_THREADS	(C	macro)
Py_UNICODE	(C	type)
Py_UNICODE_IS_HIGH_SURROGATE	(C	macro)
Py_UNICODE_IS_LOW_SURROGATE	(C	macro)
Py_UNICODE_IS_SURROGATE	(C	macro)
Py_UNICODE_ISALNUM	(C	function)
Py_UNICODE_ISALPHA	(C	function)
Py_UNICODE_ISDECIMAL	(C	function)
Py_UNICODE_ISDIGIT	(C	function)
Py_UNICODE_ISLINEBREAK	(C	function)
Py_UNICODE_ISLOWER	(C	function)
Py_UNICODE_ISNUMERIC	(C	function)

PEP	3155,	[1]
PEP	3156,	[1]
PEP	318,	[1],	
PEP	322,	[1]
PEP	324,	[1]
PEP	325
PEP	327
PEP	328,	[1],	
[9]
PEP	331
PEP	333,	[1],	
PEP	3333,	 [1]
[8],	[9],	[10],	[11]
PEP	338,	[1],	
PEP	339
PEP	341
PEP	342,	[1],	
PEP	343,	[1],	
PEP	347
PEP	352,	[1]
PEP	353,	[1],	
PEP	356
PEP	357
PEP	361
PEP	362,	[1],	
PEP	366,	[1],	
PEP	370,	[1],	
PEP	371
PEP	372,	[1]
PEP	373
PEP	378,	[1],	
PEP	380,	[1],	
PEP	383,	[1],	
PEP	384

Py_UNICODE_ISPRINTABLE	(C	function)
Py_UNICODE_ISSPACE	(C	function)
Py_UNICODE_ISTITLE	(C	function)
Py_UNICODE_ISUPPER	(C	function)
Py_UNICODE_JOIN_SURROGATES	(C	macro)
Py_UNICODE_TODECIMAL	(C	function)
Py_UNICODE_TODIGIT	(C	function)
Py_UNICODE_TOLOWER	(C	function)
Py_UNICODE_TONUMERIC	(C	function)
Py_UNICODE_TOTITLE	(C	function)
Py_UNICODE_TOUPPER	(C	function)
Py_VaBuildValue	(C	function)
Py_VISIT	(C	function)
Py_XDECREF	(C	function)
Py_XDECREF()
Py_XINCREF	(C	function)
PyAnySet_Check	(C	function)
PyAnySet_CheckExact	(C	function)
PyArg_Parse	(C	function)
PyArg_ParseTuple	(C	function)
PyArg_ParseTuple()
PyArg_ParseTupleAndKeywords	(C	function)
PyArg_ParseTupleAndKeywords()
PyArg_UnpackTuple	(C	function)
PyArg_ValidateKeywordArguments	(C	function)
PyArg_VaParse	(C	function)
PyArg_VaParseTupleAndKeywords	(C	function)
PyASCIIObject	(C	type)
PyBool_Check	(C	function)
PyBool_FromLong	(C	function)
PyBUF_ANY_CONTIGUOUS	(C	macro)
PyBUF_C_CONTIGUOUS	(C	macro)
PyBUF_CONTIG	(C	macro)
PyBUF_CONTIG_RO	(C	macro)
PyBUF_F_CONTIGUOUS	(C	macro)
PyBUF_FORMAT	(C	macro)
PyBUF_FULL	(C	macro)
PyBUF_FULL_RO	(C	macro)
PyBUF_INDIRECT	(C	macro)

PEP	385
PEP	389,	[1]
PEP	391,	[1]
PEP	392
PEP	393,	[1],	
[9]
PEP	397,	[1],	
PEP	398
PEP	405,	[1]
PEP	409
PEP	411
PEP	412
PEP	414,	[1]
PEP	418
PEP	420,	[1],	
[9],	[10],	[11]
PEP	421
PEP	424,	[1]
PEP	428,	[1],	
PEP	429
PEP	435,	[1],	
PEP	436,	[1],	
PEP	442,	[1],	
PEP	443,	[1],	
PEP	445,	[1],	
PEP	446,	[1],	
PEP	450,	[1],	
PEP	451,	[1],	
PEP	453,	[1],	
PEP	454,	[1],	
PEP	456,	[1]
PEP	5,	[1]
PEP	6
PEP	8,	[1],	[2]

PyBUF_ND	(C	macro),	[1]
PyBUF_RECORDS	(C	macro)
PyBUF_RECORDS_RO	(C	macro)
PyBUF_SIMPLE	(C	macro)
PyBUF_STRIDED	(C	macro)
PyBUF_STRIDED_RO	(C	macro)
PyBUF_STRIDES	(C	macro)
PyBUF_WRITABLE	(C	macro)
PyBuffer_FillContiguousStrides	(C	function)
PyBuffer_FillInfo	(C	function)
PyBuffer_IsContiguous	(C	function)
PyBuffer_Release	(C	function)
PyBuffer_SizeFromFormat	(C	function)
PyBufferProcs

(C	type)
PyBufferProcs.bf_getbuffer	(C	member)
PyBufferProcs.bf_releasebuffer	(C	member)
PyByteArray_AS_STRING	(C	function)
PyByteArray_AsString	(C	function)
PyByteArray_Check	(C	function)
PyByteArray_CheckExact	(C	function)
PyByteArray_Concat	(C	function)
PyByteArray_FromObject	(C	function)
PyByteArray_FromStringAndSize	(C	function)
PyByteArray_GET_SIZE	(C	function)
PyByteArray_Resize	(C	function)
PyByteArray_Size	(C	function)
PyByteArray_Type	(C	variable)
PyByteArrayObject	(C	type)
PyBytes_AS_STRING	(C	function)
PyBytes_AsString	(C	function)
PyBytes_AsStringAndSize	(C	function)
PyBytes_Check	(C	function)
PyBytes_CheckExact	(C	function)
PyBytes_Concat	(C	function)
PyBytes_ConcatAndDel	(C	function)
PyBytes_FromFormat	(C	function)
PyBytes_FromFormatV	(C	function)
PyBytes_FromObject	(C	function)

Python	Package	Index	(PyPI)
.pypirc	file

PYTHON*,	[1],	[2]
python_branch()	(in	module	platform)
python_build()	(in	module	platform)
python_compiler()	(in	module	platform)
PYTHON_DOM
python_implementation()	(in	module
platform)
python_revision()	(in	module	platform)
python_version()	(in	module	platform)
python_version_tuple()	(in	module	platform)
PYTHONASYNCIODEBUG
PYTHONCASEOK
PYTHONDEBUG
PYTHONDOCS
PYTHONDONTWRITEBYTECODE
[3],	[4],	[5]
PYTHONDUMPREFS
PYTHONFAULTHANDLER
PYTHONHASHSEED
PYTHONHOME,	
[8],	[9],	[10]
Pythonic
PYTHONINSPECT
PYTHONIOENCODING
PYTHONNOUSERSITE
PYTHONOPTIMIZE
PYTHONPATH,	[1]
[8],	[9],	[10],	[11],	
[17],	[18],	[19]
PYTHONSTARTUP
[7]
PYTHONTRACEMALLOC
PYTHONUNBUFFERED
PYTHONUSERBASE
PYTHONVERBOSE
PYTHONWARNINGS
PyThreadState,	[1]

PyBytes_FromString	(C	function)
PyBytes_FromStringAndSize	(C	function)
PyBytes_GET_SIZE	(C	function)
PyBytes_Size	(C	function)
PyBytes_Type	(C	variable)
PyBytesObject	(C	type)
PyCallable_Check	(C	function)
PyCallIter_Check	(C	function)
PyCallIter_New	(C	function)
PyCallIter_Type	(C	variable)
PyCapsule	(C	type)
PyCapsule_CheckExact	(C	function)
PyCapsule_Destructor	(C	type)
PyCapsule_GetContext	(C	function)
PyCapsule_GetDestructor	(C	function)
PyCapsule_GetName	(C	function)
PyCapsule_GetPointer	(C	function)
PyCapsule_Import	(C	function)
PyCapsule_IsValid	(C	function)
PyCapsule_New	(C	function)
PyCapsule_SetContext	(C	function)
PyCapsule_SetDestructor	(C	function)
PyCapsule_SetName	(C	function)
PyCapsule_SetPointer	(C	function)
PyCell_Check	(C	function)
PyCell_Get	(C	function)
PyCell_GET	(C	function)
PyCell_New	(C	function)
PyCell_SET	(C	function)
PyCell_Set	(C	function)
PyCell_Type	(C	variable)
PyCellObject	(C	type)
PyCFunction	(C	type)
PyCFunctionWithKeywords	(C	type)
pyclbr	(module)
PyCode_Check	(C	function)
PyCode_GetNumFree	(C	function)
PyCode_New	(C	function)
PyCode_NewEmpty	(C	function)

(C	type)
PyThreadState_Clear	(C	function)
PyThreadState_Delete	(C	function)
PyThreadState_Get	(C	function)
PyThreadState_GetDict	(C	function)
PyThreadState_New	(C	function)
PyThreadState_Next	(C	function)
PyThreadState_SetAsyncExc	(C	function)
PyThreadState_Swap	(C	function)
PyTime_Check	(C	function)
PyTime_CheckExact	(C	function)
PyTime_FromTime	(C	function)
PyTrace_C_CALL	(C	variable)
PyTrace_C_EXCEPTION	(C	variable)
PyTrace_C_RETURN	(C	variable)
PyTrace_CALL	(C	variable)
PyTrace_EXCEPTION	(C	variable)
PyTrace_LINE	(C	variable)
PyTrace_RETURN	(C	variable)
PyTuple_Check	(C	function)
PyTuple_CheckExact	(C	function)
PyTuple_ClearFreeList	(C	function)
PyTuple_GET_ITEM	(C	function)
PyTuple_GET_SIZE	(C	function)
PyTuple_GetItem	(C	function)
PyTuple_GetSlice	(C	function)
PyTuple_New	(C	function)
PyTuple_Pack	(C	function)
PyTuple_SET_ITEM	(C	function)
PyTuple_SetItem	(C	function)
PyTuple_SetItem()
PyTuple_Size	(C	function)
PyTuple_Type	(C	variable)
PyTupleObject	(C	type)
PyType_Check	(C	function)
PyType_CheckExact	(C	function)
PyType_ClearCache	(C	function)
PyType_FromSpec	(C	function)
PyType_FromSpecWithBases	(C	function)

PyCode_Type	(C	variable)
PyCodec_BackslashReplaceErrors	(C	function)
PyCodec_Decode	(C	function)
PyCodec_Decoder	(C	function)
PyCodec_Encode	(C	function)
PyCodec_Encoder	(C	function)
PyCodec_IgnoreErrors	(C	function)
PyCodec_IncrementalDecoder	(C	function)
PyCodec_IncrementalEncoder	(C	function)
PyCodec_KnownEncoding	(C	function)
PyCodec_LookupError	(C	function)
PyCodec_Register	(C	function)
PyCodec_RegisterError	(C	function)
PyCodec_ReplaceErrors	(C	function)
PyCodec_StreamReader	(C	function)
PyCodec_StreamWriter	(C	function)
PyCodec_StrictErrors	(C	function)
PyCodec_XMLCharRefReplaceErrors	(C	function)
PyCodeObject	(C	type)
PyCompactUnicodeObject	(C	type)
PyCompileError
PyCompilerFlags	(C	type)
PyComplex_AsCComplex	(C	function)
PyComplex_Check	(C	function)
PyComplex_CheckExact	(C	function)
PyComplex_FromCComplex	(C	function)
PyComplex_FromDoubles	(C	function)
PyComplex_ImagAsDouble	(C	function)
PyComplex_RealAsDouble	(C	function)
PyComplex_Type	(C	variable)
PyComplexObject	(C	type)
PyDate_Check	(C	function)
PyDate_CheckExact	(C	function)
PyDate_FromDate	(C	function)
PyDate_FromTimestamp	(C	function)
PyDateTime_Check	(C	function)
PyDateTime_CheckExact	(C	function)
PyDateTime_DATE_GET_HOUR	(C	function)
PyDateTime_DATE_GET_MICROSECOND	(C

PyType_GenericAlloc	(C	function)
PyType_GenericGetDict	(C	function)
PyType_GenericNew	(C	function)
PyType_GenericSetDict	(C	function)
PyType_GetFlags	(C	function)
PyType_GetSlot	(C	function)
PyType_HasFeature	(C	function)
PyType_IS_GC	(C	function)
PyType_IsSubtype	(C	function)
PyType_Modified	(C	function)
PyType_Ready	(C	function)
PyType_Type	(C	variable)
PyTypeObject	(C	type)
PyTypeObject.tp_alloc	(C	member)
PyTypeObject.tp_allocs	(C	member)
PyTypeObject.tp_as_buffer	(C	member)
PyTypeObject.tp_base	(C	member)
PyTypeObject.tp_bases	(C	member)
PyTypeObject.tp_basicsize	(C	member)
PyTypeObject.tp_cache	(C	member)
PyTypeObject.tp_call	(C	member)
PyTypeObject.tp_clear	(C	member)
PyTypeObject.tp_dealloc	(C	member)
PyTypeObject.tp_descr_get	(C	member)
PyTypeObject.tp_descr_set	(C	member)
PyTypeObject.tp_dict	(C	member)
PyTypeObject.tp_dictoffset	(C	member)
PyTypeObject.tp_doc	(C	member)
PyTypeObject.tp_finalize	(C	member)
PyTypeObject.tp_flags	(C	member)
PyTypeObject.tp_free	(C	member)
PyTypeObject.tp_frees	(C	member)
PyTypeObject.tp_getattr	(C	member)
PyTypeObject.tp_getattro	(C	member)
PyTypeObject.tp_getset	(C	member)
PyTypeObject.tp_hash	(C	member)
PyTypeObject.tp_init	(C	member)
PyTypeObject.tp_is_gc	(C	member)
PyTypeObject.tp_itemsize	(C	member)

function)
PyDateTime_DATE_GET_MINUTE	(C	function)
PyDateTime_DATE_GET_SECOND	(C	function)
PyDateTime_DELTA_GET_DAYS	(C	function)
PyDateTime_DELTA_GET_MICROSECOND	(C
function)
PyDateTime_DELTA_GET_SECONDS	(C	function)
PyDateTime_FromDateAndTime	(C	function)
PyDateTime_FromTimestamp	(C	function)
PyDateTime_GET_DAY	(C	function)
PyDateTime_GET_MONTH	(C	function)
PyDateTime_GET_YEAR	(C	function)
PyDateTime_TIME_GET_HOUR	(C	function)
PyDateTime_TIME_GET_MICROSECOND	(C
function)
PyDateTime_TIME_GET_MINUTE	(C	function)
PyDateTime_TIME_GET_SECOND	(C	function)
PyDelta_Check	(C	function)
PyDelta_CheckExact	(C	function)
PyDelta_FromDSU	(C	function)
PyDescr_IsData	(C	function)
PyDescr_NewClassMethod	(C	function)
PyDescr_NewGetSet	(C	function)
PyDescr_NewMember	(C	function)
PyDescr_NewMethod	(C	function)
PyDescr_NewWrapper	(C	function)
PyDict_Check	(C	function)
PyDict_CheckExact	(C	function)
PyDict_Clear	(C	function)
PyDict_ClearFreeList	(C	function)
PyDict_Contains	(C	function)
PyDict_Copy	(C	function)
PyDict_DelItem	(C	function)
PyDict_DelItemString	(C	function)
PyDict_GetItem	(C	function)
PyDict_GetItemString	(C	function)
PyDict_GetItemWithError	(C	function)
PyDict_Items	(C	function)
PyDict_Keys	(C	function)

PyTypeObject.tp_iter	(C	member)
PyTypeObject.tp_iternext	(C	member)
PyTypeObject.tp_maxalloc	(C	member)
PyTypeObject.tp_members	(C	member)
PyTypeObject.tp_methods	(C	member)
PyTypeObject.tp_mro	(C	member)
PyTypeObject.tp_name	(C	member)
PyTypeObject.tp_new	(C	member)
PyTypeObject.tp_next	(C	member)
PyTypeObject.tp_print	(C	member)
PyTypeObject.tp_repr	(C	member)
PyTypeObject.tp_reserved	(C	member)
PyTypeObject.tp_richcompare	(C	member)
PyTypeObject.tp_setattr	(C	member)
PyTypeObject.tp_setattro	(C	member)
PyTypeObject.tp_str	(C	member)
PyTypeObject.tp_subclasses	(C	member)
PyTypeObject.tp_traverse	(C	member)
PyTypeObject.tp_weaklist	(C	member)
PyTypeObject.tp_weaklistoffset	(C	member)
PyTZInfo_Check	(C	function)
PyTZInfo_CheckExact	(C	function)
PyUnicode_1BYTE_DATA	(C	function)
PyUnicode_1BYTE_KIND	(C	macro)
PyUnicode_2BYTE_DATA	(C	function)
PyUnicode_2BYTE_KIND	(C	macro)
PyUnicode_4BYTE_DATA	(C	function)
PyUnicode_4BYTE_KIND	(C	macro)
PyUnicode_AS_DATA	(C	function)
PyUnicode_AS_UNICODE	(C	function)
PyUnicode_AsASCIIString	(C	function)
PyUnicode_AsCharmapString	(C	function)
PyUnicode_AsEncodedString	(C	function)
PyUnicode_AsLatin1String	(C	function)
PyUnicode_AsMBCSString	(C	function)
PyUnicode_AsRawUnicodeEscapeString	(C
function)
PyUnicode_AsUCS4	(C	function)
PyUnicode_AsUCS4Copy	(C	function)

PyDict_Merge	(C	function)
PyDict_MergeFromSeq2	(C	function)
PyDict_New	(C	function)
PyDict_Next	(C	function)
PyDict_SetDefault	(C	function)
PyDict_SetItem	(C	function)
PyDict_SetItemString	(C	function)
PyDict_Size	(C	function)
PyDict_Type	(C	variable)
PyDict_Update	(C	function)
PyDict_Values	(C	function)
PyDictObject	(C	type)
PyDictProxy_New	(C	function)
PyDLL	(class	in	ctypes)
pydoc	(module)
PyErr_BadArgument	(C	function)
PyErr_BadInternalCall	(C	function)
PyErr_CheckSignals	(C	function)
PyErr_Clear	(C	function)
PyErr_Clear(),	[1]
PyErr_ExceptionMatches	(C	function)
PyErr_ExceptionMatches()
PyErr_Fetch	(C	function)
PyErr_Fetch()
PyErr_Format	(C	function)
PyErr_GetExcInfo	(C	function)
PyErr_GivenExceptionMatches	(C	function)
PyErr_NewException	(C	function)
PyErr_NewExceptionWithDoc	(C	function)
PyErr_NoMemory	(C	function)
PyErr_NormalizeException	(C	function)
PyErr_Occurred	(C	function)
PyErr_Occurred()
PyErr_Print	(C	function)
PyErr_PrintEx	(C	function)
PyErr_Restore	(C	function)
PyErr_Restore()
PyErr_SetExcFromWindowsErr	(C	function)
PyErr_SetExcFromWindowsErrWithFilename	(C

PyUnicode_AsUnicode	(C	function)
PyUnicode_AsUnicodeAndSize	(C	function)
PyUnicode_AsUnicodeCopy	(C	function)
PyUnicode_AsUnicodeEscapeString	(C
function)
PyUnicode_AsUTF16String	(C	function)
PyUnicode_AsUTF32String	(C	function)
PyUnicode_AsUTF8	(C	function)
PyUnicode_AsUTF8AndSize	(C	function)
PyUnicode_AsUTF8String	(C	function)
PyUnicode_AsWideChar	(C	function)
PyUnicode_AsWideCharString	(C	function)
PyUnicode_Check	(C	function)
PyUnicode_CheckExact	(C	function)
PyUnicode_ClearFreeList	(C	function)
PyUnicode_Compare	(C	function)
PyUnicode_CompareWithASCIIString	(C
function)
PyUnicode_Concat	(C	function)
PyUnicode_Contains	(C	function)
PyUnicode_CopyCharacters	(C	function)
PyUnicode_Count	(C	function)
PyUnicode_DATA	(C	function)
PyUnicode_Decode	(C	function)
PyUnicode_DecodeASCII	(C	function)
PyUnicode_DecodeCharmap	(C	function)
PyUnicode_DecodeFSDefault	(C	function)
PyUnicode_DecodeFSDefaultAndSize	(C
function)
PyUnicode_DecodeLatin1	(C	function)
PyUnicode_DecodeLocale	(C	function)
PyUnicode_DecodeLocaleAndSize	(C
function)
PyUnicode_DecodeMBCS	(C	function)
PyUnicode_DecodeMBCSStateful	(C
function)
PyUnicode_DecodeRawUnicodeEscape	(C
function)
PyUnicode_DecodeUnicodeEscape	(C

function)
PyErr_SetExcFromWindowsErrWithFilenameObject
(C	function)
PyErr_SetExcFromWindowsErrWithFilenameObjects
(C	function)
PyErr_SetExcInfo	(C	function)
PyErr_SetFromErrno	(C	function)
PyErr_SetFromErrnoWithFilename	(C	function)
PyErr_SetFromErrnoWithFilenameObject	(C
function)
PyErr_SetFromErrnoWithFilenameObjects	(C
function)
PyErr_SetFromWindowsErr	(C	function)
PyErr_SetFromWindowsErrWithFilename	(C
function)
PyErr_SetImportError	(C	function)
PyErr_SetInterrupt	(C	function)
PyErr_SetNone	(C	function)
PyErr_SetObject	(C	function)
PyErr_SetString	(C	function)
PyErr_SetString()
PyErr_SyntaxLocation	(C	function)
PyErr_SyntaxLocationEx	(C	function)
PyErr_SyntaxLocationObject	(C	function)
PyErr_WarnEx	(C	function)
PyErr_WarnExplicit	(C	function)
PyErr_WarnExplicitObject	(C	function)
PyErr_WarnFormat	(C	function)
PyErr_WriteUnraisable	(C	function)
PyEval_AcquireLock	(C	function)
PyEval_AcquireThread	(C	function)
PyEval_AcquireThread()
PyEval_EvalCode	(C	function)
PyEval_EvalCodeEx	(C	function)
PyEval_EvalFrame	(C	function)
PyEval_EvalFrameEx	(C	function)
PyEval_GetBuiltins	(C	function)
PyEval_GetCallStats	(C	function)
PyEval_GetFrame	(C	function)

function)
PyUnicode_DecodeUTF16	(C	function)
PyUnicode_DecodeUTF16Stateful	(C
function)
PyUnicode_DecodeUTF32	(C	function)
PyUnicode_DecodeUTF32Stateful	(C
function)
PyUnicode_DecodeUTF7	(C	function)
PyUnicode_DecodeUTF7Stateful	(C
function)
PyUnicode_DecodeUTF8	(C	function)
PyUnicode_DecodeUTF8Stateful	(C
function)
PyUnicode_Encode	(C	function)
PyUnicode_EncodeASCII	(C	function)
PyUnicode_EncodeCharmap	(C	function)
PyUnicode_EncodeCodePage	(C	function)
PyUnicode_EncodeFSDefault	(C	function)
PyUnicode_EncodeLatin1	(C	function)
PyUnicode_EncodeLocale	(C	function)
PyUnicode_EncodeMBCS	(C	function)
PyUnicode_EncodeRawUnicodeEscape	(C
function)
PyUnicode_EncodeUnicodeEscape	(C
function)
PyUnicode_EncodeUTF16	(C	function)
PyUnicode_EncodeUTF32	(C	function)
PyUnicode_EncodeUTF7	(C	function)
PyUnicode_EncodeUTF8	(C	function)
PyUnicode_Fill	(C	function)
PyUnicode_Find	(C	function)
PyUnicode_FindChar	(C	function)
PyUnicode_Format	(C	function)
PyUnicode_FromEncodedObject	(C
function)
PyUnicode_FromFormat	(C	function)
PyUnicode_FromFormatV	(C	function)
PyUnicode_FromKindAndData	(C	function)
PyUnicode_FromObject	(C	function)

PyEval_GetFuncDesc	(C	function)
PyEval_GetFuncName	(C	function)
PyEval_GetGlobals	(C	function)
PyEval_GetLocals	(C	function)
PyEval_InitThreads	(C	function)
PyEval_InitThreads()

PyUnicode_FromString	(C	function)
PyUnicode_FromString()
PyUnicode_FromStringAndSize	(C	function)
PyUnicode_FromUnicode	(C	function)
PyUnicode_FromWideChar	(C	function)
PyUnicode_FSConverter	(C	function)
PyUnicode_FSDecoder	(C	function)
PyUnicode_GET_DATA_SIZE	(C	function)
PyUnicode_GET_LENGTH	(C	function)
PyUnicode_GET_SIZE	(C	function)
PyUnicode_GetLength	(C	function)
PyUnicode_GetSize	(C	function)
PyUnicode_InternFromString	(C	function)
PyUnicode_InternInPlace	(C	function)
PyUnicode_Join	(C	function)
PyUnicode_KIND	(C	function)
PyUnicode_MAX_CHAR_VALUE	(C
function)
PyUnicode_New	(C	function)
PyUnicode_READ	(C	function)
PyUnicode_READ_CHAR	(C	function)
PyUnicode_ReadChar	(C	function)
PyUnicode_READY	(C	function)
PyUnicode_Replace	(C	function)
PyUnicode_RichCompare	(C	function)
PyUnicode_Split	(C	function)
PyUnicode_Splitlines	(C	function)
PyUnicode_Substring	(C	function)
PyUnicode_Tailmatch	(C	function)
PyUnicode_TransformDecimalToASCII	(C
function)
PyUnicode_Translate	(C	function)
PyUnicode_TranslateCharmap	(C	function)
PyUnicode_Type	(C	variable)
PyUnicode_WCHAR_KIND	(C	macro)
PyUnicode_WRITE	(C	function)
PyUnicode_WriteChar	(C	function)
PyUnicodeDecodeError_Create	(C	function)
PyUnicodeDecodeError_GetEncoding	(C

function)
PyUnicodeDecodeError_GetEnd	(C
function)
PyUnicodeDecodeError_GetObject	(C
function)
PyUnicodeDecodeError_GetReason	(C
function)
PyUnicodeDecodeError_GetStart	(C
function)
PyUnicodeDecodeError_SetEnd	(C
function)
PyUnicodeDecodeError_SetReason	(C
function)
PyUnicodeDecodeError_SetStart	(C
function)
PyUnicodeEncodeError_Create	(C	function)
PyUnicodeEncodeError_GetEncoding	(C
function)
PyUnicodeEncodeError_GetEnd	(C
function)
PyUnicodeEncodeError_GetObject	(C
function)
PyUnicodeEncodeError_GetReason	(C
function)
PyUnicodeEncodeError_GetStart	(C
function)
PyUnicodeEncodeError_SetEnd	(C
function)
PyUnicodeEncodeError_SetReason	(C
function)
PyUnicodeEncodeError_SetStart	(C
function)
PyUnicodeObject	(C	type)
PyUnicodeTranslateError_Create	(C
function)
PyUnicodeTranslateError_GetEnd	(C
function)
PyUnicodeTranslateError_GetObject	(C
function)

PyUnicodeTranslateError_GetReason	(C
function)
PyUnicodeTranslateError_GetStart	(C
function)
PyUnicodeTranslateError_SetEnd	(C
function)
PyUnicodeTranslateError_SetReason	(C
function)
PyUnicodeTranslateError_SetStart	(C
function)
PyVarObject	(C	type)
PyVarObject.ob_size	(C	member)
PyVarObject_HEAD_INIT	(C	macro)
PyWeakref_Check	(C	function)
PyWeakref_CheckProxy	(C	function)
PyWeakref_CheckRef	(C	function)
PyWeakref_GET_OBJECT	(C	function)
PyWeakref_GetObject	(C	function)
PyWeakref_NewProxy	(C	function)
PyWeakref_NewRef	(C	function)
PyWrapper_New	(C	function)
PyZipFile	(class	in	zipfile)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	Q
qiflush()	(in	module	curses)
QName	(class	in	xml.etree.ElementTree)
qsize()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(queue.Queue	method)

qualified	name
quantize()	(decimal.Context	method)

(decimal.Decimal	method)
QueryInfoKey()	(in	module	winreg)
QueryReflectionKey()	(in	module	winreg)
QueryValue()	(in	module	winreg)
QueryValueEx()	(in	module	winreg)
Queue	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	queue)

queue	(module)
(sched.scheduler	attribute)

Queue()
(multiprocessing.managers.SyncManager
method)
QueueEmpty
QueueFull
QueueHandler	(class	in	logging.handlers)
QueueListener	(class	in	logging.handlers)

quick_ratio()
(difflib.SequenceMatcher
method)
quit	(built-in	variable)

(pdb	command)
quit()	(ftplib.FTP	method)

(nntplib.NNTP	method)
(poplib.POP3	method)
(smtplib.SMTP
method)

quopri	(module)
quote()	(in	module
email.utils)

(in	module	shlex)
(in	module	urllib.parse)

QUOTE_ALL	(in	module
csv)
quote_from_bytes()	(in
module	urllib.parse)
QUOTE_MINIMAL	(in
module	csv)
QUOTE_NONE	(in
module	csv)
QUOTE_NONNUMERIC
(in	module	csv)
quote_plus()	(in	module
urllib.parse)
quoteattr()	(in	module
xml.sax.saxutils)
quotechar	(csv.Dialect
attribute)
quoted-printable

encoding
quotes	(shlex.shlex

attribute)
quoting	(csv.Dialect
attribute)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	R
R_OK	(in	module	os)
radians()	(in	module	math)

(in	module	turtle)
RadioButtonGroup	(class	in	msilib)
radiogroup()	(msilib.Dialog	method)
radix()	(decimal.Context	method)

(decimal.Decimal	method)
RADIXCHAR	(in	module	locale)
raise

statement,	[1]
raise	(2to3	fixer)
raise	an	exception
raise_on_defect	(email.policy.Policy
attribute)
RAISE_VARARGS	(opcode)
raising

exception
RAND_add()	(in	module	ssl)
RAND_bytes()	(in	module	ssl)
RAND_egd()	(in	module	ssl)
RAND_pseudo_bytes()	(in	module	ssl)
RAND_status()	(in	module	ssl)
randint()	(in	module	random)
random	(module)
random()	(in	module	random)
randrange()	(in	module	random)
range

built-in	function
object

range	(built-in	class)
RARROW	(in	module	token)
ratecv()	(in	module	audioop)
ratio()	(difflib.SequenceMatcher	method)
Rational	(class	in	numbers)
raw	(io.BufferedIOBase	attribute)

ReplacePackage()	(in	module	modulefinder)
report()	(filecmp.dircmp	method)

(modulefinder.ModuleFinder	method)
REPORT_CDIFF	(in	module	doctest)
report_failure()	(doctest.DocTestRunner
method)
report_full_closure()	(filecmp.dircmp	method)
REPORT_NDIFF	(in	module	doctest)
REPORT_ONLY_FIRST_FAILURE	(in	module
doctest)
report_partial_closure()	(filecmp.dircmp
method)
report_start()	(doctest.DocTestRunner	method)
report_success()	(doctest.DocTestRunner
method)
REPORT_UDIFF	(in	module	doctest)
report_unexpected_exception()
(doctest.DocTestRunner	method)
REPORTING_FLAGS	(in	module	doctest)
repr

built-in	function,	[1],	[2]
repr	(2to3	fixer)
Repr	(class	in	reprlib)
repr()	(built-in	function)

__repr__()	(object	method)
repr()	(in	module	reprlib)

(reprlib.Repr	method)
repr1()	(reprlib.Repr	method)
representation

integer
reprlib	(module)
Request	(class	in	urllib.request)
request()	(http.client.HTTPConnection	method)
request_queue_size	(socketserver.BaseServer
attribute)

raw	string
raw()	(in	module	curses)
raw_data_manager	(in	module
email.contentmanager)
raw_decode()	(json.JSONDecoder	method)
raw_input	(2to3	fixer)
raw_input()	(code.InteractiveConsole
method)
RawArray()	(in	module
multiprocessing.sharedctypes)
RawConfigParser	(class	in	configparser)
RawDescriptionHelpFormatter	(class	in
argparse)
RawIOBase	(class	in	io)
RawPen	(class	in	turtle)
RawTextHelpFormatter	(class	in	argparse)
RawTurtle	(class	in	turtle)
RawValue()	(in	module
multiprocessing.sharedctypes)
RBRACE	(in	module	token)
rcpttos	(smtpd.SMTPChannel	attribute)
re

module,	[1]
re	(module)

(re.match	attribute)
read()	(asyncio.StreamReader	method)

(chunk.Chunk	method)
(codecs.StreamReader	method)
(configparser.ConfigParser	method)
(http.client.HTTPResponse	method)
(imaplib.IMAP4	method)
(in	module	mmap)
(in	module	os)
(io.BufferedIOBase	method)
(io.BufferedReader	method)
(io.RawIOBase	method)
(io.TextIOBase	method)

request_uri()	(in	module	wsgiref.util)
request_version
(http.server.BaseHTTPRequestHandler
attribute)
RequestHandlerClass
(socketserver.BaseServer	attribute)
requires()	(in	module	test.support)
reserved	(zipfile.ZipInfo	attribute)
reserved	word
RESERVED_FUTURE	(in	module	uuid)
RESERVED_MICROSOFT	(in	module	uuid)
RESERVED_NCS	(in	module	uuid)
reset()	(bdb.Bdb	method)

(codecs.IncrementalDecoder	method)
(codecs.IncrementalEncoder	method)
(codecs.StreamReader	method)
(codecs.StreamWriter	method)
(html.parser.HTMLParser	method)
(in	module	turtle),	[1]
(ossaudiodev.oss_audio_device	method)
(pipes.Template	method)
(threading.Barrier	method)
(xdrlib.Packer	method)
(xdrlib.Unpacker	method)
(xml.dom.pulldom.DOMEventStream
method)
(xml.sax.xmlreader.IncrementalParser
method)

reset_mock()	(unittest.mock.Mock	method)
reset_prog_mode()	(in	module	curses)
reset_shell_mode()	(in	module	curses)
resetbuffer()	(code.InteractiveConsole	method)
resetlocale()	(in	module	locale)
resetscreen()	(in	module	turtle)
resetty()	(in	module	curses)
resetwarnings()	(in	module	warnings)
resize()	(curses.window	method)

(mimetypes.MimeTypes	method)
(ossaudiodev.oss_audio_device	method)
(urllib.robotparser.RobotFileParser
method)
(zipfile.ZipFile	method)

read1()	(io.BufferedIOBase	method)
(io.BufferedReader	method)
(io.BytesIO	method)

read_all()	(telnetlib.Telnet	method)
read_byte()	(in	module	mmap)
read_dict()	(configparser.ConfigParser
method)
read_eager()	(telnetlib.Telnet	method)
read_environ()	(in	module	wsgiref.handlers)
read_events()
(xml.etree.ElementTree.XMLPullParser
method)
read_file()	(configparser.ConfigParser
method)
read_history_file()	(in	module	readline)
read_init_file()	(in	module	readline)
read_lazy()	(telnetlib.Telnet	method)
read_mime_types()	(in	module	mimetypes)
READ_RESTRICTED
read_sb_data()	(telnetlib.Telnet	method)
read_some()	(telnetlib.Telnet	method)
read_string()	(configparser.ConfigParser
method)
read_token()	(shlex.shlex	method)
read_until()	(telnetlib.Telnet	method)
read_very_eager()	(telnetlib.Telnet	method)
read_very_lazy()	(telnetlib.Telnet	method)
read_windows_registry()
(mimetypes.MimeTypes	method)
readable()	(asyncore.dispatcher	method)

(io.IOBase	method)
readall()	(io.RawIOBase	method)
reader()	(in	module	csv)

(in	module	ctypes)
(in	module	mmap)

resize_term()	(in	module	curses)
resizemode()	(in	module	turtle)
resizeterm()	(in	module	curses)
resolution	(datetime.date	attribute)

(datetime.datetime	attribute)
(datetime.time	attribute)
(datetime.timedelta	attribute)

resolve()	(pathlib.Path	method)
resolve_name()	(in	module	importlib.util)
resolveEntity()	(xml.sax.handler.EntityResolver
method)
resource	(module)
ResourceDenied
ResourceLoader	(class	in	importlib.abc)
ResourceWarning
response	(nntplib.NNTPError	attribute)
response()	(imaplib.IMAP4	method)
ResponseNotReady
responses
(http.server.BaseHTTPRequestHandler
attribute)

(in	module	http.client)
restart	(pdb	command)
restore()	(in	module	difflib)
RESTRICTED
restricted

execution
restype	(ctypes._FuncPtr	attribute)
result()	(asyncio.Future	method)

(concurrent.futures.Future	method)
results()	(trace.Trace	method)
resume_reading()	(asyncio.ReadTransport
method)
resume_writing()	(asyncio.BaseProtocol
method)
retr()	(poplib.POP3	method)

ReadError
readexactly()	(asyncio.StreamReader
method)
readfp()	(configparser.ConfigParser	method)

(mimetypes.MimeTypes	method)
readframes()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

readinto()	(http.client.HTTPResponse
method)

(io.BufferedIOBase	method)
(io.RawIOBase	method)

readline	(module)
readline()	(asyncio.StreamReader	method)

(codecs.StreamReader	method)
(distutils.text_file.TextFile	method)
(file	method)
(imaplib.IMAP4	method)
(in	module	mmap)
(io.IOBase	method)
(io.TextIOBase	method)

readlines()	(codecs.StreamReader	method)
(distutils.text_file.TextFile	method)
(io.IOBase	method)

readlink()	(in	module	os)
readmodule()	(in	module	pyclbr)
readmodule_ex()	(in	module	pyclbr)
READONLY
readonly	(memoryview	attribute)
readPlist()	(in	module	plistlib)
readPlistFromBytes()	(in	module	plistlib)
ReadTransport	(class	in	asyncio)
readv()	(in	module	os)
ready()	(multiprocessing.pool.AsyncResult
method)
Real	(class	in	numbers)
real	(numbers.Complex	attribute)

retrbinary()	(ftplib.FTP	method)
retrieve()	(urllib.request.URLopener	method)
retrlines()	(ftplib.FTP	method)
return

statement,	[1],	[2]
return	(pdb	command)
return_annotation	(inspect.Signature	attribute)
return_ok()	(http.cookiejar.CookiePolicy
method)
RETURN_VALUE	(opcode)
return_value	(unittest.mock.Mock	attribute)
returncode
(asyncio.asyncio.subprocess.Process	attribute)

(subprocess.CalledProcessError	attribute)
(subprocess.Popen	attribute)

reverse()	(array.array	method)
(collections.deque	method)
(in	module	audioop)
(sequence	method)

reverse_order()	(pstats.Stats	method)
reversed()	(built-in	function)
revert()	(http.cookiejar.FileCookieJar	method)
rewind()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

RFC
RFC	1014,	[1]
RFC	1123
RFC	1321
RFC	1422
RFC	1521,	[1],	[2]
RFC	1522,	[1]
RFC	1524,	[1]
RFC	1730
RFC	1738
RFC	1750

Real	Media	File	Format
real_quick_ratio()	(difflib.SequenceMatcher
method)
realloc()
realpath()	(in	module	os.path)
reason	(http.client.HTTPResponse	attribute)

(UnicodeError	attribute)
(ssl.SSLError	attribute)
(urllib.error.HTTPError	attribute)
(urllib.error.URLError	attribute)

reattach()	(tkinter.ttk.Treeview	method)
rebinding

name
reccontrols()	(ossaudiodev.oss_mixer_device
method)
received_data	(smtpd.SMTPChannel
attribute)
received_lines	(smtpd.SMTPChannel
attribute)
recent()	(imaplib.IMAP4	method)
records	(unittest.TestCase	attribute)
rect()	(in	module	cmath)
rectangle()	(in	module	curses.textpad)
recursive_repr()	(in	module	reprlib)
recv()	(asyncore.dispatcher	method)

(multiprocessing.Connection	method)
(socket.socket	method)

recv_bytes()	(multiprocessing.Connection
method)
recv_bytes_into()
(multiprocessing.Connection	method)
recv_into()	(socket.socket	method)
recvfrom()	(socket.socket	method)
recvfrom_into()	(socket.socket	method)
recvmsg()	(socket.socket	method)
recvmsg_into()	(socket.socket	method)
redirect_request()
(urllib.request.HTTPRedirectHandler

RFC	1766,	[1]
RFC	1808,	[1]
RFC	1832,	[1]
RFC	1869,	[1]
RFC	1870,	[1],	[2]
RFC	1894
RFC	1939,	[1]
RFC	2033
RFC	2045,	[1],	[2],	[3]
RFC	2046,	[1],	[2]
RFC	2047,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12]
RFC	2060,	[1]
RFC	2068
RFC	2104,	[1]
RFC	2109,	[1],	[2],	[3]
RFC	2231,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12]
RFC	2342
RFC	2368
RFC	2373,	[1],	[2]
RFC	2396,	[1]
RFC	2397
RFC	2449
RFC	2487
RFC	2595,	[1]
RFC	2616,	[1],	[2],	[3]
RFC	2732,	[1],	[2]
RFC	2774
RFC	2817
RFC	2818,	[1]
RFC	2821
RFC	2822,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12],	[13]

method)
redirect_stdout()	(in	module	contextlib)
redisplay()	(in	module	readline)
redrawln()	(curses.window	method)
redrawwin()	(curses.window	method)
reduce	(2to3	fixer)
reduce()	(in	module	functools)
ref	(class	in	weakref)
reference

attribute
reference	count
reference	counting
ReferenceError,	[1]
ReferenceType	(in	module	weakref)
refold_source	(email.policy.EmailPolicy
attribute)
refresh()	(curses.window	method)
REG_BINARY	(in	module	winreg)
REG_DWORD	(in	module	winreg)
REG_DWORD_BIG_ENDIAN	(in	module
winreg)
REG_DWORD_LITTLE_ENDIAN	(in	module
winreg)
REG_EXPAND_SZ	(in	module	winreg)
REG_FULL_RESOURCE_DESCRIPTOR	(in
module	winreg)
REG_LINK	(in	module	winreg)
REG_MULTI_SZ	(in	module	winreg)
REG_NONE	(in	module	winreg)
REG_RESOURCE_LIST	(in	module	winreg)
REG_RESOURCE_REQUIREMENTS_LIST
(in	module	winreg)
REG_SZ	(in	module	winreg)
register()	(abc.ABCMeta	method)

(in	module	atexit)
(in	module	codecs)
(in	module	faulthandler)
(in	module	webbrowser)

[18],	 [19],	 [20],	 [21],	
[26],	[27],	[28],	[29],	[30]
RFC	2964
RFC	2965,	[1],	[2]
RFC	2980,	[1]
RFC	3056
RFC	3171
RFC	3207
RFC	3229
RFC	3280
RFC	3330
RFC	3454
RFC	3490,	[1],	[2],	[3]
RFC	3492,	[1]
RFC	3493
RFC	3542
RFC	3548,	[1],	[2],	[3]
RFC	3659
RFC	3879
RFC	3927
RFC	3977,	[1],	[2],	[3]
RFC	3986,	[1],	[2],	[3]
RFC	4122,	[1],	[2],	[3]
RFC	4158
RFC	4180
RFC	4193
RFC	4217
RFC	4291
RFC	4366
RFC	4380
RFC	4627,	[1]
RFC	4642
RFC	5246
RFC	5321,	[1],	[2]

(multiprocessing.managers.BaseManager
method)
(select.devpoll	method)
(select.epoll	method)
(select.poll	method)
(selectors.BaseSelector	method)

register_adapter()	(in	module	sqlite3)
register_archive_format()	(in	module	shutil)
register_converter()	(in	module	sqlite3)
register_defect()	(email.policy.Policy	method)
register_dialect()	(in	module	csv)
register_error()	(in	module	codecs)
register_function()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_instance()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_introspection_functions()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_multicall_functions()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_namespace()	(in	module
xml.etree.ElementTree)
register_optionflag()	(in	module	doctest)
register_shape()	(in	module	turtle)
register_unpack_format()	(in	module	shutil)

RFC	5322,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12],	[13]
RFC	5735
RFC	5929
RFC	6066
RFC	6125,	[1]
RFC	6585,	[1],	[2],	[3]
RFC	821,	[1]
RFC	822,	[1],	[2],	[3],	
[10]
RFC	854,	[1]
RFC	959
RFC	977

rfc2109	(http.cookiejar.Cookie	attribute)
rfc2109_as_netscape
(http.cookiejar.DefaultCookiePolicy	attribute)
rfc2965	(http.cookiejar.CookiePolicy	attribute)
rfc822_escape()	(in	module	distutils.util)
RFC_4122	(in	module	uuid)
rfile	(http.server.BaseHTTPRequestHandler
attribute)
rfind()	(in	module	mmap)

(str	method)
rgb_to_hls()	(in	module	colorsys)
rgb_to_hsv()	(in	module	colorsys)
rgb_to_yiq()	(in	module	colorsys)
rglob()	(pathlib.Path	method)
right	(filecmp.dircmp	attribute)
right()	(in	module	turtle)
right_list	(filecmp.dircmp	attribute)
right_only	(filecmp.dircmp	attribute)
RIGHTSHIFT	(in	module	token)
RIGHTSHIFTEQUAL	(in	module	token)
rindex()	(str	method)
rjust()	(str	method)
rlcompleter	(module)
rlecode_hqx()	(in	module	binascii)

registerDOMImplementation()	(in	module
xml.dom)
registerResult()	(in	module	unittest)
regular

package
regular	package
relative

URL
import

relative_to()	(pathlib.PurePath	method)
release()	(_thread.lock	method)

(asyncio.Condition	method)
(asyncio.Lock	method)
(asyncio.Semaphore	method)
(in	module	platform)
(logging.Handler	method)
(memoryview	method)
(threading.Condition	method)
(threading.Lock	method)
(threading.RLock	method)
(threading.Semaphore	method)

release_lock()	(in	module	imp)
reload	(2to3	fixer)
reload()	(in	module	imp)

(in	module	importlib)
relpath()	(in	module	os.path)
remainder()	(decimal.Context	method)
remainder_near()	(decimal.Context	method)

(decimal.Decimal	method)
remove()	(array.array	method)

(collections.deque	method)
(in	module	os)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(sequence	method)
(set	method)

rledecode_hqx()	(in	module	binascii)
RLIM_INFINITY	(in	module	resource)
RLIMIT_AS	(in	module	resource)
RLIMIT_CORE	(in	module	resource)
RLIMIT_CPU	(in	module	resource)
RLIMIT_DATA	(in	module	resource)
RLIMIT_FSIZE	(in	module	resource)
RLIMIT_MEMLOCK	(in	module	resource)
RLIMIT_MSGQUEUE	(in	module	resource)
RLIMIT_NICE	(in	module	resource)
RLIMIT_NOFILE	(in	module	resource)
RLIMIT_NPROC	(in	module	resource)
RLIMIT_NPTS	(in	module	resource)
RLIMIT_OFILE	(in	module	resource)
RLIMIT_RSS	(in	module	resource)
RLIMIT_RTPRIO	(in	module	resource)
RLIMIT_RTTIME	(in	module	resource)
RLIMIT_SBSIZE	(in	module	resource)
RLIMIT_SIGPENDING	(in	module	resource)
RLIMIT_STACK	(in	module	resource)
RLIMIT_SWAP	(in	module	resource)
RLIMIT_VMEM	(in	module	resource)
RLock	(class	in	multiprocessing)

(class	in	threading)
RLock()
(multiprocessing.managers.SyncManager
method)
rmd()	(ftplib.FTP	method)
rmdir()	(in	module	os)

(pathlib.Path	method)
RMFF
rms()	(in	module	audioop)
rmtree()	(in	module	shutil)
RobotFileParser	(class	in	urllib.robotparser)
robots.txt
rollback()	(sqlite3.Connection	method)
ROT_THREE	(opcode)
ROT_TWO	(opcode)

(xml.etree.ElementTree.Element	 method)
remove_done_callback()	(asyncio.Future
method)
remove_flag()	(mailbox.MaildirMessage
method)

(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

remove_folder()	(mailbox.Maildir	method)
(mailbox.MH	method)

remove_header()	(urllib.request.Request
method)
remove_history_item()	(in	module	readline)
remove_label()	(mailbox.BabylMessage
method)
remove_option()	(configparser.ConfigParser
method)

(optparse.OptionParser	method)
remove_pyc()	(msilib.Directory	method)
remove_reader()	(asyncio.BaseEventLoop
method)
remove_section()	(configparser.ConfigParser
method)
remove_sequence()	(mailbox.MHMessage
method)
remove_signal_handler()
(asyncio.BaseEventLoop	method)
remove_tree()	(in	module	distutils.dir_util)
remove_writer()	(asyncio.BaseEventLoop
method)
removeAttribute()	(xml.dom.Element	method)
removeAttributeNode()	(xml.dom.Element
method)
removeAttributeNS()	(xml.dom.Element
method)
removeChild()	(xml.dom.Node	method)
removedirs()	(in	module	os)
removeFilter()	(logging.Handler	method)

(logging.Logger	method)

rotate()	(collections.deque	method)
(decimal.Context	method)
(decimal.Decimal	method)
(logging.handlers.BaseRotatingHandler
method)

RotatingFileHandler	(class	in	logging.handlers)
rotation_filename()
(logging.handlers.BaseRotatingHandler
method)
rotator	(logging.handlers.BaseRotatingHandler
attribute)
round

built-in	function
round()	(built-in	function)
ROUND_05UP	(in	module	decimal)
ROUND_CEILING	(in	module	decimal)
ROUND_DOWN	(in	module	decimal)
ROUND_FLOOR	(in	module	decimal)
ROUND_HALF_DOWN	(in	module	decimal)
ROUND_HALF_EVEN	(in	module	decimal)
ROUND_HALF_UP	(in	module	decimal)
ROUND_UP	(in	module	decimal)
Rounded	(class	in	decimal)
Row	(class	in	sqlite3)
row_factory	(sqlite3.Connection	attribute)
rowcount	(sqlite3.Cursor	attribute)
RPAR	(in	module	token)
rpartition()	(str	method)
rpc_paths
(xmlrpc.server.SimpleXMLRPCRequestHandler
attribute)
rpop()	(poplib.POP3	method)
rset()	(poplib.POP3	method)
rshift()	(in	module	operator)
rsplit()	(str	method)
RSQB	(in	module	token)
rstrip()	(str	method)
rt()	(in	module	turtle)

removeHandler()	(in	module	unittest)
(logging.Logger	method)

removeResult()	(in	module	unittest)
removexattr()	(in	module	os)
rename()	(ftplib.FTP	method)

(imaplib.IMAP4	method)
(in	module	os)
(pathlib.Path	method)

renames	(2to3	fixer)
renames()	(in	module	os)
reorganize()	(dbm.gnu.gdbm	method)
repeat()	(in	module	itertools)

(in	module	timeit)
(timeit.Timer	method)

repetition
operation

replace()	(curses.panel.Panel	method)
(datetime.date	method)
(datetime.datetime	method)
(datetime.time	method)
(in	module	os)
(inspect.Parameter	method)
(inspect.Signature	method)
(pathlib.Path	method)
(str	method)

replace_errors()	(in	module	codecs)
replace_header()	(email.message.Message
method)
replace_history_item()	(in	module	readline)
replace_whitespace	(textwrap.TextWrapper
attribute)
replaceChild()	(xml.dom.Node	method)

RTLD_DEEPBIND	(in	module	os)
RTLD_GLOBAL	(in	module	os)
RTLD_LAZY	(in	module	os)
RTLD_LOCAL	(in	module	os)
RTLD_NODELETE	(in	module	os)
RTLD_NOLOAD	(in	module	os)
RTLD_NOW	(in	module	os)
ruler	(cmd.Cmd	attribute)
run	(pdb	command)
Run	script
run()	(bdb.Bdb	method)

(distutils.cmd.Command	method)
(doctest.DocTestRunner	method)
(in	module	pdb)
(in	module	profile)
(multiprocessing.Process	method)
(pdb.Pdb	method)
(profile.Profile	method)
(sched.scheduler	method)
(threading.Thread	method)
(trace.Trace	method)
(unittest.TestCase	method)
(unittest.TestSuite	method)
(unittest.TextTestRunner	method)
(wsgiref.handlers.BaseHandler	method)

run_docstring_examples()	(in	module	doctest)
run_doctest()	(in	module	test.support)
run_forever()	(asyncio.BaseEventLoop
method)
run_in_executor()	(asyncio.BaseEventLoop
method)
run_module()	(in	module	runpy)
run_path()	(in	module	runpy)
run_script()	(modulefinder.ModuleFinder
method)
run_setup()	(in	module	distutils.core)
run_unittest()	(in	module	test.support)

run_until_complete()	(asyncio.BaseEventLoop
method)
run_with_locale()	(in	module	test.support)
runcall()	(bdb.Bdb	method)

(in	module	pdb)
(pdb.Pdb	method)
(profile.Profile	method)

runcode()	(code.InteractiveInterpreter	method)
runctx()	(bdb.Bdb	method)

(in	module	profile)
(profile.Profile	method)
(trace.Trace	method)

runeval()	(bdb.Bdb	method)
(in	module	pdb)
(pdb.Pdb	method)

runfunc()	(trace.Trace	method)
running()	(concurrent.futures.Future	method)
runpy	(module)
runsource()	(code.InteractiveInterpreter
method)
runtime_library_dir_option()
(distutils.ccompiler.CCompiler	method)
RuntimeError
RuntimeWarning
RUSAGE_BOTH	(in	module	resource)
RUSAGE_CHILDREN	(in	module	resource)
RUSAGE_SELF	(in	module	resource)
RUSAGE_THREAD	(in	module	resource)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	S
S	(in	module	re)
S_ENFMT	(in	module	stat)
S_IEXEC	(in	module	stat)
S_IFBLK	(in	module	stat)
S_IFCHR	(in	module	stat)
S_IFDIR	(in	module	stat)
S_IFDOOR	(in	module	stat)
S_IFIFO	(in	module	stat)
S_IFLNK	(in	module	stat)
S_IFMT()	(in	module	stat)
S_IFPORT	(in	module	stat)
S_IFREG	(in	module	stat)
S_IFSOCK	(in	module	stat)
S_IFWHT	(in	module	stat)
S_IMODE()	(in	module	stat)
S_IREAD	(in	module	stat)
S_IRGRP	(in	module	stat)
S_IROTH	(in	module	stat)
S_IRUSR	(in	module	stat)
S_IRWXG	(in	module	stat)
S_IRWXO	(in	module	stat)
S_IRWXU	(in	module	stat)
S_ISBLK()	(in	module	stat)
S_ISCHR()	(in	module	stat)
S_ISDIR()	(in	module	stat)
S_ISDOOR()	(in	module	stat)
S_ISFIFO()	(in	module	stat)
S_ISGID	(in	module	stat)
S_ISLNK()	(in	module	stat)
S_ISPORT()	(in	module	stat)
S_ISREG()	(in	module	stat)
S_ISSOCK()	(in	module	stat)
S_ISUID	(in	module	stat)
S_ISVTX	(in	module	stat)
S_ISWHT()	(in	module	stat)

SIG_IGN	(in	module	signal)
SIG_SETMASK	(in	module	signal)
SIG_UNBLOCK	(in	module	signal)
SIGINT,	[1]
siginterrupt()	(in	module	signal)
signal

module,	[1]
signal	(module)
signal()	(in	module	signal)
Signature	(class	in	inspect)
signature()	(in	module	inspect)
sigpending()	(in	module	signal)
sigtimedwait()	(in	module	signal)
sigwait()	(in	module	signal)
sigwaitinfo()	(in	module	signal)
simple

statement
Simple	Mail	Transfer	Protocol
SimpleCookie	(class	in	http.cookies)
simplefilter()	(in	module	warnings)
SimpleHandler	(class	in	wsgiref.handlers)
SimpleHTTPRequestHandler	(class	in
http.server)
SimpleNamespace	(class	in	types)
SimpleQueue	(class	in	multiprocessing)
SimpleXMLRPCRequestHandler	(class	in
xmlrpc.server)
SimpleXMLRPCServer	(class	in
xmlrpc.server)
sin()	(in	module	cmath)

(in	module	math)
single	dispatch
SingleAddressHeader	(class	in
email.headerregistry)
singledispatch()	(in	module	functools)

S_IWGRP	(in	module	stat)
S_IWOTH	(in	module	stat)
S_IWRITE	(in	module	stat)
S_IWUSR	(in	module	stat)
S_IXGRP	(in	module	stat)
S_IXOTH	(in	module	stat)
S_IXUSR	(in	module	stat)
safe_substitute()	(string.Template	method)
saferepr()	(in	module	pprint)
same_files	(filecmp.dircmp	attribute)
same_quantum()	(decimal.Context	method)

(decimal.Decimal	method)
samefile()	(in	module	os.path)
SameFileError
sameopenfile()	(in	module	os.path)
samestat()	(in	module	os.path)
sample()	(in	module	random)
save()	(http.cookiejar.FileCookieJar	method)
SaveKey()	(in	module	winreg)
savetty()	(in	module	curses)
SAX2DOM	(class	in	xml.dom.pulldom)
SAXException
SAXNotRecognizedException
SAXNotSupportedException
SAXParseException
scaleb()	(decimal.Context	method)

(decimal.Decimal	method)
scanf()
sched	(module)
SCHED_BATCH	(in	module	os)
SCHED_FIFO	(in	module	os)
sched_get_priority_max()	(in	module	os)
sched_get_priority_min()	(in	module	os)
sched_getaffinity()	(in	module	os)
sched_getparam()	(in	module	os)
sched_getscheduler()	(in	module	os)
SCHED_IDLE	(in	module	os)
SCHED_OTHER	(in	module	os)

singleton
tuple

sinh()	(in	module	cmath)
(in	module	math)

site	(module)
site	command	line	option

--user-base
--user-site

site-packages
directory

site-python
directory

sitecustomize
module

sixtofour	(ipaddress.IPv6Address	attribute)
size	(struct.Struct	attribute)

(tarfile.TarInfo	attribute)
(tracemalloc.Statistic	attribute)
(tracemalloc.StatisticDiff	attribute)
(tracemalloc.Trace	attribute)

size()	(ftplib.FTP	method)
(in	module	mmap)

size_diff	(tracemalloc.StatisticDiff	attribute)
Sized	(class	in	collections.abc)
sizeof()	(in	module	ctypes)
SKIP	(in	module	doctest)
skip()	(chunk.Chunk	method)

(in	module	unittest)
skip_unless_symlink()	(in	module
test.support)
skipIf()	(in	module	unittest)
skipinitialspace	(csv.Dialect	attribute)
skipped	(unittest.TestResult	attribute)
skippedEntity()
(xml.sax.handler.ContentHandler	method)
SkipTest
skipTest()	(unittest.TestCase	method)

sched_param	(class	in	os)
sched_priority	(os.sched_param	attribute)
SCHED_RESET_ON_FORK	(in	module	os)
SCHED_RR	(in	module	os)
sched_rr_get_interval()	(in	module	os)
sched_setaffinity()	(in	module	os)
sched_setparam()	(in	module	os)
sched_setscheduler()	(in	module	os)
SCHED_SPORADIC	(in	module	os)
sched_yield()	(in	module	os)
scheduler	(class	in	sched)
schema	(in	module	msilib)
scope,	[1]
Screen	(class	in	turtle)
screensize()	(in	module	turtle)
script_from_examples()	(in	module	doctest)
scroll()	(curses.window	method)
ScrolledCanvas	(class	in	turtle)
scrollok()	(curses.window	method)
sdterr

stdin	stdout
search

path,	module,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
search()	(imaplib.IMAP4	method)

(in	module	re)
(re.regex	method)

second	(datetime.datetime	attribute)
(datetime.time	attribute)

SECTCRE	(in	module	configparser)
sections()	(configparser.ConfigParser	method)
secure	(http.cookiejar.Cookie	attribute)
secure	hash	algorithm,	SHA1,	SHA224,
SHA256,	SHA384,	SHA512
Secure	Sockets	Layer
security

CGI
see()	(tkinter.ttk.Treeview	method)
seed()	(in	module	random)

skipUnless()	(in	module	unittest)
SLASH	(in	module	token)
SLASHEQUAL	(in	module	token)
slave()	(nntplib.NNTP	method)
sleep()	(in	module	asyncio)

(in	module	time)
slice,	[1]

assignment
built-in	function,	[1]
object
operation

slice()	(built-in	function)
slicing,	[1],	[2]

assignment
SMTP

protocol
SMTP	(class	in	smtplib)

(in	module	email.policy)
smtp_server	(smtpd.SMTPChannel	attribute)
SMTP_SSL	(class	in	smtplib)
smtp_state	(smtpd.SMTPChannel	attribute)
SMTPAuthenticationError
SMTPChannel	(class	in	smtpd)
SMTPConnectError
smtpd	(module)
SMTPDataError
SMTPException
SMTPHandler	(class	in	logging.handlers)
SMTPHeloError
smtplib	(module)
SMTPRecipientsRefused
SMTPResponseException
SMTPSenderRefused
SMTPServer	(class	in	smtpd)
SMTPServerDisconnected
Snapshot	(class	in	tracemalloc)
SND_ALIAS	(in	module	winsound)
SND_ASYNC	(in	module	winsound)

seek()	(chunk.Chunk	method)
(in	module	mmap)
(io.IOBase	method)
(io.TextIOBase	method)

SEEK_CUR	(in	module	os)
SEEK_END	(in	module	os)
SEEK_SET	(in	module	os)
seekable()	(io.IOBase	method)
seen_greeting	(smtpd.SMTPChannel	attribute)
Select	(class	in	tkinter.tix)
select	(module)
select()	(imaplib.IMAP4	method)

(in	module	select)
(selectors.BaseSelector	method)
(tkinter.ttk.Notebook	method)

selected_npn_protocol()	(ssl.SSLSocket
method)
selection()	(tkinter.ttk.Treeview	method)
selection_add()	(tkinter.ttk.Treeview	method)
selection_remove()	(tkinter.ttk.Treeview	method)
selection_set()	(tkinter.ttk.Treeview	method)
selection_toggle()	(tkinter.ttk.Treeview	method)
selector	(urllib.request.Request	attribute)
SelectorKey	(class	in	selectors)
selectors	(module)
SelectSelector	(class	in	selectors)
Semaphore	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

Semaphore()
(multiprocessing.managers.SyncManager
method)
semaphores,	binary
SEMI	(in	module	token)
send()	(asyncore.dispatcher	method)

(generator	method)
(http.client.HTTPConnection	method)

SND_FILENAME	(in	module	winsound)
SND_LOOP	(in	module	winsound)
SND_MEMORY	(in	module	winsound)
SND_NODEFAULT	(in	module	winsound)
SND_NOSTOP	(in	module	winsound)
SND_NOWAIT	(in	module	winsound)
SND_PURGE	(in	module	winsound)
sndhdr	(module)
sniff()	(csv.Sniffer	method)
Sniffer	(class	in	csv)
sock_accept()	(asyncio.BaseEventLoop
method)
SOCK_CLOEXEC	(in	module	socket)
sock_connect()	(asyncio.BaseEventLoop
method)
SOCK_DGRAM	(in	module	socket)
SOCK_NONBLOCK	(in	module	socket)
SOCK_RAW	(in	module	socket)
SOCK_RDM	(in	module	socket)
sock_recv()	(asyncio.BaseEventLoop
method)
sock_sendall()	(asyncio.BaseEventLoop
method)
SOCK_SEQPACKET	(in	module	socket)
SOCK_STREAM	(in	module	socket)
socket

module
object

socket	(module)
(socketserver.BaseServer	attribute)

socket()	(imaplib.IMAP4	method)
(in	module	socket)

socket_type	(socketserver.BaseServer
attribute)
SocketHandler	(class	in	logging.handlers)
socketpair()	(in	module	socket)
socketserver	(module)
SocketType	(in	module	socket)

(imaplib.IMAP4	method)
(logging.handlers.DatagramHandler	 method)
(logging.handlers.SocketHandler	method)
(multiprocessing.Connection	method)
(socket.socket	method)

send_bytes()	(multiprocessing.Connection
method)
send_error()
(http.server.BaseHTTPRequestHandler	method)
send_flowing_data()	(formatter.writer	method)
send_header()
(http.server.BaseHTTPRequestHandler	method)
send_hor_rule()	(formatter.writer	method)
send_label_data()	(formatter.writer	method)
send_line_break()	(formatter.writer	method)
send_literal_data()	(formatter.writer	method)
send_message()	(smtplib.SMTP	method)
send_paragraph()	(formatter.writer	method)
send_response()
(http.server.BaseHTTPRequestHandler	method)
send_response_only()
(http.server.BaseHTTPRequestHandler	method)
send_signal()
(asyncio.asyncio.subprocess.Process	method)

(asyncio.BaseSubprocessTransport	 method)
(subprocess.Popen	method)

sendall()	(socket.socket	method)
sendcmd()	(ftplib.FTP	method)
sendfile()	(in	module	os)

(wsgiref.handlers.BaseHandler	method)
sendmail()	(smtplib.SMTP	method)
sendmsg()	(socket.socket	method)
sendto()	(asyncio.DatagramTransport	method)

(socket.socket	method)
sentinel	(in	module	unittest.mock)

(multiprocessing.Process	attribute)
sep	(in	module	os)

SOL_RDS	(in	module	socket)
SOMAXCONN	(in	module	socket)
sort()	(imaplib.IMAP4	method)

(list	method)
sort_stats()	(pstats.Stats	method)
sorted()	(built-in	function)
sortTestMethodsUsing	(unittest.TestLoader
attribute)
source	(doctest.Example	attribute)

(pdb	command)
(shlex.shlex	attribute)

source	character	set
source_from_cache()	(in	module	imp)

(in	module	importlib.util)
SOURCE_SUFFIXES	(in	module
importlib.machinery)
source_to_code()
(importlib.abc.InspectLoader	method)
SourceFileLoader	(class	in
importlib.machinery)
sourcehook()	(shlex.shlex	method)
SourcelessFileLoader	(class	in
importlib.machinery)
SourceLoader	(class	in	importlib.abc)
space
span()	(re.match	method)
spawn()	(distutils.ccompiler.CCompiler
method)

(in	module	pty)
spawnl()	(in	module	os)
spawnle()	(in	module	os)
spawnlp()	(in	module	os)
spawnlpe()	(in	module	os)
spawnv()	(in	module	os)
spawnve()	(in	module	os)
spawnvp()	(in	module	os)
spawnvpe()	(in	module	os)
spec_from_file_location()	(in	module

sequence
item
iteration
object,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8]
types,	immutable
types,	mutable
types,	operations	on,	[1]

Sequence	(class	in	collections.abc)
sequence	(in	module	msilib)
sequence2st()	(in	module	parser)
SequenceMatcher	(class	in	difflib),	[1]
serializing

objects
serve_forever()	(socketserver.BaseServer
method)
server

WWW,	[1]
server	(http.server.BaseHTTPRequestHandler
attribute)
server_activate()	(socketserver.BaseServer
method)
server_address	(socketserver.BaseServer
attribute)
server_bind()	(socketserver.BaseServer
method)
server_software	(wsgiref.handlers.BaseHandler
attribute)
server_version
(http.server.BaseHTTPRequestHandler
attribute)

(http.server.SimpleHTTPRequestHandler
attribute)

ServerProxy	(class	in	xmlrpc.client)
service_actions()	(socketserver.BaseServer
method)
session_stats()	(ssl.SSLContext	method)
set

importlib.util)
spec_from_loader()	(in	module	importlib.util)
special

attribute
attribute,	generic

special	method
specified_attributes
(xml.parsers.expat.xmlparser	attribute)
speed()	(in	module	turtle)

(ossaudiodev.oss_audio_device	method)
split()	(in	module	os.path)

(in	module	re)
(in	module	shlex)
(re.regex	method)
(str	method)

split_quoted()	(in	module	distutils.util)
splitdrive()	(in	module	os.path)
splitext()	(in	module	os.path)
splitlines()	(str	method)
SplitResult	(class	in	urllib.parse)
SplitResultBytes	(class	in	urllib.parse)
splitunc()	(in	module	os.path)
SpooledTemporaryFile()	(in	module	tempfile)
sprintf-style	formatting
spwd	(module)
sqlite3	(module)
sqlite_version	(in	module	sqlite3)
sqlite_version_info	(in	module	sqlite3)
sqrt()	(decimal.Context	method)

(decimal.Decimal	method)
(in	module	cmath)
(in	module	math)

SSL
ssl	(module)
ssl_version	(ftplib.FTP_TLS	attribute)
SSLContext	(class	in	ssl)
SSLEOFError

display
object,	[1],	[2],	[3]

set	(built-in	class)
Set	(class	in	collections.abc)
Set	Breakpoint
set	type

object
set()	(asyncio.Event	method)

(configparser.ConfigParser	method)
(configparser.RawConfigParser	method)
(http.cookies.Morsel	method)
(ossaudiodev.oss_mixer_device	method)
(test.support.EnvironmentVarGuard	method)
(threading.Event	method)
(tkinter.ttk.Combobox	method)
(tkinter.ttk.Treeview	method)
(xml.etree.ElementTree.Element	method)

SET_ADD	(opcode)
set_all()
set_allowed_domains()
(http.cookiejar.DefaultCookiePolicy	method)
set_app()	(wsgiref.simple_server.WSGIServer
method)
set_authorizer()	(sqlite3.Connection	method)
set_blocked_domains()
(http.cookiejar.DefaultCookiePolicy	method)
set_boundary()	(email.message.Message
method)
set_break()	(bdb.Bdb	method)
set_charset()	(email.message.Message	method)
set_children()	(tkinter.ttk.Treeview	method)
set_ciphers()	(ssl.SSLContext	method)
set_completer()	(in	module	readline)
set_completer_delims()	(in	module	readline)
set_completion_display_matches_hook()	(in
module	readline)
set_content()

SSLError
SSLSyscallError
SSLWantReadError
SSLWantWriteError
SSLZeroReturnError
st()	(in	module	turtle)
st2list()	(in	module	parser)
st2tuple()	(in	module	parser)
ST_ATIME	(in	module	stat)
ST_CTIME	(in	module	stat)
ST_DEV	(in	module	stat)
ST_GID	(in	module	stat)
ST_INO	(in	module	stat)
ST_MODE	(in	module	stat)
ST_MTIME	(in	module	stat)
ST_NLINK	(in	module	stat)
ST_SIZE	(in	module	stat)
ST_UID	(in	module	stat)
stack

execution
trace

stack	viewer
stack()	(in	module	inspect)
stack_effect()	(in	module	dis)
stack_size()	(in	module	_thread)

(in	module	threading)
stackable

streams
stamp()	(in	module	turtle)
standard

output
Standard	C
standard	input
standard_b64decode()	(in	module	base64)
standard_b64encode()	(in	module	base64)
standard_error	(2to3	fixer)
standend()	(curses.window	method)
standout()	(curses.window	method)

(email.contentmanager.ContentManager
method)

(email.message.EmailMessage	method)
(in	module	email.contentmanager)

set_continue()	(bdb.Bdb	method)
set_cookie()	(http.cookiejar.CookieJar	method)
set_cookie_if_ok()	(http.cookiejar.CookieJar
method)
set_current()	(msilib.Feature	method)
set_data()	(importlib.abc.SourceLoader	method)

(importlib.machinery.SourceFileLoader
method)

set_date()	(mailbox.MaildirMessage	method)
set_debug()	(asyncio.BaseEventLoop	method)

(in	module	gc)
set_debuglevel()	(ftplib.FTP	method)

(http.client.HTTPConnection	method)
(nntplib.NNTP	method)
(poplib.POP3	method)
(smtplib.SMTP	method)
(telnetlib.Telnet	method)

set_default_executor()	(asyncio.BaseEventLoop
method)
set_default_type()	(email.message.Message
method)
set_default_verify_paths()	(ssl.SSLContext
method)
set_defaults()	(argparse.ArgumentParser
method)

(optparse.OptionParser	method)
set_ecdh_curve()	(ssl.SSLContext	method)
set_errno()	(in	module	ctypes)
set_event_loop()
(asyncio.AbstractEventLoopPolicy	method)

(in	module	asyncio)
set_event_loop_policy()	(in	module	asyncio)
set_exception()	(asyncio.Future	method)

STAR	(in	module	token)
STAREQUAL	(in	module	token)
starmap()	(in	module	itertools)

(multiprocessing.pool.Pool	method)
starmap_async()	(multiprocessing.pool.Pool
method)
start	(slice	object	attribute)

(UnicodeError	attribute)
start()	(in	module	tracemalloc)

(logging.handlers.QueueListener	method)
(multiprocessing.Process	method)
(multiprocessing.managers.BaseManager
method)
(re.match	method)
(threading.Thread	method)
(tkinter.ttk.Progressbar	method)
(xml.etree.ElementTree.TreeBuilder
method)

start_color()	(in	module	curses)
start_component()	(msilib.Directory	method)
start_new_thread()	(in	module	_thread)
start_server()	(in	module	asyncio)
start_unix_server()	(in	module	asyncio)
StartCdataSectionHandler()
(xml.parsers.expat.xmlparser	method)
StartDoctypeDeclHandler()
(xml.parsers.expat.xmlparser	method)
startDocument()
(xml.sax.handler.ContentHandler	method)
startElement()
(xml.sax.handler.ContentHandler	method)
StartElementHandler()
(xml.parsers.expat.xmlparser	method)
startElementNS()
(xml.sax.handler.ContentHandler	method)
STARTF_USESHOWWINDOW	(in	module
subprocess)

(asyncio.StreamReader	method)
(concurrent.futures.Future	method)

set_exception_handler()
(asyncio.BaseEventLoop	method)
set_executable()	(in	module	multiprocessing)
set_executables()	(distutils.ccompiler.CCompiler
method)
set_flags()	(mailbox.MaildirMessage	method)

(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

set_from()	(mailbox.mboxMessage	method)
(mailbox.MMDFMessage	method)

set_handle_inheritable()	(in	module	os)
set_history_length()	(in	module	readline)
set_include_dirs()	(distutils.ccompiler.CCompiler
method)
set_info()	(mailbox.MaildirMessage	method)
set_inheritable()	(in	module	os)

(socket.socket	method)
set_labels()	(mailbox.BabylMessage	method)
set_last_error()	(in	module	ctypes)
set_libraries()	(distutils.ccompiler.CCompiler
method)
set_library_dirs()	(distutils.ccompiler.CCompiler
method)
set_link_objects()	(distutils.ccompiler.CCompiler
method)
set_literal	(2to3	fixer)
set_loader()	(in	module	importlib.util)
set_next()	(bdb.Bdb	method)
set_nonstandard_attr()	(http.cookiejar.Cookie
method)
set_npn_protocols()	(ssl.SSLContext	method)
set_ok()	(http.cookiejar.CookiePolicy	method)
set_option_negotiation_callback()
(telnetlib.Telnet	method)
set_output_charset()	(gettext.NullTranslations
method)

STARTF_USESTDHANDLES	(in	module
subprocess)
startfile()	(in	module	os)
StartNamespaceDeclHandler()
(xml.parsers.expat.xmlparser	method)
startPrefixMapping()
(xml.sax.handler.ContentHandler	method)
startswith()	(str	method)
startTest()	(unittest.TestResult	method)
startTestRun()	(unittest.TestResult	method)
starttls()	(imaplib.IMAP4	method)

(nntplib.NNTP	method)
(smtplib.SMTP	method)

STARTUPINFO	(class	in	subprocess)
stat

module
stat	(module)
stat()	(in	module	os)

(nntplib.NNTP	method)
(pathlib.Path	method)
(poplib.POP3	method)

stat_float_times()	(in	module	os)
state()	(tkinter.ttk.Widget	method)
statement

*,	[1]
**,	[1]
@
assert,	[1]
assignment,	[1]
assignment,	augmented
break,	[1],	[2],	[3],	
class
compound
continue,	[1],	[2],	[3]
def
del,	[1],	[2],	[3],	[4]

set_package()	(in	module	importlib.util)
set_param()	(email.message.Message	method)
set_pasv()	(ftplib.FTP	method)
set_payload()	(email.message.Message
method)
set_policy()	(http.cookiejar.CookieJar	method)
set_position()	(xdrlib.Unpacker	method)
set_pre_input_hook()	(in	module	readline)
set_progress_handler()	(sqlite3.Connection
method)
set_proxy()	(urllib.request.Request	method)
set_python_build()	(in	module
distutils.sysconfig)
set_quit()	(bdb.Bdb	method)
set_recsrc()	(ossaudiodev.oss_mixer_device
method)
set_result()	(asyncio.Future	method)

(concurrent.futures.Future	method)
set_return()	(bdb.Bdb	method)
set_running_or_notify_cancel()
(concurrent.futures.Future	method)
set_runtime_library_dirs()
(distutils.ccompiler.CCompiler	method)
set_seq1()	(difflib.SequenceMatcher	method)
set_seq2()	(difflib.SequenceMatcher	method)
set_seqs()	(difflib.SequenceMatcher	method)
set_sequences()	(mailbox.MH	method)

(mailbox.MHMessage	method)
set_server_documentation()
(xmlrpc.server.DocCGIXMLRPCRequestHandler
method)

(xmlrpc.server.DocXMLRPCServer	method)
set_server_name()
(xmlrpc.server.DocCGIXMLRPCRequestHandler
method)

(xmlrpc.server.DocXMLRPCServer	method)
set_server_title()
(xmlrpc.server.DocCGIXMLRPCRequestHandler

except
expression
for,	[1],	[2],	[3]
from
future
global,	[1]
if,	[1]
import,	[1],	[2],	[3]
loop,	[1],	[2],	[3]
nonlocal
pass
raise,	[1]
return,	[1],	[2]
simple
try,	[1],	[2]
while,	[1],	[2],	[3]
with,	[1]
yield

statement	grouping
staticmethod

built-in	function
staticmethod()	(built-in	function)
Statistic	(class	in	tracemalloc)
StatisticDiff	(class	in	tracemalloc)
statistics	(module)
statistics()	(tracemalloc.Snapshot	method)
StatisticsError
Stats	(class	in	pstats)
status	(http.client.HTTPResponse	attribute)
status()	(imaplib.IMAP4	method)
statvfs()	(in	module	os)
STD_ERROR_HANDLE	(in	module
subprocess)
STD_INPUT_HANDLE	(in	module
subprocess)
STD_OUTPUT_HANDLE	(in	module

method)
(xmlrpc.server.DocXMLRPCServer	method)

set_servername_callback()	(ssl.SSLContext
method)
set_spacing()	(formatter.formatter	method)
set_start_method()	(in	module	multiprocessing)
set_startup_hook()	(in	module	readline)
set_step()	(bdb.Bdb	method)
set_subdir()	(mailbox.MaildirMessage	method)
set_terminator()	(asynchat.async_chat	method)
set_threshold()	(in	module	gc)
set_trace()	(bdb.Bdb	method)

(in	module	bdb)
(in	module	pdb)
(pdb.Pdb	method)

set_trace_callback()	(sqlite3.Connection
method)
set_transport()	(asyncio.StreamReader	method)
set_tunnel()	(http.client.HTTPConnection
method)
set_type()	(email.message.Message	method)
set_unittest_reportflags()	(in	module	doctest)
set_unixfrom()	(email.message.Message
method)
set_until()	(bdb.Bdb	method)
set_url()	(urllib.robotparser.RobotFileParser
method)
set_usage()	(optparse.OptionParser	method)
set_userptr()	(curses.panel.Panel	method)
set_visible()	(mailbox.BabylMessage	method)
set_wakeup_fd()	(in	module	signal)
set_write_buffer_limits()	(asyncio.WriteTransport
method)
setacl()	(imaplib.IMAP4	method)
setannotation()	(imaplib.IMAP4	method)
setattr()	(built-in	function)
setAttribute()	(xml.dom.Element	method)
setAttributeNode()	(xml.dom.Element	method)

subprocess)
StdButtonBox	(class	in	tkinter.tix)
stderr	(asyncio.asyncio.subprocess.Process
attribute)

(in	module	sys),	[1]
(subprocess.Popen	attribute)

stdev()	(in	module	statistics)
stdin

stdout	sdterr
stdin	(asyncio.asyncio.subprocess.Process
attribute)

(in	module	sys),	[1]
(subprocess.Popen	attribute)

stdio
stdout

sdterr,	stdin
stdout	(asyncio.asyncio.subprocess.Process
attribute)
STDOUT	(in	module	subprocess)
stdout	(in	module	sys)

(subprocess.Popen	attribute)
step	(pdb	command)

(slice	object	attribute)
step()	(tkinter.ttk.Progressbar	method)
stereocontrols()
(ossaudiodev.oss_mixer_device	method)
stls()	(poplib.POP3	method)
stop	(slice	object	attribute)
stop()	(asyncio.BaseEventLoop	method)

(in	module	tracemalloc)
(logging.handlers.QueueListener	method)
(tkinter.ttk.Progressbar	method)
(unittest.TestResult	method)

stop_here()	(bdb.Bdb	method)
StopIteration

exception,	[1]
stopListening()	(in	module	logging.config)

setAttributeNodeNS()	(xml.dom.Element
method)
setAttributeNS()	(xml.dom.Element	method)
SetBase()	(xml.parsers.expat.xmlparser
method)
setblocking()	(socket.socket	method)
setByteStream()
(xml.sax.xmlreader.InputSource	method)
setcbreak()	(in	module	tty)
setCharacterStream()
(xml.sax.xmlreader.InputSource	method)
setcheckinterval()	(in	module	sys)
setcomptype()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setContentHandler()
(xml.sax.xmlreader.XMLReader	method)
setcontext()	(in	module	decimal)
setDaemon()	(threading.Thread	method)
setdefault()	(dict	method)
setdefaulttimeout()	(in	module	socket)
setdlopenflags()	(in	module	sys)
setDocumentLocator()
(xml.sax.handler.ContentHandler	method)
setDTDHandler()
(xml.sax.xmlreader.XMLReader	method)
setegid()	(in	module	os)
setEncoding()	(xml.sax.xmlreader.InputSource
method)
setEntityResolver()
(xml.sax.xmlreader.XMLReader	method)
setErrorHandler()
(xml.sax.xmlreader.XMLReader	method)
seteuid()	(in	module	os)
setFeature()	(xml.sax.xmlreader.XMLReader
method)
setfirstweekday()	(in	module	calendar)
setfmt()	(ossaudiodev.oss_audio_device

stopTest()	(unittest.TestResult	method)
stopTestRun()	(unittest.TestResult	method)
storbinary()	(ftplib.FTP	method)
store()	(imaplib.IMAP4	method)
STORE_ACTIONS	(optparse.Option
attribute)
STORE_ATTR	(opcode)
STORE_DEREF	(opcode)
STORE_FAST	(opcode)
STORE_GLOBAL	(opcode)
STORE_MAP	(opcode)
STORE_NAME	(opcode)
STORE_SUBSCR	(opcode)
storlines()	(ftplib.FTP	method)
str	(built-in	class)

(see	also	string)
str()	(in	module	locale)
strcoll()	(in	module	locale)
StreamError
StreamHandler	(class	in	logging)
StreamReader	(class	in	asyncio)

(class	in	codecs)
StreamReaderProtocol	(class	in	asyncio)
StreamReaderWriter	(class	in	codecs)
StreamRecoder	(class	in	codecs)
streams

stackable
StreamWriter	(class	in	asyncio)

(class	in	codecs)
strerror()

(in	module	os)
strftime()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)
(in	module	time)

strict	(csv.Dialect	attribute)
(in	module	email.policy)

method)
setFormatter()	(logging.Handler	method)
setframerate()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setgid()	(in	module	os)
setgroups()	(in	module	os)
seth()	(in	module	turtle)
setheading()	(in	module	turtle)
sethostname()	(in	module	socket)
SetInteger()	(msilib.Record	method)
setitem()	(in	module	operator)
setitimer()	(in	module	signal)
setLevel()	(logging.Handler	method)

(logging.Logger	method)
setlocale()	(in	module	locale)
setLocale()	(xml.sax.xmlreader.XMLReader
method)
setLoggerClass()	(in	module	logging)
setlogmask()	(in	module	syslog)
setLogRecordFactory()	(in	module	logging)
setmark()	(aifc.aifc	method)
setMaxConns()
(urllib.request.CacheFTPHandler	method)
setmode()	(in	module	msvcrt)
setName()	(threading.Thread	method)
setnchannels()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setnframes()	(aifc.aifc	method)
(sunau.AU_write	method)
(wave.Wave_write	method)

SetParamEntityParsing()
(xml.parsers.expat.xmlparser	method)
setparameters()	(ossaudiodev.oss_audio_device
method)
setparams()	(aifc.aifc	method)

(sunau.AU_write	method)

strict_domain
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_errors()	(in	module	codecs)
strict_ns_domain
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_ns_set_initial_dollar
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_ns_set_path
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_ns_unverifiable
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_rfc2965_unverifiable
(http.cookiejar.DefaultCookiePolicy	attribute)
strides	(memoryview	attribute)
string

PyObject_Str	(C	function)
__format__()	(object	method)
__str__()	(object	method)
conversion,	[1]
format()	(built-in	function)
formatting
immutable	sequences
interpolation
item
methods
module
object,	[1],	[2]
object	representation
str	(built-in	class)
str()	(built-in	function)
text	sequence	type

STRING	(in	module	token)
string	(module)

(re.match	attribute)
string	literal
string_at()	(in	module	ctypes)

(wave.Wave_write	method)
setpassword()	(zipfile.ZipFile	method)
setpgid()	(in	module	os)
setpgrp()	(in	module	os)
setpos()	(aifc.aifc	method)

(in	module	turtle)
(sunau.AU_read	method)
(wave.Wave_read	method)

setposition()	(in	module	turtle)
setpriority()	(in	module	os)
setprofile()	(in	module	sys)

(in	module	threading)
SetProperty()	(msilib.SummaryInformation
method)
setProperty()	(xml.sax.xmlreader.XMLReader
method)
setPublicId()	(xml.sax.xmlreader.InputSource
method)
setquota()	(imaplib.IMAP4	method)
setraw()	(in	module	tty)
setrecursionlimit()	(in	module	sys)
setregid()	(in	module	os)
setresgid()	(in	module	os)
setresuid()	(in	module	os)
setreuid()	(in	module	os)
setrlimit()	(in	module	resource)
setsampwidth()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setscrreg()	(curses.window	method)
setsid()	(in	module	os)
setsockopt()	(socket.socket	method)
setstate()	(codecs.IncrementalDecoder	method)

(codecs.IncrementalEncoder	method)
(in	module	random)

SetStream()	(msilib.Record	method)
SetString()	(msilib.Record	method)

StringIO	(class	in	io)
stringprep	(module)
strings,	documentation
strip()	(str	method)
strip_dirs()	(pstats.Stats	method)
stripspaces	(curses.textpad.Textbox
attribute)
strptime()	(datetime.datetime	class	method)

(in	module	time)
strtobool()	(in	module	distutils.util)
struct

module
Struct	(class	in	struct)
struct	(module)
struct	sequence
struct_time	(class	in	time)
Structure	(class	in	ctypes)
structures

C
strxfrm()	(in	module	locale)
STType	(in	module	parser)
style

coding
Style	(class	in	tkinter.ttk)
sub()	(in	module	operator)

(in	module	re)
(re.regex	method)

sub_commands	(distutils.cmd.Command
attribute)
subclassing

immutable	types
subdirs	(filecmp.dircmp	attribute)
SubElement()	(in	module
xml.etree.ElementTree)
submit()	(concurrent.futures.Executor
method)
submodule_search_locations
(importlib.machinery.ModuleSpec	attribute)

setswitchinterval()	(in	module	sys),	[1]
setSystemId()	(xml.sax.xmlreader.InputSource
method)
setsyx()	(in	module	curses)
setTarget()	(logging.handlers.MemoryHandler
method)
settiltangle()	(in	module	turtle)
settimeout()	(socket.socket	method)
setTimeout()	(urllib.request.CacheFTPHandler
method)
settrace()	(in	module	sys)

(in	module	threading)
settscdump()	(in	module	sys)
setuid()	(in	module	os)
setundobuffer()	(in	module	turtle)
setup()	(in	module	distutils.core)

(in	module	turtle)
(socketserver.RequestHandler	method)

setUp()	(unittest.TestCase	method)
setup_environ()	(wsgiref.handlers.BaseHandler
method)
SETUP_EXCEPT	(opcode)
SETUP_FINALLY	(opcode)
SETUP_LOOP	(opcode)
setup_python()	(venv.EnvBuilder	method)
setup_scripts()	(venv.EnvBuilder	method)
setup_testing_defaults()	(in	module	wsgiref.util)
SETUP_WITH	(opcode)
setUpClass()	(unittest.TestCase	method)
setupterm()	(in	module	curses)
SetValue()	(in	module	winreg)
SetValueEx()	(in	module	winreg)
setworldcoordinates()	(in	module	turtle)
setx()	(in	module	turtle)
setxattr()	(in	module	os)
sety()	(in	module	turtle)
SF_APPEND	(in	module	stat)
SF_ARCHIVED	(in	module	stat)

subn()	(in	module	re)
(re.regex	method)

subnets()	(ipaddress.IPv4Network	method)
(ipaddress.IPv6Network	method)

Subnormal	(class	in	decimal)
suboffsets	(memoryview	attribute)
subpad()	(curses.window	method)
subprocess	(module)
subprocess_exec()	(asyncio.BaseEventLoop
method)
subprocess_shell()	(asyncio.BaseEventLoop
method)
SubprocessError
SubprocessProtocol	(class	in	asyncio)
subscribe()	(imaplib.IMAP4	method)
subscript

assignment
operation

subscription,	[1],	[2],	[3]
assignment

subsequent_indent	(textwrap.TextWrapper
attribute)
subst_vars()	(in	module	distutils.util)
substitute()	(string.Template	method)
subTest()	(unittest.TestCase	method)
subtract()	(collections.Counter	method)

(decimal.Context	method)
subtraction
subtype
(email.headerregistry.ContentTypeHeader
attribute)
subwin()	(curses.window	method)
successful()
(multiprocessing.pool.AsyncResult	method)
suffix_map	(in	module	mimetypes)

(mimetypes.MimeTypes	attribute)
suite
suite()	(in	module	parser)

SF_IMMUTABLE	(in	module	stat)
SF_MNOWAIT	(in	module	os)
SF_NODISKIO	(in	module	os)
SF_NOUNLINK	(in	module	stat)
SF_SNAPSHOT	(in	module	stat)
SF_SYNC	(in	module	os)
Shape	(class	in	turtle)
shape	(memoryview	attribute)
shape()	(in	module	turtle)
shapesize()	(in	module	turtle)
shapetransform()	(in	module	turtle)
share()	(socket.socket	method)
shared_object_filename()
(distutils.ccompiler.CCompiler	method)
shearfactor()	(in	module	turtle)
Shelf	(class	in	shelve)
shelve

module
shelve	(module)
shield()	(in	module	asyncio)
shift()	(decimal.Context	method)

(decimal.Decimal	method)
shift_path_info()	(in	module	wsgiref.util)
shifting

operation
operations

shlex	(class	in	shlex)
(module)

shortDescription()	(unittest.TestCase	method)
shorten()	(in	module	textwrap)
shouldFlush()
(logging.handlers.BufferingHandler	method)

(logging.handlers.MemoryHandler	method)
shouldStop	(unittest.TestResult	attribute)
show()	(curses.panel.Panel	method)
show_code()	(in	module	dis)
show_compilers()	(in	module	distutils.ccompiler)
showsyntaxerror()	(code.InteractiveInterpreter

suiteClass	(unittest.TestLoader	attribute)
sum()	(built-in	function)
sum_list()
sum_sequence(),	[1]
summarize()	(doctest.DocTestRunner
method)
summarize_address_range()	(in	module
ipaddress)
sunau	(module)
super	(pyclbr.Class	attribute)
super()	(built-in	function)
supernet()	(ipaddress.IPv4Network	method)

(ipaddress.IPv6Network	method)
supports_bytes_environ	(in	module	os)
supports_dir_fd	(in	module	os)
supports_effective_ids	(in	module	os)
supports_fd	(in	module	os)
supports_follow_symlinks	(in	module	os)
supports_unicode_filenames	(in	module
os.path)
suppress()	(in	module	contextlib)
SuppressCrashReport	(class	in	test.support)
SW_HIDE	(in	module	subprocess)
swapcase()	(str	method)
sym_name	(in	module	symbol)
Symbol	(class	in	symtable)
symbol	(module)
SymbolTable	(class	in	symtable)
symlink()	(in	module	os)
symlink_to()	(pathlib.Path	method)
symmetric_difference()	(set	method)
symmetric_difference_update()	(set	method)
symtable	(module)
symtable()	(in	module	symtable)
sync()	(dbm.dumb.dumbdbm	method)

(dbm.gnu.gdbm	method)
(in	module	os)
(ossaudiodev.oss_audio_device	method)

method)
showtraceback()	(code.InteractiveInterpreter
method)
showturtle()	(in	module	turtle)
showwarning()	(in	module	warnings)
shuffle()	(in	module	random)
shutdown()	(concurrent.futures.Executor
method)

(imaplib.IMAP4	method)
(in	module	logging)
(multiprocessing.managers.BaseManager
method)
(socket.socket	method)
(socketserver.BaseServer	method)

shutil	(module)
side_effect	(unittest.mock.Mock	attribute)
SIG_BLOCK	(in	module	signal)
SIG_DFL	(in	module	signal)

(shelve.Shelf	method)
syncdown()	(curses.window	method)
synchronized()	(in	module
multiprocessing.sharedctypes)
SyncManager	(class	in
multiprocessing.managers)
syncok()	(curses.window	method)
syncup()	(curses.window	method)
syntax
SyntaxErr
SyntaxError
SyntaxWarning
sys

module,	[1],	[2],	[3]
sys	(module)
sys.exc_info
sys.last_traceback
sys.meta_path
sys.modules
sys.path
sys.path_hooks
sys.path_importer_cache
sys.stderr
sys.stdin
sys.stdout
sys_exc	(2to3	fixer)
sys_version
(http.server.BaseHTTPRequestHandler
attribute)
sysconf()	(in	module	os)
sysconf_names	(in	module	os)
sysconfig	(module)
syslog	(module)
syslog()	(in	module	syslog)
SysLogHandler	(class	in	logging.handlers)
system()	(in	module	os)

(in	module	platform)
system_alias()	(in	module	platform)

SystemError
(built-in	exception)

SystemExit
(built-in	exception)

systemId	(xml.dom.DocumentType	attribute)
SystemRandom	(class	in	random)
SystemRoot

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	T
T_FMT	(in	module	locale)
T_FMT_AMPM	(in	module	locale)
tab
tab()	(tkinter.ttk.Notebook	method)
TabError
tabnanny	(module)
tabs()	(tkinter.ttk.Notebook	method)
tabsize	(textwrap.TextWrapper
attribute)
tabular

data
tag	(xml.etree.ElementTree.Element
attribute)
tag_bind()	(tkinter.ttk.Treeview
method)
tag_configure()	(tkinter.ttk.Treeview
method)
tag_has()	(tkinter.ttk.Treeview	method)
tagName	(xml.dom.Element	attribute)
tail	(xml.etree.ElementTree.Element
attribute)
take_snapshot()	(in	module
tracemalloc)
takewhile()	(in	module	itertools)
tan()	(in	module	cmath)

(in	module	math)
tanh()	(in	module	cmath)

(in	module	math)
TarError
TarFile	(class	in	tarfile),	[1]
tarfile	(module)
target

deletion
list,	[1],	[2]
list	assignment

Tix
tix_addbitmapdir()
(tkinter.tix.tixCommand	method)
tix_cget()	(tkinter.tix.tixCommand
method)
tix_configure()
(tkinter.tix.tixCommand	method)
tix_filedialog()
(tkinter.tix.tixCommand	method)
tix_getbitmap()
(tkinter.tix.tixCommand	method)
tix_getimage()
(tkinter.tix.tixCommand	method)
TIX_LIBRARY
tix_option_get()
(tkinter.tix.tixCommand	method)
tix_resetoptions()
(tkinter.tix.tixCommand	method)
tixCommand	(class	in	tkinter.tix)
Tk

(class	in	tkinter)
(class	in	tkinter.tix)

Tk	Option	Data	Types
TK_LIBRARY
Tkinter
tkinter	(module)
tkinter.scrolledtext	(module)
tkinter.tix	(module)
tkinter.ttk	(module)
TList	(class	in	tkinter.tix)
TLS
TMP
TMPDIR
to_bytes()	(int	method)
to_eng_string()	(decimal.Context

list,	deletion
loop	control

target	(xml.dom.ProcessingInstruction
attribute)
TarInfo	(class	in	tarfile)
Task	(class	in	asyncio)
task_done()	(asyncio.JoinableQueue
method)

(multiprocessing.JoinableQueue
method)
(queue.Queue	method)

tb_frame	(traceback	attribute)
tb_lasti	(traceback	attribute)
tb_lineno	(traceback	attribute)
tb_next	(traceback	attribute)
tbreak	(pdb	command)
tcdrain()	(in	module	termios)
tcflow()	(in	module	termios)
tcflush()	(in	module	termios)
tcgetattr()	(in	module	termios)
tcgetpgrp()	(in	module	os)
Tcl()	(in	module	tkinter)
TCL_LIBRARY
tcsendbreak()	(in	module	termios)
tcsetattr()	(in	module	termios)
tcsetpgrp()	(in	module	os)
tearDown()	(unittest.TestCase	method)
tearDownClass()	(unittest.TestCase
method)
tee()	(in	module	itertools)
tell()	(aifc.aifc	method),	[1]

(chunk.Chunk	method)
(in	module	mmap)
(io.IOBase	method)
(io.TextIOBase	method)
(sunau.AU_read	method)
(sunau.AU_write	method)

method)
(decimal.Decimal	method)

to_integral()	(decimal.Decimal
method)
to_integral_exact()
(decimal.Context	method)

(decimal.Decimal	method)
to_integral_value()
(decimal.Decimal	method)
to_sci_string()	(decimal.Context
method)
ToASCII()	(in	module
encodings.idna)
tobuf()	(tarfile.TarInfo	method)
tobytes()	(array.array	method)

(memoryview	method)
today()	(datetime.date	class
method)

(datetime.datetime	 class
method)

tofile()	(array.array	method)
tok_name	(in	module	token)
token

(module)
(shlex.shlex	attribute)

tokeneater()	(in	module	tabnanny)
tokenize	(module)
tokenize	command	line	option

-e,	--exact
-h,	--help

tokenize()	(in	module	tokenize)
tolist()	(array.array	method)

(memoryview	method)
(parser.ST	method)

tomono()	(in	module	audioop)
toordinal()	(datetime.date	method)

(datetime.datetime	method)

(wave.Wave_read	method)
(wave.Wave_write	method)

Telnet	(class	in	telnetlib)
telnetlib	(module)
TEMP
temp_cwd()	(in	module	test.support)
temp_dir()	(in	module	test.support)
temp_umask()	(in	module	test.support)
tempdir	(in	module	tempfile)
tempfile	(module)
Template	(class	in	pipes)

(class	in	string)
template	(string.Template	attribute)
temporary

file
file	name

TemporaryDirectory()	(in	module
tempfile)
TemporaryFile()	(in	module	tempfile)
teredo	(ipaddress.IPv6Address
attribute)
TERM,	[1]
termattrs()	(in	module	curses)
terminal_size	(class	in	os)
terminate()
(asyncio.asyncio.subprocess.Process
method)

(asyncio.BaseSubprocessTransport
method)
(multiprocessing.Process	method)
(multiprocessing.pool.Pool	method)
(subprocess.Popen	method)

termination	model
termios	(module)
termname()	(in	module	curses)
ternary

operator

top()	(curses.panel.Panel	method)
(poplib.POP3	method)

top_panel()	(in	module
curses.panel)
toprettyxml()
(xml.dom.minidom.Node	method)
tostereo()	(in	module	audioop)
tostring()	(array.array	method)

(in	 module
xml.etree.ElementTree)

tostringlist()	(in	module
xml.etree.ElementTree)
total_changes	(sqlite3.Connection
attribute)
total_ordering()	(in	module
functools)
total_seconds()
(datetime.timedelta	method)
totuple()	(parser.ST	method)
touch()	(pathlib.Path	method)
touchline()	(curses.window
method)
touchwin()	(curses.window
method)
tounicode()	(array.array	method)
ToUnicode()	(in	module
encodings.idna)
towards()	(in	module	turtle)
toxml()	(xml.dom.minidom.Node
method)
tp_as_mapping	(C	member)
tp_as_number	(C	member)
tp_as_sequence	(C	member)
tparm()	(in	module	curses)
trace

stack
Trace	(class	in	trace)

(class	in	tracemalloc)

test
identity
membership

test	(doctest.DocTestFailure	attribute)
(doctest.UnexpectedException
attribute)
(module)

test()	(in	module	cgi)
test.support	(module)
TestCase	(class	in	unittest)
TestFailed
testfile()	(in	module	doctest)
TESTFN	(in	module	test.support)
TestLoader	(class	in	unittest)
testMethodPrefix	(unittest.TestLoader
attribute)
testmod()	(in	module	doctest)
TestResult	(class	in	unittest)
tests	(in	module	imghdr)
testsource()	(in	module	doctest)
testsRun	(unittest.TestResult	attribute)
TestSuite	(class	in	unittest)
testzip()	(zipfile.ZipFile	method)
text	(in	module	msilib)

(xml.etree.ElementTree.Element
attribute)

text	file
text	mode
text()	(msilib.Dialog	method)
text_factory	(sqlite3.Connection
attribute)
Textbox	(class	in	curses.textpad)
TextCalendar	(class	in	calendar)
textdomain()	(in	module	gettext)
TextFile	(class	in	distutils.text_file)
textinput()	(in	module	turtle)
TextIOBase	(class	in	io)
TextIOWrapper	(class	in	io)

trace	(module)
trace	command	line	option

--help
--ignore-dir=<dir>
--ignore-module=<mod>
--version
-C,	--coverdir=<dir>
-R,	--no-report
-T,	--trackcalls
-c,	--count
-f,	--file=<file>
-g,	--timing
-l,	--listfuncs
-m,	--missing
-r,	--report
-s,	--summary
-t,	--trace

trace	function,	[1],	[2]
trace()	(in	module	inspect)
trace_dispatch()	(bdb.Bdb
method)
traceback

object,	[1],	[2],	[3],	[4]
Traceback	(class	in	tracemalloc)
traceback	(module)

(tracemalloc.Statistic	 attribute)
(tracemalloc.StatisticDiff
attribute)
(tracemalloc.Trace	attribute)

traceback_limit
(tracemalloc.Snapshot	attribute)

(wsgiref.handlers.BaseHandler
attribute)

tracebacklimit	(in	module	sys)
tracebacks

in	CGI	scripts

TextTestResult	(class	in	unittest)
TextTestRunner	(class	in	unittest)
textwrap	(module)
TextWrapper	(class	in	textwrap)
theme_create()	(tkinter.ttk.Style
method)
theme_names()	(tkinter.ttk.Style
method)
theme_settings()	(tkinter.ttk.Style
method)
theme_use()	(tkinter.ttk.Style	method)
THOUSEP	(in	module	locale)
Thread	(class	in	threading)
thread()	(imaplib.IMAP4	method)
thread_info	(in	module	sys)
threading	(module)
ThreadPoolExecutor	(class	in
concurrent.futures)
threads

POSIX
throw	(2to3	fixer)
throw()	(generator	method)
tigetflag()	(in	module	curses)
tigetnum()	(in	module	curses)
tigetstr()	(in	module	curses)
TILDE	(in	module	token)
tilt()	(in	module	turtle)
tiltangle()	(in	module	turtle)
time	(class	in	datetime)

(module)
time()	(asyncio.BaseEventLoop
method)

(datetime.datetime	method)
(in	module	time)

Time2Internaldate()	(in	module
imaplib)
timedelta	(class	in	datetime)
TimedRotatingFileHandler	(class	in

TracebackType	(in	module	types)
tracemalloc	(module)
tracer()	(in	module	turtle)
traces	(tracemalloc.Snapshot
attribute)
trailing

comma
transfercmd()	(ftplib.FTP	method)
TransientResource	(class	in
test.support)
translate()	(bytearray	method)

(bytes	method)
(in	module	fnmatch)
(str	method)

translation()	(in	module	gettext)
transport	(asyncio.StreamWriter
attribute)
Transport	Layer	Security
traverseproc	(C	type)
Tree	(class	in	tkinter.tix)
TreeBuilder	(class	in
xml.etree.ElementTree)
Treeview	(class	in	tkinter.ttk)
triangular()	(in	module	random)
triple-quoted	string,	[1]
True,	[1],	[2]
true
True	(built-in	variable)
truediv()	(in	module	operator)
trunc()	(in	module	math),	[1]
truncate()	(in	module	os)

(io.IOBase	method)
truth

value
truth()	(in	module	operator)
try

statement,	[1],	[2]
ttk

logging.handlers)
timegm()	(in	module	calendar)
timeit	(module)
timeit	command	line	option

-c,	--clock
-h,	--help
-n	N,	--number=N
-p,	--process
-r	N,	--repeat=N
-s	S,	--setup=S
-t,	--time
-v,	--verbose

timeit()	(in	module	timeit)
(timeit.Timer	method)

timeout
(socketserver.BaseServer	attribute)
(subprocess.TimeoutExpired
attribute)

timeout()	(curses.window	method)
TIMEOUT_MAX	(in	module	_thread)

(in	module	threading)
TimeoutError,	[1]
TimeoutExpired
Timer	(class	in	threading)

(class	in	timeit)
times()	(in	module	os)
timestamp()	(datetime.datetime
method)
timetuple()	(datetime.date	method)

(datetime.datetime	method)
timetz()	(datetime.datetime	method)
timezone	(class	in	datetime),	[1]

(in	module	time)
title()	(in	module	turtle)

(str	method)

tty
I/O	control

tty	(module)
ttyname()	(in	module	os)
tuple

built-in	function,	[1]
display
empty,	[1]
object,	[1],	[2],	[3],	[4],	[5],	[6]
singleton

tuple	(built-in	class)
tuple2st()	(in	module	parser)
tuple_params	(2to3	fixer)
turnoff_sigfpe()	(in	module	fpectl)
turnon_sigfpe()	(in	module	fpectl)
Turtle	(class	in	turtle)
turtle	(module)
turtles()	(in	module	turtle)
TurtleScreen	(class	in	turtle)
turtlesize()	(in	module	turtle)
type,	[1]

Boolean
built-in	function,	[1],	[2]
data
hierarchy
immutable	data
object,	[1],	[2]
operations	on	dictionary
operations	on	list

type	(optparse.Option	attribute)
(socket.socket	attribute)
(tarfile.TarInfo	attribute)
(urllib.request.Request
attribute)

type	of	an	object
type()	(built-in	function)

TYPE_CHECKER
(optparse.Option	attribute)
typeahead()	(in	module	curses)
typecode	(array.array	attribute)
typecodes	(in	module	array)
TYPED_ACTIONS
(optparse.Option	attribute)
typed_subpart_iterator()	(in
module	email.iterators)
TypeError

exception
types

built-in
immutable	sequence
module
mutable	sequence
operations	on	integer
operations	on	mapping
operations	on	numeric
operations	on	sequence,	[1]

types	(2to3	fixer)
(module)

TYPES	(optparse.Option
attribute)
types,	internal
types_map	(in	module
mimetypes)

(mimetypes.MimeTypes
attribute)

types_map_inv
(mimetypes.MimeTypes	attribute)
TZ,	[1],	[2],	[3],	[4]
tzinfo	(class	in	datetime)

(datetime.datetime	attribute)
(datetime.time	attribute)

tzname	(in	module	time)
tzname()	(datetime.datetime

method)
(datetime.time	method)
(datetime.timezone	method)
(datetime.tzinfo	method)

tzset()	(in	module	time)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	U
u-LAW,	[1],	[2]
ucd_3_2_0	(in	module	unicodedata)
udata	(select.kevent	attribute)
UF_APPEND	(in	module	stat)
UF_COMPRESSED	(in	module	stat)
UF_HIDDEN	(in	module	stat)
UF_IMMUTABLE	(in	module	stat)
UF_NODUMP	(in	module	stat)
UF_NOUNLINK	(in	module	stat)
UF_OPAQUE	(in	module	stat)
uid	(tarfile.TarInfo	attribute)
uid()	(imaplib.IMAP4	method)
uidl()	(poplib.POP3	method)
ulaw2lin()	(in	module	audioop)
ULONG_MAX
umask()	(in	module	os)
unalias	(pdb	command)
uname	(tarfile.TarInfo	attribute)
uname()	(in	module	os)

(in	module	platform)
unary

arithmetic	operation
bitwise	operation

UNARY_INVERT	(opcode)
UNARY_NEGATIVE	(opcode)
UNARY_NOT	(opcode)
UNARY_POSITIVE	(opcode)
unbinding

name
UnboundLocalError,	[1]
unbuffered	I/O
UNC	paths

and	os.makedirs()
unconsumed_tail	(zlib.Decompress
attribute)

unreachable	object
unreadline()
(distutils.text_file.TextFile	method)
unrecognized	escape	sequence
unregister()	(in	module	atexit)

(in	module	faulthandler)
(select.devpoll	method)
(select.epoll	method)
(select.poll	method)
(selectors.BaseSelector
method)

unregister_archive_format()	(in
module	shutil)
unregister_dialect()	(in	module	csv)
unregister_unpack_format()	(in
module	shutil)
unset()
(test.support.EnvironmentVarGuard
method)
unsetenv()	(in	module	os)
UnstructuredHeader	(class	in
email.headerregistry)
unsubscribe()	(imaplib.IMAP4
method)
UnsupportedOperation
until	(pdb	command)
untokenize()	(in	module	tokenize)
untouchwin()	(curses.window
method)
unused_data
(bz2.BZ2Decompressor	attribute)

(lzma.LZMADecompressor
attribute)
(zlib.Decompress	attribute)

unctrl()	(in	module	curses)
(in	module	curses.ascii)

undefine_macro()
(distutils.ccompiler.CCompiler	method)
Underflow	(class	in	decimal)
undisplay	(pdb	command)
undo()	(in	module	turtle)
undobufferentries()	(in	module	turtle)
undoc_header	(cmd.Cmd	attribute)
unescape()	(in	module	html)

(in	module	xml.sax.saxutils)
UnexpectedException
unexpectedSuccesses	(unittest.TestResult
attribute)
unget_wch()	(in	module	curses)
ungetch()	(in	module	curses)

(in	module	msvcrt)
ungetmouse()	(in	module	curses)
ungetwch()	(in	module	msvcrt)
unhexlify()	(in	module	binascii)
Unicode,	[1],	[2]

database
unicode	(2to3	fixer)
Unicode	Consortium
unicodedata	(module)
UnicodeDecodeError
UnicodeEncodeError
UnicodeError
UnicodeTranslateError
UnicodeWarning
unidata_version	(in	module	unicodedata)
unified_diff()	(in	module	difflib)
uniform()	(in	module	random)
UnimplementedFileMode
Union	(class	in	ctypes)
union()	(set	method)
unique()	(in	module	enum),	[1]
unittest	(module)

unverifiable	(urllib.request.Request
attribute)
unwrap()	(in	module	inspect)

(ssl.SSLSocket	method)
up	(pdb	command)
up()	(in	module	turtle)
update()	(collections.Counter
method)

(dict	method)
(hashlib.hash	method)
(hmac.HMAC	method)
(in	module	turtle)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(set	method)
(trace.CoverageResults
method)

update_panels()	(in	module
curses.panel)
update_visible()
(mailbox.BabylMessage	method)
update_wrapper()	(in	module
functools)
upper()	(str	method)
urandom()	(in	module	os)
URL,	[1],	[2],	[3]

parsing
relative

url	(xmlrpc.client.ProtocolError
attribute)
url2pathname()	(in	module
urllib.request)
urlcleanup()	(in	module
urllib.request)
urldefrag()	(in	module	urllib.parse)
urlencode()	(in	module	urllib.parse)
URLError

unittest	command	line	option
-b,	--buffer
-c,	--catch
-f,	--failfast

unittest-discover	command	line	option
-p,	--pattern	pattern
-s,	--start-directory	directory
-t,	--top-level-directory	directory
-v,	--verbose

unittest.mock	(module)
universal	newlines

What's	new,	[1],	[2],	[3]
csv.reader	function
importlib.abc.InspectLoader.get_source
method
io.IncrementalNewlineDecoder	class
io.TextIOWrapper	class
open()	built-in	function
str.splitlines	method
subprocess	module
zipfile.ZipFile.open	method

UNIX
I/O	control
file	control

unix_dialect	(class	in	csv)
unknown_decl()	(html.parser.HTMLParser
method)
unknown_open()
(urllib.request.BaseHandler	method)

(urllib.request.UnknownHandler
method)

UnknownHandler	(class	in	urllib.request)
UnknownProtocol
UnknownTransferEncoding
unlink()	(in	module	os)

(pathlib.Path	method)

urljoin()	(in	module	urllib.parse)
urllib	(2to3	fixer)

(module)
urllib.error	(module)
urllib.parse	(module)
urllib.request

module
urllib.request	(module)
urllib.response	(module)
urllib.robotparser	(module)
urlopen()	(in	module	urllib.request)
URLopener	(class	in	urllib.request)
urlparse()	(in	module	urllib.parse)
urlretrieve()	(in	module
urllib.request)
urlsafe_b64decode()	(in	module
base64)
urlsafe_b64encode()	(in	module
base64)
urlsplit()	(in	module	urllib.parse)
urlunparse()	(in	module
urllib.parse)
urlunsplit()	(in	module	urllib.parse)
urn	(uuid.UUID	attribute)
use_default_colors()	(in	module
curses)
use_env()	(in	module	curses)
use_rawinput	(cmd.Cmd	attribute)
UseForeignDTD()
(xml.parsers.expat.xmlparser
method)
USER
user

effective	id
id
id,	setting

user()	(poplib.POP3	method)
user-defined

(xml.dom.minidom.Node	method)
unlock()	(mailbox.Babyl	method)

(mailbox.MH	method)
(mailbox.MMDF	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(mailbox.mbox	method)

unpack()	(in	module	struct)
(struct.Struct	method)

unpack_archive()	(in	module	shutil)
unpack_array()	(xdrlib.Unpacker	method)
unpack_bytes()	(xdrlib.Unpacker	method)
unpack_double()	(xdrlib.Unpacker	method)
UNPACK_EX	(opcode)
unpack_farray()	(xdrlib.Unpacker	method)
unpack_float()	(xdrlib.Unpacker	method)
unpack_fopaque()	(xdrlib.Unpacker
method)
unpack_from()	(in	module	struct)

(struct.Struct	method)
unpack_fstring()	(xdrlib.Unpacker	method)
unpack_list()	(xdrlib.Unpacker	method)
unpack_opaque()	(xdrlib.Unpacker
method)
UNPACK_SEQUENCE	(opcode)
unpack_string()	(xdrlib.Unpacker	method)
Unpacker	(class	in	xdrlib)
unparsedEntityDecl()
(xml.sax.handler.DTDHandler	method)
UnparsedEntityDeclHandler()
(xml.parsers.expat.xmlparser	method)
Unpickler	(class	in	pickle)
UnpicklingError
unquote()	(in	module	email.utils)

(in	module	urllib.parse)
unquote_plus()	(in	module	urllib.parse)
unquote_to_bytes()	(in	module

function
function	call
method

user-defined	function
object,	[1],	[2]

user-defined	method
object

USER_BASE
(in	module	site)

user_call()	(bdb.Bdb	method)
user_exception()	(bdb.Bdb
method)
user_line()	(bdb.Bdb	method)
user_return()	(bdb.Bdb	method)
USER_SITE	(in	module	site)
usercustomize

module
UserDict	(class	in	collections)
UserList	(class	in	collections)
USERNAME,	[1]
username
(email.headerregistry.Address
attribute)
USERPROFILE,	[1]
userptr()	(curses.panel.Panel
method)
UserString	(class	in	collections)
UserWarning
USTAR_FORMAT	(in	module
tarfile)
UTC
utc	(datetime.timezone	attribute)
utcfromtimestamp()
(datetime.datetime	class	method)
utcnow()	(datetime.datetime	class
method)
utcoffset()	(datetime.datetime
method)

urllib.parse) (datetime.time	method)
(datetime.timezone	method)
(datetime.tzinfo	method)

utctimetuple()	(datetime.datetime
method)
utime()	(in	module	os)
uu

module
uu	(module)
UUID	(class	in	uuid)
uuid	(module)
uuid1
uuid1()	(in	module	uuid)
uuid3
uuid3()	(in	module	uuid)
uuid4
uuid4()	(in	module	uuid)
uuid5
uuid5()	(in	module	uuid)
UuidCreate()	(in	module	msilib)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	V
v4_int_to_packed()	(in	module	ipaddress)
v6_int_to_packed()	(in	module	ipaddress)
validator()	(in	module	wsgiref.validate)
value

default	parameter
truth

value	(ctypes._SimpleCData	attribute)
(http.cookiejar.Cookie	attribute)
(http.cookies.Morsel	attribute)
(xml.dom.Attr	attribute)

value	of	an	object
Value()	(in	module	multiprocessing)

(in	module	multiprocessing.sharedctypes)
(multiprocessing.managers.SyncManager
method)

value_decode()	(http.cookies.BaseCookie
method)
value_encode()	(http.cookies.BaseCookie
method)
ValueError

exception
valuerefs()	(weakref.WeakValueDictionary
method)
values

Boolean
writing

values()	(dict	method)
(email.message.Message	method)
(mailbox.Mailbox	method)
(types.MappingProxyType	method)

ValuesView	(class	in	collections.abc)
variable

free

verbose	(in	module	tabnanny)
(in	module	test.support)

verify()	(smtplib.SMTP	method)
VERIFY_CRL_CHECK_CHAIN	(in	module
ssl)
VERIFY_CRL_CHECK_LEAF	(in	module
ssl)
VERIFY_DEFAULT	(in	module	ssl)
verify_flags	(ssl.SSLContext	attribute)
verify_mode	(ssl.SSLContext	attribute)
verify_request()	(socketserver.BaseServer
method)
VERIFY_X509_STRICT	(in	module	ssl)
version
(email.headerregistry.MIMEVersionHeader
attribute)

(http.client.HTTPResponse	attribute)
(http.cookiejar.Cookie	attribute)
(in	module	curses)
(in	module	marshal)
(in	module	sqlite3)
(in	module	sys),	[1],	[2]
(ipaddress.IPv4Address	attribute)
(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)
(urllib.request.URLopener	attribute)
(uuid.UUID	attribute)

version()	(in	module	ensurepip)
(in	module	platform)

version_info	(in	module	sqlite3)
(in	module	sys)

version_string()

variance()	(in	module	statistics)
variant	(uuid.UUID	attribute)
vars()	(built-in	function)
VBAR	(in	module	token)
vbar	(tkinter.scrolledtext.ScrolledText
attribute)
VBAREQUAL	(in	module	token)
Vec2D	(class	in	turtle)
venv	(module)
VERBOSE	(in	module	re)

(http.server.BaseHTTPRequestHandler
method)
vformat()	(string.Formatter	method)
view
virtual

Environments
virtual	machine
visit()	(ast.NodeVisitor	method)
visitproc	(C	type)
vline()	(curses.window	method)
VMSError
voidcmd()	(ftplib.FTP	method)
volume	(zipfile.ZipInfo	attribute)
vonmisesvariate()	(in	module	random)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	W
W_OK	(in	module	os)
wait()	(asyncio.Condition	method)

(asyncio.Event	method)
(in	module	asyncio)
(in	module	concurrent.futures)
(in	 module
multiprocessing.connection)
(in	module	os)
(multiprocessing.pool.AsyncResult
method)
(subprocess.Popen	method)
(threading.Barrier	method)
(threading.Condition	method)
(threading.Event	method)

wait3()	(in	module	os)
wait4()	(in	module	os)
wait_closed()	(asyncio.AbstractServer
method)
wait_for()	(asyncio.Condition	method)

(in	module	asyncio)
(threading.Condition	method)

waitid()	(in	module	os)
waitpid()	(in	module	os)
walk()	(email.message.Message
method)

(in	module	ast)
(in	module	os)

walk_packages()	(in	module	pkgutil)
want	(doctest.Example	attribute)
warn()	(distutils.ccompiler.CCompiler
method)

(distutils.text_file.TextFile	method)
(in	module	warnings)

winver	(in	module	sys)
with

statement,	[1]
WITH_CLEANUP	(opcode)
with_hostmask	(ipaddress.IPv4Interface
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Interface	attribute)
(ipaddress.IPv6Network	attribute)

with_name()	(pathlib.PurePath	method)
with_netmask	(ipaddress.IPv4Interface
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Interface	attribute)
(ipaddress.IPv6Network	attribute)

with_prefixlen	(ipaddress.IPv4Interface
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Interface	attribute)
(ipaddress.IPv6Network	attribute)

with_suffix()	(pathlib.PurePath	method)
with_traceback()	(BaseException
method)
WNOHANG	(in	module	os)
WNOWAIT	(in	module	os)
wordchars	(shlex.shlex	attribute)
World	Wide	Web,	[1],	[2]
wrap()	(in	module	textwrap)

(textwrap.TextWrapper	method)
wrap_socket()	(in	module	ssl)

(ssl.SSLContext	method)
wrap_text()	(in	module
distutils.fancy_getopt)
wrapper()	(in	module	curses)

warn_explicit()	(in	module	warnings)
Warning
warning()	(in	module	logging)

(logging.Logger	method)
(xml.sax.handler.ErrorHandler
method)

warnings
(module)

WarningsRecorder	(class	in
test.support)
warnoptions	(in	module	sys)
wasSuccessful()	(unittest.TestResult
method)
WatchedFileHandler	(class	in
logging.handlers)
wave	(module)
WCONTINUED	(in	module	os)
WCOREDUMP()	(in	module	os)
WeakKeyDictionary	(class	in	weakref)
WeakMethod	(class	in	weakref)
weakref	(module)
WeakSet	(class	in	weakref)
WeakValueDictionary	(class	in
weakref)
webbrowser	(module)
weekday()	(datetime.date	method)

(datetime.datetime	method)
(in	module	calendar)

weekheader()	(in	module	calendar)
weibullvariate()	(in	module	random)
WEXITED	(in	module	os)
WEXITSTATUS()	(in	module	os)
wfile
(http.server.BaseHTTPRequestHandler
attribute)
what()	(in	module	imghdr)

(in	module	sndhdr)
whathdr()	(in	module	sndhdr)

wraps()	(in	module	functools)
writable()	(asyncore.dispatcher	method)

(io.IOBase	method)
write()	(asyncio.StreamWriter	method)

(asyncio.WriteTransport	method)
(code.InteractiveInterpreter	method)
(codecs.StreamWriter	method)
(configparser.ConfigParser	method)
(email.generator.BytesGenerator
method)
(email.generator.Generator	method)
(in	module	mmap)
(in	module	os)
(in	module	turtle)
(io.BufferedIOBase	method)
(io.BufferedWriter	method)
(io.RawIOBase	method)
(io.TextIOBase	method)
(ossaudiodev.oss_audio_device
method)
(telnetlib.Telnet	method)
(xml.etree.ElementTree.ElementTree
method)
(zipfile.ZipFile	method)

write_byte()	(in	module	mmap)
write_docstringdict()	(in	module	turtle)
write_eof()	(asyncio.StreamWriter
method)

(asyncio.WriteTransport	method)
write_file()	(in	module	distutils.file_util)
write_history_file()	(in	module	readline)
WRITE_RESTRICTED
write_results()	(trace.CoverageResults
method)
writeall()
(ossaudiodev.oss_audio_device

whatis	(pdb	command)
where	(pdb	command)
which()	(in	module	shutil)
whichdb()	(in	module	dbm)
while

statement,	[1],	[2],	[3]
whitespace	(in	module	string)

(shlex.shlex	attribute)
whitespace_split	(shlex.shlex	attribute)
Widget	(class	in	tkinter.ttk)
width	(textwrap.TextWrapper	attribute)
width()	(in	module	turtle)
WIFCONTINUED()	(in	module	os)
WIFEXITED()	(in	module	os)
WIFSIGNALED()	(in	module	os)
WIFSTOPPED()	(in	module	os)
win32_ver()	(in	module	platform)
WinDLL	(class	in	ctypes)
window	manager	(widgets)
window()	(curses.panel.Panel	method)
window_height()	(in	module	turtle)
window_width()	(in	module	turtle)
Windows	ini	file
WindowsError
WindowsPath	(class	in	pathlib)
WindowsRegistryFinder	(class	in
importlib.machinery)
WinError()	(in	module	ctypes)
WINFUNCTYPE()	(in	module	ctypes)
winreg	(module)
WinSock
winsound	(module)

method)
writeframes()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

writeframesraw()	(aifc.aifc	method)
(sunau.AU_write	method)
(wave.Wave_write	method)

writeheader()	(csv.DictWriter	method)
writelines()	(asyncio.StreamWriter
method)

(asyncio.WriteTransport	method)
(codecs.StreamWriter	method)
(io.IOBase	method)

writePlist()	(in	module	plistlib)
writePlistToBytes()	(in	module	plistlib)
writepy()	(zipfile.PyZipFile	method)
writer	(formatter.formatter	attribute)
writer()	(in	module	csv)
writerow()	(csv.csvwriter	method)
writerows()	(csv.csvwriter	method)
writestr()	(zipfile.ZipFile	method)
WriteTransport	(class	in	asyncio)
writev()	(in	module	os)
writexml()	(xml.dom.minidom.Node
method)
writing

values
WrongDocumentErr
ws_comma	(2to3	fixer)
wsgi_file_wrapper
(wsgiref.handlers.BaseHandler	attribute)
wsgi_multiprocess
(wsgiref.handlers.BaseHandler	attribute)
wsgi_multithread
(wsgiref.handlers.BaseHandler	attribute)
wsgi_run_once
(wsgiref.handlers.BaseHandler	attribute)
wsgiref	(module)

wsgiref.handlers	(module)
wsgiref.headers	(module)
wsgiref.simple_server	(module)
wsgiref.util	(module)
wsgiref.validate	(module)
WSGIRequestHandler	(class	in
wsgiref.simple_server)
WSGIServer	(class	in
wsgiref.simple_server)
wShowWindow
(subprocess.STARTUPINFO	attribute)
WSTOPPED	(in	module	os)
WSTOPSIG()	(in	module	os)
wstring_at()	(in	module	ctypes)
WTERMSIG()	(in	module	os)
WUNTRACED	(in	module	os)
WWW,	[1],	[2]

server,	[1]

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	X
X	(in	module	re)
X509	certificate
X_OK	(in	module	os)
xatom()	(imaplib.IMAP4	method)
XATTR_CREATE	(in	module	os)
XATTR_REPLACE	(in	module	os)
XATTR_SIZE_MAX	(in	module	os)
xcor()	(in	module	turtle)
XDR
xdrlib	(module)
xhdr()	(nntplib.NNTP	method)
XHTML
XHTML_NAMESPACE	(in	module	xml.dom)
xml	(module)
XML()	(in	module	xml.etree.ElementTree)
xml.dom	(module)
xml.dom.minidom	(module)
xml.dom.pulldom	(module)
xml.etree.ElementTree	(module)
xml.parsers.expat	(module)
xml.parsers.expat.errors	(module)
xml.parsers.expat.model	(module)
xml.sax	(module)
xml.sax.handler	(module)
xml.sax.saxutils	(module)
xml.sax.xmlreader	(module)
XML_ERROR_ABORTED	(in	module
xml.parsers.expat.errors)
XML_ERROR_ASYNC_ENTITY	(in	module
xml.parsers.expat.errors)
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF	(in
module	xml.parsers.expat.errors)
XML_ERROR_BAD_CHAR_REF	(in	module
xml.parsers.expat.errors)
XML_ERROR_BINARY_ENTITY_REF	(in	module

XML_ERROR_NO_ELEMENTS	(in	module
xml.parsers.expat.errors)
XML_ERROR_NO_MEMORY	(in	module
xml.parsers.expat.errors)
XML_ERROR_NOT_STANDALONE	(in	module
xml.parsers.expat.errors)
XML_ERROR_NOT_SUSPENDED	(in	module
xml.parsers.expat.errors)
XML_ERROR_PARAM_ENTITY_REF	(in
module	xml.parsers.expat.errors)
XML_ERROR_PARTIAL_CHAR	(in	module
xml.parsers.expat.errors)
XML_ERROR_PUBLICID	(in	module
xml.parsers.expat.errors)
XML_ERROR_RECURSIVE_ENTITY_REF	(in
module	xml.parsers.expat.errors)
XML_ERROR_SUSPEND_PE	(in	module
xml.parsers.expat.errors)
XML_ERROR_SUSPENDED	(in	module
xml.parsers.expat.errors)
XML_ERROR_SYNTAX	(in	module
xml.parsers.expat.errors)
XML_ERROR_TAG_MISMATCH	(in	module
xml.parsers.expat.errors)
XML_ERROR_TEXT_DECL	(in	module
xml.parsers.expat.errors)
XML_ERROR_UNBOUND_PREFIX	(in	module
xml.parsers.expat.errors)
XML_ERROR_UNCLOSED_CDATA_SECTION
(in	module	xml.parsers.expat.errors)
XML_ERROR_UNCLOSED_TOKEN	(in
module	xml.parsers.expat.errors)
XML_ERROR_UNDECLARING_PREFIX	(in
module	xml.parsers.expat.errors)
XML_ERROR_UNDEFINED_ENTITY	(in

xml.parsers.expat.errors)
XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING
(in	module	xml.parsers.expat.errors)
XML_ERROR_DUPLICATE_ATTRIBUTE	(in	module
xml.parsers.expat.errors)
XML_ERROR_ENTITY_DECLARED_IN_PE	(in	module
xml.parsers.expat.errors)
XML_ERROR_EXTERNAL_ENTITY_HANDLING	(in	module
xml.parsers.expat.errors)
XML_ERROR_FEATURE_REQUIRES_XML_DTD	(in	module
xml.parsers.expat.errors)
XML_ERROR_FINISHED	(in	module	xml.parsers.expat.errors)
XML_ERROR_INCOMPLETE_PE	(in	module
xml.parsers.expat.errors)
XML_ERROR_INCORRECT_ENCODING	(in	module
xml.parsers.expat.errors)
XML_ERROR_INVALID_TOKEN	(in	module
xml.parsers.expat.errors)
XML_ERROR_JUNK_AFTER_DOC_ELEMENT	(in	module
xml.parsers.expat.errors)
XML_ERROR_MISPLACED_XML_PI	(in	module
xml.parsers.expat.errors)

module	xml.parsers.expat.errors)
XML_ERROR_UNEXPECTED_STATE	(in
module	xml.parsers.expat.errors)
XML_ERROR_UNKNOWN_ENCODING	(in
module	xml.parsers.expat.errors)
XML_ERROR_XML_DECL	(in	module
xml.parsers.expat.errors)
XML_NAMESPACE	(in	module	xml.dom)
xmlcharrefreplace_errors()	(in	module	codecs)
XmlDeclHandler()	(xml.parsers.expat.xmlparser
method)
XMLFilterBase	(class	in	xml.sax.saxutils)
XMLGenerator	(class	in	xml.sax.saxutils)
XMLID()	(in	module	xml.etree.ElementTree)
XMLNS_NAMESPACE	(in	module	xml.dom)
XMLParser	(class	in	xml.etree.ElementTree)
XMLParserType	(in	module	xml.parsers.expat)
XMLPullParser	(class	in
xml.etree.ElementTree)
XMLReader	(class	in	xml.sax.xmlreader)
xmlrpc.client	(module)
xmlrpc.server	(module)
xor

bitwise
xor()	(in	module	operator)
xover()	(nntplib.NNTP	method)
xpath()	(nntplib.NNTP	method)
xrange	(2to3	fixer)
xreadlines	(2to3	fixer)
xview()	(tkinter.ttk.Treeview	method)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	Y
Y2K
ycor()	(in	module	turtle)
year	(datetime.date	attribute)

(datetime.datetime	attribute)
Year	2000
Year	2038
yeardatescalendar()
(calendar.Calendar	method)
yeardays2calendar()
(calendar.Calendar	method)

yeardayscalendar()
(calendar.Calendar	method)
YESEXPR	(in	module	locale)
yield

examples
expression
keyword
statement
yield	from	(in	What's	New)

YIELD_FROM	(opcode)
YIELD_VALUE	(opcode)
yiq_to_rgb()	(in	module	colorsys)
yview()	(tkinter.ttk.Treeview
method)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index	–	Z
Zen	of	Python
ZeroDivisionError

exception
zfill()	(str	method)
zip	(2to3	fixer)
zip()	(built-in	function)
ZIP_BZIP2	(in	module	zipfile)
ZIP_DEFLATED	(in	module
zipfile)
zip_longest()	(in	module
itertools)
ZIP_LZMA	(in	module	zipfile)
ZIP_STORED	(in	module
zipfile)

ZipFile	(class	in	zipfile)
zipfile	(module)
zipimport	(module)
zipimporter	(class	in	zipimport)
ZipImportError
ZipInfo	(class	in	zipfile)
zlib	(module)
ZLIB_RUNTIME_VERSION	(in
module	zlib)
ZLIB_VERSION	(in	module	zlib)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|	Python	»	3.4.0	Documentation	»

http://www.python.org/

Index
Symbols	|	_	|	A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	J	|	K	|	L	|	M	|	N	|	O	|	P	|	Q
|	R	|	S	|	T	|	U	|	V	|	W	|	X	|	Y	|	Z

Symbols
!	(pdb	command)
!=

operator
%

operator
%	formatting
%	interpolation
%PATH%,	[1],	[2]
&

operator
*

in	function	calls
operator
statement,	[1]

**
in	function	calls
operator
statement,	[1]

+
operator

-
operator

--create	<tarfile>	<source1>
<sourceN>

command	line	option
--details

inspect	command	line	option
--extract	<tarfile>	[<output_dir>]

command	line	option
--help

command	line	option
trace	command	line	option

--ignore-dir=<dir>
trace	command	line	option

-m	<module-name>
command	line	option

-m,	--memo
pickletools	 command	 line
option

-m,	--missing
trace	command	line	option

-n	N,	--number=N
timeit	command	line	option

-O
command	line	option

-o,	--output=<file>
pickletools	 command	 line
option

-OO
command	line	option

-p,	--pattern	pattern
unittest-discover	command	line
option

-p,	--preamble=<preamble>
pickletools	 command	 line
option

-p,	--process
timeit	command	line	option

-q
command	line	option
compileall	 command	 line
option

-R
command	line	option

-r	N,	--repeat=N
timeit	command	line	option

-R,	--no-report

--ignore-module=<mod>
trace	command	line	option

--list	<tarfile>
command	line	option

--test	<tarfile>
command	line	option

--user-base
site	command	line	option

--user-site
site	command	line	option

--version
command	line	option
trace	command	line	option

->	(return	annotation	assignment)
-a,	--annotate

pickletools	 command	 line
option

-B
command	line	option

-b
command	line	option
compileall	 command	 line
option

-b,	--buffer
unittest	command	line	option

-c	<command>
command	line	option

-c	<tarfile>	<source1>	<sourceN>
command	line	option

-c,	--catch
unittest	command	line	option

-c,	--clock
timeit	command	line	option

-c,	--count
trace	command	line	option

-C,	--coverdir=<dir>

trace	command	line	option
-r,	--report

trace	command	line	option
-S

command	line	option
-s

command	line	option
-s	S,	--setup=S

timeit	command	line	option
-s,	--start-directory	directory

unittest-discover	command	line
option

-s,	--summary
trace	command	line	option

-t	<tarfile>
command	line	option

-t,	--time
timeit	command	line	option

-t,	--top-level-directory	directory
unittest-discover	command	line
option

-t,	--trace
trace	command	line	option

-T,	--trackcalls
trace	command	line	option

-u
command	line	option

-V
command	line	option

-v
command	line	option

-v,	--verbose
command	line	option
timeit	command	line	option
unittest-discover	command	line
option

trace	command	line	option
-d

command	line	option
-d	destdir

compileall	 command	 line
option

-E
command	line	option

-e	<tarfile>	[<output_dir>]
command	line	option

-e,	--exact
tokenize	command	line	option

-f
compileall	 command	 line
option

-f,	--failfast
unittest	command	line	option

-f,	--file=<file>
trace	command	line	option

-g,	--timing
trace	command	line	option

-h
command	line	option

-h,	--help
timeit	command	line	option
tokenize	command	line	option

-I
command	line	option

-i
command	line	option

-i	list
compileall	 command	 line
option

-J
command	line	option

-l

-W	arg
command	line	option

-X
command	line	option

-x
command	line	option

-x	regex
compileall	 command	 line
option

...

.ini
file

.pdbrc
file

.pypirc	file
/

operator
//

operator
2to3
:	package

namespace
portion

<
operator

<<
operator

<=
operator

<protocol>_proxy
==

operator
>

operator
>=

operator

compileall	 command	 line
option

-l	<tarfile>
command	line	option

-l,	--indentlevel=<num>
pickletools	 command	 line
option

-l,	--listfuncs
trace	command	line	option

>>
operator

>>>
@

statement
^

operator

_
__abs__()	(in	module	operator)

(object	method)
__add__()	(in	module	operator)

(object	method)
__all__

(optional	module	attribute)
(package	variable)

__and__()	(in	module	operator)
(object	method)

__annotations__	(function	attribute)
__bases__	(class	attribute),	[1]
__bool__()	(object	method),	[1]
__bytes__()
(email.message.Message	method)

(object	method)
__cached__
__call__()
(email.headerregistry.HeaderRegistry
method)

(object	method),	[1]
(weakref.finalize	method)

__callback__	(weakref.ref	attribute)
__cause__	(exception	attribute)
__ceil__()	(fractions.Fraction
method)
__class__	(instance	attribute),	[1]

(unittest.mock.Mock	attribute)
__closure__	(function	attribute)
__code__	(function	attribute)

(function	object	attribute)
__complex__()	(object	method)
__concat__()	(in	module	operator)
__contains__()
(email.message.Message	method)

(in	module	operator)

__not__()	(in	module	operator)
__or__()	(in	module	operator)

(object	method)
__package__

(module	attribute)
(types.ModuleType	attribute)

__path__
__pos__()	(in	module	operator)

(object	method)
__pow__()	(in	module	operator)

(object	method)
__qualname__	(class	attribute)
__radd__()	(object	method)
__rand__()	(object	method)
__rdivmod__()	(object	method)
__reduce__()	(object	method)
__reduce_ex__()	(object	method)
__repr__()
(multiprocessing.managers.BaseProxy
method)

(netrc.netrc	method)
(object	method)

__reversed__()	(object	method)
__rfloordiv__()	(object	method)
__rlshift__()	(object	method)
__rmod__()	(object	method)
__rmul__()	(object	method)
__ror__()	(object	method)
__round__()	(fractions.Fraction	method)

(object	method)
__rpow__()	(object	method)
__rrshift__()	(object	method)
__rshift__()	(in	module	operator)

(object	method)
__rsub__()	(object	method)

(mailbox.Mailbox	method)
(object	method)

__context__	(exception	attribute)
__copy__()	(copy	protocol)
__debug__

(built-in	variable)
__deepcopy__()	(copy	protocol)
__defaults__	(function	attribute)
__del__()	(object	method)
__delattr__()	(object	method)
__delete__()	(object	method)
__delitem__()
(email.message.Message	method)

(in	module	operator)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(object	method)

__dict__	(class	attribute)
(function	attribute)
(instance	attribute)
(module	attribute),	[1]
(object	attribute)

__dir__()	(object	method)
(unittest.mock.Mock	method)

__displayhook__	(in	module	sys)
__divmod__()	(object	method)
__doc__	(class	attribute)

(function	attribute)
(method	attribute)
(module	attribute),	[1]
(types.ModuleType	attribute)

__enter__()	(contextmanager
method)

(object	method)
(winreg.PyHKEY	method)

__eq__()	(email.charset.Charset

__rtruediv__()	(object	method)
__rxor__()	(object	method)
__self__	(method	attribute)
__set__()	(object	method)
__setattr__()	(object	method)
__setitem__()	(email.message.Message
method)

(in	module	operator)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(object	method)

__setstate__()	(copy	protocol)
(object	method)

__slots__
__spec__
__stderr__	(in	module	sys)
__stdin__	(in	module	sys)
__stdout__	(in	module	sys)
__str__()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)
(email.charset.Charset	method)
(email.header.Header	method)
(email.headerregistry.Address
method)
(email.headerregistry.Group	method)
(email.message.Message	method)
(multiprocessing.managers.BaseProxy
method)
(object	method)

__sub__()	(in	module	operator)
(object	method)

__subclasscheck__()	(class	method)
__subclasses__()	(class	method)
__subclasshook__()	(abc.ABCMeta
method)

method)
(email.header.Header	method)
(in	module	operator)
(instance	method)
(memoryview	method)
(object	method)

__excepthook__	(in	module	sys)
__exit__()	(contextmanager	method)

(object	method)
(winreg.PyHKEY	method)

__file__
(module	attribute),	[1],	[2]

__float__()	(object	method)
__floor__()	(fractions.Fraction
method)
__floordiv__()	(in	module	operator)

(object	method)
__format__
__format__()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)
(object	method)

__func__	(method	attribute)
__future__

(module)
__ge__()	(in	module	operator)

(instance	method)
(object	method)

__get__()	(object	method)
__getattr__()	(object	method)
__getattribute__()	(object	method)
__getitem__()
(email.headerregistry.HeaderRegistry
method)

(email.message.Message
method)

__traceback__	(exception	attribute)
__truediv__()	(in	module	operator)

(object	method)
__xor__()	(in	module	operator)

(object	method)
anonymous	(ctypes.Structure	attribute)
_asdict()	(collections.somenamedtuple
method)
_b_base_	(ctypes._CData	attribute)
_b_needsfree_	(ctypes._CData	attribute)
_callmethod()
(multiprocessing.managers.BaseProxy
method)
_CData	(class	in	ctypes)
_clear_type_cache()	(in	module	sys)
_current_frames()	(in	module	sys)
_debugmallocstats()	(in	module	sys)
_dummy_thread	(module)
_exit()	(in	module	os)
_fields	(ast.AST	attribute)

(collections.somenamedtuple
attribute)

fields	(ctypes.Structure	attribute)
_flush()	(wsgiref.handlers.BaseHandler
method)
_frozen	(C	type)
_FuncPtr	(class	in	ctypes)
_get_child_mock()	(unittest.mock.Mock
method)
_getframe()	(in	module	sys)
_getvalue()
(multiprocessing.managers.BaseProxy
method)
_handle	(ctypes.PyDLL	attribute)
_inittab	(C	type)
_locale

module
_make()	(collections.somenamedtuple

(in	module	operator)
(mailbox.Mailbox	method)
(mapping	object	method)
(object	method)

__getnewargs__()	(object	method)
__getnewargs_ex__()	(object
method)
__getstate__()	(copy	protocol)

(object	method)
__globals__	(function	attribute)
__gt__()	(in	module	operator)

(instance	method)
(object	method)

__hash__()	(object	method)
__iadd__()	(in	module	operator)

(object	method)
__iand__()	(in	module	operator)

(object	method)
__iconcat__()	(in	module	operator)
__ifloordiv__()	(in	module	operator)

(object	method)
__ilshift__()	(in	module	operator)

(object	method)
__imod__()	(in	module	operator)

(object	method)
__import__

built-in	function
__import__()	(built-in	function)

(in	module	importlib)
__imul__()	(in	module	operator)

(object	method)
__index__()	(in	module	operator)

(object	method)
__init__()	(difflib.HtmlDiff	method)

(logging.Handler	method)
(logging.logging.Formatter

class	method)
_makeResult()	(unittest.TextTestRunner
method)
_name	(ctypes.PyDLL	attribute)
_objects	(ctypes._CData	attribute)
pack	(ctypes.Structure	attribute)
_parse()	(gettext.NullTranslations
method)
_Py_c_diff	(C	function)
_Py_c_neg	(C	function)
_Py_c_pow	(C	function)
_Py_c_prod	(C	function)
_Py_c_quot	(C	function)
_Py_c_sum	(C	function)
_Py_NoneStruct	(C	variable)
_PyBytes_Resize	(C	function)
_PyImport_FindExtension	(C	function)
_PyImport_Fini	(C	function)
_PyImport_FixupExtension	(C	function)
_PyImport_Init	(C	function)
_PyObject_GC_TRACK	(C	function)
_PyObject_GC_UNTRACK	(C	function)
_PyObject_New	(C	function)
_PyObject_NewVar	(C	function)
_PyTuple_Resize	(C	function)
_replace()	(collections.somenamedtuple
method)
_setroot()
(xml.etree.ElementTree.ElementTree
method)
_SimpleCData	(class	in	ctypes)
_source	(collections.somenamedtuple
attribute)
_structure()	(in	module	email.iterators)
_thread

module
_thread	(module)
_write()	(wsgiref.handlers.BaseHandler
method)

method)
(object	method)

__instancecheck__()	(class	method)
__int__()	(object	method)
__interactivehook__	(in	module	sys)
__inv__()	(in	module	operator)
__invert__()	(in	module	operator)

(object	method)
__ior__()	(in	module	operator)

(object	method)
__ipow__()	(in	module	operator)

(object	method)
__irshift__()	(in	module	operator)

(object	method)
__isub__()	(in	module	operator)

(object	method)
__iter__()	(container	method)

(iterator	method)
(mailbox.Mailbox	method)
(object	method)
(unittest.TestSuite	method)

__itruediv__()	(in	module	operator)
(object	method)

__ixor__()	(in	module	operator)
(object	method)

__kwdefaults__	(function	attribute)
__le__()	(in	module	operator)

(instance	method)
(object	method)

__len__()	(email.message.Message
method)

(mailbox.Mailbox	method)
(mapping	object	method)
(object	method)

__length_hint__()	(object	method)
__loader__

_xoptions	(in	module	sys)

(module	attribute)
(types.ModuleType	attribute)

__lshift__()	(in	module	operator)
(object	method)

__lt__()	(in	module	operator)
(instance	method)
(object	method)

__main__
module,	[1],	[2],	[3],	[4],	[5]

__main__	(module)
__missing__()	(collections.defaultdict
method)
__mod__()	(in	module	operator)

(object	method)
__module__	(class	attribute)

(function	attribute)
(method	attribute)

__mro__	(class	attribute)
__mul__()	(in	module	operator)

(object	method)
__name__

(class	attribute),	[1]
(function	attribute)
(method	attribute)
(module	attribute),	[1],	[2]
(types.ModuleType	attribute)

__ne__()	(email.charset.Charset
method)

(email.header.Header	method)
(in	module	operator)
(instance	method)
(object	method)

__neg__()	(in	module	operator)
(object	method)

__new__()	(object	method)
__next__()	(csv.csvreader	method)

(generator	method)
(iterator	method)

A
A	(in	module	re)
a-LAW
A-LAW,	[1]
a2b_base64()	(in	module	binascii)
a2b_hex()	(in	module	binascii)
a2b_hqx()	(in	module	binascii)
a2b_qp()	(in	module	binascii)
a2b_uu()	(in	module	binascii)
a85decode()	(in	module	base64)
a85encode()	(in	module	base64)
ABC	(class	in	abc)
abc	(module)
ABCMeta	(class	in	abc)
abiflags	(in	module	sys)
abort()

(asyncio.DatagramTransport	method)
(asyncio.WriteTransport	method)
(ftplib.FTP	method)
(in	module	os)
(threading.Barrier	method)

above()	(curses.panel.Panel	method)
abs

built-in	function,	[1]
abs()	(built-in	function)

(decimal.Context	method)
(in	module	operator)

abspath()	(in	module	os.path)
abstract	base	class
AbstractBasicAuthHandler	(class	in	urllib.request)
abstractclassmethod()	(in	module	abc)
AbstractDigestAuthHandler	(class	in
urllib.request)
AbstractEventLoopPolicy	(class	in	asyncio)
AbstractFormatter	(class	in	formatter)
abstractmethod()	(in	module	abc)

AMPER	(in	module	token)
AMPEREQUAL	(in	module	token)
and

bitwise
operator,	[1],	[2]

and_()	(in	module	operator)
annotation	(inspect.Parameter	attribute)
annotations

function,	[1]
announce()	(distutils.ccompiler.CCompiler
method)
anonymous

function
answer_challenge()	(in	module
multiprocessing.connection)
anticipate_failure()	(in	module	test.support)
ANY	(in	module	unittest.mock)
any()	(built-in	function)
api_version	(in	module	sys)
apop()	(poplib.POP3	method)
APPDATA
append()	(array.array	method)

(collections.deque	method)
(email.header.Header	method)
(imaplib.IMAP4	method)
(msilib.CAB	method)
(pipes.Template	method)
(sequence	method)
(xml.etree.ElementTree.Element	 method)

appendChild()	(xml.dom.Node	method)
appendleft()	(collections.deque	method)
application_uri()	(in	module	wsgiref.util)
apply	(2to3	fixer)
apply()	(multiprocessing.pool.Pool	method)
apply_async()	(multiprocessing.pool.Pool

abstractproperty()	(in	module	abc)
AbstractServer	(class	in	asyncio)
abstractstaticmethod()	(in	module	abc)
AbstractWriter	(class	in	formatter)
accept()	(asyncore.dispatcher	method)

(multiprocessing.connection.Listener	method)
(socket.socket	method)

access()	(in	module	os)
accumulate()	(in	module	itertools)
acos()	(in	module	cmath)

(in	module	math)
acosh()	(in	module	cmath)

(in	module	math)
acquire()	(_thread.lock	method)

(asyncio.Condition	method)
(asyncio.Lock	method)
(asyncio.Semaphore	method)
(logging.Handler	method)
(threading.Condition	method)
(threading.Lock	method)
(threading.RLock	method)
(threading.Semaphore	method)

acquire_lock()	(in	module	imp)
action	(optparse.Option	attribute)
ACTIONS	(optparse.Option	attribute)
active_children()	(in	module	multiprocessing)
active_count()	(in	module	threading)
add()	(decimal.Context	method)

(in	module	audioop)
(in	module	operator)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(msilib.RadioButtonGroup	method)
(pstats.Stats	method)
(set	method)
(tarfile.TarFile	method)

method)
architecture()	(in	module	platform)
archive	(zipimport.zipimporter	attribute)
aRepr	(in	module	reprlib)
argparse	(module)
args	(BaseException	attribute)

(functools.partial	attribute)
(inspect.BoundArguments	attribute)
(pdb	command)

argtypes	(ctypes._FuncPtr	attribute)
argument

call	semantics
difference	from	parameter
function
function	definition

ArgumentDefaultsHelpFormatter	(class	in
argparse)
ArgumentError
ArgumentParser	(class	in	argparse)
arguments	(inspect.BoundArguments
attribute)
argv	(in	module	sys)
arithmetic

conversion
operation,	binary
operation,	unary

ArithmeticError
array

module,	[1]
array	(class	in	array)

(module)
Array()	(in	module	multiprocessing)

(in	module	multiprocessing.sharedctypes)
(multiprocessing.managers.SyncManager
method)

arrays
article()	(nntplib.NNTP	method)

(tkinter.ttk.Notebook	method)
add_alias()	(in	module	email.charset)
add_alternative()	(email.message.EmailMessage
method)
add_argument()	(argparse.ArgumentParser
method)
add_argument_group()
(argparse.ArgumentParser	method)
add_attachment()	(email.message.EmailMessage
method)
add_cgi_vars()	(wsgiref.handlers.BaseHandler
method)
add_charset()	(in	module	email.charset)
add_codec()	(in	module	email.charset)
add_cookie_header()	(http.cookiejar.CookieJar
method)
add_data()	(in	module	msilib)
add_done_callback()	(asyncio.Future	method)

(concurrent.futures.Future	method)
add_fallback()	(gettext.NullTranslations	method)
add_file()	(msilib.Directory	method)
add_flag()	(mailbox.MaildirMessage	method)

(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

add_flowing_data()	(formatter.formatter	method)
add_folder()	(mailbox.Maildir	method)

(mailbox.MH	method)
add_get_handler()
(email.contentmanager.ContentManager	method)
add_handler()	(urllib.request.OpenerDirector
method)
add_header()	(email.message.Message	method)

(urllib.request.Request	method)
(wsgiref.headers.Headers	method)

add_history()	(in	module	readline)
add_hor_rule()	(formatter.formatter	method)
add_include_dir()	(distutils.ccompiler.CCompiler
method)

as_bytes()	(email.message.Message
method)
as_completed()	(in	module	asyncio)

(in	module	concurrent.futures)
as_integer_ratio()	(float	method)
AS_IS	(in	module	formatter)
as_posix()	(pathlib.PurePath	method)
as_string()	(email.message.Message
method)
as_tuple()	(decimal.Decimal	method)
as_uri()	(pathlib.PurePath	method)
ascii

built-in	function
ASCII,	[1]

(in	module	re)
ascii()	(built-in	function)

(in	module	curses.ascii)
ascii_letters	(in	module	string)
ascii_lowercase	(in	module	string)
ascii_uppercase	(in	module	string)
asctime()	(in	module	time)
asin()	(in	module	cmath)

(in	module	math)
asinh()	(in	module	cmath)

(in	module	math)
assert

statement,	[1]
assert_any_call()	(unittest.mock.Mock
method)
assert_called_once_with()
(unittest.mock.Mock	method)
assert_called_with()	(unittest.mock.Mock
method)
assert_has_calls()	(unittest.mock.Mock
method)
assert_line_data()	(formatter.formatter
method)
assertAlmostEqual()	(unittest.TestCase

add_label()	(mailbox.BabylMessage	method)
add_label_data()	(formatter.formatter	method)
add_library()	(distutils.ccompiler.CCompiler
method)
add_library_dir()	(distutils.ccompiler.CCompiler
method)
add_line_break()	(formatter.formatter	method)
add_link_object()	(distutils.ccompiler.CCompiler
method)
add_literal_data()	(formatter.formatter	method)
add_mutually_exclusive_group()
(argparse.ArgumentParser	method)
add_option()	(optparse.OptionParser	method)
add_parent()	(urllib.request.BaseHandler	method)
add_password()
(urllib.request.HTTPPasswordMgr	method)
add_reader()	(asyncio.BaseEventLoop	method)
add_related()	(email.message.EmailMessage
method)
add_runtime_library_dir()
(distutils.ccompiler.CCompiler	method)
add_section()	(configparser.ConfigParser
method)

(configparser.RawConfigParser	method)
add_sequence()	(mailbox.MHMessage	method)
add_set_handler()
(email.contentmanager.ContentManager	method)
add_signal_handler()	(asyncio.BaseEventLoop
method)
add_stream()	(in	module	msilib)
add_subparsers()	(argparse.ArgumentParser
method)
add_tables()	(in	module	msilib)
add_type()	(in	module	mimetypes)
add_unredirected_header()
(urllib.request.Request	method)
add_writer()	(asyncio.BaseEventLoop	method)
addch()	(curses.window	method)
addCleanup()	(unittest.TestCase	method)

method)
assertCountEqual()	(unittest.TestCase
method)
assertDictEqual()	(unittest.TestCase	method)
assertEqual()	(unittest.TestCase	method)
assertFalse()	(unittest.TestCase	method)
assertGreater()	(unittest.TestCase	method)
assertGreaterEqual()	(unittest.TestCase
method)
assertIn()	(unittest.TestCase	method)
AssertionError

exception
assertions

debugging
assertIs()	(unittest.TestCase	method)
assertIsInstance()	(unittest.TestCase
method)
assertIsNone()	(unittest.TestCase	method)
assertIsNot()	(unittest.TestCase	method)
assertIsNotNone()	(unittest.TestCase
method)
assertLess()	(unittest.TestCase	method)
assertLessEqual()	(unittest.TestCase
method)
assertListEqual()	(unittest.TestCase	method)
assertLogs()	(unittest.TestCase	method)
assertMultiLineEqual()	(unittest.TestCase
method)
assertNotAlmostEqual()	(unittest.TestCase
method)
assertNotEqual()	(unittest.TestCase	method)
assertNotIn()	(unittest.TestCase	method)
assertNotIsInstance()	(unittest.TestCase
method)
assertNotRegex()	(unittest.TestCase	method)
assertRaises()	(unittest.TestCase	method)
assertRaisesRegex()	(unittest.TestCase
method)

addcomponent()	(turtle.Shape	method)
addError()	(unittest.TestResult	method)
addExpectedFailure()	(unittest.TestResult
method)
addFailure()	(unittest.TestResult	method)
addfile()	(tarfile.TarFile	method)
addFilter()	(logging.Handler	method)

(logging.Logger	method)
addHandler()	(logging.Logger	method)
addition
addLevelName()	(in	module	logging)
addnstr()	(curses.window	method)
AddPackagePath()	(in	module	modulefinder)
addr	(smtpd.SMTPChannel	attribute)
addr_spec	(email.headerregistry.Address
attribute)
Address	(class	in	email.headerregistry)
address
(email.headerregistry.SingleAddressHeader
attribute)

(multiprocessing.connection.Listener	 attribute)
(multiprocessing.managers.BaseManager
attribute)

address_exclude()	(ipaddress.IPv4Network
method)

(ipaddress.IPv6Network	method)
address_family	(socketserver.BaseServer
attribute)
address_string()
(http.server.BaseHTTPRequestHandler	method)
addresses	(email.headerregistry.AddressHeader
attribute)

(email.headerregistry.Group	attribute)
AddressHeader	(class	in	email.headerregistry)
addressof()	(in	module	ctypes)
AddressValueError
addshape()	(in	module	turtle)
addsitedir()	(in	module	site)

assertRegex()	(unittest.TestCase	method)
asserts	(2to3	fixer)
assertSequenceEqual()	(unittest.TestCase
method)
assertSetEqual()	(unittest.TestCase	method)
assertTrue()	(unittest.TestCase	method)
assertTupleEqual()	(unittest.TestCase
method)
assertWarns()	(unittest.TestCase	method)
assertWarnsRegex()	(unittest.TestCase
method)
assignment

attribute,	[1]
augmented
class	attribute
class	instance	attribute
slice
slicing
statement,	[1]
subscript
subscription
target	list

AST	(class	in	ast)
ast	(module)
astimezone()	(datetime.datetime	method)
async()	(in	module	asyncio)
async_chat	(class	in	asynchat)
async_chat.ac_in_buffer_size	(in	module
asynchat)
async_chat.ac_out_buffer_size	(in	module
asynchat)
asynchat	(module)
asyncio	(module)
asyncio.subprocess.DEVNULL	(in	module
asyncio)
asyncio.subprocess.PIPE	(in	module
asyncio)

addSkip()	(unittest.TestResult	method)
addstr()	(curses.window	method)
addSubTest()	(unittest.TestResult	method)
addSuccess()	(unittest.TestResult	method)
addTest()	(unittest.TestSuite	method)
addTests()	(unittest.TestSuite	method)
addTypeEqualityFunc()	(unittest.TestCase
method)
addUnexpectedSuccess()	(unittest.TestResult
method)
adjusted()	(decimal.Decimal	method)
adler32()	(in	module	zlib)
ADPCM,	Intel/DVI
adpcm2lin()	(in	module	audioop)
AES

algorithm
AF_CAN	(in	module	socket)
AF_INET	(in	module	socket)
AF_INET6	(in	module	socket)
AF_LINK	(in	module	socket)
AF_RDS	(in	module	socket)
AF_UNIX	(in	module	socket)
aifc	(module)
aifc()	(aifc.aifc	method)
AIFF,	[1]
aiff()	(aifc.aifc	method)
AIFF-C,	[1]
alarm()	(in	module	signal)
alaw2lin()	(in	module	audioop)
ALERT_DESCRIPTION_HANDSHAKE_FAILURE
(in	module	ssl)
ALERT_DESCRIPTION_INTERNAL_ERROR	(in
module	ssl)
algorithm

AES
algorithms_available	(in	module	hashlib)
algorithms_guaranteed	(in	module	hashlib)
alias	(pdb	command)

asyncio.subprocess.Process	(class	in
asyncio)
asyncio.subprocess.STDOUT	(in	module
asyncio)
asyncore	(module)
AsyncResult	(class	in	multiprocessing.pool)
AT	(in	module	token)
at_eof()	(asyncio.StreamReader	method)
atan()	(in	module	cmath)

(in	module	math)
atan2()	(in	module	math)
atanh()	(in	module	cmath)

(in	module	math)
atexit	(module)

(weakref.finalize	attribute)
atof()	(in	module	locale)
atoi()	(in	module	locale)
atom
attach()	(email.message.Message	method)
attach_mock()	(unittest.mock.Mock	method)
AttlistDeclHandler()
(xml.parsers.expat.xmlparser	method)
attrgetter()	(in	module	operator)
attrib	(xml.etree.ElementTree.Element
attribute)
attribute,	[1]

assignment,	[1]
assignment,	class
assignment,	class	instance
class
class	instance
deletion
generic	special
reference
special

AttributeError
exception

alignment()	(in	module	ctypes)
alive	(weakref.finalize	attribute)
all()	(built-in	function)
all_errors	(in	module	ftplib)
all_features	(in	module	xml.sax.handler)
all_frames	(tracemalloc.Filter	attribute)
all_properties	(in	module	xml.sax.handler)
all_suffixes()	(in	module	importlib.machinery)
all_tasks()	(asyncio.Task	class	method)
allocate_lock()	(in	module	_thread)
allow_reuse_address	(socketserver.BaseServer
attribute)
allowed_domains()
(http.cookiejar.DefaultCookiePolicy	method)
alt()	(in	module	curses.ascii)
ALT_DIGITS	(in	module	locale)
altsep	(in	module	os)
altzone	(in	module	time)
ALWAYS_TYPED_ACTIONS	(optparse.Option
attribute)

attributes	(xml.dom.Node	attribute)
AttributesImpl	(class	in	xml.sax.xmlreader)
AttributesNSImpl	(class	in
xml.sax.xmlreader)
attroff()	(curses.window	method)
attron()	(curses.window	method)
attrset()	(curses.window	method)
Audio	Interchange	File	Format
AUDIO_FILE_ENCODING_ADPCM_G721
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G722
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G723_3
(in	module	sunau)
AUDIO_FILE_ENCODING_ADPCM_G723_5
(in	module	sunau)
AUDIO_FILE_ENCODING_ALAW_8	(in
module	sunau)
AUDIO_FILE_ENCODING_DOUBLE	(in
module	sunau)
AUDIO_FILE_ENCODING_FLOAT	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_16	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_24	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_32	(in
module	sunau)
AUDIO_FILE_ENCODING_LINEAR_8	(in
module	sunau)
AUDIO_FILE_ENCODING_MULAW_8	(in
module	sunau)
AUDIO_FILE_MAGIC	(in	module	sunau)
AUDIODEV
audioop	(module)
augmented

assignment
auth()	(ftplib.FTP_TLS	method)
authenticate()	(imaplib.IMAP4	method)

AuthenticationError
authenticators()	(netrc.netrc	method)
authkey	(multiprocessing.Process	attribute)
avg()	(in	module	audioop)
avgpp()	(in	module	audioop)
avoids_symlink_attacks	(shutil.rmtree
attribute)

B
b16decode()	(in	module	base64)
b16encode()	(in	module	base64)
b2a_base64()	(in	module	binascii)
b2a_hex()	(in	module	binascii)
b2a_hqx()	(in	module	binascii)
b2a_qp()	(in	module	binascii)
b2a_uu()	(in	module	binascii)
b32decode()	(in	module	base64)
b32encode()	(in	module	base64)
b64decode()	(in	module	base64)
b64encode()	(in	module	base64)
b85decode()	(in	module	base64)
b85encode()	(in	module	base64)
Babyl	(class	in	mailbox)
BabylMessage	(class	in	mailbox)
back()	(in	module	turtle)
backslash	character
backslashreplace_errors()	(in	module
codecs)
backward()	(in	module	turtle)
BadStatusLine
BadZipfile
BadZipFile
Balloon	(class	in	tkinter.tix)
Barrier	(class	in	multiprocessing)

(class	in	threading)
Barrier()
(multiprocessing.managers.SyncManager
method)
base64

encoding
module

base64	(module)
base_exec_prefix	(in	module	sys)
base_prefix	(in	module	sys)
BaseCGIHandler	(class	in

blocked_domains()
(http.cookiejar.DefaultCookiePolicy
method)
BlockingIOError,	[1]
BNF,	[1]
body()	(nntplib.NNTP	method)
body_encode()	(email.charset.Charset
method)
body_encoding	(email.charset.Charset
attribute)
body_line_iterator()	(in	module
email.iterators)
BOM	(in	module	codecs)
BOM_BE	(in	module	codecs)
BOM_LE	(in	module	codecs)
BOM_UTF16	(in	module	codecs)
BOM_UTF16_BE	(in	module	codecs)
BOM_UTF16_LE	(in	module	codecs)
BOM_UTF32	(in	module	codecs)
BOM_UTF32_BE	(in	module	codecs)
BOM_UTF32_LE	(in	module	codecs)
BOM_UTF8	(in	module	codecs)
bool()	(built-in	function)
Boolean

object,	[1]
operation
operations,	[1]
type
values

BOOLEAN_STATES	(in	module
configparser)
bootstrap()	(in	module	ensurepip)
border()	(curses.window	method)
bottom()	(curses.panel.Panel	method)
bottom_panel()	(in	module	curses.panel)

wsgiref.handlers)
BaseCookie	(class	in	http.cookies)
BaseException
BaseHandler	(class	in	urllib.request)

(class	in	wsgiref.handlers)
BaseHeader	(class	in
email.headerregistry)
BaseHTTPRequestHandler	(class	in
http.server)
BaseManager	(class	in
multiprocessing.managers)
basename()	(in	module	os.path)
BaseProxy	(class	in
multiprocessing.managers)
BaseRotatingHandler	(class	in
logging.handlers)
BaseSelector	(class	in	selectors)
BaseServer	(class	in	socketserver)
basestring	(2to3	fixer)
BaseSubprocessTransport	(class	in
asyncio)
BaseTransport	(class	in	asyncio)
basicConfig()	(in	module	logging)
BasicContext	(class	in	decimal)
BasicInterpolation	(class	in	configparser)
baudrate()	(in	module	curses)
bbox()	(tkinter.ttk.Treeview	method)
bdb

module
Bdb	(class	in	bdb)
bdb	(module)
BdbQuit
BDFL
bdist_msi	(class	in
distutils.command.bdist_msi)
beep()	(in	module	curses)
Beep()	(in	module	winsound)
begin_fill()	(in	module	turtle)

BoundArguments	(class	in	inspect)
BoundaryError
BoundedSemaphore	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

BoundedSemaphore()
(multiprocessing.managers.SyncManager
method)
box()	(curses.window	method)
bpformat()	(bdb.Breakpoint	method)
bpprint()	(bdb.Breakpoint	method)
break

statement,	[1],	[2],	[3],	[4]
break	(pdb	command)
break_anywhere()	(bdb.Bdb	method)
break_here()	(bdb.Bdb	method)
break_long_words
(textwrap.TextWrapper	attribute)
BREAK_LOOP	(opcode)
break_on_hyphens
(textwrap.TextWrapper	attribute)
Breakpoint	(class	in	bdb)
breakpoints
broadcast_address
(ipaddress.IPv4Network	attribute)

(ipaddress.IPv6Network	attribute)
broken	(threading.Barrier	attribute)
BrokenBarrierError
BrokenPipeError
BrokenProcessPool
BROWSER,	[1]
BsdDbShelf	(class	in	shelve)
buffer	(2to3	fixer)

(io.TextIOBase	attribute)
(unittest.TestResult	attribute)

buffer	interface
(see	buffer	protocol)

buffer	object

begin_poly()	(in	module	turtle)
below()	(curses.panel.Panel	method)
benchmarking
Benchmarking
betavariate()	(in	module	random)
bgcolor()	(in	module	turtle)
bgpic()	(in	module	turtle)
bias()	(in	module	audioop)
bidirectional()	(in	module	unicodedata)
BigEndianStructure	(class	in	ctypes)
bin()	(built-in	function)
binary

arithmetic	operation
bitwise	operation
data,	packing
literals

Binary	(class	in	msilib)
binary	file
binary	literal
binary	mode
binary	semaphores
BINARY_ADD	(opcode)
BINARY_AND	(opcode)
BINARY_FLOOR_DIVIDE	(opcode)
BINARY_LSHIFT	(opcode)
BINARY_MODULO	(opcode)
BINARY_MULTIPLY	(opcode)
BINARY_OR	(opcode)
BINARY_POWER	(opcode)
BINARY_RSHIFT	(opcode)
BINARY_SUBSCR	(opcode)
BINARY_SUBTRACT	(opcode)
BINARY_TRUE_DIVIDE	(opcode)
BINARY_XOR	(opcode)
binascii	(module)
bind	(widgets)
bind()	(asyncore.dispatcher	method)

(inspect.Signature	method)

(see	buffer	protocol)
buffer	protocol

binary	sequence	types
str	(built-in	class)

buffer	size,	I/O
buffer_info()	(array.array	method)
buffer_size	(xml.parsers.expat.xmlparser
attribute)
buffer_text	(xml.parsers.expat.xmlparser
attribute)
buffer_used	(xml.parsers.expat.xmlparser
attribute)
BufferedIOBase	(class	in	io)
BufferedRandom	(class	in	io)
BufferedReader	(class	in	io)
BufferedRWPair	(class	in	io)
BufferedWriter	(class	in	io)
BufferError
BufferingHandler	(class	in
logging.handlers)
BufferTooShort
bufsize()	(ossaudiodev.oss_audio_device
method)
BUILD_LIST	(opcode)
BUILD_MAP	(opcode)
build_opener()	(in	module	urllib.request)
build_py	(class	in
distutils.command.build_py)
build_py_2to3	(class	in
distutils.command.build_py)
BUILD_SET	(opcode)
BUILD_SLICE	(opcode)
BUILD_TUPLE	(opcode)
built-in

method
types

built-in	function
__import__

(socket.socket	method)
bind_partial()	(inspect.Signature	method)
bind_port()	(in	module	test.support)
bind_textdomain_codeset()	(in	module
gettext)
binding

global	name
name,	[1],	[2],	[3],	[4],	[5],	[6]

bindtextdomain()	(in	module	gettext)
binhex

module
binhex	(module)
binhex()	(in	module	binhex)
bisect	(module)
bisect()	(in	module	bisect)
bisect_left()	(in	module	bisect)
bisect_right()	(in	module	bisect)
bit_length()	(int	method)
bitmap()	(msilib.Dialog	method)
bitwise

and
operation,	binary
operation,	unary
operations
or
xor

bk()	(in	module	turtle)
bkgd()	(curses.window	method)
bkgdset()	(curses.window	method)
blank	line
block

code
block_size	(hmac.HMAC	attribute)

abs,	[1]
ascii
bytes,	[1]
call
chr
classmethod
compile,	[1],	[2],	[3],	[4]
complex,	[1]
divmod,	[1],	[2]
eval,	[1],	[2],	[3],	[4],	[5]
exec,	[1],	[2]
float,	[1],	[2]
hash,	[1],	[2],	[3]
help
id
int,	[1],	[2]
len,	[1],	[2],	[3],	[4],	[5],	[6]
[10],	[11]
max
min
object,	[1]
open,	[1]
ord
pow,	[1],	[2],	[3],	[4],	[5]
print
range
repr,	[1],	[2],	[3]
round
slice,	[1]
staticmethod
tuple,	[1]
type,	[1],	[2]

built-in	method
call

object,	[1]
builtin_module_names	(in	module	sys)
BuiltinFunctionType	(in	module	types)
BuiltinImporter	(class	in
importlib.machinery)
BuiltinMethodType	(in	module	types)
builtins

module,	[1],	[2],	[3],	[4]
builtins	(module)
ButtonBox	(class	in	tkinter.tix)
bye()	(in	module	turtle)
byref()	(in	module	ctypes)
byte
byte-code

file,	[1]
byte_compile()	(in	module	distutils.util)
bytearray

methods
object,	[1],	[2],	[3]

bytearray()	(built-in	function)
bytecode,	[1]
Bytecode	(class	in	dis)
Bytecode.codeobj	(in	module	dis)
Bytecode.first_line	(in	module	dis)
BYTECODE_SUFFIXES	(in	module
importlib.machinery)
byteorder	(in	module	sys)
bytes

built-in	function,	[1]
methods
object,	[1],	[2]
str	(built-in	class)

bytes	(uuid.UUID	attribute)
bytes	literal
bytes()	(built-in	function)
bytes-like	object
bytes_le	(uuid.UUID	attribute)

BytesFeedParser	(class	in	email.parser)
BytesGenerator	(class	in
email.generator)
BytesIO	(class	in	io)
BytesParser	(class	in	email.parser)
byteswap()	(array.array	method)

(in	module	audioop)
BytesWarning
bz2	(module)
BZ2Compressor	(class	in	bz2)
BZ2Decompressor	(class	in	bz2)
BZ2File	(class	in	bz2)

C
C

language,	[1],	[2],	[3],	[4],	[5]
structures

c_bool	(class	in	ctypes)
C_BUILTIN	(in	module	imp)
c_byte	(class	in	ctypes)
c_char	(class	in	ctypes)
c_char_p	(class	in	ctypes)
c_contiguous	(memoryview	attribute)
c_double	(class	in	ctypes)
C_EXTENSION	(in	module	imp)
c_float	(class	in	ctypes)
c_int	(class	in	ctypes)
c_int16	(class	in	ctypes)
c_int32	(class	in	ctypes)
c_int64	(class	in	ctypes)
c_int8	(class	in	ctypes)
c_long	(class	in	ctypes)
c_longdouble	(class	in	ctypes)
c_longlong	(class	in	ctypes)
c_short	(class	in	ctypes)
c_size_t	(class	in	ctypes)
c_ssize_t	(class	in	ctypes)
c_ubyte	(class	in	ctypes)
c_uint	(class	in	ctypes)
c_uint16	(class	in	ctypes)
c_uint32	(class	in	ctypes)
c_uint64	(class	in	ctypes)
c_uint8	(class	in	ctypes)
c_ulong	(class	in	ctypes)
c_ulonglong	(class	in	ctypes)
c_ushort	(class	in	ctypes)
c_void_p	(class	in	ctypes)
c_wchar	(class	in	ctypes)
c_wchar_p	(class	in	ctypes)
CAB	(class	in	msilib)

color_pair()	(in	module	curses)
colormode()	(in	module	turtle)
colorsys	(module)
column()	(tkinter.ttk.Treeview	method)
COLUMNS,	[1]
columns	(os.terminal_size	attribute)
combinations()	(in	module	itertools)
combinations_with_replacement()	(in	module
itertools)
combine()	(datetime.datetime	class	method)
combining()	(in	module	unicodedata)
ComboBox	(class	in	tkinter.tix)
Combobox	(class	in	tkinter.ttk)
comma

trailing
COMMA	(in	module	token)
Command	(class	in	distutils.cmd)

(class	in	distutils.core)
command
(http.server.BaseHTTPRequestHandler
attribute)
command	line
command	line	option

--create	<tarfile>	<source1>	<sourceN>
--extract	<tarfile>	[<output_dir>]
--help
--list	<tarfile>
--test	<tarfile>
--version
-B
-E
-I
-J
-O

cache_from_source()	(in	module	imp)
(in	module	importlib.util)

cached	(importlib.machinery.ModuleSpec
attribute)
CacheFTPHandler	(class	in	urllib.request)
calcsize()	(in	module	struct)
Calendar	(class	in	calendar)
calendar	(module)
calendar()	(in	module	calendar)
call

built-in	function
built-in	method
class	instance
class	object,	[1],	[2]
function,	[1],	[2]
instance,	[1]
method
procedure
user-defined	function

call()	(in	module	subprocess)
(in	module	unittest.mock)

call_args	(unittest.mock.Mock	attribute)
call_args_list	(unittest.mock.Mock
attribute)
call_at()	(asyncio.BaseEventLoop	method)
call_count	(unittest.mock.Mock	attribute)
call_exception_handler()
(asyncio.BaseEventLoop	method)
CALL_FUNCTION	(opcode)
CALL_FUNCTION_KW	(opcode)
CALL_FUNCTION_VAR	(opcode)
CALL_FUNCTION_VAR_KW	(opcode)
call_later()	(asyncio.BaseEventLoop
method)
call_list()	(unittest.mock.call	method)
call_soon()	(asyncio.BaseEventLoop
method)

-OO
-R
-S
-V
-W	arg
-X
-b
-c	<command>
-c	<tarfile>	<source1>	<sourceN>
-d
-e	<tarfile>	[<output_dir>]
-h
-i
-l	<tarfile>
-m	<module-name>
-q
-s
-t	<tarfile>
-u
-v
-v,	--verbose
-x

CommandCompiler	(class	in	codeop)
commands	(pdb	command)
comment

(http.cookiejar.Cookie	attribute)
COMMENT	(in	module	tokenize)
comment	(zipfile.ZipFile	attribute)

(zipfile.ZipInfo	attribute)
Comment()	(in	module	xml.etree.ElementTree)
comment_url	(http.cookiejar.Cookie	attribute)
commenters	(shlex.shlex	attribute)
CommentHandler()
(xml.parsers.expat.xmlparser	method)
commit()	(msilib.CAB	method)
Commit()	(msilib.Database	method)

call_soon_threadsafe()
(asyncio.BaseEventLoop	method)
call_tracing()	(in	module	sys)
callable

object,	[1]
callable	(2to3	fixer)
Callable	(class	in	collections.abc)
callable()	(built-in	function)
CallableProxyType	(in	module	weakref)
callback	(optparse.Option	attribute)
callback()	(contextlib.ExitStack	method)
callback_args	(optparse.Option	attribute)
callback_kwargs	(optparse.Option
attribute)
callbacks	(in	module	gc)
called	(unittest.mock.Mock	attribute)
CalledProcessError
calloc()
CAN_BCM	(in	module	socket)
can_change_color()	(in	module	curses)
can_fetch()
(urllib.robotparser.RobotFileParser
method)
can_symlink()	(in	module	test.support)
can_write_eof()	(asyncio.StreamWriter
method)

(asyncio.WriteTransport	method)
cancel()	(asyncio.Future	method)

(asyncio.Handle	method)
(concurrent.futures.Future	method)
(sched.scheduler	method)
(threading.Timer	method)

cancel_dump_traceback_later()	(in
module	faulthandler)
cancel_join_thread()
(multiprocessing.Queue	method)
cancelled()	(asyncio.Future	method)

(concurrent.futures.Future	method)

commit()	(sqlite3.Connection	method)
common	(filecmp.dircmp	attribute)
Common	Gateway	Interface
common_dirs	(filecmp.dircmp	attribute)
common_files	(filecmp.dircmp	attribute)
common_funny	(filecmp.dircmp	attribute)
common_types	(in	module	mimetypes)
commonprefix()	(in	module	os.path)
communicate()
(asyncio.asyncio.subprocess.Process	method)

(subprocess.Popen	method)
compare()	(decimal.Context	method)

(decimal.Decimal	method)
(difflib.Differ	method)

compare_digest()	(in	module	hmac)
compare_networks()	(ipaddress.IPv4Network
method)

(ipaddress.IPv6Network	method)
COMPARE_OP	(opcode)
compare_signal()	(decimal.Context	method)

(decimal.Decimal	method)
compare_to()	(tracemalloc.Snapshot	method)
compare_total()	(decimal.Context	method)

(decimal.Decimal	method)
compare_total_mag()	(decimal.Context
method)

(decimal.Decimal	method)
comparing

objects
comparison

operator
COMPARISON_FLAGS	(in	module	doctest)
comparisons

chaining,	[1]
Compat32	(class	in	email.policy)
compile

built-in	function,	[1],	[2],	

CannotSendHeader
CannotSendRequest
canonic()	(bdb.Bdb	method)
canonical()	(decimal.Context	method)

(decimal.Decimal	method)
capa()	(poplib.POP3	method)
capitalize()	(str	method)
Capsule

object
captured_stderr()	(in	module	test.support)
captured_stdin()	(in	module	test.support)
captured_stdout()	(in	module	test.support)
captureWarnings()	(in	module	logging)
capwords()	(in	module	string)
casefold()	(str	method)
cast()	(in	module	ctypes)

(memoryview	method)
cat()	(in	module	nis)
catch_warnings	(class	in	warnings)
category()	(in	module	unicodedata)
cbreak()	(in	module	curses)
CC
ccc()	(ftplib.FTP_TLS	method)
CCompiler	(class	in	distutils.ccompiler)
CDLL	(class	in	ctypes)
ceil()	(in	module	math),	[1]
center()	(str	method)
CERT_NONE	(in	module	ssl)
CERT_OPTIONAL	(in	module	ssl)
CERT_REQUIRED	(in	module	ssl)
cert_store_stats()	(ssl.SSLContext
method)
cert_time_to_seconds()	(in	module	ssl)
CertificateError
certificates
CFLAGS,	[1],	[2]
CFUNCTYPE()	(in	module	ctypes)
CGI

Compile	(class	in	codeop)
compile()	(built-in	function)

(distutils.ccompiler.CCompiler	method)
(in	module	py_compile)
(in	module	re)
(parser.ST	method)

compile_command()	(in	module	code)
(in	module	codeop)

compile_dir()	(in	module	compileall)
compile_file()	(in	module	compileall)
compile_path()	(in	module	compileall)
compileall	(module)
compileall	command	line	option

-b
-d	destdir
-f
-i	list
-l
-q
-x	regex

compilest()	(in	module	parser)
complete()	(rlcompleter.Completer	method)
complete_statement()	(in	module	sqlite3)
completedefault()	(cmd.Cmd	method)
complex

built-in	function,	[1]
number
object

Complex	(class	in	numbers)
complex	literal
complex	number

literals
object,	[1]

complex()	(built-in	function)
compound

statement

debugging
exceptions
protocol
security
tracebacks

cgi	(module)
cgi_directories
(http.server.CGIHTTPRequestHandler
attribute)
CGIHandler	(class	in	wsgiref.handlers)
CGIHTTPRequestHandler	(class	in
http.server)
cgitb	(module)
CGIXMLRPCRequestHandler	(class	in
xmlrpc.server)
chain()	(in	module	itertools)
chaining

comparisons,	[1]
exception

ChainMap	(class	in	collections)
change_cwd()	(in	module	test.support)
change_root()	(in	module	distutils.util)
CHANNEL_BINDING_TYPES	(in	module
ssl)
channel_class	(smtpd.SMTPServer
attribute)
channels()
(ossaudiodev.oss_audio_device	method)
CHAR_MAX	(in	module	locale)
character,	[1],	[2]
CharacterDataHandler()
(xml.parsers.expat.xmlparser	method)
characters()
(xml.sax.handler.ContentHandler	method)
characters_written	(BlockingIOError
attribute)
Charset	(class	in	email.charset)
charset()	(gettext.NullTranslations

comprehensions
list

compress()	(bz2.BZ2Compressor	method)
(in	module	bz2)
(in	module	gzip)
(in	module	itertools)
(in	module	lzma)
(in	module	zlib)
(lzma.LZMACompressor	method)
(zlib.Compress	method)

compress_size	(zipfile.ZipInfo	attribute)
compress_type	(zipfile.ZipInfo	attribute)
compressed	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

compression()	(ssl.SSLSocket	method)
CompressionError
compressobj()	(in	module	zlib)
COMSPEC,	[1]
concat()	(in	module	operator)
concatenation

operation
concurrent.futures	(module)
Condition	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

condition	(pdb	command)
condition()	(msilib.Control	method)
Condition()
(multiprocessing.managers.SyncManager
method)
conditional

expression
Conditional

expression
ConfigParser	(class	in	configparser)

method)
chdir()	(in	module	os)
check	(lzma.LZMADecompressor
attribute)
check()	(imaplib.IMAP4	method)

(in	module	tabnanny)
check_call()	(in	module	subprocess)
check_environ()	(in	module	distutils.util)
check_hostname	(ssl.SSLContext
attribute)
check_output()	(doctest.OutputChecker
method)

(in	module	subprocess)
check_unused_args()	(string.Formatter
method)
check_warnings()	(in	module	test.support)
checkbox()	(msilib.Dialog	method)
checkcache()	(in	module	linecache)
checkfuncname()	(in	module	bdb)
CheckList	(class	in	tkinter.tix)
checksum

Cyclic	Redundancy	Check
chflags()	(in	module	os)
chgat()	(curses.window	method)
childNodes	(xml.dom.Node	attribute)
ChildProcessError
chmod()	(in	module	os)

(pathlib.Path	method)
choice()	(in	module	random)
choices	(optparse.Option	attribute)
chown()	(in	module	os)

(in	module	shutil)
chr

built-in	function
chr()	(built-in	function)
chroot()	(in	module	os)
Chunk	(class	in	chunk)
chunk	(module)

configparser	(module)
configuration

file
file,	debugger
file,	path

configuration	information
configure()	(tkinter.ttk.Style	method)
configure_mock()	(unittest.mock.Mock	method)
confstr()	(in	module	os)
confstr_names	(in	module	os)
conjugate()	(complex	number	method)

(decimal.Decimal	method)
(numbers.Complex	method)

conn	(smtpd.SMTPChannel	attribute)
connect()	(asyncore.dispatcher	method)

(ftplib.FTP	method)
(http.client.HTTPConnection	method)
(in	module	sqlite3)
(multiprocessing.managers.BaseManager
method)
(smtplib.SMTP	method)
(socket.socket	method)

connect_ex()	(socket.socket	method)
connect_read_pipe()	(asyncio.BaseEventLoop
method)
connect_write_pipe()	(asyncio.BaseEventLoop
method)
Connection	(class	in	multiprocessing)

(class	in	sqlite3)
connection_lost()	(asyncio.BaseProtocol
method)
connection_made()	(asyncio.BaseProtocol
method)
ConnectionAbortedError
ConnectionError
ConnectionRefusedError
ConnectionResetError

cipher
DES

cipher()	(ssl.SSLSocket	method)
circle()	(in	module	turtle)
CIRCUMFLEX	(in	module	token)
CIRCUMFLEXEQUAL	(in	module	token)
Clamped	(class	in	decimal)
class

attribute
attribute	assignment
constructor
definition,	[1]
instance
name
object,	[1],	[2]
statement

Class	(class	in	symtable)
Class	browser
class	instance

attribute
attribute	assignment
call
object,	[1],	[2]

class	object
call,	[1],	[2]

classmethod
built-in	function

classmethod()	(built-in	function)
clause
CLD_CONTINUED	(in	module	os)
CLD_DUMPED	(in	module	os)
CLD_EXITED	(in	module	os)
CLD_TRAPPED	(in	module	os)
clean()	(mailbox.Maildir	method)
cleandoc()	(in	module	inspect)
cleanup	functions
clear	(pdb	command)

ConnectRegistry()	(in	module	winreg)
const	(optparse.Option	attribute)
constant
constructor

class
constructor()	(in	module	copyreg)
container,	[1]

iteration	over
Container	(class	in	collections.abc)
contains()	(in	module	operator)
content	type

MIME
content_manager	(email.policy.EmailPolicy
attribute)
content_type
(email.headerregistry.ContentTypeHeader
attribute)
ContentDispositionHeader	(class	in
email.headerregistry)
ContentHandler	(class	in	xml.sax.handler)
ContentManager	(class	in
email.contentmanager)
ContentTooShortError
ContentTransferEncoding	(class	in
email.headerregistry)
ContentTypeHeader	(class	in
email.headerregistry)
Context	(class	in	decimal)
context	(ssl.SSLSocket	attribute)
context	management	protocol
context	manager,	[1],	[2]
context_diff()	(in	module	difflib)
ContextDecorator	(class	in	contextlib)
contextlib	(module)
contextmanager()	(in	module	contextlib)
contiguous	(memoryview	attribute)
continue

statement,	[1],	[2],	[3],	[4]

Clear	Breakpoint
clear()	(asyncio.Event	method)

(collections.deque	method)
(curses.window	method)
(dict	method)
(email.message.EmailMessage
method)
(frame	method)
(http.cookiejar.CookieJar	method)
(in	module	turtle),	[1]
(mailbox.Mailbox	method)
(sequence	method)
(set	method)
(threading.Event	method)
(xml.etree.ElementTree.Element
method)

clear_all_breaks()	(bdb.Bdb	method)
clear_all_file_breaks()	(bdb.Bdb	method)
clear_bpbynumber()	(bdb.Bdb	method)
clear_break()	(bdb.Bdb	method)
clear_cache()	(in	module	filecmp)
clear_content()
(email.message.EmailMessage	method)
clear_flags()	(decimal.Context	method)
clear_frames()	(in	module	traceback)
clear_history()	(in	module	readline)
clear_session_cookies()
(http.cookiejar.CookieJar	method)
clear_traces()	(in	module	tracemalloc)
clear_traps()	(decimal.Context	method)
clearcache()	(in	module	linecache)
ClearData()	(msilib.Record	method)
clearok()	(curses.window	method)
clearscreen()	(in	module	turtle)
clearstamp()	(in	module	turtle)
clearstamps()	(in	module	turtle)
Client()	(in	module

continue	(pdb	command)
CONTINUE_LOOP	(opcode)
Control	(class	in	msilib)

(class	in	tkinter.tix)
control()	(msilib.Dialog	method)

(select.kqueue	method)
controlnames	(in	module	curses.ascii)
controls()	(ossaudiodev.oss_mixer_device
method)
conversion

arithmetic
string,	[1]

ConversionError
conversions

numeric
convert_arg_line_to_args()
(argparse.ArgumentParser	method)
convert_field()	(string.Formatter	method)
convert_path()	(in	module	distutils.util)
Cookie	(class	in	http.cookiejar)
CookieError
CookieJar	(class	in	http.cookiejar)
cookiejar	(urllib.request.HTTPCookieProcessor
attribute)
CookiePolicy	(class	in	http.cookiejar)
Coordinated	Universal	Time
Copy
copy

module
protocol

copy	(module)
copy()	(decimal.Context	method)

(dict	method)
(hashlib.hash	method)
(hmac.HMAC	method)
(imaplib.IMAP4	method)
(in	module	copy)

multiprocessing.connection)
client_address
(http.server.BaseHTTPRequestHandler
attribute)
clock()	(in	module	time)
clock_getres()	(in	module	time)
clock_gettime()	(in	module	time)
CLOCK_HIGHRES	(in	module	time)
CLOCK_MONOTONIC	(in	module	time)
CLOCK_MONOTONIC_RAW	(in	module
time)
CLOCK_PROCESS_CPUTIME_ID	(in
module	time)
CLOCK_REALTIME	(in	module	time)
clock_settime()	(in	module	time)
CLOCK_THREAD_CPUTIME_ID	(in
module	time)
clone()	(email.generator.BytesGenerator
method)

(email.generator.Generator	method)
(email.policy.Policy	method)
(in	module	turtle)
(pipes.Template	method)

cloneNode()	(xml.dom.Node	method)
close()	(aifc.aifc	method),	[1]

(asyncio.AbstractServer	method)
(asyncio.BaseEventLoop	method)
(asyncio.BaseTransport	method)
(asyncio.StreamWriter	method)
(asyncore.dispatcher	method)
(chunk.Chunk	method)
(contextlib.ExitStack	method)
(distutils.text_file.TextFile	method)
(email.parser.FeedParser	method)
(ftplib.FTP	method)
(generator	method)
(html.parser.HTMLParser	method)

(in	module	multiprocessing.sharedctypes)
(in	module	shutil)
(pipes.Template	method)
(sequence	method)
(set	method)
(types.MappingProxyType	method)
(zlib.Compress	method)
(zlib.Decompress	method)

copy2()	(in	module	shutil)
copy_abs()	(decimal.Context	method)

(decimal.Decimal	method)
copy_decimal()	(decimal.Context	method)
copy_file()	(in	module	distutils.file_util)
copy_location()	(in	module	ast)
copy_negate()	(decimal.Context	method)

(decimal.Decimal	method)
copy_sign()	(decimal.Context	method)

(decimal.Decimal	method)
copy_tree()	(in	module	distutils.dir_util)
copyfile()	(in	module	shutil)
copyfileobj()	(in	module	shutil)
copying	files
copymode()	(in	module	shutil)
copyreg	(module)
copyright	(built-in	variable)

(in	module	sys),	[1]
copysign()	(in	module	math)
copystat()	(in	module	shutil)
copytree()	(in	module	shutil)
coroutine
coroutine()	(in	module	asyncio)
cos()	(in	module	cmath)

(in	module	math)
cosh()	(in	module	cmath)

(in	module	math)
count	(tracemalloc.Statistic	attribute)

(tracemalloc.StatisticDiff	attribute)

(http.client.HTTPConnection	method)
(imaplib.IMAP4	method)
(in	module	fileinput)
(in	module	mmap)
(in	module	os),	[1]
(io.IOBase	method)
(logging.FileHandler	method)
(logging.Handler	method)
(logging.handlers.MemoryHandler
method)
(logging.handlers.NTEventLogHandler
method)
(logging.handlers.SocketHandler
method)
(logging.handlers.SysLogHandler
method)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)

Close()	(msilib.View	method)
close()	(multiprocessing.Connection
method)

(multiprocessing.Queue	method)
(multiprocessing.connection.Listener
method)
(multiprocessing.pool.Pool	method)
(ossaudiodev.oss_audio_device
method)
(ossaudiodev.oss_mixer_device
method)
(select.devpoll	method)
(select.epoll	method)
(select.kqueue	method)
(selectors.BaseSelector	method)

count()	(array.array	method)
(collections.deque	method)
(in	module	itertools)
(sequence	method)
(str	method)

count_diff	(tracemalloc.StatisticDiff	attribute)
Counter	(class	in	collections)
countOf()	(in	module	operator)
countTestCases()	(unittest.TestCase	method)

(unittest.TestSuite	method)
CoverageResults	(class	in	trace)
CPP
CPPFLAGS
cProfile	(module)
CPU	time
cpu_count()	(in	module	multiprocessing)

(in	module	os)
CPython
CRC	(zipfile.ZipInfo	attribute)
crc32()	(in	module	binascii)

(in	module	zlib)
crc_hqx()	(in	module	binascii)
create()	(imaplib.IMAP4	method)

(in	module	venv)
(venv.EnvBuilder	method)

create_aggregate()	(sqlite3.Connection
method)
create_autospec()	(in	module	unittest.mock)
create_collation()	(sqlite3.Connection	method)
create_configuration()	(venv.EnvBuilder
method)
create_connection()	(asyncio.BaseEventLoop
method)

(in	module	socket)
create_datagram_endpoint()
(asyncio.BaseEventLoop	method)
create_decimal()	(decimal.Context	method)

(shelve.Shelf	method)
(socket.socket	method)
(sqlite3.Connection	method)
(sunau.AU_read	method)
(sunau.AU_write	method)
(tarfile.TarFile	method)
(telnetlib.Telnet	method)
(urllib.request.BaseHandler	method)
(wave.Wave_read	method)
(wave.Wave_write	method)

Close()	(winreg.PyHKEY	method)
close()
(xml.etree.ElementTree.TreeBuilder
method)

(xml.etree.ElementTree.XMLParser
method)
(xml.etree.ElementTree.XMLPullParser
method)
(xml.sax.xmlreader.IncrementalParser
method)
(zipfile.ZipFile	method)

close_when_done()	(asynchat.async_chat
method)
closed	(http.client.HTTPResponse
attribute)

(in	module	mmap)
(io.IOBase	attribute)
(ossaudiodev.oss_audio_device
attribute)
(select.devpoll	attribute)
(select.epoll	attribute)
(select.kqueue	attribute)

CloseKey()	(in	module	winreg)
closelog()	(in	module	syslog)
closerange()	(in	module	os)
closing()	(in	module	contextlib)

create_decimal_from_float()	(decimal.Context
method)
create_default_context()	(in	module	ssl)
create_function()	(sqlite3.Connection	method)
create_module()	(importlib.abc.Loader	method)
CREATE_NEW_CONSOLE	(in	module
subprocess)
CREATE_NEW_PROCESS_GROUP	(in
module	subprocess)
create_server()	(asyncio.BaseEventLoop
method)
create_shortcut()	(built-in	function)
create_socket()	(asyncore.dispatcher	method)
create_static_lib()
(distutils.ccompiler.CCompiler	method)
create_stats()	(profile.Profile	method)
create_string_buffer()	(in	module	ctypes)
create_subprocess_exec()	(in	module	asyncio)
create_subprocess_shell()	(in	module	asyncio)
create_system	(zipfile.ZipInfo	attribute)
create_tree()	(in	module	distutils.dir_util)
create_unicode_buffer()	(in	module	ctypes)
create_unix_connection()
(asyncio.BaseEventLoop	method)
create_unix_server()	(asyncio.BaseEventLoop
method)
create_version	(zipfile.ZipInfo	attribute)
createAttribute()	(xml.dom.Document	method)
createAttributeNS()	(xml.dom.Document
method)
createComment()	(xml.dom.Document	method)
createDocument()
(xml.dom.DOMImplementation	method)
createDocumentType()
(xml.dom.DOMImplementation	method)
createElement()	(xml.dom.Document	method)
createElementNS()	(xml.dom.Document
method)
CreateKey()	(in	module	winreg)

clrtobot()	(curses.window	method)
clrtoeol()	(curses.window	method)
cmath	(module)
cmd

module
Cmd	(class	in	cmd)
cmd	(module)

(subprocess.CalledProcessError
attribute)
(subprocess.TimeoutExpired	attribute)

cmdloop()	(cmd.Cmd	method)
cmp()	(in	module	filecmp)
cmp_op	(in	module	dis)
cmp_to_key()	(in	module	functools)
cmpfiles()	(in	module	filecmp)
CMSG_LEN()	(in	module	socket)
CMSG_SPACE()	(in	module	socket)
co_argcount	(code	object	attribute)
co_cellvars	(code	object	attribute)
co_code	(code	object	attribute)
co_consts	(code	object	attribute)
co_filename	(code	object	attribute)
co_firstlineno	(code	object	attribute)
co_flags	(code	object	attribute)
co_freevars	(code	object	attribute)
CO_FUTURE_DIVISION	(C	variable)
co_lnotab	(code	object	attribute)
co_name	(code	object	attribute)
co_names	(code	object	attribute)
co_nlocals	(code	object	attribute)
co_stacksize	(code	object	attribute)
co_varnames	(code	object	attribute)
code

block
object,	[1],	[2],	[3]

code	(module)
(urllib.error.HTTPError	attribute)
(xml.etree.ElementTree.ParseError

CreateKeyEx()	(in	module	winreg)
createLock()	(logging.Handler	method)

(logging.NullHandler	method)
createProcessingInstruction()
(xml.dom.Document	method)
CreateRecord()	(in	module	msilib)
createSocket()
(logging.handlers.SocketHandler	method)
createTextNode()	(xml.dom.Document	method)
credits	(built-in	variable)
critical()	(in	module	logging)

(logging.Logger	method)
CRNCYSTR	(in	module	locale)
cross()	(in	module	audioop)
crypt

module
crypt	(module)
crypt()	(in	module	crypt)
crypt(3),	[1],	[2]
cryptography,	[1]
csv

(module)
cte
(email.headerregistry.ContentTransferEncoding
attribute)
cte_type	(email.policy.Policy	attribute)
ctermid()	(in	module	os)
ctime()	(datetime.date	method)

(datetime.datetime	method)
(in	module	time)

ctrl()	(in	module	curses.ascii)
CTRL_BREAK_EVENT	(in	module	signal)
CTRL_C_EVENT	(in	module	signal)
ctypes	(module)
curdir	(in	module	os)
currency()	(in	module	locale)
current()	(tkinter.ttk.Combobox	method)
current_process()	(in	module	multiprocessing)

attribute)
(xml.parsers.expat.ExpatError
attribute)

code_info()	(in	module	dis)
Codecs

decode
encode

codecs	(module)
coded_value	(http.cookies.Morsel
attribute)
codeop	(module)
codepoint2name	(in	module	html.entities)
codes	(in	module
xml.parsers.expat.errors)
CODESET	(in	module	locale)
CodeType	(in	module	types)
coding

style
coercion
col_offset	(ast.AST	attribute)
collapse_addresses()	(in	module
ipaddress)
collapse_rfc2231_value()	(in	module
email.utils)
collect()	(in	module	gc)
collect_incoming_data()
(asynchat.async_chat	method)
collections	(module)
collections.abc	(module)
COLON	(in	module	token)
color()	(in	module	turtle)
color_content()	(in	module	curses)

current_task()	(asyncio.Task	class	method)
current_thread()	(in	module	threading)
CurrentByteIndex	(xml.parsers.expat.xmlparser
attribute)
CurrentColumnNumber
(xml.parsers.expat.xmlparser	attribute)
currentframe()	(in	module	inspect)
CurrentLineNumber
(xml.parsers.expat.xmlparser	attribute)
curs_set()	(in	module	curses)
curses	(module)
curses.ascii	(module)
curses.panel	(module)
curses.textpad	(module)
Cursor	(class	in	sqlite3)
cursor()	(sqlite3.Connection	method)
cursyncup()	(curses.window	method)
customize_compiler()	(in	module
distutils.sysconfig)
Cut
cwd()	(ftplib.FTP	method)

(pathlib.Path	class	method)
cycle()	(in	module	itertools)
Cyclic	Redundancy	Check

D
D_FMT	(in	module	locale)
D_T_FMT	(in	module	locale)
daemon	(multiprocessing.Process
attribute)

(threading.Thread	attribute)
dangling

else
data

packing	binary
tabular
type
type,	immutable

Data	(class	in	plistlib)
data	(collections.UserDict	attribute)

(collections.UserList	attribute)
(select.kevent	attribute)
(selectors.SelectorKey	attribute)
(urllib.request.Request	attribute)
(xml.dom.Comment	attribute)
(xml.dom.ProcessingInstruction
attribute)
(xml.dom.Text	attribute)
(xmlrpc.client.Binary	attribute)

data()
(xml.etree.ElementTree.TreeBuilder
method)
data_open()	(urllib.request.DataHandler
method)
data_received()	(asyncio.Protocol
method)
database

Unicode
databases
datagram_received()

digest_size	(hmac.HMAC	attribute)
digit()	(in	module	unicodedata)
digits	(in	module	string)
dir()	(built-in	function)

(ftplib.FTP	method)
dircmp	(class	in	filecmp)
directory

changing
creating
deleting,	[1]
site-packages
site-python
traversal,	[1]
walking,	[1]

Directory	(class	in	msilib)
directory_created()	(built-in	function)
DirList	(class	in	tkinter.tix)
dirname()	(in	module	os.path)
DirSelectBox	(class	in	tkinter.tix)
DirSelectDialog	(class	in	tkinter.tix)
DirTree	(class	in	tkinter.tix)
dis	(module)
dis()	(dis.Bytecode	method)

(in	module	dis)
(in	module	pickletools)

disable	(pdb	command)
disable()	(bdb.Breakpoint	method)

(in	module	faulthandler)
(in	module	gc)
(in	module	logging)
(profile.Profile	method)

disable_interspersed_args()
(optparse.OptionParser	method)
DisableReflectionKey()	(in	module	winreg)

(asyncio.DatagramProtocol	method)
DatagramHandler	(class	in
logging.handlers)
DatagramProtocol	(class	in	asyncio)
DataHandler	(class	in	urllib.request)
date	(class	in	datetime)
date()	(datetime.datetime	method)

(nntplib.NNTP	method)
date_time	(zipfile.ZipInfo	attribute)
date_time_string()
(http.server.BaseHTTPRequestHandler
method)
DateHeader	(class	in
email.headerregistry)
datetime	(class	in	datetime)

(email.headerregistry.DateHeader
attribute)
(module)

datum
day	(datetime.date	attribute)

(datetime.datetime	attribute)
day_abbr	(in	module	calendar)
day_name	(in	module	calendar)
daylight	(in	module	time)
Daylight	Saving	Time
DbfilenameShelf	(class	in	shelve)
dbm	(module)
dbm.dumb	(module)
dbm.gnu

module,	[1]
dbm.gnu	(module)
dbm.ndbm

module,	[1]
dbm.ndbm	(module)
deallocation,	object
debug	(imaplib.IMAP4	attribute)
DEBUG	(in	module	re)
debug	(shlex.shlex	attribute)

disassemble()	(in	module	dis)
discard	(http.cookiejar.Cookie	attribute)
discard()	(mailbox.Mailbox	method)

(mailbox.MH	method)
(set	method)

discard_buffers()	(asynchat.async_chat
method)
disco()	(in	module	dis)
discover()	(unittest.TestLoader	method)
disk_usage()	(in	module	shutil)
dispatch_call()	(bdb.Bdb	method)
dispatch_exception()	(bdb.Bdb	method)
dispatch_line()	(bdb.Bdb	method)
dispatch_return()	(bdb.Bdb	method)
dispatch_table	(pickle.Pickler	attribute)
dispatcher	(class	in	asyncore)
dispatcher_with_send	(class	in	asyncore)
display

dictionary
list
set
tuple

display	(pdb	command)
display_name	(email.headerregistry.Address
attribute)

(email.headerregistry.Group	attribute)
displayhook()	(in	module	sys)
dist()	(in	module	platform)
distance()	(in	module	turtle)
distb()	(in	module	dis)
Distribution	(class	in	distutils.core)
distutils	(module)
distutils.archive_util	(module)
distutils.bcppcompiler	(module)
distutils.ccompiler	(module)
distutils.cmd	(module)
distutils.command	(module)
distutils.command.bdist	(module)

(zipfile.ZipFile	attribute)
debug()	(in	module	doctest)

(in	module	logging)
(logging.Logger	method)
(pipes.Template	method)
(unittest.TestCase	method)
(unittest.TestSuite	method)

DEBUG_BYTECODE_SUFFIXES	(in
module	importlib.machinery)
DEBUG_COLLECTABLE	(in	module	gc)
DEBUG_LEAK	(in	module	gc)
debug_print()
(distutils.ccompiler.CCompiler	method)
DEBUG_SAVEALL	(in	module	gc)
debug_src()	(in	module	doctest)
DEBUG_STATS	(in	module	gc)
DEBUG_UNCOLLECTABLE	(in	module
gc)
debugger,	[1],	[2]

configuration	file
debugging

CGI
assertions

DebuggingServer	(class	in	smtpd)
debuglevel	(http.client.HTTPResponse
attribute)
DebugRunner	(class	in	doctest)
Decimal	(class	in	decimal)
decimal	(module)
decimal	literal
decimal()	(in	module	unicodedata)
DecimalException	(class	in	decimal)
decode

Codecs
decode()	(bytearray	method)

(bytes	method)
(codecs.Codec	method)

distutils.command.bdist_dumb	(module)
distutils.command.bdist_msi	(module)
distutils.command.bdist_packager	(module)
distutils.command.bdist_rpm	(module)
distutils.command.bdist_wininst	(module)
distutils.command.build	(module)
distutils.command.build_clib	(module)
distutils.command.build_ext	(module)
distutils.command.build_py	(module)
distutils.command.build_scripts	(module)
distutils.command.check	(module)
distutils.command.clean	(module)
distutils.command.config	(module)
distutils.command.install	(module)
distutils.command.install_data	(module)
distutils.command.install_headers	(module)
distutils.command.install_lib	(module)
distutils.command.install_scripts	(module)
distutils.command.register	(module)
distutils.command.sdist	(module)
distutils.core	(module)
distutils.cygwinccompiler	(module)
distutils.debug	(module)
distutils.dep_util	(module)
distutils.dir_util	(module)
distutils.dist	(module)
distutils.errors	(module)
distutils.extension	(module)
distutils.fancy_getopt	(module)
distutils.file_util	(module)
distutils.filelist	(module)
distutils.log	(module)
distutils.msvccompiler	(module)
distutils.spawn	(module)
distutils.sysconfig	(module)
distutils.text_file	(module)
distutils.unixccompiler	(module)
distutils.util	(module)
distutils.version	(module)

(codecs.IncrementalDecoder	 method)
(in	module	base64)
(in	module	codecs)
(in	module	quopri)
(in	module	uu)
(json.JSONDecoder	method)
(xmlrpc.client.Binary	method)
(xmlrpc.client.DateTime	method)

decode_header()	(in	module
email.header)

(in	module	nntplib)
decode_params()	(in	module	email.utils)
decode_rfc2231()	(in	module	email.utils)
decode_source()	(in	module	importlib.util)
decodebytes()	(in	module	base64)
DecodedGenerator	(class	in
email.generator)
decodestring()	(in	module	base64)

(in	module	quopri)
decomposition()	(in	module	unicodedata)
decompress()	(bz2.BZ2Decompressor
method)

(in	module	bz2)
(in	module	gzip)
(in	module	lzma)
(in	module	zlib)
(lzma.LZMADecompressor	method)
(zlib.Decompress	method)

decompressobj()	(in	module	zlib)
decorator
DEDENT	(in	module	token)
DEDENT	token,	[1]
dedent()	(in	module	textwrap)
deepcopy()	(in	module	copy)
def

statement

DISTUTILS_DEBUG
divide()	(decimal.Context	method)
divide_int()	(decimal.Context	method)
division
DivisionByZero	(class	in	decimal)
divmod

built-in	function,	[1],	[2]
divmod()	(built-in	function)

(decimal.Context	method)
DllCanUnloadNow()	(in	module	ctypes)
DllGetClassObject()	(in	module	ctypes)
dllhandle	(in	module	sys)
dngettext()	(in	module	gettext)
do_clear()	(bdb.Bdb	method)
do_command()	(curses.textpad.Textbox
method)
do_GET()
(http.server.SimpleHTTPRequestHandler
method)
do_handshake()	(ssl.SSLSocket	method)
do_HEAD()
(http.server.SimpleHTTPRequestHandler
method)
do_POST()
(http.server.CGIHTTPRequestHandler	method)
doc_header	(cmd.Cmd	attribute)
DocCGIXMLRPCRequestHandler	(class	in
xmlrpc.server)
DocFileSuite()	(in	module	doctest)
doCleanups()	(unittest.TestCase	method)
docmd()	(smtplib.SMTP	method)
docstring,	[1]

(doctest.DocTest	attribute)
docstrings,	[1]
DocTest	(class	in	doctest)
doctest	(module)
DocTestFailure
DocTestFinder	(class	in	doctest)

def_prog_mode()	(in	module	curses)
def_shell_mode()	(in	module	curses)
default

parameter	value
default	(in	module	email.policy)
DEFAULT	(in	module	unittest.mock)
default	(inspect.Parameter	attribute)

(optparse.Option	attribute)
default()	(cmd.Cmd	method)

(json.JSONEncoder	method)
DEFAULT_BUFFER_SIZE	(in	module	io)
default_bufsize	(in	module
xml.dom.pulldom)
default_exception_handler()
(asyncio.BaseEventLoop	method)
default_factory	(collections.defaultdict
attribute)
DEFAULT_FORMAT	(in	module	tarfile)
DEFAULT_IGNORES	(in	module	filecmp)
default_open()
(urllib.request.BaseHandler	method)
DEFAULT_PROTOCOL	(in	module
pickle)
default_timer()	(in	module	timeit)
DefaultContext	(class	in	decimal)
DefaultCookiePolicy	(class	in
http.cookiejar)
defaultdict	(class	in	collections)
DefaultHandler()
(xml.parsers.expat.xmlparser	method)
DefaultHandlerExpand()
(xml.parsers.expat.xmlparser	method)
defaults()	(configparser.ConfigParser
method)
DefaultSelector	(class	in	selectors)
defaultTestLoader	(in	module	unittest)
defaultTestResult()	(unittest.TestCase
method)

DocTestParser	(class	in	doctest)
DocTestRunner	(class	in	doctest)
DocTestSuite()	(in	module	doctest)
doctype()	(xml.etree.ElementTree.TreeBuilder
method)

(xml.etree.ElementTree.XMLParser
method)

documentation
generation
online

documentation	string
documentation	strings,	[1]
documentElement	(xml.dom.Document
attribute)
DocXMLRPCRequestHandler	(class	in
xmlrpc.server)
DocXMLRPCServer	(class	in	xmlrpc.server)
domain	(email.headerregistry.Address	attribute)
domain_initial_dot	(http.cookiejar.Cookie
attribute)
domain_return_ok()
(http.cookiejar.CookiePolicy	method)
domain_specified	(http.cookiejar.Cookie
attribute)
DomainLiberal
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainRFC2965Match
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainStrict
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainStrictNoDots
(http.cookiejar.DefaultCookiePolicy	attribute)
DomainStrictNonDomain
(http.cookiejar.DefaultCookiePolicy	attribute)
DOMEventStream	(class	in	xml.dom.pulldom)
DOMException
DomstringSizeErr
done()	(asyncio.Future	method)

defects
(email.headerregistry.BaseHeader
attribute)

(email.message.Message	attribute)
define_macro()
(distutils.ccompiler.CCompiler	method)
definition

class,	[1]
function,	[1]

defpath	(in	module	os)
DefragResult	(class	in	urllib.parse)
DefragResultBytes	(class	in	urllib.parse)
degrees()	(in	module	math)

(in	module	turtle)
del

statement,	[1],	[2],	[3],	[4]
del_param()	(email.message.Message
method)
delattr()	(built-in	function)
delay()	(in	module	turtle)
delay_output()	(in	module	curses)
delayload	(http.cookiejar.FileCookieJar
attribute)
delch()	(curses.window	method)
dele()	(poplib.POP3	method)
delete
delete()	(ftplib.FTP	method)

(imaplib.IMAP4	method)
(tkinter.ttk.Treeview	method)

DELETE_ATTR	(opcode)
DELETE_DEREF	(opcode)
DELETE_FAST	(opcode)
DELETE_GLOBAL	(opcode)
DELETE_NAME	(opcode)
DELETE_SUBSCR	(opcode)
deleteacl()	(imaplib.IMAP4	method)
DeleteKey()	(in	module	winreg)
DeleteKeyEx()	(in	module	winreg)

(concurrent.futures.Future	method)
(in	module	turtle)
(xdrlib.Unpacker	method)

DONT_ACCEPT_BLANKLINE	(in	module
doctest)
DONT_ACCEPT_TRUE_FOR_1	(in	module
doctest)
dont_write_bytecode	(in	module	sys)
doRollover()
(logging.handlers.RotatingFileHandler	method)

(logging.handlers.TimedRotatingFileHandler
method)

DOT	(in	module	token)
dot()	(in	module	turtle)
DOTALL	(in	module	re)
doublequote	(csv.Dialect	attribute)
DOUBLESLASH	(in	module	token)
DOUBLESLASHEQUAL	(in	module	token)
DOUBLESTAR	(in	module	token)
DOUBLESTAREQUAL	(in	module	token)
doupdate()	(in	module	curses)
down	(pdb	command)
down()	(in	module	turtle)
drain()	(asyncio.StreamWriter	method)
drop_whitespace	(textwrap.TextWrapper
attribute)
dropwhile()	(in	module	itertools)
dst()	(datetime.datetime	method)

(datetime.time	method)
(datetime.timezone	method)
(datetime.tzinfo	method)

DTDHandler	(class	in	xml.sax.handler)
duck-typing
DumbWriter	(class	in	formatter)
dummy_threading	(module)
dump()	(in	module	ast)

(in	module	json)

deleteln()	(curses.window	method)
deleteMe()	(bdb.Breakpoint	method)
DeleteValue()	(in	module	winreg)
deletion

attribute
target
target	list

delimiter	(csv.Dialect	attribute)
delimiters
delitem()	(in	module	operator)
deliver_challenge()	(in	module
multiprocessing.connection)
demo_app()	(in	module
wsgiref.simple_server)
denominator	(fractions.Fraction	attribute)

(numbers.Rational	attribute)
DeprecationWarning
deque	(class	in	collections)
dequeue()
(logging.handlers.QueueListener	method)
DER_cert_to_PEM_cert()	(in	module	ssl)
derwin()	(curses.window	method)
DES

cipher
description	(sqlite3.Cursor	attribute)
description()	(nntplib.NNTP	method)
descriptions()	(nntplib.NNTP	method)
descriptor
dest	(optparse.Option	attribute)
destructor,	[1]
detach()	(io.BufferedIOBase	method)

(io.TextIOBase	method)
(socket.socket	method)
(tkinter.ttk.Treeview	method)
(weakref.finalize	method)

Detach()	(winreg.PyHKEY	method)
detect_encoding()	(in	module	tokenize)

(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(in	module	xml.etree.ElementTree)
(pickle.Pickler	method)
(tracemalloc.Snapshot	method)

dump_stats()	(profile.Profile	method)
(pstats.Stats	method)

dump_traceback()	(in	module	faulthandler)
dump_traceback_later()	(in	module
faulthandler)
dumps()	(in	module	json)

(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(in	module	xmlrpc.client)

dup()	(in	module	os)
(socket.socket	method)

dup2()	(in	module	os)
DUP_TOP	(opcode)
DUP_TOP_TWO	(opcode)
DuplicateOptionError
DuplicateSectionError
dwFlags	(subprocess.STARTUPINFO	attribute)
DynamicClassAttribute()	(in	module	types)

detect_language()
(distutils.ccompiler.CCompiler	method)
deterministic	profiling
device_encoding()	(in	module	os)
devnull	(in	module	os)
DEVNULL	(in	module	subprocess)
devpoll()	(in	module	select)
dgettext()	(in	module	gettext)
Dialect	(class	in	csv)
dialect	(csv.csvreader	attribute)

(csv.csvwriter	attribute)
Dialog	(class	in	msilib)
dict	(2to3	fixer)

(built-in	class)
dict()
(multiprocessing.managers.SyncManager
method)
dictConfig()	(in	module	logging.config)
dictionary

display
object,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
type,	operations	on

DictReader	(class	in	csv)
DictWriter	(class	in	csv)
diff_files	(filecmp.dircmp	attribute)
Differ	(class	in	difflib),	[1]
difference()	(set	method)
difference_update()	(set	method)
difflib	(module)
digest()	(hashlib.hash	method)

(hmac.HMAC	method)

E
e	(in	module	cmath)

(in	module	math)
E2BIG	(in	module	errno)
EACCES	(in	module	errno)
EADDRINUSE	(in	module	errno)
EADDRNOTAVAIL	(in	module	errno)
EADV	(in	module	errno)
EAFNOSUPPORT	(in	module	errno)
EAFP
EAGAIN	(in	module	errno)
EALREADY	(in	module	errno)
east_asian_width()	(in	module	unicodedata)
EBADE	(in	module	errno)
EBADF	(in	module	errno)
EBADFD	(in	module	errno)
EBADMSG	(in	module	errno)
EBADR	(in	module	errno)
EBADRQC	(in	module	errno)
EBADSLT	(in	module	errno)
EBFONT	(in	module	errno)
EBUSY	(in	module	errno)
ECHILD	(in	module	errno)
echo()	(in	module	curses)
echochar()	(curses.window	method)
ECHRNG	(in	module	errno)
ECOMM	(in	module	errno)
ECONNABORTED	(in	module	errno)
ECONNREFUSED	(in	module	errno)
ECONNRESET	(in	module	errno)
EDEADLK	(in	module	errno)
EDEADLOCK	(in	module	errno)
EDESTADDRREQ	(in	module	errno)
edit()	(curses.textpad.Textbox	method)
EDOM	(in	module	errno)
EDOTDOT	(in	module	errno)
EDQUOT	(in	module	errno)

eof_received()	(asyncio.Protocol	method)
EOFError

(built-in	exception)
EOPNOTSUPP	(in	module	errno)
EOVERFLOW	(in	module	errno)
EPERM	(in	module	errno)
EPFNOSUPPORT	(in	module	errno)
epilogue	(email.message.Message
attribute)
EPIPE	(in	module	errno)
epoch
epoll()	(in	module	select)
EpollSelector	(class	in	selectors)
EPROTO	(in	module	errno)
EPROTONOSUPPORT	(in	module	errno)
EPROTOTYPE	(in	module	errno)
eq()	(in	module	operator)
EQEQUAL	(in	module	token)
EQUAL	(in	module	token)
ERA	(in	module	locale)
ERA_D_FMT	(in	module	locale)
ERA_D_T_FMT	(in	module	locale)
ERA_T_FMT	(in	module	locale)
ERANGE	(in	module	errno)
erase()	(curses.window	method)
erasechar()	(in	module	curses)
EREMCHG	(in	module	errno)
EREMOTE	(in	module	errno)
EREMOTEIO	(in	module	errno)
ERESTART	(in	module	errno)
erf()	(in	module	math)
erfc()	(in	module	math)
EROFS	(in	module	errno)
ERR	(in	module	curses)
errcheck	(ctypes._FuncPtr	attribute)
errcode	(xmlrpc.client.ProtocolError

EEXIST	(in	module	errno)
EFAULT	(in	module	errno)
EFBIG	(in	module	errno)
effective()	(in	module	bdb)
ehlo()	(smtplib.SMTP	method)
ehlo_or_helo_if_needed()	(smtplib.SMTP
method)
EHOSTDOWN	(in	module	errno)
EHOSTUNREACH	(in	module	errno)
EIDRM	(in	module	errno)
EILSEQ	(in	module	errno)
EINPROGRESS	(in	module	errno)
EINTR	(in	module	errno)
EINVAL	(in	module	errno)
EIO	(in	module	errno)
EISCONN	(in	module	errno)
EISDIR	(in	module	errno)
EISNAM	(in	module	errno)
EL2HLT	(in	module	errno)
EL2NSYNC	(in	module	errno)
EL3HLT	(in	module	errno)
EL3RST	(in	module	errno)
Element	(class	in	xml.etree.ElementTree)
element_create()	(tkinter.ttk.Style	method)
element_names()	(tkinter.ttk.Style	method)
element_options()	(tkinter.ttk.Style	method)
ElementDeclHandler()
(xml.parsers.expat.xmlparser	method)
elements()	(collections.Counter	method)
ElementTree	(class	in	xml.etree.ElementTree)
ELIBACC	(in	module	errno)
ELIBBAD	(in	module	errno)
ELIBEXEC	(in	module	errno)
ELIBMAX	(in	module	errno)
ELIBSCN	(in	module	errno)
elif

keyword,	[1]
Ellinghouse,	Lance
Ellipsis

attribute)
errmsg	(xmlrpc.client.ProtocolError
attribute)
errno

module
errno	(module)
error,	[1],	[2],	[3],	[4],	[5]
[10],	[11],	[12],	[13],	[14]
Error,	[1],	[2],	[3],	[4],	[5]
[10],	[11]
error	handling
error()	(argparse.ArgumentParser
method)

(in	module	logging)
(logging.Logger	method)
(urllib.request.OpenerDirector
method)
(xml.sax.handler.ErrorHandler
method)

error_body
(wsgiref.handlers.BaseHandler	attribute)
error_content_type
(http.server.BaseHTTPRequestHandler
attribute)
error_headers
(wsgiref.handlers.BaseHandler	attribute)
error_leader()	(shlex.shlex	method)
error_message_format
(http.server.BaseHTTPRequestHandler
attribute)
error_output()
(wsgiref.handlers.BaseHandler	method)
error_perm
error_proto,	[1]
error_received()
(asyncio.DatagramProtocol	method)
error_reply
error_status

object
Ellipsis	(built-in	variable)
ELLIPSIS	(in	module	doctest)

(in	module	token)
ELNRNG	(in	module	errno)
ELOOP	(in	module	errno)
else

dangling
keyword,	[1],	[2],	[3],	[4],	[5],	[6],	[7]

email	(module)
email.charset	(module)
email.contentmanager	(module)
email.encoders	(module)
email.errors	(module)
email.generator	(module)
email.header	(module)
email.headerregistry	(module)
email.iterators	(module)
email.message	(module)
email.mime	(module)
email.parser	(module)
email.policy	(module)
email.utils	(module)
EmailMessage	(class	in	email.message)
EmailPolicy	(class	in	email.policy)
EMFILE	(in	module	errno)
emit()	(logging.FileHandler	method)

(logging.Handler	method)
(logging.NullHandler	method)
(logging.StreamHandler	method)
(logging.handlers.BufferingHandler	method)
(logging.handlers.DatagramHandler
method)
(logging.handlers.HTTPHandler	method)
(logging.handlers.NTEventLogHandler
method)
(logging.handlers.QueueHandler	method)

(wsgiref.handlers.BaseHandler	attribute)
error_temp
ErrorByteIndex
(xml.parsers.expat.xmlparser	attribute)
errorcode	(in	module	errno)
ErrorCode	(xml.parsers.expat.xmlparser
attribute)
ErrorColumnNumber
(xml.parsers.expat.xmlparser	attribute)
ErrorHandler	(class	in	xml.sax.handler)
ErrorLineNumber
(xml.parsers.expat.xmlparser	attribute)
errors
Errors

(io.TextIOBase	attribute)
(unittest.TestResult	attribute)
logging

ErrorString()	(in	module
xml.parsers.expat)
ERRORTOKEN	(in	module	token)
escape	(shlex.shlex	attribute)
escape	sequence
escape()	(in	module	cgi)

(in	module	glob)
(in	module	html)
(in	module	re)
(in	module	xml.sax.saxutils)

escapechar	(csv.Dialect	attribute)
escapedquotes	(shlex.shlex	attribute)
ESHUTDOWN	(in	module	errno)
ESOCKTNOSUPPORT	(in	module	errno)
ESPIPE	(in	module	errno)
ESRCH	(in	module	errno)
ESRMNT	(in	module	errno)
ESTALE	(in	module	errno)
ESTRPIPE	(in	module	errno)
ETIME	(in	module	errno)
ETIMEDOUT	(in	module	errno)

(logging.handlers.RotatingFileHandler
method)
(logging.handlers.SMTPHandler	method)
(logging.handlers.SocketHandler	method)
(logging.handlers.SysLogHandler	method)
(logging.handlers.TimedRotatingFileHandler
method)
(logging.handlers.WatchedFileHandler
method)

EMLINK	(in	module	errno)
empty

list
tuple,	[1]

Empty
empty	(inspect.Parameter	attribute)

(inspect.Signature	attribute)
empty()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(multiprocessing.SimpleQueue	method)
(queue.Queue	method)
(sched.scheduler	method)

EMPTY_NAMESPACE	(in	module	xml.dom)
emptyline()	(cmd.Cmd	method)
EMSGSIZE	(in	module	errno)
EMULTIHOP	(in	module	errno)
enable	(pdb	command)
enable()	(bdb.Breakpoint	method)

(in	module	cgitb)
(in	module	faulthandler)
(in	module	gc)
(profile.Profile	method)

enable_callback_tracebacks()	(in	module
sqlite3)
enable_interspersed_args()
(optparse.OptionParser	method)
enable_load_extension()	(sqlite3.Connection

Etiny()	(decimal.Context	method)
ETOOMANYREFS	(in	module	errno)
Etop()	(decimal.Context	method)
ETXTBSY	(in	module	errno)
EUCLEAN	(in	module	errno)
EUNATCH	(in	module	errno)
EUSERS	(in	module	errno)
eval

built-in	function,	[1],	
eval()	(built-in	function)
evaluation

order
Event	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

event	scheduling
event()	(msilib.Control	method)
Event()
(multiprocessing.managers.SyncManager
method)
events	(selectors.SelectorKey	attribute)

(widgets)
EWOULDBLOCK	(in	module	errno)
EX_CANTCREAT	(in	module	os)
EX_CONFIG	(in	module	os)
EX_DATAERR	(in	module	os)
EX_IOERR	(in	module	os)
EX_NOHOST	(in	module	os)
EX_NOINPUT	(in	module	os)
EX_NOPERM	(in	module	os)
EX_NOTFOUND	(in	module	os)
EX_NOUSER	(in	module	os)
EX_OK	(in	module	os)
EX_OSERR	(in	module	os)
EX_OSFILE	(in	module	os)
EX_PROTOCOL	(in	module	os)
EX_SOFTWARE	(in	module	os)
EX_TEMPFAIL	(in	module	os)

method)
enable_traversal()	(tkinter.ttk.Notebook
method)
ENABLE_USER_SITE	(in	module	site)
EnableReflectionKey()	(in	module	winreg)
ENAMETOOLONG	(in	module	errno)
ENAVAIL	(in	module	errno)
enclose()	(curses.window	method)
encode

Codecs
encode()	(codecs.Codec	method)

(codecs.IncrementalEncoder	method)
(email.header.Header	method)
(in	module	base64)
(in	module	codecs)
(in	module	quopri)
(in	module	uu)
(json.JSONEncoder	method)
(str	method)
(xmlrpc.client.Binary	method)
(xmlrpc.client.DateTime	method)

encode_7or8bit()	(in	module	email.encoders)
encode_base64()	(in	module	email.encoders)
encode_noop()	(in	module	email.encoders)
encode_quopri()	(in	module	email.encoders)
encode_rfc2231()	(in	module	email.utils)
encodebytes()	(in	module	base64)
EncodedFile()	(in	module	codecs)
encodePriority()
(logging.handlers.SysLogHandler	method)
encodestring()	(in	module	base64)

(in	module	quopri)
encoding

base64
quoted-printable

encoding	(curses.window	attribute)
ENCODING	(in	module	tarfile)

EX_UNAVAILABLE	(in	module	os)
EX_USAGE	(in	module	os)
Example	(class	in	doctest)
example	(doctest.DocTestFailure
attribute)

(doctest.UnexpectedException
attribute)

examples	(doctest.DocTest	attribute)
exc_info	(doctest.UnexpectedException
attribute)

(in	module	sys)
exc_info()	(in	module	sys)
exc_msg	(doctest.Example	attribute)
excel	(class	in	csv)
excel_tab	(class	in	csv)
except

keyword,	[1]
statement

except	(2to3	fixer)
excepthook()	(in	module	sys)
Exception
exception,	[1]

AssertionError
AttributeError
GeneratorExit
ImportError
NameError
StopIteration,	[1]
TypeError
ValueError
ZeroDivisionError
chaining
handler
raising

exception	handler
exception()	(asyncio.Future	method)

(in	module	tokenize)
encoding	(io.TextIOBase	attribute)

(UnicodeError	attribute)
encodings
encodings.idna	(module)
encodings.mbcs	(module)
encodings.utf_8_sig	(module)
encodings_map	(in	module	mimetypes)

(mimetypes.MimeTypes	attribute)
end	(UnicodeError	attribute)
end()	(re.match	method)

(xml.etree.ElementTree.TreeBuilder
method)

end_fill()	(in	module	turtle)
END_FINALLY	(opcode)
end_headers()
(http.server.BaseHTTPRequestHandler
method)
end_paragraph()	(formatter.formatter	method)
end_poly()	(in	module	turtle)
EndCdataSectionHandler()
(xml.parsers.expat.xmlparser	method)
EndDoctypeDeclHandler()
(xml.parsers.expat.xmlparser	method)
endDocument()
(xml.sax.handler.ContentHandler	method)
endElement()	(xml.sax.handler.ContentHandler
method)
EndElementHandler()
(xml.parsers.expat.xmlparser	method)
endElementNS()
(xml.sax.handler.ContentHandler	method)
endheaders()	(http.client.HTTPConnection
method)
ENDMARKER	(in	module	token)
EndNamespaceDeclHandler()
(xml.parsers.expat.xmlparser	method)
endpos	(re.match	attribute)

(asyncio.StreamReader	method)
(concurrent.futures.Future	method)
(in	module	logging)
(logging.Logger	method)

exceptions
in	CGI	scripts

exclusive
or

EXDEV	(in	module	errno)
exec

built-in	function,	[1],	
exec	(2to3	fixer)
exec()	(built-in	function)
exec_module()
(importlib.abc.InspectLoader	method)

(importlib.abc.Loader	method)
(importlib.abc.SourceLoader	method)

exec_prefix,	[1],	[2]
EXEC_PREFIX	(in	module
distutils.sysconfig)
exec_prefix	(in	module	sys)
execfile	(2to3	fixer)
execl()	(in	module	os)
execle()	(in	module	os)
execlp()	(in	module	os)
execlpe()	(in	module	os)
executable	(in	module	sys)
executable_filename()
(distutils.ccompiler.CCompiler	method)
execute()	(distutils.ccompiler.CCompiler
method)

(in	module	distutils.util)
Execute()	(msilib.View	method)
execute()	(sqlite3.Connection	method)

(sqlite3.Cursor	method)
executemany()	(sqlite3.Connection
method)

endPrefixMapping()
(xml.sax.handler.ContentHandler	method)
endswith()	(str	method)
endwin()	(in	module	curses)
ENETDOWN	(in	module	errno)
ENETRESET	(in	module	errno)
ENETUNREACH	(in	module	errno)
ENFILE	(in	module	errno)
ENOANO	(in	module	errno)
ENOBUFS	(in	module	errno)
ENOCSI	(in	module	errno)
ENODATA	(in	module	errno)
ENODEV	(in	module	errno)
ENOENT	(in	module	errno)
ENOEXEC	(in	module	errno)
ENOLCK	(in	module	errno)
ENOLINK	(in	module	errno)
ENOMEM	(in	module	errno)
ENOMSG	(in	module	errno)
ENONET	(in	module	errno)
ENOPKG	(in	module	errno)
ENOPROTOOPT	(in	module	errno)
ENOSPC	(in	module	errno)
ENOSR	(in	module	errno)
ENOSTR	(in	module	errno)
ENOSYS	(in	module	errno)
ENOTBLK	(in	module	errno)
ENOTCONN	(in	module	errno)
ENOTDIR	(in	module	errno)
ENOTEMPTY	(in	module	errno)
ENOTNAM	(in	module	errno)
ENOTSOCK	(in	module	errno)
ENOTTY	(in	module	errno)
ENOTUNIQ	(in	module	errno)
enqueue()	(logging.handlers.QueueHandler
method)
enqueue_sentinel()
(logging.handlers.QueueListener	method)
ensure_directories()	(venv.EnvBuilder	method)

(sqlite3.Cursor	method)
executescript()	(sqlite3.Connection
method)

(sqlite3.Cursor	method)
execution

frame,	[1]
restricted
stack

execution	model
ExecutionLoader	(class	in	importlib.abc)
Executor	(class	in	concurrent.futures)
execv()	(in	module	os)
execve()	(in	module	os)
execvp()	(in	module	os)
execvpe()	(in	module	os)
ExFileSelectBox	(class	in	tkinter.tix)
EXFULL	(in	module	errno)
exists()	(in	module	os.path)

(pathlib.Path	method)
(tkinter.ttk.Treeview	method)

exit	(built-in	variable)
exit()

(argparse.ArgumentParser	method)
(in	module	_thread)
(in	module	sys)

exitcode	(multiprocessing.Process
attribute)
exitfunc	(2to3	fixer)
exitonclick()	(in	module	turtle)
ExitStack	(class	in	contextlib)
exp()	(decimal.Context	method)

(decimal.Decimal	method)
(in	module	cmath)
(in	module	math)

expand()	(re.match	method)
expand_tabs	(textwrap.TextWrapper
attribute)

ensurepip	(module)
enter()	(sched.scheduler	method)
enter_context()	(contextlib.ExitStack	method)
enterabs()	(sched.scheduler	method)
entities	(xml.dom.DocumentType	attribute)
EntityDeclHandler()
(xml.parsers.expat.xmlparser	method)
entitydefs	(in	module	html.entities)
EntityResolver	(class	in	xml.sax.handler)
Enum	(class	in	enum)
enum	(module)
enum_certificates()	(in	module	ssl)
enum_crls()	(in	module	ssl)
enumerate()	(built-in	function)

(in	module	threading)
EnumKey()	(in	module	winreg)
EnumValue()	(in	module	winreg)
EnvBuilder	(class	in	venv)
environ	(in	module	os)

(in	module	posix)
environb	(in	module	os)
environment
environment	variable

%PATH%,	[1],	[2]
<protocol>_proxy
APPDATA
AUDIODEV
BROWSER,	[1]
CC
CFLAGS,	[1],	[2]
COLUMNS,	[1]
COMSPEC,	[1]
CPP
CPPFLAGS
DISTUTILS_DEBUG
HOME,	[1],	[2],	[3],	[4]
HOMEDRIVE,	[1]

ExpandEnvironmentStrings()	(in	module
winreg)
expandNode()
(xml.dom.pulldom.DOMEventStream
method)
expandtabs()	(str	method)
expanduser()	(in	module	os.path)
expandvars()	(in	module	os.path)
Expat
ExpatError
expect()	(telnetlib.Telnet	method)
expected	(asyncio.IncompleteReadError
attribute)
expectedFailure()	(in	module	unittest)
expectedFailures	(unittest.TestResult
attribute)
expires	(http.cookiejar.Cookie	attribute)
exploded	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

expm1()	(in	module	math)
expovariate()	(in	module	random)
expr()	(in	module	parser)
expression,	[1]

Conditional
conditional
generator
lambda,	[1]
list,	[1],	[2]
statement
yield

expunge()	(imaplib.IMAP4	method)
extend()	(array.array	method)

(collections.deque	method)
(sequence	method)

HOMEPATH,	[1]
IDLESTARTUP
KDEDIR
LANG,	[1],	[2],	[3],	[4]
LANGUAGE,	[1]
LC_ALL,	[1]
LC_MESSAGES,	[1]
LDCXXSHARED
LDFLAGS
LINES,	[1],	[2]
LNAME
LOGNAME,	[1]
MIXERDEV
PATH,	 [1],	 [2],	 [3],	 [4],	 [5],	 [6],	 [7],	 [8],	 [9],
[10],	 [11],	 [12],	 [13],	 [14],	 [15],	 [16],	 [17],
[18],	[19],	[20],	[21]
PATHEXT
PLAT
POSIXLY_CORRECT
PYTHON*,	[1],	[2]
PYTHONASYNCIODEBUG,	[1]
PYTHONCASEOK,	[1]
PYTHONDEBUG,	[1]
PYTHONDOCS
PYTHONDONTWRITEBYTECODE,	 [1],	 [2],
[3],	[4],	[5],	[6]
PYTHONDUMPREFS,	[1]
PYTHONEXECUTABLE
PYTHONFAULTHANDLER,	[1],	[2],	[3]
PYTHONHASHSEED,	[1],	[2],	[3],	[4],	[5]
PYTHONHOME,	[1],	[2],	[3],	[4],	[5],	 [6],	 [7],
[8],	[9],	[10],	[11]
PYTHONINSPECT,	[1],	[2]
PYTHONIOENCODING,	[1],	[2],	[3],	[4],	[5]

(xml.etree.ElementTree.Element
method)

extend_path()	(in	module	pkgutil)
EXTENDED_ARG	(opcode)
ExtendedContext	(class	in	decimal)
ExtendedInterpolation	(class	in
configparser)
extendleft()	(collections.deque	method)
extension

module
Extension	(class	in	distutils.core)
extension	module
EXTENSION_SUFFIXES	(in	module
importlib.machinery)
ExtensionFileLoader	(class	in
importlib.machinery)
extensions_map
(http.server.SimpleHTTPRequestHandler
attribute)
External	Data	Representation
external_attr	(zipfile.ZipInfo	attribute)
ExternalClashError
ExternalEntityParserCreate()
(xml.parsers.expat.xmlparser	method)
ExternalEntityRefHandler()
(xml.parsers.expat.xmlparser	method)
extra	(zipfile.ZipInfo	attribute)
extract()	(tarfile.TarFile	method)

(zipfile.ZipFile	method)
extract_cookies()
(http.cookiejar.CookieJar	method)
extract_stack()	(in	module	traceback)
extract_tb()	(in	module	traceback)
extract_version	(zipfile.ZipInfo	attribute)
extractall()	(tarfile.TarFile	method)

(zipfile.ZipFile	method)
ExtractError
extractfile()	(tarfile.TarFile	method)

PYTHONMALLOCSTATS
PYTHONNOUSERSITE,	[1],	[2],	[3]
PYTHONOPTIMIZE,	[1]
PYTHONPATH,	 [1],	 [2],	 [3],	 [4],	 [5],	 [6],	 [7],
[8],	 [9],	 [10],	 [11],	 [12],	 [13],	 [14],	 [15],	 [16],
[17],	[18],	[19]
PYTHONSTARTUP,	[1],	[2],	 [3],	 [4],	 [5],	 [6],
[7],	[8]
PYTHONTHREADDEBUG
PYTHONTRACEMALLOC,	[1],	[2],	[3]
PYTHONUNBUFFERED,	[1]
PYTHONUSERBASE,	[1],	[2],	[3]
PYTHONVERBOSE,	[1]
PYTHONWARNINGS,	[1],	[2],	[3],	[4]
PYTHONY2K
PYTHON_DOM
SystemRoot
TCL_LIBRARY
TEMP
TERM,	[1]
TIX_LIBRARY
TK_LIBRARY
TMP
TMPDIR
TZ,	[1],	[2],	[3],	[4]
USER
USERNAME,	[1]
USERPROFILE,	[1]
USER_BASE
exec_prefix,	[1],	[2]
http_proxy,	[1],	[2]
prefix,	[1],	[2],	[3]

environment	variables
deleting

extsep	(in	module	os)

setting
EnvironmentError
Environments

virtual
EnvironmentVarGuard	(class	in	test.support)
ENXIO	(in	module	errno)
eof	(bz2.BZ2Decompressor	attribute)

(lzma.LZMADecompressor	attribute)
(shlex.shlex	attribute)
(zlib.Decompress	attribute)

F
f_back	(frame	attribute)
f_builtins	(frame	attribute)
f_code	(frame	attribute)
f_contiguous	(memoryview	attribute)
f_globals	(frame	attribute)
f_lasti	(frame	attribute)
f_lineno	(frame	attribute)
f_locals	(frame	attribute)
F_LOCK	(in	module	os)
F_OK	(in	module	os)
F_TEST	(in	module	os)
F_TLOCK	(in	module	os)
f_trace	(frame	attribute)
F_ULOCK	(in	module	os)
fabs()	(in	module	math)
factorial()	(in	module	math)
fail()	(unittest.TestCase	method)
FAIL_FAST	(in	module	doctest)
failfast	(unittest.TestResult	attribute)
failureException	(unittest.TestCase
attribute)
failures	(unittest.TestResult	attribute)
false
False,	[1],	[2]

(Built-in	object)
(built-in	variable)

family	(socket.socket	attribute)
fancy_getopt()	(in	module
distutils.fancy_getopt)
FancyGetopt	(class	in
distutils.fancy_getopt)
FancyURLopener	(class	in	urllib.request)
fast	(pickle.Pickler	attribute)
fatalError()	(xml.sax.handler.ErrorHandler
method)
faultCode	(xmlrpc.client.Fault	attribute)

flags	(in	module	sys)
(re.regex	attribute)
(select.kevent	attribute)

flash()	(in	module	curses)
flatten()
(email.generator.BytesGenerator
method)

(email.generator.Generator
method)

flattening
objects

float
built-in	function,	[1],	[2]

float()	(built-in	function)
float_info	(in	module	sys)
float_repr_style	(in	module	sys)
floating	point

literals
number
object,	[1],	[2]

floating	point	literal
FloatingPointError,	[1]
FloatOperation	(class	in	decimal)
flock()	(in	module	fcntl)
floor	division
floor()	(in	module	math),	[1]
floordiv()	(in	module	operator)
flush()	(bz2.BZ2Compressor	method)

(formatter.writer	method)
(in	module	mmap)
(io.BufferedWriter	method)
(io.IOBase	method)
(logging.Handler	method)
(logging.StreamHandler	method)

faulthandler	(module)
faultString	(xmlrpc.client.Fault	attribute)
fchdir()	(in	module	os)
fchmod()	(in	module	os)
fchown()	(in	module	os)
FCICreate()	(in	module	msilib)
fcntl	(module)
fcntl()	(in	module	fcntl)
fd	(selectors.SelectorKey	attribute)
fd()	(in	module	turtle)
fdatasync()	(in	module	os)
fdopen()	(in	module	os)
Feature	(class	in	msilib)
feature_external_ges	(in	module
xml.sax.handler)
feature_external_pes	(in	module
xml.sax.handler)
feature_namespace_prefixes	(in	module
xml.sax.handler)
feature_namespaces	(in	module
xml.sax.handler)
feature_string_interning	(in	module
xml.sax.handler)
feature_validation	(in	module
xml.sax.handler)
feed()	(email.parser.FeedParser	method)

(html.parser.HTMLParser	method)
(xml.etree.ElementTree.XMLParser
method)
(xml.etree.ElementTree.XMLPullParser
method)
(xml.sax.xmlreader.IncrementalParser
method)

feed_data()	(asyncio.StreamReader
method)
feed_eof()	(asyncio.StreamReader
method)
FeedParser	(class	in	email.parser)

(logging.handlers.BufferingHandler
method)
(logging.handlers.MemoryHandler
method)
(lzma.LZMACompressor	method)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(zlib.Compress	method)
(zlib.Decompress	method)

flush_headers()
(http.server.BaseHTTPRequestHandler
method)
flush_softspace()	(formatter.formatter
method)
flushinp()	(in	module	curses)
FlushKey()	(in	module	winreg)
fma()	(decimal.Context	method)

(decimal.Decimal	method)
fmod()	(in	module	math)
FMT_BINARY	(in	module	plistlib)
FMT_XML	(in	module	plistlib)
fnmatch	(module)
fnmatch()	(in	module	fnmatch)
fnmatchcase()	(in	module	fnmatch)
focus()	(tkinter.ttk.Treeview	method)
fold()
(email.headerregistry.BaseHeader
method)

(email.policy.Compat32	method)
(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

fold_binary()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

for

fetch()	(imaplib.IMAP4	method)
Fetch()	(msilib.View	method)
fetchall()	(sqlite3.Cursor	method)
fetchmany()	(sqlite3.Cursor	method)
fetchone()	(sqlite3.Cursor	method)
fflags	(select.kevent	attribute)
field_size_limit()	(in	module	csv)
fieldnames	(csv.csvreader	attribute)
fields	(uuid.UUID	attribute)
fifo	(class	in	asynchat)
file

.ini

.pdbrc
byte-code,	[1]
configuration
copying
debugger	configuration
large	files
mime.types
object,	[1],	[2]
path	configuration
plist
temporary

file	(pyclbr.Class	attribute)
(pyclbr.Function	attribute)

file	control
UNIX

file	name
temporary

file	object
io	module
open()	built-in	function

file-like	object
file_created()	(built-in	function)
file_dispatcher	(class	in	asyncore)
file_open()	(urllib.request.FileHandler

statement,	[1],	[2],	[3]
FOR_ITER	(opcode)
forget()	(in	module	test.support)

(tkinter.ttk.Notebook	method)
fork()	(in	module	os)

(in	module	pty)
forkpty()	(in	module	os)
form

lambda
Form	(class	in	tkinter.tix)
format	(memoryview	attribute)

(struct.Struct	attribute)
format()	(built-in	function)

__str__()	(object	method)
format()	(in	module	locale)

(logging.Formatter	method)
(logging.Handler	method)
(pprint.PrettyPrinter	method)
(str	method)
(string.Formatter	method)
(tracemalloc.Traceback	method)

format_datetime()	(in	module
email.utils)
format_exc()	(in	module	traceback)
format_exception()	(in	module
traceback)
format_exception_only()	(in	module
traceback)
format_field()	(string.Formatter
method)
format_help()
(argparse.ArgumentParser	method)
format_list()	(in	module	traceback)
format_map()	(str	method)
format_stack()	(in	module	traceback)
format_stack_entry()	(bdb.Bdb
method)

method)
file_size	(zipfile.ZipInfo	attribute)
file_wrapper	(class	in	asyncore)
filecmp	(module)
fileConfig()	(in	module	logging.config)
FileCookieJar	(class	in	http.cookiejar)
FileEntry	(class	in	tkinter.tix)
FileExistsError
FileFinder	(class	in	importlib.machinery)
FileHandler	(class	in	logging)

(class	in	urllib.request)
FileInput	(class	in	fileinput)
fileinput	(module)
FileIO	(class	in	io)
filelineno()	(in	module	fileinput)
FileLoader	(class	in	importlib.abc)
filemode()	(in	module	stat)
filename	(doctest.DocTest	attribute)

(http.cookiejar.FileCookieJar	attribute)
(tracemalloc.Frame	attribute)
(zipfile.ZipInfo	attribute)

filename()	(in	module	fileinput)
filename_only	(in	module	tabnanny)
filename_pattern	(tracemalloc.Filter
attribute)
filenames

pathname	expansion
wildcard	expansion

fileno()	(http.client.HTTPResponse
method)

(in	module	fileinput)
(io.IOBase	method)
(multiprocessing.Connection	method)
(ossaudiodev.oss_audio_device
method)
(ossaudiodev.oss_mixer_device
method)

format_string()	(in	module	locale)
format_tb()	(in	module	traceback)
format_usage()
(argparse.ArgumentParser	method)
formataddr()	(in	module	email.utils)
formatargspec()	(in	module	inspect)
formatargvalues()	(in	module	inspect)
formatdate()	(in	module	email.utils)
FormatError
FormatError()	(in	module	ctypes)
formatException()	(logging.Formatter
method)
formatmonth()
(calendar.HTMLCalendar	method)

(calendar.TextCalendar	method)
formatStack()	(logging.Formatter
method)
Formatter	(class	in	logging)

(class	in	string)
formatter	(module)
formatTime()	(logging.Formatter
method)
formatting,	string	(%)
formatwarning()	(in	module	warnings)
formatyear()	(calendar.HTMLCalendar
method)

(calendar.TextCalendar	method)
formatyearpage()
(calendar.HTMLCalendar	method)
forward()	(in	module	turtle)
found_terminator()
(asynchat.async_chat	method)
fpathconf()	(in	module	os)
fpectl	(module)
fqdn	(smtpd.SMTPChannel	attribute)
Fraction	(class	in	fractions)
fractions	(module)
frame

(select.devpoll	method)
(select.epoll	method)
(select.kqueue	method)
(selectors.EpollSelector	method)
(selectors.KqueueSelector	method)
(socket.socket	method)
(socketserver.BaseServer	method)
(telnetlib.Telnet	method)

FileNotFoundError
fileobj	(selectors.SelectorKey	attribute)
FileSelectBox	(class	in	tkinter.tix)
FileType	(class	in	argparse)
FileWrapper	(class	in	wsgiref.util)
fill()	(in	module	textwrap)

(textwrap.TextWrapper	method)
fillcolor()	(in	module	turtle)
filling()	(in	module	turtle)
filter	(2to3	fixer)
Filter	(class	in	logging)

(class	in	tracemalloc)
filter	(select.kevent	attribute)
filter()	(built-in	function)

(in	module	curses)
(in	module	fnmatch)
(logging.Filter	method)
(logging.Handler	method)
(logging.Logger	method)

FILTER_DIR	(in	module	unittest.mock)
filter_traces()	(tracemalloc.Snapshot
method)
filterfalse()	(in	module	itertools)
filterwarnings()	(in	module	warnings)
finalization,	of	objects
finalize	(class	in	weakref)
finalize_options()	(distutils.cmd.Command
method)
finally

execution,	[1]
object

Frame	(class	in	tracemalloc)
frame	(tkinter.scrolledtext.ScrolledText
attribute)
FrameType	(in	module	types)
free

variable
free()
freeze	utility
freeze_support()	(in	module
multiprocessing)
frexp()	(in	module	math)
from

keyword,	[1]
statement

from_address()	(ctypes._CData
method)
from_buffer()	(ctypes._CData	method)
from_buffer_copy()	(ctypes._CData
method)
from_bytes()	(int	class	method)
from_decimal()	(fractions.Fraction
method)
from_float()	(decimal.Decimal	method)

(fractions.Fraction	method)
from_iterable()	(itertools.chain	class
method)
from_param()	(ctypes._CData	method)
from_traceback()	(dis.Bytecode	class
method)
frombuf()	(tarfile.TarInfo	method)
frombytes()	(array.array	method)
fromfd()	(in	module	socket)

(select.epoll	method)
(select.kqueue	method)

fromfile()	(array.array	method)
fromhex()	(bytearray	class	method)

keyword,	[1],	[2],	[3],	[4]
find()	(doctest.DocTestFinder	method)

(in	module	gettext)
(in	module	mmap)
(str	method)
(xml.etree.ElementTree.Element
method)
(xml.etree.ElementTree.ElementTree
method)

find_class()	(pickle	protocol)
(pickle.Unpickler	method)

find_library()	(in	module	ctypes.util)
find_library_file()
(distutils.ccompiler.CCompiler	method)
find_loader()
(importlib.abc.PathEntryFinder	method)

(importlib.machinery.FileFinder
method)
(in	module	importlib)
(in	module	pkgutil)

find_longest_match()
(difflib.SequenceMatcher	method)
find_module()	(imp.NullImporter	method)

(importlib.abc.Finder	method)
(importlib.abc.MetaPathFinder	method)
(importlib.abc.PathEntryFinder
method)
(importlib.machinery.PathFinder	 class
method)
(in	module	imp)
(zipimport.zipimporter	method)

find_msvcrt()	(in	module	ctypes.util)
find_spec

finder
find_spec()	(importlib.abc.MetaPathFinder
method)

(bytes	class	method)
(float	class	method)

fromkeys()	(collections.Counter
method)

(dict	class	method)
fromlist()	(array.array	method)
fromordinal()	(datetime.date	class
method)

(datetime.datetime	class	method)
fromshare()	(in	module	socket)
fromstring()	(array.array	method)

(in	module	xml.etree.ElementTree)
fromstringlist()	(in	module
xml.etree.ElementTree)
fromtarfile()	(tarfile.TarInfo	method)
fromtimestamp()	(datetime.date	class
method)

(datetime.datetime	class	method)
fromunicode()	(array.array	method)
fromutc()	(datetime.timezone	method)

(datetime.tzinfo	method)
FrozenImporter	(class	in
importlib.machinery)
frozenset

object,	[1]
frozenset	(built-in	class)
fsdecode()	(in	module	os)
fsencode()	(in	module	os)
fstat()	(in	module	os)
fstatvfs()	(in	module	os)
fsum()	(in	module	math)
fsync()	(in	module	os)
FTP

ftplib	(standard	module)
protocol,	[1]

FTP	(class	in	ftplib)
ftp_open()	(urllib.request.FTPHandler

(importlib.abc.PathEntryFinder
method)
(importlib.machinery.FileFinder
method)
(importlib.machinery.PathFinder	 class
method)
(in	module	importlib.util)

find_unused_port()	(in	module
test.support)
find_user_password()
(urllib.request.HTTPPasswordMgr
method)
findall()	(in	module	re)

(re.regex	method)
(xml.etree.ElementTree.Element
method)
(xml.etree.ElementTree.ElementTree
method)

findCaller()	(logging.Logger	method)
finder,	[1]

find_spec
Finder	(class	in	importlib.abc)
findfactor()	(in	module	audioop)
findfile()	(in	module	test.support)
findfit()	(in	module	audioop)
finditer()	(in	module	re)

(re.regex	method)
findlabels()	(in	module	dis)
findlinestarts()	(in	module	dis)
findmatch()	(in	module	mailcap)
findmax()	(in	module	audioop)
findtext()	(xml.etree.ElementTree.Element
method)

(xml.etree.ElementTree.ElementTree
method)

finish()	(socketserver.RequestHandler
method)

method)
FTP_TLS	(class	in	ftplib)
FTPHandler	(class	in	urllib.request)
ftplib	(module)
ftpmirror.py
ftruncate()	(in	module	os)
Full
full()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(queue.Queue	method)

full_url	(urllib.request.Request
attribute)
fullmatch()	(in	module	re)

(re.regex	method)
func	(functools.partial	attribute)
funcattrs	(2to3	fixer)
function

annotations,	[1]
anonymous
argument
call,	[1],	[2]
call,	user-defined
definition,	[1]
generator,	[1]
name,	[1]
object,	[1],	[2],	[3],	[4],	[5]
user-defined

Function	(class	in	symtable)
function	annotation
FunctionTestCase	(class	in	unittest)
FunctionType	(in	module	types)
functools	(module)
funny_files	(filecmp.dircmp	attribute)
future

statement
future	(2to3	fixer)
Future	(class	in	asyncio)

finish_request()	(socketserver.BaseServer
method)
first()	(asynchat.fifo	method)
firstChild	(xml.dom.Node	attribute)
firstkey()	(dbm.gnu.gdbm	method)
firstweekday()	(in	module	calendar)
fix_missing_locations()	(in	module	ast)
fix_sentence_endings
(textwrap.TextWrapper	attribute)
flag_bits	(zipfile.ZipInfo	attribute)

(class	in	concurrent.futures)
FutureWarning
fwalk()	(in	module	os)

G
G.722
gaierror
gamma()	(in	module	math)
gammavariate()	(in	module	random)
garbage	(in	module	gc)
garbage	collection,	[1]
gather()	(curses.textpad.Textbox	method)

(in	module	asyncio)
gauss()	(in	module	random)
gc	(module)
gcd()	(in	module	fractions)
ge()	(in	module	operator)
gen_lib_options()	(in	module	distutils.ccompiler)
gen_preprocess_options()	(in	module
distutils.ccompiler)
gen_uuid()	(in	module	msilib)
generate_help()
(distutils.fancy_getopt.FancyGetopt	method)
generator,	[1]

expression
function,	[1],	[2]
iterator,	[1]
object,	[1],	[2]

generator	(built-in	class)
Generator	(class	in	email.generator)
generator	expression,	[1]
GeneratorExit

exception
GeneratorType	(in	module	types)
generic

special	attribute
generic	function
generic_visit()	(ast.NodeVisitor	method)
genops()	(in	module	pickletools)
get()	(asyncio.Queue	method)

getdecoder()	(in	module	codecs)
getdefaultencoding()	(in	module	sys)
getdefaultlocale()	(in	module	locale)
getdefaulttimeout()	(in	module	socket)
getdlopenflags()	(in	module	sys)
getdoc()	(in	module	inspect)
getDOMImplementation()	(in	module
xml.dom)
getDTDHandler()
(xml.sax.xmlreader.XMLReader
method)
getEffectiveLevel()	(logging.Logger
method)
getegid()	(in	module	os)
getElementsByTagName()
(xml.dom.Document	method)

(xml.dom.Element	method)
getElementsByTagNameNS()
(xml.dom.Document	method)

(xml.dom.Element	method)
getencoder()	(in	module	codecs)
getEncoding()
(xml.sax.xmlreader.InputSource
method)
getEntityResolver()
(xml.sax.xmlreader.XMLReader
method)
getenv()	(in	module	os)
getenvb()	(in	module	os)
getErrorHandler()
(xml.sax.xmlreader.XMLReader
method)
geteuid()	(in	module	os)
getEvent()
(xml.dom.pulldom.DOMEventStream
method)

(configparser.ConfigParser	method)
(dict	method)
(email.message.Message	method)
(in	module	webbrowser)
(mailbox.Mailbox	method)
(multiprocessing.Queue	method)
(multiprocessing.SimpleQueue	method)
(multiprocessing.pool.AsyncResult	method)
(ossaudiodev.oss_mixer_device	method)
(queue.Queue	method)
(tkinter.ttk.Combobox	method)
(types.MappingProxyType	method)
(xml.etree.ElementTree.Element	method)

get_all()	(email.message.Message	method)
(wsgiref.headers.Headers	method)

get_all_breaks()	(bdb.Bdb	method)
get_all_start_methods()	(in	module
multiprocessing)
get_app()	(wsgiref.simple_server.WSGIServer
method)
get_archive_formats()	(in	module	shutil)
get_begidx()	(in	module	readline)
get_body()	(email.message.EmailMessage
method)
get_body_encoding()	(email.charset.Charset
method)
get_boundary()	(email.message.Message
method)
get_bpbynumber()	(bdb.Bdb	method)
get_break()	(bdb.Bdb	method)
get_breaks()	(bdb.Bdb	method)
get_buffer()	(xdrlib.Packer	method)

(xdrlib.Unpacker	method)
get_bytes()	(mailbox.Mailbox	method)
get_ca_certs()	(ssl.SSLContext	method),	[1]
get_cache_token()	(in	module	abc)
get_channel_binding()	(ssl.SSLSocket	method)

getEventCategory()
(logging.handlers.NTEventLogHandler
method)
getEventType()
(logging.handlers.NTEventLogHandler
method)
getException()	(xml.sax.SAXException
method)
getFeature()
(xml.sax.xmlreader.XMLReader
method)
GetFieldCount()	(msilib.Record	method)
getfile()	(in	module	inspect)
getfilesystemencoding()	(in	module	sys)
getfirst()	(cgi.FieldStorage	method)
getfloat()	(configparser.ConfigParser
method)
getfmts()
(ossaudiodev.oss_audio_device
method)
getfqdn()	(in	module	socket)
getframeinfo()	(in	module	inspect)
getframerate()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getfullargspec()	(in	module	inspect)
getgeneratorlocals()	(in	module	inspect)
getgeneratorstate()	(in	module	inspect)
getgid()	(in	module	os)
getgrall()	(in	module	grp)
getgrgid()	(in	module	grp)
getgrnam()	(in	module	grp)
getgrouplist()	(in	module	os)
getgroups()	(in	module	os)
getheader()	(http.client.HTTPResponse
method)
getheaders()
(http.client.HTTPResponse	method)

get_charset()	(email.message.Message	method)
get_charsets()	(email.message.Message
method)
get_children()	(symtable.SymbolTable	method)

(tkinter.ttk.Treeview	method)
get_clock_info()	(in	module	time)
get_close_matches()	(in	module	difflib)
get_code()	(importlib.abc.InspectLoader	method)

(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(importlib.machinery.SourcelessFileLoader
method)
(zipimport.zipimporter	method)

get_completer()	(in	module	readline)
get_completer_delims()	(in	module	readline)
get_completion_type()	(in	module	readline)
get_config_h_filename()	(in	module
distutils.sysconfig)

(in	module	sysconfig)
get_config_var()	(in	module	distutils.sysconfig)

(in	module	sysconfig)
get_config_vars()	(in	module	distutils.sysconfig)

(in	module	sysconfig)
get_content()
(email.contentmanager.ContentManager
method)

(email.message.EmailMessage	method)
(in	module	email.contentmanager)

get_content_charset()	(email.message.Message
method)
get_content_maintype()
(email.message.Message	method)
get_content_subtype()	(email.message.Message
method)
get_content_type()	(email.message.Message
method)

gethostbyaddr()	(in	module	socket)
gethostbyname()	(in	module	socket)
gethostbyname_ex()	(in	module	socket)
gethostname()	(in	module	socket)
getincrementaldecoder()	(in	module
codecs)
getincrementalencoder()	(in	module
codecs)
getinfo()	(zipfile.ZipFile	method)
getinnerframes()	(in	module	inspect)
GetInputContext()
(xml.parsers.expat.xmlparser	method)
getint()	(configparser.ConfigParser
method)
GetInteger()	(msilib.Record	method)
getitem()	(in	module	operator)
getiterator()
(xml.etree.ElementTree.Element
method)

(xml.etree.ElementTree.ElementTree
method)

getitimer()	(in	module	signal)
getkey()	(curses.window	method)
GetLastError()	(in	module	ctypes)
getLength()
(xml.sax.xmlreader.Attributes	method)
getLevelName()	(in	module	logging)
getline()	(in	module	linecache)
getLineNumber()
(xml.sax.xmlreader.Locator	method)
getlist()	(cgi.FieldStorage	method)
getloadavg()	(in	module	os)
getlocale()	(in	module	locale)
getLogger()	(in	module	logging)
getLoggerClass()	(in	module	logging)
getlogin()	(in	module	os)
getLogRecordFactory()	(in	module
logging)

get_context()	(in	module	multiprocessing)
get_count()	(in	module	gc)
get_current_history_length()	(in	module	readline)
get_data()	(importlib.abc.FileLoader	method)

(importlib.abc.ResourceLoader	method)
(in	module	pkgutil)
(zipimport.zipimporter	method)

get_date()	(mailbox.MaildirMessage	method)
get_debug()	(asyncio.BaseEventLoop	method)

(in	module	gc)
get_default()	(argparse.ArgumentParser
method)
get_default_compiler()	(in	module
distutils.ccompiler)
get_default_domain()	(in	module	nis)
get_default_type()	(email.message.Message
method)
get_default_verify_paths()	(in	module	ssl)
get_dialect()	(in	module	csv)
get_docstring()	(in	module	ast)
get_doctest()	(doctest.DocTestParser	method)
get_endidx()	(in	module	readline)
get_environ()
(wsgiref.simple_server.WSGIRequestHandler
method)
get_errno()	(in	module	ctypes)
get_event_loop()
(asyncio.AbstractEventLoopPolicy	method)

(in	module	asyncio)
get_event_loop_policy()	(in	module	asyncio)
get_examples()	(doctest.DocTestParser	method)
get_exec_path()	(in	module	os)
get_extra_info()	(asyncio.BaseTransport
method)

(asyncio.StreamWriter	method)
get_field()	(string.Formatter	method)
get_file()	(mailbox.Babyl	method)

(mailbox.MH	method)

getmark()	(aifc.aifc	method)
(sunau.AU_read	method)
(wave.Wave_read	method)

getmarkers()	(aifc.aifc	method)
(sunau.AU_read	method)
(wave.Wave_read	method)

getmaxyx()	(curses.window	method)
getmember()	(tarfile.TarFile	method)
getmembers()	(in	module	inspect)

(tarfile.TarFile	method)
getMessage()	(logging.LogRecord
method)

(xml.sax.SAXException	method)
getMessageID()
(logging.handlers.NTEventLogHandler
method)
getmodule()	(in	module	inspect)
getmoduleinfo()	(in	module	inspect)
getmodulename()	(in	module	inspect)
getmouse()	(in	module	curses)
getmro()	(in	module	inspect)
getmtime()	(in	module	os.path)
getname()	(chunk.Chunk	method)
getName()	(threading.Thread	method)
getNameByQName()
(xml.sax.xmlreader.AttributesNS
method)
getnameinfo()	(asyncio.BaseEventLoop
method)

(in	module	socket)
getnames()	(tarfile.TarFile	method)
getNames()
(xml.sax.xmlreader.Attributes	method)
getnchannels()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getnframes()	(aifc.aifc	method)

(mailbox.MMDF	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(mailbox.mbox	method)

get_file_breaks()	(bdb.Bdb	method)
get_filename()	(email.message.Message
method)

(importlib.abc.ExecutionLoader	method)
(importlib.abc.FileLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(zipimport.zipimporter	method)

get_flags()	(mailbox.MaildirMessage	method)
(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

get_folder()	(mailbox.Maildir	method)
(mailbox.MH	method)

get_frees()	(symtable.Function	method)
get_from()	(mailbox.mboxMessage	method)

(mailbox.MMDFMessage	method)
get_full_url()	(urllib.request.Request	method)
get_globals()	(symtable.Function	method)
get_grouped_opcodes()
(difflib.SequenceMatcher	method)
get_handle_inheritable()	(in	module	os)
get_header()	(urllib.request.Request	method)
get_history_item()	(in	module	readline)
get_history_length()	(in	module	readline)
get_id()	(symtable.SymbolTable	method)
get_ident()	(in	module	_thread)

(in	module	threading)
get_identifiers()	(symtable.SymbolTable	method)
get_importer()	(in	module	pkgutil)
get_info()	(mailbox.MaildirMessage	method)
get_inheritable()	(in	module	os)

(socket.socket	method)
get_instructions()	(in	module	dis)

(sunau.AU_read	method)
(wave.Wave_read	method)

getnode
getnode()	(in	module	uuid)
getopt	(module)
getopt()
(distutils.fancy_getopt.FancyGetopt
method)

(in	module	getopt)
GetoptError
getouterframes()	(in	module	inspect)
getoutput()	(in	module	subprocess)
getpagesize()	(in	module	resource)
getparams()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getparyx()	(curses.window	method)
getpass	(module)
getpass()	(in	module	getpass)
GetPassWarning
getpeercert()	(ssl.SSLSocket	method)
getpeername()	(socket.socket	method)
getpen()	(in	module	turtle)
getpgid()	(in	module	os)
getpgrp()	(in	module	os)
getpid()	(in	module	os)
getpos()	(html.parser.HTMLParser
method)
getppid()	(in	module	os)
getpreferredencoding()	(in	module
locale)
getpriority()	(in	module	os)
getprofile()	(in	module	sys)
GetProperty()
(msilib.SummaryInformation	method)
getProperty()
(xml.sax.xmlreader.XMLReader
method)

GET_ITER	(opcode)
get_key()	(selectors.BaseSelector	method)
get_labels()	(mailbox.Babyl	method)

(mailbox.BabylMessage	method)
get_last_error()	(in	module	ctypes)
get_line_buffer()	(in	module	readline)
get_lineno()	(symtable.SymbolTable	method)
get_loader()	(in	module	pkgutil)
get_locals()	(symtable.Function	method)
get_logger()	(in	module	multiprocessing)
get_magic()	(in	module	imp)
get_makefile_filename()	(in	module
distutils.sysconfig)

(in	module	sysconfig)
get_map()	(selectors.BaseSelector	method)
get_matching_blocks()	(difflib.SequenceMatcher
method)
get_message()	(mailbox.Mailbox	method)
get_method()	(urllib.request.Request	method)
get_methods()	(symtable.Class	method)
get_mixed_type_key()	(in	module	ipaddress)
get_name()	(symtable.Symbol	method)

(symtable.SymbolTable	method)
get_namespace()	(symtable.Symbol	method)
get_namespaces()	(symtable.Symbol	method)
get_nonstandard_attr()	(http.cookiejar.Cookie
method)
get_nowait()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(queue.Queue	method)

get_object_traceback()	(in	module	tracemalloc)
get_objects()	(in	module	gc)
get_opcodes()	(difflib.SequenceMatcher	method)
get_option()	(optparse.OptionParser	method)
get_option_group()	(optparse.OptionParser
method)
get_option_order()
(distutils.fancy_getopt.FancyGetopt	method)

GetPropertyCount()
(msilib.SummaryInformation	method)
getprotobyname()	(in	module	socket)
getproxies()	(in	module	urllib.request)
getPublicId()
(xml.sax.xmlreader.InputSource
method)

(xml.sax.xmlreader.Locator	method)
getpwall()	(in	module	pwd)
getpwnam()	(in	module	pwd)
getpwuid()	(in	module	pwd)
getQNameByName()
(xml.sax.xmlreader.AttributesNS
method)
getQNames()
(xml.sax.xmlreader.AttributesNS
method)
getquota()	(imaplib.IMAP4	method)
getquotaroot()	(imaplib.IMAP4	method)
getrandbits()	(in	module	random)
getreader()	(in	module	codecs)
getrecursionlimit()	(in	module	sys)
getrefcount()	(in	module	sys)
getresgid()	(in	module	os)
getresponse()
(http.client.HTTPConnection	method)
getresuid()	(in	module	os)
getrlimit()	(in	module	resource)
getroot()
(xml.etree.ElementTree.ElementTree
method)
getrusage()	(in	module	resource)
getsample()	(in	module	audioop)
getsampwidth()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getscreen()	(in	module	turtle)
getservbyname()	(in	module	socket)

get_osfhandle()	(in	module	msvcrt)
get_output_charset()	(email.charset.Charset
method)
get_param()	(email.message.Message	method)
get_parameters()	(symtable.Function	method)
get_params()	(email.message.Message	method)
get_path()	(in	module	sysconfig)
get_path_names()	(in	module	sysconfig)
get_paths()	(in	module	sysconfig)
get_payload()	(email.message.Message
method)
get_pid()	(asyncio.BaseSubprocessTransport
method)
get_pipe_transport()
(asyncio.BaseSubprocessTransport	method)
get_platform()	(in	module	distutils.util)

(in	module	sysconfig)
get_poly()	(in	module	turtle)
get_position()	(xdrlib.Unpacker	method)
get_python_inc()	(in	module	distutils.sysconfig)
get_python_lib()	(in	module	distutils.sysconfig)
get_python_version()	(in	module	sysconfig)
get_recsrc()	(ossaudiodev.oss_mixer_device
method)
get_referents()	(in	module	gc)
get_referrers()	(in	module	gc)
get_request()	(socketserver.BaseServer	method)
get_returncode()
(asyncio.BaseSubprocessTransport	method)
get_scheme()	(wsgiref.handlers.BaseHandler
method)
get_scheme_names()	(in	module	sysconfig)
get_sequences()	(mailbox.MH	method)

(mailbox.MHMessage	method)
get_server()
(multiprocessing.managers.BaseManager
method)
get_server_certificate()	(in	module	ssl)

getservbyport()	(in	module	socket)
GetSetDescriptorType	(in	module	types)
getshapes()	(in	module	turtle)
getsid()	(in	module	os)
getsignal()	(in	module	signal)
getsitepackages()	(in	module	site)
getsize()	(chunk.Chunk	method)

(in	module	os.path)
getsizeof()	(in	module	sys)
getsockname()	(socket.socket	method)
getsockopt()	(socket.socket	method)
getsource()	(in	module	inspect)
getsourcefile()	(in	module	inspect)
getsourcelines()	(in	module	inspect)
getspall()	(in	module	spwd)
getspnam()	(in	module	spwd)
getstate()	(codecs.IncrementalDecoder
method)

(codecs.IncrementalEncoder
method)
(in	module	random)

getstatusoutput()	(in	module
subprocess)
getstr()	(curses.window	method)
GetString()	(msilib.Record	method)
getSubject()
(logging.handlers.SMTPHandler
method)
GetSummaryInformation()
(msilib.Database	method)
getswitchinterval()	(in	module	sys)
getSystemId()
(xml.sax.xmlreader.InputSource
method)

(xml.sax.xmlreader.Locator	method)
getsyx()	(in	module	curses)
gettarinfo()	(tarfile.TarFile	method)
gettempdir()	(in	module	tempfile)

get_shapepoly()	(in	module	turtle)
get_socket()	(telnetlib.Telnet	method)
get_source()	(importlib.abc.InspectLoader
method)

(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(importlib.machinery.SourcelessFileLoader
method)
(zipimport.zipimporter	method)

get_special_folder_path()	(built-in	function)
get_stack()	(asyncio.Task	method)

(bdb.Bdb	method)
get_start_method()	(in	module	multiprocessing)
get_starttag_text()	(html.parser.HTMLParser
method)
get_stats()	(in	module	gc)
get_stderr()	(wsgiref.handlers.BaseHandler
method)

(wsgiref.simple_server.WSGIRequestHandler
method)

get_stdin()	(wsgiref.handlers.BaseHandler
method)
get_string()	(mailbox.Mailbox	method)
get_subdir()	(mailbox.MaildirMessage	method)
get_suffixes()	(in	module	imp)
get_symbols()	(symtable.SymbolTable	method)
get_tag()	(in	module	imp)
get_terminal_size()	(in	module	os)

(in	module	shutil)
get_terminator()	(asynchat.async_chat	method)
get_threshold()	(in	module	gc)
get_token()	(shlex.shlex	method)
get_traceback_limit()	(in	module	tracemalloc)
get_traced_memory()	(in	module	tracemalloc)
get_tracemalloc_memory()	(in	module
tracemalloc)

gettempprefix()	(in	module	tempfile)
getTestCaseNames()
(unittest.TestLoader	method)
gettext	(module)
gettext()	(gettext.GNUTranslations
method)

(gettext.NullTranslations	method)
(in	module	gettext)

gettimeout()	(socket.socket	method)
gettrace()	(in	module	sys)
getturtle()	(in	module	turtle)
getType()	(xml.sax.xmlreader.Attributes
method)
getuid()	(in	module	os)
geturl()
(urllib.parse.urllib.parse.SplitResult
method)
getuser()	(in	module	getpass)
getuserbase()	(in	module	site)
getusersitepackages()	(in	module	site)
getvalue()	(io.BytesIO	method)

(io.StringIO	method)
getValue()	(xml.sax.xmlreader.Attributes
method)
getValueByQName()
(xml.sax.xmlreader.AttributesNS
method)
getwch()	(in	module	msvcrt)
getwche()	(in	module	msvcrt)
getweakrefcount()	(in	module	weakref)
getweakrefs()	(in	module	weakref)
getwelcome()	(ftplib.FTP	method)

(nntplib.NNTP	method)
(poplib.POP3	method)

getwin()	(in	module	curses)
getwindowsversion()	(in	module	sys)
getwriter()	(in	module	codecs)
getxattr()	(in	module	os)

get_type()	(symtable.SymbolTable	method)
get_unixfrom()	(email.message.Message
method)
get_unpack_formats()	(in	module	shutil)
get_usage()	(optparse.OptionParser	method)
get_value()	(string.Formatter	method)
get_version()	(optparse.OptionParser	method)
get_visible()	(mailbox.BabylMessage	method)
get_wch()	(curses.window	method)
get_write_buffer_size()	(asyncio.WriteTransport
method)
getacl()	(imaplib.IMAP4	method)
getaddresses()	(in	module	email.utils)
getaddrinfo()	(asyncio.BaseEventLoop	method)

(in	module	socket)
getallocatedblocks()	(in	module	sys)
getannotation()	(imaplib.IMAP4	method)
getargspec()	(in	module	inspect)
getargvalues()	(in	module	inspect)
getatime()	(in	module	os.path)
getattr()	(built-in	function)
getattr_static()	(in	module	inspect)
getAttribute()	(xml.dom.Element	method)
getAttributeNode()	(xml.dom.Element	method)
getAttributeNodeNS()	(xml.dom.Element
method)
getAttributeNS()	(xml.dom.Element	method)
GetBase()	(xml.parsers.expat.xmlparser
method)
getbegyx()	(curses.window	method)
getbkgd()	(curses.window	method)
getboolean()	(configparser.ConfigParser
method)
getbuffer()	(io.BytesIO	method)
getByteStream()	(xml.sax.xmlreader.InputSource
method)
getcallargs()	(in	module	inspect)
getcanvas()	(in	module	turtle)
getcapabilities()	(nntplib.NNTP	method)

getyx()	(curses.window	method)
gid	(tarfile.TarInfo	attribute)
GIL
glob

module
glob	(module)
glob()	(in	module	glob)

(msilib.Directory	method)
(pathlib.Path	method)

global
name	binding
namespace
statement,	[1]

global	interpreter	lock
globals()	(built-in	function)
globs	(doctest.DocTest	attribute)
gmtime()	(in	module	time)
gname	(tarfile.TarInfo	attribute)
GNOME
GNU_FORMAT	(in	module	tarfile)
gnu_getopt()	(in	module	getopt)
got	(doctest.DocTestFailure	attribute)
goto()	(in	module	turtle)
grammar
Graphical	User	Interface
GREATER	(in	module	token)
GREATEREQUAL	(in	module	token)
Greenwich	Mean	Time
Group	(class	in	email.headerregistry)
group()	(nntplib.NNTP	method)

(pathlib.Path	method)
(re.match	method)

groupby()	(in	module	itertools)
groupdict()	(re.match	method)
groupindex	(re.regex	attribute)
grouping
groups
(email.headerregistry.AddressHeader

getcaps()	(in	module	mailcap)
getch()	(curses.window	method)

(in	module	msvcrt)
getCharacterStream()
(xml.sax.xmlreader.InputSource	method)
getche()	(in	module	msvcrt)
getcheckinterval()	(in	module	sys)
getChild()	(logging.Logger	method)
getchildren()	(xml.etree.ElementTree.Element
method)
getclasstree()	(in	module	inspect)
getclosurevars()	(in	module	inspect)
GetColumnInfo()	(msilib.View	method)
getColumnNumber()	(xml.sax.xmlreader.Locator
method)
getcomments()	(in	module	inspect)
getcompname()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

getcomptype()	(aifc.aifc	method)
(sunau.AU_read	method)
(wave.Wave_read	method)

getContentHandler()
(xml.sax.xmlreader.XMLReader	method)
getcontext()	(in	module	decimal)
getctime()	(in	module	os.path)
getcwd()	(in	module	os)
getcwdb()	(in	module	os)
getcwdu	(2to3	fixer)

attribute)
(re.regex	attribute)

groups()	(re.match	method)
grp	(module)
gt()	(in	module	operator)
guess_all_extensions()	(in	module
mimetypes)

(mimetypes.MimeTypes	method)
guess_extension()	(in	module
mimetypes)

(mimetypes.MimeTypes	method)
guess_scheme()	(in	module	wsgiref.util)
guess_type()	(in	module	mimetypes)

(mimetypes.MimeTypes	method)
GUI
gzip	(module)
GzipFile	(class	in	gzip)

H
halfdelay()	(in	module	curses)
Handle	(class	in	asyncio)
handle	an	exception
handle()	(http.server.BaseHTTPRequestHandler
method)

(logging.Handler	method)
(logging.Logger	method)
(logging.NullHandler	method)
(logging.handlers.QueueListener	method)
(socketserver.RequestHandler	method)
(wsgiref.simple_server.WSGIRequestHandler
method)

handle_accept()	(asyncore.dispatcher	method)
handle_accepted()	(asyncore.dispatcher
method)
handle_charref()	(html.parser.HTMLParser
method)
handle_close()	(asyncore.dispatcher	method)
handle_comment()	(html.parser.HTMLParser
method)
handle_connect()	(asyncore.dispatcher	method)
handle_data()	(html.parser.HTMLParser	method)
handle_decl()	(html.parser.HTMLParser	method)
handle_defect()	(email.policy.Policy	method)
handle_endtag()	(html.parser.HTMLParser
method)
handle_entityref()	(html.parser.HTMLParser
method)
handle_error()	(asyncore.dispatcher	method)

(socketserver.BaseServer	method)
handle_expect_100()
(http.server.BaseHTTPRequestHandler	method)
handle_expt()	(asyncore.dispatcher	method)
handle_one_request()
(http.server.BaseHTTPRequestHandler	method)

help	(optparse.Option	attribute)
(pdb	command)

help()	(built-in	function)
(nntplib.NNTP	method)

herror
hex	(uuid.UUID	attribute)
hex()	(built-in	function)

(float	method)
hexadecimal

literals
hexadecimal	literal
hexbin()	(in	module	binhex)
hexdigest()	(hashlib.hash	method)

(hmac.HMAC	method)
hexdigits	(in	module	string)
hexlify()	(in	module	binascii)
hexversion	(in	module	sys)
hidden()	(curses.panel.Panel	method)
hide()	(curses.panel.Panel	method)

(tkinter.ttk.Notebook	method)
hide_cookie2	(http.cookiejar.CookiePolicy
attribute)
hideturtle()	(in	module	turtle)
hierarchy

type
HierarchyRequestErr
HIGHEST_PROTOCOL	(in	module	pickle)
HKEY_CLASSES_ROOT	(in	module	winreg)
HKEY_CURRENT_CONFIG	(in	module
winreg)
HKEY_CURRENT_USER	(in	module
winreg)
HKEY_DYN_DATA	(in	module	winreg)
HKEY_LOCAL_MACHINE	(in	module
winreg)

handle_pi()	(html.parser.HTMLParser	method)
handle_read()	(asyncore.dispatcher	method)
handle_request()	(socketserver.BaseServer
method)

(xmlrpc.server.CGIXMLRPCRequestHandler
method)

handle_startendtag()	(html.parser.HTMLParser
method)
handle_starttag()	(html.parser.HTMLParser
method)
handle_timeout()	(socketserver.BaseServer
method)
handle_write()	(asyncore.dispatcher	method)
handleError()	(logging.Handler	method)

(logging.handlers.SocketHandler	method)
handler

exception
handler()	(in	module	cgitb)
has_children()	(symtable.SymbolTable	method)
has_colors()	(in	module	curses)
HAS_ECDH	(in	module	ssl)
has_exec()	(symtable.SymbolTable	method)
has_extn()	(smtplib.SMTP	method)
has_function()	(distutils.ccompiler.CCompiler
method)
has_header()	(csv.Sniffer	method)

(urllib.request.Request	method)
has_ic()	(in	module	curses)
has_il()	(in	module	curses)
has_import_star()	(symtable.SymbolTable
method)
has_ipv6	(in	module	socket)
has_key	(2to3	fixer)
has_key()	(in	module	curses)
has_location	(importlib.machinery.ModuleSpec
attribute)
has_nonstandard_attr()	(http.cookiejar.Cookie
method)

HKEY_PERFORMANCE_DATA	(in	module
winreg)
HKEY_USERS	(in	module	winreg)
hline()	(curses.window	method)
HList	(class	in	tkinter.tix)
hls_to_rgb()	(in	module	colorsys)
hmac	(module)
HOME,	[1],	[2],	[3],	[4]
home()	(in	module	turtle)
HOMEDRIVE,	[1]
HOMEPATH,	[1]
hook_compressed()	(in	module	fileinput)
hook_encoded()	(in	module	fileinput)
hooks

import
meta
path

host	(urllib.request.Request	attribute)
hostmask	(ipaddress.IPv4Network	attribute)

(ipaddress.IPv6Network	attribute)
hosts	(netrc.netrc	attribute)
hosts()	(ipaddress.IPv4Network	method)

(ipaddress.IPv6Network	method)
hour	(datetime.datetime	attribute)

(datetime.time	attribute)
HRESULT	(class	in	ctypes)
hStdError	(subprocess.STARTUPINFO
attribute)
hStdInput	(subprocess.STARTUPINFO
attribute)
hStdOutput	(subprocess.STARTUPINFO
attribute)
hsv_to_rgb()	(in	module	colorsys)
ht()	(in	module	turtle)
HTML,	[1]
html	(module)
html.entities	(module)
html.parser	(module)

HAS_NPN	(in	module	ssl)
has_option()	(configparser.ConfigParser
method)

(optparse.OptionParser	method)
has_section()	(configparser.ConfigParser
method)
HAS_SNI	(in	module	ssl)
hasattr()	(built-in	function)
hasAttribute()	(xml.dom.Element	method)
hasAttributeNS()	(xml.dom.Element	method)
hasAttributes()	(xml.dom.Node	method)
hasChildNodes()	(xml.dom.Node	method)
hascompare	(in	module	dis)
hasconst	(in	module	dis)
hasFeature()	(xml.dom.DOMImplementation
method)
hasfree	(in	module	dis)
hash

built-in	function,	[1],	[2],	[3]
hash	character
hash()	(built-in	function)
hash.block_size	(in	module	hashlib)
hash.digest_size	(in	module	hashlib)
hash_info	(in	module	sys)
hashable,	[1]
Hashable	(class	in	collections.abc)
hasHandlers()	(logging.Logger	method)
hashlib	(module)
hasjabs	(in	module	dis)
hasjrel	(in	module	dis)
haslocal	(in	module	dis)
hasname	(in	module	dis)
HAVE_ARGUMENT	(opcode)
HAVE_THREADS	(in	module	decimal)
head()	(nntplib.NNTP	method)
Header	(class	in	email.header)
header_encode()	(email.charset.Charset
method)

html5	(in	module	html.entities)
HTMLCalendar	(class	in	calendar)
HtmlDiff	(class	in	difflib)
HTMLParseError
HTMLParser	(class	in	html.parser)
htonl()	(in	module	socket)
htons()	(in	module	socket)
HTTP

http.client	(standard	module)
protocol,	[1],	[2],	[3]

HTTP	(in	module	email.policy)
http.client	(module)
http.cookiejar	(module)
http.cookies	(module)
http.server	(module)
http_error_301()
(urllib.request.HTTPRedirectHandler
method)
http_error_302()
(urllib.request.HTTPRedirectHandler
method)
http_error_303()
(urllib.request.HTTPRedirectHandler
method)
http_error_307()
(urllib.request.HTTPRedirectHandler
method)
http_error_401()
(urllib.request.HTTPBasicAuthHandler
method)

(urllib.request.HTTPDigestAuthHandler
method)

http_error_407()
(urllib.request.ProxyBasicAuthHandler
method)

(urllib.request.ProxyDigestAuthHandler
method)

http_error_auth_reqed()

header_encode_lines()	(email.charset.Charset
method)
header_encoding	(email.charset.Charset
attribute)
header_factory	(email.policy.EmailPolicy
attribute)
header_fetch_parse()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

header_items()	(urllib.request.Request	method)
header_max_count()	(email.policy.EmailPolicy
method)

(email.policy.Policy	method)
header_offset	(zipfile.ZipInfo	attribute)
header_source_parse()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

header_store_parse()	(email.policy.Compat32
method)

(email.policy.EmailPolicy	method)
(email.policy.Policy	method)

HeaderError
HeaderParseError
HeaderRegistry	(class	in	email.headerregistry)
headers

MIME,	[1]
Headers	(class	in	wsgiref.headers)
headers	(http.server.BaseHTTPRequestHandler
attribute)

(urllib.error.HTTPError	attribute)
(xmlrpc.client.ProtocolError	attribute)

heading()	(in	module	turtle)
(tkinter.ttk.Treeview	method)

heapify()	(in	module	heapq)
heapmin()	(in	module	msvcrt)

(urllib.request.AbstractBasicAuthHandler
method)

(urllib.request.AbstractDigestAuthHandler
method)

http_error_default()
(urllib.request.BaseHandler	method)
http_error_nnn()	(urllib.request.BaseHandler
method)
http_open()	(urllib.request.HTTPHandler
method)
HTTP_PORT	(in	module	http.client)
http_proxy,	[1],	[2]
http_response()
(urllib.request.HTTPErrorProcessor	method)
http_version	(wsgiref.handlers.BaseHandler
attribute)
HTTPBasicAuthHandler	(class	in
urllib.request)
HTTPConnection	(class	in	http.client)
HTTPCookieProcessor	(class	in
urllib.request)
httpd
HTTPDefaultErrorHandler	(class	in
urllib.request)
HTTPDigestAuthHandler	(class	in
urllib.request)
HTTPError
HTTPErrorProcessor	(class	in	urllib.request)
HTTPException
HTTPHandler	(class	in	logging.handlers)

(class	in	urllib.request)
HTTPPasswordMgr	(class	in	urllib.request)
HTTPPasswordMgrWithDefaultRealm	(class
in	urllib.request)
HTTPRedirectHandler	(class	in
urllib.request)
HTTPResponse	(class	in	http.client)
https_open()	(urllib.request.HTTPSHandler

heappop()	(in	module	heapq)
heappush()	(in	module	heapq)
heappushpop()	(in	module	heapq)
heapq	(module)
heapreplace()	(in	module	heapq)
helo()	(smtplib.SMTP	method)
help

built-in	function
online

method)
HTTPS_PORT	(in	module	http.client)
https_response()
(urllib.request.HTTPErrorProcessor	method)
HTTPSConnection	(class	in	http.client)
HTTPServer	(class	in	http.server)
HTTPSHandler	(class	in	urllib.request)
hypot()	(in	module	math)

I
I	(in	module	re)
I/O	control

POSIX
UNIX
buffering,	[1]
tty

iadd()	(in	module	operator)
iand()	(in	module	operator)
iconcat()	(in	module	operator)
id

built-in	function
id()	(built-in	function)

(unittest.TestCase	method)
idcok()	(curses.window	method)
ident	(select.kevent	attribute)

(threading.Thread	attribute)
identchars	(cmd.Cmd	attribute)
identifier,	[1]
identify()	(tkinter.ttk.Notebook
method)

(tkinter.ttk.Treeview	method)
(tkinter.ttk.Widget	method)

identify_column()
(tkinter.ttk.Treeview	method)
identify_element()
(tkinter.ttk.Treeview	method)
identify_region()
(tkinter.ttk.Treeview	method)
identify_row()	(tkinter.ttk.Treeview
method)
identity

test
identity	of	an	object
idioms	(2to3	fixer)
IDLE,	[1]

interrupt_main()	(in	module	_thread)
InterruptedError
intersection()	(set	method)
intersection_update()	(set	method)
intro	(cmd.Cmd	attribute)
InuseAttributeErr
inv()	(in	module	operator)
InvalidAccessErr
invalidate_caches()
(importlib.abc.MetaPathFinder	method)

(importlib.abc.PathEntryFinder	method)
(importlib.machinery.FileFinder	method)
(importlib.machinery.PathFinder	 class
method)
(in	module	importlib)

InvalidCharacterErr
InvalidModificationErr
InvalidOperation	(class	in	decimal)
InvalidStateErr
InvalidStateError
InvalidURL
inversion
invert()	(in	module	operator)
invocation
io

module
io	(module)
io.StringIO

object
IOBase	(class	in	io)
ioctl()	(in	module	fcntl)

(socket.socket	method)
IOError
ior()	(in	module	operator)
ip	(ipaddress.IPv4Interface	attribute)

IDLESTARTUP
idlok()	(curses.window	method)
IEEE-754
if

statement,	[1]
if_indextoname()	(in	module
socket)
if_nameindex()	(in	module	socket)
if_nametoindex()	(in	module
socket)
ifloordiv()	(in	module	operator)
iglob()	(in	module	glob)
ignorableWhitespace()
(xml.sax.handler.ContentHandler
method)
ignore	(pdb	command)
ignore_errors()	(in	module	codecs)
IGNORE_EXCEPTION_DETAIL	(in
module	doctest)
ignore_patterns()	(in	module	shutil)
IGNORECASE	(in	module	re)
ihave()	(nntplib.NNTP	method)
IISCGIHandler	(class	in
wsgiref.handlers)
ilshift()	(in	module	operator)
imag	(numbers.Complex	attribute)
imaginary	literal
imap()	(multiprocessing.pool.Pool
method)
IMAP4

protocol
IMAP4	(class	in	imaplib)
IMAP4.abort
IMAP4.error
IMAP4.readonly
IMAP4_SSL

protocol
IMAP4_SSL	(class	in	imaplib)

(ipaddress.IPv6Interface	attribute)
ip_address()	(in	module	ipaddress)
ip_interface()	(in	module	ipaddress)
ip_network()	(in	module	ipaddress)
ipaddress	(module)
ipow()	(in	module	operator)
ipv4_mapped	(ipaddress.IPv6Address
attribute)
IPv4Address	(class	in	ipaddress)
IPv4Interface	(class	in	ipaddress)
IPv4Network	(class	in	ipaddress)
IPv6Address	(class	in	ipaddress)
IPv6Interface	(class	in	ipaddress)
IPv6Network	(class	in	ipaddress)
irshift()	(in	module	operator)
is

operator,	[1]
is	not

operator,	[1]
is_()	(in	module	operator)
is_absolute()	(pathlib.PurePath	method)
is_alive()	(multiprocessing.Process	method)

(threading.Thread	method)
is_assigned()	(symtable.Symbol	method)
is_attachment	(email.message.EmailMessage
attribute)
is_block_device()	(pathlib.Path	method)
is_blocked()
(http.cookiejar.DefaultCookiePolicy	method)
is_canonical()	(decimal.Context	method)

(decimal.Decimal	method)
is_char_device()	(pathlib.Path	method)
IS_CHARACTER_JUNK()	(in	module	difflib)
is_check_supported()	(in	module	lzma)
is_declared_global()	(symtable.Symbol
method)
is_dir()	(pathlib.Path	method)
is_empty()	(asynchat.fifo	method)

IMAP4_stream
protocol

IMAP4_stream	(class	in	imaplib)
imap_unordered()
(multiprocessing.pool.Pool	method)
imaplib	(module)
imghdr	(module)
immedok()	(curses.window	method)
immutable

data	type
object,	[1],	[2]
sequence	types

immutable	object
immutable	sequence

object
immutable	types

subclassing
imod()	(in	module	operator)
imp

module
imp	(module)
ImpImporter	(class	in	pkgutil)
implementation	(in	module	sys)
ImpLoader	(class	in	pkgutil)
import

hooks
statement,	[1],	[2],	[3]

import	(2to3	fixer)
import	hooks
import	machinery
Import	module
import	path
import_fresh_module()	(in	module
test.support)
IMPORT_FROM	(opcode)
import_module()	(in	module
importlib)

is_enabled()	(in	module	faulthandler)
is_expired()	(http.cookiejar.Cookie	method)
is_fifo()	(pathlib.Path	method)
is_file()	(pathlib.Path	method)
is_finite()	(decimal.Context	method)

(decimal.Decimal	method)
is_free()	(symtable.Symbol	method)
is_global	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv6Address	attribute)
is_global()	(symtable.Symbol	method)
is_hop_by_hop()	(in	module	wsgiref.util)
is_imported()	(symtable.Symbol	method)
is_infinite()	(decimal.Context	method)

(decimal.Decimal	method)
is_integer()	(float	method)
is_jython	(in	module	test.support)
IS_LINE_JUNK()	(in	module	difflib)
is_linetouched()	(curses.window	method)
is_link_local	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_local()	(symtable.Symbol	method)
is_loopback	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_multicast	(ipaddress.IPv4Address	attribute)
(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_multipart()	(email.message.Message
method)
is_namespace()	(symtable.Symbol	method)
is_nan()	(decimal.Context	method)

(decimal.Decimal	method)

(in	module	test.support)
IMPORT_NAME	(opcode)
IMPORT_STAR	(opcode)
importer
ImportError

exception
importing
importlib	(module)
importlib.abc	(module)
importlib.machinery	(module)
importlib.util	(module)
imports	(2to3	fixer)
imports2	(2to3	fixer)
ImportWarning
ImproperConnectionState
imul()	(in	module	operator)
in

keyword,	[1]
operator,	[1],	[2]

in_dll()	(ctypes._CData	method)
in_table_a1()	(in	module	stringprep)
in_table_b1()	(in	module	stringprep)
in_table_c11()	(in	module
stringprep)
in_table_c11_c12()	(in	module
stringprep)
in_table_c12()	(in	module
stringprep)
in_table_c21()	(in	module
stringprep)
in_table_c21_c22()	(in	module
stringprep)
in_table_c22()	(in	module
stringprep)
in_table_c3()	(in	module	stringprep)
in_table_c4()	(in	module	stringprep)
in_table_c5()	(in	module	stringprep)
in_table_c6()	(in	module	stringprep)

is_nested()	(symtable.SymbolTable	method)
is_normal()	(decimal.Context	method)

(decimal.Decimal	method)
is_not()	(in	module	operator)
is_not_allowed()
(http.cookiejar.DefaultCookiePolicy	method)
is_optimized()	(symtable.SymbolTable
method)
is_package()	(importlib.abc.InspectLoader
method)

(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(importlib.machinery.SourceFileLoader
method)
(importlib.machinery.SourcelessFileLoader
method)
(zipimport.zipimporter	method)

is_parameter()	(symtable.Symbol	method)
is_private	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_python_build()	(in	module	sysconfig)
is_qnan()	(decimal.Context	method)

(decimal.Decimal	method)
is_referenced()	(symtable.Symbol	method)
is_reserved	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_reserved()	(pathlib.PurePath	method)
is_resource_enabled()	(in	module
test.support)
is_running()	(asyncio.BaseEventLoop
method)
is_set()	(asyncio.Event	method)

in_table_c7()	(in	module	stringprep)
in_table_c8()	(in	module	stringprep)
in_table_c9()	(in	module	stringprep)
in_table_d1()	(in	module	stringprep)
in_table_d2()	(in	module	stringprep)
in_transaction	(sqlite3.Connection
attribute)
inch()	(curses.window	method)
inclusive

or
inclusive	(tracemalloc.Filter
attribute)
Incomplete
IncompleteRead
IncompleteReadError
incr_item(),	[1]
increment_lineno()	(in	module	ast)
IncrementalDecoder	(class	in
codecs)
IncrementalEncoder	(class	in
codecs)
IncrementalNewlineDecoder	(class
in	io)
IncrementalParser	(class	in
xml.sax.xmlreader)
indent	(doctest.Example	attribute)
INDENT	(in	module	token)
INDENT	token
indent()	(in	module	textwrap)
indentation
IndentationError
index	operation
index()	(array.array	method)

(in	module	operator)
(sequence	method)
(str	method)
(tkinter.ttk.Notebook	method)
(tkinter.ttk.Treeview	method)

(threading.Event	method)
is_signed()	(decimal.Context	method)

(decimal.Decimal	method)
is_site_local	(ipaddress.IPv6Address
attribute)

(ipaddress.IPv6Network	attribute)
is_snan()	(decimal.Context	method)

(decimal.Decimal	method)
is_socket()	(pathlib.Path	method)
is_subnormal()	(decimal.Context	method)

(decimal.Decimal	method)
is_symlink()	(pathlib.Path	method)
is_tarfile()	(in	module	tarfile)
is_term_resized()	(in	module	curses)
is_tracing()	(in	module	tracemalloc)
is_tracked()	(in	module	gc)
is_unspecified	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

is_wintouched()	(curses.window	method)
is_zero()	(decimal.Context	method)

(decimal.Decimal	method)
is_zipfile()	(in	module	zipfile)
isabs()	(in	module	os.path)
isabstract()	(in	module	inspect)
IsADirectoryError
isalnum()	(in	module	curses.ascii)

(str	method)
isalpha()	(in	module	curses.ascii)

(str	method)
isascii()	(in	module	curses.ascii)
isatty()	(chunk.Chunk	method)

(in	module	os)
(io.IOBase	method)

isblank()	(in	module	curses.ascii)

IndexError
indexOf()	(in	module	operator)
IndexSizeErr
indices()	(slice	method)
inet_aton()	(in	module	socket)
inet_ntoa()	(in	module	socket)
inet_ntop()	(in	module	socket)
inet_pton()	(in	module	socket)
Inexact	(class	in	decimal)
infile	(shlex.shlex	attribute)
Infinity
info()	(dis.Bytecode	method)

(gettext.NullTranslations
method)
(in	module	logging)
(logging.Logger	method)

infolist()	(zipfile.ZipFile	method)
inheritance
ini	file
init()	(in	module	mimetypes)
init_color()	(in	module	curses)
init_database()	(in	module	msilib)
init_pair()	(in	module	curses)
inited	(in	module	mimetypes)
initgroups()	(in	module	os)
initial_indent
(textwrap.TextWrapper	attribute)
initialize_options()
(distutils.cmd.Command	method)
initscr()	(in	module	curses)
INPLACE_ADD	(opcode)
INPLACE_AND	(opcode)
INPLACE_FLOOR_DIVIDE
(opcode)
INPLACE_LSHIFT	(opcode)
INPLACE_MODULO	(opcode)
INPLACE_MULTIPLY	(opcode)
INPLACE_OR	(opcode)

isblk()	(tarfile.TarInfo	method)
isbuiltin()	(in	module	inspect)
ischr()	(tarfile.TarInfo	method)
isclass()	(in	module	inspect)
iscntrl()	(in	module	curses.ascii)
iscode()	(in	module	inspect)
iscoroutine()	(in	module	asyncio)
iscoroutinefunction()	(in	module	asyncio)
isctrl()	(in	module	curses.ascii)
isDaemon()	(threading.Thread	method)
isdatadescriptor()	(in	module	inspect)
isdecimal()	(str	method)
isdev()	(tarfile.TarInfo	method)
isdigit()	(in	module	curses.ascii)

(str	method)
isdir()	(in	module	os.path)

(tarfile.TarInfo	method)
isdisjoint()	(set	method)
isdown()	(in	module	turtle)
iselement()	(in	module
xml.etree.ElementTree)
isenabled()	(in	module	gc)
isEnabledFor()	(logging.Logger	method)
isendwin()	(in	module	curses)
ISEOF()	(in	module	token)
isexpr()	(in	module	parser)

(parser.ST	method)
isfifo()	(tarfile.TarInfo	method)
isfile()	(in	module	os.path)

(tarfile.TarInfo	method)
isfinite()	(in	module	cmath)

(in	module	math)
isfirstline()	(in	module	fileinput)
isframe()	(in	module	inspect)
isfunction()	(in	module	inspect)
isgenerator()	(in	module	inspect)
isgeneratorfunction()	(in	module	inspect)
isgetsetdescriptor()	(in	module	inspect)

INPLACE_POWER	(opcode)
INPLACE_RSHIFT	(opcode)
INPLACE_SUBTRACT	(opcode)
INPLACE_TRUE_DIVIDE	(opcode)
INPLACE_XOR	(opcode)
input

raw
input	(2to3	fixer)
input()	(built-in	function)

(in	module	fileinput)
input_charset
(email.charset.Charset	attribute)
input_codec	(email.charset.Charset
attribute)
InputOnly	(class	in	tkinter.tix)
InputSource	(class	in
xml.sax.xmlreader)
inquiry	(C	type)
insch()	(curses.window	method)
insdelln()	(curses.window	method)
insert()	(array.array	method)

(sequence	method)
(tkinter.ttk.Notebook	method)
(tkinter.ttk.Treeview	method)
(xml.etree.ElementTree.Element
method)

insert_text()	(in	module	readline)
insertBefore()	(xml.dom.Node
method)
insertln()	(curses.window	method)
insnstr()	(curses.window	method)
insort()	(in	module	bisect)
insort_left()	(in	module	bisect)
insort_right()	(in	module	bisect)
inspect	(module)
inspect	command	line	option

--details
InspectLoader	(class	in

isgraph()	(in	module	curses.ascii)
isidentifier()	(str	method)
isinf()	(in	module	cmath)

(in	module	math)
isinstance	(2to3	fixer)
isinstance()	(built-in	function)
iskeyword()	(in	module	keyword)
isleap()	(in	module	calendar)
islice()	(in	module	itertools)
islink()	(in	module	os.path)
islnk()	(tarfile.TarInfo	method)
islower()	(in	module	curses.ascii)

(str	method)
ismemberdescriptor()	(in	module	inspect)
ismeta()	(in	module	curses.ascii)
ismethod()	(in	module	inspect)
ismethoddescriptor()	(in	module	inspect)
ismodule()	(in	module	inspect)
ismount()	(in	module	os.path)
isnan()	(in	module	cmath)

(in	module	math)
ISNONTERMINAL()	(in	module	token)
isnumeric()	(str	method)
isocalendar()	(datetime.date	method)

(datetime.datetime	method)
isoformat()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)

isolation_level	(sqlite3.Connection	attribute)
isoweekday()	(datetime.date	method)

(datetime.datetime	method)
isprint()	(in	module	curses.ascii)
isprintable()	(str	method)
ispunct()	(in	module	curses.ascii)
isreadable()	(in	module	pprint)

(pprint.PrettyPrinter	method)
isrecursive()	(in	module	pprint)

importlib.abc)
insstr()	(curses.window	method)
install()	(gettext.NullTranslations
method)

(in	module	gettext)
install_opener()	(in	module
urllib.request)
install_scripts()	(venv.EnvBuilder
method)
installHandler()	(in	module	unittest)
instance

call,	[1]
class
object,	[1],	[2]

instancemethod
object

instate()	(tkinter.ttk.Widget	method)
instr()	(curses.window	method)
instream	(shlex.shlex	attribute)
Instruction	(class	in	dis)
Instruction.arg	(in	module	dis)
Instruction.argrepr	(in	module	dis)
Instruction.argval	(in	module	dis)
Instruction.is_jump_target	(in
module	dis)
Instruction.offset	(in	module	dis)
Instruction.opcode	(in	module	dis)
Instruction.opname	(in	module	dis)
Instruction.starts_line	(in	module
dis)
int

built-in	function,	[1],	[2]
int	(uuid.UUID	attribute)
int()	(built-in	function)
Int2AP()	(in	module	imaplib)
int_info	(in	module	sys)
integer

literals

(pprint.PrettyPrinter	method)
isreg()	(tarfile.TarInfo	method)
isReservedKey()	(http.cookies.Morsel
method)
isroutine()	(in	module	inspect)
isSameNode()	(xml.dom.Node	method)
isspace()	(in	module	curses.ascii)

(str	method)
isstdin()	(in	module	fileinput)
issubclass()	(built-in	function)
issubset()	(set	method)
issuite()	(in	module	parser)

(parser.ST	method)
issuperset()	(set	method)
issym()	(tarfile.TarInfo	method)
ISTERMINAL()	(in	module	token)
istitle()	(str	method)
istraceback()	(in	module	inspect)
isub()	(in	module	operator)
isupper()	(in	module	curses.ascii)

(str	method)
isvisible()	(in	module	turtle)
isxdigit()	(in	module	curses.ascii)
item

sequence
string

item	selection
item()	(tkinter.ttk.Treeview	method)

(xml.dom.NamedNodeMap	method)
(xml.dom.NodeList	method)

itemgetter()	(in	module	operator)
items()	(configparser.ConfigParser	method)

(dict	method)
(email.message.Message	method)
(mailbox.Mailbox	method)
(types.MappingProxyType	method)
(xml.etree.ElementTree.Element	method)

object,	[1],	[2]
representation
types,	operations	on

integer	literal
Integral	(class	in	numbers)
Integrated	Development
Environment
Intel/DVI	ADPCM
IntEnum	(class	in	enum)
interact	(pdb	command)
interact()	(code.InteractiveConsole
method)

(in	module	code)
(telnetlib.Telnet	method)

interactive
interactive	mode
InteractiveConsole	(class	in	code)
InteractiveInterpreter	(class	in
code)
intern	(2to3	fixer)
intern()	(in	module	sys)
internal	type
internal_attr	(zipfile.ZipInfo
attribute)
Internaldate2tuple()	(in	module
imaplib)
internalSubset
(xml.dom.DocumentType	attribute)
Internet
interpolation,	string	(%)
InterpolationDepthError
InterpolationError
InterpolationMissingOptionError
InterpolationSyntaxError
interpreted
interpreter
interpreter	lock
interpreter	prompts

itemsize	(array.array	attribute)
(memoryview	attribute)

ItemsView	(class	in	collections.abc)
iter()	(built-in	function)

(xml.etree.ElementTree.Element	method)
(xml.etree.ElementTree.ElementTree
method)

iter_attachments()
(email.message.EmailMessage	method)
iter_child_nodes()	(in	module	ast)
iter_fields()	(in	module	ast)
iter_importers()	(in	module	pkgutil)
iter_modules()	(in	module	pkgutil)
iter_parts()	(email.message.EmailMessage
method)
iter_unpack()	(in	module	struct)

(struct.Struct	method)
iterable
Iterable	(class	in	collections.abc)
iterator
Iterator	(class	in	collections.abc)
iterator	protocol
iterdecode()	(in	module	codecs)
iterdir()	(pathlib.Path	method)
iterdump	(sqlite3.Connection	attribute)
iterencode()	(in	module	codecs)

(json.JSONEncoder	method)
iterfind()	(xml.etree.ElementTree.Element
method)

(xml.etree.ElementTree.ElementTree
method)

iteritems()	(mailbox.Mailbox	method)
iterkeys()	(mailbox.Mailbox	method)
itermonthdates()	(calendar.Calendar	method)
itermonthdays()	(calendar.Calendar	method)
itermonthdays2()	(calendar.Calendar	method)
iterparse()	(in	module	xml.etree.ElementTree)
itertext()	(xml.etree.ElementTree.Element

interrupt()	(sqlite3.Connection
method)

method)
itertools	(2to3	fixer)

(module)
itertools_imports	(2to3	fixer)
itervalues()	(mailbox.Mailbox	method)
iterweekdays()	(calendar.Calendar	method)
ITIMER_PROF	(in	module	signal)
ITIMER_REAL	(in	module	signal)
ITIMER_VIRTUAL	(in	module	signal)
ItimerError
itruediv()	(in	module	operator)
ixor()	(in	module	operator)

J
Jansen,	Jack
Java

language
java_ver()	(in	module	platform)
join()	(asyncio.JoinableQueue
method)

(in	module	os.path)
(multiprocessing.JoinableQueue
method)
(multiprocessing.Process	method)
(multiprocessing.pool.Pool
method)
(queue.Queue	method)
(str	method)
(threading.Thread	method)

join_thread()	(multiprocessing.Queue
method)
JoinableQueue	(class	in	asyncio)

(class	in	multiprocessing)
joinpath()	(pathlib.PurePath	method)
js_output()	(http.cookies.BaseCookie
method)

(http.cookies.Morsel	method)
json

module

json	(module)
JSONDecoder	(class	in	json)
JSONEncoder	(class	in	json)
jump	(pdb	command)
JUMP_ABSOLUTE	(opcode)
JUMP_FORWARD	(opcode)
JUMP_IF_FALSE_OR_POP
(opcode)
JUMP_IF_TRUE_OR_POP
(opcode)

K
kbhit()	(in	module	msvcrt)
KDEDIR
kevent()	(in	module	select)
key

(http.cookies.Morsel
attribute)

key	function
key/datum	pair
KEY_ALL_ACCESS	(in	module
winreg)
KEY_CREATE_LINK	(in	module
winreg)
KEY_CREATE_SUB_KEY	(in
module	winreg)
KEY_ENUMERATE_SUB_KEYS
(in	module	winreg)
KEY_EXECUTE	(in	module
winreg)
KEY_NOTIFY	(in	module
winreg)
KEY_QUERY_VALUE	(in
module	winreg)
KEY_READ	(in	module	winreg)
KEY_SET_VALUE	(in	module
winreg)
KEY_WOW64_32KEY	(in
module	winreg)
KEY_WOW64_64KEY	(in
module	winreg)
KEY_WRITE	(in	module	winreg)
KeyboardInterrupt

(built-in	exception),	[1]
KeyError

keyname()	(in	module	curses)
keypad()	(curses.window	method)
keyrefs()	(weakref.WeakKeyDictionary
method)
keys()	(dict	method)

(email.message.Message	method)
(mailbox.Mailbox	method)
(sqlite3.Row	method)
(types.MappingProxyType	method)
(xml.etree.ElementTree.Element
method)

KeysView	(class	in	collections.abc)
keyword

elif,	[1]
else,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
except,	[1]
finally,	[1],	[2],	[3],	[4]
from,	[1]
in,	[1]
yield

keyword	(module)
keyword	argument
keywords	(functools.partial	attribute)
kill()
(asyncio.asyncio.subprocess.Process
method)

(asyncio.BaseSubprocessTransport
method)
(in	module	os)
(subprocess.Popen	method)

killchar()	(in	module	curses)
killpg()	(in	module	os)
kind	(inspect.Parameter	attribute)
knownfiles	(in	module	mimetypes)

kqueue()	(in	module	select)
KqueueSelector	(class	in	selectors)
Kuchling,	Andrew
kwargs	(inspect.BoundArguments
attribute)
kwlist	(in	module	keyword)

L
L	(in	module	re)
LabelEntry	(class	in	tkinter.tix)
LabelFrame	(class	in	tkinter.tix)
lambda

expression,	[1]
form

LambdaType	(in	module	types)
LANG,	[1],	[2],	[3],	[4]
language

C,	[1],	[2],	[3],	[4],	[5]
Java

LANGUAGE,	[1]
large	files
LargeZipFile
last()	(nntplib.NNTP	method)
last_accepted
(multiprocessing.connection.Listener
attribute)
last_traceback	(in	module	sys),	[1]
last_type	(in	module	sys)
last_value	(in	module	sys)
lastChild	(xml.dom.Node	attribute)
lastcmd	(cmd.Cmd	attribute)
lastgroup	(re.match	attribute)
lastindex	(re.match	attribute)
lastResort	(in	module	logging)
lastrowid	(sqlite3.Cursor	attribute)
layout()	(tkinter.ttk.Style	method)
LBRACE	(in	module	token)
LBYL
LC_ALL,	[1]

(in	module	locale)
LC_COLLATE	(in	module	locale)
LC_CTYPE	(in	module	locale)
LC_MESSAGES,	[1]

LK_LOCK	(in	module	msvcrt)
LK_NBLCK	(in	module	msvcrt)
LK_NBRLCK	(in	module	msvcrt)
LK_RLCK	(in	module	msvcrt)
LK_UNLCK	(in	module	msvcrt)
ll	(pdb	command)
LMTP	(class	in	smtplib)
ln()	(decimal.Context	method)

(decimal.Decimal	method)
LNAME
lngettext()	(gettext.GNUTranslations
method)

(gettext.NullTranslations	method)
(in	module	gettext)

load()	(http.cookiejar.FileCookieJar	method)
(http.cookies.BaseCookie	method)
(in	module	json)
(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(pickle.Unpickler	method)
(tracemalloc.Snapshot	class	method)

LOAD_ATTR	(opcode)
LOAD_BUILD_CLASS	(opcode)
load_cert_chain()	(ssl.SSLContext	method)
LOAD_CLASSDEREF	(opcode)
LOAD_CLOSURE	(opcode)
LOAD_CONST	(opcode)
load_default_certs()	(ssl.SSLContext
method)
LOAD_DEREF	(opcode)
load_dh_params()	(ssl.SSLContext	method)
load_extension()	(sqlite3.Connection
method)
LOAD_FAST	(opcode)

(in	module	locale)
LC_MONETARY	(in	module	locale)
LC_NUMERIC	(in	module	locale)
LC_TIME	(in	module	locale)
lchflags()	(in	module	os)
lchmod()	(in	module	os)

(pathlib.Path	method)
lchown()	(in	module	os)
LDCXXSHARED
ldexp()	(in	module	math)
LDFLAGS
ldgettext()	(in	module	gettext)
ldngettext()	(in	module	gettext)
le()	(in	module	operator)
leading	whitespace
leapdays()	(in	module	calendar)
leaveok()	(curses.window	method)
left	(filecmp.dircmp	attribute)
left()	(in	module	turtle)
left_list	(filecmp.dircmp	attribute)
left_only	(filecmp.dircmp	attribute)
LEFTSHIFT	(in	module	token)
LEFTSHIFTEQUAL	(in	module	token)
len

built-in	 function,	 [1],	 [2],	 [3],	 [4],	 [5],	 [6],
[7],	[8],	[9],	[10],	[11]

len()	(built-in	function)
length	(xml.dom.NamedNodeMap	attribute)

(xml.dom.NodeList	attribute)
length_hint()	(in	module	operator)
LESS	(in	module	token)
LESSEQUAL	(in	module	token)
lexical	analysis
lexical	definitions
lexists()	(in	module	os.path)
lgamma()	(in	module	math)
lgettext()	(gettext.GNUTranslations	method)

(gettext.NullTranslations	method)

LOAD_GLOBAL	(opcode)
load_module()	(importlib.abc.FileLoader
method)

(importlib.abc.InspectLoader	method)
(importlib.abc.Loader	method)
(importlib.abc.SourceLoader	method)
(importlib.machinery.ExtensionFileLoader
method)
(in	module	imp)
(zipimport.zipimporter	method)

LOAD_NAME	(opcode)
load_verify_locations()	(ssl.SSLContext
method)
loader,	[1]
Loader	(class	in	importlib.abc)
loader	(importlib.machinery.ModuleSpec
attribute)
loader_state
(importlib.machinery.ModuleSpec	attribute)
LoadError
LoadKey()	(in	module	winreg)
LoadLibrary()	(ctypes.LibraryLoader	method)
loads()	(in	module	json)

(in	module	marshal)
(in	module	pickle)
(in	module	plistlib)
(in	module	xmlrpc.client)

loadTestsFromModule()	(unittest.TestLoader
method)
loadTestsFromName()	(unittest.TestLoader
method)
loadTestsFromNames()	(unittest.TestLoader
method)
loadTestsFromTestCase()
(unittest.TestLoader	method)
local	(class	in	threading)
localcontext()	(in	module	decimal)

(in	module	gettext)
lib2to3	(module)
libc_ver()	(in	module	platform)
library	(in	module	dbm.ndbm)

(ssl.SSLError	attribute)
library_dir_option()
(distutils.ccompiler.CCompiler	method)
library_filename()
(distutils.ccompiler.CCompiler	method)
library_option()
(distutils.ccompiler.CCompiler	method)
LibraryLoader	(class	in	ctypes)
license	(built-in	variable)
LifoQueue	(class	in	asyncio)

(class	in	queue)
light-weight	processes
limit_denominator()	(fractions.Fraction
method)
lin2adpcm()	(in	module	audioop)
lin2alaw()	(in	module	audioop)
lin2lin()	(in	module	audioop)
lin2ulaw()	(in	module	audioop)
line	continuation
line	joining,	[1]
line	structure
line()	(msilib.Dialog	method)
line-buffered	I/O
line_buffering	(io.TextIOWrapper	attribute)
line_num	(csv.csvreader	attribute)
linecache	(module)
lineno	(ast.AST	attribute)

(doctest.DocTest	attribute)
(doctest.Example	attribute)
(pyclbr.Class	attribute)
(pyclbr.Function	attribute)
(shlex.shlex	attribute)
(tracemalloc.Filter	attribute)

LOCALE	(in	module	re)
locale	(module)
localeconv()	(in	module	locale)
LocaleHTMLCalendar	(class	in	calendar)
LocaleTextCalendar	(class	in	calendar)
localName	(xml.dom.Attr	attribute)

(xml.dom.Node	attribute)
locals()	(built-in	function)
localtime()	(in	module	email.utils)

(in	module	time)
Locator	(class	in	xml.sax.xmlreader)
Lock	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

lock()	(mailbox.Babyl	method)
(mailbox.MH	method)
(mailbox.MMDF	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(mailbox.mbox	method)

Lock()
(multiprocessing.managers.SyncManager
method)
lock,	interpreter
lock_held()	(in	module	imp)
locked()	(_thread.lock	method)

(asyncio.Condition	method)
(asyncio.Lock	method)
(asyncio.Semaphore	method)

lockf()	(in	module	fcntl)
(in	module	os)

locking()	(in	module	msvcrt)
LockType	(in	module	_thread)
log()	(in	module	cmath)

(in	module	logging)
(in	module	math)
(logging.Logger	method)

(tracemalloc.Frame	attribute)
(xml.parsers.expat.ExpatError	attribute)

lineno()	(in	module	fileinput)
LINES,	[1],	[2]
lines	(os.terminal_size	attribute)
linesep	(email.policy.Policy	attribute)

(in	module	os)
lineterminator	(csv.Dialect	attribute)
link()	(distutils.ccompiler.CCompiler	method)

(in	module	os)
link_executable()
(distutils.ccompiler.CCompiler	method)
link_shared_lib()
(distutils.ccompiler.CCompiler	method)
link_shared_object()
(distutils.ccompiler.CCompiler	method)
linkname	(tarfile.TarInfo	attribute)
linux_distribution()	(in	module	platform)
list

assignment,	target
comprehensions
deletion	target
display
empty
expression,	[1],	[2]
object,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8]
target,	[1],	[2]
type,	operations	on

list	(built-in	class)
(pdb	command)

list	comprehension
list()	(imaplib.IMAP4	method)

(multiprocessing.managers.SyncManager
method)
(nntplib.NNTP	method)
(poplib.POP3	method)

log10()	(decimal.Context	method)
(decimal.Decimal	method)
(in	module	cmath)
(in	module	math)

log1p()	(in	module	math)
log2()	(in	module	math)
log_date_time_string()
(http.server.BaseHTTPRequestHandler
method)
log_error()
(http.server.BaseHTTPRequestHandler
method)
log_exception()
(wsgiref.handlers.BaseHandler	method)
log_message()
(http.server.BaseHTTPRequestHandler
method)
log_request()
(http.server.BaseHTTPRequestHandler
method)
log_to_stderr()	(in	module	multiprocessing)
logb()	(decimal.Context	method)

(decimal.Decimal	method)
Logger	(class	in	logging)
LoggerAdapter	(class	in	logging)
logging

Errors
logging	(module)
logging.config	(module)
logging.handlers	(module)
logical	line
logical_and()	(decimal.Context	method)

(decimal.Decimal	method)
logical_invert()	(decimal.Context	method)

(decimal.Decimal	method)
logical_or()	(decimal.Context	method)

(decimal.Decimal	method)
logical_xor()	(decimal.Context	method)

(tarfile.TarFile	method)
LIST_APPEND	(opcode)
list_dialects()	(in	module	csv)
list_folders()	(mailbox.Maildir	method)

(mailbox.MH	method)
listdir()	(in	module	os)
listen()	(asyncore.dispatcher	method)

(in	module	logging.config)
(in	module	turtle)
(socket.socket	method)

Listener	(class	in
multiprocessing.connection)
listMethods()
(xmlrpc.client.ServerProxy.system	method)
ListNoteBook	(class	in	tkinter.tix)
listxattr()	(in	module	os)
literal,	[1]
literal_eval()	(in	module	ast)
literals

binary
complex	number
floating	point
hexadecimal
integer
numeric
octal

LittleEndianStructure	(class	in	ctypes)
ljust()	(str	method)

(decimal.Decimal	method)
login()	(ftplib.FTP	method)

(imaplib.IMAP4	method)
(nntplib.NNTP	method)
(smtplib.SMTP	method)

login_cram_md5()	(imaplib.IMAP4	method)
LOGNAME,	[1]
lognormvariate()	(in	module	random)
logout()	(imaplib.IMAP4	method)
LogRecord	(class	in	logging)
long	(2to3	fixer)
long	integer

object
LONG_MAX
longMessage	(unittest.TestCase	attribute)
longname()	(in	module	curses)
lookup()	(in	module	codecs)

(in	module	unicodedata)
(symtable.SymbolTable	method)
(tkinter.ttk.Style	method)

lookup_error()	(in	module	codecs)
LookupError
loop

over	mutable	sequence
statement,	[1],	[2],	[3]

loop	control
target

loop()	(in	module	asyncore)
lower()	(str	method)
LPAR	(in	module	token)
lru_cache()	(in	module	functools)
lseek()	(in	module	os)
lshift()	(in	module	operator)
LSQB	(in	module	token)
lstat()	(in	module	os)

(pathlib.Path	method)
lstrip()	(str	method)

lsub()	(imaplib.IMAP4	method)
lt()	(in	module	operator)

(in	module	turtle)
LWPCookieJar	(class	in	http.cookiejar)
lzma	(module)
LZMACompressor	(class	in	lzma)
LZMADecompressor	(class	in	lzma)
LZMAError
LZMAFile	(class	in	lzma)

M
M	(in	module	re)
mac_ver()	(in	module	platform)
machine()	(in	module	platform)
macpath	(module)
macros	(netrc.netrc	attribute)
MAGIC_NUMBER	(in	module
importlib.util)
MagicMock	(class	in	unittest.mock)
Mailbox	(class	in	mailbox)
mailbox	(module)
mailcap	(module)
Maildir	(class	in	mailbox)
MaildirMessage	(class	in	mailbox)
mailfrom	(smtpd.SMTPChannel	attribute)
MailmanProxy	(class	in	smtpd)
main(),	[1],	[2]

(in	module	py_compile)
(in	module	site)
(in	module	unittest)

main_thread()	(in	module	threading)
mainloop()	(in	module	turtle)
maintype
(email.headerregistry.ContentTypeHeader
attribute)
major
(email.headerregistry.MIMEVersionHeader
attribute)
major()	(in	module	os)
make_alternative()
(email.message.EmailMessage	method)
make_archive()	(in	module
distutils.archive_util)

(in	module	shutil)
make_bad_fd()	(in	module	test.support)
MAKE_CLOSURE	(opcode)

METH_NOARGS	(built-in	variable)
METH_O	(built-in	variable)
METH_STATIC	(built-in	variable)
METH_VARARGS	(built-in	variable)
method

built-in
call
object,	[1],	[2],	[3],	[4],	[5]
user-defined

method	(urllib.request.Request	attribute)
method	resolution	order
method_calls	(unittest.mock.Mock
attribute)
METHOD_CRYPT	(in	module	crypt)
METHOD_MD5	(in	module	crypt)
METHOD_SHA256	(in	module	crypt)
METHOD_SHA512	(in	module	crypt)
methodattrs	(2to3	fixer)
methodcaller()	(in	module	operator)
methodHelp()
(xmlrpc.client.ServerProxy.system
method)
methods

bytearray
bytes
string

methods	(in	module	crypt)
(pyclbr.Class	attribute)

methodSignature()
(xmlrpc.client.ServerProxy.system
method)
MethodType	(in	module	types)
MH	(class	in	mailbox)
MHMessage	(class	in	mailbox)
microsecond	(datetime.datetime	attribute)

make_cookies()	(http.cookiejar.CookieJar
method)
make_file()	(difflib.HtmlDiff	method)
MAKE_FUNCTION	(opcode)
make_header()	(in	module	email.header)
make_mixed()
(email.message.EmailMessage	method)
make_msgid()	(in	module	email.utils)
make_parser()	(in	module	xml.sax)
make_related()
(email.message.EmailMessage	method)
make_server()	(in	module
wsgiref.simple_server)
make_table()	(difflib.HtmlDiff	method)
make_tarball()	(in	module
distutils.archive_util)
make_zipfile()	(in	module
distutils.archive_util)
makedev()	(in	module	os)
makedirs()	(in	module	os)
makeelement()
(xml.etree.ElementTree.Element	method)
makefile()	(socket	method)

(socket.socket	method)
makeLogRecord()	(in	module	logging)
makePickle()
(logging.handlers.SocketHandler	method)
makeRecord()	(logging.Logger	method)
makeSocket()
(logging.handlers.DatagramHandler
method)

(logging.handlers.SocketHandler
method)

maketrans()	(bytearray	static	method)
(bytes	static	method)
(str	static	method)

malloc()
mangling

(datetime.time	attribute)
MIME

base64	encoding
content	type
headers,	[1]
quoted-printable	encoding

MIMEApplication	(class	in
email.mime.application)
MIMEAudio	(class	in	email.mime.audio)
MIMEBase	(class	in	email.mime.base)
MIMEImage	(class	in	email.mime.image)
MIMEMessage	(class	in
email.mime.message)
MIMEMultipart	(class	in
email.mime.multipart)
MIMENonMultipart	(class	in
email.mime.nonmultipart)
MIMEPart	(class	in	email.message)
MIMEText	(class	in	email.mime.text)
MimeTypes	(class	in	mimetypes)
mimetypes	(module)
MIMEVersionHeader	(class	in
email.headerregistry)
min

built-in	function
min	(datetime.date	attribute)

(datetime.datetime	attribute)
(datetime.time	attribute)
(datetime.timedelta	attribute)

min()	(built-in	function)
(decimal.Context	method)
(decimal.Decimal	method)

MIN_EMIN	(in	module	decimal)
MIN_ETINY	(in	module	decimal)
min_mag()	(decimal.Context	method)

(decimal.Decimal	method)
MINEQUAL	(in	module	token)

name
map	(2to3	fixer)
map()	(built-in	function)

(concurrent.futures.Executor	method)
(multiprocessing.pool.Pool	method)
(tkinter.ttk.Style	method)

MAP_ADD	(opcode)
map_async()	(multiprocessing.pool.Pool
method)
map_table_b2()	(in	module	stringprep)
map_table_b3()	(in	module	stringprep)
map_to_type()
(email.headerregistry.HeaderRegistry
method)
mapping

object,	[1],	[2],	[3],	[4],	[5]
types,	operations	on

Mapping	(class	in	collections.abc)
mapping()	(msilib.Control	method)
MappingProxyType	(class	in	types)
MappingView	(class	in	collections.abc)
mapPriority()
(logging.handlers.SysLogHandler	method)
maps	(collections.ChainMap	attribute)
maps()	(in	module	nis)
marshal	(module)
marshalling

objects
masking

operations
match()	(in	module	nis)

(in	module	re)
(pathlib.PurePath	method)
(re.regex	method)

match_hostname()	(in	module	ssl)
math

module,	[1]

minmax()	(in	module	audioop)
minor
(email.headerregistry.MIMEVersionHeader
attribute)
minor()	(in	module	os)
minus
MINUS	(in	module	token)
minus()	(decimal.Context	method)
minute	(datetime.datetime	attribute)

(datetime.time	attribute)
MINYEAR	(in	module	datetime)
mirrored()	(in	module	unicodedata)
misc_header	(cmd.Cmd	attribute)
MissingSectionHeaderError
MIXERDEV
mkd()	(ftplib.FTP	method)
mkdir()	(in	module	os)

(pathlib.Path	method)
mkdtemp()	(in	module	tempfile)
mkfifo()	(in	module	os)
mknod()	(in	module	os)
mkpath()	(distutils.ccompiler.CCompiler
method)

(in	module	distutils.dir_util)
mksalt()	(in	module	crypt)
mkstemp()	(in	module	tempfile)
mktemp()	(in	module	tempfile)
mktime()	(in	module	time)
mktime_tz()	(in	module	email.utils)
mlsd()	(ftplib.FTP	method)
mmap	(class	in	mmap)

(module)
MMDF	(class	in	mailbox)
MMDFMessage	(class	in	mailbox)
Mock	(class	in	unittest.mock)
mock_add_spec()	(unittest.mock.Mock
method)
mock_calls	(unittest.mock.Mock	attribute)

math	(module)
max

built-in	function
max	(datetime.date	attribute)

(datetime.datetime	attribute)
(datetime.time	attribute)
(datetime.timedelta	attribute)

max()	(built-in	function)
(decimal.Context	method)
(decimal.Decimal	method)
(in	module	audioop)

max_count
(email.headerregistry.BaseHeader
attribute)
MAX_EMAX	(in	module	decimal)
MAX_INTERPOLATION_DEPTH	(in
module	configparser)
max_line_length	(email.policy.Policy
attribute)
max_lines	(textwrap.TextWrapper
attribute)
max_mag()	(decimal.Context	method)

(decimal.Decimal	method)
MAX_PREC	(in	module	decimal)
max_prefixlen	(ipaddress.IPv4Address
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)

maxarray	(reprlib.Repr	attribute)
maxdeque	(reprlib.Repr	attribute)
maxdict	(reprlib.Repr	attribute)
maxDiff	(unittest.TestCase	attribute)
maxfrozenset	(reprlib.Repr	attribute)
maxlen	(collections.deque	attribute)
maxlevel	(reprlib.Repr	attribute)
maxlist	(reprlib.Repr	attribute)

mock_open()	(in	module	unittest.mock)
mod()	(in	module	operator)
mode	(io.FileIO	attribute)

(ossaudiodev.oss_audio_device
attribute)
(tarfile.TarInfo	attribute)

mode()	(in	module	statistics)
(in	module	turtle)

modf()	(in	module	math)
modified()
(urllib.robotparser.RobotFileParser
method)
Modify()	(msilib.View	method)
modify()	(select.devpoll	method)

(select.epoll	method)
(select.poll	method)
(selectors.BaseSelector	method)

module
__main__,	[1],	[2],	[3],	[4]
_locale
_thread
array,	[1]
base64
bdb
binhex
builtins,	[1],	[2],	[3],	[4]
cmd
copy
crypt
dbm.gnu,	[1]
dbm.ndbm,	[1]
errno
extension
glob
imp

maxlong	(reprlib.Repr	attribute)
maxother	(reprlib.Repr	attribute)
maxpp()	(in	module	audioop)
maxset	(reprlib.Repr	attribute)
maxsize	(asyncio.Queue	attribute)

(in	module	sys)
maxstring	(reprlib.Repr	attribute)
maxtuple	(reprlib.Repr	attribute)
maxunicode	(in	module	sys)
MAXYEAR	(in	module	datetime)
MB_ICONASTERISK	(in	module
winsound)
MB_ICONEXCLAMATION	(in	module
winsound)
MB_ICONHAND	(in	module	winsound)
MB_ICONQUESTION	(in	module
winsound)
MB_OK	(in	module	winsound)
mbox	(class	in	mailbox)
mboxMessage	(class	in	mailbox)
mean()	(in	module	statistics)
median()	(in	module	statistics)
median_grouped()	(in	module	statistics)
median_high()	(in	module	statistics)
median_low()	(in	module	statistics)
MemberDescriptorType	(in	module	types)
membership

test
memmove()	(in	module	ctypes)
MemoryError
MemoryHandler	(class	in
logging.handlers)
memoryview

object,	[1]
memoryview	(built-in	class)
memset()	(in	module	ctypes)
merge()	(in	module	heapq)
Message	(class	in	email.message)

importing
io
json
math,	[1]
namespace
object,	[1],	[2]
os
pickle,	[1],	[2],	[3]
pty
pwd
pyexpat
re,	[1]
search	path,	[1],	[2],	[3],	
shelve
signal,	[1]
sitecustomize
socket
stat
string
struct
sys,	[1],	[2],	[3],	[4],	[5],	[6]
types
urllib.request
usercustomize
uu

module	(pyclbr.Class	attribute)
(pyclbr.Function	attribute)

module	spec,	[1]
module_for_loader()	(in	module
importlib.util)
module_repr()	(importlib.abc.Loader
method)
ModuleFinder	(class	in	modulefinder)
modulefinder	(module)
modules	(in	module	sys),	[1]

(class	in	mailbox)
message	digest,	MD5
message_from_binary_file()	(in	module
email)
message_from_bytes()	(in	module	email)
message_from_file()	(in	module	email)
message_from_string()	(in	module	email)
MessageBeep()	(in	module	winsound)
MessageClass
(http.server.BaseHTTPRequestHandler
attribute)
MessageError
MessageParseError
messages	(in	module
xml.parsers.expat.errors)
meta

hooks
meta	hooks
meta	path	finder
meta()	(in	module	curses)
meta_path	(in	module	sys)
metaclass

(2to3	fixer)
MetaPathFinder	(class	in	importlib.abc)
metavar	(optparse.Option	attribute)
MetavarTypeHelpFormatter	(class	in
argparse)
Meter	(class	in	tkinter.tix)
METH_CLASS	(built-in	variable)
METH_COEXIST	(built-in	variable)
METH_KEYWORDS	(built-in	variable)

(modulefinder.ModuleFinder	attribute)
ModuleSpec	(class	in	importlib.machinery)
ModuleType	(class	in	types)

(in	module	types)
modulo
monotonic()	(in	module	time)
month	(datetime.date	attribute)

(datetime.datetime	attribute)
month()	(in	module	calendar)
month_abbr	(in	module	calendar)
month_name	(in	module	calendar)
monthcalendar()	(in	module	calendar)
monthdatescalendar()	(calendar.Calendar
method)
monthdays2calendar()	(calendar.Calendar
method)
monthdayscalendar()	(calendar.Calendar
method)
monthrange()	(in	module	calendar)
Morsel	(class	in	http.cookies)
most_common()	(collections.Counter
method)
mouseinterval()	(in	module	curses)
mousemask()	(in	module	curses)
move()	(curses.panel.Panel	method)

(curses.window	method)
(in	module	mmap)
(in	module	shutil)
(tkinter.ttk.Treeview	method)

move_file()	(distutils.ccompiler.CCompiler
method)

(in	module	distutils.file_util)
move_to_end()	(collections.OrderedDict
method)
MozillaCookieJar	(class	in	http.cookiejar)
MRO
mro()	(class	method)
msg	(http.client.HTTPResponse	attribute)

msg()	(telnetlib.Telnet	method)
msi
msilib	(module)
msvcrt	(module)
mt_interact()	(telnetlib.Telnet	method)
mtime	(tarfile.TarInfo	attribute)
mtime()
(urllib.robotparser.RobotFileParser
method)
mul()	(in	module	audioop)

(in	module	operator)
MultiCall	(class	in	xmlrpc.client)
MULTILINE	(in	module	re)
MultipartConversionError
multiplication
multiply()	(decimal.Context	method)
multiprocessing	(module)
multiprocessing.connection	(module)
multiprocessing.dummy	(module)
multiprocessing.Manager()	(in	module
multiprocessing.sharedctypes)
multiprocessing.managers	(module)
multiprocessing.pool	(module)
multiprocessing.sharedctypes	(module)
mutable

object,	[1],	[2]
sequence	types

mutable	object
mutable	sequence

loop	over
object

MutableMapping	(class	in	collections.abc)
MutableSequence	(class	in
collections.abc)
MutableSet	(class	in	collections.abc)
mvderwin()	(curses.window	method)
mvwin()	(curses.window	method)
myrights()	(imaplib.IMAP4	method)

N
N_TOKENS	(in	module	token)
n_waiting	(threading.Barrier	attribute)
name,	[1],	[2]

binding,	[1],	[2],	[3],	[4],	[5],	[6]
binding,	global
class
function,	[1]
mangling
rebinding
unbinding

name	(doctest.DocTest	attribute)
(email.headerregistry.BaseHeader
attribute)
(hashlib.hash	attribute)
(hmac.HMAC	attribute)
(http.cookiejar.Cookie	attribute)
(importlib.abc.FileLoader	attribute)
(importlib.machinery.ExtensionFileLoader
attribute)
(importlib.machinery.ModuleSpec
attribute)
(importlib.machinery.SourceFileLoader
attribute)
(importlib.machinery.SourcelessFileLoader
attribute)
(in	module	os)

NAME	(in	module	token)
name	(inspect.Parameter	attribute)

(io.FileIO	attribute)
(multiprocessing.Process	attribute)
(ossaudiodev.oss_audio_device	attribute)
(pyclbr.Class	attribute)

nntp_version	(nntplib.NNTP
attribute)
NNTPDataError
NNTPError
nntplib	(module)
NNTPPermanentError
NNTPProtocolError
NNTPReplyError
NNTPTemporaryError
nocbreak()	(in	module	curses)
NoDataAllowedErr
node()	(in	module	platform)
nodelay()	(curses.window
method)
nodeName	(xml.dom.Node
attribute)
NodeTransformer	(class	in	ast)
nodeType	(xml.dom.Node
attribute)
nodeValue	(xml.dom.Node
attribute)
NodeVisitor	(class	in	ast)
noecho()	(in	module	curses)
NOEXPR	(in	module	locale)
NoModificationAllowedErr
nonblock()
(ossaudiodev.oss_audio_device
method)
NonCallableMagicMock	(class
in	unittest.mock)
NonCallableMock	(class	in
unittest.mock)
None

object,	[1],	[2]
None	(Built-in	object)

(built-in	variable)

(pyclbr.Function	attribute)
(tarfile.TarInfo	attribute)
(threading.Thread	attribute)
(xml.dom.Attr	attribute)
(xml.dom.DocumentType	attribute)

name()	(in	module	unicodedata)
name2codepoint	(in	module	html.entities)
named	tuple
NamedTemporaryFile()	(in	module	tempfile)
namedtuple()	(in	module	collections)
NameError

exception
NameError	(built-in	exception)
namelist()	(zipfile.ZipFile	method)
nameprep()	(in	module	encodings.idna)
namer
(logging.handlers.BaseRotatingHandler
attribute)
names

private
namespace,	[1]

:	package
global
module

Namespace	(class	in	argparse)
namespace	package
namespace()	(imaplib.IMAP4	method)
Namespace()
(multiprocessing.managers.SyncManager
method)
NAMESPACE_DNS	(in	module	uuid)
NAMESPACE_OID	(in	module	uuid)
NAMESPACE_URL	(in	module	uuid)
NAMESPACE_X500	(in	module	uuid)
NamespaceErr
namespaceURI	(xml.dom.Node	attribute)
NaN

nonl()	(in	module	curses)
nonlocal

statement
nonzero	(2to3	fixer)
noop()	(imaplib.IMAP4	method)

(poplib.POP3	method)
NoOptionError
NOP	(opcode)
noqiflush()	(in	module	curses)
noraw()	(in	module	curses)
normalize()	(decimal.Context
method)

(decimal.Decimal	method)
(in	module	locale)
(in	module	unicodedata)
(xml.dom.Node	method)

NORMALIZE_WHITESPACE
(in	module	doctest)
normalvariate()	(in	module
random)
normcase()	(in	module	os.path)
normpath()	(in	module	os.path)
NoSectionError
NoSuchMailboxError
not

operator,	[1]
not	in

operator,	[1],	[2]
not_()	(in	module	operator)
NotADirectoryError
notation
notationDecl()
(xml.sax.handler.DTDHandler
method)
NotationDeclHandler()
(xml.parsers.expat.xmlparser
method)
notations

NannyNag
napms()	(in	module	curses)
nargs	(optparse.Option	attribute)
nbytes	(memoryview	attribute)
ndiff()	(in	module	difflib)
ndim	(memoryview	attribute)
ne	(2to3	fixer)
ne()	(in	module	operator)
neg()	(in	module	operator)
negation
nested	scope
NetmaskValueError
netrc	(class	in	netrc)

(module)
NetrcParseError
netscape	(http.cookiejar.CookiePolicy
attribute)
network	(ipaddress.IPv4Interface	attribute)

(ipaddress.IPv6Interface	attribute)
Network	News	Transfer	Protocol
network_address	(ipaddress.IPv4Network
attribute)

(ipaddress.IPv6Network	attribute)
new()	(in	module	hashlib)

(in	module	hmac)
new-style	class
new_alignment()	(formatter.writer	method)
new_child()	(collections.ChainMap	method)
new_class()	(in	module	types)
new_compiler()	(in	module	distutils.ccompiler)
new_event_loop()
(asyncio.AbstractEventLoopPolicy	method)

(in	module	asyncio)
new_font()	(formatter.writer	method)
new_margin()	(formatter.writer	method)
new_module()	(in	module	imp)
new_panel()	(in	module	curses.panel)
new_spacing()	(formatter.writer	method)

(xml.dom.DocumentType
attribute)
NotConnected
NoteBook	(class	in	tkinter.tix)
Notebook	(class	in	tkinter.ttk)
NotEmptyError
NOTEQUAL	(in	module	token)
NotFoundErr
notify()	(asyncio.Condition
method)

(threading.Condition
method)

notify_all()	(asyncio.Condition
method)

(threading.Condition
method)

notimeout()	(curses.window
method)
NotImplemented

object
NotImplemented	(built-in
variable)
NotImplementedError
NotStandaloneHandler()
(xml.parsers.expat.xmlparser
method)
NotSupportedErr
noutrefresh()	(curses.window
method)
now()	(datetime.datetime	class
method)
NSIG	(in	module	signal)
nsmallest()	(in	module	heapq)
NT_OFFSET	(in	module	token)
NTEventLogHandler	(class	in
logging.handlers)
ntohl()	(in	module	socket)
ntohs()	(in	module	socket)

new_styles()	(formatter.writer	method)
newer()	(in	module	distutils.dep_util)
newer_group()	(in	module	distutils.dep_util)
newer_pairwise()	(in	module	distutils.dep_util)
newgroups()	(nntplib.NNTP	method)
NEWLINE	(in	module	token)
NEWLINE	token,	[1]
newlines	(io.TextIOBase	attribute)
newnews()	(nntplib.NNTP	method)
newpad()	(in	module	curses)
newwin()	(in	module	curses)
next	(2to3	fixer)

(pdb	command)
next()	(built-in	function)

(nntplib.NNTP	method)
(tarfile.TarFile	method)
(tkinter.ttk.Treeview	method)

next_minus()	(decimal.Context	method)
(decimal.Decimal	method)

next_plus()	(decimal.Context	method)
(decimal.Decimal	method)

next_toward()	(decimal.Context	method)
(decimal.Decimal	method)

nextfile()	(in	module	fileinput)
nextkey()	(dbm.gnu.gdbm	method)
nextSibling	(xml.dom.Node	attribute)
ngettext()	(gettext.GNUTranslations	method)

(gettext.NullTranslations	method)
(in	module	gettext)

nice()	(in	module	os)
nis	(module)
NL	(in	module	tokenize)
nl()	(in	module	curses)
nl_langinfo()	(in	module	locale)
nlargest()	(in	module	heapq)
nlst()	(ftplib.FTP	method)
NNTP

ntransfercmd()	(ftplib.FTP
method)
null

operation,	[1]
NullFormatter	(class	in
formatter)
NullHandler	(class	in	logging)
NullImporter	(class	in	imp)
NullTranslations	(class	in
gettext)
NullWriter	(class	in	formatter)
num_addresses
(ipaddress.IPv4Network
attribute)

(ipaddress.IPv6Network
attribute)

number
complex
floating	point

Number	(class	in	numbers)
NUMBER	(in	module	token)
number_class()
(decimal.Context	method)

(decimal.Decimal	method)
numbers	(module)
numerator	(fractions.Fraction
attribute)

(numbers.Rational	 attribute)
numeric

conversions
literals
object,	[1],	[2],	[3],	[4]
types,	operations	on

numeric	literal
numeric()	(in	module
unicodedata)
Numerical	Python

protocol
NNTP	(class	in	nntplib)
nntp_implementation	(nntplib.NNTP	attribute)
NNTP_SSL	(class	in	nntplib)

numinput()	(in	module	turtle)
numliterals	(2to3	fixer)

O
O_APPEND	(in	module	os)
O_ASYNC	(in	module	os)
O_BINARY	(in	module	os)
O_CLOEXEC	(in	module	os)
O_CREAT	(in	module	os)
O_DIRECT	(in	module	os)
O_DIRECTORY	(in	module	os)
O_DSYNC	(in	module	os)
O_EXCL	(in	module	os)
O_EXLOCK	(in	module	os)
O_NDELAY	(in	module	os)
O_NOATIME	(in	module	os)
O_NOCTTY	(in	module	os)
O_NOFOLLOW	(in	module	os)
O_NOINHERIT	(in	module	os)
O_NONBLOCK	(in	module	os)
O_PATH	(in	module	os)
O_RANDOM	(in	module	os)
O_RDONLY	(in	module	os)
O_RDWR	(in	module	os)
O_RSYNC	(in	module	os)
O_SEQUENTIAL	(in	module	os)
O_SHLOCK	(in	module	os)
O_SHORT_LIVED	(in	module	os)
O_SYNC	(in	module	os)
O_TEMPORARY	(in	module	os)
O_TEXT	(in	module	os)
O_TMPFILE	(in	module	os)
O_TRUNC	(in	module	os)
O_WRONLY	(in	module	os)
obj	(memoryview	attribute)
object,	[1]

Boolean,	[1]
Capsule
Ellipsis

open_new()	(in	module	webbrowser)
(webbrowser.controller	method)

open_new_tab()	(in	module
webbrowser)

(webbrowser.controller	method)
open_osfhandle()	(in	module	msvcrt)
open_unix_connection()	(in	module
asyncio)
open_unknown()
(urllib.request.URLopener	method)
OpenDatabase()	(in	module	msilib)
OpenerDirector	(class	in
urllib.request)
openfp()	(in	module	sunau)

(in	module	wave)
OpenKey()	(in	module	winreg)
OpenKeyEx()	(in	module	winreg)
openlog()	(in	module	syslog)
openmixer()	(in	module	ossaudiodev)
openpty()	(in	module	os)

(in	module	pty)
OpenSSL

(use	in	module	hashlib)
(use	in	module	ssl)

OPENSSL_VERSION	(in	module	ssl)
OPENSSL_VERSION_INFO	(in
module	ssl)
OPENSSL_VERSION_NUMBER	(in
module	ssl)
OpenView()	(msilib.Database	method)
operation

Boolean
binary	arithmetic
binary	bitwise
concatenation

None,	[1],	[2]
NotImplemented
built-in	function,	[1]
built-in	method,	[1]
bytearray,	[1],	[2],	[3]
bytes,	[1],	[2]
callable,	[1]
class,	[1],	[2]
class	instance,	[1],	[2]
code,	[1],	[2],	[3]
complex
complex	number,	[1]
deallocation
dictionary,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
file,	[1],	[2]
finalization
floating	point,	[1],	[2]
frame
frozenset,	[1]
function,	[1],	[2],	[3],	[4],	[5]
generator,	[1],	[2]
immutable,	[1],	[2]
immutable	sequence
instance,	[1],	[2]
instancemethod
integer,	[1],	[2]
io.StringIO
list,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8]
long	integer
mapping,	[1],	[2],	[3],	[4],	[5]
memoryview,	[1]
method,	[1],	[2],	[3],	[4],	[5]
module,	[1],	[2]
mutable,	[1],	[2]

null,	[1]
repetition
shifting
slice
subscript
unary	arithmetic
unary	bitwise

operations
Boolean,	[1]
bitwise
masking
shifting

operations	on
dictionary	type
integer	types
list	type
mapping	types
numeric	types
sequence	types,	[1]

operator
!=
%
&
*
**
+
-
/
//
<
<<
<=
==
>

mutable	sequence
numeric,	[1],	[2],	[3],	[4]
range
sequence,	[1],	[2],	[3],	[4],	[5],	[6],	[7],
[8]
set,	[1],	[2],	[3]
set	type
slice
socket
string,	[1],	[2]
traceback,	[1],	[2],	[3],	[4]
tuple,	[1],	[2],	[3],	[4],	[5],	[6]
type,	[1],	[2]
user-defined	function,	[1],	[2]
user-defined	method

object	(UnicodeError	attribute)
object()	(built-in	function)
object.__slots__	(built-in	variable)
object_filenames()
(distutils.ccompiler.CCompiler	method)
objects

comparing
flattening
marshalling
persistent
pickling
serializing

obufcount()
(ossaudiodev.oss_audio_device
method)
obuffree()
(ossaudiodev.oss_audio_device
method)
oct()	(built-in	function)
octal

literals

>=
>>
^
and,	[1],	[2]
comparison
in,	[1],	[2]
is,	[1]
is	not,	[1]
not,	[1]
not	in,	[1],	[2]
or,	[1],	[2]
overloading
precedence
ternary

operator	(2to3	fixer)
(module)

operators
opmap	(in	module	dis)
opname	(in	module	dis)
optimize()	(in	module	pickletools)
OPTIMIZED_BYTECODE_SUFFIXES
(in	module	importlib.machinery)
OptionGroup	(class	in	optparse)
OptionMenu	(class	in	tkinter.tix)
OptionParser	(class	in	optparse)
options	(doctest.Example	attribute)

(ssl.SSLContext	attribute)
options()	(configparser.ConfigParser
method)
optionxform()
(configparser.ConfigParser	method)

(in	module	configparser)
optparse	(module)
or

bitwise
exclusive

octal	literal
octdigits	(in	module	string)
offset	(xml.parsers.expat.ExpatError
attribute)
OK	(in	module	curses)
OleDLL	(class	in	ctypes)
onclick()	(in	module	turtle),	[1]
ondrag()	(in	module	turtle)
onecmd()	(cmd.Cmd	method)
onkey()	(in	module	turtle)
onkeypress()	(in	module	turtle)
onkeyrelease()	(in	module	turtle)
onrelease()	(in	module	turtle)
onscreenclick()	(in	module	turtle)
ontimer()	(in	module	turtle)
OP	(in	module	token)
OP_ALL	(in	module	ssl)
OP_CIPHER_SERVER_PREFERENCE
(in	module	ssl)
OP_NO_COMPRESSION	(in	module
ssl)
OP_NO_SSLv2	(in	module	ssl)
OP_NO_SSLv3	(in	module	ssl)
OP_NO_TLSv1	(in	module	ssl)
OP_NO_TLSv1_1	(in	module	ssl)
OP_NO_TLSv1_2	(in	module	ssl)
OP_SINGLE_DH_USE	(in	module	ssl)
OP_SINGLE_ECDH_USE	(in	module
ssl)
open

built-in	function,	[1]
open()	(built-in	function)

(distutils.text_file.TextFile	method)
(imaplib.IMAP4	method)
(in	module	aifc)
(in	module	bz2)
(in	module	codecs)
(in	module	dbm)

inclusive
operator,	[1],	[2]

or_()	(in	module	operator)
ord

built-in	function
ord()	(built-in	function)
order

evaluation
ordered_attributes
(xml.parsers.expat.xmlparser
attribute)
OrderedDict	(class	in	collections)
origin
(importlib.machinery.ModuleSpec
attribute)
origin_req_host
(urllib.request.Request	attribute)
origin_server
(wsgiref.handlers.BaseHandler
attribute)
os

module
os	(module)
os.path	(module)
os_environ
(wsgiref.handlers.BaseHandler
attribute)
OSError
ossaudiodev	(module)
OSSAudioError
output

standard
output
(subprocess.CalledProcessError
attribute)

(subprocess.TimeoutExpired
attribute)

(in	module	dbm.dumb)
(in	module	dbm.gnu)
(in	module	dbm.ndbm)
(in	module	gzip)
(in	module	io)
(in	module	lzma)
(in	module	os)
(in	module	ossaudiodev)
(in	module	shelve)
(in	module	sunau)
(in	module	tarfile)
(in	module	tokenize)
(in	module	wave)
(in	module	webbrowser)
(pathlib.Path	method)
(pipes.Template	method)
(tarfile.TarFile	method)
(telnetlib.Telnet	method)
(urllib.request.OpenerDirector
method)
(urllib.request.URLopener	method)
(webbrowser.controller	method)
(zipfile.ZipFile	method)

open_connection()	(in	module	asyncio)

(unittest.TestCase	attribute)
output()	(http.cookies.BaseCookie
method)

(http.cookies.Morsel	method)
output_charset	(email.charset.Charset
attribute)
output_charset()
(gettext.NullTranslations	method)
output_codec	(email.charset.Charset
attribute)
output_difference()
(doctest.OutputChecker	method)
OutputChecker	(class	in	doctest)
OutputString()	(http.cookies.Morsel
method)
over()	(nntplib.NNTP	method)
Overflow	(class	in	decimal)
OverflowError

(built-in	exception),	[1],	[2],	
overlaps()	(ipaddress.IPv4Network
method)

(ipaddress.IPv6Network	method)
overlay()	(curses.window	method)
overloading

operator
overwrite()	(curses.window	method)
owner()	(pathlib.Path	method)

P
p	(pdb	command)
P_ALL	(in	module	os)
P_DETACH	(in	module	os)
P_NOWAIT	(in	module	os)
P_NOWAITO	(in	module	os)
P_OVERLAY	(in	module	os)
P_PGID	(in	module	os)
P_PID	(in	module	os)
P_WAIT	(in	module	os)
pack()	(in	module	struct)

(mailbox.MH	method)
(struct.Struct	method)

pack_array()	(xdrlib.Packer	method)
pack_bytes()	(xdrlib.Packer	method)
pack_double()	(xdrlib.Packer	method)
pack_farray()	(xdrlib.Packer	method)
pack_float()	(xdrlib.Packer	method)
pack_fopaque()	(xdrlib.Packer	method)
pack_fstring()	(xdrlib.Packer	method)
pack_into()	(in	module	struct)

(struct.Struct	method)
pack_list()	(xdrlib.Packer	method)
pack_opaque()	(xdrlib.Packer	method)
pack_string()	(xdrlib.Packer	method)
package,	[1],	[2]

regular
package	variable

__all__
packed	(ipaddress.IPv4Address	attribute)

(ipaddress.IPv6Address	attribute)
Packer	(class	in	xdrlib)
packing

binary	data
packing	(widgets)
pair_content()	(in	module	curses)

PyEval_MergeCompilerFlags	(C	function)
PyEval_ReInitThreads	(C	function)
PyEval_ReleaseLock	(C	function)
PyEval_ReleaseThread	(C	function)
PyEval_ReleaseThread()
PyEval_RestoreThread	(C	function)
PyEval_RestoreThread()
PyEval_SaveThread	(C	function)
PyEval_SaveThread()
PyEval_SetProfile	(C	function)
PyEval_SetTrace	(C	function)
PyEval_ThreadsInitialized	(C	function)
PyExc_ArithmeticError
PyExc_AssertionError
PyExc_AttributeError
PyExc_BaseException
PyExc_BlockingIOError
PyExc_BrokenPipeError
PyExc_ConnectionAbortedError
PyExc_ConnectionError
PyExc_ConnectionRefusedError
PyExc_ConnectionResetError
PyExc_EnvironmentError
PyExc_EOFError
PyExc_Exception
PyExc_FileExistsError
PyExc_FileNotFoundError
PyExc_FloatingPointError
PyExc_ImportError
PyExc_IndexError
PyExc_InterruptedError
PyExc_IOError
PyExc_IsADirectoryError
PyExc_KeyboardInterrupt
PyExc_KeyError
PyExc_LookupError

pair_number()	(in	module	curses)
PanedWindow	(class	in	tkinter.tix)
parameter

call	semantics
difference	from	argument
function	definition
value,	default

Parameter	(class	in	inspect)
ParameterizedMIMEHeader	(class	in
email.headerregistry)
parameters	(inspect.Signature	attribute)
params
(email.headerregistry.ParameterizedMIMEHeader
attribute)
pardir	(in	module	os)
paren	(2to3	fixer)
parent	(importlib.machinery.ModuleSpec	attribute)

(urllib.request.BaseHandler	attribute)
parent()	(tkinter.ttk.Treeview	method)
parenthesized	form
parentNode	(xml.dom.Node	attribute)
parents	(collections.ChainMap	attribute)
paretovariate()	(in	module	random)
parse()	(doctest.DocTestParser	method)

(email.parser.BytesParser	method)
(email.parser.Parser	method)
(in	module	ast)
(in	module	cgi)
(in	module	xml.dom.minidom)
(in	module	xml.dom.pulldom)
(in	module	xml.etree.ElementTree)
(in	module	xml.sax)
(string.Formatter	method)
(urllib.robotparser.RobotFileParser	method)
(xml.etree.ElementTree.ElementTree	method)

Parse()	(xml.parsers.expat.xmlparser	method)
parse()	(xml.sax.xmlreader.XMLReader	method)

PyExc_MemoryError
PyExc_NameError
PyExc_NotADirectoryError
PyExc_NotImplementedError
PyExc_OSError
PyExc_OverflowError
PyExc_PermissionError
PyExc_ProcessLookupError
PyExc_ReferenceError
PyExc_RuntimeError
PyExc_SyntaxError
PyExc_SystemError
PyExc_SystemExit
PyExc_TimeoutError
PyExc_TypeError
PyExc_ValueError
PyExc_WindowsError
PyExc_ZeroDivisionError
PyException_GetCause	(C	function)
PyException_GetContext	(C	function)
PyException_GetTraceback	(C	function)
PyException_SetCause	(C	function)
PyException_SetContext	(C	function)
PyException_SetTraceback	(C	function)
pyexpat

module
PyFile_FromFd	(C	function)
PyFile_GetLine	(C	function)
PyFile_WriteObject	(C	function)
PyFile_WriteString	(C	function)
PyFloat_AS_DOUBLE	(C	function)
PyFloat_AsDouble	(C	function)
PyFloat_Check	(C	function)
PyFloat_CheckExact	(C	function)
PyFloat_ClearFreeList	(C	function)
PyFloat_FromDouble	(C	function)
PyFloat_FromString	(C	function)
PyFloat_GetInfo	(C	function)
PyFloat_GetMax	(C	function)

parse_and_bind()	(in	module	readline)
parse_args()	(argparse.ArgumentParser	method)
PARSE_COLNAMES	(in	module	sqlite3)
parse_config_h()	(in	module	sysconfig)
PARSE_DECLTYPES	(in	module	sqlite3)
parse_header()	(in	module	cgi)
parse_known_args()	(argparse.ArgumentParser
method)
parse_multipart()	(in	module	cgi)
parse_qs()	(in	module	cgi)

(in	module	urllib.parse)
parse_qsl()	(in	module	cgi)

(in	module	urllib.parse)
parseaddr()	(in	module	email.utils)
parsebytes()	(email.parser.BytesParser	method)
parsedate()	(in	module	email.utils)
parsedate_to_datetime()	(in	module	email.utils)
parsedate_tz()	(in	module	email.utils)
ParseError	(class	in	xml.etree.ElementTree)
ParseFile()	(xml.parsers.expat.xmlparser	method)
ParseFlags()	(in	module	imaplib)
parser
Parser	(class	in	email.parser)
parser	(module)
ParserCreate()	(in	module	xml.parsers.expat)
ParserError
ParseResult	(class	in	urllib.parse)
ParseResultBytes	(class	in	urllib.parse)
parsestr()	(email.parser.Parser	method)
parseString()	(in	module	xml.dom.minidom)

(in	module	xml.dom.pulldom)
(in	module	xml.sax)

parsing
Python	source	code
URL

ParsingError
partial	(asyncio.IncompleteReadError	attribute)
partial()	(imaplib.IMAP4	method)

PyFloat_GetMin	(C	function)
PyFloat_Type	(C	variable)
PyFloatObject	(C	type)
PyFrame_GetLineNumber	(C	function)
PyFrozenSet_Check	(C	function)
PyFrozenSet_CheckExact	(C	function)
PyFrozenSet_New	(C	function)
PyFrozenSet_Type	(C	variable)
PyFunction_Check	(C	function)
PyFunction_GetAnnotations	(C	function)
PyFunction_GetClosure	(C	function)
PyFunction_GetCode	(C	function)
PyFunction_GetDefaults	(C	function)
PyFunction_GetGlobals	(C	function)
PyFunction_GetModule	(C	function)
PyFunction_New	(C	function)
PyFunction_NewWithQualName	(C
function)
PyFunction_SetAnnotations	(C	function)
PyFunction_SetClosure	(C	function)
PyFunction_SetDefaults	(C	function)
PyFunction_Type	(C	variable)
PyFunctionObject	(C	type)
PYFUNCTYPE()	(in	module	ctypes)
PyGen_Check	(C	function)
PyGen_CheckExact	(C	function)
PyGen_New	(C	function)
PyGen_Type	(C	variable)
PyGenObject	(C	type)
PyGILState_Check	(C	function)
PyGILState_Ensure	(C	function)
PyGILState_GetThisThreadState	(C
function)
PyGILState_Release	(C	function)
PyImport_AddModule	(C	function)
PyImport_AddModuleObject	(C	function)
PyImport_AppendInittab	(C	function)
PyImport_Cleanup	(C	function)
PyImport_ExecCodeModule	(C	function)

(in	module	functools)
partialmethod	(class	in	functools)
parties	(threading.Barrier	attribute)
partition()	(str	method)
pass

statement
pass_()	(poplib.POP3	method)
Paste
patch()	(in	module	unittest.mock)
patch.dict()	(in	module	unittest.mock)
patch.multiple()	(in	module	unittest.mock)
patch.object()	(in	module	unittest.mock)
patch.stopall()	(in	module	unittest.mock)
PATH,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8],	[9],	[10],	[11],
[12],	[13],	[14],	[15],	[16],	[17],	[18],	[19],	[20],	[21]
path

configuration	file
hooks
module	search,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
operations,	[1]

Path	(class	in	pathlib)
path	(http.cookiejar.Cookie	attribute)

(http.server.BaseHTTPRequestHandler	attribute)
(importlib.abc.FileLoader	attribute)
(importlib.machinery.ExtensionFileLoader
attribute)
(importlib.machinery.FileFinder	attribute)
(importlib.machinery.SourceFileLoader	attribute)
(importlib.machinery.SourcelessFileLoader
attribute)
(in	module	sys),	[1],	[2],	[3],	[4]

path	based	finder,	[1]
Path	browser
path	entry
path	entry	finder
path	entry	hook
path	hooks

PyImport_ExecCodeModuleEx	(C	function)
PyImport_ExecCodeModuleObject	(C
function)
PyImport_ExecCodeModuleWithPathnames
(C	function)
PyImport_ExtendInittab	(C	function)
PyImport_FrozenModules	(C	variable)
PyImport_GetImporter	(C	function)
PyImport_GetMagicNumber	(C	function)
PyImport_GetMagicTag	(C	function)
PyImport_GetModuleDict	(C	function)
PyImport_Import	(C	function)
PyImport_ImportFrozenModule	(C	function)
PyImport_ImportFrozenModuleObject	(C
function)
PyImport_ImportModule	(C	function)
PyImport_ImportModuleEx	(C	function)
PyImport_ImportModuleLevel	(C	function)
PyImport_ImportModuleLevelObject	(C
function)
PyImport_ImportModuleNoBlock	(C
function)
PyImport_ReloadModule	(C	function)
PyIndex_Check	(C	function)
PyInstanceMethod_Check	(C	function)
PyInstanceMethod_Function	(C	function)
PyInstanceMethod_GET_FUNCTION	(C
function)
PyInstanceMethod_New	(C	function)
PyInstanceMethod_Type	(C	variable)
PyInterpreterState	(C	type)
PyInterpreterState_Clear	(C	function)
PyInterpreterState_Delete	(C	function)
PyInterpreterState_Head	(C	function)
PyInterpreterState_New	(C	function)
PyInterpreterState_Next	(C	function)
PyInterpreterState_ThreadHead	(C
function)
PyIter_Check	(C	function)

path_hook()	(importlib.machinery.FileFinder	class
method)
path_hooks	(in	module	sys)
path_importer_cache	(in	module	sys)
path_mtime()	(importlib.abc.SourceLoader	method)
path_return_ok()	(http.cookiejar.CookiePolicy
method)
path_stats()	(importlib.abc.SourceLoader	method)

(importlib.machinery.SourceFileLoader	method)
pathconf()	(in	module	os)
pathconf_names	(in	module	os)
PathEntryFinder	(class	in	importlib.abc)
PATHEXT
PathFinder	(class	in	importlib.machinery)
pathlib	(module)
pathname2url()	(in	module	urllib.request)
pathsep	(in	module	os)
pattern	(re.regex	attribute)
pause()	(in	module	signal)
pause_reading()	(asyncio.ReadTransport	method)
pause_writing()	(asyncio.BaseProtocol	method)
PAX_FORMAT	(in	module	tarfile)
pax_headers	(tarfile.TarFile	attribute)

(tarfile.TarInfo	attribute)
pbkdf2_hmac()	(in	module	hashlib)
pd()	(in	module	turtle)
Pdb	(class	in	pdb),	[1]
pdb	(module)
peek()	(bz2.BZ2File	method)

(gzip.GzipFile	method)
(io.BufferedReader	method)
(lzma.LZMAFile	method)
(weakref.finalize	method)

peer	(smtpd.SMTPChannel	attribute)
PEM_cert_to_DER_cert()	(in	module	ssl)
pen()	(in	module	turtle)
pencolor()	(in	module	turtle)
PendingDeprecationWarning

PyIter_Next	(C	function)
PyList_Append	(C	function)
PyList_AsTuple	(C	function)
PyList_Check	(C	function)
PyList_CheckExact	(C	function)
PyList_ClearFreeList	(C	function)
PyList_GET_ITEM	(C	function)
PyList_GET_SIZE	(C	function)
PyList_GetItem	(C	function)
PyList_GetItem()
PyList_GetSlice	(C	function)
PyList_Insert	(C	function)
PyList_New	(C	function)
PyList_Reverse	(C	function)
PyList_SET_ITEM	(C	function)
PyList_SetItem	(C	function)
PyList_SetItem()
PyList_SetSlice	(C	function)
PyList_Size	(C	function)
PyList_Sort	(C	function)
PyList_Type	(C	variable)
PyListObject	(C	type)
PyLong_AsDouble	(C	function)
PyLong_AsLong	(C	function)
PyLong_AsLongAndOverflow	(C	function)
PyLong_AsLongLong	(C	function)
PyLong_AsLongLongAndOverflow	(C
function)
PyLong_AsSize_t	(C	function)
PyLong_AsSsize_t	(C	function)
PyLong_AsUnsignedLong	(C	function)
PyLong_AsUnsignedLongLong	(C	function)
PyLong_AsUnsignedLongLongMask	(C
function)
PyLong_AsUnsignedLongMask	(C	function)
PyLong_AsVoidPtr	(C	function)
PyLong_Check	(C	function)
PyLong_CheckExact	(C	function)
PyLong_FromDouble	(C	function)

pendown()	(in	module	turtle)
pensize()	(in	module	turtle)
penup()	(in	module	turtle)
PERCENT	(in	module	token)
PERCENTEQUAL	(in	module	token)
perf_counter()	(in	module	time)
Performance
PermissionError
permutations()	(in	module	itertools)
Persist()	(msilib.SummaryInformation	method)
persistence
persistent

objects
persistent_id	(pickle	protocol)
persistent_id()	(pickle.Pickler	method)
persistent_load	(pickle	protocol)
persistent_load()	(pickle.Unpickler	method)
PF_CAN	(in	module	socket)
PF_RDS	(in	module	socket)
pformat()	(in	module	pprint)

(pprint.PrettyPrinter	method)
phase()	(in	module	cmath)
Philbrick,	Geoff
physical	line,	[1],	[2]
pi	(in	module	cmath)

(in	module	math)
pickle

module,	[1],	[2],	[3]
pickle	(module)
pickle()	(in	module	copyreg)
PickleError
Pickler	(class	in	pickle)
pickletools	(module)
pickletools	command	line	option

-a,	--annotate
-l,	--indentlevel=<num>
-m,	--memo
-o,	--output=<file>

PyLong_FromLong	(C	function)
PyLong_FromLongLong	(C	function)
PyLong_FromSize_t	(C	function)
PyLong_FromSsize_t	(C	function)
PyLong_FromString	(C	function)
PyLong_FromUnicode	(C	function)
PyLong_FromUnicodeObject	(C	function)
PyLong_FromUnsignedLong	(C	function)
PyLong_FromUnsignedLongLong	(C
function)
PyLong_FromVoidPtr	(C	function)
PyLong_Type	(C	variable)
PyLongObject	(C	type)
PyMapping_Check	(C	function)
PyMapping_DelItem	(C	function)
PyMapping_DelItemString	(C	function)
PyMapping_GetItemString	(C	function)
PyMapping_HasKey	(C	function)
PyMapping_HasKeyString	(C	function)
PyMapping_Items	(C	function)
PyMapping_Keys	(C	function)
PyMapping_Length	(C	function)
PyMapping_SetItemString	(C	function)
PyMapping_Size	(C	function)
PyMapping_Values	(C	function)
PyMappingMethods	(C	type)
PyMappingMethods.mp_ass_subscript	(C
member)
PyMappingMethods.mp_length	(C	member)
PyMappingMethods.mp_subscript	(C
member)
PyMarshal_ReadLastObjectFromFile	(C
function)
PyMarshal_ReadLongFromFile	(C	function)
PyMarshal_ReadObjectFromFile	(C
function)
PyMarshal_ReadObjectFromString	(C
function)
PyMarshal_ReadShortFromFile	(C	function)

-p,	--preamble=<preamble>
pickling

objects
PicklingError
pid	(asyncio.asyncio.subprocess.Process	attribute)

(multiprocessing.Process	attribute)
(subprocess.Popen	attribute)

PIPE	(in	module	subprocess)
Pipe()	(in	module	multiprocessing)
pipe()	(in	module	os)
pipe2()	(in	module	os)
PIPE_BUF	(in	module	select)
pipe_connection_lost()	(asyncio.SubprocessProtocol
method)
pipe_data_received()	(asyncio.SubprocessProtocol
method)
pipes	(module)
PKG_DIRECTORY	(in	module	imp)
pkgutil	(module)
placeholder	(textwrap.TextWrapper	attribute)
PLAT
platform	(in	module	sys),	[1]

(module)
platform()	(in	module	platform)
PlaySound()	(in	module	winsound)
plist

file
plistlib	(module)
plock()	(in	module	os)
plus
PLUS	(in	module	token)
plus()	(decimal.Context	method)
PLUSEQUAL	(in	module	token)
pm()	(in	module	pdb)
pointer()	(in	module	ctypes)
POINTER()	(in	module	ctypes)
polar()	(in	module	cmath)
Policy	(class	in	email.policy)

PyMarshal_WriteLongToFile	(C	function)
PyMarshal_WriteObjectToFile	(C	function)
PyMarshal_WriteObjectToString	(C
function)
PyMem_Del	(C	function)
PyMem_Free	(C	function)
PyMem_GetAllocator	(C	function)
PyMem_Malloc	(C	function)
PyMem_New	(C	function)
PyMem_RawFree	(C	function)
PyMem_RawMalloc	(C	function)
PyMem_RawRealloc	(C	function)
PyMem_Realloc	(C	function)
PyMem_Resize	(C	function)
PyMem_SetAllocator	(C	function)
PyMem_SetupDebugHooks	(C	function)
PyMemAllocator	(C	type)
PyMemAllocatorDomain	(C	type)
PyMemberDef	(C	type)
PyMemoryView_Check	(C	function)
PyMemoryView_FromBuffer	(C	function)
PyMemoryView_FromMemory	(C	function)
PyMemoryView_FromObject	(C	function)
PyMemoryView_GET_BASE	(C	function)
PyMemoryView_GET_BUFFER	(C
function)
PyMemoryView_GetContiguous	(C
function)
PyMethod_Check	(C	function)
PyMethod_ClearFreeList	(C	function)
PyMethod_Function	(C	function)
PyMethod_GET_FUNCTION	(C	function)
PyMethod_GET_SELF	(C	function)
PyMethod_New	(C	function)
PyMethod_Self	(C	function)
PyMethod_Type	(C	variable)
PyMethodDef	(C	type)
PyModule_AddIntConstant	(C	function)
PyModule_AddIntMacro	(C	function)

poll()	(in	module	select)
(multiprocessing.Connection	method)
(select.devpoll	method)
(select.epoll	method)
(select.poll	method)
(subprocess.Popen	method)

PollSelector	(class	in	selectors)
Pool	(class	in	multiprocessing.pool)
pop()	(array.array	method)

(asynchat.fifo	method)
(collections.deque	method)
(dict	method)
(mailbox.Mailbox	method)
(sequence	method)
(set	method)

POP3
protocol

POP3	(class	in	poplib)
POP3_SSL	(class	in	poplib)
pop_alignment()	(formatter.formatter	method)
pop_all()	(contextlib.ExitStack	method)
POP_BLOCK	(opcode)
POP_EXCEPT	(opcode)
pop_font()	(formatter.formatter	method)
POP_JUMP_IF_FALSE	(opcode)
POP_JUMP_IF_TRUE	(opcode)
pop_margin()	(formatter.formatter	method)
pop_source()	(shlex.shlex	method)
pop_style()	(formatter.formatter	method)
POP_TOP	(opcode)
Popen	(class	in	subprocess)
popen()	(in	module	os),	[1],	[2]

(in	module	platform)
popitem()	(collections.OrderedDict	method)

(dict	method)
(mailbox.Mailbox	method)

popleft()	(collections.deque	method)

PyModule_AddObject	(C	function)
PyModule_AddStringConstant	(C	function)
PyModule_AddStringMacro	(C	function)
PyModule_Check	(C	function)
PyModule_CheckExact	(C	function)
PyModule_Create	(C	function)
PyModule_Create2	(C	function)
PyModule_GetDef	(C	function)
PyModule_GetDict	(C	function)
PyModule_GetFilename	(C	function)
PyModule_GetFilenameObject	(C	function)
PyModule_GetName	(C	function)
PyModule_GetNameObject	(C	function)
PyModule_GetState	(C	function)
PyModule_New	(C	function)
PyModule_NewObject	(C	function)
PyModule_Type	(C	variable)
PyModuleDef	(C	type)
PyModuleDef.m_base	(C	member)
PyModuleDef.m_clear	(C	member)
PyModuleDef.m_doc	(C	member)
PyModuleDef.m_free	(C	member)
PyModuleDef.m_methods	(C	member)
PyModuleDef.m_name	(C	member)
PyModuleDef.m_reload	(C	member)
PyModuleDef.m_size	(C	member)
PyModuleDef.m_traverse	(C	member)
PyNumber_Absolute	(C	function)
PyNumber_Add	(C	function)
PyNumber_And	(C	function)
PyNumber_AsSsize_t	(C	function)
PyNumber_Check	(C	function)
PyNumber_Divmod	(C	function)
PyNumber_Float	(C	function)
PyNumber_FloorDivide	(C	function)
PyNumber_Index	(C	function)
PyNumber_InPlaceAdd	(C	function)
PyNumber_InPlaceAnd	(C	function)
PyNumber_InPlaceFloorDivide	(C	function)

poplib	(module)
PopupMenu	(class	in	tkinter.tix)
port	(http.cookiejar.Cookie	attribute)
port_specified	(http.cookiejar.Cookie	attribute)
portion

:	package
pos	(re.match	attribute)
pos()	(in	module	operator)

(in	module	turtle)
position	(xml.etree.ElementTree.ParseError	attribute)
position()	(in	module	turtle)
positional	argument
POSIX

I/O	control
threads

posix	(module)
POSIX_FADV_DONTNEED	(in	module	os)
POSIX_FADV_NOREUSE	(in	module	os)
POSIX_FADV_NORMAL	(in	module	os)
POSIX_FADV_RANDOM	(in	module	os)
POSIX_FADV_SEQUENTIAL	(in	module	os)
POSIX_FADV_WILLNEED	(in	module	os)
posix_fadvise()	(in	module	os)
posix_fallocate()	(in	module	os)
POSIXLY_CORRECT
PosixPath	(class	in	pathlib)
post()	(nntplib.NNTP	method)

(ossaudiodev.oss_audio_device	method)
post_mortem()	(in	module	pdb)
post_setup()	(venv.EnvBuilder	method)
postcmd()	(cmd.Cmd	method)
postloop()	(cmd.Cmd	method)
pow

built-in	function,	[1],	[2],	[3],	[4],	[5]
pow()	(built-in	function)

(in	module	math)
(in	module	operator)

power()	(decimal.Context	method)

PyNumber_InPlaceLshift	(C	function)
PyNumber_InPlaceMultiply	(C	function)
PyNumber_InPlaceOr	(C	function)
PyNumber_InPlacePower	(C	function)
PyNumber_InPlaceRemainder	(C	function)
PyNumber_InPlaceRshift	(C	function)
PyNumber_InPlaceSubtract	(C	function)
PyNumber_InPlaceTrueDivide	(C	function)
PyNumber_InPlaceXor	(C	function)
PyNumber_Invert	(C	function)
PyNumber_Long	(C	function)
PyNumber_Lshift	(C	function)
PyNumber_Multiply	(C	function)
PyNumber_Negative	(C	function)
PyNumber_Or	(C	function)
PyNumber_Positive	(C	function)
PyNumber_Power	(C	function)
PyNumber_Remainder	(C	function)
PyNumber_Rshift	(C	function)
PyNumber_Subtract	(C	function)
PyNumber_ToBase	(C	function)
PyNumber_TrueDivide	(C	function)
PyNumber_Xor	(C	function)
PyNumberMethods	(C	type)
PyObject	(C	type)
PyObject._ob_next	(C	member)
PyObject._ob_prev	(C	member)
PyObject.ob_refcnt	(C	member)
PyObject.ob_type	(C	member)
PyObject_AsCharBuffer	(C	function)
PyObject_ASCII	(C	function)
PyObject_AsFileDescriptor	(C	function)
PyObject_AsReadBuffer	(C	function)
PyObject_AsWriteBuffer	(C	function)
PyObject_Bytes	(C	function)
PyObject_Call	(C	function)
PyObject_CallFunction	(C	function)
PyObject_CallFunctionObjArgs	(C	function)
PyObject_CallMethod	(C	function)

pp	(pdb	command)
pprint	(module)
pprint()	(in	module	pprint)

(pprint.PrettyPrinter	method)
prcal()	(in	module	calendar)
pread()	(in	module	os)
preamble	(email.message.Message	attribute)
precedence

operator
precmd()	(cmd.Cmd	method)
prefix,	[1],	[2],	[3]
PREFIX	(in	module	distutils.sysconfig)
prefix	(in	module	sys)

(xml.dom.Attr	attribute)
(xml.dom.Node	attribute)
(zipimport.zipimporter	attribute)

PREFIXES	(in	module	site)
prefixlen	(ipaddress.IPv4Network	attribute)

(ipaddress.IPv6Network	attribute)
preloop()	(cmd.Cmd	method)
prepare()	(logging.handlers.QueueHandler	method)

(logging.handlers.QueueListener	method)
prepare_class()	(in	module	types)
prepare_input_source()	(in	module	xml.sax.saxutils)
prepend()	(pipes.Template	method)
preprocess()	(distutils.ccompiler.CCompiler	method)
PrettyPrinter	(class	in	pprint)
prev()	(tkinter.ttk.Treeview	method)
previousSibling	(xml.dom.Node	attribute)
primary
print

built-in	function
print	(2to3	fixer)
print()	(built-in	function)

__str__()	(object	method)
print_callees()	(pstats.Stats	method)
print_callers()	(pstats.Stats	method)

PyObject_CallMethodObjArgs	(C	function)
PyObject_CallObject	(C	function)
PyObject_CallObject()
PyObject_CheckBuffer	(C	function)
PyObject_CheckReadBuffer	(C	function)
PyObject_Del	(C	function)
PyObject_DelAttr	(C	function)
PyObject_DelAttrString	(C	function)
PyObject_DelItem	(C	function)
PyObject_Dir	(C	function)
PyObject_GC_Del	(C	function)
PyObject_GC_New	(C	function)
PyObject_GC_NewVar	(C	function)
PyObject_GC_Resize	(C	function)
PyObject_GC_Track	(C	function)
PyObject_GC_UnTrack	(C	function)
PyObject_GenericGetAttr	(C	function)
PyObject_GenericSetAttr	(C	function)
PyObject_GetArenaAllocator	(C	function)
PyObject_GetAttr	(C	function)
PyObject_GetAttrString	(C	function)
PyObject_GetBuffer	(C	function)
PyObject_GetItem	(C	function)
PyObject_GetIter	(C	function)
PyObject_HasAttr	(C	function)
PyObject_HasAttrString	(C	function)
PyObject_Hash	(C	function)
PyObject_HashNotImplemented	(C
function)
PyObject_HEAD	(C	macro)
PyObject_HEAD_INIT	(C	macro)
PyObject_Init	(C	function)
PyObject_InitVar	(C	function)
PyObject_IsInstance	(C	function)
PyObject_IsSubclass	(C	function)
PyObject_IsTrue	(C	function)
PyObject_Length	(C	function)
PyObject_LengthHint	(C	function)
PyObject_New	(C	function)

print_directory()	(in	module	cgi)
print_environ()	(in	module	cgi)
print_environ_usage()	(in	module	cgi)
print_exc()	(in	module	traceback)

(timeit.Timer	method)
print_exception()	(in	module	traceback)
PRINT_EXPR	(opcode)
print_form()	(in	module	cgi)
print_help()	(argparse.ArgumentParser	method)
print_last()	(in	module	traceback)
print_stack()	(asyncio.Task	method)

(in	module	traceback)
print_stats()	(profile.Profile	method)

(pstats.Stats	method)
print_tb()	(in	module	traceback)
print_usage()	(argparse.ArgumentParser	method)

(optparse.OptionParser	method)
print_version()	(optparse.OptionParser	method)
printable	(in	module	string)
printdir()	(zipfile.ZipFile	method)
printf-style	formatting
PRIO_PGRP	(in	module	os)
PRIO_PROCESS	(in	module	os)
PRIO_USER	(in	module	os)
PriorityQueue	(class	in	asyncio)

(class	in	queue)
private

names
prlimit()	(in	module	resource)
prmonth()	(calendar.TextCalendar	method)

(in	module	calendar)
procedure

call
process

group,	[1]
id
id	of	parent

PyObject_NewVar	(C	function)
PyObject_Not	(C	function)
PyObject_Print	(C	function)
PyObject_Repr	(C	function)
PyObject_RichCompare	(C	function)
PyObject_RichCompareBool	(C	function)
PyObject_SetArenaAllocator	(C	function)
PyObject_SetAttr	(C	function)
PyObject_SetAttrString	(C	function)
PyObject_SetItem	(C	function)
PyObject_Size	(C	function)
PyObject_Str	(C	function)
PyObject_Type	(C	function)
PyObject_TypeCheck	(C	function)
PyObject_VAR_HEAD	(C	macro)
PyObjectArenaAllocator	(C	type)
PyOS_AfterFork	(C	function)
PyOS_CheckStack	(C	function)
PyOS_double_to_string	(C	function)
PyOS_getsig	(C	function)
PyOS_InputHook	(C	variable)
PyOS_ReadlineFunctionPointer	(C
variable)
PyOS_setsig	(C	function)
PyOS_snprintf	(C	function)
PyOS_stricmp	(C	function)
PyOS_string_to_double	(C	function)
PyOS_strnicmp	(C	function)
PyOS_vsnprintf	(C	function)
PyParser_SimpleParseFile	(C	function)
PyParser_SimpleParseFileFlags	(C
function)
PyParser_SimpleParseString	(C	function)
PyParser_SimpleParseStringFlags	(C
function)
PyParser_SimpleParseStringFlagsFilename
(C	function)
PyPI

(see	Python	Package	Index	(PyPI))

killing,	[1]
scheduling	priority,	[1]
signalling,	[1]

Process	(class	in	multiprocessing)
process()	(logging.LoggerAdapter	method)
process_exited()	(asyncio.SubprocessProtocol
method)
process_message()	(smtpd.SMTPServer	method)
process_request()	(socketserver.BaseServer
method)
process_time()	(in	module	time)
ProcessError
processes,	light-weight
ProcessingInstruction()	(in	module
xml.etree.ElementTree)
processingInstruction()
(xml.sax.handler.ContentHandler	method)
ProcessingInstructionHandler()
(xml.parsers.expat.xmlparser	method)
ProcessLookupError
processor	time
processor()	(in	module	platform)
ProcessPoolExecutor	(class	in	concurrent.futures)
product()	(in	module	itertools)
Profile	(class	in	profile)
profile	(module)
profile	function,	[1],	[2]
profiler,	[1]
profiling,	deterministic
program
Progressbar	(class	in	tkinter.ttk)
prompt	(cmd.Cmd	attribute)
prompt_user_passwd()
(urllib.request.FancyURLopener	method)
prompts,	interpreter
propagate	(logging.Logger	attribute)
property	list
property()	(built-in	function)

PyProperty_Type	(C	variable)
PyRun_AnyFile	(C	function)
PyRun_AnyFileEx	(C	function)
PyRun_AnyFileExFlags	(C	function)
PyRun_AnyFileFlags	(C	function)
PyRun_File	(C	function)
PyRun_FileEx	(C	function)
PyRun_FileExFlags	(C	function)
PyRun_FileFlags	(C	function)
PyRun_InteractiveLoop	(C	function)
PyRun_InteractiveLoopFlags	(C	function)
PyRun_InteractiveOne	(C	function)
PyRun_InteractiveOneFlags	(C	function)
PyRun_SimpleFile	(C	function)
PyRun_SimpleFileEx	(C	function)
PyRun_SimpleFileExFlags	(C	function)
PyRun_SimpleString	(C	function)
PyRun_SimpleStringFlags	(C	function)
PyRun_String	(C	function)
PyRun_StringFlags	(C	function)
PySeqIter_Check	(C	function)
PySeqIter_New	(C	function)
PySeqIter_Type	(C	variable)
PySequence_Check	(C	function)
PySequence_Concat	(C	function)
PySequence_Contains	(C	function)
PySequence_Count	(C	function)
PySequence_DelItem	(C	function)
PySequence_DelSlice	(C	function)
PySequence_Fast	(C	function)
PySequence_Fast_GET_ITEM	(C	function)
PySequence_Fast_GET_SIZE	(C	function)
PySequence_Fast_ITEMS	(C	function)
PySequence_GetItem	(C	function)
PySequence_GetItem()
PySequence_GetSlice	(C	function)
PySequence_Index	(C	function)
PySequence_InPlaceConcat	(C	function)
PySequence_InPlaceRepeat	(C	function)

property_declaration_handler	(in	module
xml.sax.handler)
property_dom_node	(in	module	xml.sax.handler)
property_lexical_handler	(in	module	xml.sax.handler)
property_xml_string	(in	module	xml.sax.handler)
PropertyMock	(class	in	unittest.mock)
prot_c()	(ftplib.FTP_TLS	method)
prot_p()	(ftplib.FTP_TLS	method)
proto	(socket.socket	attribute)
protocol

CGI
FTP,	[1]
HTTP,	[1],	[2],	[3],	[4]
IMAP4
IMAP4_SSL
IMAP4_stream
NNTP
POP3
SMTP
Telnet
context	management
copy
iterator

Protocol	(class	in	asyncio)
protocol	(ssl.SSLContext	attribute)
PROTOCOL_SSLv2	(in	module	ssl)
PROTOCOL_SSLv23	(in	module	ssl)
PROTOCOL_SSLv3	(in	module	ssl)
PROTOCOL_TLSv1	(in	module	ssl)
PROTOCOL_TLSv1_1	(in	module	ssl)
PROTOCOL_TLSv1_2	(in	module	ssl)
protocol_version
(http.server.BaseHTTPRequestHandler	attribute)
PROTOCOL_VERSION	(imaplib.IMAP4	attribute)
provisional	API
provisional	package
proxy()	(in	module	weakref)

PySequence_ITEM	(C	function)
PySequence_Length	(C	function)
PySequence_List	(C	function)
PySequence_Repeat	(C	function)
PySequence_SetItem	(C	function)
PySequence_SetSlice	(C	function)
PySequence_Size	(C	function)
PySequence_Tuple	(C	function)
PySequenceMethods	(C	type)
PySequenceMethods.sq_ass_item	(C
member)
PySequenceMethods.sq_concat	(C
member)
PySequenceMethods.sq_contains	(C
member)
PySequenceMethods.sq_inplace_concat	(C
member)
PySequenceMethods.sq_inplace_repeat	(C
member)
PySequenceMethods.sq_item	(C	member)
PySequenceMethods.sq_length	(C
member)
PySequenceMethods.sq_repeat	(C
member)
PySet_Add	(C	function)
PySet_Check	(C	function)
PySet_Clear	(C	function)
PySet_ClearFreeList	(C	function)
PySet_Contains	(C	function)
PySet_Discard	(C	function)
PySet_GET_SIZE	(C	function)
PySet_New	(C	function)
PySet_Pop	(C	function)
PySet_Size	(C	function)
PySet_Type	(C	variable)
PySetObject	(C	type)
PySignal_SetWakeupFd	(C	function)
PySlice_Check	(C	function)
PySlice_GetIndices	(C	function)

proxyauth()	(imaplib.IMAP4	method)
ProxyBasicAuthHandler	(class	in	urllib.request)
ProxyDigestAuthHandler	(class	in	urllib.request)
ProxyHandler	(class	in	urllib.request)
ProxyType	(in	module	weakref)
ProxyTypes	(in	module	weakref)
pryear()	(calendar.TextCalendar	method)
ps1	(in	module	sys)
ps2	(in	module	sys)
pstats	(module)
pstdev()	(in	module	statistics)
pthread_kill()	(in	module	signal)
pthread_sigmask()	(in	module	signal)
pthreads
pty

module
pty	(module)
pu()	(in	module	turtle)
publicId	(xml.dom.DocumentType	attribute)
PullDom	(class	in	xml.dom.pulldom)
punctuation	(in	module	string)
PurePath	(class	in	pathlib)
PurePath.anchor	(in	module	pathlib)
PurePath.drive	(in	module	pathlib)
PurePath.name	(in	module	pathlib)
PurePath.parent	(in	module	pathlib)
PurePath.parents	(in	module	pathlib)
PurePath.parts	(in	module	pathlib)
PurePath.root	(in	module	pathlib)
PurePath.stem	(in	module	pathlib)
PurePath.suffix	(in	module	pathlib)
PurePath.suffixes	(in	module	pathlib)
PurePosixPath	(class	in	pathlib)
PureProxy	(class	in	smtpd)
PureWindowsPath	(class	in	pathlib)
purge()	(in	module	re)
Purpose.CLIENT_AUTH	(in	module	ssl)
Purpose.SERVER_AUTH	(in	module	ssl)
push()	(asynchat.async_chat	method)

PySlice_GetIndicesEx	(C	function)
PySlice_New	(C	function)
PySlice_Type	(C	variable)
PyState_AddModule	(C	function)
PyState_FindModule	(C	function)
PyState_RemoveModule	(C	function)
PyStructSequence_Desc	(C	type)
PyStructSequence_Field	(C	type)
PyStructSequence_GET_ITEM	(C	function)
PyStructSequence_GetItem	(C	function)
PyStructSequence_InitType	(C	function)
PyStructSequence_InitType2	(C	function)
PyStructSequence_New	(C	function)
PyStructSequence_NewType	(C	function)
PyStructSequence_SET_ITEM	(C	function)
PyStructSequence_SetItem	(C	function)
PyStructSequence_UnnamedField	(C
variable)
PySys_AddWarnOption	(C	function)
PySys_AddWarnOptionUnicode	(C
function)
PySys_AddXOption	(C	function)
PySys_FormatStderr	(C	function)
PySys_FormatStdout	(C	function)
PySys_GetObject	(C	function)
PySys_GetXOptions	(C	function)
PySys_ResetWarnOptions	(C	function)
PySys_SetArgv	(C	function)
PySys_SetArgv()
PySys_SetArgvEx	(C	function)
PySys_SetArgvEx()
PySys_SetObject	(C	function)
PySys_SetPath	(C	function)
PySys_WriteStderr	(C	function)
PySys_WriteStdout	(C	function)
Python	3000
Python	Editor
Python	Enhancement	Proposals

PEP	0004

(asynchat.fifo	method)
(code.InteractiveConsole	method)
(contextlib.ExitStack	method)

push_alignment()	(formatter.formatter	method)
push_font()	(formatter.formatter	method)
push_margin()	(formatter.formatter	method)
push_source()	(shlex.shlex	method)
push_style()	(formatter.formatter	method)
push_token()	(shlex.shlex	method)
push_with_producer()	(asynchat.async_chat
method)
pushbutton()	(msilib.Dialog	method)
put()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(multiprocessing.SimpleQueue	method)
(queue.Queue	method)

put_nowait()	(asyncio.Queue	method)
(multiprocessing.Queue	method)
(queue.Queue	method)

putch()	(in	module	msvcrt)
putenv()	(in	module	os)
putheader()	(http.client.HTTPConnection	method)
putp()	(in	module	curses)
putrequest()	(http.client.HTTPConnection	method)
putwch()	(in	module	msvcrt)
putwin()	(curses.window	method)
pvariance()	(in	module	statistics)
pwd

module
pwd	(module)
pwd()	(ftplib.FTP	method)
pwrite()	(in	module	os)
Py_AddPendingCall	(C	function)
Py_AddPendingCall()
Py_AtExit	(C	function)
Py_BEGIN_ALLOW_THREADS

(C	macro)

PEP	0008
PEP	0011
PEP	0205
PEP	0237
PEP	0238
PEP	0255
PEP	0274
PEP	0328
PEP	0342
PEP	0343,	[1]
PEP	0352
PEP	0380
PEP	100
PEP	11
PEP	205
PEP	207
PEP	208
PEP	217
PEP	218,	[1],	
PEP	227,	[1],	
PEP	229
PEP	230,	[1]
PEP	232
PEP	234
PEP	235
PEP	236,	[1],	
PEP	237,	[1],	
PEP	238,	[1],	
PEP	241
PEP	243
PEP	246
PEP	247
PEP	249,	[1],	
PEP	252,	[1]

Py_BLOCK_THREADS	(C	macro)
Py_buffer	(C	type)
Py_buffer.buf	(C	member)
Py_buffer.format	(C	member)
Py_buffer.internal	(C	member)
Py_buffer.itemsize	(C	member)
Py_buffer.len	(C	member)
Py_buffer.ndim	(C	member)
Py_buffer.obj	(C	member)
Py_buffer.readonly	(C	member)
Py_buffer.shape	(C	member)
Py_buffer.strides	(C	member)
Py_buffer.suboffsets	(C	member)
Py_BuildValue	(C	function)
Py_CLEAR	(C	function)
py_compile	(module)
PY_COMPILED	(in	module	imp)
Py_CompileString	(C	function)
Py_CompileString(),	[1],	[2]
Py_CompileStringExFlags	(C	function)
Py_CompileStringFlags	(C	function)
Py_CompileStringObject	(C	function)
Py_complex	(C	type)
Py_DECREF	(C	function)
Py_DECREF()
Py_END_ALLOW_THREADS

(C	macro)
Py_EndInterpreter	(C	function)
Py_EnterRecursiveCall	(C	function)
Py_eval_input	(C	variable)
Py_Exit	(C	function)
Py_False	(C	variable)
Py_FatalError	(C	function)
Py_FatalError()
Py_FdIsInteractive	(C	function)
Py_file_input	(C	variable)
Py_Finalize	(C	function)
Py_Finalize(),	[1],	[2],	[3],	[4]
PY_FROZEN	(in	module	imp)

PEP	253,	[1],	
PEP	255,	[1],	
PEP	261,	[1]
PEP	263,	[1],	
PEP	264
PEP	273,	[1],	
PEP	275
PEP	277
PEP	278,	[1]
PEP	279
PEP	282,	[1],	
PEP	285,	[1]
PEP	288
PEP	289,	[1],	
PEP	292,	[1]
PEP	293
PEP	3000
PEP	301,	[1]
PEP	302,	[1],	
[9],	 [10],	 [11],	
[17],	[18],	[19]
[25],	[26],	[27]
[33],	[34]
PEP	305,	[1]
PEP	307,	[1],	
PEP	308,	[1],	
PEP	309
PEP	3100
PEP	3101,	[1]
PEP	3102
PEP	3104,	[1]
PEP	3105,	[1]
PEP	3106
PEP	3107,	[1]

Py_GetBuildInfo	(C	function)
Py_GetCompiler	(C	function)
Py_GetCopyright	(C	function)
Py_GetExecPrefix	(C	function)
Py_GetExecPrefix()
Py_GetPath	(C	function)
Py_GetPath(),	[1],	[2]
Py_GetPlatform	(C	function)
Py_GetPrefix	(C	function)
Py_GetPrefix()
Py_GetProgramFullPath	(C	function)
Py_GetProgramFullPath()
Py_GetProgramName	(C	function)
Py_GetPythonHome	(C	function)
Py_GetVersion	(C	function)
Py_INCREF	(C	function)
Py_INCREF()
Py_Initialize	(C	function)
Py_Initialize(),	[1],	[2],	[3]
Py_InitializeEx	(C	function)
Py_IsInitialized	(C	function)
Py_IsInitialized()
Py_LeaveRecursiveCall	(C	function)
Py_Main	(C	function)
Py_NewInterpreter	(C	function)
Py_None	(C	variable)
Py_NotImplemented	(C	variable)
py_object	(class	in	ctypes)
Py_PRINT_RAW
Py_ReprEnter	(C	function)
Py_ReprLeave	(C	function)
Py_RETURN_FALSE	(C	macro)
Py_RETURN_NONE	(C	macro)
Py_RETURN_NOTIMPLEMENTED	(C	macro)
Py_RETURN_TRUE	(C	macro)
Py_SetPath	(C	function)
Py_SetPath()
Py_SetProgramName	(C	function)
Py_SetProgramName(),	[1],	[2],	[3]

PEP	3108,	[1]
PEP	3109,	[1]
PEP	3110,	[1]
PEP	3111
PEP	3112,	[1]
PEP	3113
PEP	3114
PEP	3115,	[1]
PEP	3116,	[1]
PEP	3118,	[1]
PEP	3119,	[1]
PEP	3120,	[1]
PEP	3121,	[1]
PEP	3123
PEP	3127
PEP	3129,	[1]
PEP	3131,	[1]
PEP	3132,	[1]
PEP	3134,	[1]
PEP	3135,	[1]
PEP	3137
PEP	3138
PEP	314,	[1]
PEP	3141,	[1]
PEP	3144
PEP	3147,	 [1]
[8],	 [9],	 [10],	
[16],	[17],	[18]
PEP	3148,	[1]
PEP	3149,	[1]
PEP	3151,	[1]
PEP	3153
PEP	3154,	[1]
PEP	3155,	[1]

Py_SetPythonHome	(C	function)
Py_SetStandardStreamEncoding	(C	function)
Py_single_input	(C	variable)
PY_SOURCE	(in	module	imp)
PY_SSIZE_T_MAX
Py_TPFLAGS_BASETYPE	(built-in	variable)
Py_TPFLAGS_DEFAULT	(built-in	variable)
Py_TPFLAGS_HAVE_FINALIZE	(built-in	variable)
Py_TPFLAGS_HAVE_GC	(built-in	variable)
Py_TPFLAGS_HEAPTYPE	(built-in	variable)
Py_TPFLAGS_READY	(built-in	variable)
Py_TPFLAGS_READYING	(built-in	variable)
Py_tracefunc	(C	type)
Py_True	(C	variable)
Py_UCS1	(C	type)
Py_UCS2	(C	type)
Py_UCS4	(C	type)
Py_UCS4_strcat	(C	function)
Py_UCS4_strchr	(C	function)
Py_UCS4_strcmp	(C	function)
Py_UCS4_strcpy	(C	function)
Py_UCS4_strlen	(C	function)
Py_UCS4_strncmp	(C	function)
Py_UCS4_strncpy	(C	function)
Py_UCS4_strrchr	(C	function)
Py_UNBLOCK_THREADS	(C	macro)
Py_UNICODE	(C	type)
Py_UNICODE_IS_HIGH_SURROGATE	(C	macro)
Py_UNICODE_IS_LOW_SURROGATE	(C	macro)
Py_UNICODE_IS_SURROGATE	(C	macro)
Py_UNICODE_ISALNUM	(C	function)
Py_UNICODE_ISALPHA	(C	function)
Py_UNICODE_ISDECIMAL	(C	function)
Py_UNICODE_ISDIGIT	(C	function)
Py_UNICODE_ISLINEBREAK	(C	function)
Py_UNICODE_ISLOWER	(C	function)
Py_UNICODE_ISNUMERIC	(C	function)
Py_UNICODE_ISPRINTABLE	(C	function)
Py_UNICODE_ISSPACE	(C	function)

PEP	3156,	[1]
PEP	318,	[1],	
PEP	322,	[1]
PEP	324,	[1]
PEP	325
PEP	327
PEP	328,	[1],	
[9]
PEP	331
PEP	333,	[1],	
PEP	3333,	 [1]
[8],	[9],	[10],	[11]
PEP	338,	[1],	
PEP	339
PEP	341
PEP	342,	[1],	
PEP	343,	[1],	
PEP	347
PEP	352,	[1]
PEP	353,	[1],	
PEP	356
PEP	357
PEP	361
PEP	362,	[1],	
PEP	366,	[1],	
PEP	370,	[1],	
PEP	371
PEP	372,	[1]
PEP	373
PEP	378,	[1],	
PEP	380,	[1],	
PEP	383,	[1],	
PEP	384
PEP	385

Py_UNICODE_ISTITLE	(C	function)
Py_UNICODE_ISUPPER	(C	function)
Py_UNICODE_JOIN_SURROGATES	(C	macro)
Py_UNICODE_TODECIMAL	(C	function)
Py_UNICODE_TODIGIT	(C	function)
Py_UNICODE_TOLOWER	(C	function)
Py_UNICODE_TONUMERIC	(C	function)
Py_UNICODE_TOTITLE	(C	function)
Py_UNICODE_TOUPPER	(C	function)
Py_VaBuildValue	(C	function)
Py_VISIT	(C	function)
Py_XDECREF	(C	function)
Py_XDECREF()
Py_XINCREF	(C	function)
PyAnySet_Check	(C	function)
PyAnySet_CheckExact	(C	function)
PyArg_Parse	(C	function)
PyArg_ParseTuple	(C	function)
PyArg_ParseTuple()
PyArg_ParseTupleAndKeywords	(C	function)
PyArg_ParseTupleAndKeywords()
PyArg_UnpackTuple	(C	function)
PyArg_ValidateKeywordArguments	(C	function)
PyArg_VaParse	(C	function)
PyArg_VaParseTupleAndKeywords	(C	function)
PyASCIIObject	(C	type)
PyBool_Check	(C	function)
PyBool_FromLong	(C	function)
PyBUF_ANY_CONTIGUOUS	(C	macro)
PyBUF_C_CONTIGUOUS	(C	macro)
PyBUF_CONTIG	(C	macro)
PyBUF_CONTIG_RO	(C	macro)
PyBUF_F_CONTIGUOUS	(C	macro)
PyBUF_FORMAT	(C	macro)
PyBUF_FULL	(C	macro)
PyBUF_FULL_RO	(C	macro)
PyBUF_INDIRECT	(C	macro)
PyBUF_ND	(C	macro),	[1]
PyBUF_RECORDS	(C	macro)

PEP	389,	[1]
PEP	391,	[1]
PEP	392
PEP	393,	[1],	
[9]
PEP	397,	[1],	
PEP	398
PEP	405,	[1]
PEP	409
PEP	411
PEP	412
PEP	414,	[1]
PEP	418
PEP	420,	[1],	
[9],	[10],	[11]
PEP	421
PEP	424,	[1]
PEP	428,	[1],	
PEP	429
PEP	435,	[1],	
PEP	436,	[1],	
PEP	442,	[1],	
PEP	443,	[1],	
PEP	445,	[1],	
PEP	446,	[1],	
PEP	450,	[1],	
PEP	451,	[1],	
PEP	453,	[1],	
PEP	454,	[1],	
PEP	456,	[1]
PEP	5,	[1]
PEP	6
PEP	8,	[1],	[2]

Python	Package	Index	(PyPI)

PyBUF_RECORDS_RO	(C	macro)
PyBUF_SIMPLE	(C	macro)
PyBUF_STRIDED	(C	macro)
PyBUF_STRIDED_RO	(C	macro)
PyBUF_STRIDES	(C	macro)
PyBUF_WRITABLE	(C	macro)
PyBuffer_FillContiguousStrides	(C	function)
PyBuffer_FillInfo	(C	function)
PyBuffer_IsContiguous	(C	function)
PyBuffer_Release	(C	function)
PyBuffer_SizeFromFormat	(C	function)
PyBufferProcs

(C	type)
PyBufferProcs.bf_getbuffer	(C	member)
PyBufferProcs.bf_releasebuffer	(C	member)
PyByteArray_AS_STRING	(C	function)
PyByteArray_AsString	(C	function)
PyByteArray_Check	(C	function)
PyByteArray_CheckExact	(C	function)
PyByteArray_Concat	(C	function)
PyByteArray_FromObject	(C	function)
PyByteArray_FromStringAndSize	(C	function)
PyByteArray_GET_SIZE	(C	function)
PyByteArray_Resize	(C	function)
PyByteArray_Size	(C	function)
PyByteArray_Type	(C	variable)
PyByteArrayObject	(C	type)
PyBytes_AS_STRING	(C	function)
PyBytes_AsString	(C	function)
PyBytes_AsStringAndSize	(C	function)
PyBytes_Check	(C	function)
PyBytes_CheckExact	(C	function)
PyBytes_Concat	(C	function)
PyBytes_ConcatAndDel	(C	function)
PyBytes_FromFormat	(C	function)
PyBytes_FromFormatV	(C	function)
PyBytes_FromObject	(C	function)
PyBytes_FromString	(C	function)
PyBytes_FromStringAndSize	(C	function)

.pypirc	file
PYTHON*,	[1],	[2]
python_branch()	(in	module	platform)
python_build()	(in	module	platform)
python_compiler()	(in	module	platform)
PYTHON_DOM
python_implementation()	(in	module
platform)
python_revision()	(in	module	platform)
python_version()	(in	module	platform)
python_version_tuple()	(in	module	platform)
PYTHONASYNCIODEBUG
PYTHONCASEOK
PYTHONDEBUG
PYTHONDOCS
PYTHONDONTWRITEBYTECODE
[3],	[4],	[5]
PYTHONDUMPREFS
PYTHONFAULTHANDLER
PYTHONHASHSEED
PYTHONHOME,	
[8],	[9],	[10]
Pythonic
PYTHONINSPECT
PYTHONIOENCODING
PYTHONNOUSERSITE
PYTHONOPTIMIZE
PYTHONPATH,	[1]
[8],	[9],	[10],	[11],	
[17],	[18],	[19]
PYTHONSTARTUP
[7]
PYTHONTRACEMALLOC
PYTHONUNBUFFERED
PYTHONUSERBASE
PYTHONVERBOSE
PYTHONWARNINGS
PyThreadState,	[1]

PyBytes_GET_SIZE	(C	function)
PyBytes_Size	(C	function)
PyBytes_Type	(C	variable)
PyBytesObject	(C	type)
PyCallable_Check	(C	function)
PyCallIter_Check	(C	function)
PyCallIter_New	(C	function)
PyCallIter_Type	(C	variable)
PyCapsule	(C	type)
PyCapsule_CheckExact	(C	function)
PyCapsule_Destructor	(C	type)
PyCapsule_GetContext	(C	function)
PyCapsule_GetDestructor	(C	function)
PyCapsule_GetName	(C	function)
PyCapsule_GetPointer	(C	function)
PyCapsule_Import	(C	function)
PyCapsule_IsValid	(C	function)
PyCapsule_New	(C	function)
PyCapsule_SetContext	(C	function)
PyCapsule_SetDestructor	(C	function)
PyCapsule_SetName	(C	function)
PyCapsule_SetPointer	(C	function)
PyCell_Check	(C	function)
PyCell_Get	(C	function)
PyCell_GET	(C	function)
PyCell_New	(C	function)
PyCell_SET	(C	function)
PyCell_Set	(C	function)
PyCell_Type	(C	variable)
PyCellObject	(C	type)
PyCFunction	(C	type)
PyCFunctionWithKeywords	(C	type)
pyclbr	(module)
PyCode_Check	(C	function)
PyCode_GetNumFree	(C	function)
PyCode_New	(C	function)
PyCode_NewEmpty	(C	function)
PyCode_Type	(C	variable)
PyCodec_BackslashReplaceErrors	(C	function)

(C	type)
PyThreadState_Clear	(C	function)
PyThreadState_Delete	(C	function)
PyThreadState_Get	(C	function)
PyThreadState_GetDict	(C	function)
PyThreadState_New	(C	function)
PyThreadState_Next	(C	function)
PyThreadState_SetAsyncExc	(C	function)
PyThreadState_Swap	(C	function)
PyTime_Check	(C	function)
PyTime_CheckExact	(C	function)
PyTime_FromTime	(C	function)
PyTrace_C_CALL	(C	variable)
PyTrace_C_EXCEPTION	(C	variable)
PyTrace_C_RETURN	(C	variable)
PyTrace_CALL	(C	variable)
PyTrace_EXCEPTION	(C	variable)
PyTrace_LINE	(C	variable)
PyTrace_RETURN	(C	variable)
PyTuple_Check	(C	function)
PyTuple_CheckExact	(C	function)
PyTuple_ClearFreeList	(C	function)
PyTuple_GET_ITEM	(C	function)
PyTuple_GET_SIZE	(C	function)
PyTuple_GetItem	(C	function)
PyTuple_GetSlice	(C	function)
PyTuple_New	(C	function)
PyTuple_Pack	(C	function)
PyTuple_SET_ITEM	(C	function)
PyTuple_SetItem	(C	function)
PyTuple_SetItem()
PyTuple_Size	(C	function)
PyTuple_Type	(C	variable)
PyTupleObject	(C	type)
PyType_Check	(C	function)
PyType_CheckExact	(C	function)
PyType_ClearCache	(C	function)
PyType_FromSpec	(C	function)
PyType_FromSpecWithBases	(C	function)

PyCodec_Decode	(C	function)
PyCodec_Decoder	(C	function)
PyCodec_Encode	(C	function)
PyCodec_Encoder	(C	function)
PyCodec_IgnoreErrors	(C	function)
PyCodec_IncrementalDecoder	(C	function)
PyCodec_IncrementalEncoder	(C	function)
PyCodec_KnownEncoding	(C	function)
PyCodec_LookupError	(C	function)
PyCodec_Register	(C	function)
PyCodec_RegisterError	(C	function)
PyCodec_ReplaceErrors	(C	function)
PyCodec_StreamReader	(C	function)
PyCodec_StreamWriter	(C	function)
PyCodec_StrictErrors	(C	function)
PyCodec_XMLCharRefReplaceErrors	(C	function)
PyCodeObject	(C	type)
PyCompactUnicodeObject	(C	type)
PyCompileError
PyCompilerFlags	(C	type)
PyComplex_AsCComplex	(C	function)
PyComplex_Check	(C	function)
PyComplex_CheckExact	(C	function)
PyComplex_FromCComplex	(C	function)
PyComplex_FromDoubles	(C	function)
PyComplex_ImagAsDouble	(C	function)
PyComplex_RealAsDouble	(C	function)
PyComplex_Type	(C	variable)
PyComplexObject	(C	type)
PyDate_Check	(C	function)
PyDate_CheckExact	(C	function)
PyDate_FromDate	(C	function)
PyDate_FromTimestamp	(C	function)
PyDateTime_Check	(C	function)
PyDateTime_CheckExact	(C	function)
PyDateTime_DATE_GET_HOUR	(C	function)
PyDateTime_DATE_GET_MICROSECOND	(C
function)
PyDateTime_DATE_GET_MINUTE	(C	function)

PyType_GenericAlloc	(C	function)
PyType_GenericGetDict	(C	function)
PyType_GenericNew	(C	function)
PyType_GenericSetDict	(C	function)
PyType_GetFlags	(C	function)
PyType_GetSlot	(C	function)
PyType_HasFeature	(C	function)
PyType_IS_GC	(C	function)
PyType_IsSubtype	(C	function)
PyType_Modified	(C	function)
PyType_Ready	(C	function)
PyType_Type	(C	variable)
PyTypeObject	(C	type)
PyTypeObject.tp_alloc	(C	member)
PyTypeObject.tp_allocs	(C	member)
PyTypeObject.tp_as_buffer	(C	member)
PyTypeObject.tp_base	(C	member)
PyTypeObject.tp_bases	(C	member)
PyTypeObject.tp_basicsize	(C	member)
PyTypeObject.tp_cache	(C	member)
PyTypeObject.tp_call	(C	member)
PyTypeObject.tp_clear	(C	member)
PyTypeObject.tp_dealloc	(C	member)
PyTypeObject.tp_descr_get	(C	member)
PyTypeObject.tp_descr_set	(C	member)
PyTypeObject.tp_dict	(C	member)
PyTypeObject.tp_dictoffset	(C	member)
PyTypeObject.tp_doc	(C	member)
PyTypeObject.tp_finalize	(C	member)
PyTypeObject.tp_flags	(C	member)
PyTypeObject.tp_free	(C	member)
PyTypeObject.tp_frees	(C	member)
PyTypeObject.tp_getattr	(C	member)
PyTypeObject.tp_getattro	(C	member)
PyTypeObject.tp_getset	(C	member)
PyTypeObject.tp_hash	(C	member)
PyTypeObject.tp_init	(C	member)
PyTypeObject.tp_is_gc	(C	member)
PyTypeObject.tp_itemsize	(C	member)

PyDateTime_DATE_GET_SECOND	(C	function)
PyDateTime_DELTA_GET_DAYS	(C	function)
PyDateTime_DELTA_GET_MICROSECOND	(C
function)
PyDateTime_DELTA_GET_SECONDS	(C	function)
PyDateTime_FromDateAndTime	(C	function)
PyDateTime_FromTimestamp	(C	function)
PyDateTime_GET_DAY	(C	function)
PyDateTime_GET_MONTH	(C	function)
PyDateTime_GET_YEAR	(C	function)
PyDateTime_TIME_GET_HOUR	(C	function)
PyDateTime_TIME_GET_MICROSECOND	(C
function)
PyDateTime_TIME_GET_MINUTE	(C	function)
PyDateTime_TIME_GET_SECOND	(C	function)
PyDelta_Check	(C	function)
PyDelta_CheckExact	(C	function)
PyDelta_FromDSU	(C	function)
PyDescr_IsData	(C	function)
PyDescr_NewClassMethod	(C	function)
PyDescr_NewGetSet	(C	function)
PyDescr_NewMember	(C	function)
PyDescr_NewMethod	(C	function)
PyDescr_NewWrapper	(C	function)
PyDict_Check	(C	function)
PyDict_CheckExact	(C	function)
PyDict_Clear	(C	function)
PyDict_ClearFreeList	(C	function)
PyDict_Contains	(C	function)
PyDict_Copy	(C	function)
PyDict_DelItem	(C	function)
PyDict_DelItemString	(C	function)
PyDict_GetItem	(C	function)
PyDict_GetItemString	(C	function)
PyDict_GetItemWithError	(C	function)
PyDict_Items	(C	function)
PyDict_Keys	(C	function)
PyDict_Merge	(C	function)
PyDict_MergeFromSeq2	(C	function)

PyTypeObject.tp_iter	(C	member)
PyTypeObject.tp_iternext	(C	member)
PyTypeObject.tp_maxalloc	(C	member)
PyTypeObject.tp_members	(C	member)
PyTypeObject.tp_methods	(C	member)
PyTypeObject.tp_mro	(C	member)
PyTypeObject.tp_name	(C	member)
PyTypeObject.tp_new	(C	member)
PyTypeObject.tp_next	(C	member)
PyTypeObject.tp_print	(C	member)
PyTypeObject.tp_repr	(C	member)
PyTypeObject.tp_reserved	(C	member)
PyTypeObject.tp_richcompare	(C	member)
PyTypeObject.tp_setattr	(C	member)
PyTypeObject.tp_setattro	(C	member)
PyTypeObject.tp_str	(C	member)
PyTypeObject.tp_subclasses	(C	member)
PyTypeObject.tp_traverse	(C	member)
PyTypeObject.tp_weaklist	(C	member)
PyTypeObject.tp_weaklistoffset	(C	member)
PyTZInfo_Check	(C	function)
PyTZInfo_CheckExact	(C	function)
PyUnicode_1BYTE_DATA	(C	function)
PyUnicode_1BYTE_KIND	(C	macro)
PyUnicode_2BYTE_DATA	(C	function)
PyUnicode_2BYTE_KIND	(C	macro)
PyUnicode_4BYTE_DATA	(C	function)
PyUnicode_4BYTE_KIND	(C	macro)
PyUnicode_AS_DATA	(C	function)
PyUnicode_AS_UNICODE	(C	function)
PyUnicode_AsASCIIString	(C	function)
PyUnicode_AsCharmapString	(C	function)
PyUnicode_AsEncodedString	(C	function)
PyUnicode_AsLatin1String	(C	function)
PyUnicode_AsMBCSString	(C	function)
PyUnicode_AsRawUnicodeEscapeString	(C
function)
PyUnicode_AsUCS4	(C	function)
PyUnicode_AsUCS4Copy	(C	function)

PyDict_New	(C	function)
PyDict_Next	(C	function)
PyDict_SetDefault	(C	function)
PyDict_SetItem	(C	function)
PyDict_SetItemString	(C	function)
PyDict_Size	(C	function)
PyDict_Type	(C	variable)
PyDict_Update	(C	function)
PyDict_Values	(C	function)
PyDictObject	(C	type)
PyDictProxy_New	(C	function)
PyDLL	(class	in	ctypes)
pydoc	(module)
PyErr_BadArgument	(C	function)
PyErr_BadInternalCall	(C	function)
PyErr_CheckSignals	(C	function)
PyErr_Clear	(C	function)
PyErr_Clear(),	[1]
PyErr_ExceptionMatches	(C	function)
PyErr_ExceptionMatches()
PyErr_Fetch	(C	function)
PyErr_Fetch()
PyErr_Format	(C	function)
PyErr_GetExcInfo	(C	function)
PyErr_GivenExceptionMatches	(C	function)
PyErr_NewException	(C	function)
PyErr_NewExceptionWithDoc	(C	function)
PyErr_NoMemory	(C	function)
PyErr_NormalizeException	(C	function)
PyErr_Occurred	(C	function)
PyErr_Occurred()
PyErr_Print	(C	function)
PyErr_PrintEx	(C	function)
PyErr_Restore	(C	function)
PyErr_Restore()
PyErr_SetExcFromWindowsErr	(C	function)
PyErr_SetExcFromWindowsErrWithFilename	(C
function)
PyErr_SetExcFromWindowsErrWithFilenameObject

PyUnicode_AsUnicode	(C	function)
PyUnicode_AsUnicodeAndSize	(C	function)
PyUnicode_AsUnicodeCopy	(C	function)
PyUnicode_AsUnicodeEscapeString	(C
function)
PyUnicode_AsUTF16String	(C	function)
PyUnicode_AsUTF32String	(C	function)
PyUnicode_AsUTF8	(C	function)
PyUnicode_AsUTF8AndSize	(C	function)
PyUnicode_AsUTF8String	(C	function)
PyUnicode_AsWideChar	(C	function)
PyUnicode_AsWideCharString	(C	function)
PyUnicode_Check	(C	function)
PyUnicode_CheckExact	(C	function)
PyUnicode_ClearFreeList	(C	function)
PyUnicode_Compare	(C	function)
PyUnicode_CompareWithASCIIString	(C
function)
PyUnicode_Concat	(C	function)
PyUnicode_Contains	(C	function)
PyUnicode_CopyCharacters	(C	function)
PyUnicode_Count	(C	function)
PyUnicode_DATA	(C	function)
PyUnicode_Decode	(C	function)
PyUnicode_DecodeASCII	(C	function)
PyUnicode_DecodeCharmap	(C	function)
PyUnicode_DecodeFSDefault	(C	function)
PyUnicode_DecodeFSDefaultAndSize	(C
function)
PyUnicode_DecodeLatin1	(C	function)
PyUnicode_DecodeLocale	(C	function)
PyUnicode_DecodeLocaleAndSize	(C
function)
PyUnicode_DecodeMBCS	(C	function)
PyUnicode_DecodeMBCSStateful	(C
function)
PyUnicode_DecodeRawUnicodeEscape	(C
function)
PyUnicode_DecodeUnicodeEscape	(C

(C	function)
PyErr_SetExcFromWindowsErrWithFilenameObjects
(C	function)
PyErr_SetExcInfo	(C	function)
PyErr_SetFromErrno	(C	function)
PyErr_SetFromErrnoWithFilename	(C	function)
PyErr_SetFromErrnoWithFilenameObject	(C
function)
PyErr_SetFromErrnoWithFilenameObjects	(C
function)
PyErr_SetFromWindowsErr	(C	function)
PyErr_SetFromWindowsErrWithFilename	(C
function)
PyErr_SetImportError	(C	function)
PyErr_SetInterrupt	(C	function)
PyErr_SetNone	(C	function)
PyErr_SetObject	(C	function)
PyErr_SetString	(C	function)
PyErr_SetString()
PyErr_SyntaxLocation	(C	function)
PyErr_SyntaxLocationEx	(C	function)
PyErr_SyntaxLocationObject	(C	function)
PyErr_WarnEx	(C	function)
PyErr_WarnExplicit	(C	function)
PyErr_WarnExplicitObject	(C	function)
PyErr_WarnFormat	(C	function)
PyErr_WriteUnraisable	(C	function)
PyEval_AcquireLock	(C	function)
PyEval_AcquireThread	(C	function)
PyEval_AcquireThread()
PyEval_EvalCode	(C	function)
PyEval_EvalCodeEx	(C	function)
PyEval_EvalFrame	(C	function)
PyEval_EvalFrameEx	(C	function)
PyEval_GetBuiltins	(C	function)
PyEval_GetCallStats	(C	function)
PyEval_GetFrame	(C	function)
PyEval_GetFuncDesc	(C	function)
PyEval_GetFuncName	(C	function)

function)
PyUnicode_DecodeUTF16	(C	function)
PyUnicode_DecodeUTF16Stateful	(C
function)
PyUnicode_DecodeUTF32	(C	function)
PyUnicode_DecodeUTF32Stateful	(C
function)
PyUnicode_DecodeUTF7	(C	function)
PyUnicode_DecodeUTF7Stateful	(C
function)
PyUnicode_DecodeUTF8	(C	function)
PyUnicode_DecodeUTF8Stateful	(C
function)
PyUnicode_Encode	(C	function)
PyUnicode_EncodeASCII	(C	function)
PyUnicode_EncodeCharmap	(C	function)
PyUnicode_EncodeCodePage	(C	function)
PyUnicode_EncodeFSDefault	(C	function)
PyUnicode_EncodeLatin1	(C	function)
PyUnicode_EncodeLocale	(C	function)
PyUnicode_EncodeMBCS	(C	function)
PyUnicode_EncodeRawUnicodeEscape	(C
function)
PyUnicode_EncodeUnicodeEscape	(C
function)
PyUnicode_EncodeUTF16	(C	function)
PyUnicode_EncodeUTF32	(C	function)
PyUnicode_EncodeUTF7	(C	function)
PyUnicode_EncodeUTF8	(C	function)
PyUnicode_Fill	(C	function)
PyUnicode_Find	(C	function)
PyUnicode_FindChar	(C	function)
PyUnicode_Format	(C	function)
PyUnicode_FromEncodedObject	(C
function)
PyUnicode_FromFormat	(C	function)
PyUnicode_FromFormatV	(C	function)
PyUnicode_FromKindAndData	(C	function)
PyUnicode_FromObject	(C	function)

PyEval_GetGlobals	(C	function)
PyEval_GetLocals	(C	function)
PyEval_InitThreads	(C	function)
PyEval_InitThreads()

PyUnicode_FromString	(C	function)
PyUnicode_FromString()
PyUnicode_FromStringAndSize	(C	function)
PyUnicode_FromUnicode	(C	function)
PyUnicode_FromWideChar	(C	function)
PyUnicode_FSConverter	(C	function)
PyUnicode_FSDecoder	(C	function)
PyUnicode_GET_DATA_SIZE	(C	function)
PyUnicode_GET_LENGTH	(C	function)
PyUnicode_GET_SIZE	(C	function)
PyUnicode_GetLength	(C	function)
PyUnicode_GetSize	(C	function)
PyUnicode_InternFromString	(C	function)
PyUnicode_InternInPlace	(C	function)
PyUnicode_Join	(C	function)
PyUnicode_KIND	(C	function)
PyUnicode_MAX_CHAR_VALUE	(C
function)
PyUnicode_New	(C	function)
PyUnicode_READ	(C	function)
PyUnicode_READ_CHAR	(C	function)
PyUnicode_ReadChar	(C	function)
PyUnicode_READY	(C	function)
PyUnicode_Replace	(C	function)
PyUnicode_RichCompare	(C	function)
PyUnicode_Split	(C	function)
PyUnicode_Splitlines	(C	function)
PyUnicode_Substring	(C	function)
PyUnicode_Tailmatch	(C	function)
PyUnicode_TransformDecimalToASCII	(C
function)
PyUnicode_Translate	(C	function)
PyUnicode_TranslateCharmap	(C	function)
PyUnicode_Type	(C	variable)
PyUnicode_WCHAR_KIND	(C	macro)
PyUnicode_WRITE	(C	function)
PyUnicode_WriteChar	(C	function)
PyUnicodeDecodeError_Create	(C	function)
PyUnicodeDecodeError_GetEncoding	(C

function)
PyUnicodeDecodeError_GetEnd	(C
function)
PyUnicodeDecodeError_GetObject	(C
function)
PyUnicodeDecodeError_GetReason	(C
function)
PyUnicodeDecodeError_GetStart	(C
function)
PyUnicodeDecodeError_SetEnd	(C
function)
PyUnicodeDecodeError_SetReason	(C
function)
PyUnicodeDecodeError_SetStart	(C
function)
PyUnicodeEncodeError_Create	(C	function)
PyUnicodeEncodeError_GetEncoding	(C
function)
PyUnicodeEncodeError_GetEnd	(C
function)
PyUnicodeEncodeError_GetObject	(C
function)
PyUnicodeEncodeError_GetReason	(C
function)
PyUnicodeEncodeError_GetStart	(C
function)
PyUnicodeEncodeError_SetEnd	(C
function)
PyUnicodeEncodeError_SetReason	(C
function)
PyUnicodeEncodeError_SetStart	(C
function)
PyUnicodeObject	(C	type)
PyUnicodeTranslateError_Create	(C
function)
PyUnicodeTranslateError_GetEnd	(C
function)
PyUnicodeTranslateError_GetObject	(C
function)

PyUnicodeTranslateError_GetReason	(C
function)
PyUnicodeTranslateError_GetStart	(C
function)
PyUnicodeTranslateError_SetEnd	(C
function)
PyUnicodeTranslateError_SetReason	(C
function)
PyUnicodeTranslateError_SetStart	(C
function)
PyVarObject	(C	type)
PyVarObject.ob_size	(C	member)
PyVarObject_HEAD_INIT	(C	macro)
PyWeakref_Check	(C	function)
PyWeakref_CheckProxy	(C	function)
PyWeakref_CheckRef	(C	function)
PyWeakref_GET_OBJECT	(C	function)
PyWeakref_GetObject	(C	function)
PyWeakref_NewProxy	(C	function)
PyWeakref_NewRef	(C	function)
PyWrapper_New	(C	function)
PyZipFile	(class	in	zipfile)

Q
qiflush()	(in	module	curses)
QName	(class	in	xml.etree.ElementTree)
qsize()	(asyncio.Queue	method)

(multiprocessing.Queue	method)
(queue.Queue	method)

qualified	name
quantize()	(decimal.Context	method)

(decimal.Decimal	method)
QueryInfoKey()	(in	module	winreg)
QueryReflectionKey()	(in	module	winreg)
QueryValue()	(in	module	winreg)
QueryValueEx()	(in	module	winreg)
Queue	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	queue)

queue	(module)
(sched.scheduler	attribute)

Queue()
(multiprocessing.managers.SyncManager
method)
QueueEmpty
QueueFull
QueueHandler	(class	in	logging.handlers)
QueueListener	(class	in	logging.handlers)

quick_ratio()
(difflib.SequenceMatcher
method)
quit	(built-in	variable)

(pdb	command)
quit()	(ftplib.FTP	method)

(nntplib.NNTP	method)
(poplib.POP3	method)
(smtplib.SMTP
method)

quopri	(module)
quote()	(in	module
email.utils)

(in	module	shlex)
(in	module	urllib.parse)

QUOTE_ALL	(in	module
csv)
quote_from_bytes()	(in
module	urllib.parse)
QUOTE_MINIMAL	(in
module	csv)
QUOTE_NONE	(in
module	csv)
QUOTE_NONNUMERIC
(in	module	csv)
quote_plus()	(in	module
urllib.parse)
quoteattr()	(in	module
xml.sax.saxutils)
quotechar	(csv.Dialect
attribute)
quoted-printable

encoding
quotes	(shlex.shlex
attribute)

quoting	(csv.Dialect
attribute)

R
R_OK	(in	module	os)
radians()	(in	module	math)

(in	module	turtle)
RadioButtonGroup	(class	in	msilib)
radiogroup()	(msilib.Dialog	method)
radix()	(decimal.Context	method)

(decimal.Decimal	method)
RADIXCHAR	(in	module	locale)
raise

statement,	[1]
raise	(2to3	fixer)
raise	an	exception
raise_on_defect	(email.policy.Policy
attribute)
RAISE_VARARGS	(opcode)
raising

exception
RAND_add()	(in	module	ssl)
RAND_bytes()	(in	module	ssl)
RAND_egd()	(in	module	ssl)
RAND_pseudo_bytes()	(in	module	ssl)
RAND_status()	(in	module	ssl)
randint()	(in	module	random)
random	(module)
random()	(in	module	random)
randrange()	(in	module	random)
range

built-in	function
object

range	(built-in	class)
RARROW	(in	module	token)
ratecv()	(in	module	audioop)
ratio()	(difflib.SequenceMatcher	method)
Rational	(class	in	numbers)
raw	(io.BufferedIOBase	attribute)

ReplacePackage()	(in	module	modulefinder)
report()	(filecmp.dircmp	method)

(modulefinder.ModuleFinder	method)
REPORT_CDIFF	(in	module	doctest)
report_failure()	(doctest.DocTestRunner
method)
report_full_closure()	(filecmp.dircmp	method)
REPORT_NDIFF	(in	module	doctest)
REPORT_ONLY_FIRST_FAILURE	(in	module
doctest)
report_partial_closure()	(filecmp.dircmp
method)
report_start()	(doctest.DocTestRunner	method)
report_success()	(doctest.DocTestRunner
method)
REPORT_UDIFF	(in	module	doctest)
report_unexpected_exception()
(doctest.DocTestRunner	method)
REPORTING_FLAGS	(in	module	doctest)
repr

built-in	function,	[1],	[2]
repr	(2to3	fixer)
Repr	(class	in	reprlib)
repr()	(built-in	function)

__repr__()	(object	method)
repr()	(in	module	reprlib)

(reprlib.Repr	method)
repr1()	(reprlib.Repr	method)
representation

integer
reprlib	(module)
Request	(class	in	urllib.request)
request()	(http.client.HTTPConnection	method)
request_queue_size	(socketserver.BaseServer
attribute)

raw	string
raw()	(in	module	curses)
raw_data_manager	(in	module
email.contentmanager)
raw_decode()	(json.JSONDecoder	method)
raw_input	(2to3	fixer)
raw_input()	(code.InteractiveConsole
method)
RawArray()	(in	module
multiprocessing.sharedctypes)
RawConfigParser	(class	in	configparser)
RawDescriptionHelpFormatter	(class	in
argparse)
RawIOBase	(class	in	io)
RawPen	(class	in	turtle)
RawTextHelpFormatter	(class	in	argparse)
RawTurtle	(class	in	turtle)
RawValue()	(in	module
multiprocessing.sharedctypes)
RBRACE	(in	module	token)
rcpttos	(smtpd.SMTPChannel	attribute)
re

module,	[1]
re	(module)

(re.match	attribute)
read()	(asyncio.StreamReader	method)

(chunk.Chunk	method)
(codecs.StreamReader	method)
(configparser.ConfigParser	method)
(http.client.HTTPResponse	method)
(imaplib.IMAP4	method)
(in	module	mmap)
(in	module	os)
(io.BufferedIOBase	method)
(io.BufferedReader	method)
(io.RawIOBase	method)
(io.TextIOBase	method)

request_uri()	(in	module	wsgiref.util)
request_version
(http.server.BaseHTTPRequestHandler
attribute)
RequestHandlerClass
(socketserver.BaseServer	attribute)
requires()	(in	module	test.support)
reserved	(zipfile.ZipInfo	attribute)
reserved	word
RESERVED_FUTURE	(in	module	uuid)
RESERVED_MICROSOFT	(in	module	uuid)
RESERVED_NCS	(in	module	uuid)
reset()	(bdb.Bdb	method)

(codecs.IncrementalDecoder	method)
(codecs.IncrementalEncoder	method)
(codecs.StreamReader	method)
(codecs.StreamWriter	method)
(html.parser.HTMLParser	method)
(in	module	turtle),	[1]
(ossaudiodev.oss_audio_device	method)
(pipes.Template	method)
(threading.Barrier	method)
(xdrlib.Packer	method)
(xdrlib.Unpacker	method)
(xml.dom.pulldom.DOMEventStream
method)
(xml.sax.xmlreader.IncrementalParser
method)

reset_mock()	(unittest.mock.Mock	method)
reset_prog_mode()	(in	module	curses)
reset_shell_mode()	(in	module	curses)
resetbuffer()	(code.InteractiveConsole	method)
resetlocale()	(in	module	locale)
resetscreen()	(in	module	turtle)
resetty()	(in	module	curses)
resetwarnings()	(in	module	warnings)
resize()	(curses.window	method)

(mimetypes.MimeTypes	method)
(ossaudiodev.oss_audio_device	method)
(urllib.robotparser.RobotFileParser
method)
(zipfile.ZipFile	method)

read1()	(io.BufferedIOBase	method)
(io.BufferedReader	method)
(io.BytesIO	method)

read_all()	(telnetlib.Telnet	method)
read_byte()	(in	module	mmap)
read_dict()	(configparser.ConfigParser
method)
read_eager()	(telnetlib.Telnet	method)
read_environ()	(in	module	wsgiref.handlers)
read_events()
(xml.etree.ElementTree.XMLPullParser
method)
read_file()	(configparser.ConfigParser
method)
read_history_file()	(in	module	readline)
read_init_file()	(in	module	readline)
read_lazy()	(telnetlib.Telnet	method)
read_mime_types()	(in	module	mimetypes)
READ_RESTRICTED
read_sb_data()	(telnetlib.Telnet	method)
read_some()	(telnetlib.Telnet	method)
read_string()	(configparser.ConfigParser
method)
read_token()	(shlex.shlex	method)
read_until()	(telnetlib.Telnet	method)
read_very_eager()	(telnetlib.Telnet	method)
read_very_lazy()	(telnetlib.Telnet	method)
read_windows_registry()
(mimetypes.MimeTypes	method)
readable()	(asyncore.dispatcher	method)

(io.IOBase	method)
readall()	(io.RawIOBase	method)
reader()	(in	module	csv)

(in	module	ctypes)
(in	module	mmap)

resize_term()	(in	module	curses)
resizemode()	(in	module	turtle)
resizeterm()	(in	module	curses)
resolution	(datetime.date	attribute)

(datetime.datetime	attribute)
(datetime.time	attribute)
(datetime.timedelta	attribute)

resolve()	(pathlib.Path	method)
resolve_name()	(in	module	importlib.util)
resolveEntity()	(xml.sax.handler.EntityResolver
method)
resource	(module)
ResourceDenied
ResourceLoader	(class	in	importlib.abc)
ResourceWarning
response	(nntplib.NNTPError	attribute)
response()	(imaplib.IMAP4	method)
ResponseNotReady
responses
(http.server.BaseHTTPRequestHandler
attribute)

(in	module	http.client)
restart	(pdb	command)
restore()	(in	module	difflib)
RESTRICTED
restricted

execution
restype	(ctypes._FuncPtr	attribute)
result()	(asyncio.Future	method)

(concurrent.futures.Future	method)
results()	(trace.Trace	method)
resume_reading()	(asyncio.ReadTransport
method)
resume_writing()	(asyncio.BaseProtocol
method)
retr()	(poplib.POP3	method)

ReadError
readexactly()	(asyncio.StreamReader
method)
readfp()	(configparser.ConfigParser	method)

(mimetypes.MimeTypes	method)
readframes()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

readinto()	(http.client.HTTPResponse
method)

(io.BufferedIOBase	method)
(io.RawIOBase	method)

readline	(module)
readline()	(asyncio.StreamReader	method)

(codecs.StreamReader	method)
(distutils.text_file.TextFile	method)
(file	method)
(imaplib.IMAP4	method)
(in	module	mmap)
(io.IOBase	method)
(io.TextIOBase	method)

readlines()	(codecs.StreamReader	method)
(distutils.text_file.TextFile	method)
(io.IOBase	method)

readlink()	(in	module	os)
readmodule()	(in	module	pyclbr)
readmodule_ex()	(in	module	pyclbr)
READONLY
readonly	(memoryview	attribute)
readPlist()	(in	module	plistlib)
readPlistFromBytes()	(in	module	plistlib)
ReadTransport	(class	in	asyncio)
readv()	(in	module	os)
ready()	(multiprocessing.pool.AsyncResult
method)
Real	(class	in	numbers)
real	(numbers.Complex	attribute)

retrbinary()	(ftplib.FTP	method)
retrieve()	(urllib.request.URLopener	method)
retrlines()	(ftplib.FTP	method)
return

statement,	[1],	[2]
return	(pdb	command)
return_annotation	(inspect.Signature	attribute)
return_ok()	(http.cookiejar.CookiePolicy
method)
RETURN_VALUE	(opcode)
return_value	(unittest.mock.Mock	attribute)
returncode
(asyncio.asyncio.subprocess.Process	attribute)

(subprocess.CalledProcessError	attribute)
(subprocess.Popen	attribute)

reverse()	(array.array	method)
(collections.deque	method)
(in	module	audioop)
(sequence	method)

reverse_order()	(pstats.Stats	method)
reversed()	(built-in	function)
revert()	(http.cookiejar.FileCookieJar	method)
rewind()	(aifc.aifc	method)

(sunau.AU_read	method)
(wave.Wave_read	method)

RFC
RFC	1014,	[1]
RFC	1123
RFC	1321
RFC	1422
RFC	1521,	[1],	[2]
RFC	1522,	[1]
RFC	1524,	[1]
RFC	1730
RFC	1738
RFC	1750

Real	Media	File	Format
real_quick_ratio()	(difflib.SequenceMatcher
method)
realloc()
realpath()	(in	module	os.path)
reason	(http.client.HTTPResponse	attribute)

(UnicodeError	attribute)
(ssl.SSLError	attribute)
(urllib.error.HTTPError	attribute)
(urllib.error.URLError	attribute)

reattach()	(tkinter.ttk.Treeview	method)
rebinding

name
reccontrols()	(ossaudiodev.oss_mixer_device
method)
received_data	(smtpd.SMTPChannel
attribute)
received_lines	(smtpd.SMTPChannel
attribute)
recent()	(imaplib.IMAP4	method)
records	(unittest.TestCase	attribute)
rect()	(in	module	cmath)
rectangle()	(in	module	curses.textpad)
recursive_repr()	(in	module	reprlib)
recv()	(asyncore.dispatcher	method)

(multiprocessing.Connection	method)
(socket.socket	method)

recv_bytes()	(multiprocessing.Connection
method)
recv_bytes_into()
(multiprocessing.Connection	method)
recv_into()	(socket.socket	method)
recvfrom()	(socket.socket	method)
recvfrom_into()	(socket.socket	method)
recvmsg()	(socket.socket	method)
recvmsg_into()	(socket.socket	method)
redirect_request()
(urllib.request.HTTPRedirectHandler

RFC	1766,	[1]
RFC	1808,	[1]
RFC	1832,	[1]
RFC	1869,	[1]
RFC	1870,	[1],	[2]
RFC	1894
RFC	1939,	[1]
RFC	2033
RFC	2045,	[1],	[2],	[3]
RFC	2046,	[1],	[2]
RFC	2047,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12]
RFC	2060,	[1]
RFC	2068
RFC	2104,	[1]
RFC	2109,	[1],	[2],	[3]
RFC	2231,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12]
RFC	2342
RFC	2368
RFC	2373,	[1],	[2]
RFC	2396,	[1]
RFC	2397
RFC	2449
RFC	2487
RFC	2595,	[1]
RFC	2616,	[1],	[2],	[3]
RFC	2732,	[1],	[2]
RFC	2774
RFC	2817
RFC	2818,	[1]
RFC	2821
RFC	2822,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12],	[13]

method)
redirect_stdout()	(in	module	contextlib)
redisplay()	(in	module	readline)
redrawln()	(curses.window	method)
redrawwin()	(curses.window	method)
reduce	(2to3	fixer)
reduce()	(in	module	functools)
ref	(class	in	weakref)
reference

attribute
reference	count
reference	counting
ReferenceError,	[1]
ReferenceType	(in	module	weakref)
refold_source	(email.policy.EmailPolicy
attribute)
refresh()	(curses.window	method)
REG_BINARY	(in	module	winreg)
REG_DWORD	(in	module	winreg)
REG_DWORD_BIG_ENDIAN	(in	module
winreg)
REG_DWORD_LITTLE_ENDIAN	(in	module
winreg)
REG_EXPAND_SZ	(in	module	winreg)
REG_FULL_RESOURCE_DESCRIPTOR	(in
module	winreg)
REG_LINK	(in	module	winreg)
REG_MULTI_SZ	(in	module	winreg)
REG_NONE	(in	module	winreg)
REG_RESOURCE_LIST	(in	module	winreg)
REG_RESOURCE_REQUIREMENTS_LIST
(in	module	winreg)
REG_SZ	(in	module	winreg)
register()	(abc.ABCMeta	method)

(in	module	atexit)
(in	module	codecs)
(in	module	faulthandler)
(in	module	webbrowser)

[18],	 [19],	 [20],	 [21],	
[26],	[27],	[28],	[29],	[30]
RFC	2964
RFC	2965,	[1],	[2]
RFC	2980,	[1]
RFC	3056
RFC	3171
RFC	3207
RFC	3229
RFC	3280
RFC	3330
RFC	3454
RFC	3490,	[1],	[2],	[3]
RFC	3492,	[1]
RFC	3493
RFC	3542
RFC	3548,	[1],	[2],	[3]
RFC	3659
RFC	3879
RFC	3927
RFC	3977,	[1],	[2],	[3]
RFC	3986,	[1],	[2],	[3]
RFC	4122,	[1],	[2],	[3]
RFC	4158
RFC	4180
RFC	4193
RFC	4217
RFC	4291
RFC	4366
RFC	4380
RFC	4627,	[1]
RFC	4642
RFC	5246
RFC	5321,	[1],	[2]

(multiprocessing.managers.BaseManager
method)
(select.devpoll	method)
(select.epoll	method)
(select.poll	method)
(selectors.BaseSelector	method)

register_adapter()	(in	module	sqlite3)
register_archive_format()	(in	module	shutil)
register_converter()	(in	module	sqlite3)
register_defect()	(email.policy.Policy	method)
register_dialect()	(in	module	csv)
register_error()	(in	module	codecs)
register_function()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_instance()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_introspection_functions()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_multicall_functions()
(xmlrpc.server.CGIXMLRPCRequestHandler
method)

(xmlrpc.server.SimpleXMLRPCServer
method)

register_namespace()	(in	module
xml.etree.ElementTree)
register_optionflag()	(in	module	doctest)
register_shape()	(in	module	turtle)
register_unpack_format()	(in	module	shutil)

RFC	5322,	 [1],	 [2],	 [3]
[9],	[10],	[11],	[12],	[13]
RFC	5735
RFC	5929
RFC	6066
RFC	6125,	[1]
RFC	6585,	[1],	[2],	[3]
RFC	821,	[1]
RFC	822,	[1],	[2],	[3],	
[10]
RFC	854,	[1]
RFC	959
RFC	977

rfc2109	(http.cookiejar.Cookie	attribute)
rfc2109_as_netscape
(http.cookiejar.DefaultCookiePolicy	attribute)
rfc2965	(http.cookiejar.CookiePolicy	attribute)
rfc822_escape()	(in	module	distutils.util)
RFC_4122	(in	module	uuid)
rfile	(http.server.BaseHTTPRequestHandler
attribute)
rfind()	(in	module	mmap)

(str	method)
rgb_to_hls()	(in	module	colorsys)
rgb_to_hsv()	(in	module	colorsys)
rgb_to_yiq()	(in	module	colorsys)
rglob()	(pathlib.Path	method)
right	(filecmp.dircmp	attribute)
right()	(in	module	turtle)
right_list	(filecmp.dircmp	attribute)
right_only	(filecmp.dircmp	attribute)
RIGHTSHIFT	(in	module	token)
RIGHTSHIFTEQUAL	(in	module	token)
rindex()	(str	method)
rjust()	(str	method)
rlcompleter	(module)
rlecode_hqx()	(in	module	binascii)

registerDOMImplementation()	(in	module
xml.dom)
registerResult()	(in	module	unittest)
regular

package
regular	package
relative

URL
import

relative_to()	(pathlib.PurePath	method)
release()	(_thread.lock	method)

(asyncio.Condition	method)
(asyncio.Lock	method)
(asyncio.Semaphore	method)
(in	module	platform)
(logging.Handler	method)
(memoryview	method)
(threading.Condition	method)
(threading.Lock	method)
(threading.RLock	method)
(threading.Semaphore	method)

release_lock()	(in	module	imp)
reload	(2to3	fixer)
reload()	(in	module	imp)

(in	module	importlib)
relpath()	(in	module	os.path)
remainder()	(decimal.Context	method)
remainder_near()	(decimal.Context	method)

(decimal.Decimal	method)
remove()	(array.array	method)

(collections.deque	method)
(in	module	os)
(mailbox.MH	method)
(mailbox.Mailbox	method)
(sequence	method)
(set	method)

rledecode_hqx()	(in	module	binascii)
RLIM_INFINITY	(in	module	resource)
RLIMIT_AS	(in	module	resource)
RLIMIT_CORE	(in	module	resource)
RLIMIT_CPU	(in	module	resource)
RLIMIT_DATA	(in	module	resource)
RLIMIT_FSIZE	(in	module	resource)
RLIMIT_MEMLOCK	(in	module	resource)
RLIMIT_MSGQUEUE	(in	module	resource)
RLIMIT_NICE	(in	module	resource)
RLIMIT_NOFILE	(in	module	resource)
RLIMIT_NPROC	(in	module	resource)
RLIMIT_NPTS	(in	module	resource)
RLIMIT_OFILE	(in	module	resource)
RLIMIT_RSS	(in	module	resource)
RLIMIT_RTPRIO	(in	module	resource)
RLIMIT_RTTIME	(in	module	resource)
RLIMIT_SBSIZE	(in	module	resource)
RLIMIT_SIGPENDING	(in	module	resource)
RLIMIT_STACK	(in	module	resource)
RLIMIT_SWAP	(in	module	resource)
RLIMIT_VMEM	(in	module	resource)
RLock	(class	in	multiprocessing)

(class	in	threading)
RLock()
(multiprocessing.managers.SyncManager
method)
rmd()	(ftplib.FTP	method)
rmdir()	(in	module	os)

(pathlib.Path	method)
RMFF
rms()	(in	module	audioop)
rmtree()	(in	module	shutil)
RobotFileParser	(class	in	urllib.robotparser)
robots.txt
rollback()	(sqlite3.Connection	method)
ROT_THREE	(opcode)
ROT_TWO	(opcode)

(xml.etree.ElementTree.Element	 method)
remove_done_callback()	(asyncio.Future
method)
remove_flag()	(mailbox.MaildirMessage
method)

(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

remove_folder()	(mailbox.Maildir	method)
(mailbox.MH	method)

remove_header()	(urllib.request.Request
method)
remove_history_item()	(in	module	readline)
remove_label()	(mailbox.BabylMessage
method)
remove_option()	(configparser.ConfigParser
method)

(optparse.OptionParser	method)
remove_pyc()	(msilib.Directory	method)
remove_reader()	(asyncio.BaseEventLoop
method)
remove_section()	(configparser.ConfigParser
method)
remove_sequence()	(mailbox.MHMessage
method)
remove_signal_handler()
(asyncio.BaseEventLoop	method)
remove_tree()	(in	module	distutils.dir_util)
remove_writer()	(asyncio.BaseEventLoop
method)
removeAttribute()	(xml.dom.Element	method)
removeAttributeNode()	(xml.dom.Element
method)
removeAttributeNS()	(xml.dom.Element
method)
removeChild()	(xml.dom.Node	method)
removedirs()	(in	module	os)
removeFilter()	(logging.Handler	method)

(logging.Logger	method)

rotate()	(collections.deque	method)
(decimal.Context	method)
(decimal.Decimal	method)
(logging.handlers.BaseRotatingHandler
method)

RotatingFileHandler	(class	in	logging.handlers)
rotation_filename()
(logging.handlers.BaseRotatingHandler
method)
rotator	(logging.handlers.BaseRotatingHandler
attribute)
round

built-in	function
round()	(built-in	function)
ROUND_05UP	(in	module	decimal)
ROUND_CEILING	(in	module	decimal)
ROUND_DOWN	(in	module	decimal)
ROUND_FLOOR	(in	module	decimal)
ROUND_HALF_DOWN	(in	module	decimal)
ROUND_HALF_EVEN	(in	module	decimal)
ROUND_HALF_UP	(in	module	decimal)
ROUND_UP	(in	module	decimal)
Rounded	(class	in	decimal)
Row	(class	in	sqlite3)
row_factory	(sqlite3.Connection	attribute)
rowcount	(sqlite3.Cursor	attribute)
RPAR	(in	module	token)
rpartition()	(str	method)
rpc_paths
(xmlrpc.server.SimpleXMLRPCRequestHandler
attribute)
rpop()	(poplib.POP3	method)
rset()	(poplib.POP3	method)
rshift()	(in	module	operator)
rsplit()	(str	method)
RSQB	(in	module	token)
rstrip()	(str	method)
rt()	(in	module	turtle)

removeHandler()	(in	module	unittest)
(logging.Logger	method)

removeResult()	(in	module	unittest)
removexattr()	(in	module	os)
rename()	(ftplib.FTP	method)

(imaplib.IMAP4	method)
(in	module	os)
(pathlib.Path	method)

renames	(2to3	fixer)
renames()	(in	module	os)
reorganize()	(dbm.gnu.gdbm	method)
repeat()	(in	module	itertools)

(in	module	timeit)
(timeit.Timer	method)

repetition
operation

replace()	(curses.panel.Panel	method)
(datetime.date	method)
(datetime.datetime	method)
(datetime.time	method)
(in	module	os)
(inspect.Parameter	method)
(inspect.Signature	method)
(pathlib.Path	method)
(str	method)

replace_errors()	(in	module	codecs)
replace_header()	(email.message.Message
method)
replace_history_item()	(in	module	readline)
replace_whitespace	(textwrap.TextWrapper
attribute)
replaceChild()	(xml.dom.Node	method)

RTLD_DEEPBIND	(in	module	os)
RTLD_GLOBAL	(in	module	os)
RTLD_LAZY	(in	module	os)
RTLD_LOCAL	(in	module	os)
RTLD_NODELETE	(in	module	os)
RTLD_NOLOAD	(in	module	os)
RTLD_NOW	(in	module	os)
ruler	(cmd.Cmd	attribute)
run	(pdb	command)
Run	script
run()	(bdb.Bdb	method)

(distutils.cmd.Command	method)
(doctest.DocTestRunner	method)
(in	module	pdb)
(in	module	profile)
(multiprocessing.Process	method)
(pdb.Pdb	method)
(profile.Profile	method)
(sched.scheduler	method)
(threading.Thread	method)
(trace.Trace	method)
(unittest.TestCase	method)
(unittest.TestSuite	method)
(unittest.TextTestRunner	method)
(wsgiref.handlers.BaseHandler	method)

run_docstring_examples()	(in	module	doctest)
run_doctest()	(in	module	test.support)
run_forever()	(asyncio.BaseEventLoop
method)
run_in_executor()	(asyncio.BaseEventLoop
method)
run_module()	(in	module	runpy)
run_path()	(in	module	runpy)
run_script()	(modulefinder.ModuleFinder
method)
run_setup()	(in	module	distutils.core)
run_unittest()	(in	module	test.support)

run_until_complete()	(asyncio.BaseEventLoop
method)
run_with_locale()	(in	module	test.support)
runcall()	(bdb.Bdb	method)

(in	module	pdb)
(pdb.Pdb	method)
(profile.Profile	method)

runcode()	(code.InteractiveInterpreter	method)
runctx()	(bdb.Bdb	method)

(in	module	profile)
(profile.Profile	method)
(trace.Trace	method)

runeval()	(bdb.Bdb	method)
(in	module	pdb)
(pdb.Pdb	method)

runfunc()	(trace.Trace	method)
running()	(concurrent.futures.Future	method)
runpy	(module)
runsource()	(code.InteractiveInterpreter
method)
runtime_library_dir_option()
(distutils.ccompiler.CCompiler	method)
RuntimeError
RuntimeWarning
RUSAGE_BOTH	(in	module	resource)
RUSAGE_CHILDREN	(in	module	resource)
RUSAGE_SELF	(in	module	resource)
RUSAGE_THREAD	(in	module	resource)

S
S	(in	module	re)
S_ENFMT	(in	module	stat)
S_IEXEC	(in	module	stat)
S_IFBLK	(in	module	stat)
S_IFCHR	(in	module	stat)
S_IFDIR	(in	module	stat)
S_IFDOOR	(in	module	stat)
S_IFIFO	(in	module	stat)
S_IFLNK	(in	module	stat)
S_IFMT()	(in	module	stat)
S_IFPORT	(in	module	stat)
S_IFREG	(in	module	stat)
S_IFSOCK	(in	module	stat)
S_IFWHT	(in	module	stat)
S_IMODE()	(in	module	stat)
S_IREAD	(in	module	stat)
S_IRGRP	(in	module	stat)
S_IROTH	(in	module	stat)
S_IRUSR	(in	module	stat)
S_IRWXG	(in	module	stat)
S_IRWXO	(in	module	stat)
S_IRWXU	(in	module	stat)
S_ISBLK()	(in	module	stat)
S_ISCHR()	(in	module	stat)
S_ISDIR()	(in	module	stat)
S_ISDOOR()	(in	module	stat)
S_ISFIFO()	(in	module	stat)
S_ISGID	(in	module	stat)
S_ISLNK()	(in	module	stat)
S_ISPORT()	(in	module	stat)
S_ISREG()	(in	module	stat)
S_ISSOCK()	(in	module	stat)
S_ISUID	(in	module	stat)
S_ISVTX	(in	module	stat)
S_ISWHT()	(in	module	stat)
S_IWGRP	(in	module	stat)

SIG_IGN	(in	module	signal)
SIG_SETMASK	(in	module	signal)
SIG_UNBLOCK	(in	module	signal)
SIGINT,	[1]
siginterrupt()	(in	module	signal)
signal

module,	[1]
signal	(module)
signal()	(in	module	signal)
Signature	(class	in	inspect)
signature()	(in	module	inspect)
sigpending()	(in	module	signal)
sigtimedwait()	(in	module	signal)
sigwait()	(in	module	signal)
sigwaitinfo()	(in	module	signal)
simple

statement
Simple	Mail	Transfer	Protocol
SimpleCookie	(class	in	http.cookies)
simplefilter()	(in	module	warnings)
SimpleHandler	(class	in	wsgiref.handlers)
SimpleHTTPRequestHandler	(class	in
http.server)
SimpleNamespace	(class	in	types)
SimpleQueue	(class	in	multiprocessing)
SimpleXMLRPCRequestHandler	(class	in
xmlrpc.server)
SimpleXMLRPCServer	(class	in
xmlrpc.server)
sin()	(in	module	cmath)

(in	module	math)
single	dispatch
SingleAddressHeader	(class	in
email.headerregistry)
singledispatch()	(in	module	functools)
singleton

S_IWOTH	(in	module	stat)
S_IWRITE	(in	module	stat)
S_IWUSR	(in	module	stat)
S_IXGRP	(in	module	stat)
S_IXOTH	(in	module	stat)
S_IXUSR	(in	module	stat)
safe_substitute()	(string.Template	method)
saferepr()	(in	module	pprint)
same_files	(filecmp.dircmp	attribute)
same_quantum()	(decimal.Context	method)

(decimal.Decimal	method)
samefile()	(in	module	os.path)
SameFileError
sameopenfile()	(in	module	os.path)
samestat()	(in	module	os.path)
sample()	(in	module	random)
save()	(http.cookiejar.FileCookieJar	method)
SaveKey()	(in	module	winreg)
savetty()	(in	module	curses)
SAX2DOM	(class	in	xml.dom.pulldom)
SAXException
SAXNotRecognizedException
SAXNotSupportedException
SAXParseException
scaleb()	(decimal.Context	method)

(decimal.Decimal	method)
scanf()
sched	(module)
SCHED_BATCH	(in	module	os)
SCHED_FIFO	(in	module	os)
sched_get_priority_max()	(in	module	os)
sched_get_priority_min()	(in	module	os)
sched_getaffinity()	(in	module	os)
sched_getparam()	(in	module	os)
sched_getscheduler()	(in	module	os)
SCHED_IDLE	(in	module	os)
SCHED_OTHER	(in	module	os)
sched_param	(class	in	os)

tuple
sinh()	(in	module	cmath)

(in	module	math)
site	(module)
site	command	line	option

--user-base
--user-site

site-packages
directory

site-python
directory

sitecustomize
module

sixtofour	(ipaddress.IPv6Address	attribute)
size	(struct.Struct	attribute)

(tarfile.TarInfo	attribute)
(tracemalloc.Statistic	attribute)
(tracemalloc.StatisticDiff	attribute)
(tracemalloc.Trace	attribute)

size()	(ftplib.FTP	method)
(in	module	mmap)

size_diff	(tracemalloc.StatisticDiff	attribute)
Sized	(class	in	collections.abc)
sizeof()	(in	module	ctypes)
SKIP	(in	module	doctest)
skip()	(chunk.Chunk	method)

(in	module	unittest)
skip_unless_symlink()	(in	module
test.support)
skipIf()	(in	module	unittest)
skipinitialspace	(csv.Dialect	attribute)
skipped	(unittest.TestResult	attribute)
skippedEntity()
(xml.sax.handler.ContentHandler	method)
SkipTest
skipTest()	(unittest.TestCase	method)
skipUnless()	(in	module	unittest)

sched_priority	(os.sched_param	attribute)
SCHED_RESET_ON_FORK	(in	module	os)
SCHED_RR	(in	module	os)
sched_rr_get_interval()	(in	module	os)
sched_setaffinity()	(in	module	os)
sched_setparam()	(in	module	os)
sched_setscheduler()	(in	module	os)
SCHED_SPORADIC	(in	module	os)
sched_yield()	(in	module	os)
scheduler	(class	in	sched)
schema	(in	module	msilib)
scope,	[1]
Screen	(class	in	turtle)
screensize()	(in	module	turtle)
script_from_examples()	(in	module	doctest)
scroll()	(curses.window	method)
ScrolledCanvas	(class	in	turtle)
scrollok()	(curses.window	method)
sdterr

stdin	stdout
search

path,	module,	[1],	[2],	[3],	[4],	[5],	[6],	[7]
search()	(imaplib.IMAP4	method)

(in	module	re)
(re.regex	method)

second	(datetime.datetime	attribute)
(datetime.time	attribute)

SECTCRE	(in	module	configparser)
sections()	(configparser.ConfigParser	method)
secure	(http.cookiejar.Cookie	attribute)
secure	hash	algorithm,	SHA1,	SHA224,
SHA256,	SHA384,	SHA512
Secure	Sockets	Layer
security

CGI
see()	(tkinter.ttk.Treeview	method)
seed()	(in	module	random)
seek()	(chunk.Chunk	method)

SLASH	(in	module	token)
SLASHEQUAL	(in	module	token)
slave()	(nntplib.NNTP	method)
sleep()	(in	module	asyncio)

(in	module	time)
slice,	[1]

assignment
built-in	function,	[1]
object
operation

slice()	(built-in	function)
slicing,	[1],	[2]

assignment
SMTP

protocol
SMTP	(class	in	smtplib)

(in	module	email.policy)
smtp_server	(smtpd.SMTPChannel	attribute)
SMTP_SSL	(class	in	smtplib)
smtp_state	(smtpd.SMTPChannel	attribute)
SMTPAuthenticationError
SMTPChannel	(class	in	smtpd)
SMTPConnectError
smtpd	(module)
SMTPDataError
SMTPException
SMTPHandler	(class	in	logging.handlers)
SMTPHeloError
smtplib	(module)
SMTPRecipientsRefused
SMTPResponseException
SMTPSenderRefused
SMTPServer	(class	in	smtpd)
SMTPServerDisconnected
Snapshot	(class	in	tracemalloc)
SND_ALIAS	(in	module	winsound)
SND_ASYNC	(in	module	winsound)
SND_FILENAME	(in	module	winsound)

(in	module	mmap)
(io.IOBase	method)
(io.TextIOBase	method)

SEEK_CUR	(in	module	os)
SEEK_END	(in	module	os)
SEEK_SET	(in	module	os)
seekable()	(io.IOBase	method)
seen_greeting	(smtpd.SMTPChannel	attribute)
Select	(class	in	tkinter.tix)
select	(module)
select()	(imaplib.IMAP4	method)

(in	module	select)
(selectors.BaseSelector	method)
(tkinter.ttk.Notebook	method)

selected_npn_protocol()	(ssl.SSLSocket
method)
selection()	(tkinter.ttk.Treeview	method)
selection_add()	(tkinter.ttk.Treeview	method)
selection_remove()	(tkinter.ttk.Treeview	method)
selection_set()	(tkinter.ttk.Treeview	method)
selection_toggle()	(tkinter.ttk.Treeview	method)
selector	(urllib.request.Request	attribute)
SelectorKey	(class	in	selectors)
selectors	(module)
SelectSelector	(class	in	selectors)
Semaphore	(class	in	asyncio)

(class	in	multiprocessing)
(class	in	threading)

Semaphore()
(multiprocessing.managers.SyncManager
method)
semaphores,	binary
SEMI	(in	module	token)
send()	(asyncore.dispatcher	method)

(generator	method)
(http.client.HTTPConnection	method)
(imaplib.IMAP4	method)

SND_LOOP	(in	module	winsound)
SND_MEMORY	(in	module	winsound)
SND_NODEFAULT	(in	module	winsound)
SND_NOSTOP	(in	module	winsound)
SND_NOWAIT	(in	module	winsound)
SND_PURGE	(in	module	winsound)
sndhdr	(module)
sniff()	(csv.Sniffer	method)
Sniffer	(class	in	csv)
sock_accept()	(asyncio.BaseEventLoop
method)
SOCK_CLOEXEC	(in	module	socket)
sock_connect()	(asyncio.BaseEventLoop
method)
SOCK_DGRAM	(in	module	socket)
SOCK_NONBLOCK	(in	module	socket)
SOCK_RAW	(in	module	socket)
SOCK_RDM	(in	module	socket)
sock_recv()	(asyncio.BaseEventLoop
method)
sock_sendall()	(asyncio.BaseEventLoop
method)
SOCK_SEQPACKET	(in	module	socket)
SOCK_STREAM	(in	module	socket)
socket

module
object

socket	(module)
(socketserver.BaseServer	attribute)

socket()	(imaplib.IMAP4	method)
(in	module	socket)

socket_type	(socketserver.BaseServer
attribute)
SocketHandler	(class	in	logging.handlers)
socketpair()	(in	module	socket)
socketserver	(module)
SocketType	(in	module	socket)
SOL_RDS	(in	module	socket)

(logging.handlers.DatagramHandler	 method)
(logging.handlers.SocketHandler	method)
(multiprocessing.Connection	method)
(socket.socket	method)

send_bytes()	(multiprocessing.Connection
method)
send_error()
(http.server.BaseHTTPRequestHandler	method)
send_flowing_data()	(formatter.writer	method)
send_header()
(http.server.BaseHTTPRequestHandler	method)
send_hor_rule()	(formatter.writer	method)
send_label_data()	(formatter.writer	method)
send_line_break()	(formatter.writer	method)
send_literal_data()	(formatter.writer	method)
send_message()	(smtplib.SMTP	method)
send_paragraph()	(formatter.writer	method)
send_response()
(http.server.BaseHTTPRequestHandler	method)
send_response_only()
(http.server.BaseHTTPRequestHandler	method)
send_signal()
(asyncio.asyncio.subprocess.Process	method)

(asyncio.BaseSubprocessTransport	 method)
(subprocess.Popen	method)

sendall()	(socket.socket	method)
sendcmd()	(ftplib.FTP	method)
sendfile()	(in	module	os)

(wsgiref.handlers.BaseHandler	method)
sendmail()	(smtplib.SMTP	method)
sendmsg()	(socket.socket	method)
sendto()	(asyncio.DatagramTransport	method)

(socket.socket	method)
sentinel	(in	module	unittest.mock)

(multiprocessing.Process	attribute)
sep	(in	module	os)
sequence

SOMAXCONN	(in	module	socket)
sort()	(imaplib.IMAP4	method)

(list	method)
sort_stats()	(pstats.Stats	method)
sorted()	(built-in	function)
sortTestMethodsUsing	(unittest.TestLoader
attribute)
source	(doctest.Example	attribute)

(pdb	command)
(shlex.shlex	attribute)

source	character	set
source_from_cache()	(in	module	imp)

(in	module	importlib.util)
SOURCE_SUFFIXES	(in	module
importlib.machinery)
source_to_code()
(importlib.abc.InspectLoader	method)
SourceFileLoader	(class	in
importlib.machinery)
sourcehook()	(shlex.shlex	method)
SourcelessFileLoader	(class	in
importlib.machinery)
SourceLoader	(class	in	importlib.abc)
space
span()	(re.match	method)
spawn()	(distutils.ccompiler.CCompiler
method)

(in	module	pty)
spawnl()	(in	module	os)
spawnle()	(in	module	os)
spawnlp()	(in	module	os)
spawnlpe()	(in	module	os)
spawnv()	(in	module	os)
spawnve()	(in	module	os)
spawnvp()	(in	module	os)
spawnvpe()	(in	module	os)
spec_from_file_location()	(in	module
importlib.util)

item
iteration
object,	[1],	[2],	[3],	[4],	[5],	[6],	[7],	[8]
types,	immutable
types,	mutable
types,	operations	on,	[1]

Sequence	(class	in	collections.abc)
sequence	(in	module	msilib)
sequence2st()	(in	module	parser)
SequenceMatcher	(class	in	difflib),	[1]
serializing

objects
serve_forever()	(socketserver.BaseServer
method)
server

WWW,	[1]
server	(http.server.BaseHTTPRequestHandler
attribute)
server_activate()	(socketserver.BaseServer
method)
server_address	(socketserver.BaseServer
attribute)
server_bind()	(socketserver.BaseServer
method)
server_software	(wsgiref.handlers.BaseHandler
attribute)
server_version
(http.server.BaseHTTPRequestHandler
attribute)

(http.server.SimpleHTTPRequestHandler
attribute)

ServerProxy	(class	in	xmlrpc.client)
service_actions()	(socketserver.BaseServer
method)
session_stats()	(ssl.SSLContext	method)
set

display

spec_from_loader()	(in	module	importlib.util)
special

attribute
attribute,	generic

special	method
specified_attributes
(xml.parsers.expat.xmlparser	attribute)
speed()	(in	module	turtle)

(ossaudiodev.oss_audio_device	method)
split()	(in	module	os.path)

(in	module	re)
(in	module	shlex)
(re.regex	method)
(str	method)

split_quoted()	(in	module	distutils.util)
splitdrive()	(in	module	os.path)
splitext()	(in	module	os.path)
splitlines()	(str	method)
SplitResult	(class	in	urllib.parse)
SplitResultBytes	(class	in	urllib.parse)
splitunc()	(in	module	os.path)
SpooledTemporaryFile()	(in	module	tempfile)
sprintf-style	formatting
spwd	(module)
sqlite3	(module)
sqlite_version	(in	module	sqlite3)
sqlite_version_info	(in	module	sqlite3)
sqrt()	(decimal.Context	method)

(decimal.Decimal	method)
(in	module	cmath)
(in	module	math)

SSL
ssl	(module)
ssl_version	(ftplib.FTP_TLS	attribute)
SSLContext	(class	in	ssl)
SSLEOFError
SSLError

object,	[1],	[2],	[3]
set	(built-in	class)
Set	(class	in	collections.abc)
Set	Breakpoint
set	type

object
set()	(asyncio.Event	method)

(configparser.ConfigParser	method)
(configparser.RawConfigParser	method)
(http.cookies.Morsel	method)
(ossaudiodev.oss_mixer_device	method)
(test.support.EnvironmentVarGuard	method)
(threading.Event	method)
(tkinter.ttk.Combobox	method)
(tkinter.ttk.Treeview	method)
(xml.etree.ElementTree.Element	method)

SET_ADD	(opcode)
set_all()
set_allowed_domains()
(http.cookiejar.DefaultCookiePolicy	method)
set_app()	(wsgiref.simple_server.WSGIServer
method)
set_authorizer()	(sqlite3.Connection	method)
set_blocked_domains()
(http.cookiejar.DefaultCookiePolicy	method)
set_boundary()	(email.message.Message
method)
set_break()	(bdb.Bdb	method)
set_charset()	(email.message.Message	method)
set_children()	(tkinter.ttk.Treeview	method)
set_ciphers()	(ssl.SSLContext	method)
set_completer()	(in	module	readline)
set_completer_delims()	(in	module	readline)
set_completion_display_matches_hook()	(in
module	readline)
set_content()
(email.contentmanager.ContentManager

SSLSyscallError
SSLWantReadError
SSLWantWriteError
SSLZeroReturnError
st()	(in	module	turtle)
st2list()	(in	module	parser)
st2tuple()	(in	module	parser)
ST_ATIME	(in	module	stat)
ST_CTIME	(in	module	stat)
ST_DEV	(in	module	stat)
ST_GID	(in	module	stat)
ST_INO	(in	module	stat)
ST_MODE	(in	module	stat)
ST_MTIME	(in	module	stat)
ST_NLINK	(in	module	stat)
ST_SIZE	(in	module	stat)
ST_UID	(in	module	stat)
stack

execution
trace

stack	viewer
stack()	(in	module	inspect)
stack_effect()	(in	module	dis)
stack_size()	(in	module	_thread)

(in	module	threading)
stackable

streams
stamp()	(in	module	turtle)
standard

output
Standard	C
standard	input
standard_b64decode()	(in	module	base64)
standard_b64encode()	(in	module	base64)
standard_error	(2to3	fixer)
standend()	(curses.window	method)
standout()	(curses.window	method)
STAR	(in	module	token)

method)
(email.message.EmailMessage	method)
(in	module	email.contentmanager)

set_continue()	(bdb.Bdb	method)
set_cookie()	(http.cookiejar.CookieJar	method)
set_cookie_if_ok()	(http.cookiejar.CookieJar
method)
set_current()	(msilib.Feature	method)
set_data()	(importlib.abc.SourceLoader	method)

(importlib.machinery.SourceFileLoader
method)

set_date()	(mailbox.MaildirMessage	method)
set_debug()	(asyncio.BaseEventLoop	method)

(in	module	gc)
set_debuglevel()	(ftplib.FTP	method)

(http.client.HTTPConnection	method)
(nntplib.NNTP	method)
(poplib.POP3	method)
(smtplib.SMTP	method)
(telnetlib.Telnet	method)

set_default_executor()	(asyncio.BaseEventLoop
method)
set_default_type()	(email.message.Message
method)
set_default_verify_paths()	(ssl.SSLContext
method)
set_defaults()	(argparse.ArgumentParser
method)

(optparse.OptionParser	method)
set_ecdh_curve()	(ssl.SSLContext	method)
set_errno()	(in	module	ctypes)
set_event_loop()
(asyncio.AbstractEventLoopPolicy	method)

(in	module	asyncio)
set_event_loop_policy()	(in	module	asyncio)
set_exception()	(asyncio.Future	method)

(asyncio.StreamReader	method)

STAREQUAL	(in	module	token)
starmap()	(in	module	itertools)

(multiprocessing.pool.Pool	method)
starmap_async()	(multiprocessing.pool.Pool
method)
start	(slice	object	attribute)

(UnicodeError	attribute)
start()	(in	module	tracemalloc)

(logging.handlers.QueueListener	method)
(multiprocessing.Process	method)
(multiprocessing.managers.BaseManager
method)
(re.match	method)
(threading.Thread	method)
(tkinter.ttk.Progressbar	method)
(xml.etree.ElementTree.TreeBuilder
method)

start_color()	(in	module	curses)
start_component()	(msilib.Directory	method)
start_new_thread()	(in	module	_thread)
start_server()	(in	module	asyncio)
start_unix_server()	(in	module	asyncio)
StartCdataSectionHandler()
(xml.parsers.expat.xmlparser	method)
StartDoctypeDeclHandler()
(xml.parsers.expat.xmlparser	method)
startDocument()
(xml.sax.handler.ContentHandler	method)
startElement()
(xml.sax.handler.ContentHandler	method)
StartElementHandler()
(xml.parsers.expat.xmlparser	method)
startElementNS()
(xml.sax.handler.ContentHandler	method)
STARTF_USESHOWWINDOW	(in	module
subprocess)
STARTF_USESTDHANDLES	(in	module

(concurrent.futures.Future	method)
set_exception_handler()
(asyncio.BaseEventLoop	method)
set_executable()	(in	module	multiprocessing)
set_executables()	(distutils.ccompiler.CCompiler
method)
set_flags()	(mailbox.MaildirMessage	method)

(mailbox.MMDFMessage	method)
(mailbox.mboxMessage	method)

set_from()	(mailbox.mboxMessage	method)
(mailbox.MMDFMessage	method)

set_handle_inheritable()	(in	module	os)
set_history_length()	(in	module	readline)
set_include_dirs()	(distutils.ccompiler.CCompiler
method)
set_info()	(mailbox.MaildirMessage	method)
set_inheritable()	(in	module	os)

(socket.socket	method)
set_labels()	(mailbox.BabylMessage	method)
set_last_error()	(in	module	ctypes)
set_libraries()	(distutils.ccompiler.CCompiler
method)
set_library_dirs()	(distutils.ccompiler.CCompiler
method)
set_link_objects()	(distutils.ccompiler.CCompiler
method)
set_literal	(2to3	fixer)
set_loader()	(in	module	importlib.util)
set_next()	(bdb.Bdb	method)
set_nonstandard_attr()	(http.cookiejar.Cookie
method)
set_npn_protocols()	(ssl.SSLContext	method)
set_ok()	(http.cookiejar.CookiePolicy	method)
set_option_negotiation_callback()
(telnetlib.Telnet	method)
set_output_charset()	(gettext.NullTranslations
method)
set_package()	(in	module	importlib.util)

subprocess)
startfile()	(in	module	os)
StartNamespaceDeclHandler()
(xml.parsers.expat.xmlparser	method)
startPrefixMapping()
(xml.sax.handler.ContentHandler	method)
startswith()	(str	method)
startTest()	(unittest.TestResult	method)
startTestRun()	(unittest.TestResult	method)
starttls()	(imaplib.IMAP4	method)

(nntplib.NNTP	method)
(smtplib.SMTP	method)

STARTUPINFO	(class	in	subprocess)
stat

module
stat	(module)
stat()	(in	module	os)

(nntplib.NNTP	method)
(pathlib.Path	method)
(poplib.POP3	method)

stat_float_times()	(in	module	os)
state()	(tkinter.ttk.Widget	method)
statement

*,	[1]
**,	[1]
@
assert,	[1]
assignment,	[1]
assignment,	augmented
break,	[1],	[2],	[3],	
class
compound
continue,	[1],	[2],	[3]
def
del,	[1],	[2],	[3],	[4]
except

set_param()	(email.message.Message	method)
set_pasv()	(ftplib.FTP	method)
set_payload()	(email.message.Message
method)
set_policy()	(http.cookiejar.CookieJar	method)
set_position()	(xdrlib.Unpacker	method)
set_pre_input_hook()	(in	module	readline)
set_progress_handler()	(sqlite3.Connection
method)
set_proxy()	(urllib.request.Request	method)
set_python_build()	(in	module
distutils.sysconfig)
set_quit()	(bdb.Bdb	method)
set_recsrc()	(ossaudiodev.oss_mixer_device
method)
set_result()	(asyncio.Future	method)

(concurrent.futures.Future	method)
set_return()	(bdb.Bdb	method)
set_running_or_notify_cancel()
(concurrent.futures.Future	method)
set_runtime_library_dirs()
(distutils.ccompiler.CCompiler	method)
set_seq1()	(difflib.SequenceMatcher	method)
set_seq2()	(difflib.SequenceMatcher	method)
set_seqs()	(difflib.SequenceMatcher	method)
set_sequences()	(mailbox.MH	method)

(mailbox.MHMessage	method)
set_server_documentation()
(xmlrpc.server.DocCGIXMLRPCRequestHandler
method)

(xmlrpc.server.DocXMLRPCServer	method)
set_server_name()
(xmlrpc.server.DocCGIXMLRPCRequestHandler
method)

(xmlrpc.server.DocXMLRPCServer	method)
set_server_title()
(xmlrpc.server.DocCGIXMLRPCRequestHandler
method)

expression
for,	[1],	[2],	[3]
from
future
global,	[1]
if,	[1]
import,	[1],	[2],	[3]
loop,	[1],	[2],	[3]
nonlocal
pass
raise,	[1]
return,	[1],	[2]
simple
try,	[1],	[2]
while,	[1],	[2],	[3]
with,	[1]
yield

statement	grouping
staticmethod

built-in	function
staticmethod()	(built-in	function)
Statistic	(class	in	tracemalloc)
StatisticDiff	(class	in	tracemalloc)
statistics	(module)
statistics()	(tracemalloc.Snapshot	method)
StatisticsError
Stats	(class	in	pstats)
status	(http.client.HTTPResponse	attribute)
status()	(imaplib.IMAP4	method)
statvfs()	(in	module	os)
STD_ERROR_HANDLE	(in	module
subprocess)
STD_INPUT_HANDLE	(in	module
subprocess)
STD_OUTPUT_HANDLE	(in	module
subprocess)

(xmlrpc.server.DocXMLRPCServer	method)
set_servername_callback()	(ssl.SSLContext
method)
set_spacing()	(formatter.formatter	method)
set_start_method()	(in	module	multiprocessing)
set_startup_hook()	(in	module	readline)
set_step()	(bdb.Bdb	method)
set_subdir()	(mailbox.MaildirMessage	method)
set_terminator()	(asynchat.async_chat	method)
set_threshold()	(in	module	gc)
set_trace()	(bdb.Bdb	method)

(in	module	bdb)
(in	module	pdb)
(pdb.Pdb	method)

set_trace_callback()	(sqlite3.Connection
method)
set_transport()	(asyncio.StreamReader	method)
set_tunnel()	(http.client.HTTPConnection
method)
set_type()	(email.message.Message	method)
set_unittest_reportflags()	(in	module	doctest)
set_unixfrom()	(email.message.Message
method)
set_until()	(bdb.Bdb	method)
set_url()	(urllib.robotparser.RobotFileParser
method)
set_usage()	(optparse.OptionParser	method)
set_userptr()	(curses.panel.Panel	method)
set_visible()	(mailbox.BabylMessage	method)
set_wakeup_fd()	(in	module	signal)
set_write_buffer_limits()	(asyncio.WriteTransport
method)
setacl()	(imaplib.IMAP4	method)
setannotation()	(imaplib.IMAP4	method)
setattr()	(built-in	function)
setAttribute()	(xml.dom.Element	method)
setAttributeNode()	(xml.dom.Element	method)
setAttributeNodeNS()	(xml.dom.Element

StdButtonBox	(class	in	tkinter.tix)
stderr	(asyncio.asyncio.subprocess.Process
attribute)

(in	module	sys),	[1]
(subprocess.Popen	attribute)

stdev()	(in	module	statistics)
stdin

stdout	sdterr
stdin	(asyncio.asyncio.subprocess.Process
attribute)

(in	module	sys),	[1]
(subprocess.Popen	attribute)

stdio
stdout

sdterr,	stdin
stdout	(asyncio.asyncio.subprocess.Process
attribute)
STDOUT	(in	module	subprocess)
stdout	(in	module	sys)

(subprocess.Popen	attribute)
step	(pdb	command)

(slice	object	attribute)
step()	(tkinter.ttk.Progressbar	method)
stereocontrols()
(ossaudiodev.oss_mixer_device	method)
stls()	(poplib.POP3	method)
stop	(slice	object	attribute)
stop()	(asyncio.BaseEventLoop	method)

(in	module	tracemalloc)
(logging.handlers.QueueListener	method)
(tkinter.ttk.Progressbar	method)
(unittest.TestResult	method)

stop_here()	(bdb.Bdb	method)
StopIteration

exception,	[1]
stopListening()	(in	module	logging.config)
stopTest()	(unittest.TestResult	method)

method)
setAttributeNS()	(xml.dom.Element	method)
SetBase()	(xml.parsers.expat.xmlparser
method)
setblocking()	(socket.socket	method)
setByteStream()
(xml.sax.xmlreader.InputSource	method)
setcbreak()	(in	module	tty)
setCharacterStream()
(xml.sax.xmlreader.InputSource	method)
setcheckinterval()	(in	module	sys)
setcomptype()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setContentHandler()
(xml.sax.xmlreader.XMLReader	method)
setcontext()	(in	module	decimal)
setDaemon()	(threading.Thread	method)
setdefault()	(dict	method)
setdefaulttimeout()	(in	module	socket)
setdlopenflags()	(in	module	sys)
setDocumentLocator()
(xml.sax.handler.ContentHandler	method)
setDTDHandler()
(xml.sax.xmlreader.XMLReader	method)
setegid()	(in	module	os)
setEncoding()	(xml.sax.xmlreader.InputSource
method)
setEntityResolver()
(xml.sax.xmlreader.XMLReader	method)
setErrorHandler()
(xml.sax.xmlreader.XMLReader	method)
seteuid()	(in	module	os)
setFeature()	(xml.sax.xmlreader.XMLReader
method)
setfirstweekday()	(in	module	calendar)
setfmt()	(ossaudiodev.oss_audio_device
method)

stopTestRun()	(unittest.TestResult	method)
storbinary()	(ftplib.FTP	method)
store()	(imaplib.IMAP4	method)
STORE_ACTIONS	(optparse.Option
attribute)
STORE_ATTR	(opcode)
STORE_DEREF	(opcode)
STORE_FAST	(opcode)
STORE_GLOBAL	(opcode)
STORE_MAP	(opcode)
STORE_NAME	(opcode)
STORE_SUBSCR	(opcode)
storlines()	(ftplib.FTP	method)
str	(built-in	class)

(see	also	string)
str()	(in	module	locale)
strcoll()	(in	module	locale)
StreamError
StreamHandler	(class	in	logging)
StreamReader	(class	in	asyncio)

(class	in	codecs)
StreamReaderProtocol	(class	in	asyncio)
StreamReaderWriter	(class	in	codecs)
StreamRecoder	(class	in	codecs)
streams

stackable
StreamWriter	(class	in	asyncio)

(class	in	codecs)
strerror()

(in	module	os)
strftime()	(datetime.date	method)

(datetime.datetime	method)
(datetime.time	method)
(in	module	time)

strict	(csv.Dialect	attribute)
(in	module	email.policy)

strict_domain

setFormatter()	(logging.Handler	method)
setframerate()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setgid()	(in	module	os)
setgroups()	(in	module	os)
seth()	(in	module	turtle)
setheading()	(in	module	turtle)
sethostname()	(in	module	socket)
SetInteger()	(msilib.Record	method)
setitem()	(in	module	operator)
setitimer()	(in	module	signal)
setLevel()	(logging.Handler	method)

(logging.Logger	method)
setlocale()	(in	module	locale)
setLocale()	(xml.sax.xmlreader.XMLReader
method)
setLoggerClass()	(in	module	logging)
setlogmask()	(in	module	syslog)
setLogRecordFactory()	(in	module	logging)
setmark()	(aifc.aifc	method)
setMaxConns()
(urllib.request.CacheFTPHandler	method)
setmode()	(in	module	msvcrt)
setName()	(threading.Thread	method)
setnchannels()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setnframes()	(aifc.aifc	method)
(sunau.AU_write	method)
(wave.Wave_write	method)

SetParamEntityParsing()
(xml.parsers.expat.xmlparser	method)
setparameters()	(ossaudiodev.oss_audio_device
method)
setparams()	(aifc.aifc	method)

(sunau.AU_write	method)

(http.cookiejar.DefaultCookiePolicy	attribute)
strict_errors()	(in	module	codecs)
strict_ns_domain
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_ns_set_initial_dollar
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_ns_set_path
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_ns_unverifiable
(http.cookiejar.DefaultCookiePolicy	attribute)
strict_rfc2965_unverifiable
(http.cookiejar.DefaultCookiePolicy	attribute)
strides	(memoryview	attribute)
string

PyObject_Str	(C	function)
__format__()	(object	method)
__str__()	(object	method)
conversion,	[1]
format()	(built-in	function)
formatting
immutable	sequences
interpolation
item
methods
module
object,	[1],	[2]
object	representation
str	(built-in	class)
str()	(built-in	function)
text	sequence	type

STRING	(in	module	token)
string	(module)

(re.match	attribute)
string	literal
string_at()	(in	module	ctypes)
StringIO	(class	in	io)

(wave.Wave_write	method)
setpassword()	(zipfile.ZipFile	method)
setpgid()	(in	module	os)
setpgrp()	(in	module	os)
setpos()	(aifc.aifc	method)

(in	module	turtle)
(sunau.AU_read	method)
(wave.Wave_read	method)

setposition()	(in	module	turtle)
setpriority()	(in	module	os)
setprofile()	(in	module	sys)

(in	module	threading)
SetProperty()	(msilib.SummaryInformation
method)
setProperty()	(xml.sax.xmlreader.XMLReader
method)
setPublicId()	(xml.sax.xmlreader.InputSource
method)
setquota()	(imaplib.IMAP4	method)
setraw()	(in	module	tty)
setrecursionlimit()	(in	module	sys)
setregid()	(in	module	os)
setresgid()	(in	module	os)
setresuid()	(in	module	os)
setreuid()	(in	module	os)
setrlimit()	(in	module	resource)
setsampwidth()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

setscrreg()	(curses.window	method)
setsid()	(in	module	os)
setsockopt()	(socket.socket	method)
setstate()	(codecs.IncrementalDecoder	method)

(codecs.IncrementalEncoder	method)
(in	module	random)

SetStream()	(msilib.Record	method)
SetString()	(msilib.Record	method)

stringprep	(module)
strings,	documentation
strip()	(str	method)
strip_dirs()	(pstats.Stats	method)
stripspaces	(curses.textpad.Textbox
attribute)
strptime()	(datetime.datetime	class	method)

(in	module	time)
strtobool()	(in	module	distutils.util)
struct

module
Struct	(class	in	struct)
struct	(module)
struct	sequence
struct_time	(class	in	time)
Structure	(class	in	ctypes)
structures

C
strxfrm()	(in	module	locale)
STType	(in	module	parser)
style

coding
Style	(class	in	tkinter.ttk)
sub()	(in	module	operator)

(in	module	re)
(re.regex	method)

sub_commands	(distutils.cmd.Command
attribute)
subclassing

immutable	types
subdirs	(filecmp.dircmp	attribute)
SubElement()	(in	module
xml.etree.ElementTree)
submit()	(concurrent.futures.Executor
method)
submodule_search_locations
(importlib.machinery.ModuleSpec	attribute)
subn()	(in	module	re)

setswitchinterval()	(in	module	sys),	[1]
setSystemId()	(xml.sax.xmlreader.InputSource
method)
setsyx()	(in	module	curses)
setTarget()	(logging.handlers.MemoryHandler
method)
settiltangle()	(in	module	turtle)
settimeout()	(socket.socket	method)
setTimeout()	(urllib.request.CacheFTPHandler
method)
settrace()	(in	module	sys)

(in	module	threading)
settscdump()	(in	module	sys)
setuid()	(in	module	os)
setundobuffer()	(in	module	turtle)
setup()	(in	module	distutils.core)

(in	module	turtle)
(socketserver.RequestHandler	method)

setUp()	(unittest.TestCase	method)
setup_environ()	(wsgiref.handlers.BaseHandler
method)
SETUP_EXCEPT	(opcode)
SETUP_FINALLY	(opcode)
SETUP_LOOP	(opcode)
setup_python()	(venv.EnvBuilder	method)
setup_scripts()	(venv.EnvBuilder	method)
setup_testing_defaults()	(in	module	wsgiref.util)
SETUP_WITH	(opcode)
setUpClass()	(unittest.TestCase	method)
setupterm()	(in	module	curses)
SetValue()	(in	module	winreg)
SetValueEx()	(in	module	winreg)
setworldcoordinates()	(in	module	turtle)
setx()	(in	module	turtle)
setxattr()	(in	module	os)
sety()	(in	module	turtle)
SF_APPEND	(in	module	stat)
SF_ARCHIVED	(in	module	stat)

(re.regex	method)
subnets()	(ipaddress.IPv4Network	method)

(ipaddress.IPv6Network	method)
Subnormal	(class	in	decimal)
suboffsets	(memoryview	attribute)
subpad()	(curses.window	method)
subprocess	(module)
subprocess_exec()	(asyncio.BaseEventLoop
method)
subprocess_shell()	(asyncio.BaseEventLoop
method)
SubprocessError
SubprocessProtocol	(class	in	asyncio)
subscribe()	(imaplib.IMAP4	method)
subscript

assignment
operation

subscription,	[1],	[2],	[3]
assignment

subsequent_indent	(textwrap.TextWrapper
attribute)
subst_vars()	(in	module	distutils.util)
substitute()	(string.Template	method)
subTest()	(unittest.TestCase	method)
subtract()	(collections.Counter	method)

(decimal.Context	method)
subtraction
subtype
(email.headerregistry.ContentTypeHeader
attribute)
subwin()	(curses.window	method)
successful()
(multiprocessing.pool.AsyncResult	method)
suffix_map	(in	module	mimetypes)

(mimetypes.MimeTypes	attribute)
suite
suite()	(in	module	parser)
suiteClass	(unittest.TestLoader	attribute)

SF_IMMUTABLE	(in	module	stat)
SF_MNOWAIT	(in	module	os)
SF_NODISKIO	(in	module	os)
SF_NOUNLINK	(in	module	stat)
SF_SNAPSHOT	(in	module	stat)
SF_SYNC	(in	module	os)
Shape	(class	in	turtle)
shape	(memoryview	attribute)
shape()	(in	module	turtle)
shapesize()	(in	module	turtle)
shapetransform()	(in	module	turtle)
share()	(socket.socket	method)
shared_object_filename()
(distutils.ccompiler.CCompiler	method)
shearfactor()	(in	module	turtle)
Shelf	(class	in	shelve)
shelve

module
shelve	(module)
shield()	(in	module	asyncio)
shift()	(decimal.Context	method)

(decimal.Decimal	method)
shift_path_info()	(in	module	wsgiref.util)
shifting

operation
operations

shlex	(class	in	shlex)
(module)

shortDescription()	(unittest.TestCase	method)
shorten()	(in	module	textwrap)
shouldFlush()
(logging.handlers.BufferingHandler	method)

(logging.handlers.MemoryHandler	method)
shouldStop	(unittest.TestResult	attribute)
show()	(curses.panel.Panel	method)
show_code()	(in	module	dis)
show_compilers()	(in	module	distutils.ccompiler)
showsyntaxerror()	(code.InteractiveInterpreter

sum()	(built-in	function)
sum_list()
sum_sequence(),	[1]
summarize()	(doctest.DocTestRunner
method)
summarize_address_range()	(in	module
ipaddress)
sunau	(module)
super	(pyclbr.Class	attribute)
super()	(built-in	function)
supernet()	(ipaddress.IPv4Network	method)

(ipaddress.IPv6Network	method)
supports_bytes_environ	(in	module	os)
supports_dir_fd	(in	module	os)
supports_effective_ids	(in	module	os)
supports_fd	(in	module	os)
supports_follow_symlinks	(in	module	os)
supports_unicode_filenames	(in	module
os.path)
suppress()	(in	module	contextlib)
SuppressCrashReport	(class	in	test.support)
SW_HIDE	(in	module	subprocess)
swapcase()	(str	method)
sym_name	(in	module	symbol)
Symbol	(class	in	symtable)
symbol	(module)
SymbolTable	(class	in	symtable)
symlink()	(in	module	os)
symlink_to()	(pathlib.Path	method)
symmetric_difference()	(set	method)
symmetric_difference_update()	(set	method)
symtable	(module)
symtable()	(in	module	symtable)
sync()	(dbm.dumb.dumbdbm	method)

(dbm.gnu.gdbm	method)
(in	module	os)
(ossaudiodev.oss_audio_device	method)
(shelve.Shelf	method)

method)
showtraceback()	(code.InteractiveInterpreter
method)
showturtle()	(in	module	turtle)
showwarning()	(in	module	warnings)
shuffle()	(in	module	random)
shutdown()	(concurrent.futures.Executor
method)

(imaplib.IMAP4	method)
(in	module	logging)
(multiprocessing.managers.BaseManager
method)
(socket.socket	method)
(socketserver.BaseServer	method)

shutil	(module)
side_effect	(unittest.mock.Mock	attribute)
SIG_BLOCK	(in	module	signal)
SIG_DFL	(in	module	signal)

syncdown()	(curses.window	method)
synchronized()	(in	module
multiprocessing.sharedctypes)
SyncManager	(class	in
multiprocessing.managers)
syncok()	(curses.window	method)
syncup()	(curses.window	method)
syntax
SyntaxErr
SyntaxError
SyntaxWarning
sys

module,	[1],	[2],	[3]
sys	(module)
sys.exc_info
sys.last_traceback
sys.meta_path
sys.modules
sys.path
sys.path_hooks
sys.path_importer_cache
sys.stderr
sys.stdin
sys.stdout
sys_exc	(2to3	fixer)
sys_version
(http.server.BaseHTTPRequestHandler
attribute)
sysconf()	(in	module	os)
sysconf_names	(in	module	os)
sysconfig	(module)
syslog	(module)
syslog()	(in	module	syslog)
SysLogHandler	(class	in	logging.handlers)
system()	(in	module	os)

(in	module	platform)
system_alias()	(in	module	platform)
SystemError

(built-in	exception)
SystemExit

(built-in	exception)
systemId	(xml.dom.DocumentType	attribute)
SystemRandom	(class	in	random)
SystemRoot

T
T_FMT	(in	module	locale)
T_FMT_AMPM	(in	module	locale)
tab
tab()	(tkinter.ttk.Notebook	method)
TabError
tabnanny	(module)
tabs()	(tkinter.ttk.Notebook	method)
tabsize	(textwrap.TextWrapper
attribute)
tabular

data
tag	(xml.etree.ElementTree.Element
attribute)
tag_bind()	(tkinter.ttk.Treeview
method)
tag_configure()	(tkinter.ttk.Treeview
method)
tag_has()	(tkinter.ttk.Treeview	method)
tagName	(xml.dom.Element	attribute)
tail	(xml.etree.ElementTree.Element
attribute)
take_snapshot()	(in	module
tracemalloc)
takewhile()	(in	module	itertools)
tan()	(in	module	cmath)

(in	module	math)
tanh()	(in	module	cmath)

(in	module	math)
TarError
TarFile	(class	in	tarfile),	[1]
tarfile	(module)
target

deletion
list,	[1],	[2]
list	assignment

Tix
tix_addbitmapdir()
(tkinter.tix.tixCommand	method)
tix_cget()	(tkinter.tix.tixCommand
method)
tix_configure()
(tkinter.tix.tixCommand	method)
tix_filedialog()
(tkinter.tix.tixCommand	method)
tix_getbitmap()
(tkinter.tix.tixCommand	method)
tix_getimage()
(tkinter.tix.tixCommand	method)
TIX_LIBRARY
tix_option_get()
(tkinter.tix.tixCommand	method)
tix_resetoptions()
(tkinter.tix.tixCommand	method)
tixCommand	(class	in	tkinter.tix)
Tk

(class	in	tkinter)
(class	in	tkinter.tix)

Tk	Option	Data	Types
TK_LIBRARY
Tkinter
tkinter	(module)
tkinter.scrolledtext	(module)
tkinter.tix	(module)
tkinter.ttk	(module)
TList	(class	in	tkinter.tix)
TLS
TMP
TMPDIR
to_bytes()	(int	method)
to_eng_string()	(decimal.Context
method)

list,	deletion
loop	control

target	(xml.dom.ProcessingInstruction
attribute)
TarInfo	(class	in	tarfile)
Task	(class	in	asyncio)
task_done()	(asyncio.JoinableQueue
method)

(multiprocessing.JoinableQueue
method)
(queue.Queue	method)

tb_frame	(traceback	attribute)
tb_lasti	(traceback	attribute)
tb_lineno	(traceback	attribute)
tb_next	(traceback	attribute)
tbreak	(pdb	command)
tcdrain()	(in	module	termios)
tcflow()	(in	module	termios)
tcflush()	(in	module	termios)
tcgetattr()	(in	module	termios)
tcgetpgrp()	(in	module	os)
Tcl()	(in	module	tkinter)
TCL_LIBRARY
tcsendbreak()	(in	module	termios)
tcsetattr()	(in	module	termios)
tcsetpgrp()	(in	module	os)
tearDown()	(unittest.TestCase	method)
tearDownClass()	(unittest.TestCase
method)
tee()	(in	module	itertools)
tell()	(aifc.aifc	method),	[1]

(chunk.Chunk	method)
(in	module	mmap)
(io.IOBase	method)
(io.TextIOBase	method)
(sunau.AU_read	method)
(sunau.AU_write	method)

(decimal.Decimal	method)
to_integral()	(decimal.Decimal
method)
to_integral_exact()
(decimal.Context	method)

(decimal.Decimal	method)
to_integral_value()
(decimal.Decimal	method)
to_sci_string()	(decimal.Context
method)
ToASCII()	(in	module
encodings.idna)
tobuf()	(tarfile.TarInfo	method)
tobytes()	(array.array	method)

(memoryview	method)
today()	(datetime.date	class
method)

(datetime.datetime	 class
method)

tofile()	(array.array	method)
tok_name	(in	module	token)
token

(module)
(shlex.shlex	attribute)

tokeneater()	(in	module	tabnanny)
tokenize	(module)
tokenize	command	line	option

-e,	--exact
-h,	--help

tokenize()	(in	module	tokenize)
tolist()	(array.array	method)

(memoryview	method)
(parser.ST	method)

tomono()	(in	module	audioop)
toordinal()	(datetime.date	method)

(datetime.datetime	method)
top()	(curses.panel.Panel	method)

(wave.Wave_read	method)
(wave.Wave_write	method)

Telnet	(class	in	telnetlib)
telnetlib	(module)
TEMP
temp_cwd()	(in	module	test.support)
temp_dir()	(in	module	test.support)
temp_umask()	(in	module	test.support)
tempdir	(in	module	tempfile)
tempfile	(module)
Template	(class	in	pipes)

(class	in	string)
template	(string.Template	attribute)
temporary

file
file	name

TemporaryDirectory()	(in	module
tempfile)
TemporaryFile()	(in	module	tempfile)
teredo	(ipaddress.IPv6Address
attribute)
TERM,	[1]
termattrs()	(in	module	curses)
terminal_size	(class	in	os)
terminate()
(asyncio.asyncio.subprocess.Process
method)

(asyncio.BaseSubprocessTransport
method)
(multiprocessing.Process	method)
(multiprocessing.pool.Pool	method)
(subprocess.Popen	method)

termination	model
termios	(module)
termname()	(in	module	curses)
ternary

operator

(poplib.POP3	method)
top_panel()	(in	module
curses.panel)
toprettyxml()
(xml.dom.minidom.Node	method)
tostereo()	(in	module	audioop)
tostring()	(array.array	method)

(in	 module
xml.etree.ElementTree)

tostringlist()	(in	module
xml.etree.ElementTree)
total_changes	(sqlite3.Connection
attribute)
total_ordering()	(in	module
functools)
total_seconds()
(datetime.timedelta	method)
totuple()	(parser.ST	method)
touch()	(pathlib.Path	method)
touchline()	(curses.window
method)
touchwin()	(curses.window
method)
tounicode()	(array.array	method)
ToUnicode()	(in	module
encodings.idna)
towards()	(in	module	turtle)
toxml()	(xml.dom.minidom.Node
method)
tp_as_mapping	(C	member)
tp_as_number	(C	member)
tp_as_sequence	(C	member)
tparm()	(in	module	curses)
trace

stack
Trace	(class	in	trace)

(class	in	tracemalloc)
trace	(module)

test
identity
membership

test	(doctest.DocTestFailure	attribute)
(doctest.UnexpectedException
attribute)
(module)

test()	(in	module	cgi)
test.support	(module)
TestCase	(class	in	unittest)
TestFailed
testfile()	(in	module	doctest)
TESTFN	(in	module	test.support)
TestLoader	(class	in	unittest)
testMethodPrefix	(unittest.TestLoader
attribute)
testmod()	(in	module	doctest)
TestResult	(class	in	unittest)
tests	(in	module	imghdr)
testsource()	(in	module	doctest)
testsRun	(unittest.TestResult	attribute)
TestSuite	(class	in	unittest)
testzip()	(zipfile.ZipFile	method)
text	(in	module	msilib)

(xml.etree.ElementTree.Element
attribute)

text	file
text	mode
text()	(msilib.Dialog	method)
text_factory	(sqlite3.Connection
attribute)
Textbox	(class	in	curses.textpad)
TextCalendar	(class	in	calendar)
textdomain()	(in	module	gettext)
TextFile	(class	in	distutils.text_file)
textinput()	(in	module	turtle)
TextIOBase	(class	in	io)
TextIOWrapper	(class	in	io)

trace	command	line	option
--help
--ignore-dir=<dir>
--ignore-module=<mod>
--version
-C,	--coverdir=<dir>
-R,	--no-report
-T,	--trackcalls
-c,	--count
-f,	--file=<file>
-g,	--timing
-l,	--listfuncs
-m,	--missing
-r,	--report
-s,	--summary
-t,	--trace

trace	function,	[1],	[2]
trace()	(in	module	inspect)
trace_dispatch()	(bdb.Bdb
method)
traceback

object,	[1],	[2],	[3],	[4]
Traceback	(class	in	tracemalloc)
traceback	(module)

(tracemalloc.Statistic	 attribute)
(tracemalloc.StatisticDiff
attribute)
(tracemalloc.Trace	attribute)

traceback_limit
(tracemalloc.Snapshot	attribute)

(wsgiref.handlers.BaseHandler
attribute)

tracebacklimit	(in	module	sys)
tracebacks

in	CGI	scripts
TracebackType	(in	module	types)

TextTestResult	(class	in	unittest)
TextTestRunner	(class	in	unittest)
textwrap	(module)
TextWrapper	(class	in	textwrap)
theme_create()	(tkinter.ttk.Style
method)
theme_names()	(tkinter.ttk.Style
method)
theme_settings()	(tkinter.ttk.Style
method)
theme_use()	(tkinter.ttk.Style	method)
THOUSEP	(in	module	locale)
Thread	(class	in	threading)
thread()	(imaplib.IMAP4	method)
thread_info	(in	module	sys)
threading	(module)
ThreadPoolExecutor	(class	in
concurrent.futures)
threads

POSIX
throw	(2to3	fixer)
throw()	(generator	method)
tigetflag()	(in	module	curses)
tigetnum()	(in	module	curses)
tigetstr()	(in	module	curses)
TILDE	(in	module	token)
tilt()	(in	module	turtle)
tiltangle()	(in	module	turtle)
time	(class	in	datetime)

(module)
time()	(asyncio.BaseEventLoop
method)

(datetime.datetime	method)
(in	module	time)

Time2Internaldate()	(in	module
imaplib)
timedelta	(class	in	datetime)
TimedRotatingFileHandler	(class	in

tracemalloc	(module)
tracer()	(in	module	turtle)
traces	(tracemalloc.Snapshot
attribute)
trailing

comma
transfercmd()	(ftplib.FTP	method)
TransientResource	(class	in
test.support)
translate()	(bytearray	method)

(bytes	method)
(in	module	fnmatch)
(str	method)

translation()	(in	module	gettext)
transport	(asyncio.StreamWriter
attribute)
Transport	Layer	Security
traverseproc	(C	type)
Tree	(class	in	tkinter.tix)
TreeBuilder	(class	in
xml.etree.ElementTree)
Treeview	(class	in	tkinter.ttk)
triangular()	(in	module	random)
triple-quoted	string,	[1]
True,	[1],	[2]
true
True	(built-in	variable)
truediv()	(in	module	operator)
trunc()	(in	module	math),	[1]
truncate()	(in	module	os)

(io.IOBase	method)
truth

value
truth()	(in	module	operator)
try

statement,	[1],	[2]
ttk
tty

logging.handlers)
timegm()	(in	module	calendar)
timeit	(module)
timeit	command	line	option

-c,	--clock
-h,	--help
-n	N,	--number=N
-p,	--process
-r	N,	--repeat=N
-s	S,	--setup=S
-t,	--time
-v,	--verbose

timeit()	(in	module	timeit)
(timeit.Timer	method)

timeout
(socketserver.BaseServer	attribute)
(subprocess.TimeoutExpired
attribute)

timeout()	(curses.window	method)
TIMEOUT_MAX	(in	module	_thread)

(in	module	threading)
TimeoutError,	[1]
TimeoutExpired
Timer	(class	in	threading)

(class	in	timeit)
times()	(in	module	os)
timestamp()	(datetime.datetime
method)
timetuple()	(datetime.date	method)

(datetime.datetime	method)
timetz()	(datetime.datetime	method)
timezone	(class	in	datetime),	[1]

(in	module	time)
title()	(in	module	turtle)

(str	method)

I/O	control
tty	(module)
ttyname()	(in	module	os)
tuple

built-in	function,	[1]
display
empty,	[1]
object,	[1],	[2],	[3],	[4],	[5],	[6]
singleton

tuple	(built-in	class)
tuple2st()	(in	module	parser)
tuple_params	(2to3	fixer)
turnoff_sigfpe()	(in	module	fpectl)
turnon_sigfpe()	(in	module	fpectl)
Turtle	(class	in	turtle)
turtle	(module)
turtles()	(in	module	turtle)
TurtleScreen	(class	in	turtle)
turtlesize()	(in	module	turtle)
type,	[1]

Boolean
built-in	function,	[1],	[2]
data
hierarchy
immutable	data
object,	[1],	[2]
operations	on	dictionary
operations	on	list

type	(optparse.Option	attribute)
(socket.socket	attribute)
(tarfile.TarInfo	attribute)
(urllib.request.Request
attribute)

type	of	an	object
type()	(built-in	function)
TYPE_CHECKER

(optparse.Option	attribute)
typeahead()	(in	module	curses)
typecode	(array.array	attribute)
typecodes	(in	module	array)
TYPED_ACTIONS
(optparse.Option	attribute)
typed_subpart_iterator()	(in
module	email.iterators)
TypeError

exception
types

built-in
immutable	sequence
module
mutable	sequence
operations	on	integer
operations	on	mapping
operations	on	numeric
operations	on	sequence,	[1]

types	(2to3	fixer)
(module)

TYPES	(optparse.Option
attribute)
types,	internal
types_map	(in	module
mimetypes)

(mimetypes.MimeTypes
attribute)

types_map_inv
(mimetypes.MimeTypes	attribute)
TZ,	[1],	[2],	[3],	[4]
tzinfo	(class	in	datetime)

(datetime.datetime	attribute)
(datetime.time	attribute)

tzname	(in	module	time)
tzname()	(datetime.datetime
method)

(datetime.time	method)
(datetime.timezone	method)
(datetime.tzinfo	method)

tzset()	(in	module	time)

U
u-LAW,	[1],	[2]
ucd_3_2_0	(in	module	unicodedata)
udata	(select.kevent	attribute)
UF_APPEND	(in	module	stat)
UF_COMPRESSED	(in	module	stat)
UF_HIDDEN	(in	module	stat)
UF_IMMUTABLE	(in	module	stat)
UF_NODUMP	(in	module	stat)
UF_NOUNLINK	(in	module	stat)
UF_OPAQUE	(in	module	stat)
uid	(tarfile.TarInfo	attribute)
uid()	(imaplib.IMAP4	method)
uidl()	(poplib.POP3	method)
ulaw2lin()	(in	module	audioop)
ULONG_MAX
umask()	(in	module	os)
unalias	(pdb	command)
uname	(tarfile.TarInfo	attribute)
uname()	(in	module	os)

(in	module	platform)
unary

arithmetic	operation
bitwise	operation

UNARY_INVERT	(opcode)
UNARY_NEGATIVE	(opcode)
UNARY_NOT	(opcode)
UNARY_POSITIVE	(opcode)
unbinding

name
UnboundLocalError,	[1]
unbuffered	I/O
UNC	paths

and	os.makedirs()
unconsumed_tail	(zlib.Decompress
attribute)

unreachable	object
unreadline()
(distutils.text_file.TextFile	method)
unrecognized	escape	sequence
unregister()	(in	module	atexit)

(in	module	faulthandler)
(select.devpoll	method)
(select.epoll	method)
(select.poll	method)
(selectors.BaseSelector
method)

unregister_archive_format()	(in
module	shutil)
unregister_dialect()	(in	module	csv)
unregister_unpack_format()	(in
module	shutil)
unset()
(test.support.EnvironmentVarGuard
method)
unsetenv()	(in	module	os)
UnstructuredHeader	(class	in
email.headerregistry)
unsubscribe()	(imaplib.IMAP4
method)
UnsupportedOperation
until	(pdb	command)
untokenize()	(in	module	tokenize)
untouchwin()	(curses.window
method)
unused_data
(bz2.BZ2Decompressor	attribute)

(lzma.LZMADecompressor
attribute)
(zlib.Decompress	attribute)

unverifiable	(urllib.request.Request

unctrl()	(in	module	curses)
(in	module	curses.ascii)

undefine_macro()
(distutils.ccompiler.CCompiler	method)
Underflow	(class	in	decimal)
undisplay	(pdb	command)
undo()	(in	module	turtle)
undobufferentries()	(in	module	turtle)
undoc_header	(cmd.Cmd	attribute)
unescape()	(in	module	html)

(in	module	xml.sax.saxutils)
UnexpectedException
unexpectedSuccesses	(unittest.TestResult
attribute)
unget_wch()	(in	module	curses)
ungetch()	(in	module	curses)

(in	module	msvcrt)
ungetmouse()	(in	module	curses)
ungetwch()	(in	module	msvcrt)
unhexlify()	(in	module	binascii)
Unicode,	[1],	[2]

database
unicode	(2to3	fixer)
Unicode	Consortium
unicodedata	(module)
UnicodeDecodeError
UnicodeEncodeError
UnicodeError
UnicodeTranslateError
UnicodeWarning
unidata_version	(in	module	unicodedata)
unified_diff()	(in	module	difflib)
uniform()	(in	module	random)
UnimplementedFileMode
Union	(class	in	ctypes)
union()	(set	method)
unique()	(in	module	enum),	[1]
unittest	(module)

attribute)
unwrap()	(in	module	inspect)

(ssl.SSLSocket	method)
up	(pdb	command)
up()	(in	module	turtle)
update()	(collections.Counter
method)

(dict	method)
(hashlib.hash	method)
(hmac.HMAC	method)
(in	module	turtle)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(set	method)
(trace.CoverageResults
method)

update_panels()	(in	module
curses.panel)
update_visible()
(mailbox.BabylMessage	method)
update_wrapper()	(in	module
functools)
upper()	(str	method)
urandom()	(in	module	os)
URL,	[1],	[2],	[3]

parsing
relative

url	(xmlrpc.client.ProtocolError
attribute)
url2pathname()	(in	module
urllib.request)
urlcleanup()	(in	module
urllib.request)
urldefrag()	(in	module	urllib.parse)
urlencode()	(in	module	urllib.parse)
URLError
urljoin()	(in	module	urllib.parse)

unittest	command	line	option
-b,	--buffer
-c,	--catch
-f,	--failfast

unittest-discover	command	line	option
-p,	--pattern	pattern
-s,	--start-directory	directory
-t,	--top-level-directory	directory
-v,	--verbose

unittest.mock	(module)
universal	newlines

What's	new,	[1],	[2],	[3]
csv.reader	function
importlib.abc.InspectLoader.get_source
method
io.IncrementalNewlineDecoder	class
io.TextIOWrapper	class
open()	built-in	function
str.splitlines	method
subprocess	module
zipfile.ZipFile.open	method

UNIX
I/O	control
file	control

unix_dialect	(class	in	csv)
unknown_decl()	(html.parser.HTMLParser
method)
unknown_open()
(urllib.request.BaseHandler	method)

(urllib.request.UnknownHandler
method)

UnknownHandler	(class	in	urllib.request)
UnknownProtocol
UnknownTransferEncoding
unlink()	(in	module	os)

(pathlib.Path	method)

urllib	(2to3	fixer)
(module)

urllib.error	(module)
urllib.parse	(module)
urllib.request

module
urllib.request	(module)
urllib.response	(module)
urllib.robotparser	(module)
urlopen()	(in	module	urllib.request)
URLopener	(class	in	urllib.request)
urlparse()	(in	module	urllib.parse)
urlretrieve()	(in	module
urllib.request)
urlsafe_b64decode()	(in	module
base64)
urlsafe_b64encode()	(in	module
base64)
urlsplit()	(in	module	urllib.parse)
urlunparse()	(in	module
urllib.parse)
urlunsplit()	(in	module	urllib.parse)
urn	(uuid.UUID	attribute)
use_default_colors()	(in	module
curses)
use_env()	(in	module	curses)
use_rawinput	(cmd.Cmd	attribute)
UseForeignDTD()
(xml.parsers.expat.xmlparser
method)
USER
user

effective	id
id
id,	setting

user()	(poplib.POP3	method)
user-defined

function

(xml.dom.minidom.Node	method)
unlock()	(mailbox.Babyl	method)

(mailbox.MH	method)
(mailbox.MMDF	method)
(mailbox.Mailbox	method)
(mailbox.Maildir	method)
(mailbox.mbox	method)

unpack()	(in	module	struct)
(struct.Struct	method)

unpack_archive()	(in	module	shutil)
unpack_array()	(xdrlib.Unpacker	method)
unpack_bytes()	(xdrlib.Unpacker	method)
unpack_double()	(xdrlib.Unpacker	method)
UNPACK_EX	(opcode)
unpack_farray()	(xdrlib.Unpacker	method)
unpack_float()	(xdrlib.Unpacker	method)
unpack_fopaque()	(xdrlib.Unpacker
method)
unpack_from()	(in	module	struct)

(struct.Struct	method)
unpack_fstring()	(xdrlib.Unpacker	method)
unpack_list()	(xdrlib.Unpacker	method)
unpack_opaque()	(xdrlib.Unpacker
method)
UNPACK_SEQUENCE	(opcode)
unpack_string()	(xdrlib.Unpacker	method)
Unpacker	(class	in	xdrlib)
unparsedEntityDecl()
(xml.sax.handler.DTDHandler	method)
UnparsedEntityDeclHandler()
(xml.parsers.expat.xmlparser	method)
Unpickler	(class	in	pickle)
UnpicklingError
unquote()	(in	module	email.utils)

(in	module	urllib.parse)
unquote_plus()	(in	module	urllib.parse)
unquote_to_bytes()	(in	module

function	call
method

user-defined	function
object,	[1],	[2]

user-defined	method
object

USER_BASE
(in	module	site)

user_call()	(bdb.Bdb	method)
user_exception()	(bdb.Bdb
method)
user_line()	(bdb.Bdb	method)
user_return()	(bdb.Bdb	method)
USER_SITE	(in	module	site)
usercustomize

module
UserDict	(class	in	collections)
UserList	(class	in	collections)
USERNAME,	[1]
username
(email.headerregistry.Address
attribute)
USERPROFILE,	[1]
userptr()	(curses.panel.Panel
method)
UserString	(class	in	collections)
UserWarning
USTAR_FORMAT	(in	module
tarfile)
UTC
utc	(datetime.timezone	attribute)
utcfromtimestamp()
(datetime.datetime	class	method)
utcnow()	(datetime.datetime	class
method)
utcoffset()	(datetime.datetime
method)

(datetime.time	method)

urllib.parse) (datetime.timezone	method)
(datetime.tzinfo	method)

utctimetuple()	(datetime.datetime
method)
utime()	(in	module	os)
uu

module
uu	(module)
UUID	(class	in	uuid)
uuid	(module)
uuid1
uuid1()	(in	module	uuid)
uuid3
uuid3()	(in	module	uuid)
uuid4
uuid4()	(in	module	uuid)
uuid5
uuid5()	(in	module	uuid)
UuidCreate()	(in	module	msilib)

V
v4_int_to_packed()	(in	module	ipaddress)
v6_int_to_packed()	(in	module	ipaddress)
validator()	(in	module	wsgiref.validate)
value

default	parameter
truth

value	(ctypes._SimpleCData	attribute)
(http.cookiejar.Cookie	attribute)
(http.cookies.Morsel	attribute)
(xml.dom.Attr	attribute)

value	of	an	object
Value()	(in	module	multiprocessing)

(in	module	multiprocessing.sharedctypes)
(multiprocessing.managers.SyncManager
method)

value_decode()	(http.cookies.BaseCookie
method)
value_encode()	(http.cookies.BaseCookie
method)
ValueError

exception
valuerefs()	(weakref.WeakValueDictionary
method)
values

Boolean
writing

values()	(dict	method)
(email.message.Message	method)
(mailbox.Mailbox	method)
(types.MappingProxyType	method)

ValuesView	(class	in	collections.abc)
variable

free
variance()	(in	module	statistics)

verbose	(in	module	tabnanny)
(in	module	test.support)

verify()	(smtplib.SMTP	method)
VERIFY_CRL_CHECK_CHAIN	(in	module
ssl)
VERIFY_CRL_CHECK_LEAF	(in	module
ssl)
VERIFY_DEFAULT	(in	module	ssl)
verify_flags	(ssl.SSLContext	attribute)
verify_mode	(ssl.SSLContext	attribute)
verify_request()	(socketserver.BaseServer
method)
VERIFY_X509_STRICT	(in	module	ssl)
version
(email.headerregistry.MIMEVersionHeader
attribute)

(http.client.HTTPResponse	attribute)
(http.cookiejar.Cookie	attribute)
(in	module	curses)
(in	module	marshal)
(in	module	sqlite3)
(in	module	sys),	[1],	[2]
(ipaddress.IPv4Address	attribute)
(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Address	attribute)
(ipaddress.IPv6Network	attribute)
(urllib.request.URLopener	attribute)
(uuid.UUID	attribute)

version()	(in	module	ensurepip)
(in	module	platform)

version_info	(in	module	sqlite3)
(in	module	sys)

version_string()
(http.server.BaseHTTPRequestHandler

variant	(uuid.UUID	attribute)
vars()	(built-in	function)
VBAR	(in	module	token)
vbar	(tkinter.scrolledtext.ScrolledText
attribute)
VBAREQUAL	(in	module	token)
Vec2D	(class	in	turtle)
venv	(module)
VERBOSE	(in	module	re)

method)
vformat()	(string.Formatter	method)
view
virtual

Environments
virtual	machine
visit()	(ast.NodeVisitor	method)
visitproc	(C	type)
vline()	(curses.window	method)
VMSError
voidcmd()	(ftplib.FTP	method)
volume	(zipfile.ZipInfo	attribute)
vonmisesvariate()	(in	module	random)

W
W_OK	(in	module	os)
wait()	(asyncio.Condition	method)

(asyncio.Event	method)
(in	module	asyncio)
(in	module	concurrent.futures)
(in	 module
multiprocessing.connection)
(in	module	os)
(multiprocessing.pool.AsyncResult
method)
(subprocess.Popen	method)
(threading.Barrier	method)
(threading.Condition	method)
(threading.Event	method)

wait3()	(in	module	os)
wait4()	(in	module	os)
wait_closed()	(asyncio.AbstractServer
method)
wait_for()	(asyncio.Condition	method)

(in	module	asyncio)
(threading.Condition	method)

waitid()	(in	module	os)
waitpid()	(in	module	os)
walk()	(email.message.Message
method)

(in	module	ast)
(in	module	os)

walk_packages()	(in	module	pkgutil)
want	(doctest.Example	attribute)
warn()	(distutils.ccompiler.CCompiler
method)

(distutils.text_file.TextFile	method)
(in	module	warnings)

warn_explicit()	(in	module	warnings)

winver	(in	module	sys)
with

statement,	[1]
WITH_CLEANUP	(opcode)
with_hostmask	(ipaddress.IPv4Interface
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Interface	attribute)
(ipaddress.IPv6Network	attribute)

with_name()	(pathlib.PurePath	method)
with_netmask	(ipaddress.IPv4Interface
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Interface	attribute)
(ipaddress.IPv6Network	attribute)

with_prefixlen	(ipaddress.IPv4Interface
attribute)

(ipaddress.IPv4Network	attribute)
(ipaddress.IPv6Interface	attribute)
(ipaddress.IPv6Network	attribute)

with_suffix()	(pathlib.PurePath	method)
with_traceback()	(BaseException
method)
WNOHANG	(in	module	os)
WNOWAIT	(in	module	os)
wordchars	(shlex.shlex	attribute)
World	Wide	Web,	[1],	[2]
wrap()	(in	module	textwrap)

(textwrap.TextWrapper	method)
wrap_socket()	(in	module	ssl)

(ssl.SSLContext	method)
wrap_text()	(in	module
distutils.fancy_getopt)
wrapper()	(in	module	curses)

Warning
warning()	(in	module	logging)

(logging.Logger	method)
(xml.sax.handler.ErrorHandler
method)

warnings
(module)

WarningsRecorder	(class	in
test.support)
warnoptions	(in	module	sys)
wasSuccessful()	(unittest.TestResult
method)
WatchedFileHandler	(class	in
logging.handlers)
wave	(module)
WCONTINUED	(in	module	os)
WCOREDUMP()	(in	module	os)
WeakKeyDictionary	(class	in	weakref)
WeakMethod	(class	in	weakref)
weakref	(module)
WeakSet	(class	in	weakref)
WeakValueDictionary	(class	in
weakref)
webbrowser	(module)
weekday()	(datetime.date	method)

(datetime.datetime	method)
(in	module	calendar)

weekheader()	(in	module	calendar)
weibullvariate()	(in	module	random)
WEXITED	(in	module	os)
WEXITSTATUS()	(in	module	os)
wfile
(http.server.BaseHTTPRequestHandler
attribute)
what()	(in	module	imghdr)

(in	module	sndhdr)
whathdr()	(in	module	sndhdr)
whatis	(pdb	command)

wraps()	(in	module	functools)
writable()	(asyncore.dispatcher	method)

(io.IOBase	method)
write()	(asyncio.StreamWriter	method)

(asyncio.WriteTransport	method)
(code.InteractiveInterpreter	method)
(codecs.StreamWriter	method)
(configparser.ConfigParser	method)
(email.generator.BytesGenerator
method)
(email.generator.Generator	method)
(in	module	mmap)
(in	module	os)
(in	module	turtle)
(io.BufferedIOBase	method)
(io.BufferedWriter	method)
(io.RawIOBase	method)
(io.TextIOBase	method)
(ossaudiodev.oss_audio_device
method)
(telnetlib.Telnet	method)
(xml.etree.ElementTree.ElementTree
method)
(zipfile.ZipFile	method)

write_byte()	(in	module	mmap)
write_docstringdict()	(in	module	turtle)
write_eof()	(asyncio.StreamWriter
method)

(asyncio.WriteTransport	method)
write_file()	(in	module	distutils.file_util)
write_history_file()	(in	module	readline)
WRITE_RESTRICTED
write_results()	(trace.CoverageResults
method)
writeall()
(ossaudiodev.oss_audio_device

where	(pdb	command)
which()	(in	module	shutil)
whichdb()	(in	module	dbm)
while

statement,	[1],	[2],	[3]
whitespace	(in	module	string)

(shlex.shlex	attribute)
whitespace_split	(shlex.shlex	attribute)
Widget	(class	in	tkinter.ttk)
width	(textwrap.TextWrapper	attribute)
width()	(in	module	turtle)
WIFCONTINUED()	(in	module	os)
WIFEXITED()	(in	module	os)
WIFSIGNALED()	(in	module	os)
WIFSTOPPED()	(in	module	os)
win32_ver()	(in	module	platform)
WinDLL	(class	in	ctypes)
window	manager	(widgets)
window()	(curses.panel.Panel	method)
window_height()	(in	module	turtle)
window_width()	(in	module	turtle)
Windows	ini	file
WindowsError
WindowsPath	(class	in	pathlib)
WindowsRegistryFinder	(class	in
importlib.machinery)
WinError()	(in	module	ctypes)
WINFUNCTYPE()	(in	module	ctypes)
winreg	(module)
WinSock
winsound	(module)

method)
writeframes()	(aifc.aifc	method)

(sunau.AU_write	method)
(wave.Wave_write	method)

writeframesraw()	(aifc.aifc	method)
(sunau.AU_write	method)
(wave.Wave_write	method)

writeheader()	(csv.DictWriter	method)
writelines()	(asyncio.StreamWriter
method)

(asyncio.WriteTransport	method)
(codecs.StreamWriter	method)
(io.IOBase	method)

writePlist()	(in	module	plistlib)
writePlistToBytes()	(in	module	plistlib)
writepy()	(zipfile.PyZipFile	method)
writer	(formatter.formatter	attribute)
writer()	(in	module	csv)
writerow()	(csv.csvwriter	method)
writerows()	(csv.csvwriter	method)
writestr()	(zipfile.ZipFile	method)
WriteTransport	(class	in	asyncio)
writev()	(in	module	os)
writexml()	(xml.dom.minidom.Node
method)
writing

values
WrongDocumentErr
ws_comma	(2to3	fixer)
wsgi_file_wrapper
(wsgiref.handlers.BaseHandler	attribute)
wsgi_multiprocess
(wsgiref.handlers.BaseHandler	attribute)
wsgi_multithread
(wsgiref.handlers.BaseHandler	attribute)
wsgi_run_once
(wsgiref.handlers.BaseHandler	attribute)
wsgiref	(module)

wsgiref.handlers	(module)
wsgiref.headers	(module)
wsgiref.simple_server	(module)
wsgiref.util	(module)
wsgiref.validate	(module)
WSGIRequestHandler	(class	in
wsgiref.simple_server)
WSGIServer	(class	in
wsgiref.simple_server)
wShowWindow
(subprocess.STARTUPINFO	attribute)
WSTOPPED	(in	module	os)
WSTOPSIG()	(in	module	os)
wstring_at()	(in	module	ctypes)
WTERMSIG()	(in	module	os)
WUNTRACED	(in	module	os)
WWW,	[1],	[2]

server,	[1]

X
X	(in	module	re)
X509	certificate
X_OK	(in	module	os)
xatom()	(imaplib.IMAP4	method)
XATTR_CREATE	(in	module	os)
XATTR_REPLACE	(in	module	os)
XATTR_SIZE_MAX	(in	module	os)
xcor()	(in	module	turtle)
XDR
xdrlib	(module)
xhdr()	(nntplib.NNTP	method)
XHTML
XHTML_NAMESPACE	(in	module	xml.dom)
xml	(module)
XML()	(in	module	xml.etree.ElementTree)
xml.dom	(module)
xml.dom.minidom	(module)
xml.dom.pulldom	(module)
xml.etree.ElementTree	(module)
xml.parsers.expat	(module)
xml.parsers.expat.errors	(module)
xml.parsers.expat.model	(module)
xml.sax	(module)
xml.sax.handler	(module)
xml.sax.saxutils	(module)
xml.sax.xmlreader	(module)
XML_ERROR_ABORTED	(in	module
xml.parsers.expat.errors)
XML_ERROR_ASYNC_ENTITY	(in	module
xml.parsers.expat.errors)
XML_ERROR_ATTRIBUTE_EXTERNAL_ENTITY_REF	(in
module	xml.parsers.expat.errors)
XML_ERROR_BAD_CHAR_REF	(in	module
xml.parsers.expat.errors)
XML_ERROR_BINARY_ENTITY_REF	(in	module
xml.parsers.expat.errors)

XML_ERROR_NO_ELEMENTS	(in	module
xml.parsers.expat.errors)
XML_ERROR_NO_MEMORY	(in	module
xml.parsers.expat.errors)
XML_ERROR_NOT_STANDALONE	(in	module
xml.parsers.expat.errors)
XML_ERROR_NOT_SUSPENDED	(in	module
xml.parsers.expat.errors)
XML_ERROR_PARAM_ENTITY_REF	(in
module	xml.parsers.expat.errors)
XML_ERROR_PARTIAL_CHAR	(in	module
xml.parsers.expat.errors)
XML_ERROR_PUBLICID	(in	module
xml.parsers.expat.errors)
XML_ERROR_RECURSIVE_ENTITY_REF	(in
module	xml.parsers.expat.errors)
XML_ERROR_SUSPEND_PE	(in	module
xml.parsers.expat.errors)
XML_ERROR_SUSPENDED	(in	module
xml.parsers.expat.errors)
XML_ERROR_SYNTAX	(in	module
xml.parsers.expat.errors)
XML_ERROR_TAG_MISMATCH	(in	module
xml.parsers.expat.errors)
XML_ERROR_TEXT_DECL	(in	module
xml.parsers.expat.errors)
XML_ERROR_UNBOUND_PREFIX	(in	module
xml.parsers.expat.errors)
XML_ERROR_UNCLOSED_CDATA_SECTION
(in	module	xml.parsers.expat.errors)
XML_ERROR_UNCLOSED_TOKEN	(in
module	xml.parsers.expat.errors)
XML_ERROR_UNDECLARING_PREFIX	(in
module	xml.parsers.expat.errors)
XML_ERROR_UNDEFINED_ENTITY	(in
module	xml.parsers.expat.errors)

XML_ERROR_CANT_CHANGE_FEATURE_ONCE_PARSING
(in	module	xml.parsers.expat.errors)
XML_ERROR_DUPLICATE_ATTRIBUTE	(in	module
xml.parsers.expat.errors)
XML_ERROR_ENTITY_DECLARED_IN_PE	(in	module
xml.parsers.expat.errors)
XML_ERROR_EXTERNAL_ENTITY_HANDLING	(in	module
xml.parsers.expat.errors)
XML_ERROR_FEATURE_REQUIRES_XML_DTD	(in	module
xml.parsers.expat.errors)
XML_ERROR_FINISHED	(in	module	xml.parsers.expat.errors)
XML_ERROR_INCOMPLETE_PE	(in	module
xml.parsers.expat.errors)
XML_ERROR_INCORRECT_ENCODING	(in	module
xml.parsers.expat.errors)
XML_ERROR_INVALID_TOKEN	(in	module
xml.parsers.expat.errors)
XML_ERROR_JUNK_AFTER_DOC_ELEMENT	(in	module
xml.parsers.expat.errors)
XML_ERROR_MISPLACED_XML_PI	(in	module
xml.parsers.expat.errors)

XML_ERROR_UNEXPECTED_STATE	(in
module	xml.parsers.expat.errors)
XML_ERROR_UNKNOWN_ENCODING	(in
module	xml.parsers.expat.errors)
XML_ERROR_XML_DECL	(in	module
xml.parsers.expat.errors)
XML_NAMESPACE	(in	module	xml.dom)
xmlcharrefreplace_errors()	(in	module	codecs)
XmlDeclHandler()	(xml.parsers.expat.xmlparser
method)
XMLFilterBase	(class	in	xml.sax.saxutils)
XMLGenerator	(class	in	xml.sax.saxutils)
XMLID()	(in	module	xml.etree.ElementTree)
XMLNS_NAMESPACE	(in	module	xml.dom)
XMLParser	(class	in	xml.etree.ElementTree)
XMLParserType	(in	module	xml.parsers.expat)
XMLPullParser	(class	in
xml.etree.ElementTree)
XMLReader	(class	in	xml.sax.xmlreader)
xmlrpc.client	(module)
xmlrpc.server	(module)
xor

bitwise
xor()	(in	module	operator)
xover()	(nntplib.NNTP	method)
xpath()	(nntplib.NNTP	method)
xrange	(2to3	fixer)
xreadlines	(2to3	fixer)
xview()	(tkinter.ttk.Treeview	method)

Y
Y2K
ycor()	(in	module	turtle)
year	(datetime.date	attribute)

(datetime.datetime	attribute)
Year	2000
Year	2038
yeardatescalendar()
(calendar.Calendar	method)
yeardays2calendar()
(calendar.Calendar	method)

yeardayscalendar()
(calendar.Calendar	method)
YESEXPR	(in	module	locale)
yield

examples
expression
keyword
statement
yield	from	(in	What's	New)

YIELD_FROM	(opcode)
YIELD_VALUE	(opcode)
yiq_to_rgb()	(in	module	colorsys)
yview()	(tkinter.ttk.Treeview
method)

Z
Zen	of	Python
ZeroDivisionError

exception
zfill()	(str	method)
zip	(2to3	fixer)
zip()	(built-in	function)
ZIP_BZIP2	(in	module	zipfile)
ZIP_DEFLATED	(in	module
zipfile)
zip_longest()	(in	module
itertools)
ZIP_LZMA	(in	module	zipfile)
ZIP_STORED	(in	module
zipfile)

ZipFile	(class	in	zipfile)
zipfile	(module)
zipimport	(module)
zipimporter	(class	in	zipimport)
ZipImportError
ZipInfo	(class	in	zipfile)
zlib	(module)
ZLIB_RUNTIME_VERSION	(in
module	zlib)
ZLIB_VERSION	(in	module	zlib)

indexmodules	|	Python	»	3.4.0	Documentation	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

9.	Command	Reference

9.1.	Installing	modules:	the	install
command	family

The	install	command	ensures	that	the	build	commands	have	been	run
and	 then	 runs	 the	 subcommands	 install_lib,	 install_data	 and
install_scripts.

9.1.1.	install_data

This	command	installs	all	data	files	provided	with	the	distribution.

9.1.2.	install_scripts

This	command	installs	all	(Python)	scripts	in	the	distribution.

9.2.	Creating	a	source	distribution:	the
sdist	command

The	manifest	template	commands	are:

Command Description

include	pat1	pat2	... include	all	files	matching	any	of
the	listed	patterns

exclude	pat1	pat2	... exclude	all	files	matching	any	of
the	listed	patterns

recursive-include	dir	pat1
pat2	...

include	all	files	under	dir	matching
any	of	the	listed	patterns

recursive-exclude	dir	pat1
pat2	...

exclude	all	files	under	dir
matching	any	of	the	listed
patterns

global-include	pat1	pat2	...
include	all	files	anywhere	in	the
source	tree	matching	—	&	any	of
the	listed	patterns

global-exclude	pat1	pat2	...
exclude	all	files	anywhere	in	the
source	tree	matching	—	&	any	of
the	listed	patterns

prune	dir exclude	all	files	under	dir

graft	dir include	all	files	under	dir

The	 patterns	 here	 are	 Unix-style	 “glob”	 patterns:	 *	 matches	 any
sequence	of	regular	filename	characters,	?	matches	any	single	regular
filename	 character,	 and	 [range]	 matches	 any	 of	 the	 characters	 in
range	 (e.g.,	 a-z,	 a-zA-Z,	 a-f0-9_.).	 The	 definition	 of	 “regular
filename	character”	 is	platform-specific:	 on	Unix	 it	 is	 anything	except
slash;	on	Windows	anything	except	backslash	or	colon.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

3.	Writing	the	Setup	Configuration
File
Often,	 it’s	 not	 possible	 to	 write	 down	 everything	 needed	 to	 build	 a
distribution	a	 priori:	 you	may	 need	 to	 get	 some	 information	 from	 the
user,	or	 from	 the	user’s	system,	 in	order	 to	proceed.	As	 long	as	 that
information	is	fairly	simple—a	list	of	directories	to	search	for	C	header
files	 or	 libraries,	 for	 example—then	 providing	 a	 configuration	 file,
setup.cfg,	 for	 users	 to	 edit	 is	 a	 cheap	 and	 easy	 way	 to	 solicit	 it.
Configuration	 files	 also	 let	 you	 provide	 default	 values	 for	 any
command	 option,	which	 the	 installer	 can	 then	 override	 either	 on	 the
command-line	or	by	editing	the	config	file.

The	 setup	 configuration	 file	 is	 a	 useful	 middle-ground	 between	 the
setup	 script	—which,	 ideally,	 would	 be	 opaque	 to	 installers	 [1]—and
the	command-line	to	the	setup	script,	which	is	outside	of	your	control
and	 entirely	 up	 to	 the	 installer.	 In	 fact,	 setup.cfg	 (and	 any	 other
Distutils	 configuration	 files	 present	 on	 the	 target	 system)	 are
processed	 after	 the	 contents	 of	 the	 setup	 script,	 but	 before	 the
command-line.	This	has	several	useful	consequences:

installers	 can	 override	 some	 of	 what	 you	 put	 in	 setup.py	 by
editing	setup.cfg
you	 can	 provide	 non-standard	 defaults	 for	 options	 that	 are	 not
easily	set	in	setup.py
installers	 can	 override	 anything	 in	 setup.cfg	 using	 the
command-line	options	to	setup.py

The	basic	syntax	of	the	configuration	file	is	simple:

[command]

option=value

...

where	 command	 is	 one	 of	 the	 Distutils	 commands	 (e.g.	 build_py,
install),	and	option	is	one	of	the	options	that	command	supports.	Any
number	 of	 options	 can	 be	 supplied	 for	 each	 command,	 and	 any
number	of	command	sections	can	be	 included	 in	 the	 file.	Blank	 lines
are	 ignored,	as	are	comments,	which	 run	 from	a	'#'	 character	until
the	 end	 of	 the	 line.	 Long	 option	 values	 can	 be	 split	 across	multiple
lines	simply	by	indenting	the	continuation	lines.

You	can	find	out	the	list	of	options	supported	by	a	particular	command
with	the	universal	--help	option,	e.g.

>	python	setup.py	--help	build_ext

[...]

Options	for	'build_ext'	command:

		--build-lib	(-b)					directory	for	compiled	extension

		--build-temp	(-t)				directory	for	temporary	files

		--inplace	(-i)							ignore	build-lib	and	put	compiled

																							source	directory	alongside	your

		--include-dirs	(-I)		list	of	directories	to	search

		--define	(-D)								C	preprocessor	macros	to	define

		--undef	(-U)									C	preprocessor	macros	to	undefine

		--swig-opts										list	of	SWIG	command	line	options

[...]

Note	 that	an	option	spelled	 --foo-bar	on	 the	command-line	 is	 spelled
foo_bar	in	configuration	files.

For	example,	say	you	want	your	extensions	to	be	built	“in-place”—that
is,	 you	 have	 an	 extension	 pkg.ext,	 and	 you	 want	 the	 compiled
extension	 file	 (ext.so	 on	 Unix,	 say)	 to	 be	 put	 in	 the	 same	 source
directory	 as	 your	 pure	 Python	 modules	 pkg.mod1	 and	 pkg.mod2.

You	 can	 always	 use	 the	 --inplace	 option	 on	 the	 command-line	 to
ensure	this:

python	setup.py	build_ext	--inplace

But	 this	 requires	 that	 you	 always	 specify	 the	 build_ext	 command
explicitly,	and	remember	to	provide	--inplace.	An	easier	way	is	to	“set
and	forget”	this	option,	by	encoding	it	in	setup.cfg,	the	configuration
file	for	this	distribution:

[build_ext]

inplace=1

This	will	affect	all	builds	of	this	module	distribution,	whether	or	not	you
explicitly	specify	build_ext.	If	you	include	setup.cfg	 in	your	source
distribution,	it	will	also	affect	end-user	builds—which	is	probably	a	bad
idea	 for	 this	 option,	 since	 always	 building	 extensions	 in-place	would
break	installation	of	the	module	distribution.	In	certain	peculiar	cases,
though,	modules	are	built	 right	 in	 their	 installation	directory,	so	 this	 is
conceivably	a	useful	ability.	 (Distributing	extensions	that	expect	 to	be
built	in	their	installation	directory	is	almost	always	a	bad	idea,	though.)

Another	 example:	 certain	 commands	 take	 a	 lot	 of	 options	 that	 don’t
change	 from	 run	 to	 run;	 for	 example,	 bdist_rpm	 needs	 to	 know
everything	 required	 to	 generate	 a	 “spec”	 file	 for	 creating	 an	 RPM
distribution.	Some	of	this	information	comes	from	the	setup	script,	and
some	 is	 automatically	 generated	 by	 the	 Distutils	 (such	 as	 the	 list	 of
files	 installed).	 But	 some	 of	 it	 has	 to	 be	 supplied	 as	 options	 to
bdist_rpm,	which	would	be	very	 tedious	 to	do	on	 the	command-line
for	 every	 run.	 Hence,	 here	 is	 a	 snippet	 from	 the	 Distutils’	 own
setup.cfg:

[bdist_rpm]

release	=	1

packager	=	Greg	Ward	<gward@python.net>

doc_files	=	CHANGES.txt

												README.txt

												USAGE.txt

												doc/

												examples/

Note	that	the	doc_files	option	is	simply	a	whitespace-separated	string
split	across	multiple	lines	for	readability.

See	also:

Syntax	of	config	files	in	“Installing	Python	Modules”
More	 information	 on	 the	 configuration	 files	 is	 available	 in	 the
manual	for	system	administrators.

Footnotes

[1] This	ideal	probably	won’t	be	achieved	until	auto-configuration	is
fully	supported	by	the	Distutils.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

2.	Writing	the	Setup	Script
The	setup	script	is	the	centre	of	all	activity	in	building,	distributing,	and
installing	modules	using	 the	Distutils.	The	main	purpose	of	 the	setup
script	is	to	describe	your	module	distribution	to	the	Distutils,	so	that	the
various	commands	that	operate	on	your	modules	do	the	right	thing.	As
we	saw	in	section	A	Simple	Example	above,	the	setup	script	consists
mainly	 of	 a	 call	 to	 setup(),	 and	 most	 information	 supplied	 to	 the
Distutils	by	the	module	developer	is	supplied	as	keyword	arguments	to
setup().

Here’s	a	slightly	more	involved	example,	which	we’ll	follow	for	the	next
couple	of	sections:	 the	Distutils’	own	setup	script.	 (Keep	 in	mind	that
although	the	Distutils	are	included	with	Python	1.6	and	later,	they	also
have	 an	 independent	 existence	 so	 that	 Python	 1.5.2	 users	 can	 use
them	 to	 install	 other	 module	 distributions.	 The	 Distutils’	 own	 setup
script,	shown	here,	is	used	to	install	the	package	into	Python	1.5.2.)

#!/usr/bin/env	python

from	distutils.core	import	setup

setup(name='Distutils',

						version='1.0',

						description='Python	Distribution	Utilities',

						author='Greg	Ward',

						author_email='gward@python.net',

						url='http://www.python.org/sigs/distutils-sig/'

						packages=['distutils',	'distutils.command'],

)

There	 are	 only	 two	 differences	 between	 this	 and	 the	 trivial	 one-file

distribution	 presented	 in	 section	A	Simple	Example:	 more	metadata,
and	the	specification	of	pure	Python	modules	by	package,	rather	than
by	module.	This	 is	 important	since	the	Distutils	consist	of	a	couple	of
dozen	modules	split	into	(so	far)	two	packages;	an	explicit	list	of	every
module	 would	 be	 tedious	 to	 generate	 and	 difficult	 to	 maintain.	 For
more	 information	 on	 the	 additional	meta-data,	 see	 section	Additional
meta-data.

Note	 that	 any	 pathnames	 (files	 or	 directories)	 supplied	 in	 the	 setup
script	 should	 be	 written	 using	 the	 Unix	 convention,	 i.e.	 slash-
separated.	 The	 Distutils	 will	 take	 care	 of	 converting	 this	 platform-
neutral	 representation	 into	 whatever	 is	 appropriate	 on	 your	 current
platform	before	actually	using	 the	pathname.	This	makes	 your	 setup
script	portable	across	operating	systems,	which	of	course	is	one	of	the
major	 goals	 of	 the	 Distutils.	 In	 this	 spirit,	 all	 pathnames	 in	 this
document	are	slash-separated.

This,	of	course,	only	applies	to	pathnames	given	to	Distutils	functions.
If	 you,	 for	 example,	 use	 standard	 Python	 functions	 such	 as
glob.glob()	 or	 os.listdir()	 to	 specify	 files,	 you	 should	 be
careful	to	write	portable	code	instead	of	hardcoding	path	separators:

glob.glob(os.path.join('mydir',	'subdir',	'*.html'))

os.listdir(os.path.join('mydir',	'subdir'))

2.1.	Listing	whole	packages

The	 packages	 option	 tells	 the	 Distutils	 to	 process	 (build,	 distribute,
install,	 etc.)	 all	 pure	 Python	 modules	 found	 in	 each	 package
mentioned	in	the	packages	list.	In	order	to	do	this,	of	course,	there	has
to	 be	 a	 correspondence	 between	 package	 names	 and	 directories	 in
the	 filesystem.	The	default	 correspondence	 is	 the	most	obvious	one,
i.e.	package	distutils	is	found	in	the	directory	distutils	relative
to	the	distribution	root.	Thus,	when	you	say	packages	=	['foo']	in
your	 setup	 script,	 you	 are	 promising	 that	 the	 Distutils	 will	 find	 a	 file
foo/__init__.py	 (which	 might	 be	 spelled	 differently	 on	 your
system,	but	you	get	the	idea)	relative	to	the	directory	where	your	setup
script	lives.	If	you	break	this	promise,	the	Distutils	will	issue	a	warning
but	still	process	the	broken	package	anyway.

If	you	use	a	different	convention	to	lay	out	your	source	directory,	that’s
no	problem:	you	just	have	to	supply	the	package_dir	option	to	tell	the
Distutils	about	your	convention.	For	example,	say	you	keep	all	Python
source	under	lib,	so	 that	modules	 in	 the	 “root	package”	 (i.e.,	not	 in
any	package	at	 all)	 are	 in	 lib,	modules	 in	 the	 foo	 package	 are	 in
lib/foo,	and	so	forth.	Then	you	would	put

package_dir	=	{'':	'lib'}

in	your	setup	script.	The	keys	 to	 this	dictionary	are	package	names,
and	an	empty	package	name	stands	for	the	root	package.	The	values
are	 directory	 names	 relative	 to	 your	 distribution	 root.	 In	 this	 case,
when	you	say	packages	=	['foo'],	you	are	promising	that	the	file
lib/foo/__init__.py	exists.

Another	possible	convention	 is	 to	put	 the	foo	package	right	 in	lib,

the	foo.bar	package	 in	lib/bar,	etc.	This	would	be	written	 in	 the
setup	script	as

package_dir	=	{'foo':	'lib'}

A	package:	dir	entry	in	the	package_dir	dictionary	implicitly	applies
to	all	packages	below	package,	so	the	foo.bar	case	is	automatically
handled	 here.	 In	 this	 example,	 having	 packages	 =	 ['foo',

'foo.bar']	 tells	 the	 Distutils	 to	 look	 for	 lib/__init__.py	 and
lib/bar/__init__.py.	 (Keep	 in	 mind	 that	 although	 package_dir
applies	 recursively,	 you	must	 explicitly	 list	 all	 packages	 in	packages:
the	Distutils	will	not	 recursively	scan	your	source	tree	 looking	for	any
directory	with	an	__init__.py	file.)

2.2.	Listing	individual	modules

For	 a	 small	 module	 distribution,	 you	might	 prefer	 to	 list	 all	 modules
rather	 than	 listing	packages—especially	 the	 case	of	 a	 single	module
that	goes	in	the	“root	package”	(i.e.,	no	package	at	all).	This	simplest
case	was	shown	in	section	A	Simple	Example;	here	is	a	slightly	more
involved	example:

py_modules	=	['mod1',	'pkg.mod2']

This	 describes	 two	modules,	 one	 of	 them	 in	 the	 “root”	 package,	 the
other	in	the	pkg	package.	Again,	the	default	package/directory	layout
implies	 that	 these	 two	 modules	 can	 be	 found	 in	 mod1.py	 and
pkg/mod2.py,	 and	 that	 pkg/__init__.py	 exists	 as	 well.	 And
again,	 you	 can	override	 the	package/directory	 correspondence	using
the	package_dir	option.

2.3.	Describing	extension	modules

Just	 as	writing	 Python	 extension	modules	 is	 a	 bit	more	 complicated
than	writing	pure	Python	modules,	describing	them	to	the	Distutils	is	a
bit	more	complicated.	Unlike	pure	modules,	it’s	not	enough	just	to	list
modules	or	packages	and	expect	 the	Distutils	 to	go	out	and	 find	 the
right	files;	you	have	to	specify	the	extension	name,	source	file(s),	and
any	compile/link	requirements	(include	directories,	libraries	to	link	with,
etc.).

All	of	this	is	done	through	another	keyword	argument	to	setup(),	the
ext_modules	 option.	 ext_modules	 is	 just	 a	 list	 of	 Extension
instances,	 each	 of	 which	 describes	 a	 single	 extension	 module.
Suppose	your	distribution	includes	a	single	extension,	called	foo	and
implemented	 by	 foo.c.	 If	 no	 additional	 instructions	 to	 the
compiler/linker	are	needed,	describing	this	extension	is	quite	simple:

Extension('foo',	['foo.c'])

The	Extension	class	can	be	imported	from	distutils.core	along
with	 setup().	 Thus,	 the	 setup	 script	 for	 a	 module	 distribution	 that
contains	only	this	one	extension	and	nothing	else	might	be:

from	distutils.core	import	setup,	Extension

setup(name='foo',

						version='1.0',

						ext_modules=[Extension('foo',	['foo.c'])],

)

The	 Extension	 class	 (actually,	 the	 underlying	 extension-building
machinery	implemented	by	the	build_ext	command)	supports	a	great
deal	of	flexibility	in	describing	Python	extensions,	which	is	explained	in

the	following	sections.

2.3.1.	Extension	names	and	packages

The	first	argument	to	the	Extension	constructor	is	always	the	name
of	the	extension,	including	any	package	names.	For	example,

Extension('foo',	['src/foo1.c',	'src/foo2.c'])

describes	an	extension	that	lives	in	the	root	package,	while

Extension('pkg.foo',	['src/foo1.c',	'src/foo2.c'])

describes	 the	 same	extension	 in	 the	 pkg	 package.	 The	 source	 files
and	 resulting	 object	 code	 are	 identical	 in	 both	 cases;	 the	 only
difference	is	where	in	the	filesystem	(and	therefore	where	in	Python’s
namespace	hierarchy)	the	resulting	extension	lives.

If	 you	 have	 a	 number	 of	 extensions	 all	 in	 the	 same	 package	 (or	 all
under	 the	 same	 base	 package),	 use	 the	 ext_package	 keyword
argument	to	setup().	For	example,

setup(...,

						ext_package='pkg',

						ext_modules=[Extension('foo',	['foo.c']),

																			Extension('subpkg.bar',	['bar.c'])],

)

will	 compile	 foo.c	 to	 the	 extension	 pkg.foo,	 and	 bar.c	 to
pkg.subpkg.bar.

2.3.2.	Extension	source	files

The	second	argument	to	the	Extension	constructor	is	a	list	of	source
files.	Since	the	Distutils	currently	only	support	C,	C++,	and	Objective-C
extensions,	 these	 are	 normally	 C/C++/Objective-C	 source	 files.	 (Be
sure	to	use	appropriate	extensions	to	distinguish	C++source	files:	.cc
and	 .cpp	 seem	 to	 be	 recognized	 by	 both	 Unix	 and	 Windows
compilers.)

However,	you	can	also	include	SWIG	interface	(.i)	files	in	the	list;	the
build_ext	command	knows	how	to	deal	with	SWIG	extensions:	 it	will
run	SWIG	on	the	interface	file	and	compile	the	resulting	C/C++	file	into
your	extension.

This	 warning	 notwithstanding,	 options	 to	 SWIG	 can	 be	 currently
passed	like	this:

setup(...,

						ext_modules=[Extension('_foo',	['foo.i'],

																													swig_opts=['-modern',	'-I../include'

						py_modules=['foo'],

)

Or	on	the	commandline	like	this:

>	python	setup.py	build_ext	--swig-opts="-modern	-I../include"

On	 some	 platforms,	 you	 can	 include	 non-source	 files	 that	 are
processed	by	 the	compiler	and	 included	 in	your	extension.	Currently,
this	 just	 means	 Windows	 message	 text	 (.mc)	 files	 and	 resource
definition	(.rc)	 files	for	Visual	C++.	These	will	be	compiled	to	binary
resource	(.res)	files	and	linked	into	the	executable.

2.3.3.	Preprocessor	options

Three	 optional	 arguments	 to	 Extension	 will	 help	 if	 you	 need	 to
specify	 include	 directories	 to	 search	 or	 preprocessor	 macros	 to
define/undefine:	 include_dirs,	 define_macros,	 and
undef_macros.

For	example,	 if	 your	extension	 requires	header	 files	 in	 the	include
directory	under	your	distribution	root,	use	the	include_dirs	option:

Extension('foo',	['foo.c'],	include_dirs=['include'])

You	 can	 specify	 absolute	 directories	 there;	 if	 you	 know	 that	 your
extension	will	 only	 be	 built	 on	Unix	 systems	with	 X11R6	 installed	 to
/usr,	you	can	get	away	with

Extension('foo',	['foo.c'],	include_dirs=['/usr/include/X11'

You	 should	 avoid	 this	 sort	 of	 non-portable	 usage	 if	 you	 plan	 to
distribute	your	code:	it’s	probably	better	to	write	C	code	like

#include	<X11/Xlib.h>

If	you	need	to	include	header	files	from	some	other	Python	extension,
you	can	take	advantage	of	the	fact	that	header	files	are	installed	in	a
consistent	 way	 by	 the	 Distutils	 install_headers	 command.	 For
example,	 the	 Numerical	 Python	 header	 files	 are	 installed	 (on	 a
standard	 Unix	 installation)	 to
/usr/local/include/python1.5/Numerical.	 (The	 exact
location	will	differ	according	to	your	platform	and	Python	 installation.)
Since	 the	 Python	 include	 directory
—/usr/local/include/python1.5	 in	 this	 case—is	 always

included	in	the	search	path	when	building	Python	extensions,	the	best
approach	is	to	write	C	code	like

#include	<Numerical/arrayobject.h>

If	you	must	put	the	Numerical	include	directory	right	into	your	header
search	 path,	 though,	 you	 can	 find	 that	 directory	 using	 the	 Distutils
distutils.sysconfig	module:

from	distutils.sysconfig	import	get_python_inc

incdir	=	os.path.join(get_python_inc(plat_specific=1

setup(...,

						Extension(...,	include_dirs=[incdir]),

)

Even	 though	 this	 is	 quite	 portable—it	 will	 work	 on	 any	 Python
installation,	 regardless	 of	 platform—it’s	 probably	 easier	 to	 just	 write
your	C	code	in	the	sensible	way.

You	 can	 define	 and	 undefine	 pre-processor	 macros	 with	 the
define_macros	 and	 undef_macros	 options.	 define_macros
takes	a	list	of	(name,	value)	tuples,	where	name	is	the	name	of	the
macro	 to	 define	 (a	 string)	 and	 value	 is	 its	 value:	 either	 a	 string	 or
None.	 (Defining	 a	 macro	 FOO	 to	 None	 is	 the	 equivalent	 of	 a	 bare
#define	FOO	in	your	C	source:	with	most	compilers,	this	sets	FOO	to
the	string	1.)	undef_macros	is	just	a	list	of	macros	to	undefine.

For	example:

Extension(...,

										define_macros=[('NDEBUG',	'1'),

																									('HAVE_STRFTIME',	None)],

										undef_macros=['HAVE_FOO',	'HAVE_BAR'])

is	the	equivalent	of	having	this	at	the	top	of	every	C	source	file:

#define	NDEBUG	1

#define	HAVE_STRFTIME

#undef	HAVE_FOO

#undef	HAVE_BAR

2.3.4.	Library	options

You	 can	 also	 specify	 the	 libraries	 to	 link	 against	 when	 building	 your
extension,	 and	 the	 directories	 to	 search	 for	 those	 libraries.	 The
libraries	option	is	a	list	of	libraries	to	link	against,	library_dirs
is	 a	 list	 of	 directories	 to	 search	 for	 libraries	 at	 link-time,	 and
runtime_library_dirs	 is	a	list	of	directories	to	search	for	shared
(dynamically	loaded)	libraries	at	run-time.

For	example,	 if	 you	need	 to	 link	against	 libraries	 known	 to	be	 in	 the
standard	library	search	path	on	target	systems

Extension(...,

										libraries=['gdbm',	'readline'])

If	you	need	to	link	with	libraries	in	a	non-standard	location,	you’ll	have
to	include	the	location	in	library_dirs:

Extension(...,

										library_dirs=['/usr/X11R6/lib'],

										libraries=['X11',	'Xt'])

(Again,	 this	 sort	 of	 non-portable	 construct	 should	 be	 avoided	 if	 you
intend	to	distribute	your	code.)

2.3.5.	Other	options

There	are	still	some	other	options	which	can	be	used	to	handle	special
cases.

The	 optional	 option	 is	 a	 boolean;	 if	 it	 is	 true,	 a	 build	 failure	 in	 the
extension	will	not	abort	the	build	process,	but	instead	simply	not	install
the	failing	extension.

The	extra_objects	 option	 is	 a	 list	 of	 object	 files	 to	 be	 passed	 to	 the
linker.	These	files	must	not	have	extensions,	as	the	default	extension
for	the	compiler	is	used.

extra_compile_args	 and	 extra_link_args	 can	 be	 used	 to	 specify
additional	command	line	options	for	the	respective	compiler	and	linker
command	lines.

export_symbols	 is	 only	 useful	 on	 Windows.	 It	 can	 contain	 a	 list	 of
symbols	 (functions	 or	 variables)	 to	 be	 exported.	 This	 option	 is	 not
needed	when	building	compiled	extensions:	Distutils	will	automatically
add	initmodule	to	the	list	of	exported	symbols.

The	depends	option	is	a	list	of	files	that	the	extension	depends	on	(for
example	header	files).	The	build	command	will	call	the	compiler	on	the
sources	 to	 rebuild	 extension	 if	 any	 on	 this	 files	 has	 been	 modified
since	the	previous	build.

2.4.	Relationships	between	Distributions
and	Packages

A	distribution	may	relate	to	packages	in	three	specific	ways:

1.	 It	can	require	packages	or	modules.
2.	 It	can	provide	packages	or	modules.
3.	 It	can	obsolete	packages	or	modules.

These	relationships	can	be	specified	using	keyword	arguments	to	the
distutils.core.setup()	function.

Dependencies	 on	 other	 Python	 modules	 and	 packages	 can	 be
specified	 by	 supplying	 the	 requires	 keyword	 argument	 to	 setup().
The	 value	must	 be	 a	 list	 of	 strings.	Each	 string	 specifies	 a	 package
that	is	required,	and	optionally	what	versions	are	sufficient.

To	 specify	 that	 any	 version	 of	 a	module	 or	 package	 is	 required,	 the
string	 should	 consist	 entirely	 of	 the	 module	 or	 package	 name.
Examples	include	'mymodule'	and	'xml.parsers.expat'.

If	 specific	 versions	 are	 required,	 a	 sequence	 of	 qualifiers	 can	 be
supplied	 in	parentheses.	Each	qualifier	may	consist	 of	 a	 comparison
operator	 and	a	 version	number.	The	accepted	comparison	operators
are:

<				>				==

<=			>=			!=

These	 can	 be	 combined	 by	 using	 multiple	 qualifiers	 separated	 by
commas	 (and	 optional	 whitespace).	 In	 this	 case,	 all	 of	 the	 qualifiers
must	be	matched;	a	logical	AND	is	used	to	combine	the	evaluations.

Let’s	look	at	a	bunch	of	examples:

Requires
Expression Explanation

==1.0 Only	version	1.0	is	compatible

>1.0,	!=1.5.1,

<2.0

Any	version	after	1.0	and	before	2.0	is
compatible,	except	1.5.1

Now	 that	we	 can	 specify	 dependencies,	we	 also	 need	 to	 be	 able	 to
specify	 what	 we	 provide	 that	 other	 distributions	 can	 require.	 This	 is
done	using	the	provides	keyword	argument	to	setup().	The	value	for
this	keyword	is	a	list	of	strings,	each	of	which	names	a	Python	module
or	package,	and	optionally	 identifies	 the	version.	 If	 the	version	 is	not
specified,	it	is	assumed	to	match	that	of	the	distribution.

Some	examples:

Provides
Expression Explanation

mypkg Provide	mypkg,	using	the	distribution	version

mypkg	(1.1)
Provide	mypkg	version	1.1,	regardless	of	the
distribution	version

A	 package	 can	 declare	 that	 it	 obsoletes	 other	 packages	 using	 the
obsoletes	keyword	argument.	The	value	for	this	is	similar	to	that	of	the
requires	keyword:	a	list	of	strings	giving	module	or	package	specifiers.
Each	 specifier	 consists	 of	 a	 module	 or	 package	 name	 optionally
followed	by	one	or	more	version	qualifiers.	Version	qualifiers	are	given
in	parentheses	after	the	module	or	package	name.

The	versions	 identified	by	 the	qualifiers	are	 those	 that	are	obsoleted
by	 the	 distribution	 being	 described.	 If	 no	 qualifiers	 are	 given,	 all

versions	 of	 the	 named	 module	 or	 package	 are	 understood	 to	 be
obsoleted.

2.5.	Installing	Scripts

So	far	we	have	been	dealing	with	pure	and	non-pure	Python	modules,
which	are	usually	not	run	by	themselves	but	imported	by	scripts.

Scripts	are	files	containing	Python	source	code,	intended	to	be	started
from	 the	command	 line.	Scripts	 don’t	 require	Distutils	 to	 do	anything
very	complicated.	The	only	clever	feature	 is	that	 if	 the	first	 line	of	 the
script	starts	with	#!	and	contains	 the	word	“python”,	 the	Distutils	will
adjust	 the	 first	 line	 to	 refer	 to	 the	 current	 interpreter	 location.	 By
default,	 it	 is	 replaced	 with	 the	 current	 interpreter	 location.	 The	 --
executable	(or	-e)	option	will	allow	the	interpreter	path	to	be	explicitly
overridden.

The	scripts	 option	 simply	 is	 a	 list	 of	 files	 to	 be	 handled	 in	 this	 way.
From	the	PyXML	setup	script:

setup(...,

						scripts=['scripts/xmlproc_parse',	'scripts/xmlproc_val'

)

Changed	 in	 version	 3.1:	 All	 the	 scripts	 will	 also	 be	 added	 to	 the
MANIFEST	 file	 if	 no	 template	 is	provided.	See	Specifying	 the	 files	 to
distribute.

2.6.	Installing	Package	Data

Often,	additional	files	need	to	be	installed	into	a	package.	These	files
are	often	data	 that’s	closely	 related	 to	 the	package’s	 implementation,
or	 text	 files	 containing	 documentation	 that	 might	 be	 of	 interest	 to
programmers	using	the	package.	These	files	are	called	package	data.

Package	data	 can	be	added	 to	 packages	using	 the	 package_data
keyword	 argument	 to	 the	 setup()	 function.	 The	 value	 must	 be	 a
mapping	 from	 package	 name	 to	 a	 list	 of	 relative	 path	 names	 that
should	 be	 copied	 into	 the	 package.	 The	 paths	 are	 interpreted	 as
relative	 to	 the	directory	containing	 the	package	 (information	 from	 the
package_dir	mapping	 is	 used	 if	 appropriate);	 that	 is,	 the	 files	 are
expected	to	be	part	of	the	package	in	the	source	directories.	They	may
contain	glob	patterns	as	well.

The	 path	 names	 may	 contain	 directory	 portions;	 any	 necessary
directories	will	be	created	in	the	installation.

For	example,	 if	a	package	should	contain	a	subdirectory	with	several
data	files,	the	files	can	be	arranged	like	this	in	the	source	tree:

setup.py

src/

				mypkg/

								__init__.py

								module.py

								data/

												tables.dat

												spoons.dat

												forks.dat

The	corresponding	call	to	setup()	might	be:

setup(...,

						packages=['mypkg'],

						package_dir={'mypkg':	'src/mypkg'},

						package_data={'mypkg':	['data/*.dat']},

)

Changed	in	version	3.1:	All	the	files	that	match	package_data	will	be
added	to	the	MANIFEST	file	if	no	template	is	provided.	See	Specifying
the	files	to	distribute.

2.7.	Installing	Additional	Files

The	data_files	option	can	be	used	to	specify	additional	files	needed	by
the	 module	 distribution:	 configuration	 files,	 message	 catalogs,	 data
files,	anything	which	doesn’t	fit	in	the	previous	categories.

data_files	 specifies	 a	 sequence	 of	 (directory,	 files)	 pairs	 in	 the
following	way:

setup(...,

						data_files=[('bitmaps',	['bm/b1.gif',	'bm/b2.gif'

																		('config',	['cfg/data.cfg']),

																		('/etc/init.d',	['init-script'])]

)

Note	that	you	can	specify	the	directory	names	where	the	data	files	will
be	installed,	but	you	cannot	rename	the	data	files	themselves.

Each	 (directory,	 files)	 pair	 in	 the	 sequence	 specifies	 the	 installation
directory	and	the	files	to	install	there.	If	directory	is	a	relative	path,	it	is
interpreted	relative	to	the	installation	prefix	(Python’s	sys.prefix	for
pure-Python	packages,	sys.exec_prefix	for	packages	that	contain
extension	modules).	Each	file	name	in	files	is	interpreted	relative	to	the
setup.py	 script	 at	 the	 top	 of	 the	 package	 source	 distribution.	 No
directory	information	from	files	is	used	to	determine	the	final	location	of
the	installed	file;	only	the	name	of	the	file	is	used.

You	can	 specify	 the	data_files	 options	as	a	 simple	 sequence	of	 files
without	specifying	a	target	directory,	but	this	is	not	recommended,	and
the	 install	 command	will	 print	 a	warning	 in	 this	 case.	To	 install	 data
files	directly	in	the	target	directory,	an	empty	string	should	be	given	as
the	directory.

Changed	 in	version	3.1:	All	 the	 files	 that	match	data_files	will	 be
added	to	the	MANIFEST	file	if	no	template	is	provided.	See	Specifying
the	files	to	distribute.

2.8.	Additional	meta-data

The	setup	 script	may	 include	additional	meta-data	beyond	 the	name
and	version.	This	information	includes:

Meta-Data Description Value Notes

name
name	of	the
package short	string (1)

version
version	of	this
release short	string (1)(2)

author
package	author’s
name short	string (3)

author_email
email	address	of	the
package	author

email
address (3)

maintainer
package
maintainer’s	name short	string (3)

maintainer_email
email	address	of	the
package	maintainer

email
address (3)

url
home	page	for	the
package URL (1)

description

short,	summary
description	of	the
package

short	string 	

long_description
longer	description	of
the	package long	string (5)

download_url

location	where	the
package	may	be
downloaded

URL (4)

classifiers a	list	of	classifiers
list	of
strings (4)

platforms a	list	of	platforms list	of
strings 	

license
license	for	the
package short	string (6)

Notes:

1.	 These	fields	are	required.
2.	 It	 is	 recommended	 that	 versions	 take	 the	 form

major.minor[.patch[.sub]].
3.	 Either	 the	 author	 or	 the	 maintainer	 must	 be	 identified.	 If

maintainer	is	provided,	distutils	lists	it	as	the	author	in	PKG-INFO.
4.	 These	 fields	 should	 not	 be	 used	 if	 your	 package	 is	 to	 be

compatible	with	Python	 versions	prior	 to	 2.2.3	or	 2.3.	The	 list	 is
available	from	the	PyPI	website.

5.	 The	 long_description	 field	 is	 used	 by	 PyPI	 when	 you	 are
registering	a	package,	to	build	its	home	page.

6.	 The	 license	 field	 is	 a	 text	 indicating	 the	 license	 covering	 the
package	where	 the	 license	 is	 not	 a	 selection	 from	 the	 “License”
Trove	classifiers.	See	the	Classifier	field.	Notice	that	there’s	a
licence	distribution	option	which	 is	deprecated	but	still	acts	as
an	alias	for	license.

‘short	string’
A	single	line	of	text,	not	more	than	200	characters.

‘long	string’
Multiple	 lines	 of	 plain	 text	 in	 reStructuredText	 format	 (see
http://docutils.sf.net/).

‘list	of	strings’
See	below.

Encoding	 the	version	 information	 is	an	art	 in	 itself.	Python	packages
generally	 adhere	 to	 the	 version	 format	major.minor[.patch][sub].	 The

http://pypi.python.org/pypi
http://docutils.sf.net/

major	 number	 is	 0	 for	 initial,	 experimental	 releases	 of	 software.	 It	 is
incremented	 for	 releases	 that	 represent	 major	 milestones	 in	 a
package.	 The	 minor	 number	 is	 incremented	 when	 important	 new
features	 are	 added	 to	 the	 package.	 The	 patch	 number	 increments
when	bug-fix	releases	are	made.	Additional	trailing	version	information
is	sometimes	used	 to	 indicate	sub-releases.	These	are	 “a1,a2,...,aN”
(for	 alpha	 releases,	 where	 functionality	 and	 API	 may	 change),
“b1,b2,...,bN”	 (for	 beta	 releases,	 which	 only	 fix	 bugs)	 and
“pr1,pr2,...,prN”	(for	final	pre-release	release	testing).	Some	examples:

0.1.0
the	first,	experimental	release	of	a	package

1.0.1a2
the	second	alpha	release	of	the	first	patch	version	of	1.0

classifiers	are	specified	in	a	Python	list:

setup(...,

						classifiers=[

										'Development	Status	::	4	-	Beta',

										'Environment	::	Console',

										'Environment	::	Web	Environment',

										'Intended	Audience	::	End	Users/Desktop',

										'Intended	Audience	::	Developers',

										'Intended	Audience	::	System	Administrators'

										'License	::	OSI	Approved	::	Python	Software	Foundation	License'

										'Operating	System	::	MacOS	::	MacOS	X',

										'Operating	System	::	Microsoft	::	Windows'

										'Operating	System	::	POSIX',

										'Programming	Language	::	Python',

										'Topic	::	Communications	::	Email',

										'Topic	::	Office/Business',

										'Topic	::	Software	Development	::	Bug	Tracking'

],

)

If	you	wish	to	include	classifiers	in	your	setup.py	 file	and	also	wish
to	 remain	 backwards-compatible	with	 Python	 releases	 prior	 to	 2.2.3,
then	you	can	 include	 the	 following	code	 fragment	 in	your	setup.py
before	the	setup()	call.

#	patch	distutils	if	it	can't	cope	with	the	"classifiers"	or

#	"download_url"	keywords

from	sys	import	version

if	version	<	'2.2.3':

				from	distutils.dist	import	DistributionMetadata

				DistributionMetadata.classifiers	=	None

				DistributionMetadata.download_url	=	None

2.9.	Debugging	the	setup	script

Sometimes	things	go	wrong,	and	the	setup	script	doesn’t	do	what	the
developer	wants.

Distutils	 catches	 any	 exceptions	 when	 running	 the	 setup	 script,	 and
print	 a	 simple	 error	 message	 before	 the	 script	 is	 terminated.	 The
motivation	for	this	behaviour	is	to	not	confuse	administrators	who	don’t
know	much	about	Python	and	are	 trying	 to	 install	 a	package.	 If	 they
get	 a	 big	 long	 traceback	 from	 deep	 inside	 the	 guts	 of	Distutils,	 they
may	 think	 the	 package	 or	 the	 Python	 installation	 is	 broken	 because
they	 don’t	 read	 all	 the	 way	 down	 to	 the	 bottom	 and	 see	 that	 it’s	 a
permission	problem.

On	the	other	hand,	this	doesn’t	help	the	developer	to	find	the	cause	of
the	 failure.	 For	 this	 purpose,	 the	 DISTUTILS_DEBUG	 environment
variable	 can	be	 set	 to	 anything	except	 an	empty	 string,	 and	distutils
will	now	print	detailed	information	about	what	it	is	doing,	dump	the	full
traceback	when	 an	 exception	 occurs,	 and	 print	 the	whole	 command
line	when	an	external	program	(like	a	C	compiler)	fails.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

1.	An	Introduction	to	Distutils
This	 document	 covers	 using	 the	 Distutils	 to	 distribute	 your	 Python
modules,	 concentrating	 on	 the	 role	 of	 developer/distributor:	 if	 you’re
looking	for	information	on	installing	Python	modules,	you	should	refer
to	the	Installing	Python	Modules	(Legacy	version)	chapter.

1.1.	Concepts	&	Terminology

Using	the	Distutils	is	quite	simple,	both	for	module	developers	and	for
users/administrators	 installing	 third-party	 modules.	 As	 a	 developer,
your	 responsibilities	 (apart	 from	 writing	 solid,	 well-documented	 and
well-tested	code,	of	course!)	are:

write	a	setup	script	(setup.py	by	convention)
(optional)	write	a	setup	configuration	file
create	a	source	distribution
(optional)	create	one	or	more	built	(binary)	distributions

Each	of	these	tasks	is	covered	in	this	document.

Not	all	module	developers	have	access	to	a	multitude	of	platforms,	so
it’s	 not	 always	 feasible	 to	 expect	 them	 to	 create	 a	multitude	 of	 built
distributions.	 It	 is	 hoped	 that	 a	 class	 of	 intermediaries,	 called
packagers,	will	arise	to	address	this	need.	Packagers	will	take	source
distributions	 released	 by	 module	 developers,	 build	 them	 on	 one	 or
more	 platforms,	 and	 release	 the	 resulting	 built	 distributions.	 Thus,
users	on	the	most	popular	platforms	will	be	able	to	install	most	popular
Python	module	distributions	in	the	most	natural	way	for	their	platform,
without	having	to	run	a	single	setup	script	or	compile	a	line	of	code.

1.2.	A	Simple	Example

The	setup	script	 is	usually	quite	simple,	although	since	 it’s	written	 in
Python,	there	are	no	arbitrary	limits	to	what	you	can	do	with	it,	though
you	should	be	careful	about	putting	arbitrarily	expensive	operations	in
your	 setup	 script.	 Unlike,	 say,	 Autoconf-style	 configure	 scripts,	 the
setup	 script	may	 be	 run	multiple	 times	 in	 the	 course	 of	 building	 and
installing	your	module	distribution.

If	all	you	want	to	do	is	distribute	a	module	called	foo,	contained	in	a
file	foo.py,	then	your	setup	script	can	be	as	simple	as	this:

from	distutils.core	import	setup

setup(name='foo',

						version='1.0',

						py_modules=['foo'],

)

Some	observations:

most	 information	 that	 you	 supply	 to	 the	 Distutils	 is	 supplied	 as
keyword	arguments	to	the	setup()	function
those	 keyword	 arguments	 fall	 into	 two	 categories:	 package
metadata	(name,	version	number)	and	information	about	what’s	in
the	package	(a	list	of	pure	Python	modules,	in	this	case)
modules	are	 specified	by	module	name,	not	 filename	 (the	same
will	hold	true	for	packages	and	extensions)
it’s	 recommended	 that	 you	 supply	 a	 little	 more	 metadata,	 in
particular	 your	 name,	 email	 address	 and	 a	 URL	 for	 the	 project
(see	section	Writing	the	Setup	Script	for	an	example)

To	 create	 a	 source	 distribution	 for	 this	 module,	 you	 would	 create	 a
setup	 script,	 setup.py,	 containing	 the	 above	 code,	 and	 run	 this

command	from	a	terminal:

python	setup.py	sdist

For	Windows,	open	a	command	prompt	window	(Start	‣	Accessories)
and	change	the	command	to:

setup.py	sdist

sdist	 will	 create	 an	 archive	 file	 (e.g.,	 tarball	 on	 Unix,	 ZIP	 file	 on
Windows)	 containing	 your	 setup	 script	 setup.py,	 and	 your	module
foo.py.	The	archive	file	will	be	named	foo-1.0.tar.gz	(or	.zip),
and	will	unpack	into	a	directory	foo-1.0.

If	an	end-user	wishes	to	install	your	foo	module,	all	she	has	to	do	is
download	 foo-1.0.tar.gz	 (or	 .zip),	 unpack	 it,	 and—from	 the
foo-1.0	directory—run

python	setup.py	install

which	will	ultimately	copy	foo.py	to	the	appropriate	directory	for	third-
party	modules	in	their	Python	installation.

This	simple	example	demonstrates	some	fundamental	concepts	of	the
Distutils.	 First,	 both	 developers	 and	 installers	 have	 the	 same	 basic
user	 interface,	 i.e.	 the	 setup	 script.	 The	 difference	 is	 which	 Distutils
commands	 they	 use:	 the	 sdist	 command	 is	 almost	 exclusively	 for
module	developers,	while	install	 is	more	often	for	installers	(although
most	developers	will	want	to	install	their	own	code	occasionally).

If	you	want	to	make	things	really	easy	for	your	users,	you	can	create
one	 or	 more	 built	 distributions	 for	 them.	 For	 instance,	 if	 you	 are
running	 on	 a	Windows	 machine,	 and	 want	 to	 make	 things	 easy	 for

other	Windows	users,	you	can	create	an	executable	installer	(the	most
appropriate	 type	 of	 built	 distribution	 for	 this	 platform)	 with	 the
bdist_wininst	command.	For	example:

python	setup.py	bdist_wininst

will	 create	 an	 executable	 installer,	 foo-1.0.win32.exe,	 in	 the
current	directory.

Other	 useful	 built	 distribution	 formats	 are	 RPM,	 implemented	 by	 the
bdist_rpm	 command,	 Solaris	 pkgtool	 (bdist_pkgtool),	 and	 HP-UX
swinstall	 (bdist_sdux).	 For	 example,	 the	 following	 command	 will
create	an	RPM	file	called	foo-1.0.noarch.rpm:

python	setup.py	bdist_rpm

(The	 bdist_rpm	 command	 uses	 the	 rpm	 executable,	 therefore	 this
has	to	be	run	on	an	RPM-based	system	such	as	Red	Hat	Linux,	SuSE
Linux,	or	Mandrake	Linux.)

You	can	find	out	what	distribution	formats	are	available	at	any	time	by
running

python	setup.py	bdist	--help-formats

1.3.	General	Python	terminology

If	 you’re	 reading	 this	 document,	 you	 probably	 have	 a	 good	 idea	 of
what	modules,	extensions,	and	so	 forth	are.	Nevertheless,	 just	 to	be
sure	that	everyone	is	operating	from	a	common	starting	point,	we	offer
the	following	glossary	of	common	Python	terms:

module
the	 basic	 unit	 of	 code	 reusability	 in	 Python:	 a	 block	 of	 code
imported	by	some	other	code.	Three	types	of	modules	concern	us
here:	pure	Python	modules,	extension	modules,	and	packages.

pure	Python	module
a	module	written	in	Python	and	contained	in	a	single	.py	file	(and
possibly	associated	.pyc	and/or	.pyo	 files).	Sometimes	 referred
to	as	a	“pure	module.”

extension	module
a	 module	 written	 in	 the	 low-level	 language	 of	 the	 Python
implementation:	 C/C++	 for	 Python,	 Java	 for	 Jython.	 Typically
contained	in	a	single	dynamically	loadable	pre-compiled	file,	e.g.	a
shared	 object	 (.so)	 file	 for	 Python	 extensions	 on	 Unix,	 a	 DLL
(given	the	.pyd	extension)	for	Python	extensions	on	Windows,	or
a	 Java	 class	 file	 for	 Jython	 extensions.	 (Note	 that	 currently,	 the
Distutils	only	handles	C/C++	extensions	for	Python.)

package
a	 module	 that	 contains	 other	 modules;	 typically	 contained	 in	 a
directory	 in	the	filesystem	and	distinguished	from	other	directories
by	the	presence	of	a	file	__init__.py.

root	package
the	root	of	the	hierarchy	of	packages.	(This	 isn’t	really	a	package,
since	it	doesn’t	have	an	__init__.py	file.	But	we	have	to	call	 it
something.)	The	vast	majority	of	 the	standard	library	 is	 in	the	root

package,	 as	are	many	 small,	 standalone	 third-party	modules	 that
don’t	belong	to	a	larger	module	collection.	Unlike	regular	packages,
modules	 in	 the	root	package	can	be	 found	 in	many	directories:	 in
fact,	every	directory	listed	in	sys.path	contributes	modules	to	the
root	package.

1.4.	Distutils-specific	terminology

The	 following	 terms	 apply	 more	 specifically	 to	 the	 domain	 of
distributing	Python	modules	using	the	Distutils:

module	distribution
a	 collection	 of	 Python	 modules	 distributed	 together	 as	 a	 single
downloadable	 resource	 and	 meant	 to	 be	 installed	 en	 masse.
Examples	 of	 some	 well-known	 module	 distributions	 are	 NumPy,
SciPy,	PIL	(the	Python	Imaging	Library),	or	mxBase.	(This	would	be
called	a	package,	except	 that	 term	 is	already	 taken	 in	 the	Python
context:	 a	 single	 module	 distribution	 may	 contain	 zero,	 one,	 or
many	Python	packages.)

pure	module	distribution
a	module	distribution	that	contains	only	pure	Python	modules	and
packages.	Sometimes	referred	to	as	a	“pure	distribution.”

non-pure	module	distribution
a	module	distribution	that	contains	at	 least	one	extension	module.
Sometimes	referred	to	as	a	“non-pure	distribution.”

distribution	root
the	 top-level	directory	of	 your	source	 tree	 (or	source	 distribution);
the	directory	where	setup.py	exists.	Generally	setup.py	will	be
run	from	this	directory.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

4.	Creating	a	Source	Distribution
As	shown	in	section	A	Simple	Example,	you	use	the	sdist	command
to	create	a	source	distribution.	In	the	simplest	case,

python	setup.py	sdist

(assuming	you	haven’t	specified	any	sdist	options	 in	 the	setup	script
or	 config	 file),	sdist	 creates	 the	 archive	 of	 the	 default	 format	 for	 the
current	platform.	The	default	format	is	a	gzip’ed	tar	file	(.tar.gz)	on
Unix,	and	ZIP	file	on	Windows.

You	 can	 specify	 as	 many	 formats	 as	 you	 like	 using	 the	 --formats
option,	for	example:

python	setup.py	sdist	--formats=gztar,zip

to	create	a	gzipped	tarball	and	a	zip	file.	The	available	formats	are:

Format Description Notes

zip zip	file	(.zip) (1),(3)

gztar gzip’ed	tar	file	(.tar.gz) (2)

bztar bzip2’ed	tar	file	(.tar.bz2) 	

ztar
compressed	tar	file
(.tar.Z) (4)

tar tar	file	(.tar) 	

Notes:

1.	 default	on	Windows

2.	 default	on	Unix
3.	 requires	either	external	zip	utility	or	zipfile	module	(part	of	the

standard	Python	library	since	Python	1.6)
4.	 requires	 the	 compress	 program.	 Notice	 that	 this	 format	 is	 now

pending	for	deprecation	and	will	be	removed	in	the	future	versions
of	Python.

When	 using	 any	 tar	 format	 (gztar,	 bztar,	 ztar	 or	 tar),	 under
Unix	you	can	specify	the	owner	and	group	names	that	will	be	set	for
each	member	of	the	archive.

For	example,	if	you	want	all	files	of	the	archive	to	be	owned	by	root:

python	setup.py	sdist	--owner=root	--group=root

4.1.	Specifying	the	files	to	distribute

If	 you	 don’t	 supply	 an	 explicit	 list	 of	 files	 (or	 instructions	 on	 how	 to
generate	one),	the	sdist	command	puts	a	minimal	default	set	into	the
source	distribution:

all	Python	source	 files	 implied	by	 the	py_modules	and	packages
options
all	 C	 source	 files	 mentioned	 in	 the	 ext_modules	 or	 libraries
options	(
scripts	identified	by	the	scripts	option	See	Installing	Scripts.
anything	that	 looks	like	a	test	script:	test/test*.py	 (currently,
the	 Distutils	 don’t	 do	 anything	 with	 test	 scripts	 except	 include
them	 in	 source	 distributions,	 but	 in	 the	 future	 there	 will	 be	 a
standard	for	testing	Python	module	distributions)
README.txt	 (or	 README),	 setup.py	 (or	 whatever	 you	 called
your	setup	script),	and	setup.cfg
all	files	that	matches	the	package_data	metadata.	See	Installing
Package	Data.
all	 files	 that	matches	 the	 data_files	metadata.	See	 Installing
Additional	Files.

Sometimes	 this	 is	 enough,	 but	 usually	 you	 will	 want	 to	 specify
additional	 files	 to	 distribute.	 The	 typical	 way	 to	 do	 this	 is	 to	 write	 a
manifest	 template,	 called	 MANIFEST.in	 by	 default.	 The	 manifest
template	is	just	a	list	of	instructions	for	how	to	generate	your	manifest
file,	MANIFEST,	which	is	the	exact	list	of	files	to	include	in	your	source
distribution.	 The	 sdist	 command	 processes	 this	 template	 and
generates	a	manifest	based	on	its	instructions	and	what	it	finds	in	the
filesystem.

If	 you	prefer	 to	 roll	 your	 own	manifest	 file,	 the	 format	 is	 simple:	 one

filename	 per	 line,	 regular	 files	 (or	 symlinks	 to	 them)	 only.	 If	 you	 do
supply	your	own	MANIFEST,	you	must	specify	everything:	the	default
set	of	files	described	above	does	not	apply	in	this	case.

Changed	 in	 version	 3.1:	 An	 existing	 generated	 MANIFEST	 will	 be
regenerated	without	sdist	comparing	its	modification	time	to	the	one	of
MANIFEST.in	or	setup.py.

Changed	 in	 version	 3.1.3:	 MANIFEST	 files	 start	 with	 a	 comment
indicating	 they	 are	 generated.	 Files	 without	 this	 comment	 are	 not
overwritten	or	removed.

Changed	 in	 version	 3.2.2:	 sdist	 will	 read	 a	 MANIFEST	 file	 if	 no
MANIFEST.in	exists,	like	it	used	to	do.

The	 manifest	 template	 has	 one	 command	 per	 line,	 where	 each
command	specifies	a	set	of	files	to	include	or	exclude	from	the	source
distribution.	 For	 an	 example,	 again	 we	 turn	 to	 the	 Distutils’	 own
manifest	template:

include	*.txt

recursive-include	examples	*.txt	*.py

prune	examples/sample?/build

The	meanings	should	be	fairly	clear:	include	all	files	in	the	distribution
root	 matching	 *.txt,	 all	 files	 anywhere	 under	 the	 examples
directory	 matching	 *.txt	 or	 *.py,	 and	 exclude	 all	 directories
matching	 examples/sample?/build.	 All	 of	 this	 is	 done	 after	 the
standard	 include	set,	 so	you	can	exclude	 files	 from	 the	standard	set
with	explicit	instructions	in	the	manifest	template.	(Or,	you	can	use	the
--no-defaults	 option	 to	 disable	 the	 standard	 set	 entirely.)	 There	 are
several	 other	 commands	 available	 in	 the	 manifest	 template	 mini-
language;	 see	 section	 Creating	 a	 source	 distribution:	 the	 sdist

command.

The	order	of	commands	in	the	manifest	template	matters:	 initially,	we
have	the	list	of	default	files	as	described	above,	and	each	command	in
the	template	adds	to	or	removes	from	that	 list	of	files.	Once	we	have
fully	processed	the	manifest	template,	we	remove	files	that	should	not
be	included	in	the	source	distribution:

all	files	in	the	Distutils	“build”	tree	(default	build/)
all	files	in	directories	named	RCS,	CVS,	.svn,	.hg,	.git,	.bzr
or	_darcs

Now	we	have	our	complete	list	of	files,	which	is	written	to	the	manifest
for	 future	 reference,	 and	 then	 used	 to	 build	 the	 source	 distribution
archive(s).

You	can	disable	the	default	set	of	 included	files	with	the	--no-defaults
option,	and	you	can	disable	the	standard	exclude	set	with	--no-prune.

Following	 the	 Distutils’	 own	 manifest	 template,	 let’s	 trace	 how	 the
sdist	command	builds	the	list	of	files	to	include	in	the	Distutils	source
distribution:

1.	 include	 all	 Python	 source	 files	 in	 the	 distutils	 and
distutils/command	 subdirectories	 (because	 packages
corresponding	 to	 those	 two	 directories	 were	 mentioned	 in	 the
packages	 option	 in	 the	 setup	 script—see	 section	 Writing	 the
Setup	Script)

2.	 include	 README.txt,	 setup.py,	 and	 setup.cfg	 (standard
files)

3.	 include	test/test*.py	(standard	files)
4.	 include	*.txt	in	the	distribution	root	(this	will	find	README.txt	a

second	time,	but	such	redundancies	are	weeded	out	later)
5.	 include	anything	matching	*.txt	or	*.py	 in	 the	sub-tree	under

examples,
6.	 exclude	 all	 files	 in	 the	 sub-trees	 starting	 at	 directories	matching

examples/sample?/build—this	may	exclude	files	included	by
the	previous	two	steps,	so	it’s	important	that	the	prune	command
in	 the	manifest	 template	 comes	after	 the	 recursive-include
command

7.	 exclude	 the	 entire	 build	 tree,	 and	 any	 RCS,	 CVS,	 .svn,	 .hg,
.git,	.bzr	and	_darcs	directories

Just	 like	 in	 the	 setup	 script,	 file	 and	directory	names	 in	 the	manifest
template	should	always	be	slash-separated;	the	Distutils	will	take	care
of	 converting	 them	 to	 the	 standard	 representation	 on	 your	 platform.
That	way,	the	manifest	template	is	portable	across	operating	systems.

4.2.	Manifest-related	options

The	normal	course	of	operations	for	the	sdist	command	is	as	follows:

if	the	manifest	file	(MANIFEST	by	default)	exists	and	the	first	 line
does	 not	 have	 a	 comment	 indicating	 it	 is	 generated	 from
MANIFEST.in,	then	it	is	used	as	is,	unaltered
if	 the	 manifest	 file	 doesn’t	 exist	 or	 has	 been	 previously
automatically	 generated,	 read	 MANIFEST.in	 and	 create	 the
manifest
if	neither	MANIFEST	nor	MANIFEST.in	exist,	 create	a	manifest
with	just	the	default	file	set
use	 the	 list	 of	 files	 now	 in	 MANIFEST	 (either	 just	 generated	 or
read	in)	to	create	the	source	distribution	archive(s)

There	are	a	couple	of	options	that	modify	this	behaviour.	First,	use	the
--no-defaults	 and	 --no-prune	 to	 disable	 the	 standard	 “include”	 and
“exclude”	sets.

Second,	 you	 might	 just	 want	 to	 (re)generate	 the	 manifest,	 but	 not
create	a	source	distribution:

python	setup.py	sdist	--manifest-only

-o	is	a	shortcut	for	--manifest-only.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

5.	Creating	Built	Distributions
A	“built	distribution”	 is	what	you’re	probably	used	 to	 thinking	of	either
as	 a	 “binary	 package”	 or	 an	 “installer”	 (depending	 on	 your
background).	 It’s	 not	 necessarily	 binary,	 though,	 because	 it	 might
contain	only	Python	source	code	and/or	byte-code;	and	we	don’t	call	it
a	package,	because	 that	word	 is	already	spoken	 for	 in	Python.	 (And
“installer”	 is	 a	 term	 specific	 to	 the	 world	 of	 mainstream	 desktop
systems.)

A	 built	 distribution	 is	 how	 you	 make	 life	 as	 easy	 as	 possible	 for
installers	 of	 your	module	 distribution:	 for	 users	 of	 RPM-based	 Linux
systems,	 it’s	 a	 binary	 RPM;	 for	 Windows	 users,	 it’s	 an	 executable
installer;	for	Debian-based	Linux	users,	it’s	a	Debian	package;	and	so
forth.	Obviously,	no	one	person	will	be	able	to	create	built	distributions
for	 every	 platform	 under	 the	 sun,	 so	 the	 Distutils	 are	 designed	 to
enable	 module	 developers	 to	 concentrate	 on	 their	 specialty—writing
code	and	creating	source	distributions—while	an	intermediary	species
called	 packagers	 springs	 up	 to	 turn	 source	 distributions	 into	 built
distributions	for	as	many	platforms	as	there	are	packagers.

Of	 course,	 the	module	 developer	 could	 be	his	 own	packager;	 or	 the
packager	could	be	a	volunteer	“out	there”	somewhere	who	has	access
to	 a	 platform	 which	 the	 original	 developer	 does	 not;	 or	 it	 could	 be
software	 periodically	 grabbing	 new	 source	 distributions	 and	 turning
them	into	built	distributions	for	as	many	platforms	as	the	software	has
access	 to.	 Regardless	 of	 who	 they	 are,	 a	 packager	 uses	 the	 setup
script	and	the	bdist	command	family	to	generate	built	distributions.

As	 a	 simple	 example,	 if	 I	 run	 the	 following	 command	 in	 the	Distutils
source	tree:

python	setup.py	bdist

then	 the	Distutils	 builds	my	module	 distribution	 (the	Distutils	 itself	 in
this	case),	does	a	“fake”	installation	(also	in	the	build	directory),	and
creates	the	default	type	of	built	distribution	for	my	platform.	The	default
format	for	built	distributions	is	a	“dumb”	tar	file	on	Unix,	and	a	simple
executable	 installer	 on	Windows.	 (That	 tar	 file	 is	 considered	 “dumb”
because	it	has	to	be	unpacked	in	a	specific	location	to	work.)

Thus,	 the	 above	 command	 on	 a	 Unix	 system	 creates	 Distutils-
1.0.plat.tar.gz;	unpacking	this	tarball	from	the	right	place	installs
the	Distutils	just	as	though	you	had	downloaded	the	source	distribution
and	run	python	setup.py	install.	(The	“right	place”	is	either	the
root	of	the	filesystem	or	Python’s	prefix	directory,	depending	on	the
options	 given	 to	 the	 bdist_dumb	 command;	 the	 default	 is	 to	 make
dumb	distributions	relative	to	prefix.)

Obviously,	for	pure	Python	distributions,	this	isn’t	any	simpler	than	just
running	 python	 setup.py	 install—but	 for	 non-pure
distributions,	 which	 include	 extensions	 that	 would	 need	 to	 be
compiled,	it	can	mean	the	difference	between	someone	being	able	to
use	 your	 extensions	 or	 not.	 And	 creating	 “smart”	 built	 distributions,
such	as	an	RPM	package	or	an	executable	installer	for	Windows,	is	far
more	convenient	for	users	even	if	your	distribution	doesn’t	include	any
extensions.

The	 bdist	 command	 has	 a	 --formats	 option,	 similar	 to	 the	 sdist
command,	which	you	can	use	to	select	the	types	of	built	distribution	to
generate:	for	example,

python	setup.py	bdist	--format=zip

would,	 when	 run	 on	 a	 Unix	 system,	 create	 Distutils-

1.0.plat.zip—again,	this	archive	would	be	unpacked	from	the	root
directory	to	install	the	Distutils.

The	available	formats	for	built	distributions	are:

Format Description Notes

gztar gzipped	tar	file	(.tar.gz) (1),(3)

ztar compressed	tar	file	(.tar.Z) (3)

tar tar	file	(.tar) (3)

zip zip	file	(.zip) (2),(4)

rpm RPM (5)

pkgtool Solaris	pkgtool 	

sdux HP-UX	swinstall 	

wininst self-extracting	ZIP	file	for	Windows (4)

msi Microsoft	Installer. 	

Notes:

1.	 default	on	Unix
2.	 default	on	Windows
3.	 requires	external	utilities:	tar	and	possibly	one	of	gzip,	bzip2,	or

compress
4.	 requires	either	external	zip	utility	or	zipfile	module	(part	of	the

standard	Python	library	since	Python	1.6)
5.	 requires	external	rpm	utility,	version	3.0.4	or	better	(use	rpm	--

version	to	find	out	which	version	you	have)

You	don’t	have	 to	use	 the	bdist	 command	with	 the	 --formats	 option;
you	 can	 also	 use	 the	 command	 that	 directly	 implements	 the	 format

you’re	 interested	 in.	 Some	 of	 these	 bdist	 “sub-commands”	 actually
generate	 several	 similar	 formats;	 for	 instance,	 the	 bdist_dumb
command	 generates	 all	 the	 “dumb”	 archive	 formats	 (tar,	 ztar,
gztar,	and	zip),	and	bdist_rpm	generates	both	binary	and	source
RPMs.	The	bdist	sub-commands,	and	the	formats	generated	by	each,
are:

Command Formats

bdist_dumb tar,	ztar,	gztar,
zip

bdist_rpm rpm,	srpm

bdist_wininst wininst

bdist_msi msi

The	 following	 sections	 give	 details	 on	 the	 individual	 bdist_*
commands.

5.1.	Creating	RPM	packages

The	RPM	format	is	used	by	many	popular	Linux	distributions,	including
Red	Hat,	 SuSE,	 and	Mandrake.	 If	 one	 of	 these	 (or	 any	 of	 the	 other
RPM-based	 Linux	 distributions)	 is	 your	 usual	 environment,	 creating
RPM	 packages	 for	 other	 users	 of	 that	 same	 distribution	 is	 trivial.
Depending	 on	 the	 complexity	 of	 your	 module	 distribution	 and
differences	 between	 Linux	 distributions,	 you	 may	 also	 be	 able	 to
create	RPMs	that	work	on	different	RPM-based	distributions.

The	usual	way	to	create	an	RPM	of	your	module	distribution	is	to	run
the	bdist_rpm	command:

python	setup.py	bdist_rpm

or	the	bdist	command	with	the	--format	option:

python	setup.py	bdist	--formats=rpm

The	 former	 allows	 you	 to	 specify	 RPM-specific	 options;	 the	 latter
allows	you	to	easily	specify	multiple	formats	in	one	run.	If	you	need	to
do	 both,	 you	 can	 explicitly	 specify	 multiple	 bdist_*	 commands	 and
their	options:

python	setup.py	bdist_rpm	--packager="John	Doe	<jdoe@example.org>"

																bdist_wininst	--target-version="2.0"

Creating	RPM	packages	is	driven	by	a	.spec	file,	much	as	using	the
Distutils	 is	 driven	 by	 the	 setup	 script.	 To	 make	 your	 life	 easier,	 the
bdist_rpm	 command	 normally	 creates	 a	 .spec	 file	 based	 on	 the
information	you	supply	in	the	setup	script,	on	the	command	line,	and	in

any	 Distutils	 configuration	 files.	 Various	 options	 and	 sections	 in	 the
.spec	file	are	derived	from	options	in	the	setup	script	as	follows:

RPM	.spec	file	option	or
section Distutils	setup	script	option

Name name

Summary	(in	preamble) description

Version version

Vendor author	and	author_email,	or	—	&
maintainer	and	maintainer_email

Copyright license

Url url

%description	(section) long_description

Additionally,	 there	 are	 many	 options	 in	 .spec	 files	 that	 don’t	 have
corresponding	options	 in	 the	setup	script.	Most	of	 these	are	handled
through	options	to	the	bdist_rpm	command	as	follows:

RPM	.spec	file
option	or	section bdist_rpm	option default	value

Release release “1”

Group group “Development/Libraries”

Vendor vendor (see	above)

Packager packager (none)

Provides provides (none)

Requires requires (none)

Conflicts conflicts (none)

Obsoletes obsoletes (none)

Distribution distribution_name (none)

BuildRequires build_requires (none)

Icon icon (none)

Obviously,	supplying	even	a	few	of	these	options	on	the	command-line
would	be	 tedious	and	error-prone,	 so	 it’s	usually	best	 to	put	 them	 in
the	 setup	 configuration	 file,	 setup.cfg—see	 section	 Writing	 the
Setup	 Configuration	 File.	 If	 you	 distribute	 or	 package	 many	 Python
module	distributions,	you	might	want	to	put	options	that	apply	to	all	of
them	 in	 your	 personal	 Distutils	 configuration	 file
(~/.pydistutils.cfg).	 If	you	want	 to	 temporarily	disable	 this	 file,
you	can	pass	the	--no-user-cfg	option	to	setup.py.

There	are	three	steps	to	building	a	binary	RPM	package,	all	of	which
are	handled	automatically	by	the	Distutils:

1.	 create	a	.spec	 file,	which	describes	 the	package	 (analogous	 to
the	Distutils	 setup	 script;	 in	 fact,	much	 of	 the	 information	 in	 the
setup	script	winds	up	in	the	.spec	file)

2.	 create	the	source	RPM
3.	 create	 the	 “binary”	 RPM	 (which	 may	 or	 may	 not	 contain	 binary

code,	 depending	 on	 whether	 your	 module	 distribution	 contains
Python	extensions)

Normally,	RPM	bundles	the	last	two	steps	together;	when	you	use	the
Distutils,	all	three	steps	are	typically	bundled	together.

If	 you	wish,	 you	can	separate	 these	 three	steps.	You	 can	use	 the	 --
spec-only	 option	 to	make	bdist_rpm	 just	 create	 the	 .spec	 file	 and
exit;	 in	 this	 case,	 the	 .spec	 file	 will	 be	 written	 to	 the	 “distribution
directory”—normally	 dist/,	 but	 customizable	 with	 the	 --dist-dir
option.	(Normally,	the	.spec	file	winds	up	deep	in	the	“build	tree,”	in	a

temporary	directory	created	by	bdist_rpm.)

5.2.	Creating	Windows	Installers

Executable	 installers	are	the	natural	 format	for	binary	distributions	on
Windows.	They	display	a	nice	graphical	user	 interface,	display	some
information	about	the	module	distribution	to	be	installed	taken	from	the
metadata	in	the	setup	script,	let	the	user	select	a	few	options,	and	start
or	cancel	the	installation.

Since	 the	metadata	 is	 taken	 from	 the	setup	script,	 creating	Windows
installers	is	usually	as	easy	as	running:

python	setup.py	bdist_wininst

or	the	bdist	command	with	the	--formats	option:

python	setup.py	bdist	--formats=wininst

If	 you	 have	 a	 pure	module	 distribution	 (only	 containing	 pure	 Python
modules	 and	 packages),	 the	 resulting	 installer	 will	 be	 version
independent	 and	 have	 a	 name	 like	 foo-1.0.win32.exe.	 These
installers	can	even	be	created	on	Unix	platforms	or	Mac	OS	X.

If	you	have	a	non-pure	distribution,	the	extensions	can	only	be	created
on	 a	Windows	 platform,	 and	will	 be	 Python	 version	 dependent.	 The
installer	 filename	 will	 reflect	 this	 and	 now	 has	 the	 form	 foo-
1.0.win32-py2.0.exe.	You	have	to	create	a	separate	 installer	 for
every	Python	version	you	want	to	support.

The	 installer	 will	 try	 to	 compile	 pure	 modules	 into	 bytecode	 after
installation	on	the	target	system	in	normal	and	optimizing	mode.	If	you
don’t	 want	 this	 to	 happen	 for	 some	 reason,	 you	 can	 run	 the
bdist_wininst	command	with	the	--no-target-compile	and/or	 the	--no-

target-optimize	option.

By	 default	 the	 installer	 will	 display	 the	 cool	 “Python	 Powered”	 logo
when	 it	 is	 run,	 but	 you	 can	 also	 supply	 your	 own	 152x261	 bitmap
which	must	be	a	Windows	.bmp	file	with	the	--bitmap	option.

The	 installer	will	also	display	a	 large	 title	on	 the	desktop	background
window	 when	 it	 is	 run,	 which	 is	 constructed	 from	 the	 name	 of	 your
distribution	and	 the	version	number.	This	can	be	changed	 to	another
text	by	using	the	--title	option.

The	installer	file	will	be	written	to	the	“distribution	directory”	—	normally
dist/,	but	customizable	with	the	--dist-dir	option.

5.3.	Cross-compiling	on	Windows

Starting	 with	 Python	 2.6,	 distutils	 is	 capable	 of	 cross-compiling
between	 Windows	 platforms.	 In	 practice,	 this	 means	 that	 with	 the
correct	 tools	 installed,	 you	 can	 use	 a	 32bit	 version	 of	 Windows	 to
create	64bit	extensions	and	vice-versa.

To	build	for	an	alternate	platform,	specify	the	--plat-name	option	to	the
build	 command.	 Valid	 values	 are	 currently	 ‘win32’,	 ‘win-amd64’	 and
‘win-ia64’.	 For	 example,	 on	 a	 32bit	 version	 of	 Windows,	 you	 could
execute:

python	setup.py	build	--plat-name=win-amd64

to	build	a	64bit	version	of	your	extension.	The	Windows	Installers	also
support	this	option,	so	the	command:

python	setup.py	build	--plat-name=win-amd64	bdist_wininst

would	 create	 a	 64bit	 installation	 executable	 on	 your	 32bit	 version	 of
Windows.

To	 cross-compile,	 you	 must	 download	 the	 Python	 source	 code	 and
cross-compile	Python	itself	for	the	platform	you	are	targetting	-	it	is	not
possible	 from	 a	 binary	 installation	 of	 Python	 (as	 the	 .lib	 etc	 file	 for
other	platforms	are	not	included.)	In	practice,	this	means	the	user	of	a
32	bit	 operating	 system	will	 need	 to	use	Visual	Studio	2008	 to	open
the	PCBuild/PCbuild.sln	 solution	 in	 the	Python	source	 tree	and
build	 the	 “x64”	configuration	of	 the	 ‘pythoncore’	project	before	cross-
compiling	extensions	is	possible.

Note	 that	 by	 default,	 Visual	 Studio	 2008	 does	 not	 install	 64bit

compilers	or	tools.	You	may	need	to	reexecute	the	Visual	Studio	setup
process	 and	 select	 these	 tools	 (using	 Control	 Panel->[Add/Remove]
Programs	is	a	convenient	way	to	check	or	modify	your	existing	install.)

5.3.1.	The	Postinstallation	script

Starting	with	Python	2.3,	a	postinstallation	script	can	be	specified	with
the	 --install-script	 option.	 The	 basename	 of	 the	 script	 must	 be
specified,	 and	 the	 script	 filename	 must	 also	 be	 listed	 in	 the	 scripts
argument	to	the	setup	function.

This	script	will	be	run	at	installation	time	on	the	target	system	after	all
the	files	have	been	copied,	with	argv[1]	set	to	-install,	and	again	at
uninstallation	time	before	the	files	are	removed	with	argv[1]	set	to	-
remove.

The	 installation	 script	 runs	embedded	 in	 the	windows	 installer,	 every
output	 (sys.stdout,	 sys.stderr)	 is	 redirected	 into	 a	 buffer	 and
will	be	displayed	in	the	GUI	after	the	script	has	finished.

Some	 functions	 especially	 useful	 in	 this	 context	 are	 available	 as
additional	built-in	functions	in	the	installation	script.

directory_created(path)
file_created(path)

These	functions	should	be	called	when	a	directory	or	file	is	created
by	the	postinstall	script	at	installation	time.	It	will	register	path	with
the	 uninstaller,	 so	 that	 it	will	 be	 removed	when	 the	 distribution	 is
uninstalled.	 To	 be	 safe,	 directories	 are	 only	 removed	 if	 they	 are
empty.

get_special_folder_path(csidl_string)

This	 function	 can	 be	 used	 to	 retrieve	 special	 folder	 locations	 on
Windows	like	the	Start	Menu	or	the	Desktop.	It	returns	the	full	path
to	the	folder.	csidl_string	must	be	one	of	the	following	strings:

"CSIDL_APPDATA"

"CSIDL_COMMON_STARTMENU"

"CSIDL_STARTMENU"

"CSIDL_COMMON_DESKTOPDIRECTORY"

"CSIDL_DESKTOPDIRECTORY"

"CSIDL_COMMON_STARTUP"

"CSIDL_STARTUP"

"CSIDL_COMMON_PROGRAMS"

"CSIDL_PROGRAMS"

"CSIDL_FONTS"

If	the	folder	cannot	be	retrieved,	OSError	is	raised.

Which	 folders	 are	 available	 depends	 on	 the	 exact	 Windows
version,	 and	 probably	 also	 the	 configuration.	 For	 details	 refer	 to
Microsoft’s	 documentation	 of	 the	 SHGetSpecialFolderPath()
function.

create_shortcut(target,	description,	filename[,	arguments[,
workdir[,	iconpath[,	iconindex]]]])

This	function	creates	a	shortcut.	target	is	the	path	to	the	program	to
be	 started	 by	 the	 shortcut.	 description	 is	 the	 description	 of	 the
shortcut.	filename	 is	 the	title	of	 the	shortcut	 that	 the	user	will	see.
arguments	specifies	the	command	line	arguments,	if	any.	workdir	is
the	working	directory	for	the	program.	iconpath	is	the	file	containing

the	 icon	for	 the	shortcut,	and	 iconindex	 is	 the	 index	of	 the	 icon	 in
the	 file	 iconpath.	 Again,	 for	 details	 consult	 the	 Microsoft
documentation	for	the	IShellLink	interface.

5.4.	Vista	User	Access	Control	(UAC)

Starting	 with	 Python	 2.6,	 bdist_wininst	 supports	 a	 --user-access-
control	 option.	 The	 default	 is	 ‘none’	 (meaning	 no	 UAC	 handling	 is
done),	 and	 other	 valid	 values	 are	 ‘auto’	 (meaning	 prompt	 for	 UAC
elevation	 if	 Python	 was	 installed	 for	 all	 users)	 and	 ‘force’	 (meaning
always	prompt	for	elevation).

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

6.	The	Python	Package	Index
(PyPI)
The	 Python	 Package	 Index	 (PyPI)	 holds	 meta-data	 describing
distributions	 packaged	 with	 distutils,	 as	 well	 as	 package	 data	 like
distribution	files	if	the	package	author	wishes.

Distutils	exposes	two	commands	for	submitting	package	data	to	PyPI:
the	register	command	for	submitting	meta-data	to	PyPI	and	the	upload
command	 for	 submitting	 distribution	 files.	 Both	 commands	 read
configuration	 data	 from	 a	 special	 file	 called	 the	 .pypirc	 file.	 PyPI
displays	 a	 home	 page	 for	 each	 package	 created	 from	 the
long_description	submitted	by	the	register	command.

http://pypi.python.org/

6.1.	Registering	Packages

The	 distutils	 command	 register	 is	 used	 to	 submit	 your	 distribution’s
meta-data	to	the	index.	It	is	invoked	as	follows:

python	setup.py	register

Distutils	will	respond	with	the	following	prompt:

running	register

We	need	to	know	who	you	are,	so	please	choose	either

				1.	use	your	existing	login,

				2.	register	as	a	new	user,

				3.	have	the	server	generate	a	new	password	for	you

				4.	quit

Your	selection	[default	1]:

Note:	 if	 your	 username	and	password	are	 saved	 locally,	 you	will	 not
see	this	menu.

If	you	have	not	registered	with	PyPI,	then	you	will	need	to	do	so	now.
You	should	choose	option	2,	and	enter	your	details	as	required.	Soon
after	 submitting	 your	 details,	 you	will	 receive	 an	 email	 which	will	 be
used	to	confirm	your	registration.

Once	 you	 are	 registered,	 you	may	 choose	 option	 1	 from	 the	menu.
You	 will	 be	 prompted	 for	 your	 PyPI	 username	 and	 password,	 and
register	will	then	submit	your	meta-data	to	the	index.

You	 may	 submit	 any	 number	 of	 versions	 of	 your	 distribution	 to	 the
index.	 If	 you	 alter	 the	 meta-data	 for	 a	 particular	 version,	 you	 may
submit	it	again	and	the	index	will	be	updated.

PyPI	holds	a	record	 for	each	(name,	version)	combination	submitted.
The	first	user	to	submit	information	for	a	given	name	is	designated	the
Owner	of	 that	name.	They	may	submit	changes	through	the	register
command	 or	 through	 the	 web	 interface.	 They	 may	 also	 designate
other	 users	 as	 Owners	 or	 Maintainers.	 Maintainers	 may	 edit	 the
package	information,	but	not	designate	other	Owners	or	Maintainers.

By	default	PyPI	displays	only	the	newest	version	of	a	given	package.
The	web	interface	lets	one	change	this	default	behavior	and	manually
select	which	versions	to	display	and	hide.

6.2.	Uploading	Packages

The	distutils	command	upload	pushes	the	distribution	files	to	PyPI.

The	 command	 is	 invoked	 immediately	 after	 building	 one	 or	 more
distribution	files.	For	example,	the	command

python	setup.py	sdist	bdist_wininst	upload

will	 cause	 the	 source	 distribution	 and	 the	 Windows	 installer	 to	 be
uploaded	 to	PyPI.	Note	 that	 these	will	 be	 uploaded	 even	 if	 they	 are
built	 using	 an	 earlier	 invocation	 of	 setup.py,	 but	 that	 only
distributions	named	on	 the	command	 line	 for	 the	 invocation	 including
the	upload	command	are	uploaded.

The	upload	command	uses	 the	username,	password,	and	repository
URL	 from	 the	 $HOME/.pypirc	 file	 (see	 section	The	 .pypirc	 file	 for
more	on	this	file).	If	a	register	command	was	previously	called	in	the
same	 command,	 and	 if	 the	 password	 was	 entered	 in	 the	 prompt,
upload	will	 reuse	 the	entered	password.	This	 is	useful	 if	 you	do	not
want	to	store	a	clear	text	password	in	the	$HOME/.pypirc	file.

You	 can	 specify	 another	 PyPI	 server	 with	 the	 --repository=url
option:

python	setup.py	sdist	bdist_wininst	upload	-r	http://

See	section	The	.pypirc	file	for	more	on	defining	several	servers.

You	can	use	the	--sign	option	to	tell	upload	to	sign	each	uploaded
file	 using	 GPG	 (GNU	 Privacy	 Guard).	 The	 gpg	 program	 must	 be
available	 for	 execution	 on	 the	 system	 PATH.	 You	 can	 also	 specify

which	key	to	use	for	signing	using	the	--identity=name	option.

Other	 upload	 options	 include	 --repository=url	 or	 --

repository=section	where	url	is	the	url	of	the	server	and	section
the	name	of	the	section	in	$HOME/.pypirc,	and	--show-response
(which	displays	the	full	response	text	from	the	PyPI	server	for	help	in
debugging	upload	problems).

6.3.	The	.pypirc	file

The	format	of	the	.pypirc	file	is	as	follows:

[distutils]

index-servers	=

				pypi

[pypi]

repository:	<repository-url>

username:	<username>

password:	<password>

The	 distutils	 section	 defines	 a	 index-servers	 variable	 that	 lists	 the
name	of	all	sections	describing	a	repository.

Each	section	describing	a	repository	defines	three	variables:

repository,	that	defines	the	url	of	the	PyPI	server.	Defaults	to
http://www.python.org/pypi.

username,	which	is	the	registered	username	on	the	PyPI	server.

password,	that	will	be	used	to	authenticate.	If	omitted	the	user
will	be	prompt	to	type	it	when	needed.

If	you	want	to	define	another	server	a	new	section	can	be	created	and
listed	in	the	index-servers	variable:

[distutils]

index-servers	=

				pypi

				other

[pypi]

repository:	<repository-url>

username:	<username>

password:	<password>

[other]

repository:	http://example.com/pypi

username:	<username>

password:	<password>

register	can	then	be	called	with	the	-r	option	to	point	the	repository	to
work	with:

python	setup.py	register	-r	http://example.com/pypi

For	convenience,	the	name	of	the	section	that	describes	the	repository
may	also	be	used:

python	setup.py	register	-r	other

6.4.	PyPI	package	display

The	long_description	field	plays	a	special	role	at	PyPI.	It	is	used
by	the	server	to	display	a	home	page	for	the	registered	package.

If	you	use	the	reStructuredText	syntax	 for	 this	 field,	PyPI	will	parse	 it
and	display	an	HTML	output	for	the	package	home	page.

The	long_description	field	can	be	attached	to	a	text	file	located	in
the	package:

from	distutils.core	import	setup

with	open('README.txt')	as	file:

				long_description	=	file.read()

setup(name='Distutils',

						long_description=long_description)

In	 that	 case,	 README.txt	 is	 a	 regular	 reStructuredText	 text	 file
located	in	the	root	of	the	package	besides	setup.py.

To	 prevent	 registering	 broken	 reStructuredText	 content,	 you	 can	 use
the	rst2html	program	that	is	provided	by	the	docutils	package	and
check	the	long_description	from	the	command	line:

$	python	setup.py	--long-description	|	rst2html.py	>	output.html

docutils	will	display	a	warning	if	there’s	something	wrong	with	your
syntax.	Because	PyPI	 applies	 additional	 checks	 (e.g.	 by	 passing	 --
no-raw	to	rst2html.py	 in	the	command	above),	being	able	to	run
the	 command	above	without	warnings	 does	 not	 guarantee	 that	PyPI

http://docutils.sourceforge.net/rst.html

will	convert	the	content	successfully.

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

http://www.python.org/

7.	Examples
This	chapter	provides	a	number	of	basic	examples	to	help	get	started
with	distutils.	Additional	information	about	using	distutils	can	be	found
in	the	Distutils	Cookbook.

See	also:

Distutils	Cookbook
Collection	of	 recipes	showing	how	 to	achieve	more	control	over
distutils.

http://wiki.python.org/moin/Distutils/Cookbook

7.1.	Pure	Python	distribution	(by	module)

If	you’re	 just	distributing	a	couple	of	modules,	especially	 if	 they	don’t
live	in	a	particular	package,	you	can	specify	them	individually	using	the
py_modules	option	in	the	setup	script.

In	the	simplest	case,	you’ll	have	two	files	to	worry	about:	a	setup	script
and	the	single	module	you’re	distributing,	foo.py	in	this	example:

<root>/

								setup.py

								foo.py

(In	all	diagrams	in	this	section,	<root>	will	refer	to	the	distribution	root
directory.)	A	minimal	setup	script	to	describe	this	situation	would	be:

from	distutils.core	import	setup

setup(name='foo',

						version='1.0',

						py_modules=['foo'],

)

Note	 that	 the	name	of	 the	distribution	 is	specified	 independently	with
the	name	option,	and	there’s	no	rule	that	says	it	has	to	be	the	same	as
the	 name	 of	 the	 sole	 module	 in	 the	 distribution	 (although	 that’s
probably	a	good	convention	to	follow).	However,	the	distribution	name
is	 used	 to	 generate	 filenames,	 so	 you	 should	 stick	 to	 letters,	 digits,
underscores,	and	hyphens.

Since	 py_modules	 is	 a	 list,	 you	 can	 of	 course	 specify	 multiple
modules,	eg.	 if	you’re	distributing	modules	foo	and	bar,	 your	setup
might	look	like	this:

<root>/

								setup.py

								foo.py

								bar.py

and	the	setup	script	might	be

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						py_modules=['foo',	'bar'],

)

You	can	put	module	source	files	into	another	directory,	but	if	you	have
enough	modules	to	do	that,	it’s	probably	easier	to	specify	modules	by
package	rather	than	listing	them	individually.

7.2.	Pure	Python	distribution	(by	package)

If	you	have	more	 than	a	couple	of	modules	 to	distribute,	especially	 if
they	 are	 in	 multiple	 packages,	 it’s	 probably	 easier	 to	 specify	 whole
packages	 rather	 than	 individual	 modules.	 This	 works	 even	 if	 your
modules	are	not	in	a	package;	you	can	just	tell	the	Distutils	to	process
modules	from	the	root	package,	and	that	works	the	same	as	any	other
package	(except	that	you	don’t	have	to	have	an	__init__.py	file).

The	setup	script	from	the	last	example	could	also	be	written	as

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						packages=[''],

)

(The	empty	string	stands	for	the	root	package.)

If	those	two	files	are	moved	into	a	subdirectory,	but	remain	in	the	root
package,	e.g.:

<root>/

								setup.py

								src/						foo.py

																		bar.py

then	you	would	still	specify	the	root	package,	but	you	have	to	tell	 the
Distutils	where	source	files	in	the	root	package	live:

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						package_dir={'':	'src'},

						packages=[''],

)

More	 typically,	 though,	you	will	want	 to	distribute	multiple	modules	 in
the	same	package	(or	in	sub-packages).	For	example,	if	the	foo	and
bar	 modules	 belong	 in	 package	 foobar,	 one	 way	 to	 layout	 your
source	tree	is

<root>/

								setup.py

								foobar/

																	__init__.py

																	foo.py

																	bar.py

This	is	in	fact	the	default	layout	expected	by	the	Distutils,	and	the	one
that	requires	the	least	work	to	describe	in	your	setup	script:

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						packages=['foobar'],

)

If	you	want	to	put	modules	in	directories	not	named	for	their	package,
then	you	need	to	use	the	package_dir	option	again.	For	example,	if	the
src	directory	holds	modules	in	the	foobar	package:

<root>/

								setup.py

								src/

																	__init__.py

																	foo.py

																	bar.py

an	appropriate	setup	script	would	be

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						package_dir={'foobar':	'src'},

						packages=['foobar'],

)

Or,	 you	 might	 put	 modules	 from	 your	 main	 package	 right	 in	 the
distribution	root:

<root>/

								setup.py

								__init__.py

								foo.py

								bar.py

in	which	case	your	setup	script	would	be

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						package_dir={'foobar':	''},

						packages=['foobar'],

)

(The	empty	string	also	stands	for	the	current	directory.)

If	you	have	sub-packages,	 they	must	be	explicitly	 listed	 in	packages,
but	any	entries	in	package_dir	automatically	extend	to	sub-packages.
(In	other	words,	the	Distutils	does	not	scan	your	source	tree,	trying	to
figure	out	which	directories	correspond	to	Python	packages	by	looking
for	 __init__.py	 files.)	 Thus,	 if	 the	 default	 layout	 grows	 a	 sub-
package:

<root>/

								setup.py

								foobar/

																	__init__.py

																	foo.py

																	bar.py

																	subfoo/

																											__init__.py

																											blah.py

then	the	corresponding	setup	script	would	be

from	distutils.core	import	setup

setup(name='foobar',

						version='1.0',

						packages=['foobar',	'foobar.subfoo'],

)

(Again,	 the	 empty	 string	 in	 package_dir	 stands	 for	 the	 current
directory.)

7.3.	Single	extension	module

Extension	 modules	 are	 specified	 using	 the	 ext_modules	 option.
package_dir	has	no	effect	on	where	extension	source	files	are	found;	it
only	affects	the	source	for	pure	Python	modules.	The	simplest	case,	a
single	extension	module	in	a	single	C	source	file,	is:

<root>/

								setup.py

								foo.c

If	the	foo	extension	belongs	in	the	root	package,	the	setup	script	for
this	could	be

from	distutils.core	import	setup

from	distutils.extension	import	Extension

setup(name='foobar',

						version='1.0',

						ext_modules=[Extension('foo',	['foo.c'])],

)

If	the	extension	actually	belongs	in	a	package,	say	foopkg,	then

With	exactly	the	same	source	tree	layout,	this	extension	can	be	put	in
the	foopkg	package	simply	by	changing	the	name	of	the	extension:

from	distutils.core	import	setup

from	distutils.extension	import	Extension

setup(name='foobar',

						version='1.0',

						ext_modules=[Extension('foopkg.foo',	['foo.c'])],

)

7.4.	Checking	a	package

The	check	command	allows	you	to	verify	 if	your	package	meta-data
meet	the	minimum	requirements	to	build	a	distribution.

To	 run	 it,	 just	 call	 it	 using	 your	 setup.py	 script.	 If	 something	 is
missing,	check	will	display	a	warning.

Let’s	take	an	example	with	a	simple	script:

from	distutils.core	import	setup

setup(name='foobar')

Running	the	check	command	will	display	some	warnings:

$	python	setup.py	check

running	check

warning:	check:	missing	required	meta-data:	version,	url

warning:	check:	missing	meta-data:	either	(author	and	author_email)	or

									(maintainer	and	maintainer_email)	must	be	supplied

If	 you	 use	 the	 reStructuredText	 syntax	 in	 the	 long_description
field	and	docutils	is	installed	you	can	check	if	the	syntax	is	fine	with	the
check	command,	using	the	restructuredtext	option.

For	example,	if	the	setup.py	script	is	changed	like	this:

from	distutils.core	import	setup

desc	=	"""\

My	description

=============

http://docutils.sourceforge.net

This	is	the	description	of	the	``foobar``	package.

"""

setup(name='foobar',	version='1',	author='tarek',

				author_email='tarek@ziade.org',

				url='http://example.com',	long_description=desc)

Where	 the	 long	description	 is	broken,	check	will	be	able	 to	detect	 it
by	using	the	docutils	parser:

$	python	setup.py	check	--restructuredtext

running	check

warning:	check:	Title	underline	too	short.	(line	2)

warning:	check:	Could	not	finish	the	parsing.

7.5.	Reading	the	metadata

The	 distutils.core.setup()	 function	 provides	 a	 command-line
interface	 that	 allows	 you	 to	 query	 the	 metadata	 fields	 of	 a	 project
through	the	setup.py	script	of	a	given	project:

$	python	setup.py	--name

distribute

This	 call	 reads	 the	 name	 metadata	 by	 running	 the
distutils.core.setup()	 function.	 Although,	 when	 a	 source	 or
binary	 distribution	 is	 created	 with	 Distutils,	 the	 metadata	 fields	 are
written	in	a	static	file	called	PKG-INFO.	When	a	Distutils-based	project
is	 installed	 in	 Python,	 the	 PKG-INFO	 file	 is	 copied	 alongside	 the
modules	 and	 packages	 of	 the	 distribution	 under	 NAME-VERSION-
pyX.X.egg-info,	 where	 NAME	 is	 the	 name	 of	 the	 project,
VERSION	its	version	as	defined	in	the	Metadata,	and	pyX.X	the	major
and	minor	version	of	Python	like	2.7	or	3.2.

You	 can	 read	 back	 this	 static	 file,	 by	 using	 the
distutils.dist.DistributionMetadata	 class	 and	 its
read_pkg_file()	method:

>>>	from	distutils.dist	import	DistributionMetadata

>>>	metadata	=	DistributionMetadata()

>>>	metadata.read_pkg_file(open('distribute-0.6.8-py2.7.egg-info'

>>>	metadata.name

'distribute'

>>>	metadata.version

'0.6.8'

>>>	metadata.description

'Easily	download,	build,	install,	upgrade,	and	uninstall	Python	packages'

Notice	that	the	class	can	also	be	instanciated	with	a	metadata	file	path
to	loads	its	values:

>>>	pkg_info_path	=	'distribute-0.6.8-py2.7.egg-info'

>>>	DistributionMetadata(pkg_info_path).name

'distribute'

indexmodules	|next	|previous	|	Python	»	3.4.0	Documentation	»	Distributing	Python

Modules	(Legacy	version)	»

©	Copyright	1990-2014,	Python	Software	Foundation.	
The	Python	Software	Foundation	is	a	non-profit	corporation.	Please	donate.	

Last	updated	on	Mar	16,	2014.	Found	a	bug?	
Created	using	Sphinx	1.2.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

	3.4.0 Documentation
	Python Module Index
	What's New in Python
	What's New In Python 3.4
	What's New In Python 3.3
	What's New In Python 3.2
	What's New In Python 3.1
	What's New In Python 3.0
	What's New in Python 2.7
	What's New in Python 2.6
	What's New in Python 2.5
	What's New in Python 2.4
	What's New in Python 2.3
	What's New in Python 2.2
	What's New in Python 2.1
	What's New in Python 2.0
	Changelog

	The Python Tutorial
	Whetting Your Appetite
	Using the Python Interpreter
	An Informal Introduction to Python
	More Control Flow Tools
	Data Structures
	Modules
	Input and Output
	Errors and Exceptions
	Classes
	Brief Tour of the Standard Library
	Brief Tour of the Standard Library -- Part II
	What Now?
	Interactive Input Editing and History Substitution
	Floating Point Arithmetic: Issues and Limitations

	Python Setup and Usage
	Command line and environment
	Using Python on Unix platforms
	Using Python on Windows
	Using Python on a Macintosh
	Additional Tools and Scripts

	The Python Language Reference
	Introduction
	Lexical analysis
	Data model
	Execution model
	The import system
	Expressions
	Simple statements
	Compound statements
	Top-level components
	Full Grammar specification

	The Python Standard Library
	Introduction
	Built-in Functions
	Built-in Constants
	Built-in Types
	Built-in Exceptions
	Text Processing Services
	string --- Common string operations
	re --- Regular expression operations
	difflib --- Helpers for computing deltas
	textwrap --- Text wrapping and filling
	unicodedata --- Unicode Database
	stringprep --- Internet String Preparation
	readline --- GNU readline interface
	rlcompleter --- Completion function for GNU readline

	Binary Data Services
	struct --- Interpret bytes as packed binary data
	codecs --- Codec registry and base classes

	Data Types
	datetime --- Basic date and time types
	calendar --- General calendar-related functions
	collections --- Container datatypes
	collections.abc --- Abstract Base Classes for Containers
	heapq --- Heap queue algorithm
	bisect --- Array bisection algorithm
	array --- Efficient arrays of numeric values
	weakref --- Weak references
	types --- Dynamic type creation and names for built-in types
	copy --- Shallow and deep copy operations
	pprint --- Data pretty printer
	reprlib --- Alternate repr() implementation
	enum --- Support for enumerations

	Numeric and Mathematical Modules
	numbers --- Numeric abstract base classes
	math --- Mathematical functions
	cmath --- Mathematical functions for complex numbers
	decimal --- Decimal fixed point and floating point arithmetic
	fractions --- Rational numbers
	random --- Generate pseudo-random numbers
	statistics --- Mathematical statistics functions

	Functional Programming Modules
	itertools --- Functions creating iterators for efficient looping
	functools --- Higher-order functions and operations on callable objects
	operator --- Standard operators as functions

	File and Directory Access
	pathlib --- Object-oriented filesystem paths
	os.path --- Common pathname manipulations
	fileinput --- Iterate over lines from multiple input streams
	stat --- Interpreting stat() results
	filecmp --- File and Directory Comparisons
	tempfile --- Generate temporary files and directories
	glob --- Unix style pathname pattern expansion
	fnmatch --- Unix filename pattern matching
	linecache --- Random access to text lines
	shutil --- High-level file operations
	macpath --- Mac OS 9 path manipulation functions

	Data Persistence
	pickle --- Python object serialization
	copyreg --- Register pickle support functions
	shelve --- Python object persistence
	marshal --- Internal Python object serialization
	dbm --- Interfaces to Unix "databases"
	sqlite3 --- DB-API 2.0 interface for SQLite databases

	Data Compression and Archiving
	zlib --- Compression compatible with gzip
	gzip --- Support for gzip files
	bz2 --- Support for bzip2 compression
	lzma --- Compression using the LZMA algorithm
	zipfile --- Work with ZIP archives
	tarfile --- Read and write tar archive files

	File Formats
	csv --- CSV File Reading and Writing
	configparser --- Configuration file parser
	netrc --- netrc file processing
	xdrlib --- Encode and decode XDR data
	plistlib --- Generate and parse Mac OS X .plist files

	Cryptographic Services
	hashlib --- Secure hashes and message digests
	hmac --- Keyed-Hashing for Message Authentication

	Generic Operating System Services
	os --- Miscellaneous operating system interfaces
	io --- Core tools for working with streams
	time --- Time access and conversions
	argparse --- Parser for command-line options, arguments and sub-commands
	optparse --- Parser for command line options
	getopt --- C-style parser for command line options
	logging --- Logging facility for Python
	logging.config --- Logging configuration
	logging.handlers --- Logging handlers
	getpass --- Portable password input
	curses --- Terminal handling for character-cell displays
	curses.ascii --- Utilities for ASCII characters
	curses.panel --- A panel stack extension for curses
	platform --- Access to underlying platform's identifying data
	errno --- Standard errno system symbols
	ctypes --- A foreign function library for Python

	Concurrent Execution
	threading --- Thread-based parallelism
	multiprocessing --- Process-based parallelism
	The concurrent package
	concurrent.futures --- Launching parallel tasks
	subprocess --- Subprocess management
	sched --- Event scheduler
	queue --- A synchronized queue class
	dummy_threading --- Drop-in replacement for the threading module
	_thread --- Low-level threading API
	_dummy_thread --- Drop-in replacement for the _thread module

	Interprocess Communication and Networking
	socket --- Low-level networking interface
	ssl --- TLS/SSL wrapper for socket objects
	select --- Waiting for I/O completion
	selectors -- High-level I/O multiplexing
	asyncio -- Asynchronous I/O, event loop, coroutines and tasks
	Event loops
	Tasks and coroutines
	Transports and protocols (low-level API)
	Streams (high-level API)
	Subprocess
	Synchronization primitives
	Develop with asyncio

	asyncore --- Asynchronous socket handler
	asynchat --- Asynchronous socket command/response handler
	signal --- Set handlers for asynchronous events
	mmap --- Memory-mapped file support

	Internet Data Handling
	email --- An email and MIME handling package
	email.message: Representing an email message
	email.parser: Parsing email messages
	email.generator: Generating MIME documents
	email.policy: Policy Objects
	email.headerregistry: Custom Header Objects
	email.contentmanager: Managing MIME Content
	email.mime: Creating email and MIME objects from scratch
	email.header: Internationalized headers
	email.charset: Representing character sets
	email.encoders: Encoders
	email.errors: Exception and Defect classes
	email.utils: Miscellaneous utilities
	email.iterators: Iterators
	email: Examples

	json --- JSON encoder and decoder
	mailcap --- Mailcap file handling
	mailbox --- Manipulate mailboxes in various formats
	mimetypes --- Map filenames to MIME types
	base64 --- Base16, Base32, Base64, Base85 Data Encodings
	binhex --- Encode and decode binhex4 files
	binascii --- Convert between binary and ASCII
	quopri --- Encode and decode MIME quoted-printable data
	uu --- Encode and decode uuencode files

	Structured Markup Processing Tools
	html --- HyperText Markup Language support
	html.parser --- Simple HTML and XHTML parser
	html.entities --- Definitions of HTML general entities
	XML Processing Modules
	xml.etree.ElementTree --- The ElementTree XML API
	xml.dom --- The Document Object Model API
	xml.dom.minidom --- Minimal DOM implementation
	xml.dom.pulldom --- Support for building partial DOM trees
	xml.sax --- Support for SAX2 parsers
	xml.sax.handler --- Base classes for SAX handlers
	xml.sax.saxutils --- SAX Utilities
	xml.sax.xmlreader --- Interface for XML parsers
	xml.parsers.expat --- Fast XML parsing using Expat

	Internet Protocols and Support
	webbrowser --- Convenient Web-browser controller
	cgi --- Common Gateway Interface support
	cgitb --- Traceback manager for CGI scripts
	wsgiref --- WSGI Utilities and Reference Implementation
	urllib --- URL handling modules
	urllib.request --- Extensible library for opening URLs
	urllib.parse --- Parse URLs into components
	urllib.error --- Exception classes raised by urllib.request
	urllib.robotparser --- Parser for robots.txt
	http --- HTTP modules
	http.client --- HTTP protocol client
	ftplib --- FTP protocol client
	poplib --- POP3 protocol client
	imaplib --- IMAP4 protocol client
	nntplib --- NNTP protocol client
	smtplib --- SMTP protocol client
	smtpd --- SMTP Server
	telnetlib --- Telnet client
	uuid --- UUID objects according to RFC 4122
	socketserver --- A framework for network servers
	http.server --- HTTP servers
	http.cookies --- HTTP state management
	http.cookiejar --- Cookie handling for HTTP clients
	xmlrpc --- XMLRPC server and client modules
	xmlrpc.client --- XML-RPC client access
	xmlrpc.server --- Basic XML-RPC servers
	ipaddress --- IPv4/IPv6 manipulation library

	Multimedia Services
	audioop --- Manipulate raw audio data
	aifc --- Read and write AIFF and AIFC files
	sunau --- Read and write Sun AU files
	wave --- Read and write WAV files
	chunk --- Read IFF chunked data
	colorsys --- Conversions between color systems
	imghdr --- Determine the type of an image
	sndhdr --- Determine type of sound file
	ossaudiodev --- Access to OSS-compatible audio devices

	Internationalization
	gettext --- Multilingual internationalization services
	locale --- Internationalization services

	Program Frameworks
	turtle --- Turtle graphics
	cmd --- Support for line-oriented command interpreters
	shlex --- Simple lexical analysis

	Graphical User Interfaces with Tk
	tkinter --- Python interface to Tcl/Tk
	tkinter.ttk --- Tk themed widgets
	tkinter.tix --- Extension widgets for Tk
	tkinter.scrolledtext --- Scrolled Text Widget
	IDLE
	Other Graphical User Interface Packages

	Development Tools
	pydoc --- Documentation generator and online help system
	doctest --- Test interactive Python examples
	unittest --- Unit testing framework
	unittest.mock --- mock object library
	unittest.mock --- getting started
	2to3 - Automated Python 2 to 3 code translation
	test --- Regression tests package for Python

	Debugging and Profiling
	bdb --- Debugger framework
	faulthandler --- Dump the Python traceback
	pdb --- The Python Debugger
	The Python Profilers
	timeit --- Measure execution time of small code snippets
	trace --- Trace or track Python statement execution
	tracemalloc --- Trace memory allocations

	Software Packaging and Distribution
	distutils --- Building and installing Python modules
	ensurepip --- Bootstrapping the pip installer
	venv --- Creation of virtual environments

	Python Runtime Services
	sys --- System-specific parameters and functions
	sysconfig --- Provide access to Python's configuration information
	builtins --- Built-in objects
	__main__ --- Top-level script environment
	warnings --- Warning control
	contextlib --- Utilities for with-statement contexts
	abc --- Abstract Base Classes
	atexit --- Exit handlers
	traceback --- Print or retrieve a stack traceback
	__future__ --- Future statement definitions
	gc --- Garbage Collector interface
	inspect --- Inspect live objects
	site --- Site-specific configuration hook
	fpectl --- Floating point exception control

	Custom Python Interpreters
	code --- Interpreter base classes
	codeop --- Compile Python code

	Importing Modules
	imp --- Access the import internals
	zipimport --- Import modules from Zip archives
	pkgutil --- Package extension utility
	modulefinder --- Find modules used by a script
	runpy --- Locating and executing Python modules
	importlib -- The implementation of import

	Python Language Services
	parser --- Access Python parse trees
	ast --- Abstract Syntax Trees
	symtable --- Access to the compiler's symbol tables
	symbol --- Constants used with Python parse trees
	token --- Constants used with Python parse trees
	keyword --- Testing for Python keywords
	tokenize --- Tokenizer for Python source
	tabnanny --- Detection of ambiguous indentation
	pyclbr --- Python class browser support
	py_compile --- Compile Python source files
	compileall --- Byte-compile Python libraries
	dis --- Disassembler for Python bytecode
	pickletools --- Tools for pickle developers

	Miscellaneous Services
	formatter --- Generic output formatting

	MS Windows Specific Services
	msilib --- Read and write Microsoft Installer files
	msvcrt -- Useful routines from the MS VC++ runtime
	winreg -- Windows registry access
	winsound --- Sound-playing interface for Windows

	Unix Specific Services
	posix --- The most common POSIX system calls
	pwd --- The password database
	spwd --- The shadow password database
	grp --- The group database
	crypt --- Function to check Unix passwords
	termios --- POSIX style tty control
	tty --- Terminal control functions
	pty --- Pseudo-terminal utilities
	fcntl --- The fcntl and ioctl system calls
	pipes --- Interface to shell pipelines
	resource --- Resource usage information
	nis --- Interface to Sun's NIS (Yellow Pages)
	syslog --- Unix syslog library routines

	Undocumented Modules

	Extending and Embedding the Python Interpreter
	Python/C API Reference Manual
	Introduction
	Stable Application Binary Interface
	The Very High Level Layer
	Reference Counting
	Exception Handling
	Utilities
	Operating System Utilities
	Importing Modules
	Data marshalling support
	Parsing arguments and building values
	String conversion and formatting
	Reflection
	Codec registry and support functions

	Abstract Objects Layer
	Object Protocol
	Number Protocol
	Sequence Protocol
	Mapping Protocol
	Iterator Protocol
	Buffer Protocol
	Old Buffer Protocol

	Concrete Objects Layer
	Initialization, Finalization, and Threads
	Memory Management
	Object Implementation Support
	Allocating Objects on the Heap
	Common Object Structures
	Type Objects
	Supporting Cyclic Garbage Collection

	API and ABI Versioning

	Distributing Python Modules
	Installing Python Modules
	Python HOWTOs
	Porting Python 2 Code to Python 3
	Porting Extension Modules to Python 3
	Curses Programming with Python
	Descriptor HowTo Guide
	Functional Programming HOWTO
	Logging HOWTO
	Logging Cookbook
	Regular Expression HOWTO
	Socket Programming HOWTO
	Sorting HOW TO
	Unicode HOWTO
	HOWTO Fetch Internet Resources Using The urllib Package
	HOWTO Use Python in the web
	Argparse Tutorial
	An introduction to the ipaddress module
	Argument Clinic How-To

	Python Frequently Asked Questions
	General Python FAQ
	Programming FAQ
	Design and History FAQ
	Library and Extension FAQ
	Extending/Embedding FAQ
	Python on Windows FAQ
	Graphic User Interface FAQ
	"Why is Python Installed on my Computer?" FAQ

	Glossary
	About these documents
	Reporting Bugs
	Copyright
	History and License

