@ Python » 3.3.3rc2 Documentation » modules | index

http://www.python.org/

Python v3.3.3rc2 documentation

Welcome! This is the documentation for Python 3.3.3rc2, last updated
Nov 11, 2013.

Parts of the documentation:

What's new in Python Extending and

3.37? or all "What's new" documents Embeddlng

since 2.0 tutorial for C/C++ programmers
Tutorial Python/C AP
start here

reference for C/C++ programmers

Library Reference Installing Python
keep this under your pillow M 0 d u |e S

information for installers & sys-admins

Language Reference

describes syntax and language elements

Distributing Python
Python Setup andModules

sharing modules with others
Usage

how to use Python on different platforms F A Q
S

Python HOWTOs frequently asked questions (with

) -] answers!)
in-depth documents on specific topics

Indices and tables:

Global Module Index
quick access to all modules SearCh page

search this documentation

General Index

all functions, classes, terms Com plete Table of
Contents
G |OSS&ry lists all sections and subsections

the most important terms explained

Meta information:

Reporting bugs History and License
of Python
About the 4
documentation Copyright
@ Python » 3.3.3rc2 Documentation » modules | index

© Copyright 1990-2013, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Nov 11, 2013. Found a bug?

Created using Sphinx 1.0.7.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.3.3rc2 Documentation » modules | index

http://www.python.org/

Python Module Index

_la|bfcld]|e|flg[h]i[j|k[lI[m|[n|o|p|q|r|s|tfu]v]
w|Xx|z

___future___ Future statement
definitions

__main__ The environment where
the top-level script is
run.

_dummy_thread Drop-in replacement for
the _thread module.

_thread Low-level threading
API.

abc Abstract base classes
according to PEP 3119.

aifc Read and write audio
files in AIFF or AIFC
format.

argparse Command-line option
and argument parsing
library.

array Space efficient arrays
of uniformly typed
numeric values.

ast Abstract Syntax Tree
classes and
manipulation.

asynchat Support for
asynchronous
command/response
protocols.

asyncore

atexit

audioop

base64

bdb
binascii

binhex

bisect

builtins

bz2

c
calendar

A base class for
developing
asynchronous socket
handling services.

Register and execute
cleanup functions.

Manipulate raw audio
data.

RFC 3548: Basels,
Base32, Base64 Data
Encodings

Debugger framework.

Tools for converting
between binary and
various ASClI-encoded
binary representations.

Encode and decode
files in binhex4 format.

Array bisection
algorithms for binary
searching.

The module that
provides the built-in
namespace.

Interfaces for bzip2
compression and
decompression.

Functions for working
with calendars,
including some
emulation of the Unix
cal program.

cgi

cgithb

chunk

cmath

cmd

code

codecs

codeop

collections
collections.abc

colorsys

compileall

concurrent
concurrent.futures

configparser

contextlib

Helpers for running
Python scripts via the
Common Gateway
Interface.

Configurable traceback
handler for CGI scripts.
Module to read IFF
chunks.

Mathematical functions
for complex numbers.
Build line-oriented
command interpreters.
Facilities to implement
read-eval-print loops.
Encode and decode
data and streams.
Compile (possibly
incomplete) Python
code.

Container datatypes

Abstract base classes
for containers
Conversion functions
between RGB and
other color systems.
Tools for byte-compiling
all Python source files
in a directory tree.

Execute computations
concurrently using
threads or processes.
Configuration file
parser.

Utilities for with-
Statement contexts.

copy

copyreg

cProfile

crypt (Unix)

CSV

ctypes

curses (Unix)

curses.asciil

curses.panel

curses.textpad

d
datetime

dbm

dbm.dumb

dbm. gnu (Unix)

Shallow and deep copy
operations.

Register pickle support
functions.

The crypt() function
used to check Unix
passwords.

Write and read tabular
data to and from
delimited files.

A foreign function
library for Python.

An interface to the
curses library, providing
portable terminal
handling.

Constants and set-
membership functions
for ASCII characters.

A panel stack extension
that adds depth to
curses windows.
Emacs-like input editing
in a curses window.

Basic date and time
types.

Interfaces to various
Unix "database"
formats.

Portable
implementation of the
simple DBM interface.

GNU's reinterpretation

dbm.ndbm (Unix)

decimal

difflib

dis

distutils

distutils.

distutils.
distutils.

distutils.

distutils.

distutils.

archive_util

bcppcompiler
ccompiler

cmd

command

command.bdist

of dbm.

The standard
"database" interface,
based on ndbm.

Implementation of the
General Decimal
Arithmetic Specification.

Helpers for computing
differences between
objects.

Disassembler for
Python bytecode.

Support for building and
installing Python
modules into an
existing Python
installation.

Utility functions for
creating archive files
(tarballs, zip files, ...)

Abstract CCompiler
class

This module provides
the abstract base class
Command. This class is
subclassed by the
moadules in the
distutils.command
subpackage.

This subpackage
contains one module for
each standard Distutils
command.

Build a binary installer
for a package

Build a "dumb" installer

distutils.command.bdist_dumb - a simple archive of
files

distutils.command.bdist_msi Build a binary
distribution as a
Windows MSI file

Abstract base class for
distutils.command.bdist_packager packagers

distutils.command.bdist_rpm Build a binary
distribution as a Redhat
RPM and SRPM
distutils.command.bdist_wininst Build a Windows
installer
distutils.command.build Build all files of a
package
distutils.command.build_clib Build any C libraries in
a package
distutils.command.build_ext Build any extensions in
a package
distutils.command.build_py Build the .py/.pyc files

of a package
distutils.command.build_scripts Build the scripts of a

package
distutils.command.check Check the metadata of

a package
distutils.command.clean Clean a package build

area
distutils.command.config Perform package

configuration
distutils.command.install Install a package
distutils.command.install_data Install data files from a

package

Install C/C++ header

distutils.command.install_headers files from a package

distutils.command.install 1ib Install library files from
a package

Install script files from a
distutils.command.install_scripts package

distutils.command.register Register a module with
the Python Package
Index
distutils.command.sdist Build a source
distribution
distutils.core The core Distutils
functionality
distutils.cygwinccompiler
distutils.debug Provides the debug flag
for distutils
distutils.dep_util Utility functions for
simple dependency
checking
distutils.dir_util Utility functions for

operating on directories
and directory trees

distutils.dist Provides the
Distribution class, which
represents the module
distribution being
built/installed/distributed

distutils.emxccompiler 0OS/2 EMX Compiler
support

distutils.errors Provides standard
distutils exceptions

distutils.extension Provides the Extension

class, used to describe
C/C++ extension
modules in setup

scripts
distutils.fancy_getopt Ad(ditional getopt

functionality
distutils.file_util Utility functions for

operating on single files

distutils.

distutils.

distutils.
distutils.

distutils.

distutils.

distutils.
distutils.

distutils.

doctest

filelist

log

msvccompiler
Spawn

sysconfig

text _file

unixccompiler

util

version

dummy_threading

email

emalil.charset
emall.encoders

The FileList class, used
for poking about the file
system and building
lists of files.

A simple logging
mechanism, 282-style
Microsoft Compiler

Provides the spawn()
function

Low-level access to
configuration
information of the
Python interpreter.

provides the TextFile
class, a simple interface
to text files

UNIX C Compiler

Miscellaneous other
utility functions

implements classes that
represent module
version numbers.

Test pieces of code
within docstrings.

Drop-in replacement for
the threading module.

Package supporting the
parsing, manipulating,
and generating email
messages, including
MIME documents.

Character Sets

Encoders for email
message payloads.

email.

email.

email.

email.

email.

email.

email.
email.

email.

email

errors

generator

header

headerregistry

iterators

message

mime
parser

policy

.utils

encodings
encodings.idna

encodings.mbcs

encodings.utf_8_sig

errno

The exception classes
used by the email
package.

Generate flat text email
messages from a
message structure.

Representing non-
ASCII headers

Automatic Parsing of
headers based on the
field name

Iterate over a message
object tree.

The base class
representing email
messages.

Build MIME messages.

Parse flat text email
messages to produce a
message object
structure.

Controlling the parsing
and generating of
messages

Miscellaneous email
package utilities.

Internationalized
Domain Names
implementation
Windows ANSI
codepage

UTF-8 codec with BOM
signature

Standard errno system
symbols.

f
faulthandler

fentl (Unix)
filecmp
fileinput

fnmatch

formatter

fpectl (Unix)

fractions

ftplib

functools

getopt

getpass

Dump the Python
traceback.

The fentl() and ioctl()
system calls.

Compare files
efficiently.

Loop over standard
input or a list of files.

Unix shell style
filename pattern
matching.

Generic output
formatter and device
interface.

Provide control for
floating point exception
handling.

Rational numbers.

FTP protocol client
(requires sockets).

Higher-order functions
and operations on
callable objects.

Interface to the cycle-
detecting garbage
collector.

Portable parser for
command line options;
support both short and
long option names.

Portable reading of
passwords and retrieval

gettext

glob

grp (Unix)

gzip

hashlib

heapq

hmac

html
html.entities

html.parser

http
http.client

of the userid.

Multilingual
internationalization
services.

Unix shell style
pathname pattern
expansion.

The group database
(getgrnam() and
friends).

Interfaces for gzip
compression and
decompression using
file objects.

Secure hash and
message digest
algorithms.

Heap queue algorithm
(a.k.a. priority queue).
Keyed-Hashing for
Message Authentication
(HMAC) implementation
for Python.

Helpers for
manipulating HTML.
Definitions of HTML
general entities.

A simple parser that
can handle HTML and
XHTML.

HTTP and HTTPS
protocol client (requires
sockets).

http.cookiejar

http.cookies
http.server
i
imaplib

imghdr

imp

importlib
importlib.abc
importlib.machinery
importlib.util

inspect

io

ipaddress

itertools

Classes for automatic
handling of HTTP
cookies.

Support for HTTP state
management (cookies).

HTTP server and
request handlers.

IMAPA4 protocol client
(requires sockets).

Determine the type of
image contained in a
file or byte stream.

Access the
implementation of the
import statement.

An implementation of
the import machinery.

Abstract base classes
related to import

Importers and path
hooks

Utility code for
importers

Extract information and
source code from live
objects.

Core tools for working
with streams.
IPv4/IPv6 manipulation
library.

Functions creating
iterators for efficient
looping.

json

k
keyword

|
1lib2to3
linecache

locale

logging
logging.config
logging.handlers

lzma

m
macpath

mallbox

mailcap
marshal

Encode and decode the
JSON format.

Test whether a string is
a keyword in Python.

the 2to3 library

This module provides
random access to
individual lines from text
files.

Internationalization
services.

Flexible event logging
system for applications.
Configuration of the
logging module.
Handlers for the logging
module.

A Python wrapper for
the liblzma
compression library.

Mac OS 9 path
manipulation functions.

Manipulate mailboxes
in various formats
Mailcap file handling.

Convert Python objects
to streams of bytes and
back (with different

math

mimetypes

mmap

modulefinder

msilib (Windows)

msvcrt (Windows)

multiprocessing
multiprocessing.
multiprocessing.

multiprocessing.

multiprocessing.

multiprocessing.

n
netrc
nis (Unix)

nntplib

connection
dummy

managers

pool

sharedctypes

constraints).
Mathematical functions
(sin() etc.).

Mapping of filename
extensions to MIME
types.

Interface to memory-
mapped files for Unix
and Windows.

Find modules used by a
script.

Creation of Microsoft
Installer files, and CAB
files.

Miscellaneous useful
routines from the MS
VC++ runtime.
Process-based
parallelism.

API for dealing with
sockets.

Dumb wrapper around
threading.

Share data between
process with shared
objects.

Create pools of
processes.

Allocate ctypes objects
from shared memory.

Loading of .netrc files.

Interface to Sun's NIS
(Yellow Pages) library.

NNTP protocol client

numbers

o
operator

optparse

0S

0s.path

ossaudiodev (Linux, FreeBSD)

P
parser
pdb

pickle

pickletools

(requires sockets).

Numeric abstract base
classes (Complex,
Real, Integral, etc.).

Functions
corresponding to the
standard operators.

Deprecated:
Command-line option
parsing library.
Miscellaneous
operating system
interfaces.
Operations on
pathnames.

Access to OSS-
compatible audio
devices.

Access parse trees for
Python source code.

The Python debugger
for interactive
interpreters.

Convert Python objects
to streams of bytes and
back.

Contains extensive
comments about the
pickle protocols and
pickle-machine
opcodes, as well as
some useful functions.

pipes (Unix)
pkgutil

platform

plistlib
poplib

posix (Unix)

pprint
profile
pstats

pty (Linux)

pwd (Unix)

py_compile

pyclbr

pydoc

queue

A Python interface to
Unix shell pipelines.

Utilities for the import
system.

Retrieves as much
platform identifying data
as possible.

Generate and parse
Mac OS X plist files.

POPS3 protocol client
(requires sockets).

The most common
POSIX system calls
(normally used via
module 0s).

Data pretty printer.
Python source profiler.
Statistics object for use
with the profiler.
Pseudo-Terminal
Handling for Linux.

The password database
(getpwnam() and
friends).

Generate byte-code
files from Python
source files.

Supports information
extraction for a Python
class browser.
Documentation
generator and online
help system.

A synchronized queue

quopri

r
random

re

readline (Unix)

reprlib

resource (Unix)

rlcompleter

runpy

sched
select

shelve

class.

Encode and decode
files using the MIME
quoted-printable
encoding.

Generate pseudo-
random numbers with
various common
distributions.

Regular expression
operations.

GNU readline support
for Python.

Alternate repr()
implementation with
size limits.

An interface to provide
resource usage
information on the
current process.
Python identifier
completion, suitable for
the GNU readline
library.

Locate and run Python
modules without
importing them first.

General purpose event
scheduler.

Wait for I/O completion
on multiple streams.

Python object

shlex

shutil

signal

site

smtpd

smtplib
sndhdr
socket
socketserver

spwd (Unix)

sqglite3

ssl

stat

string

persistence.

Simple lexical analysis
for Unix shell-like
languages.

High-level file
operations, including
copying.

Set handlers for
asynchronous events.

Module responsible for
site-specific
configuration.

A SMTP server
implementation in
Python.

SMTP protocol client
(requires sockets).

Determine type of a
sound file.

Low-level networking
interface.

A framework for
network servers.

The shadow password
database (getspnam()
and friends).

A DB-API 2.0
implementation using
SQLite 3.x.

TLS/SSL wrapper for
socket objects

Utilities for interpreting
the results of os.stat(),
os.Istat() and os.fstat().
Common string
operations.

stringprep

struct
subprocess

sunau

symbol

symtable

sys

sysconfig

syslog (Unix)

t
tabnanny

tarfile

telnetlib
tempfile

termios (Unix)
test

Deprecated: String
preparation, as per
RFC 3453

Interpret bytes as
packed binary data.

Subprocess
management.

Provide an interface to
the Sun AU sound
format.

Constants representing
internal nodes of the
parse tree.

Interface to the
compiler's internal
symbol tables.

Access system-specific
parameters and
functions.

Python's configuration
information

An interface to the Unix
syslog library routines.

Tool for detecting white
space related problems
in Python source files in
a directory tree.

Read and write tar-
format archive files.

Telnet client class.

Generate temporary
files and directories.

POSIX style tty control.
Regression tests

test.support

textwrap
threading

time

timeit

tkinter

tkinter.scrolledtext (Tk)
tkinter.tix
tkinter.ttk

token

tokenize

trace

traceback

tty (Unix)

turtle

package containing the
testing suite for Python.

Support for Python's
regression test suite.

Text wrapping and filling

Thread-based
parallelism.

Time access and
conversions.

Measure the execution
time of small code
snippets.

Interface to Tcl/Tk for
graphical user
interfaces

Text widget with a
vertical scroll bar.

Tk Extension Widgets
for Tkinter

Tk themed widget set

Constants representing
terminal nodes of the
parse tree.

Lexical scanner for
Python source code.

Trace or track Python
Statement execution.

Print or retrieve a stack
traceback.

Utility functions that
perform common
terminal control
operations.

An educational
framework for simple
graphics applications

types

u
unicodedata
unittest

unittest.mock
urllib
urllib.error

urllib.parse

urllib.request
urllib.response

urllib.robotparser

uu

uuid

venv

Names for built-in
types.

Access the Unicode
Database.

Unit testing framework
for Python.

Mock object library.

Exception classes
raised by urllib.request.

Parse URLS into or
assemble them from
components.

Extensible library for
opening URLSs.
Response classes used
by urllib.

Load a robots.txt file
and answer questions
about fetchability of
other URLs.

Encode and decode
files in uuencode
format.

UUID objects
(universally unique
identifiers) according to
RFC 4122

Creation of virtual
environments.

w
warnings

wave

weakref

webbrowser

winreg (Windows)

winsound (Windows)

wsgiref

wsgiref.handlers
wsgiref.headers
wsgiref.simple_server
wsgiref.util

wsgiref.validate

X
xdrlib

xml

Issue warning
messages and control
their disposition.
Provide an interface to
the WAV sound format.

Support for weak
references and weak
dictionaries.

Easy-to-use controller
for Web browsers.

Routines and objects
for manipulating the
Windows registry.
Access to the sound-
playing machinery for
Windows.

WSGI Utilities and
Reference
Implementation.
WSGI server/gateway
base classes.

WSGI response header
tools.

A simple WSGI HTTP
server.

WSGI environment
utilities.

WSGI conformance
checker.

Encoders and decoders
for the External Data
Representation (XDR).

Package containing

xml

xml

xml

xml.

xml

xml
xml
xml

xml

xml

xml.

xmlrpc

.dom

.dom.minidom

.dom.pulldom

etree.ElementTree

.parsers.expat

.parsers.expat.errors
.parsers.expat.model
. Sax

.sax.handler

.sax.saxutils

sax.xmlreader

xmlrpc.client

xmlrpc.server

Y4

zipfile

XML processing
modules

Document Object
Model API for Python.

Minimal Document
Object Model (DOM)
implementation.

Support for building
partial DOM trees from
SAX events.

Implementation of the
ElementTree API.

An interface to the
Expat non-validating
XML parser.

Package containing
SAX2 base classes and
convenience functions.
Base classes for SAX
event handlers.
Convenience functions
and classes for use with
SAX.

Interface which SAX-
compliant XML parsers
must implement.

XML-RPC client
access.

Basic XML-RPC server
implementations.

Read and write ZIP-

format archive files.

zipimport support for importing
Python modules from
ZIP archives.

z1lib Low-level interface to

compression and
decompression routines
compatible with gzip.

@ Python » 3.3.3rc2 Documentation » modules | index

© Copyright 1990-2013, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Nov 11, 2013. Found a bug?

Created using Sphinx 1.0.7.

http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.3.3rc2 Documentation » What's New in Python previous | next | modules | index

»

http://www.python.org/

What's New In Python 3.3

This article explains the new features in Python 3.3, compared to 3.2.
Python 3.3 was released on September 29, 2012. For full details, see
the changelog.

See also: PEP 398 - Python 3.3 Release Schedule

http://docs.python.org/3.3/whatsnew/changelog.html
http://www.python.org/dev/peps/pep-0398

Summary — Release highlights

New syntax features:

e New yield from expression for generator delegation.
e The u'unicode' syntax is accepted again for str objects.

New library modules:

e faulthandler (helps debugging low-level crashes)
e ipaddress (high-level objects representing IP addresses and

masks)
e lzma (compress data using the XZ / LZMA algorithm)

e unittest.mock (replace parts of your system under test with

mock objects)
e venv (Python virtual environments, as in the popular

virtualenv package)
New built-in features:
e Reworked I/O exception hierarchy.
Implementation improvements:

e Rewritten import machinery based on importlib.

e More compact unicode strings.
e More compact attribute dictionaries.

Significantly Improved Library Modules:

e C Accelerator for the decimal module.
e Better unicode handling in the email module (provisional).

Security improvements:

e Hash randomization is switched on by default.

Please read on for a comprehensive list of user-facing changes.

PEP 405: Virtual Environments

Virtual environments help create separate Python setups while sharing
a system-wide base install, for ease of maintenance. Virtual
environments have their own set of private site packages (i.e. locally-
installed libraries), and are optionally segregated from the system-wide
site packages. Their concept and implementation are inspired by the
popular virtualenv third-party package, but benefit from tighter

integration with the interpreter core.

This PEP adds the venv module for programmatic access, and the
pyvenv script for command-line access and administration. The
Python interpreter checks for a pyvenv.cfg, file whose existence
signals the base of a virtual environment’s directory tree.

See also:

PEP 405 - Python Virtual Environments
PEP written by Carl Meyer; implementation by Carl Meyer and
Vinay Sajip

http://www.python.org/dev/peps/pep-0405

PEP 420: Implicit Namespace Packages

Native support for package directories that don’'t require
__init___.py marker files and can automatically span multiple path

segments (inspired by various third party approaches to namespace
packages, as described in PEP 420)

See also:

PEP 420 - Implicit Namespace Packages
PEP written by Eric V. Smith; implementation by Eric V. Smith
and Barry Warsaw

http://www.python.org/dev/peps/pep-0420
http://www.python.org/dev/peps/pep-0420

PEP 3118: New memoryview
Implementation and buffer protocol
documentation

The implementation of PEP 3118 has been significantly improved.

The new memoryview implementation comprehensively fixes all
ownership and lifetime issues of dynamically allocated fields in the
Py_buffer struct that led to multiple crash reports. Additionally, several
functions that crashed or returned incorrect results for non-contiguous
or multi-dimensional input have been fixed.

The memoryview object now has a PEP-3118 compliant
getbufferproc() that checks the consumer’s request type. Many new
features have been added, most of them work in full generality for non-
contiguous arrays and arrays with suboffsets.

The documentation has been updated, clearly spelling out
responsibilities for both exporters and consumers. Buffer request flags
are grouped into basic and compound flags. The memory layout of
non-contiguous and multi-dimensional NumPy-style arrays is
explained.

Features

e All native single character format specifiers in struct module
syntax (optionally prefixed with ‘@’) are now supported.

e With some restrictions, the cast() method allows changing of
format and shape of C-contiguous arrays.

e Multi-dimensional list representations are supported for any array

type.

http://www.python.org/dev/peps/pep-3118

e Multi-dimensional comparisons are supported for any array type.

e One-dimensional memoryviews of hashable (read-only) types with
formats B, b or ¢ are now hashable. (Contributed by Antoine
Pitrou in issue 13411)

e Arbitrary slicing of any 1-D arrays type is supported. For example,
it is now possible to reverse a memoryview in O(1) by using a
negative step.

APl changes

e The maximum number of dimensions is officially limited to 64.

e The representation of empty shape, strides and suboffsets is now
an empty tuple instead of None.

e Accessing a memoryview element with format ‘B’ (unsigned bytes)
now returns an integer (in accordance with the struct module
syntax). For returning a bytes object the view must be cast to ‘c’
first.

e memoryview comparisons now use the logical structure of the
operands and compare all array elements by value. All format
strings in struct module syntax are supported. Views with
unrecognised format strings are still permitted, but will always
compare as unequal, regardless of view contents.

e For further changes see Build and C API Changes and Porting C
code .

(Contributed by Stefan Krah in issue 10181)

See also: PEP 3118 - Revising the Buffer Protocol

http://bugs.python.org/issue13411
http://bugs.python.org/issue10181
http://www.python.org/dev/peps/pep-3118

PEP 393: Flexible String Representation

The Unicode string type is changed to support multiple internal
representations, depending on the character with the largest Unicode
ordinal (1, 2, or 4 bytes) in the represented string. This allows a space-
efficient representation in common cases, but gives access to full
UCS-4 on all systems. For compatibility with existing APIs, several
representations may exist in parallel; over time, this compatibility
should be phased out.

On the Python side, there should be no downside to this change.

On the C API side, PEP 393 is fully backward compatible. The legacy
API should remain available at least five years. Applications using the
legacy API will not fully benefit of the memory reduction, or - worse -
may use a bit more memory, because Python may have to maintain
two versions of each string (in the legacy format and in the new
efficient storage).

Functionality

Changes introduced by PEP 393 are the following:

e Python now always supports the full range of Unicode codepoints,
including non-BMP ones (i.e. from U+0000 to U+10FFFF). The
distinction between narrow and wide builds no longer exists and
Python now behaves like a wide build, even under Windows.

e With the death of narrow builds, the problems specific to narrow
builds have also been fixed, for example:

o len() now always returns 1 for non-BMP characters, so
len('\UGO1OFFFF') == 1;
o surrogate pairs are not recombined in string literals, so

http://www.python.org/dev/peps/pep-0393

"\uDBFF\uUDFFF' != '"\UGO10FFFF';

o indexing or slicing non-BMP characters returns the expected
value, so '"\UOO1OFFFF'[0] now returns '\UOO1OFFFF'
and not '\uDBFF';

o all other functions in the standard library now correctly handle
non-BMP codepoints.

e The value of sys.maxunicode is now always 1114111
(OX10FFFF in hexadecimal). The PyUnicode_GetMax()
function still returns either OXFFFF or Ox10FFFF for backward

compatibility, and it should not be used with the new Unicode API
(see issue 13054).

e The ./configure flag --with-wide-unicode has been
removed.

Performance and resource usage

The storage of Unicode strings now depends on the highest codepoint
in the string:

e pure ASCII and Latinl strings (U+0000-U+00FF) use 1 byte per
codepoint;

e BMP strings (U+0000-U+FFFF) use 2 bytes per codepoint;

e non-BMP strings (U+10000-U+10FFFF) use 4 bytes per
codepoint.

The net effect is that for most applications, memory usage of string
storage should decrease significantly - especially compared to former
wide unicode builds - as, in many cases, strings will be pure ASCII
even in international contexts (because many strings store non-human
language data, such as XML fragments, HTTP headers, JSON-
encoded data, etc.). We also hope that it will, for the same reasons,
increase CPU cache efficiency on non-trivial applications. The memory
usage of Python 3.3 is two to three times smaller than Python 3.2, and

http://bugs.python.org/issue13054

a little bit better than Python 2.7, on a Django benchmark (see the
PEP for details).

See also:

PEP 393 - Flexible String Representation
PEP written by Martin von Lowis; implementation by Torsten
Becker and Martin von Lowis.

http://www.python.org/dev/peps/pep-0393

PEP 397: Python Launcher for Windows

The Python 3.3 Windows installer now includes a py launcher

application that can be used to launch Python applications in a version
independent fashion.

This launcher is invoked implicitly when double-clicking * . py files. If
only a single Python version is installed on the system, that version will
be used to run the file. If multiple versions are installed, the most
recent version is used by default, but this can be overridden by
including a Unix-style “shebang line” in the Python script.

The launcher can also be used explicitly from the command line as the
py application. Running py follows the same version selection rules
as implicitly launching scripts, but a more specific version can be
selected by passing appropriate arguments (such as -3 to request
Python 3 when Python 2 is also installed, or -2.6 to specifclly request
an earlier Python version when a more recent version is installed).

In addition to the launcher, the Windows installer now includes an
option to add the newly installed Python to the system PATH
(contributed by Brian Curtin in issue 3561).

See also:

PEP 397 - Python Launcher for Windows

PEP written by Mark Hammond and Martin v. Lowis;
implementation by Vinay Sajip.

Launcher documentation: Python Launcher for Windows

Installer PATH modification: Finding the Python executable

http://bugs.python.org/issue3561
http://www.python.org/dev/peps/pep-0397

PEP 3151: Reworking the OS and 10
exception hierarchy

The hierarchy of exceptions raised by operating system errors is now
both simplified and finer-grained.

You don’t have to worry anymore about choosing the appropriate
exception type between OSError, IOError, EnvironmentError,
windowsError, mmap.error, socket.error or select.error.
All these exception types are now only one: OSError. The other
names are kept as aliases for compatibility reasons.

Also, it is now easier to catch a specific error condition. Instead of
inspecting the errno attribute (or args[0]) for a particular constant
from the errno module, you can catch the adequate OSError
subclass. The available subclasses are the following:

e BlockingIOError

e ChildProcessError
e ConnectionError

e FileExistsError

e FileNotFoundError
e InterruptedError

e IsADirectoryError
e NotADirectoryError
e PermissionError

e ProcessLooOkupError
e TimeoutError

And the ConnectionError itself has finer-grained subclasses:

BrokenPipeError
ConnectionAbortedError
ConnectionRefusedError
ConnectionResetError

Thanks to the new exceptions, common usages of the errno can now
be avoided. For example, the following code written for Python 3.2:

from errno import ENOENT, EACCES, EPERM

try:
with open("document.txt") as f:
content = f.read()
except IOError as err:
if err.errno == ENOENT:
print("document.txt file is missing")
elif err.errno in (EACCES, EPERM):
print("You are not allowed to read document.
else:
raise
I —]

can now be written without the errno import and without manual
inspection of exception attributes:

try:

with open("document.txt") as f:

content = f.read()

except FileNotFoundError:

print("document.txt file is missing")
except PermissionError:

print("You are not allowed to read document.txt'
Rl S

See also:

PEP 3151 - Reworking the OS and 10 Exception Hierarchy
PEP written and implemented by Antoine Pitrou

http://www.python.org/dev/peps/pep-3151

PEP 380: Syntax for Delegating to a
Subgenerator

PEP 380 adds the yield from expression, allowing a generator to
delegate part of its operations to another generator. This allows a
section of code containing yield to be factored out and placed in

another generator. Additionally, the subgenerator is allowed to return
with a value, and the value is made available to the delegating
generator.

While designed primarily for use in delegating to a subgenerator, the
yield from expression actually allows delegation to arbitrary

subiterators.

For simple iterators, yield from iterable is essentially just a
shortened form of for item in iterable: yield item:

>>> def g(x):
yield from range(x, 0, -1)
yield from range(Xx)

>>> 11st(g(5))
[5, 4, 3, 2,1, 0, 1, 2, 3, 4]

However, unlike an ordinary loop, yield from allows subgenerators
to receive sent and thrown values directly from the calling scope, and
return a final value to the outer generator:

>>> def accumulate():
tally = 0
while 1:
next = yield

>>>

>>>
>>>
>>>
>>>

>>>
>>>

>>>
>>>
[6,

1]

if next is None:
return tally
tally += next

def gather_tallies(tallies):
while 1:
tally = yield from accumulate()
tallies.append(tally)

tallies = []
acc = gather_tallies(tallies)
next(acc) # Ensure the accumulator is ready to ¢
for 1 in range(4):
acc.send(1)

acc.send(None) # Finish the first tally
for 1 in range(5):
acc.send(1)

acc.send(None) # Finish the second tally
tallies
10]

] i

The main principle driving this change is to allow even generators that
are designed to be used with the send and throw methods to be split
into multiple subgenerators as easily as a single large function can be
split into multiple subfunctions.

See also:

PEP 380 - Syntax for Delegating to a Subgenerator
PEP written by Greg Ewing; implementation by Greg Ewing,
integrated into 3.3 by Renaud Blanch, Ryan Kelly and Nick
Coghlan; documentation by Zbigniew Jedrzejewski-Szmek and
Nick Coghlan

http://www.python.org/dev/peps/pep-0380

PEP 409: Suppressing exception context

PEP 409 introduces new syntax that allows the display of the chained
exception context to be disabled. This allows cleaner error messages
in applications that convert between exception types:

>>> class D:
def _ init_ (self, extra):
self._extra_attributes = extra
def _ _getattr__(self, attr):
try:
return self._extra_attributes[attr]
except KeyError:
e raise AttributeError(attr) from None
>>>
D({}).x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "<stdin>", line 8, in __ getattr_
AttributeError: X
d 1 i

Without the from None suffix to suppress the cause, the original
exception would be displayed by default:

>>> class C:
def _ init_ (self, extra):
self._extra_attributes = extra
def _ _getattr__(self, attr):
try:
return self._extra_attributes[attr]
except KeyError:
raise AttributeError(attr)

>>> C({}).x

Traceback (most recent
File "<stdin>", 1line
KeyError: 'x'

During handling of the

Traceback (most recent
File "<stdin>", line
File "<stdin>", line

AttributeError: X

Rl

call last):
6, in _ getattr__

above exception, another exce
call last):
1, in <module>

8, in _ getattr__

] 2]

No debugging capability is lost, as the original exception context
remains available if needed (for example, if an intervening library has
incorrectly suppressed valuable underlying details):

>>> try:

D({}).x

except AttributeError as exc:

print(repr(exc.

KeyError('x"',)

See also:

__context__))

PEP 409 - Suppressing exception context
PEP written by Ethan Furman; implemented by Ethan Furman

and Nick Coghlan.

http://www.python.org/dev/peps/pep-0409

PEP 414: Explicit Unicode literals

To ease the transition from Python 2 for Unicode aware Python
applications that make heavy use of Unicode literals, Python 3.3 once
again supports the “u” prefix for string literals. This prefix has no
semantic significance in Python 3, it is provided solely to reduce the
number of purely mechanical changes in migrating to Python 3,
making it easier for developers to focus on the more significant
semantic changes (such as the stricter default separation of binary
and text data).

See also:

PEP 414 - Explicit Unicode literals
PEP written by Armin Ronacher.

http://www.python.org/dev/peps/pep-0414

PEP 3155: Qualified name for classes and
functions

Functions and class objects have a new __qualname___ attribute
representing the “path” from the module top-level to their definition.
For global functions and classes, this is the same as __name___. For

other functions and classes, it provides better information about where
they were actually defined, and how they might be accessible from the
global scope.

Example with (non-bound) methods:

>>> class C:
def meth(self):

s pass
>>> C.meth.__name__
"meth'

>>> C.meth.__qualname___
'"C.meth'

Example with nested classes:

>>> class C:

class D:
def meth(self):
pass

>>> C.D._ _name___
IDI
>>> C.D.__qualname__
'C.D'
>>> C.D.meth.__name__
"'meth'

>>> C.D.meth.__qualname___

'C.D.meth'

Example with nested functions:

>>> def outer():
def inner():

pass
return inner

>>> outer().__name__
"inner'

>>> outer().__qualname__
'outer.<locals>.inner'

The string representation of those objects is also changed to include
the new, more precise information:

>>> str(C.D)

"<class '__main__.C.D'>"

>>> str(C.D.meth)

"<function C.D.meth at Ox7f46b9fe31e0>'

See also:

PEP 3155 - Qualified nhame for classes and functions
PEP written and implemented by Antoine Pitrou.

http://www.python.org/dev/peps/pep-3155

PEP 412: Key-Sharing Dictionary

Dictionaries used for the storage of objects’ attributes are now able to
share part of their internal storage between each other (namely, the
part which stores the keys and their respective hashes). This reduces
the memory consumption of programs creating many instances of non-

builtin types.

See also:

PEP 412 - Key-Sharing Dictionary
PEP written and implemented by Mark Shannon.

http://www.python.org/dev/peps/pep-0412

PEP 362: Function Signature Object

A new function inspect.signature() makes introspection of
python callables easy and straightforward. A broad range of callables
IS supported: python functions, decorated or not, classes, and
functools.partial() objects. New classes
inspect.Signature, inspect.Parameter and
inspect.BoundArguments hold information about the call
signatures, such as, annotations, default values, parameters kinds,
and bound arguments, which considerably simplifies writing decorators
and any code that validates or amends calling signatures or
arguments.

See also:

PEP 362: - Function Signature Object
PEP written by Brett Cannon, Yury Selivanov, Larry Hastings,
Jiwon Seo; implemented by Yury Selivanov.

http://www.python.org/dev/peps/pep-0362

PEP 421: Adding sys.implementation

A new attribute on the sys module exposes details specific to the
implementation of the currently running interpreter. The initial set of
attributes on sys.implementation are name, version,
hexversion, and cache_tag.

The intention of sys.implementation is to consolidate into one
namespace the implementation-specific data used by the standard
library. This allows different Python implementations to share a single
standard library code base much more easily. In its initial state,
sys.implementation holds only a small portion of the
implementation-specific data. Over time that ratio will shift in order to
make the standard library more portable.

One example of improved standard library portability is cache_tag.
As of Python 3.3, sys.implementation.cache_tag is used by
importlib to support PEP 3147 compliance. Any Python
implementation that uses importlib for its built-in import system
may use cache_tag to control the caching behavior for modules.

SimpleNamespace

The implementation of sys.implementation also introduces a new
type to Python: types.SimpleNamespace. In contrast to a mapping-
based namespace, like dict, SimpleNamespace is attribute-based,
like object. However, unlike object, SimpleNamespace instances
are writable. This means that you can add, remove, and modify the
namespace through normal attribute access.

http://www.python.org/dev/peps/pep-3147

See also:

PEP 421 - Adding sys.implementation
PEP written and implemented by Eric Snow.

http://www.python.org/dev/peps/pep-0421

Using importlib as the Implementation of
Import

issue 2377 - Replace __import__ w/ importlib.__import__ issue 13959
- Re-implement parts of imp in pure Python issue 14605 - Make
import machinery explicit issue 14646 - Require loaders set
__loader___and __package

The __dAmport__() function IS now powered by
importlib.__import__ (). This work leads to the completion of
“phase 2” of PEP 302. There are multiple benefits to this change. First,
it has allowed for more of the machinery powering import to be
exposed instead of being implicit and hidden within the C code. It also
provides a single implementation for all Python VMs supporting Python
3.3 to use, helping to end any VM-specific deviations in import
semantics. And finally it eases the maintenance of import, allowing for
future growth to occur.

For the common user, there should be no visible change in semantics.
For those whose code currently manipulates import or calls import
programmatically, the code changes that might possibly be required
are covered in the Porting Python code section of this document.

New APIs

One of the large benefits of this work is the exposure of what goes into
making the import statement work. That means the various importers
that were once implicit are now fully exposed as part of the
importlib package.

The abstract base classes defined in importlib.abc have been

http://bugs.python.org/issue2377
http://bugs.python.org/issue13959
http://bugs.python.org/issue14605
http://bugs.python.org/issue14646
http://www.python.org/dev/peps/pep-0302

expanded to properly delineate between meta path finders and path
entry finders by introducing importlib.abc.MetaPathFinder and
importlib.abc.PathEntryFinder, respectively. The old ABC of
importlib.abc.Finder is now only provided for backwards-
compatibility and does not enforce any method requirements.

In terms of finders, importlib.machinery.FileFinder exposes
the mechanism used to search for source and bytecode files of a
module. Previously this class was an implicit member of
sys.path_hooks.

For loaders, the new abstract base class
importlib.abc.FilelLoader helps write a loader that uses the file
system as the storage mechanism for a module’s code. The loader for
source files (importlib.machinery.SourceFilelLoader),

sourceless bytecode files
(importlib.machinery.SourcelessFilelLoader), and
extension modules

(importlib.machinery.ExtensionFilelLoader) are now
available for direct use.

ImportError now has name and path attributes which are set

when there is relevant data to provide. The message for failed imports
will also provide the full name of the module now instead of just the tail
end of the module’s name.

The importlib.invalidate_caches() function will now call the

method with the same name on all finders cached in
sys.path_importer_cache to help clean up any stored state as
necessary.

Visible Changes

For potential required changes to code, see the Porting Python code
section.

Beyond the expanse of what importlib now exposes, there are
other visible changes to import. The biggest is that sys.meta_path
and sys.path_hooks now store all of the meta path finders and path
entry hooks used by import. Previously the finders were implicit and
hidden within the C code of import instead of being directly exposed.
This means that one can now easily remove or change the order of the
various finders to fit one’s needs.

Another change is that all modules have a __loader___ attribute,

storing the loader used to create the module. PEP 302 has been
updated to make this attribute mandatory for loaders to implement, so
in the future once 3rd-party loaders have been updated people will be
able to rely on the existence of the attribute. Until such time, though,
import is setting the module post-load.

Loaders are also now expected to set the ___package___ attribute
from PEP 366. Once again, import itself is already setting this on all
loaders from importlib and import itself is setting the attribute post-
load.

None is now inserted into sys.path_importer_cache when no
finder can be found on sys.path_hooks. Since
imp.NullImporter is not directly exposed on sys.path_hooks it
could no longer be relied upon to always be available to use as a
value representing no finder found.

All other changes relate to semantic changes which should be taken
into consideration when updating code for Python 3.3, and thus should
be read about in the Porting Python code section of this document.

http://www.python.org/dev/peps/pep-0302
http://www.python.org/dev/peps/pep-0366

(Implementation by Brett Cannon)

Other Language Changes

Some smaller changes made to the core Python language are:

Added support for Unicode name aliases and named sequences.
Both unicodedata.lookup() and '\N{...}' now resolve

name aliases, and unicodedata.lookup() resolves named
sequences too.

(Contributed by Ezio Melotti in issue 12753)
Unicode database updated to UCD version 6.1.0

Equality comparisons on range() objects now return a result
reflecting the equality of the underlying sequences generated by
those range objects. (issue 13201)

The count(), find(), rfind(), index() and rindex()
methods of bytes and bytearray objects now accept an
integer between 0 and 255 as their first argument,

(Contributed by Petri Lehtinen in issue 12170)

The rjust(), 1just(), and center () methods of bytes and
bytearray now accept a bytearray for the fill argument.
(Contributed by Petri Lehtinen in issue 12380.)

New methods have been added to list and bytearray:
copy() and <clear() (issue 10516). Consequently,
MutableSequence now also defines a clear () method (issue
11388).

Raw bytes literals can now be written rb"..." as well as

http://bugs.python.org/issue12753
http://bugs.python.org/issue13201
http://bugs.python.org/issue12170
http://bugs.python.org/issue12380
http://bugs.python.org/issue10516
http://bugs.python.org/issue11388

brll L. 1" .
(Contributed by Antoine Pitrou in issue 13748.)

e dict.setdefault() now does only one lookup for the given
key, making it atomic when used with built-in types.

(Contributed by Filip Gruszczynski in issue 13521.)

e The error messages produced when a function call does not
match the function signature have been significantly improved.

(Contributed by Benjamin Peterson.)

http://bugs.python.org/issue13748
http://bugs.python.org/issue13521

A Finer-Grained Import Lock

Previous versions of CPython have always relied on a global import
lock. This led to unexpected annoyances, such as deadlocks when
importing a module would trigger code execution in a different thread
as a side-effect. Clumsy workarounds were sometimes employed,
such as the PyImport_ImportModuleNoBlock() C API function.

In Python 3.3, importing a module takes a per-module lock. This
correctly serializes importation of a given module from multiple threads
(preventing the exposure of incompletely initialized modules), while
eliminating the aforementioned annoyances.

(Contributed by Antoine Pitrou in issue 9260.)

http://bugs.python.org/issue9260

Builtin functions and types

e open() gets a new opener parameter. the underlying file
descriptor for the file object is then obtained by calling opener with
(file, flags). It can be wused to use custom flags like
0s.0_CLOEXEC for example. The 'x' mode was added: open
for exclusive creation, failing if the file already exists.

e print(): added the flush keyword argument. If the flush
keyword argument is true, the stream is forcibly flushed.

e hash(): hash randomization is enabled by default, see
object._ _hash__ () and PYTHONHASHSEED.

e The str type gets a new casefold() method: return a
casefolded copy of the string, casefolded strings may be used for
caseless matching. For example, 'B'.casefold() returns
'ss'.

e The sequence documentation has been substantially rewritten to
better explain the binary/text sequence distinction and to provide
specific documentation sections for the individual builtin sequence
types (issue 4966)

http://bugs.python.org/issue4966

New Modules

faulthandler

This new debug module faulthandler contains functions to dump
Python tracebacks explicitly, on a fault (a crash like a segmentation
fault), after a timeout, or on a user signal. Call
faulthandler.enable() to install fault handlers for the SIGSEGV,
SIGFPE, SIGABRT, SIGBUS, and SIGILL signals. You can also
enable them at startup by setting the PYTHONFAULTHANDLER
environment variable or by using -X faulthandler command line
option.

Example of a segmentation fault on Linux:

$ python -q -X faulthandler

>>> import ctypes

>>> ctypes.string_at(0)

Fatal Python error: Segmentation fault

Current thread Ox00007fb899f39700:
File "/home/python/cpython/Lib/ctypes/__init__.py'
File "<stdin>", line 1 in <module>

Segmentation fault

< 1] 2

Ipaddress

The new ipaddress module provides tools for creating and

manipulating objects representing IPv4 and IPv6 addresses, networks
and interfaces (i.e. an IP address associated with a specific IP subnet).

(Contributed by Google and Peter Moody in PEP 3144)

http://www.python.org/dev/peps/pep-3144

lzma

The newly-added lzma module provides data compression and
decompression using the LZMA algorithm, including support for the
.Xz and .1zma file formats.

(Contributed by Nadeem Vawda and Per @yvind Karlsen in issue
6715)

http://bugs.python.org/issue6715

Improved Modules

abc

Improved support for abstract base classes containing descriptors
composed with abstract methods. The recommended approach to
declaring abstract descriptors IS now to provide
__1lisabstractmethod__ as a dynamically updated property. The
built-in descriptors have been updated accordingly.

e abc.abstractproperty has been deprecated, use
property with abc.abstractmethod() instead.

e abc.abstractclassmethod has been deprecated, use
classmethod with abc.abstractmethod() instead.

e abc.abstractstaticmethod has been deprecated, use
staticmethod with abc.abstractmethod() instead.

(Contributed by Darren Dale in issue 11610)

abc.ABCMeta.register() now returns the registered subclass,
which means it can now be used as a class decorator (issue 10868).

array

The array module supports the 1ong long type using q and Q type
codes.

(Contributed by Oren Tirosh and Hirokazu Yamamoto in issue
1172711)

base64

http://bugs.python.org/issue11610
http://bugs.python.org/issue10868
http://bugs.python.org/issue1172711

ASCIl-only Unicode strings are now accepted by the decoding
functions of the base64 modern interface. For example,

base64.b64decode('YWJj"') returns b'abc'. (Contributed by
Catalin lacob in issue 13641.)

binascii
In addition to the binary objects they normally accept, the a2b_

functions now all also accept ASCII-only strings as input. (Contributed
by Antoine Pitrou in issue 13637.)

bz2

The bz2 module has been rewritten from scratch. In the process,
several new features have been added:

New bz2.open() function: open a bzip2-compressed file in
binary or text mode.

e bz2.BZ2File can now read from and write to arbitrary file-like
objects, by means of its constructor’s fileobj argument.

(Contributed by Nadeem Vawda in issue 5863)

e bz2.BZ2File and bz2.decompress() can now decompress
multi-stream inputs (such as those produced by the pbzip2 tool).
bz2.BZ2File can now also be used to create this type of file,
using the 'a' (append) mode.

(Contributed by Nir Aides in issue 1625)

e bz2.BZ2File now implements all of the io.BufferedIOBase

http://bugs.python.org/issue13641
http://bugs.python.org/issue13637
http://bugs.python.org/issue5863
http://bugs.python.org/issue1625

API, except for the detach() and truncate() methods.

codecs

The mbcs codec has been rewritten to handle correctly replace and
ignore error handlers on all Windows versions. The mbcs codec now
supports all error handlers, instead of only replace to encode and
ignore to decode.

A new Windows-only codec has been added: cp65001 (issue 13216).
It is the Windows code page 65001 (Windows UTF-8, CP_UTF8). For
example, it is used by sys.stdout if the console output code page is
set to cp65001 (e.g., using chcp 65001 command).

Multibyte CJK decoders now resynchronize faster. They only ignore
the first byte of an invalid byte sequence. For example,
b'\xff\n'.decode('gb2312', 'replace') now returns a \n

after the replacement character.
(issue 12016)

Incremental CJK codec encoders are no longer reset at each call to
their encode() methods. For example:

$./python -q

>>> import codecs

>>> encoder = codecs.getincrementalencoder('hz')("'st
>>> pb''.join(encoder.encode(x) for x in '"\u52ff\u65k
b'~{NpJ)16HK!#~} Bye.'

« _ 1 2

This example gives b'~{Np~}~{J)~}~{16~}~{HK~}~{'!#~}
Bye. ' with older Python versions.

http://bugs.python.org/issue13216
http://bugs.python.org/issue12016

(issue 12100)

The unicode_internal codec has been deprecated.

collections

Addition of a new ChainMap class to allow treating a number of
mappings as a single unit. (Written by Raymond Hettinger for issue
11089, made public in issue 11297)

The abstract base classes have been moved in a new
collections.abc module, to better differentiate between the

abstract and the concrete collections classes. Aliases for ABCs are
still present in the collections module to preserve existing imports.

(issue 11085)

The Counter class now supports the unary + and - operators, as
well as the in-place operators +=, -=, |=, and &=. (Contributed by
Raymond Hettinger in issue 13121.)

contextlib

ExitStack now provides a solid foundation for programmatic
manipulation of context managers and similar cleanup functionality.
Unlike the previous contextlib.nested APl (which was
deprecated and removed), the new API is designed to work correctly
regardless of whether context managers acquire their resources in
their __init__ method (for example, file objects) or in their
__enter__ method (for example, synchronisation objects from the
threading module).

(issue 13585)

http://bugs.python.org/issue12100
http://bugs.python.org/issue11089
http://bugs.python.org/issue11297
http://bugs.python.org/issue11085
http://bugs.python.org/issue13121
http://bugs.python.org/issue13585

crypt

Addition of salt and modular crypt format (hashing method) and the
mksalt () function to the crypt module.

(issue 10924)

curses

e |If the curses module is linked to the ncursesw library, use

Unicode functions when Unicode strings or characters are
passed (e.g. waddwstr()), and bytes functions otherwise
(e.g. waddstr()).

e Use the locale encoding instead of utf -8 to encode Unicode
strings.

e curses.window has a new curses.window.encoding

attribute.
e The curses.window class has a new get_wch() method

to get a wide character
e The curses module has a new unget_wch() function to

push a wide character so the next get_wch() will return it

(Contributed by Ifigo Serna in issue 6755)

datetime

e Equality comparisons between naive and aware datetime
instances now return False instead of raising TypeError

(issue 15006).
e New datetime.datetime.timestamp() method: Return

POSIX timestamp corresponding to the datetime instance.
e The datetime.datetime.strftime() method supports

http://bugs.python.org/issue10924
http://bugs.python.org/issue6755
http://bugs.python.org/issue15006

formatting years older than 1000.
e The datetime.datetime.astimezone() method can

now be called without arguments to convert datetime
instance to the system timezone.

decimal

Issue 7652 - integrate fast native decimal arithmetic.
C-module and libmpdec written by Stefan Krah.

The new C version of the decimal module integrates the high speed
libmpdec library for arbitrary precision correctly-rounded decimal
floating point arithmetic. libompdec conforms to IBM’'s General Decimal
Arithmetic Specification.

Performance gains range from 10x for database applications to 100x
for numerically intensive applications. These numbers are expected
gains for standard precisions used in decimal floating point arithmetic.
Since the precision is user configurable, the exact figures may vary.
For example, in integer bignum arithmetic the differences can be
significantly higher.

The following table is meant as an illustration. Benchmarks are
available at http://www.bytereef.org/mpdecimal/quickstart.html.

decimal.py _decimal speedup
pi 42.02s 0.345s 120x
telco 172.19s 5.68s 30x
psycopg 3.57s 0.29s 12x

Features

http://bugs.python.org/issue7652
http://www.bytereef.org/mpdecimal/quickstart.html

e The FloatOperation signal optionally enables stricter
semantics for mixing floats and Decimals.

e If Python is compiled without threads, the C version automatically
disables the expensive thread local context machinery. In this
case, the variable HAVE_THREADS is set to False.

API changes

e The C module has the following context limits, depending on the
machine architecture:

32-bit 64-bit
MAX_PREC 425000000 999999999999999999
MAX_EMAX 425000000 999999999999999999

MIN_EMIN -425000000 -999999999999999999

e In the context templates (DefaultContext, BasicContext
and ExtendedContext) the magnitude of Emax and Emin has
changed to 999999.

e The Decimal constructor in decimal.py does not observe the
context limits and converts values with arbitrary exponents or
precision exactly. Since the C version has internal limits, the
following scheme is used:. If possible, values are converted
exactly, otherwise InvalidOperation is raised and the result is
NaN. In the latter case it is always possible to use
create_decimal() in order to obtain a rounded or inexact
value.

e The power function in decimal.py is always correctly-rounded. In
the C version, it is defined in terms of the correctly-rounded

exp() and 1n() functions, but the final result is only “almost
always correctly rounded”.

¢ |In the C version, the context dictionary containing the signals is a
MutableMapping. For speed reasons, flags and traps
always refer to the same MutableMapping that the context was
initialized with. If a new signal dictionary is assigned, flags and
traps are updated with the new values, but they do not
reference the RHS dictionary.

¢ Pickling a Context produces a different output in order to have a
common interchange format for the Python and C versions.

e The order of arguments in the Context constructor has been
changed to match the order displayed by repr ().

e The watchexp parameter in the quantize() method is
deprecated.

email

Policy Framework

The email package now has a policy framework. A Policy is an
object with several methods and properties that control how the email
package behaves. The primary policy for Python 3.3 is the Compat32
policy, which provides backward compatibility with the email package
in Python 3.2. A policy can be specified when an email message is
parsed by a parser, or when a Message object is created, or when
an email is serialized using a generator. Unless overridden, a policy
passed to a parser is inherited by all the Message object and sub-
objects created by the parser. By default a generator will use the

policy of the Message object it is serializing. The default policy is
compat32.

The minimum set of controls implemented by all policy objects are:

The maximum length, excluding the linesep
max_line_length character(s), individual lines may have when
a Message is serialized. Defaults to 78.

The character used to separate individual
linesep lines when a Message is serialized. Defaults
to \n.

7bit or 8bit. 8bit applies only to a
Bytes generator, and means that non-

cte_type ASCII may be used where allowed by the
protocol (or where it exists in the original
input).

Causes a parser to raise error when
raise_on_defect defects are encountered instead of adding
them to the Message object’'s defects list.

A new policy instance, with new settings, is created using the
clone() method of policy objects. clone takes any of the above

controls as keyword arguments. Any control not specified in the call
retains its default value. Thus you can create a policy that uses \r\n
linesep characters like this:

mypolicy = compat32.clone(linesep='\r\n')

Policies can be used to make the generation of messages in the
format needed by your application simpler. Instead of having to
remember to specify 1inesep="'\r\n' in all the places you call a
generator, you can specify it once, when you set the policy used by
the parser or the Message, whichever your program uses to create

Message objects. On the other hand, if you need to generate
messages in multiple forms, you can still specify the parameters in the
appropriate generator call. Or you can have custom policy
instances for your different cases, and pass those in when you create
the generator.

Provisional Policy with New Header API

While the policy framework is worthwhile all by itself, the main
motivation for introducing it is to allow the creation of new policies that
implement new features for the email package in a way that maintains
backward compatibility for those who do not use the new policies.
Because the new policies introduce a new API, we are releasing them
in Python 3.3 as a provisional policy. Backwards incompatible changes
(up to and including removal of the code) may occur if deemed
necessary by the core developers.

The new policies are instances of EmailPolicy, and add the
following additional controls:

Controls whether or not headers parsed by a
parser are refolded by the generator. It
can be none, long, or all. The default is
refold_source long, which means that source headers with
a line longer than max_line_length get
refolded. none means no line get refolded,
and all means that all lines get refolded.

A callable that take a name and value and

header_factory produces a custom header object.

The header_factory is the key to the new features provided by the
new policies. When one of the new policies is used, any header
retrieved from a Message object is an object produced by the

header_factory, and any time you set a header on a Message it
becomes an object produced by header_factory. All such header
objects have a name attribute equal to the header name. Address and

Date headers have additional attributes that give you access to the
parsed data of the header. This means you can now do things like this:

>>> m = Message(policy=SMTP)

>>> m['To'] = 'Eric <foo@example.com>'

>>> m['to']

'Eric <foo@example.com>'

>>> m['to'].addresses

(Address(display_name='Eric', username='foo', domair
>>> m['to'].addresses[0].username

'foo'

>>> m['to'].addresses[0].display_name

'Eric'

>>> m['Date'] = email.utils.localtime()

>>> m['Date'].datetime

datetime.datetime(2012, 5, 25, 21, 39, 24, 465484, t
>>> m['Date']

'"Fri, 25 May 2012 21:44:27 -0400'

>>> print(m)

To: =?utf-879?=C3=89ric?= <foo@example.com>

Date: Fri, 25 May 2012 21:44:27 -0400

« — 1 2

You will note that the unicode display name is automatically encoded
as utf-8 when the message is serialized, but that when the header is

accessed directly, you get the unicode version. This eliminates any
need to deal with the email.header decode_header() or

make_header () functions.
You can also create addresses from parts:

>>> m['cc'] = [Group('pals', [Address('Bob', 'bob',

Address('Sally', 'sall
e Address('Bonzo', addr_spec="'bonz@lauc
>>> print(m)
To: =?utf-8?q?=C3=89ric?= <foo@example.com>
Date: Fri, 25 May 2012 21:44:27 -0400
cc: pals: Bob <bob@example.com>, Sally <sally@exampl
J 1] i

Decoding to unicode is done automatically:

>>> m2 = message_from_string(str(m))
>>> m2['to']
'Eric <foo@example.com>'

When you parse a message, you can use the addresses and
groups attributes of the header objects to access the groups and
individual addresses:

>>> m2['cc'].addresses

(Address(display_name='Bob', username='bob', domain-=
>>> m2['cc'].groups

(Group(display_name='pals', addresses=(Address(displ
d] 2

In summary, if you use one of the new policies, header manipulation
works the way it ought to: your application works with unicode strings,
and the email package transparently encodes and decodes the
unicode to and from the RFC standard Content Transfer Encodings.

Other APl Changes

New BytesHeaderParser, added to the parser module to
complement HeaderParser and complete the Bytes API.

New utility functions:

e format_datetime(): given a datetime, produce a string
formatted for use in an email header.

e parsedate_to_datetime(): given a date string from an
email header, convert it into an aware datetime, or a naive
datetime if the offset is -0000.

e localtime(): With no argument, returns the current local
time as an aware datetime using the local timezone.
Given an aware datetime, converts it into an aware
datetime using the local timezone.

ftplib

e ftplib.FTP now accepts a source_address keyword
argument to specify the (host, port) to use as the source

address in the bind call when creating the outgoing socket.
(Contributed by Giampaolo Rodola in issue 8594.)
e The FTP_TLS class now provides a new ccc() function to revert

control channel back to plaintext. This can be useful to take
advantage of firewalls that know how to handle NAT with non-
secure FTP without opening fixed ports. (Contributed by
Giampaolo Rodola in issue 12139)

e Added ftplib.FTP.mlsd() method which provides a parsable
directory listing format and deprecates ftplib.FTP.nlst()
and ftplib.FTP.dir (). (Contributed by Giampaolo Rodola in
issue 11072)

functools

The functools.lru_cache() decorator now accepts a typed
keyword argument (that defaults to False to ensure that it caches

values of different types that compare equal in separate cache slots.
(Contributed by Raymond Hettinger in issue 13227.)

http://bugs.python.org/issue8594
http://bugs.python.org/issue12139
http://bugs.python.org/issue11072
http://bugs.python.org/issue13227

gcC

It is now possible to register callbacks invoked by the garbage
collector before and after collection using the new callbacks list.

hmac

A new compare_digest () function has been added to prevent side

channel attacks on digests through timing analysis. (Contributed by
Nick Coghlan and Christian Heimes in issue 15061)

http

http.server.BaseHTTPRequestHandler now buffers the
headers and writes them all at once when end_headers() is called.
A new method flush_headers() can be used to directly manage

when the accumlated headers are sent. (Contributed by Andrew
Schaaf in issue 3709.)

http.server now produces valid HTML 4.01 strict output.
(Contributed by Ezio Melotti in issue 13295.)

http.client.HTTPResponse now has a readinto() method,
which means it can be used as a 10.RawIOBase class. (Contributed
by John Kuhn in issue 13464.)

html

html.parser.HTMLParser is now able to parse broken markup
without raising errors, therefore the strict argument of the constructor

http://bugs.python.org/issue15061
http://bugs.python.org/issue3709
http://bugs.python.org/issue13295
http://bugs.python.org/issue13464

and the HTMLParseError exception are now deprecated. The ability

to parse broken markup is the result of a number of bug fixes that are
also available on the latest bug fix releases of Python 2.7/3.2.
(Contributed by Ezio Melotti in issue 15114, and issue 14538, issue
13993, issue 13960, issue 13358, issue 1745761, issue 755670, issue
13357, issue 12629, issue 1200313, issue 670664, issue 13273, issue
12888, issue 7311)

A new html5 dictionary that maps HTML5 named character
references to the equivalent Unicode character(s) (e.g.
html5['gt; '] == '>') has been added to the html.entities
module. The dictionary is now also used by HTMLParser.
(Contributed by Ezio Melotti in issue 11113 and issue 15156)

imaplib
The IMAP4_SSL constructor now accepts an SSLContext parameter

to control parameters of the secure channel.

(Contributed by Sijin Joseph in issue 8808)
Inspect

A new getclosurevars() function has been added. This function

reports the current binding of all names referenced from the function
body and where those names were resolved, making it easier to verify
correct internal state when testing code that relies on stateful closures.

(Contributed by Meador Inge and Nick Coghlan in issue 13062)

A new getgeneratorlocals() function has been added. This
function reports the current binding of local variables in the generator’s

http://bugs.python.org/issue15114
http://bugs.python.org/issue14538
http://bugs.python.org/issue13993
http://bugs.python.org/issue13960
http://bugs.python.org/issue13358
http://bugs.python.org/issue1745761
http://bugs.python.org/issue755670
http://bugs.python.org/issue13357
http://bugs.python.org/issue12629
http://bugs.python.org/issue1200313
http://bugs.python.org/issue670664
http://bugs.python.org/issue13273
http://bugs.python.org/issue12888
http://bugs.python.org/issue7311
http://bugs.python.org/issue11113
http://bugs.python.org/issue15156
http://bugs.python.org/issue8808
http://bugs.python.org/issue13062

stack frame, making it easier to verify correct internal state when
testing generators.

(Contributed by Meador Inge in issue 15153)
0

The open() function has a new 'x' mode that can be used to
exclusively create a new file, and raise a FileExistsError if the file
already exists. It is based on the C11 ‘X’ mode to fopen().

(Contributed by David Townshend in issue 12760)

The constructor of the TextIOwWrapper class has a new
write_through optional argument. If write_through is True, calls to
write() are guaranteed not to be buffered: any data written on the
TextIOWrapper object is immediately handled to its underlying
binary buffer.

itertools

accumulate() now takes an optional func argument for providing a
user-supplied binary function.

logging

The basicConfig() function now supports an optional handlers
argument taking an iterable of handlers to be added to the root logger.

A class level attribute append_nul has been added to
SysLogHandler to allow control of the appending of the NUL (\000)

http://bugs.python.org/issue15153
http://bugs.python.org/issue12760

byte to syslog records, since for some deamons it is required while for
others it is passed through to the log.

math

The math module has a new function, 1og2(), which returns the
base-2 logarithm of x.

(Written by Mark Dickinson in issue 11888).

mmap

The read() method is now more compatible with other file-like
objects: if the argument is omitted or specified as None, it returns the
bytes from the current file position to the end of the mapping.
(Contributed by Petri Lehtinen in issue 12021.)

multiprocessing

The new multiprocessing.connection.wait() function allows
to poll multiple objects (such as connections, sockets and pipes) with a
timeout. (Contributed by Richard Oudkerk in issue 12328.)

multiprocessing.Connection objects can now be transferred

over multiprocessing connections. (Contributed by Richard Oudkerk in
issue 4892.)

multiprocessing.Process now accepts a daemon keyword
argument to override the default behavior of inheriting the daemon flag
from the parent process (issue 6064).

New attribute attribute multiprocessing.Process.sentinel

http://bugs.python.org/issue11888
http://bugs.python.org/issue12021
http://bugs.python.org/issue12328
http://bugs.python.org/issue4892
http://bugs.python.org/issue6064

allows a program to wait on multiple Process objects at one time
using the appropriate OS primitives (for example, select on posix
systems).

New methods multiprocessing.pool.Pool.starmap() and
starmap_async() provide itertools.starmap() equivalents to
the existing multiprocessing.pool.Pool.map() and
map_async() functions. (Contributed by Hynek Schlawack in issue
12708.)

nntplib

The nntplib.NNTP class now supports the context manager protocol
to unconditionally consume socket.error exceptions and to close
the NNTP connection when done:

>>> from nntplib import NNTP
>>> with NNTP('news.gmane.org') as n:
n.group('gmane.comp.python.committers')

('211 1755 1 1755 gmane.comp.python.committers', 17t
>>>

0 — 2

(Contributed by Giampaolo Rodola in issue 9795)

0S

e The os module has a new pipe2() function that makes it
possible to create a pipe with O_CLOEXEC or O_NONBLOCK flags

set atomically. This is especially useful to avoid race conditions in
multi-threaded programs.

http://bugs.python.org/issue12708
http://bugs.python.org/issue9795

e The os module has a new sendfile() function which provides
an efficent “zero-copy” way for copying data from one file (or
socket) descriptor to another. The phrase “zero-copy” refers to the
fact that all of the copying of data between the two descriptors is
done entirely by the kernel, with no copying of data into userspace
buffers. sendfile() can be used to efficiently copy data from a
file on disk to a network socket, e.g. for downloading a file.

(Patch submitted by Ross Lagerwall and Giampaolo Rodola in
issue 10882.)

e To avoid race conditions like symlink attacks and issues with
temporary files and directories, it is more reliable (and also faster)
to manipulate file descriptors instead of file names. Python 3.3
enhances existing functions and introduces new functions to work
on file descriptors (issue 4761, issue 10755 and issue 14626).

o The os module has a new fwalk() function similar to
walk () except that it also yields file descriptors referring to
the directories visited. This is especially useful to avoid
symlink races.

o The following functions get new optional dir_fd (paths relative
to directory descriptors) and/or follow_symlinks (not following
symlinks): access(), chflags(), chmod(), chown(),
link(), 1lstat(), mkdir(), mkfifo(), mknod(),
open(), readlink(), remove(), rename(),
replace(), rmdir(), stat(), symlink(), unlink(),
utime(). Platform support for using these parameters can
be checked via the sets os.supports_dir_fd and
0s.supports_follows_symlinks.

o The following functions now support a file descriptor for their
path argument: chdir (), chmod(), chown(), execve(),
listdir(), pathconf(), exists(), stat(),

http://bugs.python.org/issue10882
http://bugs.python.org/issue4761
http://bugs.python.org/issue10755
http://bugs.python.org/issue14626

statvfs(), utime(). Platform support for this can be
checked via the os.supports_fd set.
access() accepts an effective_ids keyword argument to
turn on using the effective uid/gid rather than the real uid/gid in the
access check. Platform support for this can be checked via the
supports_effective_ids set.

The os module has two new functions: getpriority() and
setpriority(). They can be used to get or set process
niceness/priority in a fashion similar to os.nice() but extended
to all processes instead of just the current one.

(Patch submitted by Giampaolo Rodola in issue 10784.)

The new os.replace() function allows cross-platform renaming
of a file with overwriting the destination. With os.rename(), an
existing destination file is overwritten under POSIX, but raises an

error under Windows. (Contributed by Antoine Pitrou in issue
8828.)

The stat family of functions (stat(), fstat(), and lstat())
now support reading a file’'s timestamps with nanosecond
precision. Symmetrically, utime () can now write file timestamps

with nanosecond precision. (Contributed by Larry Hastings in
issue 14127.)

The new os.get_terminal_size() function queries the size
of the terminal attached to a file descriptor. See also
shutil.get_terminal_size(). (Contributed by Zbigniew
Jedrzejewski-Szmek in issue 13609.)

New functions to support Linux extended attributes (issue 12720):
getxattr(), listxattr(), removexattr(), setxattr().

http://bugs.python.org/issue10784
http://bugs.python.org/issue8828
http://bugs.python.org/issue14127
http://bugs.python.org/issue13609
http://bugs.python.org/issue12720

e New interface to the scheduler. These functions control how a
process is allocated CPU time by the operating system. New

functions: sched_get_priority_max(),
sched_get_priority_min(), sched_getaffinity(),
sched_getparam(), sched_getscheduler (),
sched_rr_get_interval(), sched_setaffinity(),
sched_setparam(), sched_setscheduler(),

sched_yield(),
¢ New functions to control the file system:

o

o

o

posix_fadvise(): Announces an intention to access data
in a specific pattern thus allowing the kernel to make
optimizations.

posix_fallocate(): Ensures that enough disk space is
allocated for a file.

sync () : Force write of everything to disk.

e Additional new posix functions:

(@)

lockf(): Apply, test or remove a POSIX lock on an open file
descriptor.

pread(): Read from a file descriptor at an offset, the file
offset remains unchanged.

pwrite(): Write to a file descriptor from an offset, leaving

the file offset unchanged.

readv(): Read from a file descriptor into a number of
writable buffers.

truncate(): Truncate the file corresponding to path, so that
it is at most length bytes in size.

waitid(): Wait for the completion of one or more child
processes.

writev(): Write the contents of buffers to a file descriptor,
where buffers is an arbitrary sequence of buffers.
getgrouplist() (issue 9344): Return list of group ids that
specified user belongs to.

e times() and uname(): Return type changed from a tuple to a

http://bugs.python.org/issue9344

tuple-like object with named attributes.

e Some platforms now support additional constants for the
1seek() function, such as 0S.SEEK_HOLE and
0S.SEEK_DATA.

e New constants RTLD_LAZY, RTLD_NOw, RTLD_GLOBAL,
RTLD_LOCAL, RTLD_NODELETE, RTLD_NOLOAD, and
RTLD_DEEPBIND are available on platforms that support them.
These are for use with the sys.setdlopenflags() function,
and supersede the similar constants defined in ctypes and
DLFCN. (Contributed by Victor Stinner in issue 13226.)

e 0s.symlink() now accepts (and ignores) the
target_is_directory keyword argument on non-Windows
platforms, to ease cross-platform support.

pdb
Tab-completion is now available not only for command names, but

also their arguments. For example, for the break command, function
and file names are completed.

(Contributed by Georg Brandl in issue 14210)

pickle

pickle.Pickler objects now have an optional dispatch_table
attribute allowing to set per-pickler reduction functions.

(Contributed by Richard Oudkerk in issue 14166.)

pydoc

The Tk GUI and the serve() function have been removed from the

http://bugs.python.org/issue13226
http://bugs.python.org/issue14210
http://bugs.python.org/issue14166

pydoc module: pydoc -g and serve() have been deprecated in
Python 3.2.

re

str regular expressions now support \u and \U escapes.

(Contributed by Serhiy Storchaka in issue 3665.)

sched

e run() now accepts a blocking parameter which when set to

False makes the method execute the scheduled events due to
expire soonest (if any) and then return immediately. This is useful
in case you want to use the scheduler in non-blocking
applications. (Contributed by Giampaolo Rodola in issue 13449)
scheduler class can now be safely used in multi-threaded
environments. (Contributed by Josiah Carlson and Giampaolo
Rodola in issue 8684)

timefunc and delayfunct parameters of scheduler class
constructor are now optional and defaults to time.time() and
time.sleep() respectively. (Contributed by Chris Clark in issue
13245)

enter () and enterabs() argument parameter is now optional.
(Contributed by Chris Clark in issue 13245)

enter() and enterabs() now accept a kwargs parameter.
(Contributed by Chris Clark in issue 13245)

select

Solaris and derivatives platforms have a new class select.devpoll

for

high performance asynchronous sockets via /dev/poll.

http://bugs.python.org/issue3665
http://bugs.python.org/issue13449
http://bugs.python.org/issue8684
http://bugs.python.org/issue13245
http://bugs.python.org/issue13245
http://bugs.python.org/issue13245

(Contributed by Jesus Cea Avion in issue 6397.)

shlex

The previously undocumented helper function quote from the pipes
modules has been moved to the shlex module and documented.
quote() properly escapes all characters in a string that might be
otherwise given special meaning by the shell.

shutil

e New functions:

o disk_usage(): provides total, used and free disk space
statistics. (Contributed by Giampaolo Rodola in issue 12442)

o chown(): allows one to change user and/or group of the
given path also specifying the user/group names and not only
their numeric ids. (Contributed by Sandro Tosi in issue
12191)

o shutil.get_terminal_size(): returns the size of the
terminal window to which the interpreter is attached.
(Contributed by Zbigniew Jedrzejewski-Szmek in issue
13609.)

e copy2() and copystat() now preserve file timestamps with
nanosecond precision on platforms that support it. They also
preserve file “extended attributes” on Linux. (Contributed by Larry
Hastings in issue 14127 and issue 15238.)

e Several functions now take an optional symlinks argument:
when that parameter is true, symlinks aren’t dereferenced and the
operation instead acts on the symlink itself (or creates one, if
relevant). (Contributed by Hynek Schlawack in issue 12715.)

e When copying files to a different file system, move() now
handles symlinks the way the posix mv command does, recreating

http://bugs.python.org/issue6397
http://bugs.python.org/issue12442
http://bugs.python.org/issue12191
http://bugs.python.org/issue13609
http://bugs.python.org/issue14127
http://bugs.python.org/issue15238
http://bugs.python.org/issue12715

the symlink rather than copying the target file contents.
(Contributed by Jonathan Niehof in issue 9993.) move() now

also returns the dst argument as its result.

e rmtree() is now resistant to symlink attacks on platforms which
support the new dir_fd parameter in os.open() and
os.unlink(). (Contributed by Martin von Loéwis and Hynek
Schlawack in issue 4489.)

signal

e The signal module has new functions:

o pthread_sigmask(): fetch and/or change the signal mask
of the calling thread (Contributed by Jean-Paul Calderone in
issue 8407) ;

o pthread_kill(): send a signalto a thread ;

o sigpending(): examine pending functions ;

o sigwait(): wait a signal.

o sigwaitinfo(): wait for a signal, returning detailed
information about it.

o sigtimedwait(): like sigwaitinfo() but with a timeout.

e The signal handler writes the signal number as a single byte
instead of a nul byte into the wakeup file descriptor. So it is
possible to wait more than one signal and know which signals
were raised.

e signal.signal() and signal.siginterrupt() raise an

OSError, instead of a RuntimeError: OSError has an errno
attribute.

smtpd

The smtpd module now supports RFC 5321 (extended SMTP) and
RFC 1870 (size extension). Per the standard, these extensions are

http://bugs.python.org/issue9993
http://bugs.python.org/issue4489
http://bugs.python.org/issue8407
http://tools.ietf.org/html/rfc5321.html
http://tools.ietf.org/html/rfc1870.html

enabled if and only if the client initiates the session with an EHLO
command.

(Initial ELHO support by Alberto Trevino. Size extension by Juhana

Jauhiainen. Substantial additional work on the patch contributed by
Michele Orru and Dan Boswell. issue 8739)

smtplib

The SMTP, SMTP_SSL, and LMTP classes now accept a
source_address keyword argument to specify the (host, port)
to use as the source address in the bind call when creating the
outgoing socket. (Contributed by Paulo Scardine in issue 11281.)

SMTP now supports the context manager protocol, allowing an SMTP
instance to be used in a with statement. (Contributed by Giampaolo
Rodola in issue 11289.)

The SMTP_SSL constructor and the starttls() method now accept

an SSLContext parameter to control parameters of the secure
channel. (Contributed by Kasun Herath in issue 8809)

socket

e The socket class now exposes additional methods to process
ancillary data when supported by the underlying platform:

o sendmsg()
o recvmsg()
o recvmsg_into()

(Contributed by David Watson in issue 6560, based on an earlier

http://bugs.python.org/issue8739
http://bugs.python.org/issue11281
http://bugs.python.org/issue11289
http://bugs.python.org/issue8809
http://bugs.python.org/issue6560

patch by Heiko Wundram)

e The socket class now supports the PF_CAN protocol family

(http://en.wikipedia.org/wiki/Socketcan), on Linux
(http://lwn.net/Articles/253425).

(Contributed by Matthias Fuchs, updated by Tiago Gongalves in
issue 10141)

e The socket class now supports the PF_RDS protocol family
(http://en.wikipedia.org/wiki/Reliable _Datagram_Sockets and
http://oss.oracle.com/projects/rds/).

e The socket class now supports the PF_SYSTEM protocol family
on OS X. (Contributed by Michael Goderbauer in issue 13777.)

e New function sethostname() allows the hostname to be set on
unix systems if the calling process has sufficient privileges.
(Contributed by Ross Lagerwall in issue 10866.)

socketserver

BaseServer now has an overridable method service_actions()
that is called by the serve_forever () method in the service loop.
ForkingMixIn now uses this to clean up zombie child proceses.
(Contributed by Justin Warkentin in issue 11109.)

sglite3

New sqlite3.Connection method set_trace_callback() can

be used to capture a trace of all sql commands processed by sqlite.
(Contributed by Torsten Landschoff in issue 11688.)

http://en.wikipedia.org/wiki/Socketcan
http://lwn.net/Articles/253425
http://bugs.python.org/issue10141
http://en.wikipedia.org/wiki/Reliable_Datagram_Sockets
http://oss.oracle.com/projects/rds/
http://bugs.python.org/issue13777
http://bugs.python.org/issue10866
http://bugs.python.org/issue11109
http://bugs.python.org/issue11688

ssl

The ss1 module has two new random generation functions:

o RAND_bytes(): generate cryptographically strong pseudo-
random bytes.
o RAND_pseudo_bytes(): generate pseudo-random bytes.

(Contributed by Victor Stinner in issue 12049)

The ss1 module now exposes a finer-grained exception hierarchy
in order to make it easier to inspect the various kinds of errors.
(Contributed by Antoine Pitrou in issue 11183)

load_cert_chain() now accepts a password argument to be

used if the private key is encrypted. (Contributed by Adam
Simpkins in issue 12803)

Diffie-Hellman key exchange, both regular and Elliptic Curve-
based, is now supported through the load_dh_params() and
set_ecdh_curve() methods. (Contributed by Antoine Pitrou in
issue 13626 and issue 13627)

SSL sockets have a new get_channel_binding() method
allowing the implementation of certain authentication mechanisms
such as SCRAM-SHA-1-PLUS. (Contributed by Jacek Konieczny
in issue 12551)

You can query the SSL compression algorithm used by an SSL
socket, thanks to its new compression() method. The new

attribute OP_NO_COMPRESSION can be wused to disable
compression. (Contributed by Antoine Pitrou in issue 13634)

http://bugs.python.org/issue12049
http://bugs.python.org/issue11183
http://bugs.python.org/issue12803
http://bugs.python.org/issue13626
http://bugs.python.org/issue13627
http://bugs.python.org/issue12551
http://bugs.python.org/issue13634

e Support has been added for the Next Procotol Negotiation
extension using the
ssl.SSLContext.set_npn_protocols() method.
(Contributed by Colin Marc in issue 14204)

e SSL errors can now be introspected more easily thanks to
library and reason attributes. (Contributed by Antoine Pitrou
in issue 14837)

e The get_server_certificate() function now supports IPv6.
(Contributed by Charles-Francois Natali in issue 11811.)

e New attribute OP_CIPHER_SERVER_PREFERENCE allows setting

SSLv3 server sockets to use the server’s cipher ordering
preference rather than the client’s (issue 13635).

Stat

The undocumented tarfile.flemode function has been moved to
stat.filemode(). It can be used to convert a file’s mode to a string
of the form ‘-rwxrwxrwx’.

(Contributed by Giampaolo Rodola in issue 14807)

struct

The struct module now supports ssize_t and size_t via the
new codes n and N, respectively. (Contributed by Antoine Pitrou in
issue 3163.)

subprocess

http://bugs.python.org/issue14204
http://bugs.python.org/issue14837
http://bugs.python.org/issue11811
http://bugs.python.org/issue13635
http://bugs.python.org/issue14807
http://bugs.python.org/issue3163

Command strings can now be bytes objects on posix platforms.
(Contributed by Victor Stinner in issue 8513.)

A new constant DEVNULL allows suppressing output in a platform-
independent fashion. (Contributed by Ross Lagerwall in issue 5870.)

Sys

The sys module has a new thread_info struct sequence holding
informations about the thread implementation (issue 11223).

tarfile

tarfile now supports lzma encoding via the lzma module.
(Contributed by Lars Gustébel in issue 5689.)

tempfile

tempfile.SpooledTemporaryFile's truncate() method now
accepts a size parameter. (Contributed by Ryan Kelly in issue 9957.)

textwrap

The textwrap module has a new indent() that makes it
straightforward to add a common prefix to selected lines in a block of
text (issue 13857).

threading

threading.Condition, threading.Semaphore,

http://bugs.python.org/issue8513
http://bugs.python.org/issue5870
http://bugs.python.org/issue11223
http://bugs.python.org/issue5689
http://bugs.python.org/issue9957
http://bugs.python.org/issue13857

threading.BoundedSemaphore, threading.Event, and
threading.Timer, all of which used to be factory functions
returning a class instance, are now classes and may be subclassed.
(Contributed by Eric Araujo in issue 10968).

The threading.Thread constructor now accepts a daemon
keyword argument to override the default behavior of inheriting the
deamon flag value from the parent thread (issue 6064).

The formerly private function _thread.get_ident is now available
as the public function threading.get_ident(). This eliminates
several cases of direct access to the _thread module in the stdlib.
Third party code that used _thread.get_ident should likewise be
changed to use the new public interface.

time
The PEP 418 added new functions to the time module:

e get_clock_info(): Getinformation on a clock.
e monotonic(): Monotonic clock (cannot go backward), not

affected by system clock updates.
e perf_counter(): Performance counter with the highest

available resolution to measure a short duration.
e process_time(): Sum of the system and user CPU time of the

current process.
Other new functions:

e clock_getres(), clock_gettime() and
clock_settime() functions with CLOCK_xXxX constants.
(Contributed by Victor Stinner in issue 10278)

http://bugs.python.org/issue10968
http://bugs.python.org/issue6064
http://www.python.org/dev/peps/pep-0418
http://bugs.python.org/issue10278

To improve cross platform consistency, sleep() now raises a
ValueError when passed a negative sleep value. Previously this
was an error on posix, but produced an infinite sleep on Windows.

types

Add a new types.MappingProxyType class: Read-only proxy of a
mapping. (issue 14386)

The new functions types.new_class and types.prepare_class provide
support for PEP 3115 compliant dynamic type creation. (issue 14588)

unittest

assertRaises(), assertRaisesRegex(), assertwWarns(), and
assertWarnsRegex() now accept a keyword argument msg when
used as context managers. (Contributed by Ezio Melotti and Winston
Ewert in issue 10775)

unittest.TestCase.run() now returns the TestResult object.

urllib

The Request class, now accepts a method argument used by
get_method() to determine what HTTP method should be used. For
example, this will send a 'HEAD' request:

>>> urlopen(Request('http://www.python.org', method-
J 1 i

(issue 1673007)

http://bugs.python.org/issue14386
http://bugs.python.org/issue14588
http://bugs.python.org/issue10775
http://bugs.python.org/issue1673007

webbrowser

The webbrowser module supports more “browsers”: Google Chrome
(named chrome, chromium, chrome-browser or chromium-
browser depending on the version and operating system), and the
generic launchers xdg-open, from the FreeDesktop.org project, and
gvfs-open, which is the default URI handler for GNOME 3. (The
former contributed by Arnaud Calmettes in issue 13620, the latter by
Matthias Klose in issue 14493)

xml.etree.ElementTree

The xml.etree.ElementTree module now imports its C
accelerator by default; there is no longer a need to explicitly import
xml.etree.cElementTree (this module stays for backwards
compatibility, but is now deprecated). In addition, the iter family of
methods of Element has been optimized (rewritten in C). The

module’s documentation has also been greatly improved with added
examples and a more detailed reference.

zlib

New attribute zlib.Decompress.eof makes it possible to
distinguish between a properly-formed compressed stream and an
incomplete or truncated one. (Contributed by Nadeem Vawda in issue
12646.)

New attribute zlib.ZLIB_RUNTIME_VERSION reports the version
string of the underlying zlib library that is loaded at runtime.
(Contributed by Torsten Landschoff in issue 12306.)

http://bugs.python.org/issue13620
http://bugs.python.org/issue14493
http://bugs.python.org/issue12646
http://bugs.python.org/issue12306

Optimizations

Major performance enhancements have been added:

e Thanks to PEP 393, some operations on Unicode strings have
been optimized:

o the memory footprint is divided by 2 to 4 depending on the
text

o encode an ASCII string to UTF-8 doesn’t need to encode
characters anymore, the UTF-8 representation is shared with
the ASCII representation

o the UTF-8 encoder has been optimized

o repeating a single ASCII letter and getting a substring of a
ASCII strings is 4 times faster

e UTF-8 is now 2x to 4x faster. UTF-16 encoding is now up to 10x
faster.

(contributed by Serhiy Storchaka, issue 14624, issue 14738 and
issue 15026.)

http://www.python.org/dev/peps/pep-0393
http://bugs.python.org/issue14624
http://bugs.python.org/issue14738
http://bugs.python.org/issue15026

Build and C API Changes

Changes to Python’s build process and to the C API include:

e New PEP 3118 related function:
o PyMemoryView_FromMemory()

e PEP 393 added new Unicode types, macros and functions:
o High-level API:

PyUnicode_CopyCharacters()
PyUnicode_FindChar ()
PyUnicode_GetLength(),
PyUnicode_GET_LENGTH
PyUnicode_New()
PyUnicode_Substring()
PyUnicode_ReadChar (),
PyUnicode_WriteChar ()

o Low-level API:

Py_UCS1, Py_UCS2, Py_UCS4 types
PYyASCIIObject and PyCompactUnicodeObject

structures
PyUnicode_READY

PyUnicode_FromKindAndData()
PyUnicode_AsUCS4(), PyUnicode_AsUCS4Copy()
PyUnicode_DATA, PyUnicode_1BYTE_DATA,
PyUnicode_2BYTE_DATA, PyUnicode_4BYTE_DATA
PyUnicode_KIND with PyUnicode_Kind enum:
PyUnicode_WCHAR_KIND, PyUnicode_1BYTE_KIND,
PyUnicode_2BYTE_KIND, PyUnicode_4BYTE_KIND
PyUnicode_READ, PyUnicode_READ_CHAR,
PyUnicode_WRITE

PyUnicode_MAX_CHAR_VALUE

http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-0393

e PyArg_ParseTuple now accepts a bytearray for the c
format (issue 12380).

http://bugs.python.org/issue12380

Deprecated

Unsupported Operating Systems

0S/2 and VMS are no longer supported due to the lack of a
maintainer.

Windows 2000 and Windows platforms which set COMSPEC to
command .com are no longer supported due to maintenance burden.

OSF support, which was deprecated in 3.2, has been completely
removed.

Deprecated Python modules, functions and
methods

e Passing a non-empty string to object.__format__ () is
deprecated, and will produce a TypeError in Python 3.4 (issue

9856).
e The unicode_internal codec has been deprecated because

of the PEP 393, use UTF-8, UTF-16 (utf-16-1le or utf-16-
be), or UTF-32 (utf-32-1e or utf-32-be)

o ftplib.FTP.nlst() and ftplib.FTP.dir(): use
ftplib.FTP.mlsd()

e platform.popen(): use the subprocess module. Check
especially the Replacing Older Functions with the subprocess
Module section (issue 11377).

e issue 13374: The Windows bytes API has been deprecated in the
os module. Use Unicode filenames, instead of bytes filenames, to
not depend on the ANSI code page anymore and to support any
filename.

e issue 13988: The xml.etree.cElementTree module is

http://bugs.python.org/issue9856
http://www.python.org/dev/peps/pep-0393
http://bugs.python.org/issue11377
http://bugs.python.org/issue13374
http://bugs.python.org/issue13988

deprecated. The accelerator is used automatically whenever
available.
e The behaviour of time.clock() depends on the platform: use

the new time.perf_counter() or time.process_time()
function instead, depending on your requirements, to have a well

defined behaviour.
e The os.stat_float_times() function is deprecated.

e abc module:

o abc.abstractproperty has been deprecated, use
property with abc.abstractmethod() instead.

o abc.abstractclassmethod has been deprecated, use
classmethod with abc.abstractmethod() instead.

o abc.abstractstaticmethod has been deprecated, use
staticmethod with abc.abstractmethod() instead.

e importlib package:

o importlib.abc.SourceLoader.path_mtime() is now
deprecated in favour of
importlib.abc.SourceLoader.path_stats() as
bytecode files now store both the modification time and size
of the source file the bytecode file was compiled from.

Deprecated functions and types of the C API

The Py_UNICODE has been deprecated by PEP 393 and will be
removed in Python 4. All functions using this type are deprecated:

Unicode functions and methods wusing Py UNICODE and
Py_UNICODE™ types:

e PyUnicode_FromUnicode: use
PyUnicode_FromwideChar () or
PyUnicode_FromKindAndData()

http://www.python.org/dev/peps/pep-0393

e PyUnicode_AS_UNICODE, PyUnicode_AsUnicode(),

PyUnicode_AsUnicodeAndSize(): use
PyUnicode_AsWideCharString()

e PyUnicode_AS_DATA: use PyUnicode_DATA with
PyUnicode_READ and PyUnicode_WRITE

e PyUnicode_GET_SIZE, PyUnicode_GetSize(): use
PyUnicode_GET_LENGTH or PyUnicode_GetLength()

e PyUnicode_GET_DATA_SIZE: use

PyUnicode_GET_LENGTH(str) * PyUnicode_KIND(str)
(only work on ready strings)

e PyUnicode_AsUnicodeCopy(): use
PyUnicode_AsUCS4Copy() or
PyUnicode_AsWideCharString()

e PyUnicode_GetMax()

Functions and macros manipulating Py_UNICODE* strings:

e Py UNICODE_strlen: use PyUnicode_GetLength() or
PyUnicode_GET_LENGTH

e Py UNICODE_strcat: use PyUnicode_CopyCharacters()
or PyuUnicode_FromFormat()

e Py_UNICODE_strcpy, Py_UNICODE_strncpy,
Py_UNICODE_COPY: use PyUnicode_CopyCharacters() or
PyUnicode_Substring()

e Py UNICODE_strcmp: use PyUnicode_Compare()

e Py UNICODE_strncmp: use PyUnicode_Tailmatch()

e Py _UNICODE_strchr, Py_UNICODE_strrchr: use
PyUnicode_FindChar ()

e Py UNICODE_FILL:use PyUnicode_Fill()

e Py UNICODE_MATCH

Encoders:

e PyUnicode_Encode(): use
PyUnicode_AsEncodedObject()

e PyUnicode_EncodeUTF7()

e PyUnicode_EncodeUTF8(): use PyUnicode_AsUTF8() or
PyUnicode_AsUTF8String()

e PyUnicode_EncodeUTF32()

e PyUnicode_EncodeUTF16()

e PyUnicode_EncodeUnicodeEscape: () use
PyUnicode_AsUnicodeEscapeString()

e PyUnicode_EncodeRawUnicodeEscape: () use
PyUnicode_AsRawUnicodeEscapeString()

e PyUnicode_EncodelLatinl(): use
PyUnicode_AsLatinlString()

e PyUnicode_EncodeASCII(): use

PyUnicode_ASASCIIString()

e PyUnicode_EncodeCharmap()

e PyUnicode_TranslateCharmap()

e PyUnicode_EncodeMBCS(): use
PyUnicode_AsMBCSString() or
PyUnicode_EncodeCodePage () (with CP_ACP code_ page)

e PyUnicode_EncodeDecimal(),
PyUnicode_TransformDecimalToASCII()

Deprecated features

The array module’s "u' format code is now deprecated and will be
removed in Python 4 together with the rest of the (Py_UNICODE) API.

Porting to Python 3.3

This section lists previously described changes and other bugfixes that
may require changes to your code.

Porting Python code

e Hash randomization is enabled by default. Set the
PYTHONHASHSEED environment variable to @ to disable hash
randomization. See also the object._ _hash__ () method.

e issue 12326: On Linux, sys.platform doesn’t contain the major
version anymore. It is now always ‘linux’, instead of ‘linux2’ or
linux3’ depending on the Linux version used to build Python.
Replace sys.platform == ‘linux2’ with
sys.platform.startswith(‘linux’), or directly sys.platform == ‘linux’ if
you don’t need to support older Python versions.

e issue 13847, issue 14180: time and datetime:
OverflowError is now raised instead of ValueError if a
timestamp is out of range. OSError is now raised if C functions
gmtime() or localtime() failed.

e The default finders used by import now utilize a cache of what is
contained within a specific directory. If you create a Python source
file or sourceless bytecode file, make sure to call
importlib.invalidate_caches() to clear out the cache for
the finders to notice the new file.

e ImportError now uses the full name of the module that was
attemped to be imported. Doctests that check ImportErrors’
message will need to be updated to use the full name of the
module instead of just the tail of the name.

e The index argumentto __import__ () now defaults to 0 instead
of -1 and no longer support negative values. It was an oversight
when PEP 328 was implemented that the default value remained

http://bugs.python.org/issue12326
http://bugs.python.org/issue13847
http://bugs.python.org/issue14180
http://www.python.org/dev/peps/pep-0328

-1. If you need to continue to perform a relative import followed by
an absolute import, then perform the relative import using an
index of 1, followed by another import using an index of 0. It is
preferred, though, that you use importlib.import_module()
rather than call __import__ () directly.

__import__ () no longer allows one to use an index value other
than O for top-level modules. E.g. __import__('sys',
level=1) is now an error.

Because sys.meta_path and sys.path_hooks now have
finders on them by default, you will most likely want to use
list.insert() instead of list.append() to add to those
lists.

Because None IS now inserted into
sys.path_importer_cache, if you are clearing out entries in
the dictionary of paths that do not have a finder, you will need to
remove keys paired with values of None and
imp.NullImporter to be backwards-compatible. This will lead
to extra overhead on older versions of Python that re-insert None
into sys.path_importer_cache where it repesents the use of
implicit finders, but semantically it should not change anything.
importlib.abc.Finder no longer specifies a find_module()
abstract method that must be implemented. If you were relying on
subclasses to implement that method, make sure to check for the
method’s existence first. You will probably want to check for
find_loader() first, though, in the case of working with path entry
finders.

pkgutil has been converted to use importlib internally. This
eliminates many edge cases where the old behaviour of the PEP
302 import emulation failed to match the behaviour of the real
import system. The import emulation itself is still present, but is
now deprecated. The pkgutil.iter_importers() and
pkgutil.walk_packages() functions special case the
standard import hooks so they are still supported even though

they do not provide the non-standard iter_modules() method.
A longstanding RFC-compliance bug (issue 1079) in the parsing
done by email.header.decode_header () has been fixed.

Code that uses the standard idiom to convert encoded headers
into unicode (str(make_header (decode_header(h))) will

see no change, but code that looks at the individual tuples
returned by decode_header will see that whitespace that
precedes or follows ASCII sections is now included in the ASCII
section. Code that builds headers using make_header should
also continue to work without change, since make_header
continues to add whitespace between ASCII and non-ASCII
sections if it is not already present in the input strings.
email.utils.formataddr() now does the correct content
transfer encoding when passed non-ASCII display names. Any
code that depended on the previous buggy behavior that
preserved the non-ASCII unicode in the formatted output string
will need to be changed (issue 1690608).

poplib.POP3.quit() may now raise protocol errors like all
other poplib methods. Code that assumes quit does not raise
poplib.error_proto errors may need to be changed if errors
on quit are encountered by a particular application (issue
11291).

The strict argument to email.parser.Parser, deprecated

since Python 2.4, has finally been removed.
The deprecated method
unittest.TestCase.assertSameElements has been

removed.
The deprecated variable time.accept2dyear has been

removed.
The deprecated Context._clamp attribute has been removed

from the decimal module. It was previously replaced by the
public attribute clamp. (See issue 8540.)
The undocumented internal helper class SSLFakeFile has been

http://bugs.python.org/issue1079
http://bugs.python.org/issue1690608
http://bugs.python.org/issue11291
http://bugs.python.org/issue8540

removed from smtplib, since its functionality has long been
provided directly by socket.socket.makefile().

e Passing a negative value to time.sleep() on Windows now
raises an error instead of sleeping forever. It has always raised an
error on posix.

e The ast.__version__ constant has been removed. If you need
to make decisions affected by the AST version, use
sys.version_info to make the decision.

e Code that used to work around the fact that the threading

module used factory functions by subclassing the private classes
will need to change to subclass the now-public classes.

e The undocumented debugging machinery in the threading module
has been removed, simplifying the code. This should have no
effect on production code, but is mentioned here in case any
application debug frameworks were interacting with it (issue
13550).

Porting C code

e In the course of changes to the buffer APl the undocumented
smalltable member of the Py_buffer structure has been

removed and the layout of the PyMemoryViewObject has
changed.

All extensions relying on the relevant parts in memoryobject.h
or object.h must be rebuilt.

e Due to PEP 393, the Py_UNICODE type and all functions using
this type are deprecated (but will stay available for at least five
years). If you were using low-level Unicode APIs to construct and
access unicode objects and you want to benefit of the memory
footprint reduction provided by PEP 393, you have to convert your

http://bugs.python.org/issue13550

code to the new Unicode API.

However, if you only have been using high-level functions such as
PyUnicode_Concat(), PyUnicode_Join() or
PyUnicode_FromFormat(), your code will automatically take
advantage of the new unicode representations.

e PyImport_GetMagicNumber () now returns -1 upon failure.

e As a negative value for the level argument to __import__ () is
no longer valid, the same now holds for
PyImport_ImportModulelLevel(). This also means that the
value of level used by PyImport_ImportModuleEx() is now O
instead of -1.

Building C extensions

e The range of possible file names for C extensions has been
narrowed. Very rarely used spellings have been suppressed:
under POSIX, files named xxxmodule. so,

xxxmodule.abi3.so and xxxmodule.cpython-*.so are no
longer recognized as implementing the xxx module. If you had
been generating such files, you have to switch to the other
spellings (i.e., remove the module string from the file names).

(implemented in issue 14040.)

Command Line Switch Changes

e The -Q command-line flag and related artifacts have been
removed. Code checking sys.flags.division_warning will need
updating.

http://bugs.python.org/issue14040

(issue 10998, contributed by Eric Araujo.)

e When python is started with -S, import site will no longer add
site-specific paths to the module search paths. In previous
versions, it did.

(issue 11591, contributed by Carl Meyer with editions by Eric
Araujo.)

@ Python » 3.3.3rc2 Documentation » What's New in Python previous | next | modules | index

»

© Copyright 1990-2013, Python Software Foundation.

The Python Software Foundation is a non-profit corporation. Please donate.
Last updated on Nov 11, 2013. Found a bug?

Created using Sphinx 1.0.7.

http://bugs.python.org/issue10998
http://bugs.python.org/issue11591
http://www.python.org/
http://www.python.org/psf/donations/
http://sphinx.pocoo.org/

@ Python » 3.3.3rc2 Documentation » What's New in Python previous | next | modules | index

»

http://www.python.org/

What's New In Python 3.2

Author: Raymond Hettinger
This article explains the new features in Python 3.2 as compared to

3.1. It focuses on a few highlights and gives a few examples. For full
details, see the Misc/NEWS file.

See also: PEP 392 - Python 3.2 Release Schedule

http://hg.python.org/cpython/file/3.2/Misc/NEWS
http://www.python.org/dev/peps/pep-0392

PEP 384: Defining a Stable ABI

In the past, extension modules built for one Python version were often
not usable with other Python versions. Particularly on Windows, every
feature release of Python required rebuilding all extension modules
that one wanted to use. This requirement was the result of the free
access to Python interpreter internals that extension modules could
use.

With Python 3.2, an alternative approach becomes available:
extension modules which restrict themselves to a limited APl (by
defining Py_LIMITED_API) cannot use many of the internals, but are
constrained to a set of API functions that are promised to be stable for
several releases. As a consequence, extension modules built for 3.2 in
that mode will also work with 3.3, 3.4, and so on. Extension modules
that make use of details of memory structures can still be built, but will
need to be recompiled for every feature release.

See also:

PEP 384 - Defining a Stable ABI
PEP written by Martin von Lowis.

http://www.python.org/dev/peps/pep-0384

PEP 389: Argparse Command Line
Parsing Module

A new module for command line parsing, argparse, was introduced
to overcome the limitations of optparse which did not provide
support for positional arguments (not just options), subcommands,
required options and other common patterns of specifying and
validating options.

This module has already had widespread success in the community as
a third-party module. Being more fully featured than its predecessor,
the argparse module is now the preferred module for command-line

processing. The older module is still being kept available because of
the substantial amount of legacy code that depends on it.

Here’'s an annotated example parser showing features like limiting
results to a set of choices, specifying a metavar in the help screen,
validating that one or more positional arguments is present, and
making a required option:

import argparse
parser = argparse.ArgumentParser (
description = 'Manage servers',
epilog = 'Tested on Solaris and Linux')
parser.add_argument('action',
choices = ['deploy', 'start', 'stop'],
help = 'action on each target')
parser.add_argument('targets"',
metavar = 'HOSTNAME',

nargs = '+',
help = 'url for target machines')
parser.add_argument('-u', '--user',

required = True,

help = 'login as user')
Rl 1] i

Example of calling the parser on a command string:

>>> cmd = 'deploy sneezy.example.com sleepy.example
>>> result = parser.parse_args(cmd.split())

>>> result.action

"deploy’

>>> result.targets

['sneezy.example.com', 'sleepy.example.com']

>>> result.user

'skycaptain'

A _ 1 i

Example of the parser’s automatically generated help:
>>> parser.parse_args('-h'.split())

usage: manage_cloud.py [-h] -u USER
{deploy, start,stop} HOSTNAME

Manage servers

positional arguments:
{deploy, start,stop} action on each target
HOSTNAME url for target machines

optional arguments:
-h, --help show this help message and ¢
-u USER, --user USER 1login as user

Tested on Solaris and Linux
]] i

An especially nice argparse feature is the ability to define
subparsers, each with their own argument patterns and help displays:

import argparse

parser =

argparse.ArgumentParser (prog="'HELM')

subparsers = parser.add_subparsers()

parser_1l = subparsers.add_parser('launch', help="'Lal
parser_l.add_argument('-m', '--missiles', action='st
parser_l.add_argument('-t', '--torpedos', action='st
parser_m = subparsers.add_parser('move', help='Move

aliases=('steer', '
parser_m.add_argument('-c', '--course', type=int, re
parser_m.add_argument('-s', '--speed', type=int, def
$./helm.py --help # top len
$./helm.py launch --help # help fc
$./helm.py launch --missiles # set mic
$./helm.py steer --course 180 --speed 5 # set mov
Rl 1 i
See also:

PEP 389 - New Command Line Parsing Module
PEP written by Steven Bethard.

Upgrading
optparse.

optparse code for details on the differences from

http://www.python.org/dev/peps/pep-0389

PEP 391.: Dictionary Based Configuration
for Logging

The logging module provided two kinds of configuration, one style
with function calls for each option or another style driven by an
external file saved in a ConfigParser format. Those options did not
provide the flexibility to create configurations from JSON or YAML files,
nor did they support incremental configuration, which is needed for
specifying logger options from a command line.

To support a more flexible style, the module now offers
logging.config.dictConfig() for specifying logging
configuration with plain Python dictionaries. The configuration options
include formatters, handlers, filters, and loggers. Here’s a working
example of a configuration dictionary:

{"version": 1,

"formatters": {"brief": {"format": "%(levelname)-8s
"full": {"format": "%(asctime)s %(ne
I
"handlers": {"console": {
"class": "logging.StreamHandler",
"formatter": "brief",
"level": "INFO",
"stream": "ext://sys.stdout"},
"console_priority": {
"class": "logging.StreamHandler",

"formatter": "full",
"level": "ERROR",
"stream": "ext://sys.stderr"}

3

"root": {"level": "DEBUG", "handlers": ["console",
Rl 1 i

If that dictionary is stored in a file called conf. json, it can be loaded
and called with code like this:

>>> import json, logging.config
>>> with open('conf.json') as f:

conf = json.load(f)
>>> logging.config.dictConfig(conf)
>>> logging.info("Transaction completed normally")
INFO : root : Transaction completed nor
>>> logging.critical("Abnormal termination")
2011-02-17 11:14:36,694 root CRITICAL Abr
Rl 1 2

See also:

PEP 391 - Dictionary Based Configuration for Logging
PEP written by Vinay Sajip.

http://www.python.org/dev/peps/pep-0391

PEP 3148: The concurrent.futures
module

Code for creating and managing concurrency is being collected in a
new top-level namespace, concurrent. Its first member is a futures
package which provides a uniform high-level interface for managing
threads and processes.

The design for concurrent.futures was inspired by the
java.util.concurrent package. In that model, a running call and its result
are represented by a Future object that abstracts features common
to threads, processes, and remote procedure calls. That object
supports status checks (running or done), timeouts, cancellations,
adding callbacks, and access to results or exceptions.

The primary offering of the new module is a pair of executor classes
for launching and managing calls. The goal of the executors is to make
it easier to use existing tools for making parallel calls. They save the
effort needed to setup a pool of resources, launch the calls, create a
results queue, add time-out handling, and limit the total number of
threads, processes, or remote procedure calls.

Ideally, each application should share a single executor across
multiple components so that process and thread limits can be centrally
managed. This solves the design challenge that arises when each
component has its own competing strategy for resource management.

Both classes share a common interface with three methods:
submit () for scheduling a callable and returning a Future object;

map() for scheduling many asynchronous calls at a time, and
shutdown () for freeing resources. The class is a context manager

and can be used in a with statement to assure that resources are

automatically released when currently pending futures are done
executing.

A simple of example of ThreadPoolExecutor is a launch of four
parallel threads for copying files:

import concurrent.futures, shutil
with concurrent.futures.ThreadPoolExecutor (max_worke

e.submit(shutil.copy, 'srcl.txt', 'destl.txt')

e.submit(shutil.copy, 'src2.txt', 'dest2.txt')

e.submit(shutil.copy, 'src3.txt', 'dest3.txt')

e.submit(shutil.copy, 'src3.txt', 'dest4.txt')
A] i
See also:

PEP 3148 - Futures — Execute Computations Asynchronously
PEP written by Brian Quinlan.

Code for Threaded Parallel URL reads, an example using threads to
fetch multiple web pages in parallel.

Code for computing prime numbers in parallel, an example
demonstrating ProcessPoolExecutor.

http://www.python.org/dev/peps/pep-3148

PEP 3147: PYC Repository Directories

Python’s scheme for caching bytecode in .pyc files did not work well in
environments with multiple Python interpreters. If one interpreter
encountered a cached file created by another interpreter, it would
recompile the source and overwrite the cached file, thus losing the
benefits of caching.

The issue of “pyc fights” has become more pronounced as it has
become commonplace for Linux distributions to ship with multiple
versions of Python. These conflicts also arise with CPython
alternatives such as Unladen Swallow.

To solve this problem, Python’s import machinery has been extended
to use distinct filenames for each interpreter. Instead of Python 3.2 and
Python 3.3 and Unladen Swallow each competing for a file called
“mymodule.pyc”, they will now look for “mymodule.cpython-32.pyc”,
“mymodule.cpython-33.pyc”, and “mymodule.unladen10.pyc”. And to
prevent all of these new files from cluttering source directories, the pyc
files are now collected in a “__pycache__ " directory stored under the
package directory.

Aside from the filenames and target directories, the new scheme has a
few aspects that are visible to the programmer:

e Imported modules now have a __ _cached__ attribute which
stores the name of the actual file that was imported:

>>> import collections

>>> collections.__cached__
'c:/py32/1ib/__pycache__/collections.cpython-32.|
<] 2

e The tag that is unique to each interpreter is accessible from the
imp module:

>>> import imp
>>> imp.get_tag()
'cpython-32'

e Scripts that try to deduce source filename from the imported file
now need to be smatrter. It is no longer sufficient to simply strip the
“c” from a ".pyc” filename. Instead, use the new functions in the
imp module:

>>> imp.source_from_cache('c:/py32/1ib/__pycache.
'c:/py32/1lib/collections.py'’

>>> imp.cache_from_source('c:/py32/1ib/collectio
'c:/py32/1ib/__pycache__/collections.cpython-32.|

{ — >

e The py_compile and compileall modules have been
updated to reflect the new naming convention and target directory.
The command-line invocation of compileall has new options: -1
for specifying a list of files and directories to compile and -b
which causes bytecode files to be written to their legacy location
rather than ___pycache .

e The importlib.abc module has been updated with new

abstract base classes for loading bytecode files. The obsolete
ABCs, PyLoader and PyPycLoader, have been deprecated

(instructions on how to stay Python 3.1 compatible are included
with the documentation).

See also:

PEP 3147 - PYC Repository Directories

http://www.python.org/dev/peps/pep-3147

PEP written by Barry Warsaw.

PEP 3149: ABI Version Tagged .so Files

The PYC repository directory allows multiple bytecode cache files to
be co-located. This PEP implements a similar mechanism for shared
object files by giving them a common directory and distinct names for
each version.

The common directory is “pyshared” and the file names are made
distinct by identifying the Python implementation (such as CPython,
PyPy, Jython, etc.), the major and minor version numbers, and
optional build flags (such as “d” for debug, “m” for pymalloc, “u” for
wide-unicode). For an arbitrary package “foo”, you may see these files
when the distribution package is installed:

/usr/share/pyshared/foo.cpython-32m.so
/usr/share/pyshared/foo.cpython-33md.so

In Python itself, the tags are accessible from functions in the
sysconfig module:

>>> import sysconfig

>>> sysconfig.get_config_var('SOABI') # find t
'cpython-32mu’

>>> sysconfig.get_config_var ('EXT_SUFFIX') # find t
'.cpython-32mu.so'

J — 1 i

See also:

PEP 3149 - ABI Version Tagged .so Files
PEP written by Barry Warsaw.

http://www.python.org/dev/peps/pep-3149

PEP 3333: Python Web Server Gateway
Interface v1.0.1

This informational PEP clarifies how bytes/text issues are to be
handled by the WSGI protocol. The challenge is that string handling in
Python 3 is most conveniently handled with the str type even though
the HTTP protocol is itself bytes oriented.

The PEP differentiates so-called native strings that are used for
request/response headers and metadata versus byte strings which are
used for the bodies of requests and responses.

The native strings are always of type str but are restricted to code
points between U+0000 through U+0OOFF which are translatable to
bytes using Latin-1 encoding. These strings are used for the keys and
values in the environment dictionary and for response headers and
statuses in the start_response() function. They must follow RFC
2616 with respect to encoding. That is, they must either be ISO-8859-
1 characters or use RFC 2047 MIME encoding.

For developers porting WSGI applications from Python 2, here are the
salient points:

¢ |f the app already used strings for headers in Python 2, no change
IS needed.

e If instead, the app encoded output headers or decoded input
headers, then the headers will need to be re-encoded to Latin-1.
For example, an output header encoded in utf-8 was using
h.encode('utf-8") now needs to convert from bytes to native
strings using h.encode('utf-8').decode('latin-1").

e Values yielded by an application or sent using the write()
method must be byte strings. The start_response() function

http://tools.ietf.org/html/rfc2616.html
http://tools.ietf.org/html/rfc2047.html

and environ must use native strings. The two cannot be mixed.

For server implementers writing CGI-to-WSGI pathways or other CGI-
style protocols, the users must to be able access the environment
using native strings even though the underlying platform may have a
different convention. To bridge this gap, the wsgiref module has a
new function, wsgiref.handlers.read_environ() for
transcoding CGl variables from os.environ into native strings and
returning a new dictionary.

See also:

PEP 3333 - Python Web Server Gateway Interface v1.0.1
PEP written by Phillip Eby.

http://www.python.org/dev/peps/pep-3333

Other Language Changes

Some smaller changes made to the core Python language are:

e String formatting for format() and str.format() gained new
capabilities for the format character #. Previously, for integers in
binary, octal, or hexadecimal, it caused the output to be prefixed
with ‘0Ob’, ‘00, or ‘Ox’ respectively. Now it can also handle floats,
complex, and Decimal, causing the output to always have a
decimal point even when no digits follow it.

>>> format(20, '#0')
'0024'

>>> format(12.34, '#5.0f'")
1 12.|

(Suggested by Mark Dickinson and implemented by Eric Smith in
issue 7094.)

e There is also a new str.format_map() method that extends
the capabilities of the existing str.format() method by
accepting arbitrary mapping objects. This new method makes it
possible to use string formatting with any of Python’s many
dictionary-like objects such as defaultdict, Shelf,
ConfigParser, or dbm. It is also useful with custom dict
subclasses that normalize keys before look-up or that supply a
__missing__ () method for unknown keys:

>>> import shelve

>>> d = shelve.open('tmp.shl')

>>> 'The {project_name} status 1is {status} as of
'"The testing project status is green as of Febru

http://bugs.python.org/issue7094

>>> class LowerCasedDict(dict):
def _ getitem__(self, key):
return dict.__getitem__(self, key.lo
>>> lcd = LowerCasedDict(part='widgets', quantit
>>> 'There are {QUANTITY} {Part} in stock'.forma
'"There are 10 widgets in stock'

>>> class PlaceholderDict(dict):
def _ _missing__ (self, key):
return '<{}>'.format(key)
>>> 'Hello {name}, welcome to {location}'.format,
'"Hello <name>, welcome to <location>'
k1 1 ICi

(Suggested by Raymond Hettinger and implemented by Eric
Smith in issue 6081.)

e The interpreter can now be started with a quiet option, -q, to
prevent the copyright and version information from being
displayed in the interactive mode. The option can be introspected
using the sys.flags attribute:

$ python -q

>>> sys.flags

sys.flags(debug=0, division_warning=0, inspect=0
optimize=0, dont_write_bytecode=0, no_user_site=l
ignore_environment=0, verbose=0, bytes_warning=0
Kl 1 Il

(Contributed by Marcin Wojdyr in issue 1772833).

e The hasattr() function works by calling getattr() and

detecting whether an exception is raised. This technique allows it
to detect methods created dynamically by __getattr__ () or
__getattribute__ () which would otherwise be absent from

http://bugs.python.org/issue6081
http://bugs.python.org/issue1772833

the class dictionary. Formerly, hasattr would catch any exception,
possibly masking genuine errors. Now, hasattr has been tightened
to only catch AttributeError and let other exceptions pass
through:

>>> class A:
@property
def f(self):
return 1 // ©

>>> a = A()
>>> hasattr(a, 'f')
Traceback (most recent call last):

ZeroDivisionError: integer division or modulo by
< 1 2

(Discovered by Yury Selivanov and fixed by Benjamin Peterson;
issue 9666.)

The str () of a float or complex number is now the same as its
repr (). Previously, the str() form was shorter but that just

caused confusion and is no longer needed now that the shortest
possible repr () is displayed by default:

>>> import math
>>> repr(math.pi)
'3.141592653589793"
>>> str(math.pi)
'3.141592653589793"

(Proposed and implemented by Mark Dickinson; issue 9337.)

memoryview objects now have a release() method and they
also now support the context manager protocol. This allows timely

http://bugs.python.org/issue9666
http://bugs.python.org/issue9337

release of any resources that were acquired when requesting a
buffer from the original object.

>>> with memoryview(b'abcdefgh') as v:
print(v.tolist())
[97, 98, 99, 100, 101, 102, 103, 104]

(Added by Antoine Pitrou; issue 9757.)

e Previously it was illegal to delete a name from the local
namespace if it occurs as a free variable in a nested block:

def outer(x):
def inner():
return x
inner()
del x

This is now allowed. Remember that the target of an except

clause is cleared, so this code which used to work with Python
2.6, raised a SyntaxError with Python 3.1 and now works

again:

def f():
def print_error():
print(e)
try:
something
except Exception as e:
print_error()
implicit "del e" here

(See issue 4617.)

e The internal structsequence tool now creates subclasses of

http://bugs.python.org/issue9757
http://bugs.python.org/issue4617

tuple. This means that C structures like those returned by
os.stat(), time.gmtime(), and sys.version_info now
work like a named tuple and now work with functions and
methods that expect a tuple as an argument. This is a big step
forward in making the C structures as flexible as their pure Python
counterparts:

>>> jsinstance(sys.version_info, tuple)

True

>>> 'Version %d.%d.%d %s(%d)' % sys.version_info
'Version 3.2.0 final(0)'

(J —

(Suggested by Arfrever Frehtes Taifersar Arahesis and
implemented by Benjamin Peterson in issue 8413.)

Warnings are now easier to control using the PYTHONWARNINGS
environment variable as an alternative to using -W at the
command line:

$ export PYTHONWARNINGS='ignore::RuntimeWarning:
< _ 1 2

(Suggested by Barry Warsaw and implemented by Philip Jenvey
in issue 7301.)

A new warning category, ResourceWarning, has been added. It
is emitted when potential issues with resource consumption or
cleanup are detected. It is silenced by default in normal release
builds but can be enabled through the means provided by the
warnings module, or on the command line.

A ResourceWarning is issued at interpreter shutdown if the
gc.garbage listisn't empty, and if gc.DEBUG_UNCOLLECTABLE

http://bugs.python.org/issue8413
http://bugs.python.org/issue7301

Is set, all uncollectable objects are printed. This is meant to make
the programmer aware that their code contains object finalization
issues.

A ResourceWarning is also issued when a file object is

destroyed without having been explicitly closed. While the
deallocator for such object ensures it closes the underlying
operating system resource (usually, a file descriptor), the delay in
deallocating the object could produce various issues, especially
under Windows. Here is an example of enabling the warning from
the command line:

$ python -q -Wdefault

>>> f = open("foo", "wb")

>>> del f

__main__:1: ResourceWarning: unclosed file <_io.l

J S— 2

(Added by Antoine Pitrou and Georg Brandl in issue 10093 and
issue 477863.)

range objects now support index and count methods. This is part
of an effort to make more objects fully implement the
collections.Sequence abstract base class. As a result, the
language will have a more uniform API. In addition, range
objects now support slicing and negative indices, even with values
larger than sys.maxsize. This makes range more interoperable
with lists:

>>> range(0, 100, 2).count(10)
1

>>> range(0, 100, 2).index(10)
5

>>> range(0, 100, 2)[5]

http://bugs.python.org/issue10093
http://bugs.python.org/issue477863

10
>>> range(0, 100, 2)[0:5]
range(0, 10, 2)

(Contributed by Daniel Stutzbach in issue 9213, by Alexander
Belopolsky in issue 2690, and by Nick Coghlan in issue 10889.)

e The callable() builtin function from Py2.x was resurrected. It
provides a concise, readable alternative to using an abstract base
class in an expression like isinstance(Xx,
collections.Callable):

>>> callable(max)
True

>>> callable(20)
False

(See issue 10518.)

e Python’s import mechanism can now load modules installed in
directories with non-ASCIl characters in the path name. This
solved an aggravating problem with home directories for users
with non-ASCII characters in their usernames.

(Required extensive work by Victor Stinner in issue 9425.)

http://bugs.python.org/issue9213
http://bugs.python.org/issue2690
http://bugs.python.org/issue10889
http://bugs.python.org/issue10518
http://bugs.python.org/issue9425

New, Improved, and Deprecated Modules

Python’s standard library has undergone significant maintenance
efforts and quality improvements.

The biggest news for Python 3.2 is that the email package, mailbox
module, and nntplib modules now work correctly with the bytes/text
model in Python 3. For the first time, there is correct handling of
messages with mixed encodings.

Throughout the standard library, there has been more careful attention
to encodings and text versus bytes issues. In particular, interactions
with the operating system are now better able to exchange non-ASCI|
data using the Windows MBCS encoding, locale-aware encodings, or
UTF-8.

Another significant win is the addition of substantially better support for
SSL connections and security certificates.

In addition, more classes now implement a context manager to
support convenient and reliable resource clean-up using a with

statement.

email

The usability of the email package in Python 3 has been mostly fixed
by the extensive efforts of R. David Murray. The problem was that
emails are typically read and stored in the form of bytes rather than
str text, and they may contain multiple encodings within a single
email. So, the email package had to be extended to parse and
generate email messages in bytes format.

e New functions message_from_bytes() and
message_from_binary_file(), and new classes
BytesFeedParser and BytesParser allow binary message
data to be parsed into model objects.

e Given bytes input to the model, get_payload() will by default
decode a message body that has a Content-Transfer-Encoding of
8bit using the charset specified in the MIME headers and return
the resulting string.

e Given bytes input to the model, Generator will convert message

bodies that have a Content-Transfer-Encoding of 8bit to instead
have a 7bit Content-Transfer-Encoding.

Headers with unencoded non-ASCII bytes are deemed to be RFC
2047-encoded using the unknown-8bit character set.

e A new class BytesGenerator produces bytes as output,

preserving any unchanged non-ASCII data that was present in the
input used to build the model, including message bodies with a
Content-Transfer-Encoding of 8bit.

e The smtplib SMTP class now accepts a byte string for the msg
argument to the sendmail() method, and a new method,
send_message() accepts a Message object and can optionally
obtain the from_addr and to_addrs addresses directly from the
object.

(Proposed and implemented by R. David Murray, issue 4661 and issue
10321.)

elementtree

http://tools.ietf.org/html/rfc2047.html
http://bugs.python.org/issue4661
http://bugs.python.org/issue10321

The xml.etree.ElementTree package and its
xml.etree.cElementTree counterpart have been updated to
version 1.3.

Several new and useful functions and methods have been added:

e xml.etree.ElementTree.fromstringlist() which builds

an XML document from a sequence of fragments

e Xml.etree.ElementTree.register_namespace() for
registering a global namespace prefix

e xXml.etree.ElementTree.tostringlist() for string
representation including all sublists

o xml.etree.ElementTree.Element.extend() for appending

a sequence of zero or more elements
e xml.etree.ElementTree.Element.iterfind() searches

an element and subelements
e Xml.etree.ElementTree.Element.itertext() creates a

text iterator over an element and its subelements
e xml.etree.ElementTree.TreeBuilder.end() closes the

current element
e Xml.etree.ElementTree.TreeBuilder.doctype()

handles a doctype declaration

Two methods have been deprecated:

e xml.etree.ElementTree.getchildren() use
list(elem) instead.
e xml.etree.ElementTree.getiterator() use

Element.iter instead.

For details of the update, see Introducing ElementTree on Fredrik
Lundh’s website.

(Contributed by Florent Xicluna and Fredrik Lundh, issue 6472.)

http://effbot.org/zone/elementtree-13-intro.htm
http://bugs.python.org/issue6472

functools

e The functools module includes a new decorator for caching
function calls. functools.lru_cache() can save repeated

gueries to an external resource whenever the results are
expected to be the same.

For example, adding a caching decorator to a database query
function can save database accesses for popular searches:

>>> import functools

>>> @functools.lru_cache(maxsize=300)

>>> def get_phone_number (name):
Cc = conn.cursor()
c.execute('SELECT phonenumber FROM phone
return c.fetchone()[0]

«] T
>>> for name in user_requests:

get_phone_number (name) # cached 1
< 1 2

To help with choosing an effective cache size, the wrapped
function is instrumented for tracking cache statistics:

>>> get_phone_number.cache_info()
CacheInfo(hits=4805, misses=980, maxsize=300, cu

3 S— >

If the phonelist table gets updated, the outdated contents of the
cache can be cleared with:

>>> get_phone_number.cache_clear()

(Contributed by Raymond Hettinger and incorporating design
ideas from Jim Baker, Miki Tebeka, and Nick Coghlan; see recipe
498245, recipe 577479, issue 10586, and issue 10593.)

The functools.wraps() decorator now adds a __wrapped___
attribute pointing to the original callable function. This allows
wrapped functions to be introspected. It also copies
__annotations___ if defined. And now it also gracefully skips

over missing attributes such as __doc__ which might not be
defined for the wrapped callable.

In the above example, the cache can be removed by recovering
the original function:

>>> get_phone_number = get_phone_number.__wrappe
< _ 1 2

(By Nick Coghlan and Terrence Cole; issue 9567, issue 3445, and
issue 8814.)

To help write classes with rich comparison methods, a new
decorator functools.total_ordering() will use a existing

equality and inequality methods to fill in the remaining methods.

For example, supplying __eq and _ [t wil enable
total_ordering() tofill-in__le , gt and__ge :

@total_ordering
class Student:
def __eq__(self, other):
return ((self.lastname.lower(), self.fir:
(other.lastname.lower (), other.f
def _ 1t (self, other):
return ((self.lastname.lower(), self.fir:

http://code.activestate.com/recipes/498245
http://code.activestate.com/recipes/577479
http://bugs.python.org/issue10586
http://bugs.python.org/issue10593
http://bugs.python.org/issue9567
http://bugs.python.org/issue3445
http://bugs.python.org/issue8814

(other.lastname.lower (), other.f:
Rl 1 i

With the total ordering decorator, the remaining comparison
methods are filled in automatically.

(Contributed by Raymond Hettinger.)

e To aid in porting programs from Python 2, the
functools.cmp_to_key() function converts an old-style
comparison function to modern key function:

>>> # Jocale-aware sort order
>>> sorted(iterable, key=cmp_to_key(locale.strco
A] »]

For sorting examples and a brief sorting tutorial, see the Sorting
HowTo tutorial.

(Contributed by Raymond Hettinger.)

itertools

e The itertools module has a new accumulate() function

modeled on APL's scan operator and Numpy’'s accumulate
function:

>>> from itertools import accumulate
>>> list(accumulate([8, 2, 50]))
[8, 10, 60]

>>> prob_dist = [0.1, 0.4, 0.2, 0.3]

>>> list(accumulate(prob_dist)) # cumulativi
[0.1, 0.5, 0.7, 1.0]

Kl 1 i

http://wiki.python.org/moin/HowTo/Sorting/

For an example using accumulate(), see the examples for the
random module.

(Contributed by Raymond Hettinger and incorporating design
suggestions from Mark Dickinson.)

collections

e The collections.Counter class now has two forms of in-
place subtraction, the existing -= operator for saturating
subtraction and the new subtract() method for regular

subtraction. The former is suitable for multisets which only have
positive counts, and the latter is more suitable for use cases that
allow negative counts:

>>> tally = Counter(dogs=5, cat=3)

>>> tally -= Counter(dogs=2, cats=8) # satura
>>> tally

Counter({'dogs': 3})

Rl 1 2
>>> tally = Counter(dogs=5, cats=3)

>>> tally.subtract(dogs=2, cats=8) # regula.
>>> tally

Counter({'dogs': 3, 'cats': -5})

A _ 1 i

(Contributed by Raymond Hettinger.)

e The collections.OrderedDict class has a new method
move_to_end() which takes an existing key and moves it to
either the first or last position in the ordered sequence.

The default is to move an item to the last position. This is

http://en.wikipedia.org/wiki/Saturation_arithmetic
http://en.wikipedia.org/wiki/Multiset

equivalent of renewing an entry with od[k] = od.pop (k).

A fast move-to-end operation is useful for resequencing entries.
For example, an ordered dictionary can be used to track order of
access by aging entries from the oldest to the most recently
accessed.

>>> d = OrderedDict.fromkeys(['a', 'b', 'X', 'd’
>>> list(d)

[|a|’ 'b', 'X', 'd', Iel]

>>> d.move_to_end('X")

>>> list(d)

[,a,’ 'b', 'd', |e|’ |X|]

. — 0

(Contributed by Raymond Hettinger.)

e The collections.deque class grew two new methods
count() and reverse() that make them more substitutable for
list objects:

>>> d = deque('simsalabim')
>>> d.count('s')

2

>>> d.reverse()

>>> d

deque(['m', 'i', 'b', 'a', 'l', 'a', 'S', 'm', H
< 1 2

(Contributed by Raymond Hettinger.)

threading

The threading module has a new Barrier synchronization class
for making multiple threads wait until all of them have reached a

common barrier point. Barriers are useful for making sure that a task
with multiple preconditions does not run until all of the predecessor
tasks are complete.

Barriers can work with an arbitrary number of threads. This is a
generalization of a Rendezvous which is defined for only two threads.

Implemented as a two-phase cyclic barrier, Barrier objects are
suitable for use in loops. The separate filling and draining phases
assure that all threads get released (drained) before any one of them
can loop back and re-enter the barrier. The barrier fully resets after
each cycle.

Example of using barriers:
from threading import Barrier, Thread

def get_votes(site):
ballots = conduct_election(site)
all polls_closed.wait() # do not count ur
totals = summarize(ballots)
publish(site, totals)

all_polls_closed = Barrier(len(sites))
for site 1in sites:

Thread(target=get_votes, args=(site,)).start()
J 1] i

In this example, the barrier enforces a rule that votes cannot be
counted at any polling site until all polls are closed. Notice how a
solution with a barrier IS similar to one with
threading.Thread.join(), but the threads stay alive and
continue to do work (summarizing ballots) after the barrier point is
crossed.

http://en.wikipedia.org/wiki/Synchronous_rendezvous

If any of the predecessor tasks can hang or be delayed, a barrier can
be created with an optional timeout parameter. Then if the timeout
period elapses before all the predecessor tasks reach the barrier point,
all waiting threads are released and a BrokenBarrierError

exception is raised:

def get_votes(site):
ballots = conduct_election(site)
try:
all polls_closed.wait(timeout = midnight - t
except BrokenBarrierError:
lockbox = seal_ballots(ballots)
queue.put(lockbox)
else:
totals = summarize(ballots)
publish(site, totals)

{ R— o]

In this example, the barrier enforces a more robust rule. If some
election sites do not finish before midnight, the barrier times-out and
the ballots are sealed and deposited in a queue for later handling.

See Barrier Synchronization Patterns for more examples of how
barriers can be used in parallel computing. Also, there is a simple but
thorough explanation of barriers in The Little Book of Semaphores,
section 3.6.

(Contributed by Kristjan Valur Jonsson with an API review by Jeffrey
Yasskin in issue 8777.)

datetime and time

e The datetime module has a new type timezone that
implements the tzinfo interface by returning a fixed UTC offset

http://parlab.eecs.berkeley.edu/wiki/_media/patterns/paraplop_g1_3.pdf
http://greenteapress.com/semaphores/downey08semaphores.pdf
http://bugs.python.org/issue8777

and timezone name. This makes it easier to create timezone-
aware datetime objects:

>>> from datetime import datetime, timezone

>>> datetime.now(timezone.utc)
datetime.datetime(2010, 12, 8, 21, 4, 2, 923754,

>>> datetime.strptime("01/01/2000 12:00 +0000",
datetime.datetime(2000, 1, 1, 12, 0, tzinfo=date

J S— 2

e Also, timedelta objects can now be multiplied by float and
divided by float and int objects. And timedelta objects can
now divide one another.

e The datetime.date.strftime() method is no longer

restricted to years after 1900. The new supported year range is
from 1000 to 9999 inclusive.

e Whenever a two-digit year is used in a time tuple, the
interpretation has been governed by time.accept2dyear. The
default is True which means that for a two-digit year, the century is
guessed according to the POSIX rules governing the %y strptime
format.

Starting with Py3.2, use of the century guessing heuristic will emit
a DeprecationWarning. Instead, it is recommended that

time.accept2dyear be set to False so that large date ranges
can be used without guesswork:

>>> import time, warnings
>>> warnings.resetwarnings() # remove the di

>>> time.accept2dyear = True # guess whethe
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0)
Warning (from warnings module):

DeprecationWarning: Century info guessed for a 2
'"Fri Jan 1 12:34:56 2011'

>>> time.accept2dyear = False # use the full
>>> time.asctime((11, 1, 1, 12, 34, 56, 4, 1, 0)
'"Fri Jan 1 12:34:56 11'

A 1] i

Several functions now have significantly expanded date ranges.
When time.accept2dyear is false, the time.asctime()
function will accept any year that fits in a C int, while the
time.mktime() and time.strftime() functions will accept
the full range supported by the corresponding operating system
functions.

(Contributed by Alexander Belopolsky and Victor Stinner in issue
1289118, issue 5094, issue 6641, issue 2706, issue 1777412, issue
8013, and issue 10827.)

math

The math module has been updated with six new functions inspired
by the C99 standard.

The isfinite() function provides a reliable and fast way to detect
special values. It returns True for regular numbers and False for Nan
or Infinity:

>>> [isfinite(x) for x in (123, 4.56, float('Nan'),
[True, True, False, False]
Kl B ol

http://bugs.python.org/issue1289118
http://bugs.python.org/issue5094
http://bugs.python.org/issue6641
http://bugs.python.org/issue2706
http://bugs.python.org/issue1777412
http://bugs.python.org/issue8013
http://bugs.python.org/issue10827

4 S— >

The expml() function computes e* *x -1 for small values of x without

incurring the loss of precision that usually accompanies the subtraction
of nearly equal quantities:

>>> expml(0.013671875) # more accurate way to comf
0.013765762467652909

4 S— >

The erf () function computes a probability integral or Gaussian error
function. The complementary error function, erfc(),is1 - erf(x):

>>> erf(1.0/sqrt(2.0)) # portion of normal distrik
0.682689492137086

>>> erfc(1.0/sqrt(2.0)) # portion of normal distrik
0.31731050786291404

>>> erf(1.0/sqrt(2.0)) + erfc(1.0/sqrt(2.0))

1.0

A] 2

The gamma() function is a continuous extension of the factorial
function. See http://en.wikipedia.org/wiki/Gamma_function for details.
Because the function is related to factorials, it grows large even for
small values of x, so there is also a 1gamma() function for computing
the natural logarithm of the gamma function:

>>> gamma(7.0) # six factorial
720.0
>>> lgamma(801.0) # log (800 factorial)

4551.950730698041

(Contributed by Mark Dickinson.)

abc

http://en.wikipedia.org/wiki/Error_function
http://en.wikipedia.org/wiki/Gamma_function

The abc module now supports abstractclassmethod() and
abstractstaticmethod().

These tools make it possible to define an abstract base class that
requires a particular classmethod() or staticmethod() to be
implemented:

class Temperature(metaclass=abc.ABCMeta):
@abc.abstractclassmethod
def from_fahrenheit(cls, t):

@abc.abstractclassmethod
def from_celsius(cls, t):

(Patch submitted by Daniel Urban; issue 5867.)
10

The 1i0.BytesIO has a new method, getbuffer (), which provides
functionality similar to memoryview(). It creates an editable view of
the data without making a copy. The buffer's random access and
support for slice notation are well-suited to in-place editing:

>>> REC_LEN, LOC_START, LOC_LEN = 34, 7, 11

>>> def change_location(buffer, record_number, locat
start = record_number * REC_LEN + LOC_START
buffer[start: start+LOC_LEN] = location

>>> import io

>>> bpyte_stream = 10.BytesIO(
b'G3805 storeroom Main chassis :

http://bugs.python.org/issue5867

b'X7899 shipping Reserve cog
b'L6988 receiving Primary sprocket'

)

>>> buffer = byte_stream.getbuffer()

>>> change_location(buffer, 1, b'warehouse ')

>>> change_location(buffer, 0, b'showroom ")

>>> print(byte_stream.getvalue())

b'G3805 showroom Main chassis :

b'X7899 warehouse Reserve cog :

b'L6988 receiving Primary sprocket'

Rl 1 i

(Contributed by Antoine Pitrou in issue 5506.)
reprlib

When writing a __repr___() method for a custom container, it is easy
to forget to handle the case where a member refers back to the
container itself. Python’s builtin objects such as 1ist and set handle
self-reference by displaying ”...” in the recursive part of the
representation string.

To help write such __repr___ () methods, the reprlib module has a
new decorator, recursive_repr(), for detecting recursive calls to
__repr__() and substituting a placeholder string instead:

>>> class MyList(list):
@recursive_repr()
def __repr__(self):
return '<' + '|'.join(map(repr, self)) +

>>> m = MyList('abc')
>>> m.append(m)

>>> m.append('x")

>>> print(m)

http://bugs.python.org/issue5506

<'a'|'b'|'C'|---|'X'>
«1 S— >

(Contributed by Raymond Hettinger in issue 9826 and issue 9840.)

logging

In addition to dictionary-based configuration described above, the
logging package has many other improvements.

The logging documentation has been augmented by a basic tutorial,
an advanced tutorial, and a cookbook of logging recipes. These
documents are the fastest way to learn about logging.

The logging.basicConfig() set-up function gained a style
argument to support three different types of string formatting. It
defaults to “%” for traditional %-formatting, can be set to “{” for the new
str.format () style, or can be set to “$” for the shell-style formatting
provided by string.Template. The following three configurations
are equivalent:

>>> from logging import basicConfig

>>> pasicConfig(style='%', format="%(name)s -> %(le\
>>> pasicConfig(style='{', format="{name} -> {levelr
>>> pasicConfig(style='$', format="$name -> $levelne

| S— >

If no configuration is set-up before a logging event occurs, there is
now a default configuration using a StreamHandler directed to
sys.stderr for events of WARNING level or higher. Formerly, an
event occurring before a configuration was set-up would either raise
an exception or silently drop the event depending on the value of
logging.raiseExceptions. The new default handler is stored in

http://bugs.python.org/issue9826
http://bugs.python.org/issue9840

logging.lastResort.

The use of filters has been simplified. Instead of creating a Filter

object, the predicate can be any Python callable that returns True or
False.

There were a number of other improvements that add flexibility and
simplify configuration. See the module documentation for a full listing
of changes in Python 3.2.

CSV

The csv module now supports a new dialect, unix_dialect, which
applies quoting for all fields and a traditional Unix style with '\n' as
the line terminator. The registered dialect name is unix.

The csv.DictWriter has a new method, writeheader () for
writing-out an initial row to document the field names:

>>> 1import csv, sys

>>> w = csv.DictWriter(sys.stdout, ['name', 'dept'],

>>> w.writeheader ()

Ilnamell , Ildeptll

>>> w.writerows([
{'name': 'tom', 'dept': 'accounting'},
{'name': 'susan', 'dept': 'Salesl'}])

"tom", "accounting"

"susan", "sales"

| S— >

(New dialect suggested by Jay Talbot in issue 5975, and the new
method suggested by Ed Abraham in issue 1537721.)

contextlib

http://bugs.python.org/issue5975
http://bugs.python.org/issue1537721

There is a new and slightly mind-blowing tool ContextDecorator

that is helpful for creating a context manager that does double duty as
a function decorator.

As a convenience, this new functionality is wused by
contextmanager () so that no extra effort is needed to support both
roles.

The basic idea is that both context managers and function decorators
can be used for pre-action and post-action wrappers. Context
managers wrap a group of statements using a with statement, and
function decorators wrap a group of statements enclosed in a function.
So, occasionally there is a need to write a pre-action or post-action
wrapper that can be used in either role.

For example, it is sometimes useful to wrap functions or groups of
statements with a logger that can track the time of entry and time of
exit. Rather than writing both a function decorator and a context
manager for the task, the contextmanager() provides both

capabilities in a single definition:

from contextlib import contextmanager
import logging

logging.basicConfig(level=1logging.INFO0)

@contextmanager

def track_entry_and_exit(name):
logging.info('Entering: {}'.format(name))
yield
logging.info('Exiting: {}'.format(name))

Formerly, this would have only been usable as a context manager:

with track_entry_and_exit('widget loader'):
print('Some time consuming activity goes here')
load_widget()

Now, it can be used as a decorator as well:

@track_entry_and_exit('widget loader')

def activity():
print('Some time consuming activity goes here')
load_widget()

Trying to fulfill two roles at once places some limitations on the
technique. Context managers normally have the flexibility to return an
argument usable by a with statement, but there is no parallel for
function decorators.

In the above example, there is not a clean way for the
track_entry _and_exit context manager to return a logging instance for
use in the body of enclosed statements.

(Contributed by Michael Foord in issue 9110.)

decimal and fractions

Mark Dickinson crafted an elegant and efficient scheme for assuring
that different numeric datatypes will have the same hash value
whenever their actual values are equal (issue 8188):

assert hash(Fraction(3, 2)) == hash(1.5) ==
hash(Decimal("1.5")) == hash(complex(1.5, 0))
1 S E

Some of the hashing details are exposed through a new attribute,
sys.hash_info, which describes the bit width of the hash value, the

http://bugs.python.org/issue9110
http://bugs.python.org/issue8188

prime modulus, the hash values for infinity and nan, and the multiplier
used for the imaginary part of a number:

>>> sys.hash_info
sys.hash_info(width=64, modulus=2305843009213693951,
1]] i

An early decision to limit the inter-operability of various numeric types
has been relaxed. It is still unsupported (and ill-advised) to have
implicit mixing in arithmetic expressions such as Decimal('1.1') +
float('1.1') because the latter loses information in the process of
constructing the binary float. However, since existing floating point
value can be converted losslessly to either a decimal or rational
representation, it makes sense to add them to the constructor and to
support mixed-type comparisons.

e The decimal.Decimal constructor now accepts float objects
directly so there in no longer a need to use the from_float()
method (issue 8257).

e Mixed type comparisons are now fully supported so that Decimal
objects can be directly compared with float and
fractions.Fraction (issue 2531 and issue 8188).

Similar changes were made to fractions.Fraction so that the
from_float() and from_decimal() methods are no longer
needed (issue 8294):

>>> Decimal(1.1)
Decimal('1.1000000000000000888178419700125232338905%
>>> Fraction(1.1)

Fraction(2476979795053773, 2251799813685248)

| S— >

Another useful change for the decimal module is that the

http://bugs.python.org/issue8257
http://bugs.python.org/issue2531
http://bugs.python.org/issue8188
http://bugs.python.org/issue8294

Context.clamp attribute is now public. This is useful in creating

contexts that correspond to the decimal interchange formats specified
in IEEE 754 (see issue 8540).

(Contributed by Mark Dickinson and Raymond Hettinger.)
ftp

The ftplib.FTP class now supports the context manager protocol to
unconditionally consume socket.error exceptions and to close the
FTP connection when done:

>>> from ftplib import FTP
>>> with FTP("ftpl.at.proftpd.org") as ftp:
ftp.login()

ftp.dir()
'230 Anonymous login ok, restrictions apply.'
dr-xr-xr-x 9 ftp ftp 154 May 6 10:
dr-xr-xr-x 9 ftp ftp 154 May 6 10:
dr-xr-xr-x 5 ftp ftp 4096 May 6 10:
dr-xr-xr-x 3 ftp ftp 18 Jul 10 2¢
Kl 1]

Other file-like objects such as mmap . mmap and
fileinput.input() also grew auto-closing context managers:

with fileinput.input(files=('logl.txt', 'log2.txt'))
for line in f:
process(line)

Kl I 0

(Contributed by Tarek Ziadé and Giampaolo Rodola in issue 4972, and
by Georg Brandl in issue 8046 and issue 1286.)

http://bugs.python.org/issue8540
http://bugs.python.org/issue4972
http://bugs.python.org/issue8046
http://bugs.python.org/issue1286

The FTP_TLS class now accepts a context parameter, which is a
ssl.SSLContext object allowing bundling SSL configuration options,
certificates and private keys into a single (potentially long-lived)
structure.

(Contributed by Giampaolo Rodola; issue 8806.)

popen

The os.popen() and subprocess.Popen() functions now support
with statements for auto-closing of the file descriptors.

(Contributed by Antoine Pitrou and Brian Curtin in issue 7461 and
issue 10554.)

select

The select module now exposes a new, constant attribute,
PIPE_BUF, which gives the minimum number of bytes which are
guaranteed not to block when select.select() says a pipe is
ready for writing.

>>> import select
>>> select.PIPE_BUF
512

(Available on Unix systems. Patch by Sébastien Sablé in issue 9862)
gzip and zipfile

gzip.GzipFile now implements the 1io.BufferedIOBase
abstract base class (except for truncate()). It also has a peek()

http://bugs.python.org/issue8806
http://bugs.python.org/issue7461
http://bugs.python.org/issue10554
http://bugs.python.org/issue9862

method and supports unseekable as well as zero-padded file objects.

The gzip module also gains the compress() and decompress()
functions for easier in-memory compression and decompression. Keep
in mind that text needs to be encoded as bytes before compressing
and decompressing:

>>> s = 'Three shall be the number thou shalt count,
>>> s += 'and the number of the counting shall be tf
>>> b = s.encode() # convert
>>> len(b)

89

>>> c = gzip.compress(b)
>>> len(c)

77

>>> gzip.decompress(c).decode()[:42] # decompre
'"Three shall be the number thou shalt count,'

Rl 1 2

(Contributed by Anand B. Pillai in issue 3488; and by Antoine Pitrou,
Nir Aides and Brian Curtin in issue 9962, issue 1675951, issue 7471
and issue 2846.)

Also, the zipfile.ZipExtFile class was reworked internally to
represent files stored inside an archive. The new implementation is
significantly faster and can be wrapped in a io.BufferedReader

object for more speedups. It also solves an issue where interleaved
calls to read and readline gave the wrong results.

(Patch submitted by Nir Aides in issue 7610.)

tarfile

The TarFile class can now be used as a context manager. In

http://bugs.python.org/issue3488
http://bugs.python.org/issue9962
http://bugs.python.org/issue1675951
http://bugs.python.org/issue7471
http://bugs.python.org/issue2846
http://bugs.python.org/issue7610

addition, its add() method has a new option, filter, that controls which
files are added to the archive and allows the file metadata to be edited.

The new filter option replaces the older, less flexible exclude
parameter which is now deprecated. If specified, the optional filter
parameter needs to be a keyword argument. The user-supplied filter
function accepts a TarInfo object and returns an updated TarInfo
object, or if it wants the file to be excluded, the function can return
None:

>>> import tarfile, glob

>>> def myfilter(tarinfo):
if tarinfo.isfile(): # only save
tarinfo.uname = 'monty' # redact the

return tarinfo

>>> with tarfile.open(name='myarchive.tar.gz', mode-=
for filename in glob.glob('*.txt'):
tf.add(filename, filter=myfilter)

tf.1list()

-rw-r--r-- monty/501 902 2011-01-26 17:59:11
-rw-r--r-- monty/501 123 2011-01-26 17:59:11
-rw-r--r-- monty/501 3514 2011-01-26 17:59:11
-rw-r--r-- monty/501 124 2011-01-26 17:59:11
-rw-r--r-- monty/501 1399 2011-01-26 17:59:11
q S o]

(Proposed by Tarek Ziadé and implemented by Lars Gustabel in issue
6856.)

hashlib

The hashlib module has two new constant attributes listing the

http://bugs.python.org/issue6856

hashing algorithms guaranteed to be present in all implementations
and those available on the current implementation:

>>> import hashlib

>>> hashlib.algorithms_guaranteed
{'shal', 'sha224', 'sha384', 'sha256', 'sha512', 'mc

>>> hashlib.algorithms_available

{'md2', 'SHA256', 'SHA512', 'dsaWithSHA', 'mdc2', 'S
'sha512', 'ripemd160', 'SHA1', 'MDC2', 'SHA', 'SHA3¢
'ecdsa-with-SHA1', 'md4', 'md5', 'shal', 'DSA-SHA',6 '
'dsaEncryption', 'DSA', 'RIPEMD160', 'sha', 'MD5',
A 1 i

(Suggested by Carl Chenet in issue 7418.)

ast

The ast module has a wonderful a general-purpose tool for safely
evaluating expression strings using the Python literal syntax. The
ast.literal_eval() function serves as a secure alternative to the
builtin eval() function which is easily abused. Python 3.2 adds
bytes and set literals to the list of supported types: strings, bytes,
numbers, tuples, lists, dicts, sets, booleans, and None.

>>> from ast import literal eval

>>> request = "{'req': 3, 'func': 'pow', 'args': (2,
>>> literal_eval(request)
{'args': (2, 0.5), 'req': 3, 'func': 'pow'}

>>> request = "os.system('do something harmful')"
>>> literal_eval(request)
Traceback (most recent call last):

http://bugs.python.org/issue7418

ValueError: malformed node or string: <_ast.Call obj
J 1 i

(Implemented by Benjamin Peterson and Georg Brandl.)

0S

Different operating systems use various encodings for filenames and
environment variables. The os module provides two new functions,

fsencode() and fsdecode(), for encoding and decoding
filenames:

>>> filename = 'Sehenswirdigkeiten'

>>> 0s.fsencode(filename)
b'Sehensw\xc3\xbcrdigkeiten'

Some operating systems allow direct access to encoded bytes in the
environment. If so, the os.supports_bytes_environ constant will

be true.

For direct access to encoded environment variables (if available), use
the new os.getenvb() function or use os.environb which is a

bytes version of os.environ.

(Contributed by Victor Stinner.)

shutil

The shutil.copytree() function has two new options:

e ignore_dangling_symlinks: when symlinks=False so that the
function copies a file pointed to by a symlink, not the symlink

itself. This option will silence the error raised if the file doesn’t
exist.

e copy_function: is a callable that will be used to copy files.
shutil.copy2() is used by default.

(Contributed by Tarek Ziade.)

In addition, the shutil module now supports archiving operations for
zipfiles, uncompressed tarfiles, gzipped tarfiles, and bzipped tarfiles.
And there are functions for registering additional archiving file formats
(such as xz compressed tarfiles or custom formats).

The principal functions are make_archive() and
unpack_archive(). By default, both operate on the -current
directory (which can be set by os.chdir()) and on any sub-
directories. The archive filename needs to be specified with a full
pathname. The archiving step is non-destructive (the original files are
left unchanged).

>>> import shutil, pprint

>>> 0s.chdir('mydata')

>>> f = shutil.make_archive('/var/backup/mydata’,
Ilel)

>>> f

'/var/backup/mydata.zip’

>>> os.chdir('tmp')

>>> shutil.unpack_archive('/var/backup/mydata.zip')

>>> pprint.pprint(shutil.get_archive_formats())
[('bztar', "bzip2'ed tar-file"),

('gztar', "gzip'ed tar-file"),

('tar', 'uncompressed tar file'),

('zip', 'zZIP file')]

>>> shutil.register_archive_format(
name = 'xz',
function = xz.compress,
extra_args = [('level', 8)],
description = 'xz compression'
)
J] i

(Contributed by Tarek Ziade.)
sglite3

The sqlite3 module was updated to pysqglite version 2.6.0. It has
two new capabilities.

e The sqlite3.Connection.in_transit attribute is true if
there is an active transaction for uncommitted changes.

e The sqlite3.Connection.enable_load_extension() and
sqlite3.Connection.load_extension() methods allows

you to load SQLite extensions from ”.so” files. One well-known
extension is the fulltext-search extension distributed with SQLite.

(Contributed by R. David Murray and Shashwat Anand; issue 8845.)

html

A new html module was introduced with only a single function,
escape(), which is used for escaping reserved characters from
HTML markup:

>>> import html
>>> html.escape('x > 2 && x < 7')
'X > 2 && x < 7'

http://bugs.python.org/issue8845

socket

The socket module has two new improvements.

e Socket objects now have a detach() method which puts the

socket into closed state without actually closing the underlying file
descriptor. The latter can then be reused for other purposes.
(Added by Antoine Pitrou; issue 8524.)

e socket.create_connection() now supports the context

manager protocol to unconditionally consume socket.error

exceptions and to close the socket when done. (Contributed by
Giampaolo Rodola; issue 9794.)

ssl

The ssl module added a number of features to satisfy common

requirements for secure (encrypted, authenticated) internet
connections:

e A new class, SSLContext, serves as a container for persistent
SSL data, such as protocol settings, certificates, private keys, and
various other options. It includes a wrap_socket () for creating
an SSL socket from an SSL context.

e A new function, ssl.match_hostname(), supports server
identity verification for higher-level protocols by implementing the
rules of HTTPS (from RFC 2818) which are also suitable for other
protocols.

e The ssl.wrap_socket() constructor function now takes a
ciphers argument. The ciphers string lists the allowed encryption
algorithms using the format described in the OpenSSL
documentation.

e When linked against recent versions of OpenSSL, the ssl
module now supports the Server Name Indication extension to the

http://bugs.python.org/issue8524
http://bugs.python.org/issue9794
http://tools.ietf.org/html/rfc2818.html
http://www.openssl.org/docs/apps/ciphers.html#CIPHER_LIST_FORMAT

TLS protocol, allowing multiple “virtual hosts” using different
certificates on a single IP port. This extension is only supported in
client mode, and is activated by passing the server_hostname
argument to ssl.SSLContext.wrap_socket().

e Various options have been added to the ssl module, such as
OP_NO_SSLv2 which disables the insecure and obsolete SSLv2

protocol.

e The extension now loads all the OpenSSL ciphers and digest
algorithms. If some SSL certificates cannot be verified, they are
reported as an “unknown algorithm” error.

e The version of OpenSSL being used is now accessible using the
module attributes ss1.0OPENSSL_VERSION (a string),

Ss1.0PENSSL_VERSION_INFO (a 5-tuple), and
ss1.0PENSSL_VERSION_NUMBER (an integer).

(Contributed by Antoine Pitrou in issue 8850, issue 1589, issue 8322,
issue 5639, issue 4870, issue 8484, and issue 8321.)

nntp

The nntplib module has a revamped implementation with better

bytes and text semantics as well as more practical APIs. These
improvements break compatibility with the nntplib version in Python
3.1, which was partly dysfunctional in itself.

Support for secure connections through both implicit (using
nntplib.NNTP_SSL) and explicit (using
nntplib.NNTP.starttls()) TLS has also been added.

(Contributed by Antoine Pitrou in issue 9360 and Andrew Vant in issue
1926.)

http://bugs.python.org/issue8850
http://bugs.python.org/issue1589
http://bugs.python.org/issue8322
http://bugs.python.org/issue5639
http://bugs.python.org/issue4870
http://bugs.python.org/issue8484
http://bugs.python.org/issue8321
http://bugs.python.org/issue9360
http://bugs.python.org/issue1926

certificates

http.client.HTTPSConnection,
urllib.request.HTTPSHandler and
urllib.request.urlopen() now take optional arguments to allow
for server certificate checking against a set of Certificate Authorities,
as recommended in public uses of HTTPS.

(Added by Antoine Pitrou, issue 9003.)
imaplib

Support for explicit TLS on standard IMAP4 connections has been
added through the new imaplib.IMAP4.starttls method.

(Contributed by Lorenzo M. Catucci and Antoine Pitrou, issue 4471.)

http.client

There were a number of small API improvements in the
http.client module. The old-style HTTP 0.9 simple responses are

no longer supported and the strict parameter is deprecated in all
classes.

The HTTPConnection and HTTPSConnection classes now have a

source_address parameter for a (host, port) tuple indicating where the
HTTP connection is made from.

Support for certificate checking and HTTPS virtual hosts were added
to HTTPSConnection.

The request() method on connection objects allowed an optional

http://bugs.python.org/issue9003
http://bugs.python.org/issue4471

body argument so that a file object could be used to supply the content
of the request. Conveniently, the body argument now also accepts an
iterable object so long as it includes an explicit Content-Length
header. This extended interface is much more flexible than before.

To establish an HTTPS connection through a proxy server, there is a
new set_tunnel() method that sets the host and port for HTTP

Connect tunneling.

To match the behavior of http.server, the HTTP client library now
also encodes headers with 1SO-8859-1 (Latin-1) encoding. It was
already doing that for incoming headers, so now the behavior is
consistent for both incoming and outgoing traffic. (See work by Armin
Ronacher in issue 10980.)

unittest

The unittest module has a number of improvements supporting test
discovery for packages, easier experimentation at the interactive
prompt, new testcase methods, improved diagnostic messages for test
failures, and better method names.

e The command-line call python -m unittest can now accept
file paths instead of module names for running specific tests
(issue 10620). The new test discovery can find tests within
packages, locating any test importable from the top-level directory.
The top-level directory can be specified with the -t option, a
pattern for matching files with -p, and a directory to start
discovery with -s:

$ python -m unittest discover -s my_proj_dir -p _
« 1 i3

http://bugs.python.org/issue10980
http://bugs.python.org/issue10620

(Contributed by Michael Foord.)

e Experimentation at the interactive prompt is now easier because
the unittest.case.TestCase class can now be instantiated
without arguments:

>>> TestCase().assertEqual(pow(2, 3), 8)

(Contributed by Michael Foord.)

e The unittest module has two new methods, assertWarns()
and assertWarnsRegex() to verify that a given warning type is
triggered by the code under test:

with self.assertWarns(DeprecationWarning):
legacy_function('XYZ")

(Contributed by Antoine Pitrou, issue 9754.)

Another new method, assertCountEqual() is used to
compare two iterables to determine if their element counts are
equal (whether the same elements are present with the same
number of occurrences regardless of order):

def test_anagram(self):
self.assertCountEqual('algorithm', 'logarithi
— 1 ICl

d

(Contributed by Raymond Hettinger.)

e A principal feature of the unittest module is an effort to produce
meaningful diagnostics when a test fails. When possible, the
failure is recorded along with a diff of the output. This is especially
helpful for analyzing log files of failed test runs. However, since

http://bugs.python.org/issue9754

diffs can sometime be voluminous, there is a new maxDiff
attribute that sets maximum length of diffs displayed.

¢ |In addition, the method names in the module have undergone a
number of clean-ups.

For example, assertRegex() is the new name for
assertRegexpMatches() which was misnamed because the
test uses re.search(), not re.match(). Other methods using
regular expressions are now named using short form “Regex” in
preference to “Regexp” — this matches the names used in oth