

Python Documentation

Release 2.5 19th September, 2006

What's New in Python

. Tutorial ' :
(start here) (changes since the last major
release)
. Global Module Index
(for quick access to all
documentation) . Language Reference

Library Reference (for language lawyers)
(keep this under your pillow) Extending and Embedding
Macintosh Module (tutorial for C/C++ programmers)
Python/C API
(reference for C/C++
programmers)

Documenting Python
(information for documentation

Distributing Python authors)
Modules
(for developers and packagers)

Reference
(this too, if you use a Macintosh)

Installing Python Modules

(for administrators)

Documentation Central Python How-To Guides
(for everyone) (special topics)

See About the Python Documentation for information on suggesting changes.

http://www.python.org/doc/
http://www.python.org/doc/howto/

N Global Module Index
Up: Python Documentation Index

Global Module Index

Some module names are followed by an annotation indicating what platform

they are available on.

builtin

future

main
winred (Windows)
aepack (Mac)
aetools (Mac)
aetypes (Mac)
aifc
AL (IRIX)
al (IRIX)
anydbm
applesingle (Mac)
array
asynchat
asyncore
atexit
audioop
autoGIL (Mac)
base64
BaseHTTPServer
Bastion
binascii
binhex
bisect

bsddb (Unix, Windows)

buildtools (Mac)
bz2

calendar
Carbon.AE (Mac)
Carbon.AH (Mac)
Carbon.App (Mac)

distutils

.emxccompile

distutils

LErrors

distutils

.extension

distutils

.fancy getog

distutils.

file util

distutils

.filelist

distutils

.log

distutils

.msvccompile

distutils

.mwerkscomp3

distutils

. Spawn

distutils

.sysconfig

distutils

.text file

distutils

.unixccompil

distutils

Lutil

distutils

.version

dl (Unix)
doctest

DocXMLRPCServer

dumbdbm

dummy thread

dummy threading

EasyDialogs_ (Mac)

email

email.charset

email.encoders

email.errors

email.generator

email.header

emall.iterators

email.message

Carbon.CaronEvt (Mac)

Carbon.CF (Mac)
Carbon.CG (Mac)
Carbon.Cm (Mac)
Carbon.Ctl (Mac)
Carbon.Dl1g (Mac)
Carbon.Evt (Mac)
Carbon.Fm (Mac)

Carbon.Folder (Mac)

Carbon.Help (Mac)
Carbon.lList (Mac)
Carbon.Menu (Mac)
Carbon.Mlte (Mac)
Carbon.Qd (Mac)

Carbon.Qdoffs (Mac)

Carbon.Qt (Mac)
Carbon.Res (Mac)

Carbon.Scrap (Mac)

Carbon.Snd (Mac)
Carbon.TE (Mac)
Carbon.Win (Mac)
cd_(IRIX)
cfmfile (Mac)
cgi
CGIHTTPServer
cgithb

chunk

cmath

cmd

code

codecs

codeop
collections
ColorPicker (Mac)
colorsys
commands_(Unix)
compileall
compiler

email.mime
email.mime.audio
email.mime.base
email.mime.image
email.mime.message

email .mime.multipart

email .mime.nonmultipe

email.mime. text
email.parser
email.utils
encodings.idna
errno
exceptions
fcntl (Unix)
filecmp
fileinput
findertools (Mac)
FL (IRIX)

f1 (IRIX)

f1p (IRIX)

fm (IRIX)

fnmatch
formatter
fpectl (Unix)

fpformat
FramewWork (Mac)

ftplib
functools
gc

gdbm (Unix)
gensuitemodule (Mac)
getopt
getpass
gettext
GL (IRIX)
9l (IRIX)
glob
gopherlib

compiler.ast
compiler.visitor

ConfigParser
contextlib
Cookie
cookielib

copy

co re
cPickle
cProfile

crypt (Unix)
cStringIO

CSVv

ctypes

curses
curses.ascii
curses.panel
curses.textpad
curses.wrapper
datetime

dbhash (Unix, Windows)

dbm (Unix)
decimal
DEVICE (IRIX)
difflib
dircache
dis
distutils
distutils.

archive util

distutils.

bcppcompiler

distutils.

ccompiler

distutils.
distutils.

cmd

command

distutils.

command

.bdist

distutils.

command

.bdist

dumb

distutils.

command

.bdist

arp (Unix)
i

hashlib

heapq

hmac

hotshot
hotshot.stats
htmlentitydefs
htmllib
HTMLParser
httplib

ic (Mac)

icopen (Mac)

imageop
imaplib
imgfile (IRIX)
imghdr

imp
inspect
itertools
Jpeg (IRIX)
keyword
linecache

locale

logging
macerrors (Mac)
macfs_(Mac)
MacOS (Mac)
macostools (Mac)
macpath
macresource (Mac)
mailbox
mailcap
marshal

math

packager pds

distutils.

command

.bdist

rpm

distutils.

command

.bdist

wininst

mhlib
mimetools

distutils.command.build mimetypes
distutils.command.build clib MimeWriter
distutils.command.build ext mimify
distutils.command.build py MiniAEFrame (Mac)
distutils.command.build scripts mmap
distutils.command.clean modulefinder
distutils.command.config msilib (Windows)
distutils.command.install msvcrt (Windows)
distutils.command.install data multifile
distutils.command.install headers mutex
distutils.command.install 1ib Nav (Mac)
distutils.command.install scriptsnpetrc
distutils.command.register new
distutils.command.sdist nis (UNIX)
distutils.core nntplib
distutils.cygwinccompiler operator
distutils.debug optparse
distutils.dep util S
distutils.dir util o0s.path
distutils.dist

ossaudiodevV (Linux, FreeB

T

Global Module Index
Up: Python Documentation Index

See About this document... for information on suggesting changes.

Previous: Contents up: What's New in Python Next: 2 PEP 309: Partial

1 PEP 308: Conditional Expressions

For a long time, people have been requesting a way to write conditional
expressions, which are expressions that return value A or value B depending on
whether a Boolean value is true or false. A conditional expression lets you write
a single assignment statement that has the same effect as the following:

if condition:

X = true_value
else:

x = false_value

There have been endless tedious discussions of syntax on both python-dev and
comp.lang.python. A vote was even held that found the majority of voters
wanted conditional expressions in some form, but there was no syntax that was
preferred by a clear majority. Candidates included C's cond ? true_v
false_v,1if cond then true_v else false_yv, and 16 other
variations.

Guido van Rossum eventually chose a surprising syntax:

X = true_value if condition else false_value

Evaluation is still lazy as in existing Boolean expressions, so the order of
evaluation jumps around a bit. The condition expression in the middle is
evaluated first, and the true_value expression is evaluated only if the condition
was true. Similarly, the false_value expression is only evaluated when the
condition is false.

This syntax may seem strange and backwards; why does the condition go in the
middle of the expression, and not in the frontasinC'sc ? X : y? The
decision was checked by applying the new syntax to the modules in the standard
library and seeing how the resulting code read. In many cases where a
conditional expression is used, one value seems to be the 'common case' and one
value is an 'exceptional case', used only on rarer occasions when the condition
isn't met. The conditional syntax makes this pattern a bit more obvious:

contents = ((doc + '\n') if doc else '')

I read the above statement as meaning here contents is usually assigned a value
of doc+'\n"'; sometimes doc is empty, in which special case an empty string is
returned.”" I doubt I will use conditional expressions very often where there isn't
a clear common and uncommon case.

There was some discussion of whether the language should require surrounding
conditional expressions with parentheses. The decision was made to not require
parentheses in the Python language's grammar, but as a matter of style I think
you should always use them. Consider these two statements:

First version -- no parens
level = 1 if logging else 0

Second version -- with parens
level = (1 if logging else 0)

In the first version, I think a reader's eye might group the statement into 'level =
1', 'if logging', 'else 0', and think that the condition decides whether the
assignment to level is performed. The second version reads better, in my opinion,
because it makes it clear that the assignment is always performed and the choice
is being made between two values.

Another reason for including the brackets: a few odd combinations of list
comprehensions and lambdas could look like incorrect conditional expressions.
See PEP 308 for some examples. If you put parentheses around your conditional
expressions, you won't run into this case.

See Also:

PEP 308, Conditional Expressions
PEP written by Guido van Rossum and Raymond D. Hettinger;
implemented by Thomas Wouters.

L T - What's New in Python 2.5 toc

CONTENTS

Previous: Contents up: What's New in Python Next: 2 PEP 309: Partial

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0308.html
http://www.python.org/peps/pep-0308.html

previous: 1 PEP 308: Conditional up: What's New in Python Next: 3 PEP 314:
Metadata

2 PEP 309: Partial Function
Application

The functools module is intended to contain tools for functional-style
programming.

One useful tool in this module is the partial () function. For programs
written in a functional style, you'll sometimes want to construct variants of
existing functions that have some of the parameters filled in. Consider a Python
function f(a, b, c); you could create a new function g(b, c) that was
equivalent to (1, b, c). Thisis called partial function application".

partial takes the arguments (function, argl, arg2,
kwargl=valuel, kwarg2=value2). The resulting object is callable, so you can
just call it to invoke function with the filled-in arguments.

Here's a small but realistic example:

import functools

def log (message, subsystem):
"Write the contents of 'message' to the specified subsystem."
print '%s: %s' % (subsystem, message)

server_log = functools.partial(log, subsystem='server')
server_log('Unable to open socket')

Here's another example, from a program that uses PyGTK. Here a context-
sensitive pop-up menu is being constructed dynamically. The callback provided
for the menu option is a partially applied version of the open_item() method,
where the first argument has been provided.

class Application:
def open_item(self, path):

def init (self):
open_func = functools.partial(self.open_item, item_path)
popup_menu.append(("Open", open_func, 1))

Another function in the functools module is the

update_wrapper (wrapper, wrapped) function that helps you write well-
behaved decorators. update_wrapper () copies the name, module, and
docstring attribute to a wrapper function so that tracebacks inside the wrapped
function are easier to understand. For example, you might write:

def my_decorator(f):
def wrapper(*args, **kwds):
print 'Calling decorated function'
return f(*args, **kwds)
functools.update_wrapper (wrapper, f)
return wrapper

wraps () is a decorator that can be used inside your own decorators to copy the
wrapped function's information. An alternate version of the previous example
would be:

def my_decorator(f):
@functools.wraps(f)
def wrapper(*args, **kwds):
print 'Calling decorated function'
return f(*args, **kwds)
return wrapper

See Also:

PEP 309, Partial Function Application
PEP proposed and written by Peter Harris; implemented by Hye-Shik
Chang and Nick Coghlan, with adaptations by Raymond Hettinger.

L T - What's New in Python 2.5 toc

CONTENTS

Previous: 1 PEP 308: Conditional up: What's New in Python Next: 3 PEP 314:
Metadata

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0309.html

Previous: 2 PEP 309: Partial up: What's New in Python Next: 4 PEP 328:
Absolute

3 PEP 314: Metadata for Python
Software Packages v1.1

Some simple dependency support was added to Distutils. The setup ()
function now has requires, provides, and obsoletes keyword
parameters. When you build a source distribution using the sdist command,
the dependency information will be recorded in the PKG-INFO file.

Another new keyword parameter is download_ur 1, which should be set to a
URL for the package's source code. This means it's now possible to look up an
entry in the package index, determine the dependencies for a package, and
download the required packages.

VERSION = '1.0'

setup(name="'PyPackage"',
version=VERSION,
requires=['numarray', 'zlib (>=1.1.4)'],
obsoletes=['0OldPackage']
download_url=("'http://www.example.com/pypackage/dist/pkg-%s.ta

% VERSION),

)

Another new enhancement to the Python package index at
http://cheeseshop.python.org is storing source and binary archives for a
package. The new upload Distutils command will upload a package to the
repository.

Before a package can be uploaded, you must be able to build a distribution using
the sdist Distutils command. Once that works, you can run python
setup.py upload to add your package to the PyPI archive. Optionally you
can GPG-sign the package by supplying the --sign and --identity options.

Package uploading was implemented by Martin von Léwis and Richard Jones.

See Also:

PEP 314, Metadata for Python Software Packages v1.1

http://cheeseshop.python.org
http://www.python.org/peps/pep-0314.html

PEP proposed and written by A.M. Kuchling, Richard Jones, and Fred
Drake; implemented by Richard Jones and Fred Drake.

L T - What's New in Python 2.5 toc

CONTENTS

Previous: 2 PEP _309: Partial up: What's New in Python Next: 4 PEP 328:

Absolute

Release 1.0.
See About this document... for information on suggesting changes.

Previous: 3 PEP 314: Metadata up: What's New in Python Next: 5 PEP 338:
Executing

4 PEP 328: Absolute and Relative
Imports

The simpler part of PEP 328 was implemented in Python 2.4: parentheses could
now be used to enclose the names imported from a module using the from
import ... statement, making it easier to import many different names.

The more complicated part has been implemented in Python 2.5: importing a
module can be specified to use absolute or package-relative imports. The plan is
to move toward making absolute imports the default in future versions of
Python.

Let's say you have a package directory like this:

pkg/
pkg/__init__.py
pkg/main.py
pkg/string.py

This defines a package named pkg containing the pkg .main and
pkg.string submodules.

Consider the code in the main.py module. What happens if it executes the
statement import string? In Python 2.4 and earlier, it will first look in the
package's directory to perform a relative import, finds pkg/string.py, imports the
contents of that file as the pkg. string module, and that module is bound to
the name "string" in the pkg.main module's namespace.

That's fine if pkg.string was what you wanted. But what if you wanted
Python's standard st ring module? There's no clean way to ignore
pkg.string and look for the standard module; generally you had to look at
the contents of sys.modules, which is slightly unclean. Holger Krekel's
py . std package provides a tidier way to perform imports from the standard
library, import py ; py.std.string.join(), but that package isn't
available on all Python installations.

Reading code which relies on relative imports is also less clear, because a reader

may be confused about which module, string or pkg.string, is intended
to be used. Python users soon learned not to duplicate the names of standard
library modules in the names of their packages' submodules, but you can't
protect against having your submodule's name being used for a new module
added in a future version of Python.

In Python 2.5, you can switch impor t's behaviour to absolute imports using a
from __future__ import absolute_import directive. This
absolute-import behaviour will become the default in a future version (probably
Python 2.7). Once absolute imports are the default, import string will
always find the standard library's version. It's suggested that users should begin
using absolute imports as much as possible, so it's preferable to begin writing
from pkg import string in your code.

Relative imports are still possible by adding a leading period to the module name
when using the from ... import form:

Import names from pkg.string
from .string import namel, name2
Import pkg.string

from . import string

This imports the String module relative to the current package, so in
pkg.main this will import namel and name2 from pkg.string. Additional
leading periods perform the relative import starting from the parent of the
current package. For example, code in the A. B. C module can do:

from . import D # Imports A.B.D
from .. import E # Imports A.E
from ..F import G # Imports A.F.G

Leading periods cannot be used with the import modname form of the import
statement, only the from ... import form.

See Also:

PEP 328, Imports: Multi-Line and Absolute/Relative
PEP written by Aahz; implemented by Thomas Wouters.

http://codespeak.net/py/current/doc/index.html

http://www.python.org/peps/pep-0328.html
http://codespeak.net/py/current/doc/index.html

The py library by Holger Krekel, which contains the py . std
package.

L T - What's New in Python 2.5 toc

CONTENTS

Previous: 3 PEP 314: Metadata up: What's New in Python Next: 5 PEP 338:

Executing

Release 1.0.
See About this document... for information on suggesting changes.

Previous: 4 PEP 328: Absolute up: What's New in Python Next: 6 PEP 341
Unified

5 PEP 338: Executing Modules as
Scripts

The -m switch added in Python 2.4 to execute a module as a script gained a few
more abilities. Instead of being implemented in C code inside the Python
interpreter, the switch now uses an implementation in a new module, runpy.

The runpy module implements a more sophisticated import mechanism so that
it's now possible to run modules in a package such as pychecker .checker.
The module also supports alternative import mechanisms such as the
zipimport module. This means you can add a .zip archive's path to
sys.path and then use the -m switch to execute code from the archive.

See Also:

PEP 338, Executing modules as scripts
PEP written and implemented by Nick Coghlan.

= T = What's New in Python 2.5 toc

CONTENTS

Previous: 4 PEP 328: Absolute up: What's New in Python Next: 6 PEP 341:
Unified

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0338.html

Previous: 5 PEP 338: Executing up: What's New in Python Next: 7 PEP 342:
New

6 PEP 341: Unified try/lexcept/finally

Until Python 2.5, the try statement came in two flavours. You could use a
finally block to ensure that code is always executed, or one or more except
blocks to catch specific exceptions. You couldn't combine both except blocks
and a finally block, because generating the right bytecode for the combined

version was complicated and it wasn't clear what the semantics of the combined
should be.

Guido van Rossum spent some time working with Java, which does support the
equivalent of combining except blocks and a finally block, and this
clarified what the statement should mean. In Python 2.5, you can now write:

try:
block-1 ...
except Exceptioni:
handler-1 ...
except Exception2:
handler-2 ...
else:
else-block
finally:
final-block

The code in block-1 is executed. If the code raises an exception, the various
except blocks are tested: if the exception is of class Exceptionl, handler-1
is executed; otherwise if it's of class Exception2, handler-2 is executed, and
so forth. If no exception is raised, the else-block is executed.

No matter what happened previously, the final-block is executed once the code
block is complete and any raised exceptions handled. Even if there's an error in
an exception handler or the else-block and a new exception is raised, the code in
the final-block is still run.

See Also:

PEP 341, Unifying try-except and try-finally
PEP written by Georg Brandl; implementation by Thomas Lee.

http://www.python.org/peps/pep-0341.html

L T - What's New in Python 2.5 toc

CONTENTS

Previous: 5 PEP 338: Executing up: What's New in Python Next: 7 PEP 342:
New

Release 1.0.
See About this document... for information on suggesting changes.

Previous: 6 PEP 341: Unified up: What's New in Python Next: 8 PEP 343: The

7 PEP 342: New Generator Features

Python 2.5 adds a simple way to pass values into a generator. As introduced in
Python 2.3, generators only produce output; once a generator's code was invoked
to create an iterator, there was no way to pass any new information into the
function when its execution is resumed. Sometimes the ability to pass in some
information would be useful. Hackish solutions to this include making the
generator's code look at a global variable and then changing the global variable's
value, or passing in some mutable object that callers then modify.

To refresh your memory of basic generators, here's a simple example:

def counter (maximum):

1 =0

while i < maximum:
yield i
i+=1

When you call counter (10), the result is an iterator that returns the values
from O up to 9. On encountering the yield statement, the iterator returns the
provided value and suspends the function's execution, preserving the local
variables. Execution resumes on the following call to the iterator's next ()
method, picking up after the yield statement.

In Python 2.3, yield was a statement; it didn't return any value. In 2.5, yield
is now an expression, returning a value that can be assigned to a variable or
otherwise operated on:

val = (yield i)

I recommend that you always put parentheses around a yield expression when
you're doing something with the returned value, as in the above example. The
parentheses aren't always necessary, but it's easier to always add them instead of
having to remember when they're needed.

(PEP 342 explains the exact rules, which are that a yield-expression must
always be parenthesized except when it occurs at the top-level expression on the
right-hand side of an assignment. This means you can write val = yield 1
but have to use parentheses when there's an operation, as in val = (yield

http://www.python.org/peps/pep-0342.html

i) + 12)

Values are sent into a generator by calling its send (value) method. The
generator's code is then resumed and the yield expression returns the specified
value. If the regular next (') method is called, the yield returns None.

Here's the previous example, modified to allow changing the value of the
internal counter.

def counter (maximum):
i=0
while i < maximum:
val = (yield i)
If value provided, change counter
if val is not None:
i = val
else:
i+=1

And here's an example of changing the counter:

>>> it = counter(10)

>>> print it.next()

0]

>>> print it.next()

1

>>> print it.send(8)

8

>>> print it.next()

9

>>> print it.next()

Traceback (most recent call last):

File "~ "t.py'', line 15, in ?

print it.next()

StopIteration

Because yield will often be returning None, you should always check for this
case. Don't just use its value in expressions unless you're sure that the send ()
method will be the only method used resume your generator function.

In addition to send (), there are two other new methods on generators:

o throw(type, value=None, traceback=None) is used to raise an
exception inside the generator; the exception is raised by the yield
expression where the generator's execution is paused.

e close() raises anew GeneratorExit exception inside the generator
to terminate the iteration. On receiving this exception, the generator's code
must either raise GeneratorExit or StopIteration; catching the
exception and doing anything else is illegal and will trigger a
RuntimeError. close() will also be called by Python's garbage
collector when the generator is garbage-collected.

If you need to run cleanup code when a GeneratorExit occurs, I
suggestusinga try: ... finally: suite instead of catching
GeneratorExit.

The cumulative effect of these changes is to turn generators from one-way
producers of information into both producers and consumers.

Generators also become coroutines, a more generalized form of subroutines.
Subroutines are entered at one point and exited at another point (the top of the
function, and a return statement), but coroutines can be entered, exited, and
resumed at many different points (the yield statements). We'll have to figure
out patterns for using coroutines effectively in Python.

The addition of the close () method has one side effect that isn't obvious.
close() is called when a generator is garbage-collected, so this means the
generator's code gets one last chance to run before the generator is destroyed.
This last chance means that try. . .finally statements in generators can
now be guaranteed to work; the finally clause will now always get a chance
to run. The syntactic restriction that you couldn't mix yield statements with a
try...finally suite has therefore been removed. This seems like a minor
bit of language trivia, but using generators and try. . .finally is actually
necessary in order to implement the with statement described by PEP 343. I'll
look at this new statement in the following section.

Another even more esoteric effect of this change: previously, the gi_frame
attribute of a generator was always a frame object. It's now possible for
gi_frame to be None once the generator has been exhausted.

See Also:

PEP 342, Coroutines via Enhanced Generators
PEP written by Guido van Rossum and Phillip J. Eby; implemented by
Phillip J. Eby. Includes examples of some fancier uses of generators as
coroutines.

Earlier versions of these features were proposed in PEP 288 by
Raymond Hettinger and PEP 325 by Samuele Pedroni.

http://en.wikipedia.org/wiki/Coroutine
The Wikipedia entry for coroutines.

http://www.sidhe.org/~dan/blog/archives/000178.html
An explanation of coroutines from a Perl point of view, written by Dan
Sugalski.

L T - What's New in Python 2.5 toc

CONTENTS

Previous: 6 PEP 341: Unified up: What's New in Python Next: 8 PEP 343: The

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0342.html
http://www.python.org/peps/pep-0288.html
http://www.python.org/peps/pep-0325.html
http://en.wikipedia.org/wiki/Coroutine
http://www.sidhe.org/~dan/blog/archives/000178.html

Previous: / PEP 342: New Up: What's New in Python Next: 9 PEP 352:
Exceptions

Subsections

e 8.1 Writing Context Managers
e 8.2 The contextlib module

8 PEP 343: The 'with' statement

The 'with' statement clarifies code that previously would use
try...finally blocks to ensure that clean-up code is executed. In this
section, I'll discuss the statement as it will commonly be used. In the next
section, I'll examine the implementation details and show how to write objects
for use with this statement.

The 'with' statement is a new control-flow structure whose basic structure is:

with expression [as variable]:
with-block

The expression is evaluated, and it should result in an object that supports the
context management protocol. This object may return a value that can optionally
be bound to the name variable. (Note carefully that variable is not assigned the
result of expression.) The object can then run set-up code before with-block is
executed and some clean-up code is executed after the block is done, even if the
block raised an exception.

To enable the statement in Python 2.5, you need to add the following directive to
your module:

from __ future__ import with_statement
The statement will always be enabled in Python 2.6.

Some standard Python objects now support the context management protocol
and can be used with the 'with'statement. File objects are one example:

with open('/etc/passwd', 'r') as f:
for line in f:
print line

. more processing code ...

After this statement has executed, the file object in f will have been
automatically closed, even if the 'for' loop raised an exception part-way through
the block.

The threading module's locks and condition variables also support the
'with'statement:

lock = threading.Lock()
with lock:
Critical section of code

The lock is acquired before the block is executed and always released once the
block is complete.

The new 1localcontext () function in the decimal module makes it easy
to save and restore the current decimal context, which encapsulates the desired
precision and rounding characteristics for computations:

from decimal import Decimal, Context, localcontext

Displays with default precision of 28 digits
v = Decimal('578")
print v.sqrt()

with localcontext(Context(prec=16)):
All code in this block uses a precision of 16 digits.
The original context is restored on exiting the block.
print v.sqrt()

8.1 Writing Context Managers

Under the hood, the 'with' statement is fairly complicated. Most people will
only use 'with'in company with existing objects and don't need to know these
details, so you can skip the rest of this section if you like. Authors of new objects
will need to understand the details of the underlying implementation and should
keep reading.

A high-level explanation of the context management protocol is:

e The expression is evaluated and should result in an object called a "context
manager". The context manager must have __enter__ () and
__exit__ () methods.

e The context manager's __enter___ () method is called. The value
returned is assigned to VAR. If no 'as VAR' clause is present, the value is
simply discarded.

e The code in BLOCK is executed.

e If BLOCK raises an exception, the __exit__ (type, value, traceback)
is called with the exception details, the same values returned by
sys.exc_info(). The method's return value controls whether the
exception is re-raised: any false value re-raises the exception, and True
will result in suppressing it. You'll only rarely want to suppress the
exception, because if you do the author of the code containing the 'with'
statement will never realize anything went wrong.

e If BLOCK didn't raise an exception, the __exit__ () method is still
called, but type, value, and traceback are all None.

Let's think through an example. I won't present detailed code but will only
sketch the methods necessary for a database that supports transactions.

(For people unfamiliar with database terminology: a set of changes to the
database are grouped into a transaction. Transactions can be either committed,
meaning that all the changes are written into the database, or rolled back,
meaning that the changes are all discarded and the database is unchanged. See

any database textbook for more information.)

Let's assume there's an object representing a database connection. Our goal will
be to let the user write code like this:

db_connection = DatabaseConnection()

with db_connection as cursor:
cursor.execute('insert into ..
cursor.execute('delete from ..
... more operations ...

)
)

The transaction should be committed if the code in the block runs flawlessly or
rolled back if there's an exception. Here's the basic interface for
DatabaseConnection that I'll assume:

class DatabaseConnection:
Database interface
def cursor (self):
"Returns a cursor object and starts a new transaction"
def commit (self):
"Commits current transaction"
def rollback (self):
"Rolls back current transaction"

The __enter___ () method is pretty easy, having only to start a new
transaction. For this application the resulting cursor object would be a useful
result, so the method will return it. The user can then add as cursor to their
'with'statement to bind the cursor to a variable name.

class DatabaseConnection:

def __enter__ (self):
Code to start a new transaction
cursor = self.cursor()
return cursor

The __exit__ () method is the most complicated because it's where most of
the work has to be done. The method has to check if an exception occurred. If
there was no exception, the transaction is committed. The transaction is rolled
back if there was an exception.

In the code below, execution will just fall off the end of the function, returning
the default value of None. None is false, so the exception will be re-raised
automatically. If you wished, you could be more explicit and add a return

statement at the marked location.

class DatabaseConnection:

def __exit__ (self, type, value, tb):
if tb is None:
No exception, so commit
self.commit()

else:
Exception occurred, so rollback.

self.rollback()
return False

8.2 The contextlib module

The new contextlib module provides some functions and a decorator that
are useful for writing objects for use with the 'with' statement.

The decorator is called contextmanager, and lets you write a single
generator function instead of defining a new class. The generator should yield
exactly one value. The code up to the yield will be executed as the
__enter__ () method, and the value yielded will be the method's return value
that will get bound to the variable in the 'with' statement's as clause, if any.
The code after the yield will be executed in the __exit__ () method. Any
exception raised in the block will be raised by the yield statement.

Our database example from the previous section could be written using this
decorator as:

from contextlib import contextmanager

@contextmanager
def db_transaction (connection):
cursor = connection.cursor()
try:
yield cursor
except:
connection.rollback()
raise
else:
connection.commit ()

db = DatabaseConnection()
with db_transaction(db) as cursor:

The context1lib module also has a nested(mgri, mgr2, ...) function
that combines a number of context managers so you don't need to write nested
'with'statements. In this example, the single 'with' statement both starts a
database transaction and acquires a thread lock:

lock = threading.Lock()
with nested (db_transaction(db), lock) as (cursor, locked):

Finally, the closing (object) function returns object so that it can be bound to
a variable, and calls object.close() at the end of the block.

import urllib, sys
from contextlib import closing

with closing(urllib.urlopen('http://www.yahoo.com')) as f:
for line in f:
sys.stdout.write(line)

See Also:

PEP 343, The ""with" statement
PEP written by Guido van Rossum and Nick Coghlan; implemented
by Mike Bland, Guido van Rossum, and Neal Norwitz. The PEP
shows the code generated for a 'with' statement, which can be helpful
in learning how the statement works.

../lib/module-contextlib.html
The documentation for the context1ib module.

L T - What's New in Python 2.5 toc

CONTENTS

Previous: 7 PEP 342: New up: What's New in Python Next: 9 PEP 352:
Exceptions

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0343.html

Previous: 8 PEP 343: The up: What's New in Python Next: 10 PEP 353: Using

9 PEP 352: Exceptions as New-Style
Classes

Exception classes can now be new-style classes, not just classic classes, and the
built-in Exception class and all the standard built-in exceptions
(NameError, ValueError, etc.) are now new-style classes.

The inheritance hierarchy for exceptions has been rearranged a bit. In 2.5, the
inheritance relationships are:

BaseException # New in Python 2.5
| - KeyboardInterrupt
| - SystemExit
| - Exception
| - (all other current built-in exceptions)

This rearrangement was done because people often want to catch all exceptions
that indicate program errors. KeyboardInterrupt and SystemExit aren't
errors, though, and usually represent an explicit action such as the user hitting
Control-C or code calling sys.exit (). Abare except: will catch all
exceptions, so you commonly need to list KeyboardInterrupt and
SystemEXxit in order to re-raise them. The usual pattern is:

try:

except (KeyboardInterrupt, SystemExit):
raise

except:
Log error...
Continue running program...

In Python 2.5, you can now write except Exception to achieve the same
result, catching all the exceptions that usually indicate errors but leaving
KeyboardInterrupt and SystemExit alone. As in previous versions, a
bare except : still catches all exceptions.

The goal for Python 3.0 is to require any class raised as an exception to derive
from BaseException or some descendant of BaseException, and future
releases in the Python 2.x series may begin to enforce this constraint. Therefore,

I suggest you begin making all your exception classes derive from Exception
now. It's been suggested that the bare except : form should be removed in
Python 3.0, but Guido van Rossum hasn't decided whether to do this or not.

Raising of strings as exceptions, as in the statement raise "Error
occurred", is deprecated in Python 2.5 and will trigger a warning. The aim is
to be able to remove the string-exception feature in a few releases.

See Also:

PEP 352, Required Superclass for Exceptions
PEP written by Brett Cannon and Guido van Rossum; implemented by
Brett Cannon.

L T - What's New in Python 2.5 toc

CONTENTS

Previous: 8 PEP 343: The up: What's New in Python Next: 10 PEP 353: Using

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0352.html

Previous: 9 PEP 352: Exceptions up: What's New in Python Next: 11 PEP
357: The

10 PEP 353: Using ssize_t as the
iIndex type

A wide-ranging change to Python's C API, using a new Py_ssize_t type
definition instead of int, will permit the interpreter to handle more data on 64-
bit platforms. This change doesn't affect Python's capacity on 32-bit platforms.

Various pieces of the Python interpreter used C's int type to store sizes or
counts; for example, the number of items in a list or tuple were stored in an int.
The C compilers for most 64-bit platforms still define int as a 32-bit type, so
that meant that lists could only hold up to 2**31 - 1 =2147483647 items.
(There are actually a few different programming models that 64-bit C compilers
can use - see http://www.unix.org/version2/whatsnew/Ip64_wp.html for a
discussion - but the most commonly available model leaves 1nt as 32 bits.)

A limit of 2147483647 items doesn't really matter on a 32-bit platform because
you'll run out of memory before hitting the length limit. Each list item requires
space for a pointer, which is 4 bytes, plus space for a PyObject representing

the item. 2147483647%*4 is already more bytes than a 32-bit address space can

contain.

It's possible to address that much memory on a 64-bit platform, however. The
pointers for a list that size would only require 16 GiB of space, so it's not
unreasonable that Python programmers might construct lists that large.
Therefore, the Python interpreter had to be changed to use some type other than
int, and this will be a 64-bit type on 64-bit platforms. The change will cause
incompatibilities on 64-bit machines, so it was deemed worth making the
transition now, while the number of 64-bit users is still relatively small. (In 5 or
10 years, we may all be on 64-bit machines, and the transition would be more
painful then.)

This change most strongly affects authors of C extension modules. Python
strings and container types such as lists and tuples now use Py_ssize_t to
store their size. Functions such as PyList_Size() now return
Py_ssize_t. Code in extension modules may therefore need to have some
variables changed to Py_ssize_t.

http://www.unix.org/version2/whatsnew/lp64_wp.html

The PyArg_ParseTuple() and Py_BuildValue() functions have a new
conversion code, "n", for Py_ssize_t.PyArg_ParseTuple()'s "s#" and
"t#" still output int by default, but you can define the macro
PY_SSIZE_T_CLEAN before including Python.h to make them return
Py_ssize_t.

PEP 353 has a section on conversion guidelines that extension authors should
read to learn about supporting 64-bit platforms.

See Also:

PEP 353, Using ssize_t as the index type
PEP written and implemented by Martin von Lowis.

L T - What's New in Python 2.5 toc

COMTENTS
Previous: 9 PEP 352: Exceptions up: What's New in Python Next: 11 PEP
357: The

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0353.html
http://www.python.org/peps/pep-0353.html

Previous: 10 PEP 353: Using up: What's New in Python Next: 12 Other
Language Changes

11 PEP 357: The' iIndex 'method

The NumPy developers had a problem that could only be solved by adding a
new special method, ___index___. When using slice notation, as in

[start: stop : step], the values of the start, stop, and step indexes must all be
either integers or long integers. NumPy defines a variety of specialized integer
types corresponding to unsigned and signed integers of 8, 16, 32, and 64 bits, but
there was no way to signal that these types could be used as slice indexes.

Slicing can't just use the existing ___int__ method because that method is also
used to implement coercion to integers. If slicing used __int__, floating-point
numbers would also become legal slice indexes and that's clearly an undesirable
behaviour.

Instead, a new special method called __index___ was added. It takes no
arguments and returns an integer giving the slice index to use. For example:

class C:
def __index__ (self):
return self.value

The return value must be either a Python integer or long integer. The interpreter
will check that the type returned is correct, and raises a TypeError if this
requirement isn't met.

A corresponding nb_index slot was added to the C-level
PyNumberMethods structure to let C extensions implement this protocol.
PyNumber_Index(obj) can be used in extension code to call the
___index___function and retrieve its result.

See Also:

PEP 357, Allowing Any Object to be Used for Slicing
PEP written and implemented by Travis Oliphant.

http://www.python.org/peps/pep-0357.html

«1T-> What's New in Python 2.5 toc

CONTENTS

Previous: 10 PEP 353: Using up: What's New in Python Next: 12 Other
Language Changes

Release 1.0.
See About this document... for information on suggesting changes.

Previous: 11 PEP 357: The Up: What's New in Python Next: 13 New
Improved, and

Subsections

e 12.1 Interactive Interpreter Changes
e 12.2 Optimizations

12 Other Language Changes

Here are all of the changes that Python 2.5 makes to the core Python language.

e The dict type has a new hook for letting subclasses provide a default
value when a key isn't contained in the dictionary. When a key isn't found,
the dictionary's __missing___(key) method will be called. This hook is
used to implement the new defaultdict class in the collections
module. The following example defines a dictionary that returns zero for
any missing key:

class zerodict (dict):
def __missing__ (self, key):
return 0

d = zerodict({1:1, 2:2})
print d[1], d[2] # Prints 1, 2
print d[3], d[4] # Prints 0, ©

e Both 8-bit and Unicode strings have new partition(sep) and
rpartition(sep) methods that simplify a common use case.

The find(S) method is often used to get an index which is then used to
slice the string and obtain the pieces that are before and after the separator.
partition(sep) condenses this pattern into a single method call that
returns a 3-tuple containing the substring before the separator, the separator
itself, and the substring after the separator. If the separator isn't found, the
first element of the tuple is the entire string and the other two elements are
empty. rpartition(sep) also returns a 3-tuple but starts searching
from the end of the string; the "r" stands for reverse'.

Some examples:

>>> ('http://www.python.org').partition('://")

("http', '"://', 'www.python.org')

>>> ('file:/usr/share/doc/index.html').partition('://")
('file:/usr/share/doc/index.html', '', '")

>>> (u'Subject: a quick question').partition(':"')
(u'Subject', u':', u' a quick question')

>>> 'www.python.org'.rpartition('.")

('www.python', '.', 'org')

>>> 'www.python.org'.rpartition(':")
("', "', 'www.python.org')

(Implemented by Fredrik Lundh following a suggestion by Raymond
Hettinger.)

The startswith() and endswith () methods of string types now
accept tuples of strings to check for.

def is_image_file (filename):
return filename.endswith(('.gif', '.jpg', '.tiff'))

(Implemented by Georg Brandl following a suggestion by Tom Lynn.)

The min() and max () built-in functions gained a key keyword
parameter analogous to the key argument for sort (). This parameter
supplies a function that takes a single argument and is called for every value
in the list; min()/max () will return the element with the smallest/largest
return value from this function. For example, to find the longest string in a
list, you can do:

L = ['medium', 'longest', 'short']

Prints 'longest'

print max(L, key=len)

Prints 'short', because lexicographically 'short' has the larq
print max(L)

(Contributed by Steven Bethard and Raymond Hettinger.)

Two new built-in functions, any () and all(), evaluate whether an
iterator contains any true or false values. any () returns True if any value
returned by the iterator is true; otherwise it will return False. all ()
returns True only if all of the values returned by the iterator evaluate as
true. (Suggested by Guido van Rossum, and implemented by Raymond
Hettinger.)

The result of a class's __hash___() method can now be either a long
integer or a regular integer. If a long integer is returned, the hash of that
value is taken. In earlier versions the hash value was required to be a
regular integer, but in 2.5 the 1d() built-in was changed to always return
non-negative numbers, and users often seem to use 1d(self) in
___hash__ () methods (though this is discouraged).

e ASCII is now the default encoding for modules. It's now a syntax error if a
module contains string literals with 8-bit characters but doesn't have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
error. See PEP 263 for how to declare a module's encoding; for example,
you might add a line like this near the top of the source file:

-*- coding: latinil -*-

¢ A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can't be converted to
Unicode using the default ASCII encoding. The result of the comparison is
false:

>>> chr(128) == unichr(128) # Can't convert chr(128) to Unicot
__main__:1: UnicodeWarning: Unicode equal comparison failed
to convert both arguments to Unicode - interpreting them
as being unequal
False
>>> chr(127) == unichr(127) # chr(127) can be converted
True

Previously this would raise a UnicodeDecodeError exception, but in
2.5 this could result in puzzling problems when accessing a dictionary. If
you looked up unichr(128) and chr (128) was being used as a key,
you'd get a UnicodeDecodeError exception. Other changes in 2.5
resulted in this exception being raised instead of suppressed by the code in
dictobject.c that implements dictionaries.

Raising an exception for such a comparison is strictly correct, but the
change might have broken code, so instead UnicodeWarning was
introduced.

(Implemented by Marc-André Lemburg.)

¢ One error that Python programmers sometimes make is forgetting to
include an __init__.py module in a package directory. Debugging this
mistake can be confusing, and usually requires running Python with the -v
switch to log all the paths searched. In Python 2.5, a new
ImportWarning warning is triggered when an import would have picked
up a directory as a package but no __init__.py was found. This warning is
silently ignored by default; provide the -Wd option when running the

http://www.python.org/peps/pep-0263.html

Python executable to display the warning message. (Implemented by
Thomas Wouters.)

e The list of base classes in a class definition can now be empty. As an
example, this is now legal:

class C():
pass

(Implemented by Brett Cannon.)

12.1 Interactive Interpreter Changes

In the interactive interpreter, quit and exit have long been strings so that new
users get a somewhat helpful message when they try to quit:

>>> quit
'Use Ctrl-D (i.e. EOF) to exit.'

In Python 2.5, quit and exit are now objects that still produce string
representations of themselves, but are also callable. Newbies who try quit ()
or exit () will now exit the interpreter as they expect. (Implemented by Georg
Brandl.)

The Python executable now accepts the standard long options --help and --
version; on Windows, it also accepts the /? option for displaying a help message.
(Implemented by Georg Brandl.)

12.2 Optimizations

Several of the optimizations were developed at the NeedForSpeed sprint, an
event held in Reykjavik, Iceland, from May 21-28 2006. The sprint focused on
speed enhancements to the CPython implementation and was funded by EWT
LLC with local support from CCP Games. Those optimizations added at this
sprint are specially marked in the following list.

When they were introduced in Python 2.4, the built-in set and
frozenset types were built on top of Python's dictionary type. In 2.5 the
internal data structure has been customized for implementing sets, and as a
result sets will use a third less memory and are somewhat faster.
(Implemented by Raymond Hettinger.)

The speed of some Unicode operations, such as finding substrings, string
splitting, and character map encoding and decoding, has been improved.
(Substring search and splitting improvements were added by Fredrik Lundh
and Andrew Dalke at the NeedForSpeed sprint. Character maps were
improved by Walter Dérwald and Martin von Lowis.)

The long(str, base) function is now faster on long digit strings because
fewer intermediate results are calculated. The peak is for strings of around
800-1000 digits where the function is 6 times faster. (Contributed by Alan
Mclntyre and committed at the NeedForSpeed sprint.)

The struct module now compiles structure format strings into an internal
representation and caches this representation, yielding a 20% speedup.
(Contributed by Bob Ippolito at the NeedForSpeed sprint.)

The re module got a 1 or 2% speedup by switching to Python's allocator
functions instead of the system's malloc() and free(). (Contributed by
Jack Diederich at the NeedForSpeed sprint.)

The code generator's peephole optimizer now performs simple constant
folding in expressions. If you write something like a = 2+3, the code
generator will do the arithmetic and produce code corresponding to a = 5.
(Proposed and implemented by Raymond Hettinger.)

¢ Function calls are now faster because code objects now keep the most
recently finished frame (a ~~zombie frame") in an internal field of the code
object, reusing it the next time the code object is invoked. (Original patch
by Michael Hudson, modified by Armin Rigo and Richard Jones;
committed at the NeedForSpeed sprint.)

Frame objects are also slightly smaller, which may improve cache locality
and reduce memory usage a bit. (Contributed by Neal Norwitz.)

e Python's built-in exceptions are now new-style classes, a change that speeds
up instantiation considerably. Exception handling in Python 2.5 is therefore
about 30% faster than in 2.4. (Contributed by Richard Jones, Georg Brandl
and Sean Reifschneider at the NeedForSpeed sprint.)

e Importing now caches the paths tried, recording whether they exist or not so
that the interpreter makes fewer open() and stat () calls on startup.
(Contributed by Martin von Lowis and Georg Brandl.)

CONTENTS

Previous: 11 PEP 357: The Up: What's New in Python Next: 13 New
Improved, and

L T - What's New in Python 2.5 toc

Release 1.0.
See About this document... for information on suggesting changes.

Previous: 12 Other Language Changes up: What's New in Python Next: 14
Build and C

Subsections

13.1 The ctypes package
13.2 The ElementTree package
13.3 The hashlib package

13.4 The sqlite3 package
13.5 The wsgiref package

13 New, Improved, and Removed
Modules

The standard library received many enhancements and bug fixes in Python 2.5.
Here's a partial list of the most notable changes, sorted alphabetically by module
name. Consult the Misc/NEWS file in the source tree for a more complete list of
changes, or look through the SVN logs for all the details.

e The audioop module now supports the a-LLAW encoding, and the code for
u-LAW encoding has been improved. (Contributed by Lars Immisch.)

e The codecs module gained support for incremental codecs. The
codec.lookup() function now returns a CodecInfo instance instead
of a tuple. CodecInfo instances behave like a 4-tuple to preserve
backward compatibility but also have the attributes encode, decode,
incrementalencoder, incrementaldecoder, streamwriter,
and streamreader. Incremental codecs can receive input and produce
output in multiple chunks; the output is the same as if the entire input was
fed to the non-incremental codec. See the codecs module documentation
for details. (Designed and implemented by Walter Dérwald.)

e The collections module gained a new type, defaultdict, that
subclasses the standard dict type. The new type mostly behaves like a
dictionary but constructs a default value when a key isn't present,
automatically adding it to the dictionary for the requested key value.

The first argument to defaultdict's constructor is a factory function
that gets called whenever a key is requested but not found. This factory
function receives no arguments, so you can use built-in type constructors
suchas 1ist () or int (). For example, you can make an index of words
based on their initial letter like this:

words = """Nel mezzo del cammin di nostra vita
mi ritrovai per una selva oscura
che la diritta via era smarrita""".lower().split()

index = defaultdict(list)

for w in words:
init_letter = w[0]
index[init_letter].append(w)

Printing indeX results in the following output:
defaultdict(<type 'list'>, {'c': ['cammin',6 'che'], 'e': ['era'
'd': ['del', 'di', 'diritta'], 'm': ['mezzo', 'mi'],
'1': ['1la'], 'o': ['oscura']l, 'n': ['nel', 'nostra'],
'p': ['per'], 's': ['selva', 'smarrita'],
'r': ['ritrovai'], 'u': ['una'], 'v': ['vita', 'via']}

(Contributed by Guido van Rossum.)

The deque double-ended queue type supplied by the collections
module now has a remove (value) method that removes the first
occurrence of value in the queue, raising ValueError if the value isn't
found. (Contributed by Raymond Hettinger.)

New module: The context1ib module contains helper functions for use
with the new 'with' statement. See section 8.2 for more about this module.

New module: The cProfile module is a C implementation of the
existing profile module that has much lower overhead. The module's
interface is the same as profile: you run
cProfile.run('main()"') to profile a function, can save profile data
to a file, etc. It's not yet known if the Hotshot profiler, which is also written
in C but doesn't match the profile module's interface, will continue to be
maintained in future versions of Python. (Contributed by Armin Rigo.)

Also, the pstats module for analyzing the data measured by the profiler
now supports directing the output to any file object by supplying a stream
argument to the Stats constructor. (Contributed by Skip Montanaro.)

The csv module, which parses files in comma-separated value format,
received several enhancements and a number of bugfixes. You can now set
the maximum size in bytes of a field by calling the
csv.field_size_limit (new_limit) function; omitting the new_limit
argument will return the currently-set limit. The reader class now has a
1ine_num attribute that counts the number of physical lines read from the

source; records can span multiple physical lines, so 1ine_num is not the
same as the number of records read.

The CSV parser is now stricter about multi-line quoted fields. Previously, if
a line ended within a quoted field without a terminating newline character, a
newline would be inserted into the returned field. This behavior caused
problems when reading files that contained carriage return characters within
fields, so the code was changed to return the field without inserting
newlines. As a consequence, if newlines embedded within fields are
important, the input should be split into lines in a manner that preserves the
newline characters.

(Contributed by Skip Montanaro and Andrew McNamara.)

e The datetime class in the datetime module now has a
strptime(string, format) method for parsing date strings, contributed
by Josh Spoerri. It uses the same format characters as
time.strptime() and time.strftime():

from datetime import datetime

ts = datetime.strptime('10:13:15 2006-03-07"',
"%H : %M : %S %Y-%m-%d"')

e The SequenceMatcher.get_matching_blocks() method in the
difflib module now guarantees to return a minimal list of blocks
describing matching subsequences. Previously, the algorithm would
occasionally break a block of matching elements into two list entries.
(Enhancement by Tim Peters.)

e The doctest module gained a SKIP option that keeps an example from
being executed at all. This is intended for code snippets that are usage
examples intended for the reader and aren't actually test cases.

An encoding parameter was added to the testfile() function and the
DocFileSuite class to specify the file's encoding. This makes it easier
to use non-ASCII characters in tests contained within a docstring.
(Contributed by Bjorn Tillenius.)

e The email package has been updated to version 4.0. (Contributed by

Barry Warsaw.)

e The fileinput module was made more flexible. Unicode filenames are
now supported, and a mode parameter that defaults to " r" was added to the
input () function to allow opening files in binary or universal-newline
mode. Another new parameter, openhook, lets you use a function other than
open() to open the input files. Once you're iterating over the set of files,
the FileInput object's new fileno() returns the file descriptor for the
currently opened file. (Contributed by Georg Brandl.)

¢ In the gc module, the new get_count () function returns a 3-tuple
containing the current collection counts for the three GC generations. This
is accounting information for the garbage collector; when these counts
reach a specified threshold, a garbage collection sweep will be made. The
existing gc.collect () function now takes an optional generation
argument of 0, 1, or 2 to specify which generation to collect. (Contributed
by Barry Warsaw.)

e The nsmallest() and nlargest () functions in the heapq module
now support a key keyword parameter similar to the one provided by the
min()/max() functions and the sort () methods. For example:

>>> import heapq

>>> L = ["short", 'medium', 'longest', 'longer still']

>>> heapg.nsmallest(2, L) # Return two lowest elements, lexicot
['longer still', 'longest']

>>> heapq.nsmallest(2, L, key=len) # Return two shortest elems
['short', 'medium']

(Contributed by Raymond Hettinger.)

e The itertools.islice() function now accepts None for the start
and step arguments. This makes it more compatible with the attributes of
slice objects, so that you can now write the following:

s = slice(5) # Create slice object
itertools.islice(iterable, s.start, s.stop, s.step)

(Contributed by Raymond Hettinger.)

e The format () function in the 1ocale module has been modified and

two new functions were added, format_string() and currency().

The format () function's val parameter could previously be a string as
long as no more than one %char specifier appeared; now the parameter
must be exactly one %char specifier with no surrounding text. An optional
monetary parameter was also added which, if True, will use the locale's
rules for formatting currency in placing a separator between groups of three
digits.

To format strings with multiple %char specifiers, use the new
format_string() function that works like format () but also
supports mixing %char specifiers with arbitrary text.

Anew currency () function was also added that formats a number
according to the current locale's settings.

(Contributed by Georg Brandl.)

The mailbox module underwent a massive rewrite to add the capability to
modify mailboxes in addition to reading them. A new set of classes that
include mbox, MH, and Maildir are used to read mailboxes, and have an
add (message) method to add messages, remove (key) to remove
messages, and 1ock ()/unlock() to lock/unlock the mailbox. The
following example converts a maildir-format mailbox into an mbox-format
one:

import mailbox

'factory=None' uses email.Message.Message as the class represt
individual messages.

src = mailbox.Maildir('maildir', factory=None)

dest = mailbox.mbox('/tmp/mbox")

for msg in src:
dest.add(msg)

(Contributed by Gregory K. Johnson. Funding was provided by Google's
2005 Summer of Code.)

New module: the msilib module allows creating Microsoft Installer .msi
files and CAB files. Some support for reading the .msi database is also
included. (Contributed by Martin von Lowis.)

The nis module now supports accessing domains other than the system
default domain by supplying a domain argument to the nis.match() and
nis.maps() functions. (Contributed by Ben Bell.)

The operator module's itemgetter () and attrgetter()
functions now support multiple fields. A call such as
operator.attrgetter('a', 'b') will return a function that
retrieves the a and b attributes. Combining this new feature with the
sort () method's key parameter lets you easily sort lists using multiple
fields. (Contributed by Raymond Hettinger.)

The optparse module was updated to version 1.5.1 of the Optik library.
The OptionParser class gained an epilog attribute, a string that will
be printed after the help message, and a destroy () method to break
reference cycles created by the object. (Contributed by Greg Ward.)

The 0s module underwent several changes. The stat_float_times
variable now defaults to true, meaning that 0s.stat () will now return
time values as floats. (This doesn't necessarily mean that 0s.stat () will
return times that are precise to fractions of a second; not all systems support
such precision.)

Constants named 0S . SEEK_SET, 0s.SEEK_CUR, and 0s.SEEK_END
have been added; these are the parameters to the 0s.1seek () function.
Two new constants for locking are 0s.0_SHLOCK and 0s.0_EXLOCK.

Two new functions, wait3() and wait4(), were added. They're similar
the waitpid() function which waits for a child process to exit and
returns a tuple of the process ID and its exit status, but wait3() and
wait4 () return additional information. wait3() doesn't take a process
ID as input, so it waits for any child process to exit and returns a 3-tuple of
process-id, exit-status, resource-usage as returned from the
resource.getrusage() function. wait4(pid) does take a process
ID. (Contributed by Chad J. Schroeder.)

On FreeBSD, the os.stat () function now returns times with
nanosecond resolution, and the returned object now has st_gen and
st_birthtime. The st_flags member is also available, if the

platform supports it. (Contributed by Antti Louko and Diego Petteno.)

The Python debugger provided by the pdb module can now store lists of
commands to execute when a breakpoint is reached and execution stops.
Once breakpoint #1 has been created, enter "commands 1" and enter a
series of commands to be executed, finishing the list with "end". The
command list can include commands that resume execution, such as
"continue" or "next". (Contributed by Grégoire Dooms.)

The pickle and cPickle modules no longer accept a return value of
None from the __reduce___() method; the method must return a tuple
of arguments instead. The ability to return None was deprecated in Python
2.4, so this completes the removal of the feature.

The pkgutil module, containing various utility functions for finding
packages, was enhanced to support PEP 302's import hooks and now also
works for packages stored in ZIP-format archives. (Contributed by Phillip J.
Eby.)

The pybench benchmark suite by Marc-André Lemburg is now included in
the Tools/pybench directory. The pybench suite is an improvement on the
commonly used pystone.py program because pybench provides a more
detailed measurement of the interpreter's speed. It times particular
operations such as function calls, tuple slicing, method lookups, and
numeric operations, instead of performing many different operations and
reducing the result to a single number as pystone.py does.

The pyexpat module now uses version 2.0 of the Expat parser.
(Contributed by Trent Mick.)

The old regex and regsub modules, which have been deprecated ever
since Python 2.0, have finally been deleted. Other deleted modules:
statcache, tzparse, whrandom.

Also deleted: the lib-old directory, which includes ancient modules such as
dircmp and ni, was removed. lib-old wasn't on the default sys. path,
so unless your programs explicitly added the directory to sys . path, this
removal shouldn't affect your code.

e The rlcompleter module is no longer dependent on importing the
readline module and therefore now works on non-Unix platforms.
(Patch from Robert Kiendl.)

e The SimpleXMLRPCServer and DocXMLRPCServer classes now
have a rpc_paths attribute that constrains XML-RPC operations to a
limited set of URL paths; the default is to allow only ' /' and ' /RPC2".
Setting rpc_paths to None or an empty tuple disables this path
checking.

e The socket module now supports AF_NETLINK sockets on Linux,
thanks to a patch from Philippe Biondi. Netlink sockets are a Linux-specific
mechanism for communications between a user-space process and kernel
code; an introductory article about them is at
http://www.linuxjournal.com/article/7356. In Python code, netlink
addresses are represented as a tuple of 2 integers, (pid, group_mask).

Two new methods on socket objects, recv_buf (buffer) and
recvfrom_buf (buffer), store the received data in an object that
supports the buffer protocol instead of returning the data as a string. This
means you can put the data directly into an array or a memory-mapped file.

Socket objects also gained getfamily (), gettype(), and
getproto() accessor methods to retrieve the family, type, and protocol
values for the socket.

e New module: the spwd module provides functions for accessing the
shadow password database on systems that support shadow passwords.

e The struct is now faster because it compiles format strings into Struct
objects with pack () and unpack () methods. This is similar to how the
re module lets you create compiled regular expression objects. You can
still use the module-level pack () and unpack () functions; they'll create
Struct objects and cache them. Or you can use Struct instances
directly:

s = struct.Struct('ih3s"'")

data = s.pack(1972, 187, 'abc')
year, number, name = s.unpack(data)

http://www.linuxjournal.com/article/7356

You can also pack and unpack data to and from buffer objects directly using
the pack_into(buffer, offset, vi, v2, ...) and
unpack_from(buffer, offset) methods. This lets you store data directly
into an array or a memory-mapped file.

(Struct objects were implemented by Bob Ippolito at the NeedForSpeed
sprint. Support for buffer objects was added by Martin Blais, also at the
NeedForSpeed sprint.)

The Python developers switched from CVS to Subversion during the 2.5
development process. Information about the exact build version is available
as the sys. subversion variable, a 3-tuple of (interpreter-name,
branch-name, revision-range). For example, at the time of writing my
copy of 2.5 was reporting (' CPython', 'trunk',
'45313:45315").

This information is also available to C extensions via the
Py_GetBuildInfo() function that returns a string of build information
like this: "trunk:45355:45356M, Apr 13 2006, 07:42:19".
(Contributed by Barry Warsaw.)

Another new function, sys._current_frames(), returns the current
stack frames for all running threads as a dictionary mapping thread
identifiers to the topmost stack frame currently active in that thread at the
time the function is called. (Contributed by Tim Peters.)

The TarFile class in the tar file module now has an

extractall() method that extracts all members from the archive into
the current working directory. It's also possible to set a different directory as
the extraction target, and to unpack only a subset of the archive's members.

The compression used for a tarfile opened in stream mode can now be
autodetected using the mode 'r | * '. (Contributed by Lars Gustébel.)

The threading module now lets you set the stack size used when new
threads are created. The stack_size([size]) function returns the
currently configured stack size, and supplying the optional size parameter

sets a new value. Not all platforms support changing the stack size, but
Windows, POSIX threading, and OS/2 all do. (Contributed by Andrew

Maclntyre.)

The unicodedata module has been updated to use version 4.1.0 of the
Unicode character database. Version 3.2.0 is required by some
specifications, so it's still available as unicodedata.ucd_3_2_0.

New module: the uuid module generates universally unique identifiers
(UUIDs) according to REC 4122. The RFC defines several different UUID
versions that are generated from a starting string, from system properties, or
purely randomly. This module contains a UUID class and functions named
uuidl(), uuid3(), uuid4(), and uuid5() to generate different
versions of UUID. (Version 2 UUIDs are not specified in REC 4122 and are
not supported by this module.)

>>> import uuid

>>> # make a UUID based on the host ID and current time
>>> yuid.uuidd()

UUID('a8098cla-f86e-11da-bdla-00112444bele')

>>> # make a UUID using an MD5 hash of a namespace UUID and a n:
>>> yuid.uuid3(uuid.NAMESPACE_DNS, 'python.org')
UUID('6fad459ea-eeBa-3ca4-894e-db77e160355e"')

>>> # make a random UUID
>>> yuid.uuid4()
UUID('16fd2706-8baf-433b-82eb-8c7fada847da')

>>> # make a UUID using a SHA-1 hash of a namespace UUID and a |
>>> yuid.uuid5(uuid.NAMESPACE_DNS, 'python.org')
UUID('886313e1-3b8a-5372-9b90-0c9aeel199e5d')

(Contributed by Ka-Ping Yee.)

The weakref module's WeakKeyDictionary and
WeakValueDictionary types gained new methods for iterating over
the weak references contained in the dictionary. iterkeyrefs() and
keyrefs() methods were added to WeakKeyDictionary, and
itervaluerefs() and valuerefs() were added to
WeakValueDictionary. (Contributed by Fred L. Drake, Jr.)

The webbrowser module received a number of enhancements. It's now
usable as a script with python -m webbrowser, taking a URL as the
argument; there are a number of switches to control the behaviour (-n for a

http://www.faqs.org/rfcs/rfc4122.html
http://www.faqs.org/rfcs/rfc4122.html

new browser window, -t for a new tab). New module-level functions,
open_new() and open_new_tab (), were added to support this. The
module's open() function supports an additional feature, an autoraise
parameter that signals whether to raise the open window when possible. A
number of additional browsers were added to the supported list such as
Firefox, Opera, Konqueror, and elinks. (Contributed by Oleg Broytmann
and Georg Brandl.)

The xmlrpclib module now supports returning datetime objects for
the XML-RPC date type. Supply use_datetime=True to the

loads () function or the Unmarshaller class to enable this feature.
(Contributed by Skip Montanaro.)

The zipfile module now supports the ZIP64 version of the format,
meaning that a .zip archive can now be larger than 4 GiB and can contain
individual files larger than 4 GiB. (Contributed by Ronald Oussoren.)

The z1ib module's Compress and Decompress objects now support a
copy () method that makes a copy of the object's internal state and returns
a new Compress or Decompress object. (Contributed by Chris AtLee.)

13.1 The ctypes package

The ctypes package, written by Thomas Heller, has been added to the standard
library. ctypes lets you call arbitrary functions in shared libraries or DLLs.
Long-time users may remember the d1 module, which provides functions for
loading shared libraries and calling functions in them. The ctypes package is
much fancier.

To load a shared library or DLL, you must create an instance of the CDLL class
and provide the name or path of the shared library or DLL. Once that's done, you
can call arbitrary functions by accessing them as attributes of the CDLL object.

import ctypes

libc = ctypes.CDLL('libc.so0.6")
result = libc.printf("Line of output\n")

Type constructors for the various C types are provided: c_int, c_float,
c_double, c_char_p (equivalent to char *), and so forth. Unlike Python's
types, the C versions are all mutable; you can assign to their value attribute to
change the wrapped value. Python integers and strings will be automatically
converted to the corresponding C types, but for other types you must call the
correct type constructor. (And I mean must; getting it wrong will often result in
the interpreter crashing with a segmentation fault.)

You shouldn't use c_char_p with a Python string when the C function will be
modifying the memory area, because Python strings are supposed to be
immutable; breaking this rule will cause puzzling bugs. When you need a
modifiable memory area, use create_string_buffer():

s = "this is a string"
buf = ctypes.create_string_buffer(s)
libc.strfry(buf)

C functions are assumed to return integers, but you can set the restype
attribute of the function object to change this:

>>> libc.atof('2.71828")
-1783957616
>>> libc.atof.restype = ctypes.c_double

>>> libc.atof('2.71828")
2.71828

ctypes also provides a wrapper for Python's C API as the
ctypes.pythonapi object. This object does not release the global
interpreter lock before calling a function, because the lock must be held when
calling into the interpreter's code. There's a py_object () type constructor
that will create a PyObject * pointer. A simple usage:

import ctypes

d = {}
ctypes.pythonapi.PyObject_SetItem(ctypes.py_object(d),

ctypes.py_object("abc"), ctypes.py_object(1))
d is now {'abc', 1}.

Don't forget to use py_object(); if it's omitted you end up with a
segmentation fault.

ctypes has been around for a while, but people still write and distribution
hand-coded extension modules because you can't rely on ctypes being present.
Perhaps developers will begin to write Python wrappers atop a library accessed
through ctypes instead of extension modules, now that ctypes is included
with core Python.

See Also:

http://starship.python.net/crew/theller/ctypes/
The ctypes web page, with a tutorial, reference, and FAQ.

../lib/module-ctypes.html
The documentation for the ctypes module.

http://starship.python.net/crew/theller/ctypes/

13.2 The ElementTree package

A subset of Fredrik Lundh's ElementTree library for processing XML has been
added to the standard library as xml.etree. The available modules are
ElementTree, ElementPath, and ElementInclude from ElementTree
1.2.6. The cElementTree accelerator module is also included.

The rest of this section will provide a brief overview of using ElementTree. Full
documentation for ElementTree is available at http://effbot.org/zone/element-
index.htm.

ElementTree represents an XML document as a tree of element nodes. The text
content of the document is stored as the . text and . tail attributes of (This is
one of the major differences between ElementTree and the Document Object
Model; in the DOM there are many different types of node, including
TextNode.)

The most commonly used parsing function is parse(), that takes either a
string (assumed to contain a filename) or a file-like object and returns an
ElementTree instance:

from xml.etree import ElementTree as ET

tree = ET.parse('ex-1.xml")

feed = urllib.urlopen(
'http://planet.python.org/rss10.xml')

tree = ET.parse(feed)

Once you have an ElementTree instance, you can call its getroot ()
method to get the root Element node.

There's also an XML () function that takes a string literal and returns an
Element node (not an ElementTree). This function provides a tidy way to
incorporate XML fragments, approaching the convenience of an XML literal:

svg = ET.XML("""<svg width="10px" version="1.0">
</SVg>""")

svg.set('height', '320px"')

svg.append(eleml)

http://effbot.org/zone/element-index.htm

Each XML element supports some dictionary-like and some list-like access
methods. Dictionary-like operations are used to access attribute values, and list-
like operations are used to access child nodes.

Operation Result
elem[n] Returns n'th child element.
elem[m:n] Returns list of m'th through n'th child
elements.
len(elem) Returns number of child elements.
list(elem) Returns list of child elements.

elem.append(elem2)

Adds elem? as a child.

elem.insert(index,
elem2)

Inserts elem2 at the specified location.

del elem[n]

Deletes n'th child element.

elem.keys()

Returns list of attribute names.

elem.get (name)

Returns value of attribute name.

elem.set(name, value)

Sets new value for attribute name.

elem.attrib

Retrieves the dictionary containing
attributes.

del elem.attrib[name]

Deletes attribute name.

Comments and processing instructions are also represented as E1ement nodes.
To check if a node is a comment or processing instructions:

if elem.tag is ET.Comment:

elif elem.tag is ET.ProcessingInstruction:

To generate XML output, you should call the ElementTree.write()
method. Like parse(), it can take either a string or a file-like object:

Encoding is US-ASCII
tree.write('output.xml')

Encoding is UTF-8
f = open('output.xml',

lwl)

tree.write(f, encoding='utf-8'")

(Caution: the default encoding used for output is ASCII. For general XML work,

where an element's name may contain arbitrary Unicode characters, ASCII isn't
a very useful encoding because it will raise an exception if an element's name
contains any characters with values greater than 127. Therefore, it's best to
specify a different encoding such as UTF-8 that can handle any Unicode
character.)

This section is only a partial description of the ElementTree interfaces. Please
read the package's official documentation for more details.

See Also:

http://effbot.org/zone/element-index.htm
Official documentation for ElementTree.

http://effbot.org/zone/element-index.htm

13.3 The hashlib package

A new hashlib module, written by Gregory P. Smith, has been added to
replace the md5 and sha modules. hashlib adds support for additional secure
hashes (SHA-224, SHA-256, SHA-384, and SHA-512). When available, the
module uses OpenSSL for fast platform optimized implementations of
algorithms.

The old md5 and sha modules still exist as wrappers around hashlib to preserve
backwards compatibility. The new module's interface is very close to that of the
old modules, but not identical. The most significant difference is that the
constructor functions for creating new hashing objects are named differently.

0ld versions
md5.md5()

#
h
h md5.new()

New version
h = hashlib.md5()

0ld versions
sha.sha()
sha.new()

> o H

New version
= hashlib.shail()

S o

ash that weren't previously available
hashlib.sha224()
hashlib.sha256()
hashlib.sha384()
hashlib.sha512()

|1 T 1 T N s

g e Bl g <3

Alternative form
= hashlib.new('md5") # Provide algorithm as a string

S o

Once a hash object has been created, its methods are the same as before:
update (string) hashes the specified string into the current digest state,
digest() and hexdigest () return the digest value as a binary string or a
string of hex digits, and copy () returns a new hashing object with the same
digest state.

See Also:

../lib/module-hashlib.html
The documentation for the hash1lib module.

13.4 The sqglite3 package

The pysqlite module (http://www.pysqlite.org), a wrapper for the SQLite
embedded database, has been added to the standard library under the package
name sqlite3.

SQLite is a C library that provides a SQL-language database that stores data in
disk files without requiring a separate server process. pysqlite was written by
Gerhard Haring and provides a SQL interface compliant with the DB-API 2.0
specification described by PEP 249. This means that it should be possible to
write the first version of your applications using SQLite for data storage. If
switching to a larger database such as PostgreSQL or Oracle is later necessary,
the switch should be relatively easy.

If you're compiling the Python source yourself, note that the source tree doesn't
include the SQLite code, only the wrapper module. You'll need to have the
SQLite libraries and headers installed before compiling Python, and the build
process will compile the module when the necessary headers are available.

To use the module, you must first create a Connection object that represents
the database. Here the data will be stored in the /tmp/example file:

conn = sqlite3.connect('/tmp/example')

You can also supply the special name ": memory:" to create a database in
RAM.

Once you have a Connection, you can create a Cursor object and call its
execute() method to perform SQL commands:

c = conn.cursor()

Create table

c.execute('''create table stocks

(date timestamp, trans varchar, symbol varchar,
gty decimal, price decimal)''')

Insert a row of data
c.execute("""insert into stocks
values ('2006-01-05"', 'BUY', 'RHAT',100,35.14)""")

http://www.pysqlite.org
http://www.python.org/peps/pep-0249.html

Usually your SQL operations will need to use values from Python variables. You
shouldn't assemble your query using Python's string operations because doing so
is insecure; it makes your program vulnerable to an SQL injection attack.

Instead, use the DB-API's parameter substitution. Put "?" as a placeholder
wherever you want to use a value, and then provide a tuple of values as the
second argument to the cursor's execute () method. (Other database modules
may use a different placeholder, such as "%s" or ":1".) For example:

Never do this -- insecure!
symbol = 'IBM'
c.execute("... where symbol = '%s'" % symbol)

Do this instead
t = (symbol,)
c.execute('select * from stocks where symbol=?', t)

Larger example
for t in (('2006-03-28', 'BUY', 'IBM', 1000, 45.00),
('2006-04-05', 'BUY', 'MSOFT', 1000, 72.00),
('2006-04-06', 'SELL', 'IBM', 500, 53.00),
):

c.execute('insert into stocks values (?,?,?,?,?2)', t)

To retrieve data after executing a SELECT statement, you can either treat the
cursor as an iterator, call the cursor's fetchone () method to retrieve a single
matching row, or call fetchall () to get a list of the matching rows.

This example uses the iterator form:

>>> ¢ = conn.cursor()
>>> c.execute('select * from stocks order by price')
>>> for row in c:

print row

(u'2006-01-05', u'BUY', U'RHAT', 100, 35.140000000000001)
(u'2006-03-28', u'BUY', u'IBM', 1000, 45.0)
(u'2006-04-06', u'SELL', u'IBM', 500, 53.0)
(u'2006-04-05', u'BUY', u'MSOFT', 1000, 72.0)

>>>

For more information about the SQL dialect supported by SQLite, see
http://www.sqlite.org.

http://www.sqlite.org

See Also:

http://www.pysglite.org
The pysqlite web page.

http://www.sqlite.org
The SQLite web page; the documentation describes the syntax and the
available data types for the supported SQL dialect.

./lib/module-sqlite3.html
The documentation for the sqlite3 module.

PEP 249, Database API Specification 2.0
PEP written by Marc-André Lemburg.

http://www.pysqlite.org
http://www.sqlite.org
http://www.python.org/peps/pep-0249.html

13.5 The wsgiref package

The Web Server Gateway Interface (WSGI) v1.0 defines a standard interface
between web servers and Python web applications and is described in PEP 333.
The wsgiref package is a reference implementation of the WSGI
specification.

The package includes a basic HTTP server that will run a WSGI application; this
server is useful for debugging but isn't intended for production use. Setting up a
server takes only a few lines of code:

from wsgiref import simple_server

wsgi_app = ...
host = ''
port = 8000

httpd = simple_server.make_server(host, port, wsgi_app)
httpd.serve_forever()

See Also:

http://www.wsgi.org
A central web site for WSGI-related resources.

PEP 333, Python Web Server Gateway Interface v1.0
PEP written by Phillip J. Eby.

L T - What's New in Python 2.5 toc

COMTENTS
Previous: 12 Other Language Changes up: What's New in Python Next: 14
Build and C

Release 1.0.
See About this document... for information on suggesting changes.

http://www.python.org/peps/pep-0333.html
http://www.wsgi.org
http://www.python.org/peps/pep-0333.html

Previous: 13 New, Improved, and up: What's New in Python Next: 15 Porting
to Python

Subsections

e 14.1 Port-Specific Changes

14 Build and C API Changes

Changes to Python's build process and to the C API include:

e The Python source tree was converted from CVS to Subversion, in a
complex migration procedure that was supervised and flawlessly carried out
by Martin von Lowis. The procedure was developed as PEP 347.

e Coverity, a company that markets a source code analysis tool called
Prevent, provided the results of their examination of the Python source
code. The analysis found about 60 bugs that were quickly fixed. Many of
the bugs were refcounting problems, often occurring in error-handling code.
See http://scan.coverity.com for the statistics.

e The largest change to the C API came from PEP 353, which modifies the
interpreter to use a Py_ssize_t type definition instead of 1nt. See the
earlier section 10 for a discussion of this change.

e The design of the bytecode compiler has changed a great deal, no longer
generating bytecode by traversing the parse tree. Instead the parse tree is
converted to an abstract syntax tree (or AST), and it is the abstract syntax
tree that's traversed to produce the bytecode.

It's possible for Python code to obtain AST objects by using the
compile() built-in and specifying _ast .PyCF_ONLY_AST as the
value of the flags parameter:

from _ast import PyCF_ONLY_AST
ast = compile("""a=0
for 1 in range(10):
a +=1
e "<string>", 'exec', PyCF_ONLY_AST)

assignment = ast.body[0]
for_loop = ast.body[1]

No official documentation has been written for the AST code yet, but PEP
339 discusses the design. To start learning about the code, read the
definition of the various AST nodes in Parser/Python.asdl. A Python

http://www.python.org/peps/pep-0347.html
http://scan.coverity.com
http://www.python.org/peps/pep-0353.html
http://www.python.org/peps/pep-0339.html

script reads this file and generates a set of C structure definitions in
Include/Python-ast.h. The PyParser_ASTFromString() and
PyParser_ASTFromFile(), defined in Include/pythonrun.h, take
Python source as input and return the root of an AST representing the
contents. This AST can then be turned into a code object by
PyAST_Compile(). For more information, read the source code, and
then ask questions on python-dev.

The AST code was developed under Jeremy Hylton's management, and
implemented by (in alphabetical order) Brett Cannon, Nick Coghlan, Grant
Edwards, John Ehresman, Kurt Kaiser, Neal Norwitz, Tim Peters, Armin
Rigo, and Neil Schemenauer, plus the participants in a number of AST
sprints at conferences such as PyCon.

Evan Jones's patch to obmalloc, first described in a talk at PyCon DC 2005,
was applied. Python 2.4 allocated small objects in 256K-sized arenas, but
never freed arenas. With this patch, Python will free arenas when they're
empty. The net effect is that on some platforms, when you allocate many
objects, Python's memory usage may actually drop when you delete them
and the memory may be returned to the operating system. (Implemented by
Evan Jones, and reworked by Tim Peters.)

Note that this change means extension modules must be more careful when
allocating memory. Python's API has many different functions for
allocating memory that are grouped into families. For example,
PyMem_Malloc(), PyMem_Realloc(), and PyMem_Free() are one
family that allocates raw memory, while PyObject_Malloc(),
PyObject_Realloc(), and PyObject_Free() are another family
that's supposed to be used for creating Python objects.

Previously these different families all reduced to the platform's malloc ()
and free() functions. This meant it didn't matter if you got things wrong
and allocated memory with the PyMem function but freed it with the
PyObject function. With 2.5's changes to obmalloc, these families now
do different things and mismatches will probably result in a segfault. You
should carefully test your C extension modules with Python 2.5.

The built-in set types now have an official C API. Call PySet_New() and
PyFrozenSet_New() to create a new set, PySet_Add() and

PySet_Discard() to add and remove elements, and
PySet_Contains and PySet_Size to examine the set's state.
(Contributed by Raymond Hettinger.)

C code can now obtain information about the exact revision of the Python
interpreter by calling the Py_GetBuildInfo() function that returns a
string of build information like this: "trunk:45355:45356M, Apr
13 2006, 07:42:19". (Contributed by Barry Warsaw.)

Two new macros can be used to indicate C functions that are local to the
current file so that a faster calling convention can be used.

Py_LOCAL (type) declares the function as returning a value of the
specified type and uses a fast-calling qualifier.
Py_LOCAL_INLINE((type) does the same thing and also requests the
function be inlined. If PY_LOCAL_AGGRESSIVE is defined before
python.h is included, a set of more aggressive optimizations are enabled
for the module; you should benchmark the results to find out if these
optimizations actually make the code faster. (Contributed by Fredrik Lundh
at the NeedForSpeed sprint.)

PYErr_NewException(name, base, dict) can now accept a tuple of
base classes as its base argument. (Contributed by Georg Brandl.)

The PyErr_Warn() function for issuing warnings is now deprecated in
favour of PYErr_WarnEx(category, message, stacklevel)
which lets you specify the number of stack frames separating this function
and the caller. A stacklevel of 1 is the function calling PyErr_WarnEx(),
2 is the function above that, and so forth. (Added by Neal Norwitz.)

The CPython interpreter is still written in C, but the code can now be
compiled with a C++ compiler without errors. (Implemented by Anthony
Baxter, Martin von Lowis, Skip Montanaro.)

The PyRange_New() function was removed. It was never documented,
never used in the core code, and had dangerously lax error checking. In the
unlikely case that your extensions were using it, you can replace it by
something like the following:

range = PyObject_CallFunction((PyObject*) &PyRange_Type, "111",
start, stop, step);

14.1 Port-Specific Changes

e MacOS X (10.3 and higher): dynamic loading of modules now uses the
dlopen() function instead of MacOS-specific functions.

e MacOS X: a --enable-universalsdk switch was added to the configure
script that compiles the interpreter as a universal binary able to run on both
PowerPC and Intel processors. (Contributed by Ronald Oussoren.)

e Windows: .dll is no longer supported as a filename extension for extension
modules. .pyd is now the only filename extension that will be searched for.

«1T-> What's New in Python 2.5 toc
Previous: 13 New, Improved, and up: What's New in Python Next: 15 Porting
to Python

Release 1.0.
See About this document... for information on suggesting changes.

Previous: 14 Build and C Up: What's New in Python Next: 1_6
Acknowledgements

15 Porting to Python 2.5

This section lists previously described changes that may require changes to your
code:

ASCII is now the default encoding for modules. It's now a syntax error if a
module contains string literals with 8-bit characters but doesn't have an
encoding declaration. In Python 2.4 this triggered a warning, not a syntax
erTor.

Previously, the gi_ frame attribute of a generator was always a frame
object. Because of the PEP 342 changes described in section 7, it's now
possible for gi_frame to be None.

A new warning, UnicodeWarning, is triggered when you attempt to
compare a Unicode string and an 8-bit string that can't be converted to
Unicode using the default ASCII encoding. Previously such comparisons
would raise a UnicodeDecodeError exception.

Library: the csv module is now stricter about multi-line quoted fields. If
your files contain newlines embedded within fields, the input should be
split into lines in a manner which preserves the newline characters.

Library: the 1locale module's format () function's would previously
accept any string as long as no more than one %char specifier appeared. In
Python 2.5, the argument must be exactly one %char specifier with no
surrounding text.

Library: The pickle and cPickle modules no longer accept a return
value of None from the __reduce___() method; the method must return
a tuple of arguments instead. The modules also no longer accept the
deprecated bin keyword parameter.

Library: The SimpleXMLRPCServer and DOCXMLRPCServer classes
now have a rpc_paths attribute that constrains XML-RPC operations to
a limited set of URL paths; the default is to allow only ' /"' and ' /RPC2".
Setting rpc_paths to None or an empty tuple disables this path

http://www.python.org/peps/pep-0342.html

checking.

e C API: Many functions now use Py_ssize_t instead of int to allow
processing more data on 64-bit machines. Extension code may need to
make the same change to avoid warnings and to support 64-bit machines.
See the earlier section 10 for a discussion of this change.

e C API: The obmalloc changes mean that you must be careful to not mix
usage of the PyMem_* () and PyObject_* () families of functions.
Memory allocated with one family's *_Malloc () must be freed with the
corresponding family's *_Free () function.

L T - What's New in Python 2.5 toc

CCMTENTS
Previous: 14 Build and C Up: What's New in Python Next: 16
Acknowledgements

Release 1.0.
See About this document... for information on suggesting changes.

N Acknowledgements
Up: Python Documentation Index

Acknowledgements

These people have contributed in some way to the Python documentation. This
list is probably not complete -- if you feel that you or anyone else should be on
this list, please let us know (send email to docs@python.org), and we will be
glad to correct the problem.

It is only with the input and contributions of the Python community that Python
has such wonderful documentation -- Thank You!

Marc-AndrA©

Aahz Jonathan Giddy Lemburg Hugh Sasse
Michael Abbott Shelley Gooch ~ Ulf A. Lindgren Bob Savage
Steve Alexander Nathaniel Gray = Everett Lipman Scott Schram

Jim Ahlstrom Grant Griffin Mirko Liss Neil
Schemenauer
Fred Allen Thomas Guettler Martin von LAYwis Barry Scott
A. Amoroso Anders . Fredrik Lundh Joakim
Hammarquist Sernbrant
Pehr Anderson Mark Hammond Jeff MacDonald Justin Sheehy
Oliver Andrich Harald Hanche- John Machin Michael Simcich
Olsen
%o X Ionel
JesA°s Cea AviA3n Manus Hand Andrew Maclntyre .
Simionescu
Daniel Barclay Gerhard HAcring Vladimir Gregory P. Smith
Marangozov
Chris Barker Iravis B. Vincent Marchetti Roy Smith
Hartwell
Don Bashford Janko Hauser Laura Matson Clay Spence

Anthony Baxter =~ Bernhard Herzog Daniel May Nicholas Spies

Magnus L. Tage Stabell-
Bennett Benson Hetland Doug Mennella Kulo
Jonathan Black Konrad Hinsen Paolo Milani Frank Stajano
Stefan

Robin Boerdijk Skip Montanaro Anthony Starks

Hoffmeister

mailto:docs@python.org

Michal Bozon
Aaron Brancotti

Keith Briggs

Lee Busby

Lorenzo M. Catucci
Mauro Cicognini
Gilles Civario
Mike Clarkson

Steve Clift

Dave Cole
Matthew Cowles
Jeremy Craven
Andrew Dalke
Ben Darnell

L. Peter Deutsch

Robert Donohue
Fred L. Drake, Jr.
Jeff Epler
Michael Ernst

Blame Andy
Eskilsson

Carey Evans
Martijn Faassen
Carl Feynman

HernA jn MartAnez
Foffani

Stefan Franke
Jim Fulton

Peter Funk

Albert Hofkamp Paul Moore Greg Stein
Gregor Hoffleit Ross Moore Peter Stoehr
Steve Holden Sjoerd Mullender Mark.
Summerfield
Thomas. Dale Nagata Reuben Sumner
Holenstein
Gerrit Holl Ng Pheng Siong Kalle Svensson
Rob Hooft Koray Oner Jim Tittsler

Brian Hooper =~ Tomas Oppelstrup ~ Ville Vainio
Randall Hopper Denis S. Otkidach ~ Martijn Vries

. Zooko Charles G.
Michael Hudson O'Whielacronx Waldman
Eric Huss William Park Greg Ward
Jeremy Hylton Joonas Paalasmaa Barry Warsaw
Roger Irwin Harri Pasanen Corran Webster
Jack Jansen Bo Peng Glyn Webster
Philip H. Jensen Tim Peters Bob Weiner
Pefiro Diaz Christopher Petrilli Eddy Welbourne
Jimenez
Kent Johnson Justin D. Pettit ~ Mats Wichmann
Lucas de Jonge Chris Phoenix Gerry Wiener
Andreas Jung FranA§ois Pinard Timothy Wild
Robert Kern Paul Prescod Collin Winter
Jim Kerr Eric S. Raymond Blake Winton
Jan Kim Edward K. Ream Dan Wolfe

Greg Kochanski Sean Reifschneider ~ Steven Work
Guido Kollerie Bernhard Reiter = Thomas Wouters

Peter A. Koren Armin Rigo Ka-Ping Yee
Daniel Kozan Wes Rishel Rory Yorke
Andrew M. Jim Roskind Moshe Zadka
Kuchling

Dave Kuhlman Guido van Rossum Milan Zamazal

Lele Gaifax Erno Kuusela Donald Wallace Cheng Zhang

Rouse II
Matthew Gallagher = Detlef Lannert Nick Russo
Ben Gertzfield Piers Lauder Chris Ryland

Nadim Ghaznavi Glyph Lefkowitz =~ Constantina S.

N Acknowledgements
Up: Python Documentation Index

See About this document... for information on suggesting changes.

up: Python Documentation Index Next: Front Matter

Python Tutorial

Guido van Rossum
Python Software Foundation Email: docs@python.org
Fred L. Drake, Jr., editor

Release 2.5
19th September, 2006

Front Matter
Contents

1. Whetting Your Appetite
2. Using the Python Interpreter
o 2.1 Invoking the Interpreter
m 2.1.1 Argument Passing
m 2.1.2 Interactive Mode
o 2.2 The Interpreter and Its Environment
m 2.2.1 Error Handling

m 2.2.2 Executable Python Scripts
m 2.2.3 Source Code Encoding

m 2.2.4 The Interactive Startup File
e 3. An Informal Introduction to Python
o 3.1 Using Python as a Calculator
= 3.1.1 Numbers
= 3.1.2 Strings
m 3.1.3 Unicode Strings
m 3.1.4 Lists
o 3.2 First Steps Towards Programming
e 4. More Control Flow Tools
o 4.1 if Statements
o 4.2 for Statements
o 4.3 The range() Function

4.4 break and continue Statements, and e1se_Clauses on L.oops
4.5 pass Statements

4.6 Defining Functions

4.7 More on Defining Functions
4.7.1 Default Argument Values

4.7.2 Keyword Arguments
4.7.3 Arbitrary Argument Lists
4.7.4 Unpacking Argument Lists
4.7.5 Lambda Forms
4.7.6 Documentation Strings
e 5. Data Structures

o 5.1 More on Lists

m 5.1.1 Using Lists as Stacks

m 5.1.2 Using Lists as Queues
m 5.1.3 Functional Programming Tools

m 5.1.4 List Comprehensions
5.2 The del statement
5.3 Tuples and Sequences
5.4 Sets
5.5 Dictionaries

5.6 Looping Techniques
5.7 More on Conditions

5.8 Comparing Sequences and Other Types
e 6. Modules
o 6.1 More on Modules
m 6.1.1 The Module Search Path
m 6.1.2 "Compiled" Python files
o 6.2 Standard Modules
o 6.3 The dir () Function
o 6.4 Packages
m 6.4.1 Importing * From a Package
m 6.4.2 Intra-package References

m 6.4.3 Packages in Multiple Directories

e 7. Input and Output
o 7.1 Fancier Output Formatting

o 7.2 Reading and Writing Files
m 7.2.1 Methods of File Objects
m 7.2.2 The pickle Module

0O O O o

O O O O O O O

e 8. Errors and Exceptions
8.1 Syntax Errors

8.2 Exceptions

8.3 Handling Exceptions

8.4 Raising Exceptions

8.5 User-defined Exceptions

8.6 Defining Clean-up Actions

8.7 Predefined Clean-up Actions

e 9. Classes
o 9.1 A Word About Terminology
o 9.2 Python Scopes and Name Spaces
o 9.3 A First I.ook at Classes

m 9.3.1 Class Definition Syntax

= 9.3.2 Class Objects
m 9.3.3 Instance Objects

= 9.3.4 Method Objects
9.4 Random Remarks
9.5 Inheritance
= 9.5.1 Multiple Inheritance
9.6 Private Variables
9.7 Odds and Ends
9.8 Exceptions Are Classes Too
9.9 Iterators
9.10 Generators
9.11 Generator Expressions
e 10. Brief Tour of the Standard Library

10.1 Operating System Interface
10.2 File Wildcards

10.3 Command Line Arguments
10.4 Error Output Redirection and Program Termination

10.5 String Pattern Matching

10.6 Mathematics

10.7 Internet Access

10.8 Dates and Times

10.9 Data Compression

10.10 Performance Measurement

10.11 Quality Control

10.12 Batteries Included

e 11. Brief Tour of the Standard Library - Part IT

(¢]

O O O O O o

(¢]

(¢]

o O O O o o

O 0O O O 0O 0O 0O o o o o o

11.1 Output Formatting

11.2 Templating
11.3 Working with Binary Data Record Layouts
11.4 Multi-threading
11.5 Logging
11.6 Weak References
11.7 Tools for Working with Lists
11.8 Decimal Floating Point Arithmetic
12. What Now?
A. Interactive Input Editing and History Substitution
o A.l1 Line Editing
o A.2 History Substitution
o A.3 Key Bindings
o A.4 Commentary
B. Floating Point Arithmetic: Issues and Limitations
o B.1 Representation Error
C. History and License
o C.1 History of the software
o (.2 Terms and conditions for accessing or otherwise using Python
o C.3 Licenses and Acknowledgements for Incorporated Software
C.3.1 Mersenne Twister
C.3.2 Sockets
C.3.3 Floating point exception control
C.3.4 MD5 message digest algorithm
C.3.5 Asynchronous socket services

C.3.6 Cookie management

C.3.7 Profiling
C.3.8 Execution tracing

C.3.9 UUencode and UUdecode functions
C.3.10 XML Remote Procedure Calls

e D. Glossary

e Index

e About this document ...

O O o o 0O o o o

«1T-> Python Tutorial toc i
up: Python Documentation Index Next: Front Matter

Release 2.5, documentation updated on 19th September, 2006.

See About this document... for information on suggesting changes.

Previous: Contents up: Python Tutorial Next: 2. Using the Python

1. Whetting Your Appetite

If you do much work on computers, eventually you find that there's some task
you'd like to automate. For example, you may wish to perform a search-and-
replace over a large number of text files, or rename and rearrange a bunch of
photo files in a complicated way. Perhaps you'd like to write a small custom
database, or a specialized GUI application, or a simple game.

If you're a professional software developer, you may have to work with several
C/C++/Java libraries but find the usual write/compile/test/re-compile cycle is too
slow. Perhaps you're writing a test suite for such a library and find writing the
testing code a tedious task. Or maybe you've written a program that could use an
extension language, and you don't want to design and implement a whole new
language for your application.

Python is just the language for you.

You could write a Unix shell script or Windows batch files for some of these
tasks, but shell scripts are best at moving around files and changing text data, not
well-suited for GUI applications or games. You could write a C/C++/Java
program, but it can take a lot of development time to get even a first-draft
program. Python is simpler to use, available on Windows, MacOS X, and Unix
operating systems, and will help you get the job done more quickly.

Python is simple to use, but it is a real programming language, offering much
more structure and support for large programs than shell scripts or batch files can
offer. On the other hand, Python also offers much more error checking than C,
and, being a very-high-level language, it has high-level data types built in, such
as flexible arrays and dictionaries. Because of its more general data types Python
is applicable to a much larger problem domain than Awk or even Perl, yet many
things are at least as easy in Python as in those languages.

Python allows you to split your program into modules that can be reused in other
Python programs. It comes with a large collection of standard modules that you
can use as the basis of your programs -- or as examples to start learning to
program in Python. Some of these modules provide things like file I/O, system
calls, sockets, and even interfaces to graphical user interface toolkits like Tk.

Python is an interpreted language, which can save you considerable time during
program development because no compilation and linking is necessary. The
interpreter can be used interactively, which makes it easy to experiment with
features of the language, to write throw-away programs, or to test functions
during bottom-up program development. It is also a handy desk calculator.

Python enables programs to be written compactly and readably. Programs
written in Python are typically much shorter than equivalent C, C++, or Java
programs, for several reasons:

¢ the high-level data types allow you to express complex operations in a
single statement;

e statement grouping is done by indentation instead of beginning and ending
brackets;

¢ no variable or argument declarations are necessary.

Python is extensible: if you know how to program in C it is easy to add a new
built-in function or module to the interpreter, either to perform critical operations
at maximum speed, or to link Python programs to libraries that may only be
available in binary form (such as a vendor-specific graphics library). Once you
are really hooked, you can link the Python interpreter into an application written
in C and use it as an extension or command language for that application.

By the way, the language is named after the BBC show ""Monty Python's Flying
Circus" and has nothing to do with nasty reptiles. Making references to Monty
Python skits in documentation is not only allowed, it is encouraged!

Now that you are all excited about Python, you'll want to examine it in some
more detail. Since the best way to learn a language is to use it, the tutorial invites
you to play with the Python interpreter as you read.

In the next chapter, the mechanics of using the interpreter are explained. This is
rather mundane information, but essential for trying out the examples shown
later.

The rest of the tutorial introduces various features of the Python language and
system through examples, beginning with simple expressions, statements and
data types, through functions and modules, and finally touching upon advanced
concepts like exceptions and user-defined classes.

«1T-> Python Tutorial toc i
Previous: Contents up: Python Tutorial Next: 2. Using the Python

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 1. Whetting Your Appetite up: Python Tutorial Next: 3. An Informal
Introduction

Subsections

e 2.1 Invoking the Interpreter

o 2.1.1 Argument Passing

o 2.1.2 Interactive Mode
e 2.2 The Interpreter and Its Environment
2.2.1 Error Handling

2.2.2 Executable Python Scripts
2.2.3 Source Code Encoding

2.2.4 The Interactive Startup File

O O O O

2. Using the Python Interpreter

2.1 Invoking the Interpreter

The Python interpreter is usually installed as /usr/local/bin/python on those
machines where it is available; putting /usr/local/bin in your Unix shell's search
path makes it possible to start it by typing the command

python

to the shell. Since the choice of the directory where the interpreter lives is an
installation option, other places are possible; check with your local Python guru
or system administrator. (E.g., /usr/local/python is a popular alternative
location.)

On Windows machines, the Python installation is usually placed in
C:\Python24, though you can change this when you're running the installer. To
add this directory to your path, you can type the following command into the
command prompt in a DOS box:

set path=%path%;C:\python24

Typing an end-of-file character (Control-D on UNIX, Control-Z on Windows) at
the primary prompt causes the interpreter to exit with a zero exit status. If that
doesn't work, you can exit the interpreter by typing the following commands:
"import sys; sys.exit()".

The interpreter's line-editing features usually aren't very sophisticated. On Unix,
whoever installed the interpreter may have enabled support for the GNU readline
library, which adds more elaborate interactive editing and history features.
Perhaps the quickest check to see whether command line editing is supported is
typing Control-P to the first Python prompt you get. If it beeps, you have
command line editing; see Appendix A for an introduction to the keys. If nothing
appears to happen, or if P is echoed, command line editing isn't available; you'll
only be able to use backspace to remove characters from the current line.

The interpreter operates somewhat like the Unix shell: when called with standard
input connected to a tty device, it reads and executes commands interactively;
when called with a file name argument or with a file as standard input, it reads
and executes a script from that file.

A second way of starting the interpreter is "python -c¢ command [arg]

. . . ", which executes the statement(s) in command, analogous to the shell's -c
option. Since Python statements often contain spaces or other characters that are
special to the shell, it is best to quote command in its entirety with double
quotes.

Some Python modules are also useful as scripts. These can be invoked using
"python -m module [arg] ...", which executes the source file for
module as if you had spelled out its full name on the command line.

Note that there is a difference between "python file" and "python
<file". In the latter case, input requests from the program, such as calls to
input() and raw_input (), are satisfied from file. Since this file has
already been read until the end by the parser before the program starts executing,
the program will encounter end-of-file immediately. In the former case (which is
usually what you want) they are satisfied from whatever file or device is
connected to standard input of the Python interpreter.

When a script file is used, it is sometimes useful to be able to run the script and
enter interactive mode afterwards. This can be done by passing -i before the
script. (This does not work if the script is read from standard input, for the same
reason as explained in the previous paragraph.)

2.1.1 Argument Passing

When known to the interpreter, the script name and additional arguments
thereafter are passed to the script in the variable sys.argv, which is a list of
strings. Its length is at least one; when no script and no arguments are given,
sys.argv|[0] is an empty string. When the script name is given as ' - '
(meaning standard input), Sys.argv[0] issetto '-"'. When -c command is
used, sys.argv[0] issetto ' -c'. When -m module is used, sys.argv[0]
is set to the full name of the located module. Options found after -c command or
-m module are not consumed by the Python interpreter's option processing but

left in sys.argv for the command or module to handle.

2.1.2 Interactive Mode

When commands are read from a tty, the interpreter is said to be in interactive
mode. In this mode it prompts for the next command with the primary prompt,
usually three greater-than signs (">>> "); for continuation lines it prompts with
the secondary prompt, by default three dots (". . . "). The interpreter prints a
welcome message stating its version number and a copyright notice before
printing the first prompt:

python

Python 1.5.2b2 (#1, Feb 28 1999, 00:02:06) [GCC 2.8.1] on sunos5
Copyright 1991-1995 Stichting Mathematisch Centrum, Amsterdam

>>>

Continuation lines are needed when entering a multi-line construct. As an
example, take a look at this 1f statement:

>>> the _world_is flat = 1
>>> if the_world_is_flat:
print "Be careful not to fall off!"

éé.careful not to fall off!

2.2 The Interpreter and Its
Environment

2.2.1 Error Handling

When an error occurs, the interpreter prints an error message and a stack trace.
In interactive mode, it then returns to the primary prompt; when input came from
a file, it exits with a nonzero exit status after printing the stack trace. (Exceptions
handled by an except clause in a try statement are not errors in this context.)
Some errors are unconditionally fatal and cause an exit with a nonzero exit; this
applies to internal inconsistencies and some cases of running out of memory. All
error messages are written to the standard error stream; normal output from
executed commands is written to standard output.

Typing the interrupt character (usually Control-C or DEL) to the primary or
secondary prompt cancels the input and returns to the primary prompt.2Typing
an interrupt while a command is executing raises the KeyboardInterrupt
exception, which may be handled by a try statement.

2.2.2 Executable Python Scripts

On BSD'ish Unix systems, Python scripts can be made directly executable, like
shell scripts, by putting the line

#! /usr/bin/env python

(assuming that the interpreter is on the user's PATH) at the beginning of the
script and giving the file an executable mode. The "#!" must be the first two
characters of the file. On some platforms, this first line must end with a Unix-
style line ending ("\n"), not a Mac OS ("\r") or Windows ("\r\n") line
ending. Note that the hash, or pound, character, "#", is used to start a comment
in Python.

The script can be given an executable mode, or permission, using the chmod
command:

$ chmod +x myscript.py

2.2.3 Source Code Encoding

It is possible to use encodings different than ASCII in Python source files. The
best way to do it is to put one more special comment line right after the #! line
to define the source file encoding:

-*- coding: encoding -*-

With that declaration, all characters in the source file will be treated as having
the encoding encoding, and it will be possible to directly write Unicode string
literals in the selected encoding. The list of possible encodings can be found in
the Python Library Reference, in the section on codecs.

For example, to write Unicode literals including the Euro currency symbol, the
ISO-8859-15 encoding can be used, with the Euro symbol having the ordinal
value 164. This script will print the value 8364 (the Unicode codepoint
corresponding to the Euro symbol) and then exit:

-*- coding: is0-8859-15 -*-

currency = u"€"
print ord(currency)

If your editor supports saving files as UTF - 8 with a UTF-8 byte order mark (aka
BOM), you can use that instead of an encoding declaration. IDLE supports this
capability if Options/General/Default Source Encoding/UTF-8
is set. Notice that this signature is not understood in older Python releases (2.2
and earlier), and also not understood by the operating system for script files with
#! lines (only used on UNix systems).

By using UTF-8 (either through the signature or an encoding declaration),
characters of most languages in the world can be used simultaneously in string
literals and comments. Using non-ASCII characters in identifiers is not
supported. To display all these characters properly, your editor must recognize
that the file is UTF-8, and it must use a font that supports all the characters in the
file.

2.2.4 The Interactive Startup File

When you use Python interactively, it is frequently handy to have some standard
commands executed every time the interpreter is started. You can do this by
setting an environment variable named PYTHONSTARTUP to the name of a file
containing your start-up commands. This is similar to the .profile feature of the
Unix shells.

This file is only read in interactive sessions, not when Python reads commands
from a script, and not when /dev/tty is given as the explicit source of commands
(which otherwise behaves like an interactive session). It is executed in the same
namespace where interactive commands are executed, so that objects that it
defines or imports can be used without qualification in the interactive session.
You can also change the prompts Sys.ps1 and Sys.psZ2 in this file.

If you want to read an additional start-up file from the current directory, you can
program this in the global start-up file using code like "1if
os.path.isfile('.pythonrc.py'):
execfile('.pythonrc.py')". If you want to use the startup file in a
script, you must do this explicitly in the script:

import os

filename = os.environ.get('PYTHONSTARTUP')

if filename and os.path.isfile(filename):
execfile(filename)

Footnhotes

... prompt.21
A problem with the GNU Readline package may prevent this.

«1T-> Python Tutorial toc i

COMTENTS IHDEX
Previous: 1. Whetting Your Appetite up: Python Tutorial Next: 3. An Informal
Introduction

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 2. USing the Python up: Python Tutorial Next: 4. More Control Flow

Subsections

e 3.1 Using Python as a Calculator
o 3.1.1 Numbers
o 3.1.2 Strings
o 3.1.3 Unicode Strings
o 3.1.4 Lists
e 3.2 First Steps Towards Programming

3. An Informal Introduction to
Python

In the following examples, input and output are distinguished by the presence or
absence of prompts (">>> "and"... "):torepeat the example, you must type
everything after the prompt, when the prompt appears; lines that do not begin
with a prompt are output from the interpreter. Note that a secondary prompt on a
line by itself in an example means you must type a blank line; this is used to end
a multi-line command.

Many of the examples in this manual, even those entered at the interactive
prompt, include comments. Comments in Python start with the hash character,
"#", and extend to the end of the physical line. A comment may appear at the
start of a line or following whitespace or code, but not within a string literal. A
hash character within a string literal is just a hash character.

Some examples:

this is the first comment

SPAM = 1 # and this is the second comment
... and now a third!

STRING = "# This is not a comment."

3.1 Using Python as a Calculator

Let's try some simple Python commands. Start the interpreter and wait for the
primary prompt, ">>> ", (It shouldn't take long.)

3.1.1 Numbers

The interpreter acts as a simple calculator: you can type an expression at it and it
will write the value. Expression syntax is straightforward: the operators +, -, *
and / work just like in most other languages (for example, Pascal or C);
parentheses can be used for grouping. For example:

>>> 242

4

>>> # This is a comment

L. 242

4

>>> 2+2 # and a comment on the same line as code
4

>>> (50-5*6)/4

5

>>> # Integer division returns the floor:
... 7/3

2

>>> 7/-3

-3

The equal sign ("=") is used to assign a value to a variable. Afterwards, no result
is displayed before the next interactive prompt:

>>> width = 20

>>> height = 5*9
>>> width * height
900

A value can be assigned to several variables simultaneously:

>>> x =y =2z =0 # Zero X, y and z
>>> X

0
>>> y

0
>>> 7

0

There is full support for floating point; operators with mixed type operands
convert the integer operand to floating point:

>> 3 * 3,75 / 1.5
7.5

>>> 7.0 / 2
3.5

Complex numbers are also supported; imaginary numbers are written with a
suffix of "j" or "J". Complex numbers with a nonzero real component are
written as " (real+imagj)", or can be created with the "complex(real,
imag)" function.

>>> 17 * 13

(-1+073)

>>> 17 * complex(0,1)
(-1+073)

>>> 3+1j*3

(3+33)

>>> (3+1j)*3

(9+33)

>>> (1+23)/(1+13)
(1.5+0.5j)

Complex numbers are always represented as two floating point numbers, the real
and imaginary part. To extract these parts from a complex number z, use
z.realandz.imag.

>>> a=1.5+0.5j
>>> a.real
1.5

>>> a.imag

0.5

The conversion functions to floating point and integer (float (), int() and
long()) don't work for complex numbers -- there is no one correct way to
convert a complex number to a real number. Use abs(z) to get its magnitude
(as a float) or z. real to get its real part.

>>> a=3.0+4.0j
>>> float(a)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: can't convert complex to float; use abs(z)
>>> a.real
3.0
>>> a.imag
4.0
>>> abs(a) # sqrt(a.real**2 + a.imag**2)
5.0
>>>

In interactive mode, the last printed expression is assigned to the variable _. This
means that when you are using Python as a desk calculator, it is somewhat easier
to continue calculations, for example:

>>> tax = 12.5 / 100
>>> price = 100.50
>>> price * tax
12.5625

>>> price + _
113.0625

>>> round(_, 2)
113.06

>>>

This variable should be treated as read-only by the user. Don't explicitly assign a
value to it -- you would create an independent local variable with the same name
masking the built-in variable with its magic behavior.

3.1.2 Strings

Besides numbers, Python can also manipulate strings, which can be expressed in
several ways. They can be enclosed in single quotes or double quotes:

>>> 'spam eggs'

'spam eggs'

>>> 'doesn\'t'
"doesn't"

>>> "doesn't"

"doesn't"

>>> '"Yes," he said.'
'"Yes," he said.'

>>> "\"Yes,\" he said."
'"Yes," he said.'

>>> '"Isn\'t," she said.'
""Isn\'t," she said.'

String literals can span multiple lines in several ways. Continuation lines can be
used, with a backslash as the last character on the line indicating that the next
line is a logical continuation of the line:

hello = "This is a rather long string containing\n\
several lines of text just as you would do in C.\n\

Note that whitespace at the beginning of the line is\
significant."

print hello

Note that newlines still need to be embedded in the string using \n; the newline
following the trailing backslash is discarded. This example would print the
following:

This is a rather long string containing
several lines of text just as you would do in C.
Note that whitespace at the beginning of the line is significant

If we make the string literal a “"raw" string, however, the \n sequences are not
converted to newlines, but the backslash at the end of the line, and the newline
character in the source, are both included in the string as data. Thus, the
example:

hello = r"This is a rather long string containing\n\
several lines of text much as you would do in C."

print hello

would print:

This is a rather long string containing\n\
several lines of text much as you would do in C.

Or, strings can be surrounded in a pair of matching triple-quotes: or
End of lines do not need to be escaped when using triple-quotes, but they Wﬂl be
included in the string.

prlnt mmn

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

produces the following output:

Usage: thingy [OPTIONS]
-h Display this usage message
-H hostname Hostname to connect to

The interpreter prints the result of string operations in the same way as they are
typed for input: inside quotes, and with quotes and other funny characters
escaped by backslashes, to show the precise value. The string is enclosed in
double quotes if the string contains a single quote and no double quotes, else it's
enclosed in single quotes. (The print statement, described later, can be used to
write strings without quotes or escapes.)

Strings can be concatenated (glued together) with the + operator, and repeated
with *:

>>> word = 'Help' + 'A'

>>> word

'"HelpA'

>>> '<' 4+ word*5 + '>!

'<HelpAHelpAHelpAHelpAHelpA>'

Two string literals next to each other are automatically concatenated; the first
line above could also have been written "word = 'Help' 'A'"; this only
works with two literals, not with arbitrary string expressions:

>>> 'str' 'ing' # <- This is ok

'string'

>>> 'str'.strip() + 'ing' # <- This is ok
'string'
>>> 'str'.strip() 'ing' # <- This is invalid

File "<stdin>", line 1, in ?
'str'.strip() 'ing'
N
SyntaxError: invalid syntax

Strings can be subscripted (indexed); like in C, the first character of a string has
subscript (index) 0. There is no separate character type; a character is simply a
string of size one. Like in Icon, substrings can be specified with the slice
notation: two indices separated by a colon.

>>> word[4]
lAl

>>> word[0:2]
lHel

>>> word[2:4]
llpl

Slice indices have useful defaults; an omitted first index defaults to zero, an
omitted second index defaults to the size of the string being sliced.

>>> word[:2] # The first two characters

lHel

>>> word[2:] # Everything except the first two characters
llpAl

Unlike a C string, Python strings cannot be changed. Assigning to an indexed
position in the string results in an error:

>>> word[0] = 'x'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support item assignment
>>> word[:1] = 'Splat'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: object doesn't support slice assignment

However, creating a new string with the combined content is easy and efficient:

>>> 'x' + word[1:]
'xelpA'

>>> 'Splat' + word[4]
'SplatA’

Here's a useful invariant of slice operations: s[:1] + s[i1:] equals s.

>>> word[:2] + word[2:]
'"HelpA'
>>> word[:3] + word[3:]
'"HelpA'

Degenerate slice indices are handled gracefully: an index that is too large is
replaced by the string size, an upper bound smaller than the lower bound returns
an empty string.

>>> word[1:100]

'elpA'

>>> word[10:]

>>> word[2:1]

Indices may be negative numbers, to start counting from the right. For example:

T>T word[-1] # The last character

TQT word[-2] # The last-but-one character

TE>'word[-2:] # The last two characters

>Eé1word[:-2] # Everything except the last two characters
"Hel'

But note that -0 is really the same as 0, so it does not count from the right!

>>> word[-0] # (since -0 equals 0)
lHl

Out-of-range negative slice indices are truncated, but don't try this for single-
element (non-slice) indices:

>>> word[-100:]

'"HelpA'

>>> word[-10] # error

Traceback (most recent call last):
File "<stdin>", line 1, in ?

IndexError: string index out of range

The best way to remember how slices work is to think of the indices as pointing
between characters, with the left edge of the first character numbered 0. Then the
right edge of the last character of a string of n characters has index n, for

example:

e S
| Hl el l]p]|A]
S
e 1 2 3 4 5
-5 -4 -3 -2 -1

The first row of numbers gives the position of the indices 0...5 in the string; the
second row gives the corresponding negative indices. The slice from i to j
consists of all characters between the edges labeled i and j, respectively.

For non-negative indices, the length of a slice is the difference of the indices, if
both are within bounds. For example, the length of word[1:3] is 2.

The built-in function 1en() returns the length of a string:

>>> s = 'supercalifragilisticexpialidocious'
>>> len(s)
34

See Also:

Sequence Types
Strings, and the Unicode strings described in the next section, are

examples of sequence types, and support the common operations
supported by such types.

String Methods
Both strings and Unicode strings support a large number of methods
for basic transformations and searching.

String Formatting Operations
The formatting operations invoked when strings and Unicode strings
are the left operand of the % operator are described in more detail here.

3.1.3 Unicode Strings

Starting with Python 2.0 a new data type for storing text data is available to the
programmer: the Unicode object. It can be used to store and manipulate Unicode
data (see http://www.unicode.org/) and integrates well with the existing string
objects, providing auto-conversions where necessary.

Unicode has the advantage of providing one ordinal for every character in every
script used in modern and ancient texts. Previously, there were only 256 possible
ordinals for script characters. Texts were typically bound to a code page which
mapped the ordinals to script characters. This lead to very much confusion
especially with respect to internationalization (usually written as "118n" -- "1"
+ 18 characters + "n") of software. Unicode solves these problems by defining
one code page for all scripts.

Creating Unicode strings in Python is just as simple as creating normal strings:

>>> u'Hello World !'
u'Hello world !'

The small "u" in front of the quote indicates that a Unicode string is supposed to
be created. If you want to include special characters in the string, you can do so
by using the Python Unicode-Escape encoding. The following example shows
how:

>>> y'Hello\u6O®260World !'
u'Hello world !'

The escape sequence \u@020 indicates to insert the Unicode character with the
ordinal value 0x0020 (the space character) at the given position.

Other characters are interpreted by using their respective ordinal values directly
as Unicode ordinals. If you have literal strings in the standard Latin-1 encoding
that is used in many Western countries, you will find it convenient that the lower
256 characters of Unicode are the same as the 256 characters of Latin-1.

For experts, there is also a raw mode just like the one for normal strings. You
have to prefix the opening quote with 'ur' to have Python use the Raw-Unicode-
Escape encoding. It will only apply the above \UXXXX conversion if there is an

http://www.unicode.org/

uneven number of backslashes in front of the small 'u'.

>>> ur'Hello\u@O20World !'
u'Hello World !'

>>> ur 'Hello\\u0020World !'
u'Hello\\\\u0O26World !’

The raw mode is most useful when you have to enter lots of backslashes, as can
be necessary in regular expressions.

Apart from these standard encodings, Python provides a whole set of other ways
of creating Unicode strings on the basis of a known encoding.

The built-in function unicode () provides access to all registered Unicode
codecs (COders and DECoders). Some of the more well known encodings which
these codecs can convert are Latin-1, ASCII, UTF-8, and UTF-16. The latter two
are variable-length encodings that store each Unicode character in one or more
bytes. The default encoding is normally set to ASCII, which passes through
characters in the range 0 to 127 and rejects any other characters with an error.
When a Unicode string is printed, written to a file, or converted with str (),
conversion takes place using this default encoding.

>>S> U"abC"
u'abc'
>>> str(u"abc")
'abc'
>>S> ullé('jull
u'\xed\xfe6\xfc'
>>> str(u"aoa")
Traceback (most recent call last):
File "<stdin>", line 1, in ?
UnicodeEncodeError: 'ascii' codec can't encode characters in positic

To convert a Unicode string into an 8-bit string using a specific encoding,
Unicode objects provide an encode () method that takes one argument, the
name of the encoding. Lowercase names for encodings are preferred.

>>> u"aol" .encode('utf-8")
"\xc3\xa4\xc3\xb6\xc3\xbc'

If you have data in a specific encoding and want to produce a corresponding
Unicode string from it, you can use the unicode () function with the encoding
name as the second argument.

>>> unicode('\xc3\xa4\xc3\xb6\xc3\xbc', 'utf-8')
u'\xed\xf6\xfc'

3.1.4 Lists

Python knows a number of compound data types, used to group together other
values. The most versatile is the list, which can be written as a list of comma-

separated values (items) between square brackets. List items need not all have
the same type.

>>> a = ['spam', 'eggs', 100, 1234]
>>> a
['spam', 'eggs', 100, 1234]

Like string indices, list indices start at 0, and lists can be sliced, concatenated
and so on:

>>> a[0]

'spam'

>>> a[3]

1234

>>> a[-2]

100

>>> af[1:-1]

['eggs', 100]

>>> a[:2] + ['bacon', 2*2]
['spam', 'eggs', 'bacon', 4]
>>> 3*a[:3] + ['Boo!"']
['spam', 'eggs', 100, 'spam', 'eggs', 100, 'spam', 'eggs', 100, 'Boa

Unlike strings, which are immutable, it is possible to change individual elements
of a list:

>>> a

['spam', 'eggs', 100, 1234]
>>> a[2] = a[2] + 23

>>> a

['spam', 'eggs', 123, 1234]

Assignment to slices is also possible, and this can even change the size of the list
or clear it entirely:

>>> # Replace some items:
. ale:2] = [1, 12]

>>> a

[1, 12, 123, 1234]

>>> # Remove some:
.ale:2] =[]

>>> a
[123, 1234]
>>> # Insert some:
. a[1:1] = ['bletch', 'xyzzy']
>>> a
[123, 'bletch', 'xyzzy',6 1234]
>>> # Insert (a copy of) itself at the beginning
>>> a[:0] = a
>>> a
[123, 'bletch', 'xyzzy', 1234, 123, 'bletch',6 'xyzzy',6 1234]
>>> # Clear the list: replace all items with an empty list
>>> a[:] = []
>>> a

[]

The built-in function 1en () also applies to lists:

>>> len(a)
8

It is possible to nest lists (create lists containing other lists), for example:

>>> (q = [2, 3]

>>>p = [1, q, 4]

>>> len(p)

3

>>> p[1]

[2, 3]

>>> p[1][0]

2

>>> p[1].append('xtra') # See section 5.1
>>> p

[1, [2, 3, 'xtra'], 4]
>>> (

[2, 3, 'xtra']

Note that in the last example, p[1] and q really refer to the same object! We'll
come back to object semantics later.

3.2 First Steps Towards
Programming

Of course, we can use Python for more complicated tasks than adding two and
two together. For instance, we can write an initial sub-sequence of the Fibonacci
series as follows:

>>> # Fibonaccil series:
. # the sum of two elements defines the next

. a, b=o0, 1
>>> while b < 10:
print b

a, b =0b, atb

CUWNRRE- - -

This example introduces several new features.

e The first line contains a multiple assignment: the variables a and b
simultaneously get the new values 0 and 1. On the last line this is used
again, demonstrating that the expressions on the right-hand side are all
evaluated first before any of the assignments take place. The right-hand side
expressions are evaluated from the left to the right.

e The while loop executes as long as the condition (here: b < 10) remains
true. In Python, like in C, any non-zero integer value is true; zero is false.
The condition may also be a string or list value, in fact any sequence;
anything with a non-zero length is true, empty sequences are false. The test
used in the example is a simple comparison. The standard comparison
operators are written the same as in C: < (less than), > (greater than), ==
(equal to), <= (less than or equal to), >= (greater than or equal to) and ! =
(not equal to).

e The body of the loop is indented: indentation is Python's way of grouping
statements. Python does not (yet!) provide an intelligent input line editing

facility, so you have to type a tab or space(s) for each indented line. In
practice you will prepare more complicated input for Python with a text
editor; most text editors have an auto-indent facility. When a compound
statement is entered interactively, it must be followed by a blank line to
indicate completion (since the parser cannot guess when you have typed the
last line). Note that each line within a basic block must be indented by the
same amount.

e The print statement writes the value of the expression(s) it is given. It
differs from just writing the expression you want to write (as we did earlier
in the calculator examples) in the way it handles multiple expressions and
strings. Strings are printed without quotes, and a space is inserted between
items, so you can format things nicely, like this:

>>> i = 256*256
>>> print 'The value of i is', i
The value of i is 65536

A trailing comma avoids the newline after the output:

>>>a, b=0, 1

>>> while b < 1000:
print b,
a, b =0b, atb

112358 13 21 34 55 89 144 233 377 610 987

Note that the interpreter inserts a newline before it prints the next prompt if
the last line was not completed.

«1T-> Python Tutorial toc i
Previous: 2. Using the Python up: Python Tutorial Next: 4. More Control Flow

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3. An Informal Introduction up: Python Tutorial Next: 5. Data
Structures

Subsections

4.1 1f Statements

4.2 for Statements

4.3 The range (1) Function

4.4 break and continue Statements, and e1se_Clauses on L.oops
4.5 pass Statements

4.6 Defining Functions

4.7 More on Defining Functions
o 4.7.1 Default Argument Values

4.7.2 Keyword Arguments

4.7.3 Arbitrary Argument Lists
4.7.4 Unpacking Argument Lists
4.7.5 Lambda Forms

4.7.6 Documentation Strings

O O O O O

4. More Control Flow Tools

Besides the while statement just introduced, Python knows the usual control
flow statements known from other languages, with some twists.

4.1 if Statements

Perhaps the most well-known statement type is the 1T statement. For example:

>>> x = int(raw_input("Please enter an integer: "))
>>> if x < 0:
X =0

.. print 'Negative changed to zero'

. elif x == 0:

.. print 'Zero'

.elif x == 1:
.. print 'Single'

. else:

print 'More'

There can be zero or more e11if parts, and the else part is optional. The
keyword "elif"is short for “else if', and is useful to avoid excessive
indentation. An 1f ... elif ... elif ... sequence is a substitute for the switch
or case statements found in other languages.

4.2 for Statements

The for statement in Python differs a bit from what you may be used to in C or
Pascal. Rather than always iterating over an arithmetic progression of numbers
(like in Pascal), or giving the user the ability to define both the iteration step and
halting condition (as C), Python's for statement iterates over the items of any
sequence (a list or a string), in the order that they appear in the sequence. For
example (no pun intended):

>>> # Measure some strings:
... a=['cat', 'window', 'defenestrate']
>>> for x in a:
print x, len(x)
cat 3
window 6
defenestrate 12

It is not safe to modify the sequence being iterated over in the loop (this can only
happen for mutable sequence types, such as lists). If you need to modify the list
you are iterating over (for example, to duplicate selected items) you must iterate
over a copy. The slice notation makes this particularly convenient:

>>> for x in a[:]: # make a slice copy of the entire list
if len(x) > 6: a.insert(0, x)

>>> a

['defenestrate', 'cat', 'window', 'defenestrate']

4.3 The range () Function

If you do need to iterate over a sequence of numbers, the built-in function
range () comes in handy. It generates lists containing arithmetic progressions:

>>> range(10)
(6, 1, 2, 3, 4, 5, 6, 7, 8, 9]

The given end point is never part of the generated list; range (10) generates a
list of 10 values, the legal indices for items of a sequence of length 10. It is
possible to let the range start at another number, or to specify a different
increment (even negative; sometimes this is called the “step’):

>>> range(5, 10)

[5, 6, 7, 8, 9]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(-10, -100, -30)
[-10, -40, -70]

To iterate over the indices of a sequence, combine range() and len() as
follows:

>>> a = ['Mary', 'had', 'a', 'little', 'lamb']
>>> for 1 in range(len(a)):

print i, a[i]

Mary

had

a

little
lamb

ArOWONPRLRO- -

4.4 break and continue
Statements, and else Clauses on
Loops

The break statement, like in C, breaks out of the smallest enclosing for or
while loop.

The continue statement, also borrowed from C, continues with the next
iteration of the loop.

Loop statements may have an else clause; it is executed when the loop
terminates through exhaustion of the list (with for) or when the condition
becomes false (with while), but not when the loop is terminated by a break
statement. This is exemplified by the following loop, which searches for prime
numbers:

>>> for n in range(2, 10):
for x in range(2, n):
if n % x == 0O:
print n, 'equals', x, '*', n/Xx
break
else:
loop fell through without finding a factor
print n, 'is a prime number'

is a prime number
is a prime number
equals 2 * 2
is a prime number
equals 2 * 3
is a prime number
equals 2 * 4
equals 3 * 3

©CONODUBRWN:- = = = = = = =

4.5 pass Statements

The pass statement does nothing. It can be used when a statement is required
syntactically but the program requires no action. For example:

>>> while True:
pass # Busy-wait for keyboard interrupt

4.6 Defining Functions

We can create a function that writes the Fibonacci series to an arbitrary
boundary:

>>> def fib(n): # write Fibonacci series up to n
.. """Print a Fibonacci series up to n."""
a, b=o0, 1
while b < n:
print b,

a, b =0b, atb

>>> # Now call the function we just defined:
. fib(2000)
112 358 13 21 34 55 89 144 233 377 610 987 1597

The keyword def introduces a function definition. It must be followed by the
function name and the parenthesized list of formal parameters. The statements
that form the body of the function start at the next line, and must be indented.
The first statement of the function body can optionally be a string literal; this
string literal is the function's documentation string, or docstring.

There are tools which use docstrings to automatically produce online or printed
documentation, or to let the user interactively browse through code; it's good
practice to include docstrings in code that you write, so try to make a habit of it.

The execution of a function introduces a new symbol table used for the local
variables of the function. More precisely, all variable assignments in a function
store the value in the local symbol table; whereas variable references first look in
the local symbol table, then in the global symbol table, and then in the table of
built-in names. Thus, global variables cannot be directly assigned a value within
a function (unless named in a global statement), although they may be
referenced.

The actual parameters (arguments) to a function call are introduced in the local
symbol table of the called function when it is called; thus, arguments are passed
using call by value (where the value is always an object reference, not the value
of the object).2! When a function calls another function, a new local symbol
table is created for that call.

A function definition introduces the function name in the current symbol table.
The value of the function name has a type that is recognized by the interpreter as
a user-defined function. This value can be assigned to another name which can
then also be used as a function. This serves as a general renaming mechanism:

>>> fib

<function fib at 10042ed06>
>>> f = fib

>>> f(100)
112358 13 21 34 55 89

You might object that Tib is not a function but a procedure. In Python, like in C,
procedures are just functions that don't return a value. In fact, technically
speaking, procedures do return a value, albeit a rather boring one. This value is
called None (it's a built-in name). Writing the value None is normally
suppressed by the interpreter if it would be the only value written. You can see it
if you really want to:

>>> print fib(0)
None

It is simple to write a function that returns a list of the numbers of the Fibonacci
series, instead of printing it:

>>> def fib2(n): # return Fibonacci series up to n
. """Return a list containing the Fibonacci series up to n."""

result = []
a, b=o0, 1
while b < n:

result.append(b) # see below
a, b =0b, atb
return result

>>> 100 = fib2(100) # call it

>>> 100 # write the result
[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

This example, as usual, demonstrates some new Python features:

e The return statement returns with a value from a function. return
without an expression argument returns None. Falling off the end of a
procedure also returns None.

e The statement result.append(b) calls a method of the list object

result. A method is a function that “belongs' to an object and is named
obj.methodname, where 0bj is some object (this may be an
expression), and methodname is the name of a method that is defined by
the object's type. Different types define different methods. Methods of
different types may have the same name without causing ambiguity. (It is
possible to define your own object types and methods, using classes, as
discussed later in this tutorial.) The method append() shown in the
example is defined for list objects; it adds a new element at the end of the
list. In this example it is equivalent to "result = result + [b]", but

more efficient.

4.7 More on Defining Functions

It is also possible to define functions with a variable number of arguments. There
are three forms, which can be combined.

4.7.1 Default Argument Values

The most useful form is to specify a default value for one or more arguments.
This creates a function that can be called with fewer arguments than it is defined
to allow. For example:

def ask_ok(prompt, retries=4, complaint='Yes or no, please!'):
while True:
ok = raw_input(prompt)
if ok in ('y', 'ye', 'yes'): return True
if ok in ('n', 'no', 'nop', 'nope'): return False
retries = retries - 1
if retries < 0: raise IOError, 'refusenik user'
print complaint

This function can be called either like this: ask_ok('Do you really
want to quit?') orlike this: ask_ok('OK to overwrite the
file?', 2).

This example also introduces the 1n keyword. This tests whether or not a
sequence contains a certain value.

The default values are evaluated at the point of function definition in the
defining scope, so that

i=25

def f(arg=i):
print arg

will print 5.

Important warning: The default value is evaluated only once. This makes a
difference when the default is a mutable object such as a list, dictionary, or
instances of most classes. For example, the following function accumulates the
arguments passed to it on subsequent calls:

def f(a, L=[]):
L.append(a)
return L

print f(1)
print f(2)
print f(3)

This will print

[1]
[1, 2]
[1, 2, 3]

If you don't want the default to be shared between subsequent calls, you can
write the function like this instead:

def f(a, L=None):
if L is None:
L =11
L.append(a)
return L

4.7.2 Keyword Arguments

Functions can also be called using keyword arguments of the form "keyword =
value". For instance, the following function:

def parrot(voltage, state='a stiff', action='voom', type='Norwegian

print "-- This parrot wouldn't", action,

print "if you put", voltage, '"volts through it."
print "-- Lovely plumage, the", type

print "-- It's", state, "!"

could be called in any of the following ways:

parrot(1000)
parrot(action = 'VOOOOOM', voltage = 1000000)
parrot('a thousand', state = 'pushing up the daisies')

parrot('a million', 'bereft of life', 'jump')

but the following calls would all be invalid:

parrot() # required argument missing
parrot(voltage=5.0, 'dead') # non-keyword argument following keywor
parrot (110, voltage=220) # duplicate value for argument

parrot(actor='John Cleese') # unknown keyword

In general, an argument list must have any positional arguments followed by any
keyword arguments, where the keywords must be chosen from the formal
parameter names. It's not important whether a formal parameter has a default
value or not. No argument may receive a value more than once -- formal
parameter names corresponding to positional arguments cannot be used as
keywords in the same calls. Here's an example that fails due to this restriction:

>>> def function(a):
pass

>>> function(0, a=0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: function() got multiple values for keyword argument 'a'

When a final formal parameter of the form * *name is present, it receives a
dictionary containing all keyword arguments except for those corresponding to a
formal parameter. This may be combined with a formal parameter of the form

*name (described in the next subsection) which receives a tuple containing the
positional arguments beyond the formal parameter list. (* name must occur
before * *name.) For example, if we define a function like this:

def cheeseshop(kind, *arguments, **keywords):
print "-- Do you have any", kind, '?'
print "-- I'm sorry, we're all out of", kind
for arg in arguments: print arg
print '-'*40
keys = keywords.keys()
keys.sort()
for kw in keys: print kw, ':', keywords[kw]

It could be called like this:

cheeseshop('Limburger', "It's very runny, sir.",
"It's really very, VERY runny, sir.",
client="'John Cleese',
shopkeeper='Michael Palin',
sketch="'Cheese Shop Sketch')

and of course it would print:

-- Do you have any Limburger ?

-- I'm sorry, we're all out of Limburger
It's very runny, sir.

It's really very, VERY runny, sir.
client : John Cleese

shopkeeper : Michael Palin

sketch : Cheese Shop Sketch

Note that the sort () method of the list of keyword argument names is called
before printing the contents of the keywords dictionary; if this is not done, the
order in which the arguments are printed is undefined.

4.7.3 Arbitrary Argument Lists

Finally, the least frequently used option is to specify that a function can be called
with an arbitrary number of arguments. These arguments will be wrapped up in a
tuple. Before the variable number of arguments, zero or more normal arguments
may occur.

def fprintf(file, format, *args):
file.write(format % args)

4.7.4 Unpacking Argument Lists

The reverse situation occurs when the arguments are already in a list or tuple but
need to be unpacked for a function call requiring separate positional arguments.
For instance, the built-in range () function expects separate start and stop
arguments. If they are not available separately, write the function call with the *-
operator to unpack the arguments out of a list or tuple:

>>> range(3, 6) # normal call with separate arguments
[3, 4, 5]

>>> args = [3, 6]

>>> range(*args) # call with arguments unpacked from a 1i
[3, 4, 5]

In the same fashion, dictionaries can deliver keyword arguments with the * *-
operator:

>>> def parrot(voltage, state='a stiff', action='voom'):
print "-- This parrot wouldn't", action,
print "if you put", voltage, '"volts through it.",
print "E's", state, "!"

>>> d = {"voltage": "four million", "state": "bleedin' demised", "ac
>>> parrot(**d)
-- This parrot wouldn't VOOM if you put four million volts through i

4.7.5 Lambda Forms

By popular demand, a few features commonly found in functional programming
languages like Lisp have been added to Python. With the 1ambda keyword,
small anonymous functions can be created. Here's a function that returns the sum
of its two arguments: "lambda a, b: a+b". Lambda forms can be used
wherever function objects are required. They are syntactically restricted to a
single expression. Semantically, they are just syntactic sugar for a normal
function definition. Like nested function definitions, lambda forms can reference
variables from the containing scope:

>>> def make_incrementor(n):
return lambda x: X + n

>>> f = make_incrementor(42)
>>> f(0)

4.7.6 Documentation Strings

There are emerging conventions about the content and formatting of
documentation strings.

The first line should always be a short, concise summary of the object's purpose.
For brevity, it should not explicitly state the object's name or type, since these
are available by other means (except if the name happens to be a verb describing
a function's operation). This line should begin with a capital letter and end with a
period.

If there are more lines in the documentation string, the second line should be
blank, visually separating the summary from the rest of the description. The
following lines should be one or more paragraphs describing the object's calling
conventions, its side effects, etc.

The Python parser does not strip indentation from multi-line string literals in
Python, so tools that process documentation have to strip indentation if desired.
This is done using the following convention. The first non-blank line after the
first line of the string determines the amount of indentation for the entire
documentation string. (We can't use the first line since it is generally adjacent to
the string's opening quotes so its indentation is not apparent in the string literal.)
Whitespace "equivalent” to this indentation is then stripped from the start of all
lines of the string. Lines that are indented less should not occur, but if they occur
all their leading whitespace should be stripped. Equivalence of whitespace
should be tested after expansion of tabs (to 8 spaces, normally).

Here is an example of a multi-line docstring:

>>> def my_function():
"""Do nothing, but document it.

No, really, it doesn't do anything.

pass

>>> print my_function.__doc__
Do nothing, but document it.

No, really, it doesn't do anything.

Foothotes

... object).1

Actually, call by object reference would be a better description, since if a
mutable object is passed, the caller will see any changes the callee makes to
it (items inserted into a list).

COMTENTS INDEK
Previous: 3. An Informal Introduction up: Python Tutorial Next: 5. Data
Structures

«1T-> Python Tutorial toc i

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 4. More Control Flow up: Python Tutorial Next: 6. Modules

Subsections

e 5.1 More on Lists

o 5.1.1 Using Lists as Stacks

o 5.1.2 Using Lists as Queues
o 5.1.3 Functional Programming Tools

o 5.1.4 List Comprehensions
5.2 The del statement
5.3 Tuples and Sequences
5.4 Sets
5.5 Dictionaries

5.6 Looping Techniques

5.7 More on Conditions

5.8 Comparing Sequences and Other Types

5. Data Structures

This chapter describes some things you've learned about already in more detail,
and adds some new things as well.

5.1 More on Lists

The list data type has some more methods. Here are all of the methods of list
objects:

append(x)
Add an item to the end of the list; equivalentto a[len(a):] = [x].

extend(L)

Extend the list by appending all the items in the given list; equivalent to
a[len(a):] = L.

insert(i, x)
Insert an item at a given position. The first argument is the index of the
element before which to insert, so a.insert (0, x) inserts at the front
of the list,and a.insert(len(a), x) isequivalent to
a.append(x).

remove(x)

Remove the first item from the list whose value is x. It is an error if there is
no such item.

pop([i])
Remove the item at the given position in the list, and return it. If no index is
specified, a.pop() removes and returns the last item in the list. (The
square brackets around the i in the method signature denote that the
parameter is optional, not that you should type square brackets at that
position. You will see this notation frequently in the Python Library
Reference.)

index(x)
Return the index in the list of the first item whose value is x. It is an error if
there is no such item.

count(x)

Return the number of times x appears in the list.

sort()
Sort the items of the list, in place.

reverse()
Reverse the elements of the list, in place.

An example that uses most of the list methods:

>>> a = [66.25, 333, 333, 1, 1234.5]
>>> print a.count(333), a.count(66.25), a.count('x")
210

>>> a.insert(2, -1)

>>> a.append(333)

>>> a

[66.25, 333, -1, 333, 1, 1234.5, 333]
>>> a.index(333)

1

>>> a.remove(333)

>>> a

[66.25, -1, 333, 1, 1234.5, 333]

>>> a.reverse()

>>> a

[333, 1234.5, 1, 333, -1, 66.25]

>>> a.sort()

>>> a

[-1, 1, 66.25, 333, 333, 1234.5]

5.1.1 Using Lists as Stacks

The list methods make it very easy to use a list as a stack, where the last element
added is the first element retrieved (" last-in, first-out™"). To add an item to the top
of the stack, use append (). To retrieve an item from the top of the stack, use
pop () without an explicit index. For example:

>>> stack = [3, 4, 5]
>>> stack.append(6)
>>> stack.append(7)
>>> stack

[3, 4, 5, 6, 7]
>>> stack.pop()

.

>>> stack

[3, 4, 5, 6]

>>> stack.pop()

6

>>> stack.pop()

5

>>> stack

[3, 4]

5.1.2 Using Lists as Queues

You can also use a list conveniently as a queue, where the first element added is
the first element retrieved (" first-in, first-out"). To add an item to the back of the
queue, use append(). To retrieve an item from the front of the queue, use
pop () with @ as the index. For example:

>>> queue = ["Eric", "John", "Michael"]

>>> queue.append("Terry") # Terry arrives
>>> queue.append("Graham") # Graham arrives
>>> queue.pop(0)

'"Eric'

>>> queue.pop(0)

"John'

>>> queue

['Michael', 'Terry', 'Graham']

5.1.3 Functional Programming Tools

There are three built-in functions that are very useful when used with lists:
filter (), map(), and reduce().

"filter (function, sequence)" returns a sequence consisting of those items
from the sequence for which function (item) is true. If sequence is a string or
tuple, the result will be of the same type; otherwise, it is always a 1ist. For
example, to compute some primes:

>>> def f(x): return x % 2 !'= 0 and x % 3 !'= 0

>>> filter(f, range(2, 25))
[5, 7, 11, 13, 17, 19, 23]

"map (function, sequence)" calls function(item) for each of the sequence's
items and returns a list of the return values. For example, to compute some
cubes:

>>> def cube(x): return Xx*x*x

>>> map(cube, range(1, 11))
[1, 8, 27, 64, 125, 216, 343, 512, 729, 1000]

More than one sequence may be passed; the function must then have as many
arguments as there are sequences and is called with the corresponding item from
each sequence (or None if some sequence is shorter than another). For example:

>>> seq = range(8)
>>> def add(x, y): return x+y

>>> map(add, seq, seq)
[6, 2, 4, 6, 8, 10, 12, 14]

"reduce (function, sequence)" returns a single value constructed by calling
the binary function function on the first two items of the sequence, then on the
result and the next item, and so on. For example, to compute the sum of the
numbers 1 through 10:

>>> def add(x,y): return x+y

S>> reduce(add, range(1, 11))

55

If there's only one item in the sequence, its value is returned; if the sequence is
empty, an exception is raised.

A third argument can be passed to indicate the starting value. In this case the
starting value is returned for an empty sequence, and the function is first applied
to the starting value and the first sequence item, then to the result and the next
item, and so on. For example,

>>> def sum(seq):
def add(x,y): return x+y
return reduce(add, seq, 0)

>>> sum(range(1, 11))
55

>>> sum([])

0]

Don't use this example's definition of sum(): since summing numbers is such a
common need, a built-in function sum(sequence) is already provided, and
works exactly like this. New in version 2.3.

5.1.4 List Comprehensions

List comprehensions provide a concise way to create lists without resorting to
use of map(), filter () and/or lambda. The resulting list definition tends
often to be clearer than lists built using those constructs. Each list
comprehension consists of an expression followed by a for clause, then zero or
more Tor or 1T clauses. The result will be a list resulting from evaluating the
expression in the context of the for and if clauses which follow it. If the
expression would evaluate to a tuple, it must be parenthesized.

>>> freshfruit = [' banana', ' 1loganberry ', 'passion fruit ']
>>> [weapon.strip() for weapon in freshfruit]
['banana', 'loganberry', 'passion fruit']
>>> vec = [2, 4, 6]
>>> [3*x for x in vec]
[6, 12, 18]
>>> [3*x for x in vec if x > 3]
[12, 18]
>>> [3*x for x in vec if x < 2]
[]
>>> [[x,x**2] for x in vec]
[[2, 4], [4, 16], [6, 36]]
>>> [x, x**2 for x in vec] # error - parens required for tuples

File "<stdin>", line 1, in ?

[x, x**2 for x in vec]
N

SyntaxError: invalid syntax

>>> [(x, x**2) for x in vec]

[(2, 4), (4, 16), (6, 36)]

>>> vecl = [2, 4, 6]

>>> vec2 = [4, 3, -9]

>>> [x*y for x in vecl for y in vec2]
[8, 6, -18, 16, 12, -36, 24, 18, -54]
>>> [x+y for x in vecl for y in vec2]
[6, 5, -7, 8, 7, -5, 10, 9, -3]

>>> [vecl[i]*vec2[i] for i in range(len(vecl))]
[8, 12, -54]

List comprehensions are much more flexible than map () and can be applied to
complex expressions and nested functions:

>>> [str(round(355/113.0, i)) for i in range(1,6)]
['3.1', '3.14', '3.142', '3.1416', '3.14159']

5.2 The del statement

There is a way to remove an item from a list given its index instead of its value:
the del statement. This differs from the pop ()) method which returns a value.
The del statement can also be used to remove slices from a list or clear the
entire list (which we did earlier by assignment of an empty list to the slice). For
example:

>>> a = [-1, 1, 66.25, 333, 333, 1234.5]
>>> del a[0]
>>> a

[1, 66.25, 333, 333, 1234.5]

>>> del a[2:4]
>>> a

[1, 66.25, 1234.5]

>>> del a[:]
>>> a

[]

del can also be used to delete entire variables:

>>> del a

Referencing the name a hereafter is an error (at least until another value is
assigned to it). We'll find other uses for del later.

5.3 Tuples and Sequences

We saw that lists and strings have many common properties, such as indexing
and slicing operations. They are two examples of sequence data types. Since
Python is an evolving language, other sequence data types may be added. There
is also another standard sequence data type: the tuple.

A tuple consists of a number of values separated by commas, for instance:

>>> t = 12345, 54321, 'hello!'
>>> t[0]
12345
>>> t
(12345, 54321, 'hello!')
>>> # Tuples may be nested:
.u=1¢t, (1, 2, 3, 4, 5)
>>> U
((12345, 54321, 'hello!'), (1, 2, 3, 4, 5))

As you see, on output tuples are always enclosed in parentheses, so that nested
tuples are interpreted correctly; they may be input with or without surrounding
parentheses, although often parentheses are necessary anyway (if the tuple is part
of a larger expression).

Tuples have many uses. For example: (X, y) coordinate pairs, employee records
from a database, etc. Tuples, like strings, are immutable: it is not possible to
assign to the individual items of a tuple (you can simulate much of the same
effect with slicing and concatenation, though). It is also possible to create tuples
which contain mutable objects, such as lists.

A special problem is the construction of tuples containing 0 or 1 items: the
syntax has some extra quirks to accommodate these. Empty tuples are
constructed by an empty pair of parentheses; a tuple with one item is constructed
by following a value with a comma (it is not sufficient to enclose a single value
in parentheses). Ugly, but effective. For example:

>>> empty = ()

>>> singleton = 'hello', # <-- note trailing comma
>>> len(empty)

0]

>>> len(singleton)

1
>>> singleton
('hello',)

The statement t = 12345, 54321, 'hello!' isan example of tuple
packing: the values 12345, 54321 and 'hello! "' are packed together in a
tuple. The reverse operation is also possible:

>>> X, Yy, z =t

This is called, appropriately enough, sequence unpacking. Sequence unpacking
requires the list of variables on the left to have the same number of elements as
the length of the sequence. Note that multiple assignment is really just a
combination of tuple packing and sequence unpacking!

There is a small bit of asymmetry here: packing multiple values always creates a
tuple, and unpacking works for any sequence.

5.4 Sets

Python also includes a data type for sets. A set is an unordered collection with no
duplicate elements. Basic uses include membership testing and eliminating
duplicate entries. Set objects also support mathematical operations like union,
intersection, difference, and symmetric difference.

Here is a brief demonstration:

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'

>>> fruit = set(basket) # create a set without duplica
>>> fruit

set(['orange', 'pear', 'apple', 'banana'])

>>> 'grange' in fruit # fast membership testing

True

>>> 'crabgrass' in fruit

False

>>> # Demonstrate set operations on unique letters from two words

>>> a set('abracadabra')
>>> b set('alacazam')
>>> a # unique letters in a

Set(['a', 'r', 'b', ICII Idl])

>>> a - b # letters in a but not in b
set(['r', 'd', 'b'l)

>>> a | b # letters in either a or b
Set(['a', ICII 'r', 'd', 'b', 'm', IZII Ill])

>>> a3 & b # letters in both a and b
set(['a', 'c'])

>>> g N b # letters in a or b but not b
Set(['r', 'd', 'b', 'm', IZII Ill])

5.5 Dictionaries

Another useful data type built into Python is the dictionary. Dictionaries are
sometimes found in other languages as ""associative memories" or " associative
arrays". Unlike sequences, which are indexed by a range of numbers,
dictionaries are indexed by keys, which can be any immutable type; strings and
numbers can always be keys. Tuples can be used as keys if they contain only
strings, numbers, or tuples; if a tuple contains any mutable object either directly
or indirectly, it cannot be used as a key. You can't use lists as keys, since lists can
be modified in place using index assignments, slice assignments, or methods like
append() and extend().

It is best to think of a dictionary as an unordered set of key: value pairs, with the
requirement that the keys are unique (within one dictionary). A pair of braces
creates an empty dictionary: {}. Placing a comma-separated list of key:value
pairs within the braces adds initial key:value pairs to the dictionary; this is also
the way dictionaries are written on output.

The main operations on a dictionary are storing a value with some key and
extracting the value given the key. It is also possible to delete a key:value pair
with del. If you store using a key that is already in use, the old value associated
with that key is forgotten. It is an error to extract a value using a non-existent
key.

The keys () method of a dictionary object returns a list of all the keys used in
the dictionary, in arbitrary order (if you want it sorted, just apply the sort ()
method to the list of keys). To check whether a single key is in the dictionary,
either use the dictionary's has_key () method or the 1n keyword.

Here is a small example using a dictionary:

>>> tel = {'jack': 4098, 'sape': 4139}

>>> tel['guido'] = 4127

>>> tel

{'sape': 4139, 'guido': 4127, 'jack': 4098}
>>> tel['jack']

4098

>>> del tel['sape']

>>> tel['irv'] = 4127

>>> tel

{'guido': 4127, 'irv': 4127, 'jack': 4098}
>>> tel.keys()

['guido', 'irv', 'jack']

>>> tel.has_key('guido')

True

>>> 'guido' in tel

True

The dict () constructor builds dictionaries directly from lists of key-value
pairs stored as tuples. When the pairs form a pattern, list comprehensions can
compactly specify the key-value list.

>>> dict([('sape', 4139), ('guido', 4127), ('jack',6 4098)])

{'sape': 4139, 'jack': 4098, 'guido': 4127}

>>> dict([(x, x**2) for x in (2, 4, 6)]) # use a list comprehens
{2: 4, 4: 16, 6: 36}

Later in the tutorial, we will learn about Generator Expressions which are even
better suited for the task of supplying key-values pairs to the dict ()
constructor.

When the keys are simple strings, it is sometimes easier to specify pairs using
keyword arguments:

>>> dict(sape=4139, guido=4127, jack=4098)
{'sape': 4139, 'jack': 4098, 'guido': 4127}

5.6 Looping Techniques

When looping through dictionaries, the key and corresponding value can be
retrieved at the same time using the iteritems() method.

>>> knights = {'gallahad': 'the pure', 'robin': 'the brave'}
>>> for k, v in knights.iteritems():
print k, v

gallahad the pure
robin the brave

When looping through a sequence, the position index and corresponding value
can be retrieved at the same time using the enumerate() function.

>>> for i, v in enumerate(['tic', 'tac', 'toe']):
print i, v

0 tic
1 tac
2 toe

To loop over two or more sequences at the same time, the entries can be paired
with the zip () function.

>>> questions = ['name', 'quest',6 'favorite color']
>>> answers = ['lancelot', 'the holy grail', 'blue']
>>> for g, a in zip(questions, answers):

print 'What is your %s? It is %s.' % (q, a)

What is your name? It is lancelot.
What is your quest? It is the holy grail.
What is your favorite color? It is blue.

To loop over a sequence in reverse, first specify the sequence in a forward
direction and then call the reversed () function.

>>> for i in reversed(xrange(1,10,2)):
print i

W ol © -

1

To loop over a sequence in sorted order, use the sorted() function which
returns a new sorted list while leaving the source unaltered.

>>> basket = ['apple', 'orange', 'apple', 'pear', 'orange', 'banana'
>>> for f in sorted(set(basket)):
print f
apple
banana

orange
pear

5.7 More on Conditions

The conditions used in while and if statements can contain any operators, not
just comparisons.

The comparison operators 1n and not in check whether a value occurs (does
not occur) in a sequence. The operators 1s and 1S not compare whether two
objects are really the same object; this only matters for mutable objects like lists.
All comparison operators have the same priority, which is lower than that of all
numerical operators.

Comparisons can be chained. For example, a < b == c tests whether a is
less than b and moreover b equals c.

Comparisons may be combined using the Boolean operators and and or, and
the outcome of a comparison (or of any other Boolean expression) may be
negated with not. These have lower priorities than comparison operators;
between them, Not has the highest priority and or the lowest, so that A and
not B or Cisequivalentto (A and (not B)) or C. Asalways,
parentheses can be used to express the desired composition.

The Boolean operators and and or are so-called short-circuit operators: their
arguments are evaluated from left to right, and evaluation stops as soon as the
outcome is determined. For example, if A and C are true but B is false, A and

B and C does not evaluate the expression C. When used as a general value and
not as a Boolean, the return value of a short-circuit operator is the last evaluated
argument.

It is possible to assign the result of a comparison or other Boolean expression to
a variable. For example,

>>> stringl, string2, string3 = '', 'Trondheim', 'Hammer Dance'
>>> non_null = stringl or string2 or string3

>>> non_null

'"Trondheim'

Note that in Python, unlike C, assignment cannot occur inside expressions. C
programmers may grumble about this, but it avoids a common class of problems

encountered in C programs: typing = in an expression when == was intended.

5.8 Comparing Sequences and Other
Types

Sequence objects may be compared to other objects with the same sequence
type. The comparison uses lexicographical ordering: first the first two items are
compared, and if they differ this determines the outcome of the comparison; if
they are equal, the next two items are compared, and so on, until either sequence
is exhausted. If two items to be compared are themselves sequences of the same
type, the lexicographical comparison is carried out recursively. If all items of
two sequences compare equal, the sequences are considered equal. If one
sequence is an initial sub-sequence of the other, the shorter sequence is the
smaller (lesser) one. Lexicographical ordering for strings uses the ASCII
ordering for individual characters. Some examples of comparisons between
sequences of the same type:

(1, 2, 3) < (1, 2, 4)

[1, 2, 3] < [1, 2, 4]

'"ABC' < 'C' < 'Pascal' < 'python'

(1, 2, 3, 4) < (1, 2, 4)

(11 2) < (11 2/ '1)

(1, 2, 3) == (1.0, 2.0, 3.0)

(1, 2, ('aa', 'ab')) < (1, 2, ('abc', 'a'), 4)

Note that comparing objects of different types is legal. The outcome is
deterministic but arbitrary: the types are ordered by their name. Thus, a list is
always smaller than a string, a string is always smaller than a tuple, etc. 21
Mixed numeric types are compared according to their numeric value, so 0 equals
0.0, etc.

Footnhotes

.. etc.21

The rules for comparing objects of different types should not be relied
upon; they may change in a future version of the language.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 4. More Control Flow up: Python Tutorial Next: 6. Modules

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 5. Data Structures up: Python Tutorial Next: 7. Input and Output

Subsections

6.1 More on Modules
o 6.1.1 The Module Search Path
o 6.1.2 "Compiled" Python files
6.2 Standard Modules
6.3 The dir () Function
6.4 Packages
o 6.4.1 Importing * From a Package
o 6.4.2 Intra-package References
o 6.4.3 Packages in Multiple Directories

6. Modules

If you quit from the Python interpreter and enter it again, the definitions you
have made (functions and variables) are lost. Therefore, if you want to write a
somewhat longer program, you are better off using a text editor to prepare the
input for the interpreter and running it with that file as input instead. This is
known as creating a script. As your program gets longer, you may want to split it
into several files for easier maintenance. You may also want to use a handy
function that you've written in several programs without copying its definition
into each program.

To support this, Python has a way to put definitions in a file and use them in a
script or in an interactive instance of the interpreter. Such a file is called a
module; definitions from a module can be imported into other modules or into
the main module (the collection of variables that you have access to in a script
executed at the top level and in calculator mode).

A module is a file containing Python definitions and statements. The file name is
the module name with the suffix .py appended. Within a module, the module's
name (as a string) is available as the value of the global variable __name__.
For instance, use your favorite text editor to create a file called fibo.py in the
current directory with the following contents:

Fibonacci numbers module

def fib(n): # write Fibonacci series up to n
a, b=o0, 1
while b < n:
print b,
a, b =0Db, atb

def fib2(n): # return Fibonacci series up to n

result = []
a, b=o0, 1
while b < n:

result.append(b)
a, b =0b, atb
return result

Now enter the Python interpreter and import this module with the following
command:

>>> import fibo

This does not enter the names of the functions defined in fibo directly in the
current symbol table; it only enters the module name fibo there. Using the
module name you can access the functions:

>>> fibo.fib(1000)

112 358 13 21 34 55 89 144 233 377 610 987
>>> fibo.fib2(100)

[1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89]

>>> fibo._name_

'fibo'

If you intend to use a function often you can assign it to a local name:
>>> fib = fibo.fib

>>> fib(500)
112358 13 21 34 55 89 144 233 377

6.1 More on Modules

A module can contain executable statements as well as function definitions.
These statements are intended to initialize the module. They are executed only

the first time the module is imported somewhere 21

Each module has its own private symbol table, which is used as the global
symbol table by all functions defined in the module. Thus, the author of a
module can use global variables in the module without worrying about
accidental clashes with a user's global variables. On the other hand, if you know
what you are doing you can touch a module's global variables with the same
notation used to refer to its functions, modname . 1itemname.

Modules can import other modules. It is customary but not required to place all
import statements at the beginning of a module (or script, for that matter). The
imported module names are placed in the importing module's global symbol
table.

There is a variant of the impor t statement that imports names from a module
directly into the importing module's symbol table. For example:

>>> from fibo import fib, fib2

>>> fib(500)
112358 13 21 34 55 89 144 233 377

This does not introduce the module name from which the imports are taken in
the local symbol table (so in the example, Tibo is not defined).

There is even a variant to import all names that a module defines:

>>> from fibo import *
>>> fib(500)
112358 13 21 34 55 89 144 233 377

This imports all names except those beginning with an underscore (_).

6.1.1 The Module Search Path

When a module named spam is imported, the interpreter searches for a file
named Spam.py in the current directory, and then in the list of directories
specified by the environment variable PYTHONPATH. This has the same syntax
as the shell variable PATH, that is, a list of directory names. When
PYTHONPATH is not set, or when the file is not found there, the search
continues in an installation-dependent default path; on Unix, this is usually
../usr/local/lib/python.

Actually, modules are searched in the list of directories given by the variable
sys. path which is initialized from the directory containing the input script (or
the current directory), PYTHONPATH and the installation-dependent default.
This allows Python programs that know what they're doing to modify or replace
the module search path. Note that because the directory containing the script
being run is on the search path, it is important that the script not have the same
name as a standard module, or Python will attempt to load the script as a module
when that module is imported. This will generally be an error. See section 6.2,
““Standard Modules," for more information.

6.1.2 "Compiled" Python files

As an important speed-up of the start-up time for short programs that use a lot of
standard modules, if a file called spam.pyc exists in the directory where
spam.py is found, this is assumed to contain an already-""byte-compiled"
version of the module spam. The modification time of the version of spam.py
used to create Spam.pyc is recorded in Spam.pyc, and the .pyc file is ignored if
these don't match.

Normally, you don't need to do anything to create the spam.pyc file. Whenever
spam.py is successfully compiled, an attempt is made to write the compiled
version to Spam.pyc. It is not an error if this attempt fails; if for any reason the
file is not written completely, the resulting spam.pyc file will be recognized as
invalid and thus ignored later. The contents of the sSpam.pyc file are platform
independent, so a Python module directory can be shared by machines of
different architectures.

Some tips for experts:

e When the Python interpreter is invoked with the -O flag, optimized code is
generated and stored in .pyo files. The optimizer currently doesn't help
much; it only removes asser t statements. When -O is used, all bytecode
is optimized; . pyc files are ignored and . py files are compiled to
optimized bytecode.

e Passing two -O flags to the Python interpreter (-OO) will cause the
bytecode compiler to perform optimizations that could in some rare cases
result in malfunctioning programs. Currently only __doc___ strings are
removed from the bytecode, resulting in more compact .pyo files. Since
some programs may rely on having these available, you should only use
this option if you know what you're doing.

¢ A program doesn't run any faster when it is read from a .pyc or .pyo file
than when it is read from a .py file; the only thing that's faster about .pyc or
.pyo files is the speed with which they are loaded.

e When a script is run by giving its name on the command line, the bytecode
for the script is never written to a .pyc or .pyo file. Thus, the startup time of

a script may be reduced by moving most of its code to a module and having
a small bootstrap script that imports that module. It is also possible to name
a .pyc or .pyo file directly on the command line.

It is possible to have a file called spam.pyc (or spam.pyo when -0 is
used) without a file spam.py for the same module. This can be used to
distribute a library of Python code in a form that is moderately hard to

reverse engineer.

The module compileall can create .pyc files (or .pyo files when -O is
used) for all modules in a directory.

6.2 Standard Modules

Python comes with a library of standard modules, described in a separate
document, the Python Library Reference (" Library Reference" hereafter). Some
modules are built into the interpreter; these provide access to operations that are
not part of the core of the language but are nevertheless built in, either for
efficiency or to provide access to operating system primitives such as system
calls. The set of such modules is a configuration option which also depends on
the underlying platform For example, the amoeba module is only provided on
systems that somehow support Amoeba primitives. One particular module
deserves some attention: SYS, which is built into every Python interpreter. The
variables sys.ps1 and sys . ps2 define the strings used as primary and
secondary prompts:

>>> import sys
>>> gys.psl
'>>> !

>>> sys.ps2

>>> sys.psl = 'C> '

C> print 'Yuck!'
Yuck!
c>

These two variables are only defined if the interpreter is in interactive mode.

The variable sys. path is a list of strings that determines the interpreter's
search path for modules. It is initialized to a default path taken from the
environment variable PYTHONPATH, or from a built-in default if
PYTHONPATH is not set. You can modify it using standard list operations:

>>> import sys
>>> sys.path.append('/ufs/guido/1ib/python"')

6.3 The dir () Function

The built-in function dir () is used to find out which names a module defines.
It returns a sorted list of strings:

>>> import fibo, sys

>>> dir(fibo)

['_name__', 'fib', 'fib2']

>>> dir(sys)

['__displayhook__"', '__doc__', '__excepthook__', '__name__', '__ stde
'__stdin__', '__stdout__', '_getframe', 'api_version', ‘'argv',
'"builtin_module_names', 'byteorder',6 'callstats', 'copyright',
'displayhook', 'exc_clear', 'exc_info', 'exc_type', ‘'excepthook',
'exec_prefix', 'executable',6 'exit', 'getdefaultencoding', 'getdlop
'getrecursionlimit', 'getrefcount', 'hexversion', 'maxint', 'maxuni
'meta_path', 'modules', 'path', 'path_hooks', 'path_importer_cache'
'platform', 'prefix', 'psi', 'ps2', 'setcheckinterval', 'setdlopenf
'setprofile', 'setrecursionlimit', 'settrace', 'stderr', 'stdin', '
'version', 'version_info', 'warnoptions']

Without arguments, dir () lists the names you have defined currently:

>>>a = [1, 2, 3, 4, 5]

>>> import fibo

>>> fib = fibo.fib

>>> dir()

['__builtins_ ', '_doc__', '__file ', '__npame__', 'a', 'fib', 'fib

Note that it lists all types of names: variables, modules, functions, etc.

dir () does not list the names of built-in functions and variables. If you want a
list of those, they are defined in the standard module __builtin__:

>>> import _ _builtin_

>>> dir(__builtin_)

['ArithmeticError', 'AssertionError', 'AttributeError', 'Deprecation
'"EOFError', 'Ellipsis', 'EnvironmentError', 'Exception',6 'False',
'FloatingPointError', 'FuturewWarning', 'IOError', 'ImportError',
'IndentationError', 'IndexError', 'KeyError', 'KeyboardInterrupt',
'"LookupError', 'MemoryError', 'NameError', 'None', 'NotImplemented'
'"NotImplementedError', 'OSError', 'OverflowError',
'PendingDeprecationwWarning', 'ReferenceError', 'RuntimeError',
'RuntimewWarning', 'StandardError', 'StopIteration', 'SyntaxError',
'SyntaxWarning', 'SystemError', 'SystemExit', 'TabError', 'True',
'TypeError', 'UnboundLocalError', 'UnicodeDecodeError',

'UnicodeEncodeError', 'UnicodeError', 'UnicodeTranslateError',
'UserWarning', 'ValueError', 'Warning', 'WindowsError',
'ZeroDivisionError', '_', '__debug__', '__doc__', '__import__"',
'_name__"', 'abs', 'apply', 'basestring', 'bool', 'buffer',
'callable', 'chr', 'classmethod', 'cmp', 'coerce', 'compile',
'complex', 'copyright', 'credits', 'delattr', 'dict', 'dir', ‘'divma
'enumerate', 'eval', 'execfile', 'exit', 'file', 'filter', 'float’',
'frozenset', 'getattr', 'globals', 'hasattr', 'hash', 'help', 'hex'
'id', 'input', 'int', 'intern', 'isinstance', 'issubclass', 'iter',
'len', 'license', 'list', 'locals', 'long', 'map', 'max', 'min',
'object', 'oct', 'open', 'ord', 'pow', 'property', 'quit', 'range',
'raw_input', 'reduce', 'reload', 'repr', 'reversed', 'round',6 'set'
'setattr', 'slice', 'sorted',6 'staticmethod', 'str', 'sum', 'super'
"tuple', 'type', 'unichr', 'unicode', 'vars', 'xrange', 'zip']

6.4 Packages

Packages are a way of structuring Python's module namespace by using " dotted
module names". For example, the module name A. B designates a submodule
named "B" in a package named "A". Just like the use of modules saves the
authors of different modules from having to worry about each other's global
variable names, the use of dotted module names saves the authors of multi-
module packages like NumPy or the Python Imaging Library from having to
worry about each other's module names.

Suppose you want to design a collection of modules (a ““package") for the
uniform handling of sound files and sound data. There are many different sound
file formats (usually recognized by their extension, for example: .wav, .aiff,
.au), so you may need to create and maintain a growing collection of modules
for the conversion between the various file formats. There are also many
different operations you might want to perform on sound data (such as mixing,
adding echo, applying an equalizer function, creating an artificial stereo effect),
so in addition you will be writing a never-ending stream of modules to perform
these operations. Here's a possible structure for your package (expressed in terms
of a hierarchical filesystem):

Sound/ Top-level package
__init__.py Initialize the sound package
Formats/ Subpackage for file format conversic
__init__.py

wavread. py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py

Effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py

Filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder . py

karaoke.py

When importing the package, Python searches through the directories on
sys. path looking for the package subdirectory.

The __init__.py files are required to make Python treat the directories as
containing packages; this is done to prevent directories with a common name,
such as "string", from unintentionally hiding valid modules that occur later
on the module search path. In the simplest case, __init__.py can just be an
empty file, but it can also execute initialization code for the package or set the
all wvariable, described later.

Users of the package can import individual modules from the package, for
example:

import Sound.Effects.echo

This loads the submodule Sound.Effects.echo. It must be referenced with
its full name.

Sound.Effects.echo.echofilter(input, output, delay=0.7, atten=4)

An alternative way of importing the submodule is:

from Sound.Effects import echo

This also loads the submodule echo, and makes it available without its package
prefix, so it can be used as follows:

echo.echofilter(input, output, delay=0.7, atten=4)

Yet another variation is to import the desired function or variable directly:

from Sound.Effects.echo import echofilter

Again, this loads the submodule echo, but this makes its function
echofilter () directly available:

echofilter(input, output, delay=0.7, atten=4)

Note that when using from package import item, the item can be either a

submodule (or subpackage) of the package, or some other name defined in the
package, like a function, class or variable. The import statement first tests
whether the item is defined in the package; if not, it assumes it is a module and
attempts to load it. If it fails to find it, an ImportError exception is raised.

Contrarily, when using syntax like import item.subitem.subsubitem, each item
except for the last must be a package; the last item can be a module or a package
but can't be a class or function or variable defined in the previous item.

6.4.1 Importing * From a Package

Now what happens when the user writes from Sound.Effects import
*? Ideally, one would hope that this somehow goes out to the filesystem, finds
which submodules are present in the package, and imports them all.
Unfortunately, this operation does not work very well on Mac and Windows
platforms, where the filesystem does not always have accurate information about
the case of a filename! On these platforms, there is no guaranteed way to know
whether a file ECHO.PY should be imported as a module echo, Echo or
ECHO. (For example, Windows 95 has the annoying practice of showing all file
names with a capitalized first letter.) The DOS 8+3 filename restriction adds
another interesting problem for long module names.

The only solution is for the package author to provide an explicit index of the
package. The import statement uses the following convention: if a package's
__init__.py code defines a list named __all__, it is taken to be the list of
module names that should be imported when from package import *is
encountered. It is up to the package author to keep this list up-to-date when a
new version of the package is released. Package authors may also decide not to
support it, if they don't see a use for importing * from their package. For
example, the file Sounds/Effects/ _init__.py could contain the following code:

_all = ["echo", "surround", "reverse"]

This would mean that from Sound.Effects import * would import the
three named submodules of the Sound package.

If __all__ isnot defined, the statement from Sound.Effects import
* does not import all submodules from the package Sound.Effects into the
current namespace; it only ensures that the package Sound.Effects has been
imported (possibly running any initialization code in __init__.py) and then
imports whatever names are defined in the package. This includes any names
defined (and submodules explicitly loaded) by __init__.py. It also includes any
submodules of the package that were explicitly loaded by previous import
statements. Consider this code:

import Sound.Effects.echo
import Sound.Effects.surround

from Sound.Effects import *

In this example, the echo and surround modules are imported in the current
namespace because they are defined in the Sound .Effects package when the
from...import statement is executed. (This also works when __all__is
defined.)

Note that in general the practice of importing * from a module or package is
frowned upon, since it often causes poorly readable code. However, it is okay to
use it to save typing in interactive sessions, and certain modules are designed to
export only names that follow certain patterns.

Remember, there is nothing wrong with using from Package import
specific_submodule! In fact, this is the recommended notation unless the
importing module needs to use submodules with the same name from different
packages.

6.4.2 Intra-package References

The submodules often need to refer to each other. For example, the surround
module might use the echo module. In fact, such references are so common that
the import statement first looks in the containing package before looking in
the standard module search path. Thus, the surround module can simply use
import echoor from echo import echofilter. If the imported
module is not found in the current package (the package of which the current
module is a submodule), the import statement looks for a top-level module
with the given name.

When packages are structured into subpackages (as with the Sound package in
the example), there's no shortcut to refer to submodules of sibling packages - the
full name of the subpackage must be used. For example, if the module
Sound.Filters.vocoder needs to use the echo module in the
Sound.Effects package, it can use from Sound.Effects import
echo.

Starting with Python 2.5, in addition to the implicit relative imports described
above, you can write explicit relative imports with the from module
import name form of import statement. These explicit relative imports use
leading dots to indicate the current and parent packages involved in the relative
import. From the surround module for example, you might use:

from . import echo
from .. import Formats
from ..Filters import equalizer

Note that both explicit and implicit relative imports are based on the name of the
current module. Since the name of the main module is always "__main__",
modules intended for use as the main module of a Python application should
always use absolute imports.

6.4.3 Packages in Multiple Directories

Packages support one more special attribute, ___path__. This is initialized to
be a list containing the name of the directory holding the package's __init__.py
before the code in that file is executed. This variable can be modified; doing so
affects future searches for modules and subpackages contained in the package.

While this feature is not often needed, it can be used to extend the set of modules
found in a package.

Foothotes

... somewhere .81

In fact function definitions are also “statements' that are “executed'; the
execution enters the function name in the module's global symbol table.

«1T-> Python Tutorial toc i
Previous: 5. Data Structures up: Python Tutorial Next: 7. Input and Output

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 6. Modules up: Python Tutorial Next: 8. Errors and Exceptions

Subsections

e 7.1 Fancier Output Formatting

e 7.2 Reading and Writing Files
o 7.2.1 Methods of File Objects
o 7.2.2 The pickle Module

7. Input and Output

There are several ways to present the output of a program; data can be printed in
a human-readable form, or written to a file for future use. This chapter will
discuss some of the possibilities.

7.1 Fancier Output Formatting

So far we've encountered two ways of writing values: expression statements and
the print statement. (A third way is using the write() method of file
objects; the standard output file can be referenced as sys.stdout. See the
Library Reference for more information on this.)

Often you'll want more control over the formatting of your output than simply
printing space-separated values. There are two ways to format your output; the
first way is to do all the string handling yourself; using string slicing and
concatenation operations you can create any layout you can imagine. The
standard module string contains some useful operations for padding strings to
a given column width; these will be discussed shortly. The second way is to use
the % operator with a string as the left argument. The % operator interprets the
left argument much like a sprintf ()-style format string to be applied to the
right argument, and returns the string resulting from this formatting operation.

One question remains, of course: how do you convert values to strings? Luckily,
Python has ways to convert any value to a string: pass it to the repr () or

str () functions. Reverse quotes (~ ") are equivalent to repr (), but they are
no longer used in modern Python code and will likely not be in future versions
of the language.

The str () function is meant to return representations of values which are fairly
human-readable, while repr () is meant to generate representations which can
be read by the interpreter (or will force a SyntaxError if there is not
equivalent syntax). For objects which don't have a particular representation for
human consumption, str () will return the same value as repr (). Many
values, such as numbers or structures like lists and dictionaries, have the same
representation using either function. Strings and floating point numbers, in
particular, have two distinct representations.

Some examples:

>>> s = 'Hello, world.'
>>> str(s)

'Hello, world.'

>>> repr(s)

"'Hello, world.'"
>>> str(0.1)

'0.1'

>>> repr(0.1)
'0.10000000000000001"

>>> x = 10 * 3.25
>>> y = 200 * 200
>>> s = 'The value of x is ' + repr(x) + ', and y is ' + repr(y) + '

>>> print s

The value of x is 32.5, and y is 40000...

>>> # The repr() of a string adds string quotes and backslashes:

... hello = 'hello, world\n'

>>> hellos = repr(hello)

>>> print hellos

'hello, world\n'

>>> # The argument to repr() may be any Python object:
repr((x, y, ('spam', 'eggs')))

"(32.5, 40000, ('spam', 'eggs'))"

>>> # reverse quotes are convenient in interactive sessions:

.o X, Y, ('spam', ‘'eggs')’

"(32.5, 40000, ('spam', 'eggs'))"

Here are two ways to write a table of squares and cubes:

>>> for x in range(1, 11):
print repr(x).rjust(2), repr(x*x).rjust(3),
Note trailing comma on previous line
print repr(x*x*x).rjust(4)

[N

1
8
9 27
16 64
25 125
36 216
49 343
64 512
81 729
10 1600 1000
>>> for x in range(1,11):
print '%2d %3d %4d' % (X, X*X, X*X*X)

N

O©CO~NOOT,WNE-

[N

1
8

9 27
16 64
25 125
36 216
49 343
64 512
81 729
100 1600

N

QOO ~NOULAWNE -

1

(Note that one space between each column was added by the way print works:
it always adds spaces between its arguments.)

This example demonstrates the r just () method of string objects, which right-
justifies a string in a field of a given width by padding it with spaces on the left.
There are similar methods 1just () and center (). These methods do not
write anything, they just return a new string. If the input string is too long, they
don't truncate it, but return it unchanged; this will mess up your column lay-out
but that's usually better than the alternative, which would be lying about a value.
(If you really want truncation you can always add a slice operation, as in
"X.1ljust(n)[:n]")

There is another method, zfil1 (), which pads a numeric string on the left
with zeros. It understands about plus and minus signs:

>>> '12'.zfill(5)

'00012'

>>> '-3.14'.zfill(7)
'-003.14'

>>> '3.14159265359'.zfill(5)
'3.14159265359"'

Using the % operator looks like this:

>>> import math
>>> print 'The value of PI is approximately %5.3f.' % math.pi
The value of PI is approximately 3.142.

If there is more than one format in the string, you need to pass a tuple as right
operand, as in this example:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 7678}
>>> for name, phone in table.items():
print '%-10s ==> %10d' % (name, phone)

Jack ==> 4098

Dcab ==> 7678
Sjoerd ==> 4127

Most formats work exactly as in C and require that you pass the proper type;
however, if you don't you get an exception, not a core dump. The %S format is
more relaxed: if the corresponding argument is not a string object, it is converted
to string using the str () built-in function. Using * to pass the width or

precision in as a separate (integer) argument is supported. The C formats %n and
% are not supported.

If you have a really long format string that you don't want to split up, it would be
nice if you could reference the variables to be formatted by name instead of by
position. This can be done by using form %(name) format, as shown here:

>>> table = {'Sjoerd': 4127, 'Jack': 4098, 'Dcab': 8637678}
>>> print 'Jack: %(Jack)d; Sjoerd: %(Sjoerd)d; Dcab: %(Dcab)d' % tab
Jack: 4098; Sjoerd: 4127; Dcab: 8637678

This is particularly useful in combination with the new built-in vars ()
function, which returns a dictionary containing all local variables.

7.2 Reading and Writing Files

open() returns a file object, and is most commonly used with two arguments:
"open(filename, mode)".

>>> f=open('/tmp/workfile', 'w')
>>> print f
<open file '/tmp/workfile', mode 'w' at 80a0960>

The first argument is a string containing the filename. The second argument is
another string containing a few characters describing the way in which the file
will be used. mode can be ' r' when the file will only be read, 'w' for only
writing (an existing file with the same name will be erased), and 'a' opens the
file for appending; any data written to the file is automatically added to the end.
'r+' opens the file for both reading and writing. The mode argument is
optional; 'r' will be assumed if it's omitted.

On Windows and the Macintosh, 'b' appended to the mode opens the file in
binary mode, so there are also modes like 'rb"', 'wb',and 'r+b'. Windows
makes a distinction between text and binary files; the end-of-line characters in
text files are automatically altered slightly when data is read or written. This
behind-the-scenes modification to file data is fine for ASCII text files, but it'll
corrupt binary data like that in JPEG or EXE files. Be very careful to use binary
mode when reading and writing such files.

7.2.1 Methods of File Objects

The rest of the examples in this section will assume that a file object called f has
already been created.

To read a file's contents, call T.read (size), which reads some quantity of data
and returns it as a string. size is an optional numeric argument. When size is
omitted or negative, the entire contents of the file will be read and returned; it's
your problem if the file is twice as large as your machine's memory. Otherwise,
at most size bytes are read and returned. If the end of the file has been reached,
f.read() will return an empty string ("' ").

>>> f.read()
'This is the entire file.\n'
>>> f.read()

f.readline() reads a single line from the file; a newline character (\n) is
left at the end of the string, and is only omitted on the last line of the file if the
file doesn't end in a newline. This makes the return value unambiguous; if
f.readline() returns an empty string, the end of the file has been reached,
while a blank line is represented by ' \n', a string containing only a single
newline.

>>> f.readline()

'This is the first line of the file.\n'
>>> f.readline()

'Second line of the file\n'

>>> f.readline()

f.readlines() returns a list containing all the lines of data in the file. If
given an optional parameter sizehint, it reads that many bytes from the file and
enough more to complete a line, and returns the lines from that. This is often
used to allow efficient reading of a large file by lines, but without having to load
the entire file in memory. Only complete lines will be returned.

>>> f.readlines()
['This is the first line of the file.\n', 'Second line of the file\n

An alternate approach to reading lines is to loop over the file object. This is

memory efficient, fast, and leads to simpler code:

>>> for line in f:
print line,

This is the first line of the file.
Second line of the file

The alternative approach is simpler but does not provide as fine-grained control.
Since the two approaches manage line buffering differently, they should not be
mixed.

f.write(string) writes the contents of string to the file, returning None.

>>> f,write('This is a test\n')

To write something other than a string, it needs to be converted to a string first:

>>> value = ('the answer', 42)
>>> s = str(value)
>>> f.write(s)

f.tell() returns an integer giving the file object's current position in the file,
measured in bytes from the beginning of the file. To change the file object's
position, use "f . seek (offset, from_what)". The position is computed from
adding offset to a reference point; the reference point is selected by the
from_what argument. A from_what value of 0 measures from the beginning of
the file, 1 uses the current file position, and 2 uses the end of the file as the
reference point. from_what can be omitted and defaults to 0, using the beginning
of the file as the reference point.

>>> f = open('/tmp/workfile', 'r+')

>>> f.write('0123456789abcdef')

>>> f.seek(5) # Go to the 6th byte in the file
>>> f.read(1)

|5|

>>> f,seek(-3, 2) # Go to the 3rd byte before the end
>>> f.read(1)

ldl

When you're done with a file, call f.close() to close it and free up any
system resources taken up by the open file. After calling f.close(), attempts
to use the file object will automatically fail.

>>> f.close()
>>> f.read()
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ValueError: I/0 operation on closed file

File objects have some additional methods, such as isatty() and
truncate() which are less frequently used; consult the Library Reference for

a complete guide to file objects.

7.2.2 The pickle Module

Strings can easily be written to and read from a file. Numbers take a bit more
effort, since the read () method only returns strings, which will have to be
passed to a function like int (), which takes a string like '123" and returns its
numeric value 123. However, when you want to save more complex data types
like lists, dictionaries, or class instances, things get a lot more complicated.

Rather than have users be constantly writing and debugging code to save
complicated data types, Python provides a standard module called pickle.
This is an amazing module that can take almost any Python object (even some
forms of Python code!), and convert it to a string representation; this process is
called pickling. Reconstructing the object from the string representation is called
unpickling. Between pickling and unpickling, the string representing the object
may have been stored in a file or data, or sent over a network connection to some
distant machine.

If you have an object X, and a file object f that's been opened for writing, the
simplest way to pickle the object takes only one line of code:

pickle.dump(x, f)

To unpickle the object again, if f is a file object which has been opened for
reading:

X = pickle.load(f)
(There are other variants of this, used when pickling many objects or when you

don't want to write the pickled data to a file; consult the complete documentation
for pickle in the Python Library Reference.)

pickle is the standard way to make Python objects which can be stored and
reused by other programs or by a future invocation of the same program; the
technical term for this is a persistent object. Because pickle is so widely used,
many authors who write Python extensions take care to ensure that new data
types such as matrices can be properly pickled and unpickled.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 6. Modules up: Python Tutorial Next: 8. Errors and Exceptions

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 7. Input and Output up: Python Tutorial Next: 9. Classes

Subsections

8.1 Syntax Errors

8.2 Exceptions

8.3 Handling Exceptions
8.4 Raising Exceptions

8.5 User-defined Exceptions

8.6 Defining Clean-up Actions
8.7 Predefined Clean-up Actions

8. Errors and Exceptions

Until now error messages haven't been more than mentioned, but if you have
tried out the examples you have probably seen some. There are (at least) two
distinguishable kinds of errors: syntax errors and exceptions.

8.1 Syntax Errors

Syntax errors, also known as parsing errors, are perhaps the most common kind
of complaint you get while you are still learning Python:

>>> while True print 'Hello world'
File "<stdin>", line 1, in ?
while True print 'Hello world'
N

SyntaxError: invalid syntax

The parser repeats the offending line and displays a little "arrow' pointing at the
earliest point in the line where the error was detected. The error is caused by (or
at least detected at) the token preceding the arrow: in the example, the error is
detected at the keyword print, since a colon (":") is missing before it. File
name and line number are printed so you know where to look in case the input

came from a script.

8.2 Exceptions

Even if a statement or expression is syntactically correct, it may cause an error
when an attempt is made to execute it. Errors detected during execution are
called exceptions and are not unconditionally fatal: you will soon learn how to
handle them in Python programs. Most exceptions are not handled by programs,
however, and result in error messages as shown here:

>>> 10 * (1/0)
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ZeroDivisionError: integer division or modulo by zero
>>> 4 + spam*3
Traceback (most recent call last):
File "<stdin>", line 1, in ?
NameError: name 'spam' is not defined
>>> '2' + 2
Traceback (most recent call last):
File "<stdin>", line 1, in ?
TypeError: cannot concatenate 'str' and 'int' objects

The last line of the error message indicates what happened. Exceptions come in
different types, and the type is printed as part of the message: the types in the
example are ZeroDivisionError, NameError and TypeError. The
string printed as the exception type is the name of the built-in exception that
occurred. This is true for all built-in exceptions, but need not be true for user-
defined exceptions (although it is a useful convention). Standard exception
names are built-in identifiers (not reserved keywords).

The rest of the line provides detail based on the type of exception and what
caused it.

The preceding part of the error message shows the context where the exception
happened, in the form of a stack traceback. In general it contains a stack
traceback listing source lines; however, it will not display lines read from
standard input.

The Python Library Reference lists the built-in exceptions and their meanings.

8.3 Handling Exceptions

It is possible to write programs that handle selected exceptions. Look at the
following example, which asks the user for input until a valid integer has been
entered, but allows the user to interrupt the program (using Control-C or
whatever the operating system supports); note that a user-generated interruption
is signalled by raising the KeyboardInterrupt exception.

>>> while True:
try:
X = int(raw_input("Please enter a number: "))
break
except ValueError:
print "Oops! That was no valid number. Try again..."

The try statement works as follows.

e First, the try clause (the statement(s) between the try and except
keywords) is executed.

¢ If no exception occurs, the except clause is skipped and execution of the
try statement is finished.

e If an exception occurs during execution of the try clause, the rest of the
clause is skipped. Then if its type matches the exception named after the
except keyword, the except clause is executed, and then execution
continues after the try statement.

e If an exception occurs which does not match the exception named in the
except clause, it is passed on to outer try statements; if no handler is
found, it is an unhandled exception and execution stops with a message as
shown above.

A try statement may have more than one except clause, to specify handlers for
different exceptions. At most one handler will be executed. Handlers only handle
exceptions that occur in the corresponding try clause, not in other handlers of the
same try statement. An except clause may name multiple exceptions as a
parenthesized tuple, for example:

. except (RuntimeError, TypeError, NameError):
pass

The last except clause may omit the exception name(s), to serve as a wildcard.
Use this with extreme caution, since it is easy to mask a real programming error
in this way! It can also be used to print an error message and then re-raise the
exception (allowing a caller to handle the exception as well):

import sys

try:
f = open('myfile.txt")
s = f.readline()
i = int(s.strip())

except IOError, (errno, strerror):

print "I/0 error(%s): %s" % (errno, strerror)
except ValueError:

print "Could not convert data to an integer."
except:

print "Unexpected error:", sys.exc_info()[0]

raise

The try ... except statement has an optional else clause, which, when present,
must follow all except clauses. It is useful for code that must be executed if the
try clause does not raise an exception. For example:

for arg in sys.argv[1l:]:

try:
f = open(arg, 'r')

except IOError:
print 'cannot open', arg

else:
print arg, 'has', len(f.readlines()), 'lines'
f.close()

The use of the else clause is better than adding additional code to the try
clause because it avoids accidentally catching an exception that wasn't raised by
the code being protected by the try ... except statement.

When an exception occurs, it may have an associated value, also known as the
exception's argument. The presence and type of the argument depend on the
exception type.

The except clause may specify a variable after the exception name (or tuple).
The variable is bound to an exception instance with the arguments stored in

instance.args. For convenience, the exception instance defines
__getitem__and __str___ so the arguments can be accessed or printed
directly without having to reference .args.

But use of .args is discouraged. Instead, the preferred use is to pass a single
argument to an exception (which can be a tuple if multiple arguments are
needed) and have it bound to the message attribute. One my also instantiate an
exception first before raising it and add any attributes to it as desired.

>>> try:
raise Exception('spam', 'eggs')
. except Exception, inst:

print type(inst) # the exception instance

print inst.args # arguments stored in .args

print inst # __str__ allows args to printed directl
X, Yy = inst # __getitem__ allows args to be unpacked
print 'x ='

; X
print 'y ="', y

<type 'instance'>
('spam', ‘'eggs')
('spam', ‘'eggs')
X = spam

y = €eggs

If an exception has an argument, it is printed as the last part ("detail’) of the
message for unhandled exceptions.

Exception handlers don't just handle exceptions if they occur immediately in the
try clause, but also if they occur inside functions that are called (even indirectly)
in the try clause. For example:

>>> def this_fails():
X = 1/0

>>> try:
this_fails()

. except ZeroDivisionError, detail:
print 'Handling run-time error:', detail

Handling run-time error: integer division or modulo by zero

8.4 Raising Exceptions

The raise statement allows the programmer to force a specified exception to
occur. For example:

>>> raise NameError, 'HiThere'
Traceback (most recent call last):

File "<stdin>", line 1, in ?
NameError: HiThere

The first argument to raise names the exception to be raised. The optional
second argument specifies the exception's argument. Alternatively, the above
could be written as raise NameError('HiThere'). Either form works
fine, but there seems to be a growing stylistic preference for the latter.

If you need to determine whether an exception was raised but don't intend to
handle it, a simpler form of the raise statement allows you to re-raise the
exception:

>>> try:
raise NameError, 'HiThere'
. except NameError:
print 'An exception flew by!'
raise

An exception flew by!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

NameError: HiThere

8.5 User-defined Exceptions

Programs may name their own exceptions by creating a new exception class.
Exceptions should typically be derived from the Exception class, either
directly or indirectly. For example:

>>> class MyError(Exception):
def __init__ (self, value):
self.value = value
def __str__ (self):
return repr(self.value)
>>> try:
raise MyError(2*2)
. except MyError, e:
print 'My exception occurred, value:',6 e.value

My exception occurred, value: 4
>>> raise MyError, 'oops!'
Traceback (most recent call last):
File "<stdin>", line 1, in ?
__main__.MyError: 'oops!'

In this example, the default __init__ of Exception has been overridden.
The new behavior simply creates the value attribute. This replaces the default
behavior of creating the args attribute.

Exception classes can be defined which do anything any other class can do, but
are usually kept simple, often only offering a number of attributes that allow
information about the error to be extracted by handlers for the exception. When
creating a module that can raise several distinct errors, a common practice is to
create a base class for exceptions defined by that module, and subclass that to
create specific exception classes for different error conditions:

class Error(Exception):
"""Base class for exceptions in this module."""
pass

class InputError(Error):
"""Exception raised for errors in the input.

Attributes:
expression -- input expression in which the error occurred
message -- explanation of the error

def __init__ (self, expression, message):
self.expression = expression
self.message = message

class TransitionError(Error):
"""Raised when an operation attempts a state transition that's n

allowed.
Attributes:
previous -- state at beginning of transition
next -- attempted new state
message -- explanation of why the specific transition is not

def __init__ (self, previous, next, message):
self.previous = previous
self.next = next
self.message = message

Most exceptions are defined with names that end in ~"Error," similar to the
naming of the standard exceptions.

Many standard modules define their own exceptions to report errors that may
occur in functions they define. More information on classes is presented in
chapter 9, “"Classes."

8.6 Defining Clean-up Actions

The try statement has another optional clause which is intended to define
clean-up actions that must be executed under all circumstances. For example:

>>> try:
.. raise KeyboardInterrupt
. finally:
print 'Goodbye, world!'

Goodbye, world!

Traceback (most recent call last):
File "<stdin>", line 2, in ?

KeyboardInterrupt

A finally clause is always executed before leaving the try statement, whether
an exception has occurred or not. When an exception has occurred in the try
clause and has not been handled by an except clause (or it has occurred in a
except or else clause), it is re-raised after the finally clause has been
executed. The finally clause is also executed ““on the way out" when any
other clause of the try statement is left via a break, continue or return

statement. A more complicated example:

>>> def divide(x, y):
try:
result = x /vy
except ZeroDivisionError:
print "division by zero!"
else:
print "result is", result
finally:
print "executing finally clause"

>>> divide(2, 1)

result is 2

executing finally clause

>>> divide(2, 0)

division by zero!

executing finally clause

>>> divide(llzlll "1")

executing finally clause

Traceback (most recent call last):
File "<stdin>", line 1, in ?
File "<stdin>", line 3, in divide

TypeError: unsupported operand type(s) for /: 'str' and

'str'

As you can see, the finally clause is executed in any event. The
TypeError raised by dividing two strings is not handled by the except
clause and therefore re-raised after the finally clauses has been executed.

In real world applications, the finally clause is useful for releasing external
resources (such as files or network connections), regardless of whether the use of
the resource was successful.

8.7 Predefined Clean-up Actions

Some objects define standard clean-up actions to be undertaken when the object
is no longer needed, regardless of whether or not the operation using the object
succeeded or failed. Look at the following example, which tries to open a file
and print its contents to the screen.

for line in open("myfile.txt"):
print line

The problem with this code is that it leaves the file open for an indeterminate
amount of time after the code has finished executing. This is not an issue in
simple scripts, but can be a problem for larger applications. The with statement
allows objects like files to be used in a way that ensures they are always cleaned
up promptly and correctly.

with open("myfile.txt") as f:
for line in f:
print line

After the statement is executed, the file f is always closed, even if a problem was
encountered while processing the lines. Other objects which provide predefined
clean-up actions will indicate this in their documentation.

«1T-> Python Tutorial toc i
Previous: /. Input and Output up: Python Tutorial Next: 9. Classes

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 8. Errors and Exceptions up: Python Tutorial Next: 10. Brief Tour of

Subsections

9.1 A Word About Terminology
9.2 Python Scopes and Name Spaces
9.3 A First I.ook at Classes

o 9.3.1 Class Definition Syntax

o 9.3.2 Class Objects
o 9.3.3 Instance Obijects

o 9.3.4 Method Objects
9.4 Random Remarks
9.5 Inheritance
o 9.5.1 Multiple Inheritance
9.6 Private Variables
9.7 Odds and Ends
9.8 Exceptions Are Classes Too
9.9 Iterators
9.10 Generators
9.11 Generator Expressions

9. Classes

Python's class mechanism adds classes to the language with a minimum of new
syntax and semantics. It is a mixture of the class mechanisms found in C++ and
Modula-3. As is true for modules, classes in Python do not put an absolute
barrier between definition and user, but rather rely on the politeness of the user
not to ~"break into the definition." The most important features of classes are
retained with full power, however: the class inheritance mechanism allows
multiple base classes, a derived class can override any methods of its base class
or classes, and a method can call the method of a base class with the same name.
Objects can contain an arbitrary amount of private data.

In C++ terminology, all class members (including the data members) are public,
and all member functions are virtual. There are no special constructors or
destructors. As in Modula-3, there are no shorthands for referencing the object's
members from its methods: the method function is declared with an explicit first
argument representing the object, which is provided implicitly by the call. As in
Smalltalk, classes themselves are objects, albeit in the wider sense of the word:
in Python, all data types are objects. This provides semantics for importing and
renaming. Unlike C++ and Modula-3, built-in types can be used as base classes
for extension by the user. Also, like in C++ but unlike in Modula-3, most built-in
operators with special syntax (arithmetic operators, subscripting etc.) can be
redefined for class instances.

9.1 A Word About Terminology

Lacking universally accepted terminology to talk about classes, I will make
occasional use of Smalltalk and C++ terms. (I would use Modula-3 terms, since
its object-oriented semantics are closer to those of Python than C++, but I expect
that few readers have heard of it.)

Objects have individuality, and multiple names (in multiple scopes) can be
bound to the same object. This is known as aliasing in other languages. This is
usually not appreciated on a first glance at Python, and can be safely ignored
when dealing with immutable basic types (numbers, strings, tuples). However,
aliasing has an (intended!) effect on the semantics of Python code involving
mutable objects such as lists, dictionaries, and most types representing entities
outside the program (files, windows, etc.). This is usually used to the benefit of
the program, since aliases behave like pointers in some respects. For example,
passing an object is cheap since only a pointer is passed by the implementation;
and if a function modifies an object passed as an argument, the caller will see the
change -- this eliminates the need for two different argument passing
mechanisms as in Pascal.

9.2 Python Scopes and Name
Spaces

Before introducing classes, I first have to tell you something about Python's
scope rules. Class definitions play some neat tricks with namespaces, and you
need to know how scopes and namespaces work to fully understand what's going
on. Incidentally, knowledge about this subject is useful for any advanced Python
programmer.

Let's begin with some definitions.

A namespace is a mapping from names to objects. Most namespaces are
currently implemented as Python dictionaries, but that's normally not noticeable
in any way (except for performance), and it may change in the future. Examples
of namespaces are: the set of built-in names (functions such as abs(), and
built-in exception names); the global names in a module; and the local names in
a function invocation. In a sense the set of attributes of an object also form a
namespace. The important thing to know about namespaces is that there is
absolutely no relation between names in different namespaces; for instance, two
different modules may both define a function " “maximize" without confusion --
users of the modules must prefix it with the module name.

By the way, I use the word attribute for any name following a dot -- for example,
in the expression z . real, real is an attribute of the object z. Strictly
speaking, references to names in modules are attribute references: in the
expression modname . funcname, modname is a module object and
funcname is an attribute of it. In this case there happens to be a straightforward
mapping between the module's attributes and the global names defined in the
module: they share the same namespace! 21

Attributes may be read-only or writable. In the latter case, assignment to
attributes is possible. Module attributes are writable: you can write
"modname.the_answer = 42". Writable attributes may also be deleted
with the del statement. For example, "del modname.the_answer" will
remove the attribute the_answer from the object named by modname.

Name spaces are created at different moments and have different lifetimes. The
namespace containing the built-in names is created when the Python interpreter
starts up, and is never deleted. The global namespace for a module is created
when the module definition is read in; normally, module namespaces also last
until the interpreter quits. The statements executed by the top-level invocation of
the interpreter, either read from a script file or interactively, are considered part
of a module called __main__, so they have their own global namespace. (The
built-in names actually also live in a module; this is called __builtin__.)

The local namespace for a function is created when the function is called, and
deleted when the function returns or raises an exception that is not handled
within the function. (Actually, forgetting would be a better way to describe what
actually happens.) Of course, recursive invocations each have their own local
namespace.

A scope is a textual region of a Python program where a namespace is directly
accessible. “"Directly accessible" here means that an unqualified reference to a
name attempts to find the name in the namespace.

Although scopes are determined statically, they are used dynamically. At any
time during execution, there are at least three nested scopes whose namespaces
are directly accessible: the innermost scope, which is searched first, contains the
local names; the namespaces of any enclosing functions, which are searched
starting with the nearest enclosing scope; the middle scope, searched next,
contains the current module's global names; and the outermost scope (searched
last) is the namespace containing built-in names.

If a name is declared global, then all references and assignments go directly to
the middle scope containing the module's global names. Otherwise, all variables
found outside of the innermost scope are read-only (an attempt to write to such a
variable will simply create a new local variable in the innermost scope, leaving
the identically named outer variable unchanged).

Usually, the local scope references the local names of the (textually) current
function. Outside functions, the local scope references the same namespace as
the global scope: the module's namespace. Class definitions place yet another
namespace in the local scope.

It is important to realize that scopes are determined textually: the global scope of

a function defined in a module is that module's namespace, no matter from
where or by what alias the function is called. On the other hand, the actual
search for names is done dynamically, at run time -- however, the language
definition is evolving towards static name resolution, at =~ compile” time, so don't
rely on dynamic name resolution! (In fact, local variables are already determined
statically.)

A special quirk of Python is that assignments always go into the innermost
scope. Assignments do not copy data -- they just bind names to objects. The
same is true for deletions: the statement "del X" removes the binding of X from
the namespace referenced by the local scope. In fact, all operations that
introduce new names use the local scope: in particular, import statements and
function definitions bind the module or function name in the local scope. (The
global statement can be used to indicate that particular variables live in the
global scope.)

9.3 A First Look at Classes

Classes introduce a little bit of new syntax, three new object types, and some
new semantics.

9.3.1 Class Definition Syntax

The simplest form of class definition looks like this:

class ClassName:
<statement-1>

<statement-N>

Class definitions, like function definitions (def statements) must be executed
before they have any effect. (You could conceivably place a class definition in a
branch of an 1f statement, or inside a function.)

In practice, the statements inside a class definition will usually be function
definitions, but other statements are allowed, and sometimes useful -- we'll come
back to this later. The function definitions inside a class normally have a peculiar
form of argument list, dictated by the calling conventions for methods -- again,
this is explained later.

When a class definition is entered, a new namespace is created, and used as the
local scope -- thus, all assignments to local variables go into this new
namespace. In particular, function definitions bind the name of the new function
here.

When a class definition is left normally (via the end), a class object is created.
This is basically a wrapper around the contents of the namespace created by the
class definition; we'll learn more about class objects in the next section. The
original local scope (the one in effect just before the class definition was entered)
is reinstated, and the class object is bound here to the class name given in the
class definition header (ClassName in the example).

9.3.2 Class Objects

Class objects support two kinds of operations: attribute references and
instantiation.

Attribute references use the standard syntax used for all attribute references in
Python: obj . name. Valid attribute names are all the names that were in the

class's namespace when the class object was created. So, if the class definition
looked like this:

class MyClass:
"A simple example class"
i = 12345
def f(self):
return 'hello world'

then MyClass.i and MyClass. f are valid attribute references, returning an
integer and a function object, respectively. Class attributes can also be assigned
to, so you can change the value of MyClass. 1 by assignment. __doc___is
also a valid attribute, returning the docstring belonging to the class: "A
simple example class".

Class instantiation uses function notation. Just pretend that the class object is a
parameterless function that returns a new instance of the class. For example
(assuming the above class):

X = MyClass()
creates a new instance of the class and assigns this object to the local variable X.

The instantiation operation (" calling" a class object) creates an empty object.
Many classes like to create objects with instances customized to a specific initial
state. Therefore a class may define a special method named __init__ (), like
this:

def __init__ (self):
self.data = []

When a class defines an __init__ () method, class instantiation automatically
invokes __init__ () for the newly-created class instance. So in this example,

a new, initialized instance can be obtained by:

X = MyClass()

Of course, the __init__ () method may have arguments for greater flexibility.

In that case, arguments given to the class instantiation operator are passed on to
__init__ (). For example,

>>> class Complex:
def __init__ (self, realpart, imagpart):
self.r = realpart
self.i = imagpart
>>> x = Complex(3.0, -4.5)
>>> x.r, X.1
(3.0, -4.5)

9.3.3 Instance Objects

Now what can we do with instance objects? The only operations understood by
instance objects are attribute references. There are two kinds of valid attribute
names, data attributes and methods.

data attributes correspond to " instance variables" in Smalltalk, and to ""data
members" in C++. Data attributes need not be declared; like local variables, they
spring into existence when they are first assigned to. For example, if X is the
instance of MyClass created above, the following piece of code will print the
value 16, without leaving a trace:

X.counter = 1

while x.counter < 10:
X.counter = Xx.counter * 2

print x.counter

del x.counter

The other kind of instance attribute reference is a method. A method is a function
that “"belongs to" an object. (In Python, the term method is not unique to class
instances: other object types can have methods as well. For example, list objects
have methods called append, insert, remove, sort, and so on. However, in the
following discussion, we'll use the term method exclusively to mean methods of
class instance objects, unless explicitly stated otherwise.)

Valid method names of an instance object depend on its class. By definition, all
attributes of a class that are function objects define corresponding methods of its
instances. So in our example, X . T is a valid method reference, since

MyClass. f is a function, but X . 1 is not, since MyClass. 1 is not. But X. f is
not the same thing as MyClass. f -- it is a method object, not a function object.

9.3.4 Method Objects

Usually, a method is called right after it is bound:

x.F()

In the MyClass example, this will return the string 'hello world"'.
However, it is not necessary to call a method right away: X. f is a method
object, and can be stored away and called at a later time. For example:

xf = x.f
while True:
print xf()

will continue to print "hello world" until the end of time.

What exactly happens when a method is called? You may have noticed that

X . T () was called without an argument above, even though the function
definition for f specified an argument. What happened to the argument? Surely
Python raises an exception when a function that requires an argument is called
without any -- even if the argument isn't actually used...

Actually, you may have guessed the answer: the special thing about methods is
that the object is passed as the first argument of the function. In our example, the
call x. () is exactly equivalent to MyClass. f(X). In general, calling a
method with a list of n arguments is equivalent to calling the corresponding
function with an argument list that is created by inserting the method's object
before the first argument.

If you still don't understand how methods work, a look at the implementation can
perhaps clarify matters. When an instance attribute is referenced that isn't a data
attribute, its class is searched. If the name denotes a valid class attribute that is a
function object, a method object is created by packing (pointers to) the instance
object and the function object just found together in an abstract object: this is the
method object. When the method object is called with an argument list, it is
unpacked again, a new argument list is constructed from the instance object and
the original argument list, and the function object is called with this new
argument list.

9.4 Random Remarks

Data attributes override method attributes with the same name; to avoid
accidental name conflicts, which may cause hard-to-find bugs in large programs,
it is wise to use some kind of convention that minimizes the chance of conflicts.
Possible conventions include capitalizing method names, prefixing data attribute
names with a small unique string (perhaps just an underscore), or using verbs for
methods and nouns for data attributes.

Data attributes may be referenced by methods as well as by ordinary users

(" “clients") of an object. In other words, classes are not usable to implement pure
abstract data types. In fact, nothing in Python makes it possible to enforce data
hiding -- it is all based upon convention. (On the other hand, the Python
implementation, written in C, can completely hide implementation details and
control access to an object if necessary; this can be used by extensions to Python
written in C.)

Clients should use data attributes with care -- clients may mess up invariants
maintained by the methods by stamping on their data attributes. Note that clients
may add data attributes of their own to an instance object without affecting the
validity of the methods, as long as name conflicts are avoided -- again, a naming
convention can save a lot of headaches here.

There is no shorthand for referencing data attributes (or other methods!) from
within methods. I find that this actually increases the readability of methods:
there is no chance of confusing local variables and instance variables when
glancing through a method.

Often, the first argument of a method is called self. This is nothing more than
a convention: the name self has absolutely no special meaning to Python.
(Note, however, that by not following the convention your code may be less
readable to other Python programmers, and it is also conceivable that a class
browser program might be written that relies upon such a convention.)

Any function object that is a class attribute defines a method for instances of that
class. It is not necessary that the function definition is textually enclosed in the
class definition: assigning a function object to a local variable in the class is also

ok. For example:

Function defined outside the class
def fi(self, x, y):
return min(x, x+y)

class C:
f =f1
def g(self):
return 'hello world'
h =g

Now f, g and h are all attributes of class C that refer to function objects, and
consequently they are all methods of instances of C -- h being exactly equivalent
to g. Note that this practice usually only serves to confuse the reader of a
program.

Methods may call other methods by using method attributes of the sel1f
argument:

class Bag:

def __init__ (self):
self.data = []

def add(self, x):
self.data.append(x)

def addtwice(self, x):
self.add(x)
self.add(x)

Methods may reference global names in the same way as ordinary functions. The
global scope associated with a method is the module containing the class
definition. (The class itself is never used as a global scope!) While one rarely
encounters a good reason for using global data in a method, there are many
legitimate uses of the global scope: for one thing, functions and modules
imported into the global scope can be used by methods, as well as functions and
classes defined in it. Usually, the class containing the method is itself defined in
this global scope, and in the next section we'll find some good reasons why a
method would want to reference its own class!

9.5 Inheritance

Of course, a language feature would not be worthy of the name ""class" without
supporting inheritance. The syntax for a derived class definition looks like this:

class DerivedClassName(BaseClassName):
<statement-1>

<statement-N>

The name BaseClassName must be defined in a scope containing the derived
class definition. In place of a base class name, other arbitrary expressions are
also allowed. This can be useful, for example, when the base class is defined in
another module:

class DerivedClassName(modname.BaseClassName):

Execution of a derived class definition proceeds the same as for a base class.
When the class object is constructed, the base class is remembered. This is used
for resolving attribute references: if a requested attribute is not found in the
class, the search proceeds to look in the base class. This rule is applied
recursively if the base class itself is derived from some other class.

There's nothing special about instantiation of derived classes:
DerivedClassName() creates a new instance of the class. Method
references are resolved as follows: the corresponding class attribute is searched,
descending down the chain of base classes if necessary, and the method
reference is valid if this yields a function object.

Derived classes may override methods of their base classes. Because methods
have no special privileges when calling other methods of the same object, a
method of a base class that calls another method defined in the same base class
may end up calling a method of a derived class that overrides it. (For C++
programmers: all methods in Python are effectively virtual.)

An overriding method in a derived class may in fact want to extend rather than
simply replace the base class method of the same name. There is a simple way to

call the base class method directly: just call
"BaseClassName.methodname(self, arguments)". Thisis
occasionally useful to clients as well. (Note that this only works if the base class
is defined or imported directly in the global scope.)

9.5.1 Multiple Inheritance

Python supports a limited form of multiple inheritance as well. A class definition
with multiple base classes looks like this:

class DerivedClassName(Basel, Base2, Base3):
<statement-1>

<statement-N>

The only rule necessary to explain the semantics is the resolution rule used for
class attribute references. This is depth-first, left-to-right. Thus, if an attribute is
not found in DerivedClassName, it is searched in Basel, then (recursively)
in the base classes of Basel, and only if it is not found there, it is searched in
Base?2, and so on.

(To some people breadth first -- searching Base2 and Base3 before the base
classes of Basel -- looks more natural. However, this would require you to
know whether a particular attribute of Base1l is actually defined in Basel or in
one of its base classes before you can figure out the consequences of a name
conflict with an attribute of Base2. The depth-first rule makes no differences
between direct and inherited attributes of Base1l.)

It is clear that indiscriminate use of multiple inheritance is a maintenance
nightmare, given the reliance in Python on conventions to avoid accidental name
conflicts. A well-known problem with multiple inheritance is a class derived
from two classes that happen to have a common base class. While it is easy
enough to figure out what happens in this case (the instance will have a single
copy of “instance variables" or data attributes used by the common base class),
it is not clear that these semantics are in any way useful.

9.6 Private Variables

There is limited support for class-private identifiers. Any identifier of the form
___Spam (at least two leading underscores, at most one trailing underscore) is
textually replaced with _classname___spam, where classname is the
current class name with leading underscore(s) stripped. This mangling is done
without regard to the syntactic position of the identifier, so it can be used to
define class-private instance and class variables, methods, variables stored in
globals, and even variables stored in instances. private to this class on instances
of other classes. Truncation may occur when the mangled name would be longer
than 255 characters. Outside classes, or when the class name consists of only
underscores, no mangling occurs.

Name mangling is intended to give classes an easy way to define ~ private"
instance variables and methods, without having to worry about instance
variables defined by derived classes, or mucking with instance variables by code
outside the class. Note that the mangling rules are designed mostly to avoid
accidents; it still is possible for a determined soul to access or modify a variable
that is considered private. This can even be useful in special circumstances, such
as in the debugger, and that's one reason why this loophole is not closed.
(Buglet: derivation of a class with the same name as the base class makes use of
private variables of the base class possible.)

Notice that code passed to exec, eval() or execfile() does not consider
the classname of the invoking class to be the current class; this is similar to the
effect of the global statement, the effect of which is likewise restricted to code
that is byte-compiled together. The same restriction applies to getattr (),
setattr() and delattr (), as well as when referencing __dict___
directly.

9.7 Odds and Ends

Sometimes it is useful to have a data type similar to the Pascal "record" or C
“struct”, bundling together a few named data items. An empty class definition
will do nicely:

class Employee:
pass

john = Employee() # Create an empty employee record

Fill the fields of the record
john.name = 'John Doe'
john.dept = 'computer lab'
john.salary = 1000

A piece of Python code that expects a particular abstract data type can often be
passed a class that emulates the methods of that data type instead. For instance,
if you have a function that formats some data from a file object, you can define a
class with methods read() and readline() that get the data from a string
buffer instead, and pass it as an argument.

Instance method objects have attributes, too: m. im_self is the instance object
with the method m, and m. im_func is the function object corresponding to the
method.

9.8 Exceptions Are Classes Too

User-defined exceptions are identified by classes as well. Using this mechanism
it is possible to create extensible hierarchies of exceptions.

There are two new valid (semantic) forms for the raise statement:

raise Class, instance

raise instance

In the first form, instance must be an instance of Class or of a class derived
from it. The second form is a shorthand for:

raise instance.__class_ , instance

A class in an except clause is compatible with an exception if it is the same class
or a base class thereof (but not the other way around -- an except clause listing a
derived class is not compatible with a base class). For example, the following
code will print B, C, D in that order:

class B:
pass
class C(B):
pass
class D(C):
pass

for ¢ in [B, C, D]:

try:
raise c()
except D:
print "D"
except C:
print "C"
except B:
print "B"

Note that if the except clauses were reversed (with "except B" first), it would
have printed B, B, B -- the first matching except clause is triggered.

When an error message is printed for an unhandled exception, the exception's
class name is printed, then a colon and a space, and finally the instance

converted to a string using the built-in function str ().

9.9 Iterators

By now you have probably noticed that most container objects can be looped
over using a for statement:

for element in [1, 2, 3]:
print element

for element in (1, 2, 3):
print element

for key in {'one':1, 'two':2}:
print key

for char in "123":
print char

for line in open("myfile.txt"):
print line

This style of access is clear, concise, and convenient. The use of iterators
pervades and unifies Python. Behind the scenes, the for statement calls

iter () on the container object. The function returns an iterator object that
defines the method next (') which accesses elements in the container one at a
time. When there are no more elements, next () raises a StopIteration
exception which tells the for loop to terminate. This example shows how it all
works:

>>> s = 'abc'
>>> it = iter(s)
>>> it

<iterator object at Ox00A1DB50>
>>> it.next()

lal

>>> it.next()

lbl

>>> jit.next()

|C|

>>> it.next()

Traceback (most recent call last):
File "<stdin>", line 1, in ?
it.next()
StopIteration

Having seen the mechanics behind the iterator protocol, it is easy to add iterator
behavior to your classes. Definea __iter___ () method which returns an
object with a next () method. If the class defines next (), then

__iter__ () canjustreturn self:

class Reverse:

"Iterator for looping over a sequence backwards"

def __init__ (self, data):
self.data = data
self.index = len(data)

def __iter_ (self):
return self

def next(self):
if self.index ==

raise StopIteration

self.index = self.index - 1
return self.data[self.index]

>>> for char in Reverse('spam'):
print char

woT o 3 -

9.10 Generators

Generators are a simple and powerful tool for creating iterators. They are written
like regular functions but use the yield statement whenever they want to return
data. Each time next () is called, the generator resumes where it left-off (it
remembers all the data values and which statement was last executed). An
example shows that generators can be trivially easy to create:

def reverse(data):
for index in range(len(data)-1, -1, -1):
yield data[index]

>>> for char in reverse('golf'):
print char

QO —h- -

Anything that can be done with generators can also be done with class based
iterators as described in the previous section. What makes generators so compact
isthat the __iter__ () and next () methods are created automatically.

Another key feature is that the local variables and execution state are
automatically saved between calls. This made the function easier to write and
much more clear than an approach using instance variables like self.index
and self.data.

In addition to automatic method creation and saving program state, when
generators terminate, they automatically raise StopIteration. In
combination, these features make it easy to create iterators with no more effort
than writing a regular function.

9.11 Generator Expressions

Some simple generators can be coded succinctly as expressions using a syntax
similar to list comprehensions but with parentheses instead of brackets. These
expressions are designed for situations where the generator is used right away by
an enclosing function. Generator expressions are more compact but less versatile
than full generator definitions and tend to be more memory friendly than
equivalent list comprehensions.

Examples:

>>> sum(i*i for i in range(10)) # sum of squares
285

>>> xvec = [10, 20, 30]

>>> yvec = [7, 5, 3]

>>> sum(x*y for x,y in zip(xvec, yvec)) # dot product
260

>>> from math import pi, sin
>>> sine_table = dict((x, sin(x*pi/180)) for x in range(0, 91))

>>> unique_words = set(word for line in page for word in line.spli
>>> valedictorian = max((student.gpa, student.name) for student in g
>>> data = 'golf'

>>> list(data[i] for i in range(len(data)-1,-1,-1))
[lfll 'l', '0', lgl]

Foothotes

... namespace!21

Except for one thing. Module objects have a secret read-only attribute
called __dict__ which returns the dictionary used to implement the
module's namespace; the name __dict__is an attribute but not a global
name. Obviously, using this violates the abstraction of namespace
implementation, and should be restricted to things like post-mortem

debuggers.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 8. Errors and Exceptions up: Python Tutorial Next: 10. Brief Tour of

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 9. Classes up: Python Tutorial Next: 11. Brief Tour of

Subsections

10.1 Operating System Interface
10.2 File Wildcards

10.3 Command Line Arguments
10.4 Error Output Redirection and Program Termination

10.5 String Pattern Matching
10.6 Mathematics

10.7 Internet Access

10.8 Dates and Times

10.9 Data Compression

10.10 Performance Measurement
10.11 Quality Control

10.12 Batteries Included

10. Brief Tour of the Standard
Library

10.1 Operating System Interface

The 0S module provides dozens of functions for interacting with the operating
system:

>>> import os

>>> os.system('time 0:02"')

0]

>>> o0s.getcwd() # Return the current working directory
'"C:\\Python24"'

>>> o0s.chdir('/server/accesslogs')

Be sure to use the "import o0s" style instead of "from os import *".
This will keep 0s.open() from shadowing the builtin open() function
which operates much differently.

The builtin dir () and help () functions are useful as interactive aids for
working with large modules like 0sS:

>>> import os

>>> dir(os)

<returns a list of all module functions>

>>> help(os)

<returns an extensive manual page created from the module's docstrin

For daily file and directory management tasks, the shutil module provides a
higher level interface that is easier to use:

>>> import shutil
>>> shutil.copyfile('data.db', 'archive.db')
>>> shutil.move('/build/executables', 'installdir')

10.2 File Wildcards

The g1lob module provides a function for making file lists from directory
wildcard searches:

>>> import glob
>>> glob.glob('*.py")
['primes.py', 'random.py', 'quote.py']

10.3 Command Line Arguments

Common utility scripts often need to process command line arguments. These
arguments are stored in the Sys module's argv attribute as a list. For instance the
following output results from running "python demo.py one two
three" at the command line:

>>> import sys
>>> print sys.argv
['demo.py', 'one', 'two', 'three']

The getopt module processes sys.argv using the conventions of the Unix
getopt () function. More powerful and flexible command line processing is

provided by the optparse module.

10.4 Error Output Redirection and
Program Termination

The Sy s module also has attributes for stdin, stdout, and stderr. The latter is
useful for emitting warnings and error messages to make them visible even when

stdout has been redirected:

>>> gys.stderr.write('Warning, log file not found starting a new one
wWarning, log file not found starting a new one

The most direct way to terminate a script is to use "sys.exit()".

10.5 String Pattern Matching

The re module provides regular expression tools for advanced string processing.
For complex matching and manipulation, regular expressions offer succinct,
optimized solutions:

>>> import re

>>> re.findall(r'\bf[a-z]*', 'which foot or hand fell fastest')
['foot', 'fell', 'fastest']

>>> re.sub(r'(\b[a-z]+) \1', r'\1', 'cat in the the hat')

'cat in the hat'

When only simple capabilities are needed, string methods are preferred because
they are easier to read and debug:

>>> 'tea for too'.replace('too', 'two')
'tea for two'

10.6 Mathematics

The math module gives access to the underlying C library functions for floating
point math:

>>> import math

>>> math.cos(math.pi / 4.0)
0.70710678118654757

>>> math.log(1024, 2)

10.0

The random module provides tools for making random selections:

>>> import random

>>> random.choice(['apple', 'pear', 'banana'])

'apple'

>>> random.sample(xrange(100), 10) # sampling without replacement
[30, 83, 16, 4, 8, 81, 41, 50, 18, 33]

>>> random.random() # random float
0.17970987693706186
>>> random.randrange(6) # random integer chosen from range(6)

4

10.7 Internet Access

There are a number of modules for accessing the internet and processing internet
protocols. Two of the simplest are ur113ib2 for retrieving data from urls and

smtplib for sending mail:

>>> import urllib2
>>> for line in urllib2.urlopen('http://tycho.usno.navy.mil/cgi-bin/
if 'EST' in line or 'EDT' in line: # look for Eastern Time
print line

Nov. 25, 09:43:32 PM EST

>>> import smtplib

>>> server = smtplib.SMTP('localhost')

>>> server.sendmail('soothsayer@example.org', 'jcaesar@example.org',
"""To: jcaesar@example.org

From: soothsayer@example.org

Beware the Ides of March.
Illlll)

>>> server.quit()

10.8 Dates and Times

The datetime module supplies classes for manipulating dates and times in
both simple and complex ways. While date and time arithmetic is supported, the
focus of the implementation is on efficient member extraction for output
formatting and manipulation. The module also supports objects that are timezone
aware.

dates are easily constructed and formatted

>>> from datetime import date

>>> now = date.today()

>>> now

datetime.date(2003, 12, 2)

>>> now.strftime("%m-%d-%y. %d %b %Y is a %A on the %d day of %B.")
'12-02-03. 02 Dec 2003 is a Tuesday on the 02 day of December.'

dates support calendar arithmetic
>>> birthday = date(1964, 7, 31)
>>> age = now - birthday

>>> age.days

14368

10.9 Data Compression

Common data archiving and compression formats are directly supported by
modules including: z1ib, gzip, bz2, zipfile, and tarfile.

>>> import zlib

>>> s = 'witch which has which witches wrist watch'
>>> len(s)
41

>>> t = zlib.compress(s)

>>> len(t)

37

>>> z1ib.decompress(t)

'witch which has which witches wrist watch'
>>> z1ib.crc32(s)

226805979

10.10 Performance Measurement

Some Python users develop a deep interest in knowing the relative performance
of different approaches to the same problem. Python provides a measurement
tool that answers those questions immediately.

For example, it may be tempting to use the tuple packing and unpacking feature
instead of the traditional approach to swapping arguments. The timeit module
quickly demonstrates a modest performance advantage:

>>> from timeit import Timer

>>> Timer('t=a; a=b; b=t', 'a=1; b=2').timeit()
0.57535828626024577

>>> Timer('a,b = b,a', 'a=1l; b=2"').timeit()
0.54962537085770791

In contrast to timeit's fine level of granularity, the profile and pstats
modules provide tools for identifying time critical sections in larger blocks of
code.

10.11 Quality Control

One approach for developing high quality software is to write tests for each
function as it is developed and to run those tests frequently during the
development process.

The doctest module provides a tool for scanning a module and validating
tests embedded in a program's docstrings. Test construction is as simple as
cutting-and-pasting a typical call along with its results into the docstring. This
improves the documentation by providing the user with an example and it allows
the doctest module to make sure the code remains true to the documentation:

def average(values):
"""Computes the arithmetic mean of a list of numbers.

>>> print average([20, 30, 70])
40.0

return sum(values, 0.0) / len(values)

import doctest
doctest.testmod() # automatically validate the embedded tests

The unittest module is not as effortless as the doctest module, but it
allows a more comprehensive set of tests to be maintained in a separate file:

import unittest
class TestStatisticalFunctions(unittest.TestCase):

def test_average(self):
self.assertEqual(average([20, 30, 70]), 40.0)
self.assertEqual(round(average([1, 5, 7]), 1), 4.3)
self.assertRaises(ZeroDivisionError, average, [])
self.assertRaises(TypeError, average, 20, 30, 70)

unittest.main() # Calling from the command line invokes all tests

10.12 Batteries Included

Python has a "batteries included" philosophy. This is best seen through the
sophisticated and robust capabilities of its larger packages. For example:

o The xmlrpclib and SimpleXMLRPCServer modules make
implementing remote procedure calls into an almost trivial task. Despite the
modules names, no direct knowledge or handling of XML is needed.

e The email package is a library for managing email messages, including
MIME and other RFC 2822-based message documents. Unlike smtplib
and poplib which actually send and receive messages, the email package
has a complete toolset for building or decoding complex message structures
(including attachments) and for implementing internet encoding and header
protocols.

e The xml.dom and xml . sax packages provide robust support for parsing
this popular data interchange format. Likewise, the €SV module supports
direct reads and writes in a common database format. Together, these
modules and packages greatly simplify data interchange between python
applications and other tools.

e Internationalization is supported by a number of modules including
gettext, locale, and the codecs package.

«1T-> Python Tutorial toc i

COMTENTS INDEK
Previous: 9. Classes up: Python Tutorial Next: 11. Brief Tour of

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 10. Brief Tour of up: Python Tutorial Next: 12. What Now?

Subsections
e 11.1 Output Formatting
e 11.2 Templating
e 11.3 Working with Binary Data Record Layouts
e 11.4 Multi-threading
e 11.5 Logging
o 11.6 Weak References
e 11.7 Tools for Working with Lists
e 11.8 Decimal Floating Point Arithmetic

11. Brief Tour of the Standard
Library - Part li

This second tour covers more advanced modules that support professional
programming needs. These modules rarely occur in small scripts.

11.1 Output Formatting

The repr module provides a version of repr () customized for abbreviated
displays of large or deeply nested containers:

>>> import repr
>>> repr.repr(set('supercalifragilisticexpialidocious'))
"Set(['a', |C|, 'd', 'e', lfll 'g', ...])Il

The pprint module offers more sophisticated control over printing both built-
in and user defined objects in a way that is readable by the interpreter. When the
result is longer than one line, the "“pretty printer" adds line breaks and
indentation to more clearly reveal data structure:

>>> import pprint
>>> t = [[[['black', 'cyan'], 'white', ['green', 'red']], [['mag
'yvellow'], 'blue']]]

>>> pprint.pprint(t, width=30)
[[[['black', 'cyan'],
'white',
['green', 'red']],
[['magenta', 'yellow'],
"blue']]]

The textwrap module formats paragraphs of text to fit a given screen width:

>>> import textwrap

>>> doc = """The wrap() method is just like fill() except that i
. a list of strings instead of one big string with newlines tao
. the wrapped lines."""

>>> print textwrap.fill(doc, width=40)
The wrap() method is just like fill()
except that it returns a list of strings
instead of one big string with newlines
to separate the wrapped lines.

The 1locale module accesses a database of culture specific data formats. The
grouping attribute of locale's format function provides a direct way of formatting
numbers with group separators:

>>> import locale
>>> locale.setlocale(locale.LC_ALL, 'English_United States.1252'

'English_United States.1252'

>>> conv = locale.localeconv()

>>> X = 1234567.8

>>> locale.format("%d", X, grouping=True)

'1,234,567"

>>> locale.format("%s%.*f", (conv['currency_symbol'],
conv['frac_digits'], x), grouping=True)

'$1,234,567.80"

get a mapping of conve

11.2 Templating

The string module includes a versatile Template class with a simplified
syntax suitable for editing by end-users. This allows users to customize their
applications without having to alter the application.

The format uses placeholder names formed by "$" with valid Python identifiers
(alphanumeric characters and underscores). Surrounding the placeholder with
braces allows it to be followed by more alphanumeric letters with no intervening
spaces. Writing "$$" creates a single escaped "$":

>>> from string import Template

>>> t = Template('${village}folk send $$10 to S$cause.')

>>> t.substitute(village="'Nottingham', cause='the ditch fund')
"Nottinghamfolk send $10 to the ditch fund.'

The substitute method raises a KeyError when a placeholder is not
supplied in a dictionary or a keyword argument. For mail-merge style
applications, user supplied data may be incomplete and the
safe_substitute method may be more appropriate -- it will leave
placeholders unchanged if data is missing:

>>> t Template('Return the $item to $owner.')
>>> d dict(item='unladen swallow')

>>> t.substitute(d)

Traceback (most recent call last):

KeyError: 'owner'
>>> t.safe_substitute(d)
'Return the unladen swallow to $owner.'

Template subclasses can specify a custom delimiter. For example, a batch
renaming utility for a photo browser may elect to use percent signs for
placeholders such as the current date, image sequence number, or file format:

>>> import time, os.path

>>> photofiles = ['img_1074.jpg', 'img_1076.jpg', 'img_1077.jpg']
>>> class BatchRename(Template):

.. delimiter = '%'

>>> fmt = raw_input('Enter rename style (%d-date %n-seqnum %f-format
Enter rename style (%d-date %n-seqnum %f-format): Ashley_%n%f

>>> t = BatchRename(fmt)

>>> date = time.strftime('%d%b%y ')

>>> for i, filename in enumerate(photofiles):
base, ext = os.path.splitext(filename)
newname = t.substitute(d=date, n=i, f=ext)
print '%s --> %s' % (filename, newname)

img_1074.jpg --> Ashley_0.jpg
img_1076.jpg --> Ashley_1.jpg
img_1077.jpg --> Ashley_2.jpg

Another application for templating is separating program logic from the details
of multiple output formats. This makes it possible to substitute custom templates
for XML files, plain text reports, and HTML web reports.

11.3 Working with Binary Data
Record Layouts

The struct module provides pack() and unpack () functions for working
with variable length binary record formats. The following example shows how to
loop through header information in a ZIP file (with pack codes "H" and "L"
representing two and four byte unsigned numbers respectively):

import struct

data = open('myfile.zip', 'rb').read()

start = 0
for i in range(3): # show the first 3 file
start += 14

fields = struct.unpack('LLLHH', data[start:start+16])
crc32, comp_size, uncomp_size, filenamesize, extra_size = fi

start += 16

filename = data[start:start+filenamesize]

start += filenamesize

extra = data[start:start+extra_size]

print filename, hex(crc32), comp_size, uncomp_size

start += extra_size + comp_size # skip to the next heade

11.4 Multi-threading

Threading is a technique for decoupling tasks which are not sequentially
dependent. Threads can be used to improve the responsiveness of applications
that accept user input while other tasks run in the background. A related use case
is running I/O in parallel with computations in another thread.

The following code shows how the high level threading module can run
tasks in background while the main program continues to run:

import threading, zipfile

class AsyncZip(threading.Thread):

def __init_ (self, infile, outfile):
threading.Thread.__init__ (self)
self.infile = infile
self.outfile = outfile

def run(self):
f = zipfile.zipFile(self.outfile, 'w', zipfile.ZIP_DEFLA
f.write(self.infile)
f.close()
print 'Finished background zip of: ', self.infile

background = AsynczZip('mydata.txt', 'myarchive.zip')
background.start()
print 'The main program continues to run in foreground.'

background.join() # Wait for the background task to finish
print 'Main program waited until background was done.'

The principal challenge of multi-threaded applications is coordinating threads
that share data or other resources. To that end, the threading module provides a
number of synchronization primitives including locks, events, condition
variables, and semaphores.

While those tools are powerful, minor design errors can result in problems that
are difficult to reproduce. So, the preferred approach to task coordination is to
concentrate all access to a resource in a single thread and then use the Queue
module to feed that thread with requests from other threads. Applications using
Queue objects for inter-thread communication and coordination are easier to
design, more readable, and more reliable.

11.5 Logging

The 1ogging module offers a full featured and flexible logging system. At its
simplest, log messages are sent to a file or to sys.stderr:

import logging

logging.debug('Debugging information')
logging.info('Informational message')
logging.warning('Warning:config file %s not found', 'server.conf
logging.error('Error occurred')

logging.critical('Critical error -- shutting down')

This produces the following output:

WARNING:root:Warning:config file server.conf not found
ERROR:root:Error occurred
CRITICAL:root:Critical error -- shutting down

By default, informational and debugging messages are suppressed and the output
is sent to standard error. Other output options include routing messages through
email, datagrams, sockets, or to an HTTP Server. New filters can select different
routing based on message priority: DEBUG, INFO, WARNING, ERROR, and
CRITICAL.

The logging system can be configured directly from Python or can be loaded
from a user editable configuration file for customized logging without altering
the application.

11.6 Weak References

Python does automatic memory management (reference counting for most
objects and garbage collection to eliminate cycles). The memory is freed shortly
after the last reference to it has been eliminated.

This approach works fine for most applications but occasionally there is a need
to track objects only as long as they are being used by something else.
Unfortunately, just tracking them creates a reference that makes them permanent.
The weakref module provides tools for tracking objects without creating a
reference. When the object is no longer needed, it is automatically removed from
a weakref table and a callback is triggered for weakref objects. Typical
applications include caching objects that are expensive to create:

>>>
>>>

>>>
>>>
>>>
>>>
10
>>>
>>>
0
>>>

Traceback (most recent call last):

import weakref, gc
class A:

def __init__ (self, value):
self.value = value

def __repr__(self):

return str(self.value)

create a reference

does not create a reference
fetch the object if it is stil

remove the one reference
run garbage collection right a

a = A(10) #
d = weakref.WeakValueDictionary()
d['primary'] = a #
d['primary'] #
del a #
gc.collect() #
d['primary'] #

entry was automatically remove

File "<pyshell#108>", line 1, in -toplevel-

d['primary"'] #

entry was automatically remove

File "C:/PY24/l1lib/weakref.py", line 46, in __getitem__

o = self.data[key]()

KeyError: 'primary'

11.7 Tools for Working with Lists

Many data structure needs can be met with the built-in list type. However,
sometimes there is a need for alternative implementations with different
performance trade-offs.

The array module provides an array () object that is like a list that stores
only homogenous data and stores it more compactly. The following example
shows an array of numbers stored as two byte unsigned binary numbers
(typecode "H'") rather than the usual 16 bytes per entry for regular lists of
python int objects:

>>> from array import array

>>> a = array('H', [4000, 10, 700, 22222])
>>> sum(a)

26932

>>> a[1:3]

array('H', [10, 700])

The collections module provides a deque () object that is like a list with
faster appends and pops from the left side but slower lookups in the middle.
These objects are well suited for implementing queues and breadth first tree
searches:

>>> from collections import deque

>>> d = deque(["task1", "task2", "task3"])
>>> d.append("task4")

>>> print "Handling", d.popleft()

Handling taskl

unsearched = deque([starting_node])
def breadth_first_search(unsearched):
node = unsearched.popleft()
for m in gen_moves(node):
if is_goal(m):
return m
unsearched.append(m)

In addition to alternative list implementations, the library also offers other tools
such as the bisect module with functions for manipulating sorted lists:

>>> import bisect
>>> scores = [(100, 'perl'), (200, 'tcl'), (400, 'lua'), (500,

>>> pisect.insort(scores, (300, 'ruby'))
>>> scores
[(160, 'perl'), (200, 'tcl'), (300, 'ruby'), (400, 'lua'), (500,

The heapg module provides functions for implementing heaps based on regular
lists. The lowest valued entry is always kept at position zero. This is useful for
applications which repeatedly access the smallest element but do not want to run
a full list sort:

>>> from heapq import heapify, heappop, heappush

>>> data = [1, 3, 5, 7, 9, 2, 4, 6, 8, 0]

>>> heapify(data) # rearrange the list intc
>>> heappush(data, -5) # add a new entry

>>> [heappop(data) for i in range(3)] # fetch the three smalles
['5/ 0, 1]

11.8 Decimal Floating Point
Arithmetic

The decimal module offers a Decimal datatype for decimal floating point
arithmetic. Compared to the built-in float implementation of binary floating
point, the new class is especially helpful for financial applications and other uses
which require exact decimal representation, control over precision, control over
rounding to meet legal or regulatory requirements, tracking of significant
decimal places, or for applications where the user expects the results to match
calculations done by hand.

For example, calculating a 5% tax on a 70 cent phone charge gives different
results in decimal floating point and binary floating point. The difference
becomes significant if the results are rounded to the nearest cent:

>>> from decimal import *

>>> Decimal('0.70') * Decimal('1.05")
Decimal("0.7350")

>>> 70 * 1.05

0.73499999999999999

The Decimal result keeps a trailing zero, automatically inferring four place
significance from multiplicands with two place significance. Decimal reproduces
mathematics as done by hand and avoids issues that can arise when binary
floating point cannot exactly represent decimal quantities.

Exact representation enables the Decimal class to perform modulo calculations
and equality tests that are unsuitable for binary floating point:

>>> Decimal('1.00') % Decimal('.10')
Decimal("0.00")

>>> 1.00 % 0.10

0.09999999999999995

>>> sum([Decimal('0.1')]*10) == Decimal('1.0")
True

>>> sum([0.1]*10) == 1.0

False

The decimal module provides arithmetic with as much precision as needed:

>>> getcontext().prec = 36
>>> Decimal(1) / Decimal(7)
Decimal("0.142857142857142857142857142857142857")

“«1T-> Python Tutorial toc
Previous: 10. Brief Tour of up: Python Tutorial Next: 12. What Now?

INDEX

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 11. Brief Tour of up: Python Tutorial Next: A. Interactive Input
Editing

12. What Now?

Reading this tutorial has probably reinforced your interest in using Python -- you
should be eager to apply Python to solving your real-world problems. Where
should you go to learn more?

This tutorial is part of Python's documentation set. Some other documents in the
set are:

e Python Library Reference:

You should browse through this manual, which gives complete (though
terse) reference material about types, functions, and the modules in the
standard library. The standard Python distribution includes a lot of
additional code. There are modules to read Unix mailboxes, retrieve
documents via HTTP, generate random numbers, parse command-line
options, write CGI programs, compress data, and many other tasks.
Skimming through the Library Reference will give you an idea of what's
available.

e Installing Python Modules explains how to install external modules written
by other Python users.

e Language Reference: A detailed explanation of Python's syntax and
semantics. It's heavy reading, but is useful as a complete guide to the
language itself.

More Python resources:

o http://www.python.org: The major Python Web site. It contains code,
documentation, and pointers to Python-related pages around the Web. This
Web site is mirrored in various places around the world, such as Europe,
Japan, and Australia; a mirror may be faster than the main site, depending
on your geographical location.

e http://docs.python.org: Fast access to Python's documentation.

e http://cheeseshop.python.org: The Python Package Index, nicknamed

http://www.python.org
http://docs.python.org
http://cheeseshop.python.org

the Cheese Shop, is an index of user-created Python modules that are
available for download. Once you begin releasing code, you can register it
here so that others can find it.

¢ http://aspn.activestate.com/ASPN/Python/Cookboaok/: The Python
Cookbook is a sizable collection of code examples, larger modules, and

useful scripts. Particularly notable contributions are collected in a book also
titled Python Cookbook (O'Reilly & Associates, ISBN 0-596-00797-3.)

For Python-related questions and problem reports, you can post to the
newsgroup comp.lang.python, or send them to the mailing list at python-
list@python.org. The newsgroup and mailing list are gatewayed, so messages
posted to one will automatically be forwarded to the other. There are around 120
postings a day (with peaks up to several hundred), asking (and answering)
questions, suggesting new features, and announcing new modules. Before
posting, be sure to check the list of Frequently Asked Questions (also called the
FAQ), or look for it in the Misc/ directory of the Python source distribution.
Mailing list archives are available at http://mail.python.org/pipermail/. The
FAQ answers many of the questions that come up again and again, and may
already contain the solution for your problem.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: 11. Brief Tour of up: Python Tutorial Next: A. Interactive Input
Editing

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

http://aspn.activestate.com/ASPN/Python/Cookbook/
news:comp.lang.python
http://www.python.org/doc/faq/
http://mail.python.org/pipermail/

Previous: 12. WWhat Now? up: Python Tutorial Next: B. Floating Point
Arithmetic:

Subsections

A.1 Line Editing
A.2 History Substitution
A.3 Key Bindings

A.4 Commentary

A. Interactive Input Editing and
History Substitution

Some versions of the Python interpreter support editing of the current input line
and history substitution, similar to facilities found in the Korn shell and the GNU
Bash shell. This is implemented using the GNU Readline library, which supports
Emacs-style and vi-style editing. This library has its own documentation which I
won't duplicate here; however, the basics are easily explained. The interactive
editing and history described here are optionally available in the Unix and
Cygwin versions of the interpreter.

This chapter does not document the editing facilities of Mark Hammond's
PythonWin package or the Tk-based environment, IDLE, distributed with
Python. The command line history recall which operates within DOS boxes on
NT and some other DOS and Windows flavors is yet another beast.

A.1 Line Editing

If supported, input line editing is active whenever the interpreter prints a primary
or secondary prompt. The current line can be edited using the conventional
Emacs control characters. The most important of these are: c-A (Control-A)
moves the cursor to the beginning of the line, c-E to the end, C-B moves it one
position to the left, c-F to the right. Backspace erases the character to the left of
the cursor, C-D the character to its right. c-K Kkills (erases) the rest of the line to
the right of the cursor, c-Y yanks back the last killed string. C-underscore
undoes the last change you made; it can be repeated for cumulative effect.

A.2 History Substitution

History substitution works as follows. All non-empty input lines issued are saved
in a history buffer, and when a new prompt is given you are positioned on a new
line at the bottom of this buffer. c-P moves one line up (back) in the history
buffer, C-N moves one down. Any line in the history buffer can be edited; an
asterisk appears in front of the prompt to mark a line as modified. Pressing the
Return key passes the current line to the interpreter. C-R starts an incremental
reverse search; c-S starts a forward search.

A.3 Key Bindings

The key bindings and some other parameters of the Readline library can be
customized by placing commands in an initialization file called ~/.inputrc. Key
bindings have the form

key-name: function-name

or

"string": function-name

and options can be set with

set option-name value

For example:

I prefer vi-style editing:
set editing-mode vi

Edit using a single line:
set horizontal-scroll-mode On

Rebind some keys:

Meta-h: backward-kill-word
"\C-u": universal-argument
"\C-x\C-r": re-read-init-file

Note that the default binding for Tab in Python is to insert a Tab character instead
of Readline's default filename completion function. If you insist, you can
override this by putting

Tab: complete

in your ~/.inputrc. (Of course, this makes it harder to type indented continuation
lines if you're accustomed to using Tab for that purpose.)

Automatic completion of variable and module names is optionally available. To
enable it in the interpreter's interactive mode, add the following to your startup
file:Al

import rlcompleter, readline
readline.parse_and_bind('tab: complete')

This binds the Tab key to the completion function, so hitting the Tab key twice
suggests completions; it looks at Python statement names, the current local
variables, and the available module names. For dotted expressions such as
string. a, it will evaluate the expression up to the final "." and then suggest
completions from the attributes of the resulting object. Note that this may
execute application-defined code if an object witha __getattr__ () method
is part of the expression.

A more capable startup file might look like this example. Note that this deletes
the names it creates once they are no longer needed; this is done since the startup
file is executed in the same namespace as the interactive commands, and
removing the names avoids creating side effects in the interactive environment.
You may find it convenient to keep some of the imported modules, such as 0S,
which turn out to be needed in most sessions with the interpreter.

Add auto-completion and a stored history file of commands to your
interactive interpreter. Requires Python 2.0+, readline. Autocompl
bound to the Esc key by default (you can change it - see readline

Store the file in ~/.pystartup, and set an environment variable to
to it: "export PYTHONSTARTUP=/max/home/itamar/.pystartup" in bash

Note that PYTHONSTARTUP does *not* expand "~", so you have to put
full path to your home directory.

H o HHHHHH

import atexit
import os

import readline
import rlcompleter

historyPath = os.path.expanduser("~/.pyhistory")
def save_history(historyPath=historyPath):
import readline

readline.write_history_file(historyPath)

if os.path.exists(historyPath):
readline.read_history_file(historyPath)

atexit.register(save_history)
del os, atexit, readline, rlcompleter, save_history, historyPath

A.4 Commentary

This facility is an enormous step forward compared to earlier versions of the
interpreter; however, some wishes are left: It would be nice if the proper
indentation were suggested on continuation lines (the parser knows if an indent
token is required next). The completion mechanism might use the interpreter's
symbol table. A command to check (or even suggest) matching parentheses,
quotes, etc., would also be useful.

Foothotes

... file:Ad
Python will execute the contents of a file identified by the
PYTHONSTARTUP environment variable when you start an interactive
interpreter.

«1T-> Python Tutorial toc i

COMTENTS INDEK
Previous: 12. WWhat Now? up: Python Tutorial Next: B. Floating Point
Arithmetic:

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: A. Interactive Input Editing up: Python Tutorial Next: C. History and
License

Subsections

e B.1 Representation Error

B. Floating Point Arithmetic: Issues
and Limitations

Floating-point numbers are represented in computer hardware as base 2 (binary)
fractions. For example, the decimal fraction

0.125

has value 1/10 + 2/100 + 5/1000, and in the same way the binary fraction

0.001

has value 0/2 + 0/4 + 1/8. These two fractions have identical values, the only real
difference being that the first is written in base 10 fractional notation, and the
second in base 2.

Unfortunately, most decimal fractions cannot be represented exactly as binary
fractions. A consequence is that, in general, the decimal floating-point numbers
you enter are only approximated by the binary floating-point numbers actually
stored in the machine.

The problem is easier to understand at first in base 10. Consider the fraction 1/3.
You can approximate that as a base 10 fraction:

0.3

or, better,

0.33

or, better,

0.333

and so on. No matter how many digits you're willing to write down, the result
will never be exactly 1/3, but will be an increasingly better approximation of 1/3.

In the same way, no matter how many base 2 digits you're willing to use, the
decimal value 0.1 cannot be represented exactly as a base 2 fraction. In base 2,

1/10 is the infinitely repeating fraction

0.0001100116060110601100116601106011601106116001160611600611. ..

Stop at any finite number of bits, and you get an approximation. This is why you
see things like:

>>> 0.1
0.10000000000000001

On most machines today, that is what you'll see if you enter 0.1 at a Python
prompt. You may not, though, because the number of bits used by the hardware
to store floating-point values can vary across machines, and Python only prints a
decimal approximation to the true decimal value of the binary approximation
stored by the machine. On most machines, if Python were to print the true
decimal value of the binary approximation stored for 0.1, it would have to
display

>>> 0.1
0.1000000000000000055511151231257827021181583404541015625

instead! The Python prompt uses the builtin repr () function to obtain a string
version of everything it displays. For floats, repr (float) rounds the true
decimal value to 17 significant digits, giving

0.100000006000000001

repr (float) produces 17 significant digits because it turns out that's enough
(on most machines) so that eval(repr(x)) == x exactly for all finite floats
x, but rounding to 16 digits is not enough to make that true.

Note that this is in the very nature of binary floating-point: this is not a bug in
Python, and it is not a bug in your code either. You'll see the same kind of thing
in all languages that support your hardware's floating-point arithmetic (although
some languages may not display the difference by default, or in all output
modes).

Python's builtin str () function produces only 12 significant digits, and you
may wish to use that instead. It's unusual for eval(str(x)) to reproduce x,
but the output may be more pleasant to look at:

>>> print str(0.1)

0.1

It's important to realize that this is, in a real sense, an illusion: the value in the
machine is not exactly 1/10, you're simply rounding the display of the true
machine value.

Other surprises follow from this one. For example, after seeing

>>> 0.1
0.100000006000000001

you may be tempted to use the round() function to chop it back to the single
digit you expect. But that makes no difference:

>>> round(0.1, 1)
0.10000000000000001

The problem is that the binary floating-point value stored for "0.1" was already
the best possible binary approximation to 1/10, so trying to round it again can't
make it better: it was already as good as it gets.

Another consequence is that since 0.1 is not exactly 1/10, summing ten values of
0.1 may not yield exactly 1.0, either:

>>> sum = 0.0
>>> for 1 in range(10):
sum += 0.1

>>> sum

0.99999999999999989
Binary floating-point arithmetic holds many surprises like this. The problem
with "0.1" is explained in precise detail below, in the "Representation Error"
section. See The Perils of Floating Point for a more complete account of other
Ccommon surprises.

As that says near the end, "there are no easy answers." Still, don't be unduly
wary of floating-point! The errors in Python float operations are inherited from
the floating-point hardware, and on most machines are on the order of no more
than 1 part in 2**53 per operation. That's more than adequate for most tasks, but
you do need to keep in mind that it's not decimal arithmetic, and that every float
operation can suffer a new rounding error.

http://www.lahey.com/float.htm

While pathological cases do exist, for most casual use of floating-point
arithmetic you'll see the result you expect in the end if you simply round the
display of your final results to the number of decimal digits you expect. str ()
usually suffices, and for finer control see the discussion of Python's % format
operator: the %g, %f and %e format codes supply flexible and easy ways to
round float results for display.

B.1 Representation Error

This section explains the ~"0.1" example in detail, and shows how you can
perform an exact analysis of cases like this yourself. Basic familiarity with
binary floating-point representation is assumed.

Representation error refers to the fact that some (most, actually) decimal
fractions cannot be represented exactly as binary (base 2) fractions. This is the
chief reason why Python (or Perl, C, C++, Java, Fortran, and many others) often
won't display the exact decimal number you expect:

>>> 0.1
0.10000000000000001

Why is that? 1/10 is not exactly representable as a binary fraction. Almost all
machines today (November 2000) use IEEE-754 floating point arithmetic, and
almost all platforms map Python floats to IEEE-754 "double precision". 754
doubles contain 53 bits of precision, so on input the computer strives to convert
0.1 to the closest fraction it can of the form J/2**N where J is an integer
containing exactly 53 bits. Rewriting

1/ 10 ~= J / (2**N)

ds

J ~= 2**N / 10

and recalling that J has exactly 53 bits (is >= 2**52 but < 2**53), the best
value for N is 56:

>>> 2**5)
4503599627370496L
>>> 2**53
9007199254740992L
>>> 2**56/10
7205759403792793L

That is, 56 is the only value for N that leaves J with exactly 53 bits. The best
possible value for J is then that quotient rounded:

>>> q, r = divmod(2**56, 10)

>>> r
6L

Since the remainder is more than half of 10, the best approximation is obtained
by rounding up:

>>> (+1
7205759403792794L

Therefore the best possible approximation to 1/10 in 754 double precision is that
over 2**56, or

7205759403792794 / 72057594037927936

Note that since we rounded up, this is actually a little bit larger than 1/10; if we
had not rounded up, the quotient would have been a little bit smaller than 1/10.
But in no case can it be exactly 1/10!

So the computer never "“sees" 1/10: what it sees is the exact fraction given
above, the best 754 double approximation it can get:

>>> 1 * 2**5g6
7205759403792794.0

If we multiply that fraction by 10**30, we can see the (truncated) value of its 30
most significant decimal digits:

>>> 7205759403792794 * 10**30 / 2**56
100000000000000005551115123125L

meaning that the exact number stored in the computer is approximately equal to
the decimal value 0.100000000000000005551115123125. Rounding that to 17
significant digits gives the 0.10000000000000001 that Python displays (well,
will display on any 754-conforming platform that does best-possible input and
output conversions in its C library -- yours may not!).

«1T-> Python Tutorial toc i
Previous: A. Interactive Input Editing up: Python Tutorial Next: C. History and
License

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: B. Floating Point Arithmetic: up: Python Tutorial Next: D. Glossary

Subsections

e C.1 History of the software

e (.2 Terms and conditions for accessing or otherwise using Python
e C.3 Licenses and Acknowledgements for Incorporated Software
C.3.1 Mersenne Twister

C.3.2 Sockets

C.3.3 Floating point exception control

C.3.4 MD5 message digest algorithm

C.3.5 Asynchronous socket services

C.3.6 Cookie management

C.3.7 Profiling
C.3.8 Execution tracing

C.3.9 UUencode and UUdecode functions
C.3.10 XML Remote Procedure Calls

o

0O O 0O O 0O 0O 0O o o

C. History and License

C.1 History of the software

Python was created in the early 1990s by Guido van Rossum at Stichting
Mathematisch Centrum (CWI, see http://www.cwi.nl/) in the Netherlands as a
successor of a language called ABC. Guido remains Python's principal author,
although it includes many contributions from others.

In 1995, Guido continued his work on Python at the Corporation for National
Research Initiatives (CNRI, see http://www.cnri.reston.va.us/) in Reston,
Virginia where he released several versions of the software.

In May 2000, Guido and the Python core development team moved to
BeOpen.com to form the BeOpen PythonLabs team. In October of the same
year, the PythonLabs team moved to Digital Creations (now Zope Corporation;
see http://www.zope.com/). In 2001, the Python Software Foundation (PSF, see
http://www.python.org/pst/) was formed, a non-profit organization created
specifically to own Python-related Intellectual Property. Zope Corporation is a
sponsoring member of the PSF.

All Python releases are Open Source (see http://www.opensource.org/ for the
Open Source Definition). Historically, most, but not all, Python releases have
also been GPL-compatible; the table below summarizes the various releases.

Release Derived Year Owner GPL
from compatible?

0.9.0 thru n/a 1991- CWI yes
1.2 1995

1.3 thru 1.2 1995- CNRI yes
1.5.2 1999

1.6 1.5.2 2000 CNRI no

2.0 1.6 2000 BeOpen.com no

1.6.1 1.6 2001 CNRI no

2.1 2.0+1.6.1 2001 PSF no

http://www.cwi.nl/
http://www.cnri.reston.va.us/
http://www.zope.com/
http://www.python.org/psf/
http://www.opensource.org/

2.0.1 2.0+1.6.1 2001 PSF yes
2.1.1 2.1+2.0.1 2001 PSF yes
2.2 2.1.1 2001 PSF yes
2.1.2 2.1.1 2002 PSF yes
2.1.3 2.1.2 2002 PSF yes
2.2.1 2.2 2002 PSF yes
2.2.2 2.2.1 2002 PSF yes
2.2.3 2.2.2 2002- PSF yes
2003
2.3 2.2.2 2002- PSF yes
2003
2.3.1 2.3 2002- PSF yes
2003
2.3.2 2.3.1 2003 PSF yes
2.3.3 2.3.2 2003 PSF yes
2.3.4 2.3.3 2004 PSF yes
2.3.5 2.3.4 2005 PSF yes
2.4 2.3 2004 PSF yes
241 2.4 2005 PSF yes
2.4.2 2.4.1 2005 PSF yes
2.4.3 24.2 2006 PSF yes
2.5 2.4 2006 PSF yes

Note: GPL-compatible doesn't mean that we're distributing Python under the
GPL. All Python licenses, unlike the GPL, let you distribute a modified version
without making your changes open source. The GPL-compatible licenses make
it possible to combine Python with other software that is released under the
GPL; the others don't.

Thanks to the many outside volunteers who have worked under Guido's direction
to make these releases possible.

C.2 Terms and conditions for
accessing or otherwise using
Python

PSF LICENSE AGREEMENT FOR PYTHON 2.5

1. This LICENSE AGREEMENT is between the Python Software Foundation
(""PSF"), and the Individual or Organization (" Licensee") accessing and
otherwise using Python 2.5 software in source or binary form and its
associated documentation.

2. Subject to the terms and conditions of this License Agreement, PSF hereby
grants Licensee a nonexclusive, royalty-free, world-wide license to
reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 2.5 alone or in any derivative
version, provided, however, that PSF's License Agreement and PSF's notice
of copyright, i.e., ""Copyright © 2001-2006 Python Software Foundation;
All Rights Reserved" are retained in Python 2.5 alone or in any derivative
version prepared by Licensee.

3. In the event Licensee prepares a derivative work that is based on or
incorporates Python 2.5 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 2.5.

4. PSF is making Python 2.5 available to Licensee on an ~~AS IS" basis. PSF
MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR
IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, PSF
MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 2.5 WILL
NOT INFRINGE ANY THIRD PARTY RIGHTS.

5. PSF SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER USERS

OF PYTHON 2.5 FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON 2.5,
OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE
POSSIBILITY THEREOF.

6. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

7. Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between PSF and
Licensee. This License Agreement does not grant permission to use PSF
trademarks or trade name in a trademark sense to endorse or promote
products or services of Licensee, or any third party.

8. By copying, installing or otherwise using Python 2.5, Licensee agrees to be
bound by the terms and conditions of this License Agreement.

BEOPEN.COM LICENSE AGREEMENT FOR PYTHON 2.0

BEOPEN PYTHON OPEN SOURCE LICENSE AGREEMENT VERSION
1

1. This LICENSE AGREEMENT is between BeOpen.com (" 'BeOpen"),
having an office at 160 Saratoga Avenue, Santa Clara, CA 95051, and the
Individual or Organization (" Licensee") accessing and otherwise using this
software in source or binary form and its associated documentation (" the
Software").

2. Subject to the terms and conditions of this BeOpen Python License
Agreement, BeOpen hereby grants Licensee a non-exclusive, royalty-free,
world-wide license to reproduce, analyze, test, perform and/or display
publicly, prepare derivative works, distribute, and otherwise use the
Software alone or in any derivative version, provided, however, that the
BeOpen Python License is retained in the Software, alone or in any
derivative version prepared by Licensee.

3. BeOpen is making the Software available to Licensee on an "~AS IS" basis.
BEOPEN MAKES NO REPRESENTATIONS OR WARRANTIES,
EXPRESS OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT

LIMITATION, BEOPEN MAKES NO AND DISCLAIMS ANY
REPRESENTATION OR WARRANTY OF MERCHANTABILITY OR
FITNESS FOR ANY PARTICULAR PURPOSE OR THAT THE USE OF
THE SOFTWARE WILL NOT INFRINGE ANY THIRD PARTY
RIGHTS.

. BEOPEN SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER

USERS OF THE SOFTWARE FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF USING,
MODIFYING OR DISTRIBUTING THE SOFTWARE, OR ANY
DERIVATIVE THEREOEF, EVEN IF ADVISED OF THE POSSIBILITY
THEREOF.

. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

. This License Agreement shall be governed by and interpreted in all respects
by the law of the State of California, excluding conflict of law provisions.
Nothing in this License Agreement shall be deemed to create any
relationship of agency, partnership, or joint venture between BeOpen and
Licensee. This License Agreement does not grant permission to use
BeOpen trademarks or trade names in a trademark sense to endorse or
promote products or services of Licensee, or any third party. As an
exception, the “"BeOpen Python" logos available at
http://www.pythonlabs.com/logos.html may be used according to the
permissions granted on that web page.

. By copying, installing or otherwise using the software, Licensee agrees to
be bound by the terms and conditions of this License Agreement.

CNRI LICENSE AGREEMENT FOR PYTHON 1.6.1

. This LICENSE AGREEMENT is between the Corporation for National
Research Initiatives, having an office at 1895 Preston White Drive, Reston,
VA 20191 (" CNRI"), and the Individual or Organization (" Licensee")
accessing and otherwise using Python 1.6.1 software in source or binary
form and its associated documentation.

. Subject to the terms and conditions of this License Agreement, CNRI
hereby grants Licensee a nonexclusive, royalty-free, world-wide license to

reproduce, analyze, test, perform and/or display publicly, prepare derivative
works, distribute, and otherwise use Python 1.6.1 alone or in any derivative
version, provided, however, that CNRI's License Agreement and CNRI's
notice of copyright, i.e., "Copyright © 1995-2001 Corporation for National
Research Initiatives; All Rights Reserved" are retained in Python 1.6.1
alone or in any derivative version prepared by Licensee. Alternately, in lieu
of CNRI's License Agreement, Licensee may substitute the following text
(omitting the quotes): ~"Python 1.6.1 is made available subject to the terms
and conditions in CNRI's License Agreement. This Agreement together
with Python 1.6.1 may be located on the Internet using the following
unique, persistent identifier (known as a handle): 1895.22/1013. This
Agreement may also be obtained from a proxy server on the Internet using
the following URL: http://hdl.handle.net/1895.22/1013."

. In the event Licensee prepares a derivative work that is based on or
incorporates Python 1.6.1 or any part thereof, and wants to make the
derivative work available to others as provided herein, then Licensee
hereby agrees to include in any such work a brief summary of the changes
made to Python 1.6.1.

. CNRI is making Python 1.6.1 available to Licensee on an " AS IS" basis.
CNRI MAKES NO REPRESENTATIONS OR WARRANTIES, EXPRESS
OR IMPLIED. BY WAY OF EXAMPLE, BUT NOT LIMITATION, CNRI
MAKES NO AND DISCLAIMS ANY REPRESENTATION OR
WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE OR THAT THE USE OF PYTHON 1.6.1 WILL
NOT INFRINGE ANY THIRD PARTY RIGHTS.

. CNRI SHALL NOT BE LIABLE TO LICENSEE OR ANY OTHER

USERS OF PYTHON 1.6.1 FOR ANY INCIDENTAL, SPECIAL, OR
CONSEQUENTIAL DAMAGES OR LOSS AS A RESULT OF
MODIFYING, DISTRIBUTING, OR OTHERWISE USING PYTHON
1.6.1, OR ANY DERIVATIVE THEREOF, EVEN IF ADVISED OF THE
POSSIBILITY THEREOF.

. This License Agreement will automatically terminate upon a material
breach of its terms and conditions.

. This License Agreement shall be governed by the federal intellectual

http://hdl.handle.net/1895.22/1013

property law of the United States, including without limitation the federal
copyright law, and, to the extent such U.S. federal law does not apply, by
the law of the Commonwealth of Virginia, excluding Virginia's conflict of
law provisions. Notwithstanding the foregoing, with regard to derivative
works based on Python 1.6.1 that incorporate non-separable material that
was previously distributed under the GNU General Public License (GPL),
the law of the Commonwealth of Virginia shall govern this License
Agreement only as to issues arising under or with respect to Paragraphs 4,
5, and 7 of this License Agreement. Nothing in this License Agreement
shall be deemed to create any relationship of agency, partnership, or joint
venture between CNRI and Licensee. This License Agreement does not
grant permission to use CNRI trademarks or trade name in a trademark
sense to endorse or promote products or services of Licensee, or any third

party.

8. By clicking on the ""ACCEPT" button where indicated, or by copying,
installing or otherwise using Python 1.6.1, Licensee agrees to be bound by
the terms and conditions of this License Agreement.

ACCEPT
CWI LICENSE AGREEMENT FOR PYTHON 0.9.0 THROUGH 1.2

Copyright © 1991 - 1995, Stichting Mathematisch Centrum Amsterdam, The
Netherlands. All rights reserved.

Permission to use, copy, modify, and distribute this software and its
documentation for any purpose and without fee is hereby granted, provided that
the above copyright notice appear in all copies and that both that copyright
notice and this permission notice appear in supporting documentation, and that
the name of Stichting Mathematisch Centrum or CWI not be used in advertising
or publicity pertaining to distribution of the software without specific, written
prior permission.

STICHTING MATHEMATISCH CENTRUM DISCLAIMS ALL
WARRANTIES WITH REGARD TO THIS SOFTWARE, INCLUDING ALL
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN NO
EVENT SHALL STICHTING MATHEMATISCH CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR

ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS
SOFTWARE.

C.3 Licenses and
Acknowledgements for Incorporated
Software

This section is an incomplete, but growing list of licenses and
acknowledgements for third-party software incorporated in the Python
distribution.

C.3.1 Mersenne Twister

The _random module includes code based on a download from
http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html. The
following are the verbatim comments from the original code:

A C-program for MT19937, with initialization improved 2002/1/26.
Coded by Takuji Nishimura and Makoto Matsumoto.

Before using, initialize the state by using init_genrand(seed)
or init_by_array(init_key, key_length).

Copyright (C) 1997 - 2002, Makoto Matsumoto and Takuji Nishimura,
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyrigh
notice, this list of conditions and the following disclaimer in
documentation and/or other materials provided with the distribut

3. The names of its contributors may not be used to endorse or pron
products derived from this software without specific prior writt
permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FC
A PARTICULAR PURPOSE ARE DISCLAIMED. 1IN NO EVENT SHALL THE COPYRIGH
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Any feedback is very welcome.
http://www.math.keio.ac.jp/matumoto/emt.html
email: matumoto@math.keio.ac.jp

http://www.math.keio.ac.jp/~matumoto/MT2002/emt19937ar.html

C.3.2 Sockets

The socket module uses the functions, getaddrinfo, and getnameinfo,
which are coded in separate source files from the WIDE Project,
http://www.wide.ad.jp/about/index.html.

Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

1. Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in t
documentation and/or other materials provided with the distributi

3. Neither the name of the project nor the names of its contributors
may be used to endorse or promote products derived from this soft
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS " "AS IS''

GAI_ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TG
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR P
ARE DISCLAIMED. 1IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LI
FOR GAI_ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CON
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GO
OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION
HOWEVER CAUSED AND ON GAI_ANY THEORY OF LIABILITY, WHETHER IN CONTRA
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN GA
OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
SUCH DAMAGE.

http://www.wide.ad.jp/about/index.html

C.3.3 Floating point exception control

The source for the fpectl module includes the following notice:

Copyright (c) 1996.
The Regents of the University of California.
All rights reserved.

Permission to use, copy, modify, and distribute this software
any purpose without fee is hereby granted, provided that this
tire notice is included in all copies of any software which i
includes a copy or modification of this software and in
copies of the supporting documentation for such software.

This work was produced at the University of California, Lawr
Livermore National Laboratory under contract no. W-7405-EN
between the U.S. Department of Energy and The Regents of
University of California for the operation of UC LLNL.

DISCLAIMER

This software was prepared as an account of work sponsored b
agency of the United States Government. Neither the United St
Government nor the University of California nor any of their
ployees, makes any warranty, express or implied, or assumes
liability or responsibility for the accuracy, completeness
usefulness of any information, apparatus, product, or pro
disclosed, or represents that its wuse would not infr
privately-owned rights. Reference herein to any specific cor
cial products, process, or service by trade name, traden
manufacturer, or otherwise, does not necessarily constitute
imply its endorsement, recommendation, or favoring by the Un
States Government or the University of California. The views
opinions of authors expressed herein do not necessarily stat
reflect those of the United States Government or the Univer
of California, and shall not be used for advertising or pro
endorsement purposes.

C.3.4 MD5 message digest algorithm

The source code for the md5 module contains the following notice:

Copyright (C) 1999, 2002 Aladdin Enterprises. All rights reserved

This software is provided 'as-is', without any express or implied
warranty. In no event will the authors be held liable for any danr
arising from the use of this software.

Permission is granted to anyone to use this software for any purpac
including commercial applications, and to alter it and redistribut
freely, subject to the following restrictions:

1. The origin of this software must not be misrepresented; you mus
claim that you wrote the original software. If you use this sof
in a product, an acknowledgment in the product documentation wa
appreciated but is not required.

2. Altered source versions must be plainly marked as such, and mus
misrepresented as being the original software.

3. This notice may not be removed or altered from any source distr

L. Peter Deutsch
ghost@aladdin.com

Independent implementation of MD5 (RFC 1321).

This code implements the MD5 Algorithm defined in RFC 1321, whose
text is available at

http://www.ietf.org/rfc/rfc1321.txt
The code is derived from the text of the RFC, including the test s
(section A.5) but excluding the rest of Appendix A. It does not i
any code or documentation that is identified in the RFC as being
copyrighted.

The original and principal author of md5.h is L. Peter Deutsch
<ghost@aladdin.com>. Other authors are noted in the change histor
that follows (in reverse chronological order):

2002-04-13 1pd Removed support for non-ANSI compilers; removed
references to Ghostscript; clarified derivation from RFC 132
now handles byte order either statically or dynamically.

1999-11-04 1lpd Edited comments slightly for automatic TOC extracti

1999-10-18 1lpd Fixed typo in header comment (ansi2knr rather than
added conditionalization for C++ compilation from Martin
Purschke <purschke@bnl.gov>.

1999-05-03 1lpd Original version.

C.3.5 Asynchronous socket services

The asynchat and asyncore modules contain the following notice:

Copyright 1996 by Sam Rushing
All Rights Reserved

Permission to use, copy, modify, and distribute this software and
its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of San
Rushing not be used in advertising or publicity pertaining to
distribution of the software without specific, written prior
permission.

SAM RUSHING DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
NO EVENT SHALL SAM RUSHING BE LIABLE FOR ANY SPECIAL, INDIRECT OR
CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.6 Cookie management

The Cookie module contains the following notice:

Copyright 2000 by Timothy 0'Malley <timo@alum.mit.edu>
All Rights Reserved

Permission to use, copy, modify, and distribute this software

and its documentation for any purpose and without fee is hereby
granted, provided that the above copyright notice appear in all
copies and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Timothy 0'Malley not be used in advertising or publicity
pertaining to distribution of the software without specific, writte
prior permission.

Timothy 0'Malley DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS, IN NO EVENT SHALL Timothy O'Malley BE LIABLE FOR
ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.

C.3.7 Profiling

The profile and pstats modules contain the following notice:

Copyright 1994, by InfoSeek Corporation, all rights reserved.
Written by James Roskind

Permission to use, copy, modify, and distribute this Python softwar
and its associated documentation for any purpose (subject to the
restriction in the following sentence) without fee is hereby grante
provided that the above copyright notice appears in all copies, and
that both that copyright notice and this permission notice appear i
supporting documentation, and that the name of InfoSeek not be used
advertising or publicity pertaining to distribution of the software
without specific, written prior permission. This permission is
explicitly restricted to the copying and modification of the softwa
to remain in Python, compiled Python, or other languages (such as C
wherein the modified or derived code is exclusively imported into a
Python module.

INFOSEEK CORPORATION DISCLAIMS ALL WARRANTIES WITH REGARD TO THIS
SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS. IN NO EVENT SHALL INFOSEEK CORPORATION BE LIABLE FOR ANY
SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVE
RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION C
CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

C.3.8 Execution tracing

The trace module contains the following notice:

portions copyright 2001, Autonomous Zones Industries, Inc., all rig
err... reserved and offered to the public under the terms of the
Python 2.2 license.

Author: Zooko 0'Whielacronx

http://zooko.com/

mailto:zooko@zooko.com

Copyright 2000, Mojam Media, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1999, Bioreason, Inc., all rights reserved.
Author: Andrew Dalke

Copyright 1995-1997, Automatrix, Inc., all rights reserved.
Author: Skip Montanaro

Copyright 1991-1995, Stichting Mathematisch Centrum, all rights res

Permission to use, copy, modify, and distribute this Python softwar
its associated documentation for any purpose without fee is hereby

granted, provided that the above copyright notice appears in all co
and that both that copyright notice and this permission notice appe
supporting documentation, and that the name of neither Automatrix,

Bioreason or Mojam Media be used in advertising or publicity pertai
distribution of the software without specific, written prior permis

C.3.9 UUencode and UUdecode functions

The uu module contains the following notice:

Copyright 1994 by Lance Ellinghouse
Cathedral City, California Republic, United States of America.

All Rights Reserved
Permission to use, copy, modify, and distribute this software and i
documentation for any purpose and without fee is hereby granted,
provided that the above copyright notice appear in all copies and t
both that copyright notice and this permission notice appear in
supporting documentation, and that the name of Lance Ellinghouse
not be used in advertising or publicity pertaining to distribution
of the software without specific, written prior permission.
LANCE ELLINGHOUSE DISCLAIMS ALL WARRANTIES WITH REGARD TO
THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
FITNESS, IN NO EVENT SHALL LANCE ELLINGHOUSE CENTRUM BE LIABLE
FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN
ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OuU
OF OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

Modified by Jack Jansen, CWI, July 1995:

- Use binascii module to do the actual line-by-line conversion
between ascii and binary. This results in a 1000-fold speedup. Th
version is still 5 times faster, though.

- Arguments more compliant with python standard

C.3.10 XML Remote Procedure Calls

The xmlrpclib module contains the following notice:

The XML-RPC client interface is

Copyright (c) 1999-2002 by Secret Labs AB
Copyright (c) 1999-2002 by Fredrik Lundh

By obtaining, using, and/or copying this software and/or its
associated documentation, you agree that you have read, understood,
and will comply with the following terms and conditions:

Permission to use, copy, modify, and distribute this software and
its associated documentation for any purpose and without fee is
hereby granted, provided that the above copyright notice appears in
all copies, and that both that copyright notice and this permission
notice appear in supporting documentation, and that the name of
Secret Labs AB or the author not be used in advertising or publicit
pertaining to distribution of the software without specific, writte
prior permission.

SECRET LABS AB AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH REGARD
TO THIS SOFTWARE, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANT -
ABILITY AND FITNESS. 1IN NO EVENT SHALL SECRET LABS AB OR THE AUTHGC
BE LIABLE FOR ANY SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES OR ANY
DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,
WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
OF THIS SOFTWARE.

«1T-> Python Tutorial toc i

CONTENTS INDEX

Previous: B. Floating Point Arithmetic: up: Python Tutorial Next: D. Glossary

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: C. History and License up: Python Tutorial Next: Index

D. Glossary

>>>

The typical Python prompt of the interactive shell. Often seen for code
examples that can be tried right away in the interpreter.

The typical Python prompt of the interactive shell when entering code for
an indented code block.

BDFL
Benevolent Dictator For Life, a.k.a. Guido van Rossum, Python's creator.

byte code
The internal representation of a Python program in the interpreter. The byte
code is also cached in . pyc and . pyo files so that executing the same file
is faster the second time (recompilation from source to byte code can be
avoided). This "“intermediate language" is said to run on a " virtual
machine" that calls the subroutines corresponding to each bytecode.

classic class
Any class which does not inherit from object. See new-style class.

coercion
The implicit conversion of an instance of one type to another during an
operation which involves two arguments of the same type. For example,
int(3.15) converts the floating point number to the integer 3, but in
3+4.5, each argument is of a different type (one int, one float), and both
must be converted to the same type before they can be added or it will raise
a TypeError. Coercion between two operands can be performed with the
coerce builtin function; thus, 3+4.5 is equivalent to calling
operator.add(*coerce(3, 4.5)) andresults in
operator.add(3.0, 4.5). Without coercion, all arguments of even
compatible types would have to be normalized to the same value by the
programmer, e.g., float (3)+4.5 rather than just 3+4.5.

complex number

http://www.python.org/~guido/

An extension of the familiar real number system in which all numbers are
expressed as a sum of a real part and an imaginary part. Imaginary numbers
are real multiples of the imaginary unit (the square root of -1), often
written 1 in mathematics or j in engineering. Python has builtin support for
complex numbers, which are written with this latter notation; the imaginary
part is written with a j suffix, e.g., 3+17. To get access to complex
equivalents of the math module, use cmath. Use of complex numbers is a
fairly advanced mathematical feature. If you're not aware of a need for
them, it's almost certain you can safely ignore them.

descriptor
Any new-style object that defines the methods __get__ (),__set__(),
or __delete__ (). When a class attribute is a descriptor, its special
binding behavior is triggered upon attribute lookup. Normally, writing a.b
looks up the object b in the class dictionary for a, but if b is a descriptor, the
defined method gets called. Understanding descriptors is a key to a deep
understanding of Python because they are the basis for many features
including functions, methods, properties, class methods, static methods, and
reference to super classes.

dictionary
An associative array, where arbitrary keys are mapped to values. The use of
dict much resembles that for 1ist, but the keys can be any object with a
__hash__ (/) function, not just integers starting from zero. Called a hash
in Perl.

duck-typing
Pythonic programming style that determines an object's type by inspection
of its method or attribute signature rather than by explicit relationship to
some type object ("If it looks like a duck and quacks like a duck, it must be
a duck.") By emphasizing interfaces rather than specific types, well-
designed code improves its flexibility by allowing polymorphic
substitution. Duck-typing avoids tests using type() or isinstance().
Instead, it typically employs hasattr () tests or EAFP programming.

EAFP
Easier to ask for forgiveness than permission. This common Python coding
style assumes the existence of valid keys or attributes and catches
exceptions if the assumption proves false. This clean and fast style is

characterized by the presence of many try and except statements. The
technique contrasts with the LBYL style that is common in many other
languages such as C.

future
A pseudo module which programmers can use to enable new language
features which are not compatible with the current interpreter. For example,
the expression 11/4 currently evaluates to 2. If the module in which it is
executed had enabled true division by executing:

from __ future__ import division

the expression 11/4 would evaluate to 2 . 75. By importing the

future module and evaluating its variables, you can see when a
new feature was first added to the language and when it will become the
default:

>>> import _ future__
>>> _ future__.division
_Feature((2, 2, 0, 'alpha', 2), (3, 0, 0, 'alpha', 0), 8192)

generator
A function that returns an iterator. It looks like a normal function except
that values are returned to the caller using a yield statement instead of a
return statement. Generator functions often contain one or more for or
while loops that yield elements back to the caller. The function
execution is stopped at the yield keyword (returning the result) and is
resumed there when the next element is requested by calling the next ()
method of the returned iterator.

generator expression
An expression that returns a generator. It looks like a normal expression
followed by a for expression defining a loop variable, range, and an
optional 1f expression. The combined expression generates values for an
enclosing function:

>>> sum(i*i for i in range(10)) # sum of squares 0, 1, :
285

GIL
See global interpreter lock.

global interpreter lock
The lock used by Python threads to assure that only one thread can be run at
a time. This simplifies Python by assuring that no two processes can access
the same memory at the same time. Locking the entire interpreter makes it
easier for the interpreter to be multi-threaded, at the expense of some
parallelism on multi-processor machines. Efforts have been made in the
past to create a = free-threaded" interpreter (one which locks shared data at a
much finer granularity), but performance suffered in the common single-
processor case.

IDLE
An Integrated Development Environment for Python. IDLE is a basic editor
and interpreter environment that ships with the standard distribution of
Python. Good for beginners, it also serves as clear example code for those
wanting to implement a moderately sophisticated, multi-platform GUI
application.

immutable
An object with fixed value. Immutable objects are numbers, strings or
tuples (and more). Such an object cannot be altered. A new object has to be
created if a different value has to be stored. They play an important role in
places where a constant hash value is needed, for example as a key in a
dictionary.

integer division
Mathematical division discarding any remainder. For example, the
expression 11/4 currently evaluates to 2 in contrast to the 2. 75 returned
by float division. Also called floor division. When dividing two integers the
outcome will always be another integer (having the floor function applied
to it). However, if one of the operands is another numeric type (such as a
float), the result will be coerced (see coercion) to a common type. For
example, an integer divided by a float will result in a float value, possibly
with a decimal fraction. Integer division can be forced by using the //
operator instead of the / operator. See also __future__.

interactive
Python has an interactive interpreter which means that you can try out
things and immediately see their results. Just launch python with no
arguments (possibly by selecting it from your computer's main menu). It is

a very powerful way to test out new ideas or inspect modules and packages
(remember help(Xx)).

interpreted
Python is an interpreted language, as opposed to a compiled one. This
means that the source files can be run directly without first creating an
executable which is then run. Interpreted languages typically have a shorter
development/debug cycle than compiled ones, though their programs
generally also run more slowly. See also interactive.

iterable
A container object capable of returning its members one at a time.
Examples of iterables include all sequence types (such as 1ist, str, and
tuple) and some non-sequence types like dict and file and objects of
any classes you define withan __iter__ () or__getitem__ ()
method. Iterables can be used in a for loop and in many other places
where a sequence is needed (zip (), map(), ...). When an iterable object
is passed as an argument to the builtin function iter (), it returns an
iterator for the object. This iterator is good for one pass over the set of
values. When using iterables, it is usually not necessary to call iter () or
deal with iterator objects yourself. The for statement does that
automatically for you, creating a temporary unnamed variable to hold the
iterator for the duration of the loop. See also iterator, sequence, and
generator.

iterator
An object representing a stream of data. Repeated calls to the iterator's
next () method return successive items in the stream. When no more data
is available a StopIteration exception is raised instead. At this point,
the iterator object is exhausted and any further calls to its next (') method
just raise StopIteration again. Iterators are required to have an
__iter__ () method that returns the iterator object itself so every iterator
is also iterable and may be used in most places where other iterables are
accepted. One notable exception is code that attempts multiple iteration
passes. A container object (such as a 11st) produces a fresh new iterator
each time you pass it to the iter () function or use it in a for loop.
Attempting this with an iterator will just return the same exhausted iterator
object used in the previous iteration pass, making it appear like an empty

container.

LBYL
Look before you leap. This coding style explicitly tests for pre-conditions
before making calls or lookups. This style contrasts with the EAFP
approach and is characterized by the presence of many if statements.

list comprehension
A compact way to process all or a subset of elements in a sequence and
return a list with the results. result = ["Ox%02x" % x for x in
range(256) if x % 2 == 0] generates a list of strings containing
hex numbers (0x..) that are even and in the range from 0 to 255. The if
clause is optional. If omitted, all elements in range (256) are processed.

mapping
A container object (such as dict) that supports arbitrary key lookups using
the special method __getitem__ ().

metaclass
The class of a class. Class definitions create a class name, a class dictionary,
and a list of base classes. The metaclass is responsible for taking those three
arguments and creating the class. Most object oriented programming
languages provide a default implementation. What makes Python special is
that it is possible to create custom metaclasses. Most users never need this
tool, but when the need arises, metaclasses can provide powerful, elegant
solutions. They have been used for logging attribute access, adding thread-
safety, tracking object creation, implementing singletons, and many other
tasks.

mutable
Mutable objects can change their value but keep their 1d (). See also
immutable.

namespace
The place where a variable is stored. Namespaces are implemented as
dictionaries. There are the local, global and builtin namespaces as well as
nested namespaces in objects (in methods). Namespaces support modularity
by preventing naming conflicts. For instance, the functions
__builtin__.open() and 0s.open() are distinguished by their

namespaces. Namespaces also aid readability and maintainability by
making it clear which module implements a function. For instance, writing
random.seed() or itertools.izip() makes it clear that those
functions are implemented by the random and itertools modules
respectively.

nested scope
The ability to refer to a variable in an enclosing definition. For instance, a
function defined inside another function can refer to variables in the outer
function. Note that nested scopes work only for reference and not for
assignment which will always write to the innermost scope. In contrast,
local variables both read and write in the innermost scope. Likewise, global
variables read and write to the global namespace.

new-style class
Any class that inherits from object. This includes all built-in types like
list and dict. Only new-style classes can use Python's newer, versatile
features like __slots__, descriptors, properties,
__getattribute__ (), class methods, and static methods.

Python3000
A mythical python release, not required to be backward compatible, with
telepathic interface.

slots
A declaration inside a new-style class that saves memory by pre-declaring
space for instance attributes and eliminating instance dictionaries. Though
popular, the technique is somewhat tricky to get right and is best reserved
for rare cases where there are large numbers of instances in a memory-
critical application.

sequence
An iterable which supports efficient element access using integer indices
viathe __getitem__ () and __len__ () special methods. Some built-
in sequence types are 1ist, str, tuple, and unicode. Note that dict
also supports __getitem__ () and __len__ (), butis considered a
mapping rather than a sequence because the lookups use arbitrary
immutable keys rather than integers.

Zen of Python
Listing of Python design principles and philosophies that are helpful in
understanding and using the language. The listing can be found by typing
“import this" atthe interactive prompt.

«1T-> Python Tutorial toc i

Previous: C. History and License up: Python Tutorial Next: Index

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: D. Glossary up: Python Tutorial Next: About this document ...

Index

Symbeols | _

Symbols

>>>

_ (underscore)

all future

builtin___ (built-in module) slots

A

append() (list method)

byte code

C

classic class
; complex number
coercion

' count() (list method)
compileall (standard module count() (list method

D

descriptor . .
dictionar documentation strings, [Link]

docstrings, [Link] duck-typing

EAFP
environment variables environment variables (continued)
PATH, [Link] PYTHONSTARTUP, [Link]

PYTHONPATH, [Link], [Link], extend() (list method)
[Link], [Link]

file object for statement, [Link]

G

generator GIL
generator expression global interpreter lock

H

help() (built-in function)

IDLE . .
= interactive
immutable interpreted
index() (list method) ;
) 5 iterable
insert() (list method) ;

iterator

integer division

LBYL

list comprehension

M

mappin module
metaclass search path

method object mutable

N

namespdce

new-style class
nested scope

o

object

file open() (built-in function)

method

P

path Python3000

module search PYTHONPATH (environment
PATH (environment variable), [Link] wvariable), [Link], [Link], [Link], [Link]
pickle (standard module) PYTHONSTARTUP (environment

pop() (list method) variable), [Link]

R

readline (built-in module) reverse() (list method)
remove() (list method) rlcompleter (standard module)

S

search
path, modul :
” ueri[e odule string (standard module)
e strings, documentation, [Link]
sort() (list method)
sys (standard module)
statement

for, [Link]

U

unicode() (built-in function)

y4

Zen of Python

«1T-> Python Tutorial toc
Previous: D. Glossary up: Python Tutorial Next: About this document ...

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

up: Python Documentation Index Next: Front Matter

Python Library Reference

Guido van Rossum
Python Software Foundation Email: docs@python.org
Fred L. Drake, Jr., editor

Release 2.5
19th September, 2006

Eront Matter
Contents
1. Introduction
2. Built-in Objects
o 2.1 Built-in Functions
o 2.2 Non-essential Built-in Functions
o 2.3 Built-in Exceptions
o 2.4 Built-in Constants
3. Built-in Types
3.1 Truth Value Testing
3.2 Boolean Operations -- and, or, not
3.3 Comparisons
3.4 Numeric Types -- int, float, long, complex
m 3.4.1 Bit-string Operations on Integer Types
3.5 Iterator Types
3.6 Sequence Types -- str, unicode, 1ist, tuple, buffer,

xrange
m 3.6.1 String Methods
m 3.6.2 String Formatting Operations

= 3.6.3 XRange Type
m 3.6.4 Mutable Sequence Types

3.7 Set Types -- set, frozenset
3.8 Mapping Types -- dict

o

O O O

o

o

o

O

o 3.9 File Objects
o 3.10 Context Manager Types
o 3.11 Other Built-in Types
m 3.11.1 Modules
3.11.2 Classes and Class Instances
3.11.3 Functions
3.11.4 Methods
3.11.5 Code Objects

3.11.6 Type Objects
3.11.7 The Null Object

3.11.8 The Ellipsis Object
3.11.9 Boolean Values
3.11.10 Internal Objects

o 3.12 Special Attributes
e 4. String Services

o 4.1 string -- Common string operations
m 4.1.1 String constants
m 4.1.2 Template strings

m 4.1.3 String functions

m 4.1.4 Deprecated string functions
o 4.2 re -- Regular expression operations
4.2.1 Regular Expression Syntax
4.2.2 Matching vs Searching
4.2.3 Module Contents

4.2.4 Regular Expression Objects
4.2.5 Match Objects

4.2.6 Examples
o 4.3 struct -- Interpret strings as packed binary data
o 4.4difflib -- Helpers for computing deltas

m 4.4.1 SequenceMatcher Objects

m 4.4.2 SequenceMatcher Examples
m 4.4.3 Differ Objects

» 4.4.4 Differ Example
4.5 StringI0 -- Read and write strings as files
4.6 cStringIOQ -- Faster version of StringIO
4.7 textwrap -- Text wrapping and filling
4.8 codecs -- Codec registry and base classes

m 4.8.1 Codec Base Classes

o

o O O

(e}

o

(e}

m 4.8.2 Encodings and Unicode
m 4.8.3 Standard Encodings
m 484 encodings.idna -- Internationalized Domain Names in

Applications
m 485 encodings.utf 8 sig-- UTF-8 codec with BOM

signature
4.9 unicodedata -- Unicode Database
4.10 stringprep -- Internet String Preparation

4.11 fpformat -- Floating point conversions

e 5. Data Types

o

(@)

(¢]

(¢]

o

o

o

o

o

(¢]

5.1 datetime -- Basic date and time types
5.1.1 Available Types
5.1.2 timedelta Objects
5.1.3 date Objects
5.1.4 datetime Objects
5.1.5 time Objects
5.1.6 tzinfo Objects
5.1.7 strftime() Behavior
m 5.1.8 Examples
5.2 calendar -- General calendar-related functions
5.3 collections -- High-performance container datatypes
= 5.3.1 deque objects
m 5.3.2 defaultdict objects
5.4 heapq -- Heap queue algorithm
= 5.4.1 Theory
5.5 bisect -- Array bisection algorithm
= 5.5.1 Examples
5.6 array -- Efficient arrays of numeric values
5.7 sets -- Unordered collections of unique elements
m 5.7.1 Set Objects
= 5.7.2 Example
m 5.7.3 Protocol for automatic conversion to immutable
m 5.7.4 Comparison to the built-in Set types
5.8 sched -- Event scheduler
m 5.8.1 Scheduler Objects
5.9 mutex -- Mutual exclusion support
= 5.9.1 Mutex Objects
5.10 Queue -- A synchronized queue class

m 5.10.1 Queue Objects
5.11 weakref -- Weak references

m 5.11.1 Weak Reference Objects

= 5.11.2 Example
5.12 UserDict -- Class wrapper for dictionary objects
5.13 UserList -- Class wrapper for list objects
5.14 UserString_-- Class wrapper for string objects
5.15 types -- Names for built-in types
5.16 new -- Creation of runtime internal objects

5.17 copy -- Shallow and deep copy operations

5.18 pprint -- Data pretty printer
m 5.18.1 PrettyPrinter Objects

5.19 repr -- Alternate repr () implementation

= 5.19.1 Repr Objects

m 5.19.2 Subclassing Repr Objects
e 6. Numeric and Mathematical Modules

o 6.1 math -- Mathematical functions
o 6.2 cmath -- Mathematical functions for complex numbers

o 6.3 decimal -- Decimal floating point arithmetic
6.3.1 Quick-start Tutorial

6.3.2 Decimal objects
6.3.3 Context objects

6.3.4 Signals

6.3.5 Floating Point Notes
6.3.6 Working with threads
6.3.7 Recipes

6.3.8 Decimal FAQ

o 6.4 random -- Generate pseudo-random numbers

o 6.5 itertools -- Functions creating iterators for efficient looping
m 6.5.1 Itertool functions
= 6.5.2 Examples

= 6.5.3 Recipes
o 6.6 functools -- Higher order functions and operations on callable

objects.
m 6.6.1 partial Objects

o 6.7 operator -- Standard operators as functions.
= 6.7.1 Mapping Operators to Functions
e 7. Internet Data Handling

(¢]

0O O O O O o o

o

o 7.1 email -- An email and MIME handling package
7.1.1 Representing an email message

7.1.2 Parsing email messages
7.1.3 Generating MIME documents

7.1.4 Creating email and MIME objects from scratch
7.1.5 Internationalized headers

7.1.6 Representing character sets

7.1.7 Encoders

7.1.8 Exception and Defect classes

7.1.9 Miscellaneous utilities

7.1.10 Iterators

7.1.11 Package History

7.1.12 Differences from mimelib

7.1.13 Examples

7.2 mailcap -- Mailcap file handling.
7.3 mailbox -- Manipulate mailboxes in various formats

7.3.1 Mailbox objects
7.3.2 Message objects

m 7.3.3 Exceptions
m 7.3.4 Deprecated classes and methods

= 7.3.5 Examples
7.4mhlib -- Access to MH mailboxes
= 7.4.1 MH Objects
m 7.4.2 Folder Objects
m 7.4.3 Message Objects
7.5 mimetools -- Tools for parsing MIME messages
m 7.5.1 Additional Methods of Message Objects
7.6 mimetypes -- Map filenames to MIME types

m 7.6.1 MimeTypes Objects
7.7 MimeWriter -- Generic MIME file writer

= 7.7.1 MimeWriter Objects
7.8 mimify -- MIME processing of mail messages

79 multifile -- Support for files containing distinct parts
= 7.9.1 MultiFile Objects
m 7.92MultiFile Example
7.10 rfc822 -- Parse RFC 2822 mail headers
m 7.10.1 Message Objects
m 7.10.2 AddressList Objects

o

(@)

o

(¢]

(@)

o

(¢]

o

(¢]

(¢]

o

(¢]

o

o

7.11 base64 -- REC 3548: Basel6, Base32, Base64 Data Encodings
7.12 binhex -- Encode and decode binhex4 files
m 7.12.1 Notes

7.13 binascii -- Convert between binary and ASCII
7.14 guopri -- Encode and decode MIME quoted-printable data

7.15 uu -- Encode and decode uuencode files

. Structured Markup Processing Tools

o

o

(¢]

o

o

(¢]

o

(¢]

(@)

o

(¢]

(¢]

8.1 HTMLParser -- Simple HTML and XHTML parser

m 8.1.1 Example HTML Parser Application
8.2 sgmllib -- Simple SGML parser
8.3 htmllib -- A parser for HTML documents

m 8.3.1 HTML Parser Objects
8.4 htmlentitydefs -- Definitions of HTML general entities
8.5 xml.parsers.expat -- Fast XML parsing using Expat
8.5.1 XML Parser Objects

8.5.2 ExpatError Exceptions

8.5.3 Example
8.5.4 Content Model Descriptions

8.5.5 Expat error constants
8.6 xml .dom -- The Document Object Model API
= 8.6.1 Module Contents
= 8.6.2 Objects in the DOM
= 8.6.3 Conformance
8.7 xml.dom.minidom -- Lightweight DOM implementation
= 8.7.1 DOM Objects
= 8.7.2 DOM Example
m 8.7.3 minidom and the DOM standard
8.8 xml.dom.pulldom -- Support for building partial DOM trees
= 8.8.1 DOMEventStream Objects
8.9 xml . sax -- Support for SAX2 parsers
= 8.9.1 SAXException Objects
8.10 xml .sax.handler -- Base classes for SAX handlers
= 8.10.1 ContentHandler Objects
= 8.10.2 DTDHandler Objects
= 8.10.3 EntityResolver Objects
= 8.10.4 ErrorHandler Objects
8.11 xml.sax.saxutils -- SAX Utilities
8.12 xml.sax.xmlreader -- Interface for XML parsers

8.12.1 XML Reader Objects
8.12.2 IncrementalParser Objects
8.12.3 Locator Objects
8.12.4 InputSource Objects
8.12.5 The Attributes Interface
8.12.6 The AttributesNS Interface
o 8.13xml.etree.ElementTree -- The ElementTree XML API
8.13.1 Functions
8.13.2 ElementTree Objects
8.13.3 QName Objects
8.13.4 TreeBuilder Objects
8.13.5 XML TreeBuilder Objects
e 9. File Formats
o 9.1 csv -- CSV File Reading and Writing
9.1.1 Module Contents
9.1.2 Dialects and Formatting Parameters
9.1.3 Reader Objects
9.1.4 Writer Objects
9.1.5 Examples
9.2 ConfigParser -- Configuration file parser
= 9.2.1 RawConfigParser Objects
m 9.2.2 ConfigParser Objects
m 9.2.3 SafeConfigParser Objects
9.3 robotparser -- Parser for robots.txt
9.4 netrc -- netrc file processing
= 9.4.1 netrc Objects
9.5 xdr1ib -- Encode and decode XDR data
m 9.5.1 Packer Objects

= 9.5.2 Unpacker Objects

= 9.5.3 Exceptions
e 10. Cryptographic Services
10.1 hashlib -- Secure hashes and message digests
10.2 hmac -- Keyed-Hashing for Message Authentication
10.3 md5_-- MD5 message digest algorithm
10.4 sha -- SHA-1 message digest algorithm
e 11. File and Directory Access

o 11.1 os.path -- Common pathname manipulations
o 11.2 fileinput -- Iterate over lines from multiple input streams

o

(¢]

(¢]

o

O O O O

o 11.3 stat -- Interpreting stat () results
o 11.4 statvfs -- Constants used with 0s.statvfs()
11.5 filecmp -- File and Directory Comparisons
m 11.5.1 The dircmp class
11.6 tempfile -- Generate temporary files and directories

11.7 g1lob_-- Unix style pathname pattern expansion
11.8 fnmatch -- Unix filename pattern matching
11.9 1inecache -- Random access to text lines

11.10 shutil -- High-level file operations

= 11.10.1 Example
o 11.11 dircache -- Cached directory listings

e 12. Data Compression and Archiving
o 12.1 z1ib -- Compression compatible with gzip
12.2 gzip -- Support for gzip files
12.3 bz2 -- Compression compatible with bzip2
m 12.3.1 (De)compression of files
m 12.3.2 Sequential (de)compression
m 12.3.3 One-shot (de)compression
12.4 zipfile -- Work with ZIP archives

m 12.4.1 ZipFile Objects
m 12.4.2 PyZipFile Objects

m 12.4.3 Ziplnfo Objects
12.5 tarfile -- Read and write tar archive files

m 12.5.1 TarFile Objects
= 12.5.2 TarInfo Objects

= 12.5.3 Examples
e 13. Data Persistence

o 13.1 pickle -- Python object serialization
13.1.1 Relationship to other Python modules
13.1.2 Data stream format

13.1.3 Usage

13.1.4 What can be pickled and unpickled?
13.1.5 The pickle protocol

13.1.6 Subclassing Unpicklers

13.1.7 Example

o 13.2 cPickle -- A faster pickle

o 13.3 copy reg.-- Register pickle support functions
o 13.4 shelve -- Python object persistence

(¢]

O O O O O

o

o

o

(¢]

m 13.4.1 Restrictions

= 13.4.2 Example

13.5 marshal -- Internal Python object serialization
13.6 anydbm -- Generic access to DBM-style databases

13.7 whichdb -- Guess which DBM module created a database
13.8 dbm -- Simple "“database" interface
13.9 gdbm -- GNU's reinterpretation of dbm
13.10 dbhash -- DBM-style interface to the BSD database library
= 13.10.1 Database Objects
o 13.11 bsddb -- Interface to Berkeley DB library
m 13.11.1 Hash, BTree and Record Objects
o 13.12 dumbdbm -- Portable DBM implementation
= 13.12.1 Dumbdbm Objects
o 13.13 sglite3 -- DB-API 2.0 interface for SQLite databases
13.13.1 Module functions and constants
13.13.2 Connection Objects
13.13.3 Cursor Objects
13.13.4 SQLiite and Python types

13.13.5 Controlling Transactions

13.13.6 Using pysqlite efficiently
e 14. Generic Operating System Services

o 14.1 0S -- Miscellaneous operating system interfaces
14.1.1 Process Parameters

14.1.2 File Object Creation

14.1.3 File Descriptor Operations

14.1.4 Files and Directories

14.1.5 Process Management

14.1.6 Miscellaneous System Information
14.1.7 Miscellaneous Functions

o 14.2 time -- Time access and conversions

o 14.3 optparse -- More powerful command line option parser

14.3.1 Background
14.3.2 Tutorial

14.3.3 Reference Guide
14.3.4 Option Callbacks
14.3.5 Extending optparse

o 14.4 getopt -- Parser for command line options
o 14.5 1ogging -- Logging facility for Python

O O O O O O

14.5.1 Logger Objects
14.5.2 Basic example

14.5.3 Logging to multiple destinations
14.5.4 Sending and receiving logging events across a network
14.5.5 Handler Objects
14.5.6 Formatter Objects
14.5.7 Filter Objects
14.5.8 LogRecord Objects
14.5.9 Thread Safety
14.5.10 Configuration
o 14.6 getpass -- Portable password input
o 14.7 curses -- Terminal handling for character-cell displays
m 14.7.1 Functions
m 14.7.2 Window Objects
m 14.7.3 Constants
o 14.8 curses.textpad -- Text input widget for curses programs
m 14.8.1 Textbox objects
o 14.9 curses.wrapper -- Terminal handler for curses programs
o 14.10 curses.ascij -- Utilities for ASCII characters
o 14.11 curses.panel -- A panel stack extension for curses.
= 14.11.1 Functions
= 14.11.2 Panel Objects
o 14.12 platform-- Access to underlying platform's identifying data.
14.12.1 Cross Platform
14.12.2 Java Platform
14.12.3 Windows Platform
14.12.4 Mac OS Platform
14.12.5 Unix Platforms
o 14.13 errno -- Standard errno system symbols
o 14.14 ctypes -- A foreign function library for Python.
m 14.14.1 ctypes tutorial
m 14.14.2 ctypes reference
e 15. Optional Operating System Services
o 15.1 select -- Waiting for I/O completion
= 15.1.1 Polling Objects
o 15.2 thread -- Multiple threads of control
o 15.3 threading -- Higher-level threading interface
= 15.3.1 Lock Objects

15.3.2 RLock Objects

15.3.3 Condition Objects

15.3.4 Semaphore Objects

15.3.5 Event Objects

15.3.6 Thread Objects

15.3.7 Timer Objects

15.3.8 Using locks, conditions, and semaphores in the with

statement
o 15.4 dummy thread -- Drop-in replacement for the thread
module
o 15.5 dummy threading -- Drop-in replacement for the

threading module
o 15.6 mmap -- Memory-mapped file support
o 15.7 readline -- GNU readline interface
m 15.7.1 Example
o 15.8 r1completer -- Completion function for GNU readline
m 15.8.1 Completer Objects
e 16. Unix Specific Services
o 16.1 posix -- The most common POSIX system calls

m 16.1.1 Large File Support
= 16.1.2 Module Contents

o 16.2 pwd -- The password database
o 16.3 spwd -- The shadow password database
o 16.4 grp -- The group database
o 16.5 crypt -- Function to check Unix passwords
o 16.6 d1 -- Call C functions in shared objects
= 16.6.1 DI Objects

o 16.7 termios -- POSIX style tty control

= 16.7.1 Example
16.8 tty -- Terminal control functions
16.9 pty -- Pseudo-terminal utilities

16.10 fcntl -- The fentl1() and ioctl1 () system calls
16.11 pipes -- Interface to shell pipelines

= 16.11.1 Template Objects
16.12 posixfile -- File-like objects with locking support

o 16.13 resource -- Resource usage information
m 16.13.1 Resource Limits
m 16.13.2 Resource Usage

O O O O

(¢]

o 16.14 nis -- Interface to Sun's NIS (Yellow Pages)
o 16.15 syslog -- Unix syslog library routines

o 16.16 commands -- Utilities for running commands
e 17. Interprocess Communication and Networking
o 17.1 subprocess -- Subprocess management

m 17.1.1 Using the subprocess Module
= 17.1.2 Popen Objects

m 17.1.3 Replacing Older Functions with the subprocess Module
o 17.2 socket -- Low-level networking interface

m 17.2.1 Socket Objects

m 17.2.2 SSL Objects

m 17.2.3 Example

o 17.3 signal -- Set handlers for asynchronous events
s 17.3.1 Example

o 17.4 popen2 -- Subprocesses with accessible I/O streams
m 17.4.1 Popen3 and Popen4 Objects
m 17.4.2 Flow Control Issues

o 17.5 asyncore -- Asynchronous socket handler
m 17.5.1 asyncore Example basic HTTP client

o 17.6 asynchat -- Asynchronous socket command/response handler
m 17.6.1 asynchat - Auxiliary Classes and Functions

m 17.6.2 asynchat Example
e 18. Internet Protocols and Support
o 18.1 webbrowser -- Convenient Web-browser controller
= 18.1.1 Browser Controller Objects

o 18.2 cgi -- Common Gateway Interface support.
18.2.1 Introduction

18.2.2 Using the cgi module

18.2.3 Higher Level Interface

18.2.4 Old classes

18.2.5 Functions

18.2.6 Caring about security

18.2.7 Installing your CGI script on a UNix system

18.2.8 Testing your CGI script
18.2.9 Debugging CGI scripts

18.2.10 Common problems and solutions
o 18.3 cgithb -- Traceback manager for CGI scripts

o 18.4 wsgiref -- WSGI Utilities and Reference Implementation

m 18.4.1 wsgiref.util - WSGI environment utilities
m 18.4.2 wsgiref.headers - WSGI response header tools
m 18.4.3wsgiref.simple server -asimple WSGI HTTP
server
m 18.44wsgiref.validate - WSGI conformance checker
m 18.4.5wsgiref.handlers - server/gateway base classes
o 18.5urllib -- Open arbitrary resources by URL
= 18.5.1 URLopener Objects
= 18.5.2 Examples
o 18.6 urllib2 -- extensible library for opening URLs
18.6.1 Request Objects
18.6.2 OpenerDirector Objects
18.6.3 BaseHandler Objects
18.6.4 HTTPRedirectHandler Objects
18.6.5 HTTPCookieProcessor Objects
18.6.6 ProxyHandler Objects
18.6.7 HTTPPasswordMgr Objects
18.6.8 AbstractBasicAuthHandler Objects
18.6.9 HTTPBasicAuthHandler Objects
18.6.10 ProxyBasicAuthHandler Objects
18.6.11 AbstractDigestAuthHandler Objects
18.6.12 HTTPDigestAuthHandler Objects
18.6.13 ProxyDigestAuthHandler Objects
18.6.14 HTTPHandler Objects
18.6.15 HTTPSHandler Objects
18.6.16 FileHandler Objects
18.6.17 FTPHandler Objects
18.6.18 CacheFTPHandler Objects
18.6.19 GopherHandler Objects
18.6.20 UnknownHandler Objects
18.6.21 HTTPErrorProcessor Objects
18.6.22 Examples
o 18.7 httplib -- HTTP protocol client
= 18.7.1 HTTPConnection Objects
= 18.7.2 HTTPResponse Objects
= 18.7.3 Examples
o 18.8 ftplib -- FTP protocol client
= 18.8.1 FTP Objects

18.9 gopherlib -- Gopher protocol client
18.10 poplib -- POP3 protocol client
= 18.10.1 POP3 Objects
= 18.10.2 POP3 Example
18.11 imaplib -- IMAP4 protocol client
= 18.11.1 IMAP4 Objects
= 18.11.2 IMAP4 Example
18.12 nntplib -- NNTP protocol client
= 18.12.1 NNTP Obijects
18.13 smtplib -- SMTP protocol client
m 18.13.1 SMTP Objects
= 18.13.2 SMTP Example
18.14 smtpd -- SMTP Server
m 18.14.1 SMTPServer Objects
m 18.14.2 DebuggingServer Objects
m 18.14.3 PureProxy Objects
m 18.14.4 MailmanProxy Objects
18.15 telnetlib -- Telnet client
m 18.15.1 Telnet Objects
m 18.15.2 Telnet Example
18.16 uuid -- UUID objects according to RFC 4122
= 18.16.1 Example
18.17 urlparse -- Parse URLs into components
m 18.17.1 Results of urlparse() and urlsplit()
18.18 SocketServer -- A framework for network servers
m 18.18.1 Server Creation Notes
m 18.18.2 Server Objects
= 18.18.3 RequestHandler Objects
18.19 BaseHTTPServer -- Basic HTTP server
18.20 SimpleHTTPServer -- Simple HTTP request handler
18.21 CGIHTTPServer -- CGI-capable HTTP request handler
18.22 cookielib -- Cookie handling for HTTP clients
18.22.1 CookieJar and FileCookieJar Objects
18.22.2 FileCookielar subclasses and co-operation with web
browsers
18.22.3 CookiePolicy Objects
18.22.4 DefaultCookiePolicy Objects
18.22.5 Cookie Objects

o

o

o

e}

= 18.22.6 Examples
18.23 Cookie -- HTTP state management

m 18.23.1 Cookie Objects
= 18.23.2 Morsel Objects
= 18.23.3 Example
18.24 xmlrpclib -- XML-RPC client access
18.24.1 ServerProxy Objects
18.24.2 Boolean Objects
18.24.3 DateTime Objects
18.24.4 Binary Objects
18.24.5 Fault Objects
18.24.6 ProtocolError Objects
18.24.7 MultiCall Objects
18.24.8 Convenience Functions
18.24.9 Example of Client Usage
18.25 SimpleXMLRPCServer -- Basic XML-RPC server
m 18.25.1 SimpleXMLRPCServer Objects
m 18.25.2 CGIXMLRPCRequestHandler
18.26 DOCXMLRPCServer -- Self-documenting XML-RPC server
= 18.26.1 DocXMLRPCServer Objects
= 18.26.2 DocCGIXMLRPCRequestHandler

e 19. Multimedia Services

O O O o

O O O O O O

19.1 audioop -- Manipulate raw audio data
19.2 imageop -- Manipulate raw image data
19.3 aifc -- Read and write AIFF and AIFC files
19.4 sunau -- Read and write Sun AU files

m 19.4.1 AU_read Objects

m 19.4.2 AU_write Objects
19.5 wave -- Read and write WAV files

= 19.5.1 Wave_read Objects

= 19.5.2 Wave_write Objects
19.6 chunk -- Read IFF chunked data
19.7 colorsys -- Conversions between color systems
19.8 rgbimg -- Read and write ~"SGI RGB" files

19.9 imghdr _-- Determine the type of an image

19.10 sndhdr _-- Determine type of sound file
19.11 ossaudiodeV_-- Access to OSS-compatible audio devices

m 19.11.1 Audio Device Objects

= 19.11.2 Mixer Device Objects
e 20. Graphical User Interfaces with Tk
o 20.1 Tkinter -- Python interface to Tcl/Tk
20.1.1 Tkinter Modules
20.1.2 Tkinter Life Preserver
20.1.3 A (Very) Quick Look at Tcl/Tk
20.1.4 Mapping Basic Tk into Tkinter
20.1.5 How Tk and Tkinter are Related
20.1.6 Handy Reference
20.2 Tix -- Extension widgets for Tk
m 20.2.1 Using Tix
m 20.2.2 Tix Widgets
m 20.2.3 Tix Commands
20.3 ScrolledText -- Scrolled Text Widget
20.4 turtle -- Turtle graphics for Tk
m 20.4.1 Turtle, Pen and RawPen Objects
20.5 Idle
= 20.5.1 Menus
m 20.5.2 Basic editing and navigation
= 20.5.3 Syntax colors
o 20.6 Other Graphical User Interface Packages
e 21. Internationalization
o 21.1 gettext -- Multilingual internationalization services
21.1.1 GNU gettext API
21.1.2 Class-based API
21.1.3 Internationalizing your programs and modules
21.1.4 Acknowledgements
o 21.2 1ocale -- Internationalization services
= 21.2.1 Background, details, hints, tips and caveats
m 21.2.2 For extension writers and programs that embed Python
m 21.2.3 Access to message catalogs
e 22. Program Frameworks
o 22.1 cmd -- Support for line-oriented command interpreters
m 22.1.1 Cmd Objects
o 22.2 shlex -- Simple lexical analysis
m 22.2.1 shlex Objects
m 22.2.2 Parsing Rules
e 23. Development Tools

(¢]

(¢]

o

(@)

o 23.1 pydoc -- Documentation generator and online help system

o 23.2 doctest -- Test interactive Python examples
23.2.1 Simple Usage: Checking Examples in Docstrings

23.2.2 Simple Usage: Checking Examples in a Text File
23.2.3 How It Works

23.2.4 Basic API

23.2.5 Unittest API

23.2.6 Advanced API

23.2.7 Debugging

23.2.8 Soapbox

o 23.3 unittest -- Unit testing framework
23.3.1 Basic example

23.3.2 Organizing test code
23.3.3 Re-using old test code

23.3.4 Classes and functions
23.3.5 TestCase Objects
23.3.6 TestSuite Objects
23.3.7 TestResult Objects
23.3.8 TestL.oader Objects

o 23.4 test -- Regression tests package for Python
m 23.4.1 Writing Unit Tests for the test package

= 23.4.2 Running tests using test.regrtest
o 23,5 test.test support -- Utility functions for tests
e 24. The Python Debugger
o 24.1 Debugger Commands
o 24.2 How It Works
e 25. The Python Profilers
25.1 Introduction to the profilers
25.2 Instant User's Manual
25.3 What Is Deterministic Profiling?
25.4 Reference Manual - profile and cProfile
m 25.4.1 The Stats Class
25.5 Limitations
25.6 Calibration
25.7 Extensions -- Deriving Better Profilers

25.8 hotshot -- High performance logging profiler
= 25.8.1 Profile Objects

m 25.8.2 Using hotshot data

O O O O

O O O O

= 25.8.3 Example Usage
o 25.9 timejt -- Measure execution time of small code snippets

m 25.9.1 Command Line Interface
m 25.9.2 Examples
o 25.10 trace -- Trace or track Python statement execution

m 25.10.1 Command Line Usage

m 25.10.2 Programming Interface
e 26. Python Runtime Services

26.1 sys -- System-specific parameters and functions
26.2 _builtin -- Built-in objects
26.3 __main _ -- Top-level script environment
26.4 warnings_-- Warning control
= 26.4.1 Warning Categories
m 26.4.2 The Warnings Filter
m 26.4.3 Available Functions
o 26.5 contextlib -- Utilities for with-statement contexts.
o 26.6 atexit -- Exit handlers
m 26.6.1 atexit Example
o 26.7 traceback -- Print or retrieve a stack traceback
m 26.7.1 Traceback Example
o 26.8_future -- Future statement definitions
o 26.9 gc -- Garbage Collector interface
o 26.10 inspect -- Inspect live objects
m 26.10.1 Types and members
= 26.10.2 Retrieving source code
m 26.10.3 Classes and functions
m 26.10.4 The interpreter stack
o 26.11 site -- Site-specific configuration hook
o 26.12 user -- User-specific configuration hook
o 26.13 fpectl -- Floating point exception control
m 26.13.1 Example
m 26.13.2 Limitations and other considerations
e 27. Custom Python Interpreters
o 27.1 code -- Interpreter base classes
m 27.1.1 Interactive Interpreter Objects
m 27.1.2 Interactive Console Objects
o 27.2 codeop -- Compile Python code
e 28. Restricted Execution

O O O o

o 28.1 rexec -- Restricted execution framework
= 28.1.1 RExec Objects
m 28.1.2 Defining restricted environments
m 28.1.3 An example

o 28.2 Bastion -- Restricting access to objects

e 29. Importing Modules
o 29.1 imp -- Access the import internals

= 29.1.1 Examples
o 29.2 zipimport -- Import modules from Zip archives

m 29.2.1 zipimporter Objects
= 29.2.2 Examples

o 29.3 pkgutil -- Package extension utility
o 29.4 modulefinder -- Find modules used by a script
o 29.5 runpy -- Locating and executing Python modules.
e 30. Python Language Services
o 30.1 parser -- Access Python parse trees
30.1.1 Creating AST Objects
30.1.2 Converting AST Objects
30.1.3 Queries on AST Objects

30.1.4 Exceptions and Error Handling
30.1.5 AST Objects

= 30.1.6 Examples
o 30.2 symbol -- Constants used with Python parse trees

30.3 token -- Constants used with Python parse trees
30.4 keyword -- Testing for Python keywords
30.5 tokenize -- Tokenizer for Python source
30.6 tabnanny -- Detection of ambiguous indentation
30.7 pyclbr -- Python class browser support

m 30.7.1 Class Descriptor Objects

m 30.7.2 Function Descriptor Objects
o 30.8 py compile -- Compile Python source files
o 30.9 compileall -- Byte-compile Python libraries
o 30.10 dis -- Disassembler for Python byte code

= 30.10.1 Python Byte Code Instructions

o 30.11 pickletools -- Tools for pickle developers.
o 30.12 distutils -- Building and installing Python modules

e 31. Python compiler package
o 31.1 The basic interface

o

0O O O O

o

o

O

O

31.2 Limitations
31.3 Python Abstract Syntax
m 31.3.1 AST Nodes

= 31.3.2 Assignment nodes

= 31.3.3 Examples
31.4 Using Visitors to Walk ASTs

31.5 Bytecode Generation

e 32. Abstract Syntax Trees

(e}

32.1 Abstract Grammar

e 33. Miscellaneous Services

(e}

33.1 formatter -- Generic output formatting
m 33.1.1 The Formatter Interface
m 33.1.2 Formatter Implementations
m 33.1.3 The Writer Interface
m 33.1.4 Writer Implementations

e 34. SGI IRIX Specific Services

e}

o

o O O o

34.1 al -- Audio functions on the SGI
= 34.1.1 Configuration Objects
m 34.1.2 Port Objects
34.2 AL -- Constants used with the al module
34.3 cd -- CD-ROM access on SGI systems
= 34.3.1 Player Objects
m 34.3.2 Parser Objects
34.4 f1 -- FORMS library for graphical user interfaces
m 34.4.1 Functions Defined in Module f1
m 34.4.2 Form Objects
= 34.4.3 FORMS Objects
34.5 FL -- Constants used with the f1 module
34.6 £1p -- Functions for loading stored FORMS designs
34.7 fm_-- Font Manager interface
34.8 g1 -- Graphics Library interface
34.9 DEVICE -- Constants used with the g1 module
34.10 GL -- Constants used with the g1 module
34.11 imgfile -- Support for SGI imglib files
34.12 jpeqg -- Read and write JPEG files

¢ 35. SunOS Specific Services

o

35.1 sunaudiodev -- Access to Sun audio hardware
m 35.1.1 Audio Device Objects

o 35.2 SUNAUDIODEV -- Constants used with sunaudiodev
e 36. MS Windows Specific Services
o 36.1 msilib -- Read and write Microsoft Installer files
36.1.1 Database Objects
36.1.2 View Objects
36.1.3 Summary Information Objects
36.1.4 Record Objects
36.1.5 Errors
36.1.6 CAB Obijects
36.1.7 Directory Objects
36.1.8 Features
36.1.9 GUI classes
36.1.10 Precomputed tables
o 36.2 msvcrt - Useful routines from the MS VC++ runtime
m 36.2.1 File Operations
m 36.2.2 Console I/O
m 36.2.3 Other Functions
o 36.3 _winreg - Windows registry access
m 36.3.1 Registry Handle Objects
o 36.4 winsound -- Sound-playing interface for Windows
e A. Undocumented Modules
A.1 Frameworks
A.2 Miscellaneous useful utilities
A.3 Platform specific modules
A.4 Multimedia
A.5 Obsolete
A.6 SGI-specific Extension modules
e B. Reporting Bugs
e C. History and License
o C.1 History of the software
o (.2 Terms and conditions for accessing or otherwise using Python
o C.3 Licenses and Acknowledgements for Incorporated Software
= (C.3.1 Mersenne Twister
= (C.3.2 Sockets
C.3.3 Floating point exception control
C.3.4 MD5 message digest algorithm
C.3.5 Asynchronous socket services

C.3.6 Cookie management

O O O O O o

C.3.7 Profiling
C.3.8 Execution tracing

C.3.9 UUencode and UUdecode functions
C.3.10 XML Remote Procedure Calls

e Module Index

e Index

e About this document ...

«1T-> Python Library Reference
up: Python Documentation Index Next: Eront Matter

toc m i

CONTENTS MODULES INDEX

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: Contents up: Python Library Reference wnext: 2. Bulilt-in Objects

1. Introduction

The “"Python library" contains several different kinds of components.

It contains data types that would normally be considered part of the ~“core" of a
language, such as numbers and lists. For these types, the Python language core

defines the form of literals and places some constraints on their semantics, but

does not fully define the semantics. (On the other hand, the language core does
define syntactic properties like the spelling and priorities of operators.)

The library also contains built-in functions and exceptions -- objects that can be
used by all Python code without the need of an import statement. Some of
these are defined by the core language, but many are not essential for the core
semantics and are only described here.

The bulk of the library, however, consists of a collection of modules. There are
many ways to dissect this collection. Some modules are written in C and built in
to the Python interpreter; others are written in Python and imported in source
form. Some modules provide interfaces that are highly specific to Python, like
printing a stack trace; some provide interfaces that are specific to particular
operating systems, such as access to specific hardware; others provide interfaces
that are specific to a particular application domain, like the World Wide Web.
Some modules are available in all versions and ports of Python; others are only
available when the underlying system supports or requires them; yet others are
available only when a particular configuration option was chosen at the time
when Python was compiled and installed.

This manual is organized " from the inside out:" it first describes the built-in data
types, then the built-in functions and exceptions, and finally the modules,
grouped in chapters of related modules. The ordering of the chapters as well as
the ordering of the modules within each chapter is roughly from most relevant to
least important.

This means that if you start reading this manual from the start, and skip to the
next chapter when you get bored, you will get a reasonable overview of the
available modules and application areas that are supported by the Python library.
Of course, you don't have to read it like a novel -- you can also browse the table

of contents (in front of the manual), or look for a specific function, module or
term in the index (in the back). And finally, if you enjoy learning about random
subjects, you choose a random page number (see module random) and read a
section or two. Regardless of the order in which you read the sections of this
manual, it helps to start with chapter 2, “"Built-in Types, Exceptions and
Functions," as the remainder of the manual assumes familiarity with this
material.

Let the show begin!

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: Contents up: Python Library Reference Next: 2. Bulilt-in Objects

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 1. Introduction up: Python Library Reference Next: 2.1 Built-in
Functions

2. Built-in Objects

Names for built-in exceptions and functions and a number of constants are found
in a separate symbol table. This table is searched last when the interpreter looks
up the meaning of a name, so local and global user-defined names can override

built-in names. Built-in types are described together here for easy reference.%!

The tables in this chapter document the priorities of operators by listing them in

order of ascending priority (within a table) and grouping operators that have the

same priority in the same box. Binary operators of the same priority group from

left to right. (Unary operators group from right to left, but there you have no real
choice.) See chapter 5 of the Python Reference Manual for the complete picture

on operator priorities.

Footnhotes

... reference. 21

Most descriptions sorely lack explanations of the exceptions that may be
raised -- this will be fixed in a future version of this manual.

Subsections

2.1 Built-in Functions
2.2 Non-essential Built-in Functions

2.3 Built-in Exceptions
2.4 Built-in Constants

<« 'r = Python Library Reference toc m i

COMTENTS MODULES IMDEX
Previous: 1. Introduction up: Python Library Reference Next: 2.1 Built-in
Functions

Release 2.5, documentation updated on 19th September, 2006.

See About this document... for information on suggesting changes.

Previous: 2. Bulilt-in Objects up: 2. Built-in Objects Next: 2.2 Non-essential
Built-in Functions

2.1 Built-in Functions

The Python interpreter has a number of functions built into it that are always
available. They are listed here in alphabetical order.

__dmport__(name[, globals[, locals[, fromlist[, level]]]])

This function is invoked by the impor t statement. It mainly exists so that
you can replace it with another function that has a compatible interface, in
order to change the semantics of the import statement. For examples of
why and how you would do this, see the standard library modules 1hooks
and rexec. See also the built-in module imp, which defines some useful
operations out of which you can build your own __import__ () function.

For example, the statement "import spam" results in the following call:
__import__('spam', globals(), locals(), [], -1);the
statement "from spam.ham import eggs" resultsin
"__import__('spam.ham', globals(), locals(),
['eggs'], -1)".Note that even though locals() and ['eggs']
are passed in as arguments, the __import__ () function does not set the
local variable named eggs; this is done by subsequent code that is
generated for the import statement. (In fact, the standard implementation
does not use its locals argument at all, and uses its globals only to
determine the package context of the import statement.)

When the name variable is of the form package .module, normally, the
top-level package (the name up till the first dot) is returned, not the module
named by name. However, when a non-empty fromlist argument is given,
the module named by name is returned. This is done for compatibility with
the bytecode generated for the different kinds of import statement; when
using "import spam.ham.eggs", the top-level package spam must be
placed in the importing namespace, but when using "from spam.ham
import eggs", the spam.ham subpackage must be used to find the
eggs variable. As a workaround for this behavior, use getattr () to
extract the desired components. For example, you could define the
following helper:

def my_import(name):
mod = __import__(name)
components = name.split('."')
for comp in components[1:]:
mod = getattr(mod, comp)
return mod

level specifies whether to use absolute or relative imports. The default is -1
which indicates both absolute and relative imports will be attempted. @
means only perform absolute imports. Positive values for level indicate the
number of parent directories to search relative to the directory of the
module calling __import__. Changed in version 2.5: The level
parameter was added. Changed in version 2.5: Keyword support for
parameters was added.

abs(x)
Return the absolute value of a number. The argument may be a plain or long
integer or a floating point number. If the argument is a complex number, its
magnitude is returned.

all(iterable)
Return True if all elements of the iterable are true. Equivalent to:

def all(iterable):
for element in iterable:
if not element:
return False
return True

New in version 2.5.

any(iterable)

Return True if any element of the iterable is true. Equivalent to:
def any(iterable):
for element in iterable:
if element:

return True
return False

New in version 2.5.

basestring()

This abstract type is the superclass for str and unicode. It cannot be
called or instantiated, but it can be used to test whether an object is an
instance of str or unicode. isinstance(obj, basestring) is
equivalent to isinstance(obj, (str, unicode)).New in
version 2.3.

bool([x])

Convert a value to a Boolean, using the standard truth testing procedure. If
x is false or omitted, this returns False; otherwise it returns True. bool
is also a class, which is a subclass of int. Class bool cannot be
subclassed further. Its only instances are False and True.

New in version 2.2.1. Changed in version 2.3: If no argument is given, this
function returns False.

callable(object)
Return true if the object argument appears callable, false if not. If this
returns true, it is still possible that a call fails, but if it is false, calling object
will never succeed. Note that classes are callable (calling a class returns a
new instance); class instances are callable if they havea __call__ ()
method.

chr(i)
Return a string of one character whose ASCII code is the integer i. For
example, chr (97) returns the string 'a'. This is the inverse of ord().
The argument must be in the range [0..255], inclusive; ValueError will
be raised if i is outside that range.

classmethod(function)
Return a class method for function.

A class method receives the class as implicit first argument, just like an
instance method receives the instance. To declare a class method, use this
idiom:

class C:

@classmethod
def f(cls, argil, arg2, ...):

The @classmethod form is a function decorator - see the description of
function definitions in chapter 7 of the Python Reference Manual for
details.

It can be called either on the class (such as C. f()) or on an instance (such
as C().f()). The instance is ignored except for its class. If a class method
is called for a derived class, the derived class object is passed as the implied
first argument.

Class methods are different than C++ or Java static methods. If you want
those, see staticmethod() in this section.

For more information on class methods, consult the documentation on the
standard type hierarchy in chapter 3 of the Python Reference Manual (at the
bottom). New in version 2.2. Changed in version 2.4: Function decorator
syntax added.

cmp(x, y)
Compare the two objects x and y and return an integer according to the
outcome. The return value is negative if x < y, zero if x == y and strictly

positive if x > y.

compile(string, filename, kind|[, flags[, dont_inherit]])
Compile the string into a code object. Code objects can be executed by an
exec statement or evaluated by a call to eval(). The filename argument
should give the file from which the code was read; pass some recognizable
value if it wasn't read from a file (' <string>"' is commonly used). The
kind argument specifies what kind of code must be compiled; it can be
"exec' if string consists of a sequence of statements, 'eval' if it
consists of a single expression, or ' single' if it consists of a single
interactive statement (in the latter case, expression statements that evaluate
to something else than None will be printed).

When compiling multi-line statements, two caveats apply: line endings
must be represented by a single newline character (' \n'), and the input
must be terminated by at least one newline character. If line endings are
represented by '\r\n', use the string replace() method to change
them into '\n".

The optional arguments flags and dont_inherit (which are new in Python
2.2) control which future statements (see PEP 236) affect the compilation of
string. If neither is present (or both are zero) the code is compiled with
those future statements that are in effect in the code that is calling compile.
If the flags argument is given and dont_inherit is not (or is zero) then the
future statements specified by the flags argument are used in addition to
those that would be used anyway. If dont_inherit is a non-zero integer then
the flags argument is it - the future statements in effect around the call to
compile are ignored.

Future statements are specified by bits which can be bitwise or-ed together
to specify multiple statements. The bitfield required to specify a given
feature can be found as the compiler_flag attribute on the _Feature
instance in the ___future__ module.

complex([real[, imag]])

Create a complex number with the value real + imag*j or convert a string
or number to a complex number. If the first parameter is a string, it will be
interpreted as a complex number and the function must be called without a
second parameter. The second parameter can never be a string. Each
argument may be any numeric type (including complex). If imag is omitted,
it defaults to zero and the function serves as a numeric conversion function
like int (), long() and float (). If both arguments are omitted,
returns 07.

delattr(object, name)

This is a relative of setattr (). The arguments are an object and a string.
The string must be the name of one of the object's attributes. The function
deletes the named attribute, provided the object allows it. For example,
delattr(x, 'foobar') isequivalentto del x.foobar.

dict([mapping-or-sequence]))
Return a new dictionary initialized from an optional positional argument or
from a set of keyword arguments. If no arguments are given, return a new
empty dictionary. If the positional argument is a mapping object, return a
dictionary mapping the same keys to the same values as does the mapping
object. Otherwise the positional argument must be a sequence, a container
that supports iteration, or an iterator object. The elements of the argument

http://www.python.org/peps/pep-0236.html

must each also be of one of those kinds, and each must in turn contain
exactly two objects. The first is used as a key in the new dictionary, and the
second as the key's value. If a given key is seen more than once, the last
value associated with it is retained in the new dictionary.

If keyword arguments are given, the keywords themselves with their
associated values are added as items to the dictionary. If a key is specified
both in the positional argument and as a keyword argument, the value
associated with the keyword is retained in the dictionary. For example,
these all return a dictionary equal to {"one": 2, "two": 3}:

dict({'one': 2, 'two': 3})

dict({'one': 2, 'two': 3}.items())
dict({'one': 2, '"two': 3}.iteritems())
dict(zip(('one', 'two'), (2, 3)))
dict([['two', 3], ['one', 2]])

dict(one=2, two=3)

dict([(['one', '"two'][1-2], i) for 1 in (2,
3)1)

New in version 2.2. Changed in version 2.3: Support for building a
dictionary from keyword arguments added.

dir([object])
Without arguments, return the list of names in the current local symbol
table. With an argument, attempts to return a list of valid attributes for that
object. This information is gleaned from the object's __dict___ attribute,
if defined, and from the class or type object. The list is not necessarily
complete. If the object is a module object, the list contains the names of the
module's attributes. If the object is a type or class object, the list contains
the names of its attributes, and recursively of the attributes of its bases.
Otherwise, the list contains the object's attributes' names, the names of its
class's attributes, and recursively of the attributes of its class's base classes.
The resulting list is sorted alphabetically. For example:

>>> import struct

>>> dir()

['__builtins__', '__doc__', '__name__', 'struct']

>>> dir(struct)

['_doc__', '__name__', 'calcsize', 'error', 'pack', 'unpack']

Note: Because dir () is supplied primarily as a convenience for use at an
interactive prompt, it tries to supply an interesting set of names more than it
tries to supply a rigorously or consistently defined set of names, and its
detailed behavior may change across releases.

divmod(a, b)
Take two (non complex) numbers as arguments and return a pair of
numbers consisting of their quotient and remainder when using long
division. With mixed operand types, the rules for binary arithmetic
operators apply. For plain and long integers, the result is the same as (a
// b, a % b).For floating point numbers the resultis (q, a % b),
where g is usually math.floor (a / b) but may be 1 less than that. In
anycaseq * b + a % bisveryclosetoa,ifa % b isnon-zero it has
the same sign as b,and @ <= abs(a % b) < abs(b).

Changed in version 2.3: Using divmod () with complex numbers is
deprecated.

enumerate(iterable)

Return an enumerate object. iterable must be a sequence, an iterator, or
some other object which supports iteration. The next () method of the
iterator returned by enumerate() returns a tuple containing a count
(from zero) and the corresponding value obtained from iterating over
iterable. enumerate () is useful for obtaining an indexed series: (0,
seq[0]), (1, seq[1]), (2, seq[2]),.... New in version 2.3.

eval(expression[, globals[, locals]])

The arguments are a string and optional globals and locals. If provided,
globals must be a dictionary. If provided, locals can be any mapping object.
Changed in version 2.4: formerly locals was required to be a dictionary.

The expression argument is parsed and evaluated as a Python expression
(technically speaking, a condition list) using the globals and locals
dictionaries as global and local name space. If the globals dictionary is
present and lacks '__builtins__', the current globals are copied into globals
before expression is parsed. This means that expression normally has full
access to the standard __builtin module and restricted environments
are propagated. If the locals dictionary is omitted it defaults to the globals

dictionary. If both dictionaries are omitted, the expression is executed in the
environment where eval is called. The return value is the result of the
evaluated expression. Syntax errors are reported as exceptions. Example:

>>> X = 1
>>> print eval('x+1'")
2

This function can also be used to execute arbitrary code objects (such as
those created by compile()). In this case pass a code object instead of a
string. The code object must have been compiled passing 'eval' as the
kind argument.

Hints: dynamic execution of statements is supported by the exec
statement. Execution of statements from a file is supported by the
execfile() function. The globals() and locals() functions
returns the current global and local dictionary, respectively, which may be
useful to pass around for use by eval() or execfile().

execfile(filenamel, globals|, locals]])

This function is similar to the exec statement, but parses a file instead of a
string. It is different from the import statement in that it does not use the
module administration -- it reads the file unconditionally and does not
create a new module.22

The arguments are a file name and two optional dictionaries. The file is
parsed and evaluated as a sequence of Python statements (similarly to a
module) using the globals and locals dictionaries as global and local
namespace. If provided, locals can be any mapping object. Changed in
version 2.4: formerly locals was required to be a dictionary. If the locals
dictionary is omitted it defaults to the globals dictionary. If both
dictionaries are omitted, the expression is executed in the environment
where execfile() is called. The return value is None.

Warning: The default locals act as described for function 1ocals()
below: modifications to the default locals dictionary should not be
attempted. Pass an explicit locals dictionary if you need to see effects of the
code on locals after function execfile() returns. execfile() cannot
be used reliably to modify a function's locals.

file(filename[, mode[, bufsize]])
Constructor function for the file type, described further in section 3.9,

“"File Objects". The constructor's arguments are the same as those of the
open() built-in function described below.

When opening a file, it's preferable to use open() instead of invoking this
constructor directly. file is more suited to type testing (for example,
writing "isinstance(f, file)").

New in version 2.2.

filter(function, list)
Construct a list from those elements of list for which function returns true.
list may be either a sequence, a container which supports iteration, or an
iterator, If list is a string or a tuple, the result also has that type; otherwise it
is always a list. If function is None, the identity function is assumed, that is,
all elements of list that are false are removed.

Note that filter (function, list) is equivalentto [item for
item in list if function(item)] if function is not None and
[item for item in list if item] if function is None.

float([x])

Convert a string or a number to floating point. If the argument is a string, it
must contain a possibly signed decimal or floating point number, possibly
embedded in whitespace. Otherwise, the argument may be a plain or long
integer or a floating point number, and a floating point number with the
same value (within Python's floating point precision) is returned. If no
argument is given, returns 0. 0.

Note: When passing in a string, values for NalN and Infinity may be
returned, depending on the underlying C library. The specific set of strings
accepted which cause these values to be returned depends entirely on the C
library and is known to vary.

frozenset([iterable])

Return a frozenset object whose elements are taken from iterable.
Frozensets are sets that have no update methods but can be hashed and used

as members of other sets or as dictionary keys. The elements of a frozenset
must be immutable themselves. To represent sets of sets, the inner sets
should also be frozenset objects. If iterable is not specified, returns a
new empty set, frozenset([]). New in version 2.4.

getattr(object, namel, default])
Return the value of the named attributed of object. name must be a string. If
the string is the name of one of the object's attributes, the result is the value
of that attribute. For example, getattr(x, 'foobar') isequivalent
to X . foobar. If the named attribute does not exist, default is returned if
provided, otherwise AttributeError is raised.

globals()

Return a dictionary representing the current global symbol table. This is
always the dictionary of the current module (inside a function or method,
this is the module where it is defined, not the module from which it is
called).

hasattr(object, name)

The arguments are an object and a string. The result is True if the string is
the name of one of the object's attributes, False if not. (This is
implemented by calling getattr (object, name) and seeing whether it
raises an exception or not.)

hash(object)
Return the hash value of the object (if it has one). Hash values are integers.
They are used to quickly compare dictionary keys during a dictionary
lookup. Numeric values that compare equal have the same hash value (even
if they are of different types, as is the case for 1 and 1.0).

help([object])

Invoke the built-in help system. (This function is intended for interactive
use.) If no argument is given, the interactive help system starts on the
interpreter console. If the argument is a string, then the string is looked up
as the name of a module, function, class, method, keyword, or
documentation topic, and a help page is printed on the console. If the
argument is any other kind of object, a help page on the object is generated.

New in version 2.2.

hex(x)
Convert an integer number (of any size) to a hexadecimal string. The result
is a valid Python expression. Changed in version 2.4: Formerly only
returned an unsigned literal.

id(object)
Return the "identity"” of an object. This is an integer (or long integer) which
is guaranteed to be unique and constant for this object during its lifetime.
Two objects with non-overlapping lifetimes may have the same id ()
value. (Implementation note: this is the address of the object.)

input([prompt])
Equivalent to eval(raw_input (prompt)). Warning: This function is
not safe from user errors! It expects a valid Python expression as input; if
the input is not syntactically valid, a SyntaxError will be raised. Other
exceptions may be raised if there is an error during evaluation. (On the
other hand, sometimes this is exactly what you need when writing a quick
script for expert use.)

If the readline module was loaded, then input () will use it to provide
elaborate line editing and history features.

Consider using the raw_input () function for general input from users.

int([x[, radix]])
Convert a string or number to a plain integer. If the argument is a string, it
must contain a possibly signed decimal number representable as a Python
integer, possibly embedded in whitespace. The radix parameter gives the
base for the conversion and may be any integer in the range [2, 36], or zero.
If radix is zero, the proper radix is guessed based on the contents of string;
the interpretation is the same as for integer literals. If radix is specified and
X is not a string, TypeError is raised. Otherwise, the argument may be a
plain or long integer or a floating point number. Conversion of floating
point numbers to integers truncates (towards zero). If the argument is
outside the integer range a long object will be returned instead. If no
arguments are given, returns 0.

isinstance(object, classinfo)
Return true if the object argument is an instance of the classinfo argument,
or of a (direct or indirect) subclass thereof. Also return true if classinfo is a
type object and object is an object of that type. If object is not a class
instance or an object of the given type, the function always returns false. If
classinfo is neither a class object nor a type object, it may be a tuple of class
or type objects, or may recursively contain other such tuples (other
sequence types are not accepted). If classinfo is not a class, type, or tuple of
classes, types, and such tuples, a TypeError exception is raised. Changed
in version 2.2: Support for a tuple of type information was added.

issubclass(class, classinfo)
Return true if class is a subclass (direct or indirect) of classinfo. A class is
considered a subclass of itself. classinfo may be a tuple of class objects, in
which case every entry in classinfo will be checked. In any other case, a
TypeError exception is raised. Changed in version 2.3: Support for a
tuple of type information was added.

iter(ol, sentinel])
Return an iterator object. The first argument is interpreted very differently
depending on the presence of the second argument. Without a second
argument, o must be a collection object which supports the iteration
protocol (the __iter__ () method), or it must support the sequence
protocol (the __getitem__ () method with integer arguments starting at
0). If it does not support either of those protocols, TypeError is raised. If
the second argument, sentinel, is given, then o must be a callable object.
The iterator created in this case will call o with no arguments for each call
to its next () method; if the value returned is equal to sentinel,
StopIteration will be raised, otherwise the value will be returned.
New in version 2.2.

len(s)
Return the length (the number of items) of an object. The argument may be
a sequence (string, tuple or list) or a mapping (dictionary).

1list([sequence])
Return a list whose items are the same and in the same order as sequence's

items. sequence may be either a sequence, a container that supports
iteration, or an iterator object. If sequence is already a list, a copy is made
and returned, similar to sequence]| :]. For instance, 11st('abc')
returns ['a', 'b', 'c']andlist((1, 2, 3)) returns [1,
2, 3].If no argument is given, returns a new empty list, [].

locals()

Update and return a dictionary representing the current local symbol table.
Warning: The contents of this dictionary should not be modified; changes
may not affect the values of local variables used by the interpreter.

long([x[, radix]])

Convert a string or number to a long integer. If the argument is a string, it
must contain a possibly signed number of arbitrary size, possibly embedded
in whitespace. The radix argument is interpreted in the same way as for
int(), and may only be given when x is a string. Otherwise, the argument
may be a plain or long integer or a floating point number, and a long integer
with the same value is returned. Conversion of floating point numbers to
integers truncates (towards zero). If no arguments are given, returns OL.

map(function, list, ...)
Apply function to every item of list and return a list of the results. If
additional list arguments are passed, function must take that many
arguments and is applied to the items of all lists in parallel; if a list is
shorter than another it is assumed to be extended with None items. If
function is None, the identity function is assumed; if there are multiple list
arguments, map () returns a list consisting of tuples containing the
corresponding items from all lists (a kind of transpose operation). The list
arguments may be any kind of sequence; the result is always a list.

max(s[, args...][key])
With a single argument s, return the largest item of a non-empty sequence
(such as a string, tuple or list). With more than one argument, return the
largest of the arguments.

The optional key argument specifies a one-argument ordering function like
that used for 1ist.sort (). The key argument, if supplied, must be in

keyword form (for example, "max(a, b, ¢, key=func)"). Changed in
version 2.5: Added support for the optional key argument.

min(s[, args...][key))
With a single argument s, return the smallest item of a non-empty sequence
(such as a string, tuple or list). With more than one argument, return the
smallest of the arguments.

The optional key argument specifies a one-argument ordering function like
that used for 1ist.sort (). The key argument, if supplied, must be in
keyword form (for example, "min(a, b, ¢, key=func)"). Changed in
version 2.5: Added support for the optional key argument.

object()
Return a new featureless object. object is a base for all new style classes.

It has the methods that are common to all instances of new style classes.
New in version 2.2.

Changed in version 2.3: This function does not accept any arguments.
Formerly, it accepted arguments but ignored them.

oct(x)
Convert an integer number (of any size) to an octal string. The result is a
valid Python expression. Changed in version 2.4: Formerly only returned an
unsigned literal.

open(filename[, model[, bufsize]])
Open a file, returning an object of the file type described in section 3.9,
“"File Objects". If the file cannot be opened, IOError is raised. When
opening a file, it's preferable to use open() instead of invoking the file
constructor directly.

The first two arguments are the same as for stdio's fopen(): filename is
the file name to be opened, and mode is a string indicating how the file is to
be opened.

The most commonly-used values of mode are 'r ' for reading, 'w' for
writing (truncating the file if it already exists), and 'a' for appending

(which on some Unix systems means that all writes append to the end of the
file regardless of the current seek position). If mode is omitted, it defaults to
'r '. When opening a binary file, you should append 'b"' to the mode
value to open the file in binary mode, which will improve portability.
(Appending 'b' is useful even on systems that don't treat binary and text
files differently, where it serves as documentation.) See below for more
possible values of mode.

The optional bufsize argument specifies the file's desired buffer size: 0

means unbuffered, 1 means line buffered, any other positive value means
use a buffer of (approximately) that size. A negative bufsize means to use
the system default, which is usually line buffered for tty devices and fully

buffered for other files. If omitted, the system default is used.%3

Modes 'r+', 'w+' and 'a+' open the file for updating (note that 'w+"
truncates the file). Append 'b"' to the mode to open the file in binary
mode, on systems that differentiate between binary and text files; on
systems that don't have this distinction, adding the 'b ' has no effect.

In addition to the standard fopen() values mode may be 'U' or 'rU".
Python is usually built with universal newline support; supplying 'U"
opens the file as a text file, but lines may be terminated by any of the
following: the Unix end-of-line convention '\n', the Macintosh
convention '\r ', or the Windows convention '\r\n"'. All of these
external representations are seen as ' \n' by the Python program. If Python
is built without universal newline support a mode with 'U"' is the same as
normal text mode. Note that file objects so opened also have an attribute
called newlines which has a value of None (if no newlines have yet
been seen), '\n', '\r', '\r\n', or a tuple containing all the newline
types seen.

Python enforces that the mode, after stripping 'U', begins with 'r', 'w'
or'a'.

Changed in version 2.5: Restriction on first letter of mode string introduced.

ord(c)
Given a string of length one, return an integer representing the Unicode

code point of the character when the argument is a unicode object, or the
value of the byte when the argument is an 8-bit string. For example,
ord('a') returns the integer 97, ord(u'\u2020"') returns 8224.
This is the inverse of chr () for 8-bit strings and of unichr () for
unicode objects. If a unicode argument is given and Python was built with
UCS2 Unicode, then the character's code point must be in the range
[0..65535] inclusive; otherwise the string length is two, and a TypeError
will be raised.

pow(x, y[, z])
Return x to the power y; if z is present, return x to the power y, modulo z
(computed more efficiently than pow(x, y) % z). The two-argument
form pow(x, y) is equivalent to using the power operator: x* *y.

The arguments must have numeric types. With mixed operand types, the
coercion rules for binary arithmetic operators apply. For int and long int
operands, the result has the same type as the operands (after coercion)
unless the second argument is negative; in that case, all arguments are
converted to float and a float result is delivered. For example, 10* *2
returns 100, but 10* * - 2 returns 0 . O1. (This last feature was added in
Python 2.2. In Python 2.1 and before, if both arguments were of integer
types and the second argument was negative, an exception was raised.) If
the second argument is negative, the third argument must be omitted. If z is
present, x and y must be of integer types, and y must be non-negative. (This
restriction was added in Python 2.2. In Python 2.1 and before, floating 3-
argument pow () returned platform-dependent results depending on
floating-point rounding accidents.)

property([fgetl, fset[, fdel[, doc]]]])

Return a property attribute for new-style classes (classes that derive from
object).

fget is a function for getting an attribute value, likewise fset is a function for
setting, and fdel a function for del'ing, an attribute. Typical use is to define a
managed attribute x:

class C(object):
def __init__ (self): self.__x = None
def getx(self): return self._x

def setx(self, value): self._x = value
def delx(self): del self._x
X = property(getx, setx, delx, "I'm the 'x' property.")

If given, doc will be the docstring of the property attribute. Otherwise, the
property will copy fget's docstring (if it exists). This makes it possible to
create read-only properties easily using property () as a decorator:

class Parrot(object):
def __init_ (self):
self._voltage = 100000

@property

def voltage(self):
"""Get the current voltage."""
return self._voltage

turns the voltage () method into a ““getter" for a read-only attribute with
the same name.

New in version 2.2. Changed in version 2.5: Use fget's docstring if no doc
given.

range([start,] stopl, step])

This is a versatile function to create lists containing arithmetic progressions.
It is most often used in for loops. The arguments must be plain integers. If
the step argument is omitted, it defaults to 1. If the start argument is
omitted, it defaults to ©. The full form returns a list of plain integers

[start, start + step, start + 2 * step, ...].If step is positive, the
last element is the largest start + i * step less than stop; if step is
negative, the last element is the smallest start + i * step greater than
stop. step must not be zero (or else ValueError is raised). Example:

>>> range(10)

(e, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(0, 30, 5)

[0, 5, 10, 15, 20, 25]

>>> range(0, 10, 3)

[0, 3, 6, 9]

>>> range(0, -10, -1)

[01 '11 '21 '31 '41 '51 '61 '71 '81 '9]
>>> range(0)

[]

>>> range(1, 0)

[]

raw_input([prompt])
If the prompt argument is present, it is written to standard output without a
trailing newline. The function then reads a line from input, converts it to a
string (stripping a trailing newline), and returns that. When EOF is read,
EOFError is raised. Example:

>>> s = raw_input('--> ")

--> Monty Python's Flying Circus
>>> S

"Monty Python's Flying Circus"

If the readline module was loaded, then raw_input () will use it to
provide elaborate line editing and history features.

reduce(function, sequencel, initializer])

Apply function of two arguments cumulatively to the items of sequence,
from left to right, so as to reduce the sequence to a single value. For
example, reduce(lambda x, y: x+y, [1, 2, 3, 4, 5])
calculates ((((1+2)+3)+4)+5). The left argument, x, is the
accumulated value and the right argument, y, is the update value from the
sequence. If the optional initializer is present, it is placed before the items
of the sequence in the calculation, and serves as a default when the
sequence is empty. If initializer is not given and sequence contains only one
item, the first item is returned.

reload(module)

Reload a previously imported module. The argument must be a module
object, so it must have been successfully imported before. This is useful if
you have edited the module source file using an external editor and want to
try out the new version without leaving the Python interpreter. The return
value is the module object (the same as the module argument).

When reload(module) is executed:

e Python modules' code is recompiled and the module-level code
reexecuted, defining a new set of objects which are bound to names in
the module's dictionary. The 1nit function of extension modules is

not called a second time.

e As with all other objects in Python the old objects are only reclaimed
after their reference counts drop to zero.

e The names in the module namespace are updated to point to any new
or changed objects.

e Other references to the old objects (such as names external to the
module) are not rebound to refer to the new objects and must be
updated in each namespace where they occur if that is desired.

There are a number of other caveats:

If a module is syntactically correct but its initialization fails, the first
import statement for it does not bind its name locally, but does store a
(partially initialized) module object in sys.modules. To reload the
module you must first impor t it again (this will bind the name to the
partially initialized module object) before you can reload() it.

When a module is reloaded, its dictionary (containing the module's global
variables) is retained. Redefinitions of names will override the old
definitions, so this is generally not a problem. If the new version of a
module does not define a name that was defined by the old version, the old
definition remains. This feature can be used to the module's advantage if it
maintains a global table or cache of objects -- with a try statement it can
test for the table's presence and skip its initialization if desired:

try:
cache

except NameError:
cache = {}

It is legal though generally not very useful to reload built-in or dynamically
loaded modules, except for sys, __main and__ _builtin .In
many cases, however, extension modules are not designed to be initialized
more than once, and may fail in arbitrary ways when reloaded.

If a module imports objects from another module using from ... import
..., calling reload() for the other module does not redefine the objects

imported from it -- one way around this is to re-execute the from
statement, another is to use import and qualified names (module.name)
instead.

If a module instantiates instances of a class, reloading the module that
defines the class does not affect the method definitions of the instances --
they continue to use the old class definition. The same is true for derived
classes.

repr(object)

Return a string containing a printable representation of an object. This is the
same value yielded by conversions (reverse quotes). It is sometimes useful
to be able to access this operation as an ordinary function. For many types,
this function makes an attempt to return a string that would yield an object
with the same value when passed to eval().

reversed(seq)

Return a reverse iterator. seq must be an object which supports the sequence
protocol (the _ len__ () method and the __getitem__ () method with
integer arguments starting at ©). New in version 2.4.

round(x[, n])

Return the floating point value x rounded to n digits after the decimal point.
If n is omitted, it defaults to zero. The result is a floating point number.
Values are rounded to the closest multiple of 10 to the power minus n; if
two multiples are equally close, rounding is done away from 0 (so. for
example, round(0.5) is1.0and round(-0.5) is -1.0).

set([iterable])

Return a set whose elements are taken from iterable. The elements must be
immutable. To represent sets of sets, the inner sets should be frozenset
objects. If iterable is not specified, returns a new empty set, set([]).
New in version 2.4.

setattr(object, name, value)

This is the counterpart of getattr (). The arguments are an object, a
string and an arbitrary value. The string may name an existing attribute or a

new attribute. The function assigns the value to the attribute, provided the
object allows it. For example, setattr(x, 'foobar', 123)is
equivalent to x. foobar = 123.

slice([start,] stopl, step])

Return a slice object representing the set of indices specified by
range(start, stop, step).The start and step arguments default to
None. Slice objects have read-only data attributes start, stop and
step which merely return the argument values (or their default). They
have no other explicit functionality; however they are used by Numerical
Python and other third party extensions. Slice objects are also generated
when extended indexing syntax is used. For example:
"a[start:stop:step]"or"a[start:stop, 1i]".

sorted(iterable[, cmpl, key[, reverse]]])
Return a new sorted list from the items in iterable.

The optional arguments cmp, key, and reverse have the same meaning as
those for the 1ist.sort () method (described in section 3.6.4).

cmp specifies a custom comparison function of two arguments (iterable
elements) which should return a negative, zero or positive number
depending on whether the first argument is considered smaller than, equal
to, or larger than the second argument: "cmp=lambda x,y: cmp(x.lower(),
y.lower())"

key specifies a function of one argument that is used to extract a comparison
key from each list element: "key=str.lower"

reverse is a boolean value. If set to True, then the list elements are sorted
as if each comparison were reversed.

In general, the key and reverse conversion processes are much faster than
specifying an equivalent cmp function. This is because cmp is called
multiple times for each list element while key and reverse touch each
element only once.

New in version 2.4.

staticmethod(function)
Return a static method for function.

A static method does not receive an implicit first argument. To declare a
static method, use this idiom:

class C:
@staticmethod
def f(argl, arg2, ...):

The @staticmethod form is a function decorator - see the description of
function definitions in chapter 7 of the Python Reference Manual for
details.

It can be called either on the class (such as C. f()) or on an instance (such
as C() .T()). The instance is ignored except for its class.

Static methods in Python are similar to those found in Java or C++. For a
more advanced concept, see classmethod() in this section.

For more information on static methods, consult the documentation on the
standard type hierarchy in chapter 3 of the Python Reference Manual (at the
bottom). New in version 2.2. Changed in version 2.4: Function decorator
syntax added.

str([object])
Return a string containing a nicely printable representation of an object. For
strings, this returns the string itself. The difference with repr (object) is
that str (object) does not always attempt to return a string that is
acceptable to eval(); its goal is to return a printable string. If no
argument is given, returns the empty string, ' '.

sum(sequencel, start])
Sums start and the items of a sequence, from left to right, and returns the
total. start defaults to 0. The sequence's items are normally numbers, and
are not allowed to be strings. The fast, correct way to concatenate sequence
of strings is by calling ' ' . join(sequence). Note that sum(range(n),
m) is equivalent to reduce(operator.add, range(n), m) New
in version 2.3.

super(type[, object-or-type])
Return the superclass of type. If the second argument is omitted the super
object returned is unbound. If the second argument is an object,
isinstance(obj, type) must be true. If the second argument is a type,
issubclass(type2, type) must be true. super () only works for
new-style classes.

A typical use for calling a cooperative superclass method is:

class C(B):
def meth(self, arg):
super(C, self).meth(arg)

Note that super is implemented as part of the binding process for explicit
dotted attribute lookups such as "super (C,
self).__getitem__(name)". Accordingly, super is undefined for
implicit lookups using statements or operators such as "super (C,
self)[name]". New in version 2.2.

tuple([sequence])
Return a tuple whose items are the same and in the same order as
sequence's items. sequence may be a sequence, a container that supports
iteration, or an iterator object. If sequence is already a tuple, it is returned
unchanged. For instance, tuple('abc') returns ('a', 'b', 'c')
and tuple([1, 2, 3]) returns (1, 2, 3).If noargument is given,
returns a new empty tuple, ().

type(object)
Return the type of an object. The return value is a type object. The
isinstance() built-in function is recommended for testing the type of
an object.

With three arguments, type functions as a constructor as detailed below.

type(name, bases, dict)
Return a new type object. This is essentially a dynamic form of the class
statement. The name string is the class name and becomes the __name___
attribute; the bases tuple itemizes the base classes and becomes the

__bases___ attribute; and the dict dictionary is the namespace containing
definitions for class body and becomes the __dict___ attribute. For
example, the following two statements create identical type objects:

>>> class X(object):
a=1

>>> X = type('X', (object,), dict(a=1))

New in version 2.2.

unichr(i)
Return the Unicode string of one character whose Unicode code is the
integer i. For example, unichr (97) returns the string u'a'. This is the
inverse of ord() for Unicode strings. The valid range for the argument
depends how Python was configured - it may be either UCS2 [0..0xFFFF]
or UCS4 [0..0x10FFFF]. ValueError is raised otherwise. New in version
2.0.

unicode([object|, encoding [, errors]]])

Return the Unicode string version of object using one of the following
modes:

If encoding and/or errors are given, unicode () will decode the object
which can either be an 8-bit string or a character buffer using the codec for
encoding. The encoding parameter is a string giving the name of an
encoding; if the encoding is not known, LOOKUPEYr ror is raised. Error
handling is done according to errors; this specifies the treatment of
characters which are invalid in the input encoding. If errorsis 'strict'
(the default), a ValueError is raised on errors, while a value of
"ignore' causes errors to be silently ignored, and a value of
'replace’' causes the official Unicode replacement character, U+FFFD,
to be used to replace input characters which cannot be decoded. See also the
codecs module.

If no optional parameters are given, unicode() will mimic the behaviour
of str () except that it returns Unicode strings instead of 8-bit strings.
More precisely, if object is a Unicode string or subclass it will return that
Unicode string without any additional decoding applied.

For objects which provide a___unicode__ () method, it will call this
method without arguments to create a Unicode string. For all other objects,
the 8-bit string version or representation is requested and then converted to
a Unicode string using the codec for the default encoding in 'strict'
mode.

New in version 2.0. Changed in version 2.2: Support for
__unicode__ () added.

vars([object])

Without arguments, return a dictionary corresponding to the current local
symbol table. With a module, class or class instance object as argument (or
anything else that hasa ___dict___ attribute), returns a dictionary
corresponding to the object's symbol table. The returned dictionary should
not be modified: the effects on the corresponding symbol table are
undefined.24

xrange([start,] stop[, step])

This function is very similar to range (), but returns an ““xrange object"
instead of a list. This is an opaque sequence type which yields the same
values as the corresponding list, without actually storing them all
simultaneously. The advantage of xrange() over range() is minimal
(since xrange () still has to create the values when asked for them)
except when a very large range is used on a memory-starved machine or
when all of the range's elements are never used (such as when the loop is
usually terminated with break).

Note: xrange() is intended to be simple and fast. Implementations may
impose restrictions to achieve this. The C implementation of Python
restricts all arguments to native C longs ("short" Python integers), and also
requires that the number of elements fit in a native C long.

zip([iterable, ...])

This function returns a list of tuples, where the i-th tuple contains the i-th
element from each of the argument sequences or iterables. The returned list
is truncated in length to the length of the shortest argument sequence. When
there are multiple arguments which are all of the same length, zip () is

similar to map (') with an initial argument of None. With a single sequence
argument, it returns a list of 1-tuples. With no arguments, it returns an
empty list. New in version 2.0.

Changed in version 2.4: Formerly, zip() required at least one argument
and zip() raised a TypeError instead of returning an empty list.

Foothotes

... module 22
It is used relatively rarely so does not warrant being made into a statement.

... used.23
Specifying a buffer size currently has no effect on systems that don't have
setvbuf (). The interface to specify the buffer size is not done using a
method that calls setvbuf (), because that may dump core when called
after any I/O has been performed, and there's no reliable way to determine
whether this is the case.

... undefined.24
In the current implementation, local variable bindings cannot normally be
affected this way, but variables retrieved from other scopes (such as
modules) can be. This may change.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2. Bulilt-in Objects up: 2. Bulilt-in Objects Next: 2.2 Non-essential
Built-in Functions

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 2.1 Built-in Functions up: 2. Built-in Objects Next: 2.3 Built-in
Exceptions

2.2 Non-essential Built-in Functions

There are several built-in functions that are no longer essential to learn, know or
use in modern Python programming. They have been kept here to maintain
backwards compatibility with programs written for older versions of Python.

Python programmers, trainers, students and bookwriters should feel free to
bypass these functions without concerns about missing something important.

apply(function, args[, keywords])
The function argument must be a callable object (a user-defined or built-in
function or method, or a class object) and the args argument must be a
sequence. The function is called with args as the argument list; the number
of arguments is the length of the tuple. If the optional keywords argument is
present, it must be a dictionary whose keys are strings. It specifies keyword
arguments to be added to the end of the argument list. Calling apply () is
different from just calling function(args), since in that case there is always
exactly one argument. The use of apply () is equivalent to
function(*args, **keywords). Use of apply() is not necessary since
the “extended call syntax," as used in the last example, is completely
equivalent.

Deprecated since release 2.3. Use the extended call syntax instead, as
described above.

buffer(object], offset], size]])

The object argument must be an object that supports the buffer call interface
(such as strings, arrays, and buffers). A new buffer object will be created
which references the object argument. The buffer object will be a slice from
the beginning of object (or from the specified offset). The slice will extend
to the end of object (or will have a length given by the size argument).

coerce(x,y)
Return a tuple consisting of the two numeric arguments converted to a
common type, using the same rules as used by arithmetic operations. If
coercion is not possible, raise TypeError.

intern(string)

Enter string in the table of "“interned" strings and return the interned string -
which is string itself or a copy. Interning strings is useful to gain a little
performance on dictionary lookup - if the keys in a dictionary are interned,
and the lookup key is interned, the key comparisons (after hashing) can be
done by a pointer compare instead of a string compare. Normally, the
names used in Python programs are automatically interned, and the
dictionaries used to hold module, class or instance attributes have interned
keys. Changed in version 2.3: Interned strings are not immortal (like they
used to be in Python 2.2 and before); you must keep a reference to the
return value of intern() around to benefit from it.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.1 Built-in Functions up: 2. Built-in Objects Next: 2.3 Built-in
Exceptions

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 2.2 Non-essential Built-in Functions up: 2. Built-in Objects Next: 2.4
Built-in Constants

2.3 Built-in Exceptions

Exceptions should be class objects. The exceptions are defined in the module
exceptions. This module never needs to be imported explicitly: the
exceptions are provided in the built-in namespace as well as the exceptions
module.

Note: In past versions of Python string exceptions were
supported. In Python 1.5 and newer versions, all standard
exceptions have been converted to class objects and users are
encouraged to do the same. String exceptions will raise a
DeprecationWarning in Python 2.5 and newer. In future
versions, support for string exceptions will be removed.

Two distinct string objects with the same value are considered
different exceptions. This is done to force programmers to use
exception names rather than their string value when specifying
exception handlers. The string value of all built-in exceptions is
their name, but this is not a requirement for user-defined
exceptions or exceptions defined by library modules.

For class exceptions, in a try statement with an except clause that mentions a
particular class, that clause also handles any exception classes derived from that
class (but not exception classes from which it is derived). Two exception classes
that are not related via subclassing are never equivalent, even if they have the
same name.

The built-in exceptions listed below can be generated by the interpreter or built-
in functions. Except where mentioned, they have an "“associated value"
indicating the detailed cause of the error. This may be a string or a tuple
containing several items of information (e.g., an error code and a string
explaining the code). The associated value is the second argument to the raise
statement. For string exceptions, the associated value itself will be stored in the
variable named as the second argument of the except clause (if any). For class

exceptions, that variable receives the exception instance. If the exception class is
derived from the standard root class BaseException, the associated value is
present as the exception instance's args attribute. If there is a single argument
(as is preferred), it is bound to the message attribute.

User code can raise built-in exceptions. This can be used to test an exception
handler or to report an error condition "just like" the situation in which the
interpreter raises the same exception; but beware that there is nothing to prevent
user code from raising an inappropriate error.

The built-in exception classes can be sub-classed to define new exceptions;
programmers are encouraged to at least derive new exceptions from the
Exception class and not BaseException. More information on defining
exceptions is available in the Python Tutorial under the heading " "User-defined
Exceptions."

The following exceptions are only used as base classes for other exceptions.

exception BaseException
The base class for all built-in exceptions. It is not meant to be directly
inherited by user-defined classes (for that use Exception).If str() or
unicode() is called on an instance of this class, the representation of the
argument(s) to the instance are returned or the emptry string when there
were no arguments. If only a single argument is passed in, it is stored in the
message attribute. If more than one argument is passed in, message is
set to the empty string. These semantics are meant to reflect the fact that
message is to store a text message explaining why the exception had been
raised. If more data needs to be attached to the exception, attach it through
arbitrary attributes on the instance. All arguments are also stored in args
as a tuple, but it will eventually be deprecated and thus its use is
discouraged. New in version 2.5.

exception Exception
All built-in, non-system-exiting exceptions are derived from this class. All
user-defined exceptions should also be derived from this class. Changed in
version 2.5: Changed to inherit from BaseException.

exception StandardError
The base class for all built-in exceptions except StopIteration,

GeneratorExit, KeyboardInterrupt and SystemExit.
StandardError itself is derived from Exception.

exception ArithmeticError
The base class for those built-in exceptions that are raised for various
arithmetic errors: OverflowError, ZerobivisionError,
FloatingPointError.

exception LookupError
The base class for the exceptions that are raised when a key or index used
on a mapping or sequence is invalid: IndexError, KeyError. This can
be raised directly by sys.setdefaultencoding().

exception EnvironmentError
The base class for exceptions that can occur outside the Python system:
IOError, OSError. When exceptions of this type are created with a 2-
tuple, the first item is available on the instance's errno attribute (it is
assumed to be an error number), and the second item is available on the
strerror attribute (it is usually the associated error message). The tuple
itself is also available on the args attribute. New in version 1.5.2.

When an EnvironmentError exception is instantiated with a 3-tuple,
the first two items are available as above, while the third item is available
on the filename attribute. However, for backwards compatibility, the
args attribute contains only a 2-tuple of the first two constructor
arguments.

The filename attribute is None when this exception is created with other
than 3 arguments. The errno and strerror attributes are also None
when the instance was created with other than 2 or 3 arguments. In this last
case, args contains the verbatim constructor arguments as a tuple.

The following exceptions are the exceptions that are actually raised.

exception AssertionError
Raised when an assert statement fails.

exception AttributeError
Raised when an attribute reference or assignment fails. (When an object

does not support attribute references or attribute assignments at all,
TypeError is raised.)

exception EOFError
Raised when one of the built-in functions (1nput () or raw_input())
hits an end-of-file condition (EOF) without reading any data. (N.B.: the
read() and readline() methods of file objects return an empty string
when they hit EOF.)

exception FloatingPointError
Raised when a floating point operation fails. This exception is always
defined, but can only be raised when Python is configured with the --with-
fpectl option, or the WANT_SIGFPE_HANDLER symbol is defined in the
pyconfig.h file.

exception GeneratorExit
Raise when a generator's close () method is called. It directly inherits
from Exception instead of StandardError since it is technically not
an error. New in version 2.5.

exception IOError
Raised when an I/O operation (such as a print statement, the built-in
open() function or a method of a file object) fails for an I/O-related
reason, e.g., file not found" or ""disk full".

This class is derived from EnvironmentError. See the discussion
above for more information on exception instance attributes.

exception ImportError
Raised when an import statement fails to find the module definition or
whena from ... import fails to find a name that is to be imported.

exception IndexError
Raised when a sequence subscript is out of range. (Slice indices are silently
truncated to fall in the allowed range; if an index is not a plain integer,
TypeError is raised.)

exception KeyError
Raised when a mapping (dictionary) key is not found in the set of existing

keys.

exception KeyboardInterrupt
Raised when the user hits the interrupt key (normally Control-c or
Delete). During execution, a check for interrupts is made regularly.
Interrupts typed when a built-in function input () or raw_input() is
waiting for input also raise this exception. The exception inherits from
BaseException so as to not be accidentally caught by code that catches
Exception and thus prevent the interpreter from exiting. Changed in
version 2.5: Changed to inherit from BaseException.

exception MemoryError
Raised when an operation runs out of memory but the situation may still be
rescued (by deleting some objects). The associated value is a string
indicating what kind of (internal) operation ran out of memory. Note that
because of the underlying memory management architecture (C's
malloc() function), the interpreter may not always be able to completely
recover from this situation; it nevertheless raises an exception so that a
stack traceback can be printed, in case a run-away program was the cause.

exception NameError
Raised when a local or global name is not found. This applies only to
unqualified names. The associated value is an error message that includes
the name that could not be found.

exception NotImplementedError
This exception is derived from RuntimeError. In user defined base
classes, abstract methods should raise this exception when they require
derived classes to override the method. New in version 1.5.2.

exception OSError
This class is derived from EnvironmentError and is used primarily as
the 0S module's 0S.error exception. See EnvironmentError above
for a description of the possible associated values. New in version 1.5.2.

exception OverflowError
Raised when the result of an arithmetic operation is too large to be
represented. This cannot occur for long integers (which would rather raise
MemoryError than give up). Because of the lack of standardization of

floating point exception handling in C, most floating point operations also
aren't checked. For plain integers, all operations that can overflow are
checked except left shift, where typical applications prefer to drop bits than
raise an exception.

exception ReferenceError
This exception is raised when a weak reference proxy, created by the
weakref.proxy() function, is used to access an attribute of the referent
after it has been garbage collected. For more information on weak
references, see the weakref module. New in version 2.2: Previously
known as the weakref.ReferenceError exception.

exception RuntimeError
Raised when an error is detected that doesn't fall in any of the other
categories. The associated value is a string indicating what precisely went
wrong. (This exception is mostly a relic from a previous version of the
interpreter; it is not used very much any more.)

exception StopIteration
Raised by an iterator's next () method to signal that there are no further
values. This is derived from Exception rather than StandardError,
since this is not considered an error in its normal application. New in
version 2.2.

exception SyntaxError
Raised when the parser encounters a syntax error. This may occur in an
import statement, in an €Xec statement, in a call to the built-in function
eval() or input(), or when reading the initial script or standard input
(also interactively).

Instances of this class have attributes filename, 1ineno, offset and
text for easier access to the details. Str () of the exception instance
returns only the message.

exception SystemError
Raised when the interpreter finds an internal error, but the situation does not
look so serious to cause it to abandon all hope. The associated value is a
string indicating what went wrong (in low-level terms).

You should report this to the author or maintainer of your Python
interpreter. Be sure to report the version of the Python interpreter
(sys.version; it is also printed at the start of an interactive Python
session), the exact error message (the exception's associated value) and if
possible the source of the program that triggered the error.

exception SystemExit
This exception is raised by the sys.exit () function. When it is not
handled, the Python interpreter exits; no stack traceback is printed. If the
associated value is a plain integer, it specifies the system exit status (passed
to C's exit () function); if it is None, the exit status is zero; if it has
another type (such as a string), the object's value is printed and the exit
status is one.

Instances have an attribute code which is set to the proposed exit status or
error message (defaulting to None). Also, this exception derives directly
from BaseException and not StandardError, since it is not
technically an error.

A call to sys.exit () is translated into an exception so that clean-up
handlers (finally clauses of try statements) can be executed, and so
that a debugger can execute a script without running the risk of losing
control. The 0s._exit () function can be used if it is absolutely
positively necessary to exit immediately (for example, in the child process
after a call to fork()).

The exception inherits from BaseException instead of
StandardError or Exception so that it is not accidentally caught by
code that catches Exception. This allows the exception to properly
propagate up and cause the interpreter to exit. Changed in version 2.5:
Changed to inherit from BaseException.

exception TypeError
Raised when an operation or function is applied to an object of
inappropriate type. The associated value is a string giving details about the
type mismatch.

exception UnboundLocalError
Raised when a reference is made to a local variable in a function or method,

but no value has been bound to that variable. This is a subclass of
NameError. New in version 2.0.

exception UnicodeError

Raised when a Unicode-related encoding or decoding error occurs. It is a
subclass of ValueError. New in version 2.0.

exception UnicodeEncodeError
Raised when a Unicode-related error occurs during encoding. It is a
subclass of UnicodeError. New in version 2.3.

exception UnicodeDecodeError
Raised when a Unicode-related error occurs during decoding. It is a
subclass of UnicodeError. New in version 2.3.

exception UnicodeTranslateError
Raised when a Unicode-related error occurs during translating. It is a
subclass of UnicodeError. New in version 2.3.

exception ValueError
Raised when a built-in operation or function receives an argument that has
the right type but an inappropriate value, and the situation is not described
by a more precise exception such as IndexError.

exception WindowsError
Raised when a Windows-specific error occurs or when the error number
does not correspond to an errno value. The winerror and strerror
values are created from the return values of the GetLastError () and
FormatMessage() functions from the Windows Platform API. The
errno value maps the winerror value to corresponding errno.h
values. This is a subclass of OSError. New in version 2.0. Changed in
version 2.5: Previous versions put the GetLastError () codes into
errno.

exception ZeroDivisionError
Raised when the second argument of a division or modulo operation is zero.
The associated value is a string indicating the type of the operands and the
operation.

The following exceptions are used as warning categories; see the warnings
module for more information.

exception Warning
Base class for warning categories.

exception UserWarning
Base class for warnings generated by user code.

exception DeprecationWarning
Base class for warnings about deprecated features.

exception PendingDeprecationWarning
Base class for warnings about features which will be deprecated in the
future.

exception SyntaxWarning
Base class for warnings about dubious syntax

exception RuntimeWarning
Base class for warnings about dubious runtime behavior.

exception FutureWarning
Base class for warnings about constructs that will change semantically in
the future.

exception ImportWarning
Base class for warnings about probable mistakes in module imports. New in
version 2.5.

exception UnicodeWarning
Base class for warnings related to Unicode. New in version 2.5.

The class hierarchy for built-in exceptions is:

BaseException
+-- SystemExit
+-- KeyboardInterrupt
+-- Exception
+-- GeneratorExit
+-- StopIteration

+-- StandardError
| +-- ArithmeticError
| | +-- FloatingPointError
| | +-- OverflowError
| | +-- ZeroDivisionError
| +-- AssertionError
| +-- AttributeError
| +-- EnvironmentError
| | +-- IOError
| | +-- OSError
| | +-- WindowsError (Windows)
| | +-- VMSError (VMS)
| +-- EOFError
| +-- ImportError
| +-- LookupError
| | +-- IndexError
| | +-- KeyError
| +-- MemoryError
| +-- NameError
| | +-- UnboundLocalError
| +-- ReferenceError
| +-- RuntimeError
| | +-- NotImplementedError
| +-- SyntaxError
| | +-- IndentationError
| | +-- TabError
| +-- SystemError
| +-- TypeError
| +-- ValueError
| | +-- UnicodeError
| | +-- UnicodeDecodeError
| | +-- UnicodeEncodeError
| | +-- UnicodeTranslateError
+-- Warning
+-- DeprecationWarning
+-- PendingDeprecationWarning
+-- RuntimeWarning
+-- SyntaxWarning
+-- UserWarning
+-- FutureWarning
+-- ImportWarning
+-- UnicodeWarning

Download as text (original file name: ../../Lib/test/exception_hierarchy.txt).

<« 'r = Python Library Reference toc m i

COMTENTS HODULES INDEX
Previous: 2.2 Non-essential Built-in Functions up: 2. Built-in Objects Next: 2.4
Built-in Constants

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 2.3 Built-in Exceptions up: 2. Built-in Objects Next: 3. Built-in Types

2.4 Built-in Constants

A small number of constants live in the built-in namespace. They are:

False
The false value of the bool type. New in version 2.3.

True
The true value of the bool type. New in version 2.3.

None
The sole value of types.NoneType. None is frequently used to
represent the absence of a value, as when default arguments are not passed
to a function.

NotImplemented
Special value which can be returned by the "rich comparison" special
methods (__eq__(),__1t__ (), and friends), to indicate that the
comparison is not implemented with respect to the other type.

Ellipsis
Special value used in conjunction with extended slicing syntax.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 2.3 Built-in Exceptions up: 2. Built-in Objects Next: 3. Built-in Types

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 2.4 Built-in Constants up: Python Library Reference Next: 3.1 Truth
Value Testing

3. Built-in Types

The following sections describe the standard types that are built into the
interpreter. Note: Historically (until release 2.2), Python's built-in types have
differed from user-defined types because it was not possible to use the built-in
types as the basis for object-oriented inheritance. This limitation does not exist
any longer.

The principal built-in types are numerics, sequences, mappings, files, classes,
instances and exceptions.

Some operations are supported by several object types; in particular, practically
all objects can be compared, tested for truth value, and converted to a string
(with the repr () function or the slightly different str () function). The latter
function is implicitly used when an object is written by the print statement.
(Information on the print statement and other language statements can be
found in the Python Reference Manual and the Python Tutorial.)

Subsections
e 3.1 Truth Value Testing
e 3.2 Boolean Operations -- and, or, not
e 3.3 Comparisons
e 3.4 Numeric Types -- int, float, 1ong, complex

o 3.4.1 Bit-string Operations on Integer Types

3.5 Iterator Types
3.6 Sequence Types -- str, unicode, 1ist, tuple, buffer, xrange

o 3.6.1 String Methods

o 3.6.2 String Formatting Operations

o 3.6.3 XRange Type
o 3.6.4 Mutable Sequence Types

3.7 Set Types -- set, frozenset
3.8 Mapping Types -- dict
3.9 File Objects

e 3.10 Context Manager Types

e 3.11 Other Built-in Types

3.11.1 Modules

3.11.2 Classes and Class Instances
3.11.3 Functions

3.11.4 Methods

3.11.5 Code Objects

o
o
(o]
(o]
o 3.11.6 Type Objects
(o]
(o]
(o]
(o]

(¢]

3.11.7 The Null Object

3.11.8 The Ellipsis Object
3.11.9 Boolean Values

3.11.10 Internal Objects
e 3.12 Special Attributes

COMTENTS HODULES INDEX
Previous: 2.4 Built-in Constants up: Python Library Reference Next: 3.1 Truth
Value Testing

<« 'r = Python Library Reference toc m i

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3. Built-in Types Up: 3. Built-in Types Next: 3.2 Boolean Operations

3.1 Truth Value Testing

Any object can be tested for truth value, for use in an 1f or while condition or
as operand of the Boolean operations below. The following values are
considered false:

e None

e False

e zero of any numeric type, for example, 0, OL, 0.0, 0].
e any empty sequence, for example, ' ', (), [].

e any empty mapping, for example, {}.

e instances of user-defined classes, if the class defines a __nonzero__ ()
or __len__ () method, when that method returns the integer zero or

bool value False.2d
All other values are considered true -- so objects of many types are always true.

Operations and built-in functions that have a Boolean result always return © or
False for false and 1 or True for true, unless otherwise stated. (Important
exception: the Boolean operations "or" and "and" always return one of their
operands.)

Footnhotes

...False 31
Additional information on these special methods may be found in the
Python Reference Manual.

«1T-> Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 3. Built-in Types Up: 3. Built-in Types Next: 3.2 Boolean Operations

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3.1 Truth Value Testing up: 3. Built-in Types Next: 3.3 Comparisons

3.2 Boolean Operations -- and, or,
hot

These are the Boolean operations, ordered by ascending priority:

| Operation | Result Notes
x or y |if xis false, then y, else x (1)
x and y |if xis false, then x, else y (1)
not x |if xis false, then True, else False | (2)

Notes:

1)

These only evaluate their second argument if needed for their outcome.

(2)

"not" has a lower priority than non-Boolean operators, so NnOt a == bis
interpreted as not (a == b),anda == not b is a syntax error.
«1T-> Python Library Reference toc m 1

Previous: 3.1 Truth Value Testing up: 3. Built-in Types Next: 3.3 Comparisons

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3.2 Boolean Operations up: 3. Bulilt-in Types Next: 3.4 Numeric
Types

3.3 Comparisons

Comparison operations are supported by all objects. They all have the same
priority (which is higher than that of the Boolean operations). Comparisons can
be chained arbitrarily; for example, x < y <= zisequivalenttox < y and

y <= gz, except that y is evaluated only once (but in both cases z is not evaluated
at all when x < y is found to be false).

This table summarizes the comparison operations:

Operation | Meaning Notes
< strictly less than
<= less than or equal
> strictly greater than
>= greater than or equal
== equal
= not equal (1)
<> not equal (1)
is object identity
1s not | negated object identity

Notes:

1)
<> and ! = are alternate spellings for the same operator. ! = is the preferred
spelling; <> is obsolescent.

Objects of different types, except different numeric types and different string
types, never compare equal; such objects are ordered consistently but arbitrarily
(so that sorting a heterogeneous array yields a consistent result). Furthermore,
some types (for example, file objects) support only a degenerate notion of
comparison where any two objects of that type are unequal. Again, such objects
are ordered arbitrarily but consistently. The <, <=, > and >= operators will raise
a TypeError exception when any operand is a complex number.

Instances of a class normally compare as non-equal unless the class defines the
__cmp___() method. Refer to the Python Reference Manual for information on
the use of this method to effect object comparisons.

Implementation note: Objects of different types except numbers are ordered by
their type names; objects of the same types that don't support proper comparison
are ordered by their address.

Two more operations with the same syntactic priority, "in" and "not in", are
supported only by sequence types (below).

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 3.2 Boolean Operations up: 3. Built-in Types Next: 3.4 Numeric
Types

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3.3 Comparisons up: 3. Built-in Types Next: 3.4.1 Bit-string
Operations on

3.4 Numeric Types -- int, float,
long, complex

There are four distinct numeric types: plain integers, long integers, floating
point numbers, and complex numbers. In addition, Booleans are a subtype of
plain integers. Plain integers (also just called integers) are implemented using
long in C, which gives them at least 32 bits of precision (Sys.maxint is
always set to the maximum plain integer value for the current platform, the
minimum value is -sys.maxint - 1). Long integers have unlimited
precision. Floating point numbers are implemented using double in C. All bets
on their precision are off unless you happen to know the machine you are
working with.

Complex numbers have a real and imaginary part, which are each implemented
using double in C. To extract these parts from a complex number z, use
z.realandz.imag.

Numbers are created by numeric literals or as the result of built-in functions and
operators. Unadorned integer literals (including hex and octal numbers) yield
plain integers unless the value they denote is too large to be represented as a
plain integer, in which case they yield a long integer. Integer literals with an "L"
or "1" suffix yield long integers ("L" is preferred because "11" looks too much
like eleven!). Numeric literals containing a decimal point or an exponent sign
yield floating point numbers. Appending "j" or "J" to a numeric literal yields a
complex number with a zero real part. A complex numeric literal is the sum of a
real and an imaginary part.

Python fully supports mixed arithmetic: when a binary arithmetic operator has
operands of different numeric types, the operand with the ““narrower" type is
widened to that of the other, where plain integer is narrower than long integer is
narrower than floating point is narrower than complex. Comparisons between
numbers of mixed type use the same rule.22 The constructors int (), long(),
float (), and complex() can be used to produce numbers of a specific type.

All numeric types (except complex) support the following operations, sorted by

ascending priority (operations in the same box have the same priority; all
numeric operations have a higher priority than comparison operations):

| Operation | Result Notes
x +y sum of x and y
X -y difference of x and y
x ¥y product of x and y
x/y quotient of x and y (1)
x //y (floored) quotient of x and y (5)
X%y remainder of x / y (4)
-X x negated
+x x unchanged
abs(x) absolute value or magnitude of x
int(x) x converted to integer (2)
long(x) x converted to long integer (2)
float(x) x converted to floating point
complex(re,im) | a complex number with real part re, imaginary
part im. im defaults to zero.
c.conjugate() | conjugate of the complex number ¢
divmod(x, y) |thepair(x // y, x % y) (3)(4)
pow(x, y) x to the power y
x **y x to the power y
Notes:
(1)

For (plain or long) integer division, the result is an integer. The result is
always rounded towards minus infinity: 1/2 is 0, (-1)/2 is -1, 1/(-2) is -1,
and (-1)/(-2) is 0. Note that the result is a long integer if either operand is a
long integer, regardless of the numeric value.

2)
Conversion from floating point to (long or plain) integer may round or
truncate as in C; see functions f1loor () and ceil() in the math module

for well-defined conversions.

(3)

See section 2.1, “"Built-in Functions," for a full description.

4
Complex floor division operator, modulo operator, and divmod().
Deprecated since release 2.3. Instead convert to float using abs () if
appropriate.

(5)
Also referred to as integer division. The resultant value is a whole integer,
though the result's type is not necessarily int.

Footnotes

... rule 22
As a consequence, the list [1, 2] is considered equalto [1.0, 2.0],
and similarly for tuples.

Subsections

e 3.4.1 Bit-string Operations on Integer Types

<« 'r = Python Library Reference toc m i

COMTENTS MODULES IMDEX
Previous: 3.3 Comparisons up: 3. Built-in Types Next: 3.4.1 Bit-string
Operations on

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3.4 Numeric Types up: 3.4 Numeric Types Next: 3.5 Iterator Types

3.4.1 Bit-string Operations on Integer Types

Plain and long integer types support additional operations that make sense only
for bit-strings. Negative numbers are treated as their 2's complement value (for
long integers, this assumes a sufficiently large number of bits that no overflow
occurs during the operation).

The priorities of the binary bit-wise operations are all lower than the numeric
operations and higher than the comparisons; the unary operation "~" has the
same priority as the other unary numeric operations ("+" and "-").

This table lists the bit-string operations sorted in ascending priority (operations
in the same box have the same priority):

| Operation | Result Notes
x | y |bitwise or of x and y
x Ny bitwise exclusive or of x and y
x &y bitwise and of x and y

x << n | xshifted left by n bits (D), (2)
x >> n | xshifted right by n bits (D), (3)
~X the bits of x inverted
Notes:
1)
Negative shift counts are illegal and cause a ValueError to be raised.
(2)

A left shift by n bits is equivalent to multiplication by pow (2, n) without
overflow check.

3)
A right shift by n bits is equivalent to division by pow (2, n) without
overflow check.

« T = Python Library Reference toc m I

CONTENTS MODULES INDEX

Previous: 3.4 Numeric Types up: 3.4 Numeric Types Next: 3.5 lterator Types

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3.4.1 Bit-string Operations on up: 3. Built-in Types Next: 3.6
Sequence Types

3.5 Iterator Types

New in version 2.2.

Python supports a concept of iteration over containers. This is implemented
using two distinct methods; these are used to allow user-defined classes to
support iteration. Sequences, described below in more detail, always support the
iteration methods.

One method needs to be defined for container objects to provide iteration
support:

__dter_ ()
Return an iterator object. The object is required to support the iterator
protocol described below. If a container supports different types of iteration,
additional methods can be provided to specifically request iterators for
those iteration types. (An example of an object supporting multiple forms of
iteration would be a tree structure which supports both breadth-first and
depth-first traversal.) This method corresponds to the tp_iter slot of the
type structure for Python objects in the Python/C API.

The iterator objects themselves are required to support the following two
methods, which together form the iterator protocol:

_Ater__()
Return the iterator object itself. This is required to allow both containers
and iterators to be used with the for and in statements. This method
corresponds to the tp_1iter slot of the type structure for Python objects in
the Python/C API.

next()
Return the next item from the container. If there are no further items, raise
the StopIteration exception. This method corresponds to the
tp_iternext slot of the type structure for Python objects in the
Python/C APL.

Python defines several iterator objects to support iteration over general and

specific sequence types, dictionaries, and other more specialized forms. The
specific types are not important beyond their implementation of the iterator

protocol.

The intention of the protocol is that once an iterator's next () method raises
StopIteration, it will continue to do so on subsequent calls.
Implementations that do not obey this property are deemed broken. (This
constraint was added in Python 2.3; in Python 2.2, various iterators are broken
according to this rule.)

Python's generators provide a convenient way to implement the iterator protocol.
If a container object's __iter__ () method is implemented as a generator, it
will automatically return an iterator object (technically, a generator object)
supplying the __iter__ () and next () methods.

<« 'r = Python Library Reference toc m i

CONTENTS MODULES INDEX

Previous: 3.4.1 Bit-string Operations on up: 3. Bulilt-in Types Next: 3.6
Sequence Types

Release 2.5, documentation updated on 19th September, 2006.
See About this document... for information on suggesting changes.

Previous: 3.5 Iterator Types up: 3. Built-in Types Next: 3.6.1 String Methods

3.6 Sequence Types -- str, unicode,
list, tuple, buffer, xrange

There are six sequence types: strings, Unicode strings, lists, tuples, buffers, and
xrange objects.

String literals are written in single or double quotes: 'xyzzy', "frobozz".
See chapter 2 of the Python Reference Manual for more about string literals.
Unicode strings are much like strings, but are specified in the syntax using a
preceding "u" character: u'abc', u"def". Lists are constructed with square
brackets, separating items with commas: [a, b, c]. Tuples are constructed
by the comma operator (not within square brackets), with or without enclosing
parentheses, but an empty tuple must have the enclosing parentheses, such as a,
b, cor (). Asingle item tuple must have a trailing comma, such as (d,).

Buffer objects are not directly supported by Python syntax, but can be created by
calling the builtin function buffer (). They don't support concatenation or
repetition.

Xrange objects are similar to buffers in that there is no specific syntax to create
them, but they are created using the xrange (') function. They don't support
slicing, concatenation or repetition, and using 1n, not in, min() or max()
on them is inefficient.

Most sequence types support the following operations. The "in" and "not in"
operations have the same priorities as the comparison operations. The "+" and
"*!" operations have the same priority as the corres