
PyScripter	-	a	Python	IDE 	Top	Next

PyScripter	originally	started	as	a	lightweight	IDE	designed	to	to	serve	the
purpose	of	providing	a	strong	scripting	solution	for	Delphi	applications,
complementing	the	excellent	Python	for	Delphi	(P4D)	components.		However,
and	with	the	encouragement	of	the	P4D	creator	Morgan	Martinez	and	a	few
early	users,	it	has	now	evolved	into	a	full-featured	stand-alone	Python	IDE.		It	is
built	in	Delphi	using	P4D	and	the	SynEdit	component	but	is	extensible	using
Python	scripts.		Currently,	it	is	only	available	for	Microsoft	Windows	operating
systems	and		features	a	modern	user-interface.	Being	built	in	a	compiled
language	is	rather	snappier	than	some	of	the	other	IDEs	 		and	provides	an
extensive	blend	of	features	that	make	it	a	productive	Python	development
environment.

Why	yet	another	Python	IDE?

There	are	many	Python	Integrated	Development	Environments	around.		And
quite	a	few	good	ones,	for	example	Spyder,		SPE	and	Eric3,	not	to	mention
IDLE	which	is	included	in	the	standard	Python	distribution.		So	it	is	reasonable
to	ask	why	bother	to	develop	yet	another	Python	IDE.		The	short	answer	is	for
the	fun	of	it!		The	long	answer	relates	to	the	ambition	to	create	a	Python	IDE	that
is	competitive	with	commercial	Windows-based	IDEs	available	for	other
languages.

Main	Features
History
Known	Issues
Future
Credits
License
Support	and	Updates

https://github.com/pyscripter/python4delphi
https://www.embarcadero.com/products/delphi
https://github.com/SynEdit/SynEdit
http://www.python.org
https://pythonhosted.org/spyder/
https://sourceforge.net/projects/spe/
https://eric-ide.python-projects.org/

Main	Features Previous	Top	Next

Main	Features:
																											

				Syntax	Highlighting	Editor
				Unicode	based
				Full	support	for	encoded	Python	source	files
				Code	folding
				Brace	highlighting
				Python	source	code	utilities	((un)tabify,	(un)comment,	(un)indent,
etc.)
				Code	completion	and	call	tips
				Code	and	debugger	hints
				Syntax	checking	as	you	type
				Context	sensitive	help	on	Python	keywords
				Parameterized	Code	Templates
				Accept	files	dropped	from	Explorer
				File	change	notification
				Converting	line	breaks	(Windows,	Unix,	Mac)
				Print	preview	and	print	syntax	highlighted	Python	code
				Syntax	highlighting	of	HTML,	XML	and	CSS	files
				Split	view	file	editing
				Firefox-like	search	and	replace
				Side-by-side	file	editing
				Code	Completion
				Call	Tips
				Work	with	remote	files

				Integrated	Python	Interpreter
				Integrated	Python	Debugging

				Remote	Python	Debugger
				Thread	debugging
				Call	Stack

https://pyscripter.blogspot.gr/2018/03/thread-debugging.html

				Variables	Window
				Watches	Window
				Conditional	breakpoints
				Debugger	hints
				Post-mortem	analysis
				Can	run	or	debug	files	without	first	saving	them
				Run/debug	scipts	remotely	on	Windows	and	Linux	servers

				Editor	Views
				Disassembly
				HTML	Documentation	(pydoc)

				Code	Explorer
				File	Explorer

				Easy	configuration	and	browsing	of	the	Python	Path
				Integrated	Version	Control	using		Tortoise	GIT,	Tortoise	SVN	or
Tortoise	CVS

				Project	Explorer
				Import	existing	paths
				Multiple	run	configurations

				Integrated	Unit	testing
				Automatic	generation	of	tests
				Unit	testing	GUI

				Access	to	Python	manuals	through	the	Help	menu
				To	Do	List
				Find	and	Replace	in	Files
				Integrated	regular	expression	testing
				Choice	of	Python	version	to	run	via	command	line	parameters
				Run	Python	Script	externally	(highly	configurable)
				External	Tools	(External	run	and	capture	output)

				Integration	with	Python	tools	such	as	PyLint,	TabNanny,	Profile
etc.
				Powerful	parameter	functionality	for	customized	external	tool
integration

https://tortoisegit.org/
http://tortoisesvn.tigris.org/
http://tortoisesvn.tigris.org/
http://www.tortoisecvs.org/

				Find	Definition/Find	references
				Find	definition	by	clicking	and	browsing	history
				Modern	GUI	with	docked	forms	and	configurable	look&feel	(themes)
				Persistent	configurable	IDE	options

		

History Previous	Top	Next

Version	3.6	(January	12,	2019)

New	features:
Much	faster	Remote	Engine	using	asynchronous	Windows	named
pipes	if	pywin32	is	available.
IDE	option	to	force	the	use	of	sockets	for	connection	to	the	Python
server	now	defaults	to	False
Enhancements	to	the	SSH	Engine-	now	compatible	with	PuTTY
Execute	system	commands	in	the	interpreter	with	!	-	supports
parameter	substitution
Clickable	status	panels	with	Python	version	and	engine	type
Text	drag	&	drop	between	PyScripter	and	other	applications	(#554)
Triple-click	selects	line	and	Quadraple-click	selects	all
Double-click	drag	selects	whole	words	-	triple-click	drag	selects	whole
lines
Consistent	syntax	color	themes	accross	supported	languages	(#855)
New	IDE	option	"Trim	trailing	spaces	when	saving	files"	(#667)
New	IDE	Option	'Step	into	open	files	only'.	Defaults	to	False.	(#510)
Localization	of	the	installer

Issues	addressed:
#624,	#743,	#857,	#904,	#922,	#927,	#928,	#929,	#936

Version	3.5	(November	15,	2018)

New	features:
Work	with	remote	files	from	Windows	and	Linux	machines	as	if	they
were	local
Run/debug	scipts	remotely	on	Windows	and	Linux	servers
Python	3	type	hints	used	in	code	completion
Connection	to	python	server	with	Windows	named	pipes.	Avoids
firewall	issues.	Requires	the	installation	of	pywin32	(pip	install
pywin32).
IDE	option	to	force	the	use	of	sockets	for	connection	to	the	python

server.	(default	True)
New	Editor	commands	Copy	Line	Up/Down	(Shift+Alt+Up/Down)
and	Move	Line	Up/Down	(Alt	+	Up/Down)	as	in	Visual	Studio
PyScripter	icons	given	a	facelift	by	Salim	Saddaquzzaman
Upgraded	rpyc	to	4.x.	As	a	result	Python	2.5	is	no	longer	supported.

Issues	addressed:
#501,	#682,	#907

Version	3.4.2	(September	9,	2018)

New	features:
New	Edit	Command	Read	Only	(#883)
Files	opened	by	PyScripter	from	the	Python	directory	during
debugging	are	read	only	by	default	to	prevent	accidental	changes.
Close	All	to	the	Right	Editor	command	added	(#866)
New	editor	parameter	[$-CurLineNumber]	(#864)
New	IDE	Option	"File	Explorer	background	processing'.	Set	to	false	if
you	get	File	Explorer	errors.
Console	output	including	multiprocessing	is	now	shown	in	interpreter
#891

Issues	addressed:
#645,	#672,	#722,	#762,	#793,	#800,	#869,	#879,	#889,	#890,	#893,
#896,	#898,	#899,	#906

Version	3.4	(May	5,	2018)

New	features:
Switch	Python	Engines	without	exiting	PyScripter
Faster	loading	times
Initial	support	for	running	Jupyter	notebooks	inside	PyScripter
Syntax	highlighting	for	JSON	files
New	IDE	option	"Style	Main	Window	Border"
Find	in	Files	and	ToDo	folders	can	include	parameters	(#828)

Issues	addressed:
#627,	#852,	#858,	#862,	#868,	#872

Version	3.3	(March	14,	2018)

New	features:
Thread	debugging	(#455)
	Form	Layout	and	placement	stored	in	PyScripter.local.ini

Issues	addressed:
#659,	#827,	#848,	#849

Version	3.2	(January	14,	2018)

New	features:
Dpi	awareness	(Issue	769)

Issues	addressed:
#705,	#711,	#717,	#748

Version	3.1	(December	31,	2017)

New	features:
Code	folding
Indentation	lines
New	IDE	option	"Compact	line	numbers"
pip	tool	added
Internal	Interpreter	is	hidden	by	default
KabyleTranslation	added

Issues	addressed:
#16,	#571,	#685,	#690,	#718,	#721,	#765,	#814,	#836

Version	3.0	(October	17,	2017)

New	features:
Python	3.5,	3.6	and	3.7	support
New	Style	Engine	(VCL	Styles)	with	high	quality	choices
Visual	Style	Preview	and	selection	(View,	Select	Style)
Visual	Source	highlighter	theme	selection	(Editor	Options,	Select
theme)
German	Translation	added

Version	2.6	(March	20,	2015)

New	features:
Python	3.4	support	added

Version	2.5	(March	19,	2012)

New	features:
This	is	the	first	joint	32-bit	and	64-bit	version	release
Python	3.3	support	added
Recent	Projects	menu	item	added
Expandable	lists	and	tuples	in	the	Variables	window	(#583)
Expandable	watches	as	in	the	Variables	window	(#523)
Basic	support	for	Cython	files	added	(#542)
New	interpreter	action	Paste	&	Execute	(#500)	Replaces	Paste	with
Prompt
New	PyIDE	option	"Display	package	names	in	editor	tabs"	default
True	(#115)
New	search	option	"Auto	Case	Sensitive"	(case	insensitive	when
search	text	is	lower	case)
The	Abort	command	raises	a	KeyboardInterrupt	at	the	Remote	Engine
(#618)
Incremental	search	in	the	Project	Explorer	matches	any	part	of	a

filename	(#623)
New	IDE	option	"File	line	limit	for	syntax	check	as	you	type"	default
1000

Issues	addressed:
#516,	#348,	#549,	#563,	#564,	#568,	#576,	#587,	#591,	#592,	#594,
#597,	#598,	#599,	#612,	#613,	#615

Version	2.4.3	(September	20,	2011)

New	features:
100%	portable	by	placing	PyScripter.ini	in	the	PyScripter	exe	directory
Ctrl+Mousewheel	for	zooming	the	interpreter	(#475)
Show	docstrings	during	completion	list	(#274)
New	IDE	Option	"File	Change	Notification"	introduced	with	possible
values	Full,	NoMappedDrives(default),	Disabled	(#470)
Background	color	for	Matching	and	Unbalanced	braces	(#472)
New	IDE	option	"Case	Sensitive	Code	Completion"	(default	True)
New	IDE	option	"Complete	Python	keywords"	(default	True)
New	IDE	option	"Complete	as	you	type"	(default	True,	#473)
New	IDE	option	"Complete	with	word-break	chars"	(default	True)
New	IDE	option	"Auto-complete	with	one	entry"	(default	True,	#452)

Issues	addressed:
Command	line	history	not	saved
Editing	a	watch	to	an	empty	string	crashes	PyScripter
Replace	in	Find-in-Files	now	supports	subexpression	substitution
(#332)
Import	statement	completion	does	not	include	builtin	module	names
#461,	#463,	#468,	#471,	#474,	#478,	#488,	#496,	#504,	#508,	#509,
#511,	#512,	#515,	#525,	#526,	#527,	#528,	#532,	#559,	#560

Version	2.4.1	(December	12,	2010)

New	features:

Side-by-side	file	editing	(#214)
Enhanced	regular	expression	window	(findall	-	#161)
Open	file	at	a	specific	line:column	(#447)

Issues	addressed:
Reduced	flicker	when	resizing	form	and	panels
#415,	#437,	#449

Version	2.3.4	(November	25,	2010)

New	features:
Compatibility	with	Python	3.1.3rc,	3.2a4
Add	watches	by	dragging	and	dropping	text
Ctrl	+	Mouse	scroll	scrolls	whole	pages	in	print	preview
Search	for	custom	skins	first	in	the	Skins	subdirectory	of	the	Exe	file	if
it	exists

Issues	addressed:
#430,	#434,	#435,	#439,	#440,	#441,	#443,	#446

Version	2.3.3	(October	16,	2010)

New	features:
Native	unicode	strings	throughtout	(speed	improvements	on	XP)
Revamped	Code	Explorer	(#192,	#163,	#213,	#225)
Improvements	to	Code	completion

Auto-completion	for	the	import	statement	in	python	2.5	and	later
(#230)
Processing	of	function	return	statements
Background	module	parsing	and	caching	of	parsed	modules

Start-up	python	scripts	pyscripter_init.py	and	python_init.py.	See	help
file	for	details.
Imporved	"Match	Brace"	(#426)	and	New	Editor	Command	"Select	to
brace"
Italian	translation	by	Vincenzo	Demasi	added

Russian	translation	by	Aleksander	Dragunkin	added
New	IDE	option	"Highlight	selected	word"	(#404)
New	IDE	option	"Use	Python	colors	in	IDE"
New	Edit	command	"Copy	File	Name"	available	at	the	contex	menu	of
the	tab	bar
New	commands	"Previous	Frame",	"Next	Frame"	to	change	frame
using	the	keyboard	(#399)
JavaScript	and	PHP	Syntax	Highlighters	added

Issues	addressed:
#103,	#239,	#267,	#270,	#271,	#294,	#317,	#324,	#343,	#378,	#395,
#403,	#405,	#407,	#411,	#412,	#413,	#419,	#421,	#422,	#425,	#432

	

Version	2.1.1	(August	20,	2010)

New	features:
Support	for	Python	3.2
New	IDE	Option	added	"Jump	to	error	on	Exception"	(#130)
New	IDE	Option	added	"File	template	for	new	python	scirpts"	(#385)
New	IDE	Option	added	"Auto	completion	font"	(#365)
French	translation	by	Groupe	AmiensPython	added

Bug	fixes:
#297,	#307,	#346,	#354,	#358,	#371,	#375,	#376,	#382,	#384,	#387,
#389

Version	2.0	(July	30,	2010)

New	features:
Support	for	Python	2.7
Moved	to	Rpyc	v3.07,	now	bundled	with	PyScripter
IDE	Option	"Reinitialize	before	run"	was	added	defaulting	to	True
The	default	Python	engine	is	now	the	remote	engine
Spanish	translation	by	Javier	Pim	s	(incomplete)	was	added

Bug	fixes:

#236,	#304,	#322,	#333,	#334

Version	1.9.9.7	(May	20,	2009)

New	features:
Updated	theme	engine	with	customizable	themes
Python	3.1	support

Bug	fixes:
#269,	#273,	#278,	#291,	#292

Version	1.9.9.6	(Feb	16,	2009)

New	features:
Remote	interpreter	and	Debugger
Python	2.6	and	3.0	support
Project	Explorer	supporting	multiple	run	configurations	with	advanced
options
New	debugger	command:	Pause
Execute	selection	command	added	(Ctrl-F7)
Interpreter	command	history	improvements:

Delete	duplicates
Filter	history	by	typing	the	first	few	command	characters
Up|Down	keys	at	the	prompt	recall	commands	from	history

Code	Explorer	shows	imported	names	for	(from	...	import)	syntax	(12)
Improved	sort	order	in	code	completion
Save	modified	files	dialog	on	exit
Finer	control	on	whether	the	UTF-8	BOM	is	written

Three	file	encodings	supported	(Ansi,	UTF-8,	UTF-8	without
BOM)

IDE	option	to	detect	UTF-8	encoding	(useful	for	non-Python	files)
IDE	options	for	default	linebreaks	and	encoding	for	new	files
Warning	when	file	encoding	results	in	information	loss
IDE	option	to	position	the	editor	tabs	at	the	top

IDE	Windows	navigation	shortcuts
Pretty	print	intperpreter	output	option	(on	by	default)
Pyscripter	is	now	Vista	ready
Docking	window	improvements
PYTHONDLLPATH	command	line	option	so	that	Pyscripter	can	work
with	unregistered	Python
Watches	Window:	DblClick	on	empty	space	adds	a	watch,	pressing
Delete	deletes	(45)
Wrapping	in	Search	&	Replace	(38)
New	IDE	Option	"Save	Environment	Before	Run"	(50)
New	IDE	command	Restore	Editor	pair	to	Maximize	Editor	(both
work	by	double	clicking	the	Tabbar)
New	IDE	Option	"Smart	Next	Previous	Tab"	(z-Order)	on	by	default
(20)
Word	Wrap	option	exposed	in	Editor	Options
New	File	Reload	command
Import/Export	Settings	(Shortcuts,	Highlighter	schemes)
New	IDE	option	"Auto-reload	changed	files"	on	by	default	(25)
New	menu	command	to	show/hide	the	menu	bar.	The	shortcut	is	Shift-
F10	(63)
New	command	line	option	--DPIAWARE	(-D)	to	avoid	scaling	in
VISTA	high	DPI	displays	(77)
New	command	line	option	--NEWINSTANCE	(-N)	to	start	a	new
instance	of	PyScripter
You	can	disable	a	breakpoint	by	Ctrl+Clicking	in	the	gutter
Syntax	Errors	are	indicated	by	icon	in	the	tabbar	(93)
Command	to	jump	to	the	first	syntax	error	(Shift+Ctrl+E)
New	Firefox-like	search/replace	interface
Incremental	Search	(100)
New	command	"Highlight	search	text"	(Shft+Ctrl+H)
New	command	line	option	--DEBUG	(-B)	to	use	debug	version	of
Python	dll	(108)
New	command	"Word	wrap"	visible	in	the	Editor	toolbar	(112)
New	command	"Go	to	Debugger	Position"	(118)
The	size	of	the	auto	completion	list	is	now	persisted
Split	Editor	View	(31)
New	parameter	$CmdLineArgs	that	returns	the	active	command	line

arguments	and	can	be	used	with	external	tools
New	IDE	options	"Editor	code	completion"	and	"Interpreter	code
completion"	which	can	be	used	to	disable	code	completion
New	IDE	option	"Show	Tab	Close	Button"
New	debugger	command	"Post	mortem"	(26)
New	IDE	option	"Post	mortem	on	exception"
Auto-resizing	the	fields	of	list	views	by	double	clicking	on	column
separators
Advanced	search	and	replace	external	tool	added	(uses	re.sub)
Enhanced	Execute	Selection	command	(73)
Two	new	IDE	options	added	(Dock	Animation	Interval	and	Dock
Animation	Move	Width	-	134)
Toolbar	customization
Two	new	IDE	options	added	("Interpreter	History	Size"	and	"Save
Command	History")	(#131)
Cut	and	copy	without	selection	now	cut	and	copy	the	current	line	(as
in	Visual	Studio,	#64)
Removed	the	Interpeter	options	"Clean	up	Namespace"	and	"Clean	up
sys.modules"
Improved	HTML,	XML	highlighting	with	code	completion	and	Web
preview
C/C++	highlighting	added
Two	new	interpreter	commands	added:	Copy	without	prompts,	and
Paste	with	prompts	(#183)
Localization	using	gettext	(Japanese,	Chinese	and	Greek	translations
added)
YAML	highlighter	added

Bug	fixes
Shell	Integration	-	Error	when	opening	multiple	files
Configure	External	Run	-	ParseTraceback	not	saved	properly
Order	of	tabs	not	preserved	in	minimised	docked	forms
sys.argv	contained	unicode	strings	instead	of	ansi	strings
Bug	fixes	and	improvements	in	Editor	Options	Keystrokes	tab	(#6)
Better	error	handling	of	File	Open	and	File	Save
Page	Setup	Header	and	Footer	not	saved	(#7)
Hidden	Tabbed	windows	reappearing	when	restarting
Duplicate	two-key	editor	command	not	detected

"Clean	up	namespace"	and	"Clean	up	sys	modules"	settings	become
effective	after	restarting	PyScripter
Exception	when	setting	the	Active	Line	Color	in	Editor	Options	dialog
Raw_input	does	not	accept	unicode	strings
Error	in	docstring	extraction	(#11)
Fixed	some	problems	with	the	toggle	comment	command
Fixed	rare	bug	in	restoring	layout
Code	tips	wrong	if	comments	are	present	among	parameters	(#15)
Notification	of	file	changes	can	miss	files	(#17)
Certain	syntax	coloring	options	were	not	saved
ToDo	List	did	not	support	encoded	files	and	unicode
ToDo	List	did	not	support	multiline	comments	(#14)
Fixed	bug	in	IDE	Shortcuts	dialog
Swapped	the	positions	of	the	indent/dedent	buttons	(#23)
Syntax	highlighter	changes	to	the	interpreter	are	not	persisted
Multiple	target	assignments	are	now	parsed	correctly
Gutter	gradient	setting	not	saved
Disabling	a	breakpoint	had	no	effect
Tab	order	not	preserved	when	restarting	PyScripter
Disassembly	and	Documentation	views	not	working	with	remote
engines
More	robust	"Reinitialize"	of	remote	Python	engines	(Issues	143,	145)
Shift-Tab	does	not	work	well	with	the	Trim	Trailing	Spaces	editor
option
#28,	#32,	#39,	#40,	#41,	#46,	#47,	#48,	#49,	#52,	#55,	#56,	#57,	#65,
#66,	#67,	#70,	#71,	#72,	#74,	#75,	#76,	#81,	#82,	#83,	#86,	#88,	#90,
#91,	#92,	#94,	#96,	#98,	#99,	#100,	#102,	#105,	#106,	#107,	#109,
#113,	#117,	#119,	#120,	#120,	#122,	#123,	#125,	#132,	#134,	#135,
#136,	#137,	#138,	#139,	#140,	#141,	#146,	#147,	#150,	#153,	#155,
#160,	#164,	#165,	#166,	#167,	#168,	#169,	#171,	#174,	#178,	#182,
#186,	#193,	#195,	#196,	#197,	#198,	#201,	#202,	#204,	#206,	#208,
#212,	#219,	#226,	#228,	#229,	#234,	#235,	#237,	#253,	#261

Version	1.7.2	(Oct	26,	2006)

New	features:
Store	toolbar	positions
Improved	bracket	completion	now	also	works	with	strings	(#4)

Bug	fixes:
Bracket	highlighting	with	non	default	background
Opening	wrongly	encoded	UTF8	files	results	in	empty	module
File	Format	(Line	End)	choice	not	respected
Initial	empty	module	was	not	syntax	highlighted
Save	As	dialog	had	no	default	extension	set
Unit	Testing	broken	(regression)
Gap	in	the	default	tool	bar	(#3)

Version	1.7.1	(Oct	15,	2006)

New	features:
Repeat	scrolling	of	editor	tabs
Massively	improved	start	up	time
Faster	Python	source	file	scanning

Bug	fixes:
Infinite	loop	with	cyclical	Python	imports

Version	1.7	(Oct	14,	2006)

New	features:
Unicode	based	editor	and	interactive	interpreter
Full	support	for	Python	source	file	encodings
Support	for	Python	version	2.5	and	Current	User	installations
Check	syntax	as	you	type	and	syntax	hints	(IDE	option)
Tab	indents	and	Shift-Tab	unindents	(Editor	Options	-	Tab	Indents)
Editor	Zoom	in/out	with	keyboard	Alt+-	and	Ctrl+mouse	wheel
Improved	Debugger	hints	and	completion	in	the	interpreter
work	with	expressions	e.g.	sys.path1.
for	debugger	expression	hints	place	the	cursor	on	')'	or	']'

Improved	activation	of	code/debugger	hints
IDE	options	to	Clean	up	Interpreter	namespace	and	sys.modules	after
run
File	Open	can	open	multiple	files
Syntax	highlighting	scheme	selection	from	the	menu
File	filters	for	HTML,	XML	and	CSS	files	can	be	customized
Option	to	disable	gutter	Gradient	(Editor	Options	-	Gutter	Gradient)
Option	to	disable	theming	of	text	selection	(Editor	Options	-	theme
selection)
Option	to	hide	the	executable	line	marks
Active	Line	Color	Editor	option	added.	Set	to	None	to	use	default
background
Files	submenu	in	Tabs	popup	for	easy	open	file	selection
Add	Watch	at	Cursor	added	to	the	Run	menu	and	the	Waches	Window
popup	menu
Pop	up	menu	added	to	the	External	Process	indicator	to	allow	easy
termination	of	such	processes
If	the	Ini	file	exists	in	PyScripter	directory	it	is	used	in	preference	to
the	User	Directory	in	order	to	allow	USB	storage	installations
Editor	options	for	each	open	file	are	persisted
Auto	close	brackets	in	the	editor
Improved	speed	of	painting	the	Interpreter	window
Interactive	Interpreter	Pop	up	menu	with	separately	persisted	Editor
Options
Toggle	comment	(Ctrl+^)	in	addition	to	comment/uncomment
File	Explorer	improvements	(Favourites,	Create	New	Folder)
File	Templates
Windows	Explorer	file	association	(installation	and	IDE	option)
Command	line	history
Color	coding	of	new	and	changed	variables	in	the	Variables	Window

Bug	fixes:
Gutter	glyphs	painted	when	gutter	is	invisible
Sticky	bracket	highlighting	in	the	interpreter	window
Selecting	lines	by	dragging	mouse	in	the	gutter	sets	breakpoint
Speed	improvements	and	bugfixes	related	to	layouts
Error	in	Variable	Windows	when	showing	dictionaries	with	non	string
keys

File	notification	error	for	Novel	network	disks
Wrong	line	number	in	External	Run	traceback	message
No	horizontal	scroll	in	output	window
Code	completion	Error	with	packages	containing	module	with	the
same	name
Problem	with	sys.stdin.readline()	and	partial	line	output	(stdout)
statements
Infinite	loop	when	root	of	package	is	the	top	directory	of	a	drive

Version	1.5.1	(Mar	14,	2006)

New	features:
Unit	test	integration	(Automatic	generation	of	tests,	and	testing	GUI)
Added	highlighting	of	HTML,	XML	and	CSS	files
Command	line	parameters	for	scripts	run	internally	or	debugged
IDE	shortcut	customization
Conditional	breakpoints
Persistence	of	breakpoints,	watches,	bookmarks	and	file	positions
Save	and	restore	IDE	windows	layouts
Generate	stack	information	when	untrapped	exceptions	occur	and	give
users	the	option	to	mail	the	generated	report
Running	scripts	does	not	polute	the	namespace	of	PyScripter
Names	in	variables	window	are	now	sorted
Allow	only	a	single	Instance	of	Pyscripter	and	open	command	line
files	of	additional	invocations	at	new	tabs
Interpreter	window	is	now	searchable
Added	option	to	File	Explorer	to	browse	the	directory	of	the	Active
script
New	distinctive	application	icon	thanks	to	Frank	Mersmann	and	and
Tobias	Hartwich
File	Explorer	autorefreshes
Improved	bracket	highlighting
User	customization	(PyScripter.ini)	is	now	stored	in	the	user's
Application	Data	direcrory	to	support	network	installations(breaking
change).	To	restore	old	settings	copy	the	ini	file	to	the	new	location.

Bug	fixes:
Resolved	problems	with	dropping	files	from	File	Explorer
Restore	open	files	options	not	taken	into	account
Resolved	problems	with	long	Environment	variables	in	Tools
Configure
Resolved	problems	with	help	files
Reduced	problems	with	running	wxPython	scripts
Changing	the	Python	Open	dialog	filter	did	not	affect	syntax
highlighting
CodeExplorer	slow	when	InitiallyExpanded	is	set
Help	related	issues
Other	fixes

Version	1.3	(Dec	18,	2005)

New	features:
Code	completion	in	the	editor	(Press	Ctrl+Space	while	or	before
typing	a	name)
Parameter	completion	in	the	editor	(Press	Shift+Ctrl+Space)
Find	definition	and	find	references	independent	of	BicycleRepairMan
much	faster	and	arguably	better
Find	definition	by	clicking	works	for	imported	modules	and	names
A	new	feature-rich	Python	code	parser	was	developed	for
implementing	the	above
Improved	the	Variable	Window	(shows	interpreter	globals	when	not
debugging	and	Doc	strings)
Improved	code	and	parameter	completion	in	the	interactive	interpreter
Integrated	regular	expression	tester
Code	and	debugger	hints
Set	the	current	directory	to	the	path	of	the	running	script
Added	IDE	option	MaskFUPExceptions	for	resolving	problems	in
importing	Scipy
Tested	with	FastMM4	for	memory	leaks	etc.	and	fixed	a	couple	of
related	bugs
Bug	fixes	and	other	improvements

Version	1.2	(Aug	28,	2005)

New	features:
Extended	code	editor:

Context	sensitive	help	on	Python	keywords
Parameterized	Code	Templates	(Ctrl-J)
Accept	files	dropped	from	Explorer
File	change	notification
Detecting	loading/saving	UTF-8	encoded	files
Converting	line	breaks	(Windows,	Unix,	Mac)

Editor	Views
Disassembly
HTML	Documentation	(pydoc)
To	Do	List
Find	and	Replace	in	Files
Parameterized	Code	Templates
Choice	of	Python	version	to	run	via	command	line	parameters
Run	Python	Script	externally	(highly	configurable)
External	Tools	(External	run	and	capture	output)
Integration	with	Python	tools	such	as	PyLint,	TabNanny,	Profile
etc.
Powerful	parameter	functionality	for	external	tool	integration
Find	Procedure
Find	Definition/Find	references	using	BicycleRepairMan
Find	definition	by	clicking	and	browsing	history
Modern	GUI	with	docked	forms	and	configurable	look&feel
(themes)

	

Version	1.0	(Apr	13,	2005)

Initial	release

Known	Issues Previous	Top	Next

Importing	and	using	numerical	modules
If	you	have	troubles	in	importing	and	using	numerical	modules	such	as	NumPy
and	Scipy	make	sure	that	Mask	FPU	exceptions	IDE	option	is	checked.	
Alternatively	you	may	execute	the	following	code	at	the	interactive	interpreter	or
from	your	scripts:
import	DebugIDE
DebugIDE.maskFPUexceptions()

(The	DebugIDE	is	a	Python	extension	module	internal	to	PyScripter)

Running	wxPython	scripts
Use	the	remote	Python	engine	for	running	and	debugging	such	scripts.		If	you
use	the	internal	python	engine	PyScripter	may	become	unstable.

You	can	always	run	such	scripts	externally	using	the	Run,	External	Run	menu
command.		It	that	case	you	should	configure	the	External	Run	so	that	the	"Hide
Console"	option	is	unchecked	(see	Running	Scripts	for	details).	

Debugging	scripts	which	use	Psyco
PyScripter	like	other	Python	IDE’s	has	problems	debugging	scripts	which	import
Pscyco.		Pscyco	works	by	replacing	standard	Python	functions	from	the	sys
module	(e.g.	settrace)	which	are	essential	for	debugging.		Even	if	you	run	a
Pscyco	script	without	debugging	it	still	messes	up	the	internal	interpreter	for
good	and	you	will	no	longer	be	able	to	debug	other	scripts	(you	have	to	restart
PyScripter).		You	can	run	such	scripts	externally	or	else	you	need	to	comment
out	Psyco	related	stuff.	

Future Previous	Top	Next

Here	is	a	list	of	the	features	planned	for	the	not-too-distant	future:
					Python	plugin	architecture
					UML	graphs	generation
					wxPython	form	designer

You	are	welcome	to	provide	feedback	regarding	the	planned	features.

Credits Previous	Top	Next

PyScripter	was	developed	using	Delphi.
Special	thanks	to	the	many	great	developers	who,	with	their	amazing	work,	have
made	PyScripter	possible.		PyScripter	makes	use	of	the	following	components
and	projects:

				Python	for	Delphi	(https://github.com/pyscripter/python4delphi)
				JVCL	(jvcl.sf.net)
				SynEdit	(synedit.sf.net)
				SynWeb	highlighters	(github.com/KrystianBigaj/synweb)
				VirtualTreeView	(github.com/Virtual-TreeView/Virtual-TreeView)
				VirtualShellTools	(github.com/pyscripter/mustangpeakvirtualshelltools)
				GExperts	(www.gexperts.org)
				Syn	Editor	(sourceforge.net/projects/syn)
				Toolbar2000	(www.jrsoftware.org/tb2k.php)
				SpTBXLib	(www.silverpointdevelopment.com/sptbxlib/)
				CommadLineReader	(www.benibela.de)
				Silk	icons	(www.famfamfam.com)

Translations
				Translation	manager:	Lübbe	Onken
					Chinese	translation	by	"Love	China"
					French	translation	by	Groupe	AmiensPython
					Italian	translation	by	Vincenzo	Demasi
					Japanese	translation	by	Tokibito
					Russian	translation	by	Aleksander	Dragunkin
					Slovak	translation	by	Marian	Denes
					Spanish	translation	by	Javier	Pimás
					Kabyle	translation	by	Muḥend	Belqasem

Theme	design
				Tanmaya	Meher	(www.github.com/tanmayameher)
					jprzywoski	(www.github.com/jprzywoski)

https://www.embarcadero.com/products/delphi
https://github.com/pyscripter/python4delphi
http://jvcl.sf.net
http:\\synedit.sf.net
https://github.com/KrystianBigaj/synweb
https://github.com/Virtual-TreeView/Virtual-TreeView
https://github.com/pyscripter/mustangpeakvirtualshelltools
http://www.gexperts.org
https://sourceforge.net/projects/syn
http://www.jrsoftware.org/tb2k.php
http://www.silverpointdevelopment.com/sptbxlib//
http://www.benibela.de/
http://www.famfamfam.com
http://pedagogie.ac-amiens.fr/maths/AmiensPython/
http://www.github.com/tanmayameher
http://www.github.com/jprzywoski

Thanks	are	due	to	Frank	Mersmann	and	and	Tobias	Hartwich	for	designing	the
program	icon	and	logo.

License Previous	Top	Next

PyScripter	is	Open	Source	Software	published	under	the	MIT	license	and	can	be
used	for	any	purpose	including	commercial	development.
Copyright	(c)	2005-2018	Kiriakos	Vlahos

Permission	is	hereby	granted,	free	of	charge,	to	any	person	obtaining	a	copy	of
this	software	and	associated	documentation	files	(the	"Software"),	to	deal	in	the
Software	without	restriction,	including	without	limitation	the	rights	to	use,	copy,
modify,	merge,	publish,	distribute,	sublicense,	and/or	sell	copies	of	the	Software,
and	to	permit	persons	to	whom	the	Software	is	furnished	to	do	so,	subject	to	the
following	conditions:	

A)		The	above	copyright	notice	and	this	permission	notice	shall	be	included	in
all	copies	or	substantial	portions	of	the	Software.	
B)	Warranties
PYSCRIPTER	(THE	SOFTWARE)	IS	PROVIDED	"AS	IS",	WITHOUT
WARRANTY	OF	ANY	KIND,	EXPRESS	OR	IMPLIED,	INCLUDING	BUT
NOT	LIMITED	TO	THE	WARRANTIES	OF	MERCHANTABILITY,	FITNESS
FOR	A	PARTICULAR	PURPOSE	AND	NONINFRINGEMENT.	IN	NO
EVENT	SHALL	THE	AUTHORS	OR	COPYRIGHT	HOLDERS	BE	LIABLE
FOR	ANY	CLAIM,	DAMAGES	OR	OTHER	LIABILITY,	WHETHER	IN	AN
ACTION	OF	CONTRACT,	TORT	OR	OTHERWISE,	ARISING	FROM,	OUT
OF	OR	IN	CONNECTION	WITH	THE	SOFTWARE	OR	THE	USE	OR
OTHER	DEALINGS	IN	THE	SOFTWARE.

C)	Source	Code
Everyone	is	allowed	to	use	and	change	this	code	free	for	his/her	own	tasks		and
projects,	as	long	as	this	header	and	its	copyright	text	is	intact.		For	changed
versions	of	this	code,	which	are	publicly	distributed	the		following	additional
conditions	have	to	be	fulfilled:
1.			The	header	has	to	contain	a	comment	on	the	change	and	the	author	of	it.
2.			A	copy	of	the	changed	source	has	to	be	sent	to	the	email

pyscripter@gmail.com	or	to	the	then	valid	address	of	the	author(s).

The	second	condition	has	aims	at	maintaining	an	up	to	date	central		version	of

https://en.wikipedia.org/wiki/MIT_License

the	software.	If	this	condition	is	not	acceptable	for	confidential	or	legal	reasons,
everyone	is	free	to	derive	components	or	to	generate	a	diff	file	to	our	or	other
original	sources.
The	Pyscripter	project	contains	code	from	other	open	source	projects	(see
credits).		These	parts	of	the	code	are	covered	by	the	licenses	of	the	respective
projects.

Support	and	Updates Previous	Top	Next

Please	submit	bug	reports	and	enhancement	requests	using	the	Issue	Tracker	at
the	Github	PyScripter	project	page.		A	discussion	and	support	forum	is	available
at	http://groups.google.com/group/pyscripter.

Updates	are	availabe	through	Souceforge	(PyScripter	downloads).
You	may	also	get	support	and	help	by	emailing	pyscripter@gmail.com.

https://github.com/pyscripter/pyscripter
http://groups.google.com/group/pyscripter
https://sourceforge.net/projects/pyscripter/files
mailto://pyscripter@gmail.com

The	Main	IDE	Window Previous	Top	Next

The	IDE	main	window	shown	below,	consists	of	the	main	editing	area	organized
in	a	tabbed	form	and	a	number	of	different	windows	which	can	be	docked	on	the
sides	of	main	IDE	window	or	can	be	free-floating.		The	toolbars	at	the	top
provide	access	to	commonly	used	functions.		They	can	also	be	repositioned	to
the	sides	or	the	bottom	of	the	IDE	window	or	they	can	be	free-floating.
Tips:	
					You	can	rearrange	the	editor	files	by	dragging	and	dropping	the	editor	tabs.
					You	can	maximize	the	editor	by	double-clicking	in	the	editor	tab	and	then
you	can	restore	it	in	the	same	way.

					You	can	dock/undock	a	given	window	by	double	clicking	on	its	window	title
area.

		

Window	Docking Previous	Top	Next

The	docking	features	of	PyScripter	resemble	those	found	Visual	Studio	2003	and
later.			In	the	picture	below	you	see	three	different	forms	of	docking.		At	the
bottom	multiple	forms	are	docked	in	tabbed	form.		At	the	right-hand	side	a
single	form	(Code	Explorer)	is	docked,	while	on	the	right-hand	side	the	File
Explorer	has	been	"unpinned"	and	hidden	in	order	to	occupy	minimal	space.	
					You	can	undock	forms	by	double	clicking	either	on	the	window	header	bar
or	on	the	tab	of	a	form.

					You	can	dock	forms	on	the	sides	of	the	main	window	or	inside	one-another
by	dragging	and	dropping.

					You	can	unpin	forms	and	minimize	the	space	they	occupy	by	clicking	on	the
click	button	of	the	window	header	bar.

					You	can	hide	forms	by	clicking	on	the	close	button	of	the	window	header
bar.

					You	can	rearrange	tab-docked	forms	by	dragging	and	dropping	the	tabs

IDE	Styles Previous	Top	Next

The	look-and-feel	of	the	IDE	can	be	customized	in	different	ways.		The	color
scheme	in	particular	can	be	changed	to	one	of	many	provided	styles.	
You	can	change	the	active	style	by	using	the	"View,	Select	Style"	command.	
Your	choice	is	then	saved	and	used	in	future	activations	of	PyScripter.

Keyboard	shortcuts Previous	Top	Next

The	table	below	provides	an	overview	of	menu	commands	and	associated
keyboard	shortcuts.		Further	shortcuts	are	available	in	the	editor	(see	Editor
shortcuts).		You	can	customize	most	IDE	shortcuts	using	the	Customize	IDE
shortcuts	dialog.
		

Command Shortcut Description
File	Management
Close Ctrl+F4 Close	active	Document
Close	All	Files Shift+Ctrl+F4 Close	All	opened

Documents
Exit Alt+F4 Exit	this	program
New Ctrl+N Create	new	file
Open.. Ctrl+O Open	existing	file
Save Ctrl+S Save	active	file
Save	all 	 Save	all	opened	files
Save	As... 	 Save	active	file	under	a

different	name
Page	Setup... 	 Setup	page
Print	Preview 	 Preview	active	file
Print... Ctrl+P Print	active	Document
Edit	Commands
Comment	out Ctrl+Alt+. Comment	out	a	block	of

code
Copy Ctrl+C Copy	selection	to

Clipboard
Cut Ctrl+X Cuts	selection
Dedent	block Shift+Ctrl+U Decrease	the	indentation

of	a	block	of	code
Delete 	 Delete	selection
Dos/Windows 	 Convert	linebreaks	to

Windows	format
Indent	block Shift+Ctrl+I Increase	the	indentation	of

a	block	of	code
Insert
parameter

Shift+Ctrl+P Insert	a	parameter

Insert	modifier Shift+Ctrl+M Insert	a	parameter
modifier

Insert	template Ctrl+J Insert	a	code	template
Code
completion

Ctrl+Space Start	code	completion

Call	tips Shft+Ctrl+Space Show	a	call	tip
Mac 	 Convert	linebreaks	to	Mac

format
Paste Ctrl+V Paste	Clipboard	contents
Replace
parameters

Shft+Ctrl+R Replace	parameters	with
their	values

Redo Shift+Ctrl+Z Reverse	the	action	of
"Undo"

Select	All Ctrl+A Select	all	text	in	the	editor
Tabify 	 Convert	spaces	to	tabs
Toggle
comment

Ctrl	+	^ (Un)comment	a	block	of
code	(toggle)

Uncomment Ctrl+Alt+, Reverse	the	action	of
"Comment	out"

Undo Ctrl+Z Undo	last	action
Unix 	 Convert	linebreaks	to

Unix	format
UnTabify 	 Convert	tabs	to	spaces
UTF-8 	 Toggle	the	UTF-8	file

format
Search	Commands
Find... Ctrl+F Display	the	search	dialog
Find
Definition

	 Find	the	definition	of	the
identifier	under	the	caret

Find
Function...

Ctrl+G Display	the	Find	Function
Dialog

Find	In	Files... Shift+Ctrl+F Display	the	Find-In-Files
dialog

Find	Next F3 Repeat	last	search,
searching	forward

Find	Next
Identifier

Shift+Ctrl+Down Find	the	next	reference	of
the	identifier	containing
the	caret

Find	Previous Shift+F3 Repeat	last	search,

searching	backwards
Find	Previous
Identifier

Shift+Ctrl+Up Find	the	previous
reference	of	the	identifier
containing	the	caret

Find
References

	 Find	references	of	the
identifier	under	the	caret

Go	To	Line.. Alt-G Go	to	a	specific	line	of	the
code

Go	To	Syntax
Error

Shift+Ctrl+E Jump	to	the	first	syntax
error

Matching
Brace

	 	

Replace... Ctrl+H Display	the	"Replace
Text"	dialog

Highlight
Search	Text

Shift+Ctrl+H Highlight	all	occurrences
of	the	search	text

Run	Commands
Abort
Debugging

Ctrl+Alt+F9 Abort	debugging	session

Clear	All
Breakpoints

	 Clear	all	breakpoints	in
open	files

Configure
External	Run

	 Configure	the	"External
Run"	command

Debug F9 Debug	the	active	file
Debug	Last
Script

Shift+F9 Debug	last	script

External	Run Alt+F9 Run	active	file	in	an
external	Python
interpreter

Run	Last
Script
Externally

Shift+Alt+F9 Run	last	script	in	an
external	Python
interpreter

Import	Module 	 Import	the	active	file	in
the	embedded	Python
interpreter

Run Ctrl+F9 Run	active	file	without
debugging

Run	Last
Script

Shift+Ctrl+F9 Run	last	scirpt

Run	to	Cursor F4 Run	using	the	debugger

up	to	the	cursor	position

Step	Into F7 Starts	or	resumes
debugging	by	stepping
into	the	next	line	of	code

Step	Over F8 Resumes	debugging	by
stepping	over	the	next	line
of	code

Step	Out Shift+F8 Resumes	debugging	by
stepping	out	the	current
execution	frame

Syntax	Check 	 Perform	a	syntax	check	of
the	active	file

Toggle
Breakpoint

F5 Toggles	the	breakpoint	at
the	cursor	position

Reinitialize
Python

Ctrl+F2 Reinitialize	the	remote
Python	engine

Tools	Commands
Code
Templates...

	 Configure	Code
Templates

Configure
Tools...

	 Configure	External	Tools

Custom
Parameters...

	 Configure	Parameters

Documentation 	 Show	the	HTML
documentation	for	the
active	file

Disassembly 	 Show	the	disassembly	of
the	active	Python	file

Editor
Options...

	 Configure	Editor	Options

IDE	Options... 	 Configure	IDE	Options
Python	Path... 	 Configure	the	Python	path
View	Commands
Next	Editor Ctrl+TAB Show	the	next	editor
Previous
Editor

Shift+Ctrl+TAB Show	the	previous	editor

Maximize
editor

Alt+Z Maximize	editor	window

Restore	editor Shift+Alt+Z Restore	maximized	editor

window
Main	Menu Shift+F10 Show/Hide	main	menu
Navigation	Commands
Editor F12 Activate	the	editor
Interpreter Alt+Ctrl+I Activate	the	Interpreter
Code	Explorer Alt+Ctrl+C Activate	the	Code

Explorer	window
File	Explorer Alt+Ctrl+X Activate	the	File	Explorer
Unit	Tests Alt+Ctrl+U Activate	the	Unit	Tests

window
Command
Output

Alt+Ctrl+O Activate	the	Command
Output	window

Regular
Expressions

Alt+Ctrl+R Show/hide	the	Regular
Expressions	window

Todo	List Alt+Ctrl+T Activate	the	Todo	list
window

Breakpoints Alt+Ctrl+B Activate	the	Breakpoints
window

Call	Stack Alt+Ctrl+S Activate	the	Call	Stack
window

Messages Alt+Ctrl+M Activate	the	Call	Stack
window

Variables Alt+Ctrl+V Activate	the	Variables
window

Watches Alt+Ctrl+W Activate	the	Watches
window

Help	Commands
About... 	 Shows	the	"About"	dialog
Contents 	 Shows	the	help	file	table

of	contents
Editor
Shortcuts

	 Shows	editor	shortcuts

External	Tools 	 Shows	help	information
about	external	tools

Parameters 	 Shows	help	information
about	parameters

Python
Manuals

	 Shows	Python	help	file

		

IDE	Window	Layouts Previous	Top	Next

You	can	save	a	layout	of	the	IDE	windows	under	a	name	of	your	choice	so	that
you	can	later	restore	this	layout.		What	is	saved	is	the	visibility,	docking	position
and	size	of	each	IDE	window	and	the	size	and	position	of	the	main	window.	
This	is	done	via	the	Layouts	submenu	of	the	View	menu	and	the	corresponding
View	toobar	button.		For	example	you	make	create	different	layouts	for	editing
scripts,	debugging	and	Unit	Testing.	
The	Debug	layout

If	a	layout	named	'Debug'	is	available	when	you	start	debugging,	then	this	layout
is	loaded.	When	debugging	terminates	the	layout	active	before	starting
debugging	is	restored.		You	can	save	the	current	layout	under	the	name	'Debug	'
by	using	the	"Set	Debug	Layout"	command	of	the	View|Layouts	menu.

Note:
Switching	layouts	at	the	start	of	debugging	introduces	a	delay	which	you	may
want	to	prevent.		To	avoid	the	switching	of	IDE	Window	layouts	when
debugging,	just	delete	the	layout	named	'Debug'.

The	File	Menu Previous	Top	Next

Commands:

New
Create	a	new	Python	script/module.			If	the	IDE	option	"File	template	for	new
python	scripts"	points	to	an	existing	File	Template	that	template	is	used	.

Open
Open	an	existing	Python	script/module.		Multiple	files	can	be	opened	from	the
File	Open	dialog.

Recent	Files
Submenu	with	recently	used	files

Open	Remote	File
Open	a	remote	file	using	the	remote	file	dialog.

Save	to	Remote	File
Save	a	local	file	to	a	remote	computer.		Specify	the	file	name	and	the	SSH	server
in	the	remote	file	dialog.

Save
Save	the	file	in	the	active	editor

Save	As..
Save	the	file	in	the	active	editor	under	a	different	name

Reload
Reload	the	file	in	the	active	editor

Close
Close	active	editor

Save	All
Save	all	editor	files

Close	All
Close	all	editors

Page	Setup
Setup	page	for	printing

Printer	Setup
Setup	the	printer

Print	Preview
Print	preview	the	file	in	the	active	editor

Print
Print	the	file	in	the	active	editor	using	the	current	settings

The	New	submenu

Commands:

Python	module
Create	a	new	Python	script/module

File...
Shows	the	New	File	dialog

The	Edit	Menu Previous	Top	Next

Commands:

Undo
Undo	the	last	change	in	the	Editor

Redo
Reverse	the	action	of	the	last	Undo	command

Cut
Cut	the	selected	text.		If	no	text	is	selected	cut	the	current	line	to	the	clipboard.

Copy
Copy	the	selected	text	to	the	Clipboard.				If	no	text	is	selected	copy	the	current
line	to	the	clipboard.

Paste
Paste	the	selected	text	from	the	Clipboard

Delete

Delete	the	selected	text

Select	All
Select	all	text	in	the	active	editor

Read	Only
Enable	or	disable	editing	in	the	active	editor.	Files	opened	by	PyScripter	from
the	Python	directory	during	debugging	are	read	only	by	default	to	prevent
accidental	changes.

Insert	Template
Insert	a	code	template	in	the	active	editor

The	Source	Code	submenu

Commands:

Indent	Block
Indent	the	selected	block	of	code

Dedent	Block
Dedent	the	selected	block	of	code

Comment	out
Comment	out	the	selected	block	of	code	by	inserting	"##"	at	the	beginning	of

each	line

Uncomment
Delete	"##"	at	the	beginning	of	each	line	of	the	selected	block	of	code

Tabify
Replace	spaces	with	tabs	in	the	selected	block	of	code

Tabify
Replace	tabs	with	spaces	in	the	selected	block	of	code

Execute	Selection
Execute	the	current	editor	selection	in	the	interpreter	(multi-line	selection).		If
only	part	of	a	line	is	selected,	the	selection	is	evaluated	and	the	result	is	printed
in	the	interpreter	window.	Finally,	if	there	is	no	selection,	the	word	at	cursor	is
evaluated.

The	Parameters	submenu

Commands:

Insert	parameter
Select	a	parameter	from	a	pop-up	list	and	insert	it	into	the	active	editor

Insert	modifier
Select	a	parameter	modifier	from	a	pop-up	list	and	insert	it	into	a	parameter	in
the	active	editor

Replace	parameters
Replace	all	parameters	with	their	values.		If	a	block	of	text	is	selected	the
command	is	effected	in	that	block,	otherwise	it	is	applied	to	all	text	in	the	active
editor.

The	File	Format	submenu

Commands:

Ansi
If	checked	the	active	file	will	be	saved	in	Ansi	encoding.		Python	files	may
provide	an	encoding
comment	(see	Python	Source	File	Encodings)

UTF-8
If	checked	the	active	file	will	be	saved	in	the	UTF-8	encoding	including	the
BOM	mark.

UTF-8	(No	BOM)
If	checked	the	active	file	will	be	saved	in	the	UTF-8	encoding	without	the	BOM
mark.

UTF-16LE
If	checked	the	active	file	will	be	saved	in	the	UTF-16	LE	(little-endian)	format.

UTF-16BE
If	checked	the	active	file	will	be	saved	in	the	UTF-16	BE	(big-endian)	format.

DOS/Windows
If	checked	the	active	file	will	be	saved	using	DOS/Windows	line	breaks	(CRLF).

UNIX
If	checked	the	active	file	will	be	saved	using	Unix	line	breaks	(LF).

Mac
If	checked	the	active	file	will	be	saved	using	Mac	line	breaks	(CR).

		

The	Search	Menu Previous	Top	Next

Commands:

Find..
Display	the	"Find"	toolbar

Find	Next
Search	forward	for	the	next	match	of	a	previously	defined	search

Find	previous
Search	backwards	for	the	next	match	of	a	previously	defined	search

Replace..
Display	the	"Find	Toolbar"	showing	the	replace	text	field

Highlight	Search	Text
Highlights	all	occurrences	of	the	search	text

Find	in	Files..
Display	the	"Find	in	Files"	dialog

Go	To	Line..
Displays	an	input	box	for	entry	of	a	line	number	and	the	repositions	the	cursor	to
that	line	number

Go	To	Syntax	Error
Jump	to	the	first	syntax	error	(if	any)	in	the	active	script

Go	To	Debugger	Position
Jump	to	the	current	execution	line	of	the	debugger	if	the	debugger	is	active

Find	Function..
Displays	the	"Find	Function"	dialog.

Find	Next	Reference
Moves	the	cursor	to	the	next	occurance	of	the	identifier	containing	the	caret

Find	Previous	Reference
Moves	the	cursor	to	the	previous	occurance	of	the	identifier	containing	the	caret

Matching	Brace
If	the	cursor	is	at	a	brace	('(',	')',	'[',]',	'{'	,	'}')	moves	the	cursor	to	the	matching
brace.

Find	Definition
Finds	the	definition	of	the	identifier	containing	the	caret

Find	References
Finds	references	of	the	identifier	containing	the	caret

The	Find	Toolbar

PyScripter	provides	a	Firefox	like	Find	Toobar	for	search	or	replace	
functionality:

The	last	button	in	Toolbar	allows	you	to	select	different	search	options	from	the
menu	below:

Here	is	a	brief	explanation	of	the	options:

Search	From	Caret
If	checked	the	search	begins	from	the	cursor	position,	otherwise	from	the	top	of
the	file.

Auto	Case	Sensitive
Case	sensitive	search	when	.the	search	text	contains	upper	case	characters.

Case	Sensitive
Specifies	whether	the	search	is	case	sensitive.

Whole	Words	Only
If	checked	the	search	is	restricted	to	whole	words	only	.

Search	in	Selection

If	checked	the	search	is	restricted	to	the	current	selection,	otherwise	the	whole
file	is	searched.

Regular	Expressions
If	checked	the	search	text	is	interpreted	as	a	regular	expression	and	the
replacement	text	can	contain	sub-expressions	(e.g.	$1).

Incremental	Search
If	checked,	Find	Next	is	executed	every	time	you	modify	the	search	text.

		

The	Run	Menu Previous	Top	Next

Commands:

Syntax	Check
Checks	the	syntax	of	the	active	Python	script

Import	Module
Imports	the	active	Python	script	into	the	Interactive	Python	Interpreter

Run
Runs	the	active	Python	script	without	debugging	using	the	embedded	Python
interpreter

Command	Line	Parameters...
Provide	command	line	parameters	for	a	script	running	in	the	embedded	Python
interpreter	or	being	debugged

External	Run
Runs	the	active	Python	script	in	an	external	Python	interpreter

Configure	External	Run...
Configures	the	External	Run	command.		Options	are	provided	for	selecting	the
Python	interpreter,	specifying	command	line	parameters,	capturing	the	standard
output	and	reporting	Traceback	information.		The	options	are	the	same	as	for	the
specification	of	External	Tools.

Debug
Runs	the	active	Python	script	with	debugging	using	the	embedded	Python
interpreter

Run	To	Cursor
Inserts	a	temporary	breakpoint	at	the	cursor	position	and	runs	the	active	Python
script	with	debugging	using	the	embedded	Python	interpreter

Step	into
Starts	or	resumes	debugging	by	stepping	into	the	next	line	of	code

Step	over
Resumes	debugging	by	stepping	over	the	next	line	of	code

Step	out
Resumes	debugging	by	stepping	out	the	current	execution	frame

Pause
Stops	the	running	program	at	the	first	available	opportunity.		Please	note	that
pausing	and	aborting	is	only	possibly	if	there	are	breakpoints	in	the	running
script.

Abort	Debugging
Aborts	debugging.

Post	mortem
Enter	post	mortem	analysis	mode	after	an	unhandled	exception	has	occurred.		In
this	mode	you	can	use	the	Call	Stack,	Variables	and	Watches	windows	as	well	as
evaluate	expressions	in	the	interpreter,	to	examine	the	causes	of	the	exception.	
To	exit	this	mode	use	the	Abort	Debugging	command.

Toggle	Breakpoint
Toggles	the	breakpoint	at	the	cursor	position

Clear	all	Breakpoints
Clear	all	breakpoints	in	all	open	files

Add	Watch	at	Cursor
Add	the	expression	at	the	current	editor	position	as	a	watch	expression

Python	Engine	submenu

graphic

From	this	submenu	you	can	switch	python	versions	by	selecting	from	the	shown
list.		It	is	also	available	from	the	toolbar	of	the	main	application	window	and	the

context	menu	of	the	Interactive	Interpreter.

Setup	Python...
Manage	the	python	versions	that	PyScripter	knows	about.		See	the	the	Setup
Python	versions	topic	for	details.

Python	Engine	submenu

From	this	submenu	you	can	select	the	active	Python	engine.		See	the	the	Remote
Python	Engines	topic	for	details.

Reinitialize	Python	engine
This	option	is	only	available	with	the	remote	Python	engines.		It	restarts	the
active	remote	engine	and	it	works	even	when	a	script	is	running.
		

The	Tools	Menu Previous	Top	Next

Commands:

Python	Path
Configures	the	Python	Path

Unit	Test	Wizard...
Shows	the	Unit	Test	Wizard	dialog.

Configure	Tools
Pops-up	a	dialog	which	allows	the	creation	deletion	or	modification	of	External
Tools

Edit	Startup	Scripts
Loads	to	the	editor	the	Startup	Python	Scripts.

Check	for	Updates...
Checks	whether	an	updated	version	of	PyScripter	is	available.

The	Source	Code	Views

PyScripter	provides	different	views	of	Python	modules	that	can	be	seen
alongside	the	source	code.		Currently	two	such	views	are	provided.		The

Documentation	view	and	the	Disassembly	view.		When	views	other	than	the
source	code	are	available	you	can	switch	between	the	source	code	and	these
views	using	the	tabs	at	the	top	of	the	editing	area.	You	can	close	additional	views
by	right	clicking	on	their	tab	and	selecting	"Close".		When	the	only	view	is	the
source	code	the	tabs	at	the	top	of	the	editing	area	are	hidden.

Commands:

Documentation
Shows	the	Documentation	view

Disassembly
Shows	the	Disassembly	view

Web	Preview
Shows	a	Web	preview	of	html	files	in	a	built-in	browser.

The	Options	submenu

Commands:

IDE	Options...
Shows	the	IDE	Options	dialog

IDE	Shortcuts...
Shows	the	IDE	Shortcuts	dialog

Editor	Options...
Shows	the	Editor	Options	dialog

Custom	Parameters...
Pops-up	a	dialog		allowing	you	to	define,	delete	or	modify	custom	parameters

Code	Templates...
Pops-up	a	dialog		allowing	you	to	define,	delete	or	modify	code	templates

File	Templates
Shows	the	File	Templates	dialog	which	allows	you	to	customize	the	available
File	Templates.

The	Import/Export	submenu

Export	Shortcuts
Exports	the	IDE	and	editor	shortcuts	to	an	"ini"	file.

Import	Shortcuts
Imports	IDE	and	editor	shortcuts	from	an	"ini"	file.

Export	Highlighters
Exports	syntax	highlighter	information	to	an	"ini"	file.

Import	Highlighters
Imports	syntax	highlighter	information	from	an	"ini"	file.

The	Tools	submenu

PyScripter	offers	the	ability	to	define	External	Tools	that	can	be	run
independently	or	interact	with	the	IDE	editor.			The	Tools	submenu	shows	you
the	currently	defined	external	tools.		The	picture	below	shows	you	some	of	the
pre-defined	tools.

The	View	Menu Previous	Top	Next

Commands:

Next/Previous	Editor
Shows	the	next/previous	editor

Status	Bar
Shows/hides	the	Status	bar

Zoom	In
Increase	the	editor	font	size	by	1.

Zoom	Out
Decrease	the	editor	font	size	by	1.

Select	Style...
Allows	you	to	change	the	visual	appearance	(style)	of	the	application.

The	Split	Editor	submenu

Split	Editor	Vertically
Creates	two	editor	views	arranged	side	by	sided.		This	allows	the	editing	of	two
different	sections	of	the	same	file.

Split	Editor	Horizontally
Similar	to	the	previous	option,	but	the	editor	views	are	arranged	one	above	the
other.

Hide	Second	Editor
Reverses	the	impact	of	the	previous	two	commands	hiding	the	second	editor.

The	Split	Workspace	submenu
The	following	commands	allow	side-by-side	file	editing.

Split	Workspace	Vertically
View	secondary	workspace	vertically	aligned	to	the	primary	one.

Split	Workspace	Horizontally
View	secondary	Workspace	horizontally	aligned	to	the	primary	one.

Hide	Secondary	Tabs
Hide	the	secondary	workspace	and	move	all	contained	tabs	to	the	primary	one.

The	Toolbars	submenu

This	submenu	allow	you	to	show/hide	the	different	PyScripter	toolbars.		The
Customize	command	displays	the	Toolbar	customization	dialog	box.

The	IDE	Windows	submenu
This	submenu	allow	you	to	show/hide	the	different	PyScripter	IDE	windows.

Interactive	Interpreter
Shows/hides	the	Interactive	Interpreter	window

Project	Explorer

Shows/hides	the	Project	Explorer	window

File	Explorer
Shows/hides	the	File	Explorer	window

Code	Explorer
Shows/hides	the	Code	Explorer	window

To-Do	List
Shows/hides	the	To-Do	List	window

Regular	Expression	Tester
Shows/hides	the	Regular	Expression	Tester	window

Find-in-Files	Results
Shows/hides	the	Find-in-Files	Results	window

Output	Window
Shows/hides	the	Output	window

Unit	Tests
Shows/hides	the	Unit	Tests	window

The	Debug	Windows	submenu
This	submenu	allows	you	to	show/hide	the	different	PyScripter	debugger
windows.

Call	Stack

Shows/hides	the	Call	Stack	window

Variables
Shows/hides	the	Variables	window

Breakpoints
Shows/hides	the	Breakpoints	window

Watches
Shows/hides	the	Watches	window

Messages
Shows/hides	the	Messageswindow

The	Navigate	submenu
This	submenu	allows	you	to	move	between	the	different	PyScripter	IDE	and
debugger	windows	and	the	editor.

.

The	Syntax	submenu
The	Syntax	submenu	allows	you	to	select	the	syntax	highlighting	scheme	for	the
active	editor.

The	Languages	submenu
Use	the	Languages	submenu	to	change	the	language	of	the	User	Interface	of
PyScripter.	See	the	Localization	topic	for	information	about	creating	new
translations.

The	Layouts	submenu
The	entries	above	the	menu	separator	correspond	to	specific	layouts	that	have
been	saved	and	which	the	user	can	restore.

Commands:

Save	Layout...
Saves	the	current	layout	under	a	name	the	user	provides

Delete	Layouts...
The	user	is	prompted	for	the	list	of	layouts	to	delete.

Set	Debug	layout
Saves	the	current	layout	under	the	name	'Debug'.		If	a	layout	named	'Debug'	is
available	when	you	start	debugging,	then	this	layout	is	loaded.		When	debugging
terminates	the	layout	active	before	starting	debugging	is	restored.

Maximize	editor
Maximize	the	editor	window	by	auto-hiding	all	other	IDE	windows.

Restore	editor
Restore	the	maximized	editor	window	to	each	state	before	maximizing.

The	Project	Menu Previous	Top	Next

Commands:

New	Project
Clear	the	active	project	and	start	a	new	one.

Open	Project
Open	a	saved	project	and	replace	the	active	one.

Save	Project
Save	the	active	project.

Save	Project	As...
Save	the	active	project	under	a	different	name.

Project	Explorer
Show	the	Project	Explorer	IDE	window.

		

The	Help	Menu Previous	Top	Next

Commands:

Python	Manuals
Shows	the	Python	help	files

About..
Shows	the	PyScripter	About	dialog

The	PyScripter	submenu

Commands:

Contents
Shows	the	Contents	of	the	PyScripter	Help	file

Custom	Parameters
Displays	the	help	file	topic	on	custom	parameters

External	tools
Displays	the	help	file	topic	on	creating	external	tools

The	Web	Support	menu

Commands:

Official	Web	Site
Visit	the	PyScripter	official	web	site	at	mmm-experts.com

Development	Web	Site
Visit	the	PyScripter	development	web	site	at	pyscripter.googlepages.com

Project	Home
Visit	the	PyScripter	project	home	page	at	pyscripter.googlecode.com

Group	support
Visit	the	PyScripter	internet	group	at	groups.google.com/group/PyScripter

http://mmm-experts.com/Products.aspx?ProductID=4
http://pyscripter.googlepages.com/
http:\\pyscripter.googlecode.com
http://groups.google.com/group/PyScripter

The	Python	Interactive	Interpreter Previous	Top	Next

PyScripter	provides	an	integrated	interactive	Python	interpreter	featuring
command	history,	code	completion	and	call	tips.		This	window	also	serves	as	the
standard	output	of	scripts	running	within	the	IDE.		During	debugging	and	when
the	execution	has	stopped	at	a	breakpoint,	the	prompt	changes	to	"[Dbg]>>>	".

Context	Menu

Copy	(No	Prompts)
Copies	the	selected	text	to	the	clipboard	without	the	interpreter	prompts.

Paste	&	Execute
Pastes	text	from	the	clipboard	adding	each	contained	statement	to	the	prompt
and	interpreter	history	and	executing	it.

Copy	History
Copies	the	entered	command	history	to	the	clipboard.

Clear	All
Clear	all	interpreter	output.

Interpreter	Editor	Options...
Shows	the	Editor	Options	Dialog	(see	the	Editor	Options	topic	for	details)	for
the	Interpreter	Window

The	Python	engine	submenu	is	the	same	to	the	one	available	in	the	Run	menu.

Command	History
												Alt-Up	:	previous	command
												Alt-Down	:	next	command
												Esc	:	clear	command

If	you	scroll	up	and	click	on	a	previously	issued	command,	possibly	modified,
then	this	command	is	copied	to	the	current	prompt	ready	to	be	reissued.		Copy
and	paste	operations	work	as	in	the	text	editor,	but	pieces	of	code	need	to	be
entered	line-by-line.

New	in	Version	1.7.2.4
Command	Filtering:		If	you	type	some	characters	in	the	Python	prompt	and	then
invoke	the	history	commands	the	history	is	filtered	and	only	entries	matching
what	you	typed	are	shown.

New	in	Version	1.7.2.4
Up/Down	Keys:
Up/Down	keys	can	be	used	for	the	history	previous/next	commands,	when	the
cursor	is	at	the	last	line	of	the	interpreter	and	this	line	contains	the	Python
prompt.		In	that	case	thought	the	Up/Down	keys	are	unavailable	for	scrolling,	so
you	have	to	use	the	mouse	to	move	to	say	the	previous	line,	beyond	which	the

Up/Down	keys	work	as	normal.

Code	Completion	and	Call	Tips
Code	completion	and	call	tips	are	available	when	you	type	code	in	the
interactive	Python	interpreter	window.		Click	here	for	details.

Traceback	Information

Traceback	information	is	displayed	in	red.		By	double	clicking	on	a	line	with
traceback	call	stack	information	the	corresponding	file	position	is	displayed	in
the	editor	if	available.

		

The	File	Explorer	Window Previous	Top	Next

This	is	a	powerful	file	explorer	similar	to	that	supplied	by	the	Windows
operating	system.		You	can	navigate	through	the	local	file	system	and	open
Python	scripts	by	clicking	on	them.		You	can	filter	the	displayed	files	and
navigate	directly	to	commonly	used	directories	and	directories	on	the	Python
path.
If	you	have	installed	Tortoise	Git	or	Tortoise	SVN	you	have	access	to	version
control	functionality	directly	from	PyScripter.

You	can	add	the	folders	you	commonly	use	to	the	Favourites	list	and	you	can
easily	set	the	root	directory	of	the	File	Explorer	to	one	of	these	folders.

http://www.tortoisegit.org/
http://tortoisesvn.tigris.org/

The	Toolbar

Commands:

Browse	Back/Forward
Navigated	through	the	history	of	browsed	directories.		Note	that	the	browsing

history	is	cleared	when	you	change	the	root	directory	of	the	File	Explorer.

Go	Up
Change	the	root	of	the	File	Explorer	to	the	parent	of	the	currently	selected
directory

Browse	Path
Change	the	root	of	the	File	Explorer	to	commonly	used	directories,	directories	in
the	Favourites	list	and	directories	on	the	Python	path

Filter	files
If	selected	the	File	Explorer	hides	all	files	except	Python	scripts	and	modules.	
By	default	these	are	the	files	with	".py"	extension.		You	can	modify	this	default
filter	thought	the	IDE	options	customization.

Create	New	Folder
Create	a	new	sub-folder	of	the	currently	selected	folder

The	Context	Menu	(on	files	and	directories)

This	is	the	standard	explorer	menu	with	the	addition	of	the	last	item	"File
Explorer".		This	submenu	contains	the	following	options:

				"Explore	here",	which	allows	to	change	the	root	directory	of	the	File
Explorer	to	the	selected	folder.
				"Add	to	Favourites",	which	adds	the	currently	selected	folder	to	the
Favourites	list
				"Create	New	Folder"	which	creates	a	new	sub-folder	of	the	currently
selected	folder
				"Search	Path"	which	invokes	the	Find-in-Files	tool	on	the	selected	folder.

The	Context	menu	(on	empty	space)

This	context	menu	offers	options	similar	to	those	found	in	the	toolbar	plus	the
following	commands:

Manage	Python	Path...
Shows	a	dialog	box	from	which	you	can	modify	(add	and	remove	folders)	from
the	python	path	(sys.path).

Change	Filter...
Allows	you	to	change	the	filter	which	applies	to	the	files	shown.		Use	a

semicolon	separated	list,	i.e.		"*.py;*.pyw".

Refresh
Refresh	the	contents	of	the	File	Explorer.		Normally	not	needed	since	it	updates
automatically.

The	Browse	path	submenu

By	selecting	menu	options	from	this	submenu,	you	can	set	the	root	directory	of
the	File	Explorer	to	the	corresponding	file	directory.		"Active	Script"	sets	the
root	directory	to	the	directory	of	the	script	currently	edited.

The	Favourites	submenu

Shows	the	list	of	favourites	from	which	you	can	select	the	one	you	want	to	set	as
the	root	folder	of	the	File	Explorer.	

It	also	provides	the	following	commands:

Add	to	Favourites
Adds	the	currently	selected	folder	to	the	Favourites	list.

Manage	Favourites...
Shows	a	dialog	box	(see	below)	from	which	can	manage	(add	and	remove
folders)	the	Favourites	list.

The	Python	Path	submenu

This	submenu	shows	you	the	directories	in	the	Python	path	of	the	embedded
Python	interpreter.		Selecting	a	directory	changes	the	the	root	directory	of	the
File	Explorer	to	that	directory

The	Manage	Favourites	dialog	box:

This	dialog	box	allows	you	to	add	or	remove	folders	from	the	Favourites	list.

The	Code	Explorer	Window Previous	Top	Next

It	shows	a	structured	(tree)	view	of	the	source	code	with	functions	classes	and
their	methods.	It	can	help	you	navigate	through	the	code.			Double-clicking	on	a
any	function	or	class	name	moves	the	editor	caret	to	the	section	of	the	code
where	the	respective	function	or	class	are	defined.

The	context	menus

a)	Window	Background

Commands:

Expand	All
Expand	all	nodes	of	the	tree

Collapse	All
Collapse	all	nodes	of	the	tree

Alpha	Sort
If	checked,	tree	nodes	are	sorted	alphabetically,	otherwise	the	node	order	follows
the	position	of	the	identifiers	in	the	code.

Follow	Editor
If	checked,	as	you	move	the	cursor	in	the	editor	the	class,	method	or	function
that	contains	the	cursor	gets	selected	in	the	Code	Explorer.

Show	Selection
If	checked,	when	you	select	a	node	by	mouse	or	keyboard,	the	position	of	the
identifier	in	the	code	is	shown	without	moving	the	focus	to	the	editor.

b)		Node	context	menu

Commands:

Find	Definition
Moves	the	editor	caret	to	the	section	of	the	code	where	the	respective	function	or
class	are	defined.		Focus	is	shifted	to	the	editor.	It	does	the	same	as	double-
clicking	on	the	identifier.

Find	References
Invokes	the	Find	References	command	for	the	selected	identifier.

Highlight
If	checked	the	occurrences	of	the	selected	identifier	in	the	editor	are	highlighted.

The	Project	Explorer	Window Previous	Top	Next

PyScripter	projects	server	two	purposes:
1.			To	create	and	maintain	collections	of	files	with	which	you	tend	to	work

together,	structured	hierarchically	in	folders	and	sub-folders.		These	folders,
do	not	necessarily	correspond	to	file	system	folders	but	instead	they	may
based	on	some	other	logical	categorization	of	files,	for	example	based	on	their
type	(e.g	Html,	ini	and	script	files	grouped	under	different	folders)	.	This
similar	to	what	other	IDEs	call	Workspaces.

2.			To	create	and	maintain	an	associated	set	of	Run	configurations.
Other	PyScripter	Tools	such	as	the	Find	in	Files	and	the	Todo	list	tools	are
designed	can	take	advantage	of	projects.

PyScripter	projects	are	saved	as	"ini"	files	have	the	default	extension	"psproj".	
At	any	point	in	time	one	such	project	is	active	and	if	that	project	is	not	saved	it
has	the	name	"Untitiled".		The	Project	Explorer	IDE	Window	helps	you	explore
and	manage	PyScripter	projects.

The	Root	project	node	always	has	exactly	two	child	nodes:
					Files
					Run	Configurations

Under	the	"Files"	node	you	can	add	files	or	folders	which	can	contain	further
files	and	folders.	Under	the	"Run	Configurations"	node	you	can	add	multiple
Run	Configurations,	which	can	be	used	for	running	and	debugging	Python

Scripts.

Drag	&	Drop	support

You	can	drag	and	drop	files/folders	from	the	built-in	File	Explorer	or	the
Windows	Explorer	onto	folder	nodes	to	import	these	files	and	folders.		You	can
also	restructure	the	project	by	using	drag	and	drop	to	move	project	nodes.

Opening	files	for	editing

You	can	double	click	on	files	to	open	them	in	the	editor.		Alternatively	you	can
select	multiple	files	and	select	the	"Edit"	command	from	the	context	menu	(see
below).

Context	sensitive	menus

There	are	different	context	menus	available	for	each	type	of	node:

a)		Window	background	and	Root	Project	node	context	menu

Commands:

New	Project
Clear	the	active	project	and	start	a	new	one.

Open	Project
Open	a	saved	project	and	replace	the	active	one.

Save	Project
Save	the	active	project.

Save	Project	As...
Save	the	active	project	under	a	different	name.

Expand	All
Expand	all	project	nodes

Collapse	All
Collapse	all	project	nodes

Show	File	Extensions
If	this	option	is	set,	file	extensions	are	shown,	otherwise	hidden

Store	Relative	Paths
If	this	option	is	set,	project	files	that	are	in	the	same	directory	as	the	project	file
or	a	subfolder	of	the	directory	are	saved	as	file	paths	relative	to	the	Project	file
path.

Extra	Python	Path
This	option	allows	a	project	specific	customization	of	the	Python	Path.		Extra
directories	specified	are	added	to	the	Python	path	at	the	time	the	project	is
loaded	and	every	time	an	engine	is	reinitialized.

b)	Folder	context	menu

Commands:

Add	File(s)...
Add	on	or	more	files	to	the	selected	folder	using	and	Open	File	dialog.

Add	Active	File
Add	the	active	editor	file	to	the	the	selected	folder.

Add	Remote	File
Add	a	remote	file	to	the	the	selected	folder	using	the	remote	file	dialog.

Add	Subfolder
Add	a	subfolder	to	the	selected	folder.

Import	Directory...
This	command	recursively	imports	a	folder	with	its	files	and	subfolders	to	the
project	replicating	the	directory	structure	on	the	disk.	

Rename
Rename	the	selected	folder.

Remove
Remove	the	selected	folder	and	its	child	nodes.

c)	File	context	menu

Commands:

Edit
Open	the	selected	file	in	the	editor.		The	same	can	be	done	by	double-clicking
the	file	name.

Remove
Remove	the	selected	file	from	the	project.

Properties
Show	the	standard	Windows	File	Properties	dialog	for	the	selected	file.

d)	Run	Configurations	node	context	menu

Commands:

Add	Run	Configuration
Create	and	add	to	the	project	a	new	Run	Configuration.

e)		Run	Configuration	context	menu

Commands:

Run
Run	the	selected	Run	Configuration.

Debug
Debug	the	selected	Run	Configuration.

External	Run
Run	the	selected	Run	Configuration	using	an	external	Python	interpreter.

Edit	Run	Configuration
Edit	the	selected	Run	Configuration.

Rename
Rename	the	selected	Run	Configuration.

Remove
Remove	the	selected	Run	Configuration.

The	Project	Explorer	Toolbar

Commands:

New	Project

Clear	the	active	project	and	start	a	new	one.

Open	Project
Open	a	saved	project	and	replace	the	active	one.

Save	Project
Save	the	active	project.

Run	Last	Configuration
Run	the	Configuration	that	was	run	last.

Debug	Last	Configuration
Debug	the	Configuration	that	was	run	last.

External	Run	Last	Configuration
Run	the	Configuration	that	was	run	last	using	an	external	Python	interpreter.

		

The	Messages	Window Previous	Top	Next

The	Messages	Window	serves	the	purpose	of	logging	and	displaying	to	the	user
syntax	and	runtime	errors,	Python	tracebacks	information	and	other	warnings
and	messages.		If	there	is	File	location	information	in	a	message	you	display	that
file	and	move	the	cursor	to	the	respective	position	by	double-clicking	on	that
message.		A	history	of	up	to	10	messages	logs	is	maintained	and	you	can	browse
through	those	message	logs	by	using	the	arrow	buttons	at	the	top	right-hand	side
of	the	window	or	the	context	menu.

The	Context	Menu

Commands:

Previous/Next	Messages
Navigate	through	the	history	of	message	logs.

Clear	all
Clear	the	whole	history	of	message	logs.

The	Output	Window Previous	Top	Next

The	Output	window	shows	the	captured	output	from	external	tools.		Here	it
shows	the	output	of	the	Lint	style	checker.

The	Context	Menu

Commands:

Copy
Copies	the	contents	of	the	Output	window	to	the	Clipboard

Clear
Clears	the	contents	of	the	Output	window

Font..
Change	the	font	of	the	Output	window

Background	Color..
Change	the	background	color	of	the	Output	window

The	running	processes	submenu

Commands:

These	four	commands	are	only	available	when	an	external	tool	is	running	with
the	"Wait	for	termination"	option	set.

Close
Posts	a	WM_CLOSE	message	to	the	running	external	process

Quit
Posts	a	WM_QUIT	message	to	the	running	external	process

Terminate
Terminates	the	running	external	process	(use	as	last	resort).

Stop	Waiting
Stop	waiting	for	the	external	process

Tip:		The	running	processes	submenu	commands	are	also	available	by	right
clicking	the	External	Processes	indicator	in	the	Status	Bar.

		

The	Find-in-Files	Window Previous	Top	Next

The	Find-in-Files	Results	window	is	where	the	results	of	a	Find-in-Files	Search
are	shown.		It	also	provides	an	interface	for	multi-file	search	and	replace	on
matches.		The	window	uses	a	folding	display	of	matches	to	allow	you	to	easily
locate	a	particular	match.		This	window	supports	IDE	docking.		An	example	of
this	window	appears	below.

The	Context	Menu

The	results	window	displays	all	files	which	contained	one	or	more	matches	for
the	search	term.		Under	each	file,	a	list	of	matches	for	that	particular	file	can	be
shown.		To	expand	or	contract	a	file's	matches,	click	on	the	filename,	press	enter,
or	use	the	'+'	and	'-'	keys.		When	a	specific	match	line	is	selected,	the	window
can	show	a	number	of	lines	of	match	context	using	the	Show	Match	Context
menu	item.	Note	that	the	match	context	might	not	be	accurate	if	you	have	edited
the	searched	files	since	the	search.

The	number	to	the	left	of	each	match	is	the	line	number	where	the	match	was
found.		The	results	list	highlights	the	matching	characters	in	each	entry	to
indicate	where	the	match	occurred.

To	jump	to	a	match	in	the	IDE	editor,	double	click	the	desired	line,	press	enter,
or	use	the	Goto	toolbar	button.		To	start	a	new	search,	click	the	Search	button
and	the	Find-in-Files	Search	dialog	will	appear.	As	the	search	progresses,	the
new	search	button	will	be	disabled	and	the	abort	button	will	be	enabled	to	cancel
the	current	search.		Once	a	search	is	completed,	the	results	window	displays	on
the	status	bar	the	number	of	files	searched,	the	search	time,	and	the	total	number
of	matches.

You	can	expand	all	items	in	the	list	by	clicking	the	expand	button	in	the	toolbar.	
Similarly,	clicking	the	contract	button	in	the	tool	bar	will	contract	all	result
items.				The	entire	match	list	can	be	coped	to	the	clipboard	or	saved	to	a	file
using	the	items	on	the	File	menu.

Search	and	Replace	on	Matches

You	can	do	a	search	and	replace	operation	on	all	of	the	matches	in	the	list	or
only	the	selected	file/match.		When	you	choose	one	of	those	options,	the	dialog
below	appears	prompting	for	the	string	to	use	in	place	of	the	matched	text.	If	you
were	using	a		Regular	Expression	search	you	can	use	sub-expressions	in	the
replace	expression	using	the	$x	syntax,	where	x	is	the	sub-expression	number.

Find-in-Files	Results	options

Using	the	Options	dialog	below,	define	how	selected	matches	are	shown	in	the
editor,	whether	to	expand	all	matches	by	default,	the	number	of	context	lines	to
show,	and	the	list	and	context	fonts/colors.

Credits:	This	utility	is	based	on	code	from	the	GExperts	project
(www.gexperts.org).
		

http:\\www.gexperts.org

The	To-do	List	Window Previous	Top	Next

The	To	Do	List	helps	you	organize	a	list	of	items	in	your	source	that	need	special
attention.	You	can	click	a	column	header	to	sort	by	any	column	in	the	list.

To	add	new	to	do	items,	type	comments	in	your	code	such	as:
#ToDo1	Rewrite	this	code	to	work	under	NT
#ToDo2	Add	support	for	Oracle	here	later

To	jump	to	a	To-Do	item	in	the	IDE	editor,	double	click	the	desired	line,	press
enter,	or	use	the	Goto	toolbar	button.		Using	the	buttons	in	the	toolbar	or	the
similar	options	in	the	context	menu,	you	can	refresh	or	print	the	To-Do	list.		
Clicking	in	header	columns	sorts	the	items	according	to	that	column.		Clicking
the	same	column	again	changes	the	sort	order.	

To-Do	options

The	to	do	keywords	(such	as	ToDo1,	ToDo2,	etc.)	can	each	have	an	assigned
priority	of	High,	Medium,	or	Low.		You	can	also	add	new	keywords	with
associated	priorities	using	the	To-Do	configuration	dialog	shown	below.	This
utility	can	scan	open	files,	all	project	files,	or	complete	directories	for	to	do
items.		It	may	be	helpful	to	create	an	IDE	Code	Template	to	quickly	create	new

to	do	items	while	you	are	coding.

Credits:	This	utility	is	based	on	code	from	the	GExperts	project
(www.gexperts.org).

http:\\www.gexperts.org

The	Unit	Tests	Window Previous	Top	Next

This	window	provides	an	advanced	GUI	for	running	tests	based	on	unittest,	the
standard	Python	module.

Toolbar	Commands:

Refresh
Loads	unit	tests	from	the	currently	active	module.		Note	that	this	involves
importing	the	module	into	the	integrated	interpreter.		After	loading	a	module	you
can	then	select	(check)	the	tests	you	want	to	run	at	the	provided	tree	view.
Double	clicking	on	a	test	or	a	test	class	name	takes	you	to	the	source	code	where
the	test	method	or	class	are	defined.

Clear
Clears	all	the	tests	and	related	information	from	this	window.

Run
Run	the	selected	tests.		After	running	the	tests	their	status	is	indicated	by	the
colour	next	to	the	test	in	the	tree	view.		Green	indicates	success,	Purple	indicates
assertion	failure	and	Red	indicates	a	Python	exception	(i.e.	any	other	error).		The
pane	below	the	tree	view	shows	the	overall	statistics	and	you	can	view
information	about	the	errors	that	occurred	by	clicking	on	the	tests	that	failed.	

Stop	tests
If	clicked	while	running	the	tests	the	testing	process	stops.

Select	all
Selects	all	available	tests.

Deselect	all
Deselects	all	available	tests.

Select	failed	tests
After	running	a	set	of	tests	this	command	selects	the	tests	that	were	not
successful.

Expand	all
Expands	all	tree	nodes

Collapse	all
Collapses	all	tree	nodes

Note:
To	use	this	GUI	to	run	tests	from	multiple	Python	files	(for	example	tests1.py,
tests2.py	and	tests3.py)	create	a	new	script	with	the	following	content:

from	tests1	import	*
from	tests2	import	*
from	tests3	import	*

Then	use	the	Unit	Tests	GUI	with	that	file.		(Press	the	Refresh	button	while	this
file	is	active).

		

The	Call	Stack	Window Previous	Top	Next

The	call	stack	window	includes	a	list	of	active	threads	and	displays	the	Python
interpreter	call	stack	while	debugging.		It	shows	the	function	name	and	the
corresponding	source	code	position	for	each	stack	frame.		You	can	jump	to	a
given	code	position	by	double-clicking	on	a	stack	frame	line.
The	pinned	thread	is	the	active	"broken"	thread	and	the	pinned	frame	is	the
active	frame	of	the	active	thread.	You	should	note	that	the	Call	Stack	window
works	in	tandem	with	the	Variables	window,	which	displays	the	local	and	global
variables	for	the	selected	(active)stack	frame	in	this	window.	Initially	the	top
stack	frame	is	selected	in	the	Call	Stack	window.	The	Watches	window	evaluates
watch	expressions	inside	the	active	frame.	Also	commands	you	issue	in	the
Interpreter	window	and	debugger	hints	(hovering	the	mouse	on	variable	names
in	the	editor)	are	also	evaluated	inside	the	active	frame.	You	can	change	the
active	thread	and	the	active	frame	by	selecting	with	the	mouse	a	different	one.

Debugger	commands
The	Resume	command	(F9)	resumes	execution	of	all	broken	threads.		All	other
debug	commands	(e.g.	Step	in,	Step	over,	Step	out)	resume	execution	of	the
active	thread	only.
Commands:
Two	commands	are	provided	to	change	the	active	stack	frame	using	the
keyboard	and	without	having	to	switch	view	to	the	Call	Stack	Window.
Previous	Frame
Select	previous	(older)	frame	(default	shortcut	F11)
Next	Frame
Select	next	(newer)	frame	(default	shortcut	Shift+F11)

		

The	Variables	Window Previous	Top	Next

During	debugging	and	while	the	interpreter	is	stopped	at	a	breakpoint	,	the
Variables	window	displays	the	local	and	global	variables	for	the	selected	stack
frame	in	the	Call	Stack	window	which	is	usually	the	top	frame.			The	left	pane
shows	a	hierarchical	view	with	the	value	of	each	variable.		Any	Python	object
with	a	dictionary	interface	(classes,	objects,	dictionaries	etc.)	can	be	expanded	so
that	key-value	pairs	are	inspected.		Variables	that	have	been	changed	or	are	new
while	stepping	through	code	are	color	coded.		Changed	variables	are	displayed
with	red	color	and	new	variables	with	blue	color.		The	left	hand	pane	of	the
Variables	window	displays	the	type,	value	and	documentation	of	the	selected
variable.
When	the	debugger	is	not	active	the	Variables	window	displays	the	global
variables	of	the	interpreter.

You	cannot	change	the	values	of	variables	in	this	window.			In	fact	you	cannot
change	local	function	variables	while	debugging	in	Python	(the	locals	dictionary
is	read-only).		Global	variables	can	be	changed	though	in	the	Interactive
Interpreter	window.

The	Watches	Window Previous	Top	Next

This	provides	typical	"Watch	Expression"	functionality	found	in	most
debuggers.		You	can	set	watches	for	arbitrary	Python	expressions.		These
expressions	get	re-evaluated	as	you	step	through	the	code	or	when	you	stop	at
breakpoints.

The	Context	Menu

Commands:

Add	Watch
Add	a	new	Watch	Expression

Add	Watch	at	Cursor
Add	the	expression	at	the	current	editor	position	as	a	watch	expression

Remove	Watch
Remove	the	currently	selected	Watch	Expression

Edit	Watch
Modify	the	currently	selected	Watch	Expression

Clear	All
Clear	all	Watch	Expressions

Tips:		You	can	double-click	on	a	watch	to	edit	it	or	you	can	double	click	on
empty	space	to	add	a	new	watch.		You	can	also	drag&drop	text	from	the	editor	to
the	Watches	window	to	add	it	as	a	watch.

The	Breakpoints	Window Previous	Top	Next

This	window	shows	the	breakpoints	in	all	open	Python	scripts	and	modules.	
Double-clicking	on	a	specific	breakpoint	takes	you	to	the	given	code	position.

You	can	enable/disable	a	breakpoint	by	checking/unchecking	the	check-box	at
that	start	of	the	corresponding	row.		You	can	also	apply	a	condition	by	specifying
a	Python	expression	using	the	context	menu.

The	Context	Menu

Commands:

Set	Condition
Specify	a	python	expression	to	serve	as	a	condition	for	the	breakpoint.		The
execution	will	stop	at	this	breakpoint	only	if	the	evaluated	expression	returns
True.

Clear
Clear	the	currently	selected	breakpoint

Clear	All	Breakpoints

Clear	all	breakpoints
		

Python	Versions Previous	Top	Next

The	Python	versions	dialog	allows	you	to	switch	python	versions	and
environments	as	well	as	setup	new	ones.	It	is	accessible	from	the	Run	menu	or
the	context	menu	of	the	Interactive	Interpreter.		Here	is	how	is	looks:

Commands	(accessible	from	the	toolbar):

Activate	python	version
Switches	to	and	activates	the	selected	python	version.

Add	python	version
Adds	a	new	python	version	from	a	directory	selection.

Remove	python	version
Removes	the	selected	python	version.		Registered	versions	cannot	be	removed.

Rename	python	version
Renames	the	selected	python	version.		Registered	versions	cannot	be	renamed.	
Setting	the	name	to	an	empty	string	restores	the	default	name.

Test	python	version
Opens	a	python	interpreter	with	the	selected	python	version.

Show	python	version
Shows	the	folder	of	the	selected	python	version	in	the	Windows	File	Explorer.

Command	prompt
Opens	a	command	prompt		at	the	selected	python	version	folder.

Help
Shows	this	help	page.
		

Remote	Python	Engines Previous	Top	Next

In	addition	to	using	the	internal	integrared	Python	engine,	PyScripter	offers	you
the	option	to	use	one	of	three	remote	Python	engines.		These	remote	engines	run
in	a	separate	process,	so,		when	using	them,	script	errors	should	not	affect	the
stability	of	PyScripter.		You	can	select	the	python	engine	that	will	be	active	from
the	Python	Engine	submenu	of	the	Run	menu.		Here	is	a	brief	explanation	of	the
Python	engine	options:

Python	Engines:

					Internal	(depricated)
It	is	faster	than	the	other	options	however	if	there	are	problems	with	the	scripts
you	are	running	or	debugging	they	could	affect	the	stability	of	PyScripter	and
could	cause	crashes.	Another	limitation	of	this	engine	is	that	it	cannot	run	or
debug	GUI	scripts	nor	it	can	be	reinitialized.		Since	version	3.1	the	internal
Python	engine	is	hidden	by	default.		This	is	controled	by	an	IDE	option.

					Remote
This	the	default	engine	of	PyScripter	and	is	the	recommended	engine	for	most
Python	development	tasks.	It	runs	in	a	child	process	and	communicates	with
PyScripter	using	rpyc.		Rpyc	is	bundled	with	the	PyScripter	destribution	and	no
separate	installation	is	required.		It	can	be	used	to	run	and	debug	any	kind	of
script.		However	if	you	run	or	debug	GUI	scripts	it	is	a	good	idea	to	reinitialize
the	engine	before	each	run.		This	is	done	automatically	by	default.

					Remote	Tk
This	Python	engine	is	specifically	designed	to	run	and	debug	Tkinter
applications	including	pylab	using	the	Tkagg	backend.	It	also	supports	running
pylab	in	interactive	mode.	The	engine	activates	a	Tkinter	mainloop	and	replaces
the	mainloop	with	a	dummy	function	so	that	the	Tkinter	scripts	you	are	running
or	debugging	do	not	block	the	engine.		You	may	even	develop	and	test	Tkinter
widgets	using	the	interactive	console.

					Remote	Wx
This	Python	engine	is	specifically	designed	to	run	and	debug	wxPython

https://github.com/tomerfiliba/rpyc
http://matplotlib.sourceforge.net/
http://www.wxpython.org/

applications	including	pylab	using	the	WX	and	WXAgg	backends.	It	also
supports	running	pylab	in	interactive	mode.		The	engine	activates	a	wx
MainLoop	and	replaces	the	MainLoop	with	a	dummy	function	so	that	the
wxPython	scripts	you	are	running	or	debugging	do	not	block	the	engine.		You
may	even	develop	and	test	wxPython	Frames	and	Apps	using	the	interactive
console.		Please	note	that	this	engine	prevents	the	redirection	of	wxPython
output	since	that	would	prevent	the	communication	with	Pyscripter.

							SSH	Engine
This	engine	type	runs	a	python	interpreter	in	a	remote	Windows	or	Linux
machine	or	inside	a	virtual	environment	(servers).		You	first	need	to	define	one
or	more	SSH	servers	as	explained	in	the	topic	Working	with	Remote	Files.		This
topic	also	describes	the	requirements	for	using	SSH	with	PyScripter.		Once	you
choose	this	type	of	engine	you	need	to	select	a	defined	SSH	server.	PyScripter
starts	a	python	engine	on	the	remote	server	using	SSH	and	communicates	with	it
using	rpyc.		You	can	then	run	and	debug	remote	or	local	scripts	on	the	SSH
server	as	if	the	scripts	were	running	locally.		You	can	also	use	python	running
inside	the	SSH	server	with	the	Python	Interactive	Interpreter.	While	debugging
tracing	into	remote	modules	works	transparently	for	the	user.		If	you	are	running
python	2.x	locally	the	remote	version	also	needs	to	be	2.x	and	similarly	if	you
run	python	version	3.x	locally	the	remote	version	needs	to	be	3.x.		Beyond	this
constraint,	the	local	and	remote	versions	do	not	need	to	be	the	same.

Note:	When	using	the	Tk	and	Wx	remote	engines	you	can	of	course	run	or
debug	any	other	non-GUI	Python	script.		However	bear	in	mind	that	these
engines	may	be	slightly	slower	than	the	standard	remote	engine	since	they	also
contain	a	GUI	main	loop.		Also	note	that	these	two	engines	override	the	sys.exit
function	with	a	dummy	procedure.

Debugging	Wx	and	Tkinter	scirpts	using	the	remote	Wx	and	Tk	engines
As	mentioned	above	the	Wx	and	Tk	engines	activate	a	main	loop	and	replace	the
MainLoop	with	a	dummy	function.	Therefore,	when	debugging	Gui	scripts	using
these	engines,	as	soon	as	you	reach	the	MainLoop	statement	debugging	ends	and
you	can	then	test	the	running	application	but	without	further	debugging	support.	
This	means	two	things:
					Breakpoints	and	debugging	would	work	up	to	the	point	the	script	enters	the
MainLoop	routine

http://matplotlib.sourceforge.net/
https://github.com/tomerfiliba/rpyc

					You	will	not	be	able	to	debug	event	triggered	code	using	these	two	engines.

To	debug	event	code	of	Wx	and	Tkinter	scripts	use	the	standard	remote	engine.	
You	may	wonder	why	should	you	ever	use	the	Wx	and	Tk	specific	remote
engines.	Here	is	a	few	reasons:
					These	engine	allow	you	to	interactively	develop	and	test	frames	and
widgets.		(possible	because	they	run	their	own	main	loop.

					They	support	running	pylab	in	interactive	mode	like	IPython	does,	which
was	a	request	from	many	Pyscripter	users.	

					There	is	no	need	to	reinitialize	the	engines	after	running	Gui	scripts.
					Pyscripter	does	not	stay	in	running	mode	while	the	Gui	Windows	are
showing	but	instead	it	returns	in	ready	mode	allowing	further	work	and	runs.

Troubleshooting
					If	the	remote	Python	engine	becomes	unresponsive	you	can	try	to	reinitialize
the	engine	from	the	Python	Engine	submenu	of	the	Run	menu	(also	available
in	the	context	menu	of	the	interactive	interpreter).

					If	Pyscripter	fails	to	start	or	appears	locked	when	starting	this	may	be	due	to
remote	python	engines	from	earlier	runs	still	being	active.		This	could	happen
after	a	Pyscripter	crash.		In	such	cases	you	should	kill	the	python	engines
using	the	Windows	Task	Managers.		Look	in	the	Processes	tab	for	processes
with	image	name	"python.exe".

Running	Scripts Previous	Top	Next

There	are	many	ways	of	running	Python	scripts	from	PyScripter:
					Debug	using	the	internal	integrated	Python	debugger	(depricated)
Set	any	breakpoints	you	need	and	then	from	the	Run	menu	select	the	Debug
command.		All	the	debugging	facilities	(step-into,	step-out	etc.)	are	available	in
this	case.		When	the	execution	stops	at	a	breakpoint	or	while	stepping	through
the	code	you	can	use	the	Call	Stack	window,	the	Variables	window	and	the
Watches	window	to	better	understand	the	behavior	of	your	code.		All	output	is
redirected	to	the	Interpreter	window.		You	can	also	use	the	Interpreter	Window
while	debugging	for	running	Python	code	in	the	context	of	the	Call	Stack	frame
at	which	the	execution	stopped	for	example	if	you	want	to	change	the	value	of	a
variable.

You	can	also	start	debugging	by	using	the	"Step-Into"	and	the	"Run	to	Cursor"
commands	of	of	the	Run	menu.		In	that	case	executions	stops	at	the	first
executable	statement	or	the	current	line	of	the	active	module.
												
					Run	without	debugging	using	the	internal	Python	interpreter
(depricated)

Select	the	Run	command	from	the	Run	menu.		All	output	is	again	redirected	to
the	Interpreter	Window.

					Run	or	debug	using	one	of	the	remote	Python	engines
Select	an	appropriate	remote	Python	engine	from	the	Python	Engine	submenu	of
the	Run	menu.	
Then	run	or	debug	as	when	using	the	internal	Python	engine.		See	the	Remote
Python	Engine	topic	for	details.

					Run	externally	from	PyScripter
Select	the	External	Run	command	from	the	Run	menu.		Extensive	customization
(choice	of	interpreter,	command-line,	environment	variables	etc.)	is	available
through	the	Configure	External	Run	command.		The	various	settings	are	the
same	as	in	the	External	Tools	configuration.		By	default	output	is	captured	and
shown	at	the	Output	window.

For	the	first	two	cases	you	can	set	command	line	parameter	using	the	Command
Line	command.	

In	addition,	using	the	Project	Explorer,	you	can	create	multiple	Run
Configurations	with	some	more	advanced	options.
		

Run	Configurations Previous	Top	Next

Using	the	Project	Explorer,	you	can	create	multiple	Run	Configurations	which
offer	some	more	advanced	options	than	those	available	when	you	run/debug	the
active	script.		You	can	create	run	configurations	by	selecting	"Add	Run
Configuration"	from	the	context	menu	of	the	"Run	Configurations"	node	of	the
Project	Explorer.		The	following	dialog	box	is	then	displayed.

Here	follows	an	explanation	of	the	main	fields:

Description	(optional):
A	short	description	of	the	purpose	of	this	run	configuration.		It	is	currently	only
used	as	a	hint,	when	hover	the	mouse	on	top	of	the	run	configuration	in	the
project	explorer.

File	Name:
The	name	of	the	script	you	would	like	to	run.		You	can	select	a	local	or	remote
file	using	the	buttons	next	to	the	edit	box.

Parameters:
Command	line	parameters	that	are	placed	in	the	argv	list	of	the	Python	sys
module	before	running	or	debugging	scripts.		Note	that	the	script	name	is
automatically	inserted	as	the	first	argument	and	should	not	be	specified	here.

Working	Directory:
If	specified	the	current	directory	will	be	changed	to	this	one	before	running	the
script	and	restored	back	to	the	original	one	at	the	end	of	the	run.

Python	Engine:
The	engine	with	which	you	would	like	to	run	or	debug	the	script.

Reinitialze	Before	Run;
If	checked,	the	Python	engine	will	be	reinitialized	before	running	the	script.	
This	is	necessary	with	some	GUI	scripts.		This	option	is	not	available	with	the
internal	Python	engine.

Save	Output:
If	checked	the	output	of	the	script	will	be	saved	to	the	specified	file.

Output	File	Name:
The	path	of	the	output	file.

Append	to	File:
If	checked	output	will	be	appended	to	that	of	earlier	runs.		Otherwise	the	most
recent	output	will	overwrite	earlier	output.

Set	External	Run	properties:
Press	this	button	to	specify	the	options	for	running	the	script	with	an	external
Python	interpreter.	The	various	settings	are	the	same	as	in	the	External	Tools
configuration.		By	default	output	is	captured	and	shown	at	the	Output	window.

In	entering	the	File	Name,	Parameters,	Working	Directory	and	Output	file	name
you	can	use	parameters	and	modifiers.

Executing	Run	Configurations
After	defining	a	Run	Configuration	you	can	execute	it	in	three	different	ways,	by
selecting	the	appropriate	command	from	its	context	menu	in	the	Project
Explorer:

					Run
					Debug
					External	Run

After	the	first	execution	you	can	use	the	commands
					Run	last	script	(Shift+Ctrl+F9)
					Debug	last	script	(Shift+F9)
					Run	last	script	externally(Shift+Alt+F9)
to	run/debug	the	last	run	configuration	again.

This	commands	are	available	from	the	toolbar	of	the	Project	Explorer.

		

Post-Mortem	Analysis Previous	Top	Next

If	your	program	raises	an	exception	and	stops,	you	can	use	the	Post-Mortem
command	from	the	Run	Menu	to	analyse	the	reason	of	failure.		In	this	mode	you
can	use	the	debugger	windows	(Call	Stack,	Variables,	Watches)	to	examine	the
state	of	execution	when	the	exception	occurred	and	you	can	also	issue	interpreter
commands	in	the	context	of	the	selected	frame	of	the	Traceback.	To	exit	the
Post-Mortem	analysis	you	can	use	the	"Abort	Debugging"	command.
The	Post-Mort	command	is	available	only	when	the	last	script	that	you	ran	or
debugged	exited	with	an	exception	an	until	the	next	time	you	run	or	debug	a
script.

You	may	also	set	the	IDE	option	"Post	mortem	on	exception"	to	automatically
enter	the	Post-Mortem	when	a	script	exits	with	an	exception.

	

Using	matplotlib	with	PyScripter Previous	Top	Next

With	the	new	Remote	Python	Engines	you	can	now	run	matplotlib	in	interactive
mode.		Here	is	how:
1)		Choose	the	right	Python	engine	(Run,	Python	Engine	menu	option)	for	the
backend	of	your	choice		e.g.		Remote	engine	Tk	for	the	"TkAgg"	backend	or
Remote	Engine	wx	for	the	"WX"	and	"WxAggg"	backends.

2)	Assuming	that	you	have	selected	the	Remote	Engine	wx,	issue	the	following
commands	in	the	interpreter:

>>>	import	matplotlib
>>>	matplotlib.interactive(True)
>>>	matplotlib.use("WXAgg")
>>>	from	matplotlib.pylab	import	*
>>>	plot([1,2,3])
>>>	xlabel('time	(s)')

You	can	set	the	backend	and	interactive	mode	in	the	matplotlibrc	file.	If	this	is
done,	the	following	is	sufficient	for	the	above	example:

>>>	from	pylab	import	*
>>>	plot([1,2,3])
>>>	xlabel('time	(s)')

3)		Issue	more	pylab	commands,	or	close	the	pylab	window	and	call	plot	again
for	a	new	plot,	etc.

Sample	script	by	heylam

#Tested	on:	PyScripter	1.9.9.2,	Matplotlib	0.91.2
#Assumed	setup:
#In	site-packages\matplotlib\mpl-data\matplotlibrc	set	backend	to	WXAgg.

def	demoplot():

http://matplotlib.sourceforge.net/

				'''This	represents	your	work'''
				close('all')	#closes	figures
				t	=	c_[0:1:20j]
				s	=	cos(2*pi*t)
				for	ampl	in	c_[0.1:1:10j]:
								plot(t,	ampl*s,	'o-',	lw=2)
				xlabel('time	(s)')
				ylabel('voltage	(mV)')
				title('demo',	color='b')
				grid(True)
				draw()	#update	figure	if	already	shown

#Select	a	demonstration:
if	0:		#Normal	session
				#Starts	non-interactive.
				#Figures	have	toolbar	for	zooming	and	panning.
				#Disadvantage:	You	can't	re-run	your	script	with	PyScripter	Remote
				#	engine	without	first	reinitializing	the	Remote	interpreter.
				#Best	use	Remote(Wx)	engine.	This	also	allows	interactive	mode	using
				#	ion()	and	ioff().	For	disadvantages:	see	the	PyScripter	help	file.

				#from	numpy	import	*
				#from	scipy	import	*		#includes	numpy
				from	pylab	import	*			#includes	scipy

				demoplot()
				show()	#Open	the	figure,	let	figure	GUI	take	over.
								#This	should	be	last	line	of	script.
								#You	can	also	type	this	at	command	line	after	the	script	exits.

				if	0:
								ion()	#turns	interactive	mode	on			(needs	Remote(Wx)	engine!)
								ylabel('interactive	modification')
								plot(rand(200),	rand(200),	'go')
								ioff()	#turns	interactive	mode	off

elif	0:		#Same	but	use	WX	instead

				try:
								type(matplotlib)
				except	NameError:
								import	matplotlib
								matplotlib.use('WX')
								from	matplotlib.pylab	import	*

				demoplot()
				show()	#Open	the	figure,	let	figure	GUI	take	over.
								#This	should	be	last	line	of	script.
								#You	can	also	type	this	at	command	line	after	the	script	exits.

elif	0:		#Same	but	start	as	interactive	session,	needs	Remote(Wx)engine.
				try:
								type(matplotlib)
				except	NameError:
								import	matplotlib
								matplotlib.interactive(True)
								from	matplotlib.pylab	import	*

				demoplot()
				show()	#Open	the	figure,	let	figure	GUI	take	over.
								#This	should	be	last	line	of	script.
								#You	can	also	type	this	at	command	line	after	the	script	exits.

elif	0:#pdf	output,	allows	use	of	Remote	engine	without	re-initialization.
				#Disadvantage:	no	figure	toolbar.
				#WARNING:	close	the	file	in	acrobat	reader	before	the	next	run.
				#(Maybe	other	pdf	viewers	don't	block	file	overwrite?)
				try:
								type(matplotlib)
				except	NameError:
								import	matplotlib
								matplotlib.use('PDF')
								from	pylab	import	*

				demoplot()

				filename='demo_plot'
				savefig(filename)

				#view	the	file:
				import	win32api
				win32api.ShellExecute(0,	"open",	filename+'.pdf',	None,	"",	1)

elif	1:#png	output,	allows	use	of	Remote	engine	without	re-initialization.
				#Disadvantage:	no	figure	toolbar.
				#Tip:	make	Irfanview	your	standard	viewer.
				from	pylab	import	*

				demoplot()
				filename='demo_plot'
				savefig(filename)
				#view	the	file:
				import	win32api
				win32api.ShellExecute(0,	"open",	filename+'.png',	None,	"",	1)

Debugging	Django	Applications Previous	Top	Next

Here	is	how	you	can	debug	Django	applications	with	Pyscripter	in	six	simple
steps.
1.			In	the	File	explorer	locate	the	root	directory	of	your	Django	application.		You

may	want	to	right	click	on	the	directory	name	and	select	File	Explorer,
Explore	here.

2.			Open	the	project	files	in	Pyscripter	(e.g.,	models,py,	views.py	etc.)	and	set
whatever	breakpoints	you	want.

3.			Select	Run,	Command	Line	Parameters...	and	set	the	command	line	to
"runserver	--noreload".		Also	check	the	"Use	Command	line"	checkbox.

4.			Make	sure	the	remote	engine	is	selected	(Run,	Python	Engine,	Remote).
5.			Open	the	manage.py	file	and	press	the	debug	button	(or	press	F9).
6.			Start	a	web	browser	and	test	your	application.			Pyscripter	should	now	stop	at

whatever	breakpoints	you	have	set	and	you	can	use	the	various	debugging
facilities	(call	stack,	variables,	interpreter	prompt	etc.)

To	stop	debugging,	right-click	on	the	interpreter	window	and	select	"Reinitialize
Interpreter",	then	go	to	the	browser	and	reload	the	document.

http://www.djangoproject.com/

Command	Line Previous	Top	Next

You	can	specify	command	line	parameters	for	scripts	running	internally	or	being
debugged	via	the	Command	Line	Parameters...	command	of	the	Run	menu.	
This	command	invokes	the	following	dialog	in	which	you	specify	the	command
line	parameters	as	well	as	enable	or	disable	their	use.

The	small	button	with	the	down	arrow	next	to	the	edit	field	provides	access	to
the	most	recently	used	command	line	parameters.

When	command	line	parameters	are	enabled	the	provided	parameters	are	placed
in	the	argv	list	of	the	Python	sys	module	before	running	or	debugging	scripts.	
Note	that	the	script	name	is	automatically	inserted	as	the	first	argument	and
should	not	be	specified	here.		In	entering	the	command	line	you	can	use
parameters	and	modifiers.

Note	that:
				Shft+Ctrl+P	provides	Parameter	completion
				Shft+Ctrl+M	provides	Modifier	completion

Unit	Testing Previous	Top	Next

PyScripter	provides	important	support	for	unit	testing.		The	support	comes	in
two	levels:
a)		Automatic	generation	of	test	scripts

Use	the	Unit	Test	Wizard	command	from	the	Tools	menu	to	generate	the	basic
structure	of	a	test	script.		This	command	invokes	the	following	dialog	box:

The	source	code	of	the	active	module	is	scanned	and	its	functions	and	methods
are	displayed.	You	can	select	(check)	the	functions	and	methods	for	which	you
want	to	generate	tests	and	then	press	OK.		A	test	script	based	on	the	unittest
standard	Python	module	is	automatically	generated	for	you.		You	can	then	write
the	code	for	each	test	that	is	generated.

b)		GUI	for	unit	testing

From	the	View	Menu	select	Unit	Tests	to	show	the	Unit	Tests	window	(see	this
topic	for	a	detailed	description).		This	window	provides	an	advanced	user
interface	for	running	unit	tests	based	on	Python's	unittest	standard	module.

Note:
To	use	this	GUI	to	run	tests	from	multiple	Python	files	(for	example	tests1.py,
tests2.py	and	tests3.py)	create	a	new	script	with	the	following	content:

from	tests1	import	*
from	tests2	import	*
from	tests3	import	*

Then	use	the	Unit	Tests	GUI	with	that	file.
		

Editor	Features Previous	Top	Next

The	editing	component	of	PyScripter	is	based	on	Synedit.		Synedit	is	a	highly
customizable	that	offers	a	large	number	of	features	including:

				Syntax	highlighting	of	Python	files
					Code	folding
				Drag	and	drop	editing
				Line	numbers
				Numbered	bookmarks
				Practically	unlimited	file	size
				Automatic	detection	of	Unix	and	Mac	files
				MBCS	(multi-byte	character	set)	support

PyScripter	has	adapted	Synedit	for	the	purpose	of	editing	Python	files	and	has
added	the	following	features:

				Context	aware	indentation	of	source	code	lines
				Code	Completion
				Brace	Highlighting
				Python	source	code	utilities	((un)tabify,	(un)comment,	(un)indent)
				Context	sensitive	help	on	Python	keywords
				Parameterized	Code	Templates
				Accept	files	dropped	from	Explorer
				File	change	notification
				Detecting	loading/saving	UTF-8	encoded	files
				Converting	line	breaks	(Windows,	Unix,	Mac)

Click	below	to	find	out	about
				Customizing	Editor	Options
				Editor	Shortcuts

		

http://synedit.sf.net

Code	Completion	and	Call	Tips Previous	Top	Next

Code	completion	and	call	tips	are	available	both	in	the	editor	windows	and	in	the
interactive	Python	interpreter	window.
Code	Completion

When	you	type	a	qualified	identifier	(containing	".",	e.g.	sys.modules)	as	soon	as
you	press	the	"."	and	after	a	short	delay	a	list	with	all	available	members	pops	up
from	which	you	can	select	using	the	mouse	or	filter	by	typing	the	first	few
letters.		The	current	selection	in	this	list	is	copied	to	the	interactive	interpreter
window	as	soon	as:

				you	press	ENTER
				you	press	TAB
				you	press	".",	"(",	")",	"[",	"]"	or	space.

You	can	hide	the	code	completion	list	by	pressing	the	ESC	key.

You	may	also	activate	code	completion	at	any	point	either	before	you	start
writing	an	identifier	name	or	after,	as	well	as	before	typing	the	'.'		or	after,	by
pressing	the	keyboard	shortcut	Ctrl+SPACE.		At	all	times	you	will	get	a
filtered	list	of	the	names	which	are	within	the	scope	of	the	position	at	which	you
are	within	a	module.

Support	is	also	provided	for	the	completion	of	the	import	statement.	e.g.	(^
stands	for	pressing	Ctrl+Space)

import	^
import	in^
import	inspect	as	isp,	cty^
from	^
from	inspect	import	g^
from	inspect	import	a	as	b,	g^
from	..modname	import	a	as	b,	g^
from	..	import	modname	as	m,	another^

Call	tips

When	you	open	a	left	bracket	"("	after	typing	a	function	name	or	a	class	name,
and	after	a	short	delay,	PyScripter	pops	up	a	call	tip	(hint	window)	with
information	about	the	expected	parameters	of	the	function	you	are	entering	as
well	as	the	doc	string	of	the	function	if	it	is	available.		This	call	tip	window	stays
on	until	you	complete	entering	the	function	parameters	and	type	the	right
bracket.		You	can	hide	a	call	tip	by	clicking	on	it).

You	may	also	activate	call	tips	at	any	point	after	you	started	writing	the
parameters	of	a	function,	by	pressing	the	keyboard	shortcut
Shift+Ctrl+SPACE.	

Note:	The	code	and	parameter	completion	should	be	one	of	the	best	you	can	find
in	any	Python	IDE.		However,if	you	find	that	code	and	parameter	completion	is
not	very	accurate	for	certain	modules	and	packages	such	as	wxPython	and	scipy
you	can	achieve	near	perfect	completion	if	you	add	these	packages	to	the
"Special	Packages"	IDE	option	(comma	separated	list).	By	default	it	is	set	to
"os,	wx,	scipy".	Special	packages	are	imported	on	demand	to	the	interpreter
instead	of	scanning	their	source	code.

Editor	shortcuts Previous	Top	Next

The	following	table	presents	the	editor	commands	and	the	default	associated
shortcuts.	These	shortcuts	can	be	changed	using	Editor	Options.		For	further	IDE
commands	and	keyboard	shortcuts	see	Keyboard	Shortcuts.
		

CommandShortcut Description
Block
Indent

Shft+Ctrl+I Indent	selection

Block
Unindent

Shft+Ctrl+U Unindent	selection

Clear	All 	 Delete	everything
Column
Select

Shft+Ctrl+C Set	Column	selection	mode

Context
Help

F1 Context	Sensitive	Help

Copy Ctrl+C
Ctrl+Ins

Copy	selection	to	Clipboard

Copy	Line
Down

Shft+Alt+Down Copy	line(s)	down

Copy	Line
Up

Shft+Alt+Up Copy	line(s)	up

Cut Ctrl+X
Shft+Del

Cuts	selection

Delete
BOL

	 Delete	from	cursor	to
beginning	of	line

Delete 	 Delete	selection
Delete
Char

Del Delete	next	char

Delete
EOL

Shft+Ctrl+Y Delete	from	cursor	to	end	of
line

Delete
Last	Char

Bksp Delete	last	char	(i.e.	backspace
key)

Delete
Last	Word

Ctrl+Bksp Delete	from	cursor	to	start	of
word

Delete
Line

Ctrl+Y Delete	current	line

Delete Ctrl+T Delete	from	cursor	to	end	of

Word word
Down Down Move	cursor	down	one	line
Editor
Bottom

Ctrl+End Move	cursor	to	end	of	file

Editor	Top Ctrl+Home Move	cursor	to	start	of	file
Go	To
Marker	i

Ctrl+i Go	to	numbered	bookmark	i
(i=0..9)

Insert	Line Ctrl+N Break	line	at	current	position,
leave	caret

Insert
Mode

	 Set	editor	mode	to	insert	mode

Left Left Move	cursor	left	one	char
Line	Break Ctrl+M Break	line	at	current	position,

move	caret	to	new	line
Line	End End Move	cursor	to	end	of	line
Line
Select

Shft+Ctrl+L Set	selection	mode	to	Line

Line	Start Home Move	cursor	to	beginning	of
line

Lower
Case

Ctrl+K,	Ctrl+L Change	word	at	cursor	or
selection	to	lower	case

Match
Bracket

Ctrl+] Go	to	matching	bracket

Select	to
Bracket

Shift+Ctrl+] Go	to	matching	bracket
extending	the	selection

Move	Line
Down

Alt+Down Move	line(s)	down

Move	Line
Up

Alt+Up Move	line(s)	up

Normal
Select

Shift+Ctrl+N Set	selection	mode	to	Normal

Overwrite
mode

	 Set	editor	mode	to	overwrite
mode

Page
Bottom

Ctrl+PgDn Move	cursor	to	bottom	of	page

Page
Down

PgDn Move	cursor	down	one	page

Page	Left 	 Move	cursor	left	one	page
Page	Right 	 Move	cursor	right	one	page

Page	Top Ctrl+PgUp Move	cursor	to	top	of	page
Page	Up PgUp Move	cursor	up	one	page
Paste Ctrl+V

Shft+Insert
Paste	Clipboard	to	current
position

Redo Shift+Ctrl+Z
Shft+Alt+BkSp

Perform	redo	if	available

Right Right Move	cursor	right	one	char
Scroll
Down

Ctrl+Down Scroll	down	one	line	leaving
cursor	position	unchanged

Scroll	Left 	 Scroll	left	one	char	leaving
cursor	position	unchanged

Scroll
Right

	 Scroll	right	one	char	leaving
cursor	position	unchanged

Scroll	Up Ctrl+Up Scroll	up	one	line	leaving
cursor	position	unchanged

Sel	Down 	 Extend	selection	one	line	down
Sel	Editor
Bottom

Shft+Ctrl+End Extend	selection	to	the	end	of
file

Sel	Editor
Top

Shft+Ctrl+Home Extend	selection	to	the	start	of
file

Sel	Left Shft+Left Extend	selection	one	char	left
Sel	Line
End

Shft+End Extend	selection	to	the	end	of
line

Sel	Line
Start

Shft+Home Extend	selection	to	the	start	of
line

Sel	Page
Bottom

Shft+Ctrl+PgDn Extend	selection	to	the	bottom
of	the	page

Sel	Page
Down

Shft+PgDn Extend	selection	one	page
down

Sel	Page
Left

	 Extend	selection	one	page	left

Sel	Page
Right

	 Extend	selection	one	page	right

Sel	Page
Top

Shft+Ctrl+PgUp Extend	selection	to	the	top	of
the	page

Sel	Page
Up

Shft+PgUp Extend	selection	one	page	up

Sel	Right Shft+Right Extend	selection	one	char	right
Sel	Up Shft+Up Extend	selection	one	line	up

Sel	Word
Left

Shft+Ctrl+Left Extend	selection	one	word	to
the	left

Sel	Word
Right

Shft+Ctrl+Right Extend	selection	one	word	to
the	right

Select	All Ctrl+A Select	all	text	in	the	editor
Set	Marker
i

Shft+Ctrl+i Set	numbered	bookmark	i	at
the	current	position	(i=0..9)

Shift	Tab Shft+Tab Action	dependent	on
indentation	options

Tab Tab Insert	tab	or	spaces	depending
on	editor	options

Title	Case Ctrl+K,	Ctrl+T Change	word	at	cursor	or
selection	to	title	case

Toggle
Case

	 Toggle	the	case	of	the	word	at
cursor	or	selection

Toggle
Mode

Ins Toggle	insert/overwrite	mode

Undo Ctrl+Z
Alt+Bksp

Undo	last	action

Up Up Move	cursor	up	one	line
Upper
Case

Ctrl+K,	Ctrl+U Change	word	at	cursor	or
selection	to	upper	case

Word	Left Ctrl+Left Move	cursor	left	one	word
Word
Right

Ctrl+Right Move	cursor	right	one	word

Zoom	in Alt+'+' Increase	the	font	size	of	the
editor

Zoom	out Alt+'-' Decrease	the	font	size	of	the
editor

Code	folding	shortcuts
Fold	All Shft+Ctrl+- Fold	all	ranges

Unfold	All Shft+Ctrl+/ Unfold	all	ranges
Fold
Nearest

Ctrl+/ Fold	nearest	range

Unfold
Nearest

Shft+Ctrl+/ Unfold	nearest	range

Fold
Regions

	 Fold	all	regions

Unfold
Regions

	 Unfold	all	regions

Fold	Level
1

Ctrl+K	Ctrl+1 Fold	top	level	ranges	(level	1)

Unfold
Level	1

Shft+Ctrl+K
Shft+Ctrl+1

Unfold	top	level	ranges	(level
1)

Fold	Level
2

Ctrl+K	Ctrl+2 Fold	level	2	ranges

Unfold
Level	2

Shft+Ctrl+K
Shft+Ctrl+2

Unfold	level	2	ranges

Fold	Level
3

Ctrl+K	Ctrl+3 Fold	level	3	ranges

Unfold
Level	3

Shft+Ctrl+K
Shft+Ctrl+3

Unfold	level	3	ranges

Fold
Functions

	 Fold	all	functions	(IDE
command)

Unfold
Functions

	 Unfold	all	functions	(IDE
command)

Fold
Classes

	 Fold	all	classes	(IDE
command)

Unfold
Classes

	 Unfold	all	classes	(IDE
command)

Other	shortcuts	available	in	the	editor
Code
completion

Ctrl+Space Start	code	completion

Call	tips Shft+Ctrl+Space Show	a	call	tip

		

Code	Templates Previous	Top	Next

Code	templates	are	snippets	of	code	that	can	be	inserted	in	the	editor.		Each
template	has	a	short	name,	a	description	and	the	associated	text.		The	text	of	a
code	template	can	contain	parameters	which	are	automatically	expanded	when
the	text	is	inserted.	For	example	the	"Python	Module	Header"	shown	below
contains	the	$[ActiveDoc-Name]	and	other	parameters.		If	the	character	"|"	is
present	in	the	template,	after	the	insertion	of	the	template	text,	the	cursor	is
placed	at	the	position	of	that	character	and	the	character	is	deleted.
How	to	insert	a	code	template	in	the	editor:

Type	the	template	name	and	press	the	code	template	shortcut	Ctrl-J.		If	you	do
not	remember	the	name	of	template	just	press	Ctrl-J	and	select	from	the	pop-up
list.

How	to	create/modify	code	templates:

Select	"Customize	Templates..."	from	the	Tools|Options	menu	which	displays
the	Code	Templates	dialog	shown	below.

Code	and	Debugger	Hints Previous	Top	Next

The	Pyscripter	editor	supports	code	and	debugger	hints.		These	hints	are
displayed	when	you	let	the	mouse	hover	on	a	Python	code	identifier.	
a)		Code	Hints

These	hints	display	information	about	the	definition	of	the	identifier	under	the
mouse	i.e.	module	name	and	line	number	in	which	the	identifier	is	defined.	
Additional	information	is	displayed	according	to	the	type	of	the	identifier,	e.g.
parameters	of	functions,		superclasses	of	classes	or	the	type	of	variables.		When
the	source	code	of	the	module	in	which	the	identifier	was	defined	is	available,
the	hint	presents	a	hyperlink	which,	if	clicked,	takes	you	to	the	definition.		This
works	in	a	similar	way	to	the	Find	Definition	feature	and	and	the	found
definition	is	added	to	the	Find	Definition	browsing	history.	

b)	Debugger	hints

While	debugging	code	hints	are	not	available,	but	instead	debugger	hints	are
displayed.	These	hints	show	the	value	and	type	of	the	identifier	under	the	cursor.
Debugger	hints	work	also	with	expressions	e.g.	sys.path[1].		For	debugger
expression	hints	place	the	cursor	on	a	closing	parenthesis	')'	or	square	bracket	']'

Note:		Code	and/or	debugger	hints	can	be	disabled	from	the	IDE	options	dialog
box.

Encoded	Python	Source	Files Previous	Top	Next

PyScripter	supports	the	PEP	263	fully.		The	editor	internally	uses	Unicode
strings.		When	saved,	Python	files	can	be	encoded	in	either	utf-8	or	ansi
encoding.

UTF-8	encoded	source	files

You	can	select	this	encoding	from	the	File	Formats	submenu	of	the	Edit	menu.	
From	that	menu	you	can	select	whether	UTF-8	encoded	source	files	include	the
BOM	UTF-8	signature	which	is	detected	by	the	Python	interpreter.		This
signature	is	also	detected	by	PyScripter	when	a	file	is	loaded	and	other	Windows
editors.	Although	it	is	not	necessary	you	are	advised	to	include	an	encoding
comment	such	as

#	-*-	coding:	utf-8	-*-

as	the	first	or	second	line	of	the	python	script.		The	advantage	of	using	UTF-8
encoded	files	is	that	they	can	run	without	modification	in	other	computers	with
different	default	encoding.	When	using	UTF-8	encoding	you	should	specify	all
strings	that	are	not	plain	ascii	as	python	unicode	stings	by	adding	the	prefix	'u'.

ANSI	encoded	files

If	the	UTF-8	flag	of	the	File	Formats	submenu	of	the	Edit	menu	is	not	selected,
then	the	file	is	treated	as	an	ANSI	string.				To	define	a	specific	source	code
encoding,	a	magic	comment	must	be	placed	into	the	source	files	either	as	first	or
second	line	in	the	file,	e.g.:			

										#!/usr/bin/python
										#	-*-	coding:	<encoding	name>	-*-

More	precisely,	the	first	or	second	line	must	match	the	regular	expression
"coding[:=]\s*([-\w.]+)".	The	first	group	of	this	expression	is	then	interpreted	as
encoding	name.	If	the	encoding	is	unknown	to	Python,	an	error	is	raised	during
compilation.	There	must	not	be	any	Python	statement	on	the	line	that	contains

http://www.python.org/dev/peps/pep-0263/

the	encoding	declaration.		If	such	a	comment	is	not	present	then	the	default
system	encoding	is	assumed.		PyScripter	detects	such	comments	when	it	loads
Python	Source	files	and	decodes	them	to	Unicode	using	the	appropriate
encoding.

The	default	python	encoding	is	controlled	by	a	Python	file	called	"site.py"	
which	is	located	in	the	python	lib	directory	(see	function	"setencoding"	in
site.py).	The	default	encoding	when	python	is	installed	is	ascii,	which	does	not
support	non-ascii	characters	(character	value	greater	than	127).		If	you	are
planning	to	use	non-ascii	strings	in	Python	without	using	the	utf-8	encoding,	you
will	need	to	modify	site.py	and	enable	support	for	a	locale	aware	default	string
encoding.

IDE	encoding	options	for	new	files

Pyscripter	provides	two	IDE	options	controlling	the	encoding	of	new	files:

					Default	line	breaks	for	new	files
					Default	encoding	for	new	files

IDE	option	for	detecting	UTF-8	encoding	when	opening	files

Another	IDE	option	(Detect	UTF-8	when	opening	files)	controls	whether
PyScripter	attempts	to	detect	utf-8	encoding	when	opening	files	without	the
BOM	mark.		This	detection	is	done	by	analyzing	the	first	4000	characters	of	the
file	and	is	imperfect.		It	only	applies	to	non-Python	files	since	utf-8	encoded
Python	files	are	required	to	have	either	the	BOM	mark	or	an	encoding	comment.
		

Editor	Fonts Previous	Top	Next

Pyscripter	requires	the	use	of	monospace	or	non-proportional	fonts.		If	you	find
the	choice	of	fonts	available	in	your	Windows	system	limited	you	may	want	to
have	a	look	at	http://www.lowing.org/fonts/.		Microsoft	has	also	produced	a	new
attractive	monospace	font	called	Consolas	available	from	Microsoft.		Please	note
Consolas	can	only	be	installed	if	Visual	Studio
is	also	installed.		Another	site	with	fixed	width	fonts	you	may	want	to	try	is
http://www.proggyfonts.com/.
And	by	the	way	if	you	are	using	an	LCD	screen	you	may	want	to	turn	Clear
Type	on.		To	do	so	and	fine	tune	Clear	Type	visit
http://www.microsoft.com/typography/cleartype/tuner/Step1.aspx.	(You	need	to
visit	with	Microsoft	Explorer).		Clear	Type	can	make	a	huge	difference!

I	personally	use	Consolas	font	size	10	with	Clear	Type	turned	on.	(screenshot)

		

http://www.lowing.org/fonts/
http://www.microsoft.com/downloads/details.aspx?familyid=22e69ae4-7e40-4807-8a86-b3d36fab68d3&displaylang=en
http://www.proggyfonts.com/
http://www.microsoft.com/typography/cleartype/tuner/Step1.aspx

Side-by-Side	File	Editing Previous	Top	Next

You	initiate	side-by-side	file	editing	by	using	the	"Split	Workspace"	commands
of	the	View	menu.	These	commands	add	a	second	set	of	editor	tabs	to	achieve	a
layout	such	as	the	following:

You	can	also	show	two	files	side-by-side	one	above	the	other	(horizontally
aligned).

You	can	add	tabs	to	the	secondary	tab	set	in	a	number	of	ways:
					Drag&drop	tabs	from	the	primary	tab	set	(works	in	the	opposite	direction).
					Open	files	while	the	secondary	tabs	is	active.

					Use	the	Recent	Files	menu	while	the	secondary	tab	set	is	active.
					Use	the	context	menu	of	the	secondary	tab	set	to	create	new	modules.

When	you	hide	the	secondary	editor	tab	set	all	contained	tabs	are	moved	to	the
primary	tab	set.	If	you	just	want	to	maximize	the	editing	space	of	the	primary	tab
set	you	can	temporarily	hide	the	secondary	tabs	by	double-clicking	the	handle	of
the	splitter	between	the	two	tab	sets.		You	can	later	restore	the	previous	layout	by
double-clicking	the	handle	of	the	splitter	again.

The	layout	of	the	secondary	workspace	and	the	contained	tabs	are	persisted
across	PyScripter	invocations.

		

Working	with	Remote	Files Previous	Top	Next

Pyscripter	supports	working	with	remote	files	i.e.	files	that	may	reside	in
different	computers	(servers)	including	Windows	and	Linux	machines.	You	can
open,	edit	run	debug	and	save	back	these	files.		They	work	seamlessly	with	other
PyScripter	features	such	as	the	Recent	File	list,	project	files,	and	Run
Configurations.	

Requirements

To	use	PyScripter	with	remote	files	your	computer	need	to	have	SSH	client
capabilities	at	the	computer	running	PyScripter	and	an	SSH	server	running	on
the	remote	computer.		SSH	is	a	widely	used	network	protocol	for	securely
connecting	to	remote	machines.		Windows	10	since	the	April	2018	update
includes	SSH.	With	earlier	versions	of	Windows	10	you	need	to	manually	enable
SSH	through	"Enable	Optional	Features".		For	other	versions	of	Windows	you
can	install	the	latest	version	of	OpenSSH	for	Windows	using	the	provided
installation	instructions.

Alternatively	on	the	client	side	you	can	use	the	popular	SSH	client	PuTTY.

Configuring	the	SSH	client	side

Pyscripter	requires	password-less	authentication	using	rsa	keys.		You	need	to
create	the	rsa	keys	and	add	them	to	the	ssh-agent	service	which	needs	to	be
running.		Your	public	key	needs	to	be	added	to	the	~/.ssh/authorised_keys	file	on
the	server	side.		Instructions	are	provided	here.

Configuring	the	SSH	server	side

The	SSH	server	service	(sshd)	and	SSH	agent	service	(ssh-agent)	need	to	be
running	on	the	server	side.		This	is	most	likely	true	for	Linux	machines.		In
Windows	machines	you	need	to	start	the	server	using	the	

https://github.com/PowerShell/Win32-OpenSSH
https://github.com/PowerShell/Win32-OpenSSH/wiki/Install-Win32-OpenSSH
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://github.com/PowerShell/Win32-OpenSSH/wiki/ssh.exe-examples

				net	start	sshd
				net	start	ssh-agent
commands.			You	can	also	configure	these	services	to	run	automatically	at	login
time.

Testing	the	SSH	connection

From	a	command	prompt	issue	the	following	command:
				ssh	username@hostname
where	username	is	the	user	name	on	the	server	side	and	host	name	is	the	IP
address	of	the	SSH	server.		If	this	works	and	you	see	the	server	shell,	then
PyScripter	is	ready	to	use	the	Server.

Opening	remote	files

You	can	open	remote	files	using	the	File	Menu.		You	are	then	shown	the	Open
Remote	File	dialog	shown	below:

In	this	dialog	box	you	provide	the	path	to	the	remote	file	and	select	an	SSH
server	from	a	drop-down	list.		You	can	also	setup	your	SSH	servers	by	pressing
the	button	next	to	the	SSH	server	field.			In	PyScripter	remote	file	names	are
shown	in	the	UNC	format	\\server	name\filepath.

Setting	up	SSH	servers

In	this	dialog	box	you	add	remove	or	modify	SSH	servers.		

Editing	SSH	server	information

For	each	SSH	server	you	need	to	provide	a	Name	that	will	be	used	to	identify	the
SSH	server,	as	well	as	the	user	name	and	host	name	(or	IP	address)	that	will	be
used	to	connect	to	the	server.		You	also	need	to	provide	the	path	to	the	scp	and
ssh	commads	and	the	command	that	will	be	used	to	execute	Python	on	the	server
.	Optionally	you	can	provide	additional	SSH	-o	options	that	will	be	passed	to	the
ssh	and	scp	commands.		For	standard	use	leave	this	field	empty.		If	you	want	to
use	password	authentication	(only	with	Putty	-	see	below)	you	also	need	to
check	the	Password	Needed	option.

Instead	of		OpenSSH	for	Windows	you	can	use	PuTTYas	the	SSH	client.		See
below	a	typical	PuTTY	configuration	of	an	SSH	server.		The	example	uses

https://github.com/PowerShell/Win32-OpenSSH
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html

password	authentication,	but	you	can	use	a	private/public	key	combination
instead	for	password-free	authentication.			In	that	case	you	need	to	use	puttygen
to	create	the	private/public	key	and	add		-i	path_to_your_private_key	to	the	scp
and	ssh	options	or	instead	run	pagent	and	add	to	it	the	private	key.		You	also
need	to	setup	your	server	to	accept	the	public	key	by	appending	it	to	the
~/.ssh/authorized_keys	file.		See	here	for	details.

https://www.ssh.com/ssh/authorized_keys/openssh

Find	in	Files Previous	Top	Next

PyScripter	incorporates	a	powerful	search	facility	that	enables	you	to	quickly
locate	text	strings	in	files.		Using	"Find	in	Files",	you	can	search	the	current	file,
all	open	files	or	all	files	in	a	directory	(optionally	including	sub-directories).	
To	begin	a	search,	select	"Find	in	Files"	from	the	PyScripter	menu.		A	dialog	will
appear	like	the	one	below	into	which	you	can	enter	your	search	criteria.		Note
that	the	word	under	the	cursor	or	the	selected	text	when	calling	up	this	dialog,
will	be	used	as	the	default	search	string.

The	various	options	in	the	search	dialog	are	as	follows:

Text	to	Find:		The	text	or	regular	expression	to	search	for	

Options:

Case	sensitive:													Search	is	case	sensitive	(a	and	A	are	treated	as	different
characters)
Whole	word:																		Return	matches	that	are	whole	words	(delimited	by
whitespace	or																																					punctuation	such	as	"().,<>-{}!@#$")		Note
that	0-9	and	_	are	treated																																					as	part	of	a	word.
Regular	expression:						The	text	to	find	is	a	regular	expression
Ignore	Comments:								Ignore	matches	in	comments	for	Python	files

Where	(search	scope):

Current	file	only:												Only	the	file	that	is	currently	in	focus	for	editing
Open	files:																				All	files	that	are	currently	open	in	the	editor
Project	files:																		All	project	files
Search	in	directories:					All	files	specified	by	the	Directory	Search	options	(see
below)

Directory	Search:

Note:	This	portion	of	the	dialog	is	only	enabled	if	"Search	in	directories"	is
selected.			Custom	paremeters	are	supported	in	the	directories	field.

Directories:																			A	semicolon	separated	list	of	directories	to	search
"..."	Button:																			Allows	browsing	for	a	search	directory
File	masks:																			Limits	the	search	to	a	semicolon	separated	list	of	file
extensions
Include	subdirectories:			Enables	recursive	searching	of	the	search	directories

Once	you	have	entered	the	search	criteria,	click	the	OK	button	or	press	enter	to
initiate	the	search.		As	the	search	progresses,	results	will	be	shown	in	the	Find	in
Files	Results	window.	From	the	results	window,	you	can	also	perform	multi-file
search/replace	on	the	matches.

Credits:	This	utility	is	based	on	code	from	the	GExperts	project
(www.gexperts.org).

http:\\www.gexperts.org

Find	function Previous	Top	Next

The	Find	function	command	pops	up	a	dialog	with	a	list	of	Python	functions	and
methods	defined	in	the	current	module	and	allows	you	to	quickly	jump	to	a
given	function.		The	function	list	window	is	pictured	below:

To	search	for	a	function,	start	typing	in	the	Search	edit	box.		As	you	type,	the
characters	will	appear	at	the	top	next	to	the	word	Search.	To	jump	to	a	selected
function,	double	click	or	highlight	it	and	press	enter.

Two	search	modes	are	provided.		In	the	first	search	mode	(match	only	from	the
start),	searches	are	conducted	only	on	the	beginning	of	the	function	name	(after
an	optional	class	reference).		In	the	second	search	mode	(match	anywhere),	the
search	string	can	match	at	any	point	in	the	function	name.		For	example,	if	you
had	two	functions,	MyClass.assign	and	MyClass.assignWidget,	searching	for
"assign"	would	return	both	methods	in	either	mode,	whereas	searching	for
widget	would	return	neither	when	searching	from	the	start,	while
MyClass.assignWidget	would	appear	if	searching	for	a	match	at	any	point.

Using	the	Objects	combobox	on	the	right,	you	can	filter	the	function	list	to
display	all	functions,	only	those	without	an	associated	class,	or	only	those
associated	with	a	specific	class.		The	Copy	button	will	copy	all	function	details
to	the	clipboard.

Credits:	This	utility	is	based	on	code	from	the	GExperts	project
(www.gexperts.org).

http:\\www.gexperts.org

Find	Definition Previous	Top	Next

This	utility	function	allows	you	to	find	and	jump	to	the	definition	of	the
identifier	under	th	cursor,	which	may	be	in	a	different	file.		This	feature	can	be
invoked	in	two	ways:
a)	From	the	Search	menu

In	this	case	PyScripter	provides	detailed	feedback	on	the	found	matches	in	the
Messages	Window	(see	below)	and	it	reports	any	problems	that	may	have
occurred.		If	a	definition	is	found	the	editor	jumps	to	the	that	definition,	which
may	be	in	a	different	file.		In	some	cases	the	exact	definition	cannot	be	found
with	certainty	and	this	is	why		the	Messages	Window	also	reports	the	degree	of
certainty	for	each	candidate	definition.

b)	By	clicking	on	an	identifier	while	pressing	the	Ctrl	key.

When	you	press	the	Ctrl	key	while	the	mouse	hovers	on	a	Python	identifier,	the
identifier	appears	as	a	hyperlink.		You	can	invoke	the	find	definition	function	by
clicking	on	that	identifier.		If	the	definition	is	found	the	cursor	jumps	to	that
definition,	otherwise	and	unlike	the	case	described	above,	no	feedback	is
provided	except	for	a	beep	sound.

In	both	case	the	original	cursor	position	and	the	found	definition	is	added	to	the
Find	Definition	browsing	history.		You	can	move	backwards	and	forward	within
the	the	browsing	history	by	clicking	on	the	Browse	Back	and	Browse	Forward
buttons	in	the	editor	toolbar	(the	first	two	buttons	in	the	toolbar	shown	below).	

These	two	buttons	also	provide	a	drop-down	list	from	which	you	can	select	to
jump	to	a	specific	found	definition.

Note:		PyScripter	provides	its	own	powerful	python	source	parsing	engine	which
is	used	for	the	Find	Definition	and	Find	References	operations.

Find	References Previous	Top	Next

This	utility	function	allows	you	to	find	all	references	of	the	identifier	under	the
cursor,	even	if	they	are	in	different	files.		All	files	in	the	same	directory	as	the
file	in	the	current	editor	are	searched.		In	addition	if	the	Python	module	belongs
to	a	package	all	the	files	of	that	package	are	searched	as	well.	This	feature	can	be
invoked	from	the	Search	menu.		PyScripter	provides	detailed	feedback	on	the
found	references	in	the	Messages	Window	and	it	reports	any	problems	that	may
have	occurred.
Note:		PyScripter	provides	its	own	powerful	python	source	parsing	engine	which
is	used	for	the	Find	Definition	and	Find	References	operations.

Documentation	View Previous	Top	Next

PyScripter	can	use	the	standard	Python	module	pydoc	to	generate	HTML
documentation	for	Python	Modules.		This	feature	is	available	from	the	"Source
Code	Views"	submenu	of	the	Tools	menu.		The	HTML	documentation	is
displayed	using	an	internal	browser.		You	can	use	the	toolbar	buttons	to	print
preview,	print	or	save	the	HTML	file.		To	close	the	documentation	view,	right-
click	on	the	"Doc"	tab	and	select	"Close".

Disassembly	View Previous	Top	Next

PyScripter	can	use	the	standard	Python	module	dis	to	disassemble	Python
Modules.		This	feature	is	available	from	the	"Source	Code	Views"	submenu	of
the	Tools	menu.		The	disassembly	is	displayed	in	a	separate	editor.		To	close	the
disassembly	view,	right-click	on	the	"Disassembly"	tab	and	select	"Close".

Regular	Expression	Testing Previous	Top	Next

PyScripter	provides	for	integrated	regular	expression	testing.		From	the	View
menu	select	IDE	Windows,	Regular	Expression	Tester	to	show	the	following
window.

In	this	window	you	can	type	a	regular	expression	and	the	search	text	and	then
press	the	Execute	button	to	see	the	matched	text	and	the	value	of	each	group	of
the	regular	expression.		If	you	use	the	"findall"	search	type	(see	options	below)
then	you	can	examine	all	matches	found	by	using	the	spin	edit	control	in	the
matches	section.

Buttons	on	the	Toolbar

Clear
Clears	all	the	information	entered.

Options
Allows	to	specify	the	various	options	of	the	re	Python	module	such	as
IGNORECASE,	VERBOSE	etc.	as	well	as	whether	you	want	to	use	the	search,	
match	or	findall	function	of	the	regular	expression	objects.		For	more
information	look	at	the	Python	help	file	in	the	"re	(standard	module)"	page.

The	"Auto	Execute"	option	determines	whether	the	regular	expression	is
executed	every	time	the	regular	expression	or	the	search	text	is	changed.

Execute

Executes	the	search	using	the	options	specified	and	shows	the	results.		There	is
no	need	to	press	if	the	"Auto	Execute"	option	explained	above	is	checked.

Help	on	re
Shows	information	about	the	re	Python	module	and	the	syntax	of	regular
expressions	from	the	Python	help	file.

Note:	
For	more	fully-featured	regular	expression	testing	you	can	use	other	more
specialized	programs	such	as	Kodos	or	Kiki.		You	can	easily	integrate	such
programs	with	PyScripter	as	External	Tools.

http://kodos.sourceforge.net/
http://project5.freezope.org/kiki/

Python	Path	Configuration Previous	Top	Next

This	feature	allows	the	configuration	of	the	Python	Path	of	the	embedded	Python
interpreter.	It	is	accessible	from	the	Tools	menu	or	the	context	menu	of	the	File
Explorer.		It	pops-up	the	following	dialog:

Pressing	the	Add..	button	shows	a	directory	selection	dialog	from	which	can
select	a	directory	to	add	to	the	path.		The	Modify	button	replaces	the	selected
directory	with	one	chosen	using	the	directory	selection	dialog.

Tip:		You	can	rearrange	the	order	of	the	directories	by	dragging	and	dropping.

Note	that	the	changes	to	the	Python	path	apply	only	to	the	current	session.		To
permanently	change	the	Python	path	you	can	either	modify	the	PYTHONPATH
environment	variable	or	modify	the
HKEY_LOCAL_MACHINE\SOFTWARE\Python\PythonCore\x.y\PythonPath
registry	setting.		You	can	also	use	the	PyScripter	startup	script	python_init.py	to
modify	the	path.

Persistent	Options Previous	Top	Next

All	user	options	including	IDE	options,	IDE	shortcuts,		editor	options,	code
templates	and	custom	parameters	are	saved	in	a	file	called	"PyScripter.ini".	
PyScripter	searches	for	this	file	in	the	following	locations

a)	Exe	directory
b)	%APPDATA%	(environment	varaible)
c)	%APPDATA%\Pyscripter

So	the	default	location	is	the	user's	Application	Data	directory	.		If	however	the
"PyScripter.ini"	file	exists	in	the	same	directory	as	the	PyScripter	executable
then	it	is	used	in	preference	to	the	one	in	the	user	directory.		This	allows
PyScripter	installations	in	USB	storage	for	example.
Application	form	sizes	and	positions	(referred	to	as	layouts)	are	saved	in	a
separate	settings	file	called	"PyScripter.local.ini.

IDE	Options Previous	Top	Next

This	dialog	provides	a	number	of	options	that	affect	the	operation	of	PyScripter.
These	options	are	explained	below.

Code	Completion
Auto-Completion	font
Allows	you	to	customize	the	size	and	type	of	font	used	in	auto-completion.
Case	Sensitive
This	option	determines	whether	the	filtering	of	the	code	completion	list	when
you	type	characters	is	case	sensitive	(default	True).
Code	completion	list	size
The	size	of	the	code	completion	window	in	number	or	lines.
Complete	as	you	type

Code	completion	is	invoked	automatically	as	you	type.
Complete	Python	keywords
Python	keywords	appear	in	the	completion	list	when	appropriate.
Complete	with	word-break	characters
When	the	completion	list	is	displayed	completion	with	the	currently	selected
entry	occurs	when	word-break	characters	are	typed	(e.g.	space,	brackets	etc.).		
This	is	in	addition	to	completing	with	the	Tab	and	Enter	keys.
Auto-complete	with	one	entry
If	true,	when	the	completion	list	contains	one	entry	complete	automatically
without	showing	the	list.
Editor	code	completion
Enable/Disable	code	completion	in	the	editor.	
Interpreter	code	completion
Enable/Disable	code	completion	in	the	interpreter.	

Special	packages
The	code	and	parameter	completion	should	be	one	of	the	best	you	can	find	in
any	Python	IDE.		However,if	you	find	that	code	and	parameter	completion	is	not
very	accurate	for	certain	modules	and	packages	such	as	wxPython	and	scipy	you
can	achieve	near	perfect	completion	if	you	add	these	packages	to	this	option
(comma	separated	list).	By	default	it	is	set	to	"os,	wx,	scipy".	Special	packages
are	imported	on	demand	to	the	interpreter	instead	of	scanning	their	source	code.
Code	Explorer
Initially	expanded
If	checked	the	Code	Explorer	stats	with	its	nodes	initially	expanded.
Editor	Options
Auto-complete	brackets
If	checked,	when	you	edit	Python	scripts	and	you	type	an	open	bracket	("(",	"[",
"{")		the	corresponding	closing	bracket	is	entered	automatically.		When	editing
HTML	and	XML	files	the	opening	bracket	is	"<".		It	also	auto-completes	strings.
Auto-reload	changed	files
If	checked,	files	changed	on	disk	will	be	reloaded	without	prompting	if	the	files
have	not	been	changed	inside	PyScirpter.		A	message	is	shown	in	the	status	bar
and	a	beep	sound	can	be	heard	when	this	happens.
Check	syntax	as	you	type
If	checked,	when	you	edit	Python	files	Pyscripter	continuously	check	the	active
file	for	syntax	error,	which	are	shown	in	a	similar	way	in	which	word	processors

show	spelling	errors.		If	you	place	the	cursor	on	an	error	indicator	you	will	see	a
hint	explaining	the	problem.
Create	backup	files
If	checked	PyScripter	will	create	backup	files	before	overwriting	existing	files.
Default	line	breaks	for	new	files
Controls	the	line	break	format	for	new	files.		Options:	sffDos,	sffUnix,	sffMac,
sffUnicode.		The	last	option	although	available	is	not	currently	supported.
Display	packages	names
Display	package	names	instead	of	file	names	for	package	files	(__init__.py)	in
editor	tabs.
Default	file	encoding	for	new	files
Controls	the	encoding	for	new	files.		Options:	sf_Ansi,	sf_UTF8,
sf_UTF8_NoBOM.		See	the	topic	on	Encoded	Source	Files	for	further
information.
Detect	UTF-8	encoding	when	opening	files
This	option	controls	whether	PyScripter	attempts	to	detect	utf-8	encoding	when
opening	files	without	the	BOM	mark.		This	detection	is	done	by	analyzing	the
first	4000	characters	of	the	file	and	is	imperfect.		It	only	applies	to	non-Python
files	since	utf-8	encoded	Python	files	are	required	to	have	either	the	BOM	mark
or	an	encoding	comment.
File	line	limit	for	syntax	check	as	you	type
Files	with	more	lines	than	specified	will	not	be	syntax	checked	as	you	type.
(default	1000	lines)
Highlight	selected	word
If	checked,	when	you	select	a	word	by	double-clicking	or	by	issuing	the	editor
command	"Select	Word",	all	occurrences	of	the	selected	word	in	the	editor	are
highlighted.
Restore	open	files
If	checked	PyScripter	will	restore	the	files	which	were	open	when	the	last
editing	session	ended	when	it	starts	up.
Search	text	at	caret
If	checked,	when	the	search	function	is	invoked	the	search	expression	is	set	to
the	word	containing	the	editor	caret.
Show	code	hints
If	unchecked	code	hints	are	not	shown.
Show	debugger	hints
If	unchecked	debugger	hints	are	not	shown.

Show	executable	line	marks
If	checked	the	editor	will	show	in	the	gutter	special	marks	for	executable	lines.
Trim	trailing	spaces	when	saving	files
If	checked	the	editor	will	trim	spaces	at	the	end	of	the	lines	when	saving	files.	
This	works	independently	of	the	corresponding	editor	option	which	trims	trailing
spaces	while	editing.
Undo	after	save
If	checked,	you	can	undo	editing	actions	beyond	the	point	at	which	you	saved
the	file.	Otherwise	undo	can	only	take	you	back	to	point	at	which	you	last	saved
the	file.
File	Explorer
File	Explorer	background	processing
If	checked	(default)	the	File	Explorer	processes	folder	expand	makrs	and	file
impages	in	threads.	Uncheck	if	you	encounter	errors	related	to	File	Explorer.
File	Filters
File	Explorer	Filter
The	file	extensions	separated	by	semi-colon	that	the	File	Explorer	recognizes	as
Python	files.	Used	when	the	filter	function	is	applied.
e.g.	*.py;*.pyw
Open	Dialog	Python	Filter
The	Python	file	filter	for	the	File	Open	dialog.		Multiple	filters	should	be
separated	by	vertical	bars	("|").
e.g.		Python	Files	(*.py;*.pyw)|*.py;*.pyw
Open	Dialog	CSS	Filter
The	CSS	file	filter	for	the	File	Open	dialog.	
Open	Dialog	CPP	Filter
The	C/C++	file	filter	for	the	File	Open	dialog.	
Open	Dialog	HTML	Filter
The	HTML	file	filter	for	the	File	Open	dialog.	
Open	Dialog	JavaScript	Filter
The	JavaScript	file	filter	for	the	File	Open	dialog.	
Open	Dialog	PHP	Filter
The	PHP	file	filter	for	the	File	Open	dialog.	
Open	Dialog	XML	Filter
The	XML	file	filter	for	the	File	Open	dialog.	
Open	Dialog	YAML	Filter
The	YAML	file	filter	for	the	File	Open	dialog.	

IDE
Check	for	updates	automatically
If	checked	you	will	be	notified	when	new	version	of	the	PyScripter	become
available	for	download.
Days	between	update	checks
You	can	define	how	often	you	want	to	check	for	PyScripter	updates.
Dock	animation	interval
This	and	the	following	option,	control	the	animation	when	you	show	a	hidden
docked	form.	The	Dock	animation	interval	controls	the	interval	in	milliseconds,
between	successive	redraws	of	the	shown	window.		It	needs	to	be	greater	than	or
equal	to	1.
Dock	animation	move	width
The	Dock	animation	move	width	controls	the	width	in	pixels,	by	which	the
animated	form	is	moved.		To	disable	the	animation	set	this	parameter	to	a	large
value,	e.g.	1000.
File	Change	Notification
Controls	whether	the	user	is	notified	about	changes	in	the	edited	files	(possible
values:	fcnFull,	fcnNoMappedDrives,	fcnDisabled).		Default:
fcnNoMappedDrives.
Editor	tab	position
Controls	whether	the	editor	tabs	should	appear	at	the	top	or	at	the	bottom
(possible	values:	toBottom,	toTop).
File	template	for	new	Python	scripts
The	"New	Python	Module"	command	checks	the	value	of	this	option	and,	if	it	is
not	empty	and	is	the	name	of	an	existing	File	Template,	it	uses	the	template	for
the	new	module.	By	default	points	to	the	provided	File	Template	for	Python
scripts.
Mask	FPU	exceptions
Floating	point	operations	that	result	in	special	numbers	such	as	Nan,	+	or	-
Infinity	etc,	normally	raise	exceptions.		However	some	packages	such	as	Scipy
would	raise	such	exceptions	when	they	get	imported	into	Python	and	they
wouldn't	be	usable.		Keep	this	option	checked	if	you	want	to	use	such	packages
with	PyScripter.
Show	tab	close	button
Shows/hides	the	close	buttons	on	the	editor	tabs.
Smart	Next/Previous	Page
(Shift+)Ctrl+Tab	can	be	used	to	move	to	the	(previous)	next	page.		If	this	option

is	checked	these	keys	move	through	the	pages	according	to	the	Z-order	of	the
pages	(as	the	Alt+Tab	does	in	Windows).		Otherwise	they	move	according	to	the
visual	order	of	the	pages.
Style	Main	Window	Border
If	true	the	main	application	window	border	is	styled	to	match	the	selected	style.	
If	false	it	has	the	standard	windows	border.
Use	Python	colors	in	IDE
If	checked	the	colors	of	the	python	highlighter	(Background	color	from	the	space
attribute	and	foreground	color	of	the	identifier	attribute)	are	used	in	the	IDE
windows.		When	a	dark	highlighter	is	used	this	option	helps	achieve	a	uniform
"dark"	look.	(default	false)
Project	Explorer
Initially	expanded
If	checked	the	Project	Explorer	stats	with	its	nodes	initially	expanded.
Python	Interpreter
Always	use	sockets
Pyscripter	can	use	sockets	or	Windows	named	pipes	for	communicating	with
server.		Named	pipes	can	only	be	used	in	pywin32	is	installed	in	the	active
python	version.		The	main	advantage	of	named	pipes	is	that	it	avoids	firewall
issues	related	to	socket	connections.		If	this	option	is	checked	sockets	are	used	in
preference	to	named	pipes.	(default	true)
Clear	output	before	run
If	checked	the	interpreter	output	is	cleared	before	running	scripts.	(default	false)
Interpreter	history	size
Specifies	the	size	of	the	interpreter	command	line	history	(default	50)
Jump	to	error	on	Exception
If	set,	when	an	exception	occurs	the	file	in	which	the	exception	occurred	opens
and	the	error	position	is	displayed.		(default	true)
Post	mortem	on	exception
If	this	option	is	checked	when	an	unhandled	exception	occurs	while	running	or
debugging	a	script,	PyScripter	enters	the	post-mortem	analysis	mode.
Pretty	print	output
If	checked	the	standard	python	module	pprint	is	used	to	format	interpreter
output.
Python	Engine	Type
Controls	which	engine	type	is	used.		Possible	values	(peInternal,	peRemote)		See
(Remote	Python	Engines	for	details).

https://github.com/mhammond/pywin32

Reinitialize	before	run
If	set	and	a	remote	Python	engine	is	used,	it	is	re-initialized	before	running	or
debugging	a	script.		This	is	necessary	when	using	GUI	applications	(Tkinter,
wxPython,	etc.).		It	is	set	by	default.
Save	environment	before	run
It	saves	environment	options	including	open	files.	layout	etc.	before	running
scripts	so	that	you	can	recover	if	the	IDE	crashes.
Save	files	before	run
If	checked	all	open	files	are	saved	before	running	scripts
Save	interpreter	history
If	checked	the	interpreter	history	is	saved	at	program	exit	and	restored	when
PyScripter	is	started	again.
Step	into	open	files	only
If	checked	the	debugger	will	not	step	into	files	that	are	not	currently	open.
Defaults	to	false.
Timeout	for	running	scripts
Time	in	ms	for	running	scripts	timeout.		If	different	than	zero,	when	the	elapsed
time	since	the	start	of	running	a	Python	script	exceeds	the	timeout	value,	you	are
given	the	opportunity	to	interrupt	the	script.				Due	to	Python	limitations	this
does	not	work	when	the	script	loops	indefinitely	inside	a	function.
UTF-8	in	Interactive	Interpreter
If	checked	the	input	to	the	interactive	interpreter	is	converted	to	UTF-8	before	is
fed	to	python.	The	comments	related	UTF-8	encoded	source	files	apply	to	the
interactive	interpreter	as	well.
Shell	Integration
File	Explorer	Context	Menu
If	checked,	it	adds	a	menu	item	"Edit	with	Pyscripter"	to	the	Windows	File
Explorer	context	menu	for	Python	files.		If	unchecked	this	option	removes	such
context	menu	if	it	is	present.
SSH
Disable	Variables	Window	with	SSH
The	updating	of	the	Variables	window	requires	data	transers	between	PyScripter
and	remote	Python	Engines.		With	slow	SSH	connections	this	could	slow	down
PyScipter.		If	checked,	the	Variables	Window	is	desabled	while	using	an	SSH
engine.
Scp	command
This	option	allows	you	to	specify	a	path	to	an	scp	command.		This	could	be

useful	if	you	have	multiple	versions	of	scp	installed	and	want	to	specify	which
one	to	use.		The	defalut	value	'scp'	assumes	scp	can	be	found	on	the	system
path.		You	can	overwrite	this	value	in	the	SSH	server	configuration.
Scp	options
This	option	allows	you	to	specify	options	to	used	with	the	scp	command.		You
can	overwrite	this	value	in	the	SSH	server	configuration.
SSH	command
This	option	allows	you	to	specify	a	path	to	an	ssh	command.		This	could	be
useful	if	you	have	multiple	versions	of	ssh	installed	and	want	to	specify	which
one	to	use.		The	defalut	value	'ssh'	assumes	ssh	can	be	found	on	the	system	path.	
You	can	overwrite	this	value	in	the	SSH	server	configuration.
SSH	options
This	option	allows	you	to	specify	options	to	used	with	the	ssh	command.		You
can	overwrite	this	value	in	the	SSH	server	configuration.

IDE	Shortcuts Previous	Top	Next

You	can	customize	the	IDE	keyboard	shortcuts	using	the	"IDE	Shortcuts..."
command	of	the	Options	submenu	of	the	Tools	menu.		In	the	dialog	box	shown
below	you	can	add	or	remove	shortcuts	for	the	the	various	commands.		Note	that
you	can	have	multiple	shortcuts	for	each	command.

Editor	Options Previous	Top	Next

A	number	of	editor	options	are	user-configurable.		To	customize	the	editor
options	select	"Editor	Options..."	from	the	Tools|Options	menu	which	displays
the	Editor	Options	dialog.	This	dialog	contains	four	tabs	and	the	options	in	each
tab	are	explained	below.		You	can	apply	the	changes	to	either	the	Active	editor	if
any	or	else	to	all	editors,	by	checking	the	relevant	checkbox	at	the	bottom	of	the
dialog.		Changes	applying	to	all	editor	windows	affect	also	the	key	bindings	and
the	syntax	highlighter	colors	interactive	interpreter,	but	not	the	other	options.	
Use	the	context	menu	of	the	interactive	interpreter	to	changes	the	other	editor
options	of	the	interpreter	window.
Display	tab
Options	tab
Keystrokes	tab
Syntax	Colors	tab
Color	Theme	tab

Display	tab

Gutter	(The	Margin	at	the	left	hand	side	from	the	Editor)

Visible:
If	not	checked	the	right	margin	with	the	line	numbers	will
not	be	visible.

				.
Autosize:

Autosize	the	width	to	the	line	numbers.

Gutter	Gradient:
If	checked	a	gutter	gradient	is	painted	according	to	the
selected	theme.

Gutter	color:
The	colour	used	when	the	gutter	gradient	is	disabled.

Show	line	numbers:
Self	explanatory.

Show	leading	zeros:
If	checked	it	shows	leading	zeros	in	line	numbers.

Zero	start:
The	first	line	number	will	be	zero.

Gutter	Font:
Changes	the	Gutter	font

Right	Edge	(a	gray	line	showing	the	right	margin):

Edge	column:
Enter	the	count	of	characters	where	the	right	edge	should
appear.	Use	zero	to	hide	this	line.

				
Edge	color:

Changes	color	of	the	right	edge.

Active	Line	Color:
Select	the	color	for	highlighting	the	active	editor	line	or
None	if	you	do	not	want	to	highlight	it.

Bookmarks:

Bookmark	keys:
Enable	the	bookmark	shortcuts	(see	the	Keystrokes	tab).

				
Bookmarks	visible:

Show	bookmarks	in	the	editor	gutter.

Line	Spacing/Tab	spacing:

Extra	lines:
Extra	spacing	between	the	lines.

				
Tab	width:

The	width	of	tabs	in	characters.

Editor	Font:
Changes	the	editor	font.

Options	tab
Various	other	editor	options.

ALT	sets	column		mode:
If	activated	then	the	Alt	key	sets	the	editor	in	column	selection
mode.	i.e.	you'll	be	able	to	select	columns	from	a	text.

Auto	indent:
Enables	automatic	indentation	whereby	a	new	line	keeps	the
indent	of	the	previous	line.

Disable	scroll	arrows:
Disables	the	scroll	bar	arrow	buttons	when	you	can't	scroll	in
that	direction	any	more.

Drag	and	Drop	editing:
If	activated	you	will	be	able	to	drag	text	and	drop	it	to	another
position.

Enhanced	Home	key:
If	activated	and	you	use	the	Home	key	one	time,	the	caret	is
placed	at	the	first	occurrence	of	a	non	white-space,	the	second
time	it's	placed	in	column	1.

Enhanced	End	key:
End	key	behaves	in	a	way	analogous	to	the	Enhanced	Home.

Group	Undo:
Concequtive	editing	actions	are	undone/redone	together

Half	page	scroll:
When	scrolling	with	PageDown	and	PageUp	keys,	scrol	of	a	half
screen	instead	of	a	full.

Hide	scrollbars	as	necessary:
If	enabled,	the	scrollbars	will	only	show	when	necessary.		If	you
have	selected	"Scroll	Past	end	of	line",	then	it	the	horizontal	bar
will	always	be	there.

Insert/overwrite	caret:
Select	the	caret	to	be	displayed	in	insert	and	overwrite	editor
modes.

Maintain	caret	column:
When	moving	through	lines	w/o	the	option	"Scroll	past	end	of
line",	keeps	the	column	position	of	the	cursor.

Right	mouse	moves	cursor:
When	clicking	with	the	right	mouse	for	a	popup	menu,	move	the
cursor	to	that	location.

Scroll	by	one	less:

Scrolls	page	by	one	line	less	than	the	page	length.

Scroll	hint	follows	mouse:
The	scroll	hint	follows	the	mouse	when	scrolling	vertically.

Scroll	past	end	of	file:
Cursor	can	go	after	the	theoretical	end	of	file.

Scroll	past	end	of		line:
You'll	be	able	to	place	the	caret	beyond	the	text	(width).

Show	scroll	hint:
Shows	a	hint	window	with	the	numbers	of	the	displayed	lines
when	you	scroll	the	editor.

Show	special	chars:
Show	special	chars	such	as	TABS	and	new	lines.

Smart	tab	delete:
Similar	to	Smart	tabs,	but	applies	to	character	deletion	with	the
BackSpace	key.

Smart	tabs:
When	tabbing,	the	cursor	will	go	to	the	next	non-white	space
character	of	the	previous	line.

Tab	Indent
When	some	text	is	selected	the	Tab	key	indents	and	the	Shift-Tab
key	unindents	the	selection.

Tabs	to	Space:
Replaces	tabs	with	spaces	while	you're	typing.

Theme	selection:
If	selected	a	theme	specific	color	is	used	for	the	background	of
selected	text..	Otherwise	the	Windows	Highlight	color	is	used.	
Note	that	if	the	foreground	color	of	the	editor	is	not	black	or	the
background	color	is	not	white	this	option	is	ignored.

Trim	trailing	spaces:
Removes	all	spaces	at	the	end	of	the	lines.

Word	wrap:
Enable/disable	word	wrap.

Keystrokes	tab

This	tab	allows	you	to	customize	the	editor	keyboard	shortcuts.	

Note	that	the	second	keystroke	is	for	defining	a	sequence	of	keystrokes	as	a
shortcut	(e.g.	Ctrl+K,	I)

Syntax	Colors	tab

The	options	in	this	tab	allow	you	to	customize	the	syntax	highlighting	for	Python
and	other	file	types.

Color	theme	tab

In	this	tab	you	can	preview	and	apply	available	syntax	highlighting	schemes
themes.	These	themes	are	located	in	the	%APPDATA%\PyScripter\Highlighters
directory.

Import/Export	Settings Previous	Top	Next

Using	the	commands	under	Tools,	Options,	Import	Export,	you	can	import	and
export	shortcuts	and	syntax	highlighting	settings.		This	allows	PyScripter	users
to	share	shortcuts	and	syntax	highlighting	settings.		If		you	have	customized
these	settings	to	match	those	of	popular	IDEs	and	editors	such	as	Visual	Studio
and	IDLE,	you	are	encouraged	to	submit	them	to	pyscripter@google.com,	so
that	they	will	be	made	available	to	all	users	in	a	future	version	of	PyScripter.

mailto:pyscripter@google.com

Command-line	Options Previous	Top	Next

When	invoked	without	any	arguments	PyScripter	will	load	the	latest	version	of
Python	and	restore	the	files	which	were	open	when	the	last	editing	session
ended.		If	no	files	were	open	an	empty	Python	module	is	created.			This	behavior
can	be	changed	with	command-line	arguments:

PyScripter	[--pythonversion]	filename1	filename2	...

where
												pythonversion	can	be	PYTHON23,	PYTHON24	etc.

if	pythonversion	is	provided	on	the	command-line	PyScripter	tries	to	use	that
version	if	it	is	available	and	PyScripter	has	been	compiled	for	a	version	lower	to
or	equal	to	that	version.
If	one	or	more	filenames	are	provided	on	the	command-line	they	are	opened
when	PyScripter	starts.
To	open	a	file	at	a	specific	line	and	column	use	"filename	(lll:ccc)",	i.e.	the
filename	should	be	followed	by	a	space	and	enclosed	in	parentheses	the	line	and
column	numbers	separated	by	colon.	The	whole	expression	should	be	enclosed
in	double	quotes.		The	expression	in	double	quotes	should	match	the	regular
expression	(.+)	\((\d+):(\d+)\)$
Other	command	line	flags:
--PROJECT	filename

Open	a	specific	PyScripter	project	file
--PYTHONDLLPATH

In	order	to	allow	PyScripter	to	work	with	unregistered	version	of	Python
such	as	Portable	Python,		another	command	line	argument	is	provided
PYTHONDLLPATH.	When	such	an	argument	is	provided	the	registry
search	is	bypassed	and	the	Python	DLL	found	in	that	path	is	used	instead.	
e.g.		PyScripter	--PYTHON25	--PYTHONPATHDLL	"E:\PortablePython"
See	Using	PyScripter	with	Unregistered	Python	for	more	information

--NEWINSTANCE	or	-N
If	set	a	new	instance	of	Pyscripter	is	started.		This	to	prevent	the	default
behavior	which	is	to	activate	an	existing	instance	of	PyScripter	is	one	is
running.

NOTE

http://www.portablepython.com/

Since	version	1.85	PyScripter	options	are	marked	with	two	dashes	"--".

Further	information	on	--PYTHONDLLPATH

There	are	two	types	of	Python	installation
a)		For	all	users

Python	creates	registry	entries	at
HKEY_LOCAL_MACHINE\SOFTWARE\Python\PythonCore\2.x		with
installation	info	and	puts	the	dll	in	c:\Windows\System32.	(This	is	no
longer	the	case	since	python	version	3.5)

b)		For	a	single	user
Python	creates	registry	entries	at
HKEY_CURRENT_USER\SOFTWARE\Python\PythonCore\2.x		with
installation	info	and	does	not	put	the	dll	in	c:\Windows\System32.

PyScripter	without	any	command	line	flags	looks	at	the	registry	to	find	the	latest
version	of	Python	and	then	for	an	all	user	installation	tries	to	load	the	relevant
Python	dll	from	the	system	path.		For	a	single	user	installation	tries	to	load	the
DLL	from	the	Install	path	that	is	in	the	registry.
When	PyScripter	is	used	with	a	--PYTHONxx	flag	then	it	does	the	above	but
searching	only	for	the	specific	version.	The	Registry	lookup	does	not	take	place
when	Python	is	used	with	the	--PYTHONDLLPATH.		Instead	PyScripter	tries	to
load	the	Python	dll	from	the	specified	path.
The	--PYTHONDLLPATH	flag	should	be	used	with	the	--PYTHONxx	flag.		See
help	topic	Using	PyScripter	with	Unregistered	Python	for	an	example	of	using
PyScripter	with	portable	Python.
The	%PYTHONHOME%	environment	variable	is	not	used	by	PyScripter
directly	but	by	Python	to	find	the	installed	libraries.		See	the	Python
documentation	for	its	use.

Startup	Python	Scripts Previous	Top	Next

PyScripter	users	can	create	two	startup	python	files	that	can	be	run	at	PyScripter
startup.

1.			pyscripter_init.py
This	script	is	run	once	in	the	space	of	the	internal	Python	engine	at	start-
up.		It	can	be	used	to	set	various	PyScripter	options	and	to	customize	the
PyScripter	user	environment.

2.			python_init.py
												This	file	is	executed	when	a	Python	engine,	internal	or	remote,	is

initialized	and	every	time	the	engine	is	reinitialized.		It	can	be	used	to
customize	the	Python	engine,	for	example	by	always	importing	certain
units.

PyScripter	searches	for	startup	python	files	first	at	the	PyScripter.exe	directory,
and	if	it	is	not	found	there	at	%APPDATA%\Pyscripter,	where	%APPDATA%	is
the	environment	variable.		The	PyScripter	installation	program	places	these	files
without	any	content	at	%APPDATA%\Pyscripter,	if	the	files	are	not	there
already.

You	can	edit	the	startup	files	by	using	the	Tools	Menu	command	"Edit	Startup
Files".

,
Using	PyScripter	with	Unregistered	Python Previous	Top	Next

Since	version	3.4	you	can	use	the	Setup	Python	dialog	box	to	easily	add	and	use
unregistered	versions	to	PyScripter.		Virtual	environments,	both	venv	and
virtualenv	as	well	as	conda	distributions	are	supported	out-of-the-box.

File	Templates Previous	Top	Next

The	New	File	Dialog

This	dialog	allows	to	create	a	new	file	based	one	of	the	many	pre-defined	file
templates.		You	can	access	the	dialog	(shown	below)	from	the	File	Menu
selecting	New,	File...

In	this	dialog	select	a	category	in	the	tree	view	on	the	left	side	and	a	specific
template	on	the	right	side.		Then	press	the	"Create"	button	to	create	a	new	file
based	on	the	selected	template.		The	"Manage	File	Templates..."	button	allows
you	to	customize	the	available	templates	(see	below).

File	Template	Customization

You	can	customize	file	templates	through	the	File	Templates	dialog	shown
below.			This	dialog	is	accessible	either	via	the	New	File	dialog	shown	above	or
through	the	Options	submenu	of	the	Tools	Menu.

With	this	dialog	you	can	modify	add	new	templates	or	modify/delete	existing
templates.		Each	template	has	the	following	properties:

Name:																										The	name	of	the	template	that	appears	in	the	New	File
dialog
Category:																						The	category	under	which	this	template	will	be	listed.
Default	Extension:									The	default	extension	that	will	be	added	to	the	filename

when	a	file	based	on	this	template	is	saved.
Highlighter:																			The	syntax	highlighter	that	will	be	used	for	files	based

on	this	template.
Template:																					The	actual	text	that	will	be	inserted	into	new	files	created

from	this	template.		The	template	text	can	contain	custom
parameters	which	are	expanded	upon	the	activation	of	the
template.			If	the	character	"|"	is	present	in	the	template,	after
the	insertion	of	the	template	text,	the	cursor	is	placed	at	the
position	of	that	character	and	the	character	is	deleted.

		

Toolbar	Customization Previous	Top	Next

PyScripter	allows	you	to	customize	the	toolbars	by	dragging	and	dropping
command	buttons	on	the	toolbars,	as	you	do	in	Microsoft	Office	for	example.	
You	can	invoke	the	customization	dialog	shown	below	either	through	the	View,
menu	(Toolbars	submenu),	or	from	the	context	menu	of	the	toolbars	background.

		

Localization Previous	Top	Next

PyScripter	uses	gettext	for	creating	localizing	the	user	interface.		The	files	that
contains	the	strings	be	translated	is	located	in	the	directory:

C:\Program	Files\PyScripter\locale

assuming	that	PyScripter	is	located	at	C:\Program	Files\PyScripter\.

There	are	two	files	of	interest	to	translators	in	that	directory	
1.			default.po
2.			languages.po

The	first	contains	the	strings	of	PyScripter	and	the	second	the	localized	names	of
different	languages.

To	create	a	translation	for	a	new	language:

1.		Create	a	new	directory

C:\Program	Files\PyScripter\locale\##\LC_MESSAGES\

In	this	path,	##	represents	the	two-letter	ISO	639-1	language	code.

2.		Copy	the	two	po	files	in	that	directory

3.		Translate	the	two	files	using	a	gettext	editor.		Poedit	is	the	recommended
editor.

4.		Compile	the	po	files	to	mo	files	(Poedit	can	do	that)	and	you	are	set.		Use	the
View	Menu	to	change	the	language	and	test	your	translation.
	
5.		Please	submit	your	translation	files	to	pyscripter@gmail.com	for	inclusion	in
the	next	PyScripter	distribution.

Tip:		Use	the	translation	memory	of	Poedit	to	speed	up	the	translation	process.

http://www.gnu.org/software/gettext/
http://www.loc.gov/standards/iso639-2/php/code_list.php
http://www.poedit.net/

Customizable	Styles Previous	Top	Next

In	version	3.0,	PyScripter	introduced	an	updated	style	(skin)	engine	that	allows
the	loading	of	external	themes.		Style	information	is	stored	in	files	with	the	"vsf"
extension.	Available	style	files	are	located		in	the	directory
%APPDATA%\PyScripter\Styles	(%APPDATA%	is	the	directory	pointed	by	the
corresponding	environment	variable).		

You	can	change	the	active	style	by	using	the	"View,	Select	Style"	command.	
Your	choice	is	then	saved	and	used	in	future	activations	of	PyScripter.

Initialization	Scripts Previous	Top	Next

PyScripter	can	run	initialization	scripts	that	customize	the	program	or	the	Python
engine	in	different	ways.

Two	different	scripts	can	be	provided:

a)	pyscripter_init.py

This	file	is	run	once	after	the	program	is	loaded	and	can	be	used	for	intance	to
modify	Pyscripter	IDE	options.		It	is	run	in	the	namespace	of	the	internal
interpreter.

b)	python_init.py

This	file	is	run	every	time	a	Python	engine	is	initialized.		It	can	be	used	to
customize	the	Python	environment	by	importing	certain	units	for	instance.

Both	of	these	files	should	be	located	in	the	directory	%APPDATA%\Pyscripter
where	%APPDATA%	refers	to	the	directory	defined	by	the	environment
variable.

External	Tools Previous	Top	Next

PyScripter	offers	the	ability	to	define	External	Tools	that	can	be	run
independently	or	interact	with	the	IDE	editor.			There	is	great	flexibility	in
specifying	such	tools	allowing	you	to	integrate	your	favorite	Python	utilities	or
command-line	programs	tightly	with	PyScripter.
You	can	define	or	modify	external	tools	through	the	"Tools|Configure	Tools.."
menu	option.	The	definition	of	the	tools	is	persisted	to	the	PyScritper.ini	file.

In	the	above	dialog	box	you	can	modify	existing	external	tools	or	create	new
ones	using	the	the	External	Tool	properties	dialog	shown	below:

	

A	large	number	of	options	are	available	in	the	External	Tool	properties	dialog
which	are	explained	below:

Tool	Configuration	Options
		

Caption The	caption	of	the	Menu	Item
corresponding	to	this	tool

Description The	hint	of	the	Menu	Item	corresponding
to	this	tool

Application The	full	name	of	file	to	execute

Parameters Command-line	parameters
Working
Directory

The	working	directory

Shortcut Menu	shortcut	for	the	external	tool
Context Specifies	when	can	the	tool	be	executed	

				Always	Enabled,
				Active	File,
				Active	Python	File
				Selection	Available

Save	Files Save	files	option.		Possible	values
				None,
				Active	File,
				All	Files

Standard
Input

Feed	standard	input	to	the	running	process.
Possible	values:	

				None:		No	standard	input
				Word	at	cursor
				Current	line
				Selection
				Active	file

Standard
output

Send	standard	output	to
				None:		Do	nothing
				Replace	word	at	cursor
				Replace	current	line
				Replace	selection
				Replace	active	file				
				Place	in	new	file

Parse
Messages

Parse	File/Line/LinePos	info	from	output
and	put	it	in	the	Messages	Window.		Useful
for	integrating	command-line	tools.

Message
Format

Regular	expression	for	parsing	messages.	
You	should	use	the	predefined	grep
expression	macros	$[FileName],
$[LineNumber],	$[ColumnNumber]	for
specifying	the	grep	expression.

Parse
Traceback

Parse	TraceBack	and	Syntax	Errors	from
Python	output	and	put	it	in	the	Messages
Window.

Capture
Output

Capture	command	line	output	and	place	it
in	the	Output	Window

Hide
Console

Hide	Console	or	External	Tool	window

Wait	for
Termination

Non-blocking	wait	for	termination	of	the
External	tool.
Required	for	Parse	Messages,	Parse
Traceback	and	other	options

Timeout Give	the	user	the	opportunity	to	terminate
the	External		tool	after	Timeout	ms.	A
value	of	zero	disables	this	feature.

Environment The	Environment	tab	in	tool	properties
allows	you	to	run	the	external		tool	with
customized	environment	variables.

Custom	parameters	(Shift+Ctrl+P)	and	modifiers	(Shft+Ctrl+M)	are	available
when	specifying	the	Application,	the	Parameters	and	the	Working	directory.
	
A	few	external	tools	that	demonstrate	the	possibilities	opened	by	this	feature	of
PyScripter	are	offered	by	default:

				PythonWin	help	(Shows	the	PythonWin	help	file)
				Python	Interpreter	(Runs	a	separate	python	shell)
				Command	Prompt	(starts	a	console)
				Sort	Selection	(a	python	one-liner	that	demonstrates	the	use	of	Standard
Input	and	Standard	Output	options)
				Profiler	(profiles	the	active	python	script	using	the	standard	Python
profile	module)
				PyLint	-	python	source	code	checking	tool
(http://www.logilab.org/projects/pylint)
				Advanced	Search	and	Replace	(using	re.sub)

You	can	delete	or	modify	these	tools	as	well	as	create	new	ones.

http://www.logilab.org/projects/pylint

Parameters Previous	Top	

Custom	Parameters	are	implemented	using	ideas	and	code	from	the	Syn	Editor
project	(http:\\syn.sf.net).	It	is	a	very	powerful	feature	allowing	the
developement	of	custom	command	line	tools	and	facilitating	autocompletion.
Parameter	Syntax
Parameter	Modifiers
Editor	shortcuts
Defined	parameters	and	modifiers
Custom	parameters

Parameter	syntax
Parameter	is	any	ParameterValue,	that	is	enclosed	by	the	parameter	delimiters
(currently	"$["	and	"]")	e.g.

				$[ProgramFiles]

Predefined	system	parameters	(variables,	that	can	be	replaced	in	the	command
line,	scripts,	templates	and	in	inserted	text)	are	changed	and	extended.	Now	they
include:

Python	Paths
				Python32Dir														-	Installation	directory	of	Python	version	3.2
				Python31Dir														-	Installation	directory	of	Python	version	3.1
				Python30Dir														-	Installation	directory	of	Python	version	3.0
				Python26Dir														-	Installation	directory	of	Python	version	2.6
				Python25Dir														-	Installation	directory	of	Python	version	2.5
				Python24Dir														-	Installation	directory	of	Python	version	2.4
				Python23Dir														-	Installation	directory	of	Python	version	2.3
				Python32Exe													-	Executable	of	Python	version	3.2
				Python31Exe													-	Executable	of	Python	version	3.1
				Python30Exe													-	Executable	of	Python	version	3.0
				Python26Exe													-	Executable	of	Python	version	2.6
				Python25Exe													-	Executable	of	Python	version	2.5
				Python24Exe													-	Executable	of	Python	version	2.4

				Python23Exe													-	Executable	of	Python	version	2.3
				PythonDir																		-	Installation	directory	of	active	Python	version
				PythonExe																	-	Executable	of	active	Python	version
				PythonVersion											-	Version	of	active	Python

		Some	parameters,	that	represent	system	folders	for	current	configuration:
				ProgramFiles													-	Program	Files	folder	for	current	configuration
				CommonFiles												-	Common	Files	folder	for	current	configuration
				Windows																			-	Windows	folder	for	current	configuration
				WindowsSystem								-	Windows	System	folder	for	current	configuration
				WindowsTemp										-	Windows	Temp	folder	for	current	configuration
				MyDocuments											-	My	Documents	folder	for	current	user	configuration
				Desktop																					-	Desktop	folder	for	current	user	configuration

		Some	parameters,	that	represent	other	system	information:
				CurrentDir																	-	Current	Directory
				DateTime																		-	Current	date	and	time	in	the	default	short	date-time
format
				UserName																	-	the	name	of	the	user	currently	logged	onto	the	system
				Paste																								-	returns	contents	of	the	clipboard
				CmdLineArgs												-	returns	the	active	command	line	arguments

		Some	parameters,	that	represent	PyScripter	specific	information:
				ActiveDoc																		-	file	name	of	the	Active	Document
				ActiveScript															-	file	name	of	the	Script	you	are	about	to	run/debug
				Project																						-	file	name	of	the	Active	Project
				OpenFiles																	-	file	names	of	all	open	files,	separated	with	space
				ModFiles																			-	file	names	of	modified	files,	separated	with	space
				Exe																											-	parameter,	pointing	to	PyScripter	executable	file

		And	some	other	useful:
				SelectFile																		-	opens	a	FileOpen	dialog	for	file	selection
				SelectedFile														-	returns	the	last	selected	file
				SelectDir																			-	opens	"Browse	for	folder"	dialog	for	folder	selection
				SelectedDir															-	returns	the	last	selected	path

Custom	parameter	value	can	contain	also	other	parameters	and	modifiers.	They
are	calculated	when	the	value	is	required,	not	when	the	parameter	is	loaded	from
file,		so	they	always	points	to	the	actual	other	parameter	value.	For	example

				QuotedSelText=$[ActiveDoc-SelText-Quote]

will	return	quoted	selected	text	of	the	active	document

Parameter	modifiers
We	have	also	the	so-called	"Parameter	modifiers"	-	Small	words,	that	are	placed
after	parameter,	separated	by	'-'	They	actually	represent	one	parameter
		functions,	which	modify	value,	returned	from	parameter.	For	the	moment	valid
are:

				Path																			-	extracts	file	path	from	filename	(with	'\'	at	the	end)
				Dir																						-	extracts	file	dir	from	filename	(without	'\'	at	the	end)
				Name																		-	extracts	only	file	name
				Ext																						-	extracts	file	extension
				ExtOnly															-	extracts	file	extension	without	dot	before	it
				NoExt																		-	returns	full	file	name	without	extension
				Drive																			-	extracts	only	file	drive
				Full																					-	expands	file	name	to	absolute	file	name
				UNC																			-	expands	file	name	to	absolute	UNC	file	name
				Long																			-	returns	long	file	name
				Short																			-	returns	short	file		name
				Sep																					-	adds	'\'	at	the	end,	if	there	is	no
				NoSep																-	removes	'\'	from	the	end,	if	there	is	any
				Type																			-	returns	file	type	of	the	file,	as	shown	in	the	explorer
				Text																				-	returns	file	text
				EdText																-	returns	file	text	(but	actual	text	from	editor,	if	file	is
changed)
				CurWord													-	returns	current	word	of	the	given	file,	if	is	open	in	editor
				CurLine															-	returns	current	line	of	the	given	file,	if	is	open	in	editor
				CurLineNumber		-	returns	current	line	of	the	given	file,	if	is	open	in	editor
				SelText															-	returns	selected	text	in	the	given	file,	if	is	open	in	editor
				Select																	-	selects	text	(modifier	is	valid	only	for	"Insert	test"	tools)
				Env																					-	returns	environment	variable	(the	parameter	must	contain

its	name)
				Reg																					-	returns	registry	key	value	for	given	registry	key	name
				UpperCase									-	converts	parameter	value	to	uppercase
				LowerCase									-	converts	parameter	value	to	lowercase
				Quote																		-	adds	quotes	to	parameter	value
				UnQuote													-	removes	quotes	from	parameter	value
				Date																				-	returns	date	portion	from	date	time	parameter
				Time																			-	returns	time	portion	from	date	time	parameter
				FileDate														-	returns	file	date
				DateCreate									-	returns	file	creation	date
				DateWrite											-	returns	file	last	write	date
				DateAccess								-	returns	file	last	access	date
				DateFormat								-	formats	date	with	given	format	(the	prior	modifier	must
contain	desired	format)

Parameter	syntax	is	extended	so	you	can	type

												$[Parameter=DefaultValue]

which	means,	that	if	this	Parameter	is	not	found,	Default	Value	will	be	used.

												$[Parameter?Question]

will	open	a	Input	Box	and	ask	with	'Question'	for	a	value	of	Parameter.

												$[Parameter=DefaultValue?Question]

will	open	a	Input	Box	and	ask	with	'Question'	for	a	value	of	Parameter,	but	if
there	is	no	value,	will	offer	DefaultValue	as	default.

												$['Some	value']

is	returned	as	it	is	(only	parameters	in	SomeValue	are	replaced	with	their	values)
-	this	is	useful,	if	you	want	to	pass	specific	value	to	modifier	-for	example

												$['31.01.2002'-'YYYY/MM/DD'-DateFormat]

will	return	you	2002.01.31

ParameterValue	can	be	conditional	parameter.	Format	is

												$[(ParameterCondition)TrueValue:FalseValue]

where	TrueValue	and	FalseValue	are	any	valid	ParameterValue.	Symbol	':'	is	not
required	-	if	it	is	missing,	its	assumed	that	this	means	empty	FalseValue.
ParameterCondition	can	contain	one	or	two	ParameterValues	and	one	of
operations	"=",	"<>",	"<",	">",	"<=",	">=",	"IS	NULL"	or	"IS	NOT	NULL"	or
text	to	be	asked	in	dialog	(in	single	quotes)	and	"?"	(question	mark	symbol)	after
it.	In	this	case	value	will	depend	from	the	user	input.
																																																																																																
												Condition1=$[($[Project]	IS	NULL)'There	is	no	project	open':'Project
file	is	$[Project]']
												Condition2=$[('Answer	Yes	or	No'?)'Your	answer	was	Yes':'Your	answer
was	No']

Parameters	can	be	placed	AutoComplete	items	and	Tools	too.

Editor	Shortcuts
You	can	use	parameters	in	the	IDE	editor,	the	external	tool	configuration	dialog
and	the	Code	Template	definition.		To	facilitate	the	entry	of	parameters	and
modifiers	PyScripter	provides	parameter	and	modifier	completion	(selection
from	a	pop-up	list)	using	the	following	shortcuts.

				Shft+Ctrl+P	provides	Parameter	completion
				Shft+Ctrl+M	provides	Modifier	completion
				Shft+Ctrl+R	replaces	all	parameters	with	their	values

LIST	OF	DEFINED	PARAMETERS	AND	MODIFIERS

These	are	all	parameters	and	their	values	at	the	moment	of	writing	of	this
file.If	you	want	to	see	their	values,	copy	the	following	into	an	editor	and	select
"Replace	parameters"	from	"Edit	menu"

System	parameters:
CurrentDir=$[CurrentDir]
ProgramFiles=$[ProgramFiles]
CommonFiles=$[CommonFiles]
Windows=$[Windows]
WindowsSystem=$[WindowsSystem]
WindowsTemp=$[WindowsTemp]
MyDocuments=$[MyDocuments]
Desktop=$[Desktop]
Exe=$[Exe]
ActiveDoc=$[ActiveDoc]
ActiveScript=$[ActiveScript]
Project=$[Project]
ModFiles=$[ModFiles]
DateTime=$[DateTime]
UserName=$[UserName]
SelectFile=$[SelectFile]
SelectedFile=$[SelectedFile]
SelectDir=$[SelectDir]
SelectedDir=$[SelectedDir]
Paste=$[Paste]
OpenFiles=$[OpenFiles]

ParameterModifiers:
ActiveDoc-CurLine=$[ActiveDoc-CurLine]
ActiveDoc-CurWord=$[ActiveDoc-CurWord]
ActiveDoc-SelText=$[ActiveDoc-SelText]
'PATH'-Env=$['PATH'-Env]
PYTHON24DIR=$['HKLM\SOFTWARE\Python\PythonCore\2.4\InstallPath\'-
Reg]
'0'-Param=$['0'-Param]
Exe-DateAccess=$[Exe-DateAccess]
Exe-DateCreate=$[Exe-DateCreate]
Exe-DateWrite=$[Exe-DateWrite]
Exe-FileDate=$[Exe-FileDate]
Exe-FileDate-'DD/MM/YYYY	HH:NN:SS'-DateFormat=$[Exe-
FileDate-'DD/MM/YYYY	HH:NN:SS'-DateFormat]

Exe-FileDate-Date=$[Exe-FileDate-Date]
Exe-FileDate-Time=$[Exe-FileDate-Time]
Exe-Dir=$[Exe-Dir]
Exe-Dir-Sep=$[Exe-Dir-Sep]
Exe-Path=$[Exe-Path]
Exe-Path-NoSep=$[Exe-Path-NoSep]
Exe-Drive=$[Exe-Drive]
Exe-Ext=$[Exe-Ext]
Exe-Full=$[Exe-Full]
Exe-Long=$[Exe-Long]
Exe-LowerCase=$[Exe-LowerCase]
Exe-Name=$[Exe-Name]
Exe-NoExt=$[Exe-NoExt]
Exe-Quote=$[Exe-Quote]
Exe-Short=$[Exe-Short]
Exe-Type=$[Exe-Type]
Exe-UNC=$[Exe-UNC]
Exe-UpperCase=$[Exe-UpperCase]

Day=$[DateTime-'DD'-DateFormat]
Month=$[DateTime-'MM'-DateFormat]
Year=$[DateTime-'YYYY'-DateFormat]
Hour=$[DateTime-'HH'-DateFormat]
Minutes=$[DateTime-'NN'-DateFormat]
Seconds=$[DateTime-'SS'-DateFormat]

Defining	your	own	custom	parameters

You	can	define	your	own	custom	parameters	by	selecting	the	"Custom
Parameters..."	menu	command	under	Tools|Options.		The	Custom	Parameters
dialog	is	displayed	below:

	Introduction to PyScripter
	Main Features
	History
	Known Issues
	Future
	Credits
	License
	Support and Updates

	The Main IDE Window
	Window Docking
	IDE Styles
	Keyboard Shortcuts
	IDE Window Layouts

