
indexnext 	|PyMuPDF	1.12.2	documentation 	»

PyMuPDF	Documentation

Introduction
Note	on	the	Name	fitz
License
Covered	Version

Installation
Option	1:	Install	from	Sources

Step	1:	Download	PyMuPDF
Step	2:	Download	and	Generate	MuPDF
Step	3:	Build	/	Setup	PyMuPDF

Option	2:	Install	from	Binaries
Step	1:	Download	Binary
Step	2:	Install	PyMuPDF
MD5	Checksums
Targeting	Parallel	Python	Installations

Using	UPX
Tutorial

Importing	the	Bindings
Opening	a	Document
Some	Document	Methods	and	Attributes
Accessing	Meta	Data
Working	with	Outlines
Working	with	Pages

Inspecting	the	Links	of	a	Page
Rendering	a	Page
Saving	the	Page	Image	in	a	File
Displaying	the	Image	in	Dialog	Managers

Extracting	Text
Searching	Text

PDF	Maintenance
Modifying,	Creating,	Re-arranging	and	Deleting	Pages
Joining	and	Splitting	PDF	Documents
Saving

Closing
Example:	Dynamically	Cleaning	up	Corrupt	PDF	Documents
Further	Reading

Classes
Annot

Example
Colorspace
Document

Remarks	on	select()
select()	Examples
setMetadata()	Example
setToC()	Example
insertPDF()	Examples
Other	Examples

Identity
IRect

Remark
IRect	Algebra
Examples

Link
linkDest
Matrix

Remarks	1

Remarks	2
Matrix	Algebra
Examples
Shifting
Flipping
Shearing
Rotating

Outline
Page

Description	of	getLinks()	Entries
Notes	on	Supporting	Links
Homologous	Methods	of	Document	and	Page

Pixmap
Supported	Input	Image	Types
Details	on	Saving	Images	with	writeImage()
Pixmap	Example	Code	Snippets

Point
Remark
Point	Algebra
Examples

Shape
Usage
Examples
Common	Parameters

Rect
Remark
Rect	Algebra
Examples

Operator	Algebra	for	Geometry	Objects

General	Remarks
Unary	Operations
Binary	Operations

Low	Level	Functions	and	Classes
Functions
Device
DisplayList
TextPage

Structure	of	TextPage.extractJSON()
Full	Document	Output	in	JSON	Format

Working	together:	DisplayList	and	TextPage
Create	a	DisplayList
Generate	Pixmap
Perform	Text	Search
Extract	Text
Further	Performance	improvements

Constants	and	Enumerations
Constants
Font	File	Extensions
Text	Alignment
Preserve	Text	Flags
Link	Destination	Kinds
Link	Destination	Flags
Annotation	Types
Annotation	Flags
Annotation	Line	End	Styles

Color	Database
Function	getColor()
Printing	the	Color	Database

Appendix	1:	Performance
Part	1:	Parsing
Part	2:	Text	Extraction
Part	3:	Image	Rendering

Appendix	2:	Details	on	Text	Extraction
General	structure	of	a	TextPage
Plain	Text
HTML
Controlling	Quality	of	HTML	Output
JSON
XML
XHTML
Further	Remarks
Performance

Appendix	3:	Considerations	on	Embedded	Files
General
MuPDF	Support
PyMuPDF	Support

Appendix	4:	Assorted	Technical	Information
PDF	Base	14	Fonts
Adobe	PDF	Reference	1.7
Ensuring	Consistency	of	Important	Objects	in	PyMuPDF
Design	of	Method	Page.showPDFpage()

Purpose	and	Capabilities
Technical	Implementation

Change	Logs
Changes	in	Version	1.12.2
Changes	in	Version	1.12.1
Changes	in	Version	1.12.0

indexnext 	|PyMuPDF	1.12.2	documentation 	»

Changes	in	Version	1.11.2
Changes	in	Version	1.11.1
Changes	in	Version	1.11.0
Changes	in	Version	1.10.0

MuPDF	v1.10	Impact
Other	Changes	compared	to	Version	1.9.3

Changes	in	Version	1.9.3
Changes	in	Version	1.9.2
Changes	in	Version	1.9.1

Error	Messages

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	14.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Introduction

PyMuPDF	is	a	Python	binding	for	MuPDF	-	“a	lightweight	PDF	and
XPS	viewer”.

MuPDF	can	access	files	in	PDF,	XPS,	OpenXPS,	CBZ	(comic	book
archive),	FB2	and	EPUB	(e-book)	formats.

These	are	files	with	extensions	*.pdf,	*.xps,	*.oxps,	*.cbz,
*.fb2	or	*.epub	(so	in	essence,	with	this	binding	you	can	develop
e-book	viewers	in	Python	…).

PyMuPDF	provides	access	to	many	important	functions	of	MuPDF
from	within	a	Python	environment,	and	we	are	continuously	seeking	to
expand	this	function	set.

MuPDF	stands	out	among	all	similar	products	for	its	top	rendering
capability	and	unsurpassed	processing	speed.	At	the	same	time,	its
“light	weight”	makes	it	an	excellent	choice	for	platforms	where
resources	are	typically	limited,	like	smartphones.

Check	this	out	yourself	and	compare	the	various	free	PDF-viewers.	In
terms	of	speed	and	rendering	quality	SumatraPDF	ranges	at	the	top
(apart	from	MuPDF’s	own	standalone	viewer)	-	since	it	has	changed
its	library	basis	to	MuPDF!

While	PyMuPDF	has	been	available	since	several	years	for	an	earlier

http://www.mupdf.com/
http://www.sumatrapdfreader.org/

version	of	MuPDF	(v1.2,	called	fitz-python	then),	it	was	until	only	mid
May	2015,	that	its	creator	and	a	few	co-workers	decided	to	elevate	it
to	support	current	releases	of	MuPDF	(first	v1.7a,	up	to	v1.12.0	as	of
this	writing).

PyMuPDF	runs	and	has	been	tested	on	Mac,	Linux,	Windows	XP	SP2
and	up,	Python	2.7	through	Python	3.6	(note	that	Python	supports
Windows	XP	only	up	to	v3.4),	32bit	and	64bit	versions.	Other
platforms	should	work	too,	as	long	as	MuPDF	and	Python	support
them.

PyMuPDF	is	hosted	on	GitHub.	Because	we	rely	on	MuPDF’s	C
library,	installation	consists	of	two	separate	steps	for	all	platforms
except	for	MS	Windows:

1.	 Installation	of	MuPDF:	this	involves	downloading	the	source	from
their	website	and	then	compiling	it	on	your	machine.

2.	 Installation	of	PyMuPDF:	this	step	is	normal	Python	procedure.
Usually	you	will	have	to	adapt	the	setup.py	to	point	to	correct
include	and	lib	directories	of	your	generated	MuPDF.

For	the	Windows	platform	we	have	however	combined	these	steps
and	offer	binaries,	available	in	ZIP	and	wheel	formats.	This	installation
material	is	contained	in	a	separate	GitHub	repository	and	obsoletes	all
other	download	and	generation	work.	You	only	need	to	choose	which
Python	version	and	bitness	you	want	and	then	download	the
respective	zip	or	wheel	file	(less	than	3	MB).

For	installation	details	check	out	the	respective	chapter.

We	also	are	registered	on	PyPI.

https://github.com/rk700/PyMuPDF
https://github.com/JorjMcKie/PyMuPDF-optional-material
https://pypi.org/project/PyMuPDF/

There	exist	several	demo	and	example	programs	in	the	main
repository,	ranging	from	simple	code	snippets	to	full-featured	utilities,
like	text	extraction,	PDF	joiners	and	bookmark	maintenance.

Interesting	PDF	manipulation	and	generation	functions	have	been
added	over	time,	including	metadata	and	bookmark	maintenance,
document	restructuring,	annotation	/	link	handling	and	document	or
page	creation.

https://github.com/rk700/PyMuPDF/tree/master/demo
https://github.com/rk700/PyMuPDF/tree/master/examples

Note	on	the	Name	fitz
The	standard	Python	import	statement	for	this	library	is	import
fitz.	This	has	a	historical	reason:

The	original	rendering	library	for	MuPDF	was	called	Libart.

“After	Artifex	Software	acquired	the	MuPDF	project,	the	development
focus	shifted	on	writing	a	new	modern	graphics	library	called	``Fitz``.
Fitz	was	originally	intended	as	an	R&D	project	to	replace	the	aging
Ghostscript	graphics	library,	but	has	instead	become	the	rendering
engine	powering	MuPDF.”	(Quoted	from	Wikipedia).

https://en.wikipedia.org/wiki/MuPDF

License
PyMuPDF	is	distributed	under	GNU	GPL	V3	(or	later,	at	your	choice).

MuPDF	is	distributed	under	a	separate	license,	the	GNU	AFFERO
GPL	V3.

Both	licenses	apply,	when	you	use	PyMuPDF.

Note

Version	3	of	the	GNU	AFFERO	GPL	is	a	lot	less	restrictive	than	its	earlier	versions	used

to	be.	It	basically	is	an	open	source	freeware	license,	that	obliges	your	software	to	also

being	open	source	and	freeware.	Consult	this	website,	if	you	want	to	create	a	commercial

product	with	PyMuPDF.

http://artifex.com/licensing/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Covered	Version
This	documentation	covers	PyMuPDF	1.12.2	features	as	of	2018-01-
14,	15:20:51.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	14.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Installation

Installation	generally	encompasses	downloading	and	generating
PyMuPDF	and	MuPDF	from	sources.

This	process	consists	of	three	steps	described	below	under	Option	1:
Install	from	Sources.

However,	if	your	operating	system	is	MS	Windows,	you	can	perform	a
binary	setup,	detailed	out	under	Option	2:	Install	from	Binaries.	This
process	is	much	faster	and	requires	the	download	of	only	one	3	MB
file	(either	.zip	or	.whl)	-	no	compiler,	no	Visual	Studio,	no
download	of	MuPDF,	even	no	download	of	PyMuPDF.

Option	1:	Install	from	Sources

Step	1:	Download	PyMuPDF
Download	this	repository	and	unzip	/	decompress	it.	This	will	give	you
a	folder,	let	us	call	it	PyFitz.

Step	2:	Download	and	Generate	MuPDF
Download	mupdf-x.xx-source.tar.gz	from
http://mupdf.com/downloads	and	unzip	/	decompress	it.	Call	the
resulting	folder	mupdf.	The	latest	MuPDF	development	sources	are
available	on	https://github.com/ArtifexSoftware/mupdf	-	this	is	not
what	you	want	here.

Make	sure	you	download	the	(sub-)	version	for	which	PyMuPDF	has
stated	its	compatibility.	The	various	Linux	flavors	usually	have	their
own	specific	ways	to	support	download	of	packages	which	we	cannot
cover	here.	Do	not	hesitate	posting	issues	to	our	web	site	or	sending
an	e-mail	to	the	authors	for	getting	support.

Put	it	inside	PyFitz	as	a	subdirectory	for	keeping	everything	in	one
place.

Controlling	the	Binary	File	Size:

Since	version	1.9,	MuPDF	includes	support	for	many	dozens	of
additional,	so-called	NOTO	(“no	TOFU”)	fonts	for	all	sorts	of	alphabets
from	all	over	the	world	like	Chinese,	Japanese,	Corean,	Kyrillic,
Indonesian,	Chinese	etc.	If	you	accept	MuPDF’s	standard	here,	the
resulting	binary	for	PyMuPDF	will	be	very	big	and	easily	approach	or
exceed	20	MB.	The	features	actually	needed	by	PyMuPDF	in	contrast

http://mupdf.com/downloads
https://github.com/ArtifexSoftware/mupdf

only	represent	a	fraction	of	this	size:	no	more	than	5	MB	currently.

To	cut	off	unneeded	stuff	from	your	MuPDF	version,	modify	file
/include/mupdf/config.h	as	follows:

#ifndef	FZ_CONFIG_H

#define	FZ_CONFIG_H

/*

Enable	the	following	for	spot	(and	hence	overprint/

simulation)	capable	rendering.	This	forces	FZ_PLOTTERS_N

*/

#define	FZ_ENABLE_SPOT_RENDERING

/*

Choose	which	plotters	we	need.

By	default	we	build	all	the	plotters	in.	To	avoid	building

plotters	in	that	aren't	needed,	define	the	unwanted

FZ_PLOTTERS_...	define	to	0.

*/

/*	#define	FZ_PLOTTERS_G	1	*/

/*	#define	FZ_PLOTTERS_RGB	1	*/

/*	#define	FZ_PLOTTERS_CMYK	1	*/

/*	#define	FZ_PLOTTERS_N	1	*/

/*

Choose	which	document	agents	to	include.

By	default	all	but	GPRF	are	enabled.	To	avoid	building

ones,	define	FZ_ENABLE_...	to	0.

*/

/*	#define	FZ_ENABLE_PDF	1	*/

/*	#define	FZ_ENABLE_XPS	1	*/

/*	#define	FZ_ENABLE_SVG	1	*/

/*	#define	FZ_ENABLE_CBZ	1	*/

/*	#define	FZ_ENABLE_IMG	1	*/

/*	#define	FZ_ENABLE_TIFF	1	*/

/*	#define	FZ_ENABLE_HTML	1	*/

/*	#define	FZ_ENABLE_EPUB	1	*/

/*	#define	FZ_ENABLE_GPRF	1	*/

/*

Choose	whether	to	enable	JPEG2000	decoding.

By	default,	it	is	enabled,	but	due	to	frequent	security

issues	with	the	third	party	libraries	we	support	disabling

it	with	this	flag.

*/

/*	#define	FZ_ENABLE_JPX	1	*/

/*

Choose	whether	to	enable	JavaScript.

By	default	JavaScript	is	enabled	both	for	mutool	and

*/

/*	#define	FZ_ENABLE_JS	1	*/

/*

Choose	which	fonts	to	include.

By	default	we	include	the	base	14	PDF	fonts,

DroidSansFallback	from	Android	for	CJK,	and

Charis	SIL	from	SIL	for	epub/html.

Enable	the	following	defines	to	AVOID	including

unwanted	fonts.

*/

/*	To	avoid	all	noto	fonts	except	CJK,	enable:	*/

#define	TOFU	//	PyMuPDF

/*	To	skip	the	CJK	font,	enable:	(this	implicitly	enables

#define	TOFU_CJK	//	PyMuPDF

/*	To	skip	CJK	Extension	A,	enable:	(this	implicitly

#define	TOFU_CJK_EXT	//	PyMuPDF

/*	To	skip	CJK	language	specific	fonts,	enable:	*/

#define	TOFU_CJK_LANG	//	PyMuPDF

/*	To	skip	the	Emoji	font,	enable:	*/

#define	TOFU_EMOJI	//	PyMuPDF

/*	To	skip	the	ancient/historic	scripts,	enable:	*/

#define	TOFU_HISTORIC	//	PyMuPDF

/*	To	skip	the	symbol	font,	enable:	*/

#define	TOFU_SYMBOL	//	PyMuPDF

/*	To	skip	the	SIL	fonts,	enable:	*/

#define	TOFU_SIL	//	PyMuPDF

/*	To	skip	the	ICC	profiles,	enable:	*/

#define	NO_ICC	//	PyMuPDF

/*	To	skip	the	Base14	fonts,	enable:	*/

/*	#define	TOFU_BASE14	*/

/*	(You	probably	really	don't	want	to	do	that	except	for	measurement	purposes!)	*/

/*	----------	DO	NOT	EDIT	ANYTHING	UNDER	THIS	LINE	

...

#endif	/*	FZ_CONFIG_H	*/

The	above	choice	should	bring	down	your	binary	file	size	to	around	5
MB	or	less,	depending	on	your	bitness.

Generate	MuPDF	now.

The	MuPDF	source	includes	generation	procedures	/	makefiles	for
numerous	platforms.	For	Windows	platforms,	Visual	Studio	solution
and	project	definitions	are	provided.

Consult	additional	installation	hints	on	PyMuPDF’s	main	page	on
Github.	Among	other	things	you	will	find	a	Wiki	pages	with	details	on
building	the	Windows	binaries	or	user	provided	installation
experiences.

Step	3:	Build	/	Setup	PyMuPDF

Adjust	the	setup.py	script	as	necessary.	E.g.	make	sure	that

the	include	directory	is	correctly	set	in	sync	with	your	directory
structure
the	object	code	libraries	are	correctly	defined

Now	perform	a	python	setup.py	install.

https://github.com/rk700/PyMuPDF/

Option	2:	Install	from	Binaries
This	installation	option	is	available	for	the	lucky	MS	Windows	users
only.	All	versions	of	Windows	(XP	SP2	and	up)	and	Python	(2.7	and
up)	are	supported	with	either	32bit	or	64bit	at	your	choice.

Step	1:	Download	Binary
You	do	not	need	the	complete	repository	PyMuPDF-optional-material.

Either

issue	pip	install	PyMuPDF	[--upgrade]	and	you	are
done,

or

download	the	ZIP	or	WHL	file	you	need	and	read	on.

Step	2:	Install	PyMuPDF
The	next	steps	are	of	interest	if	you	have	special	needs.	For	example:
if	you	do	not	want	to	use	pip,	you	can	do	a	ZIP-file-based	installation.
Or	you	may	want	to	install	a	wheel	that	does	not	target	your	standard
Python,	or	is	a	pre-release	build,	etc.

If	you	have	downloaded	a	wheel,	install	it	via	pip	install
PyMuPDF-<...>.whl	[--upgrade]	and	you	are	done.
If	you	have	downloaded	a	zip,	unzip	it	to	e.g.	your	Desktop	and
open	a	command	prompt	at	the	unzipped	folder’s	directory,	which
contains	setup.py.	Enter	python	setup.py	install	(or
py	setup.py	install	if	you	have	the	Python	launcher).

https://github.com/JorjMcKie/PyMuPDF-optional-material/

MD5	Checksums
Binary	download	setup	scripts	in	ZIP	format	contain	an	integrity	check
based	on	MD5	check	sums.

The	directory	structure	of	each	zip	file	pymupdf-<...>.zip	is	as
follows:

During	setup,	the	MD5	check	sum	of	the	four	installation	files
__init__.py,	_fitz.pyd,	utils.py	and	fitz.py	is	being
calculated	and	compared	against	a	pre-calculated	value	in	file
md5.txt.	In	case	of	a	mismatch	the	error	message

md5	mismatch:	probable	download	error

is	issued	and	setup	is	cancelled.	In	this	case,	please	check	your
download	for	any	problems.

If	you	downloaded	a	wheel,	integrity	checks	are	done	by	pip.

Targeting	Parallel	Python	Installations
Setup	scripts	for	ZIP	binary	install	support	the	Python	launcher
py.exe	introduced	with	version	3.3.

They	contain	shebang	lines	that	specify	the	intended	Python	version,
and	additional	checks	for	detecting	error	situations.

This	can	be	used	to	target	the	right	Python	version	if	you	have	several
installed	in	parallel	(and	of	course	the	Python	launcher,	too).	Use	the
following	statement	to	set	up	PyMuPDF	correctly:

py	setup.py	install

The	shebang	line	of	setup.py	will	be	interpreted	by	py.exe	to
automatically	find	the	right	Python,	and	the	internal	checks	will	make
sure	that	version	and	bitness	are	what	they	sould	be.

When	using	wheels,	configuration	conflict	detection	is	done	by	pip.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Using	UPX
No	matter	which	option	you	chose,	your	PyMuPDF	installation	will	end
up	with	four	files:	__init__.py,	fitz.py,	utils.py	and	the
binary	file	_fitz.xxx	in	the	site-packages	directory.	The
extension	of	the	binary	will	be	.pyd	on	Windows	and	.so	on	other
platforms.

Depending	on	your	OS,	your	compiler	and	your	font	support	choice
(see	above),	this	binary	can	be	quite	large	and	range	from	5	MB	to	20
MB.	You	can	reduce	this	by	applying	the	compression	utility	UPX	to	it,
which	probably	also	exists	for	your	operating	system.	UPX	will	reduce
the	size	of	_fitz.xxx	by	more	than	50%.	You	will	end	up	with	2.5
MB	to	9	MB	without	impacting	functionality	nor	execution	speed.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

https://upx.github.io/
http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Tutorial

This	tutorial	will	show	you	the	use	of	PyMuPDF,	MuPDF	in	Python,
step	by	step.

Because	MuPDF	supports	not	only	PDF,	but	also	XPS,	OpenXPS,
CBZ,	CBR,	FB2	and	EPUB	formats,	so	does	PyMuPDF	[1].
Nevertheless	we	will	only	talk	about	PDF	files	for	the	sake	of	brevity.
At	places	where	indeed	only	PDF	files	are	supported,	this	will	be
mentioned	explicitely.

Importing	the	Bindings
The	Python	bindings	to	MuPDF	are	made	available	by	this	import
statement:

>>>	import	fitz

You	can	check	your	version	by	printing	the	docstring:

>>>	print	(fitz.__doc__)

PyMuPDF	1.9.1:	Python	bindings	for	the	MuPDF	1.9a	library,

built	on	2016-07-01	13:06:02

Opening	a	Document
To	access	a	supported	document,	it	must	be	opened	with	the	following
statement:

>>>	doc	=	fitz.open(filename)					#	or	fitz.Document(filename)

This	creates	a	Document	object	doc.	filename	must	be	a	Python
string	specifying	the	name	of	an	existing	file.

It	is	also	possible	to	open	a	document	from	memory	data,	or	to	create
a	new,	empty	PDF.	See	Document	for	details.

A	document	contains	many	attributes	and	functions.	Among	them	are
meta	information	(like	“author”	or	“subject”),	number	of	total	pages,
outline	and	encryption	information.

Some	Document	Methods	and	Attributes
Method	/	Attribute Description
Document.pageCount number	of	pages	(int)
Document.metadata metadata	(dict)
Document.getToC() table	of	contents	(list)
Document.loadPage() read	a	page	(Page)

Accessing	Meta	Data
PyMuPDF	fully	supports	standard	metadata.	Document.metadata
is	a	Python	dictionary	with	the	following	keys.	It	is	available	for	all
document	types,	though	not	all	entries	may	contain	data	in	every
single	case.	For	details	of	their	meanings	and	formats	consult	the	PDF
manuals,	e.g.	Adobe	PDF	Reference	1.7.	Further	information	can	also
be	found	in	chapter	Document.	The	meta	data	fields	are	strings	(or
None)	if	not	otherwise	indicated.	Be	aware	that	not	all	of	them
necessarily	contain	meaningful	data.

Key Value

producer producer	(producing
software)

format PDF	format,	e.g.	‘PDF-1.4’
encryption encryption	method	used
author author
modDate date	of	last	modification
keywords keywords
title title
creationDate date	of	creation
creator creating	application
subject subject

Note

Apart	from	these	standard	metadata,	PDF	documents	of	PDF	version	1.4	or	later	may

also	contain	so-called	“metadata	streams”.	Information	in	such	streams	is	coded	in	XML.

PyMuPDF	deliberately	contains	no	XML	components,	so	we	do	not	directly	support

access	to	information	contained	therein.	But	you	can	extract	the	stream	as	a	whole,

inspect	or	modify	it	using	a	package	like	lxml	and	then	store	the	result	back	into	the	PDF.

If	you	want,	you	can	also	delete	these	data	altogether.

https://pypi.org/project/lxml/

Working	with	Outlines
The	easiest	way	to	get	all	outlines	(also	called	“bookmarks”)	of	a
document,	is	creating	a	table	of	contents:

>>>	toc	=	doc.getToC()

This	will	return	a	Python	list	of	lists	[[lvl,	title,	page,	...],
...].

lvl	is	the	hierarchy	level	of	the	entry	(starting	from	1),	title	is	the
entry’s	title,	and	page	the	page	number	(1-based!).	Other	parameters
describe	details	of	the	bookmark	target.

Working	with	Pages
Tasks	that	can	be	performed	with	a	Page	are	at	the	core	of	MuPDF’s
functionality.

You	can	render	a	page	into	an	image,	optionally	zooming,
rotating,	shifting	or	shearing	it.
You	can	extract	a	page’s	text	or	search	for	text	strings.

First,	a	page	object	must	be	created:

>>>	page	=	doc.loadPage(n)								#	represents	page	n	of	the	document	(0-based)

>>>	page	=	doc[n]																	#	short	form

n	may	be	any	integer	less	than	the	total	number	of	pages	of	the
document.	doc[-1]	is	the	last	page,	like	with	Python	lists.

Some	typical	uses	of	Pages	follow:

Inspecting	the	Links	of	a	Page
Here	is	how	to	get	all	links	and	their	types:

>>>	#	get	all	links	on	a	page

>>>	links	=	page.getLinks()

links	is	a	Python	list	of	dictionaries.	For	details	see
Page.getLinks().

Rendering	a	Page

This	example	creates	an	image	out	of	a	page’s	content:

>>>	pix	=	page.getPixmap()

Now	pix	is	a	Pixmap	object	that	contains	an	RGBA	image	of	the
page,	ready	to	be	used.	This	method	offers	lots	of	variations	for
controlling	the	image:	resolution,	colorspace,	transparency,	rotation,
mirroring,	shifting,	shearing,	etc.

Saving	the	Page	Image	in	a	File
We	can	simply	store	the	image	in	a	PNG	file:

>>>	pix.writePNG("test.png")

Displaying	the	Image	in	Dialog	Managers
We	can	also	use	it	in	GUI	dialog	managers.	Pixmap.samples
represents	the	area	of	bytes	of	all	the	pixels	as	a	Python	bytes	object.
Here	are	two	examples,	find	more	here.

wxPython:

>>>	bitmap	=	wx.BitmapFromBufferRGBA(pix.width,	pix

Tkinter:

>>>	#	the	following	requires:	"from	PIL	import	Image,	ImageTk"

>>>	img	=	Image.frombytes("RGBA",	[pix.width,	pix.height

>>>	photo	=	ImageTk.PhotoImage(img)

https://github.com/rk700/PyMuPDF/tree/master/examples

Now,	photo	can	be	used	as	an	image	in	TK.

Extracting	Text
We	can	also	extract	all	text	of	a	page	in	one	chunk	of	string:

>>>	text	=	page.getText(type)

Use	one	of	the	following	strings	for	type:

"text":	(default)	plain	text	with	line	breaks.	No	formatting,	no
text	position	details.
"html":	creates	a	full	visual	version	of	the	page	including	any
images,	which	can	be	displayed	in	browsers.
"json":	same	information	level	as	HTML.	Use	a	JSON	module
to	interpret.
"xhtml":	text	information	level	as	the	TEXT	version,	but
includes	images	and	can	also	be	displayed	in	browsers.
"xml":	contains	no	images,	but	full	position	and	font	information
about	each	single	text	character.	Use	an	XML	module	to	interpret.

To	give	you	an	idea	about	the	output	of	these	alternatives,	we	did	text
example	extracts.	See	Appendix	2:	Details	on	Text	Extraction.

Searching	Text
You	can	find	out,	exactly	where	on	a	page	a	certain	string	appears:

>>>	areas	=	page.searchFor("mupdf",	hit_max	=	16)

The	variable	areas	will	contain	a	list	of	up	to	16	Rectangles,	each	of

which	surrounds	one	occurrence	of	the	string	“mupdf”	(case
insensitive).	You	could	use	this	information	to	e.g.	highlight	those
areas	or	create	a	cross	reference	of	the	document.

Please	also	do	have	a	look	at	chapter	Working	together:	DisplayList
and	TextPage	and	at	demo	program	demo.py.	Among	other	things
they	contain	details	on	how	the	TextPage,	Device	and	DisplayList
classes	can	be	used	for	a	more	direct	control,	e.g.	when	performance
considerations	suggest	it.

https://github.com/rk700/PyMuPDF/blob/master/demo/demo.py

PDF	Maintenance
Since	version	1.9,	PyMuPDF	provides	several	options	to	modify	PDF
documents	(only).

Document.save()	always	stores	a	PDF	in	its	current	(potentially
modified)	state	on	disk.

Apart	from	your	changes,	there	are	less	obvious	ways	for	a	PDF	to
becoming	“modified”:

During	open,	integrity	checks	are	used	to	determine	the	health	of
the	PDF	structure.	Any	errors	will	be	corrected	as	far	as	possible
to	present	a	repaired	document	in	memory	for	further	processing.
If	this	is	the	case,	the	document	is	regarded	as	being	modified.
After	a	document	has	been	decrypted,	the	document	in	memory
has	changed	and	also	counts	as	being	modified.

In	these	two	cases,	Document.save()	will	store	a	repaired	and	/	or
decrypted	version,	and	saving	must	occur	to	a	new	file.

The	following	describe	some	more	intentional	ways	to	manipulate
PDF	documents.	This	description	is	by	no	means	exhaustive:	much
more	can	be	found	in	the	following	chapters.

Modifying,	Creating,	Re-arranging	and	Deleting	Pages
There	are	several	ways	to	manipulate	the	page	tree	of	a	PDF:

Methods	Document.deletePage()	and
Document.deletePageRange()	delete	pages.

Methods	Document.copyPage()	and	Document.movePage()
copy	or	move	a	page	to	another	location	within	the	document.

Document.insertPage()	and	Document.newPage()	insert
pages.

Method	Document.select()	shrinks	a	document	down	to	selected
pages.	It	accepts	a	sequence	of	integers	as	argument.	These	integers
must	be	in	range	0	<=	i	<	pageCount.	When	executed,	all	pages
missing	in	this	list	will	be	deleted.	Only	pages	that	do	occur	will
remain	-	in	the	sequence	specified	and	as	many	times	(!)	as
specified.

So	you	can	easily	create	new	PDFs	with	the	first	or	last	10	pages,	only
the	odd	or	only	the	even	pages	(for	doing	double-sided	printing),
pages	that	do	or	don’t	contain	a	certain	text,	reverse	their	sequence,
…	whatever	you	may	think	of.

The	saved	new	document	will	contain	all	still	valid	links,	annotations
and	bookmarks.

Pages	themselves	can	moreover	be	modified	by	a	range	of	methods
(e.g.	page	rotation,	annotation	and	link	maintenance,	text	and	image
insertion).

Joining	and	Splitting	PDF	Documents
Method	Document.insertPDF()	inserts	pages	from	another	PDF
at	a	specified	place	of	the	current	one.	Here	is	a	simple	joiner
example	(doc1	and	doc2	being	openend	PDFs):

>>>	#	append	complete	doc2	to	the	end	of	doc1

>>>	doc1.insertPDF(doc2)

Here	is	how	to	split	doc1.	This	creates	a	new	document	of	its	first	and
last	10	pages	(could	also	be	done	using	Document.select()):

>>>	doc2	=	fitz.open()																	#	new	empty	PDF

>>>	doc2.insertPDF(doc1,	to_page	=	9)

>>>	doc2.insertPDF(doc1,	from_page	=	len(doc1)	-	10

>>>	doc2.save(...)

More	can	be	found	in	the	Document	chapter.	Also	have	a	look	at
PDFjoiner.py.

Saving
As	mentioned	above,	Document.save()	will	always	save	the
document	in	its	current	state.

Since	MuPDF	1.9,	you	can	write	changes	back	to	the	original	PDF	by
specifying	incremental	=	True.	This	process	is	(usually)
extremely	fast,	since	changes	are	appended	to	the	original	file
without	rewriting	it.

Document.save()	supports	all	options	of	MuPDF’s	command	line
utility	mutool	clean,	see	the	following	table	(corresponding
mutool	clean	option	is	indicated	as	“mco”).

Option mco Effect
garbage	=	1 g garbage	collect	unused	objects
garbage	=	2 gg in	addition	to	1,	compact	xref	tables
garbage	=	3 ggg in	addition	to	2,	merge	duplicate	objects
garbage	=	4 gggg in	addition	to	3,	skip	duplicate	streams
clean	=	1 s clean	content	streams
deflate	=	1 z deflate	uncompressed	streams

https://github.com/rk700/PyMuPDF/blob/master/examples/PDFjoiner.py

ascii	=	1 a convert	binary	data	to	ASCII	format
linear	=	1 l create	a	linearized	version
expand	=	1 i decompress	images
expand	=	2 f decompress	fonts
expand	=	255 d decompress	all
incremental	=	1 n/a append	changes	to	the	original

For	example,	mutool	clean	-ggggz	file.pdf	yields	excellent
compression	results.	It	corresponds	to	doc.save(filename,
garbage=4,	deflate=1).

Closing
It	is	often	desirable	to	“close”	a	document	to	relinquish	control	of	the
underlying	file	to	the	OS,	while	your	program	continues.

This	can	be	achieved	by	the	Document.close()	method.	Apart
from	closing	the	underlying	file,	buffer	areas	associated	with	the
document	will	be	freed.

Example:	Dynamically	Cleaning	up	Corrupt
PDF	Documents
This	shows	a	potential	use	of	PyMuPDF	with	another	Python	PDF
library	(pdfrw).

If	a	clean,	non-corrupt	or	decompressed	PDF	is	needed,	one	could
dynamically	invoke	PyMuPDF	to	recover	from	problems	like	so:

import	sys

from	pdfrw	import	PdfReader

import	fitz

from	io	import	BytesIO

#---------------------------------------

#	'tolerant'	PDF	reader

#---------------------------------------

def	reader(fname):

				ifile	=	open(fname,	"rb")

				idata	=	ifile.read()																				#	put	in	memory

				ifile.close()

				ibuffer	=	BytesIO(idata)																#	convert	to	stream

				try:

								return	PdfReader(ibuffer)											#	let	us	try

				except:																																	#	problem!	heal	it	with	PyMuPDF

								doc	=	fitz.open("pdf",	idata)							#	open	and	save	a	corrected

								c	=	doc.write(garbage	=	4)										#	version	in	memory

								doc.close()

								doc	=	idata	=	None																		#	free	storage

								ibuffer	=	BytesIO(c)																#	convert	to	stream

								return	PdfReader(ibuffer)											#	let	pdfrw	retry

#---------------------------------------

#	Main	program

#---------------------------------------

https://pypi.python.org/pypi/pdfrw/0.3

pdf	=	reader("pymupdf.pdf")

print	pdf.Info

#	do	further	processing

With	the	command	line	utility	pdftk	(available	for	Windows	only)	a
similar	result	can	be	achieved,	see	here.	However,	you	must	invoke	it
as	a	separate	process	via	subprocess.Popen,	using	stdin	and
stdout	as	communication	vehicles.

https://www.pdflabs.com/tools/pdftk-the-pdf-toolkit/
http://www.overthere.co.uk/2013/07/22/improving-pypdf2-with-pdftk/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Further	Reading
Also	have	a	look	at	PyMuPDF’s	Wiki	pages.	Especially	those	named
in	the	sidebar	under	title	“Recipies”	cover	over	15	topics	written	in
“How-To”	style.

Footnotes

[1]
PyMuPDF	lets	you	also	open	several	image	file	types	just	like
normal	documents.	See	section	Supported	Input	Image	Types	in
chapter	Pixmap	for	more	comments.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

https://github.com/rk700/PyMuPDF/wiki
http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Classes

Annot
Colorspace
Document
Identity
IRect
Link
linkDest
Matrix
Outline
Page
Pixmap
Point
Shape
Rect

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Annot

Quote	from	the	Adobe	PDF	Reference	1.7:	“An	annotation	associates
an	object	such	as	a	note,	sound,	or	movie	with	a	location	on	a	page	of
a	PDF	document,	or	provides	a	way	to	interact	with	the	user	by	means
of	the	mouse	and	keyboard.”

This	class	supports	accessing	such	annotations	-	not	only	for	PDF
files,	but	for	all	MuPDF	supported	document	types.	However,	only	a
few	methods	and	properties	apply	to	non-PDF	documents.

There	is	a	parent-child	relationship	between	an	annotation	and	its
page.	If	the	page	object	becomes	unusable	(closed	document,	any
document	structure	change,	etc.),	then	so	does	every	of	its	existing
annotation	objects	-	an	exception	is	raised	saying	that	the	object	is
“orphaned”,	whenever	an	annotation	property	or	method	is	accessed.

Attribute Short	Description
Annot.getPixmap() image	of	the	annotation	as	a	pixmap

Annot.setInfo()
PDF	only:	change	metadata	of	an
annotation

Annot.setBorder()
PDF	only:	changes	the	border	of	an
annotation

Annot.setFlags()
PDF	only:	changes	the	flags	of	an
annotation

Annot.setRect()
PDF	only:	changes	the	rectangle	of	an
annotation

Annot.setColors()
PDF	only:	changes	the	colors	of	an
annotation

Annot.updateImage()
PDF	only:	applies	border	and	color	values
to	shown	image

Annot.fileInfo() PDF	only:	returns	attached	file	information
Annot.fileGet() PDF	only:	returns	attached	file	content

Annot.fileUpd() PDF	only:	sets	attached	file	new	content
Annot.border PDF	only:	border	details

Annot.colors
PDF	only:	border	/	background	and	fill
colors

Annot.flags PDF	only:	annotation	flags
Annot.info PDF	only:	various	information

Annot.lineEnds
PDF	only:	start	/	end	appearance	of	line-
type	annotations

Annot.next link	to	the	next	annotation
Annot.parent page	object	of	the	annotation
Annot.rect rectangle	containing	the	annotation
Annot.type PDF	only:	type	of	the	annotation

Annot.vertices
PDF	only:	point	coordinates	of	Polygons,
PolyLines,	etc.

Class	API

class	Annot

getPixmap(matrix	=	fitz.Ientity,	colorspace	=	fitz.csRGB,	alpha	=
False)

Creates	a	pixmap	from	the	annotation	as	it	appears	on	the
page	in	untransformed	coordinates.	The	pixmap’s	IRect	equals
Annot.rect.irect	(see	below).

Parameters:

matrix	(Matrix)	–	a	matrix	to	be	used	for	image
creation.	Default	is	the	fitz.Identity
matrix.
colorspace	(Colorspace)	–	a	colorspace	to	be
used	for	image	creation.	Default	is
fitz.csRGB.
alpha	(bool)	–	whether	to	include	transparency
information.	Default	is	False.

Return
type: Pixmap

setInfo(d)

Changes	the	info	dictionary.	This	is	includes	dates,	contents,
subject	and	author	(title).	Changes	for	name	will	be	ignored.

Parameters:

d	(dict)	–	a	dictionary	compatible	with	the	info
property	(see	below).	All	entries	must	be
unicode,	bytes,	or	strings.	If	bytes	values	in
Python	3	they	will	be	treated	as	being	UTF8
encoded.

setRect(rect)

Changes	the	rectangle	of	an	annotation.	The	annotation	can	be
moved	around	and	both	sides	of	the	rectangle	can	be
independently	scaled.	However,	the	annotation	appearance	will
never	get	rotated,	flipped	or	sheared.

Parameters:

rect	(Rect)	–	the	new	rectangle	of	the	annotation.
This	could	e.g.	be	a	rectangle	rect	=
Annot.rect	*	M	with	a	suitable	Matrix	M	(only
scaling	and	translating	will	yield	the	expected
effect).

setBorder(value)

PDF	only:	Change	border	width	and	dashing	properties.	Any
other	border	properties	will	be	deleted.

Parameters:

value	(float	or	dict)	–	a	number	or	a	dictionary
specifying	the	desired	border	properties.	If	a
dictionary,	its	width	and	dashes	keys	are	used
(see	property	annot.border).	If	a	number	is
specified	or	a	dictionary	like	{"width":	w},
only	the	border	width	will	be	changed	and	any
dashes	will	remain	unchanged.	Conversely,	with
a	dictionary	{"dashes":	[...]},	only	line
dashing	will	be	changed.	To	remove	dashing	and
get	a	contiguous	line,	specify	{"dashes":

[]}.

setFlags(flags)

Changes	the	flags	of	the	annotation.	See	Annotation	Flags	for
possible	values	and	use	the	|	operator	to	combine	several.

Parameters: flags	(int)	–	an	integer	specifying	the	required
flags.

setColors(d)

Changes	the	colors	associated	with	the	annotation.

Parameters:

d	(dict)	–	a	dictionary	containing	color
specifications.	For	accepted	dictionary	keys	and
values	see	below.	The	most	practical	way	should
be	to	first	make	a	copy	of	the	colors	property
and	then	modify	this	dictionary	as	required.

updateImage()

Attempts	to	modify	the	displayed	graphical	image	such	that	it
coincides	with	the	values	currently	contained	in	the	border
and	colors	properties.	This	is	achieved	by	modifying	the
contents	stream	of	the	associated	appearance	XObject.	Not
all	possible	formats	of	content	streams	are	currently	supported:
if	the	stream	contains	invocations	of	yet	other	XObject
objects,	a	ValueError	is	raised.

fileInfo()

Returns	basic	information	of	an	attached	file	(file	attachment
annotations	only).

Return
type: dict

Returns:
a	dictionary	with	keys	filename,	size
(uncompressed	file	size),	length	(compressed

length).

fileGet()

Returns	the	uncompressed	content	of	the	attached	file.

Return	type: bytes	or	str	(Py2)
Returns: the	content	of	the	attached	file.

fileUpd(buffer,	filename=None)

Updates	the	content	of	an	attached	file	with	new	data.
Optionally,	the	filename	can	be	changed,	too.

Parameters:
buffer	(bytes	or	bytearray)	–	the	new	file
content.
filename	(str)	–	new	filename	to	associate	with
the	file.

Return
type: int

Returns: zero

parent

The	owning	page	object	of	the	annotation.

Return	type: Page

rect

The	rectangle	containing	the	annotation	in	untransformed
coordinates.

Return	type: Rect

next

The	next	annotation	on	this	page	or	None.

Return	type: Annot

type

Meaningful	for	PDF	only:	A	number	and	one	or	two	strings

describing	the	annotation	type,	like	[2,	'FreeText',
'FreeTextCallout'].	The	second	string	entry	is	optional
and	may	be	empty.	[]	if	not	PDF.	See	the	appendix	Annotation
Types	for	a	list	of	possible	values	and	their	meanings.

Return	type: list

info

Meaningful	for	PDF	only:	A	dictionary	containing	various
information.	All	fields	are	unicode	or	strings	(Python	2	or
Python	3	respectively).

name	-	e.g.	for	[12,	'Stamp']	type	annotations	it	will
contain	the	stamp	text	like	Sold	or	Experimental.
content	-	a	string	containing	the	text	for	type	Text	and
FreeText	annotations.	Commonly	used	for	filling	the	text
field	of	annotation	pop-up	windows.	For
FileAttachment	it	should	be	used	as	description	for
the	attached	file.	Initially	just	contains	the	filename.
title	-	a	string	containing	the	title	of	the	annotation	pop-
up	window.	By	convention,	this	is	used	for	the	annotation
author.
creationDate	-	creation	timestamp.
modDate	-	last	modified	timestamp.
subject	-	subject,	an	optional	string.

Return	type: dict

flags

Meaningful	for	PDF	only:	An	integer	whose	low	order	bits
contain	flags	for	how	the	annotation	should	be	presented.	See
section	Annotation	Flags	for	details.

Return	type: int

lineEnds

Meaningful	for	PDF	only:	A	dictionary	specifying	the	starting
and	the	ending	appearance	of	annotations	of	types	Line,
PolyLine,	among	others.	An	example	would	be	{'start':
'None',	'end':	'OpenArrow'}.	{}	if	not	specified	or	not
applicable.	For	possible	values	and	descriptions	in	this	list,	see
the	Adobe	PDF	Reference	1.7,	table	8.27	on	page	630.

Return	type: dict

vertices

Meaningful	for	PDF	only:	A	list	containing	point	(“vertices”)
coordinates	(each	given	by	2	floats	specifying	the	x	and	y
coordinate	respectively)	for	various	types	of	annotations:

Line	-	the	starting	and	ending	coordinates	(4	floats).
[2,	'FreeText',	'FreeTextCallout']	-	4	or	6
floats	designating	the	starting,	the	(optional)	knee	point,
and	the	ending	coordinates.
PolyLine	/	Polygon	-	the	coordinates	of	the	edges
connected	by	line	pieces	(2	*	n	floats	for	n	points).
text	markup	annotations	-	8	*	n	floats	specifying	the
QuadPoints	of	the	n	marked	text	spans	(see	Adobe	PDF
Reference	1.7,	page	634).
Ink	-	list	of	one	to	many	sublists	of	vertex	coordinates.
Each	such	sublist	represents	a	separate	line	in	the
drawing.

Return	type: list

colors

Meaningful	for	PDF	only:	A	dictionary	of	two	lists	of	floats	in
range	0	<=	float	<=	1	specifying	the	common	(common)
or	stroke	and	the	interior	(fill)	non-stroke	colors.	The
common	color	is	used	for	borders	and	everything	that	is
actively	painted	or	written	(“stroked”).	The	fill	color	is	used	for
the	interior	of	objects	like	line	ends,	circles	and	squares.	The
lengths	of	these	lists	implicitely	determine	the	colorspaces
used:	1	=	GRAY,	3	=	RGB,	4	=	CMYK.	So	[1.0,	0.0,	0.0]
stands	for	RGB	and	color	red.	Both	lists	can	be	[]	if	not
specified.	The	dictionary	will	be	empty	{}	if	no	PDF.	The	value
of	each	float	is	mapped	to	integer	values	from	0	(<=>	0.0)
to	255	(<=>	1.0).

Return	type: dict

border

Meaningful	for	PDF	only:	A	dictionary	containing	border
characteristics.	It	will	be	empty	{}	if	not	PDF	or	when	no
border	information	is	provided.	Technically,	the	PDF	entries
/Border,	/BS	and	/BE	will	be	checked	to	build	this
information.	The	following	keys	can	occur:

width	-	a	float	indicating	the	border	thickness	in	points.
effect	-	a	list	specifying	a	border	line	effect	like	[1,
'C'].	The	first	entry	“intensity”	is	an	integer	(from	0	to	2
for	maximum	intensity).	The	second	is	either	‘S’	for	“no
effect”	or	‘C’	for	a	“cloudy”	line.
dashes	-	a	list	of	integers	(arbitrarily	limited	to	10)
specifying	a	line	dash	pattern	in	user	units	(usually	points).
[]	means	no	dashes,	[n]	means	equal	on-off	lengths	of

n	points,	longer	lists	will	be	interpreted	as	specifying
alternating	on-off	length	values.	See	the	Adobe	PDF
Reference	1.7	page	217	for	more	details.
style	-	1-byte	border	style:	S	(Solid)	=	solid	rectangle
surrounding	the	annotation,	D	(Dashed)	=	dashed
rectangle	surrounding	the	annotation,	the	dash	pattern	is
specified	by	the	dashes	entry,	B	(Beveled)	=	a	simulated
embossed	rectangle	that	appears	to	be	raised	above	the
surface	of	the	page,	I	(Inset)	=	a	simulated	engraved
rectangle	that	appears	to	be	recessed	below	the	surface	of
the	page,	U	(Underline)	=	a	single	line	along	the	bottom	of
the	annotation	rectangle.

Return	type: dict

Example
Change	the	graphical	image	of	an	annotation.	Also	update	the
“author”	and	the	text	to	be	shown	in	the	popup	window:

doc	=	fitz.open("circle-in.pdf")

page	=	doc[0]																										#	page	0

annot	=	page.firstAnnot																#	get	the	annotation

annot.setBorder({"dashes":	[3]})							#	set	dashes	to	"3	on,	3	off	..."

#	set	border	/	popup	color	to	blue	and	fill	color	to	some	light	blue

annot.setColors({"common":[0,	0,	1],	"fill":[0.75,	

info	=	annot.info																						#	get	info	dict

info["title"]	=	"Jorj	X.	McKie"								#	author	name	in	popup	title

#	text	in	popup	window	...

info["content"]	=	"I	changed	border	and	colors	and	enlarged	the	image	by	20%."

info["subject"]	=	"Demonstration	of	PyMuPDF"					#	some	readers	also	show	this

annot.setInfo(info)																				#	update	info	dict

r	=	annot.rect																									#	take	annot	rect

r.x1	=	r.x0	+	r.width		*	1.2											#	new	location	has	same	top-left

r.y1	=	r.y0	+	r.height	*	1.2											#	but	20%	longer	sides

annot.setRect(r)																							#	update	rectangle

annot.updateImage()																				#	update	appearance

doc.save("circle-out.pdf",	garbage=4)		#	save

This	is	how	the	circle	annotation	looks	like,	before	and	after	the
change:

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Colorspace

Represents	the	color	space	of	a	Pixmap.

Class	API

class	Colorspace

__init__(self,	n)

Constructor

Parameters:
n	(int)	–	A	number	identifying	the	colorspace.
Possible	values	are	CS_RGB,	CS_GRAY	and
CS_CMYK.

name

The	name	identifying	the	colorspace.	Example:
fitz.csCMYK.name	=	'DeviceCMYK'.

Type: str

n

The	number	of	bytes	required	to	define	the	color	of	one
pixel.	Example:	fitz.csCMYK.n	==	4.

type: int

Predefined	Colorspaces

For	saving	some	typing	effort,	there	exist	predefined
colorspace	objects	for	the	three	available	cases.

csRGB	=	fitz.Colorspace(fitz.CS_RGB)
csGRAY	=	fitz.Colorspace(fitz.CS_GRAY)
csCMYK	=	fitz.Colorspace(fitz.CS_CMYK)

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Document

This	class	represents	a	document.	It	can	be	constructed	from	a	file	or
from	memory.

Since	version	1.9.0	there	exists	the	alias	open	for	this	class.

For	addional	details	on	embedded	files	refer	to	Appendix	3.

Method	/	Attribute Short	Description
Document.authenticate() decrypt	the	document
Document.close() close	the	document

Document.copyPage()
PDF	only:	copy	a	page	to
another	location

Document.deletePage()
PDF	only:	delete	a	page	by
its	number

Document.deletePageRange()
PDF	only:	delete	a	range
of	pages

Document.embeddedFileAdd()
PDF	only:	add	a	new
embedded	file	from	buffer

Document.embeddedFileDel()
PDF	only:	delete	an
embedded	file	entry

Document.embeddedFileGet()
PDF	only:	extract	an
embedded	file	buffer

Document.embeddedFileInfo()
PDF	only:	metadata	of	an
embedded	file

Document.embeddedFileSetInfo()

PDF	only:	change
metadata	of	an	embedded
file

Document.getPageFontList()
make	a	list	of	fonts	on	a
page

Document.getPageImageList()
make	a	list	of	images	on	a
page

Document.getPagePixmap()
create	a	pixmap	of	a	page
by	page	number

Document.getPageText() extract	the	text	of	a	page
by	page	number

Document.getToC() create	a	table	of	contents

Document.insertPage()
PDF	only:	insert	a	new
page

Document.insertPDF()
PDF	only:	insert	pages
from	another	PDF

Document.loadPage() read	a	page

Document.movePage()
PDF	only:	move	a	page	to
another	location

Document.newPage()
PDF	only:	insert	a	new
empty	page

Document.save()
PDF	only:	save	the
document

Document.saveIncr()
PDF	only:	save	the
document	incrementally

Document.searchPageFor()
search	for	a	string	on	a
page

Document.select()
PDF	only:	select	a	subset
of	pages

Document.setMetadata() PDF	only:	set	the	metadata

Document.setToC()
PDF	only:	set	the	table	of
contents	(TOC)

Document.write()
PDF	only:	writes	the
document	to	memory

Document.embeddedFileCount number	of	embedded	files

Document.isClosed
has	document	been
closed?

Document.isPDF is	document	type	PDF?
Document.metadata metadata
Document.name filename	of	document

Document.needsPass
require	password	to
access	data?

Document.openErrCode
>	0	if	repair	occurred
during	open
last	error	message	if

Document.openErrMsg openErrCode	>	0

Document.outline first	Outline	item
Document.pageCount number	of	pages

Document.permissions
permissions	to	access	the
document

Class	API

class	Document

__init__(self[,	filename])
Constructs	a	Document	object	from	filename.

Parameters:

filename	(str)	–	A	string	containing	the	path	/
name	of	the	document	file	to	be	used.	The	file	will
be	opened	and	remain	open	until	either
explicitely	closed	(see	below)	or	until	end	of
program.	If	omitted	or	None,	a	new	empty	PDF
document	will	be	created.

Return
type: Document

Returns: A	Document	object.

__init__(self,	filetype,	stream)

Constructs	a	Document	object	from	memory	area	stream.

Parameters:

filetype	(str)	–	A	string	specifying	the	type	of
document	contained	in	stream.	This	may	be
either	something	that	looks	like	a	filename	(e.g.
"x.pdf"),	in	which	case	MuPDF	uses	the
extension	to	determine	the	type,	or	a	mime
type	like	application/pdf.	Recommended
is	using	the	filename	scheme,	or	even	the
name	of	the	original	file	for	documentation
purposes.	But	just	using	strings	like	"pdf"	will
also	work.
stream	(bytes)	–	A	memory	area	representing

the	content	of	a	supported	document	type.	A
type	of	bytearray	is	supported,	too.

Return
type: Document

Returns: A	Document	object.

authenticate(password)

Decrypts	the	document	with	the	string	password.	If
successful,	all	of	the	document’s	data	can	be	accessed	(e.g.	for
rendering).

Parameters: password	(str)	–	The	password	to	be	used.
Return
type: int

Returns:
True	(1)	if	decryption	with	password	was
successful,	False	(0)	otherwise.	If	successfull,
indicator	isEncrypted	is	set	to	False.

loadPage(pno	=	0)

Loads	a	Page	for	further	processing	like	rendering,	text
searching,	etc.	See	the	Page	object.

Parameters:

pno	(int)	–	page	number,	zero-based	(0	is	default
and	the	first	page	of	the	document)	and	<
doc.pageCount.	If	pno	<	0,	then	page	pno
%	pageCount	will	be	loaded	(IAW	pageCount
will	be	added	to	pno	until	the	result	is	no	longer
negative).	For	example:	to	load	the	last	page,	you
can	specify	doc.loadPage(-1).	After	this	you
have	page.number	==	doc.pageCount	-
1.

Return
type: Page

Note

Conveniently,	pages	can	also	be	loaded	via	indexes	over	the	document:

doc.loadPage(n)	==	doc[n].	Consequently,	a	document	can	also	be	used	as

an	iterator	over	its	pages,	e.g.	for	page	in	doc:	...	and	for	page	in

reversed(doc):	...	will	yield	the	Pages	of	doc	as	page.

getToC(simple	=	True)

Creates	a	table	of	contents	out	of	the	document’s	outline	chain.

Parameters:

simple	(bool)	–	Indicates	whether	a	simple	or	a
detailed	ToC	is	required.	If	simple	==	False,
each	entry	of	the	list	also	contains	a	dictionary
with	linkDest	details	for	each	outline	entry.

Return
type: list

Returns:
a	list	of	lists.	Each	entry	has	the	form	[lvl,
title,	page,	dest].	Its	entries	have	the
following	meanings:

lvl	-	hierarchy	level	(integer).	The	first	entry	has	hierarchy
level	1,	and	entries	in	a	row	increase	by	at	most	one	level.
title	-	title	(string)
page	-	1-based	page	number	(integer).	Page	numbers	<
1	either	indicate	a	target	outside	this	document	or	no
target	at	all	(see	next	entry).
dest	-	included	only	if	simple	=	False	is	specified.	A
dictionary	containing	details	of	the	link	destination.

getPagePixmap(pno,	*args,	**kwargs)

Creates	a	pixmap	from	page	pno	(zero-based).	Invokes
Page.getPixmap().

Return	type: Pixmap

getPageImageList(pno)

PDF	only:	Return	a	list	of	all	image	descriptions	referenced	by
a	page.

Parameters: pno	(int)	–	page	number,	zero-based.	Any	value	<	len(doc)
Return
type: list

Returns:

a	list	of	images	shown	on	this	page.	Each	entry	looks	like	
width,	height,	bpc,	colorspace,	alt.	

Where	xref	is	the	image	object	number,	smask	is	the	object	number	of	its
soft-mask	image	(if	present),	width	and	height	are	the	image	dimensions,
bpc	denotes	the	number	of	bits	per	component	(a	typical	value	is	8),
colorspace	a	string	naming	the	colorspace	(like	DeviceRGB
colorspace	is	any	alternate	colorspace	depending	on	the	value	of
colorspace,	and	name	-	which	is	the	symbolic	name	
references	this	particular	image	in	its	content	stream.	See	below	how	this
information	can	be	used	to	extract	PDF	images	as	separate	files.	Another
demonstration:

>>>	doc	=	fitz.open("pymupdf.pdf")

>>>	imglist	=	doc.getPageImageList(0

>>>	for	img	in	imglist:	print	img

((241,	0,	1043,	457,	8,	'DeviceRGB',	'',	'Im1'))

>>>	pix	=	fitz.Pixmap(doc,	241)

>>>	pix

fitz.Pixmap(DeviceRGB,	fitz.IRect(0,	0,	1043,	457),	0)

getPageFontList(pno)

PDF	only:	Return	a	list	of	all	fonts	referenced	by	the	page.

Parameters: pno	(int)	–	page	number,	zero-based,	any	value
<	len(doc).

Return
type: list

a	list	of	fonts	referenced	by	this	page.	Each	entry
looks	like	(xref,	ext,	type,	basefont,
name).	Where	xref	is	the	font	object	number,

Returns: ext	font	file	extension,	type	is	the	font	type	(like
Type1	or	TrueType	etc.),	basefont	is	the
base	font	name	and	name	is	the	reference	name,
by	which	the	page	references	it	in	its	contents
stream:

>>>	doc=fitz.open("pymupdf.pdf")

>>>	for	f	in	doc.getPageFontList(85):	print(f)

(344,	'pfa',	'Type1',	'HVTNTB+SFSX1000',	'F18')

(343,	'pfa',	'Type1',	'KPGUVC+SFTT1000',	'F16')

(745,	'pfa',	'Type1',	'OBIJJJ+SFRM1440',	'F38')

(470,	'pfa',	'Type1',	'AFLLUK+SFTI1000',	'F49')

(342,	'pfa',	'Type1',	'GWNVMD+SFRM1000',	'F15')

(341,	'pfa',	'Type1',	'MFMRXE+SFBX1000',	'F41')

(523,	'pfa',	'Type1',	'LDRDRB+SFIT1000',	'F74')

Note

Fonts	are	stored	on	the	document	level	(like	images).	The	reference	name	is

specific	for	the	page.	Other	pages	may	use	a	different	name	for	the	same	font.

Also	note,	that	a	font	may	appear	in	this	list	allthough	no	text	actually	uses	it.	But

conversely,	every	piece	of	text	on	the	page	will	refer	to	exactly	one	of	these

entries.	Look	here	for	the	meaning	of	Font	File	Extensions.

Note

For	more	background	see	Adobe	PDF	Reference	1.7	chapters	5.4	to	5.8,	pp

410.

getPageText(pno,	output	=	"text")

Extracts	the	text	of	a	page	given	its	page	number	pno	(zero-
based).	Invokes	Page.getText().

pno	(int)	–	Page	number,	zero-based.	Any

Parameters:
value	<	len(doc)	is	acceptable.
output	(str)	–	A	string	specifying	the	requested
output	format:	text,	html,	json	or	xml.	Default	is
text.

Return
type: str

select(list)

PDF	only:	Keeps	only	those	pages	of	the	document	whose
numbers	occur	in	the	list.	Empty	lists	or	elements	outside	the
range	0	<=	page	<	doc.pageCount	will	cause	a
ValueError.	For	more	details	see	remarks	at	the	bottom	or
this	chapter.

Parameters:

list	(sequence)	–	A	list	(or	tuple)	of	page	numbers
(zero-based)	to	be	included.	Pages	not	in	the	list
will	be	deleted	(from	memory)	and	become
unavailable	until	the	document	is	reopened.	Page
numbers	can	occur	multiple	times	and	in	any
order:	the	resulting	document	will	reflect	the	list
exactly	as	specified.

Return
type: int

Returns:

Zero	upon	successful	execution.	All	document
information	will	be	updated	to	reflect	the	new
state	of	the	document,	like	outlines,	number	and
sequence	of	pages,	etc.	Changes	become
permanent	only	after	saving	the	document.
Incremental	save	is	supported.

setMetadata(m)

PDF	only:	Sets	or	updates	the	metadata	of	the	document	as
specified	in	m,	a	Python	dictionary.	As	with	method	select(),
these	changes	become	permanent	only	when	you	save	the
document.	Incremental	save	is	supported.

Parameters:

m	(dict)	–	A	dictionary	with	the	same	keys	as
metadata	(see	below).	All	keys	are	optional.	A
PDF’s	format	and	encryption	method	cannot	be
set	or	changed,	these	keys	therefore	have	no
effect	and	will	be	ignored.	If	any	value	should	not
contain	data,	do	not	specify	its	key	or	set	the
value	to	None.	If	you	use	m	=	{}	all	metadata
information	will	be	cleared	to	the	string	"none".
If	you	want	to	selectively	change	only	some
values,	modify	a	copy	of	doc.metadata	and
use	it	as	the	argument	for	this	method.

Return
type: int

Returns: Zero	upon	successful	execution	and
doc.metadata	will	be	updated.

setToC(toc)

PDF	only:	Replaces	the	complete	current	outline	tree	(table
of	contents)	with	a	new	one.	After	successful	execution,	the
new	outline	tree	can	be	accessed	as	usual	via	method
getToC()	or	via	property	outline.	Like	with	other	output-
oriented	methods,	changes	become	permanent	only	via
save()	(incremental	save	supported).	Internally,	this	method
consists	of	the	following	two	steps.	For	a	demonstration	see
example	below.

Please	note,	that	currently	the	is_open	flag	is	set	to	False.
Therefore	all	entries	other	than	level	1	will	initially	be	shown
collapsed	in	PDF	readers.

Step	1	deletes	all	existing	bookmarks.
Step	2	creates	a	new	TOC	from	the	entries	contained	in
toc.

toc	(sequence)	–

Parameters:

A	Python	nested	sequence	with	all	bookmark
entries	that	should	form	the	new	table	of
contents.	Each	entry	is	a	list	with	the	following
format.	Output	variants	of	method	getToC()	are
also	acceptable	as	input.
[lvl,	title,	page,	dest],	where
lvl	is	the	hierarchy	level	(int	>	0)	of	the
item,	starting	with	1	and	being	at	most	1
higher	than	that	of	the	predecessor,
title	(str)	is	the	title	to	be	displayed.
page	(int)	is	the	target	page	number
(attention:	1-based	to	support	getToC()-
output),	must	be	in	valid	page	range	if
positive.	Set	this	to	-1	if	there	is	no	target,	or
the	target	is	external.
dest	(optional)	is	a	dictionary	or	a	number.
If	a	number,	it	will	be	interpreted	as	the
desired	height	(in	points)	this	entry	should
point	to	on	page	in	the	current	document.
Use	a	dictionary	(like	the	one	given	as
output	by	getToC(simple	=	False))	if
you	want	to	store	destinations	that	are	either
“named”,	or	reside	outside	this	documennt
(other	files,	internet	resources,	etc.).

Return
type: int

Returns:

outline	and	getToC()	will	be	updated	upon
successful	execution.	The	return	code	will	either
equal	the	number	of	inserted	items	(len(toc))
or	the	number	of	deleted	items	if	toc	is	an	empty
sequence.

Note

We	currently	always	set	the	Outline	attribute	is_open	to	False.	This	shows	all

entries	below	level	1	as	collapsed.

save(outfile,	garbage=0,	clean=0,	deflate=0,	incremental=0,
ascii=0,	expand=0,	linear=0)

PDF	only:	Saves	the	document	in	its	current	state	under	the
name	outfile.	A	document	may	have	changed	for	a	number
of	reasons:	e.g.	after	a	successful	authenticate,	a
decrypted	copy	will	be	saved,	and,	in	addition	(even	without
optional	parameters),	some	basic	cleaning	may	also	have
occurred,	e.g.	broken	xref	tables	may	have	been	repaired	and
earlier	incremental	changes	may	have	been	resolved.	If	you
executed	any	modifying	methods,	their	results	will	also	be
reflected	in	the	saved	version.

Parameters:

outfile	(str)	–	The	file	name	to	save	to.	Must	be
different	from	the	original	value	value	if
incremental=False.	When	saving
incrementally,	garbage	and	linear	must	be
False	/	0	and	outfile	must	equal	the
original	filename	(for	convenience	use
doc.name).
garbage	(int)	–	Do	garbage	collection:	0	=
none,	1	=	remove	unused	objects,	2	=	in
addition	to	1,	compact	xref	table,	3	=	in	addition
to	2,	merge	duplicate	objects,	4	=	in	addition	to
3,	check	streams	for	duplication.	Excludes
incremental.
clean	(int)	–	Clean	content	streams	[1]:	0	/
False,	1	/	True.
deflate	(int)	–	Deflate	uncompressed	streams:
0	/	False,	1	/	True.
incremental	(int)	–	Only	save	changed
objects:	0	/	False,	1	/	True.	Excludes	garbage
and	linear.	Cannot	be	used	for	decrypted
files	and	for	files	opened	in	repair	mode
(openErrCode	>	0).	In	these	cases	saving
to	a	new	file	is	required.

ascii	(int)	–	Where	possible	make	the	output
ASCII:	0	/	False,	1	/	True.
expand	(int)	–	Decompress	contents:	0	=
none,	1	=	images,	2	=	fonts,	255	=	all.	This
convenience	option	generates	a
decompressed	file	version	that	can	be	better
read	by	some	other	programs.
linear	(int)	–	Save	a	linearised	version	of	the
document:	0	=	False,	1	=	True.	This	option
creates	a	file	format	for	improved	performance
when	read	via	internet	connections.	Excludes
incremental.

Return
type: int

Returns: Zero	upon	successful	execution.

saveIncr()

PDF	only:	saves	the	document	incrementally.	This	is	a
convenience	abbreviation	for	doc.save(doc.name,
incremental	=	True).

Caution

A	PDF	may	not	be	encrypted,	but	still	be	password	protected	against	changes	-	see

the	permissions	property.	Performing	incremental	saves	if

permissions["edit"]	==	False	can	lead	to	unpredictable	results.	Save	to	a

new	file	in	such	a	case.	We	also	consider	raising	an	exception	under	this	condition.

searchPageFor(pno,	text,	hit_max	=	16)

Search	for	text	on	page	number	pno.	Works	exactly	like	the
corresponding	Page.searchFor().	Any	integer	pno	<
len(doc)	is	acceptable.

write(garbage=0,	clean=0,	deflate=0,	ascii=0,	expand=0,

linear=0)

PDF	only:	Writes	the	current	content	of	the	document	to	a
bytes	object	instead	of	to	a	file	like	save().	Obviously,	you
should	be	wary	about	memory	requirements.	The	meanings	of
the	parameters	exactly	equal	those	in	Document.save().
The	tutorial	contains	an	example	for	using	this	method	as	a
pre-processor	to	pdfrw.

Return
type: bytes

Returns: a	bytes	object	containing	the	complete	document
data.

insertPDF(docsrc,	from_page	=	-1,	to_page	=	-1,	start_at	=	-1,
rotate	=	-1,	links	=	True)

PDF	only:	Copy	the	page	range	[from_page,	to_page]
(including	both)	of	PDF	document	docsrc	into	the	current	one.
Inserts	will	start	with	page	number	start_at.	Negative	values
can	be	used	to	indicate	default	values.	All	pages	thus	copied
will	be	rotated	as	specified.	Links	can	be	excluded	in	the	target,
see	below.	All	page	numbers	are	zero-based.

docsrc	(Document)	–	An	opened	PDF
Document	which	must	not	be	the	current
document	object.	However,	it	may	refer	to	the
same	underlying	file.
from_page	(int)	–	First	page	number	in
docsrc.	Default	is	zero.
to_page	(int)	–	Last	page	number	in	docsrc
to	copy.	Default	is	the	last	page.
start_at	(int)	–	First	copied	page	will	become
page	number	start_at	in	the	destination.	If
omitted,	the	page	range	will	be	appended	to
current	document.	If	zero,	the	page	range	will

https://pypi.python.org/pypi/pdfrw/0.3

Parameters: be	inserted	before	current	first	page.
rotate	(int)	–	All	copied	pages	will	be	rotated	by
the	provided	value	(degrees).	If	you	do	not
specify	a	value	(or	-1),	the	original	will	not	be
changed.	Otherwise	it	must	be	an	integer
multiple	of	90	(not	checked).	Rotation	is
counter-clockwise	if	rotate	is	positive,	else
clockwise.
links	(bool)	–	Choose	whether	(internal	and
external)	links	should	be	included	with	the
copy.	Default	is	True.	An	internal	link	is
always	excluded	if	its	destination	is	not	one	of
the	copied	pages.

Return
type: int

Returns: Zero	upon	successful	execution.

Note

If	from_page	>	to_page,	pages	will	be	copied	in	reverse	order.	If	0	<=

from_page	==	to_page,	then	one	page	will	be	copied.

Note

docsrc	bookmarks	will	not	be	copied.	It	is	easy	however,	to	recover	a	table	of

contents	for	the	resulting	document.	Look	at	the	examples	below	and	at	program

PDFjoiner.py	in	the	examples	directory:	it	can	join	PDF	documents	and	at	the	same

time	piece	together	respective	parts	of	the	tables	of	contents.

insertPage(to	=	-1,	text	=	None,	fontsize	=	11,	width	=	595,
height	=	842,	fontname	=	"Helvetica",	fontfile	=	None,	color	=	(0,	0,
0))

PDF	only:	Insert	an	empty	page.	Default	page	dimensions	are
those	of	A4	portrait	paper	format.	Optionally,	text	can	also	be

https://github.com/rk700/PyMuPDF/blob/master/examples/PDFjoiner.py

inserted	-	provided	as	a	string	or	asequence.

Parameters:

to	(int)	–	page	number	(0-based)	in	front	of
which	to	insert.	Valid	specifications	must	be	in
range	-1	<=	pno	<=	len(doc).	The
default	-1	and	pno	=	len(doc)	indicate
end	of	document,	i.e.	after	the	last	page.
text	(str	or	sequence)	–	optional	text	to	put	on
the	page.	If	given,	it	will	start	at	72	points	(one
inch)	below	top	and	50	points	from	left.	Line
breaks	(\n)	will	be	honored,	if	it	is	a	string.	No
care	will	be	taken	as	to	whether	lines	are	too
wide.	However,	text	output	stops	when	no
more	lines	will	fit	on	the	page	(discarding	any
remaining	text).	If	a	sequence	is	specified,	its
entries	must	be	a	of	type	string.	Each	entry	will
be	put	on	one	line.	Line	breaks	within	an	entry
will	be	treated	as	any	other	white	space.	If	you
want	to	calculate	the	number	of	lines	fitting	on
a	page	beforehand,	use	this	formula:
int((height	-	108)	/	(fontsize	*

1.2).	So,	this	methods	reserves	one	inch	at
the	top	and	1/2	inches	at	the	bottom	of	the
page	as	free	space.
fontsize	(float)	–	font	size	in	pixels.	Default	is
11.	If	more	than	one	line	is	provided,	a	line
spacing	of	fontsize	*	1.2	(fontsize	plus
20%)	is	used.
width	(float)	–	width	in	pixels.	Default	is	595
(A4	width).	Choose	612	for	Letter	width.
height	(float)	–	page	height	in	pixels.	Default	is
842	(A4	height).	Choose	792	for	Letter	height.
fontname	(str)	–	name	of	one	of	the	PDF	Base
14	Fonts	(default	is	“Helvetica”)	if	fontfile	is	not
specified.
fontfile	(str)	–	file	path	of	a	font	existing	on	the
system.	If	this	parameter	is	specified,
specifying	fontname	is	mandatory.	If	the	font
is	new	to	the	PDF,	it	will	be	embedded.	Of	the

font	file,	index	0	is	used.	Be	sure	to	choose	a
font	that	supports	horizontal,	left-to-right
spacing.
color	(sequence)	–	RGB	text	color	specified	as
a	triple	of	floats	in	range	0	to	1.	E.g.	specify
black	(default)	as	(0,	0,	0),	red	as	(1,	0,
0),	some	gray	value	as	(0.5,	0.5,	0.5),
etc.

Return
type: int

Returns: number	of	text	lines	put	on	the	page.	Use	this	to
check	which	part	of	your	text	did	not	fit.

Notes:

This	method	can	be	used	to

1.	 create	a	PDF	containing	only	one	empty	page	of	a	given
dimension.	The	size	of	such	a	file	is	well	below	500	bytes
and	hence	close	to	the	theoretical	PDF	minimum.

2.	 create	a	protocol	page	of	which	files	have	been
embedded,	or	separator	pages	between	joined	pieces	of
PDF	Documents.

3.	 convert	textfiles	to	PDF	like	in	the	demo	script	text2pdf.py.
4.	 For	now,	the	inserted	text	should	restrict	itself	to	one	byte

character	codes.
5.	 An	easy	way	to	create	pages	with	a	usual	paper	format,

use	a	statement	like	width,	height	=
fitz.PaperSize("A4-L").

6.	 To	simplify	color	specification,	we	provide	a	Color
Database.	This	allows	you	to	specify	color	=
getColor("turquoise"),	without	bothering	about	any
more	details.

https://github.com/rk700/PyMuPDF/blob/master/demo/text2pdf.py

newPage(to	=	-1,	width	=	595,	height	=	842)

PDF	only:	Convenience	method:	insert	an	empty	page	like
insertPage()	does.	Valid	parameters	have	the	same
meaning.	However,	no	text	can	be	inserted,	instead	the
inserted	page	object	is	returned.

Return	type: Page
Returns: the	page	object	just	inserted.

deletePage(pno)

PDF	only:	Delete	a	page	given	by	its	0-based	number	in	range
0	<=	pno	<	len(doc).

Parameters: pno	(int)	–	the	page	to	be	deleted.

deletePageRange(from_page	=	-1,	to_page	=	-1)

PDF	only:	Delete	a	range	of	pages	specified	as	0-based
numbers.	Any	negative	parameter	will	first	be	replaced	by
len(doc)	-	1.	After	that,	condition	0	<=	from_page	<=
to_page	<	len(doc)	must	be	true.	If	the	parameters	are
equal,	one	page	will	be	deleted.

Parameters: from_page	(int)	–	the	first	page	to	be	deleted.
to_page	(int)	–	the	last	page	to	be	deleted.

copyPage(pno,	to	=	-1)

PDF	only:	Copy	a	page	within	the	document.

Parameters:

pno	(int)	–	the	page	to	be	copied.	Number
must	be	in	range	0	<=	pno	<	len(doc).
to	(int)	–	the	page	number	in	front	of	which	to
insert	the	copy.	To	insert	at	end	of	document
(default),	specify	a	negative	value.

movePage(pno,	to	=	-1)

PDF	only:	Move	(copy	and	then	delete	original)	page	to
another	location.

Parameters:

pno	(int)	–	the	page	to	be	moved.	Number
must	be	in	range	0	<=	pno	<	len(doc).
to	(int)	–	the	page	number	in	front	of	which	to
insert	the	moved	page.	To	insert	at	end	of
document	(default),	specify	a	negative	value.
Must	not	be	in	(pno,	pno	+	1).

embeddedFileInfo(n)

PDF	only:	Retrieve	information	of	an	embedded	file	identified
by	either	its	number	or	by	its	name.

Parameters:
n	(int	or	str)	–	index	or	name	of	entry.	Obviously	0
<=	n	<	embeddedFileCount	must	be	true	if
n	is	an	integer.

Return
type: dict

Returns:

a	dictionary	with	the	following	keys:
name	-	(str)	name	under	which	this	entry	is
stored
file	-	(str)	filename	associated	with	the	entry
desc	-	(str)	description	of	the	entry
size	-	(int)	original	content	size
length	-	(int)	compressed	content	length

embeddedFileSetInfo(n,	filename	=	filename,	desc	=	desc)

PDF	only:	Change	some	information	of	an	embedded	file	given
its	entry	number	or	name.	At	least	one	of	filename	and	desc
must	be	specified.	Response	will	be	zero	if	successful,	else	an
exception	is	raised.

Parameters:

n	(int	or	str)	–	index	or	name	of	entry.
Obviously	0	<=	n	<	embeddedFileCount
must	be	true	if	n	is	an	integer.
filename	(str)	–	sets	the	filename	of	the	entry.

desc	(str)	–	sets	the	description	of	the	entry.

embeddedFileGet(n)

PDF	only:	Retrieve	the	content	of	embedded	file	by	its	entry
number	or	name.	If	the	document	is	not	a	PDF,	or	entry	cannot
be	found,	an	exception	is	raised.

Parameters:
n	(int	or	str)	–	index	or	name	of	entry.	Obviously	0
<=	n	<	embeddedFileCount	must	be	true	if
n	is	an	integer.

Return
type: bytes	(Python	3),	str	(Python	2)

embeddedFileDel(name)

PDF	only:	Remove	an	entry	from	the	portfolio.	As	always,
physical	deletion	of	the	embedded	file	content	(and	file	space
regain)	will	occur	when	the	document	is	saved	to	a	new	file	with
garbage	option.	With	an	incremental	save,	the	associated
object	will	only	be	marked	deleted.

Note

We	do	not	support	entry	numbers	for	this	function	yet.	If	you	need	to	e.g.	delete

all	embedded	files,	scan	through	all	embedded	files	by	number,	and	use	the

returned	dictionary’s	name	entry	to	delete	each	one.	This	function	will	delete	the

first	entry	with	this	name	it	finds.	Be	wary	that	for	arbitrary	PDF	files,	this	may

not	have	been	the	only	one,	because	PDF	itself	has	no	mechanism	to	prevent

duplicate	entries	…

Parameters: name	(str)	–	name	of	entry.

embeddedFileAdd(stream,	name,	filename	=	filename,	desc	=
desc)

PDF	only:	Add	new	content	to	the	document’s	portfolio.

Parameters:

stream	(bytes	or	bytearray	or	str	(Python	2
only))	–	contents
name	(str)	–	new	entry	identifier,	must	not
already	exist	in	embedded	files.
filename	(str)	–	optional	filename	or	None,
documentation	only,	will	be	set	to	name	if	None
or	omitted.
desc	(str)	–	optional	description	or	None,
arbitrary	documentation	text,	will	be	set	to
name	if	None	or	omitted.

Return
type: int

Returns:

the	index	given	to	the	new	entry.	In	the	current
(April	11,	2017)	MuPDF	version,	this	is	not
reliably	true	(for	this	reason	we	have	decided	to
restrict	embeddedFileDel()	to	entries
identified	by	name).	Use	character	string	look	up
to	find	your	entry	again.	For	any	error	condition,
an	exception	is	raised.

close()

Release	objects	and	space	allocations	associated	with	the
document.	If	created	from	a	file,	also	closes	filename
(releasing	control	to	the	OS).

outline

Contains	the	first	Outline	entry	of	the	document	(or	None).	Can
be	used	as	a	starting	point	to	walk	through	all	outline	items.
Accessing	this	property	for	encrypted,	not	authenticated
documents	will	raise	an	AttributeError.

Type: Outline

isClosed

False	/	0	if	document	is	still	open,	True	/	1	otherwise.	If

closed,	most	other	attributes	and	methods	will	have	been
deleted	/	disabled.	In	addition,	Page	objects	referring	to	this
document	(i.e.	created	with	Document.loadPage())	and
their	dependent	objects	will	no	longer	be	usable.	For	reference
purposes,	Document.name	still	exists	and	will	contain	the
filename	of	the	original	document	(if	applicable).

Type: bool

isPDF

True	if	this	is	a	PDF	document,	else	False.

Type: bool

needsPass

Contains	an	indicator	showing	whether	the	document	is
encrypted	(True	(1))	or	not	(False	(0)).	This	indicator
remains	unchanged	-	even	after	the	document	has	been
authenticated.	Precludes	incremental	saves	if	set.

Type: bool

isEncrypted

This	indicator	initially	equals	needsPass.	After	successful
authentication,	it	is	set	to	False	to	reflect	the	situation.

Type: bool

permissions

Shows	the	permissions	to	access	the	document.	Contains	a
dictionary	likes	this:

>>>	doc.permissions

{'print':	True,	'edit':	True,	'note':	True,	'copy':	True}

The	keys	have	the	obvious	meaning	of	permissions	to	print,
change,	annotate	and	copy	the	document,	respectively.

Type: dict

metadata

Contains	the	document’s	meta	data	as	a	Python	dictionary	or
None	(if	isEncrypted	=	True	and	needPass=True).
Keys	are	format,	encryption,	title,	author,	subject,
keywords,	creator,	producer,	creationDate,
modDate.	All	item	values	are	strings	or	None.

Except	format	and	encryption,	the	key	names	correspond
in	an	obvious	way	to	the	PDF	keys	/Creator,	/Producer,
/CreationDate,	/ModDate,	/Title,	/Author,
/Subject,	and	/Keywords	respectively.

format	contains	the	PDF	version	(e.g.	‘PDF-1.6’).

encryption	either	contains	None	(no	encryption),	or	a
string	naming	an	encryption	method	(e.g.	'Standard	V4
R4	128-bit	RC4').	Note	that	an	encryption	method
may	be	specified	even	if	needsPass	=	False.	In	such
cases	not	all	permissions	will	probably	have	been	granted.
Check	dictionary	permissions	for	details.

If	the	date	fields	contain	valid	data	(which	need	not	be	the
case	at	all!),	they	are	strings	in	the	PDF-specific	timestamp
format	“D:<TS><TZ>”,	where

<TS>	is	the	12	character	ISO	timestamp
YYYYMMDDhhmmss	(YYYY	-	year,	MM	-	month,	DD

-	day,	hh	-	hour,	mm	-	minute,	ss	-	second),	and
<TZ>	is	a	time	zone	value	(time	intervall	relative
to	GMT)	containing	a	sign	(‘+’	or	‘-‘),	the	hour
(hh),	and	the	minute	('mm',	note	the
apostrophies!).

A	Paraguayan	value	might	hence	look	like
D:20150415131602-04'00',	which	corresponds	to	the
timestamp	April	15,	2015,	at	1:16:02	pm	local	time
Asuncion.

Type: dict

name

Contains	the	filename	or	filetype	value	with	which
Document	was	created.

Type: str

pageCount

Contains	the	number	of	pages	of	the	document.	May	return	0
for	documents	with	no	pages.	Function	len(doc)	will	also
deliver	this	result.

Type: int

openErrCode

If	openErrCode	>	0,	errors	have	occurred	while	opening	/
parsing	the	document,	which	usually	means	document
structure	issues.	In	this	case	incremental	save	cannot	be	used.

Type: int

openErrMsg

Contains	either	an	empty	string	or	the	last	open	error	message
if	openErrCode	>	0.	Together	with	any	other	error
messages	of	MuPDF’s	C	library,	it	will	also	appear	on	SYSERR.

Type: str

embeddedFileCount

Contains	the	number	of	files	in	the	embedded	/	portfolio	files	list
(also	known	as	collection	or	attached	files).	If	the	document	is
not	a	PDF,	-1	will	be	returned.

Type: int

Note

For	methods	that	change	the	structure	of	a	PDF	(insertPDF(),	select(),

copyPage(),	deletePage()	and	others),	be	aware	that	objects	or	properties	in	your

program	may	have	been	invalidated	or	orphaned.	Examples	are	Page	objects	and	their

children	(links	and	annotations),	variables	holding	old	page	counts,	tables	of	content	and

the	like.	Remember	to	keep	such	variables	up	to	date	or	delete	orphaned	objects.

Remarks	on	select()
Page	numbers	in	the	list	need	not	be	unique	nor	be	in	any	particular
sequence.	This	makes	the	method	a	versatile	utility	to	e.g.	select	only
the	even	or	the	odd	pages,	re-arrange	a	document	from	back	to	front,
duplicate	it,	and	so	forth.	In	combination	with	text	search	or	extraction
you	can	also	omit	/	include	pages	with	no	text	or	containing	a	certain
text,	etc.

You	can	execute	several	selections	in	a	row.	The	document	structure
will	be	updated	after	each	method	execution.

Any	of	those	changes	will	become	permanent	only	with	a
doc.save().	If	you	have	de-selected	many	pages,	consider
specifying	the	garbage	option	to	eventually	reduce	the	resulting
document’s	size	(when	saving	to	a	new	file).

Also	note,	that	this	method	preserves	all	links,	annotations	and
bookmarks	that	are	still	valid.	In	other	words:	deleting	pages	only
deletes	references	which	point	to	de-selected	pages.	Page	number	of
bookmarks	(outline	items)	are	automatically	updated	when	a	TOC	is
retrieved	again	with	getToC().	If	a	bookmark’s	destination	page
happened	to	be	deleted,	then	its	page	number	in	getToC()	will	be
set	to	-1.

The	results	of	this	method	can	of	course	also	be	achieved	using
combinations	of	methods	copyPage(),	deletePage()	and
movePage().	While	there	are	many	cases,	when	these	methods	are
more	practical,	select()	is	easier	and	safer	to	use	when	many
pages	are	involved.

select()	Examples
In	general,	any	list	of	integers	within	the	document’s	page	range	can
be	used.	Here	are	some	illustrations.

Delete	pages	with	no	text:

import	fitz

doc	=	fitz.open("any.pdf")

r	=	list(range(len(doc)))																		#	list	of	page	numbers

for	page	in	doc:

				if	not	page.getText():																	#	page	contains	no	text

								r.remove(page.number)														#	remove	page	number	from	list

if	len(r)	<	len(doc):																						#	did	we	actually	delete	anything?

				doc.select(r)																										#	apply	the	list

doc.save("out.pdf",	garbage	=	4)											#	save	result	to	new	PDF,	OR

#	update	the	original	document	...	***	VERY	FAST!	***

doc.saveIncr()

Create	a	sub	document	with	only	the	odd	pages:

>>>	import	fitz

>>>	doc	=	fitz.open("any.pdf")

>>>	r	=	list(range(0,	len(doc),	2))

>>>	doc.select(r)																														#	apply	the	list

>>>	doc.save("oddpages.pdf",	garbage	=	4)						#	save	sub-PDF	of	the	odd	pages

Concatenate	a	document	with	itself:

>>>	import	fitz

>>>	doc	=	fitz.open("any.pdf")

>>>	r	=	list(range(len(doc)))

>>>	r	+=	r																																					#	turn	PDF	into	a	copy	of	itself

>>>	doc.select(r)

>>>	doc.save("any+any.pdf")																				#	contains	doubled	<any.pdf>

Create	document	copy	in	reverse	page	order	(well,	don’t	try	with	a
million	pages):

>>>	import	fitz

>>>	doc	=	fitz.open("any.pdf")

>>>	r	=	list(range(len(doc)	-	1,	-1,	-1))

>>>	doc.select(r)

>>>	doc.save("back-to-front.pdf")

setMetadata()	Example
Clear	metadata	information.	If	you	do	this	out	of	privacy	/	data
protection	concerns,	make	sure	you	save	the	document	as	a	new	file
with	garbage	>	0.	Only	then	the	old	/Info	object	will	also	be
physically	removed	from	the	file.	In	this	case,	you	may	also	want	to
clear	any	XML	metadata	inserted	by	several	PDF	editors:

>>>	import	fitz

>>>	doc=fitz.open("pymupdf.pdf")

>>>	doc.metadata													#	look	at	what	we	currently	have

{'producer':	'rst2pdf,	reportlab',	'format':	'PDF	1.4',	'encryption':	None,	'author':

'Jorj	X.	McKie',	'modDate':	"D:20160611145816-04'00'",	'keywords':	'PDF,	XPS,	EPUB,	CBZ',

'title':	'The	PyMuPDF	Documentation',	'creationDate':	"D:20160611145816-04'00'",

'creator':	'sphinx',	'subject':	'PyMuPDF	1.9.1'}

>>>	doc.setMetadata({})						#	clear	all	fields

0

>>>	doc.metadata													#	look	again	to	show	what	happened

{'producer':	'none',	'format':	'PDF	1.4',	'encryption':	None,	'author':	'none',

'modDate':	'none',	'keywords':	'none',	'title':	'none',	'creationDate':	'none',

'creator':	'none',	'subject':	'none'}

>>>	doc._delXmlMetadata()				#	clear	any	XML	metadata

0

>>>	doc.save("anonymous.pdf",	garbage	=	4)							#	save	anonymized	doc

0

setToC()	Example
This	shows	how	to	modify	or	add	a	table	of	contents.	Also	have	a	look
at	csv2toc.py	and	toc2csv.py	in	the	examples	directory:

>>>	import	fitz

>>>	doc	=	fitz.open("test.pdf")

>>>	toc	=	doc.getToC()

>>>	for	t	in	toc:	print(t)																											

[1,	'The	PyMuPDF	Documentation',	1]

[2,	'Introduction',	1]

[3,	'Note	on	the	Name	fitz',	1]

[3,	'License',	1]

>>>	toc[1][1]	+=	"	modified	by	setToC"															

>>>	doc.setToC(toc)																																		

3																																																				#	number	of	bookmarks	inserted

>>>	for	t	in	doc.getToC():	print(t)																		

[1,	'The	PyMuPDF	Documentation',	1]

[2,	'Introduction	modified	by	setToC',	1]												#	<<<	this	has	changed

[3,	'Note	on	the	Name	fitz',	1]

[3,	'License',	1]

https://github.com/rk700/PyMuPDF/blob/master/examples/csv2toc.py
https://github.com/rk700/PyMuPDF/blob/master/examples/toc2csv.py

insertPDF()	Examples
(1)	Concatenate	two	documents	including	their	TOCs:

>>>	doc1	=	fitz.open("file1.pdf")										#	must	be	a	PDF

>>>	doc2	=	fitz.open("file2.pdf")										#	must	be	a	PDF

>>>	pages1	=	len(doc1)																					#	save	doc1's	page	count

>>>	toc1	=	doc1.getToC(simple	=	False)					#	save	TOC	1

>>>	toc2	=	doc2.getToC(simple	=	False)					#	save	TOC	2

>>>	doc1.insertPDF(doc2)																			#	doc2	at	end	of	doc1

>>>	for	t	in	toc2:																									#	increase	toc2	page	numbers

								t[2]	+=	pages1																					#	by	old	len(doc1)

>>>	doc1.setToC(toc1	+	toc2)															#	now	result	has	total	TOC

Obviously,	similar	ways	can	be	found	in	more	general	situations.	Just
make	sure	that	hierarchy	levels	in	a	row	do	not	increase	by	more	than
one.	Inserting	dummy	bookmarks	before	and	after	toc2	segments
would	heal	such	cases.	A	ready-to-use	GUI	(wxPython)	solution	can
be	found	in	script	PDFjoiner.py	of	the	examples	directory.

(2)	More	examples:

>>>	#	insert	5	pages	of	doc2,	where	its	page	21	becomes	page	15	in	doc1

>>>	doc1.insertPDF(doc2,	from_page	=	21,	to_page	=	

>>>	#	same	example,	but	pages	are	rotated	and	copied	in	reverse	order

>>>	doc1.insertPDF(doc2,	from_page	=	25,	to_page	=	

>>>	#	put	copied	pages	in	front	of	doc1

https://github.com/rk700/PyMuPDF/blob/master/examples/PDFjoiner.py

>>>	doc1.insertPDF(doc2,	from_page	=	21,	to_page	=	

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Other	Examples
Extract	all	page-referenced	images	of	a	PDF	into	separate	PNG
files:

for	i	in	range(len(doc)):

				imglist	=	doc.getPageImageList(i)

				for	img	in	imglist:

								xref	=	img[0]																		#	xref	number

								pix	=	fitz.Pixmap(doc,	xref)			#	make	pixmap	from	image

								if	pix.n	-	pix.alpha	<	4:						#	can	be	saved	as	PNG

												pix.writePNG("p%s-%s.png"	%	(i,	xref))

								else:																										#	CMYK:	must	convert	first

												pix0	=	fitz.Pixmap(fitz.csRGB,	pix)

												pix0.writePNG("p%s-%s.png"	%	(i,	xref))

												pix0	=	None																#	free	Pixmap	resources

								pix	=	None																					#	free	Pixmap	resources

Rotate	all	pages	of	a	PDF:

>>>	for	page	in	doc:	page.setRotation(90)

Footnotes

[1]

Content	streams	describe	what	(e.g.	text	or	images)	appears
where	and	how	on	a	page.	PDF	uses	a	specialized	mini	language
similar	to	PostScript	to	do	this	(pp.	985	in	Adobe	PDF	Reference
1.7),	which	gets	interpreted	when	a	page	is	loaded.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Identity

Identity	is	just	a	Matrix	that	performs	no	action,	to	be	used	whenever
the	syntax	requires	a	Matrix,	but	no	actual	transformation	should	take
place.

Identity	is	a	constant,	an	“immutable”	object.	So,	all	of	its	matrix
properties	are	read-only	and	its	methods	are	disabled.

If	you	need	a	do-nothing	matrix	as	a	starting	point,	use
fitz.Matrix(1,	1)	or	fitz.Matrix(0)	instead,	like	so:

>>>	fitz.Matrix(0).preTranslate(2,	5)

fitz.Matrix(1.0,	0.0,	-0.0,	1.0,	2.0,	5.0)

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

IRect

IRect	is	a	rectangular	bounding	box	similar	to	Rect,	except	that	all
corner	coordinates	are	integers.	IRect	is	used	to	specify	an	area	of
pixels,	e.g.	to	receive	image	data	during	rendering.	Otherwise,	many
similarities	exist,	e.g.	considerations	concerning	emptiness	and
finiteness	of	rectangles	also	apply	to	IRects.

Attribute	/	Method Short	Description
IRect.contains() checks	containment	of	another	object
IRect.getArea() calculate	rectangle	area
IRect.getRect() return	a	Rect	with	same	coordinates
IRect.getRectArea() calculate	rectangle	area
IRect.intersect() common	part	with	another	rectangle
IRect.intersects() checks	for	non-empty	intersection
IRect.normalize() makes	a	rectangle	finite
IRect.bottom_left bottom	left	point,	synonym	bl
IRect.bottom_right bottom	right	point,	synonym	br
IRect.height height	of	the	rectangle
IRect.isEmpty whether	rectangle	is	empty
IRect.isInfinite whether	rectangle	is	infinite
IRect.rect equals	result	of	method	getRect()
IRect.top_left top	left	point,	synonym	tl
IRect.top_right top_right	point,	synonym	tr
IRect.width width	of	the	rectangle
IRect.x0 X-coordinate	of	the	top	left	corner
IRect.x1 X-coordinate	of	the	bottom	right	corner
IRect.y0 Y-coordinate	of	the	top	left	corner
IRect.y1 Y-coordinate	of	the	bottom	right	corner

Class	API

class	IRect

__init__(self)

__init__(self,	x0,	y0,	x1,	y1)

__init__(self,	irect)

__init__(self,	list)

Overloaded	constructors.	Also	see	examples	below	and	those
for	the	Rect	class.

If	another	irect	is	specified,	a	new	copy	will	be	made.

If	list	is	specified,	it	must	be	a	Python	sequence	type	of	4
integers.	Non-integer	numbers	will	be	truncated,	non-numeric
entries	will	raise	an	exception.

The	other	parameters	mean	integer	coordinates.

getRect()

A	convenience	function	returning	a	Rect	with	the	same
coordinates.	Also	available	as	attribute	rect.

Return	type: Rect

getRectArea([unit])

getArea([unit])
Calculates	the	area	of	the	rectangle	and,	with	no	parameter,
equals	abs(IRect).	Like	an	empty	rectangle,	the	area	of	an
infinite	rectangle	is	also	zero.

Parameters:
unit	(str)	–	Specify	required	unit:	respective
squares	of	px	(pixels,	default),	in	(inches),	cm
(centimeters),	or	mm	(millimeters).

Return
type: float

intersect(ir)

The	intersection	(common	rectangular	area)	of	the	current
rectangle	and	ir	is	calculated	and	replaces	the	current
rectangle.	If	either	rectangle	is	empty,	the	result	is	also	empty.	If
one	of	the	rectangles	is	infinite,	the	other	one	is	taken	as	the
result	-	and	hence	also	infinite	if	both	rectangles	were	infinite.

Parameters: ir	(IRect)	–	Second	rectangle.

contains(x)

Checks	whether	x	is	contained	in	the	rectangle.	It	may	be	an
IRect,	Rect,``Point``	or	number.	If	x	is	an	empty	rectangle,
this	is	always	true.	Conversely,	if	the	rectangle	is	empty	this	is
always	False,	if	x	is	not	an	empty	rectangle	and	not	a
number.	If	x	is	a	number,	it	will	be	checked	to	be	one	of	the	four
components.	x	in	irect	and	irect.contains(x)	are
equivalent.

Parameters: x	(IRect	or	Rect	or	Point	or	int)	–	the	object	to
check.

Return
type: bool

intersects(r)

Checks	whether	the	rectangle	and	r	(IRect	or	Rect)	have	a
non-empty	rectangle	in	common.	This	will	always	be	False	if
either	is	infinite	or	empty.

Parameters: r	(IRect	or	Rect)	–	the	rectangle	to	check.
Return	type: bool

normalize()

Make	the	rectangle	finite.	This	is	done	by	shuffling	rectangle

corners.	After	this,	the	bottom	right	corner	will	indeed	be	south-
eastern	to	the	top	left	one.	See	Rect	for	a	more	details.

top_left

tl

Equals	Point(x0,	y0).

Type: Point

top_right

tr

Equals	Point(x1,	y0).

Type: Point

bottom_left

bl

Equals	Point(x0,	y1).

Type: Point

bottom_right

br

Equals	Point(x1,	y1).

Type: Point

width

Contains	the	width	of	the	bounding	box.	Equals	x1	-	x0.

Type: int

height

Contains	the	height	of	the	bounding	box.	Equals	y1	-	y0.

Type: int

x0

X-coordinate	of	the	left	corners.

Type: int

y0

Y-coordinate	of	the	top	corners.

Type: int

x1

X-coordinate	of	the	right	corners.

Type: int

y1

Y-coordinate	of	the	bottom	corners.

Type: int

isInfinite

True	if	rectangle	is	infinite,	False	otherwise.

Type: bool

isEmpty

True	if	rectangle	is	empty,	False	otherwise.

Type: bool

Remark
A	rectangle’s	coordinates	can	also	be	accessed	via	index,	e.g.	r.x0
==	r[0],	and	the	tuple()	and	list()	functions	yield	sequence
objects	of	its	components.

IRect	Algebra
Algebra	provides	handy	ways	to	perform	inclusion	and	intersection
checks	between	Rects,	IRects	and	Points.	For	a	general	background,
see	chapter	Operator	Algebra	for	Geometry	Objects.

Examples
Example	1:

>>>	ir	=	fitz.IRect(10,	10,	410,	610)

>>>	ir

fitz.IRect(10,	10,	410,	610)

>>>	ir.height

600

>>>	ir.width

400

>>>	ir.getArea('mm')					#	calculate	area	in	square	millimeters

29868.51852

Example	2:

>>>	m	=	fitz.Matrix(45)

>>>	ir	=	fitz.IRect(10,	10,	410,	610)

>>>	ir	*	m																										#	rotate	rectangle	by	45	degrees

fitz.IRect(-425,	14,	283,	722)

>>>

>>>	ir	|	fitz.Point(5,	5)											#	enlarge	rectangle	to	contain	a	point

fitz.IRect(5,	5,	410,	610)

>>>

>>>	ir	+	5																										#	shift	the	rect	by	5	points

fitz.IRect(15,	15,	415,	615)

>>>

>>>	ir	&	fitz.Rect(0.0,	0.0,	15.0,	15.0)

fitz.IRect(10,	10,	15,	15)

>>>	ir	/=	(1,	2,	3,	4,	5,	6)								#	divide	by	a	matrix

>>>	ir

fitz.IRect(-14,	0,	4,	8)

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Example	3:

>>>	#	test	whether	two	rectangle	are	disjoint

>>>	if	not	r1.intersects(r2):	print("disjoint	rectangles"

>>>

>>>	#	test	whether	r2	containes	x	(x	is	point-like	or	rect-like)

>>>	if	r2.contains(x):	print("x	is	contained	in	r2"

>>>

>>>	#	or	even	simpler:

>>>	if	x	in	r2:	print("x	is	contained	in	r2")

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Link

Represents	a	pointer	to	somewhere	(this	document,	other	documents,
the	internet).	Links	exist	per	document	page,	and	they	are	forward-
chained	to	each	other,	starting	from	an	initial	link	which	is	accessible
by	the	Page.firstLink	property.

There	is	a	parent-child	relationship	between	a	link	and	its	page.	If	the
page	object	becomes	unusable	(closed	document,	any	document
structure	change,	etc.),	then	so	does	every	of	its	existing	link	objects	-
an	exception	is	raised	saying	that	the	object	is	“orphaned”,	whenever
a	link	property	or	method	is	accessed.

Attribute Short	Description

Link.rect
clickable	area	in	untransformed
coordinates.

Link.uri link	destination
Link.isExternal external	link	destination?
Link.next points	to	next	link
Link.dest points	to	link	destination	details

Class	API

class	Link

rect

The	area	that	can	be	clicked	in	untransformed	coordinates.

Type: Rect

isExternal

A	bool	specifying	whether	the	link	target	is	outside	of	the
current	document.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Type: bool

uri

A	string	specifying	the	link	target.	The	meaning	of	this	property
should	be	evaluated	in	conjunction	with	property
isExternal.	The	value	may	be	None,	in	which	case
isExternal	==	False.	If	uri	starts	with	file://,
mailto:,	or	an	internet	resource	name,	isExternal	is
True.	In	all	other	cases	isExternal	==	False	and	uri
points	to	an	internal	location.	In	case	of	PDF	documents,	this
should	either	be	#nnnn	to	indicate	a	1-based	(!)	page	number
nnnn,	or	a	named	location.	The	format	varies	for	other
document	types,	e.g.	uri	=
'../FixedDoc.fdoc#PG_2_LNK_1'	for	page	number	2	(1-
based)	in	an	XPS	document.

Type: str

next

The	next	Link	or	None

Type: Link

dest

The	link	destination	details	object.

Type: linkDest

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

linkDest

Class	representing	the	dest	property	of	an	outline	entry	or	a	link.
Describes	the	destination	to	which	such	entries	point.

Attribute Short	Description
linkDest.dest destination
linkDest.fileSpec file	specification	(path,	filename)
linkDest.flags descriptive	flags
linkDest.isMap is	this	a	MAP?
linkDest.isUri is	this	a	URI?
linkDest.kind kind	of	destination
linkDest.lt top	left	coordinates
linkDest.named name	if	named	destination
linkDest.newWindow name	of	new	window
linkDest.page page	number
linkDest.rb bottom	right	coordinates
linkDest.uri URI

Class	API

class	linkDest

dest

Target	destination	name	if	linkDest.kind	is	LINK_GOTOR
and	linkDest.page	is	-1.

Type: str

fileSpec

Contains	the	filename	and	path	this	link	points	to,	if
linkDest.kind	is	LINK_GOTOR	or	LINK_LAUNCH.

Type: str

flags

A	bitfield	describing	the	validity	and	meaning	of	the	different
aspects	of	the	destination.	As	far	as	possible,	link	destinations
are	constructed	such	that	e.g.	linkDest.lt	and
linkDest.rb	can	be	treated	as	defining	a	bounding	box.	But
the	flags	indicate	which	of	the	values	were	actually	specified,
see	Link	Destination	Flags.

Type: int

isMap

This	flag	specifies	whether	to	track	the	mouse	position	when
the	URI	is	resolved.	Default	value:	False.

Type: bool

isUri

Specifies	whether	this	destination	is	an	internet	resource	(as
opposed	to	e.g.	a	local	file	specification	in	URI	format).

Type: bool

kind

Indicates	the	type	of	this	destination,	like	a	place	in	this
document,	a	URI,	a	file	launch,	an	action	or	a	place	in	another
file.	Look	at	Link	Destination	Kinds	to	see	the	names	and
numerical	values.

Type: int

lt

The	top	left	Point	of	the	destination.

Type: Point

named

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

This	destination	refers	to	some	named	action	to	perform	(e.g.	a
javascript,	see	Adobe	PDF	Reference	1.7).	Standard	actions
provided	are	NextPage,	PrevPage,	FirstPage,	and
LastPage.

Type: str

newWindow

If	true,	the	destination	should	be	launched	in	a	new	window.

Type: bool

page

The	page	number	(in	this	or	the	target	document)	this
destination	points	to.	Only	set	if	linkDest.kind	is
LINK_GOTOR	or	LINK_GOTO.	May	be	-1	if	linkDest.kind
is	LINK_GOTOR.	In	this	case	linkDest.dest	contains	the
name	of	a	destination	in	the	target	document.

Type: int

rb

The	bottom	right	Point	of	this	destination.

Type: Point

uri

The	name	of	the	URI	this	destination	points	to.

Type: str

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Matrix

Matrix	is	a	row-major	3x3	matrix	used	by	image	transformations	in
MuPDF	(which	complies	with	the	respective	concepts	laid	down	in	the
Adobe	PDF	Reference	1.7).	With	matrices	you	can	manipulate	the
rendered	image	of	a	page	in	a	variety	of	ways:	(parts	of)	the	page	can
be	rotated,	zoomed,	flipped,	sheared	and	shifted	by	setting	some	or	all
of	just	six	float	values.

Since	all	points	or	pixels	live	in	a	two-dimensional	space,	one	column
vector	of	that	matrix	is	a	constant	unit	vector,	and	only	the	remaining
six	elements	are	used	for	manipulations.	These	six	elements	are
usually	represented	by	[a,	b,	c,	d,	e,	f].	Here	is	how	they
are	positioned	in	the	matrix:

Please	note:

the	below	methods	are	just	convenience	functions	-
everything	they	do,	can	also	be	achieved	by	directly
manipulating	the	six	numerical	values
all	manipulations	can	be	combined	-	you	can	construct	a
matrix	that	rotates	and	shears	and	scales	and	shifts,	etc.	in
one	go.	If	you	however	choose	to	do	this,	do	have	a	look	at
the	remarks	further	down	or	at	the	Adobe	PDF	Reference
1.7.

Method	/	Attribute Description
Matrix.preRotate() perform	a	rotation
Matrix.preScale() perform	a	scaling
Matrix.preShear() perform	a	shearing	(skewing)
Matrix.preTranslate() perform	a	translation	(shifting)
Matrix.concat() perform	a	matrix	multiplication
Matrix.invert() calculate	the	inverted	matrix
Matrix.a zoom	factor	X	direction
Matrix.b shearing	effect	Y	direction
Matrix.c shearing	effect	X	direction
Matrix.d zoom	factor	Y	direction
Matrix.e horizontal	shift
Matrix.f vertical	shift

Class	API

class	Matrix

__init__(self)

__init__(self,	zoom-x,	zoom-y)

__init__(self,	shear-x,	shear-y,	1)

__init__(self,	a,	b,	c,	d,	e,	f)

__init__(self,	matrix)

__init__(self,	degree)

__init__(self,	list)

Overloaded	constructors.

Without	parameters,	Matrix(0.0,	0.0,	0.0,	0.0,
0.0,	0.0)	will	be	created.

zoom-*	and	shear-*	specify	zoom	or	shear	values	(float),
respectively.

matrix	specifies	another	Matrix	from	which	a	new	copy	will
be	made.

Float	value	degree	specifies	the	creation	of	a	rotation	matrix.

Python	sequence	list	(list,	tuple,	etc.)	must	contain	exactly	6
values	when	specified.	Non-numeric	entries	will	raise	an
exception.

fitz.Matrix(1,	1),	fitz.Matrix(0.0))	and
fitz.Matrix(fitz.Identity)	create	modifyable
versions	of	the	Identity	matrix,	which	looks	like	[1,	0,	0,
1,	0,	0].

preRotate(deg)

Modify	the	matrix	to	perform	a	counter-clockwise	rotation	for
positive	deg	degrees,	else	clockwise.	The	matrix	elements	of
an	identity	matrix	will	change	in	the	following	way:

[1,	0,	0,	1,	0,	0]	->	[cos(deg),	sin(deg),	-

sin(deg),	cos(deg),	0,	0].

Parameters:
deg	(float)	–	The	rotation	angle	in	degrees	(use
conventional	notation	based	on	Pi	=	180
degrees).

preScale(sx,	sy)

Modify	the	matrix	to	scale	by	the	zoom	factors	sx	and	sy.	Has
effects	on	attributes	a	thru	d	only:	[a,	b,	c,	d,	e,	f]	-
>	[a*sx,	b*sx,	c*sy,	d*sy,	e,	f].

sx	(float)	–	Zoom	factor	in	X	direction.	For	the

Parameters: effect	see	description	of	attribute	a.
sy	(float)	–	Zoom	factor	in	Y	direction.	For	the
effect	see	description	of	attribute	d.

preShear(sx,	sy)

Modify	the	matrix	to	perform	a	shearing,	i.e.	transformation	of
rectangles	into	parallelograms	(rhomboids).	Has	effects	on
attributes	a	thru	d	only:	[a,	b,	c,	d,	e,	f]	->	[c*sy,
d*sy,	a*sx,	b*sx,	e,	f].

Parameters:

sx	(float)	–	Shearing	effect	in	X	direction.	See
attribute	c.
sy	(float)	–	Shearing	effect	in	Y	direction.	See
attribute	b.

preTranslate(tx,	ty)

Modify	the	matrix	to	perform	a	shifting	/	translation	operation
along	the	x	and	/	or	y	axis.	Has	effects	on	attributes	e	and	f
only:	[a,	b,	c,	d,	e,	f]	->	[a,	b,	c,	d,	tx*a	+
ty*c,	tx*b	+	ty*d].

Parameters:

tx	(float)	–	Translation	effect	in	X	direction.	See
attribute	e.
ty	(float)	–	Translation	effect	in	Y	direction.	See
attribute	f.

concat(m1,	m2)

Calculate	the	matrix	product	m1	*	m2	and	store	the	result	in
the	current	matrix.	Any	of	m1	or	m2	may	be	the	current	matrix.
Be	aware	that	matrix	multiplication	is	not	commutative.	So	the
sequence	of	m1,	m2	is	important.

Parameters: m1	(Matrix)	–	First	(left)	matrix.
m2	(Matrix)	–	Second	(right)	matrix.

invert(m)

Calculate	the	matrix	inverse	of	m	and	store	the	result	in	the
current	matrix.	Returns	1	if	m	is	not	invertible	(“degenerate”).	In
this	case	the	current	matrix	will	not	change.	Returns	0	if	m	is
invertible,	and	the	current	matrix	is	replaced	with	the	inverted	m.

Parameters: m	(Matrix)	–	Matrix	to	be	inverted.
Return	type: int

a

Scaling	in	X-direction	(width).	For	example,	a	value	of	0.5
performs	a	shrink	of	the	width	by	a	factor	of	2.	If	a	<	0,	a	left-
right	flip	will	(additionally)	occur.

Type: float

b

Causes	a	shearing	effect:	each	Point(x,	y)	will	become
Point(x,	y	-	b*x).	Therefore,	looking	from	left	to	right,
e.g.	horizontal	lines	will	be	“tilt”	-	downwards	if	b	>	0,	upwards
otherwise	(b	is	the	tangens	of	the	tilting	angle).

Type: float

c

Causes	a	shearing	effect:	each	Point(x,	y)	will	become
Point(x	-	c*y,	y).	Therefore,	looking	upwards,	vertical
lines	will	be	“tilt”	-	to	the	left	if	c	>	0,	to	the	right	otherwise	(c	ist
the	tangens	of	the	tilting	angle).

Type: float

d

Scaling	in	Y-direction	(height).	For	example,	a	value	of	1.5

performs	a	stretch	of	the	height	by	50%.	If	d	<	0,	an	up-down
flip	will	(additionally)	occur.

Type: float

e

Causes	a	horizontal	shift	effect:	Each	Point(x,	y)	will
become	Point(x	+	e,	y).	Positive	(negative)	values	of	e
will	shift	right	(left).

Type: float

f

Causes	a	vertical	shift	effect:	Each	Point(x,	y)	will	become
Point(x,	y	-	f).	Positive	(negative)	values	of	f	will	shift
down	(up).

Type: float

Remarks	1
For	a	matrix	m,	properties	a	to	f	can	also	be	accessed	by	index,	e.g.
m.a	==	m[0]	and	m[0]	=	1	has	the	same	effect	as	m.a	=	1.
The	tuple()	and	list()	functions	yield	sequence	objects	of	its
components.

Language	constructs	like	x	in	m	is	equal	to	x	in	tuple(m).

Remarks	2
Changes	of	matrix	properties	and	execution	of	matrix	methods	can	be
executed	consecutively.	This	is	the	same	as	multiplying	the	respective
matrices.

Matrix	multiplications	are	not	commutative	-	changing	the	execution
sequence	in	general	changes	the	result.	So	it	can	quickly	become
unclear	which	result	a	transformation	will	yield.

To	keep	results	foreseeable	for	a	series	of	transformations,	Adobe
recommends	the	following	approach	(Adobe	PDF	Reference	1.7,
page	206):

1.	 Shift	(“translate”)
2.	 Rotate
3.	 Scale	or	shear	(“skew”)

Matrix	Algebra
For	a	general	background,	see	chapter	Operator	Algebra	for
Geometry	Objects.

This	makes	the	following	operations	possible:

>>>	m45p	=	fitz.Matrix(45)												#	rotate	45	degrees	clockwise

>>>	m45m	=	fitz.Matrix(-45)											#	rotate	45	degrees	counterclockwise

>>>	m90p	=	fitz.Matrix(90)												#	rotate	90	degrees	clockwise

>>>

>>>	abs(m45p	*	~m45p	-	fitz.Identity)	#	should	be	(close	to)	zero:

8.429369702178807e-08

>>>

>>>	abs(m90p	-	m45p	*	m45p)											#	should	be	(close	to)	zero:

8.429369702178807e-08

>>>

>>>	abs(m45p	*	m45m	-	fitz.Identity)		#	should	be	(close	to)	zero:

2.1073424255447017e-07

>>>

>>>	abs(m45p	-	~m45m)																	#	should	be	(close	to)	zero:

2.384185791015625e-07

>>>

>>>	m90p	*	m90p	*	m90p	*	m90p									#	should	be	360	degrees	=	fitz.Identity

fitz.Matrix(1.0,	-0.0,	0.0,	1.0,	0.0,	0.0)

Examples
Here	are	examples	to	illustrate	some	of	the	effects	achievable.	The
following	pictures	start	with	a	page	of	the	PDF	version	of	this	help	file.
We	show	what	happens	when	a	matrix	is	being	applied	(though
always	full	pages	are	created,	only	parts	are	displayed	here	to	save
space).

This	is	the	original	page	image:

Shifting
We	transform	it	with	a	matrix	where	e	=	100	(right	shift	by	100
pixels).

Next	we	do	a	down	shift	by	100	pixels:	f	=	100.

Flipping
Flip	the	page	left-right	(a	=	-1).

Flip	up-down	(d	=	-1).

Shearing
First	a	shear	in	Y	direction	(b	=	0.5).

Second	a	shear	in	X	direction	(c	=	0.5).

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Rotating
Finally	a	rotation	by	30	clockwise	degrees	(preRotate(-30)).

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Outline

outline	(or	“bookmark”),	is	a	property	of	Document.	If	not	None,	it
stands	for	the	first	outline	item	of	the	document.	Its	properties	in	turn
define	the	characteristics	of	this	item	and	also	point	to	other	outline
items	in	“horizontal”	or	downward	direction.	The	full	tree	of	all	outline
items	for	e.g.	a	conventional	table	of	contents	(TOC)	can	be	recovered
by	following	these	“pointers”.

Method	/	Attribute Short	Description
Outline.down next	item	downwards
Outline.next next	item	same	level
Outline.page page	number	(0-based)
Outline.title title
Outline.uri string	further	specifying	the	outline	target
Outline.isExternal target	is	outside	this	document
Outline.is_open whether	sub-outlines	are	open	or	collapsed
Outline.isOpen whether	sub-outlines	are	open	or	collapsed
Outline.dest points	to	link	destination	details

Class	API

class	Outline

down

The	next	outline	item	on	the	next	level	down.	Is	None	if	the
item	has	no	kids.

Type: Outline

next

The	next	outline	item	at	the	same	level	as	this	item.	Is	None	if
this	is	the	last	one	in	its	level.

Type: Outline

page

The	page	number	(0-based)	this	bookmark	points	to.

Type: int

title

The	item’s	title	as	a	string	or	None.

Type: str

is_open

Or	isOpen	-	an	indicator	showing	whether	any	sub-outlines
should	be	expanded	(True)	or	be	collapsed	(False).	This
information	should	be	interpreted	by	PDF	display	software
accordingly.

Type: bool

isExternal

A	bool	specifying	whether	the	target	is	outside	(True)	of	the
current	document.

Type: bool

uri

A	string	specifying	the	link	target.	The	meaning	of	this	property
should	be	evaluated	in	conjunction	with	isExternal.	The
value	may	be	None,	in	which	case	isExternal	==	False.
If	uri	starts	with	file://,	mailto:,	or	an	internet	resource
name,	isExternal	is	True.	In	all	other	cases	isExternal
==	False	and	uri	points	to	an	internal	location.	In	case	of
PDF	documents,	this	should	either	be	#nnnn	to	indicate	a	1-

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

based	(!)	page	number	nnnn,	or	a	named	location.	The	format
varies	for	other	document	types,	e.g.	uri	=
'../FixedDoc.fdoc#PG_21_LNK_84'	for	page	number

21	(1-based)	in	an	XPS	document.

Type: str

dest

The	link	destination	details	object.

Type: linkDest

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Page

Class	representing	a	document	page.	A	page	object	is	created	by
Document.loadPage()	or,	equivalently,	via	indexing	the	document
like	doc[n]	-	it	has	no	independent	constructor.

There	is	a	parent-child	relationship	between	a	document	and	its
pages.	If	the	document	is	closed	or	deleted,	all	page	objects	(and	their
respective	children,	too)	in	existence	will	become	unusable.	If	a	page
property	or	method	is	being	used,	an	exception	is	raised	saying	that
the	page	object	is	“orphaned”.

Several	page	methods	have	a	Document	counterpart	for	convenience.
At	the	end	of	this	chapter	you	will	find	a	synopsis.

Methods	insertText(),	insertTextbox()	and	draw*()	are
for	PDF	pages	only.	They	provide	“stand-alone”	shortcut	versions	for
the	same-named	methods	of	the	Shape	class.	For	detailed
descriptions	have	a	look	in	that	chapter.

In	contrast	to	Shape,	the	results	of	page	methods	are	not
interconnected:	they	do	not	share	properties	like	colors,	line	width
/	dashing,	morphing,	etc.
Each	page	draw*()	method	invokes	a	Shape.finish()	and
then	a	Shape.commit()	and	consequently	accepts	the
combined	arguments	of	both	these	methods.
Text	insertion	methods	(insertText()	and
insertTextbox())	do	not	need	Shape.finish()	and
therefore	only	invoke	Shape.commit().

Method	/	Attribute Short	Description
Page.bound() rectangle	of	the	page
Page.deleteAnnot() PDF	only:	delete	an	annotation
Page.deleteLink() PDF	only:	delete	a	link
Page.drawBezier() PDF	only:	draw	a	cubic	Bézier	curve
Page.drawCircle() PDF	only:	draw	a	circle

Page.drawCurve()
PDF	only:	draw	a	special	Bézier
curve

Page.drawLine() PDF	only:	draw	a	line
Page.drawOval() PDF	only:	draw	an	oval	/	ellipse
Page.drawPolyline() PDF	only:	connect	a	point	sequence
Page.drawRect() PDF	only:	draw	a	rectangle
Page.drawSector() PDF	only:	draw	a	circular	sector
Page.drawSquiggle() PDF	only:	draw	a	squiggly	line
Page.drawZigzag() PDF	only:	draw	a	zig-zagged	line
Page.getFontList() PDF	only:	get	list	of	used	fonts
Page.getImageList() PDF	only:	get	list	of	used	images
Page.getLinks() get	all	links
Page.getPixmap() create	a	Pixmap
Page.getSVGimage() convert	page	image	to	SVG	format
Page.getText() extract	the	page’s	text
Page.getTextBlocks() extract	text	blocks	as	a	Python	list
Page.getTextWords() extract	text	words	as	a	Python	list
Page.insertImage() PDF	only:	insert	an	image
Page.insertLink() PDF	only:	insert	a	new	link
Page.insertText() PDF	only:	insert	text
Page.insertTextbox() PDF	only:	insert	a	text	box
Page.loadLinks() return	the	first	link	on	a	page
Page.newShape() PDF	only:	start	a	new	Shape
Page.searchFor() search	for	a	string
Page.setRotation() PDF	only:	set	page	rotation
Page.showPDFpage() PDF	only:	display	PDF	page	image
Page.updateLink() PDF	only:	modify	a	link
Page.CropBoxPosition top-left	point	of	/CropBox
Page.CropBox the	page’s	/CropBox

Page.CropBox the	page’s	/CropBox

Page.MediaBoxSize bottom-right	point	of	/MediaBox
Page.MediaBox the	page’s	/MediaBox
Page.firstAnnot first	Annot	on	the	page
Page.firstLink first	Link	on	the	page
Page.number page	number
Page.parent owning	document	object
Page.rect rectangle	(mediabox)	of	the	page
Page.rotation PDF	only:	page	rotation

Class	API

class	Page

bound()

Determine	the	rectangle	(before	transformation)	of	the	page.
For	PDF	documents	this	usually	coincides	with	the
/MediaBox	and	the	/CropBox	objects,	but	not	always.	The
best	description	hence	is	probably	“relocated	/CropBox	such
that	top-left	coordinates	are	(0,	0)”.	Also	see	attributes
Page.CropBox	and	Page.MediaBox.

Return	type: Rect

deleteAnnot(annot)

PDF	only:	Delete	the	specified	annotation	from	the	page	and
(for	all	document	types)	return	the	next	one.

Parameters: annot	(Annot)	–	the	annotation	to	be	deleted.
Return	type: Annot
Returns: the	next	annotation	of	the	deleted	one.

deleteLink(linkdict)

PDF	only:	Delete	the	specified	link	from	the	page.	The
parameter	must	be	a	dictionary	of	format	as	provided	by	the

getLinks()	method	(see	below).

Parameters: linkdict	(dict)	–	the	link	to	be	deleted.

insertLink(linkdict)

PDF	only:	Insert	a	new	link	on	this	page.	The	parameter	must
be	a	dictionary	of	format	as	provided	by	the	getLinks()
method	(see	below).

Parameters: linkdict	(dict)	–	the	link	to	be	inserted.

updateLink(linkdict)

PDF	only:	Modify	the	specified	link.	The	parameter	must	be	a
dictionary	of	format	as	provided	by	the	getLinks()	method
(see	below).

Parameters: linkdict	(dict)	–	the	link	to	be	modified.

getLinks()

Retrieves	all	links	of	a	page.

Return
type: list

Returns:

A	list	of	dictionaries.	The	entries	are	in	the	order	as
specified	during	PDF	generation.	For	a	description	of
the	dictionary	entries	see	below.	Always	use	this
method	if	you	intend	to	make	changes	to	the	links	of
a	page.

insertText(point,	text	=	text,	fontsize	=	11,	fontname	=
"Helvetica",	fontfile	=	None,	idx	=	0,	color	=	(0,	0,	0),	rotate	=	0,
morph	=	None,	overlay	=	True)

PDF	only:	Insert	text.

insertTextbox(rect,	buffer,	fontsize	=	11,	fontname	=
"Helvetica",	fontfile	=	None,	idx	=	0,	color	=	(0,	0,	0),	expandtabs	=

8,	align	=	TEXT_ALIGN_LEFT,	charwidths	=	None,	rotate	=	0,
morph	=	None,	overlay	=	True)

PDF	only:	Insert	text	into	the	specified	rectangle.

drawLine(p1,	p2,	color	=	(0,	0,	0),	width	=	1,	dashes	=	None,
roundCap	=	True,	overlay	=	True,	morph	=	None)

PDF	only:	Draw	a	line	from	Point	objects	p1	to	p2.

drawZigzag(p1,	p2,	breadth	=	2,	color	=	(0,	0,	0),	width	=	1,
dashes	=	None,	roundCap	=	True,	overlay	=	True,	morph	=	None)

PDF	only:	Draw	a	zigzag	line	from	Point	objects	p1	to	p2.

drawSquiggle(p1,	p2,	breadth	=	2,	color	=	(0,	0,	0),	width	=	1,
dashes	=	None,	roundCap	=	True,	overlay	=	True,	morph	=	None)

PDF	only:	Draw	a	squiggly	(wavy,	undulated)	line	from	Point
objects	p1	to	p2.

drawCircle(center,	radius,	color	=	(0,	0,	0),	fill	=	None,	width	=
1,	dashes	=	None,	roundCap	=	True,	overlay	=	True,	morph	=
None)

PDF	only:	Draw	a	circle	around	center	with	a	radius	of
radius.

drawOval(rect,	color	=	(0,	0,	0),	fill	=	None,	width	=	1,	dashes	=
None,	roundCap	=	True,	overlay	=	True,	morph	=	None)

PDF	only:	Draw	an	oval	(ellipse)	within	the	given	rectangle.

drawSector(center,	point,	angle,	color	=	(0,	0,	0),	fill	=	None,
width	=	1,	dashes	=	None,	roundCap	=	True,	fullSector	=	True,
overlay	=	True,	closePath	=	False,	morph	=	None)

PDF	only:	Draw	a	circular	sector,	optionally	connecting	the	arc

to	the	circle’s	center	(like	a	piece	of	pie).

drawPolyline(points,	color	=	(0,	0,	0),	fill	=	None,	width	=	1,
dashes	=	None,	roundCap	=	True,	overlay	=	True,	closePath	=
False,	morph	=	None)

PDF	only:	Draw	several	connected	lines	defined	by	a	sequence
of	points.

drawBezier(p1,	p2,	p3,	p4,	color	=	(0,	0,	0),	fill	=	None,	width	=
1,	dashes	=	None,	roundCap	=	True,	overlay	=	True,	closePath	=
False,	morph	=	None)

PDF	only:	Draw	a	cubic	Bézier	curve	from	p1	to	p4	with	the
control	points	p2	and	p3.

drawCurve(p1,	p2,	p3,	color	=	(0,	0,	0),	fill	=	None,	width	=	1,
dashes	=	None,	roundCap	=	True,	overlay	=	True,	closePath	=
False,	morph	=	None)

PDF	only:	This	is	a	special	case	of	drawBezier().

drawRect(rect,	color	=	(0,	0,	0),	fill	=	None,	width	=	1,	dashes	=
None,	roundCap	=	True,	overlay	=	True,	morph	=	None)

PDF	only:	Draw	a	rectangle.

Note

An	efficient	way	to	background-color	a	PDF	page	with	the	old	Python	paper

color	is	page.drawRect(page.rect,	color	=	py_color,	fill	=

py_color,	overlay	=	False),	where	py_color	=

getColor("py_color").

insertImage(rect,	filename	=	None,	pixmap	=	None,	overlay	=
True)

PDF	only:	Fill	the	given	rectangle	with	an	image.	Width	and
height	need	not	have	the	same	proportions	as	the	image:	it	will
be	adjusted	to	fit.	The	image	is	either	taken	from	a	pixmap	or
from	a	file	-	exactly	one	of	these	parameters	must	be
specified.

Parameters:

rect	(Rect)	–	where	to	put	the	image	on	the
page.	rect	must	be	finite,	not	empty	and	be
completely	contained	in	the	page’s	rectangle.
filename	(str)	–	name	of	an	image	file	(all
MuPDF	supported	formats	-	see	Pixmap
chapter).
pixmap	(Pixmap)	–	pixmap	containing	the
image.	When	inserting	the	same	image
multiple	times,	this	should	be	the	preferred
option,	because	the	overhead	of	opening	the
image	and	decompressing	its	content	will
occur	every	time	with	the	filename	option.

For	a	description	of	the	other	parameters	see	Common
Parameters.

Returns: zero

This	example	puts	the	same	image	on	every	page	of	a
document:

>>>	doc	=	fitz.open(...)

>>>	rect	=	fitz.Rect(0,	0,	50,	50)			#	put	thumbnail	in	upper	left	corner

>>>	pix	=	fitz.Pixmap("some.jpg")				#	an	image	file

>>>	for	page	in	doc:

								page.insertImage(rect,	pixmap	=	pix)

>>>	doc.save(...)

Notes:

1.	 If	that	same	image	had	already	been	present	in	the	PDF,
then	only	a	reference	will	be	inserted.	This	of	course
considerably	saves	disk	space	and	processing	time.	But	to
detect	this	fact,	existing	PDF	images	need	to	be	compared
with	the	new	one.	This	is	achieved	by	storing	an	MD5	code
for	each	image	in	a	table	and	only	compare	the	new
image’s	code	against	its	entries.	Generating	this	MD5
table,	however,	is	done	only	when	triggered	by	the	first
image	insertion	-	which	therefore	may	have	an	extended
response	time.

2.	 You	can	use	this	method	to	provide	a	background	image
for	the	page,	like	a	copyright,	a	watermark	or	a
background	color.	Or	you	can	combine	it	with
searchFor()	to	achieve	a	textmarker	effect.

3.	 The	image	may	be	inserted	uncompressed,	e.g.	if	a
Pixmap	is	used	or	if	the	image	has	an	alpha	channel.
Therefore,	consider	using	deflate	=	True	when
saving	the	file.

4.	 The	image	content	is	stored	in	its	original	size	-	which	may
be	much	bigger	than	the	size	you	want	to	get	displayed.
Consider	decreasing	the	stored	image	size	by	using	the
pixmap	option	and	then	shrinking	it	or	scaling	it	down	(see
Pixmap	chapter).	The	file	size	savings	can	be	very
significant.

getText(output	=	'text')

Retrieves	the	text	of	a	page.	Depending	on	the	output
parameter,	the	results	of	the	TextPage	extract	methods	are
returned.

If	'text'	is	specified,	plain	text	is	returned	in	the	order	as
specified	during	PDF	creation	(which	is	not	necessarily	the
normal	reading	order).	This	may	not	always	look	as	expected,
consider	using	(and	probably	modifying)	the	example	program
PDF2TextJS.py.	It	tries	to	re-arrange	text	according	to	the
Western	reading	layout	convention	“from	top-left	to	bottom-
right”.

Parameters:
output	(str)	–	A	string	indicating	the	requested
text	format,	one	of	"text"	(default),	"html",
"json",	"xml"	or	"xhtml".

Return
type: string

Returns: The	page’s	text	as	one	string.

Note

Use	this	method	to	convert	the	document	into	a	valid	HTML	version	by	wrapping

it	with	appropriate	header	and	trailer	strings,	see	the	following	snippet.	Creating

XML,	XHTML	or	JSON	documents	works	in	exactly	the	same	way.	For	XML	and

JSON	you	may	also	include	an	arbitrary	filename	like	so:

fitz.ConversionHeader("xml",	filename	=	doc.name).	Also	see

Controlling	Quality	of	HTML	Output.

>>>	doc	=	fitz.open(...)

>>>	ofile	=	open(doc.name	+	".html",	"w")

>>>	ofile.write(fitz.ConversionHeader("html"))

>>>	for	page	in	doc:	ofile.write(page.getText(

>>>	ofile.write(fitz.ConversionTrailer("html"))

>>>	ofile.close()

getTextBlocks(images	=	False)

https://github.com/rk700/PyMuPDF/blob/master/examples/PDF2TextJS.py

Extract	all	text	blocks	as	a	Python	list.	Provides	basic
positioning	information	without	the	need	to	interpret	the	output
of	TextPage.extractJSON()	or
TextPage.extractXML().	The	block	sequence	is	as
specified	in	the	document.	All	lines	of	a	block	are	concatenated
into	one	string,	separated	by	a	space.

Parameters:

images	(bool)	–	also	extract	image	blocks.
Default	is	false.	This	serves	as	a	means	to	get
complete	page	layout	information.	Only
metadata,	not	the	image	data	itself	is	extracted.
Use	TextPage.extractJSON()	for	accessing
this	information.

Return
type: list

Returns:

a	list	whose	items	have	the	following	entries.
x0,	y0,	x1,	y1:	4	floats	defining	the	bbox
of	the	block.
text:	concatenated	text	lines	in	the	block	(str).
If	this	is	an	image	block,	a	text	like	this	is
contained:	<image:	DeviceRGB,	width
511,	height	379,	bpc	8>	(original
image’s	width	and	height).
block_n:	0-based	block	number	(int).
type:	block	type	(int),	0	=	text,	1	=	image.

getTextWords()

Extract	all	words	as	a	Python	list.	Provides	positioning
information	for	words	without	having	to	interpret	the	output	of
TextPage.extractXML().	The	word	sequence	is	as
specified	in	the	document.	The	accompanying	rectangle
coordinates	can	be	used	to	re-arrange	the	final	text	output	to
your	liking.	Block	and	line	numbers	help	keeping	track	of	the
original	position.

Return
type:

list

Returns:

a	list	whose	items	are	lists	with	the	following	entries:
x0,	y0,	x1,	y1:	4	floats	defining	the	bbox	of
the	word.
word:	the	word,	spaces	stripped	off	(str).	Note	that
any	non-space	character	is	accepted	as	part	of	a
word	-	not	just	letters.	So,	Hello	world!	will
yield	the	two	words	Hello	and	world!.
block_n,	line_n,	word_n:	0-based
numbers	for	block,	line	and	word	(int).

getFontList()

PDF	only:	Return	a	list	of	fonts	referenced	by	the	page.	Same
as	Document.getPageFontList().

getImageList()

PDF	only:	Return	a	list	of	images	referenced	by	the	page.
Same	as	Document.getPageImageList().

getSVGimage(matrix	=	fitz.Identity)

Create	an	SVG	image	from	the	page.	Only	full	page
images	are	currently	supported.

Parameters: matrix	(Matrix)	–	a	Matrix,	default	is	Identity.
Valid	operations	include	scaling	and	rotation.

Returns:
a	UTF-8	encoded	string	that	contains	the	image.
This	is	XML	syntax	and	can	be	saved	in	a	text	file
with	extension	.svg.

getPixmap(matrix	=	fitz.Identity,	colorspace	=	fitz.csRGB,	clip	=
None,	alpha	=	True)

Create	a	pixmap	from	the	page.	This	is	probably	the	most	often
used	method	to	create	pixmaps.

Parameters:

matrix	(Matrix)	–	a	Matrix,	default	is	Identity.
colorspace	(string,	Colorspace)	–	Defines	the
required	colorspace,	one	of	GRAY,	RGB	or
CMYK	(case	insensitive).	Or	specify	a
Colorspace,	e.g.	one	of	the	predefined	ones:
csGRAY,	csRGB	or	csCMYK.
clip	(IRect)	–	restrict	rendering	to	the
rectangle’s	area.	The	default	will	render	the	full
page.
alpha	(bool)	–
A	bool	indicating	whether	an	alpha	channel
should	be	included	in	the	pixmap.	Choose
False	if	you	do	not	really	need	transparency.
This	will	save	a	lot	of	memory	(25%	in	case	of
RGB	…	and	pixmaps	are	typically	large!),	and
also	processing	time	in	most	cases.	Also	note
an	important	difference	in	how	the	image	will
appear:
True:	pixmap’s	samples	will	be	pre-cleared
with	0x00,	including	the	alpha	byte.	This	will
result	in	transparent	areas	where	the	page
is	empty.

False:	pixmap’s	samples	will	be	pre-
cleared	with	0xff.	This	will	result	in	white
where	the	page	has	nothing	to	show.

Return
type: Pixmap

Returns: Pixmap	of	the	page.

loadLinks()

Return	the	first	link	on	a	page.	Synonym	of	property
firstLink.

Return	type: Link
Returns: first	link	on	the	page	(or	None).

setRotation(rot)

PDF	only:	Sets	the	rotation	of	the	page.

Parameters:
rot	(int)	–	An	integer	specifying	the	required
rotation	in	degrees.	Should	be	a	(positive	or
negative)	multiple	of	90.

Returns: zero	if	successfull,	-1	if	not	a	PDF.

showPDFpage(rect,	docsrc,	pno	=	0,	keep_proportion	=	True,
overlay	=	True,	reuse_xref	=	0,	clip	=	None)

PDF	only:	Display	the	page	of	another	PDF	as	a	vector	image.

rect	(Rect)	–	where	to	place	the	image.
docsrc	(Document)	–	source	PDF	document
containing	the	page.	Must	be	a	different
document	object,	but	may	be	the	same	file.
pno	(int)	–	page	number	(0-based)	to	be
shown.

Parameters:
keep_proportion	(bool)	–	control	whether	to
scale	width	and	height	synchronously	(default).
overlay	(bool)	–	put	image	in	foreground
(default)	or	background.
reuse_xref	(int)	–	specify	an	xref	number	if	an
already	stored	page	shall	be	shown.	This
suppresses	copying	the	source	page	once
more.
clip	(Rect)	–	choose	which	part	of	the	source
page	to	show.	Default	is	its	/CropBox.

Returns:
xref	number	of	the	stored	page	image	if
successful.	Use	this	as	the	value	of	argument
reuse_xref	to	show	the	same	page	again.

Note

This	is	a	multi-purpose	method.	For	instance,	it	can	be	used	to	create	“2-up”	/

“4-up”	or	posterized	versions	of	existing	PDF	files	(see	examples	4-up.py	and

posterize.py).	Or	use	it	to	include	PDF-based	vector	images	(company	logos,

watermarks,	etc.).

Note

Unfortunately,	garbage	collection	currently	does	not	detect	multiple	copies	of	a

to-be-displayed	source	page.	Therefore,	use	the	reuse_xref	argument	to

prevent	multiple	creations	as	follows.	For	a	technical	description	of	how	this

function	is	implemented,	see	Design	of	Method	Page.showPDFpage().

>>>	#	the	first	showPDFpage	will	copy	the	page,	the	following

>>>	#	will	reuse	the	result	via	its	xref.

>>>	xref	=	0

>>>	for	page	in	doc:

								xref	=	page.showPDFpage(rect,	docsrc,	pno,

																																reuse_xref	=	xref)

https://github.com/rk700/PyMuPDF/blob/master/examples/4-up.py
https://github.com/rk700/PyMuPDF/blob/master/examples/posterize.py

newShape()

PDF	only:	Create	a	new	Shape	object	for	the	page.

Return
type: Shape

Returns: a	new	Shape	to	use	for	compound	drawings.	See
description	there.

searchFor(text,	hit_max	=	16)

Searches	for	text	on	a	page.	Identical	to
TextPage.search().

Parameters:
text	(str)	–	Text	to	searched	for.	Upper	/	lower
case	is	ignored.
hit_max	(int)	–	Maximum	number	of
occurrences	accepted.

Return
type: list

Returns: A	list	of	Rect	rectangles	each	of	which	surrounds
one	occurrence	of	text.

rotation

PDF	only:	contains	the	rotation	of	the	page	in	degrees	and	-1
for	other	document	types.

Type: int

CropBoxPosition

Contains	the	top-left	coordinates	of	the	page’s	/CropBox	for	a
PDF,	otherwise	the	top-left	coordinates	of	the	page’s	rectangle.

Type: Point

CropBox

The	page’s	/CropBox	for	a	PDF,	the	page’s	rectangle.

Type: Rect

MediaBoxSize

Contains	the	width	and	height	of	the	page’s	/MediaBox	for	a
PDF,	otherwise	the	bottom-right	coordinates	of	the	page’s
rectangle.

Type: Point

MediaBox

The	page’s	/MediaBox	for	a	PDF,	otherwise	the	page’s
rectangle.

type: Rect

Note

For	non-PDF	documents	(and	for	most	PDF	documents,	too)	page.rect	==

page.CropBox	==	page.MediaBox	is	true.	For	some	PDF	documents

however,	page.rect	may	be	a	true	subset	of	the	/MediaBox.	In	these	cases

the	above	attributes	help	to	correctly	position	/	evaluate	elements	of	the	page.

firstLink

Contains	the	first	Link	of	a	page	(or	None).

Type: Link

firstAnnot

Contains	the	first	Annot	of	a	page	(or	None).

Type: Annot

number

The	page	number.

Type: int

parent

The	owning	document	object.

Type: Document

rect

Contains	the	rectangle	(“mediabox”,	before	transformation)	of
the	page.	Same	as	result	of	method	bound().

Type: Rect

Description	of	getLinks()	Entries
Each	entry	of	the	getLinks()	list	is	a	dictionay	with	the	following
keys:

kind:	(required)	an	integer	indicating	the	kind	of	link.	This	is	one
of	LINK_NONE,	LINK_GOTO,	LINK_GOTOR,	LINK_LAUNCH,	or
LINK_URI.	For	values	and	meaning	of	these	names	refer	to	Link
Destination	Kinds.
from:	(required)	a	Rect	describing	the	“hot	spot”	location	on	the
page’s	visible	representation	(where	the	cursor	changes	to	a
hand	image,	usually).
page:	a	0-based	integer	indicating	the	destination	page.
Required	for	LINK_GOTO	and	LINK_GOTOR,	else	ignored.
to:	either	a	fitz.Point,	specifying	the	destination	location	on
the	provided	page,	default	is	fitz.Point(0,	0),	or	a
symbolic	(indirect)	name.	If	an	indirect	name	is	specified,	page	=
-1	is	required	and	the	name	must	be	defined	in	the	PDF	in	order
for	this	to	work.	Required	for	LINK_GOTO	and	LINK_GOTOR,
else	ignored.
file:	a	string	specifying	the	destination	file.	Required	for
LINK_GOTOR	and	LINK_LAUNCH,	else	ignored.
uri:	a	string	specifying	the	destination	internet	resource.
Required	for	LINK_URI,	else	ignored.
xref:	an	integer	specifying	the	PDF	cross	reference	entry	of	the
link	object.	Do	not	change	this	entry	in	any	way.	Required	for	link
deletion	and	update,	otherwise	ignored.	For	non-PDF	documents,

this	entry	contains	-1.	It	is	also	-1	for	all	entries	in	the
getLinks()	list,	if	any	of	the	links	is	not	supported	by	MuPDF	-
see	the	note	below.

Notes	on	Supporting	Links
MuPDF’s	support	for	links	has	changed	in	v1.10a.	These	changes
affect	link	types	LINK_GOTO	and	LINK_GOTOR.

Reading	(pertains	to	method	getLinks()	and	the
firstLink	property	chain)

If	MuPDF	detects	a	link	to	another	file,	it	will	supply	either	a
LINK_GOTOR	or	a	LINK_LAUNCH	link	kind.	In	case	of	LINK_GOTOR
destination	details	may	either	be	given	as	page	number	(eventually
including	position	information),	or	as	an	indirect	destination.

If	an	indirect	destination	is	given,	then	this	is	indicated	by	page	=
-1,	and	link.dest.dest	will	contain	this	name.	The	dictionaries	in
the	getLinks()	list	will	contain	this	information	as	the	to	value.

Internal	links	are	always	of	kind	LINK_GOTO.	If	an	internal	link
specifies	an	indirect	destination,	it	will	always	be	resolved	and	the
resulting	direct	destination	will	be	returned.	Names	are	never
returned	for	internal	links,	and	undefined	destinations	will	cause	the
link	to	be	ignored.

Writing
PyMuPDF	writes	(updates,	inserts)	links	by	constructing	and	writing
the	appropriate	PDF	object	source.	This	makes	it	possible	to	specify
indirect	destinations	for	LINK_GOTOR	and	LINK_GOTO	link	kinds	(pre
PDF	1.2	file	formats	are	not	supported).

Caution

If	a	LINK_GOTO	indirect	destination	specifies	an	undefined	name,	this	link	can	later	on

not	be	found	/	read	again	with	MuPDF	/	PyMuPDF.	Other	readers	however	will	detect	it,

but	flag	it	as	erroneous.

Indirect	LINK_GOTOR	destinations	can	in	general	of	course	not	be
checked	for	validity	and	are	therefore	always	accepted.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Homologous	Methods	of	Document	and	Page
This	is	an	overview	of	homologous	methods	on	the	Document	and	on
the	Page	level.

Document	Level Page	Level
Document.getPageFontlist(pno) Page.getFontlist()
Document.getPageImageList(pno) Page.getImageList()
Document.getPagePixmap(pno,
…) Page.getPixmap(…)

Document.getPageText(pno,	…) Page.getText(…)
Document.searchPageFor(pno,
…) Page.searchFor(…)

Document._getPageXref(pno) Page._getXref()

The	page	number	pno	is	0-based	and	can	be	any	negative	or	positive
number	<	len(doc).	The	document	methods	invoke	their	page
counterparts	via	Document[pno].<method>.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Pixmap

Pixmaps	(“pixel	maps”)	are	objects	at	the	heart	of	MuPDF’s	rendering
capabilities.	They	represent	plane	rectangular	sets	of	pixels.	Each
pixel	is	described	by	a	number	of	bytes	(“components”)	plus	an
(optional	since	v1.10.0)	alpha	byte.

In	PyMuPDF,	there	exist	several	ways	to	create	a	pixmap.	Except	one,
all	of	them	are	available	as	overloaded	constructors.	A	pixmap	can	be
created	…

1.	 from	a	document	page	(via	methods	Page.getPixmap()	or
Document.getPagePixmap())

2.	 empty	based	on	Colorspace	and	IRect	information
3.	 from	an	image	file
4.	 from	an	in-memory	image	(bytearray)
5.	 from	a	memory	area	of	plain	pixels
6.	 from	an	image	inside	a	PDF	document
7.	 as	a	copy	of	another	pixmap

Note

A	number	of	image	formats	is	supported	as	input	for	points	3.	and	4.	above.	See	section

Supported	Input	Image	Types.

Have	a	look	at	the	example	section	to	see	some	pixmap	usage	“at
work”.

Method	/	Attribute Short	Description
Pixmap.clearWith() clear	parts	of	a	pixmap
Pixmap.copyPixmap() copy	parts	of	another	pixmap
Pixmap.gammaWith() applie	a	gamma	factor	to	the	pixmap

Pixmap.getPNGData() return	a	PNG	as	a	memory	area
Pixmap.invertIRect() invert	the	pixels	of	a	given	area
Pixmap.setAlpha() sets	alpha	values
Pixmap.shrink() reduce	size	keeping	proportions
Pixmap.tintWith() tint	a	pixmap	with	a	color
Pixmap.writeImage() save	a	pixmap	in	various	formats
Pixmap.writePNG() save	a	pixmap	as	a	PNG	file
Pixmap.alpha transparency	indicator
Pixmap.colorspace pixmap’s	Colorspace
Pixmap.height pixmap	height
Pixmap.interpolate interpolation	method	indicator
Pixmap.irect IRect	of	the	pixmap
Pixmap.n bytes	per	pixel
Pixmap.samples pixel	area
Pixmap.size pixmap’s	total	length
Pixmap.stride size	of	one	image	row
Pixmap.width pixmap	width
Pixmap.x X-coordinate	of	top-left	corner
Pixmap.xres resolution	in	X-direction
Pixmap.y Y-coordinate	of	top-left	corner
Pixmap.yres resolution	in	Y-direction

Class	API

class	Pixmap

__init__(self,	colorspace,	irect,	alpha)

Empty	pixmap:	Create	an	empty	pixmap	of	size	and	origin
given	by	a	rectangle.	So,	for	a	fitz.IRect(x0,	y0,	x1,
y1),	fitz.Point(x0,	y0)	designates	the	top	left	corner	of
the	pixmap.	Note	that	the	image	area	is	not	initialized	and	will
contain	crap	data.

colorspace	(Colorspace)	–	colorspace	of	the
pixmap.

Parameters: irect	(IRect)	–	Tte	pixmap’s	area	and	location.
alpha	(bool)	–	Specifies	whether	transparency
bytes	should	be	included.	Default	is	False.

__init__(self,	colorspace,	source[,	alpha])
Copy	and	set	colorspace:	Copy	source	pixmap	choosing
the	colorspace.	Any	colorspace	combination	is	possible.

Parameters:

colorspace	(Colorspace)	–	desired	target
colorspace.	This	may	also	be	None.	In	this
case,	a	“masking”	pixmap	is	created:	its
Pixmap.samples	will	consist	of	the	source’s
alpha	bytes	only.
source	(Pixmap)	–	the	source	pixmap.
alpha	(bool)	–	whether	to	also	copy	the
source’s	alpha	channel.	If	the	source	has	no
alpha,	this	parameter	has	no	effect.	If	False
the	result	will	have	no	alpha.

__init__(self,	source,	width,	height[,	clip])
Copy	and	scale:	Copy	source	pixmap	choosing	new	width
and	height	values.	Supports	partial	copying.

Parameters:

source	(Pixmap)	–	the	source	pixmap.
width	(float)	–	desired	target	width.
height	(float)	–	desired	target	height.
clip	(IRect)	–	a	region	of	the	source	pixmap	to
take	the	copy	from.

__init__(self,	source)

Copy	and	add	alpha:	Identical	copy	from	source	with	an
added	alpha	channel.	The	alpha	values	are	set	to	255.

Parameters: source	(Pixmap)	–	the	source	pixmap,	must	not
have	alpha.

__init__(self,	filename)

From	a	file:	Create	a	pixmap	from	filename.	Image	type	and
all	properties	are	determined	automatically.

Parameters: filename	(str)	–	Path	/	name	of	the	file.	The	origin
of	the	resulting	pixmap	is	(0,	0).

__init__(self,	img)

From	memory:	Create	a	pixmap	from	bytearray	img.	Image
type	and	all	properties	are	determined	automatically.

Parameters:

img	(bytearray)	–	Data	containing	a	complete,
valid	image	in	one	of	the	supported	formats.
Could	have	been	created	by	something	like	img
=	bytearray(open('somepic.png',

'rb').read()).	The	origin	of	the	resulting
pixmap	is	(0,0).	Type	bytes	is	not	supported
here,	because	that	cannot	be	distinguished	from
string	in	Python	2.

__init__(self,	colorspace,	width,	height,	samples,	alpha)

From	plain	pixels:	Create	a	pixmap	from	samples.	Each
pixel	must	be	represented	by	a	number	of	bytes	as	controlled
by	the	colorspace	and	alpha	parameters.	The	origin	of	the
resulting	pixmap	is	(0,0).	This	method	is	useful	when	raw
image	data	are	provided	by	some	other	program	-	see
examples	below.

Parameters:

colorspace	(Colorspace)	–	Colorspace	of	the
image.	Together	with	alpha	this	parameter
controls	the	interpretation	of	the	samples
area.	The	following	must	be	true:
(colorspace.n	+	alpha)	*	width	*

height	==	len(samples).
width	(int)	–	image	width
height	(int)	–	image	height
samples	(bytes)	–	an	area	containing	all	pixels

of	the	image.	Must	include	alpha	values	if
specified.	Type	bytearray	is	also	supported.
alpha	(bool)	–	whether	a	transparency	channel
is	included.

Caution

The	method	will	not	make	a	copy	of	samples,	but	rather	record	a	pointer.

Therefore	make	sure	that	it	remains	available	throughout	the	lifetime	of	the

pixmap.	Otherwise	the	pixmap’s	image	will	likely	be	destroyed	or	even	worse

things	will	happen.

__init__(self,	doc,	xref)

From	a	PDF	image:	Create	a	pixmap	from	an	image
contained	in	PDF	doc	identified	by	its	XREF	number.	All
pimap	properties	are	set	by	the	image.

Parameters: doc	(Document)	–	an	opened	PDF	document.
xref	(int)	–	the	XREF	number	of	the	image.

clearWith([value[,	irect]])
Initialize	the	samples	area.

Parameters:

value	(int)	–	if	specified,	values	from	0	to	255
are	valid.	Each	color	byte	of	each	pixel	will	be
set	to	this	value,	while	alpha	will	always	be	set
to	255	(non-transparent).	If	omitted,	then	all
bytes	including	alpha	are	cleared	to	0x00.
irect	(IRect)	–	the	area	to	be	cleared.	Omit	to
clear	the	whole	pixmap.	Can	only	be	specified,
if	value	is	also	specified.

tintWith(red,	green,	blue)

Colorize	(tint)	a	pixmap	with	a	color	provided	as	a	value	triple
(red,	green,	blue).	Only	colorspaces	CS_GRAY	and	CS_RGB

are	supported.

If	the	colorspace	is	CS_GRAY,	(red	+	green	+	blue)/3
will	be	taken	as	the	tinting	value.

Parameters:
red	(int)	–	red	component.
green	(int)	–	green	component.
blue	(int)	–	blue	component.

gammaWith(gamma)

Apply	a	gamma	factor	to	a	pixmap,	i.e.	lighten	or	darken	it.

Parameters:
gamma	(float)	–	gamma	=	1.0	does	nothing,
gamma	<	1.0	lightens,	gamma	>	1.0	darkens
the	image.

shrink(n)

Shrink	the	pixmap	by	dividing	both,	its	width	and	height	by	2n.

Parameters:

n	(int)	–	determines	the	new	pixmap	(samples)
size.	For	example,	a	value	of	2	divides	width	and
height	by	4	and	thus	results	in	a	size	of	one	16th
of	the	original.	Values	less	than	1	are	ignored.

Note

Use	this	methods	to	reduce	a	pixmap’s	size	retaining	its	proportion.	The	pixmap

is	changed	“in	place”.	If	you	want	to	keep	original	and	also	have	more	granular

choices,	use	the	resp.	copy	constructor	above.

setAlpha([alphavalues])
Change	the	alpha	values.	The	pixmap	must	have	an	alpha
channel.

Parameters:

alphavalues	(bytes)	–	the	new	alpha	values.
Type	bytearray	is	also	permitted.	If	provided,
its	length	must	be	at	least	width	*	height.	If

omitted,	alpha	values	are	all	set	to	255	(no
transparency).

invertIRect(irect)

Invert	the	color	of	all	pixels	in	IRect	irect.

Parameters: irect	(IRect)	–	The	area	to	be	inverted.	Omit	to
invert	everything.

copyPixmap(source,	irect)

Copy	the	IRect	part	of	source	into	the	corresponding	area	of
this	one.	The	two	pixmaps	may	have	different	dimensions	and
different	colorspaces	(provided	each	is	either	CS_GRAY	or
CS_RGB),	but	currently	must	have	the	same	alpha	property.
The	copy	mechanism	automatically	adjusts	discrepancies
between	source	and	target	like	so:

If	copying	from	CS_GRAY	to	CS_RGB,	the	source	gray-shade
value	will	be	put	into	each	of	the	three	rgb	component	bytes.	If
the	other	way	round,	(r	+	g	+	b)	/	3	will	be	taken	as	the
gray-shade	value	of	the	target.

Between	irect	and	the	target	pixmap’s	rectangle,	an
“intersection”	is	calculated	at	first.	Then	the	corresponding	data
of	this	intersection	are	being	copied.	If	the	intersection	is	empty,
nothing	will	happen.

If	you	want	your	source	pixmap	image	to	land	at	a	specific
target	position,	set	its	x	and	y	attributes	to	the	top	left	point	of
the	desired	rectangle	before	copying.	See	the	example	below
for	how	this	works.

Parameters:
source	(Pixmap)	–	The	pixmap	from	where	to
copy.

irect	(IRect)	–	The	area	to	be	copied.

writeImage(filename,	output="png")

Save	pixmap	as	an	image	file.	Depending	on	the	output
chosen,	only	some	or	all	colorspaces	are	supported	and
different	file	extensions	can	be	chosen.	Please	see	the	table
below.	Since	MuPDF	v1.10a	the	savealpha	option	is	no
longer	supported	and	will	be	ignored	with	a	warning.

Parameters:

filename	(str)	–	The	filename	to	save	to.
Depending	on	the	chosen	output	format,
possible	file	extensions	are	.pam,	.pbm,
.pgm,	ppm,	.pnm,	.png	and	.tga.
output	(str)	–	The	requested	image	format.
The	default	is	png	for	which	this	function	is
equal	to	writePNG(),	see	below.	Other
possible	values	are	pam,	pnm	and	tga.

writePNG(filename)

Save	the	pixmap	as	a	PNG	file.	Please	note	that	only	grayscale
and	RGB	colorspaces	are	supported	(this	is	not	a	MuPDF
restriction).	CMYK	colorspaces	must	either	be	saved	as	*.pam
files	or	be	converted	first.

Parameters:
filename	(str)	–	The	filename	to	save	to	(the
extension	png	must	be	specified).	Existing	files
will	be	overwritten	without	warning.

getPNGData()

Like	writePNG	but	returnes	a	bytearray	instead.

Return	type: bytearray

alpha

Indicates	whether	the	pixmap	contains	transparency

information.

Type: bool

colorspace

The	colorspace	of	the	pixmap.	This	value	may	be	None	if	the
image	is	to	be	treated	as	a	so-called	image	mask	or	stencil
mask	(currently	happens	for	extracted	PDF	document	images
only).

Type: Colorspace

stride

Contains	the	length	of	one	row	of	image	data	in	samples.	This
is	primarily	used	for	calculation	purposes.	The	following
expressions	are	true:	len(samples)	==	height	*
stride,	width	*	n	==	stride.

Type: int

irect

Contains	the	IRect	of	the	pixmap.

Type: IRect

samples

The	color	and	(if	alpha	==	1)	transparency	values	for	all
pixels.	samples	is	a	memory	area	of	size	width	*	height
*	n	bytes.	Each	n	bytes	define	one	pixel.	Each	successive	n
bytes	yield	another	pixel	in	scanline	order.	Subsequent
scanlines	follow	each	other	with	no	padding.	E.g.	for	an	RGBA
colorspace	this	means,	samples	is	a	sequence	of	bytes	like
...,	R,	G,	B,	A,	...,	and	the	four	byte	values	R,	G,	B,
A	define	one	pixel.

This	area	can	be	passed	to	other	graphics	libraries	like	PIL
(Python	Imaging	Library)	to	do	additional	processing	like	saving
the	pixmap	in	other	image	formats.	See	example	3.

Type: bytes

size

Contains	len(pixmap).	This	will	generally	equal
len(pix.samples)	+	60	(32bit	systems,	the	delta	is	88	on
64bit	machines).

Type: int

width

w

Width	of	the	region	in	pixels.

Type: int

height

h

Height	of	the	region	in	pixels.

Type: int

x

X-coordinate	of	top-left	corner

Type: int

y

Y-coordinate	of	top-left	corner

Type: int

n

Number	of	components	per	pixel.	This	number	depends	on
colorspace	and	alpha.	If	colorspace	is	not	None	(stencil
masks),	then	Pixmap.n	-	Pixmap.aslpha	==
pixmap.colorspace.n	is	true.

Type: int

xres

Horizontal	resolution	in	dpi	(dots	per	inch).

Type: int

yres

Vertical	resolution	in	dpi.

Type: int

interpolate

An	information-only	boolean	flag	set	to	True	if	the	image	will
be	drawn	using	“linear	interpolation”.	If	False	“nearest
neighbour	sampling”	will	be	used.

Type: bool

Supported	Input	Image	Types
The	following	file	types	are	supported	as	input	to	construct	pixmaps:
BMP,	JPEG,	GIF,	TIFF,	JXR,	and	PNG.	This	support	is	two-fold:

1.	 Directly	create	a	pixmap	with	Pixmap(filename)	or
Pixmap(byterray).	The	pixmap	will	then	have	properties	as
determined	by	the	image.

2.	 Open	such	files	with	fitz.open(...).	The	result	will	then
appear	as	a	document	containing	one	single	page.	Creating	a
pixmap	of	this	page	offers	all	options	available	in	this	context:
apply	a	matrix,	choose	colorspace	and	alpha,	confine	the	pixmap
to	a	clip	area,	etc.

SVG	images	are	only	supported	via	method	2	above,	not	directly	as
pixmaps.	In	any	case,	this	will	turn	the	SVG	into	a	raster	image.	If	you
need	a	vector	image	you	must	first	convert	it	to	a	PDF	and	then
display	it	e.g.	via	Page.showPDFpage().	There	exist	many	tools	for
SVG-to-PDF	conversion,	among	them	the	Python	package	svglib	or
Java	solutions	like	Apache	Batik.	Have	a	look	at	our	Wiki	for	example
solutions.

https://pypi.org/project/svglib
https://github.com/apache/batik

Details	on	Saving	Images	with	writeImage()
The	following	table	shows	possible	combinations	of	file	extensions,
output	formats	and	colorspaces	of	method	writeImage():

Note

Not	all	image	file	types	are	available,	or	at	least	common	on	all	platforms,	e.g.	PAM	is

mostly	unknown	on	Windows.	Especially	pertaining	to	CMYK	colorspaces,	you	can

always	convert	a	CMYK	pixmap	to	an	RGB	pixmap	with	rgb_pix	=

fitz.Pixmap(fitz.csRGB,	cmyk_pix)	and	then	save	that	as	a	PNG.

Pixmap	Example	Code	Snippets
Example	1

This	shows	how	pixmaps	can	be	used	for	purely	graphical,	non-PDF
purposes.	The	script	reads	a	PNG	picture	and	creates	a	new	PNG	file
which	consist	of	3	*	4	tiles	of	the	original	one:

import	fitz

#	create	a	pixmap	of	a	picture

pix0	=	fitz.Pixmap("editra.png")

#	set	target	colorspace	and	pixmap	dimensions	and	create	it

tar_width		=	pix0.width	*	3														#	3	tiles	per	row

tar_height	=	pix0.height	*	4													#	4	tiles	per	column

tar_irect		=	fitz.IRect(0,	0,	tar_width,	tar_height

#	create	empty	target	pixmap

tar_pix				=	fitz.Pixmap(fitz.csRGB,	tar_irect,	pix0

#	clear	target	with	a	very	lively	stone-gray	(thanks	and	R.I.P.,	Loriot)

tar_pix.clearWith(90)

#	now	fill	target	with	3	*	4	tiles	of	input	picture

for	i	in	range(4):

				pix0.y	=	i	*	pix0.height																					#	modify	input's	y	coord

				for	j	in	range(3):

								pix0.x	=	j	*	pix0.width																		#	modify	input's	x	coord

								tar_pix.copyPixmap(pix0,	pix0.irect)					#	copy	input	to	new	loc

								#	save	all	intermediate	images	to	show	what	is	happening

								fn	=	"target-%i-%i.png"	%	(i,	j)

								tar_pix.writePNG(fn)

This	is	the	input	picture	editra.png	(taken	from	the	wxPython

directory	/tools/Editra/pixmaps):

Here	is	the	output,	showing	some	intermediate	picture	and	the	final
result:

Example	2

This	shows	how	to	create	a	PNG	file	from	a	numpy	array	(several
times	faster	than	most	other	methods):

import	numpy	as	np

import	fitz

#==

#	create	a	fun-colored	width	*	height	PNG	with	fitz	and	numpy

#==

height	=	150

width		=	100

bild	=	np.ndarray((height,	width,	3),	dtype=np.uint8

for	i	in	range(height):

				for	j	in	range(width):

								#	one	pixel	(some	fun	coloring)

								bild[i,	j]	=	[(i+j)%256,	i%256,	j%256]

samples	=	bytearray(bild.tostring())				#	get	plain	pixel	data	from	numpy	array

pix	=	fitz.Pixmap(fitz.csRGB,	width,	height,	samples

pix.writePNG("test.png")

Example	3

This	shows	how	to	interface	with	PIL	/	Pillow	(the	Python
Imaging	Library),	thereby	extending	the	reach	of	image	files	that	can
be	processed:

>>>	import	fitz

>>>	from	PIL	import	Image

>>>	pix	=	fitz.Pixmap(...)

>>>	...

>>>	#	create	and	save	a	PIL	image

>>>	img	=	Image.frombytes("RGB",	[pix.width,	pix.height

>>>	img.save(filename,	'jpeg')

>>>	...

>>>	#	opposite	direction:

>>>	#	create	a	pixmap	from	any	PIL-supported	image	file	"some_image.xxx"

>>>	img	=	Image.open("some_image.xxx").convert("RGB"

>>>	samples	=	img.tobytes()

>>>	pix	=	fitz.Pixmap(fitz.csRGB,	img.size[0],	img.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Point

Point	represents	a	point	in	the	plane,	defined	by	its	x	and	y
coordinates.

Attribute	/	Method Short	Description
Point.distance_to() calculate	distance	to	point	or	rect
Point.transform() transform	point	with	a	matrix
Point.x the	X-coordinate
Point.y the	Y-coordinate

Class	API

class	Point

__init__(self)

__init__(self,	x,	y)

__init__(self,	point)

__init__(self,	list)

Overloaded	constructors.

Without	parameters,	Point(0,	0)	will	be	created.

With	another	point	specified,	a	new	copy	will	be
crated.	A	list	must	be	Python	sequence	object	of
length	2.	For	a	list,	it	is	the	user’s	responsibility	to
only	provide	numeric	entries	-	no	error	checking	is
done,	and	invalid	entries	will	receive	a	value	of	-1.0.

Parameters: x	(float)	–	X	coordinate	of	the	point

y	(float)	–	Y	coordinate	of	the	point

distance_to(x[,	unit])

Calculates	the	distance	to	x,	which	may	be	a	Rect,
IRect	or	Point.	The	distance	is	given	in	units	of	either
px	(pixels,	default),	in	(inches),	mm	(millimeters)	or
cm	(centimeters).

Note

If	x	is	a	rectangle,	the	distance	is	calculated	as	if	the	rectangle	were

finite.

Parameters:

x	(Rect	or	IRect	or	Point)	–	the	object	to
which	the	distance	is	calculated.
unit	(str)	–	the	unit	to	be	measured	in.
One	of	px,	in,	cm,	mm.

Returns: distance	to	object	x.
Return
type: float

transform(m)

Applies	matrix	m	to	the	point.

Parameters: m	–	The	matrix	to	be	applied.
Return	type: Point

x

x	Coordinate

y

y	Coordinate

Remark
A	point’s	p	attributes	x	and	y	can	also	be	accessed	as	indices,	e.g.
p.x	==	p[0],	and	the	tuple()	and	list()	functions	yield
sequence	objects	of	its	components.

Point	Algebra
For	a	general	background,	see	chapter	Operator	Algebra	for
Geometry	Objects.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Examples
This	should	illustrate	some	basic	uses:

>>>	fitz.Point(1,	2)	*	fitz.Matrix(90)

fitz.Point(-2.0,	1.0)

>>>

>>>	fitz.Point(1,	2)	*	3

fitz.Point(3.0,	6.0)

>>>

>>>	fitz.Point(1,	2)	+	3

fitz.Point(4.0,	5.0)

>>>

>>>	fitz.Point(25,	30)	+	fitz.Point(1,	2)

fitz.Point(26.0,	32.0)

>>>	fitz.Point(25,	30)	+	(1,	2)

fitz.Point(26.0,	32.0)

>>>

>>>	fitz.Point([1,	2])

fitz.Point(1.0,	2.0)

>>>

>>>	-fitz.Point(1,	2)

fitz.Point(-1.0,	-2.0)

>>>

>>>	abs(fitz.Point(25,	30))

39.05124837953327

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Shape

This	class	allows	creating	interconnected	graphical	elements	on	a
PDF	page.	Its	methods	have	the	same	meaning	and	name	as	the
corresponding	Page	methods.	Their	Common	Parameters	are
however	exported	to	a	separate	method,	finish().	In	addition,	all
draw	methods	return	a	Point	object	to	support	connected	drawing
paths.	This	point	always	equals	the	“current	point”,	that	PDF
maintains	during	path	construction.

The	class	now	also	supports	the	text	insertion	methods
insertText()	and	insertTextbox().	They	need	a	slightly
different	handling	compared	to	the	draw	methods	(see	below	for
details):

1.	 They	do	not	use	Shape.contents.	Instead	they	directly	modify
Shape.totalcont.

2.	 They	do	not	use	nor	need	Shape.finish().
3.	 They	provide	their	own	color	and	morph	arguments.
4.	 They	do	not	use	nor	change	Shape.lastPoint.

As	with	the	draw	methods,	text	insertion	requires	using
Shape.commit()	to	update	the	page.

Method	/	Attribute Description
Shape.commit() update	the	page’s	/Contents	object
Shape.drawBezier() draw	a	cubic	Bézier	curve
Shape.drawCircle() draw	a	circle	around	a	point

Shape.drawCurve()
draw	a	cubic	Bézier	using	one	helper
point

Shape.drawLine() draw	a	line

Shape.drawOval() draw	an	ellipse
Shape.drawPolyline() connect	a	sequence	of	points
Shape.drawRect() draw	a	rectangle
Shape.drawSector() draw	a	circular	sector	or	piece	of	pie
Shape.drawSquiggle() draw	a	squiggly	line
Shape.drawZigzag() draw	a	zigzag	line
Shape.finish() finish	a	set	of	draws
Shape.insertText() insert	text	lines
Shape.insertTextbox() insert	text	into	a	rectangle
Shape.contents draw	commands	since	last	finish()
Shape.doc stores	the	page’s	document
Shape.height stores	the	page’s	height
Shape.lastPoint stores	the	current	point
Shape.page stores	the	owning	page
Shape.width stores	the	page’s	width

Shape.totalcont
accumulated	string	to	be	stored	in
/Contents

Class	API

class	Shape

__init__(self,	page)

Create	a	new	drawing.	During	importing	PyMuPDF,	the
fitz.Page	object	is	being	given	the	convenience	method
newShape()	to	construct	a	Shape	object.	During
instantiation,	a	check	will	be	made	whether	we	do	have	a	PDF
page.	An	exception	is	otherwise	raised.

Parameters: page	(Page)	–	an	existing	page	of	a	PDF
document.

drawLine(p1,	p2)

Draw	a	line	from	Point	objects	p1	to	p2.

Parameters: p1	(Point)	–	starting	point
p2	(Point)	–	end	point

Return	type: Point
Returns: the	end	point,	p2.

drawSquiggle(p1,	p2,	breadth	=	2)

Draw	a	squiggly	(wavy,	undulated)	line	from	Point	objects	p1	to
p2.	An	integer	number	of	full	wave	periods	will	always	be
drawn,	one	period	having	a	length	of	4	*	breadth.	The
breadth	parameter	will	be	adjusted	as	necessary	to	meet	this
condition.	The	drawn	line	will	always	turn	“left”	when	leaving	p1
and	always	join	p2	from	the	“right”.

Parameters:

p1	(Point)	–	starting	point
p2	(Point)	–	end	point
breadth	(float)	–	the	amplitude	of	each	wave.
The	condition	2	*	breadth	<	abs(p2	-
p1)	must	be	true	to	fit	in	at	least	one	wave.
See	the	following	picture,	which	shows	two
points	connected	by	one	full	period.

Return
type: Point

Returns: the	end	point,	p2.

Here	is	an	example	of	three	connected	lines,	forming	a	closed,
filled	triangle.	Little	arrows	indicate	the	stroking	direction.

Note

Waves	drawn	are	not	trigonometric	(sine	/	cosine).	If	you	need	that,	have	a	look

at	draw-sines.py.

drawZigzag(p1,	p2,	breadth	=	2)

Draw	a	zigzag	line	from	Point	objects	p1	to	p2.	An	integer
number	of	full	zigzag	periods	will	always	be	drawn,	one	period
having	a	length	of	4	*	breadth.	The	breadth	parameter	will
be	adjusted	to	meet	this	condition.	The	drawn	line	will	always
turn	“left”	when	leaving	p1	and	always	join	p2	from	the	“right”.

Parameters:

p1	(Point)	–	starting	point
p2	(Point)	–	end	point
breadth	(float)	–	the	amplitude	of	the
movement.	The	condition	2	*	breadth	<
abs(p2	-	p1)	must	be	true	to	fit	in	at	least
one	period.

Return Point

https://github.com/rk700/PyMuPDF/blob/master/demo/draw-sines.py

type:
Returns: the	end	point,	p2.

drawPolyline(points)

Draw	several	connected	lines	between	points	contained	in	the
sequence	points.	This	can	be	used	for	creating	arbitrary
polygons	by	setting	the	last	item	equal	to	the	first	one.

Parameters:
points	(sequence)	–	a	sequence	of	Point	objects.
Its	length	must	at	least	be	2	(in	which	case	it	is
equivalent	to	drawLine()).

Return
type: Point

Returns: points[-1]	-	the	last	point	in	the	argument
sequence.

drawBezier(p1,	p2,	p3,	p4)

Draw	a	standard	cubic	Bézier	curve	from	p1	to	p4,	using	p2
and	p3	as	control	points.

Parameters:
p1	(Point)	–	starting	point
p2	(Point)	–	control	point	1
p3	(Point)	–	control	point	2
p4	(Point)	–	end	point

Return	type: Point
Returns: the	end	point,	p4.

Example:

drawOval(rect)

Draw	an	ellipse	inside	the	given	rectangle.	If	rect	is	a	square,
a	standard	circle	is	drawn.	The	drawing	starts	and	ends	at	the
middle	point	of	the	left	rectangle	side	in	a	counter-clockwise
movement.

Parameters: rect	(Rect)	–	rectangle,	must	be	finite	and	not
empty.

Return
type: Point

Returns: the	middle	point	of	the	left	rectangle	side.

drawCircle(center,	radius)

Draw	a	circle	given	its	center	and	radius.	The	drawing	starts
and	ends	at	point	start	=	center	-	(radius,	0)	in	a
counter-clockwise	movement.	start	corresponds	to	the
middle	point	of	the	enclosing	square’s	left	border.

The	method	is	a	shortcut	for	drawSector(center,
start,	360,	fullSector	=	False).	To	draw	a	circle	in
a	clockwise	movement,	change	the	sign	of	the	degree.

Parameters:
center	(Point)	–	the	center	of	the	circle.
radius	(float)	–	the	radius	of	the	circle.	Must	be
positive.

Return
type: Point

Returns: center	-	(radius,	0).

drawCurve(p1,	p2,	p3)

A	special	case	of	drawBezier():	Draw	a	cubic	Bézier	curve
from	p1	to	p3.	On	each	of	the	two	lines	from	p1	to	p2	and	from
p2	to	p3	one	control	point	is	generated.	This	guaranties	that
the	curve’s	curvature	does	not	change	its	sign.	If	these	two
connecting	lines	intersect	with	an	angle	of	90	degress,	then	the

resulting	curve	is	a	quarter	ellipse	(or	quarter	circle,	if	of	same
length)	circumference.

Parameters:
p1	(Point)	–	starting	point.
p2	(Point)	–	helper	point.
p3	(Point)	–	end	point.

Return	type: Point
Returns: the	end	point,	p3.

Example:	a	filled	quarter	ellipse	segment.

drawSector(center,	point,	angle,	fullSector	=	True)

Draw	a	circular	sector,	optionally	connecting	the	arc	to	the
circle’s	center	(like	a	piece	of	pie).

Parameters:

center	(Point)	–	the	center	of	the	circle.
point	(Point)	–	one	of	the	two	end	points	of	the
pie’s	arc	segment.	The	other	one	is	calculated
from	the	angle.
angle	(float)	–	the	angle	of	the	sector	in
degrees.	Used	to	calculate	the	other	end	point
of	the	arc.	Depending	on	its	sign,	the	arc	is
drawn	counter-clockwise	(postive)	or
clockwise.
fullSector	(bool)	–	whether	to	draw	connecting
lines	from	the	ends	of	the	arc	to	the	circle
center.	If	a	fill	color	is	specified,	the	full	“pie”	is
colored,	otherwise	just	the	sector.

Returns:
the	other	end	point	of	the	arc.	Can	be	used	as
starting	point	for	a	following	invocation	to	create
logically	connected	pies	charts.

Return
type:

Point

Examples:

	

drawRect(rect)

Draw	a	rectangle.	The	drawing	starts	and	ends	at	the	top-left
corner	in	a	counter-clockwise	movement.

Parameters: rect	(Rect)	–	where	to	put	the	rectangle	on	the
page.

Return
type: Point

Returns: rect.top_left	(top-left	corner	of	the
rectangle).

insertText(point,	text,	fontsize	=	11,	fontname	=	"Helvetica",
fontfile	=	None,	idx	=	0,	set_simple	=	False,	color	=	(0,	0,	0),	rotate
=	0,	morph	=	None)

Insert	text	lines	beginning	at	a	Point	point.

point	(Point)	–	the	bottom-left	position	of	the
first	text	character	in	pixels.	point.x
specifies	the	distance	from	left	border,
point.y	the	distance	from	top	of	page.	This
is	independent	from	text	orientation	as

Parameters:

requested	by	rotate.	However,	there	must
always	be	sufficient	room	“above”,	which	can
mean	the	distance	from	any	of	the	four	page
borders.
text	(str	or	sequence)	–	the	text	to	be	inserted.
May	be	specified	as	either	a	string	type	or	as	a
sequence	type.	For	sequences,	or	strings
containing	line	breaks	\n,	several	lines	will	be
inserted.	No	care	will	be	taken	if	lines	are	too
wide,	but	the	number	of	inserted	lines	will	be
limited	by	“vertical”	space	on	the	page	(in	the
sense	of	reading	direction	as	established	by
the	rotate	parameter).	Any	rest	of	text	is
discarded	-	the	return	code	however	contains
the	number	of	inserted	lines.	Only	single	byte
character	codes	are	currently	supported.
rotate	(int)	–	determines	whether	to	rotate	the
text.	Acceptable	values	are	multiples	of	90
degrees.	Default	is	0	(no	rotation),	meaning
horizontal	text	lines	oriented	from	left	to	right.
180	means	text	is	shown	upside	down	from
right	to	left.	90	means	counter-clockwise
rotation,	text	running	upwards.	270	(or	-90)
means	clockwise	rotation,	text	running
downwards.	In	any	case,	point	specifies	the
bottom-left	coordinates	of	the	first	character’s
rectangle.	Multiple	lines,	if	present,	always
follow	the	reading	direction	established	by	this
parameter.	So	line	2	is	located	above	line	1	in
case	of	rotate	=	180,	etc.

Return
type: int

Returns: number	of	lines	inserted.

For	a	description	of	the	other	parameters	see	Common
Parameters.

insertTextbox(rect,	buffer,	fontsize	=	11,	fontname	=

"Helvetica",	fontfile	=	None,	idx	=	0,	set_simple	=	False,	color	=	(0,
0,	0),	expandtabs	=	8,	align	=	TEXT_ALIGN_LEFT,	rotate	=	0,
morph	=	None)

PDF	only:	Insert	text	into	the	specified	rectangle.	The	text	will
be	split	into	lines	and	words	and	then	filled	into	the	available
space,	starting	from	one	of	the	four	rectangle	corners,
depending	on	rotate.	Line	feeds	will	be	respected	as	well	as
multiple	spaces	will	be.

Parameters:

rect	(Rect)	–	the	area	to	use.	It	must	be	finite
and	not	empty.
buffer	–	the	text	to	be	inserted.	Must	be
specified	as	a	string	or	a	sequence	of	strings.
Line	breaks	are	respected	also	when	occurring
in	a	sequence	entry.
align	(int)	–	align	each	text	line.	Default	is	0
(left).	Centered,	right	and	justified	are	the	other
supported	options,	see	Text	Alignment.	Please
note	that	the	effect	of	parameter	value
TEXT_ALIGN_JUSTIFY	is	only	achievable
with	“simple”	(single-byte)	fonts	(including	the
PDF	Base	14	Fonts).	Refer	to	Adobe	PDF
Reference	1.7,	section	5.2.2,	page	399.
expandtabs	(int)	–	controls	handling	of	tab
characters	\t	using	the
string.expandtabs()	method	per	each
line.
rotate	(int)	–	requests	text	to	be	rotated	in	the
rectangle.	This	value	must	be	a	multiple	of	90
degrees.	Default	is	0	(no	rotation).	Effectively,
four	different	values	are	processed:	0,	90,	180
and	270	(=	-90),	each	causing	the	text	to	start
in	a	different	rectangle	corner.	Bottom-left	is	90,
bottom-right	is	180,	and	-90	/	270	is	top-right.
See	the	example	how	text	is	filled	in	a
rectangle.	This	argument	takes	precedence

over	morphing.	See	the	second	example,
which	shows	text	first	rotated	left	by	90
degrees	and	then	the	whole	rectangle	rotated
clockwise	around	is	lower	left	corner.

Return
type: float

Returns:

If	positive	or	zero:	successful	execution.	The
value	returned	is	the	unused	rectangle	line	space
in	pixels.	This	may	safely	be	ignored	-	or	be	used
to	optimize	the	rectangle,	position	subsequent
items,	etc.
If	negative:	no	execution.	The	value	returned	is
the	space	deficit	to	store	text	lines.	Enlarge
rectangle,	decrease	fontsize,	decrease	text
amount,	etc.

	
For	a	description	of	the	other	parameters	see	Common
Parameters.

finish(width	=	1,	color	=	(0,	0,	0),	fill	=	None,	roundCap	=	True,
dashes	=	None,	closePath	=	True,	even_odd	=	False,	morph	=
(pivot,	matrix))

Finish	a	set	of	draw*()	methods	by	applying	Common
Parameters	to	all	of	them.	This	method	also	supports	morphing
the	resulting	compound	drawing	using	a	pivotal	Point.

Parameters:

morph	(sequence)	–	morph	the	compound
drawing	around	some	arbitrary	pivotal	Point
pivot	by	applying	Matrix	matrix	to	it.
Default	is	no	morphing	(None).	The	matrix	can
contain	any	values	in	its	first	4	components,
matrix.e	==	matrix.f	==	0	must	be
true,	however.	This	means	that	any
combination	of	scaling,	shearing,	rotating,
flipping,	etc.	is	possible,	but	translations	are
not.
even_odd	(bool)	–	request	the	“even-odd
rule”	for	filling	operations.	Default	is	False,
so	that	the	“nonzero	winding	number	rule”
is	used.	These	rules	are	alternative	methods	to
apply	the	fill	color	where	areas	overlap.	Only
with	fairly	complex	shapes	a	different	behavior
is	to	be	expected	with	these	rules.	For	an	in-
depth	explanation,	see	Adobe	PDF	Reference
1.7,	pp.	232	ff.	Here	is	an	example	to
demonstrate	the	difference.

Note

Method	“even-odd”	counts	the	number	of	overlaps	of	areas.	Pixels	in	areas

overlapping	an	odd	number	of	times	are	regarded	inside,	otherwise	outside.	In

contrast,	the	default	method	“nonzero	winding”	also	looks	at	the	area

orientation:	it	counts	+1	if	an	area	is	drawn	counter-clockwise	and	-1	else.	If	the

result	is	zero,the	pixel	is	regarded	outside,	otherwise	inside.	In	the	top	two

shapes,	three	circles	are	drawn	in	standard	manner	(anti-clockwise,	look	at	the

arrows).	The	lower	two	shapes	contain	one	(top-left)	circle	drawn	clockwise.	As

can	be	seen,	area	orientation	is	irrelevant	for	the	even-odd	rule.

commit(overlay	=	True)

Update	the	page’s	/Contents	with	the	accumulated	drawing
commands.	If	a	Shape	is	not	committed,	the	page	will	not	be
changed.	The	method	must	be	preceeded	with	at	least	one
finish()	or	text	insertion	method.

Parameters:

overlay	(bool)	–	determine	whether	to	put	the
drawing	in	foreground	(default)	or	background.
Relevant	only,	if	the	page	has	a	non-empty
/Contents	object.

doc

For	reference	only:	the	page’s	document.

Type: Document

page

For	reference	only:	the	owning	page.

Type: Page

height

Copy	of	the	page’s	height

Type: float

width

Copy	of	the	page’s	width.

Type: float

contents

Accumulated	command	buffer	for	draw	methods	since	last
finish.

Type: str

totalcont

Total	accumulated	command	buffer	for	draws	and	text
insertions.	This	will	be	used	by	Shape.commit().

Type: str

lastPoint

For	reference	only:	the	current	point	of	the	drawing	path.	It	is
None	at	Shape	creation	and	after	each	finish()	and
commit().

Type: Point

Usage
A	drawing	object	is	constructed	by	img	=	page.newShape().	After
this,	as	many	draw,	finish	and	text	insertions	methods	as	required	may
follow.	Each	sequence	of	draws	must	be	finished	before	the	drawing	is
committed.	The	overall	coding	pattern	looks	like	this:

>>>	img	=	page.newShape()

>>>	img.draw1(...)

>>>	img.draw2(...)

>>>	...

>>>	img.finish(width=...,	color	=	...,	fill	=	...,	

>>>	img.draw3(...)

>>>	img.draw4(...)

>>>	...

>>>	img.finish(width=...,	color	=	...,	fill	=	...,	

>>>	...

>>>	img.insertText*

>>>	...

>>>	img.commit()

>>>

Notes

1.	 Each	finish()	combines	the	preceding	draws	into	one	logical
shape,	giving	it	common	colors,	line	width,	morphing,	etc.	If
closePath	is	specified,	it	will	also	connect	the	end	point	of	the
last	draw	with	the	starting	point	of	the	first	one.

2.	 To	successfully	create	compound	graphics,	let	each	draw	method
use	the	end	point	of	the	previous	one	as	its	starting	point.	In	the
above	pseudo	code,	draw2	should	hence	use	the	returned	Point

of	draw1	as	its	starting	point.	Failing	to	do	so,	would
automatically	start	a	new	path	and	finish()	may	not	work	as
expected	(but	it	won’t	complain	either).

3.	 Text	insertions	may	occur	anywhere	before	the	commit	(they
neither	touch	Shape.contents	nor	Shape.lastPoint).
They	are	appended	to	Shape.totalcont	directly,	whereas
draws	will	be	appended	by	Shape.finish.

4.	 Each	commit	takes	all	text	insertions	and	shapes	and	places
them	in	foreground	or	background	on	the	page	-	thus	providing	a
way	to	control	graphical	layers.

5.	 Only	commit	will	update	the	page’s	contents,	the	other	methods
are	basically	string	manipulations.	With	many	draw	/	text
operations,	this	will	result	in	a	much	better	performance,	than
issuing	the	corresponding	page	methods	separately	(they	each
do	their	own	commit).

Examples

1.	 Create	a	full	circle	of	pieces	of	pie	in	different	colors:

>>>	img		=	page.newShape()							#	start	a	new	shape

>>>	cols	=	(...)																	#	a	sequence	of	RGB	color	triples

>>>	pieces	=	len(cols)											#	number	of	pieces	to	draw

>>>	beta	=	360.	/	pieces									#	angle	of	each	piece	of	pie

>>>	center	=	fitz.Point(...)					#	center	of	the	pie

>>>	p0					=	fitz.Point(...)					#	starting	point

>>>	for	i	in	range(pieces):

								p0	=	img.drawSector(center,	p0,	beta,

																												fullSector	=	True)	#	draw	piece

								#	now	fill	it	but	do	not	connect	ends	of	the	arc

								img.finish(fill	=	cols[i],	closePath	=	False)

>>>	img.commit()																	#	update	the	page

Here	is	an	example	for	5	colors:

2.	 Create	a	regular	n-edged	polygon	(fill	yellow,	red	border).	We	use
drawSector()	only	to	calculate	the	points	on	the
circumference,	and	empty	the	draw	command	buffer	before
drawing	the	polygon:

>>>	img		=	page.newShape()							#	start	a	new	shape

>>>	beta	=	-360.0	/	n												#	our	angle,	drawn	clockwise

>>>	center	=	fitz.Point(...)					#	center	of	circle

>>>	p0					=	fitz.Point(...)					#	start	here	(1st	edge)

>>>	points	=	[p0]																#	store	polygon	edges

>>>	for	i	in	range(n):											#	calculate	the	edges

								p0	=	img.drawSector(center,	p0,	beta)

								points.append(p0)

>>>	img.contents	=	""												#	do	not	draw	the	circle	sectors

>>>	img.drawPolyline(points)					#	draw	the	polygon

>>>	img.finish(color	=	(1,0,0),	fill	=	(1,1,0),	closePath

>>>	img.commit()

Here	is	the	polygon	for	n	=	7:

Common	Parameters
fontname	(str)

In	general,	there	are	three	options:

1.	 Use	one	of	the	standard	PDF	Base	14	Fonts.	In	this	case,
fontfile	must	not	be	specified	and	"Helvetica"	is
used	if	this	parameter	is	omitted,	too.

2.	 Choose	a	font	already	in	use	by	the	page.	Then	specify	its
reference	name	prefixed	with	a	slash	“/”,	see	example
below.

3.	 Specify	a	font	file	present	on	your	system.	In	this	case
choose	an	arbitrary,	but	new	name	for	this	parameter
(without	“/”	prefix).

If	inserted	text	should	re-use	one	of	the	page’s	fonts,	use	its
reference	name	appearing	in	getFontList()	like	so:

Suppose	the	font	list	has	the	entry	[1024,	0,	'Type1',
'CJXQIC+NimbusMonL-Bold',	'R366'],	then	specify
fontname	=	"/R366",	fontfile	=	None	to	use	font
CJXQIC+NimbusMonL-Bold.

fontfile	(str)

File	path	of	a	font	existing	on	your	computer.	If	you	specify
fontfile,	make	sure	you	use	a	fontname	not	occurring	in

the	above	list.	This	new	font	will	be	embedded	in	the	PDF	upon
doc.save().	Similar	to	new	images,	a	font	file	will	be
embedded	only	once.	A	table	of	MD5	codes	for	the	binary	font
contents	is	used	to	ensure	this.

idx	(int)

Font	files	may	contain	more	than	one	font.	Use	this	parameter	to
select	the	right	one.	This	setting	cannot	be	reverted.	Subsequent
changes	are	ignored.

set_simple	(bool)

Fonts	installed	from	files	are	installed	as	Type0	fonts	by	default.	If
you	want	to	use	1-byte	characters	only,	set	this	to	true.	This
setting	cannot	be	reverted.	Subsequent	changes	are	ignored.

fontsize	(float)

Font	size	of	text.	This	also	determines	the	line	height	as
fontsize	*	1.2.

dashes	(str)

Causes	lines	to	be	dashed.	A	continuous	line	with	no	dashes	is
drawn	with	"[]0"	or	None.	For	(the	rather	complex)	details	on
how	to	achieve	dashing	effects,	see	Adobe	PDF	Reference	1.7,
page	217.	Simple	versions	look	like	"[3	4]",	which	means
dashes	of	3	and	gaps	of	4	pixels	length	follow	each	other.	"[3
3]"	and	"[3]"	do	the	same	thing.

color	/	fill	(list,	tuple)

Line	and	fill	colors	are	always	specified	as	RGB	triples	of	floats
from	0	to	1.	To	simplify	color	specification,	method	getColor()
in	fitz.utils	may	be	used.	It	accepts	a	string	as	the	name	of
the	color	and	returns	the	corresponding	triple.	The	method	knows
over	540	color	names	-	see	section	Color	Database.

overlay	(bool)

Causes	the	item	to	appear	in	foreground	(default)	or	background.

morph	(sequence)

Causes	“morphing”	of	either	a	shape,	created	by	the	draw*()
methods,	or	the	text	inserted	by	page	methods
insertTextbox()	/	insertText().	If	not	None,	it	must	be	a
pair	(pivot,	matrix),	where	pivot	is	a	Point	and	matrix

is	a	Matrix.	The	matrix	can	be	anything	except	translations,	i.e.
matrix.e	==	matrix.f	==	0	must	be	true.	The	point	is
used	as	a	pivotal	point	for	the	matrix	operation.	For	example,	if
matrix	is	a	rotation	or	scaling	operation,	then	pivot	is	its
center.	Similarly,	if	matrix	is	a	left-right	or	up-down	flip,	then	the
mirroring	axis	will	be	the	vertical,	respectively	horizontal	line	going
through	pivot,	etc.

Note

Several	methods	contain	checks	whether	the	to	be	inserted	items	will	actually	fit

into	the	page	(like	Shape.insertText(),	or	Shape.drawRect()).	For	the

result	of	a	morphing	operation	there	is	however	no	such	guaranty:	this	is	entirely

the	rpogrammer’s	responsibility.

roundCap	(bool)

Cause	lines,	dashes	and	edges	to	be	rounded	(default).	If	false,
sharp	edges	and	square	line	and	dashes	ends	will	be	generated.
Rounded	lines	/	dashes	will	end	in	a	semi-circle	with	a	diameter
equal	to	line	width	and	make	longer	by	the	radius	of	this	semi-
circle.

closePath	(bool)

Causes	the	end	point	of	a	drawing	to	be	automatically	connected
with	the	starting	point	(by	a	straight	line).

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Rect

Rect	represents	a	rectangle	defined	by	four	floating	point	numbers
x0,	y0,	x1,	y1.	They	are	viewed	as	being	coordinates	of	two	diagonally
opposite	points.	The	first	two	numbers	are	regarded	as	the	“top	left”
corner	Px0,y0	and	Px1,y1	as	the	“bottom	right”	one.	However,	these	two
properties	need	not	coincide	with	their	intuitive	meanings	-	read	on.

The	following	remarks	are	also	valid	for	IRect	objects:

Rectangle	borders	are	always	parallel	to	the	respective	X-	and	Y-
axes.
The	constructing	points	can	be	anywhere	in	the	plane	-	they	need
not	even	be	different,	and	e.g.	“top	left”	need	not	be	the
geometrical	“north-western”	point.
For	any	given	quadruple	of	numbers,	the	geometrically	“same”
rectangle	can	be	defined	in	(up	to)	four	different	ways:
Rect(Px0,y0,	Px1,y1),	Rect(Px1,y1,	Px0,y0),	Rect(Px0,y1,	Px1,y0),	and
Rect(Px1,y0,	Px0,y1).

Hence	some	useful	classification:

A	rectangle	is	called	finite	if	x0	<=	x1	and	y0	<=	y1	(i.e.	the
bottom	right	point	is	“south-eastern”	to	the	top	left	one),	otherwise
infinite.	Of	the	four	alternatives	above,	only	one	is	finite
(disregarding	degenerate	cases).
A	rectangle	is	called	empty	if	x0	=	x1	or	y0	=	y1,	i.e.	if	its
area	is	zero.

Note

It	sounds	like	a	paradox:	a	rectangle	can	be	both,	infinite	and	empty	…

Methods	/	Attributes Short	Description
Rect.contains() checks	containment	of	another	object
Rect.getArea() calculate	rectangle	area
Rect.getRectArea() calculate	rectangle	area
Rect.includePoint() enlarge	rectangle	to	also	contain	a	point

Rect.includeRect()
enlarge	rectangle	to	also	contain	another
one

Rect.intersect() common	part	with	another	rectangle
Rect.intersects() checks	for	non-empty	intersections
Rect.normalize() makes	a	rectangle	finite
Rect.round() create	smallest	IRect	containing	rectangle
Rect.transform() transform	rectangle	with	a	matrix
Rect.bottom_left bottom	left	point,	synonym	bl
Rect.bottom_right bottom	right	point,	synonym	br
Rect.height rectangle	height
Rect.irect equals	result	of	method	round()
Rect.isEmpty whether	rectangle	is	empty
Rect.isInfinite whether	rectangle	is	infinite
Rect.top_left top	left	point,	synonym	tl
Rect.top_right top_right	point,	synonym	tr
Rect.width rectangle	width
Rect.x0 top	left	corner’s	X-coordinate
Rect.x1 bottom	right	corner’s	X-coordinate
Rect.y0 top	left	corner’s	Y-coordinate
Rect.y1 bottom	right	corner’s	Y-coordinate

Class	API

class	Rect

__init__(self)

__init__(self,	x0,	y0,	x1,	y1)

__init__(self,	top_left,	bottom_right)

__init__(self,	top_left,	x1,	y1)

__init__(self,	x0,	y0,	bottom_right)

__init__(self,	rect)

__init__(self,	list)

Overloaded	constructors:	top_left,	bottom_right	stand
for	Point	objects,	list	is	a	Python	sequence	type	with	length
4,	rect	means	another	Rect,	while	the	other	parameters
mean	float	coordinates.	If	list	is	specified,	it	is	the	user’s
responsibility	to	only	provide	numeric	entries	-	no	error
checking	is	done,	and	invalid	entries	will	receive	a	value	of
-1.0.

If	rect	is	specified,	the	constructor	creates	a	new	copy	of
rect.

Without	parameters,	the	rectangle	Rect(0.0,	0.0,	0.0,
0.0)	is	created.

round()

Creates	the	smallest	containing	IRect	(this	is	not	the	same	as
simply	rounding	the	rectangle’s	edges!).

1.	 If	the	rectangle	is	infinite,	the	“normalized”	(finite)	version
of	it	will	be	taken.	The	result	of	this	method	is	always	a
finite	IRect.

2.	 If	the	rectangle	is	empty,	the	result	is	also	empty.
3.	 Possible	paradox:	The	result	may	be	empty,	even	if	the

rectangle	is	not	empty!	In	such	cases,	the	result	obviously

does	not	contain	the	rectangle.	This	is	because	MuPDF’s
algorithm	allows	for	a	small	tolerance	(1e-3).	Example:

>>>	r	=	fitz.Rect(100,	100,	200,	100.001)

>>>	r.isEmpty

False

>>>	r.round()

fitz.IRect(100,	100,	200,	100)

>>>	r.round().isEmpty

True

To	reproduce	the	effect	on	your	platform,	you	may	need	to
adjust	the	numbers	a	little.

Return	type: IRect

transform(m)

Transforms	the	rectangle	with	a	matrix	and	replaces	the
original.	If	the	rectangle	is	empty	or	infinite,	this	is	a	no-
operation.

Parameters: m	(Matrix)	–	The	matrix	for	the	transformation.
Return
type: Rect

Returns: the	smallest	rectangle	that	contains	the
transformed	original.

intersect(r)

The	intersection	(common	rectangular	area)	of	the	current
rectangle	and	r	is	calculated	and	replaces	the	current
rectangle.	If	either	rectangle	is	empty,	the	result	is	also	empty.	If
r	is	infinite,	this	is	a	no-operation.

Parameters: r	(Rect)	–	Second	rectangle

includeRect(r)

The	smallest	rectangle	containing	the	current	one	and	r	is
calculated	and	replaces	the	current	one.	If	either	rectangle	is
infinite,	the	result	is	also	infinite.	If	one	is	empty,	the	other	one
will	be	taken	as	the	result.

Parameters: r	(Rect)	–	Second	rectangle

includePoint(p)

The	smallest	rectangle	containing	the	current	one	and	point	p
is	calculated	and	replaces	the	current	one.	Infinite
rectangles	remain	unchanged.	To	create	a	rectangle
containing	a	series	of	points,	start	with	(the	empty)
fitz.Rect(p1,	p1)	and	successively	perform
includePoint	operations	for	the	other	points.

Parameters: p	(Point)	–	Point	to	include.

getRectArea([unit])

getArea([unit])
Calculate	the	area	of	the	rectangle	and,	with	no	parameter,
equals	abs(rect).	Like	an	empty	rectangle,	the	area	of	an
infinite	rectangle	is	also	zero.	So,	at	least	one	of
fitz.Rect(p1,	p2)	and	fitz.Rect(p2,	p1)	has	a
zero	area.

Parameters:
unit	(str)	–	Specify	required	unit:	respective
squares	of	px	(pixels,	default),	in	(inches),	cm
(centimeters),	or	mm	(millimeters).

Return
type: float

contains(x)

Checks	whether	x	is	contained	in	the	rectangle.	It	may	be	an
IRect,	Rect,	Point	or	number.	If	x	is	an	empty	rectangle,
this	is	always	true.	If	the	rectangle	is	empty	this	is	always
False	for	all	non-empty	rectangles	and	for	all	points.	If	x	is	a
number,	it	will	be	checked	against	the	four	components.	x	in
rect	and	rect.contains(x)	are	equivalent.

Parameters: x	(IRect	or	Rect	or	Point	or	number)	–	the	object
to	check.

Return
type: bool

intersects(r)

Checks	whether	the	rectangle	and	r	(a	Rect	or	IRect)	have	a
non-empty	rectangle	in	common.	This	will	always	be	False	if
either	is	infinite	or	empty.

Parameters: r	(IRect	or	Rect)	–	the	rectangle	to	check.
Return	type: bool

normalize()

Replace	the	rectangle	with	its	finite	version.	This	is	done	by
shuffling	the	rectangle	corners.	After	completion	of	this	method,
the	bottom	right	corner	will	indeed	be	south-eastern	to	the	top
left	one.

irect

Equals	result	of	method	round().

top_left

tl

Equals	Point(x0,	y0).

Type: Point

top_right

tr

Equals	Point(x1,	y0).

Type: Point

bottom_left

bl

Equals	Point(x0,	y1).

Type: Point

bottom_right

br

Equals	Point(x1,	y1).

Type: Point

width

Contains	the	width	of	the	rectangle.	Equals	x1	-	x0.

Return	type: float

height

Contains	the	height	of	the	rectangle.	Equals	y1	-	y0.

Return	type: float

x0

X-coordinate	of	the	left	corners.

Type: float

y0

Y-coordinate	of	the	top	corners.

Type: float

x1

X-coordinate	of	the	right	corners.

Type: float

y1

Y-coordinate	of	the	bottom	corners.

Type: float

isInfinite

True	if	rectangle	is	infinite,	False	otherwise.

Type: bool

isEmpty

True	if	rectangle	is	empty,	False	otherwise.

Type: bool

Remark
A	rectangle’s	coordinates	can	also	be	accessed	via	index,	e.g.	r.x0
==	r[0],	and	the	tuple()	and	list()	functions	yield	sequence
objects	of	its	components.

Rect	Algebra
For	a	general	background,	see	chapter	Operator	Algebra	for
Geometry	Objects.

Examples
Example	1	-	different	ways	of	construction:

>>>	p1	=	fitz.Point(10,	10)

>>>	p2	=	fitz.Point(300,	450)

>>>

>>>	fitz.Rect(p1,	p2)

fitz.Rect(10.0,	10.0,	300.0,	450.0)

>>>

>>>	fitz.Rect(10,	10,	300,	450)

fitz.Rect(10.0,	10.0,	300.0,	450.0)

>>>

>>>	fitz.Rect(10,	10,	p2)

fitz.Rect(10.0,	10.0,	300.0,	450.0)

>>>

>>>	fitz.Rect(p1,	300,	450)

fitz.Rect(10.0,	10.0,	300.0,	450.0)

Example	2	-	what	happens	during	rounding:

>>>	r	=	fitz.Rect(0.5,	-0.01,	123.88,	455.123456)

>>>

>>>	r

fitz.Rect(0.5,	-0.009999999776482582,	123.87999725341797,	455.1234436035156)

>>>

>>>	r.round()					#	=	r.irect

fitz.IRect(0,	-1,	124,	456)

Example	3	-	inclusion	and	itersection:

>>>	m	=	fitz.Matrix(45)

>>>	r	=	fitz.Rect(10,	10,	410,	610)

>>>	r	*	m

fitz.Rect(-424.2640686035156,	14.142135620117188,	282.84271240234375,	721.2489013671875)

>>>

>>>	r	|	fitz.Point(5,	5)

fitz.Rect(5.0,	5.0,	410.0,	610.0)

>>>

>>>	r	+	5

fitz.Rect(15.0,	15.0,	415.0,	615.0)

>>>

>>>	r	&	fitz.Rect(0,	0,	15,	15)

fitz.Rect(10.0,	10.0,	15.0,	15.0)

Example	4	-	containment:

>>>	r	=	fitz.Rect(...)					#	any	rectangle

>>>	ir	=	r.irect											#	its	IRect	version

>>>	#	even	though	you	get	...

>>>	ir	in	r

True

>>>	#	...	and	...

>>>	r	in	ir

True

>>>	#	...	r	and	ir	are	still	different	types!

>>>	r	==	ir

False

>>>	#	corners	are	always	part	of	non-epmpty	rectangles

>>>	r.bottom_left	in	r

True

>>>

>>>	#	numbers	are	checked	against	coordinates

>>>	r.x0	in	r

True

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	» Classes 	»

Example	5	-	create	a	finite	copy:

Create	a	copy	that	is	guarantied	to	be	finite	in	two	ways:

>>>	r	=	fitz.Rect(...)					#	any	rectangle

>>>

>>>	#	alternative	1

>>>	s	=	fitz.Rect(r.top_left,	r.top_left)			#	just	a	point

>>>	s	|	r.bottom_right					#	s	is	a	finite	rectangle!

>>>

>>>	#	alternative	2

>>>	s	=	(+r).normalize()

>>>	#	r.normalize()	changes	r	itself!

Example	6	-	adding	a	Python	sequence:

Enlarge	rectangle	by	5	pixels	in	every	direction:

>>>	r		=	fitz.Rect(...)

>>>	r1	=	r	+	(-5,	-5,	5,	5)

Example	7	-	inline	operations:

Replace	a	rectangle	with	its	transformation	by	the	inverse	of	a	matrix-
like	object:

>>>	r	/=	(1,	2,	3,	4,	5,	6)

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Operator	Algebra	for	Geometry	Objects

Instances	of	classes	Point,	IRect,	Rect	and	Matrix	are	collectively	also
called	“geometry”	objects.

We	have	defined	operators	for	these	classes	that	allow	dealing	with
them	(almost)	like	ordinary	numbers	in	terms	of	addition,	subtraction,
multiplication,	division,	and	some	others.

This	chapter	is	a	synopsis	of	what	is	possible.

General	Remarks

1.	 Operators	can	be	either	binary	(i.e.	involving	two	objects)	or
unary.

2.	 The	result	of	binary	operatorions	is	either	a	new	object	of	the
same	class	as	the	left	operand	or	a	bool.

3.	 The	result	of	unary	operations	is	either	a	bool,	a	float	or	the	same
object	type.

4.	 All	binary	operators	fully	support	in-place	operations,	i.e.	if	the
operator	is	called	“°”,	then	something	like	a	°=	b	is	equivalent	to
a	=	a	°	b.

5.	 The	following	binary	operators	are	defined	for	all	classes:	+,	-,
*,	/.	They	have	a	similar	meaning	as	the	corresponding
numerical	ones.

6.	 Rectangles	have	two	additional	binary	operators	&,	|,	details
below.

7.	 For	binary	operations,	the	second	operand	may	have	a	different
type	as	the	left	one.	Often,	Python	sequences	(lists,	tuples,
arrays)	are	also	allowed	here.	We	allude	to	this	fact	by	saying
“point-like	object”	when	we	mean,	that	a	Point	is	possible	as	well
as	a	sequence	of	two	numbers.	Similar	applies	to	“rect-like”
(sequence	length	4)	or	“matrix-like”	(sequence	length	6).

Unary	Operations

bool(o)	-	is	false	if	and	only	if	the	components	of	o	are	all	zero.
abs(o)	-	is	the	Euclidean	norm	(square	root	of	the	sum	of
component	squares)	if	o	is	a	Point	or	a	Matrix.	For	rectangles,	the
area	is	returned	(result	of	getArea()).
+o	-	is	a	copy	of	o.
-o	-	is	a	copy	of	o	with	negated	components.
~m	-	is	the	inverse	of	Matrix	m.	The	other	geometry	objects	are	not
invertible	w/r	to	multiplication.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Binary	Operations
For	the	operators	+,	-,	*,	/,	the	second	operand	may	be	a
number,	which	will	be	applied	component-wise.

a	+	b,	a	-	b	-	component-wise	execution,	b	must	be	a-like.
a	*	b,	a	/	b	-	does	the	following	for	matrix-likes	b:

If	a	is	a	point	or	a	rectangle,	then	a.transform(b),
resp.	a.transform(~b)	is	executed.
If	a	is	a	matrix,	then	a	*	b,	resp.	a	*	~b	is	executed.

a	&	b	-	intersection	rectangle:	a	must	be	a	rectangle	and	b
rect-like.
a	|	b	-	union	rectangle:	a	must	be	a	rectangle,	and	b	can	be
point-like	or	rect-like.
b	in	a	-	if	b	is	a	number,	then	b	in	tuple(a)	is	returned.	If
b	is	point-like	or	rect-like,	then	a	must	be	a	rectangle,	and	the
result	of	a.contains(b)	is	returned.
a	==	b	-	is	true	if	abs(a	-	b)	==	0	and	type(a)	==
type(b)	(but	maybe	we	have	id(a)	!=	id(b)).

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes

Contains	a	number	of	functions	and	classes	for	the	experienced	user.
To	be	used	for	special	needs	or	performance	requirements.

Functions
Device
DisplayList
TextPage
Working	together:	DisplayList	and	TextPage

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

Functions

The	following	are	miscellaneous	functions	to	be	used	by	the
experienced	PDF	programmer.

Function Short	Description

Document.FontInfos
PDF	only:	information	on
inserted	fonts

Annot._cleanContents()

PDF	only:	clean	the
annot’s	/Contents
objects

Annot._getXref()
PDF	only:	return	XREF
number	of	annotation

ConversionHeader()
return	header	string	for
getText	methods

ConversionTrailer()
return	trailer	string	for
getText	methods

Document._delXmlMetadata()
PDF	only:	remove	XML
metadata

Document._getGCTXerrmsg()
retrieve	C-level	exception
message

Document._getNewXref()
PDF	only:	create	and
return	a	new	XREF	entry

Document._getObjectString()
PDF	only:	return	object
source	code

Document._getOLRootNumber()
PDF	only:	return	/	create
XREF	of	/Outline

Document._getPageObjNumber()

PDF	only:	return	XREF
and	generation	number	of
a	page

Document._getPageXref()
PDF	only:	same	as
_getPageObjNumber()

Document._getXmlMetadataXref()
PDF	only:	return	XML
metadata	XREF	number
PDF	only:	return	length	of

Document._getXrefLength() XREF	table

Document._getXrefStream()
PDF	only:	return	content	of
a	stream

Document._getXrefString()
PDF	only:	return	object
source	code

Document._updateObject()

PDF	only:	insert	or	update
a	PDF	object

Document._updateStream()
PDF	only:	replace	the
stream	of	an	object

Document.extractFont()
PDF	only:	extract
embedded	font

Document.getCharWidths()
PDF	only:	return	a	list	of
glyph	widths	of	a	font

Document.getPageRawText()
PDF	only:	return	raw	string
between	two	points

getPDFnow()
return	the	current
timestamp	in	PDF	format

getPDFstr()
return	PDF-compatible
string

Page._cleanContents()
PDF	only:	clean	the	page’s
/Contents	objects

Page._getContents()
PDF	only:	return	a	list	of
content	numbers

Page._getXref()
PDF	only:	return	XREF
number	of	page

Page.getDisplayList()
create	the	page’s	display
list

Page.extractTextLines()
return	text	between	two
points

Page.extractTextRect()
return	text	inside	a
rectangle

Page.insertFont()
PDF	only:	store	a	new	font
in	the	document

Page.run()
run	a	page	through	a
device

PaperSize() return	width,	height	for
known	paper	formats

PaperSize(s)

Convenience	function	to	return	width	and	height	of	a	known
paper	format	code.	These	values	are	given	in	pixels	for	the
standard	resolution	72	pixels	=	1	inch.

Currently	defined	formats	include	A0	through	A10,	B0	through
B10,	C0	through	C10,	Card-4x6,	Card-5x7,	Commercial,
Executive,	Invoice,	Ledger,	Legal,	Legal-13,	Letter,	Monarch
and	Tabloid-Extra,	each	in	either	portrait	or	landscape	format.

A	format	name	must	be	supplied	as	a	string	(case	insensitive),
optionally	suffixed	with	“-L”	(landscape)	or	“-P”	(portrait).	No
suffix	defaults	to	portrait.

Parameters: s	(str)	–	a	format	name	like	"A4"	or	"letter-
l".

Return
type: tuple

Returns:

(width,	height)	of	the	paper	format.	For
an	unknown	format	(-1,	-1)	is	returned.
Esamples:	PaperSize("A4")	returns	(595,
842)	and	PaperSize("letter-l")
delivers	(792,	612).

getPDFnow()

Convenience	function	to	return	the	current	local	timestamp	in
PDF	compatible	format,	e.g.	D:20170501121525-04'00'
for	local	datetime	May	1,	2017,	12:15:25	in	a	timezone	4
hours	westward	of	the	UTC	meridian.

Return	type: str
Returns: current	local	PDF	timestamp.

getPDFstr(obj,	brackets	=	True)

Make	a	PDF-compatible	string:	if	obj	contains	code	points
ord(c)	>	255,	then	it	will	be	converted	to	UTF-16BE	as	a
hexadecimal	character	string	like	<feff...>.	Otherwise,	if
brackets	=	True,	it	will	enclose	the	argument	in	()
replacing	any	characters	with	code	points	ord(c)	>	127	by
their	octal	number	\nnn	prefixed	with	a	backslash.	If
brackets	=	False,	then	the	string	is	returned	unchanged.

Parameters: obj	(str	or	bytes	or	unicode)	–	the	object	to
convert

Return
type: str

Returns: PDF-compatible	string	enclosed	in	either	()	or
<>.

ConversionHeader(output	=	"text",	filename	=	"UNKNOWN")

Return	the	header	string	required	to	make	a	valid	document
out	of	page	text	outputs.

Parameters:

output	(str)	–	type	of	document.	Use	the
same	as	the	output	parameter	of
getText().
filename	(str)	–	optional	arbitrary	name	to	use
in	output	types	“json”	and	“xml”.

Return
type: str

ConversionTrailer(output)

Return	the	trailer	string	required	to	make	a	valid	document	out
of	page	text	outputs.	See	Page.getText()	for	an	example.

Parameters: output	(str)	–	type	of	document.	Use	the	same
as	the	output	parameter	of	getText().

Return
type: str

Document._delXmlMetadata()

Delete	an	object	containing	XML-based	metadata	from	the
PDF.	(Py-)	MuPDF	does	not	support	XML-based	metadata.
Use	this	if	you	want	to	make	sure	that	the	conventional
metadata	dictionary	will	be	used	exclusively.	Many	thirdparty
PDF	programs	insert	their	own	metadata	in	XML	format	and
thus	may	override	what	you	store	in	the	conventional
dictionary.	This	method	deletes	any	such	reference,	and	the
corresponding	PDF	object	will	be	deleted	during	next	garbage
collection	of	the	file.

Document._getXmlMetadataXref()

Return	he	XML-based	metadata	object	id	from	the	PDF	if
present	-	also	refer	to	Document._delXmlMetadata().
You	can	use	it	to	retrieve	the	content	via
Document._getXrefStream()	and	then	work	with	it
using	some	XML	software.

Document._getPageObjNumber(pno)

or

Document._getPageXref(pno)

Return	the	XREF	and	generation	number	for	a	given
page.

Parameters: pno	(int)	–	Page	number	(zero-based).
Return
type: list

Returns: XREF	and	generation	number	of	page	pno	as	a
list	[xref,	gen].

Page._getXref()

Page	version	for	_getPageObjNumber()	only	delivering
the	XREF	(not	the	generation	number).

Page.run(dev,	transform)

Run	a	page	through	a	device.

Parameters:

dev	(Device)	–	Device,	obtained	from	one	of
the	Device	constructors.
transform	(Matrix)	–	Transformation	to	apply
to	the	page.	Set	it	to	Identity	if	no
transformation	is	desired.

Page.insertFont(fontname	=	"Helvetica",	fontfile	=	None,	idx
=	0,	set_simple	=	False)

Store	a	new	font	for	the	page	and	return	its	XREF.	If	the	page
already	references	this	font,	it	is	a	no-operation	and	just	the
XREF	is	returned.

Parameters:

fontname	(str)	–	The	reference	name	of	the
font.	If	the	name	does	not	occur	in
Page.getFontList(),	then	this	must	be
either	the	name	of	one	of	the	PDF	Base	14
Fonts,	or	fontfile	must	also	be	given.
Following	this	method,	font	name	prefixed
with	a	slash	“/”	can	be	used	to	refer	to	the	font
in	text	insertions.	If	it	appears	in	the	list,	the
method	ignores	all	other	parameters	and	exits
with	the	xref	number.
fontfile	(str)	–	font	file	name.	This	file	will	be
embedded	in	the	PDF.
idx	(int)	–
index	of	the	font	in	the	given	file.	Has	no
meaning	and	is	ingored	if	fontfile	is	not
specified.	Default	is	zero.	An	invalid	index	will
cause	an	exception.

Note

Certain	font	files	can	contain	more	than	one	font.	This
parameter	can	be	used	to	select	the	right	one.	PyMuPDF
has	no	way	to	tell	whether	the	font	file	indeed	contains	a
font	for	any	non-zero	index.

Caution

Only	the	first	choice	of	idx	will	be	honored	-	subsequent
specifications	are	ignored.

set_simple	(bool)	–
When	inserting	from	a	font	file,	a	“Type0”	font
will	be	installed	by	default.	This	option	causes
the	font	to	be	installed	as	a	simple	font
instead.	Only	1-byte	characters	will	then	be

presented	correctly,	others	will	appear	as	“?”
(question	mark).

Caution

Only	the	first	choice	of	set_simple	will	be	honored.
Subsequent	specifications	are	ignored.

Return
type: int

Returns:

the	XREF	of	the	font.	PyMuPDF	records
inserted	fonts	in	two	places:
1.	 An	inserted	font	will	appear	in

Page.getFontList().
2.	 Document.FontInfos	records

information	about	all	fonts	that	have	been
inserted	by	this	method	on	a	document-
wide	basis.

Page.getDisplayList()

Run	a	page	through	a	list	device	and	return	its	display	list.

Return	type: DisplayList
Returns: the	display	list	of	the	page.

Page._getContents()

Return	a	list	of	XREF	numbers	of	/Contents	objects
belongig	to	the	page.	The	length	of	this	list	will	always	be	at
least	one.

Return	type: list
Returns: a	list	of	XREF	integers.

Each	page	has	one	or	more	associated	contents	objects
(streams)	which	contain	PDF	operator	syntax	describing	what
appears	where	on	the	page	(like	text	or	images,	etc.	See	the
Adobe	PDF	Reference	1.7,	chapter	“Operator	Summary”,
page	985).	This	function	only	enumerates	the	XREF
number(s)	of	such	objects.	To	get	the	actual	stream	source,
use	function	Document._getXrefStream()	with	one	of
the	numbers	in	this	list.	Use	Document._updateStream()
to	replace	the	content	[1]	[2].

Page._cleanContents()

Clean	all	/Contents	objects	associated	with	this	page
(including	contents	of	all	annotations).	“Cleaning”	includes
syntactical	corrections,	standardizations	and	“pretty	printing”
of	the	contents	stream.	If	a	page	has	several	contents	objects,
they	will	be	combined	into	one.	Any	discrepancies	between
/Contents	and	/Resources	objects	are	also	resolved	/
corrected.	Note	that	the	resulting	contents	stream	will	be
stored	uncompressed	(if	you	do	not	specify	deflate	on
save).	See	Page._getContents()	for	more	details.

Return	type: int
Returns: 0	on	success.

Annot._getXref()

Return	the	xref	number	of	an	annotation.

Return	type: int
Returns: XREF	number	of	the	annotation.

Annot._cleanContents()

Clean	the	/Contents	streams	associated	with	the
annotation.	This	is	the	same	type	of	action
Page._cleanContents()	performs	-	just	restricted	to	this
annotation.

Return	type: int
Returns: 0	if	successful	(exception	raised	otherwise).

Document.getCharWidths(xref	=	0,	limit	=	256)

Return	a	list	of	character	glyphs	and	their	widths	for	a	font	that
is	present	in	the	document.	A	font	must	be	specified	by	its
PDF	cross	reference	number	xref.	This	function	is	called
automatically	from	Page.insertText()	and
Page.insertTextbox().	So	you	should	rarely	need	to	do
this	yourself.

Parameters:

xref	(int)	–	cross	reference	number	of	a	font
embedded	in	the	PDF.	To	find	a	font	xref,	use
e.g.	doc.getPageFontList(pno)	of
page	number	pno	and	take	the	first	entry	of
one	of	the	returned	list	entries.
limit	(int)	–	limits	the	number	of	returned
entries.	The	default	of	256	is	enforced	for	all
fonts	that	only	support	1-byte	characters,	so-
called	“simple	fonts”	(checked	by	this
method).	All	PDF	Base	14	Fonts	are	simple

fonts.
Return
type: list

Returns:

a	list	of	limit	tuples.	Each	character	c	has	an
entry	(g,	w)	in	this	list	with	an	index	of
ord(c).	Entry	g	(integer)	of	the	tuple	is	the
glyph	id	of	the	character,	and	float	w	is	its
normalized	width.	The	actual	width	for	some
fontsize	can	be	calculated	as	w	*	fontsize.
For	simple	fonts,	the	g	entry	can	always	be
safely	ignored.	In	all	other	cases	g	is	the	basis
for	graphically	representing	c.

This	function	calculates	the	pixel	width	of	a	string	called	text:

def	pixlen(text,	widthlist,	fontsize):

try:

				return	sum([widthlist[ord(c)]	for	c	in	text

except	IndexError:

				m	=	max([ord(c)	for	c	in	text])

				raise	ValueError:("max.	code	point	found:	%i

Document.getPageRawText(pno,	p1,	p2)

Return	lines	of	raw	text	contained	between	a	pair	of	points.

Parameters:
pno	(int)	–	page	number.
p1	(Point)	–	Text	delimiter	point.
p2	(Point)	–	Text	delimiter	point.

Return	type: string
Returns: see	the	page	version	of	this	mehod.

Page.extractTextLines(p1,	p2)

Return	lines	of	text	contained	between	a	pair	of	points.

Parameters: p1	(Point)	–	text	delimiter	point.
p2	(Point)	–	text	delimiter	point.

Return
type: str

Returns: text	lines	between	the	two	points	(UTF-8
encoded).

Page.extractTextRect(rect)

Return	lines	of	text	contained	in	a	rectangle.

Parameters: rect	(Rect)	–	rectangle.
Return	type: str
Returns: text	occurring	inside	the	rectangle.

Document._getObjectString(xref)

Document._getXrefString(xref)

Return	the	string	(“source	code”)	representing	an	arbitrary
object.	For	stream	objects,	only	the	non-stream	part	is
returned.	To	get	the	stream	content,	use
_getXrefStream().

Parameters: xref	(int)	–	XREF	number.
Return	type: string
Returns: the	string	defining	the	object	identified	by	xref.

Document._getGCTXerrmsg()

Retrieve	exception	message	text	issued	by	PyMuPDF’s	low-
level	code.	This	in	most	cases,	but	not	always,	are	MuPDF
messages.	This	string	will	never	be	cleared	-	only	overwritten
as	needed.	Only	rely	on	it	if	a	RuntimeError	had	been
raised.

Return
type: str

Returns: last	C-level	error	message	on	occasion	of	a
RuntimeError	exception.

Document._getNewXref()

Increase	the	XREF	by	one	entry	and	return	that	number.	This
can	then	be	used	to	insert	a	new	object.

Return	type: int
Returns: the	number	of	the	new	XREF	entry.

Document._updateObject(xref,	obj_str,	page	=	None)

Associate	the	object	identified	by	string	obj_str	with	the
XREF	number	xref,	which	must	already	exist.	If	xref
pointed	to	an	existing	object,	this	will	be	replaced	with	the	new
object.	If	a	page	object	is	specified,	links	and	other
annotations	of	this	page	will	be	reloaded	after	the	object	has
been	updated.

xref	(int)	–	XREF	number.
obj_str	(str)	–	a	string	containing	a	valid	PDF

Parameters:
object	definition.
page	(Page)	–	a	page	object.	If	provided,
indicates,	that	annotations	of	this	page	should
be	refreshed	(reloaded)	to	reflect	changes
incurred	with	links	and	/	or	annotations.

Return
type: int

Returns: zero	if	successful,	otherwise	an	exception	will
be	raised.

Document._getXrefLength()

Return	length	of	XREF	table.

Return	type: int
Returns: the	number	of	entries	in	the	XREF	table.

Document._getXrefStream(xref)

Return	decompressed	content	stream	of	the	object	referenced
by	xref.	If	the	object	has	/	is	no	stream,	an	exception	is
raised.

Parameters: xref	(int)	–	XREF	number.
Return
type: str	or	bytes

Returns:
the	(decompressed)	stream	of	the	object.	This	is
a	string	in	Python	2	and	a	bytes	object	in
Python	3.

Document._updateStream(xref,	stream)

Replace	the	stream	of	an	object	identified	by	xref.	If	the
object	has	no	stream,	an	exception	is	raised.	The	function
automatically	performs	a	compress	operation	(“deflate”).

Parameters:
xref	(int)	–	XREF	number.
stream	(bytes	or	bytearray)	–	the	new	content
of	the	stream.

Return
type: int

This	method	is	intended	to	manipulate	streams	containing
PDF	operator	syntax	(see	pp.	985	of	the	Adobe	PDF
Reference	1.7)	as	it	is	the	case	for	e.g.	page	content	streams.

If	you	update	a	contents	stream,	you	should	use	save
parameter	clean	=	True.	This	ensures	consistency
between	PDF	operator	source	and	the	object	structure.

Example:	Let	us	assume	that	you	no	longer	want	a	certain
image	appear	on	a	page.	This	can	be	achieved	by	deleting	[2]
the	respective	reference	in	its	contents	source(s)	-	and
indeed:	the	image	will	be	gone	after	reloading	the	page.	But
the	page’s	/Resources	object	would	still	[3]	show	the	image
as	being	referenced	by	the	page.	This	save	option	will	clean
up	any	such	mismatches.

Document._getOLRootNumber()

Return	XREF	number	of	the	/Outlines	root	object	(this	is
not	the	first	outline	entry!).	If	this	object	does	not	exist,	a

new	one	will	be	created.

Return	type: int
Returns: XREF	number	of	the	/Outlines	root	object.

Document.extractFont(xref,	info_only	=	False)

Return	an	embedded	font	file’s	data	and	appropriate	file
extension.	This	can	be	used	to	store	the	font	as	an	external
file.	The	method	does	not	throw	exceptions	(other	than	via
checking	for	PDF).

Parameters:

xref	(int)	–	PDF	object	number	of	the	font	to
extract.
info_only	(bool)	–	only	return	font
information,	not	the	buffer.	To	be	used	for
information-only	purposes,	saves	allocation	of
large	buffer	areas.

Return
type: tuple

Returns:

a	tuple	(basename,	ext,	subtype,
buffer),	where	ext	is	a	3-byte	suggested	file
extension	(str),	basename	is	the	font’s	name
(str),	subtype	is	the	font’s	type	(e.g.	“Type1”)
and	buffer	is	a	bytes	object	containing	the
font	file’s	content	(or	b"").	For	possible
extension	values	and	their	meaning	see	Font
File	Extensions.	Return	details	on	error:
("",	"",	"",	b"")	-	invalid	xref	or	xref	is
not	a	(valid)	font	object.
(basename,	"n/a",	"Type1",	b"")	-
basename	is	one	of	the	PDF	Base	14	Fonts,
which	cannot	be	extracted.

Example:

>>>	#	store	font	as	an	external	file

>>>	name,	ext,	buffer	=	doc.extractFont(4711)

>>>	#	assuming	buffer	is	not	None:

>>>	ofile	=	open(name	+	"."	+	ext,	"wb")

>>>	ofile.write(buffer)

>>>	ofile.close()

Caution

The	basename	is	returned	unchanged	from	the	PDF.	So	it	may	contain

characters	(such	as	blanks)	which	disqualify	it	as	a	valid	filename	for	your

operating	system.	Take	appropriate	action.

Document.FontInfos

Contains	following	information	for	any	font	inserted	via
Page.insertFont():

xref	(int)	-	XREF	number	of	the	/Type/Font	object.

info	(dict)	-	detail	font	information	with	the	following
keys:

name	(str)	-	name	of	the	basefont
idx	(int)	-	index	number	for	multi-font	files
type	(str)	-	font	type	(like	“TrueType”,
“Type0”,	etc.)
ext	(str)	-	extension	to	be	used,	when	font	is
extracted	to	a	file	(see	Font	File
Extensions).
glyphs	(list)	-	list	of	glyph	numbers	and
widths	(filled	by	textinsertion	methods).

Return	type: list

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

Footnotes

[1]

If	a	page	has	multiple	contents	streams,	they	are	treated	as	being
one	logical	stream	when	the	document	is	processed	by	reader
software.	A	single	operator	cannot	be	split	between	stream
boundaries,	but	a	single	instruction	may	well	be.	E.g.	invoking	the
display	of	an	image	looks	like	this:	q	a	b	c	d	e	f	cm
/imageid	Do	Q.	Any	single	of	these	items	(PDF	notation:
“lexical	tokens”)	is	always	contained	in	one	stream,	but	q	a	b	c
d	e	f	cm	may	be	in	one	and	/imageid	Do	Q	in	the	next	one.

[2]

(1,	2)	Note	that	/Contents	objects	(similar	to	/Resources)	may
be	shared	among	pages.	A	change	to	a	contents	stream	may
therefore	affect	other	pages,	too.	To	avoid	this:	(1)	use
Page._cleanContents(),	(2)	read	the	/Contents	object
(there	will	now	be	only	one	left),	(3)	make	your	changes.

[3]

Resources	objects	are	inheritable.	This	means	that	many	pages
can	share	one.	Keeping	a	page’s	/Resources	object	in	sync	with
changes	of	its	/Contents	therefore	may	require	creating	an	own
/Resources	object	for	the	page.	This	can	best	be	achieved	by
using	clean	when	saving,	or	by	invoking
Page._cleanContents().

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

Device

The	different	format	handlers	(pdf,	xps,	etc.)	interpret	pages	to	a
“device”.	Devices	are	the	basis	for	everything	that	can	be	done	with	a
page:	rendering,	text	extraction	and	searching.	The	device	type	is
determined	by	the	selected	construction	method.

Class	API

class	Device

__init__(self,	object,	clip)

Constructor	for	either	a	pixel	map	or	a	display	list	device.

Parameters:

object	(Pixmap	or	DisplayList)	–	either	a
Pixmap	or	a	DisplayList.
clip	(IRect)	–	An	optional	IRect	for	Pixmap
devices	to	restrict	rendering	to	a	certain	area	of
the	page.	If	the	complete	page	is	required,
specify	None.	For	display	list	devices,	this
parameter	must	be	omitted.

__init__(self,	textpage,	flags	=	0)

Constructor	for	a	text	page	device.

Parameters:

textpage	(TextPage)	–	TextPage	object
flags	(int)	–	control	the	way	how	text	is	parsed
into	the	text	page.	Currently	3	options	can	be
coded	into	this	parameter,	see	Preserve	Text
Flags.	To	set	these	options	use	something	like
flags	=	0	|

TEXT_PRESERVE_LIGATURES	|

Note

In	higher	level	code	(Page.getText(),	Document.getPageText()),	the	following

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

decisions	for	creating	text	devices	have	been	implemented:	(1)

TEXT_PRESERVE_LIGATURES	and	TEXT_PRESERVE_WHITESPACES	are	always	set,

(2)	TEXT_PRESERVE_IMAGES	is	set	for	JSON	and	HTML,	otherwise	off.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

DisplayList

DisplayList	is	a	list	containing	drawing	commands	(text,	images,	etc.).
The	intent	is	two-fold:

1.	 as	a	caching-mechanism	to	reduce	parsing	of	a	page
2.	 as	a	data	structure	in	multi-threading	setups,	where	one	thread

parses	the	page	and	another	one	renders	pages.	This	aspect	is
currently	not	supported	by	PyMuPDF.

A	DisplayList	is	populated	with	objects	from	a	page	usually	by
executing	Page.getDisplayList().	There	also	exists	an
independent	constructor.

“Replay”	the	list	(once	or	many	times)	by	invoking	one	of	its	methods
run(),	getPixmap()	or	getTextPage().

Method Short	Description

run()
Run	a	display	list	through	a
device.

getPixmap() generate	a	pixmap
getTextPage() generate	a	text	page
rect mediabox	of	the	display	list

Class	API

class	DisplayList

__init__(self,	mediabox)

Create	a	new	display	list.

Parameters: mediabox	(Rect)	–	The	page’s	rectangle	-	output
of	page.bound().

Return DisplayList

type:

run(device,	matrix,	area)

Run	the	display	list	through	a	device.	The	device	will	populate
the	display	list	with	its	“commands”	(i.e.	text	extraction	or	image
creation).	The	display	list	can	later	be	used	to	“read”	a	page
many	times	without	having	to	re-interpret	it	from	the	document
file.

You	will	most	probably	instead	use	one	of	the	specialized	run
methods	below	-	getPixmap()	or	getTextPage().

Parameters:

device	(Device)	–	Device
matrix	(Matrix)	–	Transformation	matrix	to
apply	to	the	display	list	contents.
area	(Rect)	–	Only	the	part	visible	within	this
area	will	be	considered	when	the	list	is	run
through	the	device.

getPixmap(matrix	=	fitz.Identity,	colorspace	=	fitz.csRGB,	alpha
=	0,	clip	=	None)

Run	the	display	list	through	a	draw	device	and	return	a	pixmap.

Parameters:

matrix	(Matrix)	–	matrix	to	use.	Default	is	the
identity	matrix.
colorspace	(Colorspace)	–	the	desired
colorspace.	Default	is	RGB.
alpha	(int)	–	determine	whether	or	not	(0,
default)	to	include	a	transparency	channel.
clip	(IRect	or	Rect)	–	an	area	of	the	full
mediabox	to	which	the	pixmap	should	be
restricted.

Return
type: Pixmap

Returns: pixmap	of	the	display	list.

getTextPage(flags	=	TEXT_PRESERVE_LIGATURES	|

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

TEXT_PRESERVE_WHITESPACE)

Run	the	display	list	through	a	text	device	and	return	a	text
page.

Parameters:

flags	(int)	–	control	which	information	is	parsed
into	a	text	page.	Default	value	in	PyMuPDF	is
TEXT_PRESERVE_LIGATURES	|

TEXT_PRESERVE_WHITESPACE	=	3,	i.e.
ligatures	are	passed	through	(not	decomposed
into	components),	white	spaces	are	passed
through	(not	translated	to	spaces),	and	images
are	not	included.	See	Preserve	Text	Flags.

Return
type: TextPage

Returns: text	page	of	the	display	list.

rect

Contains	the	display	list’s	mediabox.	This	will	equal	the	page’s
rectangle	if	it	was	created	via	page.getDisplayList().

Type: Rect

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

TextPage

TextPage	represents	the	text	of	a	page.

Method Short	Description
TextPage.extractText() Extract	the	page’s	plain	text
TextPage.extractTEXT() synonym	of	previous

TextPage.extractHTML()
Extract	the	page’s	text	in	HTML
format

TextPage.extractJSON()
Extract	the	page’s	text	in	JSON
format

TextPage.extractXHTML()
Extract	the	page’s	text	in	XHTML
format

TextPage.extractXML() Extract	the	page’s	text	in	XML	format
TextPage.search() Search	for	a	string	in	the	page

Class	API

class	TextPage

extractText()

extractTEXT()

Extract	the	text	from	a	TextPage	object.	Returns	a	string	of
the	page’s	complete	text.	The	text	is	UTF-8	unicode	and	in	the
same	sequence	as	the	PDF	creator	specified	it.	If	this	looks
awkward	for	your	document,	consider	using	a	program	that	re-
arranges	the	text	according	to	a	more	familiar	layout,	e.g.
PDF2TextJS.py	in	the	examples	directory.	Or	use	another
extraction	method	which	also	provides	text	position	information
like	TextPage.extractHTML(),
TextPage.extractXML(),	or
Page.extractTextList().

https://github.com/rk700/PyMuPDF/blob/master/examples/PDF2TextJS.py

Return	type: str

extractHTML()

Extract	all	text	and	images	in	HTML	format.	This	version
contains	complete	formatting	and	positioning	information	on
line	level.	Images	will	be	included	as	base64	strings.	You	need
a	HTML	package	to	interpret	the	output.	Also	see	Controlling
Quality	of	HTML	Output.

Return	type: str

extractJSON()

Extract	all	text	in	JSON	format.	Provides	same	information
detail	as	HTML	(including	images).	You	need	a	JSON	module
to	interpret	the	output.	The	result	will	be	nested	Python
dictionaries	and	lists.	See	below	for	the	structure.

Return	type: str

extractXHTML()

Extract	all	text	in	XHTML	format.	Text	information	detail	is
comparable	with	extractTEXT,	but	also	contains	images.
This	method	makes	no	attempt	to	re-create	the	original	visual
appearance.

Return	type: str

extractXML()

Extract	all	text	in	XML	format.	This	contains	complete
formatting	information	about	every	single	character	on	the
page:	font,	size,	line,	paragraph,	location,	etc.	Contains	no
images.

Return	type: str

search(string,	hit_max	=	16)

Search	for	string.

Parameters:
string	(str)	–	The	string	to	search	for.
hit_max	(int)	–	Maximum	number	of	expected
hits	(default	16).

Return
type: list

Returns: a	list	of	Rect	objects	(without	transformation),
each	surrounding	a	found	string	occurrence.

Note

All	of	the	above	can	be	achieved	by	using	the	appropriate	Page.getText()	and

Page.searchFor()	methods.	Also	see	further	down	and	in	the	Page	chapter	for

examples	on	how	to	create	a	valid	file	format	by	adding	respective	headers	and

trailers.

Structure	of	TextPage.extractJSON()
A	text	page	in	JSON	format	is	a	nested	object	consisting	of
dictionaries	and	lists.

Page	Dictionary
Key Value
width page	width	in	pixels	(float)

height page	height	in	pixels
(float)

blocks list	of	blocks	(list)

Block	Dictionaries
Blocks	come	in	two	types	with	a	different	structure:	image	blocks	and
text	blocks.

Image	block:

Key Value
type 1	=	image	(int)

bbox block	/	image	rectangle,	formatted	as
list(fitz.Rect)

imgtype image	type	(int),	see	list	below
width original	image	width	(float)
height original	image	height	(float)
image image	content	(base64	str),	may	be	None

Image	type	values:

0	(unknown):	image	type	could	not	be	determined	and	is	provided
as	PNG	if	possible
1	(raw):	uncompressed	samples
2	(FAX)

3	(flate)
4	(LZW)
5	(RLD)
6	(BMP)
7	(GIF)
8	(JPEG)
9	(JPX)
10	(JXR)
11	(PNG)
12	(PNM)
13	(TIFF)

Text	block:

Key Value
type 0	=	text	(int)

bbox block	rectangle,	formatted	as
list(fitz.Rect)

lines list	of	text	lines	(list)

Line	Dictionary
Key Value

bbox line	rectangle,	formatted	as
list(fitz.Rect)

wmode writing	mode	(int):	0	=	horizontal,	1	=	vertical
dir writing	direction	(tuple	of	floats):	[x,	y]
spans list	of	spans	(list)

The	entries	of	writing	direction	dir	should	be	interpreted	as	follows:

x:	positive	=	“left-right”,	negative	=	“right-left”,	0	=	neither
y:	positive	=	“top-bottom”,	negative	=	“bottom-top”,	0	=	neither

The	values	indicate	the	“relative	writing	speed”	in	each	direction,	such

that	x2	+	y2	=	1.	In	other	words	dir	=	[cos(beta),
sin(beta)]	where	beta	is	the	writing	angle	relative	to	the
horizontal.

Span	Dictionary
Spans	contain	the	actual	text.	In	contrast	to	MuPDF	versions	up	to
1.11,	a	span	no	longer	includes	positioning	information.	Therefore,	to
reconstruct	the	text	a	line,	span	text	pieces	must	be	concatenated.	A
span	now	contains	font	information.	A	line	contains	more	than	one
span	only,	when	any	changes	of	the	font	or	its	attributes	occur.

Key Value
font name	of	font	(str)
size font	size	(float)

flags font	characteristics
(int)

text text	(str)

flags	is	a	set	of	bools	describing	the	font:

bit	0:	superscripted	text
bit	1:	italic
bit	2:	serifed
bit	3:	monospaced
bit	4:	bold

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

Full	Document	Output	in	JSON	Format
Converting	a	document	to	JSON	format	requires	a	little	programmer
attention.	Use	the	following	schema	to	create	a	valid	(i.e.	de-
serializable	JSON)	document:

>>>	doc	=	fitz.open(...)				#	maybe	any	document	type!

>>>	jsonfile	=	open("document.json",	"w")

>>>	pno	=	0

>>>	jsonfile.write(fitz.ConversionHeader("json",	filename

>>>	for	page	in	doc:

								if	pno	>	0:

												jsonfile.write(",\n")				#	comma	needed	between	pages!

								jsonfile.write(page.getText("json"))

								pno	+=	1

>>>	jsonfile.write(fitz.ConversionTrailer("json"))

>>>	jsonfile.close()

The	document	level	dictionary	then	looks	like	so:

Key Value
document specified	filename	(str)
pages list	of	pages	(list)

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

Working	together:	DisplayList	and	TextPage

Here	are	some	instructions	on	how	to	use	these	classes	together.

In	some	situations,	performance	improvements	may	be	achievable
when	you	fall	back	to	the	detail	level	explained	here.

Create	a	DisplayList
A	DisplayList	represents	an	interpreted	document	page.	Methods	for
pixmap	creation,	text	extraction	and	text	search	are	-	behind	the
curtain	-	all	using	the	page’s	display	list	to	perform	their	tasks.	If	a
page	must	be	rendered	several	times	(e.g.	because	of	changed	zoom
levels),	or	if	text	search	and	text	extraction	should	both	be	performed,
overhead	can	be	saved,	if	the	display	list	is	created	only	once	and
then	used	for	all	other	tasks.

>>>	dl	=	page.getDisplayList()														#	create	the	display	list

You	can	also	create	display	lists	for	many	pages	“on	stack”	(in	a	list),
may	be	during	document	open,	or	you	store	it	when	a	page	is	visited
for	the	first	time.

Note,	that	for	everything	what	follows,	only	the	display	list	is	needed	-
the	corresponding	Page	object	could	have	been	deleted.

Generate	Pixmap
The	following	creates	a	Pixmap	from	a	DisplayList.	Parameters	are
the	same	as	for	Page.getPixMap().

>>>	pix	=	dl.getPixmap()																				#	create	the	page's	pixmap

The	execution	time	of	this	statement	may	be	20%	up	to	50%	shorter
than	that	of	Page.getPixMap().

Perform	Text	Search
With	the	display	list	from	above,	we	can	also	search	for	text.

For	this	we	need	to	create	a	TextPage.

>>>	tp	=	dl.getTextPage()																				#	display	list	from	above

>>>	rlist	=	tp.search("needle")														#	look	up	"needle"	locations

>>>	for	r	in	rlist:																										#	work	with	found	locations:

								pix.invertIRect(r.irect)													#	e.g.	invert	colors	in	rectangle

Extract	Text
With	the	same	TextPage	object	from	above,	we	can	now	immediately
use	any	or	all	of	the	5	text	extraction	methods.

Note

Above,	we	have	created	our	text	page	without	argument.	This	leads	to	a	default	value	of

3	=	fitz.TEXT_PRESERVE_LIGATURES	|

fitz.TEXT_PRESERVE_WHITESPACE,	IAW	images	will	not	be	extracted	-	see	below.

>>>	txt		=	tp.extractText()																		#	plain	text	format

>>>	json	=	tp.extractJSON()																		#	json	format

>>>	html	=	tp.extractHTML()																		#	HTML	format

>>>	xml		=	tp.extractXML()																			#	XML	format

>>>	xml		=	tp.extractXHTML()																	#	XHTML	format

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Low	Level	Functions	and	Classes 	»

Further	Performance	improvements

Pixmap
As	explained	in	the	Page	chapter:

If	you	do	not	need	transparency	set	alpha	=	0	when	creating
pixmaps.	This	will	save	25%	memory	(if	RGB,	the	most	common
case)	and	possibly	5%	execution	time	(depending	on	the	GUI
software).

TextPage
If	you	do	not	need	images	extracted	alongside	the	text	of	a	page,	you
can	set	the	following	option:

>>>	flags	=	fitz.TEXT_PRESERVE_LIGATURES	|	fitz.TEXT_PRESERVE_WHITESPACE

>>>	tp	=	dl.getTextPage(flags)

This	will	save	ca.	25%	overall	execution	time	for	the	HTML,	XHTML
and	JSON	text	extractions	and	hugely	reduce	the	amount	of	storage
(memory	and	disk	space)	if	the	document	is	graphics	oriented.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Constants	and	Enumerations

Constants	and	enumerations	of	MuPDF	as	implemented	by
PyMuPDF.	Each	of	the	following	variables	is	accessible	as
fitz.variable.

Constants
Base14_Fonts

Predefined	Python	list	of	valid	PDF	Base	14	Fonts.

Return	type: list

csRGB

Predefined	RGB	colorspace
fitz.Colorspace(fitz.CS_RGB).

Return	type: Colorspace

csGRAY

Predefined	GRAY	colorspace
fitz.Colorspace(fitz.CS_GRAY).

Return	type: Colorspace

csCMYK

Predefined	CMYK	colorspace
fitz.Colorspace(fitz.CS_CMYK).

Return	type: Colorspace

CS_RGB

1	-	Type	of	Colorspace	is	RGBA

Return	type: int

CS_GRAY

2	-	Type	of	Colorspace	is	GRAY

Return	type: int

CS_CMYK

3	-	Type	of	Colorspace	is	CMYK

Return	type: int

VersionBind

‘x.xx.x’	-	version	of	PyMuPDF	(these	bindings)

Return	type: string

VersionFitz

‘x.xxx’	-	version	of	MuPDF

Return	type: string

VersionDate

ISO	timestamp	YYYY-MM-DD	HH:MM:SS	when	these	bindings
were	built.

Return	type: string

Note

The	docstring	of	fitz	contains	information	of	the	above	which	can	be	retrieved	like	so:

print(fitz.__doc__),	and	should	look	like:	PyMuPDF	1.10.0:	Python

bindings	for	the	MuPDF	1.10	library,	built	on	2016-11-30

13:09:13.

version

(VersionBind,	VersionFitz,	timestamp)	-	combined	version
information	where	timestamp	is	the	generation	point	in	time
formatted	as	“YYYYMMDDhhmmss”.

Return	type: tuple

Font	File	Extensions
The	table	show	file	extensions	you	should	use	when	extracting	fonts
from	a	PDF	file.

Ext Description
ttf TrueType	font
pfa Postscript	for	ASCII	font	(various	subtypes)
cff Type1C	font	(compressed	font	equivalent	to	Type1)
cid character	identifier	font	(postscript	format)
otf OpenType	font
n/a one	of	the	PDF	Base	14	Fonts	(cannot	be	extracted)

Text	Alignment
TEXT_ALIGN_LEFT

0	-	align	left.

TEXT_ALIGN_CENTER

1	-	align	center.

TEXT_ALIGN_RIGHT

2	-	align	right.

TEXT_ALIGN_JUSTIFY

3	-	align	justify.

Preserve	Text	Flags
Options	controlling	the	amount	of	data	a	text	device	parses	into	a
TextPage.

TEXT_PRESERVE_LIGATURES

1	-	If	this	option	is	activated	ligatures	are	passed	through	to	the
application	in	their	original	form.	If	this	option	is	deactivated
ligatures	are	expanded	into	their	constituent	parts,	e.g.	the	ligature
ffi	is	expanded	into	three	eparate	characters	f,	f	and	i.

TEXT_PRESERVE_WHITESPACE

2	-	If	this	option	is	activated	whitespace	is	passed	through	to	the
application	in	its	original	form.	If	this	option	is	deactivated	any	type
of	horizontal	whitespace	(including	horizontal	tabs)	will	be	replaced
with	space	characters	of	variable	width.

TEXT_PRESERVE_IMAGES

4	-	If	this	option	is	set,	then	images	will	be	stored	in	the	structured
text	structure.	The	default	is	to	ignore	all	images.

Link	Destination	Kinds
Possible	values	of	linkDest.kind	(link	destination	kind).	For
details	consult	Adobe	PDF	Reference	1.7,	chapter	8.2	on	pp.	581.

LINK_NONE

0	-	No	destination.	Indicates	a	dummy	link.

Return	type: int

LINK_GOTO

1	-	Points	to	a	place	in	this	document.

Return	type: int

LINK_URI

2	-	Points	to	a	URI	-	typically	a	resource	specified	with	internet
syntax.

Return	type: int

LINK_LAUNCH

3	-	Launch	(open)	another	file	(of	any	“executable”	type).

Return	type: int

LINK_GOTOR

5	-	Points	to	a	place	in	another	PDF	document.

Return	type: int

Link	Destination	Flags
Note

The	rightmost	byte	of	this	integer	is	a	bit	field,	so	test	the	truth	of	these	bits	with	the	&

operator.

LINK_FLAG_L_VALID

1	(bit	0)	Top	left	x	value	is	valid

Return	type: bool

LINK_FLAG_T_VALID

2	(bit	1)	Top	left	y	value	is	valid

Return	type: bool

LINK_FLAG_R_VALID

4	(bit	2)	Bottom	right	x	value	is	valid

Return	type: bool

LINK_FLAG_B_VALID

8	(bit	3)	Bottom	right	y	value	is	valid

Return	type: bool

LINK_FLAG_FIT_H

16	(bit	4)	Horizontal	fit

Return	type: bool

LINK_FLAG_FIT_V

32	(bit	5)	Vertical	fit

Return	type: bool

LINK_FLAG_R_IS_ZOOM

64	(bit	6)	Bottom	right	x	is	a	zoom	figure

Return	type: bool

Annotation	Types
Possible	values	(integer)	for	PDF	annotation	types.	See	chapter	8.4.5,
pp.	615	of	the	Adobe	manual	for	more	details.

ANNOT_TEXT

0	-	Text	annotation

ANNOT_LINK

1	-	Link	annotation

ANNOT_FREETEXT

2	-	Free	text	annotation

ANNOT_LINE

3	-	Line	annotation

ANNOT_SQUARE

4	-	Square	annotation

ANNOT_CIRCLE

5	-	Circle	annotation

ANNOT_POLYGON

6	-	Polygon	annotation

ANNOT_POLYLINE

7	-	PolyLine	annotation

ANNOT_HIGHLIGHT

8	-	Highlight	annotation

ANNOT_UNDERLINE

9	-	Underline	annotation

ANNOT_SQUIGGLY

10	-	Squiggly-underline	annotation

ANNOT_STRIKEOUT

11	-	Strikeout	annotation

ANNOT_STAMP

12	-	Rubber	stamp	annotation

ANNOT_CARET

13	-	Caret	annotation

ANNOT_INK

14	-	Ink	annotation

ANNOT_POPUP

15	-	Pop-up	annotation

ANNOT_FILEATTACHMENT

16	-	File	attachment	annotation

ANNOT_SOUND

17	-	Sound	annotation

ANNOT_MOVIE

18	-	Movie	annotation

ANNOT_WIDGET

19	-	Widget	annotation

ANNOT_SCREEN

20	-	Screen	annotation

ANNOT_PRINTERMARK

21	-	Printers	mark	annotation

ANNOT_TRAPNET

22	-	Trap	network	annotation

ANNOT_WATERMARK

23	-	Watermark	annotation

ANNOT_3D

24	-	3D	annotation

Annotation	Flags
Possible	mask	values	for	PDF	annotation	flags.

Note

Annotation	flags	is	a	bit	field,	so	test	the	truth	of	its	bits	with	the	&	operator.	When

changing	flags	for	an	annotation,	use	the	|	operator	to	combine	several	values.	The

following	descriptions	were	extracted	from	the	Adobe	manual,	pages	608	pp.

ANNOT_XF_Invisible

1	-	If	set,	do	not	display	the	annotation	if	it	does	not	belong	to	one
of	the	standard	annotation	types	and	no	annotation	handler	is
available.	If	clear,	display	such	an	unknown	annotation	using	an
appearance	stream	specified	by	its	appearance	dictionary,	if	any.

ANNOT_XF_Hidden

2	-	If	set,	do	not	display	or	print	the	annotation	or	allow	it	to	interact
with	the	user,	regardless	of	its	annotation	type	or	whether	an
annotation	handler	is	available.	In	cases	where	screen	space	is
limited,	the	ability	to	hide	and	show	annotations	selectively	can	be
used	in	combination	with	appearance	streams	to	display	auxiliary
pop-up	information	similar	in	function	to	online	help	systems.

ANNOT_XF_Print

4	-	If	set,	print	the	annotation	when	the	page	is	printed.	If	clear,
never	print	the	annotation,	regardless	of	whether	it	is	displayed	on
the	screen.	This	can	be	useful,	for	example,	for	annotations
representing	interactive	pushbuttons,	which	would	serve	no
meaningful	purpose	on	the	printed	page.

ANNOT_XF_NoZoom

8	-	If	set,	do	not	scale	the	annotation’s	appearance	to	match	the
magnification	of	the	page.	The	location	of	the	annotation	on	the
page	(defined	by	the	upper-left	corner	of	its	annotation	rectangle)
remains	fixed,	regardless	of	the	page	magnification.

ANNOT_XF_NoRotate

16	-	If	set,	do	not	rotate	the	annotation’s	appearance	to	match	the
rotation	of	the	page.	The	upper-left	corner	of	the	annotation
rectangle	remains	in	a	fixed	location	on	the	page,	regardless	of	the
page	rotation.

ANNOT_XF_NoView

32	-	If	set,	do	not	display	the	annotation	on	the	screen	or	allow	it	to
interact	with	the	user.	The	annotation	may	be	printed	(depending
on	the	setting	of	the	Print	flag)	but	should	be	considered	hidden	for
purposes	of	on-screen	display	and	user	interaction.

ANNOT_XF_ReadOnly

64	-	If	set,	do	not	allow	the	annotation	to	interact	with	the	user.	The
annotation	may	be	displayed	or	printed	(depending	on	the	settings
of	the	NoView	and	Print	flags)	but	should	not	respond	to	mouse
clicks	or	change	its	appearance	in	response	to	mouse	motions.

ANNOT_XF_Locked

128	-	If	set,	do	not	allow	the	annotation	to	be	deleted	or	its
properties	(including	position	and	size)	to	be	modified	by	the	user.
However,	this	flag	does	not	restrict	changes	to	the	annotation’s
contents,	such	as	the	value	of	a	form	field.

ANNOT_XF_ToggleNoView

256	-	If	set,	invert	the	interpretation	of	the	NoView	flag	for	certain
events.	A	typical	use	is	to	have	an	annotation	that	appears	only
when	a	mouse	cursor	is	held	over	it.

ANNOT_XF_LockedContents

512	-	If	set,	do	not	allow	the	contents	of	the	annotation	to	be
modified	by	the	user.	This	flag	does	not	restrict	deletion	of	the
annotation	or	changes	to	other	annotation	properties,	such	as
position	and	size.

Annotation	Line	End	Styles
The	following	descriptions	are	taken	from	the	Adobe	manual	TABLE
8.27	on	page	630.

ANNOT_LE_None

0	-	No	line	ending.

ANNOT_LE_Square

1	-	A	square	filled	with	the	annotation’s	interior	color,	if	any.

ANNOT_LE_Circle

2	-	A	circle	filled	with	the	annotation’s	interior	color,	if	any.

ANNOT_LE_Diamond

3	-	A	diamond	shape	filled	with	the	annotation’s	interior	color,	if	any.

ANNOT_LE_OpenArrow

4	-	Two	short	lines	meeting	in	an	acute	angle	to	form	an	open
arrowhead.

ANNOT_LE_ClosedArrow

5	-	Two	short	lines	meeting	in	an	acute	angle	as	in	the	OpenArrow
style	(see	above)	and	connected	by	a	third	line	to	form	a	triangular
closed	arrowhead	filled	with	the	annotation’s	interior	color,	if	any.

ANNOT_LE_Butt

6	-	(PDF	1.5)	A	short	line	at	the	endpoint	perpendicular	to	the	line
itself.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

ANNOT_LE_ROpenArrow

7	-	(PDF	1.5)	Two	short	lines	in	the	reverse	direction	from
OpenArrow.

ANNOT_LE_RClosedArrow

8	-	(PDF	1.5)	A	triangular	closed	arrowhead	in	the	reverse	direction
from	ClosedArrow.

ANNOT_LE_Slash

9	-	(PDF	1.6)	A	short	line	at	the	endpoint	approximately	30	degrees
clockwise	from	perpendicular	to	the	line	itself.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Color	Database

Since	the	introduction	of	methods	involving	colors	(like
Page.drawCircle()),	a	requirement	may	be	to	have	access	to
predefined	colors.

The	fabulous	GUI	package	wxPython	has	a	database	of	over	540
predefined	RGB	colors,	which	are	given	more	or	less	memorizable
names.	Among	them	are	not	only	standard	names	like	“green”	or
“blue”,	but	also	“turquoise”,	“skyblue”,	and	100	(not	only	50	…)	shades
of	“gray”,	etc.

We	have	taken	the	liberty	to	copy	this	database	(a	list	of	tuples)
modified	into	PyMuPDF	and	make	its	colors	available	as	PDF
compatible	float	triples:	for	wxPython’s	("WHITE",	255,	255,
255)	we	return	(1,	1,	1),	which	can	be	directly	used	in	color
and	fill	parameters.	We	also	accept	any	mixed	case	of	“wHiTe”	to
find	a	color.

https://wxpython.org/

Function	getColor()
As	the	color	database	may	not	be	needed	very	often,	one	additional
import	statement	seems	acceptable	to	get	access	to	it:

>>>	#	"getColor"	is	the	only	method	you	really	need

>>>	from	fitz.utils	import	getColor

>>>	getColor("aliceblue")

(0.9411764705882353,	0.9725490196078431,	1.0)

>>>	#

>>>	#	to	get	a	list	of	all	existing	names

>>>	from	fitz.utils	import	getColorList

>>>	cl	=	getColorList()

>>>	cl

['ALICEBLUE',	'ANTIQUEWHITE',	'ANTIQUEWHITE1',	'ANTIQUEWHITE2',	'ANTIQUEWHITE3',

'ANTIQUEWHITE4',	'AQUAMARINE',	'AQUAMARINE1']	...

>>>	#

>>>	#	to	see	the	full	integer	color	coding

>>>	from	fitz.utils	import	getColorInfoList

>>>	il	=	getColorInfoList()

>>>	il

[('ALICEBLUE',	240,	248,	255),	('ANTIQUEWHITE',	250,	235,	215),

('ANTIQUEWHITE1',	255,	239,	219),	('ANTIQUEWHITE2',	238,	223,	204),

('ANTIQUEWHITE3',	205,	192,	176),	('ANTIQUEWHITE4',	139,	131,	120),

('AQUAMARINE',	127,	255,	212),	('AQUAMARINE1',	127,	255,	212)]	...

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Printing	the	Color	Database
If	you	want	to	actually	see	how	the	many	available	colors	look	like,
use	scripts	colordbRGB.py	or	colordbHSV.py	in	the	examples
directory.	They	create	PDFs	(already	existing	in	the	same	directory)
with	all	these	colors.	Their	only	difference	is	sorting	order:	one	takes
the	RGB	values,	the	other	one	the	Hue-Saturation-Values	as	sort
criteria.	This	is	a	screen	print	of	what	these	files	look	like.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

https://github.com/rk700/PyMuPDF/blob/master/examples/colordbRGB.py
https://github.com/rk700/PyMuPDF/blob/master/examples/colordbHSV.py
http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Appendix	1:	Performance

We	have	tried	to	get	an	impression	on	PyMuPDF’s	performance.
While	we	know	this	is	very	hard	and	a	fair	comparison	is	almost
impossible,	we	feel	that	we	at	least	should	provide	some	quantitative
information	to	justify	our	bold	comments	on	MuPDF’s	top
performance.

Following	are	three	sections	that	deal	with	different	aspects	of
performance:

document	parsing
text	extraction
image	rendering

In	each	section,	the	same	fixed	set	of	PDF	files	is	being	processed	by
a	set	of	tools.	The	set	of	tools	varies	-	for	reasons	we	will	explain	in
the	section.

Here	is	the	list	of	files	we	are	using.	Each	file	name	is	accompanied	by
further	information:	size	in	bytes,	number	of	pages,	number	of
bookmarks	(toc	entries),	number	of	links,	text	size	as	a	percentage
of	file	size,	KB	per	page,	PDF	version	and	remarks.	text	%	and	KB
index	are	indicators	for	whether	a	file	is	text	or	graphics	oriented.	

E.g.	Adobe.pdf	and	PyMuPDF.pdf	are	clearly	text	oriented,	all

other	files	contain	many	more	images.

Part	1:	Parsing
How	fast	is	a	PDF	file	read	and	its	content	parsed	for	further
processing?	The	sheer	parsing	performance	cannot	directly	be
compared,	because	batch	utilities	always	execute	a	requested	task
completely,	in	one	go,	front	to	end.	pdfrw	too,	has	a	lazy	strategy
for	parsing,	meaning	it	only	parses	those	parts	of	a	document	that	are
required	in	any	moment.

To	yet	find	an	answer	to	the	question,	we	therefore	measure	the	time
to	copy	a	PDF	file	to	an	output	file	with	each	tool,	and	doing	nothing
else.

These	were	the	tools

All	tools	are	either	platform	independent,	or	at	least	can	run	both,	on
Windows	and	Unix	/	Linux	(pdftk).

Poppler	is	missing	here,	because	it	specifically	is	a	Linux	tool	set,
although	we	know	there	exist	Windows	ports	(created	with
considerable	effort	apparently).	Technically,	it	is	a	C/C++	library,	for
which	a	Python	binding	exists	-	in	so	far	somewhat	comparable	to
PyMuPDF.	But	Poppler	in	contrast	is	tightly	coupled	to	Qt	and	Cairo.
We	may	still	include	it	in	future,	when	a	more	handy	Windows
installation	is	available.	We	have	seen	however	some	analysis,	that
hints	at	a	much	lower	performance	than	MuPDF.	Our	comparison	of
text	extraction	speeds	also	show	a	much	lower	performance	of
Poppler’s	PDF	code	base	Xpdf.

Image	rendering	of	MuPDF	also	is	about	three	times	faster	than	the
one	of	Xpdf	when	comparing	the	command	line	tools	mudraw	of

http://hzqtc.github.io/2012/04/poppler-vs-mupdf.html

MuPDF	and	pdftopng	of	Xpdf	-	see	part	3	of	this	chapter.

Tool Description
PyMuPDF tool	of	this	manual,	appearing	as	“fitz”	in	reports

pdfrw a	pure	Python	tool,	is	being	used	by	rst2pdf,	has	interface
to	ReportLab

PyPDF2 a	pure	Python	tool	with	a	very	complete	function	set
pdftk a	command	line	utility	with	numerous	functions

This	is	how	each	of	the	tools	was	used:

PyMuPDF:

doc	=	fitz.open("input.pdf")

doc.save("output.pdf")

pdfrw:

doc	=	PdfReader("input.pdf")

writer	=	PdfWriter()

writer.trailer	=	doc

writer.write("output.pdf")

PyPDF2:

pdfmerge	=	PyPDF2.PdfFileMerger()

pdfmerge.append("input.pdf")

pdfmerge.write("output.pdf")

pdfmerge.close()

pdftk:

pdftk	input.pdf	output	output.pdf

Observations

These	are	our	run	time	findings	(in	seconds,	please	note	the
European	number	convention:	meaning	of	decimal	point	and	comma
is	reversed):

If	we	leave	out	the	Adobe	manual,	this	table	looks	like

PyMuPDF	is	by	far	the	fastest:	on	average	4.5	times	faster	than	the
second	best	(the	pure	Python	tool	pdfrw,	chapeau	pdfrw!),	and
almost	20	times	faster	than	the	command	line	tool	pdftk.

Where	PyMuPDF	only	requires	less	than	13	seconds	to	process	all
files,	pdftk	affords	itself	almost	4	minutes.

By	far	the	slowest	tool	is	PyPDF2	-	it	is	more	than	66	times	slower
than	PyMuPDF	and	15	times	slower	than	pdfrw!	The	main	reason	for
PyPDF2’s	bad	look	comes	from	the	Adobe	manual.	It	obviously	is
slowed	down	by	the	linear	file	structure	and	the	immense	amount	of
bookmarks	of	this	file.	If	we	take	out	this	special	case,	then	PyPDF2	is
only	21.5	times	slower	than	PyMuPDF,	4.5	times	slower	than	pdfrw
and	1.2	times	slower	than	pdftk.

If	we	look	at	the	output	PDFs,	there	is	one	surprise:

Each	tool	created	a	PDF	of	similar	size	as	the	original.	Apart	from	the
Adobe	case,	PyMuPDF	always	created	the	smallest	output.

Adobe’s	manual	is	an	exception:	The	pure	Python	tools	pdfrw	and
PyPDF2	reduced	its	size	by	more	than	20%	(and	yielded	a	document
which	is	no	longer	linearized)!

PyMuPDF	and	pdftk	in	contrast	drastically	increased	the	size	by
40%	to	about	50	MB	(also	no	longer	linearized).

So	far,	we	have	no	explanation	of	what	is	happening	here.

Part	2:	Text	Extraction
We	also	have	compared	text	extraction	speed	with	other	tools.

The	following	table	shows	a	run	time	comparison.	PyMuPDF’s
methods	appear	as	“fitz	(TEXT)”	and	“fitz	(JSON)”	respectively.	The
tool	pdftotext.exe	of	the	Xpdf	toolset	appears	as	“xpdf”.

extractText():	basic	text	extraction	without	layout	re-arrangement
(using	GetText(...,	output	=	"text"))
pdftotext:	a	command	line	tool	of	the	Xpdf	toolset	(which	also	is
the	basis	of	Poppler’s	library)
extractJSON():	text	extraction	with	layout	information	(using
GetText(...,	output	=	"json"))
pdfminer:	a	pure	Python	PDF	tool	specialized	on	text	extraction
tasks

All	tools	have	been	used	with	their	most	basic,	fanciless	functionality	-
no	layout	re-arrangements,	etc.

For	demonstration	purposes,	we	have	included	a	version	of
GetText(doc,	output	=	"json"),	that	also	re-arranges	the
output	according	to	occurrence	on	the	page.

Here	are	the	results	using	the	same	test	files	as	above	(again:	decimal
point	and	comma	reversed):

http://www.foolabs.com/xpdf/
http://poppler.freedesktop.org/

Again,	(Py-)	MuPDF	is	the	fastest	around.	It	is	2.3	to	2.6	times	faster
than	xpdf.

pdfminer,	as	a	pure	Python	solution,	of	course	is	comparatively
slow:	MuPDF	is	50	to	60	times	faster	and	xpdf	is	23	times	faster.
These	observations	in	order	of	magnitude	coincide	with	the
statements	on	this	web	site.

http://www.unixuser.org/~euske/python/pdfminer/

Part	3:	Image	Rendering
We	have	tested	rendering	speed	of	MuPDF	against	the
pdftopng.exe,	a	command	lind	tool	of	the	Xpdf	toolset	(the	PDF
code	basis	of	Poppler).

MuPDF	invocation	using	a	resolution	of	150	pixels	(Xpdf	default):

mutool	draw	-o	t%d.png	-r	150	file.pdf

PyMuPDF	invocation:

zoom	=	150.0	/	72.0

mat	=	fitz.Matrix(zoom,	zoom)

def	ProcessFile(datei):

				print	"processing:",	datei

				doc=fitz.open(datei)

				for	p	in	fitz.Pages(doc):

								pix	=	p.getPixmap(matrix=mat,	alpha	=	False

								pix.writePNG("t-%s.png"	%	p.number)

								pix	=	None

				doc.close()

				return

Xpdf	invocation:

pdftopng.exe	file.pdf	./

The	resulting	runtimes	can	be	found	here	(again:	meaning	of	decimal
point	and	comma	reversed):

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

MuPDF	and	PyMuPDF	are	both	about	3	times	faster	than	Xpdf.
The	2%	speed	difference	between	MuPDF	(a	utility	written	in	C)
and	PyMuPDF	is	the	Python	overhead.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Appendix	2:	Details	on	Text	Extraction

This	chapter	provides	background	on	the	text	extraction	methods	of
PyMuPDF.

Information	of	interest	are

what	do	they	provide?
what	do	they	imply	(processing	time	/	data	sizes)?

General	structure	of	a	TextPage
Information	contained	in	a	TextPage	has	the	following	hierarchy:

<page>

				<text	block>

								<line>

												

																<char>

				<image	block>

								

A	text	page	consists	of	blocks	(=	roughly	paragraphs).

A	block	consists	of	either	lines	and	their	characters,	or	an	image.

A	line	consists	of	spans.

A	span	consists	of	font	information	and	characters	that	share	a
common	baseline.

Plain	Text
This	function	extracts	a	page’s	plain	text	in	original	order	as
specified	by	the	creator	of	the	document	(which	may	not	equal	a
natural	reading	order).

An	example	output:

PyMuPDF	Documentation

Release	1.12.0

Jorj	X.	McKie

Dec	04,	2017

HTML
HTML	output	fully	reflects	the	structure	of	the	page’s	TextPage	-
much	like	JSON	below.	This	includes	images,	font	information	and	text
positions.	If	wrapped	in	HTML	header	and	trailer	code,	it	can	readily
be	displayed	be	a	browser.	Our	above	example:

<div	style="width:595pt;height:841pt">

<img	style="top:88pt;left:327pt;width:195pt;height:86pt"

/9j/4AAQSkZJRgABAQEAYABgAAD/4Q	(...	omitted	image	data

<p	style="top:189pt;left:195pt;"><span	style="font-family:SFSX2488,serif;font-size:24.7871pt;"

<p	style="top:223pt;left:404pt;"><i><span	style=

<p	style="top:371pt;left:400pt;"><span	style="font-family:SFSX1728,serif;font-size:17.2154pt;"

<p	style="top:637pt;left:448pt;"><span	style="font-family:SFSX1200,serif;font-size:11.9552pt;"

</div>

Controlling	Quality	of	HTML	Output
Though	HTML	output	has	improved	a	lot	in	MuPDF	v1.12.0,	it
currently	is	not	yet	bug-free:	we	have	found	problems	in	the	areas
font	support	and	image	positioning.

HTML	text	contains	references	to	the	fonts	used	of	the	original
document.	If	these	are	not	known	to	the	browser	(a	fat	chance!),	it
will	replace	them	with	his	assumptions,	which	probably	will	let	the
result	look	awkward.	This	issue	varies	greatly	by	browser	-	on	my
Windows	machine,	MS	Edge	worked	just	fine,	whereas	Firefox
looked	horrible.
For	PDFs	with	a	complex	structure,	images	may	not	be
positioned	and	/	or	sized	correctly.	This	seems	to	be	the	case	for
rotated	pages	and	pages,	where	the	various	possible	page	bbox
variants	do	not	coincide	(e.g.	MediaBox	!=	CropBox).	We	do
not	know	yet,	how	to	address	this	-	we	filed	a	bug	at	MuPDF’s
site.

To	address	the	font	issue,	you	can	use	a	simple	utility	script	to	scan
through	the	HTML	file	and	replace	font	references.	Here	is	a	little
example	that	replaces	all	fonts	with	one	of	the	PDF	Base	14	Fonts:
serifed	fonts	will	become	“Times”,	non-serifed	“Helvetica”	and
monospaced	will	become	“Courier”.	Their	respective	variations	for
“bold”,	“italic”,	etc.	are	hopefully	done	correctly	by	your	browser:

import	sys

filename	=	sys.argv[1]

otext	=	open(filename).read()																	#	original	html	text	string

pos1	=	0																																						#	search	start	poition

font_serif	=	"font-family:Times"														#	enter	...

font_sans		=	"font-family:Helvetica"										#	...	your	choices	...

font_mono		=	"font-family:Courier"												#	...	here

found_one		=	False																												#	true	if	search	successfull

while	True:

				pos0	=	otext.find("font-family:",	pos1)			#	start	of	a	font	spec

				if	pos0	<	0:																														#	none	found	-	we	are	done

								break

				pos1	=	otext.find(";",	pos0)														#	end	of	font	spec

				test	=	otext[pos0	:	pos1]																	#	complete	font	spec	string

				testn	=	""																																#	the	new	font	spec	string

				if	test.endswith(",serif"):															#	font	with	serifs?

								testn	=	font_serif																				#	use	Times	instead

				elif	test.endswith(",sans-serif"):								#	sans	serifs	font?

								testn	=	font_sans																					#	use	Helvetica

				elif	test.endswith(",monospace"):									#	monospaced	font?

								testn	=	font_mono																					#	becomes	Courier

				if	testn	!=	"":																											#	any	of	the	above	found?

								otext	=	otext.replace(test,	testn)				#	change	the	source

								found_one	=	True

								pos1	=	0																														#	start	over

if	found_one:

				ofile	=	open(filename	+	".html",	"w")

				ofile.write(otext)

				ofile.close()

else:

				print("Warning:	could	not	find	any	font	specs!"

JSON
JSON	output	fully	reflects	the	structure	of	a	TextPage	and	provides
image	content	and	position	details	(bbox	-	boundary	boxes	in	pixel
units)	for	every	block	and	line.	This	information	can	be	used	to	present
text	in	another	reading	order	if	required	(e.g.	from	top-left	to	bottom-
right).	Have	a	look	at	PDF2textJS.py.	Images	are	stored	base64
encoded.	Here	is	how	this	looks	like:

{"width":	595.276,	"height":	841.89,

	"blocks":	[

		{"type":	1,	"bbox":	[327.526,	88.936,	523.276,	175.186

			"imgtype":	8,	"width":	261,	"height":	115,	"image"

"/9j/4AAQSkZJRgABAQEAYABgAAD/4QBmRXhpZgA	(...	omitted	image	data	...)	"

		},

		{"type":	0,	"bbox":	[195.483,	189.041,	523.243,	218.91

			"lines":	[

				{"bbox":	[195.483,	189.041,	523.243,	218.91],	"wmode"

					"spans":	[

						{"font":	"SFSX2488",	"size":	24.7871,	"flags"

]

				}

]

		},

		{"type":	0,	"bbox":	[404.002,	223.505,	523.305,	244.49

			"lines":	[

				{"bbox":	[404.002,	223.505,	523.305,	244.49],	"wmode"

					"spans":	[

						{"font":	"SFSO1728",	"size":	17.2154,	"flags"

]

				}

]

		},

https://github.com/rk700/PyMuPDF/blob/master/examples/PDF2textJS.py

		{"type":	0,	"bbox":	[400.529,	371.31,	517.284,	392.312

			"lines":	[

				{"bbox":	[400.529,	371.31,	517.284,	392.312],	"wmode"

					"spans":	[

						{"font":	"SFSX1728",	"size":	17.2154,	"flags"

]

				}

]

		},

		{"type":	0,	"bbox":	[448.484,	637.531,	523.252,	652.403

			"lines":	[

				{"bbox":	[448.484,	637.531,	523.252,	652.403],	

					"spans":	[

						{"font":	"SFSX1200",	"size":	11.9552,	"flags"

]

				}

]

		}

]

}

XML
The	XML	version	takes	the	level	of	detail	even	a	lot	deeper:	every
single	character	is	provided	with	its	position	detail,	and	every	span
also	contains	font	information:

<page	width="595.276"	height="841.89">

<image	bbox="327.526	88.936038	523.276	175.18604"	/>

<block	bbox="195.483	189.04106	523.2428	218.90952">

<line	bbox="195.483	189.04106	523.2428	218.90952"	wmode

<char	bbox="195.483	189.04106	214.19727	218.90952"	

<char	bbox="214.19727	189.04106	227.75582	218.90952"

<char	bbox="227.75582	189.04106	253.18738	218.90952"

<char	bbox="253.18738	189.04106	268.3571	218.90952"

(...	omitted	data	...)

</line>

</block>

<block	bbox="404.002	223.5048	523.30477	244.49039">

<line	bbox="404.002	223.5048	523.30477	244.49039"	wmode

<char	bbox="404.002	223.5048	416.91358	244.49039"	x

(...	omitted	data	...)

<char	bbox="513.33706	223.5048	523.30477	244.49039"

</line>

</block>

(...	omitted	data	...)

</page>

We	have	successfully	tested	lxml	to	interpret	this	output.

XHTML
A	variation	of	TEXT	but	in	HTML	format,	containing	the	bare	text	and
images	(“semantic”	output):

<div>

<p><img	width="195"	height="86"	src="data:image/jpeg;base64,

/9j/4AAQSkZJRgABAQEAYABgAAD/4Q	(...	omitted	image	data

<p>PyMuPDF	Documentation</p>

<p><i>Release	1.12.0</i></p>

<p>Jorj	X.	McKie</p>

<p>Dec	13,	2017</p>

</div>

Further	Remarks

1.	 We	have	modified	MuPDF’s	plain	text	extraction:	The	original
prints	out	every	line	followed	by	a	newline	character.	This	leads	to
a	rather	ragged,	space-wasting	look.	So	we	have	combined	all
lines	of	a	text	block	into	one,	separating	lines	by	space	characters
(but	only	if	a	line	does	not	end	with	“-“).	We	also	do	not	add	extra
newline	characters	at	the	end	of	blocks.

2.	 The	5	extraction	methods	each	have	a	default	behavior
concerning	images:	“TEXT”	and	“XML”	do	not	extract	images,
while	the	other	three	do.	On	occasion	it	may	make	sense	to
switch	off	images	for	“HTML”,	“XHTML”	or	“JSON”,	too.	See
chapter	Working	together:	DisplayList	and	TextPage	on	how	to
achieve	this.	Use	an	argument	of	3	when	you	create	the
TextPage.

3.	 Apart	from	the	5	standard	ones,	we	offer	additional	extraction
methods	Page.getTextBlocks()	and
Page.getTextWords().	They	return	lists	of	a	page’s	text
blocks,	resp.	words.	Each	list	item	contains	text	accompanied	by
its	rectangle	(“bbox”,	location	on	the	page).	This	should	help	to
resolve	extraction	issues	around	multi-column	or	boxed	text.

4.	 If	you	need	even	more	detailed	positioning	information,	you	can
use	XML	extraction.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Performance
The	text	extraction	methods	differ	significantly:	in	terms	of	information
they	supply	(see	above),	and	in	terms	of	resource	requirements.	More
information	of	course	means	that	more	processing	is	required	and	a
higher	data	volume	is	generated.

To	begin	with,	all	methods	are	very	fast	in	relation	to	what	is	out	there
on	the	market.	In	terms	of	processing	speed,	we	couldn’t	find	a	faster
(free)	tool.	Even	the	most	detailed	method,	XML,	processes	all	1‘310
pages	of	the	Adobe	PDF	Reference	1.7	in	less	than	8	seconds.

Relative	to	each	other,	“XML”	is	about	2	times	slower	than	“TEXT”,
the	others	range	between	them.	E.g.	“JSON”,	“HTML”,	“XHTML”
need	about	20%	more	time	than	“TEXT”	(heavily	depending	on	the
size	of	images	contained	in	the	document),	whereas
Page.getTextBlocks()	and	Page.getTextWords()	are	only
1%	resp.	3%	slower.

Look	into	the	previous	chapter	Appendix	1	for	more	performance
information.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Appendix	3:	Considerations	on	Embedded
Files

This	chapter	provides	some	background	on	embedded	files	support	in
PyMuPDF.

General
Starting	with	version	1.4,	PDF	supports	embedding	arbitrary	files	as
part	(“Embedded	File	Streams”)	of	a	PDF	document	file	(see	chapter
3.10.3,	pp.	184	of	the	Adobe	PDF	Reference	1.7).

In	many	aspects,	this	is	comparable	to	concepts	also	found	in	ZIP	files
or	the	OLE	technique	in	MS	Windows.	PDF	embedded	files	do,
however,	not	support	directory	structures	as	does	the	ZIP	format.	An
embedded	file	can	in	turn	contain	embedded	files	itself.

Advantages	of	this	concept	are	that	embedded	files	are	under	the
PDF	umbrella,	benefitting	from	its	permissions	/	password	protection
and	integrity	aspects:	all	files	a	PDF	may	reference	or	even	be
dependent	on	can	be	bundled	into	it	and	so	form	a	single,	consistent
unit	of	information.

In	addition	to	embedded	files,	PDF	1.7	adds	collections	to	its	support
range.	This	is	an	advanced	way	of	storing	and	presenting	meta
information	(i.e.	arbitrary	and	extensible	properties)	of	embedded	files.

MuPDF	Support
MuPDF	v1.11	added	initial	support	for	embedded	files	and	collections
(also	called	portfolios).

The	library	contains	functions	to	add	files	to	the	EmbeddedFiles
name	tree	and	display	some	information	of	its	entries.

Also	supported	is	a	full	set	of	functions	to	maintain	collections
(advanced	metadata	maintenance)	and	their	relation	to	embedded
files.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

PyMuPDF	Support
Starting	with	PyMuPDF	v1.11.0	we	fully	reflect	MuPDF’s	support	for
embedded	files	and	partly	go	beyond	that	scope:

We	can	add,	extract	and	delete	embedded	files.
We	can	display	and	change	some	meta	information	(outside
collections).	Informations	available	for	display	are	name,
filename,	description,	length	and	compressed	size.	Of	these
properties,	filename	and	description	can	also	be	changed,	after	a
file	has	been	embedded.

Support	of	the	collections	feature	has	been	postponed	to	a	later
version.	We	will	probably	include	this	ever	only	on	user	request.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Appendix	4:	Assorted	Technical	Information

PDF	Base	14	Fonts
The	following	14	builtin	font	names	must	be	supported	by	every	PDF
aplication.	They	are	available	as	the	Python	list
fitz.Base14_Fonts:

Courier
Courier-Oblique
Courier-Bold
Courier-BoldOblique
Helvetica
Helvetica-Oblique
Helvetica-Bold
Helvetica-BoldOblique
Times-Roman
Times-Bold
Times-Italic
Times-BoldItalic
Symbol
ZapfDingbats

Adobe	PDF	Reference	1.7
This	PDF	Reference	manual	published	by	Adobe	is	frequently	quoted
throughout	this	documentation.	It	can	be	viewed	and	downloaded	from
here:
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-
7.pdf.

http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf

Ensuring	Consistency	of	Important	Objects	in
PyMuPDF
PyMuPDF	is	a	Python	binding	for	the	C	library	MuPDF.	While	a	lot	of
effort	has	been	invested	by	MuPDF’s	creators	to	approximate	some
sort	of	an	object-oriented	behavior,	they	certainly	could	not	overcome
basic	shortcomings	of	the	C	language	in	that	respect.

Python	on	the	other	hand	implements	the	OO-model	in	a	very	clean
way.	The	interface	code	between	PyMuPDF	and	MuPDF	consists	of
two	basic	files:	fitz.py	and	fitz_wrap.c.	They	are	created	by
the	excellent	SWIG	tool	for	each	new	version.

When	you	use	one	of	PyMuPDF’s	objects	or	methods,	this	will	result
in	excution	of	some	code	in	fitz.py,	which	in	turn	will	call	some	C
code	compiled	with	fitz_wrap.c.

Because	SWIG	goes	a	long	way	to	keep	the	Python	and	the	C	level	in
sync,	everything	works	fine,	if	a	certain	set	of	rules	is	being	strictly
followed.	For	example:	never	access	a	Page	object,	after	you	have
closed	(or	deleted	or	set	to	None)	the	owning	Document.	Or,	less
obvious:	never	access	a	page	or	any	of	its	children	(links	or
annotations)	after	you	have	executed	one	of	the	document	methods
select(),	deletePage(),	insertPage()	…	and	more.

But	just	no	longer	accessing	invalidated	objects	is	actually	not
enough:	They	should	rather	be	actively	deleted	entirely,	to	also	free	C-
level	resources.

The	reason	for	these	rules	lies	in	the	fact	that	there	is	a	hierachical	2-

level	one-to-many	relationship	between	a	document	and	its	pages	and
between	a	page	and	its	links	and	annotations.	To	maintain	a
consistent	situation,	any	of	the	above	actions	must	lead	to	a	complete
reset	-	in	Python	and,	synchronously,	in	C.

SWIG	cannot	know	about	this	and	consequently	does	not	do	it.

The	required	logic	has	therefore	been	built	into	PyMuPDF	itself	in	the
following	way.

1.	 If	a	page	“loses”	its	owning	document	or	is	being	deleted	itself,	all
of	its	currently	existing	annotations	and	links	will	be	made
unusable	in	Python,	and	their	C-level	counterparts	will	be	deleted
and	deallocated.

2.	 If	a	document	is	closed	(or	deleted	or	set	to	None)	or	if	its
structure	has	changed,	then	similarly	all	currently	existing	pages
and	their	children	will	be	made	unusable,	and	corresponding	C-
level	deletions	will	take	place.	“Structure	changes”	include
methods	like	select(),	delePage(),	insertPage(),
insertPDF()	and	so	on:	all	of	these	will	result	in	a	cascade	of
object	deletions.

The	programmer	will	normally	not	realize	any	of	this.	If	he,	however,
tries	to	access	invalidated	objects,	exceptions	will	be	raised.

Invalidated	objects	cannot	be	directly	deleted	as	with	Python
statements	like	del	page	or	page	=	None,	etc.	Instead,	their
__del__	method	must	be	invoked.

All	pages,	links	and	annotations	have	the	property	parent,	which
points	to	the	owning	object.	This	is	the	property	that	can	be	checked
on	the	application	level:	if	obj.parent	==	None	then	the	object’s

parent	is	gone,	and	any	reference	to	its	properties	or	methods	will
raise	an	exception	informing	about	this	“orphaned”	state.

A	sample	session:

>>>	page	=	doc[n]

>>>	annot	=	page.firstAnnot

>>>	annot.type																				#	everything	works	fine

[5,	'Circle']

>>>	page	=	None																			#	this	turns	'annot'	into	an	orphan

>>>	annot.type

<...	omitted	lines	...>

RuntimeError:	orphaned	object:	parent	is	None

>>>

>>>	#	same	happens,	if	you	do	this:

>>>	annot	=	doc[n].firstAnnot					#	deletes	the	page	again	immediately!

>>>	annot.type																				#	so,	'annot'	is	'born'	orphaned

<...	omitted	lines	...>

RuntimeError:	orphaned	object:	parent	is	None

This	shows	the	cascading	effect:

>>>	doc	=	fitz.open("some.pdf")

>>>	page	=	doc[n]

>>>	annot	=	page.firstAnnot

>>>	page.rect

fitz.Rect(0.0,	0.0,	595.0,	842.0)

>>>	annot.type

[5,	'Circle']

>>>	del	doc																							#	or	doc	=	None	or	doc.close()

>>>	page.rect

<...	omitted	lines	...>

RuntimeError:	orphaned	object:	parent	is	None

>>>	annot.type

<...	omitted	lines	...>

RuntimeError:	orphaned	object:	parent	is	None

Note

Objects	outside	the	above	relationship	are	not	included	in	this	mechanism.	If	you	e.g.

created	a	table	of	contents	by	toc	=	doc.getToC(),	and	later	close	or	change	the

document,	then	this	cannot	and	does	not	change	variable	toc	in	any	way.	It	is	your

responsibility	to	refresh	such	variables	as	required.

Design	of	Method	Page.showPDFpage()

Purpose	and	Capabilities
The	method	displays	an	image	of	a	(“source”)	page	of	another	PDF
document	within	a	specified	rectangle	of	the	current	(“containing”)
page.	In	contrast	to	Page.insertImage(),	this	display	is	vector-
based	and	hence	remains	accurate	across	zooming	levels.	Just	like
Page.insertImage(),	the	size	of	the	display	is	adjusted	to	the
given	rectangle.

The	following	variations	of	the	display	are	currently	supported:

Bool	parameter	keep_proportion	controls	whether	to
maintain	the	width-height-ratio	(default)	or	not.
Rectangle	parameter	clip	controls	which	part	of	the	source
page	to	show,	and	hence	can	be	used	for	cropping.	Default	is	the
full	page.
Bool	parameter	overlay	controls	whether	to	put	the	image	on
top	(foreground,	default)	of	current	page	content	or	not
(background).

The	following	use	cases	can	be	covered:

1.	 “Stamp”	a	series	of	pages	of	the	current	document	with	the	same
image,	like	a	company	logo	or	a	watermark.

2.	 Combine	arbitrary	input	pages	into	one	output	page	to	form	e.g.	a
“booklet”	or	to	support	double-sided	printing	(known	as	“4-up”,	“n-
up”).

3.	 Split	up	(large)	input	pages	into	several	arbitrary	pieces	(also

called	“posterization”).

Technical	Implementation
This	is	done	using	PDF	form	XObjects,	see	section	4.9	on	page	355
of	Adobe	PDF	Reference	1.7.	On	execution	of	a
Page.showPDFpage(rect,	src,	pno,	...),	the	following
things	happen:

1.	 The	/Resources	and	/Contents	objects	of	page	pno	in
document	src	are	copied	over	to	the	current	document,
jointly	creating	a	new	form	XObject	with	the	following
properties.	The	PDF	xref	number	of	this	object	is	returned
by	the	method.

a.	 /BBox	equals	/Mediabox	of	the	source	page
b.	 /Matrix	equals	the	identity	matrix	[1	0	0	1	0

0]

c.	 /Resources	equals	that	of	the	source	page.	This
involves	a	“deep-copy”	of	hierarchically	nested
other	objects	(including	fonts,	images,	etc.).	The
complexity	involved	here	is	covered	by	MuPDF’s
grafting	[1]	technique	functions.

d.	 This	is	a	stream	object	type,	and	its	stream	is
exactly	equal	to	the	/Contents	object	of	the
source	(if	the	source	has	multiple	such	objects,
these	are	first	concatenated	and	stored	as	one	new
stream	into	the	new	form	XObject).

2.	 A	second	form	XObject	is	then	created	which	the
containing	page	uses	to	invoke	the	previous	one.	This	object

has	the	following	properties:

a.	 /BBox	equals	the	/CropBox	of	the	source	page
(or	clip,	if	specified).

b.	 /Matrix	represents	the	mapping	of	/BBox	to	the
display	rectangle	of	the	containing	page	(parameter
1	of	showPDFpage).

c.	 /XObject	references	the	previous	XObject	via	the
fixed	name	fullpage.

d.	 The	stream	of	this	object	contains	exactly	on	fixed
statement:	/fullpage	Do.

3.	 The	/Resources	and	/Contents	objects	of	the	invoking
page	are	now	modified	as	follows.

a.	 Add	an	entry	to	the	/XObject	dictionary	of
/Resources	with	the	following	unique	name:	fz-
xref-rect.	Uniqueness	is	required	because	the
same	source	might	be	displayed	more	than	once	on
the	containing	page.	xref	is	the	PDF	cross
reference	number	of	XObject	1,	and	rect	is	the
memory	address	of	the	containing	rectangle.

b.	 Depending	on	overlay,	prepend	or	append	the
following	statement	to	the	contents	object:	/fz-
xref-rect	Do.

4.	 Return	xref	to	the	caller.

Observe	the	following	guideline	for	optimum	results:

Unfortunately,	as	per	this	writing,	garbage	collection	(a	feature	of	the

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

underlying	C-library	MuPDF)	does	not	detect	identical	form	XObjects.
Process	steps	1	through	3	above	therefore	irrevocably	lead	to	two
new	XObjects	for	every	source	page.	The	first	one	represents	the
source	page	itself	and	may	be	very	large.	The	second	one	is	very
small	and	specific	to	the	containing	page	(and	therefore	rightfully
created).	To	avoid	excess	source	page	copies,	use	parameter
reuse_xref	=	xref	with	the	xref	value	returned	by	previous
executions.	When	the	method	detects	reuse_xref	>	0,	it	will	not
create	XObject	1	again.

Only	bare	source	page	content	is	shown	-	no	annotations,	no	link	“hot
areas”.

Footnotes

[1]

MuPDF	supports	“deep-copying”	objects	between	PDF	documents.
To	avoid	duplicate	data	in	the	target,	it	uses	“graftmaps”.	a	form	of
scratchpad:	for	each	object	to	be	copied,	its	xref	number	is	looked
up	in	the	graftmap.	If	found,	copying	is	skipped.	Otherwise,	its
number	is	recorded	and	the	copy	takes	place.	PyMuPDF	makes
use	of	this	technique	in	two	places	so	far:
Document.insertPDF()	and	Page.showPDFpage().	This
process	is	fast	and	very	efficient,	as	our	tests	have	shown,
because	it	prevents	multiple	copies	of	typically	large	and	frequently
referenced	data,	like	fonts	and	also	images.	Whether	the	target
before	the	copy	already	had	identical	data	(fonts!)	is	however	not
checked.	Therefore,	using	save-option	garbage	=	4	may	still	be
a	reasonable	consideration,	if	copying	to	a	non-empty	target.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Change	Logs

Changes	in	Version	1.12.2
This	is	an	extension	of	1.12.1.

Method	Page.showPDFpage()	now	accepts	the	new	clip
argument.	This	specifies	an	area	of	the	source	page	to	which	the
display	should	be	restricted.
New	Page.CropBox	and	Page.MediaBox	have	been	included
for	convenience.

Changes	in	Version	1.12.1
This	is	an	extension	of	version	1.12.0.

New	method	Page.showPDFpage()	displays	another’s	PDF
page.	This	is	a	vector	image	and	remains	precise	across
zooming.	Both	involved	documents	must	be	PDF.
New	method	Page.getSVGimage()	creates	an	SVG	image
from	the	page.	The	return	is	a	unicode	text	string,	which	can	be
saved	in	a	.svg	file.
Method	Page.getTextBlocks()	now	accepts	an	additional
bool	parameter	“images”.	If	set	to	true	(default	is	false),	images
contained	in	the	TextPage	are	included	in	the	produced	list	and
thus	allow	detecting	areas	with	rendered	images.
Minor	bug	fixes.
“text”	result	of	Page.getText()	concatenates	all	lines	within	a
block	using	a	single	space	character.	MuPDF’s	original	uses	“\n”
instead,	producing	a	rather	ragged	output.
New	properties	of	Page	objects	Page.MediaBoxSize	and
Page.CropBoxPosition	provide	more	information	about	a
page’s	dimensions.	For	non-PDF	files	(and	for	most	PDF	files,
too)	these	will	be	equal	to	Page.rect.bottom_right,	resp.
Page.rect.top_left.	For	example,	class	Shape	makes	use
of	them	to	correctly	position	its	items.

Changes	in	Version	1.12.0
This	version	is	based	on	and	requires	MuPDF	v1.12.	The	new	MuPDF
version	contains	quite	a	number	of	changes	-	most	of	them	around
text	extraction.	Some	of	the	changes	impact	the	programmer’s	API.

Outline.saveText()	and	Outline.saveXML()	have	been
deleted	without	replacement.	You	probably	have	not	used	them
much	anyway.	But	if	you	are	looking	for	a	replacement:	the	output
of	Document.getToC()	can	easily	be	used	to	produce
something	equivalent.
Class	TextSheet	does	no	longer	exist.
Text	“spans”,	one	of	the	hierarchy	levels	of	text	pages,	no	longer
contain	positioning	information	(i.e.	no	“bbox”	key).	Instead,
spans	now	provide	the	font	information	for	its	text.	This	impacts
our	JSON	output	variant.
HTML	output	has	improved	very	much:	it	now	creates	valid
documents	which	can	be	displayed	by	browsers	to	produce	a
similar	view	as	the	original	document.
There	is	a	new	output	format	XHTML,	which	provides	text	and
images	in	a	browser-readable	format.	The	difference	to	HTML
output	is,	that	no	effort	is	made	to	reproduce	the	original	layout.
All	output	formats	of	Page.getText()	now	support	creating
complete,	valid	documents,	by	wrapping	them	with	appropriate
header	and	trailer	information.	If	you	are	interested	in	using	the
HTML	output,	please	make	sure	to	read	Controlling	Quality	of
HTML	Output.
To	support	finding	text	positions,	we	have	added	special	methods

that	don’t	need	detours	like	TextPage.extractJSON()	or
TextPage.extractXML():	use	Page.getTextBlocks()
or	resp.	Page.getTextWords()	to	create	lists	of	text	blocks	or
resp.	words	which	are	accompanied	by	their	rectangles.	This
should	be	much	faster	than	the	standard	text	extraction	methods
and	also	avoids	using	additional	packages	for	interpreting	their
output.

Changes	in	Version	1.11.2
This	is	an	extension	of	v1.11.1.

New	Page.insertFont()	creates	a	PDF	/Font	object	and
returns	its	object	number.

New	Document.extractFont()	extracts	the	content	of	an
embedded	font	given	its	object	number.

Methods	*FontList(...)	items	no	longer	contain	the	PDF
generation	number.	This	value	never	had	any	significance.
Instead,	the	font	file	extension	is	included	(e.g.	“pfa”	for	a
“PostScript	Font	for	ASCII”),	which	is	more	valuable	information.

Fonts	other	than	“simple	fonts”	(Type1)	are	now	also	supported.

New	options	to	change	Pixmap	size:

Method	Pixmap.shrink()	reduces	the	pixmap
proportionally	in	place.
A	new	Pixmap	copy	constructor	allows	scaling	via
setting	target	width	and	height.

Changes	in	Version	1.11.1
This	is	an	extension	of	v1.11.0.

New	class	Shape.	It	facilitates	and	extends	the	creation	of	image
shapes	on	PDF	pages.	It	contains	multiple	methods	for	creating
elementary	shapes	like	lines,	rectangles	or	circles,	which	can	be
combined	into	more	complex	ones	and	be	given	common
properties	like	line	width	or	colors.	Combined	shapes	are	handled
as	a	unit	and	e.g.	be	“morphed”	together.	The	class	can
accumulate	multiple	complex	shapes	and	put	them	all	in	the
page’s	foreground	or	background	-	thus	also	reducing	the	number
of	updates	to	the	page’s	/Contents	object.
All	Page	draw	methods	now	use	the	new	Shape	class.
Text	insertion	methods	insertText()	and
insertTextBox()	now	support	morphing	in	addition	to	text
rotation.	They	have	become	part	of	the	Shape	class	and	thus
allow	text	to	be	freely	combined	with	graphics.
A	new	Pixmap	constructor	allows	creating	pixmap	copies	with	an
added	alpha	channel.	A	new	method	also	allows	directly
manipulating	alpha	values.
Binary	algebraic	operations	with	geometry	objects	(matrices,
rectangles	and	points)	now	generally	also	support	lists	or	tuples
as	the	second	operand.	You	can	add	a	tuple	(x,	y)	of	numbers
to	a	Point.	In	this	context,	such	sequences	are	called	“point-like”
(resp.	matrix-like,	rectangle-like).
Geometry	objects	now	fully	support	in-place	operators.	For
example,	p	/=	m	replaces	point	p	with	p	*	1/m	for	a	number,

or	p	*	~m	for	a	matrix-like	object	m.	Similarly,	if	r	is	a	rectangle,
then	r	|=	(3,	4)	is	the	new	rectangle	that	also	includes
fitz.Point(3,	4),	and	r	&=	(1,	2,	3,	4)	is	its
intersection	with	fitz.Rect(1,	2,	3,	4).

Changes	in	Version	1.11.0
This	version	is	based	on	and	requires	MuPDF	v1.11.

Though	MuPDF	has	declared	it	as	being	mostly	a	bug	fix	version,	one
major	new	feature	is	indeed	contained:	support	of	embedded	files	-
also	called	portfolios	or	collections.	We	have	extended	PyMuPDF
functionality	to	embrace	this	up	to	an	extent	just	a	little	beyond	the
mutool	utility	as	follows.

The	Document	class	now	support	embedded	files	with	several
new	methods	and	one	new	property:

embeddedFileInfo()	returns	metadata	information
about	an	entry	in	the	list	of	embedded	files.	This	is	more
than	mutool	currently	provides:	it	shows	all	the
information	that	was	used	to	embed	the	file	(not	just	the
entry’s	name).
embeddedFileGet()	retrieves	the	(decompressed)
content	of	an	entry	into	a	bytes	buffer.
embeddedFileAdd(...)	inserts	new	content	into	the
PDF	portfolio.	We	(in	contrast	to	mutool)	restrict	this
to	entries	with	a	new	name	(no	duplicate	names
allowed).
embeddedFileDel(...)	deletes	an	entry	from	the
portfolio	(function	not	offered	in	MuPDF).
embeddedFileSetInfo()	-	changes	filename	or
description	of	an	embedded	file.
embeddedFileCount	-	contains	the	number	of

embedded	files.

Several	enhancements	deal	with	streamlining	geometry	objects.
These	are	not	connected	to	the	new	MuPDF	version	and	most	of
them	are	also	reflected	in	PyMuPDF	v1.10.0.	Among	them	are
new	properties	to	identify	the	corners	of	rectangles	by	name	(e.g.
Rect.bottom_right)	and	new	methods	to	deal	with	set-
theoretic	questions	like	Rect.contains(x)	or
IRect.intersects(x).	Special	effort	focussed	on	supporting
more	“Pythonic”	language	constructs:	if	x	in	rect	...	is
equivalent	to	rect.contains(x).

The	Rect	chapter	now	has	more	background	on	empty	amd
infinite	rectangles	and	how	we	handle	them.	The	handling	itself
was	also	updated	for	more	consistency	in	this	area.

We	have	started	basic	support	for	generation	of	PDF	content:

Document.insertPage()	adds	a	new	page	into	a
PDF,	optionally	containing	some	text.
Page.insertImage()	places	a	new	image	on	a	PDF
page.
Page.insertText()	puts	new	text	on	an	existing
page

For	FileAttachment	annotations,	content	and	name	of	the
attached	file	can	extracted	and	changed.

Changes	in	Version	1.10.0

MuPDF	v1.10	Impact
MuPDF	version	1.10	has	a	significant	impact	on	our	bindings.	Some
of	the	changes	also	affect	the	API	-	in	other	words,	you	as	a
PyMuPDF	user.

Link	destination	information	has	been	reduced.	Several	properties
of	the	linkDest	class	no	longer	contain	valuable	information.	In
fact,	this	class	as	a	whole	has	been	deleted	from	MuPDF’s	library
and	we	in	PyMuPDF	only	maintain	it	to	provide	compatibilty	to
existing	code.

In	an	effort	to	minimize	memory	requirements,	several
improvements	have	been	built	into	MuPDF	v1.10:

A	new	config.h	file	can	be	used	to	de-select
unwanted	features	in	the	C	base	code.	Using	this
feature	we	have	been	able	to	reduce	the	size	of	our
binary	_fitz.o	/	_fitz.pyd	by	about	50%	(from	9
MB	to	4.5	MB).	When	UPX-ing	this,	the	size	goes	even
further	down	to	a	very	handy	2.3	MB.
The	alpha	(transparency)	channel	for	pixmaps	is	now
optional.	Letting	alpha	default	to	False	significantly
reduces	pixmap	sizes	(by	20%	-	CMYK,	25%	-	RGB,
50%	-	GRAY).	Many	Pixmap	constructors	therefore
now	accept	an	alpha	boolean	to	control	inclusion	of
this	channel.	Other	pixmap	constructors	(e.g.	those	for
file	and	image	input)	create	pixmaps	with	no	alpha

alltogether.	On	the	downside,	save	methods	for	pixmaps
no	longer	accept	a	savealpha	option:	this	channel	will
always	be	saved	when	present.	To	minimize	code
breaks,	we	have	left	this	parameter	in	the	call	patterns	-
it	will	just	be	ignored.

DisplayList	and	TextPage	class	constructors	now	require
the	mediabox	of	the	page	they	are	referring	to	(i.e.	the
page.bound()	rectangle).	There	is	no	way	to	construct	this
information	from	other	sources,	therefore	a	source	code	change
cannot	be	avoided	in	these	cases.	We	assume	however,	that	not
many	users	are	actually	employing	these	rather	low	level	classes
explixitely.	So	the	impact	of	that	change	should	be	minor.

Other	Changes	compared	to	Version	1.9.3

The	new	Document	method	write()	writes	an	opened	PDF	to
memory	(as	opposed	to	a	file,	like	save()	does).
An	annotation	can	now	be	scaled	and	moved	around	on	its	page.
This	is	done	by	modifying	its	rectangle.
Annotations	can	now	be	deleted.	Page	contains	the	new	method
deleteAnnot().
Various	annotation	attributes	can	now	be	modified,	e.g.	content,
dates,	title	(=	author),	border,	colors.
Method	Document.insertPDF()	now	also	copies	annotations
of	source	pages.
The	Pages	class	has	been	deleted.	As	documents	can	now	be
accessed	with	page	numbers	as	indices	(like	doc[n]	=
doc.loadPage(n)),	and	document	object	can	be	used	as
iterators,	the	benefit	of	this	class	was	too	low	to	maintain	it.	See

the	following	comments.
loadPage(n)	/	doc[n]	now	accept	arbitrary	integers	to	specify
a	page	number,	as	long	as	n	<	pageCount.	So,	e.g.
doc[-500]	is	always	valid	and	will	load	page	(-500)	%
pageCount.
A	document	can	now	also	be	used	as	an	iterator	like	this:	for
page	in	doc:	...<do	something	with	"page">
This	will	yield	all	pages	of	doc	as	page.
The	Pixmap	method	getSize()	has	been	replaced	with
property	size.	As	before	Pixmap.size	==	len(Pixmap)	is
true.
In	response	to	transparency	(alpha)	being	optional,	several	new
parameters	and	properties	have	been	added	to	Pixmap	and
Colorspace	classes	to	support	determining	their	characteristics.
The	Page	class	now	contains	new	properties	firstAnnot	and
firstLink	to	provide	starting	points	to	the	respective	class
chains,	where	firstLink	is	just	a	mnemonic	synonym	to
method	loadLinks()	which	continues	to	exist.	Similarly,	the
new	property	rect	is	a	synonym	for	method	bound(),	which
also	continues	to	exist.
Pixmap	methods	samplesRGB()	and	samplesAlpha()	have
been	deleted	because	pixmaps	can	now	be	created	without
transparency.
Rect	now	has	a	property	irect	which	is	a	synonym	of	method
round().	Likewise,	IRect	now	has	property	rect	to	deliver	a
Rect	which	has	the	same	coordinates	as	floats	values.
Document	has	the	new	method	searchPageFor()	to	search
for	a	text	string.	It	works	exactly	like	the	corresponding

Page.searchFor()	with	page	number	as	additional
parameter.

Changes	in	Version	1.9.3
This	version	is	also	based	on	MuPDF	v1.9a.	Changes	compared	to
version	1.9.2:

As	a	major	enhancement,	annotations	are	now	supported	in	a
similar	way	as	links.	Annotations	can	be	displayed	(as	pixmaps)
and	their	properties	can	be	accessed.

In	addition	to	the	document	select()	method,	some	simpler
methods	can	now	be	used	to	manipulate	a	PDF:

copyPage()	copies	a	page	within	a	document.
movePage()	is	similar,	but	deletes	the	original.
deletePage()	deletes	a	page
deletePageRange()	deletes	a	page	range

rotation	or	setRotation()	access	or	change	a	PDF	page’s
rotation,	respectively.

Available	but	undocumented	before,	IRect,	Rect,	Point	and	Matrix
support	the	len()	method	and	their	coordinate	properties	can	be
accessed	via	indices,	e.g.	IRect.x1	==	IRect[2].

For	convenience,	documents	now	support	simple	indexing:
doc.loadPage(n)	==	doc[n].	The	index	may	however	be
in	range	-pageCount	<	n	<	pageCount,	such	that
doc[-1]	is	the	last	page	of	the	document.

Changes	in	Version	1.9.2
This	version	is	also	based	on	MuPDF	v1.9a.	Changes	compared	to
version	1.9.1:

fitz.open()	(no	parameters)	creates	a	new	empty	PDF
document,	i.e.	if	saved	afterwards,	it	must	be	given	a	.pdf
extension.

Document	now	accepts	all	of	the	following	formats	(Document
and	open	are	synonyms):

open(),
open(filename)	(equivalent	to	open(filename,
None)),
open(filetype,	area)	(equivalent	to
open(filetype,	stream	=	area)).

Type	of	memory	area	stream	may	be	str	(Python	2),	bytes
(Python	3)	or	bytearray	(Python	2	and	3).	Thus,	e.g.	area	=
open("file.pdf",	"rb").read()	may	be	used	directly
(without	first	converting	it	to	bytearray).

New	method	Document.insertPDF()	(PDFs	only)	inserts	a
range	of	pages	from	another	PDF.

Document	objects	doc	now	support	the	len()	function:
len(doc)	==	doc.pageCount.

New	method	Document.getPageImageList()	creates	a	list
of	images	used	on	a	page.

New	method	Document.getPageFontList()	creates	a	list	of
fonts	referenced	by	a	page.

New	pixmap	constructor	fitz.Pixmap(doc,	xref)	creates	a
pixmap	based	on	an	opened	PDF	document	and	an	XREF
number	of	the	image.

New	pixmap	constructor	fitz.Pixmap(cspace,	spix)
creates	a	pixmap	as	a	copy	of	another	one	spix	with	the
colorspace	converted	to	cspace.	This	works	for	all	colorspace
combinations.

Pixmap	constructor	fitz.Pixmap(colorspace,	width,
height,	samples)	now	allows	samples	to	also	be	str
(Python	2)	or	bytes	(Python	3),	not	only	bytearray.

Changes	in	Version	1.9.1
This	version	of	PyMuPDF	is	based	on	MuPDF	library	source	code
version	1.9a	published	on	April	21,	2016.

Please	have	a	look	at	MuPDF’s	website	to	see	which	changes	and
enhancements	are	contained	herein.

Changes	in	version	1.9.1	compared	to	version	1.8.0	are	the	following:

New	methods	getRectArea()	for	both	fitz.Rect	and
fitz.IRect

Pixmaps	can	now	be	created	directly	from	files	using	the	new
constructor	fitz.Pixmap(filename).
The	Pixmap	constructor	fitz.Pixmap(image)	has	been
extended	accordingly.
fitz.Rect	can	now	be	created	with	all	possible	combinations
of	points	and	coordinates.
PyMuPDF	classes	and	methods	now	all	contain	__doc__	strings,
most	of	them	created	by	SWIG	automatically.	While	the
PyMuPDF	documentation	certainly	is	more	detailed,	this	feature
should	help	a	lot	when	programming	in	Python-aware	IDEs.
A	new	document	method	of	getPermits()	returns	the
permissions	associated	with	the	current	access	to	the	document
(print,	edit,	annotate,	copy),	as	a	Python	dictionary.
The	identity	matrix	fitz.Identity	is	now	immutable.
The	new	document	method	select(list)	removes	all	pages
from	a	document	that	are	not	contained	in	the	list.	Pages	can	also
be	duplicated	and	re-arranged.

Various	improvements	and	new	members	in	our	demo	and
examples	collections.	Perhaps	most	prominently:	PDF_display
now	supports	scrolling	with	the	mouse	wheel,	and	there	is	a	new
example	program	wxTableExtract	which	allows	to	graphically
identify	and	extract	table	data	in	documents.
fitz.open()	is	now	an	alias	of	fitz.Document().
New	pixmap	method	getPNGData()	which	will	return	a
bytearray	formatted	as	a	PNG	image	of	the	pixmap.
New	pixmap	method	samplesRGB()	providing	a	samples
version	with	alpha	bytes	stripped	off	(RGB	colorspaces	only).
New	pixmap	method	samplesAlpha()	providing	the	alpha
bytes	only	of	the	samples	area.
New	iterator	fitz.Pages(doc)	over	a	document’s	set	of
pages.
New	matrix	methods	invert()	(calculate	inverted	matrix),
concat()	(calculate	matrix	product),	preTranslate()
(perform	a	shift	operation).
New	IRect	methods	intersect()	(intersection	with	another
rectangle),	translate()	(perform	a	shift	operation).
New	Rect	methods	intersect()	(intersection	with	another
rectangle),	transform()	(transformation	with	a	matrix),
includePoint()	(enlarge	rectangle	to	also	contain	a	point),
includeRect()	(enlarge	rectangle	to	also	contain	another
one).
Documented	Point.transform()	(transform	a	point	with	a
matrix).
Matrix,	IRect,	Rect	and	Point	classes	now	support
compact,	algebraic	formulations	for	manipulating	such	objects.

indexnext 	|previous 	|PyMuPDF	1.12.2	documentation 	»

Incremental	saves	for	changes	are	possible	now	using	the	call
pattern	doc.save(doc.name,	incremental=True).
A	PDF’s	metadata	can	now	be	deleted,	set	or	changed	by
document	method	setMetadata().	Supports	incremental
saves.
A	PDF’s	bookmarks	(or	table	of	contents)	can	now	be	deleted,	set
or	changed	with	the	entries	of	a	list	using	document	method
setToC(list).	Supports	incremental	saves.

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexprevious 	|PyMuPDF	1.12.2	documentation 	»

Error	Messages

This	a	list	of	exception	messages	raised	by	PyMuPDF	together	with
an	explanation	and	possible	solution.

In	addition,	the	underlying	C	library	MuPDF	also	raises	exceptions	on
the	Python	level.	We	have	included	a	few	of	those	as	well	and	may
extend	this	in	future.

In	general,	RuntimeError	is	raised	by	the	C-level	(MuPdf	or
PyMuPDF),	other	exception	types	are	always	raised	on	the	Python
level.

annot	has	no	/AP
Bad	specification	-	no	changes	possible	for	this	annotation.

arg	1	not	bytes	or	bytearray
Specify	parameter	as	type	bytes	or	bytearray.

bad	PDF:	Contents	is	no	stream	object
The	/Contents	object(s)	of	a	page	must	be	streams.	Repair
PDF.

bad	PDF:	file	has	no	stream
An	embedded	/	attached	file	is	not	a	stream.	Repair	PDF.

buffer	too	large	to	deflate
Internal	error	-	report	an	issue.

cannot	deflate	buffer
Internal	error	-	report	an	issue.

cannot	open	<path>:	No	such	file	or	directory

Specify	a	valid	file	name	/	path.

cannot	recognize	archive
Trying	to	open	an	invalid	CBZ	document.

cannot	recognize	zip	archive
Trying	to	open	an	invalid	XPS	document.

color	components	must	be	in	range	0	to	1
Color	components	must	be	floats	in	interval	[0,	1].

could	not	create	UTF16	for	‘<name>’
Internal	error	-	report	an	issue.

could	not	get	string	of	‘<name>’
Internal	error	-	report	an	issue.

could	not	get	UTF16	string	of	‘<name>’
Internal	error	-	report	an	issue.

could	not	load	root	object
Root	object	of	PDF	not	found.	Repair	PDF.

encrypted	file	-	save	to	new
Trying	incremental	save	for	a	decrypted	file.	Save	to	a	new
file.

exactly	one	of	filename,	pixmap	must	be	given
You	either	specified	both	parameters	or	none.

expected	a	sequence
Parameter	type	must	be	list,	tuple,	etc.

filename	must	be	a	string
Specify	a	valid	file	path	/	name.

filename	must	be	string	or	None
Specify	a	valid	file	path	/	name	or	omit	parameter.

filename	must	end	with	‘.png’
writePNG()	requires	file	extension	.png.

filetype	missing	with	stream	specified
Document	open	from	memory	needs	its	type	as	a	string.

fontname	must	be	supplied
A	new	font	file	requires	some	(arbitrary)	new	reference	name.

found	code	point	nnn:	increase	charlimit
Trying	to	get	a	glyph	width	beyond	the	current	table	size	limit.

incremental	excludes	garbage
Garbage	collection	cannot	occur	during	incremental	saves.

incremental	excludes	linear
Linearization	cannot	occur	during	incremental	saves.

incremental	save	needs	original	file
Incremental	save	is	only	possible	to	the	original	file.

info	not	a	dict
Specify	correct	Python	parameter	type.

invalid	font	-	FontDescriptor	missing
Specify	correct	XREF	to	read	font.

invalid	font	descriptor	subtype
Bad	font	description	in	PDF.	Repair	file.

unhandled	font	type	/	unhandled	font	type	‘<type>’
MuPDF	does	not	yet	handle	this	font	type.	Requesting	method
cannot	be	used,	unfortunately.	Report	an	issue.

invalid	key	in	info	dict
Dictionary	key	misspelled.

invalid	page	range
Page	numbers	must	be	in	range	[0,	pageCount	-	1].

invalid	stream
Stream	object	updates	need	type	bytes	or	bytearray.

len(samples)	invalid
Length	of	samples	must	equal	width	*	height	*	n
(where	n	is	the	number	of	components	per	pixel).

line	endpoints	must	be	within	page	rect
The	Page.rect	must	contain	the	points.

name	already	exists
The	name	is	in	use	by	some	other	embedded	file.

name	not	valid
Specify	a	name	of	non-zero	length.

need	3	color	components
Only	RGB	colors	are	supported,	which	need	three
components.

no	embedded	files
PDF	has	no	embedded	files.

no	objects	found
Trying	to	open	an	invalid	PDF,	FB2,	or	EPUB	document.

not	a	file	attachment	annot
Accessed	an	annotation	with	the	wrong	type.

not	a	PDF
Using	some	method	or	attribute	only	valid	for	PDF	document
type.

nothing	to	change
No	data	supplied	for	embedded	file	metadata	change.

operation	illegal	for	closed	doc
Trying	to	use	methods	/	properties	after	close	of	document.

orphaned	object:	parent	is	None
Accessing	an	object	whose	parent	no	longer	exists	(e.g.	an
annotation	of	an	unavailable	page).

invalid	page	number(s)
Page	numbers	must	be	integers	<	pageCount,	but	also
non-negative	for	some	methods.

rect	must	be	contained	in	page	rect
Image	insertion	requires	a	target	rectangle	contained	in
page.rect.

rect	must	be	finite	and	not	empty
Top-left	corner	must	be	“northeast”	of	bottom-right	one,	and
rectangle	area	must	be	positive.

repaired	file	-	save	to	new
Trying	incremental	save	for	file	repaired	during	open.	Use
doc.save()	to	a	new	file.

save	to	original	requires	incremental
Using	original	filename	in	doc.save()	without	also
specifying	option	incremental.	Consider	using
doc.saveIncr().

sequence	length	must	be	<n>
Creating	Point,	Rect,	Irect,	Matrix	with	wrong	length
sequences.

some	text	is	needed
Specify	text	with	a	positive	length.

source	and	target	too	close
Target	number	of	moved	page	pno	must	be	>	pno	or	<	pno
-	1.

source	must	not	equal	target	PDF
Method	doc.insertPDF()	requires	two	distinct	document
objects	(which	may	point	to	the	same	file,	however).

source	not	a	PDF
Method	doc.insertPDF()	only	works	with	PDF
documents.

source	page	out	of	range
Specify	a	valid	page	number.

target	not	a	PDF
Method	Document.insertPDF()	only	works	with	PDF
documents.

text	position	outside	page	height	range
If	text	starts	at	Point	point,	fontsize	<=	point.y	<=
(page	height	-	fontsize	*	1.2)	must	be	true.

type(ap)	invalid
Internal	error	-	report	an	issue.

type(imagedata)	invalid

indexprevious 	|PyMuPDF	1.12.2	documentation 	»

Use	type	bytearray.

type(samples)	invalid
Use	type	bytes	or	bytearray.

unknown	PDF	Base	14	font
Use	a	valid	PDF	standard	font	name.

xref	entry	is	not	an	image
Trying	to	create	a	pixmap	from	a	non-image	PDF	object.

xref	invalid
Internal	error	-	report	an	issue.

xref	is	not	a	stream
Trying	to	access	the	stream	part	of	a	non-stream	object.

xref	out	of	range
PDF	xref	numbers	must	be	1	<=	xref	<=
doc._getXrefLength().

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	13.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

indexPyMuPDF	1.12.2	documentation 	»

Index

_	|	A	|	B	|	C	|	D	|	E	|	F	|	G	|	H	|	I	|	K	|	L	|	M	|	N	|	O	|	P	|	R	|	S	|	T	|	U	|
V	|	W	|	X	|	Y

_

__init__()	(Colorspace
method)

(Device	method),	[1]
(DisplayList	method)
(Document	method),
[1]
(IRect	method),	[1],
[2],	[3]
(Matrix	method),	[1],
[2],	[3],	[4],	[5],	[6]
(Pixmap	method),
[1],	[2],	[3],	[4],	[5],
[6],	[7]
(Point	method),	[1],
[2],	[3]
(Rect	method),	[1],
[2],	[3],	[4],	[5],	[6]
(Shape	method)

_cleanContents()	(Annot
method)

(Page	method)
_delXmlMetadata()
(Document	method)
_getContents()	(Page
method)

_getGCTXerrmsg()
(Document	method)
_getNewXref()	(Document
method)
_getObjectString()	(Document
method)
_getOLRootNumber()
(Document	method)
_getPageObjNumber()
(Document	method)
_getPageXref()	(Document
method)
_getXmlMetadataXref()
(Document	method)
_getXref()	(Annot	method)

(Page	method)
_getXrefLength()	(Document
method)
_getXrefStream()	(Document
method)
_getXrefString()	(Document
method)
_updateObject()	(Document
method)
_updateStream()	(Document
method)

A

a	(Matrix	attribute)
alpha	(Pixmap	attribute)
Annot	(built-in	class)
ANNOT_3D	(built-in
variable)
ANNOT_CARET	(built-in
variable)
ANNOT_CIRCLE	(built-in
variable)
ANNOT_FILEATTACHMENT
(built-in	variable)
ANNOT_FREETEXT	(built-in
variable)
ANNOT_HIGHLIGHT	(built-
in	variable)
ANNOT_INK	(built-in
variable)
ANNOT_LE_Butt	(built-in
variable)
ANNOT_LE_Circle	(built-in
variable)
ANNOT_LE_ClosedArrow
(built-in	variable)
ANNOT_LE_Diamond	(built-
in	variable)
ANNOT_LE_None	(built-in
variable)
ANNOT_LE_OpenArrow
(built-in	variable)
ANNOT_LE_RClosedArrow
(built-in	variable)
ANNOT_LE_ROpenArrow
(built-in	variable)
ANNOT_LE_Slash	(built-in

ANNOT_POLYLINE	(built-in
variable)
ANNOT_POPUP	(built-in
variable)
ANNOT_PRINTERMARK
(built-in	variable)
ANNOT_SCREEN	(built-in
variable)
ANNOT_SOUND	(built-in
variable)
ANNOT_SQUARE	(built-in
variable)
ANNOT_SQUIGGLY	(built-in
variable)
ANNOT_STAMP	(built-in
variable)
ANNOT_STRIKEOUT	(built-
in	variable)
ANNOT_TEXT	(built-in
variable)
ANNOT_TRAPNET	(built-in
variable)
ANNOT_UNDERLINE	(built-
in	variable)
ANNOT_WATERMARK
(built-in	variable)
ANNOT_WIDGET	(built-in
variable)
ANNOT_XF_Hidden	(built-in
variable)
ANNOT_XF_Invisible	(built-in
variable)
ANNOT_XF_Locked	(built-in
variable)

variable)
ANNOT_LE_Square	(built-in
variable)
ANNOT_LINE	(built-in
variable)
ANNOT_LINK	(built-in
variable)
ANNOT_MOVIE	(built-in
variable)
ANNOT_POLYGON	(built-in
variable)

ANNOT_XF_LockedContents
(built-in	variable)
ANNOT_XF_NoRotate	(built-
in	variable)
ANNOT_XF_NoView	(built-in
variable)
ANNOT_XF_NoZoom	(built-
in	variable)
ANNOT_XF_Print	(built-in
variable)
ANNOT_XF_ReadOnly	(built-
in	variable)
ANNOT_XF_ToggleNoView
(built-in	variable)
authenticate()	(Document
method)

B

b	(Matrix	attribute)
Base14_Fonts	(built-in
variable)
bl	(IRect	attribute)

(Rect	attribute)
border	(Annot	attribute)
bottom_left	(IRect	attribute)

(Rect	attribute)

bottom_right	(IRect
attribute)

(Rect	attribute)
bound()	(Page	method)
br	(IRect	attribute)

(Rect	attribute)

C

c	(Matrix	attribute)
clearWith()	(Pixmap
method)
close()	(Document
method)
colors	(Annot	attribute)
Colorspace	(built-in	class)
colorspace	(Pixmap
attribute)
commit()	(Shape	method)
concat()	(Matrix	method)
contains()	(IRect	method)

(Rect	method)
contents	(Shape	attribute)

ConversionHeader()
ConversionTrailer()
copyPage()	(Document
method)
copyPixmap()	(Pixmap
method)
CropBox	(Page	attribute)
CropBoxPosition	(Page
attribute)
CS_CMYK	(built-in	variable)
CS_GRAY	(built-in	variable)
CS_RGB	(built-in	variable)
csCMYK	(built-in	variable)
csGRAY	(built-in	variable)
csRGB	(built-in	variable)

D

d	(Matrix	attribute)
deleteAnnot()	(Page	method)
deleteLink()	(Page	method)
deletePage()	(Document
method)
deletePageRange()
(Document	method)
dest	(Link	attribute)

(Outline	attribute)
(linkDest	attribute)

Device	(built-in	class)
DisplayList	(built-in	class)
distance_to()	(Point	method)
doc	(Shape	attribute)
Document	(built-in	class)
down	(Outline	attribute)
drawBezier()	(Page	method)

(Shape	method)
drawCircle()	(Page	method)

(Shape	method)

drawCurve()	(Page
method)

(Shape	method)
drawLine()	(Page	method)

(Shape	method)
drawOval()	(Page
method)

(Shape	method)
drawPolyline()	(Page
method)

(Shape	method)
drawRect()	(Page
method)

(Shape	method)
drawSector()	(Page
method)

(Shape	method)
drawSquiggle()	(Page
method)

(Shape	method)
drawZigzag()	(Page
method)

(Shape	method)

E

e	(Matrix	attribute)
embeddedFileAdd()
(Document	method)
embeddedFileCount
(Document	attribute)
embeddedFileDel()
(Document	method)
embeddedFileGet()
(Document	method)
embeddedFileInfo()
(Document	method)
embeddedFileSetInfo()
(Document	method)
extractFont()	(Document
method)

extractHTML()	(TextPage
method)
extractJSON()	(TextPage
method)
extractTEXT()	(TextPage
method)
extractText()	(TextPage
method)
extractTextLines()	(Page
method)
extractTextRect()	(Page
method)
extractXHTML()
(TextPage	method)
extractXML()	(TextPage
method)

F

f	(Matrix	attribute)
fileGet()	(Annot	method)
fileInfo()	(Annot	method)
fileSpec	(linkDest	attribute)
fileUpd()	(Annot	method)

finish()	(Shape	method)
firstAnnot	(Page	attribute)
firstLink	(Page	attribute)
flags	(Annot	attribute)

(linkDest	attribute)
FontInfos	(Document
attribute)

G

gammaWith()	(Pixmap
method)
getArea()	(IRect	method)

(Rect	method)
getCharWidths()	(Document
method)
getDisplayList()	(Page
method)
getFontList()	(Page	method)
getImageList()	(Page
method)
getLinks()	(Page	method)
getPageFontList()	(Document
method)
getPageImageList()
(Document	method)
getPagePixmap()	(Document
method)
getPageRawText()
(Document	method)
getPageText()	(Document
method)
getPDFnow()

getPDFstr()
getPixmap()	(Annot
method)

(DisplayList	method)
(Page	method)

getPNGData()	(Pixmap
method)
getRect()	(IRect	method)
getRectArea()	(IRect
method)

(Rect	method)
getSVGimage()	(Page
method)
getText()	(Page	method)
getTextBlocks()	(Page
method)
getTextPage()	(DisplayList
method)
getTextWords()	(Page
method)
getToC()	(Document
method)

H

h	(Pixmap	attribute)
height	(IRect	attribute)

(Pixmap	attribute)
(Rect	attribute)
(Shape	attribute)

I

includePoint()	(Rect
method)
includeRect()	(Rect	method)
info	(Annot	attribute)
insertFont()	(Page	method)
insertImage()	(Page
method)
insertLink()	(Page	method)
insertPage()	(Document
method)
insertPDF()	(Document
method)
insertText()	(Page	method)

(Shape	method)
insertTextbox()	(Page
method)

(Shape	method)
interpolate	(Pixmap
attribute)
intersect()	(IRect	method)

(Rect	method)
intersects()	(IRect	method)

(Rect	method)

invert()	(Matrix	method)
invertIRect()	(Pixmap
method)
IRect	(built-in	class)
irect	(Pixmap	attribute)

(Rect	attribute)
is_open	(Outline	attribute)
isClosed	(Document
attribute)
isEmpty	(IRect	attribute)

(Rect	attribute)
isEncrypted	(Document
attribute)
isExternal	(Link	attribute)

(Outline	attribute)
isInfinite	(IRect	attribute)

(Rect	attribute)
isMap	(linkDest	attribute)
isPDF	(Document	attribute)
isUri	(linkDest	attribute)

K

kind	(linkDest	attribute)

L

lastPoint	(Shape	attribute)
lineEnds	(Annot	attribute)
Link	(built-in	class)
LINK_FLAG_B_VALID	(built-
in	variable)
LINK_FLAG_FIT_H	(built-in
variable)
LINK_FLAG_FIT_V	(built-in
variable)
LINK_FLAG_L_VALID	(built-
in	variable)
LINK_FLAG_R_IS_ZOOM
(built-in	variable)
LINK_FLAG_R_VALID	(built-
in	variable)

LINK_FLAG_T_VALID
(built-in	variable)
LINK_GOTO	(built-in
variable)
LINK_GOTOR	(built-in
variable)
LINK_LAUNCH	(built-in
variable)
LINK_NONE	(built-in
variable)
LINK_URI	(built-in
variable)
linkDest	(built-in	class)
loadLinks()	(Page
method)
loadPage()	(Document
method)
lt	(linkDest	attribute)

M

Matrix	(built-in	class)
MediaBox	(Page	attribute)

MediaBoxSize	(Page
attribute)
metadata	(Document
attribute)
movePage()	(Document
method)

N

n	(Colorspace	attribute)
(Pixmap	attribute)

name	(Colorspace	attribute)
(Document	attribute)

named	(linkDest	attribute)
needsPass	(Document
attribute)
newPage()	(Document
method)

newShape()	(Page	method)
newWindow	(linkDest
attribute)
next	(Annot	attribute)

(Link	attribute)
(Outline	attribute)

normalize()	(IRect	method)
(Rect	method)

number	(Page	attribute)

O

openErrCode	(Document
attribute)
openErrMsg	(Document
attribute)

Outline	(built-in	class)
outline	(Document	attribute)

P

Page	(built-in	class)
page	(linkDest	attribute)

(Outline	attribute)
(Shape	attribute)

pageCount	(Document
attribute)
PaperSize()
parent	(Annot	attribute)

(Page	attribute)

permissions	(Document
attribute)
Pixmap	(built-in	class)
Point	(built-in	class)
preRotate()	(Matrix	method)
preScale()	(Matrix	method)
preShear()	(Matrix	method)
preTranslate()	(Matrix
method)

R

rb	(linkDest	attribute)
rect	(Annot	attribute)
Rect	(built-in	class)
rect	(DisplayList	attribute)

(Link	attribute)
(Page	attribute)

rotation	(Page	attribute)
round()	(Rect	method)
run()	(DisplayList	method)

(Page	method)

S

samples	(Pixmap	attribute)
save()	(Document	method)
saveIncr()	(Document
method)
search()	(TextPage	method)
searchFor()	(Page	method)
searchPageFor()
(Document	method)
select()	(Document	method)
setAlpha()	(Pixmap	method)
setBorder()	(Annot	method)
setColors()	(Annot	method)

setFlags()	(Annot	method)
setInfo()	(Annot	method)
setMetadata()	(Document
method)
setRect()	(Annot	method)
setRotation()	(Page
method)
setToC()	(Document
method)
Shape	(built-in	class)
showPDFpage()	(Page
method)
shrink()	(Pixmap	method)
size	(Pixmap	attribute)
stride	(Pixmap	attribute)

T

TEXT_ALIGN_CENTER	(built-in
variable)
TEXT_ALIGN_JUSTIFY	(built-in
variable)
TEXT_ALIGN_LEFT	(built-in
variable)
TEXT_ALIGN_RIGHT	(built-in
variable)
TEXT_PRESERVE_IMAGES	(built-in
variable)
TEXT_PRESERVE_LIGATURES
(built-in	variable)
TEXT_PRESERVE_WHITESPACE
(built-in	variable)
TextPage	(built-in	class)
tintWith()	(Pixmap	method)
title	(Outline	attribute)
tl	(IRect	attribute)

(Rect	attribute)

top_left	(IRect
attribute)

(Rect
attribute)

top_right	(IRect
attribute)

(Rect
attribute)

totalcont	(Shape
attribute)
tr	(IRect	attribute)

(Rect
attribute)

transform()	(Point
method)

(Rect
method)

type	(Annot
attribute)

U

updateImage()	(Annot
method)
updateLink()	(Page	method)

uri	(Link	attribute)
(Outline	attribute)
(linkDest	attribute)

V

version	(built-in	variable)
VersionBind	(built-in
variable)

VersionDate	(built-in
variable)
VersionFitz	(built-in
variable)
vertices	(Annot	attribute)

W

w	(Pixmap	attribute)
width	(IRect	attribute)

(Pixmap	attribute)
(Rect	attribute)
(Shape	attribute)

write()	(Document	method)
writeImage()	(Pixmap
method)
writePNG()	(Pixmap
method)

X

x	(Pixmap	attribute)
(Point	attribute)

x0	(IRect	attribute)
(Rect	attribute)

x1	(IRect	attribute)
(Rect	attribute)

xres	(Pixmap	attribute)

indexPyMuPDF	1.12.2	documentation 	»

Y

y	(Pixmap	attribute)
(Point	attribute)

y0	(IRect	attribute)
(Rect	attribute)

y1	(IRect	attribute)
(Rect	attribute)

yres	(Pixmap	attribute)

©	Copyright	2015-2018,	Jorj	X.	McKie.	Last	updated	on	14.	Jan	2018.	Created	using	Sphinx	1.6.6.

http://sphinx-doc.org/

	PyMuPDF 1.12.2 documentation
	Introduction
	Installation
	Tutorial
	Classes
	Annot
	Colorspace
	Document
	Identity
	IRect
	Link
	linkDest
	Matrix
	Outline
	Page
	Pixmap
	Point
	Shape
	Rect

	Operator Algebra for Geometry Objects
	Low Level Functions and Classes
	Functions
	Device
	DisplayList
	TextPage
	Working together: DisplayList and TextPage

	Constants and Enumerations
	Color Database
	Appendix 1: Performance
	Appendix 2: Details on Text Extraction
	Appendix 3: Considerations on Embedded Files
	Appendix 4: Assorted Technical Information
	Change Logs
	Error Messages

